UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Complexes of fluoroalicyclic derivatives of phosphorus Williams, Mangayarkarasy 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1979_A1 W54.pdf [ 9.68MB ]
Metadata
JSON: 831-1.0060890.json
JSON-LD: 831-1.0060890-ld.json
RDF/XML (Pretty): 831-1.0060890-rdf.xml
RDF/JSON: 831-1.0060890-rdf.json
Turtle: 831-1.0060890-turtle.txt
N-Triples: 831-1.0060890-rdf-ntriples.txt
Original Record: 831-1.0060890-source.json
Full Text
831-1.0060890-fulltext.txt
Citation
831-1.0060890.ris

Full Text

COMPLEXES OF FLUOROALICYCLIC DERIVATIVES OF PHOSPHORUS by MANGAYARKARASY WILLIAMS B . Sc . , M.Sc, U n i v e r s i t y o f S r i Lanka A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES Department of Chemistry We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1978 © Mangayarkarasy W i l l i a m s , 1978 In presenting th i s thes i s in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make i t f ree ly avai1 able for reference and study. I further agree that permission for extensive copying of th is thes is for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t ion of th is thes is for f inanc ia l gain sha l l not be allowed without my written permission. Department of OWg-Wu*. S>Vv^ The Univers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date ^ " 2 W - i i -S u p e r v i s o r : Dr. W. R. C u l l e n ABSTRACT • - I D i c y c l o h e x y l phosphine r e a c t s w i t h C1C=CC1(CF 2) r 1 (n = 2,3,4) and [ C 1 C = C ( C F 2 ) 2 ] 2 i n DMF t o g i v e t h e d i t e r t i a r y ' I 1 phosphines (L-L) o f formulae (C^n) 2PC=CP ( C 6 H 1 1 ) 2 ( C F V n (n = 2, 25a; n = 3, 25b) and [ (CgH.^) 2PC=C (CF 2) 2 ] 2 (24) t o g e t h e r w i t h t e r t i a r y phosphines (L) o f f o r m u l a e , 1 1 (C,H.. . ) 0PC=CC1 (CF~) (n = 2, 26a; n = 3, 26c; n = 4, 26e) . b ±± z z n The r e a c t i o n s o f t h e s e new l i g a n d s and those o f o t h e r l i g a n d s 1 1 I 1 such as t(C,H C)_PC=C(CF„)_]23 (L-L) and (C,H C)_PC=CC1(CF~) b o Z I Z Z Z — b b Z Z n (n = 2, 26b; n = 3, 26d; n = 4, 26f) (L) w i t h a range o f t r a n s i t i o n m e t a l c a r b o n y l s and m e t a l h a l i d e s have been i n v e s t i g a t e d . W i t h Group VI me t a l h e x a c a r b o n y l s t h e d i t e r t i a r y phos-p h i n e l i g a n d s , 2_4_, 25a and 25b g i v e t h e e x p e c t e d c h e l a t e (L-L) (M(CO) 4 (M = Cr,Mo,W) complexes, whereas the t e r t i a r y p h o s p h i n e s , 26a - 26f g i v e t h e monodentate LM(CO)^ complexes. R e a c t i o n s w i t h P d ( I I ) and P t ( I I ) h a l i d e s g i v e complexes o f formulae (L-L)MC1 2, (L-L = 23, 24a, 25a; M = P d ( I I ) , P t ( I I ) ) , L 2 M C 1 2 (L = 26a, 26b; M = P d ( I I ) , P t ( I I ) ) and L 2 M 2 C 1 4 (L = 26b, 26d; M = P d ( I I ) ) . A complex o f f o r m u l a , ( L - L ) 2 P t ( 0 ) (L-L = 25a) has a l s o been i s o l a t e d from the r e a c t i o n o f 25a w i t h P t [P (C^H,.) A . Dimanganese decacarbonyl r e a c t s w i t h 25a and 25b to give products of formulae [ (L-L) Mn (CO) ] „ and (L-L) Mn 0 (CO) _ r e s p e c t i v e l y . The former i s a d i m e r i c complex with one l i g a n d per manganese atom. Bromination of t h i s dimer y i e l d s the fac-(L-L)Mn(CO) 3Br isomer. A l l the l i g a n d s mentioned above r e a c t with i r o n c a r b o n y l s to give a range of products. The c h e l a t e complexes of formulae (L-L)Fe(CO)^ are i s o l a t e d when (L-L) = 25a or 25b. A complex of formula (L-L)Fe~(CO), (L-L = 25a) i s z b a l s o i s o l a t e d from t h i s r e a c t i o n . Analogous products have been i s o l a t e d i n previous s t u d i e s . The l i g a n d 2_3 r e a c t s w i t h i r o n pentacarbonyl to give three products o f formula ( L - L ) F e 2 ( C O ) 8 , ( L - L ) F e 2 ( C O ) 6 I and ( L - L ) F e 2 ( C O ) g I I . S p e c t r o s c o p i c s t u d i e s on the l a t t e r two complexes show t h a t c o n s i d e r a b l e fragmentation and rearrangement of the l i g a n d has taken p l a c e . T h i s has been confirmed i n an independent X-ray s t r u c t u r a l study. The t e r t i a r y phosphines 26a and 26b r e a c t with i r o n carbonyls to give the expected complexes of formula LFe(CO)^. However, v a r i a t i o n s are seen when the r i n g s i z e i s changed. When L = 26c - 26f i n a d d i t i o n to the a n t i c i p a t e d LFe(CO)^ r r^ 1 d e r i v a t i v e s , compounds of s t o i c h i o m e t r y R 2PC-C-CF(CF 2) RFe 2(CO) (n = 2,3; R = CgH^, C^H^) are a l s o i s o l a t e d . S p e c t r o s c o p i c 3 s t u d i e s i n d i c a t e the presence of an n - a l l y l group which has been confirmed by an independent X-ray s t r u c t u r a l d e t e r -3 m i n a t i o n . The f l u o r i n a t e d n - a l l y l group i s a bonded to - i v -one Fe atom and IT-bonded t o t h e o t h e r . Coupled p r o d u c t s o f formulae [Fe(CO).R0PC=C(CF„) ]_ (R = C,H n., n = 3; 4 / | £ n z b xx R = CgH^, n = 4) have a l s o been i s o l a t e d from t h e s e r e a c t i o n s . 3 The r e a c t i o n s o f n - a l l y l complexes, I 1 R 2 P C - C - C F ( C F 2 ) 2 F e 2 ( C O ) (R = C g H 5 , CgH^) w i t h t r i p h e n y l -phosphine and i o d i n e have been i n v e s t i g a t e d . The complex ( C g H 5 ) 2 P C - C - C F ( C F 2 ) 2 F e 2 ( C O ) g has been found t o be an e f f e c t i v e p h o t o c h e m i c a l c a t a l y s t f o r the i s o m e r i z a -t i o n o f 1-pentene. The photochromism o f the l i g a n d , 23_ has been i n v e s t i g a t e d by i n f r a r e d s p e c t r o s c o p y i n t h e s o l i d s t a t e . - v -TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS v LIST OF TABLES x i i LIST OF FIGURES x v i ABBREVIATIONS x v i i i ACKNOWLEDGEMENTS x x i CHAPTER I INTRODUCTION 1 CHAPTER I I EXPERIMENTAL 16 1. G e n e r a l t e c h n i q u e s and p h y s i c a l measurements. 16 2. S t a r t i n g m a t e r i a l s . 17 3. P r e p a r a t i o n o f the d i t e r t i a r y phosphine and t e r t i a r y phosphine l i g a n d s . 19 (A) P r e p a r a t i o n o f 2 , 2 ' - b i s ( d i c y c l o h e x y l -p h o s p h i n o ) o c t a f l u o r o ( b i - l - c y c l o b u t e n -1-yl) ( b i f 8 d i p h o s ) . 19 (B) P r e p a r a t i o n o f 1 , 2 - b i s ( d i c y c l o h e x y l -p h o s p h i n o ) h e x a f l u o r o c y c l o p e n t e n e -( f 5 d i p h o s ) and l - c h l o r o - 2 - d i c y c l o h e x y l -p h o s p h i n o h e x a f l u o r o c y c l o p e n t e n e - 1 ( f g c h l o r p h o s ) . 20 (C) P r e p a r a t i o n o f 1 , 2 - b i s ( d i c y c l o h e x y l -p h o s p h i n o ) t e t r a f l u o r o c y c l o b u t e n e ( f i+diphos) and l - c h l o r o - 2 - d i c y c l o h e x y l -p h o s p h i n o t e t r a f l u o r o c y c l o b u t e n e - 1 ( f i^chlorphos) ., 21 - v i -(D) P r e p a r a t i o n o f l - c h l o r o - 2 - d i p h e n y l -p hosphinohexafluorocyclopentene-1 ( f 6 c h l o r f o s ) . (E) P r e p a r a t i o n of l - c h l o r o - 2 - d i p h e n y l -p h o s p h i n o t e t r a f l u o r o c y c l o b u t e n e - 1 (f i+chlorfos) . (F) P r e p a r a t i o n of l - c h l o r o - 2 - d i c y c l o -h e x y l p h o s p h i n o o c t a f l u o r o c y c l o h e x e n e -1 (fgchlorphos) . (G) P r e p a r a t i o n of l - c h l o r o - 2 - d i p h e n y l -p h o s p h i n o o c t a f l u o r o c y c l o h e x e n e - 1 ( f 8 c h l o r f o s ) . (H) Attempted s y n t h e s i s of 2 - d i m e t h y l -a r s i n o , 2 1 - d i p h e n y l p h o s p h i n o o c t a -f l u o r o ( b i - l - c y c l o b u t e n - l - y l ) ( b i f 8 A s P ) . (I) Reaction of f i+chlorphos w i t h diphenylphosphine. (J) Reaction o f f 6 c h l o r p h o s with diphenylphosphine. Reactions of the d i t e r t i a r y phosphines (L-L) with t r a n s i t i o n metal c a r b o n y l s and metal h a l i d e s . (A) Reactions of b i f g d i p h o s , f ^ d i p h o s , f 6 d i p h o s (L-L) and the d i t e r t i a r y a r s i n e , b i f 8 p h e n a r s (L-L) w i t h Group VI metal hexacarbonyls. (B) Reaction of f i+diphos with m e s i t y l e n e tungsten t r i c a r b o n y l . (C) (i) Reactions of f H d i p h o s , f 6 d i p h o s and b i f 8 f o s (L-L) w i t h disodium-t e t r a c h l o r o p a l l a d a t e ( I I ) and d i -potassium t e t r a c h l o r o p l a t i n a t e ( I I ) . ( i i ) R e a c t i o n of f^diphos w i t h T e t r a k i s ( t r i p h e n y l p h o s p h i n e ) -p l a t i n u m ( 0 ) . - v i i -(D) Reactions of f i+diphos and fgdiphos (L-L) with i r o n c a r b o n y l s . (E) Reaction of b i f 8 f o s (L-L) with i r o n p e n t a c a r b o n y l . (F) Reaction of b i f 8 f o s (L-L) with t r i i r o n dodecacarbonyl. (G) Reactions of fgdiphos and fgdiphos (L-L) with dimanganese de c a c a r b o n y l . (H) Reaction of [f i+diphosMn (CO) 3 ] 2 with bromine. Reactions of the t e r t i a r y phosphines (L) with t r a n s i t i o n metal c a r b o n y l s and metal h a l i d e s . (A) Reactions of the t e r t i a r y phosphines (L) with Group VI metal hexacarbonyls (B) Attempted s y n t h e s i s of complexes of mixed l i g a n d s . (i) Reaction of f i+chlorophosMo (CO) 5 w i t h diphenylphosphine. ( i i ) R e a ction of f g c h l o r f o s W ( C O ) 5 with f g c h l o r p h o s . (C) Reactions of the t e r t i a r y phosphines (L) with disodium t e t r a c h l o r o -p a l l a d a t e ( I I ) and d i p o t a s s i u m t e t r a c h l o r o p l a t i n a t e ( I I ) . (D) Reaction of the t e r t i a r y phosphines (L) w i t h i r o n c a r b o n y l s . (E) Reactions of f g c h l o r f o s F e ( C O ) 4 . (i) R e action of f g c h l o r f o s F e ( C O ) 4 with i r o n p e n t a c a r b o n y l . ( i i ) P y r o l y s i s of f g c h l o r f o s F e ( C O ) h . (F) Reaction of f g c h l o r f o s W ( C O ) 5 with i r o n p e n t a c a r b o n y l . - v i i i -(G) Reactions of ( L - C l - F ) F e 2 ( C O ) 6 complexes with t r i p h e n y l p h o s p h i n e . (i) Reaction of ( f 6 c h l o r p h o s - C l -F ) F e 2 ( C O ) 6 with t r i p h e n y l p h o s p h i n e , ( i i ) R e a c t i o n of ( f g c h l o r f o s - C l -F ) F e 2 ( C O ) 6 with t r i p h e n y l p h o s p h i n e , (H) Reaction of ( f 6 c h l o r p h o s - C l -F ) F e 2 ( C O ) 6 with i o d i n e . CHAPTER I I I 1. RESULTS AND DISCUSSION CHAPTER IV The s y n t h e s i s and c h a r a c t e r i z a t i o n of the d i t e r t i a r y phosphine l i g a n d s (L-L) and t e r t i a r y phosphine l i g a n d s ( L ) . (A) P r e p a r a t i v e methods. (B) C h a r a c t e r i z a t i o n of new l i g a n d s . ( i ) D i t e r t i a r y phosphine l i g a n d s ( L - L ) . ( i i ) T e r t i a r y phosphine l i g a n d s (L) . (A) Attempted mixed l i g a n d syntheses. (B) I n f r a r e d s t u d i e s of the l i g a n d , 2 , 2 ' - b i s ( d i p h e n y l p h o s p h i n o ) o c t a f l u o r o -( b i - l - c y c l o b u t e n - l - y l ) , b i f e f o s , 23. RESULTS AND DISCUSSION The r e a c t i o n s of the d i t e r t i a r y phosphines (L-L) with t r a n s i t i o n metal c a r b o n y l s and metal h a l i d e s . 1. S p e c t r o s c o p i c methods used i n the c h a r a c -t e r i z a t i o n o f new c a r b o n y l complexes. 2. Reactions of the d i t e r t i a r y phosphines (L-L) with Group VI metal hexacarbonyls. (A) P r e p a r a t i v e methods. (B) C h a r a c t e r i z a t i o n o f new complexes. (C) Reaction mechanism. Page 79 79 80 80 85 85 85 91 91 92 96 98 104 104 108 108 113 119 - i x -Page 3. Reactions of the d i t e r t i a r y phosphines (L-L) with t r a n s i t i o n metal h a l i d e s . 121 (A) P r e p a r a t i v e methods. 121 (B) C h a r a c t e r i z a t i o n of new complexes. 126 4. Reactions of the d i t e r t i a r y phosphines (L-L) with i r o n c a r b o n y l s . 131 (A) P r e p a r a t i v e methods. 131 (B) C h a r a c t e r i z a t i o n of new complexes. 135 (i) ( L - L ) F e ( C O ) 3 . 135 ( i i ) f i t d i p h o s F e 2 (CO) 6 . 138 5. Reactions of the d i t e r t i a r y phosphines (L-L) with dimanganese dec a c a r b o n y l . 141 (A) P r e p a r a t i v e methods. 141 (B) C h a r a c t e r i z a t i o n of new complexes. 144 (i) [ f 4 d i p h o s M n ( C O ) 3 ] 2 . 144 ( i i ) f 6 d i p h o s M n 2 ( C O ) 8 . 147 CHAPTER V RESULTS AND DISCUSSION 149 Reactions of the t e r t i a r y phosphines, R 2PC=CC1(CF 2) n (L) with t r a n s i t i o n metal c a r b o n y l s and metal h a l i d e s , and the r e a c t i o n of 2 , 2 ' - b i s ( d i p h e n y l p h o s p h i n o ) o c t a f l u o r o -( b i - l - c y c l o b u t e n - l - y l ) with i r o n c a r b o n y l s . 149 1. Reactions of the t e r t i a r y phosphines (L) with Group VI metal hexacarbonyls. 14 9 (A) P r e p a r a t i v e methods. 149 * (B) C h a r a c t e r i z a t i o n of new complexes. 152 (C) Attempted s y n t h e s i s of complexes of mixed l i g a n d s . 156 2. Reactions of the t e r t i a r y phosphines (L) w i t h t r a n s i t i o n metal h a l i d e s . 158 (A) P r e p a r a t i v e methods. 15 8 - x -Page (B) C h a r a c t e r i z a t i o n of new complexes. 161 (i) L 2MC1 2. 161 ( i i ) L 2 P d 2 C l i + . 163 3. Reactions of the t e r t i a r y phosphines (L) wi t h i r o n c a r b o n y l s . 167 (A) Preparative, methods. 16 7 (B) C h a r a c t e r i z a t i o n of new complexes 171 (i) LFe (CO) . 171 ( i i ) (L-Cl-F) F e 2 (CO) 6 . 173 ( i i i ) [ ( L - C l ) F e ( C O ) k ] 2 . 187 (iv) L 2 Fe(CO) 3 . 190 (C) F u r t h e r s t u d i e s and r e a c t i o n s con-c e r n i n g f g c h l o r f o s F e ( C O ) 4 , 74d. 191 (D) Reactions of the n 3 - a l l y l complexes. 194 (i) Reaction with t r i p h e n y l -phosphine. 194 ( i i ) R e action of ( f g c h l o r p h o s - C l -F ) F e 2 ( C O ) 6 , 76a with i o d i n e . 195 4. Reactions of the d i t e r t i a r y phosphine l i g a n d b i f 8 f o s , 23_ with i r o n c a r b o n y l s . 199 CHAPTER VI PHOTOCATALYZED ISOMERIZATION OF 1-PENTENE USING A n 3-ALLYL COMPLEX AS CATALYST. 209 1. I n t r o d u c t i o n 209 2. Experimental 213 A. Chemicals 213 B. Instruments ' 213 C. I s o m e r i z a t i o n of 1-pentene u s i n g ( f g c h l o r f o s - C I - F ) F e 2 ( C O ) g , 76b. 213* - x i -D. I s o m e r i z a t i o n of 1-pentene u s i n g other i r o n c a r b o n y l complexes and f 6 c h l o r f o s W ( C O ) 5 , 57c. (E) Attempted hydrogenation r e a c t i o n s of some o l e f i n s u s i n g ( f g c h l o r f o s -C l - F ) F e 2 ( C O ) 6 , 76b as c a t a l y s t . 3. D i s c u s s i o n CHAPTER VII SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK Summary Recommendations f o r f u t u r e work. B i b l i o g r a p h y - x i i -LIST OF TABLES Table Page I Purchased chemicals and s u p p l i e r s 17 II P r e p a r a t i v e data f o r (L-L)M(CO) 4 complexes ' 31 I I I A n a l y t i c a l data f o r (L-L)M(CO) 4 complexes 33 IV Nmr and i r s p e c t r o s c o p i c data f o r (L-L)M(CO) 4 complexes 34 V P r e p a r a t i v e data f o r (L-L)MC1 2 complexes 37 VI A n a l y t i c a l data f o r (L-L)MCI 2 and ( L - L ) 2 P t complexes 38 VII Nmr and i r s p e c t r o s c o p i c data f o r (L-L)MC1 2 and ( L - L ) 2 P t complexes 39 V I I I P r e p a r a t i v e data f o r • ( L - L ) F e ( C O ) 3 and (L-L) Fe~ (CO) , complexes 42 Z. b IX A n a l y t i c a l data f o r ( L - L ) F e ( C O ) 3 and (L-L)Fe^(CO), complexes 4 3 Z D X Nmr and i r s p e c t r o s c o p i c data f o r ( L - L ) F e ( C O ) 3 and (L-L) F e 2 (CO) g complexes 4 4 XI I r s p e c t r o s c o p i c data f o r b i f g f o s F e 2 ( C O ) g , b i f g f o s F e 2 ( C O ) 6 I and b i f g f o s F e 2 ( C O ) I I complexes 47 - x i i i -T a b l e Page X I I Nmr s p e c t r o s c o p i c d a t a f o r b i f g f o s F e 2 -( C 0 ) 6 I and b i f g f o s F e 2 ( C O ) g I I complexes 4 8 X I I I P r e p a r a t i v e d a t a f o r (L-L)manganese c a r b o n y l complexes 50 XIV A n a l y t i c a l d a t a f o r [ f 4 d i p h o s M n ( C O ) 3 ] 2 and fgdiphosMn 2(CO)g complexes 51 XV Nmr and i r s p e c t r o s c o p i c d a t a f o r [ f 4 d i p h o s M n ( C O ) 3 ] 2 , f 4 d i p h o s M n ( C O ) 3 B r , f 6 d i p h o s M n 2 ( C O ) g complexes 52 XVI P r e p a r a t i v e d a t a f o r LM(CO),- complexes 54 XVII A n a l y t i c a l d a t a f o r M(CO) 5L complexes 57 X V I I I Nmr and i r s p e c t r o s c o p i c d a t a f o r M(CO),-L complexes 59 XIX P r e p a r a t i v e d a t a f o r L 2 M C 1 2 and L M C l 2 y 2 complexes 64 XX A n a l y t i c a l d a t a f o r L 2 M C 1 2 and LMC1 2^, 2 complexes 6 5 XXI Nmr and i r s p e c t r o s c o p i c d a t a f o r L 2 M C 1 2 and LMC1 2^ 2 complexes 66 XXI I P r e p a r a t i v e d a t a f o r i r o n c a r b o n y l complexes o f t e r t i a r y phosphines (L) 68 X X I I I A n a l y t i c a l d a t a f o r i r o n c a r b o n y l complexes o f t e r t i a r y p hosphines (L) 70 - x i v -Table Page XXIV XXV XXVI XXVII XXVIII XXIX XXX XXXI I n f r a r e d s p e c t r o s c o p i c data f o r i r o n c a r b o n y l complexes of t e r t i a r y phosphines (L) Nmr s p e c t r o s c o p i c data f o r i r o n c a r b o n y l complexes of t e r t i a r y phosphines (L) The percentage y i e l d of d i f f e r e n t com-pounds i s o l a t e d from the r e a c t i o n o f f c c h l o r f o s with Fe(CO) r a t d i f f e r e n t b 5 time i n t e r v a l s I r s p e c t r o s c o p i c data f o r ( f g c h l o r f o s -Cl-F)Fe„(CO) CP(C,H C)_ and i o d i n a t i o n 2 5 6 5 3 product 8_5 of ( f g c h l o r p h o s - C l -F ) F e 2 ( C O ) 6 Nmr s p e c t r o s c o p i c data f o r ( f , c h l o r f o s - C l - F ) F e 0 ( C O ) _ P ( C , H _ ) , and i o d i n a t i o n product 85_ of ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) g Colour, m e l t i n g p o i n t s and v(C=C) of / the d i t e r t i a r y phosphines and t e r t i a r y phosphines Symmetry types and a c t i v i t i e s o f CO v i b r a t i o n a l modes i n L 2 F e ( C O ) 3 complexes Products i s o l a t e d from the r e a c t i o n s of the t e r t i a r y phosphines (L) with Pd(II) and P t ( I I ) c h l o r i d e s 72 73 78 84 93 136 161 - X V -Table Page X X X I I X X X I I I XXXIV XXXV X X X V I XXXVII Products from the r e a c t i o n s o f the t e r t i a r y phosphines, and t e r t i a r y a r s i n e with Fe(CO) c _> Symmetry types and a c t i v i t i e s o f v (CO) v i b r a t i o n a l modes i n LF e ( C O ) 4 complexes 19 F nmr s p e c t r o s c o p i c data f o r i r o n c a r b o n y l complexes of f ^ c h l o r p h o s , 26c "^P nmr s p e c t r o s c o p i c data f o r i r o n c a r b o n y l complexes of t e r t i a r y phosphine l i g a n d s I s o m e r i z a t i o n of 1-pentene u s i n g ( f c c h l o r f o s - C l - F ) F e 0 ( C O ) c 6 l b I s o m e r i z a t i o n of 1-pentene u s i n g i r o n c a r b o n y l complexes and a tungsten c a r b o n y l complex 172 174 177 181 218 219 - x v i -LIST OF FIGURES F i g u r e Page 1 IR s p e c t r a o f b i f g f o s , 23_ (v(C=C)) b e f o r e and a f t e r exposure t o s u n l i g h t 100 2 The normal c a r b o n y l v i b r a t i o n a l modes f o r t h e Group VI (L-L)M(CO) 4 complexes 114 3 C r y s t a l s t r u c t u r e o f b i f g d i p h o s M o ( C O ) 4 118 4 C r y s t a l s t r u c t u r e o f f 4 d i p h o s F e ( C O ) , 45a 139 5 CO s t r e t c h i n g modes f o r M ( C 0 ) 5 L , {C 4 ?p complexes " 154 19 6 F nmr spectrum o f ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) 6 , 76a 176 7 The c r y s t a l s t r u c t u r e o f I 1 ( C 6 H 1 1 ) 2 P C " ° ~ C F C F 2 C F 2 F e 2 ( C 0 ) 6' 7 - ^ 1 7 9 8 n 3 - a l l y l complexes i s o l a t e d from the r e a c t i o n s o f t h e t e r t i a r y phosphines and t e r t i a r y a r s i n e l i g a n d s w i t h i r o n p e n t a c a r b o n y l 182 19 9 F nmr spectrum o f ( f g c h l o r p h o s - C l - F ) F e 2 ( C 0 ) g , 76d 183 10 C r y s t a l s t r u c t u r e o f Mn„ (CO) .As, (CH-) ,F_C. 185 2 6 3 3 6 5 4 11 C r y s t a l s t r u c t u r e o f bif 0fosFe„(CO), I , O Z D 89a 202 - x v i i -F i g u r e Page 12 C r y s t a l s t r u c t u r e o f b i f 0 f o s F e 0 ( C O ) c I I 204 o /. fa 13 C r y s t a l s t r u c t u r e o f O s 3 ( C O ) 7 P ( C g H 5 ) 2 ( C 6 H 4 ) 207 14 P h o t o c a t a l y z e d i s o m e r i z a t i o n o f 1-pentene u s i n g (f,chlorfos-Cl-F)Fe„(CO) r , 6 2 6 76b as c a t a l y s t 216 - x v i i i -A b b r e v i a t i o n s b i f D f a r s , 27 2 , 2 ' - b i s ( d i m e t h y l a r s i n o ) o c t a f l u o r o -•8 8 ( b i - l - c y c l o b u t e n - l - y l ) b i f Q f o s , 23 2 , 2 ' - b i s ( d i p h e n y l p h o s p h i n o ) o a c t a f l u o r o -(bi-1-cyclobuten-1-y1) b i f g d i p h o s , 2_4_ 2 , 2 1 - b i s (dicyclohexylphosphino) -o c t a f l u o r o ( b i - l - c y c l o b u t e n - l - y l ) b i f g p h e n a r s , 28_ 2 , 2 * - b i s ( d i p h e n y l a r s i n o ) o c t a f l u o r o -( b i - l - c y c l o b u t e n - l - y l ) b ifgAsP 2 - d i m e t h y l a r s i n o , 2'-diphenylphosphino-o c t a f l u o r o ( b i - 1 - c y c l o b u t e n - 1 - y l ) d i a r s , 3_ 1,2-bis (dimethylarsino) benzene diphos , 4_ 1, 2-bis (diphenylphosphino) ethane DMF N,N 1-dimethylformamide DPM bis(diphenylphosphino)methane eg. example eq. equation f i g . f i g u r e f ^ f a r s , 7_a 1, 2-bis (dimethylarsino) t e t r a f l u o r o -cyclobutene f g f a r s , 7b_ 1,2-bis (dimethylarsino) h e x a f l u o r o -cyclopentene f g f a r s , 7c 1 , 2 - b i s ( d i m e t h y l a r s i n o ) o c t a f l u o r o -cyclohexene f ^ f o s , 7d 1 , 2 - b i s ( d i p h e n y l p h o s p h i n o ) t e t r a f l u o r o -cyclobutene f g f o s , 7_e 1, 2-bis (diphenylphosphino) h e x a f l u o r o -cyclopentene - xix -f g f o s , 7f_ 1 , 2 - b i s ( d i p h e n y l p h o s p h i n o ) o c t a f l u o r o -cyclohexene f^AsP, 8_a l - d i p h e n y l p h o s p h i n o - 2 - d i m e t h y l a r s i n o -t e t r a f l u o r o c y c l o b u t e n e - 1 f gAsP , 8b_ l - d i p h e n y l p h o s p h i n o - 2 - d i m e t h y l a r s i n o -hexafluorocyclopentene-1 fgAsP, 8c_ l - d i p h e n y l p h o s p h i n o - 2 - d i m e t h y l a r s i n o -o c t a f l u o r o c y c l o h e x e n e - 1 f g d i p h o s , 25a 1 , 2 - b i s ( d i c y c l o h e x y l p h o s p h i n o ) t e t r a -f l u o r o c y c l o b u t e n e fgdiphos, 25b 1,2-bis(dicyclohexylphosphino)hexa-f l u o r o c y c l o p e n t e n e f ^ c h l o r p h o s , 26a l - c h l o r o - 2 - d i c y c l o h e x y l p h o s p h i n o t e t r a -f l u o r o c y c l o b u t e n e - 1 f ^ c h l o r f o s , 26b l - c h l o r o - 2 - d i p h e n y l p h o s p h i n o t e t r a f l u o r o -cyclobutene-1 f f i c h l o r p h o s , 26c l - c h l o r o - 2 - d i c y c l o h e x y l p h o s p h i n o h e x a -f l u o r o c y c l o p e n t e n e - 1 f g C h l o r f o s , 26d l - c h l o r o - 2 - d i p h e n y l p h o s p h i n o h e x a f l u o r o -cyclopentene-1 fgChlorphos, 26e l - c h l o r o - 2 - d i c y c l o h e x y l p h o s p h i n o o c t a -fluorocyclohexene-1 f g C h l o r f o s , 26f l - c h l o r o - 2 - d i p h e n y l p h o s p h i n o o c t a f l u o r o -cyclohexene-1 GLC G a s - l i q u i d chromatography h hour Hz hertz i r i n f r a r e d (L-L) d i t e r t i a r y phosphine l i g a n d L t e r t i a r y phosphine l i g a n d l i t . l i t e r a t u r e M metal atom (m) m u l t i p l e t (nmr) - X X -(m) m/e ml min mmol mp nm nmr ppm P (s) (s) temp TMS uv (vs) (vw) (w) 6 V A CEgChlorfos-Cl-F) ( f , c h l o r p h o s - C l ) medium ( i r ) mass/charge m i l l i l i t r e minute m i l l i m o l e m e l t i n g p o i n t nanometres n u c l e a r magnetic resonance p a r t s per m i l l i o n phosphine s i n g l e t (nmr) st r o n g ( i r ) temperature t e t r a m e t h y 1 s i l a n e u l t r a v i o l e t v e ry s t r o n g very weak weak chemical s h i f t , ppm frequency, cm ^ thermal r e a c t i o n l i g a n d minus CI, minus F, sometimes a b b r e v i a t e d to (L-Cl-F) l i g a n d minus CI, sometimes a b b r e v i a t e d to (L-Cl) - x x i -ACKNOWLEDGEMENTS I w i s h t o e x p r e s s my s i n c e r e g r a t i t u d e t o P r o f e s s o r W. R. C u l l e n f o r h i s a b l e guidance t h r o u g h o u t the c o u r s e o f t h i s work and d u r i n g the p r e p a r a t i o n o f t h i s m a n u s c r i p t . I am f u r t h e r g r a t e f u l t o him f o r h e l p i n g t o make my s t a y a t U.B.C. a p l e a s a n t one t h r o u g h h i s c o n t i n u e d o p t i m i s m and encouragement. My s i n c e r e thanks t o Dr. F. W. B. E i n s t e i n and h i s r e s e a r c h group who c a r r i e d o u t a l l t h e X-ray s t r u c t u r e d e t e r m i n a t i o n s r e p o r t e d i n t h i s work. I t g i v e s me g r e a t p l e a s u r e t o thank Dr. Ken Reimer, Dr. Lynn M i h i c h u c k and Dr. Tony Wu f o r the many u s e f u l d i s -c u s s i o n s h e l d d u r i n g t h e c o u r s e o f t h i s p r o j e c t . The s k i l l f u l t e c h n i c a l a s s i s t a n c e o f the nmr, mass s p e c t r a , g l a s s b l o w i n g , e l e c t r o n i c and m e c h a n i c a l s e r v i c e s a r e g r a t e f u l l y acknowledged. A s p e c i a l word o f thanks t o Mr. P. Borda f o r the e x c e l l e n t m i c r o a n a l y s e s s e r v i c e s and t o Mrs. B. K r i s z a n f o r p r e p a r i n g some o f t h e diagrams. I t i s w i t h l o v e and g r a t i t u d e , I thank my husband Shanthan f o r h i s encouragement and moral s u p p o r t d u r i n g t h e c o u r s e o f t h i s work, e s p e c i a l l y d u r i n g t i m e s o f d e s p a i r . - x x i i -I am g r a t e f u l t o t h e Canadian Commonwealth S c h o l a r s h i p and F e l l o w s h i p Commission f o r a s s i s t a n c e , and t o the U n i v e r s i t y o f S r i Lanka, Colombo Campus, f o r g r a n t i n g me l e a v e o f absence. I a l s o w i s h t o thank a l l my c o l l e a g u e s and f r i e n d s f o r t h e i r encouragement and h e l p , and a s p e c i a l word o f thanks t o Mr. Q u i n t u s P e r e r a f o r h i s p r o o f - r e a d i n g o f t h i s t h e s i s . L a s t but not l e a s t I thank M i s s P h y l l i s Moore f o r her e x c e l l e n t t y p i n g s e r v i c e s . To my p a r e n t s . - 1 -CHAPTER I INTRODUCTION There has been c o n s i d e r a b l e i n t e r e s t i n t r a n s i t i o n metal complexes of t e r t i a r y a r s i n e and phosphine and d i t e r t i a r y a r s i n e and phosphine l i g a n d s over the past t h r e e decades. Numerous metal c a r b o n y l and metal h a l i d e complexes o f l i g a n d s such as t r i p h e n y l a r s i n e , 1^ , t r i p h e n y l phosphine, 2_, 1,2-b i s ( d i m e t h y l a r s i n o ) benzene , 3_ ( d i a r s ) , and 1, 2-bis ( d i p h e n y l -phosphino) ethane, 4_ (diphos) , are known (1). The chemistry o f these d e r i v a t i v e s and o t h e r s i m i l a r complexes has been the s u b j e c t o f s e v e r a l reviews (1,2,3). ( C 6 H 5 ) 3 A S ( C 6 H 5 ) 3 P 1 2 As (CH_) 3' 2 P ( C 6 H 5 ) 2 As(CH^) 3' 2 P ( C 6 H 5 ) 2 3 4 - 2 -R e c e n t l y , t r a n s i t i o n m e t a l complexes o f u n s a t u r a t e d t e r t i a r y a r s i n e s and phosphines such as 5_ have been much i n v e s t i g a t e d b o t h from the p o i n t o f view o f s t a b i l i z i n g m e t a l o l e f i n c o o r d i n a t i o n and o f s t u d y i n g the r e a c t i v i t y o f o l e f i n s w hich a r e c o o r d i n a t e d t o o r i n t h e v i c i n i t y o f t r a n s i t i o n m e t a l atoms (4) . > < w 2 H C / P ( W 2 II HC C H = C H 2 N V p ( C 6 H 5 ) 2 D i t e r t i a r y a r s i n e s and phosphines w i t h u n s a t u r a t e d b r i d g i n g groups such as 6_ which c o u l d i n p r i n c i p l e a l s o use i t s d o u b l e bond i n complex f o r m a t i o n , a r e known and have been s t u d i e d t o a l e s s e r e x t e n t ( 5 ) . F l u o r o a l i c y c l i c b r i d g e d d i t e r t i a r y a r s i n e s and phosphines ]_, and t h e i r u n s y m m e t r i c a l a n a l o g s 8_, b e l o n g t o t h i s c l a s s o f l i g a n d s ( 6 , 7 ) . The s y m m e t r i c a l l i g a n d s have been s y n t h e s i s e d as shown i n e q u a t i o n s [1] and [ 2 ] . The mechanism i s b e l i e v e d t o i n v o l v e a d d i t i o n o f the a r s i n e o r phosphine f o l l o w e d by e l i m i n a t i o n o f HX. When t h e s e r e a c t i o n s were c o n d u c t e d i n the absence o f s o l v e n t s , b o t h v i n y l i c f l u o r i n e atoms were found t o be e a s i l y d i s p l a c e d (8,9,10). - 3 -2 n 2. n As (CH,) „ / 3 2 P ( C 6 H 5 ) 2 a) L=(CH 3) 2As; n=2, f 4 f a r s a) n=2, b) L=(CH 3) 2As n=3, f g f a r s b) n=3, c) L=(CH 3) 2As n=4, f g f a r s c) n=4, d) L = ( C 6 H 5 ) 2 P n=2, f 4 f o s e) L = ( C 6 H 5 ) 2 P n=3, f 6 f o s f) L = ( C 6 H 5 ) 2 P n=4, f g f o s •4* V In the case of the r e a c t i o n [2], on l y s u b s t i t u t i o n o c c u r s . However, the r e a c t i o n of equation [1] can be stopped, i f r e q u i r e d , a t the monos u b s t i t u t i o n stage and these p r o d u c t s , 9_, can then r e a c t f u r t h e r w i t h diphenylphosphine t o a f f o r d the unsymmetrical analogs 8a, 8_b and 8c, as shown i n e q u a t i o n [3] . (CF 2) 2(CH 3) 2ASH > (CH 3) 2AsC = CAs (CH3) 2 + 2HF l \n F^ C = CF + (CF.) r—y\r ( 2 n ( ZJ FC = CF + 2(C gH 5) 2PH ) (CgH 5) 2PC = C P t C g H ^ + 2HF { 2 T I P , " , (CH 3) 2AsC = CF + ( C g H 5 ) 2 P H ) (CHg) 2AsC = C P ( C g H 5 ) 2 [1] [2] [3] - 4 -In a b r i e f r e p o r t , S t o c k e l (11) has d e s c r i b e d the r e a c t i o n between d i c y c l o h e x y l p h o s p h i n e [ (C gH^^) 2PH] and 1 , 2 - d i c h l o r o -h e x a f l u o r o c y c l o p e n t e n e i n dimethylformamide (DMF) s o l u t i o n which proceeds as i n d i c a t e d i n equation [4] (n=3, R=CgH.^). R„PH + C1C = CC1(CF 0) > R„PC = CPR„(CF„) 2 2 n 2 2 2 n + I 1 R„PC = CCKCF-) [4] 2 2 n He(11) ob t a i n e d only the monosubstituted compound (R = C,H r, n=3) from the r e a c t i o n i n DMF although he observed 6 b both mono and d i s u b s t i t u t e d compounds f o r the cyclobutene d e r i v a t i v e (R = C rH c , n=2) (12). The d i s u b s t i t u t e d d e r i v a t i v e O D with R = CgH^ and n=3 had been p r e v i o u s l y r e p o r t e d (13) as the only product from the r e a c t i o n i n the absence of a s o l -vent (eq. [2] ) . C u l l e n e t a l . have s t u d i e d the r e a c t i o n s o f the d i -s u b s t i t u t e d l i g a n d s 1_ and 8_ with v a r i o u s t r a n s i t i o n metal carbonyls and metal h a l i d e s and an e x t e n s i v e s e r i e s o f complexes have been s y n t h e s i s e d (7). The l i g a n d s are found to be monoligate, b i l i g a t e and t r i l i g a t e . Rearrangement of the l i g a n d s has a l s o been observed i n some complexes, e s p e c i a l l y i n those o f f ^ f a r s , 7a.. In s p i t e of the f a c t t h a t f ^ f a r s has two p o t e n t i a l donor atoms and c o u l d be expected to form c h e l a t e complexes, i t r e a c t e d with i r o n pentacarbonyl [Fe(CO),-] to give f . f a r s -- 5 -Fe(CO) 4 and f ^ f a r s F e 2 ( C O ) g (14). In the former, one d i -me t h y l a r s i n o moiety i s "dangling" and the other i s bonded to a Fe(CO) 4 group. In the l a t t e r each i s bonded to a Fe (CO) 4 group. The tendency t o form monoligate complexes was mostly found i n the cyclobutene d e r i v a t i v e s and t h i s was a t t r i b u t e d to the " b i t e " o f the l i g a n d which i s a t a maximum f o r the small r i n g (7) . B i l i g a t e c h e l a t e complexes were s y n t h e s i s e d by the r e a c t i o n of f ^ f o s with group VI metal hexacarbonyls to give f 4 f o s M(CO) 4 (M=Cr, Mo, W) (15). Chelate complexes o f the h e a v i e r metals such as f 4 f a r s P d C l 2 and f 4 f o s P t C l 2 have a l s o been i s o l a t e d (15). When f 4 f a r s was r e a c t e d with T r i i r o n dodecacarbonyl, (Fe^tCO) ), 10, i t was found to d i s p l a c e two t e r m i n a l c a r b o n y l groups from F e 3 ( C 0 ) 1 2 to gi v e the complex f 4 f a r s F e 3 ( C O ) 1 Q , 11_, which i s a b i d e n t a t e t r i m e t a l l i c complex where the f l u o r o c a r b o n b r i d g e s two Fe atoms which are connected by a metal-metal a bond (16,17). 10 F c 3 ( C O ) j 2 11 f 4.fars F e 3 ( C 0 ) 1 Q - 6 -A t r i l i g a t e b i m e t a l l i c complex o f the f o r m u l a f ^ f a r s -F e ~ ( C O ) r , 12, has a l s o been i s o l a t e d by the r e a c t i o n o f 2 b f ^ f a r s w i t h F e 3 ( C O ) ^ 2 , where t h e l i g a n d a c t s as a c h e l a t i n g group t o one Fe atom and i s c o o r d i n a t e d t o the o t h e r v i a the double bond (13,18). Analogous complexes o f the o t h e r l i g a n d s f ^ f o s , f ^ f o s , f ^ f a r s and f g f a r s have a l s o been s y n t h e s i s e d ( 1 3 ) . O C \ o A H 1 . / °*T C H 3 C H 3 12 f 4 f a r s F e 2 ( C O ) 6 The complexes o f f g f a r s have been found t o undergo some v e r y i n t e r e s t i n g rearrangement r e a c t i o n s . Thus f ^ f a r s -Fe 3(CO)^Q, 11, on m i l d h e a t i n g was found t o break down t o a complex o f f o r m u l a f 4 f a r s Fe 3(CO) ^  i n wh i c h t h e l i g a n d has undergone rearrangement as shown i n s t r u c t u r e 13_. An A s ( C H 3 ) 2 group has been d i s p l a c e d from the l i g a n d and an Fe-C a bond i s formed. On f u r t h e r h e a t i n g t h i s l o s e s i t s f l u o r o c a r b o n group t o y i e l d A s 2 ( C H 3 ) 2 C H 2 F e 3 ( C O ) 9 ( 1 7 ) . Cleavage and d i s p l a c e m e n t o f an A s ( C H 3 ) 2 moiety was a l s o found t o o c c u r when the b r i d g e d f 4 f a r s M n 2 ( C O ) g complex - 7 -o 14a was r e f l u x e d i n xylene s o l u t i o n . The i s o m e r i c product 14b was found to have two Mn atoms approximately o c t a h e d r a l l y c o o r d i n a t e d and b r i d g e d by the d i s p l a c e d As(CH^)^ moiety. Here again a t r a n s i t i o n m e t a l - f l u o r o c a r b o n c bond i s formed (19). O _ 8_ O / C \ O 14b Isomer o f f^farsMn^(CO)g S i m i l a r r e a c t i o n s o f l i g a n d f r a g m e n t a t i o n w i t h o u t l o s s have been o b s e r v e d by o t h e r w o r k e r s . Deeming e t a l . (20) o b s e r v e d the r e a c t i o n between O s 3 ( C O ) 1 2 and d i a r s , 2* T h e p r o d u c t , 15_, was found t o have a t r i a n g l e o f Os atoms w i t h detached and b r i d g i n g As (CH-j) 2 groups and a c o o r d i n a t e d benzyne fragment, as shown i n e q u a t i o n [ 5 ] . Os3(CO)12 + <^> — - 'diars OsnfCQj (CH^ As As(CH3)2 [5] (C0)g [(CH^ As^OSstCeH^lCOV 15 [ ( C H 3 ) 2 A s ] 2 0 s 3 ( C 6 H 4 ) (CO) ? - 9 -The most f a s c i n a t i n g l i g a n d t r a n s f o r m a t i o n was found to occur when a s o l u t i o n o f f ^ f a r s C o 2 ( C O ) g , 16a, was h e a t e d . One of the products, 16b, was found t o have the formula ( F 4 f a r s ) 2 C o 4 ( C O ) g ( 2 H ? ) . The molecule has a t w o - f o l d a x i s and here again two As (CH^) 2 m o i e t i e s have been d i s p l a c e d and are s i t u a t e d between two Co atoms (21,22). The two c y c l o -butene r i n g s have coupled to give a b i c y c l o b u t y l system. C I o 16a f.farsCo-(CO) 16b ( f 4 f a r s ( 2 C o 4 ( C O ) 9 ( 2 H ? ) - 10 -A c c o r d i n g to the authors, the two c e n t r a l Co atoms have probably p i c k e d up a hydrogen atom each s i n c e they appear to have a vacant c o o r d i n a t i o n s i t e and as drawn, they v i o l a t e the "18 e l e c t r o n r u l e " . C o u p l i n g r e a c t i o n s have a l s o been observed by other workers. Carty e t a l . (23,24) have observed the r e a c t i o n between an alkynylphosphine and F e 3 ( C O ) ^ 2 , a s shown i n equation [6]. Two i s o m e r i c products were i s o l a t e d wherein both s t r u c t u r e s a diphenylphosphido group has been d i s p l a c e d and c o u p l i n g has taken p l a c e to give c i s and t r a n s butadiene d e r i v a t i v e s as seen i n s t r u c t u r e s 17 and 18. (C 6H 5) 2PC = CCF 3 + F e 3 ( C O ) 1 2 > "Fe^CO) g [ (C g H 5 ) 2 P C E C C F 3 ] " [6] W z (C 6 H 5 ) 2 7cr\ 17 An i n d i c a t i o n as to how these r e a c t i o n s proceed may be seen i n the work of Bennettet a l . (25). When Ru 3(CO)^ 2 was r e a c t e d with o-vinylphenylphosphine, 5_, one of the products was a f i v e c o o r d i n a t e d i c a r b o n y l d e r i v a t i v e , 19. Complex 19_ C H = C H 2 P ( C 6 H 5 ) 2 5 + Ru3(CO), '12 ( C 6 H 5 ) 2 P ( C 6 H 5 ) 2 R O C — R u [7] 19_ has two a x i a l phosphorus atoms and one d a n g l i n g v i n y l group. The other v i n y l group and two c a r b o n y l groups occupy e q u a t o r i a l Ru3(CO)-^2' o n e °f t n e products i s o l a t e d was 20_, where c o u p l i n g had taken p l a c e at the 6 carbon atoms of the two v i n y l r e s i d u e s . Another mode of c o u p l i n g between the two l i g a n d s i n 19_ c o u l d occur by c o o r d i n a t i o n o f the other v i n y l group w i t h displacement o f an e q u a t o r i a l c a r b o n y l group such t h a t the two v i n y l groups c o u l d be brought i n t o . s u f f i c i e n t proxim-i t y to couple. Such a compound, 21, i s a l s o observed i n these p o s i t i o n s . When an excess o f the l i g a n d was r e f l u x e d with 20 21 - 12 -r e a c t i o n s . Here a monocarbonyl Ruthenium(O) d e r i v a t i v e o f a t e t r a d e n t a t e c i s o i d diene l i g a n d i s obt a i n e d w i t h e l i m i n a -t i o n o f hydrogen. The f a t e of the H 2 l o s t i n t h i s process has not been determined. Other r e l a t e d c o u p l i n g r e a c t i o n s have a l s o been observed by Bennettet a l . (26). The t e t r a -dentate c i s o i d diene type of l i g a n d i n 21_ c l o s e l y resembles the c o b a l t complex 16b observed by C u l l e n e t a l . where two cyclobutene r e s i d u e s have coupled t o g e t h e r . U n t i l 1973, a l l f l u o r o a l i c y c l i c d e r i v a t i v e s o f d i -t e r t i a r y a r s i n e and phosphine l i g a n d s s t u d i e d by C u l l e n e t a l . i n v o l v e d o n l y a s i n g l e r i n g i n the b r i d g i n g groups. As an e x t e n s i o n o f t h i s work and a l s o because o f the d i s c o v e r y o f a b i a l i c y c l i c 'butadiene' b r i d g i n g group i n the c o b a l t complex, 16b, the s y n t h e s i s o f d i t e r t i a r y a r s i n e s and phosphines with b r i d g i n g b i a l i c y c l i c r i n g s was attempted (27). Park e t a l . (28) have s y n t h e s i s e d a d i c h l o r o f l u o r o b i a l i c y c l i c compound 2_2 as shown i n equation [8] . The d e s i r e d compound was o b t a i n e d when diphenylphosphine or d i m e t h y l a r s i n e was (CF-) (CF„) ^ F o K (CF„) ( 2 r 2 r ( r( T CIC = CI + 2Cu + IC = CC1 > CIC = C-C = CCl + 2CuI [8] 22 a) n=2, b) n=3, c) n=4 r e a c t e d with 22^ ; the r e a c t i o n proceeded as i n d i c a t e d i n equ a t i o n [9] (E=As,•R=CH3, n=2,3; E=P, R=C 6H 5, n=2). In the case where E=P, R^-.H- , n=3, only the monosubstituted - 13 -(CF,) (CF,), ( n ) C1C = C-C = C( d e r i v a t i v e was o b t a i n e d ( 2 7 ) . The d i t e r t i a r y p h o s p h i n e , 23, (where E=P, R=C,H C, n=2) was found t o be p h o t o c h r o m i c . The s o l i d was y e l l o w i n t h e dark and t u r n e d r e d on exposure t o s u n l i g h t , and the p r o c e s s was found t o be r e v e r s i b l e . S i n c e t h e b i s p h o s p h i n e o x i d e o f 23_ d i d not e x h i b i t t h i s phenomenon i t was s u g g e s t e d t h a t i t was a s s o c i a t e d w i t h the presence o f t h e l o n e p a i r o f e l e c t r o n s on the