Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Studies related to: bark extractives of western white pine; and synthesis of indole alkaloids Eigendorf, Günter Klaus 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A1 E39_3.pdf [ 15.08MB ]
Metadata
JSON: 831-1.0061096.json
JSON-LD: 831-1.0061096-ld.json
RDF/XML (Pretty): 831-1.0061096-rdf.xml
RDF/JSON: 831-1.0061096-rdf.json
Turtle: 831-1.0061096-turtle.txt
N-Triples: 831-1.0061096-rdf-ntriples.txt
Original Record: 831-1.0061096-source.json
Full Text
831-1.0061096-fulltext.txt
Citation
831-1.0061096.ris

Full Text

STUDIES RELATED TO: BARK. EXTRACTIVES OF WESTERN WRITE PINE; AND SYNTHESIS OF INDOLE ALKALOIDS  by  GUNTER K. EIGENDORF B . S c , U n i v e r s i t y o f B r i t i s h Columbia, 1969  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n t h e Department of Chemistry  We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e required standard  UNIVERSITY OF BRITISH. COLUMBIA J a n u a r y , 1974  In p r e s e n t i n g an  this  thesis in partial  advanced degree a t the  the  University  L i b r a r y s h a l l make i t f r e e l y  f u l f i l m e n t of the  s c h o l a r l y p u r p o s e s may  by h i s r e p r e s e n t a t i v e s .  be  a v a i l a b l e f o r r e f e r e n c e and  thesis for financial  written  permission.  Department of  April 3.  gain  1974  the  s h a l l not  Chemistry  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  Date  g r a n t e d by  Columbia  study.  copying of t h i s Head o f my  I t i s understood that  of t h i s  for  o f B r i t i s h C o l u m b i a , I agree, t h a t  I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e for  requirements  be  thesis  Department  copying or  or  publication  allowed without  my  - i i -  ABSTRACT  P a r t I of t h i s t h e s i s d e s c r i b e s the s t r u c t u r a l e l u c i d a t i o n of e l e v e n t r i t e r p e n e s i s o l a t e d from t h e benzene e x t r a c t o f W e s t e r n w h i t e p i n e ( P i n u s m o n t i c b l a Dougl.) b a r k . C h e m i c a l and d e t a i l e d s p e c t r o s c o p i c i n v e s t i g a t i o n s r e v e a l e d the p r e s e n c e  o f a common t e t r a c y c l i c A 9 ( l l ) - l a n o s t e n e  s k e l e t o n i n a l l of the i n v e s t i g a t e d m a t e r i a l s . S t r u c t u r a l v a r i a t i o n s were found a t t h e C3 p o s i t i o n and i n t h e s i d e c h a i n a t The  C17.  f o l l o w i n g a s s i g n m e n t s have been made: compound I , 33~methoxy-5a-  l a n o s t - 9 ( l l ) - e n - 2 4 S , 2 5 - d i o l ( 4 3 ) ; compound I I , the c o r r e s p o n d i n g  33-hydroxy  d e r i v a t i v e ( 5 1 ) ; compound I I I , 33-methoxy-5a-lanost-9(11)-en-24-one ( 5 9 ) ; compound I V , 3 3 - m e t h o x y - 5 a - l a n o s t - 9 ( 1 1 ) , 2 5 - d i e n - 2 4 S - o l  ( 6 5 ) ; compound V,  3 a - h y d r o x y - 5 a - l a n o s t - 9 ( l l ) , 2 5 - d i e n - 2 4 - o l ( 6 6 ) ; compound V I , 33-methoxy5 a - l a n o s t - 9 ( l l ) - e n - 2 2 , 2 5 - d i o l ( 7 0 ) ; compound V I I , 33-methoxy-26,27-bis n o r 5 a - l a n o s t - 9 ( l l ) - e n - 2 4 - o n e ( 7 1 ) . Compound V I I I was  shown t o be the e t h y l i d e n e  d e r i v a t i v e of 3 3 - m e t h o x y - 5 a - l a n o s t - 9 ( l l ) - e n - 2 4 S , 2 5 - d i o l and X were a s s i g n e d t o s t r u c t u r e s (78) and  (76) and  compounds I X  (80), r e s p e c t i v e l y .  A n o v e l d i m e r i c s t e r o i d a l s t r u c t u r e (83) has been p r o p o s e d f o r compound X I . P a r t I I d e s c r i b e s s y n t h e t i c i n v e s t i g a t i o n s w h i c h l e a d t o the development of a sequence p r o v i d i n g a s y n t h o n  [(193) and  (194)] f o r the s y n t h e s i s o f  vobasine  ( 7 8 ) - and s a r p a g i n e  propanol  ( 1 2 1 ) , o b t a i n e d by l i t h i u m aluminum h y d r i d e r e d u c t i o n of  L-tryptophan  ( 1 0 6 ) , was  (77)-type a l k a l o i d s .  converted  l a t t e r w i t h cyanide i o n provided (151) w h i c h was  transformed  2-Amino-3-indolyl(3a)-  t o i t s d i t o s y l a t e ( 1 5 0 ) . Treatment o f t h e 3-(N~tosylamino)-4-indolyl(3a)-butanonitrile  to 3-(N-tosylamino)-4-indolyl(3a)-butanoic  a c i d (152) by means of 30% sodium h y d r o x i d e  solution.  3-Amino-4-indolyl(3a)-butanoi.c  iii a c i d m e t h y l e s t e r (155) was  obtained  t h r o u g h r e d u c t i v e c l e a v a g e o f ( 1 5 2 ) , f o l l o w e d by F i s c h e r e s t e r i f i c a t i o n . Compound (155)  c o u l d then be c o n v e r t e d t o 3-CN-.formylami.no)-4- ( N - b e n z y l -  i n d o l y l ) ( 3 a ) - b u t a n o i c a c i d m e t h y l e s t e r (163) by t r e a t m e n t w i t h a m i x t u r e of f o r m i c a c i d and a c e t i c a n h y d r i d e f o l l o w e d by sodium h y d r i d e and  benzyl  bromide. R e a c t i o n w i t h t r i f l u o r o a c e t i c a c i d c o n v e r t e d compound (163) the t r i c y c l i c 3-carbomethoxymethyl-N - b e n z y l - 3 , 4 - d i h y d r o c a r b o l i n e  to  (173)  w h i c h upon c o n d e n s a t i o n w i t h 3-methylene-pentan-2-one (126) a f f o r d e d the tetracyclic  2-oxo-3-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-  ( N - b e n z y l i n d o l o ) ( 2 , 3 - a ) - q u i n o l i z i n e (175). The e t h y l e n e k e t a l (177) t h e l a t t e r m a t e r i a l was chloroformate to provide  t r e a t e d w i t h d i i s o p r o p y l l i t h i u m amide and  of  methyl  2-oxo-3-ethyl-6-dicarbomethoxymethyl-l,2,3,4,6,7,  12,12b-octahydro-(N-benzylindolo)(2,3-a)-quinolizine ethylene k e t a l which possesses  a h i g h l y a c t i v a t e d a c i d i c proton  (C6a) i n the s i d e c h a i n .  A s u i t a b l e l e a v i n g group a t t h e C2 p o s i t i o n , n e c e s s a r y t r a n s a n n u l a r c y c l i s a t i o n , was k e t o n e (175)  a v a i l a b l e through  (178),  f o r subsequent  c o n v e r s i o n o f the  tetracyclic  t o the c o r r e s p o n d i n g C2cx-alcohol (181) and f u r t h e r t r a n s f o r m a t i o n  o f the l a t t e r i n t o v a r i o u s d e r i v a t i v e s such as t h e a c e t a t e ( 1 8 2 ) , the  mesylate  (183) and the  an  p-nitrobenzoate  (185). I n o r d e r t o a l l o w g e n e r a t i o n o f  e x o c y c l i c o l e f i n a t C3, t h e C 2 - o l e f i n ,  3-ethyl-6-carbomethoxymethyl-  l,4,6,7,12,12b-hexahydro-(N-benzylindolo)(2,3-a)quinolizine v i a d e h y d r a t i o n o f t h e a l c o h o l ( 1 8 1 ) , was  converted to  (184), obtained  2,3-a-dihydroxy-3-  ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-(N-benzylindolo) ( 2 , 3 - a ) - q u i n o l i z i n e (186) by osmium t e t r o x i d e o x i d a t i o n . Treatment of w i t h a c e t i c anhydride  (186)  o r p - n i t r o b e n z o y l c h l o r i d e p r o v i d e d the d i a c e t a t e  o r the C2 mono p - n i t r o b e n z o a t e  (188), r e s p e c t i v e l y .  (187)  - iv-  The 10-membered r i n g system, p r e s e n t i n t h e v o b a s i n e s k e l e t o n , became a v a i l a h l e through r e d u c t i v e c l e a v a g e o f t h e C/D r i n g j u n c t i o n i n the t e t r a c y c l i c a l c o h o l ( 1 8 1 ) , thus, a f f o r d i n g 2 a - h y d r o x y - 3 a - e t h y l - N ^ methyl-6-carhomethoxymethyl-l,2,3,4,6,7,12,12b,12b-nonahydro-(N-benzyli n d o l o ) ( 2 , 3 - a ) - 1 2 b , N ^ - s e c o - q u i n o l i z i n e (190). A c e t i c anhydride treatment o f t h e e t h y l e n e k e t a l (177) p r o v i d e d two i s o m e r i c components, 2-oxo-3ethyl-N -acetyl-6-carbomethoxymethyl-1,2,3,4,6,7,12,12b-octahydro-12bb  acetoxy-(N-benzylindolo)(2,3-a)-12b,N -seco-quinolizine ethylene k e t a l b  (191a and b ) , a l s o p o s s e s s i n g t h e 10-membered r i n g s k e l e t o n . F u r t h e r m o r e , t h e l a t t e r m a t e r i a l s e n a b l e an e n t r y i n t o t h e f a m i l y o f 2 - a c y l i n d o l e a l k a l o i d s as w e l l as members o f t h e d i m e r i c a l k a l o i d s s u c h as voacamine ( 7 5 ) .  - v -  TABLE OF CONTENTS  Page TITLE PAGE  i  ABSTRACT  i  TABLE OF CONTENTS  i v  LIST OF TABLES  v i  L I S T OF FIGURES .  viii  ACKNOWLEDGEMENTS  x i  PART I INTRODUCTION  1  DISCUSSION  12  EXPERIMENTAL  96  BIBLIOGRAPHY  .  145  PART I I INTRODUCTION  149  DISCUSSION  167  EXPERIMENTAL  223  BIBLIOGRAPHY  -  •"/.  - v iLIST OF TABLES Table  Page  PART I I II  A s h c o n t e n t and v a r i o u s e x t r a c t i o n s o f p i n e b a r k .. I s o l a t e d compounds as a p e r c e n t a g e o f t h e benzene extract  III IV V  VI VII  P o s i t i o n . o f m e t h y l groups i n 6 v a l u e s  IX X  XI XII XIII  -  13  (+ 0.03 6 ) . . .  16  C o n t r i b u t i o n o f p e r t i n e n t f u n c t i o n a l groups t o t h e c h e m i c a l s h i f t change (A6) o f m e t h y l groups Observed and c a l c u l a t e d c h e m i c a l s h i f t s o f m e t h y l group resonances i n t y p i c a l l a n o s t - 9 ( 1 1 ) - e n e s I n f l u e n c e o f s i d e c h a i n on t h e c h e m i c a l s h i f t o f the a n g u l a r m e t h y l groups  16 17 18  Resonance f r e q u e n c i e s o f o l e f i n i c s i g n a l s i n C9-C11 u n s a t u r a t e d  VIII  6  triterpenes  18  Mass s p e c t r o m e t r i c f r a g m e n t s f o r A 9 ( l l ) - l a n o s t e n e .  24  Mass s p e c t r a l d a t a f o r 33-methoxy-dihydrop a r k e o l (27c) NMR d a t a (6) f o r compound I V (60 ) and i t s derivatives  51  NMR d a t a (6) f o r compounds ( 6 7 ) , (68) and (61) ....  59  Ions c o r r e s p o n d i n g t o c l e a v a g e s c h a i n o f compound V I I (71)  70  Mass s p e c t r o m e t r i c d a t a compound X (80)  27  i n the k e t o n i c s i d e  (m/e > 700) f o r 86  PART I I I  II  R e l a t i v e i n t e n s i t i e s (%) o f v a r i o u s s p e c t r o m e t r i c i o n s f o r compounds (168a) and ( 1 6 9 ) . . . . . . . . . . . . . . . . . F a c t o r i a l i n c r e a s e (decrease) i n M+l obs./M f o r v a r i o u s i o n s i n t h e t r a n s f o r m a t i o n (168a) + (169) ..  195  196  - v i i-  Table III  IV  V  Page Mass s p e c t r o m e t r i c d a t a f o r major i o n s observed i n compound (173) and the. d e u t e r a t e d a n a l o g (174)  201  Mass s p e c t r o m e t r i c d a t a observed f o r major i o n s i n compound (175) and i t s d e u t e r a t e d a n a l o g (176)  204  Chemical s h i f t s (6) f o r C12b- and C2-protons i n compounds (179) - (182)  213  - viii  -  LIST OF FIGURES  Figure  P a  e  e  PART I 1  Main f i s s i o n s o f the c h o l e s t a n e s e r i e s  19  2  Mass spectrum o f c h o l e s t a n e  21  3  Loss o f ( s i d e c h a i n + 2 H ) from A24-5a-cholestene  4  Mass spectrum o f 3 3 - m e t h o x y - d i h y d r o - p a r k e o l  5  Mass spectrum o f g r a n d i s o l i d e  6  NMR  7  Mass spectrum o f compound I (43)  32  8  Mass s p e c t r o m e t r i c f r a g m e n t a t i o n o f compound I diacetate(45)  35  R e a c t i o n scheme f o r compound I (43)  37  10  NMR  39  11  Mass spectrum o f compound I I (51)  40  12  R e a c t i o n sequence f o r compound I I (51)  42  13  NMR  44  14  Mass spectrum o f compound I I I (59)  47  15  NMR  50  16  Chemical t r a n s f o r m a t i o n s o f compound IV (60)  51  17  Mass spectrum o f compound IV (65)  54  18  NMR  56  19  Mass spectrum o f compound V (66)  58  20  NMR  62  21  Mass spectrum o f compound VI (70)  63  22  NMR  68  9  ..  23  (27c) .  26  (28)  spectrum o f compound I (43)  spectrum o f compound I I (51)  spectrum o f compound I I I (59)  spectrum o f compound IV (65)  spectrum o f compound V (66)  spectrum o f compound VI (70)  spectrum o f compound V I I (71)  29 31  - ixFigure  Page  23  Mass spectrum o f compound V I I (71)  69  24  NMR spectrum o f compound V I I I (76)  71  25  Mass spectrum o f compound V I I I (76)  73  26  Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s i n t h e s i d e c h a i n o f compound V I I I (76)  76  27  NMR spectrum o f compound I X (78)  78  28  Mass s p e c t r u m o f compound I X (78)  80  29  Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s  i n the s i d e chain  o f compound I X (78)  82  30  NMR s p e c t r u m o f compound X (80)  85  31  Mass spectrum o f compound X (80)  87  32  Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s  33  NMR spectrum o f compound X I (83)  90  34  Mass s p e c t r u m o f compound X I (83)  92  35  Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s i n compound X I (83)  94  i n compound X (80)  88  PART I I 1  B i o g e n e t i c pathway from mevalonate (24) t o s e c o l o g a n i n (22)  154  3 2  I n c o r p o r a t i o n of [ 0 - m e t h y l - H ] - d e o x y l o g a n i n i n t o l o g a n i n and v a r i o u s a l k a l o i d s  (27b) 155  3  P o s s i b l e b i o g e n e t i c pathway f r o m v i n c o s i d e (20) t o a l k a l o i d s o f t h e Corynanthe f a m i l y  156  4  P o s s i b l e i n t e r c o n v e r s i o n of t h e c o r y n a n t h e s k e l e t o n (29) to the s t r y c h n o s ( 3 4 ) , aspidosperma and i b o g a (18) system  157  5  6  (39)  P o s s i b l e i n t e r r e l a t i o n between t h e c o r y n a n t h e s k e l e t o n (29) and v o b a s i n e ( 4 0 ) , s a r p a g i n e (41) and a j m a l i n e (42) t y p e a l k a l o i d s  159  B i o g e n e t i c a l l y patterned t o t a l synthesis of d e o x y a j m a l a l (48)  160  - x Figure 7  8  9  Page Known p r o c e d u r e s f o r t h e c o n v e r s i o n of t h e s a r p a g i n e s k e l e t o n 07) to t h e v o b a s i n e type a l k a l o i d s (78) .  168  Reactions a p p l i c a b l e to the conversion of the sarpagine s k e l e t o n (77) t o the a j m a l i n e system (79)  170  P o s s i b l e i n t e r c o n v e r s i o n s f o r t h e v o b a s i n e s k e l e t o n (78) to the sarpagine  system (77)  171  10  NMR spectrum (FT) o f compound (127)  181  11  NMR spectrum (FT) o f compound (128)  182  12  C3b m e t h y l nmr s i g n a l s o f compounds ( 1 2 7 ) , ( 1 3 4 ) ,  13 14  R e a c t i o n scheme f o r t h e p o s s i b l e e x t e n s i o n o f t h e s i d e c h a i n i n compound (127) 185 Mass s p e c t r o m e t r i c f r a g m e n t a t i o n scheme f o r compound (168a) 194  15  P o s t u l a t e d mass s p e c t r o m e t r i c i o n s f o r compound (173)  199  16  M a j o r fragments o f compound (175) o b s e r v e d i n t h e mass spectrometer  203  17  NMR spectrum o f compound (177)  206  18  NMR s p e c t r u m o f compound (178)  208  19  Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s  20  Mass s p e c t r o m e t r i c f r a g m e n t a t i o n  21  A r o m a t i c r e g i o n i n t h e nmr s p e c t r a o f compounds (177) and (191) a,b  (129) .... 183  f o r compound (178)  209  scheme f o r compound ( 1 9 0 ) . 218 220  - xi -  ACKNOWLEDGEMENTS  I w i s h t o e x p r e s s my g r a t i t u d e t o P r o f e s s o r James P. Kutney f o r h i s encouragement and g u i d a n c e t h r o u g h o u t t h e c o u r s e o f my research. I am a l s o g r a t e f u l t o t h e B r i t i s h Columbia Sugar R e f i n i n g Company L i m i t e d and t h e U n i v e r s i t y o f B r i t i s h Columbia f o r s c h o l a r s h i p s which I r e c e i v e d during t h i s study. I w i s h t o thank my w i f e f o r h e r s u p p o r t t h r o u g h o u t t h i s s t u d y and f o r h e r h e l p i n t h e p r e p a r a t i o n o f t h i s m a n u s c r i p t .  PART I STUDIES RELATED TO BARK EXTRACTIVES OF WESTERN WHITE P I N E  1  - 1 -  INTRODUCTION (PART I ) The  c h e m i c a l knowledge o f n a t u r a l p r o d u c t s and t h e u n d e r s t a n d i n g  o f b i o g e n e t i c pathways l e a d i n g t o t h e i r f o r m a t i o n have undergone a g r e a t development d u r i n g t h e p a s t twenty y e a r s . T h i s advance has been p o s s i b l e because o f t h e a v a i l a b i l i t y  o f improved methods o f s e p a r a t i o n and  p u r i f i c a t i o n t o g e t h e r w i t h p o w e r f u l p h y s i c a l t e c h n i q u e s w h i c h have g r e a t l y a s s i s t e d i n s o l v i n g problems o f s t r u c t u r a l e l u c i d a t i o n . These have a c c e l e r a t e d t h e p r o c e s s e s formulae  techniques  l e a d i n g t o t h e assignment o f s t r u c t u r a l  and f r e q u e n t l y l e d t o t h e s o l u t i o n o f d i f f i c u l t problems w h i c h  might have been u n s o l v a b l e by s t r i c t l y c h e m i c a l t e c h n i q u e s . T h i s i s e s p e c i a l l y t r u e i n cases where o n l y m i l l i g r a m q u a n t i t i e s o f m a t e r i a l a r e available. The p r o g r e s s i n b i o c h e m i s t r y , i n p a r t i c u l a r i n t h e a r e a o f e n z y m a t i c r e a c t i o n mechanisms, s u p p o r t e d  c o n s i d e r a b l y t h e development o f t h e o r i e s  d e a l i n g w i t h the b i o g e n e s i s o f a r e m a r k a b l e range o f o r g a n i c compounds e x i s t i n g i n p l a n t s and a n i m a l s . I n many cases t h e s e t h e o r i e s have been supported  by t r a c e r s t u d i e s e m p l o y i n g l a b e l l e d compounds c o n s i d e r e d t o  be i n t e r m e d i a t e s i n t h e b i o g e n e t i c pathways. As a r e s u l t o f these i n v e s t i g a t i o n s i t has been r e a l i z e d t h a t n a t u r e uses o n l y a v e r y few b i o g e n e t i c pathways to s y n t h e s i z e a v a s t a r r a y o f o r g a n i c m a t e r i a l s and conseq u e n t l y t h a t these w i d e l y d i v e r s e c h e m i c a l compounds f a l l i n t o q u i t e well-defined patterns.  - 2 -  D e s p i t e t h e economic i m p o r t a n c e o f the f o r e s t i n d u s t r y t h e e x t r a c t a b l e s found i n t r e e s a r e p o o r l y u n d e r s t o o d and t h e minor components have for  a l o n g t i m e been d i s r e g a r d e d . The p u l p and paper i n d u s t r y has been  aware o f t h e e x i s t e n c e o f e x t r a c t i v e s i n t r e e s b u t has o f t e n v i e w e d them as a n u i s a n c e  t o be removed s i n c e they produce u n d e s i r a b l e e f f e c t s d u r i n g  the p u l p m a n u f a c t u r i n g  p r o c e s s . The p r e s e n c e o f l a r g e r amounts o f e x t r a c -  t i v e s , e s p e c i a l l y polyphenolic m a t e r i a l s , i s manifested  by p o o r c o l o u r  and l i g h t a g i n g p r o p e r t i e s i n t h e f i n i s h e d p u l p s o r p a p e r s . processes  Industrial  have a c c o m p l i s h e d t h e removal o f these e x t r a c t i v e s and i n t h e  k r a f t process  two b y - p r o d u c t s ,  s u l p h a t e t u r p e n t i n e and t a l l o i l , a r e  r e c o v e r e d and have become v a l u a b l e raw m a t e r i a l s f o r a v a r i e t y o f industries. Sulphate  t u r p e n t i n e c o n s i s t s of the v o l a t i l e terpenes  condensed  f r o m t h e r e l i e f gases. The p r o d u c t i o n o f s y n t h e t i c p i n e o i l w h i c h i n t u r n i s used f o r c o n v e r s i o n  to t e r p i n hydrate  and o t h e r c h e m i c a l s ,  as w e l l  as a s o l v e n t and i n o r e f l o t a t i o n , uses a l a r g e p o r t i o n of t h e t u r p e n 2 t i n e . P a i n t s , s y n t h e t i c r e s i n , and t h e perfume i n d u s t r i e s use s m a l l e r quantities^. The  composition  o f t a l l o i l v a r i e s w i t h t h e k i n d o f wood and t h e  p u l p i n g and r e c o v e r y p r o c e s s e s . of composition and  B r o w n i n g ^ has r e p o r t e d t h a t the range  may be from 35% t o 55% r e s i n a c i d s , 35% t o 60% f a t t y a c i d s ,  10% t o 20% u n s a p o n i f i a b l e m a t e r i a l . The l a t t e r i s a complex  mixture  o f s t e r o l s , h i g h e r a l c o h o l s , h y d r o c a r b o n s , and some s t e r o l e s t e r s o f f a t t y a c i d s w h i c h a r e d i f f i c u l t t o s a p o n i f y . Some o f t h e main i n d u s t r i a l uses o f t a l l o i l and i t s d e r i v a t i v e s a r e i n the m a n u f a c t u r e o f a d h e s i v e s , b i n d e r s , d r y i n g o i l s , soaps, and v a r n i s h e s . Wounded c o n i f e r o u s t r e e s s e c r e t e a v i s c o u s o i l known as o l e o r e s i n . In a r e a s o f F l o r i d a and G e o r g i a  l o n g l e a f (Pinus p a l u s t r i s  Mill.)  - 3-  and slash pine ( P . e l i o t t l i ) t r e e s are d e l i b e r a t e l y wounded u n t i l they reach maturity and the c o l l e c t e d oleoresin i s steam d i s t i l l e d to remove the v o l a t i l e "wood turpentine". The residue, consisting mainly of r e s i n and f a t t y acids i s used much l i k e t a l l o i l . According  to Mutton"*, about  10% of the o l e o r e s i n consists of n e u t r a l or unsaponifiable materials containing  3 - s i t o s t e r o l (1) (24a-ethyl-cholesterol) and other s t e r o l s ;  long chain alcohols such as l i g n o c e r y l alcohol, CB.^(CR^) ^CR^OE; diterpene aldehydes, dextropimarinal  t  W  O  (2a) and isodextropimarinal (3a);  t r i c y c l i c diterpenes; diterpene alcohols; and 3,5-dimethoxystilbene.  (2a), R=CH0 ( b), R=C00H  (3a), R=CH0 ( b), R=C00H  - 4 -  The of  resin acid  diterpene acids having  dextropimaric and  f r a c t i o n of pine o l e o r e s i n o r t a l l  o i l c o n s i s t s mainly  the a b i e t a n e s k e l e t o n . They a r e t y p i f i e d by  (2b), i s o d e x t r o p i m a r i c (3b), a b i e t i c  (4), p a l u s t r i c (5),  levopimaric acids (6).  (6)  The  p u l p and paper i n d u s t r y c o n s i d e r s b a r k as a major waste p r o -  duct, i t p o s s e s s e s  little  commercial v a l u e and p r o v i d e s a d i f f i c u l t  d i s p o s a l problem. Bark r e p r e s e n t s 10% t o 15% o f the t o t a l weight o f the wood b e i n g p r o c e s s e d ;  i t s p h y s i c a l components, cork, f i b e r ,  powder, have been examined f o r p o s s i b l e u s e s ^ . the p r o d u c t i o n p r o c e s s  F i b e r s a r e employed i n  of f i b e r b o a r d and i n s u l a t i o n m a t e r i a l s . Bark  powder can be used as a c a r r i e r f o r i n s e c t i c i d e s and i n s o i l Cork has been found The  and b a r k  improvement,  s u i t a b l e as a f i l l i n g m a t e r i a l .  i s o l a t i o n o f chemicals  from bark may be c a r r i e d out e i t h e r by  p y r o l y s i s o r e x t r a c t i o n . A l k a l o i d s such as q u i n i n e have been i s o l a t e d . F l a v a n o i d s such as q u e r c i t i n  (7) and s t r y c h n i n e (8)  (9) and some o f i t s  - 5 -  d e r i v a t i v e s are i s o l a t e d  from bark. They have a n t i o x i d a n t p r o p e r t i e s and  are of some m e d i c i n a l v a l u e i n the treatment  of c a p i l l a r y b l o o d v e s s e l  disorders^.  (9)  A study of e x t r a c t a b l e m a t e r i a l i n the b a r k s of twenty f o u r common  Q North American pulpwood s p e c i e s was  c a r r i e d out by Chang and M i t c h e l l .  They s u c c e s s i v e l y e x t r a c t e d the bark w i t h benzene, e t h a n o l , hot water, one p e r c e n t aqueous sodium h y d r o x i d e Pinus b a n k s i a n a  L.  s o l u t i o n . The v a l u e s o b t a i n e d f o r  ( j a c k p i n e ) , P . c o n t o r t a Dougl.  (lodgepole p i n e ) ,  P . e l l i o t t i i Engelm. ( s l a s h p i n e ) , and P . l a m b e r t i a n a are l i s t e d  i n Table I.  Dougl.(sugar  pine)  and  - 6 Species Jack pine Lodgepole pine Slash pine Sugar pine  Ash,% 1.7 2.0 0.6 0.6  Benzene,% 8.0 28.7  Alcohol,% 12.4 10.9 10.6 21.7  3.4  1.5  Hot water,% 3.0 5.6 3.7 3.2  1% Na0H,% 41.3 29.8 28.9 36.0  Table I. Ash content and various extractions of pine bark (percentages on basis oven-dry weight of unextracted bark) 9 Rowe  found that the benzene extract of pine bark varied from 28.7%  for lodgepole pine to a low of 2.1% for sugar pine. The composition of the extract obtained by Chang and Mitchell was not investigated fully. Rowe's study was more thorough and listed several sterols which he isolated. More interesting was the finding of a methoxy triterpenol in jack pine and a triterpene diol, which he called pinusenediol, from loblolly pine (P.taeda L.) and jack pine. The structure of pinusenediol was shown by Rowe  10  to be identical with that of serratenediol  (10a) isolated by Inubushi from club moss, Lycopodium serratum Thumb, var. Thumbergie Makino . 11  - 7 S e r r a t e n e d i o l was t h e f i r s t known t r i t e r p e n e c o n t a i n i n g a s e v e n 12 membered r i n g C i n i t s s t r u c t u r e . I t s b i o s y n t h e s i s was p o s t u l a t e d as o c c u r r i n g from a - o n o c e r i n  (11a) w i t h i n c o r p o r a t i o n o f one o f t h e  v i n y l groups i n t o r i n g C. T h i s p r o c e s s l e a v e s seven a n g u l a r m e t h y l groups r a t h e r than t h e u s u a l e i g h t f o r o t h e r p e n t a c y c l i c t r i t e r p e n e s .  Inubushi  was a b l e t o i s o l a t e s e r r a t e n e d i o l d i a c e t a t e (10b) and Y~°nocerin d i a c e t a t e (12) by t r e a t m e n t o f a - o n o c e r i n 13 I n a l a t e r paper Rowe  d i a c e t a t e ( l i b ) w i t h boron  reported  trifluoride.  the i s o l a t i o n and s t r u c t u r e o f s i x  s e r r a t e n e d i o l d e r i v a t i v e s from p i n e b a r k . The o c c u r r e n c e o f s e r r a t e n e d e r i v a t i v e s i n t h e f a m i l y P i n a c e a e i n the genus P i n u s and l a t e r i n t h e genus P i c e a i s now w e l l e s t a b l i s h e d . A m e t h o x y l a t e d t r i t e r p e n e , abieslactone  ( 1 3 ) , has been r e p o r t e d f r o m t h e genus A b i e s o f t h e same f a m i -  14 ly  . T h i s compound, however, i s n o t a s e r r a t e n e d e r i v a t i v e b u t p o s s e s s -  es r a t h e r a l a n o s t e r o l s k e l e t o n . A b i e s l a c t o n e was i n t i a l l y  isolated  (13) 15 i n 1938 from t h e b a r k and l e a v e s o f A b i e s m a r i e s s i i M a s t e r s  , afir 16  t r e e o f n o r t h e r n Japan. The same compound has been i s o l a t e d by H e r g e r t from t h e N o r t h American P a c i f i c s i l v e r f i r [ A . a m a b i l i s and N o b l e f i r ( A . p r o c e r a  (Dougl.) F o r b e s ]  Rehd.) and named by him as methoxy  olide. On the b a s i s o f s e l e n i u m  abiesadien-  d e h y d r o g e n a t i o n i t was s u g g e s t e d i n 1964  - 8 -  t h a t a b i e s l a c t o n e must c o n t a i n the s k e l e t o n o f t r i m e t h y l s t e r o i d s " ' , 1  18 i n 1965 Uyeo  advanced a more d e t a i l e d s t r u c t u r e ; the f i n a l s t r u c t u r e was 19  e s t a b l i s h e d by X - r a y s t u d i e s i n 1971  . A t t h i s t i m e t h e 3a-hydroxy and  3-keto r e l a t i v e s o f a b i e s l a c t o n e were a l s o r e p o r t e d t o have been i s o l a t e d from P a c i f i c s i l v e r f i r . possessing  S e v e r a l o t h e r s t r u c t u r a l l y r e l a t e d compounds  a l a n o s t a n e s k e l e t o n , s h o u l d a l s o be mentioned  here.  C y c l o a r t e n o l ( 1 4 a ) , w h i c h i s now b e l i e v e d t o be t h e f i r s t 20 c y c l i z e d product  i n tetracyclic triterpene biosynthesis  5  C-30  thereby  r e p l a c i n g t h e f o r m e r l y p o s t u l a t e d l a n o s t e r o l ( 1 5 ) , t o g e t h e r w i t h 24methylene-cycloartanol  (16) and  4a-methyl-stigmasta-7,24(28)-dien-3$-ol 21 (17) were i s o l a t e d f r o m b i r c h wood ( B e t u l a v e r r u c o s a E r h . )  HO (14a)  (15)  HO  (16)  (17)  - 9 -  Two  n o v e l t r i t e r p e n e l a c t o n e s , c y c l o g r a n d i s o l i d e and e p i c y c l o g r a n d -  i s o l i d e , were i s o l a t e d from the l i g h t p e t r o l e u m  e x t r a c t of grand f i r  [ A b i e s g r a n d i s (Dougl.) L i n d l ] , they were shown t o be 9,19-cyclo-9B-lanost-24-ene-26,23-olide  (23 R)-3-a-methoxy-  (18) and the(23S-)  isomer . 2 2  O  (18)  As mentioned e a r l i e r , t h e i n v e s t i g a t i o n o f n a t u r a l p r o d u c t s has i n the p a s t been m a i n l y c o n c e n t r a t e d on s u b s t a n c e s w h i c h a r e of i n t e r e s t because o f t h e i r p o t e n t i a l t e c h n i c a l , p h a r m a c o l o g i c a l o r b i o c h e m i c a l v a l u e . Taxonomic c o n s i d e r a t i o n s have seldom g u i d e d the c h o i c e o f t h e substances  i n v e s t i g a t e d . I n r e c e n t y e a r s a c o n s i d e r a b l e amount o f r e s e a r c h  has been c a r r i e d out on the b i o c h e m i c a l and o r g a n i c c h e m i c a l a s p e c t s g e n e t i c s , work t h a t i s n e c e s s a r y  f o r f u t u r e developments i n the  of  chemistry  of the e v o l u t i o n of s p e c i e s . U s e f u l c o n t r i b u t i o n s i n t h i s f i e l d can  be  made by s y s t e m a t i c s t u d i e s of the c h e m i s t r y o f s u i t a b l e genera o f p l a n t s and a n i m a l s . The  f i r s t s e c t i o n o f t h i s t h e s i s i s p a r t o f an s y s t e m a t i c i n -  v e s t i g a t i o n i n t o the c h e m i c a l c o n s t i t u e n t s o f W e s t e r n w h i t e p i n e  (Pinus  m o n t i c o l a Douglas) and some g e n e r a l comments about c o n i f e r s a r e now  in  order. The  c o n i f e r s i n c l u d e some 650 s p e c i e s o f woody p l a n t s whose o r i g i n  dates back a t l e a s t two hundred m i l l i o n y e a r s  (late P a l e o z o i c ) . This  - 10 -  taxon can be d i v i d e d i n t o f o u r o r d e r s , P i n a l e s , and A r a u c a r i a l e s . The divided into  Cupressales, Podocarpales  o r d e r P i n a l e s has o n l y one  ten genera, one  family, Pinaceae,  of them b e i n g the genus P i n u s w i t h  94  23 species  . One  of these s p e c i e s i s P . m o n t i c o l a Douglas  (Western  p i n e ) which grows c h i e f l y i n w e s t e r n Montana and n o r t h e r n Idaho. it  reaches i t s b e s t development; hence i t i s o f t e n c a l l e d  p i n e " . I t s growth extends southward  In Idaho  "Idaho w h i t e  t o Washington, s o u t h e r n B r i t i s h Columbia  to Oregon, c e n t r a l C a l i f o r n i a ,  I t s a l t i t u d i n a l range  white  and  and a d j a c e n t p a r t s of Nevada.  i s from s e a l e v e l i n Washington t o 3350 m  i n the S i e r r a Nevada o f C a l i f o r n i a . A p p a r e n t l y no v a r i e t i e s  of  P . m o n t i c o l a have been d e s c r i b e d . Chemical i n v e s t i g a t i o n s , however, revealed a considerable v a r i a b i l i t y  The  throughout i t s e x t e n s i v e range 25  i n i t i a l chemical i n v e s t i g a t i o n s  o f P . m o n t i c o l a were o n l y  concerned w i t h heartwood c o n s t i t u e n t s . P i n o s y l v i n methyl e t h e r (19b) were i s o l a t e d , trobin and  (20b), s t r o b o p i n i n  tectochrysin  (19a), R=R (  as w e l l as p i n o c e m b r i n  ( 2 0 c ) , and  (21b) were a l s o  (19a) and i t s mono  eryptostrobin  (20a), p i n o s -  ( 2 0 d ) ; c h r y s i n . (21a)  observed.  1 2 '\ k (20a), R =R =R =R =H  =H  b ) , R=CH~,R =H 1  - 11 -  (21a),  OH  O  (  R^R^R^H  b ) , R =CH ,R =R =H 1  2  3  3  An i n v e s t i g a t i o n o f sapwood by paper chromatography r e v e a l e d  also  the p r e s e n c e o f a r a b i n o s e and g l u c o s e . 26 Studies  on c o n s t i t u e n t s o f t h e i n n e r b a r k o f P . m o n t i c o l a  revealed  the p r e s e n c e o f some s u b s t i t u t e d s t i l b e n e s , s m a l l amounts o f f l a v o n o i d compounds and a complex m i x t u r e o f p o l y p h e n o l s c o n t a i n i n g c a f f e i c a c i d (22), f e r u l i c a c i d (23), coniferylaldehyde (25).  A more d e t a i l e d i n v e s t i g a t i o n o f t h e n e u t r a l  f o r example  ( 2 4 ) , and v a n i l l i n  constituents,  p a r t i c u l a r l y those i n t h e t r i t e r p e n e f a m i l y was i n i t i a t e d  some y e a r s  27 ago by J.W.Rowe  and t h e r e s u l t s p r e s e n t e d i n t h e n e x t s e c t i o n  a c o m p l e t i o n o f such a s t u d y .  provide  - 12 -  DISCUSSION (PART I) 27 As part of a long range study by J.W.Rowe Products Laboratory, U.S.  28 '  at the Forest  Department of Agriculture, Madison, Wise, a  detailed examination of the extractives of Western white pine was  under-  taken. The bark c o l l e c t e d for this purpose came from trees of 2 1/2  feet  diameter (at 5 feet height) growing i n the Cement Creek area above Superior, Mont.. The bark was i t was  about 1/4  analysis was  harvested i n the spring before the sap flow,  inch thick and showed no d i s t i n c t inner bark. Hence the  conducted on the whole a i r d r i e d bark which was  Wiley m i l l to pass a 2 mm mesh screen. The bark contained  ground i n a  14.5%  of  moisture. A detailed analysis of the ground bark showed that i t i s made up to 25% of extractives that can be removed by successive  extraction  with benzene (3.2%), ethyl alcohol (7.5%), and water (14.3%). The benzene extract was  subjected  to a more detailed i n v e s t i g a t i o n  employing various chromatographic separation terpenoids  techniques. A t o t a l of 28  were i s o l a t e d including 34 triterpenes  methylenecycloartanol (16), 10 known and 10 new serratane  skeleton"*"^'  and 11 new  . These include  90 24-  triterpenes with a  triterpenes that appear to have a  common lanostane skeleton. It i s the l a t t e r group which i s the  subject  of i n t e r e s t i n the f i r s t part of this thesis. For the present study the unsaponifiable extract was  freed of wax  portion from the benzene  alcohols by formation of the urea channel  - 13 i n c l u s i o n complex and of s t e r o l s by p r e c i p i t a t i o n of the d i g i t o n i d e s . The petroleum e t h e r - i n s o l u b l e f r a c t i o n was chromatographed gel  on s i l i c a  (Woelm, a c t i v i t y I I I , benzene •> benzene/ether) to y i e l d eleven novel  t r i t e r p e n e s , the s t r u c t u r a l e l u c i d a t i o n of which was undertaken i n our laboratory. 29  The samples obtained by Rowe  from the chromatographic procedure  were pure by t h i n layer chromatography  (TLC) ( s i l i c a g e l G, methylene-  c h l o r i d e ) and were subjected i n d i v i d u a l l y to r e c r y s t a l l i z a t i o n and sublimation procedures. Table I I l i s t s the eleven i s o l a t e d compounds as a percentage of the benzene e x t r a c t . I t becomes immediately apparent that the majority of the materials are a v a i l a b l e i n very small q u a n t i t i e s and, i n f a c t , w i t h the exception of compounds I and I I , only a few milligrams were on hand f o r our purposes. I t was therefore only through the  almost e x c l u s i v e employment of p h y s i c a l and a n a l y t i c a l methods that  the  s t r u c t u r a l e l u c i d a t i o n of these compounds was made p o s s i b l e .  Compound  I  II  III  % of benzene „ -, ^ „ „ „, „ extract " 7  0 , 2  0 , 0 4  0 , 0 6  IV  V °-  0 0 2  VI °-  0 0 5  VII °-  03  VIII °-  0 0 2  IX °-  02  X °-  0 0 3  XI °-  01  Table I I . I s o l a t e d compounds as a percentage of the benzene e x t r a c t .  In general the s i m i l a r c h a r a c t e r i s t i c s of the p h y s i c a l data of a l l eleven compounds seemed to suggest that they possess the same skeleton. Elemental a n a l y s i s and mass spectrometric data i n d i c a t e d that a l l compounds contained only carbon, hydrogen and oxygen and that at l e a s t 30 carbon atoms were present i n t h e i r s t r u c t u r a l frameworks thereby p l a c i n g them  - 14 -  in  the t r i t e r p e n o i d f a m i l y . The nmr s p e c t r a o f a l l compounds i n d i c a t e d  the p r e s e n c e at  o f a t l e a s t f i v e a n g u l a r m e t h y l groups,  l e a s t one p r o t o n g e m i n a l  one secondary  methyl,  t o an oxygen c o n t a i n i n g s u b s t i t u e n t  (-0H o r -OCH^, most l i k e l y i n p o s i t i o n C3) and one o l e f i n i c p r o t o n i n the 6 5.20-5.25 r e g i o n . S i n c e the e x t r a c t i v e s o f Western w h i t e p i n e a r e r i c h i n s e r r a t e n e 28 type t r i t e r p e n o i d s  ( 1 0 a , s e r r a t e n e d i o l ) and compounds I - X I were  i s o l a t e d from t h e same s o u r c e , s t r u c t u r e s p o s s e s s i n g t h e s e r r a t e n e s k e l e t o n were i n i t i a l l y  c o n s i d e r e d . However, s e r r a t a n e s t r u c t u r e s f o r the  unknown m a t e r i a l s a r e i n c o m p a t i b l e w i t h t h e p r e s e n c e  o f a secondary  m e t h y l group i n the nmr s p e c t r a . The compounds c o n t a i n a l s o two more hydrogens than would be p r e s e n t i n s e r r a t e n e s and t h e mass s p e c t r a do n o t resemble  those o f t h e l a t t e r , t h e r e f o r e t h i s s t r u c t u r a l type was e x c l u d e d .  (10a)  At f i r s t  (11a)  g l a n c e t h e mass s p e c t r o m e t r i c d a t a appeared t o resemble t h e  s p e c t r a of o n o c e r i n s (11a, a - o n o c e r i n ) as t h e r e was a v e r y l a r g e peak i n t h e m i d d l e o f the spectrum w h i c h might have r e s u l t e d from t h e u s u a l o n o c e r i n c l e a v a g e i n t o two a p p r o x i m a t e l y e q u a l p a r t s . T h i s assumption  was  a l s o s u p p o r t e d by t h e f a c t t h a t o n o c e r i n s a r e p r o b a b l y t h e b i o l o g i c a l p r e c u r s o r s of s e r r a t e n e s , and c o u l d i n c o r p o r a t e a secondary  m e t h y l group  - 15 and  two more hydrogens i n t h e i r molecule as found by mass s p e c t r a l  analysis. However, the nmr spectra, e s p e c i a l l y i n the methyl region, d i d not agree with this assumption. Also i t was found that the carbon content of the major mass spectrometric postulated  onocerin skeleton.  those of saturated  fragments did not j u s t i f y the  The mass spectra d i d also not resemble  pentacyclic  triterpenes^'*'"'.  Both by a process of elimination and by p o s i t i v e support from s p e c t r a l data a lanostane skeleton  12  2  3  31  A  10  5  B aT  -A  postulated.  18  D15  c  1S  (26) was  32  30  (26)  Since i t has been established that, as a r e s u l t of the investigations described  l a t e r , a lanostane skeleton  i s indeed present i n a l l of the  investigated materials, i t becomes appropriate  to describe  some of the  physical data available i n the lanostane family.  30-32 Considerable information  has been c o l l e c t e d on the p o s i t i o n of  nmr signals due to methyl groups of triterpenes and complete assignments of these signals have become possible f o r certain triterpene f a m i l i e s .  30 The pertinent values f o r the lanostane family are found i n Table I I I Table IV contains the changes i n the chemical s h i f t s (A 6) of the methyl group resonances produced by some functional groups attached to the skeleton^.  - 16 -  Compound  Methyl  lanostane l a n o s tan-3a-ol lanostan-3a-acetate lanostan-33-ol lanostan-3B-acetate lanostan-3-one  Group  18  19  30  31  32  .78 .77 .77 .80 .77 .78  .92 .93 .91 .91 .92 1.06  .83 .87 .91 .80 .87 1.06  .83 .93 .83 .98 .84 1.06  .80 .81 .83 .80 .79 .78  T a b l e I I I . P o s i t i o n of methyl groups i n 6 v a l u e s  Functionality  Methyl  8-ene 9(ll)-ene  (- 0.03 « ) .  Group  18  19  30  31  32  - .08 - .11  +.13 +.19  +.01 +.02  +.04 +.05  +.07 -.05  T a b l e IV. C o n t r i b u t i o n o f p e r t i n e n t f u n c t i o n a l i t i e s t o t h e c h e m i c a l change (A .6) o f m e t h y l groups. A correlation  shift  o f T a b l e s I I I and IV may s e r v e f o r the c a l c u l a t i o n o f  c h e m i c a l s h i f t v a l u e s f o r compounds i n t h i s s e r i e s . As an example, t h e calculated  and observed  parkeylacetate  v a l u e s o f p a r k e y l a c e t a t e (27a) and d i h y d r o -  (27b) a r e l i s t e d i n T a b l e V t o g e t h e r w i t h the e x p e r i -  m e n t a l l y observed  data.  18  R  - 17 -  parkeyl acetate calculated observed  18  Me t h y l 19  Group 30  31  32  .66 .62  1.10 1.06  .89 .86  .89 .86  .74 .72  .66 .64  1.10 1.05  .89 .87  .89 .87  .74 .75  dihydroparkeyl acetate calculated observed  T a b l e V. Observed and c a l c u l a t e d c h e m i c a l s h i f t s (<5) o f m e t h y l resonances i n t y p i c a l l a n o s t - 9 ( l l ) - e n e s .  group  I t i s n o t e d t h a t the o b s e r v e d and c a l c u l a t e d v a l u e s a r e i n good agreement. A t t e n t i o n i s drawn t o the c a l c u l a t e d and o b s e r v e d v a l u e s f o r the 18, 19 and 32 m e t h y l groups. The 19 m e t h y l group i s b o t h o b s e r v e d and  calculated  to be i n the r e g i o n <5 1.05-1.10, an e x p e c t e d r e s u l t s i n c e t h i s m e t h y l group i s a l l y l i c to the 9 ( l l ) - e n e system. The 32 m e t h y l group has a range 6 .72-.75, w h i l e the 18 m e t h y l group i s c o n s i s t e n t l y a t t h e h i g h e s t f i e l d w i t h a range o f 6 .64-.66. Hence a t y p i c a l l a n o s t - 9 ( l l ) - e n e  derivative  s h o u l d have the 19 m e t h y l group r e s o n a t i n g n e a r 6 1.05 w i t h the 18 and 32 m e t h y l group near 6 .65 and 6 .75 r e s p e c t i v e l y . L i m i t e d d a t a r e l e v a n t to  t h i s i n v e s t i g a t i o n a r e a v a i l a b l e c o n c e r n i n g t h e i n f l u e n c e o f the  s i d e c h a i n on the c h e m i c a l s h i f t o f the a n g u l a r m e t h y l groups.  Contri-  30 butions of v a r i o u s side chains are l i s t e d c o n s i d e r a b l e magnitude,  i n T a b l e VI  .Effects of  p a r t i c u l a r l y on the 18 m e t h y l group a r e n o t e d .  However, no unique i n t e r p r e t a t i o n o f t h e s e d a t a i s p o s s i b l e because the  conformational f l e x i b i l i t y  associated the  and r o t a t i o n a l degrees of  of  freedom  w i t h t h i s type of s i d e c h a i n . A l t h o u g h i t i s v e r y l i k e l y  s i d e c h a i n does i n f a c t o r i e n t a t e i t s e l f a l o n g r i n g s D and C;  that  one  would t h e r e f o r e e x p e c t t h a t t h e 18 m e t h y l group i s i n d e e d the one most  - 18 e f f e c t e d by any changes i n t h e s i d e c h a i n .  173-slde chain  Methyl R  18  l  OCH3  CH3  OCH3  = CH  OH  =CH  OH  =0  H a  R  o.oo 2  2  CH3  the d i f f e r e n c e s a r e r e l a t i v e  Group 32  19 a  o.oo  a  o.oo  0.00  0.00  0.00  +0.06  +0.01  +0.01  +0.05  +0.01 . +0.02  -0.02  -0.01  a  +0.01  t o these chemical s h i f t s  T a b l e V I . I n f l u e n c e o f s i d e c h a i n on t h e c h e m i c a l s h i f t o f t h e angular methyl groups.  E x a m i n a t i o n o f t h e nmr d a t a o f compounds I - X I r e v e a l e d t h e p r e s e n c e of an o l e f i n i c s i g n a l a t <5 5.20-5.25, a r e g i o n t h a t i s n o r m a l l y e x p e c t e d f o r C9-C11 u n s a t u r a t e d t r i t e r p e n e s . T a b l e V I I l i s t s some examples o f A 9 ( 1 1 ) t r i t e r p e n e s t o g e t h e r w i t h t h e resonance f r e q u e n c i e s o b s e r v e d 19 22 30 3^ ' ' ' . I t i s t o b e n o t e d t h a t C7 o l e f i n i c 19 22 p r o t o n s do n o r m a l l y o c c u r a t somewhat l o w e r f i e l d („<5 5.5) ' for the o l e f i n i c proton  Compound g r a n d i s o l i d e (28) d i h y d r o p a r k e y l a c e t a t e (27b) 33-methoxy-dihydroparkeol (27c) a r b o r e n e (29) e t i a n i c e s t e r (30)  Chemical s h i f t o f C l l - H 5.20 5.19 5.24 5.27 5.25  T a b l e V I I . Resonance f r e q u e n c i e s (5) o f o l e f i n i c s i g n a l s i n C9-C11 unsaturated t r i t e r p e n e s .  (29)  (30)  Mass s p e c t r o m e t r y has been used e x t e n s i v e l y e l u c i d a t i o n of steroids  and t r i t e r p e n e s ,  i n the s t r u c t u r a l  and the f r a g m e n t a t i o n p a t t e r n s  of the c h o l e s t a n e s e r i e s have been summarized i n F i g u r e 1.  F i g u r e 1. Main f i s s i o n s o f the c h o l e s t a n e s e r i e s .  - 20 One o f t h e main f e a t u r e s o f t h e mass s p e c t r a o f s t e r o i d s s u b s t i t u t e d a t C17 i s i n t h e e l i m i n a t i o n o f t h e s i d e c h a i n p l u s 42 mass u n i t s . . 35 This process  has been t h o r o u g h l y  fragmentation  i n v e s t i g a t e d by Biemann  and t h e  pathway g i n d i c a t e d i n F i g u r e l , h a s been e s t a b l i s h e d .  Other n o t e w o r t h y f e a t u r e s o f t h e s p e c t r a o f s t e r o i d a l h y d r o c a r b o n s correspond  t o the l o s s e s of the angular methyl s u b s t i t u e n t s , r i n g A  36 ( F i g u r e l , b ) and t h e s i d e c h a i n ( F i g u r e l , a ) , o r c o m b i n a t i o n s t h e r e o f 36 Thus i n t h e spectrum o f c h o l e s t a n e (31) ( F i g u r e 2) -, t h e base peak o c c u r s o f m/e 217 [M-(c H.. +42)] and an M-15 s p e c i e s i s ahundant, i o n s 8 17 a r i s i n g from l o s s o f t h e s i d e c h a i n (m/e 259) o r o f t h e s i d e c h a i n o  p l u s r i n g A (m/e 203) a r e e v i d e n t . F i s s i o n o f r i n g D a l s o  occurs,  37 a f f o r d i n g m/e 218. I t has been s u g g e s t e d corresponds to the fragmentation  t h a t t h e m/e 149 i o n  o f r i n g C and t h e p o s t u l a t e d bond  f i s s i o n s l e a d i n g t o t h i s fragment a r e i n d i c a t e d i n t h e f o l l o w i n g sequence„  R  R  H  H  m/e 149 (32) The  (33)  t e t r a c y c l i c t r i t e r p e n e s belong  (34)  t o t h e c h o l e s t a n e s y s t e m , as f a r as  the r i n g j u n c t i o n s a r e c o n c e r n e d , a l t h o u g h  they i n c l u d e t h r e e e x t r a  m e t h y l groups as f o r example i n l a n o s t a n e i t s e l f of these e x t r a m e t h y l groups may be summarized g i v e a more abundant i o n c o r r e s p o n d i n g group than do the c o r r e s p o n d i n g  ( 2 6 ) . The g e n e r a l e f f e c t s as f o l l o w s . They tend t o  t o the l o s s o f one such m e t h y l  s t e r o i d s . The s o u r c e o f the removed group  F i g u r e 2. Mass spectrum o f  cholestane.  - 22 24  (26)  i s most l i k e l y from the gem -dimethyl at C4 or e i t h e r  of the groups a t  C13 and C14. The l a t t e r two p o s s i b i l i t i e s are supported by the ready l o s s of a methyl group from cycloartenone (14b) which has a cyclopropane group  (14b)  i n s t e a d o f a C l O - m e t h y l . I n A 8 , 2 4 - l a n o s t a d i e n e t h e p r e s e n c e o f an i s o p r o p y l i d e n e group i n t h e s i d e c h a i n does n o t a p p a r e n t l y  lessen the  f a c i l i t y o f m e t h y l e l i m i n a t i o n . Moreover, i n A 5 ( 1 0 ) - l a n o s t e n e ,  w h i c h has  an a l l y l i e gem-dimethyl system, the e l i m i n a t i o n p r o c e s s does n o t seem t o be i n c r e a s e d .  Fragments c o r r e s p o n d i n g t o t h e d i s r u p t i o n o f r i n g s A and B  s t i l l o c c u r i n t r i t e r p e n e s b u t now t h e i r masses a r e i n c r e a s e d by t w e n t y e i g h t mass u n i t s w h i c h s u g g e s t s t h a t the gem - d i m e t h y l  group remains i n t a c t  38 i n many o f the p r e v i o u s l y r e c o g n i z e d spectrometric  fragmentations  . The g r e a t e s t mass  d i f f e r e n c e s between s t e r o i d s and t e t r a c y c l i c t r i t e r p e n e s  o c c u r i n t h e f i s s i o n s a s s o c i a t e d w i t h t h e a l k y l s i d e c h a i n . Based on t h e fragmentation  p r o c e s s e s o u t l i n e d i n F i g u r e 1 ( e s p e c i a l l y a and g) i t i s  - 23 -  possible to deduce the length and s u b s t i t u t i o n pattern of the side chain. Thus the presence of a double bond or oxygen f u n c t i o n a l i t y i n the side chain f o r example causes the appearance of a fragment corresponding to the elimination of the side chain together with an a d d i t i o n a l two hydrogen atoms from the steroid nucleus. For instance, deuterium labeling 39 of various A 24-cholestenes (35)  indicated that the double hydrogen  transfer from the s t e r o i d nucleus associated with the loss of the side chain i n (35) originated from C17(l H), C12(0.35 H), C14(0.1 H), and C16(0.25 H). A mechanistic r a t i o n a l i z a t i o n based on these results i s depicted i n Figure 3.  (35)  (36) v  H  (39) Figure 3. Loss of (side chain + 2H) from A 24-5a-cholestene.  - 24 The introduction of oxygen functions into ring A does not affect previous conclusions although, of course, the masses of the fragment ions must be adjusted to allow for the presence of heteroatoms. One has also to consider that the temperatures frequently employed in the determination of the mass spectra may lead to thermally induced eliminations (1,2-1,3 or 1,4) of functional groups, both in the steroidal skeleton as well as in the side chain. The introduction of unsaturation into the steroidal skeleton may also modify the fragmentation patterns to some extent. Thus A 9(ll)-lanostene 38 has been examined  with results (Table VIII) similar to those displayed  in Figure 1, except that in this instance the fragment at m/e=258 corresponding to the loss of the side chain i s not so abundant as in the saturated cycloalkane. m/e 69 81 93 94 95 105 107  r e l . int. %  m/e  33.6 18.6 11.4 12.0 26.0 14.0 13.2  109 119 218 258 397 398 412  rel. int. % 14.2 15.4 8.5 3.0 100.0 38.7 12.3 (M )  Table VIII. Mass spectrometric fragments for A 9(11)-lanostene.  The loss of fifteen mass units is even more facile in this instance and relates to the a l l y l i c nature of the CIO methyl group. In the case of arborene (40a)  34  and arborenone (40b)  40  the spectra are characterized  by strong loss of methyl and a base peak corresponding to fragmentation mode ji with smaller ions due to fragments from fissions via pathways b_, £ and id. However, triterpenes with double bonds in positions other than  - 25 c  ( 4 0 a ) , R=H (  2  b ) , R=0 40  C9-C11 a l s o e x h i b i t e d some o f t h e same fragments e x e r c i s e d i n the i n t e r p r e t a t i o n . Furthermore,  so c a r e must be  a p p l i c a t i o n o f these  f r a g m e n t a t i o n pathways t o t h e p r e s e n t s t u d y i s o f d o u b t f u l v a l i d i t y , w i t h t h e e x c e p t i o n o f f i s s i o n _d. F r a g m e n t a t i o n s c l e a v a g e s i n r i n g s C and D. Arborene w h i c h may fragment  a., b_ and c_ a l l  involve  represents a pentacyclic  triterpene  r a t h e r d i f f e r e n t l y from t h e t e t r a c y c l i c systems  i n v e s t i g a t e d h e r e . The mass s p e c t r a l d a t a ( T a b l e I X , F i g u r e 4) o f 33-methoxy-(24,25)-dihydroparkeol  (27c) show a m o l e c u l a r i o n a t  m/e 442 (45%, C ^ H ^ O ) .  a " —  *\  \  b  (27c)  - 26 -  Pathway  o b s e r v e d fragments m/e 442  a  m/e 442  ->  ->•  m/e 427,  C  30 51°  m/e 410,  C  30 50  m/e 395,  C  29 47  m/e 370,  C  27 46  m/e  H  (  H  (  H  71, C.H^O 4 7  ->  m/e 313,  C  23 37  c  m/e 442  ->  m/e 288,  C  21 36  m/e 153,  C  10 17°  m/e 287,  C  20 31°  m/e 273,  C  19 29°  m/e 329,  C  23 37°  m/ e 297,  C  22 33  e  m/e 427  ->-  m/e 442  ->•  m/e 410  ->  1%)  ( 19%)  m/e 427  m/e 442  4%)  ( 67%)  H  b  d  (100%)  (  H  2%)  ( 12%)  H  H  H  H  H  H  (  3%)  (  3%)  (  5%)  (  2%)  (  3%)  T a b l e I X . Mass s p e c t r a l d a t a f o r 3 3 - m e t h o x y - d i h y d r o p a r k e o l ( 2 7 c ) .  A l o s s o f m e t h y l a f f o r d s a M-15 i o n a t m/e 427 w h i c h i s t h e base peak. A l o s s o f methanol from t h e m o l e c u l a r i o n y i e l d s a fragment a t m/e 410 (4%) w h i l e an i o n a t m/e 395 (67%) i s due t o t h e combined  loss of a  m e t h y l group and methanol. F i s s i o n v i a pathway a_ l e a d s t o an i o n o f m/e 370 ( 1 % , C ^ H ^ ) and one a t m/e 71 ( 1 9 % , C^H-,0) t h e l a t t e r h a v i n g l o s t one p r o t o n . Pathway b_ i s observed f o r t h e M-15 s p e c i e s p r o v i d i n g an i o n a t m/e 313 ( 2 % , ^ 3 ^ 7 ) •  A  fragment a t m/e 288 (12%, C ^ H ^ ) c o r r e s p o n d -  i n g t o f i s s i o n v i a pathway £ i s o b s e r v e d accompanied 153 ( 3 % , C  1 Q  H  1 7  by an i o n a t m/e  0 ) . Ions a t m/e 287 ( 3 % , C H jo). and m/e 273 ( 5 % , 2Q  3]  C^^H^gO) a r e o b s e r v e d c o r r e s p o n d i n g t o f i s s i o n i n pathway d_ i n t h e m o l e c u l a r i o n and t h e M-15 s p e c i e s r e s p e c t i v e l y . Pathway e_ i s n o t e d f o r  - 28 -  the m o l e c u l a r (-*• m/e 297,  i o n (->- m/e 329,  2%, C ^ H  0) and the m/e 410 i o n  3%, C ^ H ^ ) . G r a n d i s o l i d e ( 2 8 )  4 1  which, i n a d d i t i o n t o the  CH 03  (28)  9(11)  d o u b l e bond, p o s s e s s e s an u n s a t u r a t e d  lactone side chain e x h i b i t s  a fragmentation  p a t t e r n s i m i l a r t o t h e one observed f o r 33-methoxy-  dihydroparkeol  ( 2 7 c ) . The s p e c t r u m ( F i g u r e 5) shows a m o l e c u l a r  (m/e  468),  a M-15 i o n (m/e 453)  (m/e  436). The base peak (m/e 421)  ion  and an i o n due t o t h e l o s s o f CH^OH i s due t o t h e combined l o s s o f CH^OH  and CH^' I t i s n o t e w o r t h y t h a t t h e l o s s o f CH^ i s somewhat l e s s f a c i l e i n t h i s case as compared t o the p r e v i o u s example, t h i s d i f f e r e n c e i s u n d o u b t e d l y due t o t h e s t r u c t u r a l v a r i a t i o n s i n t h e s i d e c h a i n o f compounds (27c) and ( 2 8 ) . A new fragment a t m/e 327 can be o b s e r v e d w h i c h i s due t o the e a r l i e r d i s c u s s e d e l i m i n a t i o n o f t h e s i d e c h a i n (CQH....0,, =139) p l u s o 11 2 two a d d i t i o n a l hydrogen atoms. The l a c t o n e s i d e c h a i n does n o t o t h e r w i s e a l t e r a p p r e c i a b l y the fragmentation  o f the lanostane  skeleton.  - 29 CO  >1  CM  CO  I  vO  co  CM -  CD . CD co  vO'~  ro  CD  . in 01  rM  ro • x  ro  CD . CD  oo IN  CD  •H  rH O  w  60  o CD . CD CM  o CO CO CO CO  cd  CD  .in  LO CU  u  3 00 •H  r  DDI  r  . CD  or, 3 A I l d 1 3 a UIQN3J.NI  - 30 Compound I was  r e c r y s t a l l i z e d from hexane t o p r o v i d e an  analytical  22 193-194°, [ a ] ^  sample, m.p.  +77°. E l e m e n t a l a n a l y s i s and h i g h  r e s o l u t i o n mass s p e c t r o m e t r y e s t a b l i s h e d a m o l e c u l a r f o r m u l a of ^31^54^3' ' ^ r  a t <5 0.67, a t 0.91 OCH^  e  n m r  0.74,  s  P  e  c  t  r  u  m  ( ig F  0.81, 0.98,  u r e  1.05,  6) e x h i b i t e d , t e r t i a r y m e t h y l groups 1.17  and 1.22;  a secondary methyl  ( d o u b l e t , J=6Hz); an e q u a t o r i a l secondary m e t h o x y l (3.36, s i n g l e t ,  and 2.64, m u l t i p l e t , CHOCH^); a s e c o n d a r y h y d r o x y l (3.25, m u l t i p l e t ,  CH0H) and a s i n g l e o l e f i n i c p r o t o n a t 5.23  ( m u l t i p l e t ) . The  infrared  spectrum ( C C l ^ ) s u p p o r t s the p r e s e n c e o f a s e c o n d a r y h y d r o x y l w i t h an a b s o r p t i o n band a t 3623 cm . The s p e c t r u m o b t a i n e d from a p o t a s s i u m 1  bromide  p e l l e t s u g g e s t s the p r e s e n c e o f two h y d r o x y l f u n c t i o n a l i t i e s , p o s s i b l y o f secondary and t e r t i a r y n a t u r e - ( 3 5 0 0 , 3460 cm "*") . Compound I r e a d i l y a monoacetate  formed  (44) upon t r e a t m e n t w i t h p y r i d i n e and a c e t i c a n h y d r i d e a t  room t e m p e r a t u r e , a d i a c e t a t e (45) was  obtained at elevated  temperatures  (100°) o n l y , c o n f i r m i n g the p r e s e n c e o f a t e r t i a r y h y d r o x y l group. As been mentioned  has  e a r l i e r , upon c l o s e e x a m i n a t i o n o f the nmr d a t a f o r  compound I and i n i t i a l mass s p e c t r o m e t r i c r e s u l t s a l a n o s t a n e s k e l e t o n chosen as a w o r k i n g model and t h e r e f o r e t h e f o l l o w i n g p a r t i a l s t r u c t u r e i s p o s t u l a t e d f o r compound I .  including  one CH0CH one  ^C=C^  one CH0H one  C0H  was  F i g u r e 6. NMR spectrum o f compound I (43).  - 32 o ,_<=> ID  in O  o  a  a  .a in  CO  cu  If  a o  3 co  a .in cn  H TJ Ci  Lis  O  §• o o o  u (M  o cu  PU  co  CO CO  a .a  to  a) u o .in  00T  .a in  O'SZ.  (TOS  UISN3INI  O'SS  3AIlH13d  0*0  3 00  •H  - 33 The nmr d a t a s u p p o r t  t h e l i k e l i h o o d o f t h e double bond b e i n g i n t h e  t e t r a c y c l i c p o r t i o n o f the m o l e c u l e .  The f a c t t h a t the o l e f i n i c l i n k a g e  c o u l d be h y d r o g e n a t e d under m i l d c o n d i t i o n s t o t h e d i h y d r o compound (46) and the p o s i t i o n o f the v i n y l hydrogen i n the nmr s p e c t r u m s u g g e s t an o l e f i n i c l i n k a g e a t the C9-C11 p o s i t i o n . T h i s p o s t u l a t e was s e c u r e d by the mass s p e c t r o m e t r i c o b s e r v a t i o n ( F i g u r e 7) o f an i o n  corresponding  t o the l o s s o f a C . H 0 fragment i n compound I [ f r a g m e n t a t i o n b i n ( 4 2 ) ] . ±U l o — The same fragment i s c h a r a c t e r i s t i c f o r t h e l o s s o f r i n g A i n C3-oxygenated1r  1o  41 9(11)-unsaturated  lanostene-type  t r i t e r p e n e s such as g r a n d i s o l i d e (28)  and 3 3 - m e t h o x y - d i h y d r o p a r k e o l ( 2 7 c ) . Compound I d i s p l a y s a s i g n i f i c a n t fragment a t m/e 327 (C^H^O')  y  [ f r a g m e n t a t i o n d_ i n ( 4 2 ) ] , r e m i n i s c e n t o f  the pathway f o l l o w e d i n t h e t e t r a c y c l i c l a n o s t e n e - t y p e t r i t e r p e n e s mentioned e a r l i e r . I t s u g g e s t s The  the l o s s o f the s i d e c h a i n p l u s 2 p r o t o n s .  i o n a t m/e 327 remains u n a l t e r e d i n c o n v e r t i n g the m e t h o x y d i o l t o  e i t h e r i t s mono-(44) o r d i a c e t a t e (45) d e r i v a t i v e s . I t becomes t h e r e f o r e e v i d e n t t h a t the two h y d r o x y l groups i n the n a t u r a l p r o d u c t must b e s i t u a t e d i n the s i d e c h a i n w h i l e  the m e t h o x y l f u n c t i o n i s a t t a c h e d t o t h e  t e t r a c y c l i c s k e l e t o n , most l i k e l y a t C3. I n s u p p o r t o f t h e above p o s t u l a t e s the o b s e r v a t i o n o f fragments c o r r e s p o n d i n g (m/e  71 = C H O; m/e 400 = C ^ H ^ O ^ 4  "11^22°2^  <  l  n  g  c o m  P  o u n  d  i a ^i 1 1  t  s  t o f i s s i o n s a i n (42)  and c (m/e 288 = C  2  H  0. m/e 186 =  a c e t a t e d e r i v a t i v e s s h o u l d be a l s o  mentioned. R e l a t i v e l y weak i o n s r e l a t i n g t o t h e r e t r o D i e l s - A l d e r f r a g mentation  o f r i n g C i n (42) have a l s o been observed  f o r the n a t u r a l d i o l  component ( 4 3 ) . Thus t h e f o l l o w i n g s t r u c t u r e becomes t h e "more advanced" working  model:  -  34 -  1 CHOH  1COH  2H  d  c  a -  b (42)  The previously discussed evidence f o r one secondary methyl, a secondary hydroxyl and a t e r t i a r y hydroxyl leave carbon atoms 22, 23 and 24 as possible locations f o r the secondary hydroxyl f u n c t i o n a l i t y and C25 for the t e r t i a r y one. A detailed mass spectrometric i n v e s t i g a t i o n of compound I-diacetate (45), including high resolution data and meta stable evidence, lead to the fragmentation scheme outlined i n Figure 8. The loss of ketene can be observed at two stages i n the fragmentation process. Pronounced losses of ketene occur i n peracetylated  monosaccharides  i f two acetoxy groups e x h i b i t a 1,2- or a 1,3- r e l a t i o n s h i p , i t i s not 42 observed i f the acetoxy groups are further apart  , The loss of ketene  i n these sugars i s e s p e c i a l l y f a c i l i t a t e d i f preceded by the elimination 43 of a c e t i c acid; the following r a t i o n a l i z a t i o n  i s i n accord with l a b e l l i n g  experiments: O -CH =C=0 0  '3  H  O  > -c-c  - 35 -  OAc  CHoO m/e 287 C  20 31° H  m/e 295 C  22 31 H  Figure 8. Mass spectrometric fragmentation  of compound I-diacetate (45),  The l o s s e s o f k e t e n e i n compound I - d i a c e t a t e (45) a r e p r e c e d e d by t h e e l i m i n a t i o n o f a c e t i c a c i d . I t becomes e v i d e n t t h a t t h e two a c e t a t e groups i n the s i d e c h a i n o f compound I - d i a c e t a t e a r e i n a 1,2- o r 1,3- r e l a t i o n s h i p . On t h e b a s i s of t h e above r e s u l t s i t was p o s t u l a t e d t h a t compound I was b e s t r e p r e s e n t e d as a 3 0 - m e t h o x y - 9 ( 1 1 ) - l a n o s t e n e d e r i v a t i v e possessing a v i c i n a l d i o l i n the s i d e chain (43).  Conclusive chemical evidence  to support  t h e above p o s t u l a t e s was o b t a i n e d  by t h e sequence o f r e a c t i o n s o u t l i n e d i n F i g u r e 9. The d i h y d r o d e r i v a t i v e (46) o f compound I (43) was s u b j e c t e d t o p e r i o d a t e t r e a t m e n t the c l e a v a g e  to f a c i l i t a t e  of the v i c i n a l s i d e chain h y d r o x y l s , the c r y s t a l l i n e  aldehyde (47) and acetone were o b t a i n e d , t h e l a t t e r was i s o l a t e d as i t s 2,4-dinitrophenylhydrazone  d e r i v a t i v e . O x i d a t i o n o f (47) and e s t e r i f i c a t i o n  o f t h e r e s u l t a n t a c i d (48) p r o v i d e d t h e e s t e r ( 4 9 ) . The l a t t e r was i n t e r r e l a t e d w i t h a degradation product  (56) o f compound I I ( 5 1 ) , as w i l l  be mentioned l a t e r . T h e s t e r e o c h e m i s t r y a t C24 was e l u c i d a t e d by means of two s p e c t r o s c o p i c methods r e c e n t l y developed of t h e m e t h o x y d i o l  by K. N a k a n i s h i . The CD  ( 4 3 ) , Ae = +0.92, 314 nm, C C l ^ , e m p l o y i n g n i c k e l  a c e t y l a c e t o n i d e as t h e s h i f t r e a g e n t , T h i s assignment was a l s o s u p p o r t e d  44 45 r e v e a l s a 24-S c o n f i g u r a t i o n '  by an nmr s t u d y o f t h e d e u t e r i o a c e t o n i d e  - 37 -  Figure 9. Reaction scheme f o r compound I (43).  derivative  46 (50) of the natural product (43). I r r a d i a t i o n  (110 db) at  the frequency of the methyl group (6 = 1.25) c i s to the C24-H provided  47 a Nuclear Overhauser  e f f e c t i n accord with expectations  . A net i n t e n s i t y  increase of the C24-H i n t e g r a l (6 = 3.62) of 19% was observed, the C3-H i n t e g r a l (at <S = 2.65) being used as a reference i n this  experiment.  The above data completely define the structure of the natural triterpene I as 33-methoxy-5a-lanost-9(ll)-en-24(S),25-diol (43).  - 38 -  Compound I I was next to be investigated. For a n a l y t i c a l purposes i t was r e c r y s t a l l i z e d from acetone-methanol to provide  an a n a l y t i c a l sample,  22 m.p. 214-215°,  [a]  +56°. A molecular formula of 3 5 2 3 C  D  H  0  0  w  a  s  established  by elemental analysis and high r e s o l u t i o n mass spectrometry. The nmr spectrum (Figure 10) taken at 100 MHz revealed the presence of t e r t i a r y methyls at <5 0.64, 0.73, 0.80, 0.97, 1.03, 1.14 and 1.19; a secondary methyl at 0.90 (doublet, J = 6 Hz); two multiplets at 3.23 and 3.33 (CH0H) and a v i n y l i c proton at 5.24 (multiplet). The i n f r a r e d spectrum (CCl^) i s i n d i c a t i v e of several hydroxyl f u n c t i o n a l i t i e s , 3707, 3628 (eq. 2°0H) and 3584, 3371 cm"  1  (H bonded OH). The compound formed a  diacetate (52) and with d i f f i c u l t y a t r i a c e t a t e (53). C a t a l y t i c reduction of compound I I led to a dihydro derivative (54). Upon examination of the nmr data i t became apparent that compound II must resemble compound I (43) very c l o s e l y . In fact the only difference, i s the absence of an methoxy s i g n a l i n the spectrum of compound I I ; a multiplet at 3.33, i n d i c a t i v e of an equatorial secondary hydroxyl group, has taken i t s place. In case of the d i - and t r i a c e t a t e this s i g n a l moves downfield to 6 4.52 and 4.50 respectively,which i s a normal p o s i t i o n f o r an equatorial acetoxy group, The s i g n a l at 3.23 s h i f t e d to 4.73 i n case of the diacetate (52) and to 5.04 i n the t r i a c e t a t e (53) suggesting a 1,2 relationship with a t e r t i a r y  I  i i i i i  i  i  i i i i i  i  5  i i I i  i  4  I ' i 'I I ' i I  i' i  i'  i'  3  Figure 10. NMR spectrum (FT) of compound II (51).  I  i  •i ! i i i i 2  1i  i i  i i i i i i i i i i i 1  I  i  0  i  i i Ii i !  0.0  o  RELATIVE INTENSITY 50.0 25.0 1  75.0 _!  100.0 _J  hydroxyl group.  Two t e r t i a r y methyls at 1.14 and 1.19 i n the parent  compound are s h i f t e d to 1.21 i n the diacetate (52) and 1.45, 1.48 i n the t r i a c e t a t e (53), i d e n t i c a l to s h i f t s which could be observed i n the compound I (43) s e r i e s . A close comparison of the mass spectrometric data i n the compound I and II (Figure 11) series reveals a s t r i k i n g analogy i n their fragmentation pattern (provided, the difference of 14 mass units i s taken into account). In fact a l l the fragmentation processes portrayed i n compound (42) and Figure 8 are indeed also observed i n this instance. Based on the above evidence i t was postulated that compound I I was simply the 33-hydroxy analogue (51) of the methoxydiol  (43). A reaction sequence (Figure 12), s i m i l a r to the one  carried out on compound (43), was performed  confirming the above postulate. 48  The dihydro compound (54) was subjected to permanganate-periodate oxidation to y i e l d the acid (55) which upon e s t e r i f i c a t i o n provided the known 33-hydroxy-25,26,27-trisnorlanostan-24-oic 49 with an authentic sample  (m.m. p.,  [o.]^,  acid methyl ester (56) i d e n t i c a l TLC, i r , nmr and mass spectra).  Methylation of (56) (K, CH I or f l u o b o r i c acid, C H ^ 3  5 0  ) provided a  material (49) i d e n t i c a l with that obtained from the methoxydiol s e r i e s thereby r e l a t i n g the two n a t u r a l products. The deuterioacetonide derivative (57) was subjected to an nmr study. I r r i d i a t i o n (110 db) at the frequency of the methyl group (<5 = 1.23) c i s to the C24 proton gave a Nuclear Overhauser e f f e c t ; a net i n t e n s i t y increase at the C24-H i n t e g r a l (6 = 3.60) of 24% was observed  (C3-H at 3.22 was used as reference). Based on above  evidence compound I I i s assigned the structure 33,24(S),25-trihydroxy5a-lanost-9(ll)-ene (51).  - 42  (51) , R  1  = R  (52) , R  1  = Ac,  (53) , R  1  = R  2  2  -  = H R =  (57) = H  2  Ac  (49) F i g u r e 12.  R e a c t i o n sequence f o r compound I I  (51).  - 43  Compound I I I was r e c r y s t a l l i z e d a pure sample,  m.p.  161-162°,  m o l e c u l a r f o r m u l a o f ^^^52°  2  from methylene  [a] ° +93°.  Microanalysis  2  w  a  i  c  h  w  a  s  a  l  s  chloride-hexane to p r o v i d e  o  indicated a  s u p p o r t e d by the h i g h  r e s o l u t i o n mass s p e c t r a l r e s u l t s . The nmr spectrum  ( F i g u r e 13, F o u r i e r  t r a n s f o r m , 100 MHz) was i n d i c a t i v e o f , t e r t i a r y methyls a t 6 0.64, 0.75, 0.82, 0.97, 1.06; a secondary m e t h y l a t 0.88 ( d o u b l e t , J = 6 H z ) ; two secondary methyls a t 1.09 ( d o u b l e t , J = 7 H z ) ; two o v e r l a p p i n g m u l t i p l e t s a t 2.31-2.78 (= 2 H); a secondary e q u a t o r i a l methoxy (3.37, s i n g l e t , OCH^) and a v i n y l i c p r o t o n a t 5.23 ( m u l t i p l e t ) . The i n f r a r e d spectrum  (KBr) s u p p o r t e d the p r e s e n c e o f an o l e f i n i c hydrogen  and an e t h e r f u n c t i o n a l i t y  (1630 cm ^)  (1100 cm ^ ) , a s t r o n g band a t 1710 cm  1  i n d i c a t e d the p r e s e n c e o f an a l i p h a t i c ketone. I t i s e v i d e n t t h a t t h e nmr d a t a resemble v e r y c l o s e l y  those observed f o r compound I ( 4 3 ) . In f a c t  the f r e q u e n c i e s o b s e r v e d f o r t h e f i v e a n g u l a r m e t h y l groups, the secondary methyl a t 0.88, the secondary methoxyl  and the o l e f i n i c p r o t o n  a r e v i r t u a l l y i d e n t i c a l w i t h resonances o b t a i n e d f o r compound I ( 4 3 ) . An i d e n t i c a l t e t r a c y c l i c system i s t h e r e f o r e suggested as a s u i t a b l e model f o r compound I I I . Furthermore,  t h e d o u b l e t a t 1.09 (= 6 H) s u g g e s t s  the presence o f an i s o p r o p y l moiety,  the c o r r e s p o n d i n g methine  proton  appears however somewhat d o w n f i e l d ( 2 . 3 - 2 . 7 ) s u g g e s t i n g t h e c l o s e p r o x i m i t y o f an e l e c t r o n e g a t i v e s u b s t i t u e n t , perhaps  the ketone  function,  A s e a r c h o f the l i t e r a t u r e r e v e a l e d t h a t i n t h e case o f m e t h y l i s o p r o p y l ketone  5 1  a d o u b l e t was found  ((51.08) f o r the geminal d i m e t h y l group and  a m u l t i p l e t a t 2.54 f o r the methine  proton, while f o r diisopropyIketone  the l a t t e r was found a t 2.67. On the b a s i s o f above e v i d e n c e i t was speculated  t h a t compound I I I c o u l d be r e p r e s e n t e d by s t r u c t u r e ( 5 8 ) ,  - 45 -  (58)  Conclusive evidence was obtained from a detailed mass spectrometric investigation. The principal fragmentations of ketones are best interpreted by charge localization on the carbonyl group. Thus a-cleavage w i l l lead to observation of the corresponding acylium ions, R.  ^  R-C-=  C = Ot  • R'  R'-CBQ*  R  + 0  •CO  4  R'  in the case where R = isopropyl one would therefore expect fragments at m/e 71 = C ^ O  (R-C=0 ) and m/e 43 = C.^ (R ). If a chain of three +  +  or more carbon atoms i s attached to the carbonyl group, g-fission with transfer of a y- hydrogen atom (McLafferty rearrangement) becomes important as demonstrated with an is'opropyl-alkyl ketone. •+  •H  R CR"  OH I  •+  S  -O  CH  CHp 3  CH^ ^ C H / CH 3  C  H  2  m/e 8 6  - 46 The process of simple y c l e a v a g e , although not leading to very abundant ions, i s preferred over simple (3- or <5- f i s s i o n . The driving force f o r this reaction may  correspond to a l l y l i c bond rupture i n an enol form, or  to the formation of a c y c l i c oxonium ion. OH  R | C H  2  /  i - C H = C —  CH  C H  CH -6  3  +  2  \  C H J3  m/e 99  C  H  2 ~  „CH-  C N  CH  m/e 99  /  C H  3  Upon inspection of the mass spectrum (Figure 14) of compound I I I (58) i t becomes immediately apparent that the fragment  (441, 76%) due to the  loss of CH^ from the parent ion (456, 67%) i s much more pronounced here relative M-15  to that i n compounds I (43) and II (51). Contributions to the  ion i n this case come not only from the usual loss of an angular  methyl group but are also due to simple 3-cleavage [ f i s s i o n a_ i n (58)] i n the isopropyl group. The loss of methanol i s again observed here. Ions due to the a-cleavage of the isopropyl moiety (m/e 43, 413 = C „ H 0 _ ) o  /r  [ f i s s i o n b_ i n (58)] and the remainder of the molecule [ f i s s i o n _c i n (58),  m/e  71 = C^H.,0, m/e  385] are observed. The fragment at m/e  43  represents i n fact the base peak of the spectrum due to combined contributions from f i s s i o n b_ and f i s s i o n c_, since the acylium ion formed i n the l a t t e r w i l l decompose further to y i e l d C^H^ = 43 plus carbon monoxide . CHo V C H - C = 0 * 3  C H  C H \ + CY\ 3  - CO  >  C H  3  m/e 71  3  m/e 43  RELATIVE INTENSITY  0.0  25.0 I  CD "  50.0 1  75.0 I  100.0 I  D  -71  H09 C H  >--tes  n> M CD "  o o (u CO CO  CO fl>  H — 22J 1—234  M UJ"  o rt r-i  i  o O O  M  o 3  CD"  -302  m-  CD  :—327 LO Ul" CD  342 J-J37 371 1-385  6CD  0 Ul CD"  U>  O  O O  Ul Ul"  8-3  o  Ol CD" CD  -  Z<7 -  - 48 -  Fragments due t o s t r a i g h t g - c l e a v a g e  [ f i s s i o n d^ i n ( 5 8 ) ] , (m/e  85 = C H O, 371 = C„,H.-0) and ( 3 - f i s s i o n w i t h y-hydrogen t r a n s f e r c  n  (m/e 86 = C-H^O, 370 = C„,H.„0) a r e p r e s e n t . y - F i s s i o n i s o b s e r v e d 5 10 zo 4/ [e_ i n ( 5 8 ) ] w i t h i o n s o c c u r r i n g a t m/e 99 = CgH-j^ C  25 41°* H  L  o  s  s  o  f  t  n  0  a n < i  m  /  e  357 =  s i d e c h a i n [f_ i n ( 5 8 ) ] i s i n d i c a t e d by an i o n  e  of l o w abundance a p p e a r i n g a t m/e 329 (^23^37^ accompanied by t h e fragment  o f CgH^^O = 127. A more i n t e n s e i o n i s o b s e r v e d a t m/e 327  (^23^35^ due t o t h e l o s s o f t h e s i d e c h a i n and two p r o t o n s , as i n compounds I (43) and I I ( 5 1 ) . Pronounced fragments due t o f i s s i o n o f r i n g D [& i n ( 5 8 ) ] , m/e 288 ( C ^ H ^ O ) , m/e 168 ( C j j H ^ O ) , a r e n o t e d and t h e l o s s o f r i n g A [ f i s s i o n h i n ( 5 8 ) ] i s s u p p o r t e d by i o n s o c c u r r i n g a t m/e 302 ( C ^ H ^ O ) and 153 (154-1H = C  1 ( )  H 0 ) . Cleavage o f 1 7  r i n g A [ f i s s i o n s jL and j _ i n ( 5 8 ) ] i s i n d i c a t e d by fragments  appearing  a t m/e 342, C ^ H ^ O and 113, CyH^O ( i ) as w e l l as m/e 72, C^gO (±). Fragments a t 234 ( ]_g 26°^ C  H  a  n  d  2  2  2  a  r  e  i n d i c a t i v e o f the r e t r o - D i e l s -  A l d e r c l e a v a g e i n r i n g C. Above d a t a were c o n s i d e r e d s u f f i c i e n t  evidence  t o a s s i g n the s t r u c t u r e o f 3 g - m e t h o x y - 5 a - l a n o s t - 9 ( l l ) - e n - 2 4 - o n e  (59) t o  compound I I I .  ( 59 )  - 49  The  isolated  compound IV was  -  s u b j e c t e d to r e c r y s t a l l i z a t i o n  methylene c h l o r i d e - h e x i n e f o r a n a l y t i c a l purposes,  from  p r o v i d i n g a sample,  25 m.p.  180-180.5, [ a ]  D  + 8 6 ° . E l e m e n t a l a n a l y s i s and h i g h  mass s p e c t r o m e t r i c d a t a suggest i n f r a r e d spectrum functionality, olefin  (3615  cm  cm ^) are observed  groups a t t r i b u t e d  (1635, 795  an a d d i t i o n a l  (taken a t 100 MHz) 0.94,  1.03;  r e v e a l e d , t e r t i a r y methyls m e t h y l a t 0.89  a narrow t h r e e p r o t o n d o u b l e t a t 1.70  triplet  a t 3.99  a t 4.81  (narrow q u a r t e t , J = 1 Hz,  i n the t e t r a c y c l i c  saponified  ( F i g u r e 15) i s  at 6  1 H), 4.89  The  0.63,  (doublet, J = 6 Hz);  multiplet,  t o an 1 H); a b r o a d  are  ( s i n g l e t , 1 H)  visible  and  5.19  the l a t t e r b e i n g i n d i c a t i v e of a C 9 ( l l ) double  bond  t r i t e r p e n e s k e l e t o n . Compound IV a f f o r d s a monoacetate and p y r i d i n e .  Catalytic  of the a c e t a t e p r o v i d e d a d i h y d r o compound(62) which  to the c o r r e s p o n d i n g a l c o h o l (63). During  transformations and  trisubstituted  1 H); o l e f i n i c p r o t o n resonances  (61) upon m i l d treatment w i t h a c e t i c anhydride hydrogenation  exocyclic  ( J = 1 Hz); s i g n a l s due  e q u a t o r i a l methoxyl (3.33, s i n g l e t , 3 H and 2.62,  ( m u l t i p l e t , 1 H),  to an  f o r the p r e v i o u s t h r e e n a t u r a l p r o d u c t s .  a secondary  ( J = 6 Hz,  n e  cm ^ ) . The p a t t e r n of the m e t h y l  to the t e t r a c y c l i c system i n the nmr  i d e n t i c a l to d a t a observed  0.78,  and  ^  of a h y d r o x y l  ^ ) ; a b s o r p t i o n bands (KBr) due  double bond i s a l s o v i s i b l e  0.72,  f o r m u l a of ^^H.,^^*  (CCl^) r e v e a l s the presence  (1652, 900  spectrum  a molecular  resolution  ( F i g u r e 16)  these a r e l i s t e d  s e v e r a l nmr  i n Table  X.  these  was  chemical  s i g n a l s undergo s i g n i f i c a n t  shifts  TMS->-  i  solvent impurity  O  JL I |  6  |  I  I  I  |  I  I  I  I  I  I  I  I  5 F i g u r e 15. NMR  I  I  I  I  I  I  4  I  I  I  I  I  I  I  I  I  I  I  I  I  I  !  I  I  !  I  3  spectrum (FT) of compound IV  I  2 (65).  I  I  I  I  I  1  1  >  ••  I  1  u I  o  - 51 Compound IV (60) 1.70 3.99 4.81 4.89  (61)  (d., 3H) (t., IH) (q., IH ) (s., U g )  1.70 (d., 3H) 5.12 (t., IH)  (62)  (63)  ^ 0.88 (d. , 6H) 4.70 (m., IH)  0.95 (d 3.36 (m  6H) IH)  Table X. NMR data (<5) for compound IV (60) and i t s derivatives. The mass spectrometric data, which w i l l be discussed i n detail later, indicated through the presence of three significant fragments [m/e 327 = C H 0, M-(side chain + 2 H); m/e 125 = C H 0, side chain - 2H 2.5 JJ o 13 oo  oc  o  1o  and m/e 109 = C H , side chain C H 0 - H 0] that the same tetracyclic 0  10  o 13  o  1i:  o 2.  o iJ  system as i n compounds I to III could be assigned to compound IV and that the second oxygen atom i s located in the side chain. On the basis of the above data the structure (60) w i l l be used as a model to interpret the information  obtained so far. H  OH  Ha  (61)  R  H, Pd. • » 2  v  (62)  (63) Figure 16. Chemical transformations of compound IV (60).  - 52 -  The e x o c y c l i c methylene (6 4.81,  4.89)  i n compound IV (60) undergoes  a d o w n f i e l d s h i f t upon f o r m a t i o n o f the a c e t a t e , s u g g e s t i n g p r o x i m i t y to  the oxygen f u n c t i o n . The h y d r o x y l a b s o r p t i o n i s absent  i n f r a r e d s p e c t r u m and i s r e p l a c e d by  from the  f r e q u e n c i e s (1748, 1242  cm "*")  due t o t h e a c e t a t e group. S i g n i f i c a n t l y , t h e hydrogen g e m i n a l t o t h e oxygen has moved from 6 3.99  d o w n f i e l d t o 5.12  a c e t a t e ( 6 1 ) . I t s h o u l d be n o t e d to  upon f o r m a t i o n o f the  t h a t i n the a l c o h o l , the hydrogen  t h i s h y d r o x y l i s a l s o abnormally  downfield. This again suggests  the oxygen f u n c t i o n i s of an a l l y l i c n a t u r e . Upon h y d r o g e n a t i o n compound (62) the narrow m e t h y l d o u b l e t a t 6 1.70 f o r m i n g a 6 p r o t o n d o u b l e t (C26H + 3  group. The  that  to  moves u p f i e l d t o  0.88  C27H ) i n d i c a t i v e of an i s o p r o p y l 3  C24 p r o t o n has moved u p f i e l d from 6 5.12  t o 4.70  since i t  has l o s t i t s a l l y l i c n a t u r e . A f u r t h e r u p f i e l d s h i f t t o 6 3.36 observed  geminal  is  upon s a p o n i f i c a t i o n o f the a c e t a t e group t o y i e l d the s a t u r a t e d 53  a l c o h o l (63). Published data dammer-25-ene  f o r 3a, 123, 20 ( S ) , 2 4 - t e t r a h y d r o x y -  (64) OH  i n d i c a t e s i g n a l s f o r a m e t h y l group l o c a t e d on an o l e f i n i c bond a t 6 1.72 4.96 IV.  ( s i n g l e t ) and f o r exomethylene hydrogens a t 4.85  ( s i n g l e t , IH)  ( s i n g l e t , I H ) , These d a t a resemble c l o s e l y those observed  and  f o r compound  - 53 -  The mass spectrum importance  o f compound IV ( F i g u r e 17) proved  a g a i n t o be o f  i n s e c u r i n g the p o s t u l a t e d s t r u c t u r e ( 6 0 ) . Ions r e l a t i n g t o  the v a r i o u s f r a g m e n t a t i o n p r o c e s s e s o f the t e t r a c y c l i c framework a r e observed  i n accordance  w i t h p r e v i o u s l y suggested  pathways [see  compounds ( 4 3 ) , (51) and ( 5 9 ) ] and w i l l n o t be d i s c u s s e d i n d e t a i l here. I t s h o u l d o n l y be mentioned, t h a t t h e fragments c o n t a i n i n g the s i d e c h a i n appeared  i n many cases a t 18 mass u n i t s lower due t o the  f a c i l e e l i m i n a t i o n o f water from to  the 23, 25 - c o n j u g a t e d  ions  (m/e 438 = C ^ H ^ O C  acid  I  n  c  a  s  e  °f  t  n  d i e n e , i s c o n f i r m e d by the p r e s e n c e  o f two  and 423 = C-^H^O) r e s u l t i n g from both, t h e  p a r e n t i o n (m/e 456 = 3 ^30^49°2^*  the s i d e c h a i n . T h i s p r o c e s s , l e a d i n g  e  (M-60) i s observed  2°2'  H 1  5  a  c  e  t  a  )  t e  a  s  w  e  l  1  a  s  t  n  e  M  -  1  5  i  o  ( /  n  m  e  4  4  1  =  (61) a pronounced l o s s o f a c e t i c  correspondingly.  Conclusive chemical evidence  t o s u p p o r t the above p o s t u l a t e s was  o b t a i n e d by the o x i d a t i o n o f d i h y d r o IV (63) t o compound I I I ( 5 9 ) ; t h e s t e r e o c h e m i s t r y at C-24 i n IV was shown t o be o f the S-type through the c o n v e r s i o n o f compound I-monoacetate (44) t o compound I V - a c e t a t e ( 6 1 ) . O H  (63)  (59)  H  (44)  (61)  O A c  in  RELRTIVE INTENSITY  0.0 _i  25.0 -L  50.0  o  CD  • IDS •123  in  CD  IVJ CD CD  M Ul  CD  3:u>J= -327 LO  ur CD  CD' CD  -423  -433 CD  -436  Ul O "  Ul  LH •  CD  cn  CDCD  -  *S  -  75.0  100 _)  - 55 Thus compound IV can be a s s i g n e d the s t r u c t u r e of 3g-methoxy-5ct-lanosta9 ( 1 1 ) , 25-dien-24 S - o l ( 6 5 ) .  Compound V was molecular formula,  a v a i l a b l e o n l y i n v e r y s m a l l q u a n t i t i e s , so the C  3Q 5 °2» H  w a s  e s t a b  0  l i s h e d by h i g h r e s o l u t i o n mass  s p e c t r o m e t r y . The i n f r a r e d s p e c t r u m ( C C l ^ ) r e v e a l e d two h y d r o x y l a b s o r p t i o n s (3631 and 3619  cm  1  ) . The p r e s e n c e (KBr) o f an e x o c y c l i c  methylene was n o t e d (3100, 910 cm ) and a t r i s u b s t i t u t e d 1  l i n k a g e (1650, 820 cm ) was o b s e r v e d . The nmr 1  100 MHz)  olefinic  spectrum ( F i g u r e 18,  FT,  r e f l e c t e d the p r e v i o u s l y o b s e r v e d f a m i l i a r m e t h y l r e g i o n w i t h  t e r t i a r y m e t h y l s a p p e a r i n g a t 6 0.66, secondary m e t h y l i s o b s e r v e d a t 0.91 ( 3H) appears a t 1.72,  0.76,  0.82,  0.96,  and 1.07;  a  (doublet, J = 6 Hz). A broad s i n g l e t  a m u l t i p l e t a t 3.42  (IH) s u g g e s t s an e q u a t o r i a l  p r o t o n g e m i n a l t o an oxygen f u n c t i o n (OH), a b r o a d t r i p l e t a t  4.02  (IH) c o u l d be due to a p r o t o n g e m i n a l t o an oxygen and n e x t t o a CH^-group. O l e f i n i c s i g n a l s a r e o b s e r v e d a t 4.84 (narrow m u l t i p l e t , IH) and 5.26  (narrow m u l t i p l e t , I H ) ,  4.93  ( m u l t i p l e t , I H ) . Upon i n s p e c t i o n o f t h e s e  d a t a the p r e v i o u s l y e n c o u n t e r e d t e t r a c y c l i c system p o s s e s s i n g f i v e a n g u l a r m e t h y l groups and a C 9 ( 1 1 ) - d o u b l e bond appears t o be a l o g i c a l c h o i c e f o r the b a s i c s k e l e t o n . A h y d r o x y l f u n c t i o n , most l i k e l y a t C3  - 57 i s s u g g e s t e d by t h e i n f r a r e d and nmr d a t a and a l s o s u p p o r t e d t h r o u g h mass s p e c t r o m e t i c d e t e r m i n a t i o n s t o b e . d i s c u s s e d l a t e r . The o l e f i n i c s i g n a l s a t 6 4.84 and 4.93, t h e b r o a d t r i p l e t a t 4.02 and t h e m e t h y l a t 1.72 suggest t h e p r e s e n c e o f a s i d e c h a i n s i m i l a r t o t h e one e n c o u n t e r e d i n compound I V ( 6 5 ) , w i t h t h e e x c e p t i o n t h a t t h e e q u a t o r i a l m e t h o x y l group i n (65) i s now r e p l a c e d by an a x i a l a l c o h o l f u n c t i o n a l i t y . I t i s t h e r e f o r e s u g g e s t e d t h a t s t r u c t u r e (66) i s a s u i t a b l e r e p r e s e n t a t i o n f o r compound V. H OR  H  B  (66) , R = H (67) , R = Ac RO'  Compound V (66) forms a d i a c e t a t e (67) under m i l d c o n d i t i o n s , t h e y i e l d however i s somewhat low most l i k e l y due t o a f a c i l e d e h y d r a t i o n p r o c e s s e n c o u n t e r e d i n t h e s i d e c h a i n . Upon d i a c e t a t e f o r m a t i o n c e r t a i n s h i f t s a r e o b s e r v e d i n t h e nmr spectrum w h i c h compare v e r y f a v o r a b l y w i t h t h o s e observed i n t h e case o f compound I V ( T a b l e X ) . The mass s p e c t r u m o f compound V ( F i g u r e 19) p r o v e d t o be i n v a l u a b l e i n s u p p o r t i n g t h e p o s t u l a t e d s t r u c t u r e . S t r o n g fragments due t o the l o s s o f a m e t h y l r a d i c a l and w a t e r , or c o m b i n a t i o n s t h e r e o f , a r e o b s e r v e d , a g a i n i n d i c a t i n g t h e f o r m a t i o n o f a c o n j u g a t e d 23, 25-diene system (m/e 4 0 9 ) ; t h e l o s s o f two more hydrogens (m/e 407) i s a l s o observed s u g g e s t i n g t h e g e n e r a t i o n o f t h e 20, 23, 2 5 - t r i e n e m o i e t y . A fragment due t o l o s s o f a second m o l e c u l e o f w a t e r  0.0  RELATIVE INTENSITY 25.0 50.0  75.0  100.0  _J  c  H fD  CO CO  CO TJ fD O rt H  rvj  ur o  g O  :233 F"302  rh  O O  I  m.  4=  -313  O  c 3  0. Ul"  o OS ON  -4)9 -477  6-  -442  e fD - > 0 0  Ul  CDCD O O  Ul tiles  Ol  CD' CD  - 85 -  - 59 from ring A i s also shown (m/e 391). Fragments due to the loss of the side chain plus 2H [ f i s s i o n a i n (66)] are present (m/e 127 = CgH^^O, 313 = C „ H 0 ) . Fragments at m/e 109 ( C H ) and 107 (C-H....) indicate 2.L o~> o l j oi l o  o o  0  10  that the formation of the diene and triene has occurred to some extent i n the side chain p r i o r to f i s s i o n a_. A signal at m/e 295 (^22^31^ corresponds to the loss of water from the t e t r a c y c l i c moiety (m/e 313 = (^22^33^0 after f i s s i o n a.. Fragmentation processes b_ and c^ are supported by the appearance of ions at m/e 167 ( C ^ ^ g ) » 0  2  8  8  ( 20 32°^ C  H  a  n  d  m/e 302 ( C ^ H ^ O ) , 141 (CgH^O) respectively. The retro-Diels-Alder f i s s i o n of ring D i s supported by fragments at m/e 222 (C, H_,0) and C  220 ( ^5 24^^ * i g C  H  s  n a  l  s  corresponding to combinations of the described  f i s s i o n s a_, b^ and _c and the various eliminations of water and methyl radicals are also observed. The diacetate (67) of compound V was compared to a diacetate (68) obtained by dehydration of compound II-diacetate (52).Table XI l i s t s some of the s i g n i f i c a n t nmr data observed f o r both acetate derivatives as well as f o r compound (61) (compound IV-diacetate). compound  C3-H  (67) (68) (61)  4.61 4.44  C24-H -5 .5.1 5.12  C26-H. A 4.83 4.88 4.88  4.89 4.94 4.93  Table XI.NMR data (6) f o r compounds (67), (68) and (61).  - 60 -  (66) , R = H  (61)  (67) , R = Ac I t w i l l be r e c a l l e d t h a t compound (52) had an  a x i a l hydrogen a t C3. A  comparison o f t h e resonances due t o t h e C3-proton r e v e a l s a s u b s t a n t i a l downfield [and  s h i f t i n compound (67) as compared t o compound ( 6 8 ) . The former  t h e r e b y ( 6 6 ) ] i s t h e r e f o r e a s s i g n e d an e q u a t o r i a l hydrogen a t C3 54  i n accord w i t h observed l i t e r a t u r e values C26-  . Inspection  p r o t o n s i g n a l s i n d i c a t e s a l s o some d i f f e r e n c e s . The  o f t h e C24- and frequencies  i n (67) have undergone a s l i g h t u p f i e l d s h i f t o f 0.05-0.1 Hz as compared to compounds (61) and ( 6 8 ) . Compounds(67) and (66) a r e t h e r e f o r e  tenta-  t i v e l y a s s i g n e d the C24-R c o n f i g u r a t i o n s i n c e t h e C24-S c o n f i g u r a t i o n has been e s t a b l i s h e d i n (61) and ( 6 8 ) . F u r t h e r  p r o o f o f t h i s assignment i s  n e c e s s a r y b u t c o u l d n o t be u n d e r t a k e n due t o l a c k o f sample m a t e r i a l .  - 61 -  Compound VI was  o b t a i n e d a n a l y t i c a l l y p u r e by r e c r y s t a l l i z a t i o n from 20  methylene c h l o r i d e - h e x a n e , m.p.  204-205°, [a]  +92°. The  microanalysis  s u p p o r t e d a m o l e c u l a r f o r m u l a of ^ 3 ^ 5 2^2 spectrometric measurements i n d i c a t e C H ..0» o r even h i g h e r . I n f r a r e d d a t a i n d i c a t e 31 54 3 W  o1  n  e  r  e  a  s  t a e  m  a  s  s  t  the p r e s e n c e of a t e r t i a r y h y d r o x y l , a t r i s u b s t i t u t e d double bond an e t h e r l i n k a g e . The nmr  s p e c t r u m ( F i g u r e 20, FT, 100 MHz)  t e r t i a r y m e t h y l s a t 5 0.65, secondary m e t h y l a t 0.91  0.80,  0.97,  1.05  revealed  and 1.17  (6H);  a  ( d o u b l e t , J = 6 H z ) ; an e q u a t o r i a l m e t h o x y l  (3.37, s i n g l e t , 3H and 2.63, 5.24  0.75,  and  m u l t i p l e t , I H ) ; an o l e f i n i c p r o t o n  ( m u l t i p l e t , IH) and a m u l t i p l e t a t 3.32  due  at  t o one hydrogen p o s s i b l y  g e m i n a l t o a h y d r o x y l group.The o b s e r v a t i o n o f an i n t e n s e mass s p e c t r o m e t r i c fragment a t m/e  327  (C23H35O) combined w i t h the o t h e r d a t a a v a i l a b l e  s u g g e s t s the p r e s e n c e o f the f a m i l i a r t e t r a c y c l i c A  9(11)-lanostene  s k e l e t o n b e a r i n g an e q u a t o r i a l methoxy s u b s t i t u e n t a t C3. The  side chain  i s s u g g e s t e d t o be s i m i l a r t o t h a t p r e v i o u s l y e n c o u n t e r e d s i n c e the s e c o n d a r y methyl doublet of g e m i n a l  at <5 0.91  methyls  and  the s i x p r o t o n s i n g l e t a t 1.17  l o c a t e d on an oxygen b e a r i n g c e n t e r  are  (C25). The  atom n e x t t o t h i s c e n t e r i s most l i k e l y n o t asymmetric s i n c e the m e t h y l groups a t C25  a r e m a g n e t i c a l l y e q u i v a l e n t . The nmr  indicative carbon  two  data suggest  the p o s s i b i l i t y o f an a d d i t i o n a l h y d r o x y l f u n c t i o n , most l i k e l y i n the s i d e c h a i n , due  t o the one p r o t o n m u l t i p l e t o b s e r v e d a t 6 3.32.  t h a t the i o n a t m/e  456  (C^H^Op  c  a  r  m  o  t  represent  the m o l e c u l a r  I t appears formula  s i n c e an a d d i t i o n a l degree o f u n s a t u r a t i o n (double bond or r i n g ) would be r e q u i r e d . The  nmr  d a t a do n o t r e v e a l any a d d i t i o n a l o l e f i n i c s i g n a l s and  t h e r e f o r e o n l y a t e t r a s u b s t i t u t e d d o u b l e bond c o u l d be accommodated.  F i g u r e 20. NMR spectrum (FT) of compound V I ( 7 0 ) .  F i g u r e 21. Mass spectrum of compound VI ( 7 0 ) .  64 However, t h i s c o n s i d e r a t i o n i s e x c l u d e d by t h e f r a g m e n t a t i o n p a t t e r n s i n the mass s p e c t r o m e t e r . I n t h e mass spectrum ( F i g u r e 21) two d i s t i n c t e l i m i n a t i o n s o f w a t e r can be d e t e c t e d , s u p p o r t i n g t h e p r e s e n c e o f two h y d r o x y l groups. Lack o f s u f f i c i e n t q u a n t i t i e s o f compound V I d i d n o t p e r m i t a r e i n v e s t i g a t i o n o f t h e m i c r o a n a l y t i c a l d a t a , however the mass s p e c t r o m e t r i c fragment a t m/e 474 ( C ^ H ^ O ^ w a s be genuine.  reexamined and shown t o  S t r u c t u r e (69) w i l l be used t o j u s t i f y t h e d a t a o b s e r v e d  so f a r even i f t h e y might be o n l y o f a s u g g e s t i v e n a t u r e . OH  CH3O  The mass spectrum s u p p o r t s t h e i n d i c a t e d f r a g m e n t a t i o n p r o c e s s e s a-e as w e l l as t h e r e t r o - D i e l s - A l d e r p r o c e s s w i t h t h e p r e s e n c e o f t h e c o r r e s p o n d i n g i o n s . An i o n o f low abundance (m/e 329 = ^ 2 3 ^ 3 7 ^  ^  U e  t o the l o s s o f t h e s i d e c h a i n from t h e t e t r a c y c l i c s k e l e t o n [ f i s s i o n JJ i n (69)] i s o b s e r v e d , however, t h e p r e s e n c e o f a major fragment a t m/e 327 ( C ^ H ^ O ) due t o an a d d i t i o n a l l o s s o f two hydrogens  from t h e  s t e r o i d a l s k e l e t o n p r o v i d e s f u r t h e r support f o r the presence of the p r e v i o u s l y o b s e r v e d b a s i c framework. A fragment c o r r e s p o n d i n g t o t h e e l i m i n a t e d s i d e c h a i n (m/e 145, C H.. -,0„) i s n o t o b s e r v e d , t h i s was t o 0  be e x p e c t e d i f one c o n s i d e r s t h e f a c i l e e l i m i n a t i o n o f w a t e r o b s e r v e d at the h i g h mass r e g i o n o f t h e spectrum. However, v a r i o u s o t h e r i o n s  g e n e r a t e d from t h e s i d e c h a i n (m/e 145) were o b s e r v e d and a r e l i s t e d below. I t s h o u l d be emphasized  t h a t t h e g e n e s i s o f t h e s e fragments  was n o t p r o v e n by t h e p r e s e n c e o f m e t a s t a b l e s so t h a t t h e s e q u e n t i a l f o r m a t i o n s proposed a r e o n l y s p e c u l a t i v e .  m/e 145, CgH^C^ (not observed) .-2H m/e 127, 38%, C H . 0 0  c  ^  m/e 143, 1 1 % , CgH^O.,  ^  m/e 125, 23%, CgH^O  -H2 0  V,  o  m/e 109, 64%, C I L . Q  -2H  _  m/e 107, 40%, C H, o 11 Q  ^  -2H 2  m/e 123, 36%, CgH.^0 y- 2° n  m/e 105, 40%, C H g  9  As mentioned e a r l i e r , due t o t h e s p e c i f i c nmr s i g n a l o f t h e g e m i n a l m e t h y l groups  a t C25, a C24 p o s i t i o n f o r t h e second h y d r o x y l group can  be r u l e d o u t and s i n c e a s e c o n d a r y m e t h y l (C20) i s a l s o o b s e r v e d i n t h e nmr t h e C20 p o s i t i o n f o r t h i s h y d r o x y l group i s a l s o e x c l u d e d . On t h i s b a s i s s t r u c t u r e (70) c o n t a i n i n g t h e OH a t e i t h e r C22 o r C23 i s p r o p o s e d although c l e a r l y a d d i t i o n a l evidence i s required before a d e f i n i t i v e assignment can be made.  (70)  - 66 D e h y d r a t i o n of a l c o h o l s f r e q u e n t l y o c c u r s by t h e r m a l d e c o m p o s i t i o n t o e l e c t r o n i m p a c t , e s p e c i a l l y when h e a t e d i n l e t systems a r e  prior  used,  but under p r o p e r c o n d i t i o n s i t can be shown t h a t the m o l e c u l a r i o n e l i m i n a t e s the elements of w a t e r . Unambiguous e v i d e n c e i n d i c a t e s " ' " ' ' " ^ t h a t t h i s p r o c e s s o c c u r s p r e d o m i n a n t l y by 1 , 4 - e l i m i n a t i o n t h r o u g h a six-membered i n t e r m e d i a t e i n the case of s a t u r a t e d mono a l c o h o l s ; i n g e n e r a l t h e r m a l d e h y d r a t i o n s t a k e p l a c e by 1 , 2 - e l i m i n a t i o n . D e h y d r a t i o n o f fragment i o n s does n o t proceed n e c e s s a r i l y i n the same s p e c i f i c f a s h i o n as t h a t observed i n the m o l e c u l a r i o n . Branched mono- and d i h y d r o x y systems.may. a l s o d e h y d r a t e i n f a s h i o n s o t h e r then those 57 observed f o r l i n e a r mono a l c o h o l s  58 '  . However, t h e g e n e r a l bond  f i s s i o n s o f the a- and 3- t y p e s o b s e r v e d i n the l a t t e r do a l s o a p p l y t o the former. Upon e x a m i n a t i o n of the p o s t u l a t e d s i d e c h a i n f o r compound VI (70) one would e x p e c t the f r a g m e n t a t i o n s i n d i c a t e d below, and  indeed  such fragments have been o b s e r v e d i n the mass s p e c t r o m e t e r . OH  OH  OH ' m/e '  8? C-H^O  -  HQ 2  -> 'm/e55 m/e69,C H9 5  I t i s t h e r e f o r e suggested the C22 group.  t h a t i n compound V I ( 7 0 ) i t i s most l i k e l y t h a t  carbon i s more f a v o r a b l e f o r the p o s i t i o n i n g of the h y d r o x y l  - 67 -  Compound V I I was r e c r y s t a l l i z e d from methylene c h l o r i d e - m e t h a n o l p r o v i d i n g 20 an a n a l y t i c a l sample, m.p. ^29 48°2 H  w a S  e  s  t  a  D  l i  s  n  e  d  161-162°, [ a ] ^ +95°. A m o l e c u l a r f o r m u l a o f by m i c r o a n a l y s i s  and h i g h r e s o l u t i o n mass  s p e c t r o m e t r y . The i n f r a r e d s p e c t r u m ( K B r ) e x h i b i t e d a b s o r p t i o n bands i n d i c a t i v e of an a l i p h a t i c k e t o n i c f u n c t i o n (1725 cm o l e f i n (1635, 815 cm  and an e t h e r l i n k a g e (1100 cm  s p e c t r u m ( F i g u r e 22) had t e r t i a r y m e t h y l s a t 6 0.64, 1.04; at  a s e c o n d a r y m e t h y l a t 0.89  2.12;  , a trisubstituted . The 0.74,  nmr  0.80,  0.98  (doublet, J = 6 Hz); a methyl s i n g l e t  a two p r o t o n m u l t i p l e t a t 2.41; a one p r o t o n m u l t i p l e t a t  a methoxy m e t h y l a t 3.35  and  and an o l e f i n i c p r o t o n a t 5.23  2.63;  ( m u l t i p l e t ) . These  d a t a suggest the p r e s e n c e o f a t e t r a c y c l i c A 9 ( l l ) - 3 3 - m e t h o x y - l a n o s t e n e s k e l e t o n encountered p r e v i o u s l y t o g e t h e r w i t h a methyl ketone f u n c t i o n a l i t y , the  l a t t e r b e i n g most l i k e l y l o c a t e d i n t h e s i d e c h a i n . The mass s p e c t r u m  ( F i g u r e 23) shows t h e p r e s e n c e o f a s t r o n g i o n a t m/e and two i o n s of low abundance a t m/e ^ 23 35°^" * C  H  T  i e  l  a t t e r  99, 41%  329, 2% ( C H 0 ) and 327, 2 3  3 7  (0,^,0) o 11 4%  two fragments a r e i n d i c a t i v e of the p o s t u l a t e d  t e t r a c y c l i c system h a v i n g l o s t the s i d e c h a i n a t C17 o r t h e s i d e c h a i n and two hydrogens r e s p e c t i v e l y , whereas the m/e the  99 segment does r e p r e s e n t  l o s t s i d e c h a i n c o n t a i n i n g the e x t r a oxygen atom. On the b a s i s o f  above e v i d e n c e s t r u c t u r e (71) i s p o s t u l a t eOd t o r e p r e s e n t compound V I I . 22  CH3O  il  327 (71)  2H  F i g u r e 22. NMR spectrum (FT) o f compound V I I  (71).  - 69 -  - 70 -  The nmr s i n g l e t a t 6 2.12 (3H) i s a s s i g n e d t o t h e C25 m e t h y l group and the m u l t i p l e t a t 2.41 (2H) t o t h e C23 methylene group. Mass s p e c t r o m e t r i c fragments  due t o t h e u s u a l f i s s i o n p r o c e s s e s i n r i n g s A, B, C and D a r e  observed. V a r i o u s i o n s c o r r e s p o n d i n g t o a-, 8 - and y - c l e a v a g e s  i n the  k e t o n i c s i d e c h a i n have been observed and a r e l i s t e d i n T a b l e X I I .  Type o f c l e a v a g e  bond b r o k e n  a  C24-25  B  C22-23  B, Y-H t r a n s f e r  C22-23  observed  fragments  413, 83%, C ^ H ^ 57, 7%,  C^O  370, 1%, C ^ H ^ O 58, 37%, C H 0 3  Y  C20-22  6  357, 1%, C ^ H ^ O 71, 51%, C H 0 4  ?  T a b l e X I I . Ions c o r r e s p o n d i n g t o c l e a v a g e s i n t h e k e t o n i c s i d e c h a i n o f compound V I I ( 7 1 ) .  The mass s p e c t r o m e t r i c d a t a do s u p p o r t s t r u c t u r e (71) and e s t a b l i s h t h a t compound V I I i s b e s t r e p r e s e n t e d as 33-methoxy-26, 2 7 - b i s n o r - 5 a - l a n o s t 9(ll)-en-24-one (71). Compound V I I I was r e c r y s t a l l i z e d from methylene  chloride-hexane  20 y i e l d i n g an a n a l y t i c a l sample, m.p. 153-155°, [ a ]  D  +85°. T r a c e s o f  s o l v e n t i n p u r i t i e s were d e t e c t e d i n t h e nmr s p e c t r u m and t h e sample was t h e r e f o r e sublimed  (180°, 0.01 mm) f o r f u r t h e r s t u d i e s .  Microanalytical  d a t a and h i g h r e s o l u t i o n mass s p e c t r o m e t r y e s t a b l i s h e d a m o l e c u l a r ^33^56^3° ^  e  i f n  r  a  r  e  spectrum  d  i n d i c a t e d the presence  formula  of a t r i s u b s t i t u t e d  o l e f i n (1635, 815 cm" ) and a number o f bands (1190, 1165, 1140 and 1  1100 cm ) p r o b a b l y due t o e t h e r l i n k a g e s c o u l d be o b s e r v e d . 1  spectrum  ( F i g u r e 24) r e v e a l e d t h e p r e s e n c e o f s e v e n t e r t i a r y  The nmr methyls  - 72 -  (6 0.62, 0.71, 0.77, 0.94, 1.02, 1.08, 1.23); two secondary m e t h y l s (0.87, d o u b l e t , 6 Hz and 1.31, d o u b l e t , 5 H z ) ; an e q u a t o r i a l m e t h o x y l (2.62, m u l t i p l e t , I H , a x i a l and 3.35, s i n g l e t , 3H); a one p r o t o n m u l t i p l e t at  3.47; a low f i e l d p r o t o n g e m i n a l t o a m e t h y l (5.03, q u a r t e t , J = 5 Hz)  and an o l e f i n i c p r o t o n a t 5.25 ( m u l t i p l e t ) . I r r a d i a t i o n (97 db) o f the q u a r t e t a t 6 5.03 caused t h e d o u b l e t a t 6 1.31 t o c o l l a p s e t o a s i n g l e t t h e r e b y e s t a b l i s h i n g t h e g e m i n a l r e l a t i o n s h i p o f t h e s e two s u b s t i t u e n t s . The o c c u r r e n c e o f two i o n s i n t h e mass s p e c t r u m ( F i g u r e 2 5 ) , m/e 329 = C  23 37° H  the  a n c  *  m /  '  e  3  2  7  =  C  23 35°^ H  t  o  §  e  t  n  e  r  w i t h some o f t h e nmr d a t a s u g g e s t  p r e s e n c e o f the f a m i l i a r t e t r a c y c l i c system c o n t a i n i n g a 33-methoxyl  and a C9 ( l l ) - u n s a t u r a t i o n . T h i s would l e a v e a C ^ H ^ O  fragment  (m/e 171  observed) f o r the s i d e c h a i n as i n d i c a t e d i n ( 7 2 ) .  (72) The d o u b l e t o b s e r v e d a t 6 0.87 s u g g e s t s p r e s e n c e o f t h e u s u a l s e c o n d a r y m e t h y l group a t C20. A l t h o u g h v a r i o u s a b s o r p t i o n bands i n t h e e t h e r r e g i o n of  t h e i n f r a r e d s p e c t r u m a r e o b s e r v e d , o n l y one m e t h o x y l group i s p r e s e n t  i n t h e nmr spectrum. A c y c l i c e t h e r system becomes t h e r e f o r e an a t t r a c t i v e c o n s i d e r a t i o n and t h i s i s s u p p o r t e d by t h e f o r m u l a (^JO^19°2^ for  s u  the side c h a i n , which n e c e s s i t a t e s the presence of a c y c l i c  8g  e s t e (  i  system.  I t w i l l be n o t e d t h a t t h e two m e t h y l f r e q u e n c i e s a t 6 1.08 and 1.23 a r e i n e x a c t l y t h e same p o s i t i o n as t h e two g e m i n a l m e t h y l s a t C25 i n compound II-acetonide-d-  ( 5 7 ) , the C24 p r o t o n appeared a t 6 3.60 as a m u l t i p l e t i n  Ss'-  1  UJ  UJ  or a  50.0  100.0  150.0  200.0  250.0  3fll 300.0  M/E  —r 350.0  J-r-JL  i i ,H, 400.0  F i g u r e 25. Mass spectrum o f compound V I I I ( 7 6 ) .  !  450.0  500.0  I • 550.0  600.0  - 74 the l a t t e r compound. V a l u e s comparable t o those mentioned above have 59 been p u b l i s h e d  f o r compounds such as ( 7 3 ) . 6 1.28  3.38  H  hUC  CH  o  o  ^  CH  /'  H  3  , , C H  3 1.15  C  O \  11 23 H  O /  H  3  (73)  (74)  ,60 t h a t t h e p r o t o n An nmr study o f 2 - l a u r y l - l , 3 - d i o x o l a n e ( 7 4 ) established° u  a t C2 appears as a t r i p l e t ( J = 6 Hz) a t 6 4.82, whereas t h e a l k y l i s observed as a b r o a d s i g n a l a t <5 1.23. I n g e n e r a l i t has been  chain  found**  1  t h a t i n 2 - s u b s t i t u t e d d i o x o l a n e s a s i n g l e hydrogen on t h e two oxygen b e a r i n g carbon w i l l appear i n t h e r e g i o n o f <5 4.8-5.0 . B e a r i n g i n mind t h e above i n f o r m a t i o n one f e e l s j u s t i f i e d t o p o s t u l a t e s t r u c t u r e (75) as an e x t e n s i o n o f t h e p a r t i a l s t r u c t u r e (72) d i s c u s s e d earlier.  CH3O (75) A c l o s e s c r u t i n y o f t h e nmr d a t a observed  f o r compound V I I I and a comparison  w i t h those p u b l i s h e d , as w e l l as those e x p e r i e n c e d g a t i o n l e a d s t o t h e f o l l o w i n g assignments.  earlier i n this  investi-  The t h r e e p r o t o n d o u b l e t a t  6 1.31 and t h e q u a r t e t a t 5.03 ( J = 5 Hz, IH) a r e a s s i g n e d  t o t h e C33  - 75 p o s i t i o n ; t h e two m e t h y l s i n g l e t s a t 6 1.08 and 1.23 c o r r e s p o n d geminal to  to the  m e t h y l groups.at C25 and t h e one p r o t o n m u l t i p l e t i s d e s i g n a t e d  t h e C24 p o s i t i o n . I n a d e c o u p l i n g  was i r r a d i a t e d c a u s i n g t h e d o u b l e t  e x p e r i m e n t t h e q u a r t e t a t 6 5.03  a t 6 1.31 t o c o l l a p s e t o a s i n g l e t ,  c o n f i r m i n g t h e above a s s i g n m e n t . The mass s p e c t r o m e t r i c f r a g m e n t a t i o n s  of acetonides  and r e l a t e d s p e c i e s  have been i n v e s t i g a t e d i n some d e t a i l , n o t a b l y i n terms o f d e v e l o p i n g  a  62 63 method f o r t h e l o c a t i o n o f d o u b l e bonds i n h y d r o c a r b o n s acetonides  were o b t a i n e d by c o n d e n s a t i o n  '  . The  of acetone w i t h g l y c o l s , which i n  t u r n can be s y n t h e s i z e d r e a d i l y b y osmium t e t r o x i d e h y d r o x y l a t i o n o f an o l e f i n . C e r t a i n c h a r a c t e r i s t i c s , e s p e c i a l l y i n t h e case o f t e r m i n a l acetonide  groupings,  a r e o b s e r v e d i n t h e mass s p e c t r u m e n a b l i n g one t o  d e t e r m i n e t h e e x a c t p o s i t i o n o f t h e a c e t o n i d e . The p r e v i o u s l y p o s t u l a t e d s t r u c t u r e (75) w i l l be examined t o g e t h e r w i t h t h e mass s p e c t r o m e t r i c 62 63 on t h e b a s i s o f f r a g m e n t a t i o n s  o b s e r v e d i n s i m i l a r systems  *  data  . In  p a r t i c u l a r l o s s o f t h e elements o f k e t e n e (Cli^CO) and an a l d e h y d e group (CHO), o b s e r v e d i n t h e mass s p e c t r u m o f compound V I I I , w h i c h i n i t i a l l y p r o v e d d i f f i c u l t t o e x p l a i n , now becomes c l e a r . F i g u r e 26 o u t l i n e s t h e s u g g e s t e d modes o f f i s s i o n i n t h e s i d e c h a i n and l i s t s t h e i o n s observed i n t h e mass s p e c t r u m ( F i g u r e 25) t o g e t h e r  with  t h e i r r e l a t i v e i n t e n s i t i e s . The fragment o b s e r v e d a t M-15 i s o f c o u r s e n o t o n l y due t o a c o m b i n a t i o n  o f i o n s b_ and f_ b u t w i l l a l s o c o n t a i n  c o n t r i b u t i o n s from i o n s g e n e r a t e d by a l o s s o f an a n g u l a r m e t h y l group from t h e t e t r a c y c l i c s k e l e t o n . Masses due t o f i s s i o n s o f r i n g s A, B, C and D, as d i s c u s s e d e a r l i e r , and c o m b i n a t i o n s o f those w i t h o u t l i n e d i n F i g u r e 26 a r e a l s o p r e s e n t VIII.  fragmentations  i n t h e mass spectrum o f compound  - 76 -  O  H  C H -  H  CH-  • A  O  m/e 499,12 C  o/e 485,361  33 55°3 B  C  32 53°3 H  H-CHp  R  -CH CO  •CHO  2  H  O*  ,0 m/e 115,IX C  6 11°2 H  m/e 457,26Z C  +  31 53°2 B  R*  m/e 456,72X  .  C  31 52°2 H  m/e 385,IX C  27 45° H  -CH^  m/e 441,100*  R  /  C  30 49°2 H  m/e 86,161 C  5 10° H  m/e 414,IX  H C H  R  C  3  '  H  R  R = C H 0 27  28 46°2  45  x  C H  3  C H  3  m/e 442,37X C  30 50°2 H  F i g u r e 26. Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s i n t h e s i d e c h a i n o f compound V I I I ( 7 6 ) .  P r e v i o u s l y published data  62 63 * i n d i c a t e d the l a c k o f a m o l e c u l a r i o n  i n mass s p e c t r o m e t r i c i n v e s t i g a t i o n s of 1 , 3 - d i o x a l a n e s . However, t h i s was found n o t t o be t h e case i n t h e p r e s e n t s t u d y , m o l e c u l a r i o n s were observed i n a l l compounds o f t h i s type [ ( 5 0 ) , M (76), M  +  = 10%; ( 5 7 ) , M  = 10%;  = 64%] p r o b a b l y due t o more c a r e f u l l y s e l e c t e d e x p e r i m e n t a l  conditions. C o n c l u s i v e e v i d e n c e as t o t h e n a t u r e o f compound V I I I was o b t a i n e d by a comparison  o f t h e l a t t e r w i t h t h e s y n t h e t i c m a t e r i a l o b t a i n e d by t r e a t -  ment o f compound I (43) w i t h a c e t a l d e h y d e . Both compounds were i d e n t i c a l i n e v e r y r e s p e c t (m.m.p., [ a ] ^ , i r , nmr, mass s p e c ) . Compound V I I I i s t h e r e f o r e a s s i g n e d t h e s t r u c t u r e (76) w h i c h i s t h e e t h y l i d e n e d e r i v a t i v e of 3 3 - m e t h o x y - 5 a - l a n o s t - 9 ( l l ) - e n - 2 4 ( S ) , 2 5 - d i o l . The s t e r e o c h e m i s t r y a t C33 has n o t been  determined.  