UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Studies on the ligand properties of phosphonitrilic derivatives Calhoun, Harry P. 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1974_A1 C34.pdf [ 12.14MB ]
Metadata
JSON: 831-1.0061153.json
JSON-LD: 831-1.0061153-ld.json
RDF/XML (Pretty): 831-1.0061153-rdf.xml
RDF/JSON: 831-1.0061153-rdf.json
Turtle: 831-1.0061153-turtle.txt
N-Triples: 831-1.0061153-rdf-ntriples.txt
Original Record: 831-1.0061153-source.json
Full Text
831-1.0061153-fulltext.txt
Citation
831-1.0061153.ris

Full Text

C I STUDIES ON THE LIGAND PROPERTIES OF PHOSPHONITRILIC DERIVATIVES b y H a r r y P. C a l h o u n B.A., C a l i f o r n i a S t a t e U n i v e r s i t y , F u l l e r t o n , 1967 M.S., U n i v e r s i t y o f C a l i f o r n i a , R i v e r s i d e , 1969 A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n t h e D e p a r t m e n t o f C h e m i s t r y We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF B R I T I S H COLUMBIA December, 1973 In presenting th i s thesis in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that the L ibrary shal l make it f ree ly ava i lab le for reference and study. I further agree that permission for extensive copying of th is thesis for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t ion of th is thesis for f inanc ia l gain sha l l not be allowed without my written permission. Department of emis {ry The Univers i ty of B r i t i s h Columbia Vancouver 8, Canada 7 - i -ABSTRACT S u p e r v i s o r s : P r o f e s s o r s N. L. P a d d o c k and J . T r o t t e r C o m p l e x e s o f d o d e c a ( d i m e t h y l a m i n o ) c y c l o h e x a p h o s p h o n i t r i l e w i t h , d i v a l e n t f i r s t s e r i e s t r a n s i t i o n m e t a l i o n s manganese t h r o u g h z i n c h a v e b e e n s t u d i e d . P r e v i o u s X - r a y w o r k h a s e s t a b l i s h e d t h a t N^P^ ( N M e 2 ) f ° r r n s f i v e - c o o r d i n a t e c o m p l e x e s w i t h t r a n s i t i o n m e t a l c h l o r i d e s i n w h i c h t h e p h o s p h o n i t r i l e d o n a t e s t o t h e m e t a l t h r o u g h f o u r r i n g n i t r o g e n atoms and t h e m e t a l atom i s c l o s e t o t h e c e n t r e o f t h e p h o s p h o n i t r i l i c r i n g . I n t h e p r e s e n t w o r k , t h e c o m p l e x e s w i t h m e t a l n i t r a t e s h a v e b e e n shown t o h a v e t h e f o r m u l a e ( M ( N ^ P ^ ( N M e 2 ) 1 2 ) N 0 3 + ) N 0 3 ~ , w i t h M = Mn,Co,Ni,Cu, a n d Z n , on t h e b a s i s o f c o n d u c t i v i t y m e a s u r e m e n t s a n d t h e e l e c t r o n i c s p e c t r a o f t h e Co, N i , a n d Cu c o m p l e x e s . M a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s i n d i c a t e t h a t t h e n i t r a t e c o m p l e x e s w i t h M = Mn,Co, an d N i a r e h i g h s p i n c o m p l e x e s . F o r t h e c o p p e r n i t r a t e c o m p l e x t h e a b o v e f o r m u l a t i o n i s p r o b a b l y c o r r e c t i n t h e s o l i d s t a t e , b u t i n s o l u t i o n c o o r d i n a t i o n e v i d e n t l y d e p e n d s o n t h e s o l v e n t . The e l e c t r o n i c s p e c t r a a r e b e s t i n t e r p r e t e d i n t e r m s o f D^^ sym-m e t r y a b o u t t h e m e t a l , a n d t h e c r y s t a l f i e l d p a r a m e t e r s d e r i v e d f r o m p u b l i s h e d e n e r g y l e v e l d i a g r a m s a r e s i m i l a r t o c o r r e s p o n d i n g v a l u e s d e r i v e d f o r f i v e - c o o r d i n a t e c o m p l e x e s f o r m e d w i t h N (CE^CE^N (CH^) 2 ) 3 • a s a t u r a t e d t e t r a d e n t a t e a m i n e l i g a n d . I n f r a r e d s p e c t r a o f N ^ P ^ ( N M e 2 ) ^ 2 and i t s c o m p l e x e s a r e a l s o d i s c u s s e d . I n o r d e r t o i n v e s t i g a t e c h a n g e s i n -the l i g a n d geometry-o c c u r r i n g when o t h e r p h o s p h o n i t r i l i c d e r i v a t i v e s c o o r d i n a t e t o t r a n s i t i o n m e t a l s o r i n t e r a c t w i t h o t h e r a c c e p t o r g r o u p s t h e c r y s t a l s t r u c t u r e s o f ( N 4 P 4 M e g + ) ( C r ( C O ) 5 I ~ ) , ( ( N P M e 2 ) 5 H 2 2 + ) ( C u C l 4 2 ~ ) - H 2 0 , and N 4 P 4 ( N M e 2 ) Q - W ( C O ) 4 h a v e b e e n d e t e r m i n e d . F o r a l l t h r e e s t r u c t u r e s i n t e n s i t y d a t a w e r e c o l l e c t e d on a d i f f r a c t o m e t e r and t h e p o s i t i o n a l a n d t h e r m a l p a r a m e t e r s w e r e r e f i n e d b y f u l l - m a t r i x l e a s t - s q u a r e s m e t h o d s . I n ( N 4 P 4 M e g + ) ( C r ( C O ) g l ) a r i n g n i t r o g e n a t om i s b o n d e d t o a m e t h y l g r o u p , a n d t h e ^ 4 P 4 r i n g h a s a n u n u s u a l ' d i s t o r t e d t u b ' c o n f o r m a t i o n , m o s t l i k e l y a r e s u l t o f s t e r i c r e q u i r e m e n t s The P-N b o n d l e n g t h s a r e n o t e q u a l a r o u n d t h e r i n g , a n d t h e o b s e r v e d p a t t e r n o f b o n d l e n g t h v a r i a t i o n a g r e e s q u a l i t a t i v e l y w i t h t h e p a t t e r n p r e d i c t e d b y a s i m p l e H i i c k e l M.O. c a l c u l a t i o n The g e o m e t r y o f t h e C r ( C O ) ^ I ~ i o n c l o s e l y a p p r o a c h e s t h e e x -p e c t e d C 4 v s y m m e t r y . I n ( ( N P M e 2 ) 5 H 2 2 + ) ( C u C l 4 2 ~ ) - H 2 0 t h e 10-membered p h o s p h o -n i t r i l i c r i n g i s p r o t o n a t e d a t two s i t e s , a n d t h e P-N b o n d l e n g t h s show a v a r i a t i o n w h i c h i s e x p l a i n e d i n t e r m s o f p e r t u r b a t i o n o f a h o m o m o r p h i c r i n g IT-system. The c o n f o r m a -t i o n o f t h e Nj-P,- r i n g i s i n f l u e n c e d p r i m a r i l y b y h y d r o g e n 2 -b o n d m g c o n s i d e r a t i o n s . The C u C l 4 i o n h a s a d i s t o r t e d t e t r a h e d r a l g e o m e t r y . I n N 4 P 4 ( N M e 2 ) g - W ( C O ) 4 t h e p h o s p h o n i t r i l e a c t s a s a b i -d e n t a t e < r - l i g a n d , c o o r d i n a t i o n o c c u r r i n g t h r o u g h a r i n g n i t r o g e n atom and a n e x o c y c l i c n i t r o g e n a t om on a n a d j a c e n t p h o s p h o r u s atom. The o b s e r v e d v a r i a t i o n i n t h e r i n g P-N b o n d - i i i -l e n g t h s i s u n d e r s t o o d i n t e r m s o f p e r t u r b a t i o n s o f t h e r i n g 7f s y s t e m s a t two s i t e s . The c o n f o r m a t i o n o f t h e p h o s p h o -n i t r i l i c r i n g i s d i f f e r e n t f r o m t h a t i n N„P.(NMe_)_, t h e r i n g b e i n g f o r m e d f r o m two n e a r l y p l a n a r s e g m e n t s m a k i n g a n a n g l e o f 48°. The c o o r d i n a t i o n g e o m e t r y a b o u t W i s d i s t o r t e d o c t a h e d r a l , t h e NWN a n g l e b e i n g 65.4°. - i v -TABLE OF CONTENTS Page ABSTRACT i TABLE OF CONTENTS. i v LIST OF TABLES v i i i LIST OF FIGURES x i ACKNOWLEDGEMENTS . x v i CHAPTER I. INTRODUCTION 1 CHAPTER I I . COMPLEXES OF DODECA(DIMETHYLAMINO)CYCLO-HEXAPHOSPHONITRILE WITH DIVALENT FIRST SERIES TRANSITION METAL IONS MANGANESE THROUGH ZINC 27 II.A. introduction 27 II. B. Experimental . 29 I I . B . l . Materials 29 II.B.2. Synthesis of Dodeca(dimethylamino)-cyclohexaphosphonitrile 29 II.B.3. Reactions of NgPg(NMe 2) 1 2 with F e C l 2 , MnCl 2, and Z n C l 2 30 II.B.3.a. Reaction with F e C l 2 . 30 II.B.3.b. Reactions with MnCl 2 and ZnCl 2 . 31 II.B.4. Synthesis of the Complexes of N 6P 5(NMe 2) 1 2 with Mn(N0 3) 2, Co(N0 3) 2,Ni(N0 3) 2, Cu(N0 3) 2, and Zn(N0 3) 2 31 - V -Page II.B.4.a. Synthesis of N 6P 6(NMe 2) l 2Co(N0 3) 2 31 II.B.4.b. Synthesis of the Complexes N 6P 6 (NMe 2) 1 2M(N0 3) 2 (M = Mn,Ni,Cu) 32 II.B.4 . C . N 6P 6(NMe 2) 1 2Zn(N0 3) 2 32 II.B.5. Conductivity Measurements 33 II.B.6. Magnetic S u s c e p t i b i l i t y Measurements 33 II.B.7. Electronic Absorption Spectra. . . 33 IT.B.8. V i b r a t i o n a l Spectra 33 II.C. Results and Discussion 35 I I . C . l . Conductivities 35 II . C 2. Magnetic Measurements ' 37 II.C.3. E l e c t r o n i c Absorption Spectra. . . 41 II.C.3.a. Electronic Absorption Spectrum of (Co(N 6P 6(NMe 2) l 2)N0 3)N0 3. . . 50 II.C.3.b. El e c t r o n i c Absorption Spectrum of (Ni(NgPg(NMe 2) l 2)N0 3)N0 3. . . 56 •II.C.3 . C . E l e c t r o n i c Absorption Spectra of N 6P 6(NMe 2) l 2Cu(N0 3) 2 59 II1C.4. Infrared Spectra 62 II.D. The Molecular Structures of the Cations i n (Co(NgPg(NMe 2) 1 2)C1 +) 2 (Co 2Cl 6 2~)•2CHC1 3 and (Cu(N 6P 6 (NMe 2) 1 2)Cl +) (CuCl 2~) . . . . 76 II . E. Conclusions 84 - v i -Page CHAPTER I I I . THE CRYSTAL AND MOLECULAR STRUCTURES OF (N 4P 4Me 9 +)(Cr(CO) 5I~), ((NPMe 2) 5H 2 2 +)(CuCl 4 2")-H 20, AND N 4P 4(NMe 2)g.W(CO) 4 . 88 III.A. Introduction 88 III.B. The Cr y s t a l and Molecular Structure of Nonamethylcyclotetra-phosphonitrilium Pentacarbonyl-iodochromate(0), (N 4P 4Me g +) (Cr (CO) 5l") . 90 III.B.1. Experimental 90 III.B.2. Structure Analysis 91 III.B.3. Discussion 93 III.C. The C r y s t a l and Molecular Structure of ((NPMe 2) 5H 2 2 +)(CuCl 4 2~)-H 20 . . 112 III.C. 1. Experimental 112 III.C.2. Structure Analysis 113 III.C.3. Discussion 116 III.D. The C r y s t a l and Molecular Structure of Octa(dimethylamino)cyclotetra-phosphonitriletetracarbonyl-tungsten, N 4P 4(NMe 2) Q-W(CO) 4 . . . 132 III.D.1. Experimental 132 III.D.2. Structure Analysis 133 III.D.3. Discussion 134 - v i i -APPENDIX I. Measured and Calculated Structure Page Amplitudes for (N 4P 4Me g +)(Cr(CO) 5I~) . . . 149 APPENDIX I I . Measured and Calculated Structure Amplitudes for ( (NPMe2) 5 H 2 2 + ) ( C u C l ^ - ) • H 20 | 155 APPENDIX II I . Measured and Calculated Structure Amplitudes for N 4P 4 (NMe2) -W(CO) 4 160 REFERENCES . . . . . 166 - v i i i -LIST OF TABLES Table Page Introduction I S t r u c t u r a l Information 3 II Symmetry Species of s-, p-, and d-Orbitals ( C 2 v s i t e symmetry) 7 III Geometry of Exocyclic Groups i n (NP(NMe 2) 2) n Molecules 16 IV Base Strengths of Trimeric and Tetrameric Phosphonitrilic Derivatives 20 Complexes of N^P^(NMe2)^ V A n a l y t i c a l Results 34 VI E l e c t r i c a l Conductivity of the Complexes i n A c e t o n i t r i l e 36 VII Magnetic S u s c e p t i b i l i t y Data 38 VIII Some High-Spin Five-Coordinate Co(II) Complexes 40 IX El e c t r o n i c Absorption Spectra of the NgP 6(NMe 2) 1 2-M(N0 3) 2 Complexes 42 X C r y s t a l F i e l d Energies of the d Orbi t a l s . . . 63 XI Infrared Spectra ' 64 XII Raman Spectrum of N 6Pg(NMe 2) l 2 70 XIII Geometrical Parameters Involving the Metal Atom i n the (Co (HPND) C l + ) ( C o ^ l g 2 - ) - 2CHCl 3 and (Cu(HPND)Cl+) (CuCl 2~) Complexes 79 - ix -Table Page Structure of (N 4P 4Me g +)(Cr(CO) 5I~) XIV F i n a l P o s i t i o n a l Parameters (Fractional 4 X 10 ) and Anisotropic Thermal Parameters 0 2 2 (U.., A X 10 ) with Standard Deviations i n Parentheses 94 XV Bond Lengths (A) and Angles (Degrees) with Standard Deviations i n Parentheses 96 XVI a) Mean Plane through the Phosphonitrilic Ring Atoms b) Dihedral Angles (Degrees) i n the Phos-p h o n i t r i l i c Ring 101 Structure of ( (NPMe2) 5H 2 2 4") (CuCl 4 2~) - H 20 XVII D i s t r i b u t i o n of the Normalized Structure Factors 114 XVIII Sta r t i n g Set for Phase Determination 115 4 XIX F i n a l P o s i t i o n a l Parameters (Fractional X 10 ) and Anisotropic Thermal Parameters (U\ _., A X 2 10 ) with Standard Deviations xn Parenetheses. 117 XX Bond Lengths (A) and Angles (Degrees) with Standard Deviations i n Parentheses 120 XXI Mean Plane Through Four Phosphorus Atoms . . . 122 XXII Probable Hydrogen Bonds 131 - X -Table Page Structure of N^ -P^  (-NMe ) Q • W (CO) 4 XXIII F i n a l P o s i t i o n a l Parameters (Fractional X 4 10 ) and Thermal Parameters (Anisotropic TJL .., A 2 X 10 2; i s o t r o p i c B, A 2) with Standard Deviations i n Parentheses 135 XXIV Bond Lengths (X) and Angles (Degrees) with Standard Deviations i n Parentheses 138 XXV Mean Planes Through the Molecule 143 - x i -LIST OF FIGURES Figure Page Introduction 1 Hexachlorocyclotriphosphonitrile 2 a) Interaction of the d o r b i t a l at xz phosphorus with the p o r b i t a l at z nitrogen. A p 7 f a o r b i t a l of an exocyclic group i s also shown. b) Interaction of the d 2 2 o r b i t a l at x -y phosphorus with the S - P v o r b i t a l at nitrogen. A p 7f o r b i t a l of an exocyclic group i s also shown 6 Schematic arrangement of TX -electron levels for (a) homomorphic and (b) heteromorphic interactions . 9 7 f - o r b i t a l s at nitrogen and phosphorus projected onto the l o c a l PNP plane. a) drr - o r b i t a l s i n the d and d scheme. xz yz b) Orbitals rotated by 45° for "island" de-l o c a l i z a t i o n . Shaded atomic o r b i t a l s are combined i n molecular o r b i t a l s 11 Comparison of observed and calculated energy levels of (NPF~) + 13 2' n - x i i -Figure Page 6 a) Bond lengths (A) and angles (deg) i n N P F Me b) Comparison of (i) deviations of in d i v i d u a l P-N bond lengths from the mean i n N 4P 4FgMe 2 and ( i i ) bond-atom p o l a r i s -a b i l i t i e s , H.M.O. calculations, *N = *P + P 15 7 The structure of N 3P 3(NHPr 1) 4Cl 2H +; averaged dimensions 19 Complexes' of N^P^ (NMe2) ^ 2 8 Ele c t r o n i c absorption spectrum of (Co (N 6P 6 (NMe2) l 2)N0 3)N0 3 i n CHCl 3 44 9 a) Electr o n i c absorption spectrum of (Ni (Me 6tren)Br)Br i n C H 2 C l 2 45 b) Electronic absorption spectrum of (Ni (N 6P 6 (NMe2) 1 2)N0 3)N0 3 i n CH3CN 46 10 a) Electr o n i c absorption spectrum of N 6P 6(NMe 2) 1 2-Cu(N0 3) 2 i n CHCl 3 47 b) Electronic absorption spectrum of N 6P 6(NMe 2) l 2-Cu(N0 3) 2 i n CH3CN 48 11 a) Elect r o n i c absorption spectrum of (Co (Me 6tren)Br)Br i n CH 2Cl 2. b) Reflectance spectrum of (Co (OAsMePh 2) 4Cl0 4)Cl0 4 5 2 - x i i i -F i g u r e Page 12 E n e r g y l e v e l d i a g r a m s f o r t h e C o ( I l ) i o n (d ) 3 ^ a n d (b) C ^ v g e o m e t r i e s 53 i n f i e l d s o f f i v e e q u i v a l e n t l i g a n d s o f (a) D 7 13 E n e r g y l e v e l d i a g r a m f o r t h e C o ( I I ) i o n (d ) i n a c r y s t a l f i e l d o f t r i g o n a l - b i p y r a m i d a l s y m m e t r y 55 Q 14 E n e r g y l e v e l d i a g r a m s f o r t h e N i ( I l ) i o n (d ) i n f i e l d s o f f i v e e q u i v a l e n t l i g a n d s o f (a) a n d (b) C ^ v g e o m e t r i e s 57 2 +2 9 15 S p l i t t i n g o f t h e D t e r m o f t h e Cu i o n (d ) i n f i v e - c o o r d i n a t e c h r o m o p h o r e s f o r C ^ v a n d D 3 h 9 e o m e t r i e s 60 16 I n f r a r e d s p e c t r a o f (a) N 6 P 6 ( N M e 2 ) 1 2 , (b) (Mn(HPND)N0 3)N0 3 . . . . 66 (c) (Cu(HPND)N0 3)N0 3, (d) (Zn (HPND) N0 3) N0 3 . . 67 (e) (Co (HPND)N0 3)N0 3, ( f ) ( N i (HPNDO'NO^NOg f (g) HPND-2MnCl„, (h) HPND-2FeCl_ 68 ( i ) ( C o ( H P N D ) C 1 + ) 2 ( C o 2 C l 6 2 ~ ) • 2 C H C 1 3 , a n d ( j ) H P N D - 2 Z n C l 2 69 17 The s t r u c t u r e o f (Co (HPND);cl +) 2 ( C o ^ l g 2 " " ) • 2 C H C l 3 78 18 G e o m e t r y o f t h e p h o s p h o n i t r i l i c r i n g i n t h e ( C o ( H P N D ) C 1 + ) 2 ( C o 2 C l 6 2 ~ ) • 2 C H C l 3 and ( C u ( H P N D ) C l + ) ( C u C l 2 ~ ) c o m p l e x e s 8 1 19 The N g P g ( N M e 2 ) ^ 2 m o l e c u l e v i e w e d a l o n g t h e t h r e e f o l d i n v e r s i o n a x i s 82 - x i v -Figure Page Structure of (N 4P 4Me g +) (Cr(CO) 5I~) 20 General view of the Cr(C0) 5I~ ion 98 21 General view of the N 4P 4Me g + ion 99 22 a) Orders of successive symmetrically related pairs of bonds, calculated for a protonated N 4P 4 ring, b) D e f i c i t of successive bond lengths from 1.695 A* i n the cations of (N 4P 4Me 8H +) 2 (CoCl 4 2~) . . 106 23 a) Orders of successive symmetrically related pairs of bonds, calculated for a protonated N 4P 4 ring, b) D e f i c i t of successive bond lengths from 1.685 & i n the N 4P 4Me g + ion 107 24 View of the unit c e l l contents 110 Structure of ((NPMe 2) 5H 2 2 +)(CuCl 4 2~)-H^O 25 General view of the ( ( N P M e 2 ) 5 H 2 2 + ) ( C u C l 4 2 " ) • H 20 structure 121 26;--'• Orders of successive symmetrically related pairs of bonds, calculated for a protonated N 5P 5 r i n g 124 27 View of the unit c e l l contents down a*. Hydrogen bonds are indicated by dashed l i n e s . 129 Structure of N^P^(NMe-)Q-W(C0)4 28 General view of the N 4P 4(NMe 2) g-W(CO) 4 molecule 140 - X V -Figure Page 29 Bond lengths (i£) and angles (deg) i n the phosphonitrilic r i n g 144 30 a) Bond lengths (A) estimated by super-position of i n e q u a l i t i e s i n N^P^MegH4" and N P F Me 4 4 6 2 b) Bond lengths (A) i n N 4P 4 (NMe2)-g-W(CO)4 - . 147 31 Stereo view of the arrangement of the molecules i n the unit c e l l 148 - x v i -ACKNOWLEDGEMENTS I w o u l d l i k e t o e x p r e s s my a p p r e c i a t i o n t o P r o f e s s o r P a d d o c k a nd P r o f e s s o r T r o t t e r f o r t h e i r g u i d a n c e a n d e n c o u r a g e m e n t t h r o u g h o u t my r e s e a r c h a n d d u r i n g t h e p r e p a r a t i o n o f t h i s t h e s i s . I am g r a t e f u l t o t h e N a t i o n a l R e s e a r c h C o u n c i l o f C a n a d a f o r f i n a n c i a l s u p p o r t . I w o u l d a l s o l i k e t o t h a n k my w i f e , K r i s , f o r t y p i n g t h i s t h e s i s a n d f o r h e r e n c o u r a g e m e n t a n d u n d e r s t a n d i n g t h r o u g h o u t my s t u d i e s a t U.B.C. CHAPTER I INTRODUCTION Phosphonitrilic derivatives contain the repeating unit NPX2, where X can be a vari e t y of substituents, including F, C l , Br, NR2, N^, OR, OAr, R, and Ar. The c y c l i c compounds occur i n a large range of r i n g sizes (in the (NPF 2) n series compounds with n ranging from 3 to 17 have been is o l a t e d ) , and l i n e a r molecules are also known. The compounds are formally unsaturated, as shown i n Figure 1 for the trimeric phosphonitrilic chloride. The phosphonitrilic chlorides can Cl Cl Cl Cl Figure 1. Hexachlorocyclotriphosphonitrile be prepared by ammonolysis of P C l ^ PCI,- + NH„C1 •J(PNC1 0) + 4HC1. o n z n This reaction y i e l d s primarily c y c l i c trimer and tetramer, - 2 -with smaller amounts of c y c l i c pentamer, hexamer, higher c y c l i c molecules, and l i n e a r species also being formed. Other derivatives are usually obtained by nucleophilic substitution reactions on the c y c l i c chlorides, e. g., (NPC1 2) 3 + 12Me2NH > (NP(NMe 2) 2) 3 + 6 MegNHjCl. P a r t i a l l y substituted derivatives can also be obtained, and geometrical isomers are possible. Several review a r t i c l e s have appeared which deal with the preparation and chemistry of phosphonitrilic compounds."'" ~* The results of X-ray d i f f r a c t i o n experiments have pro-vided much insight into the nature of the bonding i n c y c l i c phosphonitrilic derivatives. Some s t r u c t u r a l data for homo-geneously substituted phosphonitrilic derivatives are given in Table I. The r i n g bonds are normally equal i n length in homogeneously substituted phosphonitrilic derivatives. Equal-i t y of r i n g bond lengths i s evidently not dependent on ring planarity, since i n many of the molecules, e s p e c i a l l y those with n> 3, the phosphonitrilic r i n g shows large deviations from planarity. The length of the r i n g bonds i s dependent on the substituent and on the r i n g s i z e . In a l l cases the length i s s u b s t a n t i a l l y shorter than the length expected for a single P-N bond, which i s generally taken to be the length 2 0 of the P-N bond in the phosphoramidate ion, 1 . 7 7 A , appropri-3 ate to sp -hybridization at both atoms. In general the ring P-N bond i s shortened as more electronegative substituents are attached to phosphorus, as the following series show: (NPPh 2) 3> (NP(NMe 2) 2) 3 > (NPC1 2) 3> (NP(OPh) 2) 3> (NPF 2) 3 and Table I Structural Information Compound ? E •-N(A) I >-X (A) PNP (deg) NPN(deg) XPX(deg) Conformation Ref. (NPPh 2) 3 1. 597(6) 1. 804(7) 122. 1(4) 117. 8(3) 103.8(3) F l a t chair, C 3 v ~ D 3 h 6 (NP(NMe 2) 2) 3 1. 588 (3) 1. 652(4) 123. 0(4) 116. 7(4) 101.5(8) ~ D 3 7 (NPC1 2) 3 1. 581(3) 1. 993 (2) 121. 4(4) 118. 4(3) 101.4(2) ~ D 3 h 8 (NP(OPh) 2) 3 1. 575 (2) 1. 582(2) 121. 9(3) 117. 3(3) 98 ~ C 2 9 (NPF 2) 3 1. 560 (10) 1. 521(10) 120. 6(8) 119. 4(9) . 99.3(6) Planar, D_, 3h 10 (NPMe 2) 4 1. 596 (5) 1. 805 (8) 132. 0(3) 119. 8(2) 104.1 (2) Saddle, S 4 ' ~ D ^ 11 (NP (NMe 2) 2) 4 1. 578(10) 1. 678(10) 133. 0(6) 120. 0(5) 103.8 (5) Saddle, S 4 , ~ D2d 12 (NPC1 2) 4(K) 1. 570(9) 1. 989(4) 131. 3(6) 121. 2(5) 102.8 (2) Tub, S 4 13 (NPC1 2) 4(T) 1. 559(12) 1. 989(4) 135. 6(8) 120. 5(7) 103.1 (2) Chair, C ^ 14 (NPF 2) 4 1. 507(16) 1. 515 (15) 147. 2(14) 122. 8(10) 99.9(9) Planar, 15 (NPC1 2) 5 1. 521(13) 1. 961(8) 148. 6(11) 118. 4(8) 102.0(4) Planar, C 0 2v 16 (NP(OMe) 2) 6 1. 567 (8) 1. 584(6) 134. 4(5) 118. 6(4) 103.3 (3) Double Tub, C . l 17 (NP(NMe 2) 2) 6 1. 563(10) 1. 669(10) 147. 5(7) 120. 1(5) 102.9(5) Related to ' rub, s 6 18 (NP(OMe) 2) 8 1. 561(14) 1. 576(13) 136. 7(10) 116. 7(7) 101.3(7) Chair, C. l 19 - 4 -(NPMe 2) 4> (NP(NMe2) 2 ) 4 > (NPCl 2) 4> (NPF 2) 4. F i n a l l y the r i n g P-N bond length decreases with increase i n r i n g size, as demonstrated by the following series: (NP(NMe 2) 2) n» n=3> n=4> n=6; (NP(OMe) 2) n, n=6> n=8; (NPCl 2) , n=3> n=4> n=5; (NPF 2) n > n=3> n=4. Shortening of the P-N bond length from the value i n the phosphoramidate ion i s the r e s u l t of two effects (ignoring the e f f e c t of the net negative charge on the phosphoramidate ion); (1) the d i r e c t contraction r e s u l t i n g from TC -bonding, 5 and (2) changes i n o~ -hybridization. I t has been shown that charges i n cr -hybridization, assumed to involve s- and p-o r b i t a l s only, account for about 40% of the t o t a l contraction, and that the 7f-contraction increases as more electronegative substituents are attached to phosphorus. To account for the s t r u c t u r a l information on phosphoni-t r i l i c derivatives and the general chemical and physical pro-4 5 21 perties of t h i s class of compound, Craig and Paddock ' ' have proposed a model for the bonding i n these molecules i n -volving c y c l i c d e l o c a l i z a t i o n of 7f-electron density and the formation of d7r -pTC bonds. Since t h i s bonding theory i s used i n the interpretation of the experimental results presented in this thesis, a b r i e f description of the theory w i l l be given i n t h i s chapter. A more det a i l e d account can be found i n a recent review a r t i c l e . ^ Arguments for and against the use of 3d o r b i t a l s i n or -and 7Y-bonding i n compounds of phosphorus have been presented 22 in the l i t e r a t u r e . An attempt w i l l not be made here to - 5 -summarize these arguments, but i t may be useful to point out that although the 3d-orbitals are too d i f f u s e i n the free phosphorus atom to be s i g n i f i c a n t l y involved i n chemical 23 bonds, calculations show that when the phosphorus atom i s i n the presence of electronegative ligands the d-orbitals become contracted and can p a r t i c i p a t e in bonding.^ Since the s k e l e t a l structures of many phosphonitrilic derivatives are planar or nearly so (Table I ) , molecular symmetry i s assumed. The l o c a l symmetry i s C 2 v, and atomic o r b i t a l s are c l a s s i f i e d according to the representations of 3 t h i s symmetry group. Phosphorus uses 3sp -hybrid o r b i t a l s to form C -bonds to neighbouring r i n g nitrogen atoms and exo-c y c l i c groups, and 3d-orbitals for 7r-bonding. Nitrogen uses 2 2sp -hybrid o r b i t a l s to form &-bonds to neighbouring phospho-rus atoms and to house the lone pair electrons, and a 2p -z o r b i t a l for 7f-bonding (the z-axis i s perpendicular to the plane of the r i n g ) . The hybridization at phosphorus and nitrogen i s only approximate, since the angles often d i f f e r s i g n i f i c a n t l y from 109°28' and 120° respectively. The lone pair electrons at nitrogen can also be used for 7r-bonding, and therefore two systems of it -electron c y c l i c d e l o c a l i z a t i o n are possible. One i s antisymmetric to r e f l e c t i o n i n the molec-ular plane (the 7T system) and the other i s symmetric (the cl 7T system). The phosphorus and nitrogen atomic o r b i t a l s which can p a r t i c i p a t e i n 7T-bonding are c l a s s i f i e d according to the representations of the point group C 2 v i n Table II (for the axis system shown i n Figure 2). For the 7T system the - 6 -(a) (b) Figure 2. (a) Interaction of the d o r b i t a l at phosphorus with the p o r b i t a l at nitrogen. A pff o r b i t a l of an exocyclic group i s also shown. (b) Interaction of the d^2_^2 o r b i t a l at phosphorus with the S - P y o r b i t a l at nitrogen. A p 7 t S o r b i t a l of an exocyclic group i s also shown. 5 (after Craig and Paddock ) - .7 -p a r t i c i p a t i n g atomic o r b i t a l s belong to the or B 2 repre-sentation, and i n the TT system only atomic o r b i t a l s belong-24 ing to or B^ are included. Overlap calculations suggest that the two d-orbitals mainly involved i n dTr" -p7f bonding Table II Symmetry Species of s-, p-, and d-Orbitals ( C 2 v s i t e symmetry) E c2 crh <rv s ' Py' d x 2 - y 2 ' d z 2 A l 1 1 1 1 d A 0 1 1 -1 -1 xz 2 d B, 1 -1 1 -1 xy 1 p , d B„ 1 -1 -1 1 *z yz 2 in the ring are d 2 2(7T ) and d ( 7r ) . The 7T system i s x y s xz EL s 25 thus of the homomorphxc type, as i n e.g., benzene, since interactions of the 3d 2 2 o r b i t a l with the 2s-p hybrid x -y y o r b i t a l s on either side are of the same sign. On the other 25 hand the 7r system i s of the heteromorphic type, since a interactions of the 3d o r b i t a l with the 2p o r b i t a l on xz ^z either side are of opposite sign. This can be seen i n Figure 2. Molecular o r b i t a l s are set up as l i n e a r combinations of atomic o r b i t a l s as follows: <j>{N = n" 3 sf; 3exp(2fri«.k/n) V k = J, k ....(1) = n-^X-,exp(2 7f i t (k+Sg)/n) V p 8 tTi1 Pk+Js - 8 -Where n i s the number bf NPX~ units, as i n (NPX_) , and JL i s 2. 2. n a r i n g quantum number having values i = 0, ±1, • • • , ±(n-l)/2 (n odd) I = 0, ±1, • • • , n/2 (n even). The nitrogen atoms are numbered 1, 2, • • • , n and the phos-phorus atoms are numbered 1^, 2^, Using the Huckel approximation secular equations are formed, solution of which gives the energy lev e l s for the two ft systems. For the 7T (homomorphic) system the secular equation i s 2 $ cos (rri/n) 2 0 cos (TTi/n) oCp - E = 0 (2) and for the 7T (heteromorphic) system the secular equation ct xs N E 2i f s i n (ft 4/n) - 2 i 0 sin(rf J?/n) = 0 ... (3) The e l e c t r o n e g a t i v i t i e s of P and N are related by oc N = oCp + p p . The schematic arrangement of the 7T -electron energy levels for various ri n g sizes i s shown i n Figure 3. For the case where both the 3d and 3d o r b i t a l s contribute to the xz yz 7f system and both 3d 2 2 and 3d contribute to the T f 1 a 1 x -y xy s system (in general both o r b i t a l s i n each 7T-system not having the same electronegativity) more complicated secular equations can be set up. In non-planar phosphonitrilic molecules the c l a s s i f i c a -t i o n of o r b i t a l s as of the 7f or 7f type i s only appropriate cl S to the l o c a l NPN and PNP planes. An o r b i t a l with 7f properties cl - 9 -n = 3 4 5 6 (b) F i g u r e 3. S c h e m a t i c a r r a n g e m e n t o f t h e 7X-electron l e v e l s f o r (a) homomorphic and (b) h e t e r o m o r p h i c i n t e r -a c t i o n s . H. M. O. c a l c u l a t i o n s , oC^ — OC^ + ft 5 ( a f t e r C r a i g and Paddock ) . - 10 -can then inter a c t with an o r b i t a l having 7X symmetry with respect to the next l o c a l plane as well as the o r b i t a l having 7f symmetry. This w i l l not, however, d r a s t i c a l l y reduce the d e l o c a l i z a t i o n energy or remove the equality of the r i n g bond lengths, since a reduction i n overlap of, say, a 7f o r b i t a l 3. at one atom with a 7T o r b i t a l of an adjacent atom w i l l be a compensated for by an increase in overlap with the 7 f o r b i t a l . For the spe c i a l case where both d z and d o r b i t a l s * xz yz pa r t i c i p a t e equally i n the 7f system, and there i s no Tf 3. S system, another description of bonding i n the phosphonitrilic ring i s t h e o r e t i c a l l y possible. This i s the "island" model, where there i s only p a r t i a l d e l o c a l i z a t i o n of T F - e l e c t r o n density i n the ring, being limited to sets of three adjacent atoms or "islands". Thus i f the e l e c t r o n e g a t i v i t i e s of the d and d o r b i t a l s are equal l i n e a r combinations of them xz yz can be taken such that the new o r b i t a l s are equivalent to rotation of d and d o r b i t a l s by 45°, i . e . , xz yz jr ' » d-rr a = (d -d ) dTX b = 2 _ i i(-d -d ) xz yz 7t - d e l o c a l i z a t i o n i s now interrupted at each phosphorus atom leading to islands of 7t-delocalization as shown in Figure 4. o I f the N-P-N angle i s 90 the three-centre molecular o r b i t a l s are orthogonal. In phosphonitrilic derivatives the N-P-N o angle i s close to 120 (Table I ) , thus superimposing some c y c l i c d e l o c a l i z a t i o n on the is l a n d model. The r e l a t i o n between the "island" model and the model involving f u l l 7 f - o r b i t a l s at nitrogen and phosphorus projected onto the l o c a l PNP plane. (a) d r r - o r b i t a l s i n the d and d scheme. (b) Orbitals rotated by 45° for xz yz J "island" d e l o c a l i z a t i o n . Shaded atomic o r b i t a l s are combined i n molecular 5 o r b i t a l s (after Craig and Paddock ). - 12 -c y c l i c d e l o c a l i z a t i o n i s considered i n d e t a i l by Craig and M i t c h e l l . 2 7 Experimental evidence i n support of the model involving f u l l c y c l i c d e l o c a l i z a t i o n comes from measurements of ion-28 i z a t i o n potentials of the (NPF2) n series. Molecules with n = 3,4 have symmetry, and molecules with n = 5,6 approach planarity, so the molecular geometry i s favourable for c l a s s -i f y i n g the n systems. The observed i o n i z a t i o n potentials are compared with calculated l e v e l s * i n Figure 5. Ionization potentials less than 14 eV have been assigned to i o n i z a t i o n of electrons from the r i n g TC systems. i o n i z a t i o n potentials greater than 14 eV have been assigned to i o n i z a t i o n of P-N and P-F 0~ electrons and to i o n i z a t i o n of the lone pair electrons on f l u o r i n e . Several conclusions can be drawn. 1) The observed alternation of the f i r s t i o n i z a t i o n p o t e n t i a l with increasing r i n g size indicates that the highest TC system i s of the homomorphic type (see Figure 3). 2) The alternation of the f i r s t i o n i z a t i o n p o t e n t i a l with r i n g s i z e rules out i o n i z a t i o n from a l o c a l i z e d TC nonbonding pair or from a TC s "island", since i n both cases constancy of i o n i z a t i o n p o t e n t i a l would be expected. 3) The energy difference between the &-and 7t - l e v e l s i s s u f f i c i e n t l y large to j u s t i f y the normal assumption of t h e i r non-interaction. * Hiickel molecular o r b i t a l calculations were made assuming D , molecular symmetry and the use of only two d - o r b i t a l s , 3d and 3d 2 2. Both r i n g and exocyclic TC -bonding were x z x y included. Levels d i f f e r i n g by less than 0.5 eV (the experi-mental resolution) were averaged. The l e v e l attributed to i o n i z a t i o n from P-N <r bonds was not reproduced by the c a l -culations. For d e t a i l s of the calculations see reference 28. - 13 -Figure 5. Comparison of observed ( f u l l lines) and calculated (broken lines) energy leve l s of + (NPF 2) n . The l i g h t dashed l i n e connects levels attributed to i o n i z a t i o n from P-N CT-bonds (after ref 28) . - 14 -Further experimental evidence i n favour of the model involving f u l l c y c l i c d e l o c a l i z a t i o n comes from the structures 29 + of gem-N 4P 4F 6Me 2 and N 4P 4Me gH ions i n the compound + 2 - 3 0 (N.P.MeoH ) „ (CoCl. ). Replacement of the fl u o r i n e atoms 4 4 o / 4 at one phosphorus atom i n N 4P 4F g with methyl groups causes a perturbation i n the ri n g by decreasing the electr o n e g a t i v i t y of t h i s phosphorus atom. The e f f e c t of the 7 f -inductive per-turbation at phosphorus has been estimated by c a l c u l a t i o n 2 ^ a of bond - atom p o l a r i s a b i l i t i e s for a delocalized re -system. The results of the c a l c u l a t i o n are shown graphically i n Figure 6 together with the observed deviations of in d i v i d u a l P-N bond lengths from the mean i n gem-N4P4,FgMe2. The correspond-ence i n pattern provides further evidence for the model i n -volving f u l l c y c l i c d e l o c a l i z a t i o n . An "island" model would predict bond length v a r i a t i o n to stop at the second bond. S i m i l a r l y , perturbation of an 8-membered phosphonitrilic r i n g by protonation at a r i n g nitrogen atom res u l t s i n bond length i n e q u a l i t i e s , i n which long and short bonds alternate i n pairs from the perturbed centre. For N 4P 4MegH + ions the mean values are 1.695, 1.538, 1.614, 1.582 A (averages of chemically equiv-3 0 alent bonds, C = 0.015 A). This structure provides evidence for f u l l c y c l i c d e l o c a l i z a t i o n and i s discussed further i n Chapter I I I . While these physical measurements provide evidence for c y c l i c d e l o c a l i z a t i o n of Tf-electron density i n the phospho-5 5 n i t r i l i c r ing, thermochemical and diamagnetic anisotropy measurements indicate that the TT systems i n phosphonitrilic - 15 -Figure 6. (a) Bond lengths ( A ) , and angles (deg.) i n N 4P 4F 6Me 2 ( (T (P-N) = 0.006 A ) , (b) Comparison of (i) deviations of in d i v i d u a l P-N bond lengths from the mean i n N^P^Fgjy^ (lower curve, l . h . scale) and ( i i ) bond-atom p o l a r i s a -b i l i t i e s , H. M. 0. calculations, oC^ = 0Cp + |3 (upper curve, r.h. scale) (after ref 29). - 16 -derivatives are much weaker than i n organic aromatic compounds. Exocyclic conjugation with the ri n g 7f systems i s also possible. In t h i s regard the structures of the dimethylamino derivatives are p a r t i c u l a r l y informative. The s t r u c t u r a l data on the exocyclic groups i n the (NP (NMe2) 2) 4 ^ molecules are given i n Table I I I . The exocyclic P-N bonds are shorter than Table III Geometry of the Exocyclic Groups i n (NP(NMe 2) 2) n Molecules A a ,b n = 4 n = 6 P-N (A) Z(deg) c P-N (A) £(deg) Bond (1) 1.671 358.5 1.663 357.5 Bond (2) 1.686 345.5 1.675 348.7 Average 1.678 352.0 1.669 353.1 N-P-N angle (deg) 103.8 102.9 a. Ref 12. b. Ref. 18. c. £ = sum of angles around the exocyclic nitrogen atom. expected f o r a single P-N bond (1.77 A ) , and the PNC,, groups are nearly planar (indicated by the large values for the sum of angles around the exocyclic nitrogen atoms). Taken together, these s t r u c t u r a l aspects indicate considerable release of lone-pair electron density to phosphorus. Electron release to phosphorus i s even greater when the ri n g i s protonated, as in N 3P 3C1 2(NHPr 1) 4-HCl 3 1 where the exocyclic P-N bond length is reduced to 1.61 A . The o r b i t a l s p r i n c i p a l l y involved i n exocyclic 7f-bonding at phosphorus are the d^z and the d x2_^2, 5 d z2 o r b i t a l s . The o r b i t a l s are now c l a s s i f i e d as antisym-metric and symmetric with respect to the XPX plane (Figure 2). The d o r b i t a l i s common to the ri n g rr and the exocyclic xz a 7 r a systems, and the d 2 2 and d 2 o r b i t a l s are common to the " -* ' x -y z - 17 -rin g rVs and exocyclic H systems, so that conjugation oc-curs. The d and d o r b i t a l s are believed to interac t xy yz 5 less strongly. In the (NP (NMe,,) 2) 4 ^ compounds the NMe2 groups are d i f f e r e n t l y aligned for s t e r i c reasons. At each phosphorus atom the group which i s better oriented for i n t e r a c t i o n with the 7T s-orbitals i s more strongly bound, indicated by a shorter P-N bond length and larger value for the sum of angles around the nitrogen atom. That the 77^-orbitals are more important i n exocyclic rf -bonding can 32 also be seen i n the structure of gem-N-jP-^Ph^F^, where s t e r i c interactions are not important i n determining the orientation of the phenyl rings. i n thi s compound both phenyl rings are optimally aligned for -overlap with the Tf - o r b i t a l s . That s phenyl groups do ac t u a l l y conjugate with phosphonitrilic rings 19 has been demonstrated by F n.m.r. spectroscopy on flu o r o -phenylfluorophosphonitriles of the type N n p n F 2 n ]ArF • (n = 3-8; 33 ArF = CgF<-, p-C^H^F, m-C^H^F) . Exocyclic conjugation need not necessarily be with the If - o r b i t a l s however. Thus i n the s 34 structure gem-N-jP^Pn^Cl^ the orientation of the phenyl rings indicates some overlap with ,7T" a-orbitals at phosphorus. Also in the structure of (NP^Me,,),,)^ none of the exocyclic NMe2 groups are optimally aligned for interaction primarily with 7f - o r b i t a l s , and here the exocyclic P-N bond lengths are equal to within experimental error, the mean value being 1.652(4) A. The basic properties of phosphonitrilic derivatives are c l e a r l y demonstrated by th e i r a b i l i t y to form adducts with - 18 -hydrogen halides. Protonation has been shown to take place at the rin g nitrogen atoms instead of at the exocyclic groups, even for amino-phosphonitriles. Evidence for this comes from infrared and **"H n.m.r. spectroscopy, and from an X-ray c r y s t a l structure analysis of the compound N^P-^Cl,, (NHPr ) ^ -HCl. In t h i s compound the proton i s bonded to a ring nitrogen atom, with the proton l y i n g i n the l o c a l PNP plane (Figure 7). Loc a l i z a t i o n of a pair of electrons from the 7T S system by protonation increases the P-N bond length of bonds meeting at this nitrogen atom to 1.666(5) A, about midway between a typ-i c a l p h osphonitrilic bond length (e.g., 1.588(3) A i n (NP(NMe 2) 2) 3) and the length of the P-N single bond (1.77 A). Thus, although the 7T system has been removed from these bonds the 7f system i s s t i l l operative. The increased electronegativity 0f the adjacent phosphorus atoms results in increased donation of lone pair electron density from the exocyclic nitrogen atoms, and the exocyclic P-N bond length i s consequently reduced to 1.609(5) A, sub s t a n t i a l l y shorter than i n unprotonated dimethylamino-phosphonitriles. Since protonation of phosphonitrilic derivatives causes substantial r e d i s t r i b u t i o n of ft-electron density i n the ring, r e s u l t i n g i n changes in bond lengths which are large enough to be measured, s t r u c t u r a l information on these compounds i s of considerable importance in understanding the bonding i n phosphonitrilic derivatives. The importance of the structure + 2 - • ( N 4 P 4 M e 8 H ) 2 ^ C o C l 4 ^ l i a s a x r e a d Y been mentioned. In Chapter III of this thesis the structure of a compound containing a C l C l 1.04 H Figure 7. The structure of N-^ P^  (NHPr1) 4 C l 2 H + ; averaged dimensions (after Mani and Wagner"^ ) . - 20 -10-membered phosphonitrilic r i n g protonated at two s i t e s i s described. In Table IV the base strengths of several phosphonitrilic derivatives are given. More electronegative substituents Table IV Base Strengths of Trimeric and Tetrameric Phosphonitrilic D e r i v a t i v e s . a X = NMe 2 b NHEt b E t C Ph° 0 E t C SEt° 0Ph° SPh° Cl° (NPX 2) 3 7.6 8.2 6.4 1.6 -0.2 -2.8 -5.8 -4.8 <-6.0 (NPX 2) 4 8.3 8.1 7.6 2.2 +0.6 - -6.0 - <-6.0 a. pK ' , determined i n nitrobenzene. ^ a b. D. Feakins, W.A. Last, and R. Shaw, J . Chem. Soc. 4464 (1964). c. D. Feakins, W.A. Last, N. Neemuchwala, and R.A. Shaw, J. Chem. Soc. 2804 (1965). cause greater d e l o c a l i z a t i o n of the nitrogen lone p a i r elec-trons into the 7T system thereby lowering the base strength. For the amino and alkoxy derivatives protonation occurs at the r i n g nitrogen atoms rather than at the exocyclic groups. The increased base strength over the chlorides, with equally electronegative substitutents, i s due to exocyclic conjugation, p a r t i c u l a r l y with the 7f system, electron release from exo-c y c l i c nitrogen r e s u l t i n g i n increased l o c a l i z a t i o n of the lone pair electrons on the r i n g nitrogen atoms. In addition to protonated phosphonitrilic derivatives, other 'onium' type complexes can be prepared. (NPMe 2) 3 4 react with methyl or ethyl iodide to form N-alkylphospho-n i t r i l i u m iodides, e.g., - 21 -Me Me Me P / N \\ Me p Me Me Usually i n reactions of this type i t i s the ri n g nitrogen atoms which are attacked. However, quaternization can occur 3 6 at the exocyclic nitrogen atoms i n aminophosphonitriles. (NP(NMe 2) 2) 3 reacts with trimethyloxonium tetrafluoroborate to y i e l d the dication, (NP (NMe 2) 2) 3 2(Me 30 BF, ) NMe2 NMe 3 + N' ^N +• J2Me_0 + 2BP. . N M e 2 - P ^ ^ P ^ N M e 2 " 4 NMe2 NMe3 - 22 -N.m.r. spectroscopy also indicates that methylation occurs e x o c y c l i c a l l y i n N 3P 3C1 2(NMe 2) ,. N 3P 3Cl 3(NMe 2) , N 3P 3C1 4(NMe 2) and N 3P 3Cl 5(NMe 2). By contrast, methylation of N 3 P 3 C l 2 ( N H P r 1 ) 4 with Me 30 +BF 4~ res u l t s i n quaternization at a r i n g nitrogen atom. Evidently s t e r i c considerations pre-vent the methyl group from attacking a r i n g nitrogen atom i n dimethylamino- and dimethylaminochlorocyclotriphosphonitriles, so that attack occurs at the exocyclic groups instead. Another i n t e r e s t i n g property of phosphonitrilic deriva-tives i s t h e i r a b i l i t y to form charge transfer complexes with electron donors or acceptors. Evidence for the formation of s o l i d molecular addition compounds between (NP(NMe 2) 2) 3 and tetracyanoethylene, (NP(NMe 2) 2) 3 and (NPC1 2) 3, (NP(NHPr1) ) and (NPC1 2) 3, (NP(NMe2)2) and (NPCl 2) 4, ( N P C l 2 ) 3 _ 6 and hexamethylbenzene, and (NP(NMe 2) 2) 4 6 and hexamethylbenzene 37 38 3 9 has been obtained from phase diagrams. ' ' N.m.r. spectroscopy has been used to study donor-acceptor interactions i n solution. Mono-, b i s - , t r i s - , and t e t r a k i s -(dimethylamino)chlorocyclotriphosphonitriles show u p f i e l d s h i f t s i n benzene compared to measurements i n CCl 4» although 40 no s h i f t i s observed with (NP(NMe 2) 2) 3. The n.m.r. spectra of (N 4P 4Me g +)A~ (A~ = l ~ , Cr(C0) 5I~, Mo(C0) 5I~) compounds i n 41 CDCl 3 and benzene solutions have been measured, and there i s an u p f i e l d s h i f t i n the methyl resonances when the l ~ anion i s replaced by the M(C0)gI anion. By comparison with the spectra of the (C 5H 5NMe +)A (A = I , Mo(C0) 5I ) compounds the results suggest that: 1) donor-acceptor interaction - 23 -occurs primarily at the quaternary centre, 2) the M(CO),_I 5 ion i s a better donor than I , and 3) the N^ P^ Me^ "1" ion i s + a better acceptor than CgH^NMe . The s h i f t s are much larger when the spectra are run i n benzene, i n d i c a t i n g that benzene i s acting as a donor or promoting ion association through i t s low d i e l e c t r i c constant. An X-ray c r y s t a l structure + - — analysis of the (N^P^Me^ )(Cr (CO) ,-1 ) compound i s described i n Chapter III of thi s thesis. Unfortunately no evidence for donor-acceptor int e r a c t i o n i n the s o l i d state was found. U.V. spectroscopy has been used to show the existence of charge transfer addition compounds between ( N P ^ j y ^ ^ ^ 4 42 43 and I2 and between methylphosphonitriles and i ^ . The addition compound between (NPM^).