Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Studies related to: bark extractives of western white pine; and synthesis of indole alkaloids Eigendorf, Günter Klaus 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A1 E39_3.pdf [ 15.08MB ]
Metadata
JSON: 831-1.0061096.json
JSON-LD: 831-1.0061096-ld.json
RDF/XML (Pretty): 831-1.0061096-rdf.xml
RDF/JSON: 831-1.0061096-rdf.json
Turtle: 831-1.0061096-turtle.txt
N-Triples: 831-1.0061096-rdf-ntriples.txt
Original Record: 831-1.0061096-source.json
Full Text
831-1.0061096-fulltext.txt
Citation
831-1.0061096.ris

Full Text

STUDIES RELATED TO: BARK. EXTRACTIVES OF WESTERN WRITE PINE; AND SYNTHESIS OF INDOLE ALKALOIDS by GUNTER K. EIGENDORF B . S c , U n i v e r s i t y of B r i t i s h Columbia, 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of Chemistry We accept t h i s t h e s i s as conforming to the requ i r e d standard UNIVERSITY OF BRITISH. COLUMBIA January, 1974 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree, t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f Chemistry The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada Date April 3. 1974 - i i -ABSTRACT Pa r t I of t h i s t h e s i s d e s c r i b e s the s t r u c t u r a l e l u c i d a t i o n of eleven t r i t e r p e n e s i s o l a t e d from the benzene e x t r a c t of Western white pine (Pinus monticbla Dougl.) bark. Chemical and d e t a i l e d s p e c t r o s c o p i c i n v e s t i g a t i o n s revealed the presence of a common t e t r a c y c l i c A 9 ( l l ) - l a n o s t e n e s k e l e t o n i n a l l of the i n v e s t i g a t e d m a t e r i a l s . S t r u c t u r a l v a r i a t i o n s were found a t the C3 p o s i t i o n and i n the s i d e c h a i n at C17. The f o l l o w i n g assignments have been made: compound I , 33~methoxy-5a-l a n o s t - 9 ( l l ) - e n - 2 4 S , 2 5 - d i o l (43); compound I I , the corresponding 33-hydroxy d e r i v a t i v e (51); compound I I I , 33-methoxy-5a-lanost-9(11)-en-24-one (59); compound IV, 33-methoxy-5a-lanost-9(11),25-dien-24S-ol (65); compound V, 3 a - h y d r o x y - 5 a - l a n o s t - 9 ( l l ) , 2 5 - d i e n - 2 4 - o l (66); compound VI, 33-methoxy-5 a - l a n o s t - 9 ( l l ) - e n - 2 2 , 2 5 - d i o l (70); compound V I I , 33-methoxy-26,27-bis nor-5 a - l a n o s t - 9 ( l l ) - e n - 2 4 - o n e (71). Compound V I I I was shown to be the e t h y l i d e n e d e r i v a t i v e of 33-methoxy-5a-lanost-9(ll)-en-24S,25-diol (76) and compounds IX and X were assigned to s t r u c t u r e s (78) and (80), r e s p e c t i v e l y . A novel d i m e r i c s t e r o i d a l s t r u c t u r e (83) has been proposed f o r compound XI. P a r t I I describes s y n t h e t i c i n v e s t i g a t i o n s which l e a d to the development of a sequence p r o v i d i n g a synthon [(193) and (194)] f o r the s y n t h e s i s of vobasine ( 7 8 ) - and sarpagine (77)-type a l k a l o i d s . 2-Amino-3-indolyl(3a)-propanol (121), obtained by l i t h i u m aluminum hydride r e d u c t i o n of L-tryptophan (106), was converted to i t s d i t o s y l a t e (150). Treatment of the l a t t e r w i t h cyanide i o n provided 3 - ( N ~ t o s y l a m i n o ) - 4 - i n d o l y l ( 3 a ) - b u t a n o n i t r i l e (151) which was transformed to 3 - ( N - t o s y l a m i n o ) - 4 - i n d o l y l ( 3 a ) - b u t a n o i c a c i d (152) by means of 30% sodium hydroxide s o l u t i o n . - i i i 3-Amino-4-indolyl(3a)-butanoi.c a c i d methyl e s t e r (155) was obtained through r e d u c t i v e cleavage of (152), f o l l o w e d by F i s c h e r e s t e r i f i c a t i o n . Compound (155) could then be converted to 3-CN-.formylami.no)-4- (N-benzyl-i n d o l y l ) ( 3 a ) - b u t a n o i c a c i d methyl e s t e r (163) by treatment w i t h a mixture of formic a c i d and a c e t i c anhydride f o l l o w e d by sodium hydride and b e n z y l bromide. Reaction w i t h t r i f l u o r o a c e t i c a c i d converted compound (163) t o the t r i c y c l i c 3-carbomethoxymethyl-N -b e n z y l - 3 , 4 - d i h y d r o c a r b o l i n e (173) which upon condensation w i t h 3-methylene-pentan-2-one (126) a f f o r d e d the t e t r a c y c l i c 2-oxo-3-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-( N - b e n z y l i n d o l o ) ( 2 , 3 - a ) - q u i n o l i z i n e (175). The ethylene k e t a l (177) of the l a t t e r m a t e r i a l was t r e a t e d w i t h d i i s o p r o p y l l i t h i u m amide and methyl chloroformate to provide 2-oxo-3-ethyl-6-dicarbomethoxymethyl-l,2,3,4,6,7, 12,12b-oc t a h y d r o - ( N - b e n z y l i n d o l o ) ( 2 , 3 - a ) - q u i n o l i z i n e ethylene k e t a l (178), which possesses a h i g h l y a c t i v a t e d a c i d i c proton (C6a) i n the s i d e chain. A s u i t a b l e l e a v i n g group at the C2 p o s i t i o n , necessary f o r subsequent transannular c y c l i s a t i o n , was a v a i l a b l e through conversion of the t e t r a c y c l i c ketone (175) to the corresponding C2cx-alcohol (181) and f u r t h e r t r a n s f o r m a t i o n of the l a t t e r i n t o v a r i o u s d e r i v a t i v e s such as the acetate (182), the mesylate (183) and the p - n i t r o b e n z o a t e (185). In order to a l l o w generation of an e x o c y c l i c o l e f i n a t C3, the C 2 - o l e f i n , 3-ethyl-6-carbomethoxymethyl-l,4,6,7,12,12b-hexahydro-(N-benzylindolo)(2,3-a)quinolizine (184), obtained v i a dehydration of the a l c o h o l (181), was converted to 2,3-a-dihydroxy-3-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-(N-benzylindolo) ( 2 , 3 - a ) - q u i n o l i z i n e (186) by osmium t e t r o x i d e o x i d a t i o n . Treatment of (186) w i t h a c e t i c anhydride or p - n i t r o b e n z o y l c h l o r i d e provided the d i a c e t a t e (187) or the C2 mono p-nitrobenzoate (188), r e s p e c t i v e l y . - i v -The 10-membered r i n g system, present i n the vobasine s k e l e t o n , became a v a i l a h l e through r e d u c t i v e cleavage of the C/D r i n g j u n c t i o n i n the t e t r a c y c l i c a l c o h o l (181), thus, a f f o r d i n g 2a-hydroxy-3a-ethyl-N^-methyl-6-carhomethoxymethyl-l,2,3,4,6,7,12,12b,12b-nonahydro-(N-benzyl-i n d o l o ) ( 2 , 3 - a ) - 1 2 b , N ^ - s e c o - q u i n o l i z i n e (190). A c e t i c anhydride treatment of the ethylene k e t a l (177) provided two i s o m e r i c components, 2-oxo-3-ethyl-N b-acetyl-6-carbomethoxymethyl-1,2,3,4,6,7,12,12b-octahydro-12b-a c e t o x y - ( N - b e n z y l i n d o l o ) ( 2 , 3 - a ) - 1 2 b , N b - s e c o - q u i n o l i z i n e ethylene k e t a l (191a and b ) , a l s o possessing the 10-membered r i n g s k e l e t o n . Furthermore, the l a t t e r m a t e r i a l s enable an e n t r y i n t o the f a m i l y of 2 - a c y l i n d o l e a l k a l o i d s as w e l l as members of the dimer i c a l k a l o i d s such as voacamine (75). - v -TABLE OF CONTENTS Page TITLE PAGE i ABSTRACT i i TABLE OF CONTENTS v LIST OF TABLES v i LIST OF FIGURES . v i i i ACKNOWLEDGEMENTS x i PART I INTRODUCTION 1 DISCUSSION 12 EXPERIMENTAL 96 BIBLIOGRAPHY . 145 PART II INTRODUCTION 149 DISCUSSION 167 EXPERIMENTAL 223 BIBLIOGRAPHY - •"/. - v i -LIST OF TABLES Table Page PART I I Ash content and v a r i o u s e x t r a c t i o n s of pine bark .. 6 I I I s o l a t e d compounds as a percentage of the benzene e x t r a c t - 13 I I I P o s i t i o n . o f methyl groups i n 6 values (+ 0.03 6 ) . . . 16 IV C o n t r i b u t i o n of p e r t i n e n t f u n c t i o n a l groups to the chemical s h i f t change (A6) of methyl groups 16 V Observed and c a l c u l a t e d chemical s h i f t s of methyl group resonances i n t y p i c a l lanost-9(11)-enes 17 VI I n f l u e n c e of s i d e chain on the chemical s h i f t of the angular methyl groups 18 V I I Resonance frequencies of o l e f i n i c s i g n a l s i n C9-C11 unsaturated t r i t e r p e n e s 18 V I I I Mass s p e c t r o m e t r i c fragments f o r A 9 ( l l ) - l a n o s t e n e . 24 IX Mass s p e c t r a l data f o r 33-methoxy-dihydro-p a r k e o l (27c) 27 X NMR data (6) f o r compound IV (60 ) and i t s d e r i v a t i v e s 51 XI NMR data (6) f o r compounds (67), (68) and (61) .... 59 X I I Ions corresponding to cleavages i n the k e t o n i c s i d e chain of compound V I I (71) 70 X I I I Mass sp e c t r o m e t r i c data (m/e > 700) f o r compound X (80) 86 PART I I I R e l a t i v e i n t e n s i t i e s (%) of v a r i o u s s p e c t r o m e t r i c i o n s f o r compounds (168a) and (169)................. 195 I I F a c t o r i a l i n c r e a s e (decrease) i n M+l obs./M f o r v a r i o u s ions i n the tra n s f o r m a t i o n (168a) + (169) .. 196 - v i i -Table Page I I I Mass spectrometric data f o r major ions observed i n compound (173) and the. deuterated analog (174) 201 IV Mass spectrometric data observed f o r major ions i n compound (175) and i t s deuterated analog (176) 204 V Chemical s h i f t s (6) f o r C12b- and C2-protons i n compounds (179) - (182) 213 - v i i i -LIST OF FIGURES Figure P a e e PART I 1 Main f i s s i o n s of the cholestane s e r i e s 19 2 Mass spectrum of cholestane 21 3 Loss of (side chain + 2 H ) from A24-5a-cholestene .. 23 4 Mass spectrum of 33-methoxy-dihydro-parkeol (27c) . 26 5 Mass spectrum of grandisolide (28) 29 6 NMR spectrum of compound I (43) 31 7 Mass spectrum of compound I (43) 32 8 Mass spectrometric fragmentation of compound I -diacetate(45) 35 9 Reaction scheme f o r compound I (43) 37 10 NMR spectrum of compound II (51) 39 11 Mass spectrum of compound II (51) 40 12 Reaction sequence f or compound II (51) 42 13 NMR spectrum of compound III (59) 44 14 Mass spectrum of compound III (59) 47 15 NMR spectrum of compound IV (65) 50 16 Chemical transformations of compound IV (60) 51 17 Mass spectrum of compound IV (65) 54 18 NMR spectrum of compound V (66) 56 19 Mass spectrum of compound V (66) 58 20 NMR spectrum of compound VI (70) 62 21 Mass spectrum of compound VI (70) 63 22 NMR spectrum of compound VII (71) 68 - i x -Figure Page 23 Mass spectrum of compound VII (71) 69 24 NMR spectrum of compound V I I I (76) 71 25 Mass spectrum of compound V I I I (76) 73 26 Mass s p e c t r o m e t r i c fragmentations i n the s i d e chain of compound V I I I (76) 76 27 NMR spectrum of compound IX (78) 78 28 Mass spectrum of compound IX (78) 80 29 Mass sp e c t r o m e t r i c fragmentations i n the s i d e chain of compound IX (78) 82 30 NMR spectrum of compound X (80) 85 31 Mass spectrum of compound X (80) 87 32 Mass sp e c t r o m e t r i c fragmentations i n compound X (80) 88 33 NMR spectrum of compound XI (83) 90 34 Mass spectrum of compound XI (83) 92 35 Mass s p e c t r o m e t r i c fragmentations i n compound XI (83) 94 PART I I 1 B i o g e n e t i c pathway from mevalonate (24) to secologanin (22) 154 3 2 I n c o r p o r a t i o n of [0-methyl- H]-deoxyloganin (27b) i n t o l o g a n i n and v a r i o u s a l k a l o i d s 155 3 P o s s i b l e b i o g e n e t i c pathway from v i n c o s i d e (20) to a l k a l o i d s of the Corynanthe f a m i l y 156 4 P o s s i b l e i n t e r c o n v e r s i o n of the corynanthe s k e l e t o n (29) to the strychnos (34), aspidosperma (39) and iboga (18) system 157 5 P o s s i b l e i n t e r r e l a t i o n between the corynanthe s k e l e t o n (29) and vobasine (40), sarpagine (41) and ajmaline (42) type a l k a l o i d s 159 6 B i o g e n e t i c a l l y patterned t o t a l s y n t h e s i s of deoxyajmalal (48) 160 - x -Figure Page 7 Known procedures f o r the conversion of the sarpagine s k e l e t o n 07) to the vobasine type a l k a l o i d s (78) . 168 8 Reactions a p p l i c a b l e to the conversion of the sarpagine s k e l e t o n (77) to the ajmaline system (79) 170 9 P o s s i b l e i n t e r c o n v e r s i o n s f o r the vobasine s k e l e t o n (78) to the sarpagine system (77) 171 10 NMR spectrum (FT) of compound (127) 181 11 NMR spectrum (FT) of compound (128) 182 12 C3b methyl nmr s i g n a l s of compounds (127),(134), (129) .... 183 13 Reaction scheme f o r the p o s s i b l e extension of the s i d e chain i n compound (127) 185 14 Mass s p e c t r o m e t r i c fragmentation scheme f o r compound (168a) 194 15 P o s t u l a t e d mass sp e c t r o m e t r i c ions f o r compound (173) 199 16 Major fragments of compound (175) observed i n the mass spectrometer 203 17 NMR spectrum of compound (177) 206 18 NMR spectrum of compound (178) 208 19 Mass spe c t r o m e t r i c fragmentations f o r compound (178) 209 20 Mass sp e c t r o m e t r i c fragmentation scheme f o r compound (190). 218 21 Aromatic region i n the nmr s p e c t r a of compounds (177) and (191) a,b 220 - x i -ACKNOWLEDGEMENTS I wish to express my g r a t i t u d e to P r o f e s s o r James P. Kutney f o r h i s encouragement and guidance throughout the course of my research. I am a l s o g r a t e f u l to the B r i t i s h Columbia Sugar R e f i n i n g Company L i m i t e d and the U n i v e r s i t y of B r i t i s h Columbia f o r s c h o l a r s h i p s which I re c e i v e d during t h i s study. I wish to thank my w i f e f o r her support throughout t h i s study and f o r her help i n the p r e p a r a t i o n of t h i s manuscript. PART I STUDIES RELATED TO BARK EXTRACTIVES OF WESTERN WHITE PINE 1 - 1 -INTRODUCTION (PART I) The chemical knowledge of n a t u r a l products and the understanding of b i o g e n e t i c pathways l e a d i n g to t h e i r formation have undergone a great development during the past twenty years. This advance has been p o s s i b l e because of the a v a i l a b i l i t y of improved methods of s e p a r a t i o n and p u r i f i c a t i o n together w i t h powerful p h y s i c a l techniques which have g r e a t l y a s s i s t e d i n s o l v i n g problems of s t r u c t u r a l e l u c i d a t i o n . These techniques have a c c e l e r a t e d the processes l e a d i n g t o the assignment of s t r u c t u r a l formulae and f r e q u e n t l y l e d to the s o l u t i o n of d i f f i c u l t problems which might have been unsolvable by s t r i c t l y chemical techniques. This i s e s p e c i a l l y true i n cases where only m i l l i g r a m q u a n t i t i e s of m a t e r i a l are a v a i l a b l e . The progress i n bi o c h e m i s t r y , i n p a r t i c u l a r i n the area of enzymatic r e a c t i o n mechanisms, supported c o n s i d e r a b l y the development of t h e o r i e s d e a l i n g w i t h the biog e n e s i s of a remarkable range of organic compounds e x i s t i n g i n p l a n t s and animals. In many cases these t h e o r i e s have been supported by t r a c e r s t u d i e s employing l a b e l l e d compounds considered to be intermediates i n the b i o g e n e t i c pathways. As a r e s u l t of these i n -v e s t i g a t i o n s i t has been r e a l i z e d that nature uses only a very few bioge-n e t i c pathways to sy n t h e s i z e a vast array of organic m a t e r i a l s and conse-quently t h a t these w i d e l y d i v e r s e chemical compounds f a l l i n t o q u i t e w e l l - d e f i n e d p a t t e r n s . - 2 -Despite the economic importance of the f o r e s t i n d u s t r y the e x t r a c t -ables found i n tre e s are p o o r l y understood and the minor components have f o r a long time been disregarded. The pulp and paper i n d u s t r y has been aware of the e x i s t e n c e of e x t r a c t i v e s i n trees but has o f t e n viewed them as a nuisance to be removed s i n c e they produce und e s i r a b l e e f f e c t s during the pulp manufacturing process. The presence of l a r g e r amounts of e x t r a c -t i v e s , e s p e c i a l l y p o l y p h e n o l i c m a t e r i a l s , i s manifested by poor c o l o u r and l i g h t aging p r o p e r t i e s i n the f i n i s h e d pulps or papers. I n d u s t r i a l processes have accomplished the removal of these e x t r a c t i v e s and i n the k r a f t process two by-products, sulphate t u r p e n t i n e and t a l l o i l , are recovered and have become v a l u a b l e raw m a t e r i a l s f o r a v a r i e t y of i n d u s t r i e s . Sulphate t u r p e n t i n e c o n s i s t s of the v o l a t i l e terpenes condensed from the r e l i e f gases. The pro d u c t i o n of s y n t h e t i c pine o i l which i n t u r n i s used f o r conversion to t e r p i n hydrate and other chemicals, as w e l l as a s o l v e n t and i n ore f l o t a t i o n , uses a l a r g e p o r t i o n of the turpen-2 t i n e . P a i n t s , s y n t h e t i c r e s i n , and the perfume i n d u s t r i e s use s m a l l e r q u a n t i t i e s ^ . The composition of t a l l o i l v a r i e s w i t h the k i n d of wood and the pu l p i n g and recovery processes. Browning^ has reported that the range of composition may be from 35% to 55% r e s i n a c i d s , 35% to 60% f a t t y a c i d s , and 10% to 20% u n s a p o n i f i a b l e m a t e r i a l . The l a t t e r i s a complex mixture of s t e r o l s , h i g her a l c o h o l s , hydrocarbons, and some s t e r o l e s t e r s of f a t t y a c i d s which are d i f f i c u l t to saponify. Some of the main i n d u s t r i a l uses of t a l l o i l and i t s d e r i v a t i v e s are i n the manufacture of adhesives, b i n d e r s , d r y i n g o i l s , soaps, and v a r n i s h e s . Wounded conifer o u s t r e e s s e c r e t e a viscous o i l known as o l e o r e s i n . In areas of F l o r i d a and Georgia l o n g l e a f (Pinus p a l u s t r i s M i l l . ) - 3 -and slash pine (P.eliottli)trees are deliberately wounded un t i l they reach maturity and the collected oleoresin is steam d i s t i l l e d to remove the volatile "wood turpentine". The residue, consisting mainly of resin and fatty acids is used much like t a l l o i l . According to Mutton"*, about 10% of the oleoresin consists of neutral or unsaponifiable materials containing 3 -sitosterol (1) (24a-ethyl-cholesterol) and other sterols; long chain alcohols such as lignoceryl alcohol, CB.^(CR^) ^ CR^OE; t W O diterpene aldehydes, dextropimarinal (2a) and isodextropimarinal (3a); t r i c y c l i c diterpenes; diterpene alcohols; and 3,5-dimethoxystilbene. (2a), R=CH0 ( b), R=C00H (3a), R=CH0 ( b), R=C00H - 4 -The r e s i n acid f r a c t i o n of pine o l e o r e s i n or t a l l o i l consists mainly of diterpene acids having the abietane skeleton. They are t y p i f i e d by dextropimaric (2b), isodextropimaric (3b), a b i e t i c (4), p a l u s t r i c (5), and levopimaric acids (6). (6) The pulp and paper industry considers bark as a major waste pro-duct, i t possesses l i t t l e commercial value and provides a d i f f i c u l t d i s p o s a l problem. Bark represents 10% to 15% of the t o t a l weight of the wood being processed; i t s p h y s i c a l components, cork, f i b e r , and bark powder, have been examined f o r pos s i b l e uses^. Fibers are employed i n the production process of fiberboard and i n s u l a t i o n materials. Bark powder can be used as a c a r r i e r f o r i n s e c t i c i d e s and i n s o i l improvement, Cork has been found s u i t a b l e as a f i l l i n g m a t e r i a l . The i s o l a t i o n of chemicals from bark may be c a r r i e d out e i t h e r by p y r o l y s i s or e x t r a c t i o n . A l k a l o i d s such as quinine (7) and strychnine (8) have been i s o l a t e d . Flavanoids such as q u e r c i t i n (9) and some of i t s - 5 -d e r i v a t i v e s are i s o l a t e d from bark. They have antioxidant properties and are of some medicinal value i n the treatment of c a p i l l a r y blood v e s s e l disorders^. (9) A study of extractable m a t e r i a l i n the barks of twenty four common Q North American pulpwood species was c a r r i e d out by Chang and M i t c h e l l . They successively extracted the bark with benzene, ethanol, hot water, and one percent aqueous sodium hydroxide s o l u t i o n . The values obtained for Pinus banksiana L. (jack pine), P.contorta Dougl. (lodgepole pine), P . e l l i o t t i i Engelm. (slash pine), and P.lambertiana Dougl.(sugar pine) are l i s t e d i n Table I. - 6 -Species Ash,% Benzene,% Alcohol,% Hot water,% 1% Na0H,% Jack pine 1.7 8.0 12.4 3.0 41.3 Lodgepole pine 2.0 28.7 10.9 5.6 29.8 Slash pine 0.6 3.4 10.6 3.7 28.9 Sugar pine 0.6 1.5 21.7 3.2 36.0 Table I. Ash content and various extractions of pine bark (percentages on basis oven-dry weight of unextracted bark) 9 Rowe found that the benzene extract of pine bark varied from 28.7% for lodgepole pine to a low of 2.1% for sugar pine. The composition of the extract obtained by Chang and Mitchell was not investigated fully. Rowe's study was more thorough and listed several sterols which he isolated. More interesting was the finding of a methoxy triterpenol in jack pine and a triterpene diol, which he called pinusenediol, from loblolly pine (P.taeda L.) and jack pine. The structure of pinusenediol was shown by Rowe10 to be identical with that of serratenediol (10a) isolated by Inubushi from club moss, Lycopodium serratum Thumb, var. Thumbergie Makino11. - 7 -S e r r a t e n e d i o l was the f i r s t known t r i t e r p e n e c o n t a i n i n g a seven-12 membered r i n g C i n i t s s t r u c t u r e . I t s b i o s y n t h e s i s was p o s t u l a t e d as o c c u r r i n g from a-onocerin (11a) w i t h i n c o r p o r a t i o n of one of the v i n y l groups i n t o r i n g C. This process leaves seven angular methyl groups r a t h e r than the u s u a l e i g h t f o r other p e n t a c y c l i c t r i t e r p e n e s . Inubushi was able to i s o l a t e s e r r a t e n e d i o l d i a c e t a t e (10b) and Y~°nocerin d i a c e t a t e (12) by treatment of a-onocerin d i a c e t a t e ( l i b ) w i t h boron t r i f l u o r i d e . 13 In a l a t e r paper Rowe reported the i s o l a t i o n and s t r u c t u r e of s i x s e r r a t e n e d i o l d e r i v a t i v e s from pine bark. The occurrence of serratene d e r i v a t i v e s i n the f a m i l y Pinaceae i n the genus Pinus and l a t e r i n the genus P i c e a i s now w e l l e s t a b l i s h e d . A methoxylated t r i t e r p e n e , a b i e s l a c t o n e (13), has been reported from the genus Abies of the same fami-14 l y . This compound, however, i s not a serratene d e r i v a t i v e but possess-es r a t h e r a l a n o s t e r o l s k e l e t o n . A b i e s l a c t o n e was i n t i a l l y i s o l a t e d (13) 15 i n 1938 from the bark and leaves of Abies m a r i e s s i i Masters , a f i r 16 tree of northern Japan. The same compound has been i s o l a t e d by Hergert from the North American P a c i f i c s i l v e r f i r [ A.amabilis (Dougl.) Forbes] and Noble f i r (A.procera Rehd.) and named by him as methoxy a b i e s a d i e n -o l i d e . On the b a s i s of selenium dehydrogenation i t was suggested i n 1964 - 8 -that a b i e s l a c t o n e must conta i n the s k e l e t o n of t r i m e t h y l s t e r o i d s " 1 ' , 18 i n 1965 Uyeo advanced a more d e t a i l e d s t r u c t u r e ; the f i n a l s t r u c t u r e was 19 e s t a b l i s h e d by X-ray s t u d i e s i n 1971 . At t h i s time the 3a-hydroxy and 3-keto r e l a t i v e s of a b i e s l a c t o n e were a l s o reported to have been i s o l a t e d from P a c i f i c s i l v e r f i r . S e v e r a l other s t r u c t u r a l l y r e l a t e d compounds 5 possessing a lanostane s k e l e t o n , should a l s o be mentioned here. C y c l o a r t e n o l (14a), which i s now b e l i e v e d to be the f i r s t C-30 20 c y c l i z e d product i n t e t r a c y c l i c t r i t e r p e n e b i o s y n t h e s i s thereby r e p l a c i n g the formerly p o s t u l a t e d l a n o s t e r o l (15), together w i t h 24-methylene-cycloartanol (16) and 4a-methyl-stigmasta-7,24(28)-dien-3$-ol 21 (17) were i s o l a t e d from b i r c h wood (Be t u l a verrucosa Erh.) HO (14a) (15) HO (16) (17) - 9 -Two novel t r i t e r p e n e l a c t o n e s , c y c l o g r a n d i s o l i d e and e p i c y c l o g r a n d -i s o l i d e , were i s o l a t e d from the l i g h t petroleum e x t r a c t of grand f i r [Abies grandis (Dougl.) L i n d l ] , they were shown to be (23 R)-3-a-methoxy-9,19-cyclo-9B-lanost-24-ene-26,23-olide (18) and the(23S-) i s o m e r 2 2 . As mentioned e a r l i e r , the i n v e s t i g a t i o n of n a t u r a l products has i n the past been mainly concentrated on substances which are of i n t e r e s t because of t h e i r p o t e n t i a l t e c h n i c a l , pharmacological or b i o c h e m i c a l value. Taxonomic c o n s i d e r a t i o n s have seldom guided the choice of the substances i n v e s t i g a t e d . I n recent years a c o n s i d e r a b l e amount of research has been c a r r i e d out on the b i o c h e m i c a l and organic chemical aspects of g e n e t i c s , work that i s necessary f o r f u t u r e developments i n the chemistry of the e v o l u t i o n of s p e c i e s . U s e f u l c o n t r i b u t i o n s i n t h i s f i e l d can be made by systematic s t u d i e s of the chemistry of s u i t a b l e genera of p l a n t s and animals. The f i r s t s e c t i o n of t h i s t h e s i s i s p a r t of an systematic i n -v e s t i g a t i o n i n t o the chemical c o n s t i t u e n t s of Western white pine (Pinus  monticola Douglas) and some gene r a l comments about c o n i f e r s are now i n order. The c o n i f e r s i n c l u d e some 650 species of woody p l a n t s whose o r i g i n dates back at l e a s t two hundred m i l l i o n years ( l a t e P a l e o z o i c ) . This O (18) - 10 -taxon can be divided i n t o four orders, Pinales, Cupressales, Podocarpales and Araucariales. The order Pinales has only one family, Pinaceae, divided i n t o ten genera, one of them being the genus Pinus with 94 23 species . One of these species i s P.monticola Douglas (Western white pine) which grows c h i e f l y i n western Montana and northern Idaho. In Idaho i t reaches i t s best development; hence i t i s often c a l l e d "Idaho white pine". I t s growth extends to Washington, southern B r i t i s h Columbia and southward to Oregon, c e n t r a l C a l i f o r n i a , and adjacent parts of Nevada. Its a l t i t u d i n a l range i s from sea l e v e l i n Washington to 3350 m i n the S i e r r a Nevada of C a l i f o r n i a . Apparently no v a r i e t i e s of P.monticola have been described. Chemical i n v e s t i g a t i o n s , however, revealed a considerable v a r i a b i l i t y throughout i t s extensive range 25 The i n i t i a l chemical i n v e s t i g a t i o n s of P.monticola were only concerned with heartwood constituents. P i n o s y l v i n (19a) and i t s mono methyl ether (19b) were i s o l a t e d , as w e l l as pinocembrin (20a), pinos-trobin (20b), strobopinin (20c), and eryptostrobin (20d);chrysin. (21a) and tectochrysin (21b) were also observed. (19a), R=R =H ( b), R=CH~,R1=H 1 2 '\ k (20a), R =R =R =R =H - 11 -(21a), R ^ R ^ R ^ H ( b ) , R1=CH3,R2=R3=H OH O An i n v e s t i g a t i o n of sapwood by paper chromatography revealed a l s o the presence of arabinose and glucose. 26 Studies on c o n s t i t u e n t s of the i n n e r bark of P.monticola revealed the presence of some s u b s t i t u t e d s t i l b e n e s , s m a l l amounts of f l a v o n o i d compounds and a complex mixture of polyphenols c o n t a i n i n g f o r example c a f f e i c a c i d (22), f e r u l i c a c i d (23), c o n i f e r y l a l d e h y d e (24), and v a n i l l i n A more d e t a i l e d i n v e s t i g a t i o n of the n e u t r a l c o n s t i t u e n t s , p a r t i c u l a r l y those i n the t r i t e r p e n e f a m i l y was i n i t i a t e d some years 27 ago by J.W.Rowe and the r e s u l t s presented i n the next s e c t i o n provide a completion of such a study. (25). - 12 -DISCUSSION (PART I) 27 28 As part of a long range study by J.W.Rowe ' at the Forest Products Laboratory, U.S. Department of Agriculture, Madison, Wise, a detailed examination of the extractives of Western white pine was under-taken. The bark collected for this purpose came from trees of 2 1/2 feet diameter (at 5 feet height) growing in the Cement Creek area above Superior, Mont.. The bark was harvested in the spring before the sap flow, i t was about 1/4 inch thick and showed no distinct inner bark. Hence the analysis was conducted on the whole airdried bark which was ground in a Wiley m i l l to pass a 2 mm mesh screen. The bark contained 14.5% of moisture. A detailed analysis of the ground bark showed that i t is made up to 25% of extractives that can be removed by successive extraction with benzene (3.2%), ethyl alcohol (7.5%), and water (14.3%). The benzene extract was subjected to a more detailed investigation employing various chromatographic separation techniques. A total of 90 28 terpenoids were isolated including 34 triterpenes . These include 24-methylenecycloartanol (16), 10 known and 10 new triterpenes with a serratane skeleton"*"^' and 11 new triterpenes that appear to have a common lanostane skeleton. It is the latter group which is the subject of interest in the f i r s t part of this thesis. For the present study the unsaponifiable portion from the benzene extract was freed of wax alcohols by formation of the urea channel - 13 -inclusion complex and of sterols by p r e c i p i t a t i o n of the digitonides. The petroleum ether-insoluble f r a c t i o n was chromatographed on s i l i c a gel (Woelm, a c t i v i t y I I I , benzene •> benzene/ether) to y i e l d eleven novel triterpenes, the s t r u c t u r a l elucidation of which was undertaken i n our laboratory. 29 The samples obtained by Rowe from the chromatographic procedure were pure by thin layer chromatography (TLC) ( s i l i c a gel G, methylene-chloride) and were subjected i n d i v i d u a l l y to r e c r y s t a l l i z a t i o n and sublimation procedures. Table I I l i s t s the eleven isola t e d compounds as a percentage of the benzene extract. I t becomes immediately apparent that the majority of the materials are available i n very small quantities and, i n f a c t , with the exception of compounds I and I I , only a few milligrams were on hand for our purposes. I t was therefore only through the almost exclusive employment of physical and a n a l y t i c a l methods that the s t r u c t u r a l elucidation of these compounds was made possible. Compound I I I I I I IV V VI VII VIII IX X XI % of benzene „ -, ^  „ „ „, „ extract " 7 0 , 2 0 , 0 4 0 , 0 6 °- 0 0 2 °- 0 0 5 °- 0 3 °- 0 0 2 °- 0 2 °- 0 0 3 °- 0 1 Table I I . Isolated compounds as a percentage of the benzene extract. In general the s i m i l a r c h a r a c t e r i s t i c s of the physical data of a l l eleven compounds seemed to suggest that they possess the same skeleton. Elemental analysis and mass spectrometric data indicated that a l l compounds contained only carbon, hydrogen and oxygen and that at least 30 carbon atoms were present i n the i r s t r u c t u r a l frameworks thereby placing them - 14 -i n the t r i t e r p e n o i d f a m i l y . The nmr s p e c t r a of a l l compounds i n d i c a t e d the presence of at l e a s t f i v e angular methyl groups, one secondary methyl, at l e a s t one proton geminal to an oxygen c o n t a i n i n g s u b s t i t u e n t (-0H or -OCH^, most l i k e l y i n p o s i t i o n C3) and one o l e f i n i c proton i n the 6 5.20-5.25 r e g i o n . Since the e x t r a c t i v e s of Western white pine are r i c h i n s e r r a t e n e -2 8 type t r i t e r p e n o i d s (10a, s e r r a t e n e d i o l ) and compounds I-XI were i s o l a t e d from the same source, s t r u c t u r e s possessing the serratene s k e l e t o n were i n i t i a l l y considered. However, serratane s t r u c t u r e s f o r the unknown m a t e r i a l s are incompatible w i t h the presence of a secondary methyl group i n the nmr s p e c t r a . The compounds c o n t a i n a l s o two more hydrogens than would be present i n serratenes and the mass s p e c t r a do not resemble those of the l a t t e r , t h e r e f o r e t h i s s t r u c t u r a l type was excluded. (10a) (11a) At f i r s t glance the mass s p e c t r o m e t r i c data appeared to resemble the sp e c t r a of onocerins (11a, a-onocerin) as there was a very l a r g e peak i n the middle of the spectrum which might have r e s u l t e d from the u s u a l onocerin cleavage i n t o two approximately equal p a r t s . This assumption was als o supported by the f a c t that onocerins are probably the b i o l o g i c a l precursors of s e r r a t e n e s , and could i n c o r p o r a t e a secondary methyl group - 15 -and two more hydrogens in their molecule as found by mass spectral analysis. However, the nmr spectra, especially in the methyl region, did not agree with this assumption. Also i t was found that the carbon con-tent of the major mass spectrometric fragments did not ju s t i f y the postulated onocerin skeleton. The mass spectra did also not resemble those of saturated pentacyclic triterpenes^'*'"'. Both by a process of elimination and by positive support from spectral data a lanostane skeleton (26) was postulated. 12 1S c 2 A 1 0 B aT 3 5 -A 31 3 0 18 D 1 5 32 (26) Since i t has been established that, as a result of the investigations described later, a lanostane skeleton i s indeed present in a l l of the investigated materials, i t becomes appropriate to describe some of the physical data available in the lanostane family. 30-32 Considerable information has been collected on the position of nmr signals due to methyl groups of triterpenes and complete assignments of these signals have become possible for certain triterpene families. 30 The pertinent values for the lanostane family are found in Table III Table IV contains the changes in the chemical shifts (A 6) of the methyl group resonances produced by some functional groups attached to the skeleton^. - 16 -Compound Methyl Group 18 19 30 31 32 lanostane .78 .92 .83 .83 .80 lanos tan-3a-ol .77 .93 .87 .93 .81 lanostan-3a-acetate .77 .91 .91 .83 .83 lanostan-33-ol .80 .91 .80 .98 .80 lanostan-3B-acetate .77 .92 .87 .84 .79 lanostan-3-one .78 1.06 1.06 1.06 .78 Table I I I . P o s i t i o n of methyl groups i n 6 values (- 0.03 « ) . F u n c t i o n a l i t y Methyl Group 18 19 30 31 32 8-ene - .08 +.13 +.01 +.04 +.07 9 ( l l ) - e n e - .11 +.19 +.02 +.05 -.05 Table IV. Contribution of pertinent f u n c t i o n a l i t i e s to the chemical s h i f t change (A .6) of methyl groups. A c o r r e l a t i o n of Tables I I I and IV may serve f o r the c a l c u l a t i o n of chemical s h i f t values f o r compounds i n t h i s s e r i e s . As an example, the calculated and observed values of parkeylacetate (27a) and dihydro-parkeylacetate (27b) are l i s t e d i n Table V together with the ex p e r i -mentally observed data. 18 R - 17 -Me t h y l Group p a r k e y l acetate 18 19 30 31 32 c a l c u l a t e d .66 1.10 .89 .89 .74 observed .62 1.06 .86 .86 .72 d i h y d r o p a r k e y l acetate c a l c u l a t e d .66 1.10 .89 .89 .74 observed .64 1.05 .87 .87 .75 Table V. Observed and c a l c u l a t e d chemical s h i f t s (<5) of methyl group resonances i n t y p i c a l l a n o s t - 9 ( l l ) - e n e s . I t i s noted that the observed and c a l c u l a t e d values are i n good agreement. A t t e n t i o n i s drawn to the c a l c u l a t e d and observed values f o r the 18, 19 and 32 methyl groups. The 19 methyl group i s both observed and c a l c u l a t e d to be i n the region <5 1.05-1.10, an expected r e s u l t s i n c e t h i s methyl group i s a l l y l i c to the 9 ( l l ) - e n e system. The 32 methyl group has a range 6 .72-.75, w h i l e the 18 methyl group i s c o n s i s t e n t l y at the h i g h e s t f i e l d w i t h a range of 6 .64-.66. Hence a t y p i c a l l a n o s t - 9 ( l l ) - e n e d e r i v a t i v e should have the 19 methyl group r e s o n a t i n g near 6 1.05 w i t h the 18 and 32 methyl group near 6 .65 and 6 .75 r e s p e c t i v e l y . L i m i t e d data r e l e v a n t to t h i s i n v e s t i g a t i o n are a v a i l a b l e concerning the i n f l u e n c e of the s i d e chain on the chemical s h i f t of the angular methyl groups. C o n t r i -30 butions of v a r i o u s s i d e chains are l i s t e d i n Table VI . E f f e c t s of considerable magnitude, p a r t i c u l a r l y on the 18 methyl group are noted. However, no unique i n t e r p r e t a t i o n of these data i s p o s s i b l e because of the conformational f l e x i b i l i t y and r o t a t i o n a l degrees of freedom a s s o c i a t e d w i t h t h i s type of s i d e chain. Although i t i s very l i k e l y that the s i d e c h a i n does i n f a c t o r i e n t a t e i t s e l f along r i n g s D and C; one would t h e r e f o r e expect that the 18 methyl group i s indeed the one most - 18 -e f f e c t e d by any changes i n the si d e chain. 173-slde chain Methyl Group R R l 18 19 32 OCH3 CH3 o . o o a o . o o a o . o o a OCH3 = CH 2 0.00 0.00 0.00 OH =CH2 +0.06 +0.01 +0.01 OH =0 +0.05 +0.01 . +0.02 H CH3 -0.02 -0.01 +0.01 a the d i f f e r e n c e s are r e l a t i v e to these chemical s h i f t s Table VI. In f l u e n c e of s i d e chain on the chemical s h i f t of the angular methyl groups. Examination of the nmr data of compounds I-XI revealed the presence of an o l e f i n i c s i g n a l at <5 5.20-5.25, a re g i o n that i s normally expected f o r C9-C11 unsaturated t r i t e r p e n e s . Table V I I l i s t s some examples of A 9(11) t r i t e r p e n e s together w i t h the resonance frequencies observed 19 22 30 3^ f o r the o l e f i n i c proton ' ' ' . I t i s to be noted that C7 o l e f i n i c 19 22 protons do normally occur a t somewhat lower f i e l d („<5 5.5) ' Compound Chemical s h i f t of C l l - H g r a n d i s o l i d e (28) 5.20 dih y d r o p a r k e y l acetate (27b) 5.19 33-methoxy-dihydroparkeol (27c) 5.24 arborene (29) 5.27 e t i a n i c e s t e r (30) 5.25 Table V I I . Resonance frequencies (5) of o l e f i n i c s i g n a l s i n C9-C11 unsaturated t r i t e r p e n e s . (29) (30) Mass spectrometry has been used extensively i n the s t r u c t u r a l e l u c i d a t i o n of steroid s and t r i t e r p e n e s , and the fragmentation patterns of the cholestane s e r i e s have been summarized i n Figure 1. Figure 1. Main f i s s i o n s of the cholestane s e r i e s . - 20 -One of the main f e a t u r e s of the mass s p e c t r a of s t e r o i d s s u b s t i t u t e d at C17 i s i n the e l i m i n a t i o n of the s i d e c h a i n p l u s 42 mass units.. 35 This process has been thoroughly i n v e s t i g a t e d by Biemann and the fragmentation pathway g i n d i c a t e d i n F i g u r e l , h a s been e s t a b l i s h e d . Other noteworthy fe a t u r e s of the s p e c t r a of s t e r o i d a l hydrocarbons correspond to the l o s s e s of the angular methyl s u b s t i t u e n t s , r i n g A 36 (Figure l,b) and the s i d e chain (Figure l , a ) , or combinations thereof 36 Thus i n the spectrum of cholestane (31) (Figure 2) -, the base peak occurs of m/e 217 [M-(coH.. +42)] and an M-15 species i s ahundant, ions 8 17 a r i s i n g from l o s s of the s i d e chain (m/e 259) or of the s i d e chain p l u s r i n g A (m/e 203) are evident. F i s s i o n of r i n g D a l s o occurs, 37 a f f o r d i n g m/e 218. I t has been suggested that the m/e 149 i o n corresponds to the fragmentation of r i n g C and the p o s t u l a t e d bond f i s s i o n s l e a d i n g to t h i s fragment are i n d i c a t e d i n the f o l l o w i n g sequence„ R R H H m/e 149 (32) (33) (34) The t e t r a c y c l i c t r i t e r p e n e s belong to the cholestane system, as f a r as the r i n g j u n c t i o n s are concerned, although they i n c l u d e three e x t r a methyl groups as f o r example i n lanostane i t s e l f (26). The gene r a l e f f e c t s of these e x t r a methyl groups may be summarized as f o l l o w s . They tend to give a more abundant i o n corresponding to the l o s s of one such methyl group than do the corresponding s t e r o i d s . The source of the removed group Figure 2. Mass spectrum of cholestane. - 22 -24 (26) i s most l i k e l y from the gem -dimethyl at C4 or either of the groups at C13 and C14. The l a t t e r two p o s s i b i l i t i e s are supported by the ready loss of a methyl group from cycloartenone (14b) which has a cyclopropane group (14b) i n s t e a d of a ClO-methyl. In A 8,24-lanostadiene the presence of an is o p r o p y l i d e n e group i n the s i d e chain does not apparently l e s s e n the f a c i l i t y of methyl e l i m i n a t i o n . Moreover, i n A 5(10)-lanostene, which has an a l l y l i e gem-dimethyl system, the e l i m i n a t i o n process does not seem to be inc r e a s e d . Fragments corresponding to the d i s r u p t i o n of r i n g s A and B s t i l l occur i n t r i t e r p e n e s but now t h e i r masses are increased by twenty-e i g h t mass u n i t s which suggests t h a t the gem -dimethyl group remains i n t a c t 38 i n many of the p r e v i o u s l y recognized fragmentations . The g r e a t e s t mass spec t r o m e t r i c d i f f e r e n c e s between s t e r o i d s and t e t r a c y c l i c t r i t e r p e n e s occur i n the f i s s i o n s a s s o c i a t e d w i t h the a l k y l s i d e chain. Based on the fragmentation processes o u t l i n e d i n Figure 1 ( e s p e c i a l l y a and g) i t i s - 23 -possible to deduce the length and substitution pattern of the side chain. Thus the presence of a double bond or oxygen functionality in the side chain for example causes the appearance of a fragment corresponding to the elimination of the side chain together with an additional two hydrogen atoms from the steroid nucleus. For instance, deuterium labeling 39 of various A 24-cholestenes (35) indicated that the double hydrogen transfer from the steroid nucleus associated with the loss of the side chain in (35) originated from C17(l H), C12(0.35 H), C14(0.1 H), and C16(0.25 H). A mechanistic rationalization based on these results i s depicted in Figure 3. (35) (36) v H (39) Figure 3. Loss of (side chain + 2H) from A 24-5a-cholestene. - 24 -The introduction of oxygen functions into ring A does not affect previous conclusions although, of course, the masses of the fragment ions must be adjusted to allow for the presence of heteroatoms. One has also to consider that the temperatures frequently employed in the determination of the mass spectra may lead to thermally induced eliminations (1,2-1,3 or 1,4) of functional groups, both in the steroidal skeleton as well as in the side chain. The introduction of unsaturation into the steroidal skeleton may also modify the fragmentation patterns to some extent. Thus A 9(ll)-lanostene 38 has been examined with results (Table VIII) similar to those displayed in Figure 1, except that in this instance the fragment at m/e=258 corresponding to the loss of the side chain is not so abundant as in the saturated cycloalkane. m/e 69 81 93 94 95 105 107 rel. int. % 33.6 18.6 11.4 12.0 26.0 14.0 13.2 m/e 109 119 218 258 397 398 412 rel. int. % 14.2 15.4 8.5 3.0 100.0 38.7 12.3 (M ) Table VIII. Mass spectrometric fragments for A 9(11)-lanostene. The loss of fifteen mass units is even more facile in this instance and relates to the ally l i c nature of the CIO methyl group. In the case 34 40 of arborene (40a) and arborenone (40b) the spectra are characterized by strong loss of methyl and a base peak corresponding to fragmentation mode ji with smaller ions due to fragments from fissions via pathways b_, £ and id. However, triterpenes with double bonds in positions other than - 25 -c (40a), R=H2 ( b ) , R=0 40 C9-C11 a l s o e x h i b i t e d some of the same fragments so care must be e x e r c i s e d i n the i n t e r p r e t a t i o n . Furthermore, a p p l i c a t i o n of these fragmentation pathways to the present study i s of d o u b t f u l v a l i d i t y , w i t h the exception of f i s s i o n _d. Fragmentations a., b_ and c_ a l l i n v o l v e cleavages i n r i n g s C and D. Arborene represents a p e n t a c y c l i c t r i t e r p e n e which may fragment r a t h e r d i f f e r e n t l y from the t e t r a c y c l i c systems i n v e s t i g a t e d here. The mass s p e c t r a l data (Table IX, Figure 4) of 33-methoxy-(24,25)-dihydroparkeol (27c) show a molecular i o n at m/e 442 (45%, C ^ H ^ O ) . a " * — \ \ b (27c) - 26 -Pathway observed fragments m/e 442 -> m/e 427, C30 H51° (100%) m/e 410, C30 H50 ( 4%) m/e 395, C29 H47 ( 67%) a m/e 442 ->• m/e 370, C27 H46 ( 1%) m/e 71, C.H^O 4 7 ( 19%) b m/e 427 -> m/e 313, C23 H37 ( 2%) c m/e 442 -> m/e 288, C21 H36 ( 12%) m/e 153, C10 H17° ( 3%) d m/e 442 m/e 287, C20 H31° ( 3%) m/e 427 ->- m/e 273, C19 H29° ( 5%) e m/e 442 ->• m/e 329, C23 H37° ( 2%) m/e 410 -> m/ e 297, C 2 2 H 3 3 ( 3%) Table IX. Mass s p e c t r a l data f o r 33-methoxy-dihydroparkeol (27c). A l o s s of methyl a f f o r d s a M-15 i o n at m/e 427 which i s the base peak. A l o s s of methanol from the molecular i o n y i e l d s a fragment at m/e 410 (4%) w h i l e an i o n at m/e 395 (67%) i s due to the combined l o s s of a methyl group and methanol. F i s s i o n v i a pathway a_ leads to an i o n of m/e 370 ( 1 % , C^H^) and one at m/e 71 (19%, C^ H-,0) the l a t t e r having l o s t one proton. Pathway b_ i s observed f o r the M-15 species p r o v i d i n g an io n at m/e 313 (2%, ^ 3 ^ 7 ) • A fragment at m/e 288 (12%, C ^H^) correspond-i n g t o f i s s i o n v i a pathway £ i s observed accompanied by an i o n at m/e 153 (3%, C 1 Q H 1 7 0 ) . Ions at m/e 287 (3%, C 2 QH 3 ]jo). and m/e 273 (5%, C^^H^gO) are observed corresponding to f i s s i o n i n pathway d_ i n the molecular i o n and the M-15 species r e s p e c t i v e l y . Pathway e_ i s noted f o r - 28 -the molecular i o n (->- m/e 329, 2%, C^H 0) and the m/e 410 i o n (-*• m/e 297, 3%, C ^ H ^ ) . G r a n d i s o l i d e ( 2 8 ) 4 1 which, i n a d d i t i o n to the C H 3 0 -(28) 9(11) double bond, possesses an unsaturated l a c t o n e s i d e chain e x h i b i t s a fragmentation p a t t e r n s i m i l a r to the one observed f o r 33-methoxy-dih y d r o p a r k e o l (27c). The spectrum ( F i g u r e 5) shows a molecular i o n (m/e 468), a M-15 i o n (m/e 453) and an i o n due to the l o s s of CH^OH (m/e 436). The base peak (m/e 421) i s due to the combined l o s s of CH^OH and CH^' I t i s noteworthy that the l o s s of CH^ i s somewhat l e s s f a c i l e i n t h i s case as compared to the previous example, t h i s d i f f e r e n c e i s undoubtedly due to the s t r u c t u r a l v a r i a t i o n s i n the s i d e chain of compounds (27c) and (28). A new fragment at m/e 327 can be observed which i s due to the e a r l i e r discussed e l i m i n a t i o n of the s i d e chain (CQH....0,, =139) plus o 11 2 two a d d i t i o n a l hydrogen atoms. The la c t o n e s i d e chain does not otherwise a l t e r a p p r e c i a b l y the fragmentation of the lanostane s k e l e t o n . - 29 -C O >1 C M CO vO I co C M -co v O ' ~ ro rM r o x • r o r DDI r CD . CD CD . in 01 CD . CD CD . CD CM CD . i n oo I N CD •H rH O w 60 o o CO CO CO CO cd LO CU u 3 00 •H or, . CD UIQN3J.NI 3 A I l d 1 3 a - 30 -Compound I was r e c r y s t a l l i z e d from hexane to provide an a n a l y t i c a l 22 sample, m.p. 193-194°, [ a ] ^ +77°. Elemental a n a l y s i s and h i g h r e s o l u t i o n mass spectrometry e s t a b l i s h e d a molecular formula of ^31^54^3' 'r^e n m r s P e c t r u m ( F i g u r e 6) e x h i b i t e d , t e r t i a r y methyl groups at <5 0.67, 0.74, 0.81, 0.98, 1.05, 1.17 and 1.22; a secondary methyl at 0.91 (doublet, J=6Hz); an e q u a t o r i a l secondary methoxyl (3.36, s i n g l e t , OCH^ and 2.64, m u l t i p l e t , CHOCH^); a secondaryhydroxyl (3.25, m u l t i p l e t , CH0H) and a s i n g l e o l e f i n i c proton at 5.23 ( m u l t i p l e t ) . The i n f r a r e d spectrum (CCl^) supports the presence of a secondary h y d r o x y l w i t h an abs o r p t i o n band at 3623 cm 1 . The spectrum obtained from a potassium bromide p e l l e t suggests the presence of two h y d r o x y l f u n c t i o n a l i t i e s , p o s s i b l y of secondary and t e r t i a r y nature-(3500, 3460 cm "*") . Compound I r e a d i l y formed a monoacetate (44) upon treatment w i t h p y r i d i n e and a c e t i c anhydride at room temperature, a d i a c e t a t e (45) was obtained at e l e v a t e d temperatures (100°) only, confirming the presence of a t e r t i a r y h y d r o x y l group. As has been mentioned e a r l i e r , upon c l o s e examination of the nmr data f o r compound I and i n i t i a l mass s p e c t r o m e t r i c r e s u l t s a lanostane s k e l e t o n was chosen as a working model and t h e r e f o r e the f o l l o w i n g p a r t i a l s t r u c t u r e i s p o s t u l a t e d f o r compound I . i n c l u d i n g one CH0CH one ^C=C^ one CH0H one C0H Figure 6. NMR spectrum of compound I (43). - 32 -O o CO cu If o ,_<=> ID in a a . a in 00T a o 3 a .in cn Lis (M a . a o .in co H TJ Ci O §• o o o u o cu PU co CO CO to a) u 3 00 •H O'SZ. (TOS O'SS U I S N 3 I N I 3 A I l H 1 3 d 0*0 .a in - 33 -The nmr data support the l i k e l i h o o d of the double bond being i n the t e t r a c y c l i c p o r t i o n of the molecule. The f a c t that the o l e f i n i c l i n k a g e could be hydrogenated under m i l d c o n d i t i o n s to the dihydro compound (46) and the p o s i t i o n of the v i n y l hydrogen i n the nmr spectrum suggest an o l e f i n i c l i n k a g e a t the C9-C11 p o s i t i o n . This p o s t u l a t e was secured by the mass s p e c t r o m e t r i c o b s e r v a t i o n (Figure 7) of an i o n corresponding to the l o s s of a C 1 r.H 1 o0 fragment i n compound I [fragmentation b i n (4 2 ) ] . ±U l o — The same fragment i s c h a r a c t e r i s t i c f o r the l o s s of r i n g A i n C3-oxygenated-41 9(11)-unsaturated lanostene-type t r i t e r p e n e s such as g r a n d i s o l i d e (28) and 33-methoxy-dihydroparkeol (27c). Compound I d i s p l a y s a s i g n i f i c a n t fragment at m/e 327 (C^H^O') y [fragmentation d_ i n ( 4 2 ) ] , reminiscent of the pathway f o l l o w e d i n the t e t r a c y c l i c lanostene-type t r i t e r p e n e s mentioned e a r l i e r . I t suggests the l o s s of the s i d e chain plus 2 protons. The i o n a t m/e 327 remains u n a l t e r e d i n c o n v e r t i n g the methoxydiol to e i t h e r i t s mono-(44) or d i a c e t a t e (45) d e r i v a t i v e s . I t becomes t h e r e f o r e evident t h a t the two h y d r o x y l groups i n the n a t u r a l product must be s i t u a t e d i n the s i d e chain w h i l e the methoxyl f u n c t i o n i s attached to the t e t r a c y c l i c s k e l e t o n , most l i k e l y a t C3. In support of the above p o s t u l a t e s the observation of fragments corresponding to f i s s i o n s a i n (42) (m/e 71 = C 4H gO; m/e 400 = C ^ H ^ O ^ and c (m/e 288 = C 2 H 0. m/e 186 = <"11^22°2^ l n c o m P o u n d i a 1 1^ i t s acetate d e r i v a t i v e s should be a l s o mentioned. R e l a t i v e l y weak ions r e l a t i n g to the r e t r o D i e l s - A l d e r f r a g -mentation of r i n g C i n (42) have a l s o been observed f o r the n a t u r a l d i o l component (43). Thus the f o l l o w i n g s t r u c t u r e becomes the "more advanced" working model: - 34 -1 CHOH 1COH 2H d a -c b (42) The previously discussed evidence for one secondary methyl, a secondary hydroxyl and a tertiary hydroxyl leave carbon atoms 22, 23 and 24 as possible locations for the secondary hydroxyl functionality and C25 for the tertiary one. A detailed mass spectrometric investigation of compound I-diacetate (45), including high resolution data and meta stable evidence, lead to the fragmentation scheme outlined in Figure 8. The loss of ketene can be observed at two stages in the fragmentation process. Pronounced losses of ketene occur i n peracetylated monosaccharides i f two acetoxy groups exhibit a 1,2- or a 1,3- relationship, i t is not 42 observed i f the acetoxy groups are further apart , The loss of ketene in these sugars i s especially f a c i l i t a t e d i f preceded by the elimination 43 of acetic acid; the following rationalization is in accord with labelling experiments: '3 O -CH 0=C=0 H O > - c - c - 35 -OAc CHoO m/e 287 m/e 295 C 2 0 H 3 1 ° C22 H31 Figure 8. Mass spectrometric fragmentation of compound I-diacetate (45), The l o s s e s of ketene i n compound I - d i a c e t a t e (45) are preceded by the e l i m i n a t i o n of a c e t i c a c i d . I t becomes evident that the two acetate groups i n the s i d e chain of compound I - d i a c e t a t e are i n a 1,2- or 1,3- r e l a t i o n -s h i p . On the b a s i s of the above r e s u l t s i t was p o s t u l a t e d that compound I was best represented as a 30-methoxy-9(11)-lanostene d e r i v a t i v e possessing a v i c i n a l d i o l i n the s i d e chain (43). Conclusive chemical evidence to support the above p o s t u l a t e s was obtained by the sequence of r e a c t i o n s o u t l i n e d i n Figure 9. The dihydro d e r i v a t i v e (46) of compound I (43) was subjected to pe r i o d a t e treatment to f a c i l i t a t e the cleavage of the v i c i n a l s i d e chain h y d r o x y l s , the c r y s t a l l i n e aldehyde (47) and acetone were obtained, the l a t t e r was i s o l a t e d as i t s 2,4-dinitrophenylhydrazone d e r i v a t i v e . O x i d a t i o n of (47) and e s t e r i f i c a t i o n of the r e s u l t a n t a c i d (48) provided the e s t e r (49). The l a t t e r was i n t e r r e l a t e d w i t h a degradation product (56) of compound I I (51), as w i l l be mentioned l a t e r . T h e stereochemistry a t C24 was e l u c i d a t e d by means of two s p e c t r o s c o p i c methods r e c e n t l y developed by K. Na k a n i s h i . The CD of the methoxydiol (43), Ae = +0.92, 314 nm, CCl^, employing n i c k e l 44 45 a c e t y l a c e t o n i d e as the s h i f t reagent, r e v e a l s a 24-S c o n f i g u r a t i o n ' This assignment was a l s o supported by an nmr study of the deuterioacetonide - 37 -Figure 9. Reaction scheme for compound I (43). 