phosphorus atoms and t h a t the photochromism might be enhanced by r e p l a c i n g the p h e n y l groups on 23_ by l e s s e l e c t r o n e g a t i v e c y c l o h e x y l groups. I t was a l s o o f i n t e r e s t t o o b s erve whether t h e l i g a n d 23 on replacement o f one o f the P ( C g H 5 ) 2 groups by an A s f C H ^ ^ group gave a compound w h i c h was p h o t o c h r o m i c . T h i s t h e s i s r e p o r t s the s y n t h e s i s o f the d i c y c l o h e x y l -phosphino d e r i v a t i v e o f 23_, namely 2, 2 ' - b i s ( d i c y c l o h e x y l -phosphino) o c t a f l u o r o ( b i - l - c y c l o b u t e n - l - y l ) , 24_ ( 2 9 ) . A t t e m p t s t o p r e p a r e the mixed l i g a n d , 2 - d i p h e n y l p h o s p h i n o - 2 ' -d i m e t h y l a r s i n o o c t a f l u o r o ( b i - l - c y c l o b u t e n - l - y l ) ( b i f g A s P ) were n o t s u c c e s s f u l . The r e a c t i o n s o f 2A w i t h Group VI m e t a l h e x a c a r b o n y l s have been i n v e s t i g a t e d . The analogous s i n g l e r i n g l i g a n d s namely, 1 , 2 - b i s ( d i c y c l o h e x y l p h o s p h i n o ) -t e t r a f l u o r o c y c l o b u t e n e , 25a and 1 , 2 - b i s ( d i c y c l o h e x y l -phosphino) h e x a f l u o r o c y c l o p e n t e n e , 25b, were a l s o s y n t h e s i s e d . (CF,) (CF,> ( fi ) R 2EC = C-C = CER 2 + 2HC1 [9] - 14 -Chapter I I I of t h i s t h e s i s deals w i t h the s y n t h e s i s and c h a r a c t e r i z a t i o n of the above-mentioned l i g a n d s . The s y n t h e s i s l 1 of t e r t i a r y phosphine l i g a n d s such as R 2PC=CC1[CF^) , 26, are a l s o d e s c r i b e d . The r e a c t i o n s of the d i t e r t i a r y phosphines (L-L) with a range of t r a n s i t i o n metal carbonyls and metal h a l i d e s have been i n v e s t i g a t e d . The r e s u l t s of such a study are presented i n Chapter IV. Since the chemistry of the t e r t i a r y phosphine l i g a n d s I ~1 R 2PC=CC1(CF 2) (L) has never been s t u d i e d and because of the presence of two p o t e n t i a l c o o r d i n a t i o n s i t e s , namely the group V donor atom and the double bond, i t was of i n t e r e s t to study the r e a c t i o n s of these l i g a n d s with t r a n s i t i o n metal c a r b o n y l s and metal h a l i d e s . Chapter V o f t h i s t h e s i s d e a l s with such an i n v e s t i g a t i o n . In some r e a c t i o n s fragmentation of the l i g a n d s has been observed. Since the photochromic d i t e r t i a r y phosphine l i g a n d , 23_, when r e a c t e d w i t h i r o n c a r bonyls i s found to undergo some novel l i g a n d cleavage r e a c t i o n s , the r e s u l t s of t h i s study are d i s c u s s e d i n the l a t t e r p a r t of Chapter V. The use o f t r a n s i t i o n metal c a r b o n y l complexes as s p e c i f i c homogenous c a t a l y s t s has generated much r e c e n t i n t e r e s t . A number of t r a n s i t i o n metal complexes such as Fe(CO) c and M(CO) c (M=Cr,Mo,W) are known to a c t as homo-geneous c a t a l y s t s f o r o l e f i n i s o m e r i z a t i o n (30,31,32,33). The c a t a l y t i c a c t i v i t y of an a l l y l i r o n c a r b o n y l c l u s t e r - 15 -compound, [T]3 - C^B^Fe (CO) ^] 2 has been r e p o r t e d by M u e t t e r t i e s e t a l . ( 3 4 ) . P h o t o c a t a l y z e d o l e f i n d i s p r o p o r t i o n a t i o n r e a c t i o n s u s i n g t r a n s i t i o n m e t a l c a r b o n y l s have a l s o been i n v e s t i g a t e d (35,36). F u r t h e r m o r e , p h o t o c a t a l y z e d h y d r o -g e n a t i o n o f o l e f i n s u s i n g Fe(CO),- has a l s o been r e p o r t e d ( 3 2 ) . B e a r i n g t h e s e i n mind, a p r e l i m i n a r y i n v e s t i g a t i o n o f t h e r e a c t i o n scope f o r an i r o n c a r b o n y l complex R 2PC-GCFCF2CF 2 F e 2 ( C O ) g t o f u n c t i o n as a homogeneous c a t a l y s t i n o l e f i n i s o m e r i z a t i o n was u n d e r t a k e n . The r e s u l t s o f t h i s i n v e s t i g a -t i o n a re d i s c u s s e d i n C h a p t e r V I . A l l e x p e r i m e n t a l work r e l a t i n g t o the s y n t h e s i s o f t h e d i t e r t i a r y phosphine and t e r t i a r y phosphine l i g a n d s and t h e i r r e a c t i o n s w i t h t r a n s i t i o n m e t a l c a r b o n y l s and m e t a l h a l i d e s are r e p o r t e d i n Chapter I I . A n a l y t i c a l and s p e c t r o -s c o p i c d a t a f o r the l i g a n d s and t h e i r m e t a l complexes a r e a l s o g i v e n . - 16 -CHAPTER I I EXPERIMENTAL 1. General techniques and p h y s i c a l measurements. A l l r e a c t i o n s were c a r r i e d out e i t h e r i n c o n v e n t i o n a l r e a c t i o n f l a s k s under a n i t r o g e n atmosphere or i n s e a l e d evacuated C a r i u s tubes. A standard vacuum system was used f o r the m a n i p u l a t i o n of v o l a t i l e r e a c t a n t s . I n v o l a t i l e phosphines were handled i n a n i t r o g e n f i l l e d glove bag. I n f r a r e d s p e c t r a were recorded on a Perkin-Elmer 457 Spectrophotometer. S o l u t i o n s p e c t r a were run i n 0.1 mm KBr c e l l s and unless otherwise s t a t e d , a l l s p e c t r a were run i n cyclohexane s o l u t i o n . S p e c t r a o f s o l i d s were ob t a i n e d e i t h e r as mulls ( C s l p l a t e s ) or KBr d i s c s . A l l s p e c t r a were c a l i b r a t e d u s i n g p o l y s t y r e n e ; only s e l e c t e d bands are quo-ted i n the experimental d e t a i l s . N uclear magnetic resonance (nmr) s p e c t r a were run on V a r i a n T-60 and XL-100 s p e c t r o -meters with chemical s h i f t s given i n ppm downfield from 1 19 i n t e r n a l TMS f o r H and u p f i e l d from i n t e r n a l CFC1 3 f o r F 31 and u p f i e l d from e x t e r n a l H 3P0 4 (85%) f o r P proton decoupled s p e c t r a . Unless otherwise s t a t e d a l l s p e c t r a were run i n CDC1 0. - 17 -Mass s p e c t r a were measured wit h an AEI MS-9 Spe c t r o -meter, o n l y peaks due to the major i s o t o p e s are r e p o r t e d . The usual fragmentation p a t t e r n f o r a l l i s o t o p i c compounds were observed. M e l t i n g p o i n t s were determined i n open c a p i l l a r i e s u s i n g a Gallenkamp m e l t i n g p o i n t apparatus and are u n c o r r e c t e d . A l l UV i r r a d i a t i o n s were performed u s i n g a 200 W Hanovia 654-A36 lamp s i t u a t e d 20 cm from the r e a c t i o n tube, which was c o n t i n u o u s l y shaken and coo l e d by an a i r stream. TLC experiments were performed u s i n g Eastman polythene backed s i l i c a s heets, and compounds were det e c t e d by UV l i g h t "(254 nm) . Mic r o a n a l y s e s were performed by Mr. P. Borda o f the Deparment o f Chemistry, U.B.C. 2. S t a r t i n g m a t e r i a l s . The f o l l o w i n g chemicals were obtained commercially and used without f u r t h e r p u r i f i c a t i o n . Table 1 Purchased Chemicals and S u p p l i e r s Chemical S u p p l i e r s 1 , 2 - d i c h l o r o t e t r a f l u o r o c y c l o b u t e n e P e n i n s u l a r Chem. Research Inc. 1 , 2 - d i c h l o r o h e x a f l u o r o c y c l o p e n t e n e " " " 1 , 2 - d i c h l o r o o c t a f l u o r o c y c l o h e x e n e " " " di c y c l o h e x y l p h o s p h i n e Strem Chemical Co. diphenylphosphine i r o n pentacarbonyl II - 1 8 -T a b l e 1 (c o n t i n u e d ) t r i p h e n y l p h o s p h i n e d i c o b a l t o c t a c a r b o n y l m e s i t y l e n e t u n g s t e n t r i c a r b o n y l chromium h e x a c a r b o n y l molybdenum h e x a c a r b o n y l t u n g s t e n h e x a c a r b o n y l dimanganese d e c a c a r b o n y l d i s o d i u m t e t r a c h l o r o p a l l a d a t e ( I I ) d i p o t a s s i u m t e t r a c h l o r o -p l a t i n a t e ( I I ) d e u t e r a t e d c h l o r o f o r m F l o r i s i l (60-100 mesh) F-100 i o d i n e bromine t r i i r o n d o d e c a c a r b o n y l d i m e t h y l a r s i n e 2 , 2 ' - b i s ( d i p h e n y l a r s i n o ) -o c t a f l u o r o ( b i - l - c y c l o b u t e n -1-yl) ( b i f g p h e n a r s ) l - c h l o r o - 2 - d i m e t h y l a r s i n o h e x a -f l u o r o c y c l o p e n t e n e ( f g C h l o r A s ) Strem C h e m i c a l Co, P r e s s u r e C hemical Co, P l a t i n u m C h e m i c a l I n c Merck Sharp & Dohme o f Canada L t d . F i s h e r S c i e n t i f i c Co. M a l l i n c k r o d t G i f t o f Mr. B. C l i f f o r d G i f t o f Dr. D.J. Patmore G i f t o f Dr. A.W. Wu (37) G i f t o f Dr. L.S. C h i a (38) A method d e s c r i b e d by Park e t a l . (28) was used f o r the s y n t h e s i s o f 2 , 2 ' - d i c h l o r o o c t a f l u o r o - ( b i - l - c y c l o b u t e n -1 - y l ) . T e t r a k i s ( t r i p h e n y l p h o s p h i n e ) p l a t i n u m (0) was s y n t h e s i s e d as d e s c r i b e d by Ugo e t a l . (39) . - 19 -3. P r e p a r a t i o n o f the d i t e r t i a r y phosphine and t e r t i a r y  phosphine l i g a n d s . (A) P r e p a r a t i o n o f 2 , 2 ' - b i s ( d i c y c l o h e x y l p h o s p h i n o ) -o c t a f l u o r o ( b i - l - c y c l o b u t e n - l - y l ) ( b i f g d i p h o s ) . A 100 ml three-necked f l a s k f i t t e d w i t h n i t r o g e n i n l e t , r e f l u x condenser, s t i r r e r and rubber septum s t o p p e r was charged w i t h 2 , 2 ' - d i c h l o r o o c t a f l u o r o - ( b i - l - c y c l o b u t e n -l - y l ) (0.56 g, 1.76 mmol) (28) i n 10 ml of di m e t h y l -formamide* (DMF). The f l a s k was c o o l e d to 0°C and d i c y c l o -hexylphosphine (0.7 g, 3.52 mmol) i n DMF (5 ml) was added u s i n g a s y r i n g e . The s o l u t i o n was warmed to 20°C and l e f t f o r 24 h. The yellow s o l i d which p r e c i p i t a t e d was f i l t e r e d o f f in. a n i t r o g e n atmosphere, d r i e d under vacuum, and r e c r y s t a l l i z e d from hexane to gi v e yellow c r y s t a l s o f b i f 0 d i p h o s (0.74 g, 65%) mp 174°C. o Mass spec: m/e 642 (p"1")'. i r : 1310 ( s ) , 1225 (m), 1124(s) cm - 1 (C-F). ^ nmr: 0.97 - 2.23 (m, broa d ) . 19 31 F nmr: 105.8(m) and 109.4(m) o f equal area. P nmr: 7.66(m). A n a l . C a l c d . f o r C 3 2 H 4 4 F g P 2 : C, 59.8; H, 6.85. Found: C, 59.8; H, 6.99%. * Dimethyl formamide was p u r i f i e d by shaking w i t h KOH and subsequently ' d i s t i l l e d from barium oxide. - 2 0 -(B) P r e p a r a t i o n of 1 , 2 - b i s ( d i c y c l o h e x y l p h o s p h i n o ) h e x a -f l u o r o c y c l o p e n t e n e ( f g d i p h o s ) and l - c h l o r o - 2 -d i c y c l o h e x y l p h o s p h i n o h e x a f l u o r o c y c l o p e n t e n e - 1 ( f g C h l o r p h o s ) . The experimental s e t up was s i m i l a r to t h a t des-c r i b e d i n 3 (A). D i c y c l o h e x y l p h o s p h i n e (1.96 g, 9.9 mmol) i n DMF (8 ml) was added to 1, 2 - d i c h l o r o h e x a f l u o r o c y c l o p e n t e n e (1.22 g, 4.97 mmol) i n DMF (8 ml) at 0°C. A f t e r an hour the s o l u t i o n was warmed to 20°C l e f t f o r 24 h (no p r e c i p i t a t e formed), and r e f l u x e d f o r 2 h. On c o o l i n g to 20°C a ye l l o w s o l i d appeared which was f i l t e r e d o f f i n a n i t r o g e n atmos-phere and d r i e d under vacuum. R e c r y s t a l l i z a t i o n from hexane y i e l d e d s h i n y yellow c r y s t a l s of 1 , 2 - b i s ( d i c y c l o h e x y l -phosphino) h e x a f l u o r o c y c l o p e n t e n e ( f g d i p h o s ) , (1.12 g, 40%) mpl84°C[lit. 194-194.5°C (11) ] . Mass spec: m/e 5 6 8 ( P + ) . i r : 1321(m), 1270(m), 1225(m), 1205(m), 1175(s), 1120(s), 1068(s), 995(s) cm" 1. 1 19 H nmr: 0.9 - 2.36 (m, br o a d ) . F nmr: 107.7 (m,2) and 31 134.0 (m,l). P nmr: 10.13(m). A n a l . C a l c d . f o r C 2 9 H 4 4 F 6 P 2 : C ' 6 1 * 3 ; H ' 7 - 7 5 - Found: C, 61.1; H, 7.50%. The f i l t r a t e which was yellow was c o o l e d to 5°C and an o i l y s o l i d separated which c r y s t a l l i z e d i n t o a pale y e l l o w s o l i d . T h i s was i d e n t i f i e d as l - c h l o r o - 2 - d i c y c l o h e x y l -phosphinohexafluorocyclopentene-1 (fgChlorphos) (0.71 g, 35%) mp 26°C. - 21 -Mass spec: m/e 4 0 6 ( P T ) . i r : 1580(m) (C=C), 876 (s) (C-Cl) , 1336 ( s ) , 1260 (sh), 1280 ( s ) , 1225 ( s ) , 1200 (s) , 1150(s,b), 1120(m), 1100(s), 1001(s) cm - 1. """H nmr: 0.85 -2.48. 1 9 F nmr: 105.2 (m,l), 114.0 (m,l) and 129.6 (m,l). A n a l . C a l c d . f o r C 1 7 H 2 2 C 1 F 6 P : C, 50.2; H, 5.41. Found: C, 50.2; H, 5.65%. (C) P r e p a r a t i o n o f 1 , 2 - b i s ( d i c y c l o h e x y l p h o s p h i n o ) -t e t r a f l u o r o c y c l o b u t e n e ( f 4 d i p h o s ) and l - c h l o r o - 2 -d i c y c l o h e x y l p h o s p h i n o t e t r a f l u o r o c y c l o b u t e n e - 1 ( f ^ c h l o r p h o s ) . In the usual way, dicyclohexylp'hosphine (1.95 g, 9.85 mmol) i n DMF (8 ml) was added to 1 , 2 - d i c h l o r o t e t r a f l u o r o -cyclobutene (0.97 g, 4.79 mmol) i n DMF (15 ml) a t 0°C. The s o l u t i o n was warmed to 20°C and l e f t f o r 24 h. The white s o l i d which p r e c i p i t a t e d was f i l t e r e d o f f i n a n i t r o g e n atmosphere, d r i e d under vacuum and r e c r y s t a l l i z e d from hexane to give white c r y s t a l s o f 1 , 2 - b i s ( d i c y c l o h e x y l p h o s p h i n o ) -t e t r a f l u o r o c y c l o b u t e n e ( f 4 d i p h o s ) (1.5 g, 60%), mp 126°C. Mass spec: m/e 5 1 8 ( P + ) . i r : 1310(s), 1228(m), 1142(s), 1105(s) c m - 1 (C-F). 1H nmr: 0.85 - 2.20 (m, broad ) . 1 9 F n m r : 106.4(s). 3 1 P nmr: 13.29(m). A n a l . C a l c d . f o r C 2 8 H 4 4 F 4 P 2 : C ' 6 4 ' 8 ; H ' 8 - 5 0 - Found: C, 64.8; H, 8.55%. The f i l t r a t e which was pale yellow was e x t r a c t e d w i t h ether; the e t h e r e x t r a c t was washed w e l l w i t h water and - 22 -d r i e d over anhydrous MgS0 4. Removal o f s o l v e n t gave a c o l o u r l e s s o i l y l i q u i d w h i c h was i d e n t i f i e d as l - c h l o r o - 2 -d i c y c l o h e x y l p h o s p h i n o t e t r a f l u o r o c y c l o b u t e n e - 1 ( f 4 c h l o r p h o s ) (0.6 g, 34%).. Mass spec: m/e 3 5 6 ( P + ) . i r : 1569(m) (C=C), 869 (s) (C-Cl) , 1335 ( v s ) , 1250 (s) , 1210( w) , 1190( w) , 1160(m), 1130(vs) (C-F) c m - 1 . 1H nmr: 0.9 - 2.48 (m, 19 b r o a d ) . F nmr: 108.4(m), 114.8(m) o f e q u a l a r e a . A n a l . C a l c d . f o r C 1 6 H 2 2 C 1 F 4 P : C, 53.9; H, 6.22. Found: C, 54.4; H, 6.42%. (D) P r e p a r a t i o n o f l - c h l o r o - 2 - d i p h e n y l p h o s p h i n o h e x a -f l u o r o c y c l o p e n t e n e - 1 ( f g C h l o r f o s ) . I n t h e u s u a l way, d i p h e n y l p h o s p h i n e (3.81 g, 20.4 mmol) i n DMF (10 ml) was added t o a s o l u t i o n o f 1,2-d i c h l o r o h e x a f l u o r o c y c l o p e n t e n e (5.01 g, 20.4 mmol) i n DMF (10 ml) a t 0°C. A f t e r an hour the s o l u t i o n was warmed t o 20°Cand, l e f t f o r 3 h (no p r e c i p i t a t e formed) and r e f l u x e d f o r 4 h (150°C). The s o l u t i o n was then poured i n t o w a t e r (100 ml) and e x t r a c t e d w i t h d i e t h y l e t h e r . The e t h e r e a l e x t r a c t was t r e a t e d as d e s c r i b e d i n 3 ( C ) . Removal o f s o l v e n t gave a p a l e y e l l o w o i l which was d i s s o l v e d i n a s m a l l volume o f p e t r o l e u m e t h e r . Chromatography on F l o r i s i l gave a f a i n t y e l l o w band (almost c o l o u r l e s s ) w h i c h was e l u t e d w i t h p e t r o l e u m e t h e r . E v a p o r a t i o n o f s o l v e n t and r e c r y s t a l l i z a -t i o n from hexane a f f o r d e d w h i t e c r y s t a l s o f l - c h l o r o - 2 -d i p h e n y l p h o s p h i n o h e x a f l u o r o c y c l o p e n t e n e - 1 ( f g C h l o r o f o s ) (3.2 g, 40%) mp 47°C [ l i t . 49-50°C ( 1 1 ) ] . - 23 -Mass spec: m/e 3 9 4 ( P + ) . i r : 1580(w,b) (C=C), 879(s) ( C - C l ) , 1 3 3 1 ( s ) , 1 2 8 1 ( s ) , 1 2 3 6 ( s ) , 1 2 0 2 ( s ) , 1 1 9 0 ( s h ) , 1 1 5 0 ( v s ) , 1 0 9 5 ( s ) , 1 0 0 5 ( B ) cm - 1. XH nmr: 7.16 - 7.43 (m,b). 1 9 F nmr: 105.2 ( m , l ) , 114.9 ( m , l ) , 129.6 ( m , l ) . A n a l . C a l c d . f o r C 1 7 H 1 Q C 1 F 6 P : C, 51.7; H, 2.55. Found: C, 51.9; H, 2.55%. A 1% d i e t h y l e t h e r - 99% p e t r o l e u m e t h e r m i x t u r e e l u t e d a p a l e y e l l o w band. E v a p o r a t i o n o f s o l v e n t and r e -c r y s t a l l i z a t i o n from hexane a f f o r d e d w h i t e c r y s t a l s o f 1,2-b i s ( d i p h e n y l p h o s p h i n o ) h e x a f l u o r o c y c l o p e n t e n e ( f ^ f o s ) (0.8 g, 14.5%) mp 98°C, o f known s p e c t r o s c o p i c p r o p e r t i e s ( 1 3 ) . (E) P r e p a r a t i o n o f l - c h l o r o - 2 - d i p h e n y l p h o s p h i n o t e t r a -f l u o r o c y c l o b u t e n e - 1 ( f ^ c h l o r f o s ) . The e x p e r i m e n t a l s e t up was s i m i l a r t o t h a t des-c r i b e d i n 3 ( A ) . D i p h e n y l p h o s p h i n e (5.6 g, 30.1 mmol) i n DMF (15 ml) was added t o a s o l u t i o n o f 1 , 2 - d i c h l o r o t e t r a -f l u o r o c y c l o b u t e n e (5.9 g, 30.1 mmol) i n DMF (15 ml) a t 0°C. A f t e r an hour the s o l u t i o n was warmed t o 20°C and l e f t f o r 23 h (no p r e c i p i t a t e formed) and r e f l u x e d f o r 6 h. The f l a s k was then c o o l e d t o 0°C and a w h i t e s o l i d appeared which was f i l t e r e d o f f . R e c r y s t a l l i z a t i o n from hexane gave w h i t e c r y s t a l s o f 1 , 2 - b i s ( d i p h e n y l p h o s p h i n o ) t e t r a f l u o r o c y c l o b u t e n e (1.4 g, 18.8%) mp 129°C o f known s p e c t r o s c o p i c p r o p e r t i e s ( 9 ) . - 24 -The f i l t r a t e w h ich was r e d was poured i n t o w a t e r (150 ml) and e x t r a c t e d w i t h d i e t h y l e t h e r . The e t h e r e a l e x t r a c t was t r e a t e d as d e s c r i b e d i n 3 ( C ) . Removal o f s o l v e n t gave a r e d o i l which was d i s s o l v e d i n a s m a l l volume o f d i c h l o r o m e t h a n e . Chromatography on a F l o r i s i l column gave a p a l e y e l l o w band which was e l u t e d w i t h p e t r o l e u m e t h e r . E v a p o r a t i o n o f s o l v e n t gave a p a l e y e l l o w o i l i d e n t i f i e d as f 4 c h l o r f o s (2.9 g, 28.4%) o f known s p e c t r o -s c o p i c p r o p e r t i e s ( 1 3 ) . Mass spec: m/e 3 4 4 ( P + ) . i r : 1575(w,b) (C=C), 8 6 0 ( 3 ) , 835(s) (C-Cl) , 1480(m), 1 3 2 0 ( v s ) , 1240(w), 1210(w), 1 1 2 0 ( v s ) , 1030(m), 1000(m). 1H nmr: 7.5(m). 1 9 F nmr: 109.6 ( m , l ) , 116.0 ( m , l ) . (F) P r e p a r a t i o n o f l - c h l o r o - 2 - d i c y c l p h e x y l p h o s p h i n o -o c t a f l u o r o c y c l o h e x e n e - 1 (fgChlorphos). D i c y c l o h e x y l p h o s p h i n e (2.9 g, 14.8 mmol) i n DMF (15 ml) was added t o 1 , 2 - d i c h l o r o o c t a f l u o r o c y c l o h e x e n e (4.36 g, 14.7 mmol) i n DMF (10 ml) a t 0°C. A f t e r an hour the s o l u t i o n was warmed t o 20°C, l e f t f o r 4 h (no p r e c i p i t a t e formed) and r e f l u x e d f o r 5 h. A t t h e end o f the r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y p a l e y e l l o w ) was r e d . The r e s u l t i n g s o l u t i o n was poured i n t o w ater (150 ml) and e x t r a c t e d w i t h d i e t h y l e t h e r . The e t h e r e a l e x t r a c t was t r e a t e d as d e s c r i b e d i n 3 ( C ) . Removal o f s o l v e n t gave an orange o i l , w h i c h was d i s s o l v e d i n a s m a l l volume of d i c h l o r o -methane. Chromatography on a F l o r i s i l column gave a y e l l o w - 25-band which was e l u t e d w i t h petroleum e t h e r . E v a p o r a t i o n o f s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d e d pale y e l l o w c r y s t a l s i d e n t i f i e d as fgChlorphos (1.2 g, 17.8%) mp 47°C. Mass spec: m/e 456 (P +) . i r : 1585 (m) (0=0, 870(m,b) ( C - C l ) , 1345(m), 1230(vs), 1210(vs), 1170(vs), 1140(s), 1118(s), 1040(m), 990(s), 800(m). 1H nmr: 1.0 -2.2 (m,b). 1 9 F nmr: 104.0 (m,l), 110.4 (m,l), 134.4 (m,2). A n a l . C a l c d . f o r C-^H^ClFgP : C, 47.3; H, 4.85. Found: C, 47.8; H, 4.88%. (G) P r e p a r a t i o n of l - c h l o r o - 2 - d i p h e n y l p h o s p h i n o o c t a -fluorocyclohexene-1 ( f D c h l o r f o s ) . o In the usual way, diphenylphosphine (2.42 g, 13.0 mmol) i n DMF (15 ml) was added t o 1 , 2 - d i c h l o r o o c t a -f l u o r o c y c l o h e x e n e (3.83 g, 12.9 mmol) i n DMF (12 ml) a t 0°C. A f t e r an hour the s o l u t i o n was warmed to 20°C, l e f t f o r 3.5 h (no p r e c i p i t a t e formed) and r e f l u x e d f o r 5 h. At the end o f the r e a c t i o n p e r i o d the s o l u t i o n was c o o l e d t o 0°C and an orange s o l i d appeared which was f i l t e r e d o f f . R e c r y s t a l l i z a -t i o n from hexane a f f o r d e d orange c r y s t a l s o f 1 , 2 - b i s ( d i -phenylphosphino) o c t a f l u o r o c y c l o h e x e n e (fgfos) (0.98 g, 25.4%) of known s p e c t r o s c o p i c p r o p e r t i e s (40) . The f i l t r a t e which was orange was poured i n t o water and e x t r a c t e d with d i e t h y l e t h e r . The e t h e r e a l e x t r a c t was t r e a t e d as d e s c r i b e d i n 3 (C). Removal of s o l v e n t gave an - 26 -orange o i l which was d i s s o l v e d i n a sm a l l volume o f d i c h l o r o -methane. Chromatography on a F l o r i s i l column gave a y e l l o w band which was e l u t e d w i t h petroleum e t h e r . E v a p o r a t i o n o f s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d e d pale yellow c r y s t a l s i d e n t i f i e d as f g C h l o r f o s (1.2 g, 21.05%) mp 6 3°C. Mass spec: m/e 4 4 4 ( P + ) . i r : 1585(m) (C=C), 870(m,b) ( C - C l ) , 1345(m), 1230(vs), 1210(vs), 1170(vs), 1135(s), 1120(s), 990 ( s ) , 800 (m) , 750 (s) cm" 1. ^ nmr: 7.4(m). 1 9 F nmr: 103.5 (m,l), 110.6 (m,l), 134.4 (m,2). A n a l . C a l c d . f o r C ^ H ^ C l F g P : C, 48.6; H, 2.26. Found: C, 49.2; H, 2.51%.. (H) Attempted s y n t h e s i s o f 2-d i m e t h y l a r s i n o , 2'-d i p h e n y l p h o s p h i n o o c t a f l u o r o ( b i - l - c y c l o b u t e n - 1 -y l ) (bifgAsP) . (i) D i m e t h y l a r s i n e (0.22 g, 20.7 mmol) was added t o a s o l u t i o n o f 2 , 2 1 - d i c h l o r o o c t a f l u o r o ( b i - 1 -c y c l o b u t e n - l - y l ) (0.64 g, 20.1 mmol) i n e t h e r (12 ml) under vacuum. The s o l u t i o n was then allowed t o stand at -78°C f o r 20 h. A pale y e l l o w s o l i d was observed on the s i d e s o f the C a r i u s tube. A f t e r 20 h the mixture was allowed to warm up to 20°C over 4 h, d u r i n g which time the pale yellow s o l i d disappeared. The tube was opened and diphenylphosphine (0.39 g, 20.9 mmol) i n et h e r (8 ml) was s y r i n g e d i n . The tube was then - 27 -evacuated and allowed to stand a t -78°C f o r 24 h. At the end of the r e a c t i o n p e r i o d the s o l u t i o n was deep yellow. The s o l u t i o n was allowed to warm up to 20°C. The tube was opened and removal o f s o l v e n t gave a yellow s o l i d . The s o l i d was d i s s o l v e d i n a smal l volume of dichloromethane and chromatography on a F l o r i s i l column gave a yellow band which was e l u t e d with petroleum e t h e r . E v a p o r a t i o n o f s o l v e n t gave a yellow s o l i d (^ H nmr: 7.4 ( m , l l ) , 1.4 (m,5)) but upon r e c r y s t a l l i z a t i o n a mixture o f s o l i d s , b i f g f o s (0.252 g, 39.0%) and b i f g f a r s (0.166 g, 34.9%) of known s p e c t r o s c o p i c pro-p e r t i e s were obtained (27). ( i i ) A mixture o f the same symmetrical products were o b t a i n e d when the r e a c t i o n was repeated and a l l o p e r a t i o n s conducted at -78°C. Thus the s o l u t i o n was not allowed to warm up to 20°C a f t e r the a d d i t i o n o f d i m e t h y l a r s i n e . ( i i i ) When the r e a c t i o n was repeated at -78°C u s i n g DMF as s o l v e n t , i d e n t i c a l products were o b t a i n e d . (I) Reaction o f f^chlorphos with diphenylphosphine. A 100 ml three necked f l a s k f i t t e d w i t h n i t r o g e n i n l e t , r e f l u x condenser and pressure e q u a l i z e d dropping funnel was charged with ^ c h l o r p h o s (0.54 g, 1.5 mmol) i n DMF (15 ml). Diphenyl phosphine (0.28 g, 1.5 mmol) i n DMF (10 ml) was added dropwise v i a the dropping f u n n e l . The s o l u t i o n * The monosubstituted a r s i n e or phosphine was not i s o l a t e d . - 28 -was a l l o w e d t o s t i r a t 20°C f o r 24 h and then h e a t e d t o 80°C f o r another 24 h. No s o l i d was ob s e r v e d a t t h e end o f t h e r e a c t i o n p e r i o d . The r e s u l t i n g s o l u t i o n was added t o w a t e r (100 ml) and the o r g a n i c l a y e r was e x t r a c t e d i n t o e t h e r . The e t h e r e x t r a c t was t r e a t e d as d e s c r i b e d i n p r o c e d u r e 3 ( C ) . Removal o f s o l v e n t gave a s t i c k y orange s o l i d w h i c h was not i d e n t i f i e d b u t i t s nmr spectrum showed o n l y the presence o f ( C 6 H X X ) p r o t o n s . (J) R e a c t i o n o f f , c h l o r p h o s w i t h d i p h e n y l p h o s p h i n e . b A 100 ml t h r e e necked f l a s k f i t t e d w i t h n i t r o g e n i n l e t , r e f l u x condenser, s t i r r e r and rub b e r septum s t o p p e r was charg e d w i t h fgChlorphos (0.77 g, 1.89 mmol), i n DMF (15 m l ) . The f l a s k was c o o l e d t o 0°C and d i p h e n y l p h o s p h i n e (0.35 g, 1.89 mmol) i n DMF (10 ml) was added u s i n g a s y r i n g e . The s o l u t i o n was warmed t o 20°C and l e f t f o r 20 h (no p r e c i p i t a t e formed), and r e f l u x e d f o r 9 h. The r e s u l t i n g orange s o l u t i o n was e x t r a c t e d i n t o e t h e r and the e t h e r e a l e x t r a c t was t r e a t e d as d e s c r i b e d i n 3 ( C ) . Removal o f s o l v e n t gave an orange o i l which was d i s s o l v e d i n a s m a l l volume o f d i c h l o r o m e t h a n e . Chromatography on a F l o r i s i l column gave a y e l l o w band which was e l u t e d w i t h 1% d i e t h y l e t h e r - 99% p e t r o l e u m e t h e r . Removal o f s o l v e n t gave a c o l o u r l e s s s o l i d i d e n t i f i e d as u n r e a c t e d f ^ c h l o r p h o s (0.3 g, 38.9%) r e c o v e r y . A n o t h e r y e l l o w band was e l u t e d w i t h 100% m e t h a n o l . Removal o f s o l v e n t gave a s t i c k y y e l l o w s o l i d w h i c h was n o t - 29 -i d e n t i f i e d b u t i t s H nmr spectrum showed t h e presence o f o n l y C g H ^ p r o t o n s . 4. R e a c t i o n s o f the d i t e r t i a r y phosphines (L-L) w i t h  t r a n s i t i o n m e t a l c a r b o n y l s and m e t a l h a l i d e s . (A) R e a c t i o n s o f b i f g d i p h o s , f 4 d i p h o s , f g d i p h o s (L-L) and the d i t e r t i a r y a r s i n e , b i f g p h e n a r s (L-L) w i t h Group VI m e t a l h e x a c a r b o n y l s . The f o l l o w i n g g e n e r a l p r o c e d u r e was used f o r the p r e p a r a t i o n o f a l l (L-L)M(CO) 4 complexes (M = C r , Mo, W) by the r e a c t i o n o f (L-L) w i t h t h e Group VI m e t a l hexa-c a r b o n y l s . The d e t a i l s a p p l y i n g t o s p e c i f i c complexes are l i s t e d i n T a b l e I I . A benzene s o l u t i o n c o n t a i n i n g a 1:1 mole r a t i o o f l i g a n d t o h e x a c a r b o n y l was h e a t e d i n a C a r i u s tube a t t h e i n d i c a t e d temperature f o r 12 - 216 h. A t t h e end o f the r e a c t i o n p e r i o d t h e tube was opened and the s o l v e n t removed a t r e d u c e d p r e s s u r e . The c o l o u r e d s o l i d r e s i d u e was th e n d i s s o l v e d i n a s m a l l volume o f d i c h l o r o m e t h a n e and chromato-graphed on a F l o r i s i l column. The c o l o u r e d bands were e l u t e d w i t h 1% d i e t h y l e t h e r - 99% p e t r o l e u m e t h e r . Removal o f s o l v e n t a t reduced p r e s s u r e gave the crude complex. U n l e s s o t h e r w i s e s t a t e d a l l the (L-L)M(CO) 4 complexes were r e -c r y s t a l l i z e d from hexane and i d e n t i f i e d by means o f t h e i r mass s p e c t r a w h i c h showed m/e(P +) f o l l o w e d by peaks c o r r e s -- 30 -poinding to [P-n(CO) ] (n = 1-4) . A n a l y t i c a l data are l i s t e d i n Table I I I and i r and nmr data i n Table IV. (B) Reaction o f f 4 d i p h o s with mesitylenetungsten t r i -c a r b o n y l . M e s i t y l e n e t u n g s t e n t r i c a r b o n y l (0.26 g, 0.66 mmol) and f 4 d i p h o s (0.34 g, 0.66 mmol) i n benzene (8 ml) were heated i n an evacuated C a r i u s tube at 150°C f o r 72 h. At the end o f the r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y yellow) was b l a c k i s h y e l l o w . The r e s u l t i n g s o l u t i o n was t r e a t e d as d e s c r i b e d i n 4 (A). Chromatography on a F l o r i s i l column gave an orange band which was e l u t e d with 1% d i e t h y l e t h e r - 99% petroleum e t h e r . E v a p o r a t i o n o f s o l v e n t and r e c r y s t a l l i z a -t i o n from hexane gave yellow c r y s t a l s o f f^diphosW(CO)^ (0.102 g, 18.8%) mp 220°C o f known s p e c t r o s c o p i c p r o p e r t i e s (see above 4 ( A ) ) . A mixture of 7% d i e t h y l e t h e r - 9 3% petroleum e t h e r e l u t e d a y e l l o w band which was i d e n t i f i e d as unreacted m e s i t y l e n e t u n g s t e n t r i c a r b o n y l (0.105 g, 40% r e c o v e r y ) . ( O(i)Reactions o f f^diphos, f^diphos and b i f g f o s (L-L) with disodium t e t r a c h l o r o p a l l a d a t e ( I I ) and d i -potassium t e t r a c h l o r o p l a t i n a t e ( I I ) . The f o l l o w i n g g e n e r a l procedure was used f o r the p r e p a r a t i o n of a l l (L-L)MC1 2 complexes (M = P d ( I I ) , P t ( I I ) ) by the r e a c t i o n of (L-L) wi t h the metal h a l i d e s Na_PdCl. and TABLE II P r e p a r a t i v e data f o r (L-L)M(CO) 4 complexes (L-L) M(COk Reaction temp (°C) Reaction time (h) Product Yiel< (%) b i f 8 d i p h o s 0.33 g 0.51 mmol Cr ( C O ) 6 0.11 g 0.50 mmol 150 24 b i f 8 d i p h o s C r ( C O ) 4 75 b i f g d i p h o s 0.32 g 0.50 mmol Mo(CO) 6 0.13 g 0.49 mmol 120 6 bif 8diphosMo(CO) ^  80 b i f 8 d i p h o s 0.32 g 0.50 mmol W(CO) 6 0.17 g 0.48 mmol 140 216 b i f 8 d i p h o s W ( C O ) k 22 bi f e p h e n a r s 0.22 g 0.31 mmol Mo(CO) 6 0.11 g 0.42 mmol 130 16 b i f 8phenarsMo(CO) ^  36 f^diphos 0.32 g 0.6 3 mmol Cr ( C O ) 6 0.13 g 0.6 2 mmol 130 18 f t^diphosCr (CO) 4 70 f i^diphos 0.30 g 0.5 8 mmol Mo (CO) 6 0.15 g 0.5 8 mmol 130 16 f ijdiphosMo (CO) h 88 f i^diphos 0. 32 g 0.6 3 mmol W(CO) 6 0.22 g 0.6 3 mmol 150 144 f itdiphosWfCO) 4 48 TABLE I I - c o n t i n u e d f g d i p h o s 0.39 g (0.69 mmol) f g d i p h o s 0.30 g (0.54 mmol) f g d i p h o s 0.34 g (0.60 mmol) C r ( C O ) 6 0.15 g (0.69 mmol) Mo(CO) 6 0.14 g (0.54 mmol) W(CO) 6 0.21 g (0.60 mmol) 150 120 150 96 20 168 f g d i p h o s C r ( C O ) h fgdiphosMo(CO) h fgdiphosW(CO) k a ,b 78 44 41 C O A l s o p r e p a r e d from f g d i p h o s + n o r b o r n a d i e n e molybdenum t e t r a c a r b o n y l i n r e f l u x i n g C 6 H 1 2 .(3.5 h) R e c r y s t a l l i z e d from benzene c R e c r y s t a l l i z e d from d i c h l o r o m e t h a n e TABLE I I I A n a l y t i c a l data f o r (L-L)M(CO) 4 complexes Compound C o l o r mp(°C) Analyses C 9-H c a l c . found c a l c .. found b i f 8 d i p h o s C r ( C O ) 4 dark p u r p l e 175 53.6 53.4 5.46 5.54 b i f 8diphosMo (CO) i+ dark red 164 50 .8 50 .8 5.17 5.10 b i f 8'diphosW (CO) h dark red 176 46 .0 45 .8 4.69 4.59 bif 8phenarsMo(CO) 4. red 163 47.3 47.4 2.19 2.20 f^diphosCr(CO) 4 y e l l o w 221 56.3 56 .6 6.50 6.64 f^diphosMo(CO)4 y e l l o w 208 52.9 53.2 6 .11 6.12 f i tdiphosW(CO) 4 y e l l o w 220 47.1 48.1 5.45 5.71 fgdiphosCr(CO) 4 orange 230 54.1 54.4 6.06 6.00 f 5diphosMo(CO) 4 yellow 290 51.0 51.6 5.71 5.86 f 5diphosW(CO) 4 y e l l o w - 220 45.8 45.5 5.13 4.93 orange TABLE IV Nmr a and i r s p e c t r o s c o p i c data f o r (L-L)M(CO) 4 complexes Compound b i f s d i p h o s C r ( C O ) 4 b i f 8 d i p h o s M o ( C O ) 4 b i f 8 d i p h o s W ( C O ) 4 b i f gphenarsMo (CO) 4' f4diphosCr(CO) 4 f4diphosMo(CO)4 f4diphosW(CO)4 f g d i p h o s C r ( C O ) 4 ° f 6 d i p h o s M o ( C O ) 4 ° 19, 105.8(m,l) 110.8(m,l) 105.8(m,l) 112.4(m,l) 106.0(m,l) 111.5(m,l) 105.8(m,l) 110.4(m,l) 108.0(s) 108.4(s) 109.l(s) 109.2(m,2) 128.2(m,l) 109.2(m,2) 128.6(m,l) v(CO) cm -1 2030 (s) 1935 (s) 2030 (s) 1932 (s) 2040(s) 1940(s) 2045(s) 1951(s) 2020(m) 2030 (m) 2020 (m) 2003(s) 1926(m) 1932(s) 1925(m) 1920(m) 2010(s) 1922(m) 1920(s) 1920(s) 1922(s) 1935(s) 1908(s) 1910(s) 1910 (s) 1890(s) 1895(s) 1910(s) 1908(s) 1915 (s) 1898(s) 1900(s) 1870(sh) 1880(sh) 1870(sh) TABLE IV - continued f 6 d i p h o s W ( C O K C 109.5(m,2) 2005 (s) 1920 (m) 1891(s) 128.0(m,l) a 1H nmr of a l l complexes except b i f 8 p h e n a r s M o ( C O ) 4 c o n s i s t s of a broad m u l t i p l e t i n the r e g i o n 1 . 0 - 2 . 5 . b 1 to Ul H nmr 7 . 30 (m) . c i r spec, run i n benzene s o l u t i o n . - 36 -I ^ P t C l ^ . The d e t a i l s a p p l y i n g to s p e c i f i c complexes are l i s t e d i n Table V. A 100 ml three necked f l a s k f i t t e d w i t h n i t r o g e n i n l e t r e f l u x condenser, s t i r r e r and pressure e q u a l i z e d drop-p i n g funnel was charged with the l i g a n d (L-L) i n acetone (10 - 15 ml). When r e q u i r e d , the s o l u t i o n was heated to the i n d i c a t e d temperature and a s o l u t i o n o f the metal h a l i d e M 2'MC1 2 (M1 = Na, M = Pd, M1 = K, M = Pt) i n water (15 - 20 ml) was then added dropwise. An immediate p r e c i p i t a t i o n o f a s o l i d was observed and the r e s u l t i n g s o l u t i o n was then allowed to s t i r f o r 24 h. At the end of the r e a c t i o n p e r i o d the s o l i d was f i l t e r e d o f f and d r i e d under vacuum. Unless otherwise s t a t e d a l l s o l i d s were r e c r y s t a l l i z e d from a mixture of dichloromethane and ethanol (1:1) to y i e l d the d e s i r e d (L-L)MC1 2 complexes. Mass s p e c t r a o f a l l complexes showed m/e(P +) fo l l o w e d by peaks corre s p o n d i n g to [ P - n ( C l ) ] + (n = 1-2). A n a l y t i c a l data are l i s t e d i n Table VI and nmr and i r data i n Table V I I . ( i i ) Reaction o f fgdiphos w i t h T e t r a k i s ( t r i p h e n y l -phosphine) p l a t i n u m ( 0 ) . A method s i m i l a r to 4 (C)(i) was adopted. T e t r a k i s -( t r i p h e n y l p h o s p h i n e ) p l a t i n u m ( 0 ) (0.61 g, 0.49 mmol) i n acetone (30 ml) was added to fgdiphos (0.25 g, 0.49 mmol) i n acetone (20 ml) at 80°C. Immediate p r e c i p i t a t i o n of a red s o l i d was TABLE V P r e p a r a t i v e data f o r (L-L)MC1 2 complexes, (L-L) M 2MC1 4 Reaction temp (°C) Product f i+diphos 0.30 g 0.58 mmo1 f i+diphos 0.31 g 0.60 mmol f 6 d i p h o s 0.30 g 0.53 mmol fgdiphos 0.35 g 0.61 mmol b i f g fos 0.30 g 0.48 mmol Na 2PdCli t 0.17 g 0.58 mmol K 2PtClt> 0.25 g 0.60 mmol Na 2PdCli t 0.15 g 0.5 3 mmol K 2 P t C l i t 0.25 g 0.60 mmol Na 2PdCli + 0.15 g 0.51 mmol 80 80 100 100 20 f^diphosPdCl f i+diphosPtCl f 6 d i p h o s P d C l f 6 d i p h o s P t C l b i f 8 f o s P d C l 2 a, b 42 ' a R e c r y s t a l l i z e d from a mixture o f methanol and chloroform (1:1). b U n i d e n t i f i e d compound. TABLE VI A n a l y t i c a l data f o r (L-L)MC1 2 and (L--L)2?t complexes • Analyses % C H Compound Colour mp(°C) c a l c . found c a l c . found f i t d i p h o s P d C l 2 pale y e l l o w 322 48.3 48.5 6.38 6.39 f 4 d i p h o s P t C l 2 white 345 43.0 43.5 5.65 5 .84 (f i+diphos) 2 P t red 244 54.5 53.7 7.20 7.29 f 6 d i p h o s P d C l 2 y e l l o w 310 46 .7 46.4 5.95 5.68 f 6 d i p h o s P t C l 2 yellow 332 41.7 41.4 5.31 5.11 b i f 8 f o s P d C l 2 blue 195 48.3 48.1 2.51 2.50 42 yel l o w 158 - 4 2 . l a 4.75 a a Values o n l y r e l i a b l e to +2% TABLE VII Nmr D and i r C s p e c t r o s c o p i c data f o r (L-L)MC1 2 and ( L - L ) 2 P t complexes, Compound f i t d i p h o s P d C l 2 f i + d i p h o s P t C l 2 ( f ijdiphos) 2 P t f 6 d i p h o s P d C l 2 f 6 d i p h o s P t C l 2 b i f 8 f o s P d C l 2 i 42 d 19 F nmr v(M-Cl) cm -1 118.3(s) 118.4(s) 118.6(m) 108.8(m,2) 128.2(m,l) 108.6(m,2) 128.4(m,l) 107.2(m,l) 111.6(m,l) m u l t i p l e t s a t 93.04 ) 95.4 ) 106.8 ) 109.1 ) area 1 102.8 ) 104.9 ) 108.1 ) 110.2 ) area 1 320 (w) 315 (w) 315(w) 315 (w) 322(w) 250(w) 270(w) 262(w) 265(w) 255(w) 114.19 area 1 TABLE VII - con t i n u e d XH nmr 7.32(m,b) b . H nmr of a l l o t h e r complexes c o n s i s t s o f a m u l t i p l e t i n the r e g i o n 1.0 - 2.5 c N u j o l mull a ! H nmr 7.7(m,l), 7.4(m,2), 7.3(m,l). ^ o I - 41 -observed. The r e s u l t i n g s o l u t i o n was allowed to s t i r a t 80°C f o r 1 h and then a t 20°C f o r 24 h. The red s o l i d was f i l t e r e d o f f and r e c r y s t a l l i z e d from dichloromethane to give red c r y s t a l s i d e n t i f i e d as ( f 4 d i p h o s ) 2 P t (0.23 g, 75%) mp 244°C. Mass spectrum showed m/e, 1231 (P +) . A n a l y t i c a l data are l i s t e d i n Table VI and nmr data i n Table V I I . (D) Reactions o f f^diphos and f^diphos (L-L) w i t h i r o n c a r b o n y l s . The f o l l o w i n g general procedure was used f o r the p r e p a r a t i o n of a l l (L-L)Fe(CO)2 and ( L - L ) F e 2 ( C O ) g complexes by the r e a c t i o n o f (L-L) w i t h i r o n pentacarbonyl and t r i -i r o n dodecacarbonyl. The d e t a i l s a p p l y i n g to s p e c i f i c complexes are l i s t e d i n Table V I I I . A benzene s o l u t i o n c o n t a i n i n g a 1:10 mole r a t i o of l i g a n d to i r o n pentacarbonyl (or 1:2 mole r a t i o o f l i g a n d to t r i i r o n dodecacarbonyl) was heated i n an evacuated C a r i u s tube at 150°C f o r 8.5 - 66 h. A t the end o f the r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y yellow) was r e d . Removal of s o l v e n t gave a r e d r e s i d u e which was d i s s o l v e d i n dichloromethane (f^diphos) or benzene (f^diphos) and chromatographed on a F l o r i s i l column. The c o l o u r e d bands were e l u t e d with mixtures o f d i e t h y l e t h e r - petroleum e t h e r . Removal o f s o l v e n t a t reduced pressure gave the crude complex TABLE VIII P r e p a r a t i v e data f o r (L-L)Fe(CO) 3 and (L-L) F e 2 (CO) g complexes (L-L) f i+diphos 0.28 g 0.54 mmol f 6 d i p h o s 0.26 g 0.45 mmol fgdiphos 0.5 g 0.9 8 mmol i r o n c a r b o n y l Fe (CO) 5 1.0 g 5.4 mmol Fe(CO) 5 0.95 g 4.84 mmol F e 3 (CO) 12 1.0 g 1.9 8 mmol Reaction t i me a(h) 66 66 E l u e n t 8% d i e t h y l e t h e r - 92% pet. ether 12% d i e t h y l e ther - 88% pet. e t h e r 1% d i e t h y l e t h e r 99% pet. e t h e r 8.5 h p e t . ether Product f^diphosFe (CO) 3 f i 4 d i p h o s F e 2 (CO) 6 f 6 d i p h o s F e ( C O ) 3 f ^ d i p h o s F e ( C O ) 3 Y i e l d (%) 45 2 40 to 33 1% d i e t h y l e t h e r - f | |diphosFe. 2 (CO) 6 11 99% petroleum ether 4 v z b a A l l r e a c t i o n s c a r r i e d out at 150°C. TABLE IX A n a l y t i c a l data f o r (L-L)Fe(CO) 3 and ( L - L ) F e 2 ( C O ) g complexes Compound Colour mp(°C) Analyses % H c a l c . found c a l c . found f 4 d i p h o s F e ( C O ) 3 red 210 56 .5 56 .4 6 .70 6 .77 fg d i p h o s F e ( C O ) 3 maroon 212 55.2 55.3 6 .26 6.30 f 4 d i p h o s F e 2 ( C O ) g orange 182 51.1 51.3 5.55 5.59 TABLE X Nmr a and i r s p e c t r o s c o p i c data f o r (L-L)Fe(CO) 3 and (L-L)Fe„(CO), complexes. . 