^ and 1^ ^ a s been is o l a t e d as a c r y s t a l l i n e s o l i d . An X-ray c r y s t a l structure analysis 44 has shown the compound to be of the 0" - CT type, with the phosphonitrile donating to the I 2 molecule through the r i n g nitrogen lone pair electrons i n a l i n e a r N-I-I arrangement. On the basis of the bonding i n phosphonitrili c deriva-tives and t h e i r chemical and physical properties, some of which have been described above, one might expect phospho-n i t r i l i c derivatives to act as ligands i n metal complexes i n one or both of the following ways: 1) by (y -donation to the metal through the lone pair electrons on the r i n g nitrogen atoms, e s p e c i a l l y by the more basic derivatives, and 2) by formation of TC complexes by donation to the metal through the TC systems of the ring, as i n e.g., TC -cyclopentadienyl and other TC-aromatic type t r a n s i t i o n metal complexes. - 24 -45 There has been only one b r i e f report of a 7T-complex, a compound reported to be ff - (NPCl 2) 3Mo (CO) 3 , but d i r e c t con-firmation from X-ray crystallography i s lacking. Complexes of type 1 above, however, are quite numerous. 46 (NPCl 2) 3 and (NPBr 2) 3 form 1:1 adducts with AlBr^ i n CS 2 and infrared spectroscopy suggests that coordination occurs by <y -donation to the metal through the r i n g nitrogen atoms. (NPBr 2) 3 also forms a 1:2 adduct with AlBr 3« (NPMe 2) 3 forms 47 1:1 adducts with S n C l 4 and T i C l 4 i n C H 2 C l 2 and infrared spectroscopy again suggests that coordination to the metal occurs by 0~-donation through the r i n g nitrogen atoms. (NPMe 2) 4 reacts with CuCl 2 i n methyl ethyl ketone to form a 48 yellow c r y s t a l l i n e complex. An X-ray c r y s t a l structure 49 analysis of the complex shows i t to be a compound of formula (N.P.MeoEOCuClo, i n which coordination to the metal occurs by 4 4 o J C-donation through a r i n g nitrogen atom, with a proton co-valen t l y bonded to the opposite r i n g nitrogen atom. (NPMe 2) 4 j. and (NP(NMe 2) 2) 4 react with molybdenum and tungsten hexacarbonyl to y i e l d complexes of the type, (NPMe,,) n*Mo (CO) 3 41 (n = 4,5; M = Mo, W) and N 4P 4(NMe 2) Q-W(CO) 4. Infrared' spectra suggest that coordination to the metal occurs by C-donation through the r i n g nitrogen atoms rather than by donation through the 7T systems of the r i n g (to form a 7f -complex), and i n the case of the l a s t complex t h i s has been confirmed by an X-ray c r y s t a l structure analysis described i n Chapter III of t h i s thesis. In t h i s complex, coordination to the metal occurs by cr -donation from a r i n g nitrogen atom - 25 -and a nitrogen atom of an exocyclic group on an adjacent phosphorus atom, and t h i s i s evidently the f i r s t example of coordination to a metal through an exocyclic group. I t thus appears that complexes of phosphonitrilic der-ivatives with metals are of the c-type, coordination occur-rin g through the r i n g nitrogen atoms and sometimes the exo-c y c l i c nitrogen atoms of aminophosphonitriles. However, further study of the ligand properties of phosphonitrilic derivatives would be of interest, since these ligands have been shown to possess delocalized r i n g 1t systems. Compar-ison can be made with organic ligands. Thus the c r y s t a l f i e l d s p l i t t i n g of ligands with extended 7f systems such as 2,2'-b i p y r i d y l and 1,10-phenanthroline i s larger than simple amine type ligands with no 7T systems, and i n the case of F e ( l l ) and Fe(III) low spin octahedral complexes are formed. This i s believed to be a r e s u l t of back donation from f i l l e d metal 50 d-orbitals into antibonding o r b i t a l s of the ring 7f systems. Like these organic ligands phosphonitrilic derivatives donate to the metal through the lone paire electrons on the ring n i -trogen atoms and possess extended 7T systems, although the TC systems are weaker. This thesis i s concerned with further study of the ligand properties of phosphonitrilic derivatives and with the conse-quences of coordination on the ligand geometry. In Chapter II e lectronic absorption spectral and magnetic s u s c e p t i b i l i t y data for complexes involving the ligand N^P^-(NMe2) ^ 2 are analyzed and interpreted. In Chapter III X-ray crystallography - 26 -i s used to study further the e f f e c t of coordination on the ligand geometry of some phosphonitrilic derivatives. - 27 -CHAPTER II COMPLEXES OF DODECA(DIMETHYLAMINO)CYCLOHEXAPHOSPHONITRILE  WITH DIVALENT FIRST SERIES TRANSITION METAL IONS  MANGANESE THROUGH ZINC II. A. Introduction I t has been generally established that complexes of phosphonitrilic derivatives with t r a n s i t i o n metals are of the (7*-type, coordination to the metal, occurring by donation through the r i n g nitrogen atoms and sometimes the exocyclic nitrogen atoms of aminophosphonitriles (Chapter I) . The more stable complexes are formed when the substitutent on phos-phorus i s a group of low electronegativity, such as Me, or a group which releases electron density to the r i n g through conjugation, such as NMe2. Qu a l i t a t i v e l y , complexes of d i -methylaminophosphonitriles with metal ions are more stable than those with metal carbonyls, and s t a b i l i t y increases with the r i n g size of the ligand, up to at lea s t (NP(NMe^)2^ 9' a s shown by an investigation using Eu(fod) 3 (Hfod = 1,1,1,2,2,3, 3 - heptafluoro - 7,7 - dimethyloctane - 4,6 - dione) as an 51 acceptor. The larger rxngs can act as polydentate macro-c y c l i c ligands, indicated by X-ray c r y s t a l structure analyses of the complexes (N gP 6 (NMe2) 1 2 C o C l + ) 2 ( C o ^ l g 2 - ) - 2CHC1 3 5 2 and + - 53 (NgP 6(NMe 2) 1 2CuCl ) (CuCl 2 ). In the cations of these com-pounds coordination of the phosphonitrile to the metal occurs by donation through four r i n g nitrogen atoms, the chlorine atom occupying a f i f t h coordination s i t e . - 28 -Coordination of phosphonitrilic derivatives to metal ions and other acceptors, such as protons and a l k y l halides, re-sults i n comparatively large changes i n the bond lengths with-in the ring, and the patterns observed are understood i n terms 5 52 53 54 of 7f-bonding theory. ' ' ' Although much i s known about the e f f e c t of coordination on the ligand geometry through X-ray c r y s t a l structure analyses, less i s known about the inte r a c t i o n of the donor (the phosphonitrilic ligand) with the acceptor (the t r a n s i t i o n metal ion). In the carbonyl 41 complexes the CO frequencies are si m i l a r to those i n anal-ogous amine, rather than phosphine or o l e f i n , complexes, suggesting that there i s no interaction of the metal d-orbitals with acceptor fr'-levels of the ligand. Nevertheless, a sys-tematic study would be of interest, p a r t i c u l a r l y on the more stable complexes, to provide more information on the ligand properties of phosphonitrilic derivatives. I t was decided to investigate complexes of N^ -P^  (NMe2) ^ 2 with divalent f i r s t row t r a n s i t i o n metal ions. This ligand forms complexes with MnCl 2, F e C l 2 , CoCl 2, CuCl 2 and ZnCl 2, 52 53 but these complexes have been shown ' to contain complex anions. For t h i s reason complexes with metal n i t r a t e s , of the formula (HPND)M(N0 3) 2, a were also prepared. Here the anion i s the n i t r a t e ion, and magnetic and electronic spectral data can be more e a s i l y interpreted. The method for preparing 55-these complexes was developed by Dr. J.N. Wingfield. Using a. HPND = Dodeca(dimethylamino)cyclohexaphosphonitrile - 29 -this method the complexes (HPND)M (N03) 2 (M = Mn,Co,Ni,Cu,Zn) were prepared and studied. I I . B. Experimental II. B. 1. Materials Manganese chloride, cobaltous chloride, n i c k e l chloride and f e r r i c chloride were dehydrated by reflu x i n g them with thiony l chloride. Ferrous chloride was prepared by reflu x i n g 56 a solu t i o n of ferrxc chloride i n chlorobenzene. Zinc chlo-ride was dehydrated by heating i t i n vacuo at 200°C for several hours. Commercial anhydrous cupric chloride (Fisher C e r t i f i e d ) and commercial anhydrous dimethylamine (Eastman Kodac) were used without further p u r i f i c a t i o n . Dodecachloro-cyclohexaphosphonitrile was obtained from Professor N.L. Paddock. Solvents were dried as follows: a c e t o n i t r i l e by d i s t i l l i n g from calcium hydride; benzene, d i e t h y l ether, and petroleum ether by d i s t i l l i n g from lithium aluminium hydride; triethylamine by d i s t i l l i n g from calcium oxide. II . B. 2. Synthesis of Dodeca(dimethylamino)cyclohexaphos-p h o n i t r i l e NgPg(NMe 2)^ 2 was prepared by the method of Paddock et 57 a l . (NPCl,,)^ (45.3 gm , 65.2 mmole) was dissolved i n 250 ml. benzene, and dimethylamine (173 ml, 2.62 mole) was added dropwise from a jacketted dropping funnel cooled with a dry ice - acetone mixture. The reaction was car r i e d out under nitrogen. Escape of dimethylamine (b.p. 7.4°C) was prevented by use of a dry ice - acetone cold finger condenser f i t t e d - 30 -a b o v e a w a t e r c o n d e n s e r . The s o l u t i o n was r e f l u x e d w i t h s t i r r i n g f o r 20 h o u r s . To p r e v e n t t h e f o r m a t i o n o f i n s o l u b l e h y d r o c h l o r i d e s o f t h e f o r m N g P ^ ( N M e 2 ) ^ 2 - x H C l , 128 m l o f t r i e t h y l a m i n e w e r e a d d e d a n d t h e s o l u t i o n was r e f l u x e d f o r an a d d i t i o n a l 12 h o u r s . F i l t r a t i o n o f t h e s o l u t i o n a n d e v a p o r a t i o n o f t h e s o l v e n t g a v e o n l y 5.4 gm o f p r o d u c t . 250 mlo b e n z e n e a n d 135 m l t r i e t h y l a m i n e w e r e t h e n a d d e d t o t h e i n s o l u b l e h y d r o c h l o r i d e s a n d t h e s o l u t i o n was r e f l u x e d f o r 24 h o u r s . E v a p o r a t i o n o f t h e s o l v e n t s a n d s o x h l e t e x -t r a c t i o n o f t h e w h i t e s o l i d m i x t u r e w i t h d i e t h y l e t h e r g a v e 32.7 gm„ o f p r o d u c t . The c o m b i n e d y i e l d o f N^-P^ (NMe 2) ^ 2 was 38.1 gm„ ( 7 3 % ) . The p r o d u c t d i d n o t c o n t a i n c h l o r i d e i o n (AgN03/HN03) and was r e c r y s t a l l i z e d f r o m b e n z e n e . A n a l y t i c a l r e s u l t s a r e g i v e n i n T a b l e V. I I . B. 3. R e a c t i o n s o f N ^ P ^ ( N M e 2 ) ^ 2 w i t h F e C l 2 , M n C l 2 > a n d Z n C l 2 I I . B. 3. a. R e a c t i o n w i t h F e C l 2 F e r r o u s c h l o r i d e (0.335 gm , 2.64 mmole) was a d d e d t o a s o l u t i o n o f N g P g ( N M e 2 ) ^ 2 (1.139 gm , 1.42 mmole) i n a c e t o -n i t r i l e (35 m l ) . N e i t h e r s o l i d was c o m p l e t e l y s o l u b l e . The s o l u t i o n was r e f l u x e d f o r 5 d a y s u n d e r n i t r o g e n . A s m a l l amount o f a b r o w n i n s o l u b l e m a t e r i a l a n d a b r o w n s o l u t i o n w e r e o b t a i n e d . The s o l u t i o n was f i l t e r e d a n d t h e s o l v e n t e v a p o r a t e d t o y i e l d a b r o w n p r o d u c t . The p r o d u c t was e x -t r a c t e d w i t h p e t r o l e u m e t h e r , a n d 0.17 gm.. o f u n r e a c t e d N g P g ( N M e 2 ) ^ 2 w a s h e d t h r o u g h . The p r o d u c t was t h e n p o w d e r e d - 31 -and heated i n vacuo for 16 hours to remove solvent. The y i e l d of product, a compound of empirical formula N 6P 6(NMe 2) 1 •2FeCl 2, was 1.21 gm (87%). A n a l y t i c a l results are given i n Table V. Attempted c r y s t a l l i z a t i o n from solvent mixtures including acetonitrile/toluene and methylene ch l o r i d e / cyclohexane gave semi-crystalline materials which contained variable amounts of solvent. II . B. 3. b. Reactions with MnCl 2 and ZnCl 2 Reactions of N 6P 6(NMe 2) 1 2 with MnCl 2 and Z n C l 2 i n aceto-n i t r i l e gave complexes of general formula N^P^(NMe 2)^ 2*2MCl 2 (M = Mn,Zn), but analyses showed the compounds to contain variable and i i r r e p r o d u c i b l e amounts of solvent. Apparently the solvent i s held more t i g h t l y i n these compounds, so that heating i n vacuo w i l l not remove i t . Attempts at c r y s t a l l i -zation did not succeed, y i e l d i n g only semi-crystalline materials containing irreproducible and nonstoichiometric amounts of solvent. II . B. 4. Synthesis of the Complexes of N 6P 6(NMe 2) 1 2 with Mn(N0 3) 2, Co(N0 3) 2, N i ( N 0 3 ) 2 , Cu(NC>3)2, and Zn(N0 3) 2 I I . B. 4. a. Synthesis of NgPg(NMe 2) 1 2Co(N0 3) 2 Cobaltous chloride (0.162 gm , 1.25 mmole) was dissolved i n a c e t o n i t r i l e (35 ml.) to give a dark blue solution. S i l v e r n i t r a t e (0.425 gm., 2.50 mmole) was added, with s t i r r i n g , and the s i l v e r chloride formed was f i l t e r e d o f f (0.33 gm obtained, 0.36 gm.. expected) to give a dark red solution of Co(N0 3) 2. - 32 -A l l reactions were carr i e d out under nitrogen. A s l i g h t ex-cess of NgPg(NMe 2)^ 2 (1-05 gm , 1.31 mmole) was added and the solution was refluxed for 18 hours. A purple solution with a small amount of a brown insoluble p r e c i p i t a t e was obtained. F i l t r a t i o n of the solution and evaporation of the solvent gave a purple s o l i d product. The product was f i r s t extracted with l i g h t petroleum ether to remove unreacted N^P^(NMe2) (0.11 gm, obtained), then dissolved i n a c e t o n i t r i l e , the solution f i l t e r e d , and the solvent evaporated. The product was then powdered and dried by heating i n vacuo. The y i e l d of NgPg (NMe2) 1 2Co (N03) 2 was 0.82 gm.. {61%). The compound appeared to be stable i n a i r . A n a l y t i c a l r e s u l t s are given i n Table V. I I . B. 4. b. Synthesis of the Complexes N^Pg(NMe 2) l 2M(N0 3) 2  (M = Mn,Ni,Cu) Complexes of N 6P 6(NMe 2) 1 2 with Mn(N0 3) 2, Ni(N0 3) 2/ and Cu(N0 3)2 were prepared by a method analogous to that des-cribed above for the cobalt complex, r e s u l t i n g i n buff, green, and green powders, respectively. A n a l y t i c a l r e s u l t s are given i n Table V., Only the copper complex was a i r s e n s i t i v e . Green c r y s t a l s of the n i c k e l complex could be obtained from acetonitrile/toluene. Attempts to c r y s t a l l i z e the copper complex from various solvent mixtures did not succeed. I I . B. 4. c. N 6P 6(NMe 2) 1 2Zn(N0 3-) 2 This complex was synthesized by Dr. J.N. Wingfield by a method analogous to that given above for the other n i t r a t e - 33 -complexes. The compound was a buff powder. A n a l y t i c a l re-sults are given i n Table V. I I . B. 5. Conductivity Measurements The conductivities of ca. 10 M solutions of the com-plexes i n a c e t o n i t r i l e were measured at room temperature with a Wayne Kerr Universal Conductivity Bridge, Model B221A. The results are given i n Table VI. II. B. 6. Magnetic S u s c e p t i b i l i t y Measurements Magnetic s u s c e p t i b i l i t y measurements on the NgPg (NMe2) ^ 2 M ^ N 0 3 ^ 2 ^ M = M 5 1'^'^'^) complexes (as powders) were made by the Gouy method. Hg(Co(CNS) 4) was used to ca l i b r a t e the Gouy tube, and a l l measurements were made at room temperature. Corrections for diamagnetism were calcu-58 lated from Pascal's constants and the known diamagnetic 59 s u s c e p t i b i l i t y of (NPCl,,)^. The results are given i n Table VII. II . B..7. Electr o n i c Absorption Spectra The e l c t r o n i c absorption spectra of the N g P g ( N M e 2 ) ( N O ^ ) 2 complexes i n a c e t o n i t r i l e and chloroform were measured on a Cary Model' 14 Spectrophotometer using 1 cm. quartz c e l l s and are discussed i n Section II.C.3. II . B. 8. V i b r a t i o n a l Spectra Infrared spectra of nujol mulls of NgP 6(NMe 2) 1 2 a n < ^ t n e complexes over the range 4000 to 300 cm-'*' were measured on a Perkin Elmer Model 457 Grating Spectrometer using C sl plates Table V.. A n a l y t i c a l R e s u l t s 3 Compound N C H p M Cl Expected % Found % Expected % Found % Expected Found % Expected % Found % Expected % Found * N 6 P 6 (NMe 2 ) 1 2 31.56 31.82 36.09 36.28 9.08 8.98 (Mn (N 6P 6 (NMe2) 1 2 )N0 3 ) NC>3 28.65 28.93 29.48 29.34 7.42 7.65 19.01 19.11 5.62 5.32 (CO (N 6P g (NMe2) 1 2 ) N03) NO3 28.53 28.56 29.36 29.53 7.39 7.52 18.93 18.88 6.00 5.59 (Ni(NgPg(NMe2)1 2)N03)N03 28.54 28.53 29.37 29.13 7.39 7.21 (Cu (NgPg (NMe2) 1 2 ) N03 )N03 28.40 28.42 29.22 28.97 7.36 7.43 18.84 19.13 6.44 6.11 (Zn (N 6P g (NMe2) 1 2 ) N03) N03 28.35 28.50 29.17 28.89 7.34 7.38 18.81 19.04 6.61 5.93 N 6 P 6 (NMe 2 ) 1 2 .2FeCl 2 23.96 24.13 27.39 27.29 6.90 6.95 17.66 17.28 10.61 10.66 a. N, C, H analyses were performed by P. Borda, university of Br i t i sh Columbia. P, Mn, Fe, Co, Cu, Zn, C l analyses were performed by Dr. F. Pascher, Mikroanalytisches Laboratorium, Bonn, Germany. 13.48 13.49 - 35 -(for (Ni(HPND)N03)N03, KBr plates were used). For N &P 6(NMe 2) 1 2 and some of the metal n i t r a t e complexes the infrared spectra of hexachlorobutadiene mulls in the range 4000 to 1200 cm were also measured. Infrared spectra of nujol mulls of the compounds over the range 600 to 167 cm were measured on a Perkin Elmer Model 301 spectrometer using polyethylene plates (for the metal chloride complexes the spectra were measured to 90 cm-"''). The Raman spectrum of N^ P^ . (NMe2) ^ 2 as a powder was measured on a Cary Model 81 spectrometer equipped with a Spectra-Physics 125 laser source. The v i b r a t i o n a l spectra are discussed i n Section II. C. 4. II . C. Results and Discussion II. C. 1. Conductivities The molar conductances of solutions of the n i t r a t e complexes are given i n Table VI. The results show that a l l the complexes are io n i c i n a c e t o n i t r i l e . For concentrations — 3 60 of the order of 10 M, Walton gives the ranges 120-160 2 -1 -1 and 220-280 cm ohm mole for 1:1 and 1:2 (or 2:1) e l e c t r o -l y t e s . Hence the n i t r a t e complexes can be assigned the f o r -mulae (M(HPND)N03+)N03~ (HPND = NgPg(NMe 2) 1 2; M = Mn,Co,Ni,Zn) 2+ and (Cu(HPND) ) (NC>3 )2« I f the n i t r a t e ion i s acting as a monodentate ligand, the above formulation for the f i r s t four complexes i s consistent with five-coordination about the metal + — ion, as i n the cations of the (Cu(HPND)Cl ) ( C u C l 2 ) and + 2-(Co(HPND)Cl ) 2 ( C o 2 C l 6 )-2CHCl 3 compounds. For the copper n i t r a t e complex the above formulation may not be correct for Table VI E l e c t r i c a l Conductivity of the Complexes i n A c e t o n i t r i l e Compound .A.M (Mo-'-ar Conductance) Concentration 2 - 1 - 1 2 cm ohm mole M X 10 (Mn(NrP,. (NMe~) D D 2 1 2)N0 3)N0 3 124 1.022 (Co (NgPg (NMe2) 1 2)N0 3)N0 3 120 0. 999 (Ni(NgPg(NMe2) 1 2)N0 3)N0 3 147 1.005 (Cu (NgP6 (NMe2) 1 2 ) ) j ^ b 245 1.016 (Zn(N 6P g (NMe2) l 2)N0 3)N0 3 126 0.994 (N 6P 6 (NMe 2) 1 2) 2 ( F e C l 2 ) 4 b 279 0.4803 (Co (NgPg (NMe2) 1 2 ) C 1 + ) 2 ( C o 2 C l 6 2 ~ ) • 2 C H C 1 3 263 0.1732 a. The conductivity of pure a c e t o n i t r i l e i s 5 X 10 ohm cm o — l —1 b. A M = 139.5 cm ohm mole i f compound has the formula N gP 6 (NMe2) 1 2 - 2 F e C l 2 as i n (Fe(N 6P 6(NMe 2) 1 2)Cl +) (FeCl 3~) - 37 -the s o l i d state, since CH^CN could displace the n i t r a t e ion from the coordination sphere i n solution. This would be in agreement with the general tendency of nitrogen donors to displace oxygen donors i n complexes of f i r s t series divalent 61 t r a n s i t i o n metals as one progresses from Mn(II) to Cu(II). This could also explain the high value for the n i c k e l complex, since CH^CN could p a r t i a l l y displace NO^ from the coordina-ti o n sphere. The value for (Co(HPND)Cl +) 2(Co 2Cl 6 2~)•2CHCl 3 i s in the range for 2:1 e l e c t r o l y t e s , as expected. The value for HPND*2FeCl2SSuggests that the compound i s also a 2:1 e l e c t r o -2-lyt e , containing the hitherto unrecognized Fe 2Clg ion. Other formulations which are consistent with i t s observed con-d u c t i v i t y , such as (Fe(HPND)Cl +) (FeCl^ ), cannot be eliminated, but they are less l i k e l y . I I . C. 2. Magnetic Measurements The room temperature magnetic moments of the (M(HPND)N03)N03 (M = Mn,Co,Ni,Cu) complexes are given i n Table VII. The values show that the (M(HPND)N03)N03 (M = Mn,Co,Ni) complexes are of the high-spin type. High-spin manganese(II) complexes are expected to show magnetic moments very close to the spin-only value (5.92 B.M.) 62 6 ir r e s p e c t i v e of stereochemistry, since the S ground state term of the free ion i s not s p l i t by the ligand f i e l d , and excited states w i l l have lower spin m u l t i p l i c i t y . Information on stereochemistry i s also not expected from the observed moment of the copper n i t r a t e complex, since i n general stereo-Table VII Magnetic S u s c e p t i b i l i t y Data Compound M corr 6 M T(°K) A e f f ( B . M . ) (Mn(NgP 6(NMe 2) 1 2)N0 3)N0 3 (Co(N 6P 6(NMe 2) 1 2)N0 3 )N0 3 (Ni(N 6P 6(NMe 2) 1 2)N0 3)N0 3 (Cu(N 6P 6 (NMe2) 1 2)N0 3)N0 3 13639.1 8469.8 3468.9 878.2 14120.3 8951.0 3950.1 1359.4 292 290 293 296 5.74 4.55 3.04 1. 79 a. The correction for diamagnetic s u s c e p t i b i l i t y was estimated by summing Pascal's CO J.O — constants for M , N0 3 , N(amide), C, and H. The correction for the NgPg ring was obtained by subtracting 12 X the correction for C l from the diamagnetic s u s c e p t i b i l i t y of (NPC1 2) 6. 5 9 - 39 -chemistry has l i t t l e e f f e c t on the average magnetic moment of 6 2 the cupric ion, which i s expected to be about 1.9 B.M. at room temperature. However, some information on stereochemis-t r y can be expected from the moments of the cobalt and n i c k e l n i t r a t e complexes. For the (M(HPND)N03)N03 (M = Co,Ni) complexes the sym-metry i s l i k e l y to be low, since i n the chloride complexes thi s i s the case. Quenching of the o r b i t a l contribution would then be expected, leading to moments close to the spin-only values. On the other hand, removal of degeneracy w i l l increase the number of excited states of the same spin, and, i f the excited states have o r b i t a l angular momentum, spin-or b i t i n t e r -actions could increase the moments above the spin-only values. Octahedral high-spin Co(II) complexes generally have moments much higher than the spin-only value (3.87 B.M.), 4 since the ground state ( T i g ) "h a s o r b i t a l degeneracy. The 62 63 observed moments are usually i n the range 4.9-5.3 B.M., ' although they can be lower i f the symmetry of the ligand f i e l d departs from octahedral. For tetrahedral high-spin 4 Co (II) complexes the ground state i s and the moment i s expected to be closer to the spin-only value. Spin-orbit coupling can occur, and the observed values are usually i n 6 2 the range 4.4-4.8 B.M. The values for five-coordinate Co (II) complexes are, i n general, found to be lower than those of 6-coordinate complexes. For the 8 five-coordinate high-spin Co (II) complexes l i s t e d i n Table VIII the values range from 4.3-4.8 B.M., average 4.59 B.M. The value for - 40 -Table VIII Some High-Spin Five-Coordinate Co(II) Complexes 9 Complex Set of ... Donor Atoms Proposed Structure ^ (B.M. ) Ref Co(H-SalMe) 2 °3 N2 TBP 4.62 65 Co(H-SalMeDPT) °2 N3 I 4.28 66 Co(Me 4daeo)Cl 2 0DN 2C1 2 I 4.70 67 Co(Me 5dien)Cl 2 N 3C1 2 I 4.60 68 Co ( E t 4 d i e n ) C l 2 N 3C1 2 4.71 69 Co(Mab-en-NEt 2)Cl 2 N 3C1 2 4.82 70 Co(Me 4daes)Cl 2 SN 2C1 2 I 4.55 71 (Co (Me 6tren)Cl)Cl N 4C1 TBP 4.45 72 a. Abbreviations: TBP = t r i g o n a l bipyramidal I = intermediate between square pyramidal and TBP H-SalMe = N-methylsalicylaldimine H-SalMeDPT = bis(salicylaldiminotrimethylene)methylamine Me4daeo = bis(2-dimethylaminoethyl)oxide, (Me 2NCH 2CH 2) 20 Me4daes = bis(2-dimethylaminoethyl)sulphide, (Me 2NCH 2CH 2) 2S Me-dien = bis(2-dimethylaminoethyl)methylamine, (Me 2NCH 2CH 2) 2NCH 3 E t 4 d i e n = bis ;(2-di:ethylaminoethyl) amine, (Et 2NCH 2CH 2) 2NH Me^tren = tris(2-dimethylaminoethyl)amine, N(CH2CH2NMe2) - 41 -(Co(HPND)N03)N03 i s 4.55 B.M., and t h i s strongly indicates that a five-coordinate, rather than a six-coordinate, com-plex i s formed, although the symmetry type cannot be deter-mined. A four-coordinate complex cannot be e n t i r e l y ruled out on the basis of magnetic measurements alone, but thi s coordination number i s un l i k e l y . For octahedral n i c k e l (II) complexes the moment i s ex-pected to be close to the spin only value (2.83 B.M.), since 3 the ground state term ( A 2 g ^ n a s n o o r * k i t a x degeneracy. Some spin-orb i t coupling can occur, and the observed values are i n the range 2.8-3.4 B.M. ' For tetrahedral nickel(II) com-3 plexes the ground state ( T^) w i l l have o r b i t a l degeneracy, and the moments are consequently expected to be higher. The observed values usually f a l l i n the range 3.6-4.0 B.M., a l -though departure from tetrahedral symmetry could lower the moment.^2'^ Five-coordinate nickel(II) complexes have ob-64 served moments i n the range 3.1-3.4 B.M. The value* for (Ni(HPND)N03)N0 3, 3.04 B.M., i s thus consistent with either a 5- or a 6-coordinate complex, but strongly indicates that a 4-coordinate complex i s not formed. I I . C. 3. Elect r o n i c Absorption Spectra The electronic absorption spectra above 350 mjJL for the n i t r a t e complexes are given i n Table IX, and for M = Co, Ni, and Cu are shown i n Figures 8, 9, and 10. b. For 31 four-coordinate high-spin Co (II) complexes l i s t e d on p 191 of ref. 62, the mean value of ju. i s 4.59 B.M. Table IX Electronic Absorption Spectra of the N gP 6 (NMe 2) 1 2-M(N0 3) 2 Complexes Compound Solvent Spectrum V max cm -1 (6 , 1 cm 1 mole "*") max ' Possible Assignments' (Mn(N 6P 6(NMe 2) 1 2)N0 3)N0 3 (Co(N 6P 6(NMe 2) 1 2)N0 3)N0 3 CH3CN CHC1, 7090(15) 10470(11) 15270(14) 18350 (45) 20000(37) sh (Figure 13) 4 • 4 II A 2 (F) *• E (F) *A 2(F). *A2(P)-1A;(F) -> E (G) 4 • 4 ' A 2(F) • E (F) 4 ' - 4 A 2 ( P ) 4 " •+ E (P) to (Co(N 6P 6 (NMe 2) 1 2)N0 3)N0 3 CH3CN 7090(14) 10470 (6) 14140(5) 18280(31) 20000(20) sh (Figure 13 a) 4 1 4 " 4 ii ^A 2(F) >CA1 + 4A 2) (F) 4 i 4 " A 2(F) -> E (F) 4 ' 4 1 A 2 (F) *• E (F) 4 ' 4 1 V, (F) »• A 2(P) 4 ' 4. " *A 2(F) • E (P) ../continued Table IX (continued) Compound Solvent (Ni(N 6P 6(NMe 2) 1 23)lN0 3)N0 3 CH^CN N 6P 6(NMe 2) 1 2.Cu(N0 3) 2 CHCl 3 N 6P 6(NMe 2) 1 2-Cu(N0 3) 2 CH3CN (Zn(N gP 6(NMe 2) 1 2)N0 3)N0 3 CH3CN sh = shoulder, CT = charge transfer a. Assuming D 3 h symmetry Spectrum Possible Assignments 8620 (17) 13900 (26) 22200(60) 23900(92) (Figure 14a)'*. -5 1 O H E (F) • E (F) V (F) * 3A^(F) , 3A 2 (F) , 3A 2 (F) •3 1 -3 II E (F) • E (P.) 3E" (F) »-3A2 (P) 8890(99) sh 11425 (138) 28600(2930) A l 2A ; . CT -* E 2 " -*• E 4^ CO 17200-19000(76) (centered at 18,000) 28000(2400) CT Frequency, kK 10 15 20 25 Figure 8. El e c t r o n i c absorption spectrum of (Co(N^P^(NMe 2) 1 2)N0 3)N0 3 i n CHC13. Calculated frequencies of the t r a n s i t i o n s are shown by s o l i d l i n e s . Frequency, kK Figure 9(a). E l e c t r o n i c absorption spectrum of (Ni(Me,tren)Br)Br i n CH_C1 77 (after Ciampolini ). Frequency, kK A (my) Figure 9(b). Elect r o n i c absorption spectrum of (Ni(NgPg(NMe 2) 1 2)N0 3)N0 3 i n CH3CN. Calculated frequencies of the tra n s i t i o n s are shown by s o l i d l i n e s . Frequency, kK 10 3000 r 2500 2000 r 1500 1000r 500 300 400 900 1000 X (mu) Figure 10 (a). El e c t r o n i c absorption spectrum of NgP 6(NMe 2) 1 2-Cu(N0 3) 2 i n CHCl^. Frequency, kK 30 25 21 20 19 18 17 16 X (mu) Figure 10(b). E l e c t r o n i c absorption spectrum of N^P^(NMe 2)^ 2-Cu(N0 3) 2 i n CH3CN. - 49 -The n i t r a t e ion has a weak absorption, peak at ~300 mjj. -1 -1 73 ( X = 312.6 , € = 5 1 cm mole i n a c e t o n i t r i l e ) which 73 has been attributed to a highly forbidden n • 7T * t r a n s i -t i o n . The only other peak i n the spectrum of the n i t r a t e ion i s the large one at -^ -200 myu. , and thus absorption by the n i t r a t e ion did not i n t e r f e r e with the spectra above 350 m^ u.. For the (Zn (HPND) NC>3) N0 3 complex no d - d t r a n s i t i o n s are expected, and none were found. For the (Mn(HPND)NO^)NO^ complex no spin-allowed t r a n s i t i o n s are possible, and no bands -2' were observed i n i t s spectrum up to concentrations of 10 ' M. For the M(HPND)(N0 3) 2 (M = Co,Ni,Cu) complexes some information on stereochemistry and ligand properties can be expected from the ligand f i e l d d - d spectra. However the information available from the spectra i s expected to be limited because of the p o t e n t i a l low symmetry of the complexes (see Section II.D.). For complexes of cubic symmetry argu-ments from ligand f i e l d theory can be used to derive values of Dq, spin-orbit coupling constants, and Racah parameters. As the symmetry i s lowered i t becomes necessary to specify the values of two or more c r y s t a l f i e l d parameters in order to describe the energy lev e l s , and the quantitative conclu-sions are less r e l i a b l e , even for symmetries as high as C^ v. For complexes of symmetries lower than D ^ or C^ v, the two highest symmetries of five-coordinate complexes, only qual-i t a t i v e conclusions about stereochemistry and ligand prop-e r t i e s are possible. Estimates of ligand f i e l d parameters can be obtained from a comparison of the observed spectra with c r y s t a l f i e l d diagrams calculated for D 3 h or C 4 v symmetry, but - 50 -they are only approximate. Thus for the (M(HPND)N03)N03 com-plexes i t i s better to r e l y on a comparison of the spectra with those of complexes with known coordination geometries containing ligands with known properties. II . C. 3. a. Electronic Absorption Spectrum of (Co(N 6P 6(NMe 2) 1 2)N0 3)N0 3 High-spin octahedral complexes of Co (II) have three 4 4 4 spin-allowed t r a n s i t i o n s : T i g ( F ) * T 2 g ^ ^ 1 ^ ' T l g ^ - + 4 A 2 g ( F ) ( V 2 ) , 4 T l g ( F ) • 4 T l g ( P ) ( V 3 ) . V 2 i s a two-electron t r a n s i t i o n and i s usually too weak to be observed. V i s generally found i n the 8,000-10,000 cm ^ region and V 3 i s near 20,000 cm - 1. The strongest band i s V 3 which has a molar extinction c o e f f i c i e n t , €, of 4.6 1 cm ^ mole ^ 2-|- 24* i n Co(H 20)g and 8 1 cm - mole i n Co(NH 3) 6 . D i s t o r t i o n from octahedral symmetry, either by geometrical d i s t o r t i o n or by having non-equivalent ligand donor atoms, often increases the i n t e n s i t y of the bands and causes a s p l i t t i n g of the ^ band. For tetrahedral coordination the expected t r a n s i t i o n s are 4 A 2 (F) »- 4T 2(F), 4 A 2 ( F ) • ^ ( F ) , and 4 A 2 ( F ) — ^ T - J P ) . The f i r s t two bands are weak and occur at frequencies less than 8,000 cm "*". The i n t e n s i t y of the t h i r d band i s much larger than the i n t e n s i t i e s of bands i n the spectra of octa-2-hedral complexes because of d - p mixing. For the CoCl^ ion t h i s band occurs near 15,000 cm-"'" (£ = 550 1 cm ^ mole "*") and i s considerably s p l i t by s p i n - o r b i t coupling. The spectrum of (Co(HPND)N0^)N0? i s given i n Table IX - 51 -and Figure 8. I t does not resemble the spectra of either four- or six-coordinate complexes, even those which are distorted from the i d e a l tetrahedral or octahedral coordina-t i o n geometries, but does resemble the spectra of high-spin five-coordinate Co(II) complexes (see below). There have been several t h e o r e t i c a l treatments of f i v e -74 75 76 coordinate high-spin Co (II) complexes. ' ' Several review 77 78 a r t i c l e s on five-coordinate complexes are also available. ' ' 79 The spectra of complexes which approach the two i d e a l geometries are often quite s i m i l a r . This can be seen i n Figure 11, which shows the spectra of (Co (Me^tren) Br) Br (ap-80 proximate C 3 v symmetry ; Megtren = N (CH2CH2N (CH3) 2) 3) and 81 (Co(OAsMePh 2) 4Cl0 4)Cl0 4 ( C 4 v symmetry ). For the complexes of intermediate stereochemistry i t i s often impossible to t e l l whether a square pyramidal or a t r i g o n a l bipyramidal geometry i s the better approximation. The general features of the spectra of five-coordinate complexes are a consequence of the l i f t i n g of degeneracies i n going from cubic symmetry to or C 4 v . In octahedral 4 complexes the P state of the free ion i s not s p l i t by the 4 ligand f i e l d and the F state i s s p l i t . i n t o three components, 4 4 4 4 4 T l g ' T2g' a n d A l g " T h e s P l l t t i n , ? s o f t h e F a n d p states in and C 4 v symmetries are shown in Figure 12. Transitions 4 from the ground state to the states a r i s i n g from the P l e v e l of the free ion are usually more intense than the bands at lower frequency. The diagrams i n Figure 12 were taken from reference 79 - 52 -Frequency, kK (b) Figure 11. (a) Electronic absorption spectrum of (Co(Me^tren)Br)Br 77 i n C H 2 C l 2 (after Ciampolini ). (b) Reflectance spectrum of (Co (OAsMePh2) 4C10 4)C10 4 77 (after Ciampolini ). - 53 -4A'{+4A'2 4A2(e2b22bi2ai) *E(<?b2 b?ai) *E(<?b2 bi o i 2 ) •4£fe36226iai) k 2(e 46 2 biai) (a) (b) Figure 12. Energy l e v e l diagrams for the Co (II) ion (d ) i n f i e l d s of f i v e equivalent ligands of 7 9 (a) D_, and (b) C. geometries (after Wood ) . - 54 -and are based on calculations by Ciampolini et a l . using f i v e equal point dipoles. For the C^ v geometry the a p i c a l o 76 to basal angle was taken as 100 . Wood has used the point charge model with the c r y s t a l f i e l d and i n t e r e l e c t r o n i c re-pulsion parameters being treated as empirical quantities. These parameters were adjusted to f i t the observed spectrum of the (Co(Me^tren)Cl)Cl complex. An energy l e v e l diagram obtained by this method i s shown i n Figure 13 (taken from ref 76). This diagram d i f f e r s from that given i n Figure 12a 4 in that the two levels o r i g i n a t i n g i n the P state of the free ion are closer together, probably as a consequence of the introduction of the i n t e r e l e c t r o n i c repulsion parameter B as an empirical quantity. Interpretation of the spectrum of (Co(Me^tren)Cl)Cl using the diagram i n Figure 13 evidently 2 / requires that a spin-forbidden t r a n s i t i o n (to the E'(G) level) 7 6 is of moderate in t e n s i t y . This assignment d i f f e r s from that using the diagram shown i n Figure 12a. Assignments of the bands i n the spectrum of (Co (HPl^NO-^NO^ according to the diagrams i n Figures 12a and 13 are given i n Table IX. I f the spectrum of (Co(HPND)N03)N02 i s f i t t e d to the diagram i n Figure 13 the following values of Dt and B can be deduced: Dt = 1240 cm~\ B = 738 cm - 1, |3 = 0.66 (B Qf-f6r Co(Il) i s 1120 cm - 1; 8 2 Dt i s 7 6 related to Dq by 28Dt = 16Dqa^+49Dqg. ). With, these values t r a n s i t i o n s are expected at: 4410, 6110, 11,110, 15,280, 19,440 and 20,000 cm - 1. Five bands are found (Figure 8), the lowest band presumably being of too low frequency to be - 55 -D t / B Figure 13. Energy l e v e l diagram for the Co(II) ion (d') i n a c r y s t a l f i e l d of t r i g o n a l bipyramidal symmetry. The dotted l i n e indicates the Dt/B r a t i o found for Co(Me 6tren)Cl + (after Wood 7 6). - 56 -detected. Using the same diagram the values for (Co (Me 6tren)Cl)Cl are: Dt = 1130 cm - 1, B = 783 cm - 1, J3 = 0.70. The estimates of the c r y s t a l f i e l d parameters for the (Co(HPND)N03)N03 and (Co(Megtren)Cl)Cl complexes can be com-pared with the values found for octahedral Co (II) complexes. For simple amine ligands the values of Dq and B are 1100 to — 1 82 1200 cm and 0.67, respectively. Thus the estimates of Dq indicate that both HPND and Me^tren are t y p i c a l and sim i l a r weak f i e l d donors and the estimates of the nephelauxetic parameter |3 indicate that neither ligand accepts electron density s i g n i f i c a n t l y from the metal (for octahedral complexes 8 2 values of j3 are: 6F~, 0.81; 6H20, 0.76; 6NH3, 0.66; 6CN~, 0.52) . The above conclusions are i n agreement with the low i n t e n s i t i e s of the bands i n the spectrum. In low-spin f i v e -coordinate complexes there i s evidently a very extensive mixing between the o r b i t a l s of the ligands and the metal, 79 r e s u l t i n g i n very large € values. I I . C. 3. b. El e c t r o n i c Absorption Spectrum of  (Ni(N 6P 6(NMe 2) 1 2)N0 3)N0 3 An energy l e v e l diagram based on calculations s i m i l a r to those used to calculate the diagram shown i n Figure 13 for Co (II) complexes i s not available. Energy l e v e l diagrams for D 3^ and C^ v symmetries based on the point-dipole approximation are shown i n Figure 14 (taken from reference 77). The spectrum of (Ni(Me gtren)Br)Br, known to have approximate C,Tr symmetry - 57 -Figure 14. Energy l e v e l diagrams for the Ni(II) ion (d 8) i n f i e l d s of f i v e equivalent ligands of (a) D_n and 3h 77 (b) C geometries (after Ciampolini ) . - 58 -8 3 (C 3 crystallographic symmetry ) i s shown in Figure 9 together with the spectrum of (Ni(HPND)NO^)NO^. The spectrum of 77 84 (Ni(Megtren)Br)Br has been assigned by Ciampolini ' using a diagram s i m i l a r to that shown i n Figure 14a for D ^ sym-metry, and a value of Dq = 1250 cm has been deduced. The calculated frequencies of the t r a n s i t i o n s are shown in Figure 9a. The observed spectrum contains one too many bands for D ^ symmetry, and t h i s was attributed to lowering of the 77 symmetry from D ^ to C-^v' There i s a close correspondence between the spectra of (Ni(Megtren)Br)Br and (Ni(HPND) NO 3)NO^ 3 " except that i n the spectrum of the l a t t e r complex the ( + 3 / / 3 H A 2 ) band i s missing. The two t r a n s i t i o n s to the A^ and 3 // 3 3 A 2 levels i n D ^ symmetry (corresponding to the A-^  and A 2 levels i n C^ v symmetry) are expected to be weak because they 77 i 3 ' are forbidden i n D^^, and since they arer-close to the A 2 l e v e l i t i s not u n l i k e l y that only one band w i l l appear i n t h i s region, as i n the five-coordinate high-spin complex 85 Ni(Mab-en-NEt 2)Cl 2 ( N 3 C l 2 donor s e t ) . Using the diagram in Figure 14a a value of Dq ~ 1390 cm ^ can be deduced for the (Ni(HPND)N0 3)N0 3 complex. At t h i s value of Dq bands are expected at 7,000, 14,200, 14,800, 21,500, and 25,000 cm - 1. These "calculated" frequencies are compared with the observed bands i n Figure 9b. By comparison with the more detailed 7 76 treatment of the d case i t i s l i k e l y that the calculated separation of the two t r a n s i t i o n s of highest frequency would be less i f the i n t e r e l e c t r o n i c repulsion parameter B were treated as an empirical parameter to be adjusted to give the best f i t with the observed spectra. The estimated value of Dq for the (Ni (HPND)N03)N03 com-plex i s somewhat higher than that found for the (Ni(Me^tren)Br)Br complex. Q u a l i t a t i v e l y both the i n t e n s i t i e s and the frequencies of the bands i n the spectrum of (Ni(HPND)N03)N0 3 are s i m i l a r to those i n the spectra of the (Ni(Me gtren)X)X (X = C l , B r , I , C l 0 4 , N 0 3 ) 7 2 complexes, but s l i g h t l y higher than those i n the spectra of other f i v e -coordinate complexes with amine ligands (see reference 64). The larger value of Dq and the increased i n t e n s i t y of the bands for (Ni(HPND)N0 3)N0 3 would seem to indicate that there is an increased in t e r a c t i o n between the metal o r b i t a l s and the ligand o r b i t a l s compared with the (Co(HPND)N03)N03 com-plex, but i t i s i n s u f f i c i e n t to cause spin pairing. II . C. 3. c. E l e c t r o n i c Absorption Spectra^: of  N 6P 6(NMe 2) 1 2Cu(NQ 3) 2 The spectra of the Cu(HPND)(N0 3) 2 complex i n a c e t o n i t r i l e and chloroform are shown in Figure 10. The spectra of this complex are more informative about stereochemistry, because the spectra of complexed cupric ions are more sensitive to stereochemistry and because the spectra of the Cu(HPND) (NC>3)2 complex i n the two solvents are d i f f e r e n t . 