46 derivative (50) of the natural product (43). Irradiation (110 db) at the frequency of the methyl group (6 = 1.25) cis to the C24-H provided 47 a Nuclear Overhauser effect in accord with expectations . A net intensity increase of the C24-H integral (6 = 3.62) of 19% was observed, the C3-H integral (at <S = 2.65) being used as a reference in this experiment. The above data completely define the structure of the natural triterpene I as 33-methoxy-5a-lanost-9(ll)-en-24(S),25-diol (43). - 38 -Compound II was next to be investigated. For analytical purposes i t was recrystallized from acetone-methanol to provide an analytical sample, 22 m.p. 214-215°, [ a ] D +56°. A molecular formula of C3 0 H52 03 w a s established by elemental analysis and high resolution mass spectrometry. The nmr spectrum (Figure 10) taken at 100 MHz revealed the presence of tertiary methyls at <5 0.64, 0.73, 0.80, 0.97, 1.03, 1.14 and 1.19; a secondary methyl at 0.90 (doublet, J = 6 Hz); two multiplets at 3.23 and 3.33 (CH0H) and a vin y l i c proton at 5.24 (multiplet). The infrared spectrum (CCl^) i s indicative of several hydroxyl functionalities, 3707, 3628 (eq. 2°0H) and 3584, 3371 cm"1 (H bonded OH). The compound formed a diacetate (52) and with d i f f i c u l t y a triacetate (53). Catalytic reduction of compound II led to a dihydro derivative (54). Upon examination of the nmr data i t became apparent that compound II must resemble compound I (43) very closely. In fact the only difference, i s the absence of an methoxy signal in the spectrum of compound II; a multiplet at 3.33, indicative of an equatorial secondary hydroxyl group, has taken i t s place. In case of the d i - and triacetate this signal moves downfield to 6 4.52 and 4.50 respectively,which is a normal position for an equatorial acetoxy group, The signal at 3.23 shifted to 4.73 in case of the diacetate (52) and to 5.04 in the triacetate (53) suggesting a 1,2 relationship with a tertiary I i I ' i 'I I I ' i i' i i ' i' I i • i ! i i i i 1 i i i i i i i i i i i i i i I i i i i I i i ! 5 4 3 2 1 0 i i i i i i i i i i i i i i i I i Figure 10. NMR spectrum (FT) of compound II (51). 0.0 RELATIVE 25.0 INTENSITY 50.0 1 75.0 _ ! 100.0 _ J o hydroxyl group. Two tertiary methyls at 1.14 and 1.19 i n the parent compound are shifted to 1.21 in the diacetate (52) and 1.45, 1.48 in the triacetate (53), identical to shifts which could be observed in the compound I (43) series. A close comparison of the mass spectrometric data in the compound I and II (Figure 11) series reveals a striking analogy in their fragmentation pattern (provided, the difference of 14 mass units i s taken into account). In fact a l l the fragmentation processes portrayed i n compound (42) and Figure 8 are indeed also observed in this instance. Based on the above evidence i t was postulated that compound II was simply the 33-hydroxy analogue (51) of the methoxydiol (43). A reaction sequence (Figure 12), similar to the one carried out on compound (43), was performed confirming the above postulate. 48 The dihydro compound (54) was subjected to permanganate-periodate oxidation to yield the acid (55) which upon esterification provided the known 33-hydroxy-25,26,27-trisnorlanostan-24-oic acid methyl ester (56) identical 49 with an authentic sample (m.m. p., [o.]^, TLC, i r , nmr and mass spectra). Methylation of (56) (K, CH3I or fluoboric acid, C H ^ 5 0 ) provided a material (49) identical with that obtained from the methoxydiol series thereby relating the two natural products. The deuterioacetonide derivative (57) was subjected to an nmr study. Irridiation (110 db) at the frequency of the methyl group (<5 = 1.23) cis to the C24 proton gave a Nuclear Overhauser effect; a net intensity increase at the C24-H integral (6 = 3.60) of 24% was observed (C3-H at 3.22 was used as reference). Based on above evidence compound II i s assigned the structure 33,24(S),25-trihydroxy-5a-lanost-9(ll)-ene (51). - 42 -(51) , R 1 = R 2 = H (57) (52) , R 1 = Ac, R 2 = H (53) , R 1 = R 2 = Ac (49) Figure 12. Reaction sequence for compound II (51). - 43 Compound I I I was r e c r y s t a l l i z e d from methylene chloride-hexane to provide a pure sample, m.p. 161-162°, [a] 2° +93°. Microanalysis i n d i c a t e d a molecular formula of ^^^52° 2 w a i c h w a s a l s o supported by the high r e s o l u t i o n mass s p e c t r a l r e s u l t s . The nmr spectrum (Figure 13, Fourier transform, 100 MHz) was i n d i c a t i v e of, t e r t i a r y methyls at 6 0.64, 0.75, 0.82, 0.97, 1.06; a secondary methyl at 0.88 (doublet, J = 6 Hz); two secondary methyls at 1.09 (doublet, J = 7 Hz); two overlapping m u l t i p l e t s at 2.31-2.78 (= 2 H); a secondary e q u a t o r i a l methoxy (3.37, s i n g l e t , OCH^) and a v i n y l i c proton at 5.23 ( m u l t i p l e t ) . The i n f r a r e d spectrum (KBr) supported the presence of an o l e f i n i c hydrogen (1630 cm ^) and an ether f u n c t i o n a l i t y (1100 cm ^ ) , a strong band at 1710 cm 1 i n d i c a t e d the presence of an a l i p h a t i c ketone. I t i s evident that the nmr data resemble very c l o s e l y those observed f o r compound I (43). In f a c t the frequencies observed f o r the f i v e angular methyl groups, the secondary methyl at 0.88, the secondary methoxyl and the o l e f i n i c proton are v i r t u a l l y i d e n t i c a l with resonances obtained f o r compound I (43). An i d e n t i c a l t e t r a c y c l i c system i s therefore suggested as a s u i t a b l e model f o r compound I I I . Furthermore, the doublet at 1.09 (= 6 H) suggests the presence of an isop r o p y l moiety, the corresponding methine proton appears however somewhat downfield (2.3-2.7)suggesting the close proximity of an electronegative substituent, perhaps the ketone function, A search of the l i t e r a t u r e revealed that i n the case of methylisopropyl-k e t o n e 5 1 a doublet was found ((51.08) f o r the geminal dimethyl group and a m u l t i p l e t at 2.54 f o r the methine proton, while f o r diisopropyIketone the l a t t e r was found at 2.67. On the basis of above evidence i t was speculated that compound I I I could be represented by structure (58), - 45 -(58) Conclusive evidence was obtained from a detailed mass spectrometric investigation. The principal fragmentations of ketones are best interpreted by charge localization on the carbonyl group. Thus a-cleavage will lead to observation of the corresponding acylium ions, R. C = Ot ^ R-C-= 0 + R4 • R' R'-CBQ* •CO R' in the case where R = isopropyl one would therefore expect fragments at m/e 71 = C^O (R-C=0+) and m/e 43 = C.^ (R +). If a chain of three or more carbon atoms is attached to the carbonyl group, g-fission with transfer of a y- hydrogen atom (McLafferty rearrangement) becomes important as demonstrated with an is'opropyl-alkyl ketone. R CR" • H • + -O CH^ C H 2 C H 3 • + OH I S ^ C H CHp / C H 3 m/e 8 6 - 46 -The process of simple ycleavage, although not leading to very abundant ions, is preferred over simple (3- or <5- fission. The driving force for this reaction may correspond to a l l y l i c bond rupture in an enol form, or to the formation of a cyclic oxonium ion. O H i R | C H 2 - C H = C — C H / C H 3 C H 2 - 6 + \ CH3 C H 2 ~ C N „ C H -m/e 99 J C H m/e 99 / C H 3 Upon inspection of the mass spectrum (Figure 14) of compound III (58) i t becomes immediately apparent that the fragment (441, 76%) due to the loss of CH^ from the parent ion (456, 67%) i s much more pronounced here relative to that in compounds I (43) and II (51). Contributions to the M-15 ion in this case come not only from the usual loss of an angular methyl group but are also due to simple 3-cleavage [fission a_ in (58)] in the isopropyl group. The loss of methanol is again observed here. Ions due to the a-cleavage of the isopropyl moiety (m/e 43, 413 = C„ oH / r0_) [fission b_ in (58)] and the remainder of the molecule [fission _c i n (58), m/e 71 = C^ H.,0, m/e 385] are observed. The fragment at m/e 43 represents in fact the base peak of the spectrum due to combined contributions from fission b_ and fission c_, since the acylium ion formed in the latter w i l l decompose further to yield C^H^ = 43 plus carbon monoxide . C H o C H 3 V 3 - C O \ + C H - C = 0 * > CY\ C H 3 C H 3 m/e 71 m/e 43 H-09 C H n> (u CO CO CO fl> o rt r-i i o O O M o 3 C D " D RELATIVE INTENSITY 0.0 25.0 50.0 75.0 100.0 I 1 I I >--tes M CD " o o M U J " CD" H— 22J 1—234 m-CD LO U l " CD 6-CD U l CD" O U l U l " o O l CD" CD -71 -302 :—327 342 J-J37 371 1-385 0 U> O O 8-3 - Z<7 -- 48 -Fragments due to s t r a i g h t g-cleavage [ f i s s i o n d^  i n ( 5 8 ) ] , (m/e 85 = C cH nO, 371 = C„,H.-0) and ( 3 - f i s s i o n w i t h y-hydrogen t r a n s f e r (m/e 86 = C-H^O, 370 = C„,H.„0) are present. y - F i s s i o n i s observed 5 10 zo 4/ [e_ i n (58)] w i t h ions o c c u r r i n g a t m/e 99 = CgH-j^0 a n < i m / e 357 = C25 H41°* L o s s o f t n e s i d e chain [f_ i n (58)] i s i n d i c a t e d by an i o n of low abundance appearing a t m/e 329 (^23^37^ accompanied by the fragment of CgH^^O = 127. A more in t e n s e i o n i s observed a t m/e 327 (^23^35^ due to the l o s s of the s i d e chain and two protons, as i n compounds I (43) and I I (51). Pronounced fragments due to f i s s i o n of r i n g D [& i n ( 5 8 ) ] , m/e 288 ( C ^ H ^ O ) , m/e 168 ( C j j H ^ O ) , are noted and the l o s s of r i n g A [ f i s s i o n h i n (58)] i s supported by ions o c c u r r i n g at m/e 302 (C^H^O) and 153 (154-1H = C 1 ( ) H 1 7 0 ) . Cleavage of r i n g A [ f i s s i o n s jL and j _ i n (58)] i s i n d i c a t e d by fragments appearing at m/e 342, C^H^O and 113, CyH^O ( i ) as w e l l as m/e 72, C^gO (±). Fragments at 234 (C]_gH26°^ a n d 2 2 2 a r e i n d i c a t i v e of the r e t r o - D i e l s -A l d e r cleavage i n r i n g C. Above data were considered s u f f i c i e n t evidence to a s s i g n the s t r u c t u r e of 3g-methoxy-5a-lanost-9(ll)-en-24-one (59) to compound I I I . ( 59 ) - 49 -The i s o l a t e d compound IV was subjected to r e c r y s t a l l i z a t i o n from methylene chloride-hexine for a n a l y t i c a l purposes, providing a sample, 25 m.p. 180-180.5, [ a ] D +86°. Elemental analysis and high r e s o l u t i o n mass spectrometric data suggest a molecular formula of ^^H.,^^* ^ n e i n f r a r e d spectrum (CCl^) reveals the presence of a hydroxyl f u n c t i o n a l i t y , (3615 cm ^ ) ; absorption bands (KBr) due to an e x o c y c l i c o l e f i n (1652, 900 cm ^) are observed and an a d d i t i o n a l t r i s u b s t i t u t e d double bond i s also v i s i b l e (1635, 795 cm ^ ) . The pattern of the methyl groups a t t r i b u t e d to the t e t r a c y c l i c system i n the nmr (Figure 15) i s i d e n t i c a l to data observed f o r the previous three n a t u r a l products. The spectrum (taken at 100 MHz) revealed, t e r t i a r y methyls at 6 0.63, 0.72, 0.78, 0.94, 1.03; a secondary methyl at 0.89 (doublet, J = 6 Hz); a narrow three proton doublet at 1.70 (J = 1 Hz); s i g n a l s due to an e q u a t o r i a l methoxyl (3.33, s i n g l e t , 3 H and 2.62, m u l t i p l e t , 1 H); a broad t r i p l e t at 3.99 (J = 6 Hz, 1 H); o l e f i n i c proton resonances are v i s i b l e at 4.81 (narrow quartet, J = 1 Hz, 1 H), 4.89 ( s i n g l e t , 1 H) and 5.19 (multiplet, 1 H), the l a t t e r being i n d i c a t i v e of a C 9 ( l l ) double bond i n the t e t r a c y c l i c t r i t e r p e n e skeleton. Compound IV affords a monoacetate (61) upon mild treatment with a c e t i c anhydride and p y r i d i n e . C a t a l y t i c hydrogenation of the acetate provided a dihydro compound(62) which was saponified to the corresponding a l c o h o l (63). During these chemical transformations (Figure 16) s e v e r a l nmr s i g n a l s undergo s i g n i f i c a n t s h i f t s and these are l i s t e d i n Table X. i JL s o l v e n t i m p u r i t y I | | I I I | I I I I I I I I I I I I I I I I I I I I I I I I I I I I ! I I ! I I I I I I I 1 1 > •• I 6 5 4 3 2 1 TMS->-O u I o Figure 15. NMR spectrum (FT) of compound IV (65). - 51 -Compound IV (60) (61) (62) (63) 1.70 (d., 3H) 3.99 (t., IH) 4.81 (q., IH ) 4.89 (s., U g ) 1.70 (d., 3H) ^ 0.88 (d. , 6H) 5.12 (t., IH) 4.70 (m., IH) 0.95 (d 3.36 (m 6H) IH) Table X. NMR data (<5) for compound IV (60) and its derivatives. The mass spectrometric data, which will be discussed in detail later, indicated through the presence of three significant fragments [m/e 327 = C o oH o c0, M-(side chain + 2 H); m/e 125 = CoH1o0, side chain - 2H 2.5 JJ o 13 and m/e 109 = C 0H 1 0, side chain CoH1i:0 - Ho0] that the same tetracyclic o 13 o i J 2. system as in compounds I to III could be assigned to compound IV and that the second oxygen atom is located in the side chain. On the basis of the above data the structure (60) will be used as a model to interpret the information obtained so far. H O H Ha (61) R H, Pd. • 2 » v (62) (63) Figure 16. Chemical transformations of compound IV (60). - 52 -The e x o c y c l i c methylene (6 4.81, 4.89) i n compound IV (60) undergoes a downfield s h i f t upon formation of the a c e t a t e , suggesting p r o x i m i t y to the oxygen f u n c t i o n . The h y d r o x y l a b s o r p t i o n i s absent from the i n f r a r e d spectrum and i s replaced by frequencies (1748, 1242 cm "*") due t o the acetate group. S i g n i f i c a n t l y , the hydrogen geminal to the oxygen has moved from 6 3.99 downfield to 5.12 upon formation of the acetate (61). I t should be noted that i n the a l c o h o l , the hydrogen geminal to t h i s h y d r o x y l i s a l s o abnormally downfield. This again suggests that the oxygen f u n c t i o n i s of an a l l y l i c nature. Upon hydrogenation to compound (62) the narrow methyl doublet at 6 1.70 moves u p f i e l d to 0.88 forming a 6 proton doublet (C26H 3 + C27H 3) i n d i c a t i v e of an i s o p r o p y l group. The C24 proton has moved u p f i e l d from 6 5.12 to 4.70 s i n c e i t has l o s t i t s a l l y l i c nature. A f u r t h e r u p f i e l d s h i f t to 6 3.36 i s observed upon s a p o n i f i c a t i o n of the acetate group to y i e l d the s a t u r a t e d 53 a l c o h o l (63). P u b l i s h e d data f o r 3a, 123, 20 ( S ) , 24-tetrahydroxy-dammer-25-ene (64) OH i n d i c a t e s i g n a l s f o r a methyl group l o c a t e d on an o l e f i n i c bond at 6 1.72 ( s i n g l e t ) and f o r exomethylene hydrogens at 4.85 ( s i n g l e t , IH) and 4.96 ( s i n g l e t , IH), These data resemble c l o s e l y those observed f o r compound IV. - 53 -The mass spectrum of compound IV (Figure 17) proved again to be of importance i n securing the postulated structure (60). Ions r e l a t i n g to the various fragmentation processes of the t e t r a c y c l i c framework are observed i n accordance with previously suggested pathways [see compounds (43), (51) and (59)] and w i l l not be discussed i n d e t a i l here. I t should only be mentioned, that the fragments containing the side chain appeared i n many cases at 18 mass un i t s lower due to the f a c i l e e l i m i n a t i o n of water from the side chain. This process, leading to the 23, 25 - conjugated diene, i s confirmed by the presence of two ions (m/e 438 = C^H^O and 423 = C-^H^O) r e s u l t i n g from both, the parent i on (m/e 456 = C 3 1 H 5 2 ° 2 ' ) a s w e l 1 a s t n e M - 1 5 i o n ( m/ e 4 4 1 = ^30^49°2^* I n c a s e °f t n e a c e t a t e (61) a pronounced loss of a c e t i c acid (M-60) i s observed correspondingly. Conclusive chemical evidence to support the above postulates was obtained by the oxidation of dihydro IV (63) to compound I I I (59); the stereochemistry at C-24 i n IV was shown to be of the S-type through the conversion of compound I-monoacetate (44) to compound IV-acetate (61). O H (63) (59) H O A c (44) (61) RELRTIVE INTENSITY 0.0 25.0 50.0 75.0 in _i o CD i n CD IVJ CD CD M U l CD 3:u>J= L O ur CD CD' CD CD U l O " U l L H • CD cn CD-CD -L 100 _) • IDS •123 -327 -423 -433 - 4 3 6 - * S -- 55 -Thus compound IV can be assigned the s t r u c t u r e of 3g-methoxy-5ct-lanosta-9(11), 25-dien-24 S-ol (65). Compound V was a v a i l a b l e only i n very s m a l l q u a n t i t i e s , so the molecular formula, C 3 Q H 5 0 ° 2 » w a s e s t a b l i s h e d by h i g h r e s o l u t i o n mass spectrometry. The i n f r a r e d spectrum (CCl^) revealed two h y d r o x y l absorptions (3631 and 3619 cm 1 ) . The presence (KBr) of an e x o c y c l i c methylene was noted (3100, 910 cm 1 ) and a t r i s u b s t i t u t e d o l e f i n i c l i n k a g e (1650, 820 cm 1 ) was observed. The nmr spectrum (Figure 18, FT, 100 MHz) r e f l e c t e d the p r e v i o u s l y observed f a m i l i a r methyl r e g i o n w i t h t e r t i a r y methyls appearing at 6 0.66, 0.76, 0.82, 0.96, and 1.07; a secondary methyl i s observed at 0.91 (doublet, J = 6 Hz). A broad s i n g l e t ( 3H) appears at 1.72, a m u l t i p l e t at 3.42 (IH) suggests an e q u a t o r i a l proton geminal to an oxygen f u n c t i o n (OH), a broad t r i p l e t at 4.02 (IH) could be due to a proton geminal to an oxygen and next to a CH^-group. O l e f i n i c s i g n a l s are observed at 4.84 (narrow m u l t i p l e t , IH), 4.93 (narrow m u l t i p l e t , IH) and 5.26 ( m u l t i p l e t , IH). Upon i n s p e c t i o n of these data the p r e v i o u s l y encountered t e t r a c y c l i c system possessing f i v e angular methyl groups and a C9(11)-double bond appears to be a l o g i c a l choice f o r the b a s i c s k e l e t o n . A h y d r o x y l f u n c t i o n , most l i k e l y a t C3 - 57 -i s suggested by the i n f r a r e d and nmr data and a l s o supported through mass spectrometic determinations to be.discussed l a t e r . The o l e f i n i c s i g n a l s at 6 4.84 and 4.93, the broad t r i p l e t at 4.02 and the methyl at 1.72 suggest the presence of a s i d e chain s i m i l a r to the one encountered i n compound IV (65), w i t h the exception that the e q u a t o r i a l methoxyl group i n (65) i s now replaced by an a x i a l a l c o h o l f u n c t i o n a l i t y . I t i s there f o r e suggested that s t r u c t u r e (66) i s a s u i t a b l e r e p r e s e n t a t i o n f o r compound V. H OR H B R O ' (66) , R = H (67) , R = Ac Compound V (66) forms a d i a c e t a t e (67) under m i l d c o n d i t i o n s , t h e y i e l d however i s somewhat low most l i k e l y due to a f a c i l e dehydration process encountered i n the s i d e chain. Upon d i a c e t a t e formation c e r t a i n s h i f t s are observed i n the nmr spectrum which compare very f a v o r a b l y w i t h those observed i n the case of compound IV (Table X). The mass spectrum of compound V (Figure 19) proved to be i n v a l u a b l e i n supporting the p o s t u l a t e d s t r u c t u r e . Strong fragments due to the l o s s of a methyl r a d i c a l and water, or combinations thereof, are observed, again i n d i c a t i n g the formation of a conjugated 23, 25-diene system (m/e 409);the l o s s of two more hydrogens (m/e 407) i s a l s o observed suggesting the generation of the 20, 23, 25 - t r i e n e moiety. A fragment due to l o s s of a second molecule of water c H fD CO CO CO T J fD O rt H g O r h O O I O c 3 0. OS ON 0.0 RELATIVE 25.0 INTENSITY 50.0 75.0 rvj ur o :233 F"302 m. 4= U l " o 6-Ul CD-CD Ul til-es Ol CD' CD 100.0 _ J - 3 1 3 -4)9 -477 -442 e fD - > 0 0 O O - 85 -- 59 -from ring A i s also shown (m/e 391). Fragments due to the loss of the side chain plus 2H [fission a in (66)] are present (m/e 127 = CgH^^O, 313 = C o „ H o o 0 ) . Fragments at m/e 109 (C 0H 1 0) and 107 (C-H....) indicate 2.L o~> o l j o i l that the formation of the diene and triene has occurred to some extent in the side chain prior to fission a_. A signal at m/e 295 (^22^31^ corresponds to the loss of water from the tetracyclic moiety (m/e 313 = (^ 22^ 33^ 0 after fission a.. Fragmentation processes b_ and c^  are supported by the appearance of ions at m/e 167 (C^^g 0)» 2 8 8 ( C20 H32°^ a n d m/e 302 (C^H^O), 141 (CgH^O) respectively. The retro-Diels-Alder fission of ring D is supported by fragments at m/e 222 (C,CH_,0) and 220 (C^5H24^^ * s i g n a l s corresponding to combinations of the described fissions a_, b^  and _c and the various eliminations of water and methyl radicals are also observed. The diacetate (67) of compound V was compared to a diacetate (68) obtained by dehydration of compound II-diacetate (52).Table XI l i s t s some of the significant nmr data observed for both acetate derivatives as well as for compound (61) (compound IV-diacetate). compound C3-H C24-H C26-H. A (67) (68) (61) 4.61 4.44 -5 .5.1 5.12 4.83 4.88 4.88 4.89 4.94 4.93 Table XI.NMR data (6) for compounds (67), (68) and (61). - 60 -(66) , R = H (61) (67) , R = Ac I t w i l l be r e c a l l e d that compound (52) had an a x i a l hydrogen at C3. A comparison of the resonances due to the C3-proton r e v e a l s a s u b s t a n t i a l downfield s h i f t i n compound (67) as compared to compound (68). The former [and thereby (66)] i s t h e r e f o r e assigned an e q u a t o r i a l hydrogen a t C3 54 i n accord w i t h observed l i t e r a t u r e values . I n s p e c t i o n of the C24- and C26- proton s i g n a l s i n d i c a t e s a l s o some d i f f e r e n c e s . The frequencies i n (67) have undergone a s l i g h t u p f i e l d s h i f t of 0.05-0.1 Hz as compared to compounds (61) and (68). Compounds(67) and (66) are t h e r e f o r e t e n t a - t i v e l y assigned the C24-R c o n f i g u r a t i o n s i n c e the C24-S c o n f i g u r a t i o n has been e s t a b l i s h e d i n (61) and (68). Further proof of t h i s assignment i s necessary but could not be undertaken due to l a c k of sample m a t e r i a l . - 61 -Compound VI was obtained a n a l y t i c a l l y pure by r e c r y s t a l l i z a t i o n from 20 methylene chloride-hexane, m.p. 204-205°, [a] +92°. The m i c r o a n a l y s i s supported a molecular formula of ^3^5 2^2 W n e r e a s t a e m a s s s p e c t r o m e t r i c measurements i n d i c a t e Co1Ht..0» or even hi g h e r . I n f r a r e d data i n d i c a t e 31 54 3 the presence of a t e r t i a r y h y d r o x y l , a t r i s u b s t i t u t e d double bond and an ether l i n k a g e . The nmr spectrum (Figure 20, FT, 100 MHz) revealed t e r t i a r y methyls at 5 0.65, 0.75, 0.80, 0.97, 1.05 and 1.17 (6H); a secondary methyl at 0.91 (doublet, J = 6 Hz); an e q u a t o r i a l methoxyl (3.37, s i n g l e t , 3H and 2.63, m u l t i p l e t , IH); an o l e f i n i c proton at 5.24 ( m u l t i p l e t , IH) and a m u l t i p l e t at 3.32 due to one hydrogen p o s s i b l y geminal to a h y d r o x y l group.The o b s e r v a t i o n of an i n t e n s e mass sp e c t r o m e t r i c fragment at m/e 327 (C23H35O) combined w i t h the other data a v a i l a b l e suggests the presence of the f a m i l i a r t e t r a c y c l i c A 9(11)-lanostene s k e l e t o n b e a r i n g an e q u a t o r i a l methoxy s u b s t i t u e n t at C3. The s i d e chain i s suggested to be s i m i l a r to t h a t p r e v i o u s l y encountered s i n c e the secondary methyl doublet at <5 0.91 and the s i x proton s i n g l e t at 1.17 are i n d i c a t i v e of geminal methyls l o c a t e d on an oxygen b e a r i n g center (C25). The carbon atom next t o t h i s center i s most l i k e l y not asymmetric s i n c e the two methyl groups at C25 are m a g n e t i c a l l y e q u i v a l e n t . The nmr data suggest the p o s s i b i l i t y of an a d d i t i o n a l h y d r o x y l f u n c t i o n , most l i k e l y i n the s i d e chain, due to the one proton m u l t i p l e t observed at 6 3.32. I t appears that the i o n at m/e 456 (C^H^Op c a r m o t represent the molecular formula s i n c e an a d d i t i o n a l degree of u n s a t u r a t i o n (double bond or r i n g ) would be r e q u i r e d . The nmr data do not r e v e a l any a d d i t i o n a l o l e f i n i c s i g n a l s and t h e r e f o r e only a t e t r a s u b s t i t u t e d double bond could be accommodated. Figure 20. NMR spectrum (FT) of compound VI (70). Figure 21. Mass spectrum of compound VI (70). 64 -However, t h i s c o n s i d e r a t i o n i s excluded by the fragmentation p a t t e r n s i n the mass spectrometer. In the mass spectrum (Figure 21) two d i s t i n c t e l i m i n a t i o n s of water can be detected, supporting the presence of two hydroxyl groups. Lack of s u f f i c i e n t q u a n t i t i e s of compound VI d i d not permit a r e i n v e s t i g a t i o n of the m i c r o a n a l y t i c a l data, however the mass spe c t r o m e t r i c fragment at m/e 474 ( C ^ H ^ O ^ w a s reexamined and shown to be genuine. S t r u c t u r e (69) w i l l be used to j u s t i f y the data observed so f a r even i f they might be only of a suggestive nature. OH C H 3 O The mass spectrum supports the i n d i c a t e d fragmentation processes a-e as w e l l as the r e t r o - D i e l s - A l d e r process w i t h the presence of the corresponding i o n s . An i o n of low abundance (m/e 329 = ^23^37^ ^ U e to the l o s s of the s i d e chain from the t e t r a c y c l i c s k e l e t o n [ f i s s i o n JJ i n (69)] i s observed, however, the presence of a major fragment at m/e 327 (C^H^O) due to an a d d i t i o n a l l o s s of two hydrogens from the s t e r o i d a l s k e l e t o n provides f u r t h e r support f o r the presence of the p r e v i o u s l y observed b a s i c framework. A fragment corresponding to the e l i m i n a t e d s i d e chain (m/e 145, C0H.. -,0„) i s not observed, t h i s was to be expected i f one considers the f a c i l e e l i m i n a t i o n of water observed at the high mass region of the spectrum. However, v a r i o u s other ions generated from the si d e chain (m/e 145) were observed and are l i s t e d below. I t should be emphasized that the genesis of these fragments was not proven by the presence of metastables so that the s e q u e n t i a l formations proposed are only s p e c u l a t i v e . m/e 145, CgH^C^ (not observed) .-2H m/e 127, 38%, C 0H. c0 -H o0 V, 2 m/e 109, 64%, C Q I L . -2H _ m/e 107, 40%, C QH, - ^ 2 o 11 ^ m/e 143, 11%, CgH^O., ^ m/e 125, 23%, CgH^O -2H m/e 123, 36%, CgH.^0 y-n2° m/e 105, 40%, C gH 9 As mentioned e a r l i e r , due to the s p e c i f i c nmr s i g n a l of the geminal methyl groups at C25, a C24 p o s i t i o n f o r the second h y d r o x y l group can be r u l e d out and sin c e a secondary methyl (C20) i s a l s o observed i n the nmr the C20 p o s i t i o n f o r t h i s h y d r o x y l group i s a l s o excluded. On t h i s b a s i s s t r u c t u r e (70) c o n t a i n i n g the OH at e i t h e r C22 or C23 i s proposed although c l e a r l y a d d i t i o n a l evidence i s r e q u i r e d before a d e f i n i t i v e assignment can be made. (70) - 66 -Dehydration of a l c o h o l s f r e q u e n t l y occurs by thermal decomposition p r i o r to e l e c t r o n impact, e s p e c i a l l y when heated i n l e t systems are used, but under proper c o n d i t i o n s i t can be shown that the molecular i o n e l i m i n a t e s the elements of water. Unambiguous evidence indicates"'"''"^ t h a t t h i s process occurs predominantly by 1 , 4 - e l i m i n a t i o n through a six-membered intermediate i n the case of s a t u r a t e d mono a l c o h o l s ; i n general thermal dehydrations take place by 1 , 2 - e l i m i n a t i o n . Dehydration of fragment ions does not proceed n e c e s s a r i l y i n the same s p e c i f i c f a s h i o n as that observed i n the molecular i o n . Branched mono- and dihydroxy systems.may. a l s o dehydrate i n fashions other then those 57 58 observed f o r l i n e a r mono a l c o h o l s ' . However, the general bond f i s s i o n s of the a- and 3- types observed i n the l a t t e r do a l s o apply to the former. Upon examination of the p o s t u l a t e d s i d e chain f o r compound VI (70) one would expect the fragmentations i n d i c a t e d below, and indeed such fragments have been observed i n the mass spectrometer. OH OH OH - H 2 Q -> ' m/e 8? ' C-H^O 'm/e55 m/e69 ,C 5 H9 I t i s t h e r e f o r e suggested that i n compound VI(70) i t i s most l i k e l y t h a t the C22 carbon i s more f a v o r a b l e f o r the p o s i t i o n i n g of the h y d r o x y l group. - 67 -Compound VII was r e c r y s t a l l i z e d from methylene chloride-methanol p r o v i d i n g 20 an a n a l y t i c a l sample, m.p. 161-162°, [ a ] ^ +95°. A molecular formula of ^29H48°2 w a S e s t a D l i s n e d by m i c r o a n a l y s i s and h i g h r e s o l u t i o n mass spectrometry. The i n f r a r e d spectrum ( K B r ) e x h i b i t e d a b s o r p t i o n bands i n d i c a t i v e of an a l i p h a t i c k e t o n i c f u n c t i o n (1725 cm , a t r i s u b s t i t u t e d o l e f i n (1635, 815 cm and an ether l i n k a g e (1100 cm . The nmr spectrum (Figure 22) had t e r t i a r y methyls at 6 0.64, 0.74, 0.80, 0.98 and 1.04; a secondary methyl at 0.89 (doublet, J = 6 Hz); a methyl s i n g l e t at 2.12; a two proton m u l t i p l e t at 2.41; a one proton m u l t i p l e t at 2.63; a methoxy methyl at 3.35 and an o l e f i n i c proton at 5.23 ( m u l t i p l e t ) . These data suggest the presence of a t e t r a c y c l i c A 9(ll)-33-methoxy-lanostene s k e l e t o n encountered p r e v i o u s l y together w i t h a methyl ketone f u n c t i o n a l i t y , the l a t t e r being most l i k e l y l o c a t e d i n the s i d e chain. The mass spectrum (Figure 23) shows the presence of a strong i o n at m/e 99, 41% ( 0 , ^ , 0 ) o 11 and two ions of low abundance at m/e 329, 2% ( C 2 3 H 3 7 0 ) and 327, 4% ^ C23 H35°^" T* i e l a t t e r two fragments are i n d i c a t i v e of the p o s t u l a t e d t e t r a c y c l i c system having l o s t the s i d e chain at C17 or the s i d e chain and two hydrogens r e s p e c t i v e l y , whereas the m/e 99 segment does represent the l o s t s i d e chain c o n t a i n i n g the e x t r a oxygen atom. On the b a s i s of above evidence s t r u c t u r e (71) i s p o s t u l a t e d to represent compound V I I . O 22 il C H 3 O 327 2H (71) Figure 22. NMR spectrum (FT) of compound V I I (71). - 69 -- 70 -The nmr s i n g l e t at 6 2.12 (3H) i s assigned to the C25 methyl group and the m u l t i p l e t a t 2.41 (2H) to the C23 methylene group. Mass s p e c t r o m e t r i c fragments due to the usu a l f i s s i o n processes i n r i n g s A, B, C and D are observed. Various i o n s corresponding to a-, 8 - and y-cleavages i n the k e t o n i c s i d e chain have been observed and are l i s t e d i n Table X I I . Type of cleavage bond broken observed fragments a C24-25 413, 83%, C ^ H ^ B C22-23 57, 7%, C ^ O B, Y-H t r a n s f e r C22-23 370, 1%, C^H^O 58, 37%, C 3H 60 Y C20-22 357, 1%, C^H^O 71, 51%, C 4H ?0 Table X I I . Ions corresponding to cleavages i n the k e t o n i c s i d e chain of compound V I I (71). The mass s p e c t r o m e t r i c data do support s t r u c t u r e (71) and e s t a b l i s h t h a t compound V I I i s best represented as 33-methoxy-26, 27 - b i s n o r - 5 a - l a n o s t -9(ll)-en-24-one (71). Compound V I I I was r e c r y s t a l l i z e d from methylene chloride-hexane 20 y i e l d i n g an a n a l y t i c a l sample, m.p. 153-155°, [ a ] D +85°. Traces of so l v e n t i n p u r i t i e s were detected i n the nmr spectrum and the sample was the r e f o r e sublimed (180°, 0.01 mm) f o r f u r t h e r s t u d i e s . M i c r o a n a l y t i c a l data and h i g h r e s o l u t i o n mass spectrometry e s t a b l i s h e d a molecular formula ^33^56^3° ^ e i n f r a r e d spectrum i n d i c a t e d the presence of a t r i s u b s t i t u t e d o l e f i n (1635, 815 cm"1) and a number of bands (1190, 1165, 1140 and 1100 cm 1 ) probably due to ether l i n k a g e s could be observed. The nmr spectrum (Figure 24) revealed the presence of seven t e r t i a r y methyls - 72 -(6 0.62, 0.71, 0.77, 0.94, 1.02, 1.08, 1.23); two secondary methyls (0.87, doublet, 6 Hz and 1.31, doublet, 5 Hz); an e q u a t o r i a l methoxyl (2.62, m u l t i p l e t , IH, a x i a l and 3.35, s i n g l e t , 3H); a one proton m u l t i p l e t at 3.47; a low f i e l d proton geminal to a methyl (5.03, q u a r t e t , J = 5 Hz) and an o l e f i n i c proton at 5.25 ( m u l t i p l e t ) . I r r a d i a t i o n (97 db) of the quartet at 6 5.03 caused the doublet at 6 1.31 to c o l l a p s e to a s i n g l e t thereby e s t a b l i s h i n g the geminal r e l a t i o n s h i p of these two s u b s t i t u e n t s . The occurrence of two ions i n the mass spectrum (Figure 25), m/e 329 = C23 H37° a n c* m /' e 3 2 7 = C23 H35°^ t o § e t n e r w i t h some of the nmr data suggest the presence of the f a m i l i a r t e t r a c y c l i c system c o n t a i n i n g a 33-methoxyl and a C9 ( l l ) - u n s a t u r a t i o n . This would leave a C^H^O fragment (m/e 171 observed) f o r the s i d e chain as i n d i c a t e d i n (72). (72) The doublet observed at 6 0.87 suggests presence of the u s u a l secondary methyl group at C20. Although v a r i o u s a b s o r p t i o n bands i n the ether r e g i o n of the i n f r a r e d spectrum are observed, only one methoxyl group i s present i n the nmr spectrum. A c y c l i c ether system becomes t h e r e f o r e an a t t r a c t i v e c o n s i d e r a t i o n and t h i s i s supported by the formula (^JO^19°2^ s u 8 g e s t e ( i f o r the si d e c h a i n , which n e c e s s i t a t e s the presence of a c y c l i c system. I t w i l l be noted that the two methyl frequencies at 6 1.08 and 1.23 are i n e x a c t l y the same p o s i t i o n as the two geminal methyls a t C25 i n compound II-a c e t o n i d e - d - (57), the C24 proton appeared at 6 3.60 as a m u l t i p l e t i n Ss'-1 U J U J or a 50.0 100.0 150.0 200.0 250.0 3fll 300.0 M/E — r 350.0 J-r-JL i i , H , 400.0 450.0 500.0 ! I • 550.0 600.0 Figure 25. Mass spectrum of compound V I I I (76). - 74 -the l a t t e r compound. Values comparable to those mentioned above have 59 been published f o r compounds such as (73). 6 1.28 hUC CH 3 o o 3.38 H ^ /' , , C H3 1.15 CH 3 H (73) H C11H23 O O \ / (74) ,60 An nmr study of 2 - l a u r y l - l , 3 - d i o x o l a n e ( 7 4 ) established°u that the proton at C2 appears as a t r i p l e t (J = 6 Hz) at 6 4.82, whereas the a l k y l chain i s observed as a broad s i g n a l at <5 1.23. In general i t has been found** 1 that i n 2 - s u b s t i t u t e d dioxolanes a s i n g l e hydrogen on the two oxygen bear i n g carbon w i l l appear i n the r e g i o n of <5 4.8-5.0 . Bearing i n mind the above i n f o r m a t i o n one f e e l s j u s t i f i e d to p o s t u l a t e s t r u c t u r e (75) as an extension of the p a r t i a l s t r u c t u r e (72) discussed e a r l i e r . CH3O (75) A c l o s e s c r u t i n y of the nmr data observed f o r compound V I I I and a comparison w i t h those p u b l i s h e d , as w e l l as those experienced e a r l i e r i n t h i s i n v e s t i -g a t i o n leads t o the f o l l o w i n g assignments. The three proton doublet at 6 1.31 and the qua r t e t at 5.03 ( J = 5 Hz, IH) are assigned to the C33 - 75 -p o s i t i o n ; the two methyl s i n g l e t s at 6 1.08 and 1.23 correspond to the geminal methyl groups.at C25 and the one proton m u l t i p l e t i s designated to the C24 p o s i t i o n . In a decoupling experiment the qua r t e t a t 6 5.03 was i r r a d i a t e d causing the doublet at 6 1.31 to c o l l a p s e to a s i n g l e t , c o nfirming the above assignment. The mass sp e c t r o m e t r i c fragmentations of acetonides and r e l a t e d s p e c i e s have been i n v e s t i g a t e d i n some d e t a i l , n o t a b l y i n terms of developing a 62 63 method f o r the l o c a t i o n of double bonds i n hydrocarbons ' . The acetonides were obtained by condensation of acetone w i t h g l y c o l s , which i n turn can be synth e s i z e d r e a d i l y by osmium t e t r o x i d e h y d r o x y l a t i o n of an o l e f i n . C e r t a i n c h a r a c t e r i s t i c s , e s p e c i a l l y i n the case of t e r m i n a l acetonide groupings, are observed i n the mass spectrum e n a b l i n g one to determine the exact p o s i t i o n of the acetonide. The p r e v i o u s l y p o s t u l a t e d s t r u c t u r e (75) w i l l be examined together w i t h the mass s p e c t r o m e t r i c data 62 63 on the b a s i s of fragmentations observed i n s i m i l a r systems * . In p a r t i c u l a r l o s s of the elements of ketene (Cli^CO) and an aldehyde group (CHO), observed i n the mass spectrum of compound V I I I , which i n i t i a l l y proved d i f f i c u l t to e x p l a i n , now becomes c l e a r . F i g u r e 26 o u t l i n e s the suggested modes of f i s s i o n i n the s i d e chain and l i s t s the ions observed i n the mass spectrum (Figure 25) together w i t h t h e i r r e l a t i v e i n t e n s i t i e s . The fragment observed at M-15 i s of course not only due to a combination of i o n s b_ and f_ but w i l l a l s o c o n t a i n c o n t r i b u t i o n s from ions generated by a l o s s of an angular methyl group from the t e t r a c y c l i c s k e l e t o n . Masses due to f i s s i o n s of r i n g s A, B, C and D, as discussed e a r l i e r , and combinations of those w i t h fragmentations o u t l i n e d i n Figure 26 are a l s o present i n the mass spectrum of compound V I I I . - 76 -C H - H C H -O O m/e 499,12 C33 B55°3 H - C H p R - C H 2 C O H O * m/e 457,26Z C31 B53°2 R / m/e 115,IX C6 H11°2 + R * . m/e 385,IX C27 H45° m/e 86,161 C5 H10° H • A o/e 485,361 C32 H53°3 • C H O ,0 m/e 456,72X C31 H52°2 - C H ^ m/e 441,100* C30 H49°2 H C H 3 R ' R = C 2 7 H 4 50 m/e 414,IX C28 H46°2 R x m/e 442,37X C30 H50°2 C H 3 C H 3 Figure 26. Mass s p e c t r o m e t r i c fragmentations i n the s i d e chain of compound V I I I (76). 