126.8(m,l) f.diphosFe-(CO), 90.1(m,l) 2050 (s) 2022(vs) 1980 (s) 1920 (s) 1955 (w) 1940 ( m ) 4 2 6 92.3 (m,l) 106.9(m,l) ^ 109.3(m,l) • a l H nmr spectrum o f a l l complexes c o n s i s t s of a broad m u l t i p l e t i n the r e g i o n 1.0 - 2.5. S p e c t r a run i n benzene s o l u t i o n . - 45 -Unless otherwise s t a t e d a l l the (L-L)Fe(CO)_ and (L-L)Fe„(CO), O Z D complexes were r e c r y s t a l l i z e d from hexane. The mass s p e c t r a of a l l complexes showed m/e(P +) f o l l o w e d by peaks c o r r e s p o n d i n g to [P-n(CO)] + (n = 1-3, f o r ( L - L ) F e ( C O ) 3 and n = 1-6, f o r (L-L) F e 2 (CO) g). A n a l y t i c a l data are l i s t e d i n Table IX and nmr and i r data i n Table X. (E) Reaction of b i f g f o s (L-L) with i r o n p e n t a c a r b o n y l . Iron pentacarbonyl (1.11 g, 5.7 mmol) and b i f g f o s (0.357 g, 0.57 mmol) i n benzene (8 ml) were heated i n an evacuated C a r i u s tube at 150°C f o r 49 h. At the end of the r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y orange) was green. The procedure f o r working up the products was s i m i l a r to t h a t d e s c r i b e d i n 4 (D). Chromatography on a F l o r i s i l column gave a f a i n t y ellow band which was e l u t e d w i t h petroleum e t h e r . E v a p o r a t i o n of s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d e d y e l l o w i s h green c r y s t a l s i d e n t i f i e d as b i f g f o s F e 2 ( C O ) g (trace) by means of i t s i r spectrum and mass spectrum. A 15% d i e t h y l e t h e r - 85% petroleum e t h e r mixture e l u t e d another yellow band. E v a p o r a t i o n of s o l v e n t and r e c r y s t a l l i z a t i o n from hexene a f f o r d e d shiny y e l l o w c r y s t a l s i d e n t i f i e d as b i f 0 f o s F e ~ ( C O ) . 1 (0.01 g, 1.9%) w i t h mp 176°C. O Z D Mass spec, m/e 89 8 (P +) was f o l l o w e d by peaks c o r r e s -ponding to [P-n(CO)] + (n = 1-6). Peaks, due to b i f g f o s were absent. I r s p e c t r o s c o p i c data are l i s t e d i n Table IX and nmr - 46 s p e c t r o s c o p i c data i n Table X. A n a l . C a l c d . f o r C 3 8 H 2 0 F 8 F e 2 O 6 P 2 * 1 / ' 2 C 2 H 5 O C 2 H 5 : C ' 5 1 ' 4 ' H ' 2 - 6 9 - Found: C, 51.9; H, 2.48%. A 50% d i e t h y l e t h e r - 50% petroleum e t h e r mixture e l u t e d a red band. E v a p o r a t i o n o f s o l v e n t and r e c r y s t a l l i z a -t i o n from hexane a f f o r d e d r e d c r y s t a l s i d e n t i f i e d as b i f g f o s F e 2 ( C O ) I I (0.074 g, 14.2%) mp 168°C. Mass spec, m/e 898 (P +) was f o l l o w e d by peaks c o r r e s -ponding t o [P-n(CO)] + (n = 1-6). I r s p e c t r o s c o p i c data are l i s t e d i n Table IX and nmr s p e c t r o s c o p i c data i n Table X. A n a l . C a l c d . f o r C ^ o H o n F o F e o 0 , P „ • l/2C„H c0C oH r. : C, 51.4; 38 20 8 2 6 2 2 5 2 5 H, 2.69. Found: C, 51.7; H, 2.52%. (F) R e a c t i o n o f b i f g f o s (L-L) w i t h t r i i r o n dodeca-c a r b o n y l . T r i i r o n dodecacarbonyl (1.07 g, 2.12 mmol) and b i f 0 f o s (0.61 g, 0.99 mmol) i n benzene (10 ml) were heated i n an evacuated C a r i u s tube a t 150°C f o r 6.5 h. A t the end of the r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y green) was b l a c k i s h red. The procedure f o r working up the products was s i m i l a r t o t h a t d e s c r i b e d i n 4 (D). Chromatography on a F l o r i s i l column gave a pale yellow band which was e l u t e d w i t h petroleum e t h e r . E v a p o r a t i o n o f s o l v e n t and r e c r y s t a l -l i z a t i o n from hexane a f f o r d e d y e l l o w i s h green c r y s t a l s (trace) i d e n t i f i e d as bif DfosFe 0(CO)„. Mass spec, m/e o 2 o 954 (P +) . TABLE XI I r s p e c t r o s c o p i c data f o r b i f g f o s F e 2 ( C O ) g , b i f g f o s F e 2 ( C O ) g I and b i f g f o s F e 2 ( C O ) g l l complexes. Compound v(CO) cm -1 b i f g f o s F e 2 ( C O ) Q 2062(s) 1994(s) 1964(s,sh)1954(vs) b i f g f o s F e 2 ( C O ) 6 I b i f g f o s F e 2 ( C O ) g I I 2063(s) 2025 (vs) 2005 (s) 1999 (sh) 1980 (s) 1970 (m) 2062 (vw) 2030 (s) 2000 (s) 1990 (m) 1980 (m) 1970 (sh) TABLE XII Nmr s p e c t r o s c o p i c data f o r b i f g f o s F e 2 ( C O ) g I and b i f g f o s F e 2 ( C O ) g l l complexes, Compound H 19. 31. b i f g f o s F e 2 (CO) g l 3 m u l t i p l e t s at 6.79 (area 1) 7.33 (area 1) and 7.55 (area 2) m u l t i p l e t s 107.6 (1) 109.5(1) 111.2(1) 113.9(1) at m u l t i p l e t s at -136.1 ) -132.8 ) -92.69 ) -89.35 ) area 1 area 1 bif„fosFe„(CO), o 2 b 2 m u l t i p l e t s a t 7.39 (area 1) and 11 7.55 (area 1) m u l t i p l e t s 107.4(1) 110.5 (2) 113.4(1) a t m u l t i p l e t s at -130.3 ) -129.5 ) area 1 - 35.97 - 35.11 ) area 1 - 49 -A 8% d i e t h y l e t h e r - 92% petroleum e t h e r mixture e l u t e d a yellow band which was i d e n t i f i e d as b i f Q f o s F e ~ ( C O ) , 1 O Z D (0.014 g, 1.5%) o f known s p e c t r o s c o p i c p r o p e r t i e s (see above 4 (E) ) . A 15% d i e t h y l e t h e r - 85% petroleum e t h e r mixture e l u t e d a red band which was i d e n t i f i e d as b i f 0 f o s F e 0 ( C O ) , 1 1 O Z D (0.11 g, 12.4%) o f known s p e c t r o s c o p i c p r o p e r t i e s (see above 4 (E)) . (G) Reactions o f f^diphos and f^diphos (L-L) with dimanganese decacarbonyl. A benzene s o l u t i o n c o n t a i n i n g a 1:1 mole r a t i o of (L-L) to M^CCO).^ was heated i n an evacuated C a r i u s tube at the i n d i c a t e d temperature f o r 21 h. The r e s u l t i n g s o l u t i o n was t r e a t e d as d e s c r i b e d i n 4 (A). Chromatography on a F l o r i s i l column gave a yellow band which was e l u t e d w i t h petroleum e t h e r . T h i s was i d e n t i f i e d as unreacted M ^ t C O ) ^ . A 1% d i e t h y l e t h e r - 99% petroleum e t h e r mixture e l u t e d the new manganese c a r b o n y l complexes. P r e p a r a t i v e data a p p l i e d to s p e c i f i c complexes are l i s t e d i n Table X I I I . A n a l y t i c a l data are l i s t e d i n Table XIV and nmr and i r data i n Table XV. (H) Reaction of [f^diphosMn(CO)^]^ with Bromine. A 50 ml three necked f l a s k f i t t e d with n i t r o g e n i n l e t , s t i r r e r and pressure e q u a l i z e d dropping f u n n e l was TABLE XIII P r e p a r a t i v e data f o r (L-L)manganese carbonyl complexes. (L-L) M n 2 ( C O ) 1 Q Reaction Reaction temp (°C) time (h) Product Y i e l d f^diphos 0.30 g 0.5 3 mmol 0.23 g 0.53 mmo1 150 21 [f 4diphosMn(CO) 3 ] 2 33.7 O f ..diphos b 0 . 33 g 0.57 mmol 0.22 g 0.5 7 mmol 140 21 f 6 d i p h o s M n 2 ( C O ) 8 TABLE XIV A n a l y t i c a l data f o r [f^diphosMn(CO) 3 ] 2 and f^diphosMn^(CO) g complexes, Compound Colour mp(°C) Analyses % C H c a l c . found c a l c . found t f 4 d i p h o s M n ( C O ) 3 ] 2 yellow 220 56.6 56.8 6.75 6.67 f,diphosMn„(CO) Q brownish 263 49.2 49.4 4.91 5.04 6 2 8 yellow TABLE XV Nmr and i r s p e c t r o s c o p i c data f o r [f^diphosMn(CO)^] 2i f^diphosMn(CO)^Br, fgdiphosMn 2(CO) 8 complexes. Compound 19i 31. v(CO) cm [ f 4 d i p h o s M n ( C O ) 3 ] 2 104.4(m,l) 106.6(m, 10) 107.4(m,10) 109.5(m,l) -109.57(m) 2010(s) 1935 (s) 1915 (vs) f 4diphosMn(CO) 3Br 106.8(m,l) 109.0(m,10) 109.6(m,10) 111.7(m,l) - 84 .56(m) 2025 (s) 1964 (s) 1904 (s) f 6 d i p h o s M n 2 ( C O ) g 109.0(m,2) 128.8(m,l) 2070 (s) 1994 (s) 1976 (vs) 1968(s) 1929 (ni) 1900 (w) 1886 (sh) H nmr s p e c t r a o f a l l complexes c o n s i s t s o f a broad m u l t i p l e t i n the r e g i o n o f 1.0 - 2.2 - 53 -charged with [f^diphosMn(CO) ^ ] ^  (0.05 g, 0.04 mmol) i n carbon t e t r a c h l o r i d e (10 ml). Bromine (0.006 g, 0.04 mmol) i n carbon t e t r a c h l o r i d e (5 ml) was added dropwise to the c o o l e d s o l u t i o n at 0°C. A f t e r 24 h, the s o l v e n t was removed and an orange r e s i d u e was o b t a i n e d . R e c r y s t a l l i z a -t i o n from hexane gave orange c r y s t a l s i d e n t i f i e d as f 4diphosMn(CO) 3Br (0.04 g, 73%) mp 177°C. Mass spec, m/e 737 (P +) was f o l l o w e d by peaks c o r r e s -ponding to [P-n(CO)] + (n = 1-3). I r and nmr s p e c t r o s c o p i c data are l i s t e d i n Table XV. A n a l . C a l c d . f o r C 3 1 H 4 4 B r F 4 M n 0 3 P 2 * ° * 5 C 6 H 1 4 : C ' 5 2 , 3 ; H ' 6 - e o • Found: C, 5 2.6; H, 6.69%. 5. Reactions of the t e r t i a r y phosphines (L) with  t r a n s i t i o n metal carbonyls and metal h a l i d e s . (A) Reactions of the t e r t i a r y phosphines (L) with Group VI metal hexacarbonyls. 'The g e n e r a l procedure f o r the p r e p a r a t i o n of a l l LM(C0) 5 complexes (M = Cr, Mo, W) by the r e a c t i o n of L with Group VI hexacarbonyls was s i m i l a r to t h a t d e s c r i b e d i n 4 (A). The d e t a i l s a p p l y i n g to s p e c i f i c complexes are l i s t e d i n Table XVI, a n a l y t i c a l data i n Table XVII, and nmr and i r data i n Table XVIII. The mass s p e c t r a of a l l com-plexes showed m/e(P +) f o l l o w e d by peaks c o r r e s p o n d i n g to [P-n(CO)] + (n = 1-5). TABLE XVT P r e p a r a t i v e data f o r LM(CO) 5 complexes f i,chlorphos 0.36 g 1.0 mmol f i+chlorphos 0.32 g 0.89 mmol f i+chlorphos 0.57 g 1.6 mmol f ^ c h l o r f o s 0.45 g 1.3 mmol f i^chlorfos 0.50 g 1.45 mmol f i,chlorfos 0.75 g 2.18 mmol fgchlorphos 0.27 g 0.67 mmol M(C0) Cr ( C O ) 6 0.22 g 1.0 mmol Mo(CO) 6 0.23 g 0.89 mmol W(C0) 6 0.56 g 1.6 mmol Cr ( C O ) 6 0.29 g 1.3 mmol Mo (CO) 6 0.38 g 1.45 mmol W(C0) 6 0.77 g 2.18 mmol Cr(CO) 6 0.14 g 0.6 7 mmol Reaction Temp (°C) 130 130 140 128 125 125 130 Reaction Time (h) 24 20 120 46 40 72 44 h Product f i+chlorphosCr (CO) 5 f i+chlorphosMo (CO) 5 f 4chlorphosW(CO) 5 f i+chlorfosCr (CO) 5 f 1 +chlorfosMo(CO) 5 fi+chlorfosWCCO) 5 f 6 c h l o r p h o s C r ( C O ) 5 Y i e l d % 10 35 9.0 11 25 15 34 TABLE XVI - continued L M(CO) f i Reaction b Temp (°C) fgChlorphos 0.35 g 0.87 mmo1 Mo (CO) 6 0.14 g 0.55 mmol 130 fgChlorphos 0.33 g 0.82 mmol W(C0) 6 0.29 g 0.82 mmol 150 f g c h l o r f o s 0.47 g 1.2 mmol Cr(CO)g 0. 26 g 1. 2 mmo1 130 f g c h l o r f o s 0.4 3 g 1.07 mmol Mo(CO) 6 0 .28 g 1.0 7 mmol 120 f g c h l o r f o s 0.5 g 1.2 mmol W(C0) g 0.44 g 1.2 mmol 150 f g-chlorAs 0.47 g 1.50 mmol Cr ( C O ) 6 0 . 33 g 1.50 mmol 130 f g c h l o r A s 0.38 g 1.2 mmol Mo(CO) 6 0.32 g 1.2 mmol 115 fg c h l o r A s 0.35 g 1.13 mmol W(CO) 6 0.39 g 1.13 mmol 150 Reaction Product Y i e l d Time (h) % 44 fgchlorphosMo(CO) 5 32 92 fgchlorphosW(CO) 5 16 77 f g c h l o r f o s C r ( C O ) 5 46 50 fgchlorfosMo(CO) 5 45 99 fgchlorfosW(CO) 5 38 95 f g c h l o r A s C r ( C O ) 5 25 60 fgchlorAsMo(CO) 5 18 108 fgChlorAsW(CO) 5 14 TABLE XVI - continued M(CO) Reaction Temp (°C) f 8 c h l o r p h o s 0.25 g 0.54 mmol Cr( C O ) 6 0.12 g 0.54 mmol 130 f 8 c h l o r p h o s 0 .32 g 0.71 mmol Mo(CO) 6 0.188 g 0.71 mmol 130 f 8 c h l o r f o s 0.29 g 0.6 5 mmol Cr (CO) G 0.14 g 0.6 5 mmol 140 f 8 c h l o r f o s 0.32 g 0.72 mmol Mo(CO)5 0.19 g 0.72 mmol 130 Reaction Product Time (h) 50 f 8chlorphosCr(CO) 46 f 8chlorphosMo(CO) 96 f 8 c h l o r f o s C r ( C O ) 5 46 f 8 c h l o r f o s M o ( C O ) 5 TABLE XVII A n a l y t i c a l d a t a f o r M(CO),-L complexes Compound C o l o u r mp(°C) A n a l y s e s % C H c a l c . found c a l c . found f i + c h l o r p h o s C r (CO) 5 p a l e y e l l o w 10 3 46 .0 46 .2 4.04 4.02 f i+chlorphosMo (CO) 5 p a l e green 106 42 .6 42 .7 3.74 3.56 f^chlorphosWfCO) 5 •1/2 C 6 H 1 U y e l l o w 115 39 .8 39 .4 3.99 3.78 f 4 c h l o r f o s C r ( C O ) 5 y e l l o w 92 47 .0 47 .1 1.87 2.00 fitChlorfosMotCO) 5 p a l e y e l l o w 97 43 .4 43 .5 1.73 1.71 f ^ c h l o r f o s W ( C O ) 5 p a l e y e l l o w 115 37 .7 37 .5 1.50 1. 37 f g c h l o r p h o s C r ( C O ) 5 y e l l o w 91 45 .1 45 .3 3.70 3.83 f 6 c h l o r p h o s M o ( C O ) 5 y e l l o w 123 41 .1 41 .4 3.45 3.48 f 6 c h l o r p h o s W ( C O ) 5 y e l l o w 128 36 .2 36 .9 3.03 3.19 f g c h l o r f o s C r ( C O ) 5 g r e e n i s h y e l l o w 114 45 .0 . 45 .3 1.71 2.00 f 6 c h l o r f o s M o ( C O ) 5 green 116 41 .9 41 .7 1.60 1.56 f g C h l o r f o s W ( C O ) 5 y e l l o w 117 36 .8 37 .4 1.40 1.49 f g c h l o r A s C r ( C O ) 5 y e l l o w 39 28 .5 28 .8 1.20 1.34 TABLE XVII - continued Compound Colour mp(°C) Analyses % C H c a l c . found c a l c . found f 6 c h l o r A s M o ( C O ) 5 g r e e n i s h yellow 27 26 .2 26 .6 1.09 1. 10 f 6 c h l o r A s W ( C O ) 5 g r e e n i s h yellow 52 22 .5 22 .8 0.94 1. 01 f 8 c h l o r p h o s C r ( C O ) 5 y e l l o w 92 42 .6 42 .5 3.42 3. 39 fgchlorphosMo(CO) 5 y e l l o w 145 39 .9 39 .6 3.20 3. 12 f 8 c h l o r f o s C r ( C O ) 5 y e l l o w 67 43 .4 43 .7 1.58 1. 67 f 8 c h l o r f o s M o ( C O ) 5 y e l l o w 138 40 .5 40 .9 1.48 1. 51 TABLE XVIII Nmr and i r s p e c t r o s c o p i c data f o r M(CO)_L complexes Compound f ^ c h lorphosCr (CO) 5' gchlorphosMo (CO) 5' f 4 c h l o r p h o s W ( C O ) 5 a f 4 c h l o r f o s C r ( C O ) 5 f 4chlorfosMo(CO) f .chlorfosW(CO)* 4 D fgChlorphosCr(CO) 5' f,chlorphosMo(CO) ' D D f^chlorphosWfCO) ' b D 1 9 F nmr v(CO) cm 1 102 111 .0 .2 (m,l) (m,l) 2080 (s) 1970(sh) 1955(vs) 1940(sh) 1910(sh) 102 111 .4 .6 (m,l) (m,l) 2080(s) 1965(sh) 1950(vs) 1935(sh) 1920(w) 103 113 .5 .8 (m,l) (m,l) 2080 (s) 1955(sh) 1940(vs) 1920 (sh) 1900(w) 108 115 .9 .8 (m,l) (m,l) 2082(s) 1995(sh) 1965(s,sh) 1962(vs) 1920(sh) 109 116 .2 .0 (m,l) (m,l) 2082(s) 1990(sh) 1962(s,sh) 1960(vs) 1920(sh) 109 116 .2 .2 (m,l) (m,l) 2080(s) 1990(sh) 1962(s,sh) 1962(vs) 1920(sh) 104 112 131 .0 .0 .1 (m,l) (m, 1) (m,l) 2072(s) 1981(m) 1952(sh) 1945(vs) 1908(sh) 104 112 131 .2 .0 .4 (m,l) (m,l) (m,l) 2080 (s) 1988(m) 1955(sh) 1945(vs) 1914(sh) 10 4 111 130 .6 .6 .8 (m,l) (m,l) (m,l) 2082 (s) 1990 (m) 1955(sh) 1945(vs) 1920(sh) TABLE XVIII - c o n t i n u e d f , c h l o r f o s C r ( C O ) f\.chlorfosMo (CO) f,chlorfosW(CO) ~ b 5 fgChlorAsCr(CO) 5° f , c h l o r A s M o ( C O ) C C f.chlorAsW(CO) c° o 5 f g C h l o r p h o s C r ( C O ) 5 & f RchlorphosMo (CO) ,_a 104.5 (ni,I) 113.0(m,l) 129.6(m,l) 104.4(m,l) 112.6(m,l) 129. 8 (m, 1). 104.2(m,l) 112.2(m,l) 129.2(m,l) 104.0(m,l) 113.4(m,l) 129.6(m,l) 103.6(m,l) 113.0(m,l) 129.4(m,l) 103.6(m,l) 113.2(m,l) 129.6(m,l) 104.2(m,l) 110.4(m,l) 134.6(m,2) 104.l(m,1) 110.6(m,l) 134.6(m,2) 1990 (sh) 1960 (sh) 1945 (vs) 1920 (m) 1990 (sh) 1958(sh) 1950 (vs) 1920 (m) 1985(sh) 1958(sh) 1950(vs) 1920(m) 1988(sh) 1960(s,sh) 1950(vs) 1920(sh) 1992(sh) 1965(s,sh) 1955(vs) 1922(sh) 1992(sh) 1965(s,sh) 1958(vs) 1925(sh) 1989(w,sh) 1955(sh) 1948(vs) 1910(sh) 1989(w,sh) 1960(sh) 1955(vs) 1915(sh) TABLE XVIII - continued fpChlorfosCr(CO)_ 103.5 (m,l) 2075(s) 1989(w,sh) 1959(sh) 1950(vs) 1920(sh) S b 110.6(m,l) 134.6(m,2) f RchlorfosMo(CO) b 103.4(m,l) 2082(s) 1995 (w,sh) 1962(sh) 1960(vs) 1930(sh) H b 110.4(m,l) 134.6(m,2) i M a 1 "^H nmr o f a l l complexes c o n s i s t s o f a broad m u l t i p l e t i n the re g i o n 1 . 0 - 2 . 2 . b 1H nmr 7.4(m) c 1 H nmr 1.83(m) - 62 -(B) Attempted s y n t h e s i s o f complexes o f mixed l i g a n d s . ( i ) R e a c t i o n o f f^chlorphosMo(CO)^ w i t h d i p h e n y l -phosphine. D i p h e n y l p h o s p h i n e (0.148 g, 0.79 mmol) and f 4 c h l o r p h o s M o ( C O ) 5 (0.47 g, 0.79 mmol) i n benzene (8 ml) were h e a t e d i n an e v a c u a t e d C a r i u s tube a t 115°C f o r 24 h. A t the end o f the r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y green) was orange. The proce d u r e f o r w o r k i n g up the p r o -d u c t s was s i m i l a r t o t h a t d e s c r i b e d i n 4 ( A ) . Chromato-graphy on a F l o r i s i l column gave a y e l l o w i s h green band which was e l u t e d w i t h p e t r o l e u m e t h e r . E v a p o r a t i o n o f s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d e d p a l e green c r y s t a l s o f u n r e a c t e d f ^ chlorphosMo (CO) (0.135 g, 28% r e c o v e r y ) . When the r e a c t i o n was c a r r i e d out a t 150°C c o n s i d e r a b l e d e c o m p o s i t i o n was found t o o c c u r and the i r spectrum showed absence o f s t a r t i n g m a t e r i a l s and the absence o f the a n t i c i p a t e d Mo(CO) 4 d e r i v a t i v e . ( i i ) R e a c t i o n o f f g C h l o f f o s W ( C O ) 5 w i t h fgChlorphos. An e v a c u a t e d C a r i u s tube c o n t a i n i n g l - c h l o r o - 2 -d i c y c l o h e x y l p h o s p h i n o h e x a f l u o r o c y c l o p e n t e n e ( f ^ c h l o r p h o s ) (0.164 g, 0.40 mmol) and f 6 c h l o r f o s W ( C O ) 5 (0.29 g, 0.40 mmol) i n benzene (10 ml) was h e a t e d a t 150°C f o r 48 h. A t the end o f t he r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y y e l l o w ) was o r a n g i s h b l a c k . The pr o c e d u r e f o r w o r k i n g up the p r o d u c t s was s i m i l a r t o that d e s c r i b e d i n 4 (A) . Chromatography on a - 63 -F l o r i s i l column gave a yellow band which was e l u t e d w i t h 1% d i e t h y l e ther - 99% petroleum e t h e r . T h i s was i d e n t i f i e d as unreacted fgChlorfosW(CO)^ (0.188 g, 65.4% r e c o v e r y ) . (C) Reactions o f the t e r t i a r y phosphines (L) w i t h disodium t e t r a c h l o r o p a l l a d a t e ( I I ) and d i p o t a s s i u m t e t r a c h l o r o p l a t i n a t e ( I I ) . The general procedure f o r the p r e p a r a t i o n of a l l L 2MC1 2 (M = Pd(II) , P t ( I I ) ) and [LMC1 2] 2 (M = P d ( I I ) ) complexes by the r e a c t i o n of L with the metal h a l i d e s , N a 2 P d C l 4 and K 2 P t C l 4 was s i m i l a r t o t h a t d e s c r i b e d i n s e c t i o n 4 (C). The d e t a i l s a p p l y i n g to s p e c i f i c complexes are l i s t e d i n Table XIX. Unless otherwise s t a t e d a l l s o l i d s were r e c r y s t a l l i z e d from dichloromethane. A n a l y t i c a l data are l i s t e d i n Table XX and nmr and i r s p e c t r o s c o p i c data i n Table XXI. (D) Reaction, o f the t e r t i a r y phosphines (L) w i t h i r o n c a r b o n y l s . The f o l l o w i n g general procedure was used f o r the p r e p a r a t i o n of a l l L F e ( C O ) 4 , L 2 F e ( C O ) 3 , [ (L-Cl) Fe (CO) 4 ] 2 ( L - C l - F ) F e 2 ( C O ) g complexes by the r e a c t i o n of L w i t h i r o n pentacarbonyl and t r i i r o n dodecacarbonyl. The d e t a i l s a p p l y i n g to s p e c i f i c complexes are l i s t e d i n Table XXII. A benzene s o l u t i o n c o n t a i n i n g a 1:10 mole r a t i o of L to i r o n pentacarbonyl (or 1:2 mole r a t i o of L to F e 3 ( C O ) 1 ? ) TABLE XIX P r e p a r a t i v e data f o r L^MC^ amd L M C l ^ ^ complexes f i^chlorfos 0 .28 g 0.82 mmol f gchlorphos 0.34 g 0.84 mmol fgchlorphos 0.30 g 0.75 mmol 'f 6 c h l o r f o s 0.37 g 0.94 mmol f g c h l o r f o s 0 .32 g 0.81 mmol M 2MC1 4 Na 2PdCl ( + 0.24 g 0.82 mmol Na 2PdCli + 0.25 g 0.84 mmol K 2 P t C l i + 0.31 g 0.74 mmol Na 2PdCli t 0.28 g 0.94 mmol K 2 P t C l ( + 0 . 34 g 0.82 mmol Product f i t c h l o r f o s P d C l 2 , ( f g c h l o r p h o s ) 2 P d C l 2 ( f g c h l o r p h o s ) 2 P t C l 2 ( f g c h l o r f o s ) 2 P d C l 2 and f 6 c h l o r f o s P d C l 2 ( f g c h l o r f o s ) 2 P t C l 2 Y i e l d % 45 60 69 56 19 44 A l l r e a c t i o n s were c a r r i e d out at 20°C and s o l u t i o n s allowed to s t i r f o r 24 h, R e c r y s t a l l i z e d from hexane. . R e c r y s t a l l i z e d from e t h a n o l . Was i s o l a t e d by c o o l i n g the orange f i l t r a t e o btained a f t e r f i l t e r i n g s o l i d C. TABLE XX A n a l y t i c a l data f o r L 2MC1 2 and LMC1 2 ^ 2 complexes. Compound Colour mp(°C) Analyses % C H CI c a l c . found c a l c . found c a l c . found f 4 c h l o r f o s P d C l 2 ^ 2 orange 177 38.6 a 38 .4 2.50 a 2.51 20.4 b 20 .8 ( f g c h l o r p h o s ) 2 P d C l 2 pale y e l l o w 254 41.2 41.3 4.47 4.48 14.3 14 .1 ( f 6 c h l o r p h o s ) 2 P t c l 2 p a l e yellow 294 37.8 37.8 4.11 4.04 13.1 13.1 ( f g c h l o r f o s ) 2 P d C l 2 y e l l o w 202 42.2 42.1 2.08 2.21 14.6 14.6 f 6 c h l o r f o s P d C l 2 ^ 2 orange 207 35.7 35.9 1.76 1.88 18.6 17.1 ( f g c h l o r f o s ) 2 P t C l 2 y e l l o w 248 36.7 36 .4 4.20 4.02 Anal c a l c . f o r C 3 2 H 2 0 C l 6 F 8 P 2 P d 2 * 0 . 5 C g H 1 4 b Anal c a l c . f o r C-j-H — Cl^-FoP-Pd., (sample r e c r y s t a l l i z e d from e t h a n o l ) . TABLE XXI Nmr and i r a s p e c t r o s c o p i c data f o r L 2MC1 2 and L M C l ^ ^ complexes Compound f 4 c h l o r f o s P d C l 2 ^ 2 ( f 6 c h l o r p h o s ) 2 P d C l 2 ( f 6 c h l o r p h o s ) 2 P t c l 2 ( f 6 c h l o r f o s ) 2 P d C l 2 f 6 c h l o r f o s P d C l 2 y 2 ( f g c h l o r f o s ) 2 P t C l 2 19 F nmr 109.2(m,l 116.6(m,l 104.4(m,l 114.8(m,l 132.6(m,l 104.6(m,l 114.6(m,l 132.8(m,l 105.4(m,l 115.1(m,l 130.0(m,l 105.2(m,l 115.l(m,1 130.0(m,l 105.4(m,l 115.0(m,l 130.2(m,l 358 (m) 355 (m) 340(w) 357 (m) v(M-Cl) cm 299 (w) 310(w) 300 (m) 318(w) 360 (m) 300 (w) 342(w) 305(m) 260 (m) 265 (m) N u j o l mull. H nmr 7 .5 (m) . H nmr 0.8 - 2.2(m,b) - 67 -was heated i n an evacuated C a r i u s at the i n d i c a t e d tempera-ture f o r 3 - 52 h (or i r r a d i a t e d w i t h u l t r a v i o l e t l i g h t at 20°C). At the end o f the r e a c t i o n p e r i o d the s o l v e n t was removed a t reduced p r e s s u r e . Except f o r the crude s o l i d r e s i d u e s from the r e a c t i o n s o f f ^ c h l o r p h o s , f ^ c h l o r f o s and f ^ c h l o r A s which were d i s s o l v e d i n dichloromethane, the r e s t were d i s s o l v e d i n petroleum ether and chromatographed on a F l o r i s i l column. The c o l o u r e d bands were e l u t e d w i t h mixtures o f d i e t h y l e ther - petroleum e t h e r . Removal of s o l v e n t at reduced pressure gave the crude s o l i d s which were a l l r e c r y s t a l l i z e d from hexane and i d e n t i f i e d as LFe( C O ) 4 , L 2 F e ( C O ) 3 , [ ( L - C l ) F e ( C O ) 4 ] 2 or (L-Cl-F)Fe 2(CO) complexes. The mass s p e c t r a o f the complexes L F e ( C O ) 4 , L 2 F e ( C O ) 3 and (L-Cl-F) F e 2 (CO) 6 showed m/e (P +) f o l l o w e d by peaks corre s p o n d i n g to [P-n(CO)] + where n = 1-4 ( L F e ( C O ) 4 ) , n = 1-3 (L 2 F e ( C O ) 3 ) and n = 1-6 ( ( L - C l - F ) F e 2 ( C O ) g ) r e s p e c t i v e l y . The mass spectrum o f the complex [ ( L - C l ) F e ( C O ) 4 ] showed m/e (P +) f o l l o w e d by peaks corre s p o n d i n g to [ P - n ( C O ) ] + (n = 1-8). A n a l y t i c a l data are l i s t e d i n Table XXIII, i r s p e c t r o s c o p i c data i n Table XXIV and nmr data i n Table XXV. (E) Reactions o f f , c h l o r f o s F e ( C O ) . . 6 4 (i) R e a c t i o n of f , c h l o r f o s F e ( C O ) . with i r o n o 4 pentacarbonyl. Iron pentacarbonyl (2.1 g, 10.7 mmol) and f , c h l o r f o s F e ( C O ) A (0.6 g, 1.06 mmol) i n benzene (8 ml) were TABLE XXII P r e p a r a t i v e data f o r i r o n c arbonyl complexes of t e r t i a r y phosphines ( L ) . f i+chlorphos 0.39 g 1.11 mmol i r o n c a r b o n y l Fe(CO) 5 2.3 g 11.7 mmol Reac t i o n temp(°C) 140 Reaction time (h) 48 Product f^chlorphosFe(CO) 4' Y i e l d % 15.0 f g c h l o r f o s 0.32 g 0.9 3 mmol fgChlorphos 0. 38 g 0.94 mmol fgChlorphos 0.33 g 0.80 mmol f g c h l o r f o s 0.36 g 0.90 mmol Fe(CO) 5 1.8 g 9.18 mmol Fe(CO) 5 1.84 g 9.4 mmol F e 3 ( C O ) 1 2 0.80 g 1.58 mmol Fe(CO) 5 1.92 g 9.8 mmol 140 150 150 150 48 48 f 4 c h l o r f o s F e ( C O ) k 23.0 4.5 48 [ (fgchlorphos-Cl) Fe(CO) 4 ] 2 C , f 3 .1 ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) 6 [ ( f 6 c h l o r p h o s - C l ) Fe (CO) J 2 C , f f g c h l o r p h o s F e ( C O ) ^ c ( f g c h l o r p h o s - C l - F ) F e 2 ( C O ) 6 b ' f f g c h l o r f o s F e ( C O ) i + c ( f g C h l o r f o s - C l - F ) F e 2 ( C O ) 6 b ' f 48.0 19 .0 4.6 40.0 14.0 40.0 0-1 00 f g c h l o r f o s 0.312 g 0.79 mmol f g c h l o r f o s 0.22 g 5.6 mmol Fe(CO) 5 1.8 g 9.18 mmol Fe(CO) 5 1.0 g 5.1 mmol 150 20 48 fgchlorfosFe(CO) h° 34.0 ( f g c h l o r f o s - C l - F ) F e 2 ( C O ) g b , d , f t r a c e ( f g c h l o r f o s ) 2 F e ( C 0 ) 3 b , d 2.2 fg c h l o r f o s F e ( C O ) 4 f 38.0 ( f g c h l o r f o s - C l - F ) F e 2 ( C O ) 6 14.5 TABLE XXII - continued f 6 c h l o r A s Fe(CO) 5 140 45 0.70 g 4.2 g 2.1 mmol 21.4 mmol fgchlorphos Fe(CO) 5 150 48 0. 3 g 1.28 g 0.6 5 mmol 6.5 3 mmol f g c h l o r f o s Fe(CO) 5 150 52 0.358 g 1.6 g 0.80 mmol 8.0 mmol f 6 c h l o r A s F e ( C O ) H h ' 6 ( f 6 c h l o r A s - C l - F ) F e 2 ( C O ) 6 b ' d ' f f 8chlorphosFe(CO) i , 0 ^ ( f 8 c h l o r p h o s - C l - F ) F e 2 ( C O ) 6 b ' f [ ( f g c h l o r f o s - C l ) F e ( C O ) h ] 2 C ' l ( f 8 c h l o r f o s - C l - F ) F e 2 ( C O ) e b ' f 28.0 6.6 5.4 44.0 1.6 26.0 E l u t e d w i t h 5% d i e t h y l e t h e r - 95% petroleum ether, E l u t e d with 1% d i e t h y l e t h e r - 99% petroleum ether, E l u t e d with petroleum e t h e r . S o l i d s separated by f r a c t i o n a l r e c r y s t a l l i z a t i o n . I r r a d i a t e d w i t h u l t r a v i o l e t l i g h t , The symbol - means minus and i n d i c a t e s l o s s of the group. TABLE XXIII A n a l y t i c a l data f o r i r o n c a r b o n y l complexes of t e r t i a r y phosphines ( L ) • Compound Colour mp(°C) Analyses % C H c a l c . found c a l c . found f 4 c h l o r p h o s F e ( C O ) 4 orange 120 45. 8 45 .6 4 .23 4. 11 f 4 c h l o r f o s F e ( C O ) 4 orange 99 46 . 8 47 .0 1 .96 2. 05 [ ( f gChlorphos-CI )Fe (CO) 4 ] 2 pale yellow 131 46. 7 46 .4 4 .11 4. 29 fgChlorphosFe(CO) 4 yellow 118 43. 9 43 .9 3 .86 3. 80 ( f g C h l o r p h o s - C l - F ) F e 2 ( C O ) g orange-red 78 43. 6 43 .6 3 .50 3. 55 f ^ c h l o r f o s F e ( C O ) . yellow-orange 110 44. 8 44 .8 1 .80 1. 87 ( f g C h l o r f o s - C l - F ) F e 2 ( C O ) g orange-red 162 44. 5 44 .8 1 .62 1. 70 ( f g C h l o r f o s ) 2 F e ( C O ) 3 red 143 47. 8 47 .6 2 .17 2. 11 f ^ c h l o r A s F e ( C O ) . b 4 yellow 56 27. 4 27 .8 1 .25 1. 20 ( f g C h l o r A s - C l - F ) F e 2 ( C O ) g red 152 28 . 9 28 .6 1 .12 1. 10 f 8 c h l o r p h o s F e ( C O ) 4 yellow-orange 158 42. 3 42 .5 3 .50 3. 42 ( f 8 c h l o r p h o s - F - C l ) F e 2 ( C O ) g orange 172 44. 7 a 44 .3 3 .89 a 3. 55 TABLE XXIII - continued [ ( f 8 c h l o r f o s - C l ) F e ( C O ) 4 ] 2 yellow 75 ( f 8 c h l o r f o s - C l - F ) F e 2 ( C O ) 6 orange 166 a C a l c u l a t e d f o r C 2 4 H 2 2 F 7 F e 2 0 6 P • 0.5 C 6 H 1 4 45.7 45.7 1.74 2.00 43.0 42.9 1.50 1.70 TABLE XXIV 4 I n f r a r e d s p e c t r o s c o p i c data f o r i r o n carbonyl complexes of t e r t i a r y phosphines ( L ) . Compound v(CO) cm f 4 c h l o r p h o s F e ( C O ) 4 2058(vs) 1985(s) 1970(sh) 1958(vs) f 4 c h l o r f o s F e ( C O ) 4 2060(vs) 1985 (s) 1969(sh) 1960(vs) ( [ f 6 c h l o r p h o s - C D Fe(CO) ^ ] 2 2058 (s) 1983(s) 1950(sh) 1940(vs) fgChlorphosFe(CO) 4 2059 (s) 1984(s) 1948(sh) 1945(vs) ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) g 2080 (s) 2046(vs) 2020 (s) 2012(s,sh) 1986(m) 1970(w) f g C h l o r f o s F e ( C O ) 4 2060 (s) 1985(s) 1960(sh) 1952(vs) ( f 6 c h l o r f o s - C l - F ) F e 2 ( C O ) g 2082(s) 2050(vs) 2021(s) 2018(s,sh) 1998(m) 1985(w) ( f g c h l o r f o s ) 2 F e ( C O ) 3 1910(s) 1918(s) fgChlorAsFe(CO) 4 2056 (s) 1982 (s) 1958(sh) 1950(vs) ( f 6 c h l o r A s - C l - F ) F e 2 ( C O ) g 2084(s) 2050(vs) 2022(s) 2017(s,sh) 1998(m) 1975(w) f 8chlorphosFe(CO) 4 2058(s) 1985(s) 1956(sh) 1950(vs) ( f 8 c h l o r p h o s - F - C l ) F e 2 ( C O ) g 2084(s) 2050(vs) 2025(s) 2018(s,sh) 1990(m) 1978(w) t ( f g C h l o r f o s - C l ) F e ( C O ) 4 ] 2 2058(s) 1985 (s) 1960(sh) 1950(vs) ( f 8 c h l o r f o s - C l - F ) F e 2 ( C O ) g 2090 (s) 2055(vs) 2022(s) 2010(s,sh) 2022(m) 1990(w) TABLE XXV Nmr s p e c t r o s c o p i c data f o r i r o n c a r b o n y l complexes  o f t e r t i a r y phosphines (L) .' Compound 19 „ F nmr f 4chlorphosFe(CO) 4 102.2 111.3 (m,l) (m,l) f 4 c h l o r f o s F e ( C O ) 4 109 .2 116.4 (m,l) (m,l) [ ( f 6 c h l o r p h o s - C l ) F e ( C O ) 4 ] 2 a 106.2 111.8 (m fl) (m,l) 131.0 (m,l) f 6 c h l o r p h o s F e ( C O ) 4 a 105.6 114.2 (m,l) (m, 1) 130.2 (m,l) ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) 6 a m u l t i p l e t s at 87.82 ) 90.20 93.92 | ( a r e a 96.31 ) 103.7 ) 106 .1 107.1 j area 2 109.5 ) 168.0 } area 1 TABLE XXV - continued f g C h l o r f o s F e ( C O ) 4 a ( f ^ c h l o r f o s - C l - F ) F e 0 ( C O ) (fgchlorfos)„Fe(CO) f,chlorAsFe(CO) ( f 6 c h l o r A s - C l - F ) F e 2 ( C O ) g 105.4 (m,l) 115.2 (m,l) 130.8 (m,l) m u l t i p l e t s at 89 .80 92.16 95.53 95.88 104.0 106.2 107.0 area : 109.6 167.2 area '. 104.3 (m,l) 115.3 (m,l) 131.3 (m,l) 10 3.6 (m,l) 114.0 (m,l) 130.2 (m,l) m u l t i p l e t s at 87.11 89.58 91.97 (area 94.34 10 3.1 105 .5 107.9 (area 110.3 2 2 2) 2) 167.3 (area 1) TABLE XXV - co n t i n u e d f Q c h l o r p h o s F e ( C O ) 4 a ( f Q c h l o r p h o s - F - C l ) F e 9 ( C O ) t ( f c h l o r f o s - C l ) F e ( C O ) 4 ] 2 104.4 (m,l) 110.6 (m,l) 134.8 (m,2) m u l t i p l e t s at 79 .12 81.85 94.99 97.93 115.4 118.2 125.2 127.9 130 .8 133.5 147.2 149 .9 }area 1 }area 1 }area 1 }area 1 }area 1 }area 1 160.1 (area 1) 103.5 (m,l) 110.6 (m,l) 134.8 (m,2) TABLE XXV - continued ( f 8 c h l o r f o s - C l - F ) F e 2 ( C O ) g a 1H nmr 1.0 - 2.3 (m,b) b 1H nmr 7.4 (m) m u l t i p l e t s a t 80.17 }area 1 }area 1 Jarea 1 }area 1 }area 1 }area 1 156.9 (area 1) 82.90 95.81 98.55 117.0 119.8 128.4 131.1 132.2 134.9 150.6 153.4 nmr 7.26 (m) 7.42 (m) 7.6 (m) nmr 1.85 (m) - 77 -heated i n an evacuated C a r i u s tube a t 150°C f o r 4 8 h. The procedure f o r working up the products was s i m i l a r to t h a t d e s c r i b e d i n 5 (D). Chromatography on a F l o r i s i l column gave a yellow band when e l u t e d w i t h petroleum e t h e r . T h i s was i d e n t i f i e d as unreacted f g C h l o r o f o s F e ( C O ) 4 (0.21 g, 33% r e c o v e r y ) . A 1% d i e t h y l e t h e r - 99% petroleum e t h e r mixture e l u t e d an orange band. E v a p o r a t i o n of s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d e d o r a n g i s h r e d c r y s t a l s of ( f 6 c h l o r f o s - C l - F ) F e 2 ( C O ) g o f known s p e c t r o s c o p i c pro-p e r t i e s (0.22 g, 33%) (see above 5 (D)). ( i i ) P y r o l y s i s of f g C h l o r o f o s F e ( C O ) 4 . When a s o l u t i o n o f f ^ c h l o r f o s F e ( C O ) 4 (0.213 g, 0.38 mmol) i n benzene (8 ml) was heated i n an evacuated C a r i u s tube at 150°C f o r 48 h the s o l u t i o n turned orange. The tube contents were t r e a t e d as d e s c r i b e d i n 5 (D). Chromatography on a F l o r i s i l column gave f ^ c h l o r f o s F e ( C O ) 4 (0.08 g, 37% recovery) as the onl y product. Table XXVI shows the percentage y i e l d o f v a r i o u s compounds i s o l a t e d from the r e a c t i o n of f ^ c h l o r f o s w i t h F e ( C 0 ) 5 a t d i f f e r e n t time i n t e r v a l s . (F) Reaction o f f_chlo r f o s W ( C O ) c with i r o n penta-c a r b o n y l . I r o n pentacarbonyl (0.54 g, 2.75 mmol) and f,chlorfosW(CO) c (0.2 g, 0.28 mmol) i n benzene (10 ml) b o was heated i n an evacuated C a r i u s tube a t 150°C f o r 46 h. TABLE XXVI The percentage y i e l d o f d i f f e r e n t compounds i s o l a t e d from the r e a c t i o n o f " f ^ c h l o r f o s with Fe(CO) r at d i f f e r e n t time i n t e r v a l s . —6 5 f ..chlorfosCl 6 (mmol) Fe(CO) (mmol) Reaction time (h)' f_chlorfosFe(CO) . D 4 Products (%) (f c h l o r f o s 6 - C l - F ) F e 2 ( C O ) 6 ( f ^ c h l o r f o s ) _ F e ( C O ) _ 6 2. 3 0.254 0.254 0.254 0.254 0.254 0.254 3.06 3.04 3.02 3.09 3.02 3.04 1 3 7.5 17 24 48 70 .2' 75 .9 68.2 50 38 21 t r a c e t r a c e 6 16.5 29.2 40 .4 1.05 2.4 2.2 1.1 tr a c e t r a c e 00 A l l r e a c t i o n s were c a r r i e d out a t 150°C. The y i e l d s o f the three compounds are very dependent on the r e a c t i o n c o n d i t i o n s . - 79 -At the end of the r e a c t i o n p e r i o d the s o l u t i o n was o r a n g i s h w i t h white s o l i d p a r t i c l e s (W(CO) g). The procedure f o r working up the products was s i m i l a r to t h a t d e s c r i b e d i n 5 (D). Chromatography on a F l o r i s i l column gave a ye l l o w band which was e l u t e d with petroleum e t h e r . T h i s was i d e n t i f i e d as f g c h l o r f o s F e ( C O ) 4 (0.015 g, 9.6%) of known s p e c t r o s c o p i c p r o p e r t i e s (see above 5 (D)). A 1% d i e t h y l e ther - 99% petroleum e t h e r mixture e l u t e d an orange band. T h i s was i d e n t i f i e d as ( f g c h l o r f o s - C l - F ) F e 2 ( C O ) g (0.011 g, 6.3%) o f known s p e c t r o s c o p i c p r o p e r t i e s (see above 5 (D)). (G) Reactions o f ( L - C l - F ) F e 2 ( C O ) g complexes wi t h t r i p h e n y l p h o s p h i n e . (i) Reaction o f ( f g c h l o r p h o s - C l - F ) F e 2 ( C O ) g w i t h t r i p h e n y l p h o s p h i n e . A 100 ml three necked f l a s k f i t t e d w i t h n i t r o g e n i n l e t , s t i r r e r , r e f l u x condenser and pressure e q u a l i z e d dropping f u n n e l was charged w i t h ( f g c h l o r p h o s - C l - F ) F e 2 ( C O ) g (0.064g, 0.1 mmol) i n methylcyclohexane (10 ml). The s o l u t i o n was heated to 100°C and t r i p h e n y l p h o s p h i n e (0.026 g, 0.1 mmol) i n methylcyclohexane (15 ml) was added v i a the drop-p i n g f u n n e l . No change i n c o l o u r was observed. The i r spectrum o f the s o l u t i o n was recorded at 2 h i n t e r v a l s up to 14 h (no change was observed) and reqorded a f t e r 24 h. E v a p o r a t i o n of s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d e d reddish-orange c r y s t a l s o f unreacted ( f g c h l o r p h o s -C l - F ) F e , ( C O ) c (0.022 g, 33.8% r e c o v e r y ) . - 80 -( i i ) R eaction o f ( f , c h l o r f o s - C l - F ) F e 0 ( C O ) r with b z o t r i p h e n y l p h o s p h i n e . Triphenylphosphine (0.074 g, 0.28 mmol) and ( f 6 c h l o r f o s - C l - F ) F e 2 ( C O ) (0.175 g, 0.28 mmol) i n benzene (8 ml) were heated i n a evacuated C a r i u s tube at 150°C f o r 46 h. At the end of the r e a c t i o n p e r i o d the s o l u t i o n ( i n i t i a l l y yellow) was re d . The procedure f o r working up the products was s i m i l a r to t h a t d e s c r i b e d i n 5 (D) . Chromatography on a F l o r i s i l column gave a yellow band which was e l u t e d with petroleum e t h e r . T h i s was i d e n t i f i e d as unreacted ( f g C h l o r f o s - C l - F ) F e 2 ( C O ) g (0.04 g, 22.8% r e c o v e r y ) . A 25% d i e t h y l • e t h e r - 75% petroleum e t h e r mixture e l u t e d a red band. E v a p o r a t i o n of s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d e d red shiny c r y s t a l s i d e n t i f i e d as ( f , c h l o r f o s - C l - F ) F e , , ( C O ) C P ( C , H C ) _ (0.15 g, 6 z 5 6 -> 3 3 60%) mp 206°C (dec.) . Mass spec, m/e 854 (P +) was f o l l o w e d by peaks c o r r e s -ponding to [ P - n ( C 0 ) ] + (n = 1-5). I r s p e c t r o s c o p i c data are l i s t e d i n Table XXVII and nmr data i n Table XXVIII. A n a l . C a l c d . f o r C 4 0 H 2 5 F 5 F e 2 O 5 P 2 : C, 56.3; H, 2.95. Found: C, 5 6.6; H, 3.35%. (H) Reaction o f ( f g C h l o r p h o s - C l - F ) F e 2 ( C O ) g with i o d i n e . In a 100 ml three necked f l a s k f i t t e d w i t h n i t r o g e n i n l e t , s t i r r e r , r e f l u x condenser and dropping - 8 1 -f u n n e l was p l a c e d ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) g (0.11 g, 0.174 mmol) i n c a r b o n t e t r a c h l o r i d e (CC1 4) (8 ml). The s o l u t i o n was c o o l e d to 0°C and i o d i n e (0.0442 g, 0.175 mmol) i n C C l ^ (20 ml) ( p r e v i o u s l y c o o l e d to 0°C) was added drop-wise to the above s o l u t i o n . The s o l u t i o n ( i n i t i a l l y orange) was deep re d . A f t e r 2 h the s o l u t i o n was warmed to 20°C and allowed to s t i r f o r 6 h. The r e a c t i o n was monitored by i r . Since no change was observed a f t e r 8 h, more i o d i n e (0.0221 g, 0.087 mmol) i n CC1 4 (15 ml) was added to t h i s s o l u t i o n at 0°C, and the s o l u t i o n allowed to warm up to 20°C a f t e r 2 h. Since the i r d i d not show any change a f t e r 10 h, the s o l u t i o n was warmed to 35°C. A change i n the i r was observed. Thus the s o l u t i o n was s t i r r e d f o r a f u r t h e r 10 h a t 35°C. At the end o f the r e a c t i o n p e r i o d , the s o l u t i o n was f i l t e r e d and removal of s o l v e n t gave an o r a n g i s h - r e d r e s i d u e which was d i s s o l v e d i n a s m a l l volume of dichloromethane. Chromatography on a F l o r i s i l column gave a yellow band which was e l u t e d w i t h petroleum e t h e r . T h i s was i d e n t i f i e d as unreacted (f , c h l o r p h o s - C l - F ) F e ~ ( C O ) , (0.02 g, 18.1% r e c o v e r y ) , b z b A 2% d i e t h y l e t h e r - 9 8% petroleum e t h e r mixture e l u t e d an orange band. E v a p o r a t i o n o f s o l v e n t and r e -c r y s t a l l i z a t i o n from hexane a f f o r d e d a r e d d i s h powdery s o l i d (0.101 g) mp 147°C. The mass spectrum shows a molecular peak a t m/e 746 (corresponding t o [ ( f f i c h l o r p h o s - C l - F ) F e ? ( C O ) f i -- 82 -(Fe(CO) 3 + 12 3) was f o l l o w e d by peaks corresponding to [ P + - n ( C O ) ] + (n = 1-3) and [ P + - n ( C O ) - I ] + (n = 1-3). Another type o f fragmentation p a t t e r n i s observed f o r the same compound where P + i s f o l l o w e d by a peak corresponding to ( P - I ) + and then [P - I - n ( C O ) ] + (n = 1-3). I r s p e c t r o s c o p i c data are l i s t e d i n Table XXVII and nmr data i n Table XXVIII. A n a l . C a l c d . f o r C 2 0 H 2 2 F 5 F e I 2 ° 3 : C ' 3 2 , 2 ; H ' 2 « 9 7 - A n a l . C a l c d . f o r C„nH„.,F.-FeIO_,: C, 38.7; H, 3.74. A n a l . C a l c d . f o r ZU Z 5 D J C 4 0 H 4 4 F 1 0 F e 2 I 2 ° 6 : C ' 3 8 > 8 ; H ' 3 - 5 8 - Found: C, 38.55; H, 3.86. TABLE XXVII I r s p e c t r o s c o p i c data f o r ( f g C h l o r f o s - C l - F ) Fe,, (CO) ,-P (C^HrJ 3 and i o d i n a t i o n product 8_5 of (f ^ c hlorphos-Cl-F) Fe^ (CO) g . Compound v(CO) cm 1 ( f , c h l o r f o s - C l - F ) Fe,, (CO) _P (C CH C) 2058 (vs) 2005 (s) 1980 (m) 1945 (w) 6 2. 