2 Figure 15 shows how the D state of the free ion s p l i t s i n f i e l d s of D.^ and C 4 v symmetries. Two bands are expected i n the spectra of complexes with D ^ symmetry. In C^ v three bands are expected, and they are expected to be at higher frequencies since the energy separations are greater. Intense charge-transfer bands are often found i n the near U.V. but these do not usually obscure the d - d bands. - 60 -2 +2 9 Figure 15. S p l i t t i n g of the D term of the Cu ion (d ) in five-coordinate chromophores for C^ v and D^ , geometries. 3_ The CuClg ion has been shown to have (rigorous) D^ -^  86 symmetry and i t s spectrum consists of two bands occurring -1 at 8,300 and 10,400 cm These have been assigned to the . . 2 ' tra n s i t i o n s A^ 2 / 2 ' E and A^- 4_. i 87-89 ->• E respectively. -1 Two bands are also found at 12,800 and 14,500 cm i n the 90 spectrum of the compound Cu(NH^) 2 A9(SCN)^, which has been 91 shown to contain the CuN,- chromophore of symmetry.. The complexes (Cu(Me^tren)X)X (X = Br,Cl0 4,N0 3) have two bands, which for X = Br occur at 10,300 cm - 1 (I£ ~ 450 1 cm - 1 mole - 1) -1 -1 -1 1-2 and 13,500 cm (l€ ^  180 1 cm mole ). • These have been 92 2assigned to the A., 2E(1) and 2A 1 *E(2) t r a n s i t i o n s i n C^ v symmetry. The spectrum of (Cu(HPND)NO^)NO^ i n chloroform consists of two bands at 8,890 cm 1 and 11,430 cm - 1, and the s i m i l a r i t y of the spectrum to the spectra of the above complexes suggests - 61 -that the coordination geometry i n the complex i s close to tr i g o n a l bipyramidal. The spectra of square pyramidal complexes with symmetries close to C 4 v are d i f f e r e n t . The compound (Cu(trien)SCN)SCN (trie n = NH2CH2CH2NHCH2CH2NHCH2CH2NH2; SCN i s S-bonded to Cu) has a nearly square pyramidal coordination geometry (-SCN O 7 7 7 7 apical) with an ap i c a l to basal angle of 100 . Its spectrum consists of a broad non-symmetrical band centred at about 16,000 cm 1 which, when resolved into i t s Gaussian components, i s shown to consist of three bands. These have been assigned 2 2 2 2 2 2 to the tr a n s i t i o n s B-^  »- A-^ , zB^ • B 2» and B^ *• E i n C^ v symmetry. The ligand 1,4-diazacycloheptane (dach) forms com-plexes which conductivity measurements show to be (Cu(dach) 2X)X 93 (X = N0 3,Cl,Br) and (C u ( d a c h ) 2 ) ( C l 0 4 ) 2 . An X-ray structure 94 analysis of the complex Cu (dach) 2 (N03) 2> 0. 5H-20 shows that the coordination geometry i n these five-coordinate complexes (except for X = ClC>4) i s square pyramidal with X i n the a p i c a l p o s ition. The spectrum of (Cu(dach) 2) (C.l04) 2 consists of a broad symmetrical band centred at 19,800 cm~^ ( C = 172 1 v max cm-"'" mole ^) in MeNC>2 which s h i f t s to lower frequency i n co-ordinating solvents (V = 18,400 cm - 1, £ = 134 i n H„0) . max max 2 The spectra of the (Cu(dach) 2X)X (X = N0 3,Cl,Br) complexes also consist of a broad symmetrical band, but at lower f r e -quency than for the perchlorate complex (for X = NO-, V = 18,700 cm"1, € m '= 180 1 cm - 1 mole - 1; for X = C l V , = 16,300 cm "*", € = 213 1 cm - 1 mole" 1). For the perchlorate complex the s h i f t to lower frequency i n coordinating solvents - 62 -i s evidently due to solvent taking up the f i f t h coordination s i t e . The spectrum of Cu (HPND) (N0 3) 2 i n a c e t o n i t r i l e consists of a very broad asymmetrical peak centered at 18,000 cm \ suggesting that there i s a change i n coordination geometry in t h i s solvent. Together with the conductivity measurements in a c e t o n i t r i l e (Section II.C.l.) the results suggest that the unidentate n i t r a t e ion i s displaced by a solvent molecule with a d i s t i n c t change of conformation from nearly t r i g o n a l b i -pyramidal towards square pyramidal. Table X gives the energies of the l e v e l s , i n terms of the parameters Gp and Dq) for ML,- species with D ^ and C^ v 3_ symmetries (taken from reference 79) . For the CuCl^. ion, with a Cp/Dq r a t i o of 3.2, the value of Dq obtained using -1 79 these energies i s 1070 cm I f a sim i l a r c a l c u l a t i o n i s car r i e d out for the (Cu(HPND)NO3)NO^ complex (in chloroform) a value of Dq of 1180 cm i s obtained (with a Cp/Dq r a t i o of 3.1). This estimate of Dq i s lower than the values ob-tained f o r (Cu(Me^trenJXjX complexes (for X = Br Dq = 1400 cm"1, Cp/Dq = 2.9; for X = N0 3 Dq = 1470 cm1, Cp/Dq = 3.1), in contrast to the Co and Ni complexes where the estimates of Dq for the HPND complexes were s l i g h t l y higher than for the Me^tren complexes. I I . C. 4. Infrared Spectra The infrared spectra are given i n Table XI and, for V greater than 400 cm ^, are shown i n Figure 16. The Raman spectrum of NgP 6(NMe 2) 1 2 i s given i n Table XII. Table X Crystal F i e l d Energies of the d Orbitals (from Reference 79) O r b i t a l II e i e i .a. 3n3hh Energy (l/4)Cp - (25/7)Dq -(l/2)Cp + (25/28)Dq (l/2)Cp + (75/14)Dq O r b i t a l b, C„ 90 4v Energy Cp + (40/7)Dqq -Cp + (30/7)Dq Cp - (30/7)Dq -Cp/2 - (20/7)Dq C„ ~103 4v Energy 2/3Cp + 5Dq -(2/3)Cp + 3Dq (2/3)Cp - 4Dq -(l/3)Cp - 2Dq - 64 -Table XI Infrared Spectra' 3010 in 2973 ni 2930 - 2840 s, b r , pr 2830 s 2790 s (Mn(HPND)NO,)NO, 3014 m, br 2934 - 2874 s, br 2844 a 2800 m (CofHPNDlNOjlNOj (Ni(HPND)NO^)NO^ (Cu(HPM»N03)N03 3016 m 2924 - 2874 s, br 2844 s 2800 m 1500 w, sti 1493 m, ah 1484 s 1463 s 1455 s 1433 m, sh 1403 m, sh 1323 s, br 1290 s\„ 1143 m 1071 m 1063 m 993 s 972 s 1487 s, br 1462 s 1452 s 1408 - 1362 s, b r , sh 1284 s 1261 s 1193 s, sh 1177 3 1154 s 1144 s, sh 1017 m, sh 993 s 978 s, sh 1344 s 1294 s 1256 s 1243 s 1193 s, sh 1174 s 1133 s 1065 m 1017 m, sh 991 3 973 s, sh 1343 s 1296 - 1273 s, b r 1255 s 1193 s 1173 s 1143 s 1064 m 1020 m, sh 991 s 979 s, sh 1302, 1297 s, pr 1272 s, sh 1252 s 1190 a 1171 B 1134 s 1063 m 993 s 980 s, sh 720 s 711 s 855 m 832 w 813 w 794 m 770 m 746 m 732 m 724 m. 860 m 831 w 815 w 792 m 770 m 747 m 733 m 725 m 816 w 794 m 771 in 747 m 741 m 730 m 860, 852 m, 831 ro 817 w 792 in 761 m, sh 745 m 732 m 722 ra 493 s 453 m 634 vw 598 vw 579 w 559 m 538 m 518 in 506 m 493 in 463 m 439 w 402 w 633 vw 599 w-m, sh 592 w-m 564 m 535 m 523 m 510 in 495 m 464 in 436 w 401 w 340 w, sh 315 w. br 274 vw, b r 189 vw, b r 636 w 607 w 591 w 570 m 543 m 515 m) 511 m) 494 m 632 w 617 w 573 ro 548 ro 505 ro 491 ro 477 w 433 w 403 w 338 3 298 18 wj w) sh a. Abbreviations: HPND = N.P.(NMe_)n_, w = weak, m = medium, 6 6 2 12 s = strong, v = very, sh = shoulder, br = broad, pr = poorly resolved. /continued - 65 -Table XI (continued) (Zn(HPND)N0 3)NOj HPND-2MnCl, (CO(HPND)Cl ) 2 ( C O j C l g )•2CHC1 3 HPND-2ZnClj 3016 m 29261 , 2891) ' 2846 s, sh 2801 m pr 1491 8, sh 1480 s 1390 - 1363 s, b r , sh 1343 s 1254 s 1244 s, sh 1190 s. sh 1177 s 1143 s. sh 1136 s 1062 m 1017 m, sh 991 s 979 s, sh 1292 s, sh 1267 s, br 1175 s. b r 1144 s, b r 1063 m 1017 m, sh 992 s i 979 s) p r 1287 s. Bh 1268 s 1210 s, sh 1194 s, sh 1183 s 1141 s 1063 in 1017 m. sh 990 s 1291 8 1292 9. 1267 S 1268 s 1222 8 1220 s 1199 S, sh 1184 S 1185 s 1169 St sh 1126 S 1133 8 1064 m 1063 m 1017 ro. sh 1017 m 990 s 977 s, sh 856 m 829 TO 811 vw 792 m 769 m 746 m 731 m 724 w 812 w 794 m 770 m 746 m 731 m 723 m. 793 m 769 m 744 m 730 m 722 m. 793 m 771 m 760 m 745 m 730 m 722 m. 794 m 772 m 745 m 731 m 719 m 587 w 566 m 538 m 516 m 508 m 495 m 466 w 436 w 405 w 315 w, br 258 vw, vbr 666 vw 633 vw 602 w 588 w-m 565 m 542 ni 522 ni 505 m 494 m 463 w 440 w 404 w 321 w, 283 w 247 w 225 w 590 w-m 561 in 534 m 516 m 501 m, s 494 m 462 w 438 w 409 vw 374 w-m 357 w-m 321 31 r l , 321 w) „ J P r 311 w) p r 615 w 592 w 563 m 533 m 520 m 504 m 494 m 464 w 438 w 412 vw 333 320 299 253 242 604 w 593 w 566 m 536 m 520 m 504 m 493 m 461 w 436 w 322 w, 302 w. 226 w 130 w 110 w br b r . 3500 3000 2500 2000 1800 1600 1400 1200 1000 800 600 400 FREQUENCY (cm"') (d) Figure 16 (continued) (c) (Cu (HPND)N03)N03, (d) (Zn (HPND) NC>3) NC>3, .../continued Figure 16 (continued) (e) (Co(HPND)N03)N03, (f) (Ni (HPND)N03)N03, (g) HPND-2MnCl2, (h) HPND-2FeCl2, .../continued - 70 -Table XII Raman Spectrum of NgPg(NMe2) (3000 cm - 1 to 475 cm - 1) 2949 w 2907 s 2871 w 2834 w 2798 w 1514 w 1447 w 1432 w 1404 w 1112 w 1071 w 979 w 770 w 716 w 641 w 540 m a. w = weak, m = medium, s = strong \ - 71 -The metal-ligand stretching vibrations are expected at frequencies below 400 cm \ and weak peaks occur i n thi s region i n the spectra of a l l the complexes (Table XI). How-ever, l i t t l e information can be expected from the low f r e -quency spectra because of the d i f f i c u l t y i n assigning bands in this region. Assignment of bands i s complicated by the ligand vibrations, which, i n the uncoordinated ligand, give r i s e to weak peaks at 376 and 290 cm The peak at 290 cm 1 i s broad and i s the more intense of the two ligand bands. This band i s assigned to the CH^ twisting v i b r a t i o n (see below) . Other sources of d i f f i c u l t y i n assigning bands i n the low frequency region include: 1) coupling of vibrations and 2) the d i f f i c u l t y of d i f f e r e n t i a t i n g between l a t t i c e 95 vibrations and in t e r n a l vibrations. The metal-nitrogen stretching vibrations are sensitive to stereochemistry and coordination number, being higher for 95 tetrahedral complexes than for octahedral ones. However, information on five-coordinate complexes i s lacking, and therefore d e f i n i t e conclusions about stereochemistry and coordination number w i l l not be possible even i f the V(M-N) stretching vibrations can be unambiguously assigned. The spectra of the metal n i t r a t e and metal chloride com-plexes are very c l o s e l y s i m i l a r above 400 cm ^ , and the com-plex series of peaks i n the region 400-600 cm-'1' i s assigned to ligand vibrations (see below). In a l l the complexes the T (CH-j) (twisting) band has sh i f t e d to higher frequency by ~20 cm 1 . This band i s a very broad peak and i s the most - 72 -intense peak i n the low frequency region (except for HPND-2FeCl 2). In some of the complexes th i s band, i s s p l i t into two or more poorly resolved bands, and hence th i s ligand peak may obscure some of the peaks r e s u l t i n g from the metal-ligand stretching vibrations. Thus an attempt w i l l not be made to assign a l l the peaks i n the low frequency region. For the HPND•2CoCl2*CHCl^ and HPND-2ZnCl2 compounds peaks at very low frequencies (105.5 cm - 1; 130 and 110 cm - 1 respec-+ 2 — t i v e l y ) are found. In the case of (Co(HPND)Cl ) 2 (Co 2Clg )• 2CHCI3 the peak at 105.5 cm 1 could be due to the metal-bridging chlorine stretching v i b r a t i o n . For the HPND-2FeCl 2 compound r e l a t i v e l y intense peaks are found at 374 and 357 cm These peaks are absent i n the spectra of the other complexes. Assignment of the bands due to the uncoordinated and coordinated n i t r a t e ion vibrations i n the spectra of the (M(HPND)NO^)NO^ complexes i s also d i f f i c u l t because the ligand vibrations obscure many of the regions where these peaks are expected. Peaks present i n the spectra of the metal n i t r a t e complexes which are not present i n the spectrum of the ligand cannot a l l be assigned to n i t r a t e vibrations, since peaks at exactly the same frequencies and of s i m i l a r i n t e n s i t i e s often are also present i n the spectra of the metal chloride complexes. In f a c t the s i m i l a r i t y of the spectra of a l l the complexes above 400 cm 1 i s remarkable. The strong peak at 1344 cm \ which i s present only i n the spectra of the metal n i t r a t e com-plexes, i s assigned to the uncoordinated n i t r a t e N0 0 asymmetric - 73 -stretching v i b r a t i o n . The weak peak at 831 cm - 1, which i s also present only i n the spectra of the metal n i t r a t e com-plexes, i s assigned to the uncoordinated n i t r a t e out-of-plane bending v i b r a t i o n . Peaks corresponding to the coordinated n i t r a t e ion vibrations are evidently obscured by peaks cor-responding to ligand vibrations, and thus evidence for co-ordination of the n i t r a t e ions to the metal cannot be ob-tained from the infrared spectra. The assignments for N^ -P^  (NMe2) ^ 2 given i n Figure 16 were made by comparisons with the spectra of simpler molecules, where assignments can be made more r e l i a b l y . The spectra 96 97 used for comparison were those of Me2NH, Me2NPF2, g o g o Me2NPSF2, (Me2N) 2PSF, and N^P^X^^ (NMe2) (X = Cl,Br; 99 n = 1-3). Comparison, with the spectra of dimethylamino-pho s p h o n i t r i l i c derivatives of d i f f e r e n t r i n g s i z e (n = 3,4,9) has also been h e l p f u l . ^ For such a large molecule the infrared spectrum of NgPg(NMe 2)^ 2 i s very simple. This i s probably a consequence 18 of 1) the high symmetry of the molecule (S^ i n the c r y s t a l ), and 2) comparatively weak coupling of vibrations of s u b s t i -tuents on d i f f e r e n t phosphorus atoms. The group of peaks i n the regions 2790-3010 cm - 1 i n the infrared spectrum and 2798-2 949 cm 1 i n the Raman spectrum includes the symmetric and antisymmetric C-H stretching modes and some overtones of the symmetric and antisymmetric CH^ deformation modes. The l a t t e r vibrations occur at 1484, 1463, 1453, 1433, and 1404 cm 1 i n the infrared spectrum and at 1514, 1447, 1432, and 1404 cm - 1 i n the Raman spectrum. An - 74 -analysis of these frequencies would be d i f f i c u l t . The \J as (PNP) vibrations give r i s e to three strong and poorly resolved peaks i n the region 1280-1323 cm 1 (the peaks are at 1280, 1290, and 1323 cm ^ ) . Below th i s region the following assign-ments seem l i k e l y : 1198 cm \ antisymmetric CN stretching; 1143, 1071, 1063 cm - 1, CH 3 rocking; 993, 972 cm - 1, antisym-metric PNC2 stretching. Assignments below 972 cm 1 are d i f -f i c u l t and not very r e l i a b l e . Some information can be obtained by comparison with the spectra of dimethylamino-phosphonitrilic derivatives of d i f f e r e n t r i n g s i z e . Peaks at 493, 518, 652, and 720/711 cm 1 appear to be c h a r a c t e r i s t i c of the substituent whereas the peak at 893 cm 1 i s variable. The l a t t e r band i s therefore assigned to a r i n g breathing vib r a t i o n . The a n t i -symmetric PN2 stretching v i b r a t i o n could give r i s e to the peak -1 -1 -1 at 783 cm . The peaks at 720 cm and 711 cm are assigned to the symmetric PNC2 and P-N stretching vibrations. However th i s l a s t assignment i s questionable, since Chittenden and Thomas "'"^^ have found that peaks corresponding to the V (PN) stretching v i b r a t i o n should appear i n the 873-1053 cm 1 range. The broad weak peak at 290 cm 1 i s assigned to the CH^ twisting v i b r a t i o n . Other assignments may be possible in the future by further comparisons with the spectra of dimethylamino-phosphonitrilic derivatives of d i f f e r e n t r i n g size (n = 3,4,5,7,8,9). The infrared spectra of a l l the complexes above 400 cm 1 are very c l o s e l y similar, as seen i n Figure 16. For the metal n i t r a t e complexes additional peaks are found at 1344 and 831 - 75 -cm ~, and they have been assigned to n i t r a t e ion vibrations. For the HPND-2CoCl 2-CHCl 3 compound additional peaks are present at 1222 and 760 cm 1 . They are assigned to CHCl^ vibrations. Other than these differences the spectra are very s i m i l a r , and thus the predominant features of the infrared spectra are a r e s u l t of the ligand vibrations. The spectra of the com-plexes are not c l o s e l y s i m i l a r to the spectrum of the ligand, however, suggesting that the geometry of the ligand i s altered upon complexation. There i s not much change i n bands assigned to the y s (CH.,), V/ (CHO, $ (CH ), and £ (CH-,) vibrations on com-•j c l S 3 S 3 c lS O plexation. i n the y (PNP) region the three peaks s h i f t to as lower frequency, by ca. 30-35 cm \ and are usually better resolved i n the spectra of the complexes. This strongly sug-gests that the r i n g P-N bonds are weakened on complexation. The peak at 1198 cm 1 i n the spectrum of the uncoordinated ligand, assigned to the antisymmetric C-N stretching v i b r a t i o n , i s s p l i t into two peaks at 1193 and 1173 cm 1 i n the spectra of the complexes. The peak at 1143 cm-"'", assigned to CH^ rocking, i s much stronger i n the spectra of the complexes and often has d i s t i n c t shoulders. The doublet at 1071, 1063 cm 1 i s replaced by a single peak of approximately the same int e n s i t y and frequency. Peaks at 993/972 cm 1, assigned to the antisymmetric NC 2 stretching vibrations, are not as well resolved i n the spectra of the complexes as they are i n the spectrum of the uncoordinated ligand, but they occur at about the same frequencies. - 76 -Below 970 cm """ the spectra of the complexes are consid-erably d i f f e r e n t from.that of the uncomplexed ligand. The number of bands i s larger, and the peaks are grouped together into d i s t i n c t regions. Groups of peaks of medium i n t e n s i t y occur i n the regions 725-860 cm 1 and 500-600 cm \ with weak peaks occurring i n the 400-500 cm 1 range. The complex pat-terns of peaks i n these regions are s i m i l a r both i n frequency and i n t e n s i t y i n the spectra of a l l the complexes. The peak at 8 93 cm \ assigned to a r i n g breathing vibration, i s sh i f t e d to 855-860 cm 1 i n the spectra of the complexes. The peak at 783 cm 1 i s replaced by two peaks at 794 and 770 cm - 1. Other changes also occur at lower frequency. The infrared spectra are thus a r e s u l t of ligand v i b r a -tions, and the following conclusions can be drawn: 1) the geometry of the phosphonitrilic ligand i s s i m i l a r i n a l l the complexes 2) there i s a change i n the geometry of the ligand on complexation, the increased number of peaks suggesting that the symmetry of the ligand i s lowered 3) the rin g P-N bonds are weakened on complexation. II . D. The Molecular Structures of the Cations i n ( C o ( N 6 P 6 ( N M e 2 ) 1 2 ) C l + ) 2 ( C o 2 C l 6 2 " ) - 2 C H C l 3 and (Cu(N 6P 6 (NMe2) 1 2 ) C 1 + ) (CuCl 2~) X-ray c r y s t a l structure analyses of the above compounds 52 53 have been reported, ' and because of t h e i r relevance to the experimental results presented and discussed i n th i s chap-ter some aspects of t h e i r molecular structures w i l l be b r i e f l y - 77 -discussed. The coordination geometries about the metal i n the cations of both compounds are very s i m i l a r . The structure of the co-b a l t complex i s shown in Figure 17. In both complexes the phosphonitrilic ligand i s donating to the metal through four r i n g nitrogen atoms to form two four-membered rings and two six-membered rings. The cations i n both compounds have 0.^ sym-metry ( c r y s t a l l o g r a p h i c a l l y required i n the copper complex). Bond angles and bond lengths involving the metal atom are given i n Table XIII (the numbering of the atoms i s given i n Figure 17). The coordination geometry about the metal atom can best be described as that of a d i s t o r t e d t r i g o n a l bipyramid, with the chlorine atom i n an equatorial position, since the equa-t o n a l angles are very nearly 120 . The a x i a l bonds are bent back decreasing the angle between them to 162° (instead of 180° i f the coordination geometry were t r i g o n a l bipyramidal). i n addition, the a x i a l ligand atoms are displaced to opposite sides of a plane perpendicular to the equatorial plane and b i -secting the N-M-N equatorial angle, so that the N . ,-M-a x i a i N . . , angles between a given a x i a l nitrogen atom and the two equatorial nitrogen atoms are not equal (their average values are 71 and 100°). Thus the symmetry about the metal atom i n the coordination sphere i s only C^, and not C^v* This type of d i s t o r t i o n from t r i g o n a l bipyramidal geometry d i f f e r s from that found i n complexes formed with tetradentate tripod type ligands such as IS^Cf^CE^Niy^) 3, i n which the f i f t h ligand (Cl,Br,N0 7, etc.) occupies an a x i a l p o sition and a l l the -J CO + 2-Figure 17.. The structure of (Co(HPND)Cl ) 2 ^ c ° 2 C l 6 ) * 2 C H C l 3 - Only atoms i n the lower h a l f of the unit c e l l are shown. C l ( l ) i s d i r e c t l y below Co(l) (after 52 Harrison and Trotter ). - 79 -Table XIII Geometrical Parameters Involving the Metal Atom in the (Co (HPND) C l + ) 2 ( C o ^ l g 2 - ) • 2CHCl 3 and (Cu (HPND)Cl+) (CuCl 2~) Complexes Bond Angles N(l)-M-N(4) N(6) -M-N(3) Cl-M-N(6) Cl-M-N(3) Cl-M-N(l) Cl-M---N(4) N(l)-M-N(6) N (3)-M-N (4) N(l)-M-N(3) N(6) -M-N (4); (degrees) M = .Co 163.3(4) 120.3 (4) 119.3(3) 120.4(3) 99.0(3) 97.7(3) 70.9(4) 70.5(4) 100.1(3) 101.4(4) M = Co (C 2 average) 163.3(4) 120.3(4) 119.9 98.4 70.7 100.3 M == Cu 160.9(12) 120.5(11) 119.8 (5) 99.6 (6) 71.2 (7) 99.1(8) Bond Lengths (A) M = Co1 M-N(l) M-N(4) M-N(6) ' M-N(3) M-Cl '22262(9) 2.233(10) 2.051(10) 2.064 (10) 2.268(4) MC= Co ((C 2 average) 2.248 2.058 2.268 M = Cu 2.03(2) 2.11 (2) 2.28 (1) - 80 -equatorial ligands are pushed back giving r i s e to approximate C 3 v symmetry. A coordination geometry s i m i l a r to that found i n the HPND complexes i s found i n the compound Cg^^Al^Brj-OgSi^ 1^ 1 (donor set O^Br about the central aluminium atom with Br i n an equa-t o r i a l p o s i t i o n ) , i n which coordination also occurs by the I 1 formation of two four-membered rings (Al-0-Al-O) and two s i x -l —I membered rings (Al-O-Si-O-Si-O). In this compound the angles o i n the equatorial plane are 133, 113, and 114 , the a x i a l -a x i a l angle i s 158°, and the a x i a l oxygen-equatorial oxygen angles are 95, 93, 78, and 78°. The geometry of the phosphonitrilic r i n g i n the complexes can be seen i n Figures 17 and 18, and i t s conformation i n the 18 free ligand i s shown i n Figure 19. The geometries of the ligand in both complexes are i d e n t i c a l , but d i f f e r e n t from the geometry of the free ligand, the molecular symmetry being lowered from i n the free ligand to C 2 i n the complexes. In the free ligand the phosphonitrilic r i n g i s puckered, with dihedral angles of 17 and 97°. The conformation i s related to the tub conformation i n 8-membered rings. In the complexes the phosphonitrilic r i n g consists of two nearly planar seg-ments which meet at the N(1)...N(4) d i r e c t i o n (the angle between the two planar segments i s 129° in the copper complex) , . In addition to the change i n the conformation of the 12-membered phosphonitrilic r i n g there are changes i n the bond lengths and bond angles within the r i n g on complexation. There are two d i s t i n c t P-N bond lengths i n the r i n g . The P-N Figure 18. Geometry of the ph o s p h o n i t r i l i c r i n g i n the (Co(HPND)Cl +) 2(Co 2Cl 6 2~) • 2CHCl 3 and (Cu(HPND)Cl +)(CuCl 2~) complexes. The top values for the bond lengths and bond angles are for the Co complex, the bottom values are for the Cu complex. A C l atom i s d i r e c t l y below M. - 82 -- 83 -bonds involving nitrogen atoms which are coordinated to the metal are s i g n i f i c a n t l y longer than those involving nitrogen atoms which are not coordinated to the metal (Cu complex; 1.62 (2), 1.55 (2) A : Co complex; 1.618(6), 1.570(6) A ) . The mean r i n g P-N bond length i s larger i n the complexes (Cu complex, 1.597 A ; Co complex 1.602 A ; HPND, 1.563(10) A ) i n d i -cating a net weakening of the r i n g bonds on complexation. Coordination of the r i n g nitrogen atoms to the metal l o c a l i z e s t h e i r lone pair electrons thereby removing them from the TC system and weakening the P-N bonds meeting at these atoms. The increase i n the electr o n e g a t i v i t y of the adjacent phosphorus atoms which occurs as a consequence of the weakening of these P-N bonds i s compensated for by i n -creased donation from the exocyclic groups. This can be seen by comparing the appropriate geometrical parameters with those for the uncomplexed ligand. The mean exocyclic P-N bond lengths and the mean sum of angles about the exo-c y c l i c nitrogen atoms are: Cu complex, 1.655 A , 354°; Co complex, 1.648 A , 356°; HPND, 1.699(10) A , 353°. Increased exocyclic donation i s expected to be. greatest at P(l) and P(4) and t h i s i s indeed the case, since the exocyclic P-N bonds are s l i g h t l y shorter at these phosphorus atoms (Cu complex, mean value 1.63(1) A ; Co complex, mean value 1.637(5) A ) than at the other phosphorus atoms (Cu complex, mean value 1.67(1) A ; Co complex, mean value 1.652(5) A ) . Both the mean endocyclic angle at nitrogen and the mean endocyclic angle at phosphorus are decreased on complexation. (Cu complex; mean endocyclic P-N-P, 133.6°, mean endocyclic - 84 -N-P-N, 107.5°: Co complex; mean endocyclic P-N-P, 135.0°, mean endocyclic N-P-N, 109.4°: HPND; endocyclic P-N-P, 147.5(7)°, endocyclic N-P-N, 120.0(5)°). The endocyclic angles at P(l) and P(4) (Cu complex, 97.2(10)°; Co complex, mean value 100.9(5)°) are smaller than the endocyclic angles at the other phosphorus atoms (Cu complex, mean value 112.7°; Co complex, mean value 113.7°). Because of the bulky substituents on phosphorus s t e r i c e f f e c t s play an important role i n determining the geometries of the phosphonitrilic r i n g both i n the free ligand and i n the complexes, and i n determining the coordination geometry 18 about the metal atom. I t has been shown that both the large angle at the rin g nitrogen atoms and the conformation of the r i n g i n N^P^(NMe 2)^ 2 are due primarily to s t e r i c ef-53 f e c t s . I t has also been suggested that s t e r i c e f f e c ts play an important r o l e i n determining both the angle at P(l) and P(4) and the dis t o r t e d coordination geometry i n the complexes. I I . E. Conclusions The X-ray structure analyses of the cobalt and copper chloride complexes e s t a b l i s h that coordination of HPND to t r a n s i t i o n metals occurs by donation through four ring n i t r o -gen atoms to give five-coordinate complexes i n which the metal ion i s close to the centre of the phosphonitrilic r i n g . In the metal chloride complexes the coordination geometry i s that of a distorted t r i g o n a l bipyramid with C 2 symmetry. Conductivity measurements and electronic absorption - 85 -spectra indicate that a l l the metal n i t r a t e complexes are f i v e -coordinate, but do not indicate c l e a r l y the exact coordination geometry. The coordination geometry i n the metal n i t r a t e s need not be s i m i l a r to that found i n the metal chloride com-plexes, since the e l e c t r o n i c absorption spectra of the copper n i t r a t e complex indicate a change i n coordination geometry as Nog i s displaced by CH^CN. However, the electronic absorp-t i o n spectra of the (M(HPND)N03)N03 complexes are best i n t e r -preted i n terms of a t r i g o n a l bipyramidal geometry about the metal. Magnetic s u s c e p t i b i l i t y measurements indicate that the (M(HPND)N03)N03 (M = Mn,Co,Ni) complexes are of the high-spin type, and the observed magnetic moments are i n agreement with those found for other five-coordinate high-spin complexes. Numerous low-spin five-coordinate complexes of Co(II) and N i ( I l ) e x i s t , but these are usually with "soft" donor atoms 102 such as S, Se, P or As. However, xf the 7T systems of the ph o s p h o n i t r i l i c r i n g were involved to a s i g n i f i c a n t extent in the i n t e r a c t i o n with the metal i t i s not inconceivable that low-spin complexes could form, and the r e s u l t s are important i n t h i s regard. More information about the i n t e r a c t i o n of the metal with the ligand can be obtained from the e l e c t r o n i c absorption spectra. The spectra of the (M(HPND)N03)N03 (M = Co,Ni) complexes are s i m i l a r to those of five-coordinate complexes formed with the ligand Me^tren (tris(2-dimethylaminoethyl)-amine), a tetradentate amine ligand with no 7T - 86 -systems. Although c r y s t a l f i e l d parameters are not very accurate because of the distorted coordination geometry of the HPND complexes, the values obtained for Dq and B from the energy l e v e l diagrams calculated for D ^ symmetry are s i m i l a r to corresponding values obtained for the Me^tren complexes. The NgP^fNiy^)-^ H g a n d c a n thus be c l a s s i f i e d as a t y p i c a l weak f i e l d donor s i m i l a r i n i t s i n t e r a c t i o n with metal ions to macrocyclic amine ligands. The e l e c t r o n i c absorption spectrum of the copper n i t r a t e complex i n chloroform i s s i m i l a r to the spectra of t r i g o n a l bipyramidal five-coordinate Cu(Il) complexes, but the derived c r y s t a l f i e l d parameters are intermediate between those for 3_ the CuClj- ion and the (Cu (Me 6tren)X)X (X = Cl,N0 3) complexes, an unexpected r e s u l t . The spectrum i n a c e t o n i t r i l e i s more l i k e those of square pyramidal complexes. Presumably i n t h i s coordinating solvent CH^CN displaces the n i t r a t e ion giving a five-coordinate complex of d i f f e r e n t coordination geometry. This suggests that the coordination geometry i s influenced by the nature of the ligand occupying the f i f t h coordination position. Differences i n the infrared spectra of the complexes and the uncomplexed ligand indicate a substantial change i n ligand geometry on complexation. In addition to a weakening of the r i n g bonds there i s a lowering of the symmetry of the ligand on complexation. These conclusions are confirmed i n the c r y s t a l structure analyses of the two metal chloride complexes, which show an increase i n the average r i n g bond length and a - 87 -decrease in molecular symmetry compared with the free ligand. The s i m i l a r i t y of the infrared spectra of a l l the complexes suggest that there i s l i t t l e change in the geometry of the phosphonitrilic ligand when the f i f t h ligand i s changed (Cl to NO^ ) or when the metal atom i s changed. In order to gain more insight into the changes i n ligand geometry occurring when phosphonitrilic molecules are coordi-nated to t r a n s i t i o n metals or i n t e r a c t i n g with other groups, and i n p a r t i c u l a r the e f f e c t on the r i n g 7T systems, as re-f l e c t e d in the r i n g bond lengths, the c r y s t a l and molecular structures of some compounds containing phosphonitrilic rings have been undertaken as part of t h i s thesis and the results are discussed i n Chapter I I I . - 88 -CHAPTER III THE CRYSTAL AND MOLECULAR STRUCTURES OF (N 4P 4Me 9 +)(Cr(CO)gl"), ((NPMe 2) 5^ 2 2 +)(CuCl 4 2~)-B^O, AND N 4P 4(NMe 2)g-W(CO) 4 I I I . A. Introduction The c r y s t a l structure analyses of three compounds con-taining phosphonitrilic rings have been undertaken to gain further insight into the e l e c t r o n i c structure of t h i s class of compound. In a l l three compounds the phosphonitrilic ring i s perturbed b y bonding of the p h o s p h o n i t r i l i c molecule to other groups. In (N 4P 4Me g +)(Cr(CO) 5I~) the tetrameric phosphonitrilic r i n g i s perturbed by l o c a l i z a t i o n of the lone pair electrons on a r i n g nitrogen atom by bonding to a methyl group. In 2+ 2 -((NPMe0).-H~ ) (CuCl. )-H„0 the pentameric phosphonitrilic Z o Z 4 Z ring i s perturbed at two s i t e s by l o c a l i z a t i o n of lone pair electrons at two r i n g nitrogen atoms (by bonding to a proton). F i n a l l y i n N 4P 4(NMe 2) -W(CO)4 the tetrameric phosphonitrilic r i n g i s perturbed at two s i t e s , f i r s t by l o c a l i z a t i o n of the lone pair electrons at a r i n g nitrogen atom which i s donating to the tungsten atom, and second by an increase i n the ef-f e c t i v e electronegativity of an adjacent phosphorus atom re s u l t i n g from a decrease i n donation to t h i s phosphorus atom from an exocyclic nitrogen atom which i s competitively - 89 -donating to tungsten. The perturbations have an e f f e c t on the d i s t r i b u t i o n of 7T -electron density i n the phosphonitrilic ring, r e s u l t i n g i n bond length i n e q u a l i t i e s . The patterns of bond length v a r i a t i o n are explained i n terms of phosphonitrilic 7f -bonding theory using the results of simple Huckel M.O. calc u l a t i o n s . The molecular structure of the complex N^P^(NMe2)g*W(C0) demonstrates that complex formation of dimethylamino-phospho-n i t r i l e s with t r a n s i t i o n metals can occur by donation from both r i n g nitrogen atoms and exocyclic dimethylamino nitrogen atoms, and provides further evidence that dimethylamino-phosphonitriles act as simple amine type ligands by donation of nitrogen lone pair electrons to the metal without s i g n i f -icant back-donation into the n-levels of the ligand. - 90 -I I I . B. The Crys t a l and Molecular Structure of Nonamethyl-cyclotetraphosphonitrilium Pentacarbonyliodochromate-(0), ( N 4 P 4 M e g + ) ( c r ( C O ) 5 I ~ ) I I I . B. 1. Experimental Crystals of the compound are dark brown. Unfortunately the c r y s t a l s were of poor qua l i t y . Few had d i s t i n c t c r y s t a l faces and many were hollow. The c r y s t a l chosen for i n t e n s i t y measurement was a p l a t e - l i k e fragment with no c r y s t a l faces well developed and of approximate dimensions 0.14 X 0.11 X 0.06 mm. The c r y s t a l was sealed i n a glass c a p i l l a r y to prevent decomposition i n a i r . Cr y s t a l Data. - C 1 4 H 2 7 C r l N 4 0 5 P 4 , M = 634.19, T r i c l i n i c , a = 14.632(21), b = 10.364(10), c = 10.765 (9) A, oC = 89.65 (9), 0 = 106.98 (13), Y = 63.72 (7)°, U = 1382 A 3, D = 1.533 g-1 m -3 -3 cm ( f l o t a t i o n i n CCl 4/n-heptane), Z = 2, D c = 1.523 g cm , F(000) = 632. No systematically absent reflexions; Space group Pi from the d i s t r i b u t i o n of the normalized structure factors and the structure analysis. Mo-K^ radiation, X = 0.71069 A, fj. (Mo-K^ ) = 18.2 cm - 1. The space group and i n i t i a l u n i t - c e l l parameters were determined from precession and Weissenberg films. Accurate u n i t - c e l l parameters were obtained by least-squares r e f i n e -ment of s i n 0 values for 30 reflexions measured on a General E l e c t r i c XRD 6 diffractometer. Intensity data were c o l l e c t e d on a Datex-automated General E l e c t r i c XRD 6 diffractometer with a s c i n t i l l a t i o n - 91 -counter, Mo-K^ radiat i o n (zirconium f i l t e r and pulse-height analyser) and a 9-26 scan. The scan width in 2 6 was (1.80 + 0.86 tan 9 ) degrees, and 20 second background counts were taken on either side of every scan. A l l reflexions with 2 $ (Mo-K^ ) ^ 45.