UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

X-ray crystallographic studies of four photoreactive tetrahydronaphthoquinol derivatives and five related.. Secco, Anthony Silvio 1982

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1982_A1 S43_3.pdf [ 49.98MB ]
Metadata
JSON: 1.0060732.json
JSON-LD: 1.0060732+ld.json
RDF/XML (Pretty): 1.0060732.xml
RDF/JSON: 1.0060732+rdf.json
Turtle: 1.0060732+rdf-turtle.txt
N-Triples: 1.0060732+rdf-ntriples.txt
Original Record: 1.0060732 +original-record.json
Full Text
1.0060732.txt
Citation
1.0060732.ris

Full Text

X-RAY CRYSTALLOGRAPHIC PHOTOREACTIVE  STUDIES OF FOUR  TETRAHYDRONAPHTHOQUINOL  DERIVATIVES AND  F I V E RELATED COMPOUNDS  by ANTHONY S I L V I O  B.Sc,  St. Francis  Xavier  SECCO  University,  1978  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS  FOR THE DEGREE OF  DOCTOR OF  PHILOSOPHY  in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF  We  accept to  The  this  thesis  the required  University  as conforming standard .  of B r i t i s h  March  © Anthony  CHEMISTRY  Columbia  1982  Silvio  Secco  1982  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of  requirements f o r an advanced degree at the  the  University  o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it  f r e e l y a v a i l a b l e f o r reference  and  study.  I  further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may department or by h i s or her  be  granted by the head o f  representatives.  my  It i s  understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain  s h a l l not be allowed without my  permission.  Department o f  dA^vn' s  The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3  DE-6  (3/81)  written  ii  ABSTRACT  The  structures  of  four  naphthoquin-4-ol  derivatives  their  photochemical  observed  dominant  in  the  because  of  their  the  lattice.  and  solid  by  fi =  C2/c,  for  derivative,  and  888  Z = 4. T h i s  reflections.  and  monoclinic, derivative, and  the  6  of  these  been  solved  by  group  a = 5.148(1),  procedures.  C,t,H o0 , 2  is  2  refinement  compound,  o f 671  a = 9.242(3),  fi = 1 0 2 . 7 ( 1 ) ° ,  Z = 4,  The  p =  105.30(1)°  c = 17.316(3)  The  and 6 , 7 - d i m e t h y l - 4 o - o l  2,3-  refined  the  r e f i n e m e n t of  similar  £2,2,2,,  respectively.  conformations  For  the  1 2 . 2 6 9 ( 2 ) , c = 16.478(3) A,  b = 22.724(3), refined  Z = 4. An  1934  to  =  and 2,3Z = 4 6,7A,  t o R = 0.032 f o r 626  data.  is  monoclinic,  16.792(3), c =  12.687(3) A,  1 7  H 60 , 2  2  R - v a l u e o f 0.041 The  are  R  c = 5.139(2)  C  b =  reflections. which  A,  was  a = 7.497(2),  and  space  structure  2,3,4o,4a£,6,7,8ap-heptamethyl-4p-ol, space group £2,/c,  2,3,6,7-  d a t a l e d t o an R of 0.031. The  was  by  methods  monoclinic,  b = 5.228(1),  £2i/c, b =  are  compounds  direct  2  space  to  H-abstractions  compounds-C, H, 0 , a r e o r t h o r h o m b i c , space group 2  related  the topochemical c o n t r o l  squares  a = 13.898(3),  97.442(7)°  0.058  have  least  studied  photolyses  c o n f o r m a t i o n s and  tetramethyl-4o-ol group  been  reactivity.  state  A l l structures  refined  have  4ap,5,8,8a$-tetrahydro-1 -  was  above  favorable  obtained  compounds to  from have  H-abstraction  reactions. The  6,7-dimethyl-1o,4o-diol C , H  monoclinic  2  system,  space  1 8  group  0 , 2  crystallizes  £2i/c,  a =  in  the  13.870(2),  b =  1 8 . 0 2 5 ( 4 ) , c = 9.236(1) A,  refined  to  adopts  R  the  =  either  0.032 f o r 1461  same  photoreactive.  system,  conformation  as  following  four  The  1 0  H  1 0  0 , 2  space  c = 6.708(2) A, reflections  was  <3 =  P2,/n,  1 06.24( 1 )°  converged  at  crystals,  P2,/n,  10.847(3),  a =  = 95.22(1)° 569  structure  and  the  acetylation  12.374(2),  product  C  was  2 8  0„S,  P2,/c, 0 = 2995  are  formed.  and  reflections.  R  Z =  is  their  not from  oxidized structure,  i n the  monoclinic  b =  19.454(2),  Refinement  The  of  the  c = =  930  which  space  for  1369  compound  the hydroxy  this  derived  2  described  group  P2,/a,  104.027(6)°  data. A  ,  reaction  resulted  mesylate  c =  of  H «0,  are monoclinic,  10.938(1),  4. R e f i n e m e n t  1 7  0.057  compound  previously  13.743(2) A, fi =  crystals b =  C  A,  to R =  elucidation  ketone  group  13.654(4)  intermediate  the  0.037  space  refined  that  methylene of  c =  was  hoped  a d i k e t o n e cage  The  but  monoclinic,  monoclinic,  from  a = 9.246(2),  102.11(1)°  was  is  to p i n a c o l i z e  different H  2 r  product  to  Z = 4.  structure  b = 8.771(1),  refined  compound  or  b = 6.924(1),  formed.  heptamethyl-40-ol,  designed  H,,0  determining  i t was  diol  above  was  R = 0.037. 5 - ( 2 , 3 - d i m e t h y l p h e n y l ) - y -  Z = 4. The  aid in  The  twistane-1ike  and  would  from  and  1 2  and  a = 6.381(2),  It  which  Z = 4  C  , Z = 8  compounds were d e r i v e d  A  reflections.  from  1 7  those  found t o c r y s t a l l i z e  group  butyrolactone  a =  reflections.  tetrahydronaphthoquinones.  twistenone C  for  108.098(6)°  tetrahydronaphthoquinol progenitors  forms,  I  *> =  in  a  derivative  space  17.335(4)  c o n v e r g e d a t R = 0.042  group A, for  iv  TABLE OF CONTENTS  Title  Page  i  Abstract  i i  T a b l e Of C o n t e n t s  iv  List  Of T a b l e s  List  Of F i g u r e s  x  Acknowledgement  x i i  GENERAL  v i i  INTRODUCTION  Crystallographic Data  Introduction  2  Collection  Determination Data  1  2  Of C e l l  Constants  5  Reduction  Solution  5  By D i r e c t Methods  ;  6  Refinement Chemical  11  Introduction  Photochemistry:  12  Structure-Reactivity Relationships  ..  Thesis Outline Schematic  12 19  Of The T h e s i s L a y o u t  21  PART I  22  CHAPTER I : 2 , 3 , 6 , 7 - T E T R A M E T H Y L - 4 a £ , 5 , 8 , 8 a p ~ T E T R A H Y D R O 1 -NAPHTHOQUIN- 4o-OL  .-  23  Introduction  24  Experimental  24  Solution  27  And R e f i n e m e n t  Discussion CHAPTER  30 II:  2,3-DIMETHYL-4a*,5,8,8a0-TETRAHYDRO-1-  V  NAPHTHOQUIN-4a-OL AND  6,7-DIMETHYL-4afi,5,8,8ap-TETRAHYDRO-1-NAPHTHOQUIN-4o  -OL  42  Introduction  43  Experimental  43  Solution  46  And R e f i n e m e n t  2 , 3-Dimethyl-4a0,5,8,8ap-tetrahydro-1-naphthoquin-4a~ ol  46  6,7-Dimethyl-4a0,5,8,8a$-tetrahydro-1-naphthoquin-4ool  47  Discussion CHAPTER  48  I I I : 2,3,4c,4a0,6,7,8a*-HEPTAMETHYL-4a0,5,8,8a0-  TETRAHYDRO-1-NAPHTHOQUIN-4 0-OL  65  Introduction  66  Experimental  66  Solution  68  And R e f i n e m e n t  Discussion  69  C o m p a r i s o n Of Compounds CHAPTER  IV:  (III)-(VII)  75  6,7-DIMETHYL-4a0,5,8,8a0-TETRAHYDRONAPHTHOQUIN-  1c,4o-DIOL  94  Introduction  95  Experimental  96  Solution  98  And R e f i n e m e n t  Discussion  103  Comparison With T e t r a h y d r o n a p h t h o q u i n - 4 c - o l s  112  Asymmetric  118  Unit  Size  - Structure  Comparison  PART I I CHAPTER V: A TWISTANE DERIVATIVE  120 (TWISTENONE)  121  vi  Introduction  122  Experimental  124  Solution  125  And R e f i n e m e n t  Discussion  126  CHAPTER V I : 5-(2,3-DIMETHYLPHENYL)-r-BUTYROLACTONE  137  Introduction  138  Experimental  139  Solution  140  And R e f i n e m e n t  Discussion CHAPTER V I I : [4.4.0.0 3  143  k  1,3,4,5,6,9-HEXAMETHYL-8-EXO-METHYLENETRICYCLO 9  ]DEC-4-ENE-2-ONE  154  Introduction  155  Experimental  155  Solution  And R e f i n e m e n t  ..  Discussion CHAPTER  157 161  VIII:  1,2,3,5,6,8-HEXAMETHYL-4-MESYL-7-HYDROXY-  TETRACYCLO[ 4.2.1 .1 - - 0 - ]DECANE 2  5  3  7  172  Introduction  173  Experimental  173  Solution  176  And R e f i n e m e n t  Discussion  181  SUMMARY  1 90  References SUPPLEMENTARY  193 MATERIAL  198  vi i  L I S T OF  TABLES  GENERAL INTRODUCTION  1  PART I  22  CHAPTER I  23  I.  Positional  and i s o t r o p i c  II.  Anisotropic  III.  Bond l e n g t h s and a n g l e s  IV.  Bond  thermal parameters  lengths  and  Torsion  ...  ••  32  involving  hydrogen  "  37  angles  39  CHAPTER I I  42  VI.  Positional  VII.  Anisotropic  VIII.  Torsion  IX.  Geometrical  and i s o t r o p i c  thermal parameters  ...  thermal parameters  48 50  angles  abstraction X.  31  36  angles  atoms V.  thermal parameters  51 parameters  in  the  p-enone  reaction  57  Bond l e n g t h s a n d a n g l e s  61  CHAPTER I I I  65  XI.  Positional  XII.  Anisotropic  XIII.  Parameters in  and i s o t r o p i c  thermal parameters  ...  thermal parameters relevant  to  72  photochemical  the d e r i v a t i v e s  70  activity ;  77  XIV.  Bond l e n g t h s i n t h e d e r i v a t i v e s  82  XV.  Bond a n g l e s i n t h e d e r i v a t i v e s  83  XVI.  Torsion  86  XVII.  Supplementary  angles  i n the d e r i v a t i v e s bond l e n g t h s and a n g l e s  i n (VI) .  88  vi i i  XVIII.  Bond  lengths involving  XIX.  Bond a n g l e s  XX.  Supplementary  involving torsion  hydrogen hydrogen angles  atoms atoms  i n (VI) .  89  i n ( V I ) ..  90  i n (VI)  91  CHAPTER IV  94  XXI.  Positional  and i s o t r o p i c  XXII.  Anisotropic  XXIII.  Bond  XXIV.  Bond a n g l e s  XXV.  Bond l e n g t h s i n v o l v i n g  XXVI.  Bond a n g l e s  XXVII.  Hydrogen bonding  XXVIII.  Torsion  thermal parameters  ... 100  thermal parameters  102  lengths  106 107  involving  hydrogen hydrogen  atoms  108  atoms  109  geometries  111  angles  113  PART I I  120  CHAPTER V  121  ,  XXIX.  Positional  and i s o t r o p i c  thermal parameters  ... 127  XXX.  Anisotropic  XXXI.  Bond l e n g t h s  129  XXXII.  Least squares planes  130  XXXIII.  Bond a n g l e s  135  thermal parameters  128  CHAPTER VI  137  XXXIV.  Positional  XXXV.  Anisotropic  XXXVI.  Bond  XXXVII.  Bond  and i s o t r o p i c  thermal parameters  thermal parameters  145  l e n g t h s and a n g l e s lengths  and  148  angles  involving  hydrogen  atoms XXXVIII.  Torsion  149 angles  150  CHAPTER V I I XXXIX.  ... 144  154 Positional  and i s o t r o p i c  thermal parameters  ... 159  ix  XL.  Anisotropic  thermal  parameters  160  XLI.  Bond a n g l e s  XLII.  Bond a n g l e s  XLIII.  Torsion angles  165  XLIV.  Bond l e n g t h s  168  XLV.  Bond l e n g t h s  162 involving  involving  h y d r o g e n atoms  164  h y d r o g e n atoms  169  CHAPTER V I I I  172  XLVI.  Positional  and i s o t r o p i c  XLVII.  Anisotropic  XLVIII.  Torsion angles  183  XLIX.  Bond l e n g t h s  185  L.  Bond a n g l e s  186  thermal  thermal  parameters  parameters  ...  178 180  X  L I S T OF FIGURES  GENERAL  INTRODUCTION  1  1.  D e f i n i t i o n s of T  2.  Production  q  and A  15  Q  of  4ap,5,8,8ap-tetrahydro-1  -  napHthoquin-4-ols  16  3.  Conformations  18  4.  Definitions  5.  Relationship  i n naphthoquinols  of T  c  of  and  18  the  diol  t o naphthoquinones and  naphthoquinols  20  PART I  22  CHAPTER I  23  6.  Preparative reaction  7.  E-map; p r o j e c t i o n electron  8.  density  S t e r e o diagram  scheme  onto  least  25 squares  plane  through  peaks  29  of the molecular  packing  of type  A  molecules 9.  S t e r e o diagram  34 of the molecule  35  CHAPTER I I  42  10.  S t e r e o diagrams of the m o l e c u l e s  11.  Stereo packing diagrams  56 ...  CHAPTER I I I  59 65  12.  S t e r e o diagram  of the molecule  73  13.  Stereo packing  diagram  75  CHAPTER IV  94  14.  S t e r e o diagram  of a type  15.  Stereo packing diagram  A molecule  103 104  xi  PART I I  120  CHAPTER V  121  16.  R e s u l t s of d i f f e r e n t  17.  Torsion angles  18.  Torsion  123 131  angles  twist-boat  methods o f i r r a d i a t i o n  in  twistane  and  the  idealized  conformation  133  19.  S t e r e o diagram  of the molecule  134  20.  Stereo packing  diagram  136  CHAPTER VI  137  21.  Reaction  scheme l e a d i n g t o t h e l a c t o n e  139  22.  S t e r e o diagram  of the molecule  146  23.  Stereo packing  diagram  147  CHAPTER V I I  154  24.  Reaction  25.  S t e r e o diagrams of the m o l e c u l e of  scheme l e a d i n g t o t h e m e t h y l e n e  the unit  and  the  ketone  .. 156  contents  cell  171  CHAPTER V I I I 26.  Reaction  172 scheme  leading  t o the hydroxy  derivative  mesylate 174  27.  Stereo packing  diagram  181  28.  S t e r e o diagram  of the molecule  188  i  xi i  ACKNOWLEDGEMENT  I w i s h t o e x p r e s s my s i n c e r e Professor research during  research  group and f o r t h e guidance and a d v i c e  am  group  I am a l s o Pauptit  results  appreciation  Dr.  for their they  t o Drs.  me  S. J . R e t t i g , R. G. B a l l  given  studies.  me  generosity  during  my  and  with  R.  their  learning  of  techniques.  acknowledge of  crystals,  information.  unyielding patience,  Research C o u n c i l  t h r o u g h o u t my g r a d u a t e  given  L e u e e n Walsh) f o r p r o v i d i n g  have  of h i s  J . R. S c h e f f e r a n d members o f h i s  p r o c e d u r e s and  gratefully  he h a s  to  studies.  and background  indebted  crystallographic  Engineering  to  (especially  time and t h e h e l p  I  o f my g r a d u a t e  grateful  photochemistry  A.  and  James T r o t t e r f o r a l l o w i n g me t o become a p a r t  the course  I  thanks  the Canada  Natural for  Sciences  financial  and  support  1  GENERAL  INTRODUCTION  2  Crystallographic Introduction The  fundamental  diffraction texts  in  a  crystal  solution  the various  and r e f i n i n g  s e t have been w e l l - d e v e l o p e d  number  of  authors  references w i l l conjunction  techniques  to  their  are given  solution  given a  and e l e g a n t l y  obtaining  invaluable  a  reliable  communicated  the text  contributions  X-ray  i n several  of  that  these  of  methods  (7-15). Throughout  be made  with  and  structure analysis  ( 1 - 6 ) . In a d d i t i o n ,  structural data  principles  that  by  follows,  contributors in  to  the  art  of  crystallography. The  general procedures  solution in  this  will  and  refinement  enable  the  to  and  structural  to a l l structures  an o u t l i n e  of  appreciate  these  better  presented procedures  the  ensuing  sections.  fora l l structures  automatic  the goniometer routine  is  methodical  effected  were measured  i n a general  manner  invoked  orientation. to  i n an e f f o r t  Accurate  explore to find  positioning  by a c e n t e r i n g p r o c e d u r e  and  apertures  peak-centers.  on  an  Enraf-Nonius  diffTactometer. Usually, a crystal  then  reflections.  scans  reader  collection  collection Data  CAD4  a r e common  work. I t i s hoped t h a t  experimental  Data  of data  are  The r e s u l t i n g  An  setting  automatic  reciprocal up t o  of  i n which  employed  i s mounted on  a  these  space  maximum  in a of  reflections  different  in locating  search  types  25 is of  the r e f l e c t i o n  a n g l e s a r e used  i n composing  3  a c o l l e c t i o n of v e c t o r s which e a c h r e f l e c t i o n a n d t h e sum combination primitive  of  cell  two  and  matrix  effected  until  vector  employed  i n data  a  range  limited  constant  (0.347  widening  of  the  mosaic  25%  on  horizontal function  being  the  real  values) and t h e  recent  orientation  r e f l e c t i o n s . Once a  space  t o be e x p l o r e d  v a l u e s which,  the  commonly  i n the following  t o be  theta  side  sample  include  limits.  required  an a d j u s t a b l e  through  omega  Whereas DOMB i s a  in calculating  background  2  usually  scan  the  a t h i g h e-  split  on  i s extended  measurement.  i salso  the r e l a t i o n s h i p  parameter  An  t o sample a n d depends m a i n l y  aperture width a t the detector of theta  i srestricted  (DOMA + D O M B * t a n © ) f o r  i n t h e c r y s t a l . The a c t u a l to  paragraphs.  ability.  t h e r e f l e c t i o n due t o t h e K o , - R o from  adjusted  for p r a c t i c a l purposes, i s  scattering  f o r Mo r a d i a t i o n )  spread  each  the  procedure,  t h e parameters  from t h e e x p r e s s i o n  within  a n g l e s , DOMA v a r i e s  a  i s included  theta  i sderived  reflection  h,k,l  t h e most  by t h e c r y s t a l ' s g e n e r a l  scan angle each  with  of r e c i p r o c a l  of  fitting between  f r o m t h e most  i sobtained,  of  c o l l e c t i o n a r e chosen. A b r i e f d e s c r i p t i o n of  procedure  region  deviation  integral  of the  centering  squares  set a  and t h e  Refinement  0.05° f o r a l l m e a s u r e d matrix  parameters u n d e r l i n e d  to  on  calculated  orientation  The  From t h i s v e c t o r  further  by a l e a s t  (based  than  collection  by  the angular  vector  i s less  are  followed  suitable  the  vectors.  for  f o r each  calculated.  reflections  scattering  scattering  vectors  indices matrix,  scattering  difference  vector  matrix a r e determined,  orientation  continued  and  the scattering  and o r i e n t a t i o n  reflections'  is  includes  The  c o n t r o l l e d as  (APTA + t a n e ) ,  assuming a value  APTA  o f 1.5-  4  2.5  mm.  The  collection been  and  found  scan  t o be  vertical consists  to  be  employed  f r o m an a n a l y s i s Scan is  types  selected  of a m a n u a l l y  throughout  from  insertable  pure  o-scans  1 and  of  to  slit  the data c o l l e c t i o n  (4 mm The  has  type  of  i s determined  several  t o u-2(n/6)e  data  reflections. s c a n s , where n  6.  are generally  indices  prior  a p p r o p r i a t e f o r most c r y s t a l s ) .  between  Reflections the  is  o f t h e peak p r o f i l e s  range  some i n t e g e r  which  aperture  collected  are stepped  in  through,  a  one  zigzag by  mode  one,  from  in  their  minimum t o maximum v a l u e s t h e r e b y e x h a u s t i n g t h e d a t a p o i n t s  in  that  is  region  scanned  of  - B;  background  <y(M)  intensity  and  is  than  greater  is  r a t i o R'  that  B i s the  Initially  from  the  a{M)/M  counts  + 2B) V  each  peak  time-averaged  intensity  is calculated  where M  2  reflection  is  the  background).  If t h i s  as weak, o t h e r w i s e t h e  «r(M)/M i s compared  t o be c a r r i e d  final  out a t  s c a n d a t a ; a{M)/M a  speed  "> R'  condition  s c a n d a t a a r e good and  no  value  reflection  proportional  [<r(M)/M]/R'; a l e s s - t h a n  preliminary  the  scan  measured  ratio  the  R,  and  (M =  the prescan acceptance  of t h e r a t i o the  and  (scan count  r e q u i r e d from  scan  square  is  =  classified  final  space.  a t t h e maximum s p e e d ,  accompanying count  reciprocal  to  the  forces to  a  the  indicates  additional  scan  required. Orientation  during Each  data  matrix.  An  to  i s scanned  vector  scattering  reflections  collection  reflection  bisecting  control  vector  for  the  ensure  are proper  to determine reflection  calculated  angular d i f f e r e n c e  from  checked  the  crystal  the is  peak  orientation. center.  compared  current  of more t h a n  periodically  with  The the  orientation  a maximum a l l o w a b l e  5  deviat ion  forces  orientation  standards  the  intensities  of  the data  halts  in  Upon c o m p l e t i o n high  error  Theta  positive when  of  the  reflections)  are  and a r e compared  collected  at the beginning  a specified  the  standard  percentage reflections'  constants collection,  and  high  25 r e f l e c t i o n s  i n determining  angles  are  a  more  determined an  h k l . The d i f f e r e n c e reflections  accurate independent  omega  scan  yields  orientation of the z e r o at  an a c c u r a t e  negative  for  ratio. Final  cell  a r e then  by c o n s t r a i n e d l e a s t reference  f o r the  value  i n a 1:2 a n g u l a r  f o r the centered  These a r e  i n t h e omega v a l u e s  u and & a r e c o u p l e d determined  with  t h e t a v a l u e s a r e chosen  a s t h e new s e t o f r e f e r e n c e r e f l e c t i o n s .  t h e sin© v a l u e s  to  collection.  of the data  and n e g a t i v e  constants to  of  o f t h e d e t e c t o r by e m p l o y i n g  theta-negative  29  one  intensities  c e n t e r e d and used matrix.  collection  o f more t h a n  any  the data  of c e l l  the data  three  o f t h e same s t a n d a r d s  25%)  Determination  from  data  s e t . A decrease  (most o f t e n  relatively  recalculation  (usually  h o u r l y throughout  intensity  and  matrix.  Intensity monitored  reorientation  squares f i t  reflections.  Data r e d u c t i o n The program scaling in  the  data  i s processed  with a l o c a l l y  ( 1 6 ) ; L o r e n t z and p o l a r i z a t i o n of the r e f l e c t i o n s case  of  decay  reduction  corrections are applied;  sometimes f i n d s  intensity  w r i t t e n data  over  application the  such  as  d u r a t i o n of data  6  collection;  and  carried  out  or equal  t o n,  where c  the d e t e r m i n a t i o n  based  on  varying  scan  count  and  (z(S  -  the c r i t e r i o n  where n = any  i s a scale  factor  speeds  B i s the B)) ,  being  instrumental  instability.  consists  of  the  corrected  intensities  this  Solution  direct  by  The  The  output  collectively  as  methods  deemed  obtaining  the  corrections,  ready  standard  f o r use  i n the  of t h e  +  2B  +  data  reduction  t h e t a v a l u e s , and  their  refinement  = S  scan  which a l l o w s f o r  the  the  S i s the  (I)  2  factor  from  indices,  than  number; I = c ( S - B ) ,  background; a  along with  and  phases  is  being greater  f o r t h e above  additional  is  the  deviations. structure  At  solving  solution.  methods  procedures  unobservable  real  an  p o i n t , the data are subsequent  l/*(I)  reflections  the a t t e n u a t o r i f used,  reflections'  p r o c e s s and  of  accounting  and  observed  positive  time-averaged  z  2  of  t e c h n i q u e s employed directly  'direct  methods'.  necessary  solutions  from  to  A  determining  the brief  f o r they  the  in  data account  were u s e d  structures  the  are  known  of  these  exclusively  presented  in  in  this  thesis. The in  approach  nature  taken  making  distributions.  For  reduce  a l l relative  priori  probability  calculations convenient  using in  the  in direct  f r e q u e n t use  initial  t o be  t o an  distributions these  is largely  of p r o b a b i l i t i e s  the s t a t i s t i c s quantities  methods  valid  and  based  assumptions. s t a g e s of  probability  i t i s necessary  absolute scale  are  statistical  on It  solving  s i n c e the  assumptions, is any  to a and  therefore, structure  to  7  remove t h e dependence o f t h e o b s e r v e d on  atomic  scattering  scattering done  by  |E(n")|  =  convert to  k  cell,  and  m o d e l . One that  the  to  no  zones  inserted  depending  derived  from the  to  intensities,  material  in  the  f o r symmetry  on t h e s p a c e  group.  vibrational  These  component,  from a s t a t i o n a r y - p o i n t - a t o m  o f u s i n g E's  rather This  i f t h e atoms a r e randomly  distribution  where  required  to account  nor  the  This i s  E(h),  factor  expressions are s i m p l i f i e d .  the p r o b a b i l i t y  depend on  factors  derived  ©-dependence  that  Fo(ri),  thermal v i b r a t i o n ) .  the s c a t t e r i n g  o f t h e main a d v a n t a g e s  probability  of E i s normal  than  F's  arises  from  arranged i n the with a  variance  unity. The  the  statistical  chemical  between  composition  expectation of  value the  0.798 f o r c e n t r i c characteristic acentric  for  of  are  further,  useful  |E(n")| group  is  2  independent  in  distinguishing  1.000  distributions  groups  (with  space  by  of  groups.  definition,  symmetry. However, <|E(n~)|> i s  space  intensities,  more  are  non-centrosymmetric  yields  o b t a i n e d from  assignment a  of t h e E's  centrosymmetric  space  the E - s t a t i s t i c s  ambiguous,  and  space  distribution  group  and  intensity  of  centrosymmetr i c  space  properties  centrosymmetric  regardless  If  on  integer  structures  consideration  cell  based  c i s an  having  correspond  The  Fo(ti) v a l u e s ,  factors  turn  k i s a scaling  2  in particular  E-values,  of  2  by  in  structure  |Fo(n~) | / { t E f j } ;  the r e l a t i v e  inherent  is  2  normalized  absolute quantities  unit  (which  a n g l e and a r e a f f e c t e d defining  2  factors  structure  a  which groups,  usually whereas,  characteristic  of  a <|E(n")|> v a l u e o f structure  respect powerful  to  are  an  non0.886.  such  centrosymmetry)  statistical  are  test  that is is  8  available this of  i n the  test  N(z)  to a  |E(S)| .  whose  specified A  2  of  values  of  of  information  needed  pseudo-symmetry can  distributions  and  the  cell  parameters)  usually  symmetry  (possibly before  and  deciding  therefore,  on  whether  the  acentric  on to  that  the  the  of above  consider  any  orientation  habit  or not  necessary  symmetry  molecular  crystal  over  remember  effects  probable  based  to  or  cumulative  from  point-group  i t i s imperative,  than  intensity  N(z)  provides  important  noticeable  less  distribution  centric  and  fraction  average  theoretical  however,  have  molecular  unit  the  cell  the  experimental  curves  the  are  2  of  ( 1 0 ) . In  i s the  |E ( £ ) | ,  distinguish  is,  in  projections  known  to  z e r o moment t e s t  where N ( z )  z,  the  z with  distribution  It  z,  fraction,  probability  distributions.  against  or  intensities,  comparison  incremental  the N ( z ) ,  is plotted  reflections  equal  form  and/or  space  in  cell  group  has  centrosymmetry. The  next  methods  is  satisfying triples,  step to  the  Sayre  the  relatively  few  Sayre's  each  The E , 2  E 's 2  factors  over  as  phases  means  of &  structure a l l  =  t.  number  initially.  (12),  <0(It)  The +  of  of  'probably  it and  N  i s the  expression equal  to'.  direct triples  (12).  Such  paramount  reflections  is  derived  i n terms of  involving  normalized  o f atoms  the  the from  where < > means  number  in  knowing  r e l a t i o n s h i p among  i s E(fT) = N V < E ( i t ) E ( i i - i t ) > , 2  ti-t are  0(fi-)t)>  which e x p r e s s e d  i n the  +  2  large  by  reflection  E -relationships,  , *(lt) ^  a l l values  symbol ~  the  listing  p h a s e s of a  equation  structure  cell.  the  a  solving  relationship  known  determining  average  obtain  also  phases of  toward  phases  the  i n the within  9  In  the case  reflection  of centrosymmetric  i s either  structures  t h e phase of each  0 o r u and c o r r e s p o n d s t o t h e a s s i g n m e n t  of  ->-  a  (+) o r (-) s i g n ,  probability  that  respectively the sign  to  the  magnitude  of E(h) w i l l  |E(h)|.  be +ve i s g i v e n by, P. =  1/2 + l / 2 t a n h { N " /2 |E(h) | L E ( k ) E ( h - k ) } and t h e p r o b a b i l i t y  of E(h)  1  being  -ve i s j u s t  probability As  P. = 1 - P . S i g n i n d i c a t o r s  of  determining  o p e r a t i o n . Three  the  space  assigned a r b i t r a r y  phases  chosen  to  according  choosing these  as  2  (prior  probability c a s e s of  the  magnitude  must  by  at the s t a r t .  so  possible.  more  be  phases  I -formula  coordinate  system.  reflections  begins.  Once probability  the  E  which  reflections  are  phases  are  as  of  is  a s s i g n e d symbols  an  the  may  most  phaseless. (letters)  group  as  many  have  been  high  degree  which  are special only  of  the  involved.  In the  additional  phase  sense  remaining  exhausted  are  requirement  into  the p o s i t i v e  there w i l l yet  space  depend  factors  groups  phasing  listing  2  determined  reflections  space  i n order to define The  and  2  of t h e n o r m a l i z e d s t r u c t u r e s  specified  a  E,-relationships,  general  of non-centrosymmetric  are  they e n t e r  with  t h e phase  reflections  (which  Other  advance  r e f l e c t i o n s are  ( 1 7 ) . An o b v i o u s  point)  called  These  rules  i s that  this  in  i n order to i n i t i a t e  determining  to  must be known  a n d sometimes fewer  reflections  E -combinations determined  group  specific  d e p e n d e n t ) t o be o r i g i n  case  taken as c o r r e c t .  s u g g e s t e d above, a few p h a s e s  regardless  in  of g r e a t e r than a  +  o f 0.95 a r e u s u a l l y  The  of the  bulk  of  using  known  and  likely  remain  some  Some  of  these  f o r t h e p h a s e s , and  10  through  the E ' s i n which  these r e f l e c t i o n s  2  mathematical  relationships  among t h e symbols  symbols a r e used f o r phases Addition'  method  t h e method  ( 1 4 ) . At t h e  end  can a r i s e .  Because  i s known a s t h e ' S y m b o l i c  of  this  w i t h v a l u e s o f 0 and ir i n t h e c e n t r o s y m m e t r i c c a s e , and  generating The phases  IV  basically  reflections  values  le)  by  program  the  the  structures  determined  assessed  and the the  for  a given  according model  displayed  Symbolic  Addition  method would by  initial  have  employing of non-  phases  (and  phases) a r e r e f i n e d  i n an  tan*(fi) =  {IG[sin(*(fi-  + * ( k " ) ) ] } , where G i s a f u n c t i o n o f and fi-t. E a c h  set  p e r m u t a t i o n of the v a r i a b l e i t s internal  of  phases  base  phases  consistency  and  the  i t r e p r e s e n t s . These assessments a r e q u a n t i f i e d  as ' f i g u r e s of m e r i t ' . G e n e r a l l y ,  s e t of phases y i e l d i n g solution,  used i s the  i n the s o l v i n g  the  approximate  to  been  t o t h e p h a s e s o f t h e base  i s evident  whereby  has  ( 1 8 ) . The p r o g r a m  Symbolic A d d i t i o n  outset  + *(lc)) ] } / { l G [ c o s U ( f i - l t )  structural  the  manner by -the t a n g e n t f o r m u l a ,  determined  d e t e r m i n a t i o n of  factors  MULTAN  from  values  the E - v a l u e s of the r e f l e c t i o n s t  is  structure  respect  thereby  t o each p e r m u t a t i o n .  by s y m b o l s . The a d v a n t a g e g a i n e d  at  centrosymmetr i c  iterative  i n one  which  subsequently  computer  assigns e x p l i c i t  represented  case  f o r the d i r e c t  of the  phases a r e  forms and one o f t h e most w i d e l y  written  method; MULTAN  phase  above  from t h e m a g n i t u d e s i n many  symbol  non-centrosymmetr i c  method d e s c r i b e d  FORTRAN  been  the  s e t s of phases c o r r e s p o n d i n g  implemented  differs  in  with  determining  permuted  ±3ir/4  remain  phase  the  and  which  simple  process  ±TT/4  reflections  are involved  and  these  the best phases  figures in  but not always,  of m e r i t  combination  constitutes with  the  11  magnitudes  of  the  coefficients  in  dimensional  electron  a  normalized  Fourier  structure  synthesis  density  map  in  true  test  producing  referred  i n t e r p r e t a b l e E-map w h i c h makes c h e m i c a l  factors a  three-  t o a s an E-map. An  sense  of the c o r r e c t n e s s of a s e t of  a c t as  i s obviously  the  phases.  Ref inement The  refinement  following squares was  was  calculated the  reciprocal  general in  -  k|Fc|) ,  by  factors,  of the k each  minimized  k a scaling  given  R-value,  on  R = l||Fo|  the  - k|Fc J | / E [ F o |  A  the function There  in  the  chosen of  refinement.  Weights  intensities, uniform For  EwA  In t h e i n i t i a l  averages  over  may wA  be 2  and  w  a  weight  indicator  which  residual  is  of the found  i s d e f i n e d as is  given  a n d i s more c l o s e l y  schemes a v a i l a b l e stages, unit i n the  reflect  by  related  relative,  were  weights  may be  final  stages  the e r r o r s  calculated f o r ranges  given  f o r use  the accuracy  , d e r i v e d from  are achieved  t h i s work a b s o l u t e w e i g h t s  refinement  (where k i s now  refinement  value  however,  should  may be a b s o l u t e  or they  2  of w e i g h t i n g  the weights  least  (where A = |Fo| - k | F c | ) .  2  to a c c e l e r a t e convergence;  the refinement  data.  2  minimized  i s a variety  useful  . The w e i g h t e d  Rw = [Ew(|Fo| - k | Fc | ) /Ew | Fo | ]''/ to  7),  structural  residual  2  matrix  throughout  factor  page  reflection.  or  full  Fo and Fc a r e t h e o b s e r v e d and  progress of a p a r t i c u l a r  the  for a l l structures  utilizing  where  2  with  parameters  The f u n c t i o n  structure  associated  the  accomplished  procedures.  Ew(|Fo|  of  by  such  of the i n the that  o f Fo v a l u e s .  1/tf (Fo), 2  where  1 2  * (Fo)  =  2  d (I)/(4I),  w h e r e a s , r e l a t i v e w e i g h t s were  2  f r o m t h e p o l y n o m i a l (A + BFo + C F 0 Scattering taken  from  factors  (f°) f o r  Cromer .and Mann  atoms  r e f i n e m e n t o f atoms assumed  with  of  2  where  the  atom f r o m  anisotropic  a l l non-hydrogen  21. The form o f t h e  f °exp[-8n u (sin © A ) ] ,  thermal  u"" 2  is  one  the t r a c e  in  isotropically is f =  is  the  vibrations  mean-square  f  follow,  ;  third  factors  i t s a v e r a g e p o s i t i o n . F o r atoms  2  i  scattering  to vibrate  2 n Z E U j h a | h j a j ] . In t h e T a b l e s t h a t i  (19).  1  (20) w h i l e t h o s e f o r h y d r o g e n  the  displacement  3  were  from r e f e r e n c e  2  + DFo )"  atoms  were  2  2  calculated  of the d i a g o n a l i z e d  =  f°exp[-  Uiso = U ,  and Ueq  2  temperature  factor  ma t r i x .  Chemical  Photochemistry: Research  Introduction  structure-reactivity into  the  relationships  solution  photochemistry  4ap,5,8,8a0-tetrahydro-1,4-naphthoquinones effort  to determine  their  was  of  the  initiated  i n an  r e a c t i v i t i e s and t o compare o 8  1  O  4a0,5,8,8ap-tetrahydro-1,4-naphthoquinone  them  with  13  similar,  known s y s t e m s c o n t a i n i n g  and  C(8)  via  [2+2]  ring  ( 2 2 , 2 3 ) . Whereas t h e intramolecular  with  reacted  c a r b o n s 2,  by  observed  various  in  3,  exercised  s y s t e m s were f o u n d  7,  forming  the  Little  w h i c h were over  i n a medium a f f o r d i n g  therefore  the  appealing;  thus, entry  processes  from a b s t r a c t i o n  control  was  reactions  to  react  cyclobutane  (24,25).  The  resulted  from  conformationally  the  such  restrictions offered  a  C(5)  tetrahydronaphthoquinones  hydrogen a b s t r a c t i o n  intermediates  solution.  latter  6 and  across  2  cycloaddition  photoproducts  m o l e c u l e s and  a -(CH )n- bridge  photoreactions could  freedom by  labile  of  motion,  a crystal lattice  made i n t o t h e  realm  of  be and  seemed  solid  state  photochemistry. Interestingly, irradiation state  (26).  reactions not  of  reaction  the  routes  ii)  fi-H  and  iv)  from  [2+2] by  intramolecular bonds.  In  not  the  were i n i t i a t e d  oxygen , 1  solid  was  extensive  state, of  state  converse  possible  one  the  four  in  the  the  main steps:  i n v o l v i n g C ( 2 ) = C ( 3 ) bonds,  i i i ) y-H  abstraction  cycloaddition  I t was  i n the  required  solid by  from  solid  i n s o l u t i o n , the  dimerization  [2+2]  the  s o l u t i o n products  crystal lattice.  abstraction  C(6)=C(7)  the  identified  intermolecular  resulted  naphthoquinone d e r i v a t i v e s  r e a r r a n g e m e n t s w h i c h were  i)  or  photoproducts  photoproducts  f o r some o f  of  of  i n v a r i a b l y observed  conformational confines  various  Although  were  true,  a variety  observed  that  involving  by  carbon,  C(1)=0(1)  a hierarchy  existed  The symbol § has two d i f f e r e n t m e a n i n g s i n t h e t e x t : i ) i t may r e f e r t o t h e c o n f i g u r a t i o n , as i n 4 a p , 5 , 8 , 8 a ^ - t e t r a h y d r o . . . , or ii) i t may refer to the p o s i t i o n of a t t a c h m e n t of one atom r e l a t i v e t o a n o t h e r , as i n p-H a b s t r a c t i o n . The c o n t e x t of the s e n t e n c e s h o u l d remove any a m b i g u i t y . 1  14  among  the  initiating  steps  photodimerization  was  permitted  remainder  the  i t ; the  n e x t most Solid  method  likely  to  the  of  crystal  parameters  reactions  were d e r i v e d  abstraction  reactions,  abstracting  orbital  der  the  abstraction  is  the  C=0  For  orbital  A  Q  be  are  and 0°  radii  at  and  Similar  the  between  for  order  hinged  y-H  of  on  the  abstraction;  a b  for  limit  by  three  definitions  distance.  are  process  on  values a b  A ,  0-H the  oxygen normal  i s 2.72  with  A  other  to  the  n-  ( F i g . 1):  T ,  the  vector  the  mean  to  q  and  C(1)=0(1)...H  a b s  rQ  and  the  y-H  2p-orbital  does  Optimum v a l u e s  for  above).  