CH3O (76)  Compound I X was r e c r y s t a l l i z e d from methylene c h l o r i d e - e t h a n o l t o 20  p r o v i d e an a n a l y t i c a l sample, m.p. 101.5-103°, [ a ] * +48.5°. The h i g h r e s o l u t i o n mass measurement e s t a b l i s h e d a m o l e c u l a r w e i g h t o f 810.7459. The i n f r a r e d spectrum  (KBr) i n d i c a t e d the presence of a t r i s u b s t i t u t e d  double bond (1635,815cm ) and t h e p o s s i b i l i t y o f one o r more e t h e r 1  l i n k a g e s (1107 cm * ) . The nmr s p e c t r u m  ( F i g u r e 27) r e v e a l e d  resonances  F i g u r e 27. NMR spectrum o f compound I X ( 7 8 ) .  - 79 a t t r i b u t e d t o t e r t i a r y m e t h y l s a t 6 0.65, 0.74, 0.79, 0.96, 1.05, 1.09 and 1.19; a m e t h y l d o u b l e t a t 0.90 ( J = 6 H z ) ; a v e r y s t r o n g b r o a d s i g n a l a t 1.25 e q u i v a l e n t t o about f o r t y  p r o t o n s and p r o b a b l y due t o  an a l i p h a t i c h y d r o c a r b o n c h a i n ; an e q u a t o r i a l m e t h o x y l ( s i n g l e t a t 3.36, 3H and m u l t i p l e t a t 2.65, I H ) ; a one p r o t o n m u l t i p l e t a t ~ 3.5; a m u l t i p l e t a t 3.73 ( I H ) ; a t r i p l e t a t 4.90 ( J = 5 Hz, IH) and a m u l t i p l e t at 5.24 ( I H ) . The mass s p e c t r u m ( F i g u r e 28) r e v e a l e d a base peak a t m/e 485  w h i l e p r e v i o u s l y e n c o u n t e r e d fragments such as m/e  ( C H 0 ) and 327 ( 3 3 5 ° ) C  2 3  3 7  H  d  u  e  329  f i s s i o n a t C17-C20 and i o n s r e l a t e d  t o  2  t o t h e f i s s i o n s o f r i n g s A, B, C and D a r e a l s o p r e s e n t . The main f e a t u r e s of t h i s s p e c t r u m up t o mass 485 a r e v i r t u a l l y i d e n t i c a l t o t h e same r e g i o n i n t h e mass s p e c t r u m o f compound V I I I ( 7 6 ) . I n t h e l a t t e r t h e f r a g ment a t m/e 485 ( C H , - 0 ) c o r r e s p o n d e d t o t h e l o s s o f a m e t h y l r a d i c a l 32  3  3  from t h e m o l e c u l a r i o n (m/e 500, 3 3 5 5 ° ) C  H  a n d  3  i t s  structure i s portrayed  i n (77). H  (77) Upon comparison o f t h e nmr and mass s p e c t r o m e t r i c d a t a o b t a i n e d f o r compounds V I I I (76) and I X one r e a c h e s the c o n c l u s i o n t h a t compound I X p o s s e s s e s t h e same b a s i c s k e l e t o n as compound V I I I ( 7 6 ) . However, compound I X has a much h i g h e r m o l e c u l a r w e i g h t . The s t r o n g s i g n a l a t  F i g u r e 28. Mass spectrum o f compound I X ( 7 8 ) .  - 81 -  6 1.25 i n t h e nmr suggests  t h e presence  of a hydrocarbon  moiety which  c o u l d e x p l a i n t h e d i f f e r e n c e s i n m o l e c u l a r w e i g h t between compounds V I I I and I X . The t r i p l e t a t <5 4.90 (IH) s u g g e s t s a p r o t o n on a carbon  atom  b e a r i n g two oxygens and i n t u r n g e m i n a l t o a methylene group. The o t h e r nmr d a t a a r e i n good agreement w i t h p r e v i o u s l y observed  values i n t h i s  i n v e s t i g a t i o n . As mentioned above a mass measurement was o b t a i n e d f r o m an ion  thought  t o be t h e m o l e c u l a r i o n and t h e o b t a i n e d v a l u e o f 810.7459  could correspond  t o the f o l l o w i n g three molecular c o n p o s i t i o n s : R  1-  C  55 102°3  C  54 98°4  "  H  H  C  56 90°3 H  =  8 1 0  8 1 0  =  '  '  8 1 0  7 8 2 9  C  7 4 6 5  -  C  6 8 9 0  23 49 H  22 45° H  C  24 37 H  S u b t r a c t i n g from these t h e e s t a b l i s h e d m o l e c u l a r f o r m u l a o f t h e i o n a t m/e 485  (^32^53^3^  corresponding  t o s t r u c t u r e (77) one i s l e f t w i t h t h e  t h r e e i n d i c a t e d r e s i d u e s R. P o s s i b i l i t y C_ f o r r e s i d u e R can be r u l e d out immediately  s i n c e i t would r e q u i r e a h i g h degree o f u n s a t u r a t i o n i n t h e  r e s i d u e . T h i s s i t u a t i o n s h o u l d have been d e t e c t e d i n t h e nmr s p e c t r u m b u t f o r t h e p r e s e n t t h e r e i s o n l y one one-proton i s n o t a s s i g n e d . The fragment ^23^49 it  s  n  o  w  n  i- A i n  s i g n a l a t <5 3.73 w h i c h s  c l e a r l y impossible since  c a r r i e s two more hydrogens than w o u l d be a l l o w e d i n a c o m p l e t e l y  s a t u r a t e d a l i p h a t i c hydrocarbon.  I n o t h e r words s e l e c t i o n A i s o n l y p o s s i b l e  i f m/e 811 does n o t r e p r e s e n t t h e t r u e m o l e c u l a r i o n b u t r a t h e r t h e M + 2 i o n , a s i t u a t i o n w h i c h appears u n l i k e l y . I t i s t h e r e f o r e s u g g e s t e d t h a t B, w i t h R = C ^ H ^ O * r e p r e s e n t s t h e most l i k e l y group a t t a c h e d a t C33.  Such a p o s t u l a t e would suggest  a s a t u r a t e d carbon system and i n o r d e r  - 82 -  C22H45O O  H  ^ 2 2 ^ 5 0 O  O  O  " 22 4S°. C  OD  H  >-/-  R  R  m/e 809.2X C  O  m/e 485,100Z  54 97°4 H  C  ^22  32 53°3 H  45  ill  o  O  H  H-C22H44P  *o\ o m/e 796,IZ  7  R'  53 95°4  C  H  s, Hi C22H45O  -C22H44OCO  o  •q  H  -CHO  :0  A  m/e 457,18Z C  31 53°2 H  H  C v  m/e 456,45Z R  =  C  27 45° H  31 52°2 H  -CH  22 4SO H  —> R'  C  /  OH  A  4 5  C  3  m/e 441,98Z C  30 49°2 H  2 2  4m/e 414,1Z H  C22H45O  C  28 46°2 H  CH  3  CH  3  c=o  g  F i g u r e 29. Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s compound I X ( 7 8 ) .  i n the side chain of  - 83 t o e x p l a i n the presence 3.73  of oxygen and account  ( I H ) , i t i s p o s s i b l e t h a t a secondary  f o r the nmr  s i g n a l at  hydroxyl function i s also  p r e s e n t i n R. Mass s p e c t r o m e t r i c r e s u l t s c o r r e s p o n d i n g t o fragments p o r t r a y e d i n F i g u r e 29 have o n l y been observed  i n the cases o f i o n s a (m/e  809), b_ ( 4 8 5 ) , c^ ( 4 5 6 ) ,  d. (457) and _f (796). T h i s i s e x p e c t e d however s i n c e l o n g hydrocarbon tend t o undergo f a c i l e f r a g m e n t a t i o n p r o c e s s e s An attempt  t o s u b l i m e compound I X (180°, 0.01  i n the mass mm)  C H n  2 n  and  spectrometer.  produced a waxy m a t e r i a l  t h a t had escaped from the sample and a s o l i d r e s i d u e . The a t y p i c a l hydrocarbon  chains  former a f f o r d e d  mass s p e c t r u m dominated by i o n s of the g e n e r a l  formulae  8 d u a l l y d e c l i n i n g i n abundance w i t h i n c r e a s i n g mass r a  number up t o m/e  „ 320. The  base peak a t m/e  485  s o l i d r e s i d u e e x h i b i t e d a m o l e c u l a r i o n and  ( C H , - 0 ) . The 32  3  3  f r a g m e n t a t i o n p a t t e r n o f the  latter  showed i d e n t i c a l c h a r a c t e r i s t i c s t o the c o r r e s p o n d i n g r e g i o n o f the s t a r t i n g m a t e r i a l , t h e r e b y i n d i c a t i n g t h a t a t h e r m a l c l e a v a g e a t the C33-R bond had taken p l a c e . Based on the above i n f o r m a t i o n s t r u c t u r e (78)  H R O  C  i s a s s i g n e d to compound IX a l t h o u g h a d d i t i o n a l q u a n t i t i e s would be r e q u i r e d f o r a more thorough assignment.  i n v e s t i g a t i o n and,  i n t u r n , a more complete  - 84 Compound X was o b t a i n e d i n a pure s t a t e by r e c r y s t a l l i z a t i o n  from  methylene c h l o r i d e - m e t h a n o l t o p r o v i d e an a n a l y t i c a l sample, m.p.  91-92°,  20 [a]  D  +39°. The m i c r o a n a l y t i c a l  ^53^93^3* ^  m  a  s  s  s  P  e  c  t  r  o  m  e  t  r  i  :  data support a molecular formula of  measurement of an i o n a t m/e  778 gave a  v a l u e of 777.7216. I t i s b e l i e v e d t h a t t h i s i o n r e p r e s e n t s e i t h e r the m o l e c u l a r i o n o r the M - l i o n . The i n f r a r e d s p e c t r u m (KBr) i n d i c a t e d the presence o f a h y d r o x y l (3480 cm ^) and t r i s u b s t i t u t e d o l e f i n i c m o i e t y . The nmr spectrum ( F i g u r e 30, FT, 100 MHz) m e t h y l s a t 6 0.66, 0.75, m e t h y l a t 0.91 a t 1.28,  0.82,  0.99,  1.04,  1.10  (1630,810 cm  revealed t e r t i a r y  and 1.20;  ( d o u b l e t , J = 6 H z ) ; a s i g n a l due t o about  a secondary f o r t y protons  i n d i c a t i n g the p r o b a b i l i t y o f a h y d r o c a r b o n c h a i n ; an a x i a l  p r o t o n a t C3 (3.22) g e m i n a l t o an oxygen; a m u l t i p l e t a t 3.46 m u l t i p l e t a t 4.23 at 4.92  (IH); a  (IH) , p o s s i b l y o f o l e f i n i c n a t u r e ; a one p r o t o n t r i p l e t  ( J = 5 Hz, -CH-CCQ) and a one p r o t o n m u l t i p l e t a t 5.24.  An  comparison o f t h e s e nmr d a t a w i t h t h o s e o b t a i n e d f o r compounds V I I I  initial (76)  and I X (78) s u g g e s t s t h a t one i s d e a l i n g w i t h the same b a s i c s k e l e t o n h a v i n g the 1 , 3 - d i o x o l a n e system i n the s i d e c h a i n . However, i n the p r e s e n t case the e q u a t o r i a l C3-methoxyl  seems t o be r e p l a c e d by a h y d r o x y l  f u n c t i o n a l i t y . The t r i p l e t a t 6 4.92  suggests again a proton at  g e m i n a l t o a p o s s i b l e h y d r o c a r b o n m o i e t y . S t r u c t u r e (79) w i l l be used as a w o r k i n g model.  (79)  H  b  C33  therefore R  ^)  - 86 The mass s p e c t r u m ( F i g u r e 31) e x h i b i t s fragments due t o f i s s i o n s o f the t e t r a c y c l i c p o r t i o n o f t h e m o l e c u l e as i n d i c a t e d i n ( 7 9 ) , i n p a r t i c u l a r , i o n s due t o f i s s i o n s a_ and b_ (m/e 315, 313 and 274, 273 r e s p e c t i v e l y ) a r e p r o m i n e n t . As mentioned above a measurement o f 777.7216 was o b t a i n e d f o r an i o n w h i c h had appeared a t m/e  778 i n t h e u n i t  r e s o l u t i o n spectrum. The s t r u c t u r e o u t l i n e d i n (79) i s e q u i v a l e n t t o ^31 51°3' H  n o t  t a  k i - 8 J i I n t o a c c o u n t . The v a l u e o f 777.7216 a l l o w s two n  p o s s i b l e combinations f o r the molecular  f o r m u l a and thereby a l s o two  p o s s i b i l i t i e s f o r R. as o u t l i n e d below,  ^  C  B Obviously  51 101°4 H  C  5 3  H  9 3  0  3  =  7 7 7  •  7 6 9 9  R = C  = 777.7125  20 50° H  R=  C^H^  c h o i c e A r e p r e s e n t s an i m p o s s i b l e f o r m u l a w i t h r e s p e c t t o R  and t h e r e f o r e J5 must be g i v e n more s e r i o u s c o n s i d e r a t i o n . I f R was t o be a s a t u r a t e d h y d r o c a r b o n c h a i n one would e x p e c t a f o r m u l a o f C22 45'~ H  w h i l e one degree o f u n s a t u r a t i o n (double bond o r r i n g ) reduces i t t o C  22 43* H  I t :  i s  t  n  e  r  e  f  o  r  e  suggested that R =  C  2 43 H  2  a n d  t  n  a  t  t n e  m e  asured  v a l u e a t 777 r e p r e s e n t s i n f a c t t h e M - l i o n . Two low r e s o l u t i o n s p e c t r a were o b t a i n e d and t h e observed fragments > m/e  700 a r e l i s t e d i n T a b l e X I I I  t o g e t h e r w i t h the r e l a t i v e i n t e n s i t i e s e x p r e s s e d  as a p e r c e n t a g e o f t h e  base peak s e t a t 100%. m/e ->  780  779  778  Rel. I : 0.2 intens.%, I I :  0.5 0.9  1.3  765  764  763  1.6  2.3 2.8  4.4  T a b l e X I I I . Mass s p e c t r o m e t r i c d a t a  737  736  735  0.7  1.1 1.2  2.5  710  709  0.4 0.6  (m/e > 700) f o r compound X ( 8 0 ) .  m/e  rel.int.%  780 779 778 (777) 765 764 (763) 737 (736) 735 710 (709)  in.  UJ  0.2 0.9 (0.5) 1.3 (0.6) 0.6 (1.0) 2.3 (2.8) (4.4) 0.7 (1.2) 2.5 (2.5) 0.4 (0.6)  43  ( IJ,l)j,U,l; LJ, ,fi1,^V,  100  m  LU  ce 50.0  100.0  150.0  200.0  250.0  300.0  ,),l,L  350.0  M/E F i g u r e 31. Mass spectrum o f compound X ( 8 0 ) .  400.0  I 450.0  1  500.0  - i — i — i — i —  5 5 0).0 .0  600  - 88 I t i s obvious  from T a b l e X I I I t h a t a one u n i t mass s h i f t has t a k e n  p l a c e i n t h e upper r e g i o n o f t h e mass spectrum. T h i s d i f f e r e n c e i s observed o c c a s i o n a l l y i n t h e h i g h mass r e g i o n i f one i s u s i n g a d a t a system w i t h t h e MS-902 mass  spectrometer.  then an e x p l a n a t i o n f o r t h e l o s s o f two hydrogens from the s a t u r a t e d a c y c l i c system (^22^45^ ~*- e s s e n t i a l . I t i s s u g g e s t e d t h a t s  a d o u b l e bond i s p r e s e n t i n R and t h i s i s s u p p o r t e d  by t h e nmr s i g n a l  a t 6 4.23. The mass s p e c t r u m e x h i b i t s a fragment a t m/e 735 ^5o 86°3^ H  due  t o l o s s o f C^H^ from t h e m o l e c u l a r i o n , a peak a t 709  t o l o s s o f 69 mass u n i t s p r o b a b l y  corresponds  due t o t h e l o s s o f C^Hg. T h i s  f r a g m e n t a t i o n might i n d i c a t e t h a t t h e u n s a t u r a t i o n i s l o c a t e d between the f o u r t h and f i f t h c a r b o n atom from t h e end o f t h e c h a i n . On t h e b a s i s o f t h e e a r l i e r d i s c u s s e d mass s p e c t r o m e t r i c  fragmentation  c h a r a c t e r i s t i c s f o r 1,3-dioxolanes, a r a t i o n a l e i s p r o v i d e d i n F i g u r e 32 f o r some o f t h e i o n s o b s e r v e d i n t h e spectrum o f compound X.  M-1 (g)  M* m/e 778(779) C  (d) m/e 471  53 93,94°3 H  H R  V  - 89 T a k i n g i n t o account t h e p r e s e n t e d d a t a , s t r u c t u r e (80) i s p o s t u l a t e d f o r compound X,. b e i n g t h e r e f o r e the 3-des-0-methyl a n a l o g o f compound I X (78) and h a v i n g a l s o l o s t t h e elements  of water i n the C33-side c h a i n .  (80) R e c r y s t a l l i z a t i o n o f compound X I from methylene c h l o r i d e - m e t h a n o l p r o v i d e d an a n a l y t i c a l sample, m.p.  261-261.5°,  20 [ot]^ +91°. The m i c r o  a n a l y t i c a l data support a molecular formula of C rL,,0 . High co  JO  c  yo  resolution  D  mass s p e c t r o m e t r y p r o v i d e d a measurement o f 872.7254 f o r an i o n thought to be t h e m o l e c u l a r i o n . The i n f r a r e d spectrum  (KBr) was n o t v e r y i n f o r m a t i v e ,  however, t h e p r e s e n c e o f one o r s e v e r a l e t h e r l i n k a g e s c o u l d be o b s e r v e d (1100 c m ) . The nmr spectrum - 1  ( F i g u r e 33, FT, 100 MHz) d i d n o t have any  i n d i c a t i o n o f an a l i p h a t i c h y d r o c a r b o n m o i e t y as i n t h e two p r e v i o u s l y i n v e s t i g a t e d compounds b u t i t was r a t h e r s i m i l a r t o a s p e c t r u m o b s e r v e d f o r sample V T I I . T e r t i a r y m e t h y l s i n g l e t s were o b s e r v e d a t 6 0.66, 0.74, 0.80, 0.98 and 1.05 each b e i n g due t o 6_H and a t 1.11 and 1.25 (3H e a c h ) . The spectrum a l s o r e v e a l e d , two o v e r l a p p i n g secondary m e t h y l s i g n a l s a t 0.89 and 0.91 ( d o u b l e t s , J = 6 H z ) ; a m u l t i p l e t a t 2.65 (1 H ) ; a s i x p r o t o n s i n g l e t a t 3.37; a one p r o t o n m u l t i p l e t a t 3.63; a one p r o t o n t r i p l e t a t 4.90 and a m u l t i p l e t a t 5.25 due t o two hydrogens.  From t h e s e d a t a one  i 1  I I  1  • I I  i . 1  I  I  • i 1  ; I I I  I I I  j i  • I i  ;  : I  I I i  ! I  I • : • .I t I I I i I I I I! I I j ;  5 4 3 2 F i g u r e 33. NMR spectrum (FT) of compound X I ( 8 3 ) .  I I t  I I I I  I I  1  I I | |  |  !  |  | |  0  | | |  - 91 can draw t h e f o l l o w i n g p r e l i m i n a r y c o n c l u s i o n s . I n t h e f i r s t f i v e t e r t i a r y m e t h y l resonances observed  upfield  are very  instance  suggestive  f o r t h e f i v e m e t h y l groups l o c a t e d on t h e t e t r a c y c l i c l a n o s t e n e n u c l e u s . S i n c e each s i g n a l i s e q u i v a l e n t t o s i x p r o t o n s t h e p o s s i b i l i t y o f a d i m e r i c system comes t o mind, b e i n g i n a c c o r d w i t h t h e h i g h m o l e c u l a r weight  observed.  The two m e t h y l s i g n a l s a t 6 1.11 and 1.25 appear i n t h e  same r e g i o n as d i d t h e C25 g e m i n a l m e t h y l s i g n a l s i n compounds V I I I - X . The  two secondary  methyl groups a l s o have c h e m i c a l s h i f t s p r e v i o u s l y ob-  s e r v e d f o r t h e C20-CH.J. Two e q u a t o r i a l methoxy I s a r e o b s e r v e d a t 3.37, however, o n l y one a x i a l hydrogen seems t o be p r e s e n t . The e a r l i e r frequency  observed  f o r t h e C24 p r o t o n i s a l s o p r e s e n t i n t h i s case w i t h a  m u l t i p l e t a t 3.63 ( L H ) . The t r i p l e t a t 4.90 ( 1 H) i s r e m i n i s c e n t o f the C33 p r o t o n t r i p l e t observed presence  i n compounds I X and X. F i n a l l y t h e  o f two e q u i v a l e n t o l e f i n i c p r o t o n s i s i n d i c a t e d by t h e m u l t i p l e t  at 5.25. A brief  l o o k a t the mass s p e c t r o m e t r i c d a t a ( F i g u r e 34) i m m e d i a t e l y  r e v e a l s the p r e s e n c e  o f a fragment a t m/e 485 ( 32 53°3) h a v i n g t h e same C  H  c o m p o s i t i o n as i n compounds V I I I and I X . A fragment a t m/e 327 ( 3 35°)> C  H  2  p r e v i o u s l y a s s i g n e d t o t h e f i s s i o n a t C17-C20 c o u p l e d w i t h t h e l o s s o f two h y d r o g e n s , i s  a l s o p r e s e n t . What i s v e r y s t r i k i n g though i s t h e f a c t  t h a t t h e i o n a t m/e 327 (49%) i s o f much g r e a t e r abundance than t h e one at 485 ( 3 2 % ) , a r e l a t i o n n o t o b s e r v e d was  i n compounds V I I I - X , where m/e 485  always t h e fragment o f g r e a t e r r e l a t i v e i n t e n s i t y .  suggests  This f i n d i n g  t h a t t h e s p e c i e s , namely t h e t e t r a c y c l i c system, w h i c h c r e a t e s  the m/e 327 fragment i s more abundant i n t h e p r e s e n t case, s u p p o r t i n g the e a r l i e r suggested  d i m e r i c s y s t e m . C o n s i d e r i n g t h e above d a t a and  - 92 o a to  4-1 O H O W H * ( N N  CO  a in IP  V-l  cu  ~6  r^i^r-.in<)-cNCT\i-l COCOCOOOMCOtsin  a . o in  ss»-  o o  66E-  a . a  a  r Q'QOl  O'SL  1  JL1ISN31NI 3 A I 1 H " 1 3 H  . a  O'G  -  93  -  t a k i n g i n t o a c c o u n t e a r l i e r o b s e r v a t i o n s one c o u l d c o n s i d e r ( 8 1 ) and (82) as p a r t i a l b u i l d i n g u n i t s o f the t o t a l  structure.  CH3O (81),  C  3 2  H  5 3  03  (82),  C  2 3  H  3 6  0  The v a l u e o b t a i n e d f o r t h e m o l e c u l a r i o n ( 8 7 2 . 7 2 5 4 ) c o u l d a c c o u n t f o r two m o l e c u l a r c o m p o s i t i o n s 1) ^^g^OQ ^^ 1  A  N  D  2  )  ^58^96^5*  ^  °  n e  s u  the sum o f ( 8 1 ) + ( 8 2 ) = (C,. ,-HggO^) f rom t h e s e two p o s s i b i l i t i e s o b t a i n s t h e f r a g m e n t s C^H^Q  and C^RyO,  b  s t r a  cts  one  r e s p e c t i v e l y . The f o r m e r i s  c l e a r l y i m p o s s i b l e , and t h e r e f o r e t h e fragment C^H^O  must be accommodated  i n the s t r u c t u r a l framework. As mentioned e a r l i e r , o n l y one C3 p r o t o n has been o b s e r v e d i n t h e nmr s p e c t r u m and i t i s t e m p t i n g t o s u g g e s t t h a t t h e l i n k a g e e x i s t s between ( 8 1 ) and (82) v i a C3 i n t h e l a t t e r . One p r o t o n n o t e d at 4.90 was  a t t r i b u t e d t o C33 i n ( 8 1 ) and s i n c e t h i s s i g n a l appears as a  t r i p l e t i t s h o u l d be a d j a c e n t t o a methylene group. On t h i s b a s i s ( 8 1 ) and (82) a r e p r o b a b l y l i n k e d v i a a methylene b r i d g e a t C33 ( 8 1 ) and C3 ( 8 2 ) . A c c e p t i n g t h i s p r o p o s a l t h u s f a r , 2 5 ° remains unaccounted f o r . I t seems C  H  r e a s o n a b l e t o p l a c e t h i s group a t C17 i n ( 8 2 ) and t o propose ( 8 3 ) as a w o r k i n g s t r u c t u r e f o r the p u r p o s e s o f t h e mass s p e c t r o m e t r i c d a t a . Fragments a s s o c i a t e d w i t h r e a r r a n g e m e n t s o f the 1 , 3 - d i o x o l a n e system and  - 94 . C H 0 2  m/e  485  N  -  H  C N  5  ^  2  2  H^crH o  H  3  (83),  C  H  5 8  9 6  0  5  m/e 327  l e a d i n g t o i o n s a (m/e 872), b ( 4 5 7 ) , c ( 8 5 8 ) , d (485) and e (456) ( F i g u r e 35) a r e o b s e r v e d . A fragment a t m/e 826 ( 7 % , M-47, C^HggO^) due  t o f i s s i o n £_ i n (83) i s a l s o n o t e d w h i l e an i o n a t m/e 86 (C^H^O)  c o u l d r e s u l t from f i s s i o n j». The v a r i o u s fragments due t o p r e v i o u s l y  H H  HV  R  O  f  R'  R'  O  R  +  0  O  R'  (d)  M-1 (a) m/e 873,IZ  m/e 872,11 C  58 95°5  C  H  m/e 485,32Z  58 96°5 H  C  32 53°3 H  -CH-  H  3*  o  ft  (b)  R'  (c)  m/e 457,13Z H  C  m/e 456,31Z  57 93°5 H  " 23 36° C  (§)  m/e 858,9Z  31 53°2  R  o  o*  H\ R'  R'  C  R  H  F i g u r e 35. Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s  C  J  31 52°2  26"43  H  v  i n compound X I ( 8 3 ) .  - 95 d i s c u s s e d f i s s i o n s o f r i n g s A, B, C and D a r e a l s o o b s e r v e d , however, the a l i p h a t i c u n i t c o n n e c t i n g  t h e two t e t r a c y c l i c systems does n o t  s u r v i v e the processes. It i s felt,  t h a t s t r u c t u r e (83) i s a r e a s o n a b l e  representation f o r  compound X I c o n s i d e r i n g t h e d a t a o b t a i n e d so f a r . O b v i o u s l y a d d i t i o n a l work i s n e c e s s a r y  b e f o r e a more d e f i n i t e assignment can be made.  Because o f t h e l i m i t e d amounts o f m a t e r i a l no f u r t h e r work, e s p e c i a l l y chemical i n t e r r e l a t i o n s h i p s  and d e g r a d a t i o n s , was p r a c t i c a l i n t h e case  o f most o f t h e compounds d i s c u s s e d . B i o g e n e t i c a l l y , c y c l o a r t e n o l (14) c o u l d be c o n s i d e r e d  as t h e  p r e c u r s o r o f t h e compounds under i n v e s t i g a t i o n . A c i d - c a t a l y s e d  cleavage  (14) of t h e c y c l o p r o p a n e  r i n g w o u l d l e a d t o t h e C 9 ( l l ) u n s a t u r a t i o n and  appropriate enzymatic m o d i f i c a t i o n s o f the s i d e chain could r e s u l t i n the f u n c t i o n a l i t i e s p r o p o s e d . The known p r e s e n c e o f wax a l c o h o l s i n t h e bark e x t r a c t could account f o r the s i d e chain s u b s t i t u t i o n p a t t e r n s of compounds I X and X. I n c o n c l u s i o n the b a r k o f W e s t e r n w h i t e p i n e i s i n d e e d a r i c h  source  of v a r i o u s t r i t e r p e n e systems, many o f w h i c h a r e i n t e r e s t i n g and n o v e l compounds. F u r t h e r work t o e s t a b l i s h t h e s t r u c t u r e s o f t h e s e  compounds  p a r t i c u l a r l y I X - X I must a w a i t t h e i s o l a t i o n o f a d d i t i o n a l q u a n t i t i e s o f material.  - 96 -  EXPERIMENTAL (PART I)  Melting points were determined on a Kofler block and are uncorrected. Optical rotations were obtained at the sodium D l i n e using a PerkinElmer Model 141 Automatic Polarimeter. The infrared ( i r ) spectra were recorded on Perkin-Elmer Model 21 or 457 spectrometers u t i l i z i n g a potassium bromide disc or carbon tetrachloride s o l u t i o n . The positions of the absorption maxima are quoted i n wave numbers (cm "*") while the assignments are l i s t e d i n parentheses. Nuclear magnetic resonance spectra were recorded i n deutero  (nmr)  chloroform s o l u t i o n (unless otherwise  indicated) at 100 MHz on a Varian HA-100 or XL-100 instrument and at 60 MHz on a Varian A-60 or T-60 instrument. In cases of limited quantities of  sample (< 2mg) the Fourier Transform mode was employed using the  XL-100 instrument. Line positions are given i n the <5 scale, with t e t r a methylsilane as i n t e r n a l standard; the m u l t i p l i c i t y , integrated peak areas and proton assignments  are indicated i n parentheses. Mass spectra were  recorded on an Atlas CH4-B (Varian-MAT) and an AEI MS-902 instrument using the d i r e c t i n s e r t i o n technique. The spectra were obtained at an electron energy of 70 e.V. (unless otherwise stated) and a source temperature  of 180-250°. A l l indicated fragmentation path-ways have been  v e r i f i e d by accurate mass measurements and i n some cases also by meta stables. Thin layer chromatography (TLC) was carried out using S i l i c a g e l layers of 0.3 mm thickness and spots were v i s u a l i z e d either by treatment with iodine vapours or spraying with antimony t r i c h l o r i d e i n g l a c i a l acetic acid (40 W/W  %) followed by f i v e minutes at 100°. Microanalyses were  performed by Mr. P. Borda, M i c r o a n a l y t i c a l Laboratory, University of British  Columbia.  - 97  -  Compound I o r 3g-methoxy-5a-lanost-9(11)-en-24 ( S ) , 2 5 - d i o l (43) The s u b s t a n c e o b t a i n e d from t h e c h r o m a t o g r a p h i c s e p a r a t i o n was r e c r y s t a l l i z e d from hexane t o p r o v i d e an a n a l y t i c a l sample, m.p. [ex]  2 2  +77° (C, 1, CHC1 ); i r , v max 3  (H bonded OH);  v  max  193-194°;  ( C C 1 ) : 3623 (2° OH); 3577 cm"  1  4  ( K B r ) : 3500, 3460 (OH); 1635, 790 (C=CH); 1105  cm"  (C-0-C); nmr, 6 0.67, 0.74, 0.81, 0.98, 1.05, 1.17 and 1.22  (singlets,  3 H each, C-CH ); 0.91 ( d o u b l e t , J = 6 Hz, 3H, C 2 0 ( H ) - C H ) ;  2.64  3  3  (broad m u l t i p l e t , 1 H, C3-H a x i a l ) ; 3.25 ( m u l t i p l e t , 1 H, C24-H); 3.36 ( s i n g l e t , 3 H, C3-OCH  3>  r e s o l u t i o n mass s p e c , M  e q u a t . ) ; 5.23 ( m u l t i p l e t , 1 H, C9=C11-H); h i g h +  ( 1 3 % ) , 474.4097,  r e q u i r e s 474.4071;  mass s p e c t r o m e t r i c d a t a : m/e 474 459 456 445 441 428 427 424 416 413 410 409 400 399 393 391 384 380 369 367 355 353 341 329 327 320  rel.int.% 13 8 13 4 27 7 11 11 2 5 11 33 2 4 6 2 2 10 3 5 1 1 2 3 16 1  measured mass  ion composition C H 0  calc.  mas  474.4097 459.3881 456.3950  31 30 31  54 51 52  3 3 2  474.4071 459.3837 456.3966  441.3706 428.3644 427.3576  30 29 29  49 48 47  2 2 2  441.3731 428.3653 427.3576  410.3519 409.3479 400.3287 399.3276  29 29 27 27  46 45 44 43  1 1 2 2  410.3547 409.3469 400.3340 399.3262  391.3258 384.3278  25 27  43 44  3 1  391.3211 384.3392  369.3171 367.3037  26 26  41 39  1 1  369.3156 367.2999  ft 327.2656  23  35  1  327.2687  1  - 98 Table cont. 313 302 297 295 288 287 283 281 273 261 255 247 243 241 240 235 234 233 229 227 225 221 217 215 213 207 203 201 199 197 193 189 187 185 177 175 173 161 159 153 149 147 145 141  3 5 5 2 5 9 2 2 5 4 7 2 3 5 1 2 1 2 6 8 2 2 2 8 6 3 7 9 5 2 2 15 14 6 5 24 19 18 20 5 14 19 18 13  135 133 127 123 121  33 25 15 19 37  302.2561 297.2545 295.2440 288.2422 287.2397  21 22 22 20 20  34 33 31 32 31  1  281.2281 273.2230 261.2249 255.2120 247.2025 243.2146 241.1969  21 19 18 19 17 18 18  29 29 29 27 27 27 25  235.2108  16  27  1  235.2061  233.1944 229.2018 227.1817 225.1631  16 17 17 17  25 25 23 21  1  233.1905 229.1956 227.1799 225.1643  217.1948 215.1790 213.1681 207.1754 203.1771 201.1621 199.1454 197.1344 193.1578 189.1648 187.1507 185.1325 177.1614 175.1503 173.1357 161.1362 159.1174 153.1331 149.1320 147.1171 145.1030 141.1286 141.0695 135.1177 133.1035 127.1126 123.1169 121.1024  16 16 16 14 15 15 15 15 13 14 14 14 13 13 13 12 12 10 11 11 11 9 11 10 10 8 9 9  25 23 21 23 23 21 19 17 21 21 19 17 21 19 17 17 15 17 17 15 13 17 9 15 13 15 15 13  1 1  1 1 1  1  1  1  1  1  302.2608 297.2581 295.2426 288.2453 287.2374 281.2268 273.2218 261.2217 255.2112 247.2061 243.2112 241.1955  217.1956 215.1799 213.1642 207.1748 203.1799 201.1643 199.1486 197.1330 193.1592 189.1643 187.1486 185.1329 177.1643 175.1486 173.1330 161.1329 159.1173 153.1279 149.1329 147.1173 145.1017 141.1279 141.0704 135.1173 133.1017 127.1122 123.1173 121.1017  -  99 -  Table cbrit.  119 109 107 105 99 95 94 93 91 85  37 33 34 32 13 54 31 31 21 21  83 82 81 78 71  19 7 39 49 62  69  67  67 59 57 56 55  27 75 25 7 62  The  119.0865 109.1040 107.0863 105.0704 99.0833 95.0861 94.0782 93.0712 91.0551 85.1003 85.0646 83.0862 82.0756 81.0688 78.0460 71.0878 71.0480 69.0678 69.0315 67.0495  9 8 8 8 6 7 7 7 7 6 5 6 6 6 6 5 4 5 4 5  11 13 11 9 11 11 10 9 7 13 9 11 10 9 6 11 7 9 5 7  57.0353 56.0263 55.0113  3 3 3  5 4 3  1  1  1 1 1 1 1  119.0860 109.1017 107.0860 105.0704 99.0809 95.0860 94.0782 93.0704 91.0547 85.1017 85.0653 83.0860 82.0782 81.0704 78.0469 71.0860 71.0496 69.0704 69.0340 67.0547 57.0340 56.0262 55.0183  following meta stables were observed;  444.8 438.8 426.7 424.7 423.8 420.7 412.5 407.0 405.9  397.1 391.8 386.6 379.4 374.9 373.8 364.7 364.6 361.5  Anal, calcd. f o r C ^ H ^ : H, 11.32.  355.0 347.0 339.7 337.7 323.7 318.9 272.9 266.4 258.5  255.3 252.0 243.9 238.4 226.6 221.8 213.0 200.6 184.7  C, 78.42; H, 11.47. Found: C, 78,10;  - 100 H y d r o g e n a t i o n o f compound I , (46) Compound I (500 mg) i n g l a c i a l a c e t i c a c i d (100 ml) was hydrogenated over Adam's c a t a l y s t  (200 mg) a t room t e m p e r a t u r e and a t m o s p h e r i c p r e s s u r e  f o r a p e r i o d o f s e v e n t y h o u r s . One mole e q u i v a l e n t o f hydrogen was t a k e n up. The c a t a l y s t was removed by f i l t r a t i o n and t h e s o l v e n t removed i n vacuo t o p r o v i d e a w h i t e s o l i d (491 mg, 9 8 % ) . T h i s p r o d u c t was r e crystallized  from benzene-hexane t o p r o v i d e an a n a l y t i c a l  m.p. 213.5-214.5°; [ a ] (OH); 1105 c m  - 1  2 4  sample,  +35.4° (C, 0.7, C H C 1 J ; i r , v m a x ( K B r ) : 3430 3 V  (C-0-C); nmr, 6 2.64 ( q u a r t e t , I H , J = .11,4 Hz, C3-H); 3.29  ( m u l t i p l e t , I H , C24-H) ; no o l e f i n i c p r o t o n s ; h i g h r e s o l u t i o n mass s p e c , M  ( 1 . 6 % ) , 476.4229, C  +  3 1  H  5 6  Anal, calcd. f o r C ^ H ^ O ^  0  3  r e q u i r e s 476.4224.  C, 78.09; H, 11.84. Found: C, 78.15; H, 11.77.  P e r i o d a t e cleavage o f hydrogenated  compound I (47)  The hydrogenated m a t e r i a l (46) (225 mg) was suspended  i n a solution  of HIO^*2H 0 (500 mg)in d i s t i l l e d w a t e r (15 m l ) . The m i x t u r e was a g i t a t e d 2  f o r a p e r i o d o f f o u r days a t room t e m p e r a t u r e under an atmosphere o f n i t r o g e n . A f t e r w a r d s , t h e m i x t u r e was e x t r a c t e d w i t h c h l o r o f o r m , t h e c h l o r o f o r m s o l u t i o n washed w i t h w a t e r , d r i e d o v e r anhydrous  sodium  s u l p h a t e and e v a p o r a t e d t o d r y n e s s t o y i e l d 192 mg (98%) o f a w h i t e s o l i d . R e c r y s t a l l i z a t i o n from benzene a f f o r d e d an a n a l y t i c a l sample, m.p. 180-181°; [ a ]  2 2  +43.7° (C, 0.6, C H C l ) ; i r , 3  v  max ( K B r ) : 2710, 1720  (CHO); 1105 cm" (C-0-C); nmr, <5 2.37 ( m u l t i p l e t , 2 H, C 2 3 - H ) ; 9.74 1  2  (triplet, C  28 48°2 H  I H , C24HO) ; h i g h r e s o l u t i o n mass s p e c , M r  e  9  u  i  r  e  s  +  (34%) 416.3691,  416.3653.  Anal, calcd. for C ^ H ^ O ^  C, 80.71; H, 11.61. Found: C, 80.32; H, 11.72.  - 101 -  A second e x p e r i m e n t , i d e n t i c a l t o t h e one above, was c a r r i e d o u t . F o l l o w i n g t h e f o u r day r e a c t i o n p e r i o d , t h e r e a c t i o n v e s s e l was a t t a c h e d t o a vacuum l i n e and p a r t o f t h e v o l a t i l e f r a c t i o n was removed and t r a p p e d i n an a c i d i f i e d s o l u t i o n o f 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e . When t h e l a t t e r was a l l o w e d t o warm t o room t e m p e r a t u r e orange c r y s t a l s  (8 mg) p r e c i p i t a t e d ,  w h i c h a f t e r r e c r y s t a l l i z a t i o n from e t h a n o l , were i d e n t i c a l (m.p.; mixed m.p.; T L C , S i l i c a g e l G-benzene; i r and nmr) t o an a u t h e n t i c sample o f the 2,4-DNPH d e r i v a t i v e o f a c e t o n e .  Permanganate o x i d a t i o n o f t h e p e r i o d a t e c l e a v a g e p r o d u c t , (48) Compound(47)(52 mg) was d i s s o l v e d i n a c e t o n e (20 ml) and t r e a t e d w i t h an aqueous p o t a s s i u m permanganate s o l u t i o n (25 mg i n 0.5 m l w a t e r ) . The m i x t u r e was s t i r r e d f o r 2 1/2 h o u r s a t room t e m p e r a t u r e a f t e r w h i c h i t was d i l u t e d w i t h w a t e r (10 ml) and t r e a t e d w i t h m e t h a n o l  (5 m l ) . The  t o t a l m i x t u r e was t h e n reduced i n vacuo t o a volume o f about 10 m l and e x t r a c t e d w i t h a 1:4 m i x t u r e o f methanol and c h l o r o f o r m . The o r g a n i c phase was d r i e d o v e r anhydrous sodium s u l p h a t e and e v a p o r a t e d i n vacuo t o y i e l d a white s o l i d  (54 mg, 100%). T h i s m a t e r i a l was n o t p u r i f i e d  further  because o f i t s p o l a r n a t u r e ; i r , v max ( K B r ) : 3490, 3200-2450, 1705 and 1260 cm"  1  (C00H); h i g h r e s o l u t i o n mass s p e c . , M  +  (10%),432.3595;  C  o o  2o  H  / o  0  4o  o  j  r e q u i r e s 432.3603. M e t h y l . e s t e r f o r m a t i o n , (49) Compound(48)(50 mg) was t r e a t e d w i t h anhydrous methanol cone, s u l p h u r i c a c i d  (75 ml) and  (0.5 ml) o v e r a p e r i o d o f twenty hours a t room  t e m p e r a t u r e . The volume o f t h e s o l u t i o n was r e d u c e d i n vacuo t o about 5 ml and t r e a t e d w i t h c h l o r o f o r m (20 m l ) . The s o l u t i o n was washed s u c c e s s i v e l y w i t h w a t e r , s a t u r a t e d aqueous sodium b i c a r b o n a t e s o l u t i o n and w a t e r and  - 102 was dried over anhydrous sodium sulphate. Evaporation yielded a white s o l i d material (52 mg,  100%) which a f t e r r e c r y s t a l l i z a t i o n from methanol 20  afforded an a n a l y t i c a l sample, m.p.  173-175.5°; [ a ]  D  +43.9° (C, .0.5,  CHC1 ) ; i r , vmax (KBr): 1730 and 1175 (C00CH ); nmr, <5 2.26 3  3  2H, C23-H ); 2.63 2  C3-0CH ); 3.62 3  (6%),  (quartet, IH, J = 4 Hz, C3-H); 3.32  (multiplet,  ( s i n g l e t , 3H,  (singlet, 3H, C24-00CH ); high resolution mass s p e c , M  446.3765, C  +  3  2 9  H  5 Q  0  requires 446.3759.  3  Anal, calcd. f o r C H 0 : C, 77.97; H, 11.28. Found: C, 77.78; H, 11.12. 2 g  5 0  3  Compound I mono-acetate (44) Compound I (43)(50 mg) i n pyridine (1 ml) and a c e t i c anhydride (1 ml) was l e f t for 48 hours at room temperature.' The mixture was poured into ice-water and extracted with methylene chloride.. The extract was washed with aqueous hydrochloric acid (5%) and water and dried over anhydrous sodium sulphate. Evaporation of the solvent yielded a crude product which was chromatographed using 5 g S i l i c a  g e l , Woelm, a c t i v i t y  I I I . E l u t i o n with benzene/ether 95:5 provided the monoacetate (44) (33 mg, 61%) followed by a small amount (1.5 mg) of the diacetate (45). The monoacetate was r e c r y s t a l l i z e d from hexane-benzene  to provide an a n a l y t i c a l  22 229-230°; [ a ] +94° (C, 1, CHC1 ); i r , vmax (CC1 ): 3609 cm 1  sample, m.p.  D  3  4  (3°0H); vmax (KBr): 3520 (OH); 1725, 1250 (OAc); 1635, 790 (C=CH); 1105 cm"  1  (C-0-C); nmr, 6 0.65, 0.74, 0.80, 0.97 and 1.05  3H each, C-CH ); 0.90 3  (doublet, J = 6 Hz, 3H,C20-CH ); 1.20 3  6H, C25-(CH ) ); 2.08 (singlet, 3H, C24-OAc); 2.65 3  3.36  (singlets,  2  ( s i n g l e t , 3H, C3-OCH ); 4.76 3  (singlet,  (multiplet, IH, C3-H);  (quartet, J = 10,3 Hz, C24-H); 5.24  IH, C9=C11-H); high resolution mass s p e c , M  +  (7%), 516.4193, C  1 o  H  c c  0  (multipl A  - 103 r e q u i r e s 516.4178. A n a l , c a l c d . f o r C.-H,,0.: C, 76.69; H, 10.92. Found: C, 76.85; H, 10.80. jj  DO  4  Compound I - d i a c e t a t e (45) Compound I (50 mg) was t r e a t e d w i t h a m i x t u r e o f p y r i d i n e and a c e t i c a n h y d r i d e ( 1 ml) f o r a p e r i o d o f t e n h o u r s a t 100°. The r e a c t i o n m i x t u r e was c o o l e d t o room temperature,poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed once w i t h 5% aqueous h y d r o c h l o r i c a c i d and t w i c e w i t h w a t e r and was d r i e d o v e r anhydrous sodium s u l p h a t e . Evaporation  o f the s o l v e n t y i e l d e d a brown s o l i d r e s i d u e w h i c h was  chromatographed u s i n g 5 g S i l i c a g e l , Woelm, a c t i v i t y I I I . E l u t i o n w i t h methylene c h l o r i d e / l % m e t h a n o l p r o v i d e d 42 mg (71%) o f a w h i t e d i a c e t a t e . R e c r y s t a l l i z a t i o n from hexane p r o v i d e d m.p.  162-165°; [ a ]  2 3  +73.2° (C, 0.4, CHC1 ); i r , 3  1230 (OAc); 1105 c m  - 1  crystalline  an a n a l y t i c a l sample, v  max ( K B r ) : 1740, 1260,  (C-0-C); nmr, <5 1.95 ( s i n g l e t , 3H, C25-0Ac); 2.06  ( s i n g l e t , 3H, C24-OAc); 2.66 ( m u l t i p l e t , I H , C3-H); 3.36 ( s i n g l e t , 3H, C30CH ); 5.12 ( q u a r t e t , J = 1 0 , 3 Hz, I H , C24-H); 5.25 ( m u l t i p l e t , I H , C 9 = C l l - H ) ; 3  h i g h r e s o l u t i o n mass s p e c , M mass s p e c t r o m e t r i c m/e 558 543 526 511 498 486 483 456 455 453  rel.int.% 7 6 1 6 100 17 44 16 14 4  +  ( 7 % ) , 558.4307, C^H^O,. r e q u i r e s 558.4284;  data: measured mass 558.4307 543.4112 526.4049 511.3795 498.4098 486.3773 483.3827 456.3881 455.3786 453.3256  ion compositi C H 0 35 34 34 33 33 31 32 31 31 30  58 55 54 51 54 50 51 52 51 45  5 5 4 4 3 4 3 2 2 3  c a l c . mass  558.4284 543.4049 526.4021 511.3786 498.4071 486.3708 483.3837 456.3966 455.3888 453.3368  - 104 -  Table cdnt.  451 441 439 438 423 409 407 399 395 391 369 367 355 344 341 330 329 328 327 323 301 297 295 287 285 283 273 271 260 255 245 243 241 229 227 215 213 201 199 189 187 179 175 173 167 163 161 159  10 10 47 20 9 10 6 1 1 6 2 5 2 7 3 3 6 17 60 1 3 4 3 8 6 2 4 4 6 7 3 3 6 6 6 8 6 9 6 12 13 1 22 21 4 7 18 19,  '  451.3528 441.3793 439.3967 438.3913 423.3593 409.3376 407.3637 399.3251 395.3114 391.3437 369.3214 367.3038 355.2931 344.2714 341.2809 330.2516 329.2690 328.2710 327.2660 323.2723 301.2542 297.2601 295.2446 287.2353 285.2524 283.2444 273.2211 271.2448 260.2185 255.2171 245.1959 243.2133 241.1919 229.1944 227.1800 215.1828 213.1683 201.1663 199.1490 189.1638 187.1496 179.1419 175.1520 173.1349 167.1445 163.1485 161.1313 159.1175  31 30 31 31 30 29 30 27 24 29 26 26 25 23 24 22 19 27 23 24 21 22 22 20 21 21 19 20 18 19 17 18 18 17 17 16 16 15 15 14 14 12 13 13 11 12 12 12  47 49 51 50 47 45 47 43 43 43 41 39 39 36 37 34 37 36 35 35 33 33 31 31 33 31 29 31 28 27 25 27 25 25 23 23 21 21 19 21 19 19 19 17 19 19 17 15  2 2 1 1 1 1 2 4 1 1 1 2 1 2 4 1. 1 1 1 1 1 1  1 1  451.3575 441.3731 439.3939 438.3860 423.3625 409.3469 407.3677 399.3262 395.3160 391.3364 369.3156 367.2999 355.3000 344.2714 341.2843 330.2558 329.2691 328.2765 327.2687 323.2738 301.2530 297.2581 295.2426 287.2374 285.2581 283.2425 273.2218 271.2425 260.2139 255.2112 245.1905 243.2112 241.1955 229.1956 227.1799 215.1799 213.1642 201.1643 199.1486 189.1643 187.1486 179.1435 175.1486 173.1330 167.1435 163.1486 161.1329 159.1173  - 105 Table cbnt. 147 145 141 135 133 127 125 123 121 119 111 109 107 105 101 99 95 91 81 71 71 69  19 20 10 33 24 10 11 17 35 36 7 37 35 27 28 13 52 16 25 32 42  147.1192 145.1048 141.1305 135.1198 133.1047 127.1137 125.0964 123.1185 121.1018 119.0888 111.1145 109.0985 107.0819 105.0687 101.0587 99.0804 95.0865 91.0549 81.0689 71.0830 71.0484 69.0692  11 11 9 10 10 8 8 9 9 9 8 8 8 8 5 6 7 7 6 5 4 5  15 13 17 15 13 15 13 15 13 11 15 13 11 9 9 11 11 7 9 11 7 9  1  1 1  2 1  1  147.1173 145.1017 141.1279 135.1173 133.1017 127.1122 125.0966 123.1173 121.1017 119.0860 111.1173 109.1017 107.0860 105.0704 101.0602 99.0809 95.0860 91.0547 81.0704 71.0860 71.0496 69.0704  The f o l l o w i n g meta s t a b l e s were o b s e r v e d : 528.4 481.0 470.4 468.7 447.9 444.2 429.7 426.6 421.2 419.0 418.0 415.4  402.7 398.5 393.1 388.4 387.0 385.5 379.2 377.4 370.5 363.6 361.4 346.6  339.0 337.7 316.6 307.6 280.2 266.1 252.2 244.1 240.9 230.8 226.7 214.7  200.7 199.0 186.8 185.0 128.6 117.6 91.6 91.2 89.2 84.9 84.2 77.3 75.4 71.5  A n a l , c a l c d . f o r 03^330,.: C, 75.22; H, 10.46. Found: C H, 10.70.  68.4 66.4 64.0 63.1 58.3  s  74.82;  - 106 -  46  Compound I a c e t b n i d e - d ^ (50)  Compound I ( 4 3 ) ( 5 0 mg) was t r e a t e d w i t h acetone-dg (2 ml) and • p e r c h l o r i c a c i d , 70% (0.05 ml) The  f o r a p e r i o d o f 24 hours a t room t e m p e r a t u r e .  c r y s t a l l i n e p r e c i p i t a t e was c o l l e c t e d t o p r o v i d e 30 mg (55%) o f t h e  desired material.  The m o t h e r l i q u o r was poured i n t o i c e c o l d 3% aqueous  sodium b i c a r b o n a t e  s o l u t i o n and e x t r a c t e d w i t h m e t h y l e n e . c h l o r i d e , t h e  o r g a n i c phase was washed w i t h w a t e r and d r i e d o v e r anhydrous sodium sulphate. Evaporation  o f t h e s o l v e n t y i e l d e d 21 mg (38%) o f c r y s t a l l i n e  d e s i r e d m a t e r i a l . R e c r y s t a l l i z a t i o n from  n-hexane p r o v i d e d an a n a l y t i c a l  sample, m.p. 191-192°; [ a ] ^ +81.2° (C, 0.7, C H C 1 ) ; i r , v max ( K B r ) : 3  3  1215,  1050 c m  - 1  (C-0-C-0-C); nmr, 5 0.66,  0.74,  0.80,  0,97,  1.05, 1.09  ( s i n g l e t , 3H each, C-CH ); 0.90 ( d o u b l e t , J = 6 Hz, 3H, C20-CH ); 1.25 3  ( d o u b l e t , J = 1 Hz,  3  3H, C24 H-C25-CH ); 2 . 6 5 ( m u l t i p l e t , I H , C3-H); 3.36 3  ( s i n g l e t , 3H, C3-0CH ); 3.62 ( t r i p l e t , J = 6 Hz, 3  ( m u l t i p l e t , I H , C9=C11-H); i r r a d i a t i o n methylgroup (6 = 1.25)  IH, C24-H); 5.25  (110 db) a t the f r e q u e n c y  of the  c i s t o t h e C24 hydrogen p r o v i d e d a N u c l e a r  Overhauser e f f e c t ; a n e t i n t e n s i t y i n c r e a s e o f the C24-H i n t e g r a l (6 = 3.62) o f 19% was o b s e r v e d (C3-H mass s p e c , M  +  ( 1 0 % ) , 520.4774, C ^ H ^ O ^  Anal, calcd. f o r C ^ H ^ O ^ (determined  a t <5 = 2.65 was used as r e f e r e n c e ) ; h i g h r e s o l u t i o n  as C ^ H ^ O . ^  r e q u i r e s 520.4763.  C, 78.40; H, 11.15. Found: C, 78.19; H, 11.08 ^^'W'  Compound I I o r 33, 2 4 ( S ) , 2 5 - t r i h y d r o x y - 5 c t - l a n o s t - 9 ( l l ) - e n e (51) The  i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d f r o m a c e t o n e - m e t h a n o l t o  p r o v i d e an a n a l y t i c a l  sample, m.p. 214-215°; [a]* +56° (C, 1, CHC1 );  i r , v max ( K B r ) : 3425, 1140 (OH);  2  3  1635,  790 (C = CH);  (CCl^,): 3707, 3628  - 107 (eq. 2° OH); 3584, 3371 c m  - 1  (H bonded OH); nmr, <S 0.64, 0.73, 0.80,  0.97, 1.03, 1.14, 1.19 ( s i n g l e t s , 3H each, C-CH ); 0.90 3  (doublet,  J = 6 Hz, 3H, C20-CH ); 3.23 and 3.33 ( m u l t i p l e t s , IH each C3-H, C24-H); 3  5.24 ( m u l t i p l e t , I H , C9=C11-H); h i g h r e s o l u t i o n mass s p e c , M 460.3932, 3 o 5 2 ° 3 C  m/e  460 445 442 427 424 409 391 369 341 320 315 313 301 299 297 287 273 269 259 255 247 245 243 241 240 229 228 227 221 215 213 205 203 201 199 191 189  H  rel.int.% 14 8 24 48 7 35 2 3 4 1 7 22 2 3 5 5 14 2 4 6 7 5 2 5 2 6 2 6 5 7 6 3 8 8 4 6 16  r e c  l  u i r e s  +  460.3916; mass s p e c t r o m e t r i c d a t a :  measured mass  ion composition C H 0  460.3932 445.3698 442.3817 427.3557 424.3685 409.3468 391.3375 369.3128 341.2841  30 29 30 29 30 29 29 26 24  52 49 50 47 48 45 43 41 37  315.2649 313.2475 301.2475 299.2393 297.2601 287.2368 273.2215 269.2278 259.2080 255.2165 247.2064 245.1900 243.1736 241.1963  22 22 21 21 22 20 19 20 18 19 17 17 17 18  35 33 33 31 33 31 29 29 27 27 27 25 23 25  229.1972 228.1874 227.1793 221.1917 215.1803 213.1634 205.1603 203.1823 201.1646 199.1466 191.1823 189.1614  17 17 17 15 16 16 14 15 15 15 14 14  25 24 23 25 23 21 21 23 21 19 23 21  3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1  calc  mass.  460.3916 445.3681 442.3810 427.3576 424.3704 409.3469 391.3364 369.3156 341.2843 315.2687 313.2531 301.2531 299.2374 297.2581 287.2374 273.2218 269.2269 259.2061 255.2112 247.2061 245.1905 243.1748 241.1955 229.1956 228.1877 227.1799 221.1905 215.1799 213.1642 205.1592 203.1799 201.1643 199.1486 191.1799 189.1643  (14%),  - 108 Table cont. 187 186 185 177 175 173 171 169 167 163 159 149 147 145 143 139 135 133 131 127 125 124 123 123 121 120 119 111 111 109 109 107 105 95 94 93 91 85 83 83 81 79' 71 69 67 59  14 2 6 6 20 17 7 2 3 8 21 14 20 20 9 2 32 28 14 19 6 3 20 3 38 13 42 6 13 37 4 38 34 62 42 28 22 14 21 4 41 20 46 60 28 100  187.1469  14  19  187.1486  185.1302 177.1613 175.1485 173.1331 171.1165 169.1005 167.1443 163.1472 159.1177 149.1315 147.1164 145.1022 143.0844 139.1109 135.1186 133.1029 131.0875 127.1113 125.0970 124.1242 123.1169 123.0800 121.1007 120.0932 119.0849 111.1150 111.0805 109.0994 109.0660 107.0839 105.0693 95.0865 94.0781 93.0710 91.0531 85.0640 83.0865 83.0482 81.0703 79.0537 71.0489 69.0689 67.0513 59.0346  14 13 13 13 13 13 11 12 12 11 11 11 11 9 10 10 10 8 8 9 9 8 9 9 9 8 7 8 7 8 8 7 7 7 7 5 6 5 6 6 4 5 5 3  17 21 19 17 15 13 19 19 15 17 15 13 11 15 15 13 11 15 13 16 15 11 13 12 11 15 11 13 9 11 9 11 10 9 7 9 11 7 9 7 7 9 7 7  185.1329 177.1643 175.1486 173.1330 171.1173 169.1017 167.1435 163.1486 159.1173 149.1329 147.1173 145.1017 143.0860 139.1122 135.1173 133.1017 131.0860 127.1122 125.0966 124.1251 123.1173 123.0809 121,1017 120.0938 119.0860 111.1173 111.0809 109.1017 109.0653 107.0860 105.0704 95.0860 94.0782 93.0704 91.0547 85.0653 83.0860 83.0496 81.0704 79.0547 71.0496 69.0704 67.0547 59.0486  1  1  1 1 1  1 1  1 1 1  1 ,  - 109 Meta s t a b l e s were o b s e r v e d a t t h e f o l l o w i n g v a l u e s : 430.6 424.8 412.5 391.8 375.8 373.7 363.9  351.8 349.9 326.7 278.0 258.7 254.2 253.2  Anal, calcd. f o r C  3 Q  H  5 2  252.2 240.1 238.3 224.2 213.3 212.4 210.4  198.5 186.6 174.7 172.6 93.6 89.2 77.2  0 : C, 78.20; H, 11.38. Found: C, 78.05; 3  H, 11.38.  H y d r o g e n a t i o n o f compound II» (54) Compound I I ( 5 1 ) (145 mg) was d i s s o l v e d i n g l a c i a l a c e t i c a c i d (50 m l ) and h y d r o g e n a t e d o v e r Adam's c a t a l y s t (100 mg) a t room, t e m p e r a t u r e and a t m o s p h e r i c p r e s s u r e f o r a p e r i o d o f 50 h o u r s . One mole e q u i v a l e n t of hydrogen was t a k e n up. The c a t a l y s t was removed by f i l t r a t i o n and t h e s o l v e n t removed i n vacuo. The s o l i d w h i t e r e s i d u e (146 mg, 100%) was r e c r y s t a l l i z e d from c h l o r o f o r m t o p r o v i d e an a n a l y t i c a l sample, 211-212°; [ a ] ^ +11.7° (C, 0.5, C H C l ) ; i r , v max ( K B r ) : 3400 cm  m.p, x  3  (OH); nmr ( C D C 1 ) , 6 3.20 and 3.33 ( m u l t i p l e t s , I H each, C3-H, C24-H); 3  h i g h r e s o l u t i o n mass s p e c , M  ( 4 % ) , 462.4105,  C^ E ^0 Q  5  3  r e q u i r e s 462.4072.  A n a l , c a l c d . f o r C ^ H ^ O ^ C, 77.86; H, 11.76. Found: C, 77.66; H, 11.87.  O x i d a t i v e c l e a v a g e o f hydrogenated  compound I I , (55)  Compound(54)(20 mg) was d i s s o l v e d i n t . - b u t a n o l (5 ml) and t r e a t e d w i t h an aqueous s o l u t i o n (5 ml) o f sodium m e t a p e r i o d a t e  (85 mg), p o t a s s i u m  c a r b o n a t e (21 mg) and p o t a s s i u m permanganate (2.5 mg). The m i x t u r e was s t i r r e d f o r a p e r i o d o f f o u r hours a t room temperature a f t e r w h i c h w a t e r (10 ml) was added t o d i s s o l v e a s m a l l amount of w h i t e p r e c i p i t a t e , U s i n g a vacuum l i n e ,  p a r t o f t h e v o l a t i l e f r a c t i o n was removed a t room  temperature  - 110 -  and t r a p p e d i n an a c i d i f i e d s o l u t i o n o f 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e . The l a t t e r was t h e n warmed t o room t e m p e r a t u r e , u p o n w h i c h t h e p r e c i p i t a t i o n o f orange c r y s t a l s (mixed m.p.,  TLC  (0.6 mg) was o b s e r v e d . These were i d e n t i c a l  S i l i c a g e l G, benzene, s u p e r i m p o s a b l e i r and nmr) t o  an a u t h e n t i c sample o f the 2,4-DNPH d e r i v a t i v e o f a c e t o n e . The o r i g i n a l s o l u t i o n was a c i d i f i e d w i t h a c e t i c a c i d and a f i n e w h i t e p r e c i p i t a t e was o b t a i n e d . The l a t t e r was c o l l e c t e d by  centrifugation,  washed t w i c e w i t h w a t e r and d r i e d i n vacuo t o y i e l d 15 mg white  (83%) o f a  amorphous m a t e r i a l . R e c r y s t a l l i z a t i o n from methanol a f f o r d e d an  a n a l y t i c a l sample, m.p.  268-270°; i r ,  v m a x ( K B r ) : 1720 (C00H) ; 3430  b r o a d (OH); h i g h r e s o l u t i o n mass s p e c , M  +  cm" , 1  ( 2 . 4 % ) , 418.3445; C^^H^gO^  r e q u i r e s 418.3446. Because o f i t s p o l a r c h a r a c t e r the a c i d was n o t f u r t h e r i n v e s t i g a t e d b u t was c o n v e r t e d t o t h e c o r r e s p o n d i n g  methyl ester.  M e t h y l a t i o n of the cleavage product,(56) Compound(55)(30 (45 ml) and  cone  mg) was d i s s o l v e d i n a m i x t u r e o f anhydrous methanol  sulphuric acid  (0.3 ml) and s t i r r e d f o r 20 h o u r s a t  room temperature.The s o l u t i o n was c o n c e n t r a t e d i n vacuo a t room t e m p e r a t u r e t o a volume o f about 10 m l , d i l u t e d w i t h 5% aqueous sodium b i c a r b o n a t e s o l u t i o n (10 ml) and e x t r a c t e d w i t h methylene c h l o r i d e . The o r g a n i c phase was d r i e d o v e r anhydrous sodium, s u l p h a t e and the s o l v e n t e v a p o r a t e d i n vacuo t o p r o v i d e 31 mg  (99%) o f a w h i t e s o l i d r e s i d u e . R e c r y s t a l l i z a t i o n f r o m  p e t r o l e u m e t h e r (30-60°) p r o v i d e d an a n a l y t i c a l sample, m.p.  177.5-179°;  22 [a]  D  +25° (C, 0.4, CHC1 ); i r ,  3570 cm"  3  (OH); nmr, 6 3.21  1  ( K B r ) : 1750, 1180  (COOCH-j);  ( m u l t i p l e t , IH, C3-H); 3.62  (singlet,  v  max  C24-OOCH ) ; h i g h r e s o l u t i o n mass s p e c , M ( 3 4 % ) , 432.3574, +  q  C  O Q  H  / Q  0  3H, o  - Ill requires 432.3602. Anal, calcd. f o r C ^ H ^ O ^ C, 77.73; H, 11.18. Found: C, 77.45; H, 10.99.  This material was compared and shown to be i d e n t i c a l i n every respect [mixed m.p.  (177-179°) [ a ] ^ , TLC, S i l i c a gel G, CH Cl /5% CH 0H, S b C l 2  2  3  3>  49 5 min. at 100°; i r ; nmr*, mass•spectra] to an authentic sample  of  38-hydroxy-25,26,27-tris-norlanostan-24-oic acid methyl ester (56). Methylation of the cleavage product-methyl ester, (49) a)  Compound (56) (6 mg) was dissolved i n dry toluene. (2 ml). Potassium  metal (100 mg) was added  and the mixture was heated to r e f l u x under  an atmosphere of nitrogen and s t i r r e d vigorously f o r one hour to disperse the molten potassium. The mixture was cooled to room temperature and methyl iodide(1 ml) was added. Heating was resumed f o r a period of two hours at 100° a f t e r which the mixture was cooled i n i c e and the excess of potassium destroyed by the addition of methanol. Methylene chloride (5 ml) was added, the solution was f i l t e r e d and the f i l t r a t e evaporated to dryness. The residue was taken up i n methylene chloride/methanol 4:1 (5 ml), washed  once with water and the organic phase was dried over  anhydrous sodium sulphate. Evaporation of the solvent yielded an o i l y residue which was separated by TLC using S i l i c a g e l G and petroleum ether (30-60%)/10% ethyl acetate. E l u t i o n  with methylene chloride/20% methanol  afforded 1.5 mg (25%) of the desired material (49). The aqueous phase was a c i d i f i e d with d i l u t e hydrochloric acid and a small amount of white p r e c i p i t a t e was c o l l e c t e d . The l a t t e r was dissolved i n methylene chloride/ methanol 1:1 (5 ml) and treated with an excess of an ethereal diazomethane  - 112  -  s o l u t i o n at room t e m p e r a t u r e . E v a p o r a t i o n (25%)  of the expected m a t e r i a l  b) °  Compound(56)(10 mg)  5  and  was  d i s s o l v e d i n dry methylene c h l o r i d e (0.5  e t h e r ^ethylene,- c h l o r i d e 3: X25  0° and  of f l u o b o r i c a c i d 50%  ml)  (0.2 ml)  m l ) . T h i s s o l u t i o n was  t r e a t e d w i t h an e t h e r e a l s o l u t i o n (2 ml)  w h i c h was  mg  (49).  t r e a t e d w i t h a s o l u t i o n (0.01 ml)  ethyl  of the s o l v e n t y i e l d e d 1.5  cooled  in  to  of diazomethane (50  mg)  added i n s m a l l p o r t i o n s o v e r a p e r i o d o f 30 m i n u t e s . M e t h y l e n e  c h l o r i d e was  added, the s o l u t i o n was  to y i e l d 10 mg  f i l t e r e d and  e v a p o r a t e d to d r y n e s s  of the d e s i r e d p r o d u c t . R e c r y s t a l l i z a t i o n from methylene  chloride/methanol  gave an a n a l y t i c a l sample (7 mg),  m.p.  174-176°;  23 [a]^  +39.5° (C, 0.2,  C H C l ^ ) . T h i s m a t e r i a l was  compound (49) w h i c h had m.p.  compared t o a sample of  a l s o been r e c r y s t a l l i z e d from the same s o l v e n t ,  173-175.5°; a mixed m e l t i n g p o i n t of 173-175.5° was  compounds were i d e n t i c a l i n e v e r y r e s p e c t Compound I I - a c e t o n i d e - d ^ ,  i n acetone -dg  70%  (0.05  The  c r y s t a l l i n e p r e c i p i t a t e was  to provide  13 mg  Both  mass s p e c t r a ) .  (57)  Compound 1 1 ( 5 1 ) ( 2 0 mg) ml) was  i r , nmr,  ([cx]^,  obtained.  (1 ml)  and  perchloric acid  s t i r r e d f o r a p e r i o d of 15 hours a t room t e m p e r a t u r e .  (59%)  c o l l e c t e d , washed w i t h a c e t o n e and  o f the d e s i r e d m a t e r i a l . The  i n t o i c e c o l d 3% aqueous sodium b i c a r b o n a t e w i t h methylene c h l o r i d e . The anhydrous sodium s u l p h a t e  e x t r a c t was  and  f i l t r a t e was  s o l u t i o n (20 ml)  dried  poured  and  extracted  washed w i t h w a t e r , d r i e d o v e r  e v a p o r a t e d i n vacuo t o y i e l d 10 mg  (45%)  the d e s i r e d compound. R e c r y s t a l l i z a t i o n from n-hexane p r o v i d e d  an  sample, m.p.  (KBr):  1220,  1085  189-190°; [ a ] cm  -1  2 2  +68.3° (C, 0.3,  (C-0-C-0-C); nmr,  6 0.64,  C H C l ) ; i r , v max  0.73,  q  0.80,  0.97,  1.03,  of  analytical  1.08  - 113 -  ( s i n g l e t s , 3H each, C-CH ); 1.23 ( d o u b l e t , J = 1 Hz, 3H, C24H-C25-CH ); 3  0.90  ( d o u b l e t , J = 6 Hz, 3H, C20-CR ); 3.22 ( m u l t i p l e t , 3  (broad t r i p l e t , irradiation to  3  IH, C3-H); 3.60  J"= 6 Hz, IH C24-H); 5.25. ( m u l t i p l e t , IH, C9=C11-H);  (110 db) a t t h e f r e q u e n c y o f t h e m e t h y l group  (6=1.23)  cis  t h e C-24 p r o t o n p r o v i d e d a N u c l e a r Overhauser e f f e c t ; a n e t i n t e n s i t y  i n c r e a s e o f t h e C24-H i n t e g r a l  (6=3.60) o f 24% was o b s e r v e d (C3-H a t  6=3.22 was used as a r e f e r e n c e ) ; h i g h r e s o l u t i o n mass s p e c , M  +  (10%),  506.4643,' C H _ 0 D , r e q u i r e s 506.4605. o o  c  o  Anal, calcd. f o r C ^ H ^ O ^ (determined as C „ „ H 0 „ i n 33 56 3 c£  Compound I I - d i a c e t a t e  C, 78.20; H, 11.06. Found:  C, 78.16; H, 10.80  C^H^O-D,) . 33 50 3 6  (52) and t r i a c e t a t e (53)  Compound I I (51)(300 mg) was r e a c t e d  w i t h a mixture o f p y r i d i n e  (2.5 ml) and a c e t i c a n h y d r i d e (2.5 ml) f o r a p e r i o d o f 48 hours a t room temperature.The m i x t u r e was poured onto i c e and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed c o n s e c u t i v e l y w i t h d i l u t e h y d r o c h l o r i c a c i d , water and sodium b i c a r b o n a t e ( 5 % ) s o l u t i o n . The o r g a n i c phase was d r i e d over anhydrous  sodium, sulphate and e v a p o r a t e d t o  y i e l d 340 mg o f crude m a t e r i a l . T h i s m i x t u r e was s u b j e c t e d t o chromatography u s i n g S i l i c a g e l , Woelm, a c t i v i t y I I I (15 g ) . E l u t i o n w i t h b e n z e n e / e t h y l e t h e r 9:1 y i e l d e d f i r s t by the d i a c e t a t e  the t r i a c e t a t e  (52) (115 mg). The t r i a c e t a t e  from methanol-methylene  (53)(5 mg) f o l l o w e d  (53) was r e c r y s t a l l i z e d  c h l o r i d e t o a f f o r d w h i t e n e e d l e s , m.p. 208-210°;  i r , . vmax ( K B r ) : 1740, 1240 (OAc), 1635, 790 c m  - 1  (C=CH); nmr, 6 0.65,  0.74, 0.88, 0.89, 1.07 ( s i n g l e t s , 3 H each, C-CH ); 1.45 and 1.48 [ s i n g l e t s , 3  3H each, C 2 5 - ( C H ) ] ; 1.95, 2.05 and 2.08 ( s i n g l e t s , 3H e a c h , - 0 C ( 0 ) C H ) ; 3  2  3  - 114 4.50 (broad m u l t i p l e t ,  I H , C3-H ) ;  5.23 ( m u l t i p l e t , C9=C11-H); h i g h n C O O ,  5.04 (broad m u l t i p l e t , IH, C24-H); l u t i o n . mass s p e c , M  +  ( 1 % ) , 586.4223,  r e q u i r e s 586.4233.  Mass s p e c t r o m e t r i c d a t a : m/e  rel.int.%  measured mass  586 571 554 542 540 529 528 527 526 511 484 483  1 1 1 1 1 1 3 15 36 17. 7 7  586.4223  36  58  6  586.4233  528.4091 527.4038 526.4061 511.3741 484.3912 483.3766  470 469 468  2 7 12  470.3745 469.3712 468.3920  467 466  35 21  467.3891 466.3755  453  6  451 425 424  21 3 5  453.3752 453.3357 451.3594 425.3383 424.3602  423 410 409  5 6 19  423.3612 440.3426 409.3412  408  3  408.3652  11  407.3621  393  4  393.3547  392  7  392.3451  391  23  391.3424  56 55 54 51 52 51 51 50 49 52 52 51 50 50 49 45 47 45 48 48 47 46 45 45 48 48 47 47 45 49 44 48 43 47  4 4 4 4 3 3 6 3 3 2 5 2 2 5 2 3 2 2 1 4 1 4 1 4  407  34 34 34 33 32 32 28 31 31 32 28 32 32 28 31 30 31 29 30 26 30 25 29 25 30 26 30 26 29 22 29 22 29 22  528.4177 527.4099 526.4021 511.3786 484.3916 483.3837 483.3685 470.3760 469.3681 468.3966 468.3814 467.3888 466.3810 466.3658 453.3731 453.3368 451.3575 425.3419 424.3704 424.3551 423.3625 410.3394 409.3469 409.3317 408.3755 408.3603 407.3677 407.3524 393.3521 393.3579 392.3442 392.3500 391.3364 391.3422  i o n composition C H 0  3 3 5 5 5  calc  mass  - 115 T a b l e corit. 383 369 367 357 356 355 341  4 3 4 6 27 100 3  337 327 325 323 317 316 315 309 307 301 297 295 289 288 287 285 283 281 271 269 257 255 254 253 243 241 239 229 227 225 215 213 211 203 201 199 . 189 175 173 161  3 3 4 4 1 4 4 7 1 6 9 21 4 5 3 5 5 7 5 8 6 17 3 7 6 14 9 14 15 6 19 16 6 13 16 14 22 31 45 34  383.3030 369.2793 367.2946 357.2680 356.2667 355.2584 341.2815 341.2429 337.2864 327.2715 325.2941 323.2737 317.2332 316.2396 315.2354 309.2568 307.2431 301.2174 297.2624 295.2445 289.2168 288.2111 287.2002 285.2579 283.2458 281.2243 271.2423 269.2292 257.2268 255.2104 254.1939 253.1989 243.2076 241.1906 239.1802 229.1955 227.1823 225.1671 215.1804 213.1624 211.1515 203.1773 201.1634 199.1478 189.1654 175.1472 173.1335 161.1346  26 25 26 20 24 24 24 23 25 23 24 24 24 21 21 23 23 20 22 22 19 19 19 21 21 21 20 20 19 19 15 19 18 18 18 17 17 17 16 16 16 15 15 15 14 13 13 12  39 37 39 37 36 35 37 33 37 35 37 35 29 32 31 33 31 29 33 31 29 28 27 33 31 29 31 29 29 27 26 25 27 25 23 25 23 21 23 21 19 23 21 19 21 19 17 17  2 2 1 5 2 2 1 2 1  2 2  2 2 2 2  3  383.2949 369.2793 367.2999 357.2640 356.2715 355.2636 341.2843 341.2479 337.2895 327.2687 . 325.2894 323.2738 317.2268 316.2401 315.2323 309.2581 307.2425 301.2167 297.2581 295.2426 289.2166 288.2088 287.2010 285.2581 283.2425 281.2268 271.2425 269.2269 257.2268 255.2112 254.1881 253.1955 243.2112 241.1955 239.1799 229.1956 227.1799 225.1643 215.1799 213.1642 211.1486 203.1799 201.1643 199.1486 189.1643 175.1486 173.1330 161.1329  - 116 T a b l e cbnt. 145 135 131 123 121 109 107 105 95 81 71  37 45 27 28 55 68 62 55 78 67 26  69  81  145.1036 135.1175 131.0869 123.1174 121.1009 109.1024 107.0868 105.0717 95.0869 81.0672 71.0862 71.0512 69.0706  11 10 10 9 9 8 8 8 7 6 5 4 5  13 15 11 15 13 13 11 9 11 9 11 7 9  145.1017 135.1173 131.0860 123.1173 121.1017 109.1017 107.0860 105.0704 85.0860 81.0704 71.0860 71.0496 69.0704  1  Meta s t a b l e peaks were o b s e r v e d a t the f o l l o w i n g 454.6 446.0 436.4 430.0 415.7 414.5 413.0 399.7 398.6  1  383.3 373.9 370.5 355.0 339.1 327.1 313.0 299.4 270.6  258.8 252.6 245.3 241.4 240.6 239.8 238.6 225.5 202.6  R e c r y s t a l l i z a t i o n of the d i a c e t a t e yielded colourless ir,  m/e v a l u e s :  (52) from methanol-methylene  l o n g n e e d l e s , m.p.  vmax ( C C l ^ ) : 3609 cm"  1250 (OAc); 1640, 790 cm"  1  1  199.2 114.6 101.3 91.2 89.2 89.0 77.2  (3° OH);  210-211°; [ a ] Vmax ( K B r ) :  2 2  chloride  +83° ( C , l , CHC1 ) ;  3460, 1035 (OH); 1740,  (C=CH); nmr, 6 0.65, 0.75, 0.90, 0.90, 1.10  ( s i n g l e t , 3H each, C-CH ); 1.21 ( s i n g l e t , 6H C 2 5 - ( C H ) ) ; 2.07, 2.12 3  3  2  ( s i n g l e t s , 3H each, C3-0Ac, C24-OAc); 4.52 (broad m u l t i p l e t , I H , C3-H); 4.73 (broad m u l t i p l e t , I H , C24-H); 5.3 ( m u l t i p l e t , I H , C9=C11-H); r e s o l u t i o n mass s p e c , M  +  ( 2 % ) , 544.4112, C.,H ,0 c  c  requires  high  544.4127.  A n a l , c a l c d . f o r C ^ H ^ O ^ C, 74.96; H, 10.36. Found: C, 75.25; H, 9.89.  - 117 Compound  I I I o r 38-meth6xy-5a-lanost-9(11)-en-24-orie (59)  The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from methylene c h l o r i d e 20 hexane t o a f f o r d an a n a l y t i c a l sample, m.p. (C, 1.0, CHC1 ); i r , v max 3  161-162°; I l p a  +93°  ( K B r ) : 1710 (C=*0); 1630 (C=CH); 1100  cm"  1  (C-0-C); nmr, 5 0.64, 0.75, 0.82, 0.97, 1.06  ( s i n g l e t s , 3H each, C-CH );  0.88 ( d o u b l e t , J = 6 Hz, 3H, C20-CH ); 1.09  [ d o u b l e t , J = 7 Hz, 6H,  3  3  C25H-(CH ) ];2.31-2.78 ( o v e r l a p p i n g m u l t i p l e t s , 2H, C25-H and C3-H); 3  2  3.37 ( s i n g l e t , 3H, C3-0CH ); 5.23 ( m u l t i p l e t , I H , C9=C11-H); h i g h 3  mass s p e c , M spectrometric m/e  457 456 454 442 441 424 423 413 410 409 385 381 371 370 35 7 355 343 342 . 341 339 329 328 327 323 315 313 303  +  ( 6 7 % ) , 456.4046, C  3 1  H  5 2  0  2  r e q u i r e s 456.3966. Mass  data:  rel.int.%  measured mass  23 67 1 29 76 4 3 2 25 74 2 27 1 2 1 3 1 2 2 1 3 2 6 3 1 2 3  457.4019 456.3995 454.3884 442.3819 441.3785 424.3664 423.3546 413.3400 410.3503 409.3430  31 31 31 30 30 30 30 28 29 29  53 52 50 50 49 48 47 45 46 45  2 2 2 2 2 1 1 2 1 1  457.4045 456.3966 454.3809 442.3810 441.3731 424.3704 423.3626 413.3419 410.3547 409.3469  381.2986 371.3246 370.3097 357.3073 355.2939  27 26 26 25 25  41 43 42 41 39  1 1 1 1 1  381.3157 371.3313 370.3235 357.3156 355.3000  342.2845 341.2848 339.2706 329.2865 328.2800 327.2674 323.2892 315.2784 313.2606 303.2679  24 24 24 23 23 23 21 22 22 21  38 37 35 37 36 35 39 35 33 35  1 1 1 1 1 1 2 1 1 1  342.2921 341.2843 339.2687 329.2843 328.2765 327.2687 323.2949 315.2688 313.2530 303.2687  '  ion composition C H 0  calc  mas  resolution  - 118 Table cont. 302 299 297 288 287 283 281 273 271 267 261 259 257 256 255 253 247 245 243 241 234 233 229 227 221 217 215 213 207 203 201 199 189 187 185 175 173 171 168 167 163 161 159 157 154 153 151 149  9 3 5 8 17 1 2 8 8 1 4 5 3 3 11 1 2 2 3 6 3 3 6 10 3 4 9 8 5 10 11 6 19 19 6 30 19 8 2 6 7 21 23 8 2 7 3 7  302.2652 299.2385 297.2558 288.2401 287.2357 283.2351 281.2272 273.2221 271.2436 267.2091 261.2240 259.2051 257.2256 256.2155 255.2126 253.2015 247.2072 245.1928 243.2115 241.1913 234.1959 233.1926 229.2048 227.1803 221.1962 217.1898 215.1857 213.1668 207.1757 203.1813 201.1647 199.1500 189.1611 187.1462 185.1362 175.1499 173.1298 171.1219 168.1540 167.1445 163.1484 161.1343 159.1193 157.1018  21 21 22 20 20 21 21 19 20 20 18 18 19 19 19 19 17 17 18 18 16 16 17 17 15 16 16 16 14 15 15 15 14 14 14 13 13 13 11 11 12 12 12 12  34 31 33 32 31 31 29 29 31 27 29 27 29 28 27 25 27 25 27 25 26 25 25 23 25 25 23 21 23 23 21 19 21 19 17 19 17 15 20 19 19 17 15 13  153.1271 151.1121 149.1307  10 10 11  17 15 17  1 1 1 1  1  1 1  1 1 1 1 1  1  1 1  1 1  302.2608 299.2374 297.2581 288.2453 287.2374 283.2426 281.2268 273.2218 271.2425 267.2112 261.2217 259.2061 257.2268 256.2190 255.2112 253.1955 247.2061 245.1905 243.2112 241.1955 234.1983 233.1905 229.1956 227.1799 221.1905 217.1956 215.1799 213.1642 207.1748 203.1799 201.1643 199.1486 189.1643 187.1486 185.1329 175.1486 173.1330 171.1173 168.1514 167.1435 163.1486 161.1329 159.1173 157.1017 153.1279 151.1122 149.1329  - 119 Table cont.  147 145 141 136 135 133 131 129 128 127 125 121 119 117 113 109 107 105 99 95 94 93 91 87 86 85 83 81 79 72 71 69 67 57 55 43  20 20 15 12 37 29 15 6 6 30 14 38 39 7 5 30 35 33 17 50 35 30 21 8 7 16 18 35 19 5 79 7 62 25 16 65 100  149.0930 147.1184 145.1022 141.1265 136.1218 135.1176 133.1035 131.0892  10 11 11 9 10 10 10 10  13 15 13 17 16 15 13 11  128.1182 127.1124 125.0969 121.1026 119.0863 117.0710 113.0979 109.1036 107.0876 105.0698 99.0803 95.0841 94.0726 93.0694 91.0598 87.0834 86.0701 85.0681 83.0880 81.0704 79.0511 72.0528 71.0520 71.0847 69.0656 69.0368 67.0531 57.0599 55.0415 43.0087  8 8 8 9 9 9 7 8 8 8 6 7 7 7 7 5 5 5 6 6 6 4 4 5 5 4 5 4 4  16 15 13 13 11 9 13 13 11 9 11 11 10 9 7 11 10 9 11 9 7 8 7 11 9 5 7 9 7  1  1  1 1 1  1  1  1 1 1  1 1 1  149.0966 147.1173 145.1017 141.1279 136.1251 135.1173 133.1017 131.0860 128.1200 127.1122 125.0966 121.1017 119.0860 117.0704 113.0966 109.1017 107.0860 105.0704 99.0809 95.0860 94.0782 93.0704 91.0547 87.0809 86.0731 85.0653 83.0860 81.0704 79.0547 72.0574 71.0496 71.0860 69.0704 69.0340 67.0547 57.0704 55.0547  The f o l l o w i n g meta s t a b l e s were o b s e r v e d : 426.5 394.5 379.3 378.0 373.9 361.5 346.9 346.3  342.4 318.7 308.0 293.7 266.6 266.3 254.2 252.2  241.8 230.8 228.7 226.5 212.6 200.6 198.6 186.6  173.4 172.8 172.6 166.8 160.8 103.0 89.0 77.2  - 120 Anal, calcd.  for C  3 1  H  5 2  0 : C, 81.52; H, 11.48. Found: C, 81.68, H, 11.57. 2  Compound IV o r 3B-meth6xy-5a-'lariosta-9 ( 1 1 ) , 25-dien-24 S - o l (65) The m a t e r i a l o b t a i n e d from t h e c h r o m a t o g r a p h i c s e p a r a t i o n was r e c r y s t a l l i z e d from methylene chloride-hexane m.p.  180-180.5°; l a ]  2 5  t o y i e l d an a n a l y t i c a l sampl  +86° (C, 0.85, CHC1 ); i r , vmax ( C C 1 ) ; 3615 cm" 3  4  ( a l l y l i c 2°0H); v max ( K B r ) : 3490 (OH); 1652, 900 (C=CH ); 1635, 795 2  (C=CH); nmr, 6 0.63, 0.72, 0.78, 0.94, 1.03 ( s i n g l e t s , 3H each, C-CH ); 3  0.89 ( d o u b l e t , J = 6 Hz, 3H, C20-CH ); 1.70 ( d o u b l e t , J = 1 Hz, 3H, 3  C25-C27H ); 2.62 (broad m u l t i p l e t , 3  C3-0-CH , e q u a t o r i a l ) ; 3  I H , C3-H, a x i a l ) ; 3.33 ( s i n g l e t ,  3.99 (broad t r i p l e t , J = 6 Hz, I H , C24-H); 4.81  narrow q u a r t e t , J = 1 Hz, I H , C 2 6 - H ) ; 4.89  ( s i n g l e t , IH, C 2 6 - H ) ; 5.19  A  (multiplet, C  31 52°2 H  IH, C9=C11-H); h i g h r e s o l u t i o n  i  re< u±Tes  m/e  456 441 438 425 423 409 391 355 341 327 323 309 297 295 287 284 273 270  ,  B  mass s p e c , M  456.3966; mass s p e c t r o m e t r i c  measured mass . 40 24 9 2 13 17 17 2 1 22 3 2 2 2 4 1 3 2  3H,  ion composition C H 0  +  ( 4 0 % ) , 456.3930  data:  c a l c . mass  456.3930 441.3791 438.3921 425.3737 423.3536 409.3357 391.3356  31 30 31 30 30 29 29  52 49 50 49 47 45 43  2 2 1 1 1 1  456.3966 441.3731 438.3860 425.3782 423.3625 409.3469 391.3364  327.2689 323.2924 309.2221 297.2626 295.2364 287.2353 284.2539 273.2256 270.2313  23 21 22 22 22 20 21 19 20  35 39 29 33 31 31 32 29 30  1 2 1  327.2687 323.2949 309.2217 297.2581 295.2426 287.2374 284.2503 273.2218 270.2347  1 1  - 121 T a b l e corit.  269 261 257 255 243 241 229 227 215 213 203 201 199 189 187 185 175 173 161 159 157 150 149 147 145 143 141 137 135 133 131 125 123 121 119 109 107 105 95 93 91 85 83 81 73 71 69 67 55  4 3 2 6 2 4 5 4 6 5 4 6 3 7 7 3 10 12 9 12 4 4 7 10 10 2 4 4 14 12 7 8 8 16 16 19 17 14 21 14 6 4 8 16 4 100 25 12 19  269.2331 261.2195 257.2374 255.2116 243.2096 241.1936 229.1994 227.1823 215.1800 213.1750 203.1860 201.1639 199.1530 189.1599 187.1451 185.1331 175.1486 173.1327 161.1313 159.1173 157.0996 150.1391 149.1358 147.1146 145.0971 143.0893 141.1292 137.1328 135.1280 133.1017 131.0810 125.0954 123.1162 121.0983 119.0843 109.1005 107.0831 105.0694 95.0860 93.0704 91.0546 85.0673 83.0853 81.0699 73.0651 71.0506 69.0684 67.0511 55.0240  20 18 19 19 18 18 17 17 16 16 15 15 15 14 14 14 13 13 12 12 12 11 11 11 11 11 9 10 10 10 10 8 9 •9 9 8 8 8 7 7 7 5 6 6 4 4 5 5 3  29 29 29 27 27 25 25 23 23 21 23 21 19 21 19 17 19 17 17 15 13 18 17 15 13 11 17 17 16 13 11 13 15 13 11 13 11 9 11 9 7 9 11 9 9 7 9.' 7 3  1  1  1  1  1 1  1  269.2269 261.2217 257.2269 255.2112 243.2112 241.1955 229.1956 227.1799 215.1799 213.1643 203.1799 201.1643 199.1486 189.1643 187.1486 185.1329 175.1486 173.1330 161.1329 159.1173 157.1017 150.1408 149.132 9 147.1173 145.1017 143.0860 141.1279 137.1330 135.1251 133.1017 131.0860 125.0966 123.1173 121.1017 119.0860 109.1017 107.0860 105.0704 95.0860 93.0704 91.0547 85.0653 83.0860 81.0704 73.0653 71.0496 69.0704 67.0547 55.0184  - 122 The f o l l o w i n g meta s t a b l e s were o b s e r v e d : 426.5 407.6 406.8 394.1 380.5  379.6 379.3 374.7 373.8 361.6  346.6 317.5 283.8 266.2 241.0  Anal, calcd. f o r C ^ H ^ C y  224.5 186.3 184.7 180.8 127.3 89.1 77.2  C, 81.52; H, 11.48. Found: C, 81.62; H, 11.31.  Compound I V - a c e t a t e o r 38-methoxy-5cx-lanosta-9 (11) , 2 5 - d i e n - 2 4 S - y l - a c e t a t e (61). The m o t h e r l i q u o r from compound I V r e c r y s t a l l i z a t i o n was e v a p o r a t e d and t h e r e s i d u e was t r e a t e d f o r f i v e h o u r s a t room t e m p e r a t u r e w i t h a m i x t u r e o f a c e t i c a n h y d r i d e / p y r i d i n e , 1:1 and worked up i n t h e u s u a l f a s h i o n . Chromatography o v e r S i l i c a g e l u s i n g benzene as e l u e n t  provided  the d e s i r e d a c e t a t e ( 6 1 ) . R e c r y s t a l l i z a t i o n from m e t h y l e n e c h l o r i d e - h e x a n e 20  p r o v i d e d an a n a l y t i c a l sample, m.p. ir,  167-169°;  [ a ] ^ +85° (C, 1.0, C H C l ) ; 3  v m a x ( K B r ) : 1748, 1242 (OAc); 1630, 790 (C=CH); 1650, 898 (C=CH ); 2  1100 cm"  1  ( C - 0 - C ) ; nmr, 6 0.63, 0.72, 0.78, 0.95, 1.03 ( s i n g l e t , 3H e a c h ,  C-CH ); 0.87 3  ( d o u b l e t , J » 6 Hz, 3H, C20-CH ); 1.70 ( d o u b l e t , J = 1 Hz, 3  3H, C25-CH ); 2.02 ( s i n g l e t , 3H, C24-OAc); 2.63 ( m u l t i p l e t , I H , C.J-H) a x i a l ) ; 3  3.34 ( s i n g l e t , 3H, C3-OCH , e q u a t o r i a l ) ; 4.88 (narrow q u a r t e t , J = 1 Hz, 3  IH,  C 2 6 - H ) ; 4.93 ( s i n g l e t , I H , C26-H ); 5.12 ( t r i p l e t , J = 6 Hz, I H , A  fi  C24-H); 5.21 ( m u l t i p l e t , I H , C9=C11-H); h i g h r e s o l u t i o n mass s p e c , (9%);  498.4051, C  m/e  499 498  3 3  H  5 4  0  3  r e q u i r e s 498.4071; mass s p e c t r o m e t r i c  measured mass 3 9  499.4136 498.4051  ion composition C H 0 33 33  55 54  3 3  499.4150 498.4071  data:  M  +  - 123 T a b l e corit. 484 483 469 451 440 438 423 409 407 393 391 385 384 362 328 327 314 313 297 282 281 233 123 113 110 109 107  3 9 3 11 4 31 26 3 2 3 26 1 1 7 40 82 1 2 4 1 3 1 17 4 5 46 38  484.3859 483.3813  32 32  52 51  3 3  484.3916 483.3837  451.3515 440.3969 438.3857 423.3595 409.3461 407.3596 393.3448 391.3384  31 31 31 30 29 ' 30 29 29  47 52 50 47 45 47 45 43  2 1 1 1 1  451.3575 440.4017 438.3860 423.3625 409.3469 407.3678 393.3521 391.3365  384.3370  27  44  1  384.3391  328.2723 327.2672 314.2598 313.2435  23 23 22 22  36 35 34 33  1 1 1 1  328.2765 327.2687 314.2608 313.2531  282.2331 281.2280 233.1870 123.1187 113.0604 110.1030 109.1004 107.0828  21 21 16 9 6 8 8 8  30 29 25 15 9 14 13 11  1 2  282.2347 281.2268 233.1905 123.1173 113.0602 110.1095 109.1017 107.0860  A n a l , c a l c d . f o r C^H^O.^ C, 79.46; H, 10.91. Found: C  s  79.79; H, 11.19.  H y d r o g e n a t i o n o f compound I V - a c e t a t e , ( 6 2 ) Compound I V - a c e t a t e ( 6 1 ) ( 5 0 mg) i n 1,2-dimethoxyethane  (10 m l ) was  h y d r o g e n a t e d o v e r 10% Pd/C (10 mg) a t room t e m p e r a t u r e and a t m o s p h e r i c p r e s s u r e f o r a p e r i o d o f 0.5 hour. One mole e q u i v a l e n t o f hydrogen was t a k e n up. The c a t a l y s t was removed by f i l t r a t i o n and e v a p o r a t i o n o f t h e s o l v e n t y i e l d e d a c r y s t a l l i n e r e s i d u e (50 mg, 9 9 % ) . R e c r y s t a l l i z a t i o n from methylene c h l o r i d e / m e t h a n o l y i e l d e d an a n a l y t i c a l sample, m.p. 20 [a]  D  +91° (C, 1, CHC1 ); i r ,  (C=CH); 1105 c n f  3  1  v  max  184-185°;  ( K B r ) : 1740, 1245 (OAc); 1635, 815  (C-O-C); nmr, 6 0.64, 0.73, 0.79, 0.96, 1.04  (singlets,  - 124 3H e a c h , C-CH ); 0.88 [ d o u b l e t , J = 6 Hz, 9H, C20-CH and C 2 5 - ( C H ) ] ; 3  3  3  2  2.02 ( s i n g l e t , 3H, C24-0Ac); 2.63 ( m u l t i p l e t , I H , C3-H, a x i a l ) ; 3.35 ( s i n g l e t , 3H, C3-0CH  3>  e q u a t o r i a l ) ; 4.70 ( m u l t i p l e t , I H , C24-H); 5.24  ( m u l t i p l e t , I H , C9=C11-H); h i g h r e s o l u t i o n mass s p e c , M 500.4216, C  H  3 3  5 6  0  3  +  (32%),  r e q u i r e s 500.4228.  Anal, calcd. f o r C^H^O  : C, 79.20; H, 11.20. Found: C, 78.80; H, 11.52.  Compound d i h y d r o - I V (63) D i h y d r o - I V - a c e t a t e ( 6 2 ) ( 4 0 mg) was t a k e n up i n benzene (5 m l ) and t r e a t e d w i t h 2 N m e t h a n o l i c sodium h y d r o x i d e (10 ml) f o r a p e r i o d o f 40 hours a t room t e m p e r a t u r e . The m i x t u r e was t r e a t e d w i t h i c e c o l d w a t e r (10 ml) and e x t r a c t e d w i t h benzene. The o r g a n i c phase was d r i e d o v e r anhydrous sodium s u l p h a t e and e v a p o r a t e d t o y i e l d 33 mg (90%) o f s o l i d m a t e r i a l ( 6 3 ) , r e c r y s t a l l i z a t i o n from methlene chloride/methanol a f f o r d e d  20 an a n a l y t i c a l sample, m.p. 161.5-163°; [ a ] ^ +81° (C, 1, CHC1 ); 3  vmax ( C C 1 ) : 3632 c m 4  - 1  ir,  (2° OH); v max ( K B r ) : 1635, 815 (C=CH); 1100 c m  - 1  (C-0-C); nmr, 6 0.68, 0.77, 0.82, 0.99, 1.07 ( s i n g l e t s , 2H each, C-CH ); 3  0.90, 0.95 [ d o u b l e t s , o v e r l a p p i n g , 3H, 6H, C20-CH , C 2 5 - ( C H ) ; 2.69 ( m u l t i 3  3  2  p l e t , I H , C3-H, a x i a l ) ; . 3.36 ( m u l t i p l e t , I H , C24-H); 3.39 ( s i n g l e t , 3H, C3-OCH , e q u a t o r i a l ) ; 5.28 ( m u l t i p l e t , I H , C9=C11-H); h i g h r e s o l u t i o n 3  mass s p e c , M  +  ( 5 0 % ) , 458.4056, C  3 1  H  5 4  0  2  r e q u i r e s 458.4123.  A n a l , c a l c d . f o r C ^ H ^ O ^ C, 81.23; H, 11.79. Found: C, 81.03; H, 12.06. S y n t h e s i s o f compound I I I (3&-methoxy-5ct-lanost-9(11)-en-24-one (59) D i h y d r o I V ( 6 3 ) ( 2 0 mg) i n a c e t o n e (10 ml) was t r e a t e d w i t h  Kiliani  reagent (0.1 m l j 0.6 gsodium d i c h r o m a t e d i h y d r a t e i n 0.8 g c o n e s u l p h u r i c  - 125 a c i d and 2.7 m l w a t e r ) a t 0° and under an atmosphere  of n i t r o g e n .  A f t e r t h e r e a c t i o n m i x t u r e had t u r n e d a y e l l o w i s h - r e d c o l o u r , was of  methanol  added and the m i x t u r e was e x t r a c t e d , w i t h benzene t o y i e l d 20 mg a s o l i d m a t e r i a l . Chromatography  on S i l i c a  g e l (Woelm, a c t i v i t y I I I ,  benzene) and r e c r y s t a l l i z a t i o n from hexane p r o v i d e d an a n a l y t i c a l  sample  w h i c h was i d e n t i c a l i n e v e r y r e s p e c t (m.p., undepressed mix. m.p.,  [a]^, i r ,  nmr) t o t h e n a t u r a l compound I I I .  Compound IV a c e t a t e (61) from compound Compound I  I-monoacetate  monoacetate(44) (900 mg) was d i s s o l v e d i n p y r i d i n e  (70 ml) and phosphorus  o x y c h l o r i d e (15 ml) was added d r o p w i s e . The m i x t u r e  was l e f t f o r 40 hours a t room temperature and a f t e r w a r d s poured i n t o i c e w a t e r . E x t r a c t i o n w i t h benzene y i e l d e d 810 mg  (98%) o f the d e s i r e d  a c e t a t e ( 6 1 ) . R e c r y s t a l l i z a t i o n from methylene c h l o r i d e - h e x a n e p r o v i d e d an a n a l y t i c a l sample. T h i s m a t e r i a l was undepressed mix. m.p.,  [a]  D >  i d e n t i c a l i n every respect(m.p.,  i r , nmr) t o t h e a c e t a t e o b t a i n e d from  compound IV.  Compound V o r 5 a - l a n o s t a - 9 (11) , 25-diene-3ct, 24 R - d i o l The m a t e r i a l e l u t e d from t h e chromatography  (66)  column was  recrystallized  from methylene c h l o r i d e - h e x a n e t o p r o v i d e an a n a l y t i c a l sample, m.p. 184'; i r , v max v max nmr,  ( C C 1 ) : 3631 (2° a x i a l OH); 3619 cm"  (2° OH,  ( K B r ) : 3620 (OH); 3100, 910, 840 (C=CH ); 1650, 820 cm"  allylic); 1  2  (CDC1J,  <5 0.66, 0.76,  0.82,  0.96,  1.07  J  0.91  ( d o u b l e t , J = 6 Hz, 3H, C20-CH ); 1.72  3.42  ( m u l t i p l e t , IH, C3-H,  IH,  1  4  3  C24-H); 4.84  e q u a t o r i a l ) ; 4.02  181-  (C=CH);  ( s i n g l e t s , 3H e a c h , C - C H J ; 3 ( b r o a d s i n g l e t , 3H,  C25-CH ); 3  (broad t r i p l e t , J = 6 Hz,  (narrow m u l t i p l e t , IH, C 2 6 - H ) ; 4.93 A  (narrow m u l t i p l e t ,  - 126 LH, C26-H ); 5.26 ( m u l t i p l e t fi  M  +  IH, C9=C11-H); h i g h r e s o l u t i o n  (26%), 442.3813, C^H^O,, r e q u i r e s 442.3810; mass spectrome  m/e  rel.int.%  measured mass  442 440 427 424 413 409 407 393 391 374 367 355 353 341 339 335 327 325 323 313 311 309 302 299 297 295 288 285 283 281 273 271 270 269 259 257 255 253 247 245 243 241 239  26 3 20 10 15 72 8 14 18 10 1 1 1 5 2 1 3 2 6 38 3 3 1 3 5 5 3 2 4 3 9 6 3 5 5 6 14 3 6 5 4 10 4  442.3813 440.3722 427.3568 424.3685  30 30 29 30  50 48 47 48  2 2 2 1  442.3810 440.3654 427.3576 424.3704  409.3465 409.3386 393.3414 391.3334 374.3276 367.2923 355.2953 353.2792 341.2858 339.2846 335.2516 327.2697 325.2865 323.2757 313.2561 311.2500 309.2569 302.2650 299.2413 297.2520 295.2386 288.2432 285.2603 283.2375 281.2222 273.2215 271.2275 270.2342 269.2275 259.2062 257.2167 255.2067 253.1958 247.2041 245.1904 243.2089 241.1939 239.1821  29 29 29 29 25 26 25 25 24 24 24 23 24 24 22 22 23 21 21 22 22 20 21 21 21 19 19 20 20 18 19 19 19 17 17 18 18 18  45 43 45 43 42 39 39 37 37 35 31 35 37 35 33 31 33 34 31 33 31 32 33 31 29 29 27 30 29 27 29 27 25 27 25 27 25 23  1 1  409.3469 407.3314 393.3521 391.3364 374.3185 367.3000 355.3000 353.2844 341.2843 339.2688 335.2375 327.2687 325.2894 323.2738 313.2530 311.2375 309.2581 302.2608 299.2374 297.2582 295.2426 288.2453 285.2581 283.2426 281.2269 273.2218 271.2062 270.2347 269.2269 259.2061 257.2269 255.2112 253.1955 247.2061 245.1905 243.2112 241.1955 239.1799  ion composition c H 0  2 1 1 1 1 1 1 1 1 1 1 1  1  1 1 1  1 1  c a l c . mass  - 127 Table cbnti  231 229 227 225 222 220 219 217 215 213 207 205 203 201 199 191 189 187 185 179 175 173 167 163 161 159 157 149 147 145 141 137 135 133 131 127 125 123 122 121 119 109 107 105 97  4 10 9 3 1 2 3 5 12 11 3 4 11 11 7 6 7 19 19 8 4 32 24 2 13 24 24 9 19 24 23 3 12 8 37 2 30 17 7 12 21 10 45 46 57 1 47 39 14  231.1900 229.1959 227.1775 225.1671 222.1944 220.1823 219.1697 217.1857 215.1796 213.1629 207.1747 205.1603 203.1851 201.1678 199.1465 191.1820 191.1461 189.1632 187.1473 185.1316 179.1424 175.1464 173.1319 167.1451 163.1477 161.1339 159.1185 157.1041 149.1298 147.1190 145.1031 141.1204 137.1342 137.0936 135.1189 135.0815 133.1009 131.0872 127.1160 125.1339 123.1168 122.1084 121.1021 119.0861 109.0999 109.0684 107.0837 105.0689 97.1027  16 17 17 17 15 15 15 16 16 16 14 14 15 15 15 14 13 14 14 14 12 13 13 11 12 12 12 12 11 11 11 9 10 9 10 9 10 10 8 9 9 9 9 9 8 7 8 8 7  23 25 23 21 16 24 23 25 23 21 23 21 23 21 19 23 19 21 19 17 19 19 17 19 19 17 15 13 17 15 13 17 17 13 15 11 13 11 15 17 15 14 13 11 13 9 11 9 13  1  1 1 1  1 1  1  1 1  1 1 1 1  1  231.1749 229.1956 227.1799 225.1643 222.1983 220.1827 219.1749 217.1956 215.1799 213.1642 207.1748 205.1592 203.1799 201.1643 199.1486 191.1799 191.1435 189.1643 187.1486 185.1329 179.1435 175.1486 173.1330 167.1435 163.1486 161.1329 159.1173 157.1017 149.1329 147.1173 145.1017 141.1279 137.1330 137.0966 135.1173 135.0809 133.1017 131.0860 127.1122 125.1330 123.1173 122.1095 121.1017 119.0860 109.1017 109.0653 107.0860 105.0704 97.1017  - 128 Table cont.  95 93 91 83 81 79 77 71  66 41 28 23 52 26 11 3 47 77 35 26 87 100  69 67 57 55 43  95.0865 93.0700 91.0557 83.0881 81.0710 79.0570 77.0395 71.0856 71.0493 69.0688 67.0502 57.0378 55.0155  7 7 7 6 6 6 6 5 4 5 5 3 3  11 9 7 11 9 7 5 11 7 9 7 5 3  1  1 1  95.0860 93.0704 91.0547 83.0860 81.0704 79.0547 77.0391 71.0860 71.0496 69.0704 67.0547 57.0340 55.0183  Compound V-diacetate or 5ct-lanosta-9(11),25-diene-3a, 24 R-diacetate (67) Compound V(66)(25 mg) was treated with a c e t i c anhydride  (1 ml) and  pyridine (1 ml) over a period of twenty hours at room temperature. The mixture was poured into ice-water and extracted with methylene chloride to provide a crude product which was chromatographed using S i l i c a g e l ( 5 g, Woelm, neutral, a c t i v i t y I I I ) . Benzene eluted 10 mg (33%) of the desired diacetate (67) which was r e c r y s t a l l i z e d from methylene chloride/methanol to provide an a n a l y t i c a l sample, m.p. 139-140°; i r , v max (KBr): 1740 (OAc); 1652 (C=C); 1250 cm"  1  (C-0); nmr, 6 0.60, 0.72, 0.81, 0.88, 1.02  ( s i n g l e t s , 3H each, C-CH ); C20-CH not w e l l defined; 1.67 (broad s i n g l e t , 3  3  3H, C25-CH ); 2.00 [ s i n g l e t , 6H, ( 0 A c ) ] ; 4.61 (multiplet, IH, C3-H); 3  2  4.83 (multiplet, IH, C26-H ); 4.89 (multiplet, IH, C26-H ); 4.97-5.35 A  B  (overlapping multiplets,2H, C9=C11-H and C24-H); high resolution mass spec, M  +  (10%), 526.3980, C^H^O^ requires 526.4021.  -  129  -  Compound V - d i a e e t a t e epimer o r 5ct-lanosta-9(11), 24 S - d i a c e t a t e (68)  25-diene-3g,  Compound I I - d i a c e t a t e ( 5 2 ) (20 mg) i n p y r i d i n e (5 ml) was t r e a t e d w i t h phosphorus  o x y c h l o r i d e (0.5 ml) and kept  temperature. The mixture  for forty  hours a t room  was poured i n t o i c e - w a t e r and e x t r a c t e d w i t h  benzene t o p r o v i d e 19.1 mg (99%)  of crystalline material. Recrystallization  from methylene chlornde/methanol p r o v i d e d an a n a l y t i c a l sample, m.p. 217218°;  [<x]J + 3 8 °  (OAc);  (C, 1, CHC1 ); i r , v m a x (KBr) : 3050 ( O C H p ; 1745 3  1655 (C=C); 1245 cm"  1  (C-0); nmr, <S 0.63, 0.72, 0.85, 0.88, 1.06  ( s i n g l e t s , 3H each, C-CH ); 0.88 ( d o u b l e t , J = 6 Hz, C20-CH ); 1.70 3  3  (broad s i n g l e t , 3H, C25-CH ); 2.01 [ s i n g l e t , 6H, (OAc) ]; 4.44 ( m u l t i p l e t , 3  IH, C3-H); 4.88 ( m u l t i p l e t , IH, C26-H.); 4.94 ( m u l t i p l e t , IH, C 2 6 - H _ ) ; 5.03-5.29 ( o v e r l a p p i n g m u l t i p l e t s , 2H, C9=C11-H and C24-H); h i g h r e s o l u t i o n mass s p e c ,  M  +  (99%), 526.4046, C ^ H ^ O ^ r e q u i r e s 526.4021.  A n a l , c a l c d . f o r C ^ H ^ O ^ : C, 77.52; H, 10.33. Found: C, 77.45; H, 10.39.  Compound VI (70) The  i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from methylene  chloride-hexane  20 t o y i e l d an a n a l y t i c a l sample, m.p. 204-205°; ir, 1105  v m a x ( C C l ) : 3607 c m  - 1  4  cm"  (C-0-C);  1  [a]^  +92° (C, 0.9, CHC1 ); 3  (3° OH); v max ( K B r ) : 1630, 815 (C=CH);  nmr, 6 0.65, 0.75, 0.80, 0.97, 1.05 ( s i n g l e t s , 3H  each, C-CH ); 0.91 ( d o u b l e t , J - 6 Hz, C20-CH ); 1.17 [ s i n g l e t , 3  3  6 H,  C 2 5 - ( C H ) J ; 2.63 ( m u l t i p l e t , IH, C3-H, a x i a l ) ; ^ 3.32 ( m u l t i p l e t , I H ) ; 3  3.37  2  ( s i n g l e t , 3H, C3-0CH  mass s p e c t r o m e t r i c  data:  3>  equat.);  5.24 ( m u l t i p l e t , IH, C9=C11-H);  - 130 m/ e  474 459 456 441 439 438 423 414 409 407 399 391 384 383 367 355 329 327 315 313 302 297 295 289 288 287 285 283 273 269 261 259 255 247 245 241 234 229 227 221 219 215 203 201 191 189 187 175  rel.int.% 11 11 42 52 9 4 38 3 50 7 8 8 11 28 8 4 9 58 3 6 13 14 7 9 8 16 9 7 12 7 18 8 12 6 6 14 3 16 16 4 4 18 21 19 22 28 57 39  measured mass 474.4079 459.3812 456.3973 441.3728 439.3540 438.3810 423.3608 414.3531 409.3511 407.3249 399.3355 391.3336 384.3444 383.3378 367.2971 355.2970 329.2893 327.2690 315.2621 313.2615 302.2631 297.2514 295.2349 289.2543 288.2459 287.2374 285.2558 283.2386 273.2225 269.2237 261.2206 259.2034 255.2111 247.2082 245.1899 241.1991 234.2020 229.1994 227.1793 221.1866 219.1776 215.1822 203.1427 201.1654 191.1822 189.1652 187.1495 175.1468  ion composition c H 0 31 30 31 30 30 31 30 28 29 29 27 29 27 27 26 25 23 23 22  54 51 52 49 47 50 47 46 45 43 43 43 44 43 39 39 37 35 35  21 22 22 20 20 20 21 21 19 20 18 18 19 17 17 18 16 17 17 15 15 16 14 15 14 14 14 13  34 33 31 33 32 31 33 31 29 29 29 27 27 27 25 25 26 25 23 25 23 23 19 21 23 21 19 19  3 3 2 2 2 1 1 2 1 1 2 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  c a l c . mass  474.4071 459.3837 456.3966 441.3731 439.3575 438.3860 423.3625 414.3497 409.3469 407.3312 399.3262 391.3364 384.3391 383.3312 367.2999 355.3000 329.2843 327.2687 315.2687 302.2608 297.2581 295.2426 289,2531 288.2453 287,2374 285.2581 283.2425 273.2218 269.2269 261,2217 259,2061 255,2112 247.2061 245.1905 241.1955 234.1983 229.1956 227.1799 221,1905 219.1748 215.1799 203.1435 201.1643 191.1799 189.1643 187.1486 175.1486  - 131 T a b l e cont,,  173 170 167 163  32 9 10 16  161 159 153 0 149 147 145 143 137 135 133 128 127 125 123  37 28 7 20 25 20 11 20 57 32 3 38 23 36  121 113 111  56 8 21  109 107 105 99 97 87 85 73 71  64 40 40 27 18 12 30 14 82  Anal, calcd. f o r  C  173.1339  13  17  167.1445 163.1470 163.1108 161.1317 • 159.1136 153.1317 149.1290 147.1156 145.0977 143.1068 137.1333 135.1147 133.1009 128.1165 127.1139 125.0937 123.1187 123.0939 121.1008 113.0965 111.1150 111.0803 109.0993 107.0847 105.0681 99.0819 97.0642 87.0819 85.0650 73.0654 71.0866 71.0485  11 12 11 12 12 10 11 11 11 8 10 10 10 8 8 8 9 8 9 7 8 7 8 8 8 6 6 5 5 4 5 4  19 19 15 17 15 17 17 15 13 15 17 15 13 16 15 13 15 11 13 13 15 11 13 11 9 11 9 11 9 9 11 7  31 52°2 H  H, 11.9; c a l c d . f o r C  3 1  H  5 4  :  C  '  8  1  ,  6  ;  H, 11.4;  173.1330 1 1  1  2  1 1 1 1 1 1  1 1 1 1 1 1  167.1435 163.1486 163.1122 161.1329 159.1173 153.1279 149.1329 147.1173 145.1017 143.1071 137.1330 135.1173 133.1017 128.1200 127.1122 125.0966 123.1173 123.0820 121.1017 113.0966 111.1173 111.0809 109.1017 107.0860 105.0704 99.0809 97.0653 87.0809 85.0653 73.0653 71.0860 71.0496  calcd. for ' 31 54°2 C  H  0 : C, 78.4; H, 11.4. Found: C, 81.37; 3  - 132 Compound V I I o r 3g-methbxy-26,27-bis n o r - 5 a - l a n o s t - 9 ( 1 1 ) - e n - 2 4 - o n e (71) The m a t e r i a l o b t a i n e d from the c h r o m a t o g r a p h i c s e p a r a t i o n was r e c r y s t a l l i z e d from m e t h y l e n e c h l o r i d e / m e t h a n o l t o p r o v i d e an a n a l y t i c a l 20  sample, m.p.  161-162; [ a ]  Q  +95° (C, 1.2, C H C 1 ) ; i r , v m a x 3  (KBr):  1725 (C=0); 1635, 815 (C=CH); 1100 cm" (C-O-C); nmr, 6 0.64, 0.74, 0.80 , 0.98, 1.04 ( s i n g l e t , 3H each, C-CH ); 0.8 1  3  C20- CH3);  2.12 [s i n g l e t , 3H, C(0)-CH 3 ] ;  C(0) -CH ] ; 2.63 ( m u l t i p l e t , IH, 2  5.23 ( m u l t i p l e t , IH, 442. 3845,  m/e 428 427 413 395 381 378 370 363 357 355 353 339 329 327 323 314 313 311 299 297 295 288 287 285 283 281 274  C  2.41 [b  C3-H); 3.35 ( s i ;  C9=C11-H); h i g h r e s o l u t i o n  0^ r e q u i r e s 442.3810; mass spec 30 50' H  rel.int.% 100 1 83 6 65 1 1 5 1 3 2 1 2 4 2 1 1 1 2 3 1 3 6 2 1 1 9  measured mass  ion composition C H 0  c a l c . mass  428.3608 427.3653 413.3337 395.3316 381.3136  29 29 28 28 27  48 47 45 43 41  2 2 2 1 1  428.3653 427.3576 413.3419 395.3312 381.3157  370.3243 363.2945 357.3183 355.3019 353.2863  26 27 25 25 25  42 39 41 39 37  1  370.3235 363.3052 357.3156 355.3000 353.2844  329.2919 327.2679 323.2795 314.2618 313.2518 311.2393 299.2393 297.2547 295.2470 288.2438 287.2374 285.2206 283.2449 281.2265 274.2307  23 23 24 22 22 22 21 22 22 20 20 20 21 21 19  37 35 35 34 33 31 31 33 31 32 31 29 31 29 30  1 1 1 1 1 1 1 1 1 1 1 1  1  329.2843 327.2687 323.2738 314.2608 313.2530 311.2374 299.2374 297.2581 295.2426 288.2453 287.2374 285.2218 283.2425 281.2268 274.2296  - 133 Table cont.  270 259 257 255 245 243 241 233 229 227 225 219 215 205 203 201 189  1 8 3 6 6 4 6 1 5 8 2 1 8 5 7 9 17  187 179 175 173 167 161 159 153 151 '  18 3 28 20 6 20 22 4 2  147 145 141 139 135  20 20 10 7 32  133 127 125 123  28 2 13 16  121 119 113 111 109 107 105 99 95  32 35 4 5 27 34 31 41 49  270.2392 259.2028 257.2280 255.2102 245.1877 243.2057 241.1925 233.1899 229.1967 227.1824 225.1687 219.1794 215.1795 205.1548 203.1761 201.1625 189.1642 189.1308 187.1500 179.1466 175.1478 173.1317 167.1430 161.1320 159.1169 153.1282 151.1498 151.1134 147.1160 145.1003 141.1280 139.1157 135.1183 135.0845 133.1030 127.1160 125.0961 123.1169 123.0838 121.1015 119.0847 113.0896 111.0800 109.0627 107.0803 105.0605 99.0810 95.0855  20 18 19 19 17 18 18 16 17 17 17 15 16 14 15 15 14 13 14 12 13 13 11 12 12 10 11 10 11 11 9 9 10 9 10 8 8 9 8 9 9 7 7 7 8 8 6 7  30 27 29 27 25 27 25 25 25 23 21 23 23 21 23 21 21 17 19 19 19 17 19 17 15 17 19 15 15 13 17 15 15 11 13 15 13 15 11 13 11 13 11 9 11 9 11 11  1  1  1  1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1  1  270.2347 259.2061 257.2268 255.2112 245.1905 243.2112 241.1955 233.1905 229.1956 227.1799 225.1643 219.1748 215.1799 205.1592 203.1799 201.1643 189.1643 189.1278 187.1486 179.1435 175.1486 173.1330 167.1435 161.1329 159.1173 153.1279 151.1486 151.1122 147.1173 145.1017 141.1279 139.1122 135.1173 135.0809 133.1017 127.1122 125.0966 123.1173 123.0809 121.1017 119.0860 113.0966 111.0809 109.0653 107.0861 105.0704 99.0809 95.0860  - 134 Table  cont.  91 85 83 81 71 69  20 13 17 28 51 46  59 58 57  6 37 7  55 53  60 3  91.0545 85.0644 . 83.0850 81.0683 71.0487 69.0706 69.0350 59.0526 58.0441 57.0710 57.0374 55.0551 53.0390  Anal, calcd. f o r C ^ H ^ :  7 5 6 6 4 5 4 3 3 4 3 4 4  7 9 11 9 7 9 5 7 6 9 5 7 5  91.0547 85.0653 83.0860 81.0704 71.0496 69.0740 69.0340 59.0496 58.0418 57.0704 57.0340 55.0547 53.0391  1  1 1 1 1 1  C, 81.25; H, 11.29. Found: C, 81.15; H, 11.12,  Compound V I I I o r e t h y l i d e n e d e r i v a t i v e o f en -24 (S), 2 5 - d i o l (76)  38-methoxy-5a-lanost-9(ll)-  The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d f r o m hexane-methylene. c h l o r i d e t o p r o v i d e an a n a l y t i c a l s a m p l e , m.p. 0.01  mm)  had a m.p.  149.5-152°; [a]£  153-155°; a s u b l i m e d  sample (180°,  +85° (C, 0.6, C H C 1 ) ; i r , \> max 3  ( K B r ) : 1635, 815 (C=CH); 1190, 1165, 1140, 1100 cm"  1  (C-0-C-0-C); nmr,  6 0.62, 0.71, 0.77, 0.94, 1.02, 1.08, 1.23 ( s i n g l e t s , 3H each, C-CH ); 3  0.87  ( d o u b l e t , J = 6 Hz, 3H, C20-CH ); 1.31 ( d o u b l e t , J = 5 Hz, 3H, 3  C33-CH ); 2.62 ( m u l t i p l e t , IH, C3-H, a x i a l ) ; 3.35 ( s i n g l e t , 3H, C3-OCH , 3  3  e q u a t . ) ; 3.47 ( m u l t i p l e t , I H , C24-H); 5.03 ( q u a r t e t , J = 5 Hz, I H , C33-H); 5.25 ( m u l t i p l e t , IH, C9=C11-H); i r r a d i a t i o n o f t h e q u a r t e t a t <5 5.03 (107 db) caused the d o u b l e t a t <5 1.31 t o c o l l a p s e t o a s i n g l e t ; r e s o l u t i o n mass s p e c , M mass s p e c t r o m e t r i c d a t a :  +  (64%) 500.4149, 3 3 C  H 5 6  °  3  high  r e q u i r e s 500.4228;  - 135 -  m/e  rel.int.%  500 499 485 469 469 468 458 457 456 455 453 442 441 438 426 426 424 423 414 413 409 407 399 391 385  64 4 36 2 1 2 5 26 72 2 14 37 100 16 1 3 5 8 1 1 73 2 1 4 1  370 356 341 329 328 327 302 295 288 287 274 273  4 2 2 4 10 34 8 5 8 8 2 1 7 4 2 1 6 4 4 5 5  260 257 255 241 229 227 215  measured mass 500.4149 499.4108 485.4043 469.4034 469.3647 468.3947 458.4110 457.4039 456.4000 455.3901 453.3762 442.3772 441.3752 438.3891 426.4214 426.3806 424.3631 423.3622 414.3414 413.3498 409.3446 407.3635 399.3273 391.3366 385.3448 385.3105 370.3173 356.3061 341.2852 329.2836 328.2713 327.2702 302.2607 295.2414 288.2460 287.2380 274.2672 273.2534 273.2215 260.2099 257.2260 257.1938 255.2083 241.1970 229.1949 227.1837 215.1784  ion composition c 0 R 33 33 32 32 31 32 31 31 31 31 31 30 30 31 31 30 30 30 28 28 29 30 27 29 27 26 26 25 24 23 23 23 21 22 20 20 20 20 19 18 19 18 19 18 17 17 16  56 55 53 53 49 52 54 53 52 51 49 50 49 50 50 50 48 47 46 45 45 47 43 43 45 41 42 40 37 37 36 35 34 31 32 31 34 33 29 28 29 25 27 25 25 23 23  3 3 3 2 3 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1  c a l c . mass  500.4228 499.4150 485.3994 469.4043 469.3681 468.3966 458.4123 457.4045 456.3966 455.3888 453.3731 442.3810 441.3731 438.3860 426.4225 426.3860 424.3704 423.3625 414.3497 413.3419 409.3469 407.3677 399.3262 391.3364 385.3470 385.3105 370.3235 356,3078 341.2843 329.2843 328.2765 327.2687 302.2608 295.2426 288.2453 287.2374 274.2660 273.2581 273.2218 260.2139 257.2268 257.1905 255.2112 241.1955 229.1956 227,1799 215,1799  - 136 T a b l e corit. 213 203 201 199 189 187 175 173 171  7 4 5 3 7 6 9 10 3  161 159 149 145 135 121 119 115 109 107 105 95 93 91 86 85 83  8 10 5 8 12 15 17 1 14 15 14 21 13 10 16 8 8 1 30 46 20  81 71 69  1  213.1646 203.1812 . 201.1639 199.1480 189.1617 187.1455 175.1464 173.1319 171.1425 171.1162 161.1341 159.1181 149.1302 145.1010 135.1170 121.1016 119.0858 115.0778 109.0998 107.0848 105.0689 95.0865 93.0688 91.0529 86.0712 85.0625 83.0827 83.0535 81.0679 71.0484 69.0696 69.0344  16 15 15 15 14 14 13 13 10 13 12 12 11 11 10 9 9 6 8 8 8 7 7 7 5 5 6 5 6 4 5 4  21 23 21 19 21 19 19 17 19 15 17 15 17 13 15 13 11 11 13 11 9 11 9 7 10 9 11 7 9 7 9 5  2  2  1 1 1 1 1  213.1642 203.1799 201.1643 199.1486 189.1643 187.1486 175.1486 173.1330 171.1384 171.1173 161.1329 159.1173 149.1329 145.1017 135.1173 121.1017 119.0860 115.0758 109.1017 107.0860 105.0704 95.0860 93.0704 91.0547 86.0731 85.0653 83,0860 83.0496 81.0704 71.0484 69.0704 69.0340  The f o l l o w i n g meta s t a b l e s were o b s e r v e d : 470.4 426.9 417.7 415.8 405.8 401.6 401.0 394.5 380.4 Anal,  379.4 373.8 369.1 361.7 361.2 341.7 337.7 326.8 286.5  267.3 266.2 258.8 254.4 252.2 234.6 226.8 213.8 200.5  172.6 160.6 133.2 93.6 91.4 89.2 89.0 77.2  c a l c d . f o r C^H^Og: C, 79.14; H, 11.27. Found: C, 78.41; H, 11.08  (sublimed sample).  - 137 -  Compound V I I I was compared t o the e t h y l i d e n e d e r i v a t i v e  (38-methoxy-  5 a ~ l a n o s t - 9 ( l l ) - e n - 2 4 ( S ) , 2 5 - d i o l - e t h y l i d e n e ) o f compound m.p.  I ( 4 3 ) , a mix  of 149.5-153° was observed, b o t h samples were found t o be i d e n t i c a l  ([a]p, i r ,  nmr, mass  spec).  E t h y l i d e n e d e r i v a t i v e of 3 8 - m e t h o x y - 5 o t - l a h o s t - 9 ( l l ) - e n - 2 4 ( S ) , 2 5 - d i o l (76) Compound 1(43)(50 mg) was taken up i n a c e t a l d e h y d e (2 ml) and treated with perchloric acid,  70% (0.05 m l ) . The s o l u t i o n was kept f o r  one hour a t room temperature, poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e t o p r o v i d e 48 mg  (91%) o f the d e s i r e d m a t e r i a l .  Recrystalli-  z a t i o n from hexane-methanol a f f o r d e d an a n a l y t i c a l sample, m.p. 155.5-157° 20 (a s u b l i m e d sample, 1 8 0 ° , 0.01 mm,  was o f i d e n t i c a l m.p.);  [ct]^  +84.7°  (C, 0.5, CHC1 ); nmr, 6 0.63, 0.72, 0.77, 0.94, 1.02, 1.08, 1.22 3  3H each, C-CH ); 0.88 3  ( d o u b l e t , J = 6 Hz, 3H, C20-CH ); 1.31 3  J = 5Hz, 3H, C33-CH ); 2.64  ( m u l t i p l e t , IH, C3-H, a x i a l ) ;  3  3H, C3-0CH , e q u a t o r i a l ) ;  3.45  3  J = 5 Hz, IH, C33-H); 5.20 s p e c , M (60%) +  500.4233, C  Anal, c a l c d . f o r ^ H ^ O ^  (multiplet,  (doublet,  3.34  IH, C24-H); 5.02  (singlets,  (singlet,  (quartet,  ( m u l t i p l e t , IH, C9=C11-H); h i g h r e s o l u t i o n mass 3 ; J  H  5 6  0  3  requires  500.4228.  C, 79.14; H, 11.27. Found C, 79.18; H, 11.10.  Compound IX (78) The m a t e r i a l e l u t e d from the chromatography column was r e c r y s t a l l i z e d from methylene c h l o r i d e e t h a n o l t o y i e l d an a n a l y t i c a l sample, m.p. 101.5-103°; 20 [a]  +48.5° (C, 1.0, CHC1 ); i r ,  D  3  v max  (KJSr): 1635, 815 (C=CH); 1107  (C-0-C); nmr, fi 0.65, 0.74, 0.79, 0.96, 1.05, 1.09, 1.19 C  "  C H  3  )i  °-90 ( d o u b l e t , J = 6 Hz, 3H, C20-CH ); 1.25 3  cm"  1  ( s i n g l e t s , 3H each,  ( s i n g l e t , ^ 40 H,  - 138 -  h y d r o c a r b o n c h a i n ) ; 2.65 ( m u l t i p l e t , I H , C3-H, a x i a l ) ;  3.36  (singlet,  3H, C3-OCH , e q u a t . ) ; „ 3.5 ( m u l t i p l e t , I H , C24-H); 3.73 [ m u l t i p l e t , I H , 3  C(OH)H? ] ; " 4.90 [ t r i p l e t , J=5Hz, 1H, C33-(CH R)-H]; 5.24 2  ( m u l t i p l e t , IH,  09=011-11); mass s p e c t r o m e t r i c d a t a :  m/e  rel.int.%  measured mass  i o n composition C H 0 55 54 56 55 54 56 54 53 54 53 53 52 51 50 32 31 31 31 30 30 30 30 28 29 30 29 25 23 23 22 22 22 20 19 18 17 17 16  811  2.1  810.7459  810  2.0  809.7380  796  1.0  795.7301  779  2  779.7186  764  5  763.7158  736  1  .735.6888  485 457 456 453 441 439 426 424 414 409 407 393 355 329 327 315 297 295 287 273 241 229 227 213  100 18 45 25 98 10 9 12 1 76 11 5 4 5 42 2 7 7 9 7 6 7 6 6  485.3963 457.3988 456.3907 453.3745 441.3753 439.3544 426.3760 424.3726 414.3509 409.3373 407.3618 393.3485 355.2989 329.2857 327.2663 315.2633 297.2586 295.2402 287^2406 273.2207 241.1870 229.1992 227.1850 213.1674  102 98 90 101 97 89 99 95 98 94 95 91, 91 87 53 53 52 49 49 47 50 48 46 45 47 45 39 37 35 35 33 31 31 29 25. 25 23 21  3 4 3 3 4 3 3 4 2 3 2 3 2 3 3 2 2 2 2 2 1 1 2 1 1 1 1 1 1 1  c a l c . mass  810.7829 810.7465 810.6890 809.7750 809.7386 809.6811 795.7594 795.7230 779.7566 779.7203 763.7332 763.6968 735.7019 735.6655 485.3994 457.4045 456.3966 453.3731 441.3731 439.3575 426.3860 424.3704 414.3497 409.3469 407.3677 393.3521 355.3000 329.2843 327.2687 315.2687 297.2581 295.2426 287.2374 273.2218 241.1956 229.1956 227.1799 213.1642  - 139 Table conti 203 201 189 187 175 173 161 159 149 147 135 121 119 109 107 97 95 93 91 85  8 8 12 12 17 17 14 14 11 12 20 19 16 26 15 20 33 11 8 18  83 71  24 46  69  43  203.1844 201.1671 189.1608 187.1485 175.1552 173.1367 161.1298 159.1076 149.1251 147.1190 135.1190 121.1048 119.0876 109.1047 107.0870 97.1027 95.0854 93.0703 91.0562 85.1009 85.0678 83.0850 71.0866 71.0505 69.0710  15 15 14 14 . 13 13 12 12 11 11 10 9 9 8 8 7 7 7 7 6 5 6 5 4 5  23 21 21 19 19 17 17 15 17 15 15 13 11 13 11 13 11 9 7 13 9 11 11 7 9  203.1799 201.1643 189.1643 187.1486 175.1486 173.1330 161.1329 159.1173 149.1330 147.1173 135.1173 121.1017 119.0860 109.1017 107.0860 97.1017 95.0860 93.0704 91.0547 85.1017 85.0653 83.0860 71.0860 71.0496 69.0704  meta s t a b l e s : 181.8, 185.8, 196.9, 253.2, 320.3, 348.0, 350.6, 360.8, 366.3, 413.5. Anal, calcd. f o r 5 5 C  H  0 1 0 2  3  :  c  »  8 1  - ; 5  H  »  12.6; f o r C^HggO^: C, 80.0; H, 12.1.  Found: C, 81.30; H, 11.40. An a t t e m p t e d s u b l i m a t i o n o f 2 mg m a t e r i a l a t 0.01 mm vacuum and 180° r e s u l t e d i n waxy m a t e r i a l d r i v e n f r o m . t h e sample and a s o l i d r e s i d u e . The former y i e l d e d a t y p i c a l low i n t e n s i t y h y d r o c a r b o n mass s p e c t r u m w i t h masses up t o about m/e i o n a t m/e  320. The s o l i d r e s i d u e e x h i b i t e d a base peak and m o l e c u l a r  485  ' * t  ie  f S r a  m e n t a t : L o n  p a t t e r n was i d e n t i c a l t o  the corresponding r e g i o n of the s t a r t i n g m a t e r i a l .  - 140 Compound X (80) The i s o l a t e d m a t e r i a l was r e c r y s . t a l l i z e d from methylene c h l o r i d e / 20 methanol t o p r o v i d e an a n a l y t i c a l sample, m.p.  91-92°; I ] a  n  +39°  (C, 0.7, CHC1 ); i r , max  ( C C 1 ) : 3627 cm"  3480 (OH); 1630, 810 cm"  (C=CH); nmr, <S 0.66, 0.75, 0.82, 0.99, 1.04,  3  v  1  (2° eq. OH); v max  1  4  (KBr):  1.10, 1.20 ( s i n g l e t s , 3H e a c h , C-CH ); 0.91 ( d o u b l e t , J = 6Hz, 3H, C20-CH ); 3  3  1.28 ( s i n g l e t , ^ 4 0 H, h y d r o c a r b o n c h a i n ) ; 3.22 ( m u l t i p l e t , I H , C3-H, a x i a l ) ; 3.46  ( m u l t i p l e t , I H , C24-H); 4.23 ( m u l t i p l e t , 1-2H, o l e f i n i c ? ) ;  4.92 ( t r i p l e t , J == 5, I H , C33-H); '5.24 ( m u l t i p l e t , I H , C9=C11-H); mass spectrometric m/e  data:  rel.int.%  780 779 778 777 765 764 763 736 735 710 709 471 469 453 443 442 425 409 407 391  0.6 15 2 28 3 7 13 53 8 6  381 355 341 323 315 313 297  8 4 2 3 2 13 8  measured mass  i o n compositii C H 0  c a l c . mass  (0.2) 0.9 (0.5) 1.3  777.7216  0.6 1.0 2.8 4.4 1.2 2.5  51 . 101 53 93  4 3  777.7699 777.7125  763.7165 762.7099 735.6947 734.6881  52 52 50 50  91 90 87 86  3 3 3 3  763.6968 762.6890 735.6654 734.6576  471.3845 469.3786 453.3791 443.3872 442.3913 425.3495 409.3379 407.3400 391.2497 391.2961 381.3197 355.3025 341.2854 . 323.2811 315.2539 313.2530 297.2602  31 31 31 30 30 29 29 29 26 28 27 25 24 24 22 22 22  51 49 49 51 50 45 45 43 47 39 41 39 37 35 35 33 33  3 3 2 2 2 2 1 1 2 1 1 1 1  471.3838 469.3681 453.3731 443.3888 442.3810 425.3419 409.3469 407.3312 391.3575 391.2999 381.3157 355.3000 341.2843 323.2738 315.2687 313.2530 297.2581  ~~1  (0.4)  1 1  - 141 T a b l e cont..  295 288 274 273 259 257 255 241 229  11 2 2 5 2 5 7 6 7  227 215 213 201 189 187 175  7 7 7 9 12 13 18  173 161 159 147 145 139 135 133 131 127 123 122 121 119 111 109 107 105 97 95 91 85 '  16 15 16 17 15 5 26 21 11 23 24 7 25 27 23 43 22 21 44 62 13 35  83  53  82 81 71  62 53 67  69  71  295.2405 288.2477 274.2329 273.2241 259.2101 257.2225 255.2067 241.1999 229.1991 229.1605 227.1787 215.1751 213.1672 201.1669 189.1649 187.1455 175.1451 175.1097 173.1343 161.1307 159.1176 147.1168 145.1036 139.1090 135.1158 133.1009 131.0864 127.1102 123.1187 122.1121 121.1020 119.0851 111.0809 109.0972 107.0833 105.0689 97.1011 95.0861 91.0566 85.1024 85.0660 83.0843 83.0491 82.0768 81.0687 71.0855 71.0494 69.0703 69.0367  22 20 19 19 18 19 19 18 17 16 17 16 16 15 14 14 13 12 13 12 12 11 11 9 10 10 10 8 9 9 9 9 7  31 32 30 29 27 29 27 25 25 21 23 23 21 21 21 19 19 15 17 17 15 15 13 15 15 13 11 15 15 14 13 11 11  8 8 7 7 7 6 5 6 5 6 6 5 4 5 4  11 9 13 11 7 13 9 11 7 10 9 11 7 9 5  1 1 1 1  1  1  1  .1  1  1 1  1 1  295.2426 288.2453 274.2296 273.2218 259.2061 257.2268 255.2112 241.1955 229.1956 229.1592 227.1799 215.1799 213.1642 201.1643 189.1643 187.1486 175.1486 175.1122 173.1330 161.1329 159.1173 147.1173 145.1017 139.1122 135.1173 133.1017 131.0860 127.1122 123.1173 122.1095 121.1017 119.0860 111.0809 107.0860 105.0704 97.1017 95.0860 91.0547 85.1017 85.0653 83.0860 83.0496 82.0782 81.0704 71.0860 71.0496 69.0704 69.0340  - 142 -  Anal, calcd.  for C^H^Cy  C, 81.3; H, 12.2. Found: C, 81.38; H, 11.96.  Compound X I (83) The i s o l a t e d m a t e r i a l was r e c r y s t a l l i z e d from methylene  chloride/ 20  methanol t o p r o v i d e an a n a l y t i c a l sample, m.p. 261-261.5°; [ a l ^ +91° (C, 1.2, CHC1 ); i r , v max ( K B r ) : 1100 cm"  (C-O-C); nmr, ( C D C 1 ) ,  1  3  3  6 0.66, 0.74 (broad s i n g l e t s , 6H e a c h , C-CH ); 0.80, 0.98, 1.05 ( s i n g l e t s , 3  6H e a c h , C-CH ); 1.11, 1.25 ( s i n g l e t s , 3H e a c h , C-CH ); 0.89, 0.91 ( o v e r 3  3  l a p p i n g d o u b l e t s , J = 6 Hz, 3H e a c h , C20-CH ); 2.65 ( m u l t i p l e t , 3  3.37 ( s i n g l e t , 6H, two C3-OCH  3  , equatorial);  ^ 3 . 6 3 (multiplet, IH,  C24-H); 4.90 ( t r i p l e t , J = 5 Hz, I H , C33-H); 5.25 ( m u l t i p l e t , C9=C11-H); mass s p e c t r o m e t r i c d a t a : m/e  rel.int.%  measured mass  874  0.9  873.7570  873  1.8  872.7254  872 858 841 826 794 511 485  0.9 9 1.8 6.7 2.3 2.4 32  457 456 453 441 439 425 414 413  13 31 14 74 10 18 27 11 81  4 0 9  I H , C3-H);  i o n composition C H 0  c a l c . mass  59 58 59 58  101 97 100 96  4 5 4 5  873.7699 873,7336 872.7621 872.7257  857.7029 840.7029 825.6915 793.6706  57 57 56 56  93 92 89 89  5 4 4 2  857.7023 840.6996 825.6761 793.6862  485.3867 457.4018 456.3943 453.3693 441.3812  32 (35 31 31 31 30  53 49 53 52 49 49  3 1 2 2 2 2  485.3994 485.3782) 457.4045 456.3966 453.3731 441,3731  425.3611 414.3452 413.3394 409.3506  26 28 28 29  49 46 45 45  4 2 2 i  425.3630 414.3497 413.3419 409,3469  2H, two  143 Table c o n t i  407 399 397 392 388 383 381 371 367 365 355 349 339 329 328 327 326 313 300 297 295 288 287 285 283 273 271 269 260 259 257 255 243 242 241 239 229 227 217 215 213 203 201 199 191 189 185 177 175  14 65 23 3 4 21 19 3 84 5 6 12 11 9 12 49 4 10 4 15 15 11 14 10 8 14 13 9 12 12 11 20 12 7 19 8 22 22 11 25 24 24 28 15 18 33 18 14 56  399.3319 . 397.3478 392.3315  27 28 25  .43 45 44  2 1 3  399.3262 397.3469 392.3289  383.3323 381.3186 371.3421 367.3033  27 27 26 26  43 41 43 39  1 1 1 1  383.3312 381.3157 371.3314 367.2999  355.2984  25  39  1  355.3000  329.2828 328.2724 327.2660  23 23 23  37 36 35  1 1 1  329.2843 328.2765 327.2687  313.2530 300.2493 297.2556 295.2405 288.2434  22 21 22 22 20  33 32 33 31 32  1 1  1  313.2530 300.2452 297.2581 295.2426 288.2453  260.2094  18  28  1  260.2139  255.2153  19  27  255.2112  242.2037  18  26  242.2034  239.1817 229.1924 227.1778 217.1954 215.1825 213.1632 203.1800 201.1684 199.1461  18 17 17 16 16 16 15 15 15  23 25 23 25 23 21 23 21 19  239.1799 229,1956 227.1799 217,1956 215.1799 213.1642 203,1799 201.1643 199,1486  189.1657 185.1306  14 14  21 17  189.1643 185.1329  175.1502  13  19  175,1486  - 144 Table cont. 173 171 167 165 163 161 159 157 149 147 145 143 141 135 133 131 127 125 121 119 117 111 109  48 18 12 10 20 48 46 16 32 44 41 16 20 72 56 30 37 21 74 77 13 21 71  107  64  105 99 97 95 93 91 86 85 83 81 79 71  57 21 21 100 48 33 7 40 28 67 30 69  69 67  82 35  Anal, calcd. f o r C  173.1287 171.1197 167.1436  13 13 11  17 15 19  163.1464 161.1310 159.1153 157.1016 149.1335 147.1168 145.1031  12 12 12 12 11 11 11  19 17 15 13 17 15 13  141.1273 135.1153 133.1022 131.0891 127.1103 125.0965 121.0982 119.0882 117.0695 111.1191 109.1004 109.0652 107.0863 107.0523 105.0694 99.0813 97.0999 95.0854 93.0698 91.0548 86.0731 85.0671 83.0882 81.0722 79.0565 71.0862 71.0496 69.0708 67.0534  9 17 10 15 10 13 10 11 8 15 8 13 9 13 9 11 9 9 8 15 8 13 7 9 8 11 7 7 8 9 6 11 7 13 7 11 7 9 7 7 5 10 5 9 6 11 6 9 6 7 5 11 4 7 5 9 5 7  H 0  : C,  1  173.1330 171.1173 167.1435 163.1486 161.1329 159.1173 157.1017 149.1329 147.1173 145.1017  1  1 1  1 1 1  1 1  1  141.1279 135.1173 133.1017 131.0860 127.1122 125.0966 121.1017 119.0860 117.0704 111.1173 109.1017 109.0653 107.0860 107.0496 105.0704 99.0809 97.1017 95.0860 93.0704 91.0547 86.0731 85.0653 83.0860 81.0704 79.0547 71.0860 71.0496 69.0704 67.0547  .8; H, 11.01. Found: C, 79.67; H,  - 145 -  BIBLIOGRAPHY (PART I)  1.  J.P. Kutney, G. E i g e n d o r f , R.B. Swingle, G.D. Knowles, J.W. Rowe, and B.A. Nagasampagi, T e t r a h e d r o n L e t t e r s , 3115 (1973).  2.  J.M. D e r f e r , T a p p i , 46, 513 (1963).  3.  M.A. Buchanan, The Chemistry o f Wood, p.358, B.L. Browning, Ed., I n t e r s c i e n c e P u b l i s h e r s , New York, 1963.  4.  B.L. Browning, Methods o f Wood Chemistry, V o l . 1, p.189, I n t e r s c i e n c e P u b l i s h e r s , New York, 1967.  5.  D.B. Mutton, The Chemistry o f Wood E x t r a c t i v e s , p.348, W.E. H i l l i s , Ed., Academic P r e s s , New York, 1962.  6.  W. Jensen, K.E. Fremer, P. S i e r i l a , and V. W a r t i o r a a r a , The Chemistry o f Wood, p.649, B.L. Browning, Ed., I n t e r s c i e n c e P u b l i s h e r s , New York, 1963.  7.  M.A. Buchanan, The Chemistry o f Wood, p. 301, '..'B.L. Browning, Ed., I n t e r s c i e n c e P u b l i s h e r s , New York, 1963.  8.  Y.P. Chang and R.L. M i t c h e l l , T a p p i , 38, 315 (1955).  9.  J.W. Rowe, P h y t o c h e m i s t r y , 4^ 1 (1965).  10.  J.W. Rowe, T e t r a h e d r o n L e t t e r s , 2347 (1964).  11.  Y. I n u b u s h i , Y. Tsuda, T. Sano, T. K o n i t a , S. S u z u k i , W. Ageta, and Y. Otake, Chem. Pharm. B u l l . , 15, 1153 (1967).  12.  Y. Tsuda, T. Sano, K. Kawahuchi, and Y. I n u b u s h i , T e t r a h e d r o n L e t t e r s , 1279 (1964).  13.  J.W. Rowe and C L . Bower, T e t r a h e d r o n L e t t e r s ,  14.  S. Uyeo, J . Okada, S. Matsunaga, and J.W. Rowe, T e t r a h e d r o n , 24, 2859 (1968).  15.  T. T a k a h a s h i , J . Pharm. Soc. Japan, 58, 888 (1938).  