UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fluorosulfates of silver, ruthenium, and osium Leung, Patrick Cheung Shing 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A1 L38.pdf [ 12.28MB ]
Metadata
JSON: 831-1.0060741.json
JSON-LD: 831-1.0060741-ld.json
RDF/XML (Pretty): 831-1.0060741-rdf.xml
RDF/JSON: 831-1.0060741-rdf.json
Turtle: 831-1.0060741-turtle.txt
N-Triples: 831-1.0060741-rdf-ntriples.txt
Original Record: 831-1.0060741-source.json
Full Text
831-1.0060741-fulltext.txt
Citation
831-1.0060741.ris

Full Text

FLUOROSULFATES OF SILVER, RUTHENIUM, AND OSMIUM by PATRICK CHEUNG SHING LEUNG B.Sc. (Hons.), The U n i v e r s i t y of B r i t i s h Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (Department of Chemistry) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA December, 1979 © P a t r i c k Cheung Shing Leung, 1979 In present ing th is thes is in p a r t i a l fu l f i lment of the requirements f an advanced degree at the Un ivers i ty of B r i t i s h Columbia, I agree tha the L ibrary sha l l make i t f ree ly ava i l ab le for reference and study. I fur ther agree that permission for extensive copying of th is thes is for scho la r ly purposes may be granted by the Head of my Department or by h is representa t ives . It is understood that copying or pub l i ca t ion of th is thes is fo r f inanc ia l gain sha l l not be allowed without my wri t ten permission. Department of CMMUTtY The Univers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 ABSTRACT A number of s y n t h e t i c routes t o s i l v e r ( I I ) f l u o r o s u l f a t e , Ag(SC> 3F) 2, were s y s t e m a t i c a l l y e x p l o r e d . The most s u i t a b l e and v e r s a t i l e route was found to be the o x i d a t i o n o f s i l v e r metal by a s o l u t i o n o f b i s f l u o r o s u l f u r y l peroxide, S 2 0 g F 2 , i n f l u o r o s u l f u r i c a c i d , HSO^F, a c c o r d i n g t o : HS0 3F Ag + S 2 0 6 F 2 m- Ag (SC>3F) 2 > A d d i t i o n a l methods which were found to be s u i t a b l e i n v o l v e d the o x i d a t i o n o f a wide v a r i e t y o f s i l v e r ( I ) compounds such as Ag 20 or AgSO^F by S 2 ° 6 F 2 ' o r t h e i - n s e r t : L O n o f S 0 3 i n t o A g F 2 . S t r u c t u r a l c o n c l u s i o n s on A g ( S 0 3 F ) 2 and the o t h e r compounds s y n t h e s i z e d subsequently were based on the v i b r a t i o n a l , e l e c -t r o n i c and e l e c t r o n s p i n resonance s p e c t r a , as w e l l as on magnetic s u s c e p t i b i l i t y measurements made between 300 and 77 K. Ag(S0.jF) 2 was found to be a tr u e compound of d i v a l e n t s i l v e r , 2 + with the Ag ions i n e i t h e r square p l a n a r o r t e t r a g o n a l l y elongated o c t a h e d r a l environment. The o n l y o t h e r example o f a b i n a r y s i l v e r ( I I ) compound i s AgF 2. S e v e r a l s i l v e r ( I I ) f l u o r o s u l f a t e d e r i v a t i v e s were prepared and c h a r a c t e r i z e d . The r e a c t i o n s o f bromine(I) f l u o r o s u l f a t e w i t h m e t a l l i c s i l v e r and other s i l v e r ( I ) s u b s t r a t e s r e s u l t e d i n a mixed valence complex Ag^Ag''"'''(SO^F) 4 . I t s potassium analogue r^AgCSO^F)^, as w e l l as two h e x a k i s f l u o r o s u l f a t o -m e t a l l a t e (IV) complexes A g P t I V (SO..F) , and A g S n I V (SO-.F) . , and 3 b j b the N-donor l i g a n d complex [ A g t b i p y ^ l (SO^F^ ( i - n which bipy = 2 , 2 ' - b i p y r i d i n e ) were a l s o s y n t h e s i z e d . The attempt to s y n t h e s i z e a s i l v e r ( I I I ) f l u o r o s u l f a t o complex by d i r e c t i n s e r t i o n o f SO^ i n t o CsAgF^ r e s u l t e d i n the f l u o r i n a t i o n of SC>3, to g i v e S 2 ° 6 F 2 a n d C s A g ( S 0 3 F ) 3 . F i n a l l y , the s o l v o l y s i of A g ( S 0 3 F ) 2 i n t r i f l u o r o m e t h y l s u l f u r i c a c i d , HSO^CF^, allowed i t s c o n v e r s i o n i n t o AgtSO^CF^),,. The p r i n c i p a l s y n t h e t i c r o u t e , the o x i d a t i o n o f metal by S 2 ° 6 F 2 s ° l u r - i ° n s i n HSO^F, was found to be u s e f u l i n the p r e p a r a t i o n of RutSO^F)^. Ruthenium was a l s o found to form a number o f a n i o n i c d e r i v a t i v e s with the metal i n the +3 or +4 o x i d a t i o n s t a t e , as i n M[Ru(SC> 3F) 4] with M = Cs + , C10 2 + ; M 2 [ R u ( S 0 3 F ) 6 J with M = C s + , K +; and C s [ R u ( S 0 3 F ) g ] . Two d i f f e r e n t forms of O s ( S 0 3 F ) 3 were found. I n i t i a l o x i d a t i o n of osmium metal with S 2 ° g F 2 y i e l d e d the b r i g h t green a-Os(S0 3F) 3, which was converted to the l i g h t green 3-form on long s t a n d i n g i n S 9O f iF ; ?. - i v -T A B L E OF CONTENTS Page A B S T R A C T i i L I S T OF T A B L E S x i i L I S T OF F I G U R E S x v i ACKNOWLEDGEMENTS x v i i i I . GENERAL INTRODUCTION 1 A . I n t r o d u c t o r y Remarks 1 B . T h e F l u o r o s u l f a t e R a d i c a l A n d I t s A n i o n . . . . 6 C . S y n t h e t i c R o u t e s To F l u o r o s u l f a t e s 19 D . V i b r a t i o n a l S t u d i e s O f The F l u o r o s u l f a t e G r o u p 2 5 E . T r a n s i t i o n M e t a l F l u o r o s u l f a t e s 30 F . S t r u c t u r a l C h a r a c t e r i z a t i o n s O f T r a n s i t i o n M e t a l F l u o r o s u l f a t e s 34 I I . - E X P E R I M E N T A L 35 A . A p p a r a t u s 35 1. P y r e x v a c u u m l i n e 35 2. M e t a l v a c u u m l i n e . 36 3. R e a c t i o n s v e s s e l s 37 4. HSO-jF d i s t i l l a t i o n a p p a r a t u s 44 5. H S O ^ C F ^ d i s t i l l a t i o n a p p a r a t u s 44 6. D r y b o x 4 6 - v -Page 7. M i s c e l l a n e o u s 46 B. Instrumental Methods 47 1. -In f r a r e d spectroscopy 47 2. Raman spectroscopy 50 3. V i s i b l e and u l t r a v i o l e t s p e c t r o s c o p y . . . . 50 4. Magnetochemistry 51 5. E l e c t r o n s p i n resonance s p e c t r o s c o p y . . . . 53 6. Mossbauer spectroscopy 53 7. M e l t i n g p o i n t s 54 C. Chemicals 54 1. Commercial sources 54 2. P r e p a r a t i v e r e a c t i o n s 57 D. Chemical Analyses 61 1. Elemental analyses 61 2. O x i d a t i o n s t a t e s d e t e r m i n a t i o n s 6 3 I I I . FLUOROSULFATES OF SILVER(II) 64 A. I n t r o d u c t i o n 64 B. S i l v e r (II) F l u o r o s u l f a t e 76 1. I n t r o d u c t i o n 76 2. S y n t h e t i c r e a c t i o n s 77 (a) Reactions w i t h f l u o r o s u l f u r y l peroxide 77 (b) Reactions w i t h mixtures o f HSO^ and S 2 ° 6 F 2 8 4 - v i -Page (c) The r e a c t i o n of s i l v e r ( I I ) f l u o r i d e and s u l f u r t r i o x i d e 85 (d) Reactions w i t h bromine monofluoro-s u l f a t e 86 (e) D i s c u s s i o n 88 3. C h a r a c t e r i z a t i o n o f A g ( S 0 3 F ) 2 96 (a) I n f r a r e d s p e c t r a 96 (b) E l e c t r o n i c s p e c t r a 99 (c) Magnetic s u s c e p t i b i l i t y measurements 104 (d) E l e c t r o n s p i n resonance s p e c t r a I l l (e) O x i d a t i o n s t a t e d e t e r m i n a t i o n 117 (f) Thermal decomposition 118 C. C o o r d i n a t i o n Complex Of A g ( S 0 3 F ) 2 , [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 119 1. I n t r o d u c t i o n 119 2. Syn t h e s i s of s i l v e r ( I I ) b i s ( 2 , 2 ' - b i p y -r i d y l ) b i s ( f l u o r o s u l f a t e ) 120 3. C h a r a c t e r i z a t i o n s 121 (a) V i b r a t i o n a l s p e c t r a 121 (b) E l e c t r o n i c s p e c t r a 126 (c) Magnetic s u s c e p t i b i l i t y 128 (d) E.S.R. s p e c t r a 130 D. A n i o n i c F l u o r o s u l f a t o Complexes Of S i l v e r ( I I ) 132 1. I n t r o d u c t i o n 132 - v i i -Page 2. S y n t h e s e s a n d e l e m e n t a l a n a l y s e s 132 (a) A g 3 ( S 0 3 F ) 4 . 132 (b) K 2 [ A g ( S 0 3 F ) 4 ] 132 3. E x p e r i m e n t a l r e s u l t s a n d d i s c u s s i o n s . . . . 135 (a) I n f r a r e d s p e c t r a 135 (b) M a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s 135 (c) E . S . R . s p e c t r a 145 (d) O x i d a t i o n s t a t e d e t e r m i n a t i o n a n d t h e r m a l d e c o m p o s i t i o n o f A g 3 ( S 0 3 F ) 4 . 147 E . S i l v e r ( I I ) H e x a k i s ( f l u o r o s u l f a t o ) m e t a l l a t e ( I V ) 148 1. I n t r o d u c t i o n 148 2. S y n t h e s e s a n d e l e m e n t a l a n a l y s e s 149 (a) A g P t ( S 0 3 F ) 6 149 (b) A g S n ( S 0 3 F ) 6 150 3. C h a r a c t e r i z a t i o n s 151 (a) V i b r a t i o n a l s p e c t r a . 151 (b) E l e c t r o n i c s p e c t r a 154 (c) M a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s 156 (d) E . S . R . s p e c t r a 160 119 (e) Sn M o s s b a u e r s p e c t r a o f A g S n ( S 0 3 F ) g 162 F . R e a c t i o n s O f A g ( S 0 3 F ) 2 164 1. R e a c t i o n o f A g ( S 0 3 F ) 2 w i t h e l e m e n t a l f l u o r i n e 164 - v i i i -Page (a) I n t r o d u c t i o n 164 (b) Conversion of A g ( S 0 3 F ) 2 i n t o A g F 2 « . . 165 (c) D i s c u s s i o n 166 2. Reactions with some oth e r halogens 167 (a) C h l o r i n e 167 (b) Bromine 167 3. Reactions with c h l o r y l f l u o r o s u l f a t e . . . . 169 4. Reaction with p y r i d i n e 171 5. Reaction with a c e t o n i t r i l e 172 6. Reaction w i t h antimony p e n t a f l u o r i d e . . . . 173 G. Attempts to o b t a i n h i g h e r o x i d a t i o n s t a t e s o f s i l v e r 175 1. The r e a c t i o n o f AgO and S 2 ° 6 F 2 1 7 5 2. The r e a c t i o n o f CsAgF 4 and S 0 3 176 (a) I n t r o d u c t i o n 176 (b) S y n t h e t i c r e a c t i o n s 177 (c) C h a r a c t e r i z a t i o n of C s A g ( S 0 3 F ) 3 179 IV. SILVER (II) TRIFLUOROMETHYLSULFATE 18 6 A. I n t r o d u c t i o n 18 6 B. S y n t h e t i c Reactions 188 1. Sy n t h e s i s o f s i l v e r ( I I ) t r i f l u o r o m e t h y l -s u l f a t e 188 (a) Reaction o f Ag(SO-jF) 0 and HSO^CF-,... 188 - i x -Page (b) Other s y n t h e t i c a t t e m p t s 189 (c) D i s c u s s i o n 190 2. C o n v e r s i o n o f A g ( S 0 3 C F 3 ) 2 i n t o [ A g ( b i p y ) 2 ] ( S 0 3 C F 3 ) 2 193 C. E x p e r i m e n t a l R e s u l t And D i s c u s s i o n 193 1. I n f r a r e d spectrum 193 2. Magnetic measurements 194 3. E.S.R. spectrum 198 4. Thermal d e c o m p o s i t i o n 200 D. C o n c l u s i o n 202 V. FLUOROSULFATES OF RUTHENIUM 203 A. I n t r o d u c t i o n 203 B. Ruthenium ( I I I ) F l u o r o s u l f a t e 207 1. P r e p a r a t i o n and e l e m e n t a l a n a l y s i s 2 07 2. E x p e r i m e n t a l r e s u l t and d i s c u s s i o n .... 208 (a) I n f r a r e d s p e c t r a 208 (b) Magnetic s u s c e p t i b i l i t i e s 210 (c) E l e c t r o n i c s p e c t r a 213 (d) E.S.R. s p e c t r a 217 (e) D i s c u s s i o n 219 C. A n i o n i c F l u o r o s u l f a t o Complexes Of Ruthenium ( I I I ) 222 - x -Page 1. I n t r o d u c t i o n 222 2. Syntheses and e l e m e n t a l a n a l y s e s 222 (a) C l 0 2 [ R u ( S 0 3 F ) 4 ] 222 (b) C s [ R u ( S 0 3 F ) 4 ] 223 (c) The a t t e m p t e d s y n t h e s i s o f C s 3 [Ru(S0 3F) ] 223 3. C h a r a c t e r i z a t i o n s 224 (a) I n f r a r e d s p e c t r a 224 (b) M a g n e t i c s u s c e p t i b i l i t i e s 227 (c) E.S.R. s p e c t r a 227 D. A n i o n i c F l u o r o s u l f a t o Complexes o f Ruthenium(IV) 229 1. I n t r o d u c t i o n 229 2. P r e p a r a t i o n s and e l e m e n t a l a n a l y s e s 2 31 (a) K 2 [Ru(S0 3F) ] 231 (b) C s 2 [Ru(S0 3F) ] 231 (c) Cs [Ru(S0 3F) ] 232 3. C h a r a c t e r i z a t i o n s 232 (a) V i b r a t i o n a l s p e c t r a 232 (b) M a g n e t i c s u s c e p t i b i l i t y measurements 233 (c) E l e c t r o n i c s p e c t r a 237 E. Other S y n t h e t i c Attempts 239 l . i . R e a c t i o n o f S 2 0 g F 2 w i t h r u t h e n i u m m e t a l . 239 2. R e a c t i o n o f S o0_F_ w i t h Ru(SO_,F)_ 240 2 6 2 3 3 3. R e a c t i o n o f B r S 0 o F w i t h r u t h e n i u m m e t a l . 24 0 - x i -Page 4. R e a c t i o n s o f Ru0 2 241 V I . OSMIUM ( I I I ) FLUOROSULFATE 242 A. I n t r o d u c t i o n 242 B. S y n t h e t i c R e a c t i o n s And E l e m e n t a l A n a l y s e s 1. S y n t h e s i s o f Os (S0 3F) 245 2. Other s y n t h e t i c a t t e m p t s 246 3. Attempts t o s y n t h e s i z e f l u o r o s u l f a t o complexes o f osmium 247 C. E x p e r i m e n t a l R e s u l t And D i s c u s s i o n 248 1. V i b r a t i o n a l s p e c t r a 248 2. Magnetic s u s c e p t i b i l i t y measurements.... 250 3. E l e c t r o n i c s p e c t r a 253 4. E.S.R. s p e c t r a 255 5. C o n c l u s i o n 256 V I I . GENERAL CONCLUSION 257 A. Summary 25 7 B. S u g g e s t i o n s F o r F u r t h e r Work 258 BIBLIOGRAPHY 260 APPENDICES 277 - x i i -LIST OF TABLES Table Page 1. Fundamental Frequencies Of M a t r i x Isoated SO-jF and Comparison With Other R e s u l t s 9 2. Ligand F i e l d Parameters For Some N i c k e l S a l t s . . . 16 3. S e l e c t e d Parameters For F~ And S0 3F~ 18 4. Some P h y s i c a l P r o p e r t i e s Of HS0 3F, S 2 ° 6 F 2 a n d BrS0 3F 24 5. S t r u c t u r a l Bonding D i f f e r e n t i a t i o n For The S0 3F Group 2 6 6. Commercially A v a i l a b l e Types Of Apparatus 48 7. Chemicals 55 8. Some I o n i z a t i o n P o t e n t i a l s Of S i l v e r And Copper. 65 9. S y n t h e t i c Routes To A g ( S 0 3 F ) 2 92 10. I n f r a r e d S p e c t r a Of A g ( S 0 3 F ) 2 And Related Compounds 98 11. E l e c t r o n i c S p e c t r a Of A g ( S 0 3 F ) 2 And Related Compounds 102 12. Magnetic S u s c e p t i b i l i t i e s And Magnetic Moments Of Ag (S0 3F) 106 13. Magnetic P r o p e r t i e s Of A g ( S 0 3 F ) 2 And Rel a t e d Compounds * 110 - x i i i -Table Page 14. ESR Data Of S i l v e r (II) F l u o r o s u l f a t e 116 15. V i b r a t i o n a l Spectra Of [ A g ( b i p y ) 2 ] ( S 0 3 F ) And [Ag (bipy) 2 ] (CF 3S0 3F) 2 123 16. A n i o n i c I n f r a r e d Bands Of [ A g ( b i p y ) 2 ] ( S 0 3 F ) And Related Compounds 12 5 17. E l e c t r o n i c Spectra Of [ A g ( b i p y ) 2 ] ( S 0 3 F ) And Related Compounds 127 18. Magnetic S u s c e p t i b i l i t i e s And Magnetic Moments Of [Ag(bipy) 2 ] (S0 3F) 2 129 19. ESR Data Of Some 2 , 2 ' - b i p y r i d i n e Complexes Of S i l v e r (II) 131 20. I n f r a r e d Spectra Of A g 3 ( S 0 3 F ) 4 and K 2 A g ( S 0 3 F ) 4 . . 136 21. Magnetic S u s c e p t i b i l i t i e s And Magnetic Moments Of A g 3 ( S 0 3 F ) 4 And K 2 A g ( S 0 3 F ) 4 138 22. Experimental J Values Of A g 3 ( S 0 3 F ) 4 143 23. Experimental J Values Of K 2 A g ( S 0 3 F ) 4 144 24. V i b r a t i o n a l Spectra Of AgPt (S0 oF) and 3 D A g S n ( S 0 3 F ) 6 And Related Compounds.... 153 25. E l e c t r o n i c S p e c t r a Of A g P t ( S 0 3 F ) g , A g S n ( S 0 3 F ) g And Related Compounds 157 26. Magnetic S u s c e p t i b i l i t i e s And Magnetic Moments Of AgPt(SO-F) c And AgSn (SO..F) 159 27. ESR Data Of A g P t ( S 0 3 F ) g And A g S n ( S 0 3 F ) 6 And Related Compounds 161 - x i v -Table Page 28. I n f r a r e d Spectra o f C s A g ( S 0 3 F ) 3 and Re l a t e d Compounds » . . . . 181 29. Magnetic S u s c e p t i b i l i t i e s and Magnetic Moments f o r CsAg (S0 3F) 3 183 30. I n f r a r e d Frequencies o f A g ( S 0 3 C F 3 ) 2 and Re l a t e d Compounds.. 195 31. Magnetic S u s c e p t i b i l i t y Data o f A g ( S 0 3 C F 3 ) 2 197 32. Experimental J val u e s o f Ag(SC> 3CF 3) 2 199 33. I n f r a r e d Frequencies of V o l a t i l e s from Thermal Decomposition of A g ( S 0 3 C F 3 ) 2 201 34. I n f r a r e d Frequencies of Ru(SC> 3F) 3 and Re l a t e d Compounds 20 9 35. Magnetic S u s c e p t i b i l i t y Data o f Ru(SC> 3F) 3 212 36. E l e c t r o n i c Spectra o f R u ( S 0 3 F ) 3 and Related Complexes 216 37. ESR Data of R u ( S 0 3 F ) 3 218 38. IR Frequencies o f A n i o n i c F l u o r o s u l f a t o Complexes of Ruthenium (III) 225 39. Magnetic S u s c e p t i b i l i t y Data of C s [ R u ( S 0 3 F ) 4 ] . . . . 228 40. V i b r a t i o n a l Frequencies of A n i o n i c F l u o r o s u l f a t o Complexes of Ruthenium(IV) 2 34 41. Magnetic S u s c e p t i b i l i t y Data of K 2[Ru(S0 3F) ], C s 2 [ R u ( S 0 3 F ) g ] , C s [ R u ( S 0 3 F ) 5 ] 236 - X V -Table . Page 42. E l e c t r o n i c Spectra o f F l u o r o s u l f a t o Complexes of Ruthenium 238 43. V i b r a t i o n a l S p e c t r a o f O s ( S 0 3 F ) 3 249 44. Magnetic S u s c e p t i b i l i t y Data of O s ( S 0 3 F ) 3 252 45. E l e c t r o n i c Spectra of O s ( S 0 3 F ) 3 and Related Compounds 254 - x v i -LIST OF FIGURES F i g u r e Page 1. C o r r e l a t i o n Diagram f o r the F l u o r o s u l f a t e group 27 2. E x i s t i n g B inary T r a n s i t i o n Metal F l u o r i d e s and F l u o r o s u l f a t e s 31 3. Pyrex Reaction V e s s e l s 38 4. Monel Metal 2-Part Reaction V e s s e l 42 5. Kel-F Reaction Trap 4 3 6. F l u o r o s u l f u r i c A c i d D i s t i l l a t i o n Apparatus 45 7. Apparatus f o r the P r e p a r a t i o n o f S 2 0 g F 2 5 8 8. Metal Flow Reactor f o r F l u o r i n a t i o n R e a c t i o n s . . 62 9. E l e c t r o n i c C o n f i g u r a t i o n and S p e c t r o s c o p i c Terms of S i l v e r ( I I ) of Octahedral and Elongated T e t r a g o n a l Ligand F i e l d 101 10. Magnetic S u s c e p t i b i l i t i e s of A g ( S 0 3 F ) 2 and [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 108 11. ESR-Spectra o f A g ( S 0 3 F ) 2 a t 80 K 115 12. The I n f r a r e d Spectrum o f [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 . . . . 122 13. Magnetic S u s c e p t i b i l i t y of A g 3 ( S 0 3 F ) 4 from 80 to 310 K 139 14. V^ff v e r s u s k T / J p l o t f o r A 9 3 ( S 0 3 F ) 4 1 4 2 15. u e f f v e r s u s -kT/J P l o t f o r K 2 A g ( S 0 3 F ) 4 146 16. The Raman Spectrum of AgPt(S0-.F) f i 152 - x v i i -F i g u r e Page 17. D i f f u s e R e f l e c t a n c e Spectrum of AgSn(SO^F)^.... 155 18. Magnetic S u s c e p t i b i l i t i e s o f AgPtCSO^F) and A g S n ( S 0 3 F ) 6 158 19. I n t e r c o n n e c t i n g Reaction Scheme between the F l u o r o s u l f a t e s of S i l v e r 170 20. The I.R. Spectrum of C s [ A g ( S 0 3 F ) 3 ] i n the BaF 2 Region 180 21. UV-VISIBLE Spectrum of R u ( S 0 3 F ) 3 i n HSC>3F 214 22. The S t r u c t u r e o f Ru 2 (OCOC 3H 7) 4C1 220 23. M o l e c u l a r O r b i t a l Diagram f o r R u 2 ( 0 2 C C 3 H 7 ) 4 C 1 . . 220 24. The I.R. Spectrum of Cs [Ru (S0 3F) 4 ] 226 25. The E.S.R. Spectrum of C s [ R u ( S 0 3 F ) 4 ] a t 80 K... 230 26. The Raman Spectrum of K 2 [ R u ( S 0 3 F ) g ] 235 27. I.R. Spectra of a- and B-Os(SO,F) 250 - x v i n -ACKNOWLEDGEMENTS I am e x t r e m e l y g r a t e f u l t o my r e s e a r c h d i r e c t o r , P r o f e s s o F . A u b k e , f o r h i s c o n s t a n t a d v i c e a n d e n c o u r a g e m e n t , b o t h a c a d e m i c a n d p e r s o n a l , t h r o u g h o u t t h e e n t i r e c o u r s e o f t h i s w o r k . S p e c i a l t h a n k s a r e due t o P r o f e s s o r R . C . T h o m p s o n f o r h i s many h e l p f u l comments a n d d i s c u s s i o n s . T h a n k s a r e a l s o e x t e n d e d t o v a r i o u s c o w o r k e r s i n L a b . 457 f o r m a k i n g my y e a r s i n g r a d u a t e s t u d y more e n j o y a b l e , a n d i n p a r t i c u l a r , t o M r . K e i t h L e e f o r h i s s t i m u l a t i n g d i s c u s s i o n s a n d a s s i s t a n c e i n v a r i o u s a s p e c t s o f t h i s w o r k . P r o f e s s o r s N . L . P a d d o c k a n d R . C . Thompson a r e t h a n k e d f o r r e a d i n g p o r t i o n s o f t h e m a n u s c r i F i n a l l y , I w o u l d l i k e t o t h a n k my w i f e , M a r i a n n e , f o r h e r t y p i n g o f t h i s m a n u s c r i p t , a n d a b o v e a l l , f o r h e r k i n d u n d e r s t a n d i n g a n d p a t i e n c e . TO MY PARENTS 1 I. GENERAL INTRODUCTION A. INTRODUCTORY REMARKS The t r a n s i t i o n elements may be d e f i n e d as having p a r t l y f i l l e d d or f o r b i t a l s i n t h e i r common o x i d a t i o n s t a t e s . The l a r g e number of t r a n s i t i o n metals can be d i v i d e d i n t o three main groups: (1) d-block elements, (2) l a n t h a n i d e s and (3) a c t i n i d e s . Only the d-block elements, where o f t e n a f u r t h e r d i s t i n c t i o n i n t o 3d, 4d or 5d elements i s made, w i l l be c o n s i d e r e d i n t h i s study. T h e i r common o x i d a t i o n s t a t e s have e l e c t r o n i c c o n f i g u r a t i o n s n d m where n = 3, 4 or 5 and m = 1-9. For example, copper i s t r a n s i t i o n metal, because C u ( I I ) , 9 3d , i s a common o x i d a t i o n s t a t e of copper; whereas z i n c i s not, as i t s o n l y common o x i d a t i o n s t a t e , +2, has a f i l l e d 3d"*"^  c o n f i g u r a t i o n . Each d-block can be roughly s u b d i v i d e d i n t o (a) e a r l y t r a n s i t i o n elements where complete i o n i z a t i o n of a l l valence e l e c t r o n s may occur [nd m and (n+1) s"*"' ^ ] , for example, T i ^ + , 3d^; (b) e l e c t r o n - r i c h t r a n s i t i o n elements, where i o n i z a t i o n of only some o f the valence e l e c t r o n s occurs with the r e s t becoming p a r t o f the c o r e . Owing to t h e i r r e l u c t a n c e to undergo chemical r e a c t i o n s , and i n p a r t i c u l a r t h e i r i n e r t n e s s a g a i n s t mineral a c i d s , the 4d and 5d Group V I I I platinum metals and coinage 2 metals are h i s t o r i c a l l y a l s o known as "Noble M e t a l s " . The i n c r e a s e d n u c l e a r charge i n the l a t e r elements causes a lowering of the energies o f the atomic o r b i t a l s , i n t h i s case, the d o r b i t a l s , and r a i s e s the s u c c e s s i v e I o n i z a t i o n P o t e n t i a l s . Hence the h i g h e s t s t a b i l i z e d o x i d a t i o n s t a t e o f 7 1 copper i s +4 (3d ), as i n the a n i o n i c fluorocomplex CS2fCuFg] Some general c o n t r i b u t i n g f a c t o r s t o the s t a b i l i z a t i o n o f the common o x i d a t i o n s t a t e s a r e : (1) E l e c t r o n i c c o n t r i b u t i o n s where s h e l l s t h a t are empty, h a l f - f i l l e d or f u l l are p a r t i c u -l a r l y s t a b l e , such as T i , d ; Mn , high s p i n d ; Ag , d (2) Thermodynamic f a c t o r s where maximum Ligand F i e l d S t a b i l i -z a t i o n Energy (LFSE) i s o b t a i n e d . Some examples f o r o c t a h e d r a l 2+ 8 3+ 6 systems are N i , d ; Co , low s p i n d . (3) K i n e t i c f a c t o r s where complexes are r a t h e r i n e r t or r e l u c t a n t to undergo l i g a n d s u b s t i t u t u i o n s such as the o c t a h e d r a l complexes o f C r ( I I I ) and Co(III) . The uncommon o x i d a t i o n s t a t e s are those without some or a l l of the above mentioned s t a b i l i z a t i o n f a c t o r s , though there i s no sure guide to the r e l a t i v e s t a b i l i t i e s o f the v a r i o u s o x i d a t i o n s t a t e s , e i t h e r of a p a r t i c u l a r element or w i t h i n a group. For example, i n Group IB, the most common o x i d a t i o n s t a t e of copper i s +2, while +1 i s the most common f o r s i l v e r , and +3 i s the most common f o r go l d , f o r which +1, +2 and +5 are: r a t h e r r a r e . The unusual o x i d a t i o n s t a t e s o f t e n l e a d to many i n t e r e s t i n g 3 a p p l i c a t i o n s . M e t a l s i n t h e i r h i g h e r o x i d a t i o n s t a t e s , a s i n P t ^ F g o r A g * I F 2 / a r e s t r o n g l y o x i d i z i n g and f o r f l u o r i d e s , strongly f l u o r i n a t i n g a g e n t s ; whereas m e t a l s i n t h e low o x i d a -t i o n s t a t e s , e s p e c i a l l y t h e Group V I I I m e t a l s , have been f o u n d u s e f u l i n homogeneous and h e t e r o g e n e o u s c a t a l y s i s . I t i s t h e h i g h e r o x i d a t i o n s t a t e s t h a t a r e o f main i n t e r e s t i n t h i s s t u d y . The o x i d a t i o n s t a t e o f an e l e m e n t i s o f t e n i n f e r r e d f r o m i t s c h e m i c a l f o r m u l a , b u t t h e e m p i r i c a l f o r m u l a may sometimes be m i s l e a d i n g . F o r example, PdF^ i s shown by n e u t r o n d i f f r a c -t i o n t o be a mixed v a l e n c e c o m p l e x c o n s i s t i n g o f P d ^ + and IV 2- 2 -(Pd Fg) u n i t s , and M 0 C I 2 i s i n r e a l i t y a complex c o n t a i n i n g 4+ 3 m e t a l - m e t a l bonded (Mo^Clg) c l u s t e r s ; on t h e o t h e r hand, 2 + N i F 2 has a r u t i l e s t r u c t u r e w i t h i n d i v i d u a l N i i o n s . C l e a r l y , t h e e m p i r i c a l f o r m u l a d o e s n o t a l w a y s i n d i c a t e t h e c o o r d i n a t i o n number n o r t h e t y p e o f c o o r d i n a t i o n p o l y h e d r o n . The h i g h e r o x i d a t i o n s t a t e s c a n be g e n e r a t e d by two b a s i c methods, e l e c t r o l y t i c o x i d a t i o n and c h e m i c a l o x i d a t i o n . (1) E l e c t r o l y t i c o x i d a t i o n : E l e c t r i c a l - c u r r e n t s h o u l d be t h e most p o w e r f u l o x i d i z i n g a g e n t a v a i l a b l e p r o v i d e d a s u i t a b l e medium c a n be f o u n d f o r t h e p r o c e s s . I n p r i n c i p a l , h i g h o x i d a t i o n s t a t e s c a n be o b t a i n e d when s u f f i c i e n t l y h i g h v o l t a g e i s a p p l i e d , p r o v i d e d t h a t s u i t a b l e l i g a n d s and a n i o n s a r e a v a i l a b l e f o r t h e i r s t a b i l i z a t i o n . I n a d d i t i o n , s i n c e o x i d a t i o n t a k e s p l a c e a t t h e anode, t h e m e t a l i o n s h o u l d i d e a l l y be p r e s e n t i n t h e form o f an a n i o n i c complex a c c o r d i n g t o t h e g e n e r a l e q u a t i o n : [ ML ] n m- [ ML ] n (m-p)- + pe T h i s p r e s e n t s some l i m i t a t i o n s t o t h e use o f t h i s method. (2) C h e m i c a l o x i d a t i o n : The most p o w e r f u l c h e m i c a l o x i d i z e r commonly known i s e l e m e n t a l f l u o r i n e , as i l l u s t r a t e d by t h e abundance o f h i g h e r v a l e n t m e t a l f l u o r i d e s . However, t h e r e a r e some f l u o r i n a t e d compounds where, the e l e m e n t - f l u o r i n e bonds a r e even weaker t h a n the F—F bond i n e l e m e n t a l f l u o r i n e , 4 5 such as K r F ~ o r (Kr_F.,)(AsF,) and P t F _ . These a r e known z z J b o to be s t r o n g o x i d i z e r s a l s o c a p a b l e o f c o m p l e x i n g the s p e c i e s produced, thus g e n e r a t i n g the n o v e l h e p t a v a l e n t halo-complexes o t h e r w i s e u n o b t a i n a b l e by s i m p l e e l e m e n t a l f l u o r i n a t i o n ^. Examples a r e : ( B r F g ) + ( A s F 6 ) ~ + 2 Kr + F 2 and 2 P t F 6 + 2C1F 5 ( C l F 6 ) + ( P t F 6 ) + ( C l F 4 ) + ( P t F g ) - 8 , 9 These examples a l s o i l l u s t r a t e t h e c o n v e n i e n c e o f a c h e m i c a l o x i d a t i o n r e a c t i o n when t h e o x i d i z e r i s i n c o r p o r a t e d i n t o t h e p r o d u c t as a f l u o r i d o i o n . 5 The h i g h e s t o x i d a t i o n s t a t e s o f the 4d and 5d t r a n s i t i o n metals are g e n e r a l l y found i n the b i n a r y fluorides; some exceptions are found i n ruthenium and osmium, as RuO^ and OsO^ . The non-e x i s t e n c e o f the o c t a v a l e n t ruthenium and osmium f l u o r i d e s i s perhaps due to s t e r i c l i m i t a t i o n s o f the c o o r d i n a t i o n sphere. The chemistry o f t r a n s i t i o n metal f l u o r i d e s has been e x t e n s i v e l y s t u d i e d and reviewed over the years . One of the i n t e r e s t s i n our group i s the e x p l o r a t i o n of the l a r g e l y undeveloped area of t r a n s i t i o n metal f l u o r o s u l f a t e s , where the t r a n s i t i o n metal i s an e l e c t r o n - r i c h 4d or 5d element. The f l u o r o s u l f a t e system was chosen f o r t h i s study f o r a number o f reasons. 1) The anion has o f t e n been termed a pseudohalide because of the resemblance of i t s chemistry to those of the h a l i d e s , i n 16 p a r t i c u l a r , t h a t o f f l u o r i d e . In f a c t , the f l u o r o s u l f a t e ion s a t i s f i e s a l l except one o f the requirements suggested by 17 Cotton and W i l k i n s o n f o r a pseudohalide. 2) I t all o w s the use o f a v a r i e t y o f s y n t h e t i c methods, and hence pro v i d e s some f l e x i b i l i t y . Furthermore, the e x i s t a n c e of a s t a b l e and v e r s a t i l e o x i d i z e r , F 0 2SO—O S O 2 F , makes the syntheses of compounds with the metal i n the hi g h o x i d a t i o n s t a t e s more promising. T h i s reagent, bisfluorosulfuryl peroxide, i s a sym-m e t r i c a l combination o f two f l u o r o s u l f a t e r a d i c a l s , i n good analogy w i t h the halogen molecules. 3) Li k e the f l u o r i d e , the f l u o r o s u l f a t e i o n i s capable of p o l y d e n t a t e c o o r d i n a t i o n , but u n l i k e t h e f l u o r i d e i o n , i t can be c o n v e n i e n t l y s t u d i e d by v i b r a t i o n a l s p e c t r o s c o p y i n t h e s o l i d s t a t e . 4) L i k e hydrogen f l u o r i d e , f l u o r o s u l f u r i c a c i d , HSO^F, has been e x t e n s i v e l y s t u d i e d as a non-aqueous s o l v e n t and as a 18 — 21 s y n t h e t i c r e a g e n t . F l u o r o s u l f u r i c a c i d , u n l i k e HF, has a wide l i q u i d range and hence p r o v i d e s a good r e a c t i o n medium. 5) As t h e a n i o n o f perhaps t h e s t r o n g e s t s i m p l e monobasic 19 a c i d , HSO-jF , f l u o r o s u l f a t e i s h i g h l y e l e c t r o n e g a t i v e and i s a weakly c o o r d i n a t i n g l i g a n d , and hence s h o u l d be s u i t a b l e as a c o u n t e r - i o n f o r the h i g h l y e l e c t r o p o s i t i v e h i g h - v a l e n t m e t a l i o n s . 6) The st u d y can be f u r t h e r extended t o s i m i l a r a n i o n s w i t h r e l a t e d o x y a c i d groups -SO^X, where X = CF^, Cl, e t c . The c h e m i s t r y o f the a n i o n t r i f l u o r o m e t h y l s u l f a t e , CF^SO^ , 22 has been r e v i e w e d i n d e t a i l v e r y r e c e n t l y B. THE FLUOROSULFATE RADICAL AND ITS ANION 1. The F l u o r o s u l f a t e R a d i c a l The e x i s t e n c e o f the f l u o r o s u l f a t e r a d i c a l i n e q u i l i b r i u m w i t h i t s dimer, FO-SO—OS0 9F, has been suggested from the 7 r e v e r s i b l e 'appearance of a brownish y e l l o w c o l o r a t i o n when b i s ( f l u o r o s u l f u r y l ) peroxide i s heated. T h i s i s a phenomenon r e m i n i s c e n t of the N2C>4 ^ 2 N0 2 e q u i l i b r i u m . Some of the chemistry o f S 2 ° 6 F 2 d o e s i n d e e d i n v o l v e the SO-jF* r a d i c a l . Dudley and Cady, who f i r s t s y n t h e s i z e d S 2 ° 6 F 2 -*-n 1 9 5 7 ' pro v i d e 23 s u p p o r t i n g evidence from the spectrophotometric measurements of the temperature dependent a b s o r p t i o n of the f l u o r o s u l f a t e r a d i c a l s a t 474 nm, and a l s o from the temperature dependent pressure measurements a t constant volume between 450 K and 600 K. The enthalpy o f d i s s o c i a t i o n o f S 2 0 g F 2 to two SO^F- r a d i c a l s i s found to be 97.6 kj/mol and 92.1 kJ/mol by the two methods r e s p e c t i v e l y . Since then, e x t e n s i v e experimental and th e o r e -t i c a l s t u d i e s have been made and are summarized below. The enthalpy o f d i s s o c i a t i o n o f S 2 0 g F 2 has a l s o been determined by 24 a k i n e t i c study to be 91.3 kJ/mol The ESR spectrum o f the f l u o r o s u l f a t e r a d i c a l has been s t u d i e d between 4 °C and 180 °C A wide s i n g l e s t r u c t u r e l e s s component wi t h g = 2.0108 i s observed a t room temperature, suggesting a s i n g l e paramagnetic component. The s i g n a l i n t e n -s i t y i s found to vary d i r e c t l y with the i n t e n s i t y o f the yellow c o l o r a t i o n o f the sample, both o f which are temperature depen-dent. A n a l y s i s o f ESR i n t e n s i t y as a f u n c t i o n o f temperature g i v e s the enthalpy o f thermal d i s s o c i a t i o n o f S„0,F o a value z b z of 93.8 kJ/mol. 8 King, Santry and Warren have s t u d i e d the high r e s o l u t i o n e l e c t r o n i c spectrum o f the f l u o r o s u l f a t e r a d i c a l - d i m e r system 2 6 i n d e t a i l . The observed bands have been a s s i g n e d to t r a n -2 2 s i t i o n s between the non-degenerate A 2 ground s t a t e and the 2 and E e x c i t e d s t a t e s . The v i s i b l e a b s o r p t i o n c e n t e r e d a t 2 2 516.0 nm has been assigned to the A 2 —*• E t r a n s i t i o n . The proposed assignment i s supported by t h e i r CNDO molecular o r b i t a l 27 c a l c u l a t i o n s o f the e n e r g i e s o f the lower d o u b l e t s t a t e s 2 The assignment of A 2 as the ground s t a t e i s a l s o c o n s i s t e n t 28 with another independent c a l c u l a t i o n . V i b r a t i o n a l a n a l y s i s 29 of the 516.0 nm a b s o r p t i o n system gi v e s the s i x fundamental 3v 2 v i b r a t i o n a l f r e q u e n c i e s of the f l u o r o s u l f a t e r a d i c a l with C 2 symmetry. (The assigned fundamental f r e q u e n c i e s f o r the A ground s t a t e are a t 1055.5 cm ^, v 2 a t 839.3 cm a t 533.5 cm 1 , a l l of a^ symmetry; and of e symmetry: a t 1175.5 cm - 1, v 5 a t 604.1 cm - 1, and v g a t 369.4 c m - 1 ) . Such an assignment i s f u r t h e r supported by a normal c o o r d i n a t e a n a l y s i s of the f l u o r o s u l f a t e r a d i c a l u s i n g an Urey-Bradley f o r c e 30 f i e l d . More r e c e n t l y , a d e t a i l e d matrix i s o l a t i o n study o f the f l u o r o s u l f a t e r a d i c a l from the p y r o l y s i s o f S 2 ° 6 F 2 c o n f i r m s 2 9 the v i b r a t i o n a l assignments by King and Warren , as shown i n Table 1 3 1 . Besides the expected SO-^F' r a d i c a l , S0 3, HS0 3F and S~C» F„ are a l s o observed i n the argon matrix at 14 K, 2. 5 2. each i d e n t i f i e d by t h e i r i n d i v i d u a l matrix i s o l a t e d spectrum. TABLE 1 FUNDAMENTAL FREQUENCIES (cm ) OF MATRIX ISOLATED S0 3F AND COMPARISON WITH OTHER RESULTS 3 S0 3F Ground State ( A 2) S0 3F Exci t e d State ( E) S0 3F Fundamental IR M a t r i x 3 1 IR M a t r i x b V a p o r 2 9 Matrix . V a p o r 2 9 Raman5 Argon Nitrogen / C S o l u t i o n v l S-0 St r e t c h 1053.0 1390 e 1055.5 947 966 952. ,9 1082 v2 S-F S t r e t c h 832.8 815 f 839.3 796 820 800. ,5 786 v 3 ( a ^ S-O Deformation 531.2 585 533.5 512 511 515. 0 566 v4 (e) S-0 St r e t c h 1177.4 1550 1177.5 1114 . 5 1287 v 5 (e) S-0 Deformation 601.0 650 604.1 505. 7 592 V6 (e) S-F Wag 366.0 380 369.4 346. 9 4 09 a. reproduced from reference 31. b. K.A. Oakes, Phd. Thesis, U n i v e r s i t y of Washington, 1972. c. The E mode fundamentals of the E ex c i t e d s t a t e could not be c l e a r l y i d e n t i f i e d since t r a n s i t i o n s to these v i b r o n i c l e v e l s were much weaker than those to the A, l e v e l s . d. Taken of an aqueous s o l u t i o n of the sodium s a l t . H. Sie v e r t , 2. Anorg. A l l g . Chem., 289,15(1957) e. I d e n t i f i e d as SO, i n Ref. 31. f. I d e n t i f i e d as S-0 CF_ i n Ref. 31. The p h o t o e l e c t r o n spectrum o f the f l u o r o s u l f a t e r a d i c a l 2 again confirms a ground s t a t e . The f i r s t a d i a b a t i c i o n i z a t i o n p o t e n t i a l i s found to be 12.85 eV. The observed sharp peak i n d i c a t e s the removal o f e l e c t r o n from a non-bonding o r b i t a l . The e l e c t r o n a f f i n i t y (E ) i n d i c a t e s the f e a s i b i l i t y o f a a t t a c h i n g an a d d i t i o n a l e l e c t r o n to any s p e c i e s as d e f i n e d by X (g) + e *•> X (g) . The e l e c t r o n a f f i n i t y i s commonly not d i r e c t l y measurable,and no value f o r the f l u o r o s u l f a t e r a d i c a l has been r e p o r t e d . An estimate can be made us i n g the standard Born-Haber C y c l e 33 c a l c u l a t i o n on potassium f l u o r o s u l f a t e , f o r which a l l o t h e r thermochemical data are e i t h e r a v a i l a b l e , o r ( l i k e the l a t t i c e energy) can be estimated. The d e t a i l s o f the c a l c u l a t i o n are shown i n Appendix B. A r a t h e r h i g h value o f 1110 kJ/mol or 11.5 eV i s obtained from t h i s c a l c u l a t i o n , a s compared to t a b u l a ted values o f 333 kJ/mol (3.45 eV) f o r f l u o r i n e and 348 kJ/mol 34 (3.61 eV) f o r c h l o r i n e . The assumptions made i n the c a l c u -l a t i o n , i e . the u n c e r t a i n t i e s i n using the K a p u s t i n s k i i equatio f o r a NaCl l a t t i c e i n c a l c u l a t i n g the l a t t i c e energy o f KSO^F, and the assumption t h a t the i o n i c r a d i u s o f SO^F i s the sum of the S—F d i s t a n c e i n KSO-.F and the c o v a l e n t r a d i u s o f F, do 11 not appear t o have a v e r y s i g n i f i c a n t e f f e c t on the r e s u l t i n g v a l u e . The major c o n t r i b u t i o n t o the h i g h e l e c t r o n a f f i n i t y comes from the h i g h v a l u e o f t h e heat o f f o r m a t i o n o f KSO^F. (AH° KSO^F = -1155 kJ/mol 3 5 ) . However, t h i s v a l u e has been d e t e r m i n e d r e l i a b l y from the c a l o r i m e t r i c measurements o f the r e a c t i o n o f p o t a s s i u m a c e t a t e w i t h f l u o r o s u l f u r i c a c i d i n 35 a c e t i c a c i d by R i c h a r d s and Woolf F u r t h e r l i t e r a t u r e scans have r e s u l t e d i n some s u p p o r t i n g e v i d e n c e s f o r the c a l c u l a t e d e l e c t r o n a f f i n i t y o f t h e f l u o r o -s u l f a t e r a d i c a l . a) The i o n i z a t i o n p o t e n t i a l o f t h e SO^F a n i o n s h o u l d be i d e n t i c a l t o the e l e c t r o n a f f i n i t y o f the r a d i c a l . From ESCA 36 — e x p e r i m e n t s , the f i r s t i o n i z a t i o n p o t e n t i a l o f SO^F i n s o l i d KS0 3F i s found to be. v L l eV 1060 kJ/mol) . b) As mentioned e a r l i e r , the f i r s t a d i a b a t i c i o n i z a t i o n p o t e n t i a l o f t h e f l u o r o s u l f a t e r a d i c a l i s found t o be 12.85 eV 32 (124 0 kJ/mol) from i t s p h o t o e l e c t r o n spectrum c) The f i r s t a d i a b a t i c IP f o r p e r c h l o r y l f l u o r i d e , ClO^F, i s o e l e c t r o n i c w i t h SO^F , i s found t o be 13.10 eV (1264 k J / m o l ) , 3 6 a g a i n from i t s p h o t o e l e c t r o n spectrum As a f i n a l p o i n t , one may compare the e l e c t r o n attachment p r o c e s s o f a f l u o r i n e atom t o form t h e f l u o r i d e i o n to t h a t o f a f l u o r o s u l f a t e r a d i c a l t o form t h e c o r r e s p o n d i n g a n i o n . In the f i r s t case an e l e c t r o n i s added t o a l o c a l i z e d a t o m i c 12 o r b i t a l , i n the o t h e r case the r e c e i v i n g molecular o r b i t a l 1 i s nonbonding and d e l o c a l i z e d . Hence, i t appears t h a t the e l e c t r o n a f f i n i t y o f the f l u o r o s u l f a t e r a d i c a l may be much higher than o r i g i n a l l y expected, and the c a l c u l a t e d value of 11.5 eV (1110 kJ/mol) should be c o n s i d e r e d as a reasonable estimate,though i t may be somewhat h i g h . The c a l c u l a t e d e l e c t r o n a f f i n i t y of SO^F* i s used subsequently, but with c a u t i o n . P auling's o r i g i n a l q u a l i t a t i v e d e f i n i t i o n o f e l e c t r o -n e g a t i v i t y i s "the power of an atom i n a molecule to a t t r a c t e l e c t r o n s to i t s e l f " . The r e l a t i v e e l e c t r o n e g a t i v i t i e s s c a l e serves to i l l u s t r a t e such e l e c t r o n drawing a b i l i t i e s through p o l a r bonds, and can be extended to more complex m o i e t i e s such as the f l u o r o s u l f a t e group. The e l e c t r o n e g a t i v i t y of the f l u o r o s u l f a t e group may be 119 estimated from the isomer s h i f t s i n the Sn Mossbauer 2-spectrum of o c t a h e d r a l l y c o o r d i n a t e d (SnX^) complexes. 37 Herber and Cheng have found a l i n e a r r e l a t i o n s h i p between the isomer s h i f t s 6 (mm/sec) and the sum of P a u l i n g 3 8 e l e c t r o n e g a t i v i t i e s , while Clausen and Good have shown th a t 39 the average M u l l i k e n ' s e l e c t r o n e g a t i v i t i e s may a l s o be used. The s u i t a b i l i t y o f u s i n g e i t h e r system has been d i s c u s s e d 40 by Huheey and Watts . I t appears t h a t a simple c o r r e l a t i o n 2-can be made between the isomer s h i f t s o f the [SnX,] complexes 13 and t h e c o r r e s p o n d i n g e l e c t r o n e g a t i v i t i e s . The isomer s h i f t s o f K 2[SnFg] and K ^ S n C l g ] a r e -0.43 mm/sec and +0.48 mm/sec 41 2-r e l a t i v e t o SnC>2 r e s p e c t i v e l y . A number o f [Sn(SC> 3F)g ] 42 119 complexes have been c h a r a c t e r i z e d and the Sn Mossbauer isomer s h i f t s o f K„ [Sn (SC> F) r ] i s found t o be -0.26 mm/sec, w i t h 2. J o an u n c e r t a i n t y o f ±0.03 mm/sec, g e n e r a l l y common t o most r e p o r t e d v a l u e s o f 6. S i n c e the P a u l i n g e l e c t r o n e g a t i v i t y {y. ) P f o r F and C l a r e 3.98 and 3.16 r e s p e c t i v e l y , A X p ( F — C l ) would 2-be 0.82. AS f o r t h e s e SnX^ complexes would be 0.91 mm/sec between F and C l and 0.17 mm/sec between F and SO^F. From a l i n e a r c o r r e l a t i o n , AY between F and SO^F s h o u l d be 0.15, A p 3 g i v i n g a v a l u e o f 3.8 3 f o r the P a u l i n g e l e c t r o n e g a t i v i t y o f the f l u o r o s u l f a t e group. A l t e r n a t i v e l y , t h e e l e c t r o n e g a t i v i t y o f the f l u o r o s u l f a t e 39 group may be c a l c u l a t e d u s i n g M u l l i k e n ' s d e f i n i t i o n , w h i c h i s t he average o f t h e i o n i z a t i o n p o t e n t i a l and t h e e l e c t r o n a f f i n i t y . From the v a l u e s o f IP and E d i s c u s s e d e a r l i e r , a t h e M u l l i k e n e l e c t r o n e g a t i v i t y would be 1/2(12.85 + 11.50)eV, which i s 12.18 eV. C o n v e r s i o n t o the P a u l i n g u n i t s i s p o s s i b l e v i a the e q u a t i o n X (M) = 0.168 (IP + E - 1.23) 4 3 A v a l u e o f 3.88 i s then o b t a i n e d f o r the f l u o r o s u l f a t e group, 14 i n good agreement w i t h t h e "Mossbauer V a l u e " . The a g r e e m e n t may be f o r t u i t o u s , as s t r i c t l y s p e a k i n g , t h e r e l a t i v e n u m e r i c a l v a l u e s o f t h e e l e c t r o n e g a t i v i t i e s c a n o n l y s e r v e a s s e m i -q u a n t i t a t i v e e s t i m a t e s . N e v e r t h e l e s s , i t i s c l e a r t h a t t h e f l u o r o s u l f a t e g r o u p i s h i g h l y e l e c t r o n e g a t i v e , t h e v a l u e b e i n g much c l o s e r t o f l u o r i n e t h a n t o c h l o r i n e . * 44 The T a f t i n d u c t i v e c o n s t a n t (a ) i s a measure o f t h e e l e c t r o n i n d u c t i v e e f f e c t . F o r a number o f i s o s t r u c t u r a l t i n compounds o f t h e t y p e X Y S n C S O ^ F ^ w i t h b r i d g i n g b i d e n t a t e 119 SO^F g r o u p s , t h e o b s e r v e d Sn M o s s b a u e r q u a d r u p o l e s p l i t t i n g s A (mm/sec) a r e l i n e a r l y d e p e n d e n t upon t h e sum o f t h e T a f t i n d u c t i v e c o n s t a n t s o f t h e a x i a l l i g a n d s X and Y, where X and Y 4 5 a r e CH^, B r , C l , F o r SO^F . The T a f t c o n s t a n t o f t h e f l u o r o -s u l f a t e i s f o u n d t o be 3.68 as compared t o 3.08 f o r f l u o r i n e , 2.94 f o r c h l o r i n e , and 2.8 0 f o r b r o m i n e . T h i s i n d i c a t e s t h e f l u o r o s u l f a t e g r o u p has a g r e a t e r a b i l i t y t h a n F t o w i t h d r a w e l e c t r o n i c c h a r g e v i a a and TT e f f e c t s and d e l o c a l i z e t h e c h a r g e o v e r t h e e n t i r e g r o u p . 2. The F l u o r o s u l f a t e A n i o n , SO^F -T h e o r e t i c a l c a l c u l a t i o n s have s u g g e s t e d t h a t t h e e l e c t r o n i c 1 2 7 28 g r o u n d s t a t e o f t h e f l u o r o s u l f a t e a n i o n i s A^ ' . The v i b r a t i o n a l f r e q u e n c i e s o f t h e a n i o n d e t e r m i n e d f r o m a n o r m a l c o o r d i n a t e a n a l y s i s a r e , f o r t h e a^ t y p e : v-^, 1082 cm , \>2t 786 cm 1 , v^ , 566 cm 1 ; and o f t h e d o u b l y d e g e n e r a t e v i b r a t i o n s , v^ , v, . , and v g a r e 1287 cm 1 , 592 cm 1 , and 409 cm 1 r e s p e c t i v e l y . The l i g a n d f i e l d p a r a m e t e r s o f t h e SO^F measured f r o m t h e r e f l e c t a n c e s p e c t r a o f n i c k e l s a l t s have been compared t o 4 6 t h o s e o f o t h e r weak f i e l d l i g a n d s . V a l u e s o f t h e l i g a n d f i e l d s p l i t t i n g p a r a m e t e r (Dq) and t h e i n t e r e l e c t r o n i c r e p u l s i o n p a r a m e t e r (B) f o r SO^F , F , C l and H^O a r e l i s t e d i n T a b l e 2. The v a l u e s show t h a t t h e f l u o r o s u l f a t e i o n i s a weak f i e l d l i g a n d , much more l i k e f l u o r i d e t h a n c h l o r i d e , t h e i r r e l a t i v e p o s i t i o n s i n t h e s p e c t o c h e m i c a l s e r i e s b e i n g C l ~ < F~ ^ S O ^ F -< H 2 0 . The v a l u e o f B i s r e d u c e d f r o m t h a t o f t h e f r e e i o n on c o o r d i n a t i o n . The g r e a t e r r e d u c t i o n o f B w i t h SO^F t h a n w i t h t h e f l u o r i d e r e f l e c t s t h e b e t t e r a b i l i t y o f t h e f l u o r o -s u l f a t e i o n t o d e l o c a l i z e e l e c t r o n i c c h a r g e . Hence t h e r e l a t i v e p o s i t i o n s i n t h e n e p h e l a u x e t i c s e r i e s w o u l d be C l ~ < SO_F~ < H n0 < F~. 16 TABLE 2 LIGAND FIELD PARAMETERS FOR SOME NICKEL SALTS S a l t S 0 3 F ~ F ~ C 1 ~ H 2 ° Dq 734 730 720 850 B 905 960 760 940 X-ray c r y s t a l s t r u c t u r e s t u d i e s have been made on t h e 47 48 i o n i c f l u o r o s u l f a t e s , KS0 3F and NH 4S0 3F . U n l i k e the f l u o r i d e s , t h e SO^F an i o n s a r e a r r a n g e d i n a d i s o r d e r e d f a s h i o n i n t he KSO^F c r y s t a l and p a r t i a l l y d i s o r d e r e d i n NH^SO^F. The symmetries o f the a n i o n s i n the o r t h o r h o m b i c c r y s t a l s appear t o be C„ i n KS0 oF. In NH.SO,F, 75 % have C- symmetry, w i t h t h e 2v 3 4 3 2v 2 1 r e m a i n i n g o f C^ v symmetry. The f l u o r o s u l f a t e a n i o n i s o f t e n compared to a number o f s i m i l a r w eakly c o o r d i n a t i n g a n i o n s , l i k e p e r c h l o r a t e , C10 4 , d i f l u o r o p h o s p h a t e , P°2 F2 a n d t e t r a f l u o r o b o r a t e , B F 4 . I n g e n e r a l , t h e s e a n i o n s a r e o f comparable s i z e and o f t e n i s o s t r u c -t u r a l i n s i m p l e i o n i c compounds. Numerous a t t e m p t s have been made t o stu d y the c h e m i s t r y o f p e r c h l o r a t e s i n d e t a i l , though some were h i n d e r e d by the low th e r m a l s t a b i l i t i e s o f some o f i t s compounds, such as t h e 4 9-51 halogen p e r c h l o r a t e s ; t h e s t r o n g l y o x i d i z i n g n a t u r e o f 17 i t s p a r e n t a c i d , anhydrous HCIO^ J , and the dangerous s e l f -d e h y d r a t i o n p r o c e s s o f anhydrous HCIO^ to g i v e the p o t e n t i a l l y 52 e x p l o s i v e d i c h l o r i n e h e p t o x i d e , C^O^ D i f l u o r o p h o s p h o r i c a c i d , the p a r e n t a c i d o f P O 2 F 2 , i s h i g h l y v i s c o u s , and r e l a t i v e l y d i f f i c u l t t o p u r i f y . I t i s a l s o 53 54 a s u r p r i s i n g l y weak a c i d , i n f a c t , a base i n r^SO^ ' 55 T e t r a f l u o r o b o r a t e s have been e x t e n s i v e l y s t u d i e d even though t h e r e i s no u s e f u l anhydrous p r o t o n i c p a r e n t a c i d . The f l u o r o s u l f a t e system s t a n d s o ut m a i n l y because o f i t s w e l l known r a d i c a l - p e r o x i d e c h e m i s t r y and the c o n v e n i e n t h a n d l i n g o f i t s p a r e n t a c i d , HSO^F. 3. Summary As o u t l i n e d i n the p r e c e d i n g s e c t i o n s , t h e f l u o r o s u l f a t e r a d i c a l and a n i o n d i s p l a y a g r e a t s i m i l a r i t y t o f l u o r i n e and the f l u o r i d e i o n . Some o f t h e above mentioned parameters o f the f l u o r o s u l f a t e group a r e compared t o those o f f l u o r i d e i n Tab l e 3. I n view o f t h e i r r e s p e c t i v e t r a n s i t i o n m e t a l c h e m i s t r y , some c o n t r a s t i n g p o i n t s may be s i n g l e d o u t . i ) Based on t h e d i f f e r e n c e i n s i z e , h i g h e r - c o o r d i n a t i o n numbers as w e l l as o x i d a t i o n s t a t e s a re ex p e c t e d f o r t r a n s i t i o n m e t a l f l u o r i d e s i n b i n a r y systems. i i ) T r a n s i t i o n m e t a l f l u o r i d e s s h o u l d d i s p l a y h i g h e r t h e r m a l s t a b i l i t i e s i n comparable compounds, thus a l l o w i n g h i g h tempera-t u r e s y n t h e s i s . 18 TABLE 3 SELECTED PARAMETERS FOR THE FLUORIDE AND THE FLUOROSULFATE SYSTEMS A n i o n S 0 3 F 136 222 (236) 333 1110 4 .00 3.83 3.91 3.88 3 .08 3 .68 Dq(cm 1 ) 730 B (cm - 1 ) 960 734 905 IONIC RADIUS [pm] ELECTRON A F F I N I T Y [ k j / m o l e ] * ELECTRONEGATIVITY [PAULING] ELECTRONEGATIVITY [MULLIKEN] 1 TAFTS INDUCTIVE CONSTANT O* b LIGAND FIELD PARAMETERS a FOR OCTAHEDRAL N i 2 + A n i o n R a d i c a l 19 i i i ) T r a n s i t i o n m e t a l d e r i v a t i v e s w i t h the m e t a l i n low o r i n t e r m e d i a t e o x i d a t i o n s t a t e s may be b e t t e r a c h i e v e d i n t h e f l u o r o s u l f a t e system. i v ) The l a r g e r s i z e o f t h e SO^F groups w i l l make magnetic i n t e r a c t i o n v i a t h e superexchange mechanism more d i f f i c u l t . Hence fewer m a g n e t i c a l l y c o n c e n t r a t e d f l u o r o s u l f a t e s a r e e x p e c t e d . v) The magnetic and s p e c t r o s c o p i c p r o p e r t i e s o f a t r a n s i t i o n m e t a l i o n i n low o r i n t e r m e d i a t e o x i d a t i o n s t a t e s s h o u l d approach the f r e e i o n s i t u a t i o n more c l o s e l y i n f l u o r o s u l f a t e s t h a n i n f l u o r i d e s . v i ) The p r i n c i p a l s t r u c t u r a l t o o l f o r f l u o r o s u l f a t e s would be v i b r a t i o n a l s p e c t r o s c o p y , e s p e c i a l l y on p o l y c r y s t a l l i n e powders, r e p l a c i n g X-ray d i f f r a c t i o n as an i m p o r t a n t method. v i i ) W h i l e comparable s y n t h e t i c r e a g e n t s a r e a v a i l a b l e , t h e f l u o r o s u l f a t e r e a g e n t s seem l e s s c o r r o s i v e and p e r m i t th e use o f g l a s s a p p a r a t u s t h r o u g h o u t , w h i l e t h e f l u o r i d e r e a g e n t s r e q u i r e m e t a l o r f l u o r i n a t e d p l a s t i c s . C. SYNTHETIC ROUTES TO FLUOROSULFATES The c h e m i s t r y o f f l u o r o s u l f a t e s has been f a i r l y e x t e n s i v e l y 16 56 57 s t u d i e d and r e v i e w e d i n r e c e n t y e a r s ' ' . The g e n e r a l s y n t h e t i c r o u t e s commonly employed t h a t a r e most s u i t e d f o r the 20 p r e p a r a t i o n o f t r a n s i t i o n m e t a l f l u o r o s u l f a t e s a r e d e s c r i b e d b elow. 1. D i r e c t I n s e r t i o n o f s u l f u r t r i o x i d e i n t o m e t a l f l u o r i d e s s u c h as t h e r e a c t i o n o f SO^ w i t h B a F 2 a t 200 °C t o g i v e b a r i u m 5 8 b i s f l u o r o s u l f a t e : 200 °C B a F 2 + 2 S 0 3 »- B a ( S 0 3 F ) 2 W h i l e t h i s method i s one o f t h e e a r l i e r methods u s e d ^9,60^ ^ i s b e s t u s e d f o r t h e p r e p a r a t i o n o f i o n i c f l u o r o s u l f a t e s . Incom-p l e t e i n s e r t i o n s i n t o many t r a n s i t i o n m e t a l f l u o r i d e s have r e s u l t e d i n m i x e d f l u o r i d e - f l u o r o s u l f a t e s . As an example, o n l y 61 4.5 moles o f S 0 3 were t a k e n up by one mole o f WF^ 2. R e a c t i o n s I n F l u o r o s u l f u r i c A c i d (a) M e t a l s a l t s s u c h a s c h l o r i d e s and c a r b o x y l a t e s ^ ^ , r e a c t w i t h H S 0 3 F a c c o r d i n g t o t h e g e n e r a l f o r m u l a MX + nHSO-.F — M(SO-.F) + nHX. n 3 3 n I n o r d e r t o a c h i e v e c o m p l e t e c o n v e r s i o n , i t s h o u l d be p o s s i b l e t o remove HX f r o m t h e s y s t e m , e i t h e r as a v o l a t i l e b y p r o d u c t , s u c h as HC1, e . g . 