62 63 P r e v i o u s l y p u b l i s h e d data * i n d i c a t e d the l a c k of a molecular i o n i n mass sp e c t r o m e t r i c i n v e s t i g a t i o n s of 1,3-dioxalanes. However, t h i s was found not to be the case i n the present study, molecular ions were observed i n a l l compounds of t h i s type [(50), M = 10%; (57), M = 10%; (76), M + = 64%] probably due t o more c a r e f u l l y s e l e c t e d experimental c o n d i t i o n s . Conclusive evidence as to the nature of compound V I I I was obtained by a comparison of the l a t t e r w i t h the s y n t h e t i c m a t e r i a l obtained by t r e a t -ment of compound I (43) w i t h acetaldehyde. Both compounds were i d e n t i c a l i n every respect (m.m.p., [ a ] ^ , i r , nmr, mass s p e c ) . Compound V I I I i s t h e r e f o r e assigned the s t r u c t u r e (76) which i s the e t h y l i d e n e d e r i v a t i v e of 33-methoxy-5a-lanost-9(ll)-en-24(S), 2 5 - d i o l . The stereochemistry at C33 has not been determined. CH3O (76) Compound IX was r e c r y s t a l l i z e d from methylene c h l o r i d e - e t h a n o l to 20 provide an a n a l y t i c a l sample, m.p. 101.5-103°, [ a ] * +48.5°. The high r e s o l u t i o n mass measurement e s t a b l i s h e d a molecular weight of 810.7459. The i n f r a r e d spectrum (KBr) i n d i c a t e d the presence of a t r i s u b s t i t u t e d double bond (1635,815cm 1 ) and the p o s s i b i l i t y of one or more ether l i n k a g e s (1107 cm * ) . The nmr spectrum (Figure 27) revealed resonances Figure 27. NMR spectrum of compound IX (78). - 79 -a t t r i b u t e d to t e r t i a r y methyls at 6 0.65, 0.74, 0.79, 0.96, 1.05, 1.09 and 1.19; a methyl doublet at 0.90 ( J = 6 Hz); a very strong broad s i g n a l at 1.25 e q u i v a l e n t to about f o r t y protons and probably due to an a l i p h a t i c hydrocarbon chain; an e q u a t o r i a l methoxyl ( s i n g l e t at 3.36, 3H and m u l t i p l e t at 2.65, IH); a one proton m u l t i p l e t at ~ 3.5; a m u l t i p l e t at 3.73 (IH); a t r i p l e t at 4.90 ( J = 5 Hz, IH) and a m u l t i p l e t at 5.24 (IH). The mass spectrum (Figure 28) revealed a base peak at m/e 485 w h i l e p r e v i o u s l y encountered fragments such as m/e 329 ( C 2 3 H 3 7 0 ) and 327 ( C 23 H35°) d u e t o f i s s i o n at C17-C20 and ions r e l a t e d to the f i s s i o n s of r i n g s A, B, C and D are a l s o present. The main f e a t u r e s of t h i s spectrum up to mass 485 are v i r t u a l l y i d e n t i c a l to the same region i n the mass spectrum of compound V I I I (76). In the l a t t e r the f r a g -ment at m/e 485 (C 3 2H,- 30 3) corresponded to the l o s s of a methyl r a d i c a l from the molecular i o n (m/e 500, C33 H55° 3) a n d i t s s t r u c t u r e i s portrayed i n (77). H (77) Upon comparison of the nmr and mass sp e c t r o m e t r i c data obtained f o r compounds V I I I (76) and IX one reaches the c o n c l u s i o n that compound IX possesses the same b a s i c s k e l e t o n as compound V I I I (76). However, compound IX has a much higher molecular weight. The strong s i g n a l at Figure 28. Mass spectrum of compound IX (78). - 81 -6 1.25 i n the nmr suggests the presence of a hydrocarbon moiety which could e x p l a i n the d i f f e r e n c e s i n molecular weight between compounds V I I I and IX. The t r i p l e t at <5 4.90 (IH) suggests a proton on a carbon atom bearing two oxygens and i n turn geminal to a methylene group. The other nmr data are i n good agreement w i t h p r e v i o u s l y observed values i n t h i s i n v e s t i g a t i o n . As mentioned above a mass measurement was obtained from an i o n thought to be the molecular i o n and the obtained value of 810.7459 could correspond to the f o l l o w i n g three molecular c o n p o s i t i o n s : R - C55 H102°3 " 8 1 0 ' 7 8 2 9 C23 H49 1 - C54 H98°4 = 8 1 0 ' 7 4 6 5 C22 H45° C56 H90°3 = 8 1 0 - 6 8 9 0 C 2 4 H 3 7 S u b t r a c t i n g from these the e s t a b l i s h e d molecular formula of the i o n a t m/e 485 (^ 32^ 53^ 3^  corresponding to s t r u c t u r e (77) one i s l e f t w i t h the three i n d i c a t e d residues R. P o s s i b i l i t y C_ f o r r e s i d u e R can be r u l e d out immediately s i n c e i t would r e q u i r e a h i g h degree of u n s a t u r a t i o n i n the resi d u e . This s i t u a t i o n should have been detected i n the nmr spectrum but f o r the present there i s only one one-proton s i g n a l at <5 3.73 which i s not assigned. The fragment ^23^49 s n o w n i - n A i s c l e a r l y i m p o s s i b l e s i n c e i t c a r r i e s two more hydrogens than would be allowed i n a completely satur a t e d a l i p h a t i c hydrocarbon. In other words s e l e c t i o n A i s only p o s s i b l e i f m/e 811 does not represent the true molecular i o n but r a t h e r the M + 2 i o n , a s i t u a t i o n which appears u n l i k e l y . I t i s t h e r e f o r e suggested that B, w i t h R = C^H^O* represents the most l i k e l y group attached at C33. Such a p o s t u l a t e would suggest a sa t u r a t e d carbon system and i n order - 82 -C22H45O O O R m/e 809.2X C 5 4 H 9 7 ° 4 H - C 2 2 H 4 4 P *o\ o R' 7 -C22H44OCO H :0 ^ 2 2 ^ 5 0 O O " C22H4S°. H O R D O >-/-^22 45 O o m/e 796,IZ C 5 3 H 9 5 ° 4 s, Hi C22H45O •q o m/e 485,100Z C 3 2 H 5 3 ° 3 ill H -CHO A m/e 457,18Z C 3 1 H 5 3 ° 2 R = C27 H45° m/e 456,45Z C31 H 52°2 HvC 2 2 H 4 S O R' / —> O H 4 5 C 2 2 A - C H 3 m/e 441,98Z C 3 0 H 4 9 ° 2 4-H C22H45O m/e 414,1Z C 2 8 H 4 6 ° 2 C H 3 c=o C H 3 g Figure 29. Mass spe c t r o m e t r i c fragmentations i n the s i d e chain of compound IX (78). - 83 -to e x p l a i n the presence of oxygen and account f o r the nmr s i g n a l at 3.73 ( I H ) , i t i s p o s s i b l e that a secondary h y d r o x y l f u n c t i o n i s a l s o present i n R. Mass s p e c t r o m e t r i c r e s u l t s corresponding t o fragments portrayed i n Figure 29 have only been observed i n the cases of ions a (m/e 809), b_ (485), c^  (456), d. (457) and _f (796). This i s expected however s i n c e long hydrocarbon chains tend to undergo f a c i l e fragmentation processes i n the mass spectrometer. An attempt to sublime compound IX (180°, 0.01 mm) produced a waxy m a t e r i a l that had escaped from the sample and a s o l i d r e s i d u e . The former a f f o r d e d a t y p i c a l hydrocarbon mass spectrum dominated by ions of the general formulae C n H 2 n and 8 r a d u a l l y d e c l i n i n g i n abundance w i t h i n c r e a s i n g mass number up to m/e „ 320. The s o l i d r esidue e x h i b i t e d a molecular i o n and base peak at m/e 485 (C 3 2H,- 30 3) . The fragmentation p a t t e r n of the l a t t e r showed i d e n t i c a l c h a r a c t e r i s t i c s to the corresponding r e g i o n of the s t a r t i n g m a t e r i a l , thereby i n d i c a t i n g t h a t a thermal cleavage at the C33-R bond had taken p l a c e . Based on the above i n f o r m a t i o n s t r u c t u r e (78) H R O C i s assigned to compound IX although a d d i t i o n a l q u a n t i t i e s would be r e q u i r e d f o r a more thorough i n v e s t i g a t i o n and, i n t u r n , a more complete assignment. - 84 -Compound X was obtained i n a pure s t a t e by r e c r y s t a l l i z a t i o n from methylene chloride-methanolto provide an a n a l y t i c a l sample, m.p. 91-92°, 20 [ a ] D +39°. The m i c r o a n a l y t i c a l data support a molecular formula of ^53^93^3* ^ m a s s s P e c t r o m e t r i : measurement of an i o n at m/e 778 gave a value of 777.7216. I t i s b e l i e v e d that t h i s i o n represents e i t h e r the molecular i o n or the M-l i o n . The i n f r a r e d spectrum (KBr) i n d i c a t e d the presence of a h y d r o x y l (3480 cm ^) and t r i s u b s t i t u t e d o l e f i n i c (1630,810 cm ^) moiety. The nmr spectrum (Figure 30, FT, 100 MHz) revealed t e r t i a r y methyls a t 6 0.66, 0.75, 0.82, 0.99, 1.04, 1.10 and 1.20; a secondary methyl at 0.91 (doublet, J = 6 Hz); a s i g n a l due to about f o r t y protons at 1.28, i n d i c a t i n g the p r o b a b i l i t y of a hydrocarbon c h a i n ; an a x i a l proton at C3 (3.22) geminal to an oxygen; a m u l t i p l e t at 3.46 (IH); a m u l t i p l e t at 4.23 (IH) , p o s s i b l y of o l e f i n i c nature; a one proton t r i p l e t at 4.92 ( J = 5 Hz, -CH-CCQ) and a one proton m u l t i p l e t at 5.24. An i n i t i a l comparison of these nmr data w i t h those obtained f o r compounds V I I I (76) and IX (78) suggests t h a t one i s d e a l i n g w i t h the same b a s i c s k e l e t o n having the 1,3-dioxolane system i n the s i d e chain. However, i n the present case the e q u a t o r i a l C3-methoxyl seems to be r e p l a c e d by a h y d r o x y l f u n c t i o n a l i t y . The t r i p l e t a t 6 4.92 suggests again a proton at C33 geminal to a p o s s i b l e hydrocarbon moiety. S t r u c t u r e (79) w i l l t h e r e f o r e be used as a working model. H R (79) b - 86 -The mass spectrum (Figure 31) e x h i b i t s fragments due to f i s s i o n s of the t e t r a c y c l i c p o r t i o n of the molecule as i n d i c a t e d i n (79), i n p a r t i c u l a r , ions due to f i s s i o n s a_ and b_ (m/e 315, 313 and 274, 273 r e -s p e c t i v e l y ) are prominent. As mentioned above a measurement of 777.7216 was obtained f o r an i o n which had appeared at m/e 778 i n the u n i t r e s o l u t i o n spectrum. The s t r u c t u r e o u t l i n e d i n (79) i s e q u i v a l e n t to ^31H51°3' n o t t a k i - n 8 Ji Into account. The value of 777.7216 allows two p o s s i b l e combinations f o r the molecular formula and thereby a l s o two p o s s i b i l i t i e s f o r R. as o u t l i n e d below, ^ C51 H101°4 = 7 7 7 • 7 6 9 9 R = C 2 0 H 5 0 ° B C 5 3 H 9 3 0 3 = 777.7125 R = C ^ H ^ Obviously choice A represents an im p o s s i b l e formula w i t h respect to R and t h e r e f o r e J5 must be given more s e r i o u s c o n s i d e r a t i o n . I f R was to be a s a t u r a t e d hydrocarbon chain one would expect a formula o f C22 H45'~ w h i l e one degree of u n s a t u r a t i o n (double bond or r i n g ) reduces i t to C22 H43* I t : i s t n e r e f o r e suggested that R = C 2 2 H 4 3 a n d t n a t t n e m e a s u r e d value a t 777 represents i n f a c t the M-l i o n . Two low r e s o l u t i o n s p e c t r a were obtained and the observed fragments > m/e 700 are l i s t e d i n Table X I I I together w i t h the r e l a t i v e i n t e n s i t i e s expressed as a percentage of the base peak s e t at 100%. m/e -> 780 779 778 765 764 763 737 736 735 710 709 Re l . I : 0.2 0.5 1.6 2.3 0.7 1.1 0.4 i n t e n s . % , I I : 0.9 1.3 2.8 4.4 1.2 2.5 0.6 Table X I I I . Mass s p e c t r o m e t r i c data (m/e > 700) f o r compound X (80). i n . UJ LU ce 50.0 100.0 m ( fi IJ,l)j,U,l; LJ, ,1,^ V, , ) , l , L 150.0 200.0 250.0 300.0 350.0 400.0 M/E m/e r e l . i n t . % 780 0.2 779 0.9 (0.5) 778 1.3 (777) (0.6) 765 0.6 (1.0) 764 2.3 (2.8) (763) (4.4) 737 0.7 (736) (1.2) 735 2.5 (2.5) 710 0.4 (709) (0.6) 43 100 450.0 I 1 500.0 550.0 - i — i — i — i — ). 600 Figure 31. Mass spectrum of compound X (80). - 88 -I t i s obvious from Table X I I I that a one u n i t mass s h i f t has taken place i n the upper r e g i o n of the mass spectrum. This d i f f e r e n c e i s observed o c c a s i o n a l l y i n the h i g h mass re g i o n i f one i s us i n g a data system w i t h the MS-902 mass spectrometer. the s a t u r a t e d a c y c l i c system (^ 22^ 45^  ~*-s e s s e n t i a l . I t i s suggested that a double bond i s present i n R and t h i s i s supported by the nmr s i g n a l at 6 4.23. The mass spectrum e x h i b i t s a fragment at m/e 735 ^5oH86°3^ due to l o s s of C^H^ from the molecular i o n , a peak a t 709 corresponds to l o s s of 69 mass u n i t s probably due to the l o s s of C^Hg. This fragmentation might i n d i c a t e that the u n s a t u r a t i o n i s l o c a t e d between the f o u r t h and f i f t h carbon atom from the end of the chain. On the b a s i s of the e a r l i e r d i s c ussed mass s p e c t r o m e t r i c fragmentation c h a r a c t e r i s t i c s f o r 1,3-dioxolanes, a r a t i o n a l e i s provided i n Figure 32 f o r some of the ions observed i n the spectrum of compound X. then an e x p l a n a t i o n f o r the l o s s of two hydrogens from M-1 (g) M* (d) m/e 778(779) m/e 471 C53H93,94°3 H R V - 89 -Taking i n t o account the presented data, s t r u c t u r e (80) i s p o s t u l a t e d f o r compound X,. being t h e r e f o r e the 3-des-0-methyl analog of compound IX (78) and having a l s o l o s t the elements of water i n the C33-side chain. (80) R e c r y s t a l l i z a t i o n of compound XI from methylene chloride-methanol 20 provided an a n a l y t i c a l sample, m.p. 261-261.5°, [ot]^ +91°. The micro a n a l y t i c a l data support a molecular formula of C c orL,,0 c. High r e s o l u t i o n JO yo D mass spectrometry provided a measurement of 872.7254 f o r an i o n thought to be the molecular i o n . The i n f r a r e d spectrum (KBr) was not very i n f o r m a t i v e , however, the presence of one or s e v e r a l ether l i n k a g e s could be observed (1100 c m - 1 ) . The nmr spectrum (Figure 33, FT, 100 MHz) d i d not have any i n d i c a t i o n of an a l i p h a t i c hydrocarbon moiety as i n the two p r e v i o u s l y i n v e s t i g a t e d compounds but i t was r a t h e r s i m i l a r to a spectrum observed f o r sample VTII. T e r t i a r y methyl s i n g l e t s were observed at 6 0.66, 0.74, 0.80, 0.98 and 1.05 each being due to 6_H and at 1.11 and 1.25 (3H each). The spectrum a l s o r e v ealed, two o v e r l a p p i n g secondary methyl s i g n a l s at 0.89 and 0.91 ( d o u b l e t s , J = 6 Hz); a m u l t i p l e t at 2.65 (1 H); a s i x proton s i n g l e t a t 3.37; a one proton m u l t i p l e t at 3.63; a one proton t r i p l e t at 4.90 and a m u l t i p l e t at 5.25 due to two hydrogens. From these data one i I • i . • i ; I j • ; : ! I • : • . I 1 I 1 I I 1 I I 1 I I I I I i I i I I I i I t I I I i I I I I ;! I I j I I t I I I I I I I I | | | ! | | | | | | 5 4 3 2 1 0 Figure 33. NMR spectrum (FT) of compound XI (83). - 91 -can draw the f o l l o w i n g p r e l i m i n a r y c o n c l u s i o n s . In the f i r s t i n s t a n c e f i v e t e r t i a r y methyl resonances observed u p f i e l d are very suggestive f o r the f i v e methyl groups l o c a t e d on the t e t r a c y c l i c lanostene nucleus. Since each s i g n a l i s e q u i v a l e n t to s i x protons the p o s s i b i l i t y of a dimeric system comes to mind, being i n accord w i t h the high molecular weight observed. The two methyl s i g n a l s a t 6 1.11 and 1.25 appear i n the same re g i o n as d i d the C25 geminal methyl s i g n a l s i n compounds VII I - X . The two secondary methyl groups a l s o have chemical s h i f t s p r e v i o u s l y ob-served f o r the C20-CH.J. Two e q u a t o r i a l methoxy Is are observed a t 3.37, however, only one a x i a l hydrogen seems to be present. The e a r l i e r observed frequency f o r the C24 proton i s a l s o present i n t h i s case w i t h a m u l t i p l e t a t 3.63 ( L H ) . The t r i p l e t a t 4.90 (1 H) i s reminiscent of the C33 proton t r i p l e t observed i n compounds IX and X. F i n a l l y the presence of two eq u i v a l e n t o l e f i n i c protons i s i n d i c a t e d by the m u l t i p l e t at 5.25. A b r i e f look a t the mass s p e c t r o m e t r i c data (Figure 34) immediately r e v e a l s the presence of a fragment at m/e 485 ( C32 H53°3) having the same composition as i n compounds V I I I and IX. A fragment a t m/e 327 ( C 23 H35°)> p r e v i o u s l y assigned to the f i s s i o n at C17-C20 coupled w i t h the l o s s of two hydrogens,is a l s o present. What i s very s t r i k i n g though i s the f a c t t h a t the i o n a t m/e 327 (49%) i s of much grea t e r abundance than the one at 485 (32%), a r e l a t i o n not observed i n compounds VI I I - X , where m/e 485 was always the fragment of gr e a t e r r e l a t i v e i n t e n s i t y . This f i n d i n g suggests t h a t the s p e c i e s , namely the t e t r a c y c l i c system, which creates the m/e 327 fragment i s more abundant i n the present case, supporting the e a r l i e r suggested d i m e r i c system. Considering the above data and - 92 -4-1 CO V-l cu ~6 O H O W H * ( N N r ^ i ^ r - . i n < ) - c N C T \ i - l C O C O C O O O M C O t s i n ss»-66E-o o o a t o a i n IP a . o i n r Q'QOl O'SL 1 JL1ISN31NI a . a a . a 3AI1H"13H O'G - 93 -t a k i n g i n t o account e a r l i e r observations one could consider (81) and (82) as p a r t i a l b u i l d i n g u n i t s of the t o t a l s t r u c t u r e . C H 3 O ( 8 1 ) , C 3 2 H 5 3 0 3 (82) , C 2 3 H 3 6 0 The value obtained f o r the molecular i o n (872.7254) could account f o r two molecular compositions 1) ^^g^OQ1^^ A N D 2 ) ^58^96^5* ^ ° n e s u b s t r a c t s the sum of (81) + (82) = (C,. ,-HggO^) f rom these two p o s s i b i l i t i e s one obtains the fragments C^H^Q and C^RyO, r e s p e c t i v e l y . The former i s c l e a r l y i m p o s s i b l e , and t h e r e f o r e the fragment C^H^O must be accommodated i n the s t r u c t u r a l framework. As mentioned e a r l i e r , only one C3 proton has been observed i n the nmr spectrum and i t i s tempting to suggest that the l i n k a g e e x i s t s between (81) and (82) v i a C3 i n the l a t t e r . One proton noted at 4.90 was a t t r i b u t e d to C33 i n (81) and s i n c e t h i s s i g n a l appears as a t r i p l e t i t should be adjacent to a methylene group. On t h i s b a s i s (81) and (82) are probably l i n k e d v i a a methylene b r i d g e at C33 (81) and C3 ( 8 2 ) . Accepting t h i s p r o p o s a l thus f a r , C 2 H 5 ° remains unaccounted f o r . I t seems reasonable to place t h i s group at C17 i n (82) and to propose (83) as a working s t r u c t u r e f o r the purposes of the mass s p e c t r o m e t r i c data. Fragments a s s o c i a t e d w i t h rearrangements of the 1,3-dioxolane system and - 94 -m/e 4 8 5 N - N C H 2 ^ H^crH 3o . C 2 H 5 0 (83), C 5 8 H 9 6 0 5 2 H m/e 327 l e a d i n g to ions a (m/e 872), b (457), c (858), d (485) and e (456) (Figure 35) are observed. A fragment at m/e 826 (7%, M-47, C^HggO^) due to f i s s i o n £_ i n (83) i s a l s o noted w h i l e an i o n at m/e 86 (C^H^O) could r e s u l t from f i s s i o n j». The v a r i o u s fragments due to p r e v i o u s l y HV R' M-1 (a) m/e 872,11 C58 H95°5 3* R' (b) m/e 457,13Z C31 H53°2 H H R O O R' f m/e 873,IZ C58 H96°5 -CH-H R o o * H \ ft R' ( c ) m/e 858,9Z C57 H93°5 R + 0 O R' (d) m/e 485,32Z C32 H53°3 o R' (§) m/e 456,31Z C31 H52°2 R " C23 H36° J26"43 v Figure 35. Mass sp e c t r o m e t r i c fragmentations i n compound XI (83). - 95 -discussed f i s s i o n s of r i n g s A, B, C and D are a l s o observed, however, the a l i p h a t i c u n i t connecting the two t e t r a c y c l i c systems does not s u r v i v e the processes. I t i s f e l t , that s t r u c t u r e (83) i s a reasonable r e p r e s e n t a t i o n f o r compound XI c o n s i d e r i n g the data obtained so f a r . Obviously a d d i t i o n a l work i s necessary before a more d e f i n i t e assignment can be made. Because of the l i m i t e d amounts of m a t e r i a l no f u r t h e r work, e s p e c i a l l y chemical i n t e r r e l a t i o n s h i p s and degradations, was p r a c t i c a l i n the case of most of the compounds di s c u s s e d . B i o g e n e t i c a l l y , c y c l o a r t e n o l (14) could be considered as the prec u r s o r of the compounds under i n v e s t i g a t i o n . A c i d - c a t a l y s e d cleavage (14) of the cyclopropane r i n g would l e a d to the C 9 ( l l ) u n s a t u r a t i o n and appropriate enzymatic m o d i f i c a t i o n s of the s i d e chain could r e s u l t i n the f u n c t i o n a l i t i e s proposed. The known presence of wax a l c o h o l s i n the bark e x t r a c t could account f o r the s i d e chain s u b s t i t u t i o n p a t t e r n s of compounds IX and X. In c o n c l u s i o n the bark of Western white pine i s indeed a r i c h source of v a r i o u s t r i t e r p e n e systems, many of which are i n t e r e s t i n g and nove l compounds. Further work to e s t a b l i s h the s t r u c t u r e s of these compounds p a r t i c u l a r l y IX-XI must await the i s o l a t i o n of a d d i t i o n a l q u a n t i t i e s of m a t e r i a l . - 96 -EXPERIMENTAL (PART I) Melting points were determined on a Kofler block and are uncorrected. Optical rotations were obtained at the sodium D line using a Perkin-Elmer Model 141 Automatic Polarimeter. The infrared (ir) spectra were recorded on Perkin-Elmer Model 21 or 457 spectrometers u t i l i z i n g a potassium bromide disc or carbon tetrachloride solution. The positions of the absorption maxima are quoted in wave numbers (cm "*") while the assignments are li s t e d in parentheses. Nuclear magnetic resonance (nmr) spectra were recorded in deutero chloroform solution (unless otherwise indicated) at 100 MHz on a Varian HA-100 or XL-100 instrument and at 60 MHz on a Varian A-60 or T-60 instrument. In cases of limited quantities of sample (< 2mg) the Fourier Transform mode was employed using the XL-100 instrument. Line positions are given in the <5 scale, with tetra-methylsilane as internal standard; the multiplicity, integrated peak areas and proton assignments are indicated in parentheses. Mass spectra were recorded on an Atlas CH4-B (Varian-MAT) and an AEI MS-902 instrument using the direct insertion technique. The spectra were obtained at an electron energy of 70 e.V. (unless otherwise stated) and a source temperature of 180-250°. A l l indicated fragmentation path-ways have been verified by accurate mass measurements and in some cases also by meta stables. Thin layer chromatography (TLC) was carried out using S i l i c a gel layers of 0.3 mm thickness and spots were visualized either by treatment with iodine vapours or spraying with antimony trichloride in glacial acetic acid (40 W/W %) followed by five minutes at 100°. Microanalyses were performed by Mr. P. Borda, Microanalytical Laboratory, University of British Columbia. - 97 -Compound I or 3g-methoxy-5a-lanost-9(11)-en-24 ( S ) , 2 5 - d i o l (43) The substance obtained from the chromatographic s e p a r a t i o n was r e c r y s t a l l i z e d from hexane to provide an a n a l y t i c a l sample, m.p. 193-194°; [ e x ] 2 2 +77° (C, 1, CHC1 3); i r , v max (CC1 4): 3623 (2° OH); 3577 cm" 1 (H bonded OH); v max (KBr): 3500, 3460 (OH); 1635, 790 (C=CH); 1105 cm" 1 (C-0-C); nmr, 6 0.67, 0.74, 0.81, 0.98, 1.05, 1.17 and 1.22 ( s i n g l e t s , 3 H each, C-CH 3); 0.91 (doublet, J = 6 Hz, 3H, C20(H)-CH 3); 2.64 (broad m u l t i p l e t , 1 H, C3-H a x i a l ) ; 3.25 ( m u l t i p l e t , 1 H, C24-H); 3.36 ( s i n g l e t , 3 H, C3-OCH3> equat.); 5.23 ( m u l t i p l e t , 1 H, C9=C11-H); high r e s o l u t i o n mass s p e c , M + (13%), 474.4097, r e q u i r e s 474.4071; mass sp e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition c a l c . mas mass C H 0 474 13 474.4097 31 54 3 474.4071 459 8 459.3881 30 51 3 459.3837 456 13 456.3950 31 52 2 456.3966 445 4 441 27 441.3706 30 49 2 441.3731 428 7 428.3644 29 48 2 428.3653 427 11 427.3576 29 47 2 427.3576 424 11 416 2 413 5 410 11 410.3519 29 46 1 410.3547 409 33 409.3479 29 45 1 409.3469 400 2 400.3287 27 44 2 400.3340 399 4 399.3276 27 43 2 399.3262 393 6 391 2 391.3258 25 43 3 391.3211 384 2 384.3278 27 44 1 384.3392 380 10 369 3 369.3171 26 41 1 369.3156 367 5 367.3037 26 39 1 367.2999 355 1 353 1 341 2 329 3 ft 327 16 327.2656 23 35 1 327.2687 320 1 - 98 -Table cont. 313 3 302 5 302.2561 21 34 1 302.2608 297 5 297.2545 22 33 297.2581 295 2 295.2440 22 31 295.2426 288 5 288.2422 20 32 1 288.2453 287 9 287.2397 20 31 1 287.2374 283 2 281 2 281.2281 21 29 281.2268 273 5 273.2230 19 29 1 273.2218 261 4 261.2249 18 29 1 261.2217 255 7 255.2120 19 27 255.2112 247 2 247.2025 17 27 1 247.2061 243 3 243.2146 18 27 243.2112 241 5 241.1969 18 25 241.1955 240 1 235 2 235.2108 16 27 1 235.2061 234 1 233 2 233.1944 16 25 1 233.1905 229 6 229.2018 17 25 229.1956 227 8 227.1817 17 23 227.1799 225 2 225.1631 17 21 225.1643 221 2 217 2 217.1948 16 25 217.1956 215 8 215.1790 16 23 215.1799 213 6 213.1681 16 21 213.1642 207 3 207.1754 14 23 1 207.1748 203 7 203.1771 15 23 203.1799 201 9 201.1621 15 21 201.1643 199 5 199.1454 15 19 199.1486 197 2 197.1344 15 17 197.1330 193 2 193.1578 13 21 1 193.1592 189 15 189.1648 14 21 189.1643 187 14 187.1507 14 19 187.1486 185 6 185.1325 14 17 185.1329 177 5 177.1614 13 21 177.1643 175 24 175.1503 13 19 175.1486 173 19 173.1357 13 17 173.1330 161 18 161.1362 12 17 161.1329 159 20 159.1174 12 15 159.1173 153 5 153.1331 10 17 1 153.1279 149 14 149.1320 11 17 149.1329 147 19 147.1171 11 15 147.1173 145 18 145.1030 11 13 145.1017 141 13 141.1286 9 17 1 141.1279 141.0695 11 9 141.0704 135 33 135.1177 10 15 135.1173 133 25 133.1035 10 13 133.1017 127 15 127.1126 8 15 1 127.1122 123 19 123.1169 9 15 123.1173 121 37 121.1024 9 13 121.1017 - 99 -Table cbrit. 119 37 119.0865 9 11 119.0860 109 33 109.1040 8 13 109.1017 107 34 107.0863 8 11 107.0860 105 32 105.0704 8 9 105.0704 99 13 99.0833 6 11 1 99.0809 95 54 95.0861 7 11 95.0860 94 31 94.0782 7 10 94.0782 93 31 93.0712 7 9 93.0704 91 21 91.0551 7 7 91.0547 85 21 85.1003 6 13 85.1017 83 85.0646 5 9 1 85.0653 19 83.0862 6 11 83.0860 82 7 82.0756 6 10 82.0782 81 39 81.0688 6 9 81.0704 78 49 78.0460 6 6 78.0469 71 62 71.0878 5 11 71.0860 69 67 71.0480 4 7 1 71.0496 69.0678 5 9 69.0704 67 69.0315 4 5 1 69.0340 27 67.0495 5 7 67.0547 59 75 57 25 57.0353 3 5 1 57.0340 56 7 56.0263 3 4 1 56.0262 55 62 55.0113 3 3 1 55.0183 The following meta stables were observed; 444.8 397.1 355.0 255.3 438.8 391.8 347.0 252.0 426.7 386.6 339.7 243.9 424.7 379.4 337.7 238.4 423.8 374.9 323.7 226.6 420.7 373.8 318.9 221.8 412.5 364.7 272.9 213.0 407.0 364.6 266.4 200.6 405.9 361.5 258.5 184.7 Anal, calcd. for C ^ H ^ : C, 78.42; H, 11.47. Found: C, 78,10; H, 11.32. - 100 -Hydrogenation of compound I , (46) Compound I (500 mg) i n g l a c i a l a c e t i c a c i d (100 ml) was hydrogenated over Adam's c a t a l y s t (200 mg) at room temperature and atmospheric pressure f o r a p e r i o d of seventy hours. One mole e q u i v a l e n t of hydrogen was taken up. The c a t a l y s t was removed by f i l t r a t i o n and the s o l v e n t removed i n vacuo to provide a white s o l i d (491 mg, 98%). This product was r e -c r y s t a l l i z e d from benzene-hexane to provide an a n a l y t i c a l sample, m.p. 213.5-214.5°; [ a ] 2 4 +35.4° (C, 0.7, CHC1J; i r , vmax (KBr): 3430 (OH); 1105 cm - 1 (C-0-C); nmr, 6 2.64 (qu a r t e t , IH, J = .11,4 Hz, C3-H); 3.29 ( m u l t i p l e t , IH, C24-H) ; no o l e f i n i c protons; h i g h r e s o l u t i o n mass s p e c , M + (1.6%), 476.4229, C 3 1 H 5 6 0 3 r e q u i r e s 476.4224. Anal, c a l c d . f o r C ^ H ^ O ^ C, 78.09; H, 11.84. Found: C, 78.15; H, 11.77. P e r i o d a t e cleavage of hydrogenated compound I (47) The hydrogenated m a t e r i a l (46) (225 mg) was suspended i n a s o l u t i o n of HIO^*2H 20 (500 mg)in d i s t i l l e d water (15 ml). The mixture was a g i t a t e d f o r a p e r i o d of fou r days at room temperature under an atmosphere of n i t r o g e n . Afterwards, the mixture was e x t r a c t e d w i t h chloroform, the chloroform s o l u t i o n washed w i t h water, d r i e d over anhydrous sodium sulphate and evaporated to dryness to y i e l d 192 mg (98%) of a white s o l i d . R e c r y s t a l l i z a t i o n from benzene a f f o r d e d an a n a l y t i c a l sample, m.p. 180-181°; [ a ] 2 2 +43.7° (C, 0.6, C H C l 3 ) ; i r , v max (KBr): 2710, 1720 (CHO); 1105 cm" 1 (C-0-C); nmr, <5 2.37 ( m u l t i p l e t , 2 H, C23-H 2); 9.74 ( t r i p l e t , IH, C24HO) ; hi g h r e s o l u t i o n mass s p e c , M + (34%) 416.3691, C28 H48°2 r e 9 u i r e s 416.3653. Anal, c a l c d . f o r C ^ H ^ O ^ C, 80.71; H, 11.61. Found: C, 80.32; H, 11.72. 3 V - 101 -A second experiment, i d e n t i c a l to the one above, was c a r r i e d out. Fo l l o w i n g the four day r e a c t i o n p e r i o d , the r e a c t i o n v e s s e l was attached to a vacuum l i n e and p a r t of the v o l a t i l e f r a c t i o n was removed and trapped i n an a c i d i f i e d s o l u t i o n of 2,4-dinitrophenylhydrazone. When the l a t t e r was allowed to warm to room temperature orange c r y s t a l s (8 mg) p r e c i p i t a t e d , which a f t e r r e c r y s t a l l i z a t i o n from e t h a n o l , were i d e n t i c a l (m.p.; mixed m.p.; T L C , S i l i c a g e l G-benzene; i r and nmr) to an a u t h e n t i c sample of the 2,4-DNPH d e r i v a t i v e of acetone. Permanganate o x i d a t i o n of the pe r i o d a t e cleavage product, (48) Compound(47)(52 mg) was d i s s o l v e d i n acetone (20 ml) and t r e a t e d w i t h an aqueous potassium permanganate s o l u t i o n (25 mg i n 0.5 ml water). The mixture was s t i r r e d f o r 2 1/2 hours at room temperature a f t e r which i t was d i l u t e d w i t h water (10 ml) and t r e a t e d w i t h methanol (5 ml). The t o t a l mixture was then reduced i n vacuo to a volume of about 10 ml and ex t r a c t e d w i t h a 1:4 mixture of methanol and chloroform. The organic phase was d r i e d over anhydrous sodium sulphate and evaporated i n vacuo to y i e l d a white s o l i d (54 mg, 100%). This m a t e r i a l was not p u r i f i e d f u r t h e r because of i t s p o l a r nature; i r , v max (KBr): 3490, 3200-2450, 1705 and 1260 cm"1 (C00H); h i g h r e s o l u t i o n mass spec., M + (10%),432.3595; C o o H / o 0 o 2 o 4 o j r e q u i r e s 432.3603. Methyl.ester f o r m a t i o n , (49) Compound(48)(50 mg) was t r e a t e d w i t h anhydrous methanol (75 ml) and cone, s u l p h u r i c a c i d (0.5 ml) over a p e r i o d of twenty hours a t room temperature. The volume of the s o l u t i o n was reduced i n vacuo to about 5 ml and t r e a t e d w i t h chloroform (20 ml). The s o l u t i o n was washed s u c c e s s i v e l y w i t h water, s a t u r a t e d aqueous sodium bicarbonate s o l u t i o n and water and - 102 -was dried over anhydrous sodium sulphate. Evaporation yielded a white solid material (52 mg, 100%) which after recrystallization from methanol 20 afforded an analytical sample, m.p. 173-175.5°; [ a ] D +43.9° (C, .0.5, CHC13) ; i r , vmax (KBr): 1730 and 1175 (C00CH3); nmr, <5 2.26 (multiplet, 2H, C23-H2); 2.63 (quartet, IH, J = 4 Hz, C3-H); 3.32 (singlet, 3H, C3-0CH3); 3.62 (singlet, 3H, C24-00CH3); high resolution mass spec, M+ (6%), 446.3765, C 2 9H 5 Q0 3 requires 446.3759. Anal, calcd. for C 2 gH 5 00 3: C, 77.97; H, 11.28. Found: C, 77.78; H, 11.12. Compound I mono-acetate (44) Compound I (43)(50 mg) i n pyridine (1 ml) and acetic anhydride (1 ml) was l e f t for 48 hours at room temperature.' The mixture was poured into ice-water and extracted with methylene chloride.. The extract was washed with aqueous hydrochloric acid (5%) and water and dried over anhydrous sodium sulphate. Evaporation of the solvent yielded a crude product which was chromatographed using 5 g S i l i c a gel, Woelm, activity III. Elution with benzene/ether 95:5 provided the monoacetate (44) (33 mg, 61%) followed by a small amount (1.5 mg) of the diacetate (45). The monoacetate was recrystallized from hexane-benzene to provide an analytical 22 -sample, m.p. 229-230°; [ a ] D +94° (C, 1, CHC13); i r , vmax (CC1 4): 3609 cm 1 (3°0H); vmax (KBr): 3520 (OH); 1725, 1250 (OAc); 1635, 790 (C=CH); 1105 cm"1 (C-0-C); nmr, 6 0.65, 0.74, 0.80, 0.97 and 1.05 (singlets, 3H each, C-CH3); 0.90 (doublet, J = 6 Hz, 3H,C20-CH3); 1.20 (singlet, 6H, C25-(CH 3) 2); 2.08 (singlet, 3H, C24-OAc); 2.65 (multiplet, IH, C3-H); 3.36 (singlet, 3H, C3-OCH3); 4.76 (quartet, J = 10,3 Hz, C24-H); 5.24 (multipl IH, C9=C11-H); high resolution mass spec, M+ (7%), 516.4193, C 1 oH c c0 A - 103 -r e q u i r e s 516.4178. An a l , c a l c d . f o r C.-H,,0.: C, 76.69; H, 10.92. Found: C, 76.85; H, 10.80. j j DO 4 Compound I - d i a c e t a t e (45) Compound I (50 mg) was t r e a t e d w i t h a mixture of p y r i d i n e and a c e t i c anhydride (1 ml) f o r a p e r i o d of ten hours at 100°. The r e a c t i o n mixture was cooled to room temperature,poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed once w i t h 5% aqueous h y d r o c h l o r i c a c i d and twice w i t h water and was d r i e d over anhydrous sodium sulphate. Evaporation of the solvent y i e l d e d a brown s o l i d r esidue which was chromatographed us i n g 5 g S i l i c a g e l , Woelm, a c t i v i t y I I I . E l u t i o n w i t h methylene c h l o r i d e / l % methanol provided 42 mg (71%) of a white c r y s t a l l i n e d i a c e t a t e . R e c r y s t a l l i z a t i o n from hexane provided an a n a l y t i c a l sample, m.p. 162-165°; [ a ] 2 3 +73.2° (C, 0.4, CHC1 3); i r , v max (KBr): 1740, 1260, 1230 (OAc); 1105 cm - 1 (C-0-C); nmr, <5 1.95 ( s i n g l e t , 3H, C25-0Ac); 2.06 ( s i n g l e t , 3H, C24-OAc); 2.66 ( m u l t i p l e t , IH, C3-H); 3.36 ( s i n g l e t , 3H, C30CH 3); 5.12 (quartet,J=10, 3 Hz, IH, C24-H); 5.25 ( m u l t i p l e t , IH, C9=Cll-H); hig h r e s o l u t i o n mass s p e c , M + ( 7 % ) , 558.4307, C^H^O,. r e q u i r e s 558.4284; mass sp e c t r o m e t r i c data: c a l c . mass 558.4284 543.4049 526.4021 511.3786 498.4071 486.3708 483.3837 456.3966 455.3888 453.3368 m/e r e l . i n t . % 558 7 543 6 526 1 511 6 498 100 486 17 483 44 456 16 455 14 453 4 measured i o n compositi mass C H 0 558.4307 35 58 5 543.4112 34 55 5 526.4049 34 54 4 511.3795 33 51 4 498.4098 33 54 3 486.3773 31 50 4 483.3827 32 51 3 456.3881 31 52 2 455.3786 31 51 2 453.3256 30 45 3 - 104 -Table cdnt. 451 10 ' 451.3528 31 47 2 451.3575 441 10 441.3793 30 49 2 441.3731 439 47 439.3967 31 51 1 439.3939 438 20 438.3913 31 50 1 438.3860 423 9 423.3593 30 47 1 423.3625 409 10 409.3376 29 45 1 409.3469 407 6 407.3637 30 47 407.3677 399 1 399.3251 27 43 2 399.3262 395 1 395.3114 24 43 4 395.3160 391 6 391.3437 29 43 391.3364 369 2 369.3214 26 41 1 369.3156 367 5 367.3038 26 39 1 367.2999 355 2 355.2931 25 39 1 355.3000 344 7 344.2714 23 36 2 344.2714 341 3 341.2809 24 37 1 341.2843 330 3 330.2516 22 34 2 330.2558 329 6 329.2690 19 37 4 329.2691 328 17 328.2710 27 36 1 . 328.2765 327 60 327.2660 23 35 1 327.2687 323 1 323.2723 24 35 323.2738 301 3 301.2542 21 33 1 301.2530 297 4 297.2601 22 33 297.2581 295 3 295.2446 22 31 295.2426 287 8 287.2353 20 31 1 287.2374 285 6 285.2524 21 33 285.2581 283 2 283.2444 21 31 283.2425 273 4 273.2211 19 29 1 273.2218 271 4 271.2448 20 31 271.2425 260 6 260.2185 18 28 1 260.2139 255 7 255.2171 19 27 255.2112 245 3 245.1959 17 25 1 245.1905 243 3 243.2133 18 27 243.2112 241 6 241.1919 18 25 241.1955 229 6 229.1944 17 25 229.1956 227 6 227.1800 17 23 227.1799 215 8 215.1828 16 23 215.1799 213 6 213.1683 16 21 213.1642 201 9 201.1663 15 21 201.1643 199 6 199.1490 15 19 199.1486 189 12 189.1638 14 21 189.1643 187 13 187.1496 14 19 187.1486 179 1 179.1419 12 19 1 179.1435 175 22 175.1520 13 19 175.1486 173 21 173.1349 13 17 173.1330 167 4 167.1445 11 19 1 167.1435 163 7 163.1485 12 19 163.1486 161 18 161.1313 12 17 161.1329 159 19, 159.1175 12 15 159.1173 - 105 -Table cbnt. 147 19 147.1192 11 15 145 20 145.1048 11 13 141 10 141.1305 9 17 1 135 33 135.1198 10 15 133 24 133.1047 10 13 127 10 127.1137 8 15 1 125 11 125.0964 8 13 1 123 17 123.1185 9 15 121 35 121.1018 9 13 119 36 119.0888 9 11 111 7 111.1145 8 15 109 37 109.0985 8 13 107 35 107.0819 8 11 105 27 105.0687 8 9 101 28 101.0587 5 9 2 99 13 99.0804 6 11 1 95 52 95.0865 7 11 91 16 91.0549 7 7 81 25 81.0689 6 9 71 32 71.0830 5 11 71 71.0484 4 7 1 69 42 69.0692 5 9 147.1173 145.1017 141.1279 135.1173 133.1017 127.1122 125.0966 123.1173 121.1017 119.0860 111.1173 109.1017 107.0860 105.0704 101.0602 99.0809 95.0860 91.0547 81.0704 71.0860 71.0496 69.0704 The f o l l o w i n g meta s t a b l e s were observed: 528.4 481.0 470.4 468.7 447.9 444.2 429.7 426.6 421.2 419.0 418.0 415.4 402.7 398.5 393.1 388.4 387.0 385.5 379.2 377.4 370.5 363.6 361.4 346.6 339.0 337.7 316.6 307.6 280.2 266.1 252.2 244.1 240.9 230.8 226.7 214.7 200.7 199.0 186.8 185.0 128.6 117.6 91.6 91.2 89.2 84.9 84.2 77.3 75.4 71.5 68.4 66.4 64.0 63.1 58.3 A n a l , c a l c d . f o r 03^330,.: C, 75.22; H, 10.46. Found: Cs 74.82; H, 10.70. - 106 -46 Compound I acetbnide-d^ (50) Compound I(43)(50 mg) was t r e a t e d w i t h acetone-dg (2 ml) and • p e r c h l o r i c a c i d , 70% (0.05 ml) f o r a p e r i o d of 24 hours at room temperature. The c r y s t a l l i n e p r e c i p i t a t e was c o l l e c t e d to provide 30 mg (55%) of the de s i r e d m a t e r i a l . The motherliquor was poured i n t o i c e c o l d 3% aqueous sodium bicarbonate s o l u t i o n and e x t r a c t e d w i t h methylene.chloride, the organic phase was washed w i t h water and d r i e d over anhydrous sodium sulphate. Evaporation of the so l v e n t y i e l d e d 21 mg (38%) of c r y s t a l l i n e d e s i r e d m a t e r i a l . R e c r y s t a l l i z a t i o n from n-hexane provided an a n a l y t i c a l sample, m.p. 191-192°; [ a ] ^ 3 +81.2° (C, 0.7, CHC1 3); i r , v max (KBr): 1215, 1050 cm - 1 (C-0-C-0-C); nmr, 5 0.66, 0.74, 0.80, 0,97, 1.05, 1.09 ( s i n g l e t , 3H each, C-CH 3); 0.90 (doublet, J = 6 Hz, 3H, C20-CH 3); 1.25 (doublet, J = 1 Hz, 3H, C24 H-C25-CH 3); 2 . 6 5 ( m u l t i p l e t , IH, C3-H); 3.36 ( s i n g l e t , 3H, C3-0CH 3); 3.62 ( t r i p l e t , J = 6 Hz, IH, C24-H); 5.25 ( m u l t i p l e t , IH, C9=C11-H); i r r a d i a t i o n (110 db) a t the frequency of the methylgroup (6 = 1.25) c i s to the C24 hydrogen provided a Nuclear Overhauser e f f e c t ; a net i n t e n s i t y i n c r e a s e of the C24-H i n t e g r a l (6 = 3.62) of 19% was observed (C3-H a t <5 = 2.65 was used as r e f e r e n c e ) ; h i g h r e s o l u t i o n mass s p e c , M + (10%), 520.4774, C ^ H ^ O ^ r e q u i r e s 520.4763. Anal, c a l c d . f o r C ^ H ^ O ^ C, 78.40; H, 11.15. Found: C, 78.19; H, 11.08 (determined as C^H^O.^ ^ ^ ' W ' Compound I I or 33, 24(S), 2 5 - t r i h y d r o x y - 5 c t - l a n o s t - 9 ( l l ) - e n e (51) The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from acetone-methanol to provide an a n a l y t i c a l sample, m.p. 214-215°; [a]*2 +56° (C, 1, CHC1 3); i r , v max (KBr): 3425, 1140 (OH); 1635, 790 (C = CH); (CCl^,): 3707, 3628 - 107 -(eq. 2° OH); 3584, 3371 cm - 1 (H bonded OH); nmr, <S 0.64, 0.73, 0.80, 0.97, 1.03, 1.14, 1.19 ( s i n g l e t s , 3H each, C-CH 3); 0.90 (doublet, J = 6 Hz, 3H, C20-CH 3); 3.23 and 3.33 ( m u l t i p l e t s , IH each C3-H, C24-H); 5.24 ( m u l t i p l e t , IH, C9=C11-H); h i g h r e s o l u t i o n mass s p e c , M + (14%), 460.3932, C 3o H52°3 r e c l u i r e s 460.3916; mass sp e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition mass C H 0 460 14 460.3932 30 52 3 445 8 445.3698 29 49 3 442 24 442.3817 30 50 2 427 48 427.3557 29 47 2 424 7 424.3685 30 48 1 409 35 409.3468 29 45 1 391 2 391.3375 29 43 369 3 369.3128 26 41 1 341 4 341.2841 24 37 1 320 1 315 7 315.2649 22 35 1 313 22 313.2475 22 33 1 301 2 301.2475 21 33 1 299 3 299.2393 21 31 1 297 5 297.2601 22 33 287 5 287.2368 20 31 1 273 14 273.2215 19 29 1 269 2 269.2278 20 29 259 4 259.2080 18 27 1 255 6 255.2165 19 27 247 7 247.2064 17 27 1 245 5 245.1900 17 25 1 243 2 243.1736 17 23 1 241 5 241.1963 18 25 240 2 229 6 229.1972 17 25 228 2 228.1874 17 24 227 6 227.1793 17 23 221 5 221.1917 15 25 1 215 7 215.1803 16 23 213 6 213.1634 16 21 205 3 205.1603 14 21 1 203 8 203.1823 15 23 201 8 201.1646 15 21 199 4 199.1466 15 19 191 6 191.1823 14 23 189 16 189.1614 14 21 c a l c mass. 460.3916 445.3681 442.3810 427.3576 424.3704 409.3469 391.3364 369.3156 341.2843 315.2687 313.2531 301.2531 299.2374 297.2581 287.2374 273.2218 269.2269 259.2061 255.2112 247.2061 245.1905 243.1748 241.1955 229.1956 228.1877 227.1799 221.1905 215.1799 213.1642 205.1592 203.1799 201.1643 199.1486 191.1799 189.1643 - 108 -Table cont. 187 14 187.1469 186 2 185 6 185.1302 177 6 177.1613 175 20 175.1485 173 17 173.1331 171 7 171.1165 169 2 169.1005 167 3 167.1443 163 8 163.1472 159 21 159.1177 149 14 149.1315 147 20 147.1164 145 20 145.1022 143 9 143.0844 139 2 139.1109 135 32 135.1186 133 28 133.1029 131 14 131.0875 127 19 127.1113 125 6 125.0970 124 3 124.1242 123 20 123.1169 123 3 123.0800 121 38 121.1007 120 13 120.0932 119 42 119.0849 111 6 111.1150 111 13 111.0805 109 37 109.0994 109 4 109.0660 107 38 107.0839 105 34 105.0693 95 62 95.0865 94 42 94.0781 93 28 93.0710 91 22 91.0531 85 14 85.0640 83 21 83.0865 83 4 83.0482 81 41 81.0703 79' 20 79.0537 71 46 71.0489 69 60 69.0689 67 28 67.0513 59 100 59.0346 14 19 187.1486 14 17 185.1329 13 21 177.1643 13 19 175.1486 13 17 173.1330 13 15 171.1173 13 13 169.1017 11 19 1 167.1435 12 19 163.1486 12 15 159.1173 11 17 149.1329 11 15 147.1173 11 13 145.1017 11 11 143.0860 9 15 1 139.1122 10 15 135.1173 10 13 133.1017 10 11 131.0860 8 15 1 127.1122 8 13 1 125.0966 9 16 124.1251 9 15 123.1173 8 11 1 123.0809 9 13 121,1017 9 12 120.0938 9 11 119.0860 8 15 111.1173 7 11 1 111.0809 8 13 109.1017 7 9 1 109.0653 8 11 107.0860 8 9 105.0704 7 11 95.0860 7 10 94.0782 7 9 93.0704 7 7 91.0547 5 9 1 85.0653 6 11 83.0860 5 7 1 83.0496 6 9 81.0704 6 7 79.0547 4 7 1 71.0496 5 9 69.0704 5 7 67.0547 3 7 1 , 59.0486 - 109 -Meta s t a b l e s were observed at the f o l l o w i n g v a l u e s : 430.6 351.8 252.2 198.5 424.8 349.9 240.1 186.6 412.5 326.7 238.3 174.7 391.8 278.0 224.2 172.6 375.8 258.7 213.3 93.6 373.7 254.2 212.4 89.2 363.9 253.2 210.4 77.2 Anal, c a l c d . f o r C 3 Q H 5 2 0 3 : C, 78.20; H, 11.38. Found: C, 78.05; H, 11.38. Hydrogenation of compound II» (54) Compound II(51) (145 mg) was d i s s o l v e d i n g l a c i a l a c e t i c a c i d (50 ml) and hydrogenated over Adam's c a t a l y s t (100 mg) at room, temperature and atmospheric pressure f o r a p e r i o d of 50 hours. One mole e q u i v a l e n t of hydrogen was taken up. The c a t a l y s t was removed by f i l t r a t i o n and the sol v e n t removed i n vacuo. The s o l i d white r e s i d u e (146 mg, 100%) was r e c r y s t a l l i z e d from chloroform to provide an a n a l y t i c a l sample, m.p, 211-212°; [ a ] ^ +11.7° (C, 0.5, C H C l 3 ) ; i r , v max (KBr): 3400 cm x (OH); nmr (CDC1 3), 6 3.20 and 3.33 ( m u l t i p l e t s , IH each, C3-H, C24-H); high r e s o l u t i o n mass s p e c , M ( 4 % ) , 462.4105, C^QE5^03 r e q u i r e s 462.4072. A n a l , c a l c d . f o r C ^ H ^ O ^ C, 77.86; H, 11.76. Found: C, 77.66; H, 11.87. Oxi d a t i v e cleavage of hydrogenated compound I I , (55) Compound(54)(20 mg) was d i s s o l v e d i n t . - b u t a n o l (5 ml) and t r e a t e d w i t h an aqueous s o l u t i o n (5 ml) of sodium metaperiodate (85 mg), potassium carbonate (21 mg) and potassium permanganate (2.5 mg). The mixture was s t i r r e d f o r a p e r i o d of four hours at room temperature a f t e r which water (10 ml) was added to d i s s o l v e a s m a l l amount of white p r e c i p i t a t e , Using a vacuum l i n e , p a r t of the v o l a t i l e f r a c t i o n was removed at room temperature - 110 -and trapped i n an a c i d i f i e d s o l u t i o n of 2,4-dinitrophenylhydrazone. The l a t t e r was then warmed to room temperature,upon which the p r e c i -p i t a t i o n of orange c r y s t a l s (0.6 mg) was observed. These were i d e n t i c a l (mixed m.p., TLC S i l i c a g e l G, benzene, superimposable i r and nmr) to an a u t h e n t i c sample of the 2,4-DNPH d e r i v a t i v e of acetone. The o r i g i n a l s o l u t i o n was a c i d i f i e d w i t h a c e t i c a c i d and a f i n e white p r e c i p i t a t e was obtained. The l a t t e r was c o l l e c t e d by c e n t r i f u g a t i o n , washed twice w i t h water and d r i e d i n vacuo to y i e l d 15 mg (83%) of a white amorphous m a t e r i a l . R e c r y s t a l l i z a t i o n from methanol a f f o r d e d an a n a l y t i c a l sample, m.p. 268-270°; i r , vmax (KBr): 1720 (C00H) ; 3430 cm" 1, broad (OH); hig h r e s o l u t i o n mass s p e c , M + (2.4%), 418.3445; C^^H^gO^ re q u i r e s 418.3446. Because of i t s p o l a r character the a c i d was not f u r t h e r i n v e s t i g a t e d but was converted to the corresponding methyl e s t e r . M e t h y l a t i o n of the cleavage product,(56) Compound(55)(30 mg) was d i s s o l v e d i n a mixture of anhydrous methanol (45 ml) and c o n e s u l p h u r i c a c i d (0.3 ml) and s t i r r e d f o r 20 hours at room temperature.The s o l u t i o n was concentrated i n vacuo at room temperature to a volume of about 10 ml, d i l u t e d w i t h 5% aqueous sodium bicarbonate s o l u t i o n (10 ml) and e x t r a c t e d w i t h methylene c h l o r i d e . The organic phase was d r i e d over anhydrous sodium, sulphate and the so l v e n t evaporated i n vacuo to provide 31 mg (99%) of a white s o l i d r e s i d u e . R e c r y s t a l l i z a t i o n from petroleum ether (30-60°) provided an a n a l y t i c a l sample, m.p. 177.5-179°; 22 [ a ] D +25° (C, 0.4, CHC1 3); i r , v max (KBr): 1750, 1180 (COOCH-j); 3570 cm" 1 (OH); nmr, 6 3.21 ( m u l t i p l e t , IH, C3-H); 3.62 ( s i n g l e t , 3H, C24-OOCHq) ;high r e s o l u t i o n mass s p e c , M +(34%), 432.3574, C O Q H / Q 0 o - I l l -requires 432.3602. Anal, calcd. for C^H^O^ C, 77.73; H, 11.18. Found: C, 77.45; H, 10.99. This material was compared and shown to be identical in every respect [mixed m.p. (177-179°) [a]^, TLC, S i l i c a gel G, CH 2Cl 2/5% CH30H, SbCl 3 > 49 5 min. at 100°; i r ; nmr*, mass•spectra] to an authentic sample of 38-hydroxy-25,26,27-tris-norlanostan-24-oic acid methyl ester (56). Methylation of the cleavage product-methyl ester, (49) a) Compound (56) (6 mg) was dissolved in dry toluene. (2 ml). Potassium metal (100 mg) was added and the mixture was heated to reflux under an atmosphere of nitrogen and stirred vigorously for one hour to disperse the molten potassium. The mixture was cooled to room temperature and methyl iodide(1 ml) was added. Heating was resumed for a period of two hours at 100° after which the mixture was cooled i n ice and the excess of potassium destroyed by the addition of methanol. Methylene chloride (5 ml) was added, the solution was f i l t e r e d and the f i l t r a t e evaporated to dryness. The residue was taken up in methylene chloride/methanol 4:1 (5 ml), washed once with water and the organic phase was dried over anhydrous sodium sulphate. Evaporation of the solvent yielded an oily residue which was separated by TLC using S i l i c a gel G and petroleum ether (30-60%)/10% ethyl acetate. Elution with methylene chloride/20% methanol afforded 1.5 mg (25%) of the desired material (49). The aqueous phase was acidified with dilute hydrochloric acid and a small amount of white precipitate was collected. The latter was dissolved in methylene chloride/ methanol 1:1 (5 ml) and treated with an excess of an ethereal diazomethane - 112 -s o l u t i o n at room temperature. Evaporation of the s o l v e n t y i e l d e d 1.5 mg (25%) of the expected m a t e r i a l (49). b) 5° Compound(56)(10 mg) was d i s s o l v e d i n dry methylene c h l o r i d e (0.5 ml) and t r e a t e d w i t h a s o l u t i o n (0.01 ml) of f l u o b o r i c a c i d 50% (0.2 ml) i n e t h y l ether ^ethylene,- c h l o r i d e 3: X25 ml). This s o l u t i o n was cooled to 0° and t r e a t e d w i t h an e t h e r e a l s o l u t i o n (2 ml) of diazomethane (50 mg) which was added i n s m a l l p o r t i o n s over a p e r i o d of 30 minutes. Methylene c h l o r i d e was added, the s o l u t i o n was f i l t e r e d and evaporated to dryness to y i e l d 10 mg of the d e s i r e d product. R e c r y s t a l l i z a t i o n from methylene chloride/methanol gave an a n a l y t i c a l sample (7 mg), m.p. 174-176°; 23 [ a ] ^ +39.5° (C, 0.2, CHCl^). This m a t e r i a l was compared to a sample of compound (49) which had a l s o been r e c r y s t a l l i z e d from the same s o l v e n t , m.p. 173-175.5°; a mixed m e l t i n g p o i n t of 173-175.5° was obtained. Both compounds were i d e n t i c a l i n every respect ([cx]^, i r , nmr, mass s p e c t r a ) . Compound II - a c e t o n i d e - d ^ , (57) Compound 11(51)(20 mg) i n acetone -dg (1 ml) and p e r c h l o r i c a c i d 70% (0.05 ml) was s t i r r e d f o r a p e r i o d of 15 hours at room temperature. The c r y s t a l l i n e p r e c i p i t a t e was c o l l e c t e d , washed w i t h acetone and d r i e d to provide 13 mg (59%) of the d e s i r e d m a t e r i a l . The f i l t r a t e was poured i n t o i c e c o l d 3% aqueous sodium bicarbonate s o l u t i o n (20 ml) and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h water, d r i e d over anhydrous sodium sulphate and evaporated i n vacuo to y i e l d 10 mg (45%) of the d e s i r e d compound. R e c r y s t a l l i z a t i o n from n-hexane provided an a n a l y t i c a l sample, m.p. 189-190°; [ a ] 2 2 +68.3° (C, 0.3, C H C l q ) ; i r , v max (KBr): 1220, 1085 cm - 1 (C-0-C-0-C); nmr, 6 0.64, 0.73, 0.80, 0.97, 1.03, 1.08 - 113 -( s i n g l e t s , 3H each, C-CH 3); 1.23 (doublet, J = 1 Hz, 3H, C24H-C25-CH3); 0.90 (doublet, J = 6 Hz, 3H, C20-CR 3); 3.22 (multiplet, IH, C3-H); 3.60 (broad t r i p l e t , J"= 6 Hz, IH C24-H); 5.25. (multiplet, IH, C9=C11-H); i r r a d i a t i o n (110 db) at the frequency of the methyl group (6=1.23) c i s to the C-24 proton provided a Nuclear Overhauser e f f e c t ; a net i n t e n s i t y increase of the C24-H i n t e g r a l (6=3.60) of 24% was observed (C3-H at 6=3.22 was used as a reference); high r e s o l u t i o n mass s p e c , M + (10%), 506.4643,' C o oH c_0 oD, requires 506.4605. Anal, calcd. f o r C ^ H ^ O ^ C, 78.20; H, 11.06. Found: C, 78.16; H, 10.80 (determined as C„„H c £0„in C^H^O-D,) . 