Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Photoelectron spectroscopic studies of unstable molecular species Lau, Woon Ming 1982

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1982_A1 L39.pdf [ 16.69MB ]
Metadata
JSON: 831-1.0060665.json
JSON-LD: 831-1.0060665-ld.json
RDF/XML (Pretty): 831-1.0060665-rdf.xml
RDF/JSON: 831-1.0060665-rdf.json
Turtle: 831-1.0060665-turtle.txt
N-Triples: 831-1.0060665-rdf-ntriples.txt
Original Record: 831-1.0060665-source.json
Full Text
831-1.0060665-fulltext.txt
Citation
831-1.0060665.ris

Full Text

PHOTOELECTRON  SPECTROSCOPIC STUDIES OF  UNSTABLE MOLECULAR  SPECIES  by WOON MING^LAU B.Sc,  The C h i n e s e U n i v e r s i t y  o f Hong K o n g , 1976  A THESIS SUBMITTED I N PARTIAL FULFILLMENT OF THE REQUIREMENTS  FOR THE DEGREE OF  DOCTOR OF PHILOSOPHY  in THE FACULTY OF GRADUATE STUDIES ( Department of Chemistry  We a c c e p t t h i s  )  t h e s i s as conforming  to the required  standard  THE UNIVERSITY OF B R I T I S H January,  COLUMBIA  1982  ( c ) Woon M i n g L a u , 1982  In p r e s e n t i n g  this  thesis i n partial  f u l f i l m e n t of the  r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e of B r i t i s h Columbia, I agree that it  freely  the L i b r a r y s h a l l  a v a i l a b l e f o r r e f e r e n c e and s t u d y .  agree that p e r m i s s i o n for  University  f o r extensive  s c h o l a r l y p u r p o s e s may  for  financial  shall  of  CH€MII  The U n i v e r s i t y o f B r i t i s h 2075 W e s b r o o k P l a c e V a n c o u v e r , Canada V6T 1W5  1-6  (2/79)  Columbia  my  It is thesis  n o t be a l l o w e d w i t h o u t my  permission.  Department  thesis  be g r a n t e d by t h e h e a d o f  copying or p u b l i c a t i o n of t h i s  gain  further  copying of t h i s  d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . understood that  I  make  written  i i  Abstract  A study  photoelectron unstable  chamber and  has  (PE)  molecules.  spectrometer Reconstruction  made t h e i o n i z a t i o n  mass  spectral  LSI  11/03  microcomputer  of  the  h a s been a d d e d  identification  c o n d i t i o n s a s t h e PE e x p e r i m e n t .  been m o d i f i e d t o ionization  r e g i o n more e a s i l y a c c e s s i b l e ,  a q u a d r u p o l e mass s p e c t r o m e t e r  provide  has  data  in  under  l0.2eV) and H L c f r  i n t e r f a c i n g hardware.  with this  S„Nq,  S  f t  N , 2  system.  3  The  r e a c t i v i t i e s of these of  S N  and  3  S2N2  illustrate  work  i n species  and i t s isomer,  identification  on CH NO a n d i t s d i m e r s . 3  our a b i l i t y  v e r y complex m i x t u r e  to identify  with this  unstable  a  ionization  region opposite  fine nozzle.  produce  nearly  This  2  obtained.  3  study  2  i n previous  PE  T h e s e two s t u d i e s s p e c i e s even  in  a  system.  t o t h e sample i n l e t ,  close  to  w h i c h may be  f a s t p u m p i n g n o z z l e s y s t e m h a s been u s e d t o  pure  N 0,, 2  ( C H ) 0 - B F , a n d e x c e l l e n t PE 3  The  CH NOH, h a s  A c r y o p u m p was c o n s t r u c t e d a n d may be p o s i t i o n e d the  line,  i n t e r r e l a t i o n s h i p between t h e gas phase  3  spectroscopic  data  were s y n t h e s i z e d a n d s t u d i e d  compounds h a s been e s t a b l i s h e d .  some m i s t a k e s  A  ion-fragmentation.  CH NO, i t s t r a n s a n d c i s d i m e r s ,  clarified  a  o f H y d r o g e n Lyman o, p a n d r l i n e s )  r a d i a t i o n s were u s e d t o r e d u c e Pure  for  s u c h a s t h e HLc ( H y d r o g e n Lyman a  (a m i x t u r e  same  The s y s t e m i s c o n t r o l l e d by  with suitable  L i g h t sources  to  the  r e a l - t i m e o p e r a t i n g s y s t e m p r o g r a m h a s been d e v e l o p e d handling.  order  and  a  spectra  charge-transfer of  these  complex  species  were  iii A l i b r a r y o f c o m p u t e r p r o g r a m s has been provides  a  wide  variety  a p p l i c a b l e t o PE band CNDO/2,  quantum  assignments.  mechanical  These  throughout  corrections  t h i s work and  Koopmans' t h e o r e m ionization  of  Hel r e g i o n  to their  Koopmans'  which  computations  programs,  MINDO/3, MNDO, HAM/3, GAUSSIAN 70 and  perturbation  the  of  established  such  as  76, and RSPT ( f o r  theorem),  were  a c c u r a c y and e f f i c i e n c y  used  assessed.  h a s been shown t o b r e a k down i f a p p l i e d t o t h e  CH NO and N Oj,. 3  Moreover,  2  h a v e been s t u d i e d  for  these  shake-up p r o c e s s e s i n two  molecules  and  S N . S  2  Several (CH ) 0-BF , 3  2  before.  3  of have  the not  molecules, been  such  as  investigated  S„N , 2  by  S N 3  3  and  PE s p e c t r o s c o p y  iv  Table of C o n t e n t s  page  Abstract  i  Table of C o n t e n t s List  of Tables  List  of F i g u r e s  List  of A b b r e v i a t i o n s  iv x xiii xviii  Acknowledgements  PART I Chapter  xix  General Background  1  1 Introduction References  Chapter 2 T h e o r e t i c a l  2  (Chapter  1)  7  I P ' s i n PES and P r i n c i p l e s  of Quadru-  p o l e Mass S p e c t r o m e t r y  9  2.1  9  Introduction  2.2 T h e o r e t i c a l I P ' s i n PES A  Koopmans' t h e o r e m  10  B  Breakdown  12  C  Perturbation  o f Koopmans' t h e o r e m c o r r e c t i o n s t o Koopmans'  theorem  2.3  10  18  D  The s e m i - e m p i r i c a l  E  Valence-electron Principles  References  HAM/3 method  shake-up p r o c e s s e s  o f q u a d r u p o l e mass s p e c t r o m e t r y  ( C h a p t e r 2)  PART I I S y s t e m D e v e l o p m e n t C h a p t e r 3 Hardware Development  25 28 31 37  41 42  V  3.1  C o n s t r u c t i o n o f t h e PE s p e c t r o m e t e r A  The vacuum s y s t e m  B  The e l e c t r o n e n e r g y  C  The l i g h t  D  The s c a n n i n g s y s t e m  54  E  The d e t e c t i n g  54  3.2  Addition  43 analyzer  47  source unit  53  system  of a quadrupole  mass s p e c t r o m e t e r t o  t h e PE s p e c t r o m e t e r A  57  C o n s t r u c t i o n of the quadrupole  mass s p e c t r o -  meter B  C  57  Coupling of the quadrupole to  mass  spectrometer  t h e PE s p e c t r o m e t e r  Performance  of the quadrupole  65 mass s p e c t r o -  meter 3.3  69  Hardware f o r computer c o n t r o l  o f t h e PE/PIM  spectrometer References Chapter  42  79  ( C h a p t e r 3)  83  4 S o f t w a r e Development  84  4.1 I n t r o d u c t i o n 4.2 The l i b r a r y  84 o f c o m p u t e r p r o g r a m s f o r PES  A  The a b i n i t i o GAUSSIAN 70 a n d 76 p r o g r a m s  B  S e m i - e m p i r i c a l CNDO/2, INDO, MINDO/3 a n d  86 86  MNDO p r o g r a m s  90  C  The s e m i - e m p i r i c a l HAM/3 p r o g r a m  93  D  Comparison  of t h e performance  o f t h e GAUS-  SIAN 7 0 , CNDO/2, MINDO/3, HAM/3 a n d MNDO programs  94  vi  E  Use o f t h e RSPT p r o g r a m  in correcting  Koopmans' t h e o r e m  106  4.3 A s m a l l r e a l - t i m e o p e r a t i o n microcomputer  system program f o r  c o n t r o l of t h e spectrometers  A  Aim o f t h e system program  113  B  The d e s i g n o f t h e s y s t e m p r o g r a m  113  C  Implementation of t h e d e s i g n  122  D  R e s u l t s and D i s c u s s i o n  123  References  ( C h a p t e r 4)  125  PART I I I S y s t e m A p p l i c a t i o n s  IIIA.  129  A S t u d y o f Some S u l f u r N i t r i d e s - S N fl  and S N 3  113  flf  S N , S„N , 2  2  130  3  Chapter 5 T e t r a s u l f u r dinitride, 5.1  2  tetranitride, S N 2  S„N,, a n d d i s u l f u r 132  2  Introduction  132  5.2 E x p e r i m e n t a l  135  5.3  137  Results A  The S»N„ v a p o r  B  S^N,, v a p o r o v e r s i l v e r  C  S,N  a  137 wool  vapor over Pyrex wool  5.4 D i s c u s s i o n  5.5  Pyrolysis with silver  B  P y r o l y s i s w i t h Pyrex wool  References  ( C h a p t e r 5)  141 145  A  Conclusion  137  wool  145 148 149 151  vi i  Chapter  6 T e t r a s u l f u r d i n i t r i d e S«N 6.1  Introduction  153  6.2  Experimental  154  6.3  Results  156  6.4  Discussion  160  6.5  Conclusion  167  References Chapter  7 Trisulfur  ( C h a p t e r 6) trinitride  169  S N 3  Introduction  171  7.2  Experimental  176  7.3  Results  176  A  The  176  B  Thermal s t a b i l i t y  C  Condensed phase r e a c t i o n s of t h e vapor  s p e c t r a of the vapor of the vapor  179 179  7.4  Discussion  179  7.5  Conclusion  189  ( C h a p t e r 7)  A s t u d y of monomeric n i t r o s o m e t h a n e , d i m e r s , and  Chapter  171  3  7.1  References  IIIB.  153  2  190  i t s c i s and  trans  formaldoxime  8 A s t u d y o f monomeric n i t r o s o m e t h a n e , t r a n s d i m e r s , and  192 i t s c i s and  formaldoxime  193  8.1  Introduction  193  8.2  Experimental  194  A  B  S y n t h e s i s o f t h e compounds and  sampling  procedures  194  Theoretical calculations  196  vi i i  8.3 R e s u l t s  196  8.4 D i s c u s s i o n  207  8.5 C o n c l u s i o n  211  References  IIIC.  A study  (Chapter  8)  212  o f some w e a k l y a s s o c i a t e d m o l e c u l e s by u s i n g a  f a s t pumping n o z z l e  inlet  system  215  Chapter 9 N 0»  217  2  9.1 I n t r o d u c t i o n  217  9.2 E x p e r i m e n t a l  218  9.3 R e s u l t s  218  9.4 D i s c u s s i o n  224  9.5 C o n c l u s i o n  229  References Chapter  10 The s t u d y (CH ) 0-BF 3  2  (Chapter  9)  232  o f a 1:1 c h a r g e t r a n s f e r  complex, 234  3  10.1  Introduction  234  10.2  Experimental  235  10.3  Results  236  10.4  Discussion  242  A  Complex f o r m a t i o n  B  Identification  C  S t r u c t u r e of t h e complex  D  A s s i g n m e n t o f t h e PE b a n d s a n d b o n d i n g i n  (Chapter  2  3  242 244 245  247  Conclusion  References  3  of t h e complex  the complex 10.5  of ( C H ) 0 - B F  251 10)  253  ix  PART I V Summary a n d P r o g n o s i s Chapter  11 Summary a n d P r o g n o s i s References  APPENDIX  255  (Chapter  11)  256 263  264  X  List  of Tables  Chapter  1  1  2  Relativistic  Chapter  page  corrections  f o r I P ' s o f some atoms  15  3  Some t y p i c a l  values of the v o l t a g e s f o r the lens  system  o f t h e PE s p e c t r o m e t e r  49  2  Energies  3  The t r a n s m i t t a n c e c u t - o f f  Chapter  o f some l i g h t  sources  f o r UPS a n d PIMS  o f some uv f i l t e r s  68 72  4  1  The b a s i s s e t e f f e c t  on t h e c a l c u l a t i o n s o f H 0  2  The e x p e r i m e n t a l  and t h e o r e t i c a l  IP's of t r a n s - d i a z e n e  3  The e x p e r i m e n t a l  and t h e o r e t i c a l  IP's of  2  89 95  trans-methy-  diazene  96  4  The e x p e r i m e n t a l  and t h e o r e t i c a l  I P ' s o f t r a n s - a z o m e t h a n e 97  5  The e x p e r i m e n t a l  and t h e o r e t i c a l  IP's of c i s - h e x a f l u o r o -  azomethane 6  The e x p e r i m e n t a l  98 and t h e o r e t i c a l  IP's of  trans-difluoro-  diazene  99  7  The e x p e r i m e n t a l  and t h e o r e t i c a l  I P ' s of methylenimine  8  The e x p e r i m e n t a l  and t h e o r e t i c a l  I P ' s of N-methylmethyl-  enimine 9  The e x p e r i m e n t a l  101 and t h e o r e t i c a l  IP's of C-methylmethyl-  enimine 10  100  R e s u l t s of the l i n e a r l e a s t  102 square f i t s  of the c a l c u l a t e d  xi  IP's  t o the experimental IP's  104  11  Results'of  t h e RSPT c a l c u l a t i o n s  f o r HBF  109  12  R e s u l t s o f t h e RSPT c a l c u l a t i o n s  f o r CH NO  13  R e s u l t s o f t h e RSPT c a l c u l a t i o n s  f o r some l i n e a r  2  110  3  boron  molecules  11 1  Chapter 6 1  E x p e r i m e n t a l and t h e o r e t i c a l  2  R e s u l t s of t h e geometry o p t i m i z a t i o n comparison of the C  3  iv/  and C  6  I P ' s o f S„N  f o r S„N , a 2  structures  The m o l e c u l a r g e o m e t r y o f S „ N and  159  2  2  161  by a b i n i t i o  calculations  x-ray c r y s t a l l o g r a p h y  164  Chapter 8 1  E x p e r i m e n t a l and t h e o r e t i c a l  I P ' s o f monomeric  nitroso-  methane 2  197  E x p e r i m e n t a l and t h e o r e t i c a l  I P ' s o f monomeric  formal-  doxime 3  198  E x p e r i m e n t a l and t h e o r e t i c a l  I P ' s of t h e t r a n s  nitroso-  methane d i m e r  199  4  Theoretical  200  5  A comparison of observed and t h e o r e t i c a l by  6  I P ' s of t h e c i s n i t r o s o m e t h a n e dimer  RSPT f o r m o n o m e r i c n i t r o s o m e t h a n e  Interpretation of  IP's calculated  of t h e i o n i z a t i o n and shake-up p r o c e s s e s  CH NO i n t h e H e l r e g i o n by t h e m o d i f i e d HAM/3 method 3  201  210  xi i  Chapter 9 1  The e x p e r i m e n t a l a n d t h e o r e t i c a l  2  Experimental  I P ' s of N 0„  223  2  r e s u l t s o f t h e f o r m a t i o n o f N 0 „ by PES 2  studies 3  226  Interpretation of  N 0„ 2  of t h e i o n i z a t i o n and shake-up  processes  i n t h e H e l r e g i o n by t h e m o d i f i e d HAM/3 method  230  C h a p t e r 10 1  The r e s u l t s  o f g e o m e t r y o p t i m i z a t i o n s on t h e 1:1 c o m p l e x  (CH ) 0-BF  and a comparison of t h e t o t a l  3  2  3  o b t a i n e d by SCF c a l c u l a t i o n s and B F 2  energies  on t h e c o m p l e x ,  (CH ) 0 3  241  3  E x p e r i m e n t a l and t h e o r e t i c a l  2  I P ' s of ( C H ) 0 - B F 3  2  3  243  xi i i  Table of F i g u r e s  Chapter 1  page  2  The e x p e r i m e n t a l H e l PE s p e c t r u m s p e c t r a of N  and t h e o r e t i c a l  PE 14  2  2  Schematic  diagram  of a quadrupole  mass s p e c t r o m e t e r  3  S o l u t i o n of t h e Mathieu e q u a t i o n s - s t a b i l i t y  32  diagrams  f o r t h e x and y d i r e c t i o n s 4  34  The s t a b l e r e g i o n f o r b o t h x a n d y d i r e c t i o n s n e a r t h e origin  Chapter 1  35  3  The i o n i z a t i o n  chamber and t h e e l e c t r o n a n a l y z e r o f t h e  PE s p e c t r o m e t e r 2  44  The i o n i z a t i o n chamber a n d t h e l i g h t  source u n i t  of t h e  PE s p e c t r o m e t e r  45  3  The c o n s t r u c t i o n o f t h e c r y o p u m p  46  4  The l e n s s y s t e m  48  5  The h e m i s p h e r i c a l e l e c t r o s t a t i c  6  A block diagram  o f t h e PE s p e c t r o m e t e r analyzer  51  of the scanning v o l t a g e c o n t r o l  f o r the  PE/PIM s p e c t r o m e t e r 7  The r o d a s s e m b l y  55  of t h e quadrupole  mass  spectrometer  (cross section perpendicular to the a x i a l axis) 8  9  The r o d a s s e m b l y  and t h e d e t e c t o r of t h e q u a d r u p o l e  spectrometer  (cross section along the a x i a l a x i s )  The e l e c t r o n  impact  mass s p e c t r o m e t e r  ionization  58 mass 59  k i t f o r the quadrupole 61  xiv  10  The p h o t o i o n i z a t i o n chamber f o r t h e q u a d r u p o l e mass spectrometer  11  62  A block diagram of the e l e c t r o n i c  control  f o r t h e quad-  r u p o l e mass s p e c t r o m e t e r  64  12  The c o n s t r u c t i o n o f t h e P E / P I M s p e c t r o m e t e r  66  13  The t r a n s m i t t a n c e c u r v e o f L i F (1.55mm) a t 26°C  70  14  The c o n s t r u c t i o n o f t h e f i l t e r  71  15  The H e l mass s p e c t r u m o f CC1„  16  The mass s p e c t r u m o f C H I 3  the  74  i o n i z e d by t h e r a d i a t i o n  from  d i s c h a r g e o f a . He, b. He w i t h a t r a c e o f H , a n d 2  c . 70% He w i t h 30% H 17  holder  75  2  The H L a p r a n d HLa mass s p e c t r a o f a m i x t u r e o f CH OH, 3  CH CN a n d t o l u e n e  77  3  18  P r e s s u r e e f f e c t s on t h e d e g r e e o f f r a g m e n t a t i o n and t h e r e l a t i v e c o u n t r a t e o f t h e HLo£r mass s p e c t r u m o f bromobenzene  78  19  The s t r u c t u r e o f t h e m i c r o c o m p u t e r  20  The s c a n n i n g p r o c e s s o f a d i g i t i z e d  c o n t r o l system spectrum  80 81  Chapter 4 1  Results of the l i n e a r IP's  2  l e a s t square f i t s  of the c a l c u l a t e d  to the experimental IP's  105  The r e l a t i v e c o s t s o f t h e c a l c u l a t i o n s  f o r each method  e x p r e s s e d i n terms of t h e c o m p u t a t i o n a l time / e l e c t r o n s a g a i n s t t h e t o t a l number o f e l e c t r o n s 3  The s t r u c t u r e o f t h e o p e r a t i n g  i n the molecule  system program  107 114  Chapter  5  1  The m o l e c u l a r s t r u c t u r e o f S N„  2  The e x p e r i m e n t a l s e t u p f o r t h e p y r o l y s i s o f S N „ i n t o  n  ( |  t h e PE/PIM  spectromter  3  The H e l PE s p e c t r u m  4  The P I M s p e c t r a and  5  ofaSqN,,  (b) t h e HLcpr l i g h t  recorded with  (a) t h e H e l  sources  The t i m e d e p e n d e n c e o f t h e c o m p o s i t i o n o f t h e p y r o l y s i s products of  6  o f S«N«  S  The p y r o l y s i s  f t  N„  over  silver  products of  before the steady s t a t e  S  f l  wool N„  over  silver  w o o l a t 260°C  ( a ) t h e H e l PE s p e c t r u m  p r o d u c t m i x t u r e and (b) t h e HLcpr PIM spectrum product  The H e l PE s p e c t r u m  8  The P I M s p e c t r a o f  9  of S N 2  2  (b) t h e HLa^r l i g h t  S N 2  2  recorded with sources  of the product  (b) t h e H L o 0 r PIM s p e c t r u m The t e m p e r a t u r e  Chapter  2  mixture  dependence o f t h e c o m p o s i t i o n of t h e Pyrex  wool  6  The P I M s p e c t r a o f and  mixture  of the product  p y r o l y s i s products of S«N|, over  1  (a) t h e H e l  The p y r o l y s i s p r o d u c t s o f S«N„ o v e r P y r e x w o o l a t 280°C ( a ) t h e H e l PE s p e c t r u m  10  of the  mixture  7  and  of the  S  f t  N  2  recorded with  ( c ) HLa r a d i a t i o n  The H e l PE s p e c t r u m  of S„N  2  (a) H e l , (b) HLa*r  3  The ab i n i t i o  optimized  4  The e l e c t r o n i c  Cav a n d C  s t r u c t u r e of S«N  s t r u c t u r e s of S N  5  a  2  2  Chapter 7 1  The c r y s t a l  2  S t r u c t u r e of the S N ~  3  The H e l P E s p e c t r u m o f S N  4  The P I M s p e c t r a o f S N  3  3  y  polymer  anion  3  3  and 5  s t r u c t u r e of the (SN)  3  3  recorded  with  (a) H e l ,  ( b ) HLcp  ( c ) HLo r a d i a t i o n  The H L a ^ r P I M s p e c t r a r e c o r d e d  during  z a t i o n of t h e f r e s h l y condensed  S N 3  the vapori-  3  Chapter 8 1  The H e l P E s p e c t r u m the  P I Mspectra  (a) of.nitrosomethane  recorded  with  together  (b) H e l and  with  (c)HLa^r  radiat ion 2  The H e l P E s p e c t r u m together and  3  (a) of t r a n s nitrosomethane  with the P I M spectra recorded  (c)HLopr  with  dimer  (b) H e l  radiation  The H e l P E s p e c t r u m the P I M s p e c t r a  (a) of formaldoxime together  recorded  with  (b) H e l and  with  (c)HLapr  radiation 4  A plot  of t h e o r e t i c a l  I P ' s o f CH NO ( A ( E 3  )) a g a i n s t  -T  the  truncation limit,  10  Chapter 9 1  P E s p e c t r a of (a) N0  2  and (b) N 0 / N 0 2  4  2  mixture  xv i i  2  The mass s p e c t r a o f t h e N O / N 0 2  by  a  mixture  2  ionized  ( a ) H e l a n d (b) H L c ^ r r a d i a t i o n  221  3  The H e l PE s p e c t r u m o f N 0 «  4  E x p e r i m e n t a l a n d t h e o r e t i c a l PE s p e c t r a o f N 0 ,  10  The H e l PE s p e c t r u m o f a 1:1 m i x t u r e o f ( C H ) 0 a n d 3  BF  obtained  3  (CH ) 0-BF 3  2  225  2  Chapter 1  222  2  2  3  from a complete d i s s o c i a t i o n  2  of the  complex.  237  The H e l PE s p e c t r u m o f t h e 1:1  (CH ) 0-BF 3  2  complex  3  plus the free constituents 3  The mass s p e c t r a o f t h e 1:1  238 (CH ) 0-BF 3  2  plus the free constituents obtained light 4  s o u r c e , a n d (b) HLo l i g h t  complex  3  (a) w i t h a H e l  source  239  The s t r i p p e d H e l PE s p e c t r u m o f t h e 1:1  (CH ) 0-BF 3  2  3  complex  240  5  The s t r u c t u r e o f t h e 1:1  6  0.92x£'s o f t h e 4 - 3 1 G c a l c u l a t i o n s on (CH ) 0-BF 3  2  3  2  3  2  3  complex  246  (CH ) 0, 3  2  and B F , and e x p e r i m e n t a l v a l u e s f o r  ( C H ) 0 and B F 3  (CH ) 0-BF  3  248  3  C h a p t e r 11 1  The c o n s t r u c t i o n o f a d o u b l e f u r n a c e h e a t i n g u n i t a n o z z l e sample i n l e t  with 258  List  of A b b r e v i a t i o n s  ADC  analog  to digital  amu  atomic  mass  AO  atomic  CEM  channel  CI  configuration interaction  cps  counts  CPU  c e n t r a l processor  unit  DAC  digital  converter  HF  converter  unit  orbital electron  multiplier  per seconds  t o analog  Hartree-Fock  HLc  h y d r o g e n Lyman c l i n e  HLopr  h y d r o g e n Lyman (l2.09eV,  o  (l0.20eV)  contaminated  10%) a n d r 0 2 . 7 5 e V ,  with p 1%)  IP  ionization  potential  ir  infrared  MO  molecular  mp  melting point  op-amp  operational amplifier  PE  photoelectron  PES  photoelectron  PIM  p h o t o i o n i z a t i o n mass  PIMS  p h o t o i o n i z a t i o n mass  RSPT  Rayleigh-Schrodinger p e r t u r b a t i o n theory  SCF  self-consistent  UPS  ultraviolet  uv  ultraviolet  orbital  spectroscopy  spectrometry  field  photoelectron  spectroscopy  xix  Acknowledgements  I would for their I  about  t o t h a n k D r . C.A. M c D o w e l l a n d D r .  support througout t h i s  owe  guidance  like  a special gratitude  D.C.  Frost  work. t o Dr.  a n d h e l p i n t h e PES l a b o r a t o r y ,  N.P.C. Westwood f o r h i s and  many  suggestions  this thesis. I  wish  to  thank  D r . D.P. Chong,  D r . N.L. P a d d o c k , D r . J . S . T s e ,  D r . T. M i n a t o ,  D r . C. K i r b y ,  D r . M.H.  D r . S. C h a n s o n , D r . F. C a r n o v a l e a n d D r . R.T. O a k l e y discussions programs, nitrogen (SN)  and  thank  D r . D.P. Chong  D r . N.L. P a d d o c k  f o r the  compounds, a n d D r . R.T. O a k l e y  f o r the  supply  of  Palmer,  for useful use  of h i s  many  sulfur-  f o r the supply  of the  crystals. I  would  like  to  m e c h a n i c a l and e l e c t r i c a l U.B.C.,  acknowledge staff  the  assistance  of the Chemistry  of t h e  Department  at  e s p e c i a l l y Mr. E. M a t t e r , Mr. C. M c C a f f e r t y , Mr. B. P o -  w e l l a n d Mr. M. H a t t o n . Finally, thesis.  I a l s o t h a n k M i s s S.S. Y a u f o r p r o o f - r e a d i n g t h i s  1  PART I  General  Background  Chapter  1  Introduction  Einstein's  interpretation  of  the  photoelectric effect  d e m o n s t r a t e d t h a t when'a s a m p l e i s i r r a d i a t e d by ficient  energy, e l e c t r o n s are  M + hv and  the  where K E  = KE  the  respectively.  eqn.  of 1.1,  thesis,  kinetic  (E^  +  with By  of  an  other  as  ion  spectroscopy wherein  i s r e f e r r e d t o as  KE  electron  and  their  PE  with  other  of  the  and  (see  is  the  data, results  and  M +  molecule  a  specific  m e a s u r e d , and known.  by  In  this  ionization potential  (IP),  be  direct  i o n i z a t i o n which  2,  section  stability  mixes 2.2E).  properties and  dipole  d e d u c e d by c o r r e l a t i o n  including of  a  e l e c t r o n ( s ) and  chapter  bonding,  i o n s may  experimental  compounds,  is  is  band s h a p e s , m o l e c u l a r  structure,  properties  some  neutral  (PES)  o r a more c o m p l e x  i o n i z a t i o n process(es)  geometric  and  electron, E  corresponding process i s simply  moment, and  related  the  ejected  s i m u l t a n e o u s e x c i t a t i o n of o t h e r  measuring IP's  such  the  i s d e d u c e d , s i n c e hv  no m a t t e r w h e t h e r t h e  involves  of  phenomenon,  (E... - E„)  ionization  1 -1  e n e r g y of  energy  - E^)  process  )  Photoelectron  this  suf-  i.e. :  holds for t h i s  -  total  p h o t o n s of  + e  +  +  e  i s the  e  are  study  M  >  f o l l o w i n g equation  hv  E^  •  ejected,  (1)  quantum  PE  spectra  of  mechanical  calculations. Since  the  first  use  of  the  intense  and  relatively  3  monochromatic Helo early  line  1960's by T u r n e r  (21.22eV) a s t h e r a d i a t i o n et a l . ,  and a l i t t l e  PE s t u d i e s h a v e been e x p a n d i n g  rapidly.  spectrometers  and  purposes world.  are  available  Vroom ( 2 ) ,  Nowadays, c o m m e r c i a l  spectrometers  Other  r a d i a t i o n s such as  h a v e been u s e d  Hell,  successfully  have been p u b l i s h e d a n d t h e ' J o u r n a l  its  by  i n the  for  PE  special  h a v e been c o n s t r u c t e d i n many l a b o r a t o r i e s a l l o v e r t h e  emission  and  later  source  Related  x-ray  i n PES. of  synchrotron  S e v e r a l books (3)  Electron  Spectroscopy  Phenomena' been e s t a b l i s h e d , c o v e r i n g b o t h PES a n d  related  field.  Ultraviolet  PES  (UPS,  established  t e c h n i q u e used  electronic  structures.  or  merely  f o r the  PES)  In t h e e a r l y days,  well  molecular  bonding  in  molecules.  t h e s e s t u d i e s were c o n f i n e d t o s t a b l e  techniques,  successfully  of  a  I P ' s o f t h e v a l e n c e e l e c t r o n s h a v e been  or e a s i l y v o l a t i l i z e d m o l e c u l e s , but experimental  i s now  determination  shown t o s t r o n g l y c o r r e l a t e t o c h e m i c a l  species  and  the  with  scope  the has  gaseous  improvement been  in  extended  t o t h e s t u d y o f u n s t a b l e s p e c i e s ( 4 ) . The u n s t a b l e  are  often  possible  tremendous  theoretical  relatively  small  and  reaction chemical  interest.  s i z e and g i v i n g w e l l  theoretical calculations viable.  theoretical  Those  of  r e s o l v e d PE s p e c t r a make  In these cases, the i o n i z a t i o n  p r o c e s s e s c a n be b e t t e r u n d e r s t o o d , corresponding  i n t e r m e d i a t e s , and a r e of  and a l s o t h e v a l i d i t y  treatments  can  be  of the  realistically  assessed. In a n o t h e r species  have  fruitful been  approach,  directed  to  PES  the  studies  dynamics  of  of  unstable  gas  phase  4  reactions. usually  Unstable  s p e c i e s , due t o t h e i r  g e n e r a t e d as c l o s e as p o s s i b l e t o t h e i o n i z a t i o n  i n a PE s p e c t r o m e t e r .  Methods such as atom-molecule  microwave  discharges,  techniques  h a v e been u s e d w i t h s u c c e s s .  these  reactions  are  pyrolysis,  usually  reactants plus side-products, t h e PE s p e c t r a . unstable  thesis,  the  This  more  PE  small.  take  can  place  Hence, t h e t a r g e t s p e c i e s and  problem i n  be  used  to  programs  (dealing  with  corrections  modified  HAM/3  calculations).  under d i f f e r e n t  the  studies  phase  r e l a t e d t o the establishment of unstable  species.  v a r i o u s ab i n i t i o  and  of  Koopmans'  (performing  library  has  theorem),  and  valence-electron been  well  the  shake-up  documented  and  a w i d e s p e c t r u m o f t h e o r e t i c a l means f o r c o r r e l a t i n g  interest  spectrometer  scientists  h a s been c o u p l e d  easily  ionization  to  identify  region.  facilitate The  the  in  general.  with a modified (usually  which  the study  PE  i s of  A q u a d r u p o l e mass PE s p e c t r o m e t e r  unstable)  species  H i g h pumping s p e e d i s i n c o r p o r a t e d  system  of  f o r MO c a l c u l a t i o n s , t h e RSPT p r o g r a m  program This  gas  conditions.  s p e c t r a t o the e l e c t r o n i c s t r u c t u r e s of molecules,  species.  PE  monitor  approaches t o the study  semi-empirical  to  of  w h i c h a l l i o n i z e and c o n t r i b u t e t o  A l i b r a r y h a s been s e t up, w h i c h c o n t a i n s  more  reactions,  However, t h e y i e l d s  i s t h e most s e v e r e  spectra  system f o r these  most  region  recently, nozzle  of t h e u n s t a b l e  This t h e s i s i s p a r t i c u l a r l y  provides  are  s p e c i e s ; h o w e v e r , a s h a s been d e m o n s t r a t e d i n t h i s  r e a c t i o n s as they  a  and,  very  molecules are u s u a l l y a mixture  of  short l i f e - t i m e ,  in  to  i n the order  of t h e s h o r t - l i v e d and h i g h l y r e a c t i v e is  controlled  using  a  L S I 11/03  5  microcomputer  and  acquisition, spectrum  a real-time operating  data  storage  stripping).  Mass  u n d e r same c o n d i t i o n s a s helpful  in  species  s p e c t r a l data d e g r e e s of  phase Part  and  the  PE  I of  this 2.  the  The  latter  In P a r t  and  data  most  i n t e g r a t i o n of sources  obtained  mass  (different  under  various  about  some  perturbation shake-up  . development  operating  the  appendix.  system.  S N,,  and  initio  2  and  the  a l l three  s t u d i e s of chapters  Koopmans'  c a l c u l a t i o n s , the use  of  Koopmans'  c o r r e c t i o n s t o Koopmans' t h e o r e m ,  to  calculations.  of  the  4  deal  the  phase  These  gas  2  principles  with  the  hardware  and  computerized system r e s p e c t i v e l y .  gas  S«N  The  also outlined.  5 describes  conditions.  to the  the  i n Chapter 4  t h e s i s i s concerned  Chapter  S N , 2  the  (Introduction)  a p p l i c a t i o n of  ab  system program d e s c r i b e d  I I I of  the  of  1  surveys the t h e o r e t i c a l  method w h i c h a v o i d s  I I , C h a p t e r 3 and  The  Since  PE  chapter  q u a d r u p o l e mass s p e c t r o m e t r y a r e  related  The  with d i f f e r e n t light  semi-empirical  the  different  taken  o n e s h a v e been shown t o be  IP c a l c u l a t i o n s , from the  valence-electron  a  as  measurements  t h e s i s c o n s i s t s of C h a p t e r  HAM/3 s e m i - e m p i r i c a l  Part  (such  p r o d u c e d much i n t e r e s t i n g i n f o r m a t i o n  with  software  data  reactions.  background of  theorem,  manipulation  spectrometric  f r a g m e n t a t i o n ) and  Chapter  theorem  data  identification.  recorded  c o n d i t i o n s has gas  and  system program f o r  with  study  of  appears  in  applications  of  the  pyrolysis phase  (Chapter  PE  Si,N  of  reactions  6) and  S N 3  3  spectra tt  are  under later  (Chapter  concern s u l f u r - n i t r o g e n molecules,  of  7). they  6  are grouped  i n Part  capability  of  Chapter 8  t h e system  project described assignments  IIIA.  i nthis  demonstrates  the  i n studying unstable species.  The  chapter  i n previous  studies:  Part  IIIC  2  t h e H e l PE s p e c t r u m o f N O 2  Finally, work  Chapter  described  fruitful developed.  fl  3  N 0 2  4  two  adiabatic  (Chapter  (Chapter 10).  shake-up  9)  expansion  and  Shake-up  a charge peaks  in  are interpreted.  11 s u m m a r i z e s  of  of  The  3  in this thesis,  applications  species  o f t h e H e l PE s p e c t r u m o f CH NO a r e  of  (CH ) 0-BF 3  and t h e occurrence  describes  the production  t r a n s f e r complex  mistaken  3  i n the interpretation  also discussed.  clarifies  s t u d i e s o f CH NO a n d i t s d i m e r s .  b r e a k d o w n o f Koopmans' t h e o r e m peaks  further  the overall  impact  a n d i n d i c a t e s some  the techniques  which  of the  potentially have  been  7  References  (Chapter  1)  1.  A. E i n s t e i n , A n n . d . P h y s i k ,  2.  ( a ) D.W.  Turner,  17(1905)132, and 20(1906)199.  M.I. A l - J o b o u r y ,  J . Chem. P h y s . ,  37(1962)  3007. (b) D.A. Vroom, P h . D. t h e s i s , UBC, 1 9 6 5 . 5141 . 3.  Some e x a m p l e s a r e : (a) D.W.  Turner,  'Molecular  C. B a k e r , A.D. B a k e r a n d C.R.  photoelectron  spectroscopy',  Brundle,  Wiley,  London,  1970. (b) D.A. S h i r l e y ,  ed., 'Electron spectroscopy',  North  Hol-  l a n d , A m s t e r d a m , 1972. ( c ) A.D. B a k e r , D. B e t t e r i d g e , ' P h o t o e l e c t r o n chemical  and a n a l y t i c a l a s p e c t s ' ,  spectroscopy  Pergamon,  Oxford,  1972. (d) J.H.D. E l a n d ,  'Photoelectron  spectroscopy',  Halsted  P r e s s , New Y o r k , 1974. (e) T.A. C a r l s o n ,  ' P h o t o e l e c t r o n and Auger  spectroscopy',  P l e n u m P r e s s , New Y o r k , 1975. ( f ) J.D. D u n i t z , P. H e m m e r i c h , R.H. Holm, J . A . I b e r s , C.K. Jorgensen,  J . B . N e i l a n d s , D. R e i n e n a n d R . J . P .  liams, ed., 'Photoelectron Spectrometry', and  Bonding,  ' P r i n c i p l e s of u l t r a v i o l e t p h o t o e l e c t -  spectroscopy',  (h) C.R. B r u n d l e  Structure  24(1975).  (g) J.W. R a b a l a i s , ron  Wil-  Wiley,  New Y o r k , 1977.  a n d A.D. B a k e r , e d . , ' E l e c t r o n s p e c t r o -  scopy - t h e o r y , t e c h n i q u e and a p p l i c a t i o n s ' , 2 ( 1 9 7 8 ) a n d 3 ( 1 9 7 9 ) , A c a d e m i c P r e s s , New  1(1977),  York,  ( i ) D. B r i g g s , e d . , 'Handbook o f x - r a y a n d u l t r a v i o l e t p h o t o e l e c t r o n s p e c t r o s c o p y ' , H e y d e n , L o n d o n , 1977. ( j ) J . B e r k o w i t z , ' P h o t o a b s o r p t i o n , p h o t o i o n i z a t i o n and photoelectron  s p e c t r o s c o p y ' , A c a d e m i c P r e s s , New  York,  1979. ( k ) G. W e n d i n ,  'Breakdown o f t h e o n e - e l e c t r o n p i c t u r e s i n  photoelectron  s p e c t r a ' , S t r u c t u r e a n d B o n d i n g , 45  (1981 ) See,  f o r instance,  (a) A.B. C o r n f o r d , Ph.D. t h e s i s , UBC, 1 9 7 1 . (b) S.T. L e e , Ph.D. t h e s i s , UBC, 1974. ( c ) D. V o c e l l e , A. D a r g e l o s , R. P o t t i e r a n d C. S a n d o r f y , J . Chem. P h y s . ,  66(1977)2869.  (d) C R . M a c D o n a l d , M.Sc. t h e s i s , UBC, 1978. (e) D. C o l o u r b n e , Ph.D. t h e s i s , UBC, 1979. ( f ) J . B e r k o w i t z , C H . B a t s o n a n d G.L. Goodman, J . Chem. Phys.,  71(1979)2624.  (g) F. C a r n o v a l e , Ph.D. t h e s i s , L a T r o b e U n i v e r s i t y , 1980. (h) G. J o n k e r s , R. Mooyman a n d C A . De L a n g e , Chem.  Phys.,  57(1981)97. ( i ) E.P.F. L e e a n d A.W.  P o t t s , J . P h y s . B,  14(1981)L61.  ( j ) J.M. D y k e , N. J o n a t h a n , A. M o r r i s a n d M . J . W i n t e r , J . Chem. S o c , F a r a d a y T r a n s . 2, 77(1981 ) 6 6 7 . (k) D.P. Chong, C. K i r b y , W.M. Westwood, Chem. P h y s . ,  L a u , T. M i n a t o a n d N.P.C.  59(1981)75.  9  Chapter  2  T h e o r e t i c a l I P ' s i n PES and P r i n c i p l e s o f Q u a d r u p o l e Mass  2.1  Spectrometry  Introduction Several  books  1 ) , where t h e nature  of  general  PE  and  in  the  interpretation  c r o s s - s e c t i o n s , e t c . , have so w i l l  are p a r t i c u l a r l y which,  principle,  (Chapter of  n o t be r e p e a t e d  interested  many • c a s e s ,  here.  i n the study are  been  of  small  extensively  However,  s i n c e we  transient  species  molecules,  and  e v e r - i n c r e a s i n g c o m p u t i n g power due t o t h e a d v a n c e s i n technology  and  development  started using theoretical interpret and  PE s p e c t r a .  the occurrence  been  studied  predicting processes  in  theoretical  theoretically  in  is briefly  this the  been  a p p l i c a t i o n s ) of t h i s  mass  demonstrated  thesis to  be  quadrupole texts  mass s p e c t r o m e t r y  concerning  s e c t i o n of t h i s  PES,  chapter.  i t  1  to  theorem have  theory  of  ionization  2.2. to  i n the t h i r d part  invaluable  in  a  PE  (system  identifying  S i n c e the p r i n c i p l e of  i s seldom t r e a t e d is  the  spectrometer  species i n a rather complicated mixture.  have  processes  corresponding  summarized i n s e c t i o n  The c o u p l i n g o f a q u a d r u p o l e has  thesis,  we  quality  S i n c e t h e b r e a k d o w n o f Koopmans  of v a l e n c e - e l e c t r o n shake-up  with  computer  methods,  c a l c u l a t i o n s of very h i g h  I P ' s and i n t e r p r e t i n g  spectrometer  the  bands and t h e band s h a p e s , a n d t h e e s t i m a t i o n o f  photoionization reviewed,  h a v e been p u b l i s h e d c o n c e r n i n g PES  in  articles  or  c o n c i s e l y d e s c r i b e d i n the l a s t  10  T h e o r e t i c a l I P ' s i n PES  2.2  2.2A  Koopmans' t h e o r e m PES  measures t h e k i n e t i c  molecules  ( o r atoms) and hence  Koopmans'  theorem(1),  which  n e g a t i v e of the o r b i t a l orbitals  (MO's),  experimental molecules,  I P ' s . The  and  quantum  bonds, t o t a l  to  be  used  a s s e r t s that IP's a r e equal t o the  mechanical  i n turn permit molecular  moment  widely  energies of the corresponding  quantities  which  their  molecular  i s a d i r e c t a n d s i m p l e l i n k a g e between  nature of chemical dipole  e n e r g i e s of e j e c t e d e l e c t r o n s from  energy,  deduced.  these  pictures  of  p r o p e r t i e s such as t h e  heat  The p r o o f  of  formation,  and  of t h e theorem i s as  follows. Consider  a  electrons  and  electronic  energy  molecule i  q  having  electrons.  k The  stationary total  E ( p , q ) i s g i v e n by ( i n a t o m i c  nuclei,  and  H =  ^  units)  2.1  V^-T - f t ) /  molecule.  The f i r s t  two  situation  that  field  only  interaction  one-electron the core  f  i s the wavefunction  no  terms  2.2  describing of  last  the e l e c t r o n s of the  e q n . 2.2  correspond  i s the nuclei-electron a t t r a c t i o n .  operators  to a  i s e x e r t e d between e l e c t r o n s , and t h e These  two  a r e u s u a l l y grouped t o g e t h e r and c a l l e d  Hamiltonian p+<?  ^e=!C-i<-TA) The  o  nonrelativistic  H* = E(p,q)q where  p  term  of  e q n . 2.2  . is  obviously  2.3 a  two-electron  11  Hamiltonian describing The  most  the e l e c t r o n - e l e c t r o n  common  approach  Hartree-Fock Self-Consistent derivation (e.g.  The  a m o l e c u l e under  where  ^  total  is  2.2  is  the  detailed  i n most quantum c h e m i s t r y t e x t s e n e r g y of  such a p p r o x i m a t i o n i s  i s the energy which e l e c t r o n  L i r  and  the  eqn.  r e s t r i c t e d HF-SCF e l e c t r o n i c  would have i n t h e n u c l e a r electrons  solve  F i e l d (HF-SCF) m e t h o d , t h e  of which i s a v a i l a b l e  Ref. 2 ) .  ot  repulsion.  ^  frame-work  i s a spin  Coulomb  in  the  absence  of  i  other  orbital.  repulsion  integral  between  each  pair  of  electrons  of  electrons.  <ry- <4: » <$<>>, ± (  i s the,exchange the  same The cx  i n t e r a c t i o n between  spin. o n e - e l e c t r o n e i g e n v a l u e o f an , pi-t P «  6. = Hcc X +  o  J  If  one  all  t h e J t j a n d Kij  (frozen  e v e r y p a i r of  Jcj  is  - Z/cT.y  2.7  0  electron  orbital  o o r b i t a l 0.  i s removed f r o m t h i s m o l e c u l e and we values  remain  approximation,  a c c o r d i n g t o e q n . 2.4-, t h e t o t a l  unaltered  after  assume  ionization  i . e . , a l l Cfx's do n o t c h a n g e ) , electronic  energy  will  reduce  to E(p-1,q)  =  ZHu  +±CL  Z Jcj -ZZ&i-tltfj)  '  2  8  12  The  I P of t h i s e l e c t r o n i s t h u s  ~ " CH --6  J  ) 2.9  J  P  (note t h a t J  = K  a  Based  gj: • - £ ^  t  P P  on  ).  lL  Koopmans'  t h e o r e m , p o s i t i o n s o f PE  p r e d i c t e d by HF-SCF c a l c u l a t i o n s . approaches  to t h i s computation.  the t w o - e l e c t r o n results  integrals  depends  on  the corresponding atoms.  There are  the  atomic  or  i n v o l v e d , and  orbtials  semi-empirical  MO  performance evaluated  2.2B  different  quality  of  (AO's)  neglect  programs  i n chapter  of  represent  the  constituent  methods  empirically  some  integrals.  are  these  of  the  Some ab  described  initio  and  their  4.  B r e a k d o w n o f Koopmans' t h e o r e m Koopmans'  o r d e r i n g of the related  PE  theorem  "breakdown  spectra  of  ionization  occasionally  i o n i z a t i o n processes  t h e o r e t i c a l data.  the  the  semi-empirical even  be  i n i t i o methods e v a l u a t e a l l  computing-time-consuming two-electron and  several  s i z e of the b a s i s s e t used t o  Alternatively,  parameterize  Ab  b a n d s may  and  This  failure  Koopmans' of N  2  some  (3).  The  HF  predict deduced  related experimental  often  theorem".  to  i n a molecule  other is  fails  referred  A classic  to  as  the from and the  example c o n c e r n s  r e s u l t s p r e d i c t t h a t the  first  13  IP  i s due The  (4)  to  1nJ, . 1  reasons for t h i s  and  are  a. preceding  frozen  section  reorganization electronic  of  energy  reorganization added t o the  Two  introduce  k i n d of b r e a k d o w n have  orbital  may  approximation  cause  errors.  the  remaining  of  the  correction "Koopmans'  other  more  Hamiltonian  the  larger.  ion  IP"  errors.  indicates  been  After  (eqn.  (negative  reviewed  in  the  ionization,  will  2.8).  decrease  the  Hence,  the  quantity  and  of  corresponding  the  This  means  a p p r o x i m a t i o n s of  The that  Since  c a t i o n , the  relativistic  should  be  relativistic  the  neutral  relativistic that  e f f e c t s one  electrons.  various of  ordering  The  upon  typical  energy  Ref. of the  e x p e c t e d t o be  5,  and  summarized i n T a b l e  i o n i z a t i o n processes very  small.  i n the  one  the  be  the for  However, f o r to that  corrections  estimated  i n d u c e d by  is  IP's  relative  1.  the  electron  former  values.  relativistic are  of  c o r r e c t i o n s should  correcting  some atoms  nature  i s r i c h e r by  a r r i v e s at higher  c a t i o n i c s t a t e s of  t h e HF-SCF method  nonrelativistic  valence electrons, t h i s c o r r e c t i o n i s small  data  1).  mentioned  electrons  i s a negative  intrinsic  taken i n t o account.  core  (Fig.  1  energy) .  b.  than  t o 3cg  o u t l i n e d below:  The  orbital  I n f a c t i t i s due  from  for for the  The  e f f e c t on  the  uv  radiation  is  14  1  2  3  e.  d.  2 1  16  17  18  20  19  IONIZATION POTENTIALS(eV) Fig.  1  The experimental Hel PE spectrum (a.) PE spectra of N^ predicted by h. r. d. e.  and theoretical  HF-SP.F calculations with Koopmans' theorem (Ref. 3 ) , ASHF method (Ref. 3 ) . the RSPT method (Ref.11 ), the outer valence type Green's function method (Ref. 6a)  15  TABLE 1  Relativistic  Is"  1  c o r r e c t i o n s f o r IP's°of some atoms"  2s"  1  2p  _ 1  3s"  1  Ar  16.67  3.20  1.17  0.35  Mg  3.11  0.46  0.14  0.02  Ne  1.45  0.19  0.05  Be  0.03  0.002  He  0.001  a. A l l v a l u e s i n eV. b. Ref. 5.  3p  _ 1  0.10  16  More  important,  p r o b l e m due  to  the  electron-electron all  the  other  between  this  however,  repulsion  electrons  and  words, the between of  other  electrons  electrons  are  a  probability this  only  actually  Coulomb of  energy  makes  (eqn.  2.6)  exchange  integrals  take  w i t h the  same s p i n ) .  The  correction) electron the the  a v e r a g e way.  the  the  correlation  i s a negative quantity,  in a neutral  correlation  correction  to  the  theorem.  i o n i z a t i o n of  one  other  motions  (the  neglect  of  total (the  electrons  corresponding i s one  charged  more  cation, added  to  the  IP  short,  electron  the  value  there  In  is  and  hence the  correlation  since  the  There  i s a p o s i t i v e v a l u e t o be  Koopmans'  In  The  actual  energy and  not  electron  and  the  interactions  i s small.  molecule than i t s s i n g l y  I P a p p r o x i m a t e d by  corresponding  each  repulsion  of  the  w i t h each o t h e r .  h i g h e r than the care  but  However, the  surrounding  and  which represents  account  f i n d i n g another electron  correlation  electronic  into  The  interaction  instantaneously.  correlated  hole  the  other electrons,  electrons  i n an  treatment.  by  a smooth f i e l d the  correlation  a particular electron  approximated  HF-SCF method t a k e s  virtually  of  the  electron  field'  between  is  electron  and  the  'self-consistent  a v e r a g e s p a t i a l d i s t r i b u t i o n of electron  is  from o r b i t a l  i  is  I P C - C-€ -) - R + C  2.io  L  where  rr^  corrections  i s the due  orbital to  effects "respectively. other  due  the  e n e r g y of  orbital  reorganization  T h e s e two  i , R and  C  and  correlation  corrections  to t h e i r opposite signs.  the  are  tend to cancel  However, t h i s i s not  the  each  always  1 7  t r u e and switch  i n some c a s e s , t h e  the  ordering  incomplete  predicted  'breakdown'.  Hence, i n o r d e r  IP's,  R  the  reorganization IP  i  =  E  of  However,  just using  to  obtain  E  the  have  can  be  former  best  produce a  theoretical  evaluated. by  the  The  ASCF method  HF-SCF of neutral molecule  n e g a t i v e of  solution The  two  techniques  method  quantization, many-body (direct  is  hence  the  to  most w i d e l y  (6) and  the  2 J 1  energy of the  makes by  use  which the  ionization). is directly  the Green's  method  An  of  the  R  and  orbital  i .  correlation errors  (2ph-RPA) ( 6 a ) .  C  ordinary  Green's  corrections  (RSPT)  (7).  terms  are  its  original  the  second  attributed  position  and  by The  to  process relative  self-energy  formulation  of  a  simplified  outer valence type  version  has  for outer valence  part this  Green's  function  been  electrons method,  been u s e d s u c c e s s f u l l y f o r more t h a n 70 m o l e c u l e s  references The  the  one-particle-one-hole  developed to c a l c u l a t e accurate IP's  has  theory  HF-SCF  two-particle-hole-Random-Phase-Approximation  In p r a c t i c e ,  i s c a l l e d the  of t h e  the  many-body t e c h n i q u e s o f  both  The  beyond  used methods a r e  r e l a t e d t o a p o l e of  function.  i s from the  IP,  go  estimation  e f f e c t s a c t i n g upon t h e  intensity,  and  be  included  Rayleigh-Schrodinger perturbation  which  to  even  1).  function  and  accurate  r e s u l t s r e m a i n a f f e c t e d by  approximation.  of  "  may  Koopmans' t h e o r e m and  values  c o r r e c t i o n , R,  the  The  the  C  HF-SCF of cation i  instead  (Fig.  and  by  cancellation  (6f  cited therein).  RSPT method i s a s i m p l e r third-order  a p p r o a c h t o the  RSPT i s u s e d t o c a l c u l a t e  solution.  the  The  corrections  18  starting  with  the  SCF r e s u l t s t h a t  S i n c e t h i s t e c h n i q u e h a s been a p p l i e d thesis,  2.2C  the theory involved  Perturbation  Starting third-order  the  RSPT i s u s e d  c o r r e l a t i o n energy  t o some  t o t h e HF studies  i s summarized i n t h e next  corrections  with  are close  t o Koopmans'  the  and c o r r e l a t i o n e n e r g i e s o f t h e c a t i o n s  orbitals.  (7a).  i n the following d e r i v a t i o n  The  indices  The  f o r the  The  convention  i s k, 1,... f o r K,L,... f o r  be r e s e r v e d f o r  (the o r b i t a l  f r o m where  i s ejected).  normalized approximate  nondegenerate  ordinary  reorganization  and  r,s,... will  o c c u p i e d s p i n o r b i t a l s w h i c h a r e n o t 4^ the i o n i z e d e l e c t r o n  section.  expression  o c c u p i e d s p i n o r b i t a l s of the parent m o l e c u l e , virtual  this  theorem  of t h e p a r e n t m o l e c u l e and t h e  f o r the i n d i c e s used  in  HF-SCF r e s u l t s o f a m o l e c u l e , to formulate  limit.  ground  state wavefunction  c l o s e d - s h e l l parent molecule with  be w r i t t e n a s a s i n g l e d e t e r m i n a n t b u i l t  of  a  2n e l e c t r o n s c a n  from a s e t of  canonical  HF-SCF s p i n o r b i t a l s (<fj>)  p where P i s a p e r m u t a t i o n o f 1,2,...,2n a n d (-1) i s +1 o r -1 even  or  functions extended  odd  permutations, respectively.  initially  (e.g. the  Huckel method).  <^> 's a r e some  corresponding  results  SCF r e s u l t s a r e o b t a i n e d by  of  for trial" the  iteration  19  of t h e s e  's w i t h t h e HF H a m i l t o n i a n  {<P = e (p k  where  k  operator  f :  2.i3  k  f (1) = h d ) + g ( 1 )  2.14  h i s the one-electron core Hamiltonian and  g i s the two-electron  where P  The u n p e r t u r b e d H a m i l t o n i a n  i s thus t  = f f CO G =  X  -  :  o f 1 a n d 2.  H f c o --k%<<p a> g  H°=  where  interaction Hamiltonian  i s a permutation  1 2  (eqn. 2.3);  <»$«>>  J  G  2.16  C O , $ CO cf) co)  < ^  2.17  Since the true e l e c t r o n i c Hamiltonian i s 2.18 the  Hamiltonian  corresponding  electron correlation H' = H - H  to  of the parent  the  perturbation  due  to  molecule i s thus  0  2.19 -*J  According  t o t h e o r d i n a r y t h i r d - o r d e r RSPT, t h e p e r t u r b e d  system  i s d e s c r i b e d by H£=  2.20  E £  <J 2* <J° + vj E ~  E°  + E  1  These z e r o - o r d e r  i  + E  2.21  2  + E  2.22  3  t o t h i r d - o r d e r e n e r g i e s c a n be e x p r e s s e d  as  20 E° = < £ ° , H<F> -<f,  E 1  2  H'£ > -  2  23  - * 2  = G -2G + G = 0  = <<£°, H ^ >  E  2  2.25  4  *' -tZ^H'&y Hence  the  wavefunctions C ^ a n d (p  (8),  expansion  double e x c i t a t i o n s  *  A  in  a n d (p^ ) w i l l  c o r r e l a t i o n energy.  wavefunction  v£  terms  of  a single determinant  is a  give  a  some  excited  like ^  but w i t h  solution  f o r the  According t o the B r i l l o u i n  single excitations w i l l  order  -  2 26  of  (e.g.J^,  r e p l a c i n g (p  L  electron  ^  not  contribute.  summation  Thus  the  theorem first  of terms c o r r e s p o n d i n g t o  :  K<L  *  U  where  2.28 By  e q n . 2.25  third-order  and  2.26  the  expressions  f o r t h e second- and  energies are k<JL  Ui  Similar  K<L  2.30  U  «L  men  M<^  treatment  ,  can  be  made  L 7 T R L  f o r the  ^  cation.  The  21  normalized unperturbed spin  orbital  wavefunction  i s ejected)  for cation  i s written,  q  based  (electron  in  on t h e f r o z e n  o r b i t a l a p p r o x i m a t i o n , as  Hence, t h e z e r o - o r d e r energy the f i r s t - o r d e r energy and  t h e second-  equations  parent molecule, as  well  v a n i s h e s by s e t t i n g <  and t h i r d - o r d e r  similar  to  2.33  i s E° = E° - cr^ ,  energies  e q n . 