44 S n C l 2 + H S 0 3 F ( e x c e s s ) »> S n(SC> 3F) 2 + 2 HC1 o r a s o l u b l e p r o t o n a t e d s p e c i e s , as i n Cu(CH-.C0 0) o + HSO..F ( e x c e s s ) C u ( S 0 3 F ) 2 + 2 [CH 3C (OH) 2 ] (SO T h i s method i s l i m i t e d by t h e c h o i c e o f s u i t a b l e p r e c u r s o r s , w h i c h a r e o f t e n a v a i l a b l e o n l y i n t h e l o w e r o x i d a t i o n s t a t e s . T h e s e p r e c u r s o r s a r e o f t e n u n r e a c t i v e , i n p a r t i c u l a r where p o l y m e r i c o r l a y e r s t r u c t u r e s a r e f o u n d , e . g . C r C l ^ ^ . (b) The s o l u t i o n s o f p u r e m e t a l s i n HSO^F were i n v e s t i g a t e d by B r a z i e r and W o o l f Many m e t a l s were f o u n d t o be i n e r t t o even b o i l i n g a c i d , w h i l e t h o s e t h a t r e a c t e d , s u c h as Cu, B i , Na, K, Ca, I n , T l , gave f l u o r o s u l f a t e s i n t h e l o w e r o x i d a t i o n s t a t e s o n l y . (c) The s o l v o l y s e s o f o r g a n o m e t a l l i c compounds o f t e n do n o t l e a d t o s i m p l e b i n a r y f l u o r o s u l f a t e s . e .g. ( C H 3 ) 4 S n + 2 H S 0 3 F ( C H 3 ) 2 S n ( S 0 3 F ) 2 + 2 C H 4 45 (d) The r e a c t i o n s w i t h t r a n s i t i o n m e t a l c l e a v e t h e m e t a l - c a r b o n bonds, r e s u l t i n g c o m p l e x e s i n w h i c h t h e m e t a l i s i n a low c a r b o n y l s s h o u l d i n f l u o r o s u l f a t e o x i d a t i o n s t a t e . 3. The S i l v e r S a l t Method T h i s i s commonly u s e d t o s y n t h e s i z e o x y a c i d d e r i v a t i v e s a c c o r d i n g t o t h e g e n e r a l scheme: MX n + n A g S 0 3 F w-> M(SC> 3F) n + n AgX where X = C l o r B r , and n = 1 o r 2. The f o r m a t i o n o f t h e s i l v e r h a l i d e s p r o v i d e s t h e b a s i c d r i v i n g f o r c e . L i m i t a t i o n s a r e t h e c h o i c e o f s o l v e n t and t h e a v a i l -a b i l i t y o f t h e s t a r t i n g m a t e r i a l . The n o n - o x i d a t i v e n a t u r e o f t h i s method has f o u n d a p p l i c a t i o n s i n t h e s y n t h e s e s o f m e t a l c a r b o n y l f l u o r o s u l f a t e s s u c h as M (CO) 5X + A g S 0 3 F M(CO) 5(SC> 3F) + AgX M = Re, X = C l 6 V ; o r M = Mn, X = Br 6 8 , 6 9 4. R e a c t i o n s w i t h O x i d i z i n g A g e n t s T h e s e i n v o l v e t h e r e a c t i o n s o f b i s f l u o r o s u l f u r y l p e r o x i d e , ^ 2^6 F2 ' ' 3 r o m ; ' - n e f l u o r o s u l f a t e , B r S 0 3 F o r c h l o r i n e f l u o r o s u l f a t e , C 1 S 0 3 F 5 6 w i t h a v a r i e t y o f s u b s t r a t e s s u c h as c h l o r i d e s , o x i d e s , o r e v e n t h e e l e m e n t s t h e m s e l v e s . Some examples a r e : 23 120 °C S n C l 4 + S 2 0 6 F 2 S n ( S 0 3 F ) 4 + 2 Cl 2 7 0 R.T. A _ Au + B r S 0 3 F (ex.) »- Au (S0 3F) 3 • 2BrSC>3F A u ( S 0 3 F ) 3 T h i s r o u t e appears t o be the most promising,when a t t e m p t i n g t h e s y n t h e s e s o f compounds w i t h t h e m e t a l i n a h i g h e r o x i d a -t i o n s t a t e . The two r e a g e n t s which have been used most o f t e n have r a t h e r c o n t r a s t i n g c h e m i c a l p r o p e r t i e s . W h i l e S 2 0 g F 2 i s the b e t t e r o x i d i z e r , BrSC>3F i s an e x c e l l e n t s o l v o l y z i n g a g e n t . A comparison w i t h F 2 and B r F 3 as t h e i r f l u o r i n e a nalogues seems f a i r . Hence p a s s i v a t i o n , r e s u l t i n g i n i n c o m p l e t e o r r a t h e r s l o w r e a c t i o n s i s o f t e n e n c o u n t e r e d when u s i n g S o 0 , F o , wh i c h Z D Z i n t e r e s t i n g l y i s s y n t h e s i z e d i n a copper r e a c t o r a t ^ 180 °C ( S e c t i o n I I . C . 2 ) . On the o t h e r hand, exc e s s B r S 0 3 F used as s o l v e n t i s o f t e n d i f f i c u l t t o remove, and may i n v o l v e s i d e r e a c t i o n s w i t h the halogens produced o r f u r t h e r c o m p l e x a t i o n 71 as i n the Au—BrS0 3F system d e s c r i b e d by Johnson, e t a l . Such a system has been r e i n v e s t i g a t e d v e r y r e c e n t l y i n our l a b o r a t o r y , r e s u l t i n g i n the i d e n t i f i c a t i o n o f the i n i t i a l I I I 7 2 complex as B r ^ [ A u (S0 3F ) 4 1 . Some p h y s i c a l p r o p e r t i e s o f HSO-.F, S„O cF„, and BrSO^F a r e l i s t e d i n Table 4. 3 2 6 2 3 24 TABLE 4 SOME PHYSICAL PROPERTIES OF H S 0 3 F , S 2 0 g F 2 AND B r S 0 3 F Compound HSO-.F 1 9 S o 0 ^ F _ 5 6 BrSO-,F 5 7 3 2 6 2 3 b o i l i n g p o i n t ( C) + 162.7 + 67.1 + 117.3 m e l t i n g p o i n t ( C) - 88.98 - 55.4 + 31.5 d e n s i t y (gm/cm ) 1.726 @ 1.645 @ 2.238 @ 25°C 35.5°C 25°C v i s c o s i t y ( c e n t i p o i s e ) 1.56 @ 25°C s p e c i f i c c o n d u c t a n c e 1.08 x 10 (Q, cm ) -4 @ 25°C 7.21 x 10 @ 25°C -4 V a p o r p r e s s u r e e q u a t i o n l o g P =5.49916 l o g P =8.544 mm ^ mm 1.2925 x 10' T(K) 2.195 x 10' T(K) 25 D. VIBRATIONAL STUDIES OF THE FLUOROSULFATE GROUP V i b r a t i o n a l spectroscopy has been widely used as a d i a g n o s t i c t o o l i n the study of c o o r d i n a t i o n modes of f l u o r o -s u l f a t e s . Compounds c o n t a i n i n g f l u o r o s u l f a t e s may be c l a s s i f i e d as: 1. i o n i c compounds where SO^F ions are present, 2. c o v a l e n t monodentate, 3. b i d e n t a t e , 4. t r i d e n -t a t e , and 5. t e t r a d e n t a t e c o o r d i n a t e d . Each of the d i f f e r e n t c o o r d i n a t i o n modes has i t s own d i s t i n c t f e a t u r e s i n the v i b r a -t i o n a l s p e c t r a , these are l i s t e d i n Table 5. Bonding w i l l occur through the more b a s i c oxygens except i n the t e t r a d e n t a t e mode,where f l u o r i n e w i l l be i n v o l v e d . The l o c a l symmetry of the f l u o r o s u l f a t e group would be reduced from C,„ to C i n the mono- and b i - d e n t a t e cases, thus g i v i n g jv s nine fundamentals i n s t e a d o f s i x f o r C ^ symmetry. A l l fundamentals are both IR and Raman a c t i v e . The s u l f u r - o x y g e n and s u l f u r - f l u o r i n e s t r e t c h i n g s are most u s e f u l i n i d e n t i f y i n g the c o o r d i n a t i o n mode of the f l u o r o s u l f a t e group, as they show wide p o s i t i o n a l d i f f e r e n c e s . A c o r r e l a t i o n diagram o f the f r e q u e n c i e s and assignments o f the d i f f e r e n t v i b r a t i o n s of the f l u o r o s u l f a t e group i s shown i n F i g u r e 1. For i o n i c f l u o r o s u l f a t e s , where a l l three o x y g e n - s u l f u r 47 bonds are e q u i v a l e n t , such as KS0 3F , s i x d i s t i n c t v i b r a t i o n s 6 2 should be observable i n both i n f r a r e d and Raman . However 26 TABLE 5 STRUCTURAL BONDING DIFFERENTIATION FOR THE SO,F GROUP number l o c a l S 0 3 F d e s c r i p t i o n o f d i a g n o s t i c v i b r a t i o n a l group sym- o f bonding funda- mode and fr e q u e n c y metry p a t t e r n m e n t a l s i o n i c 6 v S-F 800-700 cm 1 C O T 7 t r i d e n t a t e 6 v S-F 8 50 cm 1 •3V t e t r a d e n t a t e 6 v S—F 65 0 cm C c o v a l e n t monodentate 9 c o v a l e n t b i d e n t a t e 9 v S-0 900-750 cm -1 v S - 0 3 ( 3 r d ) 1 0 8 0 - 9 5 0 cm -1 FIGURE 1 Correlation Diagram for Ionic a) unperturbed KSO3F*7 b) perturbed KOS0 3F 7 3 Covalent (C,) Monodentate F0S0 2F 7 5 Bridging (C,) Bidentate F 2 S n ( S 0 3 F ) 2 4 5 Trldencate (C3 V) Bridging C 0 l l ( S 0 3 F ) 2 7 8 Tetradentate ( C 3 V ) Bridging T1 3C1 1 0(S03F)2 79 vasym S 0 3 1285cm -1 1278C« j 1 1246cm"1 (1262cm"1) 'asym' i S 0 2 v 8 y m S 0 2 v 7 A " viA' 1502cm"1 1250cm"1 v SO3 v S0 3 v 7A" ViA' 1420cm"1 1101cm"1 asym S0 3 V..E 1265cm *asym S 0 3 1248cm -1 sym 1084cm SO 3 -1 -1 1077cm v SO v 2A* 788cm"1 v S0 3 v 2A' 1068cm"1 v Svm S0 3 1109cm"1 SO, vsym V J A J 1082cm -1 Fluorosulfate Group vSF V 2 A ! 741cm 755cm -1 v SF v 3A' 857cm v SF v 3A' -1 855cm v SF v 2 A i -1 850cm -1 v SF v 2Aj 660cm -1 6asym s 0 3 V5E 587cm -1 600cm -1 588cm -1 (594cm A) v i , A' 577cm"1 6 S O 3 F Vi»A' v 8A" 530cm"1 6 S O 3 F v 8A" 630cm - i asym 590cm SO 3 -1 v sE -1 610cm fiasym S0 3 V5E 592cm"1 *sym S°3 v 3A t 571cm"1 570cm"1 gbend S 02 Yrock S°2 r w a g S F v 5A' 500cm 6 S O 3 F 548cm' -1 •1 'sym SO 3 v 3A x - i 568cm 6sym S0 3 v 3Aj 579cm"1 Prock v bE A05cu»" 416cm"1 403cm"1 (4090a" 1) YtwlstS0 2F T t o r 6 i o n S 0 2 F v 9A" v 6 A ' 390cm"1 395cm"1 Yrock.S02 T t o r s i o n S Q 3 F v 9A" v 6A' 430cm -1 280cm Prock v f cE 420cm -1 Prock v 6E 390cm -1 28 p e r t u r b a t i o n s a r e o f t e n o b s e r v e d i n the i o n i c systems w h i c h a r e caused by (a) non- s p h e r i c a l c a t i o n s such as N 0 + i n 73 NOSO-jF as shown i n F i g u r e 1; o r (b) p o l a r i z i n g c a t i o n s such + , 7 4 -as Ag o r Li"*" ; o r (c) s i t e symmetry e f f e c t s where the SO^F i o n i s i n a c r y s t a l l o g r a p h i c s i t e o f l o w e r symmetry than C^v as i n the f r e e SO^F i o n . These cause s p l i t t i n g s o f t h e d o u b l y degenerate E modes. I f however the u n i t c e l l c o n t a i n s more th a n one t y p e o f f l u o r o s u l f a t e i o n s w i t h s l i g h t l y d i f f e r e n t l o c a l symmetries due t o the o r i e n t a t i o n s o f c a t i o n s t o a n i o n s , a l l o r most o f t h e fundamentals would be d u p l i c a t e d , r e g a r d l e s s 64 o f symmetry, as i n S r ( S 0 3 F ) 2 For a c o v a l e n t monodentate f l u o r o s u l f a t e group, n i n e fundamentals a r e e x p e c t e d due t o t h e s p l i t t i n g s o f t h e t h r e e E modes t o p a i r s o f A 1 and A" modes when the symmetry changes from C^ v t o C g. The b o n d i n g o f an oxygen t o a n o t h e r atom X causes the vS—O o f S—0—X t o s h i f t t o l o w e r e n e r g i e s , as i n the case o f FOS0 2F 7 5 , from 1084 c m - 1 o f KSC>3F t o 788 c m - 1 ; w h i l e the average v a l u e o f v and v SO- o f t h e unbonded 3 asy sym 2 oxygens s h i f t s t o h i g h e r v a l u e s . F u r t h e r m o r e , t h e e l e c t r o n d rawing e f f e c t o f t h e h i g h l y e l e c t r o n e g a t i v e f l u o r i n e atom bonded to s u l f u r causes t h e S—F s t r e t c h i n g t o i n c r e a s e from 741 c m - 1 o f KS0 3F t o 857 c m - 1 as w e l l . I f the f l u o r o s u l f a t e group i s c o v a l e n t l y bonded i n a b i d e n -45 t a t a . f a s h i o n , as i n F 2 S n ( S 0 3 F ) 2 , t h e number o f fundamentals 29 remains n i n e because o f the unchanged C g symmetry, but t h i s c a s e can be d i s t i n g u i s h e d from the monodentate group by t h e i n -c r e a s e i n f r e q u e n c y f o r the l o w e s t vS-0 v i b r a t i o n . F o r example, 7 6 the l o w e s t S—0 s t r e t c h i n g o f (CH-^) 2 S n (SO^F) 2 appears a t 1072 cm 1 , w h i l e the two h i g h e r S—O s t r e t c h i n g s a l s o appear a t lower f r e q u e n c i e s , 1350 cm 1 and 1180 cm 1 . The e x i s t a n c e o f b i d e n t a t e b r i d g i n g f l u o r o s u l f a t e groups i n (CH^) 2 S n (SO-^F) 2 77 has been c o n f i r m e d by a c r y s t a l s t r u c t u r e s t u d y I n g e n e r a l , the t h r e e S—O s t r e t c h i n g modes o f a monoden-t a t e group appear between 1500 and 1400 cm 1 f o r SC>2 asymmetric, 1250 and 1200 c m - 1 f o r SC>2 symmetric, and 950 t o 780 c m - 1 f o r S—O o f S—0—X. For t h e b i d e n t a t e f l u o r o s u l f a t e group, the t h r e e modes a r e found between 1400 and 1300, 1180 and 1100, 1080 and 950 cm 1 . The S—F s t r e t c h i n b o t h c a s e s would be a p p r o x i m a t e l y a t 850 cm 1 , much h i g h e r than t h a t o f the i o n i c f l u o r o s u l f a t e . T h i s i s m a i n l y due t o the i n c r e a s e i n pir-dIT back d o n a t i o n commonly o b s e r v e d on c o o r d i n a t i o n . The i n c r e a s e i n S—F s t r e t c h i n g f r e q u e n c y a l s o h o l d s f o r the t r i d e n t a t e case and i s i n f a c t the major d i a g n o s t i c s i g n i n d i s t i n g u i s h i n g i t from the i o n i c mode, whose S—F s t r e t c h i n g appears i n the 750 cm 1 r e g i o n . O t h e r w i s e t r i d e n t a t e f l u o r o -I I 78 s u l f a t e s , such as Co (SO^F) 2 , would have C 3 v symmetry g i v i n g r i s e t o s i x fundamentals and S—O s t r e t c h i n g f r e q u e n c i e s s i m i l a r t o the i o n i c ones. At p r e s e n t , the o n l y known case o f a t e t r a d e n t a t e b r i d g i n g 7 9 f l u o r o s u l f a t e group i s t h e compound T i ^ C l ^ Q ( S O ^ F ) ^ . The v SO-, and v SO-, f r e q u e n c i e s a r e a g a i n s i m i l a r t o the asy 3 sym 3 ^ ^ i o n i c and t r i d e n t a t e f l u o r o s u l f a t e s , but u n l i k e t h e s e two t y p e s , the S—F s t r e t c h i n g f r e q u e n c y appears a t 660 cm 1 . T h i s remarkable s h i f t i s e x p e c t e d , because the S—F bond i s weakened as a r e s u l t o f the f l u o r i n e - t i t a n i u m b o n d i n g . I n a c t u a l e x p e r i m e n t a l measurements, f l u o r o s u l f a t e s a r e g e n e r a l l y e x c e l l e n t Raman s c a t t e r e r s , e x c e p t where the dark c o l o u r o f t h e compound o r the o c c u r r e n c e o f f l u o r e s c e n c e p r e s e n t e x p e r i m e n t a l o b s t a c l e s . The o t h e r e x p e r i m e n t a l d i f -f i c u l t y o f t e n encountered i s a t t a c k on m u l l i n g agents and IR window m a t e r i a l s due t o the h i g h r e a c t i v i t y o f t h e f l u o r o s u l -f a t e s . E. TRANSITION METAL FLUOROSULFATES Compared t o the f l u o r i d e s , o n l y l i m i t e d work on b i n a r y f l u o r o s u l f a t e s o f the t r a n s i t i o n metals has been done ' The e x i s t i n g b i n a r y f l u o r i d e s and f l u o r o s u l f a t e s a r e shown i n F i g u r e 2. There i s an o b v i o u s l a c k o f c o r r e s p o n d i n g f l u o r o s u l -f a t e s o f the second and t h i r d t r a n s i t i o n s e r i e s , w h i l e t h e m a j o r i t y o f the work performed c o n c e n t r a t e s on the 3d e l e m e n t s . M B IV B V B V I B VIIB - V I I I — IB IIB 3 Sc 3,4 T i 3,4,5 V 2,3,4,5 Cr © 2,3 Mn © 2,3 Fe ©© 2,3 Co © 2 Ni © 2 Cu © 2 Zn © 3 Y 4 Zr 3,4,5 Nb 3,4,5,6 Mo 5,6 Tc 3,4,5,6 Ru 3,4,5,6 Rh 2,3*4 Pd 1.2 Ag © 2 Cd 3 La 4 Hf 3,5 Ta 4,5,6 W 4,5,6,7 Re 4,5,6,7 Os 3,4,5,6 Ir 3*4,5,6 Pt © 3,5 Au © 1.2 Hg © * denotes a mixed oxidation state + 2, + 4 Oxidation states of existing binary transition ( F i u o r i d e s ~ u P P e r row S ) . , n i r • ( F l u o r o s u l f a t e s — - i n c i r c l e s ) metal fluorides and fluorosulfates 32 T h e r e f o r e i t appeared a p p r o p r i a t e t o i n v e s t i g a t e t h e l a t e r t r a n s i t i o n elements i n t h i s s t u d y . P r e v i o u s r e p o r t e d work i s now summarized as f o l l o w s . The d i s p l a c e m e n t r e a c t i o n s i n f l u o r o s u l f u r i c a c i d o f 6 3 s e v e r a l t r a n s i t i o n m e t a l s s a l t s has been i n v e s t i g a t e d . . The anhydrous b i s f l u o r o s u l f a t e s o f Mn, Fe, Co, N i , Cu, Zn, Cd have been p r e p a r e d from the a c e t a t e s by t h i s method. The ease o f d i s p l a c e m e n t i s i n t h e o r d e r CH 3C0 2~ > SO^2' > C l ~ > F~. U s i n g the anhydrous c h l o r i d e as s t a r t i n g m a t e r i a l , Goubeau and M i l n e p r e p a r e d the c o r r e s p o n d i n g C u ( I I ) , Z n ( I I ) and F e ( I I I ) 6 2 f l u o r o s u l f a t e s from f l u o r o s u l f u r i c a c i d . P o t a s s i u m c h l o r i d e , which i s s o l v o l y z e d t o i t s f l u o r o s u l f a t e , must be added t o a i d the removal o f t h e s e a c i d i n s o l u b l e f l u o r o s u l f a t e s from the m e t a l c h l o r i d e s u r f a c e s . A l t h o u g h no c r y s t a l s t r u c t u r e has been r e p o r t e d on t h e s e compounds, d e t a i l e d magnetic and s p e c t r a l ( v i b r a t i o n a l and e l e c t r o n i c ) s t u d i e s have been made on the d i v a l e n t f l u o r o s u l f a t e s 7^,64^ These compounds a r e e x p e c t e d t o have t r i d e n t a t e b r i d g i n g f l u o r o s u l f a t e groups around the o c t a h e d r a l l y c o o r d i n a t e d m e t a l c e n t e r s . In the C u ( I I ) and Mn(II) compounds, the f l u o r o s u l f a t e groups p r o b a b l y have two s t r o n g e r and one weaker metal-oxygen i n t e r a c t i o n , w h i c h r e s u l t s i n l o w e r i n g o f the symmetry of the group. S i l v e r ( I ) f l u o r o s u l f a t e was o r i g i n a l l y s y n t h e s i z e d by t h e r e a c t i o n o f s i l v e r m e t a l w i t h n i t r o s y l p y r o s u l f a t e , ( N 0 ) 9 S 9 0 _ , 33 8 0 i n b r o m i n e t r i f l u o r i d e . However, t h e s o l v o l y s i s o f s i l v e r t r i f l u o r o a c e t a t e , AgOCOCF^, i n HSO^F has been f o u n d t o be a 81 66 much more c o n v e n i e n t s y n t h e t i c r o u t e . B r a z i e r and W o o l f have suggested t h e p o s s i b l e e x i s t e n c e o f s i l v e r ( I ) f l u o r o s u l f a t e when t h e m e t a l i s d i s s o l v e d i n b o i l i n g HSO^F, a l t h o u g h t h e p r o d u c t so o b t a i n e d c o n t a i n s l a r g e amount o f A g 2 S 0 4 as i m p u r i t y . 8 2 The v i b r a t i o n a l s p e c t r u m o f AgSO^F s u g g e s t s i o n i c f l u o r o -s u l f a t e g r o u p s w i t h some d i s t o r t i o n due t o t h e h i g h p o l a r i z i n g power o f t h e s i l v e r c a t i o n . The r e a c t i o n s o f g o l d and p l a t i n u m w i t h b r o m i n e ( I ) f l u o r o s u l f a t e , BrSC> 3F, g i v e A u ( S 0 3 F ) 3 and P t ( S 0 3 F ) 4 t h r o u g h some i n t e r m e d i a t e complex f o r m a t i o n s i n t h e r e a c t i o n medivuns-T h e s e c o m p l e x e s c a n be t h e r m a l l y decomposed t o y i e l d t h e p u r e p r o d u c t s . O x i d a t i v e r e a c t i o n s w i t h ^2°6F2 n a v e y i e l d e d t r a n -s i t i o n m e t a l o x y f l u o r o s u l f a t e s . M e t a l o x i d a t i o n s have p r o d u c e d R e 0 3 ( S 0 3 F ) , R e 0 2 ( S 0 3 F ) 3 8 3 , and M o 0 2 ( S 0 3 F ) 8 4 . R e a c t i o n s , w i t h c a r b o n a t e s o r o x i d e s have r e s u l t e d i n M n O ( S 0 3 F ) , C o O ( S 0 3 F ) , 8 5 N i O ( S 0 3 F ) , and A g 2 0 ( S 0 3 F ) 2 . From t h e r e a c t i o n s w i t h t h e i r O C h e x a c a r b o n y l s , M o 0 2 ( S 0 3 F ) 2 and W O ( S 0 3 F ) 4 a r e o b t a i n e d . When S 2 ° 6 F 2 "*"S r e a c t e ^ w i t h p e n t a c h l o r i d e s o f Group VB, M 0 ( S 0 3 F ) 3 8 3 w i t h M = V, Nb, o r Ta , a r e o b t a i n e d . The c o n v e r s i o n o f C r 0 2 C l 2 i n t o C r 0 2 ( S 0 3 F ) 2 by S 2 0 6 F 2 i s a l s o r e p o r t e d 8 7 . 8 8 J u s t b e f o r e t h e i n i t i a t i o n o f t h i s s t u d y , Brown and G a r d p u b l i s h e d a s h o r t n o t e on t h e s y n t h e s i s o f a c h r o m i u m ( I I I ) f l u o r o s u l f a t e f r o m t h e r e a c t i o n o f s u l f u r t r i o x i d e a n d c h r o m i u m p e n t a f l u o r i d e . I n t e r e s t i n g l y , b i s f l u o r o s u l f u r y l p e r o x i d e S 2 ° 6 F 2 ' w a s f ° u n d t o k e a b y - p r o d u c t i n t h e a b o v e r e a c t i o n . 8 9 W h i l e t h i s work was i n p r o g r e s s , Brown a n d G a r d f u r t h e r p u r s u e d t h e s y n t h e t i c r o u t e o f o x i d a t i o n o f m e t a l c a r b o n y l s w i t h S^O^F^. T h e y h a v e r e p o r t e d t h e s y n t h e s e s o f some m e t a l f l u o r o s u l f a t e s , o x y f l u o r o s u l f a t e s a n d c a r b o n y l - f l u o r o s u l f a t e s f o r m u l a t e d a s M n ( S C > 3 F ) 4 , V O ( S 0 3 F ) 3 , FeO(SC> 3 F) a n d F e (CO) 4 (SC>3F) s t a r t i n g f r o m Mn„ ( C O ) , n , V ( C O ) , a n d F e ( C O ) c - . E . STRUCTURAL C H A R A C T E R I Z A T I O N S OF T R A N S I T I O N M E T A L F L U O R O S U L F A T E S The m o s t p o w e r f u l means o f s t r u c t u r a l i d e n t i f i c a t i o n w o u l d be s i n g l e c r y s t a l X - r a y d i f f r a c t i o n a n a l y s e s . H o w e v e r , m o s t f l u o r o s u l f a t e compounds do n o t f o r m s u i t a b l e c r y s t a l s , h e n c e s p e c t r o s c o p i c methods a r e commonly e m p l o y e d f o r s t r u c t u r a l c h a r a c t e r i z a t i o n s . Among them i s t h e a l r e a d y d i s c u s s e d v i b r a t i o n a l ( i n f r a r e d a n d Raman) s p e c t r o s c o p y . I n a d d i t i o n , t h e m a g n e t i c p r o p e r t i e s o f t h e c o m p l e x e s a r e s t u d i e d by b u l k m a g n e t i c s u s c e p t i b i l i t y 90 91 92 m e a s u r e m e n t s ' a n d e l e c t r o n s p i n r e s o n a n c e s p e c t r o s c o p y 93-95 T he e l e c t r o n i c s t r u c t u r e s o f t h e m e t a l s a r e s t u d i e d b y s o l u t i o n v i s i b l e - u l t r a v i o l e t , s o l i d s t a t e m u l l , a n d d i f f u s e r e f l e c t a n c e s p e c t r o s c o p y . 35 I I . EXPERIMENTAL A. APPARATUS S i n c e t h e p r o d u c t s and most o f t h e r e a g e n t s u s e d were h y g r o s c o p i c , s p e c i a l p r e c a u t i o n s were t a k e n t o a v o i d c o n t a c t w i t h m o i s t a i r a t a l l s t a g e s o f e x p e r i m e n t a t i o n . Hence g a s e s and v o l a t i l e l i q u i d s were m a n i p u l a t e d on a vacuum l i n e , w hereas s o l i d s and n o n - v o l a t i l e l i q u i d s were h a n d l e d i n a d r y box. In a d d i t i o n , c h e m i c a l s s u c h as c h l o r i n e d i o x i d e and many s i l v e r ( I ) compounds were l i g h t s e n s i t i v e t o some e x t e n t . C a r e was t h e r e f o r e t a k e n t o a v o i d s u c h c h e m i c a l s from prolonged e x p o s u r e t o l i g h t . A fumehood w i t h d a r k e n e d windows, d e e p l y t i n t e d g l a s s c o n t a i n e r s o r aluminum f o i l w r a p p i n g s were employed i n s u c h c a s e s . 1. P y r e x Vacuum L i n e A g e n e r a l p u r p o s e p y r e x vacuum l i n e , a b o u t 60 cm l o n g w i t h f i v e o u t l e t s f i t t e d w i t h K o n t e s T e f l o n stem s t o p c o c k s , was u s e d . A s t a n d a r d t a p e r B19 g r o u n d g l a s s s o c k e t a t one end c o n n e c t e d t h e l i n e t o a m e c h a n i c a l r o t a r y vacuum pump (Welch D u o - S e a l Model 1405) v i a a p y r e x c o n n e c t i n g p i e c e w i t h a s a f e t y t r a p c o o l e d w i t h l i q u i d n i t r o g e n , t o p r o t e c t t h e pump f r o m c o r r o s i v e 36 v o l a t i l e m a t e r i a l s . A l l o t h e r o u t l e t s o f the l i n e were BIO ground g l a s s s o c k e t s , spaced e v e n l y a l o n g t h e m a n i f o l d . The c o n n e c t i n g p i e c e had two o t h e r o u t l e t s between t h e s a f e t y t r a p and the m a n i f o l d : one connected t o a mercury manometer v i a a s t o p c o c k and BIO ground g l a s s c o n n e c t i o n ; t h e o t h e r t o a s t o p c o c k and BIO s o c k e t o f t e n used to pump o f f unwanted v o l a t i l e r e a c t i o n m a t e r i a l s . Another o u t l e t between the s a f e t y t r a p and t h e vacuum pump s e r v e d as a l e a k - v a l v e t o t h e atmosphere v i a a Kontes g l a s s vacuum s t o p c o c k . When t r a n s f e r -i n g l i q u i d s w i t h l o w e r v o l a t i l i t i e s , i t was found c o n v e n i e n t to use a T - c o n n e c t i n g b r i d g e r a t h e r the e n t i r e m a n i f o l d . Such a T- p i e c e c o n s i s t s o f s i m p l y BIO s o c k e t s a t e i t h e r end and a BIO cone c o n n e c t i n g t o t h e main m a n i f o l d v i a a Kontes T e f l o n stem s t o p c o c k . T y p i c a l vacuum g e n e r a t e d on such a l i n e -2 i s o f the o r d e r o f 1 p a s c a l (> 10 t o r r ) . 2. M e t a l Vacuum L i n e In t h e r e a c t i o n s where e l e m e n t a l f l u o r i n e i s i n v o l v e d , a m e t a l vacuum l i n e was used. T h i s was c o n s t r u c t e d w i t h 1/4 i n c h O.D. monel t u b i n g s equipped w i t h Whitey va l v e s ( 1 K S 4 3 1 6 ) and was o p e r a t e d i n the manner s i m i l a r t o the pyrex l i n e . Copper t u b i n g (1/4 i n c h O.D.) was used f o r c o n n e c t i o n s t o the m a n i f o l d f o r more f l e x i b i l i t y . The p r e s s u r e i n t h e system was m o n i t o r e d by a Crosby p r e s s u r e gauge and a NRC 801 37 thermocouple vacuum gauge. The b a s i c h a n d l i n g and m a n i p u l a t i o n t e c h n i q u e s on t h e l i n e were s i m i l a r t o t h o s e d e s c r i b e d by 9 6 Peacock . Other s p e c i f i c m e t a l l i n e s used f o r t h e p r e p a r a t i o n o f S 2 0 g F 2 and CsAgF^ a r e d e s c r i b e d i n S e c t i o n I I . C . 2 . 3. R e a c t i o n V e s s e l s S e v e r a l t y p e s o f p y r e x r e a c t o r s were used f o r most • r e a c t i o n s e x c e p t where g l a s s a t t a c k s were e x p e c t e d . I n t h e s e c a s e s , e i t h e r monel or K e l - F r e a c t o r s were used. (a) Pyrex R e a c t o r s ( F i g . 3) Most o f t e n used was a t e s t - t u b e type r e a c t o r of about 25 ml i n volume w i t h a c o n s t r i c t i o n l e a d i n g t o a Kontes T e f l o n stem s t o p c o c k , and a s i d e arm e x t e n d i n g t o a BIO ground g l a s s cone ( F i g . 3 a ) . L a r g e r v e s s e l s o f t h i s t y p e up t o ^500 ml were a l s o used f o r s t o r a g e o f v o l a t i l e r e a g e n t s . Where h i g h r e a c t i o n t e m p e r a t u r e s (up t o 150°C) were employed, and v o l a t i l e l i q u i d s o r l a r g e amount o f qaseous p r o d u c t s were e x p e c t e d , 2 mm t h i c k w a l l v a r i a t i o n s o f above were used. These c o u l d s t a n d up t o i n t e r n a l p r e s s u r e o f 7-8 atmospheres ( F i g . 3b). The T e f l o n stem s t o p c o c k s e r v e d as a p r e s s u r e r e l e a s i n g s a f e t y v a l v e as w e l l . A nother v a r i a t i o n t o e n l a r g e t h e volume o f t h e c o n t a i n e r was f i t t i n g round bottom f l a s k t o t h e end o f t h e tubes ( F i g . 3c) These one p i e c e c o n t a i n e r s can be l o a d e d t h r o u g h t h e 38 FIGURE 3 PYREX REACTION VESSELS Q-• TEFLON STEM STOPCOCK 8-10 GROUND GLASS COU£ PYREX GLASS a) o n e - p a r t r e a c t o r a n d s t o r a g e v e s s e l b) o n e - p a r t t h i c k - w a l l e d r e a c t o r FIGURE 3 PYREX REACTION VESSELS TEFLON STEM STOPCOCK B-lO GROUND GLASS CONE Two-part r e a c t o r c) one-part r e a c t i o n bulb 40 c o n s t r i c t i o n s w i t h t h e a i d o f a s m a l l d i a m e t e r f u n n e l . They have t h e a d v a n t a g e o f e x c l u d i n g s t o p c o c k g r e a s e and w i t h s t a n d -i n g a p o s i t i v e i n t e r n a l p r e s s u r e . However, s o l i d p r o d u c t s t h a t d i d n o t come l o o s e on s h a k i n g o r t a p p i n g , c o u l d n o t be removed w i t h o u t b r e a k i n g t h e v e s s e l i n s i d e t h e d r y b o x . F u r t h e r -more, "bumping" o f a s u s p e n s i o n o r s o l u t i o n o f t e n t o o k p l a c e w h i l e r e m o v i n g t h e v o l a t i l e l i q u i d f r o m t h e s o l i d p r o d u c t by vacuum d i s t i l l a t i o n . Thus, p r o p e r vacuum s e a l s were impeded by s o l i d s t u c k between t h e T e f l o n stems and t h e g l a s s s u r f a c e s ; w h i l e l o s s o f p r o d u c t f r o m t h e v e s s e l r e s u l t e d i n l o s i n g t r a c k o f t o t a l p r o d u c t y i e l d , where t h e p r o g r e s s o f t h e r e a c t i o n was m o n i t o r e d by w e i g h t . The two p a r t p y r e x r e a c t o r u s e d c o n s i s t s o f a 50 ml r o u n d b o t t o m f l a s k w i t h a B19 g r o u n d g l a s s cone and a c o r r e s p o n d i n g a d a p t o r t o p w i t h a T e f l o n s t e m s t o p c o c k between a B19 s o c k e t and a B I O cone ( F i g . 3 d ) . T h i s t y p e o f r e a c t o r had t h e o b v i o u s a d v a n t a g e o f e a s y l o a d i n g and r e m o v a l o f s o l i d m a t e r i a l b u t was n o t s u i t e d f o r r e a c t i o n s a t h i g h t e m p e r a t u r e o r h i g h p r e s s u r e , and s t o p c o c k g r e a s e c o n t a m i n a t i o n was a p r o b l e m a s w e l l . However, p r o b l e m s a r o s e f r o m "bumping" c o u l d be a v o i d e d by h a v i n g a s i n t e r e d g l a s s f i l t e r i n g d i s c between t h e B 1 9 j o i n t and t h e T e f l o n s t o p c o c k o f t h e u p p e r a d a p t e r . T e f l o n c o a t e d m a g n e t i c s t i r r i n g b a r s were u s e d i n a l l t h e s e r e a c t o r s t o f a c i l i t a t e p r o p e r m i x i n g o f r e a c t i o n m i x t u r e s . 41 (b) M e t a l R e a c t o r ( F i g . 4) T h e s e were ^100 ml two p a r t monel r e a c t o r s , e a c h h e l d t o g e t h e r w i t h s i x b o l t s t o w i t h s t a n d h i g h p r e s s u r e s . T h e y were s e l e c t e d f o r t h e i r i n e r t n e s s t o w a r d c o r r o s i v e r e a g e n t s ( e . g . F 2 , HF o r h a l o g e n f l u o r i d e s ) . The t o p p a r t was f i t t e d w i t h a Hoke v a l v e (#4 31) and a s w a g e l o c k 1/4 i n c h c o n n e c t o r o r a s t a n d a r d t a p e r e d BIO cone t o a t t a c h d i r e c t l y t o t h e m e t a l o r p y r e x vacuum l i n e . A vacuum t i g h t s e a l was o b t a i n e d w i t h a T e f l o n O - r i n g i n s e r t e d i n t o a g r o o v e between t h e p o t and t h e l i d . S o l i d samples c a n be e a s i l y l o a d e d and removed i n t h e d r y b o x , however t h e p h y s i c a l c h a n g e s o f t h e r e a c t a n t s d u r i n g t h e r e a c t i o n s c o u l d n o t be o b s e r v e d i n t h e s e r e a c t o r s . A monel f l u o r i n e f l o w r e a c t o r was a l s o u s e d f o r t h e p r e p a r a t i o n o f CsAgF^, w h i c h i s d e s c r i b e d i n S e c t i o n I I . C . 2 . (c) K e l - F R e a c t o r s ( F i g . 5) Where h i g h i n t e r n a l p r e s s u r e and h i g h r e a c t i o n t e m p e r a t u r e s were n o t i n v o l v e d , b u t c o r r o s i v e r e a g e n t s o r r e a c t i o n p r o d u c t s were e n c o u n t e r e d , K e l - F r e a c t o r s were u s e d . They were s e m i -t r a n s p a r e n t and d e t a c h a b l e . T h e s e c o n s i s t e d o f u p p e r monel f i t t i n g s s i m i l a r t o t h e monel r e a c t o r ; and b o t t o m monel f i t t i n g s t o r e t a i n t h e K e l - F t u b e as shown i n t h e d i a g r a m . T h e s e K e l - F t u b e s sometimes had t h e p r o b l e m o f d e v e l o p i n g l o n g i t u d i n a l c r a c k s a f t e r r e p e a t e d sudden changes i n t e m p e r a t u r e . Hoke Valve ( No 431) Monel Metal Tube Lid n n Bolts to Secure Lid to Bottom Vessel \ ~N n Condenser Inlet feottom Condenser Inlet Monel Metal Reaction Vessel (150 ml ) Monel Metal 2 - P a r t Reaction Vessel ( Front V iew ) F i g . 5 K e l - F R e a c t i o n t rap 44 4. F l u o r o s u l f u r i c A c i d D i s t i l l a t i o n A p p a r a t u s S i n c e t h e HSO^F a v a i l a b l e c o m m e r c i a l l y was o n l y t e c h n i c a l g r a d e , i t was e s s e n t i a l t o p u r i f y i t by a d o u b l e d i s t i l l a t i o n 97 p r o c e s s d e s c r i b e d by B a r r e t . a l . . The d i s t i l l a t i o n a p p a r a -t u s i s shown i n F i g . 6. The s y s t e m was f i r s t f l u s h e d w i t h P 2 ° 5 d r i e d n i t r o g e n gas and t h e d i s t i l l a t i o n was c a r r i e d o u t a t a t m o s p h e r i c p r e s s u r e i n a fumehood. Most o f t h e HF i m p u r i t y was removed i n t h e f i r s t d i s t i l l a t i o n by a c o u n t e r s t r e a m o f d r y N 2 t h r o u g h t h e o u t l e t g u a r d e d by an a n h y d r o u s CaSO^ d r y i n g t u b e . The s e c o n d d i s t i l l a t i o n y i e l d e d a constant b o i l i n g f r a c t i o n , (163 °C) w h i c h was c o l l e c t e d d i r e c t l y i n t o an e v a c u a t e d r e a c t o r o r A storage c o n t a i n e r ( F i g . 3c) . 5. T r i f l u o r o m e t h y l s u l f u r i c A c i d D i s t i l l a t i o n A p p a r a t u s HSO^CF^ was p u r i f i e d by d i s t i l l a t i o n u n der r e d u c e d p r e s s u r e as t h e p u r i t y o f t h e c o m m e r c i a l l y a v a i l a b l e a c i d was n o t known. A c o n v e n t i o n a l d i s t i l l a t i o n s e t - u p w i t h a V i g r e u x column and f r a c t i o n s e p a r a t o r was u s e d . A f t e r f l u s h i n g o u t t h e s y s t e m w i t h d r y N 2 , t h e a c i d was d i s t i l l e d a t ^15 t o r r f r o m c o n c e n t r a t e d H 2 S 0 4 . The c o n s t a n t b o i l i n g f r a c t i o n s o f ^ 1 1 0 ° C were c o l l e c t e d d i r e c t l y i n t o e v a c u a t e d s t o r a g e c o n t a i n e r s , and f u r t h e r t r a p -t o - t r a p vacuum d i s t i l l e d b e f o r e u s e . Fig. 6 Fluorosulphuric Acid Distillation Apparatus. U l 6. Drybox The drybox p r o v i d e d a m o i s t u r e f r e e environment f o r h a n d l i n g h y g r o s c o p i c s o l i d s and n o n - v o l a t i l e l i q u i d s . T h i s was a Vacuum Atmospheres C o r p o r a t i o n " D r i - L a b " Model HE-4 3-2 f i l l e d w i t h K-grade N 2- The d r y n e s s o f the n i t r o g e n was m a i n t a i n e d by c o n s t a n t l y c i r c u l a t i n g o v e r m o l e c u l a r s i e v e s . The m o l e c u l a r s i e v e s were r e g e n e r a t e d p e r i o d i c a l l y by a b u i l i n h e a t i n g u n i t (VAC. Model HE-93-B " D r i - T r a i n " ) t o ensure maximum d r y n e s s . A d i s h o f ^2^5 ^ e P ^ i n s i d e t h e box a l s o s e r v e d as a m o i s t u r e i n d i c a t o r and d r y i n g agent. 7. M i s c e l l a n e o u s (a) Stopcock g r e a s e To ensure a i r - t i g h t n e s s , a l l ground g l a s s c o n n e c t i o n s were l u b r i c a t e d w i t h a low v o l a t i l i t y g r e a s e t h a t must be i n e r t t o h a l o g e n c o n t a i n i n g compounds. A h a l o c a r b o n g r e a s e , F l u o r o l u b e GR-90, CF-Cl(CF--CFC1) C F - C l , from Hooker z z n z C h e m i c a l s , was found t o be s a t i s f a c t o r y . (b) B a l a n c e s As the p r o g r e s s o f most o f t h e r e a c t i o n s were f o l l o w e d by mass measurements, s e v e r a l b a l a n c e s were used: M e t t l e r Gram-atic a n a l y t i c a l b a l a n c e #1-911, w i t h p r e c i s i o n and r e a d 47 a b i l i t y o f 0.5 mg t o maximum 100 gm l o a d ; M e t t l e r Gram-atic B-5, w i t h p r e c i s i o n and r e a d a b i l i t y o f 0.1 mg t o maximum 200 gm l o a d ; l o c a t e d i n the drybox was a top l o a d i n g M e t t l e r PI60 b a l a n c e w i t h a p r e c i s i o n and r e a d a b i l i t y o f 1 mg and maximum 160 gm l o a d ; f o r heavy c o n t a i n e r s , a t r i p l e beam b a l a n c e c a p a b l e o f measuring a maximum o f 26 00 gm was used. (c) The V a r i o u s a p p a r a t u s and s u p p l i e r s a r e l i s t e d i n Table 6. B. INSTRUMENTAL METHODS 1. I n f r a r e d S p e c t r o s c o p y Three i n f r a r e d g r a t i n g s p e c t r o p h o t o m e t e r s were used. Most o f t e n used was a P e r k i n - E l m e r 457 g r a t i n g s p e c t r o m e t e r w i t h a s p e c t r a l range o f 4000 - 250 cm 1 . A Pye-Unicam SP1100 g r a t i n g s p e c t r o m e t e r w i t h a range o f 4000 - 400 cm 1 was a l s o used t o r e c o r d s p e c t r a a t room t e m p e r a t u r e . A l l s p e c t r a were c a l i b r a t e d w i t h a p o l y s t y r e n e f i l m . Due t o t h e r e a c t i v e n a t u r e o f t h e samples, m u l l i n g agents and window p l a t e s were o f t e n a t t a c k e d . Hence, depending on t h e r e a c t i v i t y o f t h e samples, n e a t s o l i d powder f i l m between r a t h e r i n e r t BaF2, and l e s s i n e r t A g C l , AgBr, KRS-5 ( t h a l l i u m b r o m i d e - i o d i d e ) window 48' TABLE 6 COMMERCIALLY AVAILABLE TYPES OF APPARATUS App a r a t u s M a n u f a c t u r e r o r S u p p l i e r Welsh Dou-Seal Vacuum Pump, Model 14 00 Kontes High vacuum g l a s s and T e f l o n - s t e m s t o p c o c k s M e t a l h i g h p r e s s u r e and vacuum v a l v e s F l u o r o l u b e Grease, GR-90, GR-362, F l u o r o l u b e O i l , Mo-10 Tygon t u b i n g T e f l o n c o a t e d s t i r r i n g b a r s L i n d e chromatograph-grade 5A m o l e c u l a r s i e v e s D r i - L a b (VAC) Model HE-43-2 D r i - T r a i n (VAC) Model HE-93-B Welsh S c i e n t i f i c Company; S k o k i e , I l l i n o i s . K ontes; F r a n k l i n Park, I l l i n o i s . Whitey; Columbia V a l v e and F i t t i n g CO., Vancouver, B r i t i s h Columbia. Hoke; Hoke I n c . , C r e s k i l l , New J e r s e y . A u t o c l a v e ; A u t o c l a v e E n g i n e e r i n g I n c . , E r i e , P e n n s y l v a n i a . Hooker C h e m i c a l C o r p o r a t i o n ; N o r t h Vancouver, B r i t i s h Columbia F i s h e r S c i e n t i f i c Co., Vancouver, B r i t i s h C olumbia. Union C a r b i d e ; Redondo Beach, C a l i f o r n i a . Vacuum Atmospheres C o r p o r a t i o n N o r t h Hollywood, C a l i f o r n i a . M e t t l e r G r a m-atic #1-911 and P160 B a l a n c e s IR window m a t e r i a l s (KRS-5,, BaF„, C s l , AgBr and AgCl) F i s h e r S c i e n t i f i c Co., Vancouver, B r i t i s h Columbia, Harshaw Chemical Company; C l e v e l a n d , Ohio. Quartz O p t i c a l C e l l s Thermal S y n d i c a t e L t d . ; W a l l s e n d , Northumberland, U.K. 49 p l a t e s w i t h s p e c t r a l c u t o f f s a t ^800 cm J', 400 cm J", 300 cm "•" and 250 cm 1 r e s p e c t i v e l y were used. I n p a r t i c u l a r , t h e s i l v e r h a l i d e s p l a t e s were u n s u i t e d f o r t h e s i l v e r compounds as redox and exchange c o u p l e d r e a c t i o n s o f t e n t o o k p l a c e . N u j o l m u l l s were a l s o used where p o s s i b l e . S i n c e most IR samples were e x t r e m e l y h y g r o s c o p i c , s o l i d powders were p r o t e c t e d from m o i s t u r e by wrapping b l a c k e l e c t r i c a l tape around t h e edges o f t h e IR window p l a t e s i n s i d e t h e drybox. The IR s p e c t r a were t h e n r e c o r d e d i m m e d i a t e l y a f t e r t a k i n g t h e sample i n t o t h e wet atmosphere. S p e c t r a o f gaseous m a t e r i a l were r e c o r d e d u s i n g a Monel c e l l o f 7-cm p a t h l e n g t h , f i t t e d w i t h AgCl windows and a Whitey v a l v e . I n f r a r e d s p e c t r a a t l i q u i d n i t r o g e n t e m p e r a t u r e were o b t a i n e d on a P e r k i n Elmer 225 g r a t i n g s p e c t r o p h o t o m e t e r w i t h a s p e c t r a l range o f 4 000 - 200 cm 1 . The low t e m p e r a t u r e c e l l 98 99 was s i m i l a r t o t h a t o f Wagner and H o r n i g ' . I t c o n s i s t e d o f an e v a c u a b l e p y r e x body f i t t e d w i t h two C s l end windows, and equipped w i t h a c e n t r a l dewar column w i t h a b r a s s b l o c k a t t h e end. The b r a s s b l o c k was c o n s t r u c t e d t o h o l d a C s l window a t t h e c e n t e r o f t h e c e l l . The s o l i d sample powder was d e p o s i t e d onto t h i s c o l d c e n t r a l C s l window u s i n g a " s p r a y - o n " t e c h n i q u e w i t h n i t r o g e n as t h e c a r r i e r gas. Numerous t r i a l s were o f t e n needed t o d e p o s i t the optimum amount o f sample on t h e c o l d window w i t h o u t h a v i n g t h e powder f a l l i n g o f f o r b e i n g b l o w n - o f f . 50 2. Raman Spectroscopy Raman Spectra were recorded on a Spex Ramalog 5 s p e c t r o -meter equipped w i t h a Spectra P h y s i c s 164 argon i o n l a s e r . The green l i n e a t 514.5 nm was used f o r e x c i t a t i o n . The s o l i d samples were packed i n t o m e l t i n g p o i n t c a p i l l a r i e s and s e a l e d w i t h f l u o r o l u b e grease i n the drybox, permanent f l a m e - s e a l s were then made soon as p o s s i b l e . In a d d i t i o n , a Cary 81 spectrometer equipped w i t h a Spectra P h y s i c s 125 He-Ne l a s e r source u s i n g the e x c i t i n g l i n e a t 632.8 nm was used as w e l l . Sample c o n t a i n e r s used here were 5 mm O.D. f l a t end pyrex tubes. The power output measuring at the sample (15 to 20 mW) was r a t h e r poor, and the s c a t t e r i n g e f f i c i e n c y of the He-Ne l a s e r i s ve r y low, but some c o l o u r e d samples gave r a t h e r good Raman s p e c t r a on the o l d e r instrument. 3. V i s i b l e and U l t r a v i o l e t Spectroscopy E l e c t r o n i c s p e c t r a were recorded on e i t h e r a Cary 14 or a P e r k i n Elmer Model 124 spectrophotometer. S o l u t i o n s p e c t r a were taken w i t h s p e c t r o s i l o p t i c a l c e l l s o f 1 mm and 10 mm path l e n g t h s stoppered with T e f l o n plugs and wrapped wi t h T e f l o n tapes. S o l i d mull s p e c t r a were ob t a i n e d u s i n g F l u o r o l u b e o i l mulls between s i l i c a windows. L i g h t s c a t t e r i n g was compensated for by p l a c i n g a nujol-soaked f i l t e r paper i n the r e f e r e n c e beam 1 ^ 1 , 51 Diffuse reflectance spectra were obtained on a Bausch and Lomb spectronic 600 spectrometer equipped with a v i s i b l e reflectance attachment and a Sargent SR recorder. Spectra were measured between 350 nm and 740 nm with magnesium carbonate as the reflectance standard. 4. Magnetochemistry The magnetic s u s c e p t i b i l i t i e s of the compounds were deter-mined at a constant f i e l d strength of approximately 8000 gauss, 102 using a Gouy apparatus described by Clark and O'Brien Measurements were made over the temperature range 300 K to 77 K. The s o l i d powdered samples were packed into f l a t end 4.9 mm O.D. pyrex tubes to a height of 9.0 cm, then either sealed with fluorolube grease,or i n the case of the second tube, capped with an a i r - t i g h t Teflon cap to prevent hydrolysis. Samples were tested for f i e l d dependence of the magnetic moment at a f i e l d strength of approximately 4 500 gauss. Results obtained from the measurements at the constant f i e l d strength of approximately 8000 gauss was reported s t r i c t l y on the basis that the change i n weight of the sample i n and out of the magnetic f i e l d i s greater and hence can be more accurately measured. The sample tubes and apparatus were cal i b r a t e d using HgCo(CNS)4 as standard The e f f e c t i v e magnetic moments of the metal ion, y e£f/ was 52 calculated using the equation: 1 y e f f = 2.828 ( xS° rT) 2 cor where x M w a s the molar s u s c e p t i b i l i t y corrected for diamagne-tism, and T was the absolute temperature. The d e t a i l c a l c u l a t i o n to obtain X ^ ° r i s shown i n Appendix D. Diamagnetic corrections were obtained from the l i t e r a -ture 90,104^ values used were as followed: (in cm3mol 1) Ag 2 +, -24 X l O " 6 Ru 3 +, -23 X l O " 6 Ru 4 + , -19 X l O " 6 Os 3 +, -35 X 10" 6 K + ' -13 X l O " 6 Cs + , -41 X l O " 6 Sn 4 + , -16 X l O " 6 Ag + , -24 X l O " 6 P t 4 + , -28 X l O " 6 ; bipy, -105 X l O " 6 S0 3CF 3 -46 x 10 The diamagnetic correction for SO-^ F was assumed to be i d e n t i c a l to that of the is o e l e c t r o n i c SO. '31 2- (40.1 x 10~ 6 cm3mol X) . In order to determine whether the complexes obey the Curie-Weiss Law, y e f f = 2.828 [X^° r(T - 0 ) ] C03T the magnetic s u s c e p t i b i l i t i e s data i n l / x M versus T were M a n a l y z e d by a l e a s t - s q u a r e s method t o o b t a i n t h e Weiss c o n s t a n t , 5. E l e c t r o n S p i n Resonance S p e c t r o s c o p y A V a r i a n A s s o c i a t e s Model E-3 Spectrometer equipped w i t h a 100 KHz f i e l d m o d u l a t i o n was used t o r e c o r d s p e c t r a a t room te m p e r a t u r e and a t l i q u i d n i t r o g e n t e m p e r a t u r e . The X-band microwave f r e q u e n c y was c a l i b r a t e d u s i n g a H e w l e t t - P a c k a r d 5245L E l e c t r o n i c Counter w i t h a 525.6nm f r e q u e n c y c o n v e r t e r 8-18 GHz. Powdered s o l i d s o r s o l u t i o n s were c o n t a i n e d i n 4 mm O.D. q u a r t z tubes and evac u a t e d b e f o r e measurements. Powdered s o l i d s were a l s o h e l d i n m e l t i n g p o i n t c a p i l l a r i e s t h a t were t e s t e d t o show no s p u r i o u s s i g n a l s . 6. Mossbauer S p e c t r o s c o p y The Mossbauer s p e c t r o m e t e r c o n s i s t e d o f a TMC Model 305 v e l o c i t y t r a n d u c e r d r i v e n a t c o n s t a n t a c c e l e r a t i o n by a TMC Model 306 wave form g e n e r a t o r and p h a s e - l o c k e d t o a 400 ch a n n e l a n a l y z e r . Measurements were made a t 80 K w i t h t h e B a ^ ^ S n O ^ s o u r c e a t 298 K. Isomer s h i f t s were r e p o r t e d r e l a t i v e t o an 119 Sn e n r i c h e d S n 0 2 a b s o r b e r a t 80 K. Samples were c o n t a i n e d i n b r a s s c e l l s w i t h m y l a r windows. The c o n f i d e n t l i m i t was e s t i m a t e d t o be ± 0.0 3 mm/sec f o r b o t h isomer s h i f t and quadru-p o l e s p l i t t i n g . The Mossbauer spectrum o f AgSn(SO.jF)g was r e c o r d e d by D r s . T.B. T s i n and J . R . Sams. 7. M e l t i n g P o i n t s M e l t i n g p o i n t s o r d e c o m p o s i t i o n t e m p e r a t u r e s were d e t e r -mined u s i n g a Thomas Hoover c a p i l l a r y m e l t i n g p o i n t a p p a r a t u s i n w h i c h b o t h t h e sample i n a s e a l e d g l a s s c a p i l l a r y and t h e the r m o m e t e r b u l b a r e h e a t e d i n an o i l b a t h . The m e l t i n g p o i n t s a r e r e p o r t e d u n c o r r e c t e d . C. CHEMICALS 1. C o m m e r c i a l S o u r c e s A l l c h e m i c a l s o b t a i n e d f r o m c o m m e r c i a l s o u r c e s and s u b s e -q u e n t l y u s e d w i t h o u t f u r t h e r p u r i f i c a t i o n were o f r e a g e n t g r a d e o r o f t h e h i g h e s t p u r i t y o b t a i n a b l e u n l e s s o t h e r w i s e n o t e d . T h e s e r e a g e n t s , a l o n g w i t h t h e i r s u p p l i e r s and p u r i t i e s a r e l i s t e d i n T a b l e 7. A d d i t i o n a l p u r i f i c a t i o n s were needed f o r t h e o t h e r s . T e c h n i c a l g r a d e f l u o r o s u l f u r i c a c i d was o b t a i n e d f r o m A l l i e d C h e m i c a l s and d o u b l y d i s t i l l e d a s d e s c r i b e d i n S e c t i o n I I . A . 4 . T r i f l u o r o m e t h y l s u l f u r i c a c i d , m a r k e t e d as F l u o r O c h e m i c a l 55 TABLE 7 CHEMICALS Source C h e m i c a l P u r i t y V e n t r o n A l f a Corp, s i l v e r r u t h e n i u m osmium p l a t i n u m A g 2 o AgO AgF A g F 2 AgN0 3 A g 0 2 C C F 3 A g 0 S 0 2 C F 3 A g 2 S 0 4 "AgS0 3F" AgBF 4 R u C l 3 anhydrous RuO„ -100 mesh, 99.999% -80 mesh -60 mesh -60 mesh 99% 94% n o t g i v e n 98% 99.7% 99% 99% 99.9% not g i v e n a n a l y t i c a l n o t g i v e n 99.9% V e n t r o n A l f a Corp. O s C l , CsNO. not g i v e n 99.9% M a l l i n c k r o d t I n c . B r i t i s h Drug Houses, L t d . J.T. Baker Co. F i s h e r C h e micals A l l i e d C h e m i c a l s Canadian L i q u i d A i r W i l l o w Brook Lab., Inc NaF KI KC1 A g 2 C 0 3 P2°5 KC10 3 H 2 C 2 ° 4 * 2 H 2 ° T i n C s C l a , a ' - b i p y r i d i n e H 2 S 0 4 N, ( C F 3 S 0 2 ) 2 0 a n a l y t i c a l r e a g e n t a n a l y t i c a l r e a g e n t a n a l y t i c a l r e a g e n t a n a l y t i c a l r e a g e n t a n a l y t i c a l r e a g e n t a n a l y t i c a l r e a g e n t a n a l y t i c a l r e a g e n t -20 mesh, 99.97% 99.9% r e a g e n t 96% A.C.S. r e a g e n t d r y K-grade 98% 56 a c i d FC-24 by M i n n e s o t a M i n i n g and M a n u f a c t u r i n g Company, was d i s t i l l e d u n der p a r t i a l p r e s s u r e ( S e c t i o n I I . A . 5 ) . S t a b i l i z e d s u l f u r t r i o x i d e , o b t a i n e d as "Sulfan" f r o m A l l i e d C h e m i c a l s , was u s e d w i t h o u t p u r i f i c a t i o n i n t h e s y n t h e s i s o f S „ 0 , F _ . Z b Z However, t h e s u l f u r t r i o x i d e u s e d i n o t h e r r e a c t i o n s was d i s t i l -l e d f r o m 6 5% o l e u m u n d e r a N 2 a t m o s p h e r e and s u b s e q u e n t l y vacuum d i s t i l l e d . A n t i m o n y p e n t a f l u o r i d e , o b t a i n e d f r o m O z a r k Mahoning Co., was p u r i f i e d by f i r s t p u r g i n g t h e m a t e r i a l w i t h d r y N 2 ( g ) t o remove most o f t h e HF, t h e n d i s t i l l e d u n d e r N 2 and f i n a l l y i n t e r m i t t e n t vacuum pumping u n t i l e v o l u t i o n o f gas b u b b l e s c e a s e d . B o t h t e c h n i c a l g r a d e ( A i r - P r o d u c t s L t d . ) and 98% p u r e (Matheson o f Canada L t d . ) f l u o r i n e were p a s s e d t h r o u g h a NaF d r y i n g tower t o remove t h e HF p r e s e n t . The NaF tower was e q u i p p e d w i t h a h e a t i n g s y s t e m t o a l l o w r e g e n e r a t i o n a f t e r u s e . A n a l y t i c a l r e a g e n t b r o m i n e o b t a i n e d f r o m M a l l i n c k -d r o d t I n c . was s t o r e d o v e r KBr and P o 0 c t o remove Cl„ and H „ 0 , Z D z z and vacuum d i s t i l l e d b e f o r e u s e . A c e t o n i t r i l e , CH^CN ( M a l l i n c k r o d t A n a l y t i c a l r e a g e n t ) was p u r i f i e d by two s u c c e s s i v e r e f l u x i n g p e r i o d s o f a b o u t t e n h o u r s e a c h w i t h ? 2 0 ^ , p h o s p h o r u s p e n t o x i d e , t h e n s t o r e d and d e g a s s e d o v e r L i n d e 4A m o l e c u l a r 106 s i e v e s . D i c h l o r o m e t h a n e , C H 2 C 1 2 ( A n a l y t i c a l r e a g e n t ) was d r i e d o v e r L i n d e 4A m o l e c u l a r s i e v e s f o r s e v e r a l d a y s , d e g a s s e d , and vacuum d i s t i l l e d . 57 2. P r e p a r a t i v e R e a c t i o n s O t h e r s t a r t i n g m a t e r i a l s ( w h i c h were n o t c o m m e r c i a l l y a v a i l a b l e ) were p r e p a r e d a c c o r d i n g t o l i t e r a t u r e methods. B i s f l u o r o s u l f u r y l p e r o x i d e , S „ 0 , F „ , was p r e p a r e d by t h e Z o Z r e a c t i o n o f f l u o r i n e and s u l f u r t r i o x i d e a t ^ 1 8 0 ° C i n t h e 107 108 p r e s e n c e o f A g F 2 a c c o r d i n g t o Cady and S h r e e v e ' w i t h s e v e r a l m o d i f i c a t i o n s . The r e a c t i o n a p p a r a t u s i s shown i n F i g . 