-.-were measured. A check r e f l e x i o n was monitored every 30 reflexions and i t s i n t e n s i t y varied only s l i g h t l y throughout the data c o l l e c t i o n . The i n t e n s i t y of th i s r e f l e x i o n was used to place the data on the same r e l a -t i v e scale. Lorentz and p o l a r i z a t i o n corrections were applied and the structure amplitudes derived. No corrections were made for absorption. Of 3377 independent reflexions measured, 2112 (62.5%) had i n t e n s i t i e s > 3cr (I) above background, 2 2 where tr (I) = S + B + (0.03S) with S = scan count and B = background count. These reflexions were c l a s s i f i e d as ob-served. I I I . B. 2. Structure Analysis The positions of the chromium and iodine atoms were obtained from a three-dimensional Patterson map. A structure factor c a l c u l a t i o n with B = 4.0 A 2 for both atoms gave R = 0.372. The positions of 4P, 4N, 40, and 5C atoms were ob-tained from an electron-density map, and with these atoms included R dropped to 0.216. A difference map gave the po s i -tions of the remaining 10 non-hydrogen atoms. One cycle of f u l l - m a t r i x least-squares refinement with chromium and iodine a. R = £ ||Fo| - lF c||/£|F o| - 92 -having anisotropic thermal parameters and a l l other atoms is o t r o p i c thermal parameters reduced R to 0.088. Three cycles of refinement with a l l atoms having anisotropic thermal pa-rameters and a weighting scheme added reduced R to 0.057. At t h i s point i t became apparent that the thermal parameters were quite large, corresponding to a large amount of aniso-tr o p i c thermal motion. In addition, the parameters for one atom, N(3), had not converged. The thermal parameters for this atom are p a r t i c u l a r l y large, corresponding to a r.m.s. amplitude of v i b r a t i o n of 0.6 A, so i t i s possible that there i s disorder i n the phosphonitrilic ring. However, an electron-density difference map based on the positions of a l l atoms except N(3) did not show evidence for disorder. A difference map based on the positions of a l l non-hydrogen atoms, i n -3 eluding N(3), showed peaks of up to only + 0.78 eA . Re-finement was continued, and convergence was reached a f t e r two additional cycles. On the l a s t two cycles of refinement methyl hydrogen atoms for C(2) - C(9) were included i n c a l -culated positions (staggered with respect to the other atoms bonded to the phosphorus atom) with B = 10.0 A , but the parameters for these atoms were not refined. On the l a s t cycles of refinement no parameter s h i f t was greater than 0.37O- . The f i n a l R value was 0.053 for 2112 observed ref l e x i o n s . The least squares refinement was based on the minimi-zation of /Lw(|F I - |F I ) 2 . The anisotropic thermal param-o c eters are U.. i n the expression - 93 -f = f Q exp(-2 7 r 2 (U i ; La* 2h 2 +'U 2 2b* 2k 2 + U 3 3 c * 2 l 2 + 2U 1 2a*b*hk + 2U 1 3a*c*hl + 2U 2 3 b * c * k l ) ) . The scattering factors, f , were obtained from reference 103 for a l l non-hydrogen atoms. For the hydrogen atoms the scattering factors of reference 104 were used. Correction for anomalous dispersion was included for Cr and I. By use of the weighting scheme: W = (A + B|F I + C|F | + D|F I ) 1 o o o' 2 approximately constant average values of w(|F o| - | F C I ) over ranges of |F Q| could be obtained. The c o e f f i c i e n t s A, B,C, and D were adjusted before each cycle, the values used i n the f i n a l cycle of refinement being 10.70, 0.495, 0.0061, and 0.00003 respectively. Unobserved reflexions were not included i n the refinement. F i n a l atomic positions and thermal parameters are given in Table XIV. Measured and calculated structure factors are l i s t e d i n Appendix I. II I . B. 3. Discussion The structure consists of a Cr(C0)^I~ anion and a + N 4 P 4 M e 9 cation. Bond lengths and angles are given i n Table XVy The anion i s shown i n Figure 20, the cation i n Figure 21, and a view of the unit c e l l contents i n Figure 24. The CrCco)^! anion does not show large deviations from C 4 v symmetry. Although there are some s i g n i f i c a n t deviations from C 4 v symmetry, these are always less than 2.8° i n the 90° angles and less than 5.0 i n the 180 angles. The close ap-proximation of the anion to C. symmetry gives evidence that - 94 -Table XIV a 4 F i n a l P o s i t i o n a l Parameters (Fractional X 10 ) and 2 2 Anisotropic Thermal Parameters (U^j, A X 10 ) with Standard Deviations i n Parentheses. Atom X Y z I 1356(1) 1177(1) -0012(1) Cr 3360(1) 0415(2) 1868(2) P ( D 1876 (3) 4463 (3) 6758 (3) P(2) 1546(2) 6994(3) 8118 (3) P(3) 2926(4) 7374(5) 6780(4) P(4) 2285 (3) - 5873 (4) 4727 (3) 0(1) 3707(11) -2588(15) 2703(14) 0(2) 2223 (8) 1612(13) 3867(10) 0(3) 3094(12) 3384(14) 1074(12) 0(4) 4339(9) -0809(15) -0247(12) 0(5) 5532(9) -0256(13) 3794(11) N(l) 1268(7) 5607(9) 7697 (8) N(2) 2597 (8) 6754(10) 7844(9) N(3) 2547(17) 7036(21) 5331(14) N(4) 1700 (8) 5216(11) 5388(9) C (1) 0362 (12) 5540(15) 8034(16) C (2) 3250 (12) 3355(15) 7733(14) C(3) 1265(14) 3285 (15) 6470(14) C (4) 1716(11) 7004(14) 9838(11) C (5) 0349(11) 8635 (14) 7260(14) C'(6) 2405(16) 9306(19) 6654(16) C (7) 4349(15) 6672(21) 7430(24) C (8) 1393(16) 6667 (25) 3096 (17) C(9) 3400(19) 4482(25) 4481(24) C(10) 3533(12) -1446(18) 2396(16) C ( l l ) 2655(10) 1129(15) 3112(13) C(12) 3162(13) 2307(19) 1339(13) C(13) 3976(11) -0321(16) 0549(15) C(14) 4697(12) -0013(14) 3077(14) a. In t h i s table, and throughout Chapter I I I , numbers i n parentheses are estimated standard deviations i n the least s i g n i f i c a n t d i g i t s . . ../continued Table XIV (continued) Atom U l l I 6.10(6) Cr 6.02(12) P(D 8.00(23) P(2) 6.05(20) P(3) 11.74(34) P(4) 9.37 (26) 0(1) 14.0(11) 0 (2) 9.2(7) 0(3) 19.2 (13) 0(4) 10.5 (9) 0(5) 6.4(7) N(l) 6.4(6) N(2) 8.0(7) N(3) 29.7 (22) N(4) 8.4(7) c ( l ) 9.4(11) C (2) 9.5 (11) C (3) 16.1(15) C (4) 9.5(10) C(5) 7.6(9) C(6) 17.9(18) C(7) 11.7(15) C (8) 15.4(17) C(9) 18.6 (21) C(10) 8.2(10) C ( l l ) 6.3.(8) C(12) 14.0(14) C(13) 7.3(10) C(14) 6.5 (9) U22 8.04(7) 6.07(13) 4.63 (18) 4.72(19) 11.57 (33) 8.55 (25) 9.3 (9) 15.9(11) 9.1(9) 19.5 (13) 14.5 (10) 5.0(6) 6.2 (7) 24.6(19) 7.4(7) 8.7 (10) 6.8(9) 6.8(9) 7.8(9) 5.8 (8) 10.7(13) 11.9(15) 22.3 (22) 14.1(18) 7.2(10) 9.1(10) 8.7(11) 9.6(11) 7.8(9) U33 6.87 (6) 5.34(11) 5.51(19) 5.04(17) 8.69(26) 5.33(19) 18.5 (13) 7.8 (7) 13.2(10) 12.4(9) 9.7(8) 6.3 (6) 6.9(6) 10.9(10) •5.-3 (6) 13. 2 (13) 9.3(10) 9.3(10) 5.2(7) 10. 2 (10) 10.5 (12) 23.7(24) 9.4(12) 19.9(21) 11.2 (12) 6.2(8) 6.1(9) 8.4(10) 7.5(9) U12 -2.38 (5) -2.51(10) -2.81(16) -2.09(15) -8.80(29) -5.82(22) -6.2(8) -4.6(7) -7.9(9) -7.5(9) -4.0(7) -2.7(5) --3.4(6) -23.9(19) -4.8(6) -5.2(9) -0.2 (8) -6.8(10) -3.1(8) -2.4(7) -10.1(13) -7.0 (12) -11.4(17) -6.9(16) --4.1(9) -2.8(7) -7.6(11) -3.9(8) -3.0(7) U13 1.60(4) 1.92(9) 3.44(16) 2.58(15) 6.38 (25) 4.04(18) 3.7(9) 4.4(6) 4.8(9) 6.8 (8) 1.1(6) 3.4(5) 3.3(6) 13.3(13) 2.5 (5) 8.0(10) 3.9(9) 7.8(10) 2.8(7) 3.0(8) 6.7(12) 11.4(16) 4.8(12) 13. 2 (18) 1.3(9) 1.8(7) 3.6(9) 3.0(8) 2.0 (8) U23 -1.78 (4) -0.98(9) -1.27(14) -1.29(14) -5.23(24) -2.61(17) 2.0(9) -3.2(7) -0.7(8) -8.5 (10) -2.7(7) -1.2(4) -1.9(5) -10.0(12) -1-4(5) -4.4(9) -0.3 (8) -2.6 (8) -1.6(7) 0.6(7) -2.9(10) -6.8(15) 3.0(13) -4.5(15) 0.8(9) -0.6 (7) -2.1(8) -3.3 (8) -0.4(7) - 96 -Table XV Bond Lengths (A) and Angles (Degrees) with Standard Deviations i n Parentheses 3 Cr-I 2.790 (2) Cr-C(10) C r - C ( l l ) Cr-C(12) Cr-C(13) Cr-C(14) 1.892(16) 1.884(15) 1. 908(17) 1.888(15) 1.859(15) mean c i s Cr-C 1.89-3 (11) C(10)-0(l) C (11)--0(2) C(12)-0(3) C (13)-0(4) C (14)-0(5) P(D N(l) P(2) N(2) P(3) N(3) P(4) N(4) -N(l) -P(2) -N(2) -P(3) -N(3) -P(4) -N(4) -P(D 1.120(16) 1.155 (14) 1.104(15) 1.142 (15) 1.152 (15) 1.681(9) 1.689 (9) 1.562(11) 1.596(11) 1.592(13) 1.516(13) 1.602(10) 1.560(10) mean C-0 1.135(22) N(l)-C(l) P(l) P(l) P(2) P (2) P(3) P(3) P(4) P(4) -C(2) -C(3) -C(4) -C(5) -C(6) -C(7) -C(8) -C(9) 1.502 (16) 1.781(15) 1.787(14) 1.796(12) 1.792(13) 1.788(17) 1.776 (20) 1.777(18) 1.728 (20) Corrected for thermal l i b r a t i o n 1.812(15) 1.812(14) 1.817(12) 1.814(13) 1.812(17) 1.817 (20) 1.835(19) 1.801(21) mean P-C 1.778(21) 1.815(10) a. For the mean values the number i n parenthesis i s the r.m.s. deviation from the mean. .../continued - 97 -Table XV (continued) I - C r -C(10) 91. 7 (4) C r - C ( 1 0 ) --0(1) 175. 1 ( 1 5 ) I - C r - c ( l i ) 8 8 . 8 (4) C r - C ( l l ) - -0(2) 177. 7 ( 1 3 ) I - C r -C(12) 87. 7 (5) C r - C (12)--0(3) 176. 8 ( 1 5 ) I - C r -C(13) 87. 2 (4) C r - C ( 1 3 ) --0(4) 177. 4 ( 1 4 ) I - C r -C(14) 177. 0 (4) C r - C ( 1 4 ) --0(5) 177. 7 ( 1 2 ) C ( 1 0 ) - C r - C ( 1 1 ) 8 8 . 5 (7) C ( 1 0 ) - C r - C ( 1 2 ) 179. 0 (7) P d ) - N ( i ; -P(2) 120. 9 ( 5 ) C ( 1 0 ) - C r - C ( 1 3 ) 8 9 . 9 (7) P(2 )-N(2] -P(3) 138. 3 ( 7 ) C ( 1 0 ) - C r - C ( 1 4 ) 91. 1 (6) P(3 )-N(3' -P(4) 136. 0 ( 1 0 ) C ( l l ) - C r - C ( 1 2 ) 90. 8 (6) P(4 )-N(4 1 >-P(D 138. 9 ( 7 ) C ( l l ) - C r - C ( 1 3 ) 175. 6 (6) C ( l l ) - C r - C ( 1 4 ) 92. 2 (6) N ( l ) - p ( r l - C ( 2 ) 107. 5 ( 6 ) C ( 1 2 ) - C r - C ( 1 3 ) 90. 8 (6) N ( l ) - p ( i )-C (3) 105. 1 ( 5 ) C ( 1 2 ) - C r - C ( 1 4 ) 89. 5 (6) N(4 ) - p ( r l - C (2) 115. 0 ( 6 ) C ( 1 3 ) - C r - C ( 1 4 ) 91. 9 (6) N(4 ) - p ( r )-C(3) 107. 4 ( 6 ) N(l )-P(2 )-C(4) 106. 9 ( 5 ) P ( D - N d ) - C ( l ) 120. 5 (8) N(l )-P(2 )-C (5) 106. 2 ( 6 ) P(2) - N ( l ) - C ( l ) 118. 1 (7) N(2 )-P(2' l - C ( 4 ) 110. 8 ( 6 ) N(2 )-P(2 l - C (5) 116. 1 ( 6 ) C ( 2 ) - P ( l ) - C ( 3 ) 106. 5 (8) N(2 )-P(3 l - C ( 6 ) 1 11. 3 ( 6 ) C ( 4 ) -P(2)-C(5) 106. 5 (6) N(2 )-P(3 l - C ( 7 ) 105. 9 ( 8 ) C ( 6 ) - P ( 3 ) - C ( 7 ) 104. 6 (9) N(3 )-P(3 l - C ( 6 ) 106. 9 ( 9 ) C ( 8 ) - P ( 4 ) - C ( 9 ) 102. 6 d l ) N(3 )-P(3' l - C ( 7 ) 112. 2 ( 1 0 ) N(3 )-P(4 l - C ( 8 ) 106. 7 ( 1 1 ) N(4) -Pd)-N(l) 114. 6 (5) N(3 )-P(4 l - C ( 9 ) 1 11. 1 ( 1 1 ) N(l) -P(2)-N(2) 109. 8 (5) N(4 )-P(4' l - C ( 8 ) 105. 6 ( 7 ) N ( 2 ) -P(3)-N(3) 115. 5 (6) N(4 )-P(4 1 l - C ( 9 ) 110. 3 ( 8 ) N ( 3 ) -P(4)-N(4) 118. 9 (6) Figure 20. General view of the Cr(C0) 5I ion. 25% p r o b a b i l i t y thermal e l l i p s o i d s are shown. C(8) Figure 21. General view of the N^P^Meg* ion. 50% p r o b a b i l i t y thermal e l l i p s o i d s are shown. - 100 -the observation of the carbonyl stretching mode i n the 41 i . r . spectrum i s probably due to coupling with the formally allowed A^ tr a n s i t i o n s , as described by Kettle and Paul (ref-erence ,105), which does not depend upon a reduction of sym-metry of the equilibrium molecular geometry. The Cr-C bonds c i s to I, mean value 1.893(11) A, are longer than the trans Cr-C bond, 1.859(15) A, i n d i c a t i n g greater C r — • CO back donation into the trans bond. The average C-0 bond length i s 1.135(22) A. These bond lengths can be compared with those found i n chromium hexacarbonyl 1^ 6 (Cr-C 1.909(3) A, C-0 1.137(4) A) and i n the (C 6H 5) 3PCr(CO) (1) and 1 07 (C 6H 50) 3PCr(CO) 5(2) complexes ((1): mean c i s Cr-C 1.880(11), trans Cr-C 1.844(4), mean c i s C-0 1.147(5), trans C-0 1.154(5) A. (2): mean c i s Cr-C 1.896(6), trans Cr-C 1.861(4), mean c i s C-0 1.131(6), trans C-0 1.136(6) A). The shorter Cr-C length compared with that found i n chromium hexacarbonyl indicates greater o v e r a l l Cr-C TT-bonding, since I~ i s not as good a Tr-acceptor as CO. The phosphonitrilic cation i s dis t o r t e d from the usual, 5 tub and saddle conformations found for tetrameric phospho-n i t r i l i c d erivatives. The parent molecule, N^P^Meg,11 exists i n a near tub conformation, with four atoms above and four atoms below the mean plane through the r i n g atoms, the n i t r o -gen atoms showing larger deviations (0.54 A) from the mean plane than the phosphorus atoms (0.21 A ) . Thethe present structure f i v e atoms l i e below and three atoms l i e above the mean plane through a l l ri n g atoms (Table XVI). The - 101 -Table XVI a) Mean plane through the phosphonitrilic r i n g atoms. i) Equation of plane through P(1)N(1)P(2)N(2)P(3)N(3)P(4)N(4) -0.5919X + 0.5731Y - 0.5668Z = -2.1615 where X, Y, Z are orthogonal coordinates (A) w.r. to axes a, b', and c*. i i ) Distances of r i n g atoms from plane (A) (negative value considered to be above the plane, as in Figure 21). Atom P(D N(l) P(2) N(2) P(3) N(3) P(4) N(4) Distance -0.306(4) 0.24(1) 0.237 (3) -0.65(1) -0.462(5) 0.21(2) 0.311(4) 0.45(1) b) Dihedral angles (degrees) i n the phosphonitrilic ring Atoms P(1)N(1)-P(2)N(2) N(1)P(2)-N(2)P(3) P(2)N(2)-P(3)N(3) N(2)P(3)-N(3)P(4) P(3)N(3)-P(4)N(4) N(3)P(4)-N(4)P,(1) P(4)N(4)-P(1)N(1) N(4)P(1)-N(1)P(2) Dihedral Angle 15.0 (6) -103.8 (5) 65, 26, 2(9) 2(12) -36.0 (12) 55.3(9) -93.1(6) 58.1(6) - 102 -conformation can roughly be described as a distorted tub, derived from the tub conformation by twisting of the N(4)P(1) bond, N(4) being below instead of above the mean plane, and by bringing N(2) i n toward the centre of the rin g . The con-formation i s probably influenced by the necessity to minimize methyl-methyl contacts between the N-Me group and adjacent P-Me groups, while at the same time keeping the angle between CPC and l o c a l NPN planes close to 90° (these angles average o 88.2 in the present structure). Close contacts occur between C(l) and C(3), C(4), C(5) of 2.94, 3.23, and 3.30 A respec-t i v e l y . The contact'between C(l) and C(3) i s esp e c i a l l y short. Thus there i s a considerable amount of s t e r i c s t r a i n , and t h i s influences the conformation of the ri n g greatly. The disto r t e d r i n g conformation can also be seen from the dihedral angles i n the ri n g (Table XVI). There are many structures which deomonstrate the f l e x i -bxlxty of phosphonitrxlic rxngs. In the N^P^Me^ ion and in NgPg (NMe 2)"*-^- e conformation i s influenced primarily by 2+ 2— s t e r i c considerations. In ((NPMe„) CH 0 ) (CuCl„ )-H~0 the Z D 2 4 2 conformation of the ring i s influenced to a large extent by hydrogen bonding considerations (see Section I I I . C ) . In the structure ( N 4 P 4 M e g H + ) 2 ( C o C l 4 2 ~ ) 3 0 the two N 4P 4Me QH + ions i n the asymmetric unit are i n d i f f e r e n t conformations, one i n the saddle and one i n the tub conformation. F i n a l l y , the two si m i l a r molecules (NPC^)^ 1^ and ( N P B r ^ t - 1 ^ 8 have d i f f e r e n t conformations (see Section I I I . C ) , even though there are no 108 s t e r i c reasons for the difference. The p a r t i c u l a r confor-mation adopted by the phosphonitrilic r i n g evidently depends - 103 -o n a d e l i c a t e b a l a n c e o f a number o f i n t r a - a n d i n t e r m o l e c u l a r f a c t o r s , u n l e s s s t e r i c e f f e c t s o r h y d r o g e n b o n d i n g c o n s i d e r -a t i o n s p r e d o m i n a t e . I n t h e d u a l 71 - s y s t e m m o d e l f o r p h o s p h o -n i t r i l i c d e r i v a t i v e s t h e t o t a l 7T -bond o r d e r i n t h e P-N b o n d i s e x p e c t e d t o b e i n d e p e n d e n t o f d i h e d r a l a n g l e i f t h e ft a n d it s y s t e m s a r e o f e q u a l i m p o r t a n c e . O v e r l a p o f t h e n i t r o g e n 2p - o r b i t a l w i t h dft o r b i t a l s a t p h o s p h o r u s ( p r i n -Z c l c i p a l l y d ) i s p r o p o r t i o n a l t o c o s T , t h e d i h e d r a l a n g l e , w h e r e a s o v e r l a p o f t h e n i t r o g e n 2p - o r b i t a l w i t h d it o r b i t a l s z s 5 a t p h o s p h o r u s ( p r i n c i p a l l y d 2 2) i s p r o p o r t i o n a l t o s i n T , x — y s o t h a t a d e c r e a s e i n o v e r l a p w i t h d'TT' o r b i t a l s w o u l d b e c o m p e n s a t e d f o r b y a n i n c r e a s e i n o v e r l a p w i t h cl * f o r b i t a l s . The same c o n c l u s i o n s g i v e n a b o v e w o u l d a l s o a p p l y t o o v e r l a p 2 o f t h e n i t r o g e n 2 s p ( ft ) h y b r i d o r b i t a l ( c o n t a i n i n g t h e l o n e p a i r e l e c t r o n s ) w i t h t h e p h o s p h o r u s d 7 f - o r b i t a l s . T h e s e i n t e r p r e t a t i o n s a r e s u p p o r t e d b y t h e s t r u c t u r a l d a t a . Thus i n N g P & ( N M e 2 ) w h e r e t h e c o n f o r m a t i o n o f t h e r i n g i s i n f l u -e n c e d p r i m a r i l y b y s t e r i c e f f e c t s , t h e two i n d e p e n d e n t P-N b o n d s a r e e q u a l i n l e n g t h ( 1 . 5 6 3 ( 1 0 ) A ) , e v e n t h o u g h t h e i r d i h e d r a l a n g l e s a r e d i f f e r e n t (17 a n d 97°). I n N^P^Me^* t h e ft - s y s t e m i s r e m o v e d i n t h e P ( l ) - N ( l ) a n d P ( 2 ) - N ( l ) b o n d s b y l o c a l i z a t i o n o f t h e l o n e p a i r e l e c t r o n s a t N ( l ) , and o n l y t h e n i t r o g e n 2 p z - o r b i t a l i s a v a i l a b l e f o r T f - b o n d i n g . The two b o n d s , P ( l ) - N ( l ) a n d P ( 2 ) - N ( l ) , a r e f o u n d t o b e e q u a l i n l e n g t h ( 1 . 6 8 5 ( 9 ) A) e v e n t h o u g h t h e i r d i h e d r a l a n g l e s a r e d i f f e r e n t ( 5 8 . 1 a n d 15.0°). Thus t h e c o n f o r m a t i o n a d o p t e d b y a p h o s p h o n i t r i l i c r i n g c a n b e i n f l u e n c e d t o a l a r g e e x t e n t b y s t e r i c e f f e c t s ( i n c l u d i n g c r y s t a l p a c k i n g c o n s i d e r a t i o n s ) - 104 -without serious loss of rt-delocalization energy or t o t a l rf-bond order i n the i n d i v i d u a l P-N bonds (in contrast to organic aromatic systems). The bond lengths i n the phosphonitrilic r i n g are not equal, as they are i n N^P^Me^ (mean value 1.596(5) A), but show the same q u a l i t a t i v e pattern of long and short bonds alternating i n pairs from N(l) as found i n the protonated molecule. The mean values of chemically equivalent bonds from N(l) are: 1.685(9), 1.561(10), 1.599(10), and 1.55(4) A , and can be compared with the corresponding values found i n N 4 P 4 M e 8 H l o n s i n the structure (N 4P 4Me QH) 2(CoCl 4) (values are average of four chemically equivalent bonds): 1.695, 1.538, 1.614, 1.582 A . (CT= 0.015 A ) . Bonding of a r i n g nitrogen atom to a methyl group or a proton r e s u l t s i n l o c a l i z a t i o n of the lone pair electrons on the nitrogen atom, thus removing the yT s-system in the P-N bonds meeting at t h i s nitrogen atom. The Tr'g-electron d i s -t r i b u t i o n i n the rest of the phosphonitrilic r i n g would also be affected, whereas the e f f e c t on the rf -system would be cl much less. The rf s<ohond orders i n the remaining N^P4 frag-ment have been calculated by H.M.O. methods for the following simple assumptions: 1) .the rf -system i s not affected, 2) cl the TTg-bond order i n the bonds meeting at the nitrogen atom bonded to the methyl group (or to a proton) i s zero, 3) ft i s the difference of e l e c t r o n e g a t i v i t y between the phosphorus and nitrogen o r b i t a l s , i . e . , pc^  = <tfp + |3 , and 4) the N^P4 fragment has C0 symmetry. The results of the c a l c u l a t i o n are - 105 -shown i n Figure 22 i n comparison with the successive observed bond lengths i n the N^ P^ MegH"1" ion and i n Figure 23 i n com-parison with the successive observed bond lengths i n the N 4 P 4 M e 9 + l o n - assumption that only one vY-system i s af-fected to a major extent i s supported by a consideration of the lengths of the bonds from the nitrogen atom bonded to the methyl group or to the proton (mean values 1.685(9) and 1.695(15) A r e s p e c t i v e l y ) . These lengths are about midway between the single P-N bond length, 1.77 A, and the bond length i n the parent molecule, N^P^Meg, 1.596(5) A. The bonds are comparable i n length to the P-N bond length i n the meta-109 phosphimate and oxophosphazane structures Na^(NHPC^)3•4H20, 1.68(1) A, (NH) 4P 40gH 4-2H 20, 1 1 0 1.66(1) A, and N 3Me 3P 30 3(OMe) 3, XXX 1.66(2) A, where only a single ^-system can exist, and to the exocyclic P-N bond length i n dimethylamino-phosphonitriles ( (NP(NMe2) ) : n = 3, 1.652(4), n = 4, 1.678(10), n = 6, 1.669(10) A ) . Unfortunately the mean value of bonds meeting + at N(3) i n N 4P 4Me g i s unreliable because of the large d i f -ference i n the length of the two chemically equivalent bonds (0.076 A, 6 0") (probably a r e s u l t of not being able to locate N(3) accurately; see Section III.B.2.). Taking t h i s into consideration Figures 22 and 23 show that the q u a l i t a t i v e v a r i a t i o n of the three more remote bonds i s described s a t i s -f a c t o r i l y by the t h e o r e t i c a l treatment for both the N.P.Me-^ and N 4P 4Meg + ions. In fact, the q u a l i t a t i v e agreement i n pat-tern provides additional experimental evidence i n favour of the bonding theory involving f u l l c y c l i c d e l o c a l i z a t i o n of TT-electron density, since the "island" model (Chapter I) - 106 -(a) Orders of successive symmetrically related pairs of bonds, calculated for a protonated N 4 P 4 rin<?-(b) D e f i c i t of successive bond lengths from 1.695 A + 2 — i n the cations of (N„P.Me-H )_(CoCl. ). - 107 -T 2 BOND r0.16 \-0.08 L-0 (a) Orders of successive symmetrically related pairs of bonds, calculated for a protonated N 4P 4 ring. (b) D e f i c i t of successive bond lengths from 1.685 A in the N 4P 4Me g ion. - 108 -would predict a d i f f e r e n t pattern of bond length v a r i a t i o n . 0 The angles at N(l) (120.9, 120.5, 118.1°; sum 359.5°) indicate that the P(1)N(1) (C(1))P(2) group i s nearly planar 2 and that N(l) i s sp hybridized. The sum of the covalent 2 3 r a d i i of sp hybridized nitrogen (~ 0.70 A) and sp hybridized carbon (0.77 A) i s 1.47 A, i n d i c a t i n g that the N(l)-C(l) bond i s perhaps s l i g h t l y longer (^0.03 A, 2<y) than expected. The mean P-C bond length i s 1.778(21) A (1.815(10) A a f t e r correction for thermal l i b r a t i o n using a r i d i n g model). This value can be compared with the P-C bond length found in N 4P 4Me g, 1.805(4) A. The endocyclic angles at N(2), N(3), and N(4), mean 137.7°, are s l i g h t l y larger than the P-N-P angle i n N 4P 4Me g, 132.0°, whereas the angle at N(l) i s much smaller, 120.9°. The small endocyclic angle at N(l) i s consistent with less electron density i n the P-N bonds meeting at t h i s atom and hence weaker inter-bond repulsions. A small endocyclic angle at nitrogen i s also found i n structures of tetrameric phospho-n i t r i l i c derivatives when the nitrogen atom i s protonated (as 49 i n (N 4P 4Me 8H) 2 (CoCl 4) and (N^MegH) CuCl 3 ) or donating to a t r a n s i t i o n metal (as i n (N 4P 4Me QH)CuCl 3 and N 4P 4(NMe 2)g-W(C0) 4). The average N-P-N angle i s 114.7°, smaller than found for N AP AMe p (119.8°). The corresponding value i n the N^P^Me^ b. In the "island" model, the influence of the perturbation would be expected to extend no further than the nearest phosphorus atoms. As a second order e f f e c t , the increased electronegativity of these atoms might cause the second bond to be short, followed by a further steady increase i n the lengths of the t h i r d and fourth bonds. - 109 -ion i s 115.5". N.m.r. data indicate that there i s a donor-acceptor i n t e r a c t i o n between the anion and cation i n solution, s i m i l a r to the in t e r a c t i o n of I with N 4P 4Me g +, the Cr(C0) 5I~ ion - 41 being a better donor than I . Charge transfer donor-acceptor complexes generally have short i n t e r i o n i c contacts i n the c r y s t a l , with s p e c i f i c s p a t i a l o r i e n t a t i o n rather than d i s -112 t o r t i o n of anion or cation. I t i s thus s u r p r i s i n g that the i n t e r i o n i c contacts between anion and cation i n the present structure are of the normal van der Waals type, with no close approach of the iodine atom to the r i n g jf systems (although the methyl groups on the phosphorus atoms may pre-vent the anion from getting close to the r i n g ) . The orien-t a t i o n of anion and cation i n the unit c e l l i s shown i n Figure 24. The c l o s e s t I*--Me i n t e r i o n i c contacts are 4.13 A between C(4) of the cation at x,y,z (the lower anion and the lower cation of Figure 24 are at x,y,z) and I of the anion at x, 1 + y, 1 + z, 4.10 A between I of the anion at x,y,z and C(4) of the cation at -x, 1 - y, 1 - z, and 4.04 A between I of the anion at x,y,z and C(8) of the cation at -x, 1 - y, -z (for l---Me the sum of the van der Waals r a d i i i s 4.15 A ) . The c l o s e s t I---P and I---N distances are 4.72 and 4.98 A respectively (sum of van der Waals r a d i i are 4.05 and 3.65 A respectively) from P(2) and N(2) of the cation at x,y,z to I of the anion at x, 1 + y, 1 + z. There i s thus no ind i c a t i o n in the c r y s t a l structure of an inte r a c t i o n between the anion and cation. This i n t e r a c t i o n may take place only i n solution. Figure 24. View of the unit c e l l contents. - I l l -The other intermolecular contacts are also of the van der Waals type. The shortest 0---C (methyl) contact i s 3.40 A (C(4) at x,y,z to 0(3) at x,y, 1 + z) and the shortest methyl* •-methyl contacts are 3.68 and 3.71 A*. - 112 -I I I . C. The Cr y s t a l and Molecular Structure of ( (NPMe 2) 5H 2 2 +) (CuCl 4 2") -H20 I I I . C. 1. Experimental Crystals of ((NPMe 2) 5H 2)(CuCl 4)•H 20 were grown from a c e t o n i t r i l e . The orange c r y s t a l s were of varying shape with a large number of exposed c r y s t a l faces. The c r y s t a l used for i n t e n s i t y measurements had dimensions 0.3 X 0.3 X 0.2 5 5 mm. Cry s t a l data. - C 1 0H 3 4Cl 4CuN 5OP 5, M = 600.64, T r i c l i n i c , a = 9.034(6), b = 14.390(8), c = 10.924(8) A, <?C= 91.66(7), p - 96.52(9), y = 109.77(5)°, U = 1324.3 A 3 , = 1.504 g-—3 —3 cinJ ( f l o t a t i o n i n CCl 4/n-heptane) , Z = 2, D c = 1.506 g cm , F (000) = 622. No systematically absent reflexions. Space group P i from the d i s t r i b u t i o n of the normalized structure factors and the structure analysis. Mo-Ka radiation, ^ = 0.71069 A, yU (Mo-K^ ) = 15.7 cm"1. Unit c e l l parameters were obtained by least-squares re-finement of s i n G values for 30 reflexions measured on a G.E. XRD 6 diffractometer. The i n t e n s i t i e s of the reflexions were measured by d i f -fractometer methods as described i n Section I I I . B . 1 . for ( N 4 P 4 M e 9 + ) ( C r ( C O ) ^ I - ) . No corrections were made for absorp-ti o n . Of 3462 independent reflexions measured, 2707 (78.2%) had i n t e n s i t i e s > 3 C7"(l) above background. These reflexions were c l a s s i f i e d as observed. - 113 -I I I . C. 2. Structure Analysis The structure was solved by a combination of d i r e c t methods and electron density maps. The d i s t r i b u t i o n of normalized structure factors |E| i s compared with the theo-113 r e t i c a l values for centrosymmetric and non-centrosymmetrxc structures i n Table XVII. The centrosymmetric space group P i i s shown to be highly probable. For the 261 reflexions for which |E| > 1.83 a l l t r i p l e t s of reflexions to be used i n the ^ - r e l a t i o n s h i p , S ( E h k l ) ~ X l h . k . i . S ( Eh' k' 1' ) " S ( Eh-h' , -,,), were calculated. The o r i g i n determining r e f l e x -ions and reflexions to which a symbolic sign was given are 114 l i s t e d i n Table XVIII. With a computer program which uses 115 the symbolic addition method i t was possible to give prob-able signs to a l l 261 reflexions for which |E| > 1.83 (a = b = -; c = +). An E map was calculated using these signed r e f l e x i o n s . The copper, four chlorine, and f i v e phosphorus atoms accounted for the ten.largest peaks on the map. A structure factor c a l c u l a t i o n based on the positions of these 10 atoms gave R = 0.304. One cycle of f u l l - m a t r i x least-squares refinement of the p o s i t i o n a l and i s o t r o p i c thermal parameters of these atoms reduced R to 0.278. I n i -2 . . t i a l l y B was set at 3.5 A for a l l atoms. The positions of the 16 remaining non-hydrogen atoms were obtained from a three-dimensional difference map. Although the elemental analysis agreed with the presence of one water molecule of c r y s t a l l i z a t i o n , and there was peak on the difference map i n a reasonable p o s i t i o n to account for the oxygen atom, the - 114 -Table XVII D i s t r i b u t i o n of the Normalized Structure Factors Observed Theoretical Centrosymmetric Noncentrosymmetric < I E 1 2 > 0.804 0.798 0.886 <|E 2-1|> 1.026 1.000 1.000 <|E|> 0.980 , 0.968 0.736 IE I > 1 0.19% 0.3% 0 . 0 1 % IE I > 2 4 . 8 8 % 5.0% 1.8% I E | > 3 3 2 . 6 1 % 3 2 . 0 % 3 7 . 0 % - 115 -Table XVTII Star t i n g Set for Phase Determination Reflexion |E| Sign 6 3 0 3.555 + 3 2 7 2.977 + £ o r i g i n determining 2 7 9 3.061 + 4 2 6 2.955 a 0 10 0 . 3.544 b 1 2 8 2.799 c - 116 -oxygen atom was not included at t h i s stage. With the nitrogen and carbon atoms included R was 0.160. Two cycles of i s o -t r o p i c refinement reduced R to 0.146. A difference map con-firmed the presence of the oxygen atom and showed that only one water molecule of c r y s t a l l i z a t i o n was present. Refine-ment was continued, i n i t i a l l y with the copper, chlorine, and phosphorus atoms having anisotropic thermal parameters,, and f i n a l l y with a l l atoms being refined a n i s o t r o p i c a l l y . Con-vergence was reached at R 0.072 for 2707 observed reflexions. On the f i n a l cycle of refinement no parameter s h i f t was greater than 0.3 0". In the l a s t cycles of refinement approximately constant 2 average values of W ( | F q | - I F c I ) over ranges of |FQ| could be obtained by using the weighting scheme: \pw = 1.0 when IF I ^ 24.0 and \fw = 24.0/|F I when |F I > 24.0. The scat-1 o o o teri n g factors for a l l atoms were obtained from reference 103. Correction' for anomalous dispersion was included for copper. Unobserved reflexions were given a weight of zero. A f i n a l difference map showed a peak of 1.7 eA close to the copper atom and peaks of up to + 1.0 eA elsewhere. Hydrogen atoms could not be located with certainty and were not included i n the least-squares refinement. F i n a l atomic positions and thermal parameters are given in Table XIX. Measured and calculated structure factors are l i s t e d i n Appendix I I . I I I . C. 3. Discussion 2-The structure consists of a CuCl„ anion, a - 117 -Table XIX 4 Fxnal Posxtxonal Parameters (Fractional X 10 ) and 2 2 Anisotropic Thermal Parameters (U.., A X 10 ) with xj Standard Deviations i n Parentheses Atom X Y z Cu 2763(1) 2391(1) 3510(1) C l ( l ) 1663 (3) 3516(2) 4070(2) Cl(2) 4680 (3) 3383 (2) 2512(3) Cl(3) 0540(3) 1051(2) 2894(2) Cl(4) 4125(3) 1585(2) 4569 (3) 0 5493(10) 5668 (6) 3558(8) P(D 3229(3) 9409(1) 1544 (2) P(2) 1031(3) 8381 (2) 3358(2) P(3) 1500 (3) 6424 (2) 3186(2) P(4) 3125 (3) 6260(2) 0996 (2) P(5) 1786(2) 7609(2) -0206(2) N(l) 1711(9) 9240 (5) 2380 (6) N(2.): 1227(11) 7422(6) 2883(7) N(3) 2987 (9) 6300 (6) 2509(6) N(4) 1816(8) 6558(5) 0229(6) N(5) 3070(8) 8560(5) 0579(7) c ( l ) 3301(14) 0539 (7) 0845(10) C(2) 5043(12) 9638(9) 2586(10) C(3) 2045(12) 8849 (8) 4884(8) C(4) -0990((11) 8300 (8) 3349(10) C(5) 2047(12) 6292(7) 4780 (8) C(6) -0281(12) 53 94 (8) 2633(10) C(7) 2845 (15) 4989 (8) 0522(10) C(8) 5173(11) 6983 (8) 0898(10) C(9) -0216(10) 7800(7) -0212 (8) C(10) 2161(11) 7698(7) -1785(8) .../continued Table XIX (continued) Atom U l l U22 U33 Cu 5:08 (7) 4. 16 (7) 5. 01 (7) C l ( l ) 5. 20(14) 4. 04 (13) 7. 16 (17) Cl(2) 6.72 (17) 6. 27 (17) 6. 72 (17) Cl(3) 5.16(14) 3. 97 (13) 7. 29 (17) Cl(4) 5.74(16) 5. 61 (16) 9. 08 (20) 0 8.69 (59) 6. 38 (51) 9. 20 (59) P(D 3.63 (12) 2. 44 (11) 3. 55 (12) P(2) 3.97 (13) 3. 11 (12) 3. 35 (12) P(3) 4.15 (13.) 2. 56 (11) 3. 60 (12) P(4) 4.44(13) 3. 06 (12) 3. 35 (12) P(5) 3.58 (12) 2; 71 (11) 3. 07 (11) N(l) 5.41(45) 3. 07 (38) 4. 32 (40) N(2) 9.45 (65) 4. 40 (47) 4. 03 (43) N(3) 4.80(44) 5. 07 (45) 3. 67 (39) N(4) 4.75 (42) 2. 96 (38) 3. 97 (39) N(5) 4.02(41) 3. 08 (39) 4. 95 (43) C(l) 10.12(86) 3. 15 (52) 7. 19 (69) C(2) 4.76 (60) 8. 72 (83) 5. 55 (64) C(3) 6.45(64) 6. 38 f65) 3. 05 (48) C(4) 3.53 (53) 7. 93 (76) 7. 24 (68) C(5) 6..09 (61) 6. 06 (62) 3. 67 (50) C(6) 5.50(64) 4. 75 (61) 6. 70 (67) C(7) 9.39(86) 5. 34 (66)' 6. 29 (67) C(8) 3.44(52) 6. 86 (68) 7. 38 (70) C(9) 3.26 (48) 5. 14 (56) 5. 42 (56) C(10) 5.64 (57) 4. 73 (54) 3. 36 (47) 2.54 (5) 1.07 (5) 1.30 (5) 2.60 (11) 0.65 (12) 0.18 (12) 2. 92 (14) 3.03 (14), 2.38 (13) 22.49 (11) -1.21 (12) 1. 10', (12) 2.90 (13) -0.12 (14) 2.68 (14) 3.48 (45) -2. 23 (46) 1.10 (43) 0.77 (9) 1.19 (9) 0. 79 (9) 1.50 (10) 1.29 (9) 1.43 (9) 1.34 (10) 0.69 (9) 1. 25 (9) 1.75 (10) 0.18 (10) 0.64 (9) 1.20 (9) 0.34 (9) 0.78 (9) 2.27 (34) 2.35 (34) 2.17 (32) 3.53 (46) 1.60 (42) 1. 96 (36) 2. 22 (36) -1.04 (33) 1. 24 (34) 1.48 (33) -0.48 (32) 0.32 (31) 0.84 (32) 1.25 (33) 0. 24 (32) 2.51 (54) 5.07 (63) 3.19 (49) 1.45 (57) -0.35 (49) -0.63 (58) 2.32 (52) 0.35 (43) 0.42 (43) 1.97 (51) 1.69 (48) 3.41 (58) 2.72 (51) 0.196 (44) 2. 20 (44) -0.26, (50) 0.37 (51) 1.71 (52) 4.24 (62) -0. 93 (59) -0.63 (53) 1.76 (48) 1.47 (47) 2.42 (55) 1.74 (42) 0.95 (41) 1.69 (45) 2. 29 (46) 0.69 (41) 0. 95 (40) - 119 -2+ ( (NPMe,,) j-H2) cation, and a water molecule of c r y s t a l l i z a t i o n . Bond lengths and angles are given i n Table XX and a general view of the structure i s shown i n Figure 25. The hydrogen atoms bonded to N(l) and N(3) could not be located, but th e i r presence i s confirmed by bond length variations i n the ri n g and by the presence of l i k e l y N-H---C1 and N-H---0 hydrogen bonds (see below). In addition there appear to be 0-H---C1 2_ hydrogen bonds between the water molecule and the CuCl^ anion (see below). The conformation of the ten-membered phosphonitrilic r i n g can be seen i n Figure 25. Although the structure of (NPMe2),- has not yet been investigated the structures of two other pentameric phosphonitrilic derivatives, (NPCl2),- and (NPBr 2) 5, have been reported. In (NPC1 2 ) 5 1 6 the ri n g i s nearly planar with two re-entrant angles at nitrogen and 108 approximate C 2 v symmetry. In (NPBr 2) 5, however, a d i f -ferent conformation i s found, with one phosphorus atom de-vi a t i n g by 0.75 A from the mean plane through the remaining nine atoms. There i s one re-entrant angle at nitrogen, and a pseudo-mirror plane normal to the N^P^ r i n g passing through t h i s nitrogen atom and the opposite phosphorus atom. The 2+ conformation found i n the ((NPMe 2)^H 2) ion resembles the conformation found i n (NPBr 2)^ rather than that found i n (NPCl 2) 5- However the pseudo-mirror plane found in (NPBr 2) 5 i s not present, probably because of di s t o r t i o n s of the ri n g so that N-H---0 and N-H---Cl hydrogen bonds can be formed (see below). Table XXI gives distances of ri n g atoms from a - 120 -Table XX Bond Lengths (A) and Angles (Degrees) with Standard Deviations i n Parentheses 3 Cu-Cl(l) 2. 270 (3) P(D -c ( i ) 1. 801(9) Cu-Cl(2) 2. 251(3) P(D -C (2) 1. 811(10) Cu-Cl (3) 2. 281(3) P (2) -C (3) 1. 800(9) Cu-Cl(4) 2. 218 (3) P(2) -C(4) 1. 788(9) P(3) -C (5) 1. 790(9) N(2)-P(2) 1. 533 (8) P(3) =C (6) 1. 807 (10) P(2)-N(l) 1. 661(6) P(4)-=C(7) 1. 812(11) N(l ) - P ( l ) 1. 687(7) P(4) -C (8) 1. 808(9) P(l)-N(5) 1. 548 (7) P(5) -C (9) 1. 803(9) N(5)-P(5) 1. 608 (7) P(5) -C(10) 1. 7,9.6 (9) Pf(5)-N(4) 1. 606(7) •-N(4)-P(4) 1. 557(7) mean P-C 1. 802 (8) P(4)-N(3) 1. 672 (7) N(3)-P(3) 1. 663 (8) C i . P(3)-N(2) 1. 574(8) Cl(l)-Cu-Cl(2) 98.6 (1) C ( l )=p(l) -N(l) 101.3 (4 Cl(l)-Cu-Cl(3) 100.6(1) C (2 )-p(l) -N (1) 109.0(4 Cl(l)-Cu-Cl(4) 133.2 (1) C ( l )-p(l) -N(5) 112.5 (4 Cl(2)-Cu-Cl(3) 133.7(1) C (2 )-p(l) =N(5) 108.3 (5 C l (2)-Cu-Cl (4) 99.9(1) C (3 )=-P (2) -N(l) 108.6 (4 Cl(3)-Cu-Cl(4) 96.8(1) C (3 )-P (2) •-N(2) 114.6 (5 C (4 )-P (2) •-N(l) 103.5 (4 P(l)-N(l)-P(2) 129.0 (4) C(4 )-P(2) -N(2) 113.9(5 P(2)-N(2)-P(3) 148.3(5) C(5 )-P(3) -N(2) 116.0 (4 P(3)-N(3)-P(4) 127'.-3 (5) C (5 )-P(3) -N(3) 103.4 (4 P(4)-N(4)-P(5) 131. 7 (5) C (6 )-P(3) -N(2) 109.3 (5 P(5)-N(5)-P(l) 142.4(5) C(6 )-P(3) -N(3) 108.5 (5 C(7 )-P(4) -N(3) 106.7 (5 N(5)-P(l)-N(l) 116.6(4) C(7 )-P(4) -N(4) 108.2 (4 N(l)-P(2)-N(2) 108.2(4) C (8 )-P(4) -N(3) 104.1(4 NX2)-P(3)-N(3) 111.3(4) C (8 )-P(4) -N (4) 117.9(4 N(3)-P(4)-N(4) 112.2(4) C (9 )-P(5) -N(4) 107.3 (4i N(4)-P(5)-N(5) 115.1(4) C (9 )-P(5) -N(5) 112.4(41 C (10)-P(5)-N(4) 108.6 (41 C(l)-P(l)-C(2) 108.8 (6) C (10)-P(5)-N(5) 107.3 (41 C (3)-P(2)-C (4) 107.4 (5) C(5)-P(3)-C(6) 108.0(5) C(7)-P(4)-C (8) 107.2 (6) C(9)-P(5)-C(10) 105.7 (4) mean C9P-C 10,7.4 (11) a. For the mean values the number i n parenthesis i s the r.m.s. deviation from the mean. C(10) F i g u r e 25. G e n e r a l v i e w o f t h e ( ( N P M e 2 ) 5 H 2 ) ( C u C l 4 )*H 20 s t r u c t u r e . 5 0 % p r o b a b i l i t y -t h e r m a l e l l i p s o i d s a r e shown. - 122 -Table XXI Mean Plane Through Four Phosphorus Atoms a) Equation of plane through P(l), P(2), P(3), P(4); 0.7177X + 0.2125Y + 0.6632Z = 2.3656 where X,Y,Z are orthogonal coordinates (A) with respect to axes a,b", and c*. b) Distances of ring atoms from the plane (A). Atom Distance P.d) -0.094(2) P(2) 0.157(2) P(3) -0.162(2) P (4) 0.115 (2) P(5) 1.802(2) N(l) 0.368(8) N(2) 0.261(9) N(3) -0.720 (8) N(4) 1.452(7) N(5) 0.547(8) - 123 -mean plane passing through P ( l ) , P(2), P(3), and P(4). N(l) i s displaced from the mean plane by 0.37 A while N(3) i s d i s -placed by 0.72 A i n the opposite d i r e c t i o n . This d i s t o r t i o n has further effects on the conformation of the r i n g . There appears to be twisting about P(4), so that N(4) i s displaced much more than N(5) from the mean plane. There i s one re-entrant angle at N(2), and the opposite phosphorus atom, P(5), i s displaced by 1.80 A from the mean plane through the other four phosphorus atoms. As mentioned i n Section III.B.3., phosphonitrilic rings are quite f l e x i b l e , and thus i t i s not 24 s u r p r i s i n g that the phosphonitrilic r i n g i n the ( (NPMe2) ,-H2) ion assumes an unusual conformation influenced to a large + + extent by N-H---0 and N-H---C1 hydrogen bonding. Protonation of l(NPMe 2) 5 causes appreciable changes i n the IX-electron d i s t r i b u t i o n i n the phosphonitrilic ring, r e s u l t i n g i n substantial i n e q u a l i t i e s i n the r i n g P-N bond lengths. The e f f e c t of protonation of a tetrameric phospho-n i t r i l i c d e rivative on the TT-electron density d i s t r i b u t i o n i n the r i n g has been discussed i n Section III.B.3. for one set of assumptions. I f a s i m i l a r c a l c u l a t i o n i s ca r r i e d out for protonation of a ten-membered phosphonitrilic ring at one s i t e , f o r the same assumptions, one finds that the v a r i a t i o n in bond order becomes very small i n the bonds most remote from the protonated atom, since the calculated bond order i s very close to the calculated bond order for the unprotonated r i n g . The r e s u l t s of the c a l c u l a t i o n are shown i n Figure 26. The difference i n bond order between the fourth and f i f t h - 124 -0.8 n I 0.4 J 0 -J T 1 1 1 2 3 4 5 BOND F i g u r e 26. O r d e r s o f s u c c e s s i v e s y m m e t r i c a l l y r e l a t e d p a i r s o f b o n d s , c a l c u l a t e d f o r a p r o t o n a t e d N^P^ r i n g . The s t r a i g h t l i n e i n d i c a t e s t h e c a l c u l a t e d b o n d o r d e r f o r a n u n p r o t o n a t e d N^P^ r i n g . - 125 -bonds i s small, as i s the difference between the t h i r d and f i f t h bonds, and these small differences would be d i f f i c u l t 2 + to detect experimentally. In the ( (NPMe,,) ,-H2) ion the ten-membered r i n g i s protonated at two s i t e s , and when the eff e c t s of the two perturbations are superimposed one would expect, to a f i r s t approximation, three d i s t i n c t P-N bond lengths, since, although the l o c a l e f f e c ts of the closer perturbation may be modified by the effects of the more re-mote perturbation, differences i n the effects of the more remote perturbation would be small i n comparison. The bonds meeting at the protonated nitrogen atoms, N(l) and N(3), are expected to be longer than the average P-N bond length, and these are expected to be followed by bonds which are shorter than the average P-N bond length. F i n a l l y the bonds meeting at P(5) are expected to be intermediate between these long and short bonds and close to the P-N bond length i n the un-protonated molecule, since the effects of the two perturba-tions nearly cancel out i n these :bonds. The mean values are 1.671(12) (average of P ( l ) - N ( l ) , P(2)-N(l), P(3)-N(3), and P(4)-N(3)), 1.553 (17) (average of P (1)-N (5) , P(2)-N(2), P(3)-N(2), and P(4)-N(4)), and If 607 (7) A (average of P(5)-N(4) and P(5)-N(5)). A more detailed analysis i s d i f f i c u l t since numerous additional factors may be involved. These include: 1) The approximation that the JC -system i s unaf-fected i s probably not e n t i r e l y v a l i d . 