2.25  can  a n d 2.26.  >  f-j^  be  = E^ evaluated  excitations  ,  3  4  by  In contrast to the  the f i r s t - o r d e r wavefunction consists  as double  2  (single excitations  of single  of t h e type r  t o q do n o t c o n t r i b u t e ) :  where t h e B c o e f f i c i e n t s a r e g i v e n by  Bl  =  c  e -e r  K  Y' c v  K<?<?r  - v. ^  2.  oro  2.37  After  computing  t h e second-  both the parent molecule of  the IP  and t h i r d - o r d e r  and t h e c a t i o n ,  c a n be e v a l u a t e d i n s e v e r a l  a. A E ( 3 ) : The I P i s a p p r o x i m a t e d partial  a better  energies f o r approximation  ways : as the d i f f e r e n c e  i n the  sums  - -e  q  =  -e  ?  + CE?-E*) + + *E* + *E 3  CE?-E*y -  2 39  3 6  22  b. common  Scaled  perturbation:  method  to  improve  unperturbed Hamiltonian —  so t h a t  The  the  H°-  r e s u l t s of t h i s  perturbation  rate  i s s c a l e d by ,  —  H'-H-  Scaled  H  +Ci-»  of  ( 9 , 10) i s a  convergence.  (_)° = (["' u " _i  2.40  6  )H  L  2.41  s c a l i n g a r e (7a)  £~°= <£°  E~°= EVE'-Y  2.42  2.43  1  ^  The  2.44  scaled wavefunction  with  r°  Minimizing factor <H;>  i s thus  the energy e x p e c t a t i o n  -  The  rt,  £  value  * £°  +  ^  *  4°-14*  as  f /f'C£ -E ) 3  this  expectation  2.47  2.48  a  value  with  respect  to the scale  gives  = e%  fC£  3  5  However,  = ^ H > the  +  .  C  E  2.49  1  - £ 3 - ft £ - 5 J % *  Hence, t h e I P  iPf  1  3  3  a  C 5 Q  V<£ f £ > r f  2.50  c a n be a p p r o x i m a t e d a s  = -e -fC E ?  ?  i ?  -ce  i  ,  2.51  a p p l i c a t i o n of the v a r i a t i o n p r i n c i p l e guarantees  23  the  justification  of t h i s e x p r e s s i o n  only  f o r the  lowest  state  : O t h e r ways t o c h o o s e t h e s c a l e  factor  of e a c h s y m m e t r y .  c. are  A ( E ^ ) and ( A E ) * &  to  make  partial  with  6  vanish  or t o set the f i r s t  d e r i v a t i v e of t h e  sum  respect  to ^ to zero.  approximation  E where  * E** = E° E +  A similar  / E  3  Hence, t h e I P  1  to  a  geometric  ->- E / o - x ;  2.53  2  c a n be w r i t t e n a s  = *CE**) = - 6  ?  lead  (GA) f o r t h e e n e r g y  x = E  IP  B o t h o f them  ?  + E Vcf-x) ?  - £7c/-x^  geometric approximation expression  2.54  c a n be s e t a s 2.55  where  y = ^ E  3  /^ E  2  Some e m p i r i c a l s t u d i e s approach  of  predicting in  the  general,  the  basis  perturbation  is  IP f o r t h e lowest s t a t e of each  the  the  s i m i l a r and a p p r o x i m a t e l y  variational  b e s t method i n  symmetry.  the average e r r o r s of the AE(3), A(E  methods a r e q u i t e zeta  scaled  ( 7 ) h a v e shown t h a t  ) a n d (AE)  0.5eV f o r  s e t . The u s e o f a 1 - i " z e t a b a s i s s e t o n l y  a v e r a g e e r r o r by a b o u t 0.1eV  However,  a  double  increases  ( 7 b ) . The method h a s a l s o been  24  shown  to  be  the r e s u l t s  e s s e n t i a l l y e q u i v a l e n t , as f a r as t h e a c c u r a c y of  i s c o n c e r n e d , t o t h e G r e e n ' s f u n c t i o n method ( 7 c ) .  Accurate  IP's  m o l e c u l e s by  the  theorem  been  has  F 0  ( 7 a ) , HOF  HN  (15),  2  3  HNF  N  2  are plotted  t h u s been c a l c u l a t e d method.  confirmed HNO,  (16),  2  results  spectrum.  RSPT  (12),  Koopmans' t h e o r e m function  have  (11),  for  FNO,  and  The  0  3  The method  (13),  CH NO ( 1 7 ) . the  ASCF  of  such  as N  2  (11),  FOCI ( 1 4 ) ,  2  The HF r e s u l t s a s s u m i n g  results  (3),  the  Green's  (11) f o r t h e I P ' s of  i n F i g . 1, t o g e t h e r w i t h o u r e x p e r i m e n t a l H e l  This plot  shows a t y p i c a l  30  Koopmans'  C 1 0 , HOC1,  ( 6 a ) , a n d t h e RSPT r e s u l t s  Koopmans' t h e o r e m and t h e r e s u l t s resolve  breakdown  molecules  3  f o r more t h a n  PE  example of t h e breakdown of  of  different  approaches  to  t h i s problem. r e s u l t s o b t a i n e d by u s i n g t h e G r e e n ' s f u n c t i o n and RSPT in  studying  t h e b r e a k d o w n o f Koopmans' t h e o r e m l e a d t o  some v e r y u s e f u l c o n c l u s i o n s ( 1 3 ) : a. a  The p r e s e n c e o f any l o w - l y i n g v i r t u a l  considerable  possiblility  of  the  orbitals  breakdown  of  suggests Koopmans'  theorem. b.  I f t h e s e p a r a t i o n of e and n type o r b i t a l s  e.g. f o r m o l e c u l e s h a v i n g C orbital,  s  symmetry, a l o w - l y i n g  i s possible, v (<*) v i r t u a l  t o g e t h e r w i t h some n (<*) o c c u p i e d o r b i t a l s ,  introduces  l a r g e c o r r e c t i o n s t o Koopmans' t h e o r e m f o r t h e i o n i z a t i o n (ir) o r b i t a l s .  from a  T h e s e n o n u n i f o r m s h i f t s o f t e n c a u s e t h e breakdown  o f Koopmans' t h e o r e m .  25  2 . 2D  The semi-empi r i c a l  HAM/3 method  The HAM/3 ( H y d r o g e n i c Atoms method  (18)  is a  aforementioned of  Slater's  problem  shielding  experimental  results  used t o c a l c u l a t e , excitation  completely  that  concept.  IP's,electron  are that  hydrogen atom, S l a t e r  most  into the Slater  extension  the  I P ' s , b e i n g an a p p l i c a t i o n  e n e r g i e s a n d CI b e t w e e n e x c i t e d  an  to  3)  by  s p e c t r o s c o p y a n d PES a n d may be  f o r instance,  u s e o f Koopmans' t h e o r e m  i savoided  affinities,  configurations. of  the  shielding  The  correlation  c o n s t a n t s , and  i n IP c a l c u l a t i o n s .  o f t h e q u a n t u m - m e c h a n i c a l r e s u l t s on t h e ( 1 9 , 20) i n t r o d u c e d an e l e c t r o n  c o n c e p t , a n d s e t t h e e n e r g y o f an e l e c t r o n  where  approach  The method i s p a r a m e t e r i z e d  from atomic  i sincorporated  As  different  i npredicting  a d v a n t a g e s o f t h i s method energy  i n M o l e c u l e s method, v e r s i o n  shielding  » i n an atom A a s  E ^ - - i - V  2.56  f ^ - C Z ,  2.57  - S^/tX^  is the orbital Z/i i s n u c l e a r  exponent of t h e atomic  orbital,  charge,  Sj^ i s t h e s h i e l d i n g , n^  i s t h e p r i n c i p a l quantum  The s h i e l d i n g and  a  number.  d e p e n d s on t h e o t h e r e l e c t r o n s , V ' s , i n  s e t of  shielding  constants,  , h a s been  the  atom  recommended  (20) . In  t h e HAM/3  method,  by a n a l o g y t o e q n . 2.56, t h e t o t a l  e n e r g y o f an a t o m i s w r i t t e n a s  where  f ^ ^ i s the density  matrix  element,  which  describes  the  26  number o f e l e c t r o n s The s h i e l d i n g  in orbital  v.  c o n s t a n t , 6~>^, h o w e v e r , i s e x p r e s s e d a s -  - C byi  0 ^  where a ^ , hyj.  a n d Cyu. a r e c o n s t a n t s .  2  c o n s t a n t s a r e t h e n d e t e r m i n e d by f i t t i n g  e n e r g i e s o f 311 d i f f e r e n t a t o m i c s p e c i e s , h a v i n g n with  e q n . 2.59 ( 1 8 ) . A more r e c e n t t h e o r e t i c a l  that t h i s electron  expression  i s equivalent  correlation  Hence, c o r r e l a t i o n  term  effect  to  simple  2/))/%^  +  f u n c t i o n as  The s h i e l d i n g  a  to  ,  5  9  the total  =  1  or  2,  s t u d y h a s shown  the addition  of  an  t h e HF e n e r g y e x p r e s s i o n ( 2 1 ) .  i sautomatically  included  i n t h e HAM/3  method. F u r t h e r e x t e n s i o n o f t h e i d e a o f e q n . 2.58 g i v e s t h e e n e r g y expression of a molecule as 2.60  The  first  charge Tju.y^u)'  Np.  ,  as  factor  This  molecule. arising  the atomic  -/ )  where S^v  empirical  d e s c r i b e s t h e energy of t h e e l e c t r o n i c  in  • ~^C~Sjlt'Sj')C  ^wS^y,  SMJ; ) .  t e r m /^5*-ZfJu*^  The t h i r d  term,  from t h e f a c t  factor.  second  the electronic  w h i c h d e p e n d s on t h e t y p e s  term i s thus c l o s e l y  the gross  empirical  describes  The  i s the o v e r l a p p i n g m a t r i x element.  atomic  related  QA QB^AB  of  i n the f i r s t  f ^ v i s an (i.e.,  t o t h e bonding ' *  s  a  c  o  r  r  e  term charge  bonding  i n the  ction  t h a t o n l y t h e r e p u l s i o n between  on t h e same atom i s i n c l u d e d are  case.  term  electrons and Q g  two t e r m s .  c h a r g e s on atoms A and B, a n d T  AB  i s an  27  With t h i s energy e x p r e s s i o n  f o r the molecule,  the  Fock  m a t r i x c a n be c o n s t r u c t e d by p  ,=  Hence  2.61 e n e r g y €c a n d t h e AO c o e f f i c i e n t s C ^ o f t h e  the o r b i t a l  MO ^ " " Z ^ u i ^ c a n be e v a l u a t e d . In orbital  calculating  energy corresponding  number 1/2 ( h a l f w a y for the positive between  two  This v i r t u a l called  IP's, Slater  between  the t r a n s i t i o n  an  state.  method t o c a l c u l a t e I P ' s  (23).  s t a t e h a s been i n c l u d e d .  over  ionization'  (23)),  approximate  the  j u s t i f i e d both computing  total  energies  ( i . e . ASCF).  number  This concept  1/2  i s also  i s u s e d i n t h e HAM/3  Hence, r e o r g a n i z a t i o n o f t h e i o n  Further g e n e r a l i z a t i o n of t h i s half  the M molecular  an  electron  orbital  corresponding  I P ' s . This  (23) a n d  concept  is  o r b i t a l s of i n t e r e s t  the resultant  empirically  effort  occupation  approximates the d i f f e r e n c e  occupation  i f t h e removal of  distributed  with  1 f o r t h e n e u t r a l ground s t a t e and 0  optimized  state having  has demonstrated that the  to a spin o r b i t a l  ion state) closely  separately  indicates that  (22)  evenly  ('diffuse  energies  closely  approximation,  theoretically  ( 2 4 ) , saves  s i n c e a l l I P ' s a r e c a l c u l a t e d by a s i n g l e SCF  calculation. However, initial the  the  (25, 2 6 ) .  justification  (eqn. of  stages  t h e HAM/3  2.60).  of  method was s e v e r e l y c r i t i c i z e d Of p a r t i c u l a r c o n c e r n ,  t h e energy  This polemic  expression  energy  expression  (21).  course,  transformation  to a similar  This  is  of the molecule  h a s been s e t t l e d by a  t h e u s u a l LCAO HF-SCF e n e r g y e x p r e s s i o n HAM/3  of  at i t s  form as  comparison  has  28  demonstrated further  HAM/3  (Quantum  computer  Chemistry  University)  t h e HAM/3 method a n d s u g g e s t e d  program  Program  Exchange  available  center  treatment  at  (so-called where  i n the preceding  'quasiparticle  important.  sections  valence-electron processes  will  i s based  occupied electron  with orbital  a  such  ejected  corresponding as  a  Mixing  process  simple  processes  two p r o b a b l y brief  occurs  picture cases  e t c . , are  do n o t o c c u r  remarks  when  simultaneous  on  i n the  shake-up  an  electron  electron  orbital.  is  excitation  from  an  i n one  and t h e second promoted t o a v i r t u a l  orbital.  dipole operator transition  is approach  the configuration  (one e l e c t r o n  i sa  one-electron  operator,  moment o f a t w o - e l e c t r o n  process  theoretical  This  ionized  results  shake-up  straightforward CI.  between t h e  i s n o t t r u e i n some  Auger  some  to a virtual  Since the e l e c t r i c the  This  on t h e  be made.  A shake-up process together  or  the l a t t e r region,  MO's.  picture')  shake-off  Since  4  processes  I P ' s a n d t h e AO's o r  shake-up,  Indiana  (see Chapter  assumption t h a t there i s a one-to-one correspondence experimental  f r o m QCPE  i n Ref. 27).  V a l e n c e - e l e c t r o n shake-up The  i s now  ( 2 7 ) a n d h a s been u s e d w i t h s u c c e s s  references cited  2.2E  of  i m p r o v e m e n t l e a d i n g t o an i m p r o v e d HAM/4 v e r s i o n ( 2 1 ) .  The  and  the v a l i d i t y  ionized  zero  The  most  t o a shake-up process i s  leading and  (28).  process  to  another  the  two-electron  excited) with the  29  c o n f i g u r a t i o n corresponding t o a d i r e c t i o n i z a t i o n (primary configuration) probability as  will  borrowing'  t h e same  This  to  the  i s also  symmetry  t h e two and  be  transition  referred  from t h e p r i m a r y h o l e .  f o r configuration mixing,  possess  contribute  o f t h e shake-up p r o c e s s .  'intensity  rule  obviously  hole  As a  configurations  to  general  have  to  c l o s e enough i n e n e r g y t o  interact. The  most s u c c e s s f u l  2ph-TDA v e r s i o n This  has  treatment o f shake-up p r o c e s s e s  o f t h e many-body  been  extensively  Green's  reviewed  function  2  HCN,  HCOOH,  studied  where  show  CS  hydrocarbons,  that  cited  complete  the intensity  2  a  fl  main  CS  (30),  of  P  2  that  processes  (satellite  line with  the Hel r e g i o n . NO 2  ft  and  described  A  more  i n C h a p t e r 9.  the Hel r e g i o n since  2  (34),  gives  detailed  2  than  occur  shake-up  The o c c u r r e n c e o f  S N may  i n t e n s i t y higher  Extreme c a s e s of breakdown  S N . 2  relative  These  the quasiparticle (20 -  50eV) several peak  Studies of  (32, 6b),  N0  shake-up  3  , and t h e main  N 0„ 2  PH ,  2  6f) .  distinguishable.  PN ( 3 1 , 3 2 ) ,  50  2  valence region  benzene ( 3 3 ) ,  (36) i n d i c a t e  2  and  trans-butadiene, 2  H S,  peak p a r t i t i o n s i n t o  p e a k s a r e no l o n g e r 2  than  a n d S N , h a v e been  2  i n R e f . 6b breakdown  PN,  2  N O , N0  p e a k s o f some s h a k e - u p p r o c e s s e s  satellite (29),  of  P ,  2  i s q u i t e common i n t h e i n n e r  satellite and  2  (see r e f e r e n c e s  results picture  nine  method ( 6 ) .  ( 6 ) a n d more  m o l e c u l e s i n c l u d i n g , N , CO, C 0 , CS, C S ,  i s the  butatriene, (35),  2  be  and  important  10%) e v e n i n i n CS,  study of N O  satellite  2  P , 2  fl  peaks  is in  a n i m p o r t a n t w a r n i n g t o PE s p e c t r o s c o p i s t s ,  s h a k e - u p p r o c e s s e s have p r e v i o u s l y  u s u a l l y been i g n o r e d i n  30  the  interpretation  most l i k e l y  The  e n e r g i e s may w e l l  the  and  lowering shift  i n CI w i l l  This conclusion  electron  peaks  down  virtual  excitation  to  the Hel  enhance t h e i n t e n s i t i e s of  i s d e m o n s t r a t e d by t h e s h a k e - u p  i n C h a p t e r 8 a n d C h a p t e r 9.  Valence-electron investigated  shake-up  processes  by t h e HAM/3 method  performed and t h e p o s i t i o n s peaks  This s i m p l i f i c a t i o ni s  of the possible  the s a t e l l i t e  the increase  satellites.  studies  H e l PE s p e c t r a .  t o be e r r o n e o u s i n t h e p r e s e n c e o f l o w l y i n g  orbital(s).  region,  of  are estimated.  (37,  and  have  38).  also  CI c a l c u l a t i o n s a r e  intensities  of  the  shake-up  T h i s method h a s been u s e d i n t h i s  t o s t u d y s h a k e - u p p r o c e s s e s i n CH NO a n d N O . 3  been  2  a  thesis  31  2.3  P r i n c i p l e s o f q u a d r u p o l e mass s p e c t r o m e t r y  The  historical  quadrupole  mass  development  spectrometry  The  schematic diagram  in  F i g . 2.  Ideally  the  have  Four p a r a l l e l  rods =  rod.  1  «  r.f.  voltage  For  a  1  4  been w e l l  principles  8  r  o  set  r o d s a r e u s e d t o s e t up a q u a d r u p o l e . i n cross  section,  however  ( F i g . 2 ).  A  a r e imposed  across opposite pairs  of  conditions  d.c. v o l t a g e  Ideally,  of  voltages,  U  u,  and  and  h a v e a bounded t r a j e c t o r y  x and y d i r e c t i o n s  and  within  electrodes  i t emerges  detector.  I o n s o f o t h e r m/e  y directions, The  travel  from  the an  space  exit  rod i n the  between  aperture  ratios are f i l t e r e d  a  of rods.  s e p a r a t i o n , an i o n s p e c i e s w i l l  until  of  documented ( 3 9 ) .  a r e found t o g i v e a c c u r a t e r e s o l u t i o n .  Vcosot  given  general  o f a q u a d r u p o l e mass s p e c t r o m e t e r i s shown  t h e r o d s h o u l d be h y p e r b o l i c  circular r  and  the  into a  out i n the x or  and a r e l o s t .  potential  i n a quadrupole  f i e l d c a n be e x p r e s s e d a s 2.62  where a , b a n d c a r e  constants.  filter,  i n the y d i r e c t i o n  the p o t e n t i a l  i n t h e x d i r e c t i o n , and  there  Inside  is  no  the  quadrupole  mass  i s the n e g a t i v e of t h a t field  in  z  direction.  B e s i d e s , we h a v e c£> = U - V c o s u t and  2.63  ,  o  a + b + c = 0 because  Hence a = -b = 1 / 2 r  2 0  t h e r e i s no s p a c e  a n d c = 0.  charge.  U -  Vcoscot  '  1  Fig. 2  Schematic diagram of a quadrupole mass spectrometer  to ro  33  The  f o r c e s on  Fx  =-  F  =-*^r  a charged p a r t i c l e  i n s i d e t h e mass f i l t e r  are  then  y  F =  lf  -  2.64  CU-V/cos^)-^  2  equations  of m o t i o n a r e +  where  Ck,  thus  ~ 2^coscot  ) X  =  k = k  a n d  i  —  =  second-order  equations  (40)  Fig. 3  and  differential their  (39).  The  i.e.,  the  trajectory  the o v e r l a p p i n g conditions  having  large  excursions  2.69  shaped  .  7  0  are c a l l e d  s o l u t i o n s are p l o t t e d area  is  as  the  Mathieu together  so-called 'stable  t increases to  infinity,  i s bounded i n the x or y d i r e c t i o n .  s t a b l e r e g i o n of b o t h  i s the values  x  and  ion t r a j e c t o r y  y  represents  i s bounded.  normal r e g i o n of o p e r a t i o n . of  compared t o the  k,  and  initial  k  give  2  Hence, the  The  area  Stable  areas  ion motion with  large  ion displacement  and  require  large containment. The  Fig.  '  equations  standard  under which the  near the o r i g i n  2.67  2  r e g i o n ' where x o r y r e m a i n s f i n i t e  very  O  (  These  .65 2.66  x  in  = - ( U - l W ; - ^  O  2  The  €  4  through  s t a b l e area (39). the  A origin  near the  mass-scan and  origin line  i s enlarged is  intersecting  a the  and  straight stable  shown  line  in  passing  area.  The  34  Fig. 3  Solution of the Mathieu equations - s t a b i l i t y diagrams for the x and y d i r e c t i o n s .  Illl stable  region for x direction  == stable region for y direction  35  Fig. 4  The stable region for both x and v directions near the o r i g i n x s t a b i l i t y boundary y stability  UllllJ: —-  boundary  stable region for both mass-scan l i n e  x  and y directions  36 r \  condition  for this  - ^ 7 - = constant  = The  characteristics  d i f f e r e n t m/e  will  that  by  ratio  constant  of  scan l i n e i s  varying  different  of  2.71 the  be s p r e a d the  out along  magnitude  (or varying m/e  mass-scan  u  line  a r e t h a t ions of  t h e mass s c a n  line,  o f U a n d V, b u t k e e p i n g  for a nonlinear  their  response),  c a n be b r o u g h t i n t o t h e s t a b l e a r e a .  ions By t h e  shape o f t h e s t a b l e r e g i o n , i t i s o b v i o u s t h a t t h e s l o p e o f mass-scan is  l i n e determines the r e s o l u t i o n .  scanned  with  sensitivity  will  a  mass-scan  line  of  a  constant  constant  r e m a i n t h e same b u t t h e r e s o l u t i o n  mass-scan l i n e region  resolution  throughout  while  scanning  to higher  from t h e shape of t h e s t a b l e a r e a , mass  is  applied  lower  a  In  slope,  the  (1/AM)  will  order  to  mass s p e c t r u m , t h e  h a s t o be r o t a t e d t o w a r d s t h e apex o f t h e  ( F i g . 4)  in  this  i n q u a d r u p o l e mass  mode  the  mass v a l u e s .  sensitivity  of o p e r a t i o n  spectrometry).  the  I f t h e mass s p e c t r u m  d e c r e a s e w i t h t h e i n c r e a s e o f t h e mass v a l u e , M. keep  and  (which  at  stable Again, higher  i s commonly  37  References  ( C h a p t e r 2)  1.  T. Koopmans,  2.  J.A. P o p l e a n d D.L. B e v e r i d g e , ' A p p r o x i m a t e m o l e c u l a r orbital  3.  Physica,  1(1933)104.  t h e o r y ' , M c G r a w - H i l l , New Y o r k ( 1 9 7 0 ) .  P.E. C a d e , K.D. S a l e s a n d A.C. W a h l , J . Chem. P h y s . , 44 (1966)1973.  4.  W.G.  R i c h a r d s , I n t . J . Mass S p e c t r o m . I o n P h y s . , 2 ( 1 9 6 9 )  419. 5.  H. H a r t m a n n a n d E. C l e m e n t i , P h y s . Rev.  6.  The f o l l o w i n g s a r e some g e n e r a l  A,  133(1964)1295  r e v i e w a r t i c l e s on t h e  G r e e n ' s f u n c t i o n method : (a)  L . S . Cederbaum a n d W. Domcke, A d v . Chem. P h y s . , 36 (1977)205.  (b)  W. v o n N i e s s e n , G.H.F. D i e r c k s e n a n d L . S . Cederbaum, J.  (c)  Chem. P h y s . ,  67(1977)4124.  L . S . Cederbaum, J . S c h i r m e r , W. Domcke a n d W. v o n N i e s s e n , J . P h y s . B,  (d)  10(1977)L549.  W. v o n N i e s s e n , L . S . Cederbaum a n d W. Domcke; C.A. N i c o l a i d e s a n d D.R.  Beck, e d . , ' E x c i t e d s t a t e s i n  q u a n t u m c h e m i s t r y ' , D. R e i d e l (e)  Inc.,Holland  (1978)183.  L . S . Cederbaum, J . S c h i r m e r , W. Domcke a n d W. v o n N i e s s e n , I n t . J . Quantum Chem.,  14(1978)593.  ( f ) L . S . Cederbaum, J . S c h i r m e r , W. Domcke a n d W. v o n N i e s s e n , Phys. S c r . , 21(1980)481. 7.  The f o l l o w i n g s a r e some a r t i c l e s t h e . R S P T method :  on t h e d e v e l o p m e n t o f  38  ( a ) D.P. Chong, F.G. H e r r i n g a n d D. M c W i l l i a m s , J . Chem. Phys.,  61(1974)78.  (b) D.P. Chong, F.G. H e r r i n g a n d D. M c W i l l i a m s , J . Chem. Phys.,  61(1974)958.  ( c ) D.P. Chong, F.G. H e r r i n g a n d D. M c W i l l i a m s , J . Chem. Phys.,  61(1974)3567.  (d) D.P. Chong a n d Y. T a k a h a t a , I n t . J . Quantum Chem., 12(1977)549. 8.  L. B r i l l o u i n , (A s i m i l a r  A c t u a l i t e s S c i . I n d . , 71(1933); 159(1934).  theorem i s a l s o d e r i v e d  independently by:  C. M o l l e r a n d M.S. P l e s s e t , P h y s . R e v . , 4 6 ( 1 9 3 4 ) 6 1 8 . ) 9.  P. Goldhammer a n d E. F e e n b e r g , P h y s . R e v . , 1 0 1 ( 1 9 5 6 ) 1 2 3 3 .  10.  A.T. Amos, J . Chem. P h y s . ,  11.  D.P. Chong, F.G. H e r r i n g a n d D. M c W i l l i a m s , J . E l e c t r o n Spectrosc. Relat.  12.  Phenom., 7 ( 1 9 7 5 ) 4 2 9 .  D.P. Chong, F.G. H e r r i n g a n d D. M c W i l l i a m s , Chem. P h y s . Lett.,  13.  52(1970)603.  25(1974)568.  D.P. Chong, F.G. H e r r i n g a n d D. M c W i l l i a m s , J . E l e c t r o n S p e c t r o s c . R e l a t . Phenom., 7 ( 1 9 7 5 ) 4 4 5 .  14.  D.P. Chong, F.G. H e r r i n g a n d Y. T a k a h a t a , J . E l e c t r o n S p e c t r o s c . R e l a t . Phenom., 1 3 ( 1 9 7 8 ) 3 9 .  15.  G.D.  Z e i s s a n d D.P. Chong, J . E l e c t r o n  Phenom.,  Spectrosc.  Relat.  18(1980)279.  16.  T. M i n a t o a n d D.P. C h o n g , Chem. P h y s . L e t t . ,  17.  D.C. F r o s t , W.M.  L a u , C.A. M c D o w e l l  72(1980)252.  a n d N.P.C. Westwood,  s u b m i t t e d t o J . P h y s . Chem. 18.  L. A s b r i n k , C. F r i d h a n d E. L i n d h o l m , Chem. P h y s .  Lett.,  39  52(1977)63. 19.  J.C. S l a t e r , Phys. Rev., 36(1930)57.  20.  J.C. S l a t e r ,  'Quantum t h e o r y o f a t o m i c s t r u c t u r e ' ,  M c G r a w - H i l l , New Y o r k 21.  L. A s b r i n k , C. F r i d h  V o l . 1,  (1960)368. a n d E. L i n d h o l m , S. de B r u i j n a n d  D.P. C h o n g , P h y s . S c r . , 2 2 ( 1 9 8 0 ) 4 7 5 . 22.  J.C. S l a t e r ,  ' C o m p u t a t i o n a l m e t h o d s i n band  P.M. M a r c u s , J . F . J a n a k a n d A.R. W i l l i a m s , New Y o r k 23.  theory', e d . , Plenum,  (1971)447.  L. A s b r i n k , C. F r i d h  a n d E. L i n d h o l m , Chem. P h y s .  Lett.,  52(1977)69. 24.  D.P. Chong, Chem. P h y s . L e t t . ,  73(1980)181.  25.  S. de B r u i j n , Chem. P h y s . L e t t . ,  26.  S. de B r u i j n , T h e o r e t . C h i m . A c t a ,  27.  L. A s b r i n k , C. F r i d h  28.  J.W. R a b a l a i s ,  52(1977)76. 50(1979)313.  a n d E. L i n d h o l m , QCPE  ' P r i n c i p l e s of u l t r a v i o l e t  s p e c t r o s c o p y ' , W i l e y , New Y o r k  11(1980)393. photoelectron  (1977)76.  29. . W. Domcke, L . S . C e d e r b a u m , W. v o n N i e s s e n a n d W.P. Chem. P h y s . L e t t . , 30.  43(1976)258.  J . S c h i r m e r , W. Domcke, L . S . Cederbaum, W. v o n N i e s s e n a n d Chem. P h y s . L e t t . ,  31.  Kraemer  61(1979)30.  W. Domcke, L . S . C e d e r b a u m , W. v o n N i e s s e n a n d G.H.F. Diercksen, J . Electron  Spectrosc. Relat.  Phenom.,  11(1977)  239. 32.  L.S. Cederbaum, p r i v a t e  communication  33.  L . S . Cederbaum, W. Domcke, J . S c h i r m e r , W. v o n N i e s s e n , G.H.F. D i e r c k s e n a n d W.P.  t o D.C.  Frost.  K r a e m e r , J . Chem. P h y s . , 69  40  (1978)1591. 34.  W. v o n N i e s s e n , W. Domcke, L . S . Cederbaum a n d 'J. S c h i r m e r , J . Chem. S o c , F a r a d a y T r a n s .  35.  2, (1978) 1550.  W. von N i e s s e n a n d G.H.F. D i e r c k s e n , J . E l e c t r o n S p e c t r o s c . R e l a t . Phenom., 2 0 ( 1 9 8 0 ) 9 5 .  36.  J . S c h i r m e r , L . S . Cederbaum a n d W. v o n N i e s s e n , Chem. Phys.,  37.  56(1981)285.  A m o d i f i e d v e r s i o n o f t h e HAM/3 p r o g r a m  ( R e f . 27) s u p p l i e d  by D.P. Chong. 38.  ( a ) E. L i n d h o l m a n d L. A s b r i n k , J . E l e c t r o n R e l a t . Phenom.,  Spectrosc.  18(1980)121.  (b) L. A s b r i n k , D.P. Chong, C. F r i d h a n d E. L i n d h o l m , i n preparat ion. 39.  P.H. Dawson a n d N.R. W h e t t e n , D y n . Mass S p e c t r o m . ,  2(1969)  1 . 40.  N.W.  McLachlan,  'Theory and a p p l i c a i t o n of M a t h i e u  t i o n s ' , Oxford University  Press, Oxford (1951).  Func-  41  PART TT  System Development  42  Chapter 3  3.1  Hardware Development  Construction  The d e s i g n described  o f t h e PE  o f t h e o r i g i n a l PE s p e c t r o m e t e r h a s  i n t h e Ph.D.  performed  reliably  limitations  Specfromprer  for  t h e s i s o f S.T.  over  several  the unstable  been  L e e ( 1 ) . The  years,  species  but  fully  spectrometer had  certain  we w i s h e d t o s t u d y ;  these  are: (a) The  ionization  of l i m i t e d a c c e s s i b i l i t y , the  adaptation  assemblies,  of  chamber  and t h e i o n i z a t i o n  thereby  restricting  accessories,  ( c ) The s a m p l e i n l e t  e.g. f u r n a c e s ,  even  discharge  entrance  f o r f a s t pumping.  was d i r e c t e d t o w a r d t h e s l i t s  rather  t h e i o n i z a t i o n chamber  This often caused serious contamination  A modified these  t h e s i z e and  were  nozzles etc.  (b) L i m i t e d e f f i c i e n c y  analyzer  region  PE s p e c t r o m e t e r was  limitations  in  mind,  line.  constructed  with  problems.  therefore with  t h e mass a n a l y s i s o f t h e i o n i z a t i o n chamber c o n t e n t s  centered  around  the  s p e c t r o m e t e r and o t h e r A vertical ionization  In  often  t h e a d d i t i o n o f a mass  species  importance.  are  pumping  facility.  paramount  we  the  analysis  of  Since  and  of  this  incorporation  dealing  case of  the a  with  unknown is  modifications  quadrupole  mass  accessories.  c r o s s - s e c t i o n o f t h e PE s p e c t r o m e t e r t h r o u g h t h e  region,  bisecting  the  hemispherical  electrostatic  43  analyzer,  i s shown  ionization  r e g i o n and t h e a x i a l a x i s  shown  i n F i g . 2.  discussed  Another of  section through the  the  light  The main c o m p o n e n t s o f t h i s  source  spectrometer are  system  hemispherical  electrostatic  for  the channel electron m u l t i p l i e r  2"  gate  valve  a n a l y z e r and t h e h o u s i n g  (CEM) a r e pumped  (AIRCO) by a 2" o i l d i f f u s i o n  pumping s p e e d o f 285 1 / s e c .  The d i f f u s i o n  rotary  Scientific).  pump  (1397,  Welch  through  pump  pump i s b a c k e d An  are  differentially electron  by  ionization  a  gauge bottom  i s used t o m o n i t o r t h e p r e s s u r e of t h e system.  T y p i c a l base p r e s s u r e i s a b o u t pressures  a  pump (NRC) w i t h a  (RG75K, VEECO) mounted b e t w e e n t h e s p e c t r o m e t e r a n d t h i s diffusion  is  below.  A. The vacuum The  i n F i g . 1.  in  the  2x10"  range  pumped i o n i z a t i o n  analyzer  by  c e n t r a l a p e r t u r e 0.02").  6  t o r r and t y p i c a l 0.6-2.0xl0"  operating  torr.  5  chamber i s i s o l a t e d  from  The the  t h e bottom p l a t e of t h e l e n s system ( t h e Pumping o f t h e i o n i z a t i o n  chamber  may  be e f f e c t e d by t h r e e modes: (a)  D i r e c t pumping w i t h a 2" d i f f u s i o n  pump  (NRC).  (b) D i r e c t p u m p i n g w i t h a 6" d i f f u s i o n  pump  (NRC).  ( c ) Mode ( a ) w i t h  additional  pumping  cryopump a t l i q u i d n i t r o g e n t e m p e r a t u r e The (Bendix).  pump o i l f o r t h e d i f f u s i o n  facilitated  by  a  (Fig. 3).  pumps  i s the  Convalex-10  A l l vacuum s e a l s a r e e f f e c t e d by V i t o n O - r i n g s .  44  1" pump nut. (diffusion pump) Fig. 1  seal e  The ionization chamber and the electron analyzer of the PE spectrometer  mni7ar.inn  microwave power input  rhamhpr  ^  f i 1 ter hoider  3  I  col 1imating capillary  quart7  t.uhe  mirrnwayp  Hi<;rhargp t.uhe  pr  nt.hpr  gases to a rotary pump T-electron analyzer  Fig.  2  The ionization chamber and the light source unit of the PE spectrometer  seal e  46  L i q u i d ni trogen  inlet  PE/PIM Spectrometer Liquid nitrogen reservoir  Movable brass tube  To diffusion  <  pump  i  1" !  i  Seal e  Fig. 3  The c o n s t r u c t i o n o f the cryopump  47  B. The e l e c t r o n e n e r g y The  electron  components:  a  analyzer  energy  lens  analyzer  system  and  consists  of  two  a hemispherical  electrostatic  analyzer.  The f u n c t i o n o f t h e l e n s s y s t e m i s t w o f o l d .  all,  top  the  ionization matching  plates  point the  retard  or  such t h a t they  pass  energy  accelerate  have  of  a  the  final  major  F i r s t of  PE's a t t h e  kinetic  the hemispherical  energy  electrostatic  analyzer.  Secondly, the three  element  electrons  at  p o i n t down t o t h e e n t r a n c e o f t h e  analyzer  the  without  ionization  affecting  the  chosen  second component, t h e h e m i s p h e r i c a l up a  passing  particular analyzer  criterion  kinetic  a n d be  such  energy  l e n s system  kinetic  electrostatic  that  only  focuses  the  energy.  The  analyzer,  sets  electrons  having  a  ( t h e pass energy) can pass through the  detected.  (a) The l e n s s y s t e m : The d e t a i l e d c o n f i g u r a t i o n o f t h e l e n s s y s t e m i s shown i n F i g . 4. voltages  are l i s t e d  Some t y p i c a l o p e r a t i n g  i n T a b l e 1.  circular  l i d w i t h an a p e r t u r e ,  on  first  the  circular  same a s t h e s c a n n i n g gradient  within  ionization  this  V  The v o l t a g e s 2  on t h e c y l i n d r i c a l c u p a n d  Since  enclosed  there  region,  the  is  usually  the  t o p c y l i n d e r and t h e bottom c y l i n d e r a r e  and  the  voltage  These t h r e e einzel  lens  on  (V„).  The v o l t a g e s , V  no  potential  second  and V  7  almost  the c e n t r a l c y l i n d e r i s usually  c y l i n d r i c a l elements a r e thus o p e r a t e d as ( 2 ) , which  3  e l e c t r o n s at the  The 5  V  are u s u a l l y the  is  p o i n t e x i t w i t h unchanged energy. grounded  of t h e  V, a p p l i e d t o t h e  p l a t e w i t h an a p e r t u r e  voltage.  values  does not change t h e k i n e t i c  plate  a p p l i e d on the  same,  grounded. a  simple  energy of  48  Fig. 4  The lens system of the PE spectrometer  49  TABLE 1  Some typical  values of the voltages for the lens system  of the PE spectrometer  Voltage l a b e l  9  Voltage value (Volts)  V l  V  2  V  V  V  v  V  3  scan  scan  scan  V^  grounded  V  -5.60  c  Vg  grounded  V  -5.60  ?  Vg a. Refer to F i g . 4.  grounded  50  the p a s s i n g  electrons.  grounded.  Hence, t h e k i n e t i c  l e n s system w i l l E  = E  {  -  d  The v o l t a g e , V , on t h e b o t t o m p l a t e  e n e r g y o f an e l e c t r o n l e a v i n g t h e  be c l o s e t o eV  icaK  where E<: i s t h e i n i t i a l final  energy, and V  scan  .  energy of the  i s the scanning  Some v o l t a g e s may be o f f s e t values  to  compensate  elements  to  voltages,  V  provide and  5  V  optimal 7  over  ones.  kinetic  an  i t s  independently  from  the  variations  counts  and  listed  i n the lens  resolution.  The  values fl  (Table  1)  were  once  a f f e c t s the c o l l e c t i n g  especially  the  intensity  the  efficiency  of  t h e low  e n e r g y e l e c t r o n s a n d c a n t h e r e f o r e be u s e d t o s t u d y I P ' s  near t h e l i g h t the  E^is  c a n be s e t t o o t h e r v a l u e s a s l o n g a s t h e  The v o l t a g e V  the energy range,  electron,  voltage.  for positional  two a r e c l o s e , b u t t h e l i s t e d optimal  is  e  final  source  kinetic  c u t - o f f a t 21.2eV.  I t has  effect  on  energy of t h e e l e c t r o n s because i t a c c e l e r a t e s  e l e c t r o n on one s i d e b u t r e t a r d t h a t on  vice versa.  no  The l o w e r  bound o f i t s v a l u e  the  other  side  i s the negative  p a s s e n e r g y , i . e . -eV„ h a s t o be s m a l l e r t h a n  the  or  of t h e  pass  energy  eVp^  (b) The  180°  hemispherical  schematic  diagram of the  Fig.  The  5.  design  radial potential V(r)  electrostatic  electrostatic  has  been f u l l y  analyzer discussed  analyzer: i s shown  i n R e f . 1.  A in The  b e t w e e n t h e two h e m i s p h e r i c a l e l e m e n t s i s  = A/r + B  where A a n d B a r e  constants.  For  an  electron  with  kinetic  52  energy  eVp^  (velocity  a semicircular trajectory leaving  0  t h r o u g h the' a n a l y z e r  with  ( r = R ) a n d b e i n g d e f l e c t e d by 180° upon 0  t h e a n a l y z e r , and s i n c e  Centrifugal M v  force = E l e c t r i c 2 0  /R  =  0  2eVpa55  eA/R  = eA/R  force  2 0  0  2R V ss  A =  Hence  v ) passing  /0d  0  t h e r e l a t i o n s h i p b e t w e e n t h e v o l t a g e d r o p b e t w e e n t h e two  elements V  1 2  The  (V  1 2  ) and t h e pass energy  = V ( R ) - V ( R ) = Vpass t  2  resolution,  (eVpa»  (R /Ri 2  )is  - R,/R )  AE, o f t h e a n a l y z e r  2  i s a p p r o x i m a t e d by ( 3 )  AE = ( d / 2 R ) x e V p ^ 0  where d i s t h e d i a m e t e r o f t h e e n t r a n c e a n d e x i t Hence, i f t h e a n a l y z e r this  i s operated a t a f i x e d pass energy as  work, t h e r e s o l u t i o n  energy  apertures.  will  in  be c o n s t a n t t h r o u g h o u t t h e w h o l e  range.  Since  high  count  rate  than very h i g h r e s o l u t i o n  (high s e n s i t i v i t y )  f o r the  t h e s i s , d i s s e t t o 0.02" w i t h R 5 Volts.  The p r a c t i c a l  r a t e o f 50000cps  2  discribed  crucial in  e q u a l t o 1.25" a n d Vpass  0  resolution  f o r t h e A r P^  studies  i s more  i s about  45meV w i t h  peak a t 1 . 2 x 1 0 "  5  torr  a  this about count  (pressure  at the i o n gauge).  ( c ) The Helmholtz c o i l s i square c o i l s  The H e l m h o l t z c o i l s  s u p p o r t e d by an alumimum f r a m e w o r k .  consist Their  of s i x  function  53  is  t o compensate  coil  is  f o r a l l magnetic  s u p p l i e d by a DC power  a d j u s t e d by some c o a r s e  C.  The  light  An  source  i n t e n s e uv  photon  flux  differential  a  filter  without  breaking  Thus,  a  capillary filter  be  generated  about source  generator 100  unit  by  This  (Electro-Medical The  vertical  i s shown i n F i g . 2.  particular  The  However,  of a l l , the  reconstructed  filter  can  be  by  through  a  region  order  and to  up and down  Viton  positioned  and t h e q u a r t z t u b e c o n v e n i e n t l y .  h o l d e r c a n be m o n i t o r e d  in  h o l d e r c a n be s l i d  t h e vacuum s e a l e f f e c t e d  low  gases.  between t h e c o l l i m a t i n g c a p i l l a r y  t u b e has been  holder.  a  or other  watts.  modifications; first  pumping  the q u a r t z d i s c h a r g e house  may  u n i t have been m e n t i o n e d i n R e f . 1.  t h e r e a r e two i m p o r t a n t of  LH122AFM) and i s  (2450MHz) i n h e l i u m  at  c r o s s - s e c t i o n of the l i g h t this  (Lambda  each  potentiometers.  Microtron-200  operating  of  The c u r r e n t f o r  unit  T h i s i s p o w e r e d by a  details  supply  and f i n e  p r e s s u r e microwave d i s c h a r g e  Suppliers)  fields.  O-ring.  between  The p o s i t i o n  the  of t h e  t h e two g l a s s windows.  A  f u r t h e r m o d i f i c a t i o n i n v o l v e s t h e i n c o r p o r a t i o n o f a T - j o i n t and two  leak-controls  (Granville  Philips)  such  that a mixture  of  g a s e s c a n be i n p u t t o t h e d i s c h a r g e t u b e and t h e c o m p o s i t i o n  can  be  The  changed e a s i l y w h i l s t  still  o p e r a t i n g the l i g h t  a p p l i c a t i o n s of these m o d i f i c a t i o n s a r e d i s c u s s e d  source.  later.  54  D. The s c a n n i n g  system  A 10 V o l t - r a m p f r o m t h e m i c r o c o m p u t e r p r o v i d e s the  scanning  circuitry  voltage control  is  to  adjust  operational amplifier its  output.  (Fig. 6).  the  size  The r e s u l t a n t s c a n n i n g  The h e m i s p h e r i c a l in a constant  pass  function  of  the  the  by an  voltage  to  voltage, i s applied to the  system.  electrostatic  energy  of  ramp  (op-amp) a n d a p p e n d an o f f s e t  top three elements of the lens  energy  step  The  the input t o  mode.  analyzer Hence  i s always  the  operated  initial  kinetic  ( a t t h e i o n i z a t i o n p o i n t ) o f an e l e c t r o n b e i n g  detected  i s g i v e n by E  = e(V  All the  + V  5 c a n  the constant  analyzer  potentiometers  are  - V(R ))  p a s 5  0  voltages a p p l i e d t o the  lens  system  supplied  and  adjusted  by  accelerated  by  and r e s i s t o r  by  batteries  and  networks.  E. The d e t e c t i n g s y s t e m Upon l e a v i n g t h e a n a l y z e r , +300  Volts  operating  applied  applied  to  Hewlett  Packard  via  preamplifier  the  terminal  The h i g h v o l t a g e of  6516A DC power s u p p l y . to  The t a i l o r e d p u l s e  stream  to  a  ratemeter  The  signal to  (about  3000  t h e CEM i s s u p p l i e d by a pulse  a Harshaw NA-15 a m p l i f i e r  discriminator. goes  are  t o t h e f r o n t e n d o f a CEM ( M u l l a r d B319AL)  i n t h e s a t u r a t e d mode.  Volts)  a  electrons  i s then  give  a  output  goes  a n d a NH-84A split.  fast  One  read-out.  DISCRETE GAIN CONTROL  Ramp frnm OAP. n f t.hp  mir.rnr.nmpntpr rnntrnl  system  Fig.  6  OP-AM  RAMP AMPLITUDE FINE CONTROL  A block diagram of the scanning voltage control  RAMP LEVEL OFFSET  -QSranning voltage  t n t h P PF/PIM spectrometer  for the PE/PIM spectrometer  cn  56  The  other  stream  i s transferred  to the microcomputer  f o r data  acquisition. The of A r , N linear  PE 2  spectrometer  and 0 .  least  2  square  w i t h the h o r i z o n t a l  The  i s regularly calibrated with a  s c a l e o f PE  spectra  is  obtained  mixture by  f i t of the I P ' s of t h e s e t h r e e m o l e c u l e s axis.  a (7)  57  3.2 A d d i t i o n o f a Q u a d r u p o l e Mass S p e c t r o m e t e r  t o t h e PE  Spectrometer  A  mass  spectrometer  order t o determine fragments.  the  This  masses  additional  extremely u s e f u l as w i l l A  quadrupole  relatively and  absence of  hence, can  any  of  detecting  mass  a  size  of  the  ionized  information  spectrometer  molecules  has  proven  was  strong  magnetic  field  is  for i t s  sensitivity,  another  mass s p e c t r o m e t e r .  i s similar  to  some o f t h e e l e c t r o n i c  that  of  the  be  thesis.  chosen  of o p e r a t i o n , h i g h  and  to  f o r c o u p l i n g t o t h e PE s p e c t r o m e t e r .  quadrupole  system  a d d e d t o t h e PE s p e c t r o m e t e r i n  be shown i n P a r t I I I o f t h i s  low c o s t , s i m p l i c i t y  compatible  feature  was  The  important  Furthermore, the PE  spectrometer;  hardware and t h e c o n t r o l  software  be s h a r e d b e t w e e n t h e two s p e c t r o m e t e r s .  A. C o n s t r u c t i o n o f t h e q u a d r u p o l e  ( a ) The q u a d r u p o l e The  the  QUAD  mass s p e c t r o m e t e r 150A  Associates  Inc.).  cylindrical  brass rods.  perpendicular  spectrometer  r o d assembly  quadrupole  d e s i g n of  mass  The  Residual quadrupole  Gas is  according to the  Analyzer  axis  (Electronic  approximated  The c r o s s s e c t i o n o f t h e  to the a x i a l axis  section along the a x i a l  was b u i l t  rod  by  four  assembly  i s shown i n F i g . 7 a n d t h e c r o s s  i s shown i n F i g . 8.  58  Seal e  Fig.  7  The rod assembly of the quadrupole mass spectrometer (cross section perpendicular to the axial  axis)  59  Ton entrance  Brass rod  Wp  Fleet, rode  Ion exit  1  *fff\  n— /', v  •cxu n  Seal e  A Fig. 8  Ik  ThP r n d asspmhly and the detector of t h p quadrupole mass spectrometer (cross section along the axial axis of the rods)  60  (b) The i o n i z a t i o n u n i t The  sample  gas  may  be  i o n i z e d near the e n t r a n c e of the  q u a d r u p o l e e i t h e r by e l e c t r o n o r p h o t o n (i) Electron  i m p a c t i o n i z a t i o n : M o l e c u l e s a r e i o n i z e d by an  i o n i z a t i o n a r r a n g e m e n t a s shown are  generated  from  voltage,  typically  and  in  d  3  electrons target cage.  heated  to  Volts),  B.  the of  bombarded  This  Volts).  common method u s e d i n mass h e r e due t o e x c e s s i v e  the  target  photoionization  to F i s applied kinetic  the  emitted  voltage  high,  Negative  E  to  energy  Faraday  The  i n s i d e the on  the  p l a t e C (0 t o -100 entrance  from t h e f i l a m e n t  operated  at  a  are  positive  method o f i o n i z a t i o n i s t h e most  spectrometry,  fragmentation  but  has  limitations  (since the e l e c t r o n  energies  up t o 7 0 e V ) , a n d a l s o t h e r m a l d e c o m p o s i t i o n molecules with  D  of the  cage.  the quadrupole through the  extractor  fairly  filament.  by t h e p o s i t i v e v o l t a g e  c o l l e c t e d by t h e e l e c t r o n  are  electrons  by t h e s e e l e c t r o n s  The e x c e s s e l e c t r o n s  (0-30  Thermal  f o c u s e d by t h e f o c u s i n g  V o l t s ) , and t h e y t h e n e n t e r aperture  respect  initialize  are  F i g . 9.  tungsten  through the s l i t  molecules  (0-30  in  -70 V o l t s w i t h  order  passing  a  The i o n s a r e a c c e l e r a t e d  cage  impact.  on  the l i g h t  the  hot  source  as  filament. described  of  Direct below  is  preferred. (ii)  Photoionization:  ionization Fig.  10.  arrangement  In t h i s  is  replaced  with  the  plates  D  and  F,.  electron  impact  t h e chamber shown i n  M o l e c u l e s a r e i o n i z e d by t h e uv l i g h t  source i n s i d e the c y l i n d r i c a l circular  case,  from  the  light  i o n i z a t i o n chamber e n c l o s e d by two and  a  cylindrical  cup  E.  Ions  61  A. Entrance  lid  B. Entrance aperature C. Focusing plate D. Filament holder d.|  filament  d  one electrode for the filament  ?  another electrode E. Electron extractor F. Faraday cage G. Sample entrance  Fig. 9  The electron impact ionization k i t for the quadrupole mass spectrometer  62  inns  pump out  sample in  Tight source  A. The entrance l i d of the quadrupole rod assembly B. Entrance aperture C. Focusing plate D. Ion exit plate E. Collimating cup F. Ion accelerator  Fig. 1 0  The photoionization chamber for the qaadrupole mass spectrometer  63  are  collimated  and  expelled  v o l t a g e s " on E a n d F ( a b o u t is  usually  voltage  grounded.  from  t h e chamber by t h e p o s i t i v e  30-40 V o l t s ) .  Ions  The i o n e x i t  are further  through  ionization  the  assemblies  spectrometer,  entrance  are  i . e . both  the  aperture  same  spectrometers  D  f o c u s e d by a p o s i t i v e  ( 0 - 3 0 V o l t s ) on t h e f o c u s i n g p l a t e C a n d move  quadrupole  plate  as  B.  those  into The  of  s h a r e t h e same  the basic  the  PE  ionization  region.  (c) E l e c t r o n i c The 150A  c o n t r o l of the quadrupole  quadrupole  spectrometer  A  sweep  block  generator  amplification  with  a  an  coil  about  2.4  0-300  m/e.  Associates  i s shown i n F i g . 11.  0-10 V o l t  ramp  which,  The after  d r i v e s t h e RF a n d DC g e n e r a t o r s .  The ramp o f t h e DC g e n e r a t o r  In t h i s o p e r a t i n g c o n d i t i o n ,  by t h e s p e c t r o m e t e r was i n s t a l l e d w h i c h  MHz.  Usually,  (Electronic  s u p p l i e s a 0-2400 V o l t peak t o peak ramp a t 3.3  150 amu c o i l .  scanned  300 m/e  a  op-amp,  f r o m +180 t o -180 V o l t s . range  of the u n i t  outputs  by  RF g e n e r a t o r  MHz  diagram  spectrometer  i s c o n t r o l l e d by a QUAD  R e s i d u a l Gas A n a l y z e r C o n t r o l U n i t  INC.).  The  mass  mass  i s from  0-150 m/e.  mass  spectrometer the  mass  However, a  is  internal  was i n c r e a s e d t o  operated  a user  such  bypassed.  ramp i n p u t t o t h e op-amp t o d r i v e t h e RF a n d DC  g e n e r a t o r s i s s u p p l i e d by t h e u s e r d i r e c t l y . ramp  in  t h i s case  sweep  in  programmed mode The  that  the  b r i n g s t h e RF f r e q u e n c y down t o  By e q n . 2.69, t h e mass r a n g e  the  ranges  generator  The s o u r c e o f  is  the  i s from t h e s c a n n i n g v o l t a g e c o n t r o l u n i t as  WET GENERATOR Scanning voltage from  the scanning voltage  control  V OP ,><\MP  RF DETECTOR  RF GENERATOR  Q  + V^oswt  L to the rods  MODULATOR DRIVER  CENTER MASS! CONTROL  RF MODULATOR  POWER SUPPLY  DC GENERATOR  (V  Q  + V^oswt)  RESOLUTION CONTROL  (high voltage  F i g . 11  A block diagram of the electronic control  for the guadrnpnlp mass spectrometer  •4^  65  described  in section  (d) D e t e c t i n g The  system  ion  successfully  3.1D.  detector  is  and  of  that the  the  r o d assembly.  accelerating  Its  voltage  at  the  t h e CEM i s -300 V o l t s a n d t h e h i g h v o l t a g e a p p l i e d  i t s t e r m i n a l i s 2000-2500 V o l t s .  that  have  a n d o p e r a t i o n a r e t h e same a s t h e d e t e c t o r o f t h e  PE s p e c t r o m e t e r , e x c e p t  at  accepts ions which  t r a v e r s e d through the quadrupole  configuration  entrance  a CEM w h i c h  It  should  be  remembered  CEM c a n d i s c r i m i n a t e a g a i n s t i o n s o f d i f f e r e n t m a s s e s  f o r q u a n t i t a t i v e work a F a r a d a y  B. C o u p l i n g o f t h e q u a d r u p o l e  collector  i s preferred.  mass s p e c t r o m e t e r  t o t h e PE s p e c t -  rometer  The  t o p l i d o f t h e PE s p e c t r o m e t e r  r e p l a c e d by t h e q u a d r u p o l e spectrometer  i s operated  a s shown  mass s p e c t r o m e t e r .  is  U s u a l l y , t h e mass and i t  s h a r e s t h e i o n i z a t i o n chamber e n c l o s e d by t h e t o p t h r e e  elements  However, i t i s easy kit  to operate  ionization The by  the  Fig.1  mode  of t h e l e n s system  in  in  photoionization  o f t h e PE s p e c t r o m e t e r t o reassemble  t h e mass  a s shown  the electron  spectrometer  in  the  in  impact  Fig.  12.  ionization  electron  impact  mode.  vacuum c o n d i t i o n o f t h e mass s p e c t r o m e t e r  pumping t h e system  through  i s maintained  t h e p o i n t o f c o n n e c t i o n t o t h e PE  66  F i g . 12 The construction of the PE/PIM spectrometer  67  spectrometer.  No  differential  pumping i s a p p l i e d d i r e c t l y t o  the r o d assembly o r t h e d e t e c t o r chamber. been on  found  t o be n e c e s s a r y ,  t h e CEM i s l o w e r The  light  than  source  minimal This  i t  is  been  tube i n t o  Phillips  leak  flow of helium studies).  As  in  realized  discharge  two  f a r as  by  splitting each  ion gas  linked  to  leak c o n t r o l  range  which can patterns  be of  of  a r e shown i n T a b l e the  microwave  to  molecules  suit  light  Granville  for  PES  gas, t y p i c a l l y provides  the necessity  the  sources are a v a i l a b l e  IP's  The h y d r o g e n Lyman o  discharge  and  fragmentation Some o f t h e s e  radiation  produced  of a hydrogen-helium mixture (25% low energy photon s o u r c e  (pl60  The t r a c e o f h y d r o g e n Lyman p a n d r r a d i a t i o n s a r e  sometimes v e r y u s e f u l t o IP's.  of the  i s dedicated t o the  under i n v e s t i g a t i o n .  hydrogen) i s a u s e f u l r e l a t i v e l y Ref. 4 ) .  a  This configuration  photoionization  2.  with  source.  tailored the  inlet  used t o produce Hel r a d i a t i o n  tube.  is  fragmentation.  the  s w i t c h i n g b e t w e e n two p h o t o n e n e r g i e s w i t h o u t  A  of  a molecule  The o t h e r may be u s e d t o i n p u t a n o t h e r  of t u r n i n g o f f t h e l i g h t  by  ionize  reduce  One  (typically  spectrometer  order  to  between  mass  to  inlets  control.  the  desirable  hydrogen, i n t o the discharge fast  voltage  t h a t used f o r c o u n t i n g e l e c t r o n s .  very  photon energy  has  since the high  f o r p h o t o i o n i z a t i o n i s a l s o shared  t h e two s p e c t r o m e t e r s . concerned,  particularly  T h i s has n o t , as y e t ,  However,  they  ionize  molecules  with  higher  first  c a n be e l i m i n a t e d by i n s e r t i n g a c r y s t a l  ( L i F ) between t h e q u a r t z  discharge  capillary  The t r a n s m i t t a n c e o f L i F a s a f u n c t i o n  as  a filter.  