33 56 3 33 50 3 6 Compound II-diacetate (52) and t r i a c e t a t e (53) Compound I I (51)(300 mg) was reacted with a mixture of py r i d i n e (2.5 ml) and a c e t i c anhydride (2.5 ml) for a period of 48 hours at room temperature.The mixture was poured onto i c e and extracted with methylene c h l o r i d e . The extract was washed consecutively with d i l u t e hydrochloric acid, water and sodium bicarbonate(5%) s o l u t i o n . The organic phase was dried over anhydrous sodium, sulphate and evaporated to y i e l d 340 mg of crude material. This mixture was subjected to chromato-graphy using S i l i c a g e l , Woelm, a c t i v i t y I I I (15 g ) . E l u t i o n with benzene/ethyl ether 9:1 y i e l d e d f i r s t the t r i a c e t a t e (53)(5 mg) followed by the diacetate (52) (115 mg). The t r i a c e t a t e (53) was r e c r y s t a l l i z e d from methanol-methylene c h l o r i d e to a f f o r d white needles, m.p. 208-210°; i r , . vmax (KBr): 1740, 1240 (OAc), 1635, 790 cm - 1 (C=CH); nmr, 6 0.65, 0.74, 0.88, 0.89, 1.07 (singlets,3H each, C-CH 3); 1.45 and 1.48 [ s i n g l e t s , 3H each, C25-(CH 3) 2]; 1.95, 2.05 and 2.08 ( s i n g l e t s , 3H each,-0C(0)CH 3); - 114 -4.50 (broad m u l t i p l e t , IH, C3-H ); 5.23 ( m u l t i p l e t , C9=C11-H); h i g h n C O O , r e q u i r e s 586.4233. Mass s p e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n mass C 586 1 586.4223 36 571 1 554 1 542 1 540 1 529 1 528 3 528.4091 34 527 15 527.4038 34 526 36 526.4061 34 511 17. 511.3741 33 484 7 484.3912 32 483 7 483.3766 32 470 28 2 470.3745 31 469 7 469.3712 31 468 12 468.3920 32 467 28 35 467.3891 32 466 21 466.3755 32 453 28 6 453.3752 31 453.3357 30 451 21 451.3594 31 425 3 425.3383 29 424 5 424.3602 30 423 26 5 423.3612 30 410 6 440.3426 25 409 19 409.3412 29 408 25 3 408.3652 30 407 26 11 407.3621 30 393 4 393.3547 26 29 392 22 7 392.3451 29 391 22 23 391.3424 29 22 5.04 (broad m u l t i p l e t , IH, C24-H); l u t i o n . mass s p e c , M + ( 1 % ) , 586.4223, composition c a l c mass H 0 58 6 586.4233 56 4 528.4177 55 4 527.4099 54 4 526.4021 51 4 511.3786 52 3 484.3916 51 3 483.3837 51 6 483.3685 50 3 470.3760 49 3 469.3681 52 2 468.3966 52 5 468.3814 51 2 467.3888 50 2 466.3810 50 5 466.3658 49 2 453.3731 45 3 453.3368 47 2 451.3575 45 2 425.3419 48 1 424.3704 48 4 424.3551 47 1 423.3625 46 4 410.3394 45 1 409.3469 45 4 409.3317 48 408.3755 48 3 408.3603 47 407.3677 47 3 407.3524 45 393.3521 49 5 393.3579 44 392.3442 48 5 392.3500 43 391.3364 47 5 391.3422 - 115 -Table corit. 383 4 383.3030 369 3 369.2793 367 4 367.2946 357 6 357.2680 356 27 356.2667 355 100 355.2584 341 3 341.2815 341.2429 337 3 337.2864 327 3 327.2715 325 4 325.2941 323 4 323.2737 317 1 317.2332 316 4 316.2396 315 4 315.2354 309 7 309.2568 307 1 307.2431 301 6 301.2174 297 9 297.2624 295 21 295.2445 289 4 289.2168 288 5 288.2111 287 3 287.2002 285 5 285.2579 283 5 283.2458 281 7 281.2243 271 5 271.2423 269 8 269.2292 257 6 257.2268 255 17 255.2104 254 3 254.1939 253 7 253.1989 243 6 243.2076 241 14 241.1906 239 9 239.1802 229 14 229.1955 227 15 227.1823 225 6 225.1671 215 19 215.1804 213 16 213.1624 211 6 211.1515 203 13 203.1773 201 16 201.1634 199 . 14 199.1478 189 22 189.1654 175 31 175.1472 173 45 173.1335 161 34 161.1346 26 39 2 383.2949 25 37 2 369.2793 26 39 1 367.2999 20 37 5 357.2640 24 36 2 356.2715 24 35 2 355.2636 24 37 1 341.2843 23 33 2 341.2479 25 37 337.2895 23 35 1 327.2687 24 37 . 325.2894 24 35 323.2738 24 29 317.2268 21 32 2 316.2401 21 31 2 315.2323 23 33 309.2581 23 31 307.2425 20 29 2 301.2167 22 33 297.2581 22 31 295.2426 19 29 2 289.2166 19 28 2 288.2088 19 27 2 287.2010 21 33 285.2581 21 31 283.2425 21 29 281.2268 20 31 271.2425 20 29 269.2269 19 29 257.2268 19 27 255.2112 15 26 3 254.1881 19 25 253.1955 18 27 243.2112 18 25 241.1955 18 23 239.1799 17 25 229.1956 17 23 227.1799 17 21 225.1643 16 23 215.1799 16 21 213.1642 16 19 211.1486 15 23 203.1799 15 21 201.1643 15 19 199.1486 14 21 189.1643 13 19 175.1486 13 17 173.1330 12 17 161.1329 - 116 -Table cbnt. 145 37 145.1036 11 13 145.1017 135 45 135.1175 10 15 135.1173 131 27 131.0869 10 11 131.0860 123 28 123.1174 9 15 123.1173 121 55 121.1009 9 13 121.1017 109 68 109.1024 8 13 109.1017 107 62 107.0868 8 11 107.0860 105 55 105.0717 8 9 105.0704 95 78 95.0869 7 11 85.0860 81 67 81.0672 6 9 81.0704 71 26 71.0862 5 11 71.0860 69 71.0512 4 7 1 71.0496 81 69.0706 5 9 69.0704 Meta s t a b l e peaks were observed at the f o l l o w i n g m/e va l u e s : 454.6 383.3 258.8 199.2 446.0 373.9 252.6 114.6 436.4 1 370.5 245.3 101.3 430.0 355.0 241.4 91.2 415.7 339.1 240.6 89.2 414.5 327.1 239.8 89.0 413.0 313.0 238.6 77.2 399.7 299.4 225.5 398.6 270.6 202.6 R e c r y s t a l l i z a t i o n of the d i a c e t a t e (52) from methanol-methylene c h l o r i d e y i e l d e d c o l o u r l e s s long needles, m.p. 210-211°; [ a ] 2 2 +83° ( C , l , CHC1 ); i r , vmax ( C C l ^ ) : 3609 cm" 1 (3° OH); Vmax (KBr): 3460, 1035 (OH); 1740, 1250 (OAc); 1640, 790 cm" 1 (C=CH); nmr, 6 0.65, 0.75, 0.90, 0.90, 1.10 ( s i n g l e t , 3H each, C-CH 3); 1.21 ( s i n g l e t , 6H C25-(CH 3) 2); 2.07, 2.12 ( s i n g l e t s , 3H each, C3-0Ac, C24-OAc); 4.52 (broad m u l t i p l e t , IH, C3-H); 4.73 (broad m u l t i p l e t , IH, C24-H); 5.3 ( m u l t i p l e t , IH, C9=C11-H); high r e s o l u t i o n mass s p e c , M + ( 2 % ) , 544.4112, C.,H c,0 c r e q u i r e s 544.4127. An a l , c a l c d . f o r C ^ H ^ O ^ C, 74.96; H, 10.36. Found: C, 75.25; H, 9.89. - 117 -Compound I I I or 38-meth6xy-5a-lanost-9(11)-en-24-orie (59) The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from methylene c h l o r i d e -20 hexane to a f f o r d an a n a l y t i c a l sample, m.p. 161-162°; I a l p +93° (C, 1.0, CHC1 3); i r , v max (KBr): 1710 (C=*0); 1630 (C=CH); 1100 cm" 1 (C-0-C); nmr, 5 0.64, 0.75, 0.82, 0.97, 1.06 ( s i n g l e t s , 3H each, C-CH 3); 0.88 (doublet, J = 6 Hz, 3H, C20-CH 3); 1.09 [doublet, J = 7 Hz, 6H, C25H-(CH 3) 2];2.31-2.78 (overlapping m u l t i p l e t s , 2H, C25-H and C3-H); 3.37 ( s i n g l e t , 3H, C3-0CH 3); 5.23 ( m u l t i p l e t , IH, C9=C11-H); high r e s o l u t i o n mass s p e c , M + (67%), 456.4046, C 3 1 H 5 2 0 2 r e q u i r e s 456.3966. Mass sp e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition c a l c mas mass C H 0 457 23 457.4019 31 53 2 457.4045 456 ' 67 456.3995 31 52 2 456.3966 454 1 454.3884 31 50 2 454.3809 442 29 442.3819 30 50 2 442.3810 441 76 441.3785 30 49 2 441.3731 424 4 424.3664 30 48 1 424.3704 423 3 423.3546 30 47 1 423.3626 413 2 413.3400 28 45 2 413.3419 410 25 410.3503 29 46 1 410.3547 409 74 409.3430 29 45 1 409.3469 385 2 381 27 381.2986 27 41 1 381.3157 371 1 371.3246 26 43 1 371.3313 370 2 370.3097 26 42 1 370.3235 35 7 1 357.3073 25 41 1 357.3156 355 3 355.2939 25 39 1 355.3000 343 1 342 . 2 342.2845 24 38 1 342.2921 341 2 341.2848 24 37 1 341.2843 339 1 339.2706 24 35 1 339.2687 329 3 329.2865 23 37 1 329.2843 328 2 328.2800 23 36 1 328.2765 327 6 327.2674 23 35 1 327.2687 323 3 323.2892 21 39 2 323.2949 315 1 315.2784 22 35 1 315.2688 313 2 313.2606 22 33 1 313.2530 303 3 303.2679 21 35 1 303.2687 - 118 -Table cont. 302 9 302.2652 299 3 299.2385 297 5 297.2558 288 8 288.2401 287 17 287.2357 283 1 283.2351 281 2 281.2272 273 8 273.2221 271 8 271.2436 267 1 267.2091 261 4 261.2240 259 5 259.2051 257 3 257.2256 256 3 256.2155 255 11 255.2126 253 1 253.2015 247 2 247.2072 245 2 245.1928 243 3 243.2115 241 6 241.1913 234 3 234.1959 233 3 233.1926 229 6 229.2048 227 10 227.1803 221 3 221.1962 217 4 217.1898 215 9 215.1857 213 8 213.1668 207 5 207.1757 203 10 203.1813 201 11 201.1647 199 6 199.1500 189 19 189.1611 187 19 187.1462 185 6 185.1362 175 30 175.1499 173 19 173.1298 171 8 171.1219 168 2 168.1540 167 6 167.1445 163 7 163.1484 161 21 161.1343 159 23 159.1193 157 8 157.1018 154 2 153 7 153.1271 151 3 151.1121 149 7 149.1307 21 34 1 302.2608 21 31 1 299.2374 22 33 297.2581 20 32 1 288.2453 20 31 1 287.2374 21 31 283.2426 21 29 281.2268 19 29 1 273.2218 20 31 271.2425 20 27 267.2112 18 29 1 261.2217 18 27 1 259.2061 19 29 257.2268 19 28 256.2190 19 27 255.2112 19 25 253.1955 17 27 1 247.2061 17 25 1 245.1905 18 27 243.2112 18 25 241.1955 16 26 1 234.1983 16 25 1 233.1905 17 25 229.1956 17 23 227.1799 15 25 1 221.1905 16 25 217.1956 16 23 215.1799 16 21 213.1642 14 23 1 207.1748 15 23 203.1799 15 21 201.1643 15 19 199.1486 14 21 189.1643 14 19 187.1486 14 17 185.1329 13 19 175.1486 13 17 173.1330 13 15 171.1173 11 20 1 168.1514 11 19 1 167.1435 12 19 163.1486 12 17 161.1329 12 15 159.1173 12 13 157.1017 10 17 1 153.1279 10 15 1 151.1122 11 17 149.1329 - 119 -Table cont. 147 20 145 20 141 15 136 12 135 37 133 29 131 15 129 6 128 6 127 30 125 14 121 38 119 39 117 7 113 5 109 30 107 35 105 33 99 17 95 50 94 35 93 30 91 21 87 8 86 7 85 16 83 18 81 35 79 19 72 5 71 79 7 69 62 67 25 57 16 55 65 43 100 149.0930 10 13 1 147.1184 11 15 145.1022 11 13 141.1265 9 17 1 136.1218 10 16 135.1176 10 15 133.1035 10 13 131.0892 10 11 128.1182 8 16 1 127.1124 8 15 1 125.0969 8 13 1 121.1026 9 13 119.0863 9 11 117.0710 9 9 113.0979 7 13 1 109.1036 8 13 107.0876 8 11 105.0698 8 9 99.0803 6 11 1 95.0841 7 11 94.0726 7 10 93.0694 7 9 91.0598 7 7 87.0834 5 11 1 86.0701 5 10 1 85.0681 5 9 1 83.0880 6 11 81.0704 6 9 79.0511 6 7 72.0528 4 8 1 71.0520 4 7 1 71.0847 5 11 69.0656 5 9 69.0368 4 5 1 67.0531 5 7 57.0599 4 9 55.0415 4 7 43.0087 149.0966 147.1173 145.1017 141.1279 136.1251 135.1173 133.1017 131.0860 128.1200 127.1122 125.0966 121.1017 119.0860 117.0704 113.0966 109.1017 107.0860 105.0704 99.0809 95.0860 94.0782 93.0704 91.0547 87.0809 86.0731 85.0653 83.0860 81.0704 79.0547 72.0574 71.0496 71.0860 69.0704 69.0340 67.0547 57.0704 55.0547 The f o l l o w i n g meta s t a b l e s were observed: 426.5 394.5 379.3 378.0 373.9 361.5 346.9 346.3 342.4 318.7 308.0 293.7 266.6 266.3 254.2 252.2 241.8 230.8 228.7 226.5 212.6 200.6 198.6 186.6 173.4 172.8 172.6 166.8 160.8 103.0 89.0 77.2 - 120 -Anal, c a l c d . f o r C 3 1 H 5 2 0 2 : C, 81.52; H, 11.48. Found: C, 81.68, H, 11.57. Compound IV or 3B-meth6xy-5a-'lariosta-9 (11), 25-dien-24 S-ol (65) The m a t e r i a l obtained from the chromatographic s e p a r a t i o n was r e c r y s t a l l i z e d from methylene chloride-hexane to y i e l d an a n a l y t i c a l sampl m.p. 180-180.5°; l a ] 2 5 +86° (C, 0.85, CHC1 3); i r , vmax (CC1 4); 3615 cm" ( a l l y l i c 2°0H); v max (KBr): 3490 (OH); 1652, 900 (C=CH 2); 1635, 795 (C=CH); nmr, 6 0.63, 0.72, 0.78, 0.94, 1.03 ( s i n g l e t s , 3H each, C-CH 3); 0.89 (doublet, J = 6 Hz, 3H, C20-CH 3); 1.70 (doublet, J = 1 Hz, 3H, C25-C27H 3); 2.62 (broad m u l t i p l e t , IH, C3-H, a x i a l ) ; 3.33 ( s i n g l e t , 3H, C3-0-CH 3, e q u a t o r i a l ) ; 3.99 (broad t r i p l e t , J = 6 Hz, IH, C24-H); 4.81 narrow q u a r t e t , J = 1 Hz, IH, C26-H A); 4.89 ( s i n g l e t , IH, C26-H B); 5.19 ( m u l t i p l e t , IH, C9=C11-H); high r e s o l u t i o n mass s p e c , M + (40%), 456.3930 C31 H52°2  re<iu±Tes 456.3966; mass s p e c t r o m e t r i c data: m/e 456 40 441 24 438 9 425 2 423 13 409 17 391 17 355 2 341 , 1 327 22 323 3 309 2 297 2 295 2 287 4 284 1 273 3 270 2 measured i o n composition c a l c . mass mass . C H 0 456.3930 31 52 2 456.3966 441.3791 30 49 2 441.3731 438.3921 31 50 1 438.3860 425.3737 30 49 1 425.3782 423.3536 30 47 1 423.3625 409.3357 29 45 1 409.3469 391.3356 29 43 391.3364 327.2689 23 35 1 327.2687 323.2924 21 39 2 323.2949 309.2221 22 29 1 309.2217 297.2626 22 33 297.2581 295.2364 22 31 295.2426 287.2353 20 31 1 287.2374 284.2539 21 32 284.2503 273.2256 19 29 1 273.2218 270.2313 20 30 270.2347 - 121 -Table corit. 269 4 269.2331 261 3 261.2195 257 2 257.2374 255 6 255.2116 243 2 243.2096 241 4 241.1936 229 5 229.1994 227 4 227.1823 215 6 215.1800 213 5 213.1750 203 4 203.1860 201 6 201.1639 199 3 199.1530 189 7 189.1599 187 7 187.1451 185 3 185.1331 175 10 175.1486 173 12 173.1327 161 9 161.1313 159 12 159.1173 157 4 157.0996 150 4 150.1391 149 7 149.1358 147 10 147.1146 145 10 145.0971 143 2 143.0893 141 4 141.1292 137 4 137.1328 135 14 135.1280 133 12 133.1017 131 7 131.0810 125 8 125.0954 123 8 123.1162 121 16 121.0983 119 16 119.0843 109 19 109.1005 107 17 107.0831 105 14 105.0694 95 21 95.0860 93 14 93.0704 91 6 91.0546 85 4 85.0673 83 8 83.0853 81 16 81.0699 73 4 73.0651 71 100 71.0506 69 25 69.0684 67 12 67.0511 55 19 55.0240 20 29 269.2269 18 29 1 261.2217 19 29 257.2269 19 27 255.2112 18 27 243.2112 18 25 241.1955 17 25 229.1956 17 23 227.1799 16 23 215.1799 16 21 213.1643 15 23 203.1799 15 21 201.1643 15 19 199.1486 14 21 189.1643 14 19 187.1486 14 17 185.1329 13 19 175.1486 13 17 173.1330 12 17 161.1329 12 15 159.1173 12 13 157.1017 11 18 150.1408 11 17 149.132 9 11 15 147.1173 11 13 145.1017 11 11 143.0860 9 17 1 141.1279 10 17 137.1330 10 16 135.1251 10 13 133.1017 10 11 131.0860 8 13 1 125.0966 9 15 123.1173 • 9 13 121.1017 9 11 119.0860 8 13 109.1017 8 11 107.0860 8 9 105.0704 7 11 95.0860 7 9 93.0704 7 7 91.0547 5 9 1 85.0653 6 11 83.0860 6 9 81.0704 4 9 1 73.0653 4 7 1 71.0496 5 9.' 69.0704 5 7 67.0547 3 3 1 55.0184 - 122 -The f o l l o w i n g meta s t a b l e s were observed: 426.5 407.6 406.8 394.1 380.5 379.6 379.3 374.7 373.8 361.6 346.6 317.5 283.8 266.2 241.0 224.5 186.3 184.7 180.8 127.3 89.1 77.2 Anal, c a l c d . f o r C^H^Cy C, 81.52; H, 11.48. Found: C, 81.62; H, 11.31. Compound IV-acetate or 38-methoxy-5cx-lanosta-9 (11) ,25-dien-24S-yl-acetate (61). The motherliquor from compound IV r e c r y s t a l l i z a t i o n was evaporated and the re s i d u e was t r e a t e d f o r f i v e hours at room temperature w i t h a mixture of a c e t i c a n h y d r i d e / p y r i d i n e , 1:1 and worked up i n the usual f a s h i o n . Chromatography over S i l i c a g e l u s i n g benzene as eluent provided the d e s i r e d acetate (61). R e c r y s t a l l i z a t i o n from methylene chloride-hexane 20 provided an a n a l y t i c a l sample, m.p. 167-169°; [ a ] ^ +85° (C, 1.0, C H C l 3 ) ; i r , vmax (KBr): 1748, 1242 (OAc); 1630, 790 (C=CH); 1650, 898 (C=CH 2); 1100 cm" 1 (C-0-C); nmr, 6 0.63, 0.72, 0.78, 0.95, 1.03 ( s i n g l e t , 3H each, C-CH 3); 0.87 (doublet, J » 6 Hz, 3H, C20-CH 3); 1.70 (doublet, J = 1 Hz, 3H, C25-CH 3); 2.02 ( s i n g l e t , 3H, C24-OAc); 2.63 ( m u l t i p l e t , IH, C.J-H) a x i a l ) ; 3.34 ( s i n g l e t , 3H, C3-OCH3, e q u a t o r i a l ) ; 4.88 (narrow q u a r t e t , J = 1 Hz, IH, C26-H A); 4.93 ( s i n g l e t , IH, C26-H f i); 5.12 ( t r i p l e t , J = 6 Hz, IH, C24-H); 5.21 ( m u l t i p l e t , IH, C9=C11-H); h i g h r e s o l u t i o n mass s p e c , M + ( 9 % ) ; 498.4051, C 3 3 H 5 4 0 3 r e q u i r e s 498.4071; mass sp e c t r o m e t r i c data: m/e 499 498 3 9 measured i o n composition mass C H 0 499.4136 33 55 3 498.4051 33 54 3 499.4150 498.4071 - 123 -Table corit. 484 3 484.3859 32 52 3 484.3916 483 9 483.3813 32 51 3 483.3837 469 3 451 11 451.3515 31 47 2 451.3575 440 4 440.3969 31 52 1 440.4017 438 31 438.3857 31 50 1 438.3860 423 26 423.3595 30 47 1 423.3625 409 3 409.3461 29 ' 45 1 409.3469 407 2 407.3596 30 47 407.3678 393 3 393.3448 29 45 393.3521 391 26 391.3384 29 43 391.3365 385 1 384 1 384.3370 27 44 1 384.3391 362 7 328 40 328.2723 23 36 1 328.2765 327 82 327.2672 23 35 1 327.2687 314 1 314.2598 22 34 1 314.2608 313 2 313.2435 22 33 1 313.2531 297 4 282 1 282.2331 21 30 282.2347 281 3 281.2280 21 29 281.2268 233 1 233.1870 16 25 1 233.1905 123 17 123.1187 9 15 123.1173 113 4 113.0604 6 9 2 113.0602 110 5 110.1030 8 14 110.1095 109 46 109.1004 8 13 109.1017 107 38 107.0828 8 11 107.0860 A n a l , c a l c d . f o r C^H^O.^ C, 79.46; H, 10.91. Found: C s 79.79; H, 11.19. Hydrogenation of compound IV-acetate,(62) Compound IV-acetate(61)(50 mg) i n 1,2-dimethoxyethane (10 ml) was hydrogenated over 10% Pd/C (10 mg) at room temperature and atmospheric pressure f o r a p e r i o d of 0.5 hour. One mole e q u i v a l e n t of hydrogen was taken up. The c a t a l y s t was removed by f i l t r a t i o n and evaporation of the so l v e n t y i e l d e d a c r y s t a l l i n e r e s i d u e (50 mg, 99%). R e c r y s t a l l i z a t i o n from methylene c h l o r i d e / m e t h a n o l y i e l d e d an a n a l y t i c a l sample, m.p. 184-185°; 20 [ a ] D +91° (C, 1, CHC1 3); i r , v max (KBr): 1740, 1245 (OAc); 1635, 815 (C=CH); 1105 c n f 1 (C-O-C); nmr, 6 0.64, 0.73, 0.79, 0.96, 1.04 ( s i n g l e t s , - 124 -3H each, C-CH 3); 0.88 [doublet, J = 6 Hz, 9H, C20-CH 3 and C2 5 - ( C H 3 ) 2 ] ; 2.02 ( s i n g l e t , 3H, C24-0Ac); 2.63 ( m u l t i p l e t , IH, C3-H, a x i a l ) ; 3.35 ( s i n g l e t , 3H, C3-0CH 3 > e q u a t o r i a l ) ; 4.70 ( m u l t i p l e t , IH, C24-H); 5.24 ( m u l t i p l e t , IH, C9=C11-H); h i g h r e s o l u t i o n mass s p e c , M + (32%), 500.4216, C 3 3 H 5 6 0 3 r e q u i r e s 500.4228. Anal, c a l c d . f o r C^H^O : C, 79.20; H, 11.20. Found: C, 78.80; H, 11.52. Compound dihydro-IV (63) Dihydro-IV-acetate(62)(40 mg) was taken up i n benzene (5 ml) and tr e a t e d w i t h 2 N methanolic sodium hydroxide (10 ml) f o r a p e r i o d of 40 hours at room temperature. The mixture was t r e a t e d w i t h i c e c o l d water (10 ml) and e x t r a c t e d w i t h benzene. The or g a n i c phase was d r i e d over anhydrous sodium sulphate and evaporated to y i e l d 33 mg (90%) of s o l i d m a t e r i a l (63), r e c r y s t a l l i z a t i o n from methlene chloride/methanol a f f o r d e d 20 an a n a l y t i c a l sample, m.p. 161.5-163°; [ a ] ^ +81° (C, 1, CHC1 3); i r , vmax (CC1 4): 3632 cm - 1 (2° OH); v max (KBr): 1635, 815 (C=CH); 1100 cm - 1 (C-0-C); nmr, 6 0.68, 0.77, 0.82, 0.99, 1.07 ( s i n g l e t s , 2H each, C-CH 3); 0.90, 0.95 [doublets, o v e r l a p p i n g , 3H, 6H, C20-CH 3, C25-(CH 3) 2; 2.69 (multi-p l e t , IH, C3-H, a x i a l ) ; . 3.36 ( m u l t i p l e t , IH, C24-H); 3.39 ( s i n g l e t , 3H, C3-OCH3, e q u a t o r i a l ) ; 5.28 ( m u l t i p l e t , IH, C9=C11-H); high r e s o l u t i o n mass s p e c , M + (50%), 458.4056, C 3 1 H 5 4 0 2 r e q u i r e s 458.4123. Anal, c a l c d . f o r C ^ H ^ O ^ C, 81.23; H, 11.79. Found: C, 81.03; H, 12.06. Synthesis of compound I I I (3&-methoxy-5ct-lanost-9(11)-en-24-one (59) Dihydro IV(63)(20 mg) i n acetone (10 ml) was t r e a t e d w i t h K i l i a n i reagent (0.1 mlj 0.6 gsodium dichromate d i h y d r a t e i n 0.8 g co n e s u l p h u r i c - 125 -a c i d and 2.7 ml water ) at 0° and under an atmosphere of n i t r o g e n . A f t e r the r e a c t i o n mixture had turned a y e l l o w i s h - r e d c o l o u r , methanol was added and the mixture was extracted, w i t h benzene to y i e l d 20 mg of a s o l i d m a t e r i a l . Chromatography on S i l i c a g e l (Woelm, a c t i v i t y I I I , benzene) and r e c r y s t a l l i z a t i o n from hexane provided an a n a l y t i c a l sample which was i d e n t i c a l i n every respect (m.p., undepressed mix. m.p., [ a ] ^ , i r , nmr) t o the n a t u r a l compound I I I . Compound IV acetate (61) from compound I-monoacetate Compound I monoacetate(44) (900 mg) was d i s s o l v e d i n p y r i d i n e (70 ml) and phosphorus o x y c h l o r i d e (15 ml) was added dropwise. The mixture was l e f t f o r 40 hours at room temperature and afterwards poured i n t o i c e water. E x t r a c t i o n w i t h benzene y i e l d e d 810 mg (98%) of the d e s i r e d acetate (61). R e c r y s t a l l i z a t i o n from methylene chloride-hexane provided an a n a l y t i c a l sample. This m a t e r i a l was i d e n t i c a l i n every respect(m.p., undepressed mix. m.p., [ a ] D > i r , nmr) t o the acetate obtained from compound IV. Compound V or 5a-lanosta-9 (11) , 25-diene-3ct, 24 R - d i o l (66) The m a t e r i a l e l u t e d from the chromatography column was r e c r y s t a l l i z e d from methylene chloride-hexane to provide an a n a l y t i c a l sample, m.p. 181-184'; i r , v max (CC1 4): 3631 (2° a x i a l OH); 3619 cm" 1 (2° OH, a l l y l i c ) ; v max (KBr): 3620 (OH); 3100, 910, 840 (C=CH 2); 1650, 820 cm" 1 (C=CH); nmr, (CDC1J, <5 0.66, 0.76, 0.82, 0.96, 1.07 ( s i n g l e t s , 3H each, C-CHJ; J 3 0.91 (doublet, J = 6 Hz, 3H, C20-CH 3); 1.72 (broad s i n g l e t , 3H, C25-CH 3); 3.42 ( m u l t i p l e t , IH, C3-H, e q u a t o r i a l ) ; 4.02 (broad t r i p l e t , J = 6 Hz, IH, C24-H); 4.84 (narrow m u l t i p l e t , IH, C26-H A); 4.93 (narrow m u l t i p l e t , - 126 -LH, C26-Hfi); 5.26 ( m u l t i p l e t M+ (26%), 442.3813, C^H^O,, m/e r e l . i n t . % measured mass 442 26 442.3813 440 3 440.3722 427 20 427.3568 424 10 424.3685 413 15 409 72 409.3465 407 8 409.3386 393 14 393.3414 391 18 391.3334 374 10 374.3276 367 1 367.2923 355 1 355.2953 353 1 353.2792 341 5 341.2858 339 2 339.2846 335 1 335.2516 327 3 327.2697 325 2 325.2865 323 6 323.2757 313 38 313.2561 311 3 311.2500 309 3 309.2569 302 1 302.2650 299 3 299.2413 297 5 297.2520 295 5 295.2386 288 3 288.2432 285 2 285.2603 283 4 283.2375 281 3 281.2222 273 9 273.2215 271 6 271.2275 270 3 270.2342 269 5 269.2275 259 5 259.2062 257 6 257.2167 255 14 255.2067 253 3 253.1958 247 6 247.2041 245 5 245.1904 243 4 243.2089 241 10 241.1939 239 4 239.1821 IH, C9=C11-H); h i g h r e s o l u t i o n r e q u i r e s 442.3810; mass spectrome i o n composition c a l c . mass c H 0 30 50 2 442.3810 30 48 2 440.3654 29 47 2 427.3576 30 48 1 424.3704 29 45 1 409.3469 29 43 1 407.3314 29 45 393.3521 29 43 391.3364 25 42 2 374.3185 26 39 1 367.3000 25 39 1 355.3000 25 37 1 353.2844 24 37 1 341.2843 24 35 1 339.2688 24 31 1 335.2375 23 35 1 327.2687 24 37 325.2894 24 35 323.2738 22 33 1 313.2530 22 31 1 311.2375 23 33 309.2581 21 34 1 302.2608 21 31 1 299.2374 22 33 297.2582 22 31 295.2426 20 32 1 288.2453 21 33 285.2581 21 31 283.2426 21 29 281.2269 19 29 1 273.2218 19 27 1 271.2062 20 30 270.2347 20 29 269.2269 18 27 1 259.2061 19 29 257.2269 19 27 255.2112 19 25 253.1955 17 27 1 247.2061 17 25 1 245.1905 18 27 243.2112 18 25 241.1955 18 23 239.1799 - 127 -Table cbnti 231 4 231.1900 229 10 229.1959 227 9 227.1775 225 3 225.1671 222 1 222.1944 220 2 220.1823 219 3 219.1697 217 5 217.1857 215 12 215.1796 213 11 213.1629 207 3 207.1747 205 4 205.1603 203 11 203.1851 201 11 201.1678 199 7 199.1465 191 6 191.1820 7 191.1461 189 19 189.1632 187 19 187.1473 185 8 185.1316 179 4 179.1424 175 32 175.1464 173 24 173.1319 167 2 167.1451 163 13 163.1477 161 24 161.1339 159 24 159.1185 157 9 157.1041 149 19 149.1298 147 24 147.1190 145 23 145.1031 141 3 141.1204 137 12 137.1342 8 137.0936 135 37 135.1189 2 135.0815 133 30 133.1009 131 17 131.0872 127 7 127.1160 125 12 125.1339 123 21 123.1168 122 10 122.1084 121 45 121.1021 119 46 119.0861 109 57 109.0999 1 109.0684 107 47 107.0837 105 39 105.0689 97 14 97.1027 16 23 1 231.1749 17 25 229.1956 17 23 227.1799 17 21 225.1643 15 16 1 222.1983 15 24 1 220.1827 15 23 1 219.1749 16 25 217.1956 16 23 215.1799 16 21 213.1642 14 23 1 207.1748 14 21 1 205.1592 15 23 203.1799 15 21 201.1643 15 19 199.1486 14 23 191.1799 13 19 1 191.1435 14 21 189.1643 14 19 187.1486 14 17 185.1329 12 19 1 179.1435 13 19 175.1486 13 17 173.1330 11 19 1 167.1435 12 19 163.1486 12 17 161.1329 12 15 159.1173 12 13 157.1017 11 17 149.1329 11 15 147.1173 11 13 145.1017 9 17 1 141.1279 10 17 137.1330 9 13 1 137.0966 10 15 135.1173 9 11 1 135.0809 10 13 133.1017 10 11 131.0860 8 15 1 127.1122 9 17 125.1330 9 15 123.1173 9 14 122.1095 9 13 121.1017 9 11 119.0860 8 13 109.1017 7 9 1 109.0653 8 11 107.0860 8 9 105.0704 7 13 97.1017 - 128 -Table cont. 95 66 95.0865 7 11 95.0860 93 41 93.0700 7 9 93.0704 91 28 91.0557 7 7 91.0547 83 23 83.0881 6 11 83.0860 81 52 81.0710 6 9 81.0704 79 26 79.0570 6 7 79.0547 77 11 77.0395 6 5 77.0391 71 3 71.0856 5 11 71.0860 47 71.0493 4 7 1 71.0496 69 77 69.0688 5 9 69.0704 67 35 67.0502 5 7 67.0547 57 26 57.0378 3 5 1 57.0340 55 87 55.0155 3 3 1 55.0183 43 100 Compound V-diacetate or 5ct-lanosta-9(11),25-diene-3a, 24 R-diacetate (67) Compound V(66)(25 mg) was treated with acetic anhydride (1 ml) and pyridine (1 ml) over a period of twenty hours at room temperature. The mixture was poured into ice-water and extracted with methylene chloride to provide a crude product which was chromatographed using S i l i c a gel ( 5 g, Woelm, neutral, activity III). Benzene eluted 10 mg (33%) of the desired diacetate (67) which was recrystallized from methylene chloride/methanol to provide an analytical sample, m.p. 139-140°; i r , v max (KBr): 1740 (OAc); 1652 (C=C); 1250 cm"1 (C-0); nmr, 6 0.60, 0.72, 0.81, 0.88, 1.02 (singlets, 3H each, C-CH3); C20-CH3 not well defined; 1.67 (broad singlet, 3H, C25-CH3); 2.00 [singlet, 6H, (0Ac) 2]; 4.61 (multiplet, IH, C3-H); 4.83 (multiplet, IH, C26-HA); 4.89 (multiplet, IH, C26-HB); 4.97-5.35 (overlapping multiplets,2H, C9=C11-H and C24-H); high resolution mass spec, M+ (10%), 526.3980, C^H^O^ requires 526.4021. - 129 -Compound V-diaeetate epimer or 5ct-lanosta-9(11), 25-diene-3g, 24 S-diacetate (68) Compound II-diacetate(52) (20 mg) i n pyridine (5 ml) was treated with phosphorus oxychloride (0.5 ml) and kept f o r f o r t y hours at room temperature. The mixture was poured i n t o ice-water and extracted with benzene to provide 19.1 mg (99%) of c r y s t a l l i n e m a t e r i a l . R e c r y s t a l l i z a t i o n from methylene chlornde/methanol provided an a n a l y t i c a l sample, m.p. 217-218°; [<x]J + 3 8 ° (C, 1, CHC1 3); i r , vmax (KBr) : 3050 ( O C H p ; 1745 (OAc); 1655 (C=C); 1245 cm"1 (C-0); nmr, <S 0.63, 0.72, 0.85, 0.88, 1.06 (singlets , 3H each, C-CH 3); 0.88 (doublet, J = 6 Hz, C20-CH 3); 1.70 (broad s i n g l e t , 3H, C25-CH 3); 2.01 [ s i n g l e t , 6H, (OAc) ]; 4.44 (multiplet, IH, C3-H); 4.88 (multiplet, IH, C26-H.); 4.94 (multiplet, IH, C26-H_); 5.03-5.29 (overlapping m u l t i p l e t s , 2H, C9=C11-H and C24-H); high r e s o l u t i o n mass s p e c , M + (99%), 526.4046, C^H^O^ requires 526.4021. Anal, calcd. f o r C^H^O^: C, 77.52; H, 10.33. Found: C, 77.45; H, 10.39. Compound VI (70) The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from methylene chloride-hexane 20 to y i e l d an a n a l y t i c a l sample, m.p. 204-205°; [ a ] ^ +92° (C, 0.9, CHC1 3); i r , v m a x ( C C l 4 ) : 3607 cm - 1 (3° OH); v max (KBr): 1630, 815 (C=CH); 1105 cm"1 (C-0-C); nmr, 6 0.65, 0.75, 0.80, 0.97, 1.05 (singlets, 3H each, C-CH 3); 0.91 (doublet, J - 6 Hz, C20-CH 3); 1.17 [ s i n g l e t , 6 H, C25-(CH 3 ) 2 J ; 2.63 (multiplet, IH, C3-H, a x i a l ) ; ^ 3.32 (multiplet, IH); 3.37 ( s i n g l e t , 3H, C3-0CH 3 > equat.); 5.24 (multiplet, IH, C9=C11-H); mass spectrometric data: - 130 -m/ e r e l . i n t . % measured mass 474 11 474.4079 459 11 459.3812 456 42 456.3973 441 52 441.3728 439 9 439.3540 438 4 438.3810 423 38 423.3608 414 3 414.3531 409 50 409.3511 407 7 407.3249 399 8 399.3355 391 8 391.3336 384 11 384.3444 383 28 383.3378 367 8 367.2971 355 4 355.2970 329 9 329.2893 327 58 327.2690 315 3 315.2621 313 6 313.2615 302 13 302.2631 297 14 297.2514 295 7 295.2349 289 9 289.2543 288 8 288.2459 287 16 287.2374 285 9 285.2558 283 7 283.2386 273 12 273.2225 269 7 269.2237 261 18 261.2206 259 8 259.2034 255 12 255.2111 247 6 247.2082 245 6 245.1899 241 14 241.1991 234 3 234.2020 229 16 229.1994 227 16 227.1793 221 4 221.1866 219 4 219.1776 215 18 215.1822 203 21 203.1427 201 19 201.1654 191 22 191.1822 189 28 189.1652 187 57 187.1495 175 39 175.1468 i o n composition c a l c . mass c H 0 31 54 3 474.4071 30 51 3 459.3837 31 52 2 456.3966 30 49 2 441.3731 30 47 2 439.3575 31 50 1 438.3860 30 47 1 423.3625 28 46 2 414.3497 29 45 1 409.3469 29 43 1 407.3312 27 43 2 . 399.3262 29 43 391.3364 27 44 1 384.3391 27 43 1 383.3312 26 39 1 367.2999 25 39 1 355.3000 23 37 1 329.2843 23 35 1 327.2687 22 35 1 315.2687 21 34 1 302.2608 22 33 297.2581 22 31 295.2426 20 33 1 289,2531 20 32 1 288.2453 20 31 1 287,2374 21 33 285.2581 21 31 283.2425 19 29 1 273.2218 20 29 269.2269 18 29 1 261,2217 18 27 1 259,2061 19 27 255,2112 17 27 1 247.2061 17 25 1 245.1905 18 25 241.1955 16 26 1 234.1983 17 25 229.1956 17 23 227.1799 15 25 1 221,1905 15 23 1 219.1748 16 23 215.1799 14 19 1 203.1435 15 21 201.1643 14 23 191.1799 14 21 189.1643 14 19 187.1486 13 19 175.1486 - 131 -Table cont,, 173 32 173.1339 13 17 173.1330 170 9 167 10 167.1445 11 19 1 167.1435 163 16 163.1470 12 19 163.1486 163.1108 11 15 1 163.1122 161 37 161.1317 • 12 17 161.1329 159 28 159.1136 12 15 159.1173 153 0 7 153.1317 10 17 1 153.1279 149 20 149.1290 11 17 149.1329 147 25 147.1156 11 15 147.1173 145 20 145.0977 11 13 145.1017 143 11 143.1068 8 15 2 143.1071 137 20 137.1333 10 17 137.1330 135 57 135.1147 10 15 135.1173 133 32 133.1009 10 13 133.1017 128 3 128.1165 8 16 1 128.1200 127 38 127.1139 8 15 1 127.1122 125 23 125.0937 8 13 1 125.0966 123 36 123.1187 9 15 123.1173 123.0939 8 11 1 123.0820 121 56 121.1008 9 13 121.1017 113 8 113.0965 7 13 1 113.0966 111 21 111.1150 8 15 111.1173 111.0803 7 11 1 111.0809 109 64 109.0993 8 13 109.1017 107 40 107.0847 8 11 107.0860 105 40 105.0681 8 9 105.0704 99 27 99.0819 6 11 1 99.0809 97 18 97.0642 6 9 1 97.0653 87 12 87.0819 5 11 1 87.0809 85 30 85.0650 5 9 1 85.0653 73 14 73.0654 4 9 1 73.0653 71 82 71.0866 5 11 71.0860 71.0485 4 7 1 71.0496 Anal, c a l c d . f o r C31 H52°2 : C ' 8 1 , 6 ; H, 11.4; c a l c d . f o r ' C31 H54°2 H, 11.9; c a l c d . f o r C 3 1 H 5 4 0 3 : C, 78.4; H, 11.4. Found: C, 81.37; - 132 -Compound V I I or 3g-methbxy-26,27-bis nor-5a-lanost-9(11)-en-24-one (71) The m a t e r i a l obtained from the chromatographic s e p a r a t i o n was r e c r y s t a l l i z e d from methylene chloride/methanol to p r o v i d e an a n a l y t i c a l 20 sample, m.p. 161-162; [ a ] Q +95° (C, 1.2, CHC1 3); i r , vmax (KBr): 1725 (C=0); 1635, 815 (C=CH); 1100 cm" 1 (C-O-C); nmr, 6 0.64, 0.74, 0.80 , 0.98, 1.04 ( s i n g l e t , 3H each, C-CH 3); 0.8 C20-CH3); 2.12 [ s i n g l e t , 3H, C(0)-CH 3 ] ; 2.41 [b C(0) -CH 2] ; 2.63 ( m u l t i p l e t , IH, C3-H); 3.35 ( s i ; 5.23 ( m u l t i p l e t , IH, C9=C11-H); high r e s o l u t i o n 442. 3845, C30 H50' 0^ r e q u i r e s 442.3810; mass spec m/e r e l . i n t . % measured i o n composition mass C H 0 428 100 428.3608 29 48 2 427 1 427.3653 29 47 2 413 83 413.3337 28 45 2 395 6 395.3316 28 43 1 381 65 381.3136 27 41 1 378 1 370 1 370.3243 26 42 1 363 5 363.2945 27 39 357 1 357.3183 25 41 1 355 3 355.3019 25 39 1 353 2 353.2863 25 37 1 339 1 329 2 329.2919 23 37 1 327 4 327.2679 23 35 1 323 2 323.2795 24 35 314 1 314.2618 22 34 1 313 1 313.2518 22 33 1 311 1 311.2393 22 31 1 299 2 299.2393 21 31 1 297 3 297.2547 22 33 295 1 295.2470 22 31 288 3 288.2438 20 32 1 287 6 287.2374 20 31 1 285 2 285.2206 20 29 1 283 1 283.2449 21 31 281 1 281.2265 21 29 274 9 274.2307 19 30 1 c a l c . mass 428.3653 427.3576 413.3419 395.3312 381.3157 370.3235 363.3052 357.3156 355.3000 353.2844 329.2843 327.2687 323.2738 314.2608 313.2530 311.2374 299.2374 297.2581 295.2426 288.2453 287.2374 285.2218 283.2425 281.2268 274.2296 - 133 Table cont. 270 1 270.2392 259 8 259.2028 257 3 257.2280 255 6 255.2102 245 6 245.1877 243 4 243.2057 241 6 241.1925 233 1 233.1899 229 5 229.1967 227 8 227.1824 225 2 225.1687 219 1 219.1794 215 8 215.1795 205 5 205.1548 203 7 203.1761 201 9 201.1625 189 17 189.1642 189.1308 187 18 187.1500 179 3 179.1466 175 28 175.1478 173 20 173.1317 167 6 167.1430 161 20 161.1320 159 22 159.1169 153 4 153.1282 151 ' 2 151.1498 151.1134 147 20 147.1160 145 20 145.1003 141 10 141.1280 139 7 139.1157 135 32 135.1183 135.0845 133 28 133.1030 127 2 127.1160 125 13 125.0961 123 16 123.1169 123.0838 121 32 121.1015 119 35 119.0847 113 4 113.0896 111 5 111.0800 109 27 109.0627 107 34 107.0803 105 31 105.0605 99 41 99.0810 95 49 95.0855 20 30 270.2347 18 27 1 259.2061 19 29 257.2268 19 27 255.2112 17 25 1 245.1905 18 27 243.2112 18 25 241.1955 16 25 1 233.1905 17 25 229.1956 17 23 227.1799 17 21 225.1643 15 23 1 219.1748 16 23 215.1799 14 21 1 205.1592 15 23 203.1799 15 21 201.1643 14 21 189.1643 13 17 1 189.1278 14 19 187.1486 12 19 1 179.1435 13 19 175.1486 13 17 173.1330 11 19 1 167.1435 12 17 161.1329 12 15 159.1173 10 17 1 153.1279 11 19 151.1486 10 15 1 151.1122 11 15 147.1173 11 13 145.1017 9 17 1 141.1279 9 15 1 139.1122 10 15 135.1173 9 11 1 135.0809 10 13 133.1017 8 15 1 127.1122 8 13 1 125.0966 9 15 123.1173 8 11 1 123.0809 9 13 121.1017 9 11 119.0860 7 13 1 113.0966 7 11 1 111.0809 7 9 1 109.0653 8 11 107.0861 8 9 105.0704 6 11 1 99.0809 7 11 95.0860 - 134 -Table cont. 91 20 91.0545 7 7 91.0547 85 13 85.0644 . 5 9 1 85.0653 83 17 83.0850 6 11 83.0860 81 28 81.0683 6 9 81.0704 71 51 71.0487 4 7 1 71.0496 69 46 69.0706 5 9 69.0740 59 69.0350 4 5 1 69.0340 6 59.0526 3 7 1 59.0496 58 37 58.0441 3 6 1 58.0418 57 7 57.0710 4 9 57.0704 55 57.0374 3 5 1 57.0340 60 55.0551 4 7 55.0547 53 3 53.0390 4 5 53.0391 Anal, c a l c d . f o r C ^ H ^ : C, 81.25; H, 11.29. Found: C, 81.15; H, 11.12, Compound V I I I or e t h y l i d e n e d e r i v a t i v e of 38-methoxy-5a-lanost-9(ll)- en -24 (S), 2 5 - d i o l (76) The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from hexane-methylene. c h l o r i d e to provide an a n a l y t i c a l sample, m.p. 153-155°; a sublimed sample (180°, 0.01 mm) had a m.p. 149.5-152°; [a]£ +85° (C, 0.6, CHC1 3); i r , \> max (KBr): 1635, 815 (C=CH); 1190, 1165, 1140, 1100 cm" 1 (C-0-C-0-C); nmr, 6 0.62, 0.71, 0.77, 0.94, 1.02, 1.08, 1.23 ( s i n g l e t s , 3H each, C-CH 3); 0.87 (doublet, J = 6 Hz, 3H, C20-CH 3); 1.31 (doublet, J = 5 Hz, 3H, C33-CH 3); 2.62 ( m u l t i p l e t , IH, C3-H, a x i a l ) ; 3.35 ( s i n g l e t , 3H, C3-OCH3, equat.); 3.47 ( m u l t i p l e t , IH, C24-H); 5.03 (q u a r t e t , J = 5 Hz, IH, C33-H); 5.25 ( m u l t i p l e t , IH, C9=C11-H); i r r a d i a t i o n of the q u a r t e t a t <5 5.03 (107 db) caused the doublet at <5 1.31 to c o l l a p s e to a s i n g l e t ; h i g h r e s o l u t i o n mass s p e c , M + (64%) 500.4149, C 3 3 H 5 6 ° 3 r e q u i r e s 500.4228; mass spe c t r o m e t r i c data: - 135 -m/e r e l . i n t . % measured mass 500 64 500.4149 499 4 499.4108 485 36 485.4043 469 2 469.4034 469 1 469.3647 468 2 468.3947 458 5 458.4110 457 26 457.4039 456 72 456.4000 455 2 455.3901 453 14 453.3762 442 37 442.3772 441 100 441.3752 438 16 438.3891 426 1 426.4214 426 3 426.3806 424 5 424.3631 423 8 423.3622 414 1 414.3414 413 1 413.3498 409 73 409.3446 407 2 407.3635 399 1 399.3273 391 4 391.3366 385 1 385.3448 385.3105 370 4 370.3173 356 2 356.3061 341 2 341.2852 329 4 329.2836 328 10 328.2713 327 34 327.2702 302 8 302.2607 295 5 295.2414 288 8 288.2460 287 8 287.2380 274 2 274.2672 273 1 273.2534 7 273.2215 260 4 260.2099 257 2 257.2260 1 257.1938 255 6 255.2083 241 4 241.1970 229 4 229.1949 227 5 227.1837 215 5 215.1784 i o n composition c a l c . mass c R 0 33 56 3 500.4228 33 55 3 499.4150 32 53 3 485.3994 32 53 2 469.4043 31 49 3 469.3681 32 52 2 468.3966 31 54 2 458.4123 31 53 2 457.4045 31 52 2 456.3966 31 51 2 455.3888 31 49 2 453.3731 30 50 2 442.3810 30 49 2 441.3731 31 50 1 438.3860 31 50 426.4225 30 50 1 426.3860 30 48 1 424.3704 30 47 1 423.3625 28 46 2 414.3497 28 45 2 413.3419 29 45 1 409.3469 30 47 407.3677 27 43 2 399.3262 29 43 391.3364 27 45 1 385.3470 26 41 2 385.3105 26 42 1 370.3235 25 40 1 356,3078 24 37 1 341.2843 23 37 1 329.2843 23 36 1 328.2765 23 35 1 327.2687 21 34 1 302.2608 22 31 295.2426 20 32 1 288.2453 20 31 1 287.2374 20 34 274.2660 20 33 273.2581 19 29 1 273.2218 18 28 1 260.2139 19 29 257.2268 18 25 1 257.1905 19 27 255.2112 18 25 241.1955 17 25 229.1956 17 23 227,1799 16 23 215,1799 - 136 -Table corit. 213 7 213.1646 16 21 203 4 203.1812 . 15 23 201 5 201.1639 15 21 199 3 199.1480 15 19 189 7 189.1617 14 21 187 6 187.1455 14 19 175 9 175.1464 13 19 173 10 173.1319 13 17 171 3 171.1425 10 19 2 171.1162 13 15 161 8 161.1341 12 17 159 10 159.1181 12 15 149 5 149.1302 11 17 145 8 145.1010 11 13 135 12 135.1170 10 15 121 15 121.1016 9 13 119 17 119.0858 9 11 115 1 115.0778 6 11 2 109 14 109.0998 8 13 107 15 107.0848 8 11 105 14 105.0689 8 9 95 21 95.0865 7 11 93 13 93.0688 7 9 91 10 91.0529 7 7 86 16 86.0712 5 10 1 85 8 85.0625 5 9 1 83 8 83.0827 6 11 81 1 83.0535 5 7 1 30 81.0679 6 9 71 46 71.0484 4 7 1 69 20 1 69.0696 5 9 69.0344 4 5 1 The f o l l o w i n g meta s t a b l e s were observed: 470.4 379.4 426.9 373.8 417.7 369.1 415.8 361.7 405.8 361.2 401.6 341.7 401.0 337.7 394.5 326.8 380.4 286.5 213.1642 203.1799 201.1643 199.1486 189.1643 187.1486 175.1486 173.1330 171.1384 171.1173 161.1329 159.1173 149.1329 145.1017 135.1173 121.1017 119.0860 115.0758 109.1017 107.0860 105.0704 95.0860 93.0704 91.0547 86.0731 85.0653 83,0860 83.0496 81.0704 71.0484 69.0704 69.0340 267.3 172.6 266.2 160.6 258.8 133.2 254.4 93.6 252.2 91.4 234.6 89.2 226.8 89.0 213.8 77.2 200.5 Anal, c a l c d . f o r C^H^Og: C, 79.14; H, 11.27. Found: C, 78.41; H, 11.08 (sublimed sample). - 137 -Compound VIII was compared to the ethylidene d e r i v a t i v e (38-methoxy-5a~lanost-9(ll)-en-24(S), 25-diol-ethylidene) of compound I (43), a mix m.p. of 149.5-153° was observed, both samples were found to be i d e n t i c a l ([a]p, i r , nmr, mass s p e c ) . Ethylidene d e r i v a t i v e of 38-methoxy-5ot-lahost-9(ll)-en-24(S), 25-diol (76) Compound 1(43)(50 mg) was taken up i n acetaldehyde (2 ml) and treated with p e r c h l o r i c a c i d , 70% (0.05 ml). The s o l u t i o n was kept f o r one hour at room temperature, poured i n t o ice-water and extracted with methylene chloride to provide 48 mg (91%) of the desired m a t e r i a l . R e c r y s t a l l i -z a t i o n from hexane-methanol afforded an a n a l y t i c a l sample, m.p. 155.5-157° 20 (a sublimed sample, 180°, 0.01 mm, was of i d e n t i c a l m.p.); [ct]^ +84.7° (C, 0.5, CHC1 3); nmr, 6 0.63, 0.72, 0.77, 0.94, 1.02, 1.08, 1.22 ( s i n g l e t s , 3H each, C-CH 3); 0.88 (doublet, J = 6 Hz, 3H, C20-CH 3); 1.31 (doublet, J = 5Hz, 3H, C33-CH 3); 2.64 (multiplet, IH, C3-H, a x i a l ) ; 3.34 ( s i n g l e t , 3H, C3-0CH3, e q u a t o r i a l ) ; 3.45 (multiplet, IH, C24-H); 5.02 (quartet, J = 5 Hz, IH, C33-H); 5.20 (multiplet, IH, C9=C11-H); high r e s o l u t i o n mass s p e c , M +(60%) 500.4233, C 3 ; JH 5 60 3 requires 500.4228. Anal, calcd. f o r ^ H ^ O ^ C, 79.14; H, 11.27. Found C, 79.18; H, 11.10. Compound IX (78) The material eluted from the chromatography column was r e c r y s t a l l i z e d from methylene chloride ethanol to y i e l d an a n a l y t i c a l sample, m.p. 101.5-103°; 20 [ a ] D +48.5° (C, 1.0, CHC1 3); i r , v max (KJSr): 1635, 815 (C=CH); 1107 cm"1 (C-0-C); nmr, fi 0.65, 0.74, 0.79, 0.96, 1.05, 1.09, 1.19 ( s i n g l e t s , 3H each, C " C H 3 ) i °-90 (doublet, J = 6 Hz, 3H, C20-CH 3); 1.25 ( s i n g l e t , ^ 40 H, - 138 -hydrocarbon c h a i n ) ; 2.65 ( m u l t i p l e t , IH, C3-H, a x i a l ) ; 3.36 ( s i n g l e t , 3H, C3-OCH3, equat.); „ 3.5 ( m u l t i p l e t , IH, C24-H); 3.73 [ m u l t i p l e t , IH, C(OH)H? ];" 4.90 [ t r i p l e t , J=5Hz, 1H, C33-(CH 2R)-H]; 5.24 ( m u l t i p l e t , IH, 09=011-11); mass sp e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition c a l c . mass mass C H 0 811 2.1 810.7459 55 102 3 810.7829 54 98 4 810.7465 56 90 3 810.6890 810 2.0 809.7380 55 101 3 809.7750 54 97 4 809.7386 796 56 89 3 809.6811 1.0 795.7301 54 99 3 795.7594 53 95 4 795.7230 779 2 779.7186 54 98 2 779.7566 53 94 3 779.7203 764 5 763.7158 53 95 2 763.7332 52 91, 3 763.6968 736 1 .735.6888 51 91 2 735.7019 50 87 3 735.6655 485 100 485.3963 32 53 3 485.3994 457 18 457.3988 31 53 2 457.4045 456 45 456.3907 31 52 2 456.3966 453 25 453.3745 31 49 2 453.3731 441 98 441.3753 30 49 2 441.3731 439 10 439.3544 30 47 2 439.3575 426 9 426.3760 30 50 1 426.3860 424 12 424.3726 30 48 1 424.3704 414 1 414.3509 28 46 2 414.3497 409 76 409.3373 29 45 1 409.3469 407 11 407.3618 30 47 407.3677 393 5 393.3485 29 45 393.3521 355 4 355.2989 25 39 1 355.3000 329 5 329.2857 23 37 1 329.2843 327 42 327.2663 23 35 1 327.2687 315 2 315.2633 22 35 1 315.2687 297 7 297.2586 22 33 297.2581 295 7 295.2402 22 31 295.2426 287 9 287^2406 20 31 1 287.2374 273 7 273.2207 19 29 1 273.2218 241 6 241.1870 18 25. 241.1956 229 7 229.1992 17 25 229.1956 227 6 227.1850 17 23 227.1799 213 6 213.1674 16 21 213.1642 - 139 -Table c o n t i 203 8 203.1844 15 23 201 8 201.1671 15 21 189 12 189.1608 14 21 187 12 187.1485 14 19 175 17 175.1552 . 13 19 173 17 173.1367 13 17 161 14 161.1298 12 17 159 14 159.1076 12 15 149 11 149.1251 11 17 147 12 147.1190 11 15 135 20 135.1190 10 15 121 19 121.1048 9 13 119 16 119.0876 9 11 109 26 109.1047 8 13 107 15 107.0870 8 11 97 20 97.1027 7 13 95 33 95.0854 7 11 93 11 93.0703 7 9 91 8 91.0562 7 7 85 18 85.1009 6 13 85.0678 5 9 83 24 83.0850 6 11 71 46 71.0866 5 11 71.0505 4 7 69 43 69.0710 5 9 203.1799 201.1643 189.1643 187.1486 175.1486 173.1330 161.1329 159.1173 149.1330 147.1173 135.1173 121.1017 119.0860 109.1017 107.0860 97.1017 95.0860 93.0704 91.0547 85.1017 85.0653 83.0860 71.0860 71.0496 69.0704 meta s t a b l e s : 181.8, 185.8, 196.9, 253.2, 320.3, 348.0, 350.6, 360.8, 366.3, 413.5. Anal, c a l c d . f o r C 5 5 H 1 0 2 0 3 : c» 8 1 - 5 ; H» 12.6; f o r C^HggO^: C, 80.0; H, 12.1. Found: C, 81.30; H, 11.40. An attempted s u b l i m a t i o n of 2 mg m a t e r i a l a t 0.01 mm vacuum and 180° r e s u l t e d i n waxy m a t e r i a l d r i v e n from.the sample and a s o l i d r e s i d u e . The former y i e l d e d a t y p i c a l low i n t e n s i t y hydrocarbon mass spectrum w i t h masses up to about m/e 320. The s o l i d r e s i d u e e x h i b i t e d a base peak and molecular i o n at m/e 485 ' t* i e f r a S m e n t a t : L o n p a t t e r n was i d e n t i c a l to the corresponding r e g i o n of the s t a r t i n g m a t e r i a l . - 140 -Compound X (80) The i s o l a t e d m a t e r i a l was r e c r y s . t a l l i z e d from methylene c h l o r i d e / 20 methanol to provide an a n a l y t i c a l sample, m.p. 91-92°; I a ] n +39° (C, 0.7, CHC1 3); i r , v max (CC1 4): 3627 cm" 1 (2° eq. OH); v max (KBr): 3480 (OH); 1630, 810 cm" 1 (C=CH); nmr, <S 0.66, 0.75, 0.82, 0.99, 1.04, 1.10, 1.20 ( s i n g l e t s , 3H each, C-CH 3); 0.91 (doublet, J = 6Hz, 3H, C20-CH 3); 1.28 ( s i n g l e t , ^40 H, hydrocarbon c h a i n ) ; 3.22 ( m u l t i p l e t , IH, C3-H, a x i a l ) ; 3.46 ( m u l t i p l e t , IH, C24-H); 4.23 ( m u l t i p l e t , 1-2H, o l e f i n i c ? ) ; 4.92 ( t r i p l e t , J == 5, IH, C33-H); '5.24 ( m u l t i p l e t , IH, C9=C11-H); mass spe c t r o m e t r i c data: c a l c . mass 777.7699 777.7125 763.6968 762.6890 735.6654 734.6576 471.3838 469.3681 453.3731 443.3888 442.3810 425.3419 409.3469 407.3312 391.3575 391.2999 381.3157 355.3000 341.2843 323.2738 315.2687 313.2530 297.2581 m/e r e l . i n t . % measured i o n compositii mass C H 0 780 (0.2) 779 0.9 (0.5) 778 1.3 777.7216 51 . 101 4 777 0.6 ~~1 53 93 3 765 1.0 764 2.8 763.7165 52 91 3 763 4.4 762.7099 52 90 3 736 1.2 735.6947 50 87 3 735 2.5 734.6881 50 86 3 710 (0.4) 709 0.6 471 15 471.3845 31 51 3 469 2 469.3786 31 49 3 453 28 453.3791 31 49 2 443 3 443.3872 30 51 2 442 7 442.3913 30 50 2 425 13 425.3495 29 45 2 409 53 409.3379 29 45 1 407 8 407.3400 29 43 1 391 6 391.2497 26 47 2 381 391.2961 28 39 1 8 381.3197 27 41 1 355 4 355.3025 25 39 1 341 2 341.2854 . 24 37 1 323 3 323.2811 24 35 315 2 315.2539 22 35 1 313 13 313.2530 22 33 1 297 8 297.2602 22 33 - 141 -Table cont.. 295 11 295.2405 288 2 288.2477 274 2 274.2329 273 5 273.2241 259 2 259.2101 257 5 257.2225 255 7 255.2067 241 6 241.1999 229 7 229.1991 229.1605 227 7 227.1787 215 7 215.1751 213 7 213.1672 201 9 201.1669 189 12 189.1649 187 13 187.1455 175 18 175.1451 175.1097 173 16 173.1343 161 15 161.1307 159 16 159.1176 147 17 147.1168 145 15 145.1036 139 5 139.1090 135 26 135.1158 133 21 133.1009 131 11 131.0864 127 23 127.1102 123 24 123.1187 122 7 122.1121 121 25 121.1020 119 27 119.0851 111 23 111.0809 109 43 109.0972 107 22 107.0833 105 21 105.0689 97 44 97.1011 95 62 95.0861 91 13 91.0566 85 ' 35 85.1024 85.0660 83 53 83.0843 83.0491 82 62 82.0768 81 53 81.0687 71 67 71.0855 71.0494 69 71 69.0703 69.0367 22 31 295.2426 20 32 1 288.2453 19 30 1 274.2296 19 29 1 273.2218 18 27 1 259.2061 19 29 257.2268 19 27 255.2112 18 25 241.1955 17 25 229.1956 16 21 1 229.1592 17 23 227.1799 16 23 215.1799 16 21 213.1642 15 21 201.1643 14 21 189.1643 14 19 187.1486 13 19 175.1486 12 15 1 175.1122 13 17 173.1330 12 17 161.1329 12 15 159.1173 11 15 147.1173 11 13 145.1017 9 15 1 139.1122 10 15 135.1173 10 13 133.1017 10 11 131.0860 8 15 .1 127.1122 9 15 123.1173 9 14 122.1095 9 13 121.1017 9 11 119.0860 7 11 1 111.0809 8 11 107.0860 8 9 105.0704 7 13 97.1017 7 11 95.0860 7 7 91.0547 6 13 85.1017 5 9 1 85.0653 6 11 83.0860 5 7 1 83.0496 6 10 82.0782 6 9 81.0704 5 11 71.0860 4 7 1 71.0496 5 9 69.0704 4 5 1 69.0340 - 142 -Ana l , c a l c d . f o r C ^ H ^ C y C, 81.3; H, 12.2. Found: C, 81.38; H, 11.96. Compound XI (83) The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from methylene c h l o r i d e / 20 methanol to provide an a n a l y t i c a l sample, m.p. 261-261.5°; [ a l ^ +91° (C, 1.2, CHC1 3); i r , v max (KBr): 1100 cm" 1 (C-O-C); nmr, (CDC1 3), 6 0.66, 0.74 (broad s i n g l e t s , 6H each, C-CH 3); 0.80, 0.98, 1.05 ( s i n g l e t s , 6H each, C-CH 3); 1.11, 1.25 ( s i n g l e t s , 3H each, C-CH 3); 0.89, 0.91 (over-lapping doublets, J = 6 Hz, 3H each, C20-CH 3); 2.65 ( m u l t i p l e t , IH, C3-H); 3.37 ( s i n g l e t , 6H, two C3-OCH3 , e q u a t o r i a l ) ; ^ 3.63 ( m u l t i p l e t , IH, C24-H); 4.90 ( t r i p l e t , J = 5 Hz, IH, C33-H); 5.25 ( m u l t i p l e t , 2H, two C9=C11-H); mass s p e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition c a l c . mass mass C H 0 874 0.9 873.7570 59 101 4 873.7699 58 97 5 873,7336 873 1.8 872.7254 59 100 4 872.7621 58 96 5 872.7257 872 0.9 858 9 857.7029 57 93 5 857.7023 841 1.8 840.7029 57 92 4 840.6996 826 6.7 825.6915 56 89 4 825.6761 794 2.3 793.6706 56 89 2 793.6862 511 2.4 485 32 485.3867 32 53 3 485.3994 (35 49 1 485.3782) 457 13 457.4018 31 53 2 457.4045 456 31 456.3943 31 52 2 456.3966 453 14 453.3693 31 49 2 453.3731 441 74 441.3812 30 49 2 441,3731 439 10 425 18 425.3611 26 49 4 425.3630 414 27 414.3452 28 46 2 414.3497 413 11 413.3394 28 45 2 413.3419 4 0 9 81 409.3506 29 45 i 409,3469 Table c o n t i 407 14 399 65 399.3319 397 23 . 397.3478 392 3 392.3315 388 4 383 21 383.3323 381 19 381.3186 371 3 371.3421 367 84 367.3033 365 5 355 6 355.2984 349 12 339 11 329 9 329.2828 328 12 328.2724 327 49 327.2660 326 4 313 10 313.2530 300 4 300.2493 297 15 297.2556 295 15 295.2405 288 11 288.2434 287 14 285 10 283 8 273 14 271 13 269 9 260 12 260.2094 259 12 257 11 255 20 255.2153 243 12 242 7 242.2037 241 19 239 8 239.1817 229 22 229.1924 227 22 227.1778 217 11 217.1954 215 25 215.1825 213 24 213.1632 203 24 203.1800 201 28 201.1684 199 15 199.1461 191 18 189 33 189.1657 185 18 185.1306 177 14 175 56 175.1502 143 27 .43 2 399.3262 28 45 1 397.3469 25 44 3 392.3289 27 43 1 383.3312 27 41 1 381.3157 26 43 1 371.3314 26 39 1 367.2999 25 39 1 355.3000 23 37 1 329.2843 23 36 1 328.2765 23 35 1 327.2687 22 33 1 313.2530 21 32 1 300.2452 22 33 297.2581 22 31 295.2426 20 32 1 288.2453 18 28 1 260.2139 19 27 255.2112 18 26 242.2034 18 23 239.1799 17 25 229,1956 17 23 227.1799 16 25 217,1956 16 23 215.1799 16 21 213.1642 15 23 203,1799 15 21 201.1643 15 19 199,1486 14 21 189.1643 14 17 185.1329 13 19 175,1486 - 144 -Table cont. 173 48 173.1287 171 18 171.1197 167 12 167.1436 165 10 163 20 163.1464 161 48 161.1310 159 46 159.1153 157 16 157.1016 149 32 149.1335 147 44 147.1168 145 41 145.1031 143 16 141 20 141.1273 135 72 135.1153 133 56 133.1022 131 30 131.0891 127 37 127.1103 125 21 125.0965 121 74 121.0982 119 77 119.0882 117 13 117.0695 111 21 111.1191 109 71 109.1004 109.0652 107 64 107.0863 107.0523 105 57 105.0694 99 21 99.0813 97 21 97.0999 95 100 95.0854 93 48 93.0698 91 33 91.0548 86 7 86.0731 85 40 85.0671 83 28 83.0882 81 67 81.0722 79 30 79.0565 71 69 71.0862 71.0496 69 82 69.0708 67 35 67.0534 Anal, c a l c d . f o r C H 0 : C, 13 17 173.1330 13 15 171.1173 11 19 1 167.1435 12 19 163.1486 12 17 161.1329 12 15 159.1173 12 13 157.1017 11 17 149.1329 11 15 147.1173 11 13 145.1017 9 17 1 141.1279 10 15 135.1173 10 13 133.1017 10 11 131.0860 8 15 1 127.1122 8 13 1 125.0966 9 13 121.1017 9 11 119.0860 9 9 117.0704 8 15 111.1173 8 13 109.1017 7 9 1 109.0653 8 11 107.0860 7 7 1 107.0496 8 9 105.0704 6 11 1 99.0809 7 13 97.1017 7 11 95.0860 7 9 93.0704 7 7 91.0547 5 10 1 86.0731 5 9 1 85.0653 6 11 83.0860 6 9 81.0704 6 7 79.0547 5 11 71.0860 4 7 1 71.0496 5 9 69.0704 5 7 67.0547 .8; H, 11.01. Found: C, 79.67; H, - 145 -BIBLIOGRAPHY (PART I) 1. J.P. Kutney, G. Eigendorf, R.B. Swingle, G.D. Knowles, J.W. Rowe, and B.A. Nagasampagi, Tetrahedron L e t t e r s , 3115 (1973). 