2) Differences i n 0 "-hybridization should be considered since they would r e s u l t i n differences i n bond lengths. Thus the angles at nitrogen - 126 -vary considerably around the r i n g (they range from 127.3 to 148.3 ), and i f one assumes that the bonds follow the hybrid directions the amount of s-character i n the CT-hybrid o r b i t a l s at nitrogen would not be the same around the ri n g . 3) C com-pression energies should be considered i n a rigorous analysis. 4) The perturbations are not necessarily equal, since the H atoms are involved i n hydrogen bonds to atoms of d i f f e r e n t electronegativity. An improvement i n the accuracy of the observed P-N bond lengths would be required to be conclusive, and thus an attempt w i l l not be made here to explain the small and i n some cases i n s i g n i f i c a n t differences i n the lengths of bonds which are expected to be equal i n length to a f i r s t approximation. The length of the P-N bonds meeting at the protonated nitrogen atoms, mean values1.671(12) A, i s s l i g h t l y shorter than the length of corresponding bonds i n the N^ P^ Me^ "1" and the N 4P 4Me gH + ions, 1.685(9) and 1.695(15) A respectively, but s i m i l a r to the length of corresponding bonds i n N 3 P 3 C l 2 ( N H P r 1 ) 4 H C l , 3 1 1.666(5) A , and i n (N 4P 4Me 8H)CuCl 3, 4 9 1.670(14) A . The small difference i n the lengths of bonds meeting at the same protonated nitrogen atom are probably due to differences i n the e f f e c t of the more remote perturba-t i o n rather than to differences i n t h e i r dihedral angles (see Section III.B.3.). The length of the shorter bonds (P(2)-N(2), P(3)-N(2), P(l)-N(5), and P(4)-N(4); mean value 1.553 (17) A) i s s l i g h t l y larger than that of corresponding bonds i n (N„P„Me QH) 0CoCl„, 1.538(15) A , but si m i l a r to those i n _ 127 _ ( N 4 P 4 M e 8 H ) C u C l 3 , 1.559(14) A . The l e n g t h o f t h e b o n d s m e e t i n g a t P ( 5 ) , 1 . 6 0 7 ( 7 ) A , i s c l o s e t o t h e b o n d l e n g t h i n N 4 P 4 M e Q ( 1 . 5 9 6 ( 5 ) A ) . V a r i a t i o n s among t h e P-C b o n d l e n g t h s a r e n o t s i g n i f i c a n t , t h e mean v a l u e b e i n g 1 . 8 0 2 ( 8 ) A . T h i s v a l u e i s s i m i l a r t o t h e P-C b o n d l e n g t h i n N 4 P 4 M e Q ( 1 . 8 0 5 ( 4 ) A ) . The s m a l l e s t e n d o c y c l i c a n g l e s a t n i t r o g e n a r e t o t h e p r o t o n a t e d n i t r o g e n s , 127.3° a t N ( 3 ) and 129.0° a t N ( l ) , mean 128.2°. The c o r r e s p o n d i n g a n g l e s i n ( N P B r 2 ) j - a r e a p p r o x i m a t e l y 3° l a r g e r ( 1 2 9 . 7 , 132.6; mean 131.2°). The e n d o c y c l i c a n g l e s a t t h e p r o t o n a t e d n i t r o g e n atoms i n ( ( N P M e 2 ) 4 H ) C u C l ^ a n d i n ( ( N P M e 2 ) 4 H ) 2 C o C l 4 a r e 127.3 and 126.2°, r e s p e c t i v e l y . The s m a l l a n g l e s a t t h e p r o t o n a t e d n i t r o g e n atoms a r e c o n s i s t e n t w i t h l e s s e l e c t r o n d e n s i t y i n t h e P-N b o n d s m e e t i n g a t t h e s e n i t r o g e n atoms and h e n c e w e a k e r i n t e r b o n d r e p u l s i o n s . The e n d o c y c l i c a n g l e a t N ( 4 ) , 131.7(5)°, i s s i g n i f i c a n t l y s m a l l e r t h a n a t N ( 5 ) , 142.4(5)°. Ho w e v e r , t h e a v e r a g e o f t h e two a n g l e s (137.0°) i s t h e same a s f o u n d f o r c o r r e s p o n d i n g a n g l e s i n ( N P B r 2 ) ( 1 3 6 . 6 ° ) w h e r e t h e two a n g l e s a r e e q u a l . The r e -0 e n t r a n t a n g l e a t N ( 2 ) , 1 4 8 . 3 ( 5 ) , i s l a r g e r t h a n t h e r e -e n t r a n t a n g l e a t n i t r o g e n i n ( N P B r 2 ) , 143.8(10)°, b u t s m a l -l e r t h a n t h e r e - e n t r a n t a n g l e s a t n i t r o g e n i n ( N P C 1 2 ) ^ , mean v a l u e 158.1°. The e n d o c y c l i c a n g l e s a t p h o s p h o r u s a r e s m a l -l e r t h a n f o u n d i n ( N P B r 2 ) ^ , e x c e p t a t P ( 5 ) , w h e r e t h e c o r -r e s p o n d i n g a n g l e s i n t h e two compounds a r e n e a r l y e q u a l . I n a d d i t i o n t h e a n g l e s a t p h o s p h o r u s a r e n o t e q u a l i n p a i r s a b o u t a p s e u d o m i r r o r p l a n e a s i n ( N P B r 0 ) c . - 128 -The coordination geometry about copper i s di s t o r t e d tetrahedral. The d i s t o r t i o n from tetrahedral geometry i s much greater than i n C ^ C u C l ^ 1 1 6 where the angles around copper are 124.9, 123.3, 102.5, 102.5, 102.9, and 102.9°. The corresponding angles i n the present compound are 133.2, 133.7, 100.6, 96.8, 99.9, and 98.6° i n d i c a t i n g that the t e t r a -hedron i s much more flattened. The d i s t o r t i o n i s s i m i l a r to 2-that found i n other structures having a CuCl^ anion together 117 with a large cation. Three of the C l atoms are involved i n hydrogen bonding (see below). The fourth C l atom, Cl(4), i s not involved i n hydrogen bonding and the Cu - Cl(4) d i s -tance, 2.218(3) A, i s . s i m i l a r to the Cu - C l distances to C l atoms not involved i n hydrogen bonding i n the compounds ( (NPMe2)4H)"CuCl3, 2.22(1) A , 4 9 and (C 1 3H l gN 2OS +) ( C u C l 4 ) 2 _ , 13_ 7 ci 2.220(2) A. However, as i n these other structures, the Cu - C l bonds to the C l atoms involved i n hydrogen bonding are s i g n i f i c a n t l y longer, the values being 2.251(3), 2.270(3), and 2.281(3) A. 2+ 2— The (NPMe2)j-H2 cation i s linked to the CuCl 4 anion and water molecule by intermolecular hydrogen bonds. In addition 0-H-•-Cl hydrogen bonds are apparently formed between 2-the water molecule at x,y,z and the C u C l 4 anions at x,y,z and 1 - x , 1 - y , 1 - z . The hydrogen bonding geometry can be seen i n Figure 27, which shows a view of the u n i t - c e l l contents. Although the hydrogen atoms could not be located there are other indications of hydrogen bonding. N---0, N'-'Cl, and 0---C1 distances and relevant angles are given i n - 130 -Table XXII. The N(3)---0 and N(l)---Cl(3) distances are i n the expected range for N-H-'-O and N-H---C1 hydrogen bonds, and the angles around these nitrogen atoms are favourable for hydrogen bonds to form. The 0---C1 distances are s l i g h t l y 118 — larger than usually found for H-0-H---C1 hydrogen bonds but are probably s t i l l i n the range for hydrogen bonding. The geometry i s favourable for such hydrogen bonds to form, the Cl(2)••-O-•-Cl(l) (Cl(2) and 0 at x,y,z; C l ( l ) at 1 - x, 1 - y, 1 - z) angle being 116°. Further evidence for H-O-H*••Cl hydrogen bonding i s provided by the increased length of Cu-Cl(1) and Cu-Cl(2) over Cu-Cl(4) where the C l atom i s d e f i n i t e l y not involved i n hydrogen bonding. Aside from the close intermolecular contacts assigned to hydrogen bonded atoms the intermolecular contacts can be considered to be of the normal van der Waals type. The close s t C1---C distance i s 3.59 A and the closest C--«C distance i s 3.66 A . Methyl-methyl contacts are frequently less than 4.0 A , and the C1---C distance of 3.59 A i s not unusually small. - 131 -Table XXII Probable Hydrogen Bonds (atoms are at x,y,z unless otherwise stated) a) A---B Lengths (A) N(3) • -;0 C l (1) • • -0 C l (2) • • -0 N(1)...C1(3) 2.85(1) 3.31(1) 3.26(1) 3.19(1) (Cl(l) at 1 - x, 1 - y, 1 - z) (Cl(3) at x, 1 + y, z) b) Angles (degrees) P(3)-N(3) • P(4)-N(3) • C l (1) • • -0-C l (2)-•-0-C l (1) • • -0-P(2)-N(l) • Pd ) - N ( l ) • -O •O •Cl(2) •N(3) •N(3) 127.9(4) 103.5(4) x, 1 - y, 1 - z) 116.0(3) (Cl(l) at 1 107.4(3) 134.6(3) (Cl(l) at 1 - x, 1 - y, 1 - z) Cl(3) 109.5(4) (Cl(3) at x, 1 + y, z) Cl(3) 118.8(3) (Cl(3) at x, 1 + y, z) - 132 -II I . D. The Cr y s t a l and Molecular Structure of Octa(dimethylamino)cyclotetraphosphonitriletetra-carbonyltungsten, N 4P 4(NMe 2) Q-W(CO) 4 I I I . D. 1. Experimental The compound was prepared by the reaction of N 4P 4(NMe 2)g 4 with W(CO)g i n l i g h t petroleum ether as previously described. Yellow needles elongated along c grew i n the reaction vessel, and were p u r i f i e d by washing with l i g h t petroleum ether several times. The c r y s t a l used for in t e n s i t y measurements had approximate dimensions 0.2 X 0.1 X 0.4 mm. Crys t a l Data. - C 2 0H 4gN 1 20 4P 4W, M = 828.43, monoclinic, a = 18.274(22), b = 18.594.(24), c = 10.533(14) A , (3 = 90.39(10)°, U = 3579 A 3 , D^ = 1.55 g cm - 3 ( f l o t a t i o n i n _ 3 CCl 4-heptane), Z = 4, D c - 1.537 g cm , F(000) = 1672. Space 5 group P2^/n (C^) from absent reflexions: hOl, h + 1 ^  2n; OkO, k ^  2n. Mo-K* radiation, A = 0.71069 A , fX (Mo-K^) = -1 36 cm U n i t - c e l l parameters were obtained by least-squares 2 refinement of s i n 0 values for 30 reflexions measured on a G.E. XRD 6 diffractometer. The i n t e n s i t i e s of the reflexions were measured by d i f -fractometer methods as described i n Section III.B.1. for (N 4P 4Me g +)(Cr(C0) 5I~). A l l reflexions with 2 6 (Mo-K* ) ^ 40° and some with. 40° < 2 8 (Mo-K^ ) ^ 45° were measured. The i n t e n s i t y of the check r e f l e x i o n f e l l o f f by ca. 15% of i t s s t a r t i n g value by the end of the data c o l l e c t i o n - 133 -i n d i c a t i n g some s l i g h t decomposition. The i n t e n s i t y of t h i s r e f l e x i o n was used to place the data on the same r e l a t i v e scale. No corrections were made for absorption. Of 3759 independent reflexions measured, 2372 (63.1%) had i n t e n s i t i e s y 3 CT{1) above background. These reflexions were c l a s s i f i e d as observed. I I I . D. 2. Structure Analysis The p o s i t i o n of the tungsten atom was determined from a three-dimensional Patterson map. A structure factor calcu-l a t i o n with B = 5.0 % gave R = 0.378. A three-dimensional electron-density map gave the positions of the r i n g phosphorus and nitrogen atoms, and with these atoms included R dropped to 0.304. A three-dimensional difference map was then calcu-lated, and 28 of the remaining 32 non-hydrogen atoms were located. Two cycles of f u l l - m a t r i x least-squares refinement of the p o s i t i o n a l and i s o t r o p i c thermal parameters of a l l atoms located reduced R to 0.126. A difference map gave the positions of the remaining 4 non-hydrogen atoms. Three cycles of f u l l - m a t r i x least-squares refinement with the tungsten, phosphorus, oxygen, and nitrogen atoms having aniso-trop i c temperature factors and the carbon atoms i s o t r o p i c temperature factors reduced R to 0.071 for 23 72 observed ref l e x i o n s . On the f i n a l cycle of refinement no parameter s h i f t was y 0.6 ( r , except for the i s o t r o p i c temperature factors for C(17) and C(19), for which the s h i f t s were about 2.5<r. - 134 -In the l a s t cycles of refinement approximately constant 2 average values of w(|F ol - I F C I) over ranges of I F Q I could be obtained by using the weighting scheme: \fw = 1.0 when |F Q | ^  75.0 and sfw = 75.0/|FQ| when | F Q | > 75.0. The scattering factors for a l l atoms were obtained from reference 103. Correction for anomalous dispersion was included for tungsten. Unobserved reflexions were given a weight of zero. A f i n a l difference map showed a few large peaks- of up — 3 * to + 2 eA close to the tungsten atom, and peaks of up to +1.0 eA~ elsewhere. However the hydrogen atoms could not be located and were not included i n the least-squares r e f i n e -ment. F i n a l atomic positions and thermal parameters are given i n Table XXIII. Measured and calculated structure factors are l i s t e d i n Appendix I I I . I I I . D. 3. Discussion The structure of t h i s compound i s important i n three respects: 1) i t demonstrates that complex formation of dimethylamino-phosphonitriles with t r a n s i t i o n metals can occur by donation from both r i n g nitrogen atoms and exocyclic nitrogen atoms 2) i t provides further evidence that dimethyl-amino-phosphonitriles act as simple amine type ligands by donation of nitrogen lone pair electrons to the metal with no, or r e l a t i v e l y l i t t l e , back donation from f i l l e d metal d-orbitals into the r i n g antibonding rt* o r b i t a l s , and 3) i t demonstrates that for phosphonitrilic rings which are per-turbed at more than one s i t e the bond length pattern can be - 135 -Table XXIII 4 F i n a l P o s i t i o n a l Parameters (Fractional X 10 ) and Thermal 2 2 2 Parameters (Anisotropic _^ , A X 10 ; Isotropic B, A ) with Standard Deviations i n Parentheses Atom X Y z W 2191.3(6) 0559.6(5) 2198.6(10) P(D 2681 (3) 1002 (3) -1087(5) P(2) 2724(3) 1974(3) 1050 (5) P(3) 4265 (3) 2380(3) 0506 (5) P(4) 3870(3) 1906(3) -2100 (5) 0(1) 2205 (12) -1004 (10) 1150(16) 0(2) 3706 (10) 0099(11) 3432(20) 0(3) 0451(12) 0490 (12) 1686(26) 0(4) 1711(14) -0023(10) 4872 (17) N(l) 2508(9) 1214(8) 0395(16) N(2) . 3541(9) ' 2168(9) 1290(15) N(3) 4348 (8) 2231(10) -0934(17) N(4) 3063(9) 1630(9) -1797(16) N(5) 3082 (9) 0208(8) -1010(15) N(6) 1915(11) 0833(10) -1860(17) N(7) 2278(9) 2621(9) 0357 (16) N(8) 2349(8) 1808 (7) 2547(15) N(9) 4431(10) 3254(11) 0687(17) N(10) 4936(9) 1975(10) 1369(19) N ( l l ) 4402(10) 1300(11) -2766 (18) N(12) 3744(12) 2532(10) -3244(18) Atom X y C (17) 3190(12) 0324 C (18) 2179(15) -0395 C (19) 1933 (13) 0239 C (20) 1061(19) 0572 C (1) 3743 (13) 0099 c (2) 3075 (15) -0290 c (3) 1664(15) ' 1281 c (4) 1384(16) 0295 c (5) 2484(14) 3393 c (6) 1558(14) 2512 c (7) 1617(14) 2155 c (8) 2827(13) 1997 c (9) 4425(15) 3562 c (10) 4686 (17) 3737 c (11) 4831 (18) 1359 c (12) 5681 (15) 2101 c (13) 4176(16) 0968 c (14) 5184(15) 1139 c (15) 3140(14) 3045 c (16) 4444(16) 2845 z B 10) 2933 (20) 5.0 (4 15) 1592 (29) 6.9(7' 13) 3827 (24) 6.6(5] 17) 1778 (30) 8.1(7] 13) -0148 (24) 5.6 (5] 15) -2065 (27) 7.0(7] 14) -2960 (26) 6.7(6] 15) -1418 (28) 7.4(7] 14) 0581 (24) 6.0(6] 14) -0345', (25) 6.4 (6] 13) 2798 (24) 6.3 (6] 12) 3668 (24) 5.5 (5] 14) 1993 (27) 7.1(6] 16) -0345 (31) 8.1(8] 18) 2107 (34) 9.5 (9] 14) 0869 (26) 6.7(6] 16) -4003 (29)' 7.4(7] 14) -2457 (27) 7.1(7] 14) -3117 (26) 6.7(6] 16) -3864 (29) 7.7 (7] .'. ./continued Table XXIII (continued) Atom U l l U22 U33 U12 U13 U23 W 7.31(7) 4.53 (6) 5.90(6) -0.30 (6) 0.60 (6) -0.04(6) P(D 5.1(4) 4.3(3) 4.8(3) 0.1(3) -0.9(3) -0.4(3) P(2) 5.4(4) 3.8 (3) 4.7(3) 0.3 (3) 0.0(3) -0.4(3) P(3) 4.7(4) 4.9(3) 5.3(4) 0.3 (3) -0.6(3) - 6.5 (3) P(4) 6.0(4) 5.3 (4) 4.2(3) 0.5(3) -0.5 (3) 0.2(3) 0(1) 16.4(19) 7.8(13) 6.0 (12) -0.2(12) 1.6(12) 0.4(10) 0(2) 9.7 (14) 12.8(16) 10.9(16) 4.9(13) -2.9(13) -0.5 (14) 0(3) 8.8 (15) 14.0(19) 19.8(25) -1.2(14) -2.3(16) -2.1(18) 0(4) 21.6(24) 7.5(13) 7.5(13) -3.4(14) 3.9(14) -0.3 (10) N(l) 4.5 (10) 5.7 (10) 5.2(11) -0.5 (8) 0.8 (8) 1.1,(9) N(2) 5.4(12) 5.5 (10) 4.9(11) -0.4(9) -2.2(9) 0.0,(9) N(3) 3.3(10) 8.9(13) 6.4(12) 0.3(9) -0.3 (9) -2.8(11) N(4) 6.0(12) 6.2(11) 5.2(11) -0.8(9) --1.8(9) 0.5 (10) N(5) 7.3(13) 4.2(9) 4.4(10) 1.1(9) -1.1(9) -1.2 (8) N(6) 9. 7(15) 7.3 (12) 5.4(12) -5.5 (11) -0.6(11) 0.0 (10) N(7) 6.9(13) 5.5(11) 5.0(11) 0.9(9) 0.0(10) 0.8(9) N(8) 5.9(12) 2.5(9) 6.7(11) - 0.5(8) 0.6(9) -0.6 (8) N(9) 7.0(13) 8.2(13) 6.1(12) -0.1(11) -0.2(10) -0.6(11) N(10) 4.1(11) 8.3(14) 8.9(14) -0.5(10) -0.9(10) 2.8(12) N ( l l ) 6.4(13) 9.5(15) 6.3 (13) 1.9(11) -1.9(11) -2.1(12) N(12) 10.5(16) 7.7(14) 5.9(13) 2.6(12) 1.2(12) 2.6(11) - 137 -q u a l i t a t i v e l y explained by a superposition of the bond length pattern of the two separate e f f e c t s . Bond lengths and angles with estimated standard deviations are given i n Table XXIV, and a general view of the molecule i s shown i n Figure 28. The molecular structure i s unusual i n two respects: 1) cis-coordination at tungsten occurs by forma-ti o n of a four-membered ring, and 2) the phosphonitrile i s co-ordinated to tungsten through a r i n g nitrogen atom and an exo-c y c l i c dimethylamino nitrogen atom. The octahedral geometry about tungsten i s distorted, since the angle N(1)WN(8) i s necessarily small (65.4(6)°). The CWC angles are not f a r from 90°, except C(17)WC(19), which i s o 79.3(9) . The carbonyl groups are bent, as i n other compounds 119 with carbonyl groups coordinated to tungsten, the angles o at carbonyl carbon ranging from 169.0 to 176.2 (mean value 172.2°). The mean values of the W-C and C-0 bond lengths (1.97, 1.19 A) are also s i m i l a r to those i n related compounds. They are, however, affected by coordination, the W-C bonds trans to the W-N bonds being s i g n i f i c a n t l y shorter (1.88(3), 1.89(3) A) than the cis-bonds (2.02(3), 2.11(4) A), suggesting greater W—»-C0 back donation to the trans-bonds. This i n t e r -pretation i s supported by the lengths of the W-N bonds (2.33(2) and 2.37(1) A ) , which are considerably greater than those found i n 2,2'-bipy(CO) 3BrWGeBr 3 (2.20 A ) 1 1 9 a i n which some W—*L (L = 2,2 1-bipyridyl) back donation may occur. A more deta i l e d estimate i s possible. One value for the covalent radius of tungsten can be obtained from the structure of - 138 -Table XXIV Bond Lengths (A) and Angles (Degrees) With Standard Deviations i n Parentheses W-C(17) 2.02 (3) C(17)-0(2) i . 15 (3 W-C(18) 1.89(3) C(18)-0(l) l . 23 (3 W-C(19) 1.88 (3) C (19)-0(4) l . 27 (3 W-C (20) 2.11(4) C(20)-O(3) l . 13 (3 W-N(l) 2.33 (2) W-N(8) 2.37(1) N(5)-C(l) l . 52 (3 N(5)-C(2) l . 45 (3 P(l)-N(l) 1.64(2) N(6)-C(3) l . 50 (3 P(l)-N(4) 1.55 (2) N(6)-C(4) l . 47 (3 P(2)-N(l) 1.62(2) N(7)-C (5) l . 50 (3 P(2)-N(2) 1.55(2) N(7)-C(6) l . 52 (3 P(3)-N(2) 1.61(2) N(8) -C (7) l . 51(3 P(3)-N(3) 1.55(2) N(8)-C (8) l . 50 (3 P(4)-N(3) 1.62 (2) N(9)-C (9) l . 49(3 P(4)-N(4J)1 1.60 (2) N(9)-C (10) l . 49(3 N(10)-C(ll) l . 40 (3 mean endocyclic P-N 1.59 N(10)-C(12) l . 48 (3 N(ll)-C(13) l . 50 (3 P(2)-N(7) 1.62(2) N(ll)-C(14) l . 49(3 P(2)-N(8) 1.75(2) N(12)-C (15) l . 47 (3 P(l)-N(5) 1.65(2) N(12)-C(16) l . 55 (3 P(l)-N ( 6 ) 1.64(2) P(3)-N(9) 1.66 (2) mean N-C 1.49 P(3)-N(10) 1.70 (2) P(4)-N(ll) 1.65 (2) P(4)-N(12) 1.69(2) mean exocyclic P-N excluding P(2)-N(8) 1.66 C (17 l-W-N(8) 92. 5(7) N(5)_ •P(l)-•N(6) 103. 3(9) C (17 )-W-N(l) 101.3(7) N(7)-•P(2)-•N(8) 109. 6(8) C (171 -W-C(18) 86,, 2 (10) N(9)- •P(3)-•N-(10) 103. 9(10) C (17 )-W-C(19) 79., 3(9) N ( l l ) -P(4) -N(12) 104. 2(10) C(171 )-W-C(20) 163. 9(10) C(18; -W-N(l) 102. 5(10) N(5)- •P(D-•N(4) 119. 7(9) c ( is ; -W-C(19) 90. 5(11) N(5)- P.(D-•N(l) 104. 9(8) C (18] -W-C (20) 85. 9(12) N(6)- P ( D -•N(4) 106. 8(9) C (191 l-W-N(8) 101. 5(8) N(6)- P ( D - N(l) 110. 3(10) c (19; -W-C (20) 86. 7(11) N(7)- P(2)- N(l) 109. 5(9) c (2o; -W-N(8) 98. 1(9) N(7)- P(2)- N(2) 112. 3(9) C (20-) -W-N(l) 94. 1(9) N(8)- P(2)- N(l) 97. 7(8) N(8)--W-N(l) 65. 4(6) N(8)- P(2)- N(2) 106. 0(8) N(9)- P(3)- N(2) 109. 2(9) W-C(17)-0 (2) 169. 5(19) N(9)- P(3)- N(3) 105. 5(10) W-C(18)-0(1) 176. 2 (24) N(10) -P(3) -N(2) 102. 1(9) W-C (19)-0(4) 174. 0 (20) N(10) -P(3) -N(3) 111. 7(10) ./continued - 139 -Table XXIV (continued) W-C (20)-0(3) 169.0(29) mean W-C-0 172.2 P(l) -N(l) -P(2) 124. 5(10) P(2] -N(2) -P(3) 139. 8.(11) P(3] -N(3) -P(4) 138. 8(11) P(4) -N(4) -P(D 139. 1(12) N(4) -P(D -N(l) 111. 5(9) N(l) -P(2) -N(2) 120. 2(9) N(2) -P(3) -N(3) 122. 9(9) N(3) -P(4) -N(4) 117. 6(9) P(2) -N(8) -W 94. 6(6) C (7) -N(8) -W 109. 8(12) C (8) -N(8) -W 114. 8(12) C (8) -N(8) -P(2) 115. 9(13) C(7) -N(8) -P(2) 115. 8(14) C(7) -N(8) -C(8) 105. 8(16) N(11)=P(4)--N(3) N(ll)-P(4)--N(4) N(12)--P(4)-N(3) N(12)-P(4)-N(4) W-N(l)-P(2) W-N(l) -P(l) 105.2(9) 114.4(10) 110.7(10) 104.0 (10) 99.7(8) 134.4(9) excluding N(8) C-N-C 111-117 mean 114.5 C-N-P 114-128 mean 121.0 sum of three angles at exocyclic N 350-360 mean 356.6 J - 141 -(7f-C 5H 5)W(CO) 3 ( 0--C6H5) , J- ± Z" J i n which the W-C (Ph) bond length i s 2.32 A. I f the covalent radius of sp -hybridized carbon i s taken as 0.74 A , that of the tungsten atom i s 1.58 A. 3 In N 4P 4(NMe 2) 8-W(CO) 4, N(8) i s approximately sp -hybridized (0.70 A) , so that the covalent radius of tunsten i n thi s compound i s 1.67 A, nearly 0.1 A greater than i n the bond to phenyl. The inter p r e t a t i o n that the phosphonitrilic complex i s a simple weak cr-complex, without s i g n i f i c a n t back-donation into the 7f-levels of the ligand, i s also supported by a com-parison of i t s carbonyl stretching frequencies (2000, 1870, 1849, 1809 c m - 1 ) 4 1 with those of en,:W(C0)4 (2006, 1867, 1852, , 0 „ „ -1> 120 1809 cm ) . Coordination nevertheless has a s i g n i f i c a n t e f f e c t on the 7 T - l e v e l s of the ligand. The tungsten atom evidently accepts electrons from both a r i n g and an exocyclic nitrogen atom, sources which i n the neutral ligand are competitive donors 12 to phosphorus. Thus, i n the uncoordinated ligand, substan-t i a l d e l o c a l i z a t i o n of the lone pair electrons on the d i -me thylamino-groups on to phosphorus shortens the exocyclic P-N bonds from 1.77 A , c h a r a c t e r i s t i c of a single bond, to a mean value of 1.678(10) A , the dimethylamino-groups being nearly planar (mean sum of angles around exocyclic N 354°). In the complex, the geometry about N(8) i s nearly tetrahedral, the largest difference from the normal tetrahedral angle being that of the P(2)N(8)W angle (94.6°). The tungsten evidently acts as a competitive acceptor, the P(2)N(8) bond length being 1.75(2) A . The lack of exocyclic /^-bonding i n t h i s bond i s - 142 -p a r t l y compensated by increased donation from the second dimethylamino-group, and i n fact the length of the P(2)N(7) bond i s 1.62(2) A, the sum of the angles around N(7) being 359°. The compensatory e f f e c t of the more remote dimethyl-amino-groups i s smaller, the average of the s i x P-N bond lengths being 1.665 A. . The geometry of the phosphonitrilic r i n g i t s e l f shows c l e a r l y that tungsten acts both i n d i r e c t l y , through competi-t i v e withdrawal from the dimethylamino-group, and d i r e c t l y , by coordination to N ( l ) . As a r e s u l t of the complex forma-t i o n , the conformation of the r i n g i s d i f f e r e n t from the near-saddle of the uncomplexed ligand. I t consists of two nearly planar segments P(2)N(2)P(3)N(3)P(4)N(4) and N|(4)P(1)N(1)P(2) making an angle of 48°, the l a t t e r set being roughly coplanar with N(1)WN(8)P(2). The equations of the mean planes through these atoms are given i n Table XXV. There are also now substantial i n e q u a l i t i e s i n the lengths of the r i n g bonds, which are shown i n Figure 29. L o c a l i z a t i o n of the lone p a i r electrons on N(l) by donation to W i s expected to lengthen the PN bonds meeting at t h i s nitrogen atom, and to induce p a r t i a l l o c a l i z a t i o n i n the more remote parts of the r i n g . The tungsten atom also affects the electron d i s -t r i b u t i o n -in the r i n g by withdrawing charge from P(2) v i a N(8), as indicated by theestructural evidence already d i s -cussed. As a consequence of the increased electronegativity of P(2), 7f-bonding from this atom within the r i n g i s strengthened l o c a l l y ; again, the more remote bonds are also - 143 -Table XXV Mean Planes through the Molecule a) Equations of planes: IX + mY + nZ = p, where X, Y, Z are orthogonal coordinates (A) w.r. to a, b, c*. Plane 1 m n p P(2)N(2)P(3)N(3)P(4)N(4) -0.2979 0.9284 -0.2223 1.6655 N(4)P(1)N(1)P(2) -0.8892 0.3690 -0.2705 -3.3642 N(1)WN(8)P(2) -0.9410 0.2253 -0.2526 -4.1033 b) Distances (A) of atoms from the mean planes ( (7 i n parentheses). Plane Atom Distance 1 P(2) 0.015 (5) N(2) -0.149 (16) P(3) 0.003 (5) N(3) 0.035(18) P(4) 0.006(5) N(4) -0.101 (17) P(D -1.143 (5) N(l) -1.027(16) 2 2 N(4) 0.007 (17) P(D -0.001(6) N(l) 0.013 (16) P(2) -0.001(5) 3 N(l) 0.198(16) W -0.001(1) N(8) 0.161(16) P(2) -0.027(6) c) Angles between the planes (degrees) . 1- 2 48.1 2- 3 8.8 - 145 -influenced. At the coordination s i t e s , tungsten therefore has two ef f e c t s , exerted respectively through N(l) and N(8)P(2). Their combined e f f e c t can be seen by examining the structures of molecules i n which the two effects occur separately. One e f f e c t of coordination to tungsten i s to cause l o c a l i z a t i o n of the lone pair electrons on N ( l ) . Comparison + + can be made with N^ P^ MegH.. and N^P^Me^ ions, which have been discussed i n Section III.B.3. The other e f f e c t of coordination to tungsten i s to increase the electronegativity of P(2). An appropriate com-29 parison structure i s now that of gem - N^P^Fgiy^. The successive bond lengths i n thi s compound are well described i n terms of atom-bond p o i a r i s a b i l i t i e s calculated for a de-l o c a l i z e d system by simple perturbation theory, on the basis that the methyl groups decrease the electronegativity of the 2 9a atom to which they are attached. .Iln the present complex, we can expect s i m i l a r variations, but of opposite sign. Since the q u a l i t a t i v e pattern of bond lengths i s not c r i t i c a l l y dependent on the choice of numerical parameters, we can avoid a d e t a i l e d t h e o r e t i c a l treatment, and deduce an expected bond length pattern i n the carbonyl complex by a superposition of the patterns i n N^P^MegH* and N^P^F^Me^, as follows: 1) Find, i n order from the protonated nitrogen atom, the deviations of the lengths of the successive PN bonds i n N 4 P 4 M e 8 H + f r o m t* i e m e a n - 2) Find, i n order from the Me2P group, the deviations of the lengths of the successive PN bonds i n N^P^F^-Me^ffrom the mean. 3) Apply the f i r s t series to the - 146 -s u c c e s s i v e b o n d s i n N 4 P 4 (NMe2„) •W(CO) 4 , i n i t i a l l y a ssumed a l l e q u a l t o t h e f i n a l a v e r a g e , a n d s t a r t i n g f r o m N ( l ) . 4) A p p l y t h e s e c o n d s e r i e s , w i t h o p p o s i t e s i g n , b u t s t a r t i n g a t P ( 2 ) . The r e s u l t s o f t h e s u p e r p o s i t i o n o f t h e l o c a l i z a t i o n and t h e e l e c t r o n e g a t i v i t y e f f e c t s a r e e m b o d i e d i n F i g u r e 30, w h i c h shows a l s o t h e a c t u a l b o n d l e n g t h s . The a c t u a l p a t t e r n i s w e l l r e p r o d u c e d b y t h e a d d i t i o n o f t h e two c o m p o n e n t s , w i t h t h e e x c e p t i o n o f P ( 4 ) N ( 4 ) , w h i c h w o u l d b e e x p e c t e d t o b e l o n g e r . P ( 1 ) N ( 1 ) i s , c o r r e c t l y , t h e l o n g e s t , and t h e t h r e e s h o r t e s t b o n d s , a r e , a g a i n c o r r e c t l y , P ( 2 ) N ( 2 ) , P ( 3 ) N ( 3 ) a n d N ( 4 ) P ( 1 ) . The g e n e r a l p a r a l l e l i s m o f t h e r a t h e r i r r e g u l a r c u r v e s seems g o o d e v i d e n c e t h a t t h e b a s i c a s s u m p t i o n s u s e d a r e c o r r e c t . A l t h o u g h t h e p a t t e r n i s r e p r o d u c e d s a t i s f a c t o -r i l y , t h e o b s e r v e d r a n g e o f v a r i a t i o n o f b o n d l e n g t h s i s s m a l l e r t h a n t h a t " c a l c u l a t e d " . T h i s i s n o t s u r p r i s i n g , a s t u n g s t e n w o u l d be e x p e c t e d t o b e a l e s s g o o d d i r e c t a c c e p t o r a t N ( l ) t h a n a p r o t o n , a n d , b e i n g more r e m o t e , w o u l d h a v e l e s s e f f e c t o n P ( 2 ) t h a n a p a i r o f m e t h y l g r o u p s . -The b o n d a n g l e s i n t h e r i n g a r e a l s o d i f f e r e n t f r o m t h o s e i n t h e u n c o m p l e x e d l i g a n d , b u t a r e l e s s r e l i a b l y i n t e r -p r e t e d . The e n d o c y c l i c a n g l e s a t N ( 2 ) , N ( 3 ) , a n d N ( 4 ) (mean 139.2°) a r e l a r g e r t h a n i n N 4 P 4 ( N M e 2 ) Q (133.0(6)°). P ( 1 ) N ( 1 ) P ( 2 ) i s s m a l l e r t h a n t h e o t h e r e n d o c y c l i c r i n g a n g l e s a t n i t r o g e n a n d i s s i m i l a r t o t h a t a t t h e n i t r o g e n c o o r d i n a t e d a 49 t o Cu i n ( N 4 P 4 M e 8 H ) C u C l 3 ( 1 2 3 . 2 ( 1 4 ) ) . The e n d o c y c l i c a n g l e s a t p h o s p h o r u s r a n g e f r o m 111.5° t o 122.9°, mean 118.0°. The a n g l e a t P ( l ) i s s i g n i f i c a n t l y s m a l l e r t h a n a t t h e o t h e r 1 .4J 1 1 — — ' 1 1 1 1 i 1 P(1) N(1) P(2) N(2) P(3) N(3) P(4) N(4) P(1) Figure 30. (a) Bond lengths (A) estimated by superposition of i n e q u a l i t i e s i n N 4 P 4 M e 8 H + a n d N 4 P 4 F 6 M e 2 -(b) Bond lengths (A) i n N AP A(NMe 0) p-W(CO).. - 148 -three phosphorus atoms. Some of these variations can be attributed to the d i s t o r t i o n of the phosphonitrilic r i n g caused by coordination. The arrangement of the molecules i n the unit c e l l i s shown i n Figure 31. The intermolecular distances correspond to normal van der Waals contacts. The cl o s e s t 0-C(methyl) contacts are 3.24 and 3.33 A , and the c l o s e s t O••C(methyl-methyl) contacts are 3.71 and 3.81 A . Figure 31. Stereo view of the arrangement of the molecules in the unit c e l l . - 149 -APPENDIX I Nonamethylcyclotetraphosphonitrilium Pentacarbonyliodo-chromate(O): Measured and Calculated Structure Amplitudes (unobserved reflexions have | F Q | = 0 or | F | preceded by a minus sign). - 150 -1 1 0 55.65 16.10 1 1 1 193.13 169.91 -2 8 1 -6.39 6.11 -7 fi •) -a -i t.i 1 1 9 -9.11 1.21 1 5 0 23.77 23.91 1 1 -9 15.51 16.32 h k 1 IF0I IFel 1 1 2 121.19 122.16 1 1 3 55.10 51.23 1 1 1 10.10 11.12 1 1 5 11.11 13.65 2 8 3 13.13 10.51 2 8 1 -9.76 9.62 1 1 -1 20.93 20.06 1 1 -2 101.91 97.12 1 5 1 13.50 11.09 1 5 2 15.22 11.12 1 5 3 -2.86 6.29 1 5 U 19.71 20.19 1 2 -2 82.11 78.19 2 -3 19.12 17.75 1 2 -1 61.73 65.12 2 -5 73.10 75.13 0 0 1 51.OB 50.57 0 0 2 11.89 10.56 0 0 3 77.H6 81.83 0 0 1 95 .72 98.62 0 0 5 65. 22 72. la 0 0 6 90.Id 91. 09 0 0 7 -16.52 18.US 0 0 8 -10.49 1.32 0 0 9 27.07 27.39 0 1 0 52.02 51.50 0 1 1 56.55 60.03 0 1 2 -7.01 11.20 0 1 3 B3.9B 81.30 0 1 1 12.15 15.38 0 1 5 89.17 97.02 0 1 6 19.88 22.95 0 1 7 16.91 17.51 0 1 8 16.13 11.15 0 1 9 13.39 12.70 0 2 0 28.61 26.85 0 2 1 37.55 11.23 0 2 2 83.39 81.17 0 2 3 16.30 11.91 0 2 1 10.85 7.90 0 2 5 31.31 33.39 1 1 6 23.26 25.67 1 1 7 69.98 76.91 1 1 8 16.77 18.51 1 1 9 0.00 2.11 1 1 10 18.75 18.56 2 0 99.97 89.81 1 2 1 57.11 51.12 2 2 119.93 116.17 1 2 3 10.59 6.29 2 1 20.B2 21.02 1 2 5 11.08 11.17 2 6 69.39 72.35 2 7 67.83 69.03 2 8 23.95 21.59 2 9 -7.21 7.21 2 10 0.00 1.71 3 0 10.78 13.13 3 1 11.16 13.11 3 2 12.97 11.37 3 3 12.17 39.11 3 1 0.00 2.12 3 5 17.35 17.91 3 6 30.50 30.51 3 7 33.85 33.58 3 8 15.85 11.71 3 9 -3.13 3.13 : 1 1 -3 81.28 88.60 1 1 -1 21.12 22.86 1 1 -5 56. 1 1 58. 13 1 1 -6 -5.70 3.92 1 1 -7 21.13 21.09 1 1 -8 39.19 10.67 1 1 -9 31.12 28.03 1 2 -1 21.72 21.01 1 2 -2 10.62 10.32 1 2 -3 35.31 33.91 1 2 -1 113.37 112.71 1 2 -5 33.07 32.33 1 2 -6 0.00 1.76 1 2 -7 0.00 2.92 1 2 - 8 17.69 16.32 1 3 -1 26.99 25.67 1 3 -2 31.60 35.33 1 3 -3 18.77 20.69 1 3 -1 - 1 . 11 1.91 1 3 -5 20.81 23.23 1 3 -6 27.59 26.22 1 3 -7 15.03 12.96 1 3 -8 -7.87 B.51 1 1 -1 25.28 21.61 1 1 -2 31.21 36.87 1 1 -3 10.08 10.96 1 5 5 16.10 11.08 1 5 6 23.12 22.61 1 5 7 17.31 16.60 1 5 8 19.77 19.32 1 6 0 -5.99 7.83 1 6 1 19.11 20.30 1 6 2 66.32 68.86 1 6 3 11.29 11.90 1 6 1 37.11 37.85 1 6 5 -6.18 8.60 1 6 6 15.00 15.52 1 6 7 23.33 21.71 1 6 8 13.56 11.71 1 7 0 19.81 20.69 1 7 1 61.02 60.79 1 7 2 31. 15 35.23 1 7 3 -7.78 6.16 1 7 1 35. 25 36.97 1 7 5 18.61 19.00 1 7 6 15.30 11.93 1 7 7 25.53 26.2<4 1 8 0 17.28 18.33 1 8 1 -10.08 1.77 1 8 2 30.29 32. IB 8 3 26.28 26.51 1 8 1 -10.81 10.85 1 2 -6 15.55 15.57 2 -7 0.00 1.13 2 -8 -7.1it 5.21 2 -9 -5.22 5.91 3 -1 93.26 92.17 3 -2 B.52 7.83 3 -3 68.50 71.79 3 -1 25.06 26.51 3 -5 11.77 18.81 3 -6 61.11 66.79 3 -7 25.01 26.29 3 -8 -5.86 0.77 3 -9 13.76 13.51 1 -1 61.81 66.05 1 -2 16.77 17.76 1 -3 -7.10 12.06 1 - 1 3B.32 10.01 1 -5 28.11 29.93 1 -6 0.00 7.83 1 -7 16.12 17.56 1 -8 -3.82 8.99 S -1 0.00 3.10 5 -2 23.63 21.57 5 -3 15.16 17.57 5 r l 11.09 13.59 0 2 6 23.83 23.37 0 2 7 21.15 22.26 0 2 8 -2.78 2.76 0 2 9 -1.19 2.23 0 3 0 31.03 29.13 0 3 1 21.13 22.21 0 3 2 91.19 100.99 0 3 3 31.71 36.83 -1 0 51.99 53.97 1 2 28.B1 28.11 1 3 96.15 96.15 1 1 25.76 28.12 1 5 -7.23 10.93 1 6 -9.09 8.92 1 7 32.16 32.00 1 8 -9.20 8.57 1 9 11.81 11.53 : 1 1 -1 0.00 1.55 1 1 -5 -8.25 9.12 1 1 -6 28.97 27.38 1 1 -7 -9.20 B.25 1 5 -1 58.76 59.15 1 5 -2 55.81 55.69 1 5 -3 30.56 30.95 1 5 -1 -9.23 8.73 8 5 -8.38 6.83 1 8 6 -9.69 9.52 9 0 -5.00 2.37 9 1 13.01 11.97 9 2 -1.17 6.81 9 3 12.31 11.15 0 0 167.97 150.51 2 0 1 130.16 121.13 n 7 un. 5n ii? 11 5 -5 10.86 10.86 5 -6 12.53 15.72 5 -7 -5.91 1.90 6 -1 11.59 11.21 6 -2 13.83 11.01 6 -3 55.12 55.69 6 -1 35.21 37.17 6 -5 11.15 17.78 6 -6 -7.31 3.07 0 3 5 11.51 13.71 0 3 6 31.21 30.16 0 3 7 11.91 11.65 0 3 8 15.10 13.80 0 3 9 -10.96 10.33 0 1 0 30.06 30.22 0 1 1 101.11 106.51 0 1 2 91.31 97.53 5 0 52.11 19.81 5 1 -1.25 1.52 5 2 15.92 17.97 5 3 50.13 51.12 5 1 59.88 61.11 5 5 28.81 2B.33 5 6 25.33 25.37 5 7 -10.61 10.13 1 5 -6 16.28 16.18 1 6 - 1 28.06 26.92 1 6 -2 11.11 12.22 1 6 -3 37.17 36.50 1 6 -1 12.81 11.71 1 6 -S -9.21 6.88 1 7 -1 0.00 2.28 I 7 -2 -10.62 12.00 2 0 3 -2.73 0.81 2 0 1 10.62 39.75 2 0 5 0.00 5.17 2 0 6 15.78 15.31 2 0 7 29.65 27.16 2 0 8 -7.B2 7.63 2 0 9 18.92 17.50 2 1 0 8.51 10.61 7 -1 19.67 18.37 7 -2 11.10 16.92 7 -3 21.28 20.66 7 -1 18.95 18.37 7 -5 28.78 30.28 8 -1 22.53 26.98 8 -2 15.59 16.56 B -3 -9.19 8.86 0 1 3 11.61 10. 91 O i l 17.16 18.35 0 1 5 28.78 29.71 0 1 6 18.31 19.86 0 1 7 73.21 71.82 0 1 8 32.B9 31.59 0 1 9 0.00 5.66 0 5 0 58.13 57.25 0 5 1 67.21 70.32 0 5 2 15.26 16.38 0 5 3 31.36 32.86 0 5 1 11.83 13.B7 0 5 5 31.81 36.17 i 5 8 31.85 32.50 6 0 -11.06 11.21 6 1 -1.06 1.13 6 2 30.58 31.99 6 3 67.16 70.56 6 1 25.05 21.38 6 5 11.31 12.17 6 6 -9.62 3.06 6 7 19.32 18.50 6 8 20.81 18.70 7 0 20.17 11.72 7 1 21.36 19.98 7 2 27.36 27.91 7 -3 -9.19 9.88 1 7 -1 -8.21 5.82 8 -1 -7.35 1.23 2 1 - 1 29.95 25. 17 2 1 -2 108.17 107.15 2 1 -3 58.18 59.30 1 1 -1 30.10 29.20 2 1 -5 -8.18 6.31 2 1 -6 16.66 15.96 2 2 - 1 1 15.86 105. 1 1 2 -2 91.08 B5.60 2 2 - 3 11.91 16.81 2 -1 55.26 53.81 2 1 1 25.78 20.12 2 1 2 10.39 8.95 2 1 3 95.17 99.65 '2 1 1 12.97 16.15 2 1 5 57.17 60.12 2 1 6 -6.10 7.16 2 1 7 15.81 11.71 2 1 9 23.93 23.26 2 2 0 91.25 87.89 2 2 1 22.59 25.09 2 2 2 162.16 151.11 2 2 3 17.01 IB.29 2 2 1 95.10 92.52 u -1 b^.J6 2 0 - 2 65.27 59.26 2 0 -3 31.75 32.83 2 0 - 1 30.99 31.53 2 0 - 5 12.96 12.01 2 0 - 6 60.62 63.32 2 0 - 7 19.18 20.50 2 0 - 8 17.91 15.57 2 0 - 9 0.00 1.99 2 0 -10 0.00 3.B3 2 1 -1 138.07 120.80 2 1 -2 60.71 60.36 2 1 -3 95.81 91.28 2 1 - 1 12.75 13.10 0 5 6 16.13 17.12 0 5 7 36.26 36.65 0 5 8 - 10.72 1 1. 15 0 6 0 -12.11 12. 19 0 6 1 -2.06 3.97 0 6 3 -9.08 13. 12 0 6 1 19.09 19.56 0 6 5 21.78 23.86 0 6 6 19.12 21.87 0 6 7 -3.19 10.62 0 6 8 0.00 3.71 7 3 12.21 9.50 7 1 13.15 12.36 7 5 -8.11 0.65 7 6 0.00 0.85 7 7 18.29 18.37 B 0 11.63 7.56 B 1 IB.17 18.71 8 2 -10.18 9.30 8 3 -5.32 8.17 8 1 -5.21 2.17 8 5 11.75 11.15 1 f\ 11 flD C Q • £ -2 2 -5 17.05 17.79 -2 2 -6 25.16 22.61 -2 2 -7 25.89 26.21 -2 2 -B 27.50 25.22 -2 3 - 1 65.75 61. 12 -2 3 -2 91.00 93.13 -2 3 -3 82.58 81.18 -2 3 -1 -6.71 10.16 -2 3 -5 -6.00 6.37 -2 3 -6 26.11 26.71 -2 3 -7 36.60 35.27 -2 1 -1 17.71 IB.28 2 2 5 65.86 66.72 2 2 6 12.87 12.12 2 2 7 0.00 1.33 2 2 8 38.67 39.58 2 2 9 26.52 25.03 2 3 0 19.57 13.53 2 3 1 150.56 132.27 2 3 2 16.88 13.99 2 3 3 27.31 29.21 2 3 1 77.87 78.07 2 3 5 67.09 66. 17 2 3 6 0.00 1.10 2 1 -5 30.17 31.33 2 1 -6 31.27 35.53 2 1 -7 12.13 13.36 2 1 - 8 31.13 31.65 2 1 -9 -7 .17 0.80 2 1 -10 0.00 1.09 2 2 - 1 173.65 155.26 2 2 - 2 72.39 61.75 2 2 - 3 2B.01 28.36 2 2 - 1 86.51 86.12 2 2 - 5 10.30 39.65 0 7 0 32.81 31.65 0 7 1 -8.21 8.58 0 7 2 20.11 21.35 0 7 3 17.50 20.61 0 7 1 52.13 55.65 -2 1 1 12.11 12.51 -2 1 3 170.55 158.70 -2 1 1 66.61 69.71 -2 1 5 38.12 38.57 -2 1 -2 50.30 50.17 -2 1 -3 22.36 21.11 -2 1 -1 -1.86 7.85 -2 1 -5 -1.62 1.05 2 3 7 28.76 29.70 2 3 8 -5.73 2.68 2 3 9 31.92 31.69 2 1 0 16.61 18.99 2 2 -6 31.18 31.55 2 2 - 7 61.23 60.62 2 2 - 8 12.95 11.20 2 2 - 9 11.92 12.03 2 3 - 1 100.78 95.U3 0 7 5 -1.62 3.59 0 7 6 -1.10 9.21 0 7 7 -5.11 2.15 0 8 0 0.00 1.79 0 8 1 -6.35 3.3b 0 8 3 31.50 36.36 0 8 1 18.32 17.72 0 8 5 16.77 17.01 0 1 -1 206.76 193.38 0 1 -2 71.11 70.61 0 1 -3 87.77 B1.19 0 1 -1 -5.06 3.35 0 1 -5 51.82 52.91 0 1 -6 39.69 1 3 5 6 -2 1 6 23.71 23.59 -2 1 7 22.23 20.85 -2 1 8 17.31 18.51 -2 1 9 21.58 21.91 -2 1 10 11.28 12.58 -2 2 0 135.80 121.11 -2 2 1 102.61 93.53 -2 2 2 72.79 70.01 -2 2 3 88.58 87.92 -2 2 1 79.95 77.66 -2 2 5 58.21 59.33 -2 2 6 26.71 26.95 -2 2 7 29.81 29.76 -2 2 8 38.76 39.66 -2 1 -6 12.IB 9.50 -2 1 -7 -9.21 2. 16 -2 5 -1 21.28 21.01 -2 5 -2 21.10 21.68 -2 5 -3 16.51 16.66 -2 5 -1 -2.01 1.27 -2 5 -5 21.17 20.65 -2 5 -6 11.39 11.57 -2 6 - 1 16.51 12.10 -2 6 -2 11.01 11.16 -2 6 -3 -10.99 9.35 -2 6 -1 16.51 15.18 -2 7 -1 12.60 13.13 _ 1 1 _'> ICJQft 1 £ Ji 1 2 1 1 87.10 78.07 2 1 2 10.01 9.20 2 1 3 32.00 29.72 2 1 U 18.22 18.30 2 1 5 18.29 17.62 2 1 6 -9.3B 9.98 2 1 8 25.25 21.06 2 1 9 13.97 13.19 2 5 0 62.11 61.11 2 5 1 11.13 11.31 2 5 2 10.35 B.80 2 5 3 11.65 12.58 2 5 1 35.21 35.76 2 5 5 18.17 17.18 2 3 - 2 107.02 107.96 2 3 - 3 11.06 10.87 2 3 - 1 10.28 12.33 2 3 - 5 16.83 16.01 2 3 - 6 59.22 63.03 2 3 - 7 13.77 11.88 2 3 - 8 21.76 25.33 2 3 - 9 -6.26 1.33 2 1 - 1 67.17 62.77 2 1 -2 37.17 37.86 2 1 - 3 -1.03 1.25 2 1 - 1 11.08 13.27 2 1 - 5 18.59 11.88 0 1 -7 35.33 36 1 0 1 - 8 13. 1 1 16.00 0 1 -9 -9.76 10.31 0 2 - 1 8.20 11.72 0 2 - 2 21.81 23.19 0 2 -3 - 7 . 59 7.16 0 2 - 1 20.16 19.80 0 2 -5 - 5 . 