16.  H.L. H e r g e r t , Northwest S e a t t l e , 1949.  17.  S. Uyeo, J . Okada, and S. Matsunaga, J . Pharm. Soc. Japan, 84, 453 (1964).  2745  (1965).  R e g i o n a l Amer. Chem. Soc. Meeting,  - 146 -  18.  S. Matsunaga, J . Okada, and S. Uyeo, Chem. Comm., 21, 525 (1965).  19.  J.P. Kutney, N.D. W e s t c o t t , F.H. A l l e n , N.W. I s a a c s , 0. Kennard, and W.D.S. M o t h e r w e l l , T e t r a h e d r o n L e t t e r s ,  3463 (1971).  20. T.W. Goodwin, Recent Advances i n P h y t o c h e m i s t r y , V o l . 6, p.97, Academic P r e s s , New York, 1973. 21.  J . Bergman, B.O. L i n d g r e n , and C M . Svahn, A c t a Chem. Scand. , 19, 1661 (1965) .  22.  J.P. Kutney, D.S. G r i e r s o n , G.D. Knowles, N.D. W e s t c o t t , and 1. H. Rogers, T e t r a h e d r o n , 29, 13 (1973).  23.  T. N o r i n , P h y t o c h e m i s t r y , 11, 1231 (1972).  24.  N.T. Mirow, The Genus P i n u s , p.132, The Ronald P r e s s Comp., New York, 1967.  25.  G. L i n d s t e d t and A. M i s i o r n y , A c t a Chem. Scand. 5_, 121 (1951); G. L i n d s t e d t , i b i d . , _5> 129 (1951); H. Erdtman, B. Kimland, and T. N o r i n , B o t . Mag. Tokyo, 79, 499 (1966).  26.  H.L. H e r g e r t , Amer. Chem. S o c , Abs. papers, 131st Mtg., Amer. Chem. Soc. PGE, 1957. H.L. H e r g e r t , F o r e s t P r o d . J . , 10, 610 (1960).  27.  W.C. N i c k l e s and J.W. Rowe, i b i d . ,  28.  B.A. Nagasampagi, J.K. Toda, A.H. Conner and J.W. Rowe, A b s t r a c t s , 161st Amer. Chem. Soc. Mtg., Los A n g e l e s , 1971 and 11th P h y t o c h e m i c a l Soc. N. Amer. Mtg., Monterrey, Mexico, 1971.J.W. Rowe, R.C. Ronald, and B.A. Nagasampagi, P h y t o c h e m i s t r y , 11, 365 (1972, f o o t n o t e s 5 and 14). D.F. Z i n k e l , J.K. Toda, and J.W. Rowe, i b i d . , 10, 1161 (1971).  29.  I would l i k e t o e x p r e s s my g r a t i t u d e t o Dr. J.W. Rowe f o r p r o v i d i n g the samples and much u s e f u l i n f o r m a t i o n f o r t h i s i n v e s t i g a t i o n .  30.  A . I . Cohen, D. R o s e n t h a l , G.W. Krakower, and J . F r i e d , T e t r a h e d r o n , 21, 3171 (1965).  31.  F. Hemmert, B. Lacoume, J . L e v i s a l l e s , B u l l . Soc. Chim. F r . , 976 (1966).  32.  F. Hemmert, A. Lablache-Combier, i b i d . , 982 (1966).  33.  H.T. Cheung and D.G. W i l l i a m s o n , T e t r a h e d r o n , 25, 119 (1965); and r e f e r e n c e s t h e r e i n .  12, 374 (1962).  and G.R. P e t t i t ,  B. Lacoume, and J . L e v i s a l l e s ,  - 147 -  34.  H. V o r b r l l g g e n , S.C. P a k r a s h i , and C. D j e r a s s i , L i e b l g s Ann,, 668, 57 (1963).  35.  K. Biemann, Mass S p e c t r o m e t r y , p.339, M c G r a w - H i l l , New Y o r k , 1962.  36.  S. B e r g s t r B m , R. Ryhage and E. Stenhagen, Svensk Kern. T i d s . , 73, 566 (1961).  37.  H. B u d z i k i e w i c z , C. D j e r a s s i , and D.H. W i l l i a m s , S t r u c t u r a l E l u c i d a t i o n o f N a t u r a l P r o d u c t s by Mass S p e c t r o m e t r y , Holden-Day, San F r a n c i s c o , 1964, V o l . 2, p.96.  38.  R . I . Reed, Mass S p e c t r o m e t r y o f O r g a n i c I o n s , F.W. M c L a f f e r t y , Ed. Academic P r e s s , New Y o r k , 1963, p.688.  39.  S.G. W y l l i e and C. D j e r a s s i , J . O r g . Chem., 33, 305 (1968).  40.  H. B u d z i k i e w i c z , J.M. W i l s o n , and C. D j e r a s s i , J . Amer. Chem. Soc.; 85, 3688 (1963).  41.  F.H. A l l e n , J . P . Kutney, J . T r o t t e r , and N.D. W e s t c o t t , T e t r a h e d r o n L e t t e r s , 283 (1971).  42.  H. B u d z i k i e w i c z , C. D j e r a s s i , and D.H. W i l l i a m s , S t r u c t u r a l E l u c i d a t i o n o f N a t u r a l P r o d u c t s by Mass Holden-Day, San F r a n c i s c o , 1964, V o l . 2, p.206.  Spectrometry,  43.  K. Biemann, D.C. DeJongh, and H.K. Schnoes, J . Amer. Chem. S o c , 85, 1763 ( 1 9 6 3 ) .  44.  K. N a k a n i s h i , D.A. S c h o o l e y , M. Koreeda, J . Chem. S o c , (D), 1235 (1971).  45.  K. N a k a n i s h i and J . D i l l o n , J . Amer. Chem. S o c , 93, 4058 (1971). I am g r a t e f u l t o P r o f e s s o r N a k a n i s h i f o r p e r f o r m i n g t h i s determination.  46.  J.D. Z d e r i c , H. C a r p i o , and C. D j e r a s s i , i b i d . ,  47.  K. N a k a n i s h i , D.A. S c h o o l e y , M. Koreeda, i b i d . , 9_4, 2865 (1972).  48.  M.E. W a l l and S. S e r o t a , J . Org. Chem., 24, 741  49.  C.S. B a r n e s , A u s t r . J . Chem., £, 229 (1956), I would l i k e t o thank Dr. Barnes f o r p r o v i d i n g a sample f o r comparison,  50.  M. Neeman, M.C. C a s e r i o , J.D. R o b e r t s , and W.S, T e t r a h e d r o n , j>, 36, 1959.  and J . D i l l o n ,  82, 446 (1960).  and I . M i n v a ,  (1959).  Johnson,  ;  - 148 -  51.  L.M. Jackman and S. S t e r n h e l l , A p p l i c a t i o n s o f N u c l e a r M a g n e t i c Resonance S p e c t r o s c o p y i n O r g a n i c C h e m i s t r y , Perganon P r e s s , O x f o r d , 1969, p.164.  52.  D. B r y c e - S m i t h and A. G i l b e r t , J . Chem. S o c . , 2428 (1969).  53.  N. Ikekawa, A. Ohta, M. S e k i , and A. T a k a h a s h i , P h y t o c h e m i s t r y , 1 1 , 3037 (1972).  54.  Ref 5 1 , p.239.  55.  W. Benz and K. Biemann, J . Amer. Chem. S o c , 86, 2375  56.  S. Meyerson and L.C. L e i t c h , i b i d , 86_, 2555  57.  H.E. A u d i e r , H. F e l k i n , M. F e t i z o n , and W. V e t t e r , B u l l . Soc. Chim. F r a n c e , 3236 (1965).  58.  L. A h l q u i s t , R. Ryhage, E. Stenhagen, and E. v o n Sydow, A r k i v Kemi, 14, 211 (1959).  59.  R e f . 5 1 , p.236.  60.  E. C a s p i , T.A. W i t t s t r u c k , and D.M. P l a t a k , J . Org. Chem., 27, 3183 (1962).  61.  E. C a s p i , T.A. W i t t s t r u c k , and N. G r o v e r , J . Org. Chem., 28, 763 (1963).  62.  J.A. M c C l o s k e y and M.J. M c C l e l l a n d , J . Am. Chem. S o c . , 87, 5090 (1965).  63.  R.E. W o l f f , G. W o l f f , and J.A. M c C l o s k e y , T e t r a h e d r o n , 22,3093  64.  J . S . Shannon, A u s t . J . Chem., 16, 683 (1963).  65.  C. D j e r a s s i , H. B u d z i k i e w i c z , and J.M. W i l s o n , T e t r a h e d r o n L e t t e r s , 263 (1962).  (1964).  (1964).  (1966).  PART I I STUDIES RELATED TO SYNTHESIS OF INDOLE ALKALOIDS  - 149  -  INTRODUCTION  The  c o n t i n u i n g s e a r c h f o r new  remains t o be one The  (PART I I )  t h e r a p e u t i c agents has been  and  of the main o b j e c t i v e s o f the n a t u r a l p r o d u c t c h e m i s t .  s t r u c t u r a l e l u c i d a t i o n and s y n t h e s i s of compounds w i t h known t h e r a -  p e u t i c v a l u e have been of prime c o n c e r n t o him u n t i l the  increased  knowledge o f i n t e r r e l a t i o n s h i p s between modes o f a c t i o n and  structural  f e a t u r e s o f drugs l e d t o the use of many s y n t h e t i c a n a l o g s of  the  n a t u r a l l y o c c u r r i n g compounds i n modern m e d i c i n e . N a t u r e has p r o v i d e d a v a s t a r r a y o f o r g a n i c compounds o f v a r y i n g degrees of c o m p l e x i t y  and i n t e r e s t . I t has been e s t i m a t e d  produce a l k a l o i d s , and  t h a t a t l e a s t one  1  t h a t 10-20% of a l l p l a n t s  q u a r t e r of t h e s e  nitrogenous  2 b a s e s c o n t a i n the I n d o l e o r d i h y d r o i n d o l e n u c l e u s . A s u b s t a n t i a l p a r t of the i n v e s t i g a t i o n s d e a l i n g w i t h a l k a l o i d c o n t e n t done by p h a r m a c e u t i c a l  f i r m s who  i n p l a n t s has  are i n v o l v e d i n a s y s t e m a t i c 3  been  screening  of p l a n t s f o r s p e c i f i c p h a r m a c o l o g i c a l  a c t i v i t y . A l t h o u g h most a l k a l o i d s  p o s s e s s some degree o f p h a r m a c o l o g i c a l  a c t i v i t y , many are not m e d i c i n a l l y  u s e f u l e i t h e r because of low s p e c i f i c a c t i v i t y o r due Only a r e l a t i v e l y s m a l l number o f c u r r e n t l y of t h e r a p e u t i c  to t h e i r  toxicity..  a l l the p r e s e n t l y known a l k a l o i d s are  importance.  A l k a l o i d s e x h i b i t a d i v e r s i t y o f s t r u c t u r e , the s i m p l e s t b e i n g those of the p h e n e t h y l a m i n e group. The  perhaps  a l k a l o i d e p h e d r i n e (1) resembles  - 150 -  the a n i m a l hormone e p i n e p h r i n e  (2) s t r u c t u r a l l y as w e l l as i n i t s  adrenergic p r o p e r t i e s . Mescaline for experimental  (3) i s an h a l l u c i n o g e n i c agent used  purposes.  CHOH  CHOH  CH  CH-CH NH-CH  CH-CH ^H-CH  CH fta  3  3  (1)  (2)  3  3  2  2  2  (3)  I m p o r t a n t members o f t h e t r o p a n e a l k a l o i d f a m i l y a r e t h e c h o l i n e r g i c b l o c k i n g agent a t r o p i n e (hyoscyamine) (4) and t h e l o c a l  anaesthetic  cocaine ( 5 ) . o  &OCH3 OCCHC H CH OH 6  5  2  (4)  I NCH > O C C H ^ ' O 3  6  5  (5)  I n t h e s t r u c t u r a l l y more complex c l a s s e s o f a l k a l o i d s one f i n d s t h e r a p e u t i c a l l y v a l u a b l e compounds such as morphine ( 6 ) , c o d e i n e (7) and reserpine ( 8 ) , a l l being depressants  o f t h e c e n t r a l nervous system, t h e  c a r d i a c p r i n c i p l e and s t i m u l a n t s t r y c h n i n e ( 9 ) , t h e a p h r o d i s i a c yohimbine (10) and the more r e c e n t l y d i s c o v e r e d a n t i - c a n c e r agents v i n b l a s t i n e (VLB, 11) and v i n c r i s t i n e represented  (VCR, 12) , whose complex s t r u c t u r e s a r e  by t h e d i m e r i c f o r m o f an i n d o l e and a d i h y d r o i n d o l e  alkaloid.  - 151  -  (12), R =  A very  CHO  l a r g e group of n a t u r a l a l k a l o i d s , numbering about 800,  p o s s e s s as  t h e i r b a s i c s t r u c t u r a l u n i t , the i n d o l e m o i e t y . However, d e s p i t e  their  b e w i l d e r i n g v a r i e t y i t i s p o s s i b l e to show some i n t e r r e l a t i o n s h i p s between v a r i o u s f a m i l i e s by the use of b i o g e n e t i c t h e o r y . Corynanthe a l k a l o i d a j m a l i c i n e (13) and  For example,  the  the S t r y c h n o s a l k a l o i d akuammicine  (14) p o s s e s s the same n o n - t r y p t a m i n e u n i t ( 1 5 ) , w h i l e the Aspidosperma t y p e , e.g.  v i n d o l i n e ( 1 6 ) , shows one  Iboga t y p e , e.g. c a t h a r a n t h i n e (19) . 5  t y p e of r e a r r a n g e d u n i t (17) and  ( 1 8 ) , e x h i b i t s a n o t h e r r e a r r a n g e d system  the  - 152 -  H C0 C 3  2  CO2CH3  OH  (16)  (17)  C0 CH 2  (18)  3  (19)  I t has been e s t a b l i s h e d t h a t b i o g e n e t i c a l l y t h e s e s e e m i n g l y  unrelated 9  s t r u c t u r e s a r e i n f a c t d e r i v e d f r o m a common i n t e r m e d i a t e , v i n c o s i d e (20) • T h i s i n t e r m e d i a t e , v i n c o s i d e , i s d e r i v a b l e i n v i v o by a between t r y p t a m i n e  condensation  (21) and a monoterpene u n i t , s e c o l o g a n i n  ( 2 2 ) . Recent  - 153 -  NH  2  H  ..OGIu H  3  C 0  2  C  (21)  (20)  ^OGIu H-jCOoC  (22) H  (23)  work has demonstrated t h a t t r y p t a m i n e  (21) i s a l s o an e f f e c t i v e  precursor  o f t h e i n d o l e a l k a l o i d s and i s p o s s i b l y g e n e r a t e d by d e c a r b o x y l a t i o n o f 6~8 tryptophan  (23)  . However, t h e r e i s some doubt i f t h e d e c a r b o x y l a t i o n  takes p l a c e p r i o r t o f u s i o n o f the tryptamine  and s e c o l o g a n i n u n i t s o r  i f t h i s might o c c u r a t a l a t e r s t a g e i n t h e b i o s y n t h e s i s . S e c o l o g a n i n (22) i s d e r i v e d f r o m mevalonate (24) t h r o u g h l o g a n i n (25) as shown i n F i g u r e 1. The b i o s y n t h e t i c s t a g e s between g e r a n i o l (26) and l o g a n i n (25) have been 9 examined by s e v e r a l w o r k e r s . Arguments based upon s t r u c t u r a l r e l a t i o n s h i p s p o i n t e d towards d e o x y l o g a n i n (27b) as t h e immediate p r e c u r s o r o f l o g a n i n . P r o o f t h a t t h i s i s i n f a c t t h e case came from t h e p r e p a r a t i o n o f 3 [4- H] d e o x y l o g a n i c  a c i d (27a) and i t s s p e c i f i c i n c o r p o r a t i o n by  L o n i c e r a j a p o n i c a p l a n t s i n t o l o g a n i n " ^ and by p a r t i a l s y n t h e s i s o f 3 [0-methyl- H ] - d e o x y l o g a n i n (27b) and d e m o n s t r a t i o n without  randomisation  alkaloids  of i t s incorporation  o f t h e l a b e l i n t o l o g a n i n (25) and t h e i n d o l e  ( 1 3 ) , ( 1 6 ) , (18) and ( 2 8 )  1 1 , 1 2  (Figure 2). Vinca rosea p l a n t s  were used f o r t h e l a s t e x p e r i m e n t . R e c e n t l y ,  t h e c a r b o x y l group  methylation  of l o g a n i c a c i d by a c e l l - f r e e enzyme p r e p a r a t i o n from V i n c a r o s e a has been 65 reported  , thus s u p p o r t i n g t h e above argument.  - 154 -  (22) F i g u r e 1. B i o g e n e t i c pathway from mevalonate  (24) t o s e c o l o g a n i n ( 2 2 ) .  - 155  -  (27b)  (25)  (16)  (18)  3 F i g u r e 2. I n c o r p o r a t i o n of [O-methyl- H ] - d e o x y l o g a n i n (27b) and v a r i o u s a l k a l o i d s .  into loganin  C o n s i d e r i n g the b i o g e n e t i c pathway beyond v i n c o s i d e ( 2 0 ) , one v i s u a l i z e the e n z y m a t i c c l e a v a g e  can  o f g l u c o s e as a f i r s t s t e p towards the 7  f o r m a t i o n o f the Corynanthe f a m i l y as o u t l i n e d i n F i g u r e 3 . G e i s s o s c h i z i n e (29), corynantheine  (30) and i t s a l d e h y d e ( 3 1 ) ,  a j m a l i c i n e (13) a r e then d e r i v a b l e by p l a u s i b l e s t e p s .  and  (25)  - 156 -  (13) F i g u r e 3. P o s s i b l e b i o g e n e t i c pathway f r o m v i n c o s i d e (20) t o a l k a l o i d s o f the Corynanthe f a m i l y . The mechanism by w h i c h the c o r y n a n t h e s k e l e t o n (29) i s c o n v e r t e d i n t o . t h e s t r y c h n o s system (34) and the a s p i d o s p e r m a (39) and i b o g a  (18)  s k e l e t o n s i s under c u r r e n t s t u d y . The scheme o u t l i n e d i n F i g u r e 4 can be  - 157 -  C0 CH 2  3  (37)  C0 CH 2  3  (38)  CC>2CH  3  CO2CH3  (39) F i g u r e 4. P o s s i b l e i n t e r c o n v e r s i o n o f the c o r y n a n t h e s k e l e t o n strychnos  (29) t o the  ( 3 4 ) , a s p i d o s p e r m a (39) and i b o g a (18) system.  - 158 -  e n v i s a g e d as a r e a s o n a b l e  p o s s i b i l i t y . Thus g e i s s o s c h i z i n e (29) i s  v i s u a l i z e d t o undergo an a  8 bond m i g r a t i o n and n u c l e o p h i l i c a t t a c k  of C16 a t C2 t o y i e l d preakuammicine ( 3 4 ) . The l a t t e r i s b e l i e v e d t o c o n v e r t t o t h e end p r o d u c t s  by t h e sequences (34)  (35) -> (36) -»• (37)  etc. as o u t l i n e d i n F i g u r e 4. Wenkert has suggested t h a t c o u p l i n g o f t h e r a d i c a l ( 2 9 a ) , d e r i v e d from g e i s s o s c h i z i n e ( 2 9 ) , l e a d s t o t h e w e l l - k n o w n akuamma s k e l e t o n (29b) 9  which rearranges  t o t h e s t r y c h n o s s y s t e m (34) .  A l k a l o i d s o f t h e v o b a s i n e (40, v i n c a d i f f i n e ) , s a r p a g i n e and a j m a l i n e  (42, v i n c a m a j i n e )  (41,  type, the synthesis of which  polyneuridine) represents  the u l t i m a t e g o a l o f t h i s i n v e s t i g a t i o n , a r e b i o g e n e t i c a l l y p r o b a b l y d e r i v e d from t h e c o r y n a n t h e s k e l e t o n ( 2 9 , g e i s s o s c h i z i n e ) v i a a common 12 i n t e r m e d i a t e such as (43) ( F i g u r e 5) ;  A b i o g e n e t i c a l l y patterned  t o t a l synthesis of deoxyajmalal  A (48)  13 ( F i g u r e 6)  , s u c c e s s f u l l y d e v e l o p e d by v a n Tamelen i n 1970, does i n  f a c t p r o v i d e what m i g h t be c o n s i d e r e d  i n v i t r o e v i d e n c e f o r t h e scheme  o u t l i n e d i n F i g u r e 5. The n o v e l t y o f t h i s p a r t i c u l a r s y n t h e s i s i s i n t h e i n g e n i o u s use o f t h e o x i d a t i v e d e c a r b o x y l a t i o n o f t h e t r y p t o p h a n which p r o v i d e s the a c t i v a t i o n necessary  residue,  f o r f o r m a t i o n o f t h e C5 - C16 bond  [(46) ->- ( 4 7 ) ] , a p r o c e s s w h i c h may w e l l p a r a l l e l t h e making o f t h i s bond 14 i n nature ajmaline  . [Deoxyajmalal  A (48) has been p r e v i o u s l y c o n v e r t e d  (49) "']. I t i s therefore conceivable 1  ( F i g u r e 5) may v e r y w e l l be something o t h e r  into  t h a t R i n s t r u c t u r e (29)  than hydrogen. F o r i n s t a n c e ,  - 159  -  (42) F i g u r e 5. P o s s i b l e i n t e r r e l a t i o n between the corynanthe s k e l e t o n (29) and v o b a s i n e ( 4 0 ) , s a r p a g i n e (41) and a j m a l i n e (42) type a l k a l o i d s .  - 160 -  (49) F i g u r e 6. B i o g e n e t i c a l l y p a t t e r n e d the d e c a r b o x y l a t i o n o f t r y p t o p h a n  t o t a l s y n t h e s i s of deoxyajmalal (48). (23) might n o t t a k e p l a c e a t an e a r l y  s t a g e i n the b i o g e n e t i c pathway b u t c o u l d o c c u r d u r i n g t h e t r a n s f o r m a t i o n o f (29) ( w i t h R j H) -> (43) ( F i g u r e 5 ) . S e v e r a l y e a r s p r i o r t o van Tamelen's p u b l i c a t i o n a s y n t h e t i c p r o j e c t was 16 initiated  i n our l a b o r a t o r y u s i n g b a s i c a l l y . t h e same b i o g e n e t i c  type  - 161 -  approach as employed by t h e p r e v i o u s  a u t h o r . A t t h i s time i t was thought  that a s y n t h e s i s o f the vobasine-sarpagine  s k e l e t o n c o u l d be a c c o m p l i s h e d  by e i t h e r one o f t h r e e methods: a) O x i d a t i o n o f c o r y n a n t h e n o i d predominantly  the c o r r e s p o n d i n g  R - C0 CH , R 2  3  1  bases by m e r c u r i c  3-dehydro-iminium s a l t ( 5 0 ) , w h i c h c o u l d  = CH 0H o r R = C O ^ H ^ 2  a c e t a t e i s known t o g i v e  R  1  = H  under a p p r o p r i a t e c o n d i t i o n s be i n e q u i l i b r i u m w i t h t h e 5-dehydro-(51) and  t h e 21-dehydroiminium s a l t s  (52) as w e l l as t h e enamine  (52a).  A p r o p e r l y generated a n i o n a t C16 would a t t a c k t h e i m i n i u m s a l t t o accomplish  a ring closure v i a a transannular c y c l i z a t i o n  (C16 -> C5)  g i v i n g ( 5 3 ) . A l t e r n a t i v e a t t a c k a t C3 (50) o r C21 (52) was  considered  - 162  -  t o be l e s s l i k e l y s i n c e i t would y i e l d a more s t r a i n e d 4-membered r i n g system. b) A second approach t o the s y n t h e s i s o f a p r o p e r l y o x i d i z e d compound was  t o b l o c k C3 w i t h a b e n z y l group i n o r d e r t o p r e v e n t  of a 3-dehydro d e r i v a t i v e w h i c h was  the  known t o be the major p r o d u c t  case o f ( a ) . The b e n z y l group w o u l d a l s o p r o v i d e a c o n v e n i e n t  (56) the 2 - a c y l i n d o l e f a m i l y c) The  corresponding  i n the  entry into  (57) (57)  t h i r d approach i n v o l v e d c l e a v a g e  corynanthenoid  formation  of the C/D  ring junction i n a  base (58) under B i r c h r e d u c t i o n c o n d i t i o n s t o g i v e  the  3,4-seco base ( 5 9 ) , w h i c h c o u l d a g a i n be o x i d i z e d , by  mercuric acetate, to iminium s a l t s  (60) and  ( 6 1 ) . Subsequent a t t a c k o f  a C16-anion at C5 i n (60) w o u l d g i v e r i s e to the d e s i r e d b r i d g e d compound. U n f o r t u n a t e l y none o f the t h r e e a t t e m p t s d i s c u s s e d above were s u c c e s s f u l and  t h i s p a r t i c u l a r type o f a p p r o a c h , namely the n u c l e o p h i l i c a t t a c k of  - 163 -  Na/NH, N  -CH  1) H , 2) Hg  3  (OAc)  >CH  2  3  OHC  OHC  a C16-anion at C5 of the corynantheine skeleton, was abandoned. At the time i t was also f e l t , that van Tamelen had indeed solved the d i f f i c u l t i e s encountered by us i n a very elegant way. Several other groups have been studying the vobasine-sarpagine-ajmaline skeleton and i n some instances succeeded i n synthesizing compounds of t h i s 18-20 type  . However, i n each of these cases the C16-C5 bridge was already  formed at an e a r l i e r stage i n the synthetic scheme; an example of this 21 being the work done by Masamune  . The cyclopentene (62) was  cleaved by 9.6*5  C H ^ C Q H S  C H ^ C  OsO NH N CH  '  to  NalO C H  -6 5  3  H  (62)  If  3  OH  C  H  2  C  H  0  (63)  96 5 H  (64)  - 164 -  osmium t e t r o x i d e and sodium m e t a p e r i o d a t e  to the carbinolamine (63).  C y c l i z a t i o n t o C2 o c c u r r e d upon t r e a t m e n t w i t h a c i d , g e n e r a t i n g (64) w h i c h was i n t e r r e l a t e d w i t h a j m a l i n e ( 4 9 ) . 22 In another treatment  sequence  the vobasine  o f the c a r b o x y l i c a c i d  s k e l e t o n (69) was o b t a i n e d by  (65) w i t h p o l y p h o s p h o r i c a c i d  (PPA),  f o l l o w e d by r e d u c t i o n w i t h l i t h i u m aluminum h y d r i d e , c h r o m i c a c i d o x i d a t i o n and m e t h y l a t i o n .  (69)  The above s t u d i e s have o n l y l e d t o models o f the n a t u r a l systems and up t o the p r e s e n t , a s u c c e s s f u l s y n t h e s i s o f any member o f the n a t u r a l l y o c c u r r i n g 2 - a c y l i n d o l e f a m i l y has n o t been  achieved.  A l a r g e v a r i e t y o f new a l k a l o i d s p o s s e s s i n g t h e  vobasine-sarpagine-  a j m a l i n e type s k e l e t o n have been i s o l a t e d from n a t u r a l s o u r c e s d u r i n g the  - 165  -  l a s t decade. F o r i n s t a n c e p e r i v i n e 23 (70, V i n c a r o s e a L i n n ) ,  p e r i f o r m y l i n e2 A  25 (71, C a t h a r a n t h u s  lanceus P i c h . ) , gardnerine 26  N(l)-demethylseredamine  (72, G a r d n e r i a mutams),  (73, R a u w o l f i a sumatrana J a c k ) ,  and  27 raucaffricine  (74, R.  c a f f r a ) were o b t a i n e d . Of p a r t i c u l a r i n t e r e s t have 28  been the a l k a l o i d s o f d i m e r i c n a t u r e , s u c h as voacamine  (75, Voacanga  a f r i c a n a S t a p f ) , w h i c h a r e now b e i n g reexamined f o r p o s s i b l e  clinical  use.  - 166  The  -  renewed i n t e r e s t i n the above a l k a l o i d s caused us t o  the p o s s i b i l i t y of a new a l k a l o i d s possessing  approach towards the t o t a l s y n t h e s i s  the v o b a s i n e - s a r p a g i n e - a j m a l i n e  consider of  s k e l e t o n . As  a  r e s u l t , the s t u d i e s d e s c r i b e d i n P a r t I I of t h i s t h e s i s were u n d e r t a k e n .  - 167 -  DISCUSSION (PART I I )  At t h e o u t s e t o f t h i s p r o j e c t a s y n t h e t i c scheme was e n v i s a g e d leading t o a c e n t r a l sarpagine skeleton  (77) w h i c h c o u l d be t r a n s f o r m e d  i n t o a l k a l o i d s o f t h e v o b a s i n e (78) and a j m a l i n e known p r o c e d u r e s , as o u t l i n e d i n F i g u r e s  7 and 8. The c r u c i a l s t e p i n t h e  p l a n n e d sequence would i n v o l v e a t r a n s a n n u l a r a C6-substituted  corynanthe l i k e s k e l e t o n  (79) t y p e s by s e v e r a l  c y c l i z a t i o n (C6a -> C2) o f  (76) l e a d i n g t o t h e d e s i r e d  s a r p a g i n e system ( 7 7 ) . I t s h o u l d be n o t e d h e r e t h a t t h r o u g h o u t t h e  - 168 -  d i s c u s s i o n t h e q u i n o l i z i n e d e r i v e d numbering system i s used. The more 29 30 r e c e n t p r o p o s a l s hased on b i o g e n e t i c t h e o r i e s  *  a r e n o t employed.  Should t h e t e t r a c y c l i c s k e l e t o n (76) p r o v e t o be t o o r i g i d t o undergo the t r a n s a n n u l a r c y c l i z a t i o n , c l e a v a g e  o f t h e C/D r i n g j u n c t i o n c o u l d  be u n d e r t a k e n , i n a manner a l r e a d y p o r t r a y e d i n F i g u r e 7, t h e r e b y to an i n t e r m e d i a t e precursor  leading  (80). The l a t t e r s u b s t a n c e would then s e r v e as a  f o r the v o b a s i n e s k e l e t o n ( 7 8 ) . I n t u r n t h e l a t t e r  c o u l d be i n t e r r e l a t e d w i t h t h e s a r p a g i n e  intermediate  system (77) v i a a l r e a d y  established interconversions (Figure 9).  F i g u r e 7. Known p r o c e d u r e s f o r t h e c o n v e r s i o n o f t h e s a r p a g i n e t o the v o b a s i n e type a l k a l o i d s ( 7 8 ) .  s k e l e t o n (77)  - 169  Figure 7 continued.  -  - 170  -  F i g u r e 8. R e a c t i o n s a p p l i c a b l e t o the c o n v e r s i o n o f the s a r p a g i n e (77) t o the a j m a l i n e system ( 7 9 ) .  skeleton  - 171 -  1) KBH.  P 3  I"  H  N " \  N  £ 3 H  2) CH„I  +  N-CH  3  A(280  (105) F i g u r e 9. P o s s i b l e i n t e r c o n v e r s i o n s f o r t h e v o b a s i n e s k e l e t o n (78) t o t h e s a r p a g i n e system ( 7 7 ) . The p r o j e c t e d synthon ( 7 6 ) , n e c e s s a r y f o r t h e v a r i o u s t r a n s f o r m a t i o n s d e s c r i b e d above, r e q u i r e s t h e 6 - c o n f i g u r a t i o n f o r t h e s u b s t i t u e n t a t C6 s i n c e t r a n s a n n u l a r c y c l i z a t i o n h a s t o o c c u r on t h e g - f a c e o f t h e m o l e c u l e .  - 172  -  R  (76)  T h e r e f o r e , i t was  (106)  d e c i d e d t o employ L - ( - ) - t r y p t o p h a n (106) as the s t a r t i n g  m a t e r i a l f o r the d i f f e r e n t i n v e s t i g a t i o n s u n d e r t a k e n this  d u r i n g the c o u r s e  study. The s a r p a g i n e , v o b a s i n e and a j m a l i n e t y p e a l k a l o i d s p o s s e s s  b r i d g i n g u n i t w h i c h i s made up o f a t l e a s t two o r t h r e e carbon I t was  a  atoms.  t h e r e f o r e n e c e s s a r y a t some s t a g e t o c o n s i d e r the a p p r o p r i a t e  e x t e n s i o n o f the c a r b o x y l i c a c i d u n i t i n L - t r y p t o p h a n .  Thus s e v e r a l  d i f f e r e n t approaches were c o n s i d e r e d i n o r d e r t o s y n t h e s i z e the c r u c i a l intermediate (76): A) S y n t h e s i s o f a t e t r a c y c l i c m o i e t y C6  (107) h a v i n g a one-carbon u n i t a t  ( f o r example, R = H o r Ac) w h i c h i s t h e n f u r t h e r e l a b o r a t e d  (108)  of  - 173 -  i.e.  (107) •+'-*• (108) (R ~ CN o r COOCH ). 3  B) E l o n g a t i o n o f t h e s i d e c h a i n i n L - t r y p t o p h a n  (106) t o p r o v i d e an  i n t e r m e d i a t e such as (109) (R » CN o r C00CH ) w h i c h i s i n t u r n 3  converted  to t h e t e t r a c y c l i c system (108) (R = CN o r C00CH ). 3  CQ H  CH R  2  2  NH R'  NH-  (106)  (108) C) I n t r o d u c t i o n o f an a p p r o p r i a t e s u b s t i t u e n t i n t o t h e s i d e c h a i n o f (110) i.e.  (R = C00CH ) presumably v i a a base c a t a l y z e d 3  (110) ->  (111) (R= CN o r C00CH ; R 3  (R = CN o r COOCH,; R  1  1  condensation  = CH 0H o r CHO) -*(112) 2  = CH 0H, CHO o r COOCH,). 0  R' R -N R  2  (110)  (111)  (112)  - 174 -  D) Attempts to introduce a suhatituent into the side chain of the t r i c y c l i c (dihydro carboline) system (113)  (R => COOCH^) and subsequent  formation of the required t e t r a c y c l i c skeleton i . e . (113) (R = COOCH ) -> 3  (113a) (R = R  2  = COOCH ) -»- (112)  (R = R  3  2  = COOCH ) . 3  R  2  I s h a l l now discuss the s p e c i f i c experiments which w i l l portray the strategies of the above schemes A-D. For the sake of c l a r i t y the indole nitrogen w i l l be referred to as N  while the basic nitrogen w i l l be N, .  a  b  Scheme A A synthetic pathway was envisaged leading to the t r i c y c l i c dihydrocarboline unit (117 or 119) which could then be elaborated to the desired t e t r a c y c l i c moiety (120)  (R = H or Ac). Therefore, L-(-)-tryptophan  (106) was converted 42  to i t s N^-formyl derivative (114) by a previously published procedure 43 A Bischler-Napieralski  reaction of the l a t t e r afforded the hydrochloride  (115) which upon treatment with base was converted to the free dihydrocarboline (116). The carboxylic acids (115) and (116) proved to be d i f f i c u l t to handle and i t was therefore decided to convert them to the corresponding methyl ester (117), but unfortunately t h i s attempt f a i l e d . An alternate  - 175 H^ O 0 H  HC00H  NH-  Ac 0  2  1  2  (106)  O2H NH CHO  ( 1 1 4 ) , 68%  HC00H/HC1  CO2H N  N H  C0 H  NaOH  2  N-HCI  (116), 86% CH N 2  (115), 7 1 % Me OH HCl  2  ^^C02CH  LiAlH^/THF CH OH  3  2  N  NH ( 1 1 8 ) , 87%  (117) Hg(OAc)  2  v  XH2OH N  (119)  (120) r o u t e l e a d i n g t o t h e t r i c y c l i c a l c o h o l (118) had t o be abandoned s i n c e i t was n o t p o s s i b l e t o c o n v e r t  the l a t t e r  t o the desired  c a r b o l i n e (119) by an a t t e m p t e d m e r c u r i c a c e t a t e At t h i s  dihydro-  oxidation^.  s t a g e i t became c l e a r t h a t i t might n o t be a d v i s a b l e t o m a i n t a i n  the c a r b o x y l i c a c i d group s i n c e d i f f i c u l t i e s i n t h e workup p r o c e d u r e s of s e v e r a l r e a c t i o n s had been e n c o u n t e r e d . Thus, L - ( - ) - t r y p t o p h a n (106)  - 176 ,CH20H  ,G0 H 2  N H  N  H  2  N H  LiAlH. Ac 0  (106)  2  2  (121), 97%  HC00H C H  S / ^ N > \ ^  O C H O  C H O  S^S^  N  H  2  H  ( 1 2 3 ) , 88% (a) NaOH  ( 1 2 2 ) , 74% O  CH3CCHCH N(CH ) 2  O  H  3  A  3  (125), 99%  (126), 58% CH3I O  6a  C H  I  2  O R  C H  I  UL  'x  3  C C H C H C  N  2  H  2  N ( C H  3  )  2  5  (124)  .CH2OH (127)  , R = H, 56%  (128)  , R = Ac, 92% (129)  was reduced w i t h l i t h i u m aluminum h y d r i d e alcohol  ( L i A l H ^ ) t o the c o r r e s p o n d i n g  (121). Treatment of t h e l a t t e r w i t h a c e t i c a n h y d r i d e  acid provided 2-(N-formylamino)-3-indolyl(3a)-propyl Compound  (122).  (122) was s u b j e c t e d t o s e v e r a l B i s c h l e r - N a p i e r a l s k i r e a c t i o n s .  C y c l i z a t i o n t o the 3 , 4 - d i h y d r o c a r b o l i n e with a mixture of  formate  and f o r m i c  (123) proved  t o be most s u c c e s s f u l  o f f o r m i c a c i d and cone, h y d r o c h l o r i c a c i d  the d i h y d r o c a r b o l i n e (123) w i t h 3-methylene-pentan-2-one  .  Condensation (126) under  - 177 -  mild acidic conditions  48  provided  the d e s i r e d t e t r a c y c l i c a l c o h o l  (127),  2-oxo-3-ethyl-6-hydroxymethyl-l,2,3,4,6,7,12,12b-octahydroindolo( 2 , 3 - a ) - q u i n o l i z i n e , w h i c h c o u l d be c o n v e r t e d  t o the corresponding  acetate  (128) by t r e a t m e n t w i t h a c e t i c a n h y d r i d e and p y r i d i n e . L i t h i u m aluminum h y d r i d e r e d u c t i o n o f t h e k e t o a l c o h o l (127) Compound (127)  consisted of a mixture  afforded the d i o l  (129).  o f two components i n an e s t i m a t e d  ( t h i n - l a y e r chromatography, TLC) r a t i o o f 9:1 w i t h t h e more p o l a r component i n predominance. A t t e m p t s t o s e p a r a t e  t h e s e compounds p r o v e d  to be u n s u c c e s s f u l s i n c e e p i m e r i s a t i o n took p l a c e d u r i n g t h e TLC separations. The  stereochemistry  o f t e t r a c y c l i c systems such as (127) has been  the o b j e c t o f many i n v e s t i g a t i o n s i n t h e p a s t and t h e f o l l o w i n g c o n c l u s i o n s can be drawn i n o u r c a s e . S i n c e L - ( - ) - t r y p t o p h a n  was employed as a s t a r t i n g  m a t e r i a l i n t h i s s e r i e s we must have t h e C6-aH o r i e n t a t i o n . The s t e r e o chemistry  o f i n d o l e a l k a l o i d s a t t h e C3 p o s i t i o n ( c o r r e s p o n d i n g  i n the present  t o Cl2b  compounds) h a s been e s t a b l i s h e d i n many cases on t h e b a s i s  of i n f r a r e d a b s o r p t i o n bands. I t h a s been f o u n d ^ " * 9-  quinolizidine-type possessing,  2  that a l k a l o i d s of the  i n t h e i r p r e f e r r e d conformation,  (Cl2b) and a t l e a s t one more a d j a c e n t  t h e C3-H  C-H t r a n s d i a x i a l t o t h e n i t r o g e n  lone  p a i r [ s e e f o r example a j m a l i c i n e ( 1 3 ) ] w i l l e x h i b i t complex i n f r a r e d bands (Bohlmann hands  49  ) between 2700-2900 cm  -1  ( a t l e a s t one o f w h i c h a b s o r b s  below 2800 cm ^) and on the l o w wave number s i d e o f t h e major ( c a 2900 cm ^) band. A l k a l o i d s p o s s e s s i n g  t h e C3-H c i s ( e q u a t o r i a l ) [e.g.  speciociliatine  (130)] t o t h e n i t r o g e n l o n e p a i r w i l l n o t show t h e s e a b s o r p t i o n s . The t e t r a c y c l i c a l c o h o l (127)  does i n f a c t e x h i b i t Bohlmann bands a t 2835,  178  OCH  2800 and  2775 cm"  i n a d d i t i o n t o the major a b s o r p t i o n a t 2895 cm  1  t o CH s t r e t c h i n g modes. Compound (127) o r i e n t a t i o n . The  differences  a s s i g n e d the C12b-otH  i n the i r - s p e c t r a seen above a r e  t o the o r i e n t a t i o n of the n i t r o g e n atoms. D i f f e r e n c e s  i s therefore  due  1  related  l o n e p a i r t o the a d j a c e n t hydrogen  i n o r i e n t a t i o n are a l s o r e f l e c t e d i n the c h e m i c a l s h i f t  of the C12b-proton i n a l k a l o i d s thus p e r m i t t i n g  an independent d e t e r m i n a t i o n  53 o f the c o n f i g u r a t i o n  at t h i s c e n t r e  . The  s i g n a l of the C12b-H c i s to the n i t r o g e n  c r i t e r i o n used i s t h a t the  l o n e p a i r (whether a x i a l  nmr  or  equatorial)  i n q u i n o l i z i d i n e t y p e compounds w i l l appear d o w n f i e l d r e l a t i v e 53-55 t o t h a t of the t r a n s C12b-H o r i e n t a t i o n . Thus an a l k a l o i d p o s s e s s i n g the C12b-H-nitrogen l o n e p a i r i n a c i s r e l a t i o n s h i p w i l l have the C12b5 3~~5 6 p r o t o n o c c u r r i n g a t 6 4 - 4.5 whereas the t r a n s r e l a t i o n s h i p i n the preferred . above  . 6  normal c o n f i g u r a t i o n 0  (131  a,b)  w i l l e x h i b i t the C12b-H s i g n a l  48,57 3.8 Q  I n compound ( 1 2 7 ) , I t s a c e t a t e (128) (134,  135,. 136),  6 3.8  t h e r e b y s u p p o r t i n g the  and  the r e l a t e d a c e t a l compounds  the C12b-proton i s i n d e e d o b s e r v e d a t f r e q u e n c i e s above C12h-ctH c o n f i g u r a t i o n  a s s i g n e d from  the  i n f r a r e d d a t a . However, one m i g h t have e x p e c t e d a s l i g h t s h i f t t o l o w e r f i e l d due  to the p r o x i m i t y  o f the C12b-a-p r o t o n and  the C2—oxygen as  i n d i c a t e d i n (131a). P r e v i o u s s y n t h e s e s of s i m i l a r t e t r a c y c l i c systems have a l s o r e p o r t e d the C12b-aH c o n f i g u r a t i o n  as the f a v o r a b l e  product  - 179 -  to be  obtained  4 8  *  5 2  '  5 8  '  5 9  .  r\ HOH C 2  a)  Another c o n f o r m a t i o n a l r e s u l t  spectrum  3  t  (131  52  3 b C H  (131  b)  can be o b t a i n e d from a n a l y s i s o f the  nmr  57 '  . T h i s r e s u l t a r i s e s from a c o n s i d e r a t i o n of the  relationship  and p r o x i m i t y of the n i t r o g e n l o n e p a i r to the methylene p r o t o n s o f C 3 - e t h y l group. In c e r t a i n c o n f i r m a t i o n s (e.g. 131b) a c i s 1 , 3 - d i a x i a l r e l a t i o n s h i p t o t h e C3-C3a bond carbon atom) w h i l e i n o t h e r c o n f o r m a t i o n s  the l o n e p a i r i s i n  (2.8 A from the  (e.g. 131a)  the  C3a  the C3-C3a bond i s  d i r e c t e d away from the n i t r o g e n e l e c t r o n s . Thus i t might be expected  that  a c h e m i c a l s h i f t d i f f e r e n c e between the C3a methylene hydrogens i n the two  c o n f o r m a t i o n a l s e t s would e x i s t . Moynehen e t al^° showed t h a t the  two p o s s i b l e 3-methyl q u i n o l i z i d i n e s  [(132) and  (133)] e x i s t m a i n l y i n  the t r a n s f u s e d r i n g c o n f o r m a t i o n w i t h the a x i a l m e t h y l p r o t o n s i n d e s h i e l d e d by 0.26  ppm  r e l a t i v e t o the e q u a t o r i a l methyl p r o t o n s i n (133). CH3  (1.084)  (0.825)  (132)  (132)  (133)  - 180  -  Thus C3a methylene p r o t o n s i n (131b) may  a l s o be d e s h i e l d e d by  the  n i t r o g e n l o n e p a i r , but t h i s e f f e c t i s n o t o b s e r v e d s i n c e t h e o t h e r protons a l s o resonate  ring  i n t h i s r e g i o n . However, a d i f f e r e n c e might be  observed i n the degree o f r e s o l u t i o n o f the t r i p l e t s i g n a l of the  C3b  m e t h y l p r o t o n s as i t a r i s e s from the s p i n c o u p l i n g o f the C3a  C3b  hydrogens. A n e t ^  1  has p o i n t e d o u t t h a t the t r i p l e t s i g n a l o f the m e t h y l  p r o t o n s of an e t h y l group w i l l be w e l l r e s o l v e d o n l y when a chemical  and  significant  s h i f t d i f f e r e n c e e x i s t s between the s i g n a l s o f the m e t h y l  methylene p r o t o n s .  Thus when the C3 e t h y l group i s c i s 1,3  the n i t r o g e n l o n e p a i r some i n c r e a s e d r e s o l u t i o n of the CH^ e x p e c t e d due  t o the d e s h i e l d i n g of the a d j a c e n t  and  d i a x i a l to signal i s  C3a methylene p r o t o n s by  the n i t r o g e n e l e c t r o n s . The nmr (127)  s p e c t r a ( F i g u r e 10 and  and i t s a c e t a t e  (128)  11 r e s p e c t i v e l y ) of the t e t r a c y c l i c a l c o h o l  r e v e a l a w e l l r e s o l v e d t r i p l e t f o r the  m e t h y l group and based on the above argument one would t h e r e f o r e  C3b  be  tempted t o a s s i g n a g - c o n f i g u r a t i o n t o the C 3 - e t h y l group. However, the p r o x i m i t y of the C2-oxygen t o the C3a-methylene [as s e e n i n ( 1 3 1 a ) ]  may  i n f a c t cause a s i m i l a r e f f e c t on the l a t t e r group t o t h a t a l r e a d y n o t e d w i t h the n i t r o g e n atom and i n i n t e r p r e t i n g t h e nmr  therefore i t i s necessary to exercise  caution  d a t a . I t i s t h e r e f o r e s u g g e s t e d t h a t t h e major  p o r t i o n o f the t e t r a c y c l i c a l c o h o l (127)  e x i s t s i n the  c o n f i g u r a t i o n ( i n agreement w i t h p u b l i s h e d  C3ct-ethyl  r e s u l t s i n s i m i l a r systems  T h i s assignment i s s u p p o r t e d by the f o l l o w i n g o b s e r v a t i o n s , m e t h y l t r i p l e t i n the t e t r a c y c l i c a l c o h o l - k e t o n e  (127)  a) the  ).  C3b  ( F i g u r e 10) becomes  somewhat l e s s r e s o l v e d ( F i g u r e 12) upon f o r m a t i o n o f the C 2 - e t h y l e n e k e t a l (134)  and  the C2-3-hydroxy compound  (129).  TMS+  I : i i i I i i i i I i i i i I I i i I I I i I I I I I I !. I I..J...J .1.1.1 i. !.!.. I . . L . L . I . L I .  7  6  5  4  F i g u r e 10. NMR spectrum (FT) o f compound (127).  3  i  i i i  - 183 -  I  - 184 -  Furthermore, 0.98  t h e s i g n a l undergoes a s l i g h t u p f i e l d s h i f t  (<5 0.98 -> 0.94,  0.90) i n t h e c o n v e r s i o n o f t h e C2-ketone t o t h e k e t a l (134) o r  a l c o h o l (129) r e s p e c t i v e l y , t h e r e b y c o n f i r m i n g t h e s p a t i a l p r o x i m i t y o f the C 3 - e t h y l s i d e c h a i n t o t h e C2-ketone f u n c t i o n a l i t y . In order to i n v e s t i g a t e the p o s s i b l e e l o n g a t i o n of the s i d e c h a i n at  C6 i n (127) t h e r e a c t i o n s o u t l i n e d i n F i g u r e 13 were  undertaken.  Thus, t h e t e t r a c y c l i c k e t o a l c o h o l (127) was c o n v e r t e d t o t h e c o r r e s p o n d i n g k e t a l (134) by means o f e t h y l e n e g l y c o l and a t r a c e o f a c i d . Treatment o f k e t a l (134) w i t h a c e t i c a n h y d r i d e and p y r i d i n e a f f o r d e d t h e a c e t a t e (135) i n 90% y i e l d . Treatment o f t h e l a t t e r w i t h p o t a s s i u m e l e v a t e d temperatures  c y a n i d e i n DMF a t  d i d not p r o v i d e the d e s i r e d n i t r i l e  (136), mainly  s t a r t i n g m a t e r i a l was r e c o v e r e d . T h e r e f o r e , i t was d e c i d e d t o i n v e s t i g a t e o t h e r l e a v i n g groups w h i c h might be more s u s c e p t i b l e t o d i s p l a c e m e n t b y c y a n i d e i o n . The t e t r a c y c l i c k e t a l a l c o h o l (134) was c o n v e r t e d t o t h e b e n z o a t e (137) by t r e a t m e n t w i t h b e n z o y l c h l o r i d e i n p y r i d i n e . A t t e m p t s to t r a n s f o r m t h e o b t a i n e d b e n z o a t e i n t o t h e n i t r i l e  (136) were a g a i n  unsuccessful. Treatment o f (134) w i t h 3 , 5 - d i n i t r o b e n z o y l c h l o r i d e i n p y r i d i n e p r o v i d e d t h e c o r r e s p o n d i n g 3 , 5 - d i n i t r o b e n z o a t e (138) i n 82% y i e l d . When t h e l a t t e r was s u b j e c t e d t o c y a n i d e t r e a t m e n t a t v a r i o u s temperatures  o n l y a s m a l l amount  o f a n i t r i l e c o n t a i n i n g m a t e r i a l was o b t a i n e d , t h e b u l k o f r e c o v e r e d m a t e r i a l c o n s i s t e d o f t e t r a c y c l i c a l c o h o l (134). Formation of the n i t r i l e  (136) was  f i n a l l y r e n d e r e d p o s s i b l e by c o n v e r s i o n o f t h e a l c o h o l (134) t o t h e c o r r e s p o n d i n g t o s y l a t e and t r e a t m e n t o f t h e l a t t e r w i t h p o t a s s i u m i n methanol. The p r o d u c t e x h i b i t s an i n f r a r e d a b s o r p t i o n a t 2250 c h a r a c t e r i s t i c of a n i t r i l e moiety;  cyanide cm" , 1  other s p e c t r a l data are i n accord w i t h  - 185 -  F i g u r e 13. R e a c t i o n scheme f o r t h e p o s s i b l e e x t e n s i o n o f t h e s i d e i n compound (127). the a s s i g n e d  structure  chain  (136).  At t h i s p o i n t i t was f e l t t h a t a c o n v e r s i o n  of t h e n i t r i l e t o an e s t e r  f u n c t i o n a l i t y as i n (139) and (140) might be d e s i r a b l e s i n c e t h e l a t t e r c o u l d presumably be f u r t h e r f u n c t i o n a l i z e d a t C6a and would a l s o be s u i t a b l e i n view of the projected bridged  a l k a l o i d s . However, v a r i o u s a t t e m p t s , under  - 186 -  a c i d i c and b a s i c c o n d i t i o n s , to a c h i e v e t h i s t r a n s f o r m a t i o n were unsuccessful. S i n c e t h e c o n v e r s i o n o f the t e t r a c y c l i c a l c o h o l (134) t o t h e n i t r i l e (136) was a c h i e v e d o n l y i n a r e l a t i v e l y s m a l l y i e l d and s i n c e an e l a b o r a t i o n of t h e n i t r i l e f u n c t i o n a l i t y had f a i l e d , s e r i o u s c o n s i d e r a t i o n s were, g i v e n to a p o s s i b l e e x t e n s i o n of t h e s i d e c h a i n a t an e a r l i e r s t a g e i n the s y n t h e t i c sequence and t h e r e f o r e t h e g e n e r a l s t r a t e g y o r i g i n a l l y o u t l i n e d under Scheme B was e x p l o r e d . Scheme B In  o r d e r t o e v a l u a t e t h e f e a s i b i l i t y o f c h a i n e l o n g a t i o n a t an e a r l y phase,  t r y p t o p h a n was reduced  t o t h e a l c o h o l (121) by means o f l i t h i u m aluminum  h y d r i d e . T h i s compound, 2 - a m i n o - 3 - i n d o l y l ( 3 a ) - p r o p a n o l , was t r e a t e d w i t h b e n z o y l c h l o r i d e i n p y r i d i n e t o a f f o r d the d i b e n z o a t e treatment w i t h potassium  (141) w h i c h upon  c y a n i d e a f f o r d e d t h e monobenzoate (142).  During  t h i s s t u d y i t was found t h a t (142) can be h y d r o l y z e d w i t h sodium h y d r o x i d e to  regenerate  the amino a l c o h o l (121) thus p r o v i d i n g a c o n v e n i e n t method f o r  removal of t h e N-benzoate group. An attempt to  t o c o n v e r t t h e mono benzoate (142)  the c o r r e s p o n d i n g O - t o s y l a t e (143) l e d t o f o r m a t i o n o f t h e a z i r i d i n e  compound (144). I t i s assumed t h a t t h e t o s y l a t e (143) had i n d e e d as an i n t e r m e d i a t e b u t proved Formation  formed  t o be u n s t a b l e t h e r e b y l e a d i n g t o (144).  o f t h e O - t o s y l a t e o f (121) c o u l d be a c h i e v e d by u t i l i z a t i o n o f the  N-carbobenzoxy d e r i v a t i v e (145) w h i c h had been o b t a i n e d from t h e amino a l c o h o l (121) upon treatment w i t h sodium c a r b o n a t e and carbobenzoxy c h l o r i d e . Treatment o f (.145) w i t h p - t o l u e n e s u l f o n y l c h l o r i d e l e d t o t h e t o s y l a t e  (146).  - 187 -  , C H N H  N H  , C H  O H  2  " ~  C,H C0C1 6 5  2  C  ^  "ft  H  NaOH  O R  NH C O C  (121),97%  2  6  H  I (141),53%,R=COC,H (142),95%,R = H *  5  b  TsCl  C H  CO  2  C O  H  H  ^6 5 H  (144)  t h e t o s y l f u n c t i o n a l i t y i n t h e l a t t e r by c y a n i d e  the e x p e c t e d n i t r i l e  3-indolyl(3a)-propyl  I  ^ 5  (143)  An attempt t o d i s p l a c e did not afford  NH C O  tosylate  (147) b u t a s m a l l amount o f 2-amino-  (148) was o b t a i n e d , t h e r e b y i n d i c a t i n g  that  - 188  -  the c y a n i d e i o n had p r e f e r e n t i a l l y a t t a c k e d  the c a r b o n y l group thus  c a u s i n g removal of the carbobenzoxy f u n c t i o n a l i t y . An O - t o s y l a t e  s u c h as  (148)  seemed to be an a t t r a c t i v e i n t e r m e d i a t e  since  i t o f f e r e d an a l t e r n a t i v e f o r the e x t e n s i o n of the s i d e c h a i n . Thus, an attempt was  made t o o b t a i n (148) by c a r e f u l t r e a t m e n t of the amino a l c o h o l  (121) w i t h one e q u i v a l e n t o f p - t o l u e n e s u l f o n y l c h l o r i d e a t 0°. However, the major p r o d u c t p r o v e d t o be the N - t o s y l a t e d i - t o s y l a t e (150). The  (149)  accompanied by some  amino a l c o h o l (121) was t h e r e f o r e t r e a t e d w i t h  e x c e s s o f p - t o l u e n e s u l f o n y l c h l o r i d e t o p r o v i d e t h e d i - t o s y l a t e (150) 83% y i e l d . Treatment of the l a t t e r w i t h p o t a s s i u m c y a n i d e a f f o r d e d desired n i t r i l e corresponding completing I t now  (151). T h i s i n t e r m e d i a t e was  then c o n v e r t e d  a c i d (152) by means of 30% sodium h y d r o x i d e ,  to  an i n an  the  the  thereby  the s u c c e s s f u l e x t e n s i o n of the s i d e c h a i n .  became n e c e s s a r y t o c o n v e r t  the N - t o s y l group t o the b a s i c amino  f u n c t i o n i n o r d e r t o p r o c e e d towards the f o r m a t i o n  of the  dihydrocarboline  system. V a r i o u s methods f o r the c l e a v a g e of s u l f o n a m i d e s a r e known and b a s i c a l l y f a l l i n t o two metal*'  2  ^  c a t e g o r i e s ; a) r e d u c t i v e c l e a v a g e u s i n g an a l k a l i  o r b) c l e a v a g e e m p l o y i n g s t r o n g a c i d i c conditions*'"''  Treatment  of the n i t r i l e - N - t o s y l a t e (151) w i t h sodium i n l i q u i d ammonia a l l o w e d successful conversion under a c i d i c  to the n i t r i l e - a m i n e (153). Cleavage of the  c o n d i t i o n s was  a l s o achieved  w i t h 80% s u l p h u r i c a c i d t o p r o v i d e i t s polar nature decided  they  N-tosylate  by t r e a t m e n t of the a c i d  (152)  the amino a c i d (154). However, due  the l a t t e r p r o v e d to he d i f f i c u l t t o h a n d l e . I t was  t o s u b j e c t the c a r b o x y l i c a c i d (152)  a  to therefore  to the p r e v i o u s l y used r e d u c t i v e  c o n d i t i o n (sodium, l i q u i d ammonia) t o g e n e r a t e the amino a c i d (154)  which  - 189 -  CH OH 2  NH H  TsCl I*  Ts CL  1 equ.  2  Ts  H  (121)  CH OTs  (149),35%  2  NH  Ts  (150),83% CHgCN  KCN  ^  N H  CN CH  1  Na  liqu.NH  NHo  3  (151),95%  NaOH,30%  (153),95%  CH2CO2H  CH^CgH  NH H  (152),93%  Ts  2  N H  80% H.SO. 2 4  Na,liqu.NH,  NH2  (154),89%  [(154)] |CH OH,H 3  CH2CO2CH3 KlH  CH2CO2CH3  1  2  NH CHO  (155),76% f r o m (151)  (156),83% F CCOOH 3  CH2CO2CH3  CH2CO2CH3  (158),18%  (157),92%  - 190  would not be i s o l a t e d but d i r e c t l y ester  (.155). The  -  c o n v e r t e d t o . t h e c o r r e s p o n d i n g methyl  l a t t e r w a s transformed  e i t h e r treatment w i t h sodium h y d r i d e of f o r m i c a c i d and  a c e t i c anhydride.  to the N-formyl  compound  and methyl formate  p u r i f i e d but d i r e c t l y  isomers)  c o n s i s t e d a g a i n of two  i n an e s t i m a t e d  (TLC)  r a t i o of 9:1  i n predominance. S e p a r a t i o n o f t h i s m i x t u r e I t i s t o be remembered t h a t one was  not  trifluorofurther  c o n v e r t e d t o the t e t r a c y c l i c ketone (158).  l a t t e r r e a c t i o n product  components  The  (C3 a and 8  w i t h the more p o l a r component proved u n s u c c e s s f u l .  o f the major g o a l s of t h i s  t o s y n t h e s i z e an i n t e r m e d i a t e s u c h as  by  or a mixture  Treatment of (156) w i t h  a c e t i c a c i d p r o v i d e d the d i h y d r o c a r b o l i n e (157) which was  (156)  investigation  (76) f o r subsequent e l a b o r a t i o n  cx H  (76) to the b r i d g e d a l k a l o i d s . I t w i l l to generate  t h e r e f o r e be n e c e s s a r y a t some s t a g e  an a n i o n a t C6a i n the hope t h a t t h i s w i l l a t t a c k a t C2,  thus  e n a b l i n g the d e s i r e d t r a n s a n n u l a r c y c l i z a t i o n p r o c e s s . I t i s p o s s i b l e t h a t two  competing r e a c t i o n s c o u l d o c c u r d u r i n g f o r m a t i o n of the C6a-anion,  namely g e n e r a t i o n of the l a t t e r o r the b a s e - c a t a l y z e d e l i m i n a t i o n o f leaving  group at C2 l e a d i n g t o the C2(3)  e l i m i n a t i o n p r o c e s s i t was  the  o l e f i n . ' In order, to suppress  the  hoped t h a t a n i o n f o r m a t i o n c o u l d o c c u r under v e r y  m i l d c o n d i t i o n s . For t h i s purpose i t appeared  d e s i r a b l e to f u r t h e r  activate  the p r o t o n to be removed by i n t r o d u c t i o n of an a d d i t i o n a l carbomethoxy or  - 191 -  aldehyde  group a t t h i s c e n t e r  (C6a).  S i n c e f o r m a t i o n o f t h e t e t r a c y c l i c k e t o n e (158) o n l y proceeded i n v e r y l o w y i e l d , i t became d e s i r a b l e t o attempt  an i n t r o d u c t i o n o f t h e above-  mentioned a d d i t i o n a l f u n c t i o n a l i t y a t an e a r l i e r s t a g e i n t h e sequence. For t h i s purpose t h e r e a c t i o n pathways g e n e r a l l y c o n s i d e r e d under Schemes C and D were now e v a l u a t e d . Scheme C I n o r d e r t o i n t r o d u c e an a d d i t i o n a l f u n c t i o n a l i t y i n t o t h e s i d e c h a i n o f the t r y p t a m i n e d e r i v a t i v e ( 1 5 5 ) , t h e l a t t e r was t r e a t e d w i t h sodium h y d r i d e and d i m e t h y l carbonate  a t room temperature  as w e l l as a t 60°. Upon workup  a complex m i x t u r e of compounds was o b t a i n e d and t h i s was shown t o c o n t a i n some s t a r t i n g m a t e r i a l ( 1 5 5 ) , an N - c a r b o m e t h o x y l a t e d an I^-carbomethoxylated  compound  (159),  s p e c i e s (160) and a m a t e r i a l (161) p o s s e s s i n g a  carbomethoxy group a t b o t h n i t r o g e n c e n t r e s , w i t h t h e l a t t e r b e i n g t h e major component. The d e s i r e d m a t e r i a l (162) c o u l d u n f o r t u n a t e l y n o t be d e t e c t e d .  C0 CH  CO2CH3 N C02CH  (155) NaH  2  NH 3  3  2  (159)  (CH 0) C0 3  ?  JJ C0 CH  fv  2  NH H  (162)  3  3  G0 CH 2  NH C02CH  (160) 3  ;O CH  2  2  N C02CH  NH 2 C H  c  o  3  3  (161)  3  - 192 -  These r e s u l t s s u g g e s t e d t h a t t h e n i t r o g e n p o s i t i o n s had t o be p r o t e c t e d i n some way. S i n c e t h e N ^ - f o r m j i compound i s needed f o r t h e B i s c h l e r N a p i e r a l s k i r e a c t i o n l e a d i n g t o t h e d i h y d r o c a r b o l i n e s k e l e t o n , i t was decided and  t o employ t h e p r e v i o u s l y s y n t h e s i z e d  -formyl m a t e r i a l (156)  t o p r o t e c t t h e i n d o l e n i t r o g e n w i t h a b e n z y l group. I t was f e l t  O2CH3 NH CHO  NaH C,H CH Br 6 5 2 c  (156)  ^Y^C0 CH 2  0  CH2  3  C  HC0 CH ,NaBH 2  3  3  NH CHO  0 CNa If  that  6 5 H  (163),76%  4  CH OH 2  O2CH3 N CH C  NH CHO 2  6 5 H  (166),10%  C  6 5 H  (165)  the l a t t e r c o u l d l a t e r be removed by some r e d u c t i v e p r o c e d u r e . Thus (156) was s u c c e s s f u l l y c o n v e r t e d  t o t h e N - i n d o l e - b e n z y l compound (163) by  t r e a t m e n t w i t h sodium h y d r i d e and b e n z y l bromide. An attempted carbomethoxyl a t i o n o f compound (163) d i d , however, n o t l e a d t o t h e d e s i r e d m a t e r i a l (164) but r e s u l t e d i n s t e a d i n f o r m a t i o n o f (165). A s u c c e s s f u l i n t r o d u c t i o n o f a hydroxymethylene group i n t o t h e d e s i r e d p o s i t i o n was a c h i e v e d by t r e a t m e n t of (163) w i t h t r i p h e n y l m e t h y l s o d i u m  and m e t h y l f o r m a t e . The i n i t i a l l y  generated  - 193  aldehydo e s t e r was  -  not i s o l a t e d b u t i m m e d i a t e l y  converted  t o the  corresponding  a l c o h o l (166) by r e d u c t i o n w i t h , sodium b o r o h y d r i d e - T h e d e s i r e d m a t e r i a l was  only obtained  i n a 10% o v e r a l l y i e l d , t h u s making t h i s p r o c e d u r e not  very favorable. S i n c e the amino n i t r i l e i t was  (153) was  a v a i l a b l e from an e a r l i e r  investigation,  a l s o p o s s i b l e t o s t u d y t h e f e a s i b i l i t y of m o d i f i c a t i o n i n t h i s  s i d e c h a i n . T h i s compound was  therefore converted  t o the N ^ - f o r m y l m a t e r i a l 68  (167) by t r e a t m e n t n i t r o g e n was  w i t h sodium methoxide and m e t h y l formate  . The  p r o t e c t e d by f o r m a t i o n o f the ^ - b e n z y l d e r i v a t i v e  indolic  (168a)through  r e a c t i o n o f sodium, h y d r i d e and b e n z y l bromide w i t h compound (167). A s m a l l amount of the d i - b e n z y l component (168b) was  also obtained  N^ H (153)  from t h i s p r o c e d u r e .  