characterize  i n which the  For  the  respect  the  Q  to  exceed  directed  comparison with  the  for  for t h i s process  (as a l l u d e d used  d o e s not  is  the  atom and  responsible  and  For  when  atoms i n v o l v e d .  0-H  state  ideal situations. i s achieved  0(l)...H  group;  pertinent solid  p-like orbital  the  respectively  the  take p l a c e  carbonyl  the  the  abstractable  the  of  carbonyl  abstraction-by-carbon  the  c a l c u l a t i o n and  0(l)...H  90°,  or  of  with  i s to  sum  characterized  the  each  orbital  the  position  deviation  through  angle;  of  c o n v e n i e n c e of  can  angular plane  in  sum  the  plane  the  p-H  analysis,  non-bonding,  bond. The  derivatives,  differences  i d e a l geometry  radii  oxygen  (27).  structure  is directed  Waals  i n the  i s i n the  process.  f o r comparison  by  lies  surroundings  b i r a d i c a l s in s o l u t i o n allowed  over which a b s t r a c t i o n  van  the  the  i f the  above l i s t  following  involved  abstraction  to  the  intermolecular  products.  geometric  which  of  [2+2]  reaction  least likely  c h a n g e s of  variety  From  the  preferred  biradical collapse  conformational  distance  which  s t a t e / s o l u t i o n photoproduct  of  a greater  the  in  C(2)  15  the a b s t r a c t i n g . C(1),  In t h i s c a s e ,  C ( 2 ) , C ( 3 ) , C(4)  perpendicular excited  conditions  plane  i n the ground  state  has  t h e mean p l a n e c o n s i d e r e d i s t h e  the  state.  same  mean  plane  C(3)=C(2)...H b a  than  Schmidt  than  Assuming  that  vector  S  [2+2]  C(1),...,C(4);  A  c  =  (28) h a s s u g g e s t e d  reacting 4.1  double A.  Indeed,  and t h o s e  satisfied  the r e s p e c t i v e  conformational  for  undergoing  studied changes  on  Definitions  which  is onto  i s the  being  less  involve  2p-orbitals.  reaction  to  occur,  and s e p a r a t e d by l e s s undergoing  abstraction  this  processes, a l l  geometries.  effects the  Figure  = 9 0 ° , which  f o r C and H.  naphthoquinones the  ideal  sum l i m i t  f o r such a  requisite the  c  is  reactive  state,  distance  reactions  bonds must be p a r a l l e l  reaction,  Having  that  the  90°,  a n g l e ; and t h e a b s t r a c t i o n  cycloaddition  2p-orbital  and i t s p r o j e c t i o n  2.90 A ( 2 7 ) , t h e van d e r W a a l s r a d i i The  the  S  the  process are: T  for this abstraction a  which  shape a s t h e g r o u n d  t h e a n g l e between t h e C ( 2 ) . . . H j j the  to  of  photoreactivity  1  of r  substituents  0  and A . Q  in  and the  16  naphthoquinone effect would  system,  of a l t e r i n g a reduction  i t was  the a c t i v e  of  interest  chromophore.  n e x t , t o compare What e f f e c t ,  if  the any,  t o an enone f r o m an e n e - d i o n e c h r o m o p h o r e  have  on t h e o b s e r v e d p h o t o r e a c t i o n s ? A  study  was  naphthoquin-4-ol were  readily  reactions product 'anti',  system  (29)  afforded  corresponding reduction,  initiated  by  into  ( F i g . 2 ) . Members sodium  naphthoquinones.  but  not  the other  control.  by  in  isomers equal  steric  One  of  this  series  borohydride reduction  Both  necessarily  are governed c h i e f l y development  the 4ap,5,8,8a£-tetrahydro-1 -  are  i s o m e r has  formed  amounts  approach  of the  since  the  not  by  and  the h y d r o x y l  'syn' t o the b r i d g e h e a d s u b s t i t u e n t s  on  group  and  2  are  o  Figure Production  of 4 a $ , 5 , 8 , 8 a p - t e t r a h y d r o - 1 - n a p h t h o q u i n - 4 - o l s . a-  referred  t o as  isomers  crystallize  bulkier  OH  2  and  p-hydroxy in  compounds,  distinct  group o c c u p i e s the l e s s  respectively.  conformations sterically  in  hindered  The  two  which  the  pseudo-  The terms 'anti' and 'syn' were deliberately chosen to d e s c r i b e t h e c o n f i g u r a t i o n of t h e h y d r o x y l g r o u p r e l a t i v e t o t h e bridgehead s u b s t i t u e n t s t o a v o i d c o n f u s i o n w i t h the 'cis'-fused ring junction. 2  17  equatorial twisting (Fig.  position.  about  3).  the  These  C(4a)-C(8a) bridge  Both  c o n f o r m a t i o n s can  cyclohexene  ring cis-fused  The  state  solid  abstraction  by  abstraction however, results  a  the  4c-ol  crystal  between  the  plane  of  is  H .  the  3  values  as  displayed  be  the  90°  geometry  solid  sharp  be  state  C(3)...H  so  an  4G~O1S  (Fig.  via  In  solution,  not  (29,30)  intramolecular  C(6)=C(7) double  system;  T  i t s projection  bond  H(5)  (C(1),  C(2),  t h i s case,  state.  resembling  Waals  sum  a cut-off  additional displayed  above  bonds.  angle  onto the  mean  Although  was  of  of 2.90  C(4));  T  and  not  the  this  additional  was  A which  f o r C and  highly  factor preventing  has  solid  geometry  £  A C  the  same  state, by  and  carbon;  showed no r e a c t i v i t y attributed  to  the  i s greater  than  the  H,  i t was  p r o b a b l e and reaction.  A  naphthoquinols  via H-abstraction  2.92 A  state the  are  i s the  C(3),  i n the  d e r i v a t i v e , however,  (30).  radii  the  of  in  [2+2]  ( F i g . 4)  ideal  excited  Several  reacted  distance  a b s  reactive  and  available  naphthoquinone  In  from  intermediate  geometries  and  H(8)  and  3),  (and  moiety.  from  to a b s t r a c t i o n  i f the  ground  hexamethyl-40-ol  der  reacts  vector  these d e r i v a t i v e s  van  half-chair  C  the  long  a  photoproduct  conformations  .,.C(3)=C(2) a n g l e .  of  the  ring-flip  DS  most  in  major  by  a  mainly  derivatives.  conformer  C(2)=C(3) double  should  shape  as  derivatives  C ( 2 ) = C ( 3 ) and  i n the  C(3)...H ^  the  i s the  which  relevant  those  result  4a-ol  4p-ol  a c r o s s the  Definitions to  and  described  4p-ol  the  energy  lattice)  cycloaddition  similar  the  c a g e compound  from a h i g h  between the  in  interconvert  to a h a l f - c h a i r cyclohexenone  in  C(3)  may  resulting in  be  photoproducts C(3)  by  conformations  that  Almost  felt  that  there  must  all  suitable  for  of  the  oxygen  conformation t y p i c a l o f 4 a - o l s ; R = OH, R = H  conformation t y p i c a l o f 4 B - o l s ; R = H, R' = OH  1  Figure 3 Conformations o f a p-H,  abstraction  the  but t h i s  Despite  the wealth  parent  naphthoquinol  puzzling  features s t i l l  defined  limits  effects  of  ultimately fi-H  for  i n naphthoquinols.  and  bonding a f a c t o r  five  remained.  the  on r e a c t i v i t y ? by  was n o t o b s e r v e d .  of i n f o r m a t i o n gained of  Were  abstraction  substituents  abstraction  reaction  on  from  the study  i t s derivatives, there,  indeed,  molecular  conformations  i n the naphthoquinols?  in reactivity?  Figure Definitions  4  of T  c  some well-  p r o c e s s e s ? What were t h e  D i d t h e change of chromophore  oxygen  of  and A . c  Was  and  prohibit hydrogen  19  Thesis  outline  The  present  undertaken and  in  work an  attempt  conformations  determine state  the  described i n Part  3  in  extent  to c l a r i f y  the  solid  I of  the roles  state  made  thesis  was  of s u b s t i t u e n t s  photoreactions.  i n which topochemistry  r e a c t i o n s , comparisons a r e  this  To  c o n t r o l s the s o l i d  with  photoreactions  in  solution. The and  first  their  second  two c h a p t e r s  photoreactions chapter  a  deal with methyl-substituted  i n the s o l i d  conclusion  is  s t a t e . At t h e end reached  abstraction  reactions i n naphthoquinols.  illustrates  the b u i l d i n g  conformation previously this is the IV  based  determined  example  made w i t h parent  on  naphthoquinol  wavelength related  Some s t r u c t u r a l  of  following  molecule  structural  from  which they  of the f u l l y  into a predicted  In  laid  by  addition  to  comparison  two c h a p t e r s  f o r naphthoquinols)  i n s t r u c t u r e t o the other c o m p a r i s o n s a r e made  with  Chapter  naphthoquinone,  ( F i g . 5 ) . Though p h o t o c h e m i c a l l y interest  and  were d e r i v e d .  reduced  oxygen chapter  foundation  structures.  i n the f i r s t  of the  regarding  engineering', a structural  the d e r i v a t i v e s  includes a description  closely  the  naphthoquinol  of ' c r y s t a l  namely t h e 1 o , 4 o - d i o l the  of a s p e c i f i c  The  4o-ols  i t  derivatives  illustrating  i n e r t (at i s very  i n Part I.  this  point.  The p r e p a r a t i v e work (including crystallizations) and p h o t o c h e m i s t r y o f a l l compounds d i s c u s s e d i n t h i s t h e s i s , u n l e s s otherwise stated, were c a r r i e d o u t by W. K. A p p e l , D. H e r b e r t , Z. Q. J i a n g , J . R. S c h e f f e r , L . W a l s h a n d Y. F. Wong. 3  20  Figure Relationship The  of the d i o l  initial  state  by  13  to naphthoquinones  interest  unsuccessful  attempt  second  products  whose  naphthoquinols  i n t h e s t r u c t u r e , however, a r o s e from an  to c h a r a c t e r i z e  Part  of  this  precursors derivatives  twistane-like  (31)  structure  'twistenone')  which  a minor  unsubstituted  method t h a t  i n the  solid  devoted to'unusual  either  naphthoquinones,  thereof.  Chapter V h i g h l i g h t s a  (later  referred  in  X,  unseen  C h a p t e r VI  Unfortunately,  this  an a p p r e c i a b l e  i n t h e method  in goes  of  the  of  on  to  i n Chapter I I I , Part  chloride  results  a a  quantity  photolysis  by  of  t h e same  product  studies  discuss  d i d not p r o v i d e  and  the  which as y e t  structure  as many  of  clues  i t would.  heptamethyl-40-ol  in  a  r e s u l t i n g from t h e t h e r m o l y s i s  hoped  described  undergoes  previous  structure  t h e i d e n t i t y o f X as was  as  in solution.  of the r - l a c t o n e  Treatment  to  of t h e 6 , 7 - d i m e t h y l - n a p h t h o q u i n o n e  called  irradiation  is  p r o d u c e d t h e t w i s t e n o n e y i e l d e d a new  determination  to  thesis  produced  naphthoquinone  uncharacterized.  X.  was  modification  Irradiation  be  the s t r u c t u r e  are  or  will  and n a p h t h o q u i n o l s .  C-NMR.  The  following  5  (whose  structure  I ) w i t h a c e t i c a n h y d r i d e and  tricyclic  methylene  rearrangement  ketone which  yielding  the  is zinc upon  structure  21  discussed  i n Chapter V I I .  Finally, derivative  Chapter  of  the  photolysis  of  discussed  resulted  intramolecular  VIII  cage  the  describes  compound  unsuccessful  pinacolization  Schematic  of the T h e s i s  II,  efforts  solution  The to  cage  of  III  products  Chapters V I I , V I I I  a by  derivative perform  compound.  Layout  Unusual r e a c t i o n  Chapters V , VI  in  (30).  of the o x i d i z e d  Chapters I ,  structure  produced  hexamethyl-4c-ol  from  the  C h a p t e r IV  an  22  PART I  23  CHAPTER I  2,3,6,7-TETRAMETHYL-4ap,5,8,8ap-TETRAHYDR01-NAPHTH0QUIN-4a-0L  24  Introduction The  tetramethyl derivative  first  of  methyl  substitution  is  discussed in this  four tetrahydronaphthoquinol  described  geometrical  respect  parameters  photochemical  derivatives,  patterns, presented  with  to  chapter  its  in Part  with  I . The  in  the  various  structure  conformation  important  i s the  and  the  solid  state  process.  Experimental The  2,3,6,7-tetramethyl-4ap,5,8,8a£-tetrahydro-1-naphtho-  quin-4c~ol used  was  1  in  prepared  obtaining  reducing  the  borohydride.  by  similar  appropriate In  the  the  naphthoquinols  Diels-Alder  present  case  2,3-dimethyl-p-benzoquinone yielded (II)  the  and  r e q u i r e d adduct (III),  recrystallizing the  solvent  structural diamond mm; but found  ( I I I ) by  systems  upon t o be  (29),  adduct thermal  ( I ) ( F i g u r e 6 ) . The  afforded crystals, For  example, the  inspection twinned  —  under a  a  namely  with  by  sodium  reaction  reduced  between  most  of  none were s u i t a b l e  for  benzene  solutions  solutions polarizing  condition  adducts,  were made a t  although  longest dimension  ethanol/acetone  scheme  2,3-dimethyl-1,3-butadiene  slow e v a p o r a t i o n and,  shaped p l a t e s w i t h from  and  the  reaction  were s e p a r a t e d . V a r i o u s a t t e m p t s  analysis.  crystals  same g e n e r a l  wherein  were  being  tiny  only  fairly  microscope two  gave  0.1  large  they  were  crystals  are  IUPAC name: 4c-hydroxy-2,3,6,7-tetramethyl-4a*,5,8,8aptetrahydro-1(4H)-naphthalenone 1  25  intergrown one  are r e l a t e d  either 4-  i n s u c h a way  or m i r r o r  6-fold  axis,  involving  hexane and  However,  crystals  appeared was  suitable  mounted  crystal  the c r y s t a l l o g r a p h i c  t o the c o r r e s p o n d i n g d i r e c t i o n s  two-fold  or  that  symmetry  or  center  acetone grown  were  for diffraction  measured  of  of  of the second  by  frequently  symmetry). tried,  but  and  to  0.3  s t u d y and hence one subsequent  x 0.6  x 0.4  by a  Other  3-,  systems  no  from e t h a n o l / p e t r o l e u m e t h e r  f o r photographs  employed  (and l e s s  directions  avail.  solutions of  these  data c o l l e c t i o n .  mm  3  and  was  The  tabular  in  habit.  Figure  6  P r e p a r a t i v e r e a c t i o n scheme l e a d i n g t o 2,3,6,7-tetramethyl-4a£,5,8,8a0-tetrahydro1 - n a p h t h o q u i n - 4 0 - o l ( I I ) and t h e i s o m e r i c 4 o ~ o l  P r e l i m i n a r y Weissenberg taken  in  revealed 2n +  an  attempt  the absence  1 which  to  and  precession  ascertain  c o n d i t i o n s hO^,  are c h a r a c t e r i s t i c  (III).  photographs  were  t h e s p a c e g r o u p . The  films  1 = 2n + 1 and h k l , h + k =  o f t h e two  s p a c e g r o u p s C2/c  and  26  Cc.  A density  calculation  based  on  a  unit  cell  volume  of  ©  approximately photographs) unit  1250  A  (from  3  indicated  that  axial  measurements  four molecules  on  were p r e s e n t  the  in  the  cell.  Crystal  data:  C , H o 0 2 , MW 4  b = 5.228(1), c = Z = 4,  D =  17.316(3) A,  structure The  A,  crystal  orientation  space  was  mounted  CAD4 matrix  the  transformation matrix  C2/c,  from  in  a  general  A , 3  0.714  absences  reflections.  orientation  Cell  from  A Delaunay  the  constants setting  and  on  an  and  an  angles  for  r e d u c t i o n program p r o v i d e d  r e q u i r e d to c o n v e r t the p r i m i t i v e  t h e CAD4 t o t h e c o r r e s p o n d i n g C - c e n t e r e d  cell  cell  indicated  photographs.  Data  were c o l l e c t e d  (minimum  interplanar  m o n o c h r o m a t i z e d Mo 10.06  1247.7(5)  ^(MoKo) =  3  group  were d e t e r m i n e d  centered  the  g cm" ,  diffTactometer.  25  by  1.174  0  V =  13.898(3),  analysis.  Enraf-Nonius  found  * = 97.442(7)°,  D =  3  X = 0.71073  - 1  = 220.31, m o n o c l i n i c a =  2  1.1728 g cm" ,  c  cm ,  on  the  deg  best  scan  scan  angle  extended variable  min type of by  - 1  .  From an  was  25%  Crystal  on  +  analysis t o be  orientation  0.77  0.0-27.5 A)  scan  using  degrees graphite  speeds  of  2.01-  of v a r i o u s peak p r o f i l e s , an  u - 2 ( l / 6 ) e scan  degrees  (each  w i t h an scan  the u-  being  s i d e s f o r background measurement). A  aperture width  the v e r t i c a l  of  0.35tane)  both  range  w i t h omega  determined  (1.30  theta  spacing  radiation  horizontal  employed and  i n the  of  a p e r t u r e was checks  (2.00 fixed were  +  1.00tane) at 4  mm  was  mm.  performed  on  three  27  reference  reflections  intensities hourly more  after  every  of t h r e e check  throughout than  data  0.3%.  100 r e f l e c t i o n s  reflections, collection,  Lorentz  and  in  of  61.9% (888) h a d I > 3tf(I)  (0.04(S  -  B)) , S  =  2  were  scan  count  <r (I) B  =  were  collected,  =  2  and  by n o t  corrections  t o t h e 1435 r e f l e c t i o n s (where  The  monitored  were f o u n d t o d e c a y  polarization  applied which  t h e u s u a l manner  which  collected.  S  +  2B  +  time-averaged  background).  Solution  A comparison values  of the average  indicated  a  centric  Furthermore,  the  data)  closely  very  distribution  was  asymmetric  unit  cell  structure One were  and  may  remained  to  been  had  an  contributors. Origin the p o s i t i v e  rules  governed  indicated  that  the  the  cause  only  a  i n the  two-fold  of the c e n t r i c  was made t o s o l v e  the  space group, Cc.  phase d e t e r m i n e d  probability  of  1.00  group  than  1.6  by t h e I , with  30  a n d one r e q u i r e d t o  o f t h e b - a x i s were c h o s e n  by t h e s p a c e  of  molecule  such m o l e c u l e s  determining reflections sense  suggestion  E's with magnitudes g r e a t e r  The  (for a l l centric  the approximate  b a s i s an a t t e m p t  sixty-four MULTAN.  four  However,  have  intensities.  theoretical  strong  t h e r e were o n l y  a n d on t h i s  hundred  relationship  the  the  this  the fact  of  expectation  (10) showed a c u r v e  i n the non-centrosymmetric  input  define  Despite  structure  symmetry  distribution  distribution  resembling  ( b a s e d on d e n s i t y ) .  molecular  E-values with t h e i r  z e r o moment t e s t  plot.  centrosymmetric  and Refinement  according to  symmetry. The r e s u l t o f  28  t h e phase d e t e r m i n i n g only  4 were  solution,  independent. the  interpretable fused  oxygens  rings Peaks to  other.  due  to  proportional  to  the  Peak  t o be s l i g h t l y  by o x y g e n atoms,  space  coordinates  10  peaks  o f 14 c a r b o n  thermal  parameters  cycling  produced  large  degree  cyclohexenone molecule  of  at  located  indicated  in  oxygen  o n l y two  were  para-  a s p e c t , e v i d e n t on t h e E -  higher  which  are  were  directly  f o r oxygen  than  carbon  10, 15, 16  l a r g e p e a k s a t 10 a n d 17, o r 15 of p a r t i a l  occupation of  of the molecule,  and  parameters  group C£ with  a n d 17 from 2  these  correlation and  those  full  matrix  least  was i n i t i a t e d i n  oxygens  given  atoms index  with  anisotropic  R, o f 0.17. F u r t h e r  changes i n the parameters. between  parameters  of t h e cyclohexene  the asymmetric  the  t h e E-map. S i x c y c l e s o f  oxygen  no s i g n i f i c a n t  that  two  a l l but the  positions  heights  l e d to the r e s i d u a l  moiety  suggested  a n d IR d a t a  of the s t r u c t u r a l  the non-centrosymmetric  refinement  showed  i..e. a d i s o r d e r e d s t r u c t u r e .  t h e asymmetry  of  which  of f o u r s m a l l peaks a t p o s i t i o n s  16 warned o f t h e p o s s i b i l i t y  refinement  o f m e r i t gave an  d e n s i t y a t t h e peak p o s i t i o n s a r e  and  squares  outstanding  low h e i g h t o f t h e t h o s e p e a k s w h i c h  o f two r e l a t i v e l y  on  no  w h i c h were p o s s i b l e  disturbing  17 i n s t e a d  Based  7)  substituents  ring,  and  sites  figure  ( F i g . 6) a n d t h e i r  oxygens.  The p r e s e n c e  was  10, 15 16 a n d 17 were a l l  the e l e c t r o n  presumed a p r i o r i atoms.  with  A further  map, was t h e r e l a t i v e l y possibly  there  highest  However, mass s p e c t r a l  i n the molecule  each  the  16 s e t s o f p h a s e s o f w h i c h  E-map ( p r e s e n t e d i n F i g u r e  relative  locations.  Although  with  carbons.  positions,  to  set  six-membered  bridgehead  process yielded  unit  of  The the  p a r t of the  consisted  of  less  29 17  is  10  Figure  7  E-map; p r o j e c t i o n o n t o l e a s t s q u a r e s p l a n e t h r o u g h e l e c t r o n d e n s i t y p e a k s . Lowest number c o r r e s p o n d s t o p o s i t i o n of h i g h e s t density. than  one  density C(8).  molecule.  peaks  of 2-3  Combined  factors  fused  with  Ten while  t h o s e on C ( 8 )  disorder.  refined hydrogen The  moieties. C2/c  atoms were i n c l u d e d  oxygen  atoms  and  temperature suggested  appears proceeded lying  included  50%  as  two,  in  the  on  the  initially  occupancy,  from a d i f f e r e n c e - F o u r i e r  and 0 ( 4 ) were n o t  anisotropic  at  and  thus  disorder.  were l o c a t e d  In t h e l a t t e r  with  and  excess  C(5)  peaks  with the molecule atoms were  of  of t h e  molecule  Refinement  Oxygen  f o r the r o t a t i o n a l hydrogens  indicated  distances  magnitude  the  i s o t r o p i c thermal parameters  allowing  the  whereby  axis.  map  these excess d e n s i t y  space group  rotation  bonding  large  oxygens,  cyclohexenone  two-fold  within  3  the  structure  centrosymmetric  difference-Fourier  e/A  with  o f t h e two  a disordered  A  stages,  f o u n d due  t o the n a t u r e of  a l l non-hydrogen  temperature  factors  with i s o t r o p i c thermal  t h e two  hydrogen  map,  atoms  whereas,  were the  parameters.  atoms a t t a c h e d  to  C(5)  30  were h e l d at  R  at f i f t y  = 0.058  3tf(I);  per c e n t occupancy.  and  Rw  difference  synthesis  0.508  neither  e/A ,  o f t h e s e can  hydrogen, require  H(04),  a t 0 ( 4 ) and  largest  peak  be  in  i n the r e g i o n  view  the  parameter  of  the  of  unit  weight  was  Reflections unobserved were BFo  assigned + CFo  2  0.002002 -  and  k jFc|)  2  for  on  to  to  had  o f 0.516  e/A .  the  cycle of  missing  geometry  they  atom.  The  coordinates The  3  final  0.479  the  that  map  standard deviation  which  not used  I  <  mean  and  were 0.037 and an  observation  1  3*(I)  classified  where  A  =  0.3385, gave  over  Final  of  Fo.  reflections  B  =  0.02351,  C  =  u n i f o r m a v e r a g e s of w(|Fo| positional  and  a r e p r e s e n t e d i n T a b l e I and a n i s o t r o p i c  f o r the non-hydrogen  as  from t h e p o l y n o m i a l , w = (A +  and D = 0.000097. T h i s ranges  were  i n the r e f i n e m e n t . Observed  weights c a l c u l a t e d 3  peaks  o f 0 ( 4 ) . However,  bonding  proximity  The  1.0017.  + DFo )" ,  parameters factors  The  poor  difference  shifts  0.203*, r e s p e c t i v e l y .  two  attributed  (0.030,0.248,0.534) and a m a g n i t u d e maximum  = 0.078.  revealed  directly  the s p a t i a l  on  Rw  with I £  (0.179,0.131,0.271) o f m a g n i t u d e s  respectively,  3  converged  reflections  d a t a s e t R = 0.088 and  (0.208,0.231,0.245) and and  structure  = 0.078 f o r t h e 888  f o r the complete  final  The  atoms a r e g i v e n  thermal  temperature  in Table I I .  Di s c u s s i o n  The the than  structure  consists  c - a x i s w i t h the c l o s e s t 3.5  A  in  that  of  molecules  non-hydrogen  direction.  There  well-separated approach are  being two  along greater  possible  31  Table I Final  positional  (fractional  x 1 0 , C ( 3 1 ) and 0 ( 1 ) ' x 10", H x 5  10 ) 3  and  isotropic  with estimated Atom  standard  X  2  deviations  (U x 1 0  3  2  i n parentheses Ueq/Uiso  z  1  A )  CO)  -4646(16)  -1559(41)  32373(12)  52  C(2)  4666(16)  -7399(37)  37272(11)  52  C(21)  3947(27)  -26259(60)  4374906)  73  C(3)  12901(16)  3987(45)  35893(12)  57  C(31 )  2248(  -95(10)  4084(  C(4)  1 3402( 16)  22347(47)  29261(13)  58  C(8a)  -4660(14) •  21 141(37)  26932(11)  48  3362(  93  3)  - 1157( 3)  0(1)'  21719(22)  0(4) '  -1380(11) 20315(60)  2)  3)  25989(20)  96  64  3)  -196(  7)  482(  2)  103(11)  1 ( 3)  -402(  8)  421 ( 3)  138(15)  4)  -362(  9)  449(  3)  160(18)  H1(31 )  2 1 8 ( 3)  -15(  9)  458(  3)  129(14)  H2(31 )  262( 4)  -176(11 )  409(  3)  181(22)  H3(31)  266(  110(10)  399(  3)  163(20)  H(4)  1 42( 2)  392(  6)  3 1 4 ( 2)  88(  - 182(  9)  21 1 ( 3)  5802)  1 48 ( 3)  59(16)  302(  56(  56(  H1 (21 ) H2(21)  98(  H3(21)  4)  H1 (5) '  68(  4)  H2(5)'  99(  4)  -45(  2)  H(8a)  2  thermal parameters  Primed  (')  5(11) 363(  5)  atoms a r e a t p o s i t i o n s  o f 50%  1 )  occupancy  9)  6)  32  Table II o  Final  anisotropic and  Atom  their  Ui i  y  thermal  parameters  estimated  standard  2 2  U33  (Uij X  10*  A ) 2  deviations  U12  U  U13  2 3  c(i)  521(12)  536(12)  532(11)  -37(  9)  141(  9)  14(10)  C(2)  642(13)  487( 1 1 )  445(10)  2(  9)  77(  9)  17(  C(21 )  993(22)  718(17)  479(13)  -10(16)  C(3)  563(13)  641(13)  494(11)  -6(10)  C(31 )  678(19)  1407(34)  720(19)  C(4)  52*6(1 3)  591(13)  611(12) -123(  9)  63(10)  C(8a)  516(12)  411(10)  50-9(10)  8)  71 ( 8)  0(1 )'  619(24)  1138(36)  1027(32) - 3 1 3 ( 2 3 )  105(21)  232(28)  0(4) '  530(18)  701(19)  184(14)  -3906)  719(19)  109(12)  9)  97(13)  9)  -3(10)  -70(21) -148(14)  218(20)  39(  -39(14)  -8(  11(11) -77(  9)  33  0  intermolecular  0...0  c o n t a c t s can occur molecule  and  contact  between  that  of  distances  the  the  hydroxyl  by t h e c e n t e r i n g c o n d i t i o n ,  oxygen  and  neighboring y,z)  in  of  The  related  [110]  and  [1 TO]  hydrogen  molecules. with the  The  bonding  above  takes  apparent may  little  molecule,  oxygen  in  the  hydrogen  bonds  link  However,  the  of  2.804(4)  between  A  disordered  distances are consistent  cleaves easily  p a r a l l e l to  alignment The slabs  two-fold  -  symmetry  be r a t i o n a l i z e d  axis  f o r hydrogen disorder  The  bonding in  bonds  packing  are possible  of  different  molecules  types  H...0(4)(1/2-x,1/2+y,1/2-z)  to  that  are  hydrogen  in  which  o f two t y p e s , A and B rotation  within  t h e s e q u e n c e A...A  0(4)(x,y,z)-H...0(1)(1/2+x,1/2-y,z) molecules  provided  arrangements  by 180 d e g r e e s  linking  there appears  p r e v e n t i n g t h e two m o l e c u l a r  t o (001) c o n t a i n m o l e c u l e s  k i n d s of hydrogen molecules  that  This  i s maintained.  from  (where A a n d B a r e r e l a t e d  the molecule.  i n t h e same c r y s t a l ,  bonding  arises  through  on t h e b a s i s  from c o - e x i s t i n g  parallel  B...A).  assumed t o be 50:50, r e s u l t s i n  stereochemical hindrance  orientations  join  one  (001) f a c e .  disorder be  of  t h e same h y d r o x y l  distance  place  the c r y s t a l  D i s o r d e r i n the s t r u c t u r e , an  that  intermolecular  the o b s e r v a t i o n that  atom  directions.  0 ( 4 ) (x,y,-z) .. .0(4) (1/2-x, 1/2+y, 1/2-z) suggests  3 A. T h e s e  0(4)(x,y,z)..,0(1)(1/2+x,1/2-  2.652(5) A s u g g e s t s  the  oxygen  o r between  symmetry  centered molecule.  distance  molecules  two-fold  than  carbonyl i n the adjacent  related  the  less  about  the  b ) . Two  slabs.  They  ( o r B...B) and A...B ( o r of  similar  type  interactions joined bonds.  by There  are  whereas  0(4)(x,y,z)are several  34  packing arrangements c o n s i s t e n t available forces  hydrogen  are  a  arrangements  bonding  major leading  w i t h i n each  influence to  on  hydrogen  maximum number o f m o l e c u l e s probable  with the  within  dual slab,  the bonding the  composition  and  and s i n c e p a c k i n g  crystal  energy,  the  networks l i n k i n g the  slabs  yield  the  most  structure.  Figure the u n i t  8  cell  molecules  shows  with C(4) l a b e l l e d  adopt  cyclohexene  a s t e r e o s c o p i c drawing  ring  a  conformation  cis-fused  of the c o n t e n t s of  by i t s a d j o i n i n g which c o n s i s t s  t o a second  hydrogen. of a  half-chair  The  half-chair  cyclohexenone  Figure 8 Stereo diagram molecules moiety  ( F i g . 9)  of the m o l e c u l a r p a c k i n g of type A viewed approximately down b.  similar  to previously studied  naphthoquinols  (32). In c o m p a r i s o n lengths  are  found  with accepted to  be  values  slightly  (33), the  mean  bond  s m a l l e r , with d i s t a n c e s of  35  1.524 A f o r C ( s p ) - C ( s p ) and 1.504 A f o r C ( s p ) - C ( s p ) . 3  to  3  h y d r o g e n bond l e n g t h s g e n e r a l l y  from in  3  do n o t d e v i a t e  significantly  t h e a c c e p t e d v a l u e s . Bond a n g l e s a r e n o r m a l a n d T a b l e s I I I and IV a l o n g w i t h bond  indicated  are  l e n g t h s . Some r i n g  by a C ( 4 ) - C ( 3 ) - C ( 2 ) - C ( 1 ) t o r s i o n  Carbon  2  given strain,  a n g l e of -2.3° (Table  Figure 9 Stereo diagram of 2,3,6,7-tetramethyl4ap,5,8,8ap-tetrahydro-1-naphthoquin-4c-ol V) and compounded  by an  175.0°,  in  results  mean p l a n e t h r o u g h  molecule,  naphthoquin-4o~ol suited  to  photochemical is  less  than  the  c a r b o n y l oxygen  the former  below t h e same mean The  0(1)-C(1)-C(2)-C(3)  lying  angle  of  0.1 A above t h e  atoms and C ( 1 ) l y i n g  0.005  A  plane. exhibiting  derivatives  H(5)  four  torsion  in  abstraction  excitation.  the  same c o n f o r m a t i o n as o t h e r  the by  series  the  is  geometrically  p-carbon,  C ( 3 ) , upon  The C ( 3 ) . . . H 1 ( 5 ) d i s t a n c e  o f 2.84(5) A  t h e van d e r W a a l s c o n t a c t d i s t a n c e  o f 2.90 A. O t h e r  36  Table III Bond l e n g t h s standard Bond  deviations  estimated  i n parentheses  Length  Bond  Length  CO)  -C(2)  1 .484(3)  C(3)  -C(31 )  1 .510(4)  CO)  -C(8a)  1 .515(3)  C(3)  -C(4)  1 .505(3)  CO)  -0(1 )  1 .199(4)  C(4)  -0(4)  1 .356(4)  C(2)  -C(21)  1 .506(3)  C(4)  -C(8a)"  1 .514(3)  C(2)  -C(3)  1 .339(3)  C(8a) - C ( 8 a )  Bond a n g l e s standard  (deg) w i t h  deviations  Angle  Bonds  n  1 .533(4)  estimated  i n parentheses Bonds  •  Angle  C(2)  -CO )  -C(8a)  116. 6(2)  C(31 ) -C(3)  -C(4)  114.7(2)  C(2)  -CO)  -0(1 )  116. 6(3)  C(3)  -C(4)  -0(4)  113.3(2)  -0(1 )  126. 5(3)  C(3)  -C(4)  -C(8a)"  113.7(2)  -C(8a)"  110.5(2)  C(8a) -CO )  3  (A) w i t h  3  CO )  -C(2)  -C(21)  115. 0(2)  0(4)  -C(4)  CO )  -C(2)  -C(3)  120. 6(2)  CO)  -C(8a) - C ( 8 a )  C(21 ) - C ( 2 )  -C(3)  124. 4(2)  CO)  -C(8a) - C ( 4 ) "  1 14.2(2)  C ( 8 a ) '"-C(8a) - C ( 4 ) "  109.7(2)  C(2)  -C(3)  -C(31)  122. 3(3)  C(2)  -C(3)  -C(4)  123. 0(2)  Double primes  (")  denote  symmetry  related  atoms.  n  109.8(1)  37  Table  IV «  Bond  lengths  estimated Bond  involving  standard  h y d r o g e n atoms  deviations  Length  (A) w i t h  in parentheses  Bond  Length  C(21 ) -H1(21)  0. 8 6 ( 4 )  C(31 ) -H3(31)  0. 88(5)  C(21 ) -H2(21)  0. 9 3 ( 4 )  C(4)  0. 96(3)  C(21 ) -H3(21)  0. 9 6 ( 5 )  C ( 8 a ) -H(8a)  0. 98(2)  C(31 ) -H1(31)  0. 8 8 ( 5 )  C ( 1 )-H1(5) "  1 .08(5)  C(31 ) -H2(31)  1. 01 (6)  C(1 )" -H2(5)  0. 93(6)  Bond a n g l e s  involving  e s t imated s t a n d a r d  -H(4)  h y d r o g e n atoms deviations  (deg)  with  i n parentheses Angle  Bonds  Bonds  Angle  C(2)  -C(21 ) -HI(21)  112(2)  C(3)  -C(4)  -H(4)  108(2)  C(2)  - C(21 ) -H2(21)  112(3)  0(4)  -C(4)  -H(4)  99(2)  C(2)  - C(21 ) -H3(21)  112(3)  H(4)  -C(4)  -C(Ba)'  H1 (21 )-C(21 ) -H2(21)  133(4)  CO)  - C ( 8 a ) -H(8a)  106(1)  H1 (21 )-C(21 ) -H3(21)  84(3)  C ( 8 a ) " - C ( 8 a ) -H(8a)  107(1)  H 2 ( 2 1 ) - C(21 ) -H3(21)  94(3)  C ( 4)"C ( 8 a ) -H(8a)  109(1)  C(3)  - C(31 ) -H1(31)  111(3)  C(2)  - C O )" - H I ( 5 )  108(2)  C(3)  - C(31 ) -H2(31)  124(3)  C(2)"  -H2(5)  114(3)  C(3)  -•C(31 ) -H3(31)  109(3)  C ( 8 a ) " - C O ) " -H1(5)  108(3)  H1(31 )--C(31 ) -H2(31)  95(4)  C ( 8 a ) - C O ) " -H2(5)  107(4)  H1(31 )--C(31 ) -H3(31)  112(4)  -H2(5)  102(4)  H2(31 )--C(31 ) -H3(31)  106(4)  n  -CO)"  n  H1 (5) - C O ) "  '  111(2)  38  pertinent process  include  subtended plane  geometric  of  factors  considered  the  the angle C(2)-C(3)...H1(5),  A  abstraction  , and the a n g l e  by t h e C ( 3 ) t o H1(5) v e c t o r and i t s p r o j e c t i o n the  carbon-carbon  t o be 79.5 and 53.5 d e g r e e s ,  are  comparable  naphthoquinols p-enone c a r b o n  to  that  that  taking  place.  were shown  the  ; these angles  were  respectively.  found  in  These  similar  values  substituted  t o undergo H - a b s t r a c t i o n  results  of  the  H 1 ( 5 ) - a b s t r a c t i o n by  present  C(3)  is  compound the  Whereas t h e m o l e c u l a r g e o m e t r y  t o H(8) a b s t r a c t i o n this  those  c  on  by  the  (30,32).  Photochemical clearly  bond, T  double  found  (26,34),  in  by 0 ( 1 )  reaction  was  as  in  process  i s also favorable  naphthoquinone  not observed  i  major  indicate  derivatives  i n the present  compound.  Table Torsion  angles  standard  V  (deg) w i t h  deviations in  estimated  parentheses  Atoms  Value  C(8a) -C(1)  -C(2)  -C(21)  1 67.6(2)  C ( 8 a ) -C(1 )  -C(2)  -C(3)  -1 1 .5(3)  0(1 )  -C(1)  -C(2)  -C(21)  0(1)  -C(1 )  -C(2)  -C(3)  C(2)  -C(1 )  -C(8a) - C ( 8 a ) "  C(2)  -C(1 )  -C(8a) - C ( 4 ) "  0(1)  -C(1)  -C(8a) - C ( 8 a ) "  0(1 )  -C(1)  -C(8a) - C ( 4 ) "  -21 .6(5)  C(1 )  -C(2)  -C(3)  -C(31)  178 .6(3)  C(1)  -C(2)  -C(3)  -C(4)  C(21 ) -C(2)  -C(3)  -C(31)  C(21 ) -•C(2)  -C(3)  -C(4)  C(2)  -C(3)  -C(4)  -0(4)  C(2)  -C(3)  -C(4)  -C(8a)"  C(31 ) - C ( 3 )  -C(4)  -0(4)  C(31 ) - C ( 3 )  -C(4)  -C(8a)"  -5 .9(5) 1 75.0(4) 42 .0(3) 165 .6(2) -1 45 .2(5)  -2 .3(3) 0 .4(4) 178 .7(2) -143 .5(3) -16 .3(3) 35 .7(4) 162 .9(3)  C(3)  -C(4)  -C(8a) "-C(8a)  46 .5(2)  C(3)  -C(4)  -C(8a) - C ( 1 ) "  -77 . 1(2)  0(4)  -C(4)  -C(8a) "-C(8a)  175 .2(2)  0(4)  -C(4)  -C(8a) " - C ( 1 ) "  51 .5(3)  C(1 )  -C(8a) -C(8a)"-C(4)  C(1)  -C(8a) -C(8a) " - C ( 1 ) "  M  -58 .9(2) 67 .3(3)  Table V  (continued)  C(4)"  -C(8a) - C ( 8 a ) -C(4)  174.9(2)  C(4)  -C(8a) - C ( 8 a ) - C ( 1 ) "  -58.9(2)  n  r  r  C(2)  -C(1 )  - C ( 8 a ) -H(8a)  -73.8(13)  0(1)  -C(1)  - C ( 8 a ) -H(8a)  99.0(14)  C(1)  -C(2)  - C ( 2 1 ) -H1(21)  -118(3)  C(1 )  -C(2)  - C ( 2 1 ) -H2(21)  44(3)  C(1)  -C(2)  - C ( 2 1 ) -H3(21)  149(3)  C(3)  -C(2)  - C ( 2 1 ) -H1(21)  61(3)  C(3)  -C(2)  - C ( 2 1 ) -H2(21)  -136(3)  C(3) • -C(2)  -C(21 ) -H3(21)  -32(3)  C(2)  -C(3)  - C ( 3 1 ) -H1(31)  -42(3)  C(2)  -C(3)  - C ( 3 1 ) -H2(31)  70(4)  C(2)  -C(3)  - C ( 3 1 ) -H3(31)  -165(4)  C(4)  -C(3)  - C ( 3 1 ) -H1(31)  139(3)  C(4)  -C(3)  - C ( 3 1 ) -H2(31)  -109(4)  C(4)  -C(3)  - C ( 3 1 ) -H3(31)  16(4)  C(2)  -C(3)  -C(4)  -H(4)  107(2)  C(31 ) - C ( 3 )  -C(4)  -H(4)  -74(2)  C(3)  -C(4)  -C(8a) - H ( 8 a ) "  164.2(13)  0(4)  -C(4)  - C ( 8 a ) **-H(8a) "  -67.1(14)  H(4)  -C(4)  - C ( 8 a ) "-C(8a)  -76(2)  H(4)  -C(4)  -C(8a) "-H(8a)"  H(4)  -C(4)  -C(8a) " - C ( 1 ) "  n  C(1 ) • - C ( 8 a ) - C ( 8 a ) " - H ( 8 a ) "  42(2) 161(2) -177.8(13)  Table V  CUP  (continued)  -C(8a) - C ( 8 a ) " - H ( 8 a ) "  56.0(1 3)  H ( 8 a ) "-C(8a) - C ( 8 a ) " - C ( 4 ) H(8a) - C ( 8 a ) - C ( 8 a ) " - H ( 8 a ) n  n  H(8a) - C ( 8 a ) - C ( 8 a ) " - C O )" n  H1 (5) - C ( 1 ) "  -C(2)"  HI (5) - C O ) " - C ( 2 ) "  56.0(1 3)  -63(3) -177.8(1 3)  -C(21)"  -71(3)  -C(3)"  110(3)  H2(5)  -C(1)"  -C(2)"  H2(5)  -C(1)"  -C(2 ) " - C ( 3 ) "  -C(21)"  42(4) -137(4) 44(3)  H1 (5) - C ( 1 ) "  - C ( 8 a ) " -C(4)  H1 (5) - C ( 1 ) "  - C ( 8 a ) " -C(8a)  -80(3)  H1 (5) - C ( 1 ) "  -C(8a)" -H(8a)"  164(3)  - C ( 8 a ) -C(4)  -65(4)  H2(5)  -C(1)"  H2(5)  - C O )" - C ( 8 a ) - C ( 8 a )  H2(5)  -CO)"  n  n  -C(8a)" -H(8a)"  171(4) 55(4)  CHAPTER I I  2,3-DIMETHYL-4a0,5,8,8a 0-TETRAHYDRO-1-NAPHTHOQUIN-4a~OL AND  6,7-DIMETHYL-4a0,5,8,8a0-TETRAHYDRO-1-NAPHTHOQUIN-4a-  43  Introduction The  structures  further  of t h e t i t l e  confirmation  the  established  the  structural  of  compounds  the geometric  naphthoquinol  reaction  were  i n v e s t i g a t e d and  requirements  leading to  p a t t e r n s was s o u g h t  from  data.  Exper i m e n t a l Preparation borohydride resulting  of  the t i t l e  reduction  from  of  the thermal  dimethyl-benzoquinone, benzoquinone  which  compounds  involved  the appropriate Diels-Alder reactions  and  between  yielded  the  between b u t a d i e n e  by  slow  were Mass C  1 2  H  2,3-  0 .  measure and  to  spectral  chosen  of the i n d i v i d u a l  e v a p o r a t i o n of  shown  l 6  Crystals  2  petroleum  be b e t t e r  data  than  confirmed  A l lcrystals  (IV)  f o r data c o l l e c t i o n 0.1  6,7-dimethyl  98 p e r c e n t p u r e the assigned  were  x 0.3 x 0.5mm  3  compounds,  compounds  ether/ethanol  exhibited  adducts  a n d 2,3-  2,3-dimethylbutadiene  dimethyl-4ap,5,8,8ap-tetrahydro-1-naphthoquin-4c-ols respectively.  sodium  c u t from  and  6,7(V),  1  were  afforded  solutions  and  by GC a n a l y s i s .  chemical  acicular  and  habits  larger  formulae and those  crystals  a n d 0.4 x 0.2 x 0.1mm  3  to  f o r t h e 2,3-  respectively.  IUPAC names: 4a-hydroxy-2,3-dimethyl-4ap,5,8,8a*-tetrahydro1(4H)-naphthalenone and 4o-hydroxy-6,7-dimethyl-4ap,5,8,8aptetrahydro-1(4H)-naphthalenone 1  44  2,3-Dimethy1-4ag,5,8,8ag-tetrahydro-1-naphthoquin-4o-ol  Crystal b =  data:  12.269(2),  D = £  1.226  1 2  H  1 6  1  +  , MW  2  =  »«(MoKo)  3  £2,2,2,;  0  c = 16.478(3)  g cm* ,  group = 2n  C  h00,  192.3, o r t h o r h o m b i c .A,  V = 1040.8(4)  = 0.764 cm' , +  1,  A ,  0k0,  k = 2n  +  data:  space  D  — c  4,  space  1,  003.,  1 absent.  