75 1.39 0 2 - 6 -3.63 1.60 0 2 - 7 -8.61 8.60 0 2 - 8 13.29 11.96 -2 2 9 31.02 31.93 -2 2 10 13.51 11.11 -2 3 0 23.11 22.61 -2 3 1 30.96 31.96 -2 3 2 70.92 68.10 -2 3 3 106.51 103.80 -2 3 1 33.32 31.82 -2 3 5 36.23 36.18 -2 3 6 28.95 29.23 -2 3 7 -7.81 9.79 -2 3 8 39.30 10.50 -2 7 -3 -6.89 9.73 0 1 79.29 69.36 0 2 10.09 12.82 0 3 20.02 23.77 0 1 67.11 76.51 0 5 22.31 25.19 0 6 39.17 39.15 0 7 29.19 29.60 0 8 -10.15 12.23 0 9 15.72 11.61 1 0 38.88 30.16 2 5 6 21.06 20.68 2 5 7 -10.31 8.82 2 6 0 61.91 65.71 2 6 1 26.18 29.B2 2 6 2 21.28 27.81 2 6 3 56.32 56.98 2 6 1 26.92 27.33 2 6 5 -2.97 1.11 2 6 6 52.16 52.65 2 6 7 30.11 29.67 2 6 8 -10.72 9.68 2 1 - 6 13.21 11.87 2 1 - 7 32.65 37.18 2 1 - 8 0.00 3.25 2 5 - 1 32.00 30.96 2 5 - 2 -6.59 5.66 2 5 - 3 12.30 12.11 2 5 - 1 19.55 17.53 2 5 - 5 19.21 18.58 2 5 - 6 13.32 16.13 2 5 - 7 -10.57 10.63 2 5 - 8 -3.67 0.27 2 6 -1 -8.05 3.71 0 2 - 9 0.00 0.18 0 3 - 1 8.26 1.58 -2 3 9 22.31 22.81 -2 1 0 13.66 12.99 1 1 138.B9 113.92 1 2 31.17 33.01 2 - 7 0 37.31 37.37 2 7 1 57.70 57.61 2 6 - 2 16.91 16.61 0 3 - 2 16.68 15.76 0 3 - 3 76.25 78.71 0 3 - 1 95.71 17.26 0 3 - 5 0.00 1.17 -2 1 1 16.29 11.16 -2 1 2 13.73 12.71 -2 1 3 21.11 25.12 -2 1 1 39.19 38.05 1 3 53.11 51.88 1 1 80.03 79.51 1 5 10.09 12.7b 1 6 32.85 31.90 2 7 2 20.55 19.19 2 7 3 0.00 1.29 2 7 1 0.00 1.S1 2 7 5 52.60 53.56 2 6 - 1 19.93 19.95 2 6 - 5 12.78 12.01 2 6 -6 29.61 29.85 0 3 - 6 -9.55 5.86 0 3 - 7 31.68 33.66 0 3 - 8 17.55 15.71 -2 1 5 17.37 18.19 -2 1 6 21.95 23.31 -2 1 7 26.12 26.83 1 7 11.17 10.62 1 8 -8.01 3.10 1 9 18.69 20.31 2 7 6 28.78 29.17 2 8 0 26.50 28.37 2 8 1 -7.12 3.90 2 6 -7 -9.79 8.13 2 7 - 1 21.65 22.82 2 7 - 2 11.85 7.72 o i - i 11.11 a.61 0 1 - 2 12.31 15.72 0 1 - 3 53.75 55.68 0 1 - 1 55.31 58.11 0 1 - 5 36.76 36.28 0 1 - 6 -7.68 8.30 -2 1 8 19.63 20.17 -2 1 9 -9.7B 2.97 -2 5 0 21.91 21.19 -2 5 1 -7.51 5.11 -2 5 2 19.02 18.83 -2 5 3 22.55 20.85 2 0 151.13 138.23 2 1 103.70 102.3B 2 2 56.63 57.11 2 3 -2.10 1.37 2 1 15.61 15.22 2 5 79.73 79.15 2 8 2 -8.11 9.72 2 8 3 -8.25 1.11 2 8 1 -10.15 13.71 2 8 5 19.OB 18.16 2 8 6 18.93 19.29 2 9 0 -8.32 10.86 2 7 - 3 0.00 6.71 2 7 -U 2B.81 31.58 2 7 - 5 17.65 19.39 2 7 - 6 -3.99 1.06 2 B -1 11.77 12.87 2 8 - 2 -6.11 6.53 0 1 - 7 -8.00 7.22 0 1 -B 28.11 27.76 0 5 - 1 31.11 35.88 0 5 - 2 -5.11 1.98 0 5 - 3 39.18 12.36 -2 5 1 38.30 37.66 -2 5 5 35.67 36.89 -2 5 6 -1.85 5.91 -2 5 7 -7.18 2.26 -2 5 8 13.02 11.80 2 6 52.15 53.23 2 7 32.90 33.30 2 B -8.39 0.91 2 9 -6.23 6.06 3 0 177.67 167.90 2 2 2 2 9 1 -2.89 6.08 9 2 17.35 16.16 9 3 -7.81 6.28 9 1 -3.05 2.76 0 -1 8.69 10.16 2 8 - 3 -6.93 0.77 2 8 - 1 0.00 1.23 2 9 - 1 -7.11 8.32 2 9 - 2 -6.52 5.51 3 0 0 61.62 65.58 3 0 1 27.61 28.03 0 5 - 1 50.88 52.21 0 5 - 5 27.13 29.02 -2 6 0 25.16 26.30 -2 6 1 27.55 25.17 -2 6 2 15.98 18.77 3 1 59.15 59.33 3 2 11.93 16.77 3 3 96.99 91.50 0 -2 102.08 107.95 0 -3 82.82 B3.11 0 -1 21.51 20.75 3 0 2 97.1U 97.53 3 0 3 68.57 70.23 0 5 - 6 0.00 7.01 0 5 - 7 -9.08 8.31 0 6 - 1 -9.15 5.58 0 6 - 2 -7.12 10.19 -2 6 3 31.95 33.72 -2 6 1 11.91 16.18 -2 6 5 13.21 13.19 3 1 62.06 61.02 3 5 56.97 58.13 3 6 19.12 19.81 0 -5 39.11 11.37 0 -6 23.00 22.85 0 -7 10.89 11.17 3 0 1 61.10 67.19 3 0 5 21.92 23.39 3 0 6 31.03 35.01 3 0 7 25.37 25.B6 0 6 - 3 11.28 13.39 0 6 - 1 0.00 5.67 0 6 - 5 0.00 5.02 -2 6 6 11.23 15.69 -2 6 7 23.19 23.91 -2 6 8 16.39 13.83 3 7 27.68 26.21 3 8 0.00 1.09 3 9 23.37 21.19 0 -8 26.89 28.70 0 -9 20.61 21.91 0 -10 -6.85 7.51 3 0 B 17.36 18.71 3 1 0 -5.98 6.81 3 1 1 68.A3 65.92 0 6 - 6 0.00 7.56 0 7 - 1 11.08 15.15 -2 7 0 37.91 36.90 -2 7 1 31.37 31.87 1 0 62.99 60.16 1 1 21.75 20.72 1 -2 37.89 36.92 3 1 2 132.87 131.57 3 1 3 93.65 98. 13 0 7 - 2 19.95 19.08 0 7 - 3 -10.31 8.16 0 7 - 1 -7.86 8.85 -2 7 2 -8.55 8.10 -2 7 3 0.00 1.10 -2 7 1 10.51 12.25 1 2 6B.91 65.16 1 3 11.99 10.00 1 1 35.39 37.27 1 -3 61.51 61.76 1 -1 10.56 B.71 1 -5 21.23 25.56 3 1 1 55.56 51.11 3 1 5 28.07 31.71 3 1 6 0.00 1.39 0 B -1 20.78 22.90 0 8 - 2 22.09 21.79 -2 7 5 21.90 25.99 -2 7 6 27.31 29.81 -2 8 0 - 8 . 15 5.7-9 1 5 30.3B 33.05 1 6 38.29 36.18 1 8 33.5B 33.51 1 -6 21.55 23.81 1 -7 15.10 16.51 1 -8 -1.21 3.27 3 1 7 39.76 10.81 3 1 8 29.15 29.11 3 2 0 31.21 29.59 - 151 -h k IF0I 26.88 66.90 74. 16 -3.25 20.27 31.72 28.71 29.83 13. 16 25.97 27.64 21.96 32.22 23. 12 -6.82 0.00 22.35 -9.14 -11.71 33. 48 39.21 81.01 19.60 01.75 18.17 38. U3 16.59 14.06 59.(15 58.95 35. 15 10. BO 13.2(1 92.59 19.75 -5.80 -10.55 12.82 29. 1 1 -5.47 25.87 89.18 -1.21 -5.10 -7.99 17.95 -5.71 15.60 13. 10 18.31 0.00 -8.99 -6.36 0.00 -5.70 12.16 27.32 -8.10 -1 .87 12.11 -10.06 19.32 27.72 -8.76 21.39 -3.03 92.71 160.60 63.57 38.68 33.50 46.02 11. 81 31.57 11.01* 73.01 153.20 57.88 13.21 31.72 38. 37 38.70 -1.78 -8.66 36. 19 55. 11 62.07 -2.63 15.82 -2.93 -1.92 -5.82 21.01 15.09 15.36 17.51 51.05 15.51 39.96 1 1.22 33.21 18.15 27.(»1 - 8 . 10 119.40 57.23 55. 18 -3.46 26.72 32. 19 46.23 49.11 41.06 41.30 63.07 -6.61 21.17 32.87 26.82 - 10.26 40.41 18.15 -8.69 11.08 -10.28 13.89 19.79 0.00 33.93 31.07 -10.04 10.72 29.20 65.33 75.21 3. 18 19. 18 32.19 29.99 32.71 11.19 26.14 21.82 21.96 31.44 22.71 t . 18 S.30 21.73 10.30 15.53 37.40 36.16 77.21 20.53 41.03 20.81 38.56 16.29 11.33 55.96 55.39 31.85 42.41 45.65 90.77 21.44 7.07 7.73 11.06 28.36 3.82 25.83 B9.48 2.60 1.29 4.68 19.39 7.94 15.73 10.83 16. 12 1.09 3.30 5.76 1.52 3.83 13.28 28.51 5.28 4.79 12.08 6.47 20.01 26.33 8.51 21.46 1.33 92.09 158.27 63.3B 38.53 33.59 46.92 44.07 34.9 1 12.27 71.4 1 117.27 57.52 13.81 36.86 40.48 39.98 5. 99 9.62 32.60 53.88 58.78 3.71 12.61 1.59 4.51 7.78 19.86 11.01 42.18 18.50 52.05 17.00 36.31 12.78 33.25 15.61 26.34 12.58 113. 14 55.54 53.9S 2.04 25.82 31.39 46. 37 47.92 37.53 41.20 61.85 6.81 19.68 34.94 25.50 8.55 39. 19 16.73 B.60 34.73 29.70 10.74 1 1.16 21.77 38.21 15. 3B -5.42 20.28 -4.76 24.59 17.92 30.06 32.87 14.20 -6.80 1 1.78 21.21 -15.25 19.79 17.41 22.43 17.35 25. 36 -10.31 13.30 -10.93 91.79 39.42 14.01 0.00 0.00 0.00 23.54 86.64 89.77 92.88 53.26 0.00 1 1.53 63.54 28.28 18.35 78.91 120.22 66.71 40.20 46.94 51.29 46.66 32.98 -9.94 38.01 60.5B 40. 13 35.52 14.82 29.55 17.51 13.34 11.29 31.05 33.78 9.12 23.59 -7.62 28.65 28. B8 -8.50 -9.14 13.81 31.85 40.26 46.98 15.80 -9.29 18.03 -8.49 38. 4 1 42.86 38.90 25.71 15.32 -8.36 23. 15 -7.11 15. B3 41.44 - 10.55 0.00 -7 .57 0.00 15.96 -1.01 0.00 66.BO 18. 36 11.10 -3.50 24.47 21.47 14.81 38.95 59.78 28.65 12.12 54.00 44.49 12.92 13. 16 85.73 63.73 11.11 40.25 51.17 32.07 25.80 25.95 58.04 15. 17 11.53 -3.55 41.82 27.43 26.02 -8.57 20.38 57.26 32.32 14.39 16.68 19.97 16. 31 16.10 65.02 14.31 0 1.47 42.60 -5.66 28. 13 23.60 37.73 17. 15 1.78 20. 14 6.34 26.73 18.42 30. 1 1 21.86 18.55 25.79 3.59 15.50 17.50 90.64 16.71 88. 16 93.49 52.55 1.86 12.26 67.81 26.97 17.21 73.00 1 13.06 65.59 39.92 11.71 51.68 46.17 31.76 8.77 35.39 59.20 38.07 32.73 14.09 28.11 11.22 11.76 15.58 3 1.86 33.58 8.15 23.12 7.99 27.12 27.94 8.06 9. 10 13.69 3 1.20 38.51 46.82 13.26 5.91 16.14 6.86 36.78 01.71 37.26 25.08 11.39 10.71 22.82 9.06 11.49 11.89 B.16 5.22 6.66 18.15 10.97 8.10 25.86 19.60 11.69 13.88 60.26 29.38 11.25 54.70 45.27 13.21 11.31 82.68 63.51 12.30 42.21 52.96 32.78 24.28 26.99 53.72 16.38 8.B1 5.82 41.15 21.54 25.42 0.30 19.05 57.00 31.41 10.62 16.30 18.75 15.30 15. 17 61.71 44.99 41.76 41.06 1.79 28.03 32.93 16.65 19.88 21.43 23.69 20. 19 25.66 27.61 48.62 -7.63 0.00 12.14 19.B6 -7.47 29.53 19.54 -9.70 - 8 . 16 0.00 11.73 20.62 -10.3 1 7.92 59.81 35.82 30.9 1 18.42 19.92 21.63 19.55 21.34 26. 15 48.78 1.78 3.39 13. 14 -10.10 43.69 135.98 151.65 32. 39 IB.84 59. 19 20.48 32. 53 38.02 -6.73 25.24 174.79 75.59 33.51 47.26 59.62 24. 13 - 9 . 14 39.Bl 49.37 126.11 44.9 1 15.35 10.96 30.72 -9.20 -4.61 11.69 20.B7 1 1.61 13.01 25. 13 -8.34 0.00 102.38 59.70 20.93 00. 65 25.51 27.98 25.06 -9 .77 0.00 122.53 51.56 -7.52 35.01 30.53 43.99 31.51 IB. 16 8.74 29.94 20.01 6.89 7. 1 1 0.26 10.72 20.58 6.22 15.72 12.OB 38.51 122.65 146.01 34.33 50. 10 60.80 20.76 32.90 38.21 1.27 29.70 160.50 73. 21 33.78 43.95 58.BO 22.IB 62.65 18.07 10.90 33.67 44.22 122.27 45.70 13.99 1 1.84 29.29 9.06 38.65 87.02 3.20 10.33 22. 19 6.64 13.99 23.02 8.79 2.04 96.27 55.38 20.75 39.41 24.20 26.90 22.08 9.01 2. 36 116.54 51.44 5.62 34.06 29.92 43.53 30.58 -9.B8 9.59 50.09 51.31 89.52 B6.24 -5.27 9.77 25.20 25.61 16.89 16.83 5.05 15.53 25. 10 21.34 17.04 16.49 -7.60 15. 13 0.00 13.24 20.74 0.00 0.00 22.43 -4.39 20.92 0.00 -3.08 -3.87 80.85 13.20 36.79 94.30 103.57 23.72 13.59 15.20 25.21 22. 19 54.94 B6. 15 35.90 68.76 60. 17 16.71 15. IB 10.66 0.00 16.04 42.52 60.46 21.78 25.80 0.00 -9.06 35.32 13.85 0.00 -8.03 54.57 105.96 55.58 32.85 14.50 19. 24 3.22 6.57 22. 17 1.36 19.74 1.42 3.43 6.49 76.40 10.78 35.44 95.82 107.83 24.36 11.60 14. 19 27.44 18.65 54. 14 89.38 31.81 65. 15 59.30 16.66 13.20 9.73 1.08 10.69 40.58 52. 38 20.93 24.92 3.25 9.09 34.78 12.02 3.45 3.37 51.62 98.9 1 56.31 32.30 7.21 11.25 19.15 70.98 84.47 24. 14 31.06 -6.09 34.25 24.35 28.01 9.78 55.33 45. 10 15.19 19.68 0.00 -11.11 -4.49 15.03 10.56 0.00 -10.49 24. 10 -7.07 54. 15 -10.39 - 6 . 50 -9.84 30.80 11.80 44.96 23. 18 -6.49 14.53 -8.77 80.08 9.98 - 5 . 24 0.00 19.25 30.88 11.05 16.32 -5.03 -8.27 33.35 18.06 -5.47 32. 56 47.92 12.89 -6.22 80.27 -3.95 96.06 80.95 59. 1 1 -8.89 27.53 12.56 42.S7 22.73 75.99 92.60 18.89 98.03 -4.80 58.75 53.94 20.25 22.24 19.99 -9.09 72. 16 80.51 21.05 52.54 28.71 44.16 37.95 47. 12 10.69 50.63 1 1.97 40.62 72.33 81.68 25.43 31.47 4.07 35.72 24.43 28.68 9.02 16.26 56.8 3 13.84 19.83 0.95 15.82 9.21 1.03 14.89 20.64 5.81 55.77 7.50 3.79 10.23 31.22 5.45 45.23 24.06 4.76 13. 35 3.85 2.94 24.85 7.99 80.38 9.28 4.90 1.69 21.86 30.72 9.32 15.01 5.29 10.56 33.89 29.88 27.58 35.96 19.27 4.75 32.91 47.69 11.47 55.2B 7.63 27.12 14. 19 19.43 99.77 56.38 1 .52 8.22 48.88 3.24 8.74 52.63 40.50 10.96 8.00 9.61 13.55 66.78 2.96 1.68 10.03 15.38 4.68 28.21 16.92 5.46 72.29 51.31 4.07 5.30 7.89 12.22 17.98 9.66 50.73 27.68 27.99 17.31 8.61 5.03 24.95 2.92 28.04 2.30 8.25 8.24 22.59 2.79 69.04 31.46 6.44 5.08 59.28 58. 39 19.48 24.01 19.40 9.S8 75.50 BO.75 20.05 53.66 29.31 46.39 38.71 47.31 6.91 10.30 21.53 35.03 52.52 3B.26 49.59 54.31 12.49 -5.16 29. 37 12.97 65.05 15.82 - 8 . 17 32.84 46. 34 42.40 20. 33 18.87 0.00 19.79 -2.23 18.36 -9.51 42.85 23.98 -5.27 0.00 23.54 20.72 12.40 36.97 71.22 -1.54 26.85 - 8 . 14 -9.98 32.54 19.24 31.54 30.89 05.26 -6.82 20.48 15.75 - 10.09 -9.91 -8.91 46.05 -2.06 - 9 . 18 -2.66 -9.61 11.28 0.00 15.59 18.97 -5.22 -9.85 -11.18 15.96 -2.20 28.73 53.65 12.01 83.10 37.29 14. 12 46.43 30.45 36.71 -7.88 15.42 -0.74 63.78 23.16 17.95 56.78 67.23 -6.18 0.00 -7.24 0.00 22.58 56.85 21.47 64.99 16.54 65.67 56.89 29.43 0.00 30.06 25. 07 49.54 60.02 -5.58 53.05 46.91 50.59 25.85 44.31 13.28 26. 16 25.76 -8.84 20.67 -6.84 31. 17 37.75 22.36 13.73 15.65 0.00 26.51 30.92 -B.44 18.60 -6.32 19.01 1 1.96 34. 18 24. 15 14.24 11.92 -9.75 -10.41 29.74 34.99 82.75 -6.91 63.01 122.60 33.33 17. 37 11.57 15.86 24.38 32. 19 32.43 -3.21 35.55 54.53 36.B3 50.66 55. 33 10.58 4.70 28.58 13.92 59.58 17.3 1 7.38 31. B9 47.19 45.22 23.30 17.49 0.54 21.22 5. 13 18.05 14.27 10. 10 21.17 5.37 2.05 23.09 20.63 11.55 36.21 69.80 2.49 26.05 4.8B 9.39 31 .75 20. 17 32.74 32.93 46.38 B.05 17.95 16.80 8.34 5.68 7.26 47. 10 4.58 2.83 2.09 B.25 11.92 4.08 15.62 17. 20 5.02 4.67 11.01 17.36 0. 31 31.32 48.66 6.63 80.86 39.38 13.99 46.04 31.33 37.48 7.06 17. 17 8.33 62. 11 22.61 14.75 55.95 68.51 7.95 1. 19 2.74 2.50 23.31 56. 35 19.39 63.77 18.32 67.65 56.94 29.57 2.35 28.53 25.85 49.05 56.60 2.67 5 1.24 47.62 50.92 26.06 44. 24 10.88 24.95 24.77 7. 19 20.08 b.31 29.66 37.80 22.75 10.08 16.47 0.60 25.54 31.63 3.92 18.72 1.47 22.9 1 1 1.63 32. 1B 25.66 14.40 11.23 9.09 12.73 29.57 36.72 73.66 7.27 61.06 120.53 36.98 19.15 12. 21 14.50 - 152 -h k I IFJ IFCI 51. H8 15.26 11.09 32.73 55.96 1 1.67 0.00 -6.64 18.46 20.78 12. 18 1 1.83 56.47 70.01 32.04 44. 12 -9.88 32. 36 63.07 23.9 1 16.67 13. .79 29.28 40.93 32.87 14. 12 -6 . 1 1 18.22 0.00 -9.01 -8.93 13. 30 0.00 -10.91 0.00 17.79 0.00 83.83 55. 35 69.56 39. 19 26. 36 28.99 97.73 36.47 12.75 35.23 -6.54 36.13 111.16 17.99 36.25 32.24 72.94 56.73 50.23 25.59 -7.05 65. 39 19.75 -6.00 -8.92 28. 69 26.45 46.00 0.00 -4.03 -8.85 - 6 . BO -6.11 -2.75 11.94 0.00 15.84 14.50 28.66 17.21 31. 89 41 .56 14.93 -6.28 22. 50 -3.95 13.43 41.08 43.53 -8.14 0.00 16.55 12. 26 1 1 .36 65.92 42.48 14.64 0.00 12.11 32.35 14.27 16.98 39.85 78. 75 27.54 30.61 60.24 -6.95 27. 17 42. 25 20.61 -4 . 87 28.79 1 1.09 62.69 58.79 18.47 18.59 7.6 1 21.66 52.48 16. 14 6.38 24.84 21.39 5.64 2.08 19.17 20. 12 8.53 13. 36 55.24 69.25 30.84 43.86 5.97 30.52 63.23 25.77 16.66 8.57 38.78 45.4 1 42.80 7.02 27.82 43.33 32.75 13. 76 16.64 19. 39 18.23 2. 65 17.90 5. 18 10.96 7. 11 13.91 2.56 8.05 1.62 18.60 3.42 83.95 54.80 69.60 38.43 23.27 28.28 99. 14 3B.00 15.29 35. 24 1.92 35.08 108.91 45.45 36.98 31.8b 72. 13 55.89 26.54 6.04 64.82 19.47 1.3 1 7.55 28.26 26. Bb 44.95 2.7 1 2.75 8.95 2.28 1.52 33.40 1 1.82 5.07 4. 15 10.65 2.51 12.7 1 12. 38 28.04 16.46 30.06 42.03 12.55 4.41 20.74 2.89 14.96 40. 13 41. 32 5.47 6.50 16. 81 12.70 11.10 66.04 10.4a 13.68 0.22 14.10 29. 33 18. 16 12.89 19. 13 40. 1 1 76.25 26.62 30.44 57.42 4.33 25.8 3 4 1.44 18.72 1.93 28.25 10.59 63.50 56. 13 19.78 25.07 17.78 16.76 24. 36 28.26 -10.99 26.95 31.72 39.39 -5.29 -6.06 13.87 24.79 23. 13 0.00 -10.94 21.42 26.64 20. 14 22.96 20.32 16.51 23.87 2B.55 3.02 27.85 31.58 39.06 4.92 5.75 13.28 24.68 24.8 0.00 -4.55 -5.79 32.68 65.88 31.23 30. 15 22.67 -7.71 14.87 13.05 97.56 25.24 27.36 14.25 52.76 29.91 12. 1 1 66.; 61.11 27.61 24.47 27.40 34.9 1 28. 39 0.00 26.76 25. 14 37.64 -8.84 -6.41 -7.3 1 -5.50 -6.97 -1.65 0.00 -9.3 9 31. 36 99.54 50. 65 -7.40 24.09 36.05 21. 55 31.48 19.94 -7.43 14.64 -4.96 - 9 . 87 0.00 -8.39 14.78 -3.69 42.36 -7.79 -4.93 29.98 -5.20 32.06 37.83 30. 39 19.03 23. 15 -9.7 9 25.06 -9.52 -4 . 13 15.81 37. 71 33.4 8 63.58 17.37 23. 15 13.54 56. 58 20.78 14. 50 46.38 50.76 -8.31 21.25 -2.30 -5.07 18. 52 13.3S -6.87 -7.89 -9.04 14. t9 35.99 28.38 -9.93 0.00 25.60 30.41 50.63 22.86 24.67 26.63 36.79 32.27 29.03 0.00 - 3 . 18 25.52 13. 35 -8.04 52.30 60.92 14.46 53.36 .17 10.87 21.02 26.55 17.98 6. 18 5.91 2.20 29.73 61.42 30.39 29.4 1 21.66 6. 35 14.79 11.29 91.34 21.77 27. 17 1 1. 65 56.12 29.92 9.13 63.87 62.26 11.61 19.36 18.92 28. 17 25.0 1 28.17 31.49 30.25 3. 21 24.97 25.07 37.89 12. 16 4 .04 3.94 9.75 3.14 1.01 8.70 9.14 31.17 100.50 19.60 4.76 23.76 39. 1 1 23.14 33.21 16.26 3.03 13.73 2. 14 5.73 8.32 9.91 14.59 8. 13 40.6 1 7.60 4.63 32. 15 3.04 32.15 36. 14 29.62 20.69 26. 06 6.83 25.68 11.44 2.89 18.00 36.23 35.30 61.95 17.56 21.73 1 1. 33 54.4 1 20.30 14.09 46.37 50.39 10.67 18.84 4.57 2.42 12. B4 16. 13 12.05 9.87 13.97 6.75 7. 12 32.60 23.33 13.05 11.44 15.75 36.72 26.45 2.88 24.11 31.54 51.63 21.40 24.52 27.00 36.60 29.34 30.0 1 2.01 6.77 26.00 13.66 4.51 55.22 58.39 15.42 51.23 38.42 29. 33 13.72 32.5B 42. 0 B 21.07 18.70 0.00 15.61 25.73 52.88 18.50 0.00 -10.16 24.36 20.50 -5.91 -4.87 16.46 19.40 10.85 0.00 40.26 67.90 37.94 15.B4 17. 13 116.94 46.00 10.63 19.91 50.39 26. 19 34.90 36.23 16.8B 0.00 26.88 23. 77 32.59 11.42 -9.41 30.48 0.00 0.00 -5.10 -6.03 -3.19 13.92 12.02 18. 10 29.41 - 6 . 18 -4.40 14. 28 13.57 25.04 1 1.20 22.08 62.26 41.79 13.27 12. 12 14.49 35.25 30.44 0.00 -8.86 0.00 -5.76 25.84 10.21 11.79 28.21 22. 55 13.81 -9.60 51.33 31.82 -9.16 40.60 49.19 18.64 14.62 20.62 11.13 39.04 66.44 - 10.72 24.27 12.29 -8.76 14.34 14.57 17.58 16.33 -4.38 - 6 . 24 -8.05 0.00 -6.33 0.00 51.53 34.02 28. 10 17.73 21.98 29.84 28.58 34.25 -7.9B -9.46 -10.6B -5.55 19.99 0.00 19.09 -9.18 0.00 13.25 11.93 44.75 21.95 -10.79 -7.B3 26.45 41.51 49.20 35.58 38.46 2B.57 13.43 33.25 10.03 56.95 74.00 43.11 20.81 23.02 1.36 14.91 26.00 54.65 18. 26 2.34 9.09 24.67 19.18 4.02 3.82 14.82 18.82 6.74 4.89 40.50 65. 21 37.91 9.47 26.55 37.03 15.4 1 14.24 112.50 46.20 10.45 19.54 47.86 25.40 33.79 33.97 15.99 6.71 25. 12 23.06 31.73 5. 19 11.35 32.29 1.27 0.94 4.69 4.07 0.69 12.70 13.97 1.6 1 16.97 14.47 26.03 6.98 21.89 65.33 40.50 14.11 10.55 15.50 31.55 30.28 8.15 10.51 1.69 2.57 27.85 12.51 13.27 29.44 22.27 13.20 B.59 51.69 33.45 10.57 40.98 53.82 19.56 13.75 21.77 10.19 39.42 64.26 10.37 24.03 1 1.29 6.52 1 1.66 15.91 17.90 15.92 2.92 8.49 5.74 30.79 7.60 4. 54 17.86 21.39 29.80 28.09 34.91 1 1 .32 19.07 24. 14 11.80 2.98 t 1.77 3.79 18.4 1 . 0.65 16.57 4.35 11.76 9.13 43. 14 24.93 1 1.00 3. 37 27.84 48.72 51.86 38.57 -6.03 12.36 - 10.91 55.51 45.61 12.25 23.05 19. 12 36.04 -9.96 22.79 22. 32 11.28 - 5 . 10 40.04 19. 60 -9.93 -8.78 22.98 - 10.74 - 5 . 11 12.43 0.00 46. 15 22.67 13. 36 23.89 -5.44 29.07 12. 13 23.45 -6.63 -2.91 -4.25 -7.56 - 6 . 95 37.27 27. 59 -8.28 - 5 . 24 45.93 27. 32 16.75 21. 11 42.52 20.88 21.4 1 1 1.83 - 10.32 -8.42 13. 74 -8.19 13. 66 31.96 26.at -5.78 29. 77 31.13 36.08 19.57 18.83 0.00 22.40 38.6 1 20.30 22.96 0.00 25. 1 1 -10 . 10 21. 10 -3.46 - 9 . BB 14.83 15.79 12.96 - 5 . 10 25.36 18.43 24.70 13.54 -7.99 13.73 -9.08 - 3 . 15 -8.91 14.94 20.04 -9.44 -2.57 35.20 14.42 25.51 21.67 34.65 42.79 13.17 -9.94 28.99 -5.11 1 1.99 -10. 16 14.58 -10.37 16.19 0.00 -10.78 53.71 69.53 63.59 21.3B 35. 24 46. 30 17.01 20.81 20. 84 12.45 94.85 93.57 51.26 26. 92 13.66 27.28 86.08 -8.88 -6.81 -11.07 0.00 55.21 18.05 48.83 10.51 14.43 0.00 53. 16 0.00 8. 25 15.88 60.82 48.36 14.03 23.75 19.58 36. 39 7.19 21.08 22.61 14. 27 0. 39 40.05 21.43 10.29 9.39 22.93 8.92 5.62 12.34 1. 17 15.39 21.78 12. 13 25.99 5.61 30.55 10.51 22.00 0.29 1.85 6.5 1 B.83 12.47 4.99 3.36 36.06 26.71 8.28 3.75 48.63 27.47 19.08 21.53 43.78 23.05 24. 30 12. 15 7.76 6.83 9.66 10.13 8.53 12.63 8.56 14.25 32. 30 27.57 3.79 31.45 3 1.06 35.25 19. 12 19.35 1.54 21.6 1 39.36 18.56 22.62 5. 18 25.79 12.42 20.74 2.45 4. 19 13.21 15. 26 16.80 5.34 26.58 19. 4 1 22.46 14.77 5. 39 7. 10 4.55 0.76 7. IB 16.7B 20.90 B.73 1.29 35.01 11.58 29.08 23.02 31.89 43.63 10.03 9.56 26.87 6.29 12.27 8.81 11.69 10.52 16.51 2. 17 8.35 54.46 69. 14 64.63 20.66 34.23 46.91 18.96 22.04 23.13 12.69 98.48 94.42 53.33 29.95 18.OB 29.39 89.0 1 8.02 3.02 10.76 2.54 58.78 17. 28 44.28 11.51 13.91 8.70 56.02 3.49 18.44 29.65 -2.42 26.58 -4.16 47.30 -0.73 -10.49 -1.64 72. 16 12.07 IB.61 44.58 51.06 12.58 26.82 -6.54 -9.99 10.19 36. 12 36.8B 13.04 36.55 60.51 -3.20 - 8 . 37 66.43 13. 39 -5.35 -6.85 26.24 23.21 16.30 -5.96 24.67 12.87 0.00 -3.93 23.25 -6.92 -4.61 14.42 0.00 31.77 -8.80 0.00 -4.89 -2.87 13.01 -10.58 28. 31 44.68 12.53 22.9 1 15.96 10.80 29.60 18.81 29.31 20.93 -B.56 12.01 35.90 28.39 18.53 -5.76 26. B5 43.52 44.00 24.96 -8 . 16 59.14 47.50 45.23 38.50 14.62 25.49 49. 12 27.29 0.00 -1.34 26.97 28.67 -8.34 - 9 . 34 -10.94 13.93 15.16 -7 .47 10.93 25. 83 -6.19 18.39 -6.46 0.00 -7.53 17.80 18. 17 25.64 40.39 30. 58 -4.26 0.00 29.61 15.94 26.75 -6.90 18.51 25.66 -7.51 -9.34 -4.94 - 10.34 11.32 11. 17 12.10. 30.05 15.22 12. 56 -10.90 - 9 . 23 -7.03 0.39 18.03 27.65 3.65 24.42 4.29 47.20 5.03 8.92 0.92 70.67 12.08 IB.78 45. 12 49.55 10.63 24.78 1.65 8.65 14.91 37.82 37. 13 14.05 37.38 61.37 2.2B 6.85 65.50 13. 17 3.10 8.73 27. 19 26.19 16.20 1.20 22. 18 16.09 2.07 3.57 23.51 4.21 11.01 12.6B 4. 17 32.36 8.48 3.89 5.09 2.26 12.44 12.04 27.4 1 10.23 33.0 1 34.86 81.75 32.00 4.58 18.44 37.92 18.69 25.00 44.34 9.61 23. 13 17.85 9.43 32. 11 20.21 28.21 23. 13 13.21 10.28 37.51 2B.73 18.96 8. 58 12.28 33.72 83.33 44. 31 4.29 27.77 43.88 43.12 25.09 8.81 58.72 18.20 15.12 36.15 16.08 25.95 18.68 21.93 1.25 2.30 26.64 31.00 6.73 1 1.78 9.08 12.25 16.72 6.69 11.52 25.28 0.98 18.65 5.02 0.73 3.34 18.13 17.73 26.25 10.05 30.44 9.07 2. 16 29.79 15.11 29.04 29.41 16.48 14.75 11.62 11.10 7.39 15.39 - 153 -h k I IFel -2 31.43 32.40 -3 45. 79 47. IB -4 33.89 37.93 -5 16.24 14.72 -6 11.13 12.04 -7 38.00 40.46 -8 13.46 14. 13 -9 - 12.45 13.86 2 -1 20.69 20.86 2 -2 35.39 38.60 2 -3 32.90 34.B2 2 -4 60.86 64.45 2 -5 19.40 20.74 2 -6 10.67 11.23 2 -7 0.00 4.24 2 -8 32.86 32. 16 2 -9 20.02 19.70 - 1 37.25 38.55 -2 44. 04 43.69 -3 39.84 40.02 -4 24.59 25.01 -5 55.31 54. 72 -6 -5.80 6.25 -7 16.78 17.02 -8 13.20 13.00 -9 16.04 17.81 a - 1 -6.72 8.08 4 -2 14.29 14.03 4 -3 36.44 37.82 4 -4 18.74 19.01 4 -5 -9.95 9.35 4 -6 24.69 24.32 4 -7 -8.48 1,0.11 -8 -8.06 8. 06 4 -9 14.42 13.84 5 - 1 17. 13 18.6 1 5 -2 29.67 30.29 5 -3 16.44 17.35 5 -4 -4.79 4.49 5 -5 -5.62 8.28 5 -6 39.81 37.20 5 -7 16.24 14.05 5 -8 -7.58 4.22 6 -1 39.49 38.69 6 -2 42.23 42.05 6 -3 38.81 40.08 6 18.74 19.14 6 -5 -9.85 8.09 6 -6 21.89 20.54 6 -7 29.27 27. 1 1 6 -8 23.58 20.99 7 -1 27.50 26.81 7 -2 12.43 13.84 7 -3 20.42 20. 54 7 -4 33.50 3S.30 7 -5 -4.76 3.54 7 -6 0.00 3.02 7 -7 19.54 20. 28 8 -2 22.68 23.56 8 -3 -9.60 7.78 a -4 0.00 0.78 8 -5 -9.87 10.61 9 -1 - 4 . 12 5.86 9 -2 -9.75 0.83 9 -3 0.00 5.28 9 -4 -10.03 7. 17 0 - 1 15.24 14.31 0 -2 0.00 6.05 0 -3 15.85 12.70 0 -4 41.69 43. 32 0 -5 50.58 49.83 0 -6 20.68 22.09 0 -7 12.42 13.02 0 -8 12.13 15.0 1 1 -1 41.52 39.63 1 -2 -7.95 1 1.80 1 -3 42.06 42.57 1 -4 19.25 19.81 1 -5 46.78 48.66 1 -6 25. 89 26.89 1 -7 35.35 37.59 1 -8 -2.49 5.42 1 -9 18.95 19.68 2 - 1 -9.54 8.63 2 -2 24.12 25.73 2 -3 21.67 23.19 2 -4 39.70 40.55 2 -5 21.01 21.02 2 -6 28.59 29.66 2 -7 -5.47 4.98 2 -8 18.08 19.61 2 -9 14.80 11.12 3 -1 24.36 25.83 3 -2 29. 34 28.65 3 -3 -6.44 8.52 3 -4 22.25 20.73 3 -5 27.60 26.04 3 -6 0.00 2.32 3 -7 -3.75 6.27 3 -8 13.63 11.02 3 -9 -8.04 7. 15 4 - | 11.73 13.23 4 -2 -3.00 9. 19 4 -3 49.06 47.98 4 -4 34.31 33.05 4 -5 17.26 19.95 4 -6 12.12 1 1.43 4 -7 24.37 22.4U 4 -8 16.38 15.36 5 - 1 20.07 21.59 5 -2 20.17 19.56 5 -3 27.77 29.08 5 -4 33.94 33.39 5 -5 27.27 27.80 5 -6 -5.47 7.87 5 -7 -6.86 1.17 5 -8 13.64 12.07 6 - 1 20.89 21.53 6 -2 55.37 54.66 6 -3 17.55 16.15 6 -4 15.42 15.52 6 -5 16.40 16.10 6 -6 -2.67 7. 10 6 -7 -9.97 9.76 7 14.39 14.39 7 -2 - 10.29 11.59 7 -3 50.39 52.36 7 -4 -9.41 6.81 7 -5 -6.36 7.83 7 -6 -5.50 1.27 8 -1 16.56 17.07 -4.90 -9.64 17.58 -7.07 32.25 29.20 -4.98 28.29 22.02 12.66 19.82 38. 36 3 1.49 10.83 0.00 20.49 28.45 15.15 -10.89 19.04 26.55 -5.18 18.98 -10.15 -8.54 - 8 . 10 -6.59 16.38 1 1.21 0.00 13.76 49. 11 -9.99 - 10.37 12.50 14.47 25.38 28.47 32.72 13.92 28.28 -6.72 14.55 12.88 14.92 33.77 22.90 35.43 -4.69 - 7 . 17 22.26 0.00 32.77 22.80 19.99 13.92 0.00 -7.56 -6.79 -7.36 22.82 -4.02 -6.59 18.03 21.46 -9.76 13.49 -9.09 20.69 12.21 48.01 33.9S 1 1.97 17. 18 17.80 27. 10 16. 81 13.25 31.03 25.65 23.95 26.43 43.70 -7.30 27.62 -4.98 -9.46 35.21 34. 18 37.52 37.30 -6179 13.39 28. 38 21.43 17.82 28.57 40.81 31 .88 13.04 33.50 23.65 0.00 -7.39 -4.79 14. 18 31.09 19. 27 15.06 18.49 46. 18 74.86 43.78 15.43 10.69 39. 28 19.61 35.80 -10.45 33.39 17.75 17.48 37.75 11.36 20.67 15.44 14.55 -9.16 25.80 0.00 16.02 -9.17 0.00 -1 .17 1.76 2.70 15.87 5.69 32.74 26.24 2.46 28.53 22.66 14.44 18.58 39.81 32. 12 10.22 2.77 19.75 27.44 13.65 12.30 21.01 28.49 3.97 21. 36 9.74 3. 10 7.06 6.68 21.19 12.20 2.22 14.76 54.58 7. 17 7.16 11.65 13.17 23. 12 2B.60 31.48 12.24 26.96 7.61 1 1.60 10.93 15.60 32.54 25. 18 34.78 6.65 6.87 23. 39 3.32 34.57 21.42 19.81 11. 35 3.69 6. 14 1.40 5. 24 21.69 2.92 0.92 18.93 20.97 7.12 9.61 4.42 19.94 12.0 1 49.01 31.64 9.38 16.53 18.23 26.52 19.64 12.51 32.20 25.09 22.99 23.29 44.58 3.55 1.93 1 1.83 9.93 25. 16 1.79 11.83 33.09 33.60 36. 30 36.83 2.59 15.39 26.87 22. 19 19.00 27.9 1 42.50 31.03 14.90 33.17 21.99 9.66 6.36 6.45 12.61 30. 14 17.83 14.27 20.90 46.26 73.48 42.67 14.46 6. 32 41.26 21.21 36.79 7.72 32.77 18. 14 16.45 37.95 11.84 20.55 17.10 16.71 4.97 26.78 2.41 16.52 4.63 17.79 -5.02 33.70 20.89 - 9 . 36 -5.87 -4.68 23.72 30. 36 28.54 34.77 31.77 21.96 - 5 . 17 38.71 44.94 27.22 -6.58 47.81 30.85 -4.62 14.09 -3.88 15.86 -10.56 -7.72 11.99 18.99 30.51 -2.87 0.00 IB. 10 24.67 lb.99 25. 15 -10.43 18.95 0.00 -4.05 17.77 14.64 19.18 1 1.57 12.71 16.89 -9.10 14.79 12.50 19. 12 20.04 18.71 0.00 -8.97 18.25 -4.96 30.30 12.51 28.06 16.56 32.61 42.44 30. 37 18.92 19. 32 14.76 16. 30 -3.74 -7.62 17.34 - 7 . 10 21.03 28. 12 18.27 23.09 -5.92 11. 15 24.60 15. 32 12.56 -6.91 -3.67 - 8 . 24 -8.46 13.62 17.82 - 10.21 -4.30 -2.73 -8.56 -6.81 -11.57 -8.50 1 1. 36 17.28 -5.74 -5.32 14.42 21.05 0.00 13.80 25.57 -10.56 -5.28 15.07 19.23 -7.45 -11.77 13.40 -7.40 -7.56 -5.56 -10. 10 -7.90 -6.57 -9.26 14.62 -8.76 12.56 -11.68 19.52 0.00 - 6 . 12 12.81 -12. 13 0.00 -10.00 16. 34 0.53 34.63 18.74 13.09 2.05 7.76 22.65 30.47 30.35 37.46 33.47 22.59 2.21 38.60 43.14 27.09 0.46 50. 17 30.94 8. 26 11.10 43.60 37.19 33.35 7.31 2.26 15.30 5.76 7.01 10.95 20.07 30.97 25.98 18. 31 24.50 5.67 19.02 5.46 7.52 18.58 15.47 16.83 13.81 15. 19 15.24 8.87 12.45 12. 33 17.85 21.45 20.98 2. 13 8.84 17.13 8.08 30.99 20.48 17.81 5.97 22.86 10.56 3. 10 7.82 40. 16 30.81 13.81 26. 19 18.84 33.60 44.77 29.20 17.36 19.28 14.68 16.92 3.93 2.66 19.00 1 1 .90 21.94 27.47 16.09 23.59 1.6 1 7.58 24.6 3 17.51 10.93 5.53 1.74 2. 1 1 7.87 14.35 14. 20 6.42 0.63 9. 15 5. 20 12.58 IS.74 9.83 11. 20 18.90 12.46 4.67 16.21 21.50 0. 99 13.17 25.35 11.17 6.50 1.99 14.53 19.68 1. 32 14.73 13.12 6.02 7. 11 8.93 4.26 1.58 10.44 12.72 11.80 6.86 11.95 14.S4 21.61 0.99 4.38 15.26 15.40 6.50 5.88 14.02 0.00 - 10.73 13. 22 -6.52 13.06 12.52 21.58 - 10.06 0.00 -3.86 -4.47 4.68 14.77 2.46 13. 25 11.17 7.49 17.25 11.64 3 8 7 16. 23 15.43 3 8 8 0.00 6.40 3 9 5 -5 . 4 2 7.17 3 9 6 26.71 26.84 3 10 0 17.60 19.52 3 10 1 14.17 15.03 3 10 2 -7 .27 1 1.89 3 10 3 -7.94 6.90 3 10 4 1 1.73 8. 17 3 10 5 18. 38 19.44 4 0 9 0.00 4.92 4 1 9 0.00 4.39 4 2 9 -6.20 1.03 U 3 9 28.73 27. 29 4 4 9 12. 40 7.80 4 5 9 17.86 18. 18 4 6 8 17.83 16.11 4 6 9 -7.94 2.85 4 7 8 -4.77 2.38 4 8 7 -10.91 9. 19 4 9 5 12. 90 7.74 4 9 6 -7.49 4. 12 4 10 0 - 2 . 38 3.30 10 -7.85 0. 54 4 10 2 0.00 1.71 4 10 3 0.00 0.77 10 4 - 5 . 54 1.43 4 10 5 -7.84 6.06 5 0 8 -5.98 2.45 5 1 8 0.00 5.57 5 1 9 0.00 1.01 5 2 9 -6.9 9 3.78 5 3 9 - 10.50 8.64 5 4 9 -4.32 5.32 5 5 8 -7.34 9.75 12.51 20.99 28.21 15. 65 16. UO - 5 . 13 0.00 12.73 15.34 - 3 . 53 15.56 - 12.04 19.70 -1 1.06 16.71 14. 57 0.00 0.00 -8.12 - 10.23 - 11.24 -9.97 -8.96 1 1.06 21. 88 28.64 14. 12 16.40 4.03 3.U6 12.53 17. 14 2.23 4.07 1.46 3.08 12.91 4.73 4.42 10.90 4.07 19.46 17.93 11.65 13.66 9.1 -4.71 21.73 - 10.52 13.60 -8.90 14.04 18.01 -4.30 -3.50 0.00 -5.00 18.65 0.00 -8.08 -9.92 -7.97 14.42 -6.36 -4.32 -5.88 -9.77 0.00 13.73 15. 1 1 - 5 . 58 0.00 -8.76 -9.00 -8.71 -1 1. 10 -8.00 12.36 -10.48 21.23 12.82 - 10. 13 -5.55 -4.78 -6.54 - 7 . 25 -5.96 -8.43 0.00 -6.77 -9.74 13.8 4.05 6.07 5.91 17. 15 2.23 20. 14 13. 13 11. 35 7.52 13.85 17.92 3.48 5.57 0. 75 14.47 19. 10 6.93 8.78 7.96 3. 34 9.70 6. 10 13.65 14.45 7.05 0.91 4.66 8.65 6.52 11.11 3.58 14. 30 B.96 20.76 13.03 13.98 7.34 8.27 1.9 1 10.84 7.41 4.73 -5.18 - 7 . 61 -6.b0 0.00 0.00 15. 55 17.23 17.20 -11.87 - 9 . 16 -6.45 -5.27 -10.68 - 9 . 13 0.00 - 7 . 90 17.93 - 9 . 83 13.03 - 10.77 23. 15 14.55 17.05 13. 75 -5.20 0.00 -8.96 0.00 0.00 -9.84 -7.96 17.05 12.94 -9.78 -10.09 18.69 13.09 15.59 21.86 12.84 -5.44 -6.93 -3.71 16.55 -5.29 14.22 - 5 . 15 - 10. 17 -0.75 16.65 19.43 0.00 0.00 15. 20.77 - 10.09 - 10.08 - 10.99 0.00 -10. 11 16.89 -5.87 0.00 -7.53 12.21 -6 . 16 19.52 - 9 . 24 22.81 14.15 -3.97 -10.62 17.46 -1 1.72 0.00 -6.26 -9.81 -S. 22 -7.38 0.00 13.75 19.79 12.50 13.28 - 11.87 0.00 0.00 -5.00 16.84 -9.42 0.00 -3.63 14.46 -9.10 0.00 0.00 -8.68 -10.08 - 1 1.85 -11.97 - 5 . 10 17. 14 21.35 12.20 -7.02 -4.45 12.84 -9.39 0.00 0.00 -7.22 -7.65 IB. 57 14.01 -5.01 27.39 17.63 15.38 17.24 16.51 16.20 17. 83 1 1.72 9.02 0.60 17.7 1 4.63 13.64 12.02 19.96 15.36 15.42 20.61 11.62 1.30 4.34 14.43 5.57 8.US 5. 33 9.27 8. 56 16.52 12.90 3.56' 5.93 19.13 11.00 17.4 1 20.56 21.15 1. 32 15.99 5.92 12. 39 6.30 0.40 0.82 17. 30 18.36 9. 37 7.53 12.64 20.01 6.53 8.69 19.09 13.55 25.BO 4.32 6.25 4.57 0.85 12.48 11.19 1 .44 14.46 3.92 0.S5 5.30 2.57 8.34 10. 25 19.27 10. 18 15.35 8. 37 15.58 6.72 3.05 1.40 13.30 4.57 4.62 14.27 6.56 12.02 14.52 2.24 16.56 19.98 5.83 0.27 8. 1 1 10.64 11.56 6.77 0.62 6.49 1.6S 27.09 16.89 - 154 -h k 1 IF0I 8 8 8 8 8 9 -5 9 -6 10 - 1 10 -2 10 -3 -6.95 -6.43 -7.06 12.02 -5.04 5. 17 5.53 5.89 10.7> 8.23 13 ' 13 13 13 - 1 9 -1 9 -2 9 -3 9 -4 1 1 1 2 1 1 -6.42 - 10.34 -5.02 -9.89 0.00 20. 29 0.09 6.63 3.44 4.35 5.07 -8 -8 -8 -8 -9 5 6 6 6 1 7 2 3 4 9 -6.29 -9.05 - 8 . 10 -9.96 -8.78 6.92 9.94 7.46 9.59 5.96 ' -6 -6 -6 -6 -6 2 2 3 3 -6 -7 -5 -6 -4 -10.65 12.63 -4.75 - 10.63 12.31 10.97 9.39 3.76 8.39 12.67 11.45 -6 -5 - 10.02 4 -9 -9.24 3.89 8 8 10 -5 -6.52 1.14 - 1 3 11 -8.94 -4.26 10.0 1 4.04 -9 2 9 16.43 13.06 -6 5 -3 -8.62 4.42 5 -9 6 -7 6 -8 7 -6 - 9 . 37 0.00 -4.11 12.63 - 7 . 17 7.82 4.02 5.91 9.52 -4.17 9 9 9 9 0 - 10 1 -10 1 - 11 2 -10 -10.94 -3.27 0.00 21.48 8.99 0.88 1.51 21.67 -1 -1 - 1 4 10 5 9 5 10 6 9 13.59 17.33 17.87 ' 30.53 11. 13 17.50 17. 12 29.36 -9 -9 -9 -9 3 3 7 8 0 1 -6.63 -10.01 0.00 0.00. 0.97 11. 18 2.94 2. 19 -6 -6 -7 -7 6 6 1 -1 -2 -6 -7 -11.31 16.44 - 11.70 -10.16 -3.75 7.49 16.29 11.11 6.48 0.18 7 -7 -7.94 3.28 9 9 2 -11 3 - 1 0 0.00 10.19 - 1 B 6 0.00 16.04 0.B8 -9 4 2 - 11.42 10.49 -7 2 -5 0.00 1.36 8 -5 9 - 1 16. 89 0.00 1 3.37 19.63 0.72 10.71 9 9 4 - 1 0 5 -9 0.00 0.00 3.28 0.27 - 1 8 7 9 0 -7.74 24.12 9.78 22.88 -9 -9 4 6 7 -9.78 0.00 4.07 0.65 -7 -7 3 3 -4 -5 14.99 0.00 15.63 11. 36 2.36 9 -2 9 -3 9 -4 -2.92 12. 57 -1.85 0. 1 1 17.14 7. 16 9 9 9 5 -10 6 -9 7 -8 - 5 . lb - 8 . 16 -3.81 0.55 0.B7 1.24 :* 9 2 9 3 -9 .47 -2.48 9.95 3. 76 -9 -9 -9 4 5 5 8 1 2 0.00 -10.17 18.17 2. 12 11.26 13.72 -7 -7 -7 5 -3 -4 -1 20.42 12.50 17.34 19.87 11.85 17.79 ; 10 - 1 0 -11 1-11 2 -10 0.00 0.00 1 1. 87 -11.48 3.47 3.42 9.62 12.09 9 9 9 8 -7 8 - 8 9 -5 1 2.70 0.00 0.00 -1 1.00 14. 35 2.56 5.43 9.42 -2 -2 -2 1 1 1 2 1 1 3 10 -9.27 16. 12 16.17 4.60 15.34 17.58 -9 -9 -9 -9 5 5 5 5 3 5 6 18. 17 -7.76 -7.82 -6.99 14.63 5.99 2.74 9.08 -7 -7 -7 -8 5 5 6 1 -2 -3 -5 19.45 0.00 -1.79 0.00 18.48 0.80 5.86 0.93 : 3 - 1 0 4 -9 -7.96 -7.79 0.42 5.49 9 9 9 -6 10 -1 -5.23 20.60 10.41 18.75 -2 -2 4 10 5 9 0.00 3.03 -10 -10 1 9 10 - 1 1.50 -3.71 12.81 7.22 -8 -8 1 2 -6 -4 15.97 -6.99 15.71 9.73 2 2 : 2 2 2 I 2 3 3 3 3 3 4 - 1 0 5 -9 b -8 7 -7 8 -5 8 -6 9 -3 9 -4 10 -1 10 -2 0 -11 1 -11 2 -10 3 -10 4 -10 13.82 -7.05 -6.76 0.00 -5.01 -10.12 17. 4B -9.53 0.00 19. 28 17.06 0.00 -7.46 0.00 -4.54 12.29 6.28 5.40 3.6 1 8.13 13. 25 16.34 1 1.56 0.96 19.9 1 16.55 6.24 4.59 2.97 3.47 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 -3 10 -4 10 -5 0 -9 0 -10 1 -10 2 -10 3 -10 4 -9 4 -10 5 -9 5 -10 6 -8 6 -9 0.00 0.00 12.9B -2.65 -3.27 20.97 15.82 18.91 21. 28 - 7 . 1 1 13.49 25. 14 - 1.83 20.65 0.00 3. 04 5.84 14.69 0. 63 5.05 20.47 1 1.84 16.24 20. B9 4.26 13.48 25.10 1.65 23.59 1. 80 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 5 10 6 9 7 7 7 6 8 5 8 6 a 7 9 0 9 1 9 2 9 3 9 4 1 1 1 2 11 3 10 -9.95 14.12 14. 39 - 2 . 15 23.94 0.00 -10.65 0.00 -7.07 - 10. 17 -3.72 -5.26 -4.26 13.84 22.70 10.81 15.06 14. 25 3.46 26.24 1.45 6.71 4.00 3.82 7.77 0.22 4.34 5. 17 13.96 23.61 -10 -10 -10 -10 - 10 -10 -10 -10 -10 -10 - 10 -10 -10 -10 -11 2 2 3 3 3 3 3 3 4 4 4 1 8 9 0 1 5 6 7 8 2 3 4 5 6 7 8 11.65 -4.67 -0.86 28.33 14.40 -6.26 30.08 19.25 21.23 16.39 - 8 . 36 -9.06 -9.27 26.04 21. 32 -3.06 6.70 6.4 8 5.10 27.36 12. 58 8.69 29.34 17.45 19.02 15.27 6.20 4.75 9.00 24.93 21.48 1.68 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 ' -9 -10 -10 2 3 3 4 4 5 1 2 2 3 3 1 -5 -3 -4 -2 -3 -1 -5 -3 -4 -2 -3 - 1 -3 -4 -6.35 -S.32 -5.66 13.97 -8.38 -B.43 18.75 14.15 16.45 - 8 . 53 11.61 - 10.48 0.00 -4.36 -7.95 13. 30 7.49 3.89 1.82 15.80 2.93 3.17 17. 10 15.07 16.27 10.24 9. 1 1 15. 1 1 2.09 2.62 3.56 12.14 : 6 - 8 12.83 10.69 10 10 7 -7 7 -8 -4.62 0.00 2.95 1.29 -3 -3 3 11 4 10 15.24 17.45 12.73 20.05 -11 -11 1 2 9 0. -9.29 - 10.63 10.54 6.60 -10 -10 2 2 -1 -2 13.02 13.24 12.36 10.17 . 7 -8 0.00 5.95 5.59 10 10 8 -6 B -7 0.00 15.62 2.81 14.73 -3 -3 5 9 5 10 -7.65 15.82 7.78 11.99 -11 -11 2 2 1 , 5 13.25 0.00 13.62 1. 19 -10 -10 2 3 -3 - 1 -10.B7 - 11.65 8.75 1 0.96 : 9 -3 -5.4 1 19.58 2.40 21.70 10 10 9 -4 9 -5 -6.54 -8.57 5.73 8. 13 -3 -3 6 8 6 9 -6.82 -5.73 8.31 8.70 -11 -11 2 2 6 7 - 11.37 -5.73 13.81 4.73 -11 -11 1 1 -2 -9.94 -4 . 50 10.90 4.93 : 9 -5 13.83 11.51 15.18 10 10 9 -6 10 -1 12. 36 18.30 7.79 19.58 -3 -3 7 7 7 8 -8.46 0.00 11.31 0.93 -11 -11 2 3 8 1 -7.83 3.56 -11 -11 1 2 -3 18.01 -1.23 13.82 3 3 u u u u 10 -1 10 -2 10 -3 0 - 1 1 1 - 1 1 2 -11 3 -10 4 - 1 0 5 -9 b -8 6 -9 7 -7 7 -8 b -6 8 -7 1 3.08 -5.06 - 7 . 16 15.20 15. 38 13. 13 0.00 -4.24 12.79 -4.65 0.00 -7.52 -11.11 17. 31 2 1.99 10.25 2.34 B.57 18. 17 14.B6 8.45 1.29 0.49 13. 38 5.34 0.40 5.06 4. 15 IB.51 20.54 10 10 10 11 11 11 11 11 11 11 11 11 10 -2 10 -3 10 -4 0 -8 0 -9 1 -9 1 -10 2 -9 2 -10 3 -9 3 - 1 0 4 -9 4 -10 5 -8 5 -9 -4.60 -6.83 -6.89 13.92 -5.79 - 1.B5 0.00 - 8 . 17 19.53 -10.66 0.00 13.B4 14.19 -6.70 13.66 3.74 5.80 3.39 12.73 0.88 3.2B 1 .00 3.29 18.61 5.68 2.24 11.24 15.67 3.74 14.02 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 8 0 8 1 8 2 8 3 8 4 8 5 B 6 1 11 2 11 3 10 3 1 1 4 10 5 9 5 10 6 8 -7.77 15.51 16.2B - 9 . 53 -9.67 20.25 0.00 0.00 12.19 14.73 12.04 1 1.60 -5.58 14.76 0.00 3.34 18.19 17.8B 7.48 9. 39 20.42 2.69 1.50 14.21 14.26 8.94 6.60 0.87 14.37 0.28 -11 -11 -11 -12 - 12 -12 - 12 -12 -12 -12 -12 -12 - 12 3 3 3 3 3 1 1 1 1 2 3 4 5 6 0 1 2 3 4 5 6 7 a 15.22 17.28 14. 12 0.00 0.00 -5.31 15.50 29.29 30.47 13.BO 13.07 13.50 16.09 32. 14 14.66 14.42 11.91 0.60 B. 1 1 B.83 13.99 30.66 28.78 11.34 1 1.70 13.19 15.99 30.81 -12 0 0 -2 -2 -2 1 2 2 2 2 9 3 1 6 a 4 1 1 1 5 7 a 2 -1 2 2 2 -7 -8 7 B 7 8 7 11 12.33 19.95 21.97 14.03 42. IB 19.06 23.96 -9.45 15.71 23.20 -10.24 17.16 20. 3B 12.26 1 1.25 20.12 24.79 15.99 36.98 21. 17 22.22 9.BO 16. 38 24.86 12.36 19.37 20.32 7.89 u 4 5 5 9 -5 10 - 1 10 -2 10 -3 0 - 11 1 - 11 -8.55 -6.71 14.77 - 7 . 38 - 6 . 37 -5.67 0.00 7.04 4.90 12.80 1.27 1.57 0.82 3.36 11 11 11 11 11 11 6 -8 6 -9 7 -7 7 -8 8 -6 8 -7 9 -3 -10. 17 - 8 . 12 11.64 -7.4 1 13.27 -10.95 13.32 9.53 6.77 7.30 1.61 10. 19 8.24 11.33 -4 -4 -4 -U 6 9 7 5 7 6 7 7 8 0 6 1 8 2 - 10.36 -8.71 -6.16 11.37 - 8 . 31 -7.50 13.63 9.06 6.99 6.35 4 .47 1.69 9.7 1 13.84 -12 -12 -12 -12 -13 -13 -13 2 2 2 2 1 2 3 4 6 1 2 3 14.00 - 10.87 15.53 15.54 -6.71 -9.25 -1.29 12.78 11.46 13.44 13.22 6.38 10.66 5 5 3 -10 3 -11 17.47 13.83 18.03 13.02 11 11 11 9 -4 9 -5 9 -6 -11.31 -4.57 12.53 6.93 9.17 1 1. 67 -4 -4 B 3 8 4 8 5 12.72 14.70 -4.72 14.83 18.53 2.37 -13 -13 1 1 5 13. 39 13. 58 10.96 10.00 5 5 4 - 1 0 5 -9 - 10. 19 0.00 11.09 9.44 11 11 10 -1 10 - 2 13.37 -8.80 13.58 3.12 -5 -5 1 1 1 2 10 16.03 18.39 14.52 17.92 - 13 1 1 6 -10 -9.04 0.00 8.21 4.24 5 5 - 1 0 0.00 0.91 10 -3 13. 20 13.32 -5 2 1 1 30.27 30.53 - 1 -1 2 2 -9 10 21.04 19. 15 22.82 16.36 5 7 -8 17.29 16.25 12 0 -7 0.00 14.17 7. 39 14. 17 -5 4 9 -5.39 20.72 4. 13 - 1 3 4 -9 -8 -8.78 15.25 8.69 6. 50 5 5 8 -7 - 11.58 9.32 12 0 -8 0 -9 - 1 1.59 18.66 1 1.56 17.97 -5 5 B -5.25 17.98 0.78 15.64 - 1 -1 5 5 -7 -8 26.76 12.37 26.34 10. 90 5 9 -5 -7.40 8.09 12 1 -9 -1.84 -2.94 4 . 28 0.46 -5 6 7 22. 37 22. 1 1 -1 - 1 6 6 -6 -7 13.77 -8.88 12. 10 10. 86 5 5 10 - 1 10 -2 19.05 12.98 17.08 11.49 1 2 12 12 2 -8 2 -9 3 -8 -5.1 5 -6.48 -8.80 2.23 7.63 6.89 -5 -5 7 0 7 1 -B.61 14.59 28.51 9.55 15.54 - 1 - 1 7 8 8 -5 -2 -3 -6.94 -6.97 -5.28 5.57 7.21 2.96 5 10 -4 - 3 . 85 0.93 12 4 -8 -8.37 9.56 -5 7 3 -6.96 8.48 -1 -1 8 9 -1 -6.57 16.96 2.84 15.82 6 1-11 24.43 23.87 12 5 -8 -10.81 13.48 -5 7 5 -9.48 1.70 -1 -2 9 1 -2 -9 0.00 15.65 2.20 15.57 6 6 3 - 1 0 3 -11 -7.82 15.99 3.18 17.35 12 12 6 -7 6 -8 0.00 17.42 1.79 18.20 -5 -6 7 7 14.28 -2.79 17.59 5.90 -2 -2 2 3 -9 -8 -B.21 12.90 8.70 13.61 6 b 4 - 1 0 5 -9 -4.83 15.54 3.08 12.14 12 12 7 -6 7 -7 -9.23 0.00 5.48 1.22 -6 -6 2 10 2 1 1 23.23 - 4 . 15 24.35 3.3 1 -2 5 -7 -9.12 4*. 78 6 6 6 5 - 1 0 6 -9 7 -8 17.83 -9.25 0.00 17. 34 9.33 6.27 12 12 12 7 -8 8 -5 8 -6 -7.76 -B. 30 13.38 2.48 7.81 13. 29 -6 -6 -6 3 10 4 9 4 10 -4.33 -8.01 0.00 5.50 2.86 4.45 -2 -2 6 7 -6 -4 -8.74 -9.22 10.74 5.44 6 6 8 -7 9 -5 17.30 -0.83 16.4b 2.26 12 12 8 -7 9 -1 0.00 21.73 2.04 19. 25 -6 -6 5 8 5 9 0.00 14.67 2.98 18.04 -2 8 -1 20.02 21.72 j? 9 -6 -7.44 6.54 12 9 -2 -6.68 3.86 -6 6 0 12.76 10.96 -2 8 -3 -3.76 3. 1 1 6 10 -2 17.57 18.45 12 9 -4 -7.59 8.B3 -6 6 6 14.64 14.70 -3 -3 1 2 -9 -8 -3.00 0.00 2.44 0.38 6 6 10 -4 11 - 1 -2.96 -4.95 2.52 2.57 12 12 10 - 1 10 -2 13.06 0.00 11.22 2. 1 3 -6 -6 7 1 7 2 -5.89 0.00 7.94 2.09 -3 -3 -3 2 3 4 -9 -7 -8.08 13.59 -9.25 0.94 10.15 4.15 7 7 1-11 2 -11 14. 72 -11.4 5 14.42 10.90 13 13 0 -1 0 -2 -10.01 16. 18 4.07 1 1.00 -6 -6 7 4 7 5 15.6B 19. 47 17.70 17.97 -3 -3 -3 5 6 6 -6 -4 -5 13.88 17.07 -9 .67 13.43 16.39 8.91 7 3 -11 0.00 1.84 13 0 -4 0.00 0.29 -7 1 11 -6.19 0.99 -3 -3 7 7 -2 -3 12. 10 - 9 . 38 7.86 9.87 7 7 5 -9 5 - 1 0 11.97 - 3 . 35 13.82 6.22 13 13 0 -6 0 -7 - 5 . 50 -B.26 5.15 5.28 -7 -7 3 9 3 10 28.71 -4 .6 1 26.99 6.50 -3 -3 -3 7 8 8 -2 - 8 . 13 14.20 -9.38 1 1.55 13.20 11.58 7 7 -8 - 11.35 7.89 13 1 -6 1 1.91 10.92 -7 4 9 14.87 14.26 -4 -4 1 -8 -9 14.44 12.3 1 14 .06 7.46 7 9 -5 -7 .47 8.64 13 1 -8 14. 98 13.79 -7 5 7 -8.78 7. 26 -4 2 3 -8 -7 -10.21 0.00 6.47 1.9B 7 7 7 7 10 - 1 10 -2 10 -3 10 -4 14.05 -11.01 - 9 . 86 13.51 8.63 10.37 7. 12 13.44 13 13 13 13 2 -8 3 -7 3 -B 3 -9 19.43 -4.03 0.00 - 9 . 36 22.78 5.36 5.46 6.B2 -7 -7 -7 -7 6 0 6 1 6 2 6 3 -6.42 17.05 -1.88 17.64 9.57 15. 11 0.O9 17.23 -4 -4 -4 4 4 5 5 6 -6 -7 -5 -6 - 3 16.98 -10.02 22.69 13.08 - 10.55 12.35 2.62 22.52 9.93 9.84 8 0 -10 -8.74 18.79 9.75 19.83 13 13 4 -7 4 -8 - 8 . 39 0.00 • 8. 29 0.75 -7 -7 6 4 6 5 -8.37 -4.61 0. 37 3.09 7 -4 -6.35 14.26 B.09 9.51 8 8 1 -10 1-11 -6.56 1 1.89 0.00 0.9B 9.26 0. 10 13 13 5 -7 5 -B -7.61 10.21 1.24 7.28 -7 -8 -8 6 6 1 10 -10.56 0.00 7.79 3.30 -4 -4 7 7 -2 -3 -6.50 -8.74 5.63 3.96 8 8 2 -10 2 -11 -8.42 0.00 7.84 5.91 13 6 -7 23.-24 17. 38 21.22 -8 -a 2 10 3 9 19. 37 19.97 -5 -5 2 -8 -7 -11.34 -7.99 10.02 10.23 8 8 3 -10 3 -11 -6.28 15.95 5.22 15. 10 13 13 7 -5 7 -6 11.78 -9.25 11.62 7.93 -8 -8 4 7 4 8 -6.66 0.00 7.68 3.90 -5 -5 3 3 -6 -7 16. 33 -6.74 16.85 5.67 8 8 4 -10 5 -9 14.56 10. 57 14. 21 9.08 13 13 7 -7 8 -1 - 7 . 31 0.00 5.05 1.65 -8 -B 4 9 5 0 -4.35 21.11 2.87 21. 15 -5 -5 5 -5 -6 -4 0.00 -6.03 2.39 4.46 8 B 6 -9 7 -8 14.90 10.23 13 8 -2 8 -3 1 1.78 0.00 7.59 2.62 -8 5 2 0.00 0.94 -5 -5 5 6 -5 -2 -5.21 14.38 4.71 8 8 8 -7 8 -8 - 5 . 34 B.87 13 8 -4 -8 -5 10.34 -9.52 5.63 10.90 -8 5 4 22.29 22. 54 -5 -5 6 7 -3 -1 22.20 -7.20 21.16 2.30 8 -6 0.00 2.24 -8 5 6 14.77 13.83 -6 -7 -2.93 3.97 - 155 -APPENDIX I I 2+ 2 — ( ( N P M e 2 ) 5 H 2 ) ( C u C l 4 )-H 20: M e a s u r e d a n d C a l c u l a t e d S t r u c t u r e A m p l i t u d e s f o r t h e O b s e r v e d R e f l e x i o n s . - 156 -h k I \F0\ 3 6 . 5 8 1 2 2 . 94 3 9 . 27 3 0 . 6 3 1 1 . 7 7 15 .61 ( 7 . 2 8 1 0 . 6 8 3 5 . 6 7 I I . 05 1 6 . 6 2 11 .91 6 . 7 3 18 .51 3 0 . 5 0 1 3 . 9 0 112 .66 8 .11 3 2 . 1 8 9 6 . 8 2 2 9 . 0 1 2 6 . 7 6 1 0 . 9 5 1 0 . 0 5 7 . 7 7 2 7 . 0 1 1 7 . 9 8 I I I . 53 3 3 . 3 0 1 5 . 7 0 3 0 . 5 2 3 7 . 1 0 2 8 . 1 1 2 1 . 5 9 9 . 0 7 7 2 . 8 1 1 8 . 13 1 0 . 18 3 6 . 3 7 3 6 . 1 2 2 5 . 0 5 9 . 6 0 1 7 . 6 0 1 5 . 5 8 3 1 . 7 5 2 0 . 3 2 2 0 . 8 5 1 1 1 . 0 0 1 0 . 3 7 15 .03 1 6 . 5 9 3 1 . 7 3 1 2 . 9 7 1 5 . 9 3 6 . 9 2 1 3 . 7 1 3 1 . 12 11 .21 5 9 . 2 9 11 .81 9 6 . 2 2 1 8 . 7 9 1 2 . 9 0 1 3 . 0 6 3 7 . 15 3 8 . 10 1 7 . 5 7 1 6 . 0 0 1 5 . 6 8 6 5 . 5 0 1 2 . 9 6 8 . 3 2 1 5 . 5 9 18. 80 2 0 . 6 7 17 . 62 1 0 . 6 6 1 0 . 6 1 1 3 . 8 9 1 5 . 6 6 15 .31 9 . 0 7 1 3 . 0 1 3 7 . 2 7 2 0 . 4 0 1 9 . 8 9 100 .08 4 0 . 10 2 1 . 8 8 8 . 37 1 7 . 0 1 2 1 . 2 9 1 7 . 0 1 2 1 . 5 9 2 7 . 14 1 5 . 0 6 1 3 . 0 6 2 9 . 16 19 . 10 1 1 .75 1 6 . 3 2 1 9 . 0 2 1 7 . 6 7 1 6 . 3 3 2 1 2 . 9 3 3 2 . 9 7 2 0 . 1 2 2 6 . 16 14. 10 4 6 . 3 4 14 .51 13 .24 6 . 5 8 1 7 . 2 9 5 0 . 4 5 1 2 6 . 2 0 7 4 . 6 7 1 2 . 0 6 6 4 . 7 6 1 6 . 4 6 9 . 6 7 2 4 . 3 3 2 1 . 6 9 1 9 . 1 2 2 1 . 8 0 1 3 3 . 6 6 2 1 . 6 9 1 6 . 7 5 8 . 9 1 1 6 . 9 9 1 6 . 9 3 1 0 . 3 6 1 5 . 6 9 1 8 . 3 0 1 2 . 1 1 1 1 4 . 3 7 3 9 . 15 3 0 . 5 4 1 1 . 0 6 1 6 . 7 2 16 .51 1 6 . 3 3 4 6 . 5 5 4 1 . 12 4 4 . 7 1 2 0 . 2 7 8 . 0 8 2 0 . 8 6 3 1 . 7 1 1 1 . 9 8 1 0 7 . 5 1 1 3 . 6 5 2 9 . 6 2 9 7 . 0 2 3 4 . 8 1 2 8 . 