NH CHO  (167),58% NaH,C,H CH„Br  'N HC(D)  HMD) CHO  <  I> 2 ° NaH  2  D  Z  (168a),R = H (169)  "  (168b),R  S e v e r a l a t t e m p t s were made t o i n t r o d u c e a carbomethoxy group i n t o n i t r i l e c o n t a i n i n g s i d e c h a i n by. u s i n g sodium h y d r i d e and m e t h y l however, o n l y s t a r t i n g m a t e r i a l was decided  recovered  t o s u b j e c t the N - b e n z y l n i t r i l e  The m a t e r i a l was  CH C H 2  6  5  the chloroformate,  i n each case. I t was  therefore  (168a) t o more s e v e r e c o n d i t i o n s .  thus h e a t e d f o r a s h o r t p e r i o d o f time a t 100°  t e n f o l d e x c e s s o f sodium h y d r i d e , the r e a c t i o n m i x t u r e was  with a  then c o o l e d  and  - 194 -  quenched w i t h d e u t e r i u m  o x i d e . The r e c o v e r e d m a t e r i a l (169) was s u b j e c t e d  to a mass s p e c t r o m e t r i c i n v e s t i g a t i o n t o d e t e r m i n e i f and where i n c o r p o r a t i o n of d e u t e r i u m  had t a k e n p l a c e .  Compound ( 1 6 9 ) e x h i b i t e d a m o l e c u l a r  i o n a t m/e 317 (C2QH.J^N.JO) w i t h a  r e l a t i v e i n t e n s i t y o f 36.9%. The c a l c u l a t e d i n t e n s i t y f o r t h e M+l i o n (m/e 318) i s 8.8%, however, t h e mass s p e c t r u m i n d i c a t e d a M+l i o n o f 2 3 . 6 % r e l a t i v e i n t e n s i t y . T h e r e f o r e a 2 9 % i n c o r p o r a t i o n o f one d e u t e r i u m had  taken p l a c e o r i n o t h e r words t h e n o n - d e u t e r a t e d  ?H C  6  H  C  5 C  19 16 2 " H  N  2  7  2  6  and d e u t e r a t e d  C  H  2 H  atom  °  9 ( "8a)  5  ii  C  20 19 3° " H  N  3 1 7  C H N 0 ( icraC) 4  5  2  CH2  16*lt,» "  C  C,a N - 128 6  F i g u r e 14. Mass s p e c t r o m e t r i c f r a g m e n t a t i o n  C H 8  6  220  - 102  scheme f o r compound  (168a).  compounds  - 195 -  a r e p r e s e n t I n a 1:0.4  ratio.  Upon i n s p e c t i o n o f t h e mass spectrometries d a t a o f compound (168a) t h e f r a g m e n t a t i o n scheme o u t l i n e d i n F i g u r e 14 i s s u g g e s t e d ,  the ions  p o r t r a y e d a r e s u p p o r t e d by h i g h r e s o l u t i o n mass measurements. Table I i n c o r p o r a t e s data f o r the undeuterated  (168a) and d e u t e r a t e d  s p e c i e s (169). I t l i s t s t h e r e l a t i v e i n t e n s i t i e s f o r t h e observed (M) as w e l l as t h e c a l c u l a t e d and observed satelite  ions  i n t e n s i t i e s f o r t h e M+l  peaks. A l s o i n d i c a t e d a r e the v a r i o u s c a l c u l a t e d r a t i o s f o r  M+l obs./M.  R e l . i n t e n s . f o r compound (168,a) and  compound (169)  ion  M  m/e(M)  M  M+l calc.  M+l obs.  M+l obs./M  M+l obs.  M+l obs  a  317  8.4  2.0  1.6  0.19  36.9  23.6  0.64  b  272  8.3  1.8  1.8  0.21  35.7  21.4  0.60  c  97  1.0  0.05  0.1  0.1  0.8  0.2  0.25  d  220  58.1  10.7  10.0  0.17  76.4  52.0  0.67  e  129  5.1  0.5  2.7  0.53  23.3  10.5  0.45  f  91  100.0  46.3  0.46  g  128  1.9  0.2  h  102  3.6  0.3  4.6  0.40  100.0 . 8.0  12.7  . 0.13  5.5 1.4  0.39  11.6  T a b l e I . R e l a t i v e i n t e n s i t i e s (%) of v a r i o u s mass s p e c t r o m e t r i c i o n s f o r compounds (168a) and (169). S u b s t a n t i a l changes can he observed  i n t h e s a t e l l i t e peaks (M+l) and t h e  c o r r e s p o n d i n g M+l ohs./M.ratios. The i n c r e a s e ( d e c r e a s e ) i n ;M+1 obs./M f o r e a c h i o n i s l i s t e d i n T a b l e I I as. a f a c t o r o f t h e v a l u e s observed i n the u n d e u t e r a t e d  m a t e r i a l (168a). Thus  factorial increase  _  M+l obs./M, deut. - M+l obs./M, undeut. M+l obs./M, undeut.  - 196 -  ion factorial increase (decrease) Table  a  b  c  d  2.36  1.85  1.5  2.94.  I I . F a c t o r i a l i n c r e a s e (decrease) i n the t r a n s f o r m a t i o n (168a)  e  f  CO.15)  h  2.54  0.02  i n M f l obs./M f o r v a r i o u s (169).  ions  I f no i n c o r p o r a t i o n o f d e u t e r i u m i n t o a p a r t i c u l a r i o n has taken p l a c e the f a c t o r should be z e r o , w h i l e a f a c t o r >0 i n d i c a t e s t h a t i n c o r p o r a t i o n has  occurred.  Upon i n s p e c t i o n o f T a b l e I I one comes ( w i t h i n e x p e r i m e n t a l  e r r o r ) t o the  f o l l o w i n g c o n c l u s i o n ; t h e f a c t o r s o f i o n s a_ and f_ a r e v i r t u a l l y thus s u g g e s t i n g  t h a t the major p o r t i o n b f deuterium has been  at the b e n z y l i c p o s i t i o n . T h i s argument i o n s a, b_ and d p o s s e s s i n g  i s supported  identical,  introduced  by t h e f a c t  that the  t h e b e n z y l group a r e o f g r e a t e r abundance i n  the spectrum o f the d e u t e r a t e d  species  (169). T h i s i s t o be expected s i n c e  f i s s i o n o f a N-CDH bond i s presumably more d i f f i c u l t  then a N-CI^ bond.  Some deuterium has been a l s o i n c o r p o r a t e d i n t o t h e s e c t i o n o f t h e m o l e c u l e p o r t r a y e d by i o n (i, i t i s suggested t h a t p a r t i a l exchange took p l a c e a t t h e n i t r o g e n p o s i t i o n . Support f o r t h i s assignment comes from the f a c t o r i a l decrease i n going  from i o n a t o b d u r i n g which time the amide grouping i s  removed. Furthermore i t has a l r e a d y been noted t h a t a s m a l l amount of di-benzoate  (168b) was formed d u r i n g t h e r e a c t i o n o f (167)  with  sodium  h y d r i d e and b e n z y l bromide. S i n c e v i r t u a l l y no change has taken p l a c e i n i o n s e_ and h upon d e u t e r a t i o n i t i s assumed t h a t the 3 - m e t h y l e n e i n d o l e n i n e moiety ( i o n e) d i d n o t i n c o r p o r a t e any o f t h e deuterium. The  above assignments a r e a l s o s u p p o r t e d  s i g n a l due to the methylene p r o t o n s  by a d e c r e a s e (y 15%) o f t h e nmr  i n the N ^ - b e n z y l group. The  - 197 -  s i g n a l due to.NR was a l s o o f l o w e r i n t e n s i t y ( V 5%) i n the nmr  spectrum  of compound (169), The i n f r a r e d d a t a o f compounds (168a) and (169) p e r m i t t e d a l s o c e r t a i n c o n c l u s i o n s w h i c h a r e i n agreement w i t h t h e above o b s e r v a t i o n s . The s t r e t c h i n g frequency v of a diatomic molecule  composed o f atoms w i t h  masses m and m' can be e x p r e s s e d by the f o l l o w i n g e q u a t i o n :  where c i s t h e v e l o c i t y o f l i g h t , and f i s t h e f o r c e c o n s t a n t  (bond  s t r e n g t h o r bond o r d e r c o r r e s p o n d i n g t o Hooke's c o n s t a n t o f s p r i n g s ) . The s t r e t c h i n g f r e q u e n c i e s o f X-H bonds and m u l t i p l e bonds can a l s o be approximated  by the same e x p r e s s i o n , and i t can be seen t h a t bonds o f  h i g h e r o r d e r absorb a t h i g h e r f r e q u e n c i e s , p r o v i d e d t h e masses o f bonded atoms a r e i d e n t i c a l . Q u a l i t a t i v e l y , t h e b e n d i n g  f r e q u e n c i e s can a l s o be  t r e a t e d i n the same f a s h i o n . I f i t i s assumed t h a t t h e f o r c e c o n s t a n t s o f X-H and X-D a r e i d e n t i c a l and t h a t t h e mass r a t i o o f H and D i s 1:2, t h e wave number r a t i o o f s t r e t c h i n g f r e q u e n c i e s deduced from t h e above e q u a t i o n becomes:  where m  x  i s the mass o f atom X. Thus, t h e r a t i o s o f bonds NH-ND and CH-CD . . .  a r e , r e s p e c t i v e l y , 1.37 and 1.36 ( r o u g h l y /~2). The X-H b e n d i n g f r e q u e n c l behave s i m i l a r l y . T h e r e f o r e , f r e q u e n c i e s of bands a s s o c i a t e d w i t h D - c o n t a i n i n g bonds a r e a t a p p r o x i m a t e l y I j J l t h o s e o f t h e c o r r e s p o n d i n g H - c o n t a i n i n g bonds^^.  - 198 -  The  i n f r a r e d spectrum o f compound (168a) e x h i b i t s v a r i o u s b e n d i n g  i n t h e r e g i o n o f 1360-1460 cm  1  corresponding  I n t h e spectrum o f t h e d e u t e r a t e d  species  frequencies  t o t h e -CH^-C^C g r o u p i n g .  (169)  a new group o f bands  (960-1030 cm ^) has appeared i n a c c o r d w i t h t h e f o r e g o i n g d i s c u s s i o n and i n support  of a p a r t i a l deuteration at the b e n z y l i c p o s i t i o n .  Corresponding  f r e q u e n c i e s c o u l d n o t be found f o r t h e NH group. In order t o avoid anion formation a t the b e n z y l i c p o s i t i o n of compound (168a) t h e use o f a b u l k i e r base was c o n s i d e r e d . Thus, t h e N - b e n z y l m a t e r i a l (168a) was t r e a t e d w i t h one e q u i v a l e n t o f d i i s o p r o p y l l i t h i u m amide 68  and m e t h y l c h l o r o f o r m a t e was  i n an a t t e m p t t o g e n e r a t e (170)  . However, r e a c t i o n  o n l y o b s e r v e d a t t h e a l i p h a t i c n i t r o g e n l e a d i n g t o (171) and (172).  CO2CH3 'CN  NH CH C  6  C H  2  H  6  5  (  1  ?  0  )  5  (168a)  NCO2CH3  (171) , 79%, R = CHO (172) , 12%, R « H Scheme D As a r e s u l t o f t h e d i f f i c u l t i e s  e n c o u n t e r e d w i t h t h e i n d o l i c systems  (.163) and (168a) i t was d e c i d e d  t o u t i l i z e , the t r i c y c l i c  s k e l e t o n as t h e s t a r t i n g s u b s t a n c e .  (155),  dihydrocarboline  Thus, compound (163) was t r e a t e d w i t h  - 199 -  trifluoroacetic.acid  t o produce upon workup t h e d e s i r e d  (163)  dihydrocarboline(173).  (173), 92%  The mass s p e c t r o m e t r i c d a t a o b t a i n e d f o r compound (173) suggest t h e p r e s e n c e of t h e major i o n s p o r t r a y e d i n F i g u r e 15. H i g h r e s o l u t i o n mass measurements are i n s u p p o r t  of the o u t l i n e d fragments.  C 7  H  7  - 91  D  C  11 8 2 " H  N  1 6 8  F i g u r e 15. P o s t u l a t e d mass s p e c t r o m e t r i c i o n s f o r compound (173).  The  c h a r a c t e r i s t i c fragmentation  p a t t e r n f o r compound (173) makes i t  a t t r a c t i v e t o u t i l i z e mass s p e c t r o m e t r y  to i n v e s t i g a t e possible s i t e s  - 200 -  i n the molecule which are s u s c e p t i b l e to anion formation. A l s o , i n order t o a v o i d g e n e r a t i o n of an a n i o n a t t h e b e n z y l i c s i t e i t was d e c i d e d t o employ t h e s t e r i c a l l y more h i n d e r e d base d i i s o p r o p y l l i t h i u m amide. Thus, the d i h y d r o c a r b o l i n e compound (173) was t r e a t e d w i t h t h e l a t t e r a t -78° and t h e r e a c t i o n was quenched w i t h D^O.  I t s h o u l d be mentioned t h a t t h e  2L  (  / ^ Y ^ C 0 2 C H '3 ;  N ^ \ ^ C7 H  l l )U( HC HH ^) TN L.i^ ON SrJ' 1  N  Q  2  7  0  (173)  W  A  A  ^  N  ^3  HC(D)  (174),20%  d e s i r e d d e u t e r a t e d m a t e r i a l (174) was o n l y o b t a i n e d i n v e r y l o w y i e l d  (20%).  The d i h y d r o c a r b o l i n e compounds p r e v i o u s l y i n v e s t i g a t e d i n t h i s s t u d y have g e n e r a l l y been f a i r l y l a b i l e and were n o r m a l l y d i r e c t l y c o n v e r t e d corresponding  t e t r a c y c l i c systems. P e r h a p s t h i s i n s t a b i l i t y may account f o r  the l o w y i e l d observed d u r i n g t h e i s o l a t i o n o f t h e d e u t e r a t e d Nevertheless  to the  i t proved t o be w o r t h w h i l e  spectrometric r e s u l t s obtained drawn below a r e c o n s i d e r e d  dihydrocarboline.  t o examine more c l o s e l y t h e mass  f o r compounds (173) and (174). The c o n c l u s i o n s  t o be o f a s e m i q u a n t i t a t i v e n a t u r e  only.  T a b l e I I I l i s t s t h e v a r i o u s d a t a o b s e r v e d f o r t h e mass s p e c t r o m e t r i c ( F i g u r e 15) o f compound  (173) and i t s d e u t e r a t e d a n a l o g  ions  (174). The f a c t o r i a l  i n c r e a s e s f o r M+l/M and M+2/M, ( l i s t e d a t h o t t o m o f T a b l e I I I and c a l c u l a t e d as p r e v i o u s l y d e s c r i h e d ) o b t a i n e d  f o r the conversion  (173)  (174) c l e a r l y  i n d i c a t e t h a t p o s s i b l y two d e u t e r i u m atoms have been i n c o r p o r a t e d . No deuterium i s present a significant  i n i o n cl, b u t i o n s a (and t h e r e f o r e b_) and c show  i n c o r p o r a t i o n . In the parent  i o n £ t h e M+2 peak i s t h e s t r o n g e s t  - 201 -  Ions observed  ( F i g u r e 15)  a  h  c  d  e  m/e(H) -*  332  259  181  168  91  (173)  int.obs.M i n t . obs . M f l int.obs.M+2 M+l/M M+2/M  10.9 2.4 0.2 0.22 0.02  93.5 27.5 2.8 0.29 0.03  25. 7 7. 1 1. 0 0. 28 0. 04  37.9 6.7 0.5 0.18 0.01  100.0 12.4 1.6 0.12 0.02  (174)  int.obs.M int.obs.M+l int.obs.M+2 M+l/M M+2/M  9.4 13.5 15.3 1.43 1.63  82.5 90.9 68.4 1.10 0.83  13. 6 34. 8 22. 4 2. 56 1. 65  71.9 13.9 3.2 0.19 0.04  . 90.0 100.0 47.2 1.10 0.53  2.5 26.7  8. 1 40. 2  Factorial increase f o r M+l/M 5.5 M+2/M 80.5  0 3  8.2 25.0  T a b l e I I I . Mass s p e c t r o m e t r i c d a t a f o r major i o n s observed i n compound (173) and t h e d e u t e r a t e d a n a l o g ( 1 7 4 ) . one whereas i n i o n s £ and e_ (b) the M+l s p e c i e s i s o f g r e a t e s t abundance; t h i s a g a i n suggests p o s s i b l y two d e u t e r i u m atoms i n t h e m o l e c u l a r i o n a_ and a p p r o x i m a t e l y one d e u t e r i u m each i n i o n s c: and e_ (b) . T h i s r e s u l t was c o n s i d e r e d t o be v e r y e n c o u r a g i n g s i n c e i t o b v i o u s l y h a d been p o s s i b l e t o g e n e r a t e an a n i o n a t t h e d e s i r e d p o s i t i o n i n the s i d e c h a i n of compound (173). However, i n v i e w o f the poor y i e l d o f t h e d e s i r e d m a t e r i a l (174) i t was d e c i d e d t o c o n v e r t the d i h y d r o c a r b o l i n e (173) t o t h e t e t r a c y c l i c ketone  (175) u s i n g e a r l i e r e s t a b l i s h e d  conditions.  Compound (175) was shown (TLC) t o b e a m i x t u r e o f two components (y 9:1, w i t h the more p o l a r one i n predominance)and  r e s i s t e d attempts o f s e p a r a t i o n  due t o e p i m e r i s a t i o n ( a t C3),as o b s e r v e d e a r l i e r . The i n f r a r e d e x h i b i t e d Bohlmann bands (2880-2800 cm  spectrum  ) t h e r e b y e s t a b l i s h i n g the C12b-aH  - 202  -  (173)  (175),  c o n f i g u r a t i o n ; f r e q u e n c i e s due also present,  (1725, 1710  33%  t o the k e t o n i c and e s t e r f u n c t i o n a l i t i e s  are  c m " ) . The m a t e r i a l e x h i b i t s a t y p i c a l i n d o l e 1  spectrum i n the u l t r a v i o l e t r e g i o n (277, 284 and 293 nm).  The nmr  spectrum  i n d i c a t e d the p r e s e n c e o f the C3b m e t h y l group by v i r t u e o f a t r i p l e t  at  5 0.90  3.60;  ( J = 7 H z ) ; a s i n g l e t due  a doublet  ( J = 3 Hz)  t o the m e t h y l e s t e r was  appeared a t 5.23  a r o m a t i c r e g i o n (6.80-7.60) s u p p o r t e d e x c e p t i o n o f the b e n z y l i c and a r o m a t i c o b s e r v e d below 6 3.90,  due  observed at  t o two b e n z y l i c p r o t o n s  and  the  the p r e s e n c e o f 9 p r o t o n s . W i t h the p r o t o n s no o t h e r resonance c o u l d  be  thus a l s o s u p p o r t i n g the C12b-aH s t e r e o c h e m i s t r y .  The mass s p e c t r o m e t r i c f r a g m e n t a t i o n s  of t e t r a c y c l i c a l k a l o i d s possessing  a c o r y n a n t h e l i k e s k e l e t o n have been i n v e s t i g a t e d i n c o n s i d e r a b l e d e t a i l and the most p r o m i n e n t fragments o b s e r v e d f o r compound (175) and to t h i s d i s c u s s i o n are o u t l i n e d i n F i g u r e Compound (175) was  16.  subjected to a d e u t e r a t i o n study u s i n g d i i s o p r o p y l -  l i t h i u m amide and D2O,  and i n t h i s case the d e u t e r a t e d  species  (176)  o b t a i n e d i n 40% y i e l d . T h i s r e s u l t c l e a r l y i n d i c a t e d the h i g h e r o f the t e t r a c y c l i c system when compared w i t h t h a t o f t h e m a t e r i a l (173)  relevant  i n w h i c h o n l y a 20% y i e l d was  observed.  was  stability  dihydrocarboline  7 1  - 203 -  C  O2CH3  27 29 2°3 H  N  - 429  N  - side chain,C6  -> b C  24 25 2° H  N  - 357  C  20 23 2°3 H  N  - 339  C H - 91 ?  C  C  18 15 2 " H  N  18 16 H  N  "  7  2 4 6  2 5 9  N  C H N U  8  2  - 168  F i g u r e 16. M a j o r fragments o f compound (175) o b s e r v e d i n t h e mass  spectrometer.  T a b l e I V i n c o r p o r a t e s t h e v a r i o u s mass s p e c t r o m e t r i c d a t a f o r compounds (175) and  (176) and f o r t h e fragments p o s t u l a t e d i n t h e s e cases as o u t l i n e d i n  F i g u r e 16. I t i s t o be e x p e c t e d t h a t i n c o r p o r a t i o n o f d e u t e r i u m might a l s o o c c u r a t p o s i t i o n s C l and C3, however, i t was f e l t t h a t s u f f i c i e n t e v i d e n c e would be o b t a i n e d  t o d e c i d e whether t h e d e s i r e d i n c o r p o r a t i o n had taken  p l a c e i n t h e s i d e c h a i n at C6. The  f a c t o r i a l i n c r e a s e f o r M+l/M, JM+2/M. and M+3/M.suggests t h a t one o r more  d e u t e r i u m atom have heen i n c o r p o r a t e d i n t o ( 1 7 5 ) . I n p a r t i c u l a r t h e one u n i t mass s h i f t o b s e r v e d i n t h e p a r e n t i o n a ( o r t h e M - l i o n ) i s i n f u l l  support  - 204 -  I o n a observed ( F i g u r e 16) f o r compounds (175) and (176) a  h  m/e(M) -»-  430  357  338  i n t . o b s .M int.obs.M-1 int.obs.M+l int.obs.M+2 int.obs.M+3  50.7 48.1 20.0 2.9 0.2  72.6  34.9 3.3 8.0 1.3  M+l/M M+2/M M+3/M int.obs.M int.obs.M-1 int.obs.M+l int.obs.M+2 int.obs.M+3 M+l/M M+2/M M+3/M Factorial increase f o r M+l/M M+2/M M+3/M  0.39 0.05 0.001 52.5 1.0 57.4 53.7 24.1 1.09 1.02 0.46  1.8 19.5 (460)  53.6 14.2 2.1 0.73 0.19 0.03 82.3 79.8 61.0 22.3 0.97 0.74 0.27  0.33 2.9 8  0.23 0.04  7.0 1.3 24.4 30.5 3.50 4.35  14.2 108  d  e  f_  SL  91  259  246  168  45.9 17.9 11.0 1.5  41.0  31.0 6.8 7.4  100 20.0 1.1 0.20 O.01  100 32.6 2.8  0.24 0.03  57.9 29.9 16.7 3.5  10.1 2.0 0.25 0.05  27.2 41.5 11.1  0.24  37.1 6.8 15.3  0.32 0.03  0.29 0.06  1.57 0.41  0.41  0.6 2  0.21 1  5.3 7.2  0. 7  T a b l e IV. Mass s p e c t r o m e t r i c d a t a o b s e r v e d f o r major i o n s i n compound (175) and i t s d e u t e r a t e d a n a l o g ( 1 7 6 ) . o f a t l e a s t one d e u t e r i u m atom b e i n g p r e s e n t i n ( 1 7 6 ) . The major p o r t i o n o f t h e d e u t e r i u m i s l o c a t e d i n t h e d e s i r e d p o s i t i o n a t C6a as t h e d a t a f o r i o n c ( w h i c h has l o s t t h e h e h z y l group) i n d i c a t e . Upon removal o f t h e s i d e chain (  i o n b_) a s i g n i f i c a n t d e c r e a s e can b e o b s e r v e d i n t h e " f a c t o r i a l  i n c r e a s e " as l i s t e d i n T a b l e I V . The d a t a f o r i o n s d and e s u g g e s t some i n c o r p o r a t i o n o f d e u t e r i u m a t t h e h e n z y l i c p o s i t i o n . A comparison o f t h e d a t a f o r i o n s e_ and f_ s u g g e s t s t h a t i n c o r p o r a t i o n has a l s o o c c u r r e d a t t h e C l p o s i t i o n i n (175). V e r y l i t t l e change i s o b s e r v e d i n i o n £ , however, t h e  - 205 -  d a t a c o u l d suggest a s l i g h t i n c o r p o r a t i o n of d e u t e r i u m a t C7 i n ( 1 7 5 ) . E x t e n s i o n s o f Schemes A-^D A f t e r t h e e n c o u r a g i n g r e s u l t from t h e d e u t e r a t i o n s t u d y on t h e t e t r a c y c l i c ketone (175) i t became n e c e s s a r y t o attempt an i n t r o d u c t i o n o f a c a r b o methoxy group a t t h e C6a p o s i t i o n . As mentioned e a r l i e r , t h e t e t r a c y c l i c ketone (175) c o n s i s t s o f two i n s e p a r a b l e components b e l i e v e d t o be t h e C3 i s o m e r s . An attempt was made t o e p i m e r i z e (175) u s i n g sodium e t h o x i d e i n m e t h a n o l , however, t h e p r o d u c t from t h i s r e a c t i o n s t i l l c o n s i s t e d o f two components. T h e r e f o r e (175) was c o n v e r t e d i n good y i e l d  (80%) t o t h e  c o r r e s p o n d i n g e t h y l e n e k e t a l ( 1 7 7 ) . The nmr s p e c t r u m ( F i g u r e 17) o f t h e latter exhibited a t r i p l e t  ( J = 5 Hz) a t 6 0.88 due t o t h e C3b-methyl-  group; a s i n g l e t a t 3.60 f o r t h e m e t h y l e s t e r , a s i n g l e t (5.22) due t o two b e n z y l i c p r o t o n s and 9 hydrogens i n t h e a r o m a t i c r e g i o n  ( 1 7 8 ) , 30%  (6.90-7.60).  - 207  -  Treatment of the k e t a l (177) w i t h d i i s o p r o p y l l i t h i u m amide and chloroformate  afforded  the d e s i r e d compound (178)  e s t e r s u b s t i t u e n t at C6. Compound (178)  possessing  Some s t a r t i n g m a t e r i a l (177) was  methyl  the m a l o n i c  also  recovered.  e x h i b i t s a t y p i c a l i n d o l i c u l t r a v i o l e t spectrum w i t h  a b s o r p t i o n maxima at 277, s t a r t i n g m a t e r i a l (177)  283  and  293 nm.  The  i n f r a r e d s p e c t r u m of  e x h i b i t e d a s i n g l e f r e q u e n c y (1760  the  cm ^) due  to  a c a r b o n y l s u b s t i t u e n t . The m a l o n i c e s t e r d e r i v a t i v e ( 1 7 8 ) , e x h i b i t s bands i n t h i s p a r t i c u l a r f r e q u e n c y range, namely a t 1695 M a l o n i c e s t e r s i n g e n e r a l do e x h i b i t two  carbonyl  and  1775  frequencies,  and  1747  cm  (CHCl^)  atom t o the C6-malonic e s t e r group does a c c o u n t f o r the i n c r e a s e d  The nmr a t 6 0.87 3.81;  .  74 . It  i s b e l i e v e d t h a t the p r o x i m i t y of the unshared e l e c t r o n p a i r on the  between the two bands o b s e r v e d i n the case of compound  1  for  -1 i n s t a n c e d i e t h y l malonate has bands a t 1731  cm  two  nitrogen  difference  (178).  s p e c t r u m ( F i g u r e 18) e x h i b i t s resonances f o r the C3b-methyl group ( t r i p l e t , J = 6 H z ) ; two m e t h y l s i n g l e t s a r e o b s e r v e d a t 3.53  a downfield  s h i f t f o r a one p r o t o n resonance (4.19, d o u b l e t ,  C6a-H) i s o b s e r v e d ; a s i n g l e t due  and  J = 9  Hz,  t o two b e n z y l i c hydrogens i s p r e s e n t a t  5.25 and the complex a r o m a t i c r e g i o n (6.87-7.63) i s e q u i v a l e n t t o 9 p r o t o n s . The mass s p e c t r o m e t r i c f r a g m e n t a t i o n s of s u b s t i t u t e d d i a l k y l malonates 75 76 have been s t u d i e d i n some d e t a i l  '  . I t has been found t h a t the most  i m p o r t a n t r e a c t i o n o c c u r r i n g upon e l e c t r o n impact l e a d s t o e n o l i c fragment i o n s (c,f_ and  i ) . A molecular i o n i s g e n e r a l l y observed only f o r those cases  i n w h i c h the M c L a f f e r t y  rearrangement ( M  Thus, i n case of compound (178) fragmentation i n Figure  19.  +  h) i s o n l y o f minor i m p o r t a n c e .  a molecular i o n i s observed. P o s s i b l e  pathways f o r the m a l o n i c e s t e r d e r i v a t i v e (178)  are o u t l i n e d  0  I  >  O0 CH 2  209 -  3  c=o  +  |j  jT  9H  2  OCH 3  C02CH3  J  >  R-CH  TJ O  O  CO2CH3 2  m/e 501  ] CO  (178), M , m/e 532 C  31 36 2°6 H  N  R-CH-CO^Hs b OCH  m/e 473. C ^ N ^  3  KJT!  R-CH  \ | L C ^ C H  " <*2°>2  2  ,OH R-CH=C C  N  •OCH3  m/e 474, C  ^  H  ^  M , m/e 532 +  ,OH R-CH = C OH V  H0 2  R-CH=CO  e  m/e 442  (j  m/e 460  X% ,OH ,, Y-' C H - C H = C ^ 1 1  N- ^ C  C  6  H  / t f  ;\  N  Q  C  H  3  5  « / e 474  9  m/e 387,  C^H^Oj  ,OH CH -CH=Q 2  _f  CH -CH=CO 2  m/e 55  <-  OCH3  m/e 87, C H 0 4  ?  2  ,OH CH2-CH=Q OH m/e 73  F i g u r e 19. Mass s p e c t r o m e t r i c f r a g m e n t a t i o n s  f o r compound  (178).  - 210  CO2CH3 C  6 5 H  1 O1  O i  •  1  h  m/e 400  QH  +  COCH3  /POH CH  CH  CO2CH3  CO2CH3  1 m/e 132  m/e 118  V  H0 2  CH  CO2CH3 m/e 100  F i g u r e 19 c o n t i n u e d . Fragments c o r r e s p o n d i n g t o i o n s p o r t r a y e d i n F i g u r e 19 have been i n t h e mass spectrum  observed  o f compound (178) and were c o n f i r m e d by h i g h r e s o l u t i o n  mass measurements. 77 E t h y l e n e k e t a l s o f cyclohexanones  exhibit  primary a-cleavage  (-*• a) i n  the mass s p e c t r o m e t e r , f o l l o w e d by hydrogen t r a n s f e r from t h e a l l y l i c t o t h e  5|6 4J5  a y  0  *CH  * 2  O  - 211  primary  -  s i t e with, f i n a l f o r m a t i o n o f b_. The  o n l y o t h e r fragment of some  i m p o r t a n c e a r i s e s f r o m s c i s s i o n of the a l l y l i c a l l y i n a and may C6,  a c t i v a t e d C5,6-bond  be p o r t r a y e d as _c. I n case o f s u b s t i t u t i o n i n p o s i t i o n C2  or  the bond l e a d i n g t o the more h i g h l y s u b s t i t u t e d r i n g carbon i s  b r o k e n p r e f e r e n t i a l l y d u r i n g the p r i m a r y observations  compound 0-78)  a-cleavage.  In accordance w i t h  e x h i b i t s fragments c o r r e s p o n d i n g  these  to ions  d^ e^ and f_. As e x p e c t e d i o n e_ i s o f g r e a t e r abundance t h a n i o n d.  m/e  86,  C^Oj,  Through the s u c c e s s f u l f o r m a t i o n o f the m a l o n i c  ester derivative  the d e s i r e d s i d e c h a i n a t C6 w h i c h p o s s e s s e s a h i g h l y a c t i v a t e d a c i d i c proton  (C6a) was  now  obtainable.  (178)  - 212 -  A t t e n t i o n was now drawn t o the development o f a s u i t a b l e l e a v i n g group a t p o s i t i o n C2 i n t h e t e t r a c y c l i c k e t o e s t e r (175). Thus, i t was d e s i r a b l e to reduce then  the ketone t o the c o r r e s p o n d i n g a x i a l C2 a l c o h o l w h i c h c o u l d  be c o n v e r t e d t o o t h e r f u n c t i o n a l  Therefore,  groups.  (175) was t r e a t e d w i t h sodium b o r o h y d r i d e i n t e t r a h y d r o f u r a n  to a f f o r d the a l c o h o l (179) w h i c h had t h e u n d e s i r e d e q u a t o r i a l c o n f i g u r a t i o n . Treatment o f the a l c o h o l (179) w i t h a c e t i c anhydride  and p y r i d i n e a f f o r d e d  the c o r r e s p o n d i n g a c e t a t e (180)„ The d e s i r e d a x i a l C2 a l c o h o l (181) was 72 o b t a i n e d by treatment  o f (175) w i t h i s o b o r n y l o x y aluminum c h l o r i d e  ;  a s m a l l amount o f t h e 8 - a l c o h o l (179) was a l s o p r e s e n t and s e p a r a t i o n o f the two isomers was a c h i e v e d by h i g h p r e s s u r e l i q u i d  chromatography.  Treatment o f the a l c o h o l (181) w i t h a c e t i c a n h y d r i d e  i n pyridine afforded  the c o r r e s p o n d i n g a c e t a t e  (182).  : CH3 02  •5>  NaBH  :02CH  4  (179) , R = H, 67% (180) , R = Ac, 47%  V  3  -  R  =  213  CH C0 CH 2  2  3  (179),(180) I n s p e c t i o n o f the nmr  (181),(182)  s i g n a l s n o r m a l l y a t t r i b u t e d t o C12b-  (Table V) i n compounds (179)  -  (182)  and  C2-protons  s u p p o r t s the c o n f i g u r a t i o n s  indicated  above. C12b-H g-alcohol 8-acetate a-alcohol a-acetate T a b l e V.  (179) (180) (181) (182)  < 3.80 < 3.80 3.92 < 3.80  Chemical (182).  Differences  C2-H  (multiplet) (multiplet) (multiplet) (multiplet)  shifts  < 3.80 4.50 4.00 5.13  (<5) f o r C12b-  and  (multiplet) ( d o u b l e t of d o u b l e t , J = l l and (multiplet) (multiplet)  C2-protons i n compounds (179)  i n c h e m i c a l s h i f t s o r i n t h e s i g n a l p a t t e r n s between an  and an e q u a t o r i a l p r o t o n have been used  An a x i a l p r o t o n i n a cyclohexane  at a higher f i e l d  than does i t s e q u a t o r i a l  Differences isomers  r i n g resonates  counterpart  the c h e m i c a l s h i f t  (<5 3.92)  of the C12b  generally  equatorial  are c o r r e c t . Moreover,  p r o t o n i n the t e t r a c y c l i c  alcohol  (181) b e a r i n g the a (or a x i a l ) h y d r o x y l group moved to h i g h e r f i e l d upon f o r m a t i o n o f the a c e t a t e (182). T h i s r e s u l t s u p p o r t s a r e l a t i o n s h i p between the C12b-proton and This alcohol treatment proved  (181) was  converted  the C2-a  oxygen  (<  3.80)  1,3-diaxial  functionality.  to the c o r r e s p o n d i n g m e s y l a t e  w i t h mesyl c h l o r i d e i n p y r i d i n e . However, the l a t t e r  t o be q u i t e u n s t a b l e . Treatment of the m e s y l a t e  of  73  I n c h e m i c a l s h i f t s o f the C2 p r o t o n s i n the a x i a l and  r e v e a l t h a t above assignments o f c o n f i g u r a t i o n  -  axial  t o e s t i m a t e the c o n f i g u r a t i o n  this substituent.  4Hz)  (183)  by  product  w i t h aluminum o x i d e  - 214 -  (183),74%  (184),43% f r o m (181)  (186),65%  (187),84%  ClCOC,H.pNO, OH  }L T OH  t  (188),75%  6co  ^6H4pN02  at room temperature c o n v e r t e d i t t o the C2-C3 o l e f i n  (184). The p - n i t r o -  78 b e n z o a t e (185) o b t a i n e d from t h e a l c o h o l (.181) s t a b i l i t y than the m e s y l a t e . The o l e f i n 78 d e h y d r a t i o n o f t h e a l c o h o l (181)  p r o v e d t o be o f g r e a t e r  (184). was a l s o o b t a i n a b l e by  w i t h phosphorus o x y c h l o r i d e .  Osmium t e t r o x i d e c o n v e r t e d the o l e f i n  (184) t o t h e C2, C3-a d i o l (186)  - 215  -  w h i c h c o u l d be t r a n s f o r m e d t o the d i a c e t a t e (187)  o r the mono p - n i t r o -  78 benzoate d e r i v a t i v e  (188)  The t e t r a c y c l i c d i a c e t a t e (187) e x h i b i t e d Bohlmann bands i n i t s i n f r a r e d spectrum. Thus, one has t o c o n s i d e r f o u r p o s s i b l e c o n f o r m a t i o n s o f r i n g  D.  The e s t i m a t e d c o u p l i n g c o n s t a n t s ( m o l e c u l a r models) between the C2 p r o t o n and the two hydrogen atoms a t C l are l i s t e d i n each  J y_ 4-6 J ^ 4-6  Hz Hz  case.  J -v 10 Hz j 4-6 Hz  Conformers A and p_ a r e e x c l u d e d by the nmr  spectrum o f the  tetracyclic  d i a c e t a t e w h i c h e x h i b i t s o n l y s m a l l c o u p l i n g c o n s t a n t s ( J = 3.5 Hz) between the C2 p r o t o n and the two hydrogens on C l . Moreover, t h e C12b-H s i g n a l (<5 3.95)  of the t e t r a c y c l i c d i o l  (186) s h i f t e d t o h i g h e r f i e l d  (3.6) upon  f o r m a t i o n of the d i a c e t a t e , t h e r e b y s u g g e s t i n g a 1 , 3 - d i a x i a l r e l a t i o n s h i p between the C12b  p r o t o n and the C2-oxygen f u n c t i o n . Thus, the d i a c e t a t e (187)  and d i o l (186) are a s s i g n e d c o n f o r m a t i o n  C.  - 216 -  In  compounds s u c h as ( 1 8 6 ) , (187) and ( 1 8 8 ) , a C6a-anion would be e x p e c t e d  to a t t a c k p r e f e r e n t i a l l y a t t h e C2 p o s i t i o n thus l e a d i n g t o f o r m a t i o n o f the d e s i r e d b r i d g e d systems. The C 3 - f u n c t i o n a l i t y (OH o r OAc) i s thus  •CO2CH3  (186) , R = R' = H (187) , R = R  1  = OAc  (188) , R = COC H pN0 , R' = H 6  4  2  a v a i l a b l e f o r e l a b o r a t i o n t o t h e C3-3a u n s a t u r a t i o n v i a d e h y d r a t i o n o r e l i m i n a t i o n o f a c e t i c a c i d . T h i s would p e r m i t e n t r y i n t o t h e s y n t h e s i s of  those a l k a l o i d s w h i c h p o s s e s s t h e C3 e x o c y c l i c double bond. The l a s t a s p e c t t o be i n v e s t i g a t e d i n t h i s s t u d y was t h e t r a n s f o r m a t i o n  of t h e t e t r a c y c l i c c o r y n a n t h e l i k e system t o t h e t r i c y c l i c s k e l e t o n p o s s e s s i n g t h e 10-membered r i n g g e n e r a t e d b y c l e a v a g e o f t h e C-D r i n g j u n c t i o n . As mentioned  e a r l i e r , t h e achievement  o f t h i s t r a n s f o r m a t i o n would s e r v e  s e v e r a l p u r p o s e s , namely e n t r y i n t o t h e v o b a s i n e - t y p e a l k a l o i d s and a t t h e same time a h i g h e r f l e x i b i l i t y o f t h e s t r u c t u r a l framework, t h u s , p o s s i b l y promoting  the transannular c y c l i z a t i o n .  T h e r e f o r e , t h e t e t r a c y c l i c a l c o h o l (181) was t r a n s f o r m e d t o t h e c o r r e s p o n d i n g methiodide  (189) w h i c h was n o t i s o l a t e d b u t d i r e c t l y c o n v e r t e d t o t h e  d e s i r e d t r i c y c l i c a l c o h o l (190) by r e d u c t i v e c l e a v a g e o f t h e C-D r i n g 78 junction  . The t r i c y c l i c a l c o h o l (190) d i d n o t e x h i b i t any Bohlmann bands  i n t h e i n f r a r e d spectrum.  The a l c o h o l and e s t e r f u n c t i o n a l i t i e s were  still  d e t e c t a b l e i n t h e nmr spectrum. The mass s p e c t r o m e t r i c d a t a s u p p o r t t h e fragmentation processes  s u g g e s t e d i n F i g u r e 20.  - 217 -  Loss o f t h e s i d e c h a i n a t C6, w h i c h had been a prominent p r o c e s s i n the tetracyclic Aliphatic  compounds, i s n o t o b s e r v e d .  a l c o h o l s tend to y i e l d an M - l and M-2 i o n i n t h e mass s p e c t r o m e t e r .  A c c o r d i n g l y i o n s a r e o b s e r v e d a t m/e 447 and 446 i n t h e case o f compound (190). A fragment  (m/e 430) due t o l o s s o f w a t e r i s a l s o p r e s e n t . The e l i m i n a t i o n  of w a t e r i s f r e q u e n t l y c o u p l e d w i t h e x p u l s i o n o f e t h y l e n e , t h u s , i o n a_ i s 79 thought t o be g e n e r a t e d by t h i s p r o c e s s  . A v e r y prominent  fragment  ( i o n b)  i s b e l i e v e d t o r e s u l t f r o m t h e (M-H 0) i o n by e l i m i n a t i o n o f C H,N as o  0  i n d i c a t e d i n F i g u r e 20. I o n b_, i n t u r n , c o u l d l e a d t o i o n s c, <I, a, _f and j». Loss o f the b e n z y l group from t h e p a r e n t i o n accompanied by a - c l e a v a g e a t b o t h n i t r o g e n s c o u l d l e a d t o i o n h. F o r m a t i o n o f a six-membered c y c l i c i o n i s f r e q u e n t l y observed i n t h e mass 80 spectrum o f a l i p h a t i c  amines  . Thus, t h e p a r e n t i o n i s e n v i s a g e d t o  r e a r r a n g e t o i o n i , w h i c h c o u l d undergo a f a c i l e f r a g m e n t a t i o n p r o c e s s a t C12 as i n d i c a t e d . Fragments (m/e 306 and 142) c o r r e s p o n d i n g t o t h e l a t t e r are  p r e s e n t i n t h e mass spectrum o f compound ( 1 9 0 ) . An i d e n t i c a l p r o c e s s i s  - 218 -  F i g u r e 20. Mass s p e c t r o m e t r i c f r a g m e n t a t i o n  scheme f o r compound  (190).  - 219 H  O2CH3  (M - H20)  20 20 2 '  C  H  N0  /  m/e 124,8Z,  F i g u r e 20 c o n t i n u e d . observed f o r t h e M-R^O s p e c i e s ( i o n a ) . A second s u c c e s s f u l 10-membered r i n g f o r m a t i o n was a c h i e v e d by treatment o f t h e k e t a l  (177) w i t h a c e t i c  a n h y d r i d e . Two components  (191,a  and b ) were o b t a i n e d , they a r e b e l i e v e d t o he t h e Cl2b i s o m e r s , however, conclusive evidence t o t h i s e f f e c t  has n o t been o b t a i n e d a s y e t . B o t h  m a t e r i a l s e x h i b i t a t y p i c a l i n d o l e spectrum infrared  i n theu l t r a v i o l e t region.Their  s p e c t r a possess i d e n t i c a l bands a t f r e q u e n c i e s c h a r a c t e r i s t i c o f  —1 -1 e s t e r - (1720 cm , b r o a d ) and t e r t i a r y amide- (1645 cm ) f u n c t i o n a l i t i e s .  - 220 ° 2 C H  O2CH3 3  Ac 0 2  6  (177)  5  0  0  (191),a,47% b,18%  The nmr spectra e x h i b i t an a d d i t i o n a l methyl resonance due to the N, -acetate, b  The C12b-acetate i s observed i n the aromatic region and a comparison of 1 1 1 1 1 1 ii 1 1 ; 1 1  (177)  (191)a,b  Figure 21. Aromatic region i n the nmr spectra of compounds (177) and (191)a,b.  - 221 -  t h i s p a r t i c u l a r r e g i o n (.Figure 21) i n t h e s t a r t i n g m a t e r i a l (177) and p r o d u c t s (191a,b). r e v e a l s t h e d r a s t i c change w h i c h has t a k e n p l a c e . Inspection of molecular  models f o r compounds (191) a and b i n d i c a t e d t h a t  the m e t h y l group o f t h e C 1 2 h - a c e t a t e does i n f a c t l i e i n c l o s e p r o x i m i t y t o t h e benzene r i n g o f t h e N - b e n z y l group, t h u s e x p l a i n i n g t h e v e r y low a f i e l d appearance o f t h e a c e t a t e i n t h e nmr spectrum. The mass s p e c t r a o f compounds (191) a and b e x h i b i t a p a r e n t i o n o f l o w abundance (1%) a t m/e 576. A fragment due t o t h e l o s s o f a c e t i c a c i d (+ C l , C12b o l e f i n ) i s o b s e r v e d a t m/e 516 (100%, by an i o n a t m/e 425 ( 7 0 % , 2 4 2 9 2 ° 5 ^ C  H  N  d  u  e  t 0  r  i  s  s  i  C  H  o  n  5 2 5 ) accompanied N  3 1  3  o r  0  b e n z y l group  t n e  from t h e l a t t e r . The l o s s o f b o t h a c e t a t e groups from the p a r e n t i o n i s i n d i c a t e d by t h e p r e s e n c e o f an i o n a t m/e 473 (22%, 2 9 3 3 2 ° 4 ^ * C  Compounds (191) a and b  H  N  allow entry i n t o the large family of 2-acyl  i n d o l e a l k a l o i d systems [ e . g . ( 1 9 2 ) ] by known p r o c e d u r e s  30  .  O2CH3  C  6  H  5  (191)a,b  (192)  Thus, t h i s i n v e s t i g a t i o n would a l s o make p o s s i b l e t h e s y n t h e s i s o f t h e latter alkaloids. The  generation  o f an a n i o n i n t h e s i d e c h a i n o f t h e v a r i o u s i n v e s t i g a t e d  compounds has been one o f t h e major d i f f i c u l t i e s e n c o u n t e r e d i n t h i s i n v e s t i g a t i o n . I t i s f e l t t h a t p r o x i m i t y o f t h e l o n e e l e c t r o n p a i r on the a l i p h a t i c n i t r o g e n m i g h t have c o n t r i b u t e d t o some e x t e n t t o t h e s e problems. Thus, p r e s e n c e o f t h e N - a c e t a t e i n compounds (191) a and b s h o u l d reduce t h i s  - 222 -  difficulty. F o r m a t i o n . o f the two i s o m e r i c m a t e r i a l s (191) a and b a l s o a l l o w s i n v e s t i g a t i o n s i n t o the s y n t h e s i s of d i m e r i c a l k a l o i d s possessing the n a t u r a l and u n n a t u r a l s t e r e o c h e m i s t r y a t t h e c o u p l i n g s i t e C12b. T h i s a s p e c t i s a l s o c u r r e n t l y under i n v e s t i g a t i o n i n our l a b o r a t o r y .  I n c o n c l u s i o n , t h e s y n t h e s i s o f the r e q u i r e d s y n t h o n [(193) o r  (194)]  i s now p o s s i b l e due t o t h e v a r i o u s r e s u l t s o b t a i n e d d u r i n g the course o f this  study.  The i n v e s t i g a t i o n o f the f i n a l s t e p , namely the C6a -> C2  transannular  c y c l i z a t i o n awaits the formation of s u f f i c i e n t q u a n t i t i e s of the r e q u i r e d compounds as f o r example (193) and  (194).  - 223 -  EXPERIMENTAL  For g e n e r a l i n f o r m a t i o n r e f e r t o page 96. Ultraviolet  (uv) s p e c t r a were r e c o r d e d  or model 15 i n s t r u m e n t .  i n m e t h a n o l on a Cary model 11  The p o s i t i o n maxima (A max) a r e g i v e n i n  nanometers (nm). A l l r e a c t i o n s were c a r r i e d o u t under an atmosphere o f n i t r o g e n (unless otherwise  indicated).  - 224  2-(Formylamino)-3-indolyl L-(-)-Tryptophan 98%)  and  (3a)-propionic acid  (106)  a c e t i c anhydride  room temperature.  The  -  (20 g) was  (10 ml,  l a t t e r was  room temperature  to y i e l d  (1520);  N,  crystalline  16.5  g (68%) o f 2 - ( f o r m y l a m i n o ) - 3 - i n d o l y l ( 3 a ) -  120-125°; i r , v max  cm"  (NH-CH0); uv,  1  ( N u j o l ) : 3380 ( i n d o l e  X max  ( e ) : 221  c  H 1 2  i2 2°3 N  :  C  '  6 2  -  0 6  >  H  »  5.21;  N,  11.69.  2-(Formylamino)-3-indolyl d i s s o l v e d i n a mixture 10 ml)  (3a)-propionic acid  of formic a c i d  and heated  50°. The m i x t u r e was  in a  (98%, 90 ml)  (114)  (115) (5 g)  was  and h y d r o c h l o r i c a c i d  s e a l e d tube f o r a p e r i o d o f t h r e e h o u r s a t  c o n c e n t r a t e d i n vacuo t o a volume of 40 ml and  with g l a c i a l a c e t i c acid  diluted  (50 m l ) . C o o l i n g a t 5° f o r a p e r i o d of 15 hours  a f f o r d e d a p r e c i p i t a t e which was  c o l l e c t e d and washed s u c c e s s i v e l y w i t h  c o l d a c e t i c a c i d , e t h a n o l and e t h y l e t h e r . The was  282  12.06. Found: C, 62.08;  L-(-)-3-carboxy-3,4-dihydro-g-carboline-N-2-hydrochloride  (cone.,  (17400);  NH);  (1320).  Anal, calcd. f o r H, 5.25;  5° t o p r o v i d e a  ml)  (114). R e c r y s t a l l i z a t i o n from benzene-methanol a f f o r d e d  (C00H); 1615  290 nm  d i l u t e d w i t h water (130  c o l l e c t e d , washed w i t h water and d r i e d a t  an a n a l y t i c a l sample, m.p. 2400, 1725  (50 ml,  f o r a p e r i o d of two hours a t  r e s u l t i n g m i x t u r e was  p r e c i p i t a t e . The  propionic acid  treated with formic acid  1 ME)  and kept f o r a p e r i o d of ten hours a t  (114)  o b t a i n e d i n 71% y i e l d ;  X max  ( e ) : 245  L-(-)-3-carboxy-3,4-dihydro-g-carboline The h y d r o c h l o r i d e (115)  (218 mg)  was  d e s i r e d m a t e r i a l (115)  (5890);  362  nm  (11000).  (116) t r e a t e d w i t h aqueous 0.1  N  (3.85  g)  - 225  -  sodium h y d r o x i d e s o l u t i o n (10 ml) f o r a p e r i o d o f one h o u r a t room temperature. The  The y e l l o w p r e c i p i t a t e was  d e s i r e d m a t e r i a l was  Attempted f o r m a t i o n of m e t h y l e s t e r (117) a)  The  obtained  c o l l e c t e d and washed w i t h w a t e r .  (160 mg)  as a s o l i d , m.p.  L-(-)-3-carboxy-3,4-dihydro-g-carboline  c a r b o x y l i c a c i d (116)  (58 mg)  was  t a k e n up i n m e t h a n o l (2 ml)  and t r e a t e d w i t h an e x c e s s o f diazomethane (75 mg over a p e r i o d o f 30 m i n u t e s a t room temperature. i n vacuo t o y i e l d 68 mg of a complex m i x t u r e and was b)  The  268-270°.  of a  i n 5 ml e t h y l The  ether)  s o l v e n t was  brown r e s i d u e , w h i c h was  removed  shown t o c o n s i s t  (TLC, S i l i c a g e l G, c h l o r o f o r m / 5 % m e t h a n o l ,  1^)  not i n v e s t i g a t e d f u r t h e r . c a r b o x y l i c a c i d h y d r o c h l o r i d e (115)  (100 mg)  was  dissolved i n  d r y m e t h a n o l (15 ml) w h i c h had been p r e v i o u s l y s a t u r a t e d w i t h d r y gas. The  s o l u t i o n was  r e f l u x e d f o r t h r e e h o u r s , t h e s o l v e n t removed i n  vacuo and t h e r e s i d u e d i s s o l v e d i n 5 ml o f w a t e r . The  solution  b a s i f i e d u s i n g an aqueous sodium h y d r o x i d e s o l u t i o n ( 5 % ) . A p r e c i p i t a t e was  was  yellow-brown  c o l l e c t e d , washed t h o r o u g h l y w i t h w a t e r and d r i e d i n  vacuo. The m a t e r i a l (76 mg)  L i A l H ^ - r e d u c t i o n of r i d e , ( 1 1 5 ) ->  HCl  proved  a g a i n t o be a complex m i x t u r e .  L-(-)-3-carboxy-3,4-dihydro-carboline-N-2-hydrochlo-  (118)  The h y d r o c h l o r i d e (115)  (200 mg = 0.8  mM)  was  t e t r a h y d r o f u r a n (15 m l ) . L i A l H ^ (133 mg = 3.6 mM)  suspended i n d r y was  added and the  r e f l u x e d under an atmosphere of n i t r o g e n f o r a p e r i o d o f 20 h o u r s . m i x t u r e was  c o o l e d i n an i c e - w a t e r b a t h and the excess o f L i A l H ^  mixture The  destroyed  - 226 -  by c a r e f u l addition of 1 N sodium hydroxide solution (1 ml). F i l t r a t i o n and evaporation provided a pink foamy residue (185 mg). The l a t t e r proved to be a complex mixture by TLC ( S i l i c a gel G, ethyl acetate/methanol, 2:3, I ) and was subjected to sublimation (150°, 0.1 mm). 2  material, compound (118) (140 mg,  A white-greenish  87%), was c o l l e c t e d , which was  recrystal-  l i z e d from benzene/methanol to provide an a n a l y t i c a l sample, m.p. i r , v max  (CHC1 ): 3600 (OH); 3500 cm 3  279 (1870); 289 nm Anal, calcd. f o r  C  (NH); uv, A max  (e); 222 (7080);  (1780). H  1 2  -1  185-188°;  14 2° N  :  C  '  7 1  '  2 5 ;  H  >6.98; N.13.85. Found: C, 70.87;  H, 6.98; N, 13.59.  Attempted oxidation of L-(-)-3-hydroxymethyl-l,2,3,4-tetrahydro-3carboline, (118) •» (119) The material obtained i n the previous experiment,(118)  (50 mg =  0.247 mM),was dissolved i n g l a c i a l acetic acid (5 ml) and treated with Hg(0AC)  2  (157 mg = 0.494 mM) . The mixture was refluxed f o r a t o t a l  period of 70 hours. M e t a l l i c mercury started to p r e c i p i t a t e a f t e r one hour but no uv absorption due to the dihydrocarboline system could be detected not even a f t e r 70 hours. The experiment was discontinued.  2-Amino-3-indolyl(3a)-propanol  (121)  L-(-)-tryptophan (106) (20 g) and l i t h i u m aluminum  hydride (15 g)  were suspended i n dry tetrahydrofuran ( 1000 ml). The mixture was refluxed f o r a period of 20 hours a f t e r which i t was cooled to room temperature. The excess of metal hydride was destroyed by the c a r e f u l addition of saturated aqueous sodium sulphate s o l u t i o n . F i l t r a t i o n and  - 227 -  evaporation provided an o i l y residue which was  taken up i n chloroform  and dried over anhydrous sodium sulphate. Removal of the solvent i n vacuo yielded a s o l i d sample (18.2 g, 97%)  of the desired material (121). An  a n a l y t i c a l sample was  obtained by r e c r y s t a l l i z a t i o n from benzene,  76.5-77.5°; [ c t ] -20°  (C, 0.5,  D  (OH);  uv, A max  CHC1 ); i r , v max  (KBr): 3480 (NH);  3  3340 cm  -1  (e) : 229  (7770); 276  292 nm  (3990); high r e s o l u t i o n mass s p e c , M ,  (4270); 283 190.110;  +  m.p.  (4580); C ^ ^ O  requires 190.111. Anal, calcd. f o r H, 7.50;  C  H 1 1  1  4  N  0 :  c  2  »  69.45; H, 7.42;  N, 14.72. Found: C, 69.46;  N, 14.60.  2-(N-Formylamino)-3-indolyl The alcohol (121)  (3a)-propyl-formate  (5 g) was  (122)  dissolved i n a mixture of a c e t i c  (6 ml) and formic a c i d , 99% (20 ml). The s o l u t i o n was  refluxed f o r 25 minutes,  cooled to room temperature and poured into 100 ml of ice-water. mixture was with  anhydride  The  extracted with chloroform, the organic phase washed successively  2% aqueous hydrochloric acid, 5% aqueous sodium carbonate  and water. The chloroform solution was and the solvent evaporated  solution  dried over anhydrous sodium sulphate  to y i e l d 4.8 g (74%) of the desired material  as a s o l i d . R e c r y s t a l l i z a t i o n from benzene provided an a n a l y t i c a l sample, m.p.  137-138°; [ a ] -13°  1720  (C=0); 1650  282  D  cm"  (5760); 292 nm  1  (C, 0.4,  3  (N-C0); uv, A max  (5020); nmr  J = 6 Hz, 2H, C2-CH 0); 4.16 2  CHC1 ); i r , v max (e): 227  (16610); 275  (CDC1 /CD 0D, 4:1), 6 3  (KBr): 3450 (NH);  3  3.0  (5380);  (doublet,  (multiplet, 3H, C3H + C2-H); ^ 4.55 2  IH, N(l)-H); 6.92-7.74 (multiplets, 6H, i n d o l i c moiety); 8.02 (two s i n g l e t s , IH each, NH-CH0 and CHO  and  (broad 8.06  , r e s p e c t i v e l y ) ; high r e s o l u t i o n  - 228 -  mass s p e c , Anal,  M  +  ( 8 % ) , 246.100;  calcd. for C-^H^N^:  C  H 1 3  4 2 3 N  1  0  r  e  9  u  i  r  e  s  246.100.  C, 63.40; H, 5.73; N, 11.38. Found: C, 63.14;  H, 5.85; N, 11.27.  L-(-)-3-Hydroxymethyl-3,4-dihydrocarboline a)  The f o r m y l compound (122)  (123)  (1 g) was d i s s o l v e d i n a m i x t u r e  a c i d , 99% (18 ml) and cone, h y d r o c h l o r i c a c i d  of formic  (2 ml) and h e a t e d f o r 3 h o u r s  at 5 0 ° . The major p a r t o f t h e s o l v e n t was removed i n vacuo y i e l d i n g a dark v i s c o u s r e s i d u e which was c o o l e d i n an i c e b a t h and c a r e f u l l y w i t h an 30% aqueous sodium h y d r o x i d e  s o l u t i o n . The r e s u l t i n g y e l l o w  p r e c i p i t a t e was e x t r a c t e d w i t h c h l o r o f o r m ,  710 mg (88%)  oily  t h e o r g a n i c l a y e r washed w i t h  water and d r i e d over anhydrous sodium s u l p h a t e . E v a p o r a t i o n provided  basified  of the s o l v e n t  o f a s o l i d m a t e r i a l (123) w h i c h upon r e c r y s t a l l i z a t i o n  from methylene c h l o r i d e a f f o r d e d an a n a l y t i c a l sample, m.p. 178-179°; i r , v max ( K B r ) : 3500 (NH); 3270 cm"  1  (OH); uv, X max ( e ) : 238 (14500); 244  (14200); 321 nm (13200); h i g h r e s o l u t i o n mass spec.,• M , +  200.096;  C  H 1 2  12 2° N  r e q u i r e s 200.095. Anal, c a l c d . f o r C  1 2  H  1 2  N 0 : C, 72.05; H, 6.04; N, 13.84. Found: C, 72.08; 2  H, 5.96; N, 14.12. 43 b)  The formylcompound  trifluoroacetic acid  (122) (560 mg) was d i s s o l v e d i n anhydrous  (5 ml) and heated  f o r a p e r i o d o f 4 hours a t 50°. The  s o l v e n t was removed i n vacuo and the v i s c o u s r e s i d u e was b a s i f i e d and worked up as above t o a f f o r d 390 mg (86%) o f t h e d e s i r e d m a t e r i a l 45 c)  The f o r m y l compound(122) (1.4 g) was t r e a t e d w i t h a m i x t u r e  phosphoric  acid(PPA,  15 g) and phosphorus  (123).  of poly-  oxybromide (6 g) and heated f o r  - 229 -  40 minutes a t 70°. The m i x t u r e was  c o o l e d i n an i c e b a t h , d i l u t e d w i t h  w a t e r (50 ml) and c a r e f u l l y b a s i f i e d . Workup as b e f o r e p r o v i d e d 870  mg  (76%) of the d e s i r e d compound (123).  46 3-Dimethylaminomethylpentan-2-one  (124)  E t h y l c t - e t h y l a c e t o a c e t a t e (50 g) was  treated with ice-cold 1 N  aqueous p o t a s s i u m h y d r o x i d e s o l u t i o n (375 m l ) , the m i x t u r e was f o r 6 hours a t room t e m p e r a t u r e . The r e s u l t i n g s o l u t i o n was pH 7 u s i n g cone, h y d r o c h l o r i c a c i d , t r e a t e d w i t h anhydrous h y d r o c h l o r i d e (26 g) and aqueous f o r m a l d e h y d e , 37% w/v h y d r o c h l o r i c a c i d was  stirred  adjusted to  dimethylamine  (35 m l ) . Cone,  added d r o p w i s e o v e r a p e r i o d of one h o u r ,  following  w h i c h t h e temperature of the s o l u t i o n was m a i n t a i n e d a t 20° f o r a p e r i o d of 16 h o u r s . The s o l u t i o n was  then washed w i t h e t h y l e t h e r ( 2 5 0 m l ) , c o o l e d  i n an i c e b a t h , t r e a t e d w i t h sodium c h l o r i d e (125 g) and then e t h y l e t h e r (500 m l ) . An i c e - c o l d s o l u t i o n o f p o t a s s i u m h y d r o x i d e (26 g) i n w a t e r (50 ml) was added o v e r a p e r i o d o f 15 m i n u t e s under v i g o r o u s s t i r r i n g . The e t h e r l a y e r was  s e p a r a t e d , t h e aqueous phase r e e x t r a c t e d w i t h e t h e r (500 ml)  and the combined e t h e r e a l s o l u t i o n s d r i e d over anhydrous The e t h e r was  sodium s u l p h a t e .  c a r e f u l l y e v a p o r a t e d and the r e m a i n i n g l i q u i d  (20 g)  fractional-  l y d i s t i l l e d under reduced p r e s s u r e . A f r a c t i o n b o i l i n g a t 67-70°/17 mm y i e l d e d 18.2 g  (40%) of t h e d e s i r e d m a t e r i a l .  3-Trimethylaminomethylpentan-2-one  iodide  3- -Dimethylaminomethylpentan-2-one i  was  (125)^  (124) (16 g) i n e t h y l a c e t a t e ( 1 0 0 ml)  t r e a t e d w i t h an e x c e s s of m e t h y l i o d i d e (20 ml) a t 20°. The  i o d i d e was  precipitated  c o l l e c t e d t o y i e l d 32.Og ( 9 9 % ) , r e c r y s t a l l i z a t i o n from m e t h a n o l /  - 230 -  ether provided Anal,  an a n a l y t i c a l sample, m.p.  c a l c d . f o r CgH^NOI: C, 37.91; H,  Found: C, 37.99; H,  7.11; N, 4.95;  148-151°.  7.07; N, 4.91;  I , 44.50.  I , 44.39.  47 3-Methylene-pentan-2-one  (126)  The m e t h i o d i d e (125) (12 g) was hydroxide  (60 m l ) . The s o l u t i o n was  t r e a t e d w i t h 3 N aqueous stirred  f o r one hour a t room  temperature and e x t r a c t e d twice w i t h n-pentane  (100 m l ) . The  pentane s o l u t i o n was washed w i t h 5% h y d r o c h l o r i c  acid  r e s i d u e was  subjected  combined  (10 ml) and water  and d r i e d over anhydrous sodium s u l p h a t e . The pentane was and the l i q u i d  sodium  carefully  to f r a c t i o n a l d i s t i l l a t i o n .  evaporated  A fraction  b o i l i n g a t 115-123° y i e l d e d 2.4 g (58%) of the d e s i r e d ketone, nmr (CDC1 ), 6 3  1.02  (triplet,  J = 14 Hz, 3H, C H - C H ) ; 2.28  J = 14 Hz, 2H, C H - C H ) ; 2.32 3  J = 3, IH, CH Anal,  2  3  (singlet,  . =C-CH -CH_); 6.0  (quartet,  2  3H, O ^ C O - ) ; 5.75  ( s i n g l e t , IH, CH  =CH  (triplet, -CH ) ,  c a l c d . f o r CgH^O: C, 73.43; H, 10.27. Found: C, 73.11; H, 10.28.  2- Oxo-3-ethy1-6-hydroxy methyl-1,2,3,4,6,7,12,12b-octahydro-indolo (2,3-a)-quinolizine(127) L-(-)-3-Hydroxymethyl-3,4-dihydrocarboline 3- methylen-pentan-2-one  (126) (2.8 g) were d i s s o l v e d i n anhydrous methanol  (18 ml) and t r e a t e d w i t h s a t u r a t e d m e t h a n o l i c was  (123) (1.8 g) and  HC1(0.2 m l ) . The  r e f l u x e d f o r a p e r i o d o f 6 hours a f t e r which i t was  ness.  