7. A l a r g e r r e a c t o r o f 120 cm i n l e n g t h , a r e a c t i o n t e m p e r a t u r e o f 180 °C v e r s u s 150 °C, and h e a t i n g t h e SO^ t o 50°C v e r s u s 25°C gave f a s t e r f l o w r a t e s (^150 g / h r v e r s u s 6 g/hr) and a l l o w e d t h e s y n t h e s i s o f l a r g e r q u a n t i t i e s i n a r e l a t i v e l y s h o r t p e r i o d o f t i m e . A r e l a t i v e f l o w r a t e o f S 0 3 / N 2 : F 2 i n t h e r a t i o 2:1 were u s e d . To a v o i d t h e c o n d e n -108 s a t i o n o f p o t e n t i a l l y e x p l o s i v e b y - p r o d u c t FSO^F , t h e l a s t c o n d e n s a t i o n t r a p was a l s o c o o l e d by d r y i c e (-78°C) and n o t l i q u i d 0 2 (-183°C). The f i r s t t r a p was l e f t u n c o o l e d t o a c t as an a i r c o o l e r and t o a l l o w o b s e r v a t i o n and r e m o v a l o f p o s s i b l e n o n - v o l a t i l e s i d e - p r o d u c t s . The p r e s e n c e o f u n r e a c t e d s u l f u r t r i o x i d e was i n d i c a t e d by w h i t e f l a k y s o l i d s i n t h e o t h e r w i s e c l e a r and c o l o r l e s s r e a c t i o n p r o d u c t . I t was removed from t h e c r u d e p r o d u c t by w a s h i n g w i t h 96% H 2 S 0 4 i n a s e p a r a t o r y f u n n e l i n a fumehood b e f o r e vacuum d i s t i l l a t i o n . A g r e e n i s h p r o d u c t c o l o r i n d i c a t e d t h e p r e s e n c e o f FSO-.F and d i s s o l v e d F » . To F lowmeter C o p p e r G lass i i 1^ T o F l o w m e t e r 5 C O m l . P y r e x F l a s k R e a c t o r (f) Whitey V a l v e - 0 - H o k e 4 1 3 V a l v e A u t o c l a v e E n g i n e e r i n g V a l v e s N a F Trap -e-9 cm * i m II H i C r o s b y P r e s s u r e G u a g e i _ J — L _ r ^ - 2 0 c m - * -F 2 Outlet To F cyl inder 2 C o p p e r B 3 4 A B 3 4 B B 3 4 To S o d a - l ime T rap •F luoro lube Oi l T u b e C F i g .7 A p p a r a t u s - f o r t h e P r e p a r a t i o n o f S 2 O e F2 59 B o t h were removed a t -78°C by p r o l o n g e d pumping u n d e r vacuum. F r e q u e n t v i s u a l c h e c k i n g s on t h e a p p e a r a n c e o f t h e c r u d e p r o d u c t a l l o w e d f i n e a d j u s t m e n t o f t h e f l o w r a t e s f o r optimum y i e l d s . The c o p p e r t u b i n g c o n n e c t i n g t h e o u t l e t o f t h e r e a c t o r and t h e c o o l i n g t r a p s were f l a m e d f r e q u e n t l y t o a v o i d c l o g g i n g by c o n d e n s e d m a t e r i a l . The f i n a l p r o d u c t was vacuum d i s t i l l e d i n t o a T e f l o n v a l v e s t o r a g e t r a p . I t s p u r i t y was c h e c k e d by 19 a gas ph a s e IR s p e c t r u m and a l i q u i d p h a s e F N.M.R. s p e c t r u m . A commonly o c c u r r i n g i m p u r i t y , i n p a r t i c u l a r a f t e r t h e p r o d u c t had been washed,was d i s u l f u r y l d i f l u o r i d e , S 2 ° 5 F 2 ' P r e s e n t ^ n VL% amounts. No a t t e m p t was made t o remove t h i s m a t e r i a l , w h i c h was i n e r t i n t h e r e a c t i o n s p e r f o r m e d . B romine m o n o f l u o r o s u l f a t e , BrSO^F, was p r e p a r e d by t h e d i r e c t r e a c t i o n o f B r 2 w i t h a s l i g h t e x c e s s o f S 2 ° 6 F 2 a c c o r d i n g 109 t o Aubke and G i l l e s p i e C h l o r i n e d i o x i d e was p r e p a r e d a c c o r d i n g t o t h e l i t e r a t u r e method 1 1 0 by t h e r e a c t i o n o f p o t a s s i u m c h l o r a t e and s u l f u r i c a c i d w i t h o x a l i c a c i d as a r e d u c i n g a g e n t . The r e s u l t i n g CO,, a c t e d a s a d i l u e n t . The C 1 0 2 p r o d u c e d was c o l l e c t e d a t - 7 8 ° C , a l l o w i n g t h e v o l a t i l e C 0 2 b y - p r o d u c e d t o v e n t i n t h e fumehood. I t was t h e n p u r i f i e d by pumping a t -78°C t o remove C l 2 and C 0 2 , t h e n by t r a p - t o - t r a p d i s t i l l a t i o n . B e c a u s e o f i t s e x p l o s i v e n a t u r e 1 1 1 , t h e C 1 0 2 was n o t a l l o w e d t o warm up and u s u a l l y f u r t h e r r e a c t e d w i t h S-O,.F_ t o f o r m c h l o r y l f l u o r o s u l f a t e , Z b 2 60 112 ClO^SO-F . An exc e s s o f S o0,F„ was d i s t i l l e d onto p u r i f i e d 2 3 2 6 2 C1C>2 and a l l o w e d t o warm by i t s e l f from -78°C t o room tempera-t u r e o v e r n i g h t . The excess S„0,F_ was then d i s t i l l e d from t h e Z D Z much l e s s v o l a t i l e ClO^SO^F. S i l v e r ( I ) f l u o r o s u l f a t e , AgSO^F, was c o n v e n i e n t l y o b t a i n e d from the s o l v o l y s i s r e a c t i o n o f s i l v e r ( I ) t r i f l u o r o a c e t a t e , 81 AgOCOCF.^ i n d o u b l y d i s t i l l e d f l u o r o s u l f u r i c a c i d . A f t e r removal o f a l l v o l a t i l e m a t e r i a l s i n vacuum, t h e r e s u l t i n g c rude p r o d u c t was washed w i t h a v e r y s m a l l amount o f HSO^F 6 6 and vacuum f i l t e r e d . B r a z i e r and Woolf o b s e r v e d t h a t s i l v e r m e t a l d i s s o l v e d i n b o i l i n g HSO^F t o g i v e a c o l o r l e s s s o l u t i o n c o n t a i n i n g p o s s i b l y s i l v e r ( I ) f l u o r o s u l f a t e , which c o u l d n ot be i s o l a t e d w i t h o u t l a r g e amount o f s u l f a t e i m p u r i t i e s . T h i s appears t o be c o n f i r m e d when s i l v e r m e t al was r e a c t e d d i r e c t l y w i t h d o u b l y d i s t i l l e d HSO^F a t 70°C f o r t h r e e h o u r s , removal o f a l l v o l a t i l e m a t e r i a l s i n vacuum gave a w h i t e s o l i d c o n t a m i n a t e d w i t h t r a c e s o f a c l e a r v i s c o u s l i q u i d o f v e r y low v o l a t i l i t y , most l i k e l y H^SO^. The w h i t e powder was i d e n t i f i e d by i t s IR spectrum t o be an impure AgSO^F. S i l v e r ( I I ) b i s ( 2 , 2 ' - b i p y r i d y l ) b i s ( t r i f l u o r o m e t h y l s u l f a t e ) , [ A g 1 1 ( b i p y ) 21 (^F^SO^^/ w a s s Y n t h e s i z e d from i t s c o r r e s p o n d i n g s i l v e r ( I ) complex by o x i d a t i o n w i t h AgO i n t h e presence o f 113 exce s s a n i o n s a c c o r d i n g t o Thorpe and K o c h i Both p o t a s s i u m and cesium f l u o r o s u l f a t e s were p r e p a r e d from the c o r r e s p o n d i n g c h l o r i d e s by r e a c t i n g w i t h f l u o r o s u l f u r i c a c i d , o r b r o m i n e m o n o f l u o r o s u l f a t e . Due t o t h e i r low t h e r m a l s t a b i l i t i e s , t h e a l k a l i m e t a l b i s f l u o r o s u l f a t o -b r o m a t e ( I ) c o m p l e x e s forme<^ ^ n {-ne l a t t e r r o u t e were decomposed by h e a t i n g t h e p r o d u c t s under a dynamic vacuum, t h u s g i v i n g t h e c o r r e s p o n d i n g p u r e a l k a l i m e t a l f l u o r o s u l f a t e s . C e s i u m t e t r a f l u o r o a r g e n t a t e ( I I I ) , C s A g ^ ^ F ^ , was p r e p a r e d by t h e d i r e c t f l u o r i n a t i o n o f s t o i c h i o m e t r i c m i x t u r e o f CsNO^ and AgNO^ a t ^ 3 0 0 ° C a c c o r d i n g t o Hoppe . The r e a c t i o n was c a r r i e d o u t i n a f l u o r i n e f l o w r e a c t i o n s y s t e m shown i n F i g . 8. The f l u o r i n e (Matheson) u s e d was p a s s e d t h r o u g h a NaF column t o remove any HF i m p u r i t i e s b e f o r e d i l u t i n g w i t h d r y N 2-The e n t i r e r e a c t o r was t a k e n i n t o t h e d r y b o x f o r m a n i p u l a t i o n o f t h e p r o d u c t . D. CHEMICAL ANALYSES 1. E l e m e n t a l A n a l y s e s C a r b o n , h y d r o g e n and n i t r o g e n a n a l y s e s were c a r r i e d o u t by t h e a n a l y s t , Mr. P. B o r d a o f t h e C h e m i s t r y D e p a r t m e n t , U n i v e r s i t y o f B r i t i s h C o l u m b i a . A l l o t h e r e l e m e n t a l a n a l y s e s were p e r f o r m e d by A n a l y t i s c h e L a b o r a t o r i e n ( f o r m e r l y A l f r e d B e r n h a r d t ) , Gummersbach, West Germany. FIGURE 8 METAL FLOW REACTOR FOR FLUORINATION REACTIONS W h i t e y v a l v e [iwiiiiiiiiiiiiiiiiir iiiiuiittiHWimniii • L_ F 2 / N 2 9 c o p p e r 1 g a s k e t t h e r m o c o u p l e FLUORINE LINE h e a t i n g w i r e r 9 monel l o u s i n g NaF T r a p N, r e a c t o r f l u o r o c a r b o n f) O i l 2. O x i d a t i o n S t a t e s D e t e r m i n a t i o n s The o x i d a t i o n s t a t e o f some d i v a l e n t s i l v e r compounds were d e t e r m i n e d by a m o d i f i e d i o d o m e t r i c t i t r a t i o n method. S i n c e t h e r e a c t i o n o f compounds s u c h as A g ( S 0 3 F ) 2 w i t h aqueous a c i d i c p o t a s s i u m i o d i d e s o l u t i o n gave b o t h o x y g e n and e l e m e n t a l i o d i n e a c c o r d i n g t o : A g 2 + + 2 KI »- A g l + | I + 2 K + and 2 A g 2 + + H 20 2 A g + + 2 H + + ^ 0 2 t h e samples were decomposed w i t h a c o n c e n t r a t e d aqueous KI s o l u t i o n i n a c l o s e d p r e - e v a c u a t e d c o n t a i n e r . The KI s o l u t i o n was a c i d i f i e d w i t h d i l u t e s u l f u r i c a c i d and s a t u r a t e d w i t h n i t r o g e n g a s . The amount o f o x y g e n r e l e a s e d was d e t e r m i n e d by t h e w e i g h t d i f f e r e n c e w h i l e t h e I 2 was a n a l y z e d by s t a n d a r d 117 i o d o m e t r i c t i t r a t i o n u s i n g t h i o s u l f a t e T h e r e a r e o b v i o u s f l a w s i n s u c h an a n a l y t i c a l method, s u c h as t h e i n a c c u r a t e d e t e r m i n a t i o n s o f o x y g e n r e l e a s e d . B u t s u c h an a n a l y s i s was s i m p l e and a l l o w e d a r e a s o n a b l y a c c u r a t e e s t i m a t e o f t h e o x i d a t i o n s t a t e o f s i l v e r i n t h e s e compounds. I I I . FLUOROSULFATES OF S I L V E R ( I I ) A. INTRODUCTION S i l v e r e x i s t s i n most o f i t s compounds i n t h e +1 o x i d a t i o n s t a t e , c o r r e s p o n d i n g t o t h e e l e c t r o n i c c o n f i g u r a -t i o n s [Kr] 4d^^. The h i g h e r o x i d a t i o n s t a t e s , +2 and +3 a r e f a r l e s s common. A t f i r s t s i g h t , t h e abundance o f t h e u n i v a l e n t s i l v e r compounds may be e x p l a i n e d by t h e s t a b i l i t y o f t h e c l o s e d - s h e l l d 1 ( ^ e l e c t r o n i c c o n f i g u r a t i o n . However, on f u r t h e r e x a m i n a t i o n o f o t h e r e l e m e n t s i n Group IB, t h e e x t r a s t a b i l i t y o f t h e u n i v a l e n t s t a t e i s u n i q u e f o r s i l v e r , w i t h c o p p e r ( I I ) and g o l d ( I I I ) most common f o r t h e s e e l e m e n t s . Hence t h e s t a b i l i t y o f a p a r t i c u l a r o x i d a t i o n s t a t e must i n v o l v e more t h a n a s i n g l e c o n t r i b u t i n g f a c t o r . One o f t h e c o n t r i b u t i n g f a c t o r s would be i o n i z a t i o n p o t e n t i a l s ; t h e f i r s t t h r e e f o r s i l v e r and c o p p e r a r e l i s t e d i n T a b l e 8 f o r c o m p a r i s o n . E v e n t h o u g h t h e r e a r e no d r a m a t i c d i f f e r e n c e s between them, t h e b a l a n c e o f a l l t h e c o n t r i b u t i n g f a c t o r s c o u l d be o f f s e t by t h e s m a l l b i a s o f i n d i v i d u a l c o n t r i -b u t i n g f a c t o r s . The v a l u e s shown i n T a b l e 8 s u g g e s t t h a t t h e +1 o x i d a t i o n s t a t e o f s i l v e r i s e a s i e r t o o b t a i n , whereas t h e d i v a l e n t s t a t e o f c o p p e r i s more f a v o u r e d , and t h e +3 o x i d a t i o n s t a t e i s e a s i e r t o o b t a i n f o r s i l v e r b a s e d on t h e sum o f t h e f i r s t t h r e e i o n i z a t i o n p o t e n t i a l s . TABLE 8 SOME IONIZATION POTENTIALS OF SILVER AND COPPER (kJ/mol) E l e m e n t F i r s t S e c o nd T h i r d Ag [Kr] 4 d 1 0 5 s 1 730.8 2072 3361 I Ip.Ag = 2803 £ Ip.A g = 6164 1 / 2 1 / 2 / 3 Cu [Ar] 3 d 1 0 4 s 1 745.3 1958 3554 I Ip.Cu = 2703 I I p . C u = 6257 1 / 2 1 / 2 / 3 From a n o t h e r v i e w p o i n t , t h e r e d u c t i o n p o t e n t i a l f o r t h e 11 9 A g ( I I ) / A g ( I ) c o u p l e i s +1.93 V i n 4 mol/1 HN0 3 , whereas t h e same c o u p l e f o r c o p p e r i n a c i d i c aqueous s o l u t i o n i s o n l y 120 +0.153 V . Hence i n aqueous medium, s i l v e r ( I I ) i s much more d i f f i c u l t t o o b t a i n t h a n c o p p e r ( I I ) and i s a much s t r o n g e r 66 o x i d i z i n g agent. I n f a c t , c o p p e r ( I ) i s v e r y u n s t a b l e i n such a medium and r e a d i l y d i s p r o p o r t i o n a t e s i n t o C u ( I I ) and m e t a l l i c c o p p e r , where E° f o r such d i s p r o p o r t i o n a t i o n i s 120 + 0. 37 V . The s t a b i l i t i e s o f t h e s i l v e r ( I ) compounds are f u r t h e r 121 r e f l e c t e d i n t h e v e r y h i g h l a t t i c e e n e r g i e s . F o r example, t h e v a l u e f o r AgCl i s 904 kJ/mol as compared t o 775 kJ/mol f o r NaCl and 703 kJ/mol f o r KC1, w h i c h have s i m i l a r i o n i c r a d i i and t h e same ro c k s a l t s t r u c t u r e . Hence many s i l v e r ( I ) compounds e x i s t i n i o n i c l a t t i c e s . N e v e r t h e l e s s , the h i g h e r o x i d a t i o n s t a t e s o f s i l v e r c o u l d be made e a s i e r t o o b t a i n by s e l e c t i n g more f a v o u r a b l e r e a c t i o n medium, such as i n b i p y r i d y l complexes, the r e d u c t i o n p o t e n t i a l o f t h e A g ( I I ) / A g ( I ) c o u p l e i s s i g n i f i c a n t l y reduced t o 1.45 V. The e a r l i e r work on t h e s i l v e r ( I I ) and ( I I I ) systems up t o 122 123 1960 has been r e v i e w e d i n d e t a i l ' ; and t h e more r e c e n t ones d e s c r i b e d i n t h e I n o r g a n i c C h e m i s t r y t e x t b o o k by C o t t o n 124 and W i l k i n s o n . D u r i n g t h e c o u r s e o f t h i s s t u d y , a compre-h e n s i v e r e v i e w on the h e t e r o c y c l i c and m a c r o c y c l i c complexes 125 o f s i l v e r ( I I ) and ( I I I ) by H.N. Po has appeared I n c o n t r a s t t o the s i l v e r ( I ) system, a l a c k o f s i m p l e b i n a r y compounds i s apparent i n the I I and I I I o x i d a t i o n s t a t e s . A l t h o u g h t h e r e a c t i o n between e l e m e n t a l s i l v e r and f l u o r i n e was f i r s t d e s c r i b e d by M o i s s a n i n 1891, t h e e x i s t a n c e o f s i l v e r d i f l u o r i d e , A g F 2 , was not c o n f i r m e d u n t i l the 1930's o , i ^ / ^ 67 and has s i n c e t h e n r e m a i n e d t o be t h e o n l y h i g h e r v a l e n t b i n a r y compound o f s i l v e r . A 9 F 2 c a n ^ e o b t a i n e d as a b l a c k m i c r o c r y s t a l l i n e s o l i d by t h e d i r e c t f l u o r i n a t i o n o f m e t a l l i c s i l v e r o r a number o f s i l v e r ( I ) s a l t s s u c h as A g C l . I t has been f o u n d u s e f u l as a v e r s a t i l e o x i d i z i n g o r f l u o r i n a t i n g a g e n t , more r e a c t i v e t h a n C o b a l t ( I I I ) f l u o r i d e , as i n t h e ex a m p l e s : 1 2 8 CO + 2 A g F 2 • COF 2 + 2 AgF 129 S 0 2 + 2 A g F 2 +~ S 0 2 F 2 + 2 A g F I t i s a l s o u s e d as a c a t a l y s t i n c a t a l y t i c f l u o r i n a t i o n s ^ 3 ^ s u c h a s t h e f l u o r i n a t i o n o f SOF 2, t o g i v e p e n t a f l u o r o s u l f u r h y p o f l u o r i t e , S F 5 O F 1 3 1 . A g F 2 S O F 2 + 2 F 2 • S F 5 O F 200 °C 132 133 The r e c e n t l y r e p o r t e d c r y s t a l s t r u c t u r e o f A g F 2 ' shows an o r t h o r h o m b i c s t r u c t u r e w i t h a h i g h l y t e t r a g o n a l l y d i s t o r t e d o c t a h e d r a l e n v i r o n m e n t f o r A g 2 + . S e v e r a l m a g n e t i c s t u d i e s have shown t h a t A g F 2 i s m a g n e t i c a l l y c o n c e n t r a t e d and shows f e r r o m a g n e t i s m below 163 K "*"34 136^ The c o r r e s p o n d i n g a r g e n t i c o x i d e , AgO, o b t a i n e d v i a t h e o x i d a t i o n o f an a l k a l i n e s i l v e r ( I ) s o l u t i o n by p e r o x y d i s u l f a t e , _ . 2- 137 S 20g , a c c o r d i n g t o : 2 A g + + S 2 O g 2 + 4 OH 2 AgO + 2 SO^2 + 2 H 20 has been i d e n t i f i e d as a mixed v a l e n c e A g I A g I I I 0 2 based on 138 139 i t s diamagnetism and n e u t r o n d i f f r a c t i o n s t u d i e s . The A g 1 and A g 1 1 1 i o n s i n AgO can be c h e m i c a l l y s e p a r a t e d i n an a l k a l i n e s o l u t i o n i n t h e presence o f c o m p l e x i n g agents such as p e r i o d a t e s and t e l l u r a t e s ^•^ /^ r e s u l t i n g i n t h e f o r m a t i o n o f A g 1 1 1 complexes as o u t l i n e d below: 4 AgO + 6 KOH + 4 K I 0 4 9*- 2 [ A g 1 1 1 ( I 0 g ) 2 ] + A g 2 0 + H Other A g ( I I ) o r A g ( I I I ) complexes a r e summarized and d i s -c u s s e d below: 1. O x y s a l t s o f the type A g ( I I ) ( A g 3 0 4 ) 2 S 0 4 o r A g ( A g 3 0 4 ) 2 X , where X = N0 3~, C10 4~, F~, HS0 4~. These a r e o b t a i n e d by t h e 122 a n o d i c o x i d a t i o n s o f s i l v e r ( I ) s a l t s i n aqueous s o l u t i o n The spontaneous d e c o m p o s i t i o n o f t h e s e compounds t o g i v e AgO a c c o r d i n g t o : A g ( A g 3 0 4 ) 2 X AgX + 6 AgO + 0 i s a c c e l e r a t e d i n b o i l i n g w ater "L'i"L. 2. C o o r d i n a t i o n complexes o f h e t e r o c y c l i c and m a c r o c y c l i c amines o f both s i l v e r ( I I ) and ( I I I ) , w hich have been e x t e n -125 s i v e l y s t u d i e d and v e r y r e c e n t l y r e v i e w e d i n d e t a i l by Po These can be s e p a r a t e d i n t o : ( i ) N i t r o g e n donor l i g a n d s s u ch as p y r i d i n e , p o l y p y r i d i n e s , p y r a z i n e o f s i l v e r ( I I ) ; m a c r o c y c l e s such as porphyrins and t e t r a a z a complexes o f s i l v e r ( I and ( I I I ) . ( i i ) Mixed n i t r o g e n - o x y g e n donor l i g a n d s such as p y r i d i n e mono-, d i - , and t r i c a r b o x y l a t e s and p y r a z i n e c a r b o x y -l a t e s . In g e n e r a l , s e v e r a l s y n t h e t i c methods have been a p p l i e d t o p r e p are t h e s e c o o r d i n a t i o n complexes. (a) By f a r t h e most common method i s the p e r o x y d i s u l f a t e o x i d a t i o n o f a c o l d aqueous s i l v e r ( I ) s o l u t i o n i n t h e presence of excess l i g a n d m o l e c u l e s . (b) Anodic o x i d a t i o n o f a s i l v e r n i t r a t e s o l u t i o n c o n t a i n i n g e x c e s s l i g a n d i n a d i v i d e d c e l l i s a l s o used. (c) I n r a t h e r r a r e i n s t a n c e s where t h e c o r r e s p o n d i n g s i l v e r ( I ) complex i s known and s t a b l e t o d i r e c t o x i d a t i o n , an o x i d i z i n g agent such as ozone o r AgO i s used. (d) D i r e c t m i x i n g o f s i l v e r ( I ) and c e r t a i n p o r p h y r i n bases and t e t r a a z a l i g a n d s may r e s u l t i n a d i s p r o p o r t i o n a t i o n t o t h e c o r r e s p o n d i n g s i l v e r ( I I ) complex and m e t a l l i c s i l v e r 1 4 2 ' 1 4 3 # A l l o f t h e above s i l v e r ( I I ) complexes a r e paramagnetic and m a g n e t i c a l l y d i l u t e w i t h o n l y two proposed c a s e s o f 144 a n t i f e r r o m a g n e t i c b e h a v i o u r i n s i l v e r ( I I ) b i s n i c o t i n a t e 145 and s i l v e r ( I I ) b i s ( p y r a z i n e ) p e r o x y d i s u l f a t e E l e c t r o n s p i n resonance and e l e c t r o n i c s p e c t r o s c o p y , T • j - u v x. i i. , , 146,147,148 a l o n g w i t h X-ray c r y s t a l s t r u c t u r e d e t e r m i n a t i o n s have i n d i c a t e d a square p l a n a r c o o r d i n a t i o n around s i l v e r i n t h e s e complexes e x c e p t t h e u n u s u a l 2 , 6 - p y r i d i n e d i c a r b o x y l a t e complexes, w h i c h have a h i g h l y d i s t o r t e d o c t a h e d r a l s t r u c -149 150 t u r e ' . Diamagnetism and hence a s p i n - p a i r e d c o n f i g u r a t i o n has been o b s e r v e d f o r the s i l v e r ( I I I ) c o o r d i n a t i o n complexes. 3. T e r n a r y F l u o r i d e s o f t h e t y p e : (a) A g I I M I V F 6 where M I V = Ge, Sn, Pb, T i , Z r , Hf, Pd, P t 1 5 1 These a r e p r e p a r e d by d i r e c t f l u o r i n a t i o n o f a s t o i c h i o m e t r i c m i x t u r e o f a s i l v e r ( I ) s a l t and a m e t a l ( I V ) s a l t a t h i g h t e m p e r a t u r e s , as i n t h e c a s e o f t h e l i g h t b l u e AgSnF,. shown b below: F 2 Ag„SO. + 2 (NH„)„SnCl, • AgSnF^ 2 4 4 2 6 4 5 Q o C / 5 0 _ 7 Q h r s > 6 C u r i e - W e i s s b e h a v i o u r w i t h s m a l l Weiss c o n s t a n t s have been o b s e r v e d f o r most e x c e p t t h e d a r k b l u e - v i o l e t h a f n i u m and z i r c o n i u m c o m p l e x e s , where s t r o n g m a g n e t i c e x c h a n g e between 2 + t h e Ag i o n s h as been s u g g e s t e d . The e l e c t r o n i c d i f f u s e r e f l e c t a n c e s p e c t r a have been f i t t e d t o a t e t r a g o n a l l y d i s -9 153 t o r t e d ( e l o n g a t e d ) d s y s t e m u s i n g c u r v e f i t t i n g t e c h n i q u e s (b) M I A g I I M I I I F 6 where M 1 = K, Rb, Cs; M 1 1 1 = A l , Ga, I n , 152 T l , Sc, F e , Co . T h e s e a r e s y n t h e s i z e d by d i r e c t f l u o r i -n a t i o n o f a m i x t u r e o f a l k a l i m e t a l c h l o r i d e , s i l v e r ( I ) s u l f a t e and a M ( I I I ) s a l t , u s u a l l y t h e o x i d e , s u c h a s A ^ O ^ , ^ 2 0 ^ , G a 2 0 3 , i n a 1:1:1 mole r a t i o a t % 550-700 °C. The T l , I n and Sc c o m p l e x e s have t h e c u b i c R b N i C r F , s t r u c t u r e and c o m p l i c a t e d , b n o t w e l l u n d e r s t o o d m a g n e t i c b e h a v i o u r . None o f t h e co m p l e x e s show C u r i e - W e i s s b e h a v i o u r w h i l e a l l t h e c o m p l e x e s c o n t a i n i n g d i a m a g n e t i c M ( I I I ) i o n s have low m a g n e t i c moments between 1.30 and 1.16 y a t room t e m p e r a t u r e . 4. S i l v e r ( I I ) A n i o n i c F l u o r o - c o m p l e x e s o f t h e t y p e s : (a) M 2 I ( A g F 4 ) where M 1 = Cs, Rb o r K 154 (b) M 1 ( A g F 3 ) where M 1 = Cs, Rb o r K 155 (c) M i : C ( A g F 4 ) where M 1 1 - Ba, S r , Ca o r Hg 156,157 (d) M 2 I I ( A g F 6 ) where M 1 ^ Ba 157 . The f i r s t two t y p e s a r e s y n t h e s i z e d by h e a t i n g s t o i c h i o -m e t r i c m i x t u r e s o f an a l k a l i f l u o r i d e and s i l v e r ( I I ) f l u o r i d e u n d e r an i n e r t a t m o sphere as shown by t h e example: 2 CsF + AgF2 330°C Ar - 12 h r s C s 2 A g F 4 The t e t r a f l u o r o a r g e n t a t e ( I I ) complexes obey C u r i e - W e i s s law w i t h magnetic moments o f ^ 1.7 y n a t room temperature whereas the t r i f l u o r o c o m p l e x e s a r e m a g n e t i c a l l y c o n c e n t r a t e d w i t h muc lower magnetic moments 0.8 y _ ) . B Complexes o f t h e type (c) and (d) can be p r e p a r e d by d i r e c t f l u o r i n a t i o n o f a m i x t u r e o f two s a l t s a t h i g h tempera t u r e , i n a manner s i m i l a r t o t h a t used t o p r e p a r e AgMF,. b complexes. For example, F 2 2 BaC0 3 + A g 2 S 0 4 - 2 BaAgF 4 500°C - 30 hrs The h i g h temperature i s r e q u i r e d t o p r e v e n t f o r m a t i o n o f any s i l v e r ( I I I ) s p e c i e s . BaAgF 4 i s found t o be isomorphous w i t h K B r F 4 w i t h square p l a n a r AgF 4 groups; a l l s i l v e r s i t e s a r e e q u i v a l e n t . B u l k magnetic measurements, e l e c t r o n s p i n 153 resonance and d i f f u s e r e f l e c t a n c e s p e c t r a a l l s u g g e s t a 9 t e t r a g o n a l l y d i s t o r t e d d environment, i n agreement w i t h a s i l v e r ( I I ) f o r m u l a t i o n . 5. A n i o n i c F l u o r o - c o m p l e x e s o f s i l v e r ( I I I ) as M IAgF 4 where M 1 = Cs o r K 1 5 8 , and M,M1 A g I 3 : i F c , where M = Cs and 73 M 1 = K • L J : 7. The d i a m a g n e t i c M^AgF^ complexes a r e o b t a i n e d from d i r e c t f l u o r i n a t i o n o f a m i x t u r e a l k a l i m e t al c h l o r i d e o r n i t r a t e and s i l v e r ( I ) n i t r a t e between 200 and 400 °c . However, f l u o r i n a t i o n o f a m i x t u r e o f C s C l , K C l and s i l v e r n i t r a t e i n a mole r a t i o o f 2:1:1 a t 300 °C f o r t h r e e hours r e s u l t s i n a p u r p l i s h r e d paramagnetic complex w i t h the com-p o s i t i o n Cs2KAgFg. The r a t h e r low magnetic moment o f 2.6 B.M. i s s u g g e s t e d t o be due t o t h e presence o f d e c o m p o s i t i o n i m p u r i t i e s such as CsAgF^, CsF and KF. Analogous c o p p e r ( I I I ) complexes such as K^CuF^ have been found to have magnetic moments (2.8 B.M.) v e r y c l o s e t o t h e s p i n - o n l y v a l u e o f 16 0 2.83 y . The presence o f paramagnetic s i l v e r ( I I I ) i o n s i n Cs2KAgFg i s s u p p o r t e d by the e l e c t r o n i c d i f f u s e r e f l e c t a n c e 8 161 spectrum which may be a s s i g n e d t o a s p i n - f r e e d system In summary, t h e r e are no b i n a r y s i l v e r ( I I ) o r ( I I I ) compounds e x c e p t s i l v e r d i f l u o r i d e ; t h e r e a r e more d i v a l e n t complexes than t r i v a l e n t complexes. A l l s i l v e r ( I I ) complexes 9 are p a r a m a g n e t i c , c o n s i s t e n t w i t h a 4d e l e c t r o n i c c o n f i g u r a -t i o n , w h i l e a l l s i l v e r ( I I I ) complexes a r e s p i n - p a i r e d diamag-n e t i c , e x c e p t Cs2KAgFg. The e x i s t e n c e o f a l a r g e number o f donor- and f l u o r o - c o m p l e x e s a r e perhaps due t o the c o n v e n i e n t s y n t h e t i c r o u t e s o f e i t h e r p e r o x y d i s u l f a t e o x i d a t i o n i n aqueous medium o r d i r e c t f l u o r i n a t i o n o f s a l t m i x t u r e s a t e l e v a t e d 74 t e m p e r a t u r e s . S i l v e r was chosen as the f i r s t t r a n s i t i o n m e t a l t o be i n v e s t i g a t e d i n t h i s s t u d y f o r a number o f r e a s o n s : 16 2 1. I t was o b s e r v e d e a r l i e r by H.A. C a r t e r i n our l a b o r a t o r y , t h a t the r e a c t i o n o f s i l v e r p e r c h l o r a t e , AgC10 4, w i t h f l u o r o s u l f u r y l p e r o x i d e , S20gF2, produced b e s i d e s c h l o r y l f l u o r o s u l f a t e , ClC^SO^F, and l a r g e amounts o f 0^, a b l a c k - b r o w n r e s i d u e w i t h c o n s i d e r a b l e o x i d i z i n g a b i l i t y . A more d e t a i l e d i n v e s t i g a t i o n was postponed as the main i n t e r e s t a t the time was the study o f c h l o r i n e - o x y g e n compounds. 2. The use o f b i s f l u o r o s u l f u r y l p e r o x i d e , 820^2, as an o x i d i z i n g agent on s i l v e r ( I ) appeared r e a s o n a b l e as the i s o e l e c t r o n i c 2-p e r o x y d i s u l f a t e i o n , S20g , i s w i d e l y used as the o x i d i z e r i n aqueous medium as mentioned e a r l i e r . 3. The p s e u d o - h a l i d e c h a r a c t e r o f the f l u o r o s u l f a t e s and the abundance o f f l u o r o - c o m p l e x e s o f s i l v e r ( I I ) a n d ( I I I ) suggest the p o s s i b i l i t y o f c o r r e s p o n d i n g f l u o r o s u l f a t e complexes. 4. The use o f s i l v e r ( I I ) d i f l u o r i d e as a c a t a l y s t i n t h e f l u o r i n a t i o n o f s u l f u r t r i o x i d e t o g i v e b i s f l u o r o s u l f u r y l p e r o x i d e , 820^2 "*"^ 3, and f l u o r i n e f l u o r o s u l f a t e , FOSC^F , has l e d t o s p e c u l a t i o n s o f a s i l v e r ( I I ) f l u o r o s u l f a t e as a p o s s i b l e i n t e r m e d i a t e . 8 5 5. The r e c e n t appearance o f a paper by Dev and Cady , which d e s c r i b e s the r e a c t i o n o f S2°g F2 w i t n A (?2° a n < ^ A < ? 2 C 0 3 ' r e p o r t s . t h e f o r m a t i o n o f a b l a c k o x i d e - f l u o r o s u l f a t e o f s i l v e r ( I I ) w i t h t h e f o r m u l a A g 2 0 ( S 0 3 F ) 2 . H a v i n g f o c u s e d t h e i n t e r e s t o f t h i s s t u d y o n t o s i l v e r , a number o f p o s s i b l e s y n t h e t i c r o u t e s a p p e a r f e a s i b l e : (a) The s i m p l e o x i d a t i v e a d d i t i o n o f S nO_F t o s i l v e r ( I ) z b 2 f l u o r o s u l f a t e t o g i v e b i n a r y compounds o f h i g h e r o x i d a t i o n s t a t e s ; (b) The d i r e c t i n s e r t i o n o f SO^ i n t o AgF-> t o g i v e a g a i n b i n a r y f l u o r o s u l f a t e s ; (c) The o x i d a t i o n o f s i l v e r m e t a l and a number o f s i l v e r ( I ) s u b s t r a t e s w i t h s u i t a b l e o x i d i z i n g a g e n t s s u c h as S_0_F„ and z b z B r S 0 3 F ; (d) R e a c t i n g s i l v e r ( I I I ) c o n t a i n i n g AgO w i t h some f l u o r o -s u l f o n a t i n g a g e n t t o h o p e f u l l y r e t a i n t h e t r i v a l e n t s t a t e i n t h e p r o d u c t ; and (e) F o r m a t i o n o f f l u o r o s u l f a t o c o m p l e x e s a n a l o g o u s t o t h e f l u o r o - s y s t e m . T h e s e r o u t e s a r e s u b s e q u e n t l y a t t e m p t e d and d e s c r i b e d i n t h e f o l l o w i n g s e c t i o n s . B. S I L V E R ( I I ) FLUOROSULFATE 1. i n t r o d u c t i o n The i n i t i a l aim was t o a t t e m p t the s t r a i g h t f o r w a r d o x i d a t i v e a d d i t i o n o f 820^2 t o t h e c o m m e r c i a l l y a v a i l a b l e Ag IS0 3F t o g i v e , h o p e f u l l y , t h e c o r r e s p o n d i n g b i n a r y s i l v e r ( I I ) o r even t h e l e s s l i k e l y s i l v e r ( I I I ) compounds. However, a few unusual and unexpected o b s e r v a t i o n s from t h e f i r s t few r e a c t i o n s w i t h S 2 ° 6 F 2 h a d c r e a t e d s u s p i c i o n about t h i s A g I(S0 3F) r e a g e n t . The n o n - v o l a t i l e dark brown-black p r o d u c t s from r e a c t i o n a t room tem p e r a t u r e and a t 7 0 °C appeared always non-homogeneous, w h i l e the l i q u i d phase from t h e h i g h e r t e m p e r a t u r e r e a c t i o n was co n t a m i n a t e d w i t h a y e l l o w i s h v o l a t i l e b y - p r o d u c t . T h i s was judged t o be c h l o r i n e f l u o r o s u l f a t e , ClOS0 2F, assuming AgCl was p r e s e n t as an i m p u r i t y i n t h e s t a r t i n g m a t e r i a l . The f o r m a t i o n o f CI2 on i n t e r a c t i o n w i t h S 2 ° g F 2 -*-s l i k e l y and t h e subsequent r e a c t i o n t o g i v e CIOSO2F i s w e l l documented -^6^. The presence o f CI2 and CIOSO2F was c o n f i r m e d by t h e r e a c t i o n o f AgCl and S n0,F o d e s c r i b e d l a t e r . I n a d d i t i o n , t he s o l i d Z b Z p r o d u c t formed gave w e i g h t i n c r e a s e s w h i c h i n d i c a t e d a compo-s i t i o n c l o s e t o A g ( S 0 3 F ) 3 . A t t h i s t i m e , t h e i n f r a r e d spectrum o f t h e s t a r t i n g m a t e r i a l i n s o d i u m - d r i e d n u j o l m u l l showed a complete absence o f t h e normal S0-.F v i b r a t i o n a l bands, but two 77 s t r o n g bands a t 1050 and 600 cm appeared t o c o r r e s p o n d w i t h the and o f a t e t r a h e d r a l s u l f a t e group. F i n a l l y , t h i s AgSO^F r e a g e n t was found t o c o n t a i n no f l u o r i n e a t a l l based on i t s e l e m e n t a l a n a l y s i s performed by A n a l y t i s c h e L a b o r a t o r i e n , West Germany. I t was th e n a p p a r e n t t h a t the m a t e r i a l s o l d by V e n t r o n A l f a C o r p o r a t i o n as AgSO^F was i n r e a l i t y an impure A g 2 S 0 4 w i t h AgCl as one o f i t s i m p u r i t i e s but w i t h o u t even a t r a c e o f f l u o r i n e . The above e p i s o d e had prompted us t o s y n t h e s i z e t h e r e a l AgSO.jF ( S e c t i o n I I . C . 2) and t o ex t e n d t h e st u d y to o t h e r s i l v e r ( I ) s a l t s as w e l l . 2. S y n t h e t i c R e a c t i o n s (a) R e a c t i o n s w i t h B i s f l u o r o s u l f u r y l P e r o x i d e B i s f l u o r o s u l f u r y l p e r o x i d e was found s u i t a b l e i n o x i d i z i n g a wide v a r i e t y o f s i l v e r ( I ) s a l t s . The r e a c t i o n s performed are d e s c r i b e d below, i ) S i l v e r ( I ) O x i d e , A g 2 0 A sample o f Ag,,0 (0.606 g, 5.23 mmol Ag) was i n t r o d u c e d i n t o a preweighed o n e - p a r t t h i c k - w a l l p y r e x r e a c t o r equipped w i t h a t e f l o n c o a t e d magnetic s t i r r i n g bar as d e s c r i b e d i n S e c t i o n I I . A . 3 . To e l i m i n a t e any m o i s t u r e , t h e r e a c t o r was flame d r i e d i n vacuum and the s o l i d r e a q e n t was h a n d l e d i n s i d e the drybox. A l a r g e e x c e s s o f S 9 0 f i F 9 ( a p p r o x i m a t e l y 10 g) was vacuum d i s t i l l e d i n t o the l i q u i d n i t r o g e n c o o l e d r e a c t o r , the excess S o0,F- a l s o s e r v e d as a w o r k i n g medium. The 2 b 2 m i x t u r e was th e n a l l o w e d t o warm t o room tem p e r a t u r e and s t i r r e d o v e r n i g h t . Gas e v o l u t i o n was o b s e r v e d . T h i s was assumed t o be oxygen, and s u b s e q u e n t l y pumped o f f i n vacuum. (Note 1 ) . The dark brown-black s o l i d s u s p e n s i o n was then s t i r r e d i n a wa t e r b a t h (Note 2) a t 70 °C f o r t h r e e days. The v o l a t i l e m a t e r i a l s were then d i s t i l l e d o f f (Note 3) and t h e r e m a i n i n g dark-brown s o l i d pumped t o a c o n s t a n t w e i g h t o f 1.604 g. To ensure complete r e a c t i o n , f r e s h S20gF2 ( a p p r o x i -m a t e l y 5 g) was d i s t i l l e d i n t o t h e r e a c t o r and t h e m i x t u r e a g a i n s t i r r e d a t 70 °C o v e r n i g h t . No f u r t h e r i n c r e a s e i n we i g h t was d e t e c t e d a f t e r the v o l a t i l e s were removed. The (Note 1) The p r o c e s s was t o a v o i d t h e b u i l d up o f h i g h p r e s s u r e i n s i d e the r e a c t o r . T h i s was p a r t i c u l a r l y n e c e s s a r y f o r t h e r e a c t i o n o f s i l v e r c a r b o n a t e , where l a r g e amounts o f CC^ and gases e v o l v e d . (Note 2) A water b a t h was used i n s t e a d o f the more c o n v e n i e n t o i l b a t h i n o r d e r t o a v o i d a p o s s i b l e v i o l e n t e x p l o s i o n o r f i r e i f t h e o n e - p a r t r e a c t o r c r a c k e d . (Note 3) "Bumping" o f s o l i d o f t e n o c c u r r e d when d i s t i l l i n g v o l a t i l e s o f f a s u s p e n s i o n . T h i s p r e s e n t e d e x p e r i m e n t a l d i f f i c u l t i e s where t h e p r o g r e s s o f a r e a c t i o n was f o l l o w e d by w e i g h i n g t h e r e a c t o r . I n a d d i t i o n , s o l i d s e a t e d on, the s e a l o f t h e T e f l o n v a l v e a l s o a l l o w e d slow l e a k a g e . Hence removal of v o l a t i l e s was performed s l o w l y t h r o u g h v e r y s m a l l openings t o m i n i m i z e bumping. e x p e c t e d y i e l d f o r Ag(SO-jF) 2 was 1.600 g (5.23 mmol). T h i s h y g r o s c o p i c p r o d u c t was then a n a l y z e d and c h a r a c t e r i z e d as d e s c r i b e d i n S e c t i o n 3 o f t h i s c h a p t e r . The r e s u l t o f t h e e l e m e n t a l a n a l y s e s i s as f o l l o w : C a l c u l a t e d f o r A g ( S 0 3 F ) 2 : %Ag, 35.25; %S, 20.96; %F, 12.42. Found: %Ag, 35.10; %S, 20.69; %F, 12.15. T h i s r e a c t i o n was a l s o c a r r i e d o u t a t room t e m p e r a t u r e . The r e a c t i o n proceeded much s l o w e r as e v i d e n c e d by the s l o w e r s o l i d p r o d u c t w e i g h t i n c r e a s e s . The dark brown-black p r o d u c t always appeared t o non-homogeneous u n t i l f i n a l l y t h e w e i g h t r a t i o o f r e a g e n t to p r o d u c t c o r r e s p o n d e d t o t h a t o f Ag(SC> 3F) 2 ( i i ) R e a c t i o n s o f A g 2 C 0 3 , Ag and AgSG^F The r e a c t i o n s o f s i l v e r c a r b o n a t e , s i l v e r m e t a l and s i l v e r ( I ) f l u o r o s u l f a t e were c a r r i e d o u t i n much the same manner as t h o s e o f s i l v e r ( I ) o x i d e . In p a r t i c u l a r , a more v i g o r o u s gas e v o l u t i o n was o b s e r v e d i n the r e a c t i o n o f s i l v e r c a r b o n a t e , due to t h e r e l e a s e o f gaseous ca r b o n d i o x i d e . The r e a c t i o n s o f s i l v e r m e t al (Note 4) w i t h S 2 0 g F 2 proceeded v e r y s l o w l y , and r e q u i r e d up t o seven days even a t 70 °C b e f o r e c o m p l e t i o n . I n c o n t r a s t , t h e l a b o r a t o r y p r e p a r e d s i l v e r ( I ) (Note 4) R e a c t i o n s w i t h s i l v e r m e t a l were a t t e m p t e d m a i n l y t o a v o i d any more u n p l e a s a n t s u s p r i s e s w i t h r e s p e c t t o i d e n t i t y and p u r i t y o f c h e m i c a l s . The p u r i t y i s a l s o t h e h i g h e s t among the s i l v e r r e a g e n t s a v a i l a b l e . 80 f l u o r o s u l f a t e ( S e c t i o n I I . C . 2 ) r e a c t e d r e a d i l y a t room I I t e m p e r a t u r e w i t h S 2 0 6 F 2 t o g i v e Ag ( S 0 3 F ) 2 w i t h i n two d a y s . A l l o f t h e above r e a c t i o n s were m o n i t o r e d by f r e q u e n t r e m o v a l o f v o l a t i l e s and d e t e r m i n i n g t h e u p - t a k e i n w e i g h t u n t i l c o n s t a n t w e i g h t s o f n o n - v o l a t i l e p r o d u c t s were o b t a i n e d . The p r o d u c t s were i d e n t i f i e d a s A g ( S O . j F ) 2 by t h e i r IR s p e c t r a , t h e t h e r m a l d e c o m p o s i t i o n b e h a v i o u r s ( t o be d i s c u s s e d i n t h e n e x t s e c t i o n ) and t h e i r p h y s i c a l a p p e a r a n c e s . ( i i i ) S i l v e r C h l o r i d e The r e a c t i o n o f A g C l w i t h S 2 0 6 F 2 was t o c o n f i r m t h e p r e s e n c e o f A g C l i n t h e A l f a "AgSO^F" r e a g e n t as s u g g e s t e d f r o m t h e o b s e r v a t i o n s d e s c r i b e d e a r l i e r . E x c e s s S 2 0 g F 2 (^ 10 g) was vacuum d i s t i l l e d i n t o a o n e - p a r t t h i c k - w a l l p y r e x r e a c t o r ( S e c t i o n I I . A . 3 . ) c o n t a i n i n g 0.8256 g (5.76 mmol) o f A g C l a t l i q u i d n i t r o g e n t e m p e r a t u r e . The m i x t u r e was a l l o w e d t o warm t o room t e m p e r a t u r e and s t i r r e d m a g n e t i c a l l y , t h e w h i t e A g C l t u r n e d g r a d u a l l y b r o w n i s h w h i l e a g r e e n i s h y e l l o w gas was e v o l v e d . F u r t h e r s t i r r i n g a t 70 °C f o r t h r e e d ays r e s u l t e d i n a homogeneous d a r k brown powder s u s p e n d e d i n a d a r k y e l l o w l i q u i d p h a s e . The gas phase i n f r a r e d s p e c t r u m o f t h e 75 v o l a t i l e m a t e r i a l i n d i c a t e d t h e p r e s e n c e o f b o t h S_0,F„ and Z b Z 166 C 1 0 S 0 2 F . A v e r y s m a l l amount o f r e d l i q u i d o f v e r y low v o l a t i l i t y was a l s o p r e s e n t i n t h e r e a c t o r . T h i s was j u d g e d t o be c h l o r y l f l u o r o s u l f a t e , C10 9S0_.F, fo r m e d f r o m t h e h y d r o l y s i s o f ClOSC^F w i t h r e s i d u a l m o i s t u r e a c c o r d i n g t o 165 G i l b r e a t h and Cady . Removal o f a l l v o l a t i l e m a t e r i a l s a t 50 °C r e s u l t e d i n 1.765 g o f a dark brown powder, compared t o 1.763 g (5.76 mmol) e x p e c t e d f o r A g ( S 0 3 F ) 2 . The i d e n t i t y o f t h e s o l i d p r o d u c t was f u r t h e r c o n f i r m e d as A g ( S 0 3 F ) 2 by i t s t h e r m a l decomposition and IR spectrum. ( i v ) S i l v e r S u l f a t e The r e a c t i o n was c a r r i e d out i n d i r e c t c o m parison t o t h a t o f t h e A l f a "AgS0 3F" r e a g e n t . S i l v e r s u l f a t e (0.596 g, 3.82 mmol Ag) and a p p r o x i m a t e l y 20 g o f S 2 0 g F 2 were r e a c t e d a t 70 °C f o r s i x days u n t i l the w e i g h t i n c r e a s e s o f the s o l i d p r o d u c t ceased, g i v i n g 1.100 g o f dark brown s o l i d v e r s u s 1.169 g e x p e c t e d f o r A g ( S O ^ F ) 2 • S m a l l amounts o f non-condens-a b l e gas was d e t e c t e d , most l i k e l y oxygen r e l e a s e d from t h e s u l f a t e (Note 5 ) . The dark brown powdery p r o d u c t was a g a i n i d e n t i f i e d t o be A g ( S 0 3 F ) 2 by i t s IR spectrum and t h e r m a l d e c o m p o s i t i o n . The f o r m a t i o n o f A g ( S 0 3 F ) 2 p r o b a b l y o c c u r s a c c o r d i n g t o t h e f o l l o w i n g e q u a t i o n : 70 °C A g 2 S 0 4 + 2 S 2 0 6 F 2 »- 2 A g ( S 0 3 F ) 2 + S 0 3 + | 0 2 (Note 5) The presence o f 0 2 c o u l d not be a t t r i b u t e d e n t i r e l y t o the r e a c t i o n o f s u l f a t e i o n s as a n o t i c a b l e p o r t i o n o f S«0,F was a l s o found t o decompose t o S-CvF- and oxygen a t e l e v a t e d t e m p e r a t u r e s ( Ref. 125J. (v) S i l v e r ( I ) T r i f l u o r o m e t h y l s u l f a t e and T r i f l u o r o a c e t a t e R e a c t i o n s o f A g 0 3 S C F 3 o r A g 0 2 C C F 3 w i t h S 2 0 g F 2 were ex p e c t e d t o l e a d t o pure A g ( S 0 3 F ) 2 as t h e c l e a v a g e o f t h e S-C bond of ( 0 3 S C F 3 ) ~ and C-C bond of ( 0 2 C C F 3 ) ~ s h o u l d l e a d t o v o l a t i l e b y - p r o d u c t s such as S 0 3 , C 0 2 and F 3COS0 2F. E x c e s s S2°6 F2 w a S r e a c t e d w i t h 0.635 g (2.88 mmol) o f A g0 2CCF 3 a t ^ 60 °C f o r t h r e e days. The gas phase IR o f t h e v o l a t i l e m a t e r i a l s i n d i c a t e d the presence o f C 0 2 and CF 3OS0 2F a l o n g w i t h S o 0 , F o . The y i e l d o f dark brown s o l i d was found 2 b 2 t o be 0.887 g as compared t o 0.880 g f o r A g ( S 0 3 F ) 2 . The p r o d u c t was f u r t h e r i d e n t i f i e d t o be A g ( S 0 3 F ) 2 as i n o t h e r r e a c t i o n s . The r e a c t i o n o f A g S 0 3 C F 3 w i t h e x c e s s S 2 0 g F 2 was c a r r i e d o u t a t room tem p e r a t u r e f o r s i x days. D u r i n g t h i s t i m e , 168 16 9 CF 3OS0 2F and S 0 3 were d e t e c t e d i n t h e gas phase IR s p e c t r a o f t h e v o l a t i l e s . The s o l i d p r o d u c t was i d e n t i f i e d t o be A g ( S 0 3 F ) 2 by the same means as above. The e l e m e n t a l a n a l y s i : o f the s o l i d p r o d u c t i n d i c a t e d a s l i g h t l y impure p r o d u c t . C a l c u l a t e d f o r A g ( S 0 3 F ) 2 : %Ag, 35.25; %S, 20.96; %F, 12.42. Found: %Ag, 34.07; %S, 20.50; %F, 12.11. ( v i ) S i l v e r N i t r a t e Gas e v o l u t i o n was o b s e r v e d when a sample o f s i l v e r n i t r a t e (0.972 g, 5.72 mmol) was r e a c t e d w i t h a p p r o x i m a t e l y 20 g o f S2°6 F2 a t r o o m . t e m p e r a t u r e . A f t e r removing t h e non-condensable gas e v o l v e d , the r e a c t i o n m i x t u r e was s t i r r e d a t 60 U C f o r s i x days. The gas phase i n f r a r e d spectrum showed bands due t o S^O^F^ o n l y . The IR spectrum o f t h e n o n - v o l a t i l e p r o d u c t 73 i n d i c a t e d the presence o f b o t h Ag(SC> 3F) 2 and NO^SO^F) The w e i g h t o f t h e s o l i d p r o d u c t was a p p r o x i m a t e l y 2.62 g, compared t o 2.58 g e x p e c t e d f o r a one-to-one m i x t u r e o f A g ( S 0 3 F ) 2 and N 0 2 ( S 0 3 F ) . ( v i i ) S i l v e r T e t r a f l u o r o b o r a t e AgBF 4 (0.968 g, 4.97 mmol) and exce s s S 2 O g F 2 r e a c t e d q u i t e r e a d i l y w i t h gas e v o l u t i o n a t room t e m p e r a t u r e . The 170 171 presence o f B F 3 , S i F ^ and S 2 0 g F 2 were d e t e c t e d by t h e gas phase IR spectrum o f t h e v o l a t i l e s . A f t e r r e a c t i n g f o r 24 h o u r s , t h e weight o f non-homogeneous s o l i d was 1.35 g. F u r t h e r r e a c t i o n a t 60 °C f o r f i v e more days i n c r e a s e d t h e y i e l d t o a c o n s t a n t v a l u e of 1.47 g v e r s u s 1.52 g ex p e c t e d f o r A g ( S 0 3 F ) 2 and 1.12 g f o r A g F ( S 0 3 F ) . The IR spectrum o f t h e s o l i d between B a F 2 windows showed b e s i d e t h e e x p e c t e d bands of A g ( S 0 3 F ) 2 , s h o u l d e r s a t 1280 c m - 1 and 1045 c m - 1 , i t t h e r e -f o r e appeared t h a t t h e p r o d u c t was r a t h e r impure. ( v i i i ) S i l v e r ( I ) F l u o r i d e The i n c o m p l e t e r e a c t i o n o f AgBF^ suggested t h e p o s s i b l e e x i s t e n c e o f a mixed f l u o r i d e f l u o r o s u l f a t e , hence s i l v e r m o n o f l u o r i d e (0.823 g, 6.48 mmol) was r e a c t e d w i t h e x c e s s S2°6 F2* T h e r e a c t i ° n appeared t o proceed v e r y s l u g g i s h l y . A f t e r two days a t 70 °C, the w e i g h t o f the b l a c k s o l i d p a r t i c l e was 1.017 g, compared t o 1.464g expected f o r AgFfSO^F). F u r t h e r r e a c t i o n appeared t o be h i n d e r e d by i n i t i a l p r o d u c t c o a t i n g the s u r f a c e o f the r e a g e n t p a r t i c l e s . The IR spectrum o f t h e s o l i d between B a F 2 windows showed some weak bands i n t h e S—0 s t r e t c h i n g r e g i o n , perhaps i n d i c a t i v e o f some f l u o r o -s u l f a t e group. ( i x ) S i l v e r ( I I ) F l u o r i d e A t t e m p t i n g a g a i n t o s y n t h e s i z e a mixed f l u o r i d e - f l u o r o -s u l f a t e , 0.118 g (0.806 mmol) o f A g F 2 was r e a c t e d w i t h e x c e s s S „0 rF o a t 70 °C, t h e w e i g h t i n c r e a s e o f t h e s o l i d m a t e r i a l 2 b 2 a f t e r one day was v e r y s m a l l , 8 mg a g a i n s t 64 mg f o r AgF(S0 3F) and 128 mg f o r Ag^O-^F),,. F u r t h e r r e a c t i o n was p r o b a b l y a g a i n h i n d e r e d by s u r f a c e c o a t i n g o f s t a r t i n g m a t e r i a l . (b) R e a c t i o n s w i t h M i x t u r e s o f HS0-.F and S o0,F„ j 2 6 2 I n s e a r c h o f a l e s s time-consuming s y n t h e t i c r o u t e t o A g ( S 0 3 F ) 2 o f h i g h p u r i t y , the use o f HS0 3F was t e s t e d . B r a z i e r 6 6 and Woolf have found s i l v e r m e t a l t o be s o l u b l e i n b o i l i n g HSO^F. R e c e n t l y , a one-to-one by volume m i x t u r e o f HSO^F and S 2 0 g F 2 has a l s o been found u s e f u l i n s y n t h e s i z i n g g o l d t r i s -172 f l u o r o s u l f a t e , A u ( S 0 _ j F ) 3 , i n our l a b o r a t o r y .• A p p r o x i m a t e l y 3 ml o f HSO^F was d i s t i l l e d d i r e c t l y from t h e a c i d d i s t i l -l a t i o n a p p a r a t u s ( S e c t i o n II.A.4*) i n t o an e v a c u a t e d o n e - p a r t pyrex r e a c t o r c o n t a i n i n g 0.293 g (2.72 mmol) o f s i l v e r powder. A f t e r pumping b r i e f l y on t h e m i x t u r e on t h e vacuum l i n e , about t h e same volume o f ^2^SF2 w a S d i s t i l l e d i n t o t h e r e a c t o r a t l i q u i d n i t r o g e n t e m p e r a t u r e . The r e a c t o r and c o n t e n t s were a l l o w t o warm up t o room t e m p e r a t u r e by t h e m s e l v e s . A v i g o r -ous r e a c t i o n o c c u r e d , p r o d u c i n g a dark brown p r e c i p i t a t e . A f t e r the r e a c t i o n m i x t u r e was s t i r r e d f o r t h i r t y m i n u t e s , t h e u n r e a c t e d S~0,F„ was removed by vacuum d i s t i l l a t i o n . W i t h t h e Z b 2 s u s p e n s i o n warmed a t about 50 °C, the l e s s v o l a t i l e HSO^F was d i s t i l l e d d i r e c t l y i n t o t h e s a f e t y t r a p o f t h e vacuum l i n e . The w e i g h t o f t h e dark-brown powery s o l i d was,0.834 g as compa ed t o a y i e l d o f 0.831 g e x p e c t e d f o r A g f S O ^ F ^ . F u r t h e r i d e n t i f i c a t i o n was a l s o made by IR s p e c t r o s c o p y and t h e r m a l d e c o m p o s i t i o n . In some p r e p a r a t i o n s , t h e HSO^F was more e f f i c i e n t l y removed by vacuum f i l t r a t i o n , because o f t h e e x t r e m e l y low s o l u b i l i t y o f A g ( S 0 3 F ) 2 i n HS0 3F. (c) The R e a c t i o n o f S i l v e r ( I I ) F l u o r i d e and S u l f u r T r i o x i d e I n s i d e t h e dr y - b o x , 0.234 g (1.61 mmol) of powdered A g F 2 was l o a d e d i n t o a t h o r o u g h l y d r i e d , preweighed o n e - p a r t pyrex r e a c t o r . Then a huge e x c e s s o f SO^ (^ 15 g) was vacuum 86 d i s t i l l e d i n t o t h e r e a c t o r . The m i x t u r e was warmed t o 50 °C and s t i r r e d f o r t h i r t y m i n u t e s . Removal o f a l l e x c e s s SO^ a t a p p r o x i m a t e l y 40 °C r e s u l t e d i n 0.482 g o f dark brown s o l i d . The e x p e c t e d y i e l d from up-take o f SO^ t o A g t S O ^ F ^ would be 0.492 g. T h i s p r o d u c t was a g a i n c h a r a c t e r i z e d by i t s IR spectrum and t h e r m a l d e c o m p o s i t i o n . (d) R e a c t i o n s w i t h Bromine M o n o f l u o r o s u l f a t e The s y n t h e t i c r e a c t i o n s t o Ag(SO_.F)„ v i a neat S„G>F„ 5 Z Z b Z o x i d a t i o n were r a t h e r slow and i n g e n e r a l c o u l d be termed as s u r f a c e r e a c t i o n s due to t h e poor s o l v o l i z i n g a b i l i t y o f S^O^F^. T h i s i s i l l u s t r a t e d by the i n c o m p l e t e r e a c t i o n s o f t h e s i l v e r f l u o r i d e s . Bromine m o n o f l u o r o s u l f a t e has been found t o be a b e t t e r s o l v a t i n g agent and hence may r e a c t f a s t e r . ( i ) S i l v e r M e t a l , S i l v e r ( I ) Oxide and S i l v e r ( I ) F l u o r o s u l f a t e An excess o f o r a n g e - r e d BrSO^F 5 g) was r e a c t e d w i t h s i l v e r powder (0.795 g, 7.37 mmol) i n a one p a r t t h i c k - w a l l p yrex r e a c t o r a t 70 °C f o r t h r e e days. E v o l u t i o n o f r e d d i s h gaseous m a t e r i a l and the dark r e d c o l o r a t i o n o f t h e s o l u t i o n suggested the f o r m a t i o n o f bromine. No suspended p a r t i c l e s was o b s e r v e d i n the dark r e d BrSO^F s o l u t i o n a t 70 °C. P a r t i c l e s appeared t o be c r y s t a l l i z i n g o u t from s o l u t i o n when c o o l e d to room t e m p e r a t u r e . Excess BrSO^F and o t h e r v o l a t i l e s were pumped o f f and 1.76 g o f b l a c k s o l i d w i t h t r a c e s o f dark brown 87 m a t e r i a l remained. The p r o d u c t w e i g h t r a t i o was l e s s than t h e ex p e c t e d 2.21 g f o r AgCSO^F)^. Subsequent s t i r r i n g i n f r e s h BrSO^F a t 90 °C f o r one day d i d not i n c r e a s e the we i g h t o f the n o n - v o l a t i l e p r o d u c t . A s i m i l a r r e a c t i o n was c a r r i e d o u t u s i n g A.^*^ a s ^ e s t a r t i n g m a t e r i a l . E xcept f o r the e v o l u t i o n o f a non-conden-s a b l e gas, presumably oxygen, the o b s e r v a t i o n s and r e s u l t s were i d e n t i c a l . I t was a l s o found t h a t the w e i g h t s o f p r o d u c t y i e l d e d per mole o f s i l v e r used were a p p r o x i m a t e l y t h e same i n b oth r e a c t i o n s and i d e n t i c a l IR s p e c t r a were o b t a i n e d . The r e a c t i o n s were r e p e a t e d a t room t e m p e r a t u r e and a t 150 °C w h i l e the l a b o r a t o r y p r e p a r e d Ag^SO^F) was found t o r e a c t a t room tem p e r a t u r e . A p a r t from the s p e e d i e r d i s s o l u t i o n o f t h e re a g e n t a t h i g h e r r e a c t i o n t e m p e r a t u r e s , about 240 g o f b l a c k s o l i d p r o d u c t per mole o f s i l v e r i n t h e s t a r t i n g m a t e r i a l s were o b t a i n e d i n a l l c a s e s , independent o f the temp e r a t u r e (between 0 and 100 °C) a t whi c h the v o l a t i l e s were removed. The y i e l d o f 24 0 g/mole o f s i l v e r c o u l d c o r r e s p o n d t o a p r o d u c t o f t h e fo r m u l a Ag^CSO^F)^. F u r t h e r c h a r a c t e r i z a t i o n o f t h i s b l a c k p r o d u c t w i l l be d i s c u s s e d i n S e c t i o n D o f t h i s c h a p t e r . In an attempt t o r e a c t t h i s b l a c k m a t e r i a l f u r t h e r , e x c e s s ^2°6 F2 w a S d i s t i l l e d i n t o a r e a c t i o n v e s s e l c o n t a i n i n g t h e n o n - v o l a t i l e p r o d u c t o f s i l v e r m e t a l and BrSO^F. S t i r r i n g t h e m i x t u r e a t 70 °C f o r t h r e e days r e s u l t e d i n a dark brown powdery s o l i d w i t h a y i e l d c o r r e s p o n d i n g t o t h e v a l u e f o r 88 AgCSO^F)^. The IR spectrum and t h e r m a l d e c o m p o s i t i o n f u r t h e r i d e n t i f i e d the p r o d u c t as AgCSO^F)^. I t appears t h a t t h e b l a c k s o l i d from the o t h e r r e a c t i o n s c o u l d a l s o be c o n v e r t e d to AgCSO-jF^ i n t h e same manner. ( i i ) S i l v e r ( I ) F l u o r i d e As r e a c t i o n o f S„O rF„ w i t h AgF was i n c o m p l e t e , the b e t t e r 2 o 2 s o l v o l i z i n g , BrSO^F, was a t t e m p t e d . S i m i l a r t o the o t h e r r e a c t i o n s w i t h BrSO^F, AgF was found to r e a c t and d i s s o l v e i n BrSO^F a t room t e m p e r a t u r e . The gas phase IR spectrum i n d i c a t e d the presence o f S i F ^ , most l i k e l y due t o the a t t a c k o f BrF on the p y r e x r e a c t o r . Removal o f a l l v o l a t i l e s a g a i n y i e l d e d the b l a c k s o l i d p r o d u c t . F u r t h e r r e a c t i o n w i t h S o0,F„ l e d t o 2 o 2 the f o r m a t i o n o f AgtSO-^F^, i d e n t i f i e d i n the same manner as i n the e x p e r i m e n t s d i s c u s s e d above. The e l e m e n t a l a n a l y s i s gave v a l u e s o f : %Ag, 35.01; %F, 12.56. C a l c u l a t e d f o r A g ( S 0 3 F ) 2 : %Ag, 35.25; %F, 12.42. (e) D i s c u s s i o n Over the y e a r s , a number o f a t t e m p t s t o s y n t h e s i z e s i l v e r ( I I ) f l u o r o s u l f a t e have appeared i n the l i t e r a t u r e . However, i t appears t h a t the p r o d u c t s o b t a i n e d were e i t h e r impure o r not i s o l a t e d t o be f u r t h e r i d e n t i f i e d . These o b s e r -v a t i o n s a r e summarized as f o l l o w : 17 3 ( i ) As e a r l y as 1955, Woolf r e p o r t e d t h e e l e c t r o l y s i s o f 89 AgF i n HSO^F a t a p p r o x i m a t e l y 20 mA c u r r e n t . M e t a l l i c s i l v e r was d e p o s i t e d on the cathode w h i l e a b l a c k s o l i d was d e p o s i t e d on the anode. The b l a c k anode d e p o s i t c o n t a i n i n g 4 0.4 % s i l v e r , was assumed t o c o n t a i n d i v a l e n t s i l v e r . The c a l c u l a t e d p e r c e n t s i l v e r s h o u l d be 74.0 i n AqF^, 35.2 i n AgCSO^F)^ and 47.7 f o r AgFCSO^F). I t seems t h a t the system has not been pursued f u r t h e r . 