36 1 1 . 9 0 1 1 . 4 6 4 . 9 3 2 7 . 20 2 7 . 1 7 1 1 1 . 0 1 3 1 . 16 1 7 . 1 3 3 1 . 7 9 3 9 . 5 3 2 9 . 7 3 2 1 . 7 2 1 0 . 7 1 6 9 . 4 3 3 9 . 7 4 1 4 . 9 8 3 9 . 9 8 3 8 . 2 2 2 8 . 7 2 9 . 6 5 1 7 . 5 1 1 5 . 6 8 2 7 . 0 5 2 7 . 21 2 0 . 7 2 114. 18 1 2 . 7 5 1 5 . 2 9 0 9 . 0 7 3 6 . 13 1 1 . 0 6 1 6 . 0 5 9 . 0 8 4 1 . 6 3 3 5 . 2 8 1 3 . 0 7 6 1 . 9 9 15. 32 8 1 . 7 2 2 0 . 19 1 4 . 9 3 1 3 . 2 2 4 0 . 7 0 1 1 . S I 1 8 . 3 0 1 6 . 0 0 14 . 18 5 8 . 7 9 1 0 . 3 1 7 . 6 7 4 6 . 4 1 1 9 . 6 9 2 1 . 3 1 1 7 . 9 0 1 1 . 2 6 7 . 7 8 1 2 . 2 2 7 . 9 5 1 5 . 1 3 6 . 6 3 10 . 15 3 6 . 7 3 2 2 . 7 6 2 1 . 4 5 8 7 . 0 6 3 8 . 2 4 2 5 . 0 2 7 . 0 9 1 6 . 5 6 2 0 . 2 4 1 7 . 4 2 2 1 . 15 2 4 . 7 2 1 4 . 3 2 1 2 . 1 7 2 8 . 4 2 2 0 . 2 1 1 0 . 9 9 15 .91 1 9 . 2 6 1 5 . 7 9 1 1 . 3 0 1 8 6 . 0 0 3 7 . 1 9 2 4 . 14 2 6 . 17 1 6 . 2 0 4 7 . 0 4 1 4 . 0 1 1 3 . 2 3 3 . 6 1 1 6 . 8 3 4 7 . 8 0 1 2 3 . 3 1 8 0 . 5 0 5 . 0 3 6 6 . 7 7 1 8 . 0 2 10 .21 2 5 . 2 6 2 5 . 5 7 4 1 . 39 2 2 . 0 3 1 2 7 . 3 7 3 0 . 3 2 1 7 . 2 2 1 1 . 12 4 8 . 3 4 1 7 . 13 1 0 . 3 8 1 5 . 3 2 2 3 . 18 150 .34 5 5 . 10 6 . 4 3 0 4 . 4 6 7 . 7 5 3 8 . 8 2 17 .41 1 6 . 5 6 1 8 . 5 9 3 5 . 2 3 4 3 . 7 6 3 0 . 15 2 1 . 5 0 5 2 . 2 6 2 3 . 8 2 0 5 . 19 5 1 . 7 2 5 2 . 9 9 5 . 6 0 5 8 . 0 5 1 8 . 7 6 2 0 . 8 7 2 4 . 3 5 9 . 7 7 1 0 . 6 0 2 6 . 0 5 1 0 . 4 9 2 5 . 3 5 1 7 . 9 0 4 2 . 6 2 1 7 . 0 9 1 9 . 5 8 9 . 9 0 1 1 . 6 5 6 2 . 5 3 5 9 . 0 5 1 6 . 8 5 8 . 19 7 . 8 6 9 . 7 8 1 6 . 3 2 3 6 . 9 5 0 1 . 17 1 8 . 0 9 3 8 . 0 2 2 0 . 2 6 2 0 . 5 3 2 5 . 6 2 6 0 . 9 6 3 9 . 0 0 2 5 . 18 2 0 . 7 3 1 3 . 8 4 3 0 . 2 1 8 .50 2 9 . 39 2 7 . 3 6 1 6 . 6 7 9 . 1 5 7 . 7 0 2 1 . 0 9 5 7 . 17 1 0 . 0 6 2 7 . 6 3 2 1 . 2 7 10 .54 3 0 . 9 3 2 2 . 2 7 2 6 . 15 9 . 2 6 9 . 0 0 6 6 . 10 2 8 . 6 9 2 0 . 9 0 3 2 . 2 5 2 0 . 2 3 2 5 . 5 0 1 6 . 6 8 7 .61 1 6 . 2 5 8 . 0 4 8 1 . 1 7 2 3 . 2 0 3 7 . 0 6 1 2 6 . 8 7 2 1 . 8 5 6 2 . 0 1 6 1 . 6 0 2 1 . 0 0 3 0 . 10 7 . 6 8 5 5 . 5 0 5 3 . 3 5 3 4 . 9 0 9 . 10 11 .32 7 . 6 0 1 2 . 5 4 3 2 . 9 5 9 . 9 4 7 2 . 0 9 6 8 . 5 8 3 0 . 0 8 0 3 . 2 2 11 .73 13 .81 4 7 . 8 1 9 . 8 0 4 5 . 9 5 2 7 . 2 2 1 7 . 6 3 3 7 . 2 8 1 7 . 4 6 2 8 . 7 9 1 3 . 0 5 8 . 5 5 2 9 . 4 8 2 6 . 8 4 6 2 . 3 1 13 . 10 3 1 . 3 8 0 1 . 9 6 1 8 . 7 6 8 . 13 3 7 . 0 1 2 7 . 2 6 3 4 . 11 9 . 6 0 2 5 . 2 8 19 .71 1 6 . 9 7 5 6 . 5 9 2 0 . 5 9 1 5 . 1 8 1 9 . 9 0 1 3 . 0 7 1 8 . 5 4 1 3 . 0 6 3 0 . 6 0 1 7 . 2 5 3 0 . 2 1 1 2 7 . 7 7 4 8 . 9 9 8 . 0 1 5 1 . 33 1 0 . 2 6 4 2 . 7 6 1 8 . 3 7 1 6 . 7 2 1 5 . 9 6 3 7 . 8 6 5 2 . 0 9 3 5 . 1 8 1 9 . 5 9 5 5 . 5 2 2 3 . 0 6 1 1 . 2 0 5 4 . 6 6 5 8 . 6 0 6 . 3 5 6 3 . 0 8 1 9 . 5 6 1 9 . 9 8 2 3 . 7 0 9 . 1 6 1 3 . 6 1 2 7 . 7 1 3 2 . 0 9 2 5 . 7 0 1 8 . 5 2 1 5 . 7 0 1 6 . 0 2 1 9 . 8 9 1 0 . 5 5 1 2 . 7 0 6 1 . 3 3 6 1 . 3 2 , 1 8 . 9 3 1 0 . 2 3 6 . 5 7 9 . 7 9 1 5 . 0 7 3 4 . 2 6 4 0 . 0 8 1 8 . 7 7 4 2 . 2 0 2 0 . 7 0 1 9 . 8 2 2 4 . 8 1 6 0 . 5 2 4 0 . 3 9 2 8 . 0 0 2 2 . 3 6 1 3 . 2 4 2 9 . 12 6 . 6 8 2 6 . 9 4 2 9 . 8 8 18 .41 8 . 9 5 7 . 2 8 19.BO 5 6 . 0 2 1 2 . 4 8 2 8 . 11 2 0 . 1 0 1 2 . 3 0 3 0 . 5 0 2 0 . 9 8 2 3 . 5 2 9 . 5 2 1 0 . 16 6 4 . 2 3 3 7 . 2 4 2 8 . 2 3 2 7 . 5 4 2 4 . 6 1 2 6 . 5 5 15 .61 6 . 0 4 1 5 . 2 0 7 . 4 2 7 9 . 8 6 2 7 . 8 0 0 1 . 0 6 1 2 2 . 8 1 2 2 . 1 0 8 1 . 6 5 6 4 . 3 5 2 5 . 10 2 9 . 5 3 6 . 3 1 5 5 . 5 6 5 1 . 5 1 4 5 . 4 4 1 2 . 0 8 1 2 . 8 0 1 0 . 0 7 1 2 . 2 4 3 3 . 9 6 1 1 . 10 7 2 . 4 3 6 4 . 3 9 3 4 . 3 4 4 4 . 2 8 1 1 . 3 6 1 3 . 9 6 4 9 . 7 2 9 . 7 9 5 1 . 3 5 2 8 . 0 4 1 1 . 10 3 8 . 8 6 1 8 . 9 4 2 B . 3 6 1 4 . 2 6 6 . 8 9 2 7 . 30 2 6 . 37 7 9 . 5 8 1 2 . 2 9 3 2 . 5 1 4 4 . 4 1 I B . 14 8 . 1 2 3 5 . 4 9 2 0 . 9 8 3 6 . 4 3 1 1 . 0 8 2 6 . 8 5 2 0 . 9 6 16 . 17 5 5 . 9 6 19 . 10 1 5 . 0 8 19 . 13 1 3 . 0 0 1 8 . 5 6 1 2 . 9 1 3 5 . 7 7 1 5 . 7 3 3 6 . 7 5 1 9 . 6 7 1 5 . 0 2 6 . 6 7 8 . 8 9 1 0 . 5 0 2 2 . 6 0 1 3 . 9 8 4 0 . 8 6 9 . 3 4 1 7 . 7 2 2 6 . 2 3 2 8 . 7 7 1 5 . 0 1 3 5 . 0 1 1 1 . 1 2 1 1 . 6 7 1 6 . 8 2 7 . 9 3 1 1 . 19 15 . 25 2 2 . 9 0 24 . 23 2 1 . 15 2 3 . 5 8 2 1 . 4 5 8 . 7 8 1 2 . 6 2 6 . 6 6 4 1 . 5 6 0 5 . 7 5 2 7 . 8 2 0 8 . 9 1 2 2 . 7 9 2 2 . 18 14 .11 1 5 . 0 4 6 6 . 2 2 3 2 . 9 4 5 B . 1 0 9 7 . 2 6 2 5 . 9 4 5 4 . 0 2 2 8 . 7 8 1 1 . 6 9 9 . 4 1 3 8 . 12 1 5 . 1 5 2 9 . 8 2 6 . 7 4 12 . 19 7 . 33 4 4 . 1 1 2 5 . 6 6 1 1 3 . 8 5 6 7 . 8 0 3 5 . 11 17 . 10 2 1 . 0 7 9 . 6 5 1 0 . 7 5 11 .66 1 0 . 6 7 9 . 0 3 0 2 . 5 0 8 . 4 2 1 1 . 2 0 2 4 . 5 1 7 . 5 7 1 3 . 8 0 7 . 7 6 2 6 . 30 1 1 .13 1 1 . 1 6 2 1 . 8 3 7 .71 2 2 . 5 1 3 0 . 3 5 9 . 8 0 2 3 . 2 1 2 1 . 6 5 5 . 9 8 6 7 . 1 6 1 1 . 10 1 0 . 8 8 7 . 3 9 1 7 . 0 6 2 1 . 5 8 6 . 5 2 1 7 . 3 0 7 . 3 0 9 . 1 8 1 0 . 4 3 2 5 . 3 2 1 0 . 1 3 1 5 . 2 2 2 3 . 8 0 1 1 . 5 7 1 4 . 2 8 2 9 . 8 7 2 5 . 5 6 4 0 . 10 9 . 8 1 1 6 . 7 0 16 . 14 1 9 . 4 9 1 9 . 7 1 9 . 9 7 1 6 . 8 7 1 5 . 0 4 2 2 . 18 2 5 . 4 8 1 5 . 1 7 1 5 . 3 3 3 7 . 1 3 . 3 6 . 16 18 .01 2 0 . 7 5 1 6 . 6 2 15 .91 1 9 . 5 6 8 8 . 0 6 4 0 . 1 6 8 . 17 5 2 . 8 4 3 1 . 4 0 3 4 . 0 6 2 0 . 1 2 1 2 . 9 9 8 . 14 3 2 . 13 9 . S B 1 8 . 2 0 1 5 . 6 6 3 3 . 3 2 1 0 . 6 0 2 7 . 5 1 2 1 . 4 0 2 0 . 4 8 8 . 4 5 4 5 . 4 2 5 0 . 6 6 1 5 . 2 4 5 . 5 1 7 . 4 7 1 5 . 0 8 2 2 . 5 3 1 3 . 3 3 4 7 . 0 3 9 . 0 9 1 8 . 0 6 2 5 . 5 8 2 7 . B 2 14. 17 34 . 14 3 0 . 3 3 1 0 . 6 2 1 7 . 2 2 7 . 3 4 9 . 2 0 1 6 . 0 1 2 0 . 1 5 2 5 . 1 3 2 1 . 2 6 2 3 . 0 7 2 1 . 0 8 8 .31 1 2 . 7 3 2 . 83 3 5 . 5 2 3 6 . 2 1 2 6 . 9 3 5 0 . 9 6 2 1 . 6 0 2 2 . 1 9 13 .11 1 1 . 7 7 6 1 . 13 1 2 . 8 9 5 9 . 3 0 9 7 . 2 2 2 6 . 1 5 5 4 . 4 1 2 9 . 17 1 2 . 0 9 9 . 7 9 3 5 . 8 9 1 2 . 3 3 3 2 . 7 6 6 . 6 3 9 . 5 3 0 0 . 9 2 2 5 . 6 0 1 0 2 . 0 9 6 7 . 6 2 3 3 . 0 7 1 7 . 7 6 1 8 . 4 7 9 . 0 3 1 2 . 0 8 1 1 . 6 0 8 . 6 9 7 . 0 0 4 3 . 0 3 9 . 9 1 1 1 . 6 0 2 6 . 0 9 9 . 6 7 13. 36 5 . 9 2 2 9 . 4 8 1 1. 17 11 . 92 2 5 . 8 8 7 . 0 9 2 5 . 2 0 2 9 . 5 4 9 . 3 9 2 2 . 0 9 2 3 . 2 3 7 . 2 8 6 4 . 7 9 1 1. 13 1 6 . 2 7 7 . S 6 1 7 . 0 2 2 1 . 19 5 . 3 5 1 8 . 0 2 6 . 2 6 7 . 5 0 9 . 5 1 2 4 . 7 1 1 7 . 3 8 1 5 . 8 7 2 3 . 9 3 14. 10 1 5 . 5 9 2 8 . 6 7 2 7 . 15 4 1 . 9 8 1 1 . 2 0 1 0 . 7 0 1 3 . 9 9 1 8 . 7 2 19 .71 8 . 7 9 1 6 . 5 7 1 5 . 6 7 2 0 . 7 9 2 7 . 39 4 0 . 0 7 1 5 . 2 6 3 9 . 0 3 3 5 . 8 1 1 9 . 9 5 2 0 . 9 1 1 5 . 8 8 15. 19 2 1 . 5 3 8 4 . 9 1 3 8 . 6 2 8 . 4 6 5 3 . 9 6 3 2 . 3 5 3 7 . 3 7 2 0 . 7 6 1 2 . 9 8 7 . 10 3 0 . 2 9 7 . 5 2 1 7 . 5 8 16 . 32 3 0 . 2 7 9 . 0 9 2 9 . 9 7 2 1 . 6 8 2 1 . 1 0 5 . 0 0 0 7 . 3 2 0 9 . 0 1 3 2 . 4 7 6 . 6 1 7 . 10 3 1 . 7 6 1 4 . 2 0 1 2 . 16 1 7 . 6 4 7 . 5 3 7 . 5 0 1 2 . 2 7 1 7 . 2 8 9 . 7 0 5 0 . 5 5 1 1 . 3 5 1 2 . 2 7 1 0 . 2 2 1 4 . 2 8 1 8 . 7 4 4 7 . 9 4 2 0 . 6 6 2 9 . 8 0 2 0 . 36 1 5 . 9 9 3 0 . 4 3 1 1 . 0 9 2 1 . 3 1 8 . 3 9 3 7 . 31 9 . 3 6 1 0 . 0 5 1 1 . 8 5 1 4 . 9 3 1 2 . 2 8 1 1 . 2 5 1 9 . 7 9 10 .71 9 . 15 7 . 7 9 1 6 . 4 2 4 0 . 5 2 6 2 . 0 7 8 . 6 7 3 2 . 5 9 1 0 . 8 0 1 4 . 3 2 7 5 . 9 8 2 5 . 6 7 3 1 . 9 9 6 5 . 7 2 1 3 . 0 7 7 . 7 8 18 . 33 1 2 . 2 0 2 4 . 0 9 3 1 . 12 9 . 6 5 2 7 . 3 0 9 . 5 2 1 0 . 5 8 7 . 7 5 1 1 . 8 6 1 6 . 0 6 0 6 . 5 3 8 . 0 8 3 3 . 0 2 1 3 . 0 9 13 . 39 1 9 . 2 0 1 0 . 6 8 2 0 . 6 6 1 0 . 7 8 15 . 15 2 7 . 8 2 2 7 . 5 2 3 1 . 0 2 1 6 . 7 1 . 1 0 . 0 5 8 . 9 3 2 0 . 7 0 3 0 . 8 3 1 0 . 6 8 1 6 . 7 6 2 0 . 8 5 1 1 . 0 2 9 . 19 1 5 . 7 5 1 5 . 4 3 8 . 3 2 7 . 9 8 3 1 . 6 7 7 8 . 5 8 2 2 . 9 1 1 7 . 2 3 11 .31 7 . 6 5 1 0 . 6 3 1 1 . 16 5 2 . 8 1 9 . 17 17 . 17 1 2 . 4 2 2 5 . 7 8 1 4 . 9 3 8 . 0 1 1 6 . 3 2 1 1 . 1 9 2 6 . 0 1 7 . 3 3 7 . 7 9 2 8 . 5 7 8 . 1 3 1 7 . 6 0 2 4 . 14 1 1.76 1 7 . 8 8 1 0 . 2 9 2 3 . 19 7 . 3 6 7 . 4 5 7 . 3 9 3 2 . 0 7 1 0 . 9 2 2 9 . 16 2 8 . 6 0 1 5 . 0 7 1 6 . 9 8 7 . 6 6 13 . 10 1 0 . 8 7 3 3 . 4 5 1 6 . 0 7 1 0 . 5 8 1 6 . 3 5 1 3 . 4 0 1 1 . 3 0 8 .81 2 7 . 9 7 1 9 . 7 9 1 6 . 2 5 1 7 . 8 7 2 0 . 2 2 3 5 . 6 3 5 . 35 6 . 5 7 3 2 . 7 8 1 3 . 6 3 4 2 . 2 4 1 7 . 0 2 5 . 7 8 7 . 5 6 1 1 . 6 8 1 9 . 1 2 1 1 . 0 4 5 0 . 7 3 1 5 . 7 2 0 4 . 4 1 8 . 3 5 10. 30 1 9 . 2 4 4 7 . 5 1 2 0 . 10 3 0 . 7 5 2 4 . 3 6 1 6 . 2 2 3 3 . 6 6 1 1 . 9 9 1 9 . 6 6 8 .31 3 7 . 4 2 8 . 5 4 12 .21 13 . 15 1 6 . 3 3 12 . 35 1 2 . 2 6 2 0 . 2 9 9 . 5 7 9 . 1 8 7 . 2 4 15 .71 4 0 . 5 7 6 1 . 4 4 9 . 3 5 3 2 . 2 1 1 5 . 7 4 1 3 . 5 6 7 1 . 6 8 2 6 . 3 7 3 3 . 12 6 4 . 9 2 1 2 . 8 3 5 . 4 2 1 7 . 7 5 1 1 . 18 2 3 . 2 7 3 2 . 6 4 1 0 . 3 4 2 7 . 9 3 1 0 . 15 4 1 . 2 9 8 . 9 9 1 2 . 7 2 1 7 . 5 5 4 6 . 0 6 6 . 9 3 3 3 . 5 7 1 3 . 9 9 12 .01 17 . 33 9 . 1 1 2 0 . 7 2 15 .61 1 6 . 9 8 2 8 . 8 9 2 7 . 7 0 2 9 . 9 2 1 1 . 9 5 9 . 11 9 . 2 2 2 1 . 9 5 2 6 . 3 2 1 0 . 7 7 1 5 . 7 8 1 9 . 0 5 1 3 . 9 0 7 . 9 0 1 5 . 8 0 1 3 . 4 6 8 . 8 7 7 . 6 6 3 0 . 0 0 7 6 . 2 9 2 2 . 8 6 1 6 . 5 1 1 2 . 0 5 6 . 8 6 3 0 . 2 3 10. 16 5 3 . 2 1 7 . 7 0 1 5 . 9 6 1 3 . 9 5 2 5 . 8 0 14 .91 7 . 3 4 1 5 . 9 9 9 . 13 2 4 . 4 8 5 . 5 3 7 . 7 2 2 8 . 7 7 7 . 6 3 1 7 . 4 3 2 2 . 9 3 1 0 . 0 7 16 . 30 9 . 9 2 2 2 . 36 5 . 9 0 3 . 6 1 7 . 7 1 3 1 . 5 0 1 0 . 1 6 2 6 . 2 4 2 7 . 6 0 1 6 . 1 8 1 7 . 3 8 6 . 8 6 1 1 . 8 2 1 1 . 7 2 3 0 . 7 6 10 . 14 1 0 . 6 5 1 5 . 3 7 1 1 . 6 5 1 2 . 0 8 S . 8 5 2 7 . 0 5 2 1 . 9 2 1 3 . 9 9 1 7 . 6 5 2 0 . 0 4 1 5 . 3 5 9 . 10 2 1 . 7 1 8 . 18 8 . 6 9 1 7 . 9 2 2 5 . 6 8 2 8 . IB 9 . 3 1 8 . 0 9 1 9 . 9 7 2 1 . 2 0 9 . 2 9 2 0 . 2 5 2 2 . 0 9 1 0 . 2 6 1 3 . 0 6 15 . 38 8 8 . 7 8 1 4 . 5 9 3 9 . 25 6 . 7 5 7 1 . 5 5 7 . 1 1 1 8 . 8 2 1 8 . 7 1 1 6 . 6 3 2 1 . 0 7 7 0 . 9 1 5 8 . 1 1 8 5 . 2 6 3 0 . 6 0 2 2 . 31 4 0 . 7 3 1 3 . 7 8 5 3 . 2 8 2 9 . 35 S 5 . 1 0 4 6 . 2 9 9 0 . 6 0 3 8 . 0 9 4 0 . 0 3 8 5 . 6 5 4 0 . 6 1 1 9 . 3 9 1 4 . 2 8 6 0 . 0 9 0 8 . 3 0 3 5 . 0 0 1 6 . 6 8 15 .01 9 . 9 7 10 .31 5 7 . 4 0 6 9 . 7 8 0 0 . 2 5 6 1 . 1 5 2 7 . 0 8 4 0 . 8 7 2 6 . 9 5 2 2 . 2 1 1 0 . 6 9 5 0 . 7 0 8 . 8 6 7 . 1 1 1 0 . 0 7 1 1 . 0 3 7 - 2 5 2 . 9 8 3 5 . 5 5 1 2 2 . 0 9 1 6 2 . 6 3 1 3 . 0 5 7 . 0 5 2 2 . 5 3 7 . 7 5 7 . 6 8 1 7 . 0 8 2 5 . 12 2 7 . 6 8 8 . 6 5 7 . 16 1 7 . 0 0 1 9 . 8 2 8 . 8 0 2 0 . 8 3 2 1 . 6 9 9 . 9 9 1 1 . 9 7 1 3 . 4 3 7 4 . 9 3 1 2 . 5 3 3 5 . 5 8 5 . 2 2 6 4 . 8 7 8 . 31 1 6 . 17 1 7 . 9 5 1 2 . 9 8 2 2 . 4 3 6 8 . 1 3 5 2 . 4 3 7 8 . 8 8 3 2 . 7 5 2 1 . 6 2 3 8 . 5B 14 .01 4 3 .31 3 6 . 7 7 5 5 . 2 7 4 6 . 2 1 6 4 . 5 0 3 7 . 0 4 0 5 . 9 2 6 5 . 7 3 3 0 . 2 1 1 7 . 0 0 1 3 . 0 2 5 6 . 0 6 4 9 . 0 9 3 4 . 2 5 18 . 16 1 5 . 4 5 1 0 . 7 6 1 1 . 16 5 9 . 2 6 6 7 . 0 4 1 2 . 6 3 6 1 . 0 8 2 7 . 8 0 4 2 . 7 5 2 7 . 13 2 1 . 7 1 1 1 . 2 7 1 5 . 0 4 7 . 7 9 4 . 7 0 1 5 . 7 9 1 4 . 7 7 2 0 . 16 18 .91 6 5 . 2 8 5 6 . 4 6 1 1 . 0 9 3 8 . 6 6 4 1 . 5 0 2 8 . 0 3 4 7 . 3 2 2 1 . 8 6 1 8 . 6 2 1 4 . 6 9 5 3 . 8 6 4 1 . 6 0 5 3 . 7 1 2 1 . 3 1 8 . 9 1 13 . 16 B .74 3 3 . 9 6 6 4 . 3 5 1 3 . 2 0 3 2 . 8 2 1 7 . 5 2 1 4 . 5 1 6 5 . 8 5 3 9 . 6 5 4 1 . 4 4 2 4 . 9 9 2 6 . 6 0 1 1 . 37 1 6 . 8 2 1 3 . 7 4 2 4 . 3 2 1 7 . B5 4 8 . 9 3 2 6 . 19 2 5 . 0 2 1 5 . 12 14 .01 2 4 . 7 2 1 0 . 8 0 2 2 . 0 2 1 0 . 5 0 2 1 . 2 2 3 5 . 18 1 5 . 2 5 6 . 0 2 7 . 9 8 19 . 12 1 5 5 . 8 7 7 6 . 1 7 1 3 7 . 5 1 6 0 . 0 7 1 8 . 6 5 2 4 . 7 9 2 2 . 0 4 4 7 . 8 4 1 1 .57 1 5 . I t 2 9 . 3 9 7 5 . 12 4 4 . 0 2 3 3 . 5 1 4 3 . 3 1 4 5 . 2 2 1 4 . 9 8 1 1 . 2 0 2 9 . 6 8 9 . 6 7 7 . 13 3 6 . 4 9 1 0 5 . 5 2 127 . 16 - 157 -h k I IFel ' 10.81 97.31 41.27 I 78.24 20.80 19.20 9.23 28.82 31.38 52.93 22.74 7.60 58. 18 16.31 6.78 17.80 11. 30 31.72 38.34 27.34 57.35 19.09 7.03 30.87 12.20 62.43 9.06 54.93 34.06 40. 13 16.47 69.31 26.61 13.68 20.00 6.44 29.20 72.25 26. 15 39.99 10.32 7.00 14.09 20.55 88.86 34.79 18.06 67. 30 7.35 35.36 15.97 12.81 39.32 12.59 34.85 11.67 13.60 9.04 17.80 25.29 13.21 11.37 14.65 9.45 10.28 21.63 16. 16 22. 94 13.97 9.04 24.05 21.34 44.46 31.93 32.84 13.61 21.70 B.06 23.09 8.07 33.65 12.66 39.94 20. 19 14.73 21.62 16.47 8.80 26.95 10. 19 9.31 191. 16 39.84 B7.70 38.29 49.41 38.31 33.51 16.60 46.55 78.07 29. 35 50. 10 63. 13 42.52 11.34 25.03 9.70 84.26 21.43 43.94 60.06 40.57 13.35 19.09 29.20 31.80 29.09 . 72.74 40. 18 23.13 35. 37 5.85 16.08 12.69 8.70 64.72 47.06 64.60 25.84 9.46 70.05 26.14 11.53 7.07 84.94 41.07 72.24 19.33 18. 19 13. 11 31. 11 25.93 54.52 21.47 8.27 54.07 15. 17 3.83 17.90 13.68 29.01 39. 14 27.36 53.33 20.39 6.28 29.04 12.48 63.35 5.41 54.42 36.00 40.45 16.78 69.57 25.95 13.79 IB. 95 6.32 28.44 73.07 29.33 40.24 10.43 8.65 13.92 18.64 64.70 35.64 18.62 68. 34 7.57 38. 17 13.59 13. 17 38.70 10.28 35.57 13.44 14.62 9.24 18.85 26.91 12.65 11.88 15.82 7.62 10.36 22.41 19. 18 24.49 14.64 10.05 24.63 21.64 45.60 32.38 35.63 13.80 23.63 9.63 23.31 10.62 36.81 15.38 39.37 19.43 14.40 22.81 16.91 7.75 27.26 12.94 9.39 148.80 45. 19 63.56 33. 14 46.89 35.26 30.66 15.43 42.39 72.64 22.52 42.07 56.63 40.21 11.37 23.25 8.59 74.24 8.85 47.65 56. 17 33.84 13.44 19.29 29.26 30.97 26.28 64.84 48.24 28.19 36.27 2.45 13.31 12.31 6.42 61.71 52.24 66.53 26.67 10.25 69.05 27. 11 10.43 14.87 20.83 46.92 50.40 44.43 5.BB 28.S9 34.74 28.50 16.63 5.67 9.48 56.43 24.91 38.13 33. 15 10.13 17.75 11.04 13.49 18.69 54.01 24.66 11.52 48.96 16.04 13.83 16.78 22. 11 18. 10 21.57 38.76 17.34 7.42 10.96 24.25 19.64 11.30 7.21 25. 11 33.52 28.81 8.02 20.01 29.35 25.40 9. 14 14.46 21.28 24.11 14.51 24.52 22.83 25.59 13.27 15. 10 52.29 81.60 66. 16 7.55 35.36 16.61 25. 12 20.85 69.66 53.51 27.05 21.19 31.21 24. 17 45.70 18.01 8. 15 92.71 50.24 7.64 11.22 8.16 43.22 14.06 10.01 9.58 101.68 8.07 41.33 25.27 6.42 7.06 19.73 14.21 105.77 68.82 58.97 11.21 18.24 18.46 9.38 18.64 5.23 9. 14 12.04 12. 19 13.56 63.52 16.36 20.99 34.52 34.31 16.36 10.63 15.61 40.77 10.48 15.46 6.70 10.78 41.94 40.05 6. IB 21.27 29. 12 12.67 9.06 7.50 26.24 24.05 29.92 30.93 18.OB 10.78 7. 19 18.05 9.38 8.54 24.89 10.67 16.46 8. 14 14.49 19.26 49.56 54. IB 4B.17 7.67 29.77 33.88 28.75 16.94 4.09 10.72 58.59 25.42 39. 12 33. 16 11. 14 17. 17 11.58 13.21 20.94 60.80 26.05 11.38 49.04 16.91 13.29 16.68 22. 38 19.60 23.04 43. 33 19. 11 8. 16 11.84 26.71 20.08 11.56 8.24 27.51 34.4 1 31.78 6.90 23.06 31.23 25.57 8.89 15.50 23.06 25.23 14. 17 25.48 22.67 26.08 14.27 14.41 47.73 70.56 63.05 8.04 34.83 16.51 23. 12 19.81 85.46 53.89 25. 11 21.09 32. 18 22. 17 45.85 t6.29 8.91 85.60 51.79 9.48 7.57 8.60 42.65 16.48 9.06 8.43 34.29 29.38 95.80 6.92 41.76 26.89 8. 17 6.20 17.57 13.41 100. 12 70.93 61.60 12.48 18. 10 18.68 7.05 21.21 6.63 11.05 12.56 14.06 13.48 64.87 14.95 18. B9 39. 12 36.89 17.52 9.66 17.87 43.62 11.03 15.72 5.64 11.36 46.43 45.53 6.4S 23.92 30.69 15.43 8.B9 7.09 29.33 27. 10 33.62 33.02 19. B2 12.81 7.65 20.20 9.06 9.62 26.73 10.21 16.84 9.60 26.18 13.06 21.58 18.67 11.17 19.48 14.02 60.43 27.5B 27.53 68.85 37.18 6.53 27.60 15.32 12.64 71.08 45. 16 71.26 29.78 60. 78 41.06 40.74 14.76 27.77 30.76 16.79 21.21 9.43 20.19 13.55 13.41 19. 16 71.26 8.46 43.69 22.90 11.80 17.64 20.09 27. 76 31.75 16. 16 60.24 31.69 36.80 15.87 17.82 29.45 10.76 12.27 27.75 43.45 18.04 11.24 54.97 19.99 12. 18 39.76 23.77 35. 12 12.55 13.74 7.56 14.51 22.37 12.69 11.58 43.76 14.45 39.79 11.66 12.69 ' 19.93 11.63 9.53 16.72 6.91 12.33 22.21 13.45 36.70 50.62 66.40 54.69 8.06 26.83 15.39 15.87 24.66 17. 13 23.51 27.39 24.61 57.51 13.94 8.78 27.52 31.78 26.32 41.80 24. 16 19. 11 26.03 13.93 12.49 9.41 16. 37 9.41 28. 38 41.91 28.08 32.36 4 5. 85 19.42 28.45 30.24 15. 19 37.38 26.09 11.13 16.31 33.33 18.59 13. 13 17.55 10.89 23.86 39.77 25.98 32.75 11.93 28.20 15.21 7.25 18.78 23.47 15.47 15.99 35.71 9.59 26.70 14.49 21.96 20.57 10.04 20.48 16.66 56.04 22.09 26.42 63.08 34. 13 4.68 26.66 13.90 10.77 6S.71 44.24 68.88 28.64 55.21 39.91 39.06 12.76 25.20 32.69 17.40 20.33 10.04 21.04 11.48 12.44 22.24 68. 17 6.37 45.18 26.23 11.78 17.25 19.94 26.83 31.55 16. 00 61.81 32.00 36.92 14.67 18.72 29.06 9. 30 12.35 29. 14 45.39 16.62 10.54 57.31 22.74 12; 79 44.53 25.90 36.39 12.96 15.65 8.57 15.04 24.28 13.86 13.28 45.48 16.43 40.88 12.74 13.53 20.35 11.47 10.72 18.31 7.20 12.93 23.46 12.02 36.39 47.04 61.09 48.76 7.40 26.45 13.75 16. 14 23.98 17.34 23.06 25.53 22.04 54.69 13. 88 8.28 25. 77 30.08 26.08 36.90 22.00 20.57 26.57 14. 17 11.49 8. 16 13.80 10.81 27.20 41.67 28.39 32.82 45.82 18.08 27.29 31.53 10.77 00.60 25.00 11.20 15.87 33.73 20.73 12.63 15.91 11.94 22.78 39.05 27.36 30.53 11.52 30.07 10.89 8.80 18.05 23.37 10.87 16. 18 36.23 9.95 15.71 33. 11 16.85 10.22 25.68 9. 19 19.50 27.31 12.69 12.10 15. 89 11.53 10.84 28.66 32.08 22.02 23.28 21. 35 8.66 30.48 6.86 51.96 11.70 23.05 38.25 11.20 35.00 16.36 17.91 37.34 18.08 29.12 39.95 17.27 24.43 14.54 8.07 24.30 8.06 16.78 20.19 27.72 8.79 16.78 20.67 17.42 30.67 12.47 19.22 9.87 29.51 17.00 29.90 8.60 6.96 25.82 15.60 8.76 23.65 19.51 7.21 23.72 18.57 25.28 12.60 30.00 14.22 19.86 25.46 9.88 21.28 25.36 23.24 20.29 16.84 30.00 9.93 6.98 12. 15 30. 12 24.24 29.28 25.96 11.57 13.41 7.99 9.95 34.53 20.90 9.69 9.45 10.00 12.66 8.23 20.79 7.62 29.68 12.38 27.75 23.56 32. 10 10.61 30.35 55.36 99.64 11. 17 70.47 14.26 26.20 6.22 25.41 16.61 13.68 14.56 62.00 64.80 56.73 28.32 37.68 IB. 07 8.33 10.31 10.88 19.04 149.82 6.61 142.46 9.63 61.66 7.67 27.35 14.27 14.07 39.00 45. 10 7.15 25.20 40.61 37.44 15.46 9.00 18.04 32.66 16. 15 11.93 27.50 9.30 20.21 26.80 12.99 11.99 16.52 11.61 10.36 27.20 29.54 20.25 21.61 19.37 9.30 31.39 5.93 50.90 12.34 23.67 34.58 10.96 34.20 16.40 16.46 34.84 17. 33 29.04 37.26 16.73 23.30 15.02 6.63 24.90 8.09 16.78 20.34 28.0 3 5.56 17.21 24.92 17.20 31.23 11.67 19.47 9. 34 28.60 15.68 29. 14 7.62 6. 17 26.34 15.30 7.79 23.93 19.87 6. 12 23.92 17.44 24.89 13.47 28.90 11.90 19.05 25. 10 8. 17 20.05 20.66 22.20 21.64 18.64 28.30 10.03 6.85 11.35 29.72 22.57 27.58 26.65 9.75 13.47 8.90 11.01 31.80 20.39 8.28 8. 19 9.51 11.98 7.19 19.55 5.55 29.05 9.54 26.33 22.88 30.50 10.27 22. 13 52.71 94.20 7.10 62. 18 15.64 26.97 8. OS 24.47 15.86 12.98 B.27 69.69 64.88 62.05 29.42 39.05 20.37 8.39 11.62 15.02 19. 11 102.70 6.49 136.13 11.95 63.62 7.33 29.52 16.50 14.69 40.16 37. 19 8.73 30.48 50.73 39.27 18.64 10.32 14.91 26.91 24. 15 10.52 79.06 30. 16 41.92 19.93 82.93 20.39 17. 18 6S.41 68.90 8.95 48.83 33.93 47. 30 21.16 12.62 10.74 17.93 57.81 37.07 15.74 26.42 22.53 13.02 11.36 22.85 62.01 46.29 25.92 64.61 11.78 22.47 23.24 13.21 9. 19 35.41 12.29 13.09 01.92 68.86 25.80 28.74 7.02 19.52 11. 18 25.90 9.61 22.01 18.09 9.61 10.74 32.41' 13.20 9.48 20.21 19.65 18.46 7.65 9.77 22.39 10.61 8.91 12.55 9.60 66.53 19.74 29.31 29.91 7.58 55.35 16.00 7.64 33.89 a. 12 24.56 28.66 7.04 82. 65 59.58 10.91 17.37 77.96 9.32 30. 15 13.19 7.80 28.41 12. 33 56.74 40.49 28.85 51.63 34.26 33.88 20.91 115.54 123.59 27.65 42.87 37.49 29.41 15. 18 13.89 23. 07 S5.08 31.77 10.02 31.62 42. 12 53. 27 12.21 34.70 17.69 17.00 24.67 58.54 19.72 61.75 17.52 24.87 35.43 14.56 26.05 13.69 80.80 65.36 10.59 21.55 7.30 10. 15 13. 15 86.26 73. 35 14.09 75.32 13.31 18.02 26.08 2.73 60.03 36. 18 44.86 22.02 86. 84 21. 18 17.26 55.32 57.77 8.48 46.72 41.65 50.68 21.21 10.66 10.49 15.27 61.57 37.90 19.37 27.61 21.99 11.72 11.39 21.80 56.94 45. 70 25.49 65.42 12.62 22.24 23.52 13.08 10.99 16. 59 46.74 35.47 10.73 13.00 40.84 65. 11 20. 12 29.65 5. 17 20.98 11.25 21.28 9.86 21.50 17.76 12.39 10. 37 30.67 11.70 8.95 18.23 19.25 18.05 7.50 8.42 21.97 9.89 8.48 10.66 10.33 58.77 12.26 29.44 30.60 11.17 52. 15 12.96 11.11 32.00 6.50 25.95 25.99 3.20 69. 16 62.08 14.26 12. 19 76.93 9.09 30.20 13.05 6.50 31.07 21.23 55.99 44. 15 33. 13 55.60 34.10 35.51 19.98 108.80 116.97 26.59 07.95 40.25 30.95 16.23 14.71 23.61 48.90 31.50 15.44 36.72 08.68 56.34 12.93 35.94 18.64 17.28 2 3.80 53.77 14.62 57.94 17.96 27.72 36. 37 14.09 29.75 11.67 72.09 63.40 10.66 22.95 7.05 14.85 11.86 72.86 64.81 11.22 69.59 - 158 --3 11 2 3 45.51 21.76 43.74 16.87 -5 -5 2 2 1 3 92.55 16.91 60.54 19.30 -6 -6 5 5 6 7 10.86 14.37 10. 81 14.80 -8 -8 2 2 0 1 17.70 7. 17 18.21 6.46 6. 73 h k 1 IF„I IFCI !| ii 5 8 0 30.62 39. 93 16. 19 10.67 36.52 34.25 37.55 15. 18 10. B9 33.57 -5 -5 -5 -5 -5 2 2 2 2 5 6 7 9 9.89 15.22 52.55 00.27 9.94 13.96 48.65 36.00 -6 -6 -6 -6 6 6 6 6 3 4 5 6 14*31 23.48 07.56 13.07 12*84 24.64 50. 12 14.78 -8 -8 -8 -8 2 2 4 5 0 1 29*56 10.01 16.88 7.12 28.59 15.18 16.01 6.49 -2 -2 -2 -2 8 8 8 8 4 5 6 7 24.08 15.33 22.26 19.09 25.13 16.39 25.08 19.63 11.72 •| ii 2 3 0 5 6 21.90 31. 30 25.63 6.70 13.59 20.61 26.27 20.39 6.57 11.54 -5 -5 -5 -5 -5 2 3 3 3 3 10 3 0 5 16. 32 55.91 24.73 22.29 34.85 15.90 53.75 27.08 21.90 30.24 -6 -6 -6 -6 -6 6 6 7 7 7 8 9 0 1 2 11.20 9.23 09.53 5.67 30.91 10.20 8. 10 49.60 3.80 32. 19 -8 -6 -8 -8 -B | 2 3 4 5 7 21.13 20.27 16.06 15.05 21.13 20.59 19.56 30.22 15.36 19.96 -2 -2 8 9 9 0 17.26 18.28 17.20 16. 10 7 0 33.49 13.35 31.38 11.76 - S -5 3 3 6 8 20.18 11.26 23.57 10.01 -6 -6 7 7 3 4 9. 19 27.69 9.71 29.03 -8 -8 -8 J 2 3 5 9.60 15.48 13. 04 13.66 12.59 -2 -2 9 9 1 2 64.55 26.87 23. 74 58.26 28.01 22. 88 :] ii 1 5 6 01. 05 13.06 7. 34 10. 11 6.26 -5 -5 0 0 2 88.00 72.58 88.64 70.50 -6 -6 7 7 6 7 20*99 25.06 25.72 25.22 -8 -8 5 0 1 15.70 7. 35 15.08 6.66 -2 -2 -2 -2 -2 -2 -2 -2 9 9 9 9 9 10 10 10 5 6 8 9 0 2 3 11.36 15.65 50.17 20.08 12.50 32.32 17.50 05.53 15.09 11.00 15.97 52.74 19.55 10.41 29.50 10.25 42. 12 15. 13 :| ] 0 1 2 1 0 0 2 3 22.88 13.27 30.05 19.82 23.99 7.49 21.51 01.80 86.00 20.18 13.53 30.75 17.66 21.45 7.60 22.94 36.35 72.84 -5 -5 -5 -5 -5 -5 -5 -5 -5 0 0 0 4 0 4 0 5 3 5 6 7 8 9 10 0 28.81 55.60 22.80 19.90 39.89 21.56 7.60 20.86 13.97 28.55 57.01 22.00 18.23 02.36 22. 13 8.22 23.67 15.20 -6 -6 -6 -6 -6 -6 -6 -6 -6 7 7 8 B 6 8 8 8 8 6 9 0 1 2 3 0 5 6 15.02 10.70 20.63 27.28 00.05 20.06 38.19 39.05 8.80 15.59 10.87 23.07 28.99 02.81 20.00 00.60 01.17 7.71 -6 -8 -8 -8 -6 -8 -6 -6 -8 5 5 5 5 6 6 6 6 6 2 1 5 6 0 1 1 0 5 24. 39 20. 11 7.02 20.04 10.35 21.49 12.92 26.77 20.01 26. 13 20.02 7.55 21.06 9.82 20.99 12.51 28.00 20.66 -2 -2 10 10 5 6 9.53 17. 18 11.01 15.86 :! ! 0 5 20.21 39.30 22.05 37.93 -5 -5 5 5 1 2 16.85 14.09 17.50 16. 30 -6 -6 8 8 9 7 8 18.99 31.25 6. 38 19.09 10.07 7. 11 -6 -a -8 6 6 7 6 7 0 11. 16 11.71 10*87 8.24 -2 -2 10 11 8 0 11. 07 66.06 11. 85 14. 35 59.39 11. 90 1 2 8 0 39*06 28.26 36.81 20.21 -5 -5 5 5 5 6 13*80 30.54 10. 09 30.57 -6 -6 9 9 2 3 16.51 9.65 18.53 11.80 -8 -a 7 7 2 3 29.01 10.21 30.76 9.55 -2 -2 11 3 6 35.44 20.09 33.75 21.06 Zt 2 1 2 20.20 9.27 17.72 4.90 -5 -5 5 5 7 8 11.75 30.07 10.39 30.62 -6 -6 9 9 9 0 5 38.70 13.21 28. 80 01.38 13.33 26.65 -8 - a - a 7 7 7 0 5 6 11.29 15.03 8.57 11.05 15.50 7.82 -2 -2 12 12 0 1 15.47 17. 10 15.71 -4 2 0 7* 17 ol 17 -5 6 0 8.62 10.07 -6 9 7 13.61 12.90 20. 10 -a -8 8 a 1 2 13.68 29.85 12.64 10.61 -2 -2 12 12 2 4 32.55 11.07 28. 08 10.05 - ! 2 6 96.53 91*89 -5 6 2 10.60 16.24 -6 10 0 60. 10 18.56 59.65 18. 25 -B -8 B 8 0 5 12.57 19. 88 11.76 20.95 -2 -2 12 13 6 0 21.33 03.62 22.00 39.90 Zl 2 8 23. 27 23*99 -5 6 I 4 6. 95 50.57 -6 10 2 28.90 29.21 26.90 -8 -8 a 9 6 0 17.67 13.10 18. 11 11. 17 -2 -2 13 13 1 2 10.59 19.41 15. 32 16.06 - ! 2 10 IS.77 15.03 -5 6 6 19.23 21.05 -6 10 0 28. 31 29.16 -1 9 2 11.67 12.5B -2 -2 13 13 3 4 B.88 11.63 7.70 11.57 -I 3 1 34.76 30.70 -5 6 9 8*23 8.53 7.66 -6 -6 11 11 0 2 31.61 20.05 29.03 25.62 -1 -8 9 9 4 5 21*96 16.56 24*08 17.69 -2 -2 -2 -2 13 Id 14 14 15 1 1 1 1 1 1 1 1 5 0 1 2 1 0 1 2 3 5 6 7 8 19.57 30.67 27.36 17.91 11.00 76.47 33.71 77.00 27.70 50.90 17.49 25.26 12.17 28*67 25.82 16.34 11.77 69.01 29.55 63.59 25.58 46.28 18.66 22.20 13.08 zl ! 2 0 5 6 7 8 9 10 0 1 2 3 4 20.95 36.53 52.73 34.66 12.82 23.57 9.46 15. 10 59.63 27.26 01.84 101.55 25.35 22.47 3B.58 52.73 36. 15 13.93 24.50 9.15 14.85 56.49 26.80 01.99 101.36 25.82 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 7 7 7 7 7 7 7 7 7 7 8 8 0 2 3 0 5 6 7 6 9 0 1 21*78 7.30 31.35 48.36 12.07 16.80 23.37 8.59 27.89 22.54 35. 13 10.35 19*99 7.55 34.03 52.21 13.00 18.07 25.48 9.75 29. 14 22.78 30.41 13. 19 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 11 11 12 12 12 12 12 12 13 13 13 10 3 7 1 2 3 4 5 6 0 3 5 0 22.85 7.81 13.49 12.67 7. 12 29.53 20.96 8.60 30.70 17.36 12.57 23.90 25.83 8.80 10.74 12.39 7.54 30.33 21. 11 6.61 29.12 15.87 11.12 23.03 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 10 10 10 10 10 10 11 11 11 11 12 12 0 2 1 4 5 0 1 3 0 0 1 7.07 B. 56 47.57 11.80 7.85 20.69 20.07 25.06 16.29 20.33 6.84 20.06 6.66 10. 15 09.31 14.48 6.43 25. 16 19.04 27.69 16.29 20.00 7.75 19.70 9 20.70 20.97 -0 0 5 39.36 39.27 -5 8 2 50. 11 59.63 -6 10 2 20.82 24.63 -' ] 1 25.66 25.52 1 2 10 0 7.82 57.50 53.28 -0 4 6 8 60.06 20.70 25* 37 -5 8 4 12.86 13. 18 -7 1 0 28*. 34 27*88 -9 -9 1 1 2 3 9.70 13.87 7.39 10.58 Z\ 2 2 1 2 24. 38 15.40 23.27 18.20 -4 0 9 10 42.34 8.46 9*63 -5 6 6 19*39 20*59 -7 1 2 20.31 22.88 -9 -9 2 2 0 1 10. 13 10.07 9.21 6.08 Z] 2 2 4 5 09.02 69.93 71. 10 -4 5 -4 5 0 2 27*23 27.37 -5 a a 11*64 13*50 -7 1 J 6*71 3*66 -9 -9 2 3 3 1 9.57 13.66 9.99 12.79 Z\ 2 2 6 7 24.27 92.27 89.67 -4 5 -4 5 5 27*37 29*44 -5 9 i 53.96 56.07 -7 | 6 30*. 61 29.32 -9 -9 3 3 .1 0 28. 15 10.09 28.00 7.66 Z\ 2 2 8 9 23. 34 12. 10 13.67 -0 5 -0 5 6 7 28* 10 28.03 -5 9 4 6.45 7.02 -7 2 0 30.67 28*63 -9 -9 0 4 1 2 7.71 11.27 6.56 9.98 < 2 2 3 10 11 0 14.43 9.00 17.90 7.72 20. 31 -4 5 -0 5 -0 6 -0 6 10 0 1 12*09 60.90 27.37 11.50 57.26 30.29 -5 -5 -5 9 9 10 6 8 0 23.83 10.84 17.71 25.82 9.03 18.71 -7 -7 -7 2 2 2 2 3 5 10.66 6.93 24. B2 9* 16 6.72 25.24 -9 -9 -9 4 5 5 3 0 5 9.66 11.03 14.06 6.52 10.38 15.03 Z] 3 2 9.45 6*30 -4 6 2 50.50 54.30 -5 10 1 31.05 33.22 -7 2 9 12.63 12.43 -9 -9 6 6 0 .1 21.35 18.91 20. 86 19. 16 3 3 4 5 34.00 57.79 37. 36 61.05 -4 6 4 30.63 31*45 -5 10 3 33*.09 35*33 -7 3 2 38*35 39*65 -9 -9 6 6 0 5 12. 10 12.00 9.93 13.57 ; 3 3 3 3 3 4 4 4 6 7 a 9 10 0 1 2 3 38.18 05.95 15.56 8.32 20.00 00.40 93.28 10. 17 07.62 70. 97 39.60 46.05 16. 18 9.02 18.65 02.76 95.69 8.88 52. 15 76. 22 -0 6 -0 6 -0 6 -4 6 -4 7 -4 7 -0 7 -4 7 -4 7 -0 7 5 6 7 9 0 1 2 3 6 a 29.01 12.67 19.93 20.00 83.53 09.90 33.33 31.08 18.95 10.95 13*. 26 21.87 19.85 79.49 53.62 37.76 33.69 21. 18 11.03 -5 -5 -5 -5 -5 -5 -5 -5 -5 10 10 10 11 11 11 11 11 11 6 7 a 0 i 2 3 4 6 7*80 15. 87 6.58 17.32 28.27 10.23 6.62 29.32 25.67 9*36 16.60 7.13 17.01 2B.44 15.50 10.02 31.01 27.00 -7 -7 -7 -7 -7 -7 -7 -7 -7 3 3 3 3 3 4 4 0 0 0 5 6 6 9 2 3 5 20*99 9.79 10.76 21.65 16.69 35.20 6.83 13.12 17.BO 25.06 8.97 10.86 18.02 17.86 35.51 6.74 11.85 18. 10 -9 -9 -9 -9 -9 -9 -9 -9 7 7 7 7 8 8 9 9 10 0 3 4 0 3 0 1 1 9.79. 29.08 20.89 23.20 34. 28 21.60 21.00 35.62 14.27 10. 10 30.05 26.00 24. 15 30. 44 21.30 20.93 37.08 12.93 4 6 21.25 22.54 -4 7 9 9.29 8.25 -5 11 7 16.07 15.39 -7 4 6 11.87 13.01 1 1 -1 -2 173. 17 5.60 12*71 4 4 7 8 32.56 24.50 33.84 25.26 -0 8 0 30.55 29*91 -5 12 2 16*28 17.26 -7 5 2 29*76 3o! 88 1 1 -3 -0 126.53 51.68 98.27 38.69 4 4 10 11 21.60 12.24 21.25 13.42 -0 B 3 26.20 27.08 -5 12 5 13*52 14.83 -7 5 4 25*85 25* 12 1 1 -5 -7 27.99 60.56 24.70 57.78 5 5 0 1 55.69 19. 10 53.31 19.33 -0 8 -4 8 5 36.09 40.05 -5 -5 12 13 1 18*53 16.00 -7 S 6 20*20 19*.70 - 1 1 -8 -9 31. 39 14.61 30.72 14.70 5 5 2 3 35.99 11.37 3B.93 12.91 -0 6 7 20.38 19.93 -5 13 3 20.98 20* 10 -7 6 0 26.49 28*77 1 1 -10 -11 9.97 32.61 9.63 30.90 5 5 4 5 23.60 17.00 24. 86 15.85 -0 9 1 40*57 03. 10 -5 10 0 23*49 21.30 -7 6 2 22! 60 15. 37 22*.07 16. 35 2 2 -1 -2 31.58 119.86 IB.26 92.69 5 5 6 7 11.03 55.83 11. 70 58.52 -0 9 3 25*70 26. 10 -5 -5 10 2 11*23 9.62 -7 6 0 22.70 24.52 * 2 2 -3 -4 100.00 80.60 86. 15 73.09 5 5 8 9 17.00 11.85 17.43 13.30 -0 9 5 22.97 24.40 -5 to 4 31.49 30.80 -7 6 6 9*36 10.49 2 2 -5 -6 80.30 31.05 71.96 31.72 5 6 10 0 23.07 SO.02 22. 32 71.75 -0 9 7 9*09 9.91 -6 1 0 26.65 27.07 -7 7 1 23.38 26*06 2 2 -7 -9 11.79 21.09 15.65 21.97 6 6 4 110.19 13. 18 109.60 10.81 -0 9 9 11'88 9*94 -6 -6 1 2 6*.67 5*60 -7 7 5 8*44 6*74 3 3 -1 -2 10.79 67.78 12.33 63.63 6 6 5 6 17.20 16.00 16. 92 15.56 -0 10 1 9. 32 6.37 -6 1 0 17*66 17*87 -7 6 0 21* 17 22*51 * 3 3 -3 -0 26.36 06.61 29.67 09.51 6 6 8 9 12.07 13.55 12.73 13.69 -0 10 4 13*83 13.08 -6 -6 1 7 8*73 7.69 -7 8 3 54*53 58*63 3 3 -5 -6 21.53 17.71 20.68 18.27 6 3 7 10 0 10.78 32.59 10.02 29.66 -0 10 7 8*05 7*75 -6 -6 1 9 IB.47 16*. 92 -7 8 6 29*09 31.43 * 3 3 -7 -8 50. 14 38.54 47.75 36.05 7 3 7 1 2 6.96 39. 19 5.80 41.73 -0 11 3 60*98 61.06 -6 -6 2 2 0 1 10.60 9*,01 -7 8 8 11*40 11*. 77 3 3 -9 -10 10. 11 9.96 10.00 10.13 7 J 7 ) 7 3 4 5 23.69 7.75 8.03 25. 35 9.06 10. B2 -0 11 -4 11 5 6 al 51 20.20 10.58 21.30 -6 -6 2 2 0 5 28.20 9.93 29*50 7.71 -7 -7 9 9 1 2 16* 16 16. 16 18*88 19.49 3 4 -11 -1 17.29 160.31 10.48 104.10 I 7 3 7 6 9 19.40 14.40 14.06 13.07 -0 11 -0 12 7 8.90 6.75 7.71 5.73 -6 -6 2 2 6 7 19.77 6.99 19.07 9.62 -7 -7 9 9 3 5 17.00 30.42 16.50 32.73 11.75 4 0 -2 -1 -0 67. 32 19.00 17.45 19. 18 18.90 3 7 3 8 3 8 10 1 2 13.72 27.92 28.60 12.27 30.95 26.51 -0 12 -0 12 5 6 02.11 31.86 40*.62 30.52 -6 -6 2 2 2 9 10 9.65 34.06 9.95 31.98 -7 -7 10 10 0 1 25*06 14. 10 25.65 14.30 13.18 * 4 0 1 0 -5 -6 -7 61.72 91.98 20.20 60.26 84.84 19.50 3 e 3 8 3 8 3 4 5 17.85 14.01 14.48 15.50 13.32 10.05 -4 12 -0 13 -0 13 0 1 36.90 12.97 35.36 12.86 -6 -6 -6 3 3 3 0 1 3 116.02 23.21 04.97 22.65 03.93 -7 -7 10 10 3 0 40.05 12.06 06.90 12.40 23.66 - 0 1 0 -8 -9 -10 19. 39 14.96 18.94 18.92 13.52 19.53 3 8 3 a 6 7 37.27 11.26 37.28 11.97 -0 13 3 26.00 26*23 -6 -6 3 3 5 13*21 13.62 -7 11 1 30.40 35.56 23.21 - 1 4 1 5 -11 -1 23.43 56.63 22.12 02.75 3 8 3 9 3 9 8 0 1 17.79 63.95 8.85 17.39 53.55 6.29 -4 13 -4 10 6 0 12.39 8.26 9*.79 8.58 -6 -6 -6 3 3 3 6 7 8 19.71 8.60 19*92 8.70 -7 -7 11 11 6 18.27 10.69 40. 77 18.67 10.67 00.92 1 5 1 5 1 5 -2 -1 -0 14.52 47.83 51.03 3.51 39.75 Q9.00 3 9 3 9 2 3 62.71 17.00 60. 10 13.84 -0 10 2 36.30 34.60 -6 -6 3 4 0 21.52 12.17 13*01 -7 12 2 10.05 12. 74 11.38 10.30 1 5 1 5 -5 -6 21.00 32.65 19.50 29.86 3 9 3 9 4 5 13.68 40.85 13.27 01.85 -0 14 4 9* 17 6*02 -6 -6 0 2 02.22 45*.36 -7 12 5 12.82 23. 82 11. 12 23.54 1 5 1 5 -7 -8 20.51 14.66 21.27 14.76 3 9 3 9 6 7 11.70 31.00 11.55 31.25 -5 1 0 67.51 63*38 -6 -6 0 0 3 0 2 5*. 57 20*.97 -7 13 1 22.62 23.36 10.00 1 5 1 6 -9 -1 52.92 52.70 51.72 02.69 3 9 3 10 8 0 21.25 21.29 22.01 19.32 -5 1 2 61.60 63.61 -6 -6 4 0 6 7 17*37 17.05 -7 13 3 11*08 12.93 10.45 13.03 1 6 1 6 -2 -1 21. 10 27.06 16.29 29.00 3 10 3 10 2 3 27. 20 15.89 26.72 17.24 -5 1 0 02.03 38.62 -6 -6 0 5 9 0 7.75 39.20 3B.98 -8 1 1 22.22 22.27 19. 73 1 6 1 6 -5 106.00 14. 92 97.5.1 15. 53 3 10 1 10 4 6 01.65 8.77 38.85 9.06 -5 1 7 10.98 13.97 -6 -6 5 5 1 2 25.70 10.02 24.62 8.71 -8 1 5 22.09 6.93 23.01 5.60 1 6 1 6 -6 -7 23.58 61. 96 25. 2B 62.06 3 10 3 11 7 1 25. 15 27.09 20.00 20.49 -5 2 0 12.72 12. 10 -6 -6 5 5 3 5 36.22 20. 11 21*13 -6 1 7 15.09 14.67 1 6 -6 20.90 20. 31 - 159 -h k I IFel -2 10 -3 20.3 1 25.24 87.54 Id . 14 24.78 50.55 24.61 9. 13 7.49 It .64 9.64 12.53 104.29 48.62 8.53 11.00 28.51 17.65 26.25 7. 18 15.48 19.63 81.92 6.07 37.29 33.79 14.34 9.82 44.61 103. 13 9. 15 54.01 14.88 16.36 42.58 48.23 30.40 14.09 13.50 22.20 32.69 30.46 22.23 9.99 28.33 9.76 1 1. 11 17.33 10.32 12.95 9.62 30.20 15.93 7.79 48. 85 6. 15 52.76 35.99 89.28 18.45 18.45 IB. 15 17.01 21.71 71.09 127.48 22.35 14. 12 33.02 26.76 25.23 14.71 163.21 6.41 8.53 46.73 32.33 7. 19 13.97 16.99 85.64 98.82 23.53 53.22 11.40 54.17 11.86 14.71 29.50 11.02 95.45 50.92 48. 24 18.67 23.87 6.72 18.57 18.14 33.02 28.09 70.01 60.88 60.98 31.96 46.52 14.37 7.04 37. 17 44. 10 35.67 56. 85 22.07 54.42 21.91 7. 11 7.56 34.59 15.57 27.83 24.57 43.71 22.50 20.90 7.24 5.77 71.48 17.39 8.76 60.68 22.35 55.07 39.71 8.84 9.48 19.95 23.96 65.98 14.86 2B.26 51.80 26.10 9.41 8.04 9.91 9.55 12. 25 81.90 51. 15 9.25 11. 17 25.80 16. 10 26.92 8. 11 15.64 16.05 73.31 1. 23 38. 17 35.62 12.72 8.92 38.23 86.62 9.41 55.94 14.61 17. 16 37.26 44. 36 32. 15 15. 30 12.94 26.09 34.97 27.55 20.86 9.71 31.27 11.70 8.66 16.64 9.74 14. 26 10.65 27.34 15.43 12.21 49.05 14.42 52.65 34.93 88.21 21.98 16.97 17.68 16.23 10.30 64.32 106.00 23.86 12.07 31.43 25.81 24. 16 15.65 135.36 6.73 9.01 45.34 34.61 7.79 12.94 19.63 87.25 87. 14 25.57 48.40 11.31 53.64 9.92 15. 17 28. 14 12.04 81.97 48.91 45.00 18.32 23.27 4.77 17.54 18.91 31.99 33.20 60.47 53.00 56.37 30.69 46.21 15. 12 8.68 37.72 40.62 31.62 54.99 22.44 54. 16 20.43 9.38 5.34 31.57 18.21 23.37 23.01 44.21 22.72 22.37 5.68 2. 12 64.73 14.95 6.71 60.96 22.02 44.59 34.29 8.86 7.25 -2 10 -9 -2 11 -6 -2 12 -7 22.65 7. BO 21. 16 21.52 21.59 67.86 15.21 28.04 33.51 21.73 20.81 12.61 18.27 25. 38 IB.52 18.40 8.42 7.02 16.70 15.90 13.98 30. 11 14.25 14. 28 12.42 5. 66 5.60 65.43 48.81 29. 16 7.03 53. 32 23.46 19.57 78.93 35.01 43.21 14.57 50.58 10.39 7.88 11.64 21.72 9.52 37. 12 37.12 9.65 49.83 9.27 6.72 13.92 6.54 14.35 85. 19 28.56 29.67 B.97 23.68 19.47 9.72 105. 15 45.61 16.75 18.33 65.52 20.64 67.32 67.46 49.92 43.57 13.29 9. 33 31.99 18.95 10.44 93.74 51.42 32.87 29.31 42.72 1 1.81 9.58 9.84 7.50 5.53 29.47 40. 16 59.26 12.84 31.83 11.91 59.79 11.67 36.25 53.50 16.26 42.08 34.42 9.74 8.84 63.79 19.82 10.94 14.01 17.37 17.91 6.74 17.82 18.04 43. 19 10.48 7.96 17.69 38.62 34.58 15.89 28.93 22.65 18. 35 15.09 26.00 16.37 45.90 19.87 50.85 14. 11 25. 10 9.63 30.74 28.85 42.48 47. 10 17. 18 49.69 33.22 S.2S 49.69 18.53 39.63 32.65 11. 16 21.99 7.92 20.77 20.06 22.23 60.41 15.35 28.62 34.69 24.87 23.35 13. B4 21.03 24.52 19.63 18.57 7.46 5.40 16.75 16.23 10.99 28.59 12.87 15.49 10.63 3.47 1.77 63.80 52.86 30.68 7.08 54.84 24.19 20.39 64.82 35.44 39.29 9.34 51.49 10.31 7.70 12.57 22. 33 7.30 29.00 35.75 7.09 47.27 8.49 . 8.21 12.69 7.74 18.43 65.05 29.21 27.34 R.46 24.99 18.96 9.41 95.75 46.76 17.52 18.87 62.65 17.48 63.44 81.27 49.56 44.91 13.34 10.28 31. 30 18. 19 47.57 31.60 27.66 43.00 40.95 57.71 12.00 31.37 10.47 52.56 52. 15 16.26 42.67 35.88 17.82 18.27 17.94 40.26 28.90 23.93 17.20 14.04 47.41 13. 31 23.56 B.56 29.03 29.68 17. 18 50.06 41.81 35.88 -4 12 -1 -4 12 -5 -4 12 -7 12.00 32.88 43.03 67.91 18.71 12.25 10.06 15.77 10.57 16.60 66.87 60.61 16.67 20.60 8.BB 54.46 14.55 15.68 13.66 5.84 42.90 27.77 19.92 28.55 28.96 14.02 116. 16 18.52 12.95 55. 33 8.22 25. 34 32. 11 6.55 28.67 9.07 13.67 67.52 25.90 30.87 7.25 45.08 9.20 9.01 43.64 12.63 57. 16 7.59 22.07 10.76 28.75 18.96 16.49 6.74 45.89 20.97 34.08 59.76 15.69 8.57 40.57 20.34 15.66 40. 12 38.34 17.62 20.78 32.27 17.34 7.59 7.48 35.73 8.09 15.63 16.37 15.27 21.22 7.87 8.77 13.71 32.03 13.32 38.04 44.43 32.80 9.65 42. 13 40.75 10.64 17.73 13. 13 41.43 13.59 19.92 13.61 19.96 24.85 36.06 54.78 57.31 40.02 28.08 12. 14 46.43 38.70 30.03 17.47 12.95 62.95 31. 96 12.08 56.69 11.49 46.83 18.49 7.96 7. 70 17.92 21.80 12.36 9. 24 48.58 60.20 10.16 33.05 11.95 19.53 13.99 24.54 46.46 37.92 14.70 21.88 26.27 11. 38 10.37 54.57 26.91 14.08 14.01 30.26 41. 32 64.78 19.44 12.21 10.00 14.70 9.69 15.39 63.04 57.49 15. 17 19. 19 9.99 54.44 15.03 16. 15 13.23 3,95 46.51 26.84 20.61 28.59 28.02 13.45 111.25 20.86 10.45 54.54 6.78 25.39 29. 15 8.39 28.80 7.87 14.98 62. 10 23.72 28.91 5.76 45.55 9. 10 56. 26 8.77 22.04 11.03 27.00 16.32 15. 16 1.71 47. 37 20.47 32.05 58. 18 15.98 6.72 37.46 18.00 14. 32 36.27 39.56 17.62 19.82 30.50 17.93 7.92 9.02 34.70 7.89 13.94 15.61 14.78 21.47 8.32 7.26 11.43 30.58 11.41 35.84 40.50 31.29 28.27 8.96 6. 12 39.88 41.45 11. 15 17. 14 14.66 44.65 15.72 21.34 13.91 20.06 25.33 37.05 55. 17 56.S3 40.91 26.31 11.05 47.78 39.04 28.75 17.00' 14. 10 61.20 33.91 12.24 5U.45 13.23 45.04 16.24 5.73 5.70 15.73 20.07 11.Bt 10. 19 48.36' 57.10 8.60 34.60 10.43 19.96 13.43 2 3.64 48.20 37.33 13. 12 20.42 25.03 11.62 9.20 53.90 26.33 14.20 -6 10 -4 -6 11 -6 26. 19 59.74 16.88 21. 31 37.07 16.25 38.30 19. 12 13. 17 7.62 13.09 10.74 19.66 7.89 20.04 22.43 19.27 27.81 13.69 17.33 20.83 21.71 16.05 31.57 9.04 8.97 31.B5 7.39 11.82 12.85 13.09 16.37 16.49 7.84 54.04 7.52 6.65 9. 12 18. 16 39.07 20.24 29.88 22.88 8.59 15.03 15.50 25.72 11.87 12.66 23.77 18.57 17.88 18.91 19.74 54.5B 26.93 36.33 36.94 11.15 18.45 24.80 25.41 19.67 11. 38 10.54 14. 31 10.83 20.76 32.08 9.04 33.27 6.41 11.88 53.97 27. 16 17.97 17. 34 15.82 9.87 8.98 52.27 46.40 21.28 19.46 8.77 26. 12 11.26 16. 12 27. 14 25.57 24. 10 29.79 29.33 45.20 7.35 38.02 11.52 13.50 33. 30 15.62 20.13 9.24 7.90 10.56 6.02 62.96 13.61 22.80 19.91 16.44 B.81 13.75 26.91 17.43 8.84 18.02 28.26 11.40 18.36 30.56 41.28 15. 16 13. 13 25.87 10.75 24.40 13.94 38.59 20.96 19.41 27.04 18.03 20.99 25.21 13.41 17.69 9.28 23.78 28.55 57.98 14.65 21.57 37.09 16.41 40.07 19.64 12.28 9.09 12. 17 9.64 20. R6 7.93 17.60 20.40 18.05 27.87 12.79 16.44 19.03 25. 11 37. 16 31. 31 9.91 a.72 10.51 4.41 11. 10 11. 30 11.71 17.34 16.07 8.08 56.02 6. 11 6.03 7. 17 18.34 41.86 21.54 31.00 23.95 6. 10 14.69 17.09 26.65 11.56 14.02 24.69 IB.66 17. 10 20.28 19.50 56.49 25.40 34.93 35.02 13.06 17.84 25.67 25.29 19. 10 13.64 10.46 16.61 11.94 21.45 32.80 6.74 35.74 6.20 13.02 55.38 27.97 18.35 17.61 16.51 6.89 10.09 53.25 48. 11 23.59 20.86 8.73 26.95 9. 37 16.39 28.04 27.38 25.23 31.03 29.52 46.06 8.19 38.69 9.36 12. 18 32.65 15.27 20.81 B.65 7.87 11. 16 8.55 64. 11 14.35 2 3. B8 19.54 15.41 7.52 15.49 27.13 17.96 10.35 20.04 28.07 1 1. 78 17.69 30.85 40.9 1 14.79 11.86 26.44 9.86 24.62 13.01 41.70 21.06 20. 37 27.00 20.95 20.35 26. 30 14.76 17.49 10.51 23.61 23.39 14.97 33.63 8.94 11.08 9. 17 11.26 25.BO 24.69 21.6B 19.07 24.09 9. 18 21.62 42. 15 18.08 15.97 15. BB 14.46 8.21 17.77 18.56 36.09 7.66 7.80 1 1. 32 8. 46 19.27 42.71 15.57 16.95 33. 16 9. 17 12.35 * 26.88 21.81 16.70 28. 65 8. 11 12. 73 21.01 24.57 16.75 27.52 8.57 2B.05 9. 19 1 1.B3 13. 10 7.60 1 1.77 9.55 8.04 1B. 15 30.81 8.51 8.24 3 1.82 7.95 47. 18 22.17 8. 38 31.04 9.02 12. 54 26.51 26.44 23.49 20.01 24. 15 9.55 25.66 43.80 18.51 17. 18 15.24 13.59 7.01 17.80 IB. 36 35.40 6.58 7.24 10.98 7.67 19.98 44.25 15.39 17.69 34.20 10.53 11.15 28.06 22.79 16.32 28.74 a.97 12.69 22. 39 26.85 16.90 26.59 10.40 28. 17 10.61 10.97 14.09 5.15 12.05 9. 35 6.88 19.09 31.40 6.01 9. 18 32.24 6.49 52. 31 23. 16 - 160 -APPENDIX III Octa (dimethylamine-) cyclotetraphosphonitriletetracarbonyl-tungsten: Measured and Calculated Structure Amplitudes for the Observed Reflexions. - 161 -h k I IF0I IFel 300,00 T6.8 BB.JI _»?2.?. it. i s i . 101.7 ii.i: _ * 7 . T 0 B».2 IV* .T i K 8 . 2 10? . * 63.Oi 51 .6 IT*.TO 79.TO 132.2: ? 2 . 5 i 85. T' 150.T 2T5.10 132. 24, 14 125.5 66 .10 42 .10 2 8 . Si 62 .1 ' 1*3.7' 33 .1 ! (10.1 94.1 6 6 . 6 f * . 5 B 1*2.9 213.1 T3.0 1 62 .6< 55.9. 14.6 23.SO 46 .8 It S .2 5 6 . 6' T t . Z 74.3 2 ! . 124. 55 .40 140. C' •i.2 «l.2i 5T.T 1 10.40 * Z . C 5* .9C TZ . l 66 . ' 7Z.8 6 3 . 3 2 7.8 * T . l : "*cee 42.68 103.B1 5P.55 2ft 5. T 21 .4 85.8") 13*.38 113.40 TO. 1Z 73.58 53.6* 41 1.21 97.«* 209.5 6 1Z1.60 32.68 61. 39 40.27 _ 9 * * * 7 ' " 6 7.83 82.2" 110.01 lGS.76 175.55 100. 64 13. 16 312.19 SLOT 88.51 4 8 . 1 * 1*5.40 14T.4B 276,02 U 6 . 4 0 61.25 110. IT •1 .02 U . J 5 „ 95.06 2 1 * . TO 1 IT.61 1CS.01 64.4Z 2 U 8 2 _ _ TC.T4 182.as 89.30 1(2.11 5 * . 24 ?1 .5 2 _ 1 6 0 . 5 ! 1 8 1 . Z l 51. IC 28* . IT 132.71 21.79 35.32 28.24 2T.3Z 6 7 . 9(1 23. ST L M - ? 5 136 .5* 69. 30 90 . *S 359.88 48.C7 _ 1 1 8 . 2 9 _ 32 .45 * a . 6 2 36.95 66.67 151.12 *4.02 1*6 .T l 33.8Z an . 3a S3. 06 12.18 65.53 156.78 6Z.65 255.18 76.62 _ 6 1 . 5 0 _ 6C.*T 27.63 2 * . I t IC*.21 U T . 9 * 63.02 TT.30 7 6 . 5 * 35. Z8 139.20 * l ; 0 1 _ 1 * * . 7 8 35.8 T 3 * . 89 (1 .60 24.47 51.54 _57 .42 7 2 . 5 * *" 46. ZZ 8*.BC 1*4.16 s a . o i 74.42 6 0 . 3 * " 29.60 Z8.4T 44.54 29.43 84.52 47.~09" 112.94 36. 47 30.57 45.6(1 18.01 3T.29 88.80 45 .3? 69. 76 6T.02 75. 33 ZS.73 3 9 5 . 0 1 _ 39. 05 102.11 51.17 234.33 IT.09 100.85 121.BO 105.5T f?.9* 70 .2* 50. Or. 386.4* 96.0* 19T.3* 121.76 24.31 61. 23 35.55 106.20 64.85 74. IS K 0 . 5 5 1 12.86 1T3.48 104.83 30.48 45. el T5.97 2 0 1 , * * 115.46 1*3.04 3*.*T 111.25 4 1 . C5 T6.31 107.93 69 .6_8_ 10 5.0 2 11.01 41.14 T Z . I 4 11T.06 _ 5 3 . J . 3 2*55.76 42.51 146.05 T8.45 2 3. S 7 „ 2 8 . 4 3 _ 18.54 16 C.ST 112.46 89.46 67 .22 48 .62 44.8» T6.91 212, 34 133.91 141.83 165.16 _ < t * . M 3 Z . 