tube  and  the  collimating  68  TABLE 2  Energies of some l i g h t sources for UPS and PIMS  Radiation  Energy (eV)  Wavelength  Hell  40.81  303.78  Hel  21.22  584.33  Nel  16.85(100)  735.89  16.67(15)  743.72  11.62(100)  1066.66  11.83(50)  1048.22  10.20(100)  1215.67  12.09(10)  1025.72  Arl  HL HL  6  HL^  3  12.75(1)  a. Numbers in parenthesis are the r e l a t i v e  (I)  972.54  intensities.  b. The values in this table are taken from Ref. 6.  69  of w a v e l e n g t h and et  al.(5);  temperature  has  been  the transmittance curve  discussed  by  Laufer  a t 26°C i s shown i n F i g . 13,  w i t h t h e a d d i t i o n o f t h e l i n e p o s i t i o n s o f t h e h y d r o g e n Lyman o, I  and  in  F i g . 14.  r radiation.  vacuum stem.  The d e t a i l s o f t h e f i l t e r h o l d e r a r e shown  I t c a n be s l i d  seal  effected  up a n d  down  by a V i t o n O - r i n g  without  such  that a hole  i s placed  i s adjusted  i n the l i g h t  PE s p e c t r u m i s o b t a i n e d w i t h t h e u s u a l H e l l i g h t of  suitable  filters  the  around the c y l i n d r i c a l  In normal o p e r a t i o n , the f i l t e r h o l d e r  position  breaking  to  a  p a t h , and t h e  source.  A list  f o r t h e UV r e g i o n i s shown i n T a b l e  3 (p181  of R e f . 4 ) . At  present  coincidence. other, two  the  two  spectrometers  One s p e c t r o m e t e r  scans  but the s w i t c h i n g time  time-averaged  experimental  spectra  rate  should  in the  to  the  same  c o n d i t i o n s a n d t h e r e f o r e t h e same s p e c i e s .  quadrupole  (2 amu).  usually operates  mass  mass s p e c t r o m e t e r  concentrate  Since  the  spectrometer always gives a high to noise  quadrupole  and mass  count  reasonable spectrometer  i n t h e p h o t o i o n i z a t i o n mode i n c o n j u n c t i o n w i t h  t h e PE s p e c t r o m e t e r , will  run  the o p e r a t i o n of  correlate  ( e . g . 50000 c p s ) w i t h good s i g n a l  resolution  not  i s l e s s than a m i n u t e , and so t h e  C. P e r f o r m a n c e o f t h e q u a d r u p o l e The  after  are  t h e f o l l o w i n g d i s c u s s i o n on i t s p e r f o r m a n c e  on t h i s  o p e r a t i n g mode.  70  71  1" Seal e pump out  The construction of the f i l t e r  holder  TABLE 3  Filter  Li F  The transmittance c u t - o f f of some uv  cut-off (eV)  position (A)  11.92  1040  2  11.07  1120  CaF  2  10.16  1220  SrF  2  9.69  1280  9.25  1340  MgF  BaF  2  filters  a. The values in this table are taken from Ref. 4, pi80  73  (a) G e n e r a l A  performance:  typical  at  0.6  x 10"  a  count  H e l p h o t o i o n i z a t i o n mass (PIM)  torr  5  rate  of  i s shown i n F i g . 15. about  50 c p s , t h e r e s o l u t i o n sufficient The  to  the  expense  spectrum  The photon  degree  spectrum  a  +  shown  in  in  helium  in  of the  parent  peak  i n t h i s case 3 5  higher  3 7  is  C1).  sensitivity  o r d e r t o o b t a i n t h e mass  be  decrease F i g . 16a  When a t r a c e  the  discharge  increases  o f 30% h y d r o g e n  usually  n o i s e i s below  isotopes ( C1,  F i g . 16.  the  a s shown i n F i g . 16c.  peak c a n  has  possible.  i o n i z e d by H e l .  mixture  peak a t 47 amu  effectt  as 3  CC1<,  and  operated at  resolution)  becomes d o m i n a n t w i t h o u t any I ,  t h a n 2 amu  of f r a g m e n t a t i o n tends t o  of C H I  with  intensity With  energy  energy  mixed  of  of  background  the c h l o r i n e  i s always  as q u i c k l y as  (b) P h o t o n  cps;  i s better  distinguish  mass s p e c t r o m e t e r  (at  5000  The  spectrum  and  is  t h e mass  hydrogen  tube, the  abruptly  lower  T h i s i s an  ( F i g . 16b).  amount o f t h e  is  of  the  peak  fragment  i n s t a n c e where t h e  which  is  relative  70% h e l i u m t h e p a r e n t  significant  identified,  of  with  parent  greatest  importance. The  hydrogen  purification.  was  s u p p l i e d by U n i o n C a r b i d e w i t h o u t  Under p r e s e n t o p e r a t i n g c o n d i t i o n s ,  Lyman a e m i s s i o n  line  (l2.09eV)  trace  and  compounds w i t h t h e f i r s t  (l0.20eV)  is  of  Lyman r  IP  less  the  hydrogen  by  Lyman p  (12.75eV).  Hence,  contaminated lines  than  further  l2.7eV  (HLr =  l2.75eV)  CC1  CC1  CC1.  3( C1) 35  2( C1)+ Cl 35  37  Relative Intensity  35  C1+2( C1) 37  3( C1) 37  2( C1)  37 fj  35  3 5  n + r.i  It 2( 20  40  Fig. 15  60  37  37  80  The Hel mass spectrum of CCl^  cn 100  120  amu  75  CH.  a.  (pure He)  Relative Intensity  b. (He + trace of H )  u  2  c. (70%He + 30% 30%H ) 2  50 F i g . 16  100  150  amu  The mass spectra of CH I, ionized by the radiation 3  from the discharge of of H , 2  and  a . He,  b. He with a trace  c. 70%He with 30%H  2  76  can  be d e t e c t e d  with t h i s  cut o f f t h e HLf Fig.  17  shows t h e HLopr  of t o l u e n e CH CN 3  and  (first  (first  individual  IP  at  the vapor p r e s s u r e  One  114  light  source  about HLo  of  a  The  single  mass  spectrum  parent  t h e compounds  peak  which  3  a piece of L i F c r y s t a l  results  pressures.  (Fig.  are obtained  a  each The  be a f f e c t e d by torr  for  f o r C H C N , a t 298°C. 3  and  By f i l t e r i n g t h e  with a thickness  of  shows up i n t h e  +  17).  at pressures  The  degree  of  but the count r a t e decreases,  1 x 10"  so  of  only.  a r e 27  3  F i g . 18 shows t h e H L a p r P I M s p e c t r a  compatible  mixture  effect:  best  slightly,  HLc.  the discrimination i n the detector  3  different  pure  I P a t l0.95eV) and  3  1mm, no CH CN* a n d o n l y a t r a c e o f C H O H  The  and  give  photoionization cross section.  through  (c) P r e s s u r e  above  CH OH ( f i r s t  12.20eV).  PIM spectrum o f t h e m i x t u r e  torr.  and  f o r CH OH a n d 88 t o r r  must a l s o c o n s i d e r different  contamination  o f t h e p e a k s i n F i g . 17a w i l l  torr  their  F i l t e r s may be u s e d t o  P I M s p e c t r u m o f an e q u a l v o l u m e  gives  intensity  toluene,  HLr  IP a t 8.7leV),  species  relative  l i g h t source.  5  torr.  This  optimal  of  below  bromobenzene  fragmentation  spectrum  of  a  pressure  i s particularly  important  types  of s p e c i e s under study  here.  at  increases  range i s q u i t e spectrometer  s p e c i e s c a n be o b t a i n e d  e x a c t l y t h e same c o n d i t i o n a s t h e PE s p e c t r u m , This  5  with increasing pressure  w i t h t h e o p e r a t i n g c o n d i t i o n o f t h e PE mass  1 x 10"  or  vice  under versa.  for the i d e n t i f i c a t i o n of the  77  Rplativp Intensity  amu F i g . 17 a  The HL „ CXpY  and HL n  (HL  a  rinv  f i l t e r e d with LiF) mass —  spectra of a mixture of CH-^OH, ChUCN and toluene  C H g  P=0.6xl0" .  V-  5«*  +  5  .. &  .J  5  Relative Intensity  ,P=1.2xlO"  5  A  V  P=2.2xl0~  P=3.2xlO I  .  .  .  ~>  j  5  1  -5  A  J  i  .  i 200 amu  F i g . 18  Pressure effects on the degree of fragmentation and the r e l a t i v e count rate of the HL spectrum of bromobenzene  mass  79  3.3  Hardware f o r computer c o n t r o l  of t h e PE/PIM  The  mass  above  PE  spectrometer  are  controlled  s t r u c t u r e of t h i s Fig.  19.  The  16bit  DEC'S L S I  other  peripherals  data  switch).  DAC of  amplifier counter  purpose  a  set  and  is  voltages  an  a battery.  The  through  t o 4K  processor  changed a c c o r d i n g t o  output  either  to  the  channel  The  offset  various  a  then  system.  +10  to a  of a  to  -10  suitable  potentiometers,  preamplifier, input  t o the  A spectrum  is  the t i m i n g process  can  PE  from the s p e c t r o m e t e r s  and  spectrum  the  ( c o n t r o l l e d by an e x t e r n a l  (DT2769, D a t a T r a n s l a t i o n ) .  a high resolution  unit  the  be  an  pulse  output  realized  In the  r e c o r d e d by  are  obtained  the c o o p e r a t i o n of the s c a n n i n g v o l t a g e  clock  in  of communication l i n e s ,  t a i l o r e d by  p u l s e c o u n t i n g p r o c e s s e s , and real-time  shown  and  signals  discriminator  The  m a i n memory  op-amp,  a r e a m p l i f i e d and a  is  central  f u r t h e r a d j u s t e d and by  described  11/03).  system  (DT2766, D a t a T r a n s l a t i o n ) .  output  and  (LSI  i s i m p l e m e n t e d by one  of t h e c o m p u t e r c o n t r o l  24)  system,  by  present  using  up  points. A spectrum  is  through  This v o l t a g e output  p u l s e s which  a  control  o r t h e mass s p e c t r o m e t e r  r e s i s t o r s and  and  general  program  1 2 b i t 4 - c h a n n e l DAC  (Fig.  microcomputer  A s c a n n i n g v o l t a g e i s s e t and  spectrometer  range  a  spectrometer  11/03, s u p e r v i s e s t h e 64 K b y t e s  acquisition  Volt  by  the  microcomputer  (CPU),  UNIBUS.  and  spectrometer  then  i s s t o r e d i n t h e m a i n memory w h i l e s c a n n i n g  t r a n s f e r e d to a f l o p p y d i s k u n i t  Design) a f t e r  the scanning  has  (DSD440, D a t a  been c o m p l e t e d .  It is  and  Systems  displayed  80  Computer System Level  Video Termin al iConsole J \  1  >  >  /  \  UNIBUS >  1  4  Pul se Counter  X-Y  Plotter  F i g . 19  Oscilloscope Spectrum Display  ADC  PE/PIM Spectrometer  Interface Level  Application Level  The structure of the microcomputer control system  81  number of pulses  r  * t i by a real-time clock  count wi th a pulse counter  .scanning voltage 1  5  6  8  4096  • scan with a DAC F i g . 20  The scanning process of a d i g i t i z e d spectrum  number of points  82 on an o s c i l l o s c o p e by u s i n g two c h a n n e l s o f t h e DAC Y coordinates. p l o t t e r and The  A p l o t of the spectrum  t h e same DAC  control  (VT100, DEC).  system  is facilitated  by  a  and X-Y  device. i s monitored  A h a r d c o p y o f any  through a t e l e t y p e  as t h e X  by a v i d e o t e r m i n a l  d a t a o r s o f t w a r e may  (Teletype Corporation).  be  console output  83  References  (Chapter  1.  S.T.  Lee,  2.  E. H a r t i n g and  3)  Ph.D.  thesis, F.H.  UBC,  Read, ' E l e c t r o s t a t i c  Amsterdam,  1976.  3.  C.E.  and  4.  J.A.R. Samson, ' T e c h n i q u e s  Ruyatt  scopy', 5.  6.  J.A.  W i l e y , New  1974.  S i m p s o n , Rev.  York, Pirog  L a u f e r , J.A.  Am.,  55(1965)64.  J.W.  Rabalais, 'Principles  Turner,  C.  Baker,  and  J.R.  A.D.  McNesby, J . Opt.  Soc.  of u l t r a v i o l e t p h o t o e l e c t r o n S o n s , New  B a k e r and  York,  CR.  (1977)22.  Brundle,  'Molecular photoelectron spectroscopy', Wiley, 1 970.  38(1967)103.  1967.  A.H.  D.W.  S c i . Inst.,  of vacuum u l t r a v i o l e t s p e c t r o -  s p e c t r o s c o p y ' , J o h n W i l e y and 7.  lenses',Elsevier,  London,  84  Chapter 4  4.1  Software Development  Introduction  The chapter which  interpretation 2, a l w a y s r e l i e s  are  not  only  of  a  on  some  able  PE  spectrum, quantum  to assign  as  mentioned i n  mechanical  i o n i z a t i o n p r o c e s s e s t o PE  peaks but a l s o c o r r e l a t e p a r t of the spectrum t o the the  corresponding  molecular and  cation,  and  whole  species.  e l e c t r o n i c s t r u c t u r e s , and r e l a t i v e  deduced. the  The most w i d e l y  nature  spectrum Hence,  stability,  u s e d quantum m e c h a n i c a l  of  t o the geometric  e t c . , c a n be treatment  is  LCAO ( L i n e a r C o m b i n a t i o n o f A t o m i c O r b i t a l s ) a p p r o a c h t o t h e  HF-SCF m e t h o d , w h i c h i s a l s o method ab  the  p r o p e r t i e s of the parent  methods  (1,2).  initio  AO's,  treatment.  integrals  analytically In  to  as  implementation of t h i s  computer programs.  a l l the  evaluated  Direct  referred  After in  the  choosing  the  Roothaan-HF  idea leads a  t o some  basis  s e t of  Roothaan-HF f o r m u l a t i o n a r e  a n d t h e MO s e t i s o b t a i n e d  by  the  p r a c t i c e , t h e AO b a s i s s e t c a n n o t be a c o m p l e t e  set and i t s s i z e always i n d i c a t e s t h e q u a l i t i e s as w e l l cost  of  t h e ab i n i t i o c a l c u l a t i o n s .  small basis set, the  cost  of  many-electron molecule i s s t i l l semi-empirical  SCF  integrals  of  precisely.  Certain  data,  estimated  SCF  ab  the  initio  the  Roothaan-HF  calculations high.  for a  Hence, i n t h e  computing-time-consuming  method  are  i n t e g r a l s a r e r e l a t e d t o some  by a few s i m p l e  the  However, e v e n w i t h a v e r y  always very  approach,  as  parameterized  not  calculated  spectroscopic  equations,  o r even  85  just  set t o zero e m p i r i c a l l y .  c o s t , and a p p l i c a b i l i t y to  the s u b j e c t i v i t y  of  empirical  to rather  large molecules.  so  good  of  in  semi-empirical  a r e low  H o w e v e r , due types  i n t h e p a r a m e t e r i z a t i o n p r o c e d u r e s , and t h e these  data  f o r the  s e m i - e m p i r i c a l p r o g r a m may be v e r y good not  advantages  i n s e t t i n g a p p r o x i m a t i o n s and c h o o s i n g  data  l i m i t e d amounts  The o b v i o u s  others.  In  programs  purpose,  a  i n some a p p l i c a t i o n s b u t  short,  have  fitting  both  their  ab  own  initio  and  characteristic  a p p l i c a b i 1 i t ies.' Accordingly, different library  a library  'empirical' contains  o f PES r e l a t e d c o m p u t e r p r o g r a m s a t  l e v e l s h a s been e s t a b l i s h e d .  some  w i d e l y used ab i n i t i o  The  program  programs, such as  GAUSSIAN 70 ( 3 ) , GAUSSIAN 76 ( 4 ) a n d HONDO 5 ( 5 ) ; s e m i - e m p i r i c a l programs (8)  such  a s CNDO/2 (INDO i n c l u d e d )  and HAM/3 ( 9 ) ; t h e RSPT p r o g r a m  theorem;  a  recently  (10)  modified  valence-electron  shake-up  calculations  other  such  GEOMIN  programs  as  ( 6 ) , MINDO/3 ( 7 ) , MNDO to  correct  HAM/3  Koopmans'  program  ( 1 1 ) ; and  some  (12) t o perform f u l l  o p t i m i z a t i o n w i t h t h e CNDO/INDO a p p r o a c h ,  to  and  BOYLOC  and  76,  do other  geometry (13) t o  i n c l u d e MO l o c a l i z a t i o n , e t c . The most f r e q u e n t l y u s e d GAUSSIAN 70 INDO, are cost  MINDO/3,  CNDO/2  and  HAM/3, a n d MNDO p r o g r a m s , and t h e RSPT p r o g r a m s  described b r i e f l y  in section  4.2,  with  a  performance  and  c o m p a r i s o n o f t h e GAUSSIAN 7 0 , CNDO/2, MINDO/3, HAM/3, and  MNDO p r o g r a m s . Besides computation,  the  use  of  applications  a of  main-frame micro-  to or  do  large  minicomputer  scale in  86  spectrometer spectral This LSI  control,  data  acquisition,  data manipulation are a l s o r a p i d l y  idea 11/03  has  been  realized  by  3  and  system.  S e c t i o n 4.3  implementation  the  of  4.2A  The  in  PES.  the hardware i n t e r f a c e  of a  describes this  the  ab  system  Gaussian  method.  type  involving  design  program.  The  detailed  of t h i s  s i m u l a t e d by  76  a  is  initio  much  Slater  type  s e v e r a l GTF's i n t h i s p r o g r a m  easier  GTF  ( e a c h AO  represented  by  GTF's) ( 1 5 ) . slightly valence  a  AO  double-zeta  is  ( e a c h AO  STO  which  from  the 3,  shell  minimal ,6  by  more  b a s i s s e t , DZ-STO, e a c h AO  one  STO's.  i s expressed  is by  N-31G,  b a s i s s e t o f STO than  in  occupied  b a s i s s e t of GTF,  extended  is  Ref.14).  i s again least-square f i t t e d  the  represented  that  f o r the  of the s h e l l a t l e a s t p a r t l y  However, the extended  different  than  i s c a l l e d STO-NG, where N = 2 ,  t h i s program  the  involving  (p.56-66 of  i s r e p r e s e n t e d by a STO),  of  to  o r b i t a l (STO)  at  set  c o d e s of  approach  b a s i s s e t of STO  least p a r t l y occupied  the  PES  multi-center integration  (GTF's)  functions,  and  thesis.  Analogous to the minimal  basis  in  programs  (3) i s an ab  Since  functions  Slater  mentioned  the  i n i t i o GAUSSIAN 70 and  GAUSSIAN 70 p r o g r a m  Roothaan-HF  as  aim,  l i b r a r y of computer programs f o r  The  and  development of a s m a l l r e a l - t i m e o p e r a t i n g  the program appear i n the appendix  The  storage  expanding  m i c r o c o m p u t e r t o t h e PES/PIMS s y s t e m  chapter  4.2  data  N is  (each For  i n t e r m s of  87  two  STO's, i . e . two-S 's a s t h e e x p o n e n t ) .  program,  AO's o f an atom a r e s p l i t  s h e l l AO's. while  a  Each inner  valence  described  shell  AO  set  into valence  outer  parts. part  The  and i n n e r  The r e s t r i c t i o n s  row a t o m s ) i s  inner  part  is  i s e x p r e s s e d by one GTF.  this basis set i s also called (16).  GAUSSIAN 70  shell  ( e . g . 2 s , 2p on f i r s t  e x p r e s s e d by 3 GTF's a n d t h e o u t e r  basis  the  s h e l l AO i s w r i t t e n a s a sum o f N G T F ' s ,  by i t s i n n e r a n d  Accordingly,  In  a  valence  extended  o f t h e GAUSSIAN 70 p r o g r a m s  are: (1) maximum number o f a t o m s i s 35; (2) maximum number o f AO's i s 7 0 ; (3) t y p e s o f AO's a r e up t o 3s a n d 3p o n l y ; (4) maximum number o f GTF's i s 2 4 0 ; (5) N = 4 f o r N-31G.  The  program  eigenvalues atoms  calculates  f o r MO's,  total  Mulliken  energy,  population,  eigenvectors gross  charges  a n d d i p o l e moment, e t c . T h e r e a r e a l s o i n t e r n a l  o p t i m i z a t i o n and p o t e n t i a l program. program  The and  modification iterations internal  BOYLOC provides is  and  an the  constants.  difficulties The GAUSSIAN 70  surface  program MO option  program.  (13)  to input  convergent  routines  on  geometry i n the  h a s been a p p e n d e d t o t h i s  localization  results.  Another  t h e maximum number o f SCF  limit  instead  of  using  the  T h i s m o d i f i c a t i o n i s u s e f u l where i n c a s e  i n SCF c o n v e r g e n c e  GAUSSIAN 76  scanning  and  program  occur. (4)  Polarization  is  an  extension  functions,  of  the  functions  88  c o r r e s p o n d i n g t o AO's w i t h h i g h e r a z i m u t h a l quantum those  corresponding  (e.g. f o r available are  to  hydrogen,  AO's  p, d,  to  the  in  the  ground  state  a n d f o r o x y g e n , d, f , . . . ) , a r e  i n t h i s new v e r s i o n .  added  occupied  numbers t h a n  STO-NG  Hence,  basis  for  STO-NG*,  5  d-GTF's  s e t o f s e c o n d row a t o m s ; f o r  N-31G*, 6 d-GTF's a r e a d d e d t o t h e N-31G b a s i s s e t o f f i r s t and  second  row  a t o m s ; f o r N-31G**,  row  3 p-GTF's a r e a d d e d t o t h e  N-31G* f o r e a c h h y d r o g e n atom ( 4 ) . The  basis  set  effect,  using  H 0 2  a s an e x a m p l e , on t h e  a c c u r a c y and e f f i c i e n c y  o f t h e GAUSSIAN 76 p r o g r a m i s s u m m a r i z e d  in  T a b l e 1.' The t o t a l  e n e r g i e s o b t a i n e d by a m i n i m a l STO  set  ( 1 7 ) , a DZ-STO b a s i s s e t ( 1 8 ) , a n d an e s t i m a t i o n (19)  limit dipole  are  moment  improvements  also (20)  from  and  IP's.  STO-2G  There  are  apparently  great  PES  studies,  i n mind t h a t t h e c o s t of c o m p u t a t i o n i n c r e a s e s w i t h t h e number o f b a s i s  molecule  this  studied  4-31G b a s i s . of  in  work  functions.  The  i s the complex,  The c o s t o f t h i s 7 5 - b a s i s - f u n c t i o n  largest  (CH ) 0-BF 3  2  The e f f i c i e n c y  at  (about  i n c l u d i n g t h e memory u s a g e ) .  o f t h e GAUSSIAN 76 i s s i m i l a r  GAUSSIAN 70 p r o g r a m , e x c e p t more memory program.  3  system i s about  c o m p u t i n g t i m e w i t h an AMDAHL V 6 / I I c o m p u t e r  $1000 c o m p u t e r d o l l a r s  former  HF  t o STO-3G, a n d f r o m STO-NG t o 4-31G.  4th order of the t o t a l  3000sec  the  included, together with the experimental  H e n c e , STO-3G a n d 4-31G a r e recommended f o r most bearing  of  basis  About  25%  usage i s i n v o l v e d  of t h e c o s t  i n the  i s s a v e d by u s i n g t h e  GAUSSIAN 70 p r o g r a m when i t i s a b l e t c t a c k l e s o l v e d by t h e GAUSSIAN 76 p r o g r a m .  t o t h a t of the  the  same  problem  The b a s i s  TABLE 1  Basis  s e t --Total energy (au) a  s e t e f f e c t on the c a l c u l a t i o n s o f water  Dipole moment (debye)  IP's (eV) 1 l  b  l  3  a  l  l b  No. o f b a s i s functions  No. o f GTF's  CPU  2  ST02G  72.739014  1.47  9.63  11.49  16.34  7  14  1.3  ST03G  74,.963123  1;72  10. 64  12.33  16.79  7  21  1.6  ST04G  75,.496831  1.76  10. 77  12.46  16.85  7  28  2.0  ST05G  75,.636651  1.76  10. 81  12.49  16.88  7  35  2.8  ST06G  75,.678850  1.76  10. 81  12.50  16.88  7  42  4.1  STO minimal  75 .7055  b  4-31G  75 .907359  2.61  13. 59  15.19  19.23  13  28  3.5  5-31G  75 .968261  2.63  13. 63  15.24  19.29  13  29  3.7  6-31G  75 .983960  2.63  13. 64  15.25  19.30  13  30  3.9  4-31G*  75 .938776  2.20  13. 49  15.46  19.13  19  34  9.9  4-31G**  75 .951890  2.16  13. 46  15.39  19.04  25  40  22.  5-31G**  76 .008486  2.18  13. 51  15.46  19.10  25  41  23.  6-31G**  76 .023095  2.19  13.,52  15.47  19.12  25  42  24.  DZ-STO  76 .0053  12,,6  14.7  18.5  0  HF-limit Exptl  d  76 .0675 1.85  e  a. By GAUSSIAN 76 except as s p e c i f i e d .  b. Ref. 17.  c. Ref. 18.  d. Ref. 19.  e. Ref. 20.  90  The  r e s t r i c t i o n s o f t h e GAUSSIAN 76 p r o g r a m a r e :  (1) maximum number o f atoms i s 3 5 ; (2) maximum number o f AO's i s 8 0 ; (3) t y p e s o f AO's a r e up t o 3 d ; (4) maximum number o f GTF's i s 2 4 0 ; (5) N = 4, 5, 6 f o r N-31G.  4.2B  S e m i - e m p i r i c a l CNDO/2  All  these  the d i f f e r e n t i a l defined  as  method,  the  probability  CNDO/2, version  integrals  set t o zero.  to  upon  o v e r l a p b e t w e e n two AO's, '/•jx. a n d ^ X v , w h i c h i s  Complete 2,  is  s e m i - e m p i r i c a l program.  data  approximations  o f f i n d i n g an e l e c t r o n , i . e.  ( i)  i n a volume  ( i) •  The CNDO/2 p r o g r a m : The  all  t  methods stem f r o m d i f f e r e n t  e l e m e n t common t o /*>(. a n d y-v  a.  INDO MINDQ/3 a n d MNDQ p r o g r a m s  f  I n t h e CNDO method  most  rather  widely  rises  short  from  used  (p.62-79 o f R e f . 2 1 ) ,  o v e r l a p , p^u-Xv ( J^*^  of a p e n e t r a t i o n term  T h i s term  Overlap  )  are  as e m p i r i c a l  The s t u d y o f m o l e c u l a r g e o m e t r y a l s o  f r o m an 3tom B t o t h e s h e l l a  the  Differential  E l e c t r o n e g a t i v i t i e s o f atoms a r e u s e d  cancellation  yields  of  probably  involving differential  i n t h e program.  the method.  Neglect  i n an e a r l i e r  led  v e r s i o n of  t h e p e n e t r a t i o n o f an e l e c t r o n  of another  bond-length  atom A, a n d i t s i n c l u s i o n in  predicting  molecular  91  geometry. The  program  eigenvalues atoms  calculates  f o r MO's,  and  dipole  optimization modification  (6).  Mulliken  moment.  since  total  such  energy,  eigenvectors  population,  I t can  also  routine  has  and  g r o s s c h a r g e s on perform  been  geometry  adopted  as  a  The r e s t r i c t i o n s o f t h e p r o g r a m a r e  (1) n o t f o r t h i r d row e l e m e n t s o r b e y o n d ; (2) maximum 60 atoms a n d 170 AO's.  b.  The INDO p r o g r a m In t h i s  Intermediate  N e g l e c t o f D i f f e r e n t i a l O v e r l a p method  (p.80-83 o f R e f . 2 1 ) , a l l i n t e g r a l s neglected KS^y-v, ^ atom.  except "Xv  the  'XM-y  >  where  This modification  fact  that  results  important, The program.  center  d i f f e r e n t i a l overlap are exchange and 7^  both  to  a  r  t o t h e CNDO method t a k e s  r e p u l s i o n between e l e c t r o n s w i t h  than that w i t h d i f f e r e n t better  one  with  spins.  Hence  integrals,  e  o  n  e  care  same s p i n  this  ^  fc  same of t h e  i s smaller  treatment  gives  s y s t e m s where e l e c t r o n s p i n d i s t r i b u t i o n i s  e.g. r a d i c a l s . INDO The  estimated  program  i s implemented  additional  one-center  semi-empirically  program i s u s u a l l y  included  (p.81-82  similar exchange of  calculations.  I t s cost  integrals  Ref.21).  The  are INDO  i n t h e CNDO/2 p r o g r a m a n d a c t s a s an  o p t i o n , w h i c h c a n n o t be u s e d f o r m o l e c u l e s w i t h than f l u o r i n e .  t o t h e CNDO/2  i s quite  similar  elements  to  that  heavier of  CNDO  92  The MTNDO/3  c.  The  program  MINDO/3  method  extensively modifies the various  experimental  bond-lengths most  ( 2 2 ) , M o d i f i e d INDO m e t h o d , v e r s i o n 3, INDO  method  data.  types  of  empirical  MINDO/3 p r o g r a m g i v e s g o o d r e s u l t s Bond-length degrees  t h e involvement  Molecular  and bond-angles, and heat  important  by  geometry,  of  including  o f f o r m a t i o n a r e t h e two data.  Accordingly, the  f o r geometric  optimization.  i s u s u a l l y c o r r e c t t o 0.02k a n d b o n d - a n g l e t o a few  (22).  However,  IP prediction  i s not very  good.  R e s t r i c t i o n s of t h e program a r e : (1) f o r m o l e c u l e s  having  H, B t o F, a n d S i t o C l o n l y ;  (2) l a r g e e r r o r s may o c c u r  f o r compounds h a v i n g  adjacent  atoms  w i t h l o n e - p a i r s o f e l e c t r o n s , e . g . N H , a n d compounds 2  containing t r i p l e  d.  extension  differential  of  t h e INDO  ' s , where  D i f f e r e n t i a l Overlap).  approach  including  i n t e g r a l s , are determined or  from  be  fitted  retain a l l  Hence, i n t e g r a l s such a s  i n t h e NDDO method The MNDO  program  (Neglect of i s such  (23), with the s i m i l a r parameterization technique  t h e implementation  integrals,  i s to  ^u.,Xvare on atom A, a n d Xa ,X*  on atom B, a r e n o t n e g l e c t e d  Diatomic  treatment  o v e r l a p on t h e same a t o m .  y  <C7^Xv,  in  bonds.  The MNDO p r o g r a m An  are  2  of  t h e MINDO/3  the  additional  either  an used  program.  A l l  two-center  repulsion  from e x p e r i m e n t a l  data  the  directly  s e m i - e m p i r i c a l expressions which c o n t a i n parameters t o with experimental  data.  The e m p i r i c a l d a t a  used  here  93  are  f r o m a b r o a d e r s c o p e t h a n t h o s e u s e d i n t h e MINDO/3  and  include  moments  heat  of  and f i r s t  compounds.  formation,  vertical  geometric  variables,  I P ' s , e t c . , of  The r e s u l t s a r e t h a t  More i m p o r t a n t  ordering  of  MO's  as  section  those  of  i n MNDO a g r e e much b e t t e r w i t h  t h e CNDO  reference with  s e c t i o n h a v e been  i s that the predicted IP values  from PES, compared t o t h e r e s u l t s o f well  some  dipole  t h e two e m p i r i c a l p r o b l e m s  t h e MINDO/3 p r o g r a m m e n t i o n e d i n t h e p r e c e d i n g solved.  program,  t h e MINDO/3  and t h e  those deduced program,  as  a n d INDO c a l c u l a t i o n s ( s e e a l s o  4.2D).  The  r e s t r i c t i o n s o f t h e MNDO p r o g r a m a r e :  (1) o n l y  f o r m o l e c u l e s c o n t a i n i n g H, B, C, N, 0 a n d F;  (2) up t o 35 a t o m s , 75 AO's a n d 50 o c c u p i e d MO's;  4.2C  The s e m i - e m p i r i c a l As  mentioned  HAM/3 p r o g r a m  i n chapter  semi-empirical  method  HAM/3  (9) uses  program  spectroscopic i s very  energies has  Slater's  (24).  Besides  method  fitted  by  many  a  The  atomic  I t s p e r f o r m a n c e i n PES s t u d i e s  I P (both  f o r uv  A recently  and x-ray  modified  to predict valence-electron  PES)  and e x c i t a t i o n version  (11)  shake-up p r o c e s s e s as  well.  The s c o p e o f HAM/3 a p p l i c a t i o n s h a s been d i s c u s s e d  recent  article  by Chong ( 2 5 ) .  i s  s h i e l d i n g concept.  i t can give e l e c t r o n a f f i n i t i e s ,  including CI, etc.  an o p t i o n  t h e HAM/3  parameters  a n d PE d a t a  successful.  calculations,  using  2,  in a  94  The  r e s t r i c t i o n s o f t h e HAM/3 p r o g r a m a r e :  (1) f o r compounds h a v i n g  H, C, 0, N a n d F o n l y ;  (2) maximum 60 atoms a n d 122 o r b i t a l s .  4.2D  C o m p a r i s o n o f t h e p e r f o r m a n c e o f t h e GAUSSIAN 7 0 MINDO/3  The have  r  HAM/3 a n d MNDO  t h e N=N o r C=N bond studied  GAUSSIAN 70  IP's f o r eight molecules  f o r the various computational  t h e 4-31G b a s i s  CH NH  2  and N F . 2  tabulated initio  Also  The  results,  shown  s e t being  results  f o r each molecule,  (Table 2-9).  of  together  and a r e compared  In a l l cases, a r e t h e CPU  times  for N H , 2  2  a l l these c a l c u l a t i o n s a r e with  some  available  ab  with the experimental IP's  the quoted I P ' s a r e f o r each  calculations  This i s t y p i c a l l y (see a l s o chapter  commonly a p p l i e d t o e m p i r i c a l l y the  With  vertical IP's.  calculation. A l l computer.  r e s u l t s show t h a t t h e 4-31G c a l c u l a t i o n s a l w a y s p r e d i c t  too high I P v a l u e s . SCF  they  methods.  reserved  c a l c u l a t i o n s were p e r f o r m e d on a n AMDAHL V 6 / I I The  have  t h e STO-3G b a s i s s e t i s u s e d f o r a l l  the m o l e c u l e s , 2  containing  These s m a l l imines and d i i m i n e s  program,  r  programs  p r e v i o u s l y by PES ( 2 7 , 3 1 , 3 6 , 4 2 ) . A s s u c h  p r o v i d e a good t e s t the  (26).  CNDO/2  .  GAUSSIAN 7 0 , CNDO/2, MINDO/3, HAM/3, a n d MNDO  been u s e d t o c a l c u l a t e  been  programs  r  other  hand,  obtained with  ab  initio  2) a n d s o a 0.92 f a c t o r i s  c o r r e c t Koopmans'  theorem.  On  t h e STO-3G r e s u l t s a r e a l w a y s t o o l o w b e c a u s e  TABLE 2  The Experimental and Theoretical  IP's  of trans-diazene  Exptl. IP °  HAM/3  4-31G  ST0-3G  4a (n )  10.02  9.72  11.04  8.95  1a (it)  14.39  14.46  13.99  +  g  u  MINDO/3  CNDO/2  Chong et  11.18  8.47  13.76  10.17  10.01  12.20  13.78  11.79  17.36  14.71  14.18  16.67  13.96  22.76  15.31  15.30  17.61  17.03  MNDO  3b (n")  15.03  15.79  17.44  15.69  3a (o)  16.90  17.47  18.17  16.21  17.47  12.87  19.75  0.3  25.3  4.3  0.8  0.3  0.6  u  g  Computing time (sec) a . All  values 1n eV  b. Geometry: rNH = 1.028A, rNN = 1.252A, c  '  Other ab Initio calculations  Orbital Symmetry  a  Ref. 27.  d. Raf. 29. e. Ref. 51.  < NNH = 106.85* (28).  al**  von Niessen et  96  TABLE 3  The Experimental and Theoretical IP's o f trans-methydiazene  Exptl. IP  HAM/3  ST0-3G  MNDO  MINDO/3  9.57  8.90  8.35  10.73  8.09  14.15  12.9  12.83  11.34  12.82  11.01  15.55  9a (n-)  13.4  13.31  13.41  13.90  11.69  17.01  8a'  14.7  14.98  14.97  16.01  12.35  20.33  la"  15.6  15.33  15.73  15.63  14.42  22.37  7a'  16.7  16.84  17.04  17.75  15.04  24.49  19.68  21.44  23.25  19.61  26.54  1.0  19.3  2.4  1.0  1.5  Orbital Symmetry 10a' (n+) 2a" ( T  NN  c  CNDO/2  }  1  6a'  see text  Computing time (sec) a. All values in eV  b. Geometry: rCH = 1.09A, rCN = 1.47A, rNH = 1.014A, rNN=1.24A, <HCH = 109.5°, <CNN = 112°, and <NNH = 110° (30) c. Ref.27.  a ,b  97  TABLE 4 The Experimental and Theoretical IP's o f trans-azomethane ' a  Orbital Symmetry  Exptl. IP  c  7a (n+) g  2  "u NN (l,  )  6b (n-) u  lb  HAM/3  ST0-3G  MNDO  MINDO/3  8.98  8.46  8.05  10.52  8.05  12.90  11.81  11.79  10.56  12.18  10.54  14.34  12.30  12.10  12.34  13.32  11.44  17.14  13.60  13.34  13.55  13.83  11.13  16.58  13.97  14.72  14.42  13.46  20.18  14.95  15.68  15.81 .  14.71  22.96  15.08  16.39  16.44  14.53  23.52  15.80  15.55  15.71  16.88  13.90  22.24  18.60  18.12  19.94  21.77  18.65  26.47  22.40  21.58  24.13  28.28  23.52  30.88  1.9  53.7  5.1  2.0  2.5  9 14.50  5b u  Computing time (sec)  a- All values in eV b. Geometry: rCH = 1.105A, rCN = 1.482A, rNN * 1 .247A, <CNN = 112.3°, <NCH = 107.5°, and the t i l t angle of the methyl group is -4.1° (32) c  Ref. 31.  CNDO/2  98  TABLE 5  The Experimental and Theoretical azomethane '' 3  Orbital Symmetry  Exptl. IP  13b (n )  11.35  14a  15.3  +  2  n  12 b 7 b  2  l  6a 2  6b 2 5 b  15.9  53  HAM/3  ST0-3G  9.85  8.06  b]  1  3a  2  gb  2  17.7  3^  18.49  15.29  13.69  16.,91  14.28 14.16  16.,96 17,,10  13,.48 13.,12  20.74  13.88 13.85 14.37  17,.16  13.,74  16 .80 17 .06  21.90 19.87 21.57  14.76  13 .90 14 .40 14 .12  15.73  16.62  15.08  17 .25 17 .34  16.76  15.46  18 .26 17 .43 17 .82  20.09  19.33  20 .95  17,.93  20.23  19.25  18 .38  20.26  19.65  20 .88 21 .15  19.75  21 .18  21.48  27.1  26.09 26.0  307.3  26.76 26.68 27.51  22 .97 22 .52 26 .44  22 .07 20.74  28.05  26 .46  30.97  30 .09  29 .10  35.10  21 .6  26.,9  26.1  i ==1.236A, rCN = 1.490A, rCF = 1.326A, <NNC = 133°and b. Geometry: rNN c. Ref. 31.  21 .93  19 .53 19.02  i eVeV a. All values in <NCF = 109.3° (33)  21.81  22.75 23.27  15.31 15.98  7b,  21 .77  22.59  17.12 18.02  21 .11 24.39 27.78  20.23  15,.09 16,.71 15,.94 16,.22  23.1  sec) Computing time(sec)  19.71  12.82  21 .70 24.52  1  11.48  15.07  21.4  2  19.02  12,.92 12,.66  8b 9a, 8a  1  13.72  12,,55  15.,98  20.59 21.67  10a  10,,23  12.95  12a, 1 11 b 4a 10b 4 lla 2  12.25  14.79  16.49 16.55  2  CNDO/2  16.06 16.,58  15.95  2  MINDO/3  13.54  13a. 16.8  MNDO  14.77  15.88  1  of cis-hexafluoro-  5  15.47  1  IP's  27.75 28.65  99  TABLE 6  The Experimental and Theoretical IP's of t r a n s - d i f l u o r o d i a z e n e '  Orbital Symmetry  Exptl. IP  7a (n ) 9  13.4  13.21 15.04 (13.19)  11.00  13.86  13.31  2a  14.1  14.01 15.34 (14.32)  11.64  14.32  11-92  17.40  14.24  15.3  15.05 17.91 (14.59)  13.95  i .31  9-74  20.91  16.60  15.8  15.85 18.88 (15.82)  14.19  16.58  16.9  16.31 20.05 (16.39)  15.51  16.87  14.12  22.38  18.57  21.85 17.55  19.33  12.53  25.49  20.20  a  +  d  u  6b u  6a  9  l b  9  HAM/3  C  17.68  5b  (17.98)  u  4-31G ST0-3G  MNDO  MINDO/3  6  1 5  -  2 7  CNDO/2  Brundle et al .  17.11  19.38  13-92  17.50  la. "  18.7  18.63 21.42 (18.72)  18.04  18.35  16.80  24.65  19.80  5a  19.8  19.57 22.02 (19.83)  18.14  19 94  29.24  24.67  20.39  22.77 25.97 (22.68)  22.63  24 54  16.84  28.35  24.06  2.7  1.3  1.3  U  9  21.0 4b  22.7  u  7  Computing time (sec)  0.9  100.3 ' 22.1  a. All values in eV b. Geometry: trans isomer: rNN = 1.231A, rNF = 1 .396A and <NNF •= 105.5*(34) cis Isomer: rNN » 1.214A, rNF « 1 .384A and <NNF = 114.5* (35). ;  c. The numbers inside the parentheses are the IP's of the cis Isomer with their own orbital symmetry. d. Ref. 31.  b  d  TABLE 7  The Experimental and Theoretical  IP's of methylenimine  This work Exptl . IP  Orbital Symmetry  c  HAM/3 4-31G  ST0-3G  3>b  Other ab Initio calculations MNDO  MINDO/3 CNDO/2  Moffat  d  Lehn et a l Kollman et alf Genson et a l 6  7a'(T, )  10.52  10.71  9.81  11 .35  9.52  14.42  11.06  11.57  11.36  5.94  la«U )  12.43  12.46 12.16 10.63  12.23  11.25  16.96  11.89  12.11  12.16  8.64  6a'(a . o )  15.13  15.08 16.36 14.85  15.06  12.49  18.99  16.19  16.63  16.77  13.28  5a'(o )  17.04  17.37 18.72  17.26  17.73  15.64  24.60  18.45  18.61  18.78  15.17  6.3  1 .2  0.6  0.6  N  CN  CN  NH  cN  Computing time (sec)  0.3  11.42  44.0  9  a. All values In eV 021 A, rCH = 1.09A, <HNC= 110.4° , <HCH =117.0° and <NCH(c1s) = 125.1* (37) b. Geometry: rCN =1.273A, rNH = 1. c. Ref. 36. d. Ref. 38. e. Ref. 39. f. Ref. 40. g. Ref. 41. o o  101  TABLE 8  Orbital Symmetry  The Experimental and Theoretical IP's of N-methylmethylen. . a,b inline Exptl.  IP  c  HAM/3  ST0-3G  MNDO  MINDO/3  CNDO/2  9.01  14.02  10a'(T, )  9.90  9.97  9.15  10 .88  2a-(. )  11.38  11.04  9.54  11 .32  10.29  14.63  9a'  13.35  13.41  13.48  13 .63  11.46  16.43  14.82  15.47  15 .07  14.28  22.36  N  CN  see  la"  text  8a'  15.1  15.13  15.49  16 .11  13.52  21.20  7a'  15.8  15.95  16.77  16 .56  15.20  24.49  6a'  19.38  19.48  20.48  22 .52  19.68  27.26  Computing t i m e ( s e c )  1.0  22.5  2..9  1.5  1.7  a. A l l values  i n eV  b. G e o m e t r y :  (43)  1. M e t h y l g r o u p t e t r a h e d r a l a n d s y m m e t r i c a b o u t C N . rCH = 1 . 0 8 9 A \ r C N = 1 . 4 4 ^ 2. Methylene  3.  group:  i n n e r hydrogen  r C H = 1.091A. <CCH = 1 2 0 . 5 °  o u t e r hydrogen  r C H = 1.081A. <CCH = 1 2 1 . 5 °  imine  group:  rCN = 1.30A a n d <CNC = 1 1 6 . 9 ° 1  c. R e f . 4 2 .  The Experimental and Theoretical  TABLE 9  Orbital Symmetry  Exptl. I P  L  ST0-3G  HAM/3  trans  cis  trans  cis  IP's of C-methylmethylenimine  MINDO/3  MNDO  trans  ds  10a'  10a'  10.18  10.10  9.93  9.32  9.31  10.08 11.15  2a"  2a"  11.44  11.41  11.39  9.94  9.98  12.10  9a'  9a'  13.62  13.69  13.38  13.71  13.75  la"  8a'  14.3  14.78  13.79  8a'  la"  15.3  14.92  7a'  7a'  16.93  6a'  6a'  19.09  Computing time (sec)  trans  cis  CNDO/2  trans  cis  9.24  13.84  13.76  11.88  10.65 10.70  15.02  15.15  12.43  13.97  11.98 11.74  16.80  17.42  15.26 13.96  15.83  14.34  14.18 13.02  22.35  19.49  14.66  15.57 15.01  15.86  14.80  13.75 14.26  20.74  22.26  15.11  16.90  15.74 17.32  17.65 17.99  14.39  15.96  22.37  24.27  19.83  18.95  20.61  19.85  20.96 21.50  20.20 19.07  28.20  26.69  1.0  22.6  22.5  1.7  1.7  0.9  trans cis  3.5  1 .9  9.06  1.1  1 .2  a. All values In eV b. Geometry: (44) 1. Trans isomer: rCN = 1.273A\ rNH = 1.02lJ(, rC(N)H = 1.092A\ rC(C)H = 1.093&, rCC = <CNH = 110.4°, <NCH = 117.0°, <NCC = 121.0° and <HCH = 109.5° 2. Cis isomer:  rCN = 1 .273A\ rNH = 1.021A\ rC(N)H = 1.092A\ rC(C)H = 1 .093A\ ""CC <CNH = 110.4°, <NCH = 122.0°, <NCC = 126.0° and <HCH = 109.5°  c. Ref. 42.  1.525A 1.523A o ro  103  the  total  q u i t e f a r away f r o m t h e HF l i m i t .  The  r e s u l t s o f MINDO/3 c a l c u l a t i o n s a r e a l w a y s t o o l o w ( 1 - 2 e V ) ,  and  those  energy i s s t i l l  of  the  Moreover, they GAUSSIAN 70  CNDO/2  and  other  r e s u l t s of these  orbitals  too  orderings  particularly  type  high  HAM/3  poor  and  the  The MINDO/3 due  MNDO  other  experimental  good a g r e e m e n t  ordering  isoelectronic  c a l c u l a t i o n s and  means,  t o the  programs,  i s , i n g e n e r a l , q u i t e c o n s i s t e n t w i t h those ab i n i t i o  to i t s  Contrary  IP's i n very  Moreover,  (2-5eV).  compared w i t h t h e  of m o l e c u l e s .  the former, u s u a l l y gives data.  always  calculations.  t h r e e methods, t h e  t h e more e x p e n s i v e  by  initio  diimines are  with the experimental  by  ab  problem with t h i s  especially  are  always give d i f f e r e n t  results f o r the intrinsic  program  of  predicted  those  derived  such as.a comparison w i t h  s p e c i e s , or the study  the  of the v i b r a t i o n a l  other  structure  o b s e r v e d on PE b a n d s , f o r e x a m p l e . A q u a n t i t a t i v e comparison of linear sure in  least  the comparison orbital  Selected least  technique  are ignored,  those  five  methods  by  h a s been made. data  that  show a s w i t c h  s i n c e some o f t h e c a l c u l a t i o n s  CNDO/2 a n d MINDO/3) show  square f i t w i t h (Table  experimental  inconsistent  usefulness  values.  1 0 ) , a n d p l o t t e d i n F i g . 1.  correlation coefficient  the  To make  orderings.  I P ' s f r o m e a c h method a r e t h e n u s e d t o p e r f o r m a  tabulated  g i v e an i n d i c a t i o n  The  linear  results  are  The a v e r a g e e r r o r of  the  relative  of the methods.  Another  important  In t h i s c e n t r a l data the  fitting  i s not b i a s e d ,  energy  (particularly  and  square  these  storage  p o i n t , w h i c h i s o f much i n t e r e s t  to  many  b a n k , 8K w o r d s a r e a l l o c a t e d t o a s t a c k f o r  o f up t o f o u r s p e c t r a w h i c h c a n be d i s p l a y e d i n any  TABLE 10  Results of the linear least square f i t s of the calculated IP's to the experimental  Method of IP c a l c u l a t i o n s  A(eV)  3  B  Correlation coefficient  Average e r r o r between f i t t i n g after  IP's  0  HAM/3  0.526  0.971  0.993  0.35  0.35  "GAUSSIAN 70 (ST03G)  3.182  0.807  0.986  1.15  0.62  MNDO  2.240  0.788  0.981  1.25X  0.72  MINDO/3  3.618  0.798  0.986  1.43  0.62  CNDO/2  1 .176  0.683  0.975  5.04  0.87  "  fitting  a. Koopmans' theorem is used except in case of HAM/3. b. 27 data points are used in this I P  fitted  =  A  +  B  x  IP  fitting:  theoretica1  c. Average error between f i t t i n g = z A B S ( I P Average error after f i t t i n g = z A B S ( I P  t h e o r e t i c a l  f 1 t w d  - ^experimental  - ^experimental  ]  1  2  }  1  2  7  7  o  105  _j  ,  0.0  Fig.  4.0  1  1 B.O  1 12.0  1 1 1 16.0 20.0 24.0 THEORETICAL IP (EV)  1 2B.0  1 32.0  1 36.0  Results of the l i n e a r l e a s t square f i t s of the calculated IP's to the experimental IP's (The l i n e s corresponding to GAUSSIAN 70 and MINDO/3 are shifted up by 4eV and 8eV respectively in order to c l a r i f y the f i g u r e . )  1 06  t h e v a l u e of  'computational  time / e l e c t r o n '  g i v e s a rough  base  for  c o s t e s t i m a t i o n , e v e n t h o u g h t h e a c t u a l c o s t d e p e n d s on  fast  t h e SCF  convergence l i m i t  m a i n memory i s r e q u i r e d . each c a l c u l a t i o n 'computational plotted is  is  shown  The  in  the  plot  values  4-31G  levels,  programs  to  applicable. are  not  the  MINDO/3 and geometric  optimization.  table.  The  f i v e m e t h o d s and  very  minimal  two  4.2E  Use The  good  c o n t a i n s atoms  are that  s e m i - e m p i r i c a l methods,  used f o r t r i a l If  and  where t h e y  calculations  feasible,  the  such  GAUSSIAN 70 o r  p r o g r a m s h o u l d be u s e d t o g i v e more c o n f i d e n t c o n c l u s i o n s the c o m p u t a t i o n a l  are  program.  i s l a r g e and  by t h e s e be  of  of t h e c a l c u l a t i o n s  s t u d i e s of m o l e c u l e s  When t h e m o l e c u l e  CNDO/2 may  i n seconds,  t h e MNDO p r o g r a m s a p p e a r t o be  u s e d i n PES  parameterized  much  GAUSSIAN 70 p r o g r a m a t t h e STO-3G  t h e HAM/3 and be  how  shows t h e c o s t o f t h e HAM/3 p r o g r a m  t h e l o w e s t among t h e s e  conclusion,  time,  corresponding  c o m p a r e d t o t h a t o f t h e GAUSSIAN 70 In  as w e l l a s  computational  time / e l e c t r o n '  i n F i g . 2.  always  The  i s reached,  how  the as 76  about  results.  of t h e RSPT p r o g r a m i n c o r r e c t i n g Koopmans' t h e o r e m theory  t h e o r e m has integrals  of  the  RSPT  method  in correcting  already  been  discussed  in  chapter  ( e q n . 2.29)  are  evaluated  by  the  i n t e g r a l s p r e v i o u s l y e v a l u a t e d and Roothaan-HF  calculations  76 p r o g r a m .  4-31G  stored  such as t h o s e  b a s i s s e t i s recommended  2.  The  corresponding  by  from  Koopmans'  some  ab  be  used  AO  initio  t h e GAUSSIAN 70 to  MO  as  or a  0 20 4 0 6 0 80. 100 Number of electrons in the molecule g.  2  The r e l a t i v e costs of the calculations for each method expressed in terms of the computational time / electrons against the total number of electrons in the molecule  108  compromise  b e t w e e n a c c u r a c y and c o s t .  e x e c u t e d w i t h t h e s e MO  ^Sk )^ /^' 1  IP's. large, to  1  s  are  also  printed  E  2  and  and  3  the  i f they are  too  adequate  due  s t u d y , t h i s RSPT p r o g r a m has  been  the q u a s i - p a r t i c l e p i c t u r e  out  E ,  i s p r o b a b l y not  the o c c u r r e n c e of s t r o n g shake-up p r o c e s s e s .  used  t o c a l c u l a t e a c c u r a t e I P ' s f o r m o l e c u l e s such as BHF  CH3NO  (46),  results  HBO,  for  HBS,  the  FBO,  first  12 r e s p e c t i v e l y ,  assignments based  of  the  Table  13  C1BO,  and  C1BS  2  (45),  (47).  The  two m o l e c u l e s a r e t a b u l a t e d i n T a b l e  two  bands o f H B F  of  the  structures  Koopmans' t h e o r e m  FBS,  together w i t h the experimental  on a c o m p a r i s o n  vibrational  8.  RSPT p r o g r a m i s t h e n  integrals to calculate  D u r i n g t h e c o u r s e of t h i s  and  The  of  PE the  2  at  18.54  spectrum bands  of  (45).  IP's.  The  and  l8.93eV  are  HBC1  2  The  and  chapter  3  the  results  the  breakdown of  i n t h e s t u d y o f CH NO i s d i s c u s s e d i n  summarizes  11  f o r the s i x l i n e a r  boron  molecules.  T h e s e m o l e c u l e s a r e v e r y u n s t a b l e and most  of  them  are  unknown  has  been  still  being devoted spectra  AMDAHL  to their  (48).  references. V8  comparison  these  is  but  which  V6  The  included  applications  feasible.  The  IP's w i l l  30% more e f f i c i e n t  cost  of  these  13, w h i c h  having  to molecules  less  PE as an  than i t s  perturbation shows t h a t  than  larger  a c c u r a c y c f the program,  of the p r e d i c t e d  be u s e f u l  c a l c u l a t i o n s were done w i t h  i n Table  for molecules  Effort  t h e measurement of t h e i r  predicted  i s about  model.  also  p r o g r a m c a n be u s e d  net q u i t e  s y n t h e s i s and  A l l of t h e s e l a t t e r  the  corrections  experimental chemists.  Hence  computer  precedent,  functions,  to  40  the  basis  than that  are  estimated  by  IP's w i t h the a v a i l a b l e e x p e r i m e n t a l  109  TABLE 11  R e s u l t s o f the RSPT c a l c u l a t i o n s  f o r HBF  Orbital symmetry  Exptl IP (eV)  4-31G  AE(3)  A (E  14. 33  15. 29  14.32  14. 27  16. 14  17. 81  16.50  15. 91  17. 97  16.59  16.,15  17. 96  19. 60  18.34  17.,92  18. 54  20. 64  19.44  18.,94  18. 93  20. 53  19.20  18,,81  21. 03  22. 44  21.25  '20,.76  1.,60  0.44  0 .16  4  a  l  3b  l  b  2  l  2b  2  3  a  i  2  a  l  b  average e r r o r  a. A l l v a l u e s b. Ref. 45.  i n eV.  G A  )  TABT.E  12  Rpsnlt.s  Orbital symmetry  Exptl IP  10a'  9.68  nf  thp  RSPT r a l r n l a t i n n s  4-31G  b  AE(3)  for  fH-NTL-  A(E  G A  11. 20  9. 24  9. 10  )  9a'  13.8  15. 32  13. 69  13. 65  2a"  14.3  14.,65  14. 00  14. 00  8a'  15.8  18..14  16. 37  16. 05  7a'  16.9  18,,95  16. 39  16. 30  la"  17  17,.65  16. 39  16. 39  23 .58  20. 58  20. 46  0,,28  0,,34  6a'  1 . 15  averaj»e e r r o r (only f o r the f i r s t 3 peaks)  a. A l l v a l u e s  b. Ref. 46.  i n eV.  Results of the RSPT calculations for some linear boron molecules  TABLE 13  Cost (CPU time in sec) 4-31G MO transform. RSPT  Bond-length (A) BO.BS BH.BF.BCl  13. 76 15. 50  13.1  29  1.2  1.169  10..74 12..92 15.,44  10.,86 13.,28  18  19  58  1.6  1.169  13. 65 15. 84 18.24 20. 45  13..21 15.,04 17.,89 20.,12  13.,95 16.,30  30  32  127  1.2  1.31  10.,73 13.,90 18.,05 20.,35  10. 73 13. 83 17. 45 19. 75  10.,72 13,.69 17,,05 18,.34  10,.86 14,.08  36  75  184  1.6  1.30  13 .58 15 .77 17 .04 18 .19  12.,79 14.,83 16.,69 17,,09  12.58 14.68 15. 46 16. 92  12,.35 14,.53 14,.79 16,.76  12,.85  45  45  245  1.2  1.68  10 .86 14.28 14.85 17 .88  10,,26 13,.29 13,.15 16,.00  10. 26 13.,25 13. 16 16..00  10 .26 13 .10 13 .15 15 .99  10..42 13 .50  63  77  391  1.6  1.68  Molecule Orbital Exptl symmetry IP  4-31G  *E(3) A ( E )  HBO  14,.05 16,.55 18,.20  14.25 16. 77 17. 00  10,.87 13 .80 17,.78  IT 0 O  HBS  IT  a a FBO  ll.ll 13.54 15.83  b  TT  a TT  a FBS  TT  a TT 0  CIBO  TT TT  a a C1BS  TT  a  10.68 13.63  C  TT  a  16.77  a. A l l I P values in eV.  (AE)  scaled  13. 61 15. 21 16. 94  13. 11 14.53 16. 90  10. 82 13. 27 15. 48  10. 82 13. 16 15. 46  14 .42 17 .27 20 .47 22 .44  14.10 17. 20 18.79 20. 93  11 .10 14.62 20 .16 22.29  U  b. Ref. 49.  c. Ref. 50.  9.0  15..86  d. Assumed.  1 12  PE d a t a used  ( i n the case  due  region),  of CH NO, o n l y t h e 3  the occurrence i s well within  first  of s h a k e - u p p r o c e s s e s  0.5eV.  three  peaks  i n the higher  are IP  1 13  4.3  A s m a l l r e a l - t i m e o p e r a t i o n system  program f o r t h e m i c r o -  computer c o n t r o l of t h e s p e c t r o m e t e r s  4.3A  Aim of t h e system A  small  developed  to  microcomputer chapter 3 ) . spectra, and  real-time control and  storing  operating  the  some  I t srole  system  PES/PIMS  system  interfacing  with  necessary  (see  i n t h e development of t h i s  been  also  f o r scanning spectral  The f o l l o w i n g c r i t e r i a system  a. The t i m i n g p r o c e s s must be a c c u r a t e t o e n s u r e resultant  has  a L S I 11/03  i s t o c o n t r o l a spectrometer  these data.  i n t o account  program  hardwares  the spectra, r e t r i e v i n g  manipulating  taken  program  data  h a v e been  program:  that the  spectra are real.  b. The p r o g r a m h a s t o be e a s y  t o use ( s e l f - e x p l a n a t o r y and  simple). c. E f f i c i e n c y d.  i n u s i n g memory a n d d i s k  I t s h o u l d h a v e some e r r o r h a n d l i n g  e. F u r t h e r m o d i f i c a t i o n  4. 4B  a.  The  The  of  arrhitprtnre  The which  design  rhp  of  i s high.  intelligence.  s h o u l d be e a s y .  gysfprn  the  program  program  s t r u c t u r e of t h e system  represents a top-to-bottom  bottom-to-top  space  implementation.  program i s summarized i n F i g . 3 d e s i g n and t h e p o s s i b i l i t y  of a  'RECORD' i s t h e h e a d q u a r t e r s o f  The s t r u c t u r e o f the o p e r a t i n g system program  Fig.