174 ( i i ) I n 1971, Woolf a g a i n r e p o r t e d on the r e a c t i o n o f s i l v e r w i t h the BrF^—SO^ system. He s t a t e d t h a t the r e a c t i o n o f s i l v e r and SO^ i n B r F ^ was not d e s c r i b e d i n the o r i g i n a l I 8 0 s y n t h e s i s o f Ag SO^F as the p r o d u c t was always o f f - w h i t e . A r e - e x a m i n a t i o n o f t h a t r e a c t i o n showed t h a t the p r o d u c t was m a i n l y a r g e n t i c f l u o r o s u l f a t e w h i c h c o u l d be t h e r m a l l y decomposed t o w h i t e a r g e n t o u s f l u o r o s u l f a t e . No f u r t h e r i n f o r -mation was g i v e n on the d e t a i l s o f the r e a c t i o n and the p r o d u c t . However t h e b l a c k a n o d i c d e p o s i t from the e a r l i e r work on t h e 173 a n o d i c o x i d a t i o n o f AgF i n HSO^F was d e s c r i b e d t o c o r r e s p o n d to a 70:30 m i x t u r e o f A g ( I I ) and A g ( I ) . ( i i i ) . I t s h o u l d a l s o be mentioned t h a t independent o b s e r v a t i o n s have been made on t h e a t t a c k s on s i l v e r ( I ) s a l t s by o x i d i z i n g agents r e s u l t i n g i n the f o r m a t i o n o f brown s o l i d s such as the 162 i n t e r a c t i o n s between S 2 0 g F 2 a n d A 9 C 1 ° 4 » BrSO^F and s i l v e r 16 2 h a l i d e IR windows , and the a t t a c k o f AgCl by some xenon 175 f l u o r i d e - f l u o r o s u l f a t e s 90 ( i v ) An i n t e r e s t i n g r e s u l t was f o u n d i n a r e c e n t l i t e r a t u r e s e a r c h . Adhami and H e r l e m c o n d u c t e d a c y c l i c v o l t a m e t r i c s t u d i e s o f i o d i n e , b r o m i n e , and s u l f u r i n f l u o r o s u l f u r i c 17 6 a c i d . H i d d e n i n t h i s p a p e r , i s a b r i e f d e s c r i p t i o n o f t h e e l e c t r o c h e m i c a l b e h a v i o r o f s i l v e r . I t has been f o u n d t h a t t h e c u r r e n t - v o l t a g e p l o t o f A g + i n HSO^F s o l u t i o n d o e s n o t g i v e a r e d u c t i o n wave b u t g i v e s an o x i d a t i o n wave, w h i c h + 2 + r e p r e s e n t s t h e o x i d a t i o n o f Ag t o Ag . The a u t h o r p o s t u l a t -ed t h a t t h e s u b s e q u e n t r e a c t i o n was: A g 2 + + 2 H S 0 3 F —»» A g F 2 ( s ) + 2 HSC>3 + b a s e d on t h e p o s s i b l e e q u i l i b r i u m H S 0 3 F ^ - » H S 0 3 + + F" The o x i d a t i o n wave o c c u r s a t a b o u t + 1.3 V, below t h e o x i d a t i o n o f t h e s o l v e n t , H S 0 3F, a t a b o u t + 2 V. A p l a t i n u m e l e c t r o d e w i t h an A u ( s ) / A u ( C N ) 3 r e f e r e n c e was u s e d . The i n s o l u b i l i t y o f A g F 2 i n H S 0 3 F was u s e d t o e x p l a i n t h e a b s e n c e o f t h e r e d u c -t i o n p o t e n t i a l v a l u e . But no a t t e m p t was made t o f u r t h e r i d e n t i f y t h e p r e c i p i t a t e . W i t h h i n d s i g h t , i t may be s p e c u l a t e d t h a t t h e p r e c i p i t a t e f r o m t h e a b o v e o x i d a t i o n p r o c e s s c o u l d w e l l be A g ( S 0 3 F ) 2 r a t h e r t h a n A g F 2 , s i n c e t h e p o s t u l a t e d e q u i l i b r i u m i s r a t h e r u n l i k e l y 1~~>. One c o n c l u d i n g remark t h a t can be made from t h i s a n a l y t i c a l study i s t h a t t h e o x i d a t i o n o f s i l v e r t o i t s d i v a l e n t s t a t e by 820^2 s h o u l d be p o s s i b l e i n f l u o r o s u l f u r i c a c i d as s i l v e r i s o x i d i z e d a t a low e r p o t e n t i a l t h a n t h e SO^F i o n . A l l r e a c t i o n s l e a d i n g t o pure s i l v e r ( I I ) f l u o r o s u l f a t e , a l o n g w i t h t h e i r r e a c t i o n t i m e s and t e m p e r a t u r e s , a r e summa-r i z e d i n Ta b l e 9. The most c o n v e n i e n t s y n t h e t i c method t o o b t a i n A g t S O ^ F ^ was found t o be t h e o x i d a t i o n o f m e t a l l i c s i l v e r by $20^2 i n t h e pr e s e n c e o f HSO^F, r e q u i r i n g a v e r y s h o r t r e a c t i o n t i m e a t room t e m p e r a t u r e . The enhancement o f the r e a c t i o n r a t e i s p r o b a b l y due t o the p a r t i a l s o l u b i l i t y o f rr T m e t a l l i c s i l v e r i n HS0 3F , w i t h the h i g h l y s o l u b l e Ag (S0 3F) as a p o s s i b l e i n t e r m e d i a t e i n the o x i d a t i o n p r o c e s s . The use o f a s o l u t i o n o f S2®b^2 l n H S 0 3 F a s a s y n t h e t i c r e a g e n t i s not p a r a l l e l e d i n t h e f l u o r i d e system. The use o f t h e c o r r e s p o n d i n g F2—HF system has not been w i d e l y u t i -177 l i z e d , m a i n l y due t o the c o r r o s i v e n e s s o f t h e s o l u t i o n , the below room temperature r e q u i r e m e n t , and the need f o r such a s y n t h e t i c medium when h i g h p r e s s u r e f l u o r i n a t i o n s can be employed. The r e a c t i o n o f Ag 20 and S 20gF 2 d e s c r i b e d e a r l i e r i s almost i d e n t i c a l t o those d e s c r i b e d by Dev and Cady f o r t h e s y n t h e s i s o f a b l a c k Ag^O(SO^F) 0 i n t h e i r note on m e t a l oxy-92 TABLE 9 SYNTHETIC ROUTES TO Ag(SO_.F) S t a r t i n g O x i d i z e r Time Temp. R e a c t i o n P r o d u c t s M a t e r i a l o r R e a g e n t a (h) (°C) Ag Ag A g 2 o S 2 ° 6 F 2 168 70 A g ( S 0 3 F ) 2 S „ 0 r F „ / H S 0 o F 0.5 25 2 o 2 .5 S 2 ° 6 F 2 72 70 A g ( S 0 3 F ) 2 A g ( S 0 3 F ) 2 + °2 A g 2 C 0 3 S 2 ° 6 F 2 72 70 A g ( S 0 3 F ) 2 + °2 + C 0 2 Ag S 0 3 F S 2 0 6 F 2 48 25 A g ( S 0 3 F ) 2 A g S 0 3 C F 3 S 2 0 6 F 2 144 25 A g ( S 0 3 F ) 2 , C F 3 S 0 3 F , S 0 3 A g C 0 2 C F 3 S 2 0 6 F 2 72 60 C F 3 O S 0 2 F , C 0 2 A g C l S 2 ° 6 F 2 72 70 A g ( S 0 3 F ) 2 , C l 2 , C l O S 0 2 F AgF. SO. 0.5 50 A g ( S 0 3 F ) 2 Ag , AgF A g 2 0 o r A g S 0 3 F B r S 0 3 F t h e n S 2 ° 6 F 2 48 25-70 A g 3 ( S 0 3 F ) 4 , B r 2 , B r F , 0 2 48 70 A g ( S 0 3 F ) 2 a. a l w a y s u s e d i n l a r g e e x c e s s b. 1:1 m i x t u r e (by volume) 93 8 5 f l u o r o s u l f a t e s , d i f f e r i n g o n l y i n r e a c t i o n time and temperature, a c c o r d i n g t o : + 25 °C Ag 20 (Ag CO ) + S 2 O g F 2 *• A g 2 0 ( S 0 3 F ) 2 (+ C0 2) 3 - 1 2 hrs Attempts were made to repeat t h i s r e a c t i o n a t the p r e s c r i b e d temperature f o r p e r i o d s between three and twelve hours. A l l such r e a c t i o n s r e s u l t e d i n non-homogeneous black and dark-brown s o l i d s . F u r t h e r o x i d a t i o n o f such at higher temperatures always r e s u l t e d i n the dark-brown A g I I ( S O F ) _ . 3 1 I t may t h e r e f o r e be concluded t h a t the o x i d a t i o n of Ag 20 or A g 2 C 0 3 by S^^F-? y i e l d s u l t i m a t e l y A g I I ( S 0 3 F ) 2 , presumably v i a the black i n t e r m e d i a t e Ag 20(SO.jF) 2. Due to the continuous o x i d a t i o n process w i t h no c l e a r l y r e c o g n i z a b l e i n t e r m e d i a t e , i s o l a t i o n o f pure A g 2 0 ( S 0 3 F ) 2 was not p o s s i b l e . One can f u r t h e r argue that the e v o l u t i o n of oxygen i n the r e a c t i o n s of Dev and Cady may a l s o a r i s e from the s i l v e r ( I ) oxide or carbonate, a p a r t from the suggested decomposition o f S o0^F„ to 2 b 2 ^2^5 F2 a n < ^ o x y 9 e n - Furthermore, the i n f r a r e d spectrum of the r e p o r t e d A g 2 0 ( S 0 3 F ) 2 showed c h a r a c t e r i s t i c S—F and S—0 f l u o r o s u l f a t e s t r e t c h e s , but the q u a l i t y was r a t h e r poor t h a t the band p o s i t i o n s were not r e p o r t e d . Based on the known r e a c t i v i t y of A g I I ( S 0 3 F ) 2 , i t i s very l i k e l y t h a t t h e i r product 94 r e a c t e d with n u j o l and the s i l v e r c h l o r i d e windows used. Our o b s e r v a t i o n , the c o n v e r s i o n of Ag,,0 or A g 2 C 0 3 i n t o A g ( S 0 3 F ) 2 , has a s i m i l a r precedent. The c o n v e r s i o n of metal oxides or carbonates i n t o metal f l u o r o s u l f a t e s f o r a number of l a n t h a n i d e s have a l s o been r e p o r t e d more r e c e n t l y by Cady 178 and coworkers In g e n e r a l , bisfluorosulfuryl p eroxide, ^2°6F2' ^S c a P a ^ e of o x i d i z i n g s i l v e r ( I ) to s i l v e r ( I I ) , but a s u i t a b l e s y n t h e t i c route r e s u l t s o n l y i f the anion can be r e p l a c e d by a f l u o r o -s u l f a t e group, thus forming a separable v o l a t i l e by-product, as i n the r e a c t i o n of AgCl: 70 °C s?°fi F? 2 AgCl + 2 S 2 O g F 2 w~ 2 A g ( S 0 3 F ) 2 + C l 2 b w 2 C10S0 2F Otherwise, impure products or r e a c t i o n mixtures were o b t a i n e d , as i n the case o f AgNO^: 2 AgN0 3 + 3 S 2 0 6 F 2 +- 2 A g ( S 0 3 F ) 2 + 2 N0 2(S0 3F) + 0 2 The r e a c t i o n of AgN0 o w i t h S„0,F deserves a f u r t h e r comment. O Z D Z The c o n c l u s i o n t h a t r e s u l t i n g s o l i d product was a simple mixture of A g ( S 0 3 F ) 2 and N0 2(S0 3F) r a t h e r than a c o o r d i n a t i o n complex was based on the independent presence of v i b r a t i o n a l bands a t t r i b u t a b l e to both A g ( S 0 3 F ) 2 and N0 2(S0 3F) i n the 95 IR spectrum o f the p r o d u c t . The s u c c e s s f u l i n s e r t i o n o f s u l f u r t r i o x i d e i n t o s i l v e r ( I I ) f l u o r i d e w i l l be f u r t h e r d i s c u s s e d i n S e c t i o n F o f t h i s c h a p t e r . The i n c o m p l e t e r e a c t i o n s o f the s i l v e r ( I ) and ( I I ) f l u o r i d e s w i t h S>2®(^2 a r e P e r n a P s t o ^ e e x p e c t e d . D i s p l a c e m e n t o f f l u o r i d e i o n s i n an n o n - s o l v a t i n g medium would be d i f f i c u l t , i n c o n t r a s t t o the complete r e a c t i o n o f AgF w i t h BrSO^F. However, the r e a c t i o n s showed some up-takes o f the f l u o r o s u l f a t e group, i n d i c a t i n g t h e p o s s i b l e e x i s t a n c e o f a mixed f l u o r i d e - f l u o r o s u l f a t e . A f t e r h a v i n g s y n t h e s i z e d s i l v e r ( I I ) f l u o r o s u l f a t e v i a the v a r i o u s r o u t e s d e s c r i b e d , i t was o f i n t e r e s t t o attempt a Born-Haber c y c l e c a l c u l a t i o n s i m i l a r t o t h a t f o r KSO^F (Appendix B) t o e s t i m a t e the e n t h a l p y o f f o r m a t i o n o f AgfSO-jF^-The d e t a i l c a l c u l a t i o n i s shown i n Appendix C. A c c o r d i n g l y , the AH° f o r A g ( S 0 3 F ) 2 i s found t o - 1070 k J / m o l . T h i s v a l u e may be compared t o the e n t h a l p y o f f o r m a t i o n f o r s i l v e r d i f l u o r i d e , -210 k J / m o l , o b t a i n e d from a s i m i l a r c a l c u l a t i o n a l s o shown i n Appendix C. I t s h o u l d be noted the v a l u e s o b t a i n e d from t h e s e c a l c u l a t i o n s s h o u l d be c o n s i d e r e d as q u a l i t a t i v e e s t i m a t e s as mentioned e a r l i e r i n S e c t i o n B l o f the i n t r o d u c t o r y c h a p t e r . N e v e r t h e l e s s , t h e c o n c l u s i o n s t h a t may be drawn from these c a l c u l a t i o n s a r e ( i ) t h e e x i s t a n c e o f s i l v e r ( I I ) f l u o r o s u l f a t e i s t h e r m o d y n a m i c a l l y f a v o r a b l e , and ( i i ) t h e c o n v e r s i o n from AgF~ t o Ag(SO^F)„ s h o u l d be f e a s i b l e . The f i n d i n g s o f t h e s y n t h e t i c e x p e r i m e n t s d e s c r i b e d i n t h e p r e c e d i n g s e c t i o n appear t o s u p p o r t t h e s e c o n c l u s i o n s . 3. C h a r a c t e r i z a t i o n o f Ag(SO.jF) 2 (a) I n f r a r e d S p e c t r a As a l r e a d y mentioned, the h i g h r e a c t i v i t y o f AgCSO^F^ p r e v e n t e d t h e use o f commonly employed i n f r a r e d window p l a t e s and m u l l i n g a g e n t s , w h i l e i n e r t m u l l i n g a gents such as h a l o -c a r b o n o i l s a r e not s u f f i c i e n t l y t r a n s p a r e n t f o r use i n IR s p e c t r o s c o p y . Hence room temperature i n f r a r e d s p e c t r a were ta k e n on v e r y t h i n l a y e r s o f sample powder p r e s s e d between B a F 2 p l a t e s . I n a d d i t i o n , an IR spectrum a t l i q u i d n i t r o g e n t e mperature was o b t a i n e d u s i n g a l o w - t e m p e r a t u r e c e l l f i t t e d w i t h C s l window ( S e c t i o n I I . B . l . ) . The sample was s p r a y e d onto the c e n t r a l C s l window u s i n g n i t r o g e n as a c a r r i e r gas. The r e a c t i v i t y o f A g t S O ^ F ^ was s u f f i c i e n t l y r educed a t ^ 80 K t o p r e v e n t window a t t a c k . T h i s method a l l o w e d o b s e r v a t i o n o f t h e spectrum down t o 200 cm ^, whereas the t r a n s p a r e n t range o f B a F 2 ends a t 8 00 cm . I t s h o u l d be mentioned t h a t t h e r e g i o n below 250 cm-"'" was v e r y n o i s y p a r t l y due t o a d s orbed w a t e r on t h e window and was a l s o a p p r o a c h i n g the l i m i t o f d e t e c t a b i l i t y o f t h e i n s t r u m e n t . U n f o r t u n a t e l y , due t o t h e dark brown c o l o r and hence a b s o r p t i o n o f t h e i n c i d e n t e x c i t i n g r a d i a t i o n , no 97 Raman spectrum could be obtained f o r A g ( S 0 3 F ) 2 . I n f r a r e d band p o s i t i o n s of Ag(SC> 3F) 2 and some r e l a t e d compounds are l i s t e d i n Table 10. As described e a r l i e r i n the in t r o d u c t o r y chapter, S e c t i o n D, the p o s s i b l e c o o r d i n a t i o n modes of the f l u o r o s u l f a t e group can be c l a s s i f i e d as (la) i o n i c , (lb) i o n i c perturbed, (2) covalent monodentate, (3) bidentate, (4) t r i d e n t a t e and (5) t e t r a d e n t a t e . From the room temperature IR spectrum, the presence of three d i s -t i n c t , w e l l seperated bands i n the S—O s t r e t c h i n g region above 1000 cm 1 i n d i c a t e s a l o s s of symmetry f o r the f l u o r o s u l -f a t e group. This would e l i m i n a t e a l l p o s s i b i l i t e s except the monodentate, bidentate or perturbed i o n i c modes. In the low temperature spectrum, no absorption was observed between 8 00 cm 1 and 700 cm ^, where the S—F s t r e t c h i n g of i o n i c f l u o r o -4 7 _ i s u l f a t e s appear . Furthermore the observed bands 1320 cm , 1185 cm 1 and 1070 cm 1 f a l l i n the range of bidentate f l u o r o -s u l f a t e s . Agreement i s p a r t i c u l a r l y good w i t h the corresponding bands of (CH-j) 2Sn (S0 3F) at 1350 cm"1, 1180 cm" 1 and 1072 cm"1 7 6 . The existance of b r i d g i n g bidentate f l u o r o s u l f a t e groups i n 7 7 ( C H 3 ) 2 S n ( S 0 3 F ) 2 i s confirmed by an X-ray d i f f r a c t i o n study . C u ( S 0 3 F ) 2 i s reported to have a t e t r a g o n a l l y elongated octahedral environment f o r C u 2 + •^®-> f some resemblance i s observed between i t s IR spectrum (Table 10) and that of Ag( S 0 3 F ) 2 , 98 TABLE 10 INFRARED SPECTRA (cm 1 ) OF A g ( S 0 3 F ) 2 AND RELATED COMPOUNDS a A g ( S 0 3 F ) 2 A g ( S 0 3 F ) 2 C u ( S 0 3 F ) 2 ( C H 3 ) 2 S n - Approx, ( S 0 3 F ) 2 d e c s r i p , .1320 S,b 1185 v s , b 1070 s, b 820 ms 1325 ms, sh 1310 s 1295 m, sh 1205 s, sh 1185 vs 1068 s 837 m 824 m 817 m 610 mw 592 m 557 ms 430 m 275 m 268 ms 1306 vs 1223 vs 1115 s 861 s 630 m 604 m 564 m 428 m 416, m 300 m 1350 s 1180 s 1088 m, sh 1072 s, b 827 m 620 m 590 m 554 ms 417 s 304 m S 0 3 s t r r e g i o n SF s t r S 0 3 F def modes S0 3 F r o c k modes M-0 s t r a. A b b r e v i a t i o n s ; see Appendix A. b. B a F 2 windows, c. A t 8 0 K; C s l windows. d. Re f e r e n c e 105. e. Ref. 76; v i b r a t i o n s due t o the S n ( C H 3 ) 2 moiety a r e o m i t t e d , 99 I t s h o u l d be noted t h a t t h e sharpness and r e s o l u t i o n o f the bands a t low temp e r a t u r e were much improved o v e r t h o s e a t room tem p e r a t u r e and s m a l l s p l i t t i n g s , most l i k e l y due t o s o l i d s t a t e e f f e c t s , a r e o b s e r v e d . S i n c e A g 1 1 ( S O ^ F ) 2 i s v i r t u a l l y i n s o l u b l e i n HSO^F, and no p r e c e d e n t has been o b s e r v e d f o r c h e l a t i n g b i d e n t a t e f l u o r o s u l f a t e s , i t seems f a i r t o a s s i g n a b r i d g i n g b i d e n t a t e c o o r d i n a t i o n mode t o t h e f l u o r o s u l f a t e s o f A g ( S 0 3 F ) 2 > I n summary, s t r o n g i n v o l v e m e n t o f two o f t h e t h r e e oxygens o f the f l u o r o s u l f a t e group i n c o o r d i n a t i o n t o Ag i s i n d i c a t e d w i t h t h e t h i r d oxygen o n l y w e a k l y o r not a t a l l c o o r d i n a t e d . T h i s mode i s c o n s i s t e n t w i t h e i t h e r a square p l a n a r o r a t e t r a g o n a l l y e l o n g a t e d o c t a h e d r a l e n v i r o n m e n t a l f o r t h e c e n t r a l atom, r e s u l t i n g i n a p o l y m e r i c s t r u c t u r e . (b) E l e c t r o n i c S p e c t r a C o n s i s t e n t w i t h t h e p r e v i o u s l y d i s c u s s e d v i b r a t i o n a l 2+ 9 s p e c t r a , two environments f o r Ag (d ) may be c o n s i d e r e d as most l i k e l y : ( i ) a square p l a n a r , and ( i i ) a t e t r a g o n a l l y 9 d i s t o r t e d o c t a h e d r a l environment. D i s t o r t i o n f o r a d i o n i s p r e d i c t e d by t h e J a h n - T e l l e r theorem. W h i l e t e t r a g o n a l d i s -2+ 2+ t o r t i o n i s most commonly found f o r Cu and Ag complexes where s t r u c t u r e s a r e r e p o r t e d , w i t h b o t h e l o n g a t i o n and 179 c o m p r e s s i o n a l o n g t h e z - a x i s o b s e r v e d , o t h e r d i s t o r t i o n s , 100 f o r example, t r i g o n a l d i s t o r t i o n s c a nnot be r u l e d o u t , b u t t h e y appear t o be l e s s common. On t h e o t h e r hand, a square 2+ p l a n a r environment f o r Ag, may be viewed as t h e extreme case o f a t e t r a g o n a l l y d i s t o r t e d ( e l o n g a t e d ) o c t a h e d r a l environment. The r e l a t i o n s h i p between t h e s p e c t r o s c o p i c terms a r i s e d from t h e R u s s e l l - S a u n d e r s c o u p l i n g scheme and t h e e l e c t r o n i c c o n f i g u r a t i o n o f a s i l v e r ( I I ) i o n i s shown i n F i g u r e 9. Depen-d i n g on t h e e x t e n t o f t h e t e t r a g o n a l d i s t o r t i o n , t h e energy 2 o f t h e d o r b i t a l may f a l l below t h e r i s i n g v a l u e o f d o r b i t a l z J xy towards t h e extreme, a square p l a n a r geometry; i n such a case 2 2 the r e l a t i v e o r d e r i n g o f the A, and B„ term would t h e n l g 2g be i n v e r t e d . Three s p i n - a l l o w e d t r a n s i t i o n s a r e e x p e c t e d based on F i g u r e 9. but t h e e x a c t o r d e r i n g o f t h e t r a n s i t i o n s i s u n c e r t a i n , due t o t h e u n c e r t a i n t y i n t h e o r d e r i n g o f t h e d xy 2 and d o r b i t a l s , z The e l e c t r o n i c s p e c t r a l d a t a o f A g ( S 0 3 F ) 2 a l o n g w i t h t h o s e o f AgF 2 and C u ( S 0 3 F ) 2 a r e l i s t e d i n T a b l e 11. Due t o t h e e x t r e m e l y low s o l u b i l i t y o f A g ( S 0 3 F ) 2 i n HSO-jF, a s a t u r a t e d b u t v e r y d i l u t e s o l u t i o n showed a s i n g l e v e r y broad band a t 3 -1 a p p r o x i m a t e l y 25 x 10 cm . B e t t e r r e s o l u t i o n was o b t a i n e d i n t h e d i f f u s e r e f l e c t a n c e spectrum. I n a d d i t i o n t o an i n t e n s e 3 -1 UV band above 24 x 10 cm , most l i k e l y due t o c h a r g e - t r a n s f e r , 101 FIGURE 9 ELECTRONIC CONFIGURATION AND SPECTROSCOPIC TERMS OF SI L V E R ( I I ) OF OCTAHEDRAL AND ELONGATED TETRAGONAL LIGAND FIELD d 2 2 (br ) x -y l g ' < alg> ( b2g> g g 2 1 2g 2g' X g (alg> d , d (e ) xz yz v g' S g <blg> Free i o n O c t a h e d r a l 0, E l o n g a t e d t e t r a g o n a l D 4h F r e e O c t a h e d r a l E l o n g a t e d i o n 0, D 4h TABLE 11 ELECTRONIC SPECTRA OF A g ( S 0 3 F ) 2 AND RELATED COMPOUNDS 102 Compound Type o f Spectrum X ( c m - 1 x 1 0 3 ) max Ref A g ( S 0 3 F ) 2 A g ( S 0 3 F ) 2 i n HS0 3F d i f f . r e f l e c t . %25 >25 vs 22.0 a,b 16.6 sh 14.1 sh t h i s work t h i s work AgF, d i f f . r e f l e c t , 22.0 s,b 18.0 sh 13.7 w t h i s work Cu(S0 3F) M u l l 10.4 (105) 103 t h r e e o t h e r bands a r e o b s e r v e d . T e n t a t i v e assignment may be 3 - 1 2 2 made f o r t h e b r o a d band a t 22.0 x 10 cm as B, —* E ; l g g' 3 - 1 2 2 the weaker s h o u l d e r a t 16.6 x 10 cm as B, —> B~ and l g 2g; 3 -1 the broad band a t l o w e s t f r e q u e n c y , 14.1 x 10 cm as t h e 2 2 2 2 B, —> A, t r a n s i t i o n . The t r a n s i t i o n between B, —> E i s l g l g l g g e x p e c t e d t o be s p l i t by s p i n - o r b i t c o u p l i n g . However, i n view of the r a t h e r poor q u a l i t y o f the spectrum, such s p l i t t i n g i s not l i k e l y t o be r e s o l v e d . To a f i r s t a p p r o x i m a t i o n , the l i g a n d f i e l d parameter, 10 Dq, may be g i v e n 16,600 cm ^. 3 -1 A broad band a t a p p r o x i m a t e l y 10.4 x 10 cm m t h e m u l l spectrum o f CufSO^F),, has been a t t r i b u t e d t o v a r i o u s u n r e s o l v e d d—d t r a n s i t i o n s i n an e l o n g a t e d o c t a h e d r a l complex o f D ^ symmetry B e s i d e s the e x p e c t e d band s h i f t s t o h i g h e r energy due t o t h e i n c r e a s e i n l i g a n d f i e l d parameter, Dq, w i t h i n c r e a -s i n g p r i n c i p a l quantum number, the e l e c t r o n i c s p e c t r a o f s i l v e r ( I I ) s h o u l d be analogous t o the c o r r e s p o n d i n g c o p p e r ( I I ) i n an i d e n t i c a l o r s i m i l a r c h e m i c a l and g e o m e t r i c a l environment. In v i e w o f t h e s i m i l a r i t i e s between f l u o r i d e and f l u o r o -s u l f a t e i n r e g a r d to l i g a n d f i e l d s t r e n g t h , t h e d i f f u s e r e f l e c t a n c e spectrum o f t h e c o m m e r c i a l l y a v a i l a b l e A g F 2 was a l s o r e c o r d e d . An o r t h o r h o m b i c s t r u c t u r e w i t h a Pbca space group 132 133 has been d e t e r m i n e d f o r AgF 2 from n e u t r o n powder d a t a ' , w i t h t h e s i l v e r i o n s s u r r o u n d e d by s i x f l u o r i n e atoms i n a f o u r s h o r t (average 207 pm) and two l o n g (average ,258 pm) manner c o r r e s p o n d i n g t o an e x t r e m e l y d i s t o r t e d ( e l o n g a t e d ) o c t a h e d r o n . D e t a i l s o f i t s d i f f u s e r e f l e c t a n c e spectrum a r e l i s t e d i n Table 11. The s i m i l a r i t y t o t h a t o f A g ^ O ^ F ^ i s a p p a r e n t . 3 -1 While the i n t e n s e band above 25 x 10 cm i s a b s e n t , the 3 - 1 3 - 1 t h r e e weaker bands appear a t 22.0 x 10 cm , 18.0 x 10 cm 3 - 1 as a s h o u l d e r , and 13.7 x 10 cm . Hence t h e r e s u l t o f the e l e c t r o n i c s p e c t r a o f A g ( S 0 3 F ) 2 i s c o n s i s t e n t w i t h a h i g h l y t e t r a g o n a l l y d i s t o r t e d ( e l o n g a t e d ) o c t a h e d r a l arrangement around Ag . (c) Magnetic S u s c e p t i b i l i t y Measurements Paramagnetism a r i s e s from t h e s p i n and t h e o r b i t a l a n g u a l r momentum o f i o n s . O r b i t a l a n g u l a r momentum may be a s s o c i a t e d w i t h t h e a b i l i t y t o r o t a t e one o r b i t a l about an a x i s t o g i v e an i d e n t i c a l and deg e n e r a t e o r b i t a l . The o r b i t a l a n g u l a r momentum c o n t r i b u t i o n t o the o b s e r v e d paramagnetism would r e q u i r e a t h r e e f o l d d egenerate ground s t a t e . As the r e s u l t o f t he p r e c e d i n g d i s c u s s i o n , t h e most l i k e l y ground s t a t e f o r 2+ 2 Ag i s ^ i g ' n e n c e a n o r b i t a l l y non-degenerate s t a t e . W i t h o u t o r b i t a l c o n t r i b u t i o n , t h e magnetic moment o f o c t a h e d r a l s i l v e r ( I I ) complexes s h o u l d be c l o s e t o the s p i n - o n l y v a l u e o f 1.73 u_. The magnetic moments o f m a g n e t i c a l l y d i l u t e s i l v e r ( I I ) complexes o b t a i n e d e x p e r i m e n t a l l y a r e u s u a l l y i n t h e range o f 105 1.80 - 2.20 y ^ v , J. _> ^  appreciably higher than the spin-only value. The increase above the spin-only value arises from spin-orbit coupling, where some of the o r b i t a l l y degenerate excited state i s "mixed-in". The ground term may therefore aquire some o r b i t a l angular momentum. Nevertheless, measure-ments of the magnetic moment of Ag^CSO^F^ should provide 9 evidence of a paramagnetic d ion and the extent of state mixing due to spin-orbit coupling may be estimated using the equation y e f f = ( 1 " 2X/|10 Dq|) y g < o > (3.1) spin-only magnetic moment the ligand f i e l d s p l i t t i n g parameter spin-orbit coupling constant S t r i c t l y speaking, equation (3.1) applies to a chromophore with 0.^  symmetry only. However, the d i s t o r t i o n from 0^ i n this case may be small enough that, to a f i r s t approximation, equation (3.1) could be used. The magnetic s u s c e p t i b i l i t y of Ag(S0^F)2 was measured between 300 K and 80 K by the Gouy method. The detailed c a l c u l a t i o n method to obtain the e f f e c t i v e magnetic moment i s shown i n Appendix D. The magnetic s u s c e p t i b i l i t y and moment data are l i s t e d i n Table 12. A plot of the inverse where y , = *s .o. 10 Dq = X 106 TABLE 12 MAGNETIC SUSCEPTIBILITIES AND MAGNETIC MOMENTS OF Ag(SO-.F) (K) ( 1 0 6 cm 3 mol 1 ) 301 1631 1.91 276 1792 1.92 249 2013 1.92 224 2248 1.92 200 2566 1.92 175 2959 1. 91 149 3540 1.91 128 4217 1.91 105 5440 1.92 80 7574 1.90 a. Magnetic moments a r e c a l c u l a t e d by u s i n g t h e C u r i e - W e i s s law: u f f = 2.828[ x^° r(T - 0 ) ] 1 / 2 y e f f ( y n ) 1 0 7 o f molar magnetic s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e i s shown i n F i g u r e 1 0 . I n the same f i g u r e i s a s i m i l a r p l o t f o r the complex [ A g ( b i p y ) 2 ] ( S O ^ F ) 2 / which w i l l be d i s c u s s e d i n t h e next s e c t i o n . A l i n e a r r e l a t i o n s h i p i s o b t a i n e d from the p l o t f o r AqiSO^F)^, w i t h an i n t e r c e p t o f + 2 0 . 3 K a t t h e temp e r a t u r e a x i s . Hence t h e C u r i e - W e i s s law i s obeyed and can be e x p r e s s -ed as: 1 y e f f = 2 . 8 2 8 [ X J J ° r ( T - 0 ) ] 2 ( 3 . 2 ) where 0 i s the Weiss c o n s t a n t . The e f f e c t i v e magnetic moment, y e ^ ^ a t room temperature i s de t e r m i n e d t o be 1 . 9 2 y^. A tem p e r a t u r e independent moment o f 1 . 9 1 ± 0 . 0 1 y_, o v e r t h e range o f 3 0 1 K and 8 0 K i s c a l c u l a t e d from e q u a t i o n ( 3 . 2 ) . U s i n g the p r e v i o u s l y e s t i m a t e d 1 0 Dq v a l u e o f 1 6 , 6 0 0 cm 1 ob-t a i n e d from the e l e c t r o n i c s p e c t r a , t h e s p i n - o r b i t c o u p l i n g c o n s t a n t , X, i s c a l c u l a t e d t o be - 9 1 0 cm 1 u s i n g e q u a t i o n ( 3 . 1 ) . T h i s r e p r e s e n t s a s u b s t a n t i a l r e d u c t i o n o f X below t h e f r e e - i o n — 1 2 + 1 8 1 v a l u e o f a p p r o x i m a t e l y - 1 8 4 0 cm f o r Ag . T h i s r e d u c t i o n i s presumably due t o t h e d e l o c a l i z a t i o n o f e l e c t r o n d e n s i t y o u t o f the t 2 o r b i t a l s o f t h e s i l v e r ( I I ) i o n onto t h e f l u o r o -s u l f a t e l i g a n d s . The C u r i e - W e i s s b e h a v i o u r o f A g ( S 0 ^ F ) o w i t h a s m a l l Weiss FIGURE 10 corr 0 100 2 0 0 3 0 0 Temp ( ° K ) c o n s t a n t i n d i c a t e s a m a g n e t i c a l l y d i l u t e system which i s i n s t r o n g c o n t r a s t t o the f i n d i n g s f o r A g F 2 , th e s u b j e c t s o f s e v e r a l s t u d i e s "*"34 136^ s i l v e r ( I I ) f l u o r i d e i s m a g n e t i c a l -l y c o n c e n t r a t e d and shows f e r r o m a g n e t i s m below 16 3 K . The e f f e c t i v e magnetic moment a t room temperature i s 2.0 ± 0.1 u B and shows C u r i e b e h a v i o u r a t h i g h e r t e m p e r a t u r e s . The measured magnetic moment o f AgCSO^F^ was magnetic f i e l d i n d ependent, i n d i c a t i n g an absence o f f e r r o m a g n e t i c i n t e r a c t i o n s I t appears t h a t the b u l k i e r SO^F groups p r e v e n t magnetic ex-9 0 change f a r more e f f i c i e n t l y t h a n monoatomic h a l i d e l i g a n d s , as i n the p r e v i o u s l y s t u d i e d C u ( S 0 3 F ) 2 6 2 ' 1 0 5 > C o p p e r ( I I ) f l u o r o s u l f a t e shows C u r i e - W e i s s b e h a v i o u r between a p p r o x i m a t e l y 310 and 90 K w i t h a s m a l l Weiss c o n s t a n t 62 6 2 o f - 2 K . The room t e m p e r a t u r e magnetic moment o f 2.05 y B o r 2.08 y_ i s independent o f t e m p e r a t u r e . The magnetic moment o f s i l v e r ( I I ) f l u o r o s u l f a t e i s s m a l l e r t h a n t h a t o f C u ( S 0 3 F ) 2 . Assuming a s i m i l a r environment f o r t h e m e t a l i o n s i n b o t h compounds and a r e d u c t i o n o f 10 Dq by the customary 2+ 2 + 30 t o 5 0 % when g o i n g from Ag to Cu , the lower Veff v a l u e s f o r A g ( S 0 3 F ) 2 p o i n t t o a l a r g e r r e d u c t i o n o f A below t h e f r e e 2+ 2 + i o n v a l u e f o r Ag then f o r Cu The r e s u l t o f t h e magnetic measurements o f A g ( S 0 3 F ) 2 and some r e l a t e d compounds are summarized i n T a b l e 13 f o r comparison Hence A g ( S 0 3 F ) 2 i s paramagnetic w i t h a s i n g l e u n p a i r e d e l e c t r o n TABLE 13 ' MAGNETIC PROPERTIES OF Ag(S0 3F) AND RELATED COMPOUNDS Compound Temp. Range K 298 y e f f y B Weiss C o n s t a n t 0(K) Comment Ref. A g ( S 0 3 F ) 2 80 - 301 1.92 + 20 C u r i e - W e i s s t h i s work A g F 2 8 - 500 2.0 Fe r r o m a g n e t i c <163 K 135 C u ( S 0 3 F ) 2 100 - 312 2.08 C u r i e - W e i s s 105 C u ( S 0 3 F ) 2 90 - 298 2.05 - 2 C u r i e - W e i s s 62 9 c o r r e s p o n d i n g t o a d e l e c t r o n i c c o n f i g u r a t i o n . The t e m p e r a t u r e 2 i n d e p e n d e n t m a g n e t i c moment i s c o n s i s t e n t w i t h a B, g r o u n d e n v i r o n m e n t , as s u g g e s t e d from t h e IR and e l e c t r o n i c s p e c t r a d i s c u s s e d p r e v i o u s l y . (d) E l e c t r o n S p i n Resonance S p e c t r a The e l e c t r o n p o s s e s s a m a g n e t i c moment and may be t r e a t e d as a b a r magnet. I n t h e p r e s e n c e o f an e x t e r n a l m a g n e t i c f i e l d , f r e e e l e c t r o n s w i l l e i t h e r a l i g n w i t h t h e m a g n e t i c f i e l d , r e s u l t i n g i n t h e l o w e r e n e r g y s t a t e ; o r i n t h e o p p o s i t e d i r e c t i o n a s t h e m a g n e t i c f i e l d , r e s u l t i n g i n t h e h i g h e r e n e r g y s t a t e . T h i s e f f e c t i s known as t h e f i r s t - o r d e r Zeeman e f f e c t . The t r a n s i t i o n between t h e two s t a t e s o c c c u r s upon a b s o r p t i o n o f r a d i a t i o n i n t h e microwave r e g i o n . The change i n e n e r g y i s g i v e n by: s t a t e o f a t e t r a g o n a l l y e l o n g a t e d o c t a h e d r a l o r s q u a r e p l a n a r AE = hv = g 6H ^e o (3.3) where h i s t h e P l a n c k ' s c o n s t a n t , v i s t h e f r e q u e n c y o f r a d i a t i o n , H o i s t h e a p p l i e d m a g n e t i c f i e l d , 6 i s t h e Bohr Magneton, and i s t h e Lande s p l i t t i n g f a c t o r . The s i t u a t i o n w i t h s i l v e r ( I I ) i o n s i s i n f a c t s i m i l a r ; 9 t h e 4d e l e c t r o n i c c o n f i g u r a t i o n has an e f f e c t i v e s p i n (S) o f 1/2, and s p i n a n g u l a r momentum o f M g = ± 1/2, w h i c h i s i d e n t i c a l t o a f r e e e l e c t r o n . However, t h e Lande s p l i t t i n g f a c t o r g depends on t h e o r i e n t a t i o n o f t h e m o l e c u l e w i t h r e s p e c t t o t h e m a g n e t i c f i e l d . The g t e n s o r w i l l be i s o t r o p i c , i n o t h e r words, i n d e p e n d e n t o f o r i e n t a t i o n i f t h e s i l v e r ( I I ) i o n i s l o c a t e d i n a p e r f e c t l y c u b i c c r y s t a l s i t e w i t h f o r example, 0^ symmetry. I f t h e symmetry o f t h e c r y s t a l s i t e i s r e d u c e d , t h e g f a c t o r i s o r i e n t a t i o n d e p e n d e n t , t h a t i s , a n i s o t r o p i c . B u t when powdered s a m p l e s a r e e x a m i n e d , i s o t r o p i c s p e c t r u m may r e s u l t f r o m compounds w i t h r e d u c e d symmetry due t o t h e o v e r a l l s e l f - c a n c e l l i n g o f t h e g r o s s l y m i s a l i g n e d s e t s o f symmetry a x e s . I t i s c o n v e n t i o n a l t o d e f i n e t h e z - d i r e c t i o n t o a l i g n w i t h t h e r o t a t i o n a l a x i s o f h i g h e s t o r d e r and t h e a s s o c i a t e d g f a c t o r as g o r g . . . W h i l e t h e g components z I I p e r p e n d i c u l a r t o t h e e x t e r n a l m a g n e t i c f i e l d be g | = g^. = g^. I t i s o b v i o u s f o r a r e g u l a r o c t a h e d r a l s y s t e m , q = q = g -3 x y z = gj_ = g ( | = g Q . A n o t h e r s i g n i f i c a n c e o f t h e g f a c t o r i s t h e d e v i a t i o n f r o m t h e f r e e e l e c t r o n v a l u e , g , w h i c h r e f l e c t s t h e amount ^e o f o r b i t a l c o n t r i b u t i o n . As d i s c u s s e d i n t h e m a g n e t i c s u s c e p t i -b i l i t y s e c t i o n , t h e o r b i t a l a n g u l a r momentum i s n o t e x p e c t e d 2 w i t h t h e g r o u n d s t a t e B^ . The g - v a l u e s h o u l d be t h e same as 113 t h a t o f a f r e e e l e c t r o n , g g , w h i c h i s 2.0023. However, t h e e f f e c t o f s p i n - o r b i t c o u p l i n g would a l t e r t h e v a l u e o f t h e g - t e n s o r . Hence e q u a t i o n (3.3) s h o u l d be s u b s t i t u t e d by e q u a -t i o n (3.4) i n a complex i o n . AE = hv = g o B H Q (3.4) o r g o = ( 3 - 5 ) m o where g Q i s t h e g - t e n s o r d e t e r m i n e d e x p e r i m e n t a l l y . I t i s a l s o t h e r o o t - m e a n - s q u a r e a v e r a g e o f t h e g components i n an a n i s o t r o p i c s p e c t r u m . 1 g o = [ I ( g z + g y + g x ^ 1 2 < 3 ' 6 > ? T h i s g Q t e n s o r i s c o n n e c t e d t o t h e s p i n - o r b i t a l c o u p l i n g c o n s t a n t X and t h e L i g a n d f i e l d s p l i t t i n g p a r a m e t e r 10 Dq a c c o r d i n g t o : 1 Pi n g ± O U = 2.00 ( 1 - 2 A/| 10 Dq | ) (3.7) S u b s t i t u t i n g e q u a t i o n (3.7) i n t o e q u a t i o n (3.1) r e s u l t s i n a r e l a t i o n s h i p t h a t c o n n e c t s t h e e f f e c t i v e m a g n e t i c moment w i t h g a c c o r d i n g t o : ^o ^ r which i s e q u i v a l e n t t o : 1 y e f f = g o t s ( s + 1 ) ] 2 ( 3- 9) where S = e f f e c t i v e s p i n o f t h e system = 1/2 f o r A g ( I I ) . I n a d d i t i o n , a n u c l e u s w i t h a non-zero n u c l e a r s p i n I , w i l l i n t e r a c t w i t h t h e u n p a i r e d e l e c t r o n i n t h e magnetic f i e l d t o s p l i t t h e a b s o r p t i o n i n t o 2 1 + 1 components. T h i s i s known as t h e n u c l e a r s p i n - e l e c t r o n s p i n h y p e r f i n e c o u p l i n g 107 109 S i n c e b o t h n a t u r a l i s o t o p e s o f s i l v e r , Ag and Ag, have a n u c l e a r s p i n I = 1/2, such h y p e r f i n e c o u p l i n g would r e s u l t i n a two i d e n t i c a l l i n e spectrum. The E.S.R. spectrum o f a powdered sample o f A g ( S 0 3 F ) 2 measured a t room tem p e r a t u r e showed a s i n g l e i s o t r o p i c b r o a d l i n e w hich o n l y sharpened s l i g h t l y a t l i q u i d n i t r o g e n tempera t u r e . No h y p e r f i n e s t r u c t u r e was d e t e c t e d . The i s o t r o p i c spectrum i s most l i k e l y due t o m i s a l i g n e d s e t s o f axes r a t h e r than t o a r e g u l a r o c t a h e d r a l o r t e t r a h e d r a l symmetry around 2+ the Ag i o n s . The i s o t r o p i c spectrum r e s o l v e d i n t o a t h r e e component a n i s o t r o p i c spectrum when a s o l u t i o n o f A g ( S 0 3 F ) 2 i n BrSO-jF was measured a t 80 K. The d a t a o b t a i n e d from t h e s e s p e c t r a a r e l i s t e d i n Table 14. Sample s p e c t r a a r e shown i n F i g u r e 11. FIGURE 11 E S R - S P E C T R A ot 80°K 115 a) solid Ag^SCLF) . 3' '2 g 0 = 2 . 1 8 7 b) Ag^SCy^ in BrSO^F g,= g„ = 2.407 g 2 = 2.096 g 3 = 2.072 (g 0 = 2.193) 116 TABLE 14 ESR DATA OF S I L V E R ( I I ) FLUOROSULFATE P h y s i c a l S t a t e T g^ g, (g ) g 0 g - V^*^ V, >o y l v y z ' y 2 ^3 M e f f M e f f ( K ) ( y B ) s o l i d powder 295 2.220 1.92 1.91 s o l i d powder 80 2.187 1.89 1.90 B r S 0 3 F s o l u t i o n 80 2.198 2.407 2.096 2.077 1.90 a. c a l c u l a t e d u s i n g e q u a t i o n (3.9) b. d e t e r m i n e d by t h e Gouy method ( T a b l e 12) The e f f e c t i v e m a g n e t i c moment, V e f f » w a s c a l c u l a t e d f r o m t h e g Q v a l u e u s i n g e q u a t i o n ( 3 . 9 ) , v e r y good a g r e e m e n t i s o b t a i n e d w i t h t h e v a l u e s m easured by t h e Gouy method. The good agreement between t h e v a l u e s c a l c u l a t e d f r o m t h e ESR s p e c t r u m o f t h e BrSO^F s o l u t i o n and f r o m b u l k s o l i d m e asure-ment s u g g e s t s l i t t l e c h a nge i n t h e c o m p l e x on d i s s o l u t i o n , b e s i d e s t h e r e d u c t i o n i n l i n e b r o a d e n i n g and t h e i m p r o v e d r e s o l u t i o n o f an a n i s o t r o p i c s p e c t r u m . 117 (e) O x i d a t i o n S t a t e D e t e r m i n a t i o n The e x p e r i m e n t a l method has been d e s c r i b e d i n t h e E x p e r i m e n t a l C h a p t e r , S e c t i o n I I . D . 2. A sample o f AgCSO^F),,, 2 + 0.8841 g (2.889 mmol Ag ) was decomposed i n c o n c e n t r a t e d aqueous p o t a s s i u m i o d i d e s o l u t i o n s a t u r a t e d w i t h n i t r o g e n g a s . The amount o f u n c o n d e n s a b l e gas e v o l v e d was d e t e r m i n e d by w e i g h t d i f f e r e n c e t o be 0.0092 g o r 0.29 mmol o f 0^• The amount o f l i b e r a t e d was t i t r a t e d by s t a n d a r i z e d t h i o s u l f a t e s o l u t i o n t o be 0.835 mmol a c c o r d i n g t o : I 2 + 2 S 2 0 3 2 — 2 1 + S 4 O g 2 (3.10) A s s u m i n g t h e p r o d u c t i o n o f 0 2 and 1^ a r o s e f r o m 2 A g 2 + + H 20 »- 2 A g + + 2 H + + | 0 2 (3.11) and A g 2 + + 2 KI +- A g l + i I + 2 K + (3.12) 2 + The amount o f Ag p r e s e n t i n t h e o r i g i n a l sample w o u l d be 2.83 mmol as compared t o 2.889 mmol t h e o r e t i c a l l y . T h i s g i v e s an o v e r a l l o x i d a t i o n s t a t e o f a p p r o x i m a t e l y 1.98 f o r t h e sample. 118 (f ) T h e r m a l D e c o m p o s i t i o n Under a s e a l e d n i t r o g e n a t m o s p h e r e , AgCSO^F)^ was f o u n d t o be t h e r m a l l y s t a b l e up t o + 210 °C, a t w h i c h t e m p e r a t u r e , a d a r k y e l l o w i s h gas e v o l v e d and c o n d e n s e d t o a c o l o r l e s s l i q u i d i n t h e c o l d e r p a r t o f t h e v e s s e l . The s o l i d m a t e r i a l m e l t e d t o a b l a c k l i q u i d and s o l i d i f i e d on c o o l i n g t o a b l a c k r e s i d u e . To f u r t h e r i n v e s t i g a t e t h e d e c o m p o s i t i o n , a sample o f AgCSO^F), 1.420 g(4.64 mmol), c o n t a i n e d i n an e v a c u a t e d one p a r t t h i c k w a l l p y r e x r e a c t o r was h e a t e d i n an o i l b a t h a t 215 °C f o r one h o u r . C o n n e c t e d t o t h e sample c o n t a i n e r was a n o t h e r o n e - p a r t t r a p c o o l e d under l i q u i d n i t r o g e n t o t r a p t h e v o l a t i l e m a t e r i a l s . The gas e v o l v e d c o n d e n s e d t o a w h i t e s o l i d i n t h e c o l d t r a p w h i l e no u n c o n d e n s a b l e m a t e r i a l was d e t e c t e d . The g a s - p h a s e IR o f t h e v o l a t i l e s e v o l v e d i n d i c a t e d 75 17 0 t h e p r e s e n c e o f S 2 ° g F 2 a n d S:*-F4 (Note 6 ) . Hence i t a p p e a r s t h a t t h e i n i t i a l d a r k y e l l o w i s h gas e v o l v e d was t h e f l u o r o s u l f a t e r a d i c a l . The g r e y i s h w h i t e r e s i d u e was i d e n t i f i e d I 8 2 by i t s I n f r a r e d s p e c t r u m t o be Ag (SO^F) . I f t h e decom-p o s i t i o n i s f o r m u l a t e d a s : 250 °C 2 A g ( S 0 3 F ) 2 »- 2 A g S 0 3 F + S 2 ° 6 F 2 (3.13) (Note 6) S i F ^ i s a commonly e n c o u n t e r e d i m p u r i t y when f l u o r i n e c o n t a i n i n g compounds a r e h e a t e d i n a g l a s s c o n t a i n e r . 119 The e x p e c t e d amount o f S„0,F_ p r o d u c e d w o u l d be 0.459 g a s 2 b 2 compared t o t h e 0.444 g (2.24 mmol) t r a p p e d , w h i l e t h e w e i g h t o f t h e r e s i d u e s h o u l d be 0.961 g v e r s u s t h e 0.976 g w h i c h r e m a i n e d . The f o r m a t i o n o f b i s f l u o r o s u l f u r y l p e r o x i d e by p y r o l y s i s 16 o f a m e t a l f l u o r o s u l f a t e i s u n p r e c e d e n t e d . R e c e n t l y , s u c h a p y r o l y s i s f o r m a t i o n o f $2®6F2 ^ a s a ^ s o been o b s e r v e d f o r 18 2 a n o t h e r n o b l e m e t a l , p a l l a d i u m , i n o u r l a b o r a t o r y a c c o r d -i n g t o : I I IV 1 6 0 ° c Pd Pd (SO.F), +~ 2 Pd(SO-,F)_ + S o 0 c F _ (3.14) 3 6 3 2 2 b 2 C. COORDINATION COMPLEX OF A g ( S 0 3 F ) 2 , [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 1. I n t r o d u c t i o n As m e n t i o n e d i n S e c t i o n A o f t h i s c h a p t e r , t h e r e a r e numerous known examples where s i l v e r ( I I ) i o n s a r e s t a b i l i z e d by n i t r o g e n d o n o r l i g a n d s s u c h a s 2 , 2 1 - b i p y r i d i n e and 122 123 125 1 , 1 0 - p h e n a n t h r o l i n e ' ' , g e n e r a l l y o b t a i n e d , when s i l v e r i s o x i d i z e d i n t h e p r e s e n c e o f s u i t a b l e l i g a n d s . The c o n v e r s i o n o f A g ( S 0 3 F ) 2 i n t o a b i s ( 2 , 2 ' - b i p y r i d y l ) b i s f l u o r o -s u l f a t e complex w o u l d be a c h e m i c a l i d e n t i f i c a t i o n o f t h e 120 e x i s t e n c e o f A g i T i o n s and would r e p r e s e n t an a l t e r n a t e r o u t e t o t h e s e compounds. The l i g a n d 2 , 2 1 - b i p y r i d i n e was chosen because the c a t i o n [ A g ( b i p y ) 2 ] 2 + has been s t u d i e d e x t e n s i v e l y by magnetic s u s c e p t i b i l i t y measurements, e l e c t r o -122 123 125 n i c and ESR s p e c t r a ' ' . I n a d d i t i o n , two X-ray d i f f r a c t i o n s t u d i e s have a l s o been p u b l i s h e d on [ A g ( b i p y ) 2 ] -( N 0 3 ) 2 1 4 7 and [ A g ( b i p y ) 2 ] ( N 0 3 ) 2 * H 2 0 1 4 8 . F u r t h e r m o r e , t h e c o r r e s p o n d i n g t r i f l u o r o m e t h y l s u l f a t e complex, [ A g ( b i p y ) 2 ] -113 ( S 0 3 C F 3 ) 2 i s kncvn and s h o u l d p r o v i d e i n t e r e s t i n g c o m p a r i -sons. Hence t h i s t r i f l u o r o m e t h y l s u l f a t e complex was a l s o 113 s y n t h e s i z e d a c c o r d i n g t o t h e l i t e r a t u r e method f o r d i r e c t comparison ( S e c t i o n I I . C . 2 . ) . 2. S y n t h e s i s o f S i l v e r ( I I ) B i s ( 2 , 2 ' - b i p y r i d y l ) B i s ( f l u o r o s u l f a t e ) In a t y p i c a l p r e p a r a t i o n , 0.894 g (2.92 mmol) o f A g ( S 0 3 F ) 2 was added under a d r y n i t r o g e n atmosphere t o a c o n c e n t r a t e d s o l u t i o n o f exc e s s 2 , 2 ' - b i p y r i d i n e (1.110 g, 7.1 mmol) i n d r y a c e t o n i t r i l e . T h i s was a c c o m p l i s h e d by l o a d i n g t h e sample o f A g ( S 0 3 F ) 2 i n t o the i n l e t arm o f the t w o - p a r t r e a c t o r ( S e c t i o n I I . A . I . ) . A f t e r removing t h e a p p a r a t u s from t h e dryb o x , t h e a c e t o n i t r i l e s o l u t i o n was f i r s t c o o l e d t o - 40 °C b e f o r e m i x i n g th e r e a g e n t s . The r e s u l t i n g b r i c k r e d m i x t u r e was a l l o w e d t o warm t o room tem p e r a t u r e and s t i r r e d f o r a f u r t h e r t h i r t y m i n u t e s . A b r i c k r e d s o l i d s e p a r a t e d from t h e br o w n i s h r e d s o l u t i o n and was vacuum f i l t e r e d . The p r o d u c t was washed under d r y n i t r o g e n w i t h 5 ml p o r t i o n s o f d r y d i c h l o r o -methane and s u b s e q u e n t l y d r i e d i n vacuo. A p p r o x i m a t e l y 1.34 g o f b r i c k r e d powder was r e c o v e r e d , c o r r e s p o n d i n g t o a 74 % y i e l d based on t h e amount o f Ag(SO.jF) 2 used. T h i s p r o d u c t was found t o mel t between 218 - 219 °C w h i l e decompo-s i n g t o a b l a c k l i q u i d . The e l e m e n t a l a n a l y s i s was found t o co r r e s p o n d t o Ag (C^QHQN,,) 2 ( S 0 3 F ) 2 A S F ° H ° W S : C a l c u l a t e d , %Ag, 17.44; %F, 6.14; %C, 38.85; %N, 9.06; %H, 2.61. Found, %Ag, 17.15; %F, 6.29; %C, 38.73; %N, 9.01; %H, 2.76. 3. C h a r a c t e r i z a t i o n s (a) V i b r a t i o n a l S p e c t r a [ A g ( b i p y ) 2 ] ( S O ^ F ) 2 was found t o be much l e s s r e a c t i v e towards IR window m a t e r i a l s and hence a n u j o l m u l l spectrum between KRS-5 windows was o b t a i n e d and shown i n F i g u r e 12. However, o n l y a poor q u a l i t y Raman spectrum c o u l d be r e c o r d e d , perhaps due t o r a t h e r dark c o l o r o f t h e compound. The v i b r a t i o n a l band p o s i t i o n a r e l i s t e d i n Tab l e 15 a l o n g w i t h t h e IR f r e q u e n c i e s o f t h e c o r r e s p o n d i n g [ A g ( b i p y ) 2 ] ( C F ^ S O ^ ) 2 complex f o r d i r e c t comparison. A l t h o u g h two independent e l a b o r a t e c o r r e l a t i o n s t u d i e s o f i n f r a r e d s p e c t r a o f l a r g e groups o f met a l 2 , 2 ' - b i p y r i d i n e FIGURE 12 The Infrored Spectrum of [Ag(dipy?](SO^F ) between 1600 and 4 0 0 cm- ' 1600 1400 1200 1000 8 0 0 N denotes Nujol A denotes Anion bands TABLE 15 1 2 3 VIBRATIONAL SPECTRA 3 OF [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 AND [ A g ( b i p y ) 2 ] ( C F 3 S 0 3 F ) [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 [ A g ( b i p y ) ] ( C F 3 S 0 3 F ) 2 Raman IR IR C 1600 s 1602 s 1600 m 1575 w 1568 ms 1570 w 1504 w 1498 1475 1445 1320 s s s m, sh 1497 1475 1445 1320 m m s m 1324 m 1302 v s , b * 1280 s, s h * 1270 v s , b * 1255 v s , b * 1250 mw, sh 1255 s * 1178 w 1175 w, sh 1157 m 1145 v s * 1105 m 1107 mw 1074 m 1075 v s * 1060 w 1033 s 1028 1017 m mw 1030 v s * 970 vw 970 vw, sh 903 w 902 w 818 vw 820 vw 782 s 782 s 770 s 770 760 s m * 730 s * 725 s, sh 725 s 663 s 660 651 m w 660 650 m w 645 m 635 v s * 580 v s * 573 s * 561 m * 520 s * 440 w 440 vw 418 w 415 ms * 417 s * 408 w 363 s 355 vw 360 350 w w * a n i o n bands a. i n cm \ see A p p e n d i x A f o r a b b r e v i a t i o n s b. n u j o l and h e x a c h l o r o b u t a d i e n e m u l l between KRS-5 p l a t e s c. n e a t powder between KRS-5 p l a t e s 12.4-18 3 184 and 1,1O-phenanthroline complexes have been made ' , no d e t a i l assignment o f t h e v i b r a t i o n bands o f 2 , 2 ' - b i p y r i d i n e complexes have been p u b l i s h e d . To a t t empt such an assignment was c o n s i d e r e d not w i t h i n the scope o f t h i s s t u d y . I n any c a s e , t h e s p e c t r a o f the f l u o r o s u l f a t e and t h e t r i f l u o r o -m e t h y l s u l f a t e complexes a r e v i r t u a l l y i d e n t i c a l e x c e p t f o r the r a t h e r i n t e n s e a n i o n bands. T h i s o b s e r v a t i o n a g r e e s w i t h 18 3 184 t h e f i n d i n g s o f the c o r r e l a t i o n s t u d i e s ' where i n f a c t , the s p e c t r a o b t a i n e d are s i m i l a r i n g r o s s f e a t u r e s and no o b v i o u s c o r r e l a t i o n s w i t h magnetic o r o t h e r p h y s i c a l p r o p e r t i e s can be made. The assignment f o r the a n i o n bands o f [ A g ( b i p y ) ^ 1 ( S O ^ F ) ^ i s shown i n Table 16 and compared t o t h o s e o f KSO^F and AgSO^F. No n - c o o r d i n a t e d f l u o r o s u l f a t e i o n s w i t h C^y symmetry appears t o b e s t r e p r e s e n t t h e c o o r d i n a t i o n mode, even though th e degenerate asymmetric SO^ s t r e t c h i n g mode i s s p l i t by a p p r o x i -m a t e l y t h i r t y wavenumbers, presumably due to s i t e - s y m m e t r y e f f e c t s . The band p o s i t i o n s agree w e l l w i t h r e p o r t s on i o n i c * i i * *. 45, 64,105,82 , . _ f l u o r o s u l f a t e compounds , such as t h e examples o f KS0 3F and AgSC^F shown i n T a b l e 16. The IR spectrum o f AgSO^F r e p o r t e d here a g r e e s w e l l w i t h 8 2 the. o r i g i n a l r e f e r e n c e . In some i n s t a n c e s b e t t e r r e s o l u t i o n was o b t a i n e d as compared t o the spectrum r e c o r d e d d u r i n g t h e mid 1950's. As i n t h e o r i g i n a l r e f e r e n c e , t h e p r e s e n t IR . 125 TABLE 16 ANIONIC INFRARED BANDS OF [ A g ( b i p y ) ^ \ ( S 0 3 F ) 2 AND RELATED COMPOUNDS [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 K S 0 3 F 6 2 A g S 0 3 F A s s i g n m e n t 1302 v s 1270 v s 1280 s 1310 s , b , s h 1250 s,b v 4 (E) S 0 3 asym. s t r . 1075 vs 1080 s 1075 s , s h 1062 s v 1 ( A 1 ) S 0 3 sym. s t r , 730 s 750 s 795 s 748 s v 2 ( A 1 ) SF s t r , 580 v s 590 s 595 s , s h 587 s v 5 ( E ) S 0 3 asym. d e f , 561 m 570 sh 577 s 561. s , s h v 3 ( A 1 ) S 0 3 Sym. d e f , 415 ms 408 m,b 410 v s 395 vw v,(E) SO_F r o c k 6 3 126 spectrum shows i o n i c f l u o r o s u l f a t e groups w i t h C^ v symmetry. However, a l l s i x fundamentals a re d o u b l e d . T h i s i s b e s t e x p l a i n e d by assuming two independent s i t e s f o r the a n i o n i n t he s o l i d s t a t e , as i n the p r e v i o u s l y r e p o r t e d S r ( S 0 3 F ) 2 (b) E l e c t r o n i c S p e c t r a The s t a b i l i t y o f s i l v e r ( I I ) i n t h e c a t i o n o f [ A g ( b i p y ) 2 ] -(SO^F)2 i-s f u r t h e r demonstrated by t h e v i s i b l e - u l t r a v i o l e t spectrum o f t h e complex i n aqueous s o l u t i o n . An e s s e n t i a l l y i d e n t i c a l spectrum was o b t a i n e d f o r t h e t r i f l u o r o m e t h y l s u l f a t e complex s y n t h e s i z e d h e r e , which a l s o agrees w e l l w i t h t h e o r i g i n a l r e f e r e n c e 1 1 3 . S o l i d s t a t e d i f f u s e r e f l e c t a n c e s p e c t r a o f the two complexes were a l s o r e c o r d e d . A l l d a t a from t h e s e e l e c t r o n i c s p e c t r a a l o n g w i t h some r e l e v a n t r e f e r e n c e s a r e l i s t e d i n Ta b l e 17. I n g e n e r a l , t h e o c c u r r e n c e o f a broad band a t a p p r o x i m a t e l y 22,000 cm 1 i s r e g a r d e d as e v i d e n c e f o r a s q u a r e - p l a n a r environment i n n i t r o g e n donor c o o r d i n a t i o n 125 complexes o f s i l v e r ( I I ) . Such a broad band i s l i k e l y t o be the u n r e s o l v e d c o m b i n a t i o n o f the d—d t r a n s i t i o n d i s c u s s e d i n S e c t i o n B.3(b) o f t h i s C h a p t e r . In t h e d i f f u s e r e f l e c t a n c e 18 5 spectrum o f the analogous [ C u ( p y ) 4 ] ( S 0 3 F ) 2 , a br o a d band c e n t e r e d a t 17,000 cm 1 i s a t t r i b u t e d t o the u n r e s o l v e d d—d t r a n s i t i o n s . The p o s i t i o n o f the band maximum i s a p p r o x i m a t e l y 30 % l o w e r i n energy than t h a t o f [Ag (dipy) 2 ] ( S 0 3 F ) i 2 , which i s TABLE 17 ELECTRONIC SPECTRA OF [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 AND RELATED COMPOUNDS Compound Type o f S p e c t r u m -1 3 X , cm x 10 Ref, max _^ _^ (e , M cm ) max . [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 [ A g ( b i p y ) 2 ] ( N 0 3 ) 2 [ A g ( b i p y ) 2 ] S 2 ° 8 [ C u ( p y ) 4 ] ( S 0 3 F ) 2 [ A g ( b i p y ) 2 1 ( S 0 3 F ) 2 [ A g ( b i p y ) 2 ] ( C F 3 S 0 3 ) 2 i n H 20 [ A g ( b i p y ) 2 ] ( S 0 3 C F 3 ) 2 i n H 2 0 i n H 20 i n H 20 D i f f . r e f l D i f f . r e f l D i f f . r e f l 22 (1630) 35.7 (22000) 42.9 (16300) 22 (2160) 35.7 42.9 22 (2160) 22 (1600) 28 ( v e r y i n t e n s e ) 17.0 >28, 22 22 T h i s work 113, t h i s work 125,187 186 185 T h i s work T h i s work [Ag ( b i p y ) 2 ] (NO-j) 2 i n H 20 22, 35.7, 42.9 113 128: n o t u n r e a s o n a b l e c o n s i d e r i n g t h e d e c r e a s e i n l i g a n d f i e l d s p l i t t i n g g o i n g from t h e 4d t o 3d s e r i e s . The r a t h e r h i g h e x t i n c t i o n c o e f f i c i e n t (e = 1630 M "'"cm ^) o f t h e b r o a d band a t 22,000 cm most l i k e l y a r i s e s f r o m i n t e n s i t y s t e a l i n g o f t h e n e i g h b o r i n g huge c h a r g e - t r a n s f e r a b s o r p t i o n a t 35,700 cm ^ (e = 22,000) . (c) M a g n e t i c S u s c e p t i b i l i t y The m a g n e t i c b e h a v i o u r o f [ A g ( b i p y ) 2 ] ( S O ^ F ) 2 was s t u d i e d between 305 and 80 K w i t h t h e d a t a l i s t e d i n T a b l e 18. The c o r p l o t o f l / x M v e r s u s t e m p e r a t u r e has a l r e a d y been shown i n F i g u r e 10 a l o n g w i t h t h e p l o t f o r A g C S O ^ F ^ . C u r i e - W e i s s b e h a v i o u r i s o b s e r v e d i n t h e t e m p e r a t u r e r a n g e s t u d i e d w i t h a W e i s s c o n s t a n t o f + 5.8 K. The e f f e c t i v e m a g n e t i c moment i s t e m p e r a t u r e i n d e p e n d e n t a t a v a l u e o f 1.8 2 ± 0.01 y . A g r e e -B 1 2 — 1 8 8 ment w i t h o l d e r work on [Ag(bipy)„]X„ c o m p l e x e s (X = ^-S o0 o , 2 2 2 2 o N 0 3 " 1 8 8 ' 1 1 3 f CIO3" 1 8 8 , C 1 0 4 " 1 8 8 , C F 3 S 0 3 " 1 1 3 ) i s r a t h e r p o o r e x c e p t f o r t h e p e r o x y d i s u l f a t e complex where an e f f e c t i v e m a g n e t i c moment o f 1.80 y B i s r e p o r t e d . No d e t a i l e d t e m p e r a t u r e dependence measurements a r e r e p o r t e d i n t h e s e s t u d i e s and y r:f v a l u e s a r e f o u n d between 2.08 and 2.29 y_,. I n p a r t i c u l a r , room t e m p e r a t u r e measurements on [ A g ( b i p y ) 2 ] ( S 0 3 C F 3 ) 2 by T h o r p e and K o c h i g i v e s a x M v a l u e o f 2551 x 10^ cm 3mol w h i c h w o u l d y i e l d a M e f f v a l u e o f ^ 2.5 y B- However, t h e ESR s p e c t r u m 1 2 9 TABLE 18 MAGNETIC SUSCEPTIBILITIES AND MAGNETIC MOMENTS OF [ A g ( b i p y ) 2 ] ( S 0 3 F ) T X C O r y a xm M e f f (K) ( 1 0 6 cm 3 mol" 1) ( u _ ) B 305 1 3 9 3 1.83 280 1 5 0 7 1.82 255 1 6 6 5 1.82 232 1 8 5 0 1.83 203 2 1 2 2 1.83 1 8 7 2317 1.83 154 2 7 9 6 1.82 129 3319 1.81 1 0 9 4 0 8 7 1.83 80 5606 1.82 Magnetic moments a r e c a l c u l a t e d by u s i n g t h e C u r i e - W e i s s law: y ^ f f = 2 . 