b = 22.724(3), Z = 4,  Z =  3  6,7-Dimethyl-4ap,5,8,8ap-tetrahydro-1-naphthoquin-4c-ol  Crystal  5.148(1),  V = 0.71073 A,  1  h = 2n  a =  (IV)  =  group  C  1 2  H  1 6  0 , 2  MW  =  c = 5.139(2) A,  1.213  g cm" , 3  P2,/c;  P  192.3, p =  monoclinic  102.7(1)°,  V =  X = 0.71073  1  +  1,  OkO,  k = 2n  9.242(3),  1052.8(5)  *(MoKc) = 0.756 cm" ,  h O l , 1 = 2n  a =  (V)  +  O  1 absent.  A , 3  A,  45  Final least  cell  squares  constants fit  to  f o r both  the  sin6  structures values  were o b t a i n e d  for  25  by  centered  reflections. In  the  remaining  brackets  refer  w h i c h no  brackets  title  t o the  'Experimental'  6,7-dimethyl  follow  are  text,  compound.  t o be  regarded  quantities  Parameters  as  the  after  same f o r  collection  proceeded  in  the  t h e t a range  0.0-27.5°  [ 0 . 0 - 2 5 . 0 ° ] u s i n g g r a p h i t e m o n o c h r o m a t i z e d MoKo r a d i a t i o n . -2(4/6)6 (0.75  [ u-26]  scan  + 0.35tan6)  extended  25%  on  measurement.  both  The  [(2.50  +  reflections  chosen  X-ray  exposure  application little  is  The  as  time.  for  0°<6<20°)]  absorption  and  and  and of  coefficients  671  time-averaged that  reference  proper  crystal  reflections  every  3600 s of  which  included  intensities.  as +  mm open a t  -corrections,  [626],  S + 2B  according to  other  data  classified  was  remained  monitored the  scan  background  three  Three  o of  I.OOtanO)  to ensure  reflections'  indicated  +  of  polarization  collected,  B the  varied  An  angle  Each for  slit  angles  i s d e f i n e d as  2  scan count  controls  were  was (2.00  collection.  i n the check  "> 3«r(I), where « ( I ) the  width  the v e r t i c a l  Processing  Lorentz  o r no d e c a y  o-scan  degrees.  periodically  data  intensity  of  slit  setting  checked  [1834] r e f l e c t i o n s  (55% I  mm.  while  throughout  were  + 0.35tan6)]  an  s i d e s of t h e peak t o a l l o w  mm]  were  orientation  with  relationship  1.00tan6) 4  employed  horizontal  6-dependent  constant  was  [(0.55  the  1413  both  compounds. Data  a  in  or  showed Of  the  47.5%  [34.1%  observed  having  (0.04(S  - B) )  b a c k g r o u n d . The absorption  2  ; S  linear  corrections  46  were n o t w a r r a n t e d .  Solution  and  Refinement  2,3-Dimethyl-4ai,5,8,8ag-tetrahydro-1-naphthoquin-4o-ol The largest  structure  was  solved  156 E - v a l u e s . The a c e n t r i c  with  the p r e v i o u s l y a s s i g n e d  The  E-map o b t a i n e d  merit  from  i n MULTAN c l e a r l y  hydrogen  atoms.  refinement  of  parameters, the  by  indicated  two c y c l e s  of f u l l  atoms  Convergence  for  the observed  complete  data  set R =  scheme  w = 1/* (F)  0.103  with  was  and  Rw  =  synthesis, the of and an  following  2  over  h i g h e s t peak c o r r e s p o n d i n g refinement  191 p a r a m e t e r s  no p a r a m e t e r  shift  o b s e r v a t i o n of u n i t  weight  thermal  R = 0.031  The  analysis  showed  of  f o r the  from  confirmed the  |Fo|. A  random  and  weighting  by s h o w i n g u n i f o r m  average  difference  fluctuations  t o 0.15 e / A . In t h e f i n a l 3  were v a r i e d  exceeded  non-  squares  2  ranges  refinement,  least  where « ( F ) i s d e r i v e d  weights  v a l u e s o f w(|Fo| - k | F c | )  group.  14  whereas,  0.036.  suitability  chosen  at  (I > 3c(D),  A weighting  the  of the  anisotropic  data  the p r e v i o u s l y d e f i n e d * ( I ) . of  space  matrix  reached  2  2  was c o n s i s t e n t  map r e v e a l e d t h e p o s i t i o n s of  was e m p l o y e d ,  2  using the  with the highest f i g u r e of  the p o s i t i o n s  difference-Fourier  16 h y d r o g e n s .  Rw = 0.036  E-distribution  the s o l u t i o n  After  methods  non-centrosymmetric  non-hydrogen  a  direct  u s i n g 671 o b s e r v e d  with cycle data  0.39*. The s t a n d a r d d e v i a t i o n i n  was  1.210.  The F i n * ( F ) and a l l s u b s e q u e n t occurrences o f F, n o t f o l l o w e d by t h e m o d i f i e r s 'o' o r ' c ' , a r e synonymous w i t h F o . 2  2  47  6,7-Dimethyl-4a0,5,8,8ai-tetrahydro-1-naphthoquin-4o-ol MULTAN y i e l d e d hydrogen of  the  atoms.  were  proceeded  obtained  of  density The  of  i n the w(|Foj  0.032  of  the  parameters  parameters The  14  hydrogen  map.  for  non-  refinement  16  Refinement  carbons  and  f o r the hydrogens  difference-Fourier,  and  were  Rw  parameters  was  3  0.020 and w =  over  2  = 0.037 whereas  until  calculated  are  shifts  of  the  |Fo|. 191  f o r the complete  the  i n an  in  Table  The  final  data  cycle weights  average  values  final  R-value  in Table  Rw  weight  factors  Anisotropic  f o r n o n - h y d r o g e n atoms a r e p r e s e n t e d  626 and  o b s e r v a t i o n of u n i t temperature  was  and  s e t R = 0.167  VI.  of  The  parameters  c o o r d i n a t e s and  given  on  2  ranges  to  immediate v i c i n i t y  0.20*, r e s p e c t i v e l y .  standard deviation  (V)  i n the  1 / * ( F ) gave u n i f o r m  for  1.193. F i n a l a t o m i c and  e/A ,  maximum p a r a m e t e r  - kjFc|)  = 0.037. The  (IV)  thermal  0.12  refinement,  observations,  was  squares  a difference-Fourier  converged.  mean and  refinement  used  least  the  c o n v e r g e n c e , i n d i c a t e d t h a t t h e l a r g e s t peak, c o r r e s p o n d i n g  excess 0(1).  from  i s o t r o p i c thermal  refinement  matrix  for  the c o o r d i n a t e s of  with anisotropic  oxygens and  after  Following f u l l  n o n - h y d r o g e n atoms,  atoms  the  the p o s i t i o n a l parameters  for  thermal VII.  Discussion Molecules similar I and of the  to that  of  (IV)  found  i n other  r e f e r e n c e 3 2 ) . The  6 6 . 6 ( 3 ) ° f o r (IV) and degree  of  twist  and  (V) assume a c o n f o r m a t i o n  which i s  tetrahydronaphthoquinols  (Chapter  torsion 67.3(4)°  angles, for  (V)  C(5)-C(4a)-C(8a)-C(1), (Table V I I I ) ,  in t h i s conformation,  indicate  which c o n s i s t s  of a  48  T a b l e VI Final and with  positional  isotropic estimated  (fractional  x 10",H x 1 0 )  thermal parameters standard  deviations  3  (U x 1 0  3  A ) 2  in parentheses  2,3-dimethyl-4ap,5,8,8ap-tetrahydro-1-naphthoquin-4a-ol  Atom  C(1 ) C(2) C(21 ) C(3) C(31 ) C(4) C(4a) C(5) C(6) C(7) C(8) C(8a) 0(1 ) 0(4) H1(21 ) H2(21 ) H3(21 ) H1(31 ) H2(31 ) H3(31 ) H(4) H(4a) H1 (5) H2(5) H(6) H(7) H1 (8) H2(8) H(8a) H(04)  X  3659( 8) 361 2 ( 7) 1 863 (1 1 ) 5099( 7) 5222 ( 12) 6849( 7) 6 1 56 ( 7) 3753( 9) 2729( 7) 3430 ( 9) 5332( 10) 5790( 7) 2076( 5) 70 1 7 ( 6) 279(1 4) 45(1 8) 102(1 6) 499(1 1 ) 432( 1 1 ) 712(1 4) 866( 7) 765( 7) 229( 8) 422( 7) 1 55 ( 8) 287( 8) 479( 9) 694( 9) 727( 7) 5 7 0 ( 1 2)  1 31 ( 3) -1 61 < 3) -1062 < 4) 441 ( 3) 238 ( 5) 1 340 ( 3) 1 739( 3) 2472( 3) 2621 < 3) 2024< 3) 1 1 1 3< 4) 754< 3) -400< 2) 2225 2) -1 66 ( 5) -1 29 { 7) -93( 6) -46( 4) 77( 4) 43( 5) 1 03 ( 2) 2 1 8 ( 3) 21 2( 3) 31BC" 3) .323 ( 3) 2 1 6 ( 3) 46( 4) 1 29( 3) 39( 2) 245( 5)  z 1 937( 2)  1 055 (2) 770( 4) 550( 2) -351 ( 3) 862< 2) 1 706 ( 2) 1 728 ( 2) 2571 < 2) 3 1 93 < 2) 3 1 42 < 2) 2) 2268 23861 2) 292 2) 65( 3) 1 08 ( 5) 21 ( 4) -48( 3) -67( 3) -54( 4) 86( 2) 1 90 ( 2) 1 35( 2) 1 50 ( 2) 262 ( 2) 377 ( 2) 346( 3) 340( 2) 221 ( 2) 1 9 ( 3)  Ueq/Ui so 41 41 63 40 67 38 34 40 - 44 49 52 39 59 47 . . 1 30(25) 205(41) 165(29) 103(20) 106(22) 139(24) 30( 8) 40(10) 67(12) 38(10) 47(10) 58(11) 78(15) 68(13) 24( 9) 98(22)  T a b l e VI  (continued)  6,7-dimethyl-4a*,5,8,8ap-tetrahydro-1-naphthoquin-4a-ol  Atom  C(1 ) C(2) C(3) C(4) C(4a) C(5) C(6) C(61 ) C(7) C(71 ) C(8) C(8a) 0(1 ) 0(4) H(2) H(3) H(4) H(4a) HI (5) H2(5) H1(61 ) H2(61 ) H3(61) H1 (71 ) H2(71 ) H3(71 ) H1 (8) H2(8) H(8a) H(04)  z  x  -877( 4) 502( 5) 1 047 (5) 357 ( 4) -1 283( 4) -2240( 5) -3800( 5) -4832( 8) -4182( 4) -5736( 7) - 3 1 0 3 ( 5) -1501 ( 4) -1460( 3) 627( 3) 94( 4) 1 96 (4) 91 ( 4) -1 59 ( 3) -1 78 ( 4) -233( 4) -583( 8) -462( 6) -467( 8) -593( 7) -579( 8) -650( 7) -333( 4) -320( 4) -87( 4) -941 ( 5)  -560( 2) -805( 2) -1307( 2) -1651( 2) 2) - 1 51 3 ( -1 767 ( 2) 2) - 1 51 5 ( -1 847( 3) -1036( 2) -785( 4) -689( 2) -848( 2) -1 36 ( 1 ) -2265( 1 ) -58( 2) -1 46 ( 1 ) -1 54 ( 1 ) -1 67 ( 1 ) -1 70 ( 1 ) -221 ( 2) - 1 70 (3) -224( 3) -181 ( 3) -65( 3) -43( 3) -1 05 ( 3) -76( 2) -26( 2) -69( 1 ) -243( 2)  1056( 9) 2635(10) 1972( 9) . -443( 9) - 1388( 9) 396(11 ) -116( 9) 1252(18) -1589( 9) -2182(21) -2774(11) - 1613( 9) 1858( 6) 149( 8) 423( 9) 281( 7) -191( 7) -318( 8) 240( 9) 18( 7) 75(13) 120(12) 304(17) -398(15) -152(16) -191(13) -474(10) -255( 8) -261( 7) -121(10)  Ueq/Uiso  40 43 43 41 36 42 46 72 49 84 50 37 58 53 60(14) 31(10) 42(11) 31(10) 49(13) 48(12) 139(26) 119(25) 163(40) 126(31) 158(34) 143(28) 64(14) 60(13) 31(11) 57(18)  50  Table VII Final  anisotropic and  their  thermal parameters estimated  standard  ( U i j x 10  3  A ) 2  deviations  2,3-dimethyl-4ap,5,8,8ap-tetrahydro-1-naphthoquin-4c-ol  Atom C( 1 ) C(2) C(21 ) C(3) C(31 ) C(4) C(5) C(6) C(7) C(8) C(8a) C(4a) 0(1 ) 0(4)  y  1  2) 2) 3) 2) 81 ( 4) 27( 2) 36( 2) 41 ( 2) 49( 3) 50( 3) 25( 2) 23( 2) 52( 2) 38( 2) 30( 35( 55( 33(  y  2  2  2) 2) 3) 2) 3) 2) 2) 2) 2) 3) 2) 2) 2) 2)  33( 38( 48( 40( 64( 42( 38( 42( 57( 64( 48( 40( 58 ( 57(  y  3  58 ( 49( 86( 46( 54( 45( 46( 50( 39( 41 ( 46( 40( 67( 47(  3  3) 2) 4) 2) 3) 2) 2) 3) 2) 3) 2) 2) 2) 2)  y  2  6( 2) 2( 2) -1 1 ( 3) 5( 2) -6( 3) 1 ( 2) 4( 2) 2( 2) -2( 2) -2( 3) 9( 2) -4( 2) -17( 2) -5( 1 )  y  3  4( 0( -2( 4( 10( 1 ( -3( 4( 2( -7( -2( -2( 1 5( 6(  2) 2) 3) 2) 3) 2) 2) 2) 2) 2) 2) 2) 2) 1 )  y  3  2  10( 2) 1 ( 2) -7( 3) -5( 2) -1 5( 3) 7( 2) 6( 2) -8( 2) -2( 2) 12( 2) 9( 2) 6( 2) 8( 1 ) 1 5( 1 )  6,7-dimethyl-4ap,5,8,8ap-tetrahydro-1-naphthoquin-4o-ol  Atom CO ) C(2) C(3) C(4) C(4a) C(5) C(6) C(61 ) C(7) C(71) C(8) " C(8a) ' 0(1 ) 0(4)  y i 44( 47( 34( 52( 46( 46( 44( 62( 39( 49( 56( 42( 61 ( 75(  1  3) 3) 3) 3) 3) 3) 3) 4) 3) 4) 3) 3) 2) 2)  y 35( 42( 52( 34( 39( 44( 52( 77( 57( 85( 49( 39( 50( 40(  2  2  2) 3) 3) 3) 2) 3) 3) 5) 3) 5) 3) 3) 2) 2)  y  3  41 ( 39( 44( 40( 25( 38( 42( 87( 46( 1 10( 40( 33( 60( 45(  3  3) 3) 3) 3) 3) 3) 3) 6) 3) 7) 3) 3) 2) 2)  y -3( -6( -1 ( 3( -2( -7( -9( -6( 4( 8( 4( -3( 4( 9(  2  2) 2) 2) 2) 2) 2) 2) 3) 2) 4) 2) 2) 2) 2)  y  1  3  13( 2) 6( 2) 7( 2) 1 9( 3) 10( 2) 9( 2) 1 1 ( 2) 38( 4) -1 ( 2) 2( 4) 1 ( 2) 12( 2) 1 1 ( 2) 18( 2)  y  2  3  -1 ( 2) -7 ( 2) 1 ( 2) 0( 2) -3( 2) 3( 2) -10( 2) -1 ( 4) -5( 2) -3( 5) 5( 2) 3( 2) -13( 2) -1 ( 2)  51  Table Torsion  VIII  a n g l e s (deg) w i t h  standard  deviations  estimated  in parentheses  2,3-dimethyl-4a£,5,8,8ap-tetrahydro-1-naphthoquin-4o-ol  Atoms  Value  c( 8a) -c( 1) c( 8a) -c( 1) 0( 1 ) -c( 1) 0( 1 ) -c( 1) C( 2) -c( 1) C( 2) -c( 1) 0( 1 ) -c( 1) 0( C( C( C( C( C( C( C(  1 ) 1 ) 1 ) 21 ) 21 ) 2) 2) 31 ) c<31 ) c<3) CI 3) 0 4) 0 4) c 4a) c .6) c '6) c [5) c .6) c i7) c (7) c( 1 ) c[ 1 ) c (8) c (8)  -C( 1) -C( 2) -C( 2) -c( 2) -C( 2) -C( 3) -C( 3) -C( 3) -C( 3) -C( 4) -c<4) -c<4) -c 4) -c 5) -c 5) -c 5) -c 6) -c 7) -c '8) -c ,8) -c 8a) -c [8a) -c [8a) -c [8a)  -C( 2) -c( 2) -c( 2) -c( 2) -C( 8a) -C( 8a) -c<8a) -C( 8a) -c<3) -C( 3) -C( 3) -C( 3) -c<4) -CI 4) -c< 4) -c 4) -c 4a) -c 4a) -c 4a) -c [4a) -c '6) -c [4a) -c [4a) -c [7) -c [8) -c [8a) -c [8a) -c [4a) -c [4a) -c (4a) -c (4a)  -C(21) -C(3) -C(21) -C(3) -C(8) -C(4a) -C(8) -C(4a) -C(31) -C(4) -C(31) -C(4) -C(4a) -0(4) -C(4a) -0(4) -C(5) -C(8a) -C(5) -C(8a) -C(7) -C(4) -C(8a) -C(8) -C(8a) -C(1 ) -C(4a) -C(4) -C(5) -C(4) -C(5)  167.2( 4) -12.0( 5) -11.01 5) 169.81 3) 166.91 3) 42.0( 4) -15.01 5) -139.81 3) 176.81 4) 0.51 5) -2.4( 6) -179.71 4) -18.81 5) -146.21 3) 1 63.8 4) 36.4 5) -75.6 4) 48.2 4) 51 .6 I4) 175.4 (3) -13.7 (5) 165.6 (3) 42.6 [4) 0.3 (6) -15.7 (6) -78.9 (5) 45.0 (5) -59.0 (4) 66.6 (4) 174.8 (3) -59.5 (4)  c (2)  -c [1) -c [1 ) -c [2) -c [2) -c [2) -c (2) -c [2) -c (2)  -c (8a) -c (8a) -c (21 ) -c (21 ) -c (21 ) -c (21 ) -c (21 ) -c (21 )  -H(8a) -H(8a) -H1(21) -H2(21) -H3(21) -H1(21) -H2(21) -H3(21)  -69(2 110(2 -102(4 23(6 147(5 77(4 -157(6 -34(5  0 (1 ) c (1 )  c i 1) c i 1) c (3) c (3) c (3)  52  Table VIII  (continued)  2,3-dimethyl-4ap,5,8,8ap-tetrahydro-1-naphthoquin-4a-ol  C(2) C(2) C(2) C(4) C(4) C(4) C(2) C(31 ) C(3) 0(4) H(4) H(4) H(4) C(3) C(4a) H(4) C(4a) H1 (5) H1 (5) H2(5) H2(5) C(6) H1 (5) H1 (5) H1 (5) H2(5) H2(5) H2(5) C(5) H(6) H(6) C(6) C(6) H(7) H(7) H(7) C(7) HI (8) H1 (8) HI (8) H2(8) H2(8) H2(8) C(1 ) C(8) H(8a) H(8a) H(8a)  -C( 3 )  -c( 3 ) -c( 3 ) -c( 3 ) -c( 3 ) -c( 3' )) -c( -c( 3 ) -c( 4 ) -c( 4 ) -c( 4 ) -c( 4 ) -c( 4 ) -c( 4 ) -c( 4 ) ~* J  -C( 4 ) -c( 5) -C( 5) -c( 5) -C( 5) -C( 5) -C( 5) -c< 5) -c< 5) -CI 5) -CI 5) -c< 5) -c 5) -c 6) -c 6) -c 6) -c 7) -c 7 ) -c 7 ) -c 7) -c 7)  -c [ 8 ) -c 8) -c (8) -c 8 ) -c 8 ) -c 6 ) -c [8) -c (8a) -c (8a) -c (8a) -c (8a) -c (8a) r  -c( 31 )  -C( 31 ) -c( 31) -c( 31 ) -c( 31 ) -C( 31 ) -c( 4) -c( 4) -C( 4a) -C( 4a) -C( 4a) -CI 4a) -CI 4a) -0< 4) -0( 4) -o< 4) -CI 6) -c< 6) -CI 6) -c 6) -c 6) -c 4a) -c 4a) -c 4a) -c 4a) -c .4a) -c ,4a) -c ,4a) -c '7) -c (7) -c (7) -c (8) -c (8) -c (8) -c (8) -c (8) -c (8a) -c (8a) -c (8a) -c (8a) -c (8a) -c (8a) -c (8a) -c (4a) -c (4a) -c (4a) -c (4a) -c (4a)  -H1(31) -H2(31) -H3(31) -H1(31) -H2(31) -H3(31) -H(4) -H(4) -H(4a) -H(4a) -C(5) -C(8a) -H(4a) -H(04) -H(04) -H(04) -H(6) -C(7) -H(6) -C(7) -H(6) -H(4a) -C(4) -C(8a) -H(4a) -C(4) -C(8a) -H(4a) -H(7) -C(8) -H(7) -HI(8) -H2(8) -C(8a) -H1(8) -H2(8) -H(8a) -C( 1 ) -C(4a) -H(8a) -C( 1 ) -C(4a) -H(8a) -H(4a) -H(4a) -C(4) -C(5) -H(4a)  -31 ( 4) 1 06(4) -1 47 (3) 1 47(4) -76( 4) 31 (4) 1 02(2) -751 2) 1 6712) -661 2) 1 6612) -701 2) 481 3) 571 5) -721 5) 1 70I5) 1 64I2) 1071 2) -75 3) -1 34 2) 43 3) -77 2) 44 ,2) -79 2) 161 '3) -73 (2) 1 63(2) 44 (3) 174 (3) -1 77 (2) -3 (4) -1 38 (3) 1 09(3) 169 (2) 47 (4) -66 (4) 1 60(2) 46 (3) 1 70(3) -75 (3) 1 56(3) -80 (3) 35 (3) -175 (2) 59 (2) 54 (2) 180 (2) -62 (3)  Table VIII Torsion  angles  standard  (continued) (deg) w i t h  deviations  estimated  i n parentheses  6,7-dimethyl-4ap,5,8,8a£-tetrahydro-1-naphthoquin-4o~ol  Atoms  c( 8a) -c( 1) o( 1 ) -c'( 1) c( 2) -c( 1) C( 2) -c( 1) 0( 1 ) -c( 1) 0( 1 ) -c( 1) C( 1 ) -c( 2) c( 2) -c( 3) c( 2) -c( 3) C( 3) -c( 4) 3) -C( 4) c< 0( 4) -c<4) 0( 4) C( 4) c<8a) c<4) C( 4) C( 5) c<5) c 4a) c 4a) c 5) c ,5) c ,61 ) c (61 ) c 6) c (71 ) c (7) c (7)  c (8a) 0 (1 ) c (2) 0 (1 ) c (1 ) H (2) H (2) c (2) H (3) H (3)  -C( -C( -C( -C(  4) 4a) 4a) 4a) -c< 4a) -C( 4a) -c< 4a) -c< 5) -c 5) -c 6) -c 6)  -c '6) -c (6) -c (7) -c (7) -c (8) -c (8) -c (1 ) -c (1 ) -c (1) -c (1) -c (2) -c (2) -c (2) -c (3) -c (3) -c (3)  Value  -C(2) -C(2) -C(8a) -C(8a) -C(8a) -C(8a) -C(3) -C(4) -C(4) -C(4a) -C(4a) -C(4a) -C(4a) -C(5) -C(5) -C(8a) -C(8a) -C(8a) -C(8a) -C(6) -C(6) -C(7) -C(7) -C(7) -C(7) -C(8) -C(8) -C(8a) -C(8a)  -c( 3) -c( 3) -c( 4a) -c( 8) -c( 4a) -c( 8) -c( 4) -c( 4a) -o( 4)  -C(2) -C(2) -C(8a) -C(8a) -C(3) -C(3) -C(3) -C(4) -C(4) -C(4)  -H -H -H -H -H  -C( 5) -C( 8a) -c( 5) -c<8a) -C( 6) -C( 6) -c< 1 ) -CI 8) -c< 1 ) -c 8) -c 61 ) -c ,7) -c (71 ) -c (8) -c (71 ) -c (8) -c (8a) -c (8a) -c (1) -c (4a) (2) (2) (8a) (8a) (3) -c (4) -H (3) -H (4) -c (4a) -o(4)  -10.4( 6) 171 ,2( 4) 38.5( 5) 164.2( 4) -143.2( 4) -17.4( 6) 2.3( 6) -23.1( 6) -147.6( 4) -72.7( 5) 50.4( 5) .49.31 5) 172.4< 4) 166.01 4) 43.01 5) -58.0 5) 175.1 ,4) 67.3 5) -59.5 (5) 168.6 (5) -12.9 (6) 178.5 (6) -2.7 (7) -3.1 (9) 175.6 (6) -13.6 (7) 165.3 (5) -80.2 (5) 44.7 (6) 173(3 -6(3 -77(2 102(2 174(3 179(3 -10(4 97(2 164(2 40(2  54  Table VIII  (continued)  6,7-dimethyl-4a0,5,8,8ap-tetrahydro-1-naphthoquin-4o-ol H(3) C(3) 0(4) H(4) H(4) H(4) C(3) C(4a) H(4) C(4) C(4) C(8a) C(8a) H(4a) H(4a) H(4a) C(4) C(5) H(4a) H(4a) H(4a) H1 (5) H1 (5) H2(5) H2(5) C(5) C(5) C(5) C(7) C(7) C(7) C(6) C(6) C(6) C(8) C(8) C(8) . C(6) C(6) C(71 ) C(71 ) C(7) H1 (8) H1 (8) H1 (8) H2(8) H2(8) H2(8)  -c( 3) -c( 4) -c( 4) -c( 4) -c( 4) -c( 4) -c( 4) -c( 4)  -C( 4) -c( 4a) -c( 4a) -c< 4a) -CI 4a) -C( 4a) -c< 4a) -c< 4a) -CI 4a) -CI 4a) -CI 4a) -CI 4a) -CI 4a) -c 5) -c 5) -c 5) -c ,5) -c ,6) -c [6) -c [6) -c (6) -c (6) -c (6) -c (7) -c (7) -c (7) -c (7) -c (7) -c (7) -c (7) -c (7) -c (7) -c (7) -c (8) -c (8) -c (8) -c (8) -c (8) -c (8) -c (8)  -c( 4) -c( 4a) -c( 4a) -c( 4a) -c( 4a) -c( 4a) -o(4)  -0( 4) -o(4) -CI 5) -c( 5) -CI 5) -CI 5) -CI 5) -CI 5) -CI 5) -CI 8a) -CI 8a) -CI 8a) -CI 8 a ) -CI 8a) -c 6) -c 6) -c 6) -c 6) -c ,61 ) -c '61 ) -c (61 ) -c (61 ) -c (61 ) -c (61 ) -c (71 ) -c (71 ) -c (71 ) -c (71 ) -c (71 ) -c (71 ) -c (8) -c (8) -c (8) -c (8) -c (8a) -c (8a)  -c ( 8 a ) -c (8a) -c (8a) -c (8a) -c (8a)  -H(4) -H(4a) -H(4a) -C(5) -C(8a) -H(4a) -H(04) -H(04) -H(04) -HI(5) -H2(5) -H1(5) -H2(5) -C(6) -H1(5) -H2(5) -H(8a) -H(8a) -C(1 ) -C(8) -H(8a) -C(61) -C(7) -C(61) -C(7) -H1(61) -H2(61) -H3(61) -H1(61) -H2(61) -H3(61) -H1(71) -H2(71) -H3(71) -H1(71 ) -H2(71) -H3(71) -H1(8) -H2(8) -H1(8) -H2(8) -H(8a) -C(1) -C(4a) -H(8a) -C(1 ) -C(4a) -H(8a)  -75(3 165(2 -73(2 168(2 -69(2 47(3 112.3 -11.8 -132(2 45(2 -72(2 -78(2 1 65(2 -74(2 1 65(3 48(3 51(2 176(2 -173(2 60(2 -65(3 -67(2 112(2 45(2 -136(2 -174(4 -37(4 71(5 7(4 144(4 -107(5 -142(4 116(6 -18(5 39(4 -63(6 163(4 108(2 -136(2 -73(2 43(2 168(2 159(2 -76(3 47(3 45(3 169(3 -68(4  55  half-chair  cyclohexene  cyclohexenone structures  moiety  position between  between  the  conformation. C(3)  and  p-enone  the  highly  which  (26)  der  abstraction  involved  i n the a b s t r a c t i o n further  ant i  photoreactivity  from  quinols  lack  Secondly, for  p-H  any  of  the  two  p-H  charge  abstraction)  transfer  of  than  the  of  2.90  in Table  the  p-hydrogen,  hydroxyl is  observed  in  absence  in  r a t i o n a l i z e d on i n the  in stabilizing abstraction, n-electron  the to  its  the  the the  quinone biradical  whereas,  the  derealization.  ( w h i c h may  between t h e c y c l o h e x e n e  i n the  H(8),  is  interaction  IX.  conformation  substituents,  been  A for  parameters  reaction  has  and  other  (29). F i r s t l y ,  intramolecular possibility  limit  of  2.84(4)  less  i n which  the  (26),  aids  this  sum  twisted  this  group  by  6,7-dimethyl  are  are  i s given  of  points  and  distances  bridgehead  naphthoquinols  carbonyl  2,3-  list  this  Although  this  irradiation.  naphthoquinols the  following  resulting  and  f  upon u l t r a v i o l e t  reaction  naphthoquinones  the  H1(5)  biradical,  A  suitable position  systems,  and  short  ensuing  radii  carbon.  by  to  abstraction.  of t h e  pseudo-  are a r e s u l t of  these values  c o n s e q u e n c e of  exhibited  substituted  basis  by  C(5)  t o H1(5)  Waals  hydrogen  oxygen  C(3),  the  f o r both  the C ( 3 )  van  of  favorable  i s observed  geometrically  hindered  ring. Relatively  carbon  collapse  suggested  is  i n both  g e o m e t r y makes H 1 ( 5 ) - a b s t r a c t i o n  r e s p e c t i v e l y . Both  group  group  Such m o l e c u l a r  2.82(3) A,  state,  hydroxyl  half-chair  C ( 2 ) , and  in  solid  second  stereochemically  compounds  A  The  a  i n the cyclohexenone  subsequent  sequence  less  10).  to  c-enone c a r b o n  (C(2)...C(5) ) , This  (Fig.  o c c u p i e s the  equatorial distances  ring cis-fused  double  be  required  bond and  the  56  Figure  10  S t e r e o d i a g r a m s of 2 , 3 - d i m e t h y l - 4 a p , 5 , 8 , 8 a p - t e t r a h y d r o - 1 n a p h t h o q u i n - 4 a - o l ( t o p ) , and 6 , 7 - d i m e t h y l 4ap,5,8,8ap-tetrahydro-1-naphthoquin-4c-ol (bottom).  -  57  excited  ene-one c h r o m o p h o r e  dione moiety 1-one  which  is  i s a better  facilitated electron  the  2-ene-1,4-  a c c e p t o r than the  the  2,3-dimethyl-naphthoquinol  oxygen a b s t r a c t i o n yields  a second  photoreactivity,  solid  unprecedented  state  parameters  i n the  which  from  results  reaction,  vector  oxygen  and  reaction  the p l a n e of  C(3)...H1(5)  (A)  C(2)...C(5)  79.7(8)  54.1  2.84(4)  3.416(5)  (V)  80.9(7)  56.7  2.82(3)  3.353(6)  the a b s t r a c t i o n  oxygen  1 and  ideal  p-H  to  carbonyl are  a p-hydrogen.  of  group, 81(1)  and-  Further substituted  A , Q  degrees,  and  pertinent  T , the angle  process are  vector  abstraction  The 0  i t s projection  subtended  onto  respectively  are  investigation  T  0  of  = 0° and the  tetrahydronaphthoquinols  A  0  close  the the  angles to  the  = 90°.  unsubstituted reveals  by  t h e p l a n e of  a n g l e . These  which  (A)  geometrical factors  the C ( 1 ) = 0 ( 1 ) . . . p - H  a n g l e s of  the  angle.  (IV)  abstraction  the  bond  = H1(5)..,C(3)=C(2) T (°) c  no  compound  p-enone a b s t r a c t i o n  C(2)=C(3) double  A„(°) c  exhibits  IX  = a n g l e between C ( 3 ) . . . H 1 ( 5 )  A  (IV)  6,7-dimethyl  tetrahydronaphthoquinol  Geometrical c  the  photoproduct  Table  in  2-ene-  chromophore. While  T  by  that  and the  other oxygen  58  abstraction 2  and  photoprocess  3 positions  (35).  This  on  occurs  only  the cyclohexenone  suggests  that  once  established,  methyl  substitution  double  plays  a  bond  photochemical these  findings,  explaining  the  Irradiation is  facile  owing the  two  the  cycloaddition (V)  i s due  undergo attain  the  reacting  of  are  Generally,  groups steric  values deviate  solid  of  the  determining  the  state.  In view  (page 55)  of  used  in  abstraction  in  equilibration  cycloadducts  [2+2]  4.442(5) A,  (35)  which  t o each  place  other  and  intramolecular (IV)  and  reactant molecules  to  ground  r e q u i r e d to  state,  C(2)...C(7)  and  respectively  the  C=C  C(3)...C(6) for  (IV),  for (V). angles  (33).  angles  However, from  the  ( T a b l e X)  correspond  involving  normal v a l u e s ,  the  to  methyl  reflecting  the  between a d j a c e n t s u b s t i t u e n t s . (IV) a r e  0(4)-H...0(4) hydrogen 0(4)-H...0(4)  enone  rearrangement  the  n o n - p a r a l l e l with  slightly  of  In  is  the  s t a t e p h o t o l y s i s of  bond l e n g t h s and  interaction  Molecules  geometry.  4.397(6) A  control  conformers  a b s e n c e of  inability  4.427(5) and  4.427(6) and  accepted  energy  bonds p a r a l l e l  i n the  t o the  are unsubstituted  where c o n f o r m a t i o n a l  The  the  general.  extensive conformational  bonds  separations  rationale oxygen  of h i g h e r  distance.  products  solid  i n t r a m o l e c u l a r [2+2]  presence  mainly  the  double  and  in s o l u t i o n ,  reacting  i n the  of  i n t r a m o l e c u l a r double  within  in  becomes l e s s  a f f o r d s mainly  to  role  the p r e v i o u s  tetrahydronaphthoguinols  moiety  i n which  ( o r l a c k t h e r e o f ) on  pathway  lack  systems  conformational  critical  reaction  recent  i n the  angle  linked  i n the c r y s t a l  bonds 'to form is  166(6)°  chains  with  an  (Fig.  running  along  11)  by  a.  The  H...0(4) d i s t a n c e of  59  Figure  1 1  S t e r e o p a c k i n g diagram of 2 , 3 - d i m e t h y l - 4 a p , 5 , 8 , 8 a p - t e t r a h y d r o - 1 n a p h t h o q u i n - 4 o - o l ( t o p ) , and 6 , 7 - d i m e t h y l 4ap,5,8,Bap-tetrahydro-1-naphthoquin-4c-ol (bottom).  60  2.09(6) A;  the 0(4)...0(4) s e p a r a t i o n  0(4)-H...0(4) forming distance  interactions join  a linkage along are  171(5)°  0(4)...0(4) distance contacts  correspond  i s 2.830(2) A.  m o l e c u l e s of  Similarly,  (V) i n t h e c r y s t a l  t h e c - a x i s . The h y d r o g e n bond a n g l e and  2.00(5)  i s 2.783(2)  A.  A,  respectively,  All  t o n o r m a l van d e r Waals  other  and  and t h e  intermolecular  distances.  61  Table  X  2,3-dimethyl-4a0,5,8,8a£-tetrahydro-1-naphthoquin-4c-ol Bond  lengths  standard  deviations  Bond  angles  standard Bonds C(2) C(2) C(8a) CO ) CO ) C(21 ) C(2) C(2) C(31 ) C(3) C(3)  -CO ) -CO ) -CO ) -C(2) -C(2) -C(2) -C(3) -C(3) -C(3) -C(4) -C(4)  parentheses  C(4) C(5) C(5) C(6) C(7) C(B) C(8a)  (deg) w i t h  deviations  in  Angle -C(8a) -0(1) -0(1) -C(21) -C(3) -C(3) -C(31) -C(4) -C(4) -C(4a) -0(4)  Length  Bond  1.471(5) 1.512(5) 1.221(4) 1.502(6) 1.351(5) 1.506(7) 1.514(5) 1.518(5)  -C(2) -C(8a) -0(1) -C(21) -C(3) -C(3 1 ) ~C(4) -C(4a)  estimated  in  Length  Bond CO) CO) CO) C(2) C(2) C(3) C(3) C(4)  (A) w i t h  1 17 .5(3) 121 .2(4) 121 .3(3) 1 15 .9(4) 120 .8(3) 123 .3(4) 122 .7(4) 121 .8(3) 1 15 .5(4) 1 1 3.9(3) 1 1 1.3(3)  -0(4) -C(6) -C(4a) -C(7) -C(8) -C(8a) -C(4a)  1.438(4) 1.497(5) 1.530(5) 1.310(5) 1.489(6) 1.525(6) 1.533(5)  estimated parentheses Bonds  C(4a) C(6) C(5) C(6) C(7) CO ) CO ) C(8). C(4) C(4) C(5)  -C(4) -C(5) -C(6) -C(7) -C(8) -C(8a) ~-C% 8a) -C(8a) -C(4a) -C(4a) -C(4a)  Angle -0(4) -C(4a) -C(7) -C(8) -C(8a) -C(8) -C(4a) -C(4a) -C(5) -C(8a) -C(8a)  111. 7(3) 1 12. 2(3) 124. 1(3) 123. 9(4) 111. 8 ( 4 ) 113. 4(3) 109. 5(3) 111. 2(3) 113. 6(3) 109. 2(3) 110. 5(3)  62  Table  X  (continued)  2 , 3-dimethyl-4a0,5,8,8ap-tetrahydro-1-naphthoquin-4a-ol Bond  lengths  estimated Bond  involving  standard  Length  C(21 ) -H1(21 ) C(21 ) -H2(21 ) C(21 ) -H3(21 ) -H1 (31 ) -H2(31 ) -H3(31 ) C(4) -H(4) C(5) -H1(5)  concon con  0.90(6) 0.93(9) 1.04(8) 0.89(5) 0.96(5) 1.05(7) 1.01(3) 1.07(4)  Bond a n g l e s estimated Bonds C(2) -C(21) C(2) -C(21) -C(21) C(2) H1(21 ) -C(21 ) H1(21) -C(21 ) H2(21 ) -C(21) CO) CO) CO) -C(31 ) H1(31 ) H1(31 ) H2(31 ) CO) -C(4) C ( 4 a ) -C'(4) 0(4) -C(4) -C(5) C(6) C(6) -C(5) C(4a) -C(5)  -con -con -con -con -con  h y d r o g e n atoms  deviations  Length  -H2(5) -H(6) -H(7) -H1(8) -H2(8) -H(8a) -H(4a) -H(04)  i n v o l v i n g h y d r o g e n atoms standard  deviations  Angle -H1(21) -H2(21) -H3(21) -H2(21) -H3(21) -H3(21) -H1(31) -H2(31) -H3(31) -H2(31) -H3(31) -H3(31) -H(4) -H(4) -H(4) -H1(5) -H2(5) -H1(5) .  in parentheses  Bond C(5) C(6) C(7) C(8) C(8) C(8a) C(4a) 0(4)  110(4) 121(5) 115(4) 107(5) 99(5) 102(6) 113(4) 114(3) 107(3) 117(5) 106(5) 98(4) 106(2) 110(2) 104(2) 110(2) 109(2) 108(2)  (A) w i t h  0. 98(3) 0. 96(4) 1 .00(3) 0. 99(4) 0. 96(5) 0. 89(3) 0. 99(4) 0. 75(6)  (deg) w i t h  i n parentheses Angle  Bonds C(4a) H1 (5) C(5) C(7) C(6) C(8) C(7) C(7) C(8a) C(8a) H1 (8) C(1) C(8) C(4a) C(4) C(5) C(8a) C(4)  -C(5) -C(5) -C(6) -C(6) -C(7) -C(7) -C(8) -C(8) -C(8) -C(8) -C(8) -COa) -C(8a) -C(8a) -C(4a) -C(4a) -C(4a) -0(4)  -H2(5) -H2(5) -H(6) -H(6) -H(7) -H(7) -H1(8) -H2(8) -HI(8) -H2(8) -H2(8) -H(8a) -H(8a) -H(8a) -H(4a) -H(4a) -H(4a) -H(04)  108(2) 108(3) 114(2) 122(2) 124(2) 112(2) 113(3) 112(3) 108(3) 111(3) 101(4) 106(2) 113(2) 103(2) 106(2) 107(2) 110(2) 111(5)  63  Table  X  (continued)  6 , 7 - d i m e t h y l -4ap,5,8,Sap- t e t r a h y d r o - 1 - n a p h t h o q u i n - 4 c - o l Bond  lengths  standard  angles  standard  -C(8a) -0(1 ) -0(1 ) -C(3) -C(4) -C(4a) -0(4) -0(4) -C(5) -C(8a) -C(8a)  parentheses  C(4a) C(5)> C(6) C(6) C(7) C(7) C(8)  (deg) w i t h  deviations  in  Length  116. 7 ( 4 ) 120. 6(4) 1 22.6(4) 121. 4(5) 123. 5(4) 111. 9(4) 1 08.1 (4) 112. 5(3) 113. 6(4) 109. 6(3) 109. 7(4)  1.525(5) 1.520(6) 1.506(7) 1.327(5) 1.514(7) 1 .501(6) 1 .514(5)  -C(8a) -C(6) -C(61) -C(7) -C(71) -C(8) -C(8a)  estimated parentheses Bonds  Angle  Bonds -CO ) -CO) -CO ) -C(2) -C(3) -C(4) -C(4) -C(4) -C(4a) -C(4a) -C(4a)  in  Bond  1.463(6) 1.514(6) 1.219(4) 1.321(5) 1 .487(6) 1 .519(5) 1 .437 (5) 1 .521(5)  -C(2) -C(8a) -0(1) -C(3) -C(4) -C(4a) -0(4) -C(5)  Bond  C(2) C(2) C(8a) CO ) C(2) C(3) C(3) C(4a) C(4) C(4) C(5)  deviations  Length  Bond CO) CO) CO) C(2) C(3) C(4) C(4) C(4a)  (A) with, e s t i m a t e d  C(4a) C(5) C(5) C(61 ) C(6) C(6) C(71 ) C(7) CO ) CO ) C(4a)  -C(5) -C(6) -C(6) -C(6) -C(7) -C(7) -C(7) -C(8) -C(8a) -C(8a) -C(8a)  Angle -C(6) -C(61) -C(7) -C(7) -C(71) -C(8) -C(8) -C(8a) -C(4a) -C(8) -C(8)  114. 1 (4) 113. 8(5) 1 22.0(4) 124. 1(5) 123. 1 (5) 123. 0(4) 113. 9(5) 113. 2(4) 110. 0(3) 1 13. 5(4) 111. 6(4)  64  Table  X  (continued)  6,7-dimethyl-4a0,5,8,8a£-tetrahydro-1-naphthoquin-4c-ol Bond  lengths  estimated  -H(2) -H(3) -H(4) -H(4a) -HI(5) -H2(5) -H1(61) -H2(61)  estimated Bonds -C(2) -C(2) -C(3) -C(3) -C(4) -C(4) -C(4) -C(4a) -C(4a) -C(4a) -C(5) -C(5) -C(5) -C(5) -C(5) -C(61) -C(61) -C(61)  involving standard Angle  -H(2) -H(2) -H(3) -H(3) -H(4) -H(4) -H(4) -H(4a) -H(4a) -H(4a) -HI(5) -H2(5) -H1(5) -H2(5) -H2(5) -H1(61) -H2(61) -H3(61)  1 15(2) 124(2) 125(2) 111(2) 107(2) 1 10(2) 107(2) 107(2) 1 10(2) 107(2) 112(2) 111(2) 107(2) 107(2) 105(3) 112(4) 108(4) 117(5)  h y d r o g e n atoms  deviations  0.98(4) 0.93(3) 1 .03(4) 0.97(4) 1.04(4) 1.01(4) 0.96(7) 0.91(6)  Bond a n g l e s  C(1 ) C(3) C(2) C(4) C(3) C(4a) 0(4) C(4) C(5) C(8a) C(4a) C(4a) C(6) C(6) H1 (5) C(6) C(6) C(6)  standard  Length  Bond C(2) C(3) C(4) C(4a) C(5) C(5) C(61 ) C(61 )  involving  in  parentheses Length  Bond C(61 ) C(71 ) C(71 ) C(71 ) C(8) C(8) C(8a) 0(4)  -H3(61) -H1(71) -H2(71) -H3(71) -H1(8) -H2(8) -H(8a) -H(04)  h y d r o g e n atoms deviations  (A) w i t h  in  0.90(8) 0.95(7) 0.88(8) 0.96(6) 1 .00(5) 0.98(4) 0.93(3) 0.79(5)  (deg) w i t h parentheses  Bonds H1(61) -C(61) -H2(61) H1(61) -C(61) -H3(61) H2(61) -C(61) -H3(61) -C(7 1 ) -H1(71) C(7) -C(71 ) -H2(71) C(7) -C(71 ) -H3(71) C(7) HI (71 ) -C(71 ) -H2(71) H1 (71 ) -C(7 1 ) -H3(71) H2(71 ) -C(71) -H3(71) -HI(8) C(7) -C(8) -C(8) -H2(8) C(7) C(8a) -C(8) -H1(8) -H2(8) C(8a) -C(8) -H2(8) HI (8) - C ( 8 ) C(1 ) -C(Ba) -H(8a) C ( 4 a ) - C ( 8 a ) -H(8a) - C ( 8 a ) -H(8a) C(8) C(4) -0(4) -H(04)  Angle 122(5) 100(6) 97(6) 106(4) 114(5) 115(4) 94(6) 111(5) 114(6) 108(2) 112(2) 109(2) 107(2) 106(4) 100(2) 109(2) 112(2) 108(3)  65  CHAPTER I I I  2 ,3 , 4a,4ap,6 ,"7 /Ba*-HE PTAMETH YX-4af ,5 ,8 ,8a p-TETRAHYDKDNAPHTHOQUIN-4 p ~OL  66  Introduction Solid observed  state/solution  photoreactivity  in  substituted  various  ( 2 9 , 3 0 , 3 2 , 3 5 ) . The d i v e r g e n c e rationalized between  mainly  in  solution.  molecule most  so t h a t  likely  molecule In compound to  This l a t t i c e  to  verify  the  predicted  parameters  reaction.  A  to  structures  comparison  ascertain  and t h e i r  distinction  lattice where  versus  molecular by  reactions are topochemically  conformation  is  this  one  which  conformational  conformation  involved  tetrahydronaphthoquinol attempt  been  by d e s i g n i n g a  ( i n which  i t is  predisposes  the  reaction.  to test  geometric  has  a r e governed c h i e f l y  was s y n t h e s i z e d . T h i s s t r u c t u r a l  1  the  c a n be e x p l o i t e d  energy  crystallize)  to a specific an e f f o r t  patterns  in solution,  state  control  i t s lowest  in  i s facile,  whereas, t h e s o l i d  controlled.  rigidity  Reactions  conformational equilibration kinetics,  in reactivity  namely  been  tetrahydronaphthoquinols  by c o n s i d e r i n g t h e f u n d a m e n t a l  t h e two p h a s e s ,  mobility  d i f f e r e n c e s have  of  in  this  the  substituent  study  and  to  observed  compound  derivatives  argument  and  (III)-(VII) effects  on  was  the t i t l e undertaken  elucidate  the  photochemical four  other  i s made i n an the  various  by m e t h y l l i t h i u m  treatment  reactivities.  Experimental The  title  compound was p r e p a r e d  IUPAC name: 4p-hydroxy-2,3,4c,4ap,6,7,8ap-heptamethyl4ap,5,8,8ap-tetrahydro-1(4H)-naphthalenone 1  67  of  the ene-dione,  The  two  2,3,4ap,6,7,8ap-hexamethyl-1,4-naphthoquinone.  isomers  crystallization acicular  formed  from  crystals  Crystal  were  separated  cyclohexane/ethyl  acetate  data: b =  V =  3  1540.4(6) A ,  C  1 7  H260  16.792(3), Z = 4, D  =  MW  2 F  c =  12.687(3)  1.141  g cm" ,  A, D  3  space  basis  1 from group  collected  of  the  precession was  uniquely  with a c r y s t a l  g r a p h i t e monochromatized 27.5°, The (0.80  3516  omega  width  + 0 . 3 5 t a n 6 ) ° and  background  h01,  absences, and  determined  calculated  extended  25%  on  vertical  (VI)  as  =  105.30(1)°,  1.140  g  cm" , 3  P2, /c_.  +  1 and  OkO,  photographs,  the  Data  were  mm  and  In the t h e t a  range  0.0-  w i t h an  scan type.  0.1  were c o l l e c t e d  measurement. The  £ =  1 = 2n  Weissenberg  of d i m e n s i o n s  was  monoclinic  space group  MoKa r a d i a t i o n .  reflections scan  yielded  o  V = 0.71073 A,  1  k_ = 2n +  which  = 262.4,  c  v(MoKa) = 0.675 cm" ,  the  fractional  of ( V I ) .  a = 7.497(2),  On  by  P2,/c.  x 0.2  from  each s i d e  x 0.4  o—© the  3  expression  o f t h e peak f o r  a p e r t u r e was  constant at 4  68  mm  and  the  the h o r i z o n t a l  relationship  w i d t h was  (2.00  varied  + 1.00tan9)  mm.  the a c c u r a c y of the d a t a , a non-equal scans  are  done  reflection. profile  The  in  opposite  odd and  even  corresponding  standard  deviation failure  t a g g e d making  i t readily  Processing polarization no  the  reflections 2  +  failed  1934  MULTAN. R e f i n e m e n t  coordinates convergence refinement l/tf (F)  above.  of the  2  for  (55.0%)  a  by  and  the  3516  £ 3*(I) count  where and  B  atoms were l o c a t e d  by  26  with  cycles  subsequent the  Refinement  atoms  two  a t R = 0.041  with  hydrogens. and  Rw  = 0.056.  confirmed  the  thermal  yielded  the  continued u n t i l  Towards  changed  2  temperature  anisotropic  Refinement  where * ( F ) i s c a l c u l a t e d  A weighting analysis  isotropic  difference-Fourier  t h e w e i g h t i n g scheme was ,  I  and  indicated  t w i c e . Of  had  t o be  Lorentz  i n t h e u s u a l manner, test  of  processing.  included  19 non-hydrogen  of t h e s e  followed and  reflection  data  one  background.  positions  parameters  intensity  repeat  2  Solution  factors,  after  the non-equal  to each  difference  a  (0.04(S - B ) ) , S b e i n g t h e s c a n  the time-averaged  The  that  which  a  final  s c a n s of more t h a n  time caused  data,  step  to  improve  two  applied  and  for  identifiable  collected,  <y (I) = S + 2B  basis  criterion  corrections applied  reflection  was  i n c r e m e n t s i n t h e 96  a second  to  whereby  directions,  the  measurement;  w =  test,  v a l u e s i n t h e two  was  according  I n an a t t e m p t  were compared on a s t a t i s t i c a l  between  that  with theta  the  from u n i t  end  weights  of to  from t h e * ( I ) d e f i n e d 2  suitability  of  the  69  chosen  weights.  Following  s y n t h e s i s was c a l c u l a t e d . e/A  of  possibly  due t o one o f t h e oxygen  on t h e f i n a l  in  3  cycle  the  of  1.290tf c o r r e s p o n d e d  factor  of t h e methyl hydrogen,  and  of u n i t  anisotropic  XII,  region  final  of 0 ( 4 ) . T h i s  lone p a i r s .  weight  to  the  H1(21).  residual residue i s  The mean  parameter  The  oscillating  maximum  temperature  The s t a n d a r d d e v i a t i o n i n  was 1.77. F i n a l  thermal parameters  difference  indicated  o f r e f i n e m e n t was 0.198*.  shift  an o b s e r v a t i o n  a  The r e s u l t i n g map  density  shift  0.2  convergence  atomic  are given  in  coordinates  Tables  XI  and  respectively.  Discussion Molecules  of (VI) c r y s t a l l i z e  to a l l naphthoquinols  studied  bulkier  substituent  on  position.  A l t h o u g h t h e 4-OH  groups,  bridgehead  is  to a half-chair  methyl  substituent  conformation  series  assumes syn  to  be  of  the  described  C(3)=C(2) double  bond  by  The of  A) ( T a b l e X I I I ) . vector  the  bridgehead  methyl  group  anti  to the  cyclohexene ring c i s -  cyclohexenone moiety, with the b u l k i e r  62.2(2)°.  the C(3)...H1(5)  which  ( F i g . 