The r e s i d u e was  solution  evaporated  chromatographed u s i n g n e u t r a l aluminum  to d r y -  oxide  (60g Woelm, a c t i v i t y I I I ) . E l u t i o n w i t h e t h y l a c e t a t e a f f o r d e d 1.5 g >  (56%) of the d e s i r e d m a t e r i a l . TLC  ( S i l i c a g e l G, e t h y l  acetate,I ) 0  - 231 -  i n d i c a t e d t h a t t h i s m a t e r i a l r e p r e s e n t e d a m i x t u r e o f two compounds i n an e s t i m a t e d r a t i o o f 9:1  (more p o l a r t o l e s s p o l a r ) . A t t e m p t s t o  s e p a r a t e t h i s m i x t u r e (TLC, S i l i c a g e l o r a l u m i n a , n e u t r a l , e t h y l a c e t a t e ) were n o t s u c c e s s f u l . R e c r y s t a l l i z a t i o n from methylene 215-216°; i r , v max  an a n a l y t i c a l sample, m.p.  chloride provided  ( K B r ) : 3345 (NH);  (OH); 2895 (CH); 2835, 2800, 2775 (Bohlmann b a n d s ) ; 1700 c m uv, X max  ( E ) : 224  (5900); nmr  (33900); 275  ( F i g u r e 10)  (6770); 280  (CDC1 ),  6 0.98  3  ^ 3 . 6 - 4 . 2 (group o f m u l t i p l e t s , 5H, (group of m u l t i p l e t s , 4H,  (C=0);  (6920); 291  nm  ( t r i p l e t , J = 7 Hz, - C H C H ) ; 2  3  C12b-H+C7-H +C6a-H );.7.04-7.60 2  a r o m a t i c ) ; 7.72  NH); h i g h r e s o l u t i o n mass s p e c , M  (6920); 283  -1  3135  2  (broad s i n g l e t , IH, i n d o l e  ( 1 2 % ) , 298.1687;  +  c  1  s 22 2°2 H  N  r  e  9  u  i  r  e  s  298.1680. Anal, calcd. f o r C H,  1 8  H  N 2 2  2 2 0  :  C  '  7  2  ,  4  5  ;  H  »  7  «  4 3  - Found: C, 72.49;  7.27.  2-0xo-3-ethyl-6-hydroxymethyl-l,2,3,4,6,7,12,12b-octahydro-indolo(2,3-a)-quinolizine-0-acetate The a l c o h o l (127) (50 mg)  (128) i n a c e t i c a n h y d r i d e (0.5 ml) and  pyridine  (0.5 ml) was h e a t e d f o r a p e r i o d o f 30 minutes a t room t e m p e r a t u r e . m i x t u r e was poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene  The  chloride  The e x t r a c t was washed s u c c e s s i v e l y w i t h 5% aqueous h y d r o c h l o r i c a c i d , w a t e r , 5% sodium b i c a r b o n a t e s o l u t i o n and w a t e r and d r i e d o v e r anhydrous sodium s u l p h a t e . E v a p o r a t i o n o f t h e s o l v e n t p r o v i d e d t h e c r y s t a l l i n e a c e t a t e (128) (52 mg,  9 4 % ) . The m a t e r i a l was  r e c r y s t a l l i z e d from m e t h a n o l ,  m.p.  180-181°; i r , v max  ( K B r ) : 3390 (NH); 2900 (C-H); 2850, 2805 (Bohlmann b a n d s ) ;  1 7 2 0 ( a c e t a t e ) ; 1705  cm"  1  (C=0); uv, X max  ( e ) : 224  (31700); 274  (6920);  - 232 -  280 (7080); 283 (7080); 283 (7080); 291 nm (5900); nmr (CDC1 ), S 0.96 3  (Figure 11)  ( t r i p l e t , J = 7 Hz, 3H, -CH CH ); ^ 3.75 2  3  (multiplet,  LH, C12b-H); 3.9-4.13 (overlapping multiplets, 3H, C6-H+C7-H ); 2  4.42  (doublet of doublet, J = 5 Hz, 6 Hz, C6a-H ); 7.07-7.58 (group of 2  multiplets, 4H, aromatic); 7.69 tion mass s p e c , M , +  (broad s i n g l e t , IH, indole NH); high resolu-  340.177; ^20^24^2^3  r  e  c  l i u  r  e  s  340.178.  2-g-Hydroxy-3-ethyl-6-hydroxymethyl-l, 2,3,4,6,7,12,12b-octahydroindolo (2,3-a)-quinolizine  (129)  The keto alcohol (127) (65 mg) i n dry tetrahydrofuran (10 ml) treated with l i t h i u m aluminum hydride (150 mg) and the mixture was  was refluxed  for a period of two hours, a f t e r which i t was cooled to room temperature. A saturated aqueous sodium sulphate- s o l u t i o n was c a r e f u l l y added to destroy the  excess of LiAlH^. The reaction mixture was f i l t e r e d ,  the f i l t r a t e dried  over anhydrous sodium sulphate and the solvent evaporated i n vacuo to y i e l d 64 mg  (98%) of the desired material (129). The compound was  pure  by TLC ( S i l i c a gel, ethyl acetate,I ) but n o n - c r y s t a l l i n e ; i r , v max no carbonyl; uv, A max:  224, 274, 280, 283, 291 nm; nmr  ( t r i p l e t , J = 6 Hz, 3H, -CH CH ); C2-H <3.9; 2  3  C2-0H); 6.80-7.36 (multiplets, 4H, aromatic).  4.64  (Nujol):  (DMSO-dg); 6 0.89  (broad s i n g l e t , IH,  - 233  -  2-Qxo-3-ethy1-6-hydroxymethyl-l,2,3,4,6,7,12,12b-octahydro-indolo (2,3-a)-guinollzine ethylene k e t a l a)  Compound (12 7) (300 mg)  e t h y l e n e g l y c o l ( 0 . 1 ml) apparatus.  (134)  i n d r y benzene (5 ml) was  treated with  and r e f l u x e d f o r 30 m i n u t e s u s i n g a D e a n - S t a r k  p-Toluenesulphonic  a c i d (5 mg)  was  r e f l u x e d f o r t h r e e hours a f t e r w h i c h i t was  added and  the m i x t u r e  c o o l e d to room t e m p e r a t u r e  and poured i n t o an i c e - c o l d s a t u r a t e d aqueous sodium b i c a r b o n a t e The m i x t u r e was  solution.  e x t r a c t e d w i t h methylene c h l o r i d e / 1 0 % m e t h a n o l , the  organic  phase washed w i t h w a t e r and d r i e d o v e r anhydrous sodium s u l p h a t e . of the s o l v e n t a f f o r d e d a y e l l o w foam (282 mg) mixture ~Ly),  of two  compounds (TLC,  was  w h i c h was  Evaporation  shown t o be  a  S i l i c a g e l G, methylene chloride*'5% m e t h a n o l ,  namely s t a r t i n g m a t e r i a l (127)  and  the d e s i r e d p r o d u c t  (134).  Chromatography u s i n g 10 g S i l i c a g e l (Woelm, a c t i v i t y I I I , methylene c h l o r i d e / 3 % methanol) p r o v i d e d 90 mg b)  160 mg  (66%)  o f the d e s i r e d k e t a l (134)  and  of s t a r t i n g m a t e r i a l . The  t e t r a c y c l i c k e t o a l c o h o l (127)  d i s t i l l e d ethylene  (5.0 g) was  g l y c o l ( 3 0 ml)and d r y c h l o r o f o r m  been s a t u r a t e d w i t h HC1  gas. The m i x t u r e was  treated with  freshly  (200 ml) w h i c h  had  s t i r r e d f o r three hours at  room t e m p e r a t u r e , c o o l e d t o 0° and poured i n t o i c e - c o l d 2 N sodium b i c a r b o n a t e s o l u t i o n (200 m l ) . The p r o d u c t c h l o r i d e , the o r g a n i c phase was  was  e x t r a c t e d w i t h methylene  washed w i t h s a t u r a t e d sodium c h l o r i d e  s o l u t i o n and d r i e d over anhydrous sodium s u l p h a t e . E v a p o r a t i o n o f  the  s o l v e n t y i e l d e d 5.64  was  g of a brown semi s o l i d m a t e r i a l . The  latter  chromatographed u s i n g 500 g S i l i c a g e l (Woelm, a c t i v i t y I I I , e t h y l a c e t a t e ) . The m a t e r i a l thus o b t a i n e d was methanol t o a f f o r d 2.9 i r , v max  r e c r y s t a l l i z e d from methylene c h l o r i d e /  g (55%) of the d e s i r e d a c e t a l ( 1 3 4 ) , m.p.  ( K B r ) : 3420 (NH);  3250 cm"  1  (OH);  uv, A max  ( e ) : 226  238-240°; (20500);  - 234 -  (3990); 296 nm (3320); nmr (CD 0D), 6 0.94 ( t r i p l e t , J = 6 Hz, 3H,  282  3  C H C H ) ; ^ 3.70 ( m u l t i p l e t , IH, Cl2b-aH); 3.80-4.20 (group o f m u l t i p l e t s , 2  3  4H, C7-H +C6a-H ); 4.02 ( s i n g l e t , 2  4H, -0-CH -CH -0-); 7.0-7.58 (group  2  of m u l t i p l e t s , 4H, a r o m a t i c ) ; t i o n mass s p e c , M  (11%),  +  2  2  7.68 ( s i n g l e t , IH, i n d o l e NH); h i g h  342.1919; C  2 Q  H  2 6  N 0 2  base peak (M- CH 0H) m/e 310.1643; C ^ H ^ N ^ calcd. for  c  o 26 2°3 H  2  N  :  C  »  7  0  '  1  5  ;  H  » ' 7  6 5  requires  requires  3  Anal,  3  5 » N  8  -  1 8  *  F  o  resolu-  342.1943;  310.1681. u  n  d  :  C, 70.00;  H, 7.65; N, 8.15.  2-Oxo-3-ethyl-6-hydroxymethyl-1,2,3,4,6,7,12,12b-octahydro-indo]o (2,3-a)-quinolizine ethylene The  k e t a l 0 - a c e t a t e (135)  t e t r a c y c l i c a c e t a l (134)  anhydride (5 ml) and d r y p y r i d i n e The  (700 mg), was t r e a t e d w i t h a c e t i c (5 ml) f o r a p e r i o d o f one hour a t 8 0 ° .  crude m i x t u r e was poured i n t o i c e - w a t e r  and e x t r a c t e d w i t h methylene  c h l o r i d e . The e x t r a c t was washed s u c c e s s i v e l y w i t h i c e - c o l d 2% aqueous h y d r o c h l o r i c a c i d , w a t e r , s a t u r a t e d sodium b i c a r b o n a t e  s o l u t i o n and water  and  o f the solvent  d r i e d over anhydrous sodium s u l p h a t e .  provided  an almost pure sample (705 mg = 90%) o f t h e d e s i r e d  (133). F u r t h e r  attempts t o p u r i f y t h i s m a t e r i a l f a i l e d ;  3460 (NH); 1730 c m 3.98  Evaporation  - 1  (OAc); nmr ( C D C 1 ) ; 6 2.0 ( s i n g l e t , 3  ( s i n g l e t , 4H, - 0 ( C H ) 0 - ; 4.38 ( d o u b l e t 2  of doublet,  2  C6-CH -0Ac); 7-7.6 ( m u l t i p l e t s , 4H, a r o m a t i c ) ; calcd. for  C  H, 7.45; N, 6.65.  2 28 2°4 H  2  N  :  C  *  6 8 > 7 2  »  H  » 7  3 4  5  N  »  i r , v max  (CHCl^:  3H, 0C0CH ); 3  J = 5 Hz,  7.98 ( s i n g l e t , IH, indole-NH)  2  Anal,  acetate  7  '  2 9  °  Found: C, 68.3;  - 235 -  Attempted f o r m a t i o n o f the n i t r i l e a)  (136) from a c e t a t e (135)  The t e t r a c y c l i c a c e t a t e (135) (20 mg = 0.052 mM) i n d r y d i m e t h y l -  formamide (DMF) (1 ml) was t r e a t e d w i t h p o t a s s i u m The m i x t u r e was heated w i t h c o n s t a n t s t i r r i n g The p r o d u c t was c o o l e d t o room temperature,  cyanide  (34 mg = 0.052 mM)  f o r t h r e e hours a t 1 4 0 ° .  d i l u t e d w i t h water (10 ml) and  e x t r a c t e d w i t h methylene c h l o r i d e . T h e e x t r a c t was washed w i t h water and d r i e d over anhydrous sodium s u l p h a t e . E v a p o r a t i o n o f the s o l v e n t y i e l d e d 20 mg o f a brown gum w h i c h c o n s i s t e d m a i n l y  o f s t a r t i n g m a t e r i a l (TLC,  S i l i c a g e l G, methylene c h l o r i d e / 1 % methanol, 1^) • The i n f r a r e d  spectrum  (CHCl^) d i d n o t show any a b s o r p t i o n due t o CN. b)  An experiment  i n s t e a d heated  i d e n t i c a l t o a) was c a r r i e d o u t b u t the m i x t u r e was  f o r 6 hours a t 160° and worked up as b e f o r e . No d e s i r e d  m a t e r i a l c o u l d be o b t a i n e d .  2-Oxo-3-ethyl-6-faydroxymethyl-l,2 3 4 6,7,12 12b-octahydro-indolo >  >  >  (2,3-a)-  >  q u i n o l i z i n e e t h y l e n e k e t a l 0-benzoate (137) The  tetracyclic acetal  (134) (170 mg) was d i s s o l v e d i n d r y p y r i d i n e  (2 ml) and t r e a t e d w i t h p u r i f i e d b e n z y l c h l o r i d e (0.2 m l ) . The m i x t u r e was left  f o r 30 minutes a t room temperature,  poured  i n t o i c e - w a t e r and e x t r a c t e d  w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h water and d r i e d  over  anhydrous sodium s u l p h a t e . E v a p o r a t i o n o f t h e s o l v e n t p r o v i d e d 210 mg o f a  crude m a t e r i a l which was chromatographed u s i n g 20 g a l u m i n a  Woelm, a c t i v i t y II, methylene c h l o r i d e / 3 % methanol).  (neutral,  The d e s i r e d benzoate  (137) was o b t a i n e d as an o i l y m a t e r i a l (187 mg, 84%) w h i c h r e s i s t e d v a r i o u s c r y s t a l l i z a t i o n attempts;  i r , v max ( C H C 1 ) : 3460 (NH); 1720 c m 3  - 1  (C = 0 ) ;  - 236  nmr  (CDC1 ) j <5 0.93 3  (triplet,  -  J = 6 Hz,  C H C H ) ; 4.00 2  -0-CH -CH -0-); 7.0-8.18 ( m u l t i p l e t s , 10H, 2  ( 1 8 % ) , 446.2209; C _ H  +  2  base peak (M- C6 s i d e c h a i n ) m/e  311.1739;  Attempted f o r m a t i o n o f the n i t r i l e a)  The benzoate (137)  potassium cyanide  (20 mg)  (10 mg)  (136)  C  H 1 9  N 0  3  23 2 2 N  0  (2 ml) was  high  r e q u i r e s 446.2205; r e  from b e n z o a t e  i n d r y DMF  4H,  a r o m a t i c + i n d o l e NH);  2  r e s o l u t i o n mass s p e c , M  (singlet,  3  9 u i r e s 311.1759.  (137). treated with  and h e a t e d f o r t h r e e h o u r s a t 120°.  The m i x t u r e  was  c o o l e d t o room t e m p e r a t u r e d i l u t e d w i t h w a t e r (10 ml) and e x t r a c t e d w i t h methylene c h l o r i d e . T h e e x t r a c t was  washed w i t h w a t e r and d r i e d o v e r sodium  s u l p h a t e , e v a p o r a t i o n y i e l d e d 19 mg o n l y o f s t a r t i n g m a t e r i a l (TLC,  o f l i g h t brown r e s i d u e w h i c h c o n s i s t e d  Silica  g e l G, methylene c h l o r i d e / 1 %  methanol). b)  The above r e a c t i o n was  to 16 h o u r s a t 120°.  repeated  b u t the h e a t i n g p e r i o d was  A g a i n no d e s i r e d n i t r i l e  (136)  c o u l d be  extended  detected.  2-Oxo-3-ethyl-6-hydroxymethyl-l,2,3,4,6,7 12,12b-octahydro-indolO >  q u i n o l i z i n e e t h y l e n e k e t a l 0The  (3,5-b) d i n i t r o b e n z o a t e  t e t r a c y c l i c a c e t a l (134)  c o o l e d i n an i c e - w a t e r b a t h and b e n z o y l c h l o r i d e (160 mg).  (160 mg)  (138)  i n d r y p y r i d i n e ( 1. ml)  t r e a t e d w i t h f r e s h l y prepared  The m i x t u r e was  (2,3-a)-  was  3,5-dinitro-  s t i r r e d f o r 30 minutes a t  0°,  poured i n t o i c e - w a t e r and e x t r a c t e d w i t h c o l d methylene c h l o r i d e . T h e e x t r a c t was  washed w i t h c o l d s a t u r a t e d sodium b i c a r b o n a t e  d r i e d o v e r anhydrous sodium s u l p h a t e . E v a p o r a t i o n o i l y r e s i d u e w h i c h was  s o l u t i o n and w a t e r  and  of the s o l v e n t p r o v i d e d  an  chromatographed u s i n g 20 g a l u m i n a ( n e u t r a l , Woelm,  - 237  -  a c t i v i t y I I ^ e t h y l e n e c h l o r i d e ) t o y i e l d 206 mg d i n i t r o b e n z o a t e (138)  as a g l a s s y m a t e r i a l . A t t e m p t s t o c r y s t a l l i z e  m a t e r i a l were u n s u c c e s s f u l ; i r , v max 1560  and 1340  2.18  ( d o u b l e t o f d o u b l e t , J = 8 Hz,  C6-H); 3.92 4.43  cm"  1  (NO^;  nmr  8.72  ( d o u b l e t , J = 2Hz,  8.97  ( t r i p l e t , 3=2 (M ); +  3  3  3Hz,  IH, C3-H); 3.58  341  ( s i n g l e t , 4H,  Hz,  5 Hz,  i n d o l e a r o m a t i c ) ; 7.74  2H,  1740  C2b-H and C6b-H o f  -CH -CH ); 2  (multiplet, 2  311  The  3,5-dinitrobenzoate  w i t h dry potassium cyanide was  IH e a c h , C 6 a - H - ) ; 2  ( s i n g l e t , IH,  indole-NH);  3,5-dinitrobenzoate);  p r e p a r a t i v e TLC  (M- C6 s i d e c h a i n ) .  (60 mg) and  (138)  i n d r y methanol (4 ml) was  r e f l u x e d f o r t h r e e h o u r s . The  treated solvent  using  of the t e t r a c y c l i c a l c o h o l cm"  1  ( p o s s i b l y b e i n g the d e s i r e d m a t e r i a l ) .  added a t 0° 34 mg  detected  separated  o f a m a t e r i a l h a v i n g a s m a l l a b s o r p t i o n a t 2220  To a s o l u t i o n o f d r y p o t a s s i u m c y a n i d e  maintained  l a t t e r was  c h l o r i d e / 1 0 % methanol, e l u t i o n  methanol) t o p r o v i d e 31 mg  k e t a l (134) and 4 mg i n the i n f r a r e d  crude m a t e r i a l . The  (alumina, neutral,methylene  w i t h chloroform/20%  was  (20 mg)  m/e  e v a p o r a t e d i n vacuo and t h e d r y r e s i d u e e x t r a c t e d w i t h m e t h y l e n e  c h l o r i d e t o p r o v i d e 36 mg  b)  (138)  IH,  2  C4b-H o f 3 , 5 - d i n i t r o b e n z o a t e ) ; mass s p e c ,  (M- C ^ N ^ ) ;  3  -0-CH -CH -0-);  Attempted f o r m a t i o n o f t h e n i t r i l e ( 1 3 6 ) f r o m 3 , 5 - d i n i t r o b e n z o a t e a)  the  (C = 0 ) ;  ( t r i p l e t , J = 6 Hz,  ( C D C 1 ) ; 6 0.96  (two d o u b l e t o f d o u b l e t , J = 6 Hz,  6.8-7.36 ( m u l t i p l e t s , 4H,  536  ( C H C 1 ) : 3460 (NH);  ( m u l t i p l e t , I H , C12b-H); 4.01  and 4.81  (82%) o f the d e s i r e d  (5 mg)  i n d r y m e t h a n o l (1  o f the d i n i t r o b e n z o a t e ( 1 3 8 ) . The  temperature  a t 0° and a f t e r 10 m i n u t e s no s t a r t i n g m a t e r i a l c o u l d  (TLC). The  s o l v e n t was  of m a t e r i a l .  was  be  e v a p o r a t e d i n vacuo a t 0° and the d r y  e x t r a c t e d w i t h methylene c h l o r i d e t o p r o v i d e 23 mg  ml)  residue  - 238  The  -  l a t t e r . w a s p u r i f i e d as above t o y i e l d  (134)  and  2220 cm  1  6 mg  13 mg  of the a l c o h o l - k e t a l  of a m a t e r i a l e x h i b i t i n g a s m a l l absorption  band a t  i n the i n f r a r e d spectrum.  2-OxO-3-ethyl-6-cyanomethyl-l,2,3,4,6,7,12,12b-octahydro-indolo ( 2 , 3 - a ) - q u i n o l i z i n e e t h y l e n e k e t a l (136). from t e t r a c y c l i c a l c o h o l The  t e t r a c y c l i c a l c o h o l k e t a l (134)  was  treated with p-toluenesulfonyl  was  h e a t e d f o r a p e r i o d of 2 1/2  and  t r e a t e d w i t h p o t a s s i u m c y a n i d e (40 mg)  (200 mg)  sodium b i c a r b o n a t e s o l u t i o n and  e x t r a c t e d w i t h methylene c h l o r i d e . The sodium s u l p h a t e  and  2 ME).  cooled  The  (5  t o room t e m p e r a t u r e for  poured i n t o i c e - c o l d  the y e l l o w o i l y p r e c i p i t a t e  organic  phase was  brown amorphous m a t e r i a l . T h i s compound was  of a  chromatographed u s i n g 20  o f S i l i c a g e l (Woelm, a c t i v i t y I I I , m e t h y l e n e c h l o r i d e ) to a f f o r d 89 (43% from a l c o h o l k e t a l ) o f the d e s i r e d pure compound (136)  c r y s t a l l i n e sample. The v max 283  not  p r o d u c t had  (CHC1 ): 3480 (NH); 3  ( 3 7 2 0 ) ; 291 nm  C18-H ); 3.96 3  s t a b l e and no a t t e m p t was  2250 cm"  (2760); nmr  ( s i n g l e t , 4H,  (CN);  uv,  A max  ( C D C 1 ) ; 6 0.92  +  made t o o b t a i n  ( e ) : 225  a  C  311.1782;  (15900);  C  H  H 1  9  3H,  ( s i n g l e t , IH, i n d o l e  2  ( 5 7 % ) , 351.1903; 2 i 2 5 3 ° 2  351.1946; base peak (M- CH CN) m/e  mg  i n an amorphous  ( t r i p l e t , J = 6 Hz,  3  2  g  the f o l l o w i n g c h a r a c t e r i s t i c s ; i r ,  -0-CH -CH -0-); 7.78  h i g h r e s o l u t i o n mass s p e c , M 2  1  was  d r i e d o v e r anhydrous  e v a p o r a t e d t o d r y n e s s i n vacuo t o y i e l d 227 mg  s t a t e . T h i s m a t e r i a l was  ml)  mixture  i n dry m e t h a n o l (5 ml)  20 h o u r s a t room t e m p e r a t u r e . The m i x t u r e was saturated  i n anhydrous DMF  c h l o r i d e (219 mg,  h o u r s a t 100°,  (134)  N  N 2  3  0 2  2  r e c  l  NH);  u i r e s  requires  311.1759.  - 239 -  Attempted c o n v e r s i o n of n i t r i l e The n i t r i l e  (136) t o t h e t e t r a c y c l i c k e t o e s t e r (139)  (136) (5 mg) was t r e a t e d w i t h methanol/12 N h y d r o c h l o r i c  a c i d 1:1 (0.5 ml) f o r a p e r i o d o f 10 hours a t 60°. The methanol was removed i n vacuo and t h e r e s i d u e was t r e a t e d w i t h i c e - c o l d sodium b i c a r b o n a t e  saturated  s o l u t i o n t o y i e l d a y e l l o w p r e c i p i t a t e . The l a t t e r was  e x t r a c t e d w i t h c h l o r o f o r m t o a f f o r d 5.5 mg amorphous m a t e r i a l . TLC separation ( S i l i c a  g e l G, methylene c h l o r i d e ) p r o v i d e d 0.7 mg o f a s e m i -  s o l i d sample, i r , v max (CHC1 ): 3480 (NH); 1730 ( C 0 C H ) ; 1720 cm" 3  2  1  3  (C = 0 ) , p r o b a b l y b e i n g t h e d e s i r e d compound.  Attempted c o n v e r s i o n o f n i t r i l e The n i t r i l e for  (136) t o t h e t e t r a c y c l i c k e t a l e s t e r (140)  (136) (5 mg) i n 5 N m e t h a n o l i c  20 h o u r s a t 50° under c o n s t a n t  K0H (0.5 ml) was k e p t  s t i r r i n g . The m i x t u r e was d i l u t e d w i t h  m e t h a n o l (5 m l ) , c o o l e d t o 0° and c a r e f u l l y n e u t r a l i z e d w i t h c o l d m e t h a n o l s a t u r a t e d w i t h HC1 gas. An e x c e s s o f diazomethane i n e t h e r was  immediately  added, t h e s o l v e n t was removed i n vacuo and t h e r e s i d u e t r e a t e d w i t h s a t u r a t e d sodium b i c a r b o n a t e  s o l u t i o n . E x t r a c t i o n w i t h methylene c h l o r i d e  y i e l d e d 4 mg o f a crude m a t e r i a l w h i c h was shown t o be a m i x t u r e o f 5 components (TLC, S i l i c a  gel,methylene c h l o r i d e / 1 % methanol, I ) ; i r , 2  v max (CHC1 ) (crude s a m p l e ) : 3490 (NH); 1675 cm" 3  1  (CONHp; no CN.  T h i s sample was n o t f u r t h e r i n v e s t i g a t e d .  2-(N-Berizylamind)-3-indolyl(3a)-propyl-benzoate 2-Amino-3-indolyl(3a)-propanol  (141)  (121) (2 g) i n anhydrous p y r i d i n e  (7 ml) was c o o l e d t o 0° and t r e a t e d w i t h an e x c e s s o f b e n z y l c h l o r i d e  - 240 -  (3 g) o v e r a p e r i o d o f 30 minutes. 2 hours a t room temperature  The m i x t u r e was then s t i r r e d f o r  a f t e r w h i c h i t was poured  i n t o i c e - w a t e r and  e x t r a c t e d w i t h methylene c h l o r i d e . T h e e x t r a c t was washed s u c c e s s i v e l y w i t h aqueous 5% h y d r o c h l o r i c a c i d , water,  s a t u r a t e d sodium b i c a r b o n a t e  s o l u t i o n and water. The s o l u t i o n was d r i e d over anhydrous sodium s u l p h a t e , e v a p o r a t i o n o f the s o l v e n t a f f o r d e d a s l i g h t y e l l o w foamy r e s i d u e which upon r e c r y s t a l l i z a t i o n from methylene c h l o r i i e - m e t h a n o l y i e l d e d 2.1 g (53%) o f the d e s i r e d d i b e n z o a t e  (141). The m o t h e r l i q u o r c o n t a i n e d a m i x t u r e  of t h e mono- and d i b e n z o a t e s . The d i b e n z o a t e (141) had t h e f o l l o w i n g c h a r a c t e r i s t i c s , m.p. 152°; i r , v max ( C H C 1 ) : 3490 (NH); 1715 (CH -0C=0); 3  1655  - 1  ( a r o m a t i c ) ; uv, X max ( e ) : 223 (29600);  (3720); 280 (3640); 290 nm (2760); nmr ( C D C 1 ) ; 6 3.25 ( m u l t i p l e t ,  273 .  (-NH-C0); 1605 and 1580 c m  2  3  2H, C3-H ); 4.46 ( d o u b l e t , J = 5 Hz, -C2-CH ~0-); 4.92 ( m u l t i p l e t , IH, 2  2  C2-H); 6.7 ( d o u b l e t , J = 8 Hz, NH-C0-); 7.1-8.15 ( m u l t i p l e t s , 8.28 C  ( s i n g l e t , IH, i n d o l e NH); h i g h r e s o l u t i o n mass s p e c , M  25 22 2°3 H  N  r  e  c  l  u  i  r  e  s  +  15H*aromatic); 398.1663;  398.1629.  Anal, calcd. f o r C ^ H ^ N ^ :  C, 75.36; H, 5.57; N, 7.03. Found: C, 75.18;  H, 5.48; N, 6.97.  H y d r o l y s i s o f the d i b e n z o a t e The d i b e n z o a t e  (141) t o t h e monobenzoate (142)  (141) (2.1 g) and p o t a s s i u m c y a n i d e (400 mg) were  r e f l u x e d i n methanol (25 ml) f o r a p e r i o d o f t h r e e hours. Water (100 ml) was  added and the m i x t u r e was e x t r a c t e d w i t h methylene c h l o r i d e . T h e e x t r a c t  was  d r i e d over anhydrous sodium s u l p h a t e and e v a p o r a t e d t o p r o v i d e a s o l i d  m a t e r i a l w h i c h upon r e c r y s t a l l i z a t i o n  from methylene c h l o r i d e p r o v i d e d  I . 50 g (95%) o f the d e s i r e d monobenzoate (142), m.p.162-164°;  i r , v max  - 241  ( N u j o l ) : 3340 (OH); '222  (23000); 274  1645  (-NH-C=0); 1580  (3320); 281  ( s i n g l e t , IH, OH);  -  3.21  (3310);  291 nm  ( d o u b l e t , J = 6 Hz,  J = 5 Hz, 2H, -CH -0H); 4.55  IH, -NH-C0); 7.1-7.8 ( m u l t i p l e t s , 10H, 294.1383;  +  C  H 1 8  N 1 8  ( a r o m a t i c ) ; uv, A max  X  (2760); nmr 2H,  N,  C 3 - H ) ; 3.86  0 2  2  r  e  c  l  u  i  r  w i t h 30% sodium h y d r o x i d e r e a c t i o n m i x t u r e was  ( d o u b l e t , J = 8 Hz,  e  s  294.1367. N, 9.52.  Found: C,  s o l u t i o n (2 ml)  (40 mg)  was  (97%)  o f the d e s i r e d m a t e r i a l  2-(N-Benzoylamino)-3-indolyl(3a)-propanol p y r i d i n e (5 ml) was  extract  (142)  eva-  (121).  (144)  (760 mg)  i n anhydrous  t r e a t e d w i t h p - t o l u e n e s u l f o n y l c h l o r i d e (970 mg = 2  mole e q u i v a l e n t ) . The m i x t u r e was  s t i r r e d f o r 16 h o u r s a t room t e m p e r a t u r e ,  poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . The washed w i t h c o l d 1 N h y d r o c h l o r i c a c i d and w a t e r and  anhydrous sodium s u l p h a t e . E v a p o r a t i o n m a t e r i a l w h i c h was  120°.  c o o l e d t o room t e m p e r a t u r e , d i l u t e d w i t h w a t e r  washed w i t h w a t e r , s t i r r e d o v e r anhydrous sodium s u l p h a t e and t o a f f o r d 25 mg  (121)  treated  and h e a t e d f o r 6 h o u r s a t  Attempted f o r m a t i o n o f the t o s y l a t e ( 1 4 3 ) , -> a z i r i d i n e  was  73.15;  to 2-amino-3-indolyl(3a)-propanol  (20 ml) and e x t r a c t e d w i t h methylene c h l o r i d e / 5 % methanol .The  porated  1.6  (doublet,  2  2-(N-Benzoylamino) - 3 - i n d o l y l ( 3 a ) - p r o p a n o l (142)  was  6  9.34.  H y d r o l y s i s of the monobenzoate (142)  The  (e):  a r o m a t i c ) ; h i g h r e s o l u t i o n mass  A n a l , c a l c d . f o r C ^ H ^ N ^ : C, 73.45; H, 6.16; H, 6.13;  (CDCLj);  ( m u l t i p l e t , IH, C2-H); 6.5  2  spec, M ,  cm~  extract  d r i e d over  o f the s o l v e n t y i e l d e d a c r u d e  chromatographed u s i n g 130 g S i l i c a g e l (Woelm, a c t i v i t y I I I ,  methylene c h l o r i d e / 5 % methanol) a f f o r d i n g 540 mg  of a l i g h t brown foamy  - 242 -  m a t e r i a l . R e c r y s t a l l i z a t i o n from benzene-hexane p r o v i d e d p a l e y e l l o w c r y s t a l s , m.p. 115-117°; i r , 1  v max ( C H C l ^ : 3490 (NH); 1645 (>N-C=0);  0  1375  and 1160 cm  ( P N - C - R ) ; uv, A max ( e ) : 226 (10000); 273 (4580);  280  (4370); 291 nm (3320); nmr ( C D C l ) ; 6 2.90 ( d o u b l e t o f d o u b l e t , 3  J = 15 Hz, 9 Hz, I H , C3H); 3.39 ( d o u b l e t o f d o u b l e t , J = 15 Hz, 5 Hz, C3H);  4.32 ( d o u b l e t o f d o u b l e t , J = 15 Hz, 7 Hz, 2H, -NCH ~); 4.71 2  ( m u l t i p l e t , I H , C2H); 7.04-8.2 ( m u l t i p l e t s , 11H, a r o m a t i c + i n d o l e NH); mass s p e c , M  +  ( 5 % ) , 276.  A n a l , c a l c d . f o r C H N 0 * . C, 78.23; H, 5.84; N, 10.14. Found: C, 78.24; 18  16  2  2  H, 5.91; N, 10.00. T h i s m a t e r i a l has been a s s i g n e d t h e s t r u c t u r e o f t h e a z i r i d i n e 2-(N-Carbobenzoxyamino)-3-indolyl(3a)-propanol 2-Amino-3-indolyl(3a)-propanol  (121)  (144).  (145)  (1.0 g = 5.25 mM) was suspended  i n i c e - c o l d 5% aqueous sodium c a r b o n a t e s o l u t i o n (10 m l ) , W h i l e carbobenzoxy was  agitated  stirring,  c h l o r i d e (1 m l = 1.3 mole e q u i v a l e n t ) was added and t h e m i x t u r e f o r 20 m i n u t e s i n an i c e b a t h . The p r e c i p i t a t e d s e m i - s o l i d  m a t e r i a l was c o l l e c t e d by f i l t r a t i o n , d i s s o l v e d i n methylene c h l o r i d e and the s o l u t i o n was d r i e d over anhydrous sodium s u l p h a t e . A s m a l l amount o f p y r i d i n e (0.2 ml) was added ( i n i t i a l r e d c o l o u r d i s a p p e a r s i n p r e s e n c e of a p y r i d i n e - e x c e s s ) a n d t h e s o l u t i o n was washed s u c c e s s i v e l y w i t h c o l d 1 N H C l , w a t e r and s a t u r a t e d sodium c h l o r i d e s o l u t i o n . The d r i e d (anhydrous  sodium s u l p h a t e ) was e v a p o r a t e d  solution  t o y i e l d a s o l i d brown m a t e r i a l  (1.68 g ) . R e c r y s t a l l i z a t i o n from hexane/methylene c h l o r i d e p r o v i d e d 1.1 g (64%) o f t h e d e s i r e d N - c a r b o b e n z o x y l a t e d  m a t e r i a l ( 1 4 5 ) , m.p. 108-110°;  - 243 -  i r , v max  ( C R C 1 ) : 3600 (OH); 3480 (NH); 1710 cm"  (-NHC00-); uv, X max ( e ) :  1  3  223 (18200); 283 (2890);  291 nm (2580); nmr (CDCl-j); 5 1.94  IH, OH); 2.97 ( d o u b l e t , J = 6 Hz, 2H, C 3 H ) ; 3.6  (singlet,  ( d o u b l e t , J = 6 Hz, 2H,  2  - C H - 0 - ) ; 4.05 ( m u l t i p l e t , I H , C2H); 5.02 ( d o u b l e t , J = 6 Hz, I H , NHC0); 2  5.08 ( s i n g l e t , 2H, - 0 - C H ~ ) ; 6.9-7.7 ( m u l t i p l e t s , 10H, a r o m a t i c ) ;  8.03  2  .  -j-  ( s i n g l e t , I H , i n d o l e NH); h i g h r e s o l u t i o n mass spec. M  324.1480;  c  H 1 9  o 2 3 N  2  0  r e q u i r e s 324.1473.  2-(N-Carb6benzoxyamino)-3-indolyl(3a)-propyl  t o s y l a t e (146)  2-(N-carbobenzoxyamino)-3-indolyl(3a)-propanol  (145) (1.6 g = 5.1  mM)  i n anhydrous p y r i d i n e (16 ml) was t r e a t e d w i t h p - t o l u e n e s u l f o n y l c h l o r i d e (1.9 g, 2 mole e q u i v a l e n t ) . The m i x t u r e was s t i r r e d f o r a p e r i o d o f twenty hours a t room t e m p e r a t u r e a f t e r w h i c h i t was p o u r e d i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . T h e e x t r a c t was washed w i t h 1 N h y d r o c h l o r i c a c i d and w a t e r and d r i e d over anhydrous sodium s u l p h a t e . E v a p o r a t i o n o f the s o l v e n t p r o v i d e d 2.24 g o f a y e l l o w foam w h i c h was chromatographed u s i n g 200 g S i l i c a g e l (Woelm, a c t i v i t y I I I , methylene c h l o r i d e / 5 % methanol) t o a f f o r d 2.18 g (89%) o f p u r e t o s y l a t e (146) as a s l i g h t l y y e l l o w foamy m a t e r i a l , i r , v max (NH C00-); 1355 and 1175 cm"  1  3  (-OTs); nmr ( C D C 1 ) ; <5 2.41 3  3H, - C H ) ; 3.02 ( m u l t i p l e t , 2H, C 3 H ) ; 4.05 3  ( C H C 1 ) : 3470 (NH); 1720  2  (singlet,  ( m u l t i p l e t , 2H, - C H - 0 - ) ; 2  * 4.1 ( m u l t i p l e t , I H , C2H); 5.08 ( s i n g l e t , 2H, - 0 - C H ~ ) ; 6.9-8.15 2  ( m u l t i p l e t s , 15H, a r o m a t i c + i n d o l e NH).  - 244  Attempted f o r m a t i o n  of the n i t r i l e  -  (147)  from t o s y l a t e  (146)  2-(N-Carbobenzoxyamino)-3-indolyl(3a)-propyl t o s y l a t e (100 mg  = 0.2  (2 ml) was  mM)  i n saturated methanolic potassium cyanide s o l u t i o n  r e f l u x e d f o r a p e r i o d of 20 h o u r s d u r i n g w h i c h the  m i x t u r e was  f r e q u e n t l y checked by TLC  c h l o r i d e / 5 % m e t h a n o l ) . No  (Silica  r e s i d u e was  s o l v e n t was  the most p o l a r (10 mg) propanol-tosylate  separation provided  (148). None o f the d e s i r e d n i t r i l e  by i n f r a r e d  2-amino-3-indolyl(3a)(147)  could  amino a l c o h o l (121)  (300 mg  (149) =1.5  mM)  i n dry p y r i d i n e (5  c h l o r i d e (300 mg  = 1.5  m a i n t a i n e d a t 0°  the m i x t u r e was  poured i n t o i c e - w a t e r  The  washed w i t h 1 N h y d r o c h l o r i c a c i d and w a t e r and  o v e r anhydrous sodium s u l p h a t e . w h i c h was  and  60 mg  The  f o r a p e r i o d of twenty h o u r s a f t e r w h i c h and  e x t r a c t e d w i t h methylene c h l o r i d e .  Evaporation  dried  y i e l d e d a crude m a t e r i a l  chromatographed u s i n g 20 g of S i l i c a  a c t i v i t y III,methylene c h l o r i d e ) to provide (149)  ml)  mM).  t e m p e r a t u r e was  e x t r a c t was  be  spectroscopy.  t r e a t e d a t 0°wLth p - t o l u e n e s u l f o n y l  (440 mg)  the  s i x s m a l l samples  of w h i c h seemed t o c o n s i s t of  2-(N-Tosylamino)-3-indolyl(3a)-propanol  was  e v a p o r a t e d and  of a brown m a t e r i a l w h i c h c o n s i s t e d o f a t l e a s t s i x  components (TLC). P r e p a r a t i v e TLC  The  g e l G, Woelm, methylene  t r e a t e d w i t h w a t e r and e x t r a c t e d w i t h m e t h y l e n e c h l o r i d e t o  66 mg  detected  reaction  change i n c o m p o s i t i o n seemed t o have t a k e n  p l a c e a f t e r f o u r h o u r s o f r e f l u x i n g . The  provide  (146)  160 mg  (35%)  g e l (Woelm, of the m o n o t o s y l a t e  of the d i t o s y l a t e (150). B o t h compounds r e s i s t e d a t t e m p t s  o f c r y s t a l l i z a t i o n and  remained as g l a s s y m a t e r i a l s . Compound  e x h i b i t e d the f o l l o w i n g c h a r a c t e r i s t i c s ; nmr  (CDCl^),  <5 2.30  (149)  (singlet,  - 245 -  3H,  CH ); 3  2.52  (broad s i n g l e t , IH, OH);  3.45-3.75 ( m u l t i p l e t s , 3H,  2.85  CH_ 0- + C2H);  5.20  2  -NH-S0 ); 6.80-7.62 ( m u l t i p l e t s , 9H,  ( m u l t i p l e t , 2H,  NH i n d o l i c ) ; h i g h r e s o l u t i o n mass s p e c , M  2  ( d o u b l e t , J = 10 Hz,  a r o m a t i c ) ; 8.25  2  C3H ); 1H  (broad s i n g l e t ,  9  IH,  344.1220; C-^g^Q^O^S  +  r e q u i r e s 344.1194. (CDC1 ); 6 2.26,  Compound (150), nmr  2.38  3  2.85  ( m u l t i p l e t , 2H,  7.78  ( m u l t i p l e t s , 13H,  ( s i n g l e t s , 3H each,  C 3 H ) ; 3.45-4.15 ( m u l t i p l e t s , 3H, 2  a r o m a t i c ) ; 8.00  2- ( N - T o s y l a m i n o ) - 3 - i n d o l y l ( 3 a ) - p r o p y l The amino a l c o h o l (121)  C^O-  CH ); 3  + C2H);  (broad s i n g l e t , IH, NH,  tosylate  (12.8 g = 67.5  mM)  6.76-  indolic).  (150) was  d i s s o l v e d i n anhydrous  p y r i d i n e (60 m l ) , c o o l e d t o 0° and t r e a t e d w i t h p - t o l u e n e s u l f o n y l c h l o r i d e (36 g = 3 mole e q u i v a l e n t ) . The m i x t u r e was  k e p t f o r twenty hours a t  poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . The  0°,  extract  was washed w i t h i c e c o l d 1 N h y d r o c h l o r i c a c i d and w a t e r and d r i e d o v e r anhydrous sodium s u l p h a t e . E v a p o r a t i o n m a t e r i a l w h i c h was  provided  chromatographed u s i n g 1.5  methylene c h l o r i d e . The  31.2  g o f a brown foamy  kg o f S i l i c a g e l (BDH)  d e s i r e d d i t o s y l a t e (150)  (27.7  and  g, 83%) was  obtained  as a n o n — c r y s t a l l i n e m a t e r i a l .  3- ( N - T o s y l a m i n o ) - 4 - i n d o l y l ( 3 a ) - b u t a n o n i t r i l e The  d i t o s y l a t e (150)  (22.1  t r e a t e d w i t h potassium cyanide The  s o l v e n t was  g = 47.5 (4.5  g = 70 mM)  e v a p o r a t e d i n vacuo and  c h l o r i d e . F i l t r a t i o n and e v a p o r a t i o n m a t e r i a l w h i c h was  mM)  (151) i n d r y m e t h a n o l (300 ml) and r e f l u x e d f o r two  was  hours.  the r e s i d u e t r e a t e d w i t h methylene  o f the s o l v e n t p r o v i d e d  21 g o f crude  chromatographed u s i n g 1 kg of S i l i c a g e l (BDH)  and  - 246  -  methylene c h l o r i d e . R e c r y s t a l l i z a t i o n o f the o b t a i n e d compound p r o v i d e d 15.5  g (95%) of the d e s i r e d n i t r i l e  ( N u j o l ) : 3310,  3240 (NH); 2280 (CN); 1605  (S0 -NH); uv, X max  ( e ) : 227  2  7.56  ( m u l t i p l e t s , 9H,  Anal, calcd. f o r  C  H 1 9  1 9  C, 64.71; H, 5.41;  2H, C 4 H ) ; 3.65  2.73  cm"  1  nm  (multiplet,  2H,  6.6-  aromatic). N 0 : C, 64.58; H, 5.42; 3  N, 11.89; S, 9.1.  2  N, 11.83; S,  The n i t r i l e - t o s y l a t e  m i x t u r e was  and 1150  ( m u l t i p l e t , IH);  2  Found:  9.0.  3-(N-Tosylamino)-4-indolyl(3a)-butanoic acid  sodium h y d r o x i d e  max  (2890); 290  3  ( d o u b l e t , J = 8 Hz,  2  ( 2 8 2 0 ) ; 282  ( s i n g l e t , 3H, C H ) ;  &  CH -CN); 2.95  191-192°; i r , v  ( a r o m a t i c ) ; 1325  ( 5 6 3 0 ) ; 274  ( a c e t o n e - d ) ; 6 2.28  (2580); nmr  (151); m.p.  (151)  (160 mg)  (152)  was  t r e a t e d w i t h 30% aqueous  (5 ml) f o r a p e r i o d o f one hour a t 140°.  c o o l e d t o room t e m p e r a t u r e ,  The  viscous  d i l u t e d w i t h w a t e r (20 ml)  and  p l a c e d i n an i c e b a t h . Upon c a r e f u l a c i d i f i c a t i o n w i t h 2 N s u l p h u r i c a c i d a w h i t e p r e c i p i t a t e formed w h i c h was  c o l l e c t e d by c e n t r i f u g a t i o n ,  w i t h w a t e r and d r i e d i n vacuo t o p r o v i d e 158 mg  washed  (93%) o f the d e s i r e d  a c i d (15 2 ) . R e c r y s t a l l i z a t i o n f r o m e t h a n o l a f f o r d e d an a n a l y t i c a l sample, m.p.  198-200°; i r , v max  (C00H); 1605 222  ( a r o m a t i c ) ; 1340  (24000); 275  6 2.24  ( N u j o l ) : 3360 (NH);  (3320); 283  ( s i n g l e t , 3H, - C H ^ ;  o f d o u b l e t , J = 7, 3Hz, IH, C3H);  4.95  Anal, calcd.  for  H, 5.43;  7.35.  c  N 2 o  2 A 0  S :  CH^COOH); 3.80  C  »  61  ( S 0 - N H - ) ; uv, X max 2  (2960); nmr  ( m u l t i p l e t , 2H,  ' '> » Z8  H  1705 (e):  (acetone-dj; o  C 4 H ) ; 2.93 2  (broad t r i p l e t ,  NH-Ts); 6.77-7.6  (broad s i n g l e t , 0.5H, H  1 9  1  (3470); 291 nm 2.46  2H,  cm"  ( v . b r o a d s i n g l e t , 1.5H,  9H, a r o m a t i c ) ; 9.88  N,  and 1165  3190-2650 (C00H);  (doublet  J = 6 Hz, (multiplets,  -C00H). 5.41;  N, 7.52.  Found: C, 61.42;  - 247  -  3-Amino-4-indolyl(3a)-butanonitrile The t o s y l - n i t r i l e ( 1 5 1 ) (700 ml) a t -78°.  (153)  (10 g) was  d i s s o l v e d i n dry l i q u i d ammonia  Sodium m e t a l (3.6 g ^ 5.5  mole e q u i v a l e n t ) was  added  i n s m a l l p o r t i o n s and  the m i x t u r e was  The  d e s t r o y e d by c a r e f u l a d d i t i o n of ammonium c h l o r i d e  e x c e s s sodium was  (15 g) and  the ammonia was  s t i r r e d f o r 30 m i n u t e s a t  evaporated.  The  w a t e r b a t h , d i l u t e d w i t h w a t e r (300 ml) The e x t r a c t was (2x150 ml)  r e s i d u e was  -78°.  c o o l e d i n an i c e -  and e x t r a c t e d w i t h e t h y l a c e t a t e .  washed w i t h 1 N h y d r o c h l o r i c a c i d (3x150 ml)  and w a t e r  and d r i e d o v e r anhydrous sodium s u l p h a t e . E v a p o r a t i o n  s o l v e n t y i e l d e d 845 mg  o f s t a r t i n g m a t e r i a l . The  of  aqueous and a c i d i c phases  were combined and a d j u s t e d t o pH 10-11  w i t h 10 N ammonium h y d r o x i d e  and  the r e s u l t a n t w h i t e s u s p e n s i o n was  extracted with e t h y l acetate.  The  e x t r a c t was  washed w i t h w a t e r , d r i e d o v e r anhydrous sodium  and e v a p o r a t e d t o a f f o r d an amorphous r e s i d u e (5.4 g = 95%) d e s i r e d m a t e r i a l ( 1 5 3 ) . The  compound was  methylene c h l o r i d e / 1 0 % a c e t o n e ) ; 3340 (NH); ( 3 8 7 0 ) ; nmr 2H, 8.75 130  2246 cm"  1  i r , v max  (CN); uv, X max  p u r e by TLC (CHCl ):  ( e ) : 273  ( C D C 1 ) ; 62.55 ( d o u b l e t , J = 6 Hz, 3  CH CN); 3.4 2  3  mass s p e c , m/e  sulphate the  ( S i l i c a g e l G,  3480  (4150); 2H,  of  (NH-indole);  281  (4390);  C 4 - H ) ; 2.94 2  ( m u l t i p l e t , IH, C3-H); 6.9-7.7 ( m u l t i p l e t s , 5H,  ( s i n g l e t , IH, i n d o l e - N H ) ;  the  199  (M );  was  treated with  +  183  289  nm  (multiplet, aromatic);  (M-NH ); 2  [M-CH(NH )CH CNJ. 2  2  3-Amino-4-indolyl(3a)-butanoic  acid  (154)  T h e N - t o s y l - c a r b o x y l i c a c i d (152) b  s u l p h u r i c a c i d (2 ml)  (16 mg)  and h e a t e d f o r one m i n u t e at 150°.  c o o l e d i n i c e - w a t e r , c a r e f u l l y d i l u t e d w i t h w a t e r and  80%  The m i x t u r e  the pH was  was  adjusted  - 248 -  t o 6.0 u s i n g 10% aqueous sodium h y d r o x i d e . The s o l u t i o n was c o n c e n t r a t e d i n vacuo t o a volume o f about 3 m l and e x t r a c t e d w i t h e t h y l e t h e r f o r a p e r i o d o f f o u r h o u r s . E v a p o r a t i o n o f t h e e t h e r p r o v i d e d 8 mg (89%) o f a s o l i d m a t e r i a l w h i c h e x h i b i t e d i d e n t i c a l p r o p e r t i e s on TLC ( S i l i c a g e l G, m e t h a n o l , 1^) t o t r y p t o p h a n . The m a t e r i a l seemed t o r e p r e s e n t t h e d e s i r e d amino a c i d  (154).  3-Aminb-4-indolyl(3a)-butanoic TheN -tosyl-acid  a c i d m e t h y l e s t e r ,(155)  (152) (8.9 g) was d i s s o l v e d a t -78° i n d r y l i q u i d  b  ammonia (200 ml) and t r e a t e d w i t h an e x c e s s o f sodium m e t a l (3 g) i n s m a l l p o r t i o n s . The m i x t u r e was s t i r r e d f o r two h o u r s a t -78°, t h e e x c e s s o f sodium d e s t r o y e d by c a r e f u l a d d i t i o n o f ammonium c h l o r i d e and t h e ammonia was  evaporated.  The w h i t e s o l i d r e s i d u e c o n t a i n i n g t h e ammonium s a l t o f  the amino a c i d (154) was t a k e n up i n d r y m e t h a n o l (500 m l ) , cone, s u l p h u r i c a c i d (15 ml) was added and t h e m i x t u r e was r e f l u x e d f o r 18 h o u r s . Most o f the s o l i d m a t e r i a l went i n t o s o l u t i o n . The s o l v e n t was e v a p o r a t e d , t h e r e s i d u e t a k e n up i n w a t e r and b a s i f i e d w i t h 5% aqueous sodium  carbonate  s o l u t i o n . E x t r a c t i o n w i t h m e t h y l e n e c h l o r i d e p r o v i d e d 6.4 g o f c r y s t a l l i n e m a t e r i a l w h i c h was chromatographed u s i n g 500 g S i l i c a g e l (BDH) and m e t h y l e n e c h l o r i d e / 5 % m e t h a n o l t o a f f o r d 4.2 g (76%) o f t h e d e s i r e d compound ( 1 5 5 ) ; m.p. 112-113°; i r , v max ( C H C 1 ) : 3490, 3390 (NH); 1725 ( C 0 0 C H ) ; 1585 cm" 3  1  3  (arom.); u v , X max ( e ) : 220 (22400); 281 ( 3 6 4 0 ) ; 290 nm ( 3 1 7 0 ) ; nmr ( C D C 1 ) ; 3  <5 1.73 ( s i n g l e t , 2H, N H ) ; 2.34-2.9 ( m u l t i p l e t s , 4H 2  S  CH C0 + C 4 H ) ; 3.58 2  2  ( m u l t i p l e t , I H , C3H); 3.60 ( s i n g l e t s , 3H, CO0CH ); 6.94-7.64 ( m u l t i p l e t s , 3  5H, a r o m a t i c ) ; 8.41 ( s i n g l e t , I H , i n d o l e NH). Anal, calcd. f o r  C  H 1 3  1 6  N  0 2  2  :  C, 67.22; H, 6.94; N, 12.06. Found: C, 67.08;  - 249  H, 6.91;  N,  -  11.99.  F o r m y l a t i b n bf 3 - a m i n o - 4 - i n d O l y l ( 3 a ) - b u t a n o i c  a c i d m e t h y l ester-*- (156)  :  a)  The  amino e s t e r (155)  formate (3 ml)  and  (100 mg)  was  sodium methoxide (25 mg)  room t e m p e r a t u r e . The m i x t u r e was  93 mg  s t i r r e d f o r two hours a t the  residue  the r e s u l t a n t m a t e r i a l was  separated  ( S i l i c a g e l G, methylene c h l o r i d e / 5 % a c e t o n e ) to p r o v i d e  (83%) o f the d e s i r e d m a t e r i a l (156) as a v i s c o u s o i l ; i r , v  ( C H C 1 ) : 3550, 3480 (NH);  1730  3  275, 287, 3.00  and  evaporated to dryness,  e x t r a c t e d w i t h methylene c h l o r i d e and by p r e p a r a t i v e TLC  t r e a t e d w i t h anhydrous m e t h y l  291 nm;  nmr  ( m u l t i p l e t s , 5H,  3  ( C D C 1 ) ; 6 2.49 2H,  6.24  C H C 0 ) ; 3.60 2  1  (NHCO); uv, X  ( s i n g l e t , 3H,  ( d o u b l e t , J = 8 Hz,  a r o m a t i c ) ; 8.00  cm"  ( d o u b l e t , J = 6 Hz,  3  ( d o u b l e t , J = 6 Hz,  ( m u l t i p l e t , IH, C3H);  ( C 0 0 C H ) ; 1680  max  2H,  max;  C4H ); 2  C00CH ); 3  4.62  IH, NH-CHO); 6.80-7.82  ( s i n g l e t , I H , CHO);  8,42  (singlet,  IH,  indole-NH). b)  The  amino e s t e r (155)  (4 ml) and a c e t i c a n h y d r i d e  (1.0 g) was (1.2 ml)  t r e a t e d w i t h 99% f o r m i c a c i d  f o r a p e r i o d of 30 m i n u t e s a t  100°.  The m i x t u r e was  e v a p o r a t e d t o d r y n e s s a t room t e m p e r a t u r e i n vacuo and  the r e s i d u e was  t a k e n up i n i c e - c o l d s a t u r a t e d sodium b i c a r b o n a t e  E x t r a c t i o n w i t h methylene c h l o r i d e p r o v i d e d 1.1 was  g o f crude m a t e r i a l w h i c h  chromatographed u s i n g 70 g of S i l i c a g e l (Woelm, a c t i v i t y H I )  methylene c h l o r i d e / 3 % m e t h a n o l y i e l d i n g 883 mg compound (156) .  solution.  and  (78%) o f the d e s i r e d p u r e  - 250 -  L - ( - ) - 3 - C a r b o m e t h 6 x y m e t h y l - 3 , 4 - d i h y d r o - B - c a r h o l i n e (157) The N - f o r m y l compound (156) (1.4 g) was d i s s o l v e d i n t r i f l u o r o b : a c e t i c a c i d (15 m l ) and t h e d a r k green s o l u t i o n was h e a t e d f o r 3 hours a t 50°.  The a c i d was e v a p o r a t e d i n vacuo a t room t e m p e r a t u r e , and t h e o i l y  r e s i d u e was t r e a t e d w i t h i c e c o l d s a t u r a t e d sodium b i c a r b o n a t e The  solution.  r e s u l t i n g p a l e y e l l o w o i l y p r e c i p i t a t e was e x t r a c t e d w i t h methylene  c h l o r i d e / 5 % m e t h a n o l t o a f f o r d 1.2 g (92%) o f t h e d e s i r e d m a t e r i a l (157) as a p a l e y e l l o w foam; i r , v max ( C H C l ^ : 1680  and 1620 cm"  CD 0D, 4:1);  8.26  1740 (C00CH ); 3  (C=N); uv, A max: 236; 243; 322 nm; nmr (CDC1  1  3  +  6 2.52-3.24 ( m u l t i p l e t s , 4H, CH C0 + C 4 H ) ; 3.69 ( s i n g l e t ,  3  3H,  3510 (NH);  2  2  C00CH ); 4.2 ( m u l t i p l e t , I H , C3H); 6.96-7.60 ( m u l t i p l e t s , 4H, a r o m a t i c ) ; 3  ( d o u b l e t , J = 2 Hz, I H , C1H); mass s p e c , m/e 242 (13%, M ) ; 169 +  (100%, M- C H C 0 C H ) . 2  2  3  2-0xb-3-ethyl-6-carbomethoxymethyl-1,2,3,4,6,7,12,12b-octahydro-indolo ( 2 , 3 - a ) - q u i n o l i z i n e (158) The (126)  d i h y d r o c a r b o l i n e (157) (400 mg) and 3-methylen-pentan-2-one  (1.0 g) were d i s s o l v e d i n d r y m e t h a n o l (10 m l ) and t r e a t e d w i t h  saturated methanolic  HC1 (0.1 m l ) . The s o l u t i o n was r e f l u x e d f o r s i x hours  a f t e r w h i c h i t was e v a p o r a t e d t o d r y n e s s .  The r e s i d u e was chromatographed  u s i n g 40 g o f S i l i c a g e l (Woelm, a c t i v i t y I I ) , e l u t i n g w i t h methylene c h l o r i d e / 3 % m e t h a n o l p r o v i d e d 102 mg (18%) o f t h e d e s i r e d t e t r a c y c l i c k e t o n e (158). TLC ( S i l i c a g e l G, C H C l / 3 % CH 0H) i n d i c a t e d t h a t 2  a mixture  2  3  again  o f two compounds i n an a p p r o x i m a t e r a t i o o f 9:1 (more p o l a r t o  l e s s p o l a r ) was p r e s e n t . A t t e m p t s t o s e p a r a t e u n s u c c e s s f u l ; i r , v max ( C H C 1 ) : 3500 (NH); 3  t h e two m a t e r i a l s were  2850, 2810, 2780 (Bohlmann b a n d s ) ;  - 251  1720-1735 cm" 290 nm 3.60  (C00CH + C=0);  1  uv,  3  A max  ( e ) : 273  (8290); 283  (7850); nmr  ( C D C 1 ) ; 6 0.95  ( t r i p l e t , J « 7 Hz,. 3H,  ( s i n g l e t , 3H,  C00CH ); «v» 3.85  ( m u l t i p l e t , 1H,  ( m u l t i p l e t s , 4H, m/e  -  340  3  3  aromatic);  (15%, M ) ;  267  +  8.34  (100%, M-  Attempted c a r b o m e t h o x y l a t i o n of  (8290);  -CH -CH ); 2  3  C12b-H); 6.96-7.53  ( s i n g l e t , IH, i n d o l e -NH);  mass s p e c ,  CH C0 CH ). 2  2  3  3-amino-4-indolyl(3a)-butanoic  a c i d m e t h y l e s t e r , (155)-x-»(162) The  amino e s t e r  (155)  (100 mg,  0.4  mM)  i n dry benzene (5 ml)  was  added a t room t e m p e r a t u r e t o a s u s p e n s i o n of sodium h y d r i d e (50 mg, i n dry d i m e t h y l c a r b o n a t e (2 m l ) . The t e m p e r a t u r e and m o n i t o r e d by TLC  m i x t u r e was  ^ 2  mM)  a g i t a t e d a t room  ( S i l i c a g e l G, m e t h y l e n e c h l o r i d e / 3 %  m e t h a n o l ) . A f t e r a p e r i o d of 18 h o u r s a l a r g e amount of s t a r t i n g m a t e r i a l c o u l d s t i l l be d e t e c t e d at 60°.  The  the m i x t u r e was  r e s u l t a n t p r o d u c t was  sodium h y d r i d e was was  and  5% sodium c a r b o n a t e s o l u t i o n and  aqueous phase was  extracted  provided  b a s i f i e d with  w i t h methylene c h l o r i d e t o  of a s l i g h t l y y e l l o w n o n — c r y s t a l l i n e compound.  methylene c h l o r i d e e x t r a c t was  s e p a r a t e d by p r e p a r a t i v e  methylene c h l o r i c e / 1 0 % methanol) t o a f f o r d 7.5 and  the m i x t u r e  a c i d . E x t r a c t i o n w i t h benzene  of a brown amorphous m a t e r i a l . The  y i e l d 38 mg  i n an i c e b a t h , the e x c e s s of  d e s t r o y e d by d r o p w i s e a d d i t i o n of w a t e r and  a c i d i f i e d with 2 N hydrochloric  53 mg  The  cooled  t h e r e f o r e h e a t e d f o r 4 hours  mg  TLC  ( S i l i c a gel  of s t a r t i n g m a t e r i a l  (155)  19 rag o f 3-amino-4-(N-carbomethoxy i n d o l y l ) ( 3 a ) - b u t a n o i c a c i d m e t h y l  ester  (159)  as an amorphous m a t e r i a l ; i r , v max  (C00CH ); uv, 3  A max:  287,  exchangeable w i t h D 0); 2  295  2.5  nm;  nmr  ( C H C 1 ) : 1730 3  ( C D C 1 ) ; 6 1.7  ( m u l t i p l e t , 2H,  3  C 4 H ) ; 2.8 2  cm"  1  ( m u l t i p l e t , 2H, (multiplet,  -NH 2H,  2>  G,  - 252  CH CO-); 3.6 2  -  ( m u l t i p l e t , IH, C3-R); 3.70  ( s i n g l e t , 3H,  ( s i n g l e t , 3H, N-C00CH ); 6.65-8.3 ( m u l t i p l e t s , 5H,  C00CH );  aromatic).  3  P r e p a r a t i v e TLC s e p a r a t i o n o f the benzene e x t r a c t p r o v i d e d components, the more p o l a r one  (160)  (12.5 nig) had  i s t i c s ; i r , v max  (CHCL^): 3480 (NH);  275,  282,  nmr  3.02  ( d o u b l e t , J = 6 Hz,  4.3  291 nm;  (CDCLj);  The  nmr  ( C H C 1 ) : 3480 (NH); 3  ( C D C 1 ) ; 5 2.55 3  -CH C0-); 3.65 2  (30 mg),  1730  cm"  (1.16  t r e a t e d w i t h b e n z y l bromide (765 mg  0°. W h i l e s t i r r i n g sodium h y d r i d e  (108 mg = 4.5  p o r t i o n s over a p e r i o d o f one h o u r . 4.5 1 N HC1) The  g = 4.5  were added and  r e s i d u e was  mM  mM)  nm; 2H,  (doublet,  aromatic).  a c i d methyl e s t e r ,  i n dry dimethylformamide  = 4.5 mM)  295  COOCHp;  ( m u l t i p l e t , IH, C3-H); 5.3  B e n z y l a t i o n of 3-(N-formylamino)-4-indolyl(3a)-butanoic (156) •» (163)  (10 ml) was  3  (multiplet,  ( s i n g l e t , 3H,  J = 8 Hz, IH, -C3H-NH-); 7.2-8.2 ( m u t l i p l e t s , 5H,  b  2 x C00CH );  287,  3  3  The N ~ f o r m y l compound (156)  2  e x h i b i t e d the f o l l o w i n g d a t a ; i r ,  2  3  C4-H );  NH).  ( d o u b l e t , J = 6 Hz, C 4 - H ) ; 3.0  -N-C00CH ); 4.3  2H,  IH, -C3H-NH-);  ( C 0 0 C H ) ; uv, X max:  1  max:  3  ( d o u b l e t , J = 8 Hz,  ( s i n g l e t , 3H, C 0 0 C H ) ; 3.66  ( s i n g l e t , 3H,  (C00CH ); uv, X  1  ( s i n g l e t , 6H,  2  two major  the f o l l o w i n g c h a r a c t e r -  ( d o u b l e t , J = 6 Hz,  aromatic + i n d o l e  l e s s p o l a r m a t e r i a l (161)  v max  cm"  CH C0-); 3.65  ( m u l t i p l e t , IH, C2-H); 5.2  6.95-8.2 ( m u l t i p l e t s , 6H,  4.0  2H,  6 2.5  1730  4.03  3  mM)  was  and c o o l e d  added i n f o u r  o f h y d r o c h l o r i c a c i d (4.5  the s o l v e n t m i x t u r e was  to equal ml  e v a p o r a t e d a t room temperature,  chromatographed u s i n g 200 g S i l i c a g e l (Woelm, a c t i v i t y  and methylene c h l o r i d e / 3 % m e t h a n o l t o a f f o r d 1.19 m a t e r i a l (163) as a v i s c o u s o i l ;  i r , v max  I)  g (=76%)-of the d e s i r e d  ( C H C 1 J : 3450 (NH);  1725  (C00CHJ;  - 253 1680  (NH-CHO); 1620  <S 2.55  cm"  (arom.);  1  ( d o u b l e t , J = 6 Hz, 2H,  -CH -C0-); 3.67  ( m u l t i p l e t s , 10H, 350  6  291 nm;  nmr  (CDC1 ); 3  2  C00CH ); 4.7  5  2H,  ( m u l t i p l e t , IH, C3-H);  3  ( s i n g l e t , 2H, - N - C H - C H ) ; 6.25 2  uv, X max:  C 4 H ) ; 3.08 .(doublet, J = 6 Hz,  ( s i n g l e t , 3H,  2  -  5.3  ( d o u b l e t , J = 8 Hz, IH, NH-CO); 6.9-7.8  a r o m a t i c ) ; 8.12  ( s i n g l e t , IH, -N-CH0); mass s p e c ,  m/e  (M ). +  Attempted C a r b o m e t h o x y l a t i o n  of  3-(N-formylamino)-4-(N-benzylindolyl)(3a)-  b u t a n o i c a c i d m e t h y l e s t e r . (163)-*-> ( 1 6 4 ) , -> The  s t a r t i n g m a t e r i a l (163)  (50 mg)  (0.5 ml) and d r y d i m e t h y l c a r b o n a t e  The  i n anhydrous d i m e t h y l f o r m a m i d e  (0.5 ml) was  w i t h an excess of sodium h y d r i d e (10 mg). h o u r s a t room temperature.  (165)  t r e a t e d a t room  The m i x t u r e was  temperature  a g i t a t e d f o r 15  s o l v e n t s were removed i n vacuo, t h e r e s i d u e  t r e a t e d w i t h water- and e x t r a c t e d w i t h methylene c h l o r i d e t o p r o v i d e 49 o f a brown crude m a t e r i a l . The  l a t t e r was  p u r i f i e d by p r e p a r a t i v e  ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) to p r o v i d e 22 mg but u n s t a b l e  J = 6 Hz, 2H,  TLC  of pure  N - m e t h y l c a r b o n a t e (165) as a v i s c o u s o i l ; i r , v max  (CHC1 ) :  b  3450 (NH); 1725  (C00CH ); 1615  C 3 - H ) ; 3.0  2 x C00CH ); 4.28 3  cm  3  2  1  (arom.); nmr  (CDC1.); 6 2.49 3  ( m u l t i p l e t , 2H, -CH -C0-); 3.58 2  ( m u l t i p l e t , IH, C3-H); 5.2  (doublet,  (singlet,  6H,  aromatic).  3-(N-formylamino)-4-(N-benzylindolyl)(3a)-butanoic  a c i d m e t h y l e s t e r (163) -» Compound (163)  0  ( m u l t i p l e t , IH, -NH-CO- +  s i n g l e t , 2H, - N - C H ^ C ^ ) ; 6.9-7.6 ( m u l t i p l e t s , 10H,  Hydroxy m e t h y l a t i o n of  J  mg  (166)  (100 mg)  t r e a t e d a t room temperature  i n anhydrous d i m e t h y l f o r m a m i d e (2 ml) w i t h triphenylmethyIsodium  deep r e d c o l o u r was m a i n t a i n e d  was  solution until  i n t h e s o l u t i o n (y 4 m l ) . The  mixture  the  - 254  -  was s t i r r e d f o r 15 minutes a t room temperature and anhydrous  methyl  formate (1 ml) was added upon w h i c h the d a r k r e d c o l o u r d i s a p p e a r e d . The m i x t u r e was a g i t a t e d f o r a n o t h e r 30 minutes a f t e r w h i c h d r y H C l gas  was  b u b b l e d t h r o u g h t h e s o l u t i o n f o r one minute t o c o n v e r t any e n o l a t e i n t o the f r e e e n o l form. An e x c e s s o f sodium b o r o h y d r i d e was added i n s m a l l p o r t i o n s . The r e s u l t a n t m i x t u r e was  s t i r r e d f o r 45 minutes a f t e r w h i c h  the s o l v e n t was removed i n vacuo a t room t e m p e r a t u r . The r e s i d u e  was  t r e a t e d w i t h w a t e r (10 m l ) , n e u t r a l i z e d w i t h 2 N h y d r o c h l o r i c a c i d and e x t r a c t e d w i t h methylene c h l o r i d e . E v a p o r a t i o n p r o v i d e d a crude w h i c h was p a s s e d t h r o u g h a column o f 80 g S i l i c a g e l (BDH) chloride/3-KL5% methanol  residue  using  methylene  to remove the t r i p h e n y l m e t h a n e , 104 mg of a m a t e r i a l ,  c o n s i s t i n g o f f i v e components (TLC, S i l i c a g e l , methylene c h l o r i d e / 3 % m e t h a n o l ) , were o b t a i n e d . P r e p a r a t i v e TLC  (10 %) o f the d e s i r e d a l c o h o l (166); i r , v max  11 mg  broad (NH, OH); X max:  1725  290, 298 nm;  ( C 0 0 C H ) ; 1680 3  nmr  (CDC1 ); 3  2  J = 4 Hz, 2H, -CH 0H); 4.88 2  g  5  -CH -N); 6.2 2  2  335  3  3400,  (arom.); uv,  1  ( m u l t i p l e t , I H , -CH-C0);  ( s i n g l e t , 3H, C00CH ); 3.88 3  ( m u l t i p l e t , IH, C3-H); 5.22  3.05 (doublet,  (singlet,  2H,  ( d o u b l e t , J = 8 Hz, IH, -NH-C0-); 6.9-7.4 ( m u l t i p l e t s ,  10H, a r o m a t i c ) ; 8.05 362 (M- H 0 ) ;  (CHC1 ):  (-N-CH0); 1615 cm"  <5 2.58  ( d o u b l e t , J = 6 Hz, 2H, C 4 H ) ; 3.68  C H  ( c o n d i t i o n s as b e f o r e ) p r o v i d e d  ( s i n g l e t , IH -N-CH0); mass s p e c , m/e  (M- NH CH0); 304 {M2  380  (M ); +  (CH 0H + NH CH0)J. 2  3-(N-formylamino)-4-indolyl(3a)-butanonitrile  2  (167)^  The a m i n o n i t r i l e (153) (4.1 g) i n anhydrous m e t h y l formate (100 ml) was  t r e a t e d w i t h a s a t u r a t e d m e t h a n o l i c s o l u t i o n o f sodium methoxide.  