8 2 8 [ X S ° r (T - 0 ) ] 1 / 2 130 r e c o r d e d on t h e sample s y n t h e s i z e d i n t h i s study g i v e s no i n d i c a t i o n o f an u n u s u a l l y h i g h magnetic moment f o r t h i s compound. F u r t h e r d i s c u s s i o n on t h e ESR spectrum w i l l be made l a t e r on. On the o t h e r hand, t h e o b s e r v e d t e m p e r a t u r e independence, the s m a l l Weiss c o n s t a n t , and t h e y f f found f o r [ A g ( b i p y ) 2 ] -( SO^F) 2 agree w e l l w i t h the r e s u l t s o f magnetic measurements 18 9 on a s e r i e s o f s i l v e r ( I I ) s a l t s o f p y r i d i n e - c a r b o x y l i c a c i d s w i t h t h e e x c e p t i o n o f s i l v e r ( I I ) n i c o t i n a t e , which was found t o 189 144 be a n t i f e r r o m a g n e t i c ' . The e f f e c t i v e magnetic moment of t h e s e complexes range from 1.78 t o 1.8 2 y . , (d) ESR S p e c t r a Powdered samples o f [ A g ( b i p y ) ^ ] ( S O ^ F ) 2 and [ A g ( b i p y ) 2 1 -( C F 3 S 0 3 ) 2 were s t u d i e d a t both room t e m p e r a t u r e and a t 80 K. S i n c e both complexes a re s l i g h t l y s o l u b l e i n a c e t o n i t r i l e , ESR s p e c t r a were a l s o r e c o r d e d on s a t u r a t e d s o l u t i o n s o f each o f them a t 80 K. The s p e c t r a o b t a i n e d were a l l a n i s o t r o p i c w i t h two d i s t i n c t components o f the g - t e n s o r . N u c l e a r - s p i n h y p e r f i n e c o u p l i n g was not o b s e r v e d i n any c a s e . The d a t a o b t a i n e d i s t a b u l a t e d i n Table 19. Agreement w i t h p r e v i o u s 2+ 190 191 work on complexes c o n t a i n i n g t h e [ A g t b i p y ^ l i o n ' i s good. Both t h e f l u o r o s u l f a t e and the t r i f l u o r o m e t h y l s u l f a t e complexes g i v e v i r t u a l l y i d e n t i c a l g v a l u e s i n t h e s o l i d s t a t e TABLE 19 ESR DATA OF SOME 2,2•-BIPYRIDINE COMPLEXES OF SILVER(II) Compound T, K g o g l l 9 i Veff* P B R e f [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 (s) 295 2.099 2.178 2.058 1.82 Thi-s work [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 (s) 80 2.091 2.170 2.051 1.81 This work [ A g ( b i p y ) 2 ] ( S 0 3 F ) 2 i n CH 3CN 80 2.092 2.166 2.054 1.81 T h i s work [ A g ( b i p y ) 2 ] ( C F 3 S 0 3 ) 2 (s) 80 2.087 2.164 2.047 1.81 T h i s work [ A g ( b i p y ) 2 ] ( C F 3 S 0 3 ) 2 80 2.092 2.160 2.057 1.81 T h i s work ( i n CH 3CN) t A g ( b i p y ) 2 ] ( S 2 O g ) ( s ) 77 2.094 2.184 2.047 1.81 191 [ A g ( b i p y ) 2 ] ( C 1 0 4 ) 2 (s) 77 2.087 2.169 2.045 1.81 190 a. C a l c u l a t e d from equation (3.9) and i n f r o z e n s o l u t i o n s o f CH^CN. Good agreement i s a l s o o b t a i n e d between the magnetic moments c a l c u l a t e d from t h e g v a l u e s and t h o s e from b u l k s u s c e p t i b i l i t y measurements. For [ A g ( b i p y ) 2 ] ( C F ^ S O ^ ) 2 / t h e c a l c u l a t e d U e f f i s 1.81, i d e n -t i c a l t o tho s e o f t h e c o r r e s p o n d i n g f l u o r o s u l f a t e complex. In summary, t h e complex [ A g ( b i p y ) ^ ] (SO^F)^ appears t o c o n t a i n a s i l v e r ( I I ) i o n c o o r d i n a t e d w i t h two 2 , 2 ' - b i p y r i d i n e l i g a n d s i n a square p l a n a r f a s h i o n w h i l e t h e f l u r o r s u l f a t e a n i o n s a r e i o n i c i n n a t u r e w i t h v e r y weak o r no i n t e r a c t i o n w i t h the s i l v e r i o n . D. ANIONIC FLUOROSULFATO COMPLEXES OF S I L V E R ( I I ) 1. I n t r o d u c t i o n As mentioned i n S e c t i o n B o f t h i s c h a p t e r , a b l a c k s o l i d p r o d u c t was o b t a i n e d i n r e a c t i o n s i n v o l v i n g BrOS02F as f l u o r o -s u l f o n a t i n g agent. The we i g h t r a t i o o f p r o d u c t t o r e a g e n t s u g g e s t e d t h e f o r m u l a A g ^ S O ^ F j ^ . The o x i d i z i n g a b i l i t y o f t h i s p r o d u c t suggested the presence o f s i l v e r i n i t s h i g h e r o x i d a t i o n s t a t e s . A r e a s o n a b l e f o r m u l a t i o n would be A g ^ A g 1 1 ( S O ^ F ) ^ s u g g e s t i n g perhaps the presence o f the a n i o n 1 1 2 -[Ag (SO..F).] . Ag„ [Ag(SO^F) . ] would be the f i r s t example o f 133 a m i x e d - v a l e n c e s t a t e A g ( I ) — A g ( I I ) compound. P r e v i o u s l y 192 I i n r e p o r t e d examples i n v o l v e the v a l e n c e p a i r s Ag —Ag such as A g I [ A g I I I 0 2 ] o r Ag°—Ag 1 as i n the s i l v e r s u b f l u o r i d e Ag 2F. The f o r m u l a t i o n o f the mixed v a l e n c y compounds as Ag 2" C [ A g 1 1 (SO^F) ^  ] sug g e s t s the p o s s i b i l i t y o f s y n t h e s i z i n g analogous complexes where A g 1 i s r e p l a c e d by o t h e r u n i v a l e n t c a t i o n s . The s y n t h e s i s o f the complex K 2[Ag(SO^F)^] i s des-c r i b e d i n the f o l l o w i n g s e c t i o n . The f l u o r o - a n a l o g u e o f t h i s 154 15 5 complex has been r e p o r t e d by Hoppe, and coworkers ' i n the group o f complexes M^AgF^, where M 1 = K, Rb, or Cs. 2. Syntheses And E l e m e n t a l A n a l y s e s (a) A g 3 ( S 0 3 F ) 4 R e a c t i o n d e t a i l s l e a d i n g t o the f o r m a t i o n o f t h e hygro-s c o p i c t r i s i l v e r t e t r a k i s f l u o r o s u l f a t e have been d e s c r i b e d i n S e c t i o n B.2(d) o f t h i s c h a p t e r . E l e m e n t a l a n a l y s i s : C a l c u l a t e d f o r A g 3 ( S 0 3 F ) 4 : %Ag, 44.95; %S, 17.82; %F, 10.56. Found: %Ag, 44.85; %S, 17.78; %F, 10.45. I t i s i n t e r e s t i n g t o note t h a t the b l a c k p r o d u c t d e s c r i b e d 17 3 by Woolf i n the e l e c t r o l y t i c o x i d a t i o n o f AgF i n HS0 3F appeared s i m i l a r b ut o n l y c o n t a i n e d 4 0.4 % Ag. (b) K 2 [ A g ( S 0 3 F ) 4 ] D i p o t a s s i u m t e t r a k i s ( f l u o r o s u l f a t o ) a r g e n t a t e ( I I ) i s pr e p a r e d by t h e r e a c t i o n o f a 2:1 s t o i c h i o m e t r i c m i x t u r e of potassium f l u o r o s u l f a t e and. s i l v e r metal i n the presence of the o x i d i z i n g mixture, S 2 ° g F 2 a n < ^ HSO^F. In a t y p i c a l p r e p a r a t i o n , 0.300 g o f s i l v e r powder and 0.768 g (5.56 mmol) of KSO-jF were mixed i n a one-part pyrex r e a c t o r i n s i d e the drybox. Approximately 5 ml of each of HSO^F and S20gF2 were d i s t i l l e d i n vacuo onto the mixture. Warming the r e a c t i o n mixture to room temperature and subsequent s t i r r i n g o v e r n i g h t r e s u l t e d i n the formation of two l i q u i d l a y e r s . The c l e a r S»O cF_ top l a y e r d i d not seem to mix w i t h the b l a c k s o l i d Z o Z f i l l e d s a t u r a t e d HSO^F s o l u t i o n a t the bottom. Removal o f a l l v o l a t i l e m a t e r i a l s i n vacuum a t 50 °C y i e l d e d 1.643 g o f a black h ygroscopic s o l i d powder. Elemental a n a l y s i s confirmed the composition as K^AgtSO^F)^. C a l c u l a t e d : %Ag, 18.52; %K, 13.43; %F, 13.05. Found: %Ag, 18.79; %K, 13.37; %F, 12.90 A l t e r n a t i v e l y , R"2 [Ag (S0 3F) ^ ] was prepared by r e a c t i n g Ag(S0 3F)2 and KSO^F i n a one to two mole r a t i o i n BrSO-jF. Samples of A g ( S 0 3 F ) 2 and KS0 3F, 0.587 g (1.92 mmol) and 0.530 r e s p e c t i v e l y were mixed i n s i d e the drybox as above. Excess B r S 0 3F was then vacuum d i s t i l l e d onto the mixture. D i s s o l u t i o n was complete a f t e r warming the mixture a t 5 0 °C f o r one hour. The excess BrS0 3F was then removed i n vacuo w i t h the r e a c t o r kept at 50 °C to g i v e 1.114 g o f a s o l i d product. T h i s b l a c k s o l i d was i d e n t i f i e d by i t s i n f r a r e d spectrum and m e l t i n g p o i n t to be K 9Ag(SO^F).. 135 3. Experimental R e s u l t s and D i s c u s s i o n s (a) I n f r a r e d Spectra Much l i k e A g ( S 0 3 F ) 2 , the high r e a c t i v i t y of A g 3 ( S 0 3 F ) 4 and K 2 A g ( S 0 3 F ) 4 d i d not a l l o w the use of more c o n v e n t i o n a l IR m u l l i n g agents and window m a t e r i a l s . T h e i r b l a c k c o l o r prevented r e c o r d i n g of any Raman spectrum. IR s p e c t r a were ob t a i n e d o n l y on neat t h i n powder f i l m s between BaF 2 p l a t e s . The observed band maxima are l i s t e d i n Table 20. The s p e c t r a given by both compounds are very s i m i l a r but a l s o very complex. In the S—O s t r e t c h i n g r e g i o n f o r a f l u o r o s u l f a t e group between 1400 and 1000 cm 1 , a t l e a s t seven bands are d i s t i n g u i s h a b l e while a s i n g l e type o f f l u o r o -s u l f a t e should have a maximum o f three bands o n l y . The bands are a l s o s u f f i c i e n t l y broad and asymmetric t h a t some f i n e s p l i t t i n g may s t i l l be present. Two s e t s o f do u b l e t s are observed between 900 and 8 00 cm 1 i n the S—F s t r e t c h i n g region.: The s p l i t t i n g s o f the doublets are r a t h e r s m a l l . Due to the mentioned complexity i n the S—O s t r e t c h i n g r e g i o n , d e t a i l e d assignment and s t r u c t u r a l c o n c l u s i o n c o u l d not be proposed. (b) Magnetic S u s c e p t i b i l i t y Measurements The magnetic s u s c e p t i b i l i t i e s o f Ag^SO^F)^ and K-jAgCSO^F)^ were measured between ^ 330 and 77 K. Both compounds were found 136 TABLE 2 0 INFRARED SPECTRA OF A g 3 ( S 0 3 F ) 4 AND K 2 A g ( S 0 3 F ) 4 A g 3 ( S 0 3 F ) 4 (cm 1 ) K 2 A g ( S 0 3 F ) 4 (cm 1 ) 1325 s , s h 1278 s 1235 s 1195 v s 1330 s , s h 1290 v s 1240 s , s h 1190 vs 109 5 mw 1082 v s 1055 s 1090 w,sh 1080 s 1050 v s 855 m 845 m 855 845 m m 825 s 810 s 825 810 Between BaF p l a t e s t o be m a g n e t i c a l l y c o n c e n t r a t e d . S t r o n g a n t i f e r r o m a g n e t i c c o u p l i n g i s e v i d e n t from the N e e l t e m p e r a t u r e s o f 24 0 and ^ 300 K r e s p e c t i v e l y . The magnetic moments a r e temperature dependent and f a l l below t h e s p i n - o n l y v a l u e o f 1.7 3 y D f o r one u n p a i r e d e l e c t r o n . The r e s u l t s o f the measurements a r e c o r t a b u l a t e d i n Table 21 and a x M v e r s u s T p l o t f o r A g 3 ( S 0 3 F ) 4 i s shown i n F i g u r e 13. A n t i f e r r o m a g n e t i c c o u p l i n g i s v e r y common i n C u ( I I ) 91 compounds, i n p a r t i c u l a r i n c a r b o x y l a t e s , b u t f o r s i l v e r ( I I ) t h e o n l y example p r e v i o u s l y r e p o r t e d a r e t h e s i l v e r ( I I ) b i s n i c o 189 144 145 t i n a t e ' and s i l v e r ( I I ) b i s ( p y r a z i n e ) p e r o x y d i s u l f a t e I n c o n s t r a s t , t h e f l u o r o - a n a l o g u e o f I^AgCSO^F)^ I^AgF^ 154,15 follows the Curie-Weiss law between 2 93 and 82 K, w i t h a magnetic moment o f 1.87 y D a t room t e m p e r a t u r e . A n t i f e r r o m a g n e t i s m may i n v o l v e d i r e c t m e t a l - m e t a l i n t e r -a c t i o n o r a superexchange p r o c e s s whereby the exchange, p r o c e e d t h r o u g h i n t e r v e n i n g nonmagnetic atoms. T h i s p r o c e s s u s u a l l y o c c u r s i n compounds w i t h s m a l l monoatomic a n i o n s , X, such as o x i d e s and f l u o r i d e s , r e s u l t i n g i n l i n e a r o r near l i n e a r m e t a l -X-metal g r o u p i n g s . I n a d d i t i o n , t h e m e t a l must p o s s e s s h a l f f i l l e d d o r b i t a l s o f s u i t a b l e o r i e n t a t i o n . I n view o f t h e 9 b u l k y s i z e o f t h e f l u o r o s u l f a t e group and the d c o n f i g u r a t i o n 2+ o f Ag , such i n t e r m o l e c u l a r i n t e r a c t i o n i s r a t h e r u n l i k e l y . D i r e c t i n t e r a c t i o n s between magnetic centers may be found i n 138 TABLE 21 MAGNETIC SUSCEPTIBILITIES AND MAGNETIC MOMENTS FOR A g 3 ( S 0 3 F ) 4 and K 2 A g ( S 0 3 F ) 4 Ag 3(SO 3 F ) 4 K 2 A g ( S 0 3 F ) 4 co r c o r T XM y e f f T XM y e f f (K) ( 1 0 6 cm 3 mol" 1) ( u B ) (K) (10^ cm 3mol 1 ) <uB> 309 1130±6 1. 67 ±.02 336 6 8 3 ±7 6 1 . 35 ±.15 284 1151 ±11 1. 62 ±. 04 307 692 ±59 1. 30±.ll 256 1168 ±9 1 . 55 ±.03 280 689 ±36 1 . 24 ±. 07 232 1168 ±16 1.47±.03 256 683 ±76 1. 18±.13 206 1160 ±8 1.38 ±.01 231 676 ±26 1. 12±. 04 181 1136 ±11 1.28 ±.02 205 660 ±147 1. 04±.23 156 1092±20 1.17±.03 181 632±112 0. 96±.17 131 1022 ±15 1.04±.02 156 592±41 0. 86±. 06 114 966±19 0.94 ±.02 131 534±37 0 . 75±. 05 80 939±24 0.77±.02 108 445±15 0 . 62±. 02 77 471±32 0. 54 ±.04 FIGURE 13 Temp,[°K] b i - or p o l y - n u c l e a r complexes. Assuming a formal d i p o l a r c o u p l i n g between the metal c e n t e r s , i t i s p o s s i b l e to determine the number o f magnetic c e n t e r s over which exchange o c c u r s , n, and the exchange i n t e g r a l , J , by a g r a p h i c a l method. Such a method has been d e s c r i b e d and i l l u s t r a t e d i n d e t a i l f o r a number of t r i v a l e n t 19 chromium and i r o n c a r b o x y l a t e s by Earnshaw, F i g g i s and Lewis For the S = 1/2 system, the magnetic s u s c e p t i b i l i t y o f a number 91 of complexes o f b i v a l e n t copper as a f u n c t i o n of temperature has a l s o been accounted a c c u r a t e l y . The values o f \*e£f as a f u n c t i o n of temperature (kT/J) f o r a l i n e a r c h a i n of i n t e r a c t i n g s p i n s o f value S, r a n g i n g 193 from 1/2 to 5/2, have been c a l c u l a t e d f o r c h a i n s of up to 10 members. The l i s t e d magnetic moments may be converted to non-ispin-only moments by m u l t i p l y i n g by g/2, where g i s the tensor determined from the ESR spectrum. For a p a r t i c u l a r c h a i n l e n g t h n, comparing the p l o t s o f experimental magnetic moment versus kT/J f o r a range o f J values a g a i n s t the theore-193 t i c a l p l o t o f the t a b u l a t e d values c o r r e c t e d by the g f a c t o r , the b e s t f i t t i n g c h a i n l e n g t h , n, and exchange i n t e g r a l , J , can be determined. In t h i s study, J v a l u e s were o b t a i n e d from the experimen-t a l magnetic moments by i n t e r p o l a t i o n u s i n g the t h e o r e t i c a l p l o t s of c a l c u l a t e d magnetic moments versus k T / J f o r d i f f e r e n t c h a i n l e n g t h n. The p l o t i n w h i c h b e s t agreement i s o b t a i n e d f o r t h e J v a l u e s i n d i c a t e d t h e c o r r e c t c h a i n l e n g t h . The a v e r a g e o f t h e i n t e r p o l a t e d J v a l u e s from t h e p l o t c o r r e s p o n d s t o t h e b e s t v a l u e f o r t h e exchange i n t e g r a l , J . One a s s u m p t i o n made i n t h i s method i s t h e a b s o l u t e c o r r e c t n e s s o f t h e e x p e r i m e n t a l l y d e t e r m i n e d m a g n e t i c moments, as e v e r y d a t a p o i n t i s u l t i l i z e d i n t h e d e t e r m i n a t i o n o f J . I f t h e a v e r a g e J i s w i t h i n t h e e x p e r i m e n t a l u n c e r t a i n t i e s o f i n d i v i d u a l J v a l u e s o b t a i n e d , t h e v a l i d i t y o f t h e method i s w e l l c o n f i r m e d . I f t h e a g r e e m e n t i s u n a c c e p t a b l e , t h e use o f t h e method, and hence t h e d i p o l a r c o u p l i n g a p p r o a c h t o e x p l a i n t h e a n t i f e r r o -magnetism, i s p r o b a b l y i n a p p r o p r i a t e . However, good agreement i s v e r y o f t e n o b t a i n e d e x c e p t a t t h e l o w e r end o f t h e t e m p e r a -t u r e r a n g e (nea r 80 K ) . T h i s i s o f t e n e x p l a i n e d by t h e p r e s e n c e o f a s m a l l p e r c e n t a g e o f m a g n e t i c a l l y d i l u t e i m p u r i -194,195 t i e s c a l The V ££ v e r s u s k T / J p l o t f o r n = 2 i s i l l u s t r a t e d i n F i g u r e 14 f o r A g - ^ S O ^ F ^ as an example. A l t h o u g h t h e b e s t a g r e e m e n t i s o b t a i n e d f r o m t h e n = 2 p l o t , t h e J v a l u e s f o r A g ^ S O ^ F ^ o b t a i n e d f r o m s u c h a p l o t d i d n o t a g r e e w i t h i n e x p e r i m e n t a l u n c e r t a i n t i e s , as shown i n T a b l e 22. In t h e c a s e o f I ^ A g t S O ^ F ) ^ , t h e b e s t agreement was o b t a i n e c i n t h e n = 4 p l o t , t h e r e s u l t i n g d a t a i s shown i n T a b l e 23. E x c e p t f o r t h e l a s t p o i n t , t h e a v e r a g e J v a l u e o f - 234 c m - 1 FIGURE 14 142 -3.0 -2.0 -1.5 -1.0 -0.5 143 expt. TABLE 2 2 EXPERIMENTAL J VALUES OF A g 3 ( S 0 3 F ) 4 n = 2 -1, y f i f f k T / J J(cm •"•) T ( y B ) (K) 1.67 ± .02 -3.00 ± .20 -71.5 ± 5.1 309 1.62 ± .04 -2.41 ± .42 -81.7 ± 17.2 284 1.55 ± .03 -1.97 ± .14 -90.4 ± 6.9 256 1.47 ± .03 -1.64 ± .10 -98.2 ± 6.4 232 1.38 ± .01 -1.40 ± .02 -102.5 ± 1.5 206 1.28 ± .02 -1.21 ± .03 -103.8 ± 2.6 181 1.17 ± .03 -1.05 ± .04 -103.4 ± 4.1 156 1.04 ± .02 -0.89 ± .02 -102.2 ± 2.3 131 0.94 ± .02 -0.80 ± .02 -99.5 ± 2.6 114 0.77 ± .02 -0.67 ± .02 -82.8 ± 2.5 80 J = -93.6 144 TABLE 2 3 EXPERIMENTAL J VALUES OF K 2 A g ( S 0 3 F ) 4 n = 4 expt. y e f f (y B) T (K) -k T / J J(cm 1) -kT/J 1.35 ± .15 1.30 ± .11 1.24 ± .07 1.18 ± .13 1.12 ± .04 1.04 ± .23 0.96 ± .17 0.86 ± .06 0.75 ± .05 0.62 ± .02 0.54 ± .04 336 307 280 256 231 205 181 156 131 108 77 1.11 ± .31 98 ± .22 85 ± .12 75 ± .17 .66 ± .06 .57 ± .16 50 ± .10 .43 ± .03 37 ± .02 32 ± .01 28 ± .02 -223 ± 86 -217 ± 63 -229 ± 38 -237 ± 70 -243 ± 24 -251 ± 98 -252 ± 63 -251 ± 19 -246 ± 16 -234 ± 8 -193 ± 15 1.06 .91 .83 .76 .68 . 61 . 54 .46 .39 . 32 .23 J = -234 145 i s a c c e p t a b l e . T h i s d e v i a t i o n may be caused by v e r y s m a l l amount o f m a g n e t i c a l l y d i l u t e i m p u r i t i e s . The g e n e r a l b e t t e r agreement i n the d a t a p o i n t s w i t h i n e x p e r i m e n t a l u n c e r t a i n t i e s i s p a r t i a l l y due t o t h e h i g h e r u n c e r t a i n t i e s o f i n d i v i d u a l d a t a p o i n t o f the weakly paramagnetic sample. U s i n g the average exchange i n t e g r a l J f o r K 2Ag(SC> 3F) 4, the e x p e r i m e n t a l magnetic moments ar e p l o t t e d a g a i n s t k T / J on t o p o f the t h e o r e t i c a l p l o t o b t a i n e d from t h e t a b u l a t e d 19 3 v a l u e s , as shown i n F i g u r e 15. A l t h o u g h the d e v i a t i o n from t h e t h e o r e t i c a l p l o t i s s m a l l and w i t h i n the e r r o r l i m i t s e x c e p t a t the l o w e r temperature l i m i t o f measurement, t h e g e n e r a l c u r v a t u r e and c o n t o u r o f the two p l o t s do not c o r r e s p o n d w i t h each o t h e r . Hence i t appears t h a t no d e f i n i t e c o n c l u s i o n can be o b t a i n e d on the d e t a i l s o f the a n t i f e r r o m a g n e t i s m o f A g 3 ( S 0 3 F ) 4 and K 2 A g ( S 0 3 F ) 4 t h r o u g h the above prodedure. (c) ESR S p e c t r a No ESR s i g n a l was o b s e r v e d a t room temperature f o r the complexes Ag 3(SC> 3F) 4 and K 2 A g ( S 0 3 F ) 4 . A t l i q u i d n i t r o g e n t e m p e r a t u r e , o n l y broad s i n g l e l i n e s p e c t r a were r e c o r d e d . The g - v a l u e s o b t a i n e d were 2.140 and 2.173 f o r A g 3 ( S 0 3 F ) 4 and K 2Ag(SC> 3F) 4 r e s p e c t i v e l y . S i m i l a r l y , the a n t i f e r r o m a g n e t i c s i l v e r ( I I ) b i s n i c o t i n a t e complex a l s o g i v e s a broad resonance 144 c e n t e r e d a t g = 2.08 i n the ESR spectrum FIGURE 15 146 147 (d) O x i d a t i o n S t a t e D e t e r m i n a t i o n and T h e r m a l D e c o m p o s i t i o n o f A g 3 ( S 0 3 P ) 4 U s i n g t h e same method as employed f o r A g ( S 0 3 F ) 2 , 1.140 g (1.584 mmol) o f A g 3 ( S 0 3 F ) 4 was f o u n d t o g i v e 0.338 mmole o f 2-and consumed 0.1182 mmole o f S 2 0 3 i n t h e i o d o m e t r i c t i t r a t i o n . 2 + The amount o f Ag p r e s e n t i n t h e sample w o u l d be 1.52 mmole and t h e a v e r a g e o x i d a t i o n s t a t e p e r mole o f s i l v e r i n t h e sample w o u l d be 1.32. T h e r m a l d e c o m p o s i t i o n o f 1.74 g (2.42 mmol) o f A g 3 ( S 0 3 F ) 4 u n d e r vacuum a t 210 °C gave a b r o w n i s h gas w h i c h c o n d e n s e d t o a w h i t e s o l i d by c o o l i n g w i t h l i q u i d n i t r o g e n . The gas phase IR i d e n t i f i e d t h e 0.20 g o f v o l a t i l e m a t e r i a l a s S o 0 , F „ J 2 6 2 (1.01 mmol). I f t h e t h e r m a l d e c o m p o s i t i o n c a n be r e p r e s e n t e d by: 210°C , A g 2 [ A g ( S 0 3 F ) 4 ] 3 A g ( S 0 3 F ) + 2 S 2 0 6 F 2 (3.15) The e x p e c t e d amount o f S 2 0 g F 2 r e l e a s e d w o u l d be 0.24 g (1.21 mmol) w h i l e 1.50 g o f A g ( S 0 3 F ) w o u l d be t h e n o n - v o l a t i l e r e s i d u e . The a c t u a l g r e y i s h s o l i d r e s i d u e w e i g h e d 1.54 g (7.44 mmol) and was i d e n t i f i e d t o be a r a t h e r impure A g S 0 3 F by i t s i n f r a r e d s p e c t r u m . T r i s i l v e r t e t r a k i s f l u o r o s u l f a t e i s t h e r m a l l y s t a b l e up t o 170 °C u n d e r one a t m o s p h e r e o f d r y n i t r o g e n and decomposes to g i v e S 2 0 g F 2 and AgSO^F on f u r t h e r h e a t i n g . The t h e r m a l s t a b i l i t y o f K 2 A g ( S 0 3 F ) 4 i s s l i g h t l y h i g h e r t h a n t h a t o f A g ( S 0 3 F ) 4 and d i d n o t m e l t w i t h d e c o m p o s i t i o n below 195 °C. F o r m a t i o n o f S2 (- ,g F2 w a s a g a i n d e t e c t e d by the gas e v o l u t i o n and by the gas phase IR spectrum. E. S I L V E R ( I I ) HEXAKIS(FLUOROSULFATO)METALLATE(IV) 1. I n t r o d u c t i o n The a n a l o g y between f l u o r i d e and f l u o r o s u l f a t e d e r i v a t i v e s o f d i v a l e n t s i l v e r can be extended t o c a t i o n i c complexes. W i t h a d i p o s i t i v e c a t i o n i n Ag(SC> 3F) 2, d o n o r - a c c e p t o r type complex f o r m a t i o n w i t h a t e t r a v a l e n t m e t a l f l u o r o s u l f a t e appears f e a s i b l e . As numerous examples o f Group IV A, B and Group V I I I m e t a l s a r e known t o form M 2(M I VXg) o r M I I ( M I V X g ) complexes. I n p a r t i c u l a r , the analogous t e r n a r y f l u o r i d e complexes o f s i l v e r ( I I ) have been s y n t h e s i z e d as the complexes A g I I ( M I V F , ) 6 where M I V = Ge, Sn, Pb, T i , Zr, Hf, Pd, P t 1 5 1 . F u r t h e r m o r e , 42 the h e x a k i s f l u o r o s u l f a t o complexes o f t i n ( I V ) and more 196 r e c e n t l y p l a t i n u m (IV) such as K_ [Sn (SO..F) c ] and Ba [Pt (SO_,F) , 2. J O j b have been s y n t h e s i z e d . T h e i r v i b r a t i o n a l s p e c t r a s h o u l d h e l p i n c h a r a c t e r i z i n g t h e c o r r e s p o n d i n g s i l v e r complexes. I n 149 119 a d d i t i o n , Sn Mossbauer S p e c t r o s c o p y i s a v a i l a b l e f o r s t u d y i n g t h e t i n complex. Hence the s i l v e r ( I I ) f l u o r o s u l f a t e complexes o f p l a t i n u m ( I V ) and t i n ( I V ) were s y n t h e s i z e d and d e s c r i b e d i n the f o l l o w i n g s e c t i o n . 2. Syntheses and E l e m e n t a l A n a l y s e s (a) A g P t ( S 0 3 F ) 6 71 A s o l u t i o n o f Pt(SC> 3F) 4 i n HSO^F was c o n v e n i e n t l y o b t a i n e d by the o x i d a t i o n o f p l a t i n u m m e t a l powder by S_0,F_ 2 6 2 i n HS0 3F a t 100 °C 1 9 6 . such a s o l u t i o n p r e p a r e d from 0.253 g o f p l a t i n u m powder i n a o n e - p i e c e pyrex r e a c t o r was then added i n the drybox t o an e q u i m o l a r s u s p e n s i o n o f A g ( S 0 3 F ) 2 i n a 1:1 by volume m i x t u r e o f S~GvF_ and HSO..F. The Ag(SO-,F)„ z o / 3 3 2 s u s p e n s i o n was p r e p a r e d s e p a r a t e l y from the r e a c t i o n o f 0.140 g o f s i l v e r powder w i t h a S~0,F_ s o l u t i o n i n HS0 oF. z 6 z 3 The r e s u l t i n g m i x t u r e was s t i r r e d a t room tem p e r a t u r e f o r one day. S u b s e q u e n t l y S„0,F„ was f i r s t d i s t i l l e d o f f i n z b z vacuo, then the l i g h t green p r e c i p i t a t e was i s o l a t e d by vacuum f i l t r a t i o n . Remaining t r a c e s o f v o l a t i l e m a t e r i a l s were removed i n vacuo. A homogeneous l i g h t green powder [1.050 g, 1.194 mmol o f A g P t ( S 0 3 F ) g ] was o b t a i n e d . E l e m e n t a l a n a l y s i s , c a l c u l a t e d f o r A g P t ( S 0 3 F ) 6 : %Ag, 12.02; % P t , 21.74; %F, 12.70. Found: %Ag, 12.30; % P t , 21.52; %F, 12.89. 150 S i l v e r ( I I ) h e x a k i s ( f l u o r o s u l f a t o ) p l a t i n a t e ( I V ) was found to be very hygroscopic and t h e r m a l l y s t a b l e to 110 °C. o Between 110 and 180 C, the m a t e r i a l turned r e v e r s i b l y brown and decomposed on f u r t h e r h e a t i n g to a red orange s o l i d . A l t e r n a t i v e s y n t h e t i c methods such as o x i d i z i n g a s t o i -c h i o m e t r i c mixture of s i l v e r and platinum metal; a d d i t i o n of s i l v e r metal to a s o l u t i o n of Pt(SO-.F). i n a mixture of S„0,F„ 3 4 2 6 2 and HSO^F or platinum metal to a suspension of Aq(SO^F)^ i n ^ 2 ° 6 F 2 ~ ~ H S ° 3 F ' "^""^  n o t r e s u l t i n a homogeneous product. Dark brown or black p a r t i c l e s were mixed-in w i t h the l i g h t green product. These were most l i k e l y due to c o a t i n g of metal s u r f a c e s t h a t prevented f u r t h e r r e a c t i o n s . (b) A g S n ( S 0 3 F ) 6 M e t a l l i c t i n (0.257 g) was r e a c t e d w i t h about 10 ml of a 2:1 mixture by volume of HS0 oF and S„O rF„ i n a one-part pyrex j Z 6 Z r e a c t o r a t room temperature f o r one day. To the r e s u l t i n g milky white suspension, the s t o c h i o m e t r i c amount, 0.233 g of s i l v e r powder was added i n s i d e the drybox. The mixture was s t i r r e d at room temperature o v e r n i g h t . A homogeneous green s o l i d was formed. Removal of a l l v o l a t i l e m a t e r i a l i n vacuum y i e l d e d 1.773 g of a hygroscopic green powder compared to 1.776 g expected f o r AgSn(SO^F)^. Elemental a n a l y s i s , c a l c u l a t e d : %Ag, 13.14; %Sn, 14.46; %F, 13.89. Found: %Ag, 14.27; %Sn, 14.56; %F, 14.03. 151 S i l v e r ( I I ) h e x a k i s ( f l u o r o s u l f a t o ) s t a n n a t e ( I V ) was found t o m e l t above 170 °C w i t h d e c o m p o s i t i o n t o a w h i t e s o l i d and brown gas which condensed t o a c o l o r l e s s l i q u i d , judged t o be S nO,F_. 2. 6 2 3. C h a r a c t e r i z a t i o n s (a) V i b r a t i o n a l S p e c t r a The r e l a t i v e l y l i g h t green c o l o r o f the p l a t i n u m and t i n complexes s y n t h e s i z e d above a l l o w e d the r e c o r d i n g o f e x c e l l e n t Raman s p e c t r a . The Raman spectrum o f A g P t ( S 0 3 F ) g i s shown i n F i g u r e 16 as an example. I n a d d i t i o n , i n f r a r e d s p e c t r a o f neat sample powders between B a F 2 and KRS-5 p l a t e s were o b t a i n e d . The v i b r a t i o n a l band maxima o f AgPt (S0 oF) ,_ and A g S n ( S 0 o F ) , J b 5 b are l i s t e d i n Table 24 a l o n g w i t h t h o s e o f some r e l a t e d compounds. Assignment f o r the v i b r a t i o n a l bands becomes v e r y d i f f i c u l t f o r the complexes o f the type Ag^M" 1^ (SO..F) , where M I V = P t J b o r Sn. Only an approximate d e s c r i p t i o n o f the SO^F group v i b r a -t i o n i s p o s s i b l e , because p r o l i f e r a t i o n o f bands due t o s l i g h t n o n - e q u i v a l e n c e or v i b r a t i o n a l c o u p l i n g i s e x p e c t e d . The o v e r a l l band shapes f o r the two complexes are v e r y s i m i l a r . When the s p e c t r a are compared to those o f analogous complexes, 196 4 2 BaPt (SO-.F) and K„Sn(SO-F), , as shown i n Table 24, bands -J b z 5 b a t ^ 1400, ^ 1250 and ^ 1000 cm 1 can be i n t e r p r e t e d as b e i n g due t o monodentate OSO^F groups l i n k e d t o p l a t i n u m o r t i n ; 152 FIGURE 16 The Raman Spectrum of Ag P t ( S 0 3 F ) 6 from 100 to 1500 cm-' TABLE 24 VIBRATIONAL SPECTRA (cm ) OF AgPt (SO-.F) _ , AgSn (SO-.F) , , AND RELATED COMPOUNDS H A g P t ( S ° 3 F ) 6 B a [ P t ( S 0 3 F ) 6 ] A g 5 n ( S ° 3 F ) 6 K 2[Sn(SO3F) ] b „ T„c T„d Raman IR KRS-5 p l a t e s Raman Raman IR IR 1406 m 1410 vs 1380 m 1380 s, sh 1249 vs 1215 v s , b VL220 m, sh 1148 v s , b 1209 mw 1080 w 1125 m 1030 w, sh 1048 ms 968 v s , b 1017 mw 925 s 962 w 850 m, sh ^930 vw 830 s 850 w 760 vw ^820 w 738 vw 629 vs 660 s 589 mw 630 mw 549 mw 590 s 520 mw 550 s 443 s 520 vw, sh 480 w 468 m, sh 273 s 452 305 s s 295 m, sh 1410 vw 1412 ms 1397 msh 1404 s 1386 s 1398 s, sh 1258 vs 1263 mw 1218 ms 1192 w 1033 s 1120 vs 1012 ms 1013 ms %950 vw 9 8 0 vw, sh 857 ms 850 m 838 w 820 w, sh 629 vs 633 ms, sh 583 w 620 ms 549 m 590 s 460 s 560 ms 422 w, sh 523 mw 411 ms 434 s 283 s 413 ms 210 ms 278 ms 178 m 212 s 158 m 146 mw 135 mw 1425 s, sh 1380 s, b 1395 vs , b 1220 s, b 1227 s 1190 s, b 1170 vs , b 990 s, b 1040 s 820 s, sh 1010 s, sh 810 s, b 984 s, b 620 s 865 s, sh 571 m 825 s, b 550 s 640 s, b 430 m 625 s, sh 590 s 555 s 452 m, sh 448 s 3. b e See Appendix A f o r a b b r e v i a t i o n s . Reference 196. Composite spectrum o b t a i n e d on s o l i d s between B'aF2 and KRS-5 windows. ^Reference 42. 154 a d d i t i o n a l S—0 s t r e t c h i n g v i b r a t i o n s a t ^ 1150 and ^ 1040 c m - 1 a r e o b s e r v e d f o r t h e s i l v e r ( I I ) c o m p l e x e s . Bands i n t h i s r e g i o n a r e b e s t a s s i g n e d t o b i d e n t a t e f l u o r o s u l f a t e g r o u p s , and t h e r e a s o n f o r t h e i r a p p e a r a n c e must be s e e n i n t h e s t r o n g 2 + p o l a r i z i n g e f f e c t o f t h e Ag i o n . The o c c u r r e n c e o f b o t h mono-and b i d e n t a t e SO^F g r o u p s i n t h e s i l v e r ( I I ) c o m p l e x e s i n d i c a t e s t h a t n o t a l l t h e f l u o r o -s u l f a t e g r o u p s a r e c o o r d i n a t e d t o t h e M I V i o n ; some a p p e a r I I IV bonded t o b o t h Ag and M . I n any e v e n t , t h e s e two s i l v e r ( I I ) c o m p l e x e s a r e b e s t r e g a r d e d a s t e r n a r y f l u o r o s u l f a t e s w i t h t h e f l u o r o s u l f a t e g r o u p s c o o r d i n a t e d t o b o t h m e t a l s r a t h e r t h a n i o n i c c o m p l e x e s o f t h e t y p e A g 1 1 [ M I V ( S O - . F ) s u c h as t h e 3 b example o f K„ [Sn (SO-.F)• , ] . 2 6 b (b) E l e c t r o n i c S p e c t r a The d i f f u s e r e f l e c t a n c e and m u l l s p e c t r a were o b t a i n e d f o r t h e c o m p l e x e s AgPt(SO-.F) and A g S n ( S O - F ) , . R e s o l u t i o n i n i b i b g e n e r a l was r a t h e r p o o r . C u r v e - r e s o l v i n g t e c h n i q u e s have been u s e d t o e x t r a c t l i g a n d f i e l d p a r a m e t e r s f r o m t h e f l u o r o -152 153 a n a l o g u e s o f t h e s e c o m p l e x e s ' , r e s u l t i n g i n a 10 Dq value of 11,700 cm f o r AgSnF^. However, where o n l y a b r o a d a s y m m e t r i c a l band i s e n c o u n t e r e d , as i n t h e c a s e o f AgSn(SO-,F)^ 3 6 shown i n F i g u r e 17, r a t h e r t h a n t h e p r e s e n c e o f s h o u l d e r s , d a t a o b t a i n e d by c u r v e f i t t i n g methods may n o t be v e r y r e l i a b l e 155 FIGURE 17 350 400 450 500 550 600 650 700 750 Wavelength [nm] 156 A l t h o u g h some s i m i l a r i t y i s f o u n d f o r t h e e l e c t r o n i c s p e c t r a shown i n T a b l e 25, u n l i k e AgSnF^, no a s s i g n m e n t can be r e a d i l y made t o t h e b r o a d bands o f A g P t (SO-,F) , and AgSn ( S 0 o F ) , . J b J b But i n c o m p a r i s o n t o t h e s p e c t r u m o f A g C S O ^ F ^ , t h e d—d t r a n -s i t i o n s seem t o o c c u r a t l o w e r w a v e l e n g t h s , w i t h t h e band c e n t e r s h i f t e d f r o m 22,000 t o ^ 16,000 cm ^. Weakening o f t h e l i g a n d f i e l d a r o u n d s i l v e r when t h e SO^F g r o u p s a r e c o o r d i n a t e d 2+ 4+ 2+ t o b o t h Ag and Sn o r P t may be r e s p o n s i b l e f o r s u c h a r e d u c t i o n i n l i g a n d f i e l d s p l i t t i n g . (c) M a g n e t i c S u s c e p t i b i l i t y Measurements B o t h A g P t ( S 0 3 F ) g and AgSnCSO^F)^ were f o u n d t o obey C u r i e -W e i s s law between ^ 300 and ^ 80 K w i t h W e i s s c o n s t a n t s o f - 0.7 c o r and - 5.8 K r e s p e c t i v e l y . The p l o t o f l / x M v e r s u s t e m p e r a t u r e i s i l l u s t r a t e d i n F i g u r e 18 w h i l e t h e m a g n e t i c s u s c e p t i b i l i t y d a t a i s l i s t e d i n T a b l e 26. S u b s t a n t i a l l y h i g h e r Ve^^ v a l u e s a r e f o u n d f o r t h e two c o m p l e x e s , where t h e room t e m p e r a t u r e m a g n e t i c moments a r e 1.94 and 2.18 y„ f o r AgSn(SO- )F), a n d ' A g P t ( S O , F ) , r e s p e c t i v e l y . B j b J b A l t h o u g h B a P t C S O ^ F ) ^ i s d i a m a g n e t i c c o n s i s t a n t w i t h d^ s p i n - p a i r e d c o n f i g u r a t i o n , s m a l l c o n t r i b u t i o n s f r o m P t I V t o t h e p a r a m a g n e t i s m o f A g P t ( S O ^ F ) ^ c a n n o t be r u l e d o u t e n t i r e l y . S u c h c o n t r i b u t i o n c o u l d r e s u l t f r o m t e m p e r a t u r e i n d e p e n d e n t 157 TABLE 25 ELECTRONIC SPECTRA OF A g P t ( S O , F ) , , A g S n ( S 0 o F ) ^ AND RELATED COMPOUNDS J b 5 b -1 3 Compound Type o f S p e c t r u m ^max ^ c m x 10 ) R e f e r e n c e A g P t ( S 0 3 F ) g D i f f . r e f l . ^25.6, 16.0 T h i s work A g P t ( S 0 3 F ) 6 M u l l ^25.0 T h i s work AgSn(SO F) M u l l M 0 . 0 , 22.5 sh T h i s work 3 16.0, 12.5 A g S n ( S O n F ) ^ D i f f . r e f l . >28.5, 16.1 T h i s work 3 6 AgSnF, D i f f . r e f l . 15.3, 13.7 153 6 11.7, 8.05 158 FIGURE 18 Magnetic susceptibilities of 6 0 0 , AgPt(SQ.F)cond AgSn(SQ& 500 4004 J X corr m 300H 200-100 A 'AgSn(Sg 3F) 6 C = 0.469+ 0.004 8 = -5.8+ \ B ° K /i. e f f= 1.94+0.02 B.M / 0 extrapolated 100 oAqR(S03F)6 C = 0597 + 0.005 B = -0.7+ i.6°K /* f f= 2.19+0.02 B.M. ~ \ — r 200 300 159 TABLE 2 6 MAGNETIC SUSCEPTIBILITIES AND MAGNETIC MOMENTS OF A g P t ( S 0 3 F ) 6 and A g S n ( S 0 3 F ) 6 A g P t ( S 0 3 F ) 6 AgSn(S0 3F) c o r a c o r a T XM y e f f T XM u e f f (K) (10^ cm mol ^) <v (K) (10^ cm^mol 1 ) (y B> 301 1994 2.19 301 1539 1. 94 275 2168 2.19 275 1676 1 .94 249 2381 2.18 250 1827 1.93 225 2633 2.18 225 2026 1.94 200 2980 2.18 203 2256 1 .94 176 3347 2.18 175 2573 1 .93 151 3895 2.17 153 2939 1.93 128 4570 2.17 152 2943 1.93 107 5633 2. 20 128 3441 1.92 80 7602 2. 21 109 4187 1 .96 79 5704 1.96 a M a g n e t i c moments a r e c a l c u l a t e d by u s i n g t h e C u r i e - W e i s s law: u e f f = 2.828[ X^° r(T - 0 ) ] 1 / 2 p a r a m a g n e t i s m ( T . I . P . ) . S i m i l a r l y , t h e t e r n a r y f l u o r i d e s o f t h e t y p e A g M I V F g w i t h M = Sn, Pb, Pd a r e m a g n e t i c a l l y d i l u t e and show room t e m p e r a t u r e moments i n t h e r a n g e o f 1.92 -1.99 y D 1 ^ 1 , b u t f o r A g T i F c , a r a t h e r h i g h t e m p e r a t u r e i n d e -151 p e n d e n t v a l u e o f ^ 2.21 y_ i s f o u n d between 296 and 100 K a A l r e a d y m e n t i o n e d when d i s c u s s i n g t h e e l e c t r o n i c s p e c t r a , b o t h e l e c t r o n i c d e l o c a l i z a t i o n and a d e c r e a s e i n 10 Dq, as i n d i c a t e d by s h i f t s i n d—d bands, seem t o c a u s e an i n c r e a s e i n y e f f i n t h e s e r i e s [Ag ( b i p y ) 2 ] ( S 0 3 F ) 2 , Ag(SC> 3F) 2 and A g M I V ( S 0 o F ) , w i t h M I V = Sn, P t . 2 , 2 ' - b i p y r i d i n e i s e x p e c t e d t o o b c r e a t e a much s t r o n g e r l i g a n d f i e l d t h a n S 0 3 F , b u t t h e d i f f e r -e n c e d i s p l a y e d by t h e f l u o r o s u l f a t e g r o u p d e p e n d i n g on i t s 2+ 2+ 4 + 4 + c o o r d i n a t i o n t o Ag o n l y o r t o b o t h Ag and Sn o r P t i s w o r t h n o t i n g . (d) ESR S p e c t r a L i k e t h e c o r r e s p o n d i n g t e r n a r y f l u o r i d e s , t h e two f l u o r o -s u l f a t e c o m p l e x e s A g P t (SO-.F) and AgSn (SO-.F) , gave a n i s o t r o p i c J b j b s p e c t r a w i t h c l e a r l y r e s o l v e d g|| and g ^ components a t b o t h 295 and 80 K. The g - v a l u e s a l o n g w i t h t h e c a l c u l a t e d m a g n e t i c moments u s i n g e q u a t i o n (3.9) a r e l i s t e d i n T a b l e 27. A g a i n good a g r e e m e n t between c a l c u l a t e d m a g n e t i c moments and t h e e x p e r i m e n t a l v a l u e s i s f o u n d e x c e p t f o r AgPt (SO-.F) where J b b u l k m a g n e t i c s u s c e p t i b i l i t i e s i n d i c a t e d a h i g h e r m a g n e t i c TABLE 27 ESR DATA OF A g P t ( S 0 3 F ) 6 , A g S n ( S 0 3 F ) 6 AND RELATED COMPOUNDS Compound T,K y e f f , VB Ref. A g P t ( S 0 3 F ) 6 (s) A g P t ( S 0 3 F ) 6 (s) A g S n ( S 0 3 F ) 6 (s) A g S n ( S 0 3 F ) 6 (s) AgSnF, (s) b AgHfFg (s) 295 80 295 80 80 80 2.266 2. 258 2.255 2. 245 2.315 2. 275 2.494 2.486 2.481 2.480 2.610 2. 519 2.143 2.134 2.134 2.117 > 2.153 2.143 1 . 96 1 .96 1.95 1.94 2. 00 1.97 T h i s work T h i s work T h i s work T h i s work 152 152 a 1/2 C a l c u l a t e d from the e x p r e s s i o n : ^ e f f = g [S(S + 1)] moment. The d i s c r e p a n c y i s c o n s i s t e n t w i t h s m a l l paramagnetic c o n t r i b u t i o n s from t h e p l a t i n u m c o n t a i n i n g m o i e t y . (e) i i :'Sn Mossbauer Spectrum o f AgSn(S0 oF) 3 6 As the s p a c i n g s o f t h e n u c l e a r energy l e v e l s depend on the e l e c t r o n d i s t r i b u t i o n about the n u c l e u s , e s p e c i a l l y the v a l e n c e e l e c t r o n s , t h e energy d i f f e r e n c e between t h e ground and the f i r s t e x c i t e d s t a t e o f the sour c e and a b s o r b e r i n a Mossbauer ex p e r i m e n t w i l l be d i f f e r e n t . Resonant r e a b s o r p t i o n by the a b s o r b e r o f the y r a y e m i t t e d by the source can be a c h i e v e d by moving t h e source r e l a t i v e t o the a b s o r b e r t o modulate the f r e q u e n c y o f t h e y e m i s s i o n by t h e d o p p l e r e f f e c t The isomer s h i f t , 6, i s the measure o f t h e source v e l o c i t y needed t o b r i n g t h e sample a b s o r b e r i n t o resonance w i t h t h e so u r c e and depends on t h e r a d i u s o f the n u c l e u s and the s e l e c -t r o n d e n s i t y a t t h e nucleus'. An i n c r e a s e i n 6 c o r r e s p o n d s t o an i n c r e a s e i n s e l e c t r o n d e n s i t y a t the a b s o r b i n g t i n n u c l e u s V a r i a t i o n s i n isomer s h i f t a r e r e p o r t e d r e l a t i v e t o SnC^, c u s t o m a r i l y used as t h e r e f e r e n c e and s e t a t 0 mm/sec. 119 The f i r s t e x c i t e d n u c l e a r s t a t e o f Sn has a n u c l e a r moment, I = 3/2, so t h a t t i n compounds w i l l have a q u a d r u p o l e s p l i t t i n g , A, whenever an imbalance o f charge around the t i n n u c l e u s causes an e l e c t r i c f i e l d g r a d i e n t , q. The s i z e o f q depends m a i n l y on t h e imbalance i n the d i s t r i b u t i o n o f t h e 163 v a l e n c e e l e c t r o n s on t i n , [q , ] , w h i c h i s c a u s e d by t h e va i d i f f e r e n t o r i e n t a t i o n o f l i g a n d s a r o u n d t i n and t h e i m b a l a n c e i n t h e p o l a r i t y o f t h e t i n - l o g a n d a b o n d s . The a bond p o l a r i -* 44 t i e s c a n be e s t i m a t e d by t h e T a f t i n d u c t i v e c o n s t a n t s , a , m e n t i o n e d i n S e c t i o n I B. To a much l e s s e r e x t e n t , q a l s o depends on t h e c h a r g e s on t h e atoms s u r r o u n d i n g t i n , [q, . ] , l a t w h i c h has a s m a l l c a n c e l l i n g e f f e c t on [q n ] . F o r compounds va i w i t h t h e same geometr y , t h e bond p o l a r i t y d i f f e r e n c e s between t h e l i g a n d s i n c r e a s e s w i t h A. 119 The Sn M o s s b a u e r s p e c t r u m o f AgSn (SO-.F) a t 80 K shows J b a q u a d r u p o l e s p l i t t i n g o f 0.5 mm/sec. P r e v i o u s l y s t u d i e d compounds c o n t a i n i n g t h e S n ( S 0 o F ) , g r o u p a s i n M^[Sn(SO-F),] J b 2 j b I + • + + + 4 2 + + 1 9 7 where M = C 1 0 2 , K , Cs , NO o r I ( S 0 3 F ) 2 , B r ( S 0 3 F ) 2 , a l l gave s i n g l e l i n e M o ssbauer s p e c t r a . The o b s e r v e d q u a d r u p o l e s p l i t t i n g f o r A g P t ( S 0 3 F ) g i s l e s s t h a n t h a t o f t h e p o l y m e r i c S n ( S 0 3 F ) 4 where a v a l u e o f 1.34 mm/sec i s f o u n d . The i s o m e r s h i f t f o r A g S n ( S 0 3 F ) g i s - 0.211 mm/sec r e l a t i v e t o S n 0 2 , s l i g h t l y h i g h e r t h a n p r e v i o u s l y r e p o r t e d v a l u e s o f between - 0.23 and - 0.30 mm/sec f o r M 1 [ S n ( S O _ F ) ] compounds 4 2 ' 1 9 7 / 2 3 b b u t t h e d i f f e r e n c e i s p r o b a b l y n o t s i g n i f i c a n t i n v i e w o f t h e a c c u r a c y l i m i t o f ± 0.03 mm/sec. The s m a l l q u a d r u p o l e s p l i t t i n g f o r A g S n ( S 0 o F ) . most 3 b l i k e l y r e s u l t s f r o m t h e u n e q u a l c o n t r i b u t i o n o f t h e s i x f l u o r o -s u l f a t e g r o u p s a r o u n d e a c h t i n atom, i n c o n t r a s t t o t h e r e g u l a r 2-SnO, c o o r d i n a t i o n o c t a h e d r a l i n t h e o t h e r Sn(SO-F),, b 3 b 4 2 192 s p e c i e s ' . T h i s d i f f e r e n c e i n i n t e r a c t i o n between d i f f e r e n t f l u o r o s u l f a t e g r o u p s i s c a u s e d by t h e b o n d i n g o f some SO^F g r o u p s t o t i n ( I V ) o n l y w i t h o t h e r s s h a r i n g between b o t h t i n ( I V ) and t h e s t r o n g l y p o l a r i z i n g s i l v e r ( I I ) i o n , t h u s w e a k e n i n g t h e c o n t r i b u t i o n t o t h e t i n ( I V ) n u c l e u s . Such a r e s u l t i s c o n s i s t e n t w i t h t h e o b s e r v e d t r e n d o f i n c r e a s i n g m a g n e t i c moments g o i n g f r o m [ A g ( b i p y ) 2 ] ( S O ^ F ) 2 and A g M I V ( S 0 3 F ) as n o t e d p r e v i o u s l y . F. REACTIONS OF A g ( S 0 3 F ) 2 1. R e a c t i o n o f A g ( S 0 3 F ) 2 W i t h E l e m e n t a l F l u o r i n e (a) I n t r o d u c t i o n S i l v e r ( I I ) f l u o r i d e a c t s a s a c a t a l y s t i n t h e f l u o r i -n a t i o n o f s u l f u r t r i o x i d e t o g i v e b i s f l u o r o s u l f u r y l p e r o x i d e , S 2 ° 6 F 2 a n < ^ f l u o r i n e f l u o r o s u l f a t e , F O S 0 2 F a c c o r d i n g t o : + 1 6 0 ° C 164 2 S 0 o + F„ ^ S „ O r F „ (3.16) 3 z , _ z b z A g F 0 + 220 °C fi3 and SO + F *• FOSO F l b J (3.17) A g F 2 165 Even though t h e d e t a i l e d mechanism o f such a c a t a l y t i c f l u o r i n a t i o n i s not known, the i n t e r m e d i a t e f o r m a t i o n of AqiSO^F)^ o r perhaps FAgSO^F i s l i k e l y . The s u c c e s s f u l i n s e r t i o n o f SO^ i n t o A g F 2 t o g i v e Ag(SC> 3F) 2 d e s c r i b e d i n S e c t i o n B2(c) o f t h i s c h a p t e r i s c o n s i s t e n t w i t h t h i s v i e w . I t seemed t h e r e f o r e a p p r o p r i a t e to c a r r y o ut the r e a c t i o n o f A g ( S 0 3 F ) 2 w i t h e l e m e n t a l f l u o r i n e t o f u r t h e r i n v e s t i g a t e such a proposed mechanism. (b) C o n v e r s i o n o f A g t S O ^ F ^ i n t o A g F 2 A t w o - p a r t monel m e t a l r e a c t o r ( S e c t i o n I I ) c o n t a i n i n g 0.8 g o f Ag(SC» 3F) 2 was f i l l e d w i t h r e a g e n t grade f l u o r i n e t o a t m o s p h e r i c p r e s s u r e a t 25 °C. A l s o c onnected t o the m e t a l vacuum l i n e was an eva c u a t e d one p a r t p y rex t r a p c o o l e d under l i q u i d n i t r o g e n . The p r o g r e s s o f t h e r e a c t i o n was m o n i t o r e d by w e i g h i n g t h e m e t a l r e a c t o r a f t e r f i r s t removing the f l u o r i n e by pumping on the r e a c t o r c o o l e d by l i q u i d n i t r o g e n and then c o n d e n s i n g t h e l e s s v o l a t i l e m a t e r i a l s i n t o the p y r e x t r a p . No d e t e c t a b l e r e a c t i o n o c c u r e d a f t e r h e a t i n g the r e a c t i o n m i x t u r e a t 55 °C f o r one hour. R a i s i n g t h e r e a c t i o n t emperature t o 100 °C f o r one hour gave no n o t i c a b l e r e a c t i o n . However, a f t e r h e a t i n g t h e r e a c t i o n m i x t u r e a t 130 °C f o r two hours and removal o f a l l e x c e s s f l u o r i n e , v o l a t i l e m a t e r i a l s condensed i n the pyrex t r a p as w h i t e s o l i d . B oth s 2 ° g F 2 a n d FOS0 2F 166 a l o n g w i t h t r a c e s o f S i F ^ were i d e n t i f i e d by the gas phase IR spectrum o f the v o l a t i l e m a t e r i a l . The s o l i d r e s i d u e had no IR bands due t o SO^F groups, i n f a c t , no a b s o r p t i o n was d e t e c t e d down t o 800cm , t h e l i m i t o f t r a n s p a r e n c y o f the B a F 2 p l a t e s used. T h i s dark brown-black r e s i d u e showed i t s o x i d i z i n g a b i l i t y by o x i d i z i n g i o d i d e t o i o d i n e . On h y d r o l y s i s , no s u l f a t e i o n was d e t e c t e d when t e s t e d w i t h aqueous barium n i t r a t e . The s i l v e r a n a l y s i s i n d i c a t e s the r e s i d u e t o be AgF,,: c a l c u l a t e d , %Ag, 73.95 f o r A g F 2 ; found: %Ag, 74.09. (c) D i s c u s s i o n The r e s u l t o f the above exp e r i m e n t and t h e i n s e r t i o n o f SO^ i n t o A g F 2 , r e p r e s e n t e d by e q u a t i o n (3.18), (3.19) and (3.20), f a v o u r s A g ( S 0 3 F ) 2 as an i n t e r m e d i a t e i n the s y n t h e s i s o f S 2 ° 6 F 2 a n d FSO^F shown by e q u a t i o n s (3.16) and (3.17). + 50 °C A g F 2 + 2 S 0 3 *- A g ( S 0 3 F ) 2 (3.18) + 130 °C A g ( S 0 3 F ) 2 + F 2 — A g F 2 + S 2 O g F 2 (3.19) + 130 °C A g ( S 0 3 F ) 2 + 2 F 2 A g F 2 + 2 FOS0 2F (3.20) Even though the a c t u a l s y n t h e t i c r e a c t i o n s ( E q u a t i o n 3.16 and 3.17) are c a r r i e d out a t h i g h e r t e m p e r a t u r e , i t seems r e a s o n a b l y t o assume f a s t e r c o n v e r s i o n r a t e s between A g ( S 0 3 F ) 2 and A g F 2 a t h i g h e r t e m p e r a t u r e , based on the o b s e r v e d p y r o l y s i s o f A g ( S 0 3 F ) 2 t o g i v e S 2 O g F 2 and a l s o the d i r e c t f l u o r i n a t i o n o f m e t a l l i c s i l v e r and s i l v e r ( I ) s a l t s t o g i v e s i l v e r ( I I ) d i f l u o r i d e mentioned i n S e c t i o n I I I . A . 2. R e a c t i o n s W i t h Some Other Halogens (a) C h l o r i n e Excess d ry c h l o r i n e ( ^ l g ) s t a n d i n g over ^ 2 ^ 5 ' w a s d i s t i l l e d onto 0.189 g (0.617 mmol) o f A g ( S 0 3 F ) 2 i n a one-p i e c e t h i c k w a l l p y r e x r e a c t o r . On warming t o room temperature the dark brown A g ( S 0 3 F ) 2 t u r n e d g r a d u a l l y t o b l a c k , then g r e y i s h - w h i t e w i t h i n f o u r hours. The low temperature IR spectrum o f the v o l a t i l e m a t e r i a l a t 77 K showed bands due t o 166 C10S0 2F . A f t e r a l l v o l a t i l e s were removed, 0.133 g o f w h i t e s o l i d was l e f t b e h i n d . The e x p e c t e d w e i g h t f o r A g I ( S 0 3 F ) would be 0.128 g (0.617 mmol). The IR spectrum o f a n u j o l m u l l sample o f the w h i t e s o l i d i s i d e n t i c a l t o t h a t of A g I ( S 0 3 F ) l i s t e d i n T a b l e 16. Hence, + 25 °C 2 A g ( S 0 3 F ) 2 + C l 2 (excess) 2 ClOSO^F + 2 AgSO-jF . . . . (3 (b) Bromine I n much the same manner as i n the r e a c t i o n w i t h C l e x c e s s d r y B r 2 was vacuum d i s t i l l e d o n t o AgCSO^F)^ i n a one p a r t p y r e x r e a c t o r . On warming t o room t e m p e r a t u r e , t h e m i x t u r e r e a c t e d , t u r n i n g t h e A g ( S 0 3 F ) 2 t o a non-homogeneous b l a c k and w h i t e m i x t u r e . F u r t h e r r e a c t i o n w i t h more B r 2 r e s u l t e d i n a w h i t e p r e c i p i t a t e i n t h e r e d s u s p e n s i o n . B e f o r e a l l t h e v o l a t i l e m a t e r i a l s c o u l d be removed by vacuum pumping, p a r t o f t h e w h i t e m a t e r i a l t u r n e d b l a c k a g a i n . A low t e m p e r a -t u r e IR s p e c t r u m o f t h e v o l a t i l e s i d e n t i f i e d t h e l e s s v o l a t i l e 198 component t o be BrSO^F I t a p p e a r s t h a t A g ( S 0 3 F ) 2 o x i d i z e d B r 2 t o BrSO^F, i n i t i a l l y i e l d i n g AgSO^F. Due t o i t s h i g h e r v o l a t i l i t y , t h e e x c e s s B r 2 was p r e f e r e n t i a l l y removed by vacuum pumping, l e a v i n g b e h i n d t h e l e s s v o l a t i l e p r o d u c t BrSO^F, w h i c h r e o x i d i z e d p a r t o f t h e AgSO^F t o some A g ( I I ) s p e c i e s , p r e s u m e r a b l y Ag^CSO^F)^. A s i m i l a r r e a c t i o n was c a r r i e d o u t w i t h A g ^ ( S O ^ F ) 4 . a n d e x c e s s B r 2 . I d e n t i c a l r e s u l t was o b t a i n e d . No homogeneous s o l i d p r o d u c t c o u l d be i s o l a t e d due t o t h e above m e n t i o n e d d i f f e r e n c e i n v o l a t i l i t y between B r 2 and BrSO^F. T h i s s y s t e m was f u r t h e r i n v e s t i g a t e d by r e a c t i n g A g ( S 0 3 F ) 2 w i t h a m i x t u r e o f e x c e s s BrSO^F and B r 2 ( ^ 1:1 by v o l u m e ) . I n i t i a l r e a c t i o n was s i m i l a r t o t h a t o f A g ( S 0 3 F ) 2 and B r 2 , a m i x t u r e o f b l a c k and w h i t e p r e c i p i t a t e a p p e a r e d . B u t when t h e v o l a t i l e m a t e r i a l s were s l o w l y d i s t i l l e d o f f w h i l e t h e m i x t u r e was b e i n g s t i r r e d , a homogeneous b l a c k p r e c i p i t a t e r e m a i n e d . 169 T h i s b l a c k s o l i d was i d e n t i f i e d t o be Ag^CSO^F)^ by i t s IR s p e c t r u m and t h e r m a l d e c o m p o s i t i o n . Hence t h e r e s u l t f r o m t h e above r e a c t i o n s p r o v i d e d an i n t e r c o n n e c t i n g r e l a t i o n s h i p between s i l v e r m e t a l , Ag(SC> 3F) 2, Ag^CSO^F)^ and AgSO^F, c o n n e c t e d by t h e r e a g e n t s B r 2 , B r S 0 3 F and S„GvF„. Such a r e l a t i o n s h i p i s i l l u s t r a t e d i n F i g u r e 19. 