2. J.M. Derfer, Tappi, 46, 513 (1963). 3. M.A. Buchanan, The Chemistry of Wood, p.358, B.L. Browning, Ed., Interscience Publishers, New York, 1963. 4. B.L. Browning, Methods of Wood Chemistry, Vol. 1, p.189, Interscience Publishers, New York, 1967. 5. D.B. Mutton, The Chemistry of Wood Ex t r a c t i v e s , p.348, W.E. H i l l i s , Ed., Academic Press, New York, 1962. 6. W. Jensen, K.E. Fremer, P. S i e r i l a , and V. Wartioraara, The Chemistry of Wood, p.649, B.L. Browning, Ed., Interscience Publishers, New York, 1963. 7. M.A. Buchanan, The Chemistry of Wood, p. 301, '..'B.L. Browning, Ed., Interscience Publishers, New York, 1963. 8. Y.P. Chang and R.L. M i t c h e l l , Tappi, 38, 315 (1955). 9. J.W. Rowe, Phytochemistry, 4^  1 (1965). 10. J.W. Rowe, Tetrahedron L e t t e r s , 2347 (1964). 11. Y. Inubushi, Y. Tsuda, T. Sano, T. Konita, S. Suzuki, W. Ageta, and Y. Otake, Chem. Pharm. B u l l . , 15, 1153 (1967). 12. Y. Tsuda, T. Sano, K. Kawahuchi, and Y. Inubushi, Tetrahedron L e t t e r s , 1279 (1964). 13. J.W. Rowe and C L . Bower, Tetrahedron Letters , 2745 (1965). 14. S. Uyeo, J . Okada, S. Matsunaga, and J.W. Rowe, Tetrahedron, 24, 2859 (1968). 15. T. Takahashi, J . Pharm. Soc. Japan, 58, 888 (1938). 16. H.L. Hergert, Northwest Regional Amer. Chem. Soc. Meeting, S e a t t l e , 1949. 17. S. Uyeo, J . Okada, and S. Matsunaga, J . Pharm. Soc. Japan, 84, 453 (1964). - 146 -18. S. Matsunaga, J . Okada, and S. Uyeo, Chem. Comm., 21, 525 (1965). 19. J.P. Kutney, N.D. Westcott, F.H. A l l e n , N.W. Isaacs, 0. Kennard, and W.D.S. Motherwell, Tetrahedron L e t t e r s , 3463 (1971). 20. T.W. Goodwin, Recent Advances i n Phytochemistry, Vol. 6, p.97, Academic Press, New York, 1973. 21. J . Bergman, B.O. Lindgren, and CM. Svahn, Acta Chem. Scand. , 19, 1661 (1965) . 22. J.P. Kutney, D.S. Grierson, G.D. Knowles, N.D. Westcott, and 1. H. Rogers, Tetrahedron, 29, 13 (1973). 23. T. Norin, Phytochemistry, 11, 1231 (1972). 24. N.T. Mirow, The Genus Pinus, p.132, The Ronald Press Comp., New York, 1967. 25. G. Lindstedt and A. Misiorny, Acta Chem. Scand. 5_, 121 (1951); G. Lindstedt, i b i d . , _5> 129 (1951); H. Erdtman, B. Kimland, and T. Norin, Bot. Mag. Tokyo, 79, 499 (1966). 26. H.L. Hergert, Amer. Chem. S o c , Abs. papers, 131st Mtg., Amer. Chem. Soc. PGE, 1957. H.L. Hergert, Forest Prod. J . , 10, 610 (1960). 27. W.C. Nickles and J.W. Rowe, i b i d . , 12, 374 (1962). 28. B.A. Nagasampagi, J.K. Toda, A.H. Conner and J.W. Rowe, Abstracts, 161st Amer. Chem. Soc. Mtg., Los Angeles, 1971 and 11th Phytochemical Soc. N. Amer. Mtg., Monterrey, Mexico, 1971.J.W. Rowe, R.C. Ronald, and B.A. Nagasampagi, Phytochemistry, 11, 365 (1972, footnotes 5 and 14). D.F. Zink e l , J.K. Toda, and J.W. Rowe, i b i d . , 10, 1161 (1971). 29. I would l i k e to express my gratitude to Dr. J.W. Rowe f o r providing the samples and much u s e f u l information f o r t h i s i n v e s t i g a t i o n . 30. A.I. Cohen, D. Rosenthal, G.W. Krakower, and J . F r i e d , Tetrahedron, 21, 3171 (1965). 31. F. Hemmert, B. Lacoume, J . L e v i s a l l e s , and G.R. P e t t i t , B u l l . Soc. Chim. Fr., 976 (1966). 32. F. Hemmert, A. Lablache-Combier, B. Lacoume, and J . L e v i s a l l e s , i b i d . , 982 (1966). 33. H.T. Cheung and D.G. Williamson, Tetrahedron, 25, 119 (1965); and references therein. - 147 -34. H. Vorbrllggen, S.C. P a k r a s h i , and C. D j e r a s s i , L i e b l g s Ann,, 668, 57 (1963). 35. K. Biemann, Mass Spectrometry, p.339, McGraw-Hill, New York, 1962. 36. S. BergstrBm, R. Ryhage and E. Stenhagen, Svensk Kern. T i d s . , 73, 566 (1961). 37. H. B u d z i k i e w i c z , C. D j e r a s s i , and D.H. W i l l i a m s , S t r u c t u r a l  E l u c i d a t i o n of N a t u r a l Products by Mass Spectrometry, Holden-Day, San F r a n c i s c o , 1964, V o l . 2, p.96. 38. R.I. Reed, Mass Spectrometry of Organic Ions, F.W. M c L a f f e r t y , Ed. ; Academic P r e s s , New York, 1963, p.688. 39. S.G. W y l l i e and C. D j e r a s s i , J . Org. Chem., 33, 305 (1968). 40. H. B u d z i k i e w i c z , J.M. Wilson, and C. D j e r a s s i , J . Amer. Chem. Soc.; 85, 3688 (1963). 41. F.H. A l l e n , J.P. Kutney, J . T r o t t e r , and N.D. Westcott, Tetrahedron L e t t e r s , 283 (1971). 42. H. B u d z i k i e w i c z , C. D j e r a s s i , and D.H. W i l l i a m s , S t r u c t u r a l E l u c i d a t i o n of N a t u r a l Products by Mass Spectrometry, Holden-Day, San F r a n c i s c o , 1964, V o l . 2, p.206. 43. K. Biemann, D.C. DeJongh, and H.K. Schnoes, J . Amer. Chem. S o c , 85, 1763 (1963). 44. K. N a k a n i s h i , D.A. Schooley, M. Koreeda, and J . D i l l o n , J . Chem. S o c , (D), 1235 (1971). 45. K. Nakanishi and J . D i l l o n , J . Amer. Chem. S o c , 93, 4058 (1971). I am g r a t e f u l t o P r o f e s s o r Nakanishi f o r performing t h i s determination. 46. J.D. Z d e r i c , H. Carpio, and C. D j e r a s s i , i b i d . , 82, 446 (1960). 47. K. N a k a n i s h i , D.A. Schooley, M. Koreeda, and I . Minva, i b i d . , 9_4, 2865 (1972). 48. M.E. W a l l and S. Serota, J . Org. Chem., 24, 741 (1959). 49. C.S. Barnes, A u s t r . J . Chem., £, 229 (1956), I would l i k e to thank Dr. Barnes f o r p r o v i d i n g a sample f o r comparison, 50. M. Neeman, M.C. Cas e r i o , J.D. Roberts, and W.S, Johnson, Tetrahedron, j>, 36, 1959. - 148 -51. L.M. Jackman and S. S t e r n h e l l , A p p l i c a t i o n s of Nuclear Magnetic  Resonance Spectroscopy i n Organic Chemistry, Perganon P r e s s , Oxford, 1969, p.164. 52. D. Bryce-Smith and A. G i l b e r t , J . Chem. Soc., 2428 (1969). 53. N. Ikekawa, A. Ohta, M. S e k i , and A. Takahashi, Phytochemistry, 11, 3037 (1972). 54. Ref 51, p.239. 55. W. Benz and K. Biemann, J . Amer. Chem. S o c , 86, 2375 (1964). 56. S. Meyerson and L.C. L e i t c h , i b i d , 86_, 2555 (1964). 57. H.E. Audier, H. F e l k i n , M. Fet i z o n , and W. V e t t e r , B u l l . Soc. Chim. France, 3236 (1965). 58. L. A h l q u i s t , R. Ryhage, E. Stenhagen, and E. von Sydow, A r k i v Kemi, 14, 211 (1959). 59. Ref. 51, p.236. 60. E. Caspi, T.A. W i t t s t r u c k , and D.M. P l a t a k , J . Org. Chem., 27, 3183 (1962). 61. E. Caspi, T.A. W i t t s t r u c k , and N. Grover, J . Org. Chem., 28, 763 (1963). 62. J.A. McCloskey and M.J. M c C l e l l a n d , J . Am. Chem. Soc., 87, 5090 (1965). 63. R.E. Wo l f f , G. W o l f f , and J.A. McCloskey, Tetrahedron, 22,3093 (1966). 64. J.S. Shannon, Aust. J . Chem., 16, 683 (1963). 65. C. D j e r a s s i , H. B u d z i k i e w i c z , and J.M. Wilson, Tetrahedron L e t t e r s , 263 (1962). PART I I STUDIES RELATED TO SYNTHESIS OF INDOLE ALKALOIDS - 149 -INTRODUCTION (PART I I ) The c o n t i n u i n g search f o r new t h e r a p e u t i c agents has been and remains to be one of the main objectives of the n a t u r a l product chemist. The s t r u c t u r a l e l u c i d a t i o n and s y n t h e s i s of compounds w i t h known t h e r a -p e u t i c value have been of prime concern to him u n t i l the i n c r e a s e d knowledge of i n t e r r e l a t i o n s h i p s between modes of a c t i o n and s t r u c t u r a l f eatures of drugs l e d to the use of many s y n t h e t i c analogs of the n a t u r a l l y o c c u r r i n g compounds i n modern medicine. Nature has provided a v a s t a r r a y of o r g a n i c compounds of v a r y i n g degrees of complexity and i n t e r e s t . I t has been estimated that 10-20% of a l l p l a n t s produce a l k a l o i d s 1 , and that at l e a s t one q u a r t e r of these nitrogenous 2 bases c o n t a i n the Indole or d i h y d r o i n d o l e nucleus . A s u b s t a n t i a l p a r t of the i n v e s t i g a t i o n s d e a l i n g w i t h a l k a l o i d content i n p l a n t s has been done by pharmaceutical f i r m s who are i n v o l v e d i n a systematic s c r e e n i n g 3 of p l a n t s f o r s p e c i f i c pharmacological a c t i v i t y . Although most a l k a l o i d s possess some degree of pharmacological a c t i v i t y , many are not m e d i c i n a l l y u s e f u l e i t h e r because of low s p e c i f i c a c t i v i t y or due to t h e i r t o x i c i t y . . Only a r e l a t i v e l y s m a l l number of a l l the p r e s e n t l y known a l k a l o i d s are c u r r e n t l y of t h e r a p e u t i c importance. A l k a l o i d s e x h i b i t a d i v e r s i t y of s t r u c t u r e , the s i m p l e s t being perhaps those of the phenethylamine group. The a l k a l o i d ephedrine (1) resembles - 150 -the animal hormone epinephrine (2) s t r u c t u r a l l y as w e l l as i n i t s adrenergic p r o p e r t i e s . Mescaline (3) i s an h a l l u c i n o g e n i c agent used f o r experimental purposes. CHOH CHOH C H 2 CH-CH 3 CH-CH 3 C H 2 NH-CH 3 ^H-CH 3 f t a 2 (1) (2) (3) Important members of the tropane a l k a l o i d f a m i l y are the c h o l i n e r g i c b l o c k i n g agent a t r o p i n e (hyoscyamine) (4) and the l o c a l a n a e s t h e t i c cocaine ( 5 ) . o &OCH3 O C C H C 6 H 5 I NCH 3 >OCC 6 H 5 CH 2OH ^ ' O (4) (5) In the s t r u c t u r a l l y more complex c l a s s e s of a l k a l o i d s one f i n d s t h e r a -p e u t i c a l l y v a l u a b l e compounds such as morphine (6 ) , codeine (7) and reserpine ( 8 ) , a l l being depressants of the c e n t r a l nervous system, the ca r d i a c p r i n c i p l e and s t i m u l a n t s t r y c h n i n e ( 9 ) , the a p h r o d i s i a c yohimbine (10) and the more r e c e n t l y discovered a n t i - c a n c e r agents v i n b l a s t i n e (VLB, 11) and v i n c r i s t i n e (VCR, 12) , whose complex s t r u c t u r e s are represented by the dimeri c form of an i n d o l e and a d i h y d r o i n d o l e a l k a l o i d . - 151 -(12), R = CHO A very l a r g e group of n a t u r a l a l k a l o i d s , numbering about 800, possess as t h e i r b a s i c s t r u c t u r a l u n i t , the i n d o l e moiety. However, d e s p i t e t h e i r b e w i l d e r i n g v a r i e t y i t i s p o s s i b l e to show some i n t e r r e l a t i o n s h i p s between va r i o u s f a m i l i e s by the use of b i o g e n e t i c theory. For example, the Corynanthe a l k a l o i d a j m a l i c i n e (13) and the Strychnos a l k a l o i d akuammicine (14) possess the same non-tryptamine u n i t (15), w h i l e the Aspidosperma type, e.g. v i n d o l i n e (16), shows one type of rearranged u n i t (17) and the Iboga type, e.g. catharanthine (18), e x h i b i t s another rearranged system ( 1 9 ) 5 . - 152 -H3C02C OH CO2CH3 (16) (17) C02CH3 (18) (19) I t has been e s t a b l i s h e d that b i o g e n e t i c a l l y these seemingly u n r e l a t e d 9 s t r u c t u r e s are i n f a c t d e r i v e d from a common in t e r m e d i a t e , v i n c o s i d e (20) • This i n t e r m e d i a t e , v i n c o s i d e , i s d e r i v a b l e i n v i v o by a condensation between tryptamine (21) and a monoterpene u n i t , s e cologanin (22). Recent - 153 -H 3 C 0 2 C ..OGIu (20) H - j C O o C H (21) (22) N H 2 ^OGIu H (23) work has demonstrated that tryptamine (21) i s a l s o an e f f e c t i v e precursor of the i n d o l e a l k a l o i d s and i s p o s s i b l y generated by d e c a r b o x y l a t i o n of 6~8 tryptophan (23) . However, there i s some doubt i f the d e c a r b o x y l a t i o n takes p l a c e p r i o r to f u s i o n of the tryptamine and secologanin u n i t s or i f t h i s might occur at a l a t e r stage i n the b i o s y n t h e s i s . Secologanin (22) i s d e r i v e d from mevalonate (24) through l o g a n i n (25) as shown i n Figure 1. The b i o s y n t h e t i c stages between g e r a n i o l (26) and l o g a n i n (25) have been 9 examined by s e v e r a l workers . Arguments based upon s t r u c t u r a l r e l a t i o n s h i p s pointed towards deoxyloganin (27b) as the immediate precursor of l o g a n i n . Proof that t h i s i s i n f a c t the case came from the p r e p a r a t i o n of 3 [4- H] deoxyloganic a c i d (27a) and i t s s p e c i f i c i n c o r p o r a t i o n by Lonic e r a j a p o n i c a p l a n t s i n t o l o g a n i n " ^ and by p a r t i a l s y n t h e s i s of 3 [0-methyl- H]-deoxyloganin (27b) and demonstration of i t s i n c o r p o r a t i o n without randomisation of the l a b e l i n t o l o g a n i n (25) and the i n d o l e a l k a l o i d s (13), (16), (18) and ( 2 8 ) 1 1 , 1 2 (Figure 2). Vinca rosea p l a n t s were used f o r the l a s t experiment. Recently, the c a r b o x y l group m e t h y l a t i o n of l o g a n i c a c i d by a c e l l - f r e e enzyme p r e p a r a t i o n from V i n c a rosea has been 65 reported , thus supporting the above argument. - 154 -(22) Figure 1. B i o g e n e t i c pathway from mevalonate (24) to secologanin (22). - 155 -(27b) (25) (16) (18) 3 Figure 2. I n c o r p o r a t i o n of [O-methyl- H]-deoxyloganin (27b) i n t o l o g a n i n (25) and v a r i o u s a l k a l o i d s . Considering the b i o g e n e t i c pathway beyond v i n c o s i d e (20), one can v i s u a l i z e the enzymatic cleavage of glucose as a f i r s t step towards the 7 formation of the Corynanthe f a m i l y as o u t l i n e d i n Figure 3 . G e i s s o s c h i z i n e (29), corynantheine (30) and i t s aldehyde (31), and a j m a l i c i n e (13) are then d e r i v a b l e by p l a u s i b l e steps. - 156 -(13) Figure 3. P o s s i b l e b i o g e n e t i c pathway from v i n c o s i d e (20) to a l k a l o i d s of the Corynanthe f a m i l y . The mechanism by which the corynanthe s k e l e t o n (29) i s converted i n t o . t h e strychnos system (34) and the aspidosperma (39) and iboga (18) skeletons i s under current study. The scheme o u t l i n e d i n Figure 4 can be - 157 -C 0 2 C H 3 (37) C 0 2 C H 3 (38) CC>2CH3 (39) CO2CH3 Figure 4. P o s s i b l e i n t e r c o n v e r s i o n of the corynanthe s k e l e t o n (29) to the strychnos (34), aspidosperma (39) and iboga (18) system. - 158 -envisaged as a reasonable p o s s i b i l i t y . Thus g e i s s o s c h i z i n e (29) i s v i s u a l i z e d to undergo an a 8 bond m i g r a t i o n and n u c l e o p h i l i c a t t a c k of C16 at C2 to y i e l d preakuammicine (34). The l a t t e r i s b e l i e v e d to convert to the end products by the sequences (34) (35) -> (36) -»• (37) etc. as o u t l i n e d i n Figure 4. Wenkert has suggested that c o u p l i n g of the r a d i c a l (29a), d e r i v e d from g e i s s o s c h i z i n e (29), leads to the well-known akuamma s k e l e t o n (29b) 9 which rearranges t o the strychnos system (34) . A l k a l o i d s of the vobasine (40, v i n c a d i f f i n e ) , sarpagine (41, p o l y n e u r i d i n e ) and ajmaline (42, vincamajine) type, the s y n t h e s i s of which represents the u l t i m a t e goal of t h i s i n v e s t i g a t i o n , are b i o g e n e t i c a l l y probably d e r i v e d from the corynanthe s k e l e t o n ( 2 9 , ; g e i s s o s c h i z i n e ) v i a a common 12 intermediate such as (43) (Figure 5) A b i o g e n e t i c a l l y patterned t o t a l s y n t h e s i s of deoxyajmalal A (48) 13 (Figure 6) , s u c c e s s f u l l y developed by van Tamelen i n 1970, does i n f a c t provide what might be considered i n v i t r o evidence f o r the scheme o u t l i n e d i n Figure 5. The n o v e l t y of t h i s p a r t i c u l a r s y n t h e s i s i s i n the ingenious use of the o x i d a t i v e d e c a r b o x y l a t i o n of the tryptophan r e s i d u e , which provides the a c t i v a t i o n necessary f o r formation of the C5 - C16 bond [(46) ->- ( 4 7 ) ] , a process which may w e l l p a r a l l e l the making of t h i s bond 14 i n nature . [Deoxyajmalal A (48) has been p r e v i o u s l y converted i n t o ajmaline (49) 1"']. I t i s t h e r e f o r e conceivable that R i n s t r u c t u r e (29) (Figure 5) may very w e l l be something other than hydrogen. For i n s t a n c e , - 159 -(42) Figure 5. P o s s i b l e i n t e r r e l a t i o n between the corynanthe s k e l e t o n (29) and vobasine (40), sarpagine (41) and ajmaline (42) type a l k a l o i d s . - 160 -(49) Figure 6. B i o g e n e t i c a l l y patterned t o t a l s y n t h e s i s of deoxyajmalal (48). the d e c a r b o x y l a t i o n of tryptophan (23) might not take p l a c e at an e a r l y stage i n the b i o g e n e t i c pathway but could occur during the tr a n s f o r m a t i o n of (29) (w i t h R j H) -> (43) (Figure 5 ) . Se v e r a l years p r i o r to van Tamelen's p u b l i c a t i o n a s y n t h e t i c p r o j e c t was 16 i n i t i a t e d i n our l a b o r a t o r y using b a s i c a l l y . t h e same b i o g e n e t i c type - 161 -approach as employed by the previous author. At t h i s time i t was thought that a s y n t h e s i s of the vobasine-sarpagine s k e l e t o n could be accomplished by e i t h e r one of three methods: a) O x i d a t i o n of corynanthenoid bases by mercuric acetate i s known to give predominantly the corresponding 3-dehydro-iminium s a l t (50), which could R - C0 2CH 3, R 1 = CH20H or R = C O ^ H ^ R 1 = H under appropriate c o n d i t i o n s be i n e q u i l i b r i u m w i t h the 5-dehydro-(51) and the 21-dehydroiminium s a l t s (52) as w e l l as the enamine (52a). A p r o p e r l y generated anion a t C16 would a t t a c k the iminium s a l t to accomplish a r i n g c l o s u r e v i a a transannular c y c l i z a t i o n (C16 -> C5) g i v i n g (53). A l t e r n a t i v e a t t a c k at C3 (50) or C21 (52) was considered - 162 -to be l e s s l i k e l y s i n c e i t would y i e l d a more s t r a i n e d 4-membered r i n g system. b) A second approach to the s y n t h e s i s of a p r o p e r l y o x i d i z e d compound was to b l o c k C3 w i t h a b e n z y l group i n order t o prevent the formation of a 3-dehydro d e r i v a t i v e which was known to be the major product i n the case of ( a ) . The b e n z y l group would a l s o provide a convenient e n t r y i n t o (56) (57) the 2-acyl i n d o l e f a m i l y (57) c) The t h i r d approach i n v o l v e d cleavage of the C/D r i n g j u n c t i o n i n a corynanthenoid base (58) under B i r c h r e d u c t i o n c o n d i t i o n s to give the corresponding 3,4-seco base (59), which could again be o x i d i z e d , by mercuric a c e t a t e , to iminium s a l t s (60) and (61). Subsequent a t t a c k of a C16-anion at C5 i n (60) would give r i s e to the d e s i r e d b r i d g e d compound. Unfortu n a t e l y none of the three attempts discussed above were s u c c e s s f u l and t h i s p a r t i c u l a r type of approach, namely the n u c l e o p h i l i c a t t a c k of - 163 -Na/NH, N - C H 3 1) H , 2) Hg (OAc)2 > C H 3 O H C O H C a C16-anion at C5 of the corynantheine skeleton, was abandoned. At the time i t was also f e l t , that van Tamelen had indeed solved the d i f f i c u l t i e s encountered by us i n a very elegant way. Several other groups have been studying the vobasine-sarpagine-ajmaline skeleton and in some instances succeeded in synthesizing compounds of this 18-20 type . However, in each of these cases the C16-C5 bridge was already formed at an earlier stage in the synthetic scheme; an example of this 21 being the work done by Masamune . The cyclopentene (62) was cleaved by C H ^ C Q H S OsO N ' C H 3 NH to - 6 H 5 9.6*5 C H ^ C NalO (62) If C H 3 O H C H 2 C H 0 (63) 96H5 (64) - 164 -osmium t e t r o x i d e and sodium metaperiodate to the carbinolamine (63). C y c l i z a t i o n to C2 occurred upon treatment w i t h a c i d , generating (64) which was i n t e r r e l a t e d w i t h ajmaline (49). 22 In another sequence the vobasine s k e l e t o n (69) was obtained by treatment of the c a r b o x y l i c a c i d (65) w i t h polyphosphoric a c i d (PPA), f o l l o w e d by r e d u c t i o n w i t h l i t h i u m aluminum h y d r i d e , chromic a c i d o x i d a t i o n and methylation. (69) The above s t u d i e s have only l e d to models of the n a t u r a l systems and up to the present, a s u c c e s s f u l s y n t h e s i s of any member of the n a t u r a l l y o c c u r r i n g 2-acyl i n d o l e f a m i l y has not been achieved. A l a r g e v a r i e t y of new a l k a l o i d s possessing the vobasine-sarpagine-ajmaline type s k e l e t o n have been i s o l a t e d from n a t u r a l sources during the - 165 -23 2 A l a s t decade. For i n s t a n c e p e r i v i n e (70, Vinca rosea L i n n ) , p e r i f o r m y l i n e 25 (71, Catharanthus lanceus P i c h . ) , gardnerine (72, Gardneria mutams), 26 N(l)-demethylseredamine (73, Rauwolfia sumatrana J a c k ) , and 27 r a u c a f f r i c i n e (74, R. c a f f r a ) were obtained. Of p a r t i c u l a r i n t e r e s t have 28 been the a l k a l o i d s of d i m e r i c n a t u r e , such as voacamine (75, Voacanga  a f r i c a n a S t a p f ) , which are now b e i n g reexamined f o r p o s s i b l e c l i n i c a l use. - 166 -The renewed i n t e r e s t i n the above a l k a l o i d s caused us to consider the p o s s i b i l i t y of a new approach towards the t o t a l s y n t h e s i s of a l k a l o i d s possessing the vobasine-sarpagine-ajmaline s k e l e t o n . As a r e s u l t , the s t u d i e s d e s c r i b e d i n P a r t I I of t h i s t h e s i s were undertaken. - 167 -DISCUSSION (PART I I ) At the outset of t h i s p r o j e c t a s y n t h e t i c scheme was envisaged l e a d i n g t o a c e n t r a l sarpagine s k e l e t o n (77) which could be transformed i n t o a l k a l o i d s of the vobasine (78) and ajm a l i n e (79) types by s e v e r a l known procedures, as o u t l i n e d i n Figures 7 and 8. The c r u c i a l step i n the planned sequence would i n v o l v e a transannular c y c l i z a t i o n (C6a -> C2) of a C 6 - s u b s t i t u t e d corynanthe l i k e s k e l e t o n (76) l e a d i n g to the d e s i r e d sarpagine system (77). I t should be noted here that throughout the - 168 -d i s c u s s i o n the q u i n o l i z i n e d e r i v e d numbering system i s used. The more 29 30 recent proposals hased on b i o g e n e t i c t h e o r i e s * are not employed. Should the t e t r a c y c l i c s k e l e t o n (76) prove to be too r i g i d to undergo the transannular c y c l i z a t i o n , cleavage of the C/D r i n g j u n c t i o n could be undertaken, i n a manner already portrayed i n Figure 7, thereby l e a d i n g to an intermediate (80). The l a t t e r substance would then serve as a precursor f o r the vobasine s k e l e t o n (78). In t u r n the l a t t e r i n termediate could be i n t e r r e l a t e d w i t h the sarpagine system (77) v i a already e s t a b l i s h e d i n t e r c o n v e r s i o n s (Figure 9 ). Figure 7. Known procedures f o r the conversion of the sarpagine s k e l e t o n (77) to the vobasine type a l k a l o i d s (78). - 169 -Figure 7 continued. - 170 -Figure 8. Reactions a p p l i c a b l e to the conversion of the sarpagine s k e l e t o n (77) to the ajmaline system (79). - 171 -N " \ N £ H 3 2) CH„I 1) KBH. A(280 P H 3 I " + N - C H 3 (105) F i g u r e 9. P o s s i b l e i n t e r c o n v e r s i o n s f o r the vobasine s k e l e t o n (78) to the sarpagine system (77). The p r o j e c t e d synthon (76), necessary f o r the v a r i o u s transformations described above, r e q u i r e s the 6 - c o n f i g u r a t i o n f o r the s u b s t i t u e n t a t C6 sin c e t r a n s a n n u l a r c y c l i z a t i o n has t o occur on the g-face of the molecule. - 172 -R (76) (106) Therefore, i t was decided to employ L-(-)-tryptophan (106) as the s t a r t i n g m a t e r i a l f o r the d i f f e r e n t i n v e s t i g a t i o n s undertaken during the course of t h i s study. The sarpagine, vobasine and ajmaline type a l k a l o i d s possess a b r i d g i n g u n i t which i s made up of at l e a s t two or three carbon atoms. I t was t h e r e f o r e necessary at some stage to consider the a p p r o p r i a t e extension of the c a r b o x y l i c a c i d u n i t i n L-tryptophan. Thus s e v e r a l d i f f e r e n t approaches were considered i n order to s y n t h e s i z e the c r u c i a l intermediate (76): A) Synthesis of a t e t r a c y c l i c moiety (107) having a one-carbon u n i t at C6 ( f o r example, R = H or Ac) which i s then f u r t h e r elaborated (108) - 173 -i . e . (107) •+'-*• (108) (R ~ CN or COOCH3). B) El o n g a t i o n of the s i d e chain i n L-tryptophan (106) to provide an intermediate such as (109) (R » CN or C00CH 3) which i s i n turn converted to the t e t r a c y c l i c system (108) (R = CN or C00CH 3). CQ 2H NH-(106) CH 2R NH R' (108) C) I n t r o d u c t i o n of an ap p r o p r i a t e s u b s t i t u e n t i n t o the s i d e chain of (110) (R = C00CH3) presumably v i a a base c a t a l y z e d condensation i . e . (110) -> (111) (R= CN or C00CH 3; R 1 = CH 20H or CHO) -*(112) (R = CN or COOCH,; R 1 = CH00H, CHO or COOCH,). R' R -N R2 (110) (111) (112) - 174 -D) Attempts to introduce a suhatituent into the side chain of the t r i c y c l i c (dihydro carboline) system (113) (R => COOCH^) and subsequent formation of the required tetracyclic skeleton i.e. (113) (R = COOCH3) -> (113a) (R = R2 = COOCH3) -»- (112) (R = R2 = COOCH3) . R 2 I shall now discuss the specific experiments which w i l l portray the strategies of the above schemes A-D. For the sake of cla r i t y the indole nitrogen w i l l be referred to as N while the basic nitrogen w i l l be N, . a b Scheme A A synthetic pathway was envisaged leading to the t r i c y c l i c dihydrocarboline unit (117 or 119) which could then be elaborated to the desired tetracyclic moiety (120) (R = H or Ac). Therefore, L-(-)-tryptophan (106) was converted 42 to i t s N^-formyl derivative (114) by a previously published procedure 43 A Bischler-Napieralski reaction of the latter afforded the hydrochloride (115) which upon treatment with base was converted to the free dihydro-carboline (116). The carboxylic acids (115) and (116) proved to be d i f f i c u l t to handle and i t was therefore decided to convert them to the corresponding methyl ester (117), but unfortunately this attempt failed. An alternate - 175 -H (106) ^ O 0 2 H HC00H NH- Ac 20 CO2H NaOH N N H (116), 86% CH 2N 2 Me OH HCl ^^C02CH3 (117) N Hg(OAc) 1 O2H NH CHO (114), 68% HC00H/HC1 C02H N-HCI (115), 71% LiAlH^/THF 2 v CH 2OH NH (118), 87% XH2OH N (119) (120) route l e a d i n g to the t r i c y c l i c a l c o h o l (118) had to be abandoned s i n c e i t was not p o s s i b l e to convert the l a t t e r t o the d e s i r e d dihydro-c a r b o l i n e (119) by an attempted mercuric acetate o x i d a t i o n ^ . At t h i s stage i t became c l e a r t h a t i t might not be a d v i s a b l e to mai n t a i n the c a r b o x y l i c a c i d group s i n c e d i f f i c u l t i e s i n the workup procedures of s e v e r a l r e a c t i o n s had been encountered. Thus, L-(-)-tryptophan (106) - 176 -N H (106) , G 0 2 H N H 2 LiAlH. Ac 20 HC00H ,CH20H N H 2 (121), 97% S / ^ N > \ ^ N S ^ S ^ C H O H C H 2 O C H O H (123), 88% (a) NaOH (122), 74% O H O (126), 58% 6 a C H 2 O R C H 3 C C H C H 2 N ( C H 3 ) 3 A (125), 99% O CH3I I I UL 'x N C H 3 C C H C H 2 N ( C H 3 ) 2 C 2 H 5 (124) .CH2OH (127) , R = H, 56% (128) , R = Ac, 92% (129) was reduced with l i t h i u m aluminum hydride (LiAlH^) to the corresponding alcohol (121). Treatment of the l a t t e r with a c e t i c anhydride and formic acid provided 2-(N-formylamino)-3-indolyl(3a)-propyl formate (122). Compound (122) was subjected to s e v e r a l B i s c h l e r - N a p i e r a l s k i reactions. C y c l i z a t i o n to the 3,4-dihydrocarboline (123) proved to be most succ e s s f u l with a mixture of formic a c i d and cone, hydrochloric acid . Condensation of the dihydrocarboline (123) with 3-methylene-pentan-2-one (126) under - 177 -48 m i l d a c i d i c c o n d i t i o n s provided the d e s i r e d t e t r a c y c l i c a l c o h o l (127), 2-oxo-3-ethyl-6-hydroxymethyl-l,2,3,4,6,7,12,12b-octahydroindolo-( 2 , 3 - a ) - q u i n o l i z i n e , which could be converted to the corresponding acetate (128) by treatment w i t h a c e t i c anhydride and p y r i d i n e . L i t h i u m aluminum hydride r e d u c t i o n of the k e t o a l c o h o l (127) a f f o r d e d the d i o l (129). Compound (127) c o n s i s t e d of a mixture of two components i n an estimated ( t h i n - l a y e r chromatography, TLC) r a t i o of 9:1 w i t h the more p o l a r component i n predominance. Attempts to separate these compounds proved to be unsu c c e s s f u l s i n c e e p i m e r i s a t i o n took p l a c e d u r i n g the TLC sep a r a t i o n s . The stereochemistry of t e t r a c y c l i c systems such as (127) has been the o b j e c t of many i n v e s t i g a t i o n s i n the past and the f o l l o w i n g conclusions can be drawn i n our case. Since L-(-)-tryptophan was employed as a s t a r t i n g m a t e r i a l i n t h i s s e r i e s we must have the C6-aH o r i e n t a t i o n . The s t e r e o -chemistry of i n d o l e a l k a l o i d s a t the C3 p o s i t i o n (corresponding to Cl2b i n the present compounds) has been e s t a b l i s h e d i n many cases on the b a s i s of i n f r a r e d a b s o r p t i o n bands. I t has been found^ 9 -"* 2 t h a t a l k a l o i d s of the q u i n o l i z i d i n e - t y p e p o s s e s s i n g , i n t h e i r p r e f e r r e d conformation, the C3-H (Cl2b) and at l e a s t one more adjacent C-H trans d i a x i a l t o the n i t r o g e n lone p a i r [see f o r example a j m a l i c i n e ( 1 3 ) ] w i l l e x h i b i t complex i n f r a r e d bands 49 -1 (Bohlmann hands ) between 2700-2900 cm (at l e a s t one of which absorbs below 2800 cm ^) and on the low wave number s i d e of the major (ca 2900 cm ^) band. A l k a l o i d s possessing the C3-H c i s ( e q u a t o r i a l ) [e.g. s p e c i o c i l i a t i n e (130)] to the n i t r o g e n lone p a i r w i l l not show these ab s o r p t i o n s . The t e t r a c y c l i c a l c o h o l (127) does i n f a c t e x h i b i t Bohlmann bands at 2835, 178 -OCH 2800 and 2775 cm" 1 i n a d d i t i o n to the major abs o r p t i o n at 2895 cm 1 due to CH s t r e t c h i n g modes. Compound (127) i s t h e r e f o r e assigned the C12b-otH o r i e n t a t i o n . The d i f f e r e n c e s i n the i r - s p e c t r a seen above are r e l a t e d to the o r i e n t a t i o n of the n i t r o g e n lone p a i r to the adjacent hydrogen atoms. D i f f e r e n c e s i n o r i e n t a t i o n are a l s o r e f l e c t e d i n the chemical s h i f t of the C12b-proton i n a l k a l o i d s thus p e r m i t t i n g an independent determination 53 of the c o n f i g u r a t i o n at t h i s centre . The c r i t e r i o n used i s t h a t the nmr s i g n a l of the C12b-H c i s to the n i t r o g e n lone p a i r (whether a x i a l or e q u a t o r i a l ) i n q u i n o l i z i d i n e type compounds w i l l appear downfield r e l a t i v e 53-55 to that of the trans C12b-H o r i e n t a t i o n . Thus an a l k a l o i d possessing the C12b-H-nitrogen lone p a i r i n a c i s r e l a t i o n s h i p w i l l have the C12b-5 3~~5 6 proton o c c u r r i n g at 6 4 - 4.5 whereas the trans r e l a t i o n s h i p i n the p r e f e r r e d normal c o n f i g u r a t i o n (131 a,b) w i l l e x h i b i t the C12b-H s i g n a l . . 0 Q48,57 above 6 3.8 In compound (127), I t s acetate (128) and the r e l a t e d a c e t a l compounds (134, 135,. 136), the C12b-proton i s indeed observed at frequencies above 6 3.8 thereby supporting the C12h-ctH c o n f i g u r a t i o n assigned from the i n f r a r e d data. However, one might have expected a s l i g h t s h i f t t o lower f i e l d due to the p r o x i m i t y of the C12b-a-p roton and the C2—oxygen as i n d i c a t e d i n (131a). Previous syntheses of s i m i l a r t e t r a c y c l i c systems have a l s o reported the C12b-aH c o n f i g u r a t i o n as the f a v o r a b l e product - 179 -to be o b t a i n e d 4 8 * 5 2 ' 5 8 ' 5 9 . H O H 2 C t r\ 3 b C H 3 (131 a) (131 b) Another conformational r e s u l t can be obtained from a n a l y s i s of the nmr 52 57 spectrum ' . This r e s u l t a r i s e s from a consideration of the r e l a t i o n s h i p and proximity of the nitrogen lone p a i r to the methylene protons of the C3-ethyl group. In c e r t a i n confirmations (e.g. 131b) the lone p a i r i s i n a c i s 1,3-diaxial r e l a t i o n s h i p to the C3-C3a bond (2.8 A from the C3a carbon atom) while i n other conformations (e.g. 131a) the C3-C3a bond i s directed away from the nitrogen electrons. Thus i t might be expected that a chemical s h i f t d i f f e r e n c e between the C3a methylene hydrogens i n the two conformational sets would e x i s t . Moynehen et al^° showed that the two possible 3-methyl q u i n o l i z i d i n e s [(132) and (133)] e x i s t mainly i n the trans fused r i n g conformation with the a x i a l methyl protons i n (132) deshielded by 0.26 ppm r e l a t i v e to the e q u a t o r i a l methyl protons i n (133). CH3 (1.084) (0.825) (132) (133) - 180 -Thus C3a methylene protons i n (131b) may a l s o be deshielded by the n i t r o g e n lone p a i r , but t h i s e f f e c t i s not observed s i n c e the other r i n g protons a l s o resonate i n t h i s r e g i o n . However, a d i f f e r e n c e might be observed i n the degree of r e s o l u t i o n of the t r i p l e t s i g n a l of the C3b methyl protons as i t a r i s e s from the s p i n coupling of the C3a and C3b hydrogens. A n e t ^ 1 has p o i n t e d out t h a t the t r i p l e t s i g n a l of the methyl protons of an e t h y l group w i l l be w e l l r e s o l v e d only when a s i g n i f i c a n t chemical s h i f t d i f f e r e n c e e x i s t s between the s i g n a l s of the methyl and methylene protons. Thus when the C3 e t h y l group i s c i s 1,3 d i a x i a l to the n i t r o g e n lone p a i r some in c r e a s e d r e s o l u t i o n of the CH^ s i g n a l i s expected due to the d e s h i e l d i n g of the adjacent C3a methylene protons by the n i t r o g e n e l e c t r o n s . The nmr s p e c t r a (Figure 10 and 11 r e s p e c t i v e l y ) of the t e t r a c y c l i c a l c o h o l (127) and i t s acetate (128) r e v e a l a w e l l r e s o l v e d t r i p l e t f o r the C3b methyl group and based on the above argument one would t h e r e f o r e be tempted to a s s i g n a g - c o n f i g u r a t i o n to the C3-ethyl group. However, the p r o x i m i t y of the C2-oxygen to the C3a-methylene [as seen i n (131a)] may i n f a c t cause a s i m i l a r e f f e c t on the l a t t e r group to that already noted w i t h the n i t r o g e n atom and t h e r e f o r e i t i s necessary to e x e r c i s e c a u t i o n i n i n t e r p r e t i n g the nmr data. I t i s t h e r e f o r e suggested that the major p o r t i o n of the t e t r a c y c l i c a l c o h o l (127) e x i s t s i n the C3ct-ethyl c o n f i g u r a t i o n ( i n agreement w i t h p u b l i s h e d r e s u l t s i n s i m i l a r systems ). This assignment i s supported by the f o l l o w i n g o b s e r v a t i o n s , a) the C3b methyl t r i p l e t i n the t e t r a c y c l i c alcohol-ketone (127) (Figure 10) becomes somewhat l e s s resolved (Figure 12) upon formation of the C2-ethylene k e t a l (134) and the C2-3-hydroxy compound (129). I : i i i I i i i i I i i i i I I i i I I I i I I I I I I !. I I..J...J .1.1.1 i . ! . ! . . I . . L . L . I . L I . 7 6 5 4 3 i i i i Figure 10. NMR spectrum (FT) of compound (127). TMS+ - 183 -I - 184 -Furthermore, the s i g n a l undergoes a s l i g h t u p f i e l d s h i f t (<5 0.98 -> 0.94, 0.98 0.90) i n the conversion of the C2-ketone to the k e t a l (134) or a l c o h o l (129) r e s p e c t i v e l y , thereby c o n f i r m i n g the s p a t i a l p r o x i m i t y of the C3-ethyl s i d e chain t o the C2-ketone f u n c t i o n a l i t y . In order to i n v e s t i g a t e the p o s s i b l e e l o n g a t i o n of the s i d e c h a i n at C6 i n (127) the r e a c t i o n s o u t l i n e d i n Figure 13 were undertaken. Thus, the t e t r a c y c l i c keto a l c o h o l (127) was converted to the corresponding k e t a l (134) by means of ethylene g l y c o l and a t r a c e of a c i d . Treatment of k e t a l (134) w i t h a c e t i c anhydride and p y r i d i n e a f f o r d e d the ac e t a t e (135) i n 90% y i e l d . Treatment of the l a t t e r w i t h potassium cyanide i n DMF at ele v a t e d temperatures d i d not provide the d e s i r e d n i t r i l e (136), mainly s t a r t i n g m a t e r i a l was recovered. Therefore, i t was decided to i n v e s t i g a t e other l e a v i n g groups which might be more s u s c e p t i b l e to displacement by cyanide i o n . The t e t r a c y c l i c k e t a l a l c o h o l (134) was converted to the benzoate (137) by treatment w i t h benzoyl c h l o r i d e i n p y r i d i n e . Attempts to transform the obtained benzoate i n t o the n i t r i l e (136) were again u n s u c c e s s f u l . Treatment of (134) w i t h 3 , 5 - d i n i t r o b e n z o y l c h l o r i d e i n p y r i d i n e provided the corresponding 3,5-dinitrobenzoate (138) i n 82% y i e l d . When the l a t t e r was subjected to cyanide treatment at v a r i o u s temperatures only a s m a l l amount of a n i t r i l e c o n t a i n i n g m a t e r i a l was obtained, the b u l k of recovered m a t e r i a l c o n s i s t e d of t e t r a c y c l i c a l c o h o l (134). Formation of the n i t r i l e (136) was f i n a l l y rendered p o s s i b l e by conversion of the a l c o h o l (134) t o the corresponding t o s y l a t e and treatment of the l a t t e r w i t h potassium cyanide i n methanol. The product e x h i b i t s an i n f r a r e d a b s o r p t i o n at 2250 cm"1, c h a r a c t e r i s t i c of a n i t r i l e moiety; other s p e c t r a l data are i n accord w i t h - 185 -Figure 13. Reaction scheme f o r the p o s s i b l e extension of the s i d e chain i n compound (127). the assigned s t r u c t u r e (136). At t h i s p o i n t i t was f e l t t hat a conversion of the n i t r i l e to an e s t e r f u n c t i o n a l i t y as i n (139) and (140) might be d e s i r a b l e s i n c e the l a t t e r could presumably be f u r t h e r f u n c t i o n a l i z e d at C6a and would a l s o be s u i t a b l e i n view of the p r o j e c t e d b r i d g e d a l k a l o i d s . However, v a r i o u s attempts, under - 186 -a c i d i c and b a s i c c o n d i t i o n s , to achieve t h i s t r a n s f o r m a t i o n were uns u c c e s s f u l . Since the conversion of the t e t r a c y c l i c a l c o h o l (134) to the n i t r i l e (136) was achieved only i n a r e l a t i v e l y s m a l l y i e l d and s i n c e an e l a b o r a t i o n of the n i t r i l e f u n c t i o n a l i t y had f a i l e d , s e r i o u s c o n s i d e r a t i o n s were, given to a p o s s i b l e extension of the s i d e chain at an e a r l i e r stage i n the s y n t h e t i c sequence and ther e f o r e the g e n e r a l s t r a t e g y o r i g i n a l l y o u t l i n e d under Scheme B was explored. Scheme B In order to evaluate the f e a s i b i l i t y of c h a i n e l o n g a t i o n at an e a r l y phase, tryptophan was reduced to the a l c o h o l (121) by means of l i t h i u m aluminum hydride. This compound, 2-amino-3-indolyl(3a)-propanol, was t r e a t e d w i t h benzoyl c h l o r i d e i n p y r i d i n e to a f f o r d the dibenzoate (141) which upon treatment w i t h potassium cyanide a f f o r d e d the monobenzoate (142). During t h i s study i t was found that (142) can be hydrolyzed w i t h sodium hydroxide to regenerate the amino al c o h o l (121) thus p r o v i d i n g a convenient method f o r removal of the N-benzoate group. An attempt to convert the mono benzoate (142) to the corresponding O-tosylate (143) l e d to formation of the a z i r i d i n e compound (144). I t i s assumed that the t o s y l a t e (143) had indeed formed as an intermediate but proved to be unstable thereby l e a d i n g to (144). Formation of the O-tosylate of (121) could be achieved by u t i l i z a t i o n of the N-carbobenzoxy d e r i v a t i v e (145) which had been obtained from the amino a l c o h o l (121) upon treatment w i t h sodium carbonate and carbobenzoxy c h l o r i d e . Treatment of (.145) with p - t o l u e n e s u l f o n y l c h l o r i d e l e d to the t o s y l a t e (146). - 187 -N H (121),97% H (144) , C H 2 O H N H 2 " ~ NaOH C H 2 C O ^ 6 H 5 , C H 2 O R C,HCC0C1 " f t 6 5 ^ H I (141),53%,R=COC,H (142),95%,R = H b * N H C O C 6 H 5 T s C l CO H N H C O I ^ 5 (143) An attempt t o d i s p l a c e the t o s y l f u n c t i o n a l i t y i n the l a t t e r by cyanide d i d not a f f o r d the expected n i t r i l e (147) but a s m a l l amount of 2-amino-3 - i n d o l y l ( 3 a ) - p r o p y l t o s y l a t e (148) was obtained,thereby i n d i c a t i n g t h a t - 188 -the cyanide i o n had p r e f e r e n t i a l l y attacked the carbonyl group thus causing removal of the carbobenzoxy f u n c t i o n a l i t y . An O-tosylate such as (148) seemed to be an a t t r a c t i v e intermediate s i n c e i t o f f e r e d an a l t e r n a t i v e f o r the extension of the s i d e chain. Thus, an attempt was made to o b t a i n (148) by c a r e f u l treatment of the amino a l c o h o l (121) w i t h one e q u i v a l e n t of p - t o l u e n e s u l f o n y l c h l o r i d e at 0°. However, the major product proved to be the N - t o s y l a t e (149) accompanied by some d i - t o s y l a t e (150). The amino a l c o h o l (121) was t h e r e f o r e t r e a t e d w i t h an excess of p - t o l u e n e s u l f o n y l c h l o r i d e to provide the d i - t o s y l a t e (150) i n an 83% y i e l d . Treatment of the l a t t e r w i t h potassium cyanide a f f o r d e d the d e s i r e d n i t r i l e (151). This intermediate was then converted to the corresponding a c i d (152) by means of 30% sodium hydroxide, thereby completing the s u c c e s s f u l extension of the s i d e chain. I t now became necessary to convert the N - t o s y l group to the b a s i c amino f u n c t i o n i n order to proceed towards the formation of the d i h y d r o c a r b o l i n e system. Various methods f o r the cleavage of sulfonamides are known and they b a s i c a l l y f a l l i n t o two c a t e g o r i e s ; a) r e d u c t i v e cleavage us i n g an a l k a l i metal*' 2 ^ or b) cleavage employing strong a c i d i c conditions*'"'' Treatment of the n i t r i l e - N - t o s y l a t e (151) w i t h sodium i n l i q u i d ammonia allowed a s u c c e s s f u l conversion to the n i t r i l e - a m i n e (153). Cleavage of the N - t o s y l a t e under a c i d i c c o n d i t i o n s was a l s o achieved by treatment of the a c i d (152) w i t h 80% s u l p h u r i c a c i d to provide the amino a c i d (154). However, due to i t s p o l a r nature the l a t t e r proved to he d i f f i c u l t to handle. I t was t h e r e f o r e decided to s u b j e c t the c a r b o x y l i c a c i d (152) to the p r e v i o u s l y used r e d u c t i v e c o n d i t i o n (sodium, l i q u i d ammonia) to generate the amino a c i d (154) which - 189 -TsCl I* KCN H C H 2 O H Ts CL N H 2 1 equ. (121) C H 2 O T s N H Ts (150),83% NaOH,30% C H g C N Na N H (151),95% ^ l i q u . N H 3 H (149),35% Ts (153),95% CN CH 2 1 NHo (152),93% H CH2CO2H NH Ts 80% H.SO. 2 4 Na,liqu.NH, N H (154),89% CH^CgH NH2 [(154)] |CH3OH,H C H 2 C O 2 C H 3 K l H 2  (155),76% from (151) CH2CO2CH3 (158),18% (156),83% F3CCOOH CH2CO2CH3 1 N H C H O CH2CO2CH3 (157),92% - 190 -would not be i s o l a t e d but d i r e c t l y converted to.the corresponding methyl ester (.155). The latterwas transformed to the N-formyl compound (156) by e i t h e r treatment with sodium hydride and methyl formate or a mixture of formic acid and a c e t i c anhydride. Treatment of (156) with t r i f l u o r o -a c e t i c a c i d provided the dihydrocarboline (157) which was not further p u r i f i e d but d i r e c t l y converted to the t e t r a c y c l i c ketone (158). The l a t t e r r eaction product consisted again of two components (C3 a and 8 isomers) i n an estimated (TLC) r a t i o of 9:1 with the more polar component i n predominance. Separation of t h i s mixture proved unsuccessful. I t i s to be remembered that one of the major goals of t h i s i n v e s t i g a t i o n was to synthesize an intermediate such as (76) f o r subsequent elaboration cx H (76) to the bridged a l k a l o i d s . I t w i l l therefore be necessary at some stage to generate an anion at C6a i n the hope that t h i s w i l l attack at C2, thus enabling the desired transannular c y c l i z a t i o n process. I t i s possible that two competing reactions could occur during formation of the C6a-anion, namely generation of the l a t t e r or the base-catalyzed e l i m i n a t i o n of the leaving group at C2 leading to the C2(3) ole f i n . ' In order, to suppress the eli m i n a t i o n process i t was hoped that anion formation could occur under very mild conditions. For t h i s purpose i t appeared d e s i r a b l e to further a c t i v a t e the proton to be removed by i n t r o d u c t i o n of an a d d i t i o n a l carbomethoxy or - 191 -aldehyde group at t h i s center (C6a). Since formation of the t e t r a c y c l i c ketone (158) o n l y proceeded i n very low y i e l d , i t became d e s i r a b l e to attempt an i n t r o d u c t i o n of the above-mentioned a d d i t i o n a l f u n c t i o n a l i t y at an e a r l i e r stage i n the sequence. For t h i s purpose the r e a c t i o n pathways g e n e r a l l y considered under Schemes C and D were now evaluated. Scheme C In order to int r o d u c e an a d d i t i o n a l f u n c t i o n a l i t y i n t o the s i d e chain of the tryptamine d e r i v a t i v e (155), the l a t t e r was t r e a t e d w i t h sodium hydride and dimethyl carbonate at room temperature as w e l l as a t 60°. Upon workup a complex mixture of compounds was obtained and t h i s was shown to c o n t a i n some s t a r t i n g m a t e r i a l (155), an N -carbomethoxylated compound (159), an I^-carbomethoxylated s p e c i e s (160) and a m a t e r i a l (161) possessing a carbomethoxy group at both n i t r o g e n centres, w i t h the l a t t e r being the major component. The d e s i r e d m a t e r i a l (162) could u n f o r t u n a t e l y not be detected. NaH C O 2 C H 3 (155) (CH 30) ?C0 f v H N H 2 (162) C 0 2 C H 3 G 0 2 C H 3 N C 0 2 C H 3 N H 2 C 0 2 C H 3 (159) JJ NH C 0 2 C H 3 (160) N C 0 2 C H 3 ; O 2 C H 3 N H c o 2 C H 3 (161) - 192 -These r e s u l t s suggested that the n i t r o g e n p o s i t i o n s had to be pr o t e c t e d i n some way. Since the N^-formji compound i s needed f o r the B i s c h l e r -N a p i e r a l s k i r e a c t i o n l e a d i n g to the d i h y d r o c a r b o l i n e s k e l e t o n , i t was decided to employ the p r e v i o u s l y s y n t h e s i z e d -formyl m a t e r i a l (156) and to p r o t e c t the i n d o l e n i t r o g e n w i t h a be n z y l group. I t was f e l t t hat (156) O2CH3 NaH NH C,H cCH 0Br CHO 6 5 2 0 3CNa If HC0 2CH 3,NaBH 4 CH 2OH O2CH3 N C H 2 C 6 H 5 (166),10% NH CHO ^ Y ^ C 0 2 C H 3 NH CHO CH2 C 6 H 5 (163),76% C 6 H 5 (165) the l a t t e r could l a t e r be removed by some r e d u c t i v e procedure. Thus (156) was s u c c e s s f u l l y converted to the N - i n d o l e - b e n z y l compound (163) by treatment w i t h sodium hydride and benzyl bromide. An attempted carbomethoxy-l a t i o n of compound (163) d i d , however, not lead to the d e s i r e d m a t e r i a l (164) but r e s u l t e d i n s t e a d i n formation of (165). A s u c c e s s f u l i n t r o d u c t i o n of a hydroxymethylene group i n t o the d e s i r e d p o s i t i o n was achieved by treatment of (163) w i t h triphenylmethylsodium and methyl formate. The i n i t i a l l y generated - 193 -aldehydo e s t e r was not i s o l a t e d but immediately converted to the corresponding a l c o h o l (166) by r e d u c t i o n with, sodium borohydride-The d e s i r e d m a t e r i a l was only obtained i n a 10% o v e r a l l y i e l d , thus making t h i s procedure not very f a v o r a b l e . Since the amino n i t r i l e (153) was a v a i l a b l e from an e a r l i e r i n v e s t i g a t i o n , i t was a l s o p o s s i b l e to study the f e a s i b i l i t y of m o d i f i c a t i o n i n t h i s s i d e chain. This compound was t h e r e f o r e converted to the N^-formyl m a t e r i a l 68 (167) by treatment w i t h sodium methoxide and methyl formate . The i n d o l i c n i t r o g e n was p r o t e c t e d by formation of the ^ - b e n z y l d e r i v a t i v e (168a)through r e a c t i o n of sodium, hydride and b e n z y l bromide w i t h compound (167). A s m a l l amount of the d i - b e n z y l component (168b) was a l s o obtained from t h i s procedure. (153) NH N ^ CHO H (167),58% NaH,C,H CH„Br HMD) < I NaH 'N CHO 2 > D 2 ° HC(D) Z (169) " (168a),R = H (168b),R CH 2C 6H 5 S e v e r a l attempts were made to i n t r o d u c e a carbomethoxy group i n t o the n i t r i l e c o n t a i n i n g s i d e chain by. u s i n g sodium h y d r i d e and methyl chloroformate, however, only s t a r t i n g m a t e r i a l was recovered i n each case. I t was t h e r e f o r e decided to s u b j e c t the N - b e n z y l n i t r i l e (168a) to more severe c o n d i t i o n s . The m a t e r i a l was thus heated f o r a short p e r i o d of time at 100° w i t h a ten f o l d excess of sodium h y d r i d e , the r e a c t i o n mixture was then cooled and - 194 -quenched w i t h deuterium oxide. The recovered m a t e r i a l (169) was subjected to a mass sp e c t r o m e t r i c i n v e s t i g a t i o n to determine i f and where i n c o r p o r a t i o n of deuterium had taken p l a c e . Compound (169) e x h i b i t e d a molecular i o n at m/e 317 (C2QH.J^N.JO) w i t h a r e l a t i v e i n t e n s i t y of 36.9%. The c a l c u l a t e d i n t e n s i t y f o r the M+l i o n (m/e 318) i s 8.8%, however, the mass spectrum i n d i c a t e d a M+l i o n of 23.6% r e l a t i v e i n t e n s i t y . Therefore a 29% i n c o r p o r a t i o n of one deuterium atom had taken p l a c e or i n other words the non-deuterated and deuterated compounds ? H 2 C H ° C 6 H 5 9 ( " 8 a ) C20 H19 N3° " 3 1 7 C 6 H 5 C19 H16 N2 " 2 7 2 i i C4H5N20 ( icraC) CH2 C16*lt,» " 220 C,a6N - 128 C 8H 6 - 102 Figure 14. Mass spe c t r o m e t r i c fragmentation scheme f o r compound (168a). - 195 -are present In a 1:0.4 r a t i o . Upon i n s p e c t i o n of the mass spectrometries data of compound (168a) the fragmentation scheme o u t l i n e d i n F i g u r e 14 i s suggested, the ions portrayed are supported by h i g h r e s o l u t i o n mass measurements. Table I i n c o r p o r a t e s data f o r the undeuterated (168a) and deuterated species (169). I t l i s t s the r e l a t i v e i n t e n s i t i e s f o r the observed ions (M) as w e l l as the c a l c u l a t e d and observed i n t e n s i t i e s f o r the M+l s a t e l i t e peaks. A l s o i n d i c a t e d are the v a r i o u s c a l c u l a t e d r a t i o s f o r M+l obs./M. R e l . i n t e n s . f o r compound (168, a) and compound (169) i o n m/e(M) M M+l M+l M+l obs./M M M+l M+l obs c a l c . obs. obs. a 317 8.4 2.0 1.6 0.19 36.9 23.6 0.64 b 272 8.3 1.8 1.8 0.21 35.7 21.4 0.60 c 97 1.0 0.05 0.1 0.1 0.8 0.2 0.25 d 220 58.1 10.7 10.0 0.17 76.4 52.0 0.67 e 129 5.1 0.5 2.7 0.53 23.3 10.5 0.45 f 91 100.0 . 