m i x t u r e was  The  s t i r r e d f o r f o u r h o u r s a t room t e m p e r a t u r e a f t e r w h i c h i t was  -  255  poured i n t o i c e - w a t e r and e x t r a c t e d with, methylene c h l o r i d e . The was  washed s u c c e s s i v e l y w i t h 1 N h y d r o c h l o r i c a c i d , 5% sodium  s o l u t i o n and w a t e r and was  bicarbonate  d r i e d o v e r anhydrous sodium s u l p h a t e .  of the s o l v e n t i n vacuo p r o v i d e d an amorphous r e s i d u e (3.36 was  extract  Evaporation  g) w h i c h  chromatographed u s i n g 60 g S i l i c a g e l (Woelm, a c t i v i t y I I I ) and  methylene c h l o r i d a / 3 % m e t h a n o l t o p r o v i d e 2.4  g (58%) o f the d e s i r e d  N^-formyl compound (167). R e c r y s t a l l i z a t i o n from methylene c h l o r i d e p r o v i d e d an a n a l y t i c a l sample, m.p.  150-151.5°; i r , v max  2260 (C = N ) ; 1680  cm"  289 nm  ( C D C 1 ) ; 6 2.50  (6886); nmr  (doublet,  (-C0NH); uv, X max 3  J = 5 Hz,-  C 2 - H ) ; 4.51  1  I H , C4-H);  7.03-7.65 ( m u l t i p l e t s , 5H, 8.53 C  (7340);  3.01  N  r  e  c  l  u  i  r  e  s  a r o m a t i c ) ; 8.06  N,  2H,  +  Hz,  NH-C0-);  227.1058. N, 18.49. Found: C,  68.98;  18.22.  N - f o r m y l n i t r i l e (167)  formamide (35 ml) was  (168a) and  (2.1 g = 9.2  mM)  (168b)  i n anhydrous d i m e t h y l -  t r e a t e d w i t h b e n z y l bromide (1.1 ml = 9.2  c o o l e d to 0° and sodium h y d r i d e  (232 mg = 9.6  mM)  mM).  was  I n 4 e q u a l p o r t i o n s o v e r a p e r i o d o f 40 m i n u t e s . The m i x t u r e was f o r a n o t h e r 20 minutes w h i l e c o o l i n g was w i s e and  6  ( 5 7 % ) , 227.1079;  3-(N-formyl-N-benzylamino)-4-(N-benzylindolyl)(3a)-butanonitrile  m i x t u r e was  2.60  ( s i n g l e t , IH, i n d o l i c - N H ) ;  3-(N-Formylamino)-4-(N-benzylindolyl)(3a)-butanonitrile  The  (NH);  (7832);  , J = 9 Hz,  ( d o u b l e t , J = 8 Hz,  A n a l , c a l c d . f o r C ^ H ^ ^ O : C, 68.71; H, 5.77; H, 5.78;  281  IH, C4-H);  (doublet of doublet  ( s i n g l e t , I H , -CHO); h i g h r e s o l u t i o n mass s p e c , M  13 13 3° H  ( e ) : 273  ( d o u b l e t , J = 4 Hz,  ( m u l t i p l e t , IH, C3-H); 6.22  2  ( N u j o l ) : 3490, 3380  the p r o d u c t was  maintained.  Water was  The  added stirred  added d r o p -  e x t r a c t e d w i t h m e t h y l e n e c h l o r i d e t o p r o v i d e 3.4  g  - 256 -  of an o i l y r e s i d u e . Chromatography on 70 g o f S i l i c a gel,; (Woelm, a c t i v i t y I I I , methylene c h l o r i c f e / 3 % n e t h a n o l ) a f f o r d e d 450 mg o f s t a r t i n g m a t e r i a l , 1.7 g (58%)  o f t h e monobenzyl compound  (168a) and 445 mg o f t h e d i b e n z y l m a t e r i a l  (168b). The former (168a) was r e c r y s t a l l i z e d from methylene c h l o r i d e - h e x a n e t o p r o v i d e an a n a l y t i c a l sample, m.p. 139-140°; i r , v max ( N u j o l ) : 3320 (NH); 2940 and 2920 (CH); 2265 (CN); 1670 c m  - 1  (-NHC0-); ( C H C 1 ) : 3420 (NH); 3  2870 (CH); 2260 (CN); 1685 (-NHC0-); 1460, 1440, 1420, 1360 and 1335 cm" (-CH -C=C-); uv, X max (e): 276 (7195); 2  285 (7829);  1  295 nm (6642); nmr  ( C D C 1 ) ; S 2.57 ( d o u b l e t , J = 4 Hz, I H , C4-H); 2.66 ( d o u b l e t , J = 5 Hz, 3  IH, C4-H); 3.11 ( d o u b l e t o f d o u b l e t  , J = 7, 1 Hz, 2H, C 2 - H ) ; 4.52 2  ( m u l t i p l e t , I H , C3-H); 5.23 ( s i n g l e t , 2H, C ^ - C H ^ ; 5.96 ( d o u b l e t , J = 7 Hz, I H , -NH-C0-); 6.94-7.7 ( m u l t i p l e t s , 10H, a r o m a t i c ) ; 8.10 ( s i n g l e t , I H , -CHO); t h e s i g n a l a t 5.96 d i s a p p e a r e d irradiation  317 272 220 129 128 102 97 91  2  (114db) a t 4.52 caused t h e s i g n a l s a t 2.57, 2.66, 3.11 and 5.96  t o c o l l a p s e each t o a s i n g l e t ; mass s p e c t r o m e t r i c  m/e  upon a d d i t i o n o f D 0 ;  rel.int.% 8.4 8.3 58.1 5.3 1.9 3.6 1.0 100.0  Anal, calcd. f o r C  2 0  data:  measured mass  i o n composi C H N  calc.mass.  317.1491 272.1314 220.1137 129.0593 128.0508 102.0469 97.0421 91.0546  20 19 16 9 9 8 4 7  317.1526 272.1313 220.1125 129.0578 128.0499 102.0469 97.0401 91.0547  19 16 14 7 6 6 5 7  3 2 1 1 1 2  H N 0 : C, 75.69; H, 6.03; N, 13.24. Found: C, 75.60 i g  3  H, 5.96; N, 13.24. The d i b e n z y l compound  (168b) r e s i s t e d a t t e m p t s o f c r y s t a l l i z a t i o n ; i r ,  - 257 v max ( C H C 1 ) : no NH; 2265 (CN); 1672 cm" 3  258, 4H,  1  (-N-CO-); uv, X max: 253,  264, 276, 287 a i d 296 nm; nmr ( C D C 1 ) ; (5 2.40-3.30 ( m u l t i p l e t s , 3  C2-H + C 4 - H ) ; 4.0 ( m u l t i p l e t , I H , C3-E); 4.30 ( s i n g l e t , 2H, C ^ - C ^ 2  2  a l i p h a t i c N - ) ; 5.24 ( s i n g l e t , 2H, C ^ - C ^ - i n d o l e N-); 15H, M  +  6.80-7.48 ( m u l t i p l e t s ,  a r o m a t i c ) ; 8.38 ( s i n g l e t , . IH, -CHO); h i g h r e s o l u t i o n mass s p e c , ( 1 4 % ) , 407.1999;  C  H 2 7  25 3 N  r e q u i r e s 407.1996.  0  Attempted c a r b o m e t h o x y l a t i o n  o f t h e monobenzoate (168a) u s i n g sodium  hydride a)  The s t a r t i n g m a t e r i a l (168a) (24 mg) i n anhydrous d i m e t h y l f o r m a m i d e  (1 ml) and d r y m e t h y l c h l o r o f o r m a t e (7.1 mg, 1 mole e q u i v a l e n t ) was c o o l e d t o 0° and t r e a t e d w i t h sodium h y d r i d e  (1.8 mg, 1 mole e q u i v a l e n t ) f o r a  p e r i o d o f 30 m i n u t e s . The m i x t u r e was t r e a t e d w i t h w a t e r (0.1 ml) and e x t r a c t e d w i t h methylene c h l o r i d e t o a f f o r d 23 mg o f a m a t e r i a l w h i c h was i d e n t i c a l t o t h e s t a r t i n g compound b)  Above r e a c t i o n was r e p e a t e d  (168a).  f o r 30 m i n u t e s a t 60°, a g a i n o n l y  starting  m a t e r i a l c o u l d be d e t e c t e d . c)  Above r e a c t i o n m i x t u r e was h e a t e d f o r a p e r i o d o f 15 hours i n a s e a l e d  tube and t h e p r o d u c t was worked up as b e f o r e p r o v i d i n g o n l y s t a r t i n g m a t e r i a l .  D e u t e r a t i o n s t u d y o f 3-(N-formylamino)-4-(N-benzylindolylX3a)-butanonitrile, (168a) (169) The monobenzyl compound (168a) (20 mg, 0.06 mM) i n anhydrous DMF was  t r e a t e d w i t h sodium H y d r i d e (14 mg, 0.6 mM) and h e a t e d f o r 3 m i n u t e s  a t 100° upon w h i c h t h e r e a c t i o n m i x t u r e ice-water, deuterium oxide  t u r n e d dark r e d . I t was c o o l e d i n  ( D 0 ) (0.5 ml) was added w i t h s t i r r i n g and t h e 2  m i x t u r e was e x t r a c t e d w i t h methylene c h l o r i d e t o p r o v i d e 20 mg o f a s o l i d  - 258 -  m a t e r i a l w h i c h had i d e n t i c a l TLC p r o p e r t i e s ( S i l i c a g e l G, methylene c h l o r i d e / 2 % m e t h a n o l , I ) as the s t a r t i n g m a t e r i a l ; i r , 2  3440 (NH); 2940 and 2880 (CH); 2270 (CN); 1695 (CD); nmr  v max  (-NHC0-); 1030-960  i n s i g n a l s due t o -CI^CgH  20 17 3° D N  r  e  9  u  l  r  e  Carbomethoxylation nitrile,  s  1  identical  detected  ( 6 5.23, *v 15% +) and -NHCH0 (fi 5.96, ^ 5 % 4-);  h i g h r e s o l u t i o n mass s p e c , M H  cm"  ( C D C l ^ ) , peak shape, p o s i t i o n s and m u l t i p l i c i t y v i r t u a l l y  to s t a r t i n g m a t e r i a l ( 1 6 8 a ) , some d e c r e a s e o f i n t e n s i t y was  C  (CHCl^):  +  ( 3 7 % ) , 317.1482;  C  2 Q  H^N^O  r e q u i r e s 317.1526;  317.1511.  of 3-(N-formylamino)-4-(N-benzylindolyl)(3a)-butano-  (168a)-*> ( 1 7 0 ) , -» (171) +  (172)  D i i s o p r o p y l amine(66 mg = 0.65 mM)  6 6  was d i s s o l v e d i n d r y t e t r a h y d r o -  f u r a n (0.4 ml) and c o o l e d t o -78°. n - B u t y l l i t h i u m (0.64 mM)  was added and  the m i x t u r e was s t i r r e d f o r 30 m i n u t e s a t -78°. The N - b e n z y l compound (168a) (203 mg = 0.64 mM) was d i s s o l v e d i n a m i x t u r e o f d r y t e t r a h y d r o f u r a n (0.6 ml) and d r y hexamethylphosphoramide (HMPA) (0.3 m l ) . The  resulting  s o l u t i o n was added t o the above m i x t u r e c o n t a i n i n g t h e d i i s o p r o p y l l i t h i u m amide. A f t e r s t i r r i n g f o r f i v e m i n u t e s a t -78° a s o l u t i o n (0.5 m l = 0.64  mM)  c o n t a i n i n g m e t h y l c h l o r o f o r m a t e (1 ml) i n d r y t e t r a h y d r o f u r a n (10 ml) was added. S t i r r i n g was c o n t i n u e d f o r one hour a t -78°. The m i x t u r e was t r e a t e d w i t h w a t e r and e x t r a c t e d  w i t h methylene c h l o r i d e . The e x t r a c t was washed  w i t h w a t e r and d r i e d o v e r anhydrous sodium s u l p h a t e . E v a p o r a t i o n a f f o r d e d an o i l y r e s i d u e w h i c h upon p r e p a r a t i v e TLC s e p a r a t i o n ( S i l i c a g e l G, methylene c h l o r i d e / 3 % H E t h a n o l ) a f f o r d e d t h r e e amorphous f r a c t i o n s . The most p o l a r m a t e r i a l (11.7ng) c o n s i s t e d o f s t a r t i n g m a t e r i a l . The second compound (36.8 mg = 12%) was a s s i g n e d s t r u c t u r e ( 1 7 2 ) ; i r , v max  ( C H C X j ) : 3435 (NH);  - 259  2244 (CN)j 1722 295 nm  cm"  (4572); nmr  -  3  ( C D C 1 ) ; <5. 2.47  C 2 - H ) ; 3.60  ( s i n g l e t , 2H,  IH, -NH-C0), d i s a p p e a r s  +  upon D 0  C  1696  cm"  (-N-CH0); uv, X max  1  ( C D C 1 ) ; 6 2.67  nmr 3.20  (doublet of doublet  J = 8 Hz,  2H,  C3-H); 5.22 9.14 C  N  ( E ) : 275  , J - 17 Hz,  r  284  H  N  r  e  9  , J = 17 Hz,  i  r  e  6 Hz,  3  The  295 nm  (-C00-); (4875);  IH, C4-H); (doublet,  (multiplet,  0  +  IH, aromatic);  ( 5 3 % ) , 375.1609;  (173)  3-(N-Foraylamino)-4-(N-benzylindoly!L)(3a)-butanoic  a t 50°.  347.1633.  s  375.1582.  s  (1.2 g) and  e  C,H,--CH -) ; 6.92-7.63 ( m u l t i p l e t s , 10H,  3-Carbomethoxymethyl-N—benzyl-3,4-dihydrocarboline  (163)  r  IH, C4-H); 3.25  2  u  l  (5917);  ( s i n g l e t , I H , -N-CH0); h i g h r e s o l u t i o n mass s p e c , M  22 21 3°3  was  u  2249 (CN); 1754  C2-H );3.74 ( s i n g l e t , 3H, - C 0 0 C H ) ; 5.09  ( s i n g l e t , 2H,  9  high  b  (5573);  10 Hz,  e  5.01  shown t o be the N - c a r b o m e t h o x y -  3  ( d o u b l e t of d o u b l e t  3  H  ( C H C 1 ) : no NH;  b  1 Hz,  5.22  aromatic);  ( 1 1 % ) , 347.1641; 2 i 2 1 3 ° 2  N - f o r m y l compound ( 1 7 1 ) ; i r , v max  2.55  , J = 7 Hz,  exchange;  2  The l e a s t p o l a r m a t e r i a l (191 mg = 79%) was  (5176);  IH, C4-H);  C ^ - C H ^ ) ; 6.99-7.64 ( m u l t i p l e t s , 10H,  r e s o l u t i o n mass s p e c , M  286  ( m u l t i p l e t , I H , C3-H);  3  ( d o u b l e t , J = 8 Hz,  (4919);  ( d o u b l e t of d o u b l e t  ( s i n g l e t , 3H, -C00CH ); 4.19  2  276  ( d o u b l e t , J « 4 Hz,  3  ( d o u b l e t , J = 5 Hz, I H , C4-R); 3.07 2H,  (e):  (-N~C00CH ); uv,. X max  1  a c i d methyl e s t e r  t r i f l u o r o a c e t i c a c i d (10 ml) were h e a t e d f o r t h r e e h o u r s  a c i d was  e v a p o r a t e d a t 50°  i n vacuo  and  the d a r k g r e e n r e s i d u e  t r e a t e d w i t h i c e c o l d s a t u r a t e d sodium b i c a r b o n a t e  a y e l l o w o i l w h i c h was  s o l u t i o n t o produce  e x t r a c t e d w i t h methylene c h l o r i d e The e x t r a c t  was  washed w i t h w a t e r and d r i e d o v e r anhydrous sodium s u l p h a t e , e v a p o r a t i o n the s o l v e n t p r o v i d e d 1.02 m a t e r i a l ; i r , v max  g (92%) o f the d e s i r e d compound (173)  ( f i l m ) : 1740  ( C 0 0 C H ) ; 1620 3  cm"  1  of  as an amorphous  ( a r o m a t i c ) ; uv, X  max  - 260 -  (E):  241 (9850); 246 (10080); 322 nm (9040); nmr ( C D C 1 ) ; 6 2.45-3.30 3  ( m u l t i p l e t s , 4H, C H C 0 - + 0 4 ^ ) ; 3.75 ( s i n g l e t , 3R, . C 0 C H ) ; 4.20 2  T  2  3  (multiplet,  IH, C3H); 5.42 ( s i n g l e t , 2H,.CH^CgHj); 6.95-7.65 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; 8.40 ( s i n g l e t , I H , -N=CH-);  m/e  rel.int.%  332 259 181 168 91  11 94 26 38 100  mass s p e c t r o m e t r i c  data:  measured mass  ion C  composition H N 0  calc.mass  332.1478 259.1080 181.0776 168.0725 91.0538  21 18 12 11 7  20 15 9 8 7  332.1524 259.1235 181.0765 168.0687 91.0547  2 2 2 2  2  D e u t e r a t i o n o f compound (173) •*• (174) D i i s o p r o p y l amine (20 mg = 0.2 mM) i n d r y t e t r a h y d r o f u r a n  (0.1 ml) was  c o o l e d t o -78°. N - B u t y l l i t h i u m , 2 M i n hexane (0.1 m l = 0.2 mM) was added and  t h e m i x t u r e was s t i r r e d f o r 5 m i n u t e s a t -78°. The d i h y d r o c a r b o l i n e  (173)  (16.6 mg = 0.05 mM) i n d r y t e t r a h y d r o f u r a n  (0.1 ml) and HMPA (0.1 ml)  was added and t h e m i x t u r e was a g i t a t e d f o r a n o t h e r 10 m i n u t e s a t -78° a f t e r w h i c h t h e r e a c t i o n was quenched w i t h d e u t e r i u m o x i d e  (1 m l ) . The  p r o d u c t was e x t r a c t e d w i t h methylene c h l o r i d e , t h e s o l v e n t e v a p o r a t e d and  the crude r e s i d u e s e p a r a t e d by p r e p a r a t i v e TLC ( S i l i c a g e l G,  methylene chloricfe/5% methanol) t o p r o v i d e t h e d e s i r e d m a t e r i a l (174) (3.5 mg = 20%) w h i c h had i d e n t i c a l TLC p r o p e r t i e s as t h e s t a r t i n g m a t e r i a l and was s u b j e c t e d discussion.  to a mass s p e c t r o m e t r i c i n v e s t i g a t i o n as o u t l i n e d i n t h e  - 261 -  2-0xo-3-ethyl-6-^carbomethoxymethyl-l  , 2,3,4,6,7,12,12b-octahydro-  ( N - b e r i z y l i r i d o l p ) ( 2 , 3 - a ) ~ q u i n o l i z i n e (175) The d i h y d r o c a r b o l i n e compound  (173) (2.2 g) and 3-methylene-pentan-  2-one (126) (8.5 ml) were d i s s o l v e d i n d r y m e t h a n o l (8 ml) w h i c h had been s a t u r a t e d w i t h H C l gas. T r i f l u o r o a c e t i c a c i d  (0.3 ml)was added and t h e  m i x t u r e was r e f l u x e d f o r 20 h o u r s . The v o l a t i l e m a t e r i a l s were removed i n vacuo. The r e s i d u e was t a k e n up i n m e t h y l e n e c h l o r i d e , w a s h e d w i t h 5% sodium b i c a r b o n a t e s o l u t i o n , d r i e d o v e r anhydrous sodium s u l p h a t e and e v a p o r a t e d t o p r o v i d e a crude p r o d u c t . The l a t t e r was chromatographed u s i n g S i l i c a g e l (320 g, Woelm, a c t i v i t y I I I , m e t h y l e n e c h l o r i d e / 2 %  methanol).  The e l u t e d m a t e r i a l was r e c r y s t a l l i z e d from 2 - p r o p a n o l t o a f f o r d 940 mg (33%) o f t h e d e s i r e d c r y s t a l l i n e m a t e r i a l ( 1 7 5 ) . T h i s m a t e r i a l was shown t o be a m i x t u r e o f two compounds (y 9:1, p o l a r t o l e s s p o l a r ) by TLC ( S i l i c a g e l G,methylene c h l o r i d e / 3 % m e t h a n o l ) and s e p a r a t i o n c o u l d n o t be a c h i e v e d as i n e a r l i e r c a s e s ; m.p.  113-115°; i r , v max ( C H C 1 ) : 2880, 3  2860, 2800 (Bohlmann b a n d s ) ; 1725 ( C 0 0 C H ) ; 1710 c m 3  (e):  3  2  3  J = 3 Hz, 2H, - C H C H ) ; 2  6  5  rel.int.%  50 40 72 34 45 41 31 100  (triplet,  3.60 ( s i n g l e t , 3H, - C 0 C H ) ; 5.23 ( d o u b l e t , 2  6.80-7.60  3  ( m u t l i p l e t s , 9H, a r o m a t i c ) ; no p r o t o n  <5> 3.9 e x c e p t f o r b e n z y l i c and a r o m a t i c ones;  430 429 357 339 259 246 168 91  (CO); uv, X max  277 ( 7 5 9 0 ) ; 284 (7950); 293 nm (6770); nmr ( C D C 1 ) ; <5 0.90  J = 7 Hz, 3H, - C H C H ) ;  m/e  - 1  mass s p e c t r o m e t r i c d a t a :  measured mass  i o n composition C H N O  430.2217 429.2158 357.1992 339.1777 259.1246 246.1346 168.0669 91.0499  27 27 24 20 18 18 11 7  30 29 25 23 15 16 8 7  2 2 2 2 2 1 2  3 3 1 3  calc.mass.  430.2255 429.2177 357.1966 339.1709 259.1235 246.1283 168.0687 91.0548  - 262 Anal, calcd. f o r C ^ H ^ ^ C y H, 7.08; N,  Deuteration  C, 75.32; H, 7.02; N, 6.51.  6.36.  of the t e t r a c y c l i c k e t o e s t e r  (175), ->- (176)  Dry d i i s o p r o p y l amine(20 mg = 0.2 mM) and n - b u t y l l i t h i u m (0.2 mM) (175) (21.5 mg = 0.05 mM) was  were r e a c t e d  i n dry tetrahydrofuran  f o r 5 minutes a t -78°.  i n dry tetrahydrofuran  worked up as p r e v i o u s l y ,  s e p a r a t e d on TLC  (0.1 ml) Compound  (0.1 ml) and HMPA (0.1 ml)  added and the m i x t u r e was s t i r r e d f o r 10 m i n u t e s a t -78°  i t was  8 mg  Found: C, 75.18;  a f t e r which  [ (173) -*• (174) ]. The crude m a t e r i a l  ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) t o  was provide  (40%) o f the d e s i r e d m a t e r i a l , w h i c h had TLC p r o p e r t i e s i d e n t i c a l t o  the s t a r t i n g m a t e r i a l . A d e t a i l e d mass s p e c t r o m e t r i c  i n v e s t i g a t i o n was  u n d e r t a k e n as o u t l i n e d i n the d i s c u s s i o n .  Attempted e p i m e r i s a t i o n  a t C3 i n compound  Compound (175) (4 mg) sodium methoxide  (5 mg)  i n d r y methanol  (175) (0.5 ml) was  treated  with  f o r a p e r i o d o f 30 m i n u t e s a t room t e m p e r a t u r e .  Water (0.1 ml) was added and the m i x t u r e was e v a p o r a t e d t o d r y n e s s . TLC  ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) i n d i c a t e d o n l y a s l i g h t  i n c r e a s e o f the major (more p o l a r )  spot.  2-Oxb-3-ethyl-6-carbomethoxymethyl-l,2-3,4,6,7,12,12b-octahydro-(N-benzylindolp )(2,3-a)-quinolizine ethylene k e t a l  (2),(177)  The t e t r a c y c l i c ketone (175) (100 mg) was d i s s o l v e d i n d r y  chloroform  (4 m l ) , w h i c h had been p r e v i o u s l y s a t u r a t e d w i t h HC1 gas, and f r e s h l y d i s t i l l e d e t h y l e n e g l y c o l (0.6 m l ) . The m i x t u r e was s t i r r e d f o r 4 hours a t room temperature a f t e r w h i c h i t was  cooled  t o 0°, poured i n t o i c e - c o l d  - 263 -  5% sodium c a r b o n a t e s o l u t i o n and e x t r a c t e d w i t h methylene c h l o r i d e . The crude m a t e r i a l was s e p a r a t e d by. p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 3 % methanol) t o p r o v i d e 89 mg (80%) o f t h e d e s i r e d compound (177) as an amorphous sample, i r , v max (CHC1 ): 1725 ( C 0 C H ) ; 1600 3  ( a r o m a t i c ) ; 1150, 1170 c m 291 nm (7200);  2  3  (C-O-C); uv, X max ( e ) : 275 (7300); 283 (7550);  - 1  nmr ( C D C 1 ) ; <5 0.88 ( t r i p l e t , J = 5 Hz, 3H, - C H C H ) , n o t 3  2  3  w e l l r e s o l v e d ; 3.56 ( s i n g l e t , 3H, - 0 C H ) ; 3.75 ( m u l t i p l e t , 4H, -0-CH -CH -0); 3  5.24  2  2  ( s i n g l e t , 2H, C ^ O ^ - ) ; 6.80-7.45 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; t h e  range 6 3.42-3.96 embraces 8 p r o t o n s , namely 0 C H  3>  -0-CH CH 0- and C12b-H 2  2  or C6-H; mass s p e c , m/e 474 (28%, M ) ; 473 (10%, M- 1 ) ; 401 (48%, M- C6 +  s i d e c h a i n ) ; 383 (14%, M- C H ) ; 91 (100%, C H ) ; 474.2547; ?  requires  7  ?  7  C  9 35 2°4 H  2  N  474.2517.  2-Oxo-3-ethyl-6-dicarbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro(N-benzylindolp.)(2,3-a)-quinolizine  ethylene k e t a l (2),  (178)  D i i s o p r o p y l amine(12 mg = 0.12 mM) i n d r y t e t r a h y d r o f u r a n (THF)  (0.1 ml) was c o o l e d t o -78° and t r e a t e d w i t h n - b u t y l l i t h i u m (0.12 mM, 0.06 m l , 2 M i n h e x a n e ) , the m i x t u r e was s t i r r e d f o r 10 m i n u t e s a t -78°. The t e t r a c y c l i c k e t a l (177) (47.4 mg = 0.1 mM) i n d r y THF (0.2 m l ) and HMPA (0.2 m l ) w e r e added and s t i r r i n g was c o n t i n u e d f o r a f u r t h e r 10 m i n u t e s a t -78°.Methyl c h l o r o f o r m a t e (47 mg - 0.5 mM) was added and t h e m i x t u r e was a g i t a t e d f o r 10 m i n u t e s a t -78°. Water (1 m l ) was added and t h e r e a c t i o n m i x t u r e was warmed t o room t e m p e r a t u r e and e x t r a c t e d w i t h methylene c h l o r i d e . The crude m a t e r i a l was s e p a r a t e d hy TLC ( S i l i c a g e l G, methylene c h l o r i d e / 5% methanol) t o a f f o r d 7 mg (30%, based on r e a c t e d m a t e r i a l ) o f t h e d e s i r e d compound (178) and 26 mg o f s t a r t i n g m a t e r i a l i n an amorphous s t a t e ; ir,  v max ( C H C 1 ) : 2890-2800 (Bohlmann b a n d s ) ; 1775 (C00CH ); 1695 (C00CH 3  3  3>  - 264 -  a s s o c i a t e d with, l o n e p a i r o f n i t r o g e n ) ; 1165 cm" 277, 283, 293.nm; nmr ( C D C 1 ) j 5 0.87 3  (C-O-C); uv, X max:  1  ( t r i p l e t , J = 5 Hz, - C R C H ) , 2  3  n o t w e l l r e s o l v e d ; 3.53 ( s i n g l e t , 3H, - 0 C R ) ; 3.83 ( s i n g l e t , 3H, - 0 C H ) ; 3  4.19 ( d o u b l e t , I H , J = 9 Hz, C6a-H);  3  5.24 ( s i n g l e t , 2H, C g H ^ H ^ ) ;  , 9H, a r o m a t i c ) ; mass s p e c t r o m e t r i c  data:  m/e  rel.int.%  measured mass  ion C  composition H N 0  calc.mass  532 501 474 473 460 442 401 400 387 132 128 127 118 100 99 87 86 73 55  9 0.7 3 2 0.6 2 8 2 1 0.5 6 100 0.5 1 9 3 2 1 18  532.2557  31  36  2  6  532.2571  474.2519 473.2509  29 29  34 33  2 2  4 4  474.2517 473.2438  401.2227  26  29  2  2  401.2228  387.2086  25  27  2  2  387.2071  128.0817 127.0754  7 7  12 11  2 2  128.0837 127.0758  99.0453 87.0471  5 4  7 7  2 2  99.0445 87.0445  55.0236  3  3  1  55.0184  28-Hydroxy-3ct-ethy1-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro(N-benzylindolo  ) ( 2 , 3 - a ) - q u i n o l i z i n e (179)  The t e t r a c y c l i c k e t o e s t e r (175) (19 mg) i n d r y t e t r a h y d r o f u r a n (1.5 ml) was t r e a t e d w i t h sodium b o r o h y d r i d e o f 2.5 hours.  (9 mg) a t 0° f o r a p e r i o d  The r e a c t i o n m i x t u r e was poured i n t o s a t u r a t e d sodium c h l o r i d e  s o l u t i o n and e x t r a c t e d w i t h m e t h y l e n e c h l o r i d e . E v a p o r a t i o n o f t h e s o l v e n t p r o v i d e d a crude m a t e r i a l w h i c h was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene c h l o r i d e / 1 % m e t h a n o l )  t o y i e l d 12.8 mg (67%) o f t e t r a c y c l i c a l c o h o l  - 265 -  e s t e r ( 1 7 9 ) ; m.p. 177-179°; i r , v max ( C H C 1 ) : 3600, 3440 (OH); 2880, 3  2860, 2800 (Bohlmann b a n d s ) ; 1730 (-C0 CH ); 1605 cm 2  1  3  ( a r o m a t i c ) ; uv,  X max ( e ) : 273 ( 8 1 3 0 ) ; 285 ( 9 5 5 0 ) ; 293 nm ( 7 4 2 0 ) ; nmr ( C D C 1 ) ; 6 0.93 3  ( t r i p l e t , J = 6 Hz, 3H, - C H C H ) ; 3.62 ( s i n g l e t , 3H, 0 C H ) ; 5.30 2  3  3  (doublet,  J = 3 Hz, 2H, - C H C H ) ; 6.90-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass s p e c , 2  6  5  m/e 432 ( 4 4 % , M ) ; 415 ( 5 % , M- OH); 387 ( 1 4 % , M- C ^ O ) ; 359 (79%, M+  C H C 0 C H ) ; 341 ( 4 0 % , M- C^); 2  2  91 (100%, C-H-); 432.2382;  3  requires  C^H^N^  432.2412.  2g-Acet6xy-3ct-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro( N - b e r t z y l i n d o l o ) ( 2 , 3 - a ) - q u i n o l i z i n e (180) The a l c o h o l e s t e r (179) (39 mg) was t r e a t e d w i t h a c e t i c a n h y d r i d e (0.4 ml) and p y r i d i n e (0.4 ml) f o r one hour a t 85°. The m i x t u r e was p o u r e d i n t o i c e - w a t e r , b a s i f i e d w i t h 1 N sodium h y d r o x i d e s o l u t i o n and e x t r a c t e d w i t h m e t h y l e n e c h l o r i d e . E v a p o r a t i o n o f t h e s o l v e n t i n vacuo a f f o r d e d 20 mg (47%) o f t h e d e s i r e d a c e t a t e as a foamy m a t e r i a l ; i r , v max ( C H C 1 ) : 1730 cm" 3  1  (-C0 CH 2  3>  OAc); uv, X max ( e ) : 273 ( 5 5 0 0 ) ;  284 ( 5 9 0 0 ) ; 293 nm (4900); nmr ( C D C 1 ) ; 5 0.89 ( t r i p l e t , J = 6 Hz, 3H, 3  - C H C H ) ; 1.95 ( s i n g l e t , 3H, OAc); 3.62 ( s i n g l e t , 3H, 0 C H ) ; 4.50 2  3  3  (doublet  o f d o u b l e t , J = 11 Hz, 4 Hz, -CHOAc); 5.30 ( d o u b l e t , J = 3 Hz, 2H, - C H C g H ) ; 6.90-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass s p e c , m/e 474 2  5  ( M ) ; 415 (M- OAc); 401 (M- C H C 0 C H ) . +  2  2a-Hydroxy-3a-e  2  3  thyl-6-carbomethoxymethyl-1,2,3,4,6,7,12,12b-octahydro-  (N-benzylindo3o ) ( 2 , 3 - a ) - q u i n o l i z i n e (181) F r e s h l y s u b l i m e d a l u m i n i u m c h l o r i d e (1.0 g, 7.5 mM) i n d r y e t h e r (20 ml) was t r e a t e d a t 0° w i t h l i t h i u m aluminum h y d r i d e  (76 mg, 2 mM).  A s o l u t i o n of DL-isoborneol added. The  - 266  -  (1.24  g, 8 mM)  e x c e s s of L i A l H ^ was  i n dry e t h e r  destroyed  (10 ml)  by. a d d i t i o n of  was  t.-butanol  (0.2 ml) . The  t e t r a c y c l i c k e t o e s t e r (175)  (300 mg)  i n dry t e t r a h y d r o f u r a n  was  added t o the above s o l u t i o n a t room t e m p e r a t u r e and  0.5  h o u r s . The m i x t u r e was  was  poured i n t o i c e - c o l d 5% h y d r o c h l o r i c a c i d and e x t r a c t e d w i t h aqueous phase and  m a t e r i a l were b a s i f i e d w i t h 5% sodium b i c a r b o n a t e w i t h methylene c h l o r i d e .Evaporation  (ALC-100 i n s t r u m e n t ,  stirred for  s o l u t i o n and  of the s o l v e n t provided  p u r i f i e d by h i g h p r e s s u r e  Waters A s s o c . , 0.25  280 mg  of  i n c h x 12 f e e t P o r a s i l R column,  The  (179) (55 mg,  was  extracted  l i q u i d chromatography  m e t h a n o l , f l o w r a t e 5 ml/min., 350 p s i , 30 mg 18%)  ether  insoluble  chloroform/3% 3-alcohol  sample/injection).  e l u t e d f i r s t , f o l l o w e d by the  desired  non - c r y s t a l l i n e a - a l c o h o l  (181)  (168 mg,  56%);  i r , v max  (CHC1 ):  3600, 3460 (OH);  ( - C 0 C H ) ; uv,  X max  ( e ) : 277  (5760); 284  293 nm 3.63  (5380); nmr  ( s i n g l e t , 3H,  IH, C2H); 9H, M-  1725  5.32  cm"  1  2  ( C D C 1 ) ; <5 0.86 3  - 0 C H ) ; 3.92 3  a r o m a t i c ) ; mass s p e c , m/e 2  2  3  3  (22%, M-  ( t r i p l e t , J = 5 Hz,  3H,  3  432  C^);  2H,  2  3  (multiplet,  - C T ^ C ^ ) ; 6.96-7.60 ( m u l t i p l e t s ,  (21%, M ); +  91  (6170);  -CH CH );  ( m u l t i p l e t , IH, C12b-H); 4.00  ( d o u b l e t , J = 3 Hz,  C H C 0 C H ) ; 341  ml)  t h e n r e f l u x e d f o r one hour a f t e r w h i c h i t  t o remove camphor and i s o b o r n e o l . The  a crude m a t e r i a l w h i c h was  (3  415  ( 4 % , M-  OH);  (100%, C H ) ; 432.2398; ?  7  359  (42%,  C^H^N^  r e q u i r e s 432.2412. 2a-Acetoxy-3a-ethyl-6-carbome t h o x y m e t h y l - 1 , 2 , 3 , 4 , 6 , 7 , 1 2 , 1 2 b - o c t a h y d r o (N-benzylind63 .)(2,3-a)-quinolizine 0  (182)  The  t e t r a c y c l i c a-alcohol  (181)  (29 mg)  was  t r e a t e d w i t h a c e t i c anhydride  (0.3 ml)  and p y r i d i n e (0.3 ml)  f o r one h o u r a t 85°.  The  m i x t u r e was  poured  - 267 i n t o i c e - w a t e r , b a s i f i e d w i t h 5%  sodium b i c a r b o n a t e s o l u t i o n and e x t r a c t e d  w i t h methylene c h l o r i d e . E v a p o r a t i o n of the s o l v e n t y i e l d e d a crude p r o d u c t w h i c h was p u r i f i e d by p r e p a r a t i v e TLC  ( . S i l i c a g e l G, methylene c h l o r i d e / .  3% methanol) t o a f f o r d 14 mg  (48%) o f the a - a c e t a t e (182) as a foamy  m a t e r i a l ; i r , v max  1730 cm"  (CHC1 ): 3  273 ( 1 0 1 0 0 ) ; 281 (10150); 292 nm 3H, OAc); 3.66  (-C0 CH  1  2  ( 7 2 5 0 ) ; nmr  ( s i n g l e t , 3H, - C 0 C H ) ; 5.13 2  3  3>  OAc); uv, X max ( e ) :  (CDC1 ); 3  6 2.00  ( m u l t i p l e t , I H , C2H);  ( d o u b l e t , J = 3 Hz, 2H, - C H ^ H ^ ; 6.70-7.66 ( m u l t i p l e t s , 9H, mass s p e c , m/e  474 ( 1 1 % , M ) ; +  (singlet, 5.27  aromatic);  415 (10%, M- OAc); 401 ( 2 0 % , M-  CH C0 CH ); 2  2  3  91 (100%, C H _ ) . 7  2a-Hydroxy-3a-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro-. (N-benzylindOlo ) ( 2 , 3 - a ) - q u i n o l i z i n e mesylate The t e t r a c y c l i c a l c o h o l (181) (35 mg) was  (183)  i n d r y p y r i d i n e (0.4 ml)  t r e a t e d a t -10° w i t h m e s y l c h l o r i d e (0.2 ml) f o r a p e r i o d o f 20 h o u r s .  I c e - c o l d methylene c h l o r i d e (5 ml) was added and the m i x t u r e was washed f o u r t i m e s w i t h i c e - c o l d w a t e r (1 m l ) . The methylene c h l o r i d e s o l u t i o n e v a p o r a t e d i n vacuo a t 0° t o a f f o r d a r e d o i l y r e s i d u e . The l a t t e r p u r i f i e d by p r e p a r a t i v e TLC  ( S i l i c a g e l G, methylene c h l o r i d e / 1 %  was  was  methanol)  to p r o v i d e 32 mg (74%) o f the d e s i r e d m e s y l a t e (183) as an amorphous y e l l o w material; i r , uv, X max:  (CHC1 ): 3  277, 284, 293 nm;  - C H C H ) ; 2,96 2  v max  3  1725 nmr  (-C0 CH ); 1335, 1175 cm" 2  3  ( C D C l ) ; 6 0.94 3  1  (OL^O-);  ( t r i p l e t , J = 7 Hz,  ( s i n g l e t , 3H, C H - S 0 ~ ) ; 3 . 6 4 ( s i n g l e t , 3H, - 0 C H ) ; 3  2  3  ( m u l t i p l e t , I H , C12b-H);5.00 ( m u l t i p l e t , IH, C2H); 5.36  (singlet,  - C H C g H ) ; 6.90-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass s p e c , m/e 2  5  (.0%, H ); +  419  (32%, M- C H ) ; 414 ?  ( 5 3 % , M- CT^SO^H); 347  7  C 6 - s i d e c h a i n ) ] ; 341 [32%, M-  [ 2 1 % , M-  3H,  3.92 2H, 510 (C H + ?  7  (CH S0 OH + C 6 - s i d e c h a i n ) ] ; 91 (100%, C H ) . 3  2  y  7  - 268 3-Ethyl-6-carbomethbxyroethy 1-1,4 > 6, 7,12,12b-hexahydro- ( N - b e n z y l i n d o l g ) ( 2 , 3 - a ) q u i n o l i z i n e (184) a)  The m e s y l a t e (183) (50 mg) i n m e t h y l e n e c h l o r i d e (1 ml) was t r e a t e d w i t h  aluminum  oxide  (500 mg)  (Woelm, n e u t r a l , a c t i v i t y I ) f o r 0.5 h o u r a t  room t e m p e r a t u r e . The a l u m i n a was e l u t e d w i t h m e t h y l e n e c h l o r i d e / 3 0 % methanol (10 m l ) . E v a p o r a t i o n separation  ( A 1 0 , m e t h y l e n e c h l o r i d e / 1 0 % methanol) p r o v i d e d 2  (184) as a foamy m a t e r i a l ; i r , v max  (CHCl^)5  ( C 0 C H ) ; uv, A max: 272, 284, 293 nm; nmr ( C D C l ) ;  - 1  2  (triplet,  3  2  6  5  5.34  6 1.00  3  J = 6 Hz, 3H, - C H C H ) ;  2H, - C H C H ) ; 2  8 mg (20%) o f  3  the o l e f i n i c compound 1725 c m  o f t h e s o l v e n t f o l l o w e d by p r e p a r a t i v e TLC  3  3.60 ( s i n g l e t , 3H, 0 C H ) ; 5.30  ( m u l t i p l e t , I H , -CH=C-); 6.86-7.60  a r o m a t i c ) ; mass s p e c , m/e  (singlet,  3  414 (100%, M ) ; 341 ( 3 7 % , M+  ( m u l t i p l e t s , 9H, CH C0 CH ); 2  2  3  323 ( 1 0 % , M- C_H_); 91 ( 4 5 % , C _ H ) . ?  b)  The t e t r a c y c l i c a l c o h o l (181) (43 mg) i n p y r i d i n e (0.4 ml) was  t r e a t e d w i t h phosphorus o x y c h l o r i d e  (0.1 ml) a t -78°. The m i x t u r e  l e f t f o r 15 h o u r s a t room t e m p e r a t u r e , t r e a t e d w i t h i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . E v a p o r a t i o n  (2 ml)  o f the s o l v e n t  a crude p r o d u c t w h i c h was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a  was  provided  g e l G,  methylene c h l o r i d e / 1 % m e t h a n o l ) t o a f f o r d t h e d e s i r e d o l e f i n (184) as a foamy sample.  2a-Hydroxy-3a-ethy1-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-octahydro78 (N-benzylindojp- . ) ( 2 , 3 - a ) - q u i n o l i z i n e 0 - n i t r o b e n z o a t e  (p-)(185)  The t e t r a c y c l i c a l c o h o l (181) (20 mg) i n anhydrous p y r i d i n e (0.3 ml) was t r e a t e d a t 0° w i t h p - n i t r o b e n z p y l c h l o r i d e (17 mg) f o r a p e r i o d o f one hour. The m i x t u r e was k e p t f o r 15 h o u r s a t room t e m p e r a t u r e , poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . The e x t r a c t was washed w i t h  - 269  -  5% sodium b i c a r b o n a t e s o l u t i o n , d r i e d o v e r anhydrous  sodium s u l p h a t e and  e v a p o r a t e d t o d r y n e s s i n vacuo. The residue- was p u r i f i e d by p r e p a r a t i v e TLC  ( S i l i c a g e l G, methylene c h l o r i d e / 5 % methanol)  t o p r o v i d e 10  mg  (37%) of the d e s i r e d p - n i t r o b e n z o a t e (185) as an amorphous m a t e r i a l ; i r , V max  (CHC1 ):  X max  ( e ) : 265 (11010); 284  1720  3  (COOL^); 1600  ( a r o m a t i c ) ; 1527, 1349 cm"  (8320); 293 nm  ( t r i p l e t , J = 7 Hz, 3H, - C H C H ) ; 3.64 2  3  ( d o u b l e t , J = 3 Hz, 2H, - O ^ C ^ ) ; 5.40 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; 8.20 m/e (53%,  581 (24%, M ) ; 508 +  2  (CDC1 ); 3  ( s i n g l e t , 3H, - 0 C H ) ;  6  0.90  5.20  3  ( m u l t i p l e t , IH, C2H);  6.60-7.60  ( m u l t i p l e t s , 4H, -C^H^NOp; mass s p e c ,  (40%, M- C H C 0 C H ) ; 490 ( 6 % , M- C ^ ) ; 2  2  3  415  M- 0C0C,H.N0 ); 91 (100%, C-,H^). o  II  O H / .  2a,  (6170); nmr  (N0 ); uv,  1  3a^Bihydroxy-3B^ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-  octah'ydro-(N-benzylindolp ) ( 2 , 3 - a ) - q u i n o l i z i n e ( 1 8 6 )  7 8  The o l e f i n (184) (140 mg) was d i s s o l v e d i n a m i x t u r e o f  anhydrous  t e t r a h y d r o f u r a n (4 ml) and d r y p y r i d i n e (2 ml) and c o o l e d t o -78°. A s o l u t i o n of osmium t e t r o x i d e (95 mg)  i n d r y t e t r a h y d r o f u r a n (3 ml) was added d r o p w i s e  over a p e r i o d o f 30 m i n u t e s . The m i x t u r e was k e p t a t -78°  f o r another  8 hours a f t e r which i t was warmed t o room temperature and t r e a t e d w i t h a 1:1 m i x t u r e (15 ml) o f e t h a n o l and methylene c h l o r i d e . H y d r o g e n s u l f i d e gas was passed through the s o l u t i o n temperature and the m i x t u r e was  f o r a p e r i o d o f 10 minutes a t room  filtered  through c e l i t e .  The f i l t r a t e  e v a p o r a t e d t o dryness and the r e s i d u e p u r i f i e d by p r e p a r a t i v e ( S i l i c a g e l G, methylene c h l o r i d e / 5 % methanol) desired d i o l  t o y i e l d 97 mg  (186) as a foamy compound; i r , v max  (OH); 1725 cm"  1  (C0 CH ); 2  3  uv, X max:  TLC (65%) of the  ( C H C L j ) : 3620, 3500  277, 285, 293 nm;  nmr  was  (CDC1 ); 3  - 270 -  <S 0.89 ( t r i p l e t , J = 7 Hz, 3H, - C H C H ) ; 3.60 ( s i n g l e t , 3H, - 0 C H ) ; 2  3.95  3  3  ( m u l t i p l e t , I H , C12b-H); 5.33 ( d o u b l e t , J = 3 Hz, 2H, - C ^ C ^ ) ;  6.90-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; mass s p e c , m/e 448 (30%, M ) ; +  447 ( 1 3 % , M- 1 ) ; 430 ( 7 % , M- H 0 ) ; 412 ( 3 % , M- 2 H 0 ) ; 375 (45%, M2  2  C H C 0 C H ) ; 357 (30%, M- C H ) ; 91 (100%, C H ) . 2  2  3  ?  7  ?  7  2a,3a-Diacetoxy-3g-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b78 o c t a h y d r o - ( N - b e n z y l i n d o l o ) ( 2 , 3 - a ) - q u i n o l i z i n e (187) A s o l u t i o n o f t h e d i o l (186) (12 mg) i n a c e t i c a n h y d r i d e (0.3 m l ) was  t r e a t e d w i t h p - t o l u e n e s u l f o n i c a c i d . The r e a c t i o n m i x t u r e was s t i r r e d  a t room temperature f o r a p e r i o d o f 17 h o u r s , poured i n t o i c e - w a t e r , n e u t r a l i z e d w i t h 5% sodium b i c a r b o n a t e s o l u t i o n and e x t r a c t e d w i t h  methylene  c h l o r i d e . E v a p o r a t i o n o f t h e s o l v e n t p r o v i d e d a c r u d e p r o d u c t w h i c h was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G,methylene c h l o r i d e / 2 %  methanol)  t o a f f o r d 12 mg (84%) o f t h e d e s i r e d d i a c e t a t e (187) as amorphous m a t e r i a l ; i r , v max ( C H C 1 ) : 2890, 2840 (Bohlmann b a n d s ) ; 1730 cm" 3  1  (C0 CH 2  3 >  OAc);  uv, X max ( e ) : 276 ( 6 3 1 0 ) ; 284 ( 6 7 7 0 ) ; 293 nm ( 5 3 8 0 ) ; nmr ( C D C 1 ) ; 6 0.83 3  ( t r i p l e t , J = 7 Hz, 3H, - C H C H ) ; 1.92 ( s i n g l e t , 3H, OAc); 1.96 ( s i n g l e t , 2  3  3H, OAc); 3.58 ( s i n g l e t , 3H, - 0 C H ) ; ^ 3 . 6 ( m u l t i p l e t , I H , C12b-H); 5.20 3  ( d o u b l e t , J = 3 Hz, 2H, - C H ^ H ^ ; 5.46 ( t r i p l e t , J = 3.5, I H , C2-H); h i g h r e s o l u t i o n mass s p e c , 532.2539, 3 i 3 6 2 ° 6 C  H  N  r e c  l  u i r e s  532.2571.  2a,3a-Dihydroxy-3g-ethyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12bo c t a h y d r o - ( N - b e n z y l i n d o l o ) ( 2 , 3 - a ) - q u i n o l i z i n e mono p - n i t r o b e n z o a t e ( 2 ) , (188)  7 8  The d i o l (186) (73 mg) i n anhydrous p y r i d i n e (1 ml) was c o o l e d t o 0° and t r e a t e d w i t h p - n i t r o b e n z o y l c h l o r i d e (62 mg) under, s t i r r i n g f o r 1 hour.  - 271 -  The r e a c t i o n m i x t u r e was k e p t f o r 20 h o u r s a t room t e m p e r a t u r e , poured i n t o i c e - w a t e r and e x t r a c t e d w i t h methylene c h l o r i d e . T h e e x t r a c t was washed w i t h 5% sodium b i c a r b o n a t e s o l u t i o n and w a t e r and d r i e d o v e r  anhydrous  sodium s u l p h a t e . E v a p o r a t i o n o f t h e s o l v e n t p r o v i d e d a crude p r o d u c t w h i c h was p u r i f i e d by p r e p a r a t i v e TLC ( S i l i c a g e l G, methylene methanol)  t o a f f o r d 71 mg (75%) o f t h e d e s i r e d p - n i t r o b e n z o a t e (188) as an  amorphous m a t e r i a l ; i r ,  v max ( C H C l ^ : 2850, 2810 (Bohlmann b a n d s ) ; 1720  ( C 0 C H , O A c ) ; 1600 ( a r o m a t i c ) ; 1525, 1350 c m 2  265  chloride/5%  - 1  3  ( - C ^ N O ^ ; uv, X max (e)s  (13200); 285 (10510); 293 (7950); nmr ( C D C 1 ) ; 3  6 0.95 ( t r i p l e t , J = 7 Hz,  3H, - C H C H ) ; 3.64 ( s i n g l e t , 3H, - 0 C H ) ; 5.13 ( d o u b l e t o f d o u b l e t , J = 6 Hz, 2  3  3  3 Hz, I H , C2-H); 5.36 ( m u l t i p l e t , 2H, - C H ^ H ^ ; 6.70-7.60 ( m u l t i p l e t s , 9H, a r o m a t i c ) ; 8.2 ( m u l t i p l e t , 4H, - C O - C ^ N O ^ ;  mass s p e c , m/e 597  ( 3 % , M ) ; 596 ( 1 % , M- 1 ) ; 524 ( 3 % , M- C H C 0 C H ) ; 506 ( 1 % , M- C ^ ) ; +  2  430  2  3  ( 9 % , M- C 0 C H N 0 , H ) ; 413 ( 1 % , m/e 430 - OH); 357 (28%, m/e 524 6  4  2  C O C H N 0 , H ) ; 265 ( 3 % , m/e 357 - C H ) ; 91 (100%, C ^ ) ; 597.2484; 6  4  2  y  7  C^H^N.^  r e q u i r e s 597.2473. 2ct-Hydroxy-3a-ethy1- N  b  -methyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b, 78  12b-nonahydro-(N-benzylindoJo  ) ( 2 , 3 - a ) - 1 2 b N ^ - s e c o - q u i n o l i z i n e (190) t  The t e t r a c y c l i c a l c o h o l (181) (49 mg) i n 2 - p r o p a n o l (2 ml) was t r e a t e d w i t h m e t h y l i o d i d e (1 ml) f o r a p e r i o d o f 1 hour a t 60°. The v o l a t i l e components were removed i n vacuo t o a f f o r d an amorphous r e s i d u e . The l a t t e r was  t r e a t e d w i t h anhydrous methanol  (5 ml) and sodium methoxide  (50 mg)  and t h e t o t a l r e a c t i o n m i x t u r e was added t o a p r e r e d u c e d s u s p e n s i o n o f p l a t i n u m o x i d e (150 mg) i n d r y m e t h a n o l  (10 m l ) . Under c o n s t a n t s t i r r i n g  the m i x t u r e was s u b j e c t e d t o an atmosphere  o f hydrogen  for  a p e r i o d o f 20  hours a t room t e m p e r a t u r e . F i l t r a t i o n and e v a p o r a t i o n o f t h e s o l v e n t p r o v i d e d  - 272 -  an o i l y r e s i d u e w h i c h was t r e a t e d w i t h methylene c h l o r i d e . E v a p o r a t i o n o f the l a t t e r  y i e l d e d 40 mg o f a c r u d e p r o d u c t w h i c h upon p r e p a r a t i v e  TLC s e p a r a t i o n ( S i l i c a g e l G, m e t h y l e n e : c h l o r i d e / 5 % methanol) a f f o r d e d 37 mg  (73%) o f the d e s i r e d a l c o h o l (190) p o s s e s s i n g t h e 10-membered  r i n g system; i r , v max  ( C H C 1 ) : 3610, 3530 (OH); 1720 c m 3  uv, X max: 277, 285, 294 nm; nmr -CH CH ); 2  3  448 447 446 430 402 386 357 312 306 258 257 246 167 156 142 124 91  3  2.04 ( s i n g l e t , 3H, N-CH ); 3.66 3  ( m u l t i p l e t s , 9H, a r o m a t i c ) ;  m/e  ( C D C 1 ) ; 6 0.92  rel.int.%  7 1 3 3. 2 36 2 4 1 5 3 7 13 12 9 8 100  2-0xo-3-ethyl-  - 1  (-C0 CH ); 2  3  ( t r i p l e t , J = 8 Hz, 3H,  ( s i n g l e t , 3H, - 0 C H ) ; 6.90-7.70 3  mass s p e c t r o m e t r i c d a t a :  measured mass  ion C  composition H N 0  calc.mas i  448.2688  28  36  2  3  448.2725  430.2682 402.2282 386.2121  28 26 26  34 30 28  2 2 1  2 2 2  430-2626 402.2307 386.2119  312.1750 306.1466 258.1294 257.1271 246.1280 167.0742 156.0828 142.1230 124.1152 91.0533  23 20 19 15 18 12 11 8 8 7  22 20 16 19 16 9 10 16 14 7  1 1 1 2 1 1 1 1 1  312.1751 306.1493 258.1282 257.1290 246.1282 167.0734 156.0812 142.1231 124.1126 91.0547  2 2  1  -acetyl-6-carbomethoxymethyl-l,2,3,4,6,7,12,12b-  octahydro-12b-acetoxy-(N-benzylindoTo e t h y l e n e k e t a l , (191) a and b  ).(2,3-a)-12bfl,-seco-quinolizine b  The t e t r a c y c l i c k e t a l e s t e r (177) (30 mg) was d i s s o l v e d i n a c e t i c a n h y d r i d e (2 ml) and the r e s u l t i n g s o l u t i o n was r e f l u x e d f o r a p e r i o d o f 9 h o u r s . The s o l v e n t was e v a p o r a t e d i n vacuo and t h e r e s i d u e was  separated  - 273 -  by p r e p a r a t i v e  TLC ( S i l i c a g e l G, methylene c h l o r i d e / 2 % methanol) i n t o  three f r a c t i o n s .  The l e a s t p o l a r one (7 mg) c o n s i s t e d o f s t a r t i n g m a t e r i a l .  The o t h e r two f r a c t i o n s  r e p r e s e n t e d t h e d e s i r e d compound  and a r e b e l i e v e d  t o be C12b i s o m e r s . The more p o l a r component (191a), c o n s i s t e d o f 13 mg (47%) foamy m a t e r i a l and t h e o t h e r one (191b) o f 5 mg ( 1 8 % ) . B o t h e x h i b i t v e r y s i m i l a r p h y s i c a l d a t a ; i r , v max (-C0 CH , OAc); 1645 c m 2  3  - 1  fractions  (CHCl^) (191a and b ) : 1720  (-NCOClLj); uv, X max (191a and b ) : 277, 285,  294 nm; nmr ( C D C 1 ) ( 1 9 1 a ) ; 6 0.93 ( t r i p l e t , J = 7 Hz, 3H, - C H C H ) ; 3  2  1.80  3  ( s i n g l e t , 3H, -N-C0CH ); 3.65 ( s i n g l e t , 3H, 0 C H ) ; 5.09 ( d o u b l e t o f d o u b l e t , 3  3  J = 12 Hz, 5 Hz, I H , C12b-H); 5.55 ( s i n g l e t , 2H, -CH„C,H,-); 7.26 3H, C12b-0Ac); 7.0-7.55 ( m u l t i p l e t s ,  9H, a r o m a t i c ) ; nmr (CDC1 ) 3  (singlet, (191b);  <S 0.93 ( t r i p l e t , J = 7 Hz, 3H, - C H C H ) ; 1.86 ( s i n g l e t , 3H, -N-C0CH ); 2  3  3  3.79 ( s i n g l e t , 3H, 0 C H ) ; 5.05 ( d o u b l e t o f d o u b l e t , J - 12 Hz, 5 Hz, I H , 3  C12b-H). 5.54 ( s i n g l e t , 2H, - C ^ C ^ ) ; 7.63 ( m u l t i p l e t s ,  m/e 576 516 473 425  rel.int.% 1 100 22 70  9H, a r o m a t i c ) ;  7.27 ( s i n g l e t , 3H, C12b-0Ac); 7.01-  mass s p e c t r o m e t r i c d a t a :  measured mass  i o n composition C H N 0  calc.mass  516.2607 473.2312 425.2039  31 29 24  516.2622 473.2440 425.2076  36 33 29  2 2 2  5 4 5  - 274 -  BIBLIOGRAPHY (PART I I )  1.  K. Mothes, The A l k a l o i d s , V o l . V I , R.F. Manske, Ed., Academic P r e s s , New Y o r k (1960).  2.  T. R o b i n s o n , The B i o c h e m i s t r y o f A l k a l o i d s , V o l . 3, M o l e c u l a r B i o l o g y , B i o c h e m i s t r y and B i o p h y s i c s , A. K l e i n z e l l e r , G.F. S p r i n g e r , H.G. Wittmann, Ed., S p r i n g e r V e r l a g , New Y o r k (1968).  3.  R.F. R a f f a u f , L l o y d i a , 25, 255 (1962).  4.  N. Neuss, M. Gorman, W. H a r g r o v e , N . J . Cone, K. Biemann, G. B u c h i , and R.E. Manning, J . Am. Chem. S o c , 86, 1440 (1964).  5.  The numbering system i s t h a t o f W.I. T a y l o r and J . LeMen, E x p e r i e n t i a , 2 1 , 508 (1965).  6.  A.R. B a t t e r s b y , A.R. B u r n e t t , and P.G., P a r s o n s , Chem. Comm., 1282 (1968).  7.  A.R. B a t t e r s b y , A.R. B u r n e t t , and P.G. P a r s o n s , J . Chem. S o c ( C ) , 1193 (1969).  8.  J . P . Kutney, W.J. C r e t n e y , J.R. H a t f i e l d , E.S. H a l l , V.R. N e l s o n , and D.C. W i g f i e l d , J . Amer. Chem. S o c , 90, 3566 (1968).  9.  A.R. B a t t e r s b y , T e r p e n o i d I n d o l e A l k a l o i d s , The A l k a l o i d s , V o l . 1, S p e c i a l i s t P e r i o d i c a l R e p o r t s , The Chemical S o c i e t y , London, 1971, and r e f e r e n c e s t h e r e i n .  10.  H. Inouye, S. Ueda, Y. A o k i , and Y. Takeda, T e t r a h e d r o n 2351 (1969).  Letters,  11.  A.R. B a t t e r s b y , N a t u r a l S u b s t a n c e s formed b i o l o g i c a l l y from M e v a l o n i c A c i d T.W. Goodwin, Ed., Academic P r e s s , London, 1970, p. 157.  12.  I . Kompis, M. Hesse, and H. Schmid, L l o y d i a , 34, 269 (1971).  13.  E.E. v a n Tamelen and L.K. O l i v e r , J . Amer. Chem. Soc., 92, 2136 (1970).  14.  E.E. v a n Tamelen, V.B. H a a r s t a d , and R.L. O r v i s , 24, 687 (1968).  Tetrahedron,  - 275 -  15.  M.F. B a r t l e t t , B.F. Lambert, H.M. Werblood, and W.I. T a y l o r , J . Amer. Chem. Soc. , 85, 475 (1963).  16.  T. I n a b a , Ph.D.Thesis,  17.  M.G. R e i n e c k e , L.R. K r a y , and R.F. F r a n c i s , T e t r a h e d r o n 3549 (1965).  18.  N. Yoneda. Chem. Pharm. B u l l . , Tokyo, 13, 1231 (1965).  19.  J.D. Hobson and J.G. McCluskey,  20.  K. Mashimo and Y. S a t o , T e t r a h e d r o n , 26, 803 (1970).  21.  S. Masamune, S.K. Ang, C. E g l i , N. Nakatsuka,. S.K. S a i k a r , and Y. Y a s u n a r i , J . Am. Chem. S o c , 89, 2506 (1967).  22.  T. S h i o r i and S. Yamada, T e t r a h e d r o n , 24, 4159 (1968).  23.  M. Gorman and J . Sweeny, T e t r a h e d r o n L e t t e r s , 3105 (1964).  24.  D.J. Abraham, N.R. F a r n s w o r t h , R.N. B l o m s t e r , and A.G. Sharkey, J r . T e t r a h e d r o n L e t t e r s , 317 (1965).  25.  .S. S a k a i , A. Kubo, and J . H a g i n i n a , T e t r a h e d r o n L e t t e r s , 1485 (1969).  26.  M. Hanaoka, M. Hesse, and H. Schmid, H e l v . Chim. A c t a , 53, 1723 (1970)  27.  M.A. Khan and A.M. Ahsan, T e t r a h e d r o n L e t t e r s , 5137 (1970).  28.  G. B t t c h i , R.E. Manning, and S.A. M o n t i , J . Amer. Chem. Soc., 86, 4631 (1964) and r e f e r e n c e s t h e r e i n .  29.  J . LeMen and W.I, T a y l o r , E x p e r i e n t i a , 2 1 , 508 (1965).  30.  J . T r o j a n e k and K. B l a h a , L l o y d i a , 29, 149 (1966).  31.  L . J . Dolby and S. S a k a i , T e t r a h e d r o n , 23, 1 (1967).  32.  G.H. F o s t e r , J . Harley-Mason, Chem. Comm., 21 (1967).  33.  L . J . Dolby and G.W.  34.  E. Wenkert, S. G a r r a t t , and K.G. Dave, Can. J . Chem., 42, 489 ( 1 9 6 4 ) ,  35.  L . J . Dolby and D.L. Booth, J . Org. Chem., 30, 1550 (1965).  36.  D. H e r b s t , R. Rees, G.A. Hughes, and H. S m i t h , J . Med. Chem., 9_, 864 (1966).  U n i v e r s i t y o f B r i t i s h Columbia, 1967. Letters,  J . Chem. Soc. ( C ) , 2016 (1967).  and W.R.  Waterfield,  G r i b l e , J . Org. Chem., 32, 1391 (1967).  - 276 J.D. A l b r i g h t and L. Goldman, J . Amer. Chem". S o c , 9 1 , 4317 (1969), A . J . G a s k e l l and J.A. J o u l e , T e t r a h e d r o n , 24, 5115 (1968). D. D. O ' R e l l , F.G.H. L e e , and V. B o e k e l h e i d e , J . Amer. Chem. S o c , 94, 3205 (1972). J.C. Braekman, J . D u b o i s , M. K a i s i n , J . P e c h e r , and R.H. M a r t i n , B u l l . S o c Chim. B e i g e s , 7b_, 253 (1965). G. L e d o u b l e , L. O l i v e r , M. Q u i r i n , J . Levy, J . LeMen, and M.M. J a n o t , Ann. Pharm. F r a n c e , 22, 463 (1964); J . Levy, G. L e d o u b l e , J . LeMen, and M.M. J a n o t , B u l l . Soc. Chim. F r a n c e , 1917 (1964). C.E. D a l g l i e s h , J . Chem. S o c , 137 (1952). A. P r e v i e r o , M. C o l e t t i - P r e v i e r o , and L. B a r r y , Can. J . Chem., 46_, 3404 (1968). E. Wenkert and D.K. R o y c h a u d h u r i , . J . Org. Chem., 21, 1315 (1956), R. T s c h e s c h e and H. J e n s s e n , Chem. B e r . , 93, 271 (1960). H. T. Openshaw and H. W h i t t a c k e r , J.. Chem. S o c , 1449 (1963), A. B r o s s i , L.H. C h o p a r d - d i t - J e a n , J . Wlirsch, and 0. S c h n e i d e r , H e l v . Chim. A c t a , 77, 583 ( I 9 6 0 ) . C. Szantay and J . R o h a l y , Chem. B e r . , 96, 1788 ( 1 9 6 3 ) . C. Szantay, L. Tb"ke, K. Honty, and G. K a l a n s , J . Org. Chem, 32, 423 ( 1 9 6 7 ) . F. Bohlmann, Angew. Chem., 69, 641 (1957). E. Wenkert and D. R o y c h a u d h u r i , J . Amer. Chem. S o c , 78, 417 (1956). W.E. Rosen, T e t r a h e d r o n L e t t e r s , 481 (1961). W.F. T r a g e r , C M . L e e , and A.H. B e c k e t t , T e t r a h e d r o n , 23, 365 (1967). W.E. Rosen and J.N. S h o o l e r y , J . Amer. Chem. S o c , 83, 4816 ( 1 9 6 1 ) , M. U s k o k o v i c , H. B r u d e r e r , C. v a n P l a n t a , T. W i l l i a m s , and A. B r o s s i , i b i d . , 86, 3364 (1964). E. Wenkert, B. W i c k b e r g , and C L . L e i c h t , i b i d . , 83, 5037 E. Wenkert, B. W i c k b e r g , and C L . L e i c h t , T e t r a h e d r o n 22, 822 (1961).  (1961),  Letters,  - 277 -  J . Amer. Chem. S o c , 84, 4914 (1962).  57.  E. Wenkert and B. W i c k b e r g ,  58.  C. S z a n t a y and M. B a r c z a i - B e k e , Chem. B e r . , 102, 3963 (1969).  59.  J.A. Weisbach, J . L . K i r k p a t r i c k , K.R. W i l l i a m s , E.L. Anderson. N.C. Y i m , and B. Douglas, T e t r a h e d r o n L e t t e r s , 3457 (1965).  60.  T.M. Moynehen, K. S c h o f i e l d , R.A.Y. J o n e s , and A.R. K a t r i t z k y , J . Chem. S o c , 2637 (1962).  61.  F.A.L. Anet, Canad. J . Chem., 39, 2262 (1961).  62.  D. Klamann and G. Hofbauer,  63.  J . Kovacs and U.R. Ghatak, J . O r g . Chem. 3 1 , 119 (1966).  64.  J i S u n g c h u l , L.B. G o r t l e r , A. W a r i n g , A. B a t t i s t i , S. Bank, and W.D. C l o s s o n , J . Amer. Chem. S o c , 89, 5311 (1967).  65.  R.S. S c h r e i b e r and R.L. S h r i n e r , i b i d . , 56, 1618 (1934).  66.  H.R. Snyder and R.E. H e c k e r t , i b i d . ,  67.  K.M. Madyastha, R. G u a r n a c c i a , and C.J. Biochem. J . , 128 0-972).  68.  T h i s r e a c t i o n was c a r r i e d o u t by Dr. A. M u r a i i n o u r l a b o r a t o r y .  69.  J . L e d e r b e r g , Computation o f M o l e c u l a r Formulas Holden-Day, I n c . , San F r a n c i s c o , 1964.  70.  K. N a k a n i s h i , I n f r a r e d A b s o r p t i o n S p e c t r o s c o p y , Holden-Day, I n c . , San F r a n c i s c o , 1962.  71.  H. B u d z i k i e w i c z , C. D j e r a s s i , and D.H. W i l l i a m s , S t r u c t u r e E l u c i d a t i o n o f N a t u r a l P r o d u c t s by Mass S p e c t r o m e t r y , V o l . 1: A l k a l o i d s , Holden-Day, I n c . , San F r a n c i s c o , 1964.  72.  E.L. E l i e l and D. N a s i p u r i , J . Org. Chem., 30, 3809 (1965).  73.  K. T o r i and T. Kameno, T e t r a h e d r o n , 2 1 , 309 (1965).  74.  D.G.I. F e l t o n and S.F.D. O r r , J . Chem. S o c , 2170  75.  J.H. Bowie, D.H. W i l l i a m s , S.0. Lawesson, and G. S c h r o l l , J . Org. Chem., 3 1 , 1792 (1966).  76.  J.K. MacLeod, J.B. Thomson, and C. D j e r a s s i , T e t r a h e d r o n , 23, 2095 (1967).  Chem. B e r . , 86, 1246 ( 1 9 5 3 ) .  74, 2006 (1952). Coscia,  f o r Mass S p e c t r o m e t r y ,  :  (1955).  - 278 -  77.  H. A u d i e r , M. Fe'tizon, J.C. Gramain, J . S c h a l b a r , and B. Waegel, B u l l . Soc. Chim. F r a n c e , 1180 (1964).  78.  T h i s r e a c t i o n was c a r r i e d o u t by Dr. K. Wada i n our l a b o r a t o r y .  79.  R e f e r e n c e 71, p. 98-99.  80.  R e f e r e n c e 71, p. 299.  J.P. Kutney, G. E i g e n d o r f and J.E. May, Chem. Comm., 59 (1966). O p t i c a l R o t a t o r y D i s p e r s i o n S t u d i e s on A z a S t e r o i d s . J.P. K u t n e y , I . V l a t t a s and G. E i g e n d o r f , T e t r a h e d r o n , 23_, 4587 (1967). Mass S p e c t r a o f 6-Aza and 11-Aza S t e r o i d s . J.P. Kutney, G. E i g e n d o r f and J.E. H a l l , T e t r a h e d r o n , 24, 845 (1968) Aza S t e r o i d s . V I I . S y n t h e s i s o f R i n g A-Oxygenated 6-Aza S t e r o i d s . J.P. Kutney, G. E i g e n d o r f and I.H. Rogers, T e t r a h e d r o n , 25, 3753 (1969). Mass S p e c t r a l F r a g m e n t a t i o n S t u d i e s o f T r i t e r p e n e s Related t o Serratenediol. J.P. Kutney, G. E i g e n d o r f , T. Inaba and D.L. D r e y e r , Org. Mass S p e c t r o m e t r y , 5_, 249 (1971). Mass S p e c t r a l F r a g m e n t a t i o n S t u d i e s i n Monomeric and D i m e r i c Coumarins. J.P. Kutney, F.K. K l e i n , G. E i g e n d o r f * D. M c N e i l l and K.L. S t u a r t , T e t r a h e d r o n L e t t e r s , 4973 (1971), A l k a l o i d s from "Croton S p e c i e s . X I I . G l u t a r i m i d e P e p t i d e s from C . H u m i l i s L. J.P. Kutney, G. E i g e n d o r f , R.B. S w i n g l e , G.D. Knowles, J.W. Rowe and B.A. Nagasampagi, N o v e l T r i t e r p e n e s from Western White P i n e ( P i n u s m o n t i c o l a Dougl.) Bark. -Tetrahedron L e t t e r s , 3118 (1973). K.L. S t u a r t , D. M c N e i l l , J . P . Kutney, G. E i g e n d o r f and F.K. K l e i n , P e p t i d y l compounds f r o m C r o t o n H u m i l i s , s t r u c t u r a l e l u c i d a t i o n and s y n t h e s i s o f 6 - g l u t a m y l and g l u t a r i m i d e p e p t i d e s . T e t r a h e d r o n , 29, 4071 ( 1 9 7 3 ) . . .  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061096/manifest

Comment

Related Items