2 o 2 3. R e a c t i o n s W i t h C h l o r y l F l u o r o s u l f a t e To i n v e s t i g a t e t h e a b i l i t y o f A g ( S 0 3 F ) 2 as a f l u o r o s u l f a t e i o n a c c e p t o r f u r t h e r and p e r h a p s t o h e l p c l e a r i f y t h e s t r u c t u r e o f t h e a n i o n i c c o m p l e x e s A g 2 [Ag (SC>3F) 4 ] and K 2 [Ag (SC>3F) ^ ] , C1C> 2S0 3F was u l t i l i z e d as a d o n o r . C 1 0 2 S 0 3 F r e a d i l y d o n a t e s a f l u o r o s u l f a t e i o n t o a number o f a c c e p t o r s s u c h a s Sn(SC> 3F) 4 t o f o r m t h e complex (C1C> ) Sn (SC> F) , c o n t a i n i n g t h e h e t e r o c a t i o n 2 3 6 Due t o t h e low v o l a t i l i t y o f C 1 0 2 S 0 3 F i n v a c u o , i t was p i p e t t e d ( ^ 2 g ) o n t o 0.640 g (2.01 mmol) o f Ag(SC> 3F) 2 i n a one p a r t p y r e x r e a c t o r i n s i d e t h e d r y b o x . A s o l u t i o n was o b t a i n e d a f t e r t h e r e s u l t i n g m i x t u r e was s t i r r e d a t room t e m p e r a t u r e f o r one day. V o l a t i l e s were t h e n removed by pumping u n d e r vacuum a t room t e m p e r a t u r e f o r one d a y . A b l a c k s o l i d (1.015 g) r e m a i n e d a s compared t o 0.989 g e x p e c t e d f o r ClC> 2Ag (SC>3F) 3 . The sample a p p e a r e d s l i g h t l y wet between t h e 170 FIGURE 19 INTERCONNECTING REACTION SCHEME BETWEEN THE FLUOROSULFATES OF SILVER 171 BaF^ windows and c o n t a i n e d b o t h b i d e n t a t e and monodentate f l u o r o s u l f a t e g r o u p s i n a d d i t i o n t o t h e bands due t o t h e C1C>2 + 198 c a t i o n . F u r t h e r pumping on t h e b l a c k s o l i d a t room temp e r a -t u r e a g a i n r e d u c e d t h e w e i g h t o f t h e sample b u t d a r k brown i m p u r i t i e s s t a r t e d t o a p p e a r . Over a p e r i o d o f one week, t h e sample w e i g h t r e d u c e d t o t h e o r i g i n a l v a l u e o f t h e s t a r t i n g m a t e r i a l w h i l e i t s p h y s i c a l a p p e a r a n c e c o r r e s p o n d e d t o t h e d a r k brown A g ( S 0 3 F ) 2 . Hence i t a p p e a r s t h a t A g ( S 0 3 F ) 2 i s n o t a s t r o n g SO^F i o n a c c e p t o r and g r a d u a l l y l o s e s ClO^SO^F i n vacuum i n a r e v e r s a l o f t h e complex f o r m a t i o n r e a c t i o n . 25 °C C 1 0 2 S 0 3 F + A g ( S 0 3 F ) 2 ^ C 1 0 2 A g ( S 0 3 F ) 3 (3.21) A n o t h e r a t t e m p t was made by a d d i n g S „ O r F „ i n t o t h e m i x t u r e 2. b 2 o f C 1 0 2 S 0 3 F and A g ( S 0 3 F ) 2 t o h o p e f u l l y f u r t h e r o x i d i z e t h e s i l v e r ( I I ) i o n t h u s f o r m i n g a n i o n i c c o m p l e x e s a n a l o g o u s t o Hoppe's M I A g I I I F 4 "*"^8. However on r e m o v i n g t h e v o l a t i l e mate-r i a l , A g ( S 0 3 F ) 2 was a g a i n o b t a i n e d . 4. R e a c t i o n W i t h P y r i d i n e As d e m o n s t r a t e d i n S e c t i o n I I I . C , A g ( S 0 3 F ) 2 can be s t a b l i z e d by n i t r o g e n d o n o r l i g a n d s s u c h a s 2 , 2 ' - b i p y r i d i n e , i t a p p e a r e d a s i m i l a r complex c o u l d be p r e p a r e d u s i n g p y r i d i n e 172 a s t h e l i g a n d and s e r v i n g as t h e s o l v e n t i n t h e r e a c t i o n . As m e n t i o n e d i n S e c t i o n I I I . A . , many p y r i d i n e c o m p l e x e s o f • i l T T ^ u K ^ ^ 122,123,125 s i l v e r ( I I ) have been r e p o r t e d When e x c e s s d r y p y r i d i n e ( ^ 10 ml ) was vacuum d i s t i l l e d o n t o 0.288 g o f A g ( S 0 3 F ) 2 , a d a r k r e d -brown s o l u t i o n was o b t a i n e d a f t e r warming t o room t e m p e r a t u r e . A t t e m p t s t o remove t h e e x c e s s p y r i d i n e i n v a c u o c o m p l e t e l y r e s u l t e d i n a non-homogeneous red-brown and w h i t e s l u s h . I t a p p e a r s t h a t t h e p y r i d i n e was a t t a c k e d by A g f S O ^ F ) ^ and no s i m p l e c o o r d i n a t i o n complex c o u l d be i s o l a t e d . 5. R e a c t i o n W i t h A c e t o n i t r i l e A c e t o n i t r i l e has been f o u n d u s e f u l as t h e s o l v e n t i n s y n t h e s i z i n g [ A g ( b i p y ) 2 ] (SO^F),,. A l t h o u g h CH^CN ca n a l s o s e r v e 2 + as a l i g a n d , t h e Ag i o n s a r e c o o r d i n a t e d by t h e 2 , 2 ' - b i p y r i d i n e l i g a n d s o n l y . I t seemed i n t e r e s t i n g t o i n v e s t i g a t e t h e r e a c t i o n w i t h o u t t h e b i p y r i d y l l i g a n d . Dry CH 3CN ( ^ 10 ml ) was vacuum d i s t i l l e d o n t o 0.289 g o f AgtSO^F),,. S t i r r i n g a t room t e m p e r a t u r e r e s u l t e d i n a d a r k brown s o l u t i o n w i t h s m a l l amounts c o l o r l e s s s o l i d g r a d u a l l y p r e c i p i t a t i n g o u t . Vacuum r e m o v a l o f v o l a t i l e s r e s u l t e d i n a v e r y v i s c o u s d a r k brown l i q u i d , w h i c h t u r n e d i n t o a d a r k brown s l u d g e on warming a t 60 °C w h i l e pumping. W h i t e i m p u r i t i e s began t o a p p e a r on f u r t h e r h e a t i n g and pumping. I t a p p e a r s 173 t h a t t h e s o l u t i o n o f Ag(SC> 3F) 2 i n CH 3CN i s r a t h e r u n s t a b l e and no complex c o u l d be i s o l a t e d . 6. R e a c t i o n W i t h A n t i m o n y P e n t a f l u o r i d e A n t i m o n y p e n t a f l u o r i d e , an e x c e p t i o n a l l y s t r o n g L e w i s a c i d , has f o u n d t h e g r e a t e s t use i n t h e f o r m a t i o n o f h e t e r o -c a t i o n s s u c h as t h e p o l y - i n t e r h a l o g e n c a t i o n s , m a i n l y t h r o u g h i t s s t r o n g a c c e p t o r a b i l i t y v i a f l u o r i d e a b s t r a c t i o n . More r e c e n t l y , SbFj- has been p r o v e n t o be a good f l u o r o s u l f a t e 199 a c c e p t o r , u s e f u l i n s o l v o l y s i s r e a c t i o n s o f ClC^SO-jF , I C 1 2 S 0 3 F 2 0 0 and IBr 2SC> 3F 2 0 0 i n S b F 5 t o g i v e r e s p e c t i v e l y t h e h e t e r o c a t i o n c o n t a i n i n g C l O ^ b ^ ^ , I C l - j S b ^ ^ and IBr.jSb.jF-^ c o m p l e x e s , a l o n g w i t h some a n t i m o n y ( V ) f l u o r i d e - f l u o r o s u l f a t e 201 s u c h as S b 2 F ^ S 0 3 F r e s u l t i n g f r o m t h e f l u o r o s u l f a t e a b s t r a c -t i o n p r o c e s s . The b e h a v i o u r o f A g ( S 0 3 F ) 2 i n SbF^ would be i n t e r e s t i n g i n v i e w o f t h e p o s s i b l e f l u o r o s u l f a t e a b s t r a c t i o n t o f o r m s i l v e r ( I I ) - a n t i m o n y ( V ) d o n o r - a c c e p t o r c o m p l e x e s . E x c e s s p u r i f i e d SbF^ ( % 10 ml ) was vacuum d i s t i l l e d o n t o 1.264 g (4.131 mmol) o f A g ( S 0 3 F ) 2 i n a one p i e c e p y r e x r e a c t o r . On warming g r a d u a l l y t o r o o m . t e m p e r a t u r e , t h e m i x t u r e t u r n e d g r e e n i n i t i a l l y , t h e n c o n t i n u e d t o t u r n w h i t e s l o w l y when c o n t i n u o u s l y s t i r r e d a t room t e m p e r a t u r e o v e r n i g h t . Homogeneous w h i t e s u s p e n d e d p a r t i c l e s were f o u n d i n t h e v i s c o u s l i q u i d 174 SbF 5 . A s m a l l amount of non-condensable gas was d e t e c t e d , assumed t o be oxygen, and s u b s e q u e n t l y pumped o f f . The presence 202 170 of S 0 2 F 2 and S i F 4 i n t h e v o l a t i l e s was i d e n t i f i e d by t h e gas-phase IR spectrum t a k e n between AgCl windows. The i n f r a r e d spectrum of the v i s c o u s l i q u i d between B a F 2 windows showed bands a t 1430, 1125, 1070 and 890 cm" 1 i n a d d i t i o n t o o t h e r s a t 1165 cm 1 and s h o u l d e r a t 1025 c m - 1 . The f i r s t f o u r bands were most l i k e l y due t o S b 2 F g ( S 0 3 F ) when compared t o i t s 201 IR spectrum . Removal of a l l v o l a t i l e m a t e r i a l s from t h e r e a c t i o n m i x t u r e r e s u l t e d i n a w h i t e powder. No a b s o r p t i o n was o b s e r v e d . i n t h e S—O s t r e t c h i n g r e g i o n o f the IR spectrum o f the w h i t e s o l i d , w h i l e the broad bands a t ^ 660 cm 1 , 340 cm 1 and ^ 475 cm 1 were the o n l y bands o b s e r v e d down t o 250 cm 1 . The f i r s t two a r e b e s t a s s i g n e d t o Sb—F v i b r a t i o n s of a SbF " 203 6 i o n The i n i t i a l green c o l o r s u g gests perhaps complex f o r m a t i o n , r e m i n i s c e n c e o f t h e o t h e r t e r n a r y f l u o r o s u l f a t e complexes o f A g ( I I ) , AgM I V(SO^F) . However such a complex appears t o be u n s t a b l e and b r e a k s down i n t o t h e d e t e c t e d oxygen, S 0 2 F 2 and AgSbF 6. 175 G. ATTEMPTS TO OBTAIN HIGHER OXIDATION STATES OF SILVER Having been u n s u c c e s s f u l i n o b t a i n i n g compounds w i t h s i l v e r i n an o x i d a t i o n s t a t e h i g h e r than two v i a d i r e c t o x i d a t i o n by 820^2, i t appeared a p p r o p r i a t e t o attempt t h e c o n v e r s i o n o f the e x i s t i n g s i l v e r ( I I I ) c o n t a i n i n g compounds i n t o f l u o r o s u l f a t e s . 1. The r e a c t i o n o f AgO and S 2 ° 6 F 2 The mixed v a l e n c y s i l v e r o x i d e , A g [ A g I I I 0 2 ] , commonly known as AgO, c o n t a i n s s i l v e r ( I I I ) and s i l v e r ( I ) c e n t e r s . I t s r e a c t i o n w i t h S_O rF„ would h o p e f u l l y l e a d t o some s i l v e r ( I I I ) Z b Z c o n t a i n i n g f l u o r o s u l f a t e o r mixed v a l e n c y s i l v e r ( I I ) , ( I I I ) systems. Excess S~O rF„ ( ^  5 ml ) was d i s t i l l e d i n t o a o n e - p a r t Z O Z t h i c k - w a l l p y r e x r e a c t o r c o n t a i n i n g 1.445 g (11.67 mmol) o f AgO. Large amount o f uncondensable gas was e v o l v e d when t h e m i x t u r e was a l l o w e d t o warm t o room t e m p e r a t u r e . T h i s was judged t o be oxygen and s u b s e q u e n t l y pumped o f f . A f t e r s t i r r i n g t h e m i x t u r e o v e r n i g h t and removal o f the gas e v o l v e d , t h e m i x t u r e was s t i r r e d a t 50 °C f o r a f u r t h e r two days u n t i l gas e v o l u t i o n ceased as e v i d e n c e d by no d e t e c t a b l e p r e s s u r e a t l i q u i d n i t r o -gen t e m p e r a t u r e . A f t e r d i s t i l l i n g o f f t h e e x c e s s S^O^-F^, 3. 602 g 176 o f d a r k brown powder remained. T h i s y i e l d i s comparable t o the 3.569 g e x p e c t e d f o r A g ( S 0 3 F ) 2 < The p r o d u c t was f u r t h e r i d e n t i f i e d by i t s IR spectrum and i t s m e l t i n g p o i n t . A l t h o u g h t h e o x i d a t i o n o f the A g ( I ) i o n s t o A g ( I I ) was p r e d i c t e d , t h e r e d u c t i o n o f A g ( I I I ) t o A g ( I I ) i s r a t h e r s u r p r i s -i n g i n such a medium. The detailed mechanism o f t h e r e a c t i o n i s u n c l e a r , an i n i t i a l c o p r o p o r t i o n a t i o n t o A g ( I I ) may be p o s s i b l e . 2. The R e a c t i o n Of CsAgF 4 And S0 3 (a) I n t r o d u c t i o n As mentioned i n S e c t i o n A o f t h i s c h a p t e r , s i l v e r ( I I I ) complex f l u o r i d e s o f t h e t y p e J YT^Ag 1 1 3^, w i t h M = K o r Cs, has 158 been s y n t h e s i z e d and c h a r a c t e r i z e d . I n v i e w o f t h e s u c c e s s -f u l c o n v e r s i o n o f A g F 2 t o A g ( S 0 3 F ) 2 by S0 3 i n s e r t i o n , as d e s c r i b e d e a r l i e r , t h e p o s s i b l e f o r m a t i o n o f a f l u o r o s u l f a t o -a r g e n t a t e ( I I I ) complex v i a t h e r e a c t i o n o f a t e t r a f l u o r o -158 a r g e n t a t e ( I I I ) complex and s u l f u r t r i o x i d e s h o u l d be i n v e s t i g a t e d . S i n c e s i l v e r d i f l u o r i d e i s found t o be an e f f e c t i v e 128 12 9 f l u o r i n a t i n g agent ' and a l s o as c a t a l y s t i n f l u o r i n a t i o n 130 r e a c t i o n s , CsAgF^ s h o u l d be an even more e f f e c t i v e f l u o r i n -a t i n g agent. 177 (b) S y n t h e t i c R e a c t i o n s In a t y p i c a l r e a c t i o n , a p p r o x i m a t e l y 1.8 g (5.7 mmol) o f CsAgF 4 ( S e c t i o n II.C.2.) was r e a c t e d w i t h an excess (about 3.1 g) o f SO.^ . S u l f u r t r i o x i d e was f i r s t d i s t i l l e d from oleum under a d r y n i t r o g e n atmosphere, then vacuum d i s t i l l e d i n t o the r e a c t o r , a 150 ml two p a r t monel metal can equipped w i t h a Hoke v a l v e and a T e f l o n c o a t e d s t i r r i n g b a r . The r e a c t i o n m i x t u r e was s t i r r e d a t 25 °C f o r one day. The gas phase i n f r a r e d spectrum o f the v o l a t i l e m a t e r i a l s showed b e s i d e s t r a c e s o f 75 S i F ^ and SO^, o n l y b i s ( f l u o r o s u l f u r y l ) p e r o x i d e , S2°6 F2 ' a s the f l u o r i n a t e d r e a c t i o n p r o d u c t . Removal o f t h e remainder o f the v o l a t i l e m a t e r i a l s , i n c l u d i n g the excess SO^, was a c c o m p l i s h e d by h e a t i n g the r e a c t o r t o 60 °C i n vacuo. A p p r o x i m a t e l y 3.1 g o f a dark g r e e n i s h brown powder o f the c o m p o s i t i o n CsAgtSO^F)^ (5.7 mmol) were o b t a i n e d . The m a t e r i a l was e x t r e m e l y m o i s t u r e s e n s i t i v e and showed t h e r m a l s t a b i l i t y up t o 130 °C (then decomposed t o a b l a c k s o l i d ) . The e l e m e n t a l a n a l y s i s e s t a b l i s h e d the c o m p o s i t -t i o n as CsAg(SC> 3F) 3. C a l c u l a t e d : %Cs, 24.71; %Ag, 20.05; %S, 17.88; and %F, 10.59. Found: %Cs, 24.84; %Ag, 19.97; %S, 17.68; and %F, 10.37. The o v e r a l l r e a c t i o n may be f o r m u l a t e d as: 24 Hr 2 CsAg + 8 S 0 3 ( 3 . 2 3 ) 178: I t seems t h a t b o t h SO^ i n s e r t i o n and f l u o r i n a t i o n t a k e p l a c e even a t room t e m p e r a t u r e . A p r e c e d e n t f o r such a r e a c t i o n i s 8 8 r e p o r t e d by Brown and Gard : C r F 5 + 5 S 0 3 mm C r ( S 0 3 F ) 3 + S 2 O g F 2 (3.24) B o t h r e a c t i o n s t o g e t h e r w i t h o t h e r s , l i k e the p h o t o l y s i s o f 204 205,206 C10S0 2F and t h e t h e r m a l d e c o m p o s i t i o n o f xenon f l u o r o s u l -f a t e Z U 3 ' z u o / m a y be r e g a r d e d as a l t e r n a t i v e r o u t e s t o S 2 0 6 F 2 . A p o i n t f r e q u e n t l y s t r e s s e d 8 8 ' 2 0 4 ' 2 0 5 ' 2 0 6 i s t h a t t h e s e methods do not i n v o l v e t h e use o f e l e m e n t a l f l u o r i n e , w h i c h i s p o t e n -t i a l l y h i g h l y hazardous and r e q u i r e s the use o f m e t a l 1 h i g h vacuum l i n e s not commonly a v a i l a b l e i n many l a b o r a t o r i e s . However t h i s i s somewhat m i s l e a d i n g , s i n c e i n a l l c a s e s t h e s y n t h e s i s o f the s t a r t i n g m a t e r i a l s w i l l i n v o l v e e l e m e n t a l f l u o r i n e a t c e r t a i n s t a g e s o f t h e s y n t h e t i c scheme. F o r example, 207 C r F 5 i s p r e p a r e d by t h e r e a c t i o n o f C r F 3 and F 2 ; w h i l e C l F , 2 08 used i n the p r e p a r a t i o n o f C10S0 2F , i s s y n t h e s i z e d from i t s c o r r e s p o n d i n g e l e m e n t s . Only the a n o d i c o x i d a t i o n o f 209 S 0 3 F i n HS0 3F r e p o r t e d by Dudley a v o i d s e n t i r e l y t h e use of e l e m e n t a l f l u o r i n e i n t h e o v e r a l l s y n t h e s i s . But none o f the a l t e r n a t i v e r o u t e s t o S 2 ° 6 F 2 a l l ° w s the c o n v e n i e n t , l a r g e s c a l e s y n t h e s i s v i a t h e c a t a l y t i c f l u o r i n a t i o n by A g F 2 d i s c u s s e d i n S e c t i o n I I I . F . l . 179 To i d e n t i f y t h e p r o d u c t a s CsAgCSO^F)^, an a l t e r n a t i v e s y n t h e t i c r o u t e was a t t e m p t e d . A 1:1 s t o i c h i o m e t r i c m i x t u r e o f s i l v e r m e t a l powder and CsSO^F was r e a c t e d w i t h t h e o x i d i -z i n g m i x t u r e o f HSC> F and S„C> F_ t o h o p e f u l l y o b t a i n C s A g ( S 0 o F ) _ 3 z b z ~ J 3 a c c o r d i n g t o : H S 0 3 F - S 2 0 6 F 2 Ag + C s S 0 3 F »• C s A g ( S 0 3 F ) 3 (3.25) However t h e r e s u l t i n g b r o w n - b l a c k s o l i d p r o d u c t a p p e a r e d non-homogeneous a f t e r t h e v o l a t i l e s were removed. I n s t e a d o f CsAg ( S 0 3 F ) ,• a m i x t u r e o f C s 2 A g ( S C > 3 F ) 4 and Ag( S C > 3 F ) 2 was p r o b a b l y f o r m e d : HSC> F-S-O,.F_ 3 2 b 2 2 Ag + 2 C s S 0 3 F C s 2 A g ( S 0 3 F ) 4 + A g ( S 0 3 F ) 2 (3.26) (c) C h a r a c t e r i z a t i o n o f C s A g ( S 0 3 F ) 3 The h i g h r e a c t i v i t y o f C s A g ( S 0 3 F ) 3 a l l o w e d t h e r e c o r d i n g o f i n f r a r e d s p e c t r u m o n l y on t h i n s o l i d f i l m between B a F 2 p l a t e s , w h i l e no Raman s p e c t r u m c o u l d be o b t a i n e d , most l i k e l y due t o i t s d a r k c o l o r . The i n f r a r e d band p o s i t i o n s o f C s A g 1 1 ( S 0 3 F ) 3 and t h o s e o f some r e l a t e d compounds a r e l i s t e d i n T a b l e 28. A t r a c i n g o f t h e s p e c t r u m i s shown i n F i g u r e 20. The o b s e r v e d band p o s i t i o n s o f CsAg (SO-.F) d i f f e r f r o m t h o s e o f FIGURE 20 The I.R. Spectrum of Cs CAg(S03F)3] in the BaF| region i 800 cm-i 181 TABLE 28 INFRARED SPECTRA (cm 1 ) OF C s A g ( S 0 3 F ) 3 AND RELATED COMPOUNDS a 8 2 3 C s A g ( S 0 3 F ) 3 C s S 0 3 F A g ( S 0 3 F ) 2 A s s i g n m e n t s 1365 s 1330 v s 1300 s 1320 s, b v S 0 3 (A") 1200 b, v s 1258 s 1185 v s , b v S 0 3 (A') 1080 s, sh 1050 v s 1071 s 1070 s, b v S 0 3 (A') 810 ms 728 s 820 ms VS-F (A') a. between B a F 2 p l a t e s 182 A g ( S 0 3 F ) 2 . With t h e absence o f any i o n i c f l u o r o s u l f a t e bands, i n p a r t i c u l a r , t h o s e o f CsSO^F 8 2 , 7 4 ^ ^ e p o s s i b i l i t y o f CsAgtSO^F)^ b e i n g a s i m p l e m i x t u r e o f A g ( S 0 3 F ) 2 and CsSO^F can be r u l e d o u t . I n a d d i t i o n , a sample exposed b r i e f l y t o m o i s t a i r showed an a d d i t i o n band a t 1270 cm 1 , i n d i c a t i v e o f i o n i c f l u o r o s u l f a t e s . The number o f S—O s t r e t c h i n g bands o b s e r v e d s u g g e s t s a C s symmetry f o r the f l u o r o s u l f a t e g r o u p s . The o b s e r v e d band p o s i t i o n s , w i t h a l l o w a n c e f o r s i t e symmetry s p l i t t i n g s , appear t o be most c o n s i s t e n t w i t h b i d e n t a t e f l u o r o -7 fi s u l f a t e s , as i n t h e case o f ( C H 3 ) 2 S n ( S 0 3 F ) 2 (Table 1 0 ) . T h i s implies a d i s t o r t e d o c t a h e d r a l environment around s i l v e r . The magnetic s u s c e p t i b i l i t y o f C s A g ( S 0 3 F ) 3 between 300 and 77 K was measured and t h e r e s u l t i s l i s t e d i n T a b l e 29. A magnetic d i l u t e system w h i c h shows C u r i e - W e i s s b e h a v i o u r was o b s e r v e d . The C u r i e c o n s t a n t C was 0.4 61 ± 0.003 w i t h the Weiss c o n s t a n t , 0, e x t r a p o l a t e d t o be 3.7 ± 1.3 K. The o b s e r v e d magnetic moment 1.91 y D a t room tem p e r a t u r e i s com-es p a r a b l e t o o t h e r s i m i l a r m a g n e t i c a l l y d i l u t e s i l v e r ( I I ) systems such as a v a l u e o f 1.92 y_, f o r Ag(SO_F)„. C o n t r a s t i n g magnetic D 6 z b e h a v i o u r i s d i s p l a y e d by t h e f l u o r o - a n a l o g u e s o f C s A g ( S 0 3 F ) 3 , M ^ A g F ^ where M 1 = K, Rb, Cs w h i c h a r e r e p o r t e d t o be a n t i f e r r o m a g n e t i c , p o s s i b l y by i n t e r m o l e c u l a r superexchange v i a l i n e a r A g 2 + — F — A g 2 + l i n k a g e s . 183 TABLE 29 MAGNETIC S U S C E P T I B I L I T I E S AND MAGNETIC MOMENTS FOR C s A g ( S 0 3 F ) 3 T c o r t XM y e f f (K) ( 1 0 6 cm 3 m o l " 1 ) (y ) 299 1564 1.91 274 1703 1.92 250 ' 1884 1.92 224 2095 1.92 199 2349 1.91 176 2673 1.92 152 3099 1.92 128 3714 1.92 108 4570 1.95 77 6146 1.90 a M a g n e t i c moments a r e c a l c u l a t e d u s i n g t h e C u r i e - W e i s s law: u e f f = 2.828 [ x M° r(T - 0 ) ] 1 / 2 184 The e l e c t r o n s p i n resonance spectrum o b t a i n e d on s o l i d powdered CsAgtSO^F)^ showed an i s o t r o p i c spectrum, most l i k e l y due t o m i s a l i g n e d t e t r a g o n a l axes r a t h e r than r e g u l a r 0^ or T^ symmetry, as i n the case o f AgCSO-^F^. S p e c t r a r e c o r d e d a t 295 and 80 K g i v e g Q - t e n s o r s o f 2.182 and 2.184 r e s p e c t i v e l y . The magnetic moment o f 1.89 u , c a l c u l a t e d by e q u a t i o n ( 3 . 9 ) , i s i n good agreement w i t h the moments o b t a i n e d from b u l k magne-t i c s u s c e p t i b i l i t y measurements. The e l e c t r o n i c a b s o r p t i o n spectrum o f a neat t h i n powder f i l m o f CsAgCSO^F)^ was o b t a i n e d a l o n g w i t h i t s d i f f u s e r e f l e c -t a n c e spectrum. Combining the two s p e c t r a r e s u l t s i n an i n t e n s e UV band a t 245 nm (40,800 cm ^ ) ; a s t r o n g broad band a t 460 nm (21,700 cm "*") , a s h o u l d e r a t 560 nm (17,900 cm 1 ) and a weaker band a t 720 nm (13,900 cm 1 ) . Assignment o f the t h r e e weak bands as due t o d—d t r a n s i t i o n s i n a t e t r a g o n a l l y d i s t o r t e d ( elongated) o c t a h e d r a l environment w i t h symmetry, c o n s i s -t e n t w i t h t h e magnetic d a t a and i n a n a l o g y t o the assignment proposed f o r A g t S O ^ F ^ i n S e c t i o n I I I . B . 3 ( b ) , would suggest an approximate 10 Dq v a l u e o f 17,900 cm 1 . The assignment: 2B, -*-2An a t 13, 900 cm" 1; 2B, —~ 2B„ a t 17,900 cm" 1; and l g l g l g 2g ' 2 2 - i Blg~~ E g a t 21,7 00 cm x w i t h the e x p e c t e d s p l i t t i n g due t o s p i n - o r b i t c o u p l i n g u n r e s o l v e d ; i s comparable t o tho s e f o r A g ^ O ^ F ^ / which has an approximate L i g a n d F i e l d S p l i t t i n g o f 16,600 cm" 1. I n summary, t h e r e s u l t s o f m a g n e t i c and s p e c t r o s c o p i measurements s u g g e s t CsAgCSO^F)^ t o be a t r u e d i v a l e n t 2 + s i l v e r ( I I ) compound w i t h Ag i n most l i k e l y a t e t r a g o n a l e l o n g a t e d o c t a h e d r a l e n v i r o n m e n t . I V . S I L V E R ( I I ) TRIFLUOROMETHYLSULFATE A. INTRODUCTION T r i f l u o r o m e t h y l s u l f u r i c a c i d i s c o m p a r a b l e i n a c i d 22 s t r e n g t h t o f l u o r o s u l f u r i c a c i d , o r s l i g h t l y weaker as * * • 4- 210,211 ^ . . . . , . f o u n d i n some s t u d i e s . O r i g i n a l l y p r e p a r e d i n 212 1954 by t h e o x i d a t i o n o f b i s ( t r i f l u o r o m e t h y l t h i o ) m e r c u r y and p u r i f i e d by t r e a t m e n t o f b a r i u m b i s ( t r i f l u o r o m e t h y l s u l f a t e ) w i t h f u m i n g s u l f u r i c a c i d , HSO^CF^ has a t t r a c t e d a l o t o f 22 i n t e r e s t , a s e v i d e n c e d i n a r e c e n t d e t a i l e d r e v i e w a r t i c l e o n HSO^CF^ and i t s d e r i v a t i v e s . HSO^CF^ i s now m a n u f a c t u r e d c o m m e r c i a l l y by t h e e l e c t r o f l u o r i n a t i o n o f C H 3 S 0 2 C 1 and d i s t r i b u t e d as " F l u o r o c h e m i c a l a c i d " by t h e M i n n e s o t a M i n i n g and M a n u f a c t u r i n g Company. Much l i k e t h e f l u o r o s u l f a t e g r o u p , t r i f l u r o r m e t h y l s u l f a t e c a n a c t as a mono d e n t a t e , b i d e n t a t e o r even t r i d e n t a t e l i g a n d t h r o u g h o x y g e n . D i s c r e t e SO^CF^ a n i o n s e x i s t i n a l k a l i m e t a l s a l t s w h i l e i n t h e t i t a n i u m c h l o r o s a l t s t h e SO^CF^ g r o u p a c t s a s a b i d e n t a t e l i g a n d i n T i C l 2 ( S O ^ C F ^ ) ^ o r a t r i d e n t a t e 79 l i g a n d i n T i C l 3 S 0 3 C F 3 22 I n v i e w o f t h e i n t e r e s t i n S 0 3 C F 3 d e r i v a t i v e s , i t i s 187 s u r p r i s i n g t h a t o n l y a few t r a n s i t i o n m e t a l t r i f l u o r o m e t h y l -I 213 s u l f a t e s a r e known. T h e s e i n c l u d e Cu (SO^CF^) , C u 1 1 ( S 0 3 C F 3 ) 2 2 1 3 ' 1 0 5 a n c j C o 1 1 ( S 0 3 C F 3 ) 2 1 0 5 w i t h t h e m e t a l s 214 i n r a t h e r common o x i d a t i o n s t a t e s ; w h i l e M o 2 ( S 0 3 C F 3 ) 4 4 + c o n t a i n s t h e q u a d r u p l y bonded Mo 2 i o n . The s c a r c i t y o f examples i s p r i m a r i l y due t o t h e l a c k o f s u i t a b l e s y n t h e t i c r o u t e s . The v e r y l i m i t e d t h e r m a l s t a b i l i t y o f o x i d i z i n g agents, s u c h as b i s ( t r i f l u o r o m e t h y l s u l f u r y l ) p e r o x i d e , 215 ( C F 3 S 0 3 ) 2 and c h l o r i n e ( I ) t r i f l u o r o m e t h y l s u l f a t e , 216 C F 3 S 0 3 C 1 r e s t r i c t t h e a v a i l a b l e p r e p a r a t i v e methods t o s o l v o l y s i s r e a c t i o n s i n H S 0 3 C F 3 w i t h m e t a l - h a l i d e s , - c a r b o x y -l a t e s , - o x i d e s , and - c a r b o n a t e s as s o l u t e s . I n some i n s t a n c e s , t h e method o f l i g a n d r e p l a c e m e n t by s i l v e r s a l t method ( S e c t i o n ' 217 I.C. 3) i s a l s o a p p l i c a b l e , as A g S 0 3 C F 3 i s a v a i l a b l e c o m m e r c i a l l y . The p u r p o s e o f s y n t h e s i z i n g s i l v e r ( I I ) t r i f l u o r o m e t h y l -s u l f a t e was t o i n v e s t i g a t e t h e p o s s i b l e s t a b i l i z a t i o n o f s i l v e r ( I I ) by y e t a n o t h e r h i g h l y e l e c t r o n e g a t i v e a n i o n compar-a b l e t o t h e f l u o r o s u l f a t e and more g e n e r a l l y , t o e x p l o r e a n o v e l s y n t h e t i c r o u t e t o t r a n s i t i o n m e t a l t r i f l u o r o m e t h y l -s u l f a t e s . B. SYNTHETIC REACTIONS 1. S y n t h e s i s o f S i l v e r ( I I ) T r i f l u o r o m e t h y l s u l f a t e (a) R e a c t i o n o f A g ( S 0 3 F ) 2 and H S 0 3 C F 3 An e x c e s s o f t r i f l u o r o m e t h y l s u l f u r i c a c i d (^  5 ml) was d i s t i l l e d a t r e d u c e d p r e s s u r e ( S e c t i o n I I . A . 5 ) d i r e c t l y o n t o a one p i e c e p y r e x r e a c t o r c o n t a i n i n g 1.012 g (3.31 mmol) o f A g ( S 0 3 F ) 2 > The r e s u l t i n g s u s p e n s i o n was m a g n e t i c a l l y s t i r r e d a t room t e m p e r a t u r e f o r two d a y s . A s l i g h t p r e s s u r e i n c r e a s e was d e t e c t e d i n s i d e t h e r e a c t o r c o n t a i n i n g t h e d a r k brown s u s p e n s i o n , w h i c h was s u b s e q u e n t l y vacuum f i l t e r e d , and washed w i t h f i v e 0.5 ml p o r t i o n s o f d i s t i l l e d HSO^CF^. The r e m a i n i n g t r a c e s o f v o l a t i l e m a t e r i a l s were removed i n a dynamic vacuum. 0.74 0 mg o f d a r k brown, e x t r e m e l y h y g r o s c o p i c s o l i d was o b t a i n e d . The e l e m e n t a l a n a l y s i s i d e n t i f i e d t h e c o m p o s i t i o n as A g ( S 0 3 C F 3 ) 2 . C a l c u l a t e d : %Ag, 26.57; %S, 15.79 %F, 28.08; %C, 5.92. Found: %Ag, 26.81; %S, 15.92; %F, 28.04; %C, 5.82. The r a t h e r low y i e l d , % 55 % b a s e d on moles o f Ag i s most l i k e l y due t o t h e method o f i s o l a t i o n by f i l t r a t i o n and w a s h i n g . I f t h e v o l a t i l e s were removed s i m p l y by pumping u n d e r vacuum, t h e r e s u l t i n g s o l i d p r o d u c t was h i g h l y i m pure w i t h a mixed d a r k brown and white a p p e a r a n c e , p r o b a b l y c o n t a i n i n g 189 A g ^ O ^ C F ^ as t h e i m p u r i t y , (b) O t h e r S y n t h e t i c A t t e m p t s ( i ) R e a c t i o n o f S i l v e r ( I I ) F l u o r i d e and H S O ^ F ^ In a t y p i c a l r e a c t i o n , e x c e s s p u r i f i e d HSO^CF^ was added o n t o a sample o f AgF., i n a K e l - F r e a c t i o n t u b e ( S e c t i o n I I . A . 3 ) i n s i d e t h e d r y b o x . The r e s u l t i n g m i x t u r e was s t i r r e d a t room t e m p e r a t u r e and t h e HF l i b e r a t e d was p e r i o d i c a l l y removed by pumping on t h e m i x t u r e . R e a c t i o n t i m e s up t o a week o r even h e a t i n g t o 50 °C d i d n o t r e s u l t i n a homogeneous p r o d u c t . The v o l a t i l e m a t e r i a l s were removed as i n t h e p r e v i o u s r e a c t i o n . I n c o m p l e t e r e a c t i o n i s i n d i c a t e d by t h e c a r b o n a n a l y s i s o f 4.31 % v e r s u s 5.92 % f o r A g ( S 0 3 C F 3 ) 2 . ( i i ) R e a c t i o n o f A g F 2 and ( C F 3 S 0 2 ) 2 0 E x c e s s t r i f l u o r o m e t h y l s u l f o n i c a n h y d r i d e was vacuum d i s t i l l e d o n t o a sample o f A g F 2 i n a K e l - F t u b e r e a c t o r . The e x p e c t e d r e a c t i o n p r o c e e d e d a t room t e m p e r a t u r e , 2 ( C F 3 S 0 2 ) 2 0 + A g F 2 > A g ( S 0 3 C F 3 ) 2 + 2 F S 0 2 C F 3 (4.1) The gas p h a s e IR s p e c t r u m o f t h e v o l a t i l e m a t e r i a l showed t h e 217 218 p r e s e n c e o f C F 3 S 0 2 F ' i n a d d i t i o n t o t h e s t a r t i n g m a t e r i a l 190 ( C F j S C ^ ^ 0 , R e m o v a l o f a l l v o l a t i l e s r e s u l t e d i n a s l i g h t l y non-homogeneous da r k - b r o w n - b l a c k s o l i d . The c a r b o n a n a l y s i s i n d i c a t e d s l i g h l y impure A g ( S 0 3 C F 3 ) 2 w i t h 6.20 % C v e r s u s 5.92 % c a l c u l a t e d . ( i i i ) O x i d a t i o n o f A g S 0 3 C F 3 by S 2 O g F 2 i n HS0 3CF 3 As A g S 0 3 C F 3 was a v a i l a b l e c o m m e r c i a l l y , o x i d a t i o n w i t h S 2 ° 6 F 2 H S 0 3 C F 3 w a s a t t e m P t e d • Such a method has been 219 p r e v i o u s l y employed t o s y n t h e s i z e I ( S 0 3 C F 3 ) 3 T y p i c a l l y , a sample o f A g S 0 3 C F 3 d i s s o l v e i n H S 0 3 C F 3 i n a o n e - p a r t t h i c k w a l l r e a c t o r was r e a c t e d w i t h a s m a l l e x c e s s o f S 2 0 g F 2 a t ^ i c e - w a t e r t e m p e r a t u r e . The r e a c t i o n , once i n i t i a t e d , was h i g h l y e x o t h e r m i c . A l l o w i n g t h e r e a c t i o n m i x t u r e t o warm t o room tem p e r a t u r e w i t h o u t c o n t r o l l e d c o o l i n g had r e s u l t e d i n an e x p l o s i o n , because t h e o x i d a t i v e c l e a v a g e o f t h e S—C bond i n HS0 3CF 3 by S 2 0 g F 2 i s a r e c o g n i z e d c o m p l i c a t i o n . Subsequent f i l t r a t i o n o f t h e dark brown s u s p e n s i o n and washing w i t h d i s t i l l e d H S 0 3CF 3 r e s u l t e d i n pure A g ( S 0 3 C F 3 ) 2 as s u p p o r t e d by i t s c a r b o n a n a l y s i s (found 6.04 %) , t h e IR spectrum and t h e r m a l d e c o m p o s i t i o n . (c) D i s c u s s i o n I n summary i t seems t h a t none o f the a l t e r n a t i v e methods f o r s y n t h e s i z i n g A g ( S 0 3 C F 3 ) 2 i s as c o n v e n i e n t and s a f e as the s o l v o l y s i s r e a c t i o n o f A g ( S 0 3 F ) 2 i n HS0 3CF 3.. The s o l v o l y -191 s i s o f t r a n s i t i o n m e t a l f l u o r o s u l f a t e s i n HSO^CF^ as a s y n t h e t i c r o u t e t o t h e c o r r e s p o n d i n g t r i f l u o r o m e t h y l s u l f a t e s appears t o have g e n e r a l a p p l i c a b i l i t y as demonstrated by t h e s y n t h e s i s o f g o l d ( I I I ) t r i f l u o r o m e t h y l s u l f a t e from i t s c o r r e s p o n d i n g * i i c 4. 220 f l u o r o s u l f a t e The s u c c e s s f u l q u a n t i t a t i v e c o n v e r s i o n o f a f l u o r o s u l f a t e t o a t r i f l u o r o m e t h y l s u l f a t e appears somewhat s u r p r i s i n g . A l t h o u g h t h i s c o n v e r s i o n seems t o f o l l o w t h e g e n e r a l p a t t e r n o f w e l l known s o l v o l y s i s r e a c t i o n s i n HSO^CF^ w i t h t h e g e n e r a l f o r m u l a : MX + n HSO,CF- »• M(SO-,CF_.) + n HX (4.2) n 3 3 j i n w i t h X = C l , 0 2CR 2 1 3 , 2 1 4 o r S 0 3 F , i t d i f f e r s from the o t h e r s i n two i m p o r t a n t a s p e c t s . In o r d e r t o a c h i e v e complete c o n v e r s i o n and t o a v o i d mixed p r o d u c t s , HX must be removed from th e a c i d m i x t u r e , e i t h e r : ( i ) as a v o l a t i l e b y p r o d u c t , such as HC1 i n the s o l v o l y s i s o f m e t a l c h l o r i d e s , o r ( i i ) as a s o l u b l e p r o t o n a t e d s p e c i e s , as i n t h e s o l v o l y s i s o f c a r b o x y l a t e s . F o r c a s e ( i ) , HS0 3F and H S 0 3 C F 3 have v i r t u a l l y i d e n t i c a l o 97 b o i l i n g p o i n t s a t a t m o s p h e r i c p r e s s u r e , 162.7 C f o r HS0 3F o 212 v e r s u s 163 C f o r H S 0 3 C F 3 , and s i m i l a r v o l a t i l i t i e s under a dynamic vacuum a t room t e m p e r a t u r e . Whereas i n c a s e ( i i ) , a e q u a l l y s t r o n g o r s t r o n g e r p r o t o n i c a c i d , HSO^F, appears t o be g e n e r a t e d by a weaker p r o t o n i c a c i d , HSO^CF^ from i t s s a l t s M ( S 0 3 F ) n - Hence removal o f HS0 3F by v i r t u e o f i t s v o l a t i l i t y o r by f o r m i n g a p r o t o n a t e d i o n , such as H 2 S 0 3 F + , i s r a t h e r u n l i k e l y . The p o s s i b i l i t y o f removing the HSC^F by a c h e m i c a l r e a c t i o n i s s u p p o r t e d by a r e c e n t communication by O l a h and 221 Ohyama , who r e f l u x e d a m i x t u r e o f HSO^CF^ and HS0 3F a t a mole r a t i o o f 2:1. C F 3 O S 0 2 C F 3 and C F 3 S 0 2 F were o b t a i n e d i n 19 and 5.5 % y i e l d r e s p e c t i v e l y . No o t h e r r e a c t i o n p r o d u c t was r e p o r t e d and the o v e r a l l r e a c t i o n i s n o t c o m p l e t e l y u n d e r s t o o d The r e a c t i o n between HS0 3F and H S 0 3 C F 3 i s c u r r e n t l y b e i n g 222 s t u d i e d i n d e t a i l . As H S 0 3 C F 3 was used i n large e x c e s s i n the s o l v o l y s i s r e a c t i o n s compared t o t h e amount o f HS0 3F l i b e r a t e d , f u r t h e r r e a c t i o n i s v e r y l i k e l y . The gas phase i n f r a r e d spectrum o f t h e v o l a t i l e m a t e r i a l s from t h e s y n t h e s i s of C s [ A u ( S 0 3 C F 3 ) 4 ] from the r e a c t i o n o f C s [ A u ( S 0 3 F ) 4 ] w i t h H S0 3CF 3 shows band a t t r i b u t a b l e t o C F 3 O S 0 2 C F 3 , C F 3 S 0 2 F , F 2CO, 220 S 0 2 and S i F 4 . Hence i t may be c o n c l u d e d t h a t A g ( S 0 3 F ) 2 , o the HS0 3F formed i n t h e s o l v o l y s i s r e a c t i o n a c c o r d i n g t o e q u a t i o n ( 4 . 1 ) , r e a c t s w i t h t h e exc e s s HS0 3CF 3 t o form v o l a t i l p r o d u c t s , w h i c h do not i n t e r a c t w i t h A g ( S 0 3 C F 3 ) 2 . 193 2. C o n v e r s i o n o f A g ( S 0 3 C F 3 ) 2 i n t o [ A g ( b i p y ) 2 ] ( S 0 3 C F 3 ) 2 Chemical c h a r a c t e r i z a t i o n o f AgfSO^CF^)., i s a c c o m p l i s h e d by c o n v e r s i o n i n t o t h e p r e v i o u s l y p u b l i s h e d [ A g ( b i p y ) 2 ] -113 (SO-jCF^),, . A s i m i l a r s y n t h e t i c p r o c e d u r e as used b e f o r e f o r t h e p r e p a r a t i o n o f [ A g ( b i p y ) 2 ] ( S O ^ F ) ( S e c t i o n I I I . C . 2 ) was employed. A f t e r vacuum f i l t r a t i o n , t h e r e s u l t i n g dark r e d d i s h brown powder was i d e n t i f i e d as [ A g ( b i p y ) 2 ] (SO^CF^),, by the e l e m e n t a l a n a l y s i s , i n f r a r e d spectrum and m e l t i n g p o i n t . Found: %C, 36.17; %H, 2.31; %N, 7.47. C a l c u l a t e d : %C, 36.78; %H, 2.25; %N, 7.80. C. EXPERIMENTAL RESULT AND DISCUSSION 1. I n f r a r e d Spectrum A r a t h e r c o m p l i c a t e d s i t u a t i o n , due t o t h e e x t e n s i v e m i x i n g o f CF^ and SO^ fundamentals i s en c o u n t e r e d f o r the SO^CF^ i o n . T h i s i s i l l u s t r a t e d by two independent v i b r a t i o n -a l s t u d i e s o f t h e SO^CF^ a n i o n , i n c l u d i n g normal c o o r d i n a t e 223 224 a n a l y s e s ' , wh i c h d i f f e r s u b s t a n t i a l l y on t h e v i b r a t i o n a l 223 a s s i g n m e n t . The assignment o f Burger e t a l . w i l l be used i n t h i s d i s c u s s i o n and comparison t o s p e c t r a o f p r e v i o u s l y 194 r e p o r t e d t r i f l u o r o m e t h y l s u l f a t e s w i l l be u s e d . The i n f r a r e d f r e q u e n c i e s o f A g t S O ^ C F ^ ^ o b t a i n e d f r o m n e a t s o l i d f i l m between B a F 2 and KRS-5 p l a t e s a r e l i s t e d i n T a b l e 30. A Raman s p e c t r u m c o u l d n o t be o b t a i n e d . When t h e band p o s i t i o n s o f A g ( S 0 3 C F 3 ) 2 a r e compared t o 225 t h o s e o f a b i d e n t a t e SC> 3CF 3 g r o u p , as i n (CH 3) 3 S n S 0 3 C F 3 , r e a s o n a b l e a g r e e m e n t i s o b t a i n e d w h i l e t h e r e l a t i v e band i n t e n s i t i e s a l s o m a t c h . Some s h i f t s o f t h e band p o s i t i o n s a r e t o be e x p e c t e d when t h e S 0 3 C F 3 g r o u p s a r e i n an o r g a n o t i n e n v i r o n m e n t . A l a r g e d i s c r e p a n c y i n t h e r e l a t i v e band i n t e n s i t i e s i s o b s e r v e d when c o m p a r i n g t h e s p e c t r u m w i t h t h a t 79 o f t h e t r i d e n t a t e C F 3 S 0 3 g r o u p i n C l 3 T i S 0 3 C F 3 , even t h o u g h t h e band p o s i t i o n s matches w e l l . Hence i t a p p e a r s t h a t t h e a c t u a l c o o r d i n a t i o n mode o f t h e S 0 3 C F 3 g r o u p s i n A g ( S 0 3 C F 3 ) 2 must be somewhere i n between t h e p u r e l y b i d e n t a t e and t r i d e n t a t e modes. S l i g h t i n t e r a c t i o n between t h e t h i r d o x y g e n and s i l v e r ( I I ) i s p o s s i b l e . 2. M a g n e t i c Measurements The i n i t i a l b u l k m a g n e t i c s u s c e p t i b i l i t y measurements on A g ( S 0 3 C F 3 ) 2 gave somewhat s u r p r i s i n g r e s u l t . The sample was f o u n d t o be a n t i f e r r o m a g n e t i c w i t h a r a t h e r low m a g n e t i c moment o f 1.64 y a t room t e m p e r a t u r e . The r e s u l t was r e p r o -1 9 5 TABLE 30 INFRARED FREQUENCIES OF Ag (SO-,CF _ ) _ AND RELATED COMPOUNDS (cm ) A g ( S 0 3 C F 3 ) 2 (CH 3) - ^ S n S O ^ F . ^ 3 C l 3 T i ( S 0 3 C F 3 ) A s s i g n m e n t 1 2 8 0 vs 1 3 1 9 v s , b 1 2 7 2 v s v s o 3 (A") 1 2 2 5 s, sh 1 2 2 6 vs 1 2 2 5 s, b V C F 3 (A i) 1 2 0 2 v s 1 1 7 9 s, b r v S 0 3 (A 1 ) 1 1 2 5 v s 1 1 4 5 s 1 1 2 0 m V C F 3 (E) 1 0 3 5 s, b 1 0 2 6 s 1 0 5 0 1 0 3 1 m, v s sh v S 0 3 ( A 1 ) 7 7 5 w 771 m 780 mw vS-C (A 1 ) 632 s 633 ms 6 3 0 s 6 S 0 3 bend (A") 595 m 595 n», sh 6 S 0 3 bend(A') 585 m 577 ms 6 C F 3 (E) 525 s 530 517 ms ms 525 490 452 428 ms m vs v s 6 S 0 3 T i O T i C l bend(A') s t r . r e g i o n 365 mw 356 ms 391 m, sh 6C-S-0 (A") 335 mw 347 s 6C-S-0 (A 1) 325 vw , sh 317 m 6 C F 3 (A 1) 196 d u c i b l e , w i t h f r e s h l y p r e p a r e d s a m p l e s g i v i n g i d e n t i c a l r e s u l t s . Hence i m p u r i t i e s o r p a r t i a l d e c o m p o s i t i o n as p o s s i b l e c a u s e s must be r u l e d o u t . I n a d d i t i o n , e l e m e n t a l a n a l y s i s s u b s e q u e n t t o m a g n e t i c measurements c o n f i r m e d t h e p u r i t y o f t h e sample. ( C a l c u l a t e d : %Ag, 2 6 . 5 7 ; %C, 5 . 9 2 . Found: %Ag, 2 6 . 5 6 ; %C, 5.81) The r e s u l t o f t h e m a g n e t i c measurements i s shown i n T a b l e 3 1 . A p l o t o f X M ° r v e r s u s T r e s u l t s i n a N e e l t e m p e r a -t u r e o f 138 K. The d i p o l a r c o u p l i n g a p p r o a c h u s e d i n S e c t i o n I I I . D . 3 . i s a g a i n a t t e m p t e d t o d e t e r m i n e t h e e x t e n t o f t h e exchange i n t e r -a c t i o n . B e s t agreement between t h e o r e t i c a l p l o t and e x p e r i m e n -t a l d a t a i s o b t a i n e d f o r t h e n = 2 p l o t . The agreement between t h e a v e r a g e and i n d i v i d u a l J v a l u e s i s good, e x c e p t a t t h e l o w e r l i m i t o f t h e t e m p e r a t u r e r a n g e , as shown i n T a b l e 32. The a v e r a g e J v a l u e i s f o u n d t o be 8 4 . 9 cm 1 . Knowing t h e N e e l t e m p e r a t u r e , T , f r o m t h e e x p e r i m e n t a l d a t a , t h e v a l u e o f t h e e x c h a n g e i n t e g r a l c a n be e s t i m a t e d . The m a g n e t i c s u s c e p t i b i l i t y o f a two c e n t e r e x c h a n g e s y s t e m 225 w i t h S = 1/2 i s f o u n d t o be : [ 1 + i exp( - 2 J / k T ) ] -1 X M ( 4 . 3 ) 3 kT L e t g = 2 as a f i r s t a p p r o x i m a t i o n and = 1/8 3 k TABLE 31 MAGNETIC SUSCEPTIBILITY DATA OF Ag(SO,CF.J T % . P 6 f f (K) ( 1 0 6 c m 3 m o l - 1 ) (u ) 304 1099 ± 17 1.64 ± .02 278 1148 ± 6 1.60 ± .02 254 1203 ± 7 1.56 ± .02 226 1268 ± 11 1.52 ± .02 204 1324 ± 18 1.47 ± .02 179 1381 ± 21 1.41 ± .03 154 1421 ± 27 1.32 ± .02 128 1425 ± 31 1.21 ± .02 108 1390 ± 4 0 1.10 ± .03 76 1421 ± 31 0.93 ± .02 198 X M = [ 1 • + i exp ( - 2 J/kT ) ] _ 1 (4.4) 2 T S e t t i n g = 0 i n equation (4.4) a t T would l e a d to J / k T N - - 4/5 2 2 6 . With T^ = 138 K f o r A g ( S 0 3 C F 3 ) 2 , the exchange i n t e g r a l J i s estimated to be approximately 77 cm - 1. Comparing to the va l u e o f 84.9 cm 1 o b t a i n e d from the p l o t , a reasonable agreement w i t h i n 10% i s ob t a i n e d . Based on the d i s c r e p a n c y i n the magnetic behaviour between A g ( S 0 3 F ) 2 and Ag(SC> 3CF 3) 2, i t must be concluded t h a t metal-metal d i r e c t i n t e r a c t i o n i s f e a s i b l e i n the t r i f l u o r o m e t h y 1 s u l -f a t e , but not i n the f l u o r o s u l f a t e , p o s s i b l y due to a d i f f e r e n c e i n c o o r d i n a t i o n mode. I t may be s p e c u l a t e d t h a t the b u l k i e r C F 3 S 0 3 groups impede the involvement o f the t h i r d oxygen i n c o o r d i n a t i o n , thus a l l o w i n g d i r e c t Ag—Ag i n t e r a c t i o n i n the s o l i d s t a t e . 3. ESR Spectrum The ESR spectrum o f A g ( S 0 3 C F 3 ) 2 was reco r d e d a t 295 and 80 K. Broad i s o t r o p i c s i g n a l s were o b t a i n e d a t both tempera-t u r e s . The g-tensors o b t a i n e d were 2.175 and 2.162 a t 295 and 8 0 K r e s p e c t i v e l y , comparable to oth e r Ag(II) c o n t a i n i n g compounds. Although magnetic moments c o u l d be c a l c u l a t e d from the g Q values u s i n g equation (3.9), results so ob t a i n e d may not 199 TABLE 32 EXPERIMENTAL J VALUES OF A g ( S 0 3 F ) 2 n = 2 e x p t y e f f ( y B ) (cm kT -1, k T / J (cm 1 ) 1.64 ± .02 1.60 ± .02 1.56 ± .02 1.52 ± .02 1.47 ± .02 1.41 ± .03 1.32 ± .02 1.21 ± .02 1.10 ± .03 0.93 ± .02 211. 3 193.6 176. 2 157.4 141.4 124 . 4 107.0 89.3 75.1 53.2 •2.52 ± .18 •2.17 ± .17 •1.93 ± .10 •1.76 ± .08 •1.59 ± .08 •1.42 ± .08 •1.24 ± .03 •1.06 ± .03 •0.94 ± .04 •0.78 ± .02 83.8 ± 6.4 89.2 ± 7.6 91.3 ± 5.0 89.4 ± 4.3 88.9 ± 4.7 87.6 ± 5.2 86.3 ± 2.1 84.3 ± 2.4 79.9 ± 3.6 68.2 ± 1.8 J = 84.9 cm -1 200 be very meaningful i n view o f the a n t i f e r r o m a g n e t i c behaviour. As d i s c u s s e d e a r l i e r , the a n t i f e r r o m a g n e t i c Ag^SO^F)^ and K 2 A g ( S 0 3 F ) 4 both gave broad s i n g l e l i n e s , w h i le the e a r l i e r r e p o r t e d a n t i f e r r o m a g n e t i c s i l v e r ( I I ) b i s ( n i c o t i n a t e ) a l s o g i v e s a broad resonance c e n t e r e d a t g = .2.08 i n the ESR 144 spectrum 4. Thermal Decomposition Under one atmosphere of dry n i t r o g e n , Ag(SC< 3CF 3) 2 i s t h e r m a l l y s t a b l e up to 14 0 °C, a t which i t decomposed i n t o a white s o l i d with gas e v o l u t i o n . To study the decomposition i n d e t a i l , a sample of A g ( S 0 3 C F 3 ) 2 (0.180 g, 4.42 mmol) i n a one-piece pyrex r e a c t o r was heated a t 150 °C f o r one hour. The v o l a t i l e s e v o l v e d was condensed i n t o a storage c o n t a i n e r at - 196 K. No incondensable gas was d e t e c t e d . The i n f r a r e d spectrum of the white s o l i d r e s i d u e was found to be i d e n t i c a l to the spectrum of the commercial AgS0 3CF 3 o b t a i n e d from Ventron A l f a Corp. except f o r a s i n g l e weak band a t 8 00 cm ^. The weight of the r e s i d u e was 0.116 g as compared to 0.114 g expected f o r A g 1 ( S 0 3 C F 3 ) . A gas phase i n f r a r e d spectrum was o b t a i n e d on the trapped v o l a t i l e m a t e r i a l s . The a b s o r p t i o n maxima of the complicated spectrum are l i s t e d i n Table 33. Most of the bands can be 201 TABLE 3 3 IR FREQUENCIES OF VOLATILES FROM THERMAL DECOMPOSITION OF A g ( S 0 3 C F 3 ) 2 (cm 1 ) A g ( S 0 3 C F 3 ) 2 (decomposed v o l a t i l e s ) COF. 227 S 0 2 F 2 202 C F 3 S 0 3 C F 3 2 1 5 S O , 2 2 8 S i F / 7 0 1930 m, 1500 w, 1465 v s 1355 w, 1290 v s b 1230 1150 s, 1135 v s 1030 w 960 v s 848 w 790 s 776 ms 766 m 715 w 626 s 605 585 b sh sh 1928 sh s m 542 w 512 w 390 w, sh 1502 1269 1249 965 774 626 584 885 848 544 545 386 1461 s 1258 s 1230 s 1134 s 954 s 786 m 766 m 1362 1151 1010 518 390 202 s a t i s f a c t o r i l y a s s i g n e d when c o m p a r e d t o t h e r e f e r e n c e s p e c t r u m o f C O F 2 2 2 1 , S 0 2 F 2 2 0 2 , C F 3 S 0 3 C F 3 2 2 2 , S 0 2 2 2 8 a n d S i F 4 1 7 ° , a s shown i n T a b l e 33. I t i s p l a u s i b l e t h a t t h e t h e r m a l d e c o m p o s i t i o n o f A g ( S 0 3 C F 3 ) 2 r e s e m b l e s t h a t o f A g ( S 0 3 F ) 2 i n i -t i a l l y , w i t h s u b s e q u e n t t h e r m a l d e c o m p o s i t i o n a n d r e a r r a n g e m e n t 215 o f t h e S 0 3 C F 3 r a d i c a l s . D . CONCLUSION The c o n v e r s i o n o f A g ( S 0 3 F ) 2 i n t o A g ( S 0 3 C F 3 ) 2 o p e n s up a n o t h e r s y n t h e t i c r o u t e t o t r a n s i t i o n m e t a l t r i f l u o r o m e t h y l -s u l f a t e s , v i a s o l v o l y s i s r e a c t i o n s i n H S 0 3 C F 3 . T h i s i s f u r t h e r s u p p o r t e d b y t h e a n a l o g o u s c o n v e r s i o n o f A u ( S 0 3 F ) 3 a n d C s [ A u ( S 0 3 F ) ^ ] i n t o t h e i r c o r r e s p o n d i n g t r i f l u o r o m e t h y l s u l f a t e s A s t h e e x i s t i n g t r a n s i t i o n m e t a l f l u o r o s u l f a t e s a n d t h e a v a i l -a b l e s y n t h e t i c r o u t e s t o f l u o r o s u l f a t e s o u t n u m b e r t h o s e o f t h e t r i f l u o r o m e t h y l s u l f a t e s , t h e s c o p e o f t h e p o s s i b l e S 0 3 C F 3 c o n t a i n i n g compounds i s w i d e n e d a n d s y n t h e s i s o f compounds w i t h t h e m e t a l i n a n u n u s u a l o x i d a t i o n s t a t e , s u c h a s A g ( S 0 3 C F 3 ) 2 , i s now f e a s i b l e . T h e s t a b i l i z a t i o n o f s i l v e r ( I I ) b y f l u o r o s u l f a t e a n d a l s o t r i f l u o r o m e t h y l s u l f a t e s u g g e s t s t h e p o s s i b i l i t y o f s y n t h e s i z i n g o t h e r b i n a r y s i l v e r ( I I ) compounds o f h i g h l y e l e c t r o n e g a t i v e a n i o n s , p r o v i d e d s u i t a b l e s y n t h e t i c r o u t e s a r e a v a i l a b l e . 203 V. FLUOROSULFATES OF RUTHENIUM A. INTRODUCTION Both r u t h e n i u m and osmium e x h i b i t i n t h e i r compounds f o r m a l o x i d a t i o n s t a t e s up t o +8; t h e l a t t e r b e i n g the h i g h e s t f o r a l l d - b l o c k t r a n s i t i o n m e t a l s , i s r e p r e s e n t e d by RuO^ and OsO^. The n o n - e x i s t a n c e o f t h e c o r r e s p o n d i n g o c t a f l u o r i d e s 229 may be due t o s t e r i c r e a s o n s . The h i g h e s t b i n a r y f l u o r i d e s 14 o f t h e s e elements a r e RuF, and the r a t h e r u n s t a b l e OsF_ 6 7 From t h e e x p e r i e n c e g a i n e d from the s i l v e r system, i t appear-ed r a t h e r u n l i k e l y t h a t b i n a r y f l u o r o s u l f a t e s o r f l u o r o s u l f a t o complexes o f osmium and ru t h e n i u m would e x i s t w i t h t h e m e t a l i n such h i g h o x i d a t i o n s t a t e s . I t appeared however i n t e r e s t -i n g t o i n v e s t i g a t e t h e p o s s i b l e f l u o r o s u l f a t e s o f t h e s e two elements f o r t h e f o l l o w i n g r e a s o n s : ( i ) t o t e s t the s y n t h e t i c r o u t e s d e v e l o p e d i n t h e s t u d y on d i v a l e n t s i l v e r compounds; ( i i ) t o conduct a s t u d y o f h o p e f u l l y m a g n e t i c a l l y d i l u t e compounds w i t h t h e m e t a l i n t h e i n t e r m e d i a t e o x i d a t i o n s s t a t e s (perhaps +5 t o +3); and ( i i i ) t o i n v e s t i g a t e t h e s p e c t r o s c o p i c p r o p e r t i e s o f t h e s e compounds. The e a r l i e r work on t h e c h e m i s t r y o f r u t h e n i u m and t h e o t h e r r a r e r Group V I I I m e t a l s , Os, I r and Rh, has been d e s c r i b -204 230 ed by G r i f f i t h . Of a l l the o x i d a t i o n s t a t e s d i s p l a y e d by ruthenium, the t r i v a l e n t s t a t e i s most commonly found. As expected, the chemistry of ruthenium resembles t h a t of osmium f a r more than i r o n . The g r e a t e s t s i m i l a r i t i e s are found i n the h i g h e r o x i d a t i o n s t a t e s (VIII t o V), which are dominated by oxides and f l u o r i d e s ; and a l s o i n the lower o x i d a -t i o n s t a t e s (II to 0), by the numerous complexes w i t h i r - a c i d l i g a n d s . The chemistry o f ruthenium and o t h e r 4d, 5d Group V I I I metals i n the lower oxida'tion s t a t e s i s a very a c t i v e area of r e s e a r c h , mainly i n the f i e l d o f homogeneous c a t a l y s i s . The h a l i d e chemistry of ruthenium w i l l be b r i e f l y reviewed. The e x i s t i n g b i n a r y f l u o r i d e s of ruthenium have been shown i n F i g u r e 2 to be +6, +5, +4 and +3. Ruthenium h e x a f l u o r i d e , RuF g, i s made by d i r e c t f l u o r i n a t i o n o f the metal 2 31 to g i v e dark brown c r y s t a l s . The i n f r a r e d spectrum of the 2 32 vapour confirms the suggested o c t a h e d r a l geometry . The +6 o x i d a t i o n s t a t e i s a l s o found i n the o x y f l u o r i d e RuOF^, a para-magnetic (u .p - = 2.91 u_ at room temperature) p a l e green e r r a 233 c r y s t a l l i n e m a t e r i a l ; and i n C s 2 [ R u 0 2 C l 4 ] , made by the 234 r e a c t i o n of HC1 and RuO^ i n the presence o f C s C l Ruthenium p e n t a f l u o r i d e i s a c i s - f l u o r i n e - b r i d g e d tetramer. T h i s dark green s o l i d i s best prepared by the d i r e c t r e a c t i o n of the metal and f l u o r i n e a t temperature between 280 and 233 900 °C . The vigorous r e a c t i o n of BrF^ and the metal 205 y i e l d s a RuF,.—BrF^ complex a l o n g w i t h RuOF 4. RuF,., o f t e n w i t h t r a c e s o f R u O F 4 , i s o b t a i n e d on d e c o m p o s i t i o n o f t h i s i n i t i a l 235 complex . RuFj. has a room t e m p e r a t u r e magnetic moment o f 233 3 . 6 0 y , v e r y s i m i l a r t o 3.48 y f o r K[RuF ] , s u g g e s t i n g l i t t l e m e t a l - m e t a l i n t e r a c t i o n s . R u F 5 ' i-s a good f l u o r i d e i o n a c c e p t o r . Examples may be found i n the c h e m i s t r y o f n o b l e gases where complexes o f t h e type XeF-^'MF,., 2XeF 2 *MF,- and XeF2*2MF 5 can be p r e p a r e d by t h e d i r e c t r e a c t i o n o f the con-... . j., ... 237,238 s t i t u e n t f l u o r i d e s K [RuFg], can be made by the r e a c t i o n o f B r F ^ w i t h a m i x t u r e 235 o f p o t a s s i u m bromide and r u t h e n i u m i n a 1:1 mole r a t i o However, t h e i n t e r a c t i o n between Ru and B r F ^ i s r e p o r t e d t o be 12 e x p l o s i v e l y v i o l e n t , and s h o u l d be moderated by u s i n g B r 2 as a d i l u e n t . Other h e x a f l u o r o r u t h e n a t e s ( V ) have o t h e r a l k a l i m e t a l s , A g ( I ) o r T l ( I ) as c o u n t e r c a t i o n . The e l e c t r o n i c spec-trum o f the s o l i d s between 10,000 and 40,000 cm 1 have been 239 240 241 measured and a s s i g n e d t o d—d t r a n s i t i o n s ' ' Ruthenium t e t r a f l u o r i d e i s o b t a i n e d from t h e r e a c t i o n o f RuF,. w i t h I 2 and IF,. . These y e l l o w c r y s t a l s has a room tempera-242 t u r e magnetic moment o f 3.04 y D . RuCl. has been i d e n t i f i e d i n t h e vapour phase d u r i n g the c h l o r i n a t i o n o f R u C l ^ a t 750 °C, 243 244 but i t s e x i s t e n c e i n t h e s o l i d s t a t e seems d o u b t f u l ' 2-H e x a h a l o r u t h e n a t e s ( I V ) o f the type [RuX g] , where X = F, C l , o r Br have been s y n t h e s i z e d w i t h a l k a l i m e t a l s as c o u n t e r c a t i o n s . 