8.0 12.7 . 0.13 100.0 46.3 0.46 g 128 1.9 0.2 5.5 h 102 3.6 0.3 1.4 0.39 11.6 4.6 0.40 Table I . R e l a t i v e i n t e n s i t i e s (%) of v a r i o u s mass sp e c t r o m e t r i c ions f o r compounds (168a) and (169). S u b s t a n t i a l changes can he observed i n the s a t e l l i t e peaks (M+l) and the corresponding M+l ohs./M.ratios. The i n c r e a s e (decrease) i n ;M+1 obs./M f o r each i o n i s l i s t e d i n Table I I as. a f a c t o r of the values observed i n the undeuterated m a t e r i a l (168a). Thus f a c t o r i a l _ M+l obs./M, deut. - M+l obs./M, undeut. i n c r e a s e M+l obs./M, undeut. - 196 -ion a b c d e f h f a c t o r i a l increase 2.36 1.85 1.5 2.94. CO.15) 2.54 0.02 (decrease) Table I I . F a c t o r i a l increase (decrease) i n M f l obs./M f o r various ions i n the transformation (168a) (169). I f no incorporation of deuterium into a p a r t i c u l a r ion has taken place the f a c t o r should be zero, while a f a c t o r >0 ind i c a t e s that incorporation has occurred. Upon inspe c t i o n of Table I I one comes (within experimental error) to the following conclusion; the fa c t o r s of ions a_ and f_ are v i r t u a l l y i d e n t i c a l , thus suggesting that the major portion bf deuterium has been introduced at the be n z y l i c p o s i t i o n . This argument i s supported by the fac t that the ions a, b_ and d possessing the benzyl group are of greater abundance i n the spectrum of the deuterated species (169). This i s to be expected since f i s s i o n of a N-CDH bond i s presumably more d i f f i c u l t then a N-CI^ bond. Some deuterium has been also incorporated into the sec t i o n of the molecule portrayed by ion (i, i t i s suggested that p a r t i a l exchange took place at the nitrogen p o s i t i o n . Support f o r t h i s assignment comes from the f a c t o r i a l decrease i n going from ion a to b during which time the amide grouping i s removed. Furthermore i t has already been noted that a small amount of di-benzoate (168b) was formed during the reaction of (167) with sodium hydride and benzyl bromide. Since v i r t u a l l y no change has taken place i n ions e_ and h upon deuteration i t i s assumed that the 3-methyleneindolenine moiety (ion e) did not incorporate any of the deuterium. The above assignments are also supported by a decrease (y 15%) of the nmr s i g n a l due to the methylene protons i n the N^-benzyl group. The - 197 -s i g n a l due to.NR was a l s o of lower i n t e n s i t y (V 5%) i n the nmr spectrum of compound (169), The i n f r a r e d data of compounds (168a) and (169) permitted a l s o c e r t a i n conclusions which are i n agreement w i t h the above observations. The s t r e t c h i n g frequency v of a diatomic molecule composed of atoms w i t h masses m and m' can be expressed by the f o l l o w i n g equation: where c i s the v e l o c i t y of l i g h t , and f i s the f o r c e constant (bond s t r e n g t h or bond order corresponding t o Hooke's constant of s p r i n g s ) . The s t r e t c h i n g frequencies of X-H bonds and m u l t i p l e bonds can a l s o be approximated by the same exp r e s s i o n , and i t can be seen that bonds of higher order absorb a t higher f r e q u e n c i e s , provided the masses of bonded atoms are i d e n t i c a l . Q u a l i t a t i v e l y , the bending frequencies can a l s o be t r e a t e d i n the same f a s h i o n . I f i t i s assumed t h a t the f o r c e constants of X-H and X-D are i d e n t i c a l and that the mass r a t i o of H and D i s 1:2, the wave number r a t i o of s t r e t c h i n g frequencies deduced from the above equation becomes: where m i s the mass of atom X. Thus, the r a t i o s of bonds NH-ND and CH-CD x . . . are, r e s p e c t i v e l y , 1.37 and 1.36 (roughly /~2). The X-H bending f r e q u e n c l behave s i m i l a r l y . Therefore, frequencies of bands a s s o c i a t e d w i t h D-containing bonds are at approximately I j J l t h o s e of the corresponding H-containing bonds^^. - 198 -The i n f r a r e d spectrum of compound (168a) e x h i b i t s v a r i o u s bending frequencies i n the region of 1360-1460 cm 1 corresponding t o the -CH^-C^C grouping. In the spectrum of the deuterated species (169) a new group of bands (960-1030 cm ^) has appeared i n accord w i t h the for e g o i n g d i s c u s s i o n and i n support of a p a r t i a l d e u t e r a t i o n at the b e n z y l i c p o s i t i o n . Corresponding frequencies could not be found f o r the NH group. In order t o avoid anion formation at the b e n z y l i c p o s i t i o n of compound (168a) the use of a b u l k i e r base was considered. Thus, the N -benzyl m a t e r i a l (168a) was t r e a t e d w i t h one e q u i v a l e n t of d i i s o p r o p y l l i t h i u m amide 68 and methyl chloroformate i n an attempt to generate (170) . However, r e a c t i o n was only observed at the a l i p h a t i c n i t r o g e n l e a d i n g to (171) and (172). CO2CH3 'CN NH CH 2 C 6 H 5 ( 1 ? 0 ) C 6 H 5 (168a) NCO2CH3 (171) , 79%, R = CHO (172) , 12%, R « H Scheme D As a r e s u l t of the d i f f i c u l t i e s encountered w i t h the i n d o l i c systems (155), (.163) and (168a) i t was decided to u t i l i z e , the t r i c y c l i c d i h y d r o c a r b o l i n e s k e l e t o n as the s t a r t i n g substance. Thus, compound (163) was t r e a t e d w i t h - 199 -t r i f l u o r o a c e t i c . a c i d to produce upon workup the d e s i r e d d i h y d r o c a r b o l i n e ( 1 7 3 ) . (163) (173), 92% The mass sp e c t r o m e t r i c data obtained f o r compound (173) suggest the presence of the major ions portrayed i n Figure 15. High r e s o l u t i o n mass measurements are i n support of the o u t l i n e d fragments. C 7H 7 - 91 D C11 H8 N2 " 1 6 8 Figure 15. P o s t u l a t e d mass s p e c t r o m e t r i c i o n s f o r compound (173). The c h a r a c t e r i s t i c fragmentation p a t t e r n f o r compound (173) makes i t a t t r a c t i v e to u t i l i z e mass spectrometry to i n v e s t i g a t e p o s s i b l e s i t e s - 200 -i n the molecule which are s u s c e p t i b l e to anion formation. A l s o , i n order to avoid generation of an anion a t the b e n z y l i c s i t e i t was decided to employ the s t e r i c a l l y more hindered base d i i s o p r o p y l l i t h i u m amide. Thus, the d i h y d r o c a r b o l i n e compound (173) was t r e a t e d w i t h the l a t t e r a t -78° and the r e a c t i o n was quenched w i t h D^ O. I t should be mentioned that the (2L N l U H H ^ T . ^ W A A ^ N ^ 3 / ^ Y ^ C 0 2 C H ; '3 N ^ \ ^ l ) ( C Q H 7 ) 0 N L i 7 C H 2 ON SrJ' 1 HC(D) (173) (174),20% d e s i r e d deuterated m a t e r i a l (174) was only obtained i n very low y i e l d (20%). The d i h y d r o c a r b o l i n e compounds p r e v i o u s l y i n v e s t i g a t e d i n t h i s study have g e n e r a l l y been f a i r l y l a b i l e and were normally d i r e c t l y converted to the corresponding t e t r a c y c l i c systems. Perhaps t h i s i n s t a b i l i t y may account f o r the low y i e l d observed during the i s o l a t i o n of the deuterated d i h y d r o c a r b o l i n e . Nevertheless i t proved to be worthwhile to examine more c l o s e l y the mass spec t r o m e t r i c r e s u l t s obtained f o r compounds (173) and (174). The conclusions drawn below are considered to be of a s e m i q u a n t i t a t i v e nature o n l y . Table I I I l i s t s the va r i o u s data observed f o r the mass s p e c t r o m e t r i c ions (Figure 15) of compound (173) and i t s deuterated analog (174). The f a c t o r i a l i n c r e a s e s f o r M+l/M and M+2/M, ( l i s t e d a t hottom of Table I I I and c a l c u l a t e d as p r e v i o u s l y descrihed) obtained f o r the conversion (173) (174) c l e a r l y i n d i c a t e that p o s s i b l y two deuterium atoms have been i n c o r p o r a t e d . No deuterium i s present i n i o n cl, but ions a (and t h e r e f o r e b_) and c show a s i g n i f i c a n t i n c o r p o r a t i o n . In the parent i o n £ the M+2 peak i s the stro n g e s t - 201 -Ions observed (Figure 15) (173) (174) a h c d e m/e(H) -* 332 259 181 168 91 int.obs.M 10.9 93.5 25. 7 37.9 100.0 i n t . obs .Mfl 2.4 27.5 7. 1 6.7 12.4 int.obs.M+2 0.2 2.8 1. 0 0.5 1.6 M+l/M 0.22 0.29 0. 28 0.18 0.12 M+2/M 0.02 0.03 0. 04 0.01 0.02 int.obs.M 9.4 82.5 13. 6 71.9 . 90.0 int.obs.M+l 13.5 90.9 34. 8 13.9 100.0 int.obs.M+2 15.3 68.4 22. 4 3.2 47.2 M+l/M 1.43 1.10 2. 56 0.19 1.10 M+2/M 1.63 0.83 1. 65 0.04 0.53 F a c t o r i a l i ncrease f o r M+l/M 5.5 2.5 8. 1 0 8.2 M+2/M 80.5 26.7 40. 2 3 25.0 Table I I I . Mass s p e c t r o m e t r i c data f o r major ions observed i n compound (173) and the deuterated analog (174). one whereas i n ions £ and e_ (b) the M+l species i s of g r e a t e s t abundance; t h i s again suggests p o s s i b l y two deuterium atoms i n the molecular i o n a_ and approximately one deuterium each i n i o n s c: and e_ (b) . This r e s u l t was considered to be very encouraging s i n c e i t o b v i o u s l y had been p o s s i b l e to generate an anion at the d e s i r e d p o s i t i o n i n the s i d e chain of compound (173). However, i n view of the poor y i e l d of the d e s i r e d m a t e r i a l (174) i t was decided to convert the d i h y d r o c a r b o l i n e (173) to the t e t r a c y c l i c ketone (175) using e a r l i e r e s t a b l i s h e d c o n d i t i o n s . Compound (175) was shown (TLC) t o be a mixture of two components (y 9:1, w i t h the more p o l a r one i n predominance)and r e s i s t e d attempts of s e p a r a t i o n due t o e p i m e r i s a t i o n (at C3),as observed e a r l i e r . The i n f r a r e d spectrum e x h i b i t e d Bohlmann bands (2880-2800 cm ) thereby e s t a b l i s h i n g the C12b-aH - 202 -(173) (175), 33% c o n f i g u r a t i o n ; frequencies due to the k e t o n i c and e s t e r f u n c t i o n a l i t i e s are a l s o present, (1725, 1710 cm" 1). The m a t e r i a l e x h i b i t s a t y p i c a l i n d o l e spectrum i n the u l t r a v i o l e t r e g i o n (277, 284 and 293 nm). The nmr spectrum i n d i c a t e d the presence of the C3b methyl group by v i r t u e of a t r i p l e t at 5 0.90 ( J = 7 Hz); a s i n g l e t due to the methyl e s t e r was observed at 3.60; a doublet ( J = 3 Hz) appeared at 5.23 due to two b e n z y l i c protons and the aromatic r e g i o n (6.80-7.60) supported the presence of 9 protons. With the exception of the b e n z y l i c and aromatic protons no other resonance could be observed below 6 3.90, thus a l s o supporting the C12b-aH stereochemistry. The mass s p e c t r o m e t r i c fragmentations of t e t r a c y c l i c a l k a l o i d s possessing a corynanthe l i k e s k e l e t o n have been i n v e s t i g a t e d i n considerable d e t a i l 7 1 and the most prominent fragments observed f o r compound (175) and r e l e v a n t to t h i s d i s c u s s i o n are o u t l i n e d i n Figure 16. Compound (175) was subjected to a d e u t e r a t i o n study u s i n g d i i s o p r o p y l -l i t h i u m amide and D2O, and i n t h i s case the deuterated species (176) was obtained i n 40% y i e l d . This r e s u l t c l e a r l y i n d i c a t e d the higher s t a b i l i t y of the t e t r a c y c l i c system when compared w i t h that of the d i h y d r o c a r b o l i n e m a t e r i a l (173) i n which only a 20% y i e l d was observed. - 203 -C27H29N2°3 - 429 O2CH3 N - side chain,C6 C18 H15 N2 " 2 5 9 N C18 H16 N " 2 4 6 -> b C24 H25 N2° - 357 C20 H23 N2°3 - 339 C ?H 7 - 91 C UH 8N 2 - 168 Figure 16. Major fragments of compound (175) observed i n the mass spectrometer. Table IV in c o r p o r a t e s the v a r i o u s mass spe c t r o m e t r i c data f o r compounds (175) and (176) and f o r the fragments p o s t u l a t e d i n these cases as o u t l i n e d i n Figure 16. I t i s to be expected that i n c o r p o r a t i o n of deuterium might a l s o occur at p o s i t i o n s C l and C3, however, i t was f e l t that s u f f i c i e n t evidence would be obtained to decide whether the d e s i r e d i n c o r p o r a t i o n had taken place i n the s i d e chain at C6. The f a c t o r i a l i n c r e a s e f o r M+l/M, JM+2/M. and M+3/M.suggests that one or more deuterium atom have heen i n c o r p o r a t e d i n t o (175). I n p a r t i c u l a r the one u n i t mass s h i f t observed i n the parent i o n a (or the M-l ion) i s i n f u l l support - 204 -Iona observed (Figure 16) f o r compounds (175) and (176) a h d e f_ SL m/e(M) -»- 430 357 338 91 259 246 168 i n t . o b s .M 50.7 72.6 34.9 100 45.9 41.0 31.0 int.obs.M-1 48.1 3.3 17.9 6.8 int.obs.M+l 20.0 53.6 8.0 20.0 11.0 10.1 7.4 int.obs.M+2 2.9 14.2 1.3 1.1 1.5 2.0 int.obs.M+3 0.2 2.1 M+l/M 0.39 0.73 0.23 0.20 0.24 0.25 0.24 M+2/M 0.05 0.19 0.04 O.01 0.03 0.05 M+3/M 0.001 0.03 int.obs.M 52.5 82.3 7.0 100 57.9 27.2 37.1 int.obs.M-1 1.0 1.3 29.9 6.8 int.obs.M+l 57.4 79.8 24.4 32.6 16.7 41.5 15.3 int.obs.M+2 53.7 61.0 30.5 2.8 3.5 11.1 int.obs.M+3 24.1 22.3 M+l/M 1.09 0.97 3.50 0.32 0.29 1.57 0.41 M+2/M 1.02 0.74 4.35 0.03 0.06 0.41 M+3/M 0.46 0.27 F a c t o r i a l i n c r e a s e f o r M+l/M 1.8 0.33 14.2 0.6 0.21 5.3 0. 7 M+2/M 19.5 2.9 108 2 1 7.2 M+3/M (460) 8 Table IV. Mass sp e c t r o m e t r i c data observed f o r major ions i n compound (175) and i t s deuterated analog (176). of at l e a s t one deuterium atom being present i n (176). The major p o r t i o n of the deuterium i s l o c a t e d i n the d e s i r e d p o s i t i o n at C6a as the data f o r i o n c (which has l o s t the h e h z y l group) i n d i c a t e . Upon removal of the s i d e chain ( i o n b_) a s i g n i f i c a n t decrease can be observed i n the " f a c t o r i a l i n c r e a s e " as l i s t e d i n Table IV. The data f o r i o n s d and e suggest some i n c o r p o r a t i o n of deuterium at the h e n z y l i c p o s i t i o n . A comparison of the data f o r ions e_ and f_ suggests that i n c o r p o r a t i o n has a l s o occurred a t the C l p o s i t i o n i n (175). Very l i t t l e change i s observed i n i o n £, however, the - 205 -data could suggest a s l i g h t i n c o r p o r a t i o n of deuterium at C7 i n (175). Extensions of Schemes A-^ D A f t e r the encouraging r e s u l t from the d e u t e r a t i o n study on the t e t r a c y c l i c ketone (175) i t became necessary to attempt an i n t r o d u c t i o n of a carbo-methoxy group at the C6a p o s i t i o n . As mentioned e a r l i e r , the t e t r a c y c l i c ketone (175) c o n s i s t s of two in s e p a r a b l e components b e l i e v e d to be the C3 isomers. An attempt was made t o epimerize (175) u s i n g sodium ethoxide i n methanol, however, the product from t h i s r e a c t i o n s t i l l c o n s i s t e d of two components. Therefore (175) was converted i n good y i e l d (80%) to the corresponding ethylene k e t a l (177). The nmr spectrum (Figure 17) of the l a t t e r e x h i b i t e d a t r i p l e t ( J = 5 Hz) at 6 0.88 due to the C3b-methyl-group; a s i n g l e t at 3.60 f o r the methyl e s t e r , a s i n g l e t (5.22) due to two b e n z y l i c protons and 9 hydrogens i n the aromatic r e g i o n (6.90-7.60). (178), 30% - 207 -Treatment of the k e t a l (177) w i t h d i i s o p r o p y l l i t h i u m amide and methyl chloroformate a f f o r d e d the d e s i r e d compound (178) possessing the malonic e s t e r s u b s t i t u e n t at C6. Some s t a r t i n g m a t e r i a l (177) was a l s o recovered. Compound (178) e x h i b i t s a t y p i c a l i n d o l i c u l t r a v i o l e t spectrum w i t h absorption maxima at 277, 283 and 293 nm. The i n f r a r e d spectrum of the s t a r t i n g m a t e r i a l (177) e x h i b i t e d a s i n g l e frequency (1760 cm ^) due t o a carbonyl s u b s t i t u e n t . The malonic e s t e r d e r i v a t i v e (178), e x h i b i t s two bands i n t h i s p a r t i c u l a r frequency range, namely at 1695 and 1775 cm 1 . Malonic e s t e r s i n general do e x h i b i t two carbonyl f r e q u e n c i e s , f o r -1 74 instance d i e t h y l malonate has bands at 1731 and 1747 cm (CHCl^) . I t i s b e l i e v e d that the p r o x i m i t y of the unshared e l e c t r o n p a i r on the n i t r o g e n atom to the C6-malonic e s t e r group does account f o r the increased d i f f e r e n c e between the two bands observed i n the case of compound (178). The nmr spectrum (Figure 18) e x h i b i t s resonances f o r the C3b-methyl group at 6 0.87 ( t r i p l e t , J = 6 Hz); two methyl s i n g l e t s are observed at 3.53 and 3.81; a downfield s h i f t f o r a one proton resonance (4.19, doublet, J = 9 Hz, C6a-H) i s observed; a s i n g l e t due to two b e n z y l i c hydrogens i s present at 5.25 and the complex aromatic r e g i o n (6.87-7.63) i s e q u i v a l e n t to 9 protons. The mass sp e c t r o m e t r i c fragmentations of s u b s t i t u t e d d i a l k y l malonates 75 76 have been s t u d i e d i n some d e t a i l ' . I t has been found that the most important r e a c t i o n o c c u r r i n g upon e l e c t r o n impact leads to e n o l i c fragment i o n s (c,f_ and i ) . A molecular i o n i s g e n e r a l l y observed only f o r those cases i n which the M c L a f f e r t y rearrangement (M + h) i s only of minor importance. Thus, i n case of compound (178) a molecular i o n i s observed. P o s s i b l e fragmentation pathways f o r the malonic e s t e r d e r i v a t i v e (178) are o u t l i n e d i n Figure 19. > 0 I - 209 -O 0 2 C H 3 |j jT J C 0 2 C H 3 9 H 2 T J O O ] (178), M , m/e 532 C 3 1 H 3 6 N 2 ° 6 O C H 3 R - C H KJT! \ | L C ^ C H 2 M + , m/e 532 R - C H = C O e m/e 442 " <*2°>2 H20 OCH 3 > c=o+ R - C H CO2CH3 2 m/e 501 CO R - C H - C O ^ H s b m/e 473. C ^ N ^ R - C H = C N , O H •OCH3 C m/e 474, C ^ H ^ V , O H R - C H = C O H (j m/e 460 X % , O H ,, Y-' C H - C H = C ^ 1 1 / t f N Q C H 3 N - ^ ; \ C 6 H 5 C « / e 474 9 m/e 387, C ^ H ^ O j C H 2 - C H = Q , O H OCH3 _f m/e 87, C 4 H ? 0 2 C H 2 - C H = C O <-m/e 55 CH2-CH=Q , O H O H m/e 73 Figure 19. Mass sp e c t r o m e t r i c fragmentations f o r compound (178). - 210 CO2CH3 C 6 H 5 1 O O • 1 1 i /POH CH CO2CH3 m/e 118 V H20 CH CO2CH3 m/e 100 h m/e 400 + QH COCH3 CH CO2CH3 1 m/e 132 Figure 19 continued. Fragments corresponding t o ions p o r t r a y e d i n Figure 19 have been observed i n the mass spectrum of compound (178) and were confirmed by high r e s o l u t i o n mass measurements. 77 Ethylene k e t a l s of cyclohexanones e x h i b i t primary a-cleavage (-*• a) i n the mass spectrometer, f o l l o w e d by hydrogen t r a n s f e r from the a l l y l i c to the 5|6 4J5 a y 0 * *CH 2 O - 211 -primary s i t e with, f i n a l formation of b_. The only other fragment of some importance a r i s e s from s c i s s i o n of the a l l y l i c a l l y a c t i v a t e d C5,6-bond i n a and may be portrayed as _c. I n case of s u b s t i t u t i o n i n p o s i t i o n C2 or C6, the bond l e a d i n g to the more h i g h l y s u b s t i t u t e d r i n g carbon i s broken p r e f e r e n t i a l l y d u r ing the primary a-cleavage. In accordance w i t h these observations compound 0-78) e x h i b i t s fragments corresponding to ions d^ e^  and f_. As expected i o n e_ i s of g r e a t e r abundance than i o n d. m/e 86, C^Oj, Through the s u c c e s s f u l formation of the malonic e s t e r d e r i v a t i v e (178) the d e s i r e d s i d e chain at C6 which possesses a h i g h l y a c t i v a t e d a c i d i c proton (C6a) was now o b t a i n a b l e . - 212 -Attention was now drawn to the development of a s u i t a b l e leaving group at p o s i t i o n C2 i n the t e t r a c y c l i c keto ester (175). Thus, i t was d e s i r a b l e to reduce the ketone to the corresponding a x i a l C2 al c o h o l which could then be converted to other f u n c t i o n a l groups. Therefore, (175) was treated with sodium borohydride i n tetrahydrofuran to a f f o r d the a l c o h o l (179) which had the undesired e q u a t o r i a l c o n f i g u r a t i o n . Treatment of the al c o h o l (179) with a c e t i c anhydride and py r i d i n e afforded the corresponding acetate (180)„ The desired a x i a l C2 a l c o h o l (181) was 72 obtained by treatment of (175) with isobornyloxy aluminum chloride ; a small amount of the 8-alcohol (179) was also present and separation of the two isomers was achieved by high pressure l i q u i d chromatography. Treatment of the a l c o h o l (181) with a c e t i c anhydride i n p y r i d i n e afforded the corresponding acetate (182). :02CH3 NaBH 4 •5> :02CH3 (179) , R = (180) , R = H, 67% Ac, 47% V - 213 R = CH 2C0 2CH 3 (179),(180) (181),(182) Inspection of the nmr s i g n a l s normally a t t r i b u t e d to C12b- and C2-protons (Table V) i n compounds (179) - (182) supports the configurations i n d i c a t e d above. C12b-H g-alcohol (179) < 3.80 (multiplet) 8-acetate (180) < 3.80 (multiplet) a-alcohol (181) 3.92 (multiplet) a-acetate (182) < 3.80 (multiplet) C2-H < 3.80 (multiplet) 4.50 (doublet of doublet, J = l l and 4Hz) 4.00 (multiplet) 5.13 (multiplet) Table V. Chemical s h i f t s (<5) f o r C12b- and C2-protons i n compounds (179) -(182). Differences i n chemical s h i f t s or i n the s i g n a l patterns between an a x i a l and an e q u a t o r i a l proton have been used to estimate the configuration of t h i s substituent. An a x i a l proton i n a cyclohexane r i n g resonates generally 73 at a higher f i e l d than does i t s e q u a t o r i a l counterpart Differences In chemical s h i f t s of the C2 protons i n the a x i a l and e q u a t o r i a l isomers r e v e a l that above assignments of configuration are correct. Moreover, the chemical s h i f t (<5 3.92) of the C12b proton i n the t e t r a c y c l i c a l c o h o l (181) bearing the a (or a x i a l ) hydroxyl group moved to higher f i e l d (< 3.80) upon formation of the acetate (182). This r e s u l t supports a 1,3-diaxial r e l a t i o n s h i p between the C12b-proton and the C2-a oxygen f u n c t i o n a l i t y . This alcohol (181) was converted to the corresponding mesylate (183) by treatment with mesyl chloride i n p y r i d i n e . However, the l a t t e r product proved to be quite unstable. Treatment of the mesylate with aluminum oxide - 214 -(187),84% (183),74% (184),43% from (181) (186),65% ClCOC,H.pNO, OH t }L (188),75% T OH 6co ^6H4pN02 at room temperature converted i t to the C2-C3 o l e f i n (184). The p - n i t r o -78 benzoate (185) obtained from the a l c o h o l (.181) proved to be of g r e a t e r s t a b i l i t y than the mesylate. The o l e f i n (184). was a l s o o b t a i n a b l e by 78 dehydration of the a l c o h o l (181) w i t h phosphorus o x y c h l o r i d e . Osmium t e t r o x i d e converted the o l e f i n (184) to the C2, C3-a d i o l (186) - 215 -which could be transformed to the d i a c e t a t e (187) or the mono p - n i t r o -78 benzoate d e r i v a t i v e (188) The t e t r a c y c l i c d i a c e t a t e (187) e x h i b i t e d Bohlmann bands i n i t s i n f r a r e d spectrum. Thus, one has to consider four p o s s i b l e conformations of r i n g D. The estimated coupling constants (molecular models) between the C2 proton and the two hydrogen atoms at C l are l i s t e d i n each case. J y_ 4-6 Hz J -v 10 Hz J ^ 4-6 Hz j 4-6 Hz Conformers A and p_ are excluded by the nmr spectrum of the t e t r a c y c l i c d i a c e t a t e which e x h i b i t s only s m a l l c o u p l i n g constants ( J = 3.5 Hz) between the C2 proton and the two hydrogens on C l . Moreover, the C12b-H s i g n a l (<5 3.95) of the t e t r a c y c l i c d i o l (186) s h i f t e d to higher f i e l d (3.6) upon formation of the d i a c e t a t e , thereby suggesting a 1 , 3 - d i a x i a l r e l a t i o n s h i p between the C12b proton and the C2-oxygen f u n c t i o n . Thus, the d i a c e t a t e (187) and d i o l (186) are assigned conformation C. - 216 -In compounds such as (186), (187) and (188), a C6a-anion would be expected to a t t a c k p r e f e r e n t i a l l y at the C2 p o s i t i o n thus l e a d i n g to formation of the d e s i r e d bridged systems. The C 3 - f u n c t i o n a l i t y (OH or OAc) i s thus •CO2CH3 (186) , R = R' = H (187) , R = R1 = OAc (188) , R = COC 6H 4pN0 2, R' = H a v a i l a b l e f o r e l a b o r a t i o n to the C3-3a u n s a t u r a t i o n v i a dehydration or e l i m i n a t i o n of a c e t i c a c i d . This would permit e n t r y i n t o the s y n t h e s i s of those a l k a l o i d s which possess the C3 e x o c y c l i c double bond. The l a s t aspect to be i n v e s t i g a t e d i n t h i s study was the tr a n s f o r m a t i o n of the t e t r a c y c l i c corynanthe l i k e system t o the t r i c y c l i c s k e l e t o n possessing the 10-membered r i n g generated by cleavage of the C-D r i n g j u n c t i o n . As mentioned e a r l i e r , the achievement of t h i s t r a n s f o r m a t i o n would serve s e v e r a l purposes, namely e n t r y i n t o the vobasine-type a l k a l o i d s and at the same time a higher f l e x i b i l i t y of the s t r u c t u r a l framework, thus, p o s s i b l y promoting the transannular c y c l i z a t i o n . Therefore, the t e t r a c y c l i c a l c o h o l (181) was transformed to the corresponding methiodide (189) which was not i s o l a t e d but d i r e c t l y converted to the de s i r e d t r i c y c l i c a l c o h o l (190) by r e d u c t i v e cleavage of the C-D r i n g 78 j u n c t i o n . The t r i c y c l i c a l c o h o l (190) d i d not e x h i b i t any Bohlmann bands i n the i n f r a r e d spectrum. The a l c o h o l and e s t e r f u n c t i o n a l i t i e s were s t i l l d e tectable i n the nmr spectrum. The mass s p e c t r o m e t r i c data support the fragmentation processes suggested i n Fi g u r e 20. - 217 -Loss of the s i d e chain at C6, which had been a prominent process i n the t e t r a c y c l i c compounds, i s not observed. A l i p h a t i c a l c o h o l s tend to y i e l d an M-l and M-2 i o n i n the mass spectrometer. A c c o r d i n g l y i o n s are observed a t m/e 447 and 446 i n the case of compound (190). A fragment (m/e 430) due to l o s s of water i s a l s o present. The e l i m i n a t i o n of water i s f r e q u e n t l y coupled w i t h e x p u l s i o n of ethylene, thus, i o n a_ i s 79 thought to be generated by t h i s process . A very prominent fragment ( i o n b) i s b e l i e v e d t o r e s u l t from the (M-Ho0) i o n by e l i m i n a t i o n of C0H,N as i n d i c a t e d i n Figure 20. Ion b_, i n t u r n , could le a d to ions c, <I, a, _f and j». Loss of the be n z y l group from the parent i o n accompanied by a-cleavage at b o t h n i t r o g e n s could le a d to i o n h. Formation of a six-membered c y c l i c i o n i s f r e q u e n t l y observed i n the mass 80 spectrum of a l i p h a t i c amines . Thus, the parent i o n i s envisaged to rearrange to i o n i , which could undergo a f a c i l e fragmentation process a t C12 as i n d i c a t e d . Fragments (m/e 306 and 142) corresponding to the l a t t e r are present i n the mass spectrum of compound (190). An i d e n t i c a l process i s - 218 -Figure 20. Mass spe c t r o m e t r i c fragmentation scheme f o r compound (190). - 219 -H O2CH3 (M - H20) C20H20N02 ' / m/e 124,8Z, Figure 20 continued. observed f o r the M-R^O species ( i o n a ) . A second s u c c e s s f u l 10-membered r i n g formation was achieved by treatment of the k e t a l (177) w i t h a c e t i c anhydride. Two components (191,a and b) were obtained, they are b e l i e v e d to he the Cl2b isomers, however, conc l u s i v e evidence to t h i s e f f e c t has not been obtained as y e t . Both m a t e r i a l s e x h i b i t a t y p i c a l i n d o l e spectrum i n the u l t r a v i o l e t r e g i o n . T h e i r i n f r a r e d s p e c t r a possess i d e n t i c a l bands at frequencies c h a r a c t e r i s t i c of —1 -1 e s t e r - (1720 cm , broad) and t e r t i a r y amide- (1645 cm ) f u n c t i o n a l i t i e s . - 220 -° 2 C H 3 Ac 20 O2CH3 6 5 0 0 (177) (191),a,47% b,18% The nmr spectra exhibit an additional methyl resonance due to the N, -acetate, b The C12b-acetate i s observed i n the aromatic region and a comparison of 1 1 1 1 1 1 ii 1 1 ; 1 1 (177) (191)a,b Figure 21. Aromatic region i n the nmr spectra of compounds (177) and (191)a,b. - 221 -t h i s p a r t i c u l a r r e gion (.Figure 21) i n the s t a r t i n g m a t e r i a l (177) and products (191a,b). r e v e a l s the d r a s t i c change which has taken p l a c e . I n s p e c t i o n of molecular models f o r compounds (191) a and b i n d i c a t e d that the methyl group of the C12h-acetate does i n f a c t l i e i n c l o s e p r o x i m i t y t o the benzene r i n g of t h e N -be n z y l group, thus e x p l a i n i n g the very low a f i e l d appearance of the acetate i n the nmr spectrum. The mass s p e c t r a of compounds (191) a and b e x h i b i t a parent i o n of low abundance (1%) at m/e 576. A fragment due to the l o s s of a c e t i c a c i d (+ C l , C12b o l e f i n ) i s observed a t m/e 516 (100%, C 3 1 H 3 5 N 2 0 5 ) accompanied by an i o n at m/e 425 (70%, C24 H29 N2°5^ d u e t 0 r i s s i o n o r t n e b e n z y l group from the l a t t e r . The l o s s of both acetate groups from the parent i o n i s i n d i c a t e d by the presence of an i o n at m/e 473 (22%, C29 H33 N2°4^ * Compounds (191) a and b a l l o w e n t r y i n t o the l a r g e f a m i l y of 2-acyl 30 i n d o l e a l k a l o i d systems [e.g. (192)] by known procedures . O2CH3 C 6 H 5 (191)a,b (192) Thus, t h i s i n v e s t i g a t i o n would a l s o make p o s s i b l e the s y n t h e s i s of the l a t t e r a l k a l o i d s . The generation of an anion i n the s i d e chain of the v a r i o u s i n v e s t i g a t e d compounds has been one of the major d i f f i c u l t i e s encountered i n t h i s i n v e s t i g a t i o n . I t i s f e l t that p r o x i m i t y of the lone e l e c t r o n p a i r on the a l i p h a t i c n i t r o g e n might have c o n t r i b u t e d to some extent to these problems. Thus, presence of the N-acetate i n compounds (191) a and b should reduce t h i s - 222 -d i f f i c u l t y . Formation.of the two i s o m e r i c m a t e r i a l s (191) a and b a l s o allows i n v e s t i g a t i o n s i n t o the s y n t h e s i s of dime r i c a l k a l o i d s possessing the n a t u r a l and unnatural s t e r e o c h e m i s t r y a t the c o u p l i n g s i t e C12b. This aspect i s a l s o c u r r e n t l y under i n v e s t i g a t i o n i n our l a b o r a t o r y . In c o n c l u s i o n , the s y n t h e s i s of the r e q u i r e d synthon [(193) or (194)] i s now p o s s i b l e due t o the v a r i o u s r e s u l t s obtained during the course of t h i s study. The i n v e s t i g a t i o n of the f i n a l s t e p , namely the C6a -> C2 transannular c y c l i z a t i o n awaits the formation of s u f f i c i e n t q u a n t i t i e s of the r e q u i r e d compounds as f o r example (193) and (194). - 223 -EXPERIMENTAL For general i n f o r m a t i o n r e f e r to page 96. U l t r a v i o l e t (uv) s p e c t r a were recorded i n methanol on a Cary model 11 or model 15 instrument. The p o s i t i o n maxima (A max) are given i n nanometers (nm). A l l r e a c t i o n s were c a r r i e d out under an atmosphere of n i t r o g e n (unless otherwise i n d i c a t e d ) . - 224 -2-(Formylamino)-3-indolyl (3a)-propionic acid (114) L-(-)-Tryptophan (106) (20 g) was treated with formic acid (50 ml, 98%) and a c e t i c anhydride (10 ml, 1 ME) f o r a period of two hours at room temperature. The r e s u l t i n g mixture was d i l u t e d with water (130 ml) and kept f o r a period of ten hours at 5° to provide a c r y s t a l l i n e p r e c i p i t a t e . The l a t t e r was c o l l e c t e d , washed with water and d r i e d at room temperature to y i e l d 16.5 g (68%) of 2-(formylamino)-3-indolyl(3a)-propionic acid (114). R e c r y s t a l l i z a t i o n from benzene-methanol afforded an a n a l y t i c a l sample, m.p. 120-125°; i r , v max (Nujol): 3380 (indole NH); 2400, 1725 (C00H); 1615 cm"1 (NH-CH0); uv, X max (e): 221 (17400); 282 (1520); 290 nm (1320). Anal, calcd. f or c 1 2 H i 2 N 2 ° 3 : C ' 6 2 - 0 6 > H » 5.21; N, 12.06. Found: C, 62.08; H, 5.25; N, 11.69. L-(-)-3-carboxy-3,4-dihydro-g-carboline-N-2-hydrochloride (115) 2-(Formylamino)-3-indolyl (3a)-propionic a c i d (114) (5 g) was disso l v e d i n a mixture of formic acid (98%, 90 ml) and h y d r o c h l o r i c a c i d (cone., 10 ml) and heated i n a sealed tube f o r a period of three hours at 50°. The mixture was concentrated i n vacuo to a volume of 40 ml and d i l u t e d with g l a c i a l a c e t i c acid (50 ml). Cooling at 5° f o r a period of 15 hours afforded a p r e c i p i t a t e which was c o l l e c t e d and washed successively with cold a c e t i c acid, ethanol and ethylether. The desired material (115) (3.85 g) was obtained i n 71% y i e l d ; X max (e): 245 (5890); 362 nm (11000). L-(-)-3-carboxy-3,4-dihydro-g-carboline (116) The hydrochloride (115) (218 mg) was treated with aqueous 0.1 N - 225 -sodium hydroxide s o l u t i o n (10 ml) f o r a p e r i o d of one hour at room temperature. The y e l l o w p r e c i p i t a t e was c o l l e c t e d and washed w i t h water. The d e s i r e d m a t e r i a l was obtained (160 mg) as a s o l i d , m.p. 268-270°. Attempted formation of L-(-)-3-carboxy-3,4-dihydro-g-carboline  methyl e s t e r (117) a) The c a r b o x y l i c a c i d (116) (58 mg) was taken up i n methanol (2 ml) and t r e a t e d w i t h an excess of diazomethane (75 mg i n 5 ml e t h y l ether) over a p e r i o d of 30 minutes at room temperature. The s o l v e n t was removed i n vacuo t o y i e l d 68 mg of a brown r e s i d u e , which was shown to c o n s i s t of a complex mixture (TLC, S i l i c a g e l G, chloroform/5% methanol, 1^) and was not i n v e s t i g a t e d f u r t h e r . b) The c a r b o x y l i c a c i d h y d r o c h l o r i d e (115) (100 mg) was d i s s o l v e d i n dry methanol (15 ml) which had been p r e v i o u s l y s a t u r a t e d w i t h dry HCl gas. The s o l u t i o n was r e f l u x e d f o r three hours, the s o l v e n t removed i n vacuo and the residue d i s s o l v e d i n 5 ml of water. The s o l u t i o n was b a s i f i e d using an aqueous sodium hydroxide s o l u t i o n ( 5 % ) . A yellow-brown p r e c i p i t a t e was c o l l e c t e d , washed thoroughly w i t h water and d r i e d i n vacuo. The m a t e r i a l (76 mg) proved again to be a complex mixture. L i A l H ^ - r e d u c t i o n of L-(-)-3-carboxy-3,4-dihydro-carboline-N-2-hydrochlo- ride,(115) -> (118) The h y d r o c h l o r i d e (115) (200 mg = 0.8 mM) was suspended i n dry t e t r a h y d r o f u r a n (15 ml). L i A l H ^ (133 mg = 3.6 mM) was added and the mixture r e f l u x e d under an atmosphere of n i t r o g e n f o r a p e r i o d of 20 hours. The mixture was cooled i n an ice-water bath and the excess of L i A l H ^ destroyed - 226 -by careful addition of 1 N sodium hydroxide solution (1 ml). F i l t r a t i o n and evaporation provided a pink foamy residue (185 mg). The latter proved to be a complex mixture by TLC (S i l i c a gel G, ethyl acetate/methanol, 2:3, I 2) and was subjected to sublimation (150°, 0.1 mm). A white-greenish material, compound (118) (140 mg, 87%), was collected, which was recrystal-lized from benzene/methanol to provide an analytical sample, m.p. 185-188°; i r , v max (CHC13): 3600 (OH); 3500 cm - 1 (NH); uv, A max (e); 222 (7080); 279 (1870); 289 nm (1780). Anal, calcd. for C 1 2 H 1 4 N 2 ° : C' 7 1 ' 2 5 ; H>6.98; N.13.85. Found: C, 70.87; H, 6.98; N, 13.59. Attempted oxidation of L-(-)-3-hydroxymethyl-l,2,3,4-tetrahydro-3- carboline, (118) •» (119) The material obtained in the previous experiment,(118) (50 mg = 0.247 mM),was dissolved in gla c i a l acetic acid (5 ml) and treated with Hg(0AC)2 (157 mg = 0.494 mM) . The mixture was refluxed for a total period of 70 hours. Metallic mercury started to precipitate after one hour but no uv absorption due to the dihydrocarboline system could be detected not even after 70 hours. The experiment was discontinued. 2-Amino-3-indolyl(3a)-propanol (121) L-(-)-tryptophan (106) (20 g) and lithium aluminum hydride (15 g) were suspended in dry tetrahydrofuran ( 1000 ml). The mixture was refluxed for a period of 20 hours after which i t was cooled to room temperature. The excess of metal hydride was destroyed by the careful addition of saturated aqueous sodium sulphate solution. F i l t r a t i o n and - 227 -evaporation provided an o i l y residue which was taken up in chloroform and dried over anhydrous sodium sulphate. Removal of the solvent in vacuo yielded a solid sample (18.2 g, 97%) of the desired material (121). An analytical sample was obtained by recrystallization from benzene, m.p. 76.5-77.5°; [ c t ] D -20° (C, 0.5, CHC13); i r , v max (KBr): 3480 (NH); 3340 cm - 1 (OH); uv, A max (e) : 229 (7770); 276 (4270); 283 (4580); 292 nm (3990); high resolution mass spec, M+, 190.110; C ^ ^ O requires 190.111. Anal, calcd. for C 1 1 H 1 4 N 2 0 : c» 69.45; H, 7.42; N, 14.72. Found: C, 69.46; H, 7.50; N, 14.60. 2-(N-Formylamino)-3-indolyl (3a)-propyl-formate (122) The alcohol (121) (5 g) was dissolved i n a mixture of acetic anhydride (6 ml) and formic acid, 99% (20 ml). The solution was refluxed for 25 minutes, cooled to room temperature and poured into 100 ml of ice-water. The mixture was extracted with chloroform, the organic phase washed successively with 2% aqueous hydrochloric acid, 5% aqueous sodium carbonate solution and water. The chloroform solution was dried over anhydrous sodium sulphate and the solvent evaporated to yield 4.8 g (74%) of the desired material as a solid. Recrystallization from benzene provided an analytical sample, m.p. 137-138°; [ a ] D -13° (C, 0.4, CHC13); i r , v max (KBr): 3450 (NH); 1720 (C=0); 1650 cm"1 (N-C0); uv, A max (e): 227 (16610); 275 (5380); 282 (5760); 292 nm (5020); nmr (CDC13/CD30D, 4:1), 6 3.0 (doublet, J = 6 Hz, 2H, C2-CH20); 4.16 (multiplet, 3H, C3H2 + C2-H); ^ 4.55 (broad IH, N(l)-H); 6.92-7.74 (multiplets, 6H, indolic moiety); 8.02 and 8.06 (two singlets, IH each, NH-CH0 and CHO , respectively) ; high resolution - 228 -mass s p e c , M + (8%), 246.100; C 1 3 H 1 4 N 2 0 3 r e 9 u i r e s 246.100. Anal, calcd. f o r C-^H^N^: C, 63.40; H, 5.73; N, 11.38. Found: C, 63.14; H, 5.85; N, 11.27. L-(-)-3-Hydroxymethyl-3,4-dihydrocarboline (123) a) The formyl compound (122) (1 g) was d i s s o l v e d i n a mixture of formic acid, 99% (18 ml) and cone, h y d r o c h l o r i c a c i d (2 ml) and heated f o r 3 hours at 50°. The major part of the solvent was removed i n vacuo y i e l d i n g a dark viscous residue which was cooled i n an i c e bath and c a r e f u l l y b a s i f i e d with an 30% aqueous sodium hydroxide s o l u t i o n . The r e s u l t i n g yellow o i l y p r e c i p i t a t e was extracted with chloroform, the organic l a y e r washed with water and drie d over anhydrous sodium sulphate. Evaporation of the solvent provided 710 mg (88%) of a s o l i d m a t e r i a l (123) which upon r e c r y s t a l l i z a t i o n from methylene chl o r i d e afforded an a n a l y t i c a l sample, m.p. 178-179°; i r , v max (KBr): 3500 (NH); 3270 cm"1 (OH); uv, X max (e): 238 (14500); 244 (14200); 321 nm (13200); high r e s o l u t i o n mass spec.,• M+, 200.096; C 1 2 H 1 2 N 2 ° requires 200.095. Anal, calcd. f o r C 1 2H 1 2N 20: C, 72.05; H, 6.04; N, 13.84. Found: C, 72.08; H, 5.96; N, 14.12. 43 b) The formylcompound (122) (560 mg) was d i s s o l v e d i n anhydrous t r i f l u o r o a c e t i c a c i d (5 ml) and heated f o r a period of 4 hours at 50°. The solvent was removed i n vacuo and the viscous residue was b a s i f i e d and worked up as above to a f f o r d 390 mg (86%) of the desired material (123). 45 c) The formyl compound(122) (1.4 g) was treated with a mixture of poly-phosphoric acid(PPA, 15 g) and phosphorus oxybromide (6 g) and heated for - 229 -40 minutes at 70°. The mixture was cooled i n an i c e bath, d i l u t e d w i t h water (50 ml) and c a r e f u l l y b a s i f i e d . Workup as before provided 870 mg (76%) of the d e s i r e d compound (123). 46 3-Dimethylaminomethylpentan-2-one (124) E t h y l ct-ethylacetoacetate (50 g) was t r e a t e d w i t h i c e - c o l d 1 N aqueous potassium hydroxide s o l u t i o n (375 ml), the mixture was s t i r r e d f o r 6 hours at room temperature. The r e s u l t i n g s o l u t i o n was adjusted to pH 7 using cone, h y d r o c h l o r i c a c i d , t r e a t e d w i t h anhydrous dimethylamine h y d r o c h l o r i d e (26 g) and aqueous formaldehyde, 37% w/v (35 m l ) . Cone, h y d r o c h l o r i c a c i d was added dropwise over a p e r i o d of one hour, f o l l o w i n g which the temperature of the s o l u t i o n was maintained at 20° f o r a p e r i o d of 16 hours. The s o l u t i o n was then washed w i t h e t h y l ether(250 m l ) , cooled i n an i c e bath, t r e a t e d w i t h sodium c h l o r i d e (125 g) and then e t h y l ether (500 ml). An i c e - c o l d s o l u t i o n of potassium hydroxide (26 g) i n water (50 ml) was added over a p e r i o d of 15 minutes under vigorous s t i r r i n g . The ether l a y e r was separated, the aqueous phase r e e x t r a c t e d w i t h ether (500 ml) and the combined e t h e r e a l s o l u t i o n s d r i e d over anhydrous sodium sulphate. The ether was c a r e f u l l y evaporated and the remaining l i q u i d (20 g) f r a c t i o n a l -l y d i s t i l l e d under reduced pressure. A f r a c t i o n b o i l i n g a t 67-70°/17 mm y i e l d e d 18.2 g (40%) of the d e s i r e d m a t e r i a l . 3-Trimethylaminomethylpentan-2-one i o d i d e ( 1 2 5 ) ^ 3- i-Dimethylaminomethylpentan-2-one (124) (16 g) i n e t h y l acetate(100 ml) was t r e a t e d w i t h an excess of methyl i o d i d e (20 ml) at 20°. The p r e c i p i t a t e d i o d i d e was c o l l e c t e d to y i e l d 32.Og (99%), r e c r y s t a l l i z a t i o n from methanol/ - 230 -ether provided an a n a l y t i c a l sample, m.p. 148-151°. Anal, calcd. f o r CgH^NOI: C, 37.91; H, 7.07; N, 4.91; I, 44.50. Found: C, 37.99; H, 7.11; N, 4.95; I, 44.39. 47 3-Methylene-pentan-2-one (126) The methiodide (125) (12 g) was treated with 3 N aqueous sodium hydroxide (60 ml). The s o l u t i o n was s t i r r e d f o r one hour at room temperature and extracted twice with n-pentane (100 ml). The combined pentane s o l u t i o n was washed with 5% hydrochloric a c i d (10 ml) and water and dried over anhydrous sodium sulphate. The pentane was c a r e f u l l y evaporated and the l i q u i d residue was subjected to f r a c t i o n a l d i s t i l l a t i o n . A f r a c t i o n b o i l i n g at 115-123° y i e l d e d 2.4 g (58%) of the desired ketone, nmr (CDC1 3), 6 1.02 ( t r i p l e t , J = 14 Hz, 3H, CH 3-CH 2); 2.28 (quartet, J = 14 Hz, 2H, CH 3-CH 2); 2.32 ( s i n g l e t , 3H, O^CO-); 5.75 ( t r i p l e t , J = 3, IH, CH . =C-CH -CH_); 6.0 ( s i n g l e t , IH, CH =CH -CH ), Anal, calcd. f o r CgH^O: C, 73.43; H, 10.27. Found: C, 73.11; H, 10.28. 