- 3  RECORD (main)  Data acquisition  PARAME I. ' EXTRAC BINARY IECHO QUERY  I  SQUEEZ  QUERY  I  SCANL-  1  i  QUERY  DISK  CHARAC  n  1  IECHO CHARAC DISPLA I  KYINHD—OUTetc.,  T  Data retrieval  DISPLA  and storage  KYINHD ^  I  r  ^  BACK  DISK FNAME  EXTRAC SQUEEZ QUERY BINARY  IRAD50  Data manipulation  DISK  QUERY  SUM  WRITE  FNAME EXTRAC BINARY QUERY  DISK FNAME  IRAD50  ADDSUB  CHANGE  CLEAR  >J — - ,  EXTRAC BINARY QUERY SQUEEZ  IRAD50  _,  r  -  1  LEVEL EXTRAC PLOTQUERY  EXTRAC QUERY  OUT-  EXTRAC QUERY  SCALE  1  SEPERA SHOW EXTRAC BINARY IECHO  ,  SMOOTH '—>  EXTRAC BINARY  QUERY i  1  n  EXTRAC BINARY IECHO QUERY  Other services  STORE I  DISK  HELP  EXTRAC BINARY r — 1 IECHO 1 Q1UERY  INFO QUERY EXTRAC BINARY IECHO  EXTRAC BINARY I E1 CHO 1 QUERY I T  EXTRAC BINARY IECHO  115  the program, which  c o n t a i n s the necessary  28 s u b r o u t i n e s c o o p e r a t e and The  top  level,  with  second  level  (disk  in  related  scanning  case)  file  manipulation  is  to  care  of  of the  the  The In  the  performed  and  information from  some  interactive  at in  the the  upper l e v e l s .  error  c o n s u l t a t i o n and  b. D a t a  the  implicitly.  The  secondary system,  handling  third  interactive  Finally, and  c e n t r a l d a t a bank r e s i d e s i n t h e main p r o g r a m  operation  i s v e r y r a r e t h a t more t h a n  be  of  the takes user  reasons  (1) The  DAC  to a stack for  c a n be d i s p l a y e d i n any required  for  Besides,  f o u r s p e c t r a have t o be  compared  because i f the spectrum  interpreted correctly  'RECORD'.  C = A - B).  o f an unknown m i x t u r e has  f o u r d i f f e r e n t components, i t w i l l  The  by  structure  of d a t a m a n i p u l a t i o n ( e . g .  to  Data  information center.  an  than  system  simulation  U s u a l l y , a t most t h r e e s p e c t r a a r e  once  explicit  the bottom l e v e l  the  s t o r a g e o f up t o f o u r s p e c t r a w h i c h  at  and  storage  l e v e l where a l l t h e  combinations.  it  services.  storing  t h i s c e n t r a l d a t a b a n k , 8K w o r d s a r e a l l o c a t e d  the  of  c r e a t i o n a c c o r d i n g t o t h e u s e r commands.  necessary data are present actions  levels  t o scan a spectrum  i s for data r e t r i e v a l  this  s t o r a g e and  four  structure.  t h e most i m p o r t a n t p a r t of t h e p r o g r a m , i s f o r  c o n t r o l l i n g a spectrometer spectrum  perform  global data  be  extremely  more  difficult  anyway.  f o r t h e s i z e of t h e s t a c k as 8K w o r d s a r e : is  a  12 b i t d e v i c e , so i t c a n  only handle  4K  1 16  points.  W h i l e s c a n n i n g , 4K  current  individual  storing Hence  the 8K  sum  of  words  scan the  works are and  another  previous  allow  the  needed 4K  scans  most  for  storing  words a r e  for  the  needed  display  for  purpose.  extreme case i n the  scanning  process. (2) To  show  coordinates one  and  of  the  this  if  point  there  This  spectrum  points  transfer  continuous curve each  a  an  too  o s c i l l o s c o p e , the  are  sent to the  oscilloscope  is  looped u n t i l  being  i s seen because the  is fast.  are  on  t o be  one  y by  interrupted.  A  illumination-repetition  of  However, a r u n n i n g s p o t w i l l  many p o i n t s  x and  displayed  only  i n one  problem for spectrum-display a l s o confines  be  seen  single  the  loop.  s i z e of  the  stack.  Besides the  stack,  spectrum-status  tables  display-information spectra).  The  subroutine some  subroutines,  tables  pointers  structures  be  made by  list.  This  list  the  and  defined  using  R5  which  how  to  tables  parameter  are  contains two  a l l  routines.  four  display  the  passed  lists  the  The  the  data  to  the  means  for  word  of  number o f p a r a m e t e r s i n  been k e p t t h r o u g h o u t  has  subroutine  pointer  first  a  calling  local  All  necessary  to  also  for  Similar  ( r e g i s t e r 5) a s  four  and  program  i n some s u b r o u t i n e s .  always i n d i c a t e s the  f o r m a t has  contains  spectra),  Moreover, the main  communication between the parameter  these  bank  i t s l o c a l data s t r u c t u r e .  may  parameter-list  data  (describing to  constants as  central  (identifying  i f necessary.  other  c a l l s are  the  whole  the the  program  117  consistently.  No  s u b r o u t i n e names, controlled  data so  is  the  declared  access  to  as  global,  every  except  datum  is  the  tightly  i n passing the p a r a m e t e r - l i s t .  c. Memory management The  8K  floating that  words  segments.  the  smaller  H e n c e , t h e most in  segment  i n the spectral Priority  t h e segment number,  important spectrum  at  segment  will  i s spectrum Whenever  efficiently,  which  be  (bearing  the  same  Hence, i f  Some d a t a  priority  to  be  lost. makes  some  s t a t u s t a b l e s of t h e a f f e c t e d e v e r y t i m e when a new  i s to  t h a n t h e o l d one, t h e segments b e h i n d  scheme  although  such  resides  spectrum  be moved down by c e r t a i n a m o u n t s .  k e p t i n t h e s t a c k , may floating  1  a new  t h e end o f t h e s t a c k , w h i c h h a v e t h e l o w e s t  The  segment  be a d j u s t e d t o f i t t h e new o n e .  i n c o m i n g one i s l a r g e r  this  each  the higher the p r i o r i t y .  i n , the s i z e of the o l d spectrum  s p e c t r u m number) w i l l the  i s assigned to  1 (head of t h e s t a c k ) .  be b r o u g h t  s t a c k a r e o r g a n i z e d as four  use  overhead  of  the  8K  more  i s i n v o l v e d t o update the  s p e c t r a a n d t o move  spectrum  words  the  segments  i s t o be b r o u g h t i n .  d. F i l e management Each first data.  spectral  data  file  h a s an i n f o r m a t i o n b l o c k a s i t s  b l o c k (1 b l o c k = 256 w o r d s ) , and t h e n The  first  60  bytes  of  several  blocks  of  the information block are the  1 18  parameter f i e l d .  The 6 2 t h t o 1 2 8 t h b y t e s  the  the  spectra  in  file.  parameters i n the parameter length  of  4 bytes  At  a r e t h e d e s c r i p t i o n of  present,  field,  each of  there which  are has  only a  7  fixed  ( l e f t - a d j u s t e d and packed w i t h b l a n k s ) .  The  parameters a r e : (1) number o f s p e c t r a  i n the f i l e ;  (2) s i z e o f e a c h s p e c t r u m i n number o f b l o c k s ; (3) s c a n r a t e i n m s e c / p o i n t ; (4) number o f s c a n s p e r s p e c t r a ; (5) s t a r t p o i n t number  (where t h e s c a n n i n g  (6) number o f p o i n t s p e r  scans;  (7) s t e p - s i z e o f t h e ramp o u t p u t t o t h e  These  parameters  information block data. for  together  with  the  spectrometer.  short d e s c r i p t i o n i n the  document a n d i d e n t i f y  The r e m a i n i n g  starts);  the data  file  space i n the i n f o r m a t i o n b l o c k  and i t s  i s reserved  further modification. When  a  new  whether t h e f i l e wants  to  file already  overwrite  is  to  be  exists.  that  created,  the program checks  I f so, i t askes  file.  This  saves  if the  the  user  files  from  accidental destruction.  e. R e l i a b l i t y Since scanning, is only  of rhe spprrral  the  timing  r e s u l t.S  process  has  to  be  accurate  keyboard i n t e r r u p t t o handle i n t e r a c t i v e  enabled  after  the clock  i s off (specified  user  during commands  scan-time  has  1 19  expired, etc.),  and  i s doing data  transfer,  The  interval will  sum o f p r e v i o u s s c a n s  down by a s h i f t i n g  However,  this  factor  b e i n g d i s p l a y e d c a n .be s c a l e d ( i n t e r a c t i v e l y c o n t r o l by  be  written from  avoided. to disk,  a  for a  up  keyboard  better  display.  i s done by some b u f f e r r e g i s t e r s s o t h e c o n t e n t s  t h e s t a c k does n o t change a t a l l .  will  By d o i n g s o , t h e  be e x a c t .  i n t e r r u p t s ) during the scanning process  in  t e s t i n g end of s c a n  but i s d i s a b l e d b e f o r e t h e c l o c k i s on.  scan-time  or  CPU  scan  On  the  i tw i l l or  a  A c c o r d i n g l y , the data  Hence,  other  hand,  truncation  before a spectrum i s  be c h a n g e d back t o i t s o r i g i n a l  data  file  i n a data  with  file  errors  scale  always  factor  represent  form as as  one.  the  real  spectrum.  f.  Reliability Two  back-up  specifically While there  of t h e program  the  on  the  system  t o improve t h e r e l i a b i l i t y system  i s performing  i s a high p r o b a b i l i t y  changed.  of the  t h a t t h e c e n t r a l d a t a bank  o r a system  will  the present  simple  doing  command.  e x a c t l y t h e same d a t a  By  issuing  this,  i n the i n t e r a c t i v e  n o t been i s s u e d a t a l l .  by  In  This  a  the user w i l l  system  be  central  m a l f u n c t i o n , t h e u s e r may command  had  program.  a d a t a m a n i p u l a t i n g command,  reload the data before the l a s t 'RELOAD'  system  i n one o f t h e s e t w o b a c k - u p f i l e s .  a user's mistake  command  d i s k h a v e been s e t up  I n o r d e r t o r e c o v e r any m i s t a k e s ,  d a t a bank i s s a v e d of  files  as i f t h e  case still single have wrong  'RELOAD' command, a s  1 20 the other back-up  data process  i t s operation. can  still  one  storing  the  manipulating ( i n another  awake  alternatively)  i n a wrong  t h e p r e s e n t d a t a and another command,  also  only  data  storing  before  the  before  'RELOAD' command  S i n c e t h e r e a r e o n l y two b a c k - u p  recovered, but n o t h i n g before t h a t . at  will  back-up f i l e  Hence, any d a t a l o s t  be r e c o v e r e d .  last  commands,  the data  files, before  t h e l a s t command c a n be  The b a c k - u p  process  stops  t h i s p o i n t b e c a u s e t h e s i z e o f t h e c e n t r a l d a t a bank i s q u i t e  large  (34 b l o c k s ) .  q u i t e easy At query  back-up f e a t u r e s w i l l  be  t o be i n s e r t e d t o t h e p r e s e n t v e r s i o n .  some c r i t i c a l i s always  before the current errors,  However, a d d i t i o n a l  p o i n t s where e r r o r s may c a u s e d i s a s t e r s , a  issued process  to  urge  the user  i s pursued.  .data o v e r f l o w i n m u l t i p l i c a t i o n ,  t o make a d e c i s i o n  Examples  are  input  and d a t a p o i n t s out of  range, e t c .  g. F u n c t i o n s o f t h e s u b r o u t i n e s In easier, The  o r d e r t o make t h e i m p l e m e n t a t i o n the  whole  and f u r t h e r m o d i f i c a t i o n  program i s p a r t i t i o n e d  f u n c t i o n s of these  i n t o 28  s u b r o u t i n e s are' s u m m a r i z e d  subroutines.  below:  (1) ADDSUB: a d d i t i o n o r s u b t r a c t i o n o f two s p e c t r a (2) BACK: t a k e d a t a b a c k f r o m d i s k t o memory (3) BINARY: c o n v e r t an A S C I I d i g i t a l  string  to binary  (4) CHANGE: c h a n g e t h e v a l u e s o f some p o i n t s i n a ( 5 ) CHARAC: c o n v e r t a b i n a r y number t o an A S C I I (6) CLEAR: c l e a r a s p e c t r u m o u t  spectrum  string  121  (7) DISK: r e a d (8)  o r w r i t e on d i s k  D I S P L A : d i s p l a y some s p e c t r a  (9) EXTRAC: i n p u t '(10)  FNAME: c o n v e r t valid  (11)  on o s c i l l o s c o p e  some a r g u m e n t s f r o m an A S C I I  string  terminal  t o RAD50 f o r m a t o f a  file-name  HELP: show t h e u s e r  some h e l p f u l i n f o r m a t i o n  o f how  t o use t h e system (12)  IECHO: e c h o a b i n a r y  (13)  INFO: show a n d m o d i f y i n f o r m a t i o n a n d d i s p l a y - s t a t u s  number t o t e r m i n a l  of a s p e c t r u m (14)  KYINHD: i n t e r p r e t d a t a m a n i p u l a t i n g suitable  subroutines  (15)  L E V E L : l e v e l o u t some s p i k e s  (16)  OUT: go o u t o f t h e d i s p l a y  (17)  PARAME: i n p u t s c a n n i n g  (18)  PLOT: p l o t a s p e c t r u m  (19)  QUERY: a s k u s e r ' s  (20)  SCALE: s c a l e up o r down a s p e c t r u m  (21)  SCAN: c o o r d i n a t e  (22)  i n a spectrum  loop  parameters  d e c i s i o n a t some c r i t i c a l  some o u t p u t v o l t a g e s , a  c l o c k and a counter store  commands a n d c a l l  point  real-time  t o scan a spectrum and  i t i n t o memory a n d d i s k  file  SEPERA: move a s p e c t r u m up o r down r e l a t i v e t o t h e base-line  (23)  SHOW: show t h e v a l u e s  (24)  SMOOTH: smooth a s p e c t r u m  (25)  SQUEEZ: s q u e e z e o u t a h o l e spectrum  o f some p o i n t s o f a s p e c t r u m  i n memory f o r a new  122  (26)  STORE: s a v e o r r e l o a d t h e c e n t e r d a t a  (27) SUM: sum up some s i m i l a r (28) WRITE: w r i t e d a t a  4.3C  Implementation With  as  this  'CHARAC*,  program  independently  form,  (using d e f a u l t scanning  keyboard  necessary), interrupt  infinite  working  the  'IECHO' a n d  with data  the nucleus  a  simple  structure to  'RECORD',  subroutine  of t h e program  the subroutine  display  'DISPLA'  A f t e r having  t h e command  minimal  'KYINHD'  this  subroutines a r e developed  Initially,  'SCAN'  (with  t h e system program i n o r d e r loop).  just  'PARAME' a n d 'SQUEEZ'  o p t i o n s ) , and t h e s u b r o u t i n e  p r o p e r l y , other  the nucleus.  tested  parameters so t h a t  p r i n t a message a n d e x i t the  and  such  subroutine).  the elementary  not  subroutines  'DISK', ' E X T R A C , 'FNAME',  c o n s i s t s o f t h e main p r o g r a m  are  file  (a s i m p l e program w i t h m i n i m a l  the t e s t i n g In  i n memory t o a d a t a  file  of t h e design  'QUERY' a r e w r i t t e n  call  spectra i n a data  system d e s i g n , t h e i n p u t / o u t p u t  'BAINARY',  carrier  bank  to  small  (just leave  nucleus  and l i n k e d  t a b l e o f 'KYINHD', w h i c h i s  used t o i n t e r p r e t  t h e d a t a m a n i p u l a t i n g commands, h a s a l i n k  a  s u b r o u t i n e no m a t t e r  single  dummy  what command  the user.  Then when a new d a t a m a n i p u l a t i n g  developed,  the g l o b a l address  proper  of t h i s  e n t r y t o s e t up a p r o p e r  link  to  to  i s i s s u e d by  s u b r o u t i n e h a s been  subroutine  i s added t o t h e  i n s t e a d o f t h e dummy  Hence,  the addition  entries  ( d e c l a r e g l o b a l a n d a d d l i n k ) o f 'KYINHD'  link.  o f a new s u b r o u t i n e a f f e c t s o n l y two d a t a but  not  a l l  123  the  rest.  program  T h i s p r o c e d u r e makes t h e i m p l e m e n t a t i o n o f t h e easy  modification  4.3D  and i s more  R e s u l t s and A  effecient.  small  On  the  other  system  hand,  future  flexible.  Discussion  real-time  operating  s y s t e m has been d e v e l o p e d t o  facilitate  t h e PES/PIMS s y s t e m .  The  used  about  i t s performance proves that  for  o b j e c t s of t h i s  one  year  and  s o f t w a r e development in  the  system  program  h a v e been  system  has  been the  fulfilled.  arguments  involved  design  are  justified.  The most i m p o r t a n t f e a t u r e s o f t h i s  The  in  general  system  program  are: a. t h e p r o g r a m  i s easy t o use;  b. i t i s w e l l d o c u m e n t e d and f u l l y m o d u l i z e d ; h e n c e , modification will  be  easy;  c . t h e use o f memory and d i s k e x p a n s i o n of t h e program  space  on  is efficient  and  further  i s feasible;  d. t h e d a t a b a c k - u p d e s i g n i s v e r y  Based  further  useful.  past experience, the f o l l o w i n g m o d i f i c a t i o n s  are  suggested: a. Some  of the microcomputer  as the system f i l e may  be  routines,  useful.  system  d i r e c t o r y and s y s t e m  (RT  11) r o u t i n e s ,  'date'  routines,  such etc.,  W i t h t h e a c c e s s t o t h e d a t a s t r u c t u r e of t h e s e  the present  f e a t u r e s such as f i l e  file  system  listing,  file  can  be  improved  to  scanning with the f i l e  give names  124  or date  of f i l e  creation,  file  d u p l i c a t i o n , and  file  deletion,  etc. b. A s y s t e m s u b r o u t i n e a  message  to  the  '.PRINT'  terminal.  problems i n the implementation time-delay  technique  has  problems.  A b e t t e r remedy  explicitly  i n order  h a s been u s e d f o r o u t p u t i n g  This of  the  routine system  has  c a u s e d some  program  been u s e d t o e m p i r i c a l l y a v o i d i s t o w r i t e the corresponding  t o have a t i g h t  peak  integration  these  routine  and  automatic  as  peak  IP/mass  measurements w i t h i n t e r n a l o r e x t e r n a l r e f e r e n c e s , e t c . , w i l l useful.  a  control.  c. Some o t h e r o p t i o n s f o r d a t a m a n i p u l a t i o n , s u c h identification,  and  be  1 25  References  ( C h a p t e r 4)  1.  C . C . J . R o o t h a a n , R e v . Mod. P h y s . ,  2.  G.G. H a l l ,  3.  W.J. H e h r e , W.A. J.A.  4.  5.  P r o c . R. S o c . L o n d o n , S e r . A, 2 0 5 ( 1 9 5 1 ) 5 4 1 . L a t h a n , R. D i t c h f i e l d , M.D. Newton a n d  P o p l e , QCPE  J.S. Binkley, J.A.  23(1951)69.  11(1973)236.  R.A. W h i t e h e a d , P.C. H a r i h a r a n , R. S e e g e r ,  P o p l e , W.J. H e h r e , M.D. N e w t o n , QCPE  11(1978)368.  H. K i n g , M. D u p u i s a n d J . R y s , N a t . R e s o u r . Comput. Chem. S o f t w a r e C a t . , 1 ( 1 9 8 0 ) P r o g . No. QH02(HOND05).  6.  Y. F a n g , p r i v a t e P.A. D o b o s h , QCPE  communication.  (a m o d i f i e d v e r s i o n  of :  11(1969)141.  7.  M.L. O l s o n a n d J . F . C h i a n g , QCPE  11(1976)309.  8.  W. T h i e l , QCPE  9.  L. A s b r i n k , C. F r i d h a n d E. L i n d h o l m , QCPE  11(1978)353.  10.  D.P. C h o n g , p r i v a t e  communication  11.  D.P. C h o n g , p r i v a t e  communication.  12.  K.F. P u r c e l l a n d J . Z a p a t a , QCPE  13.  D. P e e t e r s , QCPE  14.  P. C a r s k y a n d M. U r b a n , and a p p l i c a t i o n s  11(1980)393.  (see a l s o chapter 2 ) .  11(1976)312.  11(1977)330. 'Ab i n i t i o c a l c u l a t i o n s , methods  i n c h e m i s t r y ' , L e c t u r e N o t e s Chem., 16  (1980)56-66. 15.  W.J. H e h r e , R.F. S t e w a r t a n d J . A . P o p l e , J . Chem. P h y s . , 51(1969)2657.  16.  R. D i t c h f i e l d , W.J. H e h r e a n d J . A . P o p l e , J . Chem. "Phys., 5 4 ( 1 9 7 1 ) 7 2 4 ; W.J. H e h r e a n d W.A.  L a t h a n , J . Chem. P h y s . ,  126  56(1972)5255. 17.  R.M. P i t z e r  a n d D.P. M e r r i f i e l d ,  J . Chem. P h y s . ,  52(1970)  4782. 18.  R.P. H o s t e n y , R.R. G i l m a n , T.H. D u n n i n g , J r . , A. P i p a n o and I . S h a v i t t , Chem. P h y s . L e t t . ,  19.  7(1970)325.  B . J . R o s e n b e r g a n d I . S h a v i t t , J . Chem. P h y s . ,  63(1975)  2162. 20.  S.A. C l o u g h , Y. B e e r s , G.P. K l e i n a n d L . S . Rothman, J . Chem. P h y s . , 5 9 ( 1 9 7 3 ) 2 2 5 4 ; T.R. Dyke a n d J . S . M u e n t e r , J . Chem. P h y s . ,  21.  59(1973)3125.  J . A . P o p l e a n d D.L. B e v e r i d g e , ' A p p r o x i m a t e MO t h e o r y ' , M c G r a w - H i l l , New Y o r k , ( 1 9 7 0 ) .  22.  R.C. B i n g h a m , M.J.S. Dewar a n d D.H. L o , J . Am. Chem. S o c , 97(1975)1285.  23.  M.J.S. Dewar a n d W. T h i e l , J . Am. Chem. S o c , 9 9 ( 1 9 7 7 ) 4899.  24.  L. A s b r i n k , C. F r i d h a n d E. L i n d h o l m , Chem. P h y s .  Lett.,  52(1977)63. 25.  D.P. Chong, ' F u r t h e r s t u d y o f t h e s e m i - e m p i r i c a l HAM/3 m o l e c u l a r o r b i t a l m e t h o d ' , t o be p u b l i s h e d .  26.  D.C. F r o s t , W.M.  L a u , C.A. M c D o w e l l  submitted t o J . Mol. Struct., 27.  28.  D.C. F r o s t ,  a n d N.P.C. Westwood,  THEOCHEM.  S.T. L e e , C.A. M c D o w e l l a n d N.P.C. Westwood, J .  Chem. P h y s . ,  64(1976)4719.  M. C a r l o t t i ,  J.W.C. J o h n s a n d A. T r o m b e t t i , C a n . J . P h y s . ,  52(1974)340. 29.  D.P. Chong, F.G. H e r r i n g a n d D. M c W i l l i a m s , J . E l e c t r o n  1 27  S p e c t r o s c . R e l a t . Phenom., 7 ( 1 9 7 5 ) 4 4 5 . 30.  W. S t e i n m e t z , J . Chem. P h y s . ,  52(1970)2788.  31.  C.R. B r u n d l e , M.B. R o b i n , N.A. K u e b l e r a n d H. B a s c h , J . Am. Chem. S o c , 9 4 ( 1 9 7 2 ) 1 4 5 1 .  32.  A. A l m e n n i n g e n , I.M. A n f i n s e n a n d A. H a a l a n d , A c t a Chem. Scand.,  33.  24(1970)1230.  C H . C h a n g , R.F. P o r t e r a n d S.H. B a u e r , J . Am. Chem. S o c , 92(1970)5313.  34.  R.K. Bohn a n d S.H. B a u e r , I n o r g . Chem., 6 ( 1 9 6 7 ) 3 0 9 .  35.  R.L. K u c z k o w s k i a n d E.B. W i l s o n , J r . , J . Chem. P h y s . , 39 ( 1 9 6 3 ) 1030.  36.  J . B . P e e l a n d G.D. W i l l e t , J . Chem. S o c , F a r a d . T r a n s . 2, 71(1975)1799.  37.  R. P e a r s o n , J r . a n d F . J . L o v a s , J . Chem. P h y s . ,  66(1977)  4149. 38.  J . B . M o f f a t , C a n . J . Chem.,  48(1970)1820.  39.  J.M. L e h n , B. Munsch a n d P h . M i l l i e ,  Theor. Chim. A c t a ,  16(1970)351. 40.  P.A. K o l l m a n , W.F. T r a g e r , S. R o t h e n b e r g a n d J . E . W i l l i a m s , J . Am. Chem. S o c , 9 5 ( 1 9 7 3 ) 4 5 8 .  41.  D.W.  G e n s o n a n d R.E. C h r i s t o f f e r s e n , J . Am. Chem. S o c ,  94(1972)6904. 42.  D.C. F r o s t , B. M a c D o n a l d , C.A. M c D o w e l l a n d N.P.C. wood, J . E l e c t r o n S p e c t r o s c . R e l a t . Phenom.,  43.  West-  14(1978)379.  K.V.L.N. S a s t r y a n d R.F. C u r l , J r . , J . Chem. P h y s . , 41 ( 1 9 6 4 ) 77.  44.  F . J . L o v a s , R.D. Suenram, D.R. J o h n s o n , F.O. C l a r k a n d  1 26  E. T i e m a n n , J . Chem. P h y s . , 45.  D.P. C h o n g , C. K i r b y , W.M. wood, Chem. P h y s . ,  46.  D.C. F r o s t , W.M. submitted  72(1980)4964. L a u , T. M i n a t o a n d N.P.C. West-  59(1981)75.  L a u , C.A. M c D o w e l l a n d N.P.C. Westwood,  t o J . P h y s . Chem.  47.  Unpublished data,  i n c o o p e r a t i o n w i t h C.  48.  C. K i r b y ,  communication.  49.  H.W.  Kroto, R.J. Suffolk  Lett., 50.  51.  a n d N.P.C. Westwood, Chem. P h y s .  22(1973)495.  C. K i r b y , Soc,  private  Kirby.  H.W.  K r o t o a n d N.P.C. Westwood, J . Am. Chem.  100(1978)3766.  W. v o n N i e s s e n , W. Domcke, L . S . Cederbaum a n d W.P. J . Chem. P h y s . ,  67(1977)44.  Kraemer  1 29  PART I I I  System  Applications  130  111A.  A S t u d y o f Some S u l f u r N i t r i d e s - Si,Ni, . S N . Si.N?, a n d 7  This  section  d e s c r i b e s an i n v e s t i g a t i o n by H e l P E a n d P I M  s p e c t r o s c o p i e s o f some interest  here  small  sulfur-nitrogen  Routes A and B a r e c o v e r e d i n Chapter  The 1. for  molecules.  i s i n t h e i n t e r r e l a t i o n s h i p between t h e s e  w h i c h c a n be s u m m a r i z e d i n t h e f o l l o w i n g  Chapter  7  The  species  diagram:  5;  C  i s described  in  6, a n d D i n C h a p t e r 7. rationale The  f o r t h e i n t e r e s t may be s u m m a r i z e d  generation  s t u d y by P E S / P I M S  of d i s c r e t e  system.  below:  sulfur-nitrogen  From t h e p o i n t  of  view  molecules of t h e  131  above  diagram  analyzing  this  also provides  mixtures  and  specific  undertaking  i d e n t i f i c a t i o n when  spectrum  stripping  procedures. 2.  The PE s p e c t r a o f S „ N , S N , a n d S H a  preted(with evaluate  the  their  assistance  2  of  2  MO  U  may  2  calculations)  electronic structures.  be  inter-  i n order t o  S«N (Chapter 6)  has not  2  been s t u d i e d p r e v i o u s l y by UPS due t o i t s i n s t a b i l i t y . 3.  The n a t u r e  vaporizing  the  of the species obtained  (SN)* p o l y m e r h a s n o t been u n e q u i v o c a l l y  lished previously.  Extending X  (b) t h i s  same s p e c i e s  cracking  SKN,, o v e r  t h a t t h e new s p e c i e s  estab-  i s produced  in  100% o f a new s p e c i e s ;  appreciable  glass wooKChapter  amounts  by  5 ) ; (c) i t i s suggested  i s t h e p r e v i o u s l y unknown m o l e c u l e S N , 3  3  a  s p e c i e s , and (d) t h e g e o m e t r i c and e l e c t r o n i c s t r u c t u r e  of t h i s the  by  1. a n d 2. a b o v e , i t i s shown t h a t :  (a) v a p o r i z a t i o n o f ( S N ) p r o d u c e s a l m o s t  radical  i n t h e gas phase  species  i s of c o n s i d e r a b l e  interest.  These  items  are  s u b j e c t o f C h a p t e r 7. Since  the  above  together glass  S N 2  2  scheme,  2  they  are  SqN,, are p i v o t a l discussed  in  with d e t a i l s of the p y r o l y s i s of S N 4  wools.  t h e Si,N  and p a r t i c u l a r l y  This w i l l  and S N 3  3  tt  molecules  t h e next over  in  chapter,  silver  and  s e t t h e scene f o r t h e i n v e s t i g a t i o n of  m o l e c u l e s i n the subsequent  chapters.  1 32  5  Chapter  Tetrasulfur ride,  5. 1  S?N  tetranitride,  and  disulfur  dinit-  7  Introduction S N 9  i s established  ft  terized  as  sulfur-nitrogen  f o r much o f  the  the  subsequent fully  Roesky(3).  Of some r e l e v a n c e ,  structure,  which  covered  electronic solid  absorption  state  X-ray  CND0(12-14), Mulliken total  nitrogen nitrogen  point  chemistry.  This  the  nature  of  diffraction  1 a  PE s p e c t r a ,  N  NMR  and,  spectrum(9), more  have a l l been  and the  of the  I r a n d Raman s p e c t r a ( 6 , 7 ) ,  spectrum(10),  structure  EH(15),  population  atoms  being  shows t h a t  S-S  and  providing the  the the the  germane, t h e measured  for  by  methods.  m e t h o d ( 1 1 ) shows  ground  sites.  localized  The  that  reflected  by  for  the  trans-  orbitals(11)  bonding e x i s t s between  i s also  p r o p o s e d by some s e m i - e m p i r i c a l  studied  f r o m a s u l f u r atom t o a  nucleophilic  separation(2.58A).  been  initio(n)  theoretical  wavefunctions to  This  has ab  i s donated  some c r o s s - r i n g  p a i r s of s u l f u r atoms.  S^N,  by t h e l a t t e r  o f 0.8036 e l e c t r o n s atom, t h e r e b y  of  XO(16),  analysis  formation of c a n o n i c a l  short  the s t a r t i n g  i n t e r e s t i n g molecule. The e l e c t r o n i c  also  charac-  of t h e c r y s t a l ( 5 ) t o p o s s e s s  spectrum(8), the PE  and  the reviews of H e a l ( l , 2 )  by e l e c t r o n  i n F i g 1.  H e l ( 1 0 , 1 1 ) and H e l l ( 1 1 ) this  in  h a s been shown  shape i l l u s t r a t e d  providing  however, i s  v a p o r ( 4 ) and X - r a y d i f f r a c t i o n 2  well-known  sulfur-nitrogen  is  D4  most  compound,  background  a  SuNn  the  adjacent rather  A bond o r d e r o f a b o u t 0.3 h a s been calculations(10,15).  Fig. 1  The molecular structure of S . N .  (Ref. 5)  1 34  Among  t h e many  decomposition principal  2  method  silver  wool  (SN)^ ,  colorless  at  state  diamagnetic  side S « N  2  The  products ,  S N 3  (SN)  Pyrex  of  from  (SN)  S N 2  which  blue f i l m .  S X  a  N „ ,  I t then  and  forms  condenses  the  a  (22)  has  been  More  from  including  S „ N  2  ,  S  addressed  of the problems 2  ,  i s an i n t e r e s t i n g  solid (SN)*  of  other  in this  system(20).  vapor  passed  . An  over  acyclic  X  3  N  film  3  ,  as  the  alternating  products  SN  still  are actually  and S ( 2 0 ) . 2  remain  the  unknown, a n d t h i s i s  polymerize  (SN)  X  polymer,  I t s m o l e c u l a r geometry has t o be  and n i t r o g e n atoms.  e q u a l , w i t h an a v e r a g e  crystals  However,  a  i n these three chapters.  crystallography(23),  sulfur  primary  a mass s p e c t r o m e t e r i c s t u d y  s p e c i e s by i t s e l f .  been shown, by X - r a y  colorless  rapidly  slow  abundance  b e s i d e s b e i n g an i n t e r m e d i a t e t o t h e  are p r a c t i c a l l y  as a  diamagnetic  S«,Ni,  suggested  recently,  one  N  over  p r e v i o u s l y c l a i m e d as the major s p e c i e s sublimed  (SN)  2  vapor  S^N,  undergoes  and r e l a t i v e  c a n a l s o be f o r m e d  p r e c u r s o r ( s ) t o the  S  established  nitride(17-19, 32).  vapor  2  thermal  because i t i s t h e  upon w a r m i n g c h a n g e s  showed t h a t t h e d i r e c t p y r o l y s i s  mixture,  the  ,  a n d i n t e r m e d i a t e s i n t h i s p y r o l y s i s a r e unknown.  intermediate(21).  with  t t  o r q u a r t z wool a t e l e v a t e d t e m p e r a t u r e s ( 2 1 ) .  isomer  has  The  The i d e n t i t y  polymer  X  sulfur  a n d SN have been c l a i m e d t o o c c u r  3  S„N  o b t a i n e d by p a s s i n g  solid  polymerization  crystals(18,19).  attention  polymeric  200-300°C.  to a paramagnetic  of  f o r the s y n t h e s i s of the r e c e n t l y  i s t h e major product  2  reactions  has gained p a r t i c u l a r  inorganic metal S N  diverse  value  square  planar  The bond l e n g t h s of  1.654A.  The  t o ( S N ) e v e n a t 0°C a n d c a n be X  1 35  sublimed at 10"  torr.  2  have been e x t e n s i v e l y The its  electronic  Hel  PE  The  chemical  and  physical  reviewed(1 -3).  s t r u c t u r e of S N 2  spectrum(11,24),  h a s been  2  Hell  PE  studied  an  mechanism(16). donation  of  investigation  of  the  A more r e c e n t  ab  initio  0.6852  electrons  n i t r o g e n atom, and t h e shake-up  effects  been q u a n t i t a t i v e l y  absence  observed  from of  through  s p e c t r u m ( 1 1 ) , X - r a y PE  spectrum of t h e s o l i d ( 2 5 ) , and s e v e r a l t h e o r e t i c a l including  properties  possible  calculations, polymerization  study(1l)  the  sulfur  cross-ring  shows atom  the  t o the  bonding.  Weak  i n t h e i n n e r v a l e n c e r e g i o n ( 2 4 ) have  e v a l u a t e d by G r e e n ' s  function  calculations  (26) . In t h i s c h a p t e r , t h e silver  wool  combination. as  one  wool  the  S„N  tt  vapor  over  h a s been s t u d i e d by t h e PES/PIMS  The p r e s e n c e o f a d i s c r e t e u n s t a b l e s p e c i e s ,  S N , 3  3  f o r t h e work d i s c u s s e d i n C h a p t e r  7.  Experimental The  2.  Pyrex  of  of the p y r o l y s i s products(20) i s e s t a b l i s h e d , p r e p a r i n g  the ground  5.2  and  pyrolysis  apparatus  e m p l o y e d i n t h i s work i s i l l u s t r a t e d  The s a m p l e o u t l e t was p l a c e d a s c l o s e  as  possible  in Fig t o the  i o n i z a t i o n p o i n t ( a b o u t 2cm) t o m i n i m i z e t h e d e c o m p o s i t i o n o f any resultant  transient  end o f t h e b e n t the tube. straight wool  species.  The S „ N  a  s o l i d was p l a c e d  at the  t u b e a n d h e a t e d by a h e a t i n g t a p e w r a p p e d  Pyrex or s i l v e r  wool  was  plugged  loosely  tube and heated w i t h another h e a t i n g t a p e .  was c l e a n e d b e f o r e u s e w i t h n i t r i c  acid.  around i n the  The s i l v e r  Temperatures  were  vacuum chamber Pyrex or -silver wool to mass ana1y7er sample reservoir  pump out to electron analyzer  heater 1  heater 2  PE/PIM spectrometer  Fig.  2  The experimental setup for the pyrolysis of S . N , into the PE/PIM spectrometer  1 37  recorded heating  5.3  A.  by tapes.  Results  The  vapor  S,,N,,  The and  two t h e r m o m e t e r s i n s e r t e d between t h e t u b e a n d t h e  Hel  PE s p e c t r u m ( F i g  t h e H L a p r mass s p e c t r u m ( F i g  whole  tube  the tube.  The PE s p e c t r u m and  d a t a o b t a i n e d by competing  t h e low energy  B.  SnNfl  vapor  The  S„N„  pyrolysis  (about in  The  t h e mass  source  silver  vapor  e particular  w o o l was h e a t e d  keeping  spectra  i n mind  the  i n o u r mass a n a l y z e r ,  by h e a t i n g t h e  t o 260°C.  solid to  S«N„  The c o m p o s i t i o n  of  was a f u n c t i o n o f t i m e , b u t e v e n t u a l l y a steady  i sassisted  time.  literature  used f o r p h o t o i o n i z a t i o n .  was g e n e r a t e d  products  intensity  the  wool i n  wool  state.  by t h e i r  T h i s change i s S  a  N „ ,  S N 3  individual  3  and  Hel  S  PE  2  plotted N  2  The  .  spectra  r e p o r t e d i n t h i s c h a p t e r and Chapter  r e l a t i v e mole f r a c t i o n s  relative  the  methods(22,27),  The m a j o r c o n s t i t u e n t s a r e  identification and  light  45 m i n s ) r e a c h e d  F i g 5.  with  o f mass d i s c r i m i n a t i o n  over  The s i l v e r  i s consistent  or Pyrex  t h e mass s p e c t r a a r e c o m p a r a b l e t o t h e mass  other  effects  and  80°C.  4b) were o b t a i n e d by h e a t i n g t h e  a t 80°C, w i t h o u t p u t t i n g any s i l v e r  results(10,11)  the  3 ) , t h e H e l mass s p e c t r u m ( F i g 4a)  were  roughly  estimated  from  7. the  o f e a c h s p e c i e s i n t h e PE a n d mass s p e c t r a a t The r e f e r e n c e s u s e d f o r t h i s p r o c e d u r e  i n t e n s i t i e s and t h e scanning  time of t h e c o r r e s p o n d i n g  were pure  J  I  I  10  I 12  I  I  1  14  IONIZATION POTENTIAL Fig. 3  The Hel PE spectrum of S.N.  1 16  1  L 18  139  140  Relative partial pressure  Time (min)  Fig. 5  The time dependence of the composition of the  pyrolysis  products of S^N^ over s i l v e r wool ( s i l v e r wool at 260"C and S^N^s) at 80°C)  141  s p e c t r a of each  individual  10),  i s essentially  however,  mixture compositions. spectrum was  species.  This plot(similarly  for qualitative  The H e l PE s p e c t r u m a n d  of the p y r o l y s i s products just  comparison of  the  HLo^r  mass  before the steady  state  r e a c h e d a r e shown i n F i g 6a a n d 6b r e s p e c t i v e l y .  spectrum  stripping  into parts  technique,  1, 2, 3 a n d 4.  At t h e steady s t a t e , S N 2  consistent  with those a v a i l a b l e  Hel  spectrum  8b r e s p e c t i v e l y .  C.  S N a  t  The of  vapor  and H L a e r  composition  time but s e n s i t i v e  r e s u l t s under  1.  No  S N 3  be  3  Sj,N  2  started  t h e HLofir  shown  i n the  predominant  i n F i g 7, w h i c h i s  literature{11,24).  Its  mass s p e c t r u m a r e shown i n F i g 8a  wool  differences  and  pumping  independent speed.  The  below.  from t h e s p e c t r a of pure  S„N  ft  200°C.  fast  pumping  in  operation,  about  20%  No o t h e r s p e c i e s g a i n e d e n o u g h i n t e n s i t y t o  by e i t h e r  PE o r mass s p e c t r a .  appearing, demonstrated  mass  spectra  2  c o n d i t i o n s a r e summarized  A t 240°C, w i t h  identified  is  t o temperature  obvious  was o b t a i n e d .  2  o f t h e p y r o l y s i s p r o d u c t s was  different  were o b s e r v e d b e l o w  2.  spectrum  over Pyrex  to  i s the overwhelmingly  2  I t s Hel  and  s p e c t r u m was d e c o n v o l u t e d  2  species.  mass  the  7 ) , S,N,, S N , a n d N .  3  PE  Using  They c o r r e s p o n d , i n t u r n ,  'of S N ( F i g 3 a n d 4 o f C h a p t e r 3  each  for Fig  spectrum.  With slow  pumping,  by a s m a l l peak o f S u N z " i n  142  (b) 4  (a) 4  [A (b) 3  (a) 3  1 (b) 2  I  .  »  I i  A  i  K  . HI  '  (b) 1 A  k  «  (b)  (a)  A.  l  i , . ,  50  l  i  i  100  t  l  l  l  150  i  i  l  amu  J  ft  10  1  14  eV  l _  F i g . 6 The pyrolysis products of S^N^ over silver won! at. 260*0  before the steady state (a) The Hel PE spectrum of the product mixture (b) The HL  PIM spectrum of the product mixture  Each spectrum is deconvoluted to the corresponding parts of i t s 1  -  S  constituents:  3 3 N  2-  S N 4  4  3.  S N  2  4.  N  2  0  (cannot be ionized by HL  n  )  '  10.  i  i  12  i  i  14  1  1  16  IONIZATION POTENTIAL Fig. 7  The Hel PE spectrum of  1  r  18  144  S  s  "  2 2 N  •  +  SN 2  j S  3 3 N  (b) V  \  A_J\  L, k A  i  i  i  i  amu Fig.  8  The PIM spectra of S^N^, recorded with (a) (b)  -—  1  the HL „  a3y  l i g h t sources  the Hel  and  145  3.  At  S N  were f o r m e d .  4.  2  At  decomposed  and N  2  280°C,  concentration.  also  2  with  S„N ,  into  observed.  slow  S N  2  started  2  S N ,  and  2  An i n c r e a s e o f N  3  3  most  S  S„N,  also  particular  deconvoluted  as  previously.  2  2  2  2  3  w i t h a r e d u c t i o n i n pumping  The amount o f S N 3  3  2  These r e s u l t s  3  products decreased  efficiency.  A t 450°C, t h e m a i n p r o d u c t s were S N ,  6.  stage.  were  2  A t 350°C, w i t h f a s t p u m p i n g , t h e d e c o m p o s i t i o n  2  A.  2  the  mass s p e c t r a a t t h i s  were S N , N , S „ N , S , a n d S N .  5.4  of  and a t r a c e of  2  and S<,N  3  i n d e c r e a s i n g o r d e r of  s t a g e a r e shown i n F i g 9a a n d 9b r e s p e c t i v e l y ,  5.  3  appearing at t h i s  pumping,  The H e l PE a n d HLafir  described  S N  260°C, w i t h s l o w p u m p i n g , a d d i t i o n a l  2  S  2  and N . 2  a r e s u m m a r i z e d i n F i g 10.  Discussion  Pyrolysis with silver The  time  products(Fig  dependence  5) c l e a r l y  wool of  demonstrates  silver  sulfide.  silver  s u l f i d e h a s been f o r m e d .  Si,N )  is  ft  the  A steady s t a t e  only  t h e c o m p o s i t i o n of t h e p y r o l y s i s  species  the  catalytic  effect  of  i s e s t a b l i s h e d a s s o o n a s enough S N 2  2  formed  ( w i t h a t r a c e of S N 3  at  this  3  and  s t a g e whereas a  146 '(b)  (a) 4  4  J (a) 3  (b) 3  \  i  (J  (a) 2  (b) 2  1A I •  •i .  (a) 1  (b) 1 .  .  »  1  A.  .  l  A  1  (a)  (b)  ¥ LJ  j  j  j  j  .  i . . .  50 Fig.  9  150  Thp. pyrolysis  10  amu  products of  14  eV  over Pyrex wool at 280*0  (a) The Hel PE spectrum of the product mixture  (h) The HI.  PIM spectrum of the product mixture  Each spectrum is deconvoluted to the corresponding parts of i t s 1.  constituents:  S N  3  2. S N 4  2  3.  S N  £  3  2  4. N 2 0  (cannot be ionized by HL „ ) a By  Relative partial  F i g . 10  pressure  The temperature dependence of the composition of the pyrolysis  products of S^N^ over Pyrex wool -Pi  1 48  c o n s i d e r a b l e amount o f N  i s produced  2  c o n f i r m the r e a c t i o n s proposed S«N«(g) + 8 A g ( s )  pyrolysis  130°C(30) reported (SN)  and  Lowering state  temperature  The  S N 3  to S N . 2  certainly  subsequent  This  2  also  the S N 2  not cause n o t i c e a b l e stability  film  formed  S N  and  quite  S N a  2  S N 2  between has  2  yield  here  was  been  of the  250-260°C.  establishing the  that  the  steady  'maximum  refer only to the S N 2  to the  (SN) in  2  vapor  X  polymer.  this  vapor,  2  The  S N 3  3  r e a c t i o n and t h e  t h r o u g h P y r e x w o o l up t o 300°C d o e s  changes  of the S N 2  in 2  products,  vapor. 2  S„N . a  This  However, warming t h e b l u e 2  suggests that  i n the condensed  demonstrating, the  vapor  gives S N , 2  significant  2  S N , fl  2  rearrangement  phase of S N . 2  2  wool  t h e r m a l d e c o m p o s i t i o n o f SaN„ v a p o r o v e r P y r e x w o o l i s  similar  latter  of  indicates  participates  P y r o l y s i s w i t h Pyrex The  used  by t h e c o n d e n s a t i o n o f S N  must be i n v o l v e d  B.  reported  f o r m a t i o n of. t h e p o l y m e r .  Passing  3  been  a n d s m a l l amounts o f u n r e a c t e d  3  a t 135°C d o e s n o t a c t u a l l y  thermal  2  yield  temperature  but a l s o a l l s p e c i e s l e a d i n g  3  has  Maximum  appreciable  SflNj,, i n a d d i t i o n  vapor  Ag S(s)  2  t h e t e m p e r a t u r e t o 160°C a f t e r  yields  yield'  2  f o r 135°C(30), j u d g e d by t h e s u b s e q u e n t polymer.  X  2  2S N (g) +  325°C(19).  results  + 2N (g)  2  2  These  i n the 1iterature(28,29):  > 4Ag S(s)  A  S,N,(g) + A g S ( s ) The  initially.  t o that over s i l v e r  wool except t h a t  a v o i d s t h e f o r m a t i o n o f any s u l f u r - r i c h  and S . 2  Also, the s i l v e r  sulfide  lowers  use  of t h e  s p e c i e s , such as the  activation  1 49 energy  f o r the fragmentation  temperatures unreacted product  through  t h e Pyrex S„N ,  S N . 3  wool.  3  N  2  been  products. studied  identified  2  S N 2  by  H e l PE  decomposition important  S N , 2  N  2  and S  2  SN,  nitride,  spectroscopy(31), i n this  at  survives  become  2  The s i m p l e s t s u l f u r  Thus  2  vapor  Si,N„  A t 350-450°C,  as a p y r o l y s i s product  conditions,  to S N .  The m a j o r  and  2  a t higher temperatures.  a r e the major has  S„N„  l o w e r t h a n 240°C, most o f t h e  i s only  species  of  which  cannot  reaction  2  be  under o u r  a l t h o u g h t i t s e x i s t e n c e h a s been r e p o r t e d by a mass  spectrometric study(20). The  fact  Pyrex wool with  t h a t a p r e v i o u s p y r o l y s i s o f t h e S,N„ v a p o r  a t 275°C p r o d u c e d  our r e s u l t s .  t h a t t e m p e r a t u r e , most o f t h e S«N„  vapor decomposes i n t o S N , S„N 2  volatile  are the S N 2  w i t h the p y r o l y s i s  5.5  3  9).  3  S„N  i s a  2  2  and S N 3  3  vapors.  This i s consistent  results obtained using s i l v e r  wool.  Conclusion SflN,,  and  its  major  i n v e s t i g a t e d w i t h the formed  from  P y r e x wool the  and S N ( F i g  2  Hence t h e s p e c i e s l e a d i n g t o t h e f o r m a t i o n o f t h e  polymer  S  2  s p e c i e s a n d d o e s n o t u n d e r g o a n y p o l y m e r i z a t i o n a t room  temperature. (SN)  (SN)* polymer(2l) i s c o n s i s t e n t  the  Around  over  HLo07  procedure. involved  pyrolysis  PES/PIMS  the pyrolysis  system.  of  deconvoluted  S N , S„N 2  2  i n this  2  and S N  system.  3  3  The  t h e S,N  h a v e been t h u s i d e n t i f i e d spectra  product  ft  vapor  S N 2  gaseous  are the  Condensation  species  s p e c t r a and  t h e spectrum major  been  w i t h s i l v e r and  by t h e H e l PE  with  have  2  stripping  sulfur  of the S N 2  nitrides 2  and S N 3  3  150  vapors  leads t o the u l t i m a t e formation of the (SN) polymer. X  The  effect  of t h e s i l v e r wool i s t o prevent  o f any s u l f u r - r i c h sulfide  The  f o rthe fragmentation  existence  e s t a b l i s h e d by t h i s X  a  2  and  S .  The  2  silver  f o r m e d i n t h e r e a c t i o n b e t w e e n S„N„ a n d t h e s i l v e r w o o l  acts as c a t a l y s t  (SN)  s p e c i e s , such as S N  the formation  provides  of  a  study.  new d i s c r e t e  7).  2  2  s p e c i e s , S N , h a s been  I t s involvement  an i m p o r t a n t  of t h i s p o l y m e r ( C h a p t e r  o f S«N|, t o S N . 3  3  i n the formation  of  clue f o r studying thevaporization  151  References  ( C h a p t e r 5)  1.  H.G. H e a l , A d v . I n o r g . Chem. R a d i o c h e m . ,  2.  H.G. H e a l ,  'The i n o r g a n i c  heterocyclic  n i t r o g e n and p h o s p h o r u s ' , Academic  15(1972)375.  chemistry of s u l f u r ,  Press,  3.  H.W.  4.  G.S. L u a n d J . Donohue, J . Am.Chem. S o c , 6 6 ( 1 9 4 4 ) 8 1 8 .  5.  B.D. Sharma a n d J . Donohue, A c t a C r y s t a l l o g r . ,  6.  J . B r a g i n a n d M.V. E v a n s , J . Chem. P h y s . ,  7.  W.P. G r i f f i t h  8.  P.S. B r a t e r m a n , J . Chem. S o c , ( 1 9 6 5 ) 2 2 9 7 .  9.  J . M a s o n , J . Chem. S o c . A,  10.  W.R.  R o e s k y , A d v . I n o r g . Chem. R a d i o c h e m . ,  London(1980)115.  (1969)1567.  13(1976)4517.  R.H. F i n d l a y , M.H. P a l m e r , A . J . Downs, R.G. E g d e l l a n d 19(1980)1307.  P. C a s s o u x , J . F . L a b a r r e , 0. G l e m s e r Struct.,  13.  51(1969)268.  S a l a n e c k , J.W.P. L i n ; A. P a t o n , C B . Duke a n d G.P.  R. E v a n s , I n o r g . Chem., 12.  16(1963)891.  a n d K . J . R u t t , J . Chem. S o c . A, ( 1 9 6 8 ) 2 3 3 1 .  C e a s a r , P h y s . R e v . B, 11.  22(1979)239.  a n d W. K o c h , J . M o l .  13(1972)405.  M.S. G o p i n a t h a n a n d M.A. W h i t e h e a d , C a n . J . Chem.,  53(1975)  1 343. 14.  R. G l e i t e r ,  J . Chem. S o c . A , ( 1 9 7 0 ) 3 1 7 4 .  15.  A.G. T u r n e r a n d F.S. M o r t i m e r , I n o r g . Chem.,  16.  D.R. S a l a h u b a n d R.P. M e s s m e r , J . Chem. P h y s . ,  5(1966)906. 64(1976)  2039. 17.  F.P. B u r t , J . Chem. S o c , ( 1 9 1 0 ) 1 1 7 1 .  ie.  CM. Mikulski, A.F.  P . J . R u s s o , M.S. S a r a n , A.G. M a c D i a r m i d ,  G a r i t o and A . J . Heeger,  J . Am. Chem. S o c , 9 7 ( 1 9 7 5 )  152  6358. 19.  G.B. S t r e e t a n d R.L. G r e e n , IBM J . R e s . D e v e l o p . ,  21(1977)  99. 20.  R.D. S m i t h , J . Chem. S o c , D a l t o n T r a n s . , ( 1 9 7 9 ) 4 7 8 .  21.  E . J . L o u i s , A.G. M a c D i a r m i d , A.F. G a r i t o a n d A.G. H e e g e r , J . Chem. S o c , Chem. Commun., ( 1 9 7 6 ) 4 2 6 .  22.  R.D. S m i t h , J.R. W y a t t , J . J . De C o r p o , F.E. S a a l f e l d , M.J.  Moran a n d A.G. M a c D i a r m i d , J . Am. Chem. S o c , 9 9 ( 1 9 7 7 )  1726. 23.  A.G. M a c D i a r m i d , C M . M i k u l s k i , A.F.  P . J . R u s s o , M.S. S a r a n ,  G a r i t o a n d A . J . H e e g e r , J . Chem. S o c , Chem. Commun.,  (1975)476. 24.  D.C. F r o s t , M . R . L e G e y t , N.L. Paddock  a n d N.P.C. Westwood,  J . Chem. S o c , Chem. Commun., ( 1 9 7 7 ) 2 1 7 . 25.  J . Sharma, D.S. Downs, Z. I q b a l a n d F . J . Owens, J . Chem. Phys.,  26.  67(1977)3045.  W. v o n N i e s s e n a n d G.H.F. D i e r c k s e n , J . E l e c t r o n Relat.  Spectrosc.  Phenom.,13(1978)91.  27.  I . S . B u t l e r a n d T. S a w a i , C a n . J . Chem., 5 5 ( 1 9 7 7 ) 3 8 3 8 .  28.  C. H s u a n d M.M.  29.  R.L. P a t t o n , P h . D. T h e s i s , UC B e r k e l e y , 1969.  30.  A. D o u i l l a r d , J . F . May a n d G. V a l l e t , A n n . C h i m . ,  L a b e s , J . Chem. P h y s . ,  61(1974)4640.  6(1971)  259. 31.  J.M. D y k e , A. M o r r i s a n d I.R. T r i c k l e , J . Chem. S o c , F a r a d a y T r a n s . 2, 7 3 ( 1 9 7 7 ) 1 4 7 .  32.  M.M.  L a b e s , P. L o v e a n d L . F . N i c h o l s , Chem. R e v . , 7 9 ( 1 9 7 9 ) 1 .  153  Chapter  6. 1  6  Tetrasulfur Dinitride  was  2  first  isolated  ( i n an  b u t t h e m o l e c u l a r f o r m u l a was i t s molecular weight  needles  which  melt  decomposes i n a few  hours  e x p l o s i v e at  in  organic  many  hexane(2,4,5), d i p o l e moment, electronic  1  to  a  at  room  red  as  spectrum,  mass  CS ,  in solution(6).  spectrum, 1 5  These d a t a a l l suggest  six-membered  ring  with  the  N  Limited  theoretical  been d o n e .  The  of H u c k e l and a r o m a t i c i t y  an  a l t e r n a t i v e boat  s t u d i e s of t h i s  suggested(10). planar C  (C  s  t h e o t h e r h a n d , an CNDO/2  Its  spectrum, spectrum(7)  this  molecule  structure  (as a C  2 v  have  lOtr e l e c t r o n structure,  symmetry) has study  1,3  been  suggests  s t r u c t u r e ( 1 1 ) , w h e r e a s MINDO/3 c a l c u l a t i o n s p r e d i c t  2 V  non-planar The  On  (or c h a i r ) form  NMR  and  atoms i n t h e  system) arguments (8,9) have i n d i c a t e d a p i anar but  ir  that  nitrogen  positions.  use  readily  benzene,  2  Raman s p e c t r u m ( 4 ) , and  It  decomposition  compound d i s s o l v e s  such  spectrum,  red-grey  liquid(3).  temperature,  The  1896(1),  opaque,  dark  i t i s much more s t a b l e  "N NMR  in  the d e t e r m i n a t i o n  I t forms  23°C  100°C(3).  h a v e been d e t e r m i n e d . a  state)  o n l y known a f t e r  solvents  and  impure  i n 1951(2).  at  becoming  is  2  Introduct ion S„N  of  SnN  s t r u c t u r e w i t h no  symmetry(12).  compound c a n be p r e p a r e d by s e v e r a l  1.  H e a t i n g S,N„  with sulfur  2.  Reacting Hg (SN)  B  with S C1  3.  R e a c t i o n of S C 1  2  w i t h a q u e o u s ammonia.  4.  R e d u c t i o n of  5  2  i n CS 2  2  2  in  at  3  120°C i n an a u t o c l a v e .  CS .  (S„N )C1 w i t h m e t a l l i c  routes(l3):  2  zinc.  a a  1 54  5.  T r e a t i n g S NH w i t h S N C 1 7  3  3  i n b e n z e n e a t 80°C i n t h e  3  presence of p y r i d i n e . 6.  Decomposition of Hg(S N) 7  The  r e a c t i o n s of S N a  extensively i n S«,N  2  2  a t room  2  with other  investigated.  i n t o ammonia ( 2 , 5 ) .  temperature.  chemicals  Hydrolysis converts  have  not  a l l the nitrogen  I t does n o t r e a c t w i t h B C 1  s o l u t i o n a t room t e m p e r a t u r e ( 1 4 ) ;  in  3  I t c a n be o x i d i z e d by S b C l ,  S4N„-SbCl ;  chlorine  reaction  S N 6  2 + 0  (C1")  produces  a  rings(14), reduction  ( 1 4 ) . Reduction  2  mixture but s u l f u r  sulfur  ammonia  by HI i n a n h y d r o u s f o r m i c  This chapter  describes  s p e c t r a o f S(,N .  geometric studied  and using  geometric in t h i s  electronic ab  and  initio  imides  and  with  + 3  C 1 " and  palladium  eight-membered of t h e  acid(5). PE  to  spectrum  and  t h e PIM  h a s been i n v e s t i g a t e d by the- spectrometer.  The  s t r u c t u r e s o f t h e m o l e c u l e have been calculations(16).  (Preliminary  e l e c t r o n i c s t r u c t u r e c a l c u l a t i o n s were p e r f o r m e d  laboratory; the  conducted  4  hydrogen  stability  p y r o l y s i s o f t h e v a p o r en r o u t e  S„N , S « N  are the products  theHel  I t s thermal  2  the  and  gives  with  of c y c l i c  2  giving  5  with  CS  h o w e v e r , i t f o r m s a 1:1 a d d u c t  with dicyclopentadiene(15). 5  been  refined  results  described  here  were  i n c o l l a b o r a t i o n w i t h M.H. P a l m e r o f t h e U n i v e r s i t y o f  Edinburgh.)  6.2  Experimental The  not  preparation  easy and  was  o f t h i s compound, an u n s t a b l e  achieved  by  the  thermal  redo i l , i s  decomposition  of  1 55  Hg(S N) (l7) 7  directly  2  spectrometer. methanol  Hg(S N) 7  solution  p r e c i p i t a t e was was  gas  phase  monitored mainly spectra  by  S„N  washed and  dried  spectrometer  from  the  (Chapter  warming  vaporized.  In  a  and  to  -15°C  carefully  2  could  2  controlling  m e l t e d a t a b o u t 20°C. the  ionization The  ab  combination  was  to  by  vapor  were of  i t s PE and  PIM  the  gaseous  2  was  and  preferentially  c o u l d be  s h a p e d c r y s t a l s b e l o w 0°C. The  The  consist  conditions  and  by  eliminated This species  p y r o l y z e d a t a b o u t 4cm  from  point.  