12) i s c h a r a c t e r i s t i c o f  have t h e h y d r o x y l  i s the proximity  (2.81(2)  in  the pseudo-equatorial  p s e u d o - e q u a t o r i a l . The d e g r e e  can  angle  arrangement  this  s u b s t i t u e n t s , _i.e. a h a l f - c h a i r  fused  H1(5)  C(4)  the conformation adopted  the n a p h t h o q u i n o l s which  torsion  in  w i t h t h e c o n f o r m a t i o n common  the  i n the  C(1)-C(8a)-C(4a)-C(5)  spatial  the  of twist  4-  consequence  p-enone  carbon  of t h i s  C(3), to  F u r t h e r m o r e , t h e a n g l e between  and i t s p r o j e c t i o n  onto the p l a n e of the  (C(1),...,C(4)),  T  c  ,  and  the  angle  70  Table Final and with  Atom  positional  isotropic estimated  XI  (fractional  x 10 ,H  thermal parameters standard  x  deviations  y_  5  x  (U x 1 0  10 ) 3  3  A ) 2  i n parentheses  z  Ueq/Uiso  C(1 )  85627(25)  11022(13)  72597(15)  41  C(2)  77531(27)  3371(13)  68018(15)  43  C(21 )  89061(42)  -1482(23)  62201(27)  70  C(3)  60946(28)  1079(12)  68910(16)  42  C(31 )  52062(46)  -6420(20)  63359(33)  72  C(4)  49635(25)  5859(12)  75154(15)  40  C(41 )  41960(40)  191(19)  82425(24)  62  C(4a)  60761(24)  12836(12)  81957(15)  36  C(4a1 )  47429(35)  18757(16)  85213(23)  54  C(5)  74006(29)  9490(13)  92495(16)  41  C(6)  89347(27)  14904(13)  98534(16)  44  C(61 )  98744(50)  11991(23)  109961(21)  69  C(7)  93887(28)  21435(13)  94122(17)  47  108809(50)  27135(23)  99922(30)  78  C(8)  84279(33)  23770(14)  82623(19)  49  C(8a)  72905(25)  17195(12)  75529(15)  37  C(8a1 )  62208(36)  20932(18)  64595(20)  54  101829(19)  12595(10)  73321(14)  64  34349(19)  8803(10)  66657(12)  51  C(71 )  0(1 ) 0(4)  71  T a b l e XI  (continued)  H1 (21 )  81 8 ( 6)  -26(  2)  549(  4)  145(14)  H2(21)  903(  6)  -68(  3)  646(  4)  150(18)  H3(21)  989( 8)  13(  3)  61 2 ( 4)  182(20)  H1(31 )  384(  5)  -65(  2)  623(  2)  93(10)  H2(31 )  552( 6)  -1 08 ( 2)  680(  3)  127(15)  H3(31)  545(  5)  -71 ( 2)  562(  3)  110(12)  H1(41 )  353(  3)  33(  1)  871 ( 2)  64(  7)  H2(41)  327(  4)  -35(  2)  777(  2)  79(  9)  H3(41)  523(  4)  -32(  2)  873(  2)  73(  8)  H1(04)  246(  4)  95(  2)  690(  2)  86(  9)  H1(4a1 )  380(  4)  1 57 ( 2)  884(  2)  74(  7)  H2(4a1 )  539(  4)  228(  2)  900(  2)  66(  8)  H3(4a1 )  398( 4)  21 5( 2)  788(  2)  75(  8)  H1 (5)  795(  3)  44(  1 )  908(  2)  43(  5)  H2(5)  668(  3)  79(  1 )  975(  2)  61(  7)  61 ( 2)  1 1 03 (3)  123(13)  6)  1 37( 2)  1 1 22 (4)  136(17)  H3(61 )  91 8 ( 7)  1 35 (3)  1 1 60 (4)  161(18)  H1(71 )  1 1 79 (6)  277 ( 2)  960(  4)  128(16)  H2(71 )  1 036 (6)  329(  3)  977(  4)  166(19)  H3(71 )  1 1 39 (6)  259(  2)  1074(  4)  137(15)  H1 (8)  931 ( 4)  254(  1)  790(  2)  63(  7)  H2(8)  752(  284(  1 )  822(  2)  66(  7)  HI ( 8 a D  561 ( 4)  171 ( 2)  599(  2)  69(  9)  H2(8a1 )  7 1 2 (4)  233(  H3(8a1 )  533(  251 ( 1)  H1(61 ) '  1 008( 5)  H2(61)  1096(  I  3)  4)  2)  6 1 0 (3)  99(10)  655(  71 ( 8)  2)  72  Table XII  Final  anisotropic and  Atom  their  y i i  thermal  parameters  estimated  standard  y  2 2  A ) 2  deviations  y  U33  ( U i j x 10"  1 2  y  1  3  3  297( 10)  607(13)  337(10)  C(2)  342( 10)  568(13)  379 ( 10)-  C(21 )  543( 16)  913(24)  657(17)  1 26 ( 15)  C(3)  385( 11)  447(12)  408(11)  -1 ( 9)  C(31 )  662( 19)  640(19)  8 3 9 ( 2 2 ) -1 26 ( 15)  C(4)  270(  9)  523(12)  403(10)  C(41 )  534( 15)  753(18)  6 0 9 ( 1 5 ) -232( 14)  202( 13)  52( 15)  C(4a)  281 ( 9)  459(11)  360(10)  1 1 ( 8)  1 35 ( 8)  -8(  C(4a1 )  421 ( 13)  659(17)  572(15)  93( 12)  1 85 ( 12)  C(5)  41 3( 1 1 )  491(13)  344(10)  8( 10)  1 1 3( 9)  C(6)  378( 1 1 )  563(14)  371(10)  67( 10)  C(61 )  673( 19)  850(22)  432(14)  1 00 ( 17)  C(7)  392( 11)  543(13)  454(12)  -18( 10)  C(71 )  7 1 0 20) (  879(24)  6 8 8 ( 2 0 ) -287( 17)  C(8)  477( 13)  467(13)  550(13)  -84( 11)  C(8a)  3 1 8 ( 9)  434(11)  366(10)  -28(  C(8a1 )  494( 13)  627(17)  467(13)  -30( 13)  0(1)  303(  8)  922(13)  755(11)  -89(  0(4)  254(  7)  777(11)  498(  8)  68(  -29(  9)  9)  8)  97(  8)  26(  2  C(1 )  -1 1 ( 9)  1 23 ( 8)  y  9)  -54( 10)  205( 14) -268( 17) 48(  9)  -16(  9)  149( 16) -205( 17) 97(  8)  46(  9)  8)  -79( 14) 33(  9)  9)  -47( 10)  -41 ( 13)  8( 14)  88(  93(  9) -1 16( 10)  62( 17) -1 96 (18) 1 53 ( 11) 99(  8)  83( 11)  8)  246(  0( 7)  78(  17( 1 1 ) 37(  9)  1 44 ( 12)  8) -131 ( 9) 6)  1 ( 8)  73  between t h e C ( 3 ) . . . H 1 ( 5 ) and t h e C ( 3 ) = C ( 2 ) and  78.3(4)°,  for hydrogen  respectively. abstraction  by  vectors,  A ,  This  geometry  i s highly  the  p-enone  carbon  Figure  a r e 50°  c  favorable  and  it  is  12  S t e r e o d i a g r a m of 2 , 3 , 4 a , 4 a p , 6 , 8 a p - h e p t a m e t h y l 4ap,5,8,8a£-tetrahydro-1-naphthoquin-4 0-ol therefore observed  not  surprising  i n the s o l i d  solution  affords  p h o t o p r o d u c t , due available It  state  only  the  that  this  photolysis  i s the dominant (36).  intramolecular  reaction  Irradiation  [2+2]  in  cycloaddition  t o the p r e s e n c e of a h i g h energy conformer not  i n the c r y s t a l  lattice.  i s i n t e r e s t i n g t o note that  oxygen a b s t r a c t i o n  of  a  p-  74  hydrogen  does  geometric  r e q u i r e m e n t s . The  of  the  not  carbonyl  C=O...0-H  angle  alignment  of  However,  i t was  on  the C(2)  a  critical  pathway,  this  C(3)  quantities  the  (33) w i t h  whose  lengths  anomalously related  note  the  C(41)  l e n g t h of  do  of  this  support  XVII, not  that  the  p-H  methyl steric  torsion  of  abstraction  and  methyl t h e above  series,  H1(5) by  C(3)  and  XX.  1.560(3) A,  is  oxygen does  substituents.  The  former  from and  in two  accepted C(4)-C(4a)  r e s p e c t i v e l y , are  same  bonds  in  the  derivative  (37).  At  present,  no  l o n g bonds e x c e p t  to  for these  group  (rr, ir*)  angles are presented  X V I I I , XIX,  A and  seemingly  between t h e s e two on C ( 4 )  effects  reaction  t o t h e above argument but  to the  group  play  the  abstraction  of  of 0 ( 1 ) .  moiety  of  deviate significantly  difference  perfect  photochemical energy  The  substituents  the cyclohexenone  the  lack  1.531(3)  in this  a l o n e , due  would a c c o u n t  closely  derivatives  structure.  t o the f o r the  being  I t i s not  introduction  of  i n c r e a s e i n the  bonds.  Hydrogen b o n d i n g , in  almost  the  plane  from 0 ( 1 ) .  t h e e x c e p t i o n o f bonds C ( 3 ) - C ( 4 )  i s offered  that  the  of  the  non-bonding o r b i t a l  carbon  The  l a r g e compared  the a d d i t i o n a l  2.41(2) A  r o l e ( s ) of the C(2)  XVI,  the o b v i o u s  expected  the  hexamethyl-4c-ol  explanation  of  a n g l e s and  generally  values  the  lowering  lends  Bond d i s t a n c e s ,  of  determining  by  XV,  deviates only  completes  positions  to o r i g i n a t e .  XIV,  1° f r o m  with  which  system  p-H  i n the p r e v i o u s c h a p t e r  in  from  fulfillment  distance  p-H  role  despite molecular  82.7(6)°  argued  to c l a r i f y  Tables  a  of  possibly  considered  little  at  the  and  transition  in  occur  found  i s present  i n a l l the in this  naphthoquinols  structure  as  studied  0(4)-H...0(1)  75  interactions 0...0  linking  molecules  = 2 . 8 5 5 ( 2 ) A, H...0  Comparison Comparisons in analogous  of  along  a-axis  = 1.99(3) A, 0-H...0 =  o f Compounds  bond  172(3)°.  and t o r s i o n  angles  (34) a n d more r e c e n t l y i n  (32) have r e v e a l e d t h e g r o s s  Figure  ( F i g . 13),  (III)-(VII)  l e n g t h s and a n g l e s  tetrahydronaphthoquinones  tetrahydronaphthoquinols  the  e f f e c t s of  13  S t e r e o p a c k i n g diagram of 2,3,4o,4ap,6,8ap-heptamethyl4ap,5,8,8ap-tetrahydro-1-naphthoquin-4p-ol  substituents previously additional  on t h e p a r e n t  ring  are corroborated  in  four  s y s t e m . Many o f t h e t r e n d s the  present  tetrahydronaphthoquinol  comparison derivatives.  noted of  an The  76  appropriate  information  compound  (32)  facilitate  comparisons.  All  been  six-membered  predicted stable  has  by  Bucourt  conformation  the  include former  which, group  C(5)  the  XIII-XVI)  C(8)  and  Hainaut  (38)  as  energetically  for  both  and  is  for  similar  consist  comparison syn  position  to  of  140°  angle with  atoms C ( 4 ) , C ( 4 a ) , C ( 8 a )  the  two  (Table XVI),  C ( 8 ) . The  extent  t o w h i c h t h e s e atoms a p p r o x i m a t e  little  effect  (Table  XVI)  compounds  on  range  on  carbons  remains  (III)-(VII).  decreases  the  carbons  in several  naphthoquinols  fairly  naphthoquinone  ( 3 2 ) . Whether  this  t o C(4) and  and  subtend defined  indicate  the  2.3(5)°. C(8a)  angle  appear  t o have  R -C(4a)-C(8a)-R 2  c o n s t a n t , a v e r a g i n g -63° internal  twist  by c a . 5° upon m e t h y l (compound  three  a plane. Torsion angles  and  torsion  by  plane  175.7(5)°,  C(4a)  hydroxy  C(4)-C(4a)-C(8a)-C(8)  -3.4(3)° t o  However, t h e  C(8a)-C(4a)-C(5)  observed  from  the bridgehead  which  bridgehead  averaging  85°  third  in  cyclohexene  described  r e s p e c t t o the  only  compounds.  cis-fused  of a p p r o x i m a t e l y  and  thus  (VI)  of the  OH-anti  be  angles  Substituents  with  p l a n e s c o n t a i n i n g atoms C ( 1 )  an  the other p l a n e s  substituted  OH-syn c o n f o r m a t i o n s ,  torsion  for  and  the t e t r a h y d r o n a p h t h o q u i n o l s s t u d i e d  s k e l e t o n o f w h i c h may  to  t h e most  unsubstituted  pseudo-axial  make  to  conformation,  p l a n e s . Two  a n g l e s of c l o s e by  (Tables  half-chair  (III)-(VII)  the carbon  to  reproduced  the  the c o n f o r m a t i o n  approximate  unsubstituted  r e p r e s e n t e d here  despite  rings,  parent,  examples of OH-anti  are  Compounds  the  r i n g s adopt  cyclohexenes. Although far  regarding  (VI));  internal  for  C(l)-  substitution  similar  derivatives  angle,  results  (34) and  torsional  2  at  were  in other decrease  77  Table Derivatives  whose s t r u c t u r e s have been d e t e r m i n e d , 2  molecular  conformations,  activity,  and h y d r o g e n  and  angles  XIII  parameters  relevant to  bond d i s t a n c e s  with  photochemical  ( d i s t a n c e s i n Angstroms  in degrees). (VII)  (IV)  (V)  (III)  (VI)  Ri  H  Me  H  Me  Me  R  2  H  H  H  H  Me  R  3  H  H  H  H  H  R.  H  H  Me  Me  Me  R  5  H  H  H  H  OH  R  6  OH  OH  OH  OH  Me  Compound  O  H 2  / 1 R  R  7  8a  2  6  4a  3  f \ '*2  4 H  R_ 3  A, Conformation (the b u l k i e r  2  32.  Information  R  R_  R-.  D  D  3  common t o a l l a n t i  g r o u p on C ( 4 ) i s a n t i  regarding  1  4  derivatives  to bridgehead  ( V I I ) has been o b t a i n e d  substituents)  from  reference  Table  XIII  Intramolecular  (VII) C ( 2 ) . .. H 1 ( 5 ) T  c(2)  A  c(2) .H1(5)  C(3)..  0...H1 (8) r  o  A  o  2  94(2)  (continued) geometries*  (IV)  (V)  2 .. 9 2 ( 4 )  2.92(3)  (III)  (VI)  2.91(5)  2 .86(2)  52 . 1  52  o  53.8  51.7  4 8 .9  71 . 3 ( 3 )  73  2(7)  72.5(7)  7 3 ( 1)  7 4 .. 5 ( 4 )  2  81(2)  2 .84(4)  2.82(3)  2.84(5)  2  81(2)  55,, 7  54 . 1  56.7  53.5  5 0 .0  82 . 2 ( 4 )  79 . 7 ( 8 )  80.9(7)  79(1)  78 . 3 ( 4 )  2 .49(2)  2 .49(4)  2.49(4)  2 . 58  2 .41(2)  0. 6  1  4  3  1  81  8(5)  81(1)  83( 1 )  82  89  7(6)  C(3). . .C(6)  4 .381(2)  4 .442(5)  4 . 397(6)  4  .457(3)  4 . 453(3)  C(2) . . C(7)  4 .392(2)  4 .427(5)  4.427(6)  4  .457(3)  4 .419(3)  di  4 . 35  4 .40  4 . 37  4 .42  4 .40  C(6)  3 .404(2)  3 . 379(5)  3.414(5)  3.415(3)  3 . 293(3)  0( 1 ) . . .C(7)  3 .395(2)  3 .332(4)  3.419(5)  3 . 487(5)  3 .2 1 7 ( 3 )  C O ) .  .  e  88  89 3 . 35  d,  Hydrogen 0(1).  3 . 36  3 . 30  2 .747(3)  3 . 38  3 . 19  2.652(5)  2 .855(2)  bond 1ng  . .0(4)  0 ( 4 ) . . .0(4)  98  87  90  2 .830(2)  2.783(2)  2.804(2)  2.833(3) Primary Solution Sol1d  state  photochemical  r e a c t i o n *  (1)  (1)  (1)  (1)  (1)  (2.3)  (2)  (2.3)  (2)  (2)  Table  *For  the  d e f i n e d 0...H  by  v e c t o r  t o - c e n t e r **(1)  C...H  Interactions  c  1s  the C=C...H  C( 1 ) - C ( 2 ) = C ( 3 ) - C ( 4 ) .  For  and  plane,  the  d i s t a n c e .  carbonyl 9  Intramolecular  carbonyl  fl_  oxygen  0 ( 1 ) .  1s  the  [2 + 2]  mean angle  the  between  angle  0...H  di  Is  the  cycloaddl11 on.  XIII  and  r  c  1s  Interactions  the  C=C  normals (2)  (continued)  the  A  Q  angle  Is  the  c e n t e r - t o - c e n t e r to  the  carbonyl  H-abstractIon  by  the  C=O...H  angle  d i s t a n c e  and the  between  the  and  C...H  and  d?  1s  vector  r  Q  the  Is  carbon  C(3).  the  the  angle  C=0,  C(5)-C(6 )=C(7)-C(8 )  p-enone  and  (3)  enone  between  C(6)=C(7)  mean  plane  the  c e n t e r -  planes.  H-abstractIon  by  the  80  without or  a concomitant  steric  effects  Generally, results  in  increases XV).  The  value  of  is still  not  increased  an  C ( 2 ) = C ( 3 ) bond  unsubstituted  bond  bond  also  (VI)  difference  from  A  longer  to  be  C(2)  C(2)=C(3)  double  methyl  substituents  the  bond  same  Compound same  as  at  and  in  that  for  R„=Me,  whereas t h e  generally  internal  carbons  as v e r t i c e s  bonded  carbons  and  angles  i s due not  mainly  the  in this  case  the C ( 2 ) -  the  the  internal  ring.  A  are the is  compared  angles  this  The  increase  of  C(5)-C(6)=C(7) the  t h e above c o m p a r i s o n the  to s u b s t i t u t i o n  the double-bond  the  trend.  0.9-3.2° f o r  involving  to  substituents.  essentially  show an  With  C(6)=C(7)  that  same the  oxygen-bearing a t the  to the bridgehead s u b s t i t u e n t s  however, why  them  internal  C ( 7 ) , the  seem t o f o l l o w  d e c r e a s e by from  in  o f 0.016  C(7)-C(8)-C(8a)  I t i s apparent  i n the  not c l e a r ,  and  although  enlarging  of  and  ( V I I ) where h y d r o g e n s  i n (VII) does not  substitution.  is  end  p o s i t i o n s C(6)  C(2)=C(3)  affect  by  but  substituent-associated  ( V I ) , whose C ( 6 ) = C ( 7 ) bond l e n g t h  C(6)=C(7)-C(8)  increase  Similar  i s l e n g t h e n e d by an a v e r a g e bond  C(3)  and  a mean  same  ( V I I ) . The  decreases  at the C(6)=C(7)  angles C(4a)-C(5)-C(6) 1.4-4.6°  angles.  the  significant and  XIV  ( I V ) has  than  angles  (<1.4°) w i t h c o n c o m i t a n t  (Tables  lengthened,  C( 3)-C (4 )-C( 4a)  are apparent  e v i d e n t i n the  ( I I I ) and  i n t h e p a r e n t compound,  effects  is  i n compounds  i s 0.019  bond  naphthoquinols  angles  appears  hybridization  the  This  (VII) i s not d e f i n i t e l y  and  to  l e n g t h s and  marginally  double  in  size.  (2.5*). S u b s t i t u e n t s at p o s i t i o n s Cd)-C(8a)  i s due  clear.  ring  bond  A which  increase  substitution  enlarged  in several  1.345  in  external  double(32). I t  d i s t a n c e s i n (VI)  do  81  not of  follow  the t r e n d  other d e r i v a t i v e s It  is  at  f o r the s u b s t i t u t e d , double  in  the  compounds  double  (III)-(VI)  the of  ring  related  c a r b o n s . These  trend;  bonds a v e r a g e  owing  this  to  the  may  be a r e s u l t  disorder  C ( 1 ) - 0 ( 1 ) and  C ( 3 ) - C ( 4 ) - 0 ( 4 ) by w i d e n i n g  the  oxygens  methyl  and  groups  opposing  the bulky methyl  o x y g e n atoms w h i c h within  (VII) are l i n k e d joined  via  difficult been  crystals  to discern  Due  to  (see  bonding  (VII)  through disordered  The solid  exhibits  0(4)...0(4)  Compounds  has  (VI)  (III)-(VII)  a l l  between  tendency  f o r the  discussed react  -in  by  the  is linked in  (V)  by 0 ( 4 ) -  (III),  it  bonding,  is  but i t the  The  intermolecular  two  parent hydrogen  atoms ( 3 2 ) .  in solution  elsewhere the  (III)-  ( I V ) and  operative.  h y d r o x y l hydrogen  been  1.9-  effects  o f t h e compounds  p h o t o c h e m i s t r y o f t h e s e compounds state  Methyl  angles C(2)-  I, D i s c u s s i o n ) that are  i n the  i n t h e same p l a n e .  disorder  Chapter  t o t h e above  i s "-limited  type of hydrogen  t y p e s , 0 ( 4 ) . . . 0 ( 4 ) and 0 ( 4 ) . . . 0 ( 1 ) compound  to s t e r i c  of each  the  than  them 0.5-0.7° and  other  whereas  the a c t u a l  suggested  the e x t e r n a l  the  distance  structure.  b o n d i n g . M o l e c u l e s of  0(4)...0(4)  single-  A greater  C(5)-C(6)  g r o u p s . The  l i e nearly  by h y d r o g e n  H...0(1) i n t e r a c t i o n s .  has  is attributed  t o bend away from e a c h  Molecules  are  This  affects  the  imperfections  that  a t C ( 2 ) and  respectively.  C(3)  in  substitution  3.9°,  0.014  of  methyl  c a r b o n s and  i n ( I I I ) seems a n o m a l o u s w i t h r e s p e c t  however,  model  double-bond  bonds i n t h e p a r e n t compound. The  1.484(3) A  that  bond t e n d s t o i n c r e a s e  bond l e n g t h s between t h e s u b s t i t u t e d adjacent  bonds  (c_f. 3 2 ) .  observed  substitution  observed  solid  and  the  (29,30,36,39). state.  The  Table  XIV.  Bond  distances  (A)  with  e.s.d.  (VII)  (IV)  n  parentheses  (V)  for  compounds  ( I I I )  ( I I I ) - ( V I I )  (VI)  C( 1)  -C(2)  1.467(2)  1.471(5)  1.463(6)  1.484(3)  1.473(3)  C(2)  -C(3)  1.326(2)  1.351(5)  1.321(5)  1.339(3)  1.335(3)  C O )  -C(4)  1.499(2)  1.514(5)  1.487(6)  1.505(3)  1.531(3)  C(4)  -C(4a)  1.524(2)  1.518(5)  1.519(6)  1.514(3)  1 .560(3)  C(4a) -C(5)  1.527(2)  1.530(5)  1.521(6)  1 .515(3)  1 .545(3)  C(5)  -C(6)  1.497(2)  1. 497(5)  1.520(6)  1 .484(3)  1.507(3)  C(6)  -C(7)  1.317(2)  1.310(5)  1.327(5)  1 .339(3)  1.316(3)  C(7)  -C(8)  1.490(2)  1.489(6)  1 . 501(6)  1.505(3)  1.499(3)  C(8)  -C(8a)  1.518(2)  1.525(6)  1.514(5)  1.514(3)  1.533(3)  C ( 8 a ) - C ( 1)  1.516(2)  1.512(5)  1.514(6)  1 .515(3)  1.520(3)  C(8a) -C(4a)  1.537(2)  1.533(5)  1.525(5)  1 .533(4)  1 .556(2)  C(1)  - 0 ( 1)  1.216(2)  1.221(4)  1 .219(4)  1. 199(4)  1 .223(2)  C(4)  -0(4)  1.426(2)  1.438(4)  1 .437(5)  1 .356(4)  1 .438(2)  Table  XV.  Bond  angles  (°)  with  (VII)  e . s . d . ' s (IV)  1n  parentheses (V)  f o r  compounds  ( I I I ) - ( V I I  (III)  (VI  1 17  5(3)  1 16 7 ( 4 )  1 16 6 ( 2 )  1 18  1 (2)  5(1)  121  2(3)  120  6(4)  1 16 6 ( 3 )  12 1  0( 2)  122  8(1)  121  3(3)  122  6(4)  126  5(3)  120  6( 2 )  - C O )  121  5(1)  120  8(3)  121  4(5)  120  6(2)  120  9( 2)  - C O )  -C(4)  123  6(1)  121  8(3)  123  5(4)  123  0(2)  123  2( 2 )  C(3)  -C(4)  -C(4a)  112  0(1)  113  9(3)  1 1 1 9(4)  1 13 7 ( 2 )  113  1( 1 )  C O )  -C(4)  -0(4)  109  4(1)  1 11 3(3)  108  1(4)  1 13 3 ( 2 )  103  5( 1 )  C(4a) -C(4)  -0(4)  112  9(1)  1 11 7(3)  1 12 5 ( 3 )  1 10 5 ( 2 )  1 11  1 (2 )  C(4)  -C(4a) -C(5)  113  0(  1)  113  6(3)  1 13 6 ( 4 )  1 14  2(2)  109  5( 1 )  C(4)  -C(4a) -C(8a)  109  6(  1)  109  2(3)  109  6(4.)  109  7(2)  1 1 1 4( 1 )  C(8a} -C(4a) -C(5)  1 11  KD  1 10 5 ( 3 )  109  7(4)  109  8(1)  107  C(4a) -C(5)  -C(6)  1 12 2 ( 1 )  112  2(3)  1 14  1(4)  1 16 6 ( 2 )  C(5)  -C(6)  -C(7)  123  8(1)  124  1(3)  122  0(4)  120  6(2)  122  3( 2 )  C(6)  -C(7)  -C(8)  124  3(  123  9(4)  123  0(4 )  123  0(2)  121  3( 2 )  C(7)  -C(8)  -C(8a)  1 11 8(1)  1 1 1 8(4)  1 13 2 ( 4 )  1 13 7 ( 2 )  1 15 7( 2 )  C(8)  -C(8a) - C O )  112  7(1)  1 13 4 ( 3 )  1 13 5 ( 4 )  1 14  2(2)  1 1 0 3( 2 )  C(8)  -C(8a) -C(4a)  1 11 7(1)  1 1 1 2(3)  1 1 1 6(4)  109  7(2)  1 10 0( 2 )  109  1 10 0 ( 3 )  109  8(  107  C(2)  - C O )  -C(8a)  1 16 7 (  C(2)  - C O )  -0(1)  120  C(8a) - C O )  -0(1)  C ( 1)  -C(2)  C(2)  1 10  C(4a) -C(8a) - C O )  1)  1)  KD  5(3)  1)  0( 1 )  1 1 6 81 2 )  4  2) 2)  -C(21)  1 15 9 ( 4 )  115  0(2)  1 15 6  C(21 )-C(2)  - C O )  123  3(4)  124  4(2)  123  41 2 )  C(2)  -C(31)  122  7(4)  122  3(2)  120  5  2)  -C(4)  1 15 5 ( 4 )  1 14  7(2)  1 16 2  2)  C O )  -C(2)  - C O )  C(31) -C(3)  -C(61)  1 13 8 ( 5 )  1 15 0 ( 2 )  113  0  2)  C(61 )-C(G)  -C(7)  124  1(5)  124  4(2)  124  6  2)  -C(7)  -C(71  123  1(5)  122  3(2)  124  3  2)  C(71) -C(7)  -C(8)  1 14  7(2)  1 14  4  2)  C(5)  C(6)  -C(6)  )  1 13 9 ( 5 )  84  pertinent  geometrical  parameters  are given  i n T a b l e X I I I , page  77. It  has  been s u g g e s t e d  abstraction great  by  as  carbon  the  sum  i s 2.90  A  that  o r oxygen  can  of t h e van  i n v o l v e d . For carbon limit  (26)  — w  by  ( 7 (0) =  A, "r (H)  1.52  a l l  distances  range  suggested  oxygen =  — w  distances  the 1.20  (H)  from  2.81  is  the  2.90  A t o 2.84  the  of  in  the  can  inferred  C  abs" * * abs H  v  by e  c  t  carbon o  r  a n o  "  the  two T  process t  h  abs ** abs ,  and  H  and  A  c  imply  abstracting All  enone c a r b o n much expect  less  t h e most  the  r  the  favorable.  30-40° rotation  around  with  c  above  favorable of  the  to  the  the  exact the  observable,  it  angle  A.  In  the  between  the  90°  bond  between  the  f o r both  geometry w i t h  TC the  the v u l n e r a b l e hydrogen. abstraction  values  However, the  the  respect to  and  of  A  C(3)...H  relative  angle  the  v i a H1(5) T  2.72  the C(2)=C(3) double is  collinear  in  with  favorable abstracting  C(3), although  (  A_  (III)-<VII) react  than  for  C(2)...H  the  Although  the C(2)=C(3) v e c t o r s . Angles  C 2p-orbital  compounds,  of  while  directly  is  c  is  shows  process  angles  plane  e  ( C ( 1 ) , C ( 2 ) , C ( 3 ) , C ( 4 ) ) , and C  whereas,  otherwise  orbital  atom t o be a b s t r a c t e d i s n o t  abstraction  upper  the o r i e n t a t i o n  hydrogen.  abstracting  from  XIII  of  abstraction  abstractable the  by  hydrogen be  suggested  Implicit  requirement  involved  orientation  atoms  A)  A limit  A.  orbital  the  as  two  suggested  Table  geometry. T h i s i s i n d i c a t e d  of  of the  the  1.20  distances  «  reacting  position  =  limit A).  g r e a t e r than  limits  over  — w  abstraction — w  occur  of h y d r o g e n  A, T  1.70  i n t r a m o l e c u l a r hydrogen  der Waals r a d i i  abstraction  ( F (C) =  the  in Table XIII  i t i s not  C(2)=C(3)  by  the  appear  unreasonable  double  bond  p-  to  upon  85  (ff,ir*)  excitation  favorable molecule The (VII)  (26, and r e f e r e n c e s T_ v a l u e  sense y i e l d s a i n the excited secondary  t h e r e i n ) . Rotation  of  close  to  90°  f o r the  state.  solid  state  r e s u l t s i n a dihydroxy  reaction  1,6-bonded  product  (35).  Inspection  geometry  o f a l l compounds f o r t h e o c c u r r e n c e o f c a r b o n y l  T  A,  being  the angle  on of  and  A  subtended  by t h e O  (0(1), abs  the carbonyl  C(1),  . . .H  reaction.  group  abs  (V) a n d ( V I I )  abstraction  the  of  vector  g b s  C(8a)),  t h e 0=C  favorable  the  solid  and  A  vectors.  perpendicular  i n Chapter  lies  critical  being the  Q  The  ideal  hydrogen  t o the double  bond.  this  in  type  s u b s t i t u e n t s on state of  determining  the  reaction.  while  in solution  equilibration  i sfacile,  The  o f [2+2] c y c l o a d d i t i o n  absence  plane  plane  II that  feature  TQ  i n the  t o undergo  [2+2] c y c l o a d d i t i o n  state,  than  and the  enone d o u b l e bond a n d t h e i r e f f e c t s on t h e e x c i t e d  o f t h e above  oxygen  less  of the abstractable  were o b s e r v e d  I t was s u g g e s t e d  No i n t r a m o l e c u l a r  is  . . .H  C(2),  and  a b s  and  m o l e c u l e may be t h e  to  a n g l e s o f 0° a n d 9 0 ° , r e s p e c t i v e l y ;  Q  i s b a s e d on t h e a l i g n m e n t  probability  in  reveals  C ( 8 ) a n d t h e n - o r b i t a l on t h e o x y g e n w h i c h  the the  and  carbonyl  However, o n l y of  q  between t h e O  geometry  p-hydrogen  o f p - h y d r o g e n w i t h O...H s e p a r a t i o n s  2.58  angle  of Table XIII  and  analogous  reactions  the  from  i n (V)  products  of  resulting  observed  naphthoquinone  abstraction  in a  a l l compounds  r a t i o n a l i z e d on t h e b a s i s  of the  products a r e observed , where  undergo  products  conformational this  reaction.  i n the s o l i d  remoteness  of  the  state double  bonds a n d t h e i r askew o r i e n t a t i o n s . F o r t h e above compounds, t h e angle  between t h e v e c t o r s  C ( 6 ) = C ( 7 ) a n d C ( 3 ) = C ( 2 ) i s c a . 50° a n d  Table  XVI.  T o r s i o n  angles  (°)  with e . s . d . ' s  ( V I I )  angles  K2)  -2  3(5)  8(2)  -18  8(4)  -23  1(5)  49  KD  48  2(3)  50  -58  KD  -59  0(3)  -58  42  0(4)  38  -C(4)  -0  C(2)  -C(3)  -C(4)  -C(4a)  -20  C(3)  -C(4)  -C(4a) -C(8a)  C(4)  -C(4a) -C(8a) - C O )  compounds (III)  2  -C(3)  f o r  (V)  5(4)  -C(2)  (111)-(VII) (VI)  3(3)  -3  4(3)  - 16 3 ( 3 )  -9  8(3)  46  5(2)  40  9(2)  0(4)  -58  9(2)  -57  4(2)  5(4)  42  0(3)  46  3(2)  4(4 )  C(4a) -C(8a) - C O )  -C(2)  38  6(1)  C(8a) - C O )  -C(2)  -C(3)  -9  4(2)  - 12 0 ( 4 )  - 10 4 ( 5 )  -11  5(3)  - 16 5 ( 3 )  C(4a) -C(5)  -C(6)  -C(7)  -12  9(2)  - 13 7 ( 4 )  - 12 9 ( 5 )  - 1 1 5(3)  - 13 9 ( 3 )  C(5)  -C(6)  -C(7)  -C(8)  C(6)  -C(7)  -C(8)  -C(8a)  -14  6(2)  C(7)  -C(8)  -C(8a) -C(4a)  43  6(1)  45  0(4)  44  7(4)  46  5(2)  46  4(2)  C(8)  -C(8a) -C(4a) -C(5)  -58  4(1)  -59  5(3)  -59  5(4)  -58  9(2)  -57  9(2)  41  6(1)  42  6(3)  43  0(4)  42  0(3)  43  1(2)  -62  7(2)  -C(6)  - 1  2(2)  -0  3(5)  - 15 7 ( 5 )  -2  7(5)  - 13 6 ( 5 )  -2  -1  3(3)  6(3)  - 15 6 ( 3 )  - 16 3 ( 3 )  - C ( 4 a ) - C ( 8 a ) -R!  -63( 1 )  -62(3)  -65(3)  -63(3)  C(4)  -C(4a) -C(8a) -C(8)  176  0(1)  174  8(3)  175  1(3)  174  9(2)  C(1)  -C(8a) -C(4a) -C(5)  67  5(1)  66  6(3)  67  3(4)  67  3(3)  C(3)  -C(4)  -75  4(1)  -75  6(3)  -72  7(4)  -77  C(8)  -C(8a) - C O )  164  0O)  166  9(3)  164  2(4)  165  0(1)  - C O )  -C(8a) -C(4a)  -139  8(3)  - 143 2 ( 4 )  0(1)  - C O )  -C(8a) -C(8)  -17  6(2)  - 15 0 ( 4 )  - 17 4 ( 5 )  -21  6(5)  -18  8(3)  0(1)  -c(D  -C(2)  -C(3)  172  KD  169  17 1  175  0(4)  168  5(2)  0(4)  -C(4)  -C(3)  -C(2)  -146  7(2)  -146  2(3)  0(4)  -C(4)  -C(4a) -C(5)  48  6(1)  51  6(3)  49  3(4)  51  5(3)  166  8(1)  0(4)  -C(4)  -C(4a) -C(8a)  173  1(1)  175  4(3)  172  4(3)  175  2(2)  -75  0(2)  C(1)  -C(8a) -C(8)  -80  9(1)  -78  9(4)  -80  2(4)  -77  1(2)  -72  0(2)  Ri  T o r s i o n  (IV)  1  parentheses  -0  C(1)  C(8a) -C(4a) -C(5)  '  1n  f o r  (VII)  -C(4a) -C(5)  refer  -C(2)  -C(7) to  the  - 143 0 ( 1 )  enantlomer  of  8(4 )  2(4)  - 147 6 ( 4 )  - 177 5 ( 2 ) 62  2(2)  K2)  -77  3(2)  6(2)  166  2(2)  - 138 7 ( 2 )  - 145 2 ( 5 )  1 10 6 ( 2 )  - 143 5 ( 3 )  00 the  parent  compound  1n  Greenhough  and  T r o t t e r ,  1981  (32).  o\  87  their  double  bond  center-to-center  Similarly,  unfavorable  geometries  exist  XIII).  [2+2]  f o r t h e C=0  separations  intramolecular  are  >4.3  A.  cycloaddition  and C ( 6 ) = C ( 7 ) d o u b l e bonds  (Table  Table  Supplementary for  compound  bond  XVII  lengths  (VI) w i t h  (A) and a n g l e s  e.s.d.'s i n parentheses  Bond  Length  C ( 2 ) -C(21)  1 .514(3)  C ( 3 ) -C(3 1 )  1 .509(3)  C ( 4 ) -C(41 )  1 .539(3)  C(4a) -C(4a1)  1 .541(3)  C ( 6 ) -C(61)  1 .516(3)  C(7) - C ( 7 1 )  1 .508(3)  C(8a) - C ( 8 a 1 )  1 .541(3)  Bonds  Angle  -C(4) -C(41)  109. 4(2)  C(41 ) - C ( 4 ) - C ( 4 a )  1 1 1 . 3(2)  C(3)  C(41 ) -CC4) C(4)  -0(4)  -C(4a) -C(4a1)  108. 2(2) 110. 1 (2)  C(4a1  )- C ( 4 a ) - C ( 5 )  108. 5(2)  C(4a1  )- C ( 4 a ) - C ( 8 a )  110. 3(2)  C(1 )  -C(8a) - C ( 8 a 1 )  105. 6(2)  -C(8a1)  115. 2(2)  -C(8a) -C(8a1)  108. 2(2)  C ( 4 a ) rC(Ba) C(8)  (°)  89  Table  XVIII «  Bond  lengths with  involving  estimated  Bond  h y d r o g e n atoms  standard  Length  (A) i n compound ( V I )  d e v i a t i o n s in parentheses Bond  Length  C(21 ) -H1 (21 )  0 .95(4)  C ( 5 ) . -H2(5)  0 .97(2)  C(21 ) -H2(21)  0 .94(4)  C(61 ) -H1(61 )  1 .00(4)  C(21 ) -H3(21)  0 .91(5)  C(61 ) -H2(61 )  0 .84(4)  C(31 ) -H1(31 )  0 .99(3)  C(61 ) -H3(61)  1 .06(5)  C(31 ) -H2(31 )  0 .93(4)  C ( 7 1 ) -H1(71)  0 .95(4)  C(31 ) -H3(31 )  0 .98(4)  C(71 ) -H2(71)  1 .05(5)  C (4 1) -H1(41 )  1 .02(2)  C(71 ) -H3(71)  0 .95(5)  C(41 ) ~H2(41 )  1 .00(3)  C(8)  -H1(8)  0 .94(3)  C(41 ) -H3(41 )  1 .03(3)  C(8)  -H2(8)  1 .02(2)  C(4a1 )-H1(4a1)  1 .03(3)  C ( 8 a 1 ) -H1(8a1)  0 .92(3)  C(4a1 )-H2(4a1 )  0 .96(3)  C ( 8 a 1 ) -H2(8a1)  0 .99(3)  C(4a1 )-H3(4a1)  0 .98(3)  C(8a1) - H 3 ( 8 a 1 )  1 .00(3)  C(5)  1 .01(2)  0(4)  0 .87(3)  -H1(5)  -H1(04)  90  Table Bond a n g l e s with  Bonds  (deg) i n v o l v i n g  estimated  standard  XIX  h y d r o g e n atoms deviations  Angle  C(2) -C(21) -H1(21) 109(2) - C ( 2 1 ) -H2(21) 112(3) C(2) - C ( 2 1 ) -H3(21) 112(3) C(2) H1 (21 ) - C ( 2 1 ) -H2(21) 97(3) H1 (21 ) -C(21) -H3(21) 104(4) 121(4) H2(21) - C ( 2 1 ) -H3(21) 113(2) - C ( 3 1 ) -H1(31) C(3) C(3) - C ( 3 1 ) -H2(31) 111(3) 111(2) - C ( 3 1 ) -H3(31) C(3) 99(3) H1(31) -C(31) -H2(31) H1(31 ) -C(31) -H3(31) 108(3) H2(31) -C(31) -H3(31) 115(3) 110.4( 14) C(4) -C(41) -H1(41) 110(2) C(4) -C(41) -H2(41) -C(41) -H3(41) C(4) 1 1 1 .1 14) ( 107(2) -C(41) -H2(41) H1 (41 ) 110(2) H1 (41 ) -C(41) -H3(41) 108(2) H2(41) -C(41) -H3(41) C ( 4 a ) -C(4a1 )-H1(4a1 ) 110.4< 14) C ( 4 a ) -C(4a1 )-H2(4a1 ) 111.81 15) C ( 4 a ) -C(4a1 )-H3(4a1 ) 110.71 15) H1 ( 4 a 1 ) - C ( 4 a 1 ) - H 2 ( 4 a 1 ) 1 1 3 ( 2 ) HI(4a1)-C(4a1)-H3(4a1)104(2) H2(4a1)-C(4a1)-H3(4a1)107(2) C(4a) -C(5) -H1(5) 109.3( 11) -H2(5) 108.91 13) C(4a) -C(5) C(6) -C(5) -H1(5) 109.0< 1 1 )  i n compound  (VI)  i n parentheses  Bonds  Angle  108.0(13) -C(5) -H2(5) C(6) 104(2) H1 (5) - C ( 5 ) -H2(5) 113(2) C(6) - C ( 6 1 ) -H1(61) 112(3) - C ( 6 1 ) -H2(61) C(6) 115(2) C(6) - C ( 6 1 ) -H3(61) 102(3) H1(61) - C ( 6 1 ) -H2(61) 108(3) H1(61) - C ( 6 1 ) -H3(61) 107(4) H2(61) - C ( 6 1 ) -H3(61) - C ( 7 1 ) -H1(71) 111(2) C(7) 106(2) C(7) - C ( 7 1 ) -H2(71) C(7) - C ( 7 1 ) -H3(71) 113(3) H1(71 ) - C ( 7 1 ) -H2(71) 92(3) H1(71 ) - C ( 7 1 ) -H3(71) 113(3) H2(71 ) - C ( 7 1 ) -H3(71) 120(4) C(7) 109.4(15) -C(8) -H1(8) C(7) 113.2(14) -C(8) -H2(8) 106.0(15) -H1(8) C(8a) -C(8) 104.6(13) -H2(8) C(8a) -C(8) 1 07(2) H1 (8) - C ( 8 ) -H2(8) C ( 8 a ) - C ( 8 a 1 ) -H1(8a1) 111(2) C ( 8 a ) - C ( 8 a 1 ) -H2(8a1) 109(2) C ( 8 a ) - C ( 8 a 1 ) -H3(8a1) 1 12.8(15) H1(8a1)-C(8a1)-H2(8a1)105(2) H1(8a1)-C(8a1)-H3(8a1)109(2) 109(2) H2(8a1)-C(8a1)-H3(8a 112(2) -0(4) -H1(04) C(4)  I  91  Table Supplementary with  torsion  estimated  XX  angles  standard  (deg) f o r compound ( V I )  deviations  Atoms  C ( 8 a ) -CO ) -CO) 0(1 ) -CO ) C(2) -CO ) 0(1 ) -C(2) CO ) C(21 ) - C ( 2 ) C(21 ) - C ( 2 ) -C(3) C(2) C(31 ) - C ( 3 ) C(31 ) - C ( 3 ) C(31 ) - C ( 3 ) -C(4) C(3) C(41 ) - C ( 4 ) C(41 ) - C ( 4 ) C(41 ) - C ( 4 ) -C(4) 0(4) C(4a1 )-C(4a) -C(4a) C(4) C(4a1 )-C(4a) C(4a1 )-C(4a) C(4a1 )-C(4a) -C(4a) C(5) C(4a) -C(5) -C(6) C(5) C(61 ) - C ( 6 ) C(61 ) - C ( 6 ) C(71 ) - C ( 7 ) C(7) -C(8) CO ) CO ) CO ) C(3) C(3) C(3) C(2) C(2) C(2) C(4) C(4) C(4) C(3) C(3) C(3)  -C(2) -C(2) -C(2) -C(2) -C(2) -C(2) -C(3) -C(3) -C(3) -C(3) -C(3) -C(3) -C(4) -C(4) -C(4)  i n parentheses  Value  -C(2) -C(2) -C(8a) -C(8a) -C(3) -C(3) -C(3) -C(4) -C(4) -C(4) -C(4) -C(4a) -C(4a) -C(4a) -C(4a) -C(4a) -C(5) -C(8a) -C(8a) -C(8a) -C(8a) -C(8a) -C(6) -C(7) -C(7) -C(7) -C(8) -C(8a)  -C(21) -C(21) -C(8a1) -C(8a1) -C(31) -C(31) -C(4) -C(41) -C(41) -C(4a) -0(4) -C(4a1) -C(4a1) -C(5) -C(8a) -C(4a1) -C(6) -C(8a1) -CO ) -C(8) -C(8a1) -C(8a1) -C(61) -C(71) -C(71) -C(8) -C(8a) -C(8a1)  162.5(2) -12.5(3) -77.2(2) 97.9(2) 174.7(2) -4.2(4) 177.7(2) -134.3(2) 47.5(3) 172.1(2) -67.6(3) 163.6(2) -72.9(2) 46.2(2) 164.4(2) 47.7(2) -75.9(2) 59.9(2) -180.0(2) 59.9(2) -62.7(2) 179.5(2) 166.4(2) 178.5(2) -1.8(4) 178. 1(2) 164.4(2) 173.0(2)  -C(21) -C(21) -C(21) -C(21) -C(21) -C(21) -C(31) -C(31) -C(31) -C(31) -C(31) -C(31) -C(41) -C(41) -C(41)  -H1(21) -H2(21) -H3(21) -H1(21) -H2(21) -H3(21) -H1(31) -H2(31) -H3(31) -H1(31) -H2(31) -H3(31) -H1(41) -H2(41) -H3(41)  -124(3) 130(3) -9(4) 55(3) -51(3) 170(4) -159(2) 91(3) -38(2) 19(2) -91(3) 140(2) 175.6(15) -66(2) 53.0(15)  T a b l e XX C ( 4 a ) -c( 4) C ( 4 a ) -c( 4) C ( 4 a ) -c( 4) 0(4) -c( 4) 0(4) -c( 4) 0(4) -c( 4) C(3) -c( 4) C(41 ) -c( 4) C ( 4 a ) -c( 4) C(4) -c( 4a) C(4) -c( 4a) C(4) -c( 4a) C(5) -c( 4a) C(5) -c( 4a) C(5) -c< 4a) C ( 8 a ) -c< 4a) C ( 8 a ) -CI 4a) C ( 8 a ) -c< 4a) C(4) -CI 4a) C(4) -c< 4a) C ( 4 a 1 ) -c< 4a) C ( 4 a 1 ) -c< 4a) C ( 8 a ) -c ,4a) C ( 8 a ) -c [4a) H1 (5) -c [5) H1 (5) -c [5) H2(5) -c [5) H2(5) -c [5) C(5) -c [6) C(5) -c (6) C(5) -c (6) C(7) -c (6) C(7) -c (6) C(7) -c (6) C(6) -c (7) C(6) -c (7) C(6) -c (7) C(8) -c (7) C(8) -c (7) C(8) -c (7) C(6) -c (7) C(6) -c (7) C(71 ) -c (7) C(71 ) -c (7) H1 (8) -c (8) H1 (8) -c (8) H1 (8) -c (8) H2(8) -c (8) H2(8) -c (8) H2(8) -c (8) C(1) -c (8a)  (continued)  -c( 41) -c( 41) -c( 41) -c( 41) -c( 41) -c( 41) -o( 4) -o( 4) -o( 4) -c( 4a 1 -c( 4a 1  -H1(41) -H2(41) -H3(41) -H1(41) -H2(41) -H3(41) -H1(04) -H1(04) -H1(04) )-H1(4a1) )-H2(4a1) -C( 4a 1 )-H3(4a1) -c( 4a 1 )-H1(4a1 ) -C( 4a 1 )-H2(4a1) -C( 4a 1 )-H3(4a1) -CI 4a 1 )-H1(4a1) -CI 4a 1 )-H2(4a1) -CI 4a 1 )-H3(4a1) -H1(5) -CI 5) -CI 5) -H2(5) -H1(5) -CI 5) -CI .5) -H2(5) -CI [5) -H1(5) [5) -H2(5) -c [6) C(61) -c -C(7) [6) -c -c [6) - C ( 6 1 ) -c (6) -C(7) -c [61 ) -H1(61) -c [61 ) -H2(61) -c (61 ) -H3(61) -c (61 ) -H1(61) -c (61 ) -H2(61) -c (61 ) -H3(61) -c (71 ) -H1(71 ) -c (71 ) -H2(71) -c (71 ) -H3(71) -c (71 ) -H1(71) -c (71 ) -H2(71) -c (71 ) -H3(71) -c (8) -H1(8) -c (8) -H2(8) -c (8) -H1(8) -c (8) -H2(8) -c (8a) - C O ) -c (8a) - C ( 4 a ) -c (8a) - C ( 8 a 1 ) -c (8a) - C O ) -c (8a) - C ( 4 a ) -c (8a) - C ( 8 a 1 ) -c (8a1 ) -H1(8a1)  50. 0( 15) 2) 1 68 ( -72. 6( 15) -72. 3( 15) 46( 2) 165. 0( 15) 151 (2) 35( 2) -87( 2) 48( 2) 2) 1 74 ( -67( 2) -72( 2) 54( 2) 1731 2) 171 .2( 15) -62( 2) 561 2) 39. 7( 12) -73. 4< 14) 159. 8( 12) 46. 7( 14) -81 . 1 (12) 165 8( 14) -69 1 I12) 1 10 61 12) 43 -31 14) -1 37 .01 14) 41 [2] 1 55[3] -83 (3.; -138 (2 -24 (3 98 (3 1 22(3 -139 (3 -6 (3 -58 (3 41 (3 174 (3 -1 35 . 1 !15) 1 05. 1(14) 44 .8 (15) -75 .0 (14) 49 .4 0 5 ) 167 .8 05) -65 .6 0 5 ) 162 .8 0 4 ) -78 .8 0 4 ) 47 .8 :u) 57 (2  Table  CO) CO) C(4a) C(4a) C(4a) C(8) C(8) C(8)  XX  (continued)  - C ( 8 a ) - C ( 8 a 1 >-H2(8a1) - C ( 8 a ) -C(8a1 )-H3(8a1) - C ( 8 a ) -C(8a1 )-H1(8a1) -C(8a) -C(8a1 )-H2(8a1) -C(8a) -C(8a1 )-H3(8a1) -C(8a) -C(8a1 )-H1(8a1) -C(8a) -C(8a1 )-H2(8a1) -C(8a) -C(8a1 )-H3(8a1)  -59(2) 179.6(15) -62(2) -177(2) 61 (2) 175(2) 59(2) -62(2)  94  CHAPTER IV  6,7-DIMETHYL-4a p,5,8,8ap-TETRAHYDRONAPHTHOQUIN-1o,4o-DIOL  95  Introduction The  crystallographic  previously  described,  structural  similar  embarked  elucidation  photochemical  s t u d i e s p r e s e n t e d thus  would p r o m o t e  reaction  was s t u d i e d  Obtaining many  cases  solid  state  project  been  discussed, i t s  solid  diffraction  factor  state  illustrated  of  technique  analysis  in their  l e d to a  structures and  structure  or not the  has  Scheffer  advantages  work h a s i n  i n whether  s p e c t r o s c o p y . McDowell, N a i t o , some  crystal  reason.  i s solved. This limitation  investigating  of the  t h e p r e s e n t compound i s  f o r X-ray  the determining  as  t h e hope t h a t t h e  understanding  previously  crystals  structure  of  an  for a different  single  with  mechanism. W h i l e  t o the naphthoquinols  structure  upon  f a r were,  this  by  Wong  13  C-NMR  ( 4 0 ) , have over  work on c o n f o r m a t i o n a l  X-ray  analysis  of  tetrahydronaphthoquinones. The  technique of h i g h r e s o l u t i o n  discussed  here,  b u t some o f t h e r e s u l t s  mentioned. In b r i e f ,  appear as s i n g l e t s This  differences was  be  molecules  in solution,  is  attributed  that  this  exploited whose  Although independent  doublets to  13  C-NMR  discriminating in  identifying  spectra  C-NMR  shown  appear  the  that  in  slight  i n the  i s not  f o r the carbons  the  state.  feature of the s o l i d structurally  of  of u n s u b s t i t u t e d  the  solid  environmental  solid  s h o u l d be r e a d i l y  the characterization molecules  13  chemically equivalent  e x p e r i e n c e d by t h e c a r b o n s  proposed  could  where  state  a c h i e v e d by i t s u s e a r e  M c D o w e l l e_t a _ l . have  tetrahydronaphthoquinones,  state.  solid  It  state  independent  discernible.  two  structurally  4ap,5,8,8ap-tetrahydro-  96  1,4-naphthoquinone not  the case  the  13  i n the s o l i d  spectrum  suggested  molecule  i n the structure  indicate  the exact  hence by  desire  X-ray  establish  molecules,  to obtain  one  i)  techniques  the  i i ) their  was  independent unambiguously  number  to  positions) was  how  compelling.  undertaken  verify  and  the  if  isomer  p r e s e n t . Of a d d i t i o n a l the  compared w i t h d e r i v a t i v e s  present,  The  independent  conformations to  and  i n an e f f o r t  structurally  individual  respect  crystallographically  seemed  of  obtainable  structural determination  was t h e r e f o r e  from e a c h o t h e r and i i i ) OH  compound were  a complete  differed  structure  than  but the e v i d e n c e d i d not  analysis  the  more  of the t i t l e  diffraction  crystallographic to  such,  number.  crystals  the  was s u c c e s s f u l ,  f o r t h e p r e s e n t compound. The m u l t i t u d e o f p e a k s i n  C-NMR  Single  state  they (with  interest  fully  reduced  of 4 a p , 5 , 8 , 8 a p - t e t r a h y d r o - 1 -  naphthoquin-4o-ol.  Exper imental Colourless obtained  crystals  from a h e x a n o n e / n - h e x a n e  Preliminary absences,  precession 0k0,  space group  Crystal  acicular  data:  k  of  solution  photographs  = 2n + 1; hOl,  the d i o l  1=  (VIII)  1  by slow  revealed  , were  evaporation.  the  systematic  2n + 1, i n d i c a t i v e  of the  P2,/c.  