5 7 _ 125.23 59 .43 34.11 44.ZT 101.45 84 .21 87 .54 100.35 9 1 . - 1 T0 .04 44.C6 _ 1 1 1 . 4 0 63.T9 81.27 4 7 . 8 1 50.61 72 .00 24 ,68 119.12 f * . 9 4 T6.9T 6 3 . 1Z 70.«T 5 T . i a _ 54.01 81 .15 112.58 48 .88 T1 .06 _ J ' i P *_ 34.66 81.42 9 8 . f l 124.T4 1 4 . z e 86 .01 6 2.46 50. 28 37.6Z 70.C 5 28 .47 _ 54.26 34.T6 " 82.64 51.57 36.61 53.TT 502.66 141, t f 52 .46 Z4.32 64 .91 182.9* . 292 . *0 48 .81 205.1? T7.46 153.92 4 5 . l l 133.69 44 .36 T3. T8 288 .8* 144. 18 24. 36 1T4.T4 41 .75 80.2 2 14,78 IT? .73 21 .12 106.98 4 1 . 0 * 44 .26 77.21 154.17 6 2.94 28.41 18. TB 75.60 51.21 109.70 58.37 4 " . 9 0 74.C3 37.68 127. 90 121.65 1*5. 9fl 213 .10 23 .71 1Z0. 10 20 .80 B6.58 2 7. PT TC .87 244.35 12 2.67 71 .21 47.66 33.66 12.6* 11*.28 14.64 81.44 114.98 65 .15 101.44 42.26 46.42 72.12 115.PP _ 5 6 . 93 2T7. IZ 41.64 161.93 7 * . a * 28,12 18.18 24.14 168.47 121.21 43.52 41 . 19 48. 38 62.40 41,61 26.16 1T4.19 _ 3 2 . 5 7 _ 133.43 S9.05 33. i a 5 * . Z * 102.72 84 .T4_ a e . i o 103 .3* ICO. 80 74.10 44.96 _ 1 3 5 . B 5 _ 62 . 11 86.41 50.T3 5 1 . 2 * 26.05 ZT .*3 117.10 61.*1 80.03 6*. 44 71.58 59.13 _ 42 .11 80.76 104.TA 41.61 T2.78 ZZO»Z_ Z6.80 T9.T9 46.84 1Z5.67 14.10 58.88 51.04 42.54 68.21 24.88 **•'"'— 41.62 8 1 . 1 ! 44.35 30.33 50.40 436.13 168. 81 43.ZZ 26. T5 66.14 168.34 254.02 37.45 185.77 6T.9? 141.02 46.63 123.6T 45.04 64.21 2(5.67 1*1.25 Z l . 8* 167.74 16.01 72.17 3.66 174.07 Z*.34 81.61 35.96 102.17 T5.T1 1*9.75 6Z.T0 Z* . 76 35.63 6 3 . 0 * 4*. 16 57, 0? T4. 5 7 16.6 5 112. 77 115.85 1*5.67 201.01 22.62 1 16."** 10. 20 B4.5P 32.82 76. 61 _?17.65 117.38 " 80.r 42 .81 8 0 . T l T4.8B 148.76 44.11 _ T 4 . 6 T _ 6T.52 T2.21 T4.69 46 .4 2 185.59 24. 9 1 143.83 * 1 . 3 * 22.46 _ 1 3 0 . 2 6 _ 71.36 T2.64 124 .8* 22 .55 78.84 4 1 . 1 T _ 32 .15 65 .29 T t .31 85 .00 6Z.81 84.14 I B . T * 4T .45 41 .99 86.4T 11.56 _ 12 ,10 71 .51 TT. 74 121.16 66.44 *5. 84 _ 1 5 8 . 5 5 _ 16 .62 IT .41 42 .26 Z4.1T 40 .70 S 0 j 1 6 _ 38.01 62 .04 61.16 56 .46 4C.S3 4«.*4 49.37 144*18 196*53 152.18 48. ZB 123.42 123.68 2 1 . 0 * 118.40 72.19 T9.71 110.19 29.84 8? .01 * 1 . J 5 _ 34.36 66.28 75, 15 77 .72 64.15 _ 86. 42 _ 39 .16 52.52 51.53 84.49 Z6.35 _ 3 * . 0 6 _ 70.60 TO. 12 118.54 66.48 63. T3 110. * . 3 _ 42.62 17.18 43.T4 Z5.B4 16. TO 91. 40 5 4.94 77.61 257.01 2T.01 151 .ca _ 1 Z 4 . 4 1 _ 204.24 118. 5T 194.T2 3Z.4Z 58.78 58.TO 56. T l IB . 4* 45.24 1TT.16 116.ST 31 .15 3 2. 54 2* .56 38 .32 TZ.65 34.16 45 . 81 Z l .42 64 ,09 6T.41 117.12 1 2 . 6 * 151.5T " 96. T6 131.15 T9.2T 160.82 2 5 . 1 ! 151.4C 5C.71 6T. S5 44 , 19 4B.31 167.57 165.55 * 6 . * 4 101. 16 I f ,*1 66.1 S 4* .41 125.14 5* .39 58 . *3 37 .15 92 . 71 8 6 .51 1*1.13 6 1 . 7 * 113.12 7C.4 7.10 115.81 34.57 95 .26 OC. "0 *5.06 75.38 69. C* 54. CO rfl.51 06.63 51.06 2T.23 2*4.01 22.57 131. 16 _ 1 1 1 . 6 * _ IT!.** 1CT.42 187.06 71.02 128.42 67.12 175 .43 ' 101. 31 10.41 2T.41 18.40 IT .36 " 68 , IT 56 . IT 102.50 18.11 T1 .5* 11*.56 _51.10' 1*5.16 51.46 11T.T4 68. 86 1*4.98 18.34 1*7.48 46.85 6B.18 S6.77 59.24 162.2* 171. 10 *6. 13 101.67 IB.02 65.31; 103.15 131.70 5 * . 60 56.78 15.77 92.23 _ 40.55 134.68 59.55 1 14.47 64.32 64. 13 9 1 . 4 2 " 66.52 37. op 168.4 9 6*. 41 3o.no 37.17 76. 71 61 . 30 117.54 1*. B9 87. 1? 11.05 101.74 74.72 8*. 62 34.51 78.84 92.47 82. 23 103. 19 113.T4 5 8_._25_ 3 * . 24 74 .84 47 .73 100.54 8 4 . 4 3 _»6fJL*_ 24.80 24 .90 19.2T 58.46 84 .79 6 7 . 6 Z _ 31 .45 40 ,46 28 .48 67 ,99 46 .04 53 .99 5 9 . 3 2 _ 298.97 23 .68 14 ,22 Z9.6T 186.37 _Z0_T_.?5 6 1 . 9 4 " " 222.27 135.32 111.76 101 .80 103.20 6 7". 74 106.27 23*. r* IC 1, 1 2 108.58 3 2 . 2 * 111.86 5 2 , 4 6 _ 37.99 70.86 42.84 102.42 42 ,70 _ 115. 2 * _ 19.43 33 , *8 35.OB 57.44 89,16 66.52 21 . T 3 48,TT 30.00 67.55 48,64 51,11 51.61 _ 255.13 16.88 27.07 26.17 164.ZT _ 2 0 T . 1 3 _ 54. 22 144.01 129.45 112.64 102.68 4T.46 54.52 105.05 2 06. IB 58.64 * * . 3 4 103.T5 43.68 154.35 18 5.64 1T4.0T 134,89 104.02 94.01 1T4.96 3 7 . 5 7 _ 90.24 31.44 65 .05 101.70 4] .82 16 4,B5_ " j>8.8f l_" 108^12 157.02 10.61 10H.C9 57.78 48.5 5 84.34 133.4? 26.6 7 10.00 53.94 5 T . f 1 10T.61 20 0.16 144. 71 100.18 48.09 4 8. Zl 34. ra 85.55 6 1.*? 10H.O* 55. 36 18.91 76.3* **.F 7 125.29 50. 95 51. ^ 8 66. 35 3C.74 27.57 80.61 35.C* 130.11 96.02 33.52 56. * 7 114.91 36.21 65. *4 62, P5 56.32 73. 7 = 35.3? 7 n. P2 17.43 5P.S1 273.C? 41.87 49.6B 81.54 136.64 1T3.S4 67.30 164.TT 126.21 1C3.48 82.21 144.T4 36.48 " ""T3.60" " 32. 52 41 .75 45.38 16.4 8 _ 1 ! 1 . 2 4 84. 31" 44. 14 85.62 114.18 14.85 26. H2 51.16 5*.5* 2*. 81 50. IT 101.06 206.18 147. 74 46.51 54.0B 47.25 81.44 41.25 1*8.40 75.98 48.00 48.63 103. 6? 18.50 141.44 3?.*B" 109.80 6 5. 14 74.50 44.4? 55.47 56.28 110.34 51.03 36, 66 77.11 41. 65 123.50 57.*P *T.40 65.80 14.09 26. 77 77.7* 77. B6 51 .?? 70. 11 32. 3? 14.(f 31.77 34. 19 57.41 ?C0. 86 i.6^ 1S5. 59 1 14.45 2 25.6? 20. 9(. 209.65 70.90 09.56 - 162 -h k E l \Fe\ ? o . ? 9 22.67 84.86 107.71 42. 61 17.f1? 74. 32 41.30 104 . 81 l b B . 8? 115.94 163.23 3 1 . " 5 BT.71 8ft. 44 31.39 IT. To 13b. B2 37.62 5ft. V 28.37 1 04 . ? 7 144.51 147.95 49.84 166.?C 9 0 . 1ft 38. 3? 133.9? 55.8? 143.84 111.13 136.ni 41.5? 90.24. 41.4 3 101.21 47 .2? 90. 18 33.33 31 .84 111.14 40.2 7 175.02 43.05 130.95 34.73 55.76 5 9 . ? ' 40.57 «3. 63 40. 17 24.43 47.15 71.59 103.67 59. 54 7 2 . 2 * 38.19 78. "4 74. IT 25.01 48. 2 3 33.14 36.01 56.85 71.36 5 7 . 6 * l i f t . 7 4 34.63 87.71 70.95 46.97 45. 76 75.40 79.52 66.78 42.or 40.8? 41 .72 75.76 34.^6 172.65 110.52 67.11 11.58 56.55 45. 88 14.60 296.85 145. 77 116.84 J 5 . 9 5 T7.94 57.9 3 64.6 8 ?8 ,60 43.01 20.12 23.06 "iT.'4ft"" 54.9 7 46 .35 95.66 86. TP 70.14 28 .4? 19.66 115.93 156,49 135.45 81 .14 18H.45 65.T9 TO. 79 24.40 58.06 69. Sfl 40.36 IT. 1 1 44.98 216.74 51.61 lf lft . 14 115.17 11 1 5 1 .7 ) 50. 79 1 1 2 84.71 90. 10 78 . " 7 21.86 47 .21 4H. PJ 89.20 35.50 15.81 11 5 11 . 90 IC. 76 91 .80 1? n 75.81 11.45 77. ( S 75.27 17 1 74 . 1 ? 13.46 46.C2 47. 44 17 7 7 " . 1 1 ?7.77 7*.»ft 74.5ft 12 1 46 .98 46.78 *7.42 40. 15 1? 4 ftl . 16 61.24 40 .69 45.04 12 5 31.24 10. 93 52.TS 52.1 9 1? ft 17.15 44.31 31 .21 33. 73 12 a 48. 18 48. 7 7 112.?<* 111.5ft 13 1 45 .24 91.75 1G4.44 97.58 13 3 94.41 179.TT 126 .69 11 5 6 1 . 19 61. 67 117,17 l?o . 61 14 r- 45 .56 51.79 1 " 3 .25 49. 68 14 4 1C.58 27.12 6 1 . M 65. 74 14 ft 54.32 55. 19 6ft.77 69.58 15 i 65 .3 J 58. 30 41 . 4r 47. 1 8 15 1 7 2.04 66.74 . 57 . 31 BO.37 15 2 4 " . ? 9 40. 15 5 • . '. 7 63.00 15 i 84.55 80.8 5 I t . } * 36.69 15 5 46.99 46. 1 I 29 .92 77.17 11 .41 13.25 40 . 51 4 6 . 9 " IT 0 64.T9 67. 89 9C.C4 F7.6B 17 1 38.22 1 2 . i ? 1*1 .70 147.78 IT 2 61 .58 54.01 51. U 54, 81 11 8.2ft 1C4.43 45 .71 38.42 8 11?. 5? 122.43 25 .86 14.1ft 8 89.01 54.09 15. 28 37.42 a 0 8 30.78 40.6? 82.77 8 1 IP 47 .84 51.74 5ft.17 60. ft 8 1 1 27 9. r, 9 250.44 104.14 ICO.01 1 7 51.43 49 .59 118.97 112.ftr 1 3 106.3? 100.91 84. ?? E l . 42 8 1 4 67. ?5 60.49 93 .96 54. 84 9 54 .85 57.90 29 .19 13.54 39,ft f 39.53 53 . 1 4 55. ?7 1 7 13.1" 35.50 57 . 1 6 58.50 8 7 1 5 7.44 50.39 34.03 36.2? 7 7 9ft. eo 90,74 37 .49 8 47 .91 35.40 31 .1? 33 .41 R 7 4 45.ST 43.15 96 . 10 94.96 8 7 5 58,65 74 .72 86 . 6 6 87.76 fl 7 6 IB . 37 4R. 11 64 .17 64. 17 8 2 T 50.77 52.71 44 .46 40. 14 8 2 8 55 .59 63.76 2 7 . ? ? 71.01 B 149,29 135,18 35.01 37.9(1 8 1 1 59 .63 57.87 14. 1 8 40. 84 3 2 10 9. 31 106.48 37 .25 ?6 .3? 77 .10 16.56 71.94 71.35 3 4 48 .93 105.19 BT.15 (4.06 3 5 78.78 ?5 . 35 50 .94 54. ID 1 ft 75.17 75.42 48 .22 48.91 3 1 . iS7 3 ? . o? 44 .06 44.7 3 4 1 57 . IT 45.48 4 C 9 ? 37.84 5? ,54 51 . "6 35.55 33.67 4 1 4T.26 34.63 3 ? . 6 5 37.57 82 . 4 4 82.82 80. C 3 74.71 4 6 6 2 . 5 4 60. T4 57 .49 56.55 4 7 11 5.47 1 17.47 33.06 ? 4 . 1 * 4 4 5 r . 4 3 54.47 19. ?e 79.80 5 0 144.94 138.21 6 9 .48 63.59 4 1 78. 8B 72.88 174.15 115.38 l f tC.07 ' 152.55 126. CC 130.58 5 3 37 .18 3T.21 71 .86 T5.70 5 4 115.15 1 12.54 51 .17 56.44 5 6 34.88 27.86 700.64 164.93 5 7 3 7,00 29.66 10 7.64 101.24 6 1 4 4 . 7 4 47.15 714.42 207.65 6 7 38.45 37.04 84 .31 TB.T2 88.31 40.81 105.81 124.19 45. f t" 45.64 17 .59 40.11 78,44 86.05 47.78 51.14 31.34 31.79 34.49 31-76 114.14 105.74 4 8 . 2 ? 82.45 8 T 1 flr.43 7T.16 34.81 35.6? 8 T 2 9 ? . 18 84.54 54.46 55.75 8 T 3 101.15 U 4 . f 7 52.14 48.43 8 8 0 3 7" .5 8 26.11 4 7 . T l 51.96 8 27,06 23.51 72.40 T1.89 8 8 4 77.81 73 .73 88.14 42 . 60 8 8 6 66 .07 66.5 8 78. 13 2T.01 42 .30 47.55 3f .CT 3T."5 8 _ 4 r 11.67 20. B 2 113.67 174.T4 8 11 •. '85 110.67 205. TB K T . 4 5 8 104.34 1C5.13 68 .35 69.OB 8 59.21 61.21 94.01 43.67 8 34 .61 25.81 64 .10 56.64 B IC f 44. 3D 46. 16 81.11 81,43 B 10 ? 27.7B 2B. 74 56 .70 " " " 5 3 . 4 5 a IC 4 49.51 46.64 11 .89 31. 31 i r 6 56 .45 61.01 33 .42 29.17 8 11 0 120.04 110.72 34.21 33.42 n 11 1 37 .10 32.99 51.43 44.9 7 11 7 75*05 76.77 41.11 30,61 6 11 3 7 3.41 72.43 47,11 47.8? 8 11 4 51.T0 52.75 82 .51 91 .25 8 11 « 46.21 40.95 3 0.48 17.53 8 11 6 3 2.07 12.41 69 .24 76.17 B 12 3 43 .56 41.90 41.77 14.47 B 1? 4 38.31 37.09 152.38 146.74 8 12 5 47 .37 47.57 2 ? . 48 23.71 8 17 6 79 .T9 24.48 11*.3 5 1C8.16 8 12 7 36 .07 41.84 4 0 , 5 4 • 1 . 2 3 13 0 114.51 l o B . I B 6 6 . 0 6 73.63 8 13 1 64 .40 89.13 5 4 . C l 56.4 0 8 11 2 80.3 8 81.23 54 . 41 54.?T 13 1 42.57 35. CO 57.14 41.10 8 14 3 87 .85 54.61 45 .03 41.53 8 15 0 65.46 53 .50 5 9 . 6 ? 64.65 8 15 1 44 .60 40.5 3 48 . 6 0 52.54 8 15 2 53.48 46.48 * 2 . 7 5 50. 19 15 1 4 1 . 76 42.41 51 , 1 3 54.44 ~ 8 18 4 4P.88 39. 27 1*.T2 42.44 H 15 5 46 .07 38.0 8 97.41 fB. 36 B 14 4 16.13 11.15 95 .IT 88 . TS S 17 I 64 .05 51. 14 14B.18 144. 68 8 17 i 44 . 7-1 48.64 116.,79 115.55 81 .92 •1 .18 4 ' 4 " . 5 0 42.94 79 . 16 87. 57 110.61 M l . l u " 2 8 . T l 14.04 9 54 .47 54. 9T 2 4 . ! 1 74.71 I 0 97.9ft 94 .07 63.61 bT.'-S 9 1 1 101. 9 j 90.56 26 .15 24.14 9 1 7 151.T1 141.51 84.54 1 1 58 .64 6.1.2B 58 .95 59.66 1 4 97. T4 92. 26 4? .TT 41 .93 1 5 1B.TI 35.35 19 5. 11 1*4.75 9 1 b 33.34 32.63 170.T6 116.5? 9 1 T 37.64 38.31 105.44 102.3T 7 1 40 .42 38.09 66, C4 66.68 9 2 7 57 .70 42 , 02 38.OT 41.70 10 3 . 1 9 57.34 75,81 16.48 9 7 4 ST.1ft 86,19 44.41 • 1 . 34 2 5 59.17 48, 80 7?.3? 6S.46 7 6 48.24 5T.55 l f f t . 0 * 1 0 . ? ? 47.67 3 7.97 45.81 29.10 2 8 . f ! l ft*.28 65 . 87 18.46 58 .65 56 .45 72 .15 13.48 52.27 4 0.01 3.11 !».5< 117.75 4 1 . *5 _ 1 4 . 9 6 73 .30 76.94 25 .57 69 .47 8 0 . C " 71 .25 4 1.26 45 .43 10 1.0 5 74.30 128. 8C 35.71 47 . l b 46 .55 76.16 94 .9 1 118.48 79.31 56.55 66 .44 4 7 . 3 ? 150.95 57 .37 51.87 52 .91 *1 .00 34.46 13 .?8 75 .7? 64 .71 54 .60 1C.57 13 .70 64 . T? 10 7. 7 8 44.44 66 .52 73 . »1 51.34 54 .73 53.28 121.8> 51 .73 3T.6T 60 .44 BC.61 71 . T l 77 .47 31.10 5 C T 7 111.54 50 .T? 16.45 8?, 67 70.55 53.T3 8C.64 74 ,?7 - 163 -h k I IEI IRI 2 3 . 2 * 61.76 45.47 51.66 24. f 2 31 .53 26. 31 44.72 65.18 55. 34 81.5-9 82.70 9 9 . 6 * 71 .27 88.92 46.65 74.87 105.5B 45. 89 54.12 30. 33 68.75 71.71 47. 50 45.73 38.73 * t l . 73 31.96 101.89 (3 .46 53.81 54 .40 K 9 . 6 9 43.62 79.78 57.70 54.84 76.93 49.00' " 69.27 47.11 49. 5B 38.30 68.40 34.44" •1 .36 36.34 67 .79 29.81 115.71 29. 18 52.83 59.53 86.0 5 32.89 97.08 16.43 39.2 6 74.74 55.83 31.28 48.73 45.12 29.80 39.23 30.26 41.23 79.95 15.68 50.9? 46 .7? 36.48 77.07 106.81 63 . ?? 65 .00 65.44 38.16 B8.B6 24.14 B1.T9 49. 4C 54. BT „74.45 44.49" 46 .8? 51. 36 74.1? 107.35 6B.4 7 _ 38". 56 SB.16 ( 1 . 2 9 33. 3B 32.31 _ 4 1 . 4 4 89.4 9 64. 28 42.«8 49.52 86. 13 37.05 53.81 "" BO. 68 60 .15 50.11 35.55 63 .95 49. 26 44.62 3C.TT 86.91 49.98 41.34 43.03 " 4T.25 42.62 47.91 52.22 _ 8 6 , 5 2 _ 37.51 24.9 8 40 .88 40.34 97.40 34. o i 58.23 4 3 1.57 10. 19 0 61.11 54.42 67.5? BO.55 33.57 35.14 11.5* 30. 12 7«.S6 69.50 139.50 128.1 7 73.84 80. 16 1.1.39 47.55 15.70 31.44 31.68 74.44 73.79 68 .4 ] 4 4 4.61 41. 75 6 7.30 (4.40 59.68 61 . JO 62.10 64.46 79.8 3 (-5.35 60.3 7 " 31 .72 24. [1 59 .12 64.77 45. 10 lt8.(7 94.99 36.09 37.60 37.41 39.05 78.18 79.4 5 5 3C.54 25.44 0 ?T.5i 22.46 ? 110.(5 41.67 44.39 54.01 41 .57 42.46 45.35 18. 34 35.64 49 .05 45.64 4 7.24 46.45 35.89 40,07 55.22 58.25 54.70 41.67 4 4,41 50.40 14 .60 74. 8 7 67 .84 60.31 1 74.98 66.76 ? 54.7 5 48,80 47 .46 40.42 4 0 . 0 ? 43.47 56 .30 47.31 15.28 32.12 4 7 . ( 4 41.27 1 " . 01 21.44 19.29 14.5? 30.C4 76.86 60 .04 52.18 57.78 52 .50 112.72 108. 78 3 33.74 37.64 37.9T ' 40, IB * 3 . 1 4 37. 78 59 .45 58.15 34.18 12.14 32.67 33. 36 48.5? 4? .66 4?.43 46.75 44.41 91.28 4 7.28 58.0 7 32 . 12 26.44 66 .66 60.9 3 30.33 31 .04 11. 86 28.05 30.10 22.40 53.6 8 51,28 0 44 ,11 31.74 ? 74.31 71 .73 5C.73 46,75 31.96 3 1 . 7 0 " 44 .4 7 4 1 . 8 * 37.76 31.81 45 .27 37.32 50.18 •2 .41 37 .82 30.62 39.42 3 9 . 9 * 49 .33 51.50 46.33 48.11 36.10 31.63 37 .69 35.19 48 .66 40.64 41 .51 **.>l" 42 .74 36.01 172.13 165.15 216.58 194. 34 187.71 16.3.59 74 .82 '20.09 39.96 ' 29.60 | 126.15 117.52 77.71 18. 72 l b o . o o ' 92 ,56 90.55 91.66 116.75 128.67 4'». 2 0 44 .19 86 .49 ( 2 . 9 7 51.87 47.75 53 .10 48.61 267.5 8 794.84 225.84 224.81 308 .53 311.01 122.77 116.83 50 .52 •6 .11 9?.f8 67.19 33.C5 33.3? 34.5? 35.11 79.27 2B.53 13.07 42 .19 4 5 . 6 3 56.19 168.43 1*9.76 102.26 105.04 7C.30 77.18 77.C7 (4 .19 62.3 7 84.56 K . 2 4 40. 4> 51.08 49.51 61 .31 66.66 149.36 179.06 7 2 . 8 6 ' 76,67 "" 14 1.18 1*7.€9 17 .15 33.66 5?. T? 47.21 74 .99 66.54 ~ 1 ~ 20 .94" *0 .6S 4 7,90 74.20 111.56 126.69 65 .19 88.94 76 .46 80,70 76.94 60.99 1 "114.41 1-23VOO 197.21 221,46 1 3 7 . 1 5 1*7.71 104,10 115.57 5 89 .43 5 1 . 1 * 69 .96 3T.6C 91 .52 50.11 30. 31 7 4 .68 162.C5 35. 16 24.30 " 73.20 6 7 . 15 9C.60 111.75 U l .33 18.41 113.15 48 .04 66.77 51 ,78 54 .33 78.51 62 .77 51 .65 63 .08 24>.c3 2' 8.55 132.57 l ' , 4 . 60 21 .62 75 ,82 46 . 61 59.51 25.12 64.68 9T.52 96.21 15 6 .94 263. 83 197 . * " 125.65 15 4.81 107.04 47 .77 l i e . i o 7 1 . ( 5 55. 87 52 .11 142.12 34.41 6 8 . * 4 196.16 60.70 • * 3 1 . ? 0 _ K 20 7.44 60 .02 36 .11 * 1 . 7 3 _ 1 0 1 . * 4 (•8.12 57 ,51 6 7 . 6 8 44 .61 4 6 , 5 2 92 .22 162.27 55 .56 137.01 41 .25 ? 5 . 6 6 _ 75 .69 31 .71 56 .85 65.1T i e . * 2 48 .67 49 .CS 6 4 . 4 3 72.46 JO*.5? " 2 1 5 . 9 9 5 * . it 137.12 * * . 5 6 113.*5 1 5 . 5 0 " ' TC.M 79 .68 <*(•. 8 7 67.21 _ 1 3 2 . 9 6 151.57 26 .89 * * . 12 16 .36 9 6 . 6 * 1* .99 95 .99 60.01 121.96 _ 1 6 . 1 B _ 61.C9 53 . 75 • 2 . 3 1 * 0 . 1 2 40.CT 167.30 48 ,55 6 8 . 6 * 58.6? 31. 11 40.70 54.42 76. 3T 71.55 45. 07 52.84 54.2 5 31.76 79.32 175.09 108.67 1*1. 13 "2 .62 109.61 36. 90 71.f'fl 32.11 65. 36 117,50 82. 71 49. L8 91.87 1C9.96 ICS.40 19.92 46.66 51.23 44,86 37.38 114.99 89.52 (4 . 14 56.72 53.58 73.6,1 56.56 * 1 . 1 7 " 58.26 230.86 190.26 113.66 98.27 " 21.04 61 .59 56.45 • 2 . 8 3 29.0*1 53.21 •7 .49 B8.6C 1*6.61 758.78 U 7 . * 5 114.12 1*1.27 5* .70 44 .09 146.01 75.91 5».OB 5*.2> " 144,52 47.66 ( 3 . 2 6 ? 9 2 ; i 7 6 2 . 5 * 126,13 _ K 6 . 6 1 209.62 5* . 61 31.11 35.69 10*.TO 61.55 (1 .69 74.05 46. 32 93.41 90.23 179.06 56.67 1*4.49 41.46 4 7 . 2 5 _ 71.66 2 6 . 1 * 56.16 44. 26 _ _ * 2 . 5 0 46.50 51.26 ( 4 . 6 8 72.32 _ 1 1 1 . 9 3 2 * r - .~ l l " 62.16 162.82 *3.91 115.72 _31 .49 3 1 . 5 6 " 15.16 50.99 9* .17 52.63 1**.TO 156.04 " 29.59 46.16 35.50 46.27 31.61 57 .32 60.64 111.79 3 2 . 2 6 _ 59,21 56. 86 55.97 40 .99 19.40 155.44" * 9 . 3 3 66.ST 17.76 37.14 7.4. lh 15.47 68 .50 65.5 7 «?.'9 79. 37 p 1 .50 T8.4R 1 4 . C l 31. 18 2fl.6T ?9 ,*6 K 5."1 178. 76 19 P. 7 3 7C5.73 n * . 6 ? 19ft.65 1!1.4Z 1CT.44 58.81 61 . 19 106.04 57.40 73.70 51.49 47 .49 11.15 95 .15 *7 .46 ?3 .44 74.4 1 54.84 57. *r. 78.01 7*. 8 7 137.40 174,67 27 3.77 2*9 .?1 115. 19 178. 11 161.C5 139.40 128.27 127.02 ' 4 . 0 1 45.65 tC.«0 57 .7" 57.72 47.77 49 .71 70.74 ID, 37 34. 77 35.01 ••2.64 47.61 43.78 48.11 48 .29 42.13 57. 54 63.04 64,«!T 55.29 34 .51 39.7? 16 7 . 9* 178.1? 6 5.56 44.05 16*. f 9 U 4 . 50 ll'U.16 57. ?7 46 .89 39.65 4 6 . ? * 45, ?B 8 1 . 10 f 4 . 7? 134.50 140.70 4 ? . 2 5 45. 4 i 78 .12 20.72 t 5.11 64.11 79.41 27.10 73.78 6 9 , 9 r 113.15 175.7.3 174.77 141. 1 !• H3.42 84.4] 120.81 12V. 16 6f . 4 6 78.11 131.54 131.69 39. *2 34,44 6 7 . 9 ? 62. 15 2 7 . T7 16.31 87.27 43 .^7 14 .3? 34.16 53 .04 55.97 44 ,41 46.68 74.04 35.60 44 .91 57.96 30.5T 26.60 179.29 2C1.T7 65.64 67.04 178.46 142. 6 9 75 .47 74.86 K 5 . 4 0 177.40 4 3 . 15 IT. 90 61.T6 00.46 37.0* 39.66 13.5T " 14.4? 51 .59 • 2 . 68 53 .76 55.41 55 .60 87.16 12*.OT 11T.8? 5*.21 59.44 117,16 125.91 62 .53 60. / . I 83 .90 87.96 30.53 26. 01 61 .41 62.18 75 .73 (7 .59 41 .40 39.53 48.18 61.47 31.78 34.47 7 7 . C8 79 .59 112.75 131.36 107.74 113.58 5 i . r 2 56. T* 14.C0 36.35 11 . ( 5 21.61 36 .42 19.26 29 .60 23. TC 49 .52 40.86 17 .15 36.SO 32 .65 10.83 58.86 63.42 48 .71 58.76 83 .11 77.38 41 .55 *"4."T6 96 .40 41.60 "69.4 8 71.41 7 6 . 5 * T1.22 57 .45 94.06 2*1.22 220.66 14 1.13 176.93 226 .73 706.96 K 4 . 8 6 l c i . i r 57.45 50.45 54 .C4 46.25 69 .25 61.42 12.16 37.99 35.77 34.64 7 0 . 1 ] 61.10 6 5 . 0 2 56.75 57.51 ( I ; * * 2*1 .69 227.11 110.93 117.89 19( .12 179.20 15 5 . *2 1*1.82 6C.T* 70.29 63 .19 ' 4 * ; i * 60 .54 TI .68 127.11 110. 1* 186.06 190.07 12 .49 12. 59 " '24.00 l * . ' l * ~ 51.01 48.77 84.76 11.3* 11.64 12.57 I f . 1 5 31.24 - 164 --5 -5 34.47 26.21 15. 17 25.6 7 -6 44 5 -6 14 6 71 . 2h 26.79 64.67 16. 9C -8 -3 ? IO*.IB 55.31 117.50 57. IB h k 1 IF*I IFfcl - 5 4 -5 l i " -5 IC a 4 7.05 13 6.66 44.40 37.72 144.3" 53. 57 -b 14 7 15 2 i 15 .1 15 4 7->.59 59.4T 51.4ft 73.70 63 .40 40.41 46.04 -9 -8 3 73.2R "6.76 44. 1 1 6P.70 87. Xf 57. 76 -* l 7*.36 77.44 - 5 10 - 5 .10 * 36.51 61.57 35.60 64. 52 -6 16 2 -6 16 3 IC. 17 49.41 20.12 51.74 -a 1 2 35.50 49.15 36.0? 54.12 4 5 203.73 197.28 -5 111 a 37.61 28.06 -- !> 16 5 IB . I t 31*60 -8 t' "117.67 111.16 -« 4 7 8 4 . ' ^ 74.84 -5 11 ) 74. IB 77. 56 -6 17 3 14. f 7 42.54 1 112.07 1 15. 16 :: 5 5 " "l ' ? 3 "2ft*. 44 S4.CS 47.65 23.55 54.73 44.70 -5 11 -5 12 -5 12 ~3 1 2 37.49 ?5.65 45. 15 33.32 29.1 3 55.29 "-6 16 1 7 0 1 7B.71 IS .72 73.115 25. 1 1 -a 0 -8 9 - B Id 5 1 2 9.60 74.92 7 7.51 79.3* 75. 76 ?1.4* 5 5 8 * 0 . ?S 71 .99 3 5 . r S 36. 46. _ 61.56 27.76 - 5 -5 -5 2 2 ? 5 106.00 If.. 49 77.13 109*14 30. 23 72.22 0 5 7 0 7 7 0 0 205.01 66.75 7C. 5P 141.51 67.47 73.91 -a i " - 8 10 -a 10 5 24.67 55.59 f\3-*2 26."1 54. 8 7 .47 .50 ~-i * 2 HP.36 8 3. 26 - 5 ? 8 32.03 29.51 : | 1 15 5.17 51.30 151.48 -8 11 ? 70.94 77. "3 -4 £ ' 34.49 39. 15 - 5 | 3 65,68 61.27 1 * B4.2h 97.2? - B 11 6 27*91 26,01 -*4 6 45.10 46.45 -5 2 5?.82 54.59 2 2 2 3 65.7 I 61.35 " - 8 1? 3 B6.49 • Jl.*97 -4 6 a 40.27 ' I T " . * ? -5 4 4 76.28 82*71 2 4 2 5 It'll B ' P . C I -8 12 5 IC. PI 30.'7 5 -4 -4 -4 j l 2 3 5 42.43 " '32.96 6C. 17 36.25 50. 5 8 27.50 70.06 32.55 — -5 - 5 - 5 - 5 4 5 5 6 3 1 Z7*.T2 30.61 ?o.62 74. 27 12.91" " 29. 75 14.23 75.05 2 6 2 7 2 a ? 0 <;a.2a 45.78 54,16 10.67 82. 71 84,69 54.48 74, 80 -8 12 -8 11 - 8 13 -8 14 7 2 4 5 4B.9S 60.5? 59.45 61.83 51.*1 61.27 57.94 (1.28 j 8 9 1 43.79 54. e | 48.91 47. 76 38.OC 48.23 41.82 50. "5 - 5 - 5 - 5 -5 fa 6 6 2 3 57.16 4 6.45 47.14 56.55 55.34 45.71 44.51 60.33 7 3 1 7 3 2 3 3 7 1 5 164.E7 37.43 j»6.ai 78.57 13.22 177.65 41, 69 P5.6T 70.36 11.T7 - 8 15 -« 15 -8 15" - B 16 1 3 63 .92 50.*6 4 6 . 5 7 33.26 51. 14 44.66 37.47 :i 8 3 32.41 36.0? - 5 6 7 f~" 34.F8 34.3 2 ~ 4 4 16.42 42, 85 43.7 7 89. 8 T - 8 17 1 t 2 . e? 65.41 -4 s a 6 " 34.21 76.04 34.44 74.24 - 5 - 5 8 B 3 14.13 65. 14 31 .9? 61.99 4 8 108.26 86.44 S9.61 91.96 -0 0 - 4 "O" 3" " 6P.83 32.51 69.23 18. 38 -4 -4 B 7 8 ?1.*2 55.29 33.37 49.52 - 5 - 5 " 0 1 ? 41.08 39.14 38.70 "37. 38 ' "5 2 16.43 83.4e 150.56 40.63 " 88.51 -4 -4 0 5 7 90.12 SI. 61 85.42 BO. 15 "I _J 3_ 66.r* 64.29 -6 0 1 120.64 88. 19 106.10 7 6 7 30.H2 106.64 32.66 1 15.41 _^4. ... 117*61 134.92 :* 10 7 1 40. 1 7 60.80 35*31 64.17 -6 "~-6~ 0. 8 " i c 5S*.72 58*56 38.4? ' 6 5 41 .77 1?2.?4 65 .88 94,T3 122.46 61.4B - 9 4 108.76 89.C4 4B.6P 82. 77 r4 -4 jo 3 6 77.34 164.44 47.98 97.8? 33.26 78. 19 173.01" 48. 84 98.15 31.15 -6 - 6 -6 - 6 2 3 6 4 63.35 75, PI 151.75 6 1 . C" _A8i?2. iea.7C 67.36 64.4 3 149.10 61.64 41.51 ' 6 6 7 7 1 7 7 7 7 7 3 7 7 4 84.63 49.5? 87.45 l i e . 69 55.46 65.72 T4.97 49. 6T 84. ?0 123.63 57.92 66.14 - 9 - 9 - 9 z 2 2 2 2 1 _ 3 _ 5 6 71.43 77.Cl 46.94 84. 14 79.26 18.48 70.62 48 .8? 81. 77 65.73 -4 _ _-_4 -4 _ l '5 1 5 I 44.22 97.39 ( 7 . 1 6 69.36 30.13 26.49 67.55 45.71 1 00.81 87.24 73.61 30.31 30.19 " 62.40 -6 -6 -6 -6 - 6 2 2 .3 5 7 8 2 6.6? 190.98 115.1? 107.28 172.36 88 .41 79.95 102.00 28.09 183.44 108.44 103.43 155.84 74.12 73.4? 44.65 7 8 I ; ^ _ ' 9 5 7 8 7 8 9 _ (.3.86 36.24 45 .84 47.27 83. 7S 82.18 33.98 8 4 .'20 68.54 34.39 102.66" 40.45 84.42 88.75 3T.T6 -4 Zq -4 ~-t 2 3 3 3 1 3 1 2 64 .15 49.O0 97.61 11 6.05 110.(4 19.66 62.6* 58.13 - . 56 .39 104.4* 114.05 1 10.00 36.91 .52. 03 -t 2 35.34 39*21 - 10 41.26 36.66 3B. 42 39,19 9 4 7 9 6 58.34 48.5£ 56. 39 - 9 7 5 1.65 50 .77 -4 ~~3 " 73.81 73.81 ? 128.64 122*. 26 7 10 1 10 2 52.78 44.96 52.60 48.49 - 9 * 41 .27 33.35 -4 -5 - 5 ? 5 1 3 B ? * ! 1 41.12 238.07' 149. 17 78.50 36.16 224.51 132.61 - 6 -6 5 B 1 ? 35 .52 40.78 106^ST 27 .82 34. PT 27.64 106.51 31.49 10 3 10 3 10 6 10 7 "73.58" 6 5.49 63 .82 61 ,58 85.23 66. 63 60.12 63.51 - 9 -4 - 9 5 1 2 *n.3l" 55.88 146.ca bC.67 I B . 84 61 .41 152.11 65.54 - 5 -5 -5 5 273.45 101 .65 44.51 247.18 88.94 41.10 -6 3 4 5 169. 67 71 .28 147.80 153.77 70.45 133.77 I i 2 ' I I 3 61.57 80.88 67.42""" 84.11 -4 -4 - 9 5 5 1 5 6 8 5. 51 eT.16 3) .1 8 P3.41 81.88 26.68 -5 ; 1 89.55 28 .40 44.89 34. 0 8 -6 6 T 41 .27 75.60 41.34 66.50 12 1 12 2 31.34 37,49 29.34 -4 7 ? 37 .72 25.28 2B.90 22.40 1 —3 — 43.07 36.95 "* 56*57 51*46 12 4 7 1 . O Q "75.80 - 9 \ 78.45 81. 30 - 5 - 5 -5 - 5 ! 4 7 6 4 . 2 5 66.54 60.C6 4?.83 53.68 58.07 53. 8 8 35.25 - 6 - 6 —2— 4 7 118.36 66 .11 15.54 3 1 . ce T24VOB" 65.41 31.66 15.73 -12 5 12 6 12 7 12 8 11 1 41.44 45.24 32,46 44.27 S3. 37 47.14 44.62 33.83 49.92 82. 11 -4 - 4 - 9 - 4 5 6 T 6 34 .21 4 4 . ( 2 51. :a 41.52 " 3 9 l l 2 87.51 49.14 54.07 - 5 - 5 -5 l 2 10 1 ? 48.41 27.12 98. IC 45.72 24.02 83.25 - 6 10 1 ? 34.07 56,38" " 71.19 34.09 62.41 70.73 Z-13 3 13 4 13 3 6 7 . 3 ? 41 .25 27.34 67 .0 8 41 .18 10.00 "-"•» - 9 ,— ~ 2~ ~ 64.25 104.72 T1 .14 71.69 106.es 75.35 -5 - 5 - 5 ? 2 1 192.81 86.94 "87.71 176.22 76.83 77.75 "" -6 -6 3 4 5 62.55 42 .27 132.64 74.72 44.14 130.25 ~Z~ . 1 * 2 14 4 46 .06 34.94 46.6B 38/37 - 9 -9 - 9 7 5 6 50.44 43.6T 36.40 48.42 41.94 31.14 -•5 2 * 107.86 89.99 -* 6 56 .24 50.54 _ 15 1 46.56 *4" 65 -4 1 ~ 5 '5T.4 5 ""56.7 7 -5 2 8 6 9.'16 61.48 - 6 8 112.60 53.10 111.03 52. 33 • 15 3 15 4 46 .67 38.17 46. 72 42.28 - 9 ' 2 44.15 109.4 3 - 5 - 5 - 5 1 3 3 3 1 2 3 110.09 50.84 47.02 25 .28 128.94 44.41 45.42 16.01 - 6 - 6 -6 - 6 1 2 3 4 37.64 5"? .56 45.03 50 .18 38.16 61 ,05 """ 47.87 44.79 16 1 16 3 17 2 18 1 0 2 28 .13 47.C7 57.56 34.81 133.S9 20. 72 44.31 64.30 30.36 122.50 - 9 1 :'- 6 '3 4 66.19 79.3P "6 8.56 2T .60 7T*.T5 35.03 ~6T.T* 31. 09 - 5 -5 4" 7 38.49 173.41 34.48 172.4? ~-Z 6 T 6?.C? 34.40 62*72 39.25 0 4 C 6 138. 37 100,4 4 126.40 84.96 - 4 1 - 9 I 6 7 41 ,46 64.C5 40.81 65, T6 - 5 4 3 31.95 32.86 - 6 8 35.36 31.58 0 8 44 .16 100.11 -4 1 1 85.54 106.04 - 5 - 5 - 5 4 5 6 8 158.43 45.74 124.96 106.2 4 148.72 41.72 114.83 95.08 - 6 9 1 ? 30.44 61 .40 93. 39 . J 1 4 . 1 5 22.21 67.44 96.28 .117.78 1 2 1 3 i 4 5i*94 114. (1 50 .15 32.32 126.T9 57.82 -4 - 4 1 -9 1 -4 ? 1 4 5 54 .82 40. 15 33.54 4 1 . CS 58.66 4T.14 34.76 41 .15 - 5 -5 - 5 5 10 2 91.34 131.24 28 .52 44.41 135.58 24.63 -6 - 6 6 a 45, 5* 57.61 55.22 55. 70 54.77 52.48 ;j 1 6 2 1 25 . 19 51 .32 55.11 25.56 44.64 -4 1 - 9 1 ? 6 43. 14 27.46 31.43 40.02 20. 12 34.76 - 5 -5__ 3 7 28.77 47.36 24. 88 - 6 9 1 31.17 159.84 27.38 174.33 Z' 2 5 2 6 4 5 ,29 6 9 , 9 9 SO* 74 65 . ? * -4 1 - 9 1 3 51.37 81.47 51.51 8*. 55 - 5 -b 6 b 2 '7 3*02 85.18 78.61 40.72 - 6 3 67.54 30.11 72*00 32.64 j; 2 7 2 a 3 1 49 .48 40.5T T l . 11 44.34 51.57 60. 60 T 9 1 5 31,14 33 .05 44 .14 34.16 31.6? 45.10 - 5 108*19 1C8*15 - 6 50* 47 54* 36 3 2 144.91 1*1. T4 -4 1 5 8 .24 58. T4 - 5 - 5 ~5 6 ~~ 62 .40 108.77 6B.08 104.96 - 6 1 - 6 "lC - 2 3 41*43 64 .44 44. 74 71 .18 ' =; 3 3 3 4 3 T 68.02 139.(6 31.57 T1.39 132.33 11.29 -4 1 1 5 U 5 8 44.34 •4 .26 44.01 - 5 T 1 74.04 86.58 - 6 1 6 78.00 75*34 l\ 4 2 2C .45 55,28 18.10 52.03 -9" 1 2 16.01 5 8 . 2 * IB . 1 7 62.34 - 5 ~~7 " 32704 36.4 5 "t I' a 44.90 42. C6 ~\ 4 1 4 3 90,11 '125.46 86. 94 T20.GT" - 1 0 6 11 4.4 8 33.06 112.B2 - 5 - 5 - 5 T 7 7 8 10 6 3. 66 34.76 24 .6? 60,64 24.72 25.64 - 6 1 - 6 1 -6 1 2 3 1 26.11 71.27 71.97 14.77 73.11 75.96 -t 4 9 5 2 87 .66 4 ( .T1 116 .11 24.87 61.24 •4.38 150.46 26.62 - 1 0 -10 - 1 0 ~ t 3 4 " 40 .24 130.C4 148.16 71,99 91.50 117.23 144,34 71.51 - 5 2 7 8.64 74.63 - 6 1 * 65*9* >3*9 8 - 8 5 4 _ 94.41 55.51 -10 l o s .e i 1C3.56 - 5 - 5 - 5 - 5 - 5 - 5 - 5 8 8 8 a 8 9 5 7 2 3 163.5 8 81 .83 136.37 122.f9 31.34 44.8? 6~l . i2 36 .42 174.36" 84.54 124.50 124.61 28.80 43.76 43.51 40,80 __jr6.. 1 - 6 1 - 6 1 - 6 1 4 5 T 2 1 1 15,51 40 .30 42.44 52 .05 77.81 64.74 54.82 37.15 41.77 37.49 57.36 19.67 67.60 61.76 - 8 -e -8 - 8 - 8 -» - 8 - 8 6 5 6 T 6 4 40.51 41.21 43,40 35.10 55.P.9 B4.42 16.64 45. C2 42.24 "" 41.04 44.66 10.44 51.32 82.01 43.61 47.93 -10 - 1 0 -10 -10 1 ? 5 a ~ * 1 * 9 0 44.53 47.17 65.50 41 .51 49.84 41 .44 43. 79 60.71 51.14 J - 165 --_; 11 1 11 ? 39. 1? 19. C7 lh. «0 43. 58 h k 1 \F0\ IFJ -', 11 3 7 12 1 65 . 39 75.59 95.16 15.90 3b. ?6 99.41 37. 83 :! 3 1 5 1 56.43 2 153.63 b 18.31 1 33.27 5 55.73 6 IB.59 7 60.72 ] 10.'2 . _ 42.1* 62.68 160.27 39.74 37. 89 51.33 17.81 59. 10 11.84 102. 46 46.36 ";! 3 1 3 3 7 1 3 7 7 3 7 3 3 3 1 3 1 1 1 3 5 1 3 6 42.56 1O0. 7 4 S3.45 10.f 3 4b.5b 11.5? 67.77 48. 19 68.91 39.56 41.27 6 2.64 44.10 1Cl.BO 50.9? 71 .."19 49. 10 26.39 T5.9 5 51.86 70.99 40.67 -1 5 4 106.62 6 67.41 2 31.24 3 2R.db * 30.54 102. 4? es.T3 30.06 34.55 71 .90 3 5" " " 1 1 5 5 6 0*. 30 75.4C 59.37 4t.4 l hO. 16 75.31 84. ?1 60. 3 7 50. 89 7C.75 - i t " " 5 ' * 34.89 7 51,13 t 82.50 3 40.18 4 46.29 5 " 76.83 6 3*.29 8 2 29.01 » 4 65.87 B . 6 6e.79 8 ~ 8 54.82 9 1 12 6. 8 9 0 3 1<"».T4 9 5 61.42 9 7 37.15 0 6 42.95 1 1 41.01 1 2 43.17 1 3 47.81 1 4 28.34 'l 5 ™ 35.04 1 6 31."50 2 4 17.99 2 7 5 0.61 "34.43 !3.b5 82.96 63.31 94. 15 50.42 81. 33 31.70 31.28 67.03 68.00 55.48 " 136.66 117.13 60.33 39."4 40.9 7 41.39 46.73 47.17 29.14 39.13 36^49 13.48 44.94 1 3 7 7 3 7 4 3 B 1 3 9 4 3 11 1 3 11 2 4 0 7 4 1 1 4 1 7 4 1 1 4 2 1 4 7 2 4 2 1 4 7 4 4 3 7 4 3 3 4 1 4 63.1 5 45. $7 75 .29 51.4? 57.75 41.78 46.1 1 33. b9 33.'5 34.09 37.75 59.77 41.7? 4B.90 46. C4 17.71 64.22 48.44 39.54 15.65 34,72 26.41 31.79 69.47 50,41 69.05 60. 58 78.04 60.61 61. 80 58. 73 48.57 19.51 14. ?4 36. 50 40.11 40.6 8 51.67 51 .50 45.4? 24. 80 71.48 57.47 40,17 34.9 8 "" "34.48 29.B9 31.71 71.8b 51.04 1— 3 2 71.74 3 1 29.97 1 V 51.28" 1 6 31.88 4 5 47.10 5 7 4 3.14 5 1 47.73 5 4 44.40 7 1 55.37 0 5 106.88 1 2 123.44 1 1 80.02 1 4 10 0.19 1 5 73.24 1 6 55.1C 2 1 57.37 7 6 30.91 7 7 43.aZ 3 1 177.13 3 2 46.67 3 3 ' " 80.00 3 4 45.95 3 5 67.10 3 b 55.2b 3 7 49.75 t 1 48. C3 t 6 15.44 5 1 X0.C5 77.29 15.95 "*1.29 14.09 41.85 51,77 63. 13 49.07 55.76 57.65 174.36 83. 14 57. 17 72.20 54.11 61 .39 30. 97 46.08 138.IB 58.19 83.56 " 48. 16 66.88 57.04 61.21 5 0.90 34. 4B 92.26 -:; 4 4 5 4 5 2 4 6 1 4 7 1 4 7 2' 4 7 4 4 9 3 4 10 7 5 0 1 5 0 1 5 1 1 5 1 7 5 1 4 5 7 1 5 7 3 5__ l.__5 5 5 1 5 7 2 5 7 3 5 8 1 6 0 2 6 1 3 b 7 1 54,57 10.61 ?e.t« bl .71 41.87 3 3.47 44.00 34. Cl 40. 10 38.37' 37. 72 82.57 70.67 32.85 "48.06 63.42 36.31 32. 76 79.51 39. 16 44.96 43.31 30.74 42. 77 56,44 34.74 32.76 5?.50_ _ 58719 29.14 41,09 61.91 52.11 15.41 51.17 44. 40 49.59 "" '51.14 31.04 BS.10 68.48 ?8.4 7 57.5b 68.19 16.90 24.44 33.00 42,53 51.85 51.00 37.47 54.64 64.49 32.44 3b. 76 57.1?_ 5 5 77.80 b 7 1C.38 6 1 32.17 b 2 41.41 6 5 2P.39 78.98 77.92 43.11 46. 74 21.14 6 2 3 6 2 4 6 3 2 35.68 78.47 11.40 38.49 36.36 40.49 24f 34 31.02 41 .76 7~ "1 ~"57."88 7 7 71.41 7 3 42.40 7 4 78.43 7 5 57.21 "~64.31 BO. 34 4B.4Z 80,65 62.98 -"' 0 1 7 2 1. 4 " 16 " T 4 16 2 69.47 30.7 8 15.10 47.?7 75.79 34.75 36 . 62' 46.02 -:-! 1— 8 " l ""' "3C.99" 8 3 27.41 8 5 10.66 » 2 81.11 9 4 51.29 9 6 55.27 1 41.44 2 44.14 3 34.73 11.63 10.66 26.74 55.41 57.97 62.35 47.59 55.06 44.07 4 17 I A 17 2 4 11 1 64 .97 67.96 29.4b 75.48 50.17 61.74 59.52 28.05 89.13 55.65 i ; ; — 4 50.28 1 5 5.07 2 8 3.88 1 97.80 2 42.74 3 104.27 4 93.0b 5 96.1* 7 51.26 1 47.18 " 5 " 50.11 6 78.33 1 55.33 7 55.28 3 13.77 54.90" 61.02 87.24 105.37 41.93 108.25 " 81.61 55.27 55.65 51.14 46.94 20.05 55.70 59.34 14.28 - :• ? 10 4 66.65 6 59.53 1 73.45 2 34.90 3 42.94 5 2 9.10 1 5f.59 2 84.40 4 95.37 6 64.24 1 28.92 1 38.96 2 60.11 3 73.23 5 44.66 b 46.30 7 3 7.09"" 1 b7.53 3 6 4.C6 5 65.52 2" 3 3. 10 67. 1 5 C4.99 78.61 16.7 5 50. 14 21.37 58.24 50. 35 98,99 67. 04 36.63 43.53 67.41 75.74 52.22 49.5 7 4 3. 70 74 , 95 75.46 70.63 '43.96 - 166 -REFERENCES 1. N.L. Paddock and H.T. Searle, Adv. Inorg. Chem. 1_, 347 (1959). 2. R.A. Shaw, B.W. Fitzsimmons, and B.C. Smith, Chem. Rev. 62, 247 (1*962). 3. CD. Schmulbach, Prog. Inorg. Chem. 4, 275 (1962). 4. N.L. Paddock, Quart. Rev. (London) 18_, 168 (1964). 5. D.P. Craig and N.L. Paddock, i n 1Nonbenzenoid Aromatics, 1 Academic Press, N.Y., Vol. 2, p 273; (1971). 6. F.R. Ahmed, P. Singh, and W.H. Barnes, Acta Cryst. A25, 316 (1969). 7. S.J. Rettig and J. Trotter, Can. J . Chem., 5_1, 1295 (1973). 8. G.J. Bullen, J. Chem. Soc. A, 1450 (1971). 9. W.C. Marsh and J. Trotter, J. Chem. Soc. A, 169 (1971). 10. M.W. Dougill, J. Chem. S o c , 3211 (1963). 11. M.W. Dougill, J. Chem. S o c , 5471 (1961). 12. G.J. Bullen, J. Chem. S o c , 3193 (1962). 13. R. Hazekamp, T. Migchelsen, and A. Vos:, Acta Cryst. 15, 539 (1962). 14. A.J. Wagner and A. Vos, Acta Cryst. B24, 707 (1968). 15. H. McD. McGeachin and F.R. Tromans, J. Chem. S o c , 4777 ( 1 9 6 1 ) . 16. A.W. Schlueter and R.A. Jacobson, J. Chem. Soc. A, 2317 ( 1 9 6 8 ) . 17. M.W. Dougill, unpublished work (1969), quoted i n reference 5. 18. A.J. Wagner and A. Vos, Acta Cryst. B24, 1423 (1968). 19. N.L. Paddock, J . Trotter, and S.H. Whitlow, J. Chem. S o c A, 2227 (1968). 20. E. Hobbs, D.E.C. Corbridge, and B. Rais t r i c k , Acta Cryst. 621 (1953); D.W.J. Cruickshank, Acta Cryst. 17_, 671 (1964). - 167 -21. D.P. Craig and N.L. Paddock., J. Chem. S o c , 4118 (1962). 22. a) K.A.R. M i t c h e l l , Chem. Rev., 69, 157 (1969). b) E.A.C. Lucken, Structure and Bonding, 1 (1969). c) C.K. Jorgensen, Structure and Bonding, 94 (1969). 23. G.S. Chandler and T. Thirunamachandraux; J . Chem. Phys. 49, 3640 (1968). 24. K.A.R. M i t c h e l l , J. Chem. Soc. A, 2683 (1968). 25. D.P. Craig, J. Chem. S o c , 995 (1959). 26. M.J.S. Dewar, E.A.C. Lucken, and M.A. Whitehead, J. Chem. S o c , 2423 (1960). 27. D.P. Craig and K.A.R. M i t c h e l l , J. Chem. S o c , 4682 (1965). 28. G.R. Branton, C.E. Bripn, D.C. Frost, K.A.R. M i t c h e l l , and: N.L. Paddock, J..Chem. Soc. A, 151 (1970). 29. a) W.C. Marsh, T.N. Ranganathan, J . Trotter, and N.L. Paddock, Chem. Comm., 815 (1970). b) W.C. Marsh and J. Trotter, J. Chem. S o c A, 573 (1971). 30. J . Trotter and S.H. Whitlow, J. Chem. Soc. A, 460 (1970). 31. N.V. Mani and A.J. Wagner, Acta Cryst. B27, 51 (1971). 32. C.W. Al l e n , J.B. Faught, T. Moeller, and i . e . Paul, Inorg. Chem. 8_, 1719 (1969). 33. T. Chivers and N.L. Paddock, Inorg. Chem. 11, 848 (1972). 34. N.V. Mani, F.R. Ahmed, and W.H. Barnes, Acta Cryst. 19, 693 (1965). 35. G. Al l e n , J. Dyson, and N.L. Paddock, Chem. Ind., 1832 (1964) . 36. J.N. Rapko and G.R. F e i s t e l , Chem. Comm., 474 (1968); Inorg. Chem. 9, 1401 (1970). 37. S.K. Das, R.A. Shaw, and B.C. Smith, Chem. Comm. 176 (1965) . 38. S.K. Das, D. Feakins, W.A. Last, S.N. Nabi, S.K. Ray, R.A. Shaw, and B.C. Smith, J . Chem. S o c A, 616 (1970). 39. S.K. Das, R.A. Shaw, B.C. Smith, and C P . Thakur, Chem. Comm. 33 (1966). 40. R. Keat and R.A. Shaw, J. Chem. Soc. A, 703 (1968). - 168 -41. N.L. Paddock, T.N. Ranganathan, and J.N. Wingfield, J. Chem. S o c , Dalton Transactions, 1578 (1972). 42. T. Moeller and S.G. Kokalis, J. Inorg. Nucl. Chem. 25, 875 (1963); S.K. Das, R.A. Shaw, B.C. Smith, W.A. Last and F.B.G. Wells, Chem Ind., 866 (1963). 43. .T.W.J. Mah and N.L. Paddock, unpublished r e s u l t s . 44. P. Markila and'J. Trotter, unpublished r e s u l t s . 45. N.K. Hota and R.O. Harris, Chem. Comm., 407 (1972). 46. G.E. Coxon and D.B. Sowerby, J. Chem. S o c A, 3012 (1969). 47. M.F. Lappert and G. Srivastava, J. Chem. Soc. A, 210 (1966). 48. J. Dyson, Ph.D. Thesis, University of Manchester, 1964. 49. J. Trotter and S.H. Whitlow, J. Chem. S o c A, 455 (1970). 50. I. Hanazaki and S. Nagakura, Inorg. Chem., 8_, 648 (1969). 51. N.L. Paddock and J.N. Wingfield, unpublished r e s u l t s . 52. W. Harrison, N.L. Paddock, J. Trotter, and J.N. Wingfield, Chem. Comm., 23 (1972); W. Harrison and J. Trotter, J. Chem. S o c , Dalton Transactions, 61 (1973). 53. W.C. Marsh, N.L. Paddock, C.J. Stewart, and J. Trotter, Chem. Comm., 1190 (1970); W.C. Marsh and J. Trotter, J . Chem. Soc. A, 1482 (1971). 54. See also Chapter III of th i s thesis. 55. J.N. Wingfield and N.L. Paddock, unpublished r e s u l t s . 56. P. Kovacic and N.O. Brace, i n "Inorganic Syntheses," E. G. Rochow, ed., McGraw-Hill, v. VI, p 172 (1960). 57. G. Al l e n , D.J. O l d f i e l d , N.L. Paddock, F. Rallo, J. Serregi, and S.M. Todd, Chem. Ind., 1032 (1965). 58. B.N. Figgis and J . Lewis i n "Modern Coordination Chemistry," J. Lewis and R.G. Wilkins, ed., Interscience, N.Y., pp 400-454 (1960). 59. D.P. Craig, M.L. Heffernan, R. Mason, and N.L. Paddock, J. Chem. S o c , 1376 (1961). 60. R.A.Walton, Quart. Rev., 19, 126 (1965). - 169 -61. a) F.J.C. Rossotti, i n "Modern Coordination Chemistry," J. Lewis and R.G. Wilkins, ed., Interscience, N.Y., pp 50-51 (1960). b) H. Irving and R.J.P. Williams, Nature 162, 746 (1948); J. Chem. S o c , 3192 (1953). c) R.M. Izatt, W.C. Fernelius, and B.P. Block, J. Phys. Chem. 5_9, 235 (1955) . 62. B.N. Figgis and J . Lewis, i n "Progress i n Inorganic Chemistry," F.A. Cotton, ed., interscience, v. 6, pp 37-240 (1964). 63. V.L. Goedken, J.V. Quagliano, and L.M. V a l l a r i n o , Inorg. Chem., 8, 2331 (1969). 64. L. Sacconi, i n "Transition Metal Chemistry," R.L. C a r l i n , ed., v. 4, pp 199-298 (1968). 65. a) P.L. O r i o l i , M. DiVaira, and L. Sacconi, Chem. Comm., 103 (1965); Inorg. Chem., 5_, 400 (1966). b) L. Sacconi, M. Ciampolini, and G.P. Speroni, J. Am. Chem. S o c , 87, 3102 (1965). 66. L. Sacconi and I. B e r t i n i , J . Am. Chem. S o c , 8J3, 5182 (1966) . 67. M. Ciampolini and N. Nardi, inorg. Chem., 6_, 445 (1967). 68. M. Ciampolini and G.P. Speroni, Inorg. Chem., 5_, 45 (1966) 69. Z. Dori and H.B. Gray, J. Am. Chem. S o c , 813, 1394 (1966). 70. L. Sacconi, I. B e r t i n i , and R. Morassi, Inorg. Chem., 6_, 1548 (1967). 71. M. Ciampolini and J. Gelsomini, Inorg. Chem., 6_, 1821 (1967) . 72. M. Ciampolini and N. Nardi, inorg. Chem., 5_, 41 (1966). 73. S.J. S t r i c k l e r and M. Kasha, "Molecular Orbitals i n Chemistry, Physics, and Biology," P.O. Lowdin and B. Pullman, ed., Academic Press, N.Y., p 241 (1964). 74. M. Gerloch, J. Kohl, J. Lewis, and W. Urland, J. Chem. Soc. (A), 3283 (1970). 75. M. Ciampolini and I. B e r t i n i , J. Chem. Soc. (A), 2241 (1968) . 76. J.S. Wood, Inorg. Chem., 1_, 852 (1968). 77. M. Ciampolini, Structure and Bonding, 6^, 52 (1969). - 170 -78. P.L.. O r i o l i , Coord. Chem. Rev., 6, 285 (1971). 79. J.S. Wood i n "Progress i n Inorganic Chemistry," Inter-science, v. 16, p 227 (1971). 80. M. DiVaira and P.L. O r i o l i , Inorg. Chem., 6, 955 (1967). 81. P. Pauling, G.B. Robertson, and G.A. Rodley, Nature, 207, 73 (1965). 82. B.N. Fi g g i s , "Introduction to Ligand F i e l d s , " Interscience, 1966. 83. M. DiVaira and P.L. O r i o l i , Acta Cryst. B24,5 95 (1968). 84. M. Ciampolini, Inorg. Chem., 5_, 35 (1966). 85. L. Sacconi, I. B e r t i n i , and R. Morassi, Inorg. Chem., 6_, 1548 (1967). 86. K.N. Raymond, D.W. Meek, and J.A. Ibers, Inorg. Chem., 1_, 1111 (1968). 87. C. Fur l a n i , Coord. Chem. Rev., 3_, 141 (1968). 88. G.C. A l l e n and N.H. Hush, Inorg. Chem., 6^, 4 (1967). 89. W.E. H a t f i e l d and T.S. Piper, Inorg. Chem., 3_, 841 (1964). 90. R.C. Slade, A.A.G. Tomllnson, B.J. Hathaway, and D.E. B i l l i n g , J . Chem. Soc. A, 61 (1968). 91. Jin-Ling Huang, L i Jien Ming, and L i J i a - X i , Acta Chim. Sinica, _32, 162 (1966). 92. M. Ciampolini and N. Nardi, Inorg. Chem., 5_, 1150 (1966). 93. W.K. Musker and M.S. Hussain, Inorg. Chem., 8, 528 (1969). 94. M.S. Hussain and H. Hope, Acta Cryst., B25, 1866 (1969). 95. J.R. Ferraro, "Low Frequency Vibrations of Inorganic and Coordination Compounds," Plenum Press, N.Y. (1971). 96. J.R. Barcelo and J. Bellanato, Spectrochim. Acta, 8_, 27 (1956). 97. M.A. Fleming, R.J. Wyma, and R.C. Taylor, Spectrochim. Acta, 21, 1189 (1965). 98. R.G. Cavell, Canad. J. Chem., 46, 613 (1968). 99. R. Stahlberg and E. Steger, Spectrochim. Acta, 23A, 2005 (1967). - 171 -100. R.A. Chittenden and L.C. Thomas, Spectrochim. Acta, 22, 1449 (1966). 101. M. Bonamico, Chem. Comm., 135 (1966); M. Bonamico and G. Dessy, J. Chem. Soc. A, 291 (1968). 102. L. Sacconi, Coord. Chem. Rev., 8_, 351 (1972). 103. 'International Tables for X-ray Crystallography,' v o l . I l l , Kynoch Press, Birmingham (1962). 104. R.F. Stewart, E.R. Davidson, and W.T. Simpson, J . Chem. Phys., 42, 3175 (1965). 105. S.F.A. Kettle and I. Paul, Inorg. Chim. Acta, 15, (1968). 106. A. Whitaker and J.W. Jef f e r y , Acta Cryst., 23_, 977 (1967). 107. H.J. Plastas, J.M. Stewart, and S.O. Grim, Inorg. Chem., 12, 265 (1973). 108. J.G. Hartsuiker and A.J. Wagner, J . Chem. S o c , Dalton Transactions, 1069 (1972). 109. R. Olthof, T. Migchelsen, and A. Vos, Acta Cryst., 19, 596 (1965). 110. T. Migchelsen, R. Olthof, and A. Vos, Acta Cryst., 19, 603 (1965). 111. G.B. A n s e l l and G.J. Bullen, J . Chem. Soc. A, 3026 (1968). 112. C.K. Prout and J.D.Wright, Angew. Chem. Internat. edn., 2,659 (1968). 113. I.L. Karle, K.S. Dragonette, and S.A. -"Brenner, Acta Cryst., 19_, 713 (1965). 114. F.R. Ahmed and S.R. H a l l , N.R.C. Crystallographic Programs, no. 4, 1967, D i v i s i o n of Pure Physics and Pure Chemistry, National Research Council, Ottawa, Canada. 115. J. Karle and I.L. Karle, Acta Cryst., TL> 8 4 9 (1966). 116. L. Helmholz and R.F. Kruh, J. Amer. Chem. S o c , 74, 1176 (1952); B. Morosin and E.C. Lin g a f e l t e r , J . Phys. Chem.,65, 50 (1961). 117. a) A.C. Bonamartini, M. N a r d e l l i , C. Palmieri, and C. P e l i z z i , Acta Cryst., B27, 1775 (1971). b) J.H. Russel and S.C. Wallwork, Acta Cryst., B25, 1691 (1969). c) J . Lamotte-Brasseur, L. Dupont, and O. Dideberg, Acta Cryst., B29, 241 (1973). - 172 -117. d) M. B o n a m i c o a n d G. D e s s y , T h e o r e t . Chim. A c t a , 1_, 367 ( 1 9 6 7 ) . 118. G.C. P i m e n t e l a n d A.L. M c C l e l l a n , "The H y d r o g e n Bond,' F r e e m a n , L o n d o n , 1960, p 290. 119. a) E.M. C r a d w i c k a nd D. H a l l , J . O r g a n o m e t a l v Chem., 25, 91 ( 1 9 7 0 ) . b) V.A. S e m i o n , Y.A. C h a p o v s k i i , Yu.T. S t r u c h k o v , a n d A.N. Nesmeyanov, Chem. Comm., 666 ( 1 9 6 8 ) . c ) J . B . W i l f o r d a n d H.M. P o w e l l , J . Chem. S o c . ( A ) , 8 ( 1 9 6 9 ) . d) M. E l d e r a n d D. H a l l , I n o r g . Chem., 8_, 1273 (196,9). 120. C.S. K r a i h a n z e l a n d F.A. C o t t o n , I n o r g . Chem., 2_> 5 3 3 ( 1 9 6 3 ) . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0061153/manifest

Comment

Related Items