206 m i -» , , , 239,245 ^ . ,241 The e l e c t r o n i c s p e c t r a have been measured and a s s i g n e d The magnetic s u s c e p t i b i l i t i e s o f the f l u o r o - a n d c h l o r o -246 247 complexes have been s t u d i e d i n d e t a i l ' . M a g n e t i c moments c l o s e to s p i n - o n l y v a l u e s a t room t e m p e r a t u r e have been found f o r these m a g n e t i c a l l y d i l u t e compounds. Ruthenium t r i f l u o r i d e can be made by the r e d u c t i o n of t h e p e n t a f l u o r i d e w i t h excess i o d i n e a t 150 °C 2 ^ 8 . Neutron d i f f r a c t i o n powder p a t t e r n s t a k e n a t 4.2 K and a l s o 298 K 24 9 suggest t h a t t h i s brown compound i s not m a g n e t i c a l l y o r d e r e d H e x a f l u o r o - c o m p l e x e s o f r u t h e n i u m ( I I I ) o f t h e type M^RuF^ have 241 been s y n t h e s i z e d and t h e e l e c t r o n i c s p e c t r a s t u d i e d . In p a r t i c u l a r , t h e dark grey K^RuF^ was p r e p a r e d from t h e f u s i o n 12 o f R u C l ^ w i t h KHF 2 i n a stream o f n i t r o g e n . Lower f l u o r i d e s o f r u t h e n i u m do n o t e x i s t . Ruthenium t r i c h l o r i d e i s commonly used as a s t a r t i n g m a t e r i a l f o r many h i g h e r and l o w e r v a l e n t r u t h e n i u m compounds. Anhydrous R u C l ^ has two m o d i f i c a t i o n s . I n t e r a c t i o n o f the m e t a l w i t h a m i x t u r e o f CC>2 and Cl,, a t 330 °C g i v e s the dark brown 3-form, w h i c h can be i r r e v e r s i b l y c o n v e r t e d t o the b l a c k l e a f l e t s o f th e a-form a t ^ 550 °C under C l 2 2 5 0 ' 2 5 1 > T h e s t r u c t u r e o f 3-RuCl^ has l i n e a r c h a i n s of Ru atoms i n — R u C l ^ — R u C l ^ — R u C l ^ — 3 u n i t s w i t h a P 3 c l (C^ v) space group whereas a - R u C l ^ has a P3 112 3 (D^) space group w i t h a d i s t o r t e d o c t a h e d r a l environment around r u t h e n i u m . In summary, i n b i n a r y f l u o r i d e s o f r u t h e n i u m , the h i g h e r o x i d a t i o n s t a t e s a r e p r e f e r r e d . O c t a h e d r a l c o o r d i n a t i o n around the m e t a l , as i n RuF,, M I (RuF,), ( R u F r ) . , M*(RuF,), i s o f t e n D D O 4 O o b s e r v e d . I n t e r m e d i a t e and lower o x i d a t i o n s t a t e s i n b i n a r y compounds are found i n c h l o r i d e s , bromides, and i o d i d e s . No f l u o r o s u l f a t e s o f r u t h e n i u m have been r e p o r t e d i n t h e l i t e r a t u r e B. RUTHENIUM(III) FLUOROSULFATE 1. P r e p a r a t i o n and E l e m e n t a l A n a l y s i s The m e t a l powder i s a s u i t a b l e s t a r t i n g m a t e r i a l , as i t i s a v a i l a b l e i n h i g h p u r i t y . The r e a c t i o n w i t h HS0 3F/S20gF2 was c a r r i e d out i n a s i m i l a r manner t o the s i l v e r m e t a l r e a c t i o n s . A o n e - p a r t pyrex r e a c t o r c o n t a i n i n g 0.253 g (2.50 mmol) o f r u t h e n i u m powder was flame d r i e d i n vacuo t o remove r e s i d u a l m o i s t u r e . About 5 ml o f HSO^F were d i s t i l l e d d i r e c t l y i n t o the r e a c t o r and about 2.5 ml o f S~0,F„ were then added i n vacuo. 2 b 2 The m i x t u r e was a l l o w e d t o warm t o room tem p e r a t u r e and t h e n m a g n e t i c a l l y s t i r r e d a t 60 °C f o r one day. A dark red-brown s o l u t i o n r e s u l t e d . Removal o f a l l v o l a t i l e m a t e r i a l s was a c c o m p l i s h e d by warming the r e a c t o r and i t s c o n t e n t t o 6 0 °C i n vacuo. An almost b l a c k , d a r k red-brown s o l i d remained. [1.05 0 as compared t o 0.995 g e x p e c t e d f o r Ru (S0 oF) ] . E l e m e n t a l 2 08 A n a l y s i s confirms the composition, c a l c u l a t e d : %Ru, 25.38; %S, 24.15; %F, 14.31. Found: %Ru, 25.15; %S, 24.02; %F, 14.46. R u ( S 0 3 F ) 3 i s hygroscopic and t h e r m a l l y s t a b l e up to 14 0 °C, above which i t decomposes to a red brown l i q u i d . 2. Experimental R e s u l t and D i s c u s s i o n (a) I n f r a r e d S p e c t r a I n f r a r e d s p e c t r a o f R u ( S 0 3 F ) 3 were recorded on t h i n s o l i d films between BaF 2, KRS-5, AgBr and a l s o AgCl p l a t e s . The s p e c t r a recorded with d i f f e r e n t window m a t e r i a l s are i d e n t i c a l . The r e s o l u t i o n i s g e n e r a l l y poor i n the S—O s t r e t c h i n g region,^ because of the r a t h e r broad band conto u r s . A Raman spectrum could not be o b t a i n e d due to the dark sample c o l o r . The IR a b s o r p t i o n f r e q u e n c i e s are l i s t e d i n Table 34. The t e n t a t i v e assignment i n Table 34 suggests the presence of v i b r a t i o n s due to b i - and mono-dentate f l u o r o s u l f a t e s t r o n g resemblance i s observed when the above spectrum i s compared to 70 the p u b l i s h e d IR spectrum of S n ( S 0 3 F ) 4 , as shown i n Table 34, The presence of mono- and b i - d e n t a t e SO^F groups i n the p o l y -119 meric hexa-coordinated S n ( S 0 3 F ) 4 i s supported by i t s Sn .. , 70 Mossbauer spectrum 5 6 2 On the o t h e r hand, the high s p i n d F e ( S 0 3 F ) 3 shows IR a b s o r p t i o n s (also l i s t e d i n Table 34) t y p i c a l o f pure b i d e n t a t e f l u o r o s u l f a t e s , c o n s i s t e n t w i t h r e g u l a r o c t a h e d r a l c o o r d i n a t i o n around F e ^ + . 209 TABLE 34 INFRARED FREQUENCIES OF Ru(SO,F), AND RELATED COMPOUNDS (cm ) R u ( S 0 3 F ) 3 F e ( S 0 3 F ) 3 S n ( S 0 3 F ) 4 / u Assignment 1430 s, sh 1438 1411 s s v SO„ asy 2 (mono, A") 1390 v s , b 1360 m 1395 w, sh v s o 3 ( b i , A") 1220 s 1232 S 0 V s y m S 0 2 (mono, A') 1110 sh 1137 s 1130 s v S 0 3 ( b i , A') 1025 v s , b 1090 s 1085 980 s w, sh v S 0 3 ( b i , A') 920 w 920 m v S-O (mono, A 1) 860 820 s sh 850 m 850 832 m s v S-F (mono, b i ) 645 mw, b 630 m 657 m, sh 605 w 628 m 585 m 579 w 585 m 550 ms 551 m 550 s 475 vw, sh 460 w 450 w 442 w 438 m 395 vw 419 w 328 m 300 w, b 318 m 294 w 210 (b) M a g n e t i c S u s c e p t i b i l i t i e s Due t o t h e l a r g e r l i g a n d - f i e l d s p l i t t i n g s o f t h e se c o n d row t r a n s i t i o n e l e m e n t s , s p i n p a i r i n g i s e x p e c t e d . The e l e c -t r o n i c c o n f i g u r a t i o n f o r r u t h e n i u m ( I I I ) , 4d^, i s e x p e c t e d t o 2 r e s u l t i n a T 2 g g r o u n d t e r m f o r an o c t a h e d r a l e n v i r o n m e n t . I n f a c t , a l l m a g n e t i c a l l y d i l u t e r u t h e n i u m ( I I I ) compounds s t u d i e d a r e o f t h e l o w - s p i n t y p e . 2 M a g n e t i c moments f o r i o n s w i t h T~ terms have been c a l -2g 2 52 c u l a t e d and p l o t t e d a g a i n s t kT/A where A i s t h e s p i n - o r b i t c o u p l i n g c o n s t a n t o f t h e g r o u n d t e r m . A may be o b t a i n e d f r o m t h e f r e e i o n s p i n - o r b i t c o u p l i n g c o n s t a n t , A q , t o g i v e a v a l u e -1 253 o f - 118 0 cm . The m a g n e t i c moment e x p e c t e d s h o u l d be between 2.0 and 1.7 y_ i n t h e t e m p e r a t u r e r a n g e o f 300 and 80 K r e s p e c t i v e l y . The o b s e r v e d m a g n e t i c moments f o r most o c t a h e d r a l 90,254 co m p l e x e s o f r u t h e n i u m ( I I I ) f a l l i n t o t h i s r a n g e w i t h t h e 2 55 f o l l o w i n g e x c e p t i o n s : ( i ) t h e d i m e r i c [ R u C l 3 ( E t 2 S ) 2 ] 2 , where t h e low room t e m p e r a t u r e m a g n e t i c moment o f 0.95 y_ p e r B Ru has been e x p l a i n e d by s p i n - c o u p l i n g between t h e r u t h e n i u m 25 6 i o n s i n t h e b l a c k s o l i d ; ( i i ) i n K 2 R u C l 5 , where t h e v a r i a t i o n o f y e f f f r o m 1.64 t o 1.14 y g between 300 and 80 K has been s u g g e s t e d t o be due t o m a g n e t i c e x c h a n g e between t h e r u t h e n i u m atoms i n t h e p o l y m e r i c compound; and ( i i i ) t h e brown 3-form o f R u C l ^ , w h i c h i s a n t i f e r r o m a g n e t i c below ^ 600 K and has much l o w e r „ , . , ., ., ... j. 257,258 c o r , m m a g n e t i c s u s c e p t i b i l i t i e s t h a n t h e a - f o r m Y a t T M N 211 i s e s t i m a t e d t o be 170 cm mol (^0.9 y ) and f a l l s t o zero a t ^ 150 K. The b l a c k a-form o f R u C l ^ obeys C u r i e - W e i s s Law above ^ 50 K w i t h 0 = 40 K, but i s a n t i f e r r o m a g n e t i c a t lower t e m p e r a t u r e s w i t h a Neel temperature, o f 13 K. The magnetic moment i s 2.17 y a t 293 K f o r the a-form. B The c o r r e s p o n d i n g FeCSO^F)^ has a magnetic moment o f 6 2 5.33 y B a t 298 K , and i s r e p o r t e d t o show some te m p e r a t u r e and magnetic f i e l d dependence. N e v e r t h e l e s s , t h e pr e s e n c e o f 5 the e x p e c t e d hxgh s p i n d i o n s i n FeCSO-^FJ^ i s c o n f i r m e d . The magnetic s u s c e p t i b i l i t y o f RuCSO^F)^ was measured between ^ 300 and 77 K. The r e s u l t i n g s u s c e p t i b i l i t y i n c r e a s e s w i t h temperature w i t h a room t e m p e r a t u r e magnetic moment o f ^ 0.97 y B . The measurements were r e p e a t e d w i t h a f r e s h l y p r e p a r e d b a t c h o f sample w i t h a l m o s t i d e n t i c a l r e s u l t s . The average s u s c e p t i b i l i t i e s d a t a i s l i s t e d i n T a b l e 35. U n l i k e t h e 6 - f o r m o f R u C l ^ , t h e r a t h e r low magnetic moment o f RuCSO^F)^ i s f a i r l y independent o f t e m p e r a t u r e . I n a d d i t i o n , t h e e x t r a L i g a n d F i e l d S t a b i l i z a t i o n Energy w i t h an o c t a h e d r a l c o o r d i n a t i o n would make a T^ symmetry r a t h e r u n l i k e l y . The p r e -sence o f d i r e c t i n t e r a c t i o n between the r u t h e n i u m atoms t h r o u g h m e t a l - m e t a l bonding i s p o s s i b l e . Such an i n t e r p r e t a t i o n i s compa-t i b l e w i t h t h e e x i s t a n c e o f b o t h mono- and b i - d e n t a t e f l u o r o s u l f a t e groups d i s c u s s e d e a r l i e r . The a l m o s t b l a c k c o l o r o f RulSO^F)^ i s o f t e n o b s e r v e d i n compounds w i t h exchange i n t e r a c t i o n s , such as 212 TABLE 35 MAGNETIC SUSCEPTIBILITY DATA OF R u ( S 0 3 F ) 3 cor ^M u T u y e f f 1 y e f f (10 6 cm 3mol _ 1) ( y B ) (K) ( u B ) 391 0.966 298 1.03 410 0.946 273 1.02 437 0.934 250 1.01 477 0.922 223 1.01 '524 0.909 197 1.00 576 0.897 1 7 5 1.00 656 0.890 151 1.01 745 0.871 1 2 7 1.01 884 0 .876 108 1.04 1 1 2 0 0.830 77 1.04 C = 0 . 1 2 9 1 ± 0.0036 0 = - 43.4 ± 6.7 the a n i o n i c s i l v e r ( I I ) complexes M^AgCSO^F)^ d i s c u s s e d e a r l i e r 255 and a l s o t h e d i m e r i c [ R u C l ^ ( E t 2 S ) ] 2 . A p p l i c a t i o n o f the g r a p h i c a l d i p o l a r c o u p l i n g method t o determine the number o f e x c h a n g i n g centers, as attempted f o r the s i l v e r compounds i s u n f e a s i b l e here, as the v a r i a t i o n i n magnetic moment i s o n l y l a r g e enough t o make use o f two or t h r e e o f the t h e o r e t i c a l 193 d a t a p o i n t s p r o v i d e d (c) E l e c t r o n i c S p e c t r a The powder d i f f u s e r e f l e c t a n c e spectrum o f RuCSO^F)^, r e c o r d e d between 350 and 730 nm, shows only a s i n g l e broad band c e n t e r i n g a t ^ 450 nm. S i n c e RuCSO^F)^ i s s o l u b l e i n HSO^F, as e v i d e n c e d from the s y n t h e s i s o f the compound, the spectrum o f a 0.294 mol/1 s o l u t i o n i n HSO^F was measured a t 1/10 and 1/100 d i l u t i o n s . The r e s u l t i n g spectrum i s i l l u s t r a t e d i n F i g u r e 21. Based on t h e molar e x t i n c t i o n c o e f f i c i e n t s , the t h r e e h i g h l y i n t e n s e bands a t lower w a v e l e n g t h s : 447 nm (22,400 cm - 1 , e = 3880), 310 nm (32,300 cm" 1, e = 3570);, and 220 nm (45,500 c m - 1 , e = 8440), are most l i k e l y o f the l i g a n d m e t a l c h a r g e - t r a n s f e r t y p e , whereas the weak band a t 735 nm (13, 600 cm = 95) appears t o be a d—d t r a n s i t i o n j u d g i n g by the low molar e x t i n c t i o n c o e f f i c i e n t . 258 24 5 J0rgensen ' has i n v e s t i g a t e d t h e s o l u t i o n spectrum 3-o f [RuCl,] i n 12 M HC1. The s p e c t r a l i n f o r m a t i o n i s l i s t e d b FIGURE 21 — | , 1 1 1 200 300 400 500 600 nm 215 i n T a b l e 36 a l o n g w i t h those o f RuCSO^F)^ and o t h e r r e l a t e d complexes. When comparing the g e n e r a l band shape o f the 3-[ R u C l & ] spectrum t o the s o l u t i o n spectrum o f R u ( S 0 3 F ) 3 i n HS0 3F, some resemblance i s a p p a r e n t . The major d i f f e r e n c e i s t h e s h i f t i n g o f t h e weakest band t o l o w e r energy f o r R u ( S 0 3 F ) 3 . J0rgensen has a s s i g n e d a l l the h i g h e r energy bands above ^ 20,000 cm 1 t o c h a r g e - t r a n s f e r t r a n s i t i o n s e x c e p t the l o w e s t energy a b s o r p t i o n a t 19,000 cm 1 (e = 4 0 ) , a t t r i b u t e d t o a s p i n - a l l o w e d t ^ —» t ^ e t r a n s i t i o n 2 ^ 8 . ^ 2g - 2g g Oh the o t h e r hand, t h e s o l i d s t a t e e l e c t r o n i c s p e c t r a 5 o f some 4d h e x a f l u o r o m e t a l l a t e complexes o f R u ( I I I ) .and 239 241 Rh(IV) have been s t u d i e d i n two i n s t a n c e s ' . As shown i n T able 36, bands o b s e r v e d below ^ 4 0,000 cm 1 have a l l been a s s i g n e d t o s p i n - f o r b i d d e n and s p i n - a l l o w e d t r a n s i t i o n s w i t h i n the m e t a l d - o r b i t a l s . N e v e r t h e l e s s , the o v e r a l l f e a t u r e o f 3_ the s p e c t r a f o r [RuCl^] and R u ( S 0 3 F ) 3 i n HSO^F appear s i m i l a r t o t h a t o f the d i f f u s e r e f l e c t a n c e spectrum o f K^tRuFg] 241 r e p o r t e d more r e c e n t l y by A l l e n , e t a l . . They s u g g e s t t h a t the charge t r a n s f e r bands o f t h e f l u o r o - c o m p l e x s h o u l d appear a t s u b s t a n t i a l l y h i g h e r e n e r g i e s t h a n the o t h e r h a l o -259 complexes based on e l e c t r o n e g a t i v i t y c o n s i d e r a t i o n s I n view o f the h i g h e x t i n c t i o n c o e f f i c i e n t s o f t h e h i g h e r energy bands i n t h e s o l u t i o n spectrum o f RutSO^F)^ i n HSO^F, TABLE 36 ELECTRONIC SPECTRA OF Ru(SO-F) AND RELATED COMPLEXES (x 1 0 3 cm" 1) 1 _ T C O T OQ 941 Ru(SO-,F)_ R u C l , Cs-RhF, K-.RuF, 3 3 b 2 6 3 6 i n HSO^F i n 12M HC1 A s s i g n m e n t powder A s s i g n m e n t powder A s s i g n m e n t 12.2 2 T -2g - s 10.0 2g \ i g 13.6 ( 9 5 ) a 19 . 0 (40) 2g t4 e 1 2 g e g 16.1 2g 2g 15.4 2 T -2g S 2g 22.4 (3,880) 25.6, s h (600) 7T — 2g 19-21 2g 2g, \ 2 E g 20.0 \ -2g 2 2 2 A 2 g ' T l g ' T 2 g 28 .7 (2,200) TT — fc2g 26.0 . 2 T -2g i g 26.5, sh 2g 2 2 2 Z E / T . / T _ g i g 2g 32.3 (3,570) 32 .4 (1,700) TT — fc2g 34.0, br T „ -2g i g 45.5 43.6 IT — fc2g >50 .0 TT — t o 2g (8,440) (16,000) Dq = 2100 cm" l Dq = 2200 -1 cm a. e(M cm ), m o l a r e x t i n c t i o n c o e f f i c i e n t s i n b r a c k e t s . t o a t t r i b u t e them t o s p i n - a l l o w e d d—d t r a n s i t i o n s would be i n a p p r o p r i a t e . Hence i t a p p e a r s t h a t , e x c e p t f o r t h e o b s e r v e d band a t 13,600 cm 1 , t h e o t h e r s p i n - a l l o w e d d—d t r a n s i t i o n s RuCSO^F)^ a r e m i x e d - i n o r h i d d e n by t h e much s t r o n g e r c h a r g e t r a n s f e r a b s o r p t i o n s . D e d u c t i o n o f t h e l i g a n d f i e l d s p l i t t i n g p a r a m e t e r , 10 Dq, i s t h e r e f o r e n o t p o s s i b l e h e r e . A f u r t h e r d i f f i c u l t y a r i s e s f r o m t h e f a c t t h a t t h e e x a c t n a t u r e o f R u ( S 0 3 F ) 3 i n HSO^F i s u n c e r t a i n , even t h o u g h t h e s p e c t r a l 3-s i m i l a r i t y t o c o m p l e x e s o f t h e t y p e RuX^. s u g g e s t a s i m i l a r s p e c i e s i n HSO^F s o l u t i o n . However, a t t e m p t s t o i s o l a t e 3-c o mplexes c o n t a i n i n g t h e RuCSO^F)^ a n i o n o u t o f s o l u t i o n have n o t been s u c e s s f u l . T h i s w i l l be f u r t h e r d i s c u s s e d l a t e r o n . (d) ESR S p e c t r a The e l e c t r o n s p i n r e s o n a n c e s p e c t r u m o f R u ^ O ^ F ) ^ powder was measured a t 295 and 80 K w h i l e t h e same RuCSO^F)^ i n HSO^F s o l u t i o n u s e d i n r e c o r d i n g t h e e l e c t r o n i c s p e c t r u m was measured a t 80 K. The d a t a o b t a i n e d i s l i s t e d i n T a b l e 37. E x t r e m e l y b r o a d s i n g l e l i n e s ( l i n e w i d t h ^ 1000 g a u s s ) t h a t show some a n i s o t r o p y were o b t a i n e d f r o m t h e s o l i d sample, b u t p a r a l l e l and p e r p e n d i c u l a r components o f t h e g - t e n s o r were n o t r e s o l v e d . On t h e o t h e r hand, t h e HSO^F s o l u t i o n gave an a n i s o -t r o p i c s p e c t r u m w i t h t h r e e d i s t i n c t p r i n c i p l e g - v a l u e s . 218 TABLE 37 ESR DATA OF R u ( S 0 3 F ) 3 Sample T(K) R u ( S 0 3 F ) 3 powder 295 g Q = 1.804 R u ( S 0 3 F ) 3 powder 80 g = 1.777 R u ( S 0 3 F ) 3 i n H S 0 3 F 80 g x = 1.515 = gj g 2 = 1.831 g 3 = 1.956 ( g o = 1.777) 99 101 H y p e r f i n e c o u p l i n g due t o Ru and Ru, b o t h o f n u c l e a r s p i n I = 5/2, was n o t d e t e c t e d . T h i s i s p e r h a p s due t o t h e r a t h e r low 92 n a t u r a l abundance o f 12.81 % and 16.98 % r e s p e c t i v e l y f o r t h e two i s o t o p e s . Few s t u d i e s on t h e ESR s p e c t r a o f R u ( I I I ) compounds have 92 3+ b e e n p u b l i s h e d . The ESR s p e c t r u m o f Ru i n K 3 I n C l g * 2 H^O g i v e s 1.0, 1.22 and 3.24 a s t h e t h r e e components o f t h e g - t e n s o r w h i l e i n t h e c a s e o f R u 3 + i n A l ( a c a c ) 3 , g - v a l u e s 261 262 o f 1.28, 1.74 and 2.82 a r e o b t a i n e d . One e l a b o r a t e s t u d y c n ^5 , c ^ 3+ 3+ T 4+ ^ , o f many l o w - s p i n d c o m p l e x e s o f Ru , 0 s , I r c o n c e n t r a t e s on c o m p l e x e s o f low symmetry, t h e R u 3 + complex w i t h t h e h i g h e s t symmetry ( D 4 h ) s t u d i e d i s [ P E t 3 H ] + [ R u C l 4 ( P E t 3 ) 2 ] ~ i n f r o z e n s o l u t i o n , w h i c h has 1.64, 2.51 as t h e gj | and g ^ v a l u e s . The u n r e s o l v e d a n i s o t r o p y o b s e r v e d i n t h e powder s p e c t r u m o f R u ( S 0 3 F ) 3 a t b o t h t e m p e r a t u r e s a p p e a r s t o i n d i c a t e a r e d u c t i o n o f r e g u l a r o c t a h e d r a l g e o m e t r y a r o u n d r u t h e n i u m , w h i c h i s c o n s i s t e n t w i t h t h e p r e s e n c e o f m e t a l - m e t a l i n t e r a c t i o n s and two d i f f e r e n t t y p e s o f c o o r d i n a t i o n f o r t h e f l u o r o s u l f a t e g r o u p s . 219 (e) D i s c u s s i o n To e x p l a i n t h e low magnetic moment f o r R u ( S 0 3 F ) 3 , a b i -n u c l e a r s t r u c t u r e w i t h m u l t i p l e Ru-Ru bond s i m i l a r t o t h e groups of b i n u c l e a r r u t h e n i u m c a r b o x y l a t e s o f the g e n e r a l f o r m u l a Ru(OCOR) 4Cl where R - Me, E t , n-Pr 2 6 3 , 2 6 4 c o u l d be c o n s i d e r e d . 263 The s t r u c t u r e o f Ru 2(OCOC 3H 7) 4C1 i s i l l u s t r a t e d i n F i g u r e 22 The proposed analogous [ R u ( S 0 3 F ) 3 ] 2 would have f o u r b r i d g i n g b i d e n t a t e SC»3F groups l i n k i n g t h e Ru-Ru bonded d i m e r i c u n i t s , w i t h two t e r m i n a l monodentate S 0 3 F groups bonded a l o n g t h e Ru-Ru bond a x i s . The paramagnetism ( P e f f between 2.76 and 3.37 u B ) of Ru 2 ( O C O R ) 4 C l i s r a t i o n a l i z e d by a M o l e c u l a r O r b i t a l diagram, s u i t a b l e a l s o f o r M 2Xg s p e c i e s w i t h D ^ symmetry (e.g. 2-R e 2 C l g ), w i t h t h r e e u n p a i r e d e l e c t r o n s i n each o f t h e * non-bonding a, (a ), a- (a') and t h e a n t i b o n d i n g b, (6 ) o r b i t a l s ^ l g n 2u n ^ l u as shown i n F i g u r e 2 3 . For [Ru(S03F) J^* t w o u n p a i r e d e l e c t r o n s a r e e x p e c t e d t o be p r e s e n t i n t h e two lo w e r energy o r b i t a l s , a, and a„ . However, t h e magnetic moment c a l c u l a t e d based on l g 2u r ? [Ru(S0 3F) 3] 2 varies between 1.37^ at 2 98 K and 1.01 y Q a t 77 K per d i m e r i c u n i t , w h i c h i s t o o low f o r two u n p a i r e d e l e c t r o n s . Such a low V e£f v a l u e i s a l s o i n c o n s i s t e n t w i t h t h e f o r m u l a t i o n as a mixed v a l e n c y R u 1 1 — R u I V system, where two u n p a i r e d e l e c t r o n s 4 a r e e x p e c t e d f o r t h e low s p i n d c e n t e r s . A l t e r n a t i v e l y , the low magnetic moment o b s e r v e d f o r R u ( S 0 3 F ) 3 may be e x p l a i n e d by ( i ) weak d i r e c t m e t a l - m e t a l i n t e r a c t i o n s r e s u l t i n g i n p a r t i a l s p i n - p a i r i n g , s i n c e FIGURE 2 2 THE STRUCTURE OF R u 2 ( O ^ C ^ ) C l 2 6 3 FIGURE 2 3 MOLECULAR ORBITAL DIAGRAM FOR R u 2 ( O ^ C ^ ) C l 2 6 3 ( d e r i v e d from M 2X g s p e c i e s w i t h D 4 h symmetry) b l g ( a ) e (TT*) b l u ( 6 ) a 2 u ( a A } a l g ( a n ) 4f b 2 g ( 6 ) e ( T T ) u 221 a n t i f e r r o m a g n e t i c c o u p l i n g t h r o u g h b r i d g i n g SO^F groups would i m p l y the r a t h e r u n l i k e l y c o u p l i n g t h r o u g h f o u r bonds; ( i i ) the s i m u l t a n e o u s p r esence o f m a g n e t i c a l l y d i l u t e paramagnetic c e n t e r s o f R u ( I I I ) and d i a m a g n e t i c b i n u c l e a r Ru-Ru bonded p a i r s . The e x p e r i m e n t a l magnetic s u s c e p t i b i l i t y was found t o show a C u r i e - W e i s s r e l a t i o n s h i p w i t h a Weiss c o n s t a n t o f - 43.4 K. The magnetic moment c a l c u l a t e d u s i n g e q u a t i o n (3.2) i s C W independent o f t e m p e r a t u r e , w i t h V e j f " = 1.02 ± 0.02 y B as shown i n T a b l e 35. However, t h e use o f e q u a t i o n (3.2) must be viewed w i t h c a u t i o n s i n c e 0 i s r a t h e r l a r g e h e r e . C u r i e - W e i s s Law b e h a v i o u r i s c o n s i s t e n t w i t h a n o n - o c t a h e d r a l environment 3+ 2 f o r Ru . The T 2 g ground term, e x p e c t e d f o r a r e g u l a r o c t a -h e d r a l geometry w i l l be r e p l a c e d by a s i n g l y o r d o u b l y d e g e n e r a t e term depending on the type o f d i s t o r t i o n . U s i n g e q u a t i o n ( 3 . 9 ) , the e x p e r i m e n t a l g Q v a l u e s from the ESR spectrum o f RutSO^F)^ powder may be c o n v e r t e d t o a magnetic moment o f 1.56 y a t 295 K and 1.54 y a t 80 K, which i s not unexpected f o r R u 3 + . I f case ( i i ) , t h e presence o f m a g n e t i c a l l y d i l u t e R u 3 + i s assumed, t h e ob s e r v e d ESR s i g n a l may be a t t r i b u -t e d e n t i r e l y t o t h i s s p e c i e s based on the r a t h e r i n s e n s i t i v e n a t u r e o f t h e s i g n a l t o te m p e r a t u r e changes, w h i c h i s u n l i k e l y 194 f o r s p i n - p a i r e d t r i p l e t s t a t e s . Such an assumption would a l l o w an e s t i m a t e o f a p p r o x i m a t e l y 33 % o f m a g n e t i c a l l y d i l u t e c e n t e r s i n R u ( S 0 3 F ) 3 . However, a d e f i n i t e c o n c l u s i o n w i l l r e q u i r e a c r y s t a l s t r u c t u r e d e t e r m i n a t i o n . 222 C. ANIONIC FLUOROSULFATO COMPLEXES OF RUTHENIUM(III) 1. I n t r o d u c t i o n The s o l u b i l i t y o f t h e p r o b a b l y p o l y m e r i c r u t h e n i u m ( I I I ) f l u o r o s u l f a t e i n HSO^F s u g g e s t s t h e p o s s i b l e breakdown i n t o p e r h a p s monomeric, s o l v a t e d RuCSO^F)^. I t f o l l o w s t h a t , a n i o n i c c o m p l e x e s w i t h t h e g e n e r a l f o r m u l a [ R u ( S O ^ F ) 3 + n ] n s h o u l d f o r m . The use o f c h l o r y l f l u o r o s u l f a t e , C 1 0 2 S 0 3 F , a s 42 172 a f l u o r o s u l f a t e d o n o r has many p r e c e d e n t s ' . The c h i e f a d v a n t a g e s a r e : ( i ) t h e r e a d i l y formed c h l o r o n i u m c a t i o n , C l 0 2 + , i s d e t e c t a b l e by i t s v i b r a t i o n a l s p e c t r u m ; ( i i ) when u s e d i n e x c e s s , i t s s o l v a t i n g and i o n i z i n g a b i l i t y d oes n o t r e q u i r e t h e u s e o f a n o t h e r s o l v e n t ; ( i i i ) i t s low v o l a t i l i t y s t i l l a l l o w s vacuum t r a n s f e r o f e x c e s s amounts. Hence i t i s g e n e r a l l y e a s y t o d e t e c t t h e f o r m a t i o n and t h e s t o i c h i o m e t r y o f a n i o n i c c o m p l e x e s , as i l l u s t r a t e d by t h e r e a c t i o n o f C 1 0 2 S 0 3 F and Ag(S0.jF)2 d i s c u s s e d p r e v i o u s l y . 2. S y n t h e t i c R e a c t i o n s and E l e m e n t a l A n a l y s e s (a) C 1 0 2 [ R u ( S 0 3 F ) 4 ] E x c e s s d a r k r e d C l O ^ O ^ F (^ 5.6 g) was added t o a o n e - p i e c e p y r e x r e a c t o r c o n t a i n i n g 0.925 g (2.32 mmol) o f RuCSO^F)^ i n s i d e t h e d r y b o x . A f t e r s t i r r i n g t h e m i x t u r e a t ^ 70 °C f o r one day, c o m p l e t e d i s s o l u t i o n o f Ru (SO-,F)-. was o b s e r v e d . E x c e s s ClO-SO^F 223 was t h e n removed i n v a c u o w i t h t h e r e a c t o r and c o n t e n t k e p t a t 70 °C. Due t o t h e low v o l a t i l i t y o f C 1 0 2 S 0 3 F , t h e r e s i d u a l amount was pumped o f f w i t h t h e r e a c t o r a t 100 °C, l e a v i n g 1.334 g o f b l a c k s o l i d b e h i n d . The e x p e c t e d w e i g h t f o r C 1 0 2 [ R u ( S O ^ F ) 4 ] was 1.312 g. The e l e m e n t a l a n a l y s i s p r o v i d e s c o n f i r m a t i o n . C a l c u l a t e d : %Ru, 17.90; %C1, 6.28; %F, 13.46. Found: %Ru, 17.68; % C l , 6.38; %F, 13.58. (b) C s [ R u ( S 0 3 F ) 4 ] A 1:1 s t o i c h i o m e t r i c m i x t u r e o f Ru(SC> 3F) 3 (1.739 g, 4.366 mmol) and C s S 0 3 F (1.013 g) was l o a d e d i n t o a o n e - p a r t p y r e x r e a c t o r . E x c e s s H S 0 3 F ( ^ 10 ml ) was d i r e c t l y d i s t i l l e d o n t o t h e m i x t u r e . S u b s e q u e n t s t i r r i n g a t ^ 60 °C f o r one day r e s u l t e d i n c o m p l e t e d i s s o l u t i o n . The H S 0 3 F was t h e n removed i n v a c u o a t ^ 6 0 °C. The homogeneous v e r y d a r k b r o w n - b l a c k s o l i d o b t a i n e d was i d e n t i f i e d by i t s e l e m e n t a l a n l a y s i s t o have t h e c o m p o s i t i o n C s [ R u ( S 0 3 F ) 4 ] . C a l c u l a t e d : %Ru, 16.04; %Cs, 21.09; %F, 12.06. Found: %Ru, 15.90; %Cs, 20.97; %F, 11.96. (c) The A t t e m p t e d S y n t h e s i s o f Cs., [Ru ( S 0 o F ) r ] J 3 6 Even t h o u g h t h e e x i s t e n c e o f t h e R u ( S 0 3 F ) g 3 i o n i n t h e s o l u t i o n o f R u ( S 0 3 F ) - ? i n HSO^F i s s u g g e s t e d by t h e e l e c t r o n i c 224 s p e c t r a a s m e n t i o n e d , t h e r e a c t i o n between e x c e s s CIC^SO^F and R u l S O ^ F ) ^ d i d n o t r e s u l t i n a h e x a k i s f l u o r o s u l f a t o -r u t h e n a t e ( I I I ) complex. Lower t h e r m a l s t a b i l i t y o f s u c h a complex i s a p o s s i b l e r e a s o n . An a t t e m p t was made t o s y n t h e s i z e s u c h a complex u s i n g a 3:1 mole r a t i o o f CsSC> 3F and Ru(SC> 3F) 3. A s i m i l a r p r o c e d u r e as t h a t employed t o s y n t h e s i z e C s [ R u ( S 0 3 F ) 4 ] was u s e d . A f t e r r e m o v i n g t h e s o l v e n t ( H S0 3F) f r o m t h e s o l u t i o n c o n t a i n i n g 0.898 g o f R u ( S 0 3 F ) 3 and 1.569 g o f C s S 0 3 F , a non-homogeneous w h i t e and d a r k b r o w n - b l a c k p r e c i -p i t a t e was o b t a i n e d . The i n f r a r e d s p e c t r u m o f t h i s p r o d u c t shows a c o m p o s i t e s p e c t r u m o f C s S 0 3 F and Cs [Ru (SC>3F) ^  ] . I t a p p e a r s t h a t e v e n w i t h an e x c e s s o f C s S 0 3 F , Cs [Ru (SC>3F) ^  ] i s t h e o n l y s p e c i e s f o r m e d . 3. C h a r a c t e r i z a t i o n s (a) I n f r a r e d S p e c t r a I n f r a r e d s p e c t r a o f n e a t powdered f i l m s o f Cs [Ru (SC>3F) ^ ] and C 1 0 2 [ R u ( S 0 3 F ) 4 ] were measured between KRS-5, AgBr and B a F 2 window p l a t e s . The a b s o r p t i o n bands a r e l i s t e d i n T a b l e 38. The IR s p e c t r u m o f C s [ R u ( S 0 3 F ) 4 ] i s shown i n F i g u r e 24. No Raman s p e c t r u m c o u l d be o b t a i n e d on t h e s e d a r k c o l o r e d s a m p l e s . The s p e c t r a o f t h e two c o m p l e x e s a r e v e r y s i m i l a r e x c e p t f o r t h e v i b r a t i o n s due t o C1C>2 + c a t i o n i n t h e s p e c t r u m o f C l O ^ [ R u ( S O ^ F ) A ] . The band p o s i t i o n s , i n p a r t i c u l a r i n t h e 225 TABLE 38 IR FREQUENCIES OF ANIONIC FLUOROSULFATO COMPLEXES OF RUTHENIUM(III) (cm 1 ) C s [ R u ( S 0 3 F ) 4 ] ( C 1 0 2 ) [ R u ( S 0 3 F ) 4 ] Assignment 1360 s, b 1360 1295 s, m b V asy V asy S 0 2 (mono, AV) C 1 0 2 + ( v 3 ) 1195 vs 1190 vs V sym S'02 (mono, A 1) 1150 sh 1140 ^1040 sh sh V V sym S 0 3 ( b i , A') c i o 2 + ( v ^ 960 s, vb 940 s, vb V S—O (mono , A 1 ) 795 s, b 810 s, b V S-F 625 w 630 w 575 m 575 m 545 m 545 515 m w 6 C 1 0 2 + • ( v 2 ) 475 vw 475 vw 435 vw 435 vw 285 w, sh 260 w N J N J 227 SO^F s t r e t c h i n g r e g i o n , a r e c h a r a c t e r i s t i c f o r monodentate f l u o r o s u l f a t e g r o u p s i n an a n i o n i c e n v i r o n m e n t . A s h o u l d e r a t ^ 1150 cm 1 i s g e n e r a l l y i n d i c a t i v e o f b i d e n t a t e f l u o r o s u l -f a t e g r o u p s , however o t h e r c h a r a c t e r i s t i c bands a t ^ 108 0 era" 1 a r e n o t o b s e r v e d . The o b s e r v e d s p e c t r a o f b o t h c o m p l e x e s d i f f e r f r o m t h e c o m p o s i t e s p e c t r a o f t h e s t a r t i n g m a t e r i a l s , i n p a r t i c u l a r i n t h e c a s e o f C s [ R u ( S O ^ F ) 4 ] , where t h e a b s o r p t i o n s due t o t h e SO^F 82,74 a r e a > o s e n t > T h i s o b s e r v a t i o n a r g u e s a g a i n s t t h e p r e s e n c e o f s i m p l e m i x t u r e s o f t h e s t a r t i n g m a t e r i a l s . (b) M a g n e t i c S u s c e p t i b i l i t y The m a g n e t i c s u s c e p t i b i l i t y o f C s [ R u ( S O ^ F ) 4 ] was m e a s u r e d between 300 and 77 K. The r e s u l t i n g d a t a i s l i s t e d i n T a b l e 39. Weak p a r a m a g n e t i s m was o b s e r v e d w i t h t h e m a g n e t i c moment d e c r e a s i n g w i t h t e m p e r a t u r e f r o m ^ 0.54 t o ^ 0.31 y ^ . L i k e RuCSO^F)^, t h e low m a g n e t i c moment o b s e r v e d h e r e may a g a i n be due t o m e t a l - m e t a l i n t e r a c t i o n . However, t h e s u s c e p t i b i l i t y m e a sured i s much s m a l l e r and d o e s n o t show a C u r i e - W e i s s r e l a t i o n s h i p (C = 0.080 ± 0.017). F u r t h e r i n f o r m a t i o n i s e x p e c t e d f r o m t h e ESR measurements d i s c u s s e d b e l o w . (c) ESR S p e c t r a Measurements a t room t e m p e r a t u r e gave b a r e l y d e t e c t a b l e s i g n a l s , h ence no q u a n t i t a t i v e r e s u l t c o u l d be o b t a i n e d . 228 TABLE 39 MAGNETIC SUSCEPTIBILITY DATA OF Cs[Ru(SO..F) ] c o r m *M ^ e f f ( 1 0 6 c m ^ o l " 1 ) ( y B ) (K) 1 2 0 . 4 0.538 300 1 3 5 . 2 0.545 275 1 3 9 . 1 0.527 250 1 4 1 . 6 0.505 225 1 4 5 . 9 0.483 200 1 5 4 . 2 0.466 176 1 6 4 . 8 0.466 151 1 7 1 . 6 0.419 128 1 7 7 . 6 0.387 106 1 5 1 . 1 0.306 77 A t 80 K, C 1 0 2 [ R u ( S 0 3 F ) 4 ] shows a broad s i n g l e l i n e w i t h s l i g h t a n i s o t r o p y s i m i l a r t o t h a t o b s e r v e d f o r R u f S O ^ F ) ^ The g Q v a l u e i s found t o be 1.724. The spectrum o b t a i n e d from Cs[Ru(SO^F)^] i s q u i t e d i f f e r e n t , and appears t o c o n t a i n two o v e r l a p p i n g l i n e s as shown i n F i g u r e 25. The g Q v a l u e s as det e r m i n e d from the spectrum a r e 1.979 and 1.84 6. I t seems t h a t C s [ R u ( S O ^ F ) 4 ] c o n t a i n s two s l i g h t l y d i f f e r e n t s i t e s f o r t h e p aramagnetic c e n t e r s w i t h t h e m a j o r i t y h a v i n g g Q v a l u e o f 1.979. S t r u c t u r a l c o n c l u s i o n c o u l d n o t be made w i t h o u t a c r y s t a l s t r u c t u r e d e t e r m i n a t i o n . D. FLUOROSULFATO COMPLEXES OF RUTHENIUM(IV) 1. I n t r o d u c t i o n A number o f t r a n s i t i o n m e t a l s , such as s i l v e r , copper and n i c k e l , a r e found w i t h t h e m e t a l i n a h i g h e r o x i d a t i o n s t a t e i n a n i o n i c f l u o r o - c o m p l e x e s t h a n i n b i n a r y f l u o r i d e s . An a n a l o g y i n f l u o r o s u l f a t e c h e m i s t r y i s r e p o r t e d f o r p a l l a d i u m 2-where t h e a n i o n [PdCSO^F)^] i s found i n a number complexes 265 w h i l e P d ( S 0 3 F ) 4 c o u l d n o t be o b t a i n e d . I t was i n t e r e s t i n g t o see whether t h i s r a t i o n a l e would e x t e n d t o ru t h e n i u m as w e l l FIGURE 25 ESR Spectrum of Cs [Ru (SO-,F) A a t 80 K 231 2. P r e p a r a t i o n s and Elemental Analyses (a) K 2 [ R u ( S 0 3 F ) 6 ) ] A 2:1 mole r a t i o mixture o f KSO^F (0.776 g) and ruthenium powder (0.284 g, 2.81 mmol) was loaded i n t o a one-part pyrex r e a c t o r i n s i d e the drybox. Approximately 5 ml of HSO^F and an equal volume of S 2 0 g F 2 w e r e d i s t i l l e d s u c c e s s i v e l y onto the mixture. Subsequent s t i r r i n g a t ^ 60 °C o v e r n i g h t r e s u l t e d i n a red s o l u t i o n . The excess S~GvF_ and HSO..F were removed 2 6 2 3 i n vacuo with the r e a c t o r and content kept at ^  50 °C. Removal of a l l v o l a t i l e s from the v i s c o u s red-orange s o l u t i o n y i e l d e d 2.188 g of a b r i g h t orange s o l i d as compared to 2.174 g expected f o r K 2[Ru(SO^F)g]. R e s u l t of the elemental a n a l y s i s confirms the above composition. C a l c u l a t e d : %Ru, 13.06; %K, 10.11; %F, 14.73. Found: %Ru, 13.06; %K, 9.99; %F, 14.77. (b) C s 2 [ R u ( S 0 3 F ) 6 ] An i d e n t i c a l procedure was used to s y n t h e s i z e Cs~[Ru (S0-.F) ,] Z. i b from 0.255 g (2.23 mmol) of ruthenium powder and 1.034 g (4.46 mmol) of CsS0 3F. The weight of the l i g h t orange s o l i d product was 2.152 g, compared to 2.142 g expected f o r C s 2 [ R u ( S 0 3 F ) 6 ] . Elemental A n a l y s i s , c a l c u l a t e d : %Ru, 10.51; %Cs, 27.65'; %F, 11.86. Found: %Ru, 10.57; %Cs, 27.78; %F, 11.97. 232 (c) C s [ R u ( S 0 3 F ) ] The r e a c t i o n p r o c e d u r e u s e d t o s y n t h e s i z e M^RufSO^F)^ was a d o p t e d t o t h e r e a c t i o n o f a 1:1 mole r a t i o m i x t u r e o f 0.232 g (2.30 mmol) Ru and 0.534 g CsSC^F. The r e a c t i o n was u n d e r t a k e n h o p i n g t o o x i d i z e r u t h e n i u m t o t h e +5 o x i d a t i o n s t a t e and t o i s o l a t e t h e complex C s [ R u V ( S O ^ F ) ^ ] . Removal o f a l l v o l a t i l e s f r o m t h e r e d s o l u t i o n r e s u l t e d i n a s l i g h t l y non-homogeneous r e d - b r o w n s o l i d w i t h d a r k brown i m p u r i t i e s . F r e s h ^2^SF2 ( ^ 3 ml ) was d i s t i l l e d o n t o t h i s i n i t i a l p r o d u c t . A f t e r s t i r r i n g t h e m i x t u r e a t ^ 60 °C o v e r n i g h t , a homogeneous r e d - b r o w n powder (1.686 g) was o b t a i n e d . The c o m p o s i t i o n as Cs [Ru (SO^F) j . ] was c o n f i r m e d by t h e e x p e c t e d y i e l d (1.677 g) and t h e e l e m e n t a l a n a l y s i s . C a l c u l a t e d : %Ru, 13.86; %Cs, 18.22; %S, 21.98; %F, 13.03. Found: %Ru, 13.68; %Cs, 18.38; %S, 22.12; % F, 13.17. A f u r t h e r a t t e m p t t o o x i d i z e Ru(IV) i n C s [ R u ( S O ^ F ) ^ ] was made by r e a c t i n g a sample Cs [Ru (SO^F) ^ ] w i t h e x c e s s 820^2 a t ^ 1 0 0 ° C . No d e t e c t a b l e w e i g h t i n c r e a s e i n t h e s o l i d sample was o b s e r v e d a f t e r t h e v o l a t i l e s were removed. I t a p p e a r s t h a t r u -t h e n i u m (V) c o u l d n o t be o b t a i n e d u n d e r t h e c o n d i t i o n s d e s c r i b e d . 3. C h a r a c t e r i z a t i o n s (a) V i b r a t i o n a l S p e c t r a B o t h i n f r a r e d and Raman s p e c t r a were o b t a i n e d on t h e t h r e e f l u o r o s u l f a t o c o m p l e x e s o f r u t h e n i u m ( I V ) . The Raman s p e c t r u m o f C s [ R u ( S O ^ F ) ^ ] i s r a t h e r p o o r due t o i t s f a i r l y d a r k r e d -brown c o l o r . The o b s e r v e d band f r e q u e n c i e s a r e l i s t e d i n T a b l e 40. The Raman s p e c t r u m o f K ~ [ R u ( S 0 o F ) , ] i s i l l u s t r a t e d 2 i b i n F i g u r e 26. The v i b r a t i o n a l s p e c t r a o f t h e h e x a k i s f l u o r o s u l f a t o -r u t h e n a t e ( I V ) c o m p l e x e s a r e c h a r a c t e r i s t i c f o r c o m p l e x e s IV 2-c o n t a i n i n g t h e [M (SO^F)^] i o n and compare w e l l w i t h s p e c t r a o f K „ [ S n ( S O ^ F ) , ] 4 2 and B a [ P t ( S 0 o F ) - ] 1 9 6 , l i s t e d i n T a b l e 24. 2 j b 6 b A g e n e r a l a s s i g n m e n t o f t h e bands i s made, c o n s i s t e n t w i t h t h e p r e s e n c e o f monodentate SO^F g r o u p s i n an a n i o n i c c o m p l e x . The IR s p e c t r u m o f Cs[Ru(SO^F),-] shows some r e s e m b l a n c e t o 2-t h o s e o f t h e [Ru^O^F)^.] s p e c t r a , e x c e p t f o r t h e a p p e a r a n c e o f two bands o f medium i n t e n s i t y a t 1140 and 1045 cm 1 , b o t h i n d i c a t i v e o f t h e p r e s e n c e o f b i d e n t a t e f l u o r o s u l f a t e g r o u p s . I t a p p e a r s t h a t e a c h r u t h e n i u m atom i n C s [ R u ( S O ^ F ) ^ ] i s h e x a -c o o r d i n a t e d , p r o b a b l y v i a two b r i d g i n g b i d e n t a t e and f o u r mono-d e n t a t e t e r m i n a l . SO^F g r o u p s . (b) M a g n e t i c S u s c e p t i b i l i t y Measurements The m a g n e t i c s u s c e p t i b i l i t i e s o f t h e t h r e e r u t h e n i u m ( I V ) f l u o r o s u l f a t o c o m p l e x e s were measured between 298 and 77 K. The r e s u l t i s t a b u l a t e d i n T a b l e 41. 4 T e t r a v a l e n t r u t h e n i u m compounds w i t h a d e l e c t r o n i c TABLE 4 0 VIBRATIONAL FREQUENCIES OF ANIONIC FLUOROSULFATO COMPLEXES OF RUTHENIUM(IV) K 2 [ R U ( S 0 3 F ) g ] IR Raman Cs„ [Ru(SO-,F) ,] I 3 6 C s [ R u ( S 0 3 F ) 5 ] Assignment IR Raman IR Raman 1450 v s , b 1398 vw 1205 vs 925 v s , b 825 s, b 650 m 580 ms 55 0 ms 460 w 440 m 310 ms 1261 vs 1216 w 1052 vs %970 w, b %910 vw 852 m 800 vw 62 0 mw 589 w 568 w 44 2 mw 280 m 270 w 1400 v s , b 1405 w 1405 v s , b 1400 vw 1210 vs 930 v s , b 810 s, b 650 mw 580 m 550 m 4 50 mw 1252 vs 1055 s ^960 w ^845 vw %820 vw 633 m 44 0 mw 277 m 1215 vs 114 0 m 1045 m 925 v s , b 810 s, b 660 m 580 ms 550 ms 44 0 mw 1252 s 1241 s 1057 s 995 mw 865 vw 26 9 ms v S 0 o (mono) asy 2 v S 0 3 ( b i , A") v SO- (mono) sym 2 v S 0 3 (>bi, A 1 ) v S 0 3 ( b i , A') v S—O (mono) v S—F (mono, b i ) S 0 3 F d e f . modes S 0 3 F rock, modes M-0 s t r . t o O J CD (\J 1600Ccm-n 1400 1200 OJ 10 o FIGURE 26 The Raman Spectrum of K 2 C R u ( S 0 3 F U * spurious band o OJ OJ ] m in oo . c\j 1000 I— 800 600 400 200 NJ CO Ln TABLE 41 MAGNETIC SUSCEPTIBILITY DATA OF K 2 [ R u ( S 0 3 F ) g ] , C s 2 [Ru(S0 3F) ] , C s [ R u ( S 0 3 F ) ] K 2 [ R u ( S 0 3 F ) g ] C s 2 [ R u ( S 0 3 F ) ] C s [ R u ( S 0 3 F ) 5 ] c o r m . c o r „ c o r _ XM _ y e f f T XM y e f f T _ % y e f f T (x 10 6cm 3mol 1 ) ( y B ) (K) (x 1 0 ~ 6 cm 3mol 1) ( y B ) (K) (x 1 0 ~ 6 c m 3 m o l - 1 ) (u ) (K) 34 01 2.85 298 3238 2 .78 298 2607 2.49 297 3654 2.83 273 3490 2 .75 271 2812 2.47 271 3957 2.81 250 3740 2.73 249 3033 2.46 249 4336 2.79 224 4083 2.70 223 3268 2.42 224 4753 2.75 200 4442 2.66 200 3600 2.39 199 5217 2.70 175 4856 2 .61 175 3938 2 .35 175 5761 2.64 152 5302 2 .54 153 4343 2.29 150 6352 2 .54 127 5800 2.44 128 4717 2.20 128 7190 2.49 108 6246 2.33 109 5149 2 .12 109 7625 2.16 76 6652 2 . 02 77 5682 1.87 77 M CO <3> c o n f i g u r a t i o n a r e e x p e c t e d t o be low s p i n i n an o c t a h e d r a l -g 3 environment w i t h a T., ground term. As many p r e c e d e n t s 246 i n d i c a t e , the magnetic moment s h o u l d d e c r e a s e w i t h t e m p e r a t u r e from % 3.0 y D a t 300 K t o ^  1.7 p. a t 80 K 2 6 5 . In p a r t i c u l a r , K^RuF^ shows a magnetic moment o f 2.86 y f i a t 24 6 300 K . The h e x a k i s f l u o r o s u l f a t o r u t h e n a t e ( I V ) complexes show a s i m i l a r t r e n d s o f d e c r e a s i n g magnetic moments from the room t e m p e r a t u r e moments o f ^ 2.8 y 0 t o ^ 2.1 y_ a t 7 7 K. T h i s a B i s c o n s i s t e n t w i t h a r e g u l a r o c t a h e d r a l c o o r d i n a t i o n around Ru(IV) as a l r e a d y s u g g e s t e d from t h e v i b r a t i o n a l s p e c t r a . The range o f magnetic moment found f o r Cs [Ru (SO^F) i s l o w e r (^  2.5 y D t o ^ 1.9 y D ) than e x p e c t e d but s t i l l c o r r e s p o n d s t o 4 a low s p i n d i o n . I t appea r s , t h a t a n t i f e r r o m a g n e t i c c o u p l i n g perhaps by d i r e c t Ru-Ru i n t e r a c t i o n may be r e s p o n s i b l e f o r t h e low magnetic moment. The pr e s e n c e o f a n i o n s l i k e [RU2(SO.JF)^Q would s t i l l be c o n s i s t e n t w i t h t h e o b s e r v a t i o n o f IR a b s o r p t i o n bands due t o b r i d g i n g SO^F groups. (c) E l e c t r o n i c S p e c t r a The band maxima o f t h e v i s i b l e d i f f u s e r e f l e c t a n c e and m u l l s p e c t r a , r e c o r d e d on the f l u o r o s u l f a t o complexes o f r u t h e n i u m ( I V ) , a r e l i s t e d i n Table 42. S i n g l e b road a b s o r p t i o n s 2-are o b s e r v e d f o r t h e [ R u ( S 0 3 F ) 6 ] complexes, w i t h t h e band 3 -1 c e n t e r s h i f t i n g from 22.2 x 10 cm o f the p o t a s s i u m complex 238 TABLE 4 2 ELECTRONIC SPECTRA OF FLUOROSULFATO COMPLEXES OF RUTHENIUM(IV) AND RELATED COMPOUNDS Compound Type o f Spectrum X (x 10 3cm 1 ) max K 2 [ R u ( S 0 3 F ) g ] C s 2 [ R u ( S 0 3 F ) 6 ] C s [ R u ( S 0 3 F ) ] C s 2 [RuFg] 239 jRuClg) 2- 24 5 M u l l & D i f f . R e f l , M u l l & D i f f . R e f l M u l l & D i f f . R e f l powder s o l u t i o n (10 M HC1) 22.2 20.4 22.2 28 .6 27 .0 31.0 17.15 ( 6 0 0 ) a 20.3 (4,400) 22.9 24.6 36.0 41.0 (3,500) (3,000) (12,000) (18,000) a. e x t i n c t i o n c o e f f i c i e n t s i n M "'"cm 1 239 3 -1 t o 20.4 x 10 cm f o r t h e c e s i u m complex. T h i s i s c o n s i s t e n t w i t h t h e l i g h t e r o r a n g e - y e l l o w c o l o r o f t h e c e s i u m complex. 3 -1 B e s i d e s t h e 22.2 x 10 cm band, an a d d i t i o n a l band a t 3 -1 28.6 x 10 cm was o b s e r v e d i n t h e s p e c t r a o f C s [ R u ( S O ^ F ) ^ ] . 3 —1 2 3 9 A b r o a d band a t 27.0 x 10 cm o b s e r v e d f o r Cs,, [RuF,] has z 6 been t e n t a t i v e l y a s s i g n e d t o t h e u n r e s o l v e d d—d t r a n s i t i o n s 3 between t h e T^ g r o u n d s t a t e and t h e c l o s e l y s p a c e d e x c i t e d 3 3 3 3 s t a t e s E , T n , A, and A„ . On t h e o t h e r hand, t h e g 2g' l g 2g 2-o b s e r v e d a b s o r p t i o n s i n t h e s o l u t i o n s p e c t r u m o f [RuClg] ( l i s t e d i n T a b l e 42) have been a s s i g n e d t o c h a r g e - t r a n s f e r 245 t r a n s i t i o n s . I t a p p e a r s t h a t a d e f i n i t e a s s i g n m e n t o f t h e s p e c t r a on t h e f l u o r o s u l f a t e c o m p l e x e s i s n o t p o s s i b l e due t o t h e r a t h e r p o o r r e s o l u t i o n . E . OTHER SYNTHETIC ATTEMPTS 1. R e a c t i o n o f S„0,F„ w i t h R u t h e n i u m M e t a l 2 6 2  No a p p a r e n t r e a c t i o n was d e t e c t e d when 0.182 g o f r u t h e n i u m m e t a l was s t i r r e d i n e x c e s s S 2 ° 5 F 2 ^ 3 m ^ a t r o o m t e m p e r a t u r e . The r e a c t i o n t e m p e r a t u r e was r a i s e d t o 6 0 °C f o r t h r e e d a y s and s u b s e q u e n t l y t o 90 °C f o r one d a y . A v e r y s l o w r e a c t i o n g i v -i n g s m a l l amounts o f d a r k r e d d i s h brown p r e c i p i t a t e was 240 o b s e r v e d . The w e i g h t o f n o n - v o l a t i l e p r o d u c t a f t e r r e a c t i n g f o r two weeks was 0.259 g. The IR spectrum o f the m a t e r i a l s shows v e r y weak bands i n t h e S—O s t r e t c h i n g r e g i o n . I t appears t h a t complete r e a c t i o n was not a c h i e v e d , presumably due to s u r f a c e c o a t i n g t h a t h i n d e r e d f u r t h e r r e a c t i o n . 2. R e a c t i o n o f S 2 0 g F 2 and R u ( S 0 3 F ) 3 In an attempt o x i d i z e R u ( S 0 o F ) _ f u r t h e r , e x c e s s S-0,F_ was d i s t i l l e d onto t h e p r o d u c t from the r e a c t i o n between Ru and H S 0 3 F / S 2 0 g F 2 . S t i r r i n g t h e m i x t u r e a t 60 °C o v e r n i g h t and then a t 90 °C d i d n o t r e s u l t i n a r e a c t i o n . 3. R e a c t i o n o f B r S 0 3 F w i t h Ruthenium M e t a l No o b s e r v a b l e r e a c t i o n was d e t e c t e d a t room t e m p e r a t u r e between 0.164 g (1.62 mmol) o f Ru powder and excess BrSC>3F (^  5 m l ) . S t i r r i n g t h e m i x t u r e a t 85 °C f o r two days r e s u l t e d i n t h e v i s c o u s dark r e d s o l u t i o n . The v o l a t i l e m a t e r i a l s were d i f f i c u l t t o remove i n vacuo and h e a t i n g o f t h e r e a c t o r and c o n t e n t s t o 100 °C was r e q u i r e d t o g i v e a c o n s t a n t w e i g h t o f 0.918 g o f a b l a c k s o l i d w i t h t r a c e s o f dark brown m a t e r i a l . The w e i g h t o f p r o d u c t per mole o f r u t h e n i u m was ^565 g/mol w h i l e the m o l e c u l a r w e i g h t o f R u ( S 0 3 F ) 3 i s 398.25 g/mol, s u g g e s t i n g an impure p r o d u c t w i t h l i t t l e chance f o r a s u c c e s s f u l s e p a r a t i o n from t h e e x c e s s B r S 0 o F . 4. R e a c t i o n s o f RuO In an attempt t o c o n v e r t an o x i d e t o f l u o r o s u l f a t e o r o x y f l u o r o s u l f a t e , 0.095 g o f anhydrous Ru"^C>2 was mixed w i t h excess S 2 ° g F 2 ^ 3 m l ) • N o v i s i b l e r e a c t i o n was o b s e r v e d a t room t e m p e r a t u r e and th e n a t 60 °C. A p p r o x i m a t e l y 6 ml o f HSO.jF was d i s t i l l e d i n t o t h e o n e - p a r t r e a c t o r c o n t a i n i n g the m i x t u r e . S t i r r i n g t h e r e s u l t i n g m i x t u r e a t room t e m p e r a t u r e and then a t 60 °C f o r one day each r e s u l t e d i n a v e r y s m a l l i n c r e a s e i n the weight (0.013 g) o f t h e n o n - v o l a t i l e m a t e r i a l . Excess BrSO-jF was then vacuum d i s t i l l e d onto t h e r e s u l t -i n g p r o d u c t from above, s t i r r i n g t h e m i x t u r e a t room tempera-t u r e f o r two days, a t 6 0 °C f o r f o u r h o u r s , t h e n a t 100 °C f o r two hours r e s u l t e d i n a f i n a l n o n - v o l a t i l e p r o d u c t w e i g h t o f 0.111 g. Hence i t must be c o n c l u d e d t h a t anhydrous RuC^ i s r a t h e r u n r e a c t i v e towards t h e f l u o r o s u l f o n a t i n g agents used h e r e . 242: VI OSMIUM(III) FLUOROSULFATE A. INTRODUCTION As a l r e a d y mentioned, osmium and r u t h e n i u m show a s i m i l a r c h e m i c a l b e h a v i o u r , and b o t h d i f f e r i n t h i s r e s p e c t from i r o n . A g r e a t e r tendency f o r 5d b l o c k elements t o e x h i b i t h i g h e r o x i d a t i o n s t a t e s t h a n 4d and 3d elements i s i l l u s t r a t e d by t h e f a c t , t h a t t h e most common o x i d a t i o n s t a t e o f osmium i s +4. The t r i v a l e n t s t a t e i s f a r l e s s s t a b l e , and most t r i v a l e n t osmium complexes a r e e a s i l y o x i d i z e d . However, w i t h T T-acceptor l i g a n d s p r e s e n t , r e d u c t i o n t o t h e d i v a l e n t s t a t e 3- 4-may a l s o o c c u r , as i n t h e c a s e o f [Os(CN),] t o [Os(CN),} b b As mentioned e a r l i e r , osmium o c t a f l u o r i d e does n o t e x i s t . 2 66 The s y n t h e s i s o f OsFg o r i g i n a l l y c l a i m e d i n 1913 has been 26 7 shown t o be t h a t o f OsFg . The known f l u o r i n e c o n t a i n i n g o c t a v a l e n t osmium compounds a r e Os0 3F2 and i t s complexes I I 268 M O s 0 3 F 3 ( M = K, Cs, Ag ) . Osmium t r i o x y d i f l u o r i d e , i s p r e p a r e d by t h e r e a c t i o n o f e x c e s s B r F 3 w i t h a 2:1 mole r a t i o m i x t u r e of 0 s 0 4 and KBr. A f t e r removal o f e x c e s s B r F 3 a t room t e m p e r a t u r e , t h e orange p r o d u c t i s p u r i f i e d by s u b l i m a t i o n . A l t e r n a t i v e l y , osmium m e t a l may be o x i d i z e d w i t h a 2:1 volume m i x t u r e o f oxygen and f l u o r i n e t o g i v e 0sO^F o and s m a l l amounts 243 of OsO^ and OsFg, which can be separated from the main product (m.p. 170 °C) due to t h e i r h i g h e r v o l a t i l i t y . The M^OsO-jF^] complexes are made i n a s i m i l a r manner u s i n g a 1:1 s t o i c h i o m e t r i c mixture o f MBr and OsO^. D i r e c t f l u o r i n a t i o n of osmium metal a t 600 °C and 4 00 14 atmospheres y i e l d s OsFj , which i s o n l y s t a b l e below - 100 °C. Base on the i n f r a r e d spectrum, the s t r u c t u r e i s suggested to be pentagonal b i p y r a m i d a l . The magnetic moment measured a t 90 and 195 K i s approximately 1.08 u_. . Prepared 13 from the f l u o r i n a t i o n of anhydrous Os0 2 at 250 °C, OsOF^ i s the o n l y other h e p t a v a l e n t halogen c o n t a i n i n g compound of osmium 2 2 ^ . T h i s green s o l i d (m.p. 59.2 °C) obeys the Curie-Weiss law w i t h 0 = 6 K and a temperature independent moment of 1.47 y_.. The s o l i d i s orthorhombic but becomes body ce n t e r e d c u b i c above 32.5 °C 2 6 ^ . The i n f r a r e d spectrum o f gaseous OsOF c i s c o n s i s t e n t with a C. s t r u c t u r e . 5 4v Using m i l d e r f l u o r i n a t i n g c o n d i t i o n , the yellow osmium h e x a f l u o r i d e i s obt a i n e d from the f l u o r i n a t i o n o f the metal o 27 0 26 7 a t 250 C ' . V i b r a t i o n a l s p e c t r a support the expected 271 o c t a h e d r a l symmetry . An o x y c h l o r i d e OsOCl^ has been prepared from the o x i d a t i o n of the metal with a c h l o r i n e - o x y g e n mixture a t 400 °C T h i s dark brown diamagnetic s o l i d (m.p. 32 °C) probably c o n t a i n s b r i d g i n g c h l o r i n e s . Cs 2[OsC> 2Cl 4] belongs t o a s e r i e s o f "osmyl" complexes with the general formula 244 i I I 272 I^fOsC^X^] where M = a l k a l i metals- and X= C l , Br, e t c . They are diamagnetic and have l i n e a r 0=0s=0 u n i t s w i t h the other four l i g a n d s i n the e q u a t o r i a l plane o f the compressed octahedrons. L i k e i t s ruthenium analogue, osmium p e n t a f l u o r i d e c o n t a i n s c i s - n o n - l i n e a r f l u o r i n e b r i d g i n g t e t r a m e r i c u n i t s . I t i s obtained along with osmium t e t r a f l u o r i d e by the r e d u c t i o n of 27 3 OsF, wxth W(CO), . The more v o l a t i l e OsF c i s vacuum D O O d i s t i l l e d o f f the mixture at 120 °C. The yellow OsF 4 melts at 230 °C; the high m e l t i n g p o i n t suggests a polymeric s t r u c -t u r e . O s F5 i - s a blue-grey s o l i d which melts a t 70 °C to a green l i q u i d and b o i l s at 226 C to a c o l o r l e s s vapor ' I t s magnetic moment ranges from 2.06 y 0 a t 295 K to 1.73 y D a t 102 K. K[OsFg], along with the ot h e r a l k a l i metal analogues, have been, prepared from the r e a c t i o n of BrF^, OsBr^ and the 275 co r r e s p o n d i n g a l k a l i metal bromide . Curie-Weiss magnetic behaviour i s observed. D i r e c t c h l o r i n a t i o n of osmium metal a t 600 °C and 7 atmos-276 pheres r e s u l t s i n the red O s C l 4 . S i m i l a r l y , the correspond-i n g b l a c k OsBr 4 i s obtained by h e a t i n g the metal with bromine 277 under pressure . A l a r g e number o f hexahaloosmate(IV) complexes w i t h the general formula M 2[OsXg] i s known, wi t h 278 M = a l k a l i metals or s i l v e r ( I ) and X = F, C l , Br, or I T h e i r r e a c t i v i t y as w e l l as magnetic and s p e c t r a l p r o p e r t i e s 245 have been s t u d i e d e x t e n s i v e l y and have been r e v i e w e d by 278 G r i f f i t h . In p a r t i c u l a r l y , the M ^ O s C l g ] complexes have been found u s e f u l as s t a r t i n g m a t e r i a l s f o r many r e a c t i o n s . -F l u o r i d e s o f osmium w i t h o x i d a t i o n s t a t e below +4 have not been r e p o r t e d . Osmium t r i c h l o r i d e i s b e s t p r e p a r e d by t h e t h e r m a l d e c o m p o s i t i o n o f the t e t r a c h l o r i d e a t 470 °C i n a f l o w 276 system w i t h a c h l o r i n e atmosphere . O s C l ^ i s a dark g r e y powder and decomposes above 450 °C t o the m e t a l . I t i s isomorphous w i t h a-RuCl^- OsBr^ can be o b t a i n e d from t h e r m a l 279 decomposxtion o f OsBr^ . I t i s a b l a c k powder, and l i k e O s C l ^ , decomposes a t h i g h t e m p e r a t u r e t o t h e m e t a l . The c o r r e s -ponding b l a c k , amorphous O s l ^ i s p r e p a r e d s i m i l a r l y by t h e r m a l 28 0 d e g r a t i o n o f ( H ^ O ^ t O s I ^ ] . H e x a - c h l o r o - , -bromo-, and - i o d o - o s m a t e ( I I I ) complexes have a l s o been r e p o r t e d , b u t a r e not as s t a b l e as the c o r r e s p o n d i n g hexahaloosmate(IV) complexes. To summarize, the h a l i d e c h e m i s t r y o f osmium i s v e r y s i m i l a r t o t h a t o f r u t h e n i u m . The most e x t e n s i v e l y s t u d i e d halo-compounds and -complexes a r e o f osmium(IV). F l u o r o s u l f a t e s o f osmium have n o t been r e p o r t e d . B. SYNTHETIC REACTIONS AND ELEMENTAL ANALYSES 1. S y n t h e s i s o f O s ( S O ^ F ) 3 I n a t y p i c a l p r e p a r a t i o n , e x c e s s S 0 0 c F o 3 ml) was vacuum 246 d i s t i l l e d onto 0.172 g ( 0.903 mmol ) o f osmium powder i n a o n e - p a r t p y r e x r e a c t o r . The r e s u l t i n g m i x t u r e was s t i r r e d a t a c o n s t a n t t e m p e r a t u r e o f 60 °C, and the p r o g r e s s o f t h e r e a c t i o n was m o n i t o r e d by the weight i n c r e a s e o f n o n - v o l a t i l e g r e e n s o l i d . A f t e r t h r e e days, t h e w e i g h t o f t h e homogeneous b r i g h t green s o l i d r e a ched a c o n s t a n t v a l u e o f 0.4 31 g. The e x p e c t e d y i e l d based on Os(SO^F) was 0.440 g. The e l e m e n t a l a n a l y s i s c o n f i r m s t h i s c o m p o s i t i o n . C a l c u l a t e d f o r Os(SO.jF ) . jJ %Os, 39.02; %S, 19.74; %F, 11.69. Found: %Os, 39.10; %S, 19.87; %F, 11.85, 11.88. The m a t e r i a l decomposed above 130 °C t o a b l a c k l i q u i d . On l o n g s t a n d i n g i n ex c e s s ^2^6F2 a*" r o o m t e m p e r a t u r e o v e r a p e r i o d o f s e v e r a l weeks, t h i s b r i g h t green OsCSO^F)^ g r a d u a l l y t u r n e d i n t o a l i g h t green s o l i d . However, no change i n sample w e i g h t was d e t e c t e d . In a d d i t i o n , t h e e l e m e n t a l a n a l y s i s (%Os, 39.28; %S, 19.55; %F, 11.89 ) d i d not show a change i n c o m p o s i t i o n . B e s i d e s t h e d i f f e r e n c e i n p h y s i c a l appearance from t h a t o f t h e b r i g h t g r een O s l S O ^ F ) ^ ( a - f o r m ) , t h i s l i g h t green sample ( B-form) was found t o t u r n to a grey c o l o r on c o o l i n g to 77 K and decompose t o a b l a c k l i q u i d a t 14 0 °C. The a-form does not change c o l o r on c o o l i n g , and u n l i k e the B-form, has v e r y l i t t l e s o l u b i l i t y i n HSO^F. 2. Other S y n t h e t i c Attempts The r e a c t i o n o f osmium m e t a l w i t h a 1:1 by volume m i x t u r e m i x t u r e o f S-0,F_ and HSO..F a t ^ 65 °C y i e l d e d a v i s c o u s 2 6 2 3 brown l i q u i d a l o n g w i t h s m a l l amount o f da r k green p r e c i p i t a t e a f t e r removal o f the more v o l a t i l e components i n vacuo. Homogeneous p r o d u c t c o u l d not be i s o l a t e d . Bromine m o n o f l u o r o s u l f a t e r e a c t e d v e r y s l u g g i s h l y w i t h osmium metal even a t ^ 100 °C. Removal o f e x c e s s BrSO^F a f t e r s t i r r i n g a t ^ 70 °C f o r o v e r one month r e s u l t e d i n a v i s c o u s brown-green l i q u i d and some g r e y i s h s o l i d w h i c h appeared t o be u n r e a c t e d m e t a l . In an attempt t o o x i d i z e osmium f u r t h e r , e x c e s s S„0,F„ 2 o 2 was r e a c t e d w i t h 0.440 g o f t h e b r i g h t green (a) Os(SO.jF) 3. S t i r r i n g the m i x t u r e a t ^ 70 °C f o r one day changed t h e OsCSO^F)^ i n t o a dark green l i q u i d . A f t e r d i s t i l l i n g t h e e x c e s s ^2^6F2 •"-n^° a s t o r a g e c o n t a i n e r , the w e i g h t o f t h e v i s c o u s dark green l i q u i d was found t o be 0.44 5 g. F u r t h e r m i x i n g w i t h e x c e s s S 2 0 g F 2 a t h i g h t e m p e r a t u r e s up t o 100 °C gave no i n d i c a t i o n o f r e a c t i o n . I t was a l s o found t h a t u s i n g a r e a c t i o n t e m p e r a t u r e above 60 °C when a t t e m p t i n g to s y n t h e s i z e OsCSO^F)^ would r e s u l t i n a s i m i l a r v i s c o u s l i q u i d . 