2- Oxo-3-ethy1-6-hydroxy methyl-1,2,3,4,6,7,12,12b-octahydro-indolo  (2,3-a)-quinolizine(127) L-(-)-3-Hydroxymethyl-3,4-dihydrocarboline (123) (1.8 g) and 3- methylen-pentan-2-one (126) (2.8 g) were dissolved i n anhydrous methanol (18 ml) and treated with saturated methanolic HC1(0.2 ml). The s o l u t i o n was refluxed f o r a period of 6 hours a f t e r which i t was evaporated to dry-ness. The residue was chromatographed using n e u t r a l aluminum oxide (60g>Woelm, a c t i v i t y I I I ) . E l u t i o n with e t h y l acetate afforded 1.5 g (56%) of the desired material. TLC ( S i l i c a gel G, e t h y l acetate,I 0) - 231 -i n d i c a t e d that t h i s m a t e r i a l represented a mixture of two compounds i n an estimated r a t i o of 9:1 (more p o l a r to l e s s p o l a r ) . Attempts to separate t h i s mixture (TLC, S i l i c a g e l or alumina, n e u t r a l , e t h y l acetate) were not s u c c e s s f u l . R e c r y s t a l l i z a t i o n from methylene c h l o r i d e provided an a n a l y t i c a l sample, m.p. 215-216°; i r , v max (KBr): 3345 (NH); 3135 (OH); 2895 (CH); 2835, 2800, 2775 (Bohlmann bands); 1700 cm - 1 (C=0); uv, X max (E): 224 (33900); 275 (6770); 280 (6920); 283 (6920); 291 nm (5900); nmr (Figure 10) (CDC1 3), 6 0.98 ( t r i p l e t , J = 7 Hz, -CH 2CH 3); ^3.6-4.2 (group of m u l t i p l e t s , 5H, C12b-H+C7-H2+C6a-H2);.7.04-7.60 (group of m u l t i p l e t s , 4H, a r o m a t i c ) ; 7.72 (broad s i n g l e t , IH, i n d o l e NH); h i g h r e s o l u t i o n mass s p e c , M + (12%), 298.1687; c 1 s H22 N2°2 r e 9 u i r e s 298.1680. Anal, c a l c d . f o r C 1 8 H 2 2 N 2 0 2 : C' 7 2 , 4 5 ; H» 7 « 4 3 - Found: C, 72.49; H, 7.27. 2-0xo-3-ethyl-6-hydroxymethyl-l,2,3,4,6,7,12,12b-octahydro-indolo- ( 2 , 3 - a ) - q u i n o l i z i n e - 0 - a c e t a t e (128) The a l c o h o l (127) (50 mg) i n a c e t i c anhydride (0.5 ml) and p y r i d i n e (0.5 ml) was heated f o r a p e r i o d of 30 minutes at room temperature. The mixture was poured i n t o ice-water and e x t r a c t e d w i t h methylene c h l o r i d e The e x t r a c t was washed s u c c e s s i v e l y w i t h 5% aqueous h y d r o c h l o r i c a c i d , water, 5% sodium bicarbonate s o l u t i o n and water and d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t provided the c r y s t a l l i n e a c e t a t e (128) (52 mg, 94%). The m a t e r i a l was r e c r y s t a l l i z e d from methanol, m.p. 180-181°; i r , v max (KBr): 3390 (NH); 2900 (C-H); 2850, 2805 (Bohlmann bands); 1720(acetate); 1705 cm" 1 (C=0); uv, X max ( e ) : 224 (31700); 274 (6920); - 232 -280 (7080); 283 (7080); 283 (7080); 291 nm (5900); nmr (Figure 11) (CDC13), S 0.96 (triplet, J = 7 Hz, 3H, -CH2CH3); ^ 3.75 (multiplet, LH, C12b-H); 3.9-4.13 (overlapping multiplets, 3H, C6-H+C7-H2); 4.42 (doublet of doublet, J = 5 Hz, 6 Hz, C6a-H2); 7.07-7.58 (group of multiplets, 4H, aromatic); 7.69 (broad singlet, IH, indole NH); high resolu-tion mass spec, M+, 340.177; ^20^24^2^3 r e c l u i r e s 340.178. 2-g-Hydroxy-3-ethyl-6-hydroxymethyl-l, 2,3,4,6,7,12,12b-octahydro- indolo (2,3-a)-quinolizine (129) The keto alcohol (127) (65 mg) i n dry tetrahydrofuran (10 ml) was treated with lithium aluminum hydride (150 mg) and the mixture was refluxed for a period of two hours, after which i t was cooled to room temperature. A saturated aqueous sodium sulphate- solution was carefully added to destroy the excess of LiAlH^. The reaction mixture was f i l t e r e d , the f i l t r a t e dried over anhydrous sodium sulphate and the solvent evaporated i n vacuo to yield 64 mg (98%) of the desired material (129). The compound was pure by TLC (S i l i c a gel, ethyl acetate,I ) but non-crystalline; i r , v max (Nujol): no carbonyl; uv, A max: 224, 274, 280, 283, 291 nm; nmr (DMSO-dg); 6 0.89 (tr i p l e t , J = 6 Hz, 3H, -CH2CH3); C2-H <3.9; 4.64 (broad singlet, IH, C2-0H); 6.80-7.36 (multiplets, 4H, aromatic). - 233 -2-Qxo-3-ethy1-6-hydroxymethyl-l,2,3,4,6,7,12,12b-octahydro-indolo  ( 2 , 3 - a ) - g u i n o l l z i n e ethylene k e t a l (134) a) Compound (12 7) (300 mg) i n dry benzene (5 ml) was t r e a t e d w i t h ethylene g l y c o l ( 0 . 1 ml) and r e f l u x e d f o r 30 minutes u s i n g a Dean-Stark apparatus. p-Toluenesulphonic a c i d (5 mg) was added and the mixture was r e f l u x e d f o r three hours a f t e r which i t was cooled to room temperature and poured i n t o an i c e - c o l d s a t u r a t e d aqueous sodium bicarbonate s o l u t i o n . The mixture was e x t r a c t e d w i t h methylene c h l o r i d e / 1 0 % methanol, the organic phase washed w i t h water and d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t afforded a y e l l o w foam (282 mg) which was shown to be a mixture of two compounds (TLC, S i l i c a g e l G, methylene chloride*'5% methanol, ~Ly), namely s t a r t i n g m a t e r i a l (127) and the d e s i r e d product (134). Chromatography using 10 g S i l i c a g e l (Woelm, a c t i v i t y I I I , methylene c h l o -r i d e / 3 % methanol) provided 160 mg (66%) of the d e s i r e d k e t a l (134) and 90 mg of s t a r t i n g m a t e r i a l . b) The t e t r a c y c l i c k e t o a l c o h o l (127) (5.0 g) was t r e a t e d w i t h f r e s h l y d i s t i l l e d ethylene g l y c o l ( 3 0 ml)and dry chloroform (200 ml) which had been sa t u r a t e d w i t h HC1 gas. The mixture was s t i r r e d f o r three hours at room temperature, cooled to 0° and poured i n t o i c e - c o l d 2 N sodium b i -carbonate s o l u t i o n (200 ml). The product was e x t r a c t e d w i t h methylene c h l o r i d e , the organic phase was washed w i t h s a t u r a t e d sodium c h l o r i d e s o l u t i o n and d r i e d over anhydrous sodium sulphate. Evaporation of the solvent y i e l d e d 5.64 g of a brown semi s o l i d m a t e r i a l . The l a t t e r was chromatographed using 500 g S i l i c a g e l (Woelm, a c t i v i t y I I I , e t h y l a c e t a t e ) . The m a t e r i a l thus obtained was r e c r y s t a l l i z e d from methylene c h l o r i d e / methanol to a f f o r d 2.9 g (55%) of the d e s i r e d a c e t a l (134), m.p. 238-240°; i r , v max (KBr): 3420 (NH); 3250 cm" 1 (OH); uv, A max ( e ) : 226 (20500); - 234 -282 (3990); 296 nm (3320); nmr (CD 30D), 6 0.94 ( t r i p l e t , J = 6 Hz, 3H, CH 2CH 3); ^ 3.70 (multiplet, IH, Cl2b-aH); 3.80-4.20 (group of m u l t i p l e t s , 4H, C7-H2+C6a-H2); 4.02 ( s i n g l e t , 4H, -0-CH 2-CH 2-0-); 7.0-7.58 (group of m u l t i p l e t s , 4H, aromatic); 7.68 ( s i n g l e t , IH, indole NH); high r e s o l u -t i o n mass s p e c , M + (11%), 342.1919; C 2 Q H 2 6 N 2 0 3 requires 342.1943; base peak (M- CH30H) m/e 310.1643; C ^ H ^ N ^ requires 310.1681. Anal, calcd. f o r c 2 o H 2 6 N 2 ° 3 : C» 7 0 ' 1 5 ; H» 7 ' 6 5 5 N » 8 - 1 8 * F o u n d : C, 70.00; H, 7.65; N, 8.15. 2-Oxo-3-ethyl-6-hydroxymethyl-1,2,3,4,6,7,12,12b-octahydro-indo]o  (2,3-a)-quinolizine ethylene k e t a l 0-acetate (135) The t e t r a c y c l i c a c e t a l (134) (700 mg), was treated with a c e t i c anhydride (5 ml) and dry p y r i d i n e (5 ml) f o r a period of one hour at 80°. The crude mixture was poured i n t o ice-water and extracted with methylene chlo r i d e . The extract was washed succ e s s i v e l y with i c e - c o l d 2% aqueous hydrochloric a c i d , water,saturated sodium bicarbonate s o l u t i o n and water and dried over anhydrous sodium sulphate. Evaporation of the solvent provided an almost pure sample (705 mg = 90%) of the desire d acetate (133). Further attempts to p u r i f y t h i s m a t e r i a l f a i l e d ; i r , v max ( C H C l ^ : 3460 (NH); 1730 cm - 1 (OAc); nmr (CDC1 3); 6 2.0 ( s i n g l e t , 3H, 0C0CH 3); 3.98 ( s i n g l e t , 4H, -0(CH 2) 20-; 4.38 (doublet of doublet, J = 5 Hz, C6-CH 2-0Ac); 7-7.6 (mu l t i p l e t s , 4H, aromatic); 7.98 ( s i n g l e t , IH, indole-NH) Anal, calcd. f o r C 2 2 H 2 8 N 2 ° 4 : C* 6 8 > 7 2 » H » 7 - 3 4 5 N» 7 ' 2 9 ° Found: C, 68.3; H, 7.45; N, 6.65. - 235 -Attempted formation of the n i t r i l e (136) from acetate (135) a) The t e t r a c y c l i c acetate (135) (20 mg = 0.052 mM) i n dry dimethyl-formamide (DMF) (1 ml) was treated with potassium cyanide (34 mg = 0.052 mM) The mixture was heated with constant s t i r r i n g f o r three hours at 140°. The product was cooled to room temperature, d i l u t e d with water (10 ml) and extracted with methylene chloride.The e x t r a c t was washed with water and dried over anhydrous sodium sulphate. Evaporation of the solvent y i e l d e d 20 mg of a brown gum which consisted mainly of s t a r t i n g m a t e r i a l (TLC, S i l i c a g e l G, methylene chloride/1% methanol, 1^) • The i n f r a r e d spectrum (CHCl^) d i d not show any absorption due to CN. b) An experiment i d e n t i c a l to a) was c a r r i e d out but the mixture was instead heated for 6 hours at 160° and worked up as before. No desired material could be obtained. 2-Oxo-3-ethyl-6-faydroxymethyl-l,2 >3 >4 >6,7,12 >12b-octahydro-indolo (2,3-a)- q u i n o l i z i n e ethylene k e t a l 0-benzoate (137) The t e t r a c y c l i c a c e t a l (134) (170 mg) was dissolv e d i n dry p y r i d i n e (2 ml) and treated with p u r i f i e d benzyl c h l o r i d e (0.2 ml). The mixture was l e f t f o r 30 minutes at room temperature, poured i n t o ice-water and extracted with methylene c h l o r i d e . The extract was washed with water and dried over anhydrous sodium sulphate. Evaporation of the solvent provided 210 mg of a crude material which was chromatographed using 20 g alumina (neutral, Woelm, a c t i v i t y II, methylene chloride/3% methanol). The desired benzoate (137) was obtained as an o i l y m a t e r i a l (187 mg, 84%) which r e s i s t e d various c r y s t a l l i z a t i o n attempts; i r , v max (CHC1 3): 3460 (NH); 1720 cm - 1 (C = 0); - 236 -nmr (CDC1 3) j <5 0.93 ( t r i p l e t , J = 6 Hz, CH 2CH 3); 4.00 ( s i n g l e t , 4H, -0-CH 2-CH 2-0-); 7.0-8.18 ( m u l t i p l e t s , 10H, aromatic + i n d o l e NH); h i g h r e s o l u t i o n mass s p e c , M + (18%), 446.2209; C 2_H 3 N 0 r e q u i r e s 446.2205; base peak (M- C6 s i d e chain) m/e 311.1739; C 1 9 H 2 3 N 2 0 2 r e 9 u i r e s 311.1759. Attempted formation of the n i t r i l e (136) from benzoate (137). a) The benzoate (137) (20 mg) i n dry DMF (2 ml) was t r e a t e d w i t h potassium cyanide (10 mg) and heated f o r three hours at 120°. The mixture was cooled t o room temperature d i l u t e d w i t h water (10 ml) and e x t r a c t e d w i t h methylene chloride.The e x t r a c t was washed w i t h water and d r i e d over sodium sulphate, evaporation y i e l d e d 19 mg of l i g h t brown res i d u e which c o n s i s t e d only of s t a r t i n g m a t e r i a l (TLC, S i l i c a g e l G, methylene c h l o r i d e / 1 % methanol). b) The above r e a c t i o n was repeated but the h e a t i n g p e r i o d was extended to 16 hours a t 120°. Again no d e s i r e d n i t r i l e (136) c o u l d be detected. 2-Oxo-3-ethyl-6-hydroxymethyl-l,2,3,4,6,7 >12,12b-octahydro-indolO (2,3-a)- q u i n o l i z i n e ethylene k e t a l 0- (3,5-b) d i n i t r o b e n z o a t e (138) The t e t r a c y c l i c a c e t a l (134) (160 mg) i n dry p y r i d i n e ( 1. ml) was cooled i n an ice-water bath and t r e a t e d w i t h f r e s h l y prepared 3 , 5 - d i n i t r o -benzoyl c h l o r i d e (160 mg). The mixture was s t i r r e d f o r 30 minutes at 0°, poured i n t o ice-water and e x t r a c t e d w i t h c o l d methylene chloride.The e x t r a c t was washed w i t h c o l d s a t u r a t e d sodium bicarbonate s o l u t i o n and water and d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t provided an o i l y r e s i d u e which was chromatographed using 20 g alumina ( n e u t r a l , Woelm, - 237 -a c t i v i t y I I ^ e t h y l e n e c h l o r i d e ) t o y i e l d 206 mg (82%) of the d e s i r e d d i n i t r o b e n z o a t e (138) as a g l a s s y m a t e r i a l . Attempts to c r y s t a l l i z e the m a t e r i a l were u n s u c c e s s f u l ; i r , v max (CHC1 3): 3460 (NH); 1740 (C = 0 ) ; 1560 and 1340 cm" 1 (NO^; nmr (CDC1 3); 6 0.96 ( t r i p l e t , J = 6 Hz, -CH 2-CH 3); 2.18 (doublet of doublet, J = 8 Hz, 3Hz, IH, C3-H); 3.58 ( m u l t i p l e t , IH, C6-H); 3.92 ( m u l t i p l e t , IH, C12b-H); 4.01 ( s i n g l e t , 4H, -0-CH 2-CH 2-0-); 4.43 and 4.81 (two doublet of doublet, J = 6 Hz, 5 Hz, IH each, C6a-H 2-); 6.8-7.36 ( m u l t i p l e t s , 4H, i n d o l e a r o m a t i c ) ; 7.74 ( s i n g l e t , IH, indole-NH); 8.72 (doublet, J = 2Hz, 2H, C2b-H and C6b-H of 3 , 5 - d i n i t r o b e n z o a t e ) ; 8.97 ( t r i p l e t , 3=2 Hz, C4b-H of 3 , 5 - d i n i t r o b e n z o a t e ) ; mass spec, m/e 536 (M +); 341 (M- C ^ N ^ ) ; 311 (M- C6 s i d e c h a i n ) . Attempted formation of the n i t r i l e (136)from 3,5-dinitrobenzoate (138) a) The 3,5-dinitrobenzoate (138) (60 mg) i n dry methanol (4 ml) was t r e a t e d w i t h dry potassium cyanide (20 mg) and r e f l u x e d f o r three hours. The s o l v e n t was evaporated i n vacuo and the dry r e s i d u e e x t r a c t e d w i t h methylene c h l o r i d e to provide 36 mg crude m a t e r i a l . The l a t t e r was separated u s i n g p r e p a r a t i v e TLC (alumina, neutral,methylene c h l o r i d e / 1 0 % methanol, e l u t i o n w i t h chloroform/20% methanol) to provide 31 mg of the t e t r a c y c l i c a l c o h o l -k e t a l (134) and 4 mg of a m a t e r i a l having a s m a l l a b s o r p t i o n at 2220 cm" 1 i n the i n f r a r e d ( p o s s i b l y being the d e s i r e d m a t e r i a l ) . b) To a s o l u t i o n of dry potassium cyanide (5 mg) i n dry methanol (1 ml) was added at 0° 34 mg of the d i n i t r o b e n z o a t e (138). The temperature was maintained at 0° and a f t e r 10 minutes no s t a r t i n g m a t e r i a l could be detected (TLC). The s o l v e n t was evaporated i n vacuo at 0° and the dry r e s i d u e e x t r a c t e d w i t h methylene c h l o r i d e to provide 23 mg of m a t e r i a l . - 238 -The l a t t e r . w a s p u r i f i e d as above to y i e l d 13 mg of the a l c o h o l - k e t a l (134) and 6 mg of a m a t e r i a l e x h i b i t i n g a s m a l l a b s o r p t i o n band a t 2220 cm 1 i n the i n f r a r e d spectrum. 2-OxO-3-ethyl-6-cyanomethyl-l,2,3,4,6,7,12,12b-octahydro-indolo  ( 2 , 3 - a ) - q u i n o l i z i n e ethylene k e t a l (136). from t e t r a c y c l i c a l c o h o l (134) The t e t r a c y c l i c a l c o h o l k e t a l (134) (200 mg) i n anhydrous DMF (5 ml) was t r e a t e d w i t h p - t o l u e n e s u l f o n y l c h l o r i d e (219 mg, 2 ME). The mixture was heated f o r a p e r i o d of 2 1/2 hours at 100°, cooled to room temperature and t r e a t e d w i t h potassium cyanide (40 mg) i n dry methanol (5 ml) f o r 20 hours at room temperature. The mixture was poured i n t o i c e - c o l d s a t u r a t e d sodium bicarbonate s o l u t i o n and the y e l l o w o i l y p r e c i p i t a t e was e x t r a c t e d w i t h methylene c h l o r i d e . The organic phase was d r i e d over anhydrous sodium sulphate and evaporated to dryness i n vacuo to y i e l d 227 mg of a brown amorphous m a t e r i a l . This compound was chromatographed usi n g 20 g of S i l i c a g e l (Woelm, a c t i v i t y III,methylene c h l o r i d e ) to a f f o r d 89 mg (43% from a l c o h o l k e t a l ) of the d e s i r e d pure compound (136) i n an amorphous s t a t e . This m a t e r i a l was not s t a b l e and no attempt was made to o b t a i n a c r y s t a l l i n e sample. The product had the f o l l o w i n g c h a r a c t e r i s t i c s ; i r , v max (CHC1 3): 3480 (NH); 2250 cm" 1 (CN); uv, A max ( e ) : 225 (15900); 283 (3720); 291 nm (2760); nmr (CDC1 3); 6 0.92 ( t r i p l e t , J = 6 Hz, 3H, C18-H 3); 3.96 ( s i n g l e t , 4H, -0-CH 2-CH 2-0-); 7.78 ( s i n g l e t , IH, i n d o l e NH); high r e s o l u t i o n mass s p e c , M + (57%), 351.1903; C2i H25 N3°2 r e c l u i r e s 351.1946; base peak (M- CH2CN) m/e 311.1782; C 1 9 H 2 3 N 2 0 2 r e q u i r e s 311.1759. - 239 -Attempted conversion of n i t r i l e (136) to the t e t r a c y c l i c keto e s t e r (139) The n i t r i l e (136) (5 mg) was t r e a t e d w i t h methanol/12 N h y d r o c h l o r i c a c i d 1:1 (0.5 ml) f o r a p e r i o d of 10 hours at 60°. The methanol was removed i n vacuo and the res i d u e was t r e a t e d w i t h i c e - c o l d s a t u r a t e d sodium bicarbonate s o l u t i o n to y i e l d a y e l l o w p r e c i p i t a t e . The l a t t e r was e x t r a c t e d w i t h chloroform to a f f o r d 5.5 mg amorphous m a t e r i a l . TLC s e p a r a t i o n ( S i l i c a g e l G, methylene c h l o r i d e ) provided 0.7 mg of a semi-s o l i d sample, i r , v max (CHC1 3): 3480 (NH); 1730 (C0 2CH 3); 1720 cm" 1 (C = 0 ) , probably being the d e s i r e d compound. Attempted conversion of n i t r i l e (136) to the t e t r a c y c l i c k e t a l e s t e r (140) The n i t r i l e (136) (5 mg) i n 5 N methanolic K0H (0.5 ml) was kept f o r 20 hours at 50° under constant s t i r r i n g . The mixture was d i l u t e d w i t h methanol (5 m l ) , cooled to 0° and c a r e f u l l y n e u t r a l i z e d w i t h c o l d methanol s a t u r a t e d w i t h HC1 gas. An excess of diazomethane i n ether was immediately added, the solvent was removed i n vacuo and the res i d u e t r e a t e d w i t h s a t u r a t e d sodium bicarbonate s o l u t i o n . E x t r a c t i o n w i t h methylene c h l o r i d e y i e l d e d 4 mg of a crude m a t e r i a l which was shown to be a mixture of 5 components (TLC, S i l i c a gel,methylene c h l o r i d e / 1 % methanol, I 2 ) ; i r , v max (CHC1 3) (crude sample): 3490 (NH); 1675 cm" 1 (CONHp; no CN. This sample was not f u r t h e r i n v e s t i g a t e d . 2-(N-Berizylamind)-3-indolyl(3a)-propyl-benzoate (141) 2-Amino-3-indolyl(3a)-propanol (121) (2 g) i n anhydrous p y r i d i n e (7 ml) was cooled to 0° and t r e a t e d w i t h an excess of be n z y l c h l o r i d e - 240 -(3 g) over a period of 30 minutes. The mixture was then s t i r r e d f o r 2 hours at room temperature a f t e r which i t was poured i n t o ice-water and extracted with methylene chloride.The extract was washed successively with aqueous 5% hydrochloric a c i d , water, saturated sodium bicarbonate s o l u t i o n and water. The s o l u t i o n was dried over anhydrous sodium sulphate, evaporation of the solvent afforded a s l i g h t yellow foamy residue which upon r e c r y s t a l l i z a t i o n from methylene chloriie-methanol y i e l d e d 2.1 g (53%) of the desired dibenzoate (141). The motherliquor contained a mixture of the mono- and dibenzoates. The dibenzoate (141) had the fol l o w i n g c h a r a c t e r i s t i c s , m.p. 152°; i r , v max (CHC1 3): 3490 (NH); 1715 (CH2-0C=0); 1655 (-NH-C0); 1605 and 1580 cm - 1 (aromatic); uv, X max (e): 223 (29600); 273 (3720); 280 (3640); 290 nm (2760); nmr (CDC1 3); 6 3.25 (multiplet, . 2H, C3-H 2); 4.46 (doublet, J = 5 Hz, -C2-CH 2~0-); 4.92 (multiplet, IH, C2-H); 6.7 (doublet, J = 8 Hz, NH-C0-); 7.1-8.15 (mul t i p l e t s , 15H*aromatic); 8.28 ( s i n g l e t , IH, indole NH); high r e s o l u t i o n mass s p e c , M + 398.1663; C 2 5 H 2 2 N 2 ° 3 r e c l u i r e s 398.1629. Anal, calcd. f o r C ^ H ^ N ^ : C, 75.36; H, 5.57; N, 7.03. Found: C, 75.18; H, 5.48; N, 6.97. Hydrolysis of the dibenzoate (141) to the monobenzoate (142) The dibenzoate (141) (2.1 g) and potassium cyanide (400 mg) were refluxed i n methanol (25 ml) f o r a period of three hours. Water (100 ml) was added and the mixture was extracted with methylene chloride.The extract was dried over anhydrous sodium sulphate and evaporated to provide a s o l i d m aterial which upon r e c r y s t a l l i z a t i o n from methylene chloride provided I. 50 g (95%) of the desired monobenzoate (142), m.p.162-164°; i r , v max - 241 -( N u j o l ) : 3340 (OH); 1645 (-NH-C=0); 1580 cm~X ( a r o m a t i c ) ; uv, A max ( e ) : '222 (23000); 274 (3320); 281 (3310); 291 nm (2760); nmr (CDCLj); 6 1.6 ( s i n g l e t , IH, OH); 3.21 (doublet, J = 6 Hz, 2H, C3-H 2); 3.86 (doublet, J = 5 Hz, 2H, -CH 2-0H); 4.55 ( m u l t i p l e t , IH, C2-H); 6.5 (doublet, J = 8 Hz, IH, -NH-C0); 7.1-7.8 ( m u l t i p l e t s , 10H, a r o m a t i c ) ; h i g h r e s o l u t i o n mass s p e c , M +, 294.1383; C 1 8 H 1 8 N 2 0 2 r e c l u i r e s 294.1367. Anal, c a l c d . f o r C ^ H ^ N ^ : C, 73.45; H, 6.16; N, 9.52. Found: C, 73.15; H, 6.13; N, 9.34. H y d r o l y s i s of the monobenzoate (142) to 2-amino-3-indolyl(3a)-propanol (121) 2-(N-Benzoylamino) - 3 - i n d o l y l ( 3 a ) - p r o p a n o l (142) (40 mg) was t r e a t e d w i t h 30% sodium hydroxide s o l u t i o n (2 ml) and heated f o r 6 hours at 120°. The r e a c t i o n mixture was cooled to room temperature, d i l u t e d w i t h water (20 ml) and e x t r a c t e d w i t h methylene c h l o r i d e / 5 % methanol .The e x t r a c t was washed w i t h water, s t i r r e d over anhydrous sodium sulphate and eva-porated to a f f o r d 25 mg (97%) of the d e s i r e d m a t e r i a l (121). Attempted formation of the t o s y l a t e (143), -> a z i r i d i n e (144) 2-(N-Benzoylamino)-3-indolyl(3a)-propanol (142) (760 mg) i n anhydrous p y r i d i n e (5 ml) was t r e a t e d w i t h p - t o l u e n e s u l f o n y l c h l o r i d e (970 mg = 2 mole e q u i v a l e n t ) . The mixture was s t i r r e d f o r 16 hours a t room temperature, poured i n t o ice-water and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h c o l d 1 N h y d r o c h l o r i c a c i d and water and d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t y i e l d e d a crude m a t e r i a l which was chromatographed using 130 g S i l i c a g e l (Woelm, a c t i v i t y I I I , methylene c h l o r i d e / 5 % methanol) a f f o r d i n g 540 mg of a l i g h t brown foamy - 242 -m a t e r i a l . R e c r y s t a l l i z a t i o n from benzene-hexane provided p a l e y e l l o w c r y s t a l s , m.p. 115-117°; i r , v max ( C H C l ^ : 3490 (NH); 1645 (>N-C=0); 1 0 1375 and 1160 cm (PN-C-R); uv, A max ( e ) : 226 (10000); 273 (4580); 280 (4370); 291 nm (3320); nmr ( C D C l 3 ) ; 6 2.90 (doublet of doublet , J = 15 Hz, 9 Hz, IH, C3H); 3.39 (doublet of doublet , J = 15 Hz, 5 Hz, C3H); 4.32 (doublet of doublet , J = 15 Hz, 7 Hz, 2H, -NCH 2~); 4.71 ( m u l t i p l e t , IH, C2H); 7.04-8.2 ( m u l t i p l e t s , 11H, aromatic + i n d o l e NH); mass s p e c , M+ ( 5 % ) , 276. An a l , c a l c d . f o r C 1 8H 1 6N 20 2*. C, 78.23; H, 5.84; N, 10.14. Found: C, 78.24; H, 5.91; N, 10.00. This m a t e r i a l has been assigned the s t r u c t u r e of the a z i r i d i n e (144). 2-(N-Carbobenzoxyamino)-3-indolyl(3a)-propanol (145) 2-Amino-3-indolyl(3a)-propanol (121) (1.0 g = 5.25 mM) was suspended i n i c e - c o l d 5% aqueous sodium carbonate s o l u t i o n (10 ml), While s t i r r i n g , carbobenzoxy c h l o r i d e (1 ml = 1.3 mole e q u i v a l e n t ) was added and the mixture was a g i t a t e d f o r 20 minutes i n an i c e bath. The p r e c i p i t a t e d s e m i - s o l i d m a t e r i a l was c o l l e c t e d by f i l t r a t i o n , d i s s o l v e d i n methylene c h l o r i d e and the s o l u t i o n was d r i e d over anhydrous sodium sulphate. A s m a l l amount of p y r i d i n e (0.2 ml) was added ( i n i t i a l red colour disappears i n presence of a pyridine-excess)and the s o l u t i o n was washed s u c c e s s i v e l y w i t h c o l d 1 N HCl, water and s a t u r a t e d sodium c h l o r i d e s o l u t i o n . The d r i e d s o l u t i o n (anhydrous sodium sulphate) was evaporated to y i e l d a s o l i d brown m a t e r i a l (1.68 g ) . R e c r y s t a l l i z a t i o n from hexane/methylene c h l o r i d e provided 1.1 g (64%) of the des i r e d N-carbobenzoxylated m a t e r i a l (145), m.p. 108-110°; - 243 -i r , v max (CRC1 3): 3600 (OH); 3480 (NH); 1710 cm" 1 (-NHC00-); uv, X max ( e ) : 223 (18200); 283 (2890); 291 nm (2580); nmr (CDCl-j); 5 1.94 ( s i n g l e t , IH, OH); 2.97 (doublet, J = 6 Hz, 2H, C3H 2); 3.6 (doublet, J = 6 Hz, 2H, -CH 2-0-); 4.05 ( m u l t i p l e t , IH, C2H); 5.02 (doublet, J = 6 Hz, IH, NHC0); 5.08 ( s i n g l e t , 2H, -0-CH 2~); 6.9-7.7 ( m u l t i p l e t s , 10H, a r o m a t i c ) ; 8.03 . -j-( s i n g l e t , IH, i n d o l e NH); h i g h r e s o l u t i o n mass spec. M 324.1480; c 1 9 H 2 o N 2 0 3 re q u i r e s 324.1473. 2-(N-Carb6benzoxyamino)-3-indolyl(3a)-propyl t o s y l a t e (146) 2-(N-carbobenzoxyamino)-3-indolyl(3a)-propanol (145) (1.6 g = 5.1 mM) i n anhydrous p y r i d i n e (16 ml) was t r e a t e d w i t h p - t o l u e n e s u l f o n y l c h l o r i d e (1.9 g, 2 mole e q u i v a l e n t ) . The mixture was s t i r r e d f o r a p e r i o d of twenty hours at room temperature a f t e r which i t was poured i n t o ice-water and e x t r a c t e d w i t h methylene chl o r i d e . T h e e x t r a c t was washed w i t h 1 N h y d r o c h l o r i c a c i d and water and d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t provided 2.24 g of a y e l l o w foam which was chromatographed using 200 g S i l i c a g e l (Woelm, a c t i v i t y I I I , methylene c h l o r i d e / 5 % methanol) to a f f o r d 2.18 g (89%) of pure t o s y l a t e (146) as a s l i g h t l y y e l l o w foamy m a t e r i a l , i r , v max (CHC1 3): 3470 (NH); 1720 (NH C00-); 1355 and 1175 cm" 1 (-OTs); nmr (CDC1 3); <5 2.41 ( s i n g l e t , 3H, -CH 3); 3.02 ( m u l t i p l e t , 2H, C3H 2); 4.05 ( m u l t i p l e t , 2H, -CH 2-0-); * 4.1 ( m u l t i p l e t , IH, C2H); 5.08 ( s i n g l e t , 2H, -0-CH 2~); 6.9-8.15 ( m u l t i p l e t s , 15H, aromatic + i n d o l e NH). - 244 -Attempted formation of the n i t r i l e (147) from t o s y l a t e (146) 2-(N-Carbobenzoxyamino)-3-indolyl(3a)-propyl t o s y l a t e (146) (100 mg = 0.2 mM) i n s a t u r a t e d methanolic potassium cyanide s o l u t i o n (2 ml) was r e f l u x e d f o r a p e r i o d of 20 hours d u r i n g which the r e a c t i o n mixture was f r e q u e n t l y checked by TLC ( S i l i c a g e l G, Woelm, methylene c h l o r i d e / 5 % methanol). No change i n composition seemed to have taken pl a c e a f t e r f o u r hours of r e f l u x i n g . The s o l v e n t was evaporated and the residue was t r e a t e d w i t h water and e x t r a c t e d w i t h methylene c h l o r i d e to provide 66 mg of a brown m a t e r i a l which c o n s i s t e d of at l e a s t s i x components (TLC). P r e p a r a t i v e TLC s e p a r a t i o n provided s i x s m a l l samples the most p o l a r (10 mg) of which seemed to c o n s i s t of 2-amino-3-indolyl(3a)-p r o p a n o l - t o s y l a t e (148). None of the d e s i r e d n i t r i l e (147) could be detected by i n f r a r e d spectroscopy. 2-(N-Tosylamino)-3-indolyl(3a)-propanol (149) The amino a l c o h o l (121) (300 mg =1.5 mM) i n dry p y r i d i n e (5 ml) was t r e a t e d at 0°wLth p - t o l u e n e s u l f o n y l c h l o r i d e (300 mg = 1.5 mM). The temperature was maintained at 0° f o r a p e r i o d of twenty hours a f t e r which the mixture was poured i n t o ice-water and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h 1 N h y d r o c h l o r i c a c i d and water and d r i e d over anhydrous sodium sulphate. Evaporation y i e l d e d a crude m a t e r i a l (440 mg) which was chromatographed usi n g 20 g of S i l i c a g e l (Woelm, a c t i v i t y III,methylene c h l o r i d e ) to provide 160 mg (35%) of the monotosylate (149) and 60 mg of the d i t o s y l a t e (150). Both compounds r e s i s t e d attempts of c r y s t a l l i z a t i o n and remained as g l a s s y m a t e r i a l s . Compound (149) e x h i b i t e d the f o l l o w i n g c h a r a c t e r i s t i c s ; nmr (CDCl^), <5 2.30 ( s i n g l e t , - 245 -3H, CH 3); 2.52 (broad s i n g l e t , IH, OH); 2.85 ( m u l t i p l e t , 2H, C3H 2); 3.45-3.75 ( m u l t i p l e t s , 3H, CH_20- + C2H); 5.20 (doublet, J = 10 Hz, 1H 9 -NH-S0 2); 6.80-7.62 ( m u l t i p l e t s , 9H, aromatic); 8.25 (broad s i n g l e t , IH, NH i n d o l i c ) ; h i g h r e s o l u t i o n mass s p e c , M + 344.1220; C-^g^Q^O^S re q u i r e s 344.1194. Compound (150), nmr (CDC1 3); 6 2.26, 2.38 ( s i n g l e t s , 3H each, CH 3); 2.85 ( m u l t i p l e t , 2H, C3H 2); 3.45-4.15 ( m u l t i p l e t s , 3H, C^O- + C2H); 6.76-7.78 ( m u l t i p l e t s , 13H, a r o m a t i c ) ; 8.00 (broad s i n g l e t , IH, NH, i n d o l i c ) . 2- ( N - T o s y l a m i n o ) - 3 - i n d o l y l ( 3 a ) - p r o p y l t o s y l a t e (150) The amino a l c o h o l (121) (12.8 g = 67.5 mM) was d i s s o l v e d i n anhydrous p y r i d i n e (60 m l ) , cooled to 0° and t r e a t e d w i t h p - t o l u e n e s u l f o n y l c h l o r i d e (36 g = 3 mole e q u i v a l e n t ) . The mixture was kept f o r twenty hours at 0°, poured i n t o ice-water and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h i c e c o l d 1 N h y d r o c h l o r i c a c i d and water and d r i e d over anhydrous sodium sulphate. Evaporation provided 31.2 g of a brown foamy m a t e r i a l which was chromatographed using 1.5 kg of S i l i c a g e l (BDH) and methylene c h l o r i d e . The d e s i r e d d i t o s y l a t e (150) (27.7 g, 83%) was obtained as a n o n — c r y s t a l l i n e m a t e r i a l . 3- ( N - T o s y l a m i n o ) - 4 - i n d o l y l ( 3 a ) - b u t a n o n i t r i l e (151) The d i t o s y l a t e (150) (22.1 g = 47.5 mM) i n dry methanol (300 ml) was t r e a t e d w i t h potassium cyanide (4.5 g = 70 mM) and r e f l u x e d f o r two hours. The s o l v e n t was evaporated i n vacuo and the r e s i d u e t r e a t e d w i t h methylene c h l o r i d e . F i l t r a t i o n and evaporation of the s o l v e n t provided 21 g of crude m a t e r i a l which was chromatographed using 1 kg of S i l i c a g e l (BDH) and - 246 -methylene c h l o r i d e . R e c r y s t a l l i z a t i o n of the obtained compound provided 15.5 g (95%) of the d e s i r e d n i t r i l e (151); m.p. 191-192°; i r , v max ( N u j o l ) : 3310, 3240 (NH); 2280 (CN); 1605 (aromatic); 1325 and 1150 cm" 1 (S0 2-NH); uv, X max ( e ) : 227 (5630); 274 (2820); 282 (2890); 290 nm (2580); nmr (acetone- d & ) ; 6 2.28 ( s i n g l e t , 3H, CH 3); 2.73 ( m u l t i p l e t , 2H, CH 2-CN); 2.95 (doublet, J = 8 Hz, 2H, C4H 2); 3.65 ( m u l t i p l e t , IH); 6.6-7.56 ( m u l t i p l e t s , 9H, a r o m a t i c ) . An a l , c a l c d . f o r C 1 9 H 1 9 N 3 0 2 : C, 64.58; H, 5.42; N, 11.89; S, 9.1. Found: C, 64.71; H, 5.41; N, 11.83; S, 9.0. 3-(N-Tosylamino)-4-indolyl(3a)-butanoic a c i d (152) The n i t r i l e - t o s y l a t e (151) (160 mg) was t r e a t e d w i t h 30% aqueous sodium hydroxide (5 ml) f o r a p e r i o d of one hour at 140°. The v i s c o u s mixture was cooled to room temperature, d i l u t e d w i t h water (20 ml) and placed i n an i c e bath. Upon c a r e f u l a c i d i f i c a t i o n w i t h 2 N s u l p h u r i c a c i d a white p r e c i p i t a t e formed which was c o l l e c t e d by c e n t r i f u g a t i o n , washed w i t h water and d r i e d i n vacuo to provide 158 mg (93%) of the d e s i r e d a c i d (15 2). R e c r y s t a l l i z a t i o n from e t h a n o l a f f o r d e d an a n a l y t i c a l sample, m.p. 198-200°; i r , v max ( N u j o l ) : 3360 (NH); 3190-2650 (C00H); 1705 (C00H); 1605 (aromatic); 1340 and 1165 cm" 1 (S0 2-NH-); uv, X max ( e ) : 222 (24000); 275 (3320); 283 (3470); 291 nm (2960); nmr ( a c e t o n e - d j ; o 6 2.24 ( s i n g l e t , 3H, -CH^; 2.46 ( m u l t i p l e t , 2H, C4H 2); 2.93 (doublet of doublet, J = 7, 3Hz, 2H, CH^COOH); 3.80 (broad t r i p l e t , J = 6 Hz, IH, C3H); 4.95 (v. broad s i n g l e t , 1.5H, NH-Ts); 6.77-7.6 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; 9.88 (broad s i n g l e t , 0.5H, -C00H). Anal, c a l c d . f o r c 1 9 H 2 o N 2 0 A S : C» 61'Z8'> H» 5.41; N, 7.52. Found: C, 61.42; H, 5.43; N, 7.35. - 247 -3 - A m i n o - 4 - i n d o l y l ( 3 a ) - b u t a n o n i t r i l e (153) The t o s y l - n i t r i l e ( 1 5 1 ) (10 g) was d i s s o l v e d i n dry l i q u i d ammonia (700 ml) at -78°. Sodium metal (3.6 g ^ 5.5 mole e q u i v a l e n t ) was added i n s m a l l p o r t i o n s and the mixture was s t i r r e d f o r 30 minutes at -78°. The excess sodium was destroyed by c a r e f u l a d d i t i o n of ammonium c h l o r i d e (15 g) and the ammonia was evaporated. The residue was cooled i n an i c e -water bath, d i l u t e d w i t h water (300 ml) and e x t r a c t e d w i t h e t h y l a c e t a t e . The e x t r a c t was washed w i t h 1 N h y d r o c h l o r i c a c i d (3x150 ml) and water (2x150 ml) and d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t y i e l d e d 845 mg of s t a r t i n g m a t e r i a l . The aqueous and a c i d i c phases were combined and adjusted to pH 10-11 w i t h 10 N ammonium hydroxide and the r e s u l t a n t white suspension was e x t r a c t e d w i t h e t h y l acetate. The e x t r a c t was washed w i t h water, d r i e d over anhydrous sodium sulphate and evaporated to a f f o r d an amorphous residue (5.4 g = 95%) of the d e s i r e d m a t e r i a l (153). The compound was pure by TLC ( S i l i c a g e l G, methylene chloride/10% acetone); i r , v max ( C H C l 3 ) : 3480 (NH-indole); 3340 (NH); 2246 cm" 1 (CN); uv, X max ( e ) : 273 (4150); 281 (4390); 289 nm (3870); nmr (CDC1 3); 62.55 (doublet, J = 6 Hz, 2H, C4-H 2); 2.94 ( m u l t i p l e t , 2H, CH 2CN); 3.4 ( m u l t i p l e t , IH, C3-H); 6.9-7.7 ( m u l t i p l e t s , 5H, a r o m a t i c ) ; 8.75 ( s i n g l e t , IH, indole-NH); mass s p e c , m/e 199 (M +); 183 (M-NH 2); 130 [M-CH(NH 2)CH 2CNJ. 3-Amino-4-indolyl(3a)-butanoic a c i d (154) T h e N b - t o s y l - c a r b o x y l i c a c i d (152) (16 mg) was t r e a t e d w i t h 80% s u l p h u r i c a c i d (2 ml) and heated f o r one minute at 150°. The mixture was cooled i n ice-water, c a r e f u l l y d i l u t e d w i t h water and the pH was adjusted - 248 -to 6.0 using 10% aqueous sodium hydroxide. The s o l u t i o n was concentrated i n vacuo to a volume of about 3 ml and e x t r a c t e d w i t h e t h y l ether f o r a p e r i o d of fo u r hours. Evaporation of the ether provided 8 mg (89%) of a s o l i d m a t e r i a l which e x h i b i t e d i d e n t i c a l p r o p e r t i e s on TLC ( S i l i c a g e l G, methanol, 1^) to tryptophan. The m a t e r i a l seemed to represent the d e s i r e d amino a c i d (154). 3-Aminb-4-indolyl(3a)-butanoic a c i d methyl e s t e r ,(155) T h e N b - t o s y l - a c i d (152) (8.9 g) was d i s s o l v e d a t -78° i n dry l i q u i d ammonia (200 ml) and t r e a t e d w i t h an excess of sodium metal (3 g) i n s m a l l p o r t i o n s . The mixture was s t i r r e d f o r two hours a t -78°, the excess of sodium destroyed by c a r e f u l a d d i t i o n of ammonium c h l o r i d e and the ammonia was evaporated. The white s o l i d r e s i d u e c o n t a i n i n g the ammonium s a l t of the amino a c i d (154) was taken up i n dry methanol (500 m l ) , cone, s u l p h u r i c a c i d (15 ml) was added and the mixture was r e f l u x e d f o r 18 hours. Most of the s o l i d m a t e r i a l went i n t o s o l u t i o n . The s o l v e n t was evaporated, the residue taken up i n water and b a s i f i e d w i t h 5% aqueous sodium carbonate s o l u t i o n . E x t r a c t i o n w i t h methylene c h l o r i d e provided 6.4 g of c r y s t a l l i n e m a t e r i a l which was chromatographed u s i n g 500 g S i l i c a g e l (BDH) and methylene c h l o r i d e / 5 % methanol to a f f o r d 4.2 g (76%) o f the d e s i r e d compound (155); m.p. 112-113°; i r , v max (CHC1 3): 3490, 3390 (NH); 1725 (C00CH 3); 1585 cm" 1 (arom.); uv, X max ( e ) : 220 (22400); 281 (3640); 290 nm (3170); nmr (CDC1 3); <5 1.73 ( s i n g l e t , 2H, NH 2); 2.34-2.9 ( m u l t i p l e t s , 4H S CH 2C0 + C4H 2); 3.58 ( m u l t i p l e t , IH, C3H); 3.60 ( s i n g l e t s , 3H, CO0CH 3); 6.94-7.64 ( m u l t i p l e t s , 5H, a r o m a t i c ) ; 8.41 ( s i n g l e t , IH, i n d o l e NH). An a l , c a l c d . f o r C 1 3 H 1 6 N 2 0 2 : C, 67.22; H, 6.94; N, 12.06. Found: C, 67.08; - 249 -H, 6.91; N, 11.99. Formylatibn bf :3-amino-4-indOlyl(3a)-butanoic a c i d methyl ester-*- (156) a) The amino e s t e r (155) (100 mg) was t r e a t e d w i t h anhydrous methyl formate (3 ml) and sodium methoxide (25 mg) and s t i r r e d f o r two hours at room temperature. The mixture was evaporated to dryness, the r e s i d u e e x t r a c t e d w i t h methylene c h l o r i d e and the r e s u l t a n t m a t e r i a l was separated by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 5 % acetone) to provide 93 mg (83%) of the d e s i r e d m a t e r i a l (156) as a v i s c o u s o i l ; i r , v max (CHC1 3): 3550, 3480 (NH); 1730 (C00CH 3); 1680 cm" 1 (NHCO); uv, X max; 275, 287, 291 nm; nmr (CDC1 3); 6 2.49 (doublet, J = 6 Hz, 2H, C4H 2); 3.00 (doublet, J = 6 Hz, 2H, CH 2C0); 3.60 ( s i n g l e t , 3H, C00CH 3); 4.62 ( m u l t i p l e t , IH, C3H); 6.24 (doublet, J = 8 Hz, IH, NH-CHO); 6.80-7.82 ( m u l t i p l e t s , 5H, a r o m a t i c ) ; 8.00 ( s i n g l e t , IH, CHO); 8,42 ( s i n g l e t , IH, indole-NH). b) The amino e s t e r (155) (1.0 g) was t r e a t e d w i t h 99% formic a c i d (4 ml) and a c e t i c anhydride (1.2 ml) f o r a p e r i o d of 30 minutes a t 100°. The mixture was evaporated to dryness at room temperature i n vacuo and the residue was taken up i n i c e - c o l d s a t u r a t e d sodium bicarbonate s o l u t i o n . E x t r a c t i o n w i t h methylene c h l o r i d e provided 1.1 g of crude m a t e r i a l which was chromatographed using 70 g of S i l i c a g e l (Woelm, a c t i v i t y H I ) and methylene chl o r i d e / 3 % methanol y i e l d i n g 883 mg (78%) of the d e s i r e d pure compound (156) . - 250 -L-(-)-3 -Ca rbometh6xymethy l-3,4-dihydro -B-carholine (157) The N -formyl compound (156) (1.4 g) was d i s s o l v e d i n t r i f l u o r o -b : a c e t i c a c i d (15 ml) and the dark green s o l u t i o n was heated f o r 3 hours at 50°. The a c i d was evaporated i n vacuo a t room temperature, and the o i l y r esidue was t r e a t e d w i t h i c e c o l d s a t u r a t e d sodium bicarbonate s o l u t i o n . The r e s u l t i n g pale y e l l o w o i l y p r e c i p i t a t e was e x t r a c t e d w i t h methylene c h l o r i d e / 5 % methanol to a f f o r d 1.2 g (92%) of the d e s i r e d m a t e r i a l (157) as a pale y e l l o w foam; i r , v max ( C H C l ^ : 3510 (NH); 1740 (C00CH 3); 1680 and 1620 cm" 1 (C=N); uv, A max: 236; 243; 322 nm; nmr (CDC1 3 + CD30D, 4:1); 6 2.52-3.24 ( m u l t i p l e t s , 4H, CH 2C0 + C4H 2); 3.69 ( s i n g l e t , 3H, C00CH 3); 4.2 ( m u l t i p l e t , IH, C3H); 6.96-7.60 ( m u l t i p l e t s , 4H, aromatic); 8.26 (doublet, J = 2 Hz, IH, C1H); mass s p e c , m/e 242 (13%, M +); 169 (100%, M- CH 2C0 2CH 3). 2-0xb-3-ethyl-6-carbomethoxymethyl-1,2,3,4,6,7,12,12b-octahydro-indolo  ( 2 , 3 - a ) - q u i n o l i z i n e (158) The d i h y d r o c a r b o l i n e (157) (400 mg) and 3-methylen-pentan-2-one (126) (1.0 g) were d i s s o l v e d i n dry methanol (10 ml) and t r e a t e d w i t h s a t u r a t e d methanolic HC1 (0.1 ml). The s o l u t i o n was r e f l u x e d f o r s i x hours a f t e r which i t was evaporated to dryness. The residue was chromatographed using 40 g of S i l i c a g e l (Woelm, a c t i v i t y I I ) , e l u t i n g w i t h methylene c h l o r i d e / 3 % methanol provided 102 mg (18%) of the d e s i r e d t e t r a c y c l i c ketone (158). TLC ( S i l i c a g e l G, C H 2 C l 2 / 3 % CH30H) i n d i c a t e d that again a mixture of two compounds i n an approximate r a t i o of 9:1 (more p o l a r to l e s s p o l a r ) was present. Attempts to separate the two m a t e r i a l s were un s u c c e s s f u l ; i r , v max (CHC1 3): 3500 (NH); 2850, 2810, 2780 (Bohlmann bands); - 251 -1720-1735 cm" 1 (C00CH 3 + C=0); uv, A max ( e ) : 273 (8290); 283 (8290); 290 nm (7850); nmr (CDC1 3); 6 0.95 ( t r i p l e t , J « 7 Hz,. 3H, -CH 2-CH 3); 3.60 ( s i n g l e t , 3H, C00CH 3); «v» 3.85 ( m u l t i p l e t , 1H, C12b-H); 6.96-7.53 ( m u l t i p l e t s , 4H, aromatic); 8.34 ( s i n g l e t , IH, i n d o l e -NH); mass s p e c , m/e 340 (15%, M +); 267 (100%, M- CH 2C0 2CH 3). Attempted carbomethoxylation of 3-amino-4-indolyl(3a)-butanoic  a c i d methyl e s t e r , (155)-x-»(162) The amino e s t e r (155) (100 mg, 0.4 mM) i n dry benzene (5 ml) was added at room temperature to a suspension of sodium hydride (50 mg, ^ 2 mM) i n dry dimethyl carbonate (2 ml). The mixture was a g i t a t e d at room temperature and monitored by TLC ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol). A f t e r a p e r i o d of 18 hours a l a r g e amount of s t a r t i n g m a t e r i a l could s t i l l be detected and the mixture was t h e r e f o r e heated f o r 4 hours at 60°. The r e s u l t a n t product was cooled i n an i c e bath, the excess of sodium hydride was destroyed by dropwise a d d i t i o n of water and the mixture was a c i d i f i e d w i t h 2 N h y d r o c h l o r i c a c i d . E x t r a c t i o n w i t h benzene provided 53 mg of a brown amorphous m a t e r i a l . The aqueous phase was b a s i f i e d w i t h 5% sodium carbonate s o l u t i o n and e x t r a c t e d w i t h methylene c h l o r i d e to y i e l d 38 mg of a s l i g h t l y y e l l o w n o n — c r y s t a l l i n e compound. The methylene c h l o r i d e e x t r a c t was separated by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene chlorice/10% methanol) to a f f o r d 7.5 mg of s t a r t i n g m a t e r i a l (155) and 19 rag of 3-amino-4-(N-carbomethoxy i n d o l y l ) ( 3 a ) - b u t a n o i c a c i d methyl e s t e r (159) as an amorphous m a t e r i a l ; i r , v max (CHC1 3): 1730 cm" 1 (C00CH 3); uv, A max: 287, 295 nm; nmr (CDC1 3); 6 1.7 ( m u l t i p l e t , 2H, -NH 2 > exchangeable w i t h D 20); 2.5 ( m u l t i p l e t , 2H, C4H 2); 2.8 ( m u l t i p l e t , 2H, - 252 -CH 2CO-); 3.6 ( m u l t i p l e t , IH, C3-R); 3.70 ( s i n g l e t , 3H, C00CH 3); 4.03 ( s i n g l e t , 3H, N-C00CH 3); 6.65-8.3 ( m u l t i p l e t s , 5H, a r o m a t i c ) . P r e p a r a t i v e TLC s e p a r a t i o n of the benzene e x t r a c t provided two major components, the more p o l a r one (160) (12.5 nig) had the f o l l o w i n g c h a r a c t e r -i s t i c s ; i r , v max (CHCL^): 3480 (NH); 1730 cm" 1 (C00CH 3); uv, X max: 275, 282, 291 nm; nmr (CDCLj); 6 2.5 (doublet, J = 6 Hz, 2H, C4-H 2); 3.02 (doublet, J = 6 Hz, 2H, CH 2C0-); 3.65 ( s i n g l e t , 6H, 2 x C00CH 3); 4.3 ( m u l t i p l e t , IH, C2-H); 5.2 (doublet, J = 8 Hz, IH, -C3H-NH-); 6.95-8.2 ( m u l t i p l e t s , 6H, aromatic + i n d o l e NH). The l e s s p o l a r m a t e r i a l (161) (30 mg), e x h i b i t e d the f o l l o w i n g d a t a ; i r , v max (CHC1 3): 3480 (NH); 1730 cm" 1 (C00CH 3); uv, X max: 287, 295 nm; nmr (CDC1 3); 5 2.55 (doublet, J = 6 Hz, C4-H 2); 3.0 ( m u l t i p l e t , 2H, -CH 2C0-); 3.65 ( s i n g l e t , 3H, C00CH 3); 3.66 ( s i n g l e t , 3H, COOCHp; 4.0 ( s i n g l e t , 3H, -N-C00CH 3); 4.3 ( m u l t i p l e t , IH, C3-H); 5.3 (doublet, J = 8 Hz, IH, -C3H-NH-); 7.2-8.2 ( m u t l i p l e t s , 5H, a r o m a t i c ) . B e n z y l a t i o n of 3-(N-formylamino)-4-indolyl(3a)-butanoic a c i d methyl e s t e r , (156) •» (163) The N b~formyl compound (156) (1.16 g = 4.5 mM) i n dry dimethylformamide (10 ml) was t r e a t e d w i t h b e n z y l bromide (765 mg = 4.5 mM) and cooled to 0°. While s t i r r i n g sodium hydr i d e (108 mg = 4.5 mM) was added i n f o u r equal p o r t i o n s over a p e r i o d of one hour. 4.5 mM of h y d r o c h l o r i c a c i d (4.5 ml 1 N HC1) were added and the s o l v e n t mixture was evaporated at room temperature, The r e s i d u e was chromatographed u s i n g 200 g S i l i c a g e l (Woelm, a c t i v i t y I ) and methylene c h l o r i d e / 3 % methanol to a f f o r d 1.19 g (=76%)-of the d e s i r e d m a t e r i a l (163) as a v i s c o u s o i l ; i r , v max (CHC1J: 3450 (NH); 1725 (C00CHJ; - 253 -1680 (NH-CHO); 1620 cm" 1 (arom.); uv, X max: 291 nm; nmr (CDC1 3); <S 2.55 (doublet, J = 6 Hz, 2H, C4H 2); 3.08 .(doublet, J = 6 Hz, 2H, -CH 2-C0-); 3.67 ( s i n g l e t , 3H, C00CH 3); 4.7 ( m u l t i p l e t , IH, C3-H); 5.3 ( s i n g l e t , 2H, -N-CH 2-C 6H 5); 6.25 (doublet, J = 8 Hz, IH, NH-CO); 6.9-7.8 ( m u l t i p l e t s , 10H, a r o m a t i c ) ; 8.12 ( s i n g l e t , IH, -N-CH0); mass s p e c , m/e 350 (M +). Attempted Carbomethoxylation of 3-(N-formylamino)-4-(N-benzylindolyl)(3a)- b u t a n o i c a c i d methyl e s t e r . (163)-*-> (164), -> (165) The s t a r t i n g m a t e r i a l (163) (50 mg) i n anhydrous dimethylformamide (0.5 ml) and dry dimethyl carbonate (0.5 ml) was t r e a t e d at room temperature w i t h an excess of sodium hydride (10 mg). The mixture was a g i t a t e d f o r 15 hours a t room temperature. The s o l v e n t s were removed i n vacuo, the r e s i d u e t r e a t e d w i t h water- and e x t r a c t e d w i t h methylene c h l o r i d e to provide 49 mg of a brown crude m a t e r i a l . The l a t t e r was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) to provide 22 mg of pure but unstable N b-methyl carbonate (165) as a v i s c o u s o i l ; i r , v max (CHC1 0) : 3450 (NH); 1725 (C00CH 3); 1615 cm 1 (arom.); nmr (CDC1.); 6 2.49 (doublet, 3 J J = 6 Hz, 2H, C3-H 2); 3.0 ( m u l t i p l e t , 2H, -CH 2-C0-); 3.58 ( s i n g l e t , 6H, 2 x C00CH 3); 4.28 ( m u l t i p l e t , IH, C3-H); 5.2 ( m u l t i p l e t , IH, -NH-CO- + s i n g l e t , 2H, - N - C H ^ C ^ ) ; 6.9-7.6 ( m u l t i p l e t s , 10H, aromatic). Hydroxy methylation of 3-(N-formylamino)-4-(N-benzylindolyl)(3a)-butanoic  a c i d methyl e s t e r (163) -» (166) Compound (163) (100 mg) i n anhydrous dimethylformamide (2 ml) was t r e a t e d at room temperature w i t h triphenylmethyIsodium s o l u t i o n u n t i l the deep red colour was maintained i n the s o l u t i o n (y 4 ml). The mixture - 254 -was s t i r r e d f o r 15 minutes at room temperature and anhydrous methyl formate (1 ml) was added upon which the dark red c o l o u r disappeared. The mixture was a g i t a t e d f o r another 30 minutes a f t e r which dry HCl gas was bubbled through the s o l u t i o n f o r one minute to convert any enolate i n t o the f r e e e n o l form. An excess of sodium borohydride was added i n s m a l l p o r t i o n s . The r e s u l t a n t mixture was s t i r r e d f o r 45 minutes a f t e r which the s o l v e n t was removed i n vacuo at room temperatur. The r e s i d u e was t r e a t e d w i t h water (10 ml), n e u t r a l i z e d w i t h 2 N h y d r o c h l o r i c a c i d and e x t r a c t e d w i t h methylene c h l o r i d e . Evaporation provided a crude residue which was passed through a column of 80 g S i l i c a g e l (BDH) us i n g methylene chloride/3-KL5% methanol to remove the triphenylmethane, 104 mg of a m a t e r i a l , c o n s i s t i n g of f i v e components (TLC, S i l i c a g e l , methylene c h l o r i d e / 3 % methanol), were obtained. P r e p a r a t i v e TLC ( c o n d i t i o n s as before) provided 11 mg (10 %) of the d e s i r e d a l c o h o l (166); i r , v max (CHC1 3): 3400, broad (NH, OH); 1725 (C00CH 3); 1680 (-N-CH0); 1615 cm" 1 (arom.); uv, X max: 290, 298 nm; nmr (CDC1 3); <5 2.58 ( m u l t i p l e t , IH, -CH-C0); 3.05 (doublet, J = 6 Hz, 2H, C4H 2); 3.68 ( s i n g l e t , 3H, C00CH 3); 3.88 (doublet, J = 4 Hz, 2H, -CH 20H); 4.88 ( m u l t i p l e t , IH, C3-H); 5.22 ( s i n g l e t , 2H, C gH 5 -CH 2-N); 6.2 (doublet, J = 8 Hz, IH, -NH-C0-); 6.9-7.4 ( m u l t i p l e t s , 10H, a r o m a t i c ) ; 8.05 ( s i n g l e t , IH -N-CH0); mass s p e c , m/e 380 (M +); 362 (M- H 20); 335 (M- NH 2CH0); 304 {M- (CH 20H + NH 2CH0)J. 3 - ( N - f o r m y l a m i n o ) - 4 - i n d o l y l ( 3 a ) - b u t a n o n i t r i l e ( 1 6 7 ) ^ The a m i n o n i t r i l e (153) (4.1 g) i n anhydrous methyl formate (100 ml) was t r e a t e d w i t h a s a t u r a t e d methanolic s o l u t i o n of sodium methoxide. The mixture was s t i r r e d f o r four hours at room temperature a f t e r which i t was - 255 poured i n t o ice-water and e x t r a c t e d with, methylene c h l o r i d e . The e x t r a c t was washed s u c c e s s i v e l y w i t h 1 N h y d r o c h l o r i c a c i d , 5% sodium bicarbonate s o l u t i o n and water and was d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t i n vacuo provided an amorphous res i d u e (3.36 g) which was chromatographed using 60 g S i l i c a g e l (Woelm, a c t i v i t y I I I ) and methylene chlorida/3% methanol to provide 2.4 g (58%) of the d e s i r e d N^-formyl compound (167). R e c r y s t a l l i z a t i o n from methylene c h l o r i d e provided an a n a l y t i c a l sample, m.p. 150-151.5°; i r , v max ( N u j o l ) : 3490, 3380 (NH); 2260 (C = N); 1680 cm"1 (-C0NH); uv, X max ( e ) : 273 (7340); 281 (7832); 289 nm (6886); nmr (CDC1 3); 6 2.50 (doublet, J = 4 Hz, IH, C4-H); 2.60 (doublet, J = 5 Hz,- IH, C4-H); 3.01 (doublet of doublet , J = 9 Hz, 6 Hz, C2-H 2); 4.51 ( m u l t i p l e t , IH, C3-H); 6.22 (doublet, J = 8 Hz, 2H, NH-C0-); 7.03-7.65 ( m u l t i p l e t s , 5H, a r o m a t i c ) ; 8.06 ( s i n g l e t , IH, i n d o l i c - N H ) ; 8.53 ( s i n g l e t , IH, -CHO); high r e s o l u t i o n mass s p e c , M + (57%), 227.1079; C13 H13 N3° r e c l u i r e s 227.1058. Anal, c a l c d . f o r C^H^^O: C, 68.71; H, 5.77; N, 18.49. Found: C, 68.98; H, 5.78; N, 18.22. 