5 6 5 3 i o d i n a t i o n product 85_ 2080 (s) 2041 (s) 2010 (s) 0 0 C O TABLE XXVIII Nmr s p e c t r o s c o p i c data f o r (f c h l o r f o s - C l - F ) F e 2 ( C O ) 5 P ( C 6 H 5 ) 3 and i o d i n a t i o n product 85 of ( f g c h l o r p h o s - C l - F ) F e ? ( C O ) f i . Compound H 19, 31. (f c h l o r f o s - C l - F ) F e 2 ( C O ) 5 P ( C 6 H 5 ) 3 7.2-7.6(m,b) m u l t i p l e t s at 85.28 87.60 92.18 94.53 102.7 105.0 106 .4 108.8 170 .8 area 2 area 2 area 1 •71.34 doublet, •70.27 area 1 •11.15 doublet, •10.04 area 1 i o d i n a t i o n product 85 0.9-2.2(m,b) m u l t i p l e t s at 109.0 (1) 110.0 (2) 111.6 (2) 113.4 (1) 117.2 (1) 119.6 (2) 127.7 (2) 130.3 (1) m u l t i p l e t at -41.5 145.5 (3) - 85 -CHAPTER I I I RESULTS AND DISCUSSION The s y n t h e s i s and c h a r a c t e r i z a t i o n and some p r o p e r t i e s o f  the d i t e r t i a r y phosphine l i g a n d s (L-L) and t e r t i a r y phosphine  l i g a n d s ( L ) . T h i s chapter i s d i v i d e d i n t o two s e c t i o n s . The f i r s t s e c t i o n d e a l s w i t h the s y n t h e s i s and c h a r a c t e r i z a t i o n of d i t e r t i a r y phosphine and t e r t i a r y phosphine l i g a n d s . S e c t i o n 2 d e s c r i b e s some attempts to prepare mixed l i g a n d s and some i n f r a r e d s p e c t r o s c o p i c s t u d i e s o f the photochromic d i t e r t i a r y phosphine l i g a n d , 2 , 2 ' - b i s ( d i p h e n y l p h o s p h i n o ) -o c t a f l u o r o ( b i - l - c y c l o b u t e n - l - y l ) b i f g f o s , 2_3 1. The s y n t h e s i s and c h a r a c t e r i z a t i o n o f the d i t e r t i a r y phosphine l i g a n d s (L-L) and t e r t i a r y phosphine l i g a n d s  (L) . (A) P r e p a r a t i v e methods. The r e a c t i o n o f d i c y c l o h e x y l p h o s p h i n e w i t h 1,2-d i c h l o r o h e x a f l u o r o c y c l o p e n t e n e i n dimethylformamide (DMF) i s known (11) to give both the d i t e r t i a r y phosphine 25b - 86 -and the t e r t i a r y phosphine 26c as mentioned i n the i n t r o -d u c t i o n . The photochromic d i t e r t i a r y phosphine, b i f g f o s , 23 has been s y n t h e s i z e d (27) by the r e a c t i o n o f d i p h e n y l -phosphine with 2 , 2 ' - d i c h l o r o o c t a f l u o r o - ( b i - l - c y c l o b u t e n -l - y l ) , 2 2a i n the presence of d i e t h y l ether as shown i n equation [9] which i s repeated below. , ( C F2>n (CF2y fCF2\n / C F2»j„ C1C = C - C = CC1 + 2R-EH > R~EC = C - C = CER, 2 2 i 22 [9] a) n=2 (23) n=2, E=P, R=C 6H 5, b i f 8 f o s b) n=3 (24) n=2, E=P, R=C 6H! 1, b i f 8 d i p h o s (27) n=2, E=As, R=CH3, b i f 8 f a r s (28) n=2, E=As, R=C 6H 5, b i f 8 p h e n a r s Because o f t h i s r e s u l t i t was thought t h a t d i c y c l o -hexylphosphine would a l s o r e a c t with the d i c h l o r o compound, 22a t o give an analogous l i g a n d , 2_4. T h i s e x p e c t a t i o n i s found to be c o r r e c t . L i k e 2_3, the new d i t e r t i a r y phosphine, 2 , 2 ' - b i s ( d i c y c l o h e x y l p h o s p h i n o ) o c t a f l u o r o ( b i - l - c y c l o b u t e n -l - y l ) , b i f g d i p h o s , 2_4, i s yel l o w i n the dark but .unfortunately the s o l i d i s a l s o permanently yellow i n s u n l i g h t , hence i t i s not photochromic l i k e 23. The s o l i d s t a t e s t r u c t u r e of 23_, has the c i s o i d conformation (41), whereas Soulen et a l . (28) have suggested a t r a n s o i d conformation f o r the d i c h l o r o compound, 22a on the b a s i s o f some s p e c t r o s c o p i c evidence. Although b i f g d i p h o s , 2_4 does not e x h i b i t any photochromic behaviour there i s the p o s s i b i l i t y t h a t i t s - 87 -metal complexes c o u l d e x h i b i t such a p r o p e r t y . Consequently a number of complexes have been prepared i n t h i s i n v e s t i g a t i o n and are d e s c r i b e d i n the f o l l o w i n g c h a p t e r s . However, none are photochromic. The chemistry of d i t e r t i a r y phosphine l i g a n d s such as f ^ f o s , 7d, f g f o s , le_ and f g f o s , 7_f .having d i p h e n y l -phosphino groups b r i d g e d by a s i n g l e f l u o r o a l i c y c l i c r i n g has been s t u d i e d i n g r e a t d e t a i l (9,13,40). The analogous l i g a n d s having d i c y c l o h e x y l p h o s p h i n o groups b r i d g e d by a s i n g l e f l u o r o a l i c y c l i c r i n g have r e c e i v e d l i t t l e a t t e n t i o n (11). Thus i t was of i n t e r e s t to s y n t h e s i z e such d i t e r t i a r y phosphine l i g a n d s and examine t h e i r r e a c t i o n s with t r a n s i -t i o n metal c a r b o n y l s and metal h a l i d e s . There i s the p o s s i b i l i t y t h a t the bulky c y c l o h e x y l groups would make the chemistry o f these l i g a n d s and t h e i r complexes d i f f e r e n t from t h a t o f the diphenylphosphino analogues. Reactions of t r a n s i t i o n metal h a l i d e s w i t h bulky ( s t e r i c a l l y hindered) phosphines are known to a f f o r d unusual products which have low c o o r d i n a t i o n numbers (42,43) or are i n t e r n a l l y m e t a l l a t e d (44) o r are metal h y d r i d e s (42,43). Thus by r e a c t i n g the 1 , 2 - d i c h l o r o p e r f l u o r o o l e f i n s , 29a-29c w i t h R„PH, where R = C,H., i n s t e a d of C,H C, i t was 2 6 11 6 5 thought t h a t bulky d i t e r t i a r y phosphines could be s y n t h e s i z e d . In t h i s case, even the monosubstituted product, the t e r t i a r y I 1 phosphine, (CgH.^) 2PC=CC1 (CF 2) n (n = 2-4) c o u l d be expected to show unusual p r o p e r t i e s . - 88 -As mentioned i n the I n t r o d u c t i o n , S t o c k e l has observed the r e a c t i o n of the secondary phosphines, d i c y c l o -hexylphosphine and diphenylphosphine w i t h the f l u o r o c y c l o -pentene, 29b as shown i n e q u a t i o n [4], repeated below, and i n both cases the monoderivatives, 26c and 26d were ob t a i n e d I I DMF • I 1 1 R„PH + C1C=CC1(CF„) R„PC=CPR_(CF„) + R~PC=CC1 ( C F j [4] l In l i l n l in 29 25 26 a) n=2 (25a) n=2, R ~ C 6 H 1 1 , f i + d i p h o s b) n=3 ( 7d) n=2, R=C 6H 5, f 1+ f OS c ) n=4 (25b) n=3, R=C 6Hn , f g d i p h o s ( 7e) n=3, R _ C 6 H 5 , f g f O S (25c) n=4, R=C 6Hn , f g d i p h o s ( 7f) n=4 , R=C GH 5, f g f o s (26a) n=2, R=C 6Hi! , f ^ c h l o r p h o s (26b) n=2, R-CgH 5 , f i + c h l o r f os (26c) n=3, R = C 6 H 1 1 , f g c h l o r p h o s (26d) n=3, R=C 6H 5, f g c h l o r f o s (26e) n=4, R = c 6Hn , f g c h l o r p h o s ( 2 6 f ) n=4, R - C 6 H 5 ' f g c h l o r f o s i n good y i e l d s (11). Only i n the case o f d i c y c l o h e x y l -phosphine was the d i s u b s t i t u t e d d e r i v a t i v e o b t a i n e d and the y i e l d was low, ^ 8.3%. The formation of a d i s u b s t i t u t e d m a t e r i a l i n t h i s r e a c t i o n i s a t t r i b u t e d to the i n c r e a s e d b a s i c i t y o f d i c y c l o -hexylphosphine compared with t h a t o f diphenylphosphine. However, because the r e a c t i o n between diphenylphosphine and 1 , 2 - d i c h l o r o t e t r a f l u o r o c y c l o b u t e n e , 29a (12) gives both mono and d i s u b s t i t u t e d products (equation [4], n=2, R=C gH^), S t o c k e l argues t h a t r i n g s i z e may a l s o have a s i g n i f i c a n t e f f e c t (45) . - 89 -When the r e a c t i o n o f diphenylphosphine w i t h the f l u o r o c y c l o o l e f i n s , 29a and 29b was conducted i n the absence of a s o l v e n t , only d i s u b s t i t u t e d products were observed (9,13). Thus the e f f e c t of the r e a c t i o n medium i n these n u c l e o p h i l i c r e a c t i o n s i s a l s o important. Other s t u d i e s have shown t h a t the s o l v e n t can p l a y a dominant r o l e i n product formation (46). For example, though no r e a c t i o n was r e p o r t e d to occur between the f l u o r o c y c l o p e n t e n e , 29b and potassium hydroxide i n aqueous dioxane, four e q u i v a l e n t s of base were consumed i n the presence of diglyme or dimethyl s u l f o x i d e to g i v e a potassium s a l t o f 29b (46). In the present i n v e s t i g a t i o n , the 1 , 2 - d i c h l o r o -p e r f l u o r o c y c l o o l e f i n s , 29a, 29b and 29c are found to r e a c t w i t h d i c y c l o h e x y l p h o s p h i n e and diphenylphosphine i n DMF as shown i n equation [4], to give both the monosubstituted t e r t i a r y phosphines and d i s u b s t i t u t e d , d i t e r t i a r y phosphines, except i n one case (n=4, R = c g H ± 1 ) where only the t e r t i a r y phosphine i s i s o l a t e d . Apart from the cyclohexene systems (n=4) a l l the other l i g a n d s are o b t a i n e d i n good y i e l d s . The f a c t t h a t the y i e l d o f the t e r t i a r y phosphines i s r a t h e r low f o r both the cyclohexene systems suggests t h a t more f o r c i n g c o n d i t i o n s are r e q u i r e d as r i n g s i z e i s i n c r e a s e d . The d i t e r t i a r y phosphine, f g f o s , 7_f was e a r l i e r r e p o r t e d (40) as the only product when the r e a c t i o n was c a r r i e d out i n the absence o f a s o l v e n t . In the present - 90 -i n v e s t i g a t i o n , when the r e a c t i o n i s c a r r i e d out i n DMF (equation [ 4 ] ) , the new t e r t i a r y phosphine, f g c h l o r f o s , 26f i s a l s o i s o l a t e d . The r e l a t e d t e r t i a r y phosphine, f g c h l o r p h o s , 26c, p r e v i o u s l y r e p o r t e d (11) as a l i q u i d i s found to be a low m e l t i n g s o l i d , mp 26°C (equation [4] , n=3, R=C gH^) . The d i t e r t i a r y phosphine, f ^ d i p h o s , 25b i s a l s o i s o l a t e d from t h i s r e a c t i o n as r e p o r t e d by S t o c k e l (11). The i s o l a t i o n o f the d i t e r t i a r y phosphine, f ^ f o s , 7_e i n a d d i t i o n to f g c h l o r f o s , 26d from these r e a c t i o n s i s i n c o n t r a s t t o S t o c k e l s r e s u l t s (11), where only 26d was i s o l a t e d . For both the cyclopentene systems (n=3) the y i e l d of the d i t e r t i a r y phosphines, 7e or 25b i s found to i n c r e a s e when h i g h e r phosphine to f l u o r o c a r b o n r a t i o s are used. The new d i t e r t i a r y phosphine f^diphos i s i s o l a t e d a t room temperature as a white s o l i d s i m i l a r to i t s d i -phenylphosphino analogue, f ^ f o s , 7d. Both the t e r t i a r y phosphines, f g c h l o r p h o s , 26a and f g c h l o r f o s , 26b are a l s o i s o l a t e d from these r e a c t i o n s . The c o l o u r and m e l t i n g p o i n t s of a l l these phos-phines are l i s t e d i n Table XXIX. - 91 -(B) C h a r a c t e r i z a t i o n of new l i g a n d s . (i) D i t e r t i a r y phosphine l i g a n d s ( L - L ) . A l l the d i t e r t i a r y phosphines were c h a r a c t e r i z e d by t h e i r mass s p e c t r a where the h i g h e s t peak corresponds to the m/e value of the parent i o n . The formulae were f u r t h e r confirmed by m i c r o a n a l y s e s . The i n f r a r e d spectrum of the new d i t e r t i a r y phosphine, b i f Q d i p h o s , 24 shows three medium to s t r o n g bands i n the r e g i o n , 1310 - 1120 cm 1 which can be a t t r i b u t e d t o CF^ a b s o r p t i o n . A s i m i l a r p a t t e r n was a l s o observed f o r the other b i - l - c y c l o b u t e n - l - y l analogues b i f g f o s , 2_3 and b i f g f a r s , 27. 19 The F nmr spectrum of 24_ shows two m u l t i p l e t s of equal i n t e n s i t i e s as expected f o r a s y m m e t r i c a l l y sub-s t i t u t e d d i t e r t i a r y phosphine. A s i m i l a r p a t t e r n was a l s o observed f o r the diphenylphosphino analogue, 23. The i n f r a r e d spectrum of fgdiphos, 2 5b shows the u s u a l C F 2 a b s o r p t i o n i n the r e g i o n 1290 - 1105 cm 1 s i m i l a r 19 to the diphenylphosphino analogue, f g f o s , 7e. The F nmr spectrum shows the expected two s e t s of a b s o r p t i o n bands at 107.7 and 134.0 ppm i n the r a t i o of 2:1. The low f i e l d band i s assigned to the f l u o r i n e atoms on e i t h e r s i d e of the double bond and the h i g h f i e l d band to the remaining p a i r o f f l u o r i n e atoms (8). The i n f r a r e d spectrum of the new l i g a n d , f 4 d i p h o s , 25a shows CF, a b s o r p t i o n i n the r e g i o n , 1310 - 1105 cm ^. - 92 -The p a t t e r n i s v e r y s i m i l a r t o the d i p h e n y l p h o s p h i n o a n a l o g u e , 19 f ^ f o s , 7_d. The F nmr spectrum shows a s i n g l e t a t 106.4 ppm i n d i c a t i n g t h a t b o t h s e t s o f f l u o r i n e atoms are e q u i v a -l e n t . The spectrum o f f 4 f o s , 7d shows a d o u b l e t ( J p _ F = 7.74 H z ) . Thus t h e (P-F) c o u p l i n g i n the c y c l o h e x y l a n a l o gue, 25a must be l e s s t h a n 1 Hz. ( i i ) T e r t i a r y phosphine l i g a n d s ( L ) . A l l t h e t e r t i a r y phosphines were i d e n t i f i e d by means o f t h e i r mass s p e c t r a which show a m o l e c u l a r peak c o r r e s p o n d i n g t o the m/e v a l u e o f the p a r e n t i o n . The formulae were f u r t h e r c o n f i r m e d by m i c r o a n a l y s e s . The i n f r a r e d s p e c t r a o f the t e r t i a r y phosphines i n a d d i t i o n t o the C F 2 a b s o r p t i o n bands a l s o show c h a r a c t e r i s t i c a b s o r p -t i o n due t o (C=C) and (C-Cl) s t r e t c h i n g f r e q u e n c i e s , w h i c h are absent i n t h e d i t e r t i a r y p h o s p h i n e s . The 1 , 2 - d i c h l o r o -p e r f l u o r o o l e f i n s / 29_ show a s t r o n g band i n the (C=C) a b s o r p t i o n r e g i o n . On m o n o s u b s t i t u t i o n t o g i v e a t e r t i a r y p h o s p h i n e , the i n t e n s i t y o f t h e band i s d e c r e a s e d . (The s y m m e t r i c a l l y s u b s t i t u t e d d i t e r t i a r y phosphines show v e r y l i t t l e double bond a b s o r p t i o n ) . T a b l e XXIX l i s t s the (C=C) s t r e t c h i n g f r e q u e n c i e s f o r the t e r t i a r y phosphine l i g a n d s s y n t h e s i z e d i n t h i s s t u d y . As the r i n g s i z e d e c r e a s e s a d e c r e a s e i n t h e (C=C) s t r e t c h i n g f r e q u e n c y i s o b s e r v e d . S t u d i e s o f the i n f l u e n c e o f r i n g s t r a i n have been made by L o r d and Walker (4 7 ) . The (C=C) s t r e t c h i n g f r e q u e n c y o f the h y d r o -- 93 -TABLE XXIX Colour, m e l t i n g p o i n t s and v(C=C) of the d i t e r t i a r y Phosphine Colour mpt (°C) 24 b i f g d i p h o s y e l l o w 174 23 b i f g f o s a y e l l o w 126 25a fgdiphos w h i t e 126 26a f^chlorphos c o l o u r l e s s l i q u i d 7d * c b , c f 4 f o s w h i t e 129 26b f ^ c h l o r f o s c o l o u r l e s s l i q u i d 25b f g d i p h o s ^ yellow 184 26c f g C h l o r p h o s * ^ p a l e y e l l o w 26 7e n J= d, e f g f o s w h i t e 98 26d f , c h l o r f o s ^ 6 w h i t e 47 25c f g d i p h o s 26e f g C h l o r p h o s y e l l o w 47 21 f 8 f o s g orange 135 26f f O c h l o r f o s o yellow 63 -1 v(C=C) cm 1588 ,1576 1569 1575 1580 1580 1585 1585 From r e f (27) From r e f (9) From r e f (12) From r e f (11) e From r e f (13) ^ Product not i s o l a t e d g From r e f (40) A l l s p e c t r a were measured i n cyclohexane s o l u t i o n except the value f o r b i f 8 f o s , 2_3 which was obtained from KBr d i s c s . - 94 -carbons, cyclohexene, cyclopentene and cyclobutene are 1646, 1611 and 1566 cm 1 r e s p e c t i v e l y . As the s i z e o f the r i n g d i m i n i s h e s , the s t r a i n i s i n c r e a s e d and thus the -C=C-frequency f a l l s . As seen i n Table XXIX, even though a decrease i n -C=C- frequency i s observed with decrease i n r i n g s i z e , the change i n frequency i s not as pronounced as observed by Lord and Walker (47). C u l l e n e t a l . (38) have observed t h a t the s t r o n g I 1 v(C=C) i n the monosubstituted s e r i e s (CH 3) 2AsC=CF(CF 2) , changes very l i t t l e w i t h r i n g s i z e , i t b e i n g 1662, 1661 and 1664 cm 1 f o r n = 2, 3 and 4 r e s p e c t i v e l y . The C F 2 a b s o r p t i o n p a t t e r n f o r the cyclopentene l i g a n d s , f g c h l o r p h o s , 26c and f g c h l o r f o s , 26d are very s i m i l a r . T h i s p a i r w i s e e f f e c t i s seen f o r both the c y c l o -butene d e r i v a t i v e s , 26a and 26b and f o r both the cyclohexene d e r i v a t i v e s , 26e and 26f. 19 The F nmr of both the cyclopentene l i g a n d s , f g c h l o r p h o s , 26c and f , c h l o r f o s , 26d show three m u l t i p l e t s , b b a l l o f equal i n t e n s i t y . For example, f g c h l o r p h o s , 26c shows m u l t i p l e t s at 10 5.2, 114.0 and 129.6 ppm. 19 S e v e r a l workers (48,49) have s t u d i e d the F nmr spectrum o f the p r e c u r s o r of t h i s l i g a n d , 1,2-dichlorohexa-f l u o r o c y c l o p e n t e n e , 29b. Feeney e t a l . (48) have r e p o r t e d chemical s h i f t s at 113.9 and 130.0 ppm i n the r a t i o of 2:1 f o r t h i s compound, where the low f i e l d m u l t i p l e t i s a s s i g n e d to the f l u o r i n e atoms on C, and C,. adjacent to the double CI CI 29b CI P(CeH,,)2 26c bond and the high f i e l d m u l t i p l e t to the other two f l u o r i n e atoms at . Based on t h i s data, i t seems reasonable t o assume t h a t the m u l t i p l e t observed at 10 5.2 ppm f o r fgChlorphos, 26c i s due t o the f l u o r i n e atoms on C^, adjacent to the t e r t i a r y phosphine group. The m u l t i p l e t a t 114.0 ppm i s a t t r i b u t e d to those f l u o r i n e atoms on adjacent to the c h l o r i n e atom and the high f i e l d m u l t i p l e t a t 129.6 ppm i s a t t r i b u t e d to those on . The three bands observed i n the 19 F nmr spectrum of the diphenylphosphino d e r i v a t i v e , f g C h l o r f o s , 26d can be as s i g n e d i n an analogous manner. 19 The F nmr s p e c t r a of both the cyclobutene d e r i v a t i v e s , f ^ c h l o r p h o s , 26a and f ^ c h l o r f o s , 26b show two m u l t i p l e t s of equal i n t e n s i t y . T h i s i n d i c a t e s the presence of two i n e q u i v a l e n t s e t s of f l u o r i n e atoms as expected. 19 The F nmr spectrum of both the cyclohexene d e r i v a t i v e s , fgChlorphos, 26e and f g c h l o r f o s , 26f show three m u l t i p l e t s . For example, fgChlorphos, 26e shows m u l t i p l e t s at 104.0, 110.4 and 134.4 ppm i n the r a t i o of 1:1:2. Since the parent d i c h l o r o compound 29c shows a b s o r p t i o n bands a t - 96 -110.6 (C 3,C 6) and 134.1 (C 4,C 5) ppm r e s p e c t i v e l y (50) i n the r a t i o of 1:1, i t seems reasonable to assume t h a t i n the t e r t i a r y phosphine l i g a n d 26c the m u l t i p l e t a t 104.0 ppm F2 F? ci p<rw2 29e i s due t o the f l u o r i n e atoms adj a c e n t to the d i c y c l o h e x y l -phosphino group and t h a t at 110.4 ppm i s due to the f l u o r i n e atoms adjacent to the c h l o r i n e atom. The high f i e l d m u l t i -p l e t at 134.4 ppm i s a s s i g n e d to those f l u o r i n e atoms on and . The analogous diphenylphosphino d e r i v a t i v e , f g c h l o r f o s , 26f shows bands at 103.5(1), 110.6(1) and 134.4 ppm (2) which can be a s s i g n e d i n the same way. 2. (A) Attempted mixed l i g a n d syntheses. C u l l e n et a l . (53) have s y n t h e s i z e d mixed l i g a n d s such as, l - d i p h e n y l p h o s p h i n o - 2 - d i m e t h y l a r s i n o t e t r a f l u o r o -cyclobutene, f^AsP, 8_a and r e l a t e d l i g a n d s , f g A s P , 8_b and fgAs P, 8c as d e s c r i b e d i n the I n t r o d u c t i o n (equation [ 3 ] ) . These l i g a n d s have been found to undergo some i n t e r e s t i n g r e a c t i o n s w i t h metal ca r b o n y l s (51). S i m i l a r unsymmetrically s u b s t i t u t e d l i g a n d s i n v o l v i n g b i a l i c y c l i c r i n g s were not s y n t h e s i z e d e a r l i e r and f o r reasons mentioned i n the I n t r o d u c t i o n , i t was o f i n t e r e s t to prepare a mixed l i g a n d of the formula, I 1 I 1 ( C 6 H 5 ) 2 P C = C ( C F 2 ) 2 C = C A s ( C H 3 ) 2 ( C F 2 ) 2 , b i f g A s P , because i t c o u l d be ph o t o c h r o m i c . The photochromic l i g a n d 23 was e a r l i e r s y n t h e s i z e d (27) by r e a c t i n g t h e d i c h l o r o compound 22a w i t h d i p h e n y l p h o s p h i n e i n e t h e r a t 20°C. D i m e t h y l a r s i n e i s known (38) t o r e a c t w i t h p e r -f l u o r o c y c l o b u t e n e a t 25°C t o g i v e a m o n o s u b s t i t u t e d p r o d u c t , 9_ as seen i n e q u a t i o n [3] . E x c e s s d i m e t h y l a r s i n e i s a l s o known (27) t o r e a c t w i t h 22a a t 60°C t o g i v e a d i s u b s t i t u t e d compound, b i f g f a r s , 27. I t c o u l d be e x p e c t e d t h a t m i x i n g ( C H 3 ) 2 A s H w i t h 22a i n the r a t i o o f 1:1 would r e s u l t i n m o n o s u b s t i t u t i o n as shown i n e q u a t i o n [ 1 0 ] . The m o n o s u b s t i t u t e d p r o d u c t c o u l d t h u s r e a c t w i t h ( C F , ) , / C F , ) , , ( C F o \ n /CF,) ( 2)2 ( y 2r 2r CIC = C - C = C C l + ( C H 3 ) 2 A s H > ( C H 3 ) 2 A s C = C - C = C C l (22a.) + HC1 [10] d i p h e n y l p h o s p h i n e t o d i s p l a c e the o t h e r c h l o r i n e atom. U n f o r t u n a t e l y when t h e r e a c t i o n i s c a r r i e d o u t a t 25°C o r even -78°C i n e t h e r s o l u t i o n and ( C g H 5 ) 2 P H added t o the r e s u l t i n g s o l u t i o n a t the same t e m p e r a t u r e , the r e s u l t i s th e f o r m a t i o n o f the d i t e r t i a r y a r s i n e , b i f g f a r s , 27_ and the d i t e r t i a r y p hosphine, b i f g f o s , 2_3_ ( 2 7 ) . S i n c e (CgH,-)2PH i s known t o r e a c t w i t h 1,2-d i c h l o r o t e t r a f l u o r o c y c l o b u t e n e i n DMF t o g i v e the d i -s u b s t i t u t e d as w e l l as the m o n o s u b s t i t u t e d d e r i v a t i v e (12) i t was thought t h a t the b i a l i c y c l i c d i c h l o r o compound 22a would a l s o r e a c t w i t h ( C g H 5 ) 2 P H i n DMF t o g i v e the mono-- 98 -s u b s t i t u t e d compound. Here again when the r e a c t i o n i s c a r r i e d out at -78°C, symmetrical d i s u b s t i t u t e d compounds are i s o l a t e d . S i m i l a r methods were adopted to s y n t h e s i z e a mixed l i g a n d of the formula (CgH^) 2 P C = C ( C F 2 ) 2 C=CP (C 6H 5) 2 (CF 2) 2 , but the r e a c t i o n i n DMF, r e s u l t s i n symmetrical products. The reason why these r e a c t i o n s i n DMF do not g i v e unsym-m e t r i c a l l y s u b s t i t u t e d products i s not c l e a r . A number of u n s u c c e s s f u l experiments were per-formed along s i m i l a r methods i n order to prepare mixed l I l i g a n d s of the type (CgH^) 2PC=CP (CgH,.) 2 (CF 2) n . The d e s i r e d products were not i s o l a t e d and the s t a r t i n g m a t e r i a l s were rec o v e r e d . (B) I n f r a r e d s t u d i e s of the l i g a n d , 2 , 2 1 - b i s ( d i p h e n y l -phosphino) o c t a f l u o r o ( b i - l - c y c l o b u t e n - l - y l ) , b i f g f o s , 23. The l i g a n d , b i f g f o s , 2_3_ i s y e l l o w i n the dark and t u r n s orange-red when exposed to s u n l i g h t . The process i s r e v e r s i b l e in the dark and the r a t e i s dependent on the time of exposure. The c o l o u r change i s c o n f i n e d to the s o l i d (state) and red c r y s t a l s g ive a yellow s o l u t i o n which i s l i g h t s t a b l e . S o l u t i o n s of the yellow c r y s t a l s i n v a r i o u s s o l v e n t s show no c o l o u r change when exposed to s u n l i g h t f o r an i n d e f i n i t e p e r i o d of time (37) . The v i s i b l e s p e c t r a of - 99 -both the y e l l o w and red s o l i d have been observed i n n.-hexane s o l u t i o n s and both show maximum a b s o r p t i o n a t 342 nm (52a). The i n f r a r e d s p e c t r a of both s o l i d s have a l s o been observed i n cyclohexane s o l u t i o n and both are i d e n t i c a l . Since the c o l o u r change seems to be c o n f i n e d to the s o l i d s t a t e , i t was of i n t e r e s t t o study the i n f r a r e d s p e c t r a of the l i g a n d , 23_ i n the s o l i d s t a t e . The i n f r a r e d spectrum of a KBr d i s c of the y e l l o w s o l i d shows two weak bands i n the v(C=C) r e g i o n a t 1588 and 15 76 cm 1 as expected f o r a "butadiene" system. When the d i s c i s exposed to s u n l i g h t (7 min) i t turns p a r t l y orange and another band appears i n the v(C=C) r e g i o n a t 1602 cm \ F u r t h e r exposure of the d i s c enhances the i n t e n s i t y of the band a t 1602 cm 1 and turns the d i s c t o t a l l y orange. The i n f r a r e d spectrum of the orange d i s c which i s then placed i n the dark shows the gradual disappearance of the band a t 16 02 cm 1 and the d i s c t u rns yellow a g a i n . F i g u r e 1 shows the changes observed i n the v(C=C) r e g i o n , on exposure to s u n l i g h t at given time i n t e r v a l s . The only other change i n the i n f r a r e d spectrum which i s observed on exposure to s u n l i g h t i s the appearance of a new band a t 895(w) cm 1 , which a l s o disappears when the d i s c i s p l a c e d i n the dark. The changes observed i n the (C=C) s t r e t c h i n g r e g i o n and the long p e r i o d of time taken f o r the new band to d i s -appear i n d i c a t e s t h a t the c o l o u r change i s a s s o c i a t e d with - 100 -1, Before exposure 2.Exposed to sunlight (7 min) 3. Exposed to sunlight (32 min) 4. In the dark (80 min) 5. In the dark (12x 60min) 6. In the dark ( 30x24 x60 min) 7. In the dark 6.Same disc reexposed (48 x 24 x 60 min) to sunlight (40 min) F i g u r e 1. IR s p e c t r a o f b i f g f o s , 23_ (v(c=C)) before and a f t e r exposure t o s u n l i g h t . - 101 -a s t r u c t u r a l change i n the molecule r a t h e r than an e l e c t r o n i c e x c i t a t i o n . At the same time, s i n c e the b i s ( p h o s p h i n e oxide) o f 23_ i s c o l o u r l e s s , i t suggests t h a t the lone p a i r s on the phosphorus atom are the seat of the e l e c t r o n i c a b s o r p t i o n which cause the s t r u c t u r a l change. Since the analogous d i c y c l o h e x y l p h o s p h i n o analogue, 24_ i s not photochromic i t i n d i c a t e s t h a t the presence of phenyl r i n g s on the phosphorus atom i s a l s o e s s e n t i a l f o r photochromism. The c r y s t a l s t r u c t u r e of the compound 23_ shows th a t the molecule has a c i s o i d arrangement of double bonds with the r i n g s t w i s t e d approximately 35° away from p l a n a r i t y (41), which c o u l d prevent e x t e n s i v e c o n j u g a t i o n between the two r i n g s . The change i n c o l o u r of the s o l i d , 2_3_ from y e l l o w to red i s a s s o c i a t e d with a bathochromic s h i f t i n the v i s i b l e r e g i o n . T h i s s h i f t from s h o r t (blue) to longer (green-blue) wavelength i n d i c a t e s t h a t there i s more c o n j u g a t i o n i n v o l v e d i n the orange s o l i d than the y e l l o w s o l i d . T h i s c o u l d be brought about by a s t r u c t u r a l change whereby the l e s s p l a n a r and l e s s s t e r i c a l l y hindered yellow s o l i d absorbs energy (hv) to g i v e a more p l a n a r but s t e r i c a l l y h indered orange s o l i d . The mechanism of t h i s would i n v o l v e the e x c i t a t i o n o f e l e c t r o n s of the lone p a i r s on the phosphorus atoms as shown i n 23(a) and 23(b). - 102 -F 2 23a 2 23b In the case of 23a the e x c i t a t i o n would d e s t r o y c o n j u g a t i o n thus a l l o w i n g r o t a t i o n about the C-C bond. In the case of 2 3b the e x c i t a t i o n produces a (C=C) from the (C-C) s i n g l e bond which would encourage r o t a t i o n t o a more pl a n a r s t r u c t u r e . The s t r u c t u r e , 2 3b c o u l d a l s o be s t a b i l i z e d by the presence of C^H^ groups on the phosphorus atom which c o u l d d e l o c a l i z e the n e g a t i v e charge b e t t e r than c g H u groups. The experimental evidence (Figure 1) i s t h a t a change i n s t r u c t u r e does occur on i r r a d i a t i o n which i n v o l v e s A •P (C 6 HJ 2 - 103 -the C=C r e g i o n . A new band appears on i r r a d i a t i o n and d i s -appears on a n n e a l i n g . T h i s c o u l d be a s s o c i a t e d with the more pl a n a r s t r u c t u r e p o s t u l a t e d above. Photochromic behaviour has been observed f o r a number of N - s a l i c y l i d e n e a n i l i n e s (52b,52c) both i n c r y s t a l and i n r i g i d f l u i d s o l u t i o n s . The change i n c o l o u r has been a t t r i b u t e d to a hydrogen t r a n s f e r f o l l o w e d by a ge o m e t r i c a l rearrangement of the molecule. - 104 -CHAPTER IV RESULTS AND DISCUSSION The r e a c t i o n s of the d i t e r t i a r y phosphines (L-L) w i t h  t r a n s i t i o n metal c a r b o n y l s and metal h a l i d e s . T h i s chapter i s d i v i d e d i n t o f i v e major s e c t i o n s . The f i r s t s e c t i o n i s concerned w i t h the v a r i o u s s p e c t r o -s c o p i c methods used to c h a r a c t e r i z e t r a n s i t i o n metal car b o n y l complexes. S e c t i o n 2 d e s c r i b e s the r e a c t i o n s of the d i t e r t i a r y phosphines (L-L) w i t h Group VI metal hexa-c a r b o n y l s . A s h o r t d i s c u s s i o n on the r e a c t i o n s of (L-L) w i t h t r a n s i t i o n metal h a l i d e s i s given i n S e c t i o n 3. The r e a c t i o n s o f (L-L) with i r o n c a rbonyls and dimanganese decacarbonyl have a l s o been i n v e s t i g a t e d . The r e s u l t s o f such a study are d i s c u s s e d i n S e c t i o n s 4 and 5 r e s p e c t i v e l y . 1. S p e c t r o s c o p i c methods used i n the c h a r a c t e r i z a t i o n of  new carbonyl complexes. Throughout t h i s i n v e s t i g a t i o n v a r i o u s s p e c t r o s c o p i c methods have been used to i d e n t i f y and c h a r a c t e r i z e the t r a n s i t i o n metal carbonyl complexes and the most v a l u a b l e - 105 -and c o n v e n i e n t source o f i n f o r m a t i o n c o n c e r n i n g b o t h s t r u c t u r e and bonding has been i n f r a r e d s p e c t r o s c o p y . I n a d d i t i o n , t h i s t e c h n i q u e has a l s o been used t o m o n i t o r r e a c t i o n s . The number o f i n f r a r e d a c t i v e c a r b o n y l s t r e t c h i n g fundamentals e x p e c t e d f o r a g i v e n m e t a l c a r b o n y l complex can be d e r i v e d e a s i l y on the b a s i s o f the l o c a l symmetry o f the c a r b o n y l groups. Thus p r o v i d i n g t h e m o l e c u l e i s s i m p l e , p o s s i b l e s t r u c t u r e s can be c o n f i r m e d o r r e j e c t e d on t h e b a s i s o f e a s i l y made measurements. Frequency changes i n (CO) bands are u s u a l l y e x p l a i n e d on t h e b a s i s o f the s y n e r g i c model f o r metal-CO bonds. I n t h i s model the bond c o n s i s t s o f a a component i n w h i c h t h e l o n e p a i r o f e l e c t r o n s on t h e carbon atom i s donated t o a v a c a n t m e t a l o r b i t a l as i l l u s t r a t e d i n 30_ and a m e t a l -l i g a n d ir component i n which f i l l e d non-bonding m e t a l d o r b i t a l s i n t e r a c t w i t h l o w l y i n g v a c a n t a n t i b o n d i n g IT o r b i t a l s o f the c a r b o n y l groups as i l l u s t r a t e d i n 31. The two modes o f b o n d i n g are m u t u a l l y r e i n f o r c i n g o r " s y n e r g i c " s i n c e charge removal from the m e t a l t h r o u g h IT back b o n d i n g l e a d s t o more e x t e n s i v e a bond f o r m a t i o n , w h i l e t h e charge t h u s donated t o t h e m e t a l , f a c i l i t a t e s f u r t h e r back b o n d i n g . Other l i g a n d s such as a r s i n e s and phosphines which have v a c a n t d o r b i t a l s a c c e p t charge t h r o u g h d i r - d i r "back b o n d i n g " as shown i n 32. Thus i f some o f t h e carbon monoxide groups o f the p a r e n t c a r b o n y l (eg.-Cr(CO) f i) a r e r e p l a c e d by l i g a n d s o f - 106 -© M < © ) + . >C=0'- > M C = 0 : 30 CO+M a-bond for m a t i o n . 31 M-*CO d i r -p i r* "back bonding" C - 0 32 M-*-E dir-diT "back bonding" E = A r s e n i c or phosphorus. lower i r-accepting a b i l i t y such as a r s i n e s and phosphines, the remaining carbon monoxide groups accept dir e l e c t r o n s from the metal t o a g r e a t e r extent i n order to av o i d charge accumulation on the metal atom. T h i s r e s u l t s i n a decrease i n the c a r b o n y l s t r e t c h i n g frequency. As the degree o f s u b s t i t u t i o n of carbon monoxide with poorer TT a c c e p t i n g l i g a n d s i n c r e a s e s , the metal-carbon monoxide bond i s strengthened. T h i s makes the displacement o f carbon - 107 -monoxide more d i f f i c u l t . In the case of the Group VI hexacarbonyls, complete displacement of carbon monoxide has been achieved o n l y by polydentate l i g a n d s (53) and by t r i -f l u o r o p h o s p h i n e (54). The l a t t e r i s q u i t e s i m i l a r to carbon monoxide i n IT a c c e p t i n g a b i l i t y (55) . Nuclear magnetic resonance s t u d i e s (nmr) have a l s o been used to c h a r a c t e r i z e compounds. Since a l l the a r s i n e s and phosphines s t u d i e d c o n t a i n e d phenyl or c y c l o h e x y l groups, •^"H nmr s p e c t r a were not very u s e f u l . The m u l t i p l e t resonances a s s o c i a t e d with these groups were observed i n a l l compounds when the f o r m u l a t i o n r e q u i r e d t h e i r presence and no f u r t h e r comment w i l l be made when r e f e r r i n g to a p a r t i c u l a r compound. 19 F nmr spectroscopy proved to be a v a l u a b l e t o o l to d i f f e r e n -t i a t e between, f o r example, d i t e r t i a r y phosphines and t e r t i a r y phosphines and t h e i r r e s p e c t i v e complexes, and s p e c i f i c 31 comments on these data are i n c l u d e d i n the D i s c u s s i o n . P nmr was a l s o used when necessary to y i e l d f u r t h e r informa-t i o n on the bonding and s t r u c t u r e of a few complexes and i s r e f e r r e d to when necessary. Mass spectrometry was very u s e f u l i n i d e n t i f y i n g t r a n s i t i o n metal c a r b o n y l complexes. A l l c a r b o n y l complexes showed a parent i o n peak f o l l o w e d by peaks corresponding to c o n s e c u t i v e l o s s of c a r b o n y l groups. The presence or absence of halogens (CI,Br) was confirmed by the i s o t o p i c d i s t r i b u t i o n i n the peaks. The s p e c t r a of most metal c a r b o n y l d e r i v a t i v e s o b t a i n e d i n t h i s work, were c o n s i s t e n t - 108 -w i t h the proposed s t r u c t u r e s and are not d i s c u s s e d f u r t h e r i n the D i s c u s s i o n . The exceptions are noted i n the a p p r o p r i a t e s e c t i o n s . 2. Reactions of the d i t e r t i a r y phosphines (L-L) with Group VI metal hexacarbonyls. (A) P r e p a r a t i v e methods. D i t e r t i a r y phosphine c h e l a t e complexes of chromium, molybdenum and tungsten carbonyls have u s u a l l y been s y n t h e s i z e d by d i r e c t displacement o f two c a r b o n y l groups on the parent hexacarbonyl a t high temperatures. For example, 1,2-bis (diphenylphosphino) ethane , 4_ (diphos) i s known to d i s p l a c e two c a r b o n y l groups from Group VI metal hexacarbonyls to give the c h e l a t e d e r i v a t i v e as shown i n equation [11] (56). (C,H C) 0PCH 0CH 0P(C,H r) _ + M(CO), ^ diphos M(CO). [11] 6 5 2 2 2 6 5 2 6 s e a l e d tube 4 M = Cr, Mo, W S i m i l a r r e a c t i o n s of the f l u o r o c a r b o n b r i d g e d d i t e r t i a r y phosphines were brought about by r e f l u x i n g the metal c a r b o n y l and l i g a n d i n an a p p r o p r i a t e s o l v e n t as shown i n equation [12] (15) o r by u l t r a v i o l e t i r r a d i a t i o n o f the r e a c t a n t s as shown i n equation [13] (40). Mo(CO) 6 + f 4 f o s r g fH U X ( f 4 f o s ) M o ( C O ) 4 [12] 6 6 7d - 109 -C r ( C O ) 6 + f g f o s h v > ( f 6 f o s ) C r ( C O ) 4 [13] 7e Thus d i t e r t i a r y phosphines r e a c t e a s i l y w i t h Group VI metal hexacarbonyls, d i s p l a c i n g two c a r b o n y l groups. With the d i t e r t i a r y phosphine, [CH 2 *P (C^H,.) 2 ] 2 no f u r t h e r replacement o c c u r s . The analogous diphenylphosphino d e r i v a t i v e , diphos, 4_ r e p l a c e s f o u r c a r b o n y l groups but the remaining two carbonyl groups are found to be s t r o n g l y bound (56). Another convenient route to t e t r a c a r b o n y l complexes employs l i g a n d displacement r e a c t i o n s (57), an example of which i s shown i n equation [14] (C 7H 8)Mo(CO) 4 + (P-P) r e f l U X > (P-P)Mo(CO) 4 [14] or (C gH 1 2)Mo(CO) 4 C_H = norbornadiene (P-P) = d i t e r t i a r y phosphine / o C 8 H 1 2 = 1 ' 5 - c y c l o o c t a d i e n e Ligand displacement r e a c t i o n s have a l s o been used to i s o l a t e d i c a r b o n y l complexes as shown i n equation [15]. C o n s i d e r a b l e amounts of the t e t r a c a r b o n y l d e r i v a t i v e (mesitylene) C r ( C O ) 3 + 2 diphos —^> trans - ( d i p h o s ) 2 C r ( C O ) 2 4_ + (diphos) Cr (CO) [15] - 110 -i s a l s o i s o l a t e d from t h i s r e a c t i o n (56). From these s t u d i e s i t seemed t h a t the new d i -t e r t i a r y phosphines, b i f g d i p h o s , 2£, f 4 d i p h o s , 25a and fgdiphos, 2 5b, and the d i t e r t i a r y a r s i n e , b i f g p h e n a r s , 28_ would r e a c t w i t h M(CO)g i n an analogous manner to produce s i m i l a r c h e l a t e d e r i v a t i v e s , and indeed t h i s was found. Thus a benzene s o l u t i o n c o n t a i n i n g an equimolar mixture of the d i t e r t i a r y a r s i n e or phosphine l i g a n d (L-L) and the metal c a r b o n y l when heated i n a C a r i u s tube, g i v e s the c h e l a t e t e t r a c a r b o n y l d e r i v a t i v e , (L-L)M(CO) 4. The displacement of more than two c a r b o n y l groups i s not observed. As g e n e r a l l y found (7) the tungsten complexes r e q u i r e more f o r c i n g c o n d i t i o n s than the analogous molyb-denum and chromium complexes. A l l the new complexes are c h e l a t e s (see S e c t i o n B) and l i k e the analogous complexes of f f o s , 7_ (15,40) b i f g f o s , 2_3 and b i f g f a r s , 2_7_ (27), these new complexes are a l s o h i g h l y c o l o u r e d , c r y s t a l l i n e and s t a b l e . D e r i v a t i v e s of fgdiphos, 33a are a l l yellow, whereas those o f fgdiphos range from yellow (f^diphosMo(CO) 4), yellow-orange (fgdiphosW(CO) 4) to orange ( f g d i p h o s C r ( C O ) 4 ) . The complexes of b i f g d i p h o s 34_ are found to be h i g h l y c o l o u r e d (dark p u r p l e , M = Cr; dark red, M = Mo, W) but do not e x h i b i t any photochromic p r o p e r t i e s . The Mo(CO) 4 d e r i v a t i v e of b i f a p h e n a r s i s r e d . - I l l -p M (C0)4 33 a) n=2, f 4 d i p h o s M ( C O ) 4 b) n=3, fgdiphosM(CO) 4 W 2 F CO r2 34 bi f g d i p h o s M ( C O ) 4 M = Cr,Mo,W Chatt and Watson (56) have found t h a t diphos, 4_ r e a c t s with an arene metal t r i c a r b o n y l to give a d i c a r b o n y l d e r i v a t i v e and c o n s i d e r a b l e amounts of the t e t r a c a r b o n y l d e r i v a t i v e (equation [15]). T h i s r e s u l t i n d i c a t e d t h a t c a r b o n y l groups on one molecule c o u l d exchange with l i g a n d on another. C u l l e n et a l . (40) found t h a t when f ^ f o s , 7e_ was r e a c t e d w i t h m e s i t y l e n e t u n g s t e n t r i c a r b o n y l , the main product was fgfosW(CO) 4 > In the present i n v e s t i g a t i o n when f 4 d i p h o s i s heated with mesitylenetungsten t r i c a r b o n y l the only product i s o l a t e d i s f 4diphosW(CO) 4. The d i c a r b o n y l d e r i v a t i v e , ( f 4 d i p h o s ) 2 W ( C 0 ) 2 i s not produced. Trans-(C 6H 5) 2PCH=CHP(CgH^) 2, 6a undergoes a photo-c h e m i c a l l y a s s i s t e d r e a c t i o n with n 5 - c y c l o p e n t a d i e n y l - 112 -molybdenum d i c a r b o n y l dimer, [CpMo(CO) 3] 2 a f f o r d i n g a novel complex which has been assigned the s t r u c t u r e 35_ shown below, on the b a s i s of i n f r a r e d and nmr s p e c t r o s c o p i c evidence (58). CgH^ CgHj. [CpMo(CO) 3] 2 C p ^ \ /H CO (C 6H 5) 2PCH 0 [16] 6"5'2 C 0 H ' V H H C P ( C C H C ) 0 U U O H / \ 6a C,H C "6 5 6 5 35_ Since the d i t e r t i a r y phosphines (L-L) are very s i m i l a r to the l i g a n d 6a, i t was thought t h a t the r e a c t i o n of (CpMo(CO) 3] 2 with the l i g a n d s f 4 d i p h o s , 25a and fgdiphos, 25b would y i e l d very i n t e r e s t i n g compounds. However, no w e l l d e f i n e d products are i s o l a t e d a f t e r a benzene s o l u t i o n c o n t a i n i n g a 1:1 mole r a t i o of [CpMo(CO) 3] 2 and f 4 d i p h o s , 25a i s heated i n a C a r i u s tube at 120°C f o r 48 h. When the r e a c t a n t s are heated to 150°C, s t a r t i n g m a t e r i a l s are recovered. Attempted r e a c t i o n of the cyclopentene system, fgdiphos, 2 5b w i t h [CpMo(CO) 3] 2 over a temperature range of 100 - 150°C are a l s o u n s u c c e s s f u l . I t was thought t h a t removal of carbon monoxide from the r e a c t i o n mixture c o u l d enhance the r e a c t i o n ; however, r e f l u x i n g a toluene s o l u t i o n c o n t a i n i n g the r e a c t a n t s i n an atmosphere of n i t r o g e n a l s o gives s i m i l a r r e s u l t s . U l t r a -v i o l e t i r r a d i a t i o n of a benzene s o l u t i o n c o n t a i n i n g the r e a c t a n t s at 20°C giv e s a r e d d i s h b l a c k s o l u t i o n but chromato-graphy on a F l o r i s i l column g i v e s o n l y unreacted [CpMo(CO) 3J 2 and the l i g a n d , fgdiphos or f g d i p h o s . - 1 1 3 -In p r i n c i p l e the f l u o r o c a r b o n l i g a n d s , f ^ d i p h o s , 25a and f ^ d i p h o s , 25b c o u l d a l s o simply r e a c t w i t h [CpMo(CO) 3] 2 to g i v e s u b s t i t u t i o n products such as Cp2Mo 2(CO)(L-L) or [CpMo(CO) 2(L-L)] +[CpMo(CO) 3]~ i n which (L-L) i s monodentate or b i d e n t a t e . Known compounds i n c l u d e CP2MO2 (CO) ,_PR3 (R = C,H C, C^H.J from the r e a c t i o n of [CpMo (CO) ] „ w i t h PR- (59). b _> b 11 6 2 6 When the e n t e r i n g l i g a n d was P(C 2H,.) 