C  1 2  H  1 8  0 , 2  MW  = 194.28, m o n o c l i n i c  a =  13.870(2),  IUPAC name: 1o,4o-dihydroxy-6,7-dimethyl-1,4,4ap,5,8,8aphexahydronaphthalene. 1  97  b =  18.025(4),  A , 3  Z = 8,  c = 9.236(1)  D  = 1.176  g  A,  * =  cm" ,  108.098(6)°,  D  3  —  = 1.T79  V = 2194.9(6)  g cm" ,  ^(MoKa)  3  5  = 0.436 c m ,  X = 0.71073 A,  - 1  space group  P2,/c.  (VIII)  Data 0.10  mm  were c o l l e c t e d between t h e t a  3  s c a n and angle,  limits  (0.65  + 0.35tane)°,  for  remained  constant  background  according  reflections  at  4 mm  to the  were  observed  reorientation Lorentz  was and  2845 r e f l e c t i o n s  extended  * (I) 2  =  by  using The  +  calculated  a deviation scattering  u-2e  s i d e of aperture  aperture mm.  controls time.  x  omega s c a n  tane)  exposure  permitted  ah  vertical  intensity  of X - r a y  x 0.15  25% on e a c h  The  (2.00  as  was  Three and  were  Orientation  o f up t o 0.055° vectors  before  effected. polarization collected.  corrections  Further  (1461) o f t h e d a t a were c l a s s i f i e d where  22.5°  MoKc r a d i a t i o n .  expression  were and  and  0.52  whereas t h e h o r i z o n t a l  designated  reflections  between  was  measuring  measurement.  measured e v e r y 3600 s e c o n d s check  o f 0.0  g r a p h i t e monochromatized  t h e peak  varied  with a c r y s t a l  S + 2B +  (0.04(S  were a p p l i e d  processing  showed  t o the 51.4%  a s o b s e r v e d h a v i n g I > 3<r(I), - B ) ) , S = s c a n c o u n t and 2  B =  98  the  time-averaged  b a c k g r o u n d . The d e c a y  the  three control  data  collection.  reflections  Solution The  centric  firmly  supported  the c e n t r i c  distribution,  little  doubt c o n c e r n i n g  generated of  stages  from  each  indication  value  of  with  accordance with the  E,  reflections up  the  MULTAN,  indicated  having  common  starting  s e t . This  in  interpretable  electron  fractional  the  coordinates  molecules  corresponded thereby  than  four  chosen i n  known  i n the E phases  _ 2  listing  of m e r i t . U s i n g Fourier  a  eight  the  E's as  made  the  from w h i c h t h e  chemically  implication  molecules  with  s y n t h e s i s , an  crystallographically  substantiating  measurements o f t h e r e b e i n g  in  phases,  was t h e o n l y one  map was c a l c u l a t e d  two  with  the acceptance  f o r a l l n o n - h y d r o g e n atoms were  to  results  phases a s s o c i a t e d  three-dimensional  p e a k s on t h e E-map, when j o i n e d  manner,  were  reflections,  reflections,  the  of  figures  density  The  In  15 c o n t r i b u t o r s . The p h a s e s  other  set  o f _P2,/c_.  2  defining  five  existed  E -relationships  greater  t o many r e l a t i o n s h i p s  coefficients  The N ( z ) t e s t  |E| > 1.588.  s p a c e g r o u p symmetry, and  closely  and s o r t h e r e  the phases of four  a probability  d e v e l o p e d a n d gave e x c e l l e n t  The  4709  having  the three o r i g i n  results  data,  distribution.  0.95 a n d h a v i n g more t h a n  associated  from  of  of  the p e r i o d of  t h e space group assignment  312 r e f l e c t i o n s  the E,-formula  over  f o r a l l the  theoretical  initial  intensities  and Refinement  the  the  the  was n e g l i g i b l e  E-statistics, calculated  paralleled  in  obtained. sensible  independent from  i n the unit  density cell.  39 In were  the  included  Later, the  initial  stages  a n d were a s s i g n e d  anisotropic  refinement  of  the  synthesis  and  only  were  s u b t e n d e d an a n g l e  vertex; 0(1').  of r o u g h l y  refined  as  positions Thermal  also  The f i n a l  of u n i t  An  error  difference  of  synthesis  set consisting  following  density  3  o- (F) i s o b t a i n e d 2  factors  parameters  is  to  0.5  and  refinement.  t o be i s o t r o p i c varied  o f 0.114 and f o r an  presented  of in  and  Rw  =  of 2845 r e f l e c t i o n s . A indicated  with  defined  atomic Table  random  the largest  peak  1/©- (F),  weights, w =  from t h e p r e v i o u s l y  i n the refinement. A l i s t  temperature  the  0.104  convergence  t o 0.124 e / A . The a b s o l u t e  XXII.  electron  of  refinement  while R =  corresponding  thermal  the  respect  R - v a l u e s were R = 0.032 and Rw  in  employed  with  factors  during  fluctuations  where  1 A from 0 ( 1 )  o f 1.619 was c a l c u l a t e d  weight. F i n a l  f o r the e n t i r e data  electron  a s s i g n e d H ( 0 1 ) and H(01')  cycle  = 0.035 f o r t h e 1461 o b s e r v e d d a t a , 0.035  the  showed mean and maximum s h i f t s  respectively.  observation  on  o f h y d r o g e n s were c o n s i d e r e d  405 p a r a m e t e r s w h i c h 1.107©-,  occupancy  The i n i t i a l l y  refined accordingly.  o f t h e 36  i n magnitude t o  similarly  assumed 0.5 o c c u p a n c i e s  vibrations  a  112° w i t h C ( 1 ) , 0 ( 1 ) b e i n g t h e  were g i v e n  hydrogens.  into  which  the p o s i t i o n s  approximately  t h e o t h e r peak was p o s i t i o n e d These p o s i t i o n s  after  peaks, e q u i v a l e n t  map. One peak was p o s i t i o n e d  parameters.  incorporated  oxygens,  revealed  non-hydrogens  thermal  p e a k s a s s i g n e d H(01) and H ( O I ' ) , a p p e a r e d  density  and  factors  carbons  h y d r o g e n a t o m s . Two a d d i t i o n a l  and  isotropic  temperature  difference-Fourier  the  of r e f i n e m e n t ,  z  © (I), 2  coordinates  were and  XXI; a n i s o t r o p i c  f o r n o n - h y d r o g e n atoms a r e c o n t a i n e d  i n Table  100  Table Final and with  Atom  2  CO) C(2) C(3) C(4) C(4a) C(5) C(6) C(61) C(7) C(71 ) C(8) C(8a) 0(1 ) 0(4) CO ' ) C(2' ) C(3' ) C(4' ) C(4a') C(5' ) C(6' ) C(61') C(7' ) C(71 ' ) C(8' ) C(8a') 0(1 ' ) 0(4' ) HO ) H(2) H(3) H(4) H(4a) H1 (5) H2(5) HI(61)  positional  isotropic estimated  (fractional  x 10",H x 1 0 ) 3  thermal parameters standard deviations  2331 ( 3) 1501 ( 3) 647( 3) 407( 2) 972( 2) 585( 3) 1 287 ( 3) 789( 5) 2242( 3) 2973( 4) 2706( 3) 2099( 2) 2539( 3) -676( 2) -4175( 2) -3370( 3) -2615( 3) -2493( 2) -3013( 2) -2470( 2) -3095( 2) -24901 4) -40841 3) -4730< 4) -46731 3) -41071 2) -4148 3) -1440 : 2) 299( 2) 1 60 ( 2) 12( 2) 62( 2) 91 ( 2) -9( 2) 44( 2) 27( 4) k  1 126( 2) 952( 2) 1 320( 2) 1 964( 2) 1922( 2) 1 330( 2) 1 1 65 ( 2) 7 1 5( 3) 1 393 ( 2) 1 236 ( 3) 1837 ( 2) 1 8 1 6 (2) 489( 1) 1 997 ( 1) 801 ( 2) 668( 2) 1 1 28 ( 2) 1851 ( 2) 1848 ( 2) 1 398( 2) 1254( 2) 954( 3) 1376( 2) 1 264 < 3) 1 637 < 2) 1 574( 2) 1 99 < 1 ) 20461 1 ) 1 22 ( 1 ) 53( 2) 1 21 ( 2) 242( 1 ) 239( 1) 1 45 ( 2) 85( 1) 98( 3)  to  (U x 1 0  3  molecule  A ) 2  i n parentheses Ueq/Uiso  z  1  X  U n p r i m e d atoms c o r r e s p o n d c o r r e s p o n d t o m o l e c u l e B. 2  XXI  49 55 49 41 35 43 46 74 48 78 53 41 70 51 42 51 49 39 35 38 42 63 45 78 51 40 49 51 49( 8) 67(10) 56( 9) 35( 8) 32( 7) 63(10) 36( 7) 167(24)  3501 ( 3) 2067( 4) 1581 ( 4) 2409( 3) 4 1 03 ( 3) 4946( 3) 6529( 3) 7482( 5) 7001 ( 3) 8559( 5) 6001 ( 4) 431 5( 3) 4464( 3) 2042( 2) -2861( 3) -1378( 4) -783( 4) -1491( 3) -3194( 3) -4087( 3) -5716( 3) -6685( 5) -6224( 3) -7862( 5) -5200< 4) -3508I 3) -3851< 3) -1 1 62 3) 326( 3) 1 54 ( 4) 68( 3) 209( 3) 454( 3) 503( 3) 438( 3) 770( 6)  A;  primed  (')  atoms  101  T a b l e XXI H1(61) H2(61) H3(61) H1 (71 ) H2(71) H3(71) H1 (8) H2(8) H(8a) H(01) 3  H(01)*•  H(04) H(T) H(2' ) H(3' ) H(4' ) H(4a') H1(5' ) H2(5') H1 (61 ) H2(61') H3(61'y . H1 (71 ' ) H2(71') H3(71') H1 (8' ) H2(8') H(8a') H(01') H(01')* H(04') 1  27(  4)  1 33 ( 4)  52( 4) 337( 3) 271 ( 3) 343( 3) 278( 2) 337( 2) 230( 2) 306( 6) 247( 9) -85( 2) -484( 2) -342( 2) -208( 3) -283( 2) -306( 2) -1 89 ( 2) -222( 2) -286( 3) -200( 3) -2 1 2 (3) -437( 3) -51 4( 4) -520( 4) -493( 2) -532( 3) -443( 2) -374( 8) -464( 8) -1 15( 3)  (continued)  98( 3) 61 ( 2) 26( 3) 84( 2) 1 15( 2) 169( 3) 235( 2) 1 65 ( 2) 220( 1) 1 7( 4) 49( 6) 235( 2) 74( 1) 19( 2) 99( 2) 226( 1 ) 238( 1 ) 1 65 ( 2) 90( 1 ) 68( 2 ) 60( 2) 1 30 ( 2) 1 19( 2) 1 62 ( 3) 85( 3) 2 1 7 (2) 1 33( 2) 1 93 ( 2) 1 3( 6) 7( 7) 203( 2)  770( 6) 834( 6) 702( 6) 850( 4) 937( 4) 889( 5) 634( 3) 61 1 ( 3) 381 ( 3) 443( 6) 501 ( 13) 260( 4) -275( 3) -90( 3) 12( 4) -1 1 0 ( 3) -356( 3) -4 1 2 (3) -360( 3) -750( 4) -609( 5) -695( 5) -855( 5) -823( 6) -794< 5) -546( 3) -547I 3) -292I 3) -400I 1 2 ) -464< 14) -101 5)  1 67 ( 24) 21 ) 1 35 (  151 (23) 95( 15) 87( 14) 1 27 ( 19) 72( 1 1 ) 73( 1 1 ) 38( 8) 70< 1 8 ) 1 63 <61 ) 76! 12) 38( 8) 69< 1 1 ) 73< 1 1 ) 8) 44 32 7) 49 i 9) 26 7) • 96 114) 1 1 2(18) 118 (17) 1 1 7( 1 8 ) 145 (27) 1 46 (19) 59 ( 9) 73 (10) 56 ( 8) 50 (53) 140 (53) 107 (15) k  Hydrogens bonded t o 0 ( 1 ) a n d 0 ( 1 ' ) a r e i n p o s i t i o n s o f 50% occupancy. A s t e r i s k s (*) d e n o t e additional hydrogen positions arising from t h e d i s o r d e r . 3  a  1 02  Table Final  anisotropic and  Atom C(1 ) C(2) C(3) C(4) C(4a) C(5) C(6) C(61 ) C(7) C(71 ) C(8) C(8a) 0(1 ) 0(4) C(1 ' ) C(2' ) C(3' ) C(4' ) C(4a') C(5' ) C(6' ) C(61') C(7' ) C(71') C(8' ) C(8a') 0(1 ' ) 0(4' )  y i 46( 65( 49( 41 ( 37( 44( 64( 101 ( 54( 91 ( 41 ( 40( 95( 41 ( 36( 62( 53( 38( 38( 37( 53( 78( 52( 84( 39( 34( 53( 45(  their  1  2) 3) 2) 2) 2) 2) 3) 4) 2) ,4) 2) 2) 2) 1) 2) 2) 2) 2) 2) 2) 2) 3) 2) 3) 2) 2) 2) 1)  XXII  thermal  parameters ( U i j x 10  estimated y  59( 61 ( 67( 47( 35( 52( 48( 83( 51 ( 83( 67( 45( 63( 74( 46( 52( 61 ( 48( 32( 46( 45( 80( 48( 95( 50( 45( 44( 70(  2  2  2) 2) 2) 2) 2) 2) 2) 3) 2) 4) 3) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 3) 2) 4) 2) 2) 2) 2)  y 46( 44( 30( 34( 31 ( 37( 29( 50( 35( 46( 42( 41 ( 57( 34( 48( 38( 31 ( 30( 34( 32( 30( 40( 29( 38( 52( 39( 51 ( 31 (  standard  3  3  3  A ) 2  deviations  2  2) 1 6( 2) 2) 1 1 ( 2) 2) 7( 2) 2) 6( 2) 2) 3( 1) -2( 2) 2) 2) 10( 2) -5( 3) 3) 2) 1 4( 2) 3) 33( 3) 2) 3( 2) 2) 0( 2) 2) 39( 2) 1 3( 1) 1) 2) -6( 2) 2) -10( 2) 2) -6( 2) -7 ( 2) 2) 2) -1 ( 1 ) 2) -6( 2) 2) -1 1 ( 2) 2) -22( 3) 2) -14( 2) -32( 3) 3) 1 ( 2) 2) 2) 5( 2) 2) -4( 1 ) 1 ) -14( 1 )  y, 21 ( 24( 12( 12( 9( 17( 19( 39( 6( 2( 0( 1 4( 30( 5( 20( 17( 12( 9( 9( 10( 15( 32( 2( -5( -2( 8( 16( 5(  3  2) 2) 2) 1) 1) 2) 2) 3) 2) 3) 2) 2) 2) 1 ) 2) 2) 2) 1 ) 1) 2) 2) 2) 2) 3) 2) 2) 2) 1 )  y  2  3  1 2( 2) -7 ( 2) -6( 2) 4( 2) 0( 1 ) -2( 2) 1 ( 2) 15( 2) 2( 2) 7( 2) -6( 2) 5( 2) 1 5( 1 ) -6( 1 ) -7( 2) 8( 2) 2( 2) -7 ( 2) -1 ( 1 ) -3( 2) -2( 1 ) -1 6( 2) 3( 1 ) 3( 2) 2( 2) -5( 2) -8( 1 ) -1 ( 1 )  103  Figure  14  S t e r e o d i a g r a m of a t y p e A m o l e c u l e of the d i o l ( V I I I ) Di s c u s s i o n The  structure  independent hydrogen  molecules, A bonded  interactions. rotation  consists  The  axis  to  packing  bonding  energy  ( F i g . 14) and each  approximately  neighboring  dimensional  two  and  and  other  asymmetric  per  through  parallel  0(4').  crystallographically  B,  molecules are r e l a t e d  the m i d - p o i n t of 0(4) linking  of  by  a  t o b and  Additional units, 15)  result  network  (Fig.  thus  rigidity  of the s t r u c t u r e .  asymmetric  unit  0(4')-H...0(4) pseudo  two-fold  p a s s i n g through hydrogen  bonds,  in  three-  a  increasing Each  the  asymmetric  104  unit  experiences The  s i x H-bonds.  refinement  of four hydrogens  each with occupancies of  the  H(01)*  oxygen  and  o f 0.5, may  lone  pairs  OO')-H(OI')  respectively  (bond  XXIII-XXVI).  However,  reasonable  t o assume  it  and is  be c o n s t r u e d  and  as the  0(1')),  refinement  of  0.54(11) angles  and  are  chemically  0.63(11)  given  and  A,  in Tables  structurally  t h a t h y d r o g e n atoms do l i e i n t h e v i c i n i t y  Figure Stereo  0(1)  which would e x p l a i n the s h o r t 0 ( 1 ) -  bonds  lengths  (around  packing  15  diagram of the d i o l  (VIII)  105  of  the  refined  through  the  centroids oxygens  interpretations around  physically the  of  situations: occupancy, iii)  i)  group  contact  hydrogen  and  of  hydrogens  result  Consider and  occupancy.  1.1  A  H(01')*  following assume  full  and  parallel  and  and  ( i ) the  distance  otherwise  of  no  space  favorable  0(1')(-x-1,-  1.87(9)  0 ( 1 ' ) ( - x , - y , - z ) may  bonding  was  may  occupied  not. be  approximately  position  same H ( 0 1 ' ) * . . . H ( 0 1 ' ) *  furthermore,  iv)  angle-  of  A  hydrogen  be  inferred;  by  a  inferred,  lone  f o r the  0 ( 1 ' ) ( - x , - y , - z ) - ( l o n e p a i r ) vectors are  s e p a r a t e d by  the H(01)*  full  occupancy,  occupancy  In c a s e  despite  i f i n d e e d t h e H(01') p o s i t i o n this  be  in decreases in the  H(01') assume  to  H(01')*(x,y,z)...H(01')*(-x-1,-y,-z-  H(01)...0(1')  0(1)(x,y,z)-H(01)  was  fully  c o n t a c t of  hydrogen  bonding  1  A.  If  o c c u p i e d , as 1.1  A  instead  of  i n case ( i v ) ,  would  occur  and  c o u l d t a k e p l a c e between  0(1)  0(1'). Case  (ii)  H(01)(x,y,z) by  can  H(01') assume f u l l  in a  lines  Alternative  of  geometry between 0 ( 1 ' ) ( x , y , z ) and  then  and  and  assume f u l l  of e l e c t r o n s  the  the  i n v o k e what w o u l d a p p e a r  H(01)  between 0 ( l ) ( x , y , z ) and  however,  H(01),  on  From t h e 0 (1 ) (x , y , z ) -H (01 ) . . .0 (1 ' ) (-x , -y ,-z )  159(12)°  pair  0(1')  bonding.  and  distance  and  arrangements  c o n d i t i o n s and  results  bonding  bonding  and  hydrogens  H(01')*  symmetry  y,-z-l).  geometrical  i i ) h y d r o g e n s H(01)  and  density  these adjacent c e n t r o i d s .  hydrogen  hydrogens H(01)*  H(01)*  1)  0(1)  unrealistic  extent  and  of the  oxygens  of e l e c t r o n  a loss  atoms  at  invokes  being only  similarly 1.1  of a h y d r o g e n (x,y,z)  and  drastic  conditions  A from H ( 0 1 ' ) ( - x , - y , - z ) ,  bond between  the  symmetry  (-x-1,-y-1,-z-1).  with  accompanied  related  Assigning  0(1') unit  106  Table Bond l e n g t h s standard Bond  XXIII  (A) w i t h  deviations  Length  estimated  i n parentheses Bond  Length  C(1 )  -C(2)  1 .493(4)  CO ' )  -C(2')  1 .493(4)  CO)  -C(8a)  1 .539(4)  CO ' )  -C(8a')  1 .529(4)  CO)  -0(1 )  1 .426(4)  CO ' )  -0(1')  1 .428(4)  C(2)  -C(3)  1 .309(4)  C(2' )  -C(3')  1 .316(4)  C(3)  -C(4)  1 .485(4)  C(3' )  -C(4')  1 .491(4)  C(4)  -C(4a)  1 .519(4)  C(4' )  -C(4a')  1 .513(4)  C(4)  -0(4)  1 .435(3)  C(4' )  -0(4'.)  1 .439(3)  C(4a)  -C(5)  1 .514(4)  C(4a') -C(5')  1 .515(4)  C(4a)  -C(8a)  1 .525(4)  C(4a') -C(8a')  1 .536(4)  C(5)  -C(6)  1 .513(4)  C(5' )  -C(6')  1 .507(4)  C(6)  -C(61)  1 .513(5)  C(6' )  -C(61')  1 .504(4)  C(6)  -C(7)  1 .324(4)  C(6' )  -C(7')  1 .323(4)  C(7)  -C(71)  1 .508(5)  C(7' )  -C(71')  1 .513(5)  C(7)  -C(8)  1 .508(4)  C(7' )  -C(8')  1 .504(4)  C(8)  -C(8a)  1 .523(4)  C(8' )  -C(8a')  1 .520(4)  107  Table Bond a n g l e s standard Bonds  XXIV  (deg) w i t h  deviations  estimated  i n parentheses Angle  Bonds  Angle  C(2)  -CO )  -C(8a)  112 .4(3)  C(2' )  -CO ' )  -C(8a)  1 12 .7(3)  C(2)  -CO)  -0(1)  109 .6(3)  C(2' )  -CO  ' )  -0(1')  1 07.7(3)  C(8a)  -CO )  -0(1 )  1 12 .3(3)  C(8a') -CO ' )  -0(1')  1 15 .1(2)  CO )  -C(2)  -C(3)  124 .3(4)  CO')  -C(2')  -C(3')  123 .6(3)  C(2)  -C(3)  -C(4)  122 .9(3)  C(2' )  -C(3')  -C(4')  123 .5(3)  C(3)  -C(4)  -C(4a)  1 1 1.4(3)  C(3' )  -C(4')  -C(4a)  1 1 1.8(3)  C(3)  -C(4)  -0(4)  107 .3(3)  C(3' )  -C(4')  -0(4')  1 1 1.5(3)  C(4a)  -C(4)  -0(4)  1 1 4.4(2)  C(4a') -C(4')  -0(4')  110 .2(2)  C(4)  -C(4a)  -C(5)  1 14 .4(3)  C(4' )  -C(4a') -C(5')  1 14 .2(3)  C(4)  -C(4a)  -C(8a)  108 .6(2)  C(4' )  -C(4a' ) -C(8a)  108 .8(2)  C(5)  -C(4a)  -C(8a)  1 1 1.0(2)  C(5' )  -C(4a' ) -C(8a)  110 .7(2)  C(4a)  -C(5)  -C(6)  1 14 .2(3)  C(4a') -C(5')  -C(6')  C(5)  -C(6)  -C(61)  113 .2(4)  C(5' )  -C(6')  - C ( 6 1 ' ) 1 1.7(3) 3  C(5)  -C(6)  -C(7)  1 22.4(3)  C(5' )  -C(6')  - C ( 7 ' ) 122 .5(3)  C(61 )  -C(6)  -C(7)  1 24.5(4)  C(61') -C(6' )  - C ( 7 ' ) 123 .8(3)  C(6)  -C(7)  -C(71)  124 .3(4)  C(6' )  -C(7')  - C ( 7 1 ' ) 1 2 4 .0(4)  C(6)  -C(7)  -C(8)  1 22.4(3)  C(6' )  -C(7' )  -C(8')  122 .3(3)  C(71)  -C(7)  -C(8)  1 13 .3(4)  C(71' ) -C(7' )  -C(8')  113 .6(4)  C(7)  -C(8)  -C(8a)  1 14 .0(3)  C(7' )  -C(8')  - C ( 8 a ' ) 1 1 4 .5(3)  CO )  -C(8a)  -C(4a)  1 13 .6(3)  CO')  - C ( 8 a ' ) - C ( 4 a ' ) 1 1 3 .4(2)  CO)  -C(8a)  -C(8)  1 12 .7(3)  CO  ' ) -C(8a' ) -C(8')  1 13 .3(3)  C(4a)  -C(8a)  -C(8)  110 .3(3)  C(4a') -C(8a') -C(8')  109 .5(3)  1 1 4.0(3)  108  Table  XXV ©  Bond  lengths involving  estimated Bond  h y d r o g e n atoms  standard deviations  Length  (A) w i t h  in parentheses  Bond  Length  C(1 )  -H(1)  1 .02(3)  CO ' )  -HO  ' )  C(2)  -H(2)  0. 9 3 ( 3 )  C(2' )  -H(2')  0 .97(3)  C(3)  -H(3)  0. 9 4 ( 3 )  C(3' )  -H(3')  0 .96(3)  C(4)  -H(4)  0. 96(2)  C(4' )  -H(4')  1 .01(3)  C(4a)  -H(4a)  0. 9 6 ( 2 )  C ( 4 a ' ) -H(4a")  1 .00(2)  C(5)  -H1(5)  0. 9 9 ( 3 )  C(5' )  -H1(5')  0 .92(3)  C(5)  -H2(5)  1 .00(3)  C(5' )  -H2(5')  1 .02(2)  C(61 )  -HI(61)  0. 93(6)  C(61') -HI(61')  0 .91(4)  C(61 )  -H2(61)  0. 9 2 ( 5 )  C(61')  -H2(61')  0 .96(4)  C(61 )  -H3(61)  0. 9 5 ( 5 )  C(61')  -H3(61')  0 .90(4)  C(71 )  -H1(71)  0. 91 (4)  C ( 7 1 ' ) -H1(71 * )  0 .93(4)  C(71 )  -H2(71 )  0. 9 4 ( 4 )  C(71')  -H2(71' )  0 .85(5)  C(71 )  -H3(71 )  1 .0 2 ( 4 )  C(71')  -H3(71 ' )  0 .98(5)  C(8)  -H1(8)  0. 9 7 ( 3 )  C(8' )  -H1 (8' )  1 .03(3)  C(8)  -H2(8)  0. 96(3)  C(8' )  -H2(8' )  1 .02(3)  C(8a)  -H(8a)  0. 9 3 ( 3 )  C(8a') -H(8a' )  1 .03(3)  0( 1 )  -H(01)  0. 9 3 ( 9 )  O(T)  -H(01')  0 .63(11)  0(1")  -H(01)*  0. 54(11)  0(1 ' )  -H(01')*  0 .8600)  0(4)  -H(04)  0. 90(3)  0(4')  -H(04')  0 .94(4)  0 .96(3)  109  Table Bond a n g l e s estimated  Bonds  -c( 1) C(2) C ( 8 a ) -c( 1) 0(1) -c( 1) C(1 ) -c( 2) C(3) -c( 2) C(2) -c( 3) C(4) -c( 3) C(3) -c( 4) C ( 4 a ) -c( 4) 0(4) -C( 4) C(4) -c( 4a) -C( 4a) C(5) C ( 8 a ) -C( 4a) C ( 4 a ) -c( 5) C ( 4 a ) -C( 5) C(6) -c< 5) C(6) -c< 5) H1 (5) -CI 5) -CI 61 ) C(6) C(6) -c< 61 ) C(6) -c< 61 ) H1(61 ) -c 61 ) H1(61 ) -c 61 ) H2(61) -c [61 ) C(7) -c [71 ) C(7) -c [71 ) C(7) -c [71 ) H1(71 ) -c [71 ) H1 (71 ) -c (71 ) H2(71 ) -c (71 ) C(7) -c (8) C(7) -c (8) C ( 8 a ) -c (8) C ( 8 a ) -c (8) H1 (8) -c (8) C(1 ) -c (8a) C ( 4 a ) -c (8a) C(8) -c (8a) C(1) -o(1 ) C(1 ) -0 (1) H(01 ) -o(1) C(4) -o(4)  involving standard  Angle  -H(1 ) 109.6( 14) -H(1) 107.9( 14) 104.7( 14) -H(1 ) -H(2) 116(2) -H(2) 120(2) 124(2) -H(3) 113(2) -H(3) -H(4) 112.5( 14) 104.5( 15) -H(4) -H(4) 106.8( 14) -H(4a) 107.6( 14) -H(4a) 108.3( 14) -H(4a) 106.6( 14) -H1(5) 112(2) -H2(5) 112.6( 14) -H1(5) 108(2) -H2(5) 107.3( 15) -H2(5) 102(2) -H1(6) 112(3) -H2(6) 102(3) -H3(6) 113(3) -H2(6) 113(4) -H3(6) 108(4) -H3(6) 108(4) -H1(7) 109(2) -H2(7) 1 1 9 ( 2 ) -H3(7) 108(2) -H2(7) 108(3) -H3(7) 109(4) -H3(7) 105(3) -H1(8) 109(2) -H2(8) 110(2) -H1(8) 109(2) -H2(8) 108(2) -H2(8) 107(3) -H(8a) 102.6( 15) -H(8a) 107.3{ 15) -H(8a) 109.8( 15) -H(01) 119(3) -H(01) * 120(12) -H(01) *113(13) -H(04] 110(2)  XXVI hydrogen deviations  atoms  (deg) w i t h  i n parentheses  Bonds  Angle  110.3( 15) C ( 2 ' ) - C ( 1 ' ) -H(1') 109.3( 14) C ( 8 a ' )-cd' )-H(1') 101.2( 15) 0 ( 1 ' ) - C ( 1 ' ) -H(1') 115(2) C( 1 ' )- C ( 2 ' ) -H(2') 122(2) C ( 3 ' ) - C ( 2 ' ) -H(2') 120(2) C ( 2 ' ) - C ( 3 ' ) -H(3') 116(2) C ( 4 ' ) - C ( 3 ' ) -H(3') 110.9( 14) C ( 3 ' ) - C ( 4 ' ) -H(4') C ( 4 a ' ) - C ( 4 ' ) -H(4') 104.6( 14) 107.6( 14) 0 ( 4 ' ) - C ( 4 ' ) -H(4') C ( 4 ' ) - C ( 4 a ' )-H(4a') 107.9( 13) C ( 5 ' ) - C ( 4 a ' )-H(4a') 108.6( 13) C ( 8 a ' ) - C ( 4 a ' )-H(4a') 106.3( 13) C ( 4 a ' ) - C ( 5 ' ) -H1(5') 110(2) C ( 4 a ' )-C(5') -H2(5') 112.8( 12) C ( 6 ' ) - C ( 5 ' ) -H1(5') 107(2) C ( 6 ' ) - C ( 5 ' ) -H2(5') 107.6( 13) HI ( 5 ' )-C(5') -H2(5') 106(2) C(6* ) - C ( 6 1 ' )-H1(6') 114(2) C ( 6 ' ) - C ( 6 1 ' )-H2(6') 109(2) C ( 6 ' ) - C ( 6 1 ' )-H3(6') 113(3) H1 (61 ')-C(61 ' ) - H 2 ( 6 ' ) 1 0 3 ( 3 ) H1 (61 ')-C(61 ' ) - H 3 ( 6 ' ) 1 1 2 ( 3 ) H2(61 ')"C(61 ' ) - H 3 ( 6 ' ) 1 0 5 ( 4 ) C ( 7 ' ) - C ( 7 1 ' )"H1(7') 115(3) C ( 7 ' ) - C ( 7 1 ' )-H2(7') 114(4) C ( 7 ' ) -C(71* )-H3(7*) 110(3) HI (71 ')-C(71 ' ) - H 2 ( 7 ' ) 1 0 6 ( 4 H1 (71 ')-C(71 ' ) - H 3 ( 7 ' ) 1 0 8 ( 4 H2(71 ')~C(71 ' ) - H 3 ( 7 ' ) 1 0 1 ( 4 C ( 7 ' ) - C ( 8 ' ) -H1(8') 111.6 15) C ( 7 ' ) - C ( 8 ' ) -H2(8') 1 07(2 C ( 8 a ' )-C(8*) -H1(8') 109.9 15) C ( 8 a ' )-C(8') -H2(8') 110(2 H1 (8' )-C(8') -H2(8') 1 03(2 C( 1 ' )- C ( 8 a ' )-H(8a') 105.9 15) C ( 4 a ' ) - C ( 8 a ' )-H(8a' ) 105.1 (15) C ( 8 ' ) - C ( 8 a ' )-H(8a') 109(2 C( 1 ' )- 0 ( 1 ' ) -H(01') 1 19(3 C( 1 ' )- 0 ( 1 ' ) -H(01') * 126(9 H(01 ' ) - 0 ( 1 ' ) -H(01') * 107(1 ) C ( 4 ' ) - 0 ( 4 ' ) -H(04') 106(2  110  occupancies refined  to  H(01)  lone p a i r  and  and  this  pair)(x,y,z)...01'(lone an  H(01')  i s to construe H(01')*  implication  leads to a close  p a i r ) ( - x - 1 , - y , - z - 1 ) c o n t a c t of  as a  01'(lone 1.1  A  -  unstable configuration. The  third  case  does  not  however, t h e number o f h y d r o g e n The takes  most  favorable  into  hydrogens each  and  of the  four  via  bonding  units  bonds  close  a  0(1'),  0(1)  linkage  and  in  contacts, (ii).  to  earlier,  arrangement  fractional  effecting  between  as  alluded  disordered namely  hydrogens,  atomic  i s reduced  interpretation,  consideration  on 0 ( 1 )  entail  of  the  occupancy  for  of the  0(1')  by  asymmetric  0(1)(x,y,z)-  H(01)...0(1')(-x,-y,-z)-H(01')*...0(1')(1+x,y,1+z)H(01')...0(1)(1-x,-y,1-z)-H(01)*. concerning  this  arrangement  each  h y d r o x y l hydrogen  may  convince  result  himself  in physically  are  firstly,  is restricted that  any  unrealistic  H...H  u n i t s a l o n g the a - d i r e c t i o n  type)  is  an 0 ( 1 )  and Table  0(4)...0(4')  occupancy  o f bonds  links  by are  reader  of occupancy  lastly, (.i.e. then a  would  supra)  a link  of  —  between  that  the  0(1)...0(1')  t e r m i n a t i n g at combination  infinite  of  in length  XXVII).  conformation adopted  This linkage of c l o s e H...H l i n k a l o n g a. 5  sequence  and  5  aspects  50% — t h e  provides  atom. However, t h e c h a i n s formed  15 and The  arrangement  f o u r m o l e c u l e s b e g i n n i n g w i t h and  0(1)...0(1') (Fig.  this  the  contacts (vide  asymmetric  involving  that  other degree  that  length  an  important  to exactly  secondly,  chain  such  Three  by  each  molecule  consists  of  a  i s a l s o accomplished i n case ( i ) at the expense c o n t a c t s ; c a s e s ( i i ) and ( i i i ) do n o t a f f o r d any  111  half-chair  cyclohexene  cyclohexen-diol  ring  moiety.  cis-fused  Although  to  the  a r e t h e same f o r b o t h m o l e c u l e s  unit,  differences  4.2°  are observed  half-chair  gross  conformations detailed  a  i n the  molecular asymmetric  are n o t i c e a b l e . D e v i a t i o n s of  i n c o r r e s p o n d i n g (heavy  Table  atom) a n g l e s  up  to  involving  XXVII  Hydrogen bonding  geometries  Distances are i n Angstroms and angles i n degrees. H...0  0-H  0-H...0  0(4')(x,y,z)-H...0(4)(x,y,z)  0.94(4)  1.88(4)  176(3)  0(4)(x,y,z)-H...0(4')(x,1/2-y,1/2+z)  0.90(3)  1.93(3)  169(3)  0(l)(x,y,z)-H...0(l')(-x,-y,-z)  0.93(9)  1.87(9)  158(5)  0(l')(x,y,z)-H...0(l)(-x,-y,-z)  0.63(11)  2.16(12)  159(12)  0(l')(x,y,z)-H*...0(l')(-x-l,-y,-z-l)  0.86(10)  1.89(10)  170(12)  oxygens  in  hydrogen  bonding.  differ  A  angles  conformational The  major  B,  OH  and  may  be a t t r i b u t e d  Bond l e n g t h s and  significantly  torsion  respect  and  between  (Table  other  of  angles  do  not  Examination  of  the  indicates  further  minor  are both a n t i  with  differences. configurations  i n each molecule  t o the bridgehead hydrogens. isomer  bond  molecules.  XXVIII)  to the e f f e c t s  formed  t h e method by w h i c h  by  the r e d u c t i o n  T h i s c o n f i r m s the of t h e  t h e p r e s e n t compound was  1,4-dione prepared.  expected by NaBH,,  112  Despite reaction C(3)  t h e f a v o r a b l e geometry  involving  t h e upper  joining  atoms  similarly shorter  larger  the  than  accepted  on C ( 5 ) ( F i g . 1 4 ) , and t h e  does not p r o c e e d  photochemically (at  of  chromophore.  a  The  normal  suitable  present  found  from  This  may  the formal s p  with  molecular  conformations  conformations  predicted  studied  naphthoquinols  past  studies  C(5),  are also  observed  form  the c i s - f u s e d  bonds  C ( 6 ) , C(7), C(8)) a r e almost  an a n g l e  atoms  Since similar,  the  141° w i t h  to the  and H a i n a u t (Chapters  (38) I-III  i n these  compound. Not  rings  i n the d i o l  p l a n e s — two p l a n e s  of these planes  respect to the (and  and  other  subtends  third  plane  similarly  C(4')-  i n the other molecule).  molecules  structural  similar  p e r p e n d i c u l a r t o each  C(4)-C(4a)-C(8a)-C(8)  C(4a')-C(8a')-C(8')  are  (C(1), C(2), C ( 3 ) , C(4)  a n g l e of 96°) and each  of a p p r o x i m a t e l y  containing  s t a t e s . The  2  trends noted  three approximate  of the double  (with a d i h e d r a l  slight  centers  i n the c u r r e n t d i o l  the other naphthoquinols, so j o i n e d ,  are  by B u c o u r t  r e f e r e n c e 3 2 ) . Many o f t h e s t r u c t u r a l  by e a c h  and s p  to  Tetrahydronaphthoquin-4c-ols  and  defined  3  due  are a l l  rationale.  i n previously  molecules,  be  Bonds  a n d C ( 5 ) , and  e n d o c y c l i c bond a n g l e s a t t h e s e  with this  energy  values.  deviations  Comparison  unlike  abstraction  C ( 1 ) , C ( 2 ) , C ( 3 ) , C ( 4 ) , C(4a)  than  consistent  least  lack  hydrogen  C ( D , C ( 2 ' ) , C ( 3 ' ) , C ( 4 ' ) , C(4a') and C(5')  hybridization  and  hydrogen  atom, s u c h a r e a c t i o n  >350 nm) due t o  for a  in  the  asymmetric  unit  are  f e a t u r e s and v a l u e s f o r B m o l e c u l e s  very  will  be  T a b l e XXVIII Torsion standard  angles  (deg) w i t h  deviations  i n parentheses  Atoms  c( 8a) 0( 1) c( 2) c( 2) o( 1) o( 1) c( 1) c( 2) c( 2) c( 3) c<3) 0( 4) 0( 4) c( 4) c( 8a) C( 4) C( 4) C( 5) c<5) c<4a) C( 4a) CI 5) CI 5) c 61 ) c 61) c 6) c [71 ) c (7) c [7) c [8a' ) 0 (1 ' ) c (2' ) c (2* ) 0 (1 ' ) 0 (1 ' ) c (1 ' ) c (2' ) c (2' ) c (3' ) c (3' ) 0 (4' ) 0 (4' ) c (4' ) c (8a' ) c (4* ) c (4' ) t  -c( 1) -c( 1) -c( 1) -c( 1) -c( 1) -c( 1) -c( 2) -c( 3) -c( 3) -c( 4) -c( 4) -c( 4) -c( 4) -c( 4a) -c( 4a) -c( 4a) -c( 4a)  estimated  Value  -c( 2) -c( 2) -c( 8a) -c( 8a)  -C( 8a) -c( 8a) -c( 3) -c( 4) -c( 4) -c( 4a) -CI 4a) -C( 4a) -C( 4a) -CI 5) -c< 5) -CI 8a) -CI 8a) -CI 4a) -CI 8a) -CI 8a) -C( 4a) -CI 5) -c 6) -CI 5) -c 6) 6) -c< -c '7) 6) -c< -c [7) -CI 6) -c (7) ,6) -c -c (7) [7) -c -c (8) [7) -c -c (8) [8) -c -c (8a) (8) -c -c (8a) -c ( T ) -c (2' ) -c [ 1 ' ) -c (2' ) -c ( 1 ' ) -c (8a' ) -c ( 1 ' ) -c (8a' ) -c ( 1 ' ) -c (8a' ) -c ( 1 ' ) -c (8a' ) -c (2' ) -c (3' ) -c (3' ) -c (4' ) -c (3' ) -c (4' ) -c (4' ) -c (4a' ) -c (4' ) -c (4a' ) -c (4' ) -c (4a' ) -c (4' ) -c (4a' ) -c (4a' ) -c (5' ) -c (4a* ) -c (5' ) -c (4a' ) -c (8a* ) -c (4a' ) -c (8a' )  -c( 3) -c( 3) -c( 4a) -c( 8) -c( 4a) -c( 8) -c( 4) -c( 4a)  -3.1 ( 4) 122.5( 4) 32. 1 (4) 158.5( 3) -92.0( 3) 34.4( 4) 0.4( 5) -26.5( 4) -152.41 3) -0( 4) -C( 5) -71.81 4) 52.81 4) -c( 8a) 50.01 4) -c( 5) 174.71 3) -CI 8a) -CI 6) 166.41 3) 43.01 4) -CI 6) -57.21 3) -CI 1 ) 175. 1 3) -CI 8) -CI 1) 69.4 ,3) -58.2 (4) -CI 8) -c 61 ) 166.4 (3) -c ,7) -14.2 (4) -c (71 ) -179.3 (3) 0.2 (5) -c (8) (71 ) 0.0 (5) -c 179.5 (4) (8) -c -16.0 (5) (8a) -c 1 63.5 (8a) (3) -c -83.7 (4) (1) -c (4a) 44.5 (4) -c (3' ) -7.6 (4) -c 120.5 (4) (3' ) -c 35.7 (3) (4a' ) -c (8' ) 161.3 (3) -c (4a' -88.3 (4) ) -c 37.3 (8' ) (4) -c 2.3 (5) -c (4' ) -c (4a' ) -25.0 (4) -o(4' ) -148.8 (3) -c (5' ) -73.7 (3) -c (8a' ) 50.6 (3) -c (5' ) 50.9 (3) -c (8a' ) 175. 1 (2) -c (6' ) 167. 1 (3) 43.9 (3) -c (6' ) -57.8 (3) (1 ' ) -c (8' ) 174.6 (3) -c  11 4  T a b l e XXVIII C(5' ) C(5' ) C(4a') C(4a') C(5' ) C(5' ) C(61' ) C(61') C(6' ) C(71') C(7' ) C(7' )  -C(4a') -C(4a') -C(5') -C(5') -C(6') -C(6') -C(6') -C(6') -C(7') -C(7') -C(8') -C(8')  -C(1 ) C(8a) -C(1 ) 0(1) -C(1) H(1 ) -C(1 ) H(1 ) C(2) -CO) -CO ) 0(1 ) H(1) -CO) H(1 ) -CO ) -CO ) H(1 ) C(2) -CO ) C(2) -CO ) -CO) C(8a) C(8aY - - C O ) H(1 ) -co) H(1 ) -CO) -C(2) C(1 ) -C(2) H(2) -C(2) H(2) -C(3) C(2) -C(3) H(3) -C(3) H(3) -C(3) H(3) -C(4) C(3) -C(4) 0(4) -C(4) H(4) -C(4) H(4) -C(4) H(4) -C(4) C(3) -C(4) C(4a) -C(4) H(4) -C(4a) C(4) -C(4a) C(4) -C(4a) C(8a) -C(4a) C(8a) -C(4a) H(4a) -C(4a) H(4a) -C(4a) H(4a) -C(4a) C(4) -C(4a) C(5)  (continued)  -C(8a') -C(8a') -C(6') -C(6') -C(7') -C(7') -C(7') -C(7') -C(8') -C(8') -C(8a') -C(8a')  -c(D  -C(2) -C(2) -C(2) -C(2) -C(8a) -C(8a) -C(8a) -C(8a) -C(8a) -0(1) -0(1 ) -0(1) -0(1 ) -0(1 ) -0(1 ) -C(3) -C(3) -C(3) -C(4) -C(4) -C(4) -C(4) -C(4a) -C(4a) -C(4a) -C(4a) -C(4a) -0(4) -0(4) -0(4) -C(5) -C(5) -C(5) -C(5) -C(5) -C(5) -C(5) -C(8a) -C(8a)  -179(2) -H(2) -53(2) -H(2) -123.0(15) -C(3) 61(3) -H(2) -83(2) -H(8a) 152.5(15) -H(8a) 153.2(15) -C(4a) -80(2) -C(8) 38(2) -H(8a) 94(4) -H(01) -H(01)* -115(15) -H(01) - 1 4 0 ( 4 ) 10(15) -H(01)* -23(4) -H(01) - H ( 0 1 ) * 127(15) -179(2) -H(3) 176(2) -C(4) -3(3) -H(3) 91(2) -H(4) 153(2) -C(4a) 27(2) -0(4) -90(2) -H(4) 167.9(15) -H(4a) -70.3(15) -H(4a) 166.4(14) -C(5) -68.9(15) -C(8a) 46(2) -H(4a) 173(2) -H(04) 49(2) -H(04) -66(3) -H(04) -70(2) -H1(5) 44(2) -H2(5) 166(2) -H1(5) -80(2) -H2(5) -73.7(15) -C(6) 50(2) -H1(5) 164(2) -H2(5) 56(2) -H(8a) 1 7 8(2) -H(8a)  -C(8') -C(61') -C(7') -C(71') -C(8*) -C(7T ) -C(8*) -C(8a') -C(8a') -C(T) -C(4a')  68. 5 ( 3 ) -59. 1(3) 167. 6 ( 3 ) -13. 2 ( 4 ) 177. 7 ( 4 ) -2. 6 ( 5 ) -3. 1(5) 176. 5 ( 3 ) -13. 9 ( 5 ) 165. 8 ( 3 ) -83. 7 ( 4 ) 44. 0 ( 4 )  1 15  T a b l e XXVIII H(4a)  H(4a) H(4a)  H1 (5) H1 (5) H2(5) H2(5) C(5) C(5) C(5) C(7) C(7) C(7) C(6) C(6) C(6) C(8) C(8) C(8) C(6) C(6) C(71 ) C(71 ) C(7) H1 (8) H1 (8) H1 (8) H2(8) H2(8) H2(8) C(8a') 0(1 ' ) H(1 ' ) H(1 ' )  C(2' ) 0(1 ' ) H(1 ' ) H(1 ' ) H(1 ' ) C(2' ) C(2' ) C(8a') C(8a*)  H( r )  H( 1 ' )  c( r )  H(2' H(2' C(2' H(3' H(3' H(3'  ) ) ) ) ) )  -c( 4a) -c( 4a) -c( 4a) -c( 5) -c( 5) -c( 5) -c( 5) -c< 6)  -c( -c( -c( -c( -c( -c( -c( -c( -c( -c(  (continued)  8a) 8a) 8a) 6) 6) 6) 6) 61 ) 61 ) -C( 6) -C( 6) 61 ) -CI 61 ) -C( 6) -CI 6) -c( 61 ) -CI 6) -c( 61 ) -CI 7) -C( 71 ) -C! 7) -CI 71 ) -CI 7) -CI 71 ) -CI 7) -CI 71 ) -CI 7) -c< 71 ) -CI 7) -c< 71 ) -CI 7) -CI 8) -CI 7) -CI 8) -c<,7) -c< 8) -CI 8) -c ,7) 8) -CI 8a) -c -CI 8a) -c [ 8 ) (8) -CI 8a) -c [8) -CI 8a) -c [8) -CI 8a) -c (8) -CI ,8a) -c (8) -CI ,8a) -c (1 ' ) -c -c [2' ) ( 1 ' ) -c -c [2' ) i 1') -c -c (2' ) 11') -c -c [2* ) -c ( r ) -c (8a' ) ( 1 ) -c -c (8a' ) ( 1 ' ) -c -c (8a' ) ( 1 ' ) -c -c (8a' ) -c ( 1 ' ) -c (8a' ) -c ( 1 ' ) -o (1 ' ) -c ( 1 ' ) -o (1 ' ) -c ( 1 ' ) -o (1 ' ) -c 0 ' ) -o (1 ' ) -c ( i ' ) -o 1 ' ) -c ( i ' ) -o (1 ' ) -c (2' ) -c (3' ) -c (2' ) -c (3' ) -c (2' ) -c (3' ) -c (3' ) -c (4' ) -c (3' ) -c (4' ) -c (3' ) -c (4' ) -c (3' ) -c (4' ) 1  -c(D  -172.9(15) -C(8) 59.5(15) -60(2) -H(8a) 41 (2) -C(61) -C(7) -140(2) -C(61) -68.1(14) -C(7) 111.4(14) -H1(61 ) - 6 6 ( 4 ) -H2(61 ) 173(3) -H3(61) 57(3) -H1(61) 1 14(4) -H2(61 ) -7(3) -H3(61 ) - 1 2 3 ( 3 ) -H1(71 ) 98(3) -H2(71 ) - 2 5 ( 3 ) -H3(71 ) - 1 4 4 ( 3 ) -H1(71 ) - 8 1 ( 3 ) -H2(71) 155(3) -H3(71 ) 36(3) 106(2) -H1(8) -H2(8) - 1 3 7 ( 2 ) -H1(8) -74(2) 42(2) -H2(8) 163(2) -H(8a) 154(2) -CO) -78(2) -C(4a) -H(8a) 40(3) 38(2) -CO) 167(2) -C(4a) -75(2) -H(8a) -H(2*) 176(2) -H(2') -56(2) -C(3') - 1 3 0 . 0 0 5 ) -H(2') 54(2) -H(8a') - 7 9 ( 2 ) -H(8a') 157(2) - C ( 4 a ' ) 159(2) -76(2) -C(8') -H(8a') 44(2) -H(01') -57(1 1 ) -H(01') * 158(11 ) -H(01') 68(1 1 ) -H(01') * - 7 4 d 1 ) -H(01') - 1 7 3 ( 1 1 ) -H(01') * 4 3 ( 1 1 ) -H(3') - 1 7 3 ( 2 ) -C(4*) 178(2) -H(3') 3(3) -H(4') 91.3(15) - C ( 4 a ' ) 150(2) -0(4') 26(2) -H(4') -93(3)  1 16  T a b l e XXVIII  (continued)  C(3' ) -c( 4' ) - C ( 4 a ' ) 0(4' ) -c( 4' ) - C ( 4 a ' ) H(4' ) -c( 4' ) - C ( 4 a ' ) H(4' ) -c( 4' ) - C ( 4 a ' ) H(4' ) -c( 4' ) - C ( 4 a ' ) C(3' ) -c( 4' ) - 0 ( 4 ' ) C ( 4 a ' ) -c( 4' ) -0(4') H(4' ) -c( 4' ) - 0 ( 4 ' ) C(4' ) -c( 4a' ) - C ( 5 ' ) C(4' ) -c( 4a' ] - C ( 5 ' ) C ( 8 a ' ) -c( 4a' ) - C ( 5 ' ) C ( 8 a ' ) -c< 4a' ] - C ( 5 ' ) -C(5') H ( 4 a ' ) -c( 4a' H ( 4 a ' ) -c< 4a' ' - C ( 5 ' ) H ( 4 a ' ) -c< 4a' > ~ C ( 5 ' ) C(4' ) -C( 4a' 1 - C ( 8 a ' ) C(5' ) -c< 4a' ) - C ( 8 a ' ) H ( 4 a ' ) -CI 4a' ) - C ( 8 a ' ) H ( 4 a ' ) -c< 4a' } - C ( 8 a ' ) H ( 4 a ' ) -c< 4a' ) - C ( 8 a ' ) -C(6') H1 ( 5 ' ) -c< 5' ) H1 (5' ) -c 5' ) -C(6') H2(5' ) -c ,5' ) - C ( 6 ' ) -C(6' ) H2(5' ) -c [5' ) -C(61') C(5' ) (6* ) -c -C(61' ) C(5' ) (6' ) -c -C(61' ) (6' ) C(5* ) -c C(7' ) -C(61' ) (6' ) -c C(7' ) (6' ) -C(61') -c -C(61') (6' ) c(7'; -c (7' ) -C(71' ) C(6' ] -c (7' ) -C(71' ) C(6' ] -c -C(71') (7' ) C(6' -c -C(71' ) (7' ) C(8' -c (7' ) -C(71' ) C(8' -c (7' ) -C(71' ) C(8' -c (7' ) C(8') C(6' -c (7' ) C(6' C (8' ) -c C(71 ) -c (7' ) -C(8' ) C(71 ) -c (7' ) -C(8' ) -C(8a' ) C(7' (8' ) -c -C(8a') HI (8 ) -c (8' ) -C(8a') H1 (8 ) -c (8' ) -C(8a') H1 (8 ) -c (8' ) -C(8a') H2(8 ) -c (8' ) -C(8a') H2(8 ) -c (8' ) -C(8a') H2(8 ) -c (8' ) 1  165.4( 13) -H(4a') -70.0( 13) -H(4a') 166.3( 14) -C(5') -69.5( 14) -C(8a') 45(2) -H(4a') -54(2) -H(04') -H(04') - 1 7 9 ( 2 ) 68(3) -H(04') -73(2) -H1(5') 44.0( 14) -H2(5') 164(2) -H1(5') -79. 1( 14) -H2(5') -72.4( 14) -C(6') 47(2) -H1(5') 165(2) -H2(5') 57(2) -H(8a') -H(8a') -176(2) - C O ' ) - 173.7( 13) 58.7( 14) -C(8') -58(2) -H(8a') 46(2) -C(61') -C(7') -134(2) -66.51 13) -C(61') -C(7') 112.71 13) -H1(61'] 154(2) -H2(61'] 40(3) -H3(61'] -76(3] - H I ( 6 1 • ; -25(3] - H 2 ( 6 1 ' 1-140(3] -H3(61' ) 105(3' -H1(71' I - 1 1 ( 3 -H2(71' 1-134(4 -H3(71' > 112(3 -H1(71' ) 170(3 -H2(71' ) 46(4 -H3(71' ) - 6 8 ( 3 112(2 -H1(8' ) -H2(8') -136(2 -68(2 -H1(8' ) 43(2 -H2(8' ) -H(8a' ) 158.5 : 1 5 ) 150(2 -CO ' ) -83(2 -C(4a') 32(2 -H(8a') 37(2 -CO ' ) 164(2 -C(4a') -H(8a') -81(2 1  1 17  recorded the A  in brackets  twist,  which  C(8a)-H(8a) t o r s i o n  C(8a)-C(4a)-C(5) latter  series  than  and  i n any  appear  carbons  than  angles  by  angle are  of  slightly  other  larger  to s t e r i c and  d e r Waals r a d i i  more  C(8a),  C(8)  exerted  by  angle  and  C(2)  C(7)  resulting  is  in a  longer  than  tetrahydro-1-naphthoquin-4c-ol reference  32).  The  i n the p r e s e n t internal  substitution  favored  pressure and  between  force  the  position, exerted  by  o p p o s e d by, t h a t  increase  in  the  twist  structure  angle  in  trends observed and  that  follow  [ 1 . 3 2 3 ( 4 ) A]  i s not  similarly  substituted  (Chapter  the  diol as  III  accompanying  C(5)-C(6)  than expected  in on with  and  the  trend  bonds  unsubstituted  b a s i s of  methyl  and  increased  C(?)-C(8)  the  and  C(6)  the p r e v i o u s l y noted  enlargement  i n the n a p h t h o q u i n o l s  C(7).  in  derivatives  a t t h e s e c e n t e r s . The  longer  C(6)  1.324(4) A  i n c r e a s e d e n d o c y c l i c a n g l e s around  tetrahydronaphthoquinol,  at  to  than,  slight  C ( 6 ) = C ( 7 ) bond l e n g t h o f  significantly  are  tending  A)  (less  C(1)-C(8a)-C(4a)-C(5). The  of  3.22  The  greater  contacts  C of  sterically  crowding.  present  studied  Short  f o r 0 and  into  minimizes  the  0(1)  exocyclic  a  in  The  i n t e r a c t i o n s between  C(7).  sum  C(1)-  the  four carbons  which  described  in  in these  i_.e. one  H(4a)-C(4a)-  [68.5(3)°].  4c-naphthoquinol  t o be due  oxygen  the  69.4(3)°  t h e s e atoms r e s u l t  C(7)  for  t h e more a c c u r a t e l y d e t e r m i n e d  C ( 2 ) , C ( 8 ) , C(8a)  t h e van  d e f i n e d as  (-60(3)°) [-58(2)°] i s a l s o  torsion  torsion  structures  is strictly  angle  a good a p p r o x i m a t i o n  and  the c o r r e s p o n d i n g q u a n t i t i e s  molecules. Ring  to  following  previous  substituents  118  Asymmetric The  obvious  Unit Size  difference  tetrahydronaphthoquin-4a-ols hydroxyl  group  The  determining  the  adjacent  hydrogen  size  of  the  associate  units  via  in  the in  about  for this  structure.  example,  the  presence  i s probably a factor  asymmetric  other  packing  0.67  bonding  pairs  efficient  is  other  i n p l a c e of a c a r b o n y l oxygen bonded t o C ( 1 ) . for  studied  ( V I I I ) and  a  mode  to  between t h e d i o l  of  additional  molecules  - S t r u c t u r e Comparison  unit  by  permitting  w h i l e a l l o w i n g H-bonding  hydroxyl  the c r y s t a l —  group,  thus  situations  are  i n hydroxyimino(N,N'-dimethyl)malonamide  to  enabling  the p a c k i n g c o e f f i c i e n t  Similar  in  found,  (41) and  is for  (±)-  cis-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz(a)anthracene (42)  where m o l e c u l a r a s s o c i a t i o n  to account unit.  