i n i t i o c a l c u l a t i o n s were p e r f o r m e d of  T h i s sample  be  the 2  red needle  The  r o u t e i n t o the s p e c t r o m e t e r , S N  a  it  decomposition found  PE  where  experiment,  several trap-to-trap purifications a l l S N l e a v i n g dark  of  a l l o w e d t o warm.  and  second  t r a p p e d a t -78°C en  By  reaction  vacuo,  identified  2  5).  slowly  in  subsequent  S N , the l a t t e r 2  the  to prevent decomposition.  t o t h e PE  and  2  chamber o f t h e  with mercury(II) acetate(l7).  7  w i t h t h e PE/PIM s p e c t r o m e t e r  m i x t u r e was by  ionization  prepared  S NH  filtered,  products  the  was  2  of  m a i n t a i n e d a t 0°C  p l a c e d on l i n e  into  Gaussian  basis functions.  Two  using  a  linear  main b a s e s  were  used: 1.  A  medium  s i z e minimum b a s i s N ( 7 s 3 p ) ,  o p t i m i z e exponents 2.  A  contraction  D u n n i n g ( 2 0 ) and  S(l0s6p1d)  scaled to  i n t h e SN b o n d ( l 8 ) . of  t h e N ( 9 s 5 p ) and  Veillard(2!).  S(12s9pld)  b a s e s d 9 ) of  1 56  6.3  Results  The  identification  observed  physical  recorded b  and  under the c  crystals  show  spectrum S N  +  2  2  ,  The  u s i n g H e l , H L o ^ r and  as  +  the  and  +  2  2  ( F i g . 1b) major  from  , and  filtered  photoionization  SN  +  fragments.  S,N  + 2  sources. S„N  The  v a l u e s o f 92  (S N 2  amounts of S N . 2  2  d i s a p p e a r , and  itself.  f i l t e r e d HLo  F i g . , 1c  The  peak  time.  The  present  IP's 8.58  Hel  PE  No  mass  + 2  to S N 3  ) and  46  minor  and  S N . +  2  (SN )  may  peaks vary  in  +  provide  here only  They, however,  the  three  were o b s e r v e d  agree  an  from  with  the  with major  at  any  earlier  (4).  1.  The  first  two  the  experimental  distinct  peaks at  s p e c t r u m , t o g e t h e r w i t h t h e PIM  s p e c i e s and  deconvolution procedures  peak f o r  fragments  s p e c t r u m i s shown i n F i g . 2 and  this  +  +  3  t h e mass s p e c t r u m r e c o r d e d  results essentially  9.38eV i n t h e PE  characterize  be  mass  u n f i l t e r e d ULapr  p e a k s t o h i g h e r m/e  are t a b u l a t e d i n Table and  Hel  S N ,  contamination.  so may  shows  mass s p e c t r o s c o p i c s t u d y The  2  red  plus  + 2  These l a t t e r  2  r a d i a t i o n ( 1 0 . 2 e V ) , and  peaks are observed.  1a,  radiation,  i s s i m p l e r , g i v i n g a dominant parent  o f t h e e x t e n t of S N  never e n t i r e l y  Fig.  HLa  i n t e n s i t y w i t h r e s p e c t t o t h e m a j o r t h r e e p e a k s , and assessment  the  t h e mass s p e c t r a  spectrum.  fragment peaks a t t r i b u t a b l e  trace  r e s t s on  2  s p e c t r a of the vapor above the dark  s m a l l p e a k s w i t h m/e  arise  m.p.  same c o n d i t i o n s a s t h e PE  S N , S ,  and  + 2  e.g.  ( F i g . l a ) shows a s m a l l p a r e n t  spectrum S„N  s p e c i e s as p u r e S,N  properties,  t h e PIM  recorded  respectively,  of t h e  data,  s e r v e a s a good r e f e r e n c e f o r t h e  d e s c r i b e d i n Chapter  5.  T57  S  f  1(c)  .  *  •  1  (a)  N  S,N  +  j L  J  ill  •)(h)  4 2  L  V* S  +  JL i  J L  1  0  40  80  120  160  amu Fig- 1  The PIM spectra of S^N and (c) HL  radiation.  recorded with (a) Hel, (b) HL  159  TABLE 1  Experimental and theoretical I P ' s of S^N  Orbital symmetry  Exptl T P ' s  ThpnrPt.ir.al T P ' s  15a"  8.58 ± 0.02  8.61  11.10  24a'  9.38 ± 0.02  9.44  11.55  14a"  10.72 ± 0.05  11.96  13.77  23a'  11.1 ± 0.1  13.06  12.86  22a'  12.1  13.96  14.30  21a'  12.50 ± 0.03  14.16  15.86  13a"  13.23 ± 0.03  14.32  15.28  12a"  14.5 ± 0.1  14.87  16.76  20a'  15.5  ± 0.1  17.48  18.35  19a'  16.8  ± 0.1  17.97  19.80  18a'  17.47 ± 0.05  18.81  20.79  20.21  18.71  TVmr.1 p - 7 P t a  ± 0.1  11a"  a. A l l values in eV.  CNT)f)/?  1 60  The  molecular  program C .  (see Ref.  The  s  geometry  16) a s s u m i n g  final  C  fully  two  structures  r e s u l t s a r e summarized optimized  was  o p t i m i z e d by t h e HONDO  forms of  symmetry,  a r e shown i n F i g . 3 and  i n T a b l e 2.  The  orbital  initio  the  energy  structure with a double-zeta basis set are  s  calculations  are  The  the  listed  results  of  a l s o shown f o r c o m p a r i s o n w i t h t h e  ab  results.  The  thermal  stability  200°C, i t p a r t i a l l y substantial  of  decomposes  change  occurs  the to  S  3  still  the major  amounts a t any  vapor and  2  i s quite high. S N . 2  No  2  At  further  at higher temperatures, although at  400°C s m a l l a m o u n t s o f S„N« and S N is  and  2 V  e n e r g i e s of  in Table 1 together w i t h the e x p e r i m e n t a l I P ' s . CNDO/2  C  species.  N  a r e formed.  3  However,  S„N  2  i s not o b s e r v e d i n a p p r e c i a b l e  2  point.  Pi srussion  6.4  With the  reference  t o T a b l e 2, t h e n o n - p l a n a r C  most s t a b l e by a b o u t  60kJ/mol;  structure i s  s  f i v e o f t h e atoms a r e  nearly  c o - p l a n a r , w i t h o n l y t h e p a r a - S a t o m ( S 5 i n F i g . 3) m a r k e d l y from the p l a n e . of  Jolly(IO),  S«N . 2  Indeed  distinction  T h i s i s i n good a g r e e m e n t w i t h and  it  can  between  suggests that a r o m a t i c i t y be 4n  argued and  (4n+2)n  fundamental, since the Hiickel r u l e maximum levels  multiplicity i n the c y c l i c  invoked.  There  are  coupled  for  prediction  i s not p r e s e n t i n C  symmetry  2 V  electron  systems  the p r e s e n c e of for  degenerate  which levels  it in C  of  degenerate  is 2 V  the  i s not  i s b a s e d upon Hund's r u l e  with  hydrocarbons no  that  the  away  normally  molecules.  TABLE 2  Results of the geometry optimization for S^N^, a comparison of the  c  and  C s  9  2v  Total energy (AU)  structures  a  -1698.8251  -1698.8301  V i r i a l theorem  1.9999  1.9994  Dipole moment (Debye)  0.560  0.823  15.5054  15.5047  Atomic populations S 2  a  S 4/6  15.8554  15.8637  S 5  16.0719  16.0388  7.3568  7.3646  N 1/3  a. The C„ and C structures are shown in Fig. 3. 2v s  2  5  Fig. 3  — a  The ab i n i t i o o p t i m i z e d C„ and C s t r u c t u r e s of S.N„ c 2v s — 4—2 ro  1 63  A f t e r the present some ' l o w published  temperature  X-ray  finished,  crystallographic  an  account  work on S „ N  ( 2 2 ) . The r e s u l t s a g r e e v e r y w e l l w i t h t h e  structure listed  work h a d been  found  h e r e , and t h e s e t s of g e o m e t r i c  and compared i n T a b l e  Conversion  of  parameters are  3.  t h e d e l o c a l i z e d MO's  s u l f u r atoms e a c h p o s s e s s i n g  c o v a l e n t c bonds a n d two l o n e p a i r s . each  doubly  bound t o t h e s i n g l e  t h r e e has a s i n g l e  lone p a i r .  highly  structure.  polarized  classical  orbital  with  contiguous  of  to a localized  system  three  The  sulfur  in  2  CS  solution,  2  1.74  Debye(4).  cartesian functions implicitly  together with the usual five  atoms  are  i s found  to  have  a  c a l c u l a t e d d i p o l e moment i s  o r b i t a l p o p u l a t i o n s a r e never h i g h , b e a r i n g S3d  normal  c e n t r e and each of t h e s e  The m o l e c u l e The  t y p e ( F i g . 4)  nitrogen  0.823 Debye, c o m p a r a b l e w i t h t h e e x p e r i m e n t a l S„N  was  2  optimized  system(23) y i e l d s a bonding the  of  dipole  moment  of  The S3d ( s u l f u r ' s  3d)  i n mind t h a t t h e s i x  i n c l u d e a f u r t h e r 3s o r b i t a l  'chemical'  S3d o r b i t a l s .  T o t a l S3d  populations are  The  S2  0.7330  S4/S6  0.4784  S5  0.4364 e l e c t r o n s ( l a b e l s  refer  to Fig. 3).  h i g h e r v a l u e a t S2 i s c o n s i s t e n t w i t h t h e c u m u l a t i v e  of t h e bonding, hybridization  b u t i s much l o w e r  on  spd  grounds.  The e x c e s s 0.3646  t h a n m i g h t be e x p e c t e d  nature  c h a r g e on e a c h n i t r o g e n atom i s c a l c u l a t e d  electrons.  The  corresponding  values  for S N 2  2  t o be  and S„N  a  164  TABLE 3  The molecular geometry of S^N^ by ab initio calculations and X-ray crystallography  Geometric parameters  optimized by ab initio calculaitons  X-ray crystallography^  Nl - S2  1.571  1.561  Nl - S6  1.724  1.676  S4 - S5  2.112  2.061  ZN1S2N3  123.3  122.9  ZS2N3S4  126.6  126.7  ZN3S4S5  103.4  103.4  ZS4S5S6  101.1  102.9  a  1.3  8  123.1  a. Refer to Fig. 3. b. Ref. 22.  (All bond-lengths are in A)  0 125.1  165  Fig. 4  The electronic structure of  S.N  1 66  are  0.6852 a n d 0.8036 e l e c t r o n s r e s p e c t i v e l y ( 2 3 ) .  consistent with the relative S N S N <S ,N ,  demonstrated  <  0  2  2  2  i  l l  a c i d s , e.g. B F The initio  first  15a" a n d  reactivity  They  combinations  of  are mainly  the  f i v e atoms) o r b i t a l s  assigned  to  respectively. group  initio  (8.61  results  23a',  the  3pz(the  x,y  weakly  bonding  first  21a',  1).  20a',  1.  i s the plane The  t o t h e S4 a n d  T h e s e two o r b i t a l s  b e g i n s a t about  The  2.5eV b e h i n d t h e  t o about  orbitals  15eV ( s e e t h e  in this  group,  a r e m a i n l y nonbonding  One t o one  assignments  of  or  these  e x p e r i m e n t a l I P ' s i s n o t a s e a s y as. f o r t h e  However,  these  s i x orbitals  a s s i g n e d t o t h e f o u r PE b a n d s i n t h e 1 0 - I 5 e v Table  plane  and  PE b a n d s a t 8.58 a n d 9.38 eV  13a" a n d 12a",  i n character.  group.  two  group  i n Table  to specific  three  o f S4 a n d S6 r e s p e c t i v e l y .  a n d 9.44eV) a n d e x t e n d s  22a',  into  the antibonding  a d j a c e n t n i t r o g e n atoms.  The s e c o n d  14a",  orbitals  Lewis  g r o u p c o n s i s t s o f t h e two h i g h e s t o c c u p i e d  24a'.  S6 atoms w i t h t h e i r  first  species, with  grouped  o r b i t a l a l s o h a s some i r * c h a r a c t e r r e f e r r i n g  15a"  first  three  (14).  3  The  containing  ab  their  these  a n d t h e CNDO/2 m e t h o d s c a n be c l e a r l y  bonding  are  by  of  v a l e n c e o r b i t a l e n e r g i e s ( T a b l e 1) c a l c u l a t e d by t h e a b  regions. MO's,  basicity  This trend i s  are  tentatively  r e g i o n , a s shown i n  The l a s t g r o u p c o n t a i n s f o u r tr o r * b o n d i n g  orbitals,  1 9 a ' , 18a' a n d 11a", a n d i s a s s i g n e d t o t h e b r o a d band a t  15-l8eV. The absorption unoccupied  red color band  at  orbital.  of  t h e compound  about  450nm  a n d i t s weak  (4) suggest  B o t h CNDO/2 a n d a b i n i t i o  a  electronic low  calculations  lying show  167  this  s h o u l d be t h e n* o r b i t a l  orbital  may  o f t h e NSN u n i t .  This  unoccupied  i n d u c e a Koopmans' b r e a k d o w n a s w e l l a s i n c u r  shake-up s a t e l l i t e s ,  as observed  argument  c o n f i r m e d by a p r e l i m i n a r y G r e e n ' s  has  been  study of t h i s  s p e c i e s which  some  i n t h e case of S N ( 2 4 ) . 2  shows s a t e l l i t e s  This  2  i n the  function  Hel  region  more  stable  (25) . I n an a n a l o g o u s in  the vapor  f a s h i o n t o S N , S«N 2  phase than  i n t h e condensed  the gas phase p y r o l y s i s S„N The  -j-v S N  2  2  product S N 2  impurities  2  suggest + S  2  2  i s much phase.  The r e s u l t s o f  t h e d e c o m p o s i t i o n t o be  2  may u n d e r g o o t h e r r e a c t i o n s a n d i n t r o d u c e o t h e r  such as S N 3  the condensed  2  phase i s  a n d S^N,,.  3  probably  The t h e r m a l d e c o m p o s i t i o n i n  not  through  a  uni-molecular  react ion.  6.5  Conclusion S»N  h a s been s y n t h e s i z e d  2  s i m p l e way, a n d i d e n t i f i e d a l s o used of  the  to clarify S«N(,  t h e c o m p o s i t i o n of t h e  vapor  thermally  the condensed The ab  initio  over  Pyrex wool  stable  The v a p o r  in  a  relatively  pyrolysis  (Chapter 5 ) .  were  products  S„N  2  i s one  p h a s e o f t h e compound  i n contrast  is  to i t s i n s t a b l i l i t y in  phase.  m o l e c u l a r s t r u c t u r e o f S,N  2  h a s been f u l l y  c a l c u l a t i o n s a n d i s shown t o i n v o l v e a  form, a f a c t The  isolated  by i t s P I M and PE s p e c t r a , w h i c h  component i n t h a t r e a c t i o n . relatively  and  s u p p o r t e d by a r e c e n t X - r a y  electronic  structure  C  o p t i m i z e d by s  non-planar  crystallographic  study.  o f t h e m o l e c u l e h a s been s t u d i e d by i t s  168  Hel  PE s p e c t r u m , ab i n i t i o and CNDO/2 c a l c u l a t i o n s .  charge donated less  than  basicity  f r o m t h e s u l f u r atoms t o e a c h  that  of S„N . 2  for S N 2  2  nitrogen  The e x c e s s atom  is  and S N„, w h i c h a c c o u n t s f o r t h e l o w fl  169  References  1.  ( C h a p t e r 6)  W. Muthmann a n d A. C l e v e r ,  Z. A n o r g . A l l g .  Chem.,  13(1897)  200. 2.  A. Meuwen-, Z. A n o r g . A l l g .  3.  M. B e c k e - G o e h r i n g , P r o g . I n o r g . Chem.,  4.  J . N e l s o n a n d H.G. H e a l , J . Chem. S o c . A, ( 1 9 7 1 ) 1 3 6 .  5.  M. G o e h r i n g , H. H e r b a n d H. W i s s e m e i e r , Z. A n o r g . Chem.,  6.  Chem., 2 6 6 ( 1 9 5 1 ) 2 5 1 .  H.G. H e a l ,  'The i n o r g a n i c h e t e r o c y c l i c  c h e m i s t r y of s u l f u r ,  Press,  London(1980)115.  T. C h i v e r s , R.T. O a k l e y , O . J . S c h e r e r a n d G. I n o r g . Chem.,  A . J . B a n i s t e r , Nature, 237(1972)92.  9.  H.W.  R o e s k y , Angew. Chem., I n t . E d . E n g l . ,  W.L. J o l l y ,  Wolmershauser,  20(1981)914.  8.  10.  Allg.  267(1952)238.  n i t r o g e n and phosphorus', Academic 7.  1(1959)207.  'Sulfur  18(1979)91.  r e s e a r c h t r e n d s ' , A d v . Chem. S e r . , 110  (1972)92. 11.  R.R. A d k i n s a n d A.G. T u r n e r , J . Am. Chem. S o c , 1 0 0 ( 1 9 7 8 ) 1383.  12.  A.G. T u r n e r , p r i v a t e c o m m u n i c a t i o n t o N.P.C. Westwood.  13.  H.W.  14.  H.G. H e a l , A d v . I n o r g . Chem. R a d i o c h e m . ,  15.  R.R. A d k i n s a n d A.G. T u r n e r , I n o r g . C h i m . a c t a ,  R o e s k y , A d v . I n o r g . Chem. R a d i o c h e m . ,  22(1979)239. 15(1972)375. 25(1977)  233. 16.  M.H. P a l m e r , J.R. W h e e l e r , R.H. F i n d l a y , N.P.C. Westwood, and W.M.  17.  L a u , s u b m i t t e d t o J . M o l . S t r u c t . Theo Chem.  H.G. H e a l a n d R . J . Ramsay, J . I n o r g . N u c l . Chem.,  37(1975)  170  286. 18.  M.H. P a l m e r , R.H. F i n d l a y , J . Chem. S o c , P e r k i n  T r a n s . 2,  (1974)1885. 19.  M. Redshaw, M.H. P a l m e r a n d R.H. F i n d l a y , T e i l A,  Z.  Naturforsch.,  34(1979)220.  20.  T. D u n n i n g , J . Chem. P h y s . ,  21.  A. V e i l l a r d ,  22.  T. C h i v e r s ,  53(1970)2823.  Theor. Chim. A c t a , P..W.  12(1968)405.  C o d d i n g a n d R.T. O a k l e y , J . Chem. S o c ,  Chem. Commun., ( 1 9 8 1 ) 5 8 4 . 23.  R.H. F i n d l a y , M.H. P a l m e r , A . J . Downs, R.G. E g d e l l a n d R. Evans,' I n o r g .  24.  W. v o n N i e s s e n a n d G.H.F. D i e r c k s e n , Relat.  25.  Chem., 1 9 ( 1 9 8 0 ) 1 3 0 7 .  Phenom.,  J . Electron  13(1978)91.  J . S . T s e , p r i v a t e c o m u n i c a t i o n t o W.M. L a u .  Spectrosc.  171  Chapter  7.1  7  Trisulfur  trinitride  S N^ 3  Introduction The  (SN)  pyrolysis interest  polymer  X  of  S,N  ft  was  vapor  first over  of i t s m e t a l l i c  electronic  been  published  on  this  1910  by  However,  recently  the d i s c o v e r y of i t s s u p e r c o n d u c t i v i t y have  in  silver(l).  i n t h i s p o l y m e r was o n l y  investigation  prepared  general  stimulated  properties,  i n 1975(2).  the  by  the  especially  Many r e v i e w s  s p e c i e s , t h e most r e c e n t one by  Labes e t a l . i n 1979(3). The polymer  best  synthetic  procedure  i s v i a the growth of  produced  by  crystals, caused  pyrolysis  of  radical  However, o t h e r r e s u l t s possible. be  colorless  S,N,  through  to  SN  silver  blue-black  indicate  that d i f f e r e n t  radical,  and  r e d paramagnetic  a  of  species  to coexist with S N  been  reported  was  realized  by  high  vacuum  polymerized rapidly  to  (SN),<  also  powder  has  S N C1 ,  S N C1  However,  there  3  3  3  3  2  2  the  wool(7).  solid(7).  prepared(l5)  or S N C1 with ( C H ) S i N 3  2  i s no d i r e c t  2  The signal  the golden days(6).  which  w i t h a mass  of  these  two  as p y r o l y s i s  2  Their  isolation  f r a c t i o n a t i o n , and both s p e c i e s  golden  been  Both 2  p r o d u c t s o f S»N« p a s s e d t h r o u g h s i l v e r  2  solid  d a r k brown s o l i d 92(7).  S N  intermediates are  s p e c t r o m e t r i c molecular weight have  ESR  some  X  of  wool.  (an  of ( S N ) form a f t e r  Two e x a m p l e s a r e a d a r k the  crystals  s p e c i e s i s o b s e r v e d ) , and f i n a l l y  lustrous diamagnetic c r y s t a l s  may  the  upon w a r m i n g , c h a n g e  by  t o prepare the c r y s t a l l i n e  3  3  3  evidence that  More  recently,  by t h e r e a c t i o n o f or  NaN  3  in  CH CN. 3  the f o r m a t i o n of t h e  172 polymer proceeds through sulfur-nitrogen  ring,  the  intermediacy  although  t h i s may  In s h o r t , the pathways l e a d i n g to the means c l e a r l y The which  two  is a  single  parallel  fiber  is  planarity  bundlesO).  The  in  temperature,  the  by  The  superconductivity  The  at about  et a l . ( 8 )  135°C. low  has  "(SN) "  species  i r and  of  the  and  the  usual  and  crystals  no  solid  oriented  200  s t r u c t u r e of deviate  from  atoms.  i t s p u r i t y as  at  well  at  h i g h as  t o 250  are  Crystallographic  nitrogen  i s as  transition  property  room  40000" cm~ 1  liquid  1  helium  temperature  has  of  the  A spectroscopic  polymer  study  of  for  i s that i t  i t s vapor  i s hence a l o g i c a l  vapor  i s an  i s nonpolar(9).  spectroscopic  study  On  8  with  shown t h a t the other  other  by  open-chained  using matrix  some  to  study  the  hand,  isolation  c o n c l u d e d t h a t the major components a r e  c r a d l e form S N„,  at  approach  A mass s p e c t r o m e t r i c  d e f l e c t i o n a n a l y s i s has  i n the vapor  uv-visible vapor  highly  conductivity,  suggested t h a t the  However, e l e c t r i c  an  metallic  chains  d e p e n d s on  The  temperature  (SN) . 8  molecular  solid  probe i t s e l e c t r o n i c p r o p e r t i e s .  tt  by  i s 0.26K.  interesting  relatively  Smith  are  p form, the  f o r the  a f a c t o r of  of  $ forms(4).  for both s u l f u r  of h i g h q u a l i t y  temperature(3).  Another  only  uniformity.  It increases  this  polymer  route.  been p r o p o s e d t h a t t h e r e  a and  F i g . 1.  a b o u t 0.17A  crystal  sublimes  six-membered  a reasonable  lustrous  consists  I t has  , the  X  c o n d u c t i v i t y of  its  (5).  (SN)  shown by  (SN)*  golden  form  have been r e p o r t e d  which  as  bright  crystal  polymorphs of  data(4)  be  a  established.  polymer  in  of  S N 2  2  unidentified  173  Fig. 1  The crystal structure of the (SN)^ polymer (Ref. 4) (All bondlengths are in A.)  174  products(10). Smith  A  more  recent  S N ,  although  condensation  2  formation results  S N  2  3  of  and  3  S,N  of  but  2  these  no  The  continuation  work  and  presented  gives  open-chained  "(SN),",  again  p r e v i o u s l y unknown S N 3  f o r the  the S N 3  the  reaction  ethanol(12).  3  of  the  The c r y s t a l  determined  by  X-ray  structure  such a of the  of  SCF  i savailable in The c e s i u m  h a v e been azide  synthesized  with  n-Bu„N*S N " 3  crystallography(13).  The  r i n g a s shown i n  s t r u c t u r e of t h e anion  Hartree-Fock-Slater  provides  well-known.  appropriate  six-membered, e s s e n t i a l l y p l a n a r electronic  these  subject are  existence  radical  3  tetraalkylammonium s a l t s of t h i s anion  by  this  i n t h i s chapter  but S N " i s r e l a t i v e l y 3  t o the  molecule.  3  No i n f o r m a t i o n c o n c e r n i n g literature  leads  The i n c o n s i s t e n c y among  evidence  by  actually  species  t h e (SN)* p o l y m e r .  study  o f S,N„  i n d i c a t e s t h a t more i n v e s t i g a t i o n s on  required.  and  spectrometric  (11) r e p o r t s t h a t t h e p y r o l y s i s p r o d u c t s  contain  the  mass  3  S,N„ has  anion  and  been is a  F i g . 2.  h a s been s t u d i e d by a b  calculations(13)  in  the  The initio  CNDO/2  l o c a l i z e d MO m e t h o d ( 1 4 ) . In t h i s c h a p t e r , studied  by  the vapor of t h e (SN)  i t s H e l PE a n d P I M s p e c t r a .  correlated with the results vapor  (Chapter  The  existence  i s thus proposed.  from  has  been  The r e s u l t s h a v e been pyrolysis  of  S N, 4  of a d i s c r e t e s p e c i e s , the  S N  3  in  i t s v a p o r p h a s e a n d c o n d e n s e d p h a s e h a s been i n v e s t i g a t e d .  3  radical,  5).  obtained  polymer  X  The s t a b i l i t y  of  this  species  . 2  Structure of the  anion  (Ref. 13)  o  (All bond-lengths in A, and a l l angles in degrees)  176  7.2  Experimental The  a p p a r a t u s u s e d h e r e was s i m i l a r  pyrolysis  experiments  s m a l l U - t r a p was u s e d length to  of  of  t h e sample  (SN)  C h a p t e r 5, e x c e p t t h a t a t u b e w i t h a  t u b e was v a r i e d and s t a b i l i t y  polymer  X  i n the  i f t r a p p i n g o f t h e v a p o r was d e s i r e d .  test the v o l a t i l i t y The  t o t h a t employed  Department  of Chemistry,  consisted  of  was  f r o m 2cm t o 25cm i n o r d e r  of the vapor.  supplied  University  The  by  of  R.T. O a k l e y  Calgary.  of the  The  some g o l d e n l u s t r o u s c r y s t a l s e a c h a b o u t  sample 15mm i n 3  size.  7.3  Results  A. The s p e c t r a o f t h e v a p o r The  H e l PE s p e c t r u m  spectra (SN)  X  ( F i g . 3) a n d H e l , Hhafir,  and  HLo  ( F i g . 4 a , b, a n d c ) o f t h e v a p o r were o b t a i n e d when t h e  polymer  point.  was h e a t e d t o 145°C w i t h i n  2cm o f  the  ionization  The s p e c t r a were t h e same a s t h o s e d e c o n v o l u t e d from t h e  s p e c t r a of assigned  the  pyrolysis  t o .the  S N  rapidly with further  3  3  products  radical.  small  of  the  S,N„  vapor,  increases i n temperature.  The v a p o r , tube  o n l y v e r y s m a l l amounts o f S,N, a n d S „ N , a n d p o s s i b l y  S N  2  as  identified  impurities.  and  The v a p o r p r e s s u r e i n c r e a s e d  h o w e v e r , was a b l e t o t r a v e l a s f a r a s 25cm a l o n g a 5mm  well,  mass  2  with 2  as  The f o r m e r two s p e c i e s were o b s e r v e d and  by t h e i r p a r e n t p e a k s  i n t h e HLo^r  mass  spectra.  IONIZATION POTENTIAL  178  Fig. 4  The PIM spectra of S^N  3  recorded with (a) Hel,  (b) HL „ and (c) HL radiation ^—^ a By — ot  179  B.  Thermal s t a b i l i t y of t h e vapor The  vapor  was  obtained  by  145°C, 10cm f r o m t h e i o n i z a t i o n pure  by  S3N3  pyrolyzed to  i t s PE  and  point. mass  the (SN) polymer a t X  I t was  spectra.  identified  as  The v a p o r was t h e n  o v e r P y r e x w o o l a t t h e open e n d o f t h e s a m p l e t u b e  temperatures  At h i g h e r  o f 450°C.  Little  change o c c u r r e d  t e m p e r a t u r e s , S N , s m a l l amounts o f S N 2  o f S«N, e m e r g e d ; b u t S N 3  to  heating  350°C.  3  2  (  2  up  below  300°C.  and a  trace  r e m a i n e d t h e most i m p o r t a n t  s p e c i e s up  A t 450°C, t h e m a j o r g a s p h a s e s p e c i e s were S , N 2  and  2  S N . 2  2  C.  Condensed phase r e a c t i o n s of t h e vapor The  v a p o r was o b t a i n e d  procedures  described  conditions, in  a  and i d e n t i f i e d  previously.  trap  at  liquid  nitrogen  developed over the course  o f an h o u r  red,  blue.  brown,  film  white  this  obtained  as  to  3  shown  2  to  same  spectrometer  peripheral  red  the  the  temperature.  with  The  the  A  film  hues  of  p o r t i o n was t h e most  into the trap t o a larger  tt  a  series  i n F i g . 5. were  of  HLopr  By h e a t i n g  obtained  however S j N , was a l w a y s t h e l a s t  7.4  maintaining  by  3  extent.  The  d a r k b l u e when warmed up t o room t e m p e r a t u r e .  process,  S N , S ( N a n d S«N 3  and  and penetrated  changed  During  3  i t was t h e n c o n d e n s e d en r o u t e  small  volatile  By  as pure S N  with  mass  spectra  the blue  varying  film,  were S N , 2  2  compositions,  residue.  Discussion The  previously published proposition  for a  linear  (SN)i,  180  Fig. 5  The HL  PIM spectra recorded during the vaporization  181  species  as  essentially  1. at  vapor phase s p e c i e s of t h e (SN) polymer the  experimental  results  p a p e r s by t h e same a u t h o r s ( 8 ) . tetramer  85%  of  three  The e v i d e n c e f o r s u c h  of  mass s p e c t r o m e t r i c  analysis indicates  +/-  estimated  2. small 184  10.  (The n e x t  upper l i m i t  The f i e l d peak  at  important  n e u t r a l parent  contains  mass  isS N 3  i o n i z a t i o n mass s p e c t r u m shows  256  a 3  of  w i t h an  o f 15% p o p u l a t i o n . )  amu  (S  + B  )  in  an  extremely  a d d i t i o n t o a weak peak a t  amu a n d a s t r o n g one a t 138 amu.  spectrum  that  t h e f r a g m e n t s o b s e r v e d i n an e l e c t r o n impact  mass s p e c t r u m d e s c e n d f r o m a n e u t r a l s p e c i e s h a v i n g 190  almost  i s summarized a s :  Phase a n g l e  least  rests  X  on  identical a linear  the  The f i e l d  desorption  mass  o n l y a S * peak w i t h medium i n t e n s i t y , p l u s a B  s t r o n g peak a t 184 amu.  3. S„N  to  shows  fl  (SN)  The f i e l d  X  only  i o n i z a t i o n mass s p e c t r u m o f t h e the molecular  3  intensity  peaks  at  256  and  compounds,  be  by s e v e r a l o t h e r  with  under  i n addition  about 85% of t h e hydrocarbon field  and  ionization  important(16).  above e v i d e n c e f o r a l i n e a r  countered  3  For c y c l i c  fragmentation  c o n d i t i o n s d o e s n o t a p p e a r t o be  The  184 amu,  of the complete spectrum.  heterocyclic  form  i o n S^N,*; b u t t h e v a p o r o f t h e  p o l y m e r shows a f r a g m e n t a t 138 amu ( S N * ) , small  cradle  (SN)» s p e c i e s  can  however  pieces of information a v a i l a b l e i n  1 B2  the  literature: 1.  A  matrix  isolation  study of the vapor  t h a t the v a p o r i z a t i o n of the (SN) some  S N 2  X  p o l y m e r a t 140-160°C p r o d u c e s  a n d p o s s i b l y a t r a c e o f t h e SN r a d i c a l  2  well-known  cradle  unidentified  form  S«N«  species.  with  Hence  (10) c o n c l u d e d  the  more  but mostly the  than  u s u a l S«N, may  one  other  exist  i n the  v a p o r and a c t a s a p a r e n t m o l e c u l e g i v i n g a peak a t the  mass s p e c t r u m .  necessarily derive  184 amu  However, t h e S N * peak a t 138 amu 3  3  f r o m a p a r e n t i o n a t 184 amu  in  does not  since there  may  be o t h e r s p e c i e s p r e s e n t .  2. vapor  A  molecular  suggests  that  138 a m u ( ( S N ) * ) 3  they c o n s t i t u t e as  beam e l e c t r i c the  184 amu((SN)„*)  and  a r e due t o n o n p o l a r n e u t r a l p r e c u r s o r s and  that  the vapor phase system  184 amu  3. small  of  several  i s unlikely  in this may  at  be  study. more  S„N  complicated  t o be an o p e n - c h a i n e d  A vapor p r e s s u r e study of the vaporization coefficient  K c a l / m o l f o r t h e S-N  solid  rearrangement  polymer  but  such as r i n g  observed show  that  to  the  due  t o t h e peak a t  (SN)« m o l e c u l e .  vapor  showed  that  the  (about 2 X 1 0 " ) and t h e magnitude 3  (30Kcal/mol,  compared  with  about  bond s t r e n g t h ) b o t h s u g g e s t t h a t t h e  vapor phase s p e c i e s does not have t h e o p e n - c h a i n e d the  is  2  These r e s u l t s  s p e c i e s , and t h e p r e c u r s o r  of t h e heat of v a p o r i z a t i o n 50-60  peaks  85-95% of t h e p a r e n t beam(9).  an i m p o r t a n t s p e c i e s  presence  mass  d e f l e c t i o n a n a l y s i s of the  rather  involves  format i o n ( 1 7 ) .  structure an  of  exothermic  183  4.  Using  t h e same e x p e r i m e n t a l  techniques  to the formation of the proposed "(SN)," shown  to  be  one  of t h e p r o d u c t s  vapor over q u a r t z wool and s i l v e r has  been  observed  described  in this  species  will  in  these  thesis.  species, S N 3  No  the  (SN)  s u b l i m a t i o n of t h e polymer a g a i n  will  give  sublimed  from t h e  pyrolysis  may  species  evidence  of the (SN)  general,  literature, 1.  of  of  back  species  and  the  between  these  the  produced  the  polymer vapor  i n the  distinct  the  present  PE/PIM  study  a g a i n s t the assignment of the polymer t o a l i n e a r  X  radical.  3  consistent  i s presented  A  the  results  3  in  "(SN),,"  polymer,  X  correlations  and  instead point t o the S N  also,  linear  with  (SN), molecule,  This evidence, the  vapor  other  which  is  results  i n the  a t 8.62eV i n t h e 8 -  l0.5eV  below.  single  peak  r e g i o n a n d t h e g e n e r a l a p p e a r a n c e o f t h e H e l PE s p e c t r u m ( F i g . strongly  suggests  t h a t the vapor generated  is  single  species.  a  spectrum(Fig.  4a)  The  i s very  similar  unit.  The  HLopr  S N j * peak w i t h o t h e r 3  The  HLo  mass  corresponding t o those  spectrum(Fig.  fragments such as S N * ,  mass s p e c t r u m ( F i g .  3)  under such c o n d i t i o n s Hel  of S N 2  2  s u p p o r t i n g t h e i d e a t h a t t h i s s p e c i e s i s an a g g r e g a t i o n (SN)  ft  vapor.  experimental  provide additional  but  some  polymer  o f t h e S«N,  The  phase  be  o f t h e S„N  condensation  the  there  been  r e a c t i o n s , s i m i l a r to the r e s u l t s  form  itself,  leading  has  3  i n the pyrolysis  wool(1l).  Since  eventually  as those  2  2  mass  a n d S,N , a  of  the  4b) shows a s t r o n g S N*, 2  and  SN*.  4 c ) , however, g i v e s o n l y a dominant  184  S N * peak a n d two s m a l l p e a k s 3  (S N *  3  radiation(10.2eV)  cannot  2  and S N * ) .  2  i o n i z e S N , t h e S N * peak i n t h e HLo 2  2  2  mass s p e c t r u m i s a f r a g m e n t o f t h e p a r e n t parent  i o n of S N . 2  The l o w i n t e n s i t y  2  mass s p e c t r u m s u g g e s t s The 138  fact  that  that S N 2  there  are  2  no  2  species  but  3  o f t h i s peak i n t h e H L c ^ r  i s i n f a c t absent peaks  with  i n the vapor.  masses h i g h e r  does  not  contains  ionized  spectrum. under  by  HLo  S„N  or  2  i s not present  radiation,  present  Since a l l the other show  conditions  i s absent  their  parent  that the  is a  sulfur-nitrogen  t h e c r a d l e f o r m SqN,,.  because a l t h o u g h  SN*  H e n c e , i t c a n be c o n c l u d e d  the  chapters  any  vapor  other  studied  species. in  these  p e a k s i n t h e i r H L o i r mass s p e c t r a , S N 3  3  radical.  however, t h a t under v a r y i n g e x p e r i m e n t a l c o n d i t i o n s  species, particularly  produced.  generated  single discrete  species  i t can  i n t h e HLo mass  t h i s vapor phase s p e c i e s i s thus a s s i g n e d as t h e do n o t e ,  than  that the  3  M o r e o v e r , t h e SN r a d i c a l  We  not the  amu ( S N * ) i n any o f t h e t h r e e mass s p e c t r a p r o v e s  vapor  be  S i n c e t h e HLc  2  This  in  S N 2  2  a n d S N , a n d a l s o S^Na c a n a  itself  can  highest  peak  be  2  lead  to the confusion  i n the  literature.  2. spectrum least  Since  the 3  the  HLo  mass  3  sharp  first  However, t h e H e l  for a  n i t r o g e n atoms.  PE  spectrum  shows  a  band a n d t h e s e p a r a t i o n b e t w e e n t h i s a n d t h e  s e c o n d band„is a b o u t 2.5eV. unusual  in  i s S N * , t h e vapor phase s p e c i e s s h o u l d c o n s i s t of a t  t h r e e SN u n i t s .  rather  observed  molecule  Such a d i s t i n c t  having  at least  first  band i s  very  t h r e e s u l f u r and t h r e e  F o r e x a m p l e , w i t h i n 2.5eV o f t h e f i r s t  I P , the  185  Hel  PE  spectrum  of  shows 4 b a n d s , and A  linear  S N 2  S,N,  (SN),  shows 3 r e s o l v e d  2  biradical  calculations  shows p o s s i b l e the  first  It  S N " 3  or a c y c l i c This  has  Its  s t r u c t u r e has assuming  D  electronic of  been e s t a b l i s h e d in  3  is  been s t u d i e d  by  symmetry.  The  3h  t r a n s i t i o n (2E" this  anion  D  at  of  (lowest  u n o c c u p i e d MO)  correlated  second IP's the  of  the  S N  3  polymer.  two  by  model(l8) which  n orbitals  the  ab  360nm  initio  within  extremely  electronic  HFS-SCF of  the  the  well(13).  bond l e n g t h s  separation  HOMO ( h i g h e s t been shown  set at  this  of  the  separation first  and  species(20),  bearing  in  and  IP's.  p r o v i d e s some s u p p o r t vapor a r i s i n g  1.55A  b e t w e e n t h e LCJMO  d i f f e r e n c e between the  between a d i a b a t i c  cation,  o c c u p i e d MO)  that  first  Similar  3  vertical  2.5eV, a g r e e s r e a s o n a b l y w e l l w i t h  r a d i c a l t o the  method,  uv-absorption  3  corresponding neutral  and  The  corresponding S N *  with  that  six-membered  energy  predicts  calculated  the  planar  calculated 2  the  a  shown i n F i g . 2.  t o 2A ")  I t has  differences  crude e s t i m a t i o n 3  and  with  experimental value,  the  The  i s 3.38eV(l9).  be  mind  1.6A(13).  is  3  symmetry b u t  3h  instead  can  give  by X - r a y c r y s t a l l o g r a p h y  n-Bu,N*S N ~  structure  assuming  cation  m o l e c u l e may  (SN),  2  6).  argument i s s u p p o r t e d  c and  c a l c u l a t i o n s h a v e been done f o r t h e again  (SN),  of a o p e n - c h a i n e d  i o n i z a t i o n s f r o m two  anion  3  ring(l3).  band  S„N  2eV.  3. the  of  shows 6 b a n d s ( s e e a l s o C h a p t e r 5 and  more c o m p l e x i o n i z a t i o n p a t t e r n s . SCF-Xa-SW  bands, t h a t  from  f o r the  the  The above  assignment  heating  the  of  (SN)  X  186  4. 5mm  The v a p o r  g l a s s tube w i t h o n l y very minor  most o f i t s t i l l 300°C.  A S N 3  derealization such  decomposition.  s u r v i v e s a f t e r passage  A biradical  so s t a b l e .  3  of  through  such as t h e l i n e a r radical the  with  a  In a d d i t i o n ,  Pyrex  wool  "(SN)," i s u n l i k e l y ring  a  structure  t o be  and  u n p a i r e d e l e c t r o n , h o w e v e r , may  at  some  possess  stability.  5. by  p h a s e s p e c i e s c a n t r a v e l more t h a n 25cm i n  This S N  r a d i c a l h a s been o b s e r v e d and i d e n t i f i e d  both  i t s PE a n d mass s p e c t r a f r o m t h e p y r o l y s i s o f S,N, v a p o r  over  3  silver  wool  3  or  participates  in  condensation  Pyrex the  wool;  moreover,  formation  (Chapter 5 ) .  These  of  i t  the  results  probably  (SN)  polymer  X  and  also  the  upon  consequent  p r o p o s a l a r e coherent w i t h t h e s u b l i m a t i o n p r o p e r t y of the (SN) polymer,  a n d c o n s i s t e n t w i t h t h e r e c e n t mass s p e c t r o m e t r i c s t u d y  o f t h e p y r o l y s i s o f t h e S,N  6. phase, fact  Although t h i s  vapor(11).  tt  species i s r e l a t i v e l y  stable  i n i t s vapor  i t u n d e r g o e s s u b s t a n t i a l c h a n g e s upon c o n d e n s a t i o n . that  of c o l o r s  condensation of a s i n g l e as  r e d , brown,  surprising.  However,  p r e c u r s o r s t o the (SN) room  X  temperature,  X  white  these  2  s p e c i e s g i v e s such a spread and  colors  blue have  is been  really  2  and S N  2  3  quite  observed  p r e p a r a t i o n ( 7 ) . Upon w a r m i n g  S N , S,N ,  The  back  emerge s e q u e n t i a l l y  3  as to from  t h i s c o n d e n s a t e ( F i g . 5 ) ; meanwhile, a dark b l u e f i l m develops a t the  same  position  identification  as  the  of the c o l o r s  colorful  is  not  spread.  possible  One because  to  one  vapors  167  detected  by  the  mass  spectrometer  may  not  c o n d e n s e d m a t e r i a l s s i n c e c h a n g e s may o c c u r vaporization  process  or  If  gives  the dark  darkens  2  blue  3  3  4  condensing  r e a c t i v e than  7.  S N . 2  the ionization  species  increase This  probably  The  just  experimental  of the S N 3  X  polymer  collisions the  3  t h a t some (SN)*  similar  material i scertainly  more  radical  However,  suggests  the  may  have  of  S N 2  2  before  arriving  rather  of are  decrease  these  2  than  just  condensed these  of  the in  2  any above  pumping  s p e c i e s a r e f o r m e d by by  phase  changes.  molecule-wall reactions are Although  the  n o t e x a c t l y t h e same, i t i s q u i t e the  been on t h e r e s u l t s  and  2  abundances  with  that  interesting  conditions  25cm)  i f the  wool p l u g does not induce  significantly  extensions  a l s o occurs  ft  i n s t e a d . . Hence t h e m a t r i x  existence  i t gradually  that  p o s s i b l e t h a t t h e o t h e r p r e v i o u s s t u d i e s on (SN)  compositions.  S m a l l amounts o f S N , S„N, a n d S N  of a Pyrex  intermolecular c o l l i s i o n s collisions.  to  polymer, which i s again c o n s i s t e n t with  region.  change.  efficiency.  On t h e  to  l o n g d i s t a n c e (about  The i n s e r t i o n  substantial  i s thus  the  temperature  suggesting  This  2  The d e g e n e r a t i o n  appear.  during  w h i c h show t h a t i t c o n t a i n s r a d i c a l s p e c i e s ( 6 ) .  vapor has t o t r a v e l at  lustre  This f i l m  the golden  t h e ESR r e s u l t s  (room  a n d S«N«, i n v a r y i n g  2  a n d g i v e s some g o l d e n  by  film  f i l m i s k e p t a t room t e m p e r a t u r e ,  p o l y m e r h a s been f o r m e d . formed  blue  S N , S N , S N 2  either  on r o u t e t o t h e s p e c t r o m e t e r .  o t h e r hand, warming t h e dark 90°C)  be t h e o r i g i n a l  vapor  of the  of i n t e r m o l e c u l a r  study of t h e vapor  S,N,, a n d t h e e l e c t r i c  showed  deflection  188 experiments proved However,  except  that by  S,N  cracking  300°C, e l e m e n t a r y s u l f u r present conditions. in  the f i e l d  suggests  the  has  important  species.  vapor over P y r e x wool  never  been  observed  above  under  B  the  field  purity  of  desorption  the  sample  mass  spectra(8)  or the c o r r e l a t i o n  between t h e s p e c i e s a t t h e p r o b i n g s i t e of t h e s p e c t r o m e t e r the  vapor  problem  of  the  (SN)* p o l y m e r  i sparticularly  mass s p e c t r u m b e c a u s e  e  Incidentally,  is  prepared  subliming  directly  using  vaporization discussed However, the  and  the  there  polymer in  as  source  spectrum probe, and  itself. shown of  This  above  S,N,  from  i s an  the  obvious  conditions.  vapor  ( e x c e p t a t t h e end of t h e  vapor), together with  the  and  information  polymer.  diffraction synthetic  and  fact  c o l o r d i f f e r e n c e between t h e ( S N ) formed  T h i s argument, of c o u r s e , as w e l l as t h e 3  evidence  and  impurities.  a n d t h e S,N, s o l i d , a ( S N ) , s p e c i e s may be r e a l l y  such  X  process,  25% of  d e s o r p t i o n mass s p e c t r u m , a n d we n e v e r  present proposal of the S N  (SN)  polymer  important  r e - e v a p o r a t i o n of t h e condensed that  giving this  t o t h e sample  This  t h e r e i s o n l y one s i n g l e peak o f ( S N ) , * b e s i d e s  B  pure  crystalline  i s an  S * peak i n t h e f i e l d  obtained  t h e polymer  condensation  before, since  t h e sample  and  desorption  t h e h e i g h t o f t h e S * peak i s a b o u t  (SN),* peak.  not  i s quite questionable.  s e r i o u s i n case of t h e f i e l d  the  by  the  H e n c e , t h e e x i s t e n c e o f l a r g e amount o f S *  i o n i z a t i o n and  that  i s another  2  radical,  3  about  Experiments vapor  r o u t e s t o t h e polymer  t h e vapor c o m p o s i t i o n over t h e  such  phase  r e q u i r e s more e x p e r i m e n t a l  as ESR  MW  analysis,  measurements,  and t h e S N 3  3  electron different  r a d i c a l , and  vapor  X  189  phase c h e m i c a l  7.5  r e a c t i o n s o f t h e v a p o r may be  appropriate.  f p n r l n g i on  The ( S N ) to  be  a  spectra, vapor  X  polymer  single  discrete  species  at  been  about  this  3  radical.  3  The d i s t i n c t  first  s p e c t r u m a t 8.62eV a n d t h e l a r g e s e p a r a t i o n  the  s e c o n d band  The  relatively  (2.5eV) g i v e high 3  structure.  3  S,N  lustrous reason  and  2  (SN) for  X  S N,. 0  polymer.  stability  cation  be  identified  vaporization thermal (except  2  to  unusual  proposal.  the  radical  by  No o t h e r the  species  PE/PIM  a  mixture  of  eventually reactions  g a i n e d enough  spectrometer  2  S N , 2  2  forms t h e  may  be  one  previous intensity  i n e i t h e r the reactions  of t h e vapor under our e x p e r i m e n t a l  and N ) .  may  reactions, especially in  condensate  These  this  o f t h e v a p o r a n d HFS-SCF  of t h e polymer o r t h e i n t e r m o l e c u l a r  cracking S  The  between t h i s and  to  i n d i c a t e that  Intermolecular  peak o f i t s H e l  t h e s e r i o u s d i f f e r e n c e s between r e s u l t s of  s t u d i e s of the vapor. to  3  support  condensed phase, change the vapor  S N , 3  strong  thermal  c a l c u l a t i o n s on t h e S N  the  The PIM  5) a n d t h e l i t e r a t u r e ( 1 1 ) d e m o n s t r a t e t h a t  i s the S N  a ring  145°C.  S,N,  with  PE  have  established  t h e r e s u l t s of t h e p y r o l y s i s of t h e  together  (Chapter  species  i n t h e vapor phase has  and  conditions  1 90  References  ( C h a p t e r 7)  1.  F.P. B u r t , J . Chem. S o c , ( 1 9 1 0 ) 1 1 7 1 .  2.  R.L. G r e e n e , G.B. S t r e e t a n d L . J . S u t e r , P h y s . R e v . L e t t . , 34(1975)577.  3.  M.M.  L a b e s , P. L o v e a n d L . F . N i c h o l s , Chem. R e v . , 7 9 ( 1 9 7 9 )  1 . 4.  M. B o u d e u l l e , C r y s t . S t r u c t . Commun., 4 ( 1 9 7 5 ) 9 .  5.  R.L. G r e e n e  a n d G.B. S t r e e t ,  " C h e m i s t r y a n d p h y s i c s o f one  dimensional m e t a l s " , H.J. K e l l e r ,  e d . , Plenum  Press,  N.Y.,  (1977)167. 6.  M.J. C o h e n , A . F . G a r i t o , A . J . H e e g e r , A.G. M a c D i a r m i d , C M . M i k u l s k i , M.S. S a r a n a n d J . K l e p p i n g e r , J . Am. Chem. Soc,  7.  98(1976)3844.  P. L o v e , G. M y e r , H . I . K a o , M.M. C. E l b a u m ,  L a b e s , W.R.  J u n k e r and  " S y n t h e s i s and p r o p e r t i e s of low d i m e n s i o n a l  m a t e r i a l s " , J.S. M i l l e r  a n d A . J . E p s t e i n , e d . , Ann. N.Y.  Acad. S c i . , 313(1978)745. 8.  R.D. S m i t h , J.R. W y a t t , J . J . D e C o r p o ,  F.E. S a a l f e l d , M.J.  Moran a n d A.G. M a c D i a r m i d , Chem. P h y s . L e t t . , J . Am. Chem. S o c , 9 9 ( 1 9 7 7 ) 1 7 2 6 . J.R. W y a t t a n d F.E. S a a l f e l d , Phys., 9.  41(1976)362?  R.D. S m i t h , J . J . D e C o r p o ,  I n t . J . Mass.  Spectrom. Ion  21(1976)411.  R.R. C a v a n a g h ,  R.S. A l t m a n , D.R. H e r s c h b a c h a n d W.  Klem-  p e r e r , J . Am. Chem. S o c , 101 ( 1 9 7 9 ) 4 7 3 4 . 10.  R.A. T e i c h m a n 1 993.  I I I a n d E.R. N i x o n , I n o r g . Chem.,  15(1976)  191  11.  R.D. S m i t h , J . Chem. S o c , D a l t o n T r a n s . , ( 1 9 7 9 ) 4 7 8 .  12.  J . B o j e s a n d T. C h i v e r s , J . Chem. S o c , Chem. Commun., (1977) 453; I n o r g . Chem.,  13.  17(1978)318.  J . B o j e s a n d T. C h i v e r s , J . Chem. S o c , Chem. Commun., (1978) 3 9 1 .  J . B o j e s , T. C h i v e r s , W.G. L a i d l a w a n d  M. T r s i c , J . Am. Chem. S o c , 101 ( 1 9 7 9 ) 4 5 1 7 . 14.  A.A. B h a t t a c h a r y y a , A. B h a t t a c h a r y y a a n d A.G. T u r n e r , I n o r g . Chim. A c t a ,  15.  J . P a s s m o r e a n d M.N. S u d h e e n d r a Commun.,  16.  45(1980)L13. R a o , J . Chem. S o c , Chem.  (1980)1269.  H.D. B e c k e y ,  " F i e l d I o n i z a t i o n Mass S p e c t r o m e t r y " , P e r g a -  mon, N . Y . ( 1 9 7 1 ) . 17.  D.C. Weber a n d C.T. E w i n g , I n o r g . Chem.,  18.  D.R. S a l a h u b a n d R.P. Messmer, P h y s . R e v . B,  19.  R.T. O a k l e y , p r i v a t e c o m m u n i c a t i o n t o N.P.C. Westwood.  20.  F.G. H e r r i n g a n d 1667.  16(1977)3025. 14(1976)2592.  R.A.N. M c L e a n , I n o r g . Chem.,  11(1972)  1 92  PART 11 IB  A s t u d y o f monomeric n i t r o s o m e t h a n e .  i t s c i s and  t r a n s dimers, and formaldoxime  The  PES/PIMS  nitrosomethane, contrast  to  system  has  been  used  earlier  results  i t has  2  of  dimer.  The  Hel  theorem  In  shown t h a t c i s ( C H N O ) 3  vaporization.  was n o t o b s e r v e d .  A  2  PE  In addition, a  o f 'monomeric' CH NO i s shown t o b e l o n g t o t h e 3  assignments  species a r e supported Koopmans'  3  t h e c i s dimer  p r e v i o u s spectrum trans  s t u d y monomeric  t h ec i s and t r a n s dimers, and formaldoxime.  s e q u e n t i a l l y g i v e s CH =NOH a n d CH NO upon spectrum  to  and  by  HAM/3  o f t h e measured I P ' s f o r these calculations.  Breakdown  of  t h e o c c u r r e n c e of shake-up peaks i n t h e  r e g i o n a r e c o n f i r m e d f o r CH NO by c a l c u l a t i o n s w i t h t h e RSPT  and m o d i f i e d HAM/3 p r o g r a m s  3  respectively.  1 93  Chapter  8  A s t u d y o f monomeric n i t r o s o m e t h a n e t r a n s d i m e r s , and  8. 1  formaIdoxime  Introduction  The  dimer  temperature  of  synthesized t-butyl  nitrosomethane,  i n two i s o m e r i c  isomerization  relatively by  the  nitrite,  hydroxylamine the  i t s c i s and  r  easily.  the  to  the  trans  in  e.g.  (1,6).  3  ultraviolet  a  The  periodate  dimer  c i s dimer  oxidation  (1).  upon  solvent  with  The  reverse  room  undergo  has  been  of  N-methyl-  The c i s d i m e r  heating  a  low  converts  ( 1 ) , o r s i m p l y by  dielectric  occurs  constant,  upon i r r a d i a t i o n  with  light (1).  Formaldoxime,  CH =NOH, 2  nitrosomethane  i s always  nitrosomethane  dimer  heating  at  ( 6 ) , w h i l s t t h e t r a n s i s o m e r h a s been p r e p a r e d by  dissolving CHC1  exists  2  ( 1 - 3 ) , o r p h o t o l y s i s (1,4,5) of  p h o t o l y s i s of t - b u t y l n i t r i t e  easily  3  forms, c i s and t r a n s , which  pyrolysis  or  (CH NO) ,  t h e dimer  colorless  present  (1-6),  in solution  liquid  which  another in  and or  structural the  isomer  synthesis  of  of the  c a n be g e n e r a t e d d i r e c t l y by solid  trimerizes  form  at  (1).  room  It  is a  temperature  to  hexahydro-1,3,5-trihydroxy-triazine. Although  some  nitrosomethane microwave  spectrum  measurements  been  made on  ( 7 , 8 ) , and  the  ( 9 , 1 0 ) , and s e v e r a l t h e o r e t i c a l c a l c u l a t i o n s  r e l a t e d to the s t r u c t u r a l  (8,  have  i n c l u d i n g the e l e c t r o n i c spectrum  spectrum  particularly  physical  12-14)  and  rotational  isomers  (11),  barrier  (15,16)  electronic h a v e been  194  performed, of  this  there s t i l l molecule  spectrometer  (17-19).  agreement  calculations. gave  an  below  l2eV.  CH NO  CNDO  and  (8,17)  PE  spectrum  To compound t h e p r o b l e m  monomer a s i n R e f .  ( 1 9 ) gave  c i s (CH NO) 3  that of formaldoxime this  conditions  To a s s i s t  as  for  a l l  molecules,  shake-up c a l c u l a t i o n s  A.  there  o f t h e CH NO 3  assigned  t o the  show, i n f a c t  the confusion relating to dimers  of these  and  species  as d e s c r i b e d b e f o r e .  an  to  HAM/3  ab i n i t i o  Koopmans'  (21,22)  f o r CH NO t o s u p p o r t 3  calculations  calculation  theorem  We have  including  (23) and  some  our c o n c l u s i o n s .  Experimental  S y n t h e s i s o f t h e compounds a n d s a m p l i n g (a)  cis  dimer  mass s p e c t r o s c o p i c m e a s u r e m e n t s u n d e r t h e same  perturbation corrections  8.2  (12)  (18) w i t h t h r e e I P ' s  i n the i d e n t i f i c a t i o n  some s e m i - e m p i r i c a l  these  initio  nitrosomethane  t h e c i s and t r a n s  t h e PE e x p e r i m e n t s  a l s o performed  IP'si n  (20).  t h e PE s p e c t r a o f n i t r o s o m e t h a n e ,  we h a v e p e r f o r m e d  ab  i s , a s we s h a l l  work we w i s h t o c l a r i f y  formaldoxime.  with  3  t h e same s p e c t r u m  2  i n t o a PE  f u r t h e r , a d d i t i o n a l work on  17, b u t t h e s p e c t r u m  material  In  o f monomeric  different  molecules  starting  with  i n t h e PE s p e c t r u m  t h e c i s dimer  However, h e a t i n g t h e t r a n s  entirely  type  some a m b i g u i t y Heating  gave a s p e c t r u m  reasonable  XNO  remains  (CH NO) 3  c i s (CH NO) : 3  2  turned  2  out  The to  best be  procedures  method  f o r synthesizing  the periodate  oxidation  of  1 95  N-methylhydroxylamine  (6). Pyrolysis  were a l s o t r i e d b u t obtained  melted  identical  t o those  introduced heating  with  at  99-99.5°C  of  the  experiment  solid  gave  c i s dimer  4cm f r o m  PE a n d mass  i n s t a n c e s under a v a r i e t y  The  white  solid  uv  and  i r  spectra  (1).  