3-( N - F o r m y l a m i n o ) - 4 - ( N - b e n z y l i n d o l y l ) ( 3 a ) - b u t a n o n i t r i l e (168a) and  3 - ( N - f o r m y l - N - b e n z y l a m i n o ) - 4 - ( N - b e n z y l i n d o l y l ) ( 3 a ) - b u t a n o n i t r i l e (168b) The N - f o r m y l n i t r i l e (167) (2.1 g = 9.2 mM) i n anhydrous d i m e t h y l -formamide (35 ml) was t r e a t e d w i t h b e n z y l bromide (1.1 ml = 9.2 mM). The mixture was cooled to 0° and sodium hydride (232 mg = 9.6 mM) was added In 4 equal p o r t i o n s over a p e r i o d of 40 minutes. The mixture was s t i r r e d f o r another 20 minutes w h i l e c o o l i n g was maintained. Water was added drop-wise and the product was e x t r a c t e d w i t h methylene c h l o r i d e to provide 3.4 g - 256 -of an o i l y r e s i d u e . Chromatography on 70 g of S i l i c a gel,; (Woelm, a c t i v i t y I I I , methylene chloricfe/3%nethanol) a f f o r d e d 450 mg of s t a r t i n g m a t e r i a l , 1.7 g (58%) of the monobenzyl compound (168a) and 445 mg of the d i b e n z y l m a t e r i a l (168b). The former (168a) was r e c r y s t a l l i z e d from methylene chloride-hexane to provide an a n a l y t i c a l sample, m.p. 139-140°; i r , v max ( N u j o l ) : 3320 (NH); 2940 and 2920 (CH); 2265 (CN); 1670 cm - 1 (-NHC0-); (CHC1 3): 3420 (NH); 2870 (CH); 2260 (CN); 1685 (-NHC0-); 1460, 1440, 1420, 1360 and 1335 cm"1 (-CH2-C=C-); uv, X max (e): 276 (7195); 285 (7829); 295 nm (6642); nmr (CDC1 3); S 2.57 (doublet, J = 4 Hz, IH, C4-H); 2.66 (doublet, J = 5 Hz, IH, C4-H); 3.11 (doublet of doublet , J = 7, 1 Hz, 2H, C2-H 2); 4.52 ( m u l t i p l e t , IH, C3-H); 5.23 ( s i n g l e t , 2H, C ^ - C H ^ ; 5.96 (doublet, J = 7 Hz, IH, -NH-C0-); 6.94-7.7 ( m u l t i p l e t s , 10H, aromatic); 8.10 ( s i n g l e t , IH, -CHO); the s i g n a l a t 5.96 disappeared upon a d d i t i o n of D 20; i r r a d i a t i o n (114db) at 4.52 caused the s i g n a l s at 2.57, 2.66, 3.11 and 5.96 to c o l l a p s e each t o a s i n g l e t ; mass s p e c t r o m e t r i c data: calc.mass. 317.1526 272.1313 220.1125 129.0578 128.0499 102.0469 97.0401 91.0547 A n a l , c a l c d . f o r C 2 0 H i g N 3 0 : C, 75.69; H, 6.03; N, 13.24. Found: C, 75.60 H, 5.96; N, 13.24. The d i b e n z y l compound (168b) r e s i s t e d attempts of c r y s t a l l i z a t i o n ; i r , m/e r e l . i n t . % measured i o n composi mass C H N 317 8.4 317.1491 20 19 3 272 8.3 272.1314 19 16 2 220 58.1 220.1137 16 14 1 129 5.3 129.0593 9 7 1 128 1.9 128.0508 9 6 1 102 3.6 102.0469 8 6 97 1.0 97.0421 4 5 2 91 100.0 91.0546 7 7 - 257 -v max (CHC1 3): no NH; 2265 (CN); 1672 cm" 1 (-N-CO-); uv, X max: 253, 258, 264, 276, 287 aid 296 nm; nmr (CDC1 3); (5 2.40-3.30 ( m u l t i p l e t s , 4H, C2-H 2 + C4-H 2); 4.0 ( m u l t i p l e t , IH, C3-E); 4.30 ( s i n g l e t , 2H, C ^ - C ^ -a l i p h a t i c N-); 5.24 ( s i n g l e t , 2H, C ^ - C ^ - i n d o l e N-); 6.80-7.48 ( m u l t i p l e t s , 15H, aromatic); 8.38 ( s i n g l e t , . IH, -CHO); h i g h r e s o l u t i o n mass s p e c , M + (14%), 407.1999; C 2 7 H 2 5 N 3 0 r e q u i r e s 407.1996. Attempted carbomethoxylation of the monobenzoate (168a) u s i n g sodium  hydri d e a) The s t a r t i n g m a t e r i a l (168a) (24 mg) i n anhydrous dimethylformamide (1 ml) and dry methyl chloroformate (7.1 mg, 1 mole e q u i v a l e n t ) was cooled to 0° and t r e a t e d w i t h sodium hydride (1.8 mg, 1 mole e q u i v a l e n t ) f o r a p e r i o d of 30 minutes. The mixture was t r e a t e d w i t h water (0.1 ml) and ex t r a c t e d w i t h methylene c h l o r i d e to a f f o r d 23 mg of a m a t e r i a l which was i d e n t i c a l t o the s t a r t i n g compound (168a). b) Above r e a c t i o n was repeated f o r 30 minutes a t 60°, again only s t a r t i n g m a t e r i a l could be detected. c) Above r e a c t i o n mixture was heated f o r a p e r i o d of 15 hours i n a sealed tube and the product was worked up as before p r o v i d i n g only s t a r t i n g m a t e r i a l . Deuteration study of 3-(N-formylamino)-4-(N-benzylindolylX3a)-butanonitrile, (168a) (169) The monobenzyl compound (168a) (20 mg, 0.06 mM) i n anhydrous DMF was t r e a t e d w i t h sodium Hydride (14 mg, 0.6 mM) and heated f o r 3 minutes at 100° upon which the r e a c t i o n mixture turned dark red. I t was cooled i n ice-water, deuterium oxide (D 20) (0.5 ml) was added w i t h s t i r r i n g and the mixture was e x t r a c t e d w i t h methylene c h l o r i d e to provide 20 mg of a s o l i d - 258 -m a t e r i a l which had i d e n t i c a l TLC p r o p e r t i e s ( S i l i c a g e l G, methylene c h l o r i d e / 2 % methanol, I 2 ) as the s t a r t i n g m a t e r i a l ; i r , v max (CHCl^): 3440 (NH); 2940 and 2880 (CH); 2270 (CN); 1695 (-NHC0-); 1030-960 cm" 1 (CD); nmr (CDCl^), peak shape, p o s i t i o n s and m u l t i p l i c i t y v i r t u a l l y i d e n t i c a l to s t a r t i n g m a t e r i a l (168a), some decrease of i n t e n s i t y was detected i n s i g n a l s due to -CI^CgH ( 6 5.23, *v 15% +) and -NHCH0 (fi 5.96, ^ 5 % 4-); h i g h r e s o l u t i o n mass s p e c , M + (37%), 317.1482; C 2 Q H^N^O r e q u i r e s 317.1526; C20 H17 D N3° r e 9 u l r e s 317.1511. Carbomethoxylation of 3-(N-formylamino)-4-(N-benzylindolyl)(3a)-butano- n i t r i l e , (168a)-*> (170), -» (171) + ( 1 7 2 ) 6 6 D i i s o p r o p y l amine(66 mg = 0.65 mM) was d i s s o l v e d i n dry t e t r a h y d r o -f u r a n (0.4 ml) and cooled to -78°. n - B u t y l l i t h i u m (0.64 mM) was added and the mixture was s t i r r e d f o r 30 minutes at -78°. The N-benzyl compound (168a) (203 mg = 0.64 mM) was d i s s o l v e d i n a mixture o f dry t e t r a h y d r o f u r a n (0.6 ml) and dry hexamethylphosphoramide (HMPA) (0.3 ml). The r e s u l t i n g s o l u t i o n was added to the above mixture c o n t a i n i n g the d i i s o p r o p y l l i t h i u m amide. A f t e r s t i r r i n g f o r f i v e minutes a t -78° a s o l u t i o n (0.5 ml = 0.64 mM) c o n t a i n i n g methyl chloroformate (1 ml) i n dry t e t r a h y d r o f u r a n (10 ml) was added. S t i r r i n g was continued f o r one hour at -78°. The mixture was t r e a t e d w i t h water and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h water and d r i e d over anhydrous sodium sulphate. Evaporation a f f o r d e d an o i l y r esidue which upon p r e p a r a t i v e TLC s e p a r a t i o n ( S i l i c a g e l G, methylene chloride/3%HEthanol) a f f o r d e d three amorphous f r a c t i o n s . The most p o l a r m a t e r i a l (11.7ng) c o n s i s t e d of s t a r t i n g m a t e r i a l . The second compound (36.8 mg = 12%) was assigned s t r u c t u r e (172); i r , v max (CHCXj): 3435 (NH); - 259 -2244 (CN)j 1722 cm" 1 (-N~C00CH3); uv,. X max (e): 276 (4919); 286 (5176); 295 nm (4572); nmr (CDC1 3); <5. 2.47 (doublet, J « 4 Hz, IH, C4-H); 2.55 (doublet, J = 5 Hz, IH, C4-R); 3.07 (doublet of doublet , J = 7 Hz, 1 Hz, 2H, C2-H 2); 3.60 ( s i n g l e t , 3H, -C00CH 3); 4.19 ( m u l t i p l e t , IH, C3-H); 5.01 (doublet, J = 8 Hz, IH, -NH-C0), disappears upon D 20 exchange; 5.22 ( s i n g l e t , 2H, C ^ - C H ^ ) ; 6.99-7.64 ( m u l t i p l e t s , 10H, a r o m a t i c ) ; h i g h r e s o l u t i o n mass s p e c , M + (11%), 347.1641; C2i H21 N3°2 r e 9 u l r e s 347.1633. The l e a s t p o l a r m a t e r i a l (191 mg = 79%) was shown to be the N b-carbomethoxy-N b-formyl compound (171); i r , v max (CHC1 3): no NH; 2249 (CN); 1754 (-C00-); 1696 cm" 1 (-N-CH0); uv, X max ( E ) : 275 (5573); 284 (5917); 295 nm (4875); nmr (CDC1 3); 6 2.67 (doublet of doublet , J = 17 Hz, 6 Hz, IH, C4-H); 3.20 (doublet of doublet , J - 17 Hz, 10 Hz, IH, C4-H); 3.25 (doublet, J = 8 Hz, 2H, C2-H 2);3.74 ( s i n g l e t , 3H, -C00CH 3); 5.09 ( m u l t i p l e t , IH, C3-H); 5.22 ( s i n g l e t , 2H, C,H,--CH0-) ; 6.92-7.63 ( m u l t i p l e t s , 10H, aromatic); 9.14 ( s i n g l e t , IH, -N-CH0); h i g h r e s o l u t i o n mass s p e c , M + (53%), 375.1609; C22 H21 N3°3 r e 9 u i r e s 375.1582. 3-Carbomethoxymethyl-N—benzyl-3,4-dihydrocarboline (173) 3-(N-Foraylamino)-4-(N-benzylindoly!L)(3a)-butanoic a c i d methyl e s t e r (163) (1.2 g) and t r i f l u o r o a c e t i c a c i d (10 ml) were heated f o r three hours at 50°. The a c i d was evaporated at 50° i n vacuo and the dark green residue was t r e a t e d w i t h i c e c o l d s a t u r a t e d sodium bicarbonate s o l u t i o n to produce a y e l l o w o i l which was e x t r a c t e d w i t h methylene c h l o r i d e The e x t r a c t was washed w i t h water and d r i e d over anhydrous sodium sul p h a t e , evaporation of the s o l v e n t provided 1.02 g (92%) of the d e s i r e d compound (173) as an amorphous m a t e r i a l ; i r , v max ( f i l m ) : 1740 (C00CH 3); 1620 cm" 1 (aromatic); uv, X max - 260 -( E ) : 241 (9850); 246 (10080); 322 nm (9040); nmr (CDC1 3); 6 2.45-3.30 ( m u l t i p l e t s , 4H, CH 2C0-+04^); 3.75 ( s i n g l e t , 3R, . T C 0 2 C H 3 ) ; 4.20 ( m u l t i p l e t , IH, C3H); 5.42 ( s i n g l e t , 2H,.CH^CgHj); 6.95-7.65 ( m u l t i p l e t s , 9H, aro m a t i c ) ; 8.40 ( s i n g l e t , IH, -N=CH-); mass s p e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition calc.mass mass C H N 0 332 11 332.1478 21 20 2 2 332.1524 259 94 259.1080 18 15 2 259.1235 181 26 181.0776 12 9 2 181.0765 168 38 168.0725 11 8 2 168.0687 91 100 91.0538 7 7 91.0547 Deuteration of compound (173) •*• (174) D i i s o p r o p y l amine (20 mg = 0.2 mM) i n dry t e t r a h y d r o f u r a n (0.1 ml) was cooled to -78°. N - B u t y l l i t h i u m , 2 M i n hexane (0.1 ml = 0.2 mM) was added and the mixture was s t i r r e d f o r 5 minutes at -78°. The d i h y d r o c a r b o l i n e (173) (16.6 mg = 0.05 mM) i n dry t e t r a h y d r o f u r a n (0.1 ml) and HMPA (0.1 ml) was added and the mixture was a g i t a t e d f o r another 10 minutes at -78° a f t e r which the r e a c t i o n was quenched w i t h deuterium oxide (1 ml). The product was e x t r a c t e d w i t h methylene c h l o r i d e , t h e s o l v e n t evaporated and the crude residue separated by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene chloricfe/5% methanol) to provide the d e s i r e d m a t e r i a l (174) (3.5 mg = 20%) which had i d e n t i c a l TLC p r o p e r t i e s as the s t a r t i n g m a t e r i a l and was subjected to a mass sp e c t r o m e t r i c i n v e s t i g a t i o n as o u t l i n e d i n the d i s c u s s i o n . - 261 -2-0xo-3-ethyl-6-^carbomethoxymethyl-l , 2,3,4,6,7,12,12b-octahydro- (N-berizyliridolp ) ( 2 , 3 - a ) ~ q u i n o l i z i n e (175) The d i h y d r o c a r b o l i n e compound (173) (2.2 g) and 3-methylene-pentan-2-one (126) (8.5 ml) were d i s s o l v e d i n dry methanol (8 ml) which had been s a t u r a t e d w i t h HCl gas. T r i f l u o r o a c e t i c a c i d (0.3 ml)was added and the mixture was r e f l u x e d f o r 20 hours. The v o l a t i l e m a t e r i a l s were removed i n vacuo. The residue was taken up i n methylene chloride,washed w i t h 5% sodium bicarbonate s o l u t i o n , d r i e d over anhydrous sodium sulphate and evaporated to provide a crude product. The l a t t e r was chromatographed using S i l i c a g e l (320 g, Woelm, a c t i v i t y III,methylene c h l o r i d e / 2 % methanol). The e l u t e d m a t e r i a l was r e c r y s t a l l i z e d from 2-propanol to a f f o r d 940 mg (33%) of the d e s i r e d c r y s t a l l i n e m a t e r i a l (175). This m a t e r i a l was shown to be a mixture of two compounds (y 9:1, p o l a r to l e s s p o l a r ) by TLC ( S i l i c a g e l G,methylene c h l o r i d e / 3 % methanol) and s e p a r a t i o n c o u l d not be achieved as i n e a r l i e r cases; m.p. 113-115°; i r , v max (CHC1 3): 2880, 2860, 2800 (Bohlmann bands); 1725 (C00CH 3); 1710 cm - 1 (CO); uv, X max ( e ) : 277 (7590); 284 (7950); 293 nm (6770); nmr (CDC1 3); <5 0.90 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 3.60 ( s i n g l e t , 3H, -C0 2CH 3); 5.23 (doublet, J = 3 Hz, 2H, -CH 2C 6H 5); 6.80-7.60 ( m u t l i p l e t s , 9H, a r o m a t i c ) ; no proton <5> 3.9 except f o r b e n z y l i c and aromatic ones; mass s p e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition calc.mass. mass C H N O 430 50 430.2217 27 30 2 3 430.2255 429 40 429.2158 27 29 2 3 429.2177 357 72 357.1992 24 25 2 1 357.1966 339 34 339.1777 20 23 2 3 339.1709 259 45 259.1246 18 15 2 259.1235 246 41 246.1346 18 16 1 246.1283 168 31 168.0669 11 8 2 168.0687 91 100 91.0499 7 7 91.0548 - 262 -A n a l , c a l c d . f o r C ^ H ^ ^ C y C, 75.32; H, 7.02; N, 6.51. Found: C, 75.18; H, 7.08; N, 6.36. Deuteration of the t e t r a c y c l i c keto e s t e r (175), ->- (176) Dry d i i s o p r o p y l amine(20 mg = 0.2 mM) i n dry t e t r a h y d r o f u r a n (0.1 ml) and n - b u t y l l i t h i u m (0.2 mM) were reacted f o r 5 minutes at -78°. Compound (175) (21.5 mg = 0.05 mM) i n dry t e t r a h y d r o f u r a n (0.1 ml) and HMPA (0.1 ml) was added and the mixture was s t i r r e d f o r 10 minutes a t -78° a f t e r which i t was worked up as p r e v i o u s l y , [ (173) -*• (174) ]. The crude m a t e r i a l was separated on TLC ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) to provide 8 mg (40%) of the d e s i r e d m a t e r i a l , which had TLC p r o p e r t i e s i d e n t i c a l to the s t a r t i n g m a t e r i a l . A d e t a i l e d mass sp e c t r o m e t r i c i n v e s t i g a t i o n was undertaken as o u t l i n e d i n the d i s c u s s i o n . Attempted e p i m e r i s a t i o n at C3 i n compound (175) Compound (175) (4 mg) i n dry methanol (0.5 ml) was t r e a t e d w i t h sodium methoxide (5 mg) f o r a p e r i o d of 30 minutes at room temperature. Water (0.1 ml) was added and the mixture was evaporated to dryness. TLC ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) i n d i c a t e d only a s l i g h t i n c r e a s e of the major (more p o l a r ) spot. 2-Oxb-3-ethyl-6-carbomethoxymethyl-l,2-3,4,6,7,12,12b-octahydro-(N-benzyl- i n d o l p ) ( 2 , 3 - a ) - q u i n o l i z i n e ethylene k e t a l (2),(177) The t e t r a c y c l i c ketone (175) (100 mg) was d i s s o l v e d i n dry chloroform (4 m l ) , which had been p r e v i o u s l y s a t u r a t e d w i t h HC1 gas, and f r e s h l y d i s t i l l e d ethylene g l y c o l (0.6 ml). The mixture was s t i r r e d f o r 4 hours at room temperature a f t e r which i t was cooled to 0°, poured i n t o i c e - c o l d - 263 -5% sodium carbonate s o l u t i o n and e x t r a c t e d with methylene c h l o r i d e . The crude m a t e r i a l was separated by. p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) to provide 89 mg (80%) of the d e s i r e d compound (177) as an amorphous sample, i r , v max (CHC1 3): 1725 (C0 2CH 3); 1600 (aromat i c ) ; 1150, 1170 cm - 1 (C-O-C); uv, X max ( e ) : 275 (7300); 283 (7550); 291 nm (7200); nmr (CDC1 3); <5 0.88 ( t r i p l e t , J = 5 Hz, 3H, -CH 2CH 3), not w e l l r e s o l v e d ; 3.56 ( s i n g l e t , 3H, -0CH 3); 3.75 ( m u l t i p l e t , 4H, -0-CH 2-CH 2-0); 5.24 ( s i n g l e t , 2H, C ^ O ^ - ) ; 6.80-7.45 ( m u l t i p l e t s , 9H, ar o m a t i c ) ; the range 6 3.42-3.96 embraces 8 protons, namely 0CH 3 > -0-CH 2CH 20- and C12b-H or C6-H; mass spec, m/e 474 (28%, M +); 473 (10%, M- 1 ) ; 401 (48%, M- C6 s i d e c h a i n ) ; 383 (14%, M- C ? H 7 ) ; 91 (100%, C ?H 7) ; 474.2547; C 29 H35 N2°4 req u i r e s 474.2517. 2-Oxo-3-ethyl-6-dicarbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro- ( N - b e n z y l i n d o l p . ) ( 2 , 3 - a ) - q u i n o l i z i n e ethylene k e t a l ( 2 ) , (178) D i i s o p r o p y l amine(12 mg = 0.12 mM) i n dry te t r a h y d r o f u r a n (THF) (0.1 ml) was cooled to -78° and t r e a t e d w i t h n - b u t y l l i t h i u m (0.12 mM, 0.06 ml, 2 M i n hexane), the mixture was s t i r r e d f o r 10 minutes at -78°. The t e t r a c y c l i c k e t a l (177) (47.4 mg = 0.1 mM) i n dry THF (0.2 ml) and HMPA (0.2 ml)were added and s t i r r i n g was continued f o r a f u r t h e r 10 minutes at -78°.Methyl chloroformate (47 mg - 0.5 mM) was added and the mixture was a g i t a t e d f o r 10 minutes at -78°. Water (1 ml) was added and the r e a c t i o n mixture was warmed to room temperature and e x t r a c t e d w i t h methylene c h l o r i d e . The crude m a t e r i a l was separated hy TLC ( S i l i c a g e l G, methylene c h l o r i d e / 5% methanol) to a f f o r d 7 mg (30%, based on reacted m a t e r i a l ) of the de s i r e d compound (178) and 26 mg of s t a r t i n g m a t e r i a l i n an amorphous s t a t e ; i r , v max (CHC1 3): 2890-2800 (Bohlmann bands); 1775 (C00CH 3); 1695 (C00CH 3 > - 264 -as s o c i a t e d with, lone p a i r of n i t r o g e n ) ; 1165 cm" 1 (C-O-C); uv, X max: 277, 283, 293.nm; nmr (CDC1 3) j 5 0.87 ( t r i p l e t , J = 5 Hz, -CR 2CH 3), not w e l l r e s o l v e d ; 3.53 ( s i n g l e t , 3H, -0CR 3); 3.83 ( s i n g l e t , 3H, -0CH 3); 4.19 (doublet, IH, J = 9 Hz, C6a-H); 5.24 ( s i n g l e t , 2H, C g H ^ H ^ ) ; m/e r e l . i n t . % 532 9 501 0.7 474 3 473 2 460 0.6 442 2 401 8 400 2 387 1 132 0.5 128 6 127 100 118 0.5 100 1 99 9 87 3 86 2 73 1 55 18 , 9H, a r o m a t i c ) ; mass sp e c t r o m e t r i c data: measured i o n composition calc.mass mass C H N 0 532.2557 31 36 2 6 532.2571 474.2519 29 34 2 4 474.2517 473.2509 29 33 2 4 473.2438 401.2227 26 29 2 2 401.2228 387.2086 25 27 2 2 387.2071 128.0817 7 12 2 128.0837 127.0754 7 11 2 127.0758 99.0453 5 7 2 99.0445 87.0471 4 7 2 87.0445 55.0236 3 3 1 55.0184 28-Hydroxy-3ct-ethy1-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro- (N-benzylindolo ) ( 2 , 3 - a ) - q u i n o l i z i n e (179) The t e t r a c y c l i c keto e s t e r (175) (19 mg) i n dry t e t r a h y d r o f u r a n (1.5 ml) was t r e a t e d w i t h sodium borohydride (9 mg) at 0° f o r a p e r i o d of 2.5 hours. The r e a c t i o n mixture was poured i n t o s a t u r a t e d sodium c h l o r i d e s o l u t i o n and e x t r a c t e d w i t h methylene c h l o r i d e . Evaporation of the s o l v e n t provided a crude m a t e r i a l which was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene chloride/1%methanol) t o y i e l d 12.8 mg (67%) of t e t r a c y c l i c a l c o h o l - 265 -e s t e r (179); m.p. 177-179°; i r , v max (CHC1 3): 3600, 3440 (OH); 2880, 2860, 2800 (Bohlmann bands); 1730 (-C0 2CH 3); 1605 cm 1 ( a r o m a t i c ) ; uv, X max ( e ) : 273 (8130); 285 (9550); 293 nm (7420); nmr (CDC1 3); 6 0.93 ( t r i p l e t , J = 6 Hz, 3H, -CH 2CH 3); 3.62 ( s i n g l e t , 3H, 0CH 3); 5.30 (doublet, J = 3 Hz, 2H, -CH 2C 6H 5); 6.90-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass spec, m/e 432 (44%, M +); 415 (5%, M- OH); 387 (14%, M- C ^ O ) ; 359 (79%, M-CH 2C0 2CH 3); 341 (40%, M- C^); 91 (100%, C-H-); 432.2382; C ^ H ^ N ^ re q u i r e s 432.2412. 2g-Acet6xy-3ct-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro- (N-bertzylindolo ) ( 2 , 3 - a ) - q u i n o l i z i n e (180) The a l c o h o l e s t e r (179) (39 mg) was t r e a t e d w i t h a c e t i c anhydride (0.4 ml) and p y r i d i n e (0.4 ml) f o r one hour at 85°. The mixture was poured i n t o i ce-water, b a s i f i e d w i t h 1 N sodium hydroxide s o l u t i o n and e x t r a c t e d w i t h methylene c h l o r i d e . E v a p o r a t i o n of the s o l v e n t i n vacuo a f f o r d e d 20 mg (47%) of the d e s i r e d acetate as a foamy m a t e r i a l ; i r , v max (CHC1 3): 1730 cm" 1 (-C0 2CH 3 > OAc); uv, X max ( e ) : 273 (5500); 284 (5900); 293 nm (4900); nmr (CDC1 3); 5 0.89 ( t r i p l e t , J = 6 Hz, 3H, -CH 2CH 3); 1.95 ( s i n g l e t , 3H, OAc); 3.62 ( s i n g l e t , 3H, 0CH 3); 4.50 (doublet of doublet, J = 11 Hz, 4 Hz, -CHOAc); 5.30 (doublet, J = 3 Hz, 2H, -CH 2CgH 5); 6.90-7.60 ( m u l t i p l e t s , 9H, ar o m a t i c ) ; mass s p e c , m/e 474 (M + ) ; 415 (M- OAc); 401 (M- CH 2C0 2CH 3). 2a-Hydroxy-3a-e thyl-6-carbomethoxymethyl-1,2,3,4,6,7,12,12b-octahydro- (N-benzylindo3o ) ( 2 , 3 - a ) - q u i n o l i z i n e (181) F r e s h l y sublimed aluminium c h l o r i d e (1.0 g, 7.5 mM) i n dry ether (20 ml) was t r e a t e d at 0° w i t h l i t h i u m aluminum hydride (76 mg, 2 mM). - 266 -A s o l u t i o n of DL-isoborneol (1.24 g, 8 mM) i n dry ether (10 ml) was added. The excess of L i A l H ^ was destroyed by. a d d i t i o n of t . - b u t a n o l (0.2 ml) . The t e t r a c y c l i c keto e s t e r (175) (300 mg) i n dry t e t r a h y d r o f u r a n (3 ml) was added to the above s o l u t i o n at room temperature and s t i r r e d f o r 0.5 hours. The mixture was then r e f l u x e d f o r one hour a f t e r which i t was poured i n t o i c e - c o l d 5% h y d r o c h l o r i c a c i d and e x t r a c t e d w i t h ether to remove camphor and i s o b o r n e o l . The aqueous phase and i n s o l u b l e m a t e r i a l were b a s i f i e d w i t h 5% sodium bicarbonate s o l u t i o n and e x t r a c t e d w i t h methylene c h l o r i d e .Evaporation of the s o l v e n t provided 280 mg of a crude m a t e r i a l which was p u r i f i e d by h i g h pressure l i q u i d chromatography (ALC-100 instrument, Waters Assoc., 0.25 i n c h x 12 f e e t P o r a s i l R column, chloroform/3% methanol, f l o w r a t e 5 ml/min., 350 p s i , 30 mg s a m p l e / i n j e c t i o n ) . The 3 - a l c o h o l (179) (55 mg, 18%) was e l u t e d f i r s t , f o l l o w e d by the d e s i r e d non - c r y s t a l l i n e a - a l c o h o l (181) (168 mg, 56%); i r , v max (CHC1 3): 3600, 3460 (OH); 1725 cm" 1 (-C0 2CH 3); uv, X max ( e ) : 277 (5760); 284 (6170); 293 nm (5380); nmr (CDC1 3); <5 0.86 ( t r i p l e t , J = 5 Hz, 3H, -CH 2CH 3); 3.63 ( s i n g l e t , 3H, -0CH 3); 3.92 ( m u l t i p l e t , IH, C12b-H); 4.00 ( m u l t i p l e t , IH, C2H); 5.32 (doublet, J = 3 Hz, 2H, - C T ^ C ^ ) ; 6.96-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass s p e c , m/e 432 (21%, M +); 415 (4%, M- OH); 359 (42%, M- CH 2C0 2CH 3); 341 (22%, M- C ^ ) ; 91 (100%, C ? H 7 ) ; 432.2398; C ^ H ^ N ^ re q u i r e s 432.2412. 2a-Acetoxy-3a-ethyl-6-carbome thoxymethyl-1,2,3,4,6,7,12,12b-octahydro- (N-benzylind63 0 . ) ( 2 , 3 - a ) - q u i n o l i z i n e (182) The t e t r a c y c l i c a - a l c o h o l (181) (29 mg) was t r e a t e d w i t h a c e t i c anhydride (0.3 ml) and p y r i d i n e (0.3 ml) f o r one hour at 85°. The mixture was poured - 267 -i n t o ice-water, b a s i f i e d w i t h 5% sodium bicarbonate s o l u t i o n and e x t r a c t e d w i t h methylene c h l o r i d e . Evaporation of the s o l v e n t y i e l d e d a crude product which was p u r i f i e d by p r e p a r a t i v e TLC (.Silica g e l G, methylene c h l o r i d e / . 3% methanol) to a f f o r d 14 mg (48%) of the a-acetate (182) as a foamy m a t e r i a l ; i r , v max (CHC1 3): 1730 cm" 1 (-C0 2CH 3 > OAc); uv, X max ( e ) : 273 (10100); 281 (10150); 292 nm (7250); nmr (CDC1 3); 6 2.00 ( s i n g l e t , 3H, OAc); 3.66 ( s i n g l e t , 3H, -C0 2CH 3); 5.13 ( m u l t i p l e t , IH, C2H); 5.27 (doublet, J = 3 Hz, 2H, - C H ^ H ^ ; 6.70-7.66 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass s p e c , m/e 474 (11%, M +); 415 (10%, M- OAc); 401 (20%, M- CH 2C0 2CH 3); 91 (100%, C 7H_). 2a-Hydroxy-3a-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-. (N-benzylindOlo ) ( 2 , 3 - a ) - q u i n o l i z i n e mesylate (183) The t e t r a c y c l i c a l c o h o l (181) (35 mg) i n dry p y r i d i n e (0.4 ml) was t r e a t e d at -10° w i t h mesyl c h l o r i d e (0.2 ml) f o r a p e r i o d of 20 hours. I c e - c o l d methylene c h l o r i d e (5 ml) was added and the mixture was washed four times w i t h i c e - c o l d water (1 ml). The methylene c h l o r i d e s o l u t i o n was evaporated i n vacuo at 0° to a f f o r d a red o i l y r e s i d u e . The l a t t e r was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 1 % methanol) to provide 32 mg (74%) of the d e s i r e d mesylate (183) as an amorphous y e l l o w m a t e r i a l ; i r , v max (CHC1 3): 1725 (-C0 2CH 3); 1335, 1175 cm" 1 ( O L ^ O - ) ; uv, X max: 277, 284, 293 nm; nmr ( C D C l 3 ) ; 6 0.94 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 2,96 ( s i n g l e t , 3H, CH 3-S0 2~);3.64 ( s i n g l e t , 3H, -0CH 3); 3.92 ( m u l t i p l e t , IH, C12b-H);5.00 ( m u l t i p l e t , IH, C2H); 5.36 ( s i n g l e t , 2H, -CH 2CgH 5); 6.90-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass s p e c , m/e 510 (.0%, H+); 419 (32%, M- C ? H 7 ) ; 414 (53%, M- CT^SO^H); 347 [21%, M- (C ?H 7+ C6-side c h a i n ) ] ; 341 [32%, M- (CH 3S0 2OH + C6-side c h a i n ) ] ; 91 (100%, C y H 7 ) . - 268 3-Ethyl-6-carbomethbxyroethy 1-1,4 > 6, 7,12,12b-hexahydro- (N-benzylindolg)  ( 2 , 3 - a ) q u i n o l i z i n e (184) a) The mesylate (183) (50 mg) i n methylene c h l o r i d e (1 ml) was t r e a t e d w i t h aluminum oxide (500 mg) (Woelm, n e u t r a l , a c t i v i t y I) f o r 0.5 hour at room temperature. The alumina was e l u t e d w i t h methylene c h l o r i d e / 3 0 % methanol (10 ml). Evaporation of the s o l v e n t f o l l o w e d by p r e p a r a t i v e TLC s e p a r a t i o n (A1 20 3,methylene c h l o r i d e / 1 0 % methanol) provided 8 mg (20%) of the o l e f i n i c compound (184) as a foamy m a t e r i a l ; i r , v max (CHCl^)5 1725 cm - 1 (C0 2CH 3); uv, A max: 272, 284, 293 nm; nmr ( C D C l 3 ) ; 6 1.00 ( t r i p l e t , J = 6 Hz, 3H, -CH 2CH 3); 3.60 ( s i n g l e t , 3H, 0CH 3); 5.30 ( s i n g l e t , 2H, -CH 2C 6H 5); 5.34 ( m u l t i p l e t , IH, -CH=C-); 6.86-7.60 ( m u l t i p l e t s , 9H, aromatic); mass s p e c , m/e 414 (100%, M +); 341 (37%, M- CH 2C0 2CH 3); 323 (10%, M- C_H_); 91 (45%, C_H ?). b) The t e t r a c y c l i c a l c o h o l (181) (43 mg) i n p y r i d i n e (0.4 ml) was t r e a t e d w i t h phosphorus o x y c h l o r i d e (0.1 ml) a t -78°. The mixture was l e f t f o r 15 hours at room temperature, t r e a t e d w i t h ice-water (2 ml) and e x t r a c t e d w i t h methylene c h l o r i d e . Evaporation of the s o l v e n t provided a crude product which was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 1 % methanol) t o a f f o r d the d e s i r e d o l e f i n (184) as a foamy sample. 2a-Hydroxy-3a-ethy1-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-78 (N-benzylindojp- . ) ( 2 , 3 - a ) - q u i n o l i z i n e 0-nitrobenzoate (p-)(185) The t e t r a c y c l i c a l c o h o l (181) (20 mg) i n anhydrous p y r i d i n e (0.3 ml) was t r e a t e d at 0° w i t h p - n i t r o b e n z p y l c h l o r i d e (17 mg) f o r a p e r i o d of one hour. The mixture was kept f o r 15 hours at room temperature, poured i n t o ice-water and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h - 269 -5% sodium bicarbonate s o l u t i o n , d r i e d over anhydrous sodium sulphate and evaporated to dryness i n vacuo. The residue- was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 5 % methanol) to provide 10 mg (37%) of the d e s i r e d p-nitrobenzoate (185) as an amorphous m a t e r i a l ; i r , V max (CHC1 3): 1720 (COOL^); 1600 (aromatic); 1527, 1349 cm" 1 (N0 2); uv, X max ( e ) : 265 (11010); 284 (8320); 293 nm (6170); nmr (CDC1 3); 6 0.90 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 3.64 ( s i n g l e t , 3H, -0CH 3); 5.20 (doublet, J = 3 Hz, 2H, - O ^ C ^ ) ; 5.40 ( m u l t i p l e t , IH, C2H); 6.60-7.60 ( m u l t i p l e t s , 9H, aromatic); 8.20 ( m u l t i p l e t s , 4H, -C^H^NOp; mass s p e c , m/e 581 (24%, M +) ; 508 (40%, M- CH 2C0 2CH 3); 490 (6%, M- C ^ ) ; 415 (53%, M- 0C0C,H.N0 o); 91 (100%, C-,H^). O H / . I I 2a, 3a^Bihydroxy-3B^ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b- octah'ydro-(N-benzylindolp ) ( 2 , 3 - a ) - q u i n o l i z i n e ( 1 8 6 ) 7 8 The o l e f i n (184) (140 mg) was d i s s o l v e d i n a mixture of anhydrous t e t r a h y d r o f u r a n (4 ml) and dry p y r i d i n e (2 ml) and cooled to -78°. A s o l u t i o n of osmium t e t r o x i d e (95 mg) i n dry t e t r a h y d r o f u r a n (3 ml) was added dropwise over a p e r i o d of 30 minutes. The mixture was kept at -78° f o r another 8 hours a f t e r which i t was warmed to room temperature and t r e a t e d w i t h a 1:1 mixture (15 ml) of ethanol and methylene chloride.Hydrogen s u l f i d e gas was passed through the s o l u t i o n f o r a p e r i o d of 10 minutes at room temperature and the mixture was f i l t e r e d through c e l i t e . The f i l t r a t e was evaporated to dryness and the residue p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 5 % methanol) to y i e l d 97 mg (65%) of the d e s i r e d d i o l (186) as a foamy compound; i r , v max (CHCLj): 3620, 3500 (OH); 1725 cm" 1 (C0 2CH 3); uv, X max: 277, 285, 293 nm; nmr (CDC1 3); - 270 -<S 0.89 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 3.60 ( s i n g l e t , 3H, -0CH 3); 3.95 ( m u l t i p l e t , IH, C12b-H); 5.33 (doublet, J = 3 Hz, 2H, - C ^ C ^ ) ; 6.90-7.60 ( m u l t i p l e t s , 9H, aro m a t i c ) ; mass s p e c , m/e 448 (30%, M +); 447 (13%, M- 1); 430 (7%, M- H 20); 412 (3%, M- 2H 20); 375 (45%, M-CH 2C0 2CH 3); 357 (30%, M- C ? H 7 ) ; 91 (100%, C ? H 7 ) . 2a,3a-Diacetoxy-3g-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-78 octahydro-(N-benzylindolo ) ( 2 , 3 - a ) - q u i n o l i z i n e (187) A s o l u t i o n of the d i o l (186) (12 mg) i n a c e t i c anhydride (0.3 ml) was t r e a t e d w i t h p - t o l u e n e s u l f o n i c a c i d . The r e a c t i o n mixture was s t i r r e d at room temperature f o r a p e r i o d of 17 hours, poured i n t o ice-water, n e u t r a l i z e d w i t h 5% sodium bicarbonate s o l u t i o n and e x t r a c t e d w i t h methylene c h l o r i d e . Evaporation of the sol v e n t provided a crude product which was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G,methylene c h l o r i d e / 2 % methanol) to a f f o r d 12 mg (84%) of the d e s i r e d d i a c e t a t e (187) as amorphous m a t e r i a l ; i r , v max (CHC1 3): 2890, 2840 (Bohlmann bands); 1730 cm" 1 (C0 2CH 3 > OAc); uv, X max ( e ) : 276 (6310); 284 (6770); 293 nm (5380); nmr (CDC1 3); 6 0.83 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 1.92 ( s i n g l e t , 3H, OAc); 1.96 ( s i n g l e t , 3H, OAc); 3.58 ( s i n g l e t , 3H, -0CH 3); ^ 3 . 6 ( m u l t i p l e t , IH, C12b-H); 5.20 (doublet, J = 3 Hz, 2H, - C H ^ H ^ ; 5.46 ( t r i p l e t , J = 3.5, IH, C2-H); h i g h r e s o l u t i o n mass s p e c , 532.2539, C3i H36 N2°6 r e c l u i r e s 532.2571. 2a,3a-Dihydroxy-3g-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b- octahydro-(N-benzylindolo) ( 2 , 3 - a ) - q u i n o l i z i n e mono p-nitrobenzoate ( 2 ) , ( 1 8 8 ) 7 8 The d i o l (186) (73 mg) i n anhydrous p y r i d i n e (1 ml) was cooled to 0° and t r e a t e d w i t h p - n i t r o b e n z o y l c h l o r i d e (62 mg) under, s t i r r i n g f o r 1 hour. - 271 -The r e a c t i o n mixture was kept f o r 20 hours at room temperature, poured i n t o ice-water and e x t r a c t e d w i t h methylene chloride.The e x t r a c t was washed w i t h 5% sodium bicarbonate s o l u t i o n and water and d r i e d over anhydrous sodium sulphate. Evaporation of the s o l v e n t provided a crude product which was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 5 % methanol) to a f f o r d 71 mg (75%) of the d e s i r e d p-nitrobenzoate (188) as an amorphous m a t e r i a l ; i r , v max ( C H C l ^ : 2850, 2810 (Bohlmann bands); 1720 (C0 2CH 3, OAc); 1600 (arom a t i c ) ; 1525, 1350 cm - 1 (-C^NO^; uv, X max (e)s 265 (13200); 285 (10510); 293 (7950); nmr (CDC1 3); 6 0.95 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 3.64 ( s i n g l e t , 3H, -0CH 3); 5.13 (doublet of doublet, J = 6 Hz, 3 Hz, IH, C2-H); 5.36 ( m u l t i p l e t , 2H, - C H ^ H ^ ; 6.70-7.60 ( m u l t i p l e t s , 9H, aromatic); 8.2 ( m u l t i p l e t , 4H, -CO-C^NO^; mass spec, m/e 597 (3%, M +); 596 (1 % , M- 1 ) ; 524 (3%, M- CH 2C0 2CH 3); 506 (1%, M- C ^ ) ; 430 (9%, M- C0C 6H 4N0 2, H); 413 (1 % , m/e 430 - OH); 357 (28%, m/e 524 -COC 6H 4N0 2, H); 265 (3%, m/e 357 - C y H 7 ) ; 91 (100%, C ^ ) ; 597.2484; C ^ H ^ N . ^ re q u i r e s 597.2473. 2ct-Hydroxy-3a-ethy1- N b -methyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b, 78 12b-nonahydro-(N-benzylindoJo )(2,3-a)-12b tN^-seco-quinolizine (190) The t e t r a c y c l i c a l c o h o l (181) (49 mg) i n 2-propanol (2 ml) was t r e a t e d w i t h methyl i o d i d e (1 ml) f o r a p e r i o d of 1 hour a t 60°. The v o l a t i l e components were removed i n vacuo to a f f o r d an amorphous r e s i d u e . The l a t t e r was t r e a t e d w i t h anhydrous methanol (5 ml) and sodium methoxide (50 mg) and the t o t a l r e a c t i o n mixture was added to a prereduced suspension of platinum oxide (150 mg) i n dry methanol (10 ml) . Under constant s t i r r i n g the mixture was subjected to an atmosphere of hydrogen f o r a p e r i o d of 20 hours at room temperature. F i l t r a t i o n and evaporation of the s o l v e n t provided - 272 -an o i l y r esidue which was t r e a t e d w i t h methylene c h l o r i d e . Evaporation of the l a t t e r y i e l d e d 40 mg of a crude product which upon p r e p a r a t i v e TLC s e p a r a t i o n ( S i l i c a g e l G, methylene :c h l o r i d e / 5 % methanol) a f f o r d e d 37 mg (73%) of the d e s i r e d a l c o h o l (190) possessing the 10-membered r i n g system; i r , v max (CHC1 3): 3610, 3530 (OH); 1720 cm - 1 (-C0 2CH 3); uv, X max: 277, 285, 294 nm; nmr (CDC1 3); 6 0.92 ( t r i p l e t , J = 8 Hz, 3H, -CH 2CH 3); 2.04 ( s i n g l e t , 3H, N-CH 3); 3.66 ( s i n g l e t , 3H, -0CH 3); 6.90-7.70 ( m u l t i p l e t s , 9H, aromatic); mass s p e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition calc.mas i mass C H N 0 448 7 448.2688 28 36 2 3 448.2725 447 1 446 3 430 3. 430.2682 28 34 2 2 430-2626 402 2 402.2282 26 30 2 2 402.2307 386 36 386.2121 26 28 1 2 386.2119 357 2 312 4 312.1750 23 22 1 312.1751 306 1 306.1466 20 20 1 2 306.1493 258 5 258.1294 19 16 1 258.1282 257 3 257.1271 15 19 2 2 257.1290 246 7 246.1280 18 16 1 246.1282 167 13 167.0742 12 9 1 167.0734 156 12 156.0828 11 10 1 156.0812 142 9 142.1230 8 16 1 1 142.1231 124 8 124.1152 8 14 1 124.1126 91 100 91.0533 7 7 91.0547 2-0xo-3-ethyl- -acetyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-12b-acetoxy-(N-benzylindoTo ).(2,3-a)-12bfl,-seco-quinolizine ethylene k e t a l , (191) a and b b  The t e t r a c y c l i c k e t a l e s t e r (177) (30 mg) was d i s s o l v e d i n a c e t i c anhydride (2 ml) and the r e s u l t i n g s o l u t i o n was r e f l u x e d f o r a p e r i o d of 9 hours. The s o l v e n t was evaporated i n vacuo and the residue was separated - 273 -by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 2 % methanol) i n t o three f r a c t i o n s . The l e a s t p o l a r one (7 mg) c o n s i s t e d of s t a r t i n g m a t e r i a l . The other two f r a c t i o n s represented the d e s i r e d compound and are b e l i e v e d to be C12b isomers. The more p o l a r component (191a), c o n s i s t e d of 13 mg (47%) foamy m a t e r i a l and the other one (191b) of 5 mg (18%). Both f r a c t i o n s e x h i b i t very s i m i l a r p h y s i c a l data; i r , v max (CHCl^) (191a and b ) : 1720 (-C0 2CH 3, OAc); 1645 cm - 1 (-NCOClLj); uv, X max (191a and b ) : 277, 285, 294 nm; nmr (CDC1 3)(191a); 6 0.93 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 1.80 ( s i n g l e t , 3H, -N-C0CH 3); 3.65 ( s i n g l e t , 3H, 0CH 3); 5.09 (doublet of doublet, J = 12 Hz, 5 Hz, IH, C12b-H); 5.55 ( s i n g l e t , 2H, -CH„C,H,-); 7.26 ( s i n g l e t , 3H, C12b-0Ac); 7.0-7.55 ( m u l t i p l e t s , 9H, aromatic); nmr (CDC1 3) (191b); <S 0.93 ( t r i p l e t , J = 7 Hz, 3H, -CH 2CH 3); 1.86 ( s i n g l e t , 3H, -N-C0CH 3); 3.79 ( s i n g l e t , 3H, 0CH 3); 5.05 (doublet of doublet, J - 12 Hz, 5 Hz, IH, C12b-H). 5.54 ( s i n g l e t , 2H, - C ^ C ^ ) ; 7.27 ( s i n g l e t , 3H, C12b-0Ac); 7.01-7.63 ( m u l t i p l e t s , 9H, ar o m a t i c ) ; mass s p e c t r o m e t r i c data: m/e r e l . i n t . % measured i o n composition calc.mass mass C H N 0 576 1 516 100 516.2607 31 36 2 5 516.2622 473 22 473.2312 29 33 2 4 473.2440 425 70 425.2039 24 29 2 5 425.2076 - 274 -BIBLIOGRAPHY (PART I I ) 1. K. Mothes, The A l k a l o i d s , V o l . V I , R.F. Manske, Ed., Academic P r e s s , New York (1960). 2. T. Robinson, The Biochemistry of A l k a l o i d s , V o l . 3, Molecular B i o l o g y , Biochemistry and B i o p h y s i c s , A. K l e i n z e l l e r , G.F. Sp r i n g e r , H.G. Wittmann, Ed., Springer V e r l a g , New York (1968). 3. R.F. Raf f a u f , L l o y d i a , 25, 255 (1962). 4. N. Neuss, M. Gorman, W. Hargrove, N.J. Cone, K. Biemann, G. Buchi, and R.E. Manning, J . Am. Chem. S o c , 86, 1440 (1964). 5. The numbering system i s that of W.I. Tay l o r and J . LeMen, E x p e r i e n t i a , 21, 508 (1965). 6. A.R. Ba t t e r s b y , A.R. Burn e t t , and P.G., Parsons, Chem. Comm., 1282 (1968). 7. A.R. Ba t t e r s b y , A.R. Burn e t t , and P.G. Parsons, J . Chem. S o c (C), 1193 (1969). 8. J.P. Kutney, W.J. Cretney, J.R. H a t f i e l d , E.S. H a l l , V.R. Nelson, and D.C. W i g f i e l d , J . Amer. Chem. S o c , 90, 3566 (1968). 9. A.R. B a t t e r s b y , Terpenoid Indole A l k a l o i d s , The A l k a l o i d s , V o l . 1, S p e c i a l i s t P e r i o d i c a l Reports, The Chemical S o c i e t y , London, 1971, and references t h e r e i n . 10. H. Inouye, S. Ueda, Y. A o k i , and Y. Takeda, Tetrahedron L e t t e r s , 2351 (1969). 11. A.R. B a t t e r s b y , N a t u r a l Substances formed b i o l o g i c a l l y from  Mevalonic A c i d T.W. Goodwin, Ed., Academic P r e s s , London, 1970, p. 157. 12. I . Kompis, M. Hesse, and H. Schmid, L l o y d i a , 34, 269 (1971). 13. E.E. van Tamelen and L.K. O l i v e r , J . Amer. Chem. Soc., 92, 2136 (1970). 14. E.E. van Tamelen, V.B. Haarstad, and R.L. O r v i s , Tetrahedron, 24, 687 (1968). - 275 -15. M.F. B a r t l e t t , B.F. Lambert, H.M. Werblood, and W.I. T a y l o r , J . Amer. Chem. Soc. , 85, 475 (1963). 16. T. Inaba, Ph.D.Thesis, U n i v e r s i t y of B r i t i s h Columbia, 1967. 17. M.G. Reinecke, L.R. Kray, and R.F. F r a n c i s , Tetrahedron L e t t e r s , 3549 (1965). 18. N. Yoneda. Chem. Pharm. B u l l . , Tokyo, 13, 1231 (1965). 19. J.D. Hobson and J.G. McCluskey, J . Chem. Soc. (C), 2016 (1967). 20. K. Mashimo and Y. Sato, Tetrahedron, 26, 803 (1970). 21. S. Masamune, S.K. Ang, C. E g l i , N. Nakatsuka,. S.K. S a i k a r , and Y. Y a s u n a r i , J . Am. Chem. S o c , 89, 2506 (1967). 22. T. S h i o r i and S. Yamada, Tetrahedron, 24, 4159 (1968). 23. M. Gorman and J . Sweeny, Tetrahedron L e t t e r s , 3105 (1964). 24. D.J. Abraham, N.R. Farnsworth, R.N. Blomster, and A.G. Sharkey, J r . Tetrahedron L e t t e r s , 317 (1965). 25. .S. S a k a i , A. Kubo, and J . Haginina, Tetrahedron L e t t e r s , 1485 (1969). 26. M. Hanaoka, M. Hesse, and H. Schmid, Helv. Chim. Act a , 53, 1723 (1970) 27. M.A. Khan and A.M. Ahsan, Tetrahedron L e t t e r s , 5137 (1970). 28. G. Bttchi, R.E. Manning, and S.A. Monti, J . Amer. Chem. Soc., 86, 4631 (1964) and references t h e r e i n . 29. J . LeMen and W.I, T a y l o r , E x p e r i e n t i a , 21, 508 (1965). 30. J . Trojanek and K. Blaha, L l o y d i a , 29, 149 (1966). 31. L . J . Dolby and S. Sa k a i , Tetrahedron, 23, 1 (1967). 32. G.H. F o s t e r , J . Harley-Mason, and W.R. W a t e r f i e l d , Chem. Comm., 21 (1967). 33. L . J . Dolby and G.W. G r i b l e , J . Org. Chem., 32, 1391 (1967). 34. E. Wenkert, S. G a r r a t t , and K.G. Dave, Can. J . Chem., 42, 489 (1964), 35. L . J . Dolby and D.L. Booth, J . Org. Chem., 30, 1550 (1965). 36. D. Herbst, R. Rees, G.A. Hughes, and H. Smith, J . Med. Chem., 9_, 864 (1966). - 276 -J.D. A l b r i g h t and L. Goldman, J . Amer. Chem". S o c , 91, 4317 (1969), A.J. G a s k e l l and J.A. J o u l e , Tetrahedron, 24, 5115 (1968). D. D. O ' R e l l , F.G.H. Lee, and V. Boekelheide, J . Amer. Chem. S o c , 94, 3205 (1972). J.C. Braekman, J . Dubois, M. K a i s i n , J . Pecher, and R.H. M a r t i n , B u l l . S o c Chim. Beiges, 7b_, 253 (1965). G. Ledouble, L. O l i v e r , M. Q u i r i n , J . Levy, J . LeMen, and M.M. Janot, Ann. Pharm. France, 22, 463 (1964); J . Levy, G. Ledouble, J . LeMen, and M.M. Janot, B u l l . Soc. Chim. France, 1917 (1964). C.E. D a l g l i e s h , J . Chem. S o c , 137 (1952). A. P r e v i e r o , M. C o l e t t i - P r e v i e r o , and L. Barry, Can. J . Chem., 46_, 3404 (1968). E. Wenkert and D.K. Roychaudhuri,.J. Org. Chem., 21, 1315 (1956), R. Tschesche and H. Jenssen, Chem. Ber., 93, 271 (1960). H. T. Openshaw and H. Whittacker, J.. Chem. S o c , 1449 (1963), A. B r o s s i , L.H. Chopard-dit-Jean, J . Wlirsch, and 0. Schneider, Helv. Chim. Acta, 77, 583 (I960). C. Szantay and J . Rohaly, Chem. Ber., 96, 1788 (1963). C. Szantay, L. Tb"ke, K. Honty, and G. Kalans, J . Org. Chem, 32, 423 (1967). F. Bohlmann, Angew. Chem., 69, 641 (1957). E. Wenkert and D. Roychaudhuri, J . Amer. Chem. S o c , 78, 417 (1956). W.E. Rosen, Tetrahedron L e t t e r s , 481 (1961). W.F. Trager, CM. Lee, and A.H. Beckett, Tetrahedron, 23, 365 (1967). W.E. Rosen and J.N. Shoolery, J . Amer. Chem. S o c , 83, 4816 (1961), M. Uskokovic, H. Bruderer, C. van P l a n t a , T. W i l l i a m s , and A. B r o s s i , i b i d . , 86, 3364 (1964). E. Wenkert, B. Wickberg, and C L . L e i c h t , i b i d . , 83, 5037 (1961), E. Wenkert, B. Wickberg, and C L . L e i c h t , Tetrahedron L e t t e r s , 22, 822 (1961). - 277 -57. E. Wenkert and B. Wickberg, J . Amer. Chem. S o c , 84, 4914 (1962). 58. C. Szantay and M. Barczai-Beke, Chem. Ber., 102, 3963 (1969). 59. J.A. Weisbach, J.L. K i r k p a t r i c k , K.R. W i l l i a m s , E.L. Anderson. N.C. Yim, and B. Douglas, Tetrahedron L e t t e r s , 3457 (1965). 60. T.M. Moynehen, K. S c h o f i e l d , R.A.Y. Jones, and A.R. K a t r i t z k y , J . Chem. S o c , 2637 (1962). 61. F.A.L. Anet, Canad. J . Chem., 39, 2262 (1961). 62. D. Klamann and G. Hofbauer, Chem. Ber., 86, 1246 (1953). 63. J . Kovacs and U.R. Ghatak, J . Org. Chem. 31, 119 (1966). 64. J i Sungchul, L.B. G o r t l e r , A. Waring, A. B a t t i s t i , S. Bank, and W.D. Closson, J . Amer. Chem. S o c , 89, 5311 (1967). 65. R.S. Sch r e i b e r and R.L. S h r i n e r , i b i d . , 56, 1618 (1934). 66. H.R. Snyder and R.E. Heckert, i b i d . , 74, 2006 (1952). 67. K.M. Madyastha, R. Guarnaccia, and C.J. Coscia, Biochem. J . , 128 0-972). 68. T h i s r e a c t i o n was c a r r i e d out by Dr. A. Murai i n our l a b o r a t o r y . 69. J . Lederberg, Computation of Molecular Formulas f o r Mass Spectrometry, Holden-Day, Inc., San F r a n c i s c o , 1964. 70. K. Na k a n i s h i , I n f r a r e d A b s o r p t i o n Spectroscopy, Holden-Day, Inc., San F r a n c i s c o , 1962. 71. H. B u d z i k i e w i c z , C. D j e r a s s i , and D.H. W i l l i a m s , S t r u c t u r e E l u c i d a t i o n of N a t u r a l Products by Mass Spectrometry, V o l . 1: A l k a l o i d s , Holden-Day, Inc., San F r a n c i s c o , 1964. 72. E.L. E l i e l and D. N a s i p u r i , J . Org. Chem., 30, 3809 (1965). 73. K. T o r i and T. Kameno, Tetrahedron, 21, 309 (1965). 74. D.G.I. F e l t o n and S.F.D. Orr, J . Chem. S o c , 2170 : (1955). 75. J.H. Bowie, D.H. W i l l i a m s , S.0. Lawesson, and G. S c h r o l l , J . Org. Chem., 31, 1792 (1966). 76. J.K. MacLeod, J.B. Thomson, and C. D j e r a s s i , Tetrahedron, 23, 2095 (1967). - 278 -77. H. Audier, M. Fe'tizon, J.C. Gramain, J . Schalbar, and B. Waegel, B u l l . Soc. Chim. France, 1180 (1964). 78. This r e a c t i o n was c a r r i e d out by Dr. K. Wada i n our l a b o r a t o r y . 79. Reference 71, p. 98-99. 80. Reference 71, p. 299. J.P. Kutney, G. Eigendorf and J.E. May, Chem. Comm., 59 (1966). O p t i c a l Rotatory D i s p e r s i o n Studies on Aza S t e r o i d s . J.P. Kutney, I . V l a t t a s and G. Eigendorf, Tetrahedron, 23_, 4587 (1967). Mass Spectra of 6-Aza and 11-Aza S t e r o i d s . J.P. Kutney, G. Eigendorf and J.E. H a l l , Tetrahedron, 24, 845 (1968) Aza S t e r o i d s . V I I . Synthesis of Ring A-Oxygenated 6-Aza S t e r o i d s . J.P. Kutney, G. Eigendorf and I.H. Rogers, Tetrahedron, 25, 3753 (1969). Mass S p e c t r a l Fragmentation Studies of T r i t e r p e n e s Related t o S e r r a t e n e d i o l . J.P. Kutney, G. Eigendorf, T. Inaba and D.L. Dreyer, Org. Mass Spectrometry, 5_, 249 (1971). Mass S p e c t r a l Fragmentation Studies i n Monomeric and Dimeric Coumarins. J.P. Kutney, F.K. K l e i n , G. Eigendorf* D. M c N e i l l and K.L. S t u a r t , Tetrahedron L e t t e r s , 4973 (1971), A l k a l o i d s from "Croton S p e c i e s . X I I . G l u t a r i m i d e Peptides from C.Humilis L. J.P. Kutney, G. Eigendorf, R.B. Swingle, G.D. Knowles, J.W. Rowe and B.A. Nagasampagi, Novel T r i t e r p e n e s from Western White Pine (Pinus monticola Dougl.) Bark. -Tetrahedron L e t t e r s , 3118 (1973). K.L. S t u a r t , D. M c N e i l l , J.P. Kutney, G. Eigendorf and F.K. K l e i n , P e p t i d y l compounds from Croton H u m i l i s , s t r u c t u r a l e l u c i d a t i o n and syn t h e s i s of 6-glutamyl and g l u t a r i m i d e p e p t i d e s . Tetrahedron, 29, 4071 ( 1 9 7 3 ) . . . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061096/manifest

Comment

Related Items