Conversely,  multiple is  f o r the presence  in  (such as  involved,  in  growth  size  electronic  unit.  Although  bonding  interaction  necessarily molecules point,  the in  the  only  and  many  exist  but  unit.  the  and  steric  asymmetric  one  many  effects,  make i t d i f f i c u l t  undoubtedly present  reason  for  the  unit.  t o compare  conformations  As  two  molecule  interrelated the  etc.)  case,  is  not  number  of  whose  are e s s e n t i a l l y  the  the  illustration  compounds  involved  to  it  increased an  type  to p r e d i c t  contributes  the  seems  examples where  only  The  in  asymmetric  i t is interesting structures  shows  bonding  shape o f t h e m o l e c u l e ,  of the c r y s t a l  hydrogen  in  asymmetric  of t h e a s y m m e t r i c  associative  ring  the  hydrogen  molecules  bonding  the geometric  of atoms the  o f two  literature  modes o f h y d r o g e n  accomodated  factors  the  through  the  of  this  parent same as  119  the  diol,  (43) and ol -  namely  5a,8o-dimethyl-4ap,5,8,8ap-tetrahydro-1-naphthoquin-4a-  (44). Both the former  =  8.  In  structures c r y s t a l l i z e  i n P2,/c sharp  naphthoquinone and  cis-4a,5,8,8a-tetrahydro-1,4-naphthoquinone  therefore  w i t h Z = 8 and  contrast  molecule an  l a c k s any  alternative  expected  number o f m o l e c u l e s  sought,  but  i s beyond  dimethylnaphthoquinol, hydrogen and  bond, does  with  the l a t t e r  the  facility  the  on  B molecules  with  structure,  asymmetric  unit  bonding than  must  d i s c u s s i o n . The  symmetry  i n the asymmetric  be  5a,8a-  its ability  related  Z the  f o r the g r e a t e r  t h e o t h e r hand, d e s p i t e between  groups  f o r hydrogen  explanation  in  i n P2,/n  present  the scope of t h i s  so o n l y  n o t between A and  i n m o n o c l i n i c space  to  molecules  unit.  120  PART II  CHAPTER V  TWISTANE DERIVATIVE (TWISTENONE)  1 22  Introduction The recently that  solution  reinvestigated  a slight  marked  effect  externally an  on which  Scheffer  (I) (Figure  and W a l s h  i n t h e method  16)  involved  been  ( 3 5 ) . I t was  of  photolysis  found had  formed.  i r r a d i a t i n g i n t e r n a l l y rather  done  (25) gave r i s e  photoproduct  investigation,  has  Scheffer  p r o d u c t , though  to  ( I I ) and  at the expense of e t a l . (24,25) had  it  may  have  been  The than  (III)  ( I I ) . In not  a  the  observed  present  in  amounts. A  crystallographic  study  photoproduct  i n an a t t e m p t  It  that  was  hoped  derivation and  of  r a t i o s of the p h o t o p r o d u c t s  as p r e v i o u s l y  additional  trace  the  additional  original this  1  by  modification  modification,  and  photochemistry  NMR  of  a  structural  mechanism  spectrum  structure  shown t o be  and  analysis  c a r r i e d out  to elucidate  f o r the  on  t h i s unknown  i t s molecular  solution  t e c h n i q u e s were a v a i l a b l e ,  interpretable crystal  the  was  would  reaction.  neither  f o r t h i s reason were e x p l o i t e d .  structure.  aid  Although  afforded  a  in  infrared readily  t h e methods o f The  the  structure "is  X-ray now  (IV) . 2  Internal i r r a d i a t i o n i s p e r f o r m e d by i n s e r t i n g t h e lamp i n t o the h o l l o w of the immersion well reactor vessel; external irradiation i s c a r r i e d o u t by p l a c i n g t h e lamp by t h e e x t e r i o r w a l l of t h e r e a c t o r v e s s e l . 1  2  IUPAC name: t r i c y c l o [ 4 . 4 . 0 . 0 3  8  ]dec-9-ene-2,5-dione.  1 23  Scheffer  Scheffer,  and W a l s h  Bhandari, Gayler  (1981) ( 3 5 ) .  and W o s t r a d o w s k i  Figure  (1974) ( 2 4 ) .  16  R e a c t i o n schemes i l l u s t r a t i n g t h e d i f f e r e n t r e s u l t s f r o m i n t e r n a l ( t o p ) and e x t e r n a l ( b o t t o m ) i r r a d i a t i o n .  124  Experimental Thin  crystals  hexane/acetone of  r a n g e from (0.80  graphite  1  x  and  Intensity  and  throughout by  data:  scan  space  D  =  C  1 0  H  1 0  0 , 2  g r o u p P2,/n  , from  Intensities but  standards'  not  unique  S + 2B  +  averaged  3  were  scan  (2.00  i n the  angle  a theta  given  aperture  + t a n e ) mm); the  controls Accurate  f i t t o the  crystal  following  radiation;  horizontal  collection.  MW  =  by  width an  o-  range  1.34-10.06  were  monitored  cell  parameters  observed  sin©  for  the  162.19, m o n o c l i n i c p =  values  a b s e n c e s and  reflections,  930  background.  and  decay  of  (T3T), 5.85%;  3  the  A,  polarization the  three  (?62),  4.15%  of a d e c a y c o r r e c t i o n . Of  (50.8%) had  (0.04(S - B ) ) , S b e i n g 2  Lorentz  The  1.93%;  A ,  structure analysis.  for  absorption.  application  6.381(2),  X = 0.71073  1  (253)  a =  1 0 6 . 2 4 ( 1 ) ° , V = 799.5(3)  p(MoKo) = 0.870 cm" ,  corrected  intensities-  necessitated  1828  omega  the  of a  reflections.  g cm" ,  effects  MoKo  orientation  squares  1.347  c  under  3  speeds  1 9 . 4 5 4 ( 2 ) , c = 6.708(2) A,  Z = 4,  mm  a variable  data  least  centered  Crystal  an  evaporation  were m e a s u r e d w i t h a  0.3  degrees;  type;  were o b t a i n e d 21  data  slow  monochromatized  t o 27.5  scan  regularly  —  0.3  by  a c c o r d i n g to the e x p r e s s i o n  min" .  b =  x  + 0.35tan©) degrees;  2(4/6)©  for  0.2  0.0  (variation  deg  obtained  s o l u t i o n . X-ray  dimensions  conditions:  were  scan  I > 3«(I) count  and  the  where * ( l ) = 2  B the  time-  125  Solution A  cursory  types hOl, h  1  +  reflections suggested toward with  analysis =  odd  and  OkO,  as  intensity  distribution  employing  normalized  structure  made up o f e i g h t chosen  in  phases  3296  The  statistics  with  o f 0; one r e f l e c t i o n  other general  phases  was  reflections, and  determined  by  prominent  0 and ir, among t h e f o u r  general  reflections  resulted  o u t s t a n d i n g phase  Fourier  which  calculated  with t h i s  the t o p twelve peaks  0.  i n the  of t h e two p h a s e s ,  synthesis,  of  the  permutations  one  phases  given  and  in  assigned  248  I -listing 2  initially  by  involved  restrictions  reflections,  more  solved  of  defining  was  this  consistent  was  set  origin  phase  only  tended  which  space group whose  the  one —  structure  The s t a r t i n g three  were  of the  systematically;  2  reflections:  1 , - f o r m u l a ; and f o u r  odd  I -relationships  factors.  accordance  =  t h a n an a c e n t r i c  the s u g g e s t e d space group.  MULTAN  k  unobserved  symmetry. The  a centric  Refinement  o f t h e d a t a showed r e f l e c t i o n s  classified  P2,/n  and  Fourteen  set. A  s e t o f p h a s e s , p r o d u c e d a map  c o r r e s p o n d e d t o t h e non-hydrogen  on  atom  positions.  was  Refinement  was  initiated  confirmed  by  subsequent  group).  In t h e e a r l y  stages  to  were e a s i l y subsequently  anisotropic a  included  in  r e f i n e m e n t . Those  temperature  reflections  further  carbon  factors cycling.  difference-Fourier the  full  f o r which  P2,/n  (which  as the c o r r e c t  refinement  for  i d e n t i f i e d on  group  refinement  of  atoms were a s s i g n e d i s o t r o p i c converted  i n the space  matrix  space  and  oxygen  but l a t e r Hydrogen map least  I < 3 c ( I ) were  and  were atoms were  squares excluded  126  from  the  refinement.  0.043 f o r 149 parameter standard  variables  shifts  and  were  analysis w =  defined  l/<r (F), 2  map  temperature  factors  parameters  Mean  and  respectively.  0.170*,  the  where * ( F )  suitability  of  ±0.17  t o be  random.  are given  in Table  f o r n o n - h y d r o g e n atoms a r e  and  weight  e/A  Atomic  The  1.844. A  the  chosen  the p r e v i o u s l y on  3  =  maximum  was  of  i s d e r i v e d from  2  appeared  a t R = 0.037, Rw  reflections.  Fluctuations  2  reached  o b s e r v a t i o n of u n i t  confirmed  « (I).  difference  930  0.019  d e v i a t i o n i n an  weighting weights,  C o n v e r g e n c e was  the  final  coordinates  and  XXIX. A n i s o t r o p i c t h e r m a l listed  in Table  XXX.  Di s c u s s i o n The  structure  unsaturated at  at C(9)  positions  X-ray  the  2 and  crystal  derivative  and  Generally, with  bridging A)  is  lengthening ring  C(10),  Atom  t o be and  5. T h i s a p p e a r s  a twistane  having t o be  few  twistanes  the  exception  XXXI). not  of  for  of C ( s p ) - C ( s p ) 3  C(2)  (see  3  deviates  C ( 1 ) , C ( 2 ) , C(3)  by and  to  and  type  of  of  the  to  known. values and  the  (1.574(3) latter  system;  two  similar  been r e p o r t e d f o r b r i d g e d  r e f e r e n c e s 45  0.0083(19) 0(2)  limited  accepted  C(1)-C(6)  an  twistane  ( 1 . 3 1 0 ( 4 ) A)  lengthening  bonds has  f o r example,  example of  s t r u c t u r e s are  C(9)=C(10)  this  substituents  unsaturated  comparable  the  first  derivative,  comparisons are  ( 1 . 5 5 9 ( 3 ) A)  However,  unusual  the  whose c r y s t a l  bond l e n g t h s a r e  (31)  carbonyl  of an  therefore, structural  hydrocarbons  through  and  bonds, C ( 3 ) - C ( 8 )  (Table  bonds  found  structure determination  relatively  (33)  was  (Table  A from  and  46).  t h e mean  XXXII);  the  plane other  127  Table Final and  positional  isotropic  with estimated Atom  C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) 0(2) 0(5) H(1 ) H(3) H1 (4) H2(4) H(6) H1 (7) H2(7) H(8) H(9) H( 10)  XXIX  (fractional  x 10 , H x  thermal parameters standard  x 43183(30) 46946(32) 68270(35) 84231(40) 79127(29) 66087(30) 78841(39) 71086(37) 49048(43) 35198(41) 34914(28) 85239(26) 3304(37) 6943(38) 8257(47) 9855(43) 6439(32) 7583(39) 9442(38) 8141(38) 4646(47) 2038(40)  deviations y_  1  9198(11) 16445(10) 18800(11 ) 15878(13) 8327(11 ) 5539(10) . 7886(12) 15293(13) 14393(14) 10864(12) 19664( 9) 5020( 9) 696(11) 2367(14) 1812(14) 1611(11) 82(13) 488(13) 766(10) 1794(13) 1596(15) 995(12)  5  (U x 1 0  10') 3  A ) 2  in parentheses z 73230(32) 81296(30) 78540(33) 98328(40) 99726(31 ) 79168(29) 64120(37) 58557(36) 43397(36) 50506(36) 89031(27) 115598(24) 7830(32) 7803(36) 1 1038(47) 9740(34) 7943(31) 5098(41) 7115(34) 5341(35) 3003(48) 4290(37)  Ueq/Uiso 42 43 50 55 43 40 51 55 62 56 70 67 53( 68( 84( 59( 52( 75( 58( 67( 91 ( 68(  6) 7) 9) 6) 6) 7) 6) 7) 9) 7)  128  Table  XXX c  Final  anisotropic and  Atom  their  thermal  parameters  estimated  standard  ( U i j x 10*  A ) 2  deviations  Hi 2  u  y,,  U22  CO )  324(10)  437( 12)  483( 12)  -57(  9)  1 04 ( 9)  C(2)  434(11)  437( 12)  405( 11)  77(  9)  105( 8)  -6(  C(3)  552(13)  298( 12)  628( 15)  1 38 ( 1 1 )  18( 10)  C(4)  437(13)  567( 15)  ( 589( 14) - 1 1 810)  C(5)  364(10)  496( 13)  429( 12)  39(  9)  C(6)  433(11)  296( 1 1 )  449( 1 1 )  15(  8)  C(7)  481(13)  637( 15)  456( 12)  1 68 (1 1 )  1 87 (10)  65( 12)  C(8)  56804)  553( 14)  599( 14)  35( 1 1 )  292( 11)  1 97 ( 12)  C(9)  758(16)  684( 16)  385( 12)  301 (13)  1 1 4(12)  1 19(12)  COO)  483(13)  604( 15)  489( 13)  1 38 ( 1 1 )  -17( 11) -1 02 ( 11)  0(2)  691(10)  7 1 7 (12)  766( 1 1 )  205(  9)  306(  0(5)  7 1 5 0 1)  786( 1 1 )  456(  81 ( 8)  67(  y  3  3  9)  y,  -70( 10)  3  2 3  -24( 10) 9)  66( 10)  -79( 12)  1 1 4( 8)  48( 10)  98(  9)  27(  9) -146( 8)  9)  9)  1 79 ( 9)  129  Table Bond  lengths  standard  XXXI  (A) w i t h  estimated  deviations in  parentheses  Length  Bond  Length  Bond  C(1 )  -C(2)  1 .505(3)  C(5)  -C(6)  1.499(3)  CO)  -COO)  1.501(3)  C(5)  -0(5)  1.211(2)  C(2)  -C(3)  1.495(3)  C(6)  -C(7)  1 .533(3)  C(2)  -0(2)  1.214(2)  C(6)  -CO )  1.573(3)  C(3)  -C(4)  1.538(3)  C(7)  -C(8)  1.535(3)  C(3)  -C(8)  1.559(3)  C(8)  -C(9)  1.497(4)  C(4)  -C(5)  1.513(3)  C(9)  -COO)  1.310(4)  Bond l e n g t h s with  estimated  Bond  (A) i n v o l v i n g  hydrogen  standard d e v i a t ions in Length  atoms parentheses  Bond  Length  CO )  -HO )  0.92(2)  C(7)  -H1(7)  1.03(3)  C(3)  -H(3)  0.95(3)  C(7)  -H2(7)  0.98(2)  C(4)  -H1(4)  0.95(3)  C(8)  -H(8)  0.97(2)  C(4)  -H2(4)  0.93(3)  C(9)  -H(9)  0.92(3)  C(6)  -H(6)  0.92(2)  COO)  -H(IO)  0.96(2)  1 30  carbonyl from  i s e s s e n t i a l l y planar  group  the l e a s t  squares  p l a n e o f 0.0027 A. The a l k e n e  distorted  noticeably  showing a  C(8)-C(9)-C(10)-C(1)  torsion  angles  twistenone  in  w i t h an a v e r a g e  from  the  unstrained planar  an  five  torsion unique  (IV) a r e r e c o r d e d i n F i g u r e  Table  Least  angle  of  to  moiety  7.4°.  Other  rings  of t h e  be  expected,  XXXII  squares  planes  (x, y, z a r e f r a c t i o n a l c o o r d i n a t e s r e f e r r e d to the m o n o c l i n i c c e l l ) Plane  1 d e f i n e d by atoms C ( 1 ) , C ( 2 ) , C ( 3 ) and 0 ( 2 )  Equation: Deviations  Plane  1.5130x - 6.9114y + 5.3785z from  Equation: Deviations  6.0315X from  - 3.9547 = 0  the plane: atom  deviation  C(1) C(2) C(3) 0(2)  0.0018(20) -0.0083(19) 0.0035(22) 0.0030(18)  2 d e f i n e d by atoms  (A)  C ( 4 ) , C ( 5 ) , C ( 6 ) and 0 ( 5 )  - 4.5660y  - 3.2341z  -  is  configuration  six-membered 17. As  deviation  1.1718 = 0  the p l a n e : atom  deviation  (A)  C(4) C(5) C(6) 0(5)  0.0036(28) -0.0047(18) 0.0010(19) 0.0017(16)  Figure Torsion  angles  17  for twistenone  (IV)  1 32  the  presence  of  the double  bond w i t h i n t h e t r i c y c l i c  i n t r o d u c e s marked d e v i a t i o n s from the  five  angles along  with  torsion  force-field  with  torsion  molecule)  angles any  and  the a d d i t i o n in  approximating  C  center  C(4)-C(5), In  of, similar  obtained  torsion  in Figure by  significant  similarly  idealized  this  18  empirical differences  those  of  twist-boat torsion  C(1)-C(2)-C(3), Of  the  angles,  conformation  0(5).  carbons  than  strain,  strain.  divergence  at  f l a n k e d on  rotation  a x i s passes  twistenone  Compared w i t h  t o d e v i a t e up from  and  magnitude  accepted  is  the  97.9(2)°  C ( 1 ) . Other  to  through  marked angles  s i d e by  suffers  normal  values,  12.4°  with  the  occurring for  atoms  as  vertices;  111.6(2)°  (Table  between  the  the normal t e t r a h e d r a l deviation  which  carbons  (48).  (IV)  difference and  and  values  C(4)-C(5)-C(6),  suggesting  either  the  closely  in aza-twistanone  oxygen b e a r i n g c a r b o n  of  e x c l u s i o n of symmetry  to the  p e r p e n d i c u l a r t o bonds C ( 9 ) = C ( 1 0 )  angular  angle  5,  with  2  the  reduced  Notwithstanding  2 and  skeleton  are observed  109.5°  is drastically  t o the pseudo C - a x i s  similar  hybridization  and  at  is  107.6(2)°  C(2)-C(1)-C(10) of  twistane  0(2)  to t o r s i o n a l  angles  involving  XXXIII).  of  and  noticeable  carbon,  (and  ( s e e F i g . 19). The  2  addition  endocyclic  value  the  tricyclic  considerable  angles  angles  hybridization  oxygens l e a v e s the  most  twistane  where  Ideal  are presented  (47). Despite  of t h e  2  change  from  for  (38)  seem more c o n s i s t e n t w i t h  D -symmetry  with  the  geometry  other.  The C,  angles  calculations  between t w i s t a n e  these  twistane  r i n g s approach twist-boat conformations.  f o r t w i s t - b o a t conformers  present  the  skeleton  from  i n c l u d e one not  sp  3  bridging  involved  in  a  1 33  5  C(1)  C(2)  C(3)  C(4)  -70.6  C(2)  C(3)  C(4)  C(5)  33.1  C(3)  C(4)  C(5)  C(6)  33.1  C(4)  C(5)  C(6)  C(1)  -70.6  C(5)  C(6)  C(1)  C(2)  33.1  C(6)  C(1)  C(2)  C(3)  33.1  4  (a)  (b)  Figure  18  T o r s i o n a n g l e s i n t w i s t a n e (a) and i n i d e a l i z e d twist-boat conformation (b). Values in (a) are from empirical f o r c e - f i e l d c a l c u l a t i o n s (47); those i n (b) a r e f r o m r e f e r e n c e 38.  the  bridge  (e.£.  from t h e  ideal  Despite obtained, detailed  C(2)-C(3)-C(4)),  it  hybrid  accuracy  is  still  with  which  insufficient  hybridization differences  overall  (<0.01 A) bonding  orbitals  approximately, hybridization  of  6.8°  tetrahedral value.  the  s m a l l changes the  show a mean c o m p r e s s i o n  in various  geometry  the  fraction  thereby  a  particular  to allow on  lengths one  were  to q u a n t i f y  the  basis  bond d i s t a n c e s . However,  each  within  bond  strictly  associated with giving  the  atom  of  s-character may  be  clearer indication bonds.  For  in  of from the  calculated as  example,  to  the the  134  Figure S t e r e o diagram fractional C(1)-C(2), hybrid of  bond,  C(9)-C(10)  twist  the  sp .  hybridization. reflect part  the  of the  to  be  structure. A, 2  in a decrease  in  the  length  s - c h a r a c t e r was  about  is  accompanied  for  sp  by  2  of  the  As  C(2)-  of  the  mentioned  significantly of  1.335(5) A,  hybridization  hybrids;  t o be  32%  however,  bond, e x p e c t e d  overlap  a  v a l u e s , not  calculated  the C(9)-C(10) p-orbital  in  These  bond  equal value  distribution  1.310(4)  C ( 1 0 ) , as e x p e c t e d 7.4(3)°  almost  s-character at C(3),  bond,  amount o f  involvement  An  3  2  The  of  that  from  (IV)  atom C ( 1 ) , i n t h e  the a c c e p t e d C ( s p ) - C ( s p )  does not appear  b o t h C ( 9 ) and  result  fractional  accomodating  differences.  the  different  systems,  from  carbon  suggesting  in strained  different  at  the  similar  the  this  at  implies  electrons above,  of the twistenone  0.145,  quite  f o r the  uncommon  but  i s about  orbital  0.186  C(3)  s-character  19  between  to  these  1 35  Table  Bond a n g l e s standard Bonds  CO) CO ) C(6) C(3)  C(3)  -C(6) -COO) -COO) -CO) -0(1 )  -C(3)  -C(4)  -co)  C(4)  -C(3)  C(3)  C(4)  -C(3) -C(4)  -C(5)  -0(1 ) -C(8) -C(8) -C(5) -C(6)  Bond a n g l e s with  estimated  Bonds C O ) -CO ) C(6) - C O ) C O O ) -CO ) C O ) -C(3) C ( 4 ) -C(3) C ( 8 ) -C(3) C ( 3 ) -C(4) C ( 3 ) -C(4) C ( 5 ) -C(4) C ( 5 ) -C(4) H1 (4) -C(4) C ( 5 ) -C(6) C ( 7 ) -C(6)  (deg) w i t h  deviations  in  Angle  -CO ) -CO) -CO) -CO) -CO )  CO ) CO) CO)  XXXIII  106 .8(2) 97 .9(2) 11 2 .5(2) 1 07.6(2) 126 .9(2) 125 .5(2) 100 .7(2) 1 07.5(2) 1 1 .9(2) 1 108 . 1(2) 1 1 .6(2) 1  parentheses Angle  Bonds  C(4)  C(6) C(5) C(5) C(7) C(6) C(3) C(3)  C(7) C(8) C(9)  -C(5) -C(5)  -0(5) -0(5)  -C(6) -C(6) -C(7) -C(8) -C(8) -C(8) -C(9)  -CO ) -CO )  -C(7)  -C(6)  -C(8) -C(7) -C(9)  -C(9)  -COO) -CO )  -COO)  (deg) i n v o l v i n g h y d r o g e n standard Angle  -HO) -H(1 ) -H( 1 ) -H(2) -H(2) -H(2) -H1(4) -H2(4) -H1(4) -H2(4) -H2(4) -H(6) -H(6)  estimated  111. 6( 13) 113. 0( 14) 113. 8< 13) 113. 1 <14) 111. 1 <15) 112. 1 (14) 111. 1 I18) 110. 4< 14) 108. 41 16) 106. 4< 13) 112. 21 22) 112. 3< 13) 113. 31 12)  deviations  in  atoms  parentheses Angle  Bonds C O ) -C(6) C ( 6 ) -C(7) C ( 6 ) -C(7) C ( 8 ) -C(7) C ( 8 ) -C(7) H1 (7) -C(7) C ( 3 ) -C(8) C ( 7 ) -C(8) C ( 9 ) -C(8) C ( 8 ) -C(9) C O O ) -C(9) C(9) -COO) C O ) -COO)  123 .2(2) 125 .2(2) 1 03.8(2) 107 .8(2) 109 .0(2) 104 .2(2) 108 .0(2) 108 .8(2) 103 .5(2) 1 14.5(2) 1 14.3(2)  -H(6) -H1(7) -H2(7) -H1(7) -H2(7) -H2(7) -H(8) -H(8) -H(8) -H(9) -H(9) -HO0) -H(10)  110. 4(12) 1 12.8(13) 109. 0(13) 110. 8(14) 112. 1(12) 1 08.0 ( 1 8 ) 109. 0(13) 112. 3 0 4 ) 115. 0(14) 120. 2 0 8 ) 125. 1 0 8 ) 124. 7(14) 120. 3(14)  136  atoms, cause  should the  lengthen  decrease  in  contacts correspond diagram  the  bond  packing  length;  i s unlikely  in Figure  20.  Figure  20  packing diagram  of  to  a l l intermolecular  t o n o r m a l van d e r Waals d i s t a n c e s . A  i s presented  Stereo  t h e bond. C r y s t a l  twistenone  (IV)  packing  CHAPTER VI  5-(2,3-DIMETHYLPHENYL)-y-BUTYROLACTONE  138  Introduction Photochemical analyses  on and  provided  reactions  combined  substituted  naphthoquinones have  studies  crystal  structure  4ap,5,8,8ap-tetrahydro-1,4-  4ap,5,8,8ap-tetrahydro-1-naphthoquin-4-ols  valuable  insights  as H - a b s t r a c t i o n s ( P a r t  dimerizations  with  (34)  and  [2+2]  into I and  such  photochemical  r e f e r e n c e s 26,30,32,34),  intramolecular  cycloadditions  ( 2 6 , 4 9 ) . However, some r e a c t i o n s ,  though  designed to c l a r i f y  confirm  of  previously  a  mechanism,  particular have  led  to  from  observed,  f o r example, t h a t  the  original  the photochemical photolysis  (see Chapter  of  theme minor  an  product  ratios.  ray  analysis  to  a  and  1  equal  interest.  photolysis naphthoquinone the  structural  strayed  t h e s t u d y . I t has  and  in  been  technique  i n the case  significant  effect  of  on  p r e s e n t compound, shown by  2,3-dimethylphenyl  immediate  of has  The  i t s formation  Its  which  modifications  interesting  resulting  butyrolactone ,  of  interpreted  u n s u b s t i t u t e d tetrahydronaphthoquinone  the  be  results  e x p e r i m e n t a t i o n r o u t e , as  the  V ) , has  a  interesting  slightly  along  the  aspect  or  sequence  substituted are  precursor,  regarded  resulting  from  Xy-  with the  6,7-dimethyl-4ap,5,8,8ap-tetrahydro-1,4not y e t been c h a r a c t e r i z e d .  elucidation  t h e d e t e r m i n a t i o n of t h e  I t was  hoped  that  o f t h e p r e s e n t compound would a i d i n  i n t e r m e d i a t e compound  in  the  reaction  scheme.  Alternative furanone. 1  IUPAC name: 5 - ( 2 , 3 - d i m e t h y l p h e n y l ) - t e t r a h y d r o - 2 -  1 39  Experimental  Photolysis naphthoquinone hydrogen  6,7-dimethyl-4ap,5,8,8ap-tetrahydro-1,4-  of  (V) ( F i g . 2 1 ) gave  abstraction  product  the  previously  (VI) and  a  observed  y-  product  X.  new  (VII) F i g u r e 21 Reaction  Thermolysis (VII)  by  o f t h e minor  which  solution.  recrystallized chosen  s i x well-defined  faces  Crystal  the  title  compound  from a p e t r o l e u m e t h e r / e t h a n o l  for structure ±(102),  analysis  ±(10T)  and  was  bounded  ±(01~),  and  3  data:  =  6 . 9 2 4 ( 1 ) ,  Z  =  4,  D  (VII).  0 . 1 4 x 0 . 0 4 x 0 . 0 6 mm .  b  1  was  to the lactone  product X y i e l d e d  The c r y s t a l  measured  cm" ,  scheme l e a d i n g  C  =  X. =  analysis.  C  1  c 1.237  2  H  U  0  ,  2  MW =  13.654(4)  = g  0.71073  cm" , 3  A ,  190.24,  monoclinic  A ,  p  =  1.244  g  space  group  P2,/n  D  Q  =  9 5 . 2 2 ( 1 ) ° ,  V  a = =  10.847(3),  1021.3(5)  M(MOKO)  cm" , 3  ,  from  =  A  3  ,  0.468  structure  1 40  Data  were  collected  monochromatized ranging given  from by  crystal  at  the  every  scans  and speeds angle  was  a p e r t u r e w i d t h was  mm.  Intensity  3600 s e c o n d s was  Final  checked  cell  f i t of the parameters  processing effects  intensity  collection.  included  control  of X-ray after  parameters  exposure  every  100  were o b t a i n e d by  t o the sine  values  controls  was  2.98%  569 o f t h e 1341 r e f l e c t i o n s  2  averaged  corrections  for  f o r Lorentz  b u t n o t f o r a b s o r p t i o n . The  where « ( I ) = S + 2B + ( 0 . 0 4 ( S  18  over  maximum the  collected  decay  entire  data  had I >  - B ) ) , S = scan c o u n t , 2  and  3*(I),  B = time-  background.  Solution The  crystal  hydrogen  atoms  indicated  density per  a centric  From  generated  the  and Refinement  of  1.24  asymmetric  distribution  256  largest  g  cm"  unit  o f t h e s e atoms E's,  by t h e E , - f o r m u l a  additional  v a l u e s and which  starting  occurred  suggested  3  and  the  14  non-  E-statistics  throughout  5301 I - r e l a t i o n s h i p s 2  f o r use i n t h e phase d e t e r m i n i n g  were d e t e r m i n e d choose  u-2e  reflections.  polarization  cell.  4  orientation  collected.  Data  in  (graphite  The h o r i z o n t a l  constant  were m o n i t o r e d  squares  centered  22.5°  t h e e x p r e s s i o n (2.00 + t a n © ) mm a n d t h e v e r t i c a l  remained  reflections least  with  and  1  from  and  0.0  1.44 t o 10.06 deg m i n * . The omega s c a n  reflections time  radiation)  (0.90 + 0 . 3 5 t a n e ) ° .  calculated aperture  MoKc  between  process.  No  the were  phases  a n d so MULTAN was p e r m i t t e d t o  reflections  frequently  with r e l a t i v e l y  in  the  large E  ^"listing.  The  141  phases  of  the g e n e r a l r e f l e c t i o n s  generating Three  different  origin  defining  centrosymmetric phases  as  reflections space  the  subsequent  Fourier  synthesis  coefficients  r e v e a l e d the p o s i t i o n s  g r o u p P2y/n,  space  isotropic initial  (with  least  temperature stages  temperature  the  refinement.  factors  was  followed  h y d r o g e n s assumed  1/tf (F) 2  in  refinement.  As  the  initially  appeared  hydrogens  on  for  each  single  pair  i n an  At  effort  the  example, t h e C ( 8 ) - C ( 9 ) for  a  single  bond  atoms.  were employed  further  to  i n the  anisotropic  cycling  of  had  the  and  a  defined  was  noted  bonding  carbons  bond  had  lengths  above)  what  geometries  for  unreasonable,  coalesced  into  and  angles  were  between  C(8)  values  (33)  t h e bond o r d e r to accepted  including 1.42  environment,  to w =  that  become c h e m i c a l l y  bond l e n g t h of  in that  changed  during  data.  it  semblance  those  parameters  t h e e 2{l)  from  to determine  of  as  with  scheme was  point,  reasonable  exception  phases)  of n o n - h y d r o g e n atoms  weighting  proceeded  C(9)  this  normalized  Conversion  reasonable  and  the  the  by  of h y d r o g e n s a t t h e s e  C ( 9 ) . A l l bore  with  as  of  in  thermal  the a c c u r a c y  C(8)  peaks.  calculated and  The  refinement  of  figures  initiated  isotropic  2  to r e f l e c t  set  r e v e a l e d c o o r d i n a t e s f o r a l l hydrogen  (where <r (F) i s o b t a i n e d  order  the  best  found  was  U n i t weights  the  atoms. The  The  of a l l n o n - h y d r o g e n  of  s y n t h e s i s which  using  refinement  factors.  according to  the  newly  inclusion  difference  subsequent  their  squares  with  had  thereby  determination.  criteria.  true solution  factors  matrix  were c h o s e n  group  structures  Full  permuted,  s e t s d u r i n g the phase  monoclinic  accepted  merit. A  phase  were t o be  C(8)  and  A seemed and  C(9). very  y e t , was  For  short  extremely  1 42  long  for a double  remainder  of  the  which  was  mass  spectrum.  missing  4 m.u.  and  0.5  the  five-membered out  around  C(8)  little  i t was  f o r 186  mass u n i t s  doubt  as  the  (m.u.)  i o n peak o b s e r v e d  in  the  t o t h e number o f  concluded that  C(8)  and  C(9)  I n s p e c t i o n of the t h e r m a l parameters  revealed anomalously  ring.  This  large  situation  of the p l a n e , combined and  ring  C(9)  unreasonable  closely  metal  where t h e p r e s e n c e  for  r.m.s. v i b r a t i o n s ,  of  parallels  up  of  the  The  bonding  geometry  found  in  2  accounted disorder  to  thermal  the  five-  2  limited  disorder  that  high  MejXCR'R .CF XMe .M(CO)«  disorder  geometry. S i m i l a r  of apparent  with unusual  complexes,  present structure.  handling  accounted  hydrogens,  f o r C ( 8 ) , r o u g h l y p e r p e n d i c u l a r t o t h e mean p l a n e of  motion  the  so  affected  the parent  left  carbons.  to  membered  than  This  2 carbons A  molecule  less  hydrogens,  were m e t h y l e n e these  bond. E x c l u d i n g t h e  for  was  the  thought  number of d a t a  C(8)  2  and  seemingly to occur i n  restricted  its  (50)  the  corresponding  hydrogens. Two  carbon  replaced given  atoms  the o r i g i n a l  equal  C(8)  occupancies  mean p l a n e o f t h e C(8)  isotropic  i n the  1 A a p a r t on  furanose ring  several  positions  cycles  of C ( 8 ) ' and  and  C(8)"  Four  refined  along with t h e i r  l/o- (F) 2  were  initially  p a s s i n g through  isotropic i n an  ( w h i c h was  t o the  the  original  of t h e t e m p e r a t u r e  factors  occupied  concluded that in  the  ratio  atoms were f o u n d v i a a d i f f e r e n c e  standard deviation  when w =  were  factors  the v e c t o r normal  o f r e f i n e m e n t , i t was  60:40.  The  hydrogen  temperature  r e f i n e m e n t and  c o o r d i n a t e s . From t h e m a g n i t u d e  after  3.3  with  thermal  the of  map  and  weight  was  parameters.  o b s e r v a t i o n of u n i t  p r o b a b l y due  to  the  incomplete  143  handling  of  weighting  scheme w = (A + BFo  0.3957,  B  the  =  disorder).  0.00000,  C  In t h e f i n a l +  =  CFo  -0.004568  e m p l o y e d . T h i s gave c o n s t a n t a v e r a g e s Mean  and  refinement shift  parameter  were 0.233  occurred  value for  maximum  and  Rw  was  0.141  1.201©*,  with  and  Rw  refinement  3  and  on  where  1  the  ranges last  respectively; factor  data  was  of  Fo.  cycle  the  of  maximum  o f C ( 8 ) " . The f i n a l 0.057  while  synthesis  between 0.156  R-  that  s e t (1341 r e f l e c t i o n s )  = 0.066. A d i f f e r e n c e - F o u r i e r  showed random f l u c t u a t i o n s  A  D = 0.000384, over  2  I > 3©*(I) was  0.065. F o r t h e e n t i r e  the polynomial  DFo )" ,  o f wA  shifts  i n the temperature  f o r 569 r e f l e c t i o n s  +  2  cycle  R =  following  and  -0.220  ©  e/A .  A list  3  o f c o o r d i n a t e s and t e m p e r a t u r e  T a b l e XXXIV. A n i s o t r o p i c Table  thermal  parameters  factors are  i s given i n  presented  in  XXXV. Di s c u s s i o n The  bonded only  structure to  the  consists  r-carbon  substituent  of a b u t y r o l a c t o n e moiety.  Considering  the gross conformation,  two r i n g - c o n t a i n i n g subtend  moieties  the  rings  with  the l a c t o n e r i n g s  the  of a 2 , 3 - d i m e t h y l p h e n y l  the molecule  proximity account set.  i  of  3.23  a dihedral  angle  back-to-back  found  of t h e p h e n y l for  be  and l i e a l m o s t  parallel  with the r e l a t i v e l y  pack to  l a r g e E-  S i m i l a r l y , the  atoms t o t h e (113) p l a n e  i t s E-magnitude  as  through  o f 7 0 ° . The m o l e c u l e s  f o r t h e 30? r e f l e c t i o n .  ring  described  ( F i g . 22) whose mean p l a n e s  (301) p l a n e . T h i s i s c o n s i s t e n t  magnitude  may  o f 4.66, t h e l a r g e s t  seems  to  i n the data  1 44  Table Final and  positional  isotropic  with estimated Atom  2  C(1 ) C(2) C(21 ) C(3) C(31 ) C(4) C(5) C(6) C(7) C(8) ' C (8 ) " C(9) C( 10) 0(1 ) 0(2) H1(21 ) H2(21) H3(21 ) H1(31 ) H2(31 ) H3(31 ) H(4) H(5) H(6) H(7) H1(8) ' H2(8)' H1 (8 ) " H2(8) " H1(9)* H2(9)*  XXXIV  ( f r a c t i o n a l x lOVH  thermal parameters standard  X  5386( 6) 5493( 6) 4454(1 1 ) 6569( 7) 6724(13) 7510( 8) 7437( 9) 6373( 9) 4233( 1 1 ) 3958(17) 4691(20) 4208( 7) 4101( 6) 3999( 5) 4078( 5) 372( 7) 478( 7)' 395(11) 604( 7) 742( 8) 687( 7) 820( 5) 807( 7) 623( 6) 361( 6) 306( 9) 459( 7) 547(1 1 ) 424(10) 496 353  deviations  X  (U x 1 0  10 ) 3  3  -879( 7) 8 1 3 (7) 22S2( 11) 1 1 741• 9) 2952< 12) -1671 12) -18041 11) -21761 10) -12631 9) -326< 1 7 ) -464 ,22) -1940 ,10) -3764 [ 9) -5396 ; 7) • -3332 [ 5) 2 1 4 ( 0) 330( 2) 221 ( 4) 3 1 3 ( 1) 327( 3) 421 ( 12) 3( 7) -280( 11) -3 1 7 (1 1 ) -86( 10) -32( 12) 1 07 (12) -86( 15) -1 3( 16) -1 94 -181 r  2  i n parentheses z  1  A )  1 867 ( 4) 1 3 1 3 ( 4) 1 2 1 6 ( 8) 854( 4) 256( 7) 944( 6) 1 500 ( 6) 1 939 ( 5) 2366( 7) 3301 ( 1 1 ) 3555(12) 4050( 5) 3463( 6) 3737( 4) 2526( 4) 1 58 ( 5) 1 47 ( 6) 60( 9) -26( 6) -5( 7) 72( 6) 68( 4) 1 57 ( 5) 236( 5) 1 89 (6) 348( 6) 340( 5) 383( 7) 302(1 0) 447 443  Ueq/Uiso 71 66 90 74 1 10 89 92 87 100 76( 4) 62( 4) 102 82 121 1 05 121(31) 114(31) 188(49) 120(31) 129(38) 147(27) 61(20) 106(24) 104(23) 98(28) 77(28) 50(22) 39(30) 20(32) 1 36 1 36  P r i m e d (') atoms a r e a t 60% o c c u p a n c y ; d o u b l e p r i m e d (") atoms are at 40% o c c u p a n c y ; a s t e r i s k s (*) d e n o t e atoms i n c a l c u l a t e d positions. 2  145  Table Final  anisotropic and  their  c(D  thermal  parameters  estimated  standard  u  Atom  XXXV 10  3  A ) 2  deviations  U,  U33  2 2  (Uij x  y  U,3  2  -5(  3)  48(  4)  58(  4)  17(  4)  5)  47(  3)  61(  4)  10(  3)  -13(  3)  1 06 ( 7)  55(  4)  1 06 ( 6)  23(  5)  -8(  6)  -6(  4)  5)  58(  4)  63(  4)  4(  4)  -11 ( 4)  -19(  3)  167(10)  73(  5)  90(  6)  -25(  6)  14(  8)  3(  4)  C(4)  91 ( 6)  83(  5)  93(  5)  -6(  5)  17(  5)  -32(  4)  C(5)  1 05 ( 7)  78(  5)  89(  5)  32(  5)  -12(  5)  -19(  4)  C(6)  1 24 { 7)  60(  4)  75(  4)  28(  5)  5(  5)  6(  3)  C(7)  171 ( 9)  48(  4)  85(  5)  10(  5)  34(  6)  2(  4)  C(9)  1 36 ( 7)  67(  4)  1 03 ( 5)  -9(  5)  12(  5)  -17(  4)  5)  53(  4)  1 10( 5)  -11 ( 4)  42(  4)  -11 ( 4)  0(1 )  1 65 ( 5)  56(  3)  1 53 ( 5)  -18(  3)  73(  4)  0(  3)  0(2)  1 75 ( 5)  49(  3)  -6(  3)  29(  3)  -13(  3)  C(2) C(21 ) C(3) C(31 )  COO)  1 07 ( 5) 87(  96(  87(  95(  3)  1 ( 4)  2 3  -11 ( 3)  1 46  Stereo A detailed accuracy affected  of by  however, a r e  disorder  the and  the  remaining the  Incomplete  lactone  the  i n the  n o t e w o r t h y and  (51,52) where t h e of  of  the  (VII).  structure is limited  d e r i v e d q u a n t i t i e s , which  Butyrolactone  plane  22  d e s c r i p t i o n of  the the  view  Figure  are  described  atom  remaining atoms i n t h e  deviating  four ring  i s the  partial  sp -character  handling  of  2  the  of  disorder  envelope  p - c a r b o n . The  the  aspects,  below. conformation  significantly  stems from  the  i s adversely  s t r u c t u r e . Some g e n e r a l  r i n g s u s u a l l y assume an only  in turn  by  the  from  the  planarity  of  carbonyl  group  hetero-oxygen  atom.  prevented  observation  of  147  this  conformation  conformation Generally, agree  the  with  similar  bond  those  C(8)'  in  ellipsoids The the  present from  l e n g t h s and given  by  C(8)" atom  before  phenyl  23  the nature  Harlow in  in  and  of  ring. each  relative  t h e d i s o r d e r a t C(8)  ring  is significantly  c h i - s q u a r e d v a l u e of  8.9  S t e r e o view of  of  the  disorder. XXXVII)  (52), f o r a quantities  t h e d i s o r d e r i s not Examination the  lactone  of  the atoms  s t e r e o diagrams i n c l u d e d sizes was  of  the  thermal  refined.  non-planar  f o r 3 degrees  Figure  the  derived  that  t h e d i s o r d e r . The show t h e  of  Simonsen  these  the  however,  ( T a b l e s XXXVI and  indicate  displacements  and  structure,  angles  Deviations  and  t h e e x t e n t of  F i g u r e s 22  the  inferred  t o o n l y one  r.m.s. t h e r m a l reveals  be  r-lactone.  involving confined  may  in  of  as  indicated  f r e e d o m . C(4)  23  t h e c o n t e n t s of t h e u n i t  cell.  by and  148  Table Bond l e n g t h s standard Bond c(i) CO) CO) C(2) C(2) C(3) C(3) C(4) C(5)  Bond a n g l e s  Bonds C(2) -CO ) c m -CO ) C(6) -CO ) C O ) -C(2) C O ) -C(2) C(21 ) - C ( 2 ) C(2) -C(3) C(2) -C(3) C(31 ) - C ( 3 ) C(3) -C(4) C(4) -C(5) C O ) -C(6) C O ) -C(7) C O ) -C(7)  parentheses  118 .3(7) 120 .3(6) 121 .3(6) 120 .3(7) 1 20.2(5) 119 .4(7) 122 .2(7) 118 .9(6) 119 .0(8) 121 .8(8) 119 .3(8) 121 .3(7) 123 .6(11) 100 .8(9)  Length  C(7)  -C(8)' -C(8)" c m -0(2) c m -C(9) C(8) C ( 8) "C ( 9 ) -COO) C(9) COO) -0(1 ) C O O ) -0(2)  (deg) w i t h  deviations in  Angle -C(6) -C(7) -C(7) -C(21) -C(3) -C(3) -C(31) -C(4) -C(4) -C(5) -C(6) -C(5) -C(8)' -C(8)"  estimated  Bond  1 .405(7) 1 .394(9) 1 .502(10) 1 .505(10) 1 .397(8) 1 .496(10) 1 .377(9) 1 .371(11 ) 1 .372(10)  standard  (A) w i t h  deviations in  Length  -C(2) -C(6) -C(7) -C(21) -C(3) -C(31) -C(4) -C(5) -C(6)  XXXVI  1 .49(2) 1 .74(2) 1 .461(8) 1.52305) 1 .357(15) 1 .495(8) 1 .199(7) 1 .312(8)  estimated parentheses Bonds  CO ) - c m C ( 8 ) '- c m C ( 8 ) '- c m C(8)" - c m c m -C(8)' c m -C(8 ) C ( 8 ) '- C ( 9 ) C ( 8 ) *- C ( 9 ) C ( 8 )-C(9) " C(9) -COO) C(9) -COO) 0( 1 ) - C O O ) C ( 7 ) -0(2)  Angle -0(2) -C(8)" -0(2) -0(2) -C(9) "C ( 9 ) -C(8)" -COO) -COO) -0( 1 ) -0(2) -0(2) -COO)  1 10 .7(6) 28 .9(7) 105 .4(7) 101 .5(8) 102 .7(8) 97 .7(10) 33 .5(9) 1 05.0(7) 1 12 .6(8) 1 29.3(7) 108 .9(5) 121 .7(6) 1 12 .1(6)  1 49  Table Bond  lengths involving  estimated Bond C(21) C(21) C(21) C(31) C(31) C(31) C(4) C(5)  XXXVII  standard deviations  Length  -H1(21) -H2(21) -H3(21) -H1(31) -H2(31) -H3(31) -H(4) -H(5)  h y d r o g e n atoms  0.99(7) 0.86(8) 0.96(12) 0.99(8) 0.92(8) 1.08(8) 0.87(5) 0.97(8)  Bond a n g l e s  i n parentheses  Bond  C(2) -C(21)-H1(21) C(2) -C(21)-H2(21) C(2) -C(21)-H3(2l) H1(21)-C(21)-H2(2l) H1(21)-C(2l)-H3(21) H2(21)-C(21)-H3(21) C(3) -C(31)-H1(31) C(3) -C(31)"H2(31) C(3) -C(31)-H3(31) H1(31)-C(31)-H2(31) H1(31)-C(31)-H3(31) H2(31)-C(31)"H3(31) C(3) - C ( 4 ) -H(4) C(5) - C ( 4 ) -H(4) C(4) - C ( 5 ) -H(5) C(6) - C ( 5 ) -H(5) C(1) - C ( 6 ) -H(6) C(5) - C ( 6 ) -H(6) C(1) - C ( 7 ) -H(7) C ( 8 ) ' - C ( 7 ) -H(7)  Length  -H(6) C(6) C(7) -H(7) C(8) -H1(8)' C ( 8 ) ' -H2(8)' C ( 8 ) " -H1(8)" C ( 8 ) " -H2(8)" -H1(9) C(9) C(9) -H2(9)  i n v o l v i n g h y d r o g e n atoms  estimated standard deviations Bonds  Angle 122(4) 104(5) 114(6) 101(7) 91(7) 124(8) 112(4) 126(6) 111(4) 104(7) 112(7) 89(7) 121(4) 117(4) 124(4) 116(4) 111(4) 128(4) 102(4) 106(5)  (A) w i t h  0 .92(7) 0 .94(7) 1 .02(8) 1 .19(8) 0 .94(11) 0 .87(11) 0 .95(8) 0 .95(8)  (deg) w i t h  in parentheses  Bonds  Angle  C ( 8 ) " - C ( 7 ) - H(7) 0(2) - C ( 7 ) - H(7) C(7) - C ( 8 ) ' - H1 (8) ' C(7) - C ( 8 ) ' - H2(8) ' C(9) -C(8) H1 (8) C(9) - C ( 8 ) '- H2(8) ' H 1 ( 8 ) ' - C ( 8 ) ' - H2(8) ' C(7) - C ( 8 ) - HI (8) " C(7) - C ( 8 P - H2(8) C(9) - C ( 8 ) " - H1 (8) C(9) - C ( 8 ) " - H2(8) " H1 ( 8 )-C(8P" H2(8) " C ( 8 ) ' - C ( 9 ) - H1 (9) C ( 8 ) ' - C ( 9 ) - H2(9) C ( 8) " C ( 9 ) - H1 (9) C ( 8 P - C ( 9 ) - H2(9) COO) - C ( 9 ) - H1 (9) COO) - C ( 9 ) - H2(9) HI (9) - C ( 9 ) - H2(9) n  133(4) 108(4) 118(5) 107(4) 88(5) 117(4) 122(6) 117(6) 38(8) 88(6) 114(7) 146.7(1) 119.6(9) 101.2(9) 87.2(1 ) 123.7(1) 110.0(6) 110.4(6) 110.1(7)  I  Table Torsion  angles  XXXVIII (deg) w i t h  estimated  standard d e v i a t i o n s i n parentheses  Atoms -CO) -CO) -CO) -CO) -CO) -CO) -CO) -CO) -CO) -CO) -CO) -CO) -c(2) C(1 ) -C(2) CO ) C ( 2 1 ) -C(2) C(21 ) - C ( 2 ) C(2) -C(3) C(31 ) - C ( 3 ) -C(4) C(3) -C(5) C(4) -C(7) CO ) C(8) n -C(7) -C(7) 0(2) -C(7) CO ) C(8) » -C(7) -C(7) 0(2) -C(7) CO ) C(8) t - C ( 7 ) C(8) n - C ( 7 ) C(7) -C(8)' C(7) -C(8)' C(7) -C(8)" C(7) -C(8)" C(8] i - C ( 9 ) C(8) l - C ( 9 ) C(8 II - C ( 9 ) C(8 II - C ( 9 ) -COO) C(9 -COO) 0(1  C(6) C(6) C(7) C(7) C(2) C(7) C(2) C(2) C(2) C(6) C(6) C(6)  C(2 C(7 C(2 C(6 CO  -CO ) -CO) -CO) -CO) -C(2)  Value  -C(2) -C(2) -C(2) -C(2) -C(6) -C(6) -C(7) -C(7) -C(7) -C(7) -C(7) -C(7) -C(3) -C(3) -C(3) -C(3) -C(4) -C(4) -C(5) -C(6) -C(8)' -C(8)' -C(8)' -C(8)" -C(8)" -C(8)" -0(2) -0(2) -0(2) -C(9) -C(9) -C(9) -C(9) -COO) -COO) -COO) -COO) -0(2) -0(2)  -C(21) -C(3) -C(21) -C(3) -C(5) -C(5) -C(8)' -C(8)" -0(2) -C(8)' -C(8)" -0(2) -C(31) -C(4) -C(31) -C(4) -C(5) -C(5) -C(6) -CO ) -C(9) -C(9) -C(9) -C(9) -C(9) -C(9) -COO) -COO) -C(10) -C(8)" -COO) -C(8)' -COO)  -C(6) -C(6) -C(7) -C(7) -C(21)  -H(6) -H(6) -H(7) -H(7)  -0(1 )  -0(2) -0(1 ) -0(2) -C(7) -C(7)  -H1(21)  - 179.8( 7) 0.4( 8) 0.2( 9) 179.6( 7) 1 .4(8) -178.5( 7) -78. 1 (12) -97.6( 9) ' 155.7( 6) 101.8( 10) 82.4( 8) -24.4( 1 1 ) 179.9( 6) 0.9( 7) 0.7( 9) -179.7( 7) -2.6I 9) 178.41 7) 3.6 10) -3.0 [9) -104.9 [10) -62.3 (14) 23.6 [15) -136.8 10) 78(2 -22.9 J 3 ) 118.0 (7) -17.8 0 3 ) 11.7 ( 1 1 )  86(2 -21.8 -56.9 26.3 -165.0 12.2 160.5 -22.3 3.2 -179.3 175(5 -5(5 41(4 -139(4 6(5  :n) 05) (14) (10) (10) 02) (13) (9) (7)  Table  XXXVIII  (continued)  C( 1 ) -c( 2) -c( 21 ) -H2(21) 1 1915 C( 1 ) -c( 2) -c( 21 ) -H3(21) -1 02 <7 C(3) -c( 2) -c( 21 ) -H1(21) -1731 5 C(3) -c( 2) -c( 21 ) -H2(21) -601 5 C(3) -c( 2) -c( 21 ) -H3(21) 781,7 C(2) -c( 3) -c( 31 ) -H1(31) -531,5 C(2) -c( 3) -c( 31 ) -H2(31) 1 79,7 C(2) -c( 3) -c( 31 ) -H3(31) 74 [4 C(4) -c( 3) -c( 31 ) -H1(31 ) 1 25(5 C(4) -c( 3) -c( 31 ) -H2(31 ) -2 (7 -1 07 [4 C(4) -c( 3) -c( 31 ) -H3(31 ) C(2) -c( 3) -c( 4) -H(4) -1 79 (4 C(31 ) -C( 3) -c( 4) -H(4) 2 (4 C(3) -c( 4) -c( 5) -H(5) 178 (5 180 (4 H(4) -c( 4) -c( 5) -C(6) -5 (6 H(4) -c( 4) -c( 5) -H(5) C(4) -C( 5) -c< 6) -H(6) -1 76 (5 -178 (5 H(5) -c< 5) -CI 6) -C(1) 5) -CI 6) -H(6) 9 (7 H(5) -c< C( 1 ) -CI 7) -c< 8) -H1(8)' 161 (6 C( 1 ) -CI 7) -c< 8) -H2(8)' 19 (4 -1 56 (6 C ( 8 )-CI " 7) -c< 8) -H1(8)' 61 (4 C ( 8 ) " -c< 7) -c< 8) -H2(8)' • 0(2) -CI 7) -c 8) - H I ( 8 ) ' -71 (6 0(2) -c< 7) -c 8) -H2(8)' 1 47(4 1 38(4 H(7) -CI 7) -c '8) -C(9) H(7) -c ,7) -c 8) -H1(8)' 44 (7 -98 (6 H(7) -c 7) -c ,8) -H2(8)' C( 1 ) -c ,7) -c (8) « -H1(8)" -46 (7 C( 1 ) -c [7) -c (8) n -H2(8)" 1 04( 1 C(8) ' -c (7) -c (8) n -H1(8)" 169 (8 C(8) ' -c [7) -c (8) it -H2(8)" -41 ( 1 0(2) -c (7) -c (8) it -H1(8)" 68 (7 0(2) -c (7) -c (8) -H2(8)" -142 ( 1 H(7) -c (7) -c (8) n -C(9) 1 05(6 -1 64 (9 H(7) -c [7) -c (8) n -H1(8)" H(7) -c (7) -c (8) n -H2(8)" -13 ( 1 H(7) -c (7) -o (2) -C(10) -131 (5 C(7) -c (8) -c (9) -H1(9) 1 02.2 -1 36 .8 C(7) -c (8) i -c (9) -H2(9) H1 (8) • -c(8) -c (9) - C ( 8 ) " -1 55 (5 H1 (8) •-C (8) -c (9) -C(10) 96 (5 -1 40 (5 HI (8) ' -c(8) -c (9) -H1(9) H1 (8) (8) -c (9) -H2(9) -19 (5 -31 (4 H2(8) ' -c(8) t -c (9) - C ( 8 ) -139 (4 H2(8) ' -c(8) -c (9) -C(10) H2(8) •-c (8) -c (9) -H1(9) -15 (5 106 (4 H2(8) '-C (8) -c (9] -H2(9) C(7) -c (8) n -c (9] -H1(9) 136 .7 -110 .8 C(7) -c (8) n -c (9] -H2(9) -174(7 H1 (8) "-C (8) n -c (9] - C ( 8 ) ' II  »  B  * * »  T a b l e XXXVI11 H1(8)" -C(8)" H1(8)" -C(8)" H1(8)" - C ( 8 ) H2(8)" -C(8)" H2(8)" -C(8)" H2 ( 8 ) " - C ( 8 ) " H2(8)" -C(8)" H1 (9) - C ( 9 ) H1 (9) - C ( 9 ) H2(9) -C(9) H2(9) - C ( 9 ) n  -C(9) -C(9) -C(9) -C(9) -C(9) -C(9) -C(9) -C(10) -C(10) -COO) -COO)  (cont inued) -COO) -H1(9) -H2(9) -C(8)' -COO) -H1(9) -H2(9) -0(1) -0(2) -0(1) -0(2)  -91(6) 20(6) 132(6) -20(9) 63(10) 173(10) -74(10) 65.1(10) -1 17.7(7) -56.7(11) 120.5(7)  1 53  C(5)  deviate  c a r b o n s by torsion Slight benzene r ing.  from  t h e mean p l a n e c a l c u l a t e d  0.015  angles  and range  differences (53)  in  reflect  -0.017  A,  through a l l s i x r i n g  respectively.  Intra-annular  from  -3.0(9) t o 3.6(10), T a b l e  bond  lengths  the  electronic  and  angles  XXXVIII.  compared  distribution  within  to the  1 54  CHAPTER V I I  1,3,4,5,6, 9-HEXAMETHYL-8-EXO-METHYLENETRICYCLO[ 4 . 4 . 0 . 0 - ]DEC~43  ENE-2-0NE  9  155  Introduction Attempts the  formation  acetate. for  hydrogen  However,  OH  w i t h OAc  bonding  via  i n the absence with  to  its  structure  analysis  photolysis  of  would  led  to  (IX) r a t h e r  than  the  hydroxyl  a  hence,  The  to  the  studied.  ketone,  interest  following  crystal  1,3-shift  leading  facility  have been  of t h e m e t h y l e n e  that  the  group  could  photochemistry.  showed  (VIII)  have removed  of H-bonding  (IX) i n s o l u t i o n  ketone  ketone  the  the p r o d u c t i o n  diverted  methylene  the heptamethyl-4p-ol  of the exo-methylene  Replacing  reactivity  was  to acetylate  resulted  the  from  isomeric  the exo-  (X).  Exper imental Figure the  24  title  shows t h e r e a c t i o n  compound  from  scheme f o r t h e g e n e r a t i o n  2,3,4a,4ap,6,7,8ap-heptamethyl-  4ap,5,8,8ap-tetrahydronaphthoquin-40-ol intermediate [4.4.0.0 3  methylene  7  rotation  ketone  Crystal  (X)  parallel  data:  7  c =  A ,  D  Z = 4,  X = 0.71073 A, structure  from  a  via  the  c  2 a  = 1.122  A,  axis  * «  yielded  r e l a t e d by a  two-fold  of t h e c r y s t a l s .  a =  104.027(6)°, ».(MoKa)  3  , from  of  solution  monoclinic  g cm" ,  space group P ^ / a  analysis.  appeared  = 244.36,  13.743(2)  Recrystallization  hexane/acetone  to the long  C , H O , MW  b = 8.771(1), 3  (IX).  c r y s t a l s whose f a c e s  axis  (VIII)  1,3,6,7,8,9-hexamethyl-4-exo-methylenetricyclo  ]dec-7-ene-10-one,  translucent  of  12.374(2),  V =  1446.9(3)  = 0.626  systematic  absences  cm" , 1  and  156  Figure  24  R e a c t i o n scheme showing t h e p r o d u c t i o n of t h e m e t h y l e n e k e t o n e ( X ) . Data 0.3 mm  3  using  2(5/6)6 between  were  and  in collecting  measurement. H o r i z o n t a l  with  theta,  from  Data  10.06  deg  t o the  25% on e a c h  side  settings  were  by (2.00 + t a n e )  c o n s t a n t a t 4 mm. 1  u-  reflections  according  aperture  min" ,  An  the  Scan  former  mm;  speeds limit  t o 75 s s c a n s .  processing,  polarization  which  corrections,  reflections) classified  to  0.3 x 0.2 x  radiation.  3297 u n i q u e  the width being given  a p e r t u r e remained  0.91  corresponding  (0.06(S  MoKo  (0.65 + 0.35tane)° a n d were e x t e n d e d  the v e r t i c a l  ranged  measuring  0.0 and 2 7 . 5 ° . Omega s c a n w i d t h s v a r i e d  background  varied  with a c r y s t a l  g r a p h i t e monochromatized  s c a n was employed  expression for  collected  of  the  total  included  application  indicated reflections  of L o r e n t z and  that  41.5%  measured  (1369  (3297) were  a s o b s e r v e d h a v i n g I £ 3c-(I), where ©- (I) = (S + 2B + 2  - B ) ) , S = scan count, B = time-averaged 2  background.  157  Solution The hOl,  processed data  h  =  2n  unobserved  OkO,  k_  suggesting  distribution  employed  =  space  The s t r u c t u r e  relationships.  than  the  fixing  was  No  reflections  which  were  given  starting  yield  16 s e t s o f p h a s e s  by  phases  i n v o l v e d i n many E  (calculated  s e t w h i c h , when u s e d a Fourier  which  the  Refinement  was  which  was  The t h r e e for origin  Four  other  relationships  and p = number o f p o s s i b l e  consistency  E,-  0  and  were tr  to  p  t h e s e p h a s e s ) . The s e t o f p h a s e s w i t h  on  2  0.  the  p h a s e s e t s = n , where n = number  for  calculating  of  space methods  by  0.90,  v a l u e s of 0, but were p e r m u t e d w i t h  phases  The  to generate  f o r acceptance.  starting  internal  direct  to f i t the c r i t e r i a  initial  as  the t h e o r e t i c a l  E-values  of g r e a t e r than  (total  types  P2,/a.  indicated  of  map  with  solved  phases  chosen  were a s s i g n e d  the  with the centrosymmetric  minimum v a l u e o f 0.95  reflections,  specification,  correct  group  favorably  - consistent  of  2n + 1 were c l a s s i f i e d  the  compared  r e l a t i o n s h i p s had a p r o b a b i l i t y  origin  reflections  i n MULTAN u s i n g 272 of t h e l a r g e s t  phase  less  Refinement  revealed that  and  statistics  group suggested.  2448  1  thereby  intensity centric  +  and  in  positions  values  the h i g h e s t degree  as a f i g u r e  conjunction  synthesis, resulted  starting  of  of m e r i t ) was t h e with  the  E's  in  i n an e l e c t r o n d e n s i t y  o f t h e 18 n o n - h y d r o g e n atoms were  located.  confirmed carbon  to  be  initiated the  i n the space  correct  space  Subsequent  cycles  with  P2,/a  (later  group assignment) with  atoms a n d 2 oxygen atoms a s s u m i n g  factors.  group  these  isotropic atoms and  16  temperature anisotropic  158  t h e r m a l p a r a m e t e r s were f o l l o w e d revealed reached  the  positions  after  atoms and  several  resulted  planes,  where  of  ||Fo|  -  reflections  which appeared  was  applied  I  weight  Three  was to  the  further  in  expression  =  | Fo |  2  respectively  on  =  1369  data  having  0.075. R e f l e c t i o n s  ©- (F)  is  error  i n an  2  final  derived  I >  from  observation  shifts  0.l5e/A .  factors  =  r  '1+cos  T  is  of  in  4 2  the  of  0.079 260  be g-  refinement,  was  w  and  =.0.039  and  0.465©-,  R = 0.132 =  Rw  2  where  a b o v e . The  standard  0.7371.  Following  fluctuations and  in Table  up  temperature  anisotropic  given  fitted and  1/©- (F)  coordinates  XXXIX  final  variables  showed random  atomic  to  R = 0.037, Rw  2  Table  thermal  XL.  3  26 26  at  weights,  f o r n o n - h y d r o g e n atoms a r e  1+cos  and  list  i s presented  parameters  Y  A  3  An  correction  the  The  a l l data  weight  an  extinction coefficient  w h i c h had  convergence a d i f f e r e n c e - s y n t h e s i s to  produced  o- (I) d e f i n e d  unit  in  of  several  distribution  cycles  3©-(I). F o r  the of  showed  2  were a s s i g n e d  all  list  error  extinction  secondary  cycle  was  from e x t i n c t i o n e f f e c t s .  converged  maximum p a r a m e t e r the  3.0,  2  w i t h mean and  the  than  the  |Fc | e x p ( - g Y / 2 | F c | ) .  extinction corrections,  which  included  = 0.040. A  by  spread  refinement i s the  to  divided  mosaic  5.44x10*, where g  with  which  0.040, Rw  greater  value, the  refinement  suffer  syntheses  hydrogens. Convergence  (domain m i s o r i e n t a t i o n )  assuming  Gaussian.  24  k|Fc||  of  Type  of  difference  R - v a l u e of  observation  isotropic  unit  the  cycles  i n an  by  x sin2 6  mean  V  2  12.593  transmission  path  where  length  V  is  the  volume  159  Table Final and with Atom C(1) C(2) C(21 ) C(3) C(31 ) C(4) C(41 ) C(4a) C(4a1 ) C(5) C(6) C(61 ) C(7) C(71 ) C(8) C(8a) C(8a1 ) 0 H1(21 ) H2(21 ) H3(21 ) H1(31 ) H2(31) H3(31 ) H1(41 ) H2(41) H3(41) H1(4a1) H2(4a1) H3(4a1 ) H1 (5) H2(5) H1(61) H2(61) H1 (71 ) H2(71) H3(71 ) H1 (8) H2(8) H1 (8a1 ) H2(8a1) H3(8a1)  positional  isotropic estimated  XXXIX  (fractional  x 10 , H x  thermal  parameters  (U x 1 0  standard  deviations  in  X  55042(23) 60655(21) 53993(39) 60690(21) 56373(40) 64132(22) 64072(42) 69955(23) 70615(53) 81862(25) 81535(21) 88274(32) 72670(21) 75583(38) 71454(27) 64186(24) 60276(53) 4534 1(16) 534( 3) 576( 3) 465( 3) 584( 3) 485( 4) 599( 4) 598( 4) 71 1 ( 3) 61 4 ( 4) 750( 3) 625( 4) 747( 3) 853( 2) 863( 2) 936( 3) 876( 3) 828( 3) 700( 3) 759( 3) 673( 2) 786( 3) 562( 3) 668( 3) 550( 3)  1 13913(33) -160(32) -14597(49) 4181(33) -7121(57) 18184(35) 24161(63) 27705(32) 44767(46) 21046(40) 4419(36) -5574(61) 625(32) -13489(49) 14881(37) 25406(33) 39753(49) 15105(25) -1 57 ( 3) -241 ( 5) -1 31 ( 4) -40( 5) -83( 4) -1 76 ( 6) 181 ( 5) 250( 4) 352( 6) 496( 5) 503( 5) 461 ( 4) 229( 3) 267( 3) -24( 3) -1 60 ( 4) -1 1 2( 4) -151 ( 3) -235( 4) 1 22 ( 3) 1 93 ( 3) 368( 4) 462( 5) 452( 4)  10 )  5  3  3  A ) 2  parentheses  z 65380(19) 70552(19) 66836(35) 81383(19) 87757(31) 84397(20) 94693(28) 77830(20) 80587(38) 80195(26) 77570(20) 83079(31) 68131(19) 6281 5(31 ) 61453(23) 66145(20) 60040(36) 60954(15) 598( 3) 706( 3) 675( 3) 948( 3) 856( 3) 873( 4) 983( 3) 984( 3) 939( 4) 765( 3) 800( 3) 875( 3) 876( 2) 762( 2) 893( 2) 8 1 2 ( 2) 6 1 5 (3) 560( 3) 669( 3) 542( 2) 61 0( 2) 533( 3) 598( 3) 633( 3)  Ueq/U i s o 45 42 71 45 76 46 78 51 88 59 49 79 44 73 51 48 85 70 84( 12) 101 ( 14) 97( 14) 1 18( 14) 1 15(15) 1 62 (22) 1 43 ( 20) 96( 14) 161 ( 22) 1 1 8 (17) 1 24 ( 16) 88( 11) 58( 8) 71 ( 9) 79( 10) 77( 12) 1 08 ( 15) 84( 11) 1 00 (13) 57( 8) 76( 10) 98( 13) 1 1 4(17) 92( 14)  160  Table  XL «  Final  anisotropic and  Atom  u,  their  1  u  thermal  parameters  estimated  standard  2 2  U33  u  ( U i j x 10"  A ) 2  deviations 1 2  y,  3  y  2  3  CO)  389( 16)  604(20)  354(15)  7306)  1 03( 13)  -36( 14)  C(2)  385( 14)  440(16)  430(15)  -40(14)  1 04 (11)  -15( 14)  C(21 )  781 (29)  643(27)  709(28) - 2 2 8 ( 2 3 )  1 66 (22) -1 19( 22)  C(3)  359( 15)  569(21)  428(16)  -11(14)  1 29( 12)  43( 15)  C(31 )  743( 28)  982(34)  593(25) - 2 1 9 ( 2 6 )  254( 21 )  1 27 (23)  C(4)  436( 16)  577(20)  370(15)  43(15)  83( 12)  -1 6( 14)  C(41 )  859( 30)  989(36)  468(20)  -15(28)-  C(4a)  570( 19)  418(18)  51307)  -4605)  1 287(43)  519(25)  755(30) - 1 3 0 ( 2 7 )  81 (30) -1 23 ( 21)  C(5)  462( 19)  768(27)  511(20) - 1 7 2 ( 1 8 )  57< 15)  C(6)  323( 15)  692(23)  487(17)  57(15)  141  13)  16) 1 06 (  C(61 )  631 (24) 1009(37)  676(25)  210(25)  58  19)  1 1 2(26)  C(7)  41 4( 15)  490(18)  424(15)  72(14)  1 39 12)  24( 15)  C(71 )  771 (28)  755(29)  690(26)  265(24)  235 22)  -51 (23)  C(8)  452( 17)  657(22)  440(18)  -27(17)  1 50 14)  67( 16)  C(8a)  573( 18)  428(17)  435(16)  52(15)  1 1 86 (40)  590(26)  681(27)  399( 13) 1040(19)  605(14)  C(4a1 )  C(8a1 ) 0  1 42 ( 21 ) -1 57 (23) 62< 14)  -27( 15)  47( 19)  14)  92( 14)  147(29)  60 2 8 )  1 56(22)  167(12)  9 [10)  -71 (12)  85 f  161  Discussion The  structure  half-chair  cyclohexenone  cyclohexane C(8a) , C(7) C(8)  moiety.  t h e two  1  consists  forming  In  ring  cis-fused  addition  six-membered a  o f m o l e c u l e s composed of a  page  ring  1 7 1 ) . The  as e v i d e n c e d by marked d e v i a t i o n s angles associated and  X L I I ) . The  includes to  a  105°;  formally  is  those  and  C(4a);  containing  and  the  and  for  methyl  values  one  ring  substituents  by as much as  7.4°  from  planar is  noticeable  Each  methyl  group  (Table X L I I I ) .  i n t h e c a s e of  at the bridgeheads  on  (11.5(3)°) torsion  H 3 C - C - O C H 3  in  94°  aromatic  other methyl  results  which  unsubstituted  groups.  (-24.4(4)°),  of  ( T a b l e s XLI  for C(31)-C(3)-C(2)-C(21)  -1.2(3) t o -2.9(4)  of the e c l i p s e d  strained,  atom, range  The  steric  widening  the  C(8a1)-C(8a)-  i s a net  increase  8.5°. overall  stress  i n the molecule  t h e l e n g t h e n i n g of t h e b r i d g i n g  is alleviated  bonds C ( 4 a ) - C ( 8 a )  N o t e , atom l a b e l s r e f e r t o t h e same s y s t e m naphthoquinol progenitor (VIII). 1  i s highly expected  carbon  with at least  t h e combined e f f e c t  The by  from  angles  3  w i t h atoms C ( l ) , C(8a)  i s 108°. F u r t h e r a n g u l a r s t r a i n  is eclipsed  range  repulsion  of  (54)  C(41)-C(4)-C(4a)-C(4a1)  H C-C-C  and  from  2  adjacent carbon. Except  angles  v i a atoms C(2)  molecule  sp -hybridized  boat  bond C ( 4 a ) -  a n g l e s of t h e five-membered  111.7°  angles  substituent an  joined  t h e e x p e r i m e n t a l v a l u e f o r t h e a n g l e s of  cyclopentadienyl  twisted  w i t h atoms o f g i v e n h y b r i d i z a t i o n s  endocyclic  cyclopentane  in  a  the b r i d g i n g  rings are  five-membered  ( s e e F i g u r e 25,  to  to  twisted  used  somewhat  and  i n naming  C(2)-  the  Table Bond a n g l e s  XLI  (°) w i t h  standard deviations pected  in  estimated parentheses;  values are enclosed  C(sp ) -C(sp ) -C(sp ) 3  3  3  C(21 ) - C ( 2 ) C(4a1) -C(4a) C(4a1) -C(4a) -C(4a) C(5) -C(7) C(2) C(2) -C(7) C(71 ) - C ( 7 ) C(7) -C(8) C(4a) -C(8a) C(4a) -C(8a) C(8) -C(8a)  -C(7) -C(5) -C(8a) -C(8a) -C(71) -C(8) -C(8) -C(8a) -C(8) -C(8a1)  -C(8a1)  in brackets  [109 .5] 114. 7(3) 108. 9(3) 110. 6(3) 109. 5(2) 113. 8 ( 3 ) 101. 4(2) 112. 0(3) 102. 8 ( 2 ) 109. 4(2) 116. 9(3) 113. 9(3)  C(sp ) -C(sp ) -C(sp )  [109 '.5]  C(21 ) - C ( 2 ) C(21 ) - C ( 2 ) C(7) -C(2) C(7) -C(2) C(4a1) -C(4a) C(5) -C(4a) C(8a) -C(4a) C(4a) -C(5) -C(7) C(2) C(71 ) - C ( 7 ) -C(7) C(8) C(4a) -C(8a) -C(8a) C(8) C(8a1) -C(8a)  111. 8(3) 113. 8 ( 3 ) 102. 2(2) 1 14. 0(2) 112. 9(3) 103. 3(2) 111. 3(2) 110. 4(2) 110. 3(2) 112. 4(3) 1 06.1 (2) 1 07.4(2) 94. 3(2) 112. 5(3)  3  3  2  -CO) . -C(3) -C(1 ) -C(3) -C(4) -C(4) -C(4) -C(6) -C(6) -C(6) -C(6) -CO ) -C(1 )  -c(D  C(sp )-C(sp )-C(sp ) 2  CO)  3  -C(2)  2  -C(3)  [109.5] 98.4(2)  T a b l e XLI  X(S  2 P  (continued)  ) -C(sp ) -C(sp )  0 0 C(2) C(4) C(4) C(3) C(3)  2  3  -C(2) -C(Ba) -C(8a) -C(2) -C(31) -C(41) -C(4a)  -CO ) -CO)  -co)  -C(3) -C(3) -C(4) -C(4)  C(sp ) -C(sp ) -C(sp ) 3  C(2) C(2) C(41 ) C(5) C(5) C(61 )  2  -CO ) -C(3) -C(4) -C(6) -C(6) -C(6)  3  -C(8a) -C(31) -C(4a) -C(61) -C(7) -C(7)  [120 .0] 1 26.5(3) 128. 0 ( 3 ) 105. 3 ( 2 ) 117. 1(2) 123. 9(3) 122. 5 ( 3 ) 118. 7 ( 2 )  [120 .0] 1 05.3 ( 2 ) 118. 9(3) 118. 2 ( 3 ) 1 22.2 ( 3 ) 113. 0 ( 2 ) 124. 8 ( 3 )  164  Table Bond a n g l e s estimated Bonds  XLII  (deg) i n v o l v i n g standard Angle  C(2) - C ( 2 1 ) -H1(21) 109(2) C(2) -C(21) -H2(21) 112(2) - C ( 2 1 ) -H3(21) 108(2) C(2) H1 (21 ) - C ( 2 1 ) -H2(21) 110(3) 105(3) H1(21 ) - C ( 2 1 ) -H3(21) H2(21) - C ( 2 1 ) -H3(21) 112(3) 110(2) C(3) - C ( 3 1 ) -H1(31) 111(2) C(3) -C(31) -H2(31) 110(3) C(3) -C(31) -H3(31) H1(31 ) -C(31) -H2(31) 110(3) H1(31 ) -C(31) -H3(31) 108(4) 108(4) H2(31 ) -C(31) -H3(31) C(4) -C(41) -H1(41) 115(3) 110(2) C(4) -C(41) -H2(41) C(4) -C(41) -H3(41) 108(3) 109(3) H1 (41 ) -C(41) -H2(41) H1 (41 ) -C(41) -H3(41) 112(4) H2(41) -C(41) -H3(41) 103(3) C ( 4 a ) -C(4a1 )-H1(4a1) 106(2) C ( 4 a ) -C(4a1 )-H2(4a1) 115(2) C ( 4 a ) -C(4a1 )-H3(4a1) 110(2) H1(4a1)-C(4a1)-H2(4a1)113(3) H1(4a1)-C(4a1)-H3(4a1)107(3) H2(4a1)-C(4a1)-H3(4a1)106(3)  h y d r o g e n atoms  deviations  with  in parentheses Bonds  C(4a) -C(5) -H1(5) -H2(5) C(4a) -C(5) C(6) -C(5) -H1(5) -C(5) -H2(5) C(6) -H2(5) H1 (5) - C ( 5 ) C(6) -C(61) -H1(61) C(6) -C(61) -H2-(61 ) H1(61 ) -C(61) -H2(61) C(7) -C(71) -H1(71) C(7) - C ( 7 1 ) - -H2(71) C(7) -C(71) -H3(71) H1(71 ) -C(71) -H2(71 ) H1(71 ) -C(71) -H3(71) H2(71) -C(71) -H3(71) C(7) -C(8) -H1(8) C(7) -H2(8) -C(8) -H2(8) H1 (8) - C ( 8 ) C ( 8 a ) - C ( 8 a 1 ) -H1(8a1) C ( 8 a ) -C(8a1) -H2(8a1) C ( 8 a ) - C ( 8 a 1 ) -H3(8a1)  Angle 107(2) 109(2) 1 12(2) 109(2) 109(2) 121(2) 119(2) • 120(3) 105(2) 111(2) 115(2) 108(3) 1 10(3) 108(3) 110(2) 113(2) 106(2) 109(2) 1 10(2) 107(2)  HI(8a1)-C(8a1)-H2(8a1)111(3)  HI(8a1)-C(8a1)-H3(8a1)108(3) H2(8a1)-C(8a1)-H3(8a1)112(3)  Table Torsion  angles  standard  XLIII (deg) w i t h  deviations  i n parentheses  Atoms C ( 8 a ) -c( 1) C ( 8 a ) -c( 1) 0 -c( 1) 0 -c( 1) C(2) -c( 1) C(2) -c( 1) 0 -c( 1) 0 -c( 1) CO ) -c( 2) CO ) -c( 2) C(21 ) -c( 2) C(21 ) -c( 2) C(2) -c( 3) C(2) -c( 3) C(31 ) -c( 3) C ( 31 ) -C( 3) C(3) -c( 4) C(3) -c( 4) -C( 4) C(3) C ( 4 I ) -c< 4) C(41 ) -C( 4) C(41 ) -CI 4) -CI 4a) C(4) C(4a1 )-c< 4a) C ( 8 a ) -c<,4a) C(4) -c (4a) C(4) -c (4a) C(4a1 )-c [4a) C(4a1 )-c !4a) C(5) -c (4a) C(5) -c (4a) C ( 4 a ) -c (5) C ( 4 a ) -c (5) C(5) -c (6) C(5) -c (6) C(61 ) -c (6) C(61 ) -c (6) CO ) CO) CO ) C(3) C(3) C(3) C(2)  -c (2) -c (2) -c (2) -c (2) -c (2) -c (2) -c (3)  estimated  Value  -c( 2) -c( 2) -c( 2) -c( 2) -c( 8a) -c(8a) -c( 8a) -c( 8a) -c( 3) -c( 3) -c( 3) -c( 3) -c( 4)  -CI 4) -C( 4) -c( 4) -CI 4a) -c< 4a) -c< 4a) -CI 4a) -CI 4a) -c 4a) -c ,5) -c ,5) -c (5) -CI (8a) -c (8a) -c (8a) -c (8a) -c (8a) -c (8a) -c (6) -c (6) -c (7) -c (7) -c (7) -c (7)  -C(21) -C(3) -C(21) -C(3) -C(4a) -C(8a1) -C(4a) -C(8a1) -C(31 ) -C(4) -C(31) -C(4) -C(41) -C(.4a) . -C(41) -C(4a) -C(4a1) -C(5) -C(8a) -C(4a1) -C(5) -C(8a) -C(6) -C(6) -C(6) -CO ) -C(8a1) -CO ) -C(8a1) -CO ) -C(8a1) -C(61) -C(7) -C(7 1) -C(8) -C(71) -C(8)  -156.0( 3) 84.1 ( 2) 19.2( 4) -100.7( 3) -57.8( 3) 172.2( 3) 127.1( 3) -2.91 4) 129.91 3) -47.1 I 3) 11.51 4) -165.51 3) 177.1 I 3) -12...2 I3) TJ.2I 5) 1 70.913) 164.5 3) -78.0 3) 39.4 3) -24.4 i4) 93. 1 (3) -149.5 (3) 59.9 (3) -179.8 (3) -58.7 (3) -2.4 (3) 125. 1 (4) -128.7 (3) -1 .2 (5) 111.2 (3) -121.3 (4) -142.2 (3) 37.2 (3) 1 53.2 (3) 30.5 (3) -27.4 (4) -150.1 (3)  -c (21) -c (21) -c (21 ) -c (21) -c (21) -c (21 ) -c (31 )  -H1(21) -H2(21) -H3(21) -H1(21) -H2(21) -H3(21) -H1(31)  61 (2 -177(2 -53(2 171 (2 -67(2 57(2 167(2  Table XLIII C(2) -c( 3) C(2) -c( 3) ~C( 3) C(4) C(4) -c( 3) C(4) -c( 3) C(3) -c( 4) C(3) -c( 4) C(3) r C ( 4) C ( 4 a ) -c( 4) C ( 4 a ) -c( 4) C ( 4 a ) -c( 4) C(4) -c( 4a) C(4) -c( 4a) C(4) -c( 4a) C(5) -c( 4a) C(5) -c( 4a) C(5) -c( 4a) C ( 8 a ) -c( 4a) C ( 8 a ) -c< 4a) C ( 8 a ) -c< 4a) -CI 4a) C(4) C(4) -c< 4a) C ( 4 a 1 ) -c 4a) C(4a1 ) -c 4a) C ( 8 a ) -c 4a) C ( 8 a ) -c [4a) H1 (5) -c (5) H1 (5) -c (5) H2(5) -c (5) H2(5) -c (5) C(5) -c (6) C(5) -c (6) C(7) -c (6) C(7) -c (6) C(6) -c (7) C(6) -c (7) C(6) -c (7) C(8) -c (7) C(8) -c (7) C(8) -c (7) C(6) -c (7) C(6) -c (7) C(71 ) -c (7) C ( 7 1 ) -c (7) C(1) -c (8a) C(1) -c (8a) C(1 ) -c (8a) C ( 4 a ) -c (8a) C ( 4 a ) -c (8a) C ( 4 a ) -c (8a)  (continued)  -71(3) - C ( 3 1 ) -H2( 31 ) 49(3) - C ( 3 1 ) -H3( 31 ) -16(3) - C ( 3 1 ) -H1 ( 31 ) 106(3) - C ( 3 1 ) -H2( 31 ) - C ( 3 1 ) -H3( 31 ) -14(3 - C ( 4 1 ) -H1 ( 41 ) 109(3 - C ( 4 1 ) -H2( 41 ) -139(3 - C ( 4 1 ) -H3( 41 ) 176(3 - C ( 4 1 ) -H1 ( 41 ) -62(3 - C ( 4 1 ) -H2( 41 ) 50(3 - C ( 4 1 ) -H3( 41 ) -H1 ( 4a 1 ) 175(3 -C(4a1) -60(2 - C ( 4 a 1 ) -H2( 4a 1 ) 60(2 4a 1 ) - C ( 4 a 1 ) -H3( -H1 ( 4a 1 ) 61(3 -C(4a1) -1 74(2 -H2I 4a 1 ) -C(4a1) -54(2 - C ( 4 a 1 ) -H3I 4a 1 ) -60(3 - C ( 4 a 1 ) -H1 I 4a 1 ) 66(2 -H2I 4a 1 ) -C(4a1) -175(2 -H3I 4a 1 ) -C(4a1) -63(2 -H1 I 5) -C(5) -180(2 -H2 5) -C(5) 58(2 -H1 ,5) -C(5) -60(2 -H2 [5) -C(5) 179(2 -H1 (5) -C(5) -H2 (5) 61 (2 -C(5) -23(2 -C(61) -C(6) 1 57(2 -C(7) -C(6) 98(2 -C(61) -C(6) -83(2 -C(7) -C(6) 3(2 - C ( 6 1 ) -H1 (61 ) 178(2 - C ( 6 1 ) -H2 (61 ) -177(2 - C ( 6 1 ) -H1 (61 ) -1 (2 - C ( 6 1 ) -H2 (61 ) -57(2 - C ( 7 1 ) -H1 (71 ) -173(2 - C ( 7 1 ) -H2 (71 ) 65(2 - C ( 7 1 ) -H3 (71 ) 63(2 - C ( 7 1 ) -H1 (71 ) -53(2 - C ( 7 1 ) -H2 (71 ) -176(2 - C ( 7 1 ) -H3 (71 ) -HI (8) 1 64.3 -C(8) 45(2 -H2 (8) -C(8) -H1 (8) 41 (2 -C(8) -78(2 -H2 (8) -C(8) -48(2 - C ( 8 a 1 ) -H1 (8a1 ) -170(2 - C ( 8 a 1 ) -H2 (8a1 ) 68(2 - C ( 8 a 1 ) -H3 (8a1 ) -173(2 - C ( 8 a 1 ) -H1 (8a1 ) 65(3 - C ( 8 a 1 ) -H2 (8a1 ) -57(2 - C ( 8 a 1 ) -H3 (8a1 )  167  C(7)  to  distances  of  1.604(4)  and  1.602(4) A,  ( T a b l e X L I V ) . T h i s i n c r e a s e i n l e n g t h of over  accepted values  to e l i m i n a t e  the  (33)  approximately  for C(sp )-C(sp ) 3  repulsive  effect  respectively 0.07  bonds i s n o t  3  of the e c l i p s e d  A  enough  methyls  (vide  supra). The C(2)  strain  to C(7)  bridge  induced  in  i s compensated  C(4a)-C(8a);  the cyclohexenone  somewhat by  in addition,  show i n c r e a s e s a s w e l l ,  averaging  accepted  A  the  v a l u e of  structure  accepted van  a shift  C ( 7 ) . The  not  one  from'  suggest  of  molecular  secondary  two  very  these  unsubstituted  rings  (IX)  the  within from  correspond  to  Figure  24,  and  of  However, a l e s s the  in  b r i d g e from C ( 4 ) - C ( 7 ) to  is  the  is  not  but D r e i d i n g m o d e l s o f  both  the  higher  five-membered  calculations analogs  of  2  of b o t h  (47)  (IX) and  respectively.  sp -hybridized  ring  energy  rings  molecules would  but  increases  than  r i g o r o u s comparison mechanics  be  to  note  the  (X)  indicate  The  is  that  strains of  to  relative  to  predict.  of c o n f o r m a t i o n s of  adding  likely  the  difficult  indication  to  unsaturated,  effect  even  isomer  as o p p o s e d  on  members  the  molecular  to C(2)-  product,  in (X). It i s i n t e r e s t i n g  30.90 k c a l / m o l e ,  the energy  confirm  than  significantly  illustrated  study,  strained  tricyclo  substituents  magnitudes  the  C(4a)-C(4)  bonds  2  relative  this  that  mechanics  23.59 and  of  greater  deviate  reaction,  i n the  deduced  manifesting  to  do  r e a c t a n t energy,  molecules  increase  3  bonding  distances.  photochemical  involves  of  A  and  values. Intermolecular contacts generally  The  only  bonds C ( 2 ) - C ( 3 ) 0.024  on  stretching  f o r C ( s p ) - C ( s p ) . Other  ( T a b l e XLV)  der Waals  easily  1.510  the  ring  tends  (X) as  the  168  T a b l e XLIV Bond l e n g t h s  (A) w i t h s t a n d a r d d e v i a t i o n s  accepted v a l u e s  2  are enclosed  Bond  Length  [1.537(5)]  -C(21) C(2) -C(7) C(2) C(4a) -C(4a1) C(4a) -C(5) C(4a) -C(8a) -C(71) C(7) C(7) -C(8) C(8) -C(8a) C(8a) -C(8a1)  1 .530(4) 1.602(4) 1.541(5) 1.544(4) 1.604(4) 1.524(5) 1.537(4) 1.536(6) 1.525(5)  C(sp ) -C(sp )  [1.510(5)]  C(2) C(8a) C(2) C(31 ) C(41 ) C(4a) C(5) C(7)  1.507(4) 1 .500(4) 1.535(4) 1.504(4) 1.511(4) 1.532(4) 1.500(5) 1.519(4)  3  3  2  -CO ) -CO ) -C(3) -C(3) -C(4) -C(4) -C(6) -C(6)  C(sp ) -C(sp ) 2  2  -C(4) -C(61)  C(3) C(6)  C ( s p ) -0 2  C(1 )  2  From r e f e r e n c e  in brackets  C(sp ) -C(sp ) 3  33.  -0  in parentheses;  [1 . 3 3 5 ( 5 ) ] 1.333(4) 1.316(6) [1.215(5)] 1.212(3)  . Table Bond l e n g t h s i n v o l v i n g estimated Bond  XLV h y d r o g e n atoms  standard deviations  Length  (A) w i t h  i n parentheses  Bond  Length  C(21 ) -H1(21)  0 .95(4)  C(5)  -H1(5)  1. 0 1 ( 3 )  C(21 ) -H2(21)  1 .03(4)  C(5)  -H2(5)  1. 0 0 ( 3 )  C(21 ) -H3(21)  0 .97(4)  C(61 ) - H 1 ( 6 1 )  0 .99(3)  C(31 ) -H1(31)  0 .97(4)  C(61 ) - H 2 ( 6 1 )  0 .95(3)  C(31 ) -H2(31)  0 .95(4)  C(71 ) - H 1 ( 7 1 )  0 .98(4)  C(31 ) -H3(31)  •1 .02(5)  C(71 ) - H 2 ( 7 1 )  1 .04(4)  C(41 ) -H1(41)  0 .97(5)  C(71 ) - H 3 ( 7 1 )  1 .04(4)  C(41 ) -H2(41)  0 .90(3)  C(8)  -H1(8)  1. 0 3 ( 3 )  C(41 ) -H3(41)  1 .02(5)  C(8)  -H2(8)  0 .98(3)  C(4a1 )-H1(4a1 )  0 .97(4)  C(8a1) -H1(8a1 )  0 .97(4)  C(4a1 )-H2(4a1 )  1 .10(4)  C(8a1) -H2(8a1 )  0 .99(4)  C(4a1 )-H3(4a1 )  0 .98(3)  C(8a1) -H3(8a1 )  1. 0 0 ( 4 )  170  higher  energy  isomer:  1) c o n f o r m a t i o n  of  six-membered  the  i)  (X)  kcal  (IX)  boat  2 >  twisted  boat  half-chair  3 >  twisted  half-  rings ii)  chair  2)  stereochemistry  of  all  substituents  are  <  at  10  two  pairs  relat ively  methyls  least  eclipsed;  energy  axial  positions  C(5) in  The  indication  arguments than  is  alone,  i t s precursor  model  that (X)  steric  and  angular  molecular  i s approximately  (IX). This  suggestion.  torsional  from  Although strain,  i s in  contrast  such they  models  are  less  are  hydrogens and  close  strain  5 kcal  C(8)  the  nicely effective  on  are  proximity  and  higher to  of  steric i n energy Dreiding illustrate  i n showing  effects.  Stereo  d i a g r a m s of  are d i s p l a y e d in Figure  the molecule 25.  and  the  unit  cell  contents  Figure  25  S t e r e o v i e w of the m e t h y l e n e - k e t o n e m o l e c u l e , (X) ( t o p ) and t h e c o n t e n t s of t h e u n i t c e l l (bottom).  CHAPTER  VIII  ,3,5,6,8-HEXAMETHYL-4-MESYL-7-HYDROXYTETRACYCLOf 4 . 2 . 1 . 1 . 0 ] D E C A N E 25  37  173  Introduction Not the  unlike  t h e s i s , the  result  (55).  the  other  present An  structures presented  compound was  intramolecular  d i k e t o n e c a g e compound was symmetric obtain  p r o d u c e d as  attempted,  but  the  r e a c t i o n produced  c r y s t a l s of  the  k e t o l met  mesylate  derivative  good q u a l i t y t o be analysis  was  employed  c a r r i e d out  of  the  k e t o l , and  its  formation  on  from  the  effort  a  symmetrical  of  of  ketol.  forming  the  Efforts  to  success.  structure  to confirm  However, a sufficiently  analysis. the  suggested  The  structure  i t s s t r u c t u r e a mechanism  d i k e t o n e was  of  unexpected  c r y s t a l s of  in a c r y s t a l  basis  a  little  afforded  i n an  the  with  instead  part  an  p i n a c o l i z a t i o n of  pinacol,  hydroxy  in this  for  (55).  Experimental Photolysis solution by  yielded  pyridinium  Subsequent reflux  of  intermediate  hydroxy  the  hexamethyl-4a-ol  c a g e compound  chlorochromate  resulted  was  the  treatment  Reduction  (XV)  of  of  led  (XIII)  i n the  formation  (XIV)  with  diols, reacted  (XV)  mesylate  recrystallization  and  with  the  the  of  hydroxy  which the  (XVII),  a  several  crystal  of  obtained  from a h e x a n e / a c e t o n e  solution. This  0.45  0.43  was  fear  x of  x  shattering  1.03  mm  3  and  i t . Preliminary  not  (XIII).  cut  gave  attempts  and  two  product  to y i e l d  quality  crystal  at  (XIV). the  minor  to' a s m a l l e r  Weissenberg  HC1  ketone  fair  in  oxidation  z i n c amalgam and  methane s u l f o n y l c h l o r i d e After  26)  diketone  borohydride  (XVI),  (XVII). of  with  sodium  (Fig.  ( X I I ) , w h i c h upon to  of  (XI)  the at was  measured size  for  precession  174  Figure  26  R e a c t i o n scheme showing t h e d e v e l o p m e n t of t h e t i t l e compound ( X V I I ) .  175  photographs conditions the  indicated OkO,  k = 2n  space group  Crystal b = A ,  C  with  from  =  1.273  to  9.246(2),  A,  1714.1(6)  p =  102.11(1)°,  P2,/c  theta  limits  MoKc  of  radiation  min~ .  reflections  collected  crystal  peak  widths  of  of t h e c r y s t a l  were  between  served  fixed  periodically  throughout  Lorentz isotropic  and  decay  t h e 3911  unique  <r (l) 2  scan count  and  is B,  as  scan  speeds  scans (0.90  and  use  of were  +  tan©)  mm.  a n g l e s of  reflections  Three  and  from  which  100  orientation.  0.35  mm  setting  every  controls  +  reflections the  3.52  The  were  (inferred  several  corrections,  were a p p l i e d  additional  were m o n i t o r e d  S + 2B  the time-averaged  +  along  during  d a t a m e a s u r e d , 2997 o r 76.6% defined  and  collection.  polarization correction  3.00  after  intensity data  27.5°  necessitated  a t 4 mm.  checked  as  1  and  e x p r e s s i o n (3.00  to ensure proper c r y s t a l  reflections  cm" ,  0.0  from  i n the  a p e r t u r e was  1.944  u-2(5/6)©  1  spread  the theta-dependent  =  .  deg  widths  V =  „(MoKo)  3  10.06  the s i z e  vertical  where  = 328.48, m o n o c l i n i c a =  between  large  aperture  from  absence defining  g cm" ,  group  l a r g e mosaic  horizontal  Of  1,  and  uniquely  monochromatized  1.44  a n a l y z e d ) and  three  0 , S , MW  17.335(4)  relatively  The  +  2/m  w i t h t h e omega s c a n a n g l e c a l c u l a t e d  t a n © ) ° . The  derived  + 1, h l U , 1 = 2n  were m e a s u r e d  employed  the  2 8  space  graphite  ranging  H  D  X = 0.71073 A,  Data  1 7  c =  2=4,  3  symmetry  P2,/c.  data:  10.938(1),  monoclinic  (0.040(S  background.  with  data had  an  reduction.  I  £  3<r(l),  - B ) ) ; S i s the 2  176  Solution The  E - s t a t i s t i c s c l o s e l y p a r a l l e l e d the t h e o r e t i c a l c e n t r i c  distribution. used  in  The l a r g e s t  generating  accepted  from  probability addition  origin defining  with  permutable  readily  be  matrix  rapidly.  After  revealed  the  squares  isotropic  Further  remaining  cycles,  refinement  hydrogens.  factors  were  included  structure the  discrepancy  which c a u t i o n e d in  indicated  A l l hydrogen  f a c t o r s . Anomalous  set i n the l a t t e r between  factors  The  measuring  the d e t e c t i o n  converged  T02  thermal  most o f t h e syntheses atoms  were  scattering reflection  stages of refinement  i t s observed  d a t a , a w a r n i n g was f o u n d b e s i d e that  of a l l  of t h e non-hydrogen  f a c t o r s , Fc = 259.5 a n d F o = 87.5. On  processed  was  produced a  coordinates  and d i f f e r e n c e  f o r t h e s u l f u r -atom.  removed f r o m t h e d a t a the  phases,  solution  with a n i s o t r o p i c  synthesis  i s o t r o p i c temperature  to  In  reflections  synthesis  temperature  with  due  these  outstanding  refinement  refined  was  with  0.95.  obtained.  two s u b s e q u e n t  positions.  the  one. A F o u r i e r  parameters, a d i f f e r e n c e - F o u r i e r hydrogen  that the  than  general  E-map f r o m w h i c h t h e  least  atom c o o r d i n a t e s a n d  two  only  were  up t h e s t a r t i n g s e t . Of t h e f o u r  MULTAN,  n o n - h y d r o g e n atoms were Full  made  correct  interpretable  greater  r e f l e c t i o n s and  by  the  be  phases  required  reflections associated  phases  generated  to  which  1.98 t o 3.82 were Five  2  t h e E, c a l c u l a t i o n s  the five  from  I -relationships.  of t h e suggested phase  to  solutions  188 E ' s r a n g i n g  1169  three  shown  and Refinement  and c a l c u l a t e d examination  this reflection  system e x p e r i e n c e d  t h e i n t e n s i t y o f t h e peak even w i t h  of  the  difficulty attenuator  177  in  place.  In  intensities eliminate  of t h i s this  calculation Rw  view  of the u n r e l i a b i l i t y magnitude,  reflection  prior  before  deletion  refinement (where the  the  T02  is  2  derived  p o l y n o m i a l scheme w =  uniform The  averages  weakest  1.5,  reflection  reflections  in  wA  s e t . Due  too  was  significantly  parameters  changed  (A + BFo (A =  + CFo  2  3  f o r t h e 229 1.81,  over  were 0.218  was  0.351  largest  cycle  calculated  following  midway between S and  Fo.  (Fo =  the  in  the  was  reduced at  = 0.058.  311  t h e mean  and  Final  values  were A = 0.1986, B difference-Fourier  indicated  C ( 1 S ) ; o t h e r peaks  and  unchanged  0.981©*, r e s p e c t i v e l y .  convergence,  of  reflection, i t  i n which  scheme p a r a m e t e r s  to gave  ranges of  w h i l e R remained  the f i n a l and  This  reflection  the  = 0.01147, C = -0.000743 and D = 0.000075. A  3  1  r e f i n e m e n t c o n v e r g e d a t R = 0.042 and Rw on  2  previously)  + DFo )" .  of  1/©* (F)  i n the weighting a n a l y s i s  p l a n e was  the p o l y n o m i a l weighing  e/A ,  =  w  from t h e d a t a s e t . Upon r e m o v a l , Rw  were v a r i e d  calculated  from  |Fo| - k | F c | )  o f F o . Rw  with t h i s  factor  t h e end  2  2  to  Towards  from t h e ©* (I) d e f i n e d  from 0.066 t o 0.061  maximum s h i f t s  map,  0.083  t o t h e a p p a r e n t a b n o r m a l i t y of t h i s  removed  0.043. The  „=  i n t h e d a t a s e t , t h e 229  ranges  associated  data  for  of  Rw  reflection.  Fc = 2 . 0 ) , a p p e a r e d a n o m a l o u s  error  and  t h e w e i g h t i n g scheme was  c- (F)  justified  r e f i n e m e n t l e d t o an R o f 0.046 and  t o R = 0.050  of  considered  from the d a t a s e t . A s t r u c t u r e  to further  o f 0.070 compared  i t was  i n t h e measurement o f  a peak o f 0.484  r a n g i n g from  -0.34  ©  to  0.36  e/A  3  and a n i s o t r o p i c XLVII,  a p p e a r e d a t random p o s i t i o n s .  Atomic  thermal parameters  i n T a b l e s XLVI  respectively.  are l i s t e d  coordinates and  1 78  Table  Final and with  Atom  S 0(1 ) 0(2) 0(3) 0(4) C( IS) C(1 ) CO 1 ) C(2) C(21 ) C(3) C(31 ) C(4) C(5) C(51 ) C(6) C(61 ) C(7) C(8) C(81 ) C(9) COO) H(04) H1(1S) H2(1S) H3(1S) H1 ( 1 1 ) H2(11 ) H3(11 ) H1 (21 ) H2(21 ) H3(21) H1 (31 ) H2(31 ) H3(31) H(4)  positional  isotropic estimated  XLVI  (fractional  x 10 ,H 5  x  thermal  parameters  (JJ x 1 0  standard  deviations  in  X  83184( 5) 84901(14) 72994(19) 97730(16) 50043(17) 75588(39) 76462(19) 84945(30) 86229(18) 101656 (.25) 76017(18) 80665(31) 72686(18) 71416(21) 68076(40) 59675(19) 43891(27) 61455(18) 65000(21) 69640(40) 65705(23) 86609(22) 435( 3) 738( 4) 816( 4) 664( 4) 908( 4) 781( 3) 920( 4) 1064( 3) 1005( 4) 1076( 3) 841( 3) 881( 3) 724( 3) 643( 2)  y. 52807 ( 4) 38764 (10) 55187 (13) 57429 (14) 21623 (13) 57845 (30) -1049 (16) -1 2879 (20) 11101 (15) 1 0284 (25) 21744 (14) 28463 (22) 30234 (15) 20454 (16) 2451 0 (29) 1 1802 (16) 13283 (26) 1 4684 0 4) 221 4 (16) 1689 (26) -1238 (17) 1 4523 (17) 1 73 ( 3) 660( 4) 554( 3) 542( 3) -1 20 ( 3) -1 95 ( 3) -1 44 ( 3) 1 90 ( 3) 74( 3) 46( 3) 232( 3) 341 ( 3) 337( 3) 343( 2)  10 ) 3  3  A ) 2  parentheses  z  89249 ( 3) 90544 ( 8) 82021 (10) 90274 (10) 74732 ( 9) 97079 (21 ) 83729 (11) 83556 (21 ) 85669 (11) 83793 (22) 81113 ( 9) 74364 (13) 8751 1 (10) 93569 (10) 101354 (15) 88225 (11) 89295 (19) 79342 (10) 76188 (11) 68292 (15) 89386 (12) 94287 O 1 ) 730( 2) 962( 2) 1 022 ( 2) 968 ( 2) 789( 2) 825( 2) 887( 2) 846( 2) 777( 2) 869( 2) 705( 2) 765( 2) 7 1 6 ( 2) 856( 1)  Ueq/U i so  43 41 64 59 53. 73 39 65 38 66 32 55 33 39 69 37 62 33 39 65 42 44 78( 9) 1 14(13) 93( 10) 87( 10) 97( 1 1 ) 72( 8) 101 (1 1 ) 83( 9) 97 ( 1 1 ) 83( 10) 94( 9) 67( 7) 81 ( 9) 46( 6)  179  Table H1(51 ) H2(51 ) H3(51) H1(61) H2(61) H3(61 ) H(8) H1 (81 ) H2(81 ) H3(81) H1 (9) H2(9) H1 (10) H2(10)  592( 4) 654( 3) 763( 4) 41 1 ( 3) 370( 3) 427( 3) 569( 2) 788( 3) 693( 3) 630( 4) 705( 3) 579( 3) 945( 2) 889( 3)  XLVI  (continued) 296( 3) 1 77( 3) 301 ( 4) 21 9 ( 3) 80( 3) 1 07 (3) -32( 2) 42( 3) -69( 3) 67( 4) -33( 2) -71 ( 2) 202( 2) 69( 3)  1006( 2) 1045( 2) 1 043 (2) 889( 2) 855 ( 2) 948( 2) 758( 1 ) 684( 2) 665( 2) 644( 2) 947( 2) 878( 1) 960( 1) 981 ( 2)  101(11) 97(10) 109(12) 69( 8) 83( 9) 87( 9) 42( 6) 64( 8) 85( 9) 111(12) 60( 7) 59( 6) 48( 6) 72( 8)  180  Table Final  anisotropic and  their  S 0(1 ) 0(2) 0(3) 0(4) C(1S) CO ) COD C(2) C(21 ) C(3) • C(31 ) C(4) C(5) C(51 ) C(6) C(61 ) C(7) C(8) C(81 ) C(9) COO)  thermal parameters estimated  y 22  Atom 420( 3) 401< 6) 675(10) 509( 8) 468( 8) 790(19) 39K 9) 565(13) 313( 8) 356(10) 358( 8). 759(15) 312( 8) 485(10) 995(21) 367( 8) 479(12) 329( 8) 440( 9) 941(21) 493(10) 473(10)  XLVII  262( 2) 251 ( 6) 362( 7) 404( 7) 349( 7) 558( 15) 266( 8) 329( 10) 298( 8) 531 ( 13) 282( 7) 468( 1 1 ) 270( 7) 356( 8) 682( 16) 339( 8) 61 6 (14) 279( 7) 301 ( 8) 569( 14) 323( 8) 337 ( 8)  standard  y 33  ( U i j x IO"  A ) 2  deviations y 1 2  y 1 3  y23  5( 2) -66( 2) -10( 2) 533( 3) 1 2( 5) -97( 5) -26( 5) 505( 7) 92( 7) 722( 11) 28( 7) -240( 8) -3( 7) 31 ( 7) 805( 11) -1 29 ( 6) 68( 6) -27( 6) -1 99 ( 7) 632( 9) 1 67 (14) 201 ( 16) -1 00 ( 14) 866( 21 ) 1 5( 7) 81 ( 7) -4( 6) 495( 10) -58( 62( 14) 11) 80( 9) 1005( 21 ) 24( 7) 54( 7) 51 1 (10) -1 ( 6) -65( 14) 21 1 (12) -5( 9) 1 1 08 (22) 34( 6) 53( 6) -55( 6) 323( 8) 59( 9) 457( 1 1 ) -1 92 ( 1 1 ) 2 1 4 (11) 6( 6) 6) -19( 6) -3( 8) 389( 2( 7) 85( 7) 337( 8) -51 ( 7) 296( 13) -1 18( 12) 461 ( 12) -1 60 ( 16) 17( 7) -47( 7) 1 23 ( 7) 429( 9) -78( 13) -89( 1 1 ) 346( 12) 869( 18) -7( 6) 36( 6) -23( 6) 359( 8) -33( 7) 61 ( 7) -63( 7) 405( 9) 241 ( 13) -1 61 (1 1 ) 494( 13) -1 74 ( 14) 87( 8) 91 ( 7) -71 ( 7) 445( 10) -82( 8) 88( 7) -32( 8) 426( 10)  181  Discussion  The the  s t r u c t u r e c o n s i s t s of  c-axis  direction  ( F i g . 27). are  hydrogen  bonds  2.07(3)  A  and  the  177(3)°,  packing  diagram  along  the  b-  f  0...H  distance  respectively;  of  running  along  0(2)...H-0(4)(1-x 1/2+y,1+1/2-z)  by  Figure Stereo  well-separated  C h a i n s of m o l e c u l e s  linked i n which  molecules  the  and the  0...H-0 a n g l e 0...0  distance  27 mesyl d e r i v a t i v e  (XVII).  are is  182  2.845(2)  A.  The  t e t r a c y c l o f 4.2.1 .1 - .0 - ]decane 2  symmetry  is  the  ring  can  still  passing point  be  best  through of  the  markedly  angles  than  in  that  than  from  3  the  the  ring  system  rotation  ring  and  the  rings  atom  remaining  axis mid-  assume  deviates  four)  while  a twist-boat conformation torsion of  angles  with  C(11)-C(1)-C(2)-  23.9(3)°  with accepted rings  system; 3  the  and  27.9(3)°,  cage  d e v i a t i o n s of up bond  including  the  accepted  exception  bond  character  i n t h e C(7)  four  ( 1 . 4 0 5 ( 2 ) A)  Methyl  to  of C ( 2 1 ) - C ( 2 ) ,  are  is consistent  orbital  (  i s not  g r o u p compares  at the a t t a c h e d  directed  are  differ  surprising The  favorably with carbon  bond  significantly differences  carbons.  w i t h an along  (33)  rings.  slight  ring  A  larger  angles  five-membered  56,57).  indicative  1.537  bond  v a l u e s which suggests  hybridization  C(7)-0(4)  (c_f.  Many  lengths  t o 0.077 A  v a l u e s , which  sulfonyl  L) a r e  l e n g t h s of  structure.  tetrahedral  methyl  v a l u e s , some bond  ( T a b l e s X L I X and  3  structures  with  shorter  of t h e  ( i n w h i c h one the  28)  s u b s t i t u e n t s on  five-membered  through  adopts  shown by  from  in other  sp  ring  C(sp )-C(sp ) the  of  lengths,  with  2  bond.  t h e mean p l a n e  a cage s t r u c t u r e  geometry  C ,  conformations  strained  significantly for  symmetry  The  most a g r e e  accepted  observed  of  C(3)-C(7)  w i t h i n the  a highly  effect  (Fig.  (Table XLVIII).  Although  of  as  C(51)-C(5)-C(6)-C(61)  respectively  and  the  six-membered  t h e amount of t w i s t and  by  system  t h e c e n t e r of t h e  l o n e six-membered  C(21)  ring  7  however, t h e  described  envelope from  3  slightly  conformations;  approximate  the  altered  5  The  short  i n c r e a s e i n s-  that  bond.  The  Table Torsion  angles  XLVIII (cleg) w i t h e s t i m a t e d  standard d e v i a t i o n s  i n parentheses  Atoms  0( 2) -s o( 3) -s c( IS) -s s -o( 1) s -o( 1) c( 11) -c( 1) c( 11) -c( 1) C( 11) -c( 1) c( 8) -c( 1) C( 8) -c( 1) C( 8) -c( 1) C( 9) -c( 1) c< 9) -c( 1) C( 9) -c( 1) c< 1 1 )-c( 1) c< 11) -c( 1) CI 2) -c( 1) c< 2) -c( 1) c< 9) -c( 1) CI,9) -c( 1) c 11) -c( 1) c [2) -c( 1) c [8) -c( 1) c (1 ) -C( 2) c 1 ) -C( 2) c (1 ) -c( 2) c (21 ) -c< 2) c (21 ) -CI 2) c (21 ) -CI 2) c (10) -CI 2) c (10) -CI 2) c (10) -c< 2) c (1 ) -c< 2) c (21 ) -c< 2) c (3) -c 2) c (2) -c 3) c (2) -c 3) c (31 ) -c (3) c (31) -c (3) c (7) -c (3) c (7) -c (3) c (2) -c (3) c (2) -c (3) c (2) -c (3) c (31 ) -c (3)  -o( 1) -o( 1) -o( 1) -c( 4) -c( 4) -c( 2) -c( 2) -c( 2) -c( 2) -c( 2) -c( 2) -CI 2) -CI 2) -CI 2) -CI 8) -CI 8) -CI 8) -c< 8) -CI 8) -CI 8) -CI 9) -CI ,9) -CI ,9) -c (3) -c (3) -c (3) -c (3) -c (3) -c (3) -c (3) -c (3) -c (3) -c (10) -c (10) -c (10) -c (4) -c (4) -c (4) -c (4) -c (4) -c (4) -c (7) -c (7) -c (7) -c (7)  Value  -c( 4) -c( 4) -c( 4) -c( 3) -c( 5) -c( 21 ) -c( 3) -c( 10) -c( 21) -c( 3) -c( 10) -c( 21 ) -c( 3) -c( 10) -c( 7) -CI 81 ) -c( 7) -CI 81 ) -CI 7) -c< 81) -CI 6) -c< 6) -CI 6) -c 31 ) -c 4) -c 7) -c (31 ) -c (4) -c (7) -c (31 ) -c (4) -c (7) -c (5) -c (5) -c (5) -o ( 1 ) -c (5) -o (1 ) -c (5) -o ( 1 ) -c (5) -o (4) -c (6) -c (8) -o (4)  -30.5(2) -159.57(1 4) 86.2(2) 114.24(1 4) -137.36(1 3) 23.9(3) 150.3(2) -102.7(2) -105.6(2) 20.8(2) 127.83(1 5) 152.4(2) -81.2(2) 25.9(2) -175.0(2) -49.4(3) - 4 5 . 6 9 ( 1 5) 79.9(2] 63.64(1 4) -170.8(2 178.5(2 48.8(2 -58.2(2 -1 14.8(2 115.28( 5) 14.0(2 11.5(3 -118.4(2 140.3(2 133.4(2 3.5(2 -97.81( 4) -78.2(2 154.3(2 31.2(2 80.28( 15) -36.65( 15) -53.3(2 -170.2(2 -179.04( 12) 64.03( 14) -175.96( 14) 61.33( 14) -46.25( 15) -45.8(2  Table  c ( 31) c( 31) c( 4) C( 4) c( 4) 0( 1 ) 0( 1 ) 0( 1 ) C( 3) C( 3) C( 3) c( 4) C( 4) c< 4) CI 51 ) C( 51) CI 51 ) CI 10) CI 10) CI 10) c 4) c ,51 ) c ,6) c (5) c [5) c (5) c (61) c (61 ) c (61 ) c (9) c (9) c (9) c (5) c (61 ) c (7) 0 (4) 0 (4) c (3) c (3) c (6) c (6)  XLVIII  (continued)  - c ( 3) - c ( 7) - c ( 3) - c ( 7) - c ( 3) - c ( 7) - c ( 3) - c ( 7) - c ( 3) - c ( 7) - c ( 4) - c ( 5) - c ( 4) - c ( 5) - c ( 4) - c ( 5) -CI 4) - c ( 5) - c ( 4) -c< 5) -CI 4) -c< 5) -CI 5) -CI 6) -CI 5) -c< 6) -CI 5) -CI 6) -CI 5) -CI 6) -CI 5) -CI 6) - c 5) -CI 6) - c 5) -CI 6) - c (5) -CI 6) - c (5) -CI ' 6 ) - c (5) -CI 10) - c (5) - c 10) - c (5) • - c (10) - c (6) - c (7) - c (6) - c (7) - c (6) - c (7) - c (6) - c (7) - c (6) - c (7) - c (6) - c (7) - c (6) - c (7) - c (6) - c (7) - c (6) - c (7) - c (6) - c (9) - c (6) - c (9) - c (6) - c (9) - c (7) - c (8) - c (7) - c (8) - c (7) - c (8) - c (7) - c (8) - c (7) - c (8) - c (7) - c (8)  - c ( 6) - c ( 8) - o ( 4) - c ( 6) - c ( 8) - c ( 51) - c ( 6) -CI 10) -c< 51) -c< 6) -CI 10) -CI 61 ) -CI 7) -CI 9) -CI 61 ) -CI 7) -CI 9) -CI 61) -c 7) - c 9) - c (2) - c (2) - c (2) - o (4) - c (3) - c (8) - o (4) - c (3) - c (8) - o (4) - c (3) - c (8) -c ( 1 ) -c ( 1 ) -c ( 1 ) - c (1 ) - c (81 ) -c ( 1 ) - c (81 ) -c ( 1 ) - c (81) r  -168.5(2) 83.9(2) 76.7(2) - 4 6 . 0 5 ( 1 4) - 1 5 3 . 6 3 ( 1 3) 61.7(2) - 1 7 0 . 9 7 ( 1 3) -61.6(2) 179.8(2) - 5 2 . 8 7 ( 1 5) 5 6 . 5 0 ( 1 5) -100.1(2) 24.0(2] 131.18(1 5) 27.9(3) 152.1(2] -100.8(2] 157.6(2] -78.2(2] 28.9(2] -56.1(2 177.8(2 46.4(2 -106.2(2 13.5(2 1 2 2 . 8 5 ( 4) 19.4(2 139.0(2 -111.6(2 1 4 2 . 6 0 ( 14) - 9 7 . 7 2 ( 14) 11.6(2 -81.4(2 149.7(2 27.6(2 - 1 7 5 . 0 0 ( 5) 59.3(3 59.17( 15) -66.6(2 - 4 5 . 4 4 ( 15) -171.2(2 1  185  Table Bond l e n g t h s standard  Bond  Bond  estimated  deviations in  parentheses  Bond  -H(04) -H1 O S ) -H20S) -H3(IS) -H1(11) -H2(11) -H3(11) -H1(21) -H2(21) C(21 ) -H3(21) C ( 3 1 ) -H1 ( 3 D C(31 ) - H 2 ( 3 1 ) 0(31) -H3(31) -H(4) C(4)  Bond  1.5556(12) 1.4248(15) 1.4128(15) 1.743(3) 1.474(2) 1.405(2) 1.517(3) 1.602(2) 1.542(2) 1.536(3) 1.531(3) 1.599(2) 1.533(3)  lengths  estimated  0(4) cds) COS) COS) COD COD COD C(21) C(21 )  (A) w i t h  Length  -0(1 ) -0(2) -0(3) -COS) -C(4) -C(7) -CO 1 ) -C(2) -C(8) -C(9) -C(21) -C(3) -COO)  s s s s 0(1 ) 0(4) C(1 ) C(1 ) CO) CO ) C(2) C(2) C(2)  XLIX  C(3) C(3) C(3) C(4) C(5) C(5) C(5) C(6) C(6) C(6) C(7) C(8)  involving  standard  Length  0 .78(3) 0 .91(4) 0 .97(4) 0 .93(3) 1.06(4) 0 .95(3) 1.00(4) 1.05(3) 1.09(4) 0 .92(3) 0 .99(3) 0 .94(3) 0 .99(3) 0 .90(2)  Length  -C(31) -C(4) -C(7) -C(5) -C(51) -C(6) -COO) -C(61) -C(7) -C(9) -C(8) -C(81)  h y d r o g e n atoms  deviations in  ) ) ) ) ) )  (A) w i t h  parentheses  Bond  C(51 C(51 C(51 C(61 C(61 C(61  1.518(2) 1.527(2) 1.526(2) 1.521(2) 1.513(3) 1.584(2) 1.529(3) 1.518(3) 1.614(2) 1.529(2) 1.530(2) 1.519(3)  -H1(51) -H2(51) -H3(51) -H1(61) -H2(61) -H3(6D -H(8) C(8) C(81 ) -H1(81 ) C (8 1) - H 2 ( 8 1 ) C(81) - H 3 ( 8 1 ) C(9) -HI(9) C(9) -H2(9) C O O ) -H1(10) COO) -H2O0)  Length  0 .98(4) 0 .99(4) 1.03(4) 0 .97(3) 0 .99(3) 1.02(3) 0 .95(2) 0 .89(3) 0 .99(3) 0 .98(4) 0 .97(3) 0 .96(3) 0 .96(2) 1.05(3)  186  Table Bond a n g l e s standard Bonds  0 ( 1 ) -s 0 ( 1 ) -s 0 ( 1 ) -s 0(2) -s 0(2) -s 0(3) -s S -0(1) CO 1 )- c o ) C O 1) - c o ) C(11 ) - c ( i ) C(2) - C O ) C(2) - c o ) C(8) - c o ) C O ) -C(2) C O ) -C(2) C O ) -C(2) C(21 ) -C(2) C(21 ) -C(2) C(3) -C(2) C(2) -C(3) C(2) -C(3) C(2) -C(3) C (3 1) -C(3) C(31 ) -C(3) C(4) -C(3) 0(1) -C(4)  L  (deg) w i t h  deviations  in  estimated parentheses Bonds  Angle  -0(2) 109 .64(8) -0(3) 105 .64(8) -COS) 104 .20(13) -0(3) 1 18.79(11) -COS) 109 . 0 8 0 5 ) -COS) 108 .50(15) -C(4) 121 .74(10) -C(2) 11 6 .1(2) -C(8) 11 6 .6(2) -C(9) 1 14.1(2) -C(8) 1 04.05(13) -C(9.) * - 1 06.80(15) -C(9) 97 .03(14) -C(21) 1 14.6(2) -C(3) 1 04.58(13) -COO) 107 .68(15) -C(3) 11 4 .7(2) -COO) 1 12 .9(2) -COO) 101 .18(13) -C(31) 1 20.0(2) -C(4) 1 05.80(13) -C(7) 97 . 7 9 0 2 ) -C(4) 11 3 .47(15) -C(7) 1 18.05(15) -C(7) 98 .63(13) -C(3) 1 12 .82(14)  0(1 ) C(3) C(4) C(4) C(4) C(51 C(51 C(6) C(5) C(5) C(5) C(61 C(61 C(7) 0(4) 0(4) 0(4) C(3) C(3) C(6) CO ) CO ) C(7) CO ) C(2)  -C(4) - C ( 5 ) -C(4) -C(5) - C ( 5 ) -C(51) -C(5) - C ( 6 ) -C(5) - C O O ) )-C(5) -C(6) ) -C(5) - C O O ) -C(5) - C O O ) -C(6) -C(61) -C(6) - C ( 7 ) -C(6) -C(9) ) -C(6) -C(7) ) -C(6) -C(9) -C(6) -C(9) -C(7) -C(3) -C(7) -C(6) -C(7) - C ( 8 ) -C(7) - C ( 6 ) -C(7) -C(8) -C(7) -C(8) -C(8) -C(7) -C(8) -C(81) -C(8) -C(81) -C(9) - C ( 6 ) - C O O ) -C(5)  Angle  111. 30(13) 97. 49(13) 118. 0(2) 99. 1 6 0 3 ) 98. 7 5 0 4 ) 117. 0(2) 114. 1 (2) 107. 42(14) 115. 0(2) 104. 28(12) 107. 10(15) 1 12. 9(2) 1 14. 6(2) 101 . 56(14) 111. 50(13) 115. 69(14) 118.02(14) 99. 74(12) 106. 07(14) 1 03.84(13) 93. 67(13) 118. 8(2) 118. 5(2) 99. 82(13) 101. 03(13)  187  Table.L Bond a n g l e s estimated Bonds  -o( 4) -H(04) -c( IS) -H1(1S) s -c( 1S) -H2(1S) s -c( 1S) -H3(1S) H1(1S) -c( 1S) -H2(1S) H 1 ( I S ) -c( 1S) -H3(1S) H 2 ( I S ) -c( 1S) -H3(1S) C(1 ) -c( 11) -H1(11) C(1 ) -c( 11) -H2(11) C(1 ) -c( 11) -H3(11) H1 ( 1 1 ) 11) -H2(11) -c( H1 ( 1 1 ) 11) -H3(11) -c( H2(11) -c( 11) -H3(11) C(7) S  C(2) -C( 21 ) -H1(21 ) C(2) -c( 21 ) -H2(21) C(2) -C( 21 ) -H3(21) H1 (21 ) -CI 21 ) -H2(21) H1 (21 ) -CI 21 ) -H3(21 ) H2(21) -CI 21 ) -H3(21 ) C(3) -CI 31 ) -H1(31) C(3) -c< 31 ) -H2(31) C(3) -c 31 ) -H3(31 ) H1 (31 ) -c 31 ) -H2(31 ) H1(31 ) -c '3D -H3(31 ) H2(31) -c '31 ) -H3(31 ) 0(1 ) -c (4) -H(4) C(3) -c (4) -H(4) C(5) -c (4) -H(4) C(5) -c (51 ) -H1(51) C(5) -c (51 ) -H2(51)  (continued)  involving  h y d r o g e n atoms  standard deviations  Angle 109(2) 105(2) 112(2) 110(2) 118(3) 106(3) 106(3) 106(2) 109(2) 112(2) 110(2) 110(3) 110(3) 107(2) 109(2) 113(2) 110(2) 111(2) 107(3) 1 15(2) 108(2) 1 10(2) 1 10(2) 110(2) 104(2) 110.81 14) 109.31 14) 114.51 14) 111(2) 113(2)  (deg) w i t h  in parentheses  Bonds -C(51)-H3(51) C(5) H1 (51) - C ( 5 1 ) - H 2 ( 5 1 ) H1(51) - C ( 5 1 ) - H 3 ( 5 l ) H2(51) - C ( 5 1 ) - H 3 ( 5 l ) C(6) -C(61)-H1(61) -C(61)-H2(61) C(6) -C(61)-H3(6l) C(6) H1(61) - C ( 6 1 ) - H 2 ( 6 1 ) H1(61) - C ( 6 1 ) - H 3 ( 6 1 ) H2(61) - C ( 6 1 ) - H 3 ( 6 1 ) C(1 ) - C ( 8 ) -H(8) C(7) -C(8) -H(8) C(81 ) - C ( 8 ) -H(8) -C(81)-H1(81) C(8) C(8) . -C(81)-H2(8l) C(8) -C(81)~H3(81) H1(81 ) - C ( 8 1 ) - H 2 ( 8 l ) H1(81 ) - C ( 8 1 ) - H 3 ( 8 l ) H2(81 ) - C ( 8 1 ) - H 3 ( 8 l ) C(1 ) - C ( 9 ) -HK9) - C ( 9 ) -H2(9) CO ) C(6) - C ( 9 ) -H1(9) C(6) - C ( 9 ) -H2(9) H1 (9) -C(9) -H2(9) C(2) -C(10)-H1(10) C(2) - C O 0)-H2( 1 0) -C(10)-H1(10) C(5) C(5) -C(10)-H2(10) H1(10) - C O O ) - H 2 ( 1 0)  Angle 111(2) 102(3) 104(3) 114(3) 110(2) 111(2) 112(2) 113(2) 105(2) 106(2) 108.0( 13) 111.0( 13) 106.3( 13) 115(2) 109(2) 110(2) 105(3) 108(3) 110(3) 112.81 15) 112.11 15) 115.31 14) 110.61 15) 106(2) 108.81 13) 112(2] 112.2 13) 116.8 15) 106(2  188  same, however, c a n n o t is  1.474(2)  A,  in aliphatic  probably  due leaves  polarization oxygen and the  oxygen  and  to  the  mesyl  0.05 This  the  0(1)-C(4)  (C(4)-0(1)-S, a t C(4)  which  result  C-O  bond  is  length  resulting  sp  2  bonding  effect  of the  diagram  28  of the mesyl  derivative  (XVII).  the the at  increased  between 0 ( 1 )  bond.  Stereo  in  the C(4)-0(1) bond),  i s lengthening  Figure  dir-prr  hybridization  i n a d d i t i o n t o any  (and d i r e c t e d a l o n g  the net  than t y p i c a l  e l e c t r o n s towards  t h e bond. The  121.74°),  length  t h r o u g h S-0(1)  deficient bonding  t o match t h e d r r - p i r  therefore  A longer increased  group,  0(1)-C(4) e l e c t r o n of  insufficient  o f t h e C ( 4 ) - 0 ( 1 ) bond whose  ethers.  t h e r e b y weakening  s-character  S,  said  approximately  distances  bonding  be  is and  C(4)-0(1)  189  Notable  intramolecular  c o n t a c t s a r e t h o s e between H1(9)  between  and  H2(10)  and  contact  distance  ring  system,  separation steric  geometry does the  whereas  o f o x y g e n and  oppose an  latter  hydrogen,  although increase  In  the former c a s e , the  from c o m p r e s s i o n  case, i n v o l v i n g does  not a p p e a r  neighboring  hydrogen  bonding  lone p a i r s  with the  do  hydrogen.  not  appear  a  by  steric  suitably  from  effects  the b a s i s  between 0 ( 1 ) and angle  the  1.98(2) A  to arise  i n t h e d i s t a n c e . On  seem p r o b a b l e - t h e C ( 4 ) - H . . . 0 ( 1 )  oxygen  interact  the  considerations,  not  0(1).  o f 2.02(3) A r e s u l t s  compression,  undoubtedly  H(4)  and  of  H(4)  i s 44(1)°  and  positioned  to  190  SUMMARY  191  The followed  compounds reaction  described  in  routes similar  naphthoquinols,  both  the  first  the  this  being The  van  i n the s o l i d  but  the  derivative  state  subtle  the  C(2)  and  the  electronic and  C(3)  is still  abstraction  prohibited  effects  position.  the  arising  The  previously  positioning The  t h e change  studied  which  group  OH  of  no been  anti  process,  role  in  and  was  former  chromophore It  appears  substituents  at  in determining  the  heptamethyl  in this when  in  6,7-  (Chapter  i n the  the  derivative,  'steric'  turn  effects  determined  of the methyl the  of the  group  at  pseudo-axial  reactivity  derivatives  the c o n f o r m a t i o n  photoreactivity lost.  to  this  i n the  from  was  despite  typical the  syn  case.  carried  t h e c a r b o n y l oxygen by H and While  P a r t I I of  reaction.  t o assume  conformation  of the h y d r o x y l group  IV).  maintained, had  resulting  as  reactivity  this  Introduction  b u l k y OH  substitution  replacement (Chapter  conformation  less  and  by oxygen  p o s i t i o n s p l a y a key  reactivity.  less  lacking  heptamethyl-naphthoquinols  i n n a p h t h o q u i n o l s . The  on  Although  were  highlighted  o t h e r hand, showed t h e more o b v i o u s  caused  moiety  enone  occurred  P a r t I and  were  notions that  photochemical  of  both  notable  I I ) , and  to  solution.  conformation  dispelled  substituents  C(4)  on  throughout  any  studied  for such•processes.  p-H  photoreactivity on  proof  o c c u r r e n c e of  ene-dione  that  sum,  substituents  most  (Chapter  The  from  of  limit  illustrated  dimethylIII).  t h e upper  effects  have been thesis,  d e r Waals r a d i i  chapters  t o t h o s e of p r e v i o u s l y  the d i s t a n c e s through which H - a b s t r a c t i o n s than  three  OH,  typical  further forms of the  observed, f o r the  to  the 4o~ols  the diol was  chromophoric  192  The  effect  naphthoquinols present  of is  hydrogen not  bonding  apparent  in a l l structures.  from  or 0 ( 1 ) . . . 0 ( 4 ) , appears  reactivity  since  Some u n u s u a l course  of  II.  advent  The  this  complexity  of  c o n c i s e as  the  structures  reactions  study, of  t o be  products  the  work s i n c e i t  was  of H - b o n d i n g , be i t  of no  with e i t h e r  in  consequence  have been  in  observed  to  II and I I I ) .  have been  observed  in  the  f o u r of w h i c h have been d e s c r i b e d i n P a r t  these  these  this  (c_f. C h a p t e r s  1  reaction  reactivity  However, t h e t y p e  0(4)...0(4)  undergo s i m i l a r  on  compounds  serves  r e a c t i o n s and  discussions  in  that  Part  I  to  illustrate  a l l i s not may  the  as c l e a r  have  the  and  reader  believe. The and  VI)  intriguing may  hinge  consistent  of  the ensuing  syntheses  VII)  of and  this  of  internal  last  of  of  experiments  repeated  as b e i n g a m a j o r  two  chapters  w h i c h have gone  in  bridging the  case  bond has  other,  a  t e t r a c y c l o [ 4.2 .1 .1 - .0 - ]decane 2  5  3  7  impurities;  (Chapters  however,  interesting  the  V  the  have d e c r e a s e d  f a c t o r . Whatever  have  awry.  v a l u a b l e , i n one a  irradiation  the presence  p r o d u c t s have p r o m p t e d  have p r o v e d shift  on  results  likelihood  The  results  the  cause,  discussions.  documented  the  results  Nevertheless,  the  structures  showing  that  a 1,3-suprafacial  o c c u r r e d on p h o t o l y s i s  novel  entry  ring  system.  of  into  (Chapter  the  rare  A p p e l , H e r b e r t , J i a n g , S c h e f f e r and W a l s h (39) have shown t h a t h y d r o g e n b o n d i n g does not a f f e c t H ( 5 ) - a b s t r a c t i o n by C(3), by their work on t h e a c e t a t e a n a l o g of 2 , 3 , 4 a p , 6 , 7 , 8 a p - h e x a m e t h y l 4ap,5,8,8ap-tetrahydro-1-naphthoquin-4o-ol. 1  193  References  1.  G.  H.  Stout  Determination:  and  L.  H.  A Practical  Jensen,  X-ray  Structure  G u i d e , M a c M i l l a n Co.,  New  York,  1968. 2.  3.  M.  J.  New  York.  M.  F.  C.  X-ray 4.  B.  Buerger, 1942,  H.  Cullity,  Lipson  M.  A.  Co.,  and  M.  Plenum P r e s s ,  Of Y.,  W o o l f s o n , An  M.  M.  8.  H.  York,  1977.  1956,  Rprt.  Crystalline  Addison-  1959.  State,  Structures,  Vol. I l l ;  Cornell  Univ.  Introduction  To  X-ray  Crystallography,  1970. M e t h o d s In C r y s t a l l o g r a p h y ,  Oxford  1961 .  Hauptman and  The  New  By  1966.  Woolfson, P i r e c t  Univ. Press,  Sons,  Determination  X-ray D i f f r a c t i o n ,  Crystal  Cambridge U n i v . P r e s s , 7.  Of  C o c h r a n , The  N.  J . W i l e y and  Structure  R e a d i n g , Mass.,  W.  Ithaca,  Palmer,  Elements  Determination  Press, 6.  R.  Crystallography, 1966.  Crystallography,  D.  The  Rprt.  L a d d and  W e s l e y Pub. 5.  X-ray  J. Karle,  Centrosymmetr i c  S o l u t i o n Of  Crystal,  ACA  Acta  Cryst.  318  C.  Phillips  The  Phase P r o b l e m  Monograph  No.  3,  I: ACA,  1953. 9.  A.  J . C.  10.  E.  R.  210  Wilson,  H o w e l l s , D.  2,  and  (1949).  D.  Rogers, Acta  Cryst.  (1950).  11.  A.  J . C.  Wilson, Acta  12.  D.  Sayre, Acta  13.  H.  Hauptman and  14.  J. Karle  and  Cryst.  Cryst. 5,  J. Karle,  I. K a r l e ,  60  3,  (1950).  (1952).  Acta  Acta  258  Cryst.  Cryst.  9,  45  2j_, 849  (1956). (1966).  3_,  194  15.  G. G e r m a i n , P. M a i n a n d M. M. W o o l f s o n , 368  16.  Acta  Cryst.  (1971).  ENPROC  — A data reduction  program  for intensities  measured  on an E n r a f - N o n i u s CAD4 d i f f T a c t o m e t e r . W r i t t e n i n IV  by  S.  British 17.  Rettig  Columbia,  and  modified  Canada  Tables For X-ray  eds.  Ibers  J.  A.  and  S. E . H u l l ,  and  M.  Woolfson.  X-ray  Louvain, 19.  D.  W.  J.  W. C. H a m i l t o n ,  V o l . IV,  The Kynoch P r e s s ,  —  A  solution  of  system  o f computer  crystal  structures  d a t a . U n i v s . of York,  E n g l a n d and  Cruickshank  'in  Computing  p.114, e d . J . S. R o l l e t t ,  Methods  (1965).  D. T. Cromer a n d J . B. Mann, A c t a C r y s t . A24, 321  21.  R. F. S t e w a r t ,  22.  R.  C.  E . R. D a v i d s o n  Cookson,  23.  P. E . E a t o n  24.  J . R. S c h e f f e r ,  E . C r u n d w e l l , R. R. H i l l  R.  Chem.  E.  Gayler  and  R.  A.  J . Amer. Chem. S o c . 9_7, 2178 ( 1 9 7 5 ) .  Scheffer,  J . R. S c h e f f e r  a n d J . Hudec, J .  Chem. Comm., 1494 ( 1 9 7 0 ) .  K. S. B h a n d a r i , R.  B.  M.  Amer. Chem. S o c . 98, 7040 26.  J.  (1964).  a n d S. A. C e r e f i c e ,  Wostradowski, J.  a n d W. T. Simpson,  (1968).  42, 3175 ( 1 9 6 5 ) .  Chem. S o c , 3062  25.  In  Pergamon P r e s s ,  20.  Phys.  Declercq  (1978).  Crystallography, Edinburgh  Crystallography,  MULTAN78  diffraction  Belgium  Univ. of  L . L e s s i n g e r , G. G e r m a i n , J .  programs f o r the automatic from  R. G. B a l l ,  (1974).  P. M a i n , M.  by  FORTRAN  (1978).  International  Birmingham, England 18.  A27,  J e n n i n g s a n d J . P. Louwerens, J . (1976).  and A. A. D z a k p a s u , J . Amer. Chem. S o c . 100,  195  2163  (1978).  27.  A. B o n d i , J . Phys.  28.  G. M. J . S c h m i d t ,  29.  W. K. A p p e l , T. J . G r e e n h o u g h , J . R. S c h e f f e r ,  30.  Chem. 68, 441 Pure  (1964).  A p p l . Chem. 27, 647  (1971). J.  and  L . W a l s h , J . Amer. Chem. S o c . j_02, 1158 ( 1 9 8 0 ) .  W.  K.  and  L . W a l s h , J . Amer. Chem. S o c . 102, 1160 ( 1 9 8 0 ) .  A p p e l , T. J . G r e e n h o u g h , J . R. S c h e f f e r ,  31.  H. W. W h i t l o c k , J . Amer. Chem. S o c . 84, 3412  32.  T. J . G r e e n h o u g h a n d  J.  Trotter,  Acta  Pi stances  And  Trotter  J . Trotter  (1962).  Cryst.  B37,  126  (1981 ) . 33.  Tables  Of  Interatomic  C o n f i g u r a t i o n s In  M o l e c u l e s And I o n s , e d . L . E . S u t t o n , S p e c . L o n d o n : The C h e m i c a l 34.  S.  E.  V.  Phillips  Society and  Publ.  No.  18,  (1965).  J . Trotter,  Acta Cryst.  B33, 996  (1977). 35.  J . R. S c h e f f e r  36.  Z. Q. J i a n g , Tetrahedron  37.  T.  J.  and L . W a l s h , t o be p u b l i s h e d .  J . R. S c h e f f e r , Lett.  Greenhough  22, 891 and  A. S. S e c c o  and  J.  Trotter,  (1981). J.  Trotter,  Acta Cryst.  B36, 1831  (1980) . 38.  R. B u c o u r t  and P.  Hainaut,  Bull.  Soc.  Chim.  F r . , 1366  (1965). 39.  W. K. A p p e l , P. H e r b e r t , Z. Q. J i a n g , Walsh, manuscript  40.  41.  C.  A.  McPowell,  A. N a i t o , J . R. S c h e f f e r  Lett.  S. R. H a l l ,  C. L . R a s t o n  1 929  (1977).  and L.  in preparation.  Tetrahedron  3_0,  J . R. S c h e f f e r  22, 4779  a n d Y. F. Wong,  (1981).  a n d A. H. W h i t e ,  Aust.  J.  Chem.  196  42.  D.  E . Z a c h a r i a s , J . P. G l u s k e r , R. G. H a r v e y  Cancer 43.  Research  37, 775  S. E . V. P h i l l i p s  a n d P. P. F u ,  (1977).  and J .  Trotter,  Acta  Cryst.  B33,  991  ( 1977). 44.  T.  J.  Greenhough  and  J.  Trotter,  Acta C r y s t .  B36, 2091  ( 1980). 45.  T. J . G r e e n h o u g h a n d  J.  Trotter,  Acta  Cryst.  B36,  478  (1980) . 46.  47.  N.  A c t o n , R. J . R o t h ,  T. J . K a t z , J . K. F r a n k ,  and  I . C. P a u l , J . Amer. Chem. S o c . 94, 5446  E . M. E n g l e r , J . D. A n d r o s e Amer. Chem. S o c . 95, 8005  48.  T.  60, 1691 J.  P.  Von  (1972).  R.  Schleyer,  J.  (1973).  S. R. Ramakumar, K. V e n k a t e s a n Acta  49.  and  C. A. M a i e r  a n d H. P. Weber, H e l v .  Chim.  (1977).  Greenhough  and  J.  Trotter,  Acta Cryst.  B36, 2840  (1980). 50.  I . W. N o w e l l , Dalton  51.  S. R e t t i g  T r a n s . , 2381  G.  A. J e f f r e y ,  22,  725  and  J.  Trotter,  R. D. R o s e n s t e i n and M. V l a s s e ,  53.  A. Domenicano, A. V a c i a g o a n d C. A.  54.  J.  D.  Soc.  Acta  Cryst.  (1967).  R. L. H a r l o w a n d Simonsen, A c t a C r y s t .  221  Chem.  (1972).  52.  B31,  J.  B32, 2137  Coulson,  (1976).  Acta  Cryst.  (1975). Dunitz  and  V.  Shoemaker, J . Chem. P h y s .  20,  1703  (1952). 55.  D. J . H e r b e r t , J . R. S c h e f f e r , Tetrahedron  56.  Lett.  22,  2941  A. S. S e c c o  (1981).  J . J . D a l y , J . Chem. S o c , 2801  (1961).  and J .  Trotter,  Attig  and  D.  Mootz, A c t a  Cryst.  BJM,  1212  (1975).  SUPPLEMENTARY  MAT  199  2 , 3, 6, 7 - t e t r a m e t h y l - 4 a g , 5 , 8 , 8 a f 3 - t e t r a h y d r o - l - n a p h t h o q u i n - 4 c t - o l  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  . O ' ' l ~ B l * i k C l l > O D U U O M a - u n B . « . O ' C * 0 0 M « ^ ' N I " l > ' 4 n - 4 l | i n O > V ^ A O * k ' ' ' 0 U t l U O -  - ( C W W i O U U  SSStSS£SSsS3:5Si!S88i*isiS8Sg^  "  -  tn-4M*UU*«IM  -  U  - ». 3 • (*  M  - J - W U *  ^ . U I I t g > i « l 0 U U u C » O I D U ' l > ^ U k k U ( - U U f f k A O O U U I D g < > U i > l | I I D ' O A U ( « ^ O ' ' 0 I ^ M « « k u ^ | - p  U U U U - O O O O O O O U U > J U W U U U I I O O O O O O  OLO  u u u u u u u O u U ' O O O O w w u o u u u o o o u O O u  « j O ' J - ' « C ) u » O » ' - - « » i " « ' U i ! i ' i u i I i O O » i - - O 0 i ' i ' ) » u w ' J U i u - p o O O O 0 i > j u i > J U i « - O » i - u - - « j - u O U » - u u » - j » t c » u - u O » » t t > O > ^ ' 0 — O -J u «j m O *J -J (O ».9> • i - J ' U ' i i t u u k U k 9 i i j j i i D O l > ' ' |  bssssssasissssssasisisss^  °  S2SSStSS3S8*JSS8Si3838SSJSi52rSS  . "  l  J  l  S8si5i:S'-'siS!SSSsSSSS8^ " ~ ( 0 i o  l  o ~ ^ ~ u t T > o ~ ^ » a > ~ O O u » ~ u o u M ~ w * < * t t t » w  lAA-iA^lsJisS.^o.o-rSo.'.i.^Mo.^^ s-.sssssssss-'::::.':::^  .  U  «  ,  .  .  ,  I  J  .  .  .  O  O  O  «  O  O  «  .  '  . . . o o o D o o o a o S S S o o o o o o o o a ; ; ; ' ; ; ; ; ; ; ; ' ' ; ' ; ; ; ; . ; ; ; ; ; : : :  -  .  .  O  -  O  O  -  '  '  .  .  «  '  .  .  O  D  .  »  O  .  .  0  .  .  .  O  «  O  .  L  ,  O  .  »  O O O O u ~ u u u u u u ~ u o o O u u u u u u h > u  --AAi» --AAiA-ou--AAiA:->«u--iAJA:«^w --AA^A:2ii! »o loA^A:i:: U  u  J  5  J  u  .  o  u  . . . u . o  ss'tssssasssitsssisissis  O .  U  . . - ,  U  O » . ^ . - . J ^ » -  U  ^ - - - : : M U M . : U -  M u u u u u » u w M u u u u u u u u - o u u u u o ~ u u u w u u  -» .:AAiA = sJ^-;-;-;::.>*«^-:.AA-U:55^ u  U » u  M  —  -•  W—  *  U> U W  <J  —  — -  CJ — <D —  -  ,«  w Ol — fc>  M  ?  u o u O O u O « u - « u u u u u O ' U O u o O O M O u - u u u u u y ' J - » ' - - 0  ,  J O - u i J y u « u u u u u O i J O O - 0  •  o  o o  201 k  1  3  1 21 -3 1 22 1 22 0 3 -10 -B 2 0 0 •6 2 -4 2 0 -a 2 0 0 0 2 2 10 13 2 0 14 2 0 16 2 0 2 - 16 - 14 2 1 2 - 12 2 - 10 -6 2 -6 2 -4 2 2 -2 2 0 2 2 4 1 2 t 6 2 2 8 3 10 1 12 2 1 14 2 1 16 2 - 16 2 2 - t4 2 2 - 12 2 2 - 10 2 a 2 -8 2 -6 2 2 -4 2 2 2 2 -2 0 2 2 2 2 2 4 2 2 6 2 2 8 2 2 2 10 2 2 12 2 14 2 2 16 2 2 - 16 3 2 - 14 2 3 - 1 *> 2 3 2 3 - 10 -B 3 2 3 -6 2 -4 2 3 3 -2 2 2 3 0 2 3 2 4 2 3  Q.  - h 10 - 12 - 10 -8 -6 -4 -2 0 2 4 6 8 10 - 12 - 10 -8 -6 -4 -2 0 2 4 6  a  - 12 - 10 -8 -6 -4 -2 0 2 4 6  a  -10 -8 -6 -4 -2 C 2 4 6 -8 -6 -4 -2 0 3 4 -8 -6 -4 -2 0 2 4  k  1  2 14 2 15 2 15 2 15 2 15 2 15 2 15 2 15 2 15 2 15 2 15 2 15 2 15 2 16 2 16 2 16 2 16 2 16 2 16 2 16 2 16 2 16 2 2 16 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2 18 2 IB 2 IB 2 18 2 18 2 18 2 18 2 18 2 18 2 19 2 19 2 19 2 19 2 19 2 19 2 19 2 20 2 20 2 20 2 20 2 20 2 20 2 20  1$  Fo  Fc  2.01* 1 .54* 3.61 2. 17 1 . 76* 4 .64 2. IB 12 . 2 5 7 .63  2 .05 0.90 3 19 2 .05 1 .70 4 . 98 1 .72 13.21 6 62 2.05 0.68 0.96 1.14 0.76 4.03 0 83 3.25 0.84 11 .92 2 . B4  1.85'  t .36* 1.21" 1.76* 1 .37* 4 . 19 0.83* 3 . IB 1 .95" t t .32 3.47 5.91 1 .63 27 . 4 6 7.34 21 . 2 0 4 .90 S.01 2.41 4.51 1 .36* t .30* 2 .69 4 29 2 .83 16 . 9 3 1 .40* t t .84 39.08 28.64 22 .7 1  He i g h t  5.77 0.4* 27 . 9 6 7 .84 20.24  5.23 4.7 1 2.36 5.20 1 .39 0.09 3 . 19 3.91 3 . 13 18.78 1 .69 12 . 8 8 37 , 4 5 30.57 22 26 16.79 15.38 9.32 9.78 5.47 6.05 5.60 6.02 7 .06 7 . 12 4 .74 4 .75 1 . 15 0.75* 1 .34* 0.20 1.17 1 . 29* 3.89 4 .42 1 46 1 . 90* 10.51 11 . 4 8 26.33 25.08 3.85 3.75 19 . 0 4 19.51 22 . 6 4 23 . 9 3 19.17 19. 17 16 .51 1B . 13  Fo 6 . 93 3 . 30 3.96 2.081 14* 1 .31* 4 . 29 6.27 2.85 1 . 14" 0.69* 1 .56* 2 . BO 1 .95* 4 .08 1 .59* 2 .99 2.98 3.06 0 . 37* 5.97 4 .46 1 .22* 2.76 1 .05* 1 .35* 0.58" 1 .67* 4.31 7 . 16 1 .97" 1.14* 081" 0.42" 4 .94 2.33* 3.36 4.32 1 .24* 4.55 7 . 19 1 .20* 1 . 38* 2 .38\ .44* 1 .25" 4 . 79 1 .30* 2. 16* a . 11 • 1 .94" 5.71 1 .74* 1 .92* 3.93 2.31* 7.84 2.36*  Fc 6 . 60 3 . 38 4 31 0 . 5B 1 .93 1 .58 501 6 .86 2 .78 0 . 66 2.33 0.66 3 . 39 0 . 70 4 . 78 0.64 2 .59 2.91 3 . 10 0-75 5.96 4 .38 1 .47 2 .74 1 .92 2 68 0-96 0.98 4.7 1 8.05 1 . 15 0.54 007 0 . 54 4 .69 1 .94 3.04 4 .23 0. 1 1 3.77 6 .98 0.64 2 .00 2 .30 1 .27 0.85 5 . 14 2 . 17 1 .66 1 . 44 0.87 5.72 087 2 .49 3.51 2.26 7.83 2 .68  3 . 33 3.25 3 . 52 3.36 3.29 3 . 54 3 . 36 1 .89 3 14 3.31 3 . 22 3 . 19 3 . 29 3.22 3.54 3 . 12 3 . 4B 3.32 2 . 13 3.51 3.45 3.27 0.31 3.20 0. 60 3 54 3.53 3.39 3.54 3 . 22 3.21 3.43 3.54 3.45 1 .02 3.23 2 OO 0 . 12 0.28 0.51 1 .25 2.56 3.44 3.44 3.25 3.54 3 10 3.22 3.21 3.54 3.31 2.09 0 . 39 3.53 0.74 0..45 0.77 0.87  *e i g n t 3 . 29 3.49 3 . 54 3 34 3 18 3 21 3 54 3.40 3.45 3 IB 3 .09 3.26 3 44 3-32 3-.54 3 26 3.46 3 46 3.47 3 .03 3.45 3 .54 3 . 19 3.44 3 . 16 3.22 3 . 07 3 . 2B 3.54 3 .24 3 33 3 . IB 3 . 12 3 .04 3.53 3.38 3.50 3.54 3.20 3.54 3.24 3 . 19 3.22 3.39 3-23 3.20 3.54 3 21 3.35 3 35 3.32 3.48 3 . 29 3.32 3.53 3.38 3.09 3 . 38  h  h  6  2 e 2 10 2 2 12 14 2 16 2 - 16 2 - 14 2 2 - 12 - 10 2 2 -8 -6 2 -4 2 2 -2 2 0 2 2 4 2 6 2 8 2 2 10 12 2 14 2 16 2 - 16 2 - 14 3 - 12 2 - 10 2 -8 2 -6 2 -4 2 -2 2 0 2 2 2 4 2 6 2 e 2 2 10 12 2 14 2 16 2 - 16 2 - 14 2 2 - 12 -10 2 -8 2 -6 2 -4 2 -2 2 0 2 2 2 4 2 6 2 8 2 10 2 2 12 14 2 - 16 2 - 14 2  n -4 -2 0 - 15 -9 1 3 5 7 1 1 13 - 15 -13 - 1 1 -9 -7 -5 -3 - 1 1 3 5 7 9 1 1 13 15 - 15 -13 - 11 -9 -7 -5 -3  -i  1 3 5 7 9 1 1 13 15 - 15 -13 - 1 1 -9 -7 -5 -3 - 1 1 3 5 7 9 1 1 13  k  1  Fo  FC  3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5  16.51 2 .68 12 0 6  14 .97 1 .88 12 . 13 5 . 17 1 .59 2.21 0.92 0 . 14 24 31 7.99 5.40 8.22 14 .76 17 . 9 9 87.44 1.11 2 0 . 18 5.40 6.75 17.45  5 5 5 5 5 5  5 5 5 5 5 5 5 5  5  5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7  5.  IB 1 .B4* 2 . 18* 1 .37* 1 .76* 24 . 9 3 7 .34  5.  15 7.55 12.95 18.77 93.36 1 . 17* 19. 17 6 . 14 6.86 16 92 6.59 2.06* 1.28" 1 . 76* 3.41 9.46 1 .59* 5.09 3.60 12 . 0 6 2 6 . 14 4 0 . 81 2.85 5.70 8 .65 6.52 7.27 2.82 1 .25* 1 . 36* 2.36* 7 .85 20.24 1 . 16" 2 .88 2 .81 12 .45 67 .57 46.57 3 . 15 0. 865.85 14 . 5 5 22 . 22 4 .83 1 . IB* 1.41* 1.31  8.71 2.01 0.29 1 .58 3 . 20 9.36 0.2B 4 .72 3 . 17 12. 02 26.46 38.37 2 Bl 5.25 8.54 6 4B 7.27 3.51 1 .58 0.80 1 .32 7 .56 19.25 0 . 16 2.70 t .75 12 .44 67.90 43.99 2.79 0. 1 i 5.3* 14 86 23.20 5.26 1 .44 0.58 1 . 10  tght  1  2 21 2 2 2 3 3 0 3 0 3 0 3 o 3 0 3 0 3 0 3 o 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 3 1 3 1 1 3 3 1 3 1 3 1 1 3 3 1 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 3 2 2 3 2 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  1 .07 3.43 1 .94 3.52 3.30 3 36 3.22 3.29 0.40 3.20 3.52 3 . 16 1 .73 0.81 0.01 3 . 19 077 3.42 3.30 1.02 2.89 3.34 3.21 3 . 29 3 . 50 2.65 3.36 3.53 3.52 1 .94 0.35 0 . 11 3.45 3 . 48 2.88 3 . 36 3.22 3.44 3.20 3.22 3 . 38 3 .08 0.67 3 . 18 3 .45 3.44 1 .84 0.03 0 07 3.48 3 . 13 3.46 1 39 0 . 54 3.54 3 . 19 3.23 3.21  0.33 1 .92 1 .27 0 . 48 2 .94 7.73 6 . 80 2 83 2 .98 1 . 15 1 .03* 3 .69 1 . 39 0.41 4 . 37 14 . 8 6 7 . 22 6 34 5 13 3 . 12 22 .26 21 . 9 0 29 .02 26 .25 8.47 2.33 5 . 14 5.81 O.BB I .77' 937 9.08 4.20 020 0.86' 0 40 1 . 30' ' 1 .45 9 . 12 3.65 5 .66 5.27 10. 17 10.79 10.56 9 .59 3.09 2.67 21 . 3 6 21 .81 7 .93 8:22 0.78 2.13 13.91 13.76 6.04 5.86 • 0.93 • 0.55 • 0 . 10 2.28 3.25 9.67 9 95 1 08 1 .59• 7.01 6.73 10.53 • 1 .37 19.62 19.56 17 . 8 9 17.71 4 .93 7.34 3 . 17 • 0.63 6.02 2.25 : . 36* ! .07*  3.22 3.34 3 . 36 3 . 20 3 51 3 .27 3 . 37 3.46 3 . 16 3.53 3 . 28 3.21 3 .54 1 . 32 3.21 3.40 3 .47 3.45 0.56 0 . 29 2 .69 3 . 33 3.47 3.29 2 . 76 3 54 3 . 13 3.21 3.21 2 .65 3.54 3.52 2 .28 2.61 3.43 0.56 2.99 3 35 1 .55 3.46 3 . 19 3.27 3.21 3.41 3.52 2.51 3.26 3.33 2 . 17 3.25 0.73 0.92 3.54 3.13 3.45 3 . 16 3.48 3.36  k  h  weight  -12 - 10 -B -6 -4 -2 0 2 4 6 8 10 12 14 -16 - 14 -12 - 10 -8 -6 -4 -2 0 2 4 6  1  12 14 - 16 - 14 - 12 -10 -8 -6 -4 -2 0 2 4 6  8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10  h  k  1  a  -  10 12 14 16 14 12 10  -a  -6 -4 -2 0 2 4 6 B  to  15 - 15 - 13 - 11 -9 -7 -5 -3 - 1 3 5 7 9 11 13 15 - 15 -13 - 11 -9 -7 -5 -3 - 1 1 3 5 7 9 •11 13  Fc  Fo  7 7 7 7 7 7 7 7 7 7 7 7 7 7 6  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  8 8  8 e 8 8  8 B  a a  8 8 8  a  3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 3 . 4 4 3 4 3 5 3 3 5 5 3 3 5 3 5 3 5 5 3 5 3 3 5 3 5 5 3 3 5 5 3 3 5 5 3  6.05 1 .63* 5.66 1 1 .36 1 .21* 1 .64* 14 . 9 3 0.82* 6 58 1 1 .05 1 . 33* 4.09 1.41* 1 .64* 2 11* 2. 14* 2.27* 5.76 14.08 32 . 8 9 1 .52* 2.55 1 1 .23 15.07 26.60 19 .81 9.37 1 . 15* 1 .06* 2.40* 3.51 5-67 0.67*  o.so*  2 .37 7 .02 18 . 9 3 19 . 6 0 0 86* 2.67 10.65 5.41 6.24 4 .60 1 .22* 2.59* 2-56* 5.49 2.71 1 .52* 33.47 27.94 4 .37 13.00 4.57 13 .48 49 .66 9.9B  weight 3 .44 3.27 3.48 2.11 3 . 19 3.27 1 .32  6 . 10 0.73 5.75 11 .61 0.60 3.72 13.03 0.1 1 5.59 12 . 3 9 0.75 3 . 17 0.29 1 .61 2.51 046 1 .33 5.02 14.83 33.47 1 .87 2.89 10. 1 1 15 . 72 37 . 19 20.61 9 . 14 0.94 0 . 36 1 . 30 3.70 5.06 1.4 1 0.41 1 .65 7 .85 17.53 2 0 . 57 1 26 2.85 1046 5.33 6.31 4 .08 0.59 1 .55 1 .57 5.33 2.42 1 .04 32.44 27,85 4 .75 13 . 6 6 4 . 17 13. 29 49 78 9.47  Fo  Fc  3.  12 3.36 2-20 3.22 3.54 3.23 3.27 3 35 3.35 3.37 3.47 1 .48 0 - 19 3.25 3.41 2. 16 1 30 0 . 34 071 2.6B 3.18  3.  16 3 39 3 51 3.48 3.09 3.05 3.39 3.27 0 . 79 073 3 . 13 3-43 2.31 3.51 3-41 3.54 3 . 19 3.42 3.41 3.50 3.43 3.25 0 . IB 0.30 3.54 1.71 3.54 1 .61 006 2-50  we i grit  0.62 1 .73 4.41 14 , 30 3 . OS 2 ,66 16 72 5.55 30. 7 1 13.65 1 .23 5.B7 1 1 .62 3.74 9 .58 1 .70 0.20 4 .57 0 . 97 1 .90