3 (60) or diphos (60,61) i o n i c products of formula [CpMo(CO) 2(L)2] +[CpMo(CO) 3] were i s o l a t e d . In the p r e s e n t i n v e s t i g a t i o n , the bulky c y c l o h e x y l groups c o u l d probably prevent even monosubstitution a t the molybdenum atom. (B) C h a r a c t e r i z a t i o n of new complexes. A l l the (L-L)M(CO)^ complexes were i d e n t i f i e d by means of microanalyses and t h e i r mass s p e c t r a . The (C=C) moiety i n the b r i d g i n g group i s not i n v o l v e d i n bonding. On the b a s i s of l o c a l c a r b o n y l group symmetry, t e t r a c a r b o n y l c h e l a t e complexes of the type (L-L)M(CO) 4, 33_ and 34_, belong to the p o i n t group C 2 v f o r which f o u r i n f r a -red a c t i v e c a r b o n y l s t r e t c h i n g modes are expected as shown i n F i g u r e 2 (62). The t e t r a c a r b o n y l complexes u s u a l l y show the expected bands (56,63) although a c c i d e n t a l s u p e r p o s i t i o n of two o f the lower frequency bands can occur (56). T h i s f e a t u r e i s observed i n the fgdiphosM(CO) 4 complexes and i n bifpphenarsMo(CO)., which show onl y three bands i n the c a r b o n y l \ - 114 -A x (2) B 2 (L-L) = fgdiphos, fgdiphos, b i f g d i p h o s or b i f p p h e n a r s F i g u r e 2. The normal c a r b o n y l v i b r a t i o n a l modes f o r the Group VI (L-L)M(CO) . complexes. - 115 -r e g i o n (Table I V ) . The d e r i v a t i v e s o f b i f g d i p h o s show the expected f o u r bands, but unexpectedly, the d e r i v a t i v e s of f^diphos show an a d d i t i o n a l band. A s i m i l a r phenomenon has been r e p o r t e d p r e v i o u s l y . Thus the corresponding d i p h e n y l -phosphino analogues, f^fosMfCO)^ (M = Cr, Mo, W) show fo u r bands and i t i s the fgfosM(CO) 4 (40) complexes which e x h i b i t f i v e bands. A r a t i o n a l i z a t i o n was given by C u l l e n e t a l . (40) f o r these o b s e r v a t i o n s i n terms of the conformation of the cyclopentene b r i d g i n g group. These authors p o s t u l a t e d t h a t two isomers were present i n s o l u t i o n which would have a long enough l i f e t i m e to be d e t e c t e d by i n f r a r e d s p e c t r o -scopy. However, an argument of t h i s s o r t i s unacceptable i n the case of the d i c y c l o h e x y l p h o s p h i n o analogues, (Table IV) s i n c e i t i s the cyclobutene d e r i v a t i v e which i s anomalous and not the cyclopentene. E x t r a v(CO) bands commonly occur when co n f o r m a t i o n a l e q u i l i b r i a are p r e s e n t (64). The c a r b o n y l s t r e t c h i n g f r e q u e n c i e s of the d e r i v a -t i v e s of f ^ d i p h o s , 33a are s l i g h t l y lower than those r e p o r t e d f o r the corresponding f ^ f o s complexes suggesting t h a t the c y c l o h e x y l groups make the new d i t e r t i a r y phosphines b e t t e r a donors (or worse IT acceptors) . S i m i l a r c o n c l u s i o n s can be reached r e g a r d i n g the p r o p e r t i e s o f 33b and 34_. In a d d i t i o n , the high frequency bands, A^ (7) of the complexes of b i f R d i p h o s are h i g h e r than those of the corresponding - 116 -diphenylphosphino compound (27), y e t those of the complexes of fgdiphos are c o n s i d e r a b l y lower. Since these f r e q u e n c i e s i n v o l v e t r a n s c a r b o n y l groups which are c i s to the phosphine l i g a n d , i t i s c l e a r t h a t the e l e c t r o n i c e f f e c t s o f these l i g a n d s are not e a s i l y p r e d i c t a b l e . Based on these data one would expect the CO s t r e t c h i n g f r e q u e n c i e s of the b i s ( d i p h e n y l a r s i n o ) complex, bif BphenarsMo(CO)^, to be g r e a t e r than t h a t of i t s b i s -(dimethylarsino) analogue, b i f 0 f a r s M o ( C O ) . (27). T h i s i s o 4 found to be so and can be e x p l a i n e d i n terms of the b e t t e r IT a c c e p t i n g a b i l i t y of b i f p p h e n a r s , 2_8_ compared wi t h b i f g f a r s , 27. For a given d i t e r t i a r y phosphine Group VI metal c a r b o n y l d e r i v a t i v e , the i n f r a r e d a b s o r p t i o n s f o l l o w the frequency t r e n d , Mo>Cr>Wo as shown i n Table IV. T h i s phenomenon i s commonly found and has been r a t i o n a l i z e d f o r the parent hexacarbonyls as being a consequence of the "lanthanide c o n t r a c t i o n " (65,66). Thus there i s a g r e a t e r donation of the 5d o r b i t a l e l e c t r o n d e n s i t y to the TT* o r b i t a l of a c a r b o n y l group bonded to a tungsten atom, compared with the amount of donation from a 3d or 4d o r b i t a l by chromium or molybdenum atoms. F u r t h e r evidence t h a t these c h e l a t e complexes possess a normal c h e l a t e s t r u c t u r e i s garnered from the C-F s t r e t c h i n g r e g i o n i n the i n f r a r e d s p e c t r a . In the r e g i o n 1300 - 1100 cm - 1 the band p a t t e r n i s i d e n t i c a l w i t h those - 117 -of the f r e e l i g a n d s . Any l o s s o f symmetry would have r e s u l t e d i n changes i n the number of bands and t h e i r i n t e n s i t i e s . 19 A d d i t i o n a l evidence i s obtained from the F nmr 19 s p e c t r a . The F chemical s h i f t s of the complexes are not very d i f f e r e n t from those of the l i g a n d s . For i n s t a n c e , the 19 F nmr of the l i g a n d b i f g d i p h o s e x h i b i t s two m u l t i p l e t s a t 105.8 and 109.4 ppm. I t s chromium complex shows m u l t i p l e t s a t 105.8 and 110.8 ppm. T h i s again shows t h a t the l i g a n d s are c h e l a t i n g , s i n c e the symmetry of the f r e e l i g a n d s i s the same as i n the complexes. Apparently the f l u o r i n e atoms are too f a r away from the metal c e n t r e f o r t h e i r chemical s h i f t s to be a f f e c t e d g r e a t l y . The c r y s t a l s t r u c t u r e of bifgdiphosMo(CO)^ was determined to observe any unusual f e a t u r e s which c o u l d be a t t r i b u t e d to the presence of the bulky c y c l o h e x y l groups (29). The s t r u c t u r e i s shown i n F i g u r e 3. The molybdenum atom has an i r r e g u l a r o c t a h e d r a l environment comprising of the two phosphorus atoms and the f o u r c a r b o n y l groups. The seven membered c h e l a t e r i n g i s c o n s i d e r a b l y puckered. The Mo-P bonds have lengths of 2.555(3) and 2.546(2)A and are longer than u s u a l l y observed f o r Mo(0) d e r i v a t i v e s of phosphines. T h i s can be a t t r i b u t e d to s t e r i c e f f e c t s . The Mo-CO d i s t a n c e s are not s i g n i f i c a n t l y d i f f e r e n t from each other and are s i m i l a r to the values r e p o r t e d f o r o t h e r complexes (67,68,69) as are the C-0 d i s t a n c e s . - 118 -- 119 -The four cyclohexane r i n g s are l i n k e d asymmetrically to the two phosphorus atoms and adopt the c h a i r conformation. The two cyclobutene r i n g s are s l i g h t l y d i s t o r t e d from p l a n a r and are j o i n e d by a s h o r t C(32) - C(33) bond of 1.451(12) A. The C-C double bonds are 1.335(10) A and 1.359(12) A. T h i s "butadiene" type of s t r u c t u r e i s found i n the analogous complexes w i t h d i m e t h y l a r s i n o groups (27,70). (C) Reaction mechanism. Though the k i n e t i c s of s u b s t i t u t i o n of the Group VI hexacarbonyls by t e r t i a r y phosphines and phosphites have been s t u d i e d i n d e t a i l (71,72 ,73), l i t t l e work has been done on s u b s t i t u t i o n r e a c t i o n s i n v o l v i n g b i d e n t a t e l i g a n d s . However, some data are a v a i l a b l e f o r the s u b s t i t u t i o n o f d i s u b s t i t u t e d Group VI metal t e t r a c a r b o n y l d e r i v a t i v e s by b i d e n t a t e l i g a n d s . The r e a c t i o n of diphos with a s e r i e s of c i s and t r a n s L^Mo(CO)^ complexes (L = phosphine or phosphite) has been s t u d i e d (57) and i t was found t h a t the r a t e s do not depend on the c o n c e n t r a t i o n of diphos. The mechanism suggested i s represented i n equation [17]. I t i s p o s s i b l e t h a t the new d i t e r t i a r y phosphine l i g a n d s r e a c t with the Group VI hexacarbonyls i n a s i m i l a r way. T h i s i s expected to h o l d f o r the chromium hexacarbonyl r e a c t i o n s s i n c e t h i s has been found to r e a c t predominantly by a d i s s o c i a t i v e mechanism. Molybdenum and tungsten hexa-c a r b o n y l s r e a c t v i a d i s s o c i a t i v e and a s s o c i a t i v e processes 2 - 120 -C 0 8 p-^Tco c 0 l> c o ^ L - ^ \ c o CO _ f a s t I + P"P 8 LJ ^CO PP-^CO c 0 36 f a s t -L [17] P P = d i p h O S (71,72,73). Thus an a s s o c i a t i v e mechanism i s a l s o p o s s i b l e f o r the r e a c t i o n i n v o l v i n g t h e d i t e r t i a r y phosphines w i t h molybdenum and t u n g s t e n h e x a c a r b o n y l s , a l t h o u g h t h e two-s t e p mechanism p r o b a b l y h o l d s i n a l l c a s e s . P e n t a c a r b o n y l i n t e r m e d i a t e s such as 36 have.not been i s o l a t e d i n t h i s work b u t were i s o l a t e d from r e a c t i o n s o f Group VI m e t a l h e x a c a r b o n y l s w i t h d i t e r t i a r y a r s i n e s ( 7 4 ) . - 121 -3. Reactions of the d i t e r t i a r y phosphines (L-L) with t r a n s i t i o n metal h a l i d e s . (A) P r e p a r a t i v e methods. The d i t e r t i a r y phosphine, O - p h e n y l e n e b i s ( d i e t h y l -phosphine) 37_ r e a c t s w i t h d i p o t a s s i u m t e t r a b r o m o p a l l a d a t e ( I I ) (75) to give a c r y s t a l l i n e complex, 3_8_ as shown i n equation [18]. 37 ( C2 H5>2 + K„PdBr„ 2 4 ( C 2 H 5 ) 2 ( C 2 H 5 ) 2 PdBr 2 [18] " W 2 38 S i m i l a r c h e l a t e metal d i c h l o r i d e complexes have been i s o l a t e d from the r e a c t i o n s of K 2 P d C l 4 and ammonium t e t r a c h l o r o p a l l a d a t e ( I I ) with a range of d i t e r t i a r y phos-phines (76,77). The analogous diphos d e r i v a t i v e s , [MC1 2(diphos)], 39 (M = P d ( l U P t (II)) i s o l a t e d from analogous r e a c t i o n s (78) have been r e p o r t e d to take up a second mole of diphos to form deeply c o l o u r e d s a l t s of the formula, [ M ( d i p h o s ) 2 ] C I 2 . Chatt and Mann (79) have prepared 1:1 and 2:1 complexes of the types [ P d C l 2 ( d i a r s i n e ) ] and [ P d C l 2 ( d i a r s i n e ) 2 ] from s e v e r a l d i t e r t i a r y a r s i n e s . On mixing a p a l l a d i u m ( I I ) s a l t and d i a r s i n e , the s a l t [ P d ( d i a r s i n e ) 2 ] [ P d C l ^ ] i s f i r s t formed, which breaks down on h e a t i n g to the 1:1 complex, - 122 -which then c o o r d i n a t e s f u r t h e r with d i a r s i n e to form the 2:1 complex. Newly developed methods f o r the i s o l a t i o n of complexes such as [MC12 (diphos) ] , 39_ and [MC12 ( d i a r s ) ] (M = P d ( I I ) , P t ( I I ) ) i n v o l v e the replacement of b e n z o n i t r i l e from M(CgH 5CN) 2C1 2 with the c h e l a t e group (80). Analogous 1:1 complexes have a l s o been s y n t h e s i z e d from [PdCl 2en] (en = ethylenediamine) by a l i g a n d displacement r e a c t i o n (81) . Analogous P t ( I I ) complexes have been s y n t h e s i z e d by t r e a t i n g an aqueous s o l u t i o n of d i p o t a s s i u m t e t r a c h l o r o -p l a t i n a t e ( I I ) with an a l c o h o l i c or acetone s o l u t i o n of the phosphine (82). Very few Pd(II) and P t ( I I ) complexes o f the f l u o r o -carbon b r i d g e d d i t e r t i a r y phosphines and a r s i n e s are known (15). The l i g a n d f ^ f o s , 7d i s r e p o r t e d to form c h e l a t e complexes of formulae, f 4 f o s P d C l 2 and f ^ f o s P t C l , , . A d i t e r t i a r y phosphine, c i s - 1 , 2 - b i s ( d i p h e n y l p h o s -phino) ethene, 6_ which i s s i m i l a r to the f l u o r o c a r b o n l i g a n d s , forms the c h e l a t e metal d i c h l o r i d e complex w i t h Pd(II) (83). The double bond of the b r i d g i n g group i s not found to be c o o r d i n a t e d . From these s t u d i e s i t seemed t h a t the new d i t e r t i a r y phosphine l i g a n d s , b i f g d i p h o s , 24_, f 4 d i p h o s , 25a and fgdiphos, 25b would r e a c t with the a l k a l i metal s a l t s , N a 2 P d C l 4 and K 2 P t C l 4 to g i v e the c h e l a t e metal d i c h l o r i d e complexes. - 123 -As a n t i c i p a t e d , the l i g a n d s , f.diphos and f,diphos g i v e complexes o f formulae, (L-L)MC1 2, 40_. The fgdiphos d e r i v a t i v e s are white ( P t ( I I ) ) and pale yellow (Pd) whereas both those of f,diphos are yellow. photochromic l i g a n d , b i f g f o s , 2_3 wit h N a 2 P d C l 4 and I ^ P t C l ^ were made e a r l i e r (84) but the products were n o t . i d e n t i f i e d . In the present study an acetone s o l u t i o n c o n t a i n i n g b i f g f o s , t r e a t e d with an aqueous s o l u t i o n o f N a 2 P d C l 4 i s found to giv e a green p r e c i p i t a t e . R e c r y s t a l l i z a t i o n of. t h i s s o l i d from a mixture o f methanol and c h l o r o f o r m (1:1) give s a blue s o l i d , 41_ i d e n t i f i e d as b i f g f o s P d C l 2 and an u n i d e n t i -f i e d y e l l o w s o l i d , 42_. The blue c o l o u r seems r a t h e r unusual f o r a p a l l a d i u m compound. In c o n t r a s t , when an acetone s o l u t i o n c o n t a i n i n g b i f Q d i p h o s , 24 i s t r e a t e d w i t h an aqueous s o l u t i o n o f 40 a) n = 2, b) n = 3 M = P d ( I I ) , P t ( I I ) P r e l i m i n a r y s t u d i e s on the r e a c t i o n s o f the - 124 -Na2?dCl 4 at 80°C, no p r e c i p i t a t e i s observed and e v a p o r a t i o n of s o l v e n t gives the s t a r t i n g m a t e r i a l s . Even under more f o r c i n g c o n d i t i o n s (100 - 150°C) no r e a c t i o n takes p l a c e . Since the diphenylphosphino analogue, b i f g f o s , 2_3_ gives a c h e l a t e complex the l a c k of r e a c t i o n c o u l d be due to the presence of the bulky c y c l o h e x y l groups. Bennettet a l . (85) found t h a t the r e a c t i o n o f 2 , 2 ' - b i s ( d i p h e n y l p h o s p h i n o ) s t i l b e n e w i t h h a l i d e s a l t s of N i ( I I ) , Pd(II) and P t ( I I ) r e s u l t s i n the e l i m i n a t i o n of hydrogen h a l i d e and the formation of complexes, [MC1(0-(C,H_).PC,H.C=CHC CH.P(C^H C)_-0)] as shown i n equation 6 5 2 6 4 6 4 6 5 2 [19]. Here the t r i d e n t a t e phosphine l i g a n d i s bonded to the metal v i a two M-P a -bonds and one M-'C a-bond. P ( C 6 H 5 ) 2 ( C 6 H 5 } 2 x M = P d ( I l ) , P t ( I I ) There are many other examples of i n t r a m o l e c u l a r m e t a l a t i o n of a l k y l and alkoxy groups attached to an aromatic r i n g (86,87) but the l i g a n d s i n v o l v e d i n these r e a c t i o n s are u s u a l l y t e r t i a r y phosphines. Although i n t r a m o l e c u l a r m e t a l a t i o n of aromatic carbon atoms i n c o o r d i n a t e d phosphine - 125 -l i g a n d s has been e x t e n s i v e l y s t u d i e d (88) there are, however, only a few examples known of i n t r a m o l e c u l a r m e t a l a t i o n o f a p u r e l y a l i p h a t i c carbon (89). There i s a b s o l u t e l y no i n d i c a t i o n t h a t i n t r a -molecular m e t a l a t i o n takes p l a c e i n any of the r e a c t i o n s s t u d i e d i n the present i n v e s t i g a t i o n i n s p i t e o f the presence of the bulky c y c l o h e x y l groups which c o u l d be expected to encourage such a r e a c t i o n path. Compounds of Pt(0) o f formula P t ( d i p h o s p h i n e ) 2 have been prepared by r e d u c t i o n of P t C l 2 (diphosphine) 2 (90). King (91) s t u d i e d the r e a c t i o n o f cis-(C,H C)_PCH=CHP(C,H C)_ b _> 2 b D 2 6_ with K 2 P t C l 4 i n the presence of sodium borohydride and ethanol and i s o l a t e d a z e r o v a l e n t platinum complex of the type, P t ( P - P ) 2 (P-P = 6_) . A mixture o f P t ( I I ) c h l o r i d e and d i f l u o r o t r i f l u o r o -methylphosphine when heated to 60°C i n an evacuated Pyrex ampoule i s known (92) to give a c o l o u r l e s s l i q u i d complex, t e t r a k i s - ( d i f l u o r o t r i f l u o r o m e t h y l p h o s p h i n e ) p l a t i n u m ( O ) . T h i s complex when t r e a t e d with t r i p h e n y l p h o s p h i n e , gives c r y s t a l s of formula , Pt (CF 3PF 2) [ ( C g H ) 3P] . Given the background i t seemed t h a t the new d i t e r t i a r y phosphine l i g a n d s , fgdiphos and fgdiphos would r e a c t with Pt [P(CgHj.)^]^ to give complexes, e i t h e r o f formulae, P t ( f diphos) [P(C,H [ r)_]„ o r P t ( f diphos) «, or both, n 6 D J 2 n 2 When an acetone s o l u t i o n of Pt [P (C,H._) _ ] . i s b D o 4 added to a s o l u t i o n o f fgdiphos, a r ed b i s c h e l a t e complex, - 126 -43_ of formula , Pt (f 4 d i p h o s ) 2 (75% y i e l d ) i s o b t a i n e d , by complete displacement of the t r i p h e n y l p h o s p h i n e groups. a d d i t i o n of fgdiphos to Pt [P (CgH,.) ^ ] 4 c o u l d give the mono ch e l a t e d e r i v a t i v e , but even t h i s r e a c t i o n g i v e s the b i s c h e l a t e d e r i v a t i v e i n very low y i e l d ( 2 % ) . The unreacted l i g a n d and a ye l l o w s o l i d whose nmr spectrum shows the absence of C^H^ protons are recovered at the end o f the r e a c t i o n . between f , diphos, and Pt [P (C,H C ) -, ] . at 100°C. The unreacted 6 b D J 4 l i g a n d (60% recovery) and a yellow s o l i d are i s o l a t e d . The "^H nmr spectrum o f the l a t t e r shows the absence of C,H., , 6 11 protons. (B) C h a r a c t e r i z a t i o n of new complexes. A l l the c h e l a t e complexes of fgdiphos, 40a and f r d i p h o s , 40b were i d e n t i f i e d by means of t h e i r mass s p e c t r a 6 and by m i c r o a n a l y s i s . I t seemed p o s s i b l e t h a t the r e v e r s e a d d i t i o n , i . e . 43 [P P - f diphos] Under s i m i l a r c o n d i t i o n s , there i s no r e a c t i o n - 127 -Since the l i g a n d s used i n t h i s study are b i l i g a t e , the complexes (L-L)MC1 2, i f monomeric, are expected to have t h e i r CI atoms i n c i s p o s i t i o n s and two i n f r a r e d a c t i v e m etal-c h l o r i d e s t r e t c h i n g modes are expected f o r such complexes (93). Both the Pd(II) and P t ( I I ) h a l i d e complexes of f^diphos and f^diphos e x h i b i t two m e t a l - c h l o r i n e s t r e t c h i n g f r e q u e n c i e s i n the r e g i o n , 250 - 320 cm 1 (Table V I I ) . These values are c o n s i s t e n t with r e p o r t e d values of 288 and -1 -1 311 cm f o r P d ( d i p h o s ) C l 2 and 292 and 315 cm f o r P t ( d i p h o s ) C l 2 (80). I t has been found (94) t h a t f o r the p a l l a d i u m s e r i e s , v(Pd-Cl) i s i n the range, 269 - 335 cm 1 f o r c i s complexes and v a r i e s c o n s i d e r a b l y with the donor groups present i n the molecule. In the case of the t r a n s complexes v (Pd-Cl) i s found i n a very narrow range, 353 - 359. cm 1 (independent of the donor except f o r t r a n s - d i a m i n e s ) . On this b a s i s a wide range i n the (Pd-Cl) s t r e t c h -i n g frequency i s to be expected f o r the c i s - c h e l a t e metal d i c h l o r i d e complexes, 4_0_. As seen i n Table VII t h i s i s found. A c h l o r i n e b r i d g e d compound i s not i s o l a t e d from these r e a c t i o n s though such a complex was i s o l a t e d from the r e a c t i o n o f f ^ f a r s with K ^ P t C l ^ where the l i g a n d i s mono-l i g a t e (95). As a n t i c i p a t e d , the i n f r a r e d spectrum o f the blue s o l i d , b i f R f o s P d C l 9 , 41_ shows two (Pd-Cl) s t r e t c h i n g f r e q u e n c i e s . - 128 -These a r e o b s e r v e d a t 255 and 322 cm . The a b s o r p t i o n bands i n t h i s r e g i o n a r e n o t so w e l l d e f i n e d f o r the u n i d e n t i f i e d y e l l o w s o l i d , 4_2 i s o l a t e d from the same r e a c t i o n . 19 The F c h e m i c a l s h i f t s o f t h e c h e l a t e complexes, 4 0 a r e n o t v e r y d i f f e r e n t from th o s e r e p o r t e d f o r t h e l i g a n d s . A s i m i l a r s i t u a t i o n i s o b s e r v e d f o r the b l u e complex, b i f g f o s P d C l 2 , 4_1 w h i c h shows two m u l t i p l e t s a t 106.5 and 111.6 ppm; the f r e e l i g a n d shows m u l t i p l e t s a t 108.0 and 110.9 ppm. T h i s s u g g e s t s t h e u s u a l c h e l a t e m e t a l d i c h l o r i d e complexes f o r 40_ and 41. 41 The """^ F nmr o f the y e l l o w s o l i d , 4_2 i s r a t h e r c o m p l i c a t e d . I t c o n s i s t s o f two AB q u a r t e t s c e n t r e d a t 101.1 ( J ^ D = 225 Hz) (area 1) and 106.5 ppm ( J _ _ = 205 Hz) A D Ar> (area 1) and a s t r o n g m u l t i p l e t a t 114.2 ppm (area 1 ) . T h i s spectrum i s q u i t e s i m i l a r t o t h o s e o f the 3 n - a l l y l complexes d e s c r i b e d l a t e r i n s e c t i o n 3 o f C hapter V. - 129 -A r e l a t e d n - a l l y l moiety (42a) formed by the l o s s of f l u o r i n e seems l i k e l y f o r the compound 4_2 as seen below, where one AB q u a r t e t c o u l d be due to and F^ and the o t h e r due to c o u p l i n g of F^ and F^. The h i g h f i e l d m u l t i p l e t c o u l d be a t t r i b u t e d to a c c i d e n t a l degeneracy of F 5 and Fg . The symmetry of the spectrum c o u l d a r i s e by a f u r t h e r rearrangement of the hydrocarbon p a r t of the l i g a n d as shown i n 42a. A s i m i l a r s h i f t o f the (CgH,.) group has been observed i n the r e a c t i o n of the same l i g a n d w i t h Fe(CO) d e s c r i b e d l a t e r i n s e c t i o n 4 of Chapter V. Evidence of t h i s i n the case of 4_2_ comes from the "''H nmr spectrum which shows thr e e bands a t 7.7 (area 1 ) , 7.4 (area 2) and 7.3 (area 1 ) . The d i s p l a c e d P (C^B.^) ^  group c o u l d end up i n a b r i d g i n g s i t u a t i o n . F F (C 6 H 5 ) P (C 6 H 5 ) 42a The m i c r o a n a l y t i c a l data however, do not seem t o agree w i t h a formula which would have 42a p l u s a V(C^U^)^ group bound t o two Pd atoms. N e v e r t h e l e s s , the data are o u t -s i d e even the e r r o r s a n t i c i p a t e d because of the sample s i z e . - 130 -( i i ) ( f 4 d i p h o s ) 2 P t . The i n f r a r e d spectrum of the b i s c h e l a t e Pt(0) complex, 43_ shows a (C-F) a b s o r p t i o n p a t t e r n i n the r e g i o n 1300 - 1100 cm which i s very s i m i l a r t o the f r e e l i g a n d . 1 19 S i m i l a r l y , the F nmr spectrum c o n s i s t s o f a s i n g l e m u l t i p l e t . The ''"H nmr o f t h i s complex, ( f 4 d i p h o s ) 2 P t , 43 shows the absence of (C,H C) protons i n d i c a t i n g t h a t a l l — O D f o u r PtCgHi-)^ have been d i s p l a c e d by two d i t e r t i a r y phosphine m o i e t i e s . Being a Pt(0) d e r i v a t i v e the geometry f o r t h i s complex, 43 i s expected to be t e t r a h e d r a l . - 131 -4. Reactions of the d i t e r t i a r y phosphines (L-L) with i r o n  c a r b o n y l s . (A) P r e p a r a t i v e methods. D i t e r t i a r y phosphine. such as diphos, 4_ are known (96) to r e a c t with i r o n pentacarbonyl to give complexes of formulae F e ( C O ) 3 ( C g H 5 ) 2 P C H 2 C H 2 P ( C g H 5 ) 2 # 44a, and [ F e ( C O ) 4 ] 2 ~ (CgH 5) 2PCH 2CH 2P(CgH 5) 2, 44b, where the l i g a n d i s b i l i g a t e and f u n c t i o n s as a c h e l a t e i n the former. In the l a t t e r i t i s b i l i g a t e but b r i d g e s two Fe atoms which are not o t h e r -wise connected. A t h i r d s p e c i e s 44c of composition F e ( C 0 ) o ,•(C,H C)_PCH„CH»P(C,H C)„ was a l s o o b t a i n e d from i or 4 6 5 , 2 2 2 6 5 2 the r e a c t i o n of c y c l o o c t a t e t r a e n e i r o n t r i c a r b o n y l w i t h diphos. C u l l e n e t a l . (122) i n t h e i r s t u d i e s of the r e a c t i o n of diphos with i r o n c a r bonyls have i s o l a t e d i n a d d i t i o n to the products 44a and 44b, a complex b e l i e v e d to have the formula ( d i p h o s ) 2 F e 3 ( C O ) ^ , 44d. -These r e a c t i o n s (97) were c a r r i e d out by e i t h e r r e f l u x i n g a s o l u t i o n of benzene c o n t a i n i n g the r e a c t a n t s or by i r r a d i a t i n g an acetone s o l u t i o n c o n t a i n i n g the r e a c t a n t s . 44a 44b - 132 -P CO 3-p p CO 44c 44d Tetramethyldiphosphine and t e t r a p h e n y l d i p h o s p h i n e are a l s o known t o give diphosphine b r i d g e d products such as 44b i n t h e i r r e a c t i o n s with i r o n pentacarbonyl (98). When i r o n pentacarbonyl and d i a r s 3_ were heated i n vacuo a t 14 0°C f o r about 4 h, two c a r b o n y l groups were found to be r e a d i l y d i s p l a c e d to y i e l d the c h e l a t e complex F e ( C O ) 3 ( d i a r s ) (99). Furt h e r h e a t i n g of t h i s compound with d i a r s caused g r e a t e r s u b s t i t u t i o n to y i e l d F e ( d i a r s ) 2 C 0 . A product of formula, d i a r s F e 2 ( C O ) g of s t r u c t u r e , 44b and another of formula (CgH^)(AsCH^) 2CH 2Fe 2(CO) g were i s o l a t e d from the r e a c t i o n of d i a r s w i t h i r o n pentacarbonyl carbon b r i d g e d d i t e r t i a r y a r s i n e s and phosphines have been i s o l a t e d (14,13,17,100,101). For example, as mentioned i n the I n t r o d u c t i o n , when an acetone s o l u t i o n c o n t a i n i n g f ^ f a r s , 7a_ and F e ^ C O ) ^ was i r r a d i a t e d with u l t r a v i o l e t l i g h t , a range o f products were i s o l a t e d as shown i n e q u a t i o n [20]. The diphenylphosphine analogue f 4 f o s , 7d under s i m i l a r c o n d i t i o n s gave the c h e l a t e complex f 4 f o s Fe(CO)~ and (97) . A number of i r o n c a r b o n y l d e r i v a t i v e s o f f l u o r o -- 1 3 3 -f 4 f a r s + F e 3 ( C O ) 1 2 a c ^ ° n e > f 4 f a r s F e (CO) 4 7 a f.farsFe„(CO) Q — 4 2 8 [ 2 0 ] f 4 f a r s F e 3 ( C O ) 1 0 11 f 4 f a r s F e 2 (CO) 12_ f 4 f o s F e ( C O ) 4 . A complex f 4 f o s F e 2 ( C O ) g analogous to 12 was obtained by a method shown i n equation [21]. r e f l u x ^ b enzene f 4 f o s F e ( c o ) ^  , f 4 f O S F e 2 (CO) g f 4 f o s + F e 3 ( C O ) 1 2 h V f a C e t o n e ^ f 4 f o s F e ( C O ) 3 , f 4 f o s F e 2 ( C O ) g [21] In a d d i t i o n to these, the r e a c t i o n s o f i r o n c a rbonyls with the mixed l i g a n d s 8a-c have a l s o been s t u d i e d i n d e t a i l and a range of products have been i s o l a t e d (51). From these s t u d i e s i t seemed t h a t the new d i -t e r t i a r y phosphine l i g a n d s , b i f g d i p h o s , 24_, f 4 d i p h o s , 25a and fgdiphos, 25b c o u l d r e a c t w i t h i r o n c a r b o n y l s i n a s i m i l a r manner t o give analogous products, although there i s always the p o s s i b i l i t y o f unusual r e a c t i v i t y because o f the bulk o f the l i g a n d . When a benzene s o l u t i o n c o n t a i n i n g a 1:10 mole r a t i o o f f 4 d i p h o s and Fe(CO) 5 i s heated at 150°C the major product i s the c h e l a t e complex f 4 d i p h o s F e ( C O ) 3 , 45a (45% y i e l d ) . The F e 2 (CO) g d e r i v a t i v e , 46_ i s obtained i n very low y i e l d ( 2 % ), though these c o n d i t i o n s have been r e p o r t e d as the bes t f o r p r e p a r a t i o n o f such complexes (101). When - 134 -a s i m i l a r r e a c t i o n i s c a r r i e d out with F e K C O ) ^ i n s t e a d of Fe(CO)_, the product f„diphosFe„(CO),, 46 i s o b t a i n e d i n 5 4 z o —— b e t t e r y i e l d (11%) though the c h e l a t e complex i s s t i l l formed as the major product (33% y i e l d ) . (The s t r u c t u r e of 46 i s d i s c u s s e d i n the next s e c t i o n . ) The r e a c t i o n of f^diphos with Fe(CO) 5 and F e ^ ( C O ) 1 ? y i e l d s o n l y the .chelate complex 45b. 45 46 f.diphosFe 2(CO) a) n = 2, f 4 d i p h o s F e ( C O ) 3 b) n = 3, f,diphosFe(CO) In the p r e p a r a t i o n of Fe 2(CO)^ d e r i v a t i v e s of f n f o s , 7d-7f (13) and f R A s P , 8a-8c (51) i t was found t h a t the y i e l d s decreased w i t h i n c r e a s e d r i n g s i z e (compounds w i t h n = 3 are not known). T h i s was o r i g i n a l l y taken as an i n d i c a t i o n t h a t as the r i n g became l e s s s t r a i n e d , there was l e s s tendency f o r the double bond to c o o r d i n a t e to Fe as seen i n s t r u c t u r e 12. However, l a t e r s t u d i e s with - 135 -f , f a r s , 7b and f D f a r s , 7c (101) gave good y i e l d s o f the b o Fe 2(CO)g d e r i v a t i v e , suggesting t h a t r i n g s t r a i n was not the on l y f a c t o r and t h a t s t e r i c hindrance by bulky P(CgHj-) 2 groups c o u l d p l a y some p a r t . Thus the new d i t e r t i a r y phosphine l i g a n d s having b u l k i e r F^c^n^2 9 r o u P s c o u l d show even g r e a t e r s t e r i c e f f e c t s . T h i s e x p e c t a t i o n i s w e l l founded as they do not r e a d i l y form the (L-L) F e 2 (CO) 6 d e r i v a t i v e s . Both the c h e l a t e complexes, 45a and 45b are s t a b l e i n the s o l i d s t a t e . The complex 45b i s i n s o l u b l e i n hexane, cyclohexane and petroleum e t h e r but d i s s o l v e s r e a d i l y i n benzene t o give an unstable s o l u t i o n . Complex 45a d i s s o l v e s i n a range of s o l v e n t s to give unstable s o l u t i o n s . (B) C h a r a c t e r i z a t i o n o f new complexes. (i) (L-L)Fe(CO) 3 . The i n f r a r e d s p e c t r a o f both the c h e l a t e complexes 45a and 45b show three t e r m i n a l c a r b o n y l bands. As shown i n Table XXX, s i x d i f f e r e n t s t r u c t u r e s (47a-47f) are p o s s i b l e f o r compounds of the type L 2 F e ( C O ) 3 (102). Since the l i g a n d s used i n t h i s study are b i l i g a t e , the s t r u c t u r e s 47a and 4 7b can be r u l e d out. In view o f the g f a c t t h a t f i v e - c o o r d i n a t e t r a n s i t i o n metal d complexes g e n e r a l l y adopt a t r i g o n a l bipyramid c o n f i g u r a t i o n , and s i n c e Fe(CO) r. i t s e l f has the same c o n f i g u r a t i o n (103) the s t r u c t u r e s , 47c or 47f are more l i k e l y . TABLE XXX Symmetry types and a c t i v i t i e s o f CO v i b r a t i o n a l modes i n L ? F e ( C O ) 3 complexes (102) S t r u c t u r e Point-group symmetry Symmetry species and a c t i v i t i e s a Number o f i n f r a r e d a c t i v e modes, 47a 47b 47c 47d 47e 47f Y I H — L y D. 3h 2V A', (R) E' (IR,R) 2A,(IR,R) B, (IR,R) 2 A'(IR,R) A"(IR,R) R = Raman, IR = i n f r a r e d The F nmr spectrum o f f ^ d i p h o s F e ( C O ) 3 shows a s i n g l e m u t l i p l e t a t 108.8 ppm sugges t i n g a symmetri-c a l s t r u c t u r e . However, the c r y s t a l s t r u c t u r e o f t h i s s o l i d shows an a x i a l - e q u a t o r i a l s u b s t i t u t e d t r i g o n a l bipyramid (Figure 4) corre s p o n d i n g to s t r u c t u r e 47f (104) . The same s t r u c t u r e has a l s o been found f o r s o l i d d i a r s F e ( C O ) 3 (105) and i n order to account f o r the nmr s p e c t r a o f these compounds i n s o l u t i o n , i t i s necessary to p o s t u l a t e t h a t they are s t e r e o c h e m i c a l l y non r i g i d so t h a t a x i a l and e q u a t o r i a l s u b s t i t u e n t s are exchanging as shown i n equation [22] on a time s c a l e f a s t e r than the nmr experiment (14). The non r i g i d i t y o f a s i m i l a r f i v e - c o o r d i n a t e 13 complex i s seen i n the C nmr spectrum of the ca r b o n y l groups i n F e ( C O ) 3 [ ( C H g ) 2 P C H 2 C H 2 P ( C H 3 ) 2 ] (106). Only one peak i s prese n t a t 25°C and -80°C. - 138 -The i n f r a r e d spectrum and the ^"'F nmr spectrum of the complex f g d i p h o s F e ( C O ) ^ , 45b i s very s i m i l a r to t h a t of the f r e e l i g a n d . T h i s complex probably i s a l s o s t e r e o -c h e m i c a l l y n o n - r i g i d i n s o l u t i o n and the s t r u c t u r e i s probably s i m i l a r to 45a. ( i i ) f 4 d i p h o s F e 2 ( C O ) 6 The i n f r a r e d spectrum i n the c a r b o n y l s t r e t c h i n g r e g i o n of t h i s complex, 4_6_ i s very s i m i l a r to those r e p o r t e d (13) f o r other complexes such as f 4 f o s F e 2 ( C O ) g and f 4 f a r s F e 2 ( C O ) g . The c r y s t a l s t r u c t u r e of f 4 f a r s F e 2 ( C O ) , the f i r s t i s o l a t e d example o f t h i s type of d e r i v a t i v e i s seen i n s t r u c t u r e 12_ i n the I n t r o d u c t i o n . The molecule A B c o n s i s t s of two i n e q u i v a l e n t i r o n atoms, Fe and Fe . Fe i s approximately o c t a h e d r a l l y c o o r d i n a t e d to three B B c a r b o n y l groups, two a r s e n i c atoms and Fe ; Fe i s c o o r d i n a t e d to the C=C bond of the cyclobutene r i n g , three c a r b o n y l groups and Fe which i s a c t i n g as a donor. Thus the co-o r d i n a t i o n around Fe can be regarded as e i t h e r a d i s t o r t e d t r i g o n a l bipyramid (with the C=C bond occupying one s i t e ) or a d i s t o r t e d octahedron (with the two carbon atoms occupying two s i t e s ) . The l a t t e r p i c t u r e i s c o n s i s t e n t with the X-ray data (10) f o r f 4 f a r s F e 2 ( C O ) g i n which the C-C d i s t a n c e (1.54 A) i n the cyclobutene r i n g i s not s i g n i f i c a n t l y l o n g e r than the C=C l e n g t h (1.51 A) - 139 -' 19 The F nmr spectrum of f„diphosFe~(CO) r 4 z o shows fo u r m u l t i p l e t s , a l l of equal i n t e n s i t i e s and t h i s p a t t e r n i s very s i m i l a r to t h a t observed f o r i t s d i p h e n y l -phosphino analogue, f ^ f a r s F e 2 ( C O ) g (13). Based on these r e s u l t s , i t seems reasonable to a s s i g n an analogous s t r u c t u r e 4_6_ to f 4 d i p h o s F e 2 (CO) 6 . C r y s t a l s t r u c t u r e o f f 4 d i p h o s F e (CO) , 45a_ The c r y s t a l s t r u c t u r e o f -f^diphosFe(CO)^ (Figure 4) was determined to d i f f e r e n t i a t e between the two s t r u c t u r e s 47c and 47f (104). The i r o n atom c o o r d i n a -t i o n i s found to depart from i d e a l t r i g o n a l b i p y r a m i d a l symmetry, which i s p o s s i b l y caused by the c l o s e approach of the cyclohexane groups on the two phosphorus atoms. The e q u a t o r i a l l i g a n d s are C (3), C ( l ) and P ( l ) , and the a x i a l are C(2) and P ( 2 ) . The Fe-P l e n g t h s , 2.250(4) and 2.268(4) A Fig u r e 4. C r y s t a l s t r u c t u r e o f f.diphosFe(CO)^, 45a, - 140 -are s i g n i f i c a n t l y d i f f e r e n t , and are i n agreement with o r e p o r t e d values o f 2.270(2) and 2.239(2) A f o r the mixed l i g a n d complex, ( F 4 A s P ) f 4 A s P F e 2 ( C O ) 4 (101,108). Thus the e f f e c t of the bulky c y c l o h e x y l groups on the Fe-P l e n g t h appears to be i n s i g n i f i c a n t u n l i k e i n the case of the molyb-denum t e t r a c a r b o n y l d e r i v a t i v e of b i f g d i p h o s (Figure 3) where the Mo-P d i s t a n c e i s found to be longer than u s u a l l y observed f o r such complexes and thus has been a t t r i b u t e d t o the s t e r i c e f f e c t s of the bulky c y c l o h e x y l group (29). The cyclobutene r i n g i s p l a n a r and the double bond i s r e t a i n e d as shown by a s h o r t C(28) - C(31) d i s t a n c e of 1.327(15) A. o T h i s i s comparable to a value of 1.326(8) A r e p o r t e d f o r the c h e l a t e l i g a n d i n the mixed l i g a n d complex, ( f 4 A s P ) f 4 A s P F e 2 ( C O ) 4 (108). - 141 -5. Reactions of the d i t e r t i a r y phosphines (L-L) with  dimanganese de c a c a r b o n y l . A. P r e p a r a t i v e methods. The r e a c t i o n s of M h 2 ( C O ) 1 Q and Mn(CO) 5Br with the c h e l a t i n g d i t e r t i a r y phosphine, diphos 4_, have been r e p o r t e d . Hieber and F r e y e r (109) t r e a t e d Mn 2(C0)^Q with an excess of diphos 4_, i n r e f l u x i n g xylene and i s o l a t e d Mn 2(CO) g(diphos) which was c h a r a c t e r i z e d o n l y by a n a l y t i c a l data. L a t e r Sacco (110) obtained a number of products by t r e a t i n g Mn 2(CO)^ 0 with diphos 4_ under v a r y i n g r e a c t i o n r e a c t i o n s . For example, a paramagnetic monomer Mn(CO)-( d i p h o s ) 2 was formed w i t h Mn 2(CO)^Q and an excess o f diphos a f t e r extended r e f l u x i n g i n dioxane, whereas the d i s p r o -p o r t i o n a t i o n product [Mn (CO) 2 (diphos) 2 ]+[Mn (CO) 5 ] was obtained with dimethoxyethane as s o l v e n t . Using the same s o l v e n t a second paramagnetic monomer Mn(CO)^(diphos) was i s o l a t e d with a diphos:Mn r a t i o of 1:1. The d i r e c t r e a c t i o n of Mn(C0) 5Br with diphos at 150°C has been r e p o r t e d (111) to give the complex Mn(CO)^(diphos)Br. When the same r e a c t i o n was performed i n r e f l u x i n g methanol the c a t i o n , [Mn(CO) ( d i p h o s ) 2 ] + was formed (112). Reimann and S i n g l e t o n (113) have observed the r e a c t i o n of M n 2 ( C O ) 1 0 w i t h one mole of (CgH,.) 2PCH 2P (CgH 5) 2 (DPM) i n r e f l u x i n g benzene and i s o l a t e d a compound of s t o i -chiometry Mn, (CO) R (DPM) , 4_8. Treatment of t h i s complex - 142 -with one mole o f bromine i n c a r b o n t e t r a c h l o r i d e (CC1 4) s o l u t i o n a t 0°C gave a s i n g l e bromination product 49_ of formula Mn 2(CO) g(DPM)Br 2. Bromination of manganese dimers with s t o i c h i o m e t r i c amounts of bromine has been shown to occur w i t h f i s s i o n o f the metal-metal bond to give mono-meric products c o n t a i n i n g one bromide l i g a n d per manganese atom. Thus the i s o l a t i o n of a s i n g l e bromination product, 49 from r e a c t i o n [23] i n d i c a t e s t h a t i n both complexes 48_ and 4_9_ the l i g a n d b r i d g e s two metal atoms. CO OC Mn. CO CO Mn CO OC Br. OC Mn CO CO CO 48 cci4 0°C Br CO P-P - DPM CO CO I CO \/ P Mn CO / I Br CO 49 [23] Treatment of M n 2 ( C O ) 1 Q with an excess of diphos or DPM (P-P) i n r e f l u x i n g benzene f o r extended p e r i o d s has given (113,114a) a complex of formula [Mn (CO) 3 (P-P) ] 2 analogous to [ M n ( C O ) 3 ( d i a r s ) ] 2 (115). Bromination of [Mn(CO) 3(P-P)] 2 a t 0°C gave e x c l u s i v e l y the monomeric com-pound fac-Mn(CO) 3(P-P)Br, which was a l s o prepared by the r e a c t i o n of Mn(CO)^Br and diphos or DPM i n benzene s o l u t i o n u s i n g uv i r r a d i a t i o n (113) . The f l u o r o c a r b o n b r i d g e d d i t e r t i a r y phosphine, f 4 f o s , 7d_ i s known t o r e a c t with M n 2 ( C O ) 1 Q under r e f l u x i n - 143 -toluene to y i e l d the Mn 2(CO)g d e r i v a t i v e analogous, to f a r s M n 2 ( C O ) g , 14a as mentioned i n the I n t r o d u c t i o n . The b r i d g e d compound, 14a was found to r e a c t with i o d i n e a t room temperature r e s u l t i n g i n r u p t u r e of the metal-metal bond to give the d e r i v a t i v e f 4 f a r s [ M n ( C O ) ^ 1 ] 2 (116) where the c r y s t a l s t r u c t u r e shows t h a t the l i g a n d b r i d g e s two Mn(CO) 4I m o i e t i e s . Thus t h i s study g i v e s s t r o n g support to the r e a c t i o n shown i n equation [23]. From these s t u d i e s , i t seemed t h a t the new d i t e r t i a r y phosphines, f 4 d i p h o s , fgdiphos and b i f g d i p h o s should r e a c t w i t h M n ^ C O ) ^ to give analogous complexes.. T h i s e x p e c t a t i o n has o n l y been f u l f i l l e d t o a l i m i t e d e x t e n t . The l i g a n d f 4 d i p h o s r e a c t s w i t h M n 2 ( C O ) t o g i v e a y e l l o w complex of formula, [f 4diphosMn(CO) ^ ] 2 , 5_0_ which on t r e a t -ment with an equimolar amount o f bromine i n CC1 4 a t 0°C g i v e s the monomeric compound, f 4diphosMn(CO)^Br, 51. The l i g a n d fgdiphos r e a c t s w i t h Mn^CO).^ i n benzene at 140°C to y i e l d the Mn 2(CO) g d e r i v a t i v e 5_2_ i n very low y i e l d (2%) and s t a r t i n g m a t e r i a l s are recovered. When the r e a c t i o n i s c a r r i e d out at h i g h e r temperatures (150 - 160°C)' c h a r r i n g of products takes p l a c e . I r r a d i a t i o n of a benzene s o l u t i o n c o n t a i n i n g the r e a c t a n t s f a i l s to i n i t i a t e s u b s t i t u t i o n . The l i g a n d , b i f g d i p h o s , 24_ r e a c t s w i t h M n 2 ( C O ) 1 Q i n benzene a t 130°C i n an evacuated C a r i u s tube, to give two c o l o u r e d s o l i d s (blue and magenta) of very low y i e l d and n e i t h e r have been i d e n t i f i e d . - 144 -(B) C h a r a c t e r i z a t i o n o f new complexes, ( i ) [ f 4 d i p h o s M n ( C O ) 3 l 2 . The mass spectrum o f the complex [ f ^ d i p h o s -M n ( C O ) 3 ] 2 / 50_ shows a m o l e c u l a r peak a t (m/e) 657 w hich c o r r e s p o n d s t o P + / 2 , f o l l o w e d by peaks c o r r e s p o n d i n g t o [ P / 2 - n ( C 0 ) ] + where n = 1-3. The m i c r o a n a l y t i c a l d a t a c o n f i r m s t h i s f o r m u l a . The i n f r a r e d spectrum o f the com-p l e x , 50_ shows t h r e e bands i n the v (CO) r e g i o n . There are t h r e e p o s s i b l e s t r u c t u r e s (113, 114) o f e i t h e r C 2^ o r D 2^ symmetry f o r the s p e c i e s , [ f ^ d i p h o s M n ( C O ) ^ ] 2 as shown below. B r o m i n a t i o n o f the d imer, 50_ g i v e s e x c l u s i v e l y t h e monomeric compound o f f o r m u l a f^diphosMn(CO)^Br, 51, w h i c h i s i d e n t i f i e d by means o f m i c r o a n a l y s i s and i t s mass spectrum. 31 The P nmr spectrum o f the dimer 5_0_ shows a m u l t i p l e t a t -107.6 ppm (the f r e e l i g a n d has a m u l t i p l e t a t 13.29 ppm). Thus a s t r u c t u r e such as 53b w h ich c o u l d e x h i b i t two m u l t i p l e t s can be e l i m i n a t e d . 31 (The P nmr spectrum o f t h e bromo d e r i v a t i v e , 5_1 a l s o shows a m u l t i p l e t a t -84.7 ppm.) 19 The F nmr s p e c t r a o f b o t h the d i m e r , 5_0_ and t h e monomer 53^, c o n s i s t o f an AB q u a r t e t o f m u l t i p l e t s . F o r the dimer 50, J = 195.9 Hz and f o r the monomer, 51 " A D — = 194.0 Hz. These r e s u l t s i n d i c a t e t h a t the p o s s i b l e AB s t r u c t u r e f o r t h e dimer, [f .diphosMn (CO) 9 i s 53a. - 145 -P P p p 53c (D 0, ) A d d i t i o n a l evidence f o r t h i s s t r u c t u r e i s garnered from the i n f r a r e d and mass s p e c t r o s c o p i c d a t a . Three c a r b o n y l bands a t 2010(s), 1935(s) and 1915(vs) cm - 1 are observed f o r the dimer 50_ which i s more i n favour o f a " f a c " s u b s t i t u t i o n (53a) r a t h e r than a "mer" s u b s t i t u t i o n (53b o r 53c) . The mass spectrum o f 50_ shows a s t r o n g peak a t m/e = 647 corres p o n d i n g t o P +/2 which i s more i n favour of a c h e l a t i n g s t r u c t u r e 53a, than a b r i d g i n g s t r u c t u r e , 53c. The bromination of the dimer, 5_0_ l e a d s to the a n t i c i p a t e d " f a c " isomer, 51_. However, r e d i s t r i b u t i o n of l i g a n d s has been found to take p l a c e d u r i n g the bromina-t i o n of manganese ca r b o n y l d e r i v a t i v e s of t e r t i a r y phos-phines (117) . I t has been p o i n t e d out (114a) t h a t the o r i g i n a l s t r u c t u r a l assignment f o r [Mn (CO) ^DPM] 2 which was based on bromination s t u d i e s (113) i s i n c o r r e c t . P r e v i o u s l y Reimann and S i n g l e t o n (113) i s o l a t e d the " f a c " isomer of Mn(CO) 3(DPM)Br and p o s t u l a t e d t h a t t h i s c o u l d a r i s e from a s t r u c t u r e such as 53a or 53b. I t now seems (114 114b) t h a t the c o r r e c t s t r u c t u r e f o r the dimer i s 53c based on s p e c t r o s c o p i c s t u d i e s and a l s o the dimer on heat-i n g gives a complex, Mn 2 (CO) ,-DPM, o f known c r y s t a l s t r u c t u r e , shown below. - 147 -( i i ) f 6 d i p h o s M n 2 ( C O ) g . The l i g a n d fgdiphos r e a c t s w i t h Mn„(CO) o 2 lu to g i v e the Mn 2(CO) g d e r i v a t i v e , 52_ i n very low y i e l d (2%) . T h i s was i d e n t i f i e d by i t s mass spectrum and f u r t h e r con-firmed by m i c r o a n a l y s i s . The i n f r a r e d spectrum shows seven bands with s i m i l a r i n t e n s i t y p a t t e r n s as observed f o r f 4 f o s M n 2 ( C O ) B (116). Based on S i n g l e t o n ' s study (113), f o r a compound such as Mn„(CO)„(DPM), 48 of C~ , symmetry seven 2 o 2 V i n f r a r e d a c t i v e modes o f v i b r a t i o n are p r e d i c t e d (113) , but only s i x are observed, w i t h the seventh probably being obscured. An analogous complex, f 4 f a r s M n ^ ( C O ) g , 14a (116) of lower symmetry a l s o e x h i b i t s s i x bands. For the complex, f,diphosMn„(CO) 0, 52 a s t r u c t u r e c orresponding to 14a, o 2 o as mentioned i n the I n t r o d u c t i o n , i s proposed, where the l i g a n d , fgdiphos b r i d g e s the two metal atoms. | / ( C 6 H 1 1 ) 2 ( C 6 H 1 1 } 2 52 The i n f r a r e d spectrum of 52_ i n the (C-F) 19 r e g i o n i s very s i m i l a r to the f r e e l i g a n d . The F nmr spectrum a l s o shows two m u l t i p l e t s i n the r a t i o o f 2:1 which i s a l s o seen f o r the f r e e l i g a n d , s u g g e s t i n g a symmetric complex. Bromination of t h i s complex was not attempted because o f l a c k o f m a t e r i a l . As mentioned e a r l i e r - 148 -i n s e c t i o n ( A ) , t h e complex, f a r s M n 2 ( C O ) g , 14a, r e a c t s w i t h i o d i n e t o g i v e the d e r i v a t i v e , f ^ f a r s [ M n ( C O ) ^ 1 ] 2 (116). The r e a c t i o n o f b i f g d i p h o s , 24_ w i t h Mn^COj^g g i v e s two h i g h l y c o l o u r e d s o l i d s i n v e r y low y i e l d s . A b l u e s o l i d o f m e l t i n g p o i n t g r e a t e r than 300°C showing f o u r bands i n the c a r b o n y l r e g i o n o f t h e i n f r a r e d spectrum a t 1920 (s) , 1949 ( s ) , 1995 (sh) and 2010(s) c m - 1 and a magenta s o l i d whose i n f r a r e d spectrum shows bands a t 2030(m), 2 0 1 0 ( s ) , 1 9 6 5 ( s ) , 1 9 4 5 ( v s ) , 1932(s) and 1922(s) cm ^. T h i s suggests a b r i d g e d b i f g d i p h o s M n 2 ( C O ) g t y p e o f d e r i v a t i v e f o r the magenta c o l o u r e d s o l i d but f u r t h e r c h a r a c t e r i z a t i o n was not p o s s i b l e due t o i n s u f f i c i e n t sample. - 149 -CHAPTER V RESULTS AND DISCUSSION l~ 1 Reactions of the t e r t i a r y phosphines, R,,PC=CC1 (CF,,) (L)  with t r a n s i t i o n metal carbonyls and metal h a l i d e s , and the  r e a c t i o n of 2 , 2 ' - b i s ( d i p h e n y l p h o s p h i n o ) o c t a f l u o r o - ( b i - 1 - c y c l o b u t e n - l - y l ) with i r o n c a r b o n y l s . T h i s chapter i s d i v i d e d i n t o f o u r major s e c t i o n s . The f i r s t s e c t i o n d e s c r i b e s the r e a c t i o n s of the t e r t i a r y phos-phines, (L) with Group VI metal hexacarbonyls. A s h o r t d i s c u s s i o n on the r e a c t i o n s of (L) with some t r a n s i t i o n metal h a l i d e s i s given i n s e c t i o n 2. The r e a c t i o n s of (L) with i r o n c a rbonyls have been i n v e s t i g a t e d i n d e t a i l , and the r e s u l t s are presented i n s e c t i o n 3. T h i s i s f o l l o w e d by s e c t i o n 4 which d e s c r i b e s the r e a c t i o n of 2 , 2 ' - b i s ( d i p h e n y l -phosphino) o c t a f l u o r o - ( b i - l - c y c l o b u t e n - l - y l ) with i r o n c a r b o n y l s . 1. Reactions of the t e r t i a r y phosphines (L) with Group VI  metal hexacarbonyls. (A) P r e p a r a t i v e methods. - 150 -T e r t i a r y phosphine s u b s t i t u t e d Group VI metal c a r b o n y l d e r i v a t i v e s can be prepared i n a s i m i l a r manner to the d i t e r t i a r y phosphine d e r i v a t i v e s . For example, the r e a c t i o n of t r i p h e n y l p h o s p h i n e with Cr(CO)g i s known (119) to give the monosubstituted complex as shown i n equation [24] The analogous Mo and W d e r i v a t i v e s were i s o l a t e d i n the same way. C r ( C 0 ) 6 + P ( C 6 H 5 ) 3 d i g A l y m e > C r ( C O ) 5 P ( C 6 H 5 ) 3 . [24] M o n o s u b s t i t u t i o n of the parent hexacarbonyls by t r i c y c l o h e x y l p h o s p h i n e has a l s o been r e p o r t e d to take p l a c e t h e r m a l l y and photochemically as shown i n equations [25] and [26] (120) . M(CO) 6 + P ( C 6 H l l ) 3 d i . n . ^ u ^ X e t h e r > M ( C 0 ) 5 P ( C6 H11> 3 [ 2 5 ] d i i s o p r o p y l e t h e r M = Cr,Mo W(CO) 6 + P ( C 6 H 5 ) 3 ^ > W ( C O ) 5 P ( C 6 H 5 ) 3 [26] King (121) has d e s c r i b e d the r e a c t i o n s of Group VI metal hexacarbonyls with t r i s - ( d i m e t h y l a m i n o ) p h o s p h i n e (TDP) i n r e f l u x i n g e t h y l c y c l o h e x a n e . In the case of Cr(CO)g and Mo(C0)g, the pentacarbonyl d e r i v a t i v e was i s o l a t e d whereas i n the case of W(C0),, d i s u b s t i t u t i o n was found to occur and O the t e t r a c a r b o n y l d e r i v a t i v e , trans-W(CO) 4(TDP) 2 was i s o l a t e d - 151 -The r e a c t i o n s of Group VI metal hexacarbonyls w i t h t e r t i a r y phosphines have been s t u d i e d i n d e t a i l by P o i l b l a n c and Bigorne (63) and a range of compounds have been i s o l a t e d . In the present i n v e s t i g a t i o n i t was of i n t e r e s t t o I —I study the r e a c t i o n s of the t e r t i a r y phosphines, R 2PC=CC1(CF 2) with Group VI metal hexacarbonyls s i n c e , a s mentioned i n the I n t r o d u c t i o n , these l i g a n d s have two p o t e n t i a l c o o r d i n a t i o n s i t e s . Furthermore, t h e r e i s the p o s s i b i l i t y t h a t the e a s i l y s u b s t i t u t e d g v i n y l i c c h l o r i n e atom c o u l d a l s o become i n v o l v e d i n the r e a c t i o n . U n f o r t u n a t e l y only simple s u b s t i t u t i o n r e a c t i o n s are found to occur when the t e r t i a r y phosphines 1 1 R 0PC=CC1(CF„) (R = C.H.., C CH C; n = 2,3,4) are r e a c t e d w i t h M(CO), (M = Cr, Mo, W) a t 120 - 150°C and i n a l l cases b only the monosubstituted pentacarbonyl d e r i v a t i v e s 54_, 55, 56, 57, 60 and 61 are i s o l a t e d (see s e c t i o n I B ) . The y i e l d s of the cyclobutene d e r i v a t i v e s , 5_4 and 55 are found to be low (Table XVI) but when the r e a c t i o n i s c a r r i e d out a t higher temperatures (150°C) decomposition o c c u r s . The cyclopentene d e r i v a t i v e s , 56_ and 57_, and the cyclohexene d e r i v a t i v e s , 60_ and 6_1, are o b t a i n e d i n b e t t e r y i e l d s . Reactions of the t e r t i a r y a r s i n e l i g a n d , I 1 ( C H 3 ) 2 A s C = C C l ( C F 2 ) 3 , 58_, w i t h M(CO) g (M = Cr, Mo, W) , a l s o g i v e s the monosubstituted complexes, 59. - 152 -c r RV M ( C 0 ,5 54 R=C gH 1 1; M=Cr(a),Mo(b),W(c) 55 R=C,HC; M=Cr,Mo,W O 3 R P^ C 0 )5 2 56 R=CgH i ; L; M=Cr,Mo,W 57 R=C,HC; M=Cr,Mo,W D D CI' (C^^As 7 1 ^ 5 CI D n/ M ( C O L R2P 5 59 M=Cr,Mo,W 60 R=CgHllf- M=Cr,Mo 61 R=C,HC; M=Cr,Mo — b D (B) C h a r a c t e r i z a t i o n of new complexes. A l l the M(CO) 5L complexes were i d e n t i f i e d by means of t h e i r mass s p e c t r a and the formulae f u r t h e r confirmed by mic r o a n a l y s e s . The i n f r a r e d s p e c t r a o f a l l complexes show s t r o n g a b s o r p t i o n i n the (C=C) r e g i o n which i s a l s o observed i n the f r e e l i g a n d s . The (C-Cl) s t r e t c h i n g frequency i n a l l - 1 5 3 -complexes seems u n a f f e c t e d by complex formation. These r e s u l t s i n d i c a t e t h a t there i s no i n t e r a c t i o n between the metal and the double bond or the metal and the c h l o r i n e atom i n these complexes. Thus c o o r d i n a t i o n i s onl y v i a the Group V donor atom. T h i s c o n c l u s i o n i s confirmed by a c r y s t a l s t r u c t u r e of one complex, f^chlorphosMo(CO)^, 54b, determined by E i n s t e i n and Huang (122) . The s t r u c t u r e shows no i n t e r a c t i o n between the molybdenum atom and the v i n y l i c c h l o r i n e . The carbon-carbon double bond l e n g t h i s 1.326 A comparable to a value o f 1.326(8) A observed i n ( f 4 A s P ) f 4 A s P F e 2 ( C O ) (108). The carbon-carbon s i n g l e bond lengths are i n the range 1.48 -o 1.524 A. These r e s u l t s i n d i c a t e t h a t the double bond i s not co o r d i n a t e d t o the molybdenum atom. Although, as expected, the i n f r a r e d s p e c t r a of a l l the complexes i n the (C-F) r e g i o n are very s i m i l a r to those of the corres p o n d i n g parent l i g a n d s , the s p e c t r a show some unusual f e a t u r e s i n the car b o n y l r e g i o n as seen i n Table XVIII. For example, the complex f 4chlorphosMo(CO)^, 54b i n cyclohexane shows bands a t 2080 ( s ) , 1965(sh), 1950 ( v s ) , 1935(sh) and 1920(w) cm" 1. For a compound such as Cr(CO)^P(CgH^)^/ which i s expected t o e x h i b i t l o c a l C 4 v symmetry, three i n f r a r e d a c t i v e CO s t r e t c h i n g fundamentals are expected; namely, the two A^ modes and the E mode as seen i n F i g u r e 5 (123) . For r i g o r o u s C. symmetry the B mode i s not i n f r a r e d a c t i v e . - 154 -P E F i g u r e 5. CO s t r e t c h i n g modes f o r M(CO) (L = t e r t i a r y phosphine). - 155 -The spectrum o f Cr(CO)^.P (CgH<-)^ shows three bands a t 2070(m), 1989(w) and 1944(vs) cm - 1. However, the band a t 2070 cm has been a t t r i b u t e d to one of the modes. The band a t 1989 cm 1 has been a t t r i b u t e d to the mode which i s o n l y Raman a c t i v e i n s t r i c t C^ v symmetry, but i s found to gain some i n f r a r e d i n t e n s i t y because the s t r u c t u r e of the l i g a n d , P(CgH^) 3 does not a l l o w the molecule to have s t r i c t C^ v symmetry. The remaining band a t 1890 cm ^ i s a t t r i b u t e d t o the E mode and to the other A^ mode which are a c c i d e n t a l l y degenerate. C e r t a i n amine s u b s t i t u t e d chromium pentacarbonyl d e r i v a t i v e s (124) and the compound, Mo (CO) 5 P (C^H^ 3 (63), are r e p o r t e d to e x h i b i t four c a r b o n y l bands i n the i n f r a r e d spectrum. A mechanism has been suggested by K e t t l e and Paul (125) whereby a f o r m a l l y f o r bidden CO s t r e t c h i n g funda-mental of B^ symmetry i n a C^ v M(CO)^L complex may g a i n i n t e n s i t y . In the present i n v e s t i g a t i o n , the t e r t i a r y phos-phines with the bulky d i c y c l o h e x y l and diphenylphosphino groups cannot be expected to show r i g o r o u s C^ v symmetry and hence more than the expected bands are observed. The f i f t h band c o u l d be a t t r i b u t e d to the s p l i t t i n g of the E mode. As observed f o r the d i t e r t i a r y phosphine complexes (Chapter I V ) , the c a r b o n y l s t r e t c h i n g f r e q u e n c i e s of the f n c h l o r p h o s M ( C O ) 5 complexes are s l i g h t l y lower than those observed f o r the c o r r e s p o n d i n g f c h l o r f o s M ( C O ) c o m p l e x e s . - 156 -Very l i t t l e d i f f e r e n c e has been observed between the c a r b o n y l s p e c t r a of the fgChlorAsM(CO)^, 59_ complexes and the analogous t e r t i a r y phosphine complexes (Table X V I I I ) . 19 The F nmr s p e c t r o s c o p i c data of a l l these complexes are l i s t e d i n Table XVIII. The chemical s h i f t s o f a l l the complexes are not very d i f f e r e n t from those of the l i g a n d s . No changes i n band number and d i s t r i b u t i o n , are observed, showing t h a t the symmetry of the f r e e l i g a n d s i s the same as i n the complexes. (C) Attempted s y n t h e s i s o f complexes o f mixed l i g a n d s . Since attempts t o s y n t h e s i z e mixed l i g a n d s of the I 1 formulae (C,H,.)„PC=CP(C,H C)„(CF 0) by the r e a c t i o n s of the 6 11 2 6 0 2. 2 VL I 1 t e r t i a r y phosphines ( C g H ^ ) 2 P C = C C 1 ( C F 2 ) n w i t h P ( C 6 H 5 ) 2 H , as mentioned i n Chapter I I I , were not s u c c e s s f u l , i t was thought t h a t the r e a c t i o n of P(CgHj.) 2H w i t h a t e r t i a r y phosphine sub-s t i t u t e d LM(CO) 5 (M = Cr, Mo, W) d e r i v a t i v e may y i e l d the t e t r a c a r b o n y l c h e l a t e complex as shown i n equation [27] . In F2 F2 + P ( C 6 H 5 ) 2 H C l / f c ^ P " M ° ( C 0 ) 5 [27] 54b (C0) 4 - 157 -t h i s r e a c t i o n s u b s t i t u t i o n can take p l a c e at the molybdenum atom by e x p u l s i o n of a carbon monoxide group or the complex 54b can undergo an a d d i t i o n r e a c t i o n w i t h P(C^H^.) 2H with the e l i m i n a t i o n of HC1 to g i v e the c h e l a t e t e t r a c a r b o n y l d e r i v a -t i v e . No r e a c t i o n occurs when the r e a c t a n t s are heated at 115°C and 28% o f the f 4 c h l o r p h o s M o ( C O ) 5 d e r i v a t i v e i s recovered. When the r e a c t i o n i s c a r r i e d out a t h i g h e r temperatures (140 - 150°C) c o n s i d e r a b l e decomposition i s found to occur. Attempts to s y n t h e s i z e a tungsten t e t r a c a r b o n y l mixed l i g a n d complex as shown i n equation [28], proved to be u n s u c c e s s f u l . As mentioned i n S e c t i o n (A), t r a n s -jr benzene > W ( C 0 ) p p i [ 2 8 ] (P'W(CO) c) (P) complexes such as trans-W(CO) 4(TDP) 2 were i s o l a t e d from the r e a c t i o n o f W(CO), (121) with tris-dimethylamino-phosphine o (TDP), the f a i l u r e of these l i g a n d s to r e a c t as shown i n equation [28] i s not understood s i n c e the reason i s not s t e r i c . J - 158 -2. Reactions of the t e r t i a r y phosphines (L) with t r a n s i t i o n  metal h a l i d e s . (A) P r e p a r a t i v e methods. T e r t i a r y phosphines and a r s i n e s are known to r e a c t w i t h Pd(II) and P t ( I I ) s a l t s to form the square p l a n a r d e r i -v a t i v e s as shown i n equation [29] (82,126,127). The products 2(PR 3) + N a 2 P d C l 4 > M C 1 2 ( P R 3 ) 2 + 2NaCl [29] or K 2 P t C l 4 M = P d ( I I ) , P t ( I I ) from t e r t i a r y a l k y l phosphines and a r s i n e s were u s u a l l y mixtures of c i s - and t r a n s - L 2MC1 2 complexes and the isomers were u s u a l l y separated by e x t r a c t i o n of the t r a n s - isomer w i t h e t h e r or l i g h t petroleum, l e a v i n g the c i s - isomer as a com-p l e t e l y i n s o l u b l e r e s i d u e (126). Beg and C l a r k (128) found the f o l l o w i n g s t a b i l i t y t r end f o r a s e r i e s of platinum compounds. They a t t r i b u t e t h i s [ ( C H 3 ) 3 P ] 2 P t c l 2 < [ ( C H 3 } 2 P C F 3 ] 2 P t C 1 2 > [ ( C H 3 P ( C F 3 5 2 ] 2 P t C 1 2 >  62a 62b ( c i s ) 62c (trans) [P(CF 3) 3 ] 2 P t C l 2 [30] 62d (not i s o l a t e d ) trend to the presence of e l e c t r o n e g a t i v e f l u o r o c a r b o n groups which can d i m i n i s h a donation but p o s s i b l y enhance TT a c c e p t i n g p r o p e r t i e s of the phosphines. The i s o l a t i o n of the trans - 159 -d e r i v a t i v e , 62c was unexpected but has been r a t i o n a l i z e d i n terms of s t e r i c hindrance. Many b i n u c l e a r compounds of Pd(II) and P t ( I I ) of the type, [ L 2 M 2 C l 4 ] f 6_3_ (M = P d ( I I ) , P t ( I I ) ) have a l s o been s t u d i e d i n d e t a i l (129,130), and were s y n t h e s i z e d as shown i n equation [31]. L 2 P d C l 2 + ( N H 4 ) 2 P d C l 4 — r e f l u x > c l + 2NH 4C1 [31] A more d i r e c t and convenient method f o r the p r e p a r a t i o n of such complexes i s shown i n equation [32] (130). 2L + 2 N a 2 P d C l 4 > L 2 P d 2 C l 4 + 4NaCl [32] The complex, [ ( C ^ H ^ ) ^ P ] 2 P d 2 C l 4 has been i s o l a t e d u s i n g both r e a c t i o n s [31] and [32]. Analogous c h l o r o b r i d g e d P t ( I I ) complexes have a l s o been i s o l a t e d and the c o l o u r of the c h l o r o b r i d g e d complexes of both metals range from orange to orange red (131). A novel cleavage of phosphinoacetylenesby Pd(II) and P t ( I I ) s a l t s was observed by C a r t y e t a l . (132). The unsaturated t e r t i a r y phosphine, ( C ^ H ^ ) 2 P C E C C F 3 when re a c t e d with MC1 4 (M = P d ( I I ) , P t ( I I ) ) s a l t s gave an unusual d i t e r t i a r y phosphine complex of formula, [(CgH^) 2PCH 2C (CF^) = CHP (CgH 5) 2]MC1 2, 64_. T h i s i s e x p l a i n e d by a bond cleavage of the a c e t y l e n e and the formation of a three carbon c h a i n from two a c e t y l e n e groups. A square p l a n a r c i s - arrangement - 160 -was suggested by two strong (Pd-Cl) s t r e t c h i n g f r e q u e n c i e s a t 317 and 299 cm" 1. Because the t e r t i a r y phosphines, R, P6=CC1 ( C F J are unsaturated and a l s o have a p o t e n t i a l l y l a b i l e f l u o r o -carbon group, t h e i r r e a c t i o n s w i t h Pd(II) and P t ( I I ) s a l t s were s t u d i e d i n t h i s i n v e s t i g a t i o n . The l i g a n d s , f , c h l o r p h o s , 26c and f ^ c h l o r f o s , 26d b b (L) r e a c t with N a 2 P d C l 4 and K 2 P t C l 4 t o u s u a l l y g i v e y e l l o w complexes of formula, L 2MC1 2 (M = P d ( I I ) , P t ( I I ) ) , 65a-65d but the r e a c t i o n of f , c h l o r f o s , 26d with Pd(II) a l s o g i v e s a c h l o r o b r i d g e d complex, 6_6_. An analogous compound i s not i s o l a t e d from the r e a c t i o n of f g C h l o r f o s w i t h P t ( I I ) . A c h l o r o b r i d g e d complex, 6_7_, i s a l s o i s o l a t e d from the r e a c t i o n of g c h l o r f o s w i t h Pd(II) but i t s r e a c t i o n with P t ( I I ) was not s t u d i e d . Table XXXI l i s t s the d i f f e r e n t complexes i s o l a t e d from the r e a c t i o n s o f the t e r t i a r y phosphines w i t h Pd(II) and P t ( I I ) c h l o r i d e s . M; PCC Pd L CI 65 a) L = fgChlorphos, M = Pd(II) 66_, L = f g C h l o r f o s b) L = f g C h l o r p h o s , M = P t ( I I ) 67_, L = g c h l o r f o s c) L = f g C h l o r f o s , M = Pd(II) d) L = f ^ c h l o r f o s , M = P t ( I I ) b - 161 -TABLE XXXI Products i s o l a t e d from the r e a c t i o n s o f the t e r t i a r y phosphines (L) w i t h Pd(II) and P t ( I I ) c h l o r i d e s . Ligand (L) Products f 6 c h l o r p h o s L 2MC1 2? 6_5 (a = P d ( I I ) , b = P t ( I I ) ) f 6 c h l o r f o s L 2MC1 2 T 65 (c = P d ( I I ) , d = P t ( I I ) L 2 P d 2 C l 4 * 66 f 4 c h l o r f o s L 2 P d 2 C l 4 , 67_ y e l l o w or pale yellow * orange (B) C h a r a c t e r i z a t i o n of new complexes. (i) L 2MC1 2. A l l the b i s l i g a n d metal d i c h l o r i d e complexes 6 5a - 65d were i d e n t i f i e d by means o f t h e i r mass s p e c t r a . The formulae were f u r t h e r confirmed by m i c r o a n a l y s e s . 19 The F nmr s p e c t r a of a l l the complexes are very s i m i l a r to those of the l i g a n d s . No change i n i n t e n s i t y or band p a t t e r n i s observed. - 162 -The i n f r a r e d s p e c t r a o f a l l complexes, show very s t r o n g a b s o r p t i o n i n the (C=C) r e g i o n which was a l s o seen f o r the f r e e l i g a n d s . The (C-Cl) s t r e t c h i n g f r e q u e n c i e s are i d e n t i c a l t o those o f the f r e e l i g a n d s and so are the a b s o r p t i o n bands i n the (C-F) s t r e t c h i n g r e g i o n . These data i n d i c a t e t h a t the l i g a n d i s c o o r d i n a t e d o n l y v i a the phosphorus atom. The complexes 65a - 65d show two a b s o r p t i o n bands i n the m e t a l - c h l o r i d e s t r e t c h i n g r e g i o n s u g g e s t i n g a c i s geometry f o r the complexes and thus both the phosphine groups are c i s to each o t h e r . The f r e q u e n c i e s o f c i s -d i c h l o r i d e s have been g e n e r a l l y found to be c o n s i d e r a b l y l e s s than those of the trans d e r i v a t i v e s (93,94,133). Coates and P a r k i n (94) have s t u d i e d the i n f r a r e d s p e c t r a o f a s e r i e s o f MC1 2L 2 complexes and found f o r example, v(Pd-Cl) i s i n the range 269 - 335 cm 1 f o r cis-complexes and i s found to vary c o n s i d e r a b l y w i t h the donor group present i n the molecule, whereas f o r the t r a n s -complexes, v(Pd-Cl) i s found w i t h i n a very narrow range, 353 - 359 cm 1 and i s independent o f the donor phosphine. Table XXI l i s t s the M-Cl s t r e t c h i n g f r e q u e n c i e s f o r a l l the new complexes. The r e a c t i o n s o f Pd(II) s a l t s with t e r t i a r y phosphines and a r s i n e s gave u s u a l l y the trans isomers (1) whereas P t ( I I ) s a l t s gave s t a b l e complexes of both c i s and t r a n s isomers (1). In f a c t , w i t h c e r t a i n l i g a n d s such as - 163 -PfCgHj.)^ o n l y the c i s - isomer of P t ( I I ) has been i s o l a t e d i n a pure c o n d i t i o n . The trans isomers are g e n e r a l l y more co l o u r e d than the c i s isomers. The new complexes, 65a -65d (with diphenylphosphino and d i c y c l o h e x y l p h o s p h i n o groups att a c h e d to f l u o r o c a r b o n l i g a n d s ) having the c i s - a r r a n g e -ment f i t t h i s p a t t e r n . ( i i ) L 2 P d 2 C l 4 . The mass s p e c t r a o f both the orange d e r i v a t i v e s of f n c h l o r f o s , 6_6_ and 6_7_ show a s t r o n g peak co r r e s p o n d i n g to the formula ( f n c h l o r f o s ) P d C l 3 (n = 2,3) but the m i c r o a n a l y s i s suggests a more accep t a b l e formula, ( f g c h l o r f o s ) 2 P d 2 C l 4 (n = 2,3) corresponding to the c h l o r o b r i d g e d complex. Although the percentage of c h l o r i n e i n the complex, ( f g C h l o r f o s ) 2 -P d 2 C l 4 , 6_6_ i s found to be lower than the c a l c u l a t e d value (Table XX), the r e s u l t s are i n b e t t e r agreement wi t h a c h l o r o -b r i d g e d s t r u c t u r e r a t h e r than a L 2MC1 2 type o f s t r u c t u r e . The low percentage o f c h l o r i n e i s a t t r i b u t e d t o two reasons. E i t h e r (i) smal l sample s i z e , o r ( i i ) i n t e r f e r e n c e due to p a l l a d i u m (134). Thus the s t r o n g peak found i n the mass spectrum i s probably due to a peak corresponding to [ ( L 2 P d 2 C l 4 ) - ( L P d C l ) ] * (L = f n c h l o r f o s ) . 19 The F nmr o f both b r i d g e d complexes, 6_6_ and 6_7_ are very s i m i l a r to the f r e e l i g a n d , s u g g e s t i n g no * The symbol - i s a minus s i g n i n d i c a t i n g l o s s o f the group. - 164 -change i n symmetry i n t h e complexes. The i n f r a r e d s p e c t r a o f b o t h complexes show s t r o n g (C=C) and (C-Cl) s t r e t c h i n g a b s o r p t i o n s , w h i l e t h e a b s o r p t i o n bands i n t h e (C-F) s t r e t c h -i n g r e g i o n are s i m i l a r t o t h o s e o f t h e l i g a n d . Thus b o t h l i g a n d s a r e phosphorus bonded i n t h e complexes, 66_ and 67. F o r a complex o f f o r m u l a P d 2 C l 4 L 2 , t h e o r e t i -c a l l y , t h r e e i s o m e r i c forms a r e p o s s i b l e as shown below (135). c , \ /Cl\ A L \ / \ A > < p< / p v / p d \ t r a n s 63a c i s 63b Pd PcL 63c However, X-ray s t r u c t u r a l s t u d i e s (135) o f a number o f p a l l a d i u m complexes o f f o r m u l a P d 2 C l 4 L 2 have shown t h a t i n t h e s o l i d s t a t e t h e y have the t r a n s - s y m m e t r i c a l form 63a F o r s y m m e t r i c a l t r a n s c h l o r i d e b r i d g e d compounds, [ P d 2 C l 4 L 2 ] , t h e p o i n t group i s C 2 h . Adams e t a l . (136) have - 165 -found t h a t f o r such complexes t h e r e should be three Pd-Cl s t r e t c h i n g bands i n the r e g i o n , 370 - 345, 310 - 300, and 280 - 250 cm 1 . The h i g h e s t of these f r e q u e n c i e s has been assigned to the P d - c h l o r i d e (terminal)' s t r e t c h i n g v i b r a t i o n and the other two to the (Pd-Cl) (bridge) s t r e t c h i n g v i b r a -t i o n s . In agreement with these r e s u l t s , the complex ( f g c h l o r f o s ) - P d - C l , 66 shows a b s o r p t i o n s bands a t 360(m), b A A 4 — 300(w) and 265(m) cm \ of which the band a t 360 cm ^ can be a t t r i b u t e d to the t e r m i n a l Pd-Cl s t r e t c h i n g a b s o r p t i o n . Based on other s t u d i e s (94,137), o f the two b r i d g i n g (Pd-Cl) s t r e t c h i n g f r e q u e n c i e s , the lowest frequency one a t 265 cm - 1 f o r ( f g C h l o r f o s ) 2 P d 2 C l 4 i s a t t r i b u t e d to t h a t t r a n s to L and the in t e r m e d i a t e one a t 300 cm 1 to t h a t t r a n s t o CI. The analogous cyclobutene d e r i v a t i v e , 67_ a l s o shows three (Pd-Cl) s t r e t c h i n g a b s o r p t i o n s a t 358(m), 299(w) and 260(m), and these are assigned i n the same way. These a b s o r p t i o n bands are not very d i f f e r e n t from t h a t o f ( f g c h l o r f o s ) 2 P d 2 C l 4 . Other workers (138) have r e p o r t e d t h a t bulky l i g a n d s tend to form the b r i d g e d d i c h l o r o s p e c i e s L 2 M 2 C 1 4 i n p r e f e r ence to the L 2MC1 2 type o f complexes. For example, t r i - t e r t - b u t y l p h o s p h i n e r e a c t s with Pd(II) to form the c h l o r o -b r i d g e d complex whereas p ( C 6 H x l ) 3 f ° r m s a n L 2 M C 1 2 t y p e o f complex. However, i n the prese n t i n v e s t i g a t i o n , though the d i c y c l o h e x y l p h o s p h i n o . d e r i v a t i v e , 26c i s expected to be more bulky than i t s diphenylphosphino analogue, 26d, the - 166 -c h l o r o b r i d g e d complex i s not o b t a i n e d from the former, but i s o b t ained from the l a t t e r . The reason i s not known. - 167 -3. Reactions of the t e r t i a r y phosphines (L) w i t h i r o n  c a r b o n y l s . (A) P r e p a r a t i v e methods. S e v e r a l methods have been d e s c r i b e d f o r the p r e -p a r a t i o n of t e r t i a r y phosphine s u b s t i t u t e d compounds of i r o n p e n t a c a r b o n y l . For i n s t a n c e , the d i r e c t r e a c t i o n of t r i p h e n y l ' phosphine with Fe(CO)^ gave (139) the monosubstituted complex as shown i n equation [33]. Fe(CO) 5 + P ( C 6 H 5 ) 3 ^ a ; ^ o C > F e ( C O ) 4 ( P ( C 6 H 5 ) 3 ) [33] When the monosubstituted complex was t r e a t e d w i t h a melt of P(C,H C)_. at 180°C, the d i s u b s t i t u t e d complex b b J Fe (CO) 0 [P(C,H C) _,] „ was i s o l a t e d (139). Analogous r e a c t i o n s 3 6 b 3 2. have a l s o been r e p o r t e d by other workers (96,99,102). T r i c a r b o n y l complexes of the formula F e ( C O ) 3 ( L ) 2 (L = t e r t i a r y phosphine or a r s i n e ) have a l s o been i s o l a t e d from the r e a c t i o n o f the phosphine o r a r s i n e w i t h Fe(CO) 3(CgH^Q) ( c g H 1 0 = c y c l o o c t a t r i e n e ) (140). D i c a r b o n y l complexes were a l s o prepared as shown i n e q u a t i o n [34] (140). F e ( C O ) 3 ( C 4 H 6 ) + P ( C 6 H 5 ) 3 e t h y l ^ v c ^ h e x a n e > F e ( c o ) 2 [ P ( c ^ ) 3 ] 3 ( C 4 H g = butadiene) [34] Tetramethyldiphosphine r e a c t s with Fe(CO),. to y i e l d e i t h e r a phosphido-bridged compound, 6_8_ (at 180°C) or - 168 -a d i p h o s p h i n e - b r i d g e d , product 69 (at 160°C). 4 CH 3 CH As mentioned i n the I n t r o d u c t i o n , Carty e t a l . (23,24) have i s o l a t e d some novel i r o n c a r b o n y l complexes by the r e a c t i o n of a f l u o r o a l k y n y l phosphine w i t h t r i i r o n dodecacarbonyl. The same r e s e a r c h group has shown t h a t the r e a c t i o n of d i i r o n enneacarbonyl ( F e 2 ( C O ) g ) with a phosphino a c e t y l e n e , (C^H^) 2PC=C (C^H^) , 7_0_ i n benzene a t room tempera-t u r e (141) g i v e s the a, i r - a c e t y l i d e complex, F e 2 ( C O ) 6 [ C E C ( C 6 H 5 ) ] P ( C 6 H 5 ) 2 , 71 as the major product t o g e t h e r w i t h s m a l l e r amounts o f F e 2 (CO) & [ (C gH 5) 2 P C 2 (C gH 5) ] 2 , 72_. The c r y s t a l s t r u c t u r e o f the l a t t e r i s shown below. Each - 169 -i r o n atom i s c o o r d i n a t e d to the phosphorus atom of one phosphinoacetylene and the t r i p l e bond of the other l i g a n d . T h i s s t r u c t u r e can be compared wi t h t h a t o f f 4 f a r s F e 2 (CO) 6 , 12_ (page 6) where the unsaturated p a r t of the l i g a n d i s c o o r d i n a t e d to a second i r o n atom. S i m i l a r behaviour has been observed i n the hydro-carbon f i e l d . Thus Bennettet a l . (25,142) have s t u d i e d the r e a c t i o n s of the t e r t i a r y phosphine l i g a n d , 5_ with F e 3 ( C O ) 1 2 under r e f l u x i n n-octane. In a d d i t i o n to a d i s u b s t i t u t e d d e r i v a t i v e , which i s very s i m i l a r to the ruthenium complex, 19, as mentioned i n the I n t r o d u c t i o n (page 11), a c h e l a t e d e r i v a t i v e , 7_3_ was a l s o i s o l a t e d . A s i m i l a r complex i s a l s o i s o l a t e d from the r e a c t i o n of 5 with Ru., (CO) 0 (25,142). [42] In view of these r e s u l t s and f o r reasons a l r e a d y g i v e n i n other s e c t i o n s of t h i s t h e s i s , i t was o f i n t e r e s t t o study the r e a c t i o n s of the t e r t i a r y phosphines R2PC=CC1 "(CF,) with i r o n c a r b o n y l s . Both the cyclobutene d e r i v a t i v e s g c h l o r p h o s , 26a and f g c h l o r f o s , 26b r e a c t w i t h i r o n pentacarbonyl i n benzene - 170 -at 140°C to give the usual monosubstituted d e r i v a t i v e s , Fe(CO) 4L, 74a and 74b. D i s u b s t i t u t e d products were not i s o l a t e d from t h i s r e a c t i o n a t higher temperatures s i n c e c h a r r i n g o f the r e a c t a n t s o c c u r r e d . The l i g a n d , fgChlorphos, 26c r e a c t s with Fe(CO),. to give two novel products, a yellow complex i n low y i e l d (3.1%) which c o n t a i n s two i r o n atoms and has the formula, [( f g C h l o r p h o s - C l ) F e ( C O ) 4 ] , 75a and an orange complex of formula, (fgChlorphos-Cl-F)Fe 2(CO) , 76a (4 8% y i e l d ) . An i r o n t e t r a c a r b o n y l d e r i v a t i v e analogous to 74a i s not i s o l a t e d from t h i s r e a c t i o n but i s i s o l a t e d from the r e a c t i o n of fgChlorphos w i t h F e ^ C O ) ^ together w i t h the other two complexes 75a and 76a j u s t d e s c r i b e d (Table XXXII). In the same Table, i t can be seen t h a t the analgous diphenylphosphino l i g a n d , f g C h l o r f o s , 26d, r e a c t s w i t h Fe(CO) c at 150°C, f o r 48 h to y i e l d the expected Fe(CO) 4L complex, 74d together with the novel complex, 76b of formula ( f r c h l o r f o s - C l - F ) F e _ ( C O ) , . When the same r e a c t i o n i s c a r r i e d 6 2 6 out f o r a s h o r t e r p e r i o d o f time (3 h ) , 76b i s formed i n very low y i e l d with a higher y i e l d of the Fe(CO) 4L d e r i v a t i v e , together with a new b i s l i g a n d complex, 77_ of formula ( f g c h l o r f o s ) 2 F e ( C O ) 3 . T h i s i s the onl y r e a c t i o n where a d i s u b s t i t u t e d complex i s i s o l a t e d from the r e a c t i o n s o f these new t e r t i a r y phosphines w i t h i r o n c a r b o n y l s . Both the complexes, 74d and 76b are a l s o o btained when a benzene s o l u t i o n c o n t a i n i n g f g c h l o r f o s and Fe(CO)^ i s i r r a d i a t e d with u l t r a v i o l e t l i g h t , but the l a t t e r complex, 76b, i s formed i n lower y i e l d than from the thermal r e a c t i o n ( s e e Table XXII) . - 171 -Complexes analogous to L F e ( C O ) 4 , [ ( L - C l ) F e ( C O ) 4 ] 2 and (L-Cl-F)Fe~(CO) * have a l s o been i s o l a t e d from the r e a c t i o n s 2 6 of f g C h l o r A s , 5_8_, fg c h l o r p h o s , 26e, and f g c h l o r f o s , 26f, with i r o n pentacarbonyl. The products i s o l a t e d are l i s t e d i n Table X X X I I . L i k e the l i g a n d , f g c h l o r p h o s , 26c, f D c h l o r f o s , 26f b o * a l s o g i v e s a product o f formula, [ ( f g C h l o r f o s - C I ) F e ( C O ) 4 ] 2 . I t i s p o s s i b l e t h a t 26f c o u l d a l s o r e a c t w i t h F e 3 ( C O ) ^ 2 to give an LF e ( C O ) 4 d e r i v a t i v e which i s not i s o l a t e d from i t s r e a c t i o n with Fe(CO),.. A l l these products from a given r e a c t i o n are e a s i l y separated by column chromatography, provided the crude s o l i d mixture i s d i s s o l v e d i n petroleum ether i n s t e a d o f dichloromethane. (B) C h a r a c t e r i z a t i o n o f new complexes (see Table XXXII). (i) L F e ( C O ) 4 . A l l the LFe(CO) 4 complexes, 74a - 74f, were i d e n t i f i e d by means of t h e i r mass s p e c t r a and mi c r o a n a l y s e s . The i n f r a r e d s p e c t r a of a l l complexes show s t r o n g a b s o r p t i o n i n the (C=C) r e g i o n . The (C-Cl) and (C-F) s t r e t c h i n g f r e q u e n c i e s are l i t t l e changedin i n t e n s i t y and p o s i t i o n from the f r e e l i g a n d s , showing t h a t there i s no i n t e r a c t i o n between the Fe atom and the double bond, or the c h l o r i n e atom. The 19 F nmr s p e c t r a o f the complexes and the f r e e l i g a n d s are a l s o found to be very s i m i l a r (Table XXV). * The symbol - means minus and i n d i c a t e s the l o s s o f the group. TABLE XXXII Products from the r e a c t i o n s o f the t e r t i a r y phosphines, and t e r t i a r y a r s i n e with Fe(CO) Ligand Products L F e ( C O ) 4 [ ( L - C l ) P e ( C O ) 4 l 2 ( L - C l - F ) F e 2 ( C O ) 6 L 2Fe(CO) f 4 c h l o r p h o s , 26a 74a - - -f 4 c h l o r f o s , 26b , 74b - - -f g c h l o r p h o s , 26c - 75a 76a f g c h l o r p h o s , 2 6 c a 74c 75a 76a f g c h l o r f o s , 26d 74d - 76b 77 fgC h l o r A s , 5_8 74e - 76c f _ c h l o r p h o s , 26e o 74f - 76d f Q c h l o r f o s , 26f - 75b 76e_ b a Reacted w i t h Fe,(CO) 12 - 173 -The i n f r a r e d s p e c t r a i n the c a r b o n y l r e g i o n of a l l complexes (Table XXIV) show thr e e , s t r o n g to very st r o n g bands and a l s o a f o u r t h band which appears as a shoulder. Compounds such as (CgH"5) ^ PFe (CO) ^  , u s u a l l y show three bands i n the v(CO) r e g i o n of t h e i r i n f r a r e d s p e c t r a , i n d i c a t i n g a p i c a l s u b s t i t u t i o n i n a t r i g o n a l bipyramid as seen from Table XXXIII. In c e r t a i n complexes such as f 4 f o s F e ( C O ) 4 ( f ^ f o s i s monoligate), four c a r b o n y l bands are seen. I t has been suggested t h a t t h i s i s probably due to the asymmetry of the l i g a n d which lowers the symmetry of the molecule and r e s u l t s i n a s p l i t t i n g of the E mode (14). A s i m i l a r argument can a l s o be used to account f o r the four band s p e c t r a of the new t e r t i a r y phosphine complexes, 74. As seen from Table XXIV, the frequency- of the v(CO) bands of the diphenylphosphino d e r i v a t i v e s , 74b and 74d, are s l i g h t l y h igher than those of the d i c y c l o h e x y l d e r i v a t i v e s , 74a and 74c. T h i s f e a t u r e i s a l s o observed f o r the t e r t i a r y phosphine s u b s t i t u t e d complexes of the Group VI metal c a r b o n y l s and i n d i c a t e s t h a t the diphenylphosphino analogues are b e t t e r IT a c c e p t o r s than the d i c y c l o h e x y l p h o s p h i n o d e r i v a t i v e s . The c a r b o n y l s t r e t c h i n g f r e q u e n c i e s of the t e r t i a r y a r s i n e complex, 74e are n e a r l y the same as those observed f o r the phosphino d e r i v a t i v e s . ( i i ) (L-Cl-F) F e 0 (CO) r . 2 b The r e a c t i o n of f ^ c h l o r p h o s , 26c w i t h Fe(CO) 5 y i e l d s , i n a d d i t i o n to a yellow complex ( l a t e r i d e n t i f i e d as TABLE XXXIII Symmetry types and a c t i v i t i e s of (CO) v i b r a t i o n a l modes i n LFetCO)^ complexes (102). S t r u c t u r e P o i n t group Symmetry species symmetry and a c t i v i t i e s a Number o f i n f r a r e d a c t i v e modes 7 8a '4V A , ( I R , R ) B , ( R E ( I R , R ) 78b A? 3 A ' ( I R , R ) A " ( I R , R ) 78c 3v 2 A , ( I R , R ) E ( I R , R ) 78d ' 2 V 2 M I R . R ) B ^ I R . R ) B2( I R . R ) R = Raman, IR = i n f r a r e d . - 175 -75a), an orange red c r y s t a l l i n e s o l i d , 76a. The mass spectrum o f t h i s s o l i d shows a molecular peak corresponding to ( f , c h l o r p h o s - C l - F ) F e 0 ( C O ) , where a CI and F have been l o s t b 2. b from the l i g a n d . The l o s s of s i x c a r b o n y l groups i s observed i n the fragmentation process. The i n f r a r e d spectrum shows the absence of (C=C) and (C-Cl) s t r e t c h i n g f r e q u e n c i e s ; both thse absorp-t i o n s are r a t h e r prominent i n the s p e c t r a o f the L F e ( C O ) 4 com-plexes as d e s c r i b e d above. S i x bands are observed i n the v(CO) r e g i o n , i n a p a t t e r n which i s s i m i l a r to those of the (L-L)Fe 2(CO)g complexes s y n t h e s i z e d by C u l l e n e t a l . , where (L-L) i s a d i t e r t i a r y a r s i n e or phosphine, 7_, or an unsymmetri-c a l l i g a n d , 8_ (101) . These r e s u l t s i n d i c a t e the presence o f two i r o n atoms and s i x c a r b o n y l groups i n the s o l i d , 75a. The p a t t e r n of the i n f r a r e d spectrum i n the (C-F) s t r e t c h i n g r e g i o n i s t o t a l l y d i f f e r e n t from t h a t of the f r e e l i g a n d , which shows t h a t the f l u o r o c a r b o n l i g a n d has been m o d i f i e d c o n s i d e r a b l y by the r e a c t i o n and c o u l d be i n v o l v e d i n the bonding. The Mossbauer spectrum of t h i s complex shows the presence of two i n e q u i v a l e n t i r o n atoms (143). M i c r o -a n a l y s i s a l s o confirms the formula ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) g . F u r t h e r evidence f o r the l o s s o f a f l u o r i n e 19 atom comes from the F nmr spectrum as shown i n F i g u r e 6. Two l o w f i e l d AB q u a r t e t s are p r e s e n t together with an u p f i e l d m u l t i p l e t . The u p f i e l d m u l t i p l e t has a l a r g e chemical s h i f t of 16 8 ppm which i s not found i n the s p e c t r a of the u s u a l - 177 -m e t a l c a r b o n y l complexes where t h e f l u o r i n e i s a t t a c h e d t o an 3 sp c a r b o n atom (see T a b l e XXXIV). 19 TABLE XXXIV F nmr s p e c t r o s c o p i c data f o r i r o n c a r b o n y l complexes o f fgChlorphos, 26c fgChlorphos, 26c (f gChlorphos) Fe (CO) 4 , 7_4_£ ( f g C h l o r p h o s - C l - F ) F e 2 ( C O ) g , 76a F(3) 114 .0 114.2 F(4) 129 .6 130.2 F(5) 105.2 105 .6 16 8.0 AB q u a r t e t AB q u a r t e t c e n t r e d a t c e n t r e d a t 106.6 92.06 (J =224.7 Hz) (J =224.9 Hz) Based on t h e s e r e s u l t s a s t r u c t u r e was p r e -d i c t e d f o r t h i s complex; t h e e s s e n t i a l f e a t u r e o f which was 3 an a l l y l system which was n bonded t o one Fe(CO)^ group and i n -bonded t o a n o t h e r F e ( C O ) 3 group. T h i s proposed s t r u c t u r e was l a t e r c o n f i r m e d by a c r y s t a l s t r u c t u r e d e t e r m i n a t i o n (144) cr <t^ ,)2P ^Fe(CO), 74c (C0) 3Fe 76a - 178 -As seen from F i g u r e 6, the q u a r t e t centred a t 106.6 ppm seems to show a d d i t i o n a l c o u p l i n g whereas t h i s i s absent i n the lower f i e l d q u a r t e t c e n t r e d at 92.06 ppm, thus the h i g h e r f i e l d q u a r t e t i s probably a t t r i b u t a b l e to those f l u o r i n e atoms on C 4 and the lower f i e l d q u a r t e t to those on C 5. The h i g h f i e l d m u l t i p l e t at 168.0 ppm i s assigned to the s i n g l e f l u o r i n e atom on and t h i s u p f i e l d s h i f t can be e x p l a i n e d by a s h i e l d -i n g e f f e c t of the a l l y l l i n k a g e (145,146). 31 The P nmr of t h i s complex shows the expected m u l t i p l e t (due to P-F coupling) i n d i c a t i n g the presence of one 31 phosphorus atom. T h i s value and the P chemical s h i f t of o t h e r i r o n c a r b o n y l complexes o f the t e r t i a r y phosphines are l i s t e d i n Table XXXV. The c r y s t a l s t r u c t u r e of (f ^ -chlorphos-Cl-F) F e ? (CO) g , 76a A view of the complex i s given i n F i g u r e 7. A y f l u o r i n e atom i s l o s t , c r e a t i n g an a l l y l system through C^, C 2 and C^ which i s bonded to F e l . In a d d i t i o n , a & v i n y l i c c h l o r i n e atom i s l o s t e n a b l i n g the r i n g to a bond through C2 to Fe2, thus c r e a t i n g a four-membered r i n g , Fe2, P, C^, C,,. The (C-C) bonds C^-C^, C 4 ~ C 5 ' ^ S ^ l a r e c o n s i d e r a b l y longer than C2~C2 ° r C 2 ~ C 1 " Wi t h i n the a l l y l fragment the C 2 ~ C 3 bond (1.391(7) A) i s o s i g n i f i c a n t l y s h o r t e r than C^-C 2 (1.448(7) A ) , suggesting t h a t d e l o c a l i z a t i o n i s not complete and t h a t C^-C^ possesses g r e a t e r - 179 -- 180 -double bond c h a r a c t e r than c 1 ~ c 2 ' suggesting t h a t F e l i s 2 mainly n -bonded to C 2 ~ C 3 a n c ^ ° k o n <^ e d t o c x • T n e Fe-Fe o d i s t a n c e of 2.608(2) A i s i n t e r m e d i a t e i n the range, 2.51 -o 2.87 A r e p o r t e d f o r Fe-Fe bonds i n i r o n c a r b o n y l complexes wit h l i g a n d s c o n t a i n i n g phosphorus or a r s i n e (147) . As seen 3 i n Table XXXII, analogous n - a l l y l complexes have been i s o l a t e d from the r e a c t i o n s of the t e r t i a r y phosphines, 26d, 26c and 26f and t e r t i a r y a r s i n e , 5_8_ with i r o n pentacarbonyl. The d i f f e r e n t complexes i s o l a t e d are shown i n F i g u r e 8. The i n f r a r e d s p e c t r a i n the v(CO) r e g i o n of a l l these complexes are very s i m i l a r to those o f 76a (Figure 7), and are l i s t e d i n Table XXIV. The v(CO) of the d i p h e n y l -phosphino analogues are s l i g h t l y h i g h e r than those of the d i c y c l o h e x y l d e r i v a t i v e s as a l s o observed f o r the L F e ( C O ) 4 d e r i v a t i v e s . 19 The F nmr s p e c t r a of the-cyclopentene analogues, 76b and 76c are very s i m i l a r to t h a t of 76a, and c o n s i s t of a s i n g l e high f i e l d m u l t i p l e t and two low f i e l d 19 AB q u a r t e t s . But the F nmr s p e c t r a of the cyclohexene 19 systems are r a t h e r complicated. F i g u r e 9 shows the F nmr 3 spectrum of the n - a l l y l complex, ( f g C h l o r p h o s - C l - F ) F e 2 ( C O ) g , 76d. T h i s spectrum c o n s i s t s of a s i n g l e high f i e l d m u l t i p l e t at 16 0.14 ppm which can be a t t r i b u t e d to the s i n g l e f l u o r i n e on C^, and a s e r i e s of three AB q u a r t e t s . However, these AB q u a r t e t s cannot be assigned with any c e r t a i n t y to the r e s p e c -t i v e f l u o r i n e atoms. - 181 -TABLE XXXV 31 * P nmr s p e c t r o s c o p i c data f o r i r o n c a r b o n y l complexes  of t e r t i a r y phosphine l i g a n d s l i g a n d s 31 a P nmr Complexes 31 a P nmr fgch l o r p h o s +9.71 ( f g c h l o r p h o s ) F e ( C O ) 4 , 74c t ( f 6 ' c h l o r p h o s - C l ) F e ( C O ) 4 ] , 75a_ ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) 6 , 76a -88.12 -84 .23 -33.54 f - c h l o r f o s 6 +20.16 ( f . c h l o r f o s ) F e ( C O ) . , 74d -65.89 ( f 6 c h l o r f o s ) 2 F e ( C O ) , 77 -76.65 (f,chlorfos-Cl-F)Fe„(CO)., 76b -14.71 b / b fgch l o r p h o s -7.7 (fgchlorphos) Fe (CO) 4 , 7_4f -72.2 ( f g C h l o r p h o s - C l - F ) F e 2 ( C O ) 6 , 76d -20.5 f g c h l o r f o s +4.88 (f g c h l o r f os -Cl-F) F e 2 (CO) , 76_e -4.27 m u l t i p l e t i n ppm F i g u r e 8. n - a l l y l complexes i s o l a t e d from the r e a c t i o n s o f the t e r t i a r y phosphines and t e r t i a r y a r s i n e l i g a n d s w i t h i r o n p e n t a c a r b o n y l . U L _ I J l 00 to 1 1 1 1 1 — 1 1 r- 1— 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 140 1 5 0 1 6 0 6 (ppm ) 19 F i g u r e 9. F nmr spectrum of ( f 8 c h l o r p h o s - C l - F ) F e 2 ( C O ) g , 76d. - 184 -Table XXXV l i s t s the JJ"P nmr chemical s h i f t s 3 f o r a l l the n - a l l y l complexes. In general the chemical 3 s h i f t s of a l l the n - a l l y l complexes are found to be very much lower than t h e i r LFeCCO)^ analogues. T h i s i s probably due to the l i g a n d m o d i f i c a t i o n and the d i f f e r e n t o x i d a t i o n 3 s t a t e of the i r o n i n the n - a l l y l complexes. 3 Only a few r e l a t e d n - a l l y l f l u o r o c a r b o n complexes have been r e p o r t e d b e f o r e . A l l are prepared by the uncommon l o s s of f l u o r i n e from an unsaturated l i g a n d . T r i c a r b o n y l o c t a f l u o r o c y c l o h e x a - 1 , 3 -d i e n e i r o n r e a c t s with caesium f l u o r i d e by f l u o r i d e i o n 19 a b s t r a c t i o n to give a s t a b l e anion 7_9_. The F nmr spectrum of t h i s complex has high f i e l d peaks a s s i g n a b l e to the f l u o r i n e 3 atoms attached to the carbon atoms of the n - a l l y l i c system. The lower f i e l d peaks have been assig n e d to the a l i p h a t i c f l u o r i n e atoms of the r i n g (14 8). - 186 -The c i s l i g a n d , (CH3> 2AsC (CF 3) =C (CF 3)As (CH3> 2 , 80 when t r e a t e d with M n ^ C O ) ^ , gave a product whose s t r u c t u r e i s shown i n F i g u r e 10 (149) . A f l u o r i n e atom i s l o s t from a 3 v i n y l i c C F 3 group forming a f l u o r i n a t e d n - a l l y l fragment which i s c o o r d i n a t e d to one manganese atom. The two manganese atoms are b r i d g e d by a dimethyl a r s e n i d o group which f u n c t i o n s as a three e l e c t r o n donor. The other manganese atom I has two ( C H 3) 2As groups c h e l a t e d to i t . A l l three a r s e n i c atoms are c i s to each other. The chemical s h i f t s of the two f l u o r i n e atoms, F^ and are as usual found a t higher f i e l d than the t r i -f l u o r o m e t h y l group. 3 The f i n a l example i s a n - p e r f l u o r o a l l y l t r i -c a r b o n y l c o b a l t complex which was s y n t h e s i z e d by S t a n l e y and McBride (150) by the r e a c t i o n of p e r f l u o r o a l l y l i o d i d e with 19 3 Z n [ C o ( C O ) 4 ] 2 . The F nmr spectrum of n - C 3 F 5 C o ( C O ) 3 shows m u l t i p l e t s c e n t r e d a t 81.5, 92.7 and 195 ppm. The high f i e l d m u l t i p l e t has been a t t r i b u t e d to F i n the c a t i o n , 81. fc ^ a •>c •1 a 81 Thus i t can be seen t h a t the products obtained from r e a c t i o n s i n v o l v i n g f l u o r o c a r b o n l i g a n d s depend very much on the l i g a n d s . - 187 -In t h i s work, l o s s of f l u o r i n e has been found to be q u i t e common. Carty et a l . (23,24,151) i n r e l a t e d s t u d i e s , have found t h a t although a l k y n y l d e r i v a t i v e s R 2 E C E C C F 3 g i v e unusual c l u s t e r s on r e a c t i o n with i r o n c a r b o n y l s , the l o s s of a f l u o r i n e atom from the l i g a n d has not been observed. ( i i i ) [ ( L - C l ) F e ( C O ) 4 ] 2 . The l i g a n d f _ c h l o r f o s , 26f r e a c t s with Fe(CO) r 3 to give the n - a l l y l complex, 76e and a yellow s o l i d , 75b. The i n f r a r e d spectrum of the l a t t e r shows f o u r c a r b o n y l bands and the p a t t e r n i s very s i m i l a r to t h a t observed f o r LFe(CO) 4 d e r i v a t i v e s as seen i n Table XXIV. However, the u s u a l l y prominent bands due to v(C=C) and v ( C - C l ) are absent. The absence o f a c h l o r i n e atom i s seen i n the mass spectrum which gi v e s a s t r o n g peak whose m/e value c o r r e s -ponds to the formula, ( f g C h l o r p h o s - C l ) F e ( C O ) 4 . T h i s i s f o l l o w e d by peaks c o r r e s p o n d i n g to the l o s s o f four c a r b o n y l groups. When the spectrum i s observed a t h i g h e r s e n s i t i v i t y , a weak molecular peak i s observed c o r r e s p o n d i n g to the formula, [ ( f 8 c h l o r f o s - C l ) F e ( C O ) ^ ] 2 ( P + ) . The m i c r o a n a l y t i c a l data are i n agreement with t h i s formula. An analogous complex, 75a i s a l s o i s o l a t e d 3 from the r e a c t i o n of f g c h l o r p h o s , 26c with FetCO)^. The n -a l l y l complex, 76a i s the major product. The i n f r a r e d data of 75a are very s i m i l a r to t h a t of 75b but the mass spectrum - 188 -of 75a shows a s t r o n g peak corre s p o n d i n g to the formula, ( f g C h l o r p h o s - C l ) F e ( C O ) 4 and no peaks are observed a t h i g h e r m/e v a l u e s . The l o s s of a c h l o r i n e atom from these complexes i s not s u r p r i s i n g s i n c e t h i s was observed e a r l i e r 3 i n the ri - a l l y l complexes. The s p e c t r o s c o p i c data suggest t h a t two L F e ( C O ) 4 d e r i v a t i v e s have coupled to give the dimers, 19 75a and 75b w i t h the l o s s of two c h l o r i n e atoms. The F nmr s p e c t r a are i n agreement wi t h these s t r u c t u r e s (Table XXV). n n c = c - c = c v / \ Fe Fe ( c o ) 4 ( C 0 ) 4 75a n=3, R=C,H.. . —:— o 11 75b n=4, R=C^HC 6 5 As seen from Table XXXII on l y two such d i m e r i c complexes, 7 5a and 75b,are i s o l a t e d from these r e a c t i o n s . The reason why the other l i g a n d s do not g i v e analogous products i s not known. Coup l i n g r e a c t i o n s of halocarbons i n the presence of Fe(CO) r. have been observed by o t h e r workers (152). An example i s shown i n equation [35). - 189 -( C 6 H 5 ) 2 C C 1 2 + Fe(CO) 5 » ( C 6 H 5 } 2 C = C ( C 6 H 5 ) 2 [ 3 5 ] 82 These c o u p l i n g r e a c t i o n s with the e l i m i n a t i o n of CI proved to be a u s e f u l method f o r the s y n t h e s i s o f i r o n c a r b o n y l complexes o f d i t e r t i a r y phosphines b r i d g e d by two f l u o r o a l i c y c l i c r i n g s where the r i n g s are f i v e membered or s i x membered. Previous attempts to prepare these l i g a n d s (equation [9]) by the r e a c t i o n of 22b (n=3) or 22c (n=4) with diphenylphosphine (27) were u n s u c c e s s f u l . When n=3 on l y the monosubstituted phosphine was i s o l a t e d whereas when n=4 no r e a c t i o n was observed. A s i m i l a r c o u p l i n g r e a c t i o n i n the formation of the c o b a l t complex, 16b was observed by C u l l e n e t a l (21,22) as mentioned i n the I n t r o d u c t i o n (page 9 ) . An analogous r e a c t i o n has been observed by Bennet et a l (25) where hydrogen atoms are l o s t from the ruthenium complex 19_ and the molecule undergoes c o u p l i n g t o give a product 21 (page 11) and i n t h i s work, c h l o r i n e atoms are l o s t . Even though the d i m e r i c complexes i s o l a t e d i n t h i s work have f o u r p o t e n t i a l donor s i t e s , the double bonds are not used i n c o o r d i n a t i o n , u n l i k e the ruthenium (25) and the c o b a l t complexes (21,22). When the l i g a n d b i f g f o s , 23_ i s t r e a t e d with Fe(CO) 5 or F e 3 ( C O ) 1 2 (see s e c t i o n 4, Chapter V) complexes of - 190 -formulae, b i f g f o s F e 2 ( C O ) g , 8_8_ and b i f g f o s F e 2 (CO) g , 89a and 89b are i s o l a t e d . The complex 8_8_ i s analogous to these d i m e r i c products 75a and 75b• (iv) L 2 F e ( C O ) 3 . Only one complex of t h i s formula i s i s o l a t e d from the r e a c t i o n s of the t e r t i a r y phosphines w i t h i r o n c a r b o n y l s . The l i g a n d f ^ c h l o r f o s , 26d r e a c t s w i t h F e(CO) 5 f o r 3 h a t 150°C to g i v e the L F e ( C O ) 4 d e r i v a t i v e , 74d i n h i g h y i e l d together with a small amount of a red complex, 77. When the r e a c t i o n time i s i n c r e a s e d the y i e l d o f the complex, 77 i s very much l e s s . The i n f r a r e d spectrum of 7_7_ shows two s t r o n g bands at 1910 and 1918 cm - 1 i n the carbonyl r e g i o n . Both v(C=C) and v(C-Cl) bands are present and the band p a t t e r n i n the (CF 2) r e g i o n i s e s s e n t i a l l y unchanged from t h a t of the f r e e l i g a n d . The only d i s u b s t i t u t e d i r o n pentacarbonyl d e r i v a t i v e which would give two v(CO) bands i n i t s i n f r a r e d spectrum (Table XXX) i s t h a t with s t r u c t u r e , 47a. Thus complex 7_7 i s c o n s i d e r e d to have the s t r u c t u r e o f a d i a x i a l l y s u b s t i t u t e d t r i g o n a l bipyramid. L = f ^ c h l o r f o s 6 - 191 -The mass spectrum confirms the formula, ( f g c h l o r f o s ) 2 F e ( C O ) 3 and so does the m i c r o a n a l y t i c a l d a t a . 19 The F nmr spectrum of t h i s complex as expected, shows bands 31 very s i m i l a r to t h a t o f the l i g a n d . The P nmr spectrum o f t h i s complex (Table XXXV), shows a s i n g l e peak as expected and i s observed a t -76.65 ppm. (C) F u r t h e r s t u d i e s and r e a c t i o n s c o ncerning f,chlorfosFe(CO)„, 74d b 4 The t e r t i a r y phosphine complex, f ^ c h l o r f o s F e ( C O ) ^ , 74d r e a c t s with excess Fe(CO) 5 f o r 48 h (150°C) to give 33% of the unreacted t e t r a c a r b o n y l d e r i v a t i v e , 74d tog e t h e r w i t h 3 the n - a l l y l complex, 76b i n 33.2% y i e l d as shown i n equ a t i o n [36]. ( f g c h l o r f o s ) Fe (CO) '+ Fe'(CO) c — > (fg c h l o r f o s ) F e ( C O ) . b 4 D b 4 74d + [36] (f,chlorfos-Cl-F)Fe„(CO) r 6 2 6 76b When a benzene s o l u t i o n c o n t a i n i n g the complex 74d i s heated i n an evacuated C a r i u s tube, i n the absence o f Fe(CO)^, no change i s observed. The y i e l d s of the products i s o l a t e d from the r e a c t i o n of f g c h l o r f o s , 26d with Fe(CO) c are l i s t e d i n Table XXVI. b b When the r e a c t i o n time i s 1-3 h, the major product i s the - 192 -i r o n t e t r a c a r b o n y l d e r i v a t i v e , 74d together with a small percentage o f the b i s l i g a n d i r o n t r i e a r b o n y l d e r i v a t i v e , 77. As the r e a c t i o n time i s i n c r e a s e d (7 - 17 h) the complex 74d i s s t i l l formed as the major product together w i t h a con-3 s i d e r a b l e amount o f the n - a l l y l complex, 76b. When the 3 r e a c t i o n time i s f u r t h e r i n c r e a s e d ( 24 - 48 h) the n - a l l y l complex, 76b i s formed as the major product with the y i e l d o f f g C h l o r f o s F e ( C O ) 4 d i m i n i s h i n g ; only a t r a c e of the b i s l i g a n d complex, 77_ i s found. From the r e a c t i o n s l i s t e d i n Table XXVI i t seems probable t h a t when f ^ c h l o r f o s , 26d r e a c t s w i t h F e ( C O ) 5 , the f i r s t formed complex i s the t e t r a c a r b o n y l d e r i v a t i v e , 7_4_d. Given a g r e a t e r r e a c t i o n time the t e t r a c a r b o n y l d e r i v a t i v e r e a c t s with excess Fe{CO)^ with the l o s s o f c h l o r i n e and a 3 f l u o r i n e atom to give the n - a l l y l complex, 76b. D i r e c t evidence f o r t h i s c o n v e r s i o n comes from the r e s u l t shown i n equation [36]. In these experiments, a l l three complexes are separated by column chromatography and a f t e r t h e i r s e p a r a t i o n , a deep bl u e band i s e l u t e d w i t h 50% d i e t h y l e t h e r - 50% petroleum e t h e r . T h i s blue band i s observed o n l y i n the r e a c t i o n o f f ^ c h l o r f o s , 26d wi t h Fe(CO)^. E v a p o r a t i o n of s o l v e n t and r e c r y s t a l l i z a t i o n from hexane a f f o r d s a blue s o l i d , 8_3 whose m i c r o a n a l y s i s shows a high percentage o f carbon (52.5%) and hydrogen (2.59%). The mass spectrum shows a molecular peak a t m/e = 6 36 and the absence of c h l o r i n e and - 193 -car b o n y l groups. The absence o f these groups i s a l s o con-19 firmed by the i n f r a r e d spectrum. The F nmr spectrum o f t h i s s o l i d , 83_ shows a very complicated spectrum which does not show any d e f i n i t e p a t t e r n . The same s o l i d i s a l s o i s o l a t e d from the r e a c t i o n o f equation [36]. In the hope o f p r e p a r i n g a l l y l d e r i v a t i v e s o f tungsten c a r b o n y l , the compound f ^ c h l o r f o s F e ( C O ) 4 , 74d was heated w i t h W(CO) g a t 150°C. The s t a r t i n g m a t e r i a l s together with f^chlorfosW(CO),-, 57c (trace) were i s o l a t e d . When the compound, 57c was t r e a t e d w i t h excess FeiCO)^, the r e a c t i o n proceeded as shown i n equa t i o n [37], f,chlorfosW(CO)_ + Fe(CO) c 1 5 ? ° C > f ^ c h l o r f o s F e ( C O ) . (9.6%),74d b b b A 6 4 57c + (fgchlorfos-Cl-F)Fe„(CO), (6.3%), 6 2 6 76b + W(CO) 6 [37] The complex 57c undergoes a l i g a n d t r a n s f e r r e a c t i o n w i t h Fe(CO) 5 to give W(CO)g and the i r o n t e t r a c a r b o n y l d e r i v a -t i v e , 74d. T h i s probably r e a c t s with excess Fe(CO) F. as 3 p r e v i o u s l y d e s c r i b e d , to give the n - a l l y l complex, 76b. Although not common, l i g a n d exchange r e a c t i o n s have been d e s c r i b e d b e f o r e (153) . For example, the complex, n 5-C 5H 5W(NO)(CO)[C(OMe)(C gH 5)] t r a n s f e r s i t s c a r b e n o i d l i g a n d to l a b i l e metal c a r b o n y l compounds such as Fe(CO)^ as shown i n e quation [38]. - 194 -n -C cH KW(NO)(CO)[C(OMe)(C,H K)] + F e ( C O ) c > b b b b b . hv ( C O ) 4 F e [ C ( O M e ) ( C 6 H 5 ) ] + n 5 - C ^ W ( C O ) 2NO [38] 3 (D) R e a c t i o n s o f t h e n - a l l y l complexes. ( i ) R e a c t i o n w i t h t r i p h e n y l p h o s p h i n e . The complex ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) g , 76a does not undergo r e a c t i o n w i t h (CgH,-) 3P when r e f l u x e d i n m e t h y l c y c l o h e x a n e . On t h e o t h e r hand, the analogous d i p h e n y l -phosphino d e r i v a t i v e , 76b r e a c t s w i t h an e q u i m o l a r amount o f ( C & H 5 ) 3 P i n benzene a t 150°C t o g i v e a r e d s o l i d , 84. The mass spectrum and m i c r o a n a l y t i c a l d a t a suggest t h a t 87_ i s a m o n o s u b s t i t u t e d complex o f f o r m u l a , ( f 6 c h l o r f o s - C l - F ) F e 2 ( C O ) 5 P ( C 6 H 5 ) 3 . The i n f r a r e d spectrum shows f o u r bands i n the c a r b o n y l r e g i o n , s u g g e s t i n g t h e p r e s ence o f f o u r o r f i v e c a r b o n y l groups. The spectrum i n the (CF 2) 3 r e g i o n i s v e r y s i m i l a r t o t h e p a r e n t n - a l l y l complex, 76b. 19 The F nmr spectrum (Table XXVII) shows a p a t t e r n v e r y s i m i l a r t o t h e p a r e n t a l l y l complex 76b, w i t h two AB q u a r t e t s and a s i n g l e h i g h f i e l d m u l t i p l e t . Thus the 3 31 r e a c t i o n does n o t d e s t r o y the n - a l l y l s t r u c t u r e . The P nmr s p e c t r a (Table XXVII) shows two s e t s o f d o u b l e t s c e n t r e d a t -70.8 and -10.59 ppm ( J p p = 44.1 H z ) . S i n c e t h e r e i s s p i n - s p i n c o u p l i n g between t h e two phosphorus atoms, t h e y a r e p r o b a b l y a t t a c h e d t o t h e same i r o n atom. The s m a l l magnitude o f t h e c o u p l i n g s u g g e s t s (154) t h a t they a r e i n - 195 -c i s p o s i t i o n s , thus the s t r u c t u r e i s probably as shown i n 84. 8_4_ In r e l a t e d s t u d i e s (101) i t has been observed t h a t monosubstitution by phosphines i n (L-L)Fe„(CO)^ d e r i v a t i v e s (where (L-L) i s a d i t e r t i a r y phosphine, a r s i n e o r mixed l i g a n d , 8_) occurs a t one of the " a x i a l " c a r b o n y l groups, i . e . : a c a r b o n y l group trans to the Fe-Fe bond. Attempts to s u b s t i t u t e a second CO group i n 3 the complex 83_ by treatment o f the parent n - a l l y l complex w i t h excess t r i p h e n y l p h o s p h i n e (150°C) were not s u c c e s s f u l . ( i i ) R e action o f (f^chlorphos-Cl-F)Fe,,(CO)^, 76a with i o d i n e . 3 The n - a l l y l complex, 76a r e a c t s w i t h i o d i n e i n C C l ^ t o g i v e a r ed s o l i d , 85_ whose mass spectrum g i v e s a molecular peak a t m/e, 746 which corresponds to a formula ( f g C h l o r p h o s - C l - F ) F e ( C O ) 3 I 2 . The stepwise l o s s o f three c a r b o n y l groups i s a l s o observed, i n the spectrum. - 196 -The i n f r a r e d spectrum shows th r e e c a r b o n y l bands of equal i n t e n s i t y . The (CF,,) s t r e t c h i n g f r e q u e n c i e s 3 are s i m i l a r to the parent n - a l l y l complex, 76a. 19 The F nmr spectrum (Table XXVIII) of the complex, 85_ shows a d i f f e r e n t p a t t e r n compared w i t h t h a t of 3 the parent n - a l l y l complex, 76a. Two AB q u a r t e t s and a s i n g l e u p f i e l d m u l t i p l e t at 145.5 ppm are p r e s e n t . The f i r s t q u a r t e t c o n s i s t s of m u l t i p l e t s a t 109.0, 111.6, 127.7 and 130.3 ppm ( J A B = 244.8 Hz); the second q u a r t e t o f m u l t i p l e t s a t 110.0, 113.4, 117.2 and 119.6 ppm (J = 226.2 Hz). Compared 19 3 w i t h the F nmr spectrum of the parent n - a l l y l complex (Figure 6) both the AB q u a r t e t s have moved u p f i e l d and the chemical s h i f t s are s i m i l a r to those of the parent l i g a n d . A l s o the s i n g l e m u l t i p l e t which was at 168.0 ppm f o r 76a has moved downfield (145.5 ppm). T h i s suggests t h a t the new complex does not have a n ^ - a l l y l type of s t r u c t u r e and has 31 one more s i m i l a r to the parent l i g a n d . The P nmr shows a m u l t i p l e t at -41.5 ppm which i s d o w n f i e l d o f the i n i t i a l r e a c t a n t , 76a. Based on these data, the f o l l o w i n g s t r u c t u r e 85 f o r the i o d i n a t e d product can be suggested. I t s formation can be envisaged as f o l l o w s . The i o d i n e c o u l d f i r s t c l e a v e the Fe-Fe bond to give an i n t e r m e d i a t e such as 8_6_. T h i s 3 c o u l d then l o s e an Fe(00)^1 group, with the n - a l l y l system r e v e r t i n g back to a cyclopentene system with simultaneous t r a n s f e r of i o d i n e . The i n f r a r e d spectrum i n the c a r b o n y l - 197 -r e g i o n shows three bands of equal i n t e n s i t y s u g g e s t i n g a f a c isomer. - 198 -Though a l l the s p e c t r o s c o p i c data agree with t h i s s t r u c t u r e , 8_5_ the m i c r o a n a l y t i c a l data are not i n agree-ment. The most s e r i o u s d i s c r e p a n c y being the r e s u l t t h a t there i s on l y one i o d i n e atom per i r o n i n the molecule. On t h i s b a s i s a dimer such as shown i n 87_ would meet a l l r e q u i r e -ments except t h a t the mass spectrum c l e a r l y shows fragments expected f o r s t r u c t u r e 85. Perhaps a mixture o f 85_ and 87_ 19 i s p r e sent, although the F nmr spectrum i n d i c a t e s the presence o f o n l y one substance. F \ / 87 - 199 -4. Reactions of the d i t e r t i a r y phosphine l i g a n d b i f g f o s ,  23 with i r o n c a r b o n y l s . The r e a c t i o n s of the d i t e r t i a r y phosphine l i g a n d , 23_ with i r o n c a rbonyls are i n c l u d e d i n t h i s s e c t i o n f o r the reason, as mentioned i n the I n t r o d u c t i o n (page 14), t h a t r e a c t i o n s occur with l i g a n d rearrangement. The photochromic l i g a n d , b i f g f o s , 23_ r e a c t s with Fe(CO) r. to give three d i f f e r e n t complexes, which can be separated by column chromatography. The f i r s t s o l i d , 88_ e l u t e d from the column i s g r e e n i s h yellow and i t s i n f r a r e d spectrum shows f o u r s t r o n g bands i n the carbonyl r e g i o n . The r e s t of the spectrum i s very s i m i l a r to that of the f r e e l i g a n d suggesting t h a t the l i g a n d has not undergone any change i n symmetry on complex fo r m a t i o n . The mass spectrum of the s o l i d , 8_8_ shows a molecular peak at m/e (954) , fo l l o w e d by peaks corresponding to [P - n ( C O ) ] + (n = 1-8), suggesting the formula b i f g f o s F e 2 ( C O ) g f o r the complex. F u r t h e r c h a r a c t e r i z a t i o n was not p o s s i b l e due t o the low y i e l d of the complex, 88. The mass s p e c t r o s c o p i c data i n d i c a t e t h a t the s t r u c -ture i s s i m i l a r t o t h a t corresponding to the coupled products, 75a and 75b i s o l a t e d from the r e a c t i o n s o f the t e r t i a r y phosphines w i t h Fe(CO)^. The i n f r a r e d spectrum i n the v(CO) r e g i o n i s a l s o s i m i l a r t o t h a t of the coupled products i n d i c a t i n g a formula, b i f Q f o s F e 9 (CO) a f o r the s o l i d , 88_. - 200 -The second s o l i d , 89a e l u t e d from the column i s y e l l o w . The mass spectrum shows a molecular peak co r r e s p o n d i n g to the formula b i f a f o s F e 2 ( C O ) ^ , f o l l o w e d by peaks corre s p o n d i n g to the l o s s of s i x carbonyl groups. A peak a t m/e (618) corresponding to the f r e e l i g a n d i s not seen, s u g g e s t i n g t h a t the l i g a n d has undergone some rearrangement. The m i c r o a n a l y t i c a l data agrees with the formula, b i f p f o s F e 2 ( C O ) 6 ' l / 2 ( C 2 H 5 O C 2 H 5 ) . The i n f r a r e d spectrum shows s i x bands i n the c a r b o n y l s t r e t c h i n g r e g i o n . The C F 2 s t r e t c h i n g f r e q u e n c i e s are s l i g h t l y s h i f t e d compared with the f r e e l i g a n d , but not much d i f f e r e n c e i s observed. 19 The F nmr spectrum shows fo u r m u l t i p l e t s a t 107.6, 109.5, 111.2 and 113.9 ppm a l l of equal i n t e n s i t y , suggest-i n g t h a t a l l four p a i r s of f l u o r i n e atoms are i n a d i f f e r e n t environment, whereas the f r e e l i g a n d shows onl y two m u l t i p l e t s . The "^H nmr spectrum shows three m u l t i p l e t s a t 6.79, 7.33 and 7.55 of i n t e n s i t y r a t i o 1:1:2, s u g g e s t i n g t h a t o f the four phenyl groups present i n the molecule, two groups are i n the same environment w h i l s t the other two are i n d i f f e r e n t environments. The presence of d i e t h y l ether i n the s o l i d i s a l s o d e t e c t e d i n the "^H nmr spectrum. 31 The P nmr c o n s i s t s of two doublets ( J p p = 135.1 Hz) showing there i s c o u p l i n g between two i n e q u i v a l e n t phos-phorus atoms. - 201 -The c r y s t a l s t r u c t u r e of t h i s complex, 89a was determined (15 5) and the r e s u l t s are shown i n F i g u r e 11. C r y s t a l s t r u c t u r e of b i f „ f o s F e 2 ( C O ) £ I, 89a (Figure 11) The most s t r i k i n g f e a t u r e i n t h i s complex i s the cleavage of one diphenylphosphine group, and the fragmen-t a t i o n of the o t h e r . The c l e a v e d group l i n k s F e ( l ) and Fe(2) and the Fe-P d i s t a n c e s are 2.239 (3) A ( F e ( l ) - P ( D ) o and 2.219(3) A ( F e ( 2 ) - P ( 1 ) ) , r e s p e c t i v e l y . A phenyl r i n g from P(2) i s fragmented by a cleavage o f the p(2)-C(33) bond and the phenyl r i n g i s now a t t a c h e d to the cyclobutene r i n g by a C(26)-C(33) bond. As a r e s u l t of t h i s fragmen-t a t i o n , a m o d i f i e d phosphido group i s formed which b r i d g e s both the i r o n atoms, but the b r i d g e i s not symmetrical s i n c e , F e ( l ) - P ( 2 ) i s 2.197(2) A and Fe(2)-P(2) i s 2.241(2) A. o The F e ( l ) - F e ( 2 ) d i s t a n c e of 2.604(2) A i s i n t e r m e d i a t e o i n the range 2.51 - 2.87 A r e p o r t e d f o r Fe-Fe bonds i n i r o n c a r b o n y l complexes w i t h l i g a n d s c o n t a i n i n g phosphorus or a r s e n i c (147). Both cyclobutene r i n g s are j o i n e d by a s h o r t C (22)-o C(23) bond of 1.441(1) A. The C=C double bond d i s t a n c e s of C(19)-C(22) and C(23)-C(26) are 1.35(1) and 1.37(1) A r e s p e c t i v e l y . The t h i r d s o l i d , 89b which was i s o l a t e d from the r e a c t i o n o f b i f g f o s , 23_ w i t h F e(CO) 5 i s deep red and c r y s t a l l i n e . The mass spectrum shows a molecular peak cor r e s p o n d i n g to the formula b i f p f o s F e , ( C O ) , f o l l o w e d by - 2 0 2 -F i g u r e 11. C r y s t a l s t r u c t u r e of b i f R f o s F e - ( C O ) , I, (89a). - 2 0 3 -peaks corresponding to the l o s s o f s i x c a r b o n y l groups. The ions f o r b i f Q f o s F e 2 ( C O ) * , (P +) (m/e = 898) and (P +-1C0) (m/e = 870) are weak whereas the r e s t of the peaks are found to be very s t r o n g . Here again a peak corresponding t o the f r e e l i g a n d i s absent i n d i c a t i n g t h a t the l i g a n d has fragmented. The m i c r o a n a l y t i c a l data agrees with the formula, b i f g f o s F e 2 (CO) • 1/2 ( C ^ O C ^ ) . The i n f r a r e d spectrum of the complex shows f o u r s t r o n g and two weak bands i n the c a r b o n y l r e g i o n . 19 The F nmr spectrum shows f o u r m u l t i p l e t s i n the r a t i o o f 1:1:1:1 (the two middle l i n e s are c l o s e together) which i n d i c a t e s t h a t a l l four C F 2 groups are i n a d i f f e r e n t environment. The ''"H nmr spectrum shows m u l t i p l e t s o f equal i n t e n s i t y s u g g e s t i n g two d i f f e r e n t environments f o r the phenyl r i n g s i n c o n t r a s t to three types found i n the e a r l i e r complex, 89a. The presence of d i e t h y l e t h e r i n the s o l i d i s a l s o d e t e c t e d i n the ^H nmr spectrum. 31 The P nmr spectrum shows two s e t s of doublets i n d i c a t i n g c o u p l i n g between the two phosphorus atoms J ( P P) = 3^'^ H z ) • The c r y s t a l s t r u c t u r e of the complex, 89b was determined and the d e t a i l s are given below. C r y s t a l s t r u c t u r e of bifpfosFe,,(CO) I I , 89b (Figure 12). The complex 89b i s an isomer of the e a r l i e r complex, 89a. A diphenylphosphino group has c l e a v e d and forms a - 204 -- 205 -b r i d g i n g diphenylphosphido group, l i n k i n g F e ( l ) and F e ( 2 ) . The other diphenylphosphino group remains i n t a c t , forming a "normal" c o o r d i n a t i o n bond wi t h the Fe(2) atom. As a r e s u l t o f the cleavage o f the ( C g H ^ ^ P d ) group, a Fe( l ) - C ( 2 6 ) sigma bond i s formed. The Fe (1)-Fe (2) o d i s t a n c e of 2.791(6) A i s a g a i n i n agreement with r e p o r t e d v a l u e s f o r analogous complexes (147). The F e ( l ) - P ( l ) d i s t a n c e i s found to be 2.197(9) A and the F e ( 2 ) - P ( l ) o d i s t a n c e i s 2.206(8) A. The Fe(2)-P(2) d i s t a n c e i s l o n g e r o than the o t h e r Fe-P d i s t a n c e s and i s found to be 2.274(8) A. The cyclobutene r i n g s are j o i n e d by a C(22)-C(23) o d i s t a n c e of 1.50(3) A. The (C=C) double bond d i s t a n c e of o C(23)-C(26) i s 1.38(3) A which i s comparable to the e a r l i e r complex, 89a. But the C(19)-C(22) double bond d i s t a n c e i s o found to be u n u s u a l l y s h o r t (1.22(3) A), and so i s the o C(20)-C(21) s i n g l e bond d i s t a n c e (1.37(4) A ) . However, the p r e c i s i o n i n these l e n g t h s i s not g r e a t . The c r y s t a l s t r u c t u r e o f both the s o l i d s 89a (Figure 11) and 89b (Figure 12) show t h a t the carbonyl groups are i n a c i s p o s i t i o n i n the former (fac ) and t r a n s i n the l a t t e r (mer). T h i s e x p l a i n s the i n f r a r e d s p e c t r o s c o p i c data (Table XI) where the former shows s i x w e l l d e f i n e d bands i n the c a r b o n y l r e g i o n as expected f o r a fac isomer, whereas the l a t t e r shows only f o u r w e l l d e f i n e d bands and two weak bands as expected f o r a mer isomer. - 206 -The """^ F nmr and "''H nmr of both complexes are i n 31 accordance with the s t r u c t u r e s determined. The P nmr spectrum of bif_fosFe„(CO), I, 89a shows two s e t s of doublets at -136.08, -132.75 and -92.69, -89.35 ppm. The i s o m e r i c complex b i f g f o s F e 2 ( C O ) g I I , 89b again shows two se t s of d o u b l e t s . These are a t -130.35, -129.5 and -35.97, -35.11 ppm. Since both the isomers show a doublet i n the r e g i o n , ^130 ppm t h i s can be a t t r i b u t e d to the d i p h e n y l -phosphido group [P (1) (CgH<_) 2 ] which i s seen i n both complexes. No comments can be made about the values s i n c e the l i g a n d s t r u c t u r e i s d i f f e r e n t f o r both the complexes. The three complexes, 8_8_, 89a and 89b are a l s o i s o l a t e d from the r e a c t i o n of the l i g a n d , b i f g f o s , 23_ with t r i i r o n dodecacarbonyl. The percentage y i e l d o f both 88_ and 89a are found to be very low i n comparison with 89b. The major d i f f e r e n c e s between the two complexes 89a and 89b are (i) the fragmented phenyl r i n g which becomes attached to the other end o f the f l u o r o c a r b o n group i n complex 89a and r e s u l t s i n a m o d i f i e d phosphido group which b r i d g e s two Fe atoms, and ( i i ) the formation of a Fe-C sigma bond i n complex 89b. The formation of . (Fe-C) a bonds with rearrangement of l i g a n d s has been observed i n the work of C u l l e n e t a l . (17) as mentioned i n the I n t r o d u c t i o n . For example, the complex f ^ farsFe^CO) ^ , 11 undergoes rearrangement to give a complex of formula, f 4 f a r s F e 3 (CO) g , 1_3 which has a d i s p l a c e d (CH 7) 0As group and a (Fe-C) o bond i s formed. The formation - 207 -of a Mn-C sigma bond i n the complex, 14b (see I n t r o d u c t i o n , page 8) f o l l o w i n g l i g a n d rearrangement, has a l s o been r e p o r t e d by the same authors (19). Car t y e t al.. (23,24) have a l s o r e p o r t e d s i m i l a r phenomena (see I n t r o d u c t i o n , page 10). The r e a c t i o n s mentioned above i n v o l v e l i g a n d fragmen-t a t i o n without l o s s and another example comes from the work o f Deeming e t a l . (20) who i s o l a t e d an osmium complex, 15_ w i t h detached and b r i d g i n g A s f C H ^ ^ groups as mentioned i n the I n t r o d u c t i o n (page 8). S e v e r a l examples are known of l i g a n d fragmentation r e a c t i o n s which take p l a c e w i t h the l o s s of a phenyl group r e s u l t i n g i n a diphenylphosphido b r i d g i n g group (156,157, 158,159,160,161). A p a r t i c u l a r l y i n t e r e s t i n g example i s seen i n the r e a c t i o n of P ( C 6 H ^ ) 3 with Os-^CO).^, which giv e s a mixture o f nine products. One of these, 0s o(C0)_P'(C,H c) «(C H.) , (Figure 13) has two b r i d g i n g diphenylphosphido groups and a d d i t i o n a l l y the three osmium atoms are b r i d g e d by a benzyne fragment as shown i n F i g u r e 13. The diphenylphosphido group i s a l s o found i n many o f the other complexes (156,157). F i g u r e 13. - 2 0 8 -Analogous complexes c o n t a i n i n g b r i d g i n g phosphido groups and o r t h o - m e t a l l a t e d phenyl r i n g s have been i s o l a t e d from the r e a c t i o n s of R u 3 ( C O ) 1 2 and ( C 6 H 5 ) 3 P (158). Compounds having b r i d g i n g d i p h e n y l a r s i n o and d i m e t h y l -a r s i n o groups have a l s o been i s o l a t e d f o l l o w i n g l i g a n d cleavage r e a c t i o n s (162,149). - 209 -CHAPTER VI PHOTOCATALYZED ISOMERIZATION OF 1-PENTENE USING A  n 3-ALLYL COMPLEX AS CATALYST 1. I n t r o d u c t i o n The i s o m e r i z a t i o n o f o l e f i n s c a t a l y z e d by t r a n s i t i o n metal complexes belongs to an i n t e r e s t i n g c l a s s o f r e a c t i o n s i n o r g a n o m e t a l l i c chemistry. I t has been r e p o r t e d t h a t i r o n c a r b o n y l h y d r i d e s are a c t i v e c a t a l y s t s f o r the thermal hydrogenation and i s o m e r i z a -t i o n o f o l e f i n s (163,164) and many complexes t h a t do not have M-H bonds w i l l i s o m e r i z e alkenes p r o v i d e d there i s a source o f hydrogen p r e s e n t , such as molecular hydrogen (30). Even i n the absence o f hydrogen r e a c t i o n s o f alkenes w i t h c a t a l y t i c amounts o f an i r o n c a r b o n y l l e a d to i s o m e r i z a t i o n (165,32). For example, when 1-hexene i s heated w i t h t r i i r o n dodecacarbonyl a mixture o f c i s and trans-2-hexene and 3-hexene i s formed (165). As mentioned i n the I n t r o d u c t i o n , the p h o t o c a t a l y z e d i s o m e r i z a t i o n (32) of 1-pentene takes p l a c e i n the presence o f Fe(CO) [.. - 210 -These i s o m e r i z a t i o n s are b e l i e v e d to oc c u r by e i t h e r a metal h y d r i d e a d d i t i o n - e l i m i n a t i o n mechanism (equations 3 [40], [41]) o r by a mechanism i n v o l v i n g a TI - a l l y l metal h y d r i d e i n t e r m e d i a t e where no source o f hydrogen i s r e q u i r e d (equations [42] - [ 4 5 ] ) . \c<r ^CH2R H / X H L.MH + RCH2CH=CH, 9 0 V H CH,R L.M C \ / ^CH,R A 91 H H L.M \ -\:H,R 92 CH 2=CHCH 2R [40] aMar - anti-Markownikoff Mar = MarkownikofT CH 2=CHCH 2R + CH3CH=CHR [41] 93 As seen i n [40] and [41], w i t h alkenes o t h e r than e t h y l e n e , the a d d i t i o n o f M-H to the double bond c o u l d take p l a c e e i t h e r i n the anti-Markownikoff o r Markownikoff d i r e c t i o n t o g i v e the products 91_ and 92_ r e s p e c t i v e l y . When the r e v e r s e r e a c t i o n takes p l a c e , o n l y product 9_2_ would g i v e a 2-alkene 93_ i n a d d i t i o n to the 1-alkene which i s a l s o i s o l a t e d from product 9_1_. Both c i s and t r a n s - i s o m e r s c o u l d be formed (30). - 211 -The proposed mechanism f o r the p h o t o c a t a l y z e d i s o m e r i z a -t i o n o f 1-pentene to c i s and trans-2-pentene by Fe(CO)^ (32) i s shown i n equations [42]- [45]. The formation of a c o o r d i n a t i v e l y unsaturated metal c a r b o n y l - a l k e n e complex, 94 i s proposed which undergoes an o x i d a t i v e a d d i t i o n 3 r e a c t i o n to form a n - a l l y l h ydride i n t e r m e d i a t e , 95a or 95b. T h i s i n t e r m e d i a t e then r e v e r t s to the Fe(CO), « ^ - * Fe (CO) 4 (~" \_ ) F e ( C O ) 3 ( = ' " \ _ ) [ 4 2 ] + + CO CO Fe(CO ) J ( "V-) HFI(00)3 5=t F e ( C O ) 3 ( ~ ^ ) [43a] 9_4_ ^ 95a 96a HFe(C0)3 5=a Fe(CO)3(/°=\) [ 4 3 b] 95b V ' 96b Fe(C0)3(alkene) + " " \ _ Fe(CO) 3(alkene)(~N^) [44] Fe(CO) 3(alkene)^^^_j *== F e < C O ) a ^ \ _ j + alkene [45] c o o r d i n a t i v e l y unsaturated alkene complex, 96a or 96b, which i s s i m i l a r to 9_4_ but the alkene i s now i s o m e r i z e d . The r e l e a s e of the i s o m e r i z e d alkene takes p l a c e as shown i n equations [44] and [45]. 3 A n - a l l y l system has the p o t e n t i a l a b i l i t y to a c t as e i t h e r a three e l e c t r o n donor l e a d i n g to a c o o r d i n a t i v e l y s a t u r a t e d metal, or as a one e l e c t r o n donor l e a v i n g a - 212 -vacant s i t e , thus a l l o w i n g a t t a c k by another l i g a n d . 3 Thus i t seemed t h a t the n - a l l y l complexes RnPC-C-~CF {CF~) Fe„(CO),, i s o l a t e d from the r e a c t i o n s of the z z n Z 6 I 1 t e r t i a r y phosphines, R 2PC=CC1(CF 2) (n = 3,4) with i r o n pentacarbonyl (see s e c t i o n 3, Chapter V ), c o u l d act as a c a t a l y s t i n o l e f i n i s o m e r i z a t i o n by e i t h e r u t i l i s i n g the a l l y l group, the CO group (32), or the Fe-Fe bond as the r e a c t i o n c e n t r e (34). N e a r - u l t r a v i o l e t i r r a d i a t i o n of Fe(CO)^ i n the presence of an o l e f i n and H 2 (^1 atm) i s r e p o r t e d (32) to give s a t u r a t e d products i n a d d i t i o n to the i s o m e r i c o l e f i n s formed. The important steps i n t h i s r e a c t i o n are as given below, H 2Fe (CO) 3 (alkene) ===== HFe (CO) 3 ( A l k y l ) — — > F e ( C O ) 3 + alkane [46] 3 Thus the p o s s i b i l i t y t h a t a n - a l l y l complex would f u n c t i o n as a c a t a l y s t i n hydrogenation of o l e f i n s was a l s o s t u d i e d . The r e s u l t s of these i n v e s t i g a t i o n s are given i n s e c t i o n 3. The experimental work r e l a t i n g t o the above-mentioned r e a c t i o n s i s given i n the next s e c t i o n . The p a r t i c u l a r compounds used i n t h i s i n v e s t i g a t i o n a r e , 1 1 R„PC-C-CF(CF„) F e „ ( C O ) c (n = 2; R = C,H.. , C,H_; n = 3, Z Z n Z 6 b 11 b D R = C gH 5) and ( C g H 5 ) 2 P 6 = C C I T C F 2 ) 3 F e ( C O ) 4 , 74d. - 213 -2. E x p e r i m e n t a l A. C h e m i c a l s . The a l k e n e s were o b t a i n e d from A l d r i c h C hemical Company I n c . and Matheson, Coleman and B e l l Company, and were used w i t h o u t f u r t h e r p u r i f i c a t i o n e x c e p t t h e c y c l i c o l e f i n s w hich were d i s t i l l e d o v e r A^O^. Benzene was r e f l u x e d o v e r p o t a s s i u m w i r e and s t o r e d under n i t r o g e n o v e r m o l e c u l a r s i e v e s . Hydrogen was o b t a i n e d from Canadian L i q u i d A i r and was passed through a "Deoxo" c a t a l y t i c p u r i f i e r b e f o r e use. A l l the i r o n c a r b o n y l complexes were p r e p a r e d by methods g i v e n i n the E x p e r i m e n t a l s e c t i o n i n C h apter I I . B. I n s t r u m e n t s . An HP 5 750 R e s e a r c h Chromatograph u n i t w i t h t h e r m a l c o n d u c t i v i t y t ype d e t e c t o r was used f o r gas ch r o m a t o g r a p h i c a n a l y s e s . S e p a r a t i o n o f components o f o l e f i n r e a c t i o n m i x t u r e s was a c c o m p l i s h e d on a 25 f t x 1/8 i n . column o f 20% p r o p y l e n e c a r b o n a t e on chromosorb P. C. I s o m e r i z a t i o n o f 1-pentene u s i n g ( f , c h l o r f o s - C l - F ) F e ~ ( C O ) , , 76b. b 2 o An e v a c u a t e d C a r i u s tube c o n t a i n i n g a benzene s o l u t i o n (1.25 ml) o f 1-pentene (0.135 m l , 1.2 mmol) and ( f 6 c h l o r f o s - C l - F ) F e 2 ( C O ) 6 (.0077 g, .0124 mmol) was i r r a d i a t e d w i t h a 200 W Hanovia 654-A36 lamp s i t u a t e d 20 cm from the - 214 -r e a c t i o n tube. The tube was c o n t i n u o u s l y shaken and c o o l e d by an a i r stream. A t the end o f the r e a c t i o n p e r i o d the t o t a l v o l a t i l e components were t r a n s f e r r e d under vacuum to another tube and the s o l u t i o n was then analyzed by GLC. The r e a c t i o n was repeated a t d i f f e r e n t time i n t e r v a l s u s i n g f r e s h c a t a l y s t . Table XXXVI l i s t s the percentage o f the pentene isomers produced. The products e l u t e d from the chromatograph were i n i t i a l l y i d e n t i f i e d by i s o l a t i o n f o l l o w e d by i n f r a r e d and nmr spectroscopy. D. I s o m e r i z a t i o n o f 1-pentene u s i n g o t h e r i r o n c a r b o n y l complexes and f ^ c h l o r f osW (CO) , 57c. Benzene s o l u t i o n s c o n t a i n i n g 1-pentene (1.2 mmol) and the i r o n c a r b o n y l (or tungsten carbonyl) complexes (.0124 mmol) were i r r a d i a t e d f o r 20.5 h under s i m i l a r c o n d i t i o n s a s . d e s c r i b e d i n s e c t i o n 2. C above. Table XXXVI l i s t s the percentage of the isomers o f pentene i s o l a t e d at the end of the r e a c t i o n . E. Attempted hydrogenation r e a c t i o n s o f some o l e f i n s u s i n g ( f 6 c h l o r f o s - C l - F ) F e 2 ( C O ) g , 76b as c a t a l y s t . A C a r i u s tube c o n t a i n i n g a benzene s o l u t i o n o f the o l e f i n (2.4 mmol) and the complex, 76b (.0248 mmol) was c o o l e d and evacuated. One atmosphere o f hydrogen was admitted to the C a r i u s tube which was then c l o s e d and i r r a d i a t e d f o r 24 h. (The c o n d i t i o n s were as d e s c r i b e d i n - 215 -s e c t i o n 2. C above.) At the end of the r e a c t i o n p e r i o d the samples were analyzed f o r s a t u r a t e d products, u s i n g GLC. None were present although i s o m e r i z a t i o n o c c u r r e d i n the case of the pentenes. The o l e f i n s used were, cyclohexene, c y c l o o c t a d i e n e , trans-3-hexene, 1-pentene, cis-2-pentene, and trans-2-pentene. When the two c y c l i c o l e f i n s were heated to 150°C a t the same c o n c e n t r a t i o n s , no hydrogenation took p l a c e . 3. D i s c u s s i o n The u l t r a v i o l e t i r r a d i a t i o n o f a s o l u t i o n o f ( f g C h l o r f o s - C l - F ) F e 2 ( C O ) 6 , 76b i n benzene c o n t a i n i n g 1-pentene (1:100 mole r a t i o ) causes i s o m e r i z a t i o n to give an e q u i l i b r i u m mixture of the pentenes. When the i r r a d i a t i o n i s c a r r i e d out with cis-2-pentene o r trans-2-pentene the same e q u i l i b r i u m i s reached. A p l o t o f percentage con-v e r s i o n o f 1-pentene a g a i n s t i r r a d i a t i o n time i s shown i n F i g u r e 14. The e q u i l i b r i u m value found f o r the pentenes (1-pentene, t-2-pentene, cis-2-pentene: 3.75%, 73.25% and 23.0%) i s ve r y c l o s e to the value r e p o r t e d by Schroeder and Wrighton, (3.0%, 76.0% and 21.0%) (32). When the same r e a c t i o n i s c a r r i e d out i n the dark, no i s o m e r i z a t i o n i s observed. Thus t h i s system i s p h o t o c a t a l y t i c . When the r a t i o o f the c a t a l y s t , 76b to 1-pentene i s i n c r e a s e d to 1:1000 the r a t e o f c o n v e r s i o n decreases as shown i n Table XXXVI. - 216 -I' A i-pentene disappearance o t - 2 pentene formation • cis-2-pentene formation « — • -A A A 1 1 1 1 1 1 " 1 1 1 1 f~~ 0 2 4 6 8 10 12 irradiation time (h) F i g u r e 14. P h o t o c a t a l y z e d i s o m e r i z a t i o n o f 1-pentene u s i n g ( f 6 c h l o r f o s - C l - F ) F e 2 ( C O ) g , 76b as c a t a l y s t - 217 -The r e s i d u a l s o l i d i s o l a t e d at the end of the r e a c t i o n p e r i o d (Table XXXVI, time = 20.5 h) i s brown, whereas the complex, 76b i t s e l f i s reddish-orange. The i n f r a r e d spectrum o f the brown s o l i d shows car b o n y l bands a t 2068(s), 2038(sh), 2028(vs), 2020(s), 1980(s) and 1950(m,b) which i s d i f f e r e n t 19 from t h a t of 76b (Table XXIV). The F nmr spectrum of the brown s o l i d shows the presence o f f l u o r i n e but no d e f i n i t e p a t t e r n i s observed. Thus the s o l i d 76b i s completely changed at the end of the r e a c t i o n p e r i o d (20.5 h) and i s i n a c t i v e f o r f u r t h e r c a t a l y s i s . When the s o l i d i s i s o l a t e d a f t e r a s h o r t e r p e r i o d of i r r a d i a t i o n (0.75 h) the c o l o u r s t i l l remains orange and the nmr and i n f r a r e d s p e c t r a are s i m i l a r to 76b. The s o l i d when r e c y c l e d (17.25 h) g i v e s a mixture of 1-pentene (49.42%), trans-2-pentene (33.10%) and cis-2-pentene (17.47%) showing c o n s i d e r a b l e l o s s of a c t i v i t y . However, t h i s c o u l d be due to exposure to a i r between c y c l e s . The i s o m e r i z a t i o n o f 1-pentene u s i n g o t h e r i r o n c a r b o n y l complexes has been i n v e s t i g a t e d and the r e s u l t s are shown i n Table XXXVII. Of the r | 3 - a l l y l complexes used, the h i g h e s t percentage c o n v e r s i o n i s e f f e c t e d by the a l l y l complex, 76b. The t e t r a c a r b o n y l complex, 74d a l s o shows a h i g h percentage c o n v e r s i o n . Both the t r i c a r b o n y l complexes, 45a and 45b do not i s o m e r i z e 1-pentene which i s not s u r p r i s i n g s i n c e both s o l i d s are u n s t a b l e i n s o l u t i o n and are probably l e s s s t a b l e to l i g h t . - 218 -TABLE XXXVI I s o m e r i z a t i o n o f 1-pentene u s i n g ( f ^ c h l o r f o s - C l - F ) F e ^ ( C O ) ^ . Products I r r a d i a t i o n time (h) % 1-pentene % t r a n s - % c i s -2-pentene 2-pentene 0 100 0 0 0 .75 74.82 19 .91 5.26 1.0 69 .11 24.50 6.38 1.5 56 .51 34.27 9 .21 2.0 41.01 43.03 12 .96 2 .25 38.45 48.34 13.20 3.0 21.60 59 .22 19 .17 3.5 14 .92 64.90 20 .18 4.5 4 .21 72.86 22 .92 5.0 3.75 73.22 23.02 6.0 3.70 73.25 23.04 8.0 3.73 73.25 23.01 10 .0 3.72 73.24 23.03 12 .0 3.71 73.24 23.04 20.5 3.74 73.24 23.01 20.0 h b 78 .13 14.97 6.88 a s o l u t i o n c o n t a i n i n g , 1-pentene (1.2 mmol) and 76b (.0124 mmol) i n benzene b s o l u t i o n c o n t a i n i n g 1-pentene (1.2 mmol) and 76b (.00124 mmol) i n benzene. TABLE XXXVII I s o m e r i z a t i o n of 1-pentene u s i n g i r o n carbonyl complexes  and a tungsten carbonyl complex. C a t a l y s t [ f ^ . c h l o r f o s - C l - F ] Fe~ (CO) , , 76b ( f 6 c h l o r p h o s - C l - F ) F e 2 ( C O ) 6 , 76a ( f R c h l o r f o s - C l - F ) F e 2 ( C O ) , 76e f 4 d i p h o s F e ( C O ) 3 , 45a fg d i p h o s F e ( C O ) 3 , 45b F^ c h l o r f o s F e ( C O ) . , 74d 6 4 f^c h l o r f o s W ( C O ) c , 57c a time, 20.5 h b .0124 mmol c 1.2 mmol ' % 1-pentene % c i s - l - p e n t e n e % trans-2-pentene 3.73 23.01 73.25 17.91 23.67 58.40 33.51 22.09 44.39 i ioo - - E 100 - - 1 5.78 28.46 65.75 100 - 220 -Since tungsten hexacarbonyl i s known (34) to is o m e r i z e l i n e a r o l e f i n s , t h e p o s s i b i l i t y o f fgChlorfosW(CO)^, 57c t o a c t as a c a t a l y s t was i n v e s t i g a t e d . No i s o m e r i z a t i o n i s observed w i t h 1-pentene. The mechanism f o r these i s o m e r i z a t i o n r e a c t i o n s i s not known. Indeed i t i s p o s s i b l e t h a t the r e a c t i o n s c a t a l y z e d by these new complexes f o l l o w d i f f e r e n t paths. U n f o r t u n a t e l y arguments based on r a t e s o f r e a c t i o n cannot be used to compare these data with those o f Wrighton's (32) s i n c e these authors use f i l t e r e d l i g h t from high i n t e n s i t y sources. As d e s c r i b e d i n the Experimental s e c t i o n , the a b i l i t y o f the complex, 76b to f u n c t i o n as a hydrogenation c a t a l y s t was i n v e s t i g a t e d . N e i t h e r thermal o r p h o t o l y t i c r e a c t i o n s r e s u l t e d i n any hydrogen uptake when a number of o l e f i n s were used as s u b s t r a t e s . - 221 -CHAPTER VII SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK Summary The purpose of t h i s work was t o s y n t h e s i z e t r a n s i t i o n metal c a r b o n y l and metal h a l i d e complexes of novel d i t e r t i a r y and t e r t i a r y phosphine l i g a n d s i n the hope t h a t the products would e x h i b i t unusual chemistry. In the presence of DMF, d i c y c l o h e x y l p h o s p h i n e and l 1 diphenylphosphine r e a c t with C1C=CC1(CF 2) (n = 2,3,4,) to give the d i t e r t i a r y phosphines (L-L) of formulae R 0PC=CPR 0(CF 0) (R = C,H..,, n = 2,3; R = C,H C, n = 2,3,4) Z Z Z n b ±1 o D and t e r t i a r y phosphines of formula R 2PC=CC1 (CF 2) • (R = C g H ^ f n = 2,3,4; R = C gH 5, n = 2,3,4), as d e s c r i b e d i n Chapter I I I . Only d i s u b s t i t u t e d products of formulae, [ R 2 E C = C ( C F 2 ) 2 ] 2 (L-L) are o b t a i n e d from s i m i l a r r e a c t i o n s i n v o l v i n g I 1 [C1C=C(CF«)„]„ and R 0EH (E = P, R = C,H n., C CH K; E = As, \ Z Z Z Z b 11 b D R = CH 3) i n the presence o f DMF. The r e a c t i o n s of the d i t e r t i a r y phosphines, (L-L) w i t h Group VI hexacarbonyls give the c h e l a t e (L-L)M(CO) 4 complexes. These are a l l s t a b l e i n s p i t e o f the presence o f a seven - 222 -membered c h e l a t e r i n g which i s seen i n the case where (L-L)= b i f g d i p h o s , 2_4 (eg. F i g u r e 3). In the e x p e c t a t i o n t h a t the v i n y l i c c h l o r i n e atom i n the t e r t i a r y phosphine l i g a n d s (L) would r e a c t w i t h a metal, these l i g a n d s were t r e a t e d with the Group VI hexacarbonyls. Only the monodentate complexes LM(CO)^ were i s o l a t e d and s t u d i e s i n d i c a t e t h a t there i s no i n t e r a c t i o n between the metal and the CI atom. I n t e r a c t i o n o f t h i s s o r t i s n e i t h e r found i n the r e a c t i o n s of the t e r t i a r y phosphines (L) with Pd(II) and P t ( I I ) h a l i d e s . Complexes of formulae L2MC1 2 are i s o l a t e d when L = f g c h l o r p h o s , 26c or f g c h l o r f o s , 26d and M = Pd(II) or P t ( I I ) . B r i d g e d d i c h l o r o compounds of formulae L 2 P d 2 C l 4 are a l s o i s o l a t e d from these r e a c t i o n s when L = f g c h l o r f o s , 26b or f , c h l o r f o s , 26d. The c y c l o h e x y l d e r i v a t i v e , 26c ——— b does not give such b r i d g e d compounds. I t was f i n a l l y d i s c o v e r e d t h a t the v i n y l i c c h l o r i n e atom does get i n v o l v e d when L i s t r e a t e d w i t h i r o n c a r b o n y l s . A c h l o r i n e and f l u o r i n e atom are l o s t from the l i g a n d s i n 3 these r e a c t i o n s r e s u l t i n g i n the formation of n - a l l y l complexes of formulae ( L - C l - F ) F e 2 ( C O ) g (L = 26c, 26d, 26e, 26f) (eg. F i g u r e 8) i n a d d i t i o n to the more u s u a l L F e ( C O ) 4 complexes. The l a t t e r seems to be the p r e c u r s o r to the a l l y l system. The cyclobutene analogues, 26a and 26b give o n l y the L F e ( C O ) 4 d e r i v a t i v e s . The c h l o r i n e atom i n L i s a l s o l o s t i n some r e a c t i o n s which produce coupled - 223 -I 1 p r o d u c t s o f f o r m u l a e , [Fe (CO) 4R 2PC=C (CF 2) r ] 2 (R = CgH.^, n = 3; R = C,H C, n = 4 ) . These r e a c t i o n s are o f i n t e r e s t b D because t h e s e l i g a n d s c o u l d not be p r e p a r e d by normal t e c h n i q u e s . I n t h e case o f t h e r e a c t i o n s o f t h e d i t e r t i a r y phosphines (L-L) w i t h i r o n c a r b o n y l s , u s u a l complexes o f f o r m u l a e ( L - L ) F e ( C O ) 3 (L-L = f 4 d i p h o s ( 2 5 a ) , f g d i p h o s ( 2 5 b ) ) , ( L - L ) F e 2 ( C O ) 6 ((L-L) = 25a) and ( L - L ) F e 2 ( C O ) Q ((L-L) = b i f g f o s , 23) are i s o l a t e d . However, i n t h e case o f (L-L) = b i f g f o s (2 3),two o t h e r n o v e l p r o d u c t s o f f o r m u l a e ( L - L ) F e 2 ( C O ) g are i s o l a t e d , where the l i g a n d has undergone c o n s i d e r a b l e f r a g m e n t a t i o n and rearrangement. The complex, b i f g f o s F e 2 ( C O ) g I , 89a ( F i g u r e 11) shows a fragmented d i p h e n y l p h o s p h i n o group and a n o t h e r c l e a v e d group w h i c h f u n c t i o n s as a b r i d g i n g d i p h e n y l p h o s p h i d o group. The i s o m e r i c complex b i f g f o s F e 2 ( C O ) g I I , 89b ( F i g u r e 12) a l s o show a c l e a v e d d i p h e n y l p h o s p h i n o group w h i c h f u n c t i o n s as a b r i d g i n g phosphido group and as a r e s u l t o f the c l e a v a g e an Fe-C sigma bond i s formed. The d i t e r t i a r y p hosphines (L-L) (25a, 25b, 23) r e a c t w i t h P d ( I I ) and P t ( I I ) h a l i d e s t o g i v e s t a b l e c h e l a t e p r o d u c t s o f f o r m u l a e (L-L)MC1 2 ( ( L - L ) = 25a, 25b, 23; M = P d ( I I ) ; (L-L) = 25a, 25b; M = P t ( I I ) ) i n s p i t e o f t h e p r e s e n c e o f a seven membered c h e l a t e r i n g i n t h e case o f (L-L) = b i f g f o s , 23_. From t h e same r e a c t i o n an unexpected p r o d u c t , 42_ i s a l s o formed w h i c h seems t o have an a l l y l - 224 -type of s t r u c t u r e . One experiment showed t h a t ( L - L ) 2 P t ( 0 ) ((L-L) = 25a) type o f compounds c o u l d be prepared by the r e a c t i o n o f (L-L) w i t h P t [ P ( C , H C ) _ ] . . b p j 4 The r e a c t i o n o f (L-L) w i t h Mn 2(CO)^ Q, i n a d d i t i o n to the usual (L-L)Mn 2(CO) g ((L-L) = 25b) complex a l s o g i v e s an unusual complex of formula [(L-L)Mn(CO) ^ 1 2 ((L-L) = 25a) where the l i g a n d i s c h e l a t e d c i s to the Mn-Mn bond. Bromina-t i o n o f t h i s compound y i e l d s the f a c isomer, (L-L)Mn(CO)^Br wit h r e t e n t i o n of s t e r e o c h e m i s t r y . The complex, ( f ^ c h l o r f o s - C l - F ) F e 2 ( C O ) ^ , 76b i s an e f f e c t i v e i s o m e r i z a t i o n c a t a l y s t f o r 1-pentene under photo-chemical c o n d i t i o n s . However, when H 2 i s added to t h i s system no s a t u r a t e d products are o b t a i n e d . The o r i g i n of the photochromism i n the compound, b i f g f o s , 2_3 appears to be a s s o c i a t e d with a s t r u c t u r a l change i n the molecule whereby the l e s s planar y e l l o w s o l i d absorbs energy (hv) t o give a more plan a r orange s o l i d , r e s u l t i n g i n more c o n j u g a t i o n . Recommendations f o r f u t u r e work r — i Since the d i t e r t i a r y phosphine [ ( C g H 5 ) 2 P C = C ( C F 2 ) 2 ] 2 ' b i f g f o s , 23_ r e a c t s w i t h i r o n c a r b o n y l s to give some novel products which show l i g a n d fragmentation and rearrangement, f u r t h e r r e a c t i o n o f t h i s l i g a n d w i t h other metal carbonyls such as M n 2 ( C O ) 1 Q , C o 2 ( C O ) g and N i ( C O ) 4 should give some i n t e r e s t i n g compounds. The same l i g a n d a l s o r e a c t s with - 225 -Pd(II) t o give an unusual compound 42_ which needs to be c h a r a c t e r i z e d . The r e a c t i o n o f b i f g f o s , 23_ wi t h P t ( I I ) should a l s o give analogous products. The t e r t i a r y phosphines R 2PC=CC1(CF 2) (n = 3,4) giv e some novel a l l y l . compounds when t r e a t e d with i r o n c a r b o n y l s . Thus the r e a c t i o n s o f these l i g a n d s w i t h o t h e r carbonyls such as Mn 2(CO)^ Q, Co 2(CO)g, N i ( C O ) 4 and Ru 3(CO)^ 2 are of i n t e r e s t . In p a r t i c u l a r , the r e a c t i o n with N i ( C O ) 4 should be s t u d i e d s i n c e n i c k e l i s known to form s t a b l e and c a t a l y t i c a l l y a c t i v e a l l y l complexes. In view o f the f a i l u r e t o prepare unsymmetrical analogues, the photochromic behaviour o f the l i g a n d , 2_3 should be i n v e s t i g a t e d f u r t h e r (i) by e i t h e r s u b s t i t u t i n g the phenyl r i n g s w i t h e l e c t r o n withdrawing or donating groups, o r ( i i ) by p r e p a r i n g the bis(methylphenylphosphino) I 1 compound o f formula, [ (CgH,.) (CH 3) PC=C (CF 2) 2 ] 2 . The presence or absence of photochromic behaviour i n these new compounds should g i v e i n f o r m a t i o n r e g a r d i n g the e x c i t e d s t a t e which l e a d s to the s t r u c t u r a l change i n the s o l i d s t a t e . In view o f the c u r r e n t i n t e r e s t i n metal c a r b o n y l c l u s t e r s as c a t a l y s t s i n i s o m e r i z a t i o n and hydrogenation 3 r e a c t i o n s o f o l e f i n s , the n. - a l l y l complex, \ 1 (CVH,.) _PC-C-CF (CF~) 0 F e 0 (CO) , and r e l a t e d d e r i v a t i v e s should b D z z z z b be s t u d i e d under a wider range of c o n d i t i o n s with r e s p e c t to r e a c t i o n s such as hydrogenation, h y d r o s i l y l a t i o n and h y d r o f o r m y l a t i o n . - 226 -B i b l i o g r a p h y 1. G. Booth,. Advan. Inorg. Chem. Radiochem. , 6_, 1 (1964) . 2. G.R. Dobson, I.W. S t o l z , and R.K. S h e l i n e , Advan. Inorg. Chem. Radiochem., 8_, 1 (1966) . 3. T.A. Manuel, Advan. Organometal. Chem., 3_, 181 (1965). 4. M.A. Bennett,R.N. Johnson, and I.B. Tomkins, J . Amer. Chem. S o c , 96 , 61 (19 74). 5. M.A. Bennett and J.D. Wild, J . Chem. S o c , A 545 (1971). 6. W.R. C u l l e n , F l u o r i n e Chem. Rev., 3_, 73 (1969). 7. W.R. C u l l e n , Advan. Inorg. Chem. Radiochem., 15, 323 (1972) . 8. W.R. C u l l e n , P.S. Dhaliwal, and G.E. Styan, J . Organometal. Chem. (Amsterdam) , 6_, 364 (19 66) . 9. W.R. C u l l e n , D.S. Dawson, and P.S. D h a l i w a l , Can. J . Chem. , 45_, 683 (1967) . 10. W.R. C u l l e n , and P.S. D h a l i w a l , Can. J . Chem., 4_5_, 719 (1967) . 11. R.F. S t o c k e l , Can. J . Chem., 46_, 2625 (1968). 12. R.F. S t o c k e l , Can. J . Chem., 47_, 867 (1969). 13. W.R. C u l l e n , D.A. Harbourne, B.V. Liengme, and J.R. Sams, Inorg. Chem., 8_, 9 5 (1969). 14. W.R. C u l l e n , D.A. Harbourne, B.V. Liengme, and J.R. Sams, Inorg. Chem., 8_, 1464 (1964). 15. W.R. C u l l e n , P.S. D h a l i w a l , and C.J. Stewart, Inorg. Chem., 6, 2256 (1967) . - 227 -16. W.R. C u l l e n , and D.A. Harbourne, Inorg. Chem., 9_, 1839 (1970) . 17. W.R. C u l l e n , D.A. Harbourne, B.V. Liengme, and J.R. Sams, Inorg. Chem., 9, 702 (1970). 18. F.W.B. E i n s t e i n , and J . T r o t t e r , J . Chem. S o c , A, 824 (1967) . 19. J.P. Crow, W.R. C u l l e n , F.L. Hou, L.Y.Y. Chan, and F.W.B. E i n s t e i n , J . Chem. S o c , Chem. Commun., 1229 (1971). 20. A .J. Deeming, R.E. Kimber, and M. U n d e r h i l l , J . Chem. Soc. Dalton Trans., 2589 (1973). 21. J.P. Crow, and W.R. C u l l e n , Inorg. Chem., 10_, 2165 (1971). 22. F.W.B. E i n s t e i n , and R.D.G. Jones, J . Chem. Soc. Dalton, Trans., 2568 (1972) . 23. T. O'Connor, A.J. Carty, M. Mathews, and G.J. P a l e n i k , J . Organometal. Chem., 38_, C15 (1972). 24. M. Mathew, G.J. P a l e n i k , A . J . Carty and H.N. Park, J . Chem. S o c , Chem. Commun., 25 (1974). 25. M.A. Bennet, R.N. Johnson, and I.B. Tomkins, J . Amer. Chem. S o c , 96_, 61 (1974). 26. M.A. Bennet, R.N. Johnson, and I.B. Tomkins, Inorg. Chem. , 14_, 1908 (1975) . 27. W.R. C u l l e n , A.W. Wu, A.R. Davis, F.W.B. E i n s t e i n , and J.D. H a z l e t t , Can. J . Chem., 5_4_, 2871 (1976). 28. R.L. Soulen, S.K. Cho i , and J.D. Park, J . F l u o r i n e Chem., 3, 141 (1973/1974). 29. W.R. C u l l e n , M. W i l l i a m s , F.W.B. E i n s t e i n and C.H. Huang, J . F l u o r i n e Chem., 11, 365 (1978). - 228 -30. F.A. Cotton, and G. W i l k i n s o n , "Advanced Inorganic Chemistry", 3rd ed, I n t e r s c i e n c e , New York, 19 72, pp. 785-799. 31. E. Koerner von Gustorf, and F.W. Gr e v e l s , F o r t s c h r . Chem. Forsc h . , 13_, 366 (1969). 32. M.A. Schroeder, and M.S. Wrighton, J . Amer. Chem. S o c , 98, 551 (1976) . 33. M.S. Wrighton, G.S. Hammond, and H.B. Gray, J . Organometal. Chem. , 70_, 283 (1974) . 34. C F . Put n i k , J . J . Welter, C D . Stucky, M.J. D ' A n i e l l o , J r . , B.A. Sosinsky, J.F. K i r n e r , and E.L. M u e t t e r t i e s , J . Amer. Chem. S o c , 100_, 4107 (1978). 35. P. Krausz, F. G a r n i e r , and J.E. Dubois, J . Amer. Chem. S o c , 97_, 437 (1975) . 36. A. Agapiou, and E. McNelis, J . Chem. S o c , Chem. * Commun., 187 (1975) . 37. W.R. C u l l e n , A.W. Wu, unpublished r e s u l t s . 38. L.S. C h i a , and W.R. C u l l e n , Can. J . Chem., 50_, 1421 (1972). 39. R. Ugo, F. C a r i a t i , and G. LaMonica i n "Inorganic Syntheses", (W.L. J o l l y , e d), v o l . XI, p. 105, McGraw H i l l Book Co., New York (1968). 40. W.R. C u l l e n , D.F. Dong, and J.A.J. Thompson, Can. J . Chem., 4J7_, 4671 (1968) . 41. S.J. R e t t i g , and J . T r o t t e r , Can. J . Chem., 55_, 3065 (1977) . - 229 -42. C. Masters, B.L. Shaw, and R.E. Stainbank, J . Chem. S o c , Chem. Commun., 209 (1971). 43. W.S. McDonald, C. Masters, G. Raper, and B.L. Shaw, J . Chem. S o c , Chem. Commun., 210 (1970). 44. A . J . Cheney, B.L. Shaw, and R.M. Slade, J . Chem. S o c , Chem. Commun., 1176 (1970). 45. A.W. Frank, J . Org. Chem., 31, 1521 (1966). 46. R.F. S t o c k e l , M.T. Beachem, and F.H. Megson, J . Org. Chem. , 30_, 1629 (1965) . 47. R.C. Lord, and R.W. Walker, J . Amer. Chem. S o c , 76, 2518 (1954) . 48. J . Feeney, L.H. S u t c l i f f e , and S.M. Walker, Mol. Phys., 1^, 129 (1966) . 49. H.M. B e i s n e r , L.C. Brown, and D. W i l l i a m s , J . Mol. Spectroscopy, 7_, 385 (1961) . 50. J . Feeney, L.H. S u t c l i f f e , and S.M. Walker, Mol. Phys., 11_, 137 (1966) . 51. L.S. Chia, W.R. C u l l e n , and D.A. Harbourne, Can. J . Chem. , 50_, 2182 (1972) . 52. (a) B.H. P i e r s , and G.B. P o r t e r , unpublished r e s u l t s . (b) M.D. Cohen, and G.M.J. Schmidt, J . Phys. Chem., 66_, 2442 (1962) . (c) M.D. Cohen, Y. Hi r s h b e r g , and G.M.J. Schmidt, J . Chem. Soc., 2051 (1964) . 53. H. Behrens, and N. Harder, Chem. Ber., 97_, 426 (1964). 54. T. Kruck, Chem. Ber., 97^ , 2018 (1964). - 230 -55. W.A.G. Graham, I n o r g . Chem., 7_, 315 (1968). 56. J . C h a t t , and H.R. Watson, J . Chem. S o c , 4980 (1961). 57. F. Z i n g a l e s , F. C a n z i a n i , and F. B a s o l o , J . Organometal. Chem., 7, 461 (1967). 58. R.B. K i n g , and P.N. Kapoor, J . Organometal. Chem., 18, 357 (1969). 59. K.W. B a r n e t t , and P.M. T r e i c h e l , I n o r g . Chem., 6_, 294 (1967). 60. R.J. H a i n e s , R.S. Nyholm, and M.H.B. S t i d d a r d , J . Chem. S o c (A) , 43 (1968) . 61. R.B. K i n g , K.H. P a n n e l l , C.A. Eg g e r s , and L.W. Houk, I n o r g . Chem., 7, 2353 (1968). 62. D.M. Adams, " M e t a l - l i g a n d and r e l a t e d v i b r a t i o n s " , A r n o l d , London, Eng., p. 101 (1967). 63. R. P o i l b l a n c , and M. B i g o r n e , B u l l . S o c Chim. F r a n c e , 1301 (1962). 64. W. J e t z , and W.A.G. Graham, J . Amer. Chem. S o c , 89, 2773 (1967). 65. F.A. C o t t o n , and G. W i l k i n s o n , "Advanced I n o r g a n i c C h e m i s t r y " , I n t e r s c i e n c e , New Yor k , N.Y., pp. 1055 -1056 (1962). 66. R.B. K i n g , I n o r g . N u c l . Chem. L e t t . , 5_, 905 (1969). 67. M.G.B. Drew, J . Chem. Soc. D a l t o n , 1329 (1972) . 68. D.S. Payne, J.A.A. Mokuolu, and J.C. Speakman, J . Chem. S o c , Chem. Commun., 599 (1965). 69. H. L u t h , M.R. T r u t e r , and A. Robson, J . Chem. Soc. ( A ) , 28 (1969). - 231 -70. A.R. Davis, F.W.B. E i n s t e i n , and J.D. H a z l e t t , A c t a . C r y s t . , B33_, 212 (1977) . 71. H. Werner, J . Organometal. Chem., 5_, 100 (1966). 72. R.J. A n g e l i c i , and J.R. Graham, J . Amer. Chem. S o c , 8j8, 3658 (1966) . 73. J.R. Graham, and R.J. A n g e l i c i , Inorg. Chem., 6_, 2082 (1967) . 74. J.E.H. Ward, Ph.D. t h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, 1972, p. 51. 75. F.A. Hart, and F.G. Mann, J . Chem. S o c , 3939 (1957). 76. R.C. Hinton, and F.G. Mann, J . Chem. S o c , 2835 (1959). 77. C.E. Wymore, and J.C. B a i l a r , J r . , J . Inorg. N u c l . Chem., 14_, 42 (1960) . 78. A.D. Westland, J . Chem. S o c , 3061 (1965). 79. J . Chatt, and F.G. Mann, J . Chem. S o c , 1622 (1939). 80. M.J. Hudson, R.S. Nyholm, and N.H.B. S t i d d a r d , J . Chem. S o c (A) , 40 (1968) . 81. G.W. Watt, and R. Layton, Inorg. Chem., 1, 496 (1962). 82. K.A. Jensen, Z. Anorg. Allgem. Chem., 229, 237 (1936). 83. K.K. Chow, W. Levason, and C.A. M c A u l i f f e , Inorg. Chim. Acta., 15_, 79 (1974) . 84. W.R. C u l l e n , M. W i l l i a m s , and A.W. Wu, unpublished r e s u l t s . 85. M.A. Bennet, P.W. C l a r k , G.B. Robertson, and P.O. Whimp, J . Organometal. Chem., 6_3_, C15 (1973). 86. A.J. Ca r t y , B.E. Mann, B.L. Shaw, and R.M. Slade, J . Chem. Soc. (A) , 3833 (1971) . - 232 -87. C E . Jones, B.L. Shaw, and B.L. T u r t l e , J . Chem. S o c , Dalton Trans., 992 (1974). 88. G.W. P a r s h a l l , A c c t s . Chem. Res., 3_, 139 (1970). 89. R.G. Goel, and R.G. Montemayor, Inorg. Chem., 16, 2183 (1977). 90. J . Chatt, and C A . Rowe, Nature, 191, 1191 (1961). 91. R.B. King, and P.N. Kapoor, Inorg. Chem. , 11_, 1525 (1972) . 92. J.F. Nixon, M.D. Sexton, J . Chem. Soc. (A), 322 (1970). 93. D.M. Adams, J . Chatt, and A.D. Westland, J . Chem. S o c , 734 (1964) . 94. C E . Coates, and C. P a r k i n , J . Chem. S o c , 421 (1963). 95. P.S. Dh a l i w a l , Ph.D. t h e s i s , U n i v e r s i t y of B r i t i s h Columbia, 1966, p. 103. 96. T.A. Manuel,' Inorg. Chem., 2_, 854 (1963). 97. W.R. C u l l e n , and D.A. Harbourne, Can. J . Chem., 47, 3371 (1969). 98. J . Chatt, and D.A. Thornton, J . Chem. S o c , 1005 (1964). 99. H. Nigam, R.S. Nyholm, and D.V. Ramana Rao, J . Chem. Soc., 1397 (1959). 100. J.P. Crow and W.R. C u l l e n , Can. J . Chem., 49_, 2948 (1971) . 101. L.S. Ch i a , W.R. C u l l e n , J.R. Sams, and J . C S c o t t , Can. J . Chem., 53_, 2232 (1975). 102. F.A. Cotton,, and R.V. P a r i s h , J . Chem. S o c , 1440 (1960). 103. J . Donohue, and A. Caron, J . Phys. Chem., 70_, 603 (1966). - 233 -104. F.W.B. E i n s t e i n , and C.H. Huang, A c t a , C r y s t . , B34, 1486 (1978). 105. D.S. Brown, and G.W. B u s h n e l l , A c t a . C r y s t . , 22_, 292 (1967) . 106. M. A s k t a r , P.D. E l l i s , A.G. MacDiarmid, and J.D. Odom, I n o r g . Chem., L I , 2917 (1972). 107. F.W.B. E i n s t e i n , W.R. C u l l e n , and J . T r o t t e r , J . Amer. Chem. S o c , 88_, 5670 (1966). 108. F.W.B. E i n s t e i n , and R.D.G. Jones, I n o r g . Chem., 12, 255 (1973). 109. W. H i e b e r , and W. F r e y e r , Chem. B e r . , 9_3, 462 (1960). 110. A. Sacco, Gazz. Chim. I t a l . , 9_3, 698 (1963). 111. A.G. Osborne, and M.H.B. S t i d d a r d , J . Chem. S o c , 4715 (1962) . 112. A.G. Osborne, and M.H.B. S t i d d a r d , J . Chem. S o c , 700 (1965) . 113. R.H. Reimann, and E. S i n g l e t o n , J . Organometal. Chem., 38_, 113 (1972) . 114. (a) K.G. C a u l t o n , and P. A d a i r , J . Organometal. Chem., 114, C l l (1976) . (b) R. C o l t o n , C.J. Commons, and B.F. H o s k i n s , J . Chem. S o c Chem. Commun., 363 (1975). 115. R.S. Nyholm, and D.V. Ramana Rao, P r o c Chem. S o c , 130 (1959) . 116. J.P. Crow, W.R. C u l l e n , and F.L. Hou, I n o r g . Chem., 11, 2125 (1972). - 234 -117. A.J. Poe , p e r s o n a l communication. 118. J . Lewis, A.R. Manning, and J.R. M i l l e r , J . Chem. Soc. (A) , 845 (1966) . 119. C.N. Mathews, T.A. Magee, and J.H. Wotiz, J . Amer. Chem. S o c , 81_, 2273 (1959). 120. G. Schwenzer, M.Y. Darensbourg, and D.J. Darensbourg, Inorg. Chem., L I , 1967 (1972). 121. R.B. King, Inorg. Chem., 2, 936 (1963). 122. F.W.B. E i n s t e i n , and C H . Huang, unpublished r e s u l t s . 123. F .A. Cotton, and C S . K r a i h a n z e l , J . Amer. Chem. S o c , 8_4_, 4432 (1962) . 124. C S . K r a i h a n z e l , and F.A. Cotton, Inorg. Chem., 2_, 533 (1963). 125. S.F.A. K e t t l e , and I . Pa u l , Inorg. Chim. A c t a . , 2_, 15 (1968). 126. J . Chatt, and R.G. W i l k i n s , J . Chem. S o c , 2532 (1951) 127. J . Chatt, and R.G. W i l k i n s , J . Chem. S o c , 70 (1953). 128. M.A.A. Beg, and H.C C l a r k , Can. J . Chem., 38_, 119 (1960). 129. J . Chatt, and L.M. Venanzi, J . Chem. S o c , 2787 (1955) 130. J . Chatt, and L.M. Venanzi, J . Chem. S o c , 2351 (1957) 131. R.J. Goodfellow, and L.M. Venanzi, J . Chem. S o c , 7533 (1965). 132. R.T. Simpson, S. Jacobson, A . J . Ca r t y , M. Mathew, and G.J. P a l e n i k , J . Chem. Soc. Chem. Commun., 388 (1973). 133. P.L. Goggin, and R.J. Goodfellow, J . Chem. Soc. (A), 1462 (1966). - 235 -134. J . Horacek, and z. S i r , . C o l i n . Czeck, Chem. Commun., 41_(7) , 2015 (1976) . 135. F.G. Mann, and A.F. We l l s , J . Chem. S o c , 702 (1938). 136. D.M. Adams, and P.J. Chandler, J . Chem. S o c , Chem. Commun., 6 9 (1966) . 137. R.J. Goodfellow, P.L. Goggin, and L.M. 'Venanzi, J . Chem. Soc. (A) , 1897 (1967) . 138. R.G. Goel, and R.G. Montemayor, J . Coord. Chem., 8_, 1 (1978) . 139. W. Schweckendick, Chem. A b s t r . , 52_, 9192 (1958) . 140. T.A. Manuel, and F.G.A. Stone, J . Amer. Chem. S o c , 8_2, 366 (1960) . 141. N.H. Paik, A . J . Carty, K. Dymock, and G.J. P a l e n i k , J . Organometal. Chem., 7_0, C17 (1974). 142. M.A. Bennet, G.B. Robertson, I.B. Tomkins, and P.O. Whimp, J . Chem. Soc. Chem. Commun., 341 (1971). 143. J.R. Sams, and T.B. T s i n , p e r s o n a l communication. 144. W.R. C u l l e n , M. W i l l i a m s , F.W.B. E i n s t e i n , and A.C. , W i l l i s , J . Organometal. Chem., 155, 259 (1978). 145. R.D. Chambers, A. P a r k i n , and R.S. Mathews, J . Chem. S o c , P e r k i n Trans., 2107 (1976). 14 6. R.D. Chambers, R.S. Mathews, and A. P a r k i n , J . Chem. Soc. Chem. Commun., 509 (1973). 14 7. I.D. Brown, "Bond Index to the Determination o f Inor g a n i c C r y s t a l S t r u c t u r e s , " 1969-1976, I n s t i t u t e - 236 -f o r M a t e r i a l s Research, McMaster U n i v e r s i t y , Hamilton, O n t a r i o . 148. G.W. P a r s h a l l , and G. W i l k i n s o n , J . Chem. S o c , 1132 (1962) . 149. W.R. C u l l e n , L.M. Mihichuck, J . Organometal. Chem., 73, C53 (1974) . 150. K. Stan l e y , and D.W. McBride, Can. J . Chem., 5_3_, 2537 (1975) . 151. A . J . Ca r t y , G. Ferguson, H.N. Paik, and R. R e s t i v o , J . Organometal. Chem., 74, C14 (1974). 152. C E . C o f f e y , J . Amer. Chem. S o c , 83_, 1623 (1961). 153. E.O. F i s h e r , and H.-J. Beck, Chem. Ber., 104, 3101 (1971). 154. S.O. Grim, D.A. Wheatland, and W. McFarlane, J . Amer. Chem. S o c , 89_, 5573 (1967). 155. R.E. Cobbledick, and F.W.B. E i n s t e i n , unpublished r e s u l t s . 156. C.W. B r a d f o r d , R.S. Nyholm, G.J. G a i n s f o r d , J.M. Guss, P.R. I r e l a n d , and R. Mason, J . Chem. S o c Chem. Commun., 87 (1972). 157. C - J . G a i n s f o r d , J.M. Guss, P.R. I r e l a n d , R. Mason, C.W. B r a d f o r d , and R.S. Nyholm, J . Organometal. Chem., C70, 40 (1972). 158. M.I. Bruce, G. Shaw, and F.G.A. Stone, J . Chem. S o c , Dalt o n Trans., 2094 (1972). 159. J.R. B l i c k e n s d e r f e r , and H.D. Kaesz, J . Amer. Chem. Soc., 97, 2681 (1975) . - 237 -160. R. Mason, I. S o t o f t e , S.D. Robinson, and M.F'. U t t l e y v J . Organometal. Chem., 4_6_, C61 (1972). 161. P.L. B e l l o n , C. B e n e d i c e n t i , G. C a g l i o , and M. Manassero, J . Chem. Soc. Chem. Commun., 946 (1973). 162. R.F. Lambert, Chem. Ind. (London), 830 (1961). 163. H.W. Sternberg, R. Markby, and I . Wender, J . Amer. Chem. S o c , 78_, 5704 (1956). 164. H.W. Sternberg, R. Markby, and I . Wender, J . Amer. Chem. S o c , 79_, 6116 (1957). 165. T.A. Manuel, J . Org. Chem., 27, 3941 (1962). 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0060890/manifest

Comment

Related Items