The  sample  was  the  ionization  trans  (CH NO) : 3  the s o l v e n t  ( 6 ) . The c o l o r l e s s an  c i s dimer  i r spectrum  Similar  heated  spectra  The  2  the  gave  point. inlet  were  This  tube  recorded  packed  in  both  obtained  by  of c o n d i t i o n s .  dissolving  (1).  and  was r e p e a t e d u s i n g a l o n g e r  with g l a s s wool.  and  success.  i n t o t h e i o n i z a t i o n chamber o f t h e PE s p e c t r o m e t e r by  the  (b)  limited  a n d p h o t o l y s i s o f t-BuONO  trans  i n CHC1  dimer  was  and then s l o w l y  3  evaporating  c r y s t a l s m e l t e d a t 126.8-127.0°C  i d e n t i c a l t o t h a t of t h e t r a n s  sampling procedures  t o those described  dimer  above  were  u s e d t o o b t a i n PE a n d mass s p e c t r a . ( c ) CH =NOH:  F o r m a l d o x i m e was s y n t h e s i z e d  formaldehyde  and  2  of  obtained point  i n a sealed  tube.  t h e spectrometer a t about  through  The PE s p e c t r u m , g l a s s wool  that obtained  The i r s p e c t r u m  i n t h e l i t e r a t u r e (1 )..  3  2  white  give  a  solid melting  was i d e n t i c a l t o  sample  was  heated  43°C a n d t h e PE a n d mass s p e c t r a  even  after  at temperatures  species (19).  passage  of  the  vapor  up t o 200°C was i d e n t i c a l t o  by D a r g e l o s e t a l . ( 2 0 ) ,  be t h e c i s ( C H N O )  The  condensation  The  0  even  obtained.  (24).  s u b l i m e d between 90-134 C and d i d n o t  that described into  hydroxylamine  by  and t o t h a t p u r p o r t i n g  to  196  B.  Theoretical  calculations  C a l c u l a t i o n s were p e r f o r m e d the  cis  and  trans  on  dimers,  monomeric  and  nitrosomethane,  formaldoxime  s e m i - e m p i r i c a l HAM/3 method ( 2 1 ) w h i c h h a s been excellent chapter  IP 4).  geometries For  values The  used  f o r a wide v a r i e t y  calculated  using  the  to  give  shown  o f m o l e c u l e s (see a l s o  I P ' s , experimental  I P ' s and  f o r t h e c a l c u l a t i o n s a r e g i v e n i n T a b l e 1-4.  comparison purposes l i t e r a t u r e  r e s u l t s using other types  of  calculations are included. We h a v e a l s o c a l c u l a t e d the  was  i n T a b l e 5.  adopted  calculations A  since  of  from  that  HAM/3 p r o g r a m  a  shake-up usual  to  f i t the  valence-electron  shake-up  electronic  of  geometry  CH NO  using  3  quoted  i n R e f . 10  i t g a v e a s u p e r i o r SCF t o t a l  valence-electron  empirically  The e a r l i e r  instead  modified  energies  8.3  IP's  GAUSSIAN 70 (25) a n d RSPT ( 2 6 ) p r o g r a m s , a n d t h e r e s u l t s a r e  summarized  the  the v e r t i c a l  f o r the  above  energy.  (27) h a s a l s o been u s e d t o s t u d y  p r o c e s s e s o f CH NO.  The  3  HAM/3  i n Ref. 9  calculation  results  of  calculations  can  be  subsequent with  orbital adjusted CI  and  the experimental  a b s o r p t i o n s p e c t r u m a n d t h e PE s p e c t r u m .  Results  The (a)  r e s u l t s o f t h e a b o v e e x p e r i m e n t s may be Heating  c i s (CH NO) 3  2  into  summarized:  t h e PE s p e c t r o m e t e r g i v e s  TABLE 1  Experimental and theoretical  Orbital Symmetry  Exptl.  b  9.68±0.05  10a'  IP's  of  a  monomprir nitrosomethane  HAM/3  MIND0/3  CNDO  CND0  ab i n i t i o ^  ab i n i t i o ^  9.56  9.11  11.8  11 .75  11.50  10.39  14.94  15.16  . 15.59  15.62  C  C  d  e  2a"  14.3  14.00  12.86  14.7  15.33  9a"  13.8  13.96  11 .75  16.0  16.21  la"  16.9  16.18  15.35  19.5  17.93  17.52  8a'  15.8  15.60  14.26  19.8  18.21  18.26  7a'  16.9  16.83  15.40  20.2  19.23  19.16  20.90  21 .07  23.88  23.43  h  h  6a'  a  A l l values in eV.  b  All  c  This work.  d  Ref.  [19]  e  Ref.  [8]  f  Ref.  [12]  g  The nitroso group i s eclipsed to the methyl group as in c [28].  h  The l a " and 7a' ionizations  IP's ± 0.1 eV except as s p e c i f i e d . The geometry i s taken from r e f . [ 9 ]  are unresolved.  198  TABLE 2  Orbital Symmetry  f y p p r i m e n t a l  a n d  theoretical  IP's * of  nipnomeric formaldoxime,  Theoretical  ExptV  HAM/3  C  MIND0/3  4-31 G  C  d  Ab  initio  2a"  10.5910.02 10.60  10.04  11.33  11.16  10a'  11.12+0.05 11.49  9.38  12.04  12.24  la"  14.3  14.23  • 13.80  16.27  9a'  14.9  15.06  12.57  16.27  8a'  16.1  15.76  14.35  17.71  7a'  17.5  17.53  16.64  21.06  6a'  18.3  19.93  20.28  22.64  a  A l l values in eV.  b  All  c  This work.  d  Ref.  e  The hydrogen of the hydoxyl group i s trans to the coplanar hydroc  IP's are ± 0.1 eV except as s p e c i f i e d , Geometry is taken from Ref.[30].  [20]  the methylene as in c [28].  6  199  TABLE 3  Experimental and theoretical nitrosomethane dimer  Orbital Symmetry  a  u 10a g  D  HAM/3  the trans  SCF-CI (CNDO)  8.63 ± 0.05  8.92  10.58  9.91 ± 0.01  9.93  11 .96  10.77 ± 0.05  10.94  13.07  11.5  12.51  14.18  13.6  13.98  u  2 b  9  2 a  u  14.02 8 b  u  l b  9  8 a  9  14.33 14.86  7b  15.41 t 0.05  15,35  16.91 t 0.05  17.30  u l a  u  7 a  9  18.15 18.55 18.2  6b .-u 6 a  of  h  Exptl  3a  9b  IP's  18.68 22.60  9  a  All  values in eV  b  All  IP's i 0.1 eV.  C  This work.  d  Ref.  [8].  except as s p e c i f i e d ,  Geometry is taken from Ref.[31].  H  200  TABLE 4  Theoretical  IP's  a  of  the c i s nitrosomethane dimpr  Orbital Symmetry  HAM/3  3bj  8.13  12.42  10aj  9.11  12.09  9b  2  9.68  13.58  2a  2  11.28  10.19  8b  2  13.78  2bj  13.96  7b  2  14.81  2  15.42  9a,  15.55  8a)  16.32  lbj  17.47  7ai  18.41  6b  2  19.02  6a  2  24.12  5b  2  24.69  la  5a j  27.89  4b  29.64  2  a  Al1 values in eV.  b  This work.  C  Ref.  [8]  b  SCF-CI(CNDO)  Geometry i s taken from Ref.[32J.  TABLE 5  A comparison of observed and theoretical  Orbital Symmetry  GAUSSIAN 70 ST03G ST04-31G  I P ' s c a l c u l a t e d by RSPT for monomeric nitrosomethane Perturbation corrections  l  Exptl'  10a'  9.68f0.05  a  3rd order  A(E ) G A  Extrapolated  8.40  11 .20  9.24  9.10  9.5  9a'  13.8  13.36  15.32  13.69  13.65  14.0  2a"  14.3  12.30  14.65  14.00  14.00  14.2  8a'  15.8  15.89  18.14  16.37  16.05  16.4  7a'  16.9  16.83  18.95  16.39  16.30  16.6  la"  16.13  17.65  16.39  16.39  16.6  6a'  21 .79  23.58  20.58  20.46  20.9  a  A l l values in eV.  b  A l l IP's  c  Geometry taken from Ref.  d  See text.  results A(E ) G A  Scaled perturbation  9.67  14.26  ± 0.1 eV except as specified, [9].  r o o  202  monomeric f o r m a l d o x i m e , CH =NOH, up t o a b o u t  80°C, a n d a t  2  95°C the  monomeric  nitrosomethane,  vapor phase.  as t h e c i s dimer  CH NO, i s t h e m a j o r  i sactually  Bergmann  e t al.("l9)  CH =NOH, a l t h o u g h t h e y d i d o b t a i n a 2  s p e c t r u m o f CH NO a t h i g h e r t e m p e r a t u r e s .  The  3  CH NO  product i n  3  The s p e c i e s d e s c r i b e d by  about  PE  spectrum  of  a n d i t s c o r r e s p o n d i n g P I M s p e c t r a o b t a i n e d u n d e r t h e same  3  c o n d i t i o n s a r e shown i n F i g . 1.  H e a t i n g t h e sample f u r t h e r  over  P y r e x w o o l g a v e no c h a n g e i n t h e s p e c t r u m . Further v e r i f i c a t i o n species  was  made  spectrometer.  A  temperature,  by  solid  then  trimeric  et  the et  al.(lB).  (CH NO) 3  route into the at  room  white  solid  has  identical  to  This  into  2  identical  A s we s h a l l s e e l a t e r  and  melts  those  t h e PE  spectrometer  at  t o t h a t o b t a i n e d by E g d e l l  this  i s indeed  the  trans  n o t t h e monomer a s c l a i m e d ( 1 8 ) . The I P v a l u e s a r e  same a s t h o s e f o r t h e t r a n s al.(l9).  The  PE  (CH NO) 3  2  showing  published  by  t h e presence of  Bergmann  the  i s passed over Pyrex wool a t about  PE s p e c t r u m o b t a i n e d i s t h a t temperatures  dimer  a n d mass s p e c t r a a r e shown i n F i g . 2, t h e  mass s p e c t r u m u n e q u i v o c a l l y When t r a n s  which  a n d an i r s p e c t r u m  28°C g i v e s a s p e c t r u m  dimer,  deposits  en  temperature  formaldoxime.  (b) H e a t i n g t r a n s about  t h e vapor  resolidifies.  subliming characteristics of  2  trapping  white  and  t h a t CH =NOH i s t h e l o w  of  monomeric  CH NO.  dimer.  220°C t h e At  lower  t h e PE s p e c t r u m shows a m i x t u r e o f t h e t r a n s  dimer  3  and monomer, w i t h no e v i d e n c e f o r CH =NOH. 2  (c)  The  PE  spectrum  of  formaldoxime  i ssimilar  t o that  203  (b)  Hel  PIM  sppr.triim  (c) hi^  PIM spectrum  •NO  -CH N0 3  (a) Hel PE spectrum  CH.NQ  1  1  8  i  12  l  16  1  eV  IONIZATION POTENTIAL Fig.  1  The Hel PE spectrum (a) of nitrosomethane together with thp PIM  spectra recorded with (b) Hel and (c)  HL^  radiation  204 (b) Hel PIM spectrum  (c) HL.  I  N0  n  PIM spectrum  I  +  CH N0 3  I 10  1  I  +  I 14  I  I 18  I  eV  IONIZATION POTENTIAL Fig.  2  The  Hel PE spectrum of the trans nitrosomethane dimer together fb) and (c) the spectra ag  with  the Hel  Hl  PIM  205  obtained  previously  t h e mass s p e c t r a . HLopr  serves  (Fig.  1). This  ( 2 0 ) , a n d i s shown i n F i g . 3 t o g e t h e r  The c r a c k i n g p a t t e r n f o u n d to  distinguish  CH =NOH  for  calculations  (Table  (Table  of  a  PE  4) p r o v i d e s  spectrum  of a l l  these  some i n d i c a t i o n  all  MO,  t o be much more a c c u r a t e  than t h e  (Table  molecular  results  (Table  values.  1).  7 a ' , Va"  they  estimate  an  o r b i t a l s o f CH NO 3  a  3a" l o w - l y i n g  by t h e 4-31G c a l c u l a t i o n s ; a"  orbitals  i s consistent  retain  with  The o r d e r i n g o f i o n i z a t i o n and  6a', with  b u t t h e two relatively  i s 10a', 9a',  2a",  t h e I P ' s f o r t h e 7 a ' a n d 1a" Only  two I P ' s  from t h e s c a l e d p e r t u r b a t i o n c a l c u l a t i o n s very  decrease  the discussion i n  o r b i t a l s p r e d i c t e d t o be q u i t e c l o s e t o g e t h e r . reported  give  The p e r t u r b a t i o n c o r r e c t i o n s  t o t h e two This  Chapter 2 (2.2C).  are  5)  w h i c h i s c o n s i s t e n t w i t h some o t h e r p r e v i o u s a b  IP's corresponding  8a',  In the  ordering  seven o c c u p i e d  the IP's obtained  higher  confirmation  species.  10a', 2 a " , 9 a ' , 1a", 8 a ' , 7a' a n d 6 a ' , and  initio  results,  o b t a i n e d CNDO r e s u l t s ( 8 ) .  ordering of t h e f i r s t  unoccupied  3  of t h e p o s i t i o n and  (e) The GAUSSIAN 70 4-31G c a l c u l a t i o n s  as  CH NO  f o r t h e c i s dimer, the c a l c u l a t i o n  of t h e I P ' s w h i c h a r e e x p e c t e d previously  spectroscopic  1-4) p r o v i d e a d d i t i o n a l  thecorrect i d e n t i f i c a t i o n  absence  from  s p e c i e s d o e s n o t i s o m e r i z e b e l o w 200°C.  (d) I n a d d i t i o n t o t h e PE a n d mass HAM/3  u s i n g both Hel and  ( F i g . 3)  2  with  good I P ' s f o r t h e h i g h e s t  symmetry s p e c i e s , b u t n o t f o r t h e r e s t .  occupied  because  MO o f e a c h  206  (b)  Hel PIM spectrum  (c)  HL  n  PIM spectrum  <*3Y  CH N0H 2  ,  +  (a) Hel PE spectrum  IONIZATION POTENTIAL fig. 3  The Hel PE spectrum (a) with (b)  the Hel and (c)  of formaldoxime together HL  PIM spectra  207  8.4  Discussion  We h a v e now e s t a b l i s h e d t h a t t h e c i s ( C H N O ) 3  CH =NOH  up  2  to  about  higher temperature monomer,  cis  dimer  that  the  i n the s o l i d  CH =NOH s p e c i e s a t a t e m p e r a t u r e (CH NO) 3  dissociates  2  rather unusual. will  have  to  gives  isomerization  of  occurs probably state.  CH NO 3  the  cis  while the  The f o r m a t i o n o f t h e at  which  c o m p l e t e l y i n t o t h e monomeric f o r m i s  The t h e r m o d y n a m i c s o f t h i s be  t h e pure  some 10°C b e l o w t h a t  2  cis  still  t o formaldoxime  i s still  Heating t o a  3  over Pyrex wool  dimer  species gives  80°C a n d CH NO a b o v e 90°C.  indicating  nitrosomethane  2  re-evaluated  before  complicated  a proper  system  isomerization  m e c h a n i s m c a n be d e v e l o p e d . We h a v e made many a t t e m p t s t o o b t a i n t h e PE s p e c t r u m cis  dimer  dimer  using a variety  within  of  2cm o f  methods,  the  including  ionization  temperatures, and a d i a b a t i c a l l y expanding nozzle. formed, The of  In  both  instances,  W i t h no e v i d e n c e  only  discussed  CH =NOH 2  (20,28), first  two  especially closely  ( T a b l e 3) c l o s e l y experimental  concerning spaced  2  3  i sobtained.  with  f o r the assignments 1-4.  the previous  the relative  states.  R e f . 19.  They  They w i l l n o t  t o say that those f o r  Those  also  results  o r d e r i n g of the  f o r trans  f i t our e x p e r i m e n t a l spectrum  I P ' sof  small  CH =NOH o r CH NO a l o n e a r e  here, except  ( T a b l e 2) a r e i n a g r e e m e n t  minimal  3  serve as a basis  i n any d e t a i l  at  CH NO t h r o u g h a  t h e PE s p e c t r a a n d a r e p r e s e n t e d i n T a b l e  be  heating the  point  f o r t h e c i s dimer  HAM/3 c a l c u l a t i o n s  of the  (CH NO) 3  2  ( F i g . 2) a n d t h e  indicate  that  the  208  earlier trans  spectrum  since  presents  earlier  corrections hold  RSPT  Egdell et a l . ( l 8 )  i sa c t u a l l y that  of the  dimer. CH3NO  not  of  calculations  i n t h i s case  causes a switching  (33).  involving  perturbation  p r e d i c t i o n i s s u p p o r t e d by o u r  The l o w l y i n g u n o c c u p i e d ir o r b i t a l  3  of 2a" w i t h  9a' and  are applied  predicts this ordering. of  HNO  This  on CH NO.  corrections  0.5eV  on  (Table 1 ) ,  t o Koopmans' Theorem i n d i c a t e d t h a t t h e t h e o r e m d i d  calculation  after  an i n t e r e s t i n g assignment problem  l a " with  t o t h e SCF r e s u l t s .  The RSPT c a l c u l a t e d I P ' s  the experimental  8a'  values.  orbitals  HAM/3 a l s o  area l l within  A p l o t of predicted  IP's  T  against (Fig.  the values  4)  shows  10"  that  (where T i s t h e t r u n c a t i o n this  discrepancy  should  d e c r e a s e a s more  determinants are considered.  An e x c e p t i o n  small  Due t o t h i s e x c e p t i o n ,  PE  band  at  l5.8eV.  criterion)  to this  trend  i s the  and t h e low  i n t e n s i t y and b r o a d n e s s of t h i s band, and t h e p r e s e n c e of a lying with that  virtual  orbital,  the modified  10a' MO.  we have done some s h a k e - u p c a l c u l a t i o n s  HAM/3 p r o g r a m .  The  results  s i m u l t a n e o u s e x c i t a t i o n o f an e l e c t r o n  MO t o t h e 3 a " MO d u r i n g  (Table  with  6)  show  f r o m t h e 2 a " o r 1a"  t h e i o n i z a t i o n o f an e l e c t r o n  MO d o e s m i x s i g n i f i c a n t l y Accordingly,  low  from  the  t h e i o n i z a t i o n from t h e 8a'  t w o g e n e r a l i z a t i o n s c a n be drawn f o r m o l e c u l e s  having low-lying v i r t u a l  orbitals:  (a) Koopmans' t h e o r e m may be i n v a l i d (b) V a l e n c e - e l e c t r o n even i n t h e H e l r e g i o n .  shake-up  (33);  processes  may be i m p o r t a n t  Fig. 4  A plot of theoretical  THEORETICAL IP PA ' IP's of CH N0 (A(E ) of the RSPT results) o  g against the truncation l i m i t , 10  -T  210  TABLE 6  Interpretation  of the ionization and shake-up processes of  CH N0 in the Hel region by the modified HAM/3 method 3  Peak position  Intensity  Ionization and shake-up processes  9.58  0.97  10a'"  13.77  0.83  9a'"  1  14.29  0.98  2a""  1  15.68  0.54  8a'"  16.49  0.48  10a'"  1  ;  1  1  10a'"  1  * (2a" - 3a")  * (2a" - 3a") ;  8a " 1  1  c  ;  l O a ' - l * ( l a " - 3a") 16.87  0.84  la""  1  17.43  0.85  7a'"  1  20.96  0.94  6a'"  1  a. A l l values in eV. b. Relative i n t e n s i t y .  Only the peaks with intensity greater than  0.12 are described here. c. One electron is ionized from the 10a orbital 1  excitation of an electron from the 2a" o r b i t a l  together with the to the 3a" o r b i t a l .  The ordering represents the importance of the processes.  21 1  The  latter  processes most .PE  point  i s particularly  i n the Hel  important  because  shake-up  r e g i o n h a v e been i g n o r e d i n t h e p a s t by  s p e c t r o s c o p i s t s and t h e r e s u l t a n t  just  simply neglected or a t t r i b u t e d  8.5  Conclusion  satellite  peaks a r e  to impurities.  I t h a s b e e n d e m o n s t r a t e d t h a t t h e PES/PIMS s y s t e m , c o m b i n e d w i t h some quantum m e c h a n i c a l used  to  noted  CH =NOH 2  mixture.  inearlier  We n o t e  t h e CH NO, c i s  This  has c l a r i f i e d  successfully  i n a complicated gas and  trans  3  2  several ambiguities t h e unusual  3  t h a t w h i l e t h i s work was i n i t s c o n c l u d i n g of  (CH NO) ,  o f CH NO i n t h e H e l r e g i o n .  the  authors  (29)  t h a t t h e PE s p e c t r u m o f In  3  be  work a n d a l s o a i d s i n u n d e r s t a n d i n g  shake-up p r o c e s s e s  thesis.  can  evaluate the i o n i z a t i o n processes  phase system, i n t h i s c a s e , and  calculations  R e f . 18, r e p e a t e d  addition,  their  CH NO 3  their  earlier  i s as  stages,  w o r k , a n d show  described  in  this  CI c a l c u l a t i o n s a l s o . p r e d i c t t h e  b r e a k d o w n o f Koopmans' t h e o r e m f o r t h i s  molecule.  212  References  (Chapter B)  1.  B.G. G o w e n l o c k  and J . Trotman,  J . Chem. S o c , ( 1 9 5 5 ) 4 1 9 0 .  2.  B.G. G o w e n l o c k  and J . Trotman,  J . Chem. S o c , ( 1 9 5 6 ) 1 6 7 0 .  3.  A.D. Y o f f e , R e s e a r c h ,  4.  C.S. Coe a n d T.F. D o u m a n i , J . Am. Chem. S o c , 7 0 ( 1 9 4 8 )  7(1954)544.  1516. 5.  G.R. M c M i l l a n , J.G. C a l v e r t a n d S.S. Thomas, J . P h y s . Chem.,  6.  68(1964)116.  T. Emery a n d J . B . N e i l a n d s , J . Am. Chem. S o c , 8 2 ( 1 9 6 0 ) 4903.  7.  R.N. D i x o n a n d H.W.  Kroto, P r o c  Roy. S o c . A,  283(1965)  423. 8.  J . K u h n , W. Hug, R. G e i g e r a n d G. W a g n i e r e , Acta,  9.  H e l v . Chim.  54(1971)2260.  D. C o f f e y , J r . , C O .  Britt  and J . E . Boggs,  J . Chem. P h y s . ,  49(1968)591. 10.  P.H. T u r n e r a n d A.P. C o x , J . Chem. S o c , F a r a d a y T r a n s . 2, 74(1978)533.  11.  W.J. H e h r e , J . A . P o p l e a n d A . J . P . D e v a q u e t , Soc,  J . Am. Chem.  98(1976)664.  12.  T.K. Ha a n d V.P. W i l d , Chem. P h y s . ,  4(1974)300.  13.  V. B h u j l e , V.P. W i l d , H. Baumann a n d G. W a g n i e r e ,  T e t . , 32  (1976)467. 14.  R. C i m i r a g l i a ,  M. P e r s i c o a n d J . T o m a s i , Chem. P h y s .  Lett.  63(1979)352. 15.  P.A. K o l l m a n a n d L . C  A l l e n , Chem. P h y s . L e t t . ,  5(1970)75.  213  16.  A.R. M o c h e l , L . L . G r i f f i n , J . Chem. P h y s . ,  R.W.  K r a m l i n g and J . E . B o g g s ,  58(1973)4040.  17.  H. Bergmann a n d H. B o c k , Z. N a t . , 3 0 b ( 1 9 7 5 ) 6 2 9 .  18.  R. E g d e l l , J . C . G r e e n , C.N.R. R a o , B.G. G o w e n l o c k a n d J . P f a b , J . Chem. S o c , F a r a d a y T r a n s . 2, ( 1 9 7 6 ) 9 8 8 .  19.  H. Bergmann, S. E l b e l a n d R. Demuth, J . Chem. S o c , D a l t o n (1977)401.  20.  A. D a r g e l o s a n d C. S a n d o r f y , J . Chem. P h y s . ,  67(1977)3011.  21.  L . A s b r i n k , C. F r i d h a n d E. L i n d h o l m , Chem. P h y s . L e t t . , 52(1977)69.  22.  L. A s b r i n k , C. F r i d h a n d E. L i n d h o l m , QCPE  23.  D.P. C h o n g , F.G. H e r r i n g a n d D. M c W i l l i a m s , J . Chem. Phys.,  61(1974)78.  24.  R. S c h o l l , Chem. B e r . ,  25.  W.J. H e h r e , W.A. A. P o p l e , QCPE  26.  24.1(1891)573.  L a t h a n , R. D i t c h f i e l d , M.D. Newton a n d J . 11(1973)236.  D.P. C h o n g , p r i v a t e (see  11(1980)393.  c o m m u n i c a t i o n t o W.M. L a u .  a l s o R e f . 23)  27.  D.P. C h o n g , p r i v a t e  communication  t o W.M. L a u .  28.  M.A. Robb a n d I.G. C s i z m a d i a , J . Chem. P h y s . , 5 0 ( 1 9 6 9 ) 1 8 1 9 .  29.  N.P. E r n e s t i n g ,  J . P f a b , J.C. Green and J . Romelt, J .  Chem. S o c . F a r a d a y T r a n s . 2, 7 6 ( 1 9 8 0 ) 8 4 4 . 30.  I . N . L e v i n e , J . Chem. P h y s . ,  38(1963)2326.  31.  M. v a n M e e r s s c h e a n d G. G e r m a i n , B u l l .  S o c Chim. B e l g . ,  68(1959)244. 32.  G. G e r m a i n , P. P i r e t a n d M. v a n M e e r s s c h e , A c t a C r y s t . , (1963)109.  16  214  33.  D.P.  Chong, F.G.  Spectrosc.  Herring  and D.  McWilliams, J . Electron  R e l a t . Phenom., 7 ( 1 9 7 5 ) 4 4 5 .  215  LLL£.  A s t u d y o f some w e a k l y  a s s o c i a t e d m o l e c u l e s by u s i n g  a f a s t pumping n o z z l e i n l e t  The which  f i n a l examples of system a p p l i c a t i o n s  i s l i k e l y t o become o f i n c r e a s i n g  study of weakly unstable marriage of  system  molecules  further  ahead,  beams  interaction  with light  T h i s moves t h e and  sources.  study  tunable  uv  o f I P ' s a t much h i g h e r r e s o l u t i o n ,  i s designed t o approach  Under  the  typical  experiments, a weakly dissociated  into  these  high  lasers  the l o c a l  vacuum  a s s o c i a t e d molecule  t o the exothermic  have been  2N0  i s of c o u r s e  *  2  3  2  of  PES  l i k e l y to  However, an a d i a b a t i c a  nozzle  and enhance t h e p r o d u c t  n a t u r e of i t s f o r m a t i o n .  inlet yield  Two s u c h s p e c i e s  studied:  N 0,  2  is  1 atm.) w i t h  and  2  (CH ) 0 + BF  N 0<,  the  The p r e s e n t  conditions  i t s constituents.  temperature  with  of a  requirements.  e x p a n s i o n of t h e c o n s t i t u e n t m o l e c u l e s t h r o u g h reduce  of  interactions  open up a new e r a o f UPS, p r o v i d i n g t h e i n v e s t i g a t i o n  system  due  i s the  The f u t u r e p r o s p e c t o f t h e  added o p t i o n o f s t u d i e s u n d e r t h r e s h o l d c o n d i t i o n s .  will  area  provides a convenient  o f m o l e c u l a r beams w i t h r e l i a b l e  much g r e a t e r r a n g e  be  an  importance; that  b e t w e e n m o l e c u l a r beam t e c h n i q u e s a n d t h e  such  will  a s s o c i a t e d complexes.  include  3  *r=^ ( C H ) 0 - B F  formed a  small  3  at  2  high  3  stagnation  n o z z l e (about  60M).  pressures I t syield  (about i s better  216  than  80%.  The  success  in  forming  this  d e m o n s t r a t e s the c a p a b i l i t y of the p r e s e n t together  with  Koopmans' Chapter  the  theorem  theoretical and  the  study  shake-up  well-known  species  n o z z l e system.  of  the  This,  breakdown  processes,  of  i s treated in  9.  (CH ) 0-BF , 3  2  i n a d i f f e r e n t a p p r o a c h , i s f o r m e d by  3  a r e l a t i v e l y low large nozzle  stagnation pressure  (about  0.4mm).  The  (about  3  torr)  of  calculations electronic  this  complex.  have been c a r r i e d  structure.  This  Ab  initio  out  to assess  study  across  y i e l d i n t h i s case i s only  However, a s p e c t r u m s t r i p p i n g p r o c e d u r e g i v e s a spectrum  applying  and  i s described  'pure'  a 30%.  Hel  semi-empirical its  geometry  i n Chapter  10.  PE MO and  217  Chapter 9  9.1  N 0„ ?  Introduction The t h e r m o d y n a m i c s o f t h e monomer-dimer  N0  and  2  N 0 2  in  e  the  gaseous  e q u i l i b r i u m between  phase  h a s been  extensively(1,2).  N 0 , e x i s t i n g w i t h a h i g h mole  room  and  2  temperature  s t r u c t u r e and a long N H„)(3,4). h i g h vacuum species  NO 2  h a v e been o b t a i n e d  compared  nozzle  with  a  high  1.47A i n  to  t o N0  under  2  PE s p e c t r a o f t h i s  by v a r i o u s c o o l i n g  t h ea d i a b a t i c expansion  techniques(5-10).  of t h e sample gas through  stagnation  pressure  The h i g h e s t m o l e f r a c t i o n o f N 0 „ s o 2  i s a b o u t 68% ( 8 - 1 0 ) .  obtained  2  initio  recent  (11-14)  and s e m i - e m p i r i c a l methods(15).  ab i n i t i o Green's f u n c t i o n study  of  N 0 , (16) has p o i n t e d  as  well  2  as  accounting  the occurrence  This chapter  inlet,  including  of  shake-up  However, a  the photoionization  processes,  of t h e spectrum above  d e s c r i b e s t h e study  l5eV.  o f N 0« w i t h our 2  thereby  modified  w h i c h c o n s i s t s o f an o p t i o n a l cryopump a n d a n o z z l e  using d i f f e r e n t  (GAUSSIAN  of  using  o u t t h e b r e a k d o w n o f Koopmans' t h e o r e m  f o r thecomplexity  spectrometer  a  i s t h e most  E x t e n s i v e MO c a l c u l a t i o n s o f N 0 „ have a l s o been done ab  at  with a planar  d i s s o c i a t e s completely  ft  s u c c e s s f u l method(5,7-10). far  (1.78A  bond  a t room t e m p e r a t u r e , H e l a n d H e l l  Among t h e s e , small  atm., i s diamagnetic  N-N  Although  2  fraction  a  1  studied  70,  4-31G),  shake-up  nozzle and  sizes.  semi-empirical  processes  compared w i t h t h e p r e v i o u s  Ab  ' have  results.  also  initio  calculations  HAM/3 c a l c u l a t i o n s been  performed  and  218  9.2  Experimental The  construction  Chapter made  3.  The n o z z l e s o f  of Pyrex tubes.  conducting by  of  some N0  the sizes  ranging  f r o m 400»»  m a t e r i a l but kept  just  to  50»  were  was n o t c o a t e d  short of the i o n i z a t i o n  with point  5mm. ( M a t h e s o n ) was p u r i f i e d  2  coupled  directly  PE/PIM  spectrometer.  pressure  at  stagnation  the  ion  pressures  by  tip.  The pressure  gauge  higher  was  after  e n o u g h s a m p l e h a d been c o l l e c t e d  pressure  isola'ted  under these  circumstances  a mechanical pressure Ab  initio  the  keep To  the  achieve with  a  was h e a t e d t o a b o u t 40°C inside  sample  the trap  line.  The  and  the  stagnation  was a b o u t 2 a t m . , m e a s u r e d by  gauge.  c a l c u l a t i o n s were p e r f o r m e d  p r o g r a m ( l 7 ) a t t h e 4-31G l e v e l  using  HAM/3 p r o g r a m , u s e d t o c a l c u l a t e of a m o d i f i e d  to  torr.  5  tube  then brought t o  increased  whole d e v i c e  from  inlet  was m o n i t o r e d by  was  1X10~  volatile  1 atm., a g l a s s n o z z l e  t r a p was u s e d .  was  the  t o the glass  cryopump  a t about  than  off  Its purity  cold  device  This  pumping  introduced  to the nozzle  -196°C a n d t h e s t a g n a t i o n  9.3  h a s been d e s c r i b e d i n  The t i p o f t h e n o z z l e  i m p u r i t i e s a t -78°C, a n d t h e n  the  cryopump  by  the  GAUSSIAN 70  t h e known g e o m e t r y U ) .  I P ' s and s a t e l l i t e  lines,  The was  version(l9).  Results N0  nozzle  2  is  the  only  o f 400* i s u s e d  gaseous at  a  phase  stagnation  species  o b s e r v e d when a  pressure  of  i  torr  219  without cryopumping.  However, a b o u t  10% N 0 ,  i s obtained with a  2  n o z z l e o f 100»/  a t a s t a g n a t i o n p r e s s u r e o f 50 t o r r even  cryopumping.  The  stagnation  pressure  can  be  substantially  i n c r e a s e d when t h e c r y o p u m p i s c o o l e d down t o -196°C. extreme  case  is  p r e s s u r e of about causes  a  because  N 0,  is  2 atm.  degeneration condenses  2  achieved  by  are  near the n o z z l e . a  1 atm.  nozzle The  'pure'  N0  Hel  PE  subtracting  is  2  also  spectrum  out  N0  the  quality  2  of the s a m p l i n g The  shown of  ( F i g . 3)  2  the r e s i d u a l N0  2  2  4%  by c o m p a r i n g  The  The  absence  first  at  2  t t  spectrum  Hel  PE  obtained 2  mixture using  o f t h e s h a r p band  a t 14.5eV  2  intensity  indicates  of the  is  2  first  PE s p e c t r u m w i t h t h a t  11.4eV)  A by  amount o f r e s i d u a l N 0  the t o t a l  the  band  is  2  ( b r o a d b a n d a t 11.2eV) o f t h e N 0 (broad  2  stagnation  The  i n the N 0,/N0  band  band  at a  N O  of  i n F i g . 1 f o r comparison.  N 0„  of t h e N 0„ s p e c t r u m . as  60*  system  these optimal conditions  a t l 8 . 8 e V a n d t h e u n i q u e band o f N 0  estimated  best y i e l d  2b r e s p e c t i v e l y .  our s p e c t r u m s t r i p p i n g p r o c e d u r e . of  most  stagnation  H e l PE s p e c t r u m , H e l mass  shown i n F i g . 1, F i g . 2a and of  50»# a t a  of about  HLcpy mass s p e c t r u m r e c o r d e d u n d e r  spectrum  The  However, t h i s h i g h s t a g n a t i o n p r e s s u r e of the s t a b i l i t y  using  p r e s s u r e of about and  t h a t of a n o z z l e of about  without  of  the N 0«/N0 2  of 2  PE  spectrum. The  theoretical  IP's  f r o m t h e 4-31G  HAM/3 c a l c u l a t i o n s a r e s u m m a r i z e d experimental  IP's  and  results(l6).  These  Tamm-Dancoff  approximation  i n Table  c a l c u l a t i o n s and 1 together  with  the o u t e r v a l e n c e type Green's  theoretical  IP's,  (2ph-TDA)  the  two  Green's  the the  function  particle-hole  function  results  220  IONIZATION POTENTIAL Fig. 1  PE spectra of (a) NO.  and (b) N 0, / N0„ mixture o  221  ) HL  a3y  (a) Hel -*r-  •  '  I  I  I  50  L  j  i  L  100  amu Fig- 2  The mass spectra of the ionized bv fa) Hel and lb)  / NO,, mixture HI  radiation. ctpy  223  TABLE 1  The experimental and theoretical  IP's of a  Exptl^ IP  0.92x^_ 31G  NAM/3  Outer Green  11.4  11.83  11.27  11.23  %  12.35±.01  13.95  12.97  12.57  la  13.041.02  13.13  13.18  12.80  13.471.02  13.37  13.20  13.09  15.26  13.08  13.90  Orbital Symmetry  u  lb. Ig 4b, 3u  d  5b. lu  15.6  18.17  16.54  lb_  17.0  19.70  18.05  18.651.05  19.77  19.04  20.15  19.15  20.93  19.24  22.08  19.82  H  3b _ 2g  l b  2u  5a g  a. b. c. d. e.  A l l values i n eV. A l l values iO.leV except as s p e c i f i e d . This work. This work (no shake-up corrections) Ref. 16.  224  and t h e HAM/3 s h a k e - u p clearly  9.4  results  are plotted  shows t h e e x i s t e n c e o f s a t e l l i t e  in Fig. 4  l i n e s a b o v e "5eV.  piscussion Equilibrium calculations  o n l y 0.02% o f N 0 , 2  ionization  would  chamber  with  f r o m known d a t a ( l , 2 ) i n d i c a t e  exist a  at  room  pressure  temperature  as  high  as  H o w e v e r , by c o o l i n g t o -100°C, t h e c o r r e s p o n d i n g jumps  to  0.001  torr).  cooling  i n the  0.01 t o r r .  mole  fraction  This cooling effect an  adiabatic  chamber  i s r e a l i z e d by  expansion  through  a  of  either  t h e sample  nozzle(5-10).  The  estimated the N O 2  a  (Method  i n T a b l e 2. either  or  ('pure'  results  fraction  the total  2  i n theN 0,/N0 intensity 2  ft  has  2  been  2  PE  spectrum  ratio  of  the stripped  2  s  N 0,  work a r e  r a t i o o f t h e second bands of  N O ) and t h e N O /N0 2  of  of  2  PE s p e c t r u m  (5)  ( 1 8 ) (Method  The f o r m e r m e t h o d i s u s e d h e r e t o r o u g h l y e s t i m a t e t h e mole  fraction values  o f N 0 , i n t h e p r e v i o u s l y r e p o r t e d PE 2  a r e t a b u l a t e d i n T a b l e 4.  o u r PE s p e c t r u m Since first  mole  by t h e peak h e i g h t  and t h e r e s i d u a l N0 A),  spectrum  The  direct  gas t o t h e  previous experiments together w i t h those of the present summarized  that  9 6 % (89% i f the pressure at the ionization point i s  or  ionization  B).  which  2  that there  These  of N 0« i n 2  8 4 % (Method B ) .  t h e p o s i t i o n a n d t h e MO c h a r a c t e r o f t h e  bands o f t h e N 0« and N 0  (except  The m o l e f r a c t i o n  ( F i g . 1) i s 8 8 % ( M e t h o d A) a n d  t h e band shape,  spectra.  2  PE  spectra  a r e very  similar  i s some weak N-N * bond c h a r a c t e r i n t h e c a s e  l=6a  gI  2=la.u 3= lb lg 4=4b 2g 5=4b 3u 6= 5blu 7=lb 3g  ti  l  8= 3b 2g 9=3b 3u  II  11  10= lb ll=5a 12=4b  10  12  14  IONIZATION Fig. 4  16  18  20  2u g lu  22  POTENTIALS(eV)  Experimental and t h e o r e t i c a l PE spectra of N^O^ a. b. c. d. e.  GAUSSIAN 70, 4-31G calculations (x0.92) HAM/3 IP's calculations HAM/3 shake-up calculations Modified HAM/3 shake-up calculations (see text) 2ph-TDA Green's function (Ref. 16)  TABLE 2  Experimental results of the formation of NpO^by PES studies This work  Ames et a l .  Yamazaki et a l .  Frost et a l .  -60°C  -40°C  R.T.  R.T.  0.01  1  0.8  b  c  Gan et a l .  d  Nomoto et a l . e  Temp, of sample source  R.T.  Application of nozzle stagnation pressure(atm.)  1  1.2  60  20  -  300  60  60  0.7  0.7  nozzle diameter(/c)  f  R.T.  a  Yield of HLO(mole fraction) estimated by Method A  9  0.88  0.6  0.2  0.6  estimated by Method B  h  0.84  -  -  -  estimated by Method C  a. b. c d. e.  Ref. Ref. Ref. Ref. Ref.  5. 6. 7. 8. 9.  1  0.68  0.96  f . Room Temperature (no d i r e c t cooling of the sample source). g. By the peak-height r a t i o of the 2nd PE bands of N0 and N 0 - . (see text) h. By the total intensity r a t i o of the stripped PE spectrum and the PE spectrum of the NO^/^O* mixture, (see text) i . By the total intensity r a t i o of the 1st PE bands of N0 and NpO^. (see text) o  o  c  c  q  ?  ro ro  227  N 0„),  of  we  2  assume t h a t t h e y h a v e a s i m i l a r  s e c t i o n and u s e t h e t o t a l estimate  t h e mole f r a c t i o n  Hence, i t i s c l e a r N 0,  higher  2  achieved  of N 0«  than  8 0 % which  i n previous  work,  these  two  very  so  yield  a  more  accurate  nozzle  diameter  N 0 . 2  6  i s about 6 0 x and t h e s t a g n a t i o n p r e s s u r e  i s about  1 atm.  jet  i s h e n c e f o r m e d s i n c e t h e mean f r e e p a t h o f t h e g a s  is  much  than  d i s t a n c e x from by  the nozzle diameter.  a nozzle with diameter  t h e v a l u e of r .  r  of R e f . 2 , a n d A a n d x  (0.03d)  d can thus  be  estimated  heats  and A and  i s e s t i m a t e d t o be a b o u t 0  x  0  depend  1 . 1 2 by t h e d a t a  ( 2 0 ) a r e e x t r a p o l a t e d t o be 4 . 2 2 a n d 50>/ The  temperature  t h i s p o i n t T, i s g i v e n by t h e e q u a t i o n ( 2 1 ) _T  where  <  =  T  0  i s the source  t h e Mach number a n d C T, i s t h u s e s t i m a t e d of N Oi,  fraction N 0«, 2  free  The Mach number M a t a  M i s t h u s about 7 w i t h x = 5mm.  respectively. at  A  the standard e x p r e s s i o n ( 2 0 )  where r i s t h e r a t i o o f t h e s p e c i f i c on  of  superior to that  t h e o p t i m a l c a s e , as s t a t e d above, t h e  less  to  This gives 9 6 % .  much  permits  cross  bands  s t u d y does g i v e a  is  and  of  (Method C ) .  2  that the present  measurement o f t h e I P ' s o f  In  intensities  ionization  2  a  v  temperature,  i s the s p e c i f i c  t o be - 1 9 8 ° C .  i s virtually 100%.  temperature  R i s t h e gas c o n s t a n t , M i s  of  -110°C  heat  at constant  volume.  At t h i s  temperature  t h e mole  In fact is  to  obtain  sufficiently  9 6 % of  low.  The  226  o v e r e s t i m a t i o n of the temperature that and  i s probably  t h e parameters used throughout the imperfectness  estimation  does  of  show  In  the  However,  same  sampling  experimental  fact  correct,  this  crude c a n be  arrangement. of N 0 , observed  i n the  2  recorded  under  c o n d i t i o n s do n o t show a n y p e a k s h i g h e r  T h i s absence of a parent  2  the  cooling effect  ( F i g . 1 ) , t h e mass s p e c t r a ( F i g . 2)  46 amu ( N 0 * ) . due  the nozzle.  s p i t e o f t h e h i g h mole f r a c t i o n  PE, s p e c t r u m  to  arenot p r e c i s e l y  that a substantial  obtained with thepresent  due  dimer  ion i s  than  probably  t o t h e r a t h e r l o n g N-N b o n d , p e r m i t t i n g t h e d i m e r t o r e a d i l y  dissociate. increases  Lowering  the intensity  fragmentation  is  collisions. spectrum mass  the pressure ratio  inside  induced  interesting  ionize N0  2  ( F i g . 2a).  radiation  corresponding  This  t o the f i r s t  broad  ion-molecule  ( 0.20eV) cannot 4  that  PE band  of  i s t h e HLp  the parent N 0,  centered  2  t o t h e other p r e v i o u s ab i n i t i o  4b g  and 4 b  been  g  revised  for the f i r s t by  five orbitals.  lines  This  la^,  ordering  1b,^, has  the Green's f u n c t i o n study which p r e d i c t s t h e  b r e a k d o w n o f Koopmans' t h e o r e m satellite  at  calculations (11,  1 6 ) , o u r 4-31G r e s u l t s g i v e a n o r d e r i n g o f 6 a , 3 t L  ion  state.  12, 2  mass  that of t h e Hel  radiation  suggests  11.4eV i s i n a r e p u l s i v e e l e c t r o n i c Similar  than  S i n c e HLo r a d i a t i o n  ft  (12.09eV).  by  p o i n t i s t h a t the H L o p r  or N O , the r e l e v a n t source 2  Hence  2  ( F i g . 2b) shows more f r a g m e n t a t i o n  spectrum  chamber  o f t h e N 0 * t o NO* p e a k s .  significantly  Another  the ionization  above  as  15eV(l6).  i n t e r p r e t e d as t h e second  IP.  well  as  The 4 b g "  1  2  Our  HAM/3  the existence ionization  of  i s thus  calculations  give  229  similar  results  smaller la^  IP region.  and  satellite HAM/3  but  1 i>,g.  ionization  1  3u  i sshifted  The o r d e r i n g i s t h e r e f o r e 6 a g , The  HAM/3  4t>2j»  4b  3 a  ,  14eV. T h e s e  preliminary  s h a k e - u p r e s u l t s h a v e been t h e n m o d i f i e d by a d j u s t i n g t h e  Chapter  IP's before  2 and Chapter  the e x p e r i m e n t a l  modified  8).  PE  calculations  excitation  higher  energy (3.65eV) (22) and  (Fig.  than  3).  The m a i n  30%) p r e d i c t e d  ionization by  these  s h a k e - u p c a l c u l a t i o n s a r e d e s c r i b e d i n T a b l e 3.  The t h e o r e t i c a l  PE  spectra  of  our  4-31G  calculations,  the  G r e e n ' s f u n c t i o n s t u d y , o u r HAM/3 I P ' s c a l c u l a t i o n s a n d  shake-up c a l c u l a t i o n s quality  are plotted  i n F i g . 4.  o f t h e i n e x p e n s i v e HAM/3 r e s u l t s  the Green's f u n c t i o n r e s u l t s ,  they  do  Although  i sinferior  show  the  t o that of  t h e breakdown  Koopmans' t h e o r e m a n d t h e e x i s t e n c e o f s h a k e - u p  9.5  (see also  The r e f e r e n c e s f o r t h e a d j u s t m e n t a r e  spectrum  (intensity HAM/3  2ph-TDA  t h e shake-up  electronic  experimental  processes  of  processes.  Conclusion The  f o r m a t i o n o f N 0 , u n d e r h i g h vacuum h a s been s t u d i e d by 2  t h e PES/PIMS s y s t e m e q u i p p e d A  t o the  shake-up c a l c u l a t i o n s a l s o p r e d i c t  l i n e s w i t h I P ' s g r e a t e r than  theoretical  the  t h e 4b ."  yield  of  N 0, 2  higher  than  n o z z l e o f 60* a t a s t a g n a t i o n yield  indicates  that  w i t h a cryopump and a n o z z l e 8 0 % h a s been a c h i e v e d pressure  the present  of  1 atm.  inlet.  by u s i n g a This  high  s y s t e m s h o u l d be u s e f u l i n  230  TAR I F" 3  interpretation of the ionization and shake-up processes of N 0. in the Hel region by the modified HAM/3 method 2  Energy  Intensity  Ionization and shake-up processes  11.20  0.92  12.15  0.88  6a g  13.06  0.90  13.28  0.89  13.43  0.77  15.34  0.46  16.61  0.35  17.26  0.52  l b " ; (lb, -2b ) * l a lg 2u^ u  18.38  0.84  18.69  0.72  3b! 2g 3b: 3u  19.38  0.39  22.10  0.94  1  2g la" u  1  lu 4b" 3u 1  (6a -6b, )*6a lu g lu' g (6a -6b , )*6a ; 5b? lu' g ' lu g  5b!  1  ;  _1  _1  1  1  _ 1  0  1  1  (4b_ -6b. )*4b: 3u \u 2g ' 1  5a  g  J  4b" lu 1  a. A l l values in eV. b. Relative intensity. Only the peaks with intensity greater than 0.3 are described here. c. One electron is excited from the 6a orbital to the 6b, orbital g lu together with the ionization of an electron from the 6a^_ orbital. The ordering represents the importance of the processes.  231 the  studies  of  Similar s t u d y , the  other weakly a s s o c i a t e d to  the  results  of  the  species. p r e v i o u s Green's  i n e x p e n s i v e HAM/3 c a l c u l a t i o n s  of  Koopmans' t h e o r e m and  the  e x i s t e n c e of  to  interactions  low  lying  w i t h the  predict  the  function breakdown  shake-up p r o c e s s e s  unoccupied  orbitals.  due  232  References  ( C h a p t e r 9)  1. W.F. G i a u q u e a n d J.D. Kemp, J . Chem. P h y s . , 6 ( 1 9 3 8 ) 4 0 . 2. I . C . H i s a t s u n e , J . P h y s . Chem., 6 5 ( 1 9 6 1 ) 2 2 4 9 . 3. D.W.Smith a n d K. H e d b e r g , J . Chem. P h y s . , 4. B.W.  M c C l e l l a n d , G. G u n d e r s e n  Phys.,  25(1956)1282.  a n d K. H e d b e r g , J . Chem.  56(1972)4541.  5. D.L. Ames a n d D.W.  T u r n e r , P r o c . R. S o c . L o n d o n , S e r . A,  348(1976)175. 6. T. Y a m a z a k i  a n d K. K i m u r a , Chem. P h y s . L e t t . ,  7. D.C. F r o s t , C.A. M c D o w e l l  43(1976)502.  a n d N.P.C. Westwood, J . E l e c t r o n  S p e c t r o s c . R e l a t . Phenom.,  10(1977)293.  8. T.H. Gan, J . B . P e e l a n d G.D. W i l l e t t ,  J . Chem. S o c . F a r a d a y  T r a n s . 2, 7 3 ( 1 9 7 7 ) 1 4 5 9 . 9. K. Nomoto, Y. A c h i b a a n d K. K i m u r a , Chem. P h y s . L e t t . , 63 (1979)277. 10. K. Nomoto, Y. A c h i b a a n d K. K i m u r a , B u l l .  Chem. S o c . J p n . ,  52(1979)1614". 11.  R. A h l r i c h s a n d F. K e i l ,  J . Am. Chem. S o c , 9 6 ( 1 9 7 4 ) 7 6 1 5 .  12. J.M. H o w e l l a n d J.R. v a n W a z e r , J . Am. Chem. S o c , 9 6 ( 1 9 7 4 ) 7902. 13. L.C. S n y d e r a n d H. B a s c h , ' M o l e c u l a r wave f u n c t i o n s a n d p r o p e r t i e s ' , W i l e y , New 14. R.L. G r i f f i t h s ,  York(l972).  R.G.A.R. M c C l a g a n , a n d L . F . P h i l l i p s ,  Chem.  Phys., 3(1974)451. 15. S. K i s h n e r , M.A. W h i t e h e a d a n d M.S. G o p i n a t h a n , J . Am. Chem. Soc,  100( 1 9 7 8 ) 1 3 6 5 .  233  16. W. v o n N i e s s e n , W. Domcke, L . S . Cederbaum, a n d J . S c h i r m e r , J . Chem. S o c . F a r a d a y T r a n s . 2, 7 4 ( 1 9 7 8 ) 1 5 5 0 . 17. W.J. H e h r e , W.A. J.A.  P o p l e , QCPE  L a t h a n , R. D i t c h f i e l d ,  M.D. Newton a n d  11(1973)236.  18. J . B . P e e l , p r i v a t e c o m m u n i c a t i o n  t o D.C.  19. D.P. Chong, p r i v a t e c o m m u n i c a t i o n  Frost.  t o W.M. L a u .  20. T.A. M i l n e a n d F.T. G r e e n e , A d v . Chem., 7 2 ( 1 9 6 8 ) 6 8 . 21.  A. K a n t r o w i t z a n d J . G r e y , R e v . S c i . I n s t r u m . , 2 2 ( 1 9 5 1 ) 3 2 8 .  22. T.C. H a l l , J r . a n d F.E. B l a c e t , 1745.  J . Chem. P h y s . ,  20(1952)  234  Chapter  10  The  study of a 1:1  charge t r a n s f e r complex  r  (CH,) 0-BF, 7  10.1  Introduction PES  of  charge  increasing attention studies  of  some  transfer  complexes  i n recent years.  strongly  has  Earlier  associated  work  complexes  c o m p l e x e s o f b o r a n e w i t h ammonia, mono-, d i - and carbon of  monoxide  boron  and p h o s p h o r u s t r i f l u o r i d e  trifluoride  pyridine  -  d i - and  to  (5).  study  at  Weak the  to  to  ( 1 , 2 ) , the complexes  Such a n o z z l e  dioxide  f l u o r i d e complex  are  inherently  inlet  one  s y s t e m has a l r e a d y been  applied  complexes  such  ( 8 ) , and  (7).  the  as  those  dimethyl  sulfide  2  (CH ) 0-BF 3  complex  2  3  at  measurement  60°C (12)  hydrogen applied  c o m p l e x has  (13).  been  investigation  has a heat of d i s s o c i a t i o n  K c a l / m o l a n d d i s s o c i a t e s by 60%  (7)  system.  u  s t u d i e d by s e v e r a l g r o u p s ( 9 - 1 3 ) , t h e most r e c e n t  diffraction  -  I n t h e p r e c e d i n g c h a p t e r , we have  t h e r m o d y n a m i c s o f t h e 1:1  the  involving  ( 6 ) , hydrogen f l u o r i d e  i  electron  is  complex  2  that  more  f o r t h e PE  inlet  necessary  such a t e c h n i q u e t o study the 2N0 ^= N O  showing  the  for  d i m e t h y l ether w i t h hydrogen c h l o r i d e  The  (3),  pressure required  induces the c o o l i n g  t h e s t u d y o f some weak  and s u l f u r  as the  t h i s problem; the i s e n t r o p i c expansion from a h i g h  stagnation pressure formation.  such  trimethylamine,  e x p e r i m e n t a n d so r e c o u r s e t o a s u p e r s o n i c n o z z l e approach  comprised  (4) and t h e a l k y l a m i n e -  complexes low  gaining  trimethylamine  i o d o m o n o c h l o r i d e complex  bromine complexes difficult  with  been  The  of  13.65  original  has been r e p e a t e d more  235  recently initio  (14) and t h e  revised  c a l c u l a t i o n s (15).  structure  In order  is  to provide  i n t e r p r e t a t i o n o f t h e o b s e r v e d PE s p e c t r u m , further  ab  initio  and  supported  semi-empirical  by  ab  a c o m p a r i s o n and  we  have  performed  calculations  on  the  geometric and e l e c t r o n i c s t r u c t u r e of t h e complex.  10.2  Experimental Boron  condensed  trifluoride in  a  and  dimethyl  cold trap at l i q u i d  mixture  was warmed s l o w l y  excess  reactants.  with  The  complex,  tube  with  a  spectrometer  a t 22°C.  temperature  was  this  was  the  teflon The  about maximum  a  pumping  colorless  the  were  needle  to  The  remove  l i q u i d a t room  spectrometer  inlet  in a  v a l v e , and a d m i t t e d  t o the  saturated  3  (Matheson)  nitrogen temperature.  occasional  t e m p e r a t u r e , was t r a n s f e r r e d t o glass  ether  vapor  pressure  at  this  t o r r a s m e a s u r e d by a manometer, a n d  stagnation  pressure  used  in  these  experiments. The  complex f o r m a t i o n  was  studied  with  different  nozzle  sizes  (0.1 - 0.9mm), a n d w i t h t h e c r y o p u m p o p e r a t i n g a t room o r  liquid  nitrogen  temperature.  Geometry o p t i m i z a t i o n and e l e c t r o n i c s t r u c t u r e c a l c u l a t i o n s were e x p l o r e d (17)  and  orbital (19)  using a modified  GAUSSIAN  energies  a t t h e 4-31G  INDO p r o g r a m  70 ( 1 8 ) p r o g r a m s .  were c o m p u t e d u s i n g level.  ( 1 6 ) , and  Final the  total  GAUSSIAN  t h e MNDO  e n e r g i e s and 76  program  236  10.3  Results W i t h t h e c r y o p u m p o p e r a t i n g a t room t e m p e r a t u r e ,  mixture  of  free  dimethyl  observed; the Hel Fig.  PE  ether  spectrum  and boron  of  1, where p e a k s p e r t a i n i n g t o t h e  c o m p o n e n t s c a n be m a t c h e d t o t h e i r Upon  cooling  observed 15eV Hel  this  t h e cryopump  corresponding  formation  The  i s about  No  ionization  spectra  0.4mm  complex point  2  (20,  distance  t h e "pure"  stripping  out  the mixture  adduct, the  size  i s observed  i s greater complex  o f the  spectrum w i t h complex f o r m a t i o n o f the  nozzle  than  ( F i g . 4)  are  peaks  at  The  i n F i g . 2 and are  f o r t h e complex of about 3  i f the nozzle 1.5cm. was  free reactants ( F i g . 2).  3  21).  regions.  a t a stagnation pressure  formation  of  mixture  changes i n other  c o n d i t i o n s i s shown  optimal  spectrum  1:1  3  H e l mass s p e c t r u m a n d HLo mass s p e c t r u m  shown i n F i g . 3.  torr.  ( C H ) 0 and B F  t o -196°C, s u b s t a n t i a l c h a n g e s  and i n t e n s i t y  PE s p e c t r u m u n d e r t h e s e  the  individual  was  i s shown i n  i n t h e PE s p e c t r u m i n c l u d i n g two new d i s t i n c t  a n d 18 - 19eV  sample  trifluoride  mixture  known PE  a  The H e l PE  obtained  (Fig.l)  Since  the  by  from  the  sample i s a  two r e a c t a n t s , a n d t h e c o m p l e x i s a l s o a 1:1  two o p e r a n d s p e c t r a a r e  only normalized  by t h e  first  u n i q u e peak a t l 0 . 0 5 e V . The shown  r e s u l t s o f the geometry o p t i m i z a t i o n  i n Table  1, t o g e t h e r  experimental  geometry o b t a i n e d  experiments  (12,  O-B  14).  w i t h the from  The m o d i f i e d  bond w h i c h i s c l o s e t o B a u e r ' s  method  shows  two  local  minima,  calculations are  r e l a t i v e energies the electron  and t h e  diffraction  INDO method p r e f e r s a s h o r t geometry one o f  (12). which  The MNDO indicates  Ionization potential (eV) Fig.  1  The Hel P E spectrum of a 1:1 mixture of ( C H ) Q O and B F obtained from a complete 3  dissociation of the  (CH^O-BF^  complex.  BF^  3  peaks are marked with an a s t e r i s k .  Ionization potential (eV) Fl  'q-  2  The Hel PE spectrum of the 1:1 (CH ) 0-BF 3  2  3  complex plus the free constituents  g  239  AMU Fig. 3  The mass spectra of the 1:1 (CH ),,0-BF 3  3  complex  plus the free constituents obtained (a) with a Hel l i g h t source, and (b) with f i l t e r e d HL —_ l i g h t source. a  1  I  1  I  10  Fig.  1  I  1  I —I— —I— 1  1  1  I — I — I — I — I — I — I — I — [ - 1  12 14 16 18 Ionization potential (eV) 4  The stripped Hel PE spectrum of the 1:1 ( C H ) 0 - B F 3  2  20  3  complex  T  A  B  L  E  1  The results of geometry optimizations on the 1 : 1  comnlpx  ( n r ^ O - w i ^ and a comparison of the  t o t a l energies obtained by SCF calculations on the complex. (CHj^O and BF . _ a 32 3 Experimental geometry' Optimized BF  3  (CH ) 0 3  (CH ) 0-BF  2  3  2  geometry  b MNDO  3  INDO  Bauer et a l . Shibata et a l . [12] [14] geom. para-  r  1.313  BF  -  co <coc r  _ c meter  0  -  <OBF  -  r  B0  -  1.43  1.358  1.343  1.32  1.498  1.416  1.45  1.425  1.437  1.41  1.406  111 .7  109.5  108.4  114.6  111.7  114.3  1.50  1.719  1.812  4.06  1.575  54.7  33.4  0  1.7  67.84  109.5  99.0  101.6  90.4  105.75  -  Relative  INDO  82.55396  35.89606  118.74023  energy (au)  MNDO  55.64235  24.37749  79.97374  79.99022  Total  ST03G  470.80860  470.81476  energy (au) 431G  322.78497  153.83532  r e f . [25]; ( C H ^ O , r e f .  80.02065  470.71452  476.65502  a.  Geometries: BF  b.  Two l o c a l minima.  c  Bond lengths l n A , angles i n degrees. Labels referred to F i g . 5,  y  118,87864  [26]. ro  -P.  242  essentially shown  no b o n d i n g e x i s t s b e t w e e n t h e two c o m p o n e n t s .  