3. Attempts t o S y n t h e s i z e F l u o r o s u l f a t o Complexes o f Osmium V a r i o u s a t t e m p t s were made t o s y n t h e s i z e f l u o r o s u l f a t o complexes o f osmium w i t h a l k a l i m e t a l s . The o x i d a t i o n o f osmium m e t a l by HSO^F/S^O^-F,, i n t h e presence o f d i f f e r e n t s t o i c h i o m e t r i c amounts o f CsSO^F (CsSO^F/Os r a t i o from 1 t o 3) gave non-homogeneous green-brown s o l i d s . S t e p w i s e a d d i t i o n o f s t o i c h i o m e t r i c amounts o f CsSO-F t o osmium m e t a l i n S~0,F_ o n l y r e s u l t e d i n s i m p l e m i x t u r e s o f O s ( S 0 3 F ) 3 and CsSO^F, as i n d i c a t e d by t h e IR s p e c t r a o f t h e s e m i x t u r e s . The a d d i t i o n o f S 2 0 g F 2 and KSC>3F t o a s o l u t i o n o f l i g h t green (3) O s ( S 0 3 F ) 3 i n HS0 oF d i d n o t o x i d i z e osmium above +3. C. EXPERIMENTAL RESULT AND DISCUSSION 1. V i b r a t i o n a l S p e c t r a I n f r a r e d S p e c t r a were r e c o r d e d on b o t h forms o f O s ( S 0 3 F ) Raman s p e c t r a o b t a i n e d were o f v e r y poor q u a l i t y and showed o n l y two bands. The band maxima are t a b u l a t e d i n T a b l e 43. The s p e c t r a o f t h e two m o d i f i c a t i o n s o f O s ( S 0 3 F ) 3 appear v e r y s i m i l a r , a l t h o u g h t h e r e a r e some s u b t l e d i f f e r e n c e s . Band p o s i t i o n s a re s l i g h t l y s h i f t e d i n t h e s t r e c h i n g r e g i o n . Both mono- and b i - d e n t a t e f l u o r o s u l f a t e groups seem t o be p r e s e n t i n each m o d i f i c a t i o n o f O s ( S 0 3 F ) 3 . The l i g h t green (3) O s ( S 0 3 F ) 3 g i v e r i s e t o a more c o m p l i c a t e d spectrum. W h i l e d e f i n i t e assignment t o the band maxima i s not f e a s i b l e i n view o f t h e c o m p l e x i t y o f t h e s p e c t r a , i t appears TABLE 4 3 VIBRATIONAL SPECTRA OF Os(SO^F) (a) (6) Raman 1235 s 1235 s (cm - 1) 1027 vs 999 vs I.R. 1445 s _ x 1410 s (cm ) 1225 vs 1160 v s , b r 1025 s 950 w 890 s 850 s,sh 800 vs 640 m 575 s 535 s 470 vw 450 vw 1450 s 1395 s 1230 vs 1135 s,br 1075 s,br 1000 w 950 w 880 s , b r , s h 8 30 v s , b r 660 m 585 s 540 m 470 vw,sh 450 w 395 vw 385 w 250 t h a t t h e s t r u c t u r a l d i f f e r e n c e s between the two forms o f OsCSO^F)^ a r e not a p p a r e n t based on the i n f r a r e d s p e c t r a , because t h e r e l a t i v e l y broad bands do n o t a l l o w a c l e a r d e t e r m i n a t i o n o f t h e band maxima. N e v e r t h e l e s s , when compar-i n g b o t h t h e r e l a t i v e i n t e n s i t i e s and p o s i t i o n s o f the a b s o r p t i o n s ( F i g u r e 2 7 ) , a d i s t i n c t i o n can be made between the s p e c t r a o f the two forms o f OstSO^F)^. 2. M a g n e t i c S u s c e p t i b i l i t y Measurements Compounds o f O s ( I I I ) a r e e x p e c t e d t o have a low s p i n e l e c t r o n i c c o n f i g u r a t i o n . The magnetic moment i s e x p e c t e d t o be ^ 1.9 u a t room t e m p e r a t u r e and t o d e c r e a s e s l i g h t l y w i t h 254 temperature t o ^ 1.7 u a t ^ 8 0 K . The e x p e c t e d t e m p e r a t u r e v a r i a t i o n o f t h e magnetic moment i s found i n t h e l i m i t e d number o f v a r i a b l e t emperature s t u d i e s . However i n most c a s e s o n l y s i n g l e t e m p e r a t u r e magnetic moments a r e r e p o r t e d on 9 C osmium(III) compounds The r e s u l t s o f t h e b u l k magnetic measurements on t h e two m o d i f i c a t i o n s o f OstSO^F)^ a r e l i s t e d i n T a b l e 44. Both forms a r e weakly p a r amagnetic, (v ef£ % 0.5 y B a t room temperature) and t h e i r magnetic moments d e c r e a s e w i t h t e m p e r a t u r e . The b r i g h t green ( a ) OstSO^F)^ shows a s l i g h t l y l o w e r magnetic moment over t h e temperature range s t u d i e d . I t appears t h a t the low magnetic moments a r e b e s t e x p l a i n e d by a n t i f e r r o m a g n e t i c 251 FIGURE 27 IR spectra of a-and £-0s(S03F)3 between 1 5 0 0 and 2 5 0 cm-1 • \ • i i i — i — , , — , — i { 1500 WOO 1200 1000 800 GOO 4 0 0 2$0 252 TABLE 4 4 MAGNETIC SUSCEPTIBILITY DATA OF Os(SO^F) XM y e f f T XM y e f f T (x 1 0 ~ 6 c m 3 m o l _ 1 ) ( y _ ) (K) (x l O ^ c n ^ m o l " 1 ) (u_) (K) 110.1 0.512 297 126.7 0.549 298 107.3 0.483 272 129.7 0.532 273 107.5 0.463 249 135.7 0.519 248 116.7 0.457 224 139.1 0.499 224 120.6 0.438 199 144.5 0.480 199 121.4 0.413 176 - 152.7 0.463 175 122.6 0.385 151 162.5 0.443 151 126.8 0.359 127 163.9 0.409 128 130.3 0.336 109 179.7 0.394 108 112.4 0.263 77 201.5 0.353 77.4 253 c o u p l i n g presumably caused by d i r e c t m e t a l - m e t a l i n t e r a c t i o n s i n b o t h m o d i f i c a t i o n s . A s i m i l a r s i t u a t i o n has been d i s c u s s e d f o r RuCSO^F)^. In the case o f o s m i u m ( I I I ) , a more e f f e c t i v e q uenching o f the paramagnetism seems t o o c c u r . 3. E l e c t r o n i c S p e c t r a Powder d i f f u s e r e f l e c t a n c e s p e c t r a were r e c o r d e d on b o t h m o d i f i c a t i o n s o f O s ( S 0 3 F ) 3 . As suggested by t h e i r d i f f e r e n c e i n c o l o r , d i f f e r e n t band p o s i t i o n s a r e found f o r t h e two 3 -1 m o d i f i c a t i o n s . The 15.4 x 10 cm band i n t h e spectrum o f a - O s ( S 0 3 F ) 3 s h i f t s t o 16.9 x 1 0 3 cm" 1 f o r B - O s ( S 0 3 F ) 3 . F o r each m o d i f i c a t i o n , a v e r y s t r o n g v i s i b l e band i s o b s e r v e d which c o n t i n u e i n t o t h e u l t r a v i o l e t r e g i o n . B - O s ( S 0 3 F ) 3 d i s s o l v e s i n HS0 3F t o g i v e a b r i g h t green s o l u t i o n s i m i l a r i n c o l o r t o t h a t o f a - O s ( S 0 3 F ) 3 . A broad weak a b s o r p t i o n (e = 33.5) a t 3 - 1 -2 15.6 x 10 cm was o b s e r v e d i n a 5.07 x 10 M s o l u t i o n o f 3 - O s ( S 0 3 F ) 3 i n HS0 3F. T a b l e 45 c o n t a i n s the e l e c t r o n i c s p e c t r a l d a t a o b t a i n e d on O s ( S 0 3 F ) 3 and some r e l a t e d compounds. The o b s e r v e d a b s o r p t i o n s i n t h e s o l u t i o n s p e c t r a o f 3- 3-[OsClg] and [OsBrg] have been i n t e r p r e t e d p r i m a r i l y as 245 b e i n g due t o charge t r a n s f e r t r a n s i t i o n s , e x c e p t f o r a p o s s i b l e d—d t r a n s i t i o n t h a t g i v e s r i s e t o t h e weak band a t 3 - 1 3- 259 22 x 10 cm i n t h e spectrum o f [OsClg] . On the o t h e r 3 -1 hand, bands o b s e r v e d below 40 x 10 cm i n the d i f f u s e TABLE 4 5 ELECTRONIC SPECTRA OF O s ( S 0 3 F ) 3 AND RELATED COMPOUNDS Compound Type o f S p e c t r u m max a - O s ( S 0 3 F ) D i f f . R e f l 15.4 b r ^25 sh >28.6 v s 6 - O s ( S 0 3 F ) D i f f . R e f l 16.9 b r >28.6 v s B-Os(S0 3F) HS0 3F s o l u t i o n (5.07 x 10" 2 M) 15.6 (33.5)' ^27 (^650) O s C l 3- 258 OsBr, 3- 245 HC1 s o l u t i o n HBr s o l u t i o n 22 w 32 .6 sh 35 .45 s 38 .2 s 39 .4 21 .5 (400) 25 .6 (1,400) 27 .4 (2,500) 28 .2 (3,200) 28 .8 (3,200) 31 .0 (4,000) 32 .0 (3,600) 33 .6 (4,500) i n M~ 1 -1 cm 255 r e f l e c t a n c e spectrum o f K 2 ( I r F g ) have been a s s i g n e d t o d—d 2 6 0 2 5 9 t r a n s i t i o n s ' . The r a t h e r poor r e s o l u t i o n and t h e l i m i t e d s p e c t r a l range o f the Os(SO^F)^ s p e c t r a do not a l l o w a p r o p e r a s s i g n m e n t . 4 . ESR S p e c t r a Broad s i n g l e l i n e s p e c t r a were o b t a i n e d from a- and 3-Os (SO-.F) 0 a t b o t h 295 and 80 K. The g v a l u e s d e t e r m i n e d a r e 3 3 o 1.997 a t 295 K and 1.993 a t 80 K f o r a - O s ( S 0 3 F ) 3 , and 2.007 a t 295 K and 1.986 a t 80 K f o r t h e 3 m o d i f i c a t i o n . These v a l u e s ar e not s i g n i f i c a n t l y d i f f e r e n t , and a l l o f them a r e c l o s e t o the g e f o r a f r e e e l e c t r o n . No ESR s i g n a l was d e t e c t e d a t 298 and 80 K from t h e s o l u t i o n o f 3 - O s ( S 0 3 F ) 3 i n HS.03F used f o r t h e r e c o r d i n g o f the e l e c t r o n i c spectrum. Very few ESR i n v e s t i g a t i o n s have been r e p o r t e d on O s ( I I I ) 92 90 systems ' . The s i n g l e r e l a t e d s t u d y i n v o l v e s N a 3 [ O s C l g ] 281 i n HCl s o l u t i o n , w h i c h shows a s i n g l e l i n e a t g = 1.8 I t i s p o s s i b l e t h a t a s i t u a t i o n s i m i l a r t o t h a t o f R u ( S 0 3 F ) 3 i s i n v o l v e d h e r e , but a d e f i n i t e c o n c l u s i o n cannot be made a t the p r e s e n t moment. D. CONCLUSION A l t h o u g h i t seems c l e a r t h a t two m o d i f i c a t i o n s o f OsCSO^F)^ e x i s t , d i f f e r e n c e s i n s p e c t r a l and magnetic p r o p e r t i e s a r e s m a l l . I t i s n o t p o s s i b l e t o i d e n t i f y t h e s t r u c t u r a l d i f f e r e n c e s more c l e a r l y , however, i t s h o u l d be p o i n t e d o ut t h a t t h e samples o b t a i n e d c o u l d w e l l c o n t a i n m i x t u r e s o f each m o d i f i c a t i o n s i n d i f f e r e n t p r o p o r t i o n s . Such a s i t u a t i o n i s en c o u n t e r e d i n R u C l ^ , where samples o f 251 3-RuCl., o f t e n c o n t a i n some a-RuCl,, V I I GENERAL CONCLUSION A. SUMMARY The f l u o r o s u l f a t e c h e m i s t r y o f the e l e c t r o n - r i c h 4d and 5d t r a n s i t i o n m e t a l s , s i l v e r , r u t h e n i u m , and osmium, has been i n v e s t i g a t e d i n d e t a i l , w i t h t h e emphasis p l a c e d on compounds w i t h t h e m e t a l s i n t h e h i g h e r o x i d a t i o n s t a t e s . A r e p r e s e n t a t i v e number o f f l u o r o s u l f a t e d e r i v a t i v e s o f t h e s e t h r e e elements have been s y n t h e s i z e d i n the c o u r s e o f t h i s s t u d y . S t r u c t u r a l c h a r a c t e r i z a t i o n s have been based on magnetic and s p e c t r o s c o p i c measurements. The r e s u l t s have been compared t o t h o s e o f the analogous f l u o r i d e s . W h i l e the b u l k i e r f l u o r o s u l f a t e groups a r e e x p e c t e d and i n d e e d do l e a d t o m a g n e t i c a l l y d i l u t e systems, t h e a n i o n i c s i l v e r ( I I ) complexes M^Ag(SO^F)^ are r a t h e r s u r p r i s i n g e x c e p t i o n s . A g f S O ^ F ^ i s found t o form a number o f d e r i v a t i v e s , w h i c h have c o r r e s p o n d i n g f l u o r o - a n a l o g u e s . Attempts t o s y n t h e s i z e f l u o r o s u l f a t e s o f t r i v a l e n t s i l v e r have been u n s u c c e s s f u l . The t h e r m a l s t a b i l i t y o f t h e f l u o r o s u l f a t e s may be a l i m i t i n g f a c t o r , as most f l u o r i n a t i o n s o f t r a n s i t i o n m e t a l s a r e p e r f o r m -ed a t f a i r l y h i g h t e m p e r a t u r e s (> 300 °C), t e m p e r a t u r e s 258 a t w h i c h t h e f l u o r o s u l f a t e group would d i s s o c i a t e . The s y n t h e t i c r o u t e s u l t i l i z e d on s i l v e r have a p p l i e d q u i t e w e l l t o r u t h e n i u m and osmium. The use o f t h e o x i d i z -i n g m i x t u r e o f S 2 ° 6 F 2 a n d H S 0 3 F n a s found g e n e r a l a p p l i c a t i o n s 172 i n t h e s t u d y o f o t h e r n o b l e m e t a l s , such as g o l d and 265 p a l l a d i u m . I t i s perhaps n o t s u r p r i s i n g t h a t t h e h i g h e s t o x i d a t i o n s t a t e o f r u t h e n i u m o b t a i n e d i s +4 f o r t h e f l u o r o -s u l f a t e s , r a t h e r t h a n +6 as i n RuFg. The i n a b i l i t y t o o x i d i z e and s t a b i l i z e osmium above +3 i n the form o f i t s f l u o r o s u l f a t e s i s u n p r e d i c t e d , because o f t h e r e l a t i v e abundance o f t h e +4 o x i d a t i o n s t a t e , and the t r e n d o f h i g h e r s t a b l i z e d o x i d a t i o n s t a t e s f o r the h e a v i e r 5d e l e m e n t s . B. SUGGESTIONS FOR FURTHER WORK A number o f p o s s i b i l i t i e s f o r t h e c o n t i n u a t i o n and ex p a n s i o n o f t h i s s t u d y may be d i s c u s s e d h e r e . (1) The c o n v e r s i o n o f f l u o r o s u l f a t e s t o the c o r r e s p o n d i n g t r i f l u o r o m e t h y l s u l f a t e s v i a s o l v o l y s i s r e a c t i o n s i n HSO^CF^ s h o u l d e x t e n d t o f l u o r o s u l f a t e s o f r u t h e n i u m and osmium. (2) F u r t h e r a t t e m p t s may be made t o s y n t h e s i z e f l u o r o s u l f a t e s 259 o f osmium and r u t h e n i u m i n h i g h e r o x i d a t i o n s t a t e s by: ( i ) U s i n g OsO^ and RuO^ as r e a g e n t s may y i e l d f l u o r o s u l f a t e s w i t h t h e m e t a l s i n o x i d a t i o n s t a t e s h i g h e r t h a n +4. ( i i ) The c o n t r o l l e d d i r e c t i n s e r t i o n o f SO^ i n t o t h e M—F bonds o f h i g h v a l e n t (V,VI) b i n a r y f l u o r i d e s o f r u t h e n i u m and osmium may r e s u l t i n t h e c o r r e s p o n d i n g f l u o r o s u l f a t e s o r more l i k e l y , m i x e d f l u o r i d e - f l u o r o s u l f a t e s . (3) P r o v i d e d s i n g l e c r y s t a l s c o u l d be o b t a i n e d , t h e s t r u c t u r e s o f some o f t h e compounds s y n t h e s i z e d i n t h i s s t u d y s h o u l d be d e t e r m i n e d by X - r a y d i f f r a c t i o n s t u d i e s . Compounds t h a t a r e s o l u b l e i n HSO-^F, s u c h as Ru(SC> 3F) 3 and K 2 A g ( S 0 3 F ) 4 , a p p e a r t o be p o t e n t i a l c a n d i d a t e s . (4) S i n c e t h e p r e s e n c e o f m e t a l - m e t a l i n t e r a c t i o n has been p o s t u l a t e d f o r a number o f compounds w i t h u n u s u a l l y low m a g n e t i c moments, t h e s e compounds may be compared t o some m e t a l - m e t a l bonded f l u o r o s u l f a t e d e r i v a t i v e s s y n t h e s i z e d 264 p e r h a p s v i a t h e s o l v o l y s i s o f R u 2 ( C ^ C R ) ^ C l i n H S 0 3 F . (5) The d e t a i l m a g n e t i c p r o p e r t i e s o f t h e a n t i f e r r o m a g n e t i c c o m p l e x e s s h o u l d be f u r t h e r i n v e s t i g a t e d i n o r d e r t o u n d e r s t a n d t h e m e t a l - m e t a l i n t e r a c t i o n s i n v o l v e d and a l s o as a g e n e r a l s e a r c h f o r s o l i d s t a t e c o n d u c t i n g p r o p e r t i e s . (6) The s y n t h e t i c methods u l t i l i z e d i n t h i s s t u d y may be e x t e n d e d t o o t h e r e l e c t r o n - r i c h 4d and 5d t r a n s i t i o n m e t a l s . 196 Some o f t h e s e m e t a l s a r e c u r r e n t l y u n d e r i n v e s t i g a t i o n 260 BIBLIOGRAPHY 1. W. Harnischmacher and R. Hoppe, Angew. Chem., 85, 590, (1973). 2a. P.R. Rao, Ph.D. T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, (1965). b. N. B a r t l e t t and P.R. Rao, Chem. Soc. P r o c , 393, (1964). 3. H. S c h a f e r , H.G.V. S c h n e r i n g , J . T i l l a c k , F. Kuhnen, H. Wohrle and H. Banmann, Z. Anorg. A l l g . Chem., 353, 281, (1964), 4. R.J. G i l l e s p i e and G.J. S c h r o b i l g e n , Chem. Comm., 89, (1974). 5. B. W e i n s t o c k , H.H. C l a s s e n , and J.G. Malm, J . Am. Chem. Soc., 79, 5832, (1957) . 6. K.O. C h r i s t e , 24th I n t e r n a t i o n a l IUPAC symposium, Non-metal Chem., p.115 (1973). 7. R.J. G i l l e s p i e and G.J. S c h r o b i l g e n , I n o r g . Chem., 13, 1230 (1974). 8. F.Q. Ro b e r t o , I n o r g . N u c l . Chem. L e t t . , 8_, 737, (1972). 9. K.O. C h r i s t e , I n o r g . Chem., 8, 741, (1972). 10. A.G. Sharpe, Advan. i n F l u o r i n e Chem., 1, 29, (1960). 11. J.H. Simmons, F l u o r i n e Chem., 5_, 1, (1964). 12. R.D. Peacock, P r o g r e s s i n I n o r g . Chem., 2, 193, (1960). 13. J.M. W i n f i e l d , MTP I n t e r . Rev. o f S c i e n c e , I n o r g . Chem., S e r i e s I , V o l . 5, D.W.A. Sharp, Ed., B u t t e r w o r t h s , London, p.271, (1972). 14. 0. Glemser, H.W. Roesky, K.H. H e l l b e r g and H.U. Werther, Chem. B e r . , 99_, 2652, (1966). 15. M.J. V a s i l e , T . J. R i c h a r d s o n , F.A. S t e v i e and W.E. F a l c o n e r , J . Chem. S o c , D a l t o n T r a n s . , 351, (1976). 261 16. A.A. Woolf i n "New Pathways i n I n o r g . C h e m i s t r y " , E.B. E b s w o r t h , A.G. Maddock, and A.G. S h a r p e , E d . , Cambridge P r e s s , p.357, ( 1 9 6 8 ) . 17. F.A. C o t t o n and G. W i l k i n s o n , "Advanced I n o r g . Chem." 2nd e d . , I n t e r s c i e n c e , N.Y. p.560, ( 1 9 6 6 ) . 18. A. E n g e l b r e c h t , Angew. Chem. I n t e r . Ed., 4_, 641, ( 1 9 6 5 ) . 19. R.C. Thompson i n " I n o r g a n i c S u l f u r C h e m i s t r y " , G. N i c k l e s s E d . , E l s e v i e r , Amsterdam, p.587, (1 9 6 8 ) . 20. R . J . G i l l e s p i e , A c c . Chem. Res., 1, 202, ( 1 9 6 8 ) . 21. A.W. J a c h e , Advan. I n o r g . Chem. Radiochem., 16_, 177, ( 1 9 7 4 ) . 22. R.D. H o w e l l s and J.D. McCown, Chem. Rev., 77_, 69, (19 7 7 ) . 23. F.B. D u d l e y and G.H. Cady, J . Am. Chem. S o c , 8_5, -3375 (1963) . N 24. E . C a s t e l l a n o , R. G a t t i , J . E . S i c r e , and H.I. Schumacher, Z. P h y s i k . Chem. ( F r a n k f u r t ) , 4_2, 174, ( 1 9 6 4 ) . 25. G.W. K i n g , D.P. S a n t r y , and C H . Warren, J . M o l e . S p e c , 3_2, 108, ( 1 9 6 9 ) . 26. P.M. N u t k o w i t z and G. Vincow, J . Am. Chem. S o c , 91, 5956, ( 1 9 6 9 ) . 27 G.W. K i n g , D.P. S a n t r y , and C H . Warren, J . Chem.Phys., 50_, 4565, (1969) . 28. I.H. H i l l i e r and V.R. S a u n d e r s , I n t . J . Quan. Chem., 4_, 503, (1970) . 29. G.W. K i n g and C H . Warren, J . M o l e . S p e c , 3_2, 121, ( 1 9 6 9 ) . 30. S.P. So, M o l e . Phys., 23_, 1147, ( 1 9 7 2 ) . 31. E.M. S u z u k i , J.W. N i b l e r , K.A. Oakes and D. E g g e r s , J r . , J . M o l e . S p e c , 58, 201, ( 1 9 7 5 ) . 32. A.B. C o r n f o r d , D . C . F r o s t , F.G. H e r r i n g and C A . M c D o w e l l , D i s c . F a r a d . S o c , 5j4, 56, ( 1 9 7 2 ) . 262 33. D.A. Johnson, "Some Thermodynamic A s p e c t s o f I n o r g . Chem.", Cambridge, p.20, (1968). 34. F.A. C o t t o n and G. W i l k i n s o n , "Advan. I n o r g . Chem.", 3nd ed. W i l e y - I n t e r s c i e n c e , p.57, (1972). 35. G.W. R i c h a r d s and A.A. Woolf, J . Chem. S o c , 470, (1968). 36. B.A. C o r n f o r d , Ph.D. T h e s i s , U n i v e r s i t y o f B r i t i s h C o lumbia, 1971. 37. R.H. Herber and.H.S. Cheng, I n o r g . Chem.,8, 2145, (1969). 38. C A . C l a u s e n , I I I , and M.L. Good, I n o r g . Chem., 9_, 817, (1970) . 39. R.S. M u l l i k e n , J . Chem. Phys., 2, 782, (1934); i b i d . , 3, 573, (1935). 40. J.E. Huheey and J.C. Watt s , I n o r g . Chem., 10, 1553, (1971). 41. H.A. C a r t e r , A.M. Q u r e s h i , J.R. Sams, and F. Aubke, Can. J . Chem., 48, 2853, (1970). 42. P.A. Y e a t s , J.R. Sams, and F. Aubke, I n o r g . Chem., 12, 328, (1973). 43. J.E. Huheey, " I n o r g a n i c C h e m i s t r y " , 2nd ed., Harper and Row, N.Y., p.167, (1978). 44. R.W. T a f t i n " S t e r i c E f f e c t s i n Organ. Chem.", M.S. Newman Ed., W i l e y , N.Y., p.556, (1956). 45. P.A. Y e a t s , J.R. Sams and F. Aubke, I n o r g . Chem., 11, 2634, (1972). 46. D.A. Edwards, M.J. S t i f f and A.A. Woolf, I n o r g . N u c l . Chem. L e t t . , 3_, 427, (1967). 47. K. O ' S u l l i v a n , R.C. Thompson and J . T r o t t e r , J . Chem Soc. (A) , 2024, (1967). 48. K. O ' S u l l i v a n , R.C. Thompson and J . T r o t t e r , J . Chem Soc. (A), 1814, (1970) . 49. R. S c h m u t z l e r , Angew Chem. I n t e r . Ed., 1_, 440, (1968). 263 50. C. j . Schack, P.D. P i l i p o v i c h and R.D. W i l s o n , I n o r g . Chem., 10, 1078, (1971) . 51. G.H. Rohrback, J . Am. Chem. S o c , 69_, 677, (1947). 52. G.S. Pea r s o n , Advan. I n o r g . Chem. Radiochem., 8_, 1 1 1 , (1966). 53. K. Dehnicke and A. Shihada, S t r u c t u r e and Bonding, 28, 51, (1976). 54. W. Read, Ph.D. T h e s i s , U.B.C. (1968). 55. A.G. Massey, Advan. I n o r g . Chem. Radiochem., 10_, 1, (1967). 56. F. Aubke and D.D. DesMarteau, F l u o r i n e Chem. Reviews, 8_, 73, (1977) . 57. R.A. DeMarco and J.M. Shreeve, Advan. I n o r g . Chem. R a d i o -chem., 16_, 109, (1974) . 58. E.L. M u t t e r t i e s and D.D. Coffmann, J . Am. Chem. S o c , 80, 5914, (1958) . 59. W. Traube, J . Hoerenz and F. W u n d e r l i c h , Chem. B e r . , 52, 1272, (1919). 60. W. Traube and E. Reubke, Chem. B e r . , 54_, 1618, (1921). 61. H.C. C l a r k and H.J. Emeleus, J . Chem. S o c , 4778, (1957). 62. J . Goubeau and J.B. M i l n e , Can. J . Chem., 4_5, 2321, (1967). 63. A.A. Woolf, J . Chem. S o c . ( A ) , 355, (1967). 64. C S . A l l e y n e , K. 0 1 S u l l i v a n - M a i l e r and R.C. Thompson, Can. J . Chem., 52, 336, (1974). 65. F.A. C o t t o n and G. W i l k i n s o n , Advan. I n o r g . Chem, W i l e y -I n t e r s c i e n c e 3rd Ed., p832, (1972). 66. J.N. B r a z i e r , and A.A. Woolf, J . Chem. S o c ( A ) , 99, (1967). 67. R.P. H a c k l , B . S c T h e s i s , U.B.C, 1977. 68. R. Mews and 0. Glemser, A b s t r a c t s , 7 t h I n t e r n a t i o n a l Sym. on F l u o r i n e Chem., Santa C r u z , C a l i f . U.S.A., 1-2, (1973). 264 69. G.A. Gordon, B.Sc. T h e s i s , U.B.C. 1978. 70. P.A. Y e a t s , B.L. Poh, B.F.E. F o r d , J.R. Sams, and F. Aubke, J . Chem. Soc. (A), 2188, (1970). 71. W.M. Johnson, R. Dev. and G.H. Cady, I n o r g . Chem., 11, 2260, (1972). 72. K.C. Lee and F. Aubke, I n o r g . Chem., i n p r e s s . 73. A.M. Q u r e s h i , H.A. C a r t e r , and F. Aubke, Can. J . Chem., 49_, 35, (1971) . 74. A. R u o f f , J.B. M i l n e , G. Kaufmann, and M. L e r o y , Z. Anorg. A l l g . Chem., 372, 119, (1970). 75. A.M. Q u r e s h i , L.E. Levchuk, and F. Aubke, Can. J . Chem., 4_9, 2544, (1971) . 76. L.E. Levchuk, J.R. Sams, and F. Aubke, I n o r g . Chem., 11, 43, (1972). 77. F.A. A l l e n , J . L e r b s c h e r , and J . T r o t t e r , J . Chem. Soc.(A) 2507, (1971). 78. J . T a y l o r and R.C. Thompson, Can. J . Chem., 4_9, 511, (1971). 79. J.R. D a l z i e l , R.D. K l e t t , P.A. Y e a t s , and F. Aubke, Can. J . Chem. , 5_2, 231, (1974) . 80. A.A. Woolf, J . Chem. S o c , 1053, (1950). 81. J.M. W i n f i e l d , p r i v a t e communication. 82. D.W.A. Sharp, J . Chem. S o c , 3761, (1957). 83. G.C. K l e i n k o p f and J.M. Shreeve, I n o r g . Chem., 3_, 607, (1964). 84. J.M. Shreeve and G.H. Cady, J . Am. Chem. S o c , 8_3, 4 521, (1961) . 85. R. Dev and G.H. Cady, I n o r g . Chem., 10, 2354, (1971). 86. R. Dev and G.H. Cady, I n o r g . Chem., 11, 1134, (1971). 87. M. L u s t i g and G.H. Cady, I n o r g . Chem., _1, 714, (1962). 265 88. S.D. Brown and G.L. Gard, I n o r g . N u c l . Chem. L e t t . , 11, 19, (1975). 89. S.D. Brown and G.L. Gard, I n o r g . Chem., 1T_, 1363, (1978). 90. L a n d o l t - B o r n s t e i n , " N u m e r i c a l Data and F u n c t i o n a l R e l a t i o n -s h i p i n S c i e n c e and Technology", V o l . 2 and Supplement I I , S p r i n g e r - V e r l a g , B e r l i n , 1966 and 1976. 91. B.N. F i g g i s and J . Le w i s , P r o g r e s s i n I n o r g . Chem., 6^, 37, (1964) . 92. B.A. Goodman and J.B. Raynor, Advan. I n o r g . Chem and Radiochem., L3, 136, (1970). 93. A.B.P. L e v e r , I n o r g a n i c e l e c t r o n i c s p e c t r o s c o p y . E l s e v i e r Pub. Co., Amsterdam. (1968). 94. B.N. F i g g i s , " I n t r o d u c t i o n t o Ligand. F i e l d s " , I n t e r s c i e n c e , N.Y., (1966) . 95. J . Ferguson, P r o g r e s s i n I n o r g . Chem., _12, 159, (1970). 96. R.D. Peacock, Advances i n F l u o r i n e C h e m i s t r y , 4_, 31, (1965). 97. J . B a r r , R.J. G i l l e s p i e , and R.C. Thompson, I n o r g . Chem., 3_, 1149, (1964) . 98. E.L. Wagner and D.F. H o r n i g , J . Chem. Phys., 18, 296, (1950). 99. A.H. H a r d i n , Ph.D. T h e s i s , U.B.C., 1970. 100. R.J. G i l l e s p i e and G.R. Pez, I n o r g . Chem., £, 1229, (1969). 101. C S . A l l e y n e , M.Sc. T h e s i s , U.B.C, 1973. 102. H.C. .C l a r k and R.J. O'Brie n , Can. J . Chem., 39_, 1030, (1961). 103. B.N. F i g g i s and R.S. Nyholm, J . Chem. S o c , 4190, (1958). 104. F.E. Mabbs and D.J. Machin, "Magnetism and T r a n s i t i o n M e t a l Complexes", Chapman and H a l l L t d . , London, 1973. 105. A. A r d u i n i , M. Garnet-t, T. Wong and R.C. Thompson, Can. J . Chem., 53^, 3812, (1975) . 266 106. D.D.Perrin and W.L.F. Arrarego, " P u r i f i c a t i o n o f Laboratory Chemicals", Pergamon Press, Oxford, 1966. 107. J.M. Shreeve and G.H. Cady, Inorg. Syn., 1_, 124, (1963). 108. G.H. Cady, Inorg. Syn., 11, 155, (1967). 109. F. Aubke and R.J. G i l l e s p i e , Inorg. Chem., 7, 599, (1968). 110. G. Brauer, Handbook of P r e p a r a t i v e Inorganic Chemistry, V o l . 1, Academic P r e s s , New York, 1963, p.301. 111. R.I. Derby and W.S. Hutchinson, Inorg. Syn., 4_, 152, (1953). 112. H.A. C a r t e r , A.M. Qureshi, and F. Aubke, Chem. Comm., 1461, (1968). 113. W.G. Thorpe and J.K. Kochi, J . Inorg. N u c l . Chem., 33, 3958, (1971) . 114. A.M. Qureshi and F. Aubke, Inorg. Chem., 10_, 1116, (1971). 115. W.M. Johnson and G.H. Cady, Inorg. Chem., 1_2, 2481, (1973). 116. R. Hoppe, Z. Anorg. A l l g . Chem., 292, 28, (1957). 117. A.I. Vogel, " Q u a n t i t a t i v e Inorganic A n a l y s i s " , 3rd Ed., J . Wiley and Sons, Inc., New York (1961) p.343. 118. B.E. Douglas and D.H. McDaniel, "Concepts and Model o f Inorg. Chem.", B l a i s d e l l Pub. Co. (1965) p. 35. 119. F.A. Cotton and G. Wil k i n s o n , Advan. Inorg. Chem., 3rd Ed., (1972). p.1049. 12 0. F.A. Cotton and G. W i l k i n s o n , Advan. Inorg. Chem., 3rd Ed., (1972). p.905. 121. D.A. Johnson i n "Some Thermodynamic Aspects o f Inorg. Chem." Cambridge, (1968) . 122. J.A. McMillan, Chem. Rev., 62_, 65, (1962). 12 3. P. Ray and D. Sen, "Chemistry o f B i - and T r i p o s i t i v e S i l v e r " , N a t i o n a l I n s t i t u t e o f Science, I n d i a , 1960. 267 124. F.A. C o t t o n and G. W i l k i n s o n , "Advanced I n o r g a n i c C h e m i s t r y " , 3rd Ed., John W i l e y and Sons, I n c . , New York, 1972. p.1048. 125. H.N. Po, Coor. Chem. Rev., 20_, 171, (1976). 126. M.S. E b e r t , E.L. Rodowskas, and J.C.W. F r a z e r , J . Am. Chem. S o c , 5_5, 3056, (1933). 127. O. R u f f and M. G i e s e , Z. Anorg. A l l g . Chem., 219, 143,(1934). 128. M.W. F a r l o w , E.H. Man, and C.W. T u l l o c k , I n o r g . Syn., 6, 155, (1960). 129. E.L. M u e t t e r t i e s , I n o r g . Syn,, 6, 158, (1960). 130. F.B. Dudley, G.H. Cady and D.F. Egge r s , J r . , J . Am. Chem. Soc. , 78_, 1553, (1956) . 131. M. L u s t i g and J.M. Shreeve, Advances i n F l u o r i n e Chem., 7_, 191, (1973). 132. P. C h a r p i n , P. P l u r i e n , and P. M e r i e l , B u l l . Soc. F r . M i n e r a l , C r i s t a l l o g r . , 9_3, 7, (1970). 133. P. F i s c h e r , D. Shwarzenback, and H.M. R i e t v e l d , J . Phys. Chem. S o l i d s , 32_, 543, (1971). 134. E. Gruner and W.,Klemm, N a t u r w i s s e n s c h a f t e n , 2J5, 59, (1937). 135. P. C h a r p i n , A . J . Dianoux, H. M a r g a r e t - E l l i s and Nguyen-N g h i , C R . Hebd, Seances Acad. S c i . , P a r i s ; S e r . C, 264, 1108, (1967). 136. P F i s c h e r , G. Roult and D. Schwarzenbach, J . Phys. Chem. S o l i d s , 32, 1641, (1971). 137. R.N. Hamer and J . Klemberg, Inorg. Syn., £, 12, (1953). 138. A.B. Neiding and I.A. Kazarmovskii, Dokl. Akad. Nauk. SSSR. 78_, 713, (1951) . 139. V. S c a t t u r i n , P. B e l l o n , and A.J. S a l k i n d , R i c e r c a S c i . , 30, 1034, (1960). 14 0. J.L. Se r v i a n and H.D. Buenafama, Inorg. Nucl, Chem. L e t t . , 5, 337, (1969). 268 141. E.R. Watson, J . Chem. S o c , 89, 578, (1906). 142. J.E. F a l k , P o r p h y r i n s and M e t a l l o p o r p h y r i n s , E l s e v i e r , New York, 1964. 143. E.K. B a r e f i e l d and M.T. M o c e l l a , I n o r g . Chem., 12, 2829 (1973) . 144. R.P. Ec k b e r g and W.E. H a t f i e l d , I n o r g . Chem., 1_4, 1205, (1975) . 145. R.W. Matthews and R.A. Walton, I n o r g . Chem., 1_0, 1433, (1971) . 146. M.G.B. Drew, R.W. Matthews and R.A. Wal t o n , J . Chem. Soc. D a l t o n T r a n s . , 2959, (1971). 147. G.W. B u s h n e l l and M.A. Khan, Can. J . Chem., 5_0, 315, (1972). 148. J . L . Atwood, M.L. Simms and D.A. Zatko, C r y s t . S t r u c t . Comm., 2, 279, (1973). 149. M.G.B. Drew, G.W.A. Fowles, R.W. Matthews and R.A. Wal t o n , J . Am. Chem. S o c , 91, 7769, (1969). 150. M.G.B. Drew, R.W. Mattews and R.A. Walton , J . Chem. Soc. D a l t o n T r a n s . , 1405, (1970). 151. B. M i i l l e r and R. Hoppe, Z. Anorg. A l l g . Chem., 392, 37, (1972) . 152. B. M i i l l e r and R. Hoppe, Z. Anorg. A l l g . Chem., 395, 239, (1973). 15 3a. G.C. A l l e n , R.F. McMeeking, R. Hoppe and B. M i i l l e r , J . Chem. S o c , Chem Comm., 291, (1972). 153b. G.C. A l l e n and R.F. McMeeking, J . Chem. Soc., D a l t o n T r a n s . , 1063, (1976) . 154. R.H. O d e n t h a l , D. Paus and R. Hoppe, Z. Anorg. A l l g . Chem., 407, 144, (1974) . 155. R.H. Odenthal and R. Hoppe, Monatsh. Chem., 102, 1340, 1971. 156. R.H. Odenthal and R. Hoppe, N a t u r w i s s . , 57, 305, (1970). 2 6 9 157. R.H. O d e n t h a l and R. Hoppe, Z. A n o r g . A l l g . Chem., 385, 92, (19 7 1 ) . 158. R. Hoppe, Z. A n o r g . A l l g . Chem., 292, 28, ( 1 9 5 7 ) . 159. R. Hoppe and R. Homann, N a t u r w e i s s e n s c h a f t e n , 53, 501, ( 1 9 6 6 ) . 160. W. Klemm and E. Huss, Z. A n o r g . A l l g . Chem., 258, 221, (1949) . 161. G.C. A l l e n and K.D. Warren, I n o r g . Chem., 8_, 1895, ( 1 9 6 9 ) . 162. H.A. C a r t e r and F. Aubke, u n p u b l i s h e d o b s e r v a t i o n s . 163. F.B. D u d l e y and G.H. Cady, and D.F. E g g e r s , J . Am. Chem. So c . , 18_, 290, (1956) . 164. F.B. D u d l e y and G.H. Cady, J . Am. Chem. S o c , 7_9, 513, ( 1 9 5 7 ) . 165. W.P. G i l b r e a t h and G.H. Cady, I n o r g . Chem., 2, 496, ( 1 9 6 3 ) . 166. K.O. C h r i s t e , C . J . S c h a c k , and E.C. C u r t i s , S p e c t r o c h i m . A c t a , 26A, 2367, (1 9 7 0 ) . 167. K. Nakamoto, " I n f r a r e d S p e c t r a o f I n o r g a n i c and C o o r d i n a t i o n Compounds", 2nd e d . , W i l e y - I n t e r s c i e n c e , ( 1 9 7 0 ) , p.83. 168. A.M. Q u r e s h i , Ph.D. T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1971. 169. K. Nakamoto, " I n f r a r e d S p e c t r a o f I n o r g a n i c and C o o r d i n a t i o n Compounds". 2nd ed., W i l e y - I n t e r s c i e n c e ( 1 9 7 0 ) , p.97. 170. K. Nakamoto, " I n f r a r e d S p e c t r a o f I n o r g a n i c a n d C o o r d i n a -t i o n Compounds". 2nd e d . , W i l e y - I n t e r s c i e n c e ( 1 9 7 0 ) , p.109. 171a. J . V a n d e r r y n , J . Chem. P h y s . , 3_0, 331, ( 1 9 5 9 ) . b. A.H. N i e l s e n , J . Chem. Phy s . , !22, 659, ( 1 9 5 4 ) . 172. K.C. Lee and F. Aubke, I n o r g . Chem., 18_, 389, ( 1 9 7 9 ) . 173. A.A. W o o l f , J . Chem. S o c , 433, (19 5 5 ) . 174. A.A. W o o l f , J . F l u o r i n e Chem., 1, 127, ( 1 9 7 1 ) . 175. M. E i s e n b e r g and D.D. Des m a r t e a u , J . Am. Chem. S o c , 92, 4759, ( 1 9 7 0 ) . 176. G. Adhami and M. H e r l e m , E l e c t r o a n a l . Chem. and I n t e r f a c . E l e c t r o c h e m . , 26, 363-379, ( 1 9 7 0 ) . 270 177. M.F.A. Dove and A.F. C l i f f o r d i n "Chemistry i n Nonaqueous I o n i z i n g S o l v e n t s " , V o l . 2, P a r t I,ed., G. J a n d e r , J . Spandan and C C . A d d i s o n , Pergamon P r e s s London p. 121, (1971) 178. W.M. Johnson, S. M i s r a , and G.H. Cady, I n o r g . Chem., 15, 1227, (1976). 179. J.D. D u n i t z and L.E. O r g e l , Adv. I n o r g . Chem. Radiochem., 2, 1, (1960). 180. B.N. F i g g i s , " I n t r o d u c t i o n t o L i g a n d F i e l d s " , I n t e r s c i e n c e -W i l e y , p.265, (1966) . 181. B.N. F i g g i s and J . L e w i s , P r o g r e s s i n I n o r g . Chem., 6^, 99, (1964) . 182. K.C. Lee and F. Aubke, Can. J . Chem., 5_5, 2473, (1977). 183a. R.G. Inskeep and M.D. Benson, J . I n o r g . N u c l . Chem., 20, 290, (1961). b. R. G. Inskeep, J . I n o r g . N u c l . Chem., 2A_, 763, (1962). 184. A.A. S c h i l t and R.C. T a y l o r , J . I n o r g . N u c l . Chem., 9_f 211, (1959). 185. C.S. A l l e y n e and R.C. Thompson, Can. J . Chem., 5_2^  3218, (1974) . 186. R.S. B a n e r j e e and S. Basu, J . I n o r g . N u c l . Chem., 26, 821, (1964). 187. H.N. Po and K.D. Chen, I n o r g . Chim. A c t a . , 14, 173, (1975). 188. S. Sudgen, J . Chem. S o c , 161, (1932). 189. G.W.A. Fowles, R.W. Matthews, and R.A. Wa l t o n , J . Chem. S o c (A) , 1108, (1968) . 190. J.A. M c M i l l a n and B. S m a l l e r , J . Chem. Phys., 35, 1698, (1961). 191. T. H a l p e r n , S.M. McKoskey and J.A. M c M i l l a n , J . Chem. Phys., 52, 3526, (1970). 271 192. M.B. R o b i n and P. Day, Advan. I n o r g . Chem. Radiochem., 10, 248, (19 6 7 ) . 193. A. Earnshaw, B.N. F i g g i s and J . L e w i s , J . Chem. S o c . ( A ) , 1656, ( 1 9 6 6 ) . 194. F.G. H e r r i n g , R.C. Thompson and C F . S e h w e r d t f e g e r , Can. J . Chem., 47, 555, ( 1 9 6 9 ) . 195. B. La n d a , M.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1969, 196. K.C. L e e and F. Aubke, p r i v a t e c o m m u n i c a t i o n . 197. P.A. Y e a t s , B. L a n d a , J.R. Sams, and F. Aubke, I n o r g . Chem., 15, 1452, ( 1 9 7 6 ) . 198. W.W. W i l s o n , J.M. W i n f i e l d and F. Aubke, J . F l u o r i n e Chem., 7, 245, ( 1 9 7 6 ) . 199. P.A. Y e a t s and F. Aubke, J . F l u o r i n e Chem., 4, 243, ( 1 9 7 4 ) . 200. W.W. W i l s o n , J.R. D a l z i e l and F. Aubke, J . I n o r g . N u c l . Chem., 37, 665, ( 1 9 7 5 ) . 201. W.W. W i l s o n and F. Aubke, J . F l u o r i n e Chem., 1_3, 431, ( 1 9 7 9 ) . 202. K. Nakamota, I n f r a r e d S p e c t r a o f I n o r g a n i c and C o o r d i n a t i o n Compounds, 2nd e d . , p.114, ( 1 9 7 0 ) . 203. D.J. R e y n o l d s , Advan. F l u o r i n e Chem., 7, 1, ( 1 9 7 3 ) . 204. C . J . S c h a c k and K.O. C h r i s t e , I n o r g . N u c l . Chem. L e t t . , 14_, 293, ( 1 9 7 8 ) . 205. M. E i s e n b e r g and D.D. D e s M a r t e a u , I n o r g . Chem., 1_1, 2641, (1972) . 206. M. Wechsberg, P.A. B u l l i n e r , F.O. S l a d k y , R. Mews and N. B a r t l e t t , I n o r g . Chem., 11_, 3063, ( 1 9 7 2 ) . 207. J . S l i v n i k and B. Zemva, Z. A n o r g . A l l g . Chem., 385, 137, (1 9 7 1 ) . 208 . C . J . S c h a c k and R.D. W i l s o n , I n o r g . Chem., 9_, 311, ( 1 9 7 0 ) . 209. F.B. D u d l e y , J . Chem. S o c , 3407, ( 1 9 6 3 ) . 272 210. D.G. R u s s e l l and J.B. S e n i o r . Can. J . Chem., 52, 2975, (1974) . 211. G.M. Kramer, J . Org. Chem., £0, 298, (1975); i b i d . , 4_0, 302, (1975). 212. R.N. H a z e l d i n e and J.M. K i d d , J . Chem. S o c , 4228, (1954). 213. C L . J e n k i n s and J.K. K o c h i , J . Am. Chem. S o c , 94, 843, (1972) . 214. E.H. A b b o t t , F. Schoenewolf, J r . , and T. Backstrom, J . Coord. Chem., 3, 255, (1974). 215. R.E. N o f t l e and G.H. Cady, I n o r g . Chem., 4. 1010, (1965). 216. D.D. DesMarteau, J . Am. Chem. S o c , 100, 340, (1978). 217. T. Gramstad and R.N. H a z e l d i n e , J . Chem. S o c , 173, (1956). 218. W. M. Johnson, B.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, (1968) . 219. J.R. D a l z i e l and F. Aubke, I n o r g . Chem., 12, 2707, (1973). 220. P.C Leung, K.C. Lee and F. Aubke, Can. J . Chem., 57, 326, (1979). 221. G.A. Olah and T. Ohyama, S y n t h e s i s , 319, (1976). 222. R.E. N o f t l e , p r i v a t e communication. 223. H. B u r g e r , K. Bruezyk, and A. B l a s c h e t t e , Monat. Chem., 101, 102, (1970). 224. M.G. M i l e s , G. D o y l e , R.P. Cooney and R.S. T o b i a s , S p e c t r o -chim A c t a , 25A, 1515, (1969). 225. P.A. Y e a t s , J.R. Sams, and F. Aubke, I n o r g . Chem., 10, 1877, (1971). 226. R.L. C a r l i n and A . J . vanDuyneveldt, "Magnetic P r o p e r t i e s o f T r a n s i t i o n M e t a l Compounds", S p r i n g e r - V e r l a g , New York, (1977), p.83-85. 273 227. K. Nakamoto, " I n f r a r e d S p e c t r a o f I n o r g a n i c and C o o r d i - ^ a t i o n Compounds", 2nd ed., W i l e y - I n t e r s c i e n c e , (1970), p.100. 228. K. Nakamoto, " I n f r a r e d S p e c t r a o f I n o r g a n i c and C o o r d i -a t i o n Compounds", 2nd ed., W i l e y - I n t e r s c i e n c e , (1970), p.89. 229. N. B a r t l e t t and N.K. J h a , J.Chem. S o c . ( A ) , 536, (1968). 230. W.P. G r i f f i t h , " Chemistry o f t h e R a r e r P l a t i n u m M e t a l (Os, Ru, I r and Rh)", I n t e r s c i e n c e Pub., London, 1967. 231. H.H C l a s s e n , H. S e l i g . J.G. Malm, C L . C h e r n i c k and B. Weinstock, J . Am. Chem. S o c , 8J3, 2390, (1961). 232. B. Weinstock, H.H. C l a a s s e n and C.L. Cherwick, J . Chem. Phys . , 3_8, 1470, (1963) . 233 . J.H. Holloway and R.D. Peacock, J . Chem. S o c , 527, (1963). 234 . J . L . Howe, J . Am. Chem. S o c , 2_3, 779, (1901). 235. M.A. Hepworth, R.D. Peacock and P.L Robinson, J . Chem. Soc., 1197, (1954). 236. E. Weise, and W. Klemm, Z. Anorg. A l l g . Chem., 279, 74, (1955) . 237. F.O. S l a d k y , P.A. B u l l i n e r , and N. B a r t l e t t , J . Chem. S o c . ( A ) , 2179, (1969) . 238. J.H. Holloway and J.G. Knowles, J . Chem. S o c . ( A ) , 756, (1969) . 239. D.R. Brown, D.R. R u s s e l l , and D.W.A. Sharp, J . Chem. S o c . ( A ) , 18, (1966) . 240. C.K. JjzSrgensen, A c t a Chem., Scand., 12^, 1539, (1958). 241. G.C A l l e n , El.Sharkawy, and K.D. Warren, I n o r g . Chem., 12, 2231, (1973). 242 . J.H. Holloway and R.D. Peacock, J . Chem. S o c , 3892, (1963). 243. N.I. K o l b i n , A.N. Ryabov, and V.M. Samoilov, Russ. J . I n o r g . Chem., Eng. T r a n s l . , 8_, 805, (1963). 274 244. S.A. Schukarev, N.I. K o l b i n , and A.N. Ryabov. Russ. J . I n o r g . Chem., Eng. T r a n s l . , 4_, 736, (1959). 245. C.K. Jjrfrgensen, M o l . Phys., 2, 309, (1959). 246. A. Earnshaw, B.N. F i g g i s , J . Lewis and R.D. Peacock, J . Chem. S o c , 3132, (1961). 247. R.B. Johannesen, G.A. C a n d e l a , I n o r g . Chem., 2, 67, (1961) . 248. E.E. A y n s l e y , R.D. Peacock and P.L. Robinson, Chem. Ind. (London), 1002, (1952). 249. M.K. W i l k i n s o n , E.O. W o l l e n , H.P. C h i l d and J.W. C a b l e , Phys. Rev., 121, 74, (1961). 250. K.R. Hyde, E.W. Hooper, J . Waters and J.M. F l e t c h e r , . J.M. F l e t c h e r , J . Less-Common m e t a l s . 8:, 428, (1965). 251. J.M. F l e t c h e r , W.E. Gardner, A.C. Fox and G. Topping, J . Chem. S o c . ( A ) , 1038, (1967). 252. B.N. F i g g i s , " I n t r o d u c t i o n t o L i g a n d F i e l d " , I n t e r s c i e n c e , N.Y., (1966), p.272. 253. B.N. F i g g i s and J . L e w i s , P r o g r e s s i n I n o r g . Chem., 6_, p.69, (1964) . 254. B.N. F i g g i s and J . Le w i s , P r o g r e s s i n I n o r g . Chem., 6_, p.173-175, (1964). 255. J.E. Fe r g u s s o n , J.D. K a r r a n and S. Seevaratnam, J . Chem. Soc., 2627, (1965). 256. A. Earnshaw, B.N. F i g g i s , J . Lewis and R.S. Nyholm, N a t u r e , 179, 1121, (1957). 257. J.M. F l e t c h e r s , W.E. Gardner, E.W. Hooper, K.R. Hyde, F.H. Moore and J.L Woodhead, N a t u r e , 199, 1089, (1963). 258. C.K. J0rgensen, Adv. Chem.Phys., 5, 33, (1963). 259. G.C. A l l e n , R. Al-Mobarak, G.A.M. El-Sharkawy, and K.D. Warren, I n o r g Chem., 11, 787, (1972). 260. K.D. Bowers and J.Owen, Rep. P r o g r . Phys., 18, 304, (1955) / 275 261. H.S. J a r r e t t , J . Chem. Phys., 27_, 1298, (1957). 262. A. Hudson and M.J. Kennedy, J . Chem. S o c . ( A ) , 1116, (1969). 263. M.J. B e n n e t t , K.G. C a u l t o n and F.A. C o t t o n , I n o r g . Chem. , 8_, 1, (1969) . 264. T.A. Stephenson and G. W i l k i n s o n , J . I n o r g . N u c l . Chem., 28, 2285, (1966) . 265. B.N. F i g g i s , " I n t r o d u c t i o n t o L i g a n d F i e l d s " , I n t e r s c i e n c e N.Y., p.273,288, (1966). 266. 0. R u f f and F.W. T c h i r c h , B e r . , 4_6, 929, (1913). 267. B. Weinstock and J.G. Malm, J . Am. Chem. Soc., SH), 4466, (1958) . 268. M.A. Hepworth and P.L. Robinson, J . I n o r g . N u c l . Chem., 4, 24, (1957) . 269. N. B a r t l e t t and J . T r o t t e r , J . Chem. S o c . ( A ) , 543, (1968). 270. G.B. Hargreaves and R.D. Peacock, P r o c . Chem. Soc. (London), 85, (1959) . 271. B. Weinstock, H.H. C l a a s s e n and J.G. Malm, J . Chem. Phys., 32, 181, (1960) . 272. W.P. G r i f f i t h , J . Chem. S o c , 3694, (1965). 273. G.B. Hargreaves, and R.D. Peacock, J. Chem. S o c , 2618, (I960) . 274. G.H. Cady and G.B. Hargreaves, J . Chem. S o c , 1568, (1961). 275. M.A. Hepworth and R.L. Robinson and G.J. Wes t l a n d , J . Chem. S o c , 4269, (1954). 276. N.I. K o l b i n , I.N. Semenov and Yu. M. Shutov, Russ. J . I n o r g . Chem. Eng. T r a n s l . , 8_, 1270, (1963); i b i d . , 9_, 108, (1964). 277. I.N. Semenov and N.I. K o l b i n , Russ. J . I n o r g . Chem. Eng. T r a n s l . , 7_, 111, (1962). 276 278. W.P. G r i f f i t h , " Chemistry o f the R a r e r P l a t i n u m M e t a l . (Os, Ru, I r and Rh)", I n t e r s c i e n c e Pub. London, 1967, p.52-61. 279. S.A. Schukarev, N.I. K o l b i n and I.N. Semenov, Russ. J . I n o r g . Chem. Eng. T r a n s l . , 638, (1961). 280. J.E. Fe r g u s s o n , B.H. Robinson and W.R. Roper, J . Chem. S o c , 2113, (1962). 281. N.S. G a r i f ' y a n o v and E.G. Karakhashyan, F i z . T v e r d . T e l a , _7, 1274, (1965); S o v i e t P h y s . — s o l i d s t a t e ( E n g l , t r a n s l . ) 7, 1033, (1965) . 277 APPENDIX A LIST OF ABBREVIATIONS vs = v e r y s t r o n g approx. = a p p r o x i m a t e l y s = s t r o n g b i p y = 2 , 2 1 - b i p y r i d i n e ms = medium s t r o n g py = p y r i d i n e m - medium Me = m e t h y l mw = medium weak E t = e t h y l w = weak n-Pr = n - p r o p y l vw = v e r y weak D i f f . R e f l . = d i f f u s e r e f l e c t a n c e b = broad (s) = s o l i d sh = s h o u l d e r (1) = l i q u i d sym = symmetric (g) = gas * asy = asymmetric y g = Bohr Magneton s t r = s t r e t c h ESR = e l e c t r o n s p i n resonance def = d e f o r m a t i o n UV = u l t r a - v i o l e t r o c k = r o c k i n g IR = I n f r a r e d R = Raman * -20 1 Bohr Magneton = 0.92732 x 10 erg/gauss 278 APPENDIX B - l DETERMINATION OF ELECTRON AFFINITY OF THE  FLUOROSULFATE RADICAL BY BORN-HABER CYCLE CALCULATION 3 3 OF KSO^F KS0 3F (s) U 2 9 g KS0 3F + (n+l)RT AHj KS0 3F K +(g) IP K + |^RT AH , K sub S 0 3 F (g) - E a ( S 0 3 F ) -|SRT K(g) + S0 3F(g) 2 D S 2 ° 6 F 2 2" v a p . S 2 O g F 2 K(s) + | S 2 0 6 F 2 ( 1 ) Where: E i s the e l e c t r o n a f f i n i t y o f the SO,F« r a d i c a l , d e f i n e d as S0 3F« (g) + e" S0 3F~ (g) n as i n MX : f o r KSO,F, n=l. n o Dg Q F i s the d i s s o c i a t i o n energy of gaseous S 2 O g F 2 2 6 2 279 APPENDIX B-2 2 3 i n t o two SO^F* r a d i c a l s and determined as 97.5 kJ/mol , 92.0 kJ/mol 2 3 , and 91.2 kJ/mol 2 4 . Average D„ _ „ =93.6 kJ/mol S 2 ° 6 F 2 AH i s the energy r e q u i r e d to v a p o r i z e a mole of 16 2 l i q u i d S 2 O g F 2 = 31.9 kJ/mol IP i s the f i r s t i o n i z a t i o n p o t e n t i a l o f K, determined K to be 4.339 eV (418.7 kJ/mol) a . 2 9 8 AH ° K i s the s u b l i m a t i o n energy o f : K(s) ^ K(g) , sub a value of 90.0 kJ/mol A H 2 9 8 KS0 3F i s the enthalpy of formation of KS0 3F, 35 determined to be -1155 kJ/mol U 2 9 8 KS0 3F i s the l a t t i c e energy o f KS0 3F a t 298 K and c a l c u l a t e d u sing the K a p u s t i n s k i i equation,knowing the u n c e r t a i n -t i e s i n v o l v e d i n assuming a NaCl type l a t t i c e f o r KS0 3F. a. C.E. Moore, C i r c u l a r of the N a t i o n a l Bureau of Standards 467, Atomic Energy L e v e l s V o l . I l l , p.198. b. D.J. C u b i c c i o f t i , J . Chem. Phys., 31, 1646(1959); i . b . i . d . 34, 2189, (1961). APPENDIX B-3 U KS0 3F (418.4) 287.2 v • z + • z r + + r 34.5 1 -r + + r_ [UT.„_ „ i n kJ/mol w i t h r and r i n pm] K b U ^ r + — + C I o n i c r a d i u s ( P a u l i n g ) o f K = 133 pm v i s t h e number o f i o n s i n t h e m o l e c u l e . s t r u c t u r e d a t a SO^F may be d e t e r m i n e d from the x- r a y c r y s t a l 47 r S 0 3 F - = d S - F + r c o v . F = ( 1 5 8 + 6 4 ) P m = 2 2 2 P m o r = d g ^ + r c Q v > Q = (143 + 66) pm = 209 pm and may be assumed t o be comparable t o t h e K a p u s t i n s k i i 1 s "thermochemical r a d i i " o f i s o e l e c t r o n i c a n i o n s . r , - - 236 pm and r 2- = 230 pm 4 4 Us i n g the v a l u e o f 0.222 nm f o r r S 0 3 F c. F.A. C o t t o n and G. W i l k i n s o n . "Advan. I n o r g . Chem.", 3rd Ed W i l e y - I n t e r s c i e n c e , (1972) p. 52. d. F.A. C o t t o n and G. W i l k i n s o n . "Advan. I n o r g . Chem.", 3rd Ed W i l e y - I n t e r s c i e n c e , (1972) p. 117. e. D.A. Johnson, "Some thermodynamic a s p e c t s o f I n o r g a n i c Chem Cambridge, (1968), p.41. 281 APPENDIX B-4 UKS0 3F = 6 1 1 • 2 k J / m 0 1 Hence, from t h e B o r n - H a b e r c y c l e : AH° KSO3F = - U 2 9 8 KSO3F + I P K + A H g u b K + § D 2 6 2 + 1 A H v a p S 2 ° 6 F 2 " 2 RT - E a ( S 0 3 F ) E a ( S 0 3 F ) = - U 2 9 g KSO3F + I P K + A H ^ K + \ D s 2 b 2 + \ A H v a p S 2 ° 6 F 2 ~ 2 RT - A H ° KSO3F = (-611.2 + 418.7 + 90.0 + 46.8 + 15.9 - 5.0 + 1154) k J / m o l . E 3 (SO^F) = 1110 k J / m o l (11.50 eV) a 0 ================================-282 APPENDIX C - l DETERMINATION OF ENTHALPY OF FORMATION, AH°, OF A g ( S 0 3 F ) 2 BY BORN-HABER CYCLE CALCULATION A g ( S 0 3 F ) 2 (s) U 2 9 8 Ag(S0 3F) 2 + (n+l)RT A H ° A g ( S 0 3 F ) 2 A g 2 + ( g ) + I P A g A H , Ag sub ^ 2 S0 3F (g) -2 E a ( S 0 3 F ) - § S w Ag (g) + 2 S0 3 F (g) D S 2 ° 6 F 2 + A H v a p S 2 ° 6 F 2 Ag (s) + S 2 O g F 2 (1) MX n n = 2 f o r A g ( S 0 3 F ) 2 A H f A g ( S 0 3 F ) 2 = - U 2 9 8 A g ( S 0 3 F ) 2 + i E 2 I P A g . + A H ^ A g + D S 2 0 6 F 2 + A H v a p S 2 ° 6 F 2 " 3 R T " 2 E a ( S 0 3 F ) D =93.6 kJ/mol (Appendix B) b 2 U 6 * 2 A H v a p S 2 ° 6 F 2 = 3 1 , 9 k J / m o 1 (Appendix B) 283 APPENDIX C-2 298 a A H s u b A g = 284.5 k J / m o l ; RT = 2.48 k J / m o l i E 2 I P = 7 3 k J / m o l + 2072 kJ / m o l = 2803 k J / m o l E, (SO^F) = 1110 k J / m o l ( A p p e n d i x B) The L a t t i c e e n e r g y may be r o u g h l y e s t i m a t e d by K a p u s t i n s k i i ' s E q u a t i o n ; ( 34 .5 (418.4) 287.2 v • z • z U 2 9 g A g ( S 0 3 F ) 2 = r , + r 1 -r , + r + + (in kJ/mol) - 2055.3 kJ/mol with r + and r_ i n pm. C d 2 + P d 2 + r C = i^Z ± 831 = 9 0 pm; r_ = 222 pm (Appendix B) ; r + + r _ = 312 pm ; v = 3 AH° A g ( S 0 3 F ) 2 = -2055.3 k J / m o l + 2803 k J / m o l + 284.5 k J / m o l +93.6 kJ / m o l +31.9 k J / m o l - 3(2.48 kJ/mol) - 2(1110 kJ/mol) = -1070 kJ/ m o l a. D.A. J o h n s o n , "Some Thermodynamic A s p e c t s o f I n o r g . Chem.", Cambridge, ( 1 9 6 8 ) , p.208. b. R e f . a, A p p e n d i x B. c. D.A. J o h n s o n , "Some Thermodynamic A s p e c t s o f I n o r g . Chem.", Cambridge. ( 1 9 6 8 ) , p.37. APPENDIX C-3 For AgF 2: A H f AgF2 = - U 2 9 8 A g F 2 + ^ I P ^ + A H ^ A g + D j - 3 RT - 2 E (F) a U298 A ^ F 2 ( i n kJ/mol) (418.4) 287.2 v • z + • z_ r + + r 1 -34 .5 2703.2 k J / mol w i t h r + and r _ i n pm. v = 3 ; r + = 90 pm ; z + = 2 z = 1 r _ = 136 pm r + + r _ = 226 pm. D =18.9 K c a l / m o l = 79.1 kJ/mol 2 E a ( F ) 3 4 = 333 kJ/mol a d. Ref. c, Appendix B e. D.A. Johnson, "Some Thermodynamic A s p e c t s o f I n o r g . Chem. Cambridge, (1968), p.43. 285 APPENDIX C-4 AH° AgF2 = -2703.2 k J / m o l + 2803 k J / m o l + 284 . 5 k J / m o l + 79.1 k J / m o l - 3(2.84 kJ/mol) - 2(333 kJ/mol) = - 2 1 0 k J / m o l APPENDIX D - l DETERMINATION OF EF F E C T I V E MAGNETIC MOMENT> u e r f BY THE GOUY METHOD The Gram o r S p e c i f i c M a g n e t i c S u s c e p t i b i l i t y o f t h e sample i s d e t e r m i n e d e x p e r i m e n t a l l y , a c c o r d i n g t o : 3 (AW - 6) W Where 3 = Gouy t u b e c a l i b r a t i o n c o n s t a n t m easured i n a f i e l d i n d u c e d c u r r e n t o f 2 amperes u s i n g H g C o ( C N S ) 4 as a r e f e r e n c e . 6 = Change i n w e i g h t o f Gouy t u b e i n and o u t o f m a g n e t i c f i e l d . W = W e i g h t o f sample i n t h e Gouy tu b e AW = Change i n w e i g h t o f sample and Gouy t u b e i n and o u t o f f i e l d (an a v e r a g e o f a t l e a s t s i x r e a d i n g s ) The M o l a r M a g n e t i c S u s c e p t i b i l i t y : X M = X g (M.W.) where M.W. = m o l e c u l a r w e i g h t o f t h e sample compound. 287 APPENDIX D-2 The c o r r e c t e d M o l a r S u s c e p t i b i l i t y : c o r _ y d i a XM XM i X i d i ci where ^ i X i = sum o f t h e d i a m a g n e t i c c o n t r i b u t i o n o f i n d i v i d u a l components o f t h e sample compound ( l i s t e d i n S e c t i o n I I .B.4) . The e f f e c t i v e m a g n e t i c moment: 1 ^ e f f = 2 - 8 2 8 < x S ° r T ) 2 i n y B where T = t e m p e r a t u r e ( i n K) o f t h e s a m p l e . c o r I f t h e p l o t o f 1 / X M v e r s u s T e m p e r a t u r e g i v e s a l i n e a r r e l a t i o n s h i p w i t h a s m a l l i n t e r c e p t 0 , a t t h e t e m p e r a t u r e a x i s , t h e C u r i e - W e i s s Law i s o b e y e d . The C u r i e -C W We i s s m a g n e t i c moment V e f f " m a Y be c a l c u l a t e d a c c o r d i n g t o : 1 y^W. = 2 Q 2 8 [ x c i o r ( T - 0 ) ] 2 where 0 = W e i s s c o n s t a n t . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0060741/manifest

Comment

Related Items