i n Table  1 are the t o t a l  e n e r g i e s o b t a i n e d u s i n g t h e ab  i n i t i o GAUSSIAN 70 p r o g r a m a p p l i e d t o S h i b a t a ' s the  modified  minima  INDO o p t i m i z e d g e o m e t r y a n d one o f t h e MNDO l o c a l  theoretical  orbital  energies  f r o m t h e MNDO a n d 4-31G c a l c u l a t i o n s 14  a r e shown  orbital  symmetries  experimental  i n Table (assuming  C  2 g  f o r the complex using  A.  and the assignments  Complex f o r m a t i o n o f ( C H ) 0 - B F 3  pressure vapor  the equation  pressure  dissociation  pressure i s 99.6%.  2  The  (assuming  section.  given  3  i n r e f . 13, t h e s a t u r a t e d v a p o r  a b o v e t h e c o m p l e x i s 3.1 t o r r  isothermally  of the complex i t s e l f i s about  expanded  i s estimated  55%.  at  I f the  assumptions,  The  partial  gas  degree  mixture  t o t h e i o n i z a t i o n p o i n t where t h e a s 0.01 t o r r ,  the degree  T h i s e x p l a i n s why t h e PE s p e c t r u m  conditions.  25°C.  i s 2.0 t o r r a n d t h e  a super i m p o s i t i o n o f the two i n d i v i d u a l flow  appropriate  symmetry f o r t h e m o l e c u l e ) .  IP's are a l s o l i s t e d ,  of  Discussion  From  of  obtained  t h e geometry  together w i t h the  Koopmans' t h e o r e m ) a r e d i s c u s s e d i n t h e n e x t  10.4  geometry ( 1 4 ) ,  geometries.  The  ref.  Also  Using  the temperature  t h e same a t the  of  i s local  dissociation  ( F i g . 1) shows o n l y  c o n s t i t u e n t s under s e t of  equations  free and  i o n i z a t i o n p o i n t h a s t o be  243  TABLE 2  The Experimental and theoretical IP's of (CH.) 0-BF  Exptal IP's  Symmetry  4-31G *0.92  MNDO  12.4  18a'  12.54  13.08  14.0  17a'  13.85  14 .29  14.3  11a"  13.95  14.32  10a"  14.58  14.61  9a"  14.90  14.83  16a'  15.30  14.66  8a"  15.56  14.98  15a'  15.82  14.89  7a"  15.88  15.25  14a'  16.03  15.92  6a"  17.36  17.74  13a'  17.73  17.45  5a"  18.52  18.94  12a'  18.65  18.34  11a'  19.02  19.19  10a'  19.90  20.81  9a'  23.71  28.39  14.6-16.0  16.2 17.7  17.8-19.0  19.9  a.  3  o  Calculations are based on the geometry of Shibata et a l . [14]. values in eV.  All  244  about the  -27°C  in  complex  o r d e r t o o b t a i n 30% a s s o c i a t i o n ( a p p r o x i m a t e l y  content  approximate  50°C  in  Fig. 2).  This  temperature  drop  of  i s a c h i e v e d by t h e a d i a b a t i c e x p a n s i o n o f t h e  gas m i x t u r e t h r o u g h a  0.4mm  nozzle  with  fast  pumping  by  a  mixture  taken  cryopump.  B.  Identification The  under  H e l mass s p e c t r u m  the  BF . 3  not of  shows t h e e x i s t e n c e o f a 1:1  The  3  (CH ) 0-BF 2  peak a t 95 amu  ion.  This  is  of  (CH ) 0 3  2  i s due t o t h e f r a g m e n t i o n  intensity. for  BF  which  does  This apparent  lack  2  3  where  3  BF *  i s the  2  shown i n F i g . 3a where t h e v e r y  i s t h e p a r e n t i o n of B F . 3  (due t o ( C H ) 0 " ) . 3  The BF * f r a g m e n t 2  small (49  The p e a k s a t 80 amu a n d 61 amu a r e  2  t o the fragments CH 0-BF * 3  The  to  that  to  a  mass  under  identical  t h e complex  solely  spectrum  of  complex  (CH ) 0. 3  2  This  peak o b s e r v e d a t l 0 . 0 5 e V i n t h e PE  f o r m a t i o n ( F i g . 2) d o e s n o t c o n t a i n any I P itself.  we have n o t m i s s e d t h e f i r s t belongs  respectively.  ( F i g . 3b), recorded  the f i r s t  spectrum w i t h complex belonging  3  t h e H e l mass s p e c t r u m , d o e s n o t show any  a l l , but s i m p l y g i v e s  demonstrates  and CH 0-BF*  2  HLo mass s p e c t r u m  conditions  peak  ( F i g . 2)  a p p e a r s a s an a p p r e c i a b l e s h o u l d e r on t h e s i d e o f t h e peak  46 amu  due  complex  3  a parent i o n i s a l s o observed  amu)  gas  from the p a r e n t i o n ( C H ) 0 - B F *  w i t h any a p p r e c i a b l e  peak a t 68 amu  at  first  derived  + 2  appear  dominant  at  ( F i g . 3a) o f t h e  same c o n d i t i o n s a s t h o s e o f t h e PE s p e c t r u m  unequivocally and  o f t h e complex  to  Having thus e s t a b l i s h e d  IP of ( C H ) 0 - B F ,  free  3  (CH ) 0, 3  2  2  3  and  that  that this  we c a n make u s e o f t h i s  245  f a c t a n d u s e t h e l 0 . 0 5 e V peak t o p r o v i d e for  the normalization  complex peak  formation  of  t h e PE  ( F i g . 1 and 2 ) .  a l s o r a i s e s the confidence  an e x c e l l e n t  reference  spectra w i t h , and without,  The o c c u r r e n c e level  of  a  unique  of the spectrum s t r i p p i n g  results. A  search  other  than  (22)  was  conducted  constituents.  C.  3  1:1  experiments  o r mass  f o r complexes of B F and ( C H ) 0 w i t h  obtained  structure  by  two  However,  of  one o f t h e  i n e i t h e r t h e PE  The g e o m e t r y o f t h i s c o m p l e x h a s  independent e l e c t r o n d i f f r a c t i o n  their  results differ  1, p a r t i c u l a r l y  similar  optimized  with  as  t o the important  r  Our m o d i f i e d  r e s u l t i s closer t o that  the p a r a m e t e r © t o 0°. indicate  regard  t h a t the geometry o f S h i b a t a  t h e l o c a l m i n i m a by t h e than  Shibata  OB bond l e n g t h In addition,  MNDO  t h e geometry  o  B  and ZOBF geometry  b u t t h e MNDO  et al.(l4)  (1.812A) d e s p i t e t h e STO-3G  in  putting  calculations  e t a l . ( 1 4 ) , a n d a l s o one  method  obtained  shown i n  INDO o p t i m i z e d  of  been  s t u d i e s (12,  significantly  t o t h e geometry of Bauer e t a l . ( l 2 ) ,  p r e d i c t i n g a much l o n g e r  from the  t h e m o l e c u l e , we show, i n F i g . 5, t h e  (e i n F i g . 5) p a r a m e t e r s .  energies  of  o f the complex  proposed s t r u c t u r e (14).  of  excess  several  a n y d i s c u s s i o n o f t h e PE s p e c t r u m must b e g i n  geometric  is  an  despite  spectra.  Since  Table  unsuccessful,  using  composition  2  No o b v i o u s c h a n g e s were o b s e r v e d  Structure  14).  3  produce from  better  the modified  total INDO  247  method.  Since  the  calculated  difference  in  total  b e t w e e n S h i b a t a ' s g e o m e t r y a n d t h e MNDO l o c a l minimum small,  we  take  the  geometry  c a l c u l a t i o n s and use t h e s e PE  spectrum  of  of  Justification  p r o v i d e d by r e c e n t c a l c u l a t i o n s a t  D.  the  the  4-31G the  (4-31G  ( 1 5 ) , which c o n f i r m the r e v i s e d  plus  d  geometry.  A s s i g n m e n t o f t h e PE b a n d s a n d b o n d i n g i n t h e c o m p l e x  0.92  factor,  the  match e x t r e m e l y the  IP's  bands,  stripped  the  the  free  illustrated  to  to BF  In  assignment  essence,  3  2  the density  within  the  the  of  broad  calculated  MO's  by 0.7 - 2.8eV,  whilst  a r e d e s t a b i l i z e d by 1.4 - 3.3eV.  for  the  graphically  and  giving  calculations values  3  F i g .6 also  thereby  Although  (CH ) 0 are s t a b i l i z e d  results  calculated  2)  I P ' s o f t h e c o m p l e x shown  (Fig. 4).  definitive  usual  (Table  This i s  i n F i g . 6 w h i c h shows t h e c l e a r c o r r e l a t i o n  constituents, shifts.  t h e 4-31G c a l c u l a t i o n s  PE s p e c t r u m  molecules.  belonging  t h e 4-31G  s c a l i n g by t h e  general matching permits a comparison with the IP's  corresponding those  from  w e l l with the observed  o r b i t a l s precludes a  of  quite  f o r this choice i s  4-31G*  A s s u m i n g Koopmans' t h e o r e m , a n d a f t e r  in  for  is  r e s u l t s i n the i n t e r p r e t a t i o n of  the complex.  functions) level  r e f . 14  energies  and  those  demonstrating  the  shows t h e c l o s e  experimental some  for  complex  values  additional  for  validity  to  the  two  aforementioned  correspondence f o r free  between  between  the  ( C H ) 0 and B F , 3  the  2  3  analogous  t h e c o m p l e x when c o m p a r e d t o t h e e x p e r i m e n t a l  (Table 2 ) .  The  observed  shifts  are  a t t r i b u t a b l e t o the t r a n s f e r of  248  Fig. 6  0.92xe's of the 4-31G calculations on ( C H ) 0 , 3  and B F  V  2  (CH ) 0-BF 3  2  and experimental values for ( C H j 0 and BF, o  249  electron  desity  from  destabilization additional and BF  3  is  the  3  is  e l e c t r o n i c charge subsequent  particularly  difficult  is calculated  3 V  t o be  for  of  the  3.3eV. the  In  MO,  to pyramidal  complex  and  the  for (CH ) 0, 3  M 2  0»  giving  a  nominal  2  destabilization which, although  o f 0.09  oxygen  (lower l i m i t ) ,  and  this' orbital  3  is  t o the  t o the  as  increased  energy  from  the 2 a  2  (C  ,  2 V  so t h e s t a b i l i z a t i o n  t o t h e l o s s of t h e  electronic  Thus  the  description  of  the  calculations  and  (CH ) 0  6a,  3  2  to  orbitals  which  indicate  to  12.4  and  3  of  14.0eV  two o c c u p i e d o r b i t a l s ( 1 8 a ' and  experimental  shifts  are  a  BF . free  (CH ) 0 3  2p o r b i t a l s ) w i t h e x p e r i m e n t a l I P ' s a t 10.05  first The  to  reorganization  e l e c t r o n s from  11.9eV (20) a r e s t a b i l i z e d the  (due  i s s u p p o r t e d by o u r o b s e r v a t i o n s on  3  transfer  Specifically,  )  3 h  p o s i t i v e c h a r g e t o t h e m o l e c u l e , and  (CH ) 0**-BF *" 3  BF  f o r m a t i o n , and  i n stronger bonding. as  3eV  (D  t h e r e i s no l o s s o f symmetry  2  net  complex.  orbital,  geometry.  PE s p e c t r u m and by t h e 4-31G  giving  a"  3  o f t h e s h i f t s due  the  (mainly  BF  planar  a l l o r b i t a l s c a n be a t t r i b u t e d  resulting  pn  I t i s a m a t t e r of some c o n j e c t u r e  s y m m e t r y ) upon c o m p l e x  charge  overall  l o s s of p l a n a r i t y c o n t r i b u t i n g  magnitudes  in this  Conversely, local  the  3  The  3  of t h e bands) i s a t l e a s t  relative  diffuseness planar  BF  i n t o the vacant boron  , l o c a l symmetry) B F .  marked  JT b o n d i n g ,  the  For  3  l o s s o f symmetry i n g o i n g f r o m p l a n a r  extensive d e s t a b i l i z a t i o n . to  BF .  t o m e a s u r e e x p e r i m e n t a l l y w i t h any p r e c i s i o n  broadness  totally  to  2  t h e r e f o r e a r e s u l t o f t h e r e c e p t i o n of t h i s  to pyramidal ( C  the  (CH ) 0  2.35  2  and  respectively, 17a') and  of the 2.leV  250  respect i v e l y . The 13.3  n e x t two o r b i t a l s  and  of  (CH ) 0 3  14.2eV), and a r e b o t h e s s e n t i a l l y  and s u b j e c t e d t o s m a l l e r c h a n g e s 11a"  a r e t h e 4b,  2  and  10a"  orbitals  at  15.3eV.  This  band  c o n t a i n s an a d d i t i o n a l originating e").  The  making  from  a  five  the  original  which  five orbitals  degeneracy  specific  14.6  measured at centred  15a' and  of BF  ( a ' , 3e'  3  The  t o be  each o t h e r .  are d e s t a b i l i z e d  entirely  before,  this  of c  ionization  f r o m t h e ir  from  shift.  The  The  next  2  to  11a'.  1a  (CH ) 0 3  correspondence orbitals,  the  ionization  12a' and of  As  3  indicate  i n t h i s MO  broad  components, which from correspond  t h e 14a'  ( a " ) o r b i t a l of B F .  calculations  band  also  calculations  and  the  2e'  i s not as c l e a r  has  and  orbitals as t h a t  but a s u g g e s t e d d i s t r i b u t i o n  shift,  6a",  BF . 3  (not  and  magnitude  two  orbitals, of  an  contribution  the  five orbitals,  by  orbital  contributing  These a r e m i x t u r e s of t h e 2  a small  of  mentioned  f o r the  (17 - l 9 e V )  from  1eV  assigned  i s t h e o r b i t a l t h a t shows t h e g r e a t e s t  bonding c h a r a c t e r  shift.  2  to  within  l6.2eV . i s  i t a t 16.2eV r e p r e s e n t s a l o w e r l i m i t  this  of  type o r b i t a l s  s m a l l peak a t  unambiguously)  which o r i g i n a t e s  placing  The  and  calculations  ( T a b l e 2 and F i g . 6) show t h e s e f i v e MO's  a v e r a g e o f 1.4eV.  7a")  i s removed upon c o m p l e x f o r m a t i o n ,  a s s i g n m e n t more d i f f i c u l t .  These f l u o r i n e  the  to l6eV, a l s o  I P ' s ( 9 a " , 16a', 8 a " ,  first  orbitals  i n t e n s e band  e x t e n d s from  (at  2  These form  the f i r s t  14.3eV, t h e l a t t e r masked i n t h e b r o a d a n d  *b  b o n d i n g CH  ( a b o u t 1.0eV).  of t h e c o m p l e x ,  and  to  the  resolved correlation 13a',  5a",  3b  5a ,  The outer  1 f  y  precise  for  the  valence  into  two p l u s t h r e e  MO's  251  i s given  by  the c a l c u l a t i o n s (Table  q u i t e sharp occurs 10a'  orbital  and  the  three  represents  to  stabilization  10.5  l a s t peak w h i c h ionization  f l u o r i n e atoms w i t h c o n s i d e r a b l e I t d e r i v e s from the  2a'  been o b s e r v e d a t 21.5eV i n a H e l l  predicted  give of  a  particularly  1.5eV  i s in accord  PE  the  of  spectrum  sharp  from  the  boron  2s c h a r a c t e r  orbital  PE  is  BF  of  which  3  ( 2 3 ) , and  was  band(2l).  w i t h the g e n e r a l  The  trend.  Conclusion The  has  l 9 . 9 e V , and  The  w h i c h c o n t r i b u t e s a weak e bond b e t w e e n  t h e boron atom. has  at  2).  formation  of a  been s t u d i e d by  1:1  charge t r a n s f e r complex  a PES/PIMS s y s t e m .  complex, i t s formation  i s p r o m o t e d by  the  through  c o n s t i t u e n t gases  spectrum  a  Since  (CH ) 0-BF , 3  this  is  2  a  3  weak  the a d i a b a t i c expansion  nozzle  inlet.  The  of the complex  i s e x t r a c t e d using a spectrum  geometry  been  of  Hel  PE  stripping  procedure. The  GAUSSIAN 70 geometry  has  (STO-3G) SCF  of Ref.  14  electron diffraction the  basis  level.  The  general, assist  methods.  The  using  the  results  INDO, MNDO and  indicate that  i s more r e a s o n a b l e  t h a n t h a t of  w o r k , and  structure  electronic  so t h i s  the  has  provided  c a l c u l a t e d I P ' s a s s u m i n g Koopmans' t h e o r e m  i n e s t i m a t i n g the upon  stabilized  by  relative  s h i f t s of  complex f o r m a t i o n . 0.7  - 2.8  eV;  the  the  first  IP  by  4-31G  are,  in  values  and  MO's  T h u s , t h e MO's  the  earlier  s t r u c t u r e c a l c u l a t i o n s at the  i n e x c e l l e n t agreement w i t h the e x p e r i m e n t a l  constituent are  for  studied  of of  each  (CH ) 0  2.35eV.  3  2  The  252  MO's a  of  BF  are  3  destabilized  r e f l e c t i o n of  to  the  the  empty pn of  the  nature  0.09  c o m p l e x w h i c h can s h i f t s by  3.74eV  D u r i n g the Molecular  of  o r b i t a l of  a transfer weak  transfer  be  the  1.4  - 3.3eV.  electronic  BF ;  the  3  electrons. of  by  SCF  These r e s u l t s  charge  from  calculations  T h i s i s not  large,  a s o l i d and  (CH ) 0 3  2  indicating  indicative  complex, compared t o the  i s o l a t e d as  are  of  (CH ) N-BF 3  where t h e  3  first  3  IP  (3). c o n c l u d i n g s t a g e s of  Structure  reporting  a  similar  limited,  the  described  herein.  results  Conference study.  t h i s work we (24)  Although  a p p e a r t o be  included specific  essentially  the  found an  that  a  abstract  details  were  same as  those  253  References  ( C h a p t e r 10)  9  1.  D.R. L l o y d  a n d N. L y n a u g h , J . Chem. S o c , Chem. Comm.,  (1970) 1545. 2.  D.R. L l o y d  a n d N. L y n a u g h , J . Chem. S o c , F a r a d a y T r a n s .  68(1972)947. 3.  R.F. L a k e , S p e c t r o c h i m . A c t a ,  4.  A. M o s t a d , S. S v e n s s o n , R. N i l s s o n , C. N o r d l i n g  Part  A,  27(1971)1220.  E. B a s i l i e r , U.  a n d K. S i e g b a h n , Chem. P h y s . L e t t . ,  Geluis  23(1973)  157. 5.  C. U t s u n o m i y a , T. K o b a y a s h i a n d S. N a g a k u r a , Chem. P h y s . Lett.,  6.  39(1976)245.  F. C a r n o v a l e , M.K. L i v e t t a n d J . B . P e e l , J . Am. Chem. S o c . 102(1980)569.  7.  F. C a r n o v a l e , p r i v a t e c o m m u n i c a t i o n  8.  F. C a r n o v a l e , P h . D. t h e s i s , L a T r o b e U n i v e r s i t y , 1980.  9.  H.C. Brown a n d R.M. adams, J . Am. Chem.  10.  A.W.  L a u b e n g a y e r a n d G.R. F i n d l a y ,  t o W.M. L a u .  Soc.,64(1942)2557.  J . Chem. S o c . , 6 5 ( 1 9 4 3 )  884. 11.  H.C. Brown a n d R.M. adams, J . Am. Chem.  12.  S.H. B a u e r , G.R. F i n d l a y  a n d A.W.  Soc.,65(1943)2253.  L a u b e n g a y e r , J . Am.  Chem. S o c , 6 7 ( 1 9 4 5 ) 3 3 9 . 13.  D.E. M c L a u g h l i n a n d M. T a m r e s , J . Am. Chem. S o c . , 8 2 ( 1 9 6 0 ) 5618.  14.  S. S h i b a t a a n d K. I i j i m a , Chem. L e t t . Chem. S o c . J p n . , (1977)29.  15.  F. H i r o t a , Y.Koyama a n d S. S h i b a t a ,  J . M o l . S t r u c t . , 70  2  254  (1981)305. 16.  Y. F a n g , p r i v a t e c o m m u n i c a t i o n t o W.M. L a u .  17.  W. T h i e l , QCPE  18.  W.J. H e h r e , W.A.  11(1978)353.  J.A. P o p l e , QCPE 19.  11(1973)236.  J . S . B i n k l e y , R.A. W h i t e h e a d , P.C. H a r i h a r a n , R. S e g e r a n d J.A. P o p l e , QCPE  20.  L a t h a n , R. D i t c h f i e l d , M.D. Newton a n d  11(1978)368.  K. K i m u r a , S. K a t s u m a t a , Y. A c h i b a a n d T. Y a m a z a k i , Monograph S e r i e s of the Research I n s t i t u t e of A p p l i e d city,  No. 2 5 : ' H e l i u m I ( H e l ) p h o t o e l e c t r o n  g a n i c compounds', 21.  spectra ofo r -  (1978)48.  G.H. K i n g , S.S. K r i s h n a m u r t h y , M.F. L a p p e r t a n d J . B . P e d ley,  22.  Electri-  F a r a d a y D i s c u s s . Chem. S o c , 5 4 ( 1 9 7 2 ) 3 2 7 .  H.E. W i r t h , M.J. J a c k s o n a n d H.W.  Griffiths,  J . Phys.  Chem., 6 2 ( 1 9 5 8 ) 8 7 1 . 23.  W.C.  P r i c e , A.W.  P o t t s a n d D.G. S t r e e t s ,  r o s c o p y ' , D.A. S h i r l e y ,  'Electron  spect-  e d . , N o r t h H o l l a n d , Amsterdam,  (1972)187. 24.  K. Nomoto, Y. A c h i b a a n d K. K i m u r a , A b s t r a c t  of M o l e c u l a r  S t r u c t u r e Conference, J p n . , (1980)638. 25.  K. K u c h i t s u a n d S. K o n a k a , J . Chem. P h y s . ,  26.  U. B l u k i s , (1963)2753.  45(1966)4342.  P.H. K a s a i a n d R . J . M y e r s , J . Chem. P h y s . , 38  PART I V  Summary a n d P r o g n o s i s  256  Chapter  11  Summary and  prognosis  T h i s t h e s i s d e s c r i b e s an i n t e g r a t e d s y s t e m f o r t h e s t u d y o f unstable has  molecules.  been  The i o n i z a t i o n chamber o f a PE  reconstructed  ionization  region.  and  This  provides  easily  accessible  reconstruction, besides  resulting in  b e t t e r pumping e f f i c i e n c y , makes quite  feasible.  coupled region.  t o t h i s PE s p e c t r o m e t e r ,  hardware  sharing  the  to  the  success  electron  electrostatic analyzer.  At  a r e not c a r r i e d out  of using  lens  in  timing  to  do  coincidence  d e m o n s t r a t e d t o be a u s e f u l p r o b e o f i o n i c the  addition  of  a  can  to the nozzle applied  be p l a c e d inlet.  ionization provides  and  to  extension  states ( 1 ) .  nearly  an e a s i l y made.  region  system pure  region.  The  has  N 0„  been  and  2  3  a  of the  a d i a b a t i c e x p a n s i o n of t h e sample gas  a low t e m p e r a t u r e f o r t h e  associated species.  The  opposite  c o m p l e x , ( C H ) 0 - B F , a t t h e low p r e s s u r e 2  With  w o r k , w h i c h h a s been  f a s t pumping n o z z l e  3  two  r e g i o n a n d add on  i n l e t s h a v e been  generate  are  these  coincidence.  c l o s e t o the i o n i z a t i o n  This  successfully  charge-transfer  system  mass s p e c t r o m e t e r ,  r e m o v a b l e c r y o p u m p a n d some n o z z l e cryopump  i n the opposite  t h i s PES/PIMS s y s t e m , a l o g i c a l  hardware  Besides  h a s been ionization  present,  i s t o modify the l e n s system a t the i o n i z a t i o n more  development  same  I o n s a r e e x t r a c t e d t o t h e mass a n a l y z e r  analyzing processes the  further  H e n c e , a q u a d r u p o l e mass s p e c t r o m e t e r  way where P E ' s go i n t o an focused  an  spectrometer  An e x t e n s i o n  atoms a n d a t o m i c c l u s t e r s ( m e t a l  formation  of  these  weakly  o f t h i s work i s t o s t u d y dimer,  trimer...).  The  metal PES  257  study  of  these  species  should  reveal  more o f t h e i r  bonding  p r o p e r t i e s a n d p r o v i d e a s y s t e m a t i c way t o t h e u n d e r s t a n d i n g metal  surfaces,  effects. these  catalytic  A double  high  furnace  temperature  r e a c t i o n s a n d many o t h e r system  has  already  experiments  solid  been  of  state  made  for  ( F i g . 1 ) , and p r e l i m i n a r y  tests are being c a r r i e d out. Applications automation  of  microcomputers  of instruments  or  minicomputers i n data  h a v e been e x p a n d i n g r a p i d l y .  good o p e r a t i n g s y s t e m p r o g r a m , s u c h  an a p p l i c a t i o n  With  will  a  not only  s a v e t i m e , b u t , more i m p o r t a n t l y , s t o r e t h e d a t a e f f i c i e n t l y a n d systematically, appropiate realized  'safe-guard' by  operating  manipulate  the  program  routines.  hardware.  has  been  s t o r a g e and m a n i p u l a t i o n .  from  A  The  small to  t h e p r o g r a m c a n be e a s i l y m o d i f i e d .  m a n i p u l a t i n g o p t i o n s , such  etc., the  intensity  and b e t t e r f i l e performance  the  whole  of  digital  a s peak i d e n t i f i c a t i o n ,  integration  the  and  of the d i g i t a l  system  More d a t a  peak  position  and spectrum n o r m a l i z a t i o n  management s h o u l d be d e v e l o p e d system.  a d d i t i o n o f a new d a t a m a n i p u l a t i n g program a r e j u s t :  data  have been e m p h a s i z e d i n t h e d e v e l o p m e n t  works  measurement,  do  management  I t t u r n s out that  and  idea i s  t h e o r g a n i z a t i o n of t h e  of t h i s p r o g r a m . well  with  real-time  simplicity  t h e memory management, t h e f i l e  the program-modulization  data This  developed  t h e u s e r s ' p o i n t of view,  structure,  these  PES/PIMS s y s t e m w i t h a L S I 11/03  appropriate  system  acquisition,  data  and  and  (error handling)  interfacing  microcomputer  program  retrieve  to  enhance  The p r o c e d u r e s  f o rthe  subroutine  to  the  system  — inner  furnace  cross section  ionization pninf nozzle inlet  F l  g-  1  sample heater_l  heater...2.  The c o n s t r u c t i o n of a double furnace h e a t i n g u n i t w i t h a n o z z l e sample i n l e t  ro cn Co  259  (1) d e v e l o p  the subroutine;  (2) a d d a l i n k  t o the subroutine  f i e l d o f 'KYINDH'in (3)  add a b r i e f tine  'KYINDH' ( r e f e r  Appendix);  d e s c r i p t i o n of t h i s  'HELP' ( j u s t  file  subroutine t o t h e subrou-  edition).  T o g e t h e r w i t h PE d a t a , quantum m e c h a n i c a l very  useful  to  deduce  p r o p e r t i e s of molecules. has  t o t h e comment  electronic  calculations  s t r u c t u r e s as w e l l as other  Hence, a l i b r a r y  been e s t a b l i s h e d f o r PE s t u d i e s .  of computer  programs  I t c o n t a i n s programs  s e m i - e m p i r i c a l CNDO/2, MINDO/3, MNDO, a n d HAM/3 MO p r o g r a m s , initio  GAUSSIAN 70  are  from ab  a n d 76 MO p r o g r a m s , t o t h e RSPT p r o g r a m f o r  c o r r e c t i n g Koopmans' t h e o r e m .  B e s i d e s , a m o d i f i e d HAM/3 p r o g r a m  can  also  do v a l e n c e - e l e c t r o n s h a k e - u p c a l c u l a t i o n s .  In short,  the  library  p r o v i d e s a wide spectrum of c o m p u t a t i o n a l  means f o r  PE  studies.  program w i l l  For  the  future  study  of metal  clusters,  t h e Xo  be u s e f u l a n d s h o u l d be d o c u m e n t e d a n d a d d e d t o t h e  1ibrary. The  present  PES/PIMS to  system  t h e study  associated S«N , 2  i n t e g r a t e d system  S N 3  with t h e computation  of  unstable  species. 3  individually.  (the microcomputer  and  The  l i b r a r y ) h a s been a p p l i e d other  than  the  weakly  Some s u l f u r - n i t r o g e n compounds, l i k e SuN,,  S N , 2  molecules  controlled  2  have  existence  been of  generated a radical  been e s t a b l i s h e d .  This, together with  experimental  and  theoretical  understanding  of t h i s  work,  interesting  and  s p e c i e s , S N , has 3  the results will  studied  lead  to  3  of  future  a  better  s p e c i e s and t h e (SN) polymer. X  260  The of  rather these  c o m p l i c a t e d and i n t e r l i n k e d gas phase four  condensed  phase  investigated. present  sulfur-nitrogen reactions The  system  of  successful  can  be  used  molecules S N 2  and  2  results to  decomposition  and S N 3  the  h a v e a l s o been  3  demonstrate  that  Species the  study  i s always  of the species i t s e l f .  information  T h i s h a s been  sulfur-nitrogen  molecules  problem  3  has  in  of r e s i d u a l  the  unstable  The i n t e g r a t i o n o f t h e e f f i c i e n t data handling f a c i l i t i e s  demonstrated  level  by  t o the  i n species  the study  of  as mentioned above, and t h e study of  CH NO, i t s t r a n s a n d c i s d i m e r , study  and  g r e a t l y enhances t h e c o n f i d e n c e  identification.  latter  important  i n i t s synthesis  mass m e a s u r e m e n t s a n d c o n v e n i e n t PE  an  u n s t a b l e s p e c i e s due t o t h e p r e s e n c e  r e a c t a n t s and s i d e products nature  unstable  manner.  identification of  the  study gas phase r e a c t i o n s of  unstable species dynamically as w e l l as the i n d i v i d u a l species i n a stationary  unusual  clarified  and  i t s isomer  CH NOH.  The  2  t h e e r r o r s o c c u r r i n g i n p r e v i o u s PE  s t u d i e s o f CH NO a n d i t s d i m e r . 3  Valence-electron  shake-up p r o c e s s e s  i n t h e H e l r e g i o n have  been n e g l e c t e d i n t h e p a s t by most PE s p e c t r o s c o p i s t s . of  this  simplification  Green's f u n c t i o n quasiparticle molecules chapter  h a s been d e m o n s t r a t e d  calculations.  picture  The  t h e breakdown  P , 2  N 0„, 2  and  S N  results  of t h e  2  2  etc.(see  also  m o d i f i e d HAM/3 p r o g r a m h a s t h u s been u s e d t o  study t h e v a l e n c e - e l e c t r o n shake-up p r o c e s s e s The  r e c e n t l y by some  i n t h e H e l r e g i o n h a s been c o n f i r m e d f o r  s u c h a s CS, PN, 2).  Hence  Failure  of N 0 2  8  a n d CH NO. 3  show t h a t t h e m o d i f i e d HAM/3 p r o g r a m i s r e a s o n a b l e  261  in  predicting  in  s h a k e - u p p r o c e s s e s and  t h e H e l PE s p e c t r u m  orbitals.  be  species.  Green's  The  function  has  were a p p l i e d formed  Enhanced  of the  by MPI  ' r e d ' S,N . 2  levels  Multiphoton  studies  obviously  an  (2).  states  even  more  i n t e g r a t i o n of t h e PES p r o v i d e new  r e c e n t l y and side  of  hardware  our  ( 4 ) , NO proved  analysis  lamp c a n  laser.  ions.  probe  of  (5), I  (6) and  2  successful.  T h i s can  When two  lasers  the  information  ion  to  benzene  However,  PES  is  i o n s t a t e s and  the  will  definitely In  fact,  (6) h a v e been done  In p r a c t i c e ,  chamber  about  low-lying  to the r e l a t e d areas.  ionization  extension.  much m o d i f i c a t i o n . Hel  Spectroscopy  fragmentation patterns (3).  t e c h n i q u e t o t h e REMPIS  t o be  cubic  the  direct  similar  s i n c e t u n a b l e dye  Mass  of  e x p e r i m e n t a l impetus  MPI-PES o f Xe  More  of the p a r e n t m o l e c u l e , but a l s o about  repulsive  for  t h e above p o i n t s  Ionization  rapidly  has .shown i n t e r e s t i n g  bound and  region  studies.  Hence t h i s REMPI t e c h n i q u e p r o v i d e s n o t o n l y energy  of low  orbitals, especially  i n t h e f u t u r e and  expanding  t o MPI  of  i m p o r t a n t even i n the Hel  calculation  been  presence  e x t e n s i o n of t h i s a r g u m e n t i s  be u s e d a s g u i d e l i n e s f o r s u c h  (REMPIS)  peaks  l a t t e r p o i n t i s c o n f i r m e d by a p r e l i m i n a r y  shake-up s t u d i e s are expected  Resonantly  The  to the occurrence  m o l e c u l e s h a v i n g low l y i n g v i r t u a l  colored  will  due  A logical  t h a t s h a k e - u p p r o c e s s e s may for  satellite  o f t h e s e two m o l e c u l e s .  these s a t e l l i t e peaks i s d i r e c t l y lying virtual  there are  t h e r e i s one  reserved  for  future  be u s e d a s t h e l a s e r  line  without  the  present  l a s e r s are a v a i l a b l e ,  be demounted e a s i l y ,  giving  room t o t h e  additional  262  In  conclusion,  applications unstable  a  studies.  other A  molecular  PES beam  coincidence  the  hardware system  and  system  for  phase r e a c t i o n s .  The  significance  and  and  techniques  that  studies,  experiments  extension.  PES/PIMS  t h e i r gas  demonstrates  integrating  t h e s i s d e s c r i b e s the development  versatile  s p e c i e s and  t h i s work  fruitful  of  this  software can  high REMPIS  perform  will  studying success  feasibility to a i d  combinations  temperature be  work, a  and  in of PE of  PE-ion  logical  and  263  References  1.  ( C h a p t e r 11)  J.H.D. E l a n d ,  I n t . J . Mass S p e c t r o m .  I o n Phys.., 8( 1972)  143, a n d 8 ( 1 9 7 2 ) 1 5 3 . 2.  The f o l l o w i n g  r e v i e w s d e s c r i b e some p i o n e e r i n g w o r k s i n  MPIS a n d REMPIS: (a) D.H. P a r k e r , J.O. B e r g a n d M.A. E l - S a y e d , ' A d v a n c e s i n l a s e r c h e m i s t r y ' , A.H. Z e w a i l e d . , S p r i n g e r , B e r lin,  (1978)320.  (b) P.M. J o h n s o n , A c c . Chem. R e s . , 1 3 ( 1 9 8 0 ) 2 0 . 3.  L. Zandee a n d R.B. B e r n s t e i n , J . Chem. P h y s . , 1359, a n d r e f e r e n c e s i n c l u d e d  4.  R.N. Compton, J . C . M i l l e r Chem. P h y s . L e t t . ,  71(1979)  therein.  a n d A.E. C a r t e r a n d P. K r u i t ,  71(1980)87.  5.  J.C. M i l l e r  a n d R.N. Compton, J . Chem. P h y s . ,  75(1981)22.  6.  J.C. M i l l e r  a n d R.N. Compton, J . Chem. P h y s . ,  75(1981)  2020.  APPENDIX  Codes o f the O p e r a t i n g System Program  Contents of the Appendix Contents  page  RECORD  266  ADDSUB  270  BACK  275  BINARY  278  CHANGE  279  CHARAC  282  CLEAR  283  DISK  284  DISPLA  285  EXTRAC  288  FNAME  289  HELP  290  IECHO  291  INFO  292  KYINHD  296  LEVEL  298  OUT  299  PARAME  300  PLOT  302  QUERY  304  SCALE  305  SCAN  307  SEPERA  311  SHOW  313  SMOOTH  316  SQUEEZE  317  STORE  319  SUM  320  WRITE  323  MAIN PROGRAM  RECORD  VERSION 1.1  DATA RETRIEVAL: DATA RETRIEVAL IS DONE WHILE THE CONTROL IS AT DATA MANIPULATING MODE OF 'DISPLA' BY A COMMAND 'BACK'. AFTER THE DATA ARE READ INTO MEMORY] FURTHER DATA MANIPULATION CAN BE PERFORMED.  1-MAR-81  (THE DATA MANIPULATING MODE OF 'DISPLA' IS ENABLED BY KEYBORAO INTER RUPTED THE DISPLAYING PROCESS BY PRESSING 'ESC. A PRELIMINARY HANDLERl IN 'DISPLA'. UPON RECEIVING THIS SIGNAL. WILL CALL ANOTHER HANDLER To] GET AND INTERPRET A DATA MANIPULATING COMMAND('KYINHD'))  FUNCTION OF THE PROGRAM IS TO CONTROL A SPECTROMETER WITH A LSI 11 MICROCOMPUTER. THE JOB INCLUDES DATA ACQUISITION. DATA STORAGE, AND DATA RETRIEVAL. 1. DATA ACQUISITION: THE MAIN PROGRAM ASKS FOR SCANNING PARAMETERS BY CALLING 'PARAME' . THEN CALL 'SQUEEZ' TO MAKE TWO SUITABLE HOLES IN STACK 1, ONE FOR THE CURRENT SCAN CALLEO SPECTRUM 1 AND OTHER FOR THE SUM OF PREVIOUS SCANS CALLED SPECTRUM2. THEN CALL 'SCAN' TO SCAN THE REQUIRED DATA ANO STORE THEM IN STACK 1. EVERY SCAN IS PUT TO A FILE CALLED DK:SPEC.DMP' ON DISK AFTER BEING SCANNED. DURING SCANNING, 'SCAN' WILL CALL 'DISPLA' TO DISPLAY THE SUM (SPECT2) OUT. THE USER'S KEYBOARD INTERRUPT HANDLED BY 'DISPLA' IS ENABLED TO LET THE USER CHANGE SOME OF THE DISPLAY OR SCANNING CONDITIONS. AFTER FINISHED SCANNING, THE CONTROL WILL BE PASSED BACK TO SCAN' (BY SETTING A FLAG TO NEGATIVE TO SIGNAL 'DISPLA' IN ITS INFINITE LOOP). THEN BACK TO MAIN. IF MORE 'SCAN' IS DECIDED BY THE USER, THE ABOVE PROCESS IS REPEATED. OTHERWISE CONTROL IS PASSED TO 'DISPLA' TO DISPLAY THE RESULT. FROM THEN ON, THE USER MAY USE THE KEYBOARD INTERRUPT TO DO DATA MANIPULATION. SUCH AS 'WRITE THE SUM TO DISK' OR 'PLOT A SPECTRUM OUT'. BY TYPING 'OUT' WHILE IN DATA MANIPULATING MODE. CONTROL WILL BE RETURNED BACK TO MAIN. THEN THE MAIN PROGRAM ASKES THE USER WHETHER TO STOP. DISPLAY OR WANT ANOTHER RUN. 2. DATA STORAGE: ALL DATA FILES CONTAIN A ONE-BLOCK INFORMATION FIELD AS THE STARTING BLOCK AND A NUMBER OF SPECTRAL DATA SECTORS EACH OF WHICH IS A SINGLE SPECTRUM AND HAS SIZE AS A INTEGRAL NUMBER OF BLOCKS. THE INFORMATION FIELD DESCRIBES HOW MANY DATA THERE ARE IN THAT FILE. AND HOW THE DATA WERE OBTAINED. THE ORGANIZATION IS AS FOLLOWED: A. PARAMETER FIELD: (FIRST 60 BYTES) THERE ARE 7 ASCII PARAMETERS IN PRSENT.'THEY ARE: NUMBER OF SPECTRA IN THIS FILE SIZE OF EACH SPECTRUM IN NUMBER OF BLOCKS RATE OF SCAN IN MILLISEC PER POINT NUMBER OF SCANS PER SPECTRUM START POINT_NUMBER OF THE SPECTRUM (WHERE START SCANNING) NUMBER OF POINTS SCANNED PER SCAN STEP SIZE OF THE VOLTAGE OUTPUT EVERY PARAMETER IS LEFT ADJUSTED AND HAS FIXED LENGTH AS 4 BYTES. BLANKS WILL BE FILLED IN IF LESS THAN 4 BYTES. A COMMA AND A BLANK ARE USED TO SEPERATE TWO PARAMETERS. B. DESCRIPTION FIELD: (S3RD BYTES TO 127TH BYTES) THIS DESCRIPTION DESCRIBES BRIEFLY ABOUT THE SPECTRAL DATA, SUCH AS NAME OF COMPOUND. DATE OF EXPERIMENT ETC. DETAILED DOCUMENTATION IS TO BE WRITTEN IN ANOTHER DOCUMENTATION FILE BY THE USER. A DUMP FILE CALLED 'DK:SPEC.DMP' HAS BEEN CREATED IN THE DATA DISK FOR DUMPING THE INDIVIDUAL SCANS WHILE SCANNING. INFORMATION BLOCK WILL BE FILLED AFTER ALL SCANS ARE OVER. ' INDIVIDUAL DATA FILE CAN BE CREATED AND WRITTEN BY A 'WRITE' COMMAND IN THE DATA MANIPULATING MODE OF 'DISPLA'.  .TITLE RECORD.MAIN . MCALL .PRINT. EXIT . GLOBL QUERY.DISPLA.PARAME.SCAN.SQUEEZ MACRO QUEST PRADDR.NOAODR MOV PRADDR.QUESAD MOV #LIST1,R5 JSR PC.QUERY PRINT A QUESTION WITH ADDRESS AS PRADDR TSTB ANSWER IF ANSWER IS 'NO'. BEO NOADDR THEN BRANCH TO NOADDR . ENDM ELSE CONTINUE DATA INITIALIZATION: CTCR-167762 CTBR= 167774 CKCR=170420 CKBR=170422 RAMP= 170440 XOUT =170444 YOUT =170442 KEYCR= 177560 KEYBR= 177562 TTCR=1 77564 JSW=44 LC= . . =200 *LC START MOV  1$:  2$: 3$:  COUNTER CONTROL REGISTER COUNTER BUFFER REGISTER REAL TIME CLOCK CONTROL REGISTER REAL TIME CLOCK BUFFER REGISTER RAMP OUTPUT BUFFER REGISTER X AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE Y AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE KEYBOARD INPUT CONTROL REGISTER KEYBOARD INPUT BUFFER REGISTER TERMINAL OUTPUT CONTROL REGISTER JOB STATUS WORD FOR .TTYIN. TTYOUT (SEE RT11 SET UP SYSTEM STACK)STACK_P0INTER=R6) #START,SP  MOV MOV CLR SOB  #STACK1,R4 #8192.,R3 (R4 ) + R3. 1$  CLEAR STACK 1 STACK 1 CONTAINS 8K WORDS IT MAY ACCOMMODATE 1-4 SPECTRA  MOV MOV MOV MOV SOB MOV SOB  #1NF0T1,R4 *4.R3 * #63..R2 BLANK.(R4)+ R2 . 3$ EOF. (R4 ) + R3,2$  INFOT N: INFORMATION TABLE ABOUT SPECT N INITIALLY IT CONTAINS 127 BLANK BYTES AND BYTE 200 AS ITS END BLANK = 2 BLANK BYTES EOF = BLANK BYTE + BYTE 200  :ASK IF DATA RETRIEVAL IS DESIRED ? ASK 1 :  QUEST  #MSG1,GETPAR  ;ASK: 'DATA RETRIEVAL?'  ro cn  IF NO, GOTO GET SCAN PARAMETERS IF YES. PASS CONTROL TO DATA RETRIEVAL ;PASS CONTROL TO DATA RETRIEVAL .PRINT  #MSG2  MOV JSR  #LIST3.R5 PC.DISPLA  ;PRINT 'PRESS 'ESC THEN TYPE IN 'BACK'.'  OSCILL: MOV MOV JSR  TO DISPLAY AND MANIPULATE THE DATA  :GOTO SEE IF STOP ;DATA ACQUISITION:  #LIST2,R5 PC.PARAME  SPACE: MOV MOV MOV CLRB 1$: MOV JSR TSTB BNE INC SOB  #2.R4 *t.NEWNUM SIZEWD.NEWSIZ ERROR #LIST6,R5 PC.SQUEEZ ERROR ASK3 NEWNUM R4 . 1$  #LIST4.R5 PC.SCAN  MOV JSR  #MSG3,STOSUM  QUEST .EXIT  ;ASK: 'STOP NOW?'  QUEST  #MSG6.ASK5  BR  OSCILL  ; CALL PARAME  TO GET SCAN PARAMETERS  CALL SQUEEZ TO MAKE TWO SUITABLE HOLES FOR SPECT1 (CURRENT SCAN) AND SPECT2 (SUM) NEWNUM IS SPECTRUM # . NEWSIZ IS THE SIZE CLEAR ERROR IF ERROR OCCURRED. THEN SEE IF STOP ELSE DO FOR SPECT2  ; CALL SCAN  TO SCAN THE SPECTRUM  QUEST  0MSG7.ASK3  JMP  START  #400.MODE  INC BR  NSCAN GETPAR  SET A CONTINUOUS MODE TO KEEP SOME ACCOUNTING CONSTANTS IN 'SCAN'. GET ONE MORE SCAN (AS DEFAULT) GET PARAMETERS AND SCAN AGAIN  :DISPLAY THE RESULT  : PRINT HOW TO GET THE SUM STORED  ASK: 'WANT ANOTHER RUN?' IF NO. ASK IF STOP IF YES. GOTO TO START AGAIN  LI ST 1 : WORD QUESAD: . BLKW ANSWER: . BLKB . EVEN  2 1 1  CALL OUERYIQUESTION. ANSWER) MESSAGE ADDRESS RETURNED RESULT 1=YES. 0=N0  LIST2: RATE : NSCAN: STARPT: NPOINT: STEP: SIZEWD.  . WORD WORD . WORD . WORD . WORD . WORD . WORD  5 200. 20. 0 10O0. 4 1024 .  CALL PARAME(RATE.NSCAN.START.END.STEP) INITIAL DEFAULT VALUES 200 MSEC PER POINT 20 SCANS FROM POINT 0 TO POINT 1000 VOLTAGE STEP SIZE IS 4 MAX SIZEWD WORDS OF DATA  LISTS:  . WORD . WORD  7 MODE  . WORD . WORD . WORD WORD . WORD . BLKW  STACK 1 SPECT1 SPECT2 SPECT3 SPECT4 1  CALL DISPLA ACTIVITY OF EACH SPECTRUM BIT 1 = 1 SPECT1 IS TO BE DISPLAYED BIT 2 = 1 SPECT2 IS TO BE DISPLAYED BIT 3 = 1 SPECT3 IS TO BE DISPLAYED BIT 4 = 1 SPECT4 IS TO BE DISPLAYED BIT 8 = 0 A NEW SCAN 1 RESTART A TERMINATED JOB TO GET MORE SCAN (SEE SUBROUTINE SCAN) BIT 9 = 0 SCAN IS OFF SCAN IS ON (SPECT2 IS THE RESULT ADDRESS OF STACK ADDRESS OF THE STATUS TABLE OF SPECTRUM 1 ADDRESS OF THE STATUS TABLE OF SPECTRUM 2 ADDRESS OF THE STATUS TABLE OF SPECTRUM 3 ADDRESS OF THE STATUS TABLE OF SPECTRUM 4 ADDRESS OF A FLAG FOR COMMUNICATION BETWEEN AND 'DISPLA'  ASK: 'MORE SCANS?' IF NO. GOTO STORE THE SUM IF YES. CONTINUE AND GET MORE SCANS  ;STORE THE SUM: STOSUM: .PRINT *MSG4  ASK: 'WANT TO DISPLAY?' IF NO. ASK IF WANT ANOTHER RUN IF YES. GOTO TO DISPLAY THE RESULT AGAIN  DATA FIELD:  GET MORE SCANS: BIS  IF NO. ASK IF DISPLAY IF YES. TERMINATE  ASK IF DISPLAY: ASK4:  ASK5:  ALL SCANS WERE OVER. ASK IF MORE SCANS ARE DESIRED? QUEST  #MSG5,ASK4  TO DISPLAY THE RESULT  ASK IF WANT ANOTHER RUN:  ; GET SCANNING PARAMETERS: GETPAR: MOV JSR  :CALL DISPLA  ASK IF STOP: ASKS :  ; CALL DISPLA ;  #2.MODE #LIST3.R5 PC,DISPLA  SPTAD1 SPTAD2 SPTAD3 SPTA04 F LAGAD  ro  3 LIST2 LIST3 LIST5  CALL SCAN HOW TO SCAN WHERE TO STORE IN MEMORY WHERE TO STORE IN DISK  .WORD .WORD DSTART: . WORD WORD DADDR: DSIZE: . WORD D5TATU: .BYTE EVEN  5 FI LENA 0 STACK 1 1024 0  CALL DISK FILENAME ADDRESS STARTING BLOCK NUMBER STARTING ADDRESS OF THE DATA FIELD TO BE USED # OF BLOCKS TO BE TRANSFERED STATUS: BIT 1 = 1 IF WRITE TO DISK BIT 1 = 0 IF READ FROM DISK UPON RETURNED: NEGATIVE IF FAILED  FI LENA: .RAD50  /OK SPEC  LISTG: WORD NEWNUM: .BLKW WORD MODAD: NEWSIZ: BLKW TABLSP: .WORD STKAO1: .WORD BLKB ERROR:  6 1 MODE 1 SPTAD1 STACK 1 1  MSG 1 :  ASCII  /DATA RETRIEVAL7 /<200>  MSG2 :  ASCIZ  /PRESS 'ESC AND THEN TYPE IN 'BACK' TO GET DATA BACK./  MSGS :  ASCII  /MORE SCANS? /<200>  MSG4 :  ASCII ASCII  <12>/(T0 STORE THE SUM. PRESS 'ESC AND TYPE 'WRITE'.)/ <12><1S>/(THE SUM IS IN SPECTRUM 2)/<12><15><12><200>  MSG5 :  ASCII  /STOP NOW? /<200>  LIST4:  . WORD .WORD . WORD WORD  LIST5:  DMP/  ;DK:SPEC.OMP IS THE SCRATCH DATA FILE THAT ; IS USEO TO STORE THE SCANNED RESULT. ; SIZE = 33G BLOCKS  CALL SOUEEZ TO SQUEEZE A HOLE FOR A NEW SPECTRUM SPECTRUM NUMBER OF THE NEW COMER ADDRESS OF THE DISPLAY MODE SIZE OF THE NEW SPECTRUM IN * OF WORDS TABLE OF ADDRESSES OF SPECTRUM STATUS TABLES ADDRESS OF THE STACK 1 ERROR FLAG. SET IF ERROR OCCURRED UPON RETURNED  MSG6 :  .ASCI I /WANT TO DISPLAY? /<200>  MSG7 :  .ASCI I /WANT ANOTHER RUN? /<200> . EVEN  BLANK: EOF :  BYTE BYTE  MODE :  WORD  40. 40 40.2O0  BEGIN1: WORD NPT 1 : . WORD STEP 1 : . WORD SIZW01: . WORD INF01: . WORD SCALE 1 : .WORD SEPER1: . WORD HEAD 1 : . WORD START 1: . WORD  4095 . 1000. 4 1024 . INF0T1 1 0 STACK 1 0  POSITION OF 1ST POINT OF SPECT1 ON OSCILLISCOPE # OF POINTS TO BE DISPLAYED STEP SIZE OF THE VOLTAGE SIZE OF THE WHOLE SPECT1 IN * OF WORDS ADDRESS OF THE INFO TABLE ABOUT SPECT 1 VERTICAL SCALING FACTOR OF SPECT1 SEPERATION BETWEEN BASELINE ANO SPECT1 ADDRESS OF THE HEAD OF SPECT1 THE INITIAL START POINT # OF THIS SPECTRUM  SPECT2: .WORD BEGIN2: .WORD NPT 2 : WORD STEP2: WORD SIZWD2: .WORD INF02: WORD SCALE2: WORD SEPER2: WORD HEAD2: WORD START2: WORD  STACK1+2048. ;ADDRESS OF 1ST POINT OF SPECT2 TO BE DISPLAYED 4095 . POSITION OF 1ST POINT OF SPECT2 ON OSCILLISCOPE 1000. * OF POINTS TO BE DISPLAYED 4 STEP SIZE OF THE VOLTAGE 1024 . SIZE OF THE WHOLE SPECT2 IN # OF WORDS ADDRESS OF THE INFO TABLE ABOUT SPECT2 INF0T2 1 VERTICAL SCALING FACTOR OF SPECT2 0 SEPERATION BETWEEN BASELINE AND SPECT2 STACK1+2048. :ADDRESS OF THE HEAD OF SPECT2 THE INITIAL START POINT # OF THIS SPECTRUM 0  SPECT3: BEGIN3: NPT3 : STEP3: SIZWD3: INF03: SCALE3: SEPER3: HEADS: STARTS:  WORD .WORD . WORD .WORD WORD . WORD .WORD . WORD . WORD . WORD  STACK 1+4096. ;ADORESS OF 1ST POINT OF SPECT3 TO BE DISPLAYED 4095 . POSITION OF 1ST POINT OF SPECT3 ON OSCILLISCOPE 1000. # OF POINTS TO BE DISPLAYED 4 STEP SIZE OF THE VOLTAGE 1024 . SIZE OF THE WHOLE SPECT3 IN # OF WORDS INF0T3 ADDRESS OF THE INFO TABLE ABOUT SPECT3 1 VERTICAL SCALING FACTOR OF SPECT3 1000. SEPERATION BETWEEN BASELINE AND SPECT3 STACK1+4096. ;ADDRESS OF THE HEAD OF SPECT3 0 THE INITIAL START POINT * OF THIS SPECTRUM  SPECT4 : BEGIN4: NPT4 : STEP4: SIZWD4: INF04: SCALE4: SEPER4: HEAD4: START4:  .WORD WORD . WORD WORD . WORD . WORD . WORD . WORD . WORD . WORD  STACKH-6144. ; ADDRESS OF 1ST POINT OF SPECT4 TO BE DISPLAYED 4095. POSITION OF 1ST POINT OF SPECT4 ON OSCILLISCOPE 1000. # OF POINTS TO BE DISPLAYED 4 STEP SIZE OF THE VOLTAGE 1024 . SIZE OF THE WHOLE SPECT4 IN # OF WORDS INF0T4 ADDRESS OF THE INFO TABLE ABOUT SPECT4 1 VERTICAL SCALING FACTOR OF SPECT4 1500. SEPERATION BETWEEN BASELINE AND SPECT4 STACK 1+6 144. :ADDRESS OF THE HEAD OF SPECT4 0 THE INITIAL START POINT * OF THIS SPECTRUM  INFORMATION TABLES:  SZDATA: .WORD  2  ;INITIAL VALUE OF MODE. SHOW SPECT2 ONLY  40+256. +8192.  ;SIZE OF THE DATA BANK  :SPECTRUM STATUS TABLES: SPECT1: . WORD  STACK 1  ; ADDRESS OF THE 1ST POINT OF SPECT 1 TO BE DISPLAYED  INTOT1: BLKW INF0T2: BLKW INF0T3: BLKW INF0T4: . BLKW  64 64 64 64  . . . .  THE THE THE THE  INFORMATION INFORMATION INFORMATION INFORMATION  TABLE TABLE TABLE TABLE  ABOUT ABOUT ABOUT ABOUT  SPECT1 SPECT2 SPECT3 SPECT4  EACH NFORMATION TABLE CONTAINS A PARAMETER FIELD (FIRST GO BYTES) AND A DESCRIPTION FIELD (LAST 66 BYTES). A PARAMETER IN PARAMETER FIELD IS A LEFT ADJUSTED 4-BYTE ASCII DIGITAL STRING. SEPERATED WITH THE NEXT ONE BY A COMMA AND A BLANK THE PARAMETERS ARE: 1. # OF SPECTRA IN THE FILE  2. SIZE OF EACH SPECTRUM IN BLOCKS 3. RATE OF SCAN IN mSEC 4. # OF SCAN OBTAINED FOR EACH SPECTRUM 5. POINT* OF THE 1ST POINT IN MEMORY 6. # OF POINTS ACTUALLY IN MEMORY 7. STEP SIZE WHILE SCANNING THIS SPECTRUM THREE MORE PARAMETERS MAY BE APPENDED THE DESCRIPTION IS USED TO CLARIFY THE SPECTRUM. ;MEMORY FOR THE SPECT STACK 1:  BLKW 8192.  END OF MAIN PROGRAM END  THE THE THE THE  FIRST NEXT NEXT NEXT  SIZWD1 WORDS SIZWD2 WORDS SIZWD3 WORDS SI ZWD4 WORDS  MAKE MAKE MAKE MAKE  UP SPECT1 UP SPECT2 UP SPECT3 UP SPECT4  RECORD  START  ro CTi  10  #3 . R3  ; SUBROUTINE  ADDSUB  V E R S I O N 1.2  BIC MOV DEC ASL ADD ADD  27-MAR-8 1  F U N C T I O N OF T H I S S U B R O U T I N E I S TO PERFORM A D D I T I O N / S U B T R A C T I O N BETWEEN TWO I S P E C T R A . T H E R E S U L T CAN BE A NEW SPECTRUM OR PART OF THE E X I S T I N G ONE. ITHE PARAMETER :LIST: ;SAVE: ; ;XCUR: ;¥CUR: ;FACTOR: ;MODE: :SPTAD1: ;SPTAD2: ;SPTAD3: ;SPTAD4: :STKAD1:  L I S T P A S S E D TO T H I S SUBROUTINE I S :  .WORD .BLKW  10. 1  WORD WORD WORD .BLKW .BLKW BLKW BLKW .BLKW BLKW  4095. 0 0 1 1 1 1 1 1  MOV  ;CALL A DATA M A N I P U L A T I N G S U B R O U T I N E ; ADDRESS OF PARAMETER L I S T TO C A L L ' D I S P L A ' : ( J U S T USED FOR FURTHER M O D I F I C A T I O N ) ;X COORDINATE OF THE CURSOR ;Y COORDINATE OF THE CURSOR :SCALE FACTOR USED FOR D I S P L A Y ; THE D I S P L A Y MODE •ADDRESS OF SPECTRUM S T A T U S TABLE OF S P E C T 1 ;ADDRESS OF SPECTRUM S T A T U S T A B L E OF S P E C T 2 ;ADDRESS OF SPECTRUM S T A T U S T A B L E OF S P E C T 3 ;ADDRESS OF SPECTRUM S T A T U S TABLE OF S P E C T 4 ;ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  ;GET S T E P  .TITLE .GLOBL .MCALL ADDSUB:  MOV ADD MOV ADD MOV MOV  1$ :  2$:  MOV MOV CLR DIV TST BNE ASL MOV MOV  ;R5 P O I N T S TO MODE ;MODAD = ADDRESS OF MODE ;R5 P O I N T S TO SPTAD1 ; T A B L S P = ADDRESS OF TABLE OF S P T A D N ;STKAD1 = ADDRESS OF STACK 1 ;ASK FOR SPECT# OF A.B.C  CMPB BEQ CMPB BNE MOV CMPB BNE MOV  ARGU1.#200 INPUT 1 ARGU2.#200 1$ ARGU1.ARGU2 ARGUS.#200 2$ ARGU2.ARGUS  ; I F F I R S T ONE D E F A U L T : THEN ASK A G A I N ; I F SECOND ONE I S NOT DEFAULT ; THEN J U S T CONTINUE ; E L S E ASSUME SECOND ONE = F I R S T ONE : I F THIRD ONE IS NOT DEFAULT ; THEN J U S T CONTINUE ; E L S E ASSUME THIRD ONE = SECOND ONE  MOV MOV  #ARGU1,R5 *SPrADA.R4  CALCULATE ;AND STORE  SPTADA.SPTADB,SPTADC, THEM  : R 2 = 0 F F S E T OF S P T A D N TO S P T A D 1 C :  R2=#SPTADN  :R2 P O I N T S TO S P T A D C ;INFOTC P O I N T S TO INFO T A B L E OF S P E C T C  SPTADC.R4 SPTADB,R3 SPTADA.R2 6(R2).STEPA 6(R3).STEPS STEPA.STEPB 1$ STEPB.Rl R1.STEPC RO STEPA.RO R1 ERSTEP RO RO.STEPA #2.STEPB  S P E C T » OF THE NEW :R4=#SPECT_N OF C :R3=#SPECT_N OF B :R2=#SPECT_N OF A ; S T E P A : S T E P _ S I Z E OF A ; S T E P B : S T E P _ S I Z E OF B :IF  SPECT  STEPA < STEPB THEN  STEPC=STEPB IF  S T E P B I S N ' T M U L T I P L E OF S T E P A  THEN I S S U E S AN ERROR MESSAGE ; ELSE STEPA=2*THE MULTIPLE # ; STEPB=2 : ( S T E P A . B ARE USED TO S T E P THRU THE MEM) ; ( E V E R Y P O I N T OF B WILL B E USED. FOR A ) :(ONLY M U L T I P L E # P O I N T S W I L L BE S K I P P E D )  INPUT2  #LIST1.R5 PC.EXTRAC  I N P U T 1: MOV JSR  CLR DIV TST BNE ASL MOV MOV  ADD_SUBSTRACT ADDSUB.EXTRAC.BINARY,QUERY.SQUEEZ.CHARAC .PRINT R5,SAVE #12.R5 R5.M0DAD #2.R5 R5.TABLSP 10( R 5 ) . S T K A D 1  (R5)=SPECT# I N ASCII R2=SPECT# I N B I N A R Y  SIZE:  G E T S T P : MOV MOV MOV MOV MOV MOV  ;THE S U B ROUTINE A S K S F 3R T H E FOLLOWING I N P U T S : 1. 3 S P E C T R U M LUMBERS: FOR THE TWO OPERANDS AND THE SUM. F I R S T ONE CANNOT BE D E F A U L T E D . THE DEFAULT FOR THE OTHERS I S I T S P R E C E D I N G V A L U E . 2 3 START P O I N T # ' S . NUMBER OF P O I N T S AND S I G N : THE D E F A U L T C O N D I T I O N I S THE SAME AS I N 1. FOR THE 3 S T A R T _ POINT#'S. NO DEFAULT FOR NUMBER OF P O I N T S . THE DEFAULT FOR IS ' + ' .  #177760.(R5) ( R5 )-» . R2 R2 R2 SAVE,R2 #14.R2 ( R2).(R4 ) + R3.3$ (R2),R2 12(R2).INFOTC  INFOTC  :STEP  SIZE  E R S T E P : MOV MOV JSR TSTB  STEPA.R1 R1.STEPC RO STEPB.RO R1 ERSTEP RO RO.STEPB #2.STEPA INPUT2  E  STEPC=STEPA IF  S T E P A I S N ' T M U L T I P L E OF S T E P B THEN ELSE  I S S U E S AN ERROR MESS STEPB=2*THE MULTIPLE # STEPA=2 ( S T E P A , B ARE USED TO S T E P THRU THE MEM) ( E V E R Y P O I N T OF A W I L L BE USED. FOR B ) (ONLY M U L T I P L E # P O I N T S W I L L BE S K I P P E D )  EM: *MSG3.QUESAD #LIST3.R5 PC,QUERY ANSWER 1$ FINISH INPUT 1  :ASK: ; IF  F A I L E D TO MAKE S T E P _ S I Z E _ A AND S T E P _ S I Z E B C O M P A T I B L E . TRY A G A I N ? ' 'YES'  (TOO LONG  THEN GOTO INPUT' ELSE TERMINATE TO USE B R A N C H )  ro o  NPUT2: MOV JSR  *LIST11.R5 PC,EXTRAC  MOV MOV ADO MOV CLR MOV  ; INPUT START POINT* OF A, B. C. NPOINTS, SIGN  CMPB BEO CMPB BNE MOV MOV MOV CMPB BNE MOV MOV MOV CMPB BEO  IF DEFAULT THE FIRST ONE ARGU4.*200 THEN ASK AGAIN INPUT2 IF NOT DEFAULT THE SECOND ONE ARGU5.*200 THEN JUST CONTINUE 1$ ELSE ASSUME THE SECOND ONE = THE FIRST ONE ARGU4,ARGU5 ARGU4+2,ARGU5+2 ARGU4+4,ARGU5+4 IF NOT DEFAULT THE THIRD ONE ARGU6.#200 THEN JUST CONTINUE 2$ ELSE ASSUME THE THIRD ONE SECOND ONE ARGU5,ARGU6 ARGU5+2.ARGU6+2 ARGU5+4,ARGU6+4 ; IF DEFAULT NPOINT ARGU7,#200 ; THEN ASK AGAIN INPUT2  MOV MOV MOV MOV MOV JSR  #ARGAD4,R4 #ADDRA.R2 #4.R3 (R4)+,STRGAD #LIST2.R5 PC.BINARY  MOV SOB  BINUM.(R2)+ R3.3$  MOV SUB  #4095..BEGINC ADDRC.BEGINC  ;UPDATE INFORMATION TABLE: MOV SPTADC.R4 #ARGU4.R2 MOV  :SET RELATIVE POSITION OF SPECTC ON OSCILL.  MOV MOV JSR TSTB BNE  #MSG2.OUESAD #LIST3.R5 PC.QUERY ANSWER KEEP  ;ASK: 'WANT TO KEEP THE OTHER PARTS OF OLD ; SPECTC? '  MOV MOV MOV BLANKS: MOV MOV MOV 1$: SOB  INF0TC.R4 #ARGU4.R2 #7 .R3 #64..R1 R4 . R5 BLANK.(R5) + R 1 . 1$  INF01=ADDRESS OF INFO BLOCK OF SPECTC CONVERT THESE TO ASCII CHARACTERS R3 = PARAMETER COUNT BLANK OUT THE INFO_TABLE(64 WORDS)  MOV MOV JSR MOV MOV CMPB BNE MOVB BR  #LIST5.R5 (R2)+.NUMBER PC.CHARAC #4 . RO #CHAR4,R1 #200.1 R1 > 10$ #40.(R4)+ 1 1$  CALL CHARAC NUMBER = BINARY NUMBER TO BE CONVERTED  MOVB SOB  (R1)+,(R4) + RO.12$  .CONVERTS AND STORES 4 DIGITS  MOV  COMMA.(R4 ) +  :PUT A COMMA AND A BLANK AT THE END  SOB  R3.13$  ;REPEAT UNTIL 7 PARAMETERS ARE DONE  JMP  OPERAT  ;GOTO DO THE OPERATION  13$ :  NOKEEP: MOV CLR DIV TST BEO INC ASH IS: MOV CLRB MOV JSR TSTB BEO JMP UPDAT1: MOV. MOV MOV SUB MOV  NPOINT.R5 R4 #256.,R4 R5 1$ R4 #8.,R4 R4.NEWS IZ ERROR #LIST4,R5 PC.SQUEEZ ERROR UPDAT1 FINISH SPTADC,R4 20(R4).(R4> + #4095..(R4) ADDRC.(R4)+ NPOINT.(R4)*  12$ :  ;IF 'YES . ; THEN KEEP THE OTHER PARTS -  ;D0 NOT KEEP THE EXISTING PART :  ELSE TREAT IT AS A NEW SPECTRUM  ;R4 = # OF BLOCKS TO KEEP NPOINT ;R4 = NEW SIZE IN » OF WORDS  •.CALL SQUEEZ TO GET A HOLE FOR THIS SPECTRUM ;IF NO ERROR OCCURRED ; THEN CONTINUE : ELSE STOP ;UPDATE THE SPECTRUM STATUS TABLE ;SPECT_C = HEAD_C ;BEGIN C = 4095. - STARTPOI NT»_C ;NPOINT  R4 POINTS TO STATUS TABLE AGAIN SET UP A TABLE CONTAINING THE INFO PARAMETERS IN THE RIGHT ORDER (USE ARGU4 AS BUFFER) 1 . # SPECT = NSCAN 2. SIZE IN # OF BLOCKS 1 BLOCK = 256 WORDS  # 1 .(R2) + 10(R4I.R0 #-8..RO RO.(R2)+ <R2) + ( R2 )* 22(R4).(R2)* NPOINT.(R2)* STEPC.(R2)  :CHECK IF TO KEEP THE EXISTING PART OF SPECT_C OR NOT : EXIST:  STEP SIZE SIZE IN # OF WORDS INFO DOES NOT CHANGE (SCALE FACT0R)MOO - 100 SEPERATION = 0 STARTC = START_POINT#_C  MOV MOV ASH MOV CLR CLR MOV MOV MOV  ;CONVERT ARGU4.5.6.7 TO BINARY :STRGAD = ADDRESS OF THE DIGITAL ASCII ARGU ;CALL BINARY ;BINARY NUMBER STORED AS AODRA.ADDRB.ADDRC. AND NPOINT  STEPC,< R4 )* NEWSIZ.(R4 )* #2 . R4 #100..(R4)* (R4 ) + ADDRC.2(R4)  10$ : 1 1$ :  3. 4. 5. 6. 7.  RATE (UNKNOWN) NSCAN (UNKNOWN) START POINT* NPOINT STEP  RO = BYTE COUNT (4 BYTES FOR EACH) 200 INDICATES END OF CHAR4 PUT BLANKS UNTIL GOT 4 CHAR'S  ;KEEP THE EXISTING PART: KEEP :  MOV CMP BEO PRINT JMP  STEPOK: MOV ADD MOV MOV  SPTADC.R4 STEPC.6(R4) STEPOK #MSG2.1 FINISH  ;R4 ;IF ; ;  POINTS TO THE STATUS TABLE OF SPECTC NEW STEP SIZE = OLD STEP SIZE THEN CONTINUE ELSE COMMAND ABORTED AND STOP  12 ( R4 ) , R 1 #30..Rl R1.STRGAD #4 .RO  :R1 POINTS TO THE INFO TABLE ;R1 POINTS TO NPOINT IN THE INFO TABLE •CONVERT THIS ORIGINAL NPOINT TO BINARY '.THE MAX SIZE OF THIS PARAMETER IS 4 BYTES  1$: 2$:  CMPB BEO SOB MOVB MOVB MOV JSR MOV MOVB  DIFFER: MOV CLR SUB BGE BIS DIV 1$: MOV BGE  #40,(Rl)+ 2$ RO. 1$ -(R1),R2 #200.(Rl) #LIST2.R5 PC.BINARY BINUM.OLONPT R2.(R1)  ;USE #200 TO END THE DIGITAL STRING  ADDRC.R1 RO 22(R4).R1 1* #177777,RO G(R4),R0 RO.DIFFST BEHIND  ;R1 = START_POINT#_C  ;STORE THIS ENDING BYTE ;SET #200 AS THE END OF THE DIGITAL STRING ;  ;OLDNPT = ORIGINAL NPOINT OF THE SPECTC ;RESTORE THE ORIGINAL BYTE  ;R1 = NEW START - OLD START :IF POSITIVE, THEN CONTINUE ; ELSE EXTEND THE SIGN BIT TO RO ;R1=R1/5TEP C ;DIFFST = # OF POINTS AHEAD :IF RO > 0, NEW SPECT STARTS BEHIND THE OLD  ; THE SUM STARTS IN FRONT OF THE EXISTING PART FRONT:  NEG MOV MOV ADD CMP BLE PRINT JMP  ADJSZ1: CMP BGE CLR DIV TST BEO INC ASH 1$ : MOV CLRB MOV JSR TSTB BEO JMP 3$ :  DOWN: CLEAR: 1$ :  DIFFST 10(R4).NEWSIZ OLDNPT ,R1 DIFFST . R 1 NPOINT ,R1 ADJSZ1 #MSG6 FINISH  ;DIFFST IS POSITIVE NOW INITIALIZE NEWSIZE = OLDSIZE ;R1 = TOTAL # OF POINTS OF SPECTC IN MEM ;R1 = NEW TOTAL # OF POINTS OF SPECTC : IF NPOINT TO BE ADDED IS LESS THAN THIS THEN OK BECAUSE SOME OLD PART EXISTS ELSE PRINT 'TO MANY POINTS' AND STOP  ,R1 10( R4 ) 3$ RO #256..RO R1 1« RO #8..RO RO.NEWSIZ ERROR #LIST4 . R5 PC.SOUEEZ ERROR 3» FINISH  : IF OLD SIZE > SIZE TO STORE NEW SPECT THEN JUST MOVE DOWN THE OLD SPECTC  MOV ASL ADD MOV ASL ADD  OLDNPT .RO RO 20(R4) .RO DIFFST .Rl R1 R0.R1  MOV MOV SOB MOV CLR SOB  OLDNPT ,R2 -(RO). -(R1 ) R2.DOWN DIFFST .RO -(R1 ) RO. 1$  ;R0 = SIZE IN BLOCKS TO STORE NPOINT :R0 = SIZE IN WORDS ;NEWSIZ - NEW SIZE OF THE SPECT_C ;CALL SOUEEZ TO GET A HOLE FOR SPECTC ; IF NO ERROR OCCURRED. THEN CONTINUE ELSE STOP  UPDAT 2 : MOV MOV SUB MOV ADD MOV MOV INF02:  1$:  INFOTC.R3 #24.,R3 #ARGU6,R2 BLANK,(R3) BLANK.2(R3) (R2)*.(R3)+ #200,(R2) 1$ INF03  BEHIND: MOV ADD CMP BGE MOV CMP BGE CLR DIV TST BEO INC 1$ : ASH MOV CLRB MOV JSR TSTB BNE  NPOINT.R1 DIFFST.R1 OLDNPT.R1 OPERAT  UPDAT 3: MOV MOV SUB MOV  20(R4).(R4) #4095..2(R4) 22IR4).2(R4) NEWSIZ.10(R4)  INF03:  INFOTC,R3 #6.R3 NEWSIZ.Rl #-8.,R1 R1.NUMBER FLAG #LISTS.R5 PC.CHARAC #CHAR4.R2 BLANK.(R31 BLANK.2(R3I  CONLP:  :MOV DOWN THE OLD SPECT TO ACCOMMODATE THE NEW  ;CLEAR THE HOLE  #4095. .2(R4 ) ADDRC.2(R4) OLDNPT.4(R4) DIFFST.4(R4) NEWSIZ. 10(R4 ) ADDRC . 22( R4 )  SPECTC = HEADC BEGIN C = 4095. - START POINT* C NPOINT « OLDNPOINT + DIFFST NEW SIZE STARTC = START_POINT*_C UPDATE THE INFO TABLE R3 POINTS TO THE FIFTH ENTRY OF INFO TABLE R2 POINTS TO THE ASCII START POINT* OF SEPCTC CLEAR THE OLD 4 BYTE PARAMETER FIRST MOVE IN ASCII DIGIT UNTIL THE END OF ASCII DIGITAL STRING GO TO UPDATE THE REST OF THE INFO. TABLE  :THE SUM STARTS BEHIND THE EXISTING PART:  ;R0 - OLD SIZE IN BYTES ;R0 = ADDRESS OF THE BOTTOM OF THE OLD SPECT ;R1 - THE SIZE AHEAD OF THE OLD SPECT IN BYTES ;R1 = NEW ADDR OF BOTTOM OF THE OLD SPECT  MOV ADD MOV MOV MOV MOVB CMPB BNE BR  20(R4),(R4)  1$:  MOV ADO MOV ASH MOV CLRB MOV JSR MOV MOV MOV MOVB CMPB BNE TSTB  Rl ,4(R4)  10(R4 ) . R 1 UPDNPT RO #256..RO R1 1$ RO #8..RO RO.NEWSIZ ERROR #LIST4,R5 PC.SOUEEZ ERROR FINISH  I R 2 >*.(R3 )* #20O.(R2)  It FLAG  Rl = SIZE OF NEW SPECT IN WORDS IF OLD NPOINT > NEW COMING PART THEN JUST GO TO DO THE OPERATION ELSE SET THE NEW NPOINT = THE LARGER ONE IF OLD SIZE > NEW SIZE THEN GOTO UPDATE THE NEW NPOINT  RO = > SIZE IN # OF BLOCKS RO « SIZE IN # OF WORDS CALL SOUEEZ TO GET A HOLE FOR THE NEW SPECT IF ERROR OCCURRED, STOP SPECTC - HEAO_C BEGIN C = 4095. - START C SIZE_C = NEWSIZ UPDATE INFO TABLE R3 POINTS TO SECOND ENTRY OF INFO TABLE OF C NEW SIZE IN BLOCKS CONVERT TO ASCII CLEAR FLAG. FLAG SET IF NO MORE CONVERSION CONVERSION CLEAR THIS ENTRY MOVE IN DIGIT UNTIL BYTE 200 IS ENCOUNTERED FLAG SET IF NO MORE CHARAC CALL  BNE UPDNPT: MOV ADD MOV INC BR  OPERAT INFOTC,R3 #30.,R3 4(R4),NUMBER FLAG CONLP  UPDATE THE NEW NPOINT IN INFO TABLE R3 POINTS TO SIXTH ENTRY (# OF POINTS) NEW NPOINT SET FLAG TO INDICATE IT IS THE END OF CONVER.  MOV ADDRLP: MOV MOV SUB BLT ASL CLR DIV BR  #SPTADA,R5 #ADDRA,R4 #3,R3  CALCULATE STARTING ADDRESS OF EACH SPECT STORE THEM TO ADDRA.ADDRB.ADDRC AND GET A COPY OF SEPERA. SEPERB. AND SEPERC  it:  PRINT CLR  #MSG4 RO  PRINT ERROR MESSAGE. BUT CONTINUE PRESENT START POINT* = ORIGINAL ONE  2t :  ADD MOV MOV SOB  20(R2),RO RO.(R4)+ 16(R2).6(R4) R3.ADDRLP  RO=RO+HEAD N ADDR N = RO. STORE TO ADDRA, ADDRB. OR ADDRC GET A COPY OF SEPERATIONS. STORE AFTER NPOINT  MOV MOV MOV MOV  ADDRA.R5 ADDRB.R4 ADDRC.R3 NPOINT,R2  R5 R4 R3 R2  (R4).R1 SEPERB,R1 ARGU8,#'+ 2$ ARGU8.#'1$ R1 2$ R1 (R5).RI SEPERA,R1 SEPERC.R1 R1.(R3)+ STEPA.RS STEPB.R4 R2,MATHLP  RI'POINT VALUE OF B RESET THE SEPERATION FROM BASELINE IF ADDITION THEN C - A + B IF SUBTRACTION THEN C = A - B ELSE C = A  RO=START_POINT#_N/STEP_N  POINTS POINTS POINTS IS THE  TO SPECTA TO SPECTB TO SPECTC POINT COUNTER  CALCULATE C RESET THE SEPERATION FROM BASELINE SET THE SEPERATION FROM BASELINE FOR SPECTC RESTORE THE RESULT TO SPECTC SKIP 'STEPA' POINTS FOR SPECTA SKIP -STEPB/2' POINTS (1 POINT = 2 BYTES)  SET THE DISPLAYING MODE TO DISPLAY THE SUM: ARGU3.R5 R5 #1.R4  BIS  ;SET THE MODE TO DISPLAY SPECTC  #MSG5 PC  :PRINT 'COMMAND 'ADDSUB' FINISHED. : RETURN  BLKW  R2=#SPECT_N FOR A.B.OR C R1 = PRESENT START POINT* - ORIGINAL ONE IF NEGATIVE, SET START POINT* TO ORIG. ONE R1 IS NOW IN BYTES  MOVB DECB MOV  :BIT N OF R4 IS NOW SET  R4.9M0DAD  DATA FIELD: SAVE :  (R5)+.R2 (R4),R1 22(R2),R1 1* R1 RO 6(R2).RO 2$  MATHLP: MOV SUB CMPB BEO CMPB BEO CLR BR NEG 1$: 2$: ADD SUB ADO MOV ADD ADD SOB  R5.R4  JOB DONE: FINISH: .PRINT RTS  ;ACTUAL ADDITION / SUBTRACTION: OPERAT: MOV MOV  ASH  ;SET BIT_N OF MODE IN SUBROUTINE DISPLA ;  LIST 1: .WORD WORD MESAD: ARGAD1: WORD ARGAD2: WORD ARGAD3: .WORD  1 4 MSG 1 ARGU 1 ARGU2 ARGU3  ;CALL EXTRAC TO INPUT 3 SPECT#'S ;ADDRESS OF THE MESSAGE ;ADDRESS OF THE ARGUMENTS  1 1 1  ;BUFFER FOR THE ASCII SPECT#'S  ARGU1: ARGU2: ARGUS:  BLKW .BLKW .BLKW  LIST1 1 ARGAD4 ARGAD5 ARGAD6 ARGAD7 ARGAD8  WORD 6 . WORD MSG 1. 1 WORD ARGU4 . WORD ARGU5 . WORD ARGUS . WORD ARGU7 . WORD ARGU8  CALL EXTRAC TO INPUT 3 START POINT*'S.NPOINT AND THE SIGN ADDRESS OF THEARGUMENTS  ARGU4: ARGU5: ARGUS: ARGU7: ARGU8:  . BLKW . BLKW BLKW BLKW BLKW  3 3 3 3 1  BUFFER FOR THE3 ASCII START _POINT#'S  LIST2: STRGAD BINUM:  . WORD BLKW . BLKW  2 1 1  CALL BINARY ADDRESS OF ASCII STRING BINARY EQUIVALENCE  LISTS: OUESAD  .WORD BLKW . BLKB . EVEN  2 1  CALL QUERY ADDRESS OF THEQUESTION ANSWER 1=YES 0=N0  LIST4: NEWNUM: MODAD: NEWSIZ: TABLSP: STKAD1: ERROR:  . WORD . BLKW . BLKW BLKW . BLKW . BLKW .BLKB  6 1 1 1 t  I 1  BUFFER FOR THEASCII NPOINT BUFFER FOR THEASCII SIGN  THE SPECTRUM # OF THE INCOMING SPECTRUM ADDRESS OF MODE SIZE OF THE NEW SPECTRUM TABLE OF ADDRESSES OF SPECTRUM STATUS TABLES ADDRESS OF STACK 1 ERROR FLAG. SET IF ERROR OCCURRED  ro CO  ; END OF SUBROUTINE ADDSUB  EVEN ;  . END  LIST5: NUMBER  . WORD .BLKW WORD  2 1 CHAR4  FLAG: SIGN: CHAR4:  . BLKB . BLKB .BLKW  1 1 3  MSG1 : MSG 1 .  .ASCII ASCII 1 ASCII  ;CALL CHARAC TO CONVERT BINARY TO ASCII • > ;BINARY NUMBER ;THE ASCII STRING ADORESS ;A FLAG SET IF NO MORE CHARAC CALL ;SPACE FOR SIGN RETURNED IF ANY ;SPACE FOR THE DIGITAL PART RETURNED  ; FOR C = A + /- B,; <12><15>/INPUT SPECT* FOR A, B. C: /<200> / START POINT* FOR A, B. C. #_OF_POINTS. SIGN : /<200> <12>/WANT TO KEEP THE OTHER PARTS OF OLD SPECT_C? / 200  MSG2:  ASCII .BYTE  MSG2.1  ASCII ASCIZ  /THE NEW STEP SIZE IS NOT COMPATIBLE TO THE OLD ONE. / /COMMAND ABORTED./  MSGS :  ASCII ASCII BYTE  /FAILED TO MAKE STEP SIZE_A AND STEP_SIZE_B COMPATIBLE. / /TRY AGAIN? / 200  MSG4 :  ASCIZ  /THE DESIRED START_POINT* IS TOO SMALL. SET TO MINIMUM NOW./  MSG5:  ASCIZ  /COMMAND 'ADDSUB' FINISHED.  MSG6:  .ASCIZ . EVEN  /ppp NPOINT TOO LARGE. COMMAND ABORTED./  BLANK: COMMA:  ASCII .ASCII  / / /. /  SPTADA SPTADB SPTADC  . BLKW BLKW .BLKW  1 1 1  BACK TO DISPLAY./  ; #SPECT N OF A ;#SPECT N OF B ;#SPECT_N OF C  INFOTC  BLKW  1  ;ADDRESS OF INFO TABLE OF SPECTC  STEPA: STEPB: STEPC:  .BLKW BLKW BLKW  1 1 1  ;STEP SIZE OF A ;STEP SIZE pF B ;STEP SIZE OF C  ADDRA: ADDRB: ADDRC: NPOINT SEPERA SEPERB SEPERC  BLKW .BLKW BLKW BLKW BLKW BLKW . BLKW  1 1 t 1 1 1 1  -.ADDRESS OF THE START POINT OF SPECTA :ADDRESS OF THE START POINT OF SPECIE ;ADDRESS OF THE START POINT OF SPECTC :# OF POINTS ;SEPERATI ON FROM BASELINE FOR SPECTA :SEPERATION FROM BASELINE FOR SPECTB ;SEPERATION FROM BASELINE FOR SPECTC  BEGINC  BLKW  1  :POSITI0N OF SPECTC ON OSCILLISCOPE  OLDNPT  BLKW  1  ;THE ORIGINAL NPOINT STORED IN INFO TABLE  BLKW  1  DIFFERENCE BETWEEN OLD AND NEW START_POINT#  DIFFST  . * • . . . * » * + *»••,.•«.» + • * . * * * . * * • * • * • * . * • • • • * • • • * • * . • • • * * * • * * • • * • » * • • * • « • • * * • • • • * — — — — — — — ^ — — — — f  ro \i  **************  SUBROUTINE  *****************  BACK  **************  ••A*******************************************  VERSION 1.1  1-MAR-8 1  ***************************************************************  THE FUNCTION OF THIS SUBROUTINE IS TO READ BACK DATA ON DISK THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: LIST: SAVE :  WORD BLKW  XCUR: VCUR : FACTOR MODE : SPTAD1 SPTAD2 SPTAD3 SPTAD4 STKAD1  WORD . WORD .WORD BLKW BLKW .BLKW .BLKW BLKW . BLKW  **************  BACK :  10. 1 4095 . 0 0 1 1 1 1 1  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR Y C00RDINA1E OF THE CURSOR SCALE FACTOR USED FOR DISPLAY THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT 1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 AODRESS OF SPECTRUM STATUS TABLE OF SPECT3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  ***************************************************************  .TITLE .GLOBL .MCALL  DATA BACK FROM DISK EXTRAC.QUERY.DISK.BACK.BINARY.SQUEEZ,FNAME PRINT  MOV ADD MOV MOV MOV MOV MOV MOV  R5,SAVE #12.R5 (R5I+.M0DE (R5)+.SPTA01 <R5)+.SPTAD2 (R5)+.SPTA03 (R5)+.SPTAD4 <R5).STKAD1  CURIN: NOT IN:  PRINT MOV MOV MOV BITB BEO PRINT ADD ASL SOB  #MSG1 #0NE.R5 #1 ,R3 #4.R2 R3,MODE NOT IN R5 #4 . R5 R3 R2.CURIN  SAVE THE LINK ;GET A COPY OF THE PARAMETERS  (4 BYTES FOR EACH NUMBER)  MOV JSR  #LIST1,R5 PC.EXTRAC  INPUT SPECT*.FILENAME  MOV MOV JSR  •ARGU2.FNAMAO #LIST2.R5 PC.FNAME  CONVERT FILENAME TO RAD50  ARGU1,R4 #177760.R4 R4,NEWNUM R4 R4 #SPTAD1,R4 (R4).SPTADN (R4),R3 12(R3),R3 R3.DADDR  R4-N FOR SPECT N CONVERT TO BINARY NEWNUM IS THE SPECT # OF THE INCOMING ONE  #64..DSIZE DSTATU DSTART #LIST3.R5 PC.DISK DSTATU SHOWIN FINISH  INPUT THE FIRST 128 BYTES OF THE DATA FILE  R4=#SPTAD N SPTADN = STATUS TABLE FOR SPECTN R3=INFOAD_N  INFO_TABLE_N IF DISK OPERATION OK THEN CONTINUE TO SHOW INFORMATION TABLE ELSE STOP  ; SHOW THE INFORMATION TABLE OF THE DATA IN THE DATA FILE #MSG3.R5 #7 . RO #18..R5 ( R3 )+ . ( R5 )+• (R3)+.(R5)+ #2 . R5 #2 . R3 RO. 1$ #MSG3 #20.,R3 #MSG4 R3  R5 POINTS PRINT THE R5 POINTS MOVE THE  TO THE MESSAGE TO BE OUTPUT 7 PARAMETERS TO THE POSITION OF THE NUMBER ASCII NUMBER TO THE MESSAGE  SKIP TWO BYTES (LINE FEED AND RETURN) SKIP TWO BYTES (COMMA AND BLANK) PRINT (# SPECT.SIZE.RATE.. STEP SIZE ARE:) R3 POINTS HEAD OF THE DESCRIPTION PRINT DESCRIPTION  ;SEE IF IT ISTHE RIGHT THING:  OUTPUT SPECT#S OF CURRENTLY DISPLAYED SPECTRA R5 POINTS TO TABLE CONTAINING SOME NUMBERS R3 USED TO TEST IF SPECT N IS IN LOOP 4 TIMES IF BIT_N=0. SPECTN NOT IN  INPUT FILENAME OF THE DATA FILE AND THE SPECTRUM NUMBER OF THE NEW SPECTRUM E EGIN:  MOV CLRB CLR MOV JSR TSTB BEO JMP  SHOWIN : MOV MOV ADD 1$: MOV MOV ADD AOD SOB .PRINT ADD .PRINT PRINT  SHOW THE CURRENT STATUS ON DISPLAY: CURRNT:  ; READ IN THE INFORMATION BLOCK OF THE DATA FILE AND GET INFOMATION: INFOIN : MOVB BIC MOV DEC ASL ADD MOV MOV MOV MOV  MOV MOV JSR TSTB BNE MOV JSR TSTB BNE JMP  ASK:'WANT TO SEE IT?' IF 'YES' THEN PROCEED ELSE ASK:'TRY ANOTHER ONE' IF 'YES' THEN TRY AGAIN  : DATA FILE OK, GET DISPLAYING STATUS FROM INFORMATION BLOCK: PROCED : MOV MOV  1  #MSG5,QUESAD #LIST4,R5 PC.QUERY ANSWER PROCED #MSG6.QUESAD PC.QUERY ANSWER BEGIN FINISH  MOV MOV MOV MOV  DADDR.R3 #5.R2 #NSPECT.R1 •STRING.R4 R4.STRGAD #LIST5.R5  R3 POINTS BACK TO INFO TABLE CONVERT THE PARAMETERS TO BINARY (SKIP SCAN RATE AND # OF SCANS) Rl POINTS TO A TABLE TO STORE THESE 5 #'S R4 POINTS TO A BUFFER STRING CONVERT THESE 3 PARAMETERS TO BINARY  BLOOP: 2% •  1$:  3$:  MOV MOV CMPB BEO CMPB BEO MOVB BR MOVB JSR MOV ADD CMP BNE ADD SOB  R3.R0 STRGAD.R4 (RO).#40 1$  (R0).#' . 1$  ;MOVE THE STRING TO THE BUFFER ;IF A BLANK OR A COMMA THEN REPLACE IT WITH '200' TO ACT AS : END OF STRING  (R0)+.(R4)+ 2$ #200.(R4)  ;  PC.BINARY NUMBER.<R1 )* #6.R3 #4.R2 3$ #12..R3 R2.BLOOP  ;CALL BINARY TO CONVERT THE BUFFER TO BINARY :STORE AS STARTP.NPOINT.STEP ;(6 BYTES FOR EACH PARAMETER IN INFO TABLE) ;IF NEXT ONE IS SCANRATE (THE THIRD) : ;  ELSE COPY THIS BYTE TO BUFFER STRING  ;IF THERE IS ONLY ONE SPECTRUM ; THEN GO TO ASK WHICH SPECT TO BE IN ; ELSE START BLOCK* IS ONE ; AND GO TO ADJUST THE SIZE OF MEM  INPUT2: MOV JSR  #LIST6.RS PC.EXTRACT  ;INPUT SPECTRUM* TO BE IN  MOV MOV JSR MOV DEC MUL INC MOV MOV ASH MOV MOV  #ARGU3,STRGAD #LIST5,R5 PC.BINARY NUMBER,R3 R3 SIZEBK.R3 R3 R3.DSTART SIZEBK.R3 #8.,R3 R3.DSIZE R3.NEWSIZ  ;CONVERT IT TO BINARY  CLRB MOV  ERROR #LIST7,RS  JSR  PC.SOUEEZ  ;CLEAR THE ERROR FLAG ;CALL SQUEEZE TO MAKE A HOLE IN STACK 1 FOR ; THE INCOMING SPECTRUM  TSTB BNE  ERROR FINISH  ADJSZ:  ;R3 = SPECTRUM # :R3 - START BLOCK* OF THE REQUIRED SPECTRUM ;ONE MORE BLOCK DUE TO THE 1ST INFO BLOCK ;STORE TO START BLOCK* ;STORE (# BLOCKS*(2"8))TO SIZWD_N ; AND TO D_SIZE ;STORE THIS AS THE NEWSIZE AS WELL  ;IF ERROR FLAG SET ; THEN STOP : ELSE CONTINUE  SPTADN.R5 20(R5).<R5)* #4095..(R5) STARTP.(R5)+ NPOINT.(R5)t STEP.(R5)+ DSIZE.(R5)+ (R5)+.R4  ;UPDATE SPECT STATUS TABLE OF SPECT_N ;SPECTN = HEADN  CLEAR THE SEPARATION DATA TO BE PUT AT HEAD_N STARTN=STARTP  #LIST3.R5 DSTATU PC.DISK  INPUT DATA  MOVB BIC DEC MOV ASH BIS  ARGU1,R5 #177760,R5 R5 #1 ,R4 R5 . R4 R4,MODE  SET MODE TO DISPLAY THIS SPECTRUM  MOV MOV  SAVE,R5 MODE.12(R5)  UPDATE THE  *MSG8 PC  PRINT 'COMMAND 'BACK' COMPLETED.'  MODE'IN DISPLA  ; JOB FINISHED  ; DATA FIELD: SAVE :  .BLKW  1  MODE : SPTAD1 SPTAD2 SPTAD3 SPTAD4  . BLKW BLKW .BLKW BLKW .BLKW  1 1 1 1  MSG 1 :  ASCII .BYTE  /SPECT#'S OF CURRENTLY DISPLAYED SPECTRA ARE: / 200  ONE :  .ASCI I / 1 /<200>/ 2 /<200>/ 3 /<200>/ 4 /<200><12><15><200> . EVEN  LIST 1 :  WORD . WORD . WORD . WORD  MSG2 :  .ASCI I <12><15><12>/CALL THE INCOMING DATA AS SPECTRUM_N./<12><15> .ASCI I /INPUT N AND THE NAME OF THE DATA FILE: /<200>  •( R4IMPOSITION OF STARTPOINT ON OSCILLISCOP ;SIZE IN WORDS :R4 POINTS TO INFORMATION TABLE  (R5) + (R5)+.DADDR STARTP.(R5)  FINISH: .PRINT RTS  ;UPDATE THE SPECTRUM STATUS TABLE: UPDATE: MOV MOV MOV SUB MOV MOV MOV MOV  SCALE_FACTOR*100 • 100  CLR MOV MOV  ;SET THE DISPLAY MODE TO DISPLAY THE NEW SPECTRUM:  ;INPUT THE DATA FROM DATA FILE #1.NSPECT INPUT2 #1,DSTART ADJSZ  *"1 ,(R4)+ BLANK,(R4) #100..(R5)+  DATAIN: MOV CLRB JSR  THEN SKIP THE NEXT TWO ELSE CONTINUE  INBLKN: CMP BNE MOV BR  THERE IS ONLY 1 SPECTRUM SO NSPECT = 1  MOV MOV MOV  1  3 MSG2 ARGU 1 ARGU 2  .EVEN ARGU 1 : . BLKW ARGU2:  . BLKW  1  ;SPECTRUM # OF THE INCOMING SPECTRUM  10  :FILENAME IN ASCII  ro  ASCII .ASCI I ASCII ASCII ASCII ASCIZ  / / / / / /  MSG4 :  .ASCI I  <12>/DESCRIPTION: /<200>  MSG5 : STARTING BLOCK* ADDRESS OF THE BUFFER FIELD IN MEM # OF WORDS TO BE TRANSFERRED 0=RD ; 1=WR; <0 ERROR  ASCII .BYTE  200  MSG6 :  .ASCI I /TRY ANOTHER ONE? / BYTE 200  MSG7 :  .ASCI I  <12>/WHICH SPECTRUM TO BE IN? INPUT ITS NUMBER: /<200>  MSG8 :  ASCIZ . EVEN  /COMMAND 'BACK' COMPLETED.  LIST2: FNAMAD  . WORD .BLKW WORD  FRAD50  BLKW  LISTS:  .WORD WORD BLKW BLKW BLKW BLKB . EVEN  5 FRAD50 1 1 1 1  LIST4: QUESAD ANSWER  WORD .BLKW BLKB . EVEN  2 1 1  CALL QUERY  LIST5: STRGAD NUMBER  WORD BLKW .BLKW  2 1 1  CALL BINARY  LIST6:  WORD WORD . WORD  2 MSG7 ARGUS  CALL EXTRAC TO INPUT THE SPECTRUM * IN FILE OF THE SPECTRUM TO BE IN  ARGUS:  .BLKW  3  SPECTRUM * IN FILE  LIST7: NEWNUM MODAD: NEWSIZ TABLSP STKAD1 ERROR:  WORD .BLKW WORD .BLKW WORD BLKW BLKB . EVEN  6  1  THE SPECTRUM # OF THE INCOMING SPECTRUM ADDRESS OF MODE SIZE OF THE NEW SPECTRUM TABLE OF ADDRESSES OF SPECTRUM STATUS TABLES ADDRESS OF STACK 1 ERROR FLAG. SET IF ERROR OCCURRED  SPTADN  BLKW  1  STATUS TABLE OF THE INCOMING SPECTRU  NSPECT SIZEBK STARTP NPOINT STEP :  BLKW BLKW BLKW .BLKW .BLKW  1 1 1 1  * OF SPECTRUM IN FILE SIZE OF SPECTRUM IN BLOCKS START POINT # OF THE SPECTRUM * OF POINTS IN SPECTRUM STEP SIZE  STRING  BLKW  3  A BUFFER FOR A DIGITAL STRING  DSTART DADDR: DSIZE: DSTATU  BLANK: MSG3 :  2 1 FRAD50 4  <12X15>/WANT  :END OF SUBROUTINE BACK  1  MODE 1 SPTAD1 1  1  .ASCI I / ASCII  FILE_NAME IN RAD50 HAS 8 BYTES  SIZE(# BLOCK): RATE(MSEC): * SCANS: START POINT*: * POINTS: STEP_SIZE:  /  / * SPECT IN FILE:  /<12><15>  . END  ....... ........  /<12x15> /<12><15> /<12><15> /<12x15> /<12><15> /  TO SEE IT7 /  GO BACK TO 'DISPLAY'./  JOB FINISHED SUBROUTINE  BINARY  VERSION 1.1  1-MAR-81  •FUNCTION OF THIS SUBROUTINE IS TO CONVERT AN ASCII DIGIT STRING TO ITS BINARY EQUIVALENT. THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: . WORD 2 LIST: ASCIAD: WORD DIGIT BINUM: .BLKW 1  ; ADDRESS OF DIGIT STRING, SIGN BYTE AT DIGIT*! ;RETURNED BINARY NUMBER  T OF DIGIT: MAX 4 BYTES IN THE DIGIT PART, ENDS WITH <200> ) SIGN BYTE IS AHEAD OF DIGIT. .TITLE . GLOBL BINARY: MOV MOV MOV MOV MOV  CONVERT_ASCIITOBINARY BINARY R4,-(SP) R3.-(SP) R2.-(SP) R1.-(SP) R5,SAVE  ;SAVE R4.R3.R2.R1  1»:  2(R5),R5 R4 #200.(R5)+ 2$ R4 1$  ;R5=ADDRESS OF THE ASCII DIGIT STRING ;COUNT # OF BYTES IN THE STRING ; #200 INDATES THE END ;R4=# OF DIGITAL BYTES IN STRING  :CONVERT TO BINARY: CLR MOV DEC MOVB BIC ADD DEC BEQ  R2 #1 ,R1 R5 -(R5),R3 MASK,R3 R3.R2 R4 SIGN  (SKIP THE BYTE '200') START FROM THE LEAST SIGNIFICANT BYTE R3=BINARY FORM OF THIS BYTE R2=SUM R4=# OF BYTES  MOVB BIC MUL MUL ADD SOB  -( R5).R3 MASK.R3 #10. ,R 1 R1 ,R3 R3.R2 R4 . 3$  GET THE BYTE CONVERT TO BINARY GET IT SIGNIFICANCE IN DECIMAL SYSTEM MULTIPLY THESE SUM THE VALUE UNTIL ALL BYTES DONE  ;CHECK THE SIGN: SIGN:  CMPB BNE NEG  I#'-.-(R5) FINISH R2  SAVE.RS R2.4IR5)  :STORE THE RESULT  MOV MDV MOV MOV  (SP)».R1 (SPI+.R2 (SPI+.R3 (SPI+.R4  :RESTORE R1.R2.R3.R4  RTS  PC  -.RETURN  ;DATA FIELD: SAVE:  BLKW  MASK:  WORD  ; BYTE BEFORE THE DIGITAL STRING IS ITS SIGN  1 177760  ;END OF SUBROUTINE BINARY . END  ;SAVE LINK  ;GET THE ASCII DIGIT STRING AND COUNT NUMBER OF DIGITAL BYTES: MOV CLR CMPB BEQ INC BR  MOV MOV  :USED TO CONVERT ASCII DIGIT TO BINARY  SUBROUTINE  CHANGE  VERSION 1.2  30-MAR-81  1$ :  FUNCTION OF THIS SUBROUTINE IS TO CHANGE THE CONTENT OF SOME SPECIFIED POINTS THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: UlST: ;SAVE:  WORD . BLKW  10. 1  ;XCUR: ;YCUR: ;FACTOR ;MODE: ;SPTAD1 :SPTAD2 :SPTA03 ;SPTAD4 ;STKAD1  WORD .WORD WORD BLKW BLKW .BLKW BLKW BLKW .BLKW  4095 . 0 0 1 t 1 1 1  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR Y COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK I USED TO STORE THE SPECTRA  .TITLE CHANGE . GLOBL EXTRAC,BINARY,I ECHO.QUERY.CHANGE MCALL PRINT CHANGE: ADD MOV ADD MOV  INPUT:  1$ :  2$:  #4.R5 R5.XCURAD # 10. R5 R5.TABLSP  ;XCURAO » ADDRESS OF X COORDINATE OF CURSOR ; TABLSP POINTS TO A TABLE CONTAINING ; ADDRESSES OF SPECTRUM STATUS TABLE ; STKAD1 POINTS TO STACK 1  MOV  10( R5).STKAD1  MOV JSR  #LIST1,R5 PC.EXTRAC  ; INPUT SPECTRUM # AND COMMAND  CMPB BNE JMP  ARGU2.#200 1$ FINISH  ; IF NO COMMAND  CMPB BNE JMP  *'N,ARGU2 2* NEGAT  :IF COMMAND IS 'N'  CMPB BNE MOV BR  ARGU2+ 1 .#200 CONVER #1,BINUM STATUS  ;IF THERE IS DIGITAL INPUT IN THE COMMAND PART THEN GOTO CONVERT IT TO BINARY ; ELSE JUST SET THAT TO ONE ; AND SKIP THE CONVERSION  CONVER: MOV CMPB BNE INC MOV 1$ : JSR  ;  :  THEN STOP  THEN GO TO NEGAT DIRECTLY  #ARGU2*1.STRGAD ;CONVERT DIGITAL INPUT TO BINARY #'-,ARGU2+1 ;IF NEGATIVE 1$ THEN ADVANCE THE POINTER TO THE 1 SI DIGIT STRGAD #LIST2.R5 PC.BINARY  ; GET THE STATUS TABLE: STATUS: MOVB ARGU1.R4  :R4=N I ASCI I )  CMPB BNE MOVB MOVB BIC DEC ASL ADD MOV  #200.R4 1$ LASTN.R4 R4.LASTN #177760.R4 R4 R4 TABLSP.R4 (R4 ) .R4  ;IF NO INPUT SPECTRUM* ; THEN ASSUME THE LAST INPUT SPECTRUM # ;STORE THE CURRENT SPECT* FOR LATER DEFAULT ;R4"N (BINARY) ;R4=0FFSET OF SPTAD_N TO SPTAO_l ;R4=#SPTAD N :R4 NOW POINTS TO THE SPECT STATUS TABLE  ;GET ADDRESS OF THE POINT AT THE CURSOR POSITION: ADDRS: MOV 2(R4).R3 SUB PXCURAD.R3 :IF POSITIVE. THEN CONTINUE BGE 1$ ; ELSE PRINT ERROR MESSAGE .PRINT #MSG5 CLR R3 2(R4),»XCURAD SET CURSOR TO START POINT MOV CLR R2 1$ : 6(R4).R2 ;R2 = DIFFERENCE IN REL. POSITION / STEP_SIZE DIV :R2 = DIFFERENCE IN MEM. SPACE (BYTES) R2 ASL 20(R4),R2 :R2 = ACTUAL ADDRESS OF THE POINT ADD ;INTERPRET THECOMMAND PART OF THE INPUT: CMPB #'S.ARGU2 :IF S' 2$: BNE 3$ JMP SHOW ; THEN GO TO SHOW VALUES OF POINTS CMPB BNE JMP  #'A.ARGU2 4$ ADVANC  ;IF 'A'  4$:  CMPB BNE JMP  #'D.ARGU2 5$ DEPOSI  ;IF 'D'  5$:  .PRINT BR  #MSG1.1 INPUT  ;PRINT THE OPTIONS :ASK FOR INPUT COMMAND AGAIN  3$ :  :  THEN GO TO ADVANCE THE CURSOR  THEN GO TO DEPOSIT VALUE TO CURRENT POINT  ;CHANGE ALL NEGATIVE TO THEAVERAGE OF THE LAST AND NEXT POSITIVE VALUES : NEGAT:  MOV MOV CLR TST BGE CLR ABLOOP: TST BGE MOV 3$ :  INC DEC BEO TST BLT ADD ASR SUB  STKAD1.R5 #4096..R4 R3 (R5) + ABLPND -(R5) (R5) + ABLPND -4(R5) .R2  ;START FROM THE HEAD OF STACK 1 ;AND CHECK ALL POINTS IN STACK 1  R3 R4 ENDNEG (R5 ) + 3$ -(R5I.R2 R2 R3 . R5  •  ;IF FIRST POINT IS NEGATIVE CLEAR IT ;NEGATIVE:  R2 =LAST POSITIVE #  R3=# OF POSITIVE POINTS  ;IF THE END IS NEGATIVE THEN GO TO ENDNEG ;ELSE IF MORE NEGATIVES : THEN GO TO 3$ TO COUNT # OF NEGATIVES ;ELSE COMPUTE THE AVERAGE OF THE TWO ; POSITIVE #S ;MOVE THE POINTER BACK TO THE 1ST  SUB MOV SOB ADD  R3.R5 R2. <R5) + R3.4S #2.R5  ABLPND: SOB JMP  R4.ABL00P FINISH  ENDNEG: MOV SOB JMP  R2.-(R5) R3,ENDNEG FINISH  4$:  ; NEGATIVE* .CHANGE THE NEGATIVES TO THE AVERAGE :MOVE THE POINTER TO THE NEXT POINT  ;IF THE END IS ALSO NEGATIVE CHANGE THESE NEGATIVES TO THE LAST POSITIVE VALUE  MOV BGE NEG .PRINT 1*: PRINT MOV SUB CLR DIV MOV CLR MUL SHLOOP: MOV MOV JSR .PRINT MOV MOV JSR PRINT TST BGT SUB SUB BR ADD 1$ : ADD 2$: SOB JMP  FINISH: .PRINT *MSG4 RT S PC  BINUM.R3 1* R3 #MSG2 #MSG2.t #4095.,R1 PXCURAD,R1 RO 6(R4),RO R0.R1 RO 6(R4),R1 R1 . 14 #LIST3.R5 PC.I ECHO #MSG2.2 (R2).14 #LIST3.R5 PC,I ECHO #MSG2.3 BINUM 1$ 6(R4),R1 #2.R2 2$ G(R4).R1 #2.R2 R3.SHLOOP  :R3 = POINT COUNTER  TABLSP:  BLKW  1  INPUT  ;G0 TO INPUT OTHER COMMANDS  ;DEPOSIT NEW VALUE: BINUM.(R2) DEPOSI MOV MOV #1.BINUM SHOW BR ;ADVANCE N POINTS: ADVANC MOV BINUM.R1 Rl .R2 ADD R 1 , R2 ADD MUL 6 ( R4).R 1 R1.axCURAD SUB MOV #1.BINUM SHOW BR  1  WORD .WORD ARGAD1: .WORD ARGAD2: .WORD  ; ADDRESS OF THE TABLE CONTAINING ADDRESSES OF : THE SPECTRUM STATUS TABLES : ADDRESS OF X COORDINATE OF CURSOR ; ADDRESS OF STACK 1 WHERE SPECTRA ARE STORED  STKAD1: .BLKW LIST1:  •.ECHO THE SPECTRUM * ;PRINT HEADING  ;PR1NT 'COMMAND 'CHANGE' FINISHED. : RETURN  DATA FIELD:  XCURAD: BLKW  ;SHOW VALUES: SHOW:  ;JOB DONE  3 MSG 1 ARGU 1 ARGU2  ; CALL EXTRAC TO GET INPUT : MESSAGE ADDRESS : ADDRESS OF ARGUMENT TO BE INPUT  ;R1 = CURRENT POINT* . ASCI I <12><15> ASCII /INPUT SPECTRUM # AND THE REOUIRED OPERATION (.? IF CONFUSED)/ .ASCII / : /<200> . EVEN  ;ROUND OFF THE CURRENT POINT* TO ; MULTIPLE OF STEP SIZE  ;ECHO THE POINT* ;PRINT SPACING ;ECHO THE OLD VALUE ;OUTPUT OLD VALUE ;PRINT LINEFEED AND RETURN ;IF BINUM IS NEGATIVE :  THEN ECHO THE LEFT POINTS  ;  ELSE ECHO THE RIGHT POINTS  ARGU1: ARGU2:  LISTS: 14 :  ;G0 TO SHOW THE NEW VALUE  ;ADVANCE THE CURSOR (TO RIGHT) ;G0 TO SHOW THE CURRENT POINT  1 5  MSG2 : LASTN:  ;SPECTRUM # ;REOUIRED OPERATION  2 1 1  :CALL BINARY TO CONVERT ASCII STRING TO BINARY ;AODRESS OF THEASCII STRING  . WORD BLKW  1 1  ;CALL IECHO TO ECHO A 14 NUMBER  . ASCI I . ASCI I . ASCI I ASCII . ASCI I ASCII . ASCI I .ASCII .ASCII ASCII . ASCI I . ASCI I  <12>/THE FOLLOWINGS ARE SOME EXAMPLES OF A VALID OPERATION:/ <12xl5>/ 1. 'A 10' MEANS 'ADVANCE 10 POINTS' ./ <12x15>/ 2. ' A -10' MEANS 'GO BACK 10 POINTS' ./ <12><15>/ 3. 'D 10' MEANS 'DEPOSIT 10 AS THE VALUE OF THE / /CURRENT POINT' ./<12><15> <12><15>/ 4. 'N' MEANS 'CHANGE ALL NEGATIVES TO AVERAGE/ / OF THE TWO POSITIVE/ BOUNDS' ./ < I2>< 15>/ •:12X1S>/ 5. 'S 10'MEANS 'SHOW THE FOLLOWING 10 POINTS' ./ <12><15>/ G. 'S -10 MEANS 'SHOW THE PRECEDING 10 POINTS' ./ MEANS 'NO OPERATION. JUST RETURN' ./ <I2><I5>/ 7. ' < I2>< 15x 12x200>  WORD LIST2: STRGAD: BLKW BINUM: .BLKW  :DEPOSIT THE NEW VALUE  ;ADVANCE THE POINTER TO MEMORY ;1 POINT = 2 BYTES  .BLKW BLKW  . ASCI I <12>/THE SPECTRUM * IS / ASCI I /2/<200> :SET THE INITIAL DEFAULT TO 2  MSG2 . 1 .: ASCI I <12><15>/ . ASCI I / MSG2 . 2 :  POINT * /<200>  POINT VALUE  /<12><15>/ /<20C>  MSG2.3: MSG4: : MSG5: :  ASCII .ASCIZ ASCIZ EVEN  <12><15>/  /<200>  /COMMAND 'CHANGE' FINISHED. BACK TO 'DISPLAY'./ /»»• THE CURSOR IS OUT OF RANGE. NOW SET TO THE START POINT./  ; END OF SUBROUTINE CHANGE ; . END  ro  CO  SUBROUTINE  CHARAC  VERSION 1.1  1-MAR-8 1  *******»***********************»*»******************»************************  FUNCTION OF THIS SUBROUTINE IS TO CONVERT BINARY TO ASCII FOR PRINT OUT. THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS : LIST: WORD 2 BINUM: .BLKW 1 jTHE BINARY NUMBER ASCIAD: .WORD DIGIT .ADDRESS OF THE DIGITAL PART OF THE STRING (BINARY NUMBER RANGED FROM -9999 TO 9999 WILL BE OK. ) (UPON RETURN. DIGIT CONTAINS MAX 4 DIGITAL BYTES AND ENDS WITH <200>) (DIGIT+1 CONTAIN THE SIGN BYTE IF IT IS NEGATIVE )  MOVB MOVB  #'0.(R5)+ #200.(R5)  MOV MOV MOV MOV RT S  (SPl+.RO (SPI+.R1 (SPI+.R2 (SP)+,R3 PC  APPEND 200 AT THE END OF THS STRING FOR PRINTING PURPOSE RESTORE R0.R1.R2.R3  DATA FIELD LEADO  BLKB EVEN  1  ; FLAG INDICATES IF LEADING ZERO OCCURRED  END OF SUBROUTINE CHARAC . END  .TITLE CONVERT_BINARY_TO ASCII . GLOBL CHARAC R3.-(SP) R2.-(SP) R1 ."(SP) RO. -(SP)  ;SAVE R3.R2,R1.RO  MOV MOV  2(R5) . R3 4(R5) ,R5  ; R4=BINARY NUMBER : R5 = ADDRESS OF DIGITAL ASCII STRING  TST BGE NEG MOVB  R3 BEGIN R3  :IF NOT NEGATIVE : THEN BEGIN THE CONVERSION : ELSE CHANGE IT TO POSITIVE ; AND PUT A '-' IN FRONT OF THE DIGITS  CHARAC: MOV MOV MOV MOV : TEST SIGN:  SIGN:  # ' - .KR5) -  BEGIN CONVERSION CLRB MOV IGETI4 : CLR DIV BEO MOV CLR DIV BNE TSTB BEO BISB MOVB INCB BR BEGIN:  FINISH: TST BNE  LEADO #10000..R1 RO #10.,R0 FINISH RO, R 1 R2 R0.R2 CONVER LEADO GETI4 #60.R2 R2.(R5)+ LEADO GETI4  LEADO DONE  ;BEGIN CONVERSION. LEADO SET IF NO LEADING 0 R0=10OOO/10=10O0 AT FIRST LOOP 4 TIMES TO GET 4 DIGITS OUT R2 » MOD (14, 10**N) IF NOT 0. THEN CONVERT AND STORE ELSE IF LEADING 0. THEN SKIP THIS ELSE CONTINUE CONVERT TO ASCII STORE NO MORE LEADING ZERO  IF ALL ARE LEADING ZERO THEN GIVE A ZERO ELSE NO OPERATION  ro oo ro  1$: SUBROUTINE  CLEAR  VERSION 1.1  1-MAR-81  FUNCTION OF THIS SUBROUTINE IS TO CLEAR PART OF A SPECTRUM.  MOV SOB  R5.(R3)+ R4.1$  ;CLEAR THE REGION ;CONTINUE  #MSG3 PC  ;PRINT 'REQUEST DONE.' ;RETURN  TABLSP: .BLKW  1  ;TABLE OF ADDRESSES OF SPECT STATUS TABLE  LI ST 1:  2 MSG 1 ARGU1  :JOB DONE: FINISH: .PRINT RTS  THE PARAMETER LIST PASSEO TO THIS SUBROUTINE IS: LIST : SAVE :  WORD . BLKW  10. 1  XCUR : YCUR : FACTOR MODE : SPTAD1 SPTAD2 SPTAD3 SPTAD4 STKAD1  .WORD WORD WORD BLKW BLKW BLKW BLKW .BLKW BLKW  4095 0 0 1 1 1 1 1 1  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR V COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT 1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 ADDRESS OF SPECTRUM STATUS TABLE OF SPECTS AOORESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  .TITLE .GLOBL .MCALL  CLEAR_CONTENT_OF_A_SPECTRUM EXTRAC.QUERY.CLEAR PRINT  ADD MOV  #14.R5 R5.TABLSP  ; TABLSP IS THE TABLE CONTAINING THE ADDRESSES ; OF THE SPECTRUM STATUS TABLE  INPUT SPECTRUM # TO BE CLEARED: INPUT  MOV JSR MOVB  #LIST1,R5 PC,EXTRACT #40,ARGU1+1  :INPUT SPECTRUM # ;REPLACE BYTE '200' WITHA A BLANK  #LIST2.R5 PC.QUERY ANSWER FINISH •  ;ASK: 'REALLY WANT TO CLEAR SPECT N?' IF 'NO' THEN STOP ELSE CONTINUE  GET_SPECT_STATUS_TABLE: MOVB BIC DEC ASL ADD MOV  ARGU1.R5 #177760.R5 R5 R5 TABLSP.R5 (R5),R5  R5=N (ASCII) R5=N (BINARY) R5=0FFSET OF SPTAD N TO SPTAD1+2 R5»#SPTAD N R5=ADDRESS OF SPECT STATUS TABLE  CLEAR THE DISPLAYING PART OF THE SPECTRUM: OPERAT: MOV MOV MOV  4(R5).R4 <R5),R3 16(R5).R5  WORD . WORD WORD  LIST2:  .WORD .WORD ANSWER: .BLKB  R4=# OF POINTS TO BE CLEARED R3=P0INTER TO THE REGION TO BE CLEARED R5=SEPERATI0N FROM BASELINE  2 MSG2 1  CALL EXTRAC TO GET SPECT* MESSAGE ADDRESS SPECT* ADDRESS CALL QUERY TO ASK FOR A DECISION MESSAGE ADDRESS RETURN ANSWER: 1=YES 0=N0  /INPUT THE SPECTRUM #: /<200>  MSG 1 :  .ASCII  MSG2 : ARGU1:  ASCII /REALLY WANT TO CLEAR SPECTRUM / . BLKW 1 .FIRST BYTE IS ASCII DIGIT, SECOND .ASCI I /? /<200>  MSGS :  ASCIZ . EVEN  /COMMAND 'CLEAR' FINISHED. BACK TO 'DISPLAY ./  END OF SUBROUTINE CLEAR END  ASK CONFIRMATION: MOV JSR TSTB BEQ  ;OATA FIELD:  WRITE: SUBROUTINE  DISK  VERSION 1.1  1-MAR-81  ;GOTO PRINT MESSAGE  BR  FAIL  WRITW BCC MOV BR  #LI ST,#0,R1,R3.R2 :WRITE DATA FROM CHANNEL O CLOSE ;IF WRITTEN. GOTO CLOSE THE CHANNEL #WTMSG,RO :IF NOT. PRINT 'WRITE FAILED' FAIL  FUNCTION OF THIS SUBROUTINE IS TO READ/WRITE A FILE ON DISK.  ; DATA TRANSFER DONE. CLOSE THE DATA CHANNEL:  THE PARAMETER LIST OF THIS SUBROUTINE IS AS FOLLOWS:  CLOSE  LIST: . WORD FNAMAD: . BLKW DSTART: .BLKW DADDR: BLKW DSIZE: BLKW DSTATU: BLKB . EVEN  FILENAME ADDRESS STARTING BLOCK NUMBER STARTING ADDRESS OF THE DATA FIELD TO BE USED * OF BLOCKS TO BE TRANSFERED STATUS: BIT 1 = 1 IF WRITE TO DISK BIT 1 = 0 IF READ FROM DISK UPON RETURNED: NEGATIVE IF FAILED  TITLE DISK GLOBL DISK MCALL .PRINT,.FETCH. LOOKUP,.READW, .WRITW, CLOSE MOV MOV MOV  RI.-(SP) R2.-(SP) RS.-(SP)  #0 (SP)+,R3 (SPI+.R2 (SPI+.R1 PC  ;CLOSE CHANNEL 0 ;RESTORE R1,R2,AND :RETURN  DATA FIELD: LIST : .BLKW FETMSG: ASCIZ LKMSG: .ASCIZ RDMSG: ASCIZ WTMSG: .ASCIZ . EVEN HANDLR: BLKW  ;WORKING SPACE FOR THE DISK OPERATION 5 /CAN NOT FIND THE DEVICE, CHECK DEVICE NAME./ /FILE DOES NOT EXIST. CHECK FILE NAME./ /READ FAILED. MAY BE EXCEEDED END OF FILE./ /WRITE FAILED, MAY BE FILE IS NOT LARGE ENOUGH./ 2000  ;SPACE FOR DEVICE HANDLER  ;SAVE Rl. R2. AND R3 ;END OF SUBROUTINE DISK . END  : FETCH DISK HANDLER: MOV 2(R5).R1 MOV #HANDLR,R2 .FETCH R2.R1 BCC LOOK MOV 0FETMSG.RO  CLOSE MOV MOV MOV RTS  :R1 POINTS TO FILE-NAME, R2 TO HANDLER ;IF HANDLER FETCHED. GOTO LOOKUP FILE ;IF NOT. PRINT 'FETCH FAILED'  ;ERROR HANDLING: FAIL:  PRINT MOVB BR  #-1.12(R5) CLOSE  ;PRINT MESSAGE ;RETURN AN ERROR MESSAGE TO CALLING ROUTINE  :LOOK UP THE FILE: LOOK:  LOOKUP BCC MOV BR  *LIST.#0.R1 TRANSF *LKMSG.RO FAIL  ; LUUtvur  mt  rut  rK u n  i.nni«NCL  V  ;IF FILE FOUND.GOTO READ OR WRITE ;IF NOT. PRINT 'LOOKUP FAILED' ;GOTO PRINT MESSAGE  ;READ/WRITE DATA: TRANSF: MOV MOV MOV TSTB BNE READ : .READW BCC MOV  6(RS).R1 : R 1POINTS TO THE BUFFER STACK 4(R5).R2 : R2CONTAINS THE STARTING BLOCK NUMBER 10(R5).R3 :R3 CONTAINS THE * OF WORDS TO BE TRANSFERED 12IR5) ; SEE WHETHER WRITE OR READ WRITE ; IF CODE =1. GOTO WRITE #LIST.#0,R1 R3.R2 ;READ DATA FROM CHANNEL 0 CLOSE ; IF READ. GOTO CLOSE THE CHANNEL •RDMSG.RO ; IF NOT. PRINT 'READ FAILED'  ro  oo  CLR SUBROUTINE DISPLA  THE FUNCTION OF THIS SUBROUTINE IS TO DISPLAY SOME SPECTRA OUT TO AN OSCILLISCOPE. THE PARAMETER LIST PASSED TO THIS SUBROUTINE HAS THE FOLLOWING FORM :  STKAD1 SPTAD1 SPTAD2 SPTAD3 SPTAD4 FLAGAD  .WORD WORD .WORD .WORD .WORD .BLKW  7 MODE  STACK 1 SPECT1 SPECT2 SPECT3 SPECT4 1  CALL DISPLA ADDRESS OF THE DISPLAY MODE BIT 1 = 1 SPECT 1 IS TO BE DISPLAYED BIT 2 • 1 SPECT2 IS TO BE DISPLAYED BIT 3 = 1 SPECT3 IS TO BE DISPLAYED BIT 4 = 1 SPECT4 IS TO BE DISPLAYED A NEW SCAN BIT 9 = 0 1 RESTART A TERMINATED JOB TO GET MORE SCAN (SEE SUBROUTINE SCAN) 8 = 0 SCAN IS OFF 1 SCAN IS ON (SPECT2 IS THE RESULT ) STACK 1 THE STATUS TABLE OF SPECTRUM 1 THE STATUS TABLE OF SPECTRUM 2 THE STATUS TABLE OF SPECTRUM 3 THE STATUS TABLE OF SPECTRUM 4 A FLAG TO COMMUNICATE WITH 'SCA  ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS  OF OF OF OF OF OF  TITLE DISPLAYDATA . GLOBL DISPLA.KYINHD . MCALL .PRINT DATA INITIALIZATION:  CTCR = 1G7762 CTBR = 167774 CKCR = 1704 20 CKBR = 170422 |RAMP170440 = XOUT 1704 = 44 YOUT 170442 = IKEYCR= 177560 177562 IKEYBR=177564  COUNTER CONTROL REGISTER COUNTER BUFFER REGISTER REAL TIME CLOCK CONTROL REGISTER REAL TIME CLOCK BUFFER REGISTER RAMP OUTPUT BUFFER REGISTER X AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE Y AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE KEYBOARD INPUT CONTROL REGISTER KEYBOARD INPUT BUFFER REGISTER TERMINAL OUTPUT CONTROL REGISTER  3$: 2$ :  CLRB MOVB  #2.R5 R5.SAVE ©(R5I+.M0DE (R5)*.STKAD1 (R5)+.SPTAD1 (R5)+.SPTAD2 (R51+.SPTAD3 (R5 )+,SPTAD4 ( R5).FLAGAD 9FLAGAD #1.MODTST  THE DISPLAY MODE ADDRESS OF STACK 1 THE POINTERS TO SPECTRUM STATUS TABLES  ADDRESS OF A FLAG USED TO COMMUNICATE BETWEEN 'SCAN' AND 'DISPLA' ' MAKE SURE THAT THE FLAG IS CLEAR MODTST IS A MASK WITH ONE BIT SEI  BITB BEO  MODTST,MODE 2$  MOV ADD MOV MOV MOV MOV ADD SOB  OFFSET,RO #SPTAD1.RO (RO ) .RO (R0).R1 4(RO),R2 16(RO),RO RO.(R1)+ R2 . 3$  ASLB ADD BITB BEO  MODTST #2.OFFSET #20,MODTST 1$  MOV MOV CLR TSTB BLT MOV  »#60.KEYHND #KEYINT,e#60 e#62 MODE OSCILL # 100.9#KEYCR  ;MOVE UP ALL SPECTRA TO BE DISPLAYED BY SEPERN  R0=# SPTAD N RO = SPTAD N R1 =ADDR OF 1ST POINT R2=#0F POINTS RO'SEPER N.  ;OPERATE THE NEXT SPECTRUM POINTS TO NEXT SPECTRUM STATUS TABLE  SAVE THE SYSTEM KEYBOARD HANDLER SET THE DISPLAY KEYBOARD HANDLER IF SCAN IS ON THEN DON'T ENABLE KEYBOARD INTERRUPT BECAUSE IT IS TURNED ON BY 'SCAN'  ; SHOW THE SPECTRA ON OSCILLISCOPE: OSCILL : MOV CLR TSTB BGE JMP  #1 ,MODTST OFFSET ©FLAGAD LOOP 1 OUT  A ONE-BIT MASK TO TEST IF DISPLAY SPECT N OFFSET = OFFSET FROM SPTAD1 TO SPTADN IF FLAG AT FLAGAD IS NOT SET TO NEGATIVE THEN CONTINUE DISPLAYING ELSE JUMP OUT OF THE DISPLAY LOOP (SCAN SET FLAG TO NEGATIVE AT THE END  L00P1:  BITB BEO  MODTST.MODE NEXTSP  MOV ADD MOV MOV MOV MOV MOV TSTB BGT  OFFSET,RO #SPTAD1.RO (RO).RO (R01+.R1 (ROl+.XOUT (RO)+,R2 (ROI+.RO MODE TOOSC  IF NOT DISPLAY SPECT N THEN GOTO SEE IF DISPLAY SPECT_N+1 ELSE DISPLAY SPECT_N  BITB BNE MOV SUB SOB  #2.MODTST ADJLP (R 1 )+.YOUT RO.XOUT R2.TOOSC  TTCR = DISPLA: ADD MOV MOV MOV MOV MOV MOV MOV MOV  ;OFFSET = OFFSET FROM SPTAD1 TO SPTAD_N  ;MOVE UP THE SPECTRA FROM THE BASE LINE IN ORDER TO SHOW THEM TOGETHER:  VERSION 1.1  i$:  LIST : .WORD MODAD: WORD  OFFSET  TOOSC:  RO = #SPTAD N RO = SPTAD N R1=CHANNEL ADDRESS R2=NP0INT R0=STEP SIZE BITS OF MODE SET IF SCANNING IF SCANNING AND DISPLAYING THEN THE SUM MAY CHANGE BY FACTOR GO TO ADJUST AND OISPLAY ELSE JUST DISPLAY  ; SHOWNEXT SPECTRUM: NEXTSP : ASLB  MODTST  TEST SPECT N-M  ro Co cn  ADD BITB BNE BR  #2.OFFSET #20.MODTST ENDSP LOOP1  IF N+1=5 THEN DISPLAY CURSOR OR SPOT ELSE LOOP1 TO DISPLAY  rIF THIS IS THE SUM OF PREVIOUS SCAN IN A SCANNING MODE. THEN ADJUST IT SCALE: ADJUST THE VERTICAL SCALE (R1)+.R5 ADJLP: MOV FACTOR.R5 ASH MOV SUB SOB  R5 YOUT RO.XOUT R2.ADJLP  ASLB ADD BR  MODTST #2.OFFSET LOOP1  TSTB BGE  MODE CURSOR  CLR MOV MOV BR  YOUT RAMP,XOUT -2(R3).YOUT DELAY  RESET Y TO BASELINE SHOW THE CURRENT SPOT R3 IS POINTING TO THE NEXT POINT  YOUT XCUR,XOUT YCUR.YOUT  RESET Y TO BASELINE SHOW THE CURSOR  DELAY:  SPTAD1,R5 4(R5).R1 #-5.R1 R1 . 1$  R5 POINTS TO THE STATUS TABLE OF SPECT1 R1 = # OF POINTS DISPLAYING FOR SPECT2 R1=R1/32  1$ :  :GO BACK TO SHOW ALL REQUIRED SPECTRA AGAIN: BR  MOV CLR RTS  KEYHND.»#60  MOVE BACK SYSTEM KEYBOARD HANDLER  PC  RETURN TO THE CALLING ROUTINE  P#G2  .PRELIMINARY KEYBOARD INTERRUPT HANDLER: <EYINT: MOV MOV MOV MOV CLR MOV CMPB  »'-.RO 2$ FACTOR RETURN  IF NOT THEN GO TO TEST OTHER ELSE DECREASE FACTOR BY ONE AND RETRUN  #'U.RO 3$ DELTA.YCUR RETURN  IF NOT 'U' THEN GO TO TEST OTHER ELSE INCREASE THE Y COORDINATE OF CURSOR  3$:  CMPB BNE SUB JMP  #'D.RO 4$ DELTA.YCUR RETURN  IF NOT ' D' THEN GO TO TEST OTHER ELSE DECREMENT THE Y CORRDINATE OF CURSOR  4$:  CMPB BNE SUB JMP  »'R.RO 5$ DELTA.XCUR RETURN  IF NOT •R' THEN GO TO TEST OTHER ELSE MOVE CURSOR TO RIGHT  5$:  CMPB BNE ADD JMP  #'L.RO 6$ DELTA.XCUR RETURN  IF NOT 'L' THEN GO TO TEST OTHER ELSE MOVE CURSOR TO LEFT  6$:  CMPB BNE CMP BLE ASL BR  #'F.RO 7$ #2000.DELTA RETURN DELTA RETURN  IF NOT ' F ' THEN GO TO TEST OTHER ELSE INCREASE DELTA EXCEPT IT = 2000  7$:  CMPB BNE CMPB BEQ ASR BR  #'S.RO 28$ #1 .DELTA RETURN DELTA RETURN  IF NOT 'S' THEN GO TO TEST OTHER ELSE DECREASE DELTA EXCEPT IT = 1  28$ :  CMPB BNE MOV CLR MOV BR  #-^.RO 8$ #4095..XCUR YCUR #128..DELTA RETURN  IF NOT THEN GO TO TEST OTHER ELSE RESET CURSOR  OSCILL  :OUT OF THE DISPLAY LOOP: OUT :  CMPB BNE DEC JMP  CMPB BNE ADD JMP  ;IF NOT SCANNING. SHOW CURSOR: CURSOR: CLR MOV MOV MOV MOV ASH SOB  THEN GO TO TEST OTHER ELSE INCREMENT FACTOR BY ONE AND RETURN  2$:  IF SCAN IS ON DISPLAY CURRENT SCANNING SPOT OTHERWISE SHOW A CURSOR  :IF SCANNING. SHOW CURRENT SCANNING POINT: SPOT :  1$ FACTOR RETURN  :CURSOR CONTROL  ;END OF ONE COMPLETE SHOW OF ALLREQUIRED SPECTRA : ENDSP:  1$:  BNE INC JMP  -  AND SET DELTA TO A REASONABLE VALUE  RO.-(SP) R5.-(SP) YOUT,YBUFFR #7777.YOUT P#KEYCR P#KEYBR.RO  :SAVE RO.R5 ;SAVE YOUT ;MOVE OUT THE LIGHT BEAM TEMPORARILY ;DISABLE INTERRUPT ;RO - THE INPUT BYTE  :SET THE CURRENT SCAN TO BE THE LAST SCAN: 8$ : CMPB #52.RO IF NOT ' * ' BNE 9$ THEN GO TO TEST OTHER MOVB #1,»FLAGAO ELSE SET A FLAG TO INDICATE THAT THIS IS THE LAST SCAN AND SHOULD STOP BR RETURN  #'+.RO  ;IF NOT  : DATA MANIPULATING MODE:  CMPB #33,RO BO NE # 107 $77,R5 40$ : M SOV B R7 5.7 40$ M O V K E Y H ND.9#60 M O V #100.e*KEYCR M #C L, IK SY TI 1N ,H RD 5 JO SV R P MOV #KEYINT.P#60 JMP RETURN ;CHANGEMODE : 10$: CMPB #'1,R0 BNE 1 1$ B IS # 1T .U MR ON DE BR RE 9$:  1 1$: CMPB #'!,R0 B NC E # 11 2. $MODE BI BR RETURN 12$: C M P B # RO B N E 1' 32 $, B I S # 2 . M ON DE BR RETUR 13$: CMPB #'P.RO BNE 14$ BIC #2.MODE BR RETURN 14$: C BM NP EB # 1' 53 $.RO B I S # 4 , MR ON DE BR RETU 15$: CMPB #'#,RO B N 14 6, $MODE B IE C R # BR ET URN 16$: CMPB #'4,RO B 11 70 $.MODE BN IE S # BR RETURN 17$: CMPB #'$.RO BI NC E # 11 80 $.MODE B BR RETURN 18$ : INC ERRCNT C P # 1N0I.SH.ERRCNT B.M G E F I PRINT #MSG1 .PRINT #MSG2  IF NOT ESC ' RETURN CLR T H E N G O T O C H E C K IF W A N T T O C H A N G E M O D E OV SET AY DELAY TO LET ALL OUTPUT BUFFER BE F1I$N:ISH M M EMPT SO OV B CHH AA NN GD ELERBACK THE SYSTEM KEYBOARD INTERRUPT M O V M OV THH EA NNDL CE AR LL TO THEDOUSED RATAKEYMBAONAIRPDULAI M TN IT OE NRRUPT RO TVI UPON RETURN. SET THE PR1MINARY HANDLER DATA FIELD: IF NOT 1 ' -IST1: WORD THENGO TO CHECK OTHERS ELSE SET THE FIRST BIT TO DISPLAY SPECT1 SAVE : BLKW IF NOT T HS EE NC GL OEARTOFIC RS DELETE SPECT1 EL RH SE TCKBIO TTHE TO i '  IF N OT 2O ' O CHECK OTHERS T EE NG EH LS SET TS ECOND BIT TO DISPLAY SPECT2 IF NOT »' THENGO TO CHECK OTHERS ELSE CLEAR SECOND BIT TO DELETE SPECT2  ERRCNT (S7 P)+,, R5 # R7 O.777 1$RO (B SU PF IF +R ., RO Y # 100.«Y>O #U KT EYCR  ;CLEAR COUNT IF SUCCESS ;RESTORE R5.R0 ;SET A DELAY TO EMPTY SYSTEM BUFFER : R E S T O R E RH OE ORGINAL POINT ; R E S T O R E T ; EOTHIE KR EU YP BT OE AD RDPOIINNTTERRUPT HANDLE ;A RC ET TURINVATT NTER  10.  ;CALL KYINHD ; (THIS LIST IS SAME AS THAT USED TO CALL ALL ; DE AS TS AO MF ANIP TE IT NE GR SU IO NE)CALL 'DISPLA' ;ADDR PU AL RA AM LIBSRTOUTT : (JUST USED FOR FURTHER MODIFICATION) ; ;X YC CO OO OR RD DI IN NA AT TE EO OF FT TH HE EC CU UR RS SO OR R ;SCALE FACTOR USED FOR DISPLAY SUM OF SCANS : T H E DS ISPL A Y SM O D E ; A D D R E S O F P E C ;ADDRESS OF SPECT TR RU UM MS ST TA AT TU US ST TA AB BL LE EO OF FS SP PE EC CT T1 2 ; A D D R E S S O F S P E C T R U M S T A T U S T A B L E O F S P E C T ;ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 4 ;ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  1  X CU UR R: :. W OR RD D 0 4095 . YC W O FACTOR . WORD0 M O D E :B L K W 1 S P T A D 1 B L K W SPTAD2 BLKW 1 1 S KL WKW 1 SP PT TA AD D3 4. .BLB 1 STKAD1 .BLKW 1  OFFSET .BLKW 1 ;OFFSET FROM SPTAD_N TO SPTAD_1 IF N 3O'TO CHECK OTHERS TO HT ENG ERRCNT . WORD0 :ERROR COUNT OF KEYBOARD PRESS ELSE SET THIRD BIT TO DISPLAY SPECT3 DELTA: .WORD 128 . ;THE SPEED CONTROLLER OF CURSOR MOVEMENT IF NOT' # ' KEYHND .BLKW 1 ;THE ORGINAL SYSTEM KEYBOARD HANDLER T H E N G O T O C H E C K O T H E R S ELSE CLEAR THIRD BIT TO DELETE SPECT3 FLAGAD BLKW 1 ; IN NT DICA ;THESTOF PLAGAFTA ED RDRE TS HS ET CO URRE STCEANTHAT SHOULD IF NOT'4' YBUFFR BLKW 1 :BUFFER FOR STORING YOUT TEMPORARY T H E N G O T O C H E C K O T H E R S ELSE SET FOURTH BIT TO DISPLAY SPECT4 MODTST BLKB 1 ;A ONE-BIT BIT-TEST MASK IF NOT'$' MSG 1 :.ASCI I/»*/<200> AND TYPE 'HELP' IF CONFUSED./ T H E N G O T O C H E C K E R R O R C O U N T AV SE CN IZ /PRESS 'ESC', ELSE CLEAR FOURTH BIT TO DELETE SPECT 4 MSG2 : . .E INC ERROR COUNT IF INVALID INPUT ;END OF SUBROUTINE DISPLA IF I T H A P P E N S 1 0 T I M E S B E F O R E S U C C E S S T HEN INT'ER EE ND D.............. ,,«,.,.....«.,...•...»».»•*««»•»«•••»••»•»«»•»*•»• PR INTPR( OR NO LR Y M'ESS EA SG CE' . ' + ' AND '-' ...... A'RE ........ AL. LOW ') _____  ro oo \i  JOB DONE SUBROUTINE  EXTRAC  VERSION 1.1  THE FUNCTIONS OF THIS SUBROUTINE ARE: 1 OUTPUT A QUERYING MESSAGE. 2 INPUT SOME ARGUMENTS THAT ARE SEPARATED BY A COMMA. THE SUBROUTINE EXTRACTS THE ARGUMENTS OUT AND PUTS THEM TO THE ARGUMENT LIST. AFTER DELETING THE UNNECESSARY BLANKS  THERE ARE 3-1=2 ARGUMENTS TO BE INPUT ADDRESS OF THE MESSAGE ADDRESS OF ARGUMENT 1 ADDRESS OF ARGUMENT 2  .TITLE .GLOBL MCALL  EXTRACT_SOME_ARGUMENTS_OUT_FROM_INPUT EXTRAC GTLIN, PRINT  MOV MOV MOV MOV  R5.SAVE RO.-(SP) R3.-1SP) R4.-ISP)  ;SAVE THE LINK :SAVE RO.R3.R4  (SPI+.R4 (SP)*.R3 (SP)+.RO  :RE STORE RO.R3.R4  RTS  PC  ;RETURN  :IN CASE NO ENOUGH ARGUMENTS. THEN COMPLAIN AND ASK FOR THEM AGAIN: ABNORM  THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: LIST : . WORD MSGAD: .BLKW BLKW ARGAD1 ARGAD2 .BLKW  MOV MOV MOV  .PRINT MOV BR  #MSG1 SAVE,R5 BEGIN  ;N0 ENOUGH INPUT ARGUMENTS. TRY AGAIN  ; DATA FIELD: SAVE :  .BLKW  1  : THE LINK  LNBUF:  .BLKW  41  :INPUT LINE BUFFER  COMMA:  . ASCI I /./  MSG 1 :  .ASCIZ . EVEN  NO ENOUGH ARGUMENTS. ARGUMENTS ARE SEPERATED BY A COMMA.  CALCULATE NUMBER OF ARGUMENTS AND INPUT ARGUMENTS: MOV DEC MOV GTLIN MOV  (R51+.R3 R3 (R5)+,R4 #LNBUF.R4 #LNBUF,RO  MOV TSTB BNE CLRB MOVB  RO.R4 (R4) + 1$ (R4) COMMA,-(R4)  GET NUMBER OF ARGUMENTS PLUS 1 NUMBER OF ARGUMENTS NOW IN R3 GET MESSAGE PRINT A MESSAGE AND GET ONE LINE RO POINTS TO INPUT :INSERT A COMMA TO THE END OF THE INPUT LINE : END OF LINE IS A BYTE 'O'  EXTRACT ARGUMENTS OUT AND STORE: LOOP : SKIP:  MOV CMPB BEQ CMPB BEQ TSTB BEQ MOVB BR  ARGEND: MOVB INC SOB  (R51+.R4 #40.(R0) + SKIP COMMA.-(RO) ARGEND (RO) ABNORM (R0)+.<R4)+ SKIP  ;R4 POINTS TO THE ARGUMENT :SKIP BLANKS  #200.(R4) RO R3,LOOP  ;#200 AS END OF ARGUMENT ;GET NEXT BYTE IN THE LINE BUFFER :UNTIL GOT ALL ARGUMENTS  : IF  END OF ONE ARGUMENT  ;IF END OF LINE BEFORE GETTING ALL ^PARAMETERS. THEN ASK AGAIN ; STORE INPUT AS ARGUMENT ; THEN GOTO TEST THE NEXT BYTE  ro  CO  CO  *********  SUBROUTINE  FNAME  VERSION 1.1  1-MAR-81  t****************************************************** FUNCTION OF THIS SUBROUTINE IS TO CONVERT AN ASCII STRING TO A FILE NAME WITH PROPER RAD50 FORMAT. ************  THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: 2 LIST: .WORD 1 ;ADDRESS OF THE FILE IAME IN ASCII FORM ASCFN: BLKW 1 ;ADDRESS OF THE FILE IAME IN RAD50 FORM RADFN: BLKW (FILE NAME IN ASCII FORM IS AN ASCII STRING. UPON RETURN RADFN (WILL CONTAIN A 8 BYTES FILE NAME. (DEFAULT: DEVICE IS DK: (PROPER ASCII FILE NAME: MAX 3 BYTES FOR DEVICE. 6 BYTES FOR ( NAME AND 3 BYTES FOR TYPE. ( E.G. DY1:FLNAME.PES (IF BYTE PRECEDING ':' IS 'O'. OR 'Y' THEN DEVICE IS SY: ( ELSE DEVICE IS DK: (IF NAME IS MORE THAN 6 BYTES. IT WILL BE TRUNCATED. (IF TYPE HAS LESS THAN 3 BYTES. BLANKS WILL BE APPENDED. *•*****#•*******•******» +«*•*#***»•*»*»«*»*»***»•*»«**»•**»«»»»*  TITLE .GLOBL FNAME: MOV MOV MOV MOV MOV INITST: MOV SOB  FILE_NAME FNAME.IRAD50 R5,SAVE R4.-<SP) RO.-(SP) #6.R4 #STRING.R0 BLANK.(R0)+ R4.INITST  ;SAVE THE LINK ;SAVE R4.R0 ; INITIATE THE STRING ;BY MOVING BLANKS IN TO IT  2(R5).R5 04 ,R4 #' : . (R5) + NODFT1 R4.DEVICE  #4.R5  DK.STRING GETNAM *'0.-2(R5) SYSTEM #'Y,-2(R5) DATA SY.STRING  #6 . R4 #STRING+3 .RO #'..(R5) N0DFT2  SOB MOV CMPB BEO INC SOB BR  R4 . 1$ *4 , R4 #'..(R5) N0DFT2 R5 R4 . 2$ FINISH  ; IF END OF THE STRING ; THEN STOP ; IT IS PUT TO A POSITION FROM 4 TH BYTE OF ;THE STRING ;IF IT HAS MORE THAN G BYTES THE REST IS :TRUNCATED :IF IT HAS MORE THAN 10 BYTES THE LETTERS ;AFTER .' ARE ASSUMED TO BE BLANK  ; GET THE TYPE OF FILE:  SOB  #3.R4 R5 #STRING*11.RO #200.(RS) FINISH (R5)+,(R0)+  SKIP THE '.' THE 3 BYTES AFTER '.' ARE MOVED IF END OF THE STRING THEN STOP  R4 . 3$  : FORM HAS BEEN ADJUSTED. CALL IRAD50 TO CHANGE IT TO RAD50 FINISH : MOV MOV MOV JSR MOV MOV RTS  SAVE.R5 4(RS).OUTAD #LIST1,R5 PC.IRAD50 (SP)+.RO (SP )+.R4 PC  CALL IRAD50 TO PACK 12 BYTES TO OF RAD50 .RESTORE R0.R4 :RETURN  .DATA FIELD:  ;R5 POINTS TO THE ASCII STRING ;GET THE DEVICE NAME  .BLKW  STRING: . BLKW  DEFAULT=DK: R5 POINTS TO THE FIRST BYTE OF THE NAME DK = ' DK • ACCEPT O AND Y AS DYO OKO OR SY ALL OTHER CASES ARE TREATED AS DK:  OUTAD:  . WORD . WORD WORD BLKW  ICNT :  WORD  STRING IS TO BE PASSED TO IRAD50 AS THE FILENAME IN ASCII SY = -SY'  BLANK: DK : SY :  LIST1:  1  ; THE LINK OF THE PARAMETER LIST  6  ;12 BYTE BUFFER  3 ICNT STRING 1  ;CALL IRA050 ;ADDR. OF # OF BYTES ;ADDR. OF INPUT STRING :AODR. OF OUTPUT RAD50 STRING (8 BYTES)  12 .  ;12 BYTES  40.40 .BYTE .ASCI I /DK/ ASCI I /SY/ . EVEN  ;END OF SUBROUTINE FNAME  GET THE NAME OF THE FILE: MOV MOV CMPB BEO  #200,(R5) FINISH (R51+,(R0)+  NODFT2 : MOV INC MOV CMPB 3$: BEO MOVB  SAVE :  GET THE DEVICE NAME: MOV MOV DEVICE: CMPB BEO SOB SUB DATA : MOV BR NODFT t : CMPB BEO CMPB BNE SYSTEM: MOV  CMPB BEO MOVB  . END THE CHARACTERS BETWEN ARE THE FILE NAME  ,,,,,**,*..,**...,,....*...*...*.*•*•*••»*•*  ro  oo  SUBROUTINE HELP  VERSION 1.1  1-MAR-81  **************************»***************************+**********«**«********  FUNCTION OF THIS SUBROUTINE IS TO PRINT OUT SOME USEFUL INFORMATION ABOUT THE OPTIONS OF THE KEYBOARD INTERRUPTS AND DATA MANIPULATING COMMANDS TO HELP THE USER TO USE THE SYSTEM. NO NEED TO USE ANY PARAMETERS. ******** ***********  .TITLE GLOBL .MCALL  HELP USER TO_ISSUE_COMMAND HELP .PRINT  HELP:  MOV  RO,-(SP)  ;SAVE RO  .PRINT MOV SOB  #MSG #77777.R5 R5, 1$  ;PRINT THE WAV OF ISSUING COMMANDS  1$:  MOV  (SP)+.RO  ;RESTORE RO  RTS  PC  ;RETURN  ;SET A DELAY TO OUTPUT ALL OUTPUT BUFFER  DATA FIELD: ,MSG:  ASCII ASCII .ASCI I ASCII ASCII ASCII ASCII .ASCI I ASCII .ASCI I ASCII .ASCI I ASCII . ASCI I .ASCI I ASCII ASCI I ASCII ASCI I .ASCI I .ASCI I ASCI I .ASCII ASCII .ASCI I .ASCI I .ASCII .ASCI I ASCII ASCI I .ASCI I  <12x15>/THE FOLLOWING INFORMATION WILL HELP YOU TO ISSUE A/ / COMMAND./<12><15><12> / A. DURING DISPLAY:/<12><15> / 'ESC PASS CONTROL TO DATA MANIPULATION MOOE/<12><15> / '*' SCALE UP THE SUM OF THE SCANNED RESULT BY 2/<12x15> / '-' SCALE DOWN THE SUM OF THE SCANNED RESULT BY 2/ <12><15> / '«' STOP SCANNING AFTER FINISHED THE CURRENT SCAN/ <12><15x12> MOVE CURSOR UP/<12x15> MOVE CURSOR DOWN/<12><15> MOVE CURSOR RIGHT/<12><15> MOVE CURSOR LEFT/<12x15> RESET CURSOR POSITION AND THE SPEED/< 12x 15> SPEED UP THE MOVEMENT OF THE CURSOR/-: 12x 15> SLOW DOWN THE MOVEMENT OF THE CURSOR/<12x15><12> DISPLAY SPECTRUM l/<12><15> NOT DISPLAY SPECTRUM 1/<12x15> DISPLAY SPECTRUM 2/<12><1S> NOT DISPLAY SPECTRUM 2/<12><15> DISPLAY SPECTRUM 3/<12><15> NOT DISPLAY SPECTRUM 3/<12x15> DISPLAY SPECTRUM 4/<12x15> '$' NOT DISPLAY SPECTRUM 4/<12x15x12> B. DURING PLOT:/<12><15> ' + ' SCALE UP SPECTRUM BY 2/<12x15> '-' SCALE DOWN SPECTRUM BY 2/<12><15> 'F' INCREASE PLOT SPEED BY 2/<12x15> 'S' DECREASE PLOT SPEED BY 2/<12><15> 0' OUIT /< 12x 15x 12> C. DATA MANIPULATION COMMANDS: (FIRST 2 LETTERS ENOUGH)/  ASCI I ASCI I ASCI I ASCI I ASCII ASCII ASCII ASCI I ASCI I ASCI I ASCII ASCI I ASCII ASCI I ASCI I ASCI I ASCI I ASCII ASCI I ASCI I ASCII ASCI I ASCI I EVEN  < 12X 15> ADDSUB: ADD OR SUBSTRACT SPECTRA/<12><15> BACK : READ IN DATA FROM DISK/<12><15> CHANGE: CHANGE SOME POINTS OF A SPECTRUM/< 12x 15> CLEAR: CLEAR OUT A SPECTRUM/<12><1S> HELP USER TO ISSUE COMMANDS /<12><15> HELP: INFO : GET OR CHANGE INFORMATION AND STATUS OF A / /SPECTRUM/< 12x 15> LEVEL: LEVEL OUT SOME SPIKES OF A SPECTRUM/<12><1S> / OUT : GET OUT OF THE DISPLAY MODE/< 12x 15> / PART : SHOW PART OF THE 4 SPECTRA OR PART OF A / / /SPECTRUM/<12><15> PLOT : PLOT A SPECTRUM/<12><15> / RELOAD: RELOAD THE DATA BEFORE THE LAST COMMAND TOOK / /PLACE/<12><15> SCALE: CHANGE THE SCALE OF A SPECTRUM/< 12x I5> / SEPERA: MOVE A SPECTRUM UP OR D0WN/<12><15> / SHOW THE VALUES OF SOME POINTS/< 12x 15> SHOW: / SMOOTH: SMOOTH A SPECTRUM/<12x15> / SUM: SUM UP A SET OF SPECTRA IN ONE FILE/<12><15> / WRITE: WRITE A SPECTRUM TO DISK/<12x15> / ' : NO INPUT, THEN JUST RETURN/<12><15x12> / /COMMAND 'HELP' FINISHED. GO BACK TO 'DISPLAY'./<12><15><  / / / / / /  END OF SUBROUTINE HELP END  SUBROUTINE  IECHO  VERSION 1.1  1-MAR-81  THE FUNCTION OF THIS SUBROUTINE IS TO ECHO A BINARY NUMBER IN ASCII FORM. THE RANGE IS FROM -9999 TO 9999. THE PRINTER WILL STOP RIGHT AFTER THE LAST DIGITAL BYTE. THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS : LIST : 14 :  WORD .BLKW  1 1  ;THE BINARY NUMBER TO BE ECHOED  ***************  TITLE .GLOBL .MCALL  ECH0I4 CHARAC,IECHO .PRINT  MOV MOV MOV MOVB MOV MOV JSR  RO.-(SP) BLANK.CHAR4 BLANK,CHAR4*2 BLANK.CHAR4+4 2(R5).I4 #LIST1.R5 PC.CHARAC  MOV RTS  (SP)+.RO PC  #CHAR4  :SAVE RO ;PUT 5 BLANK BYTES TO A STRING BUFFER 'CHAR4' ;CONVERT 14 TO ASCII DIGITAL BYTES ; ;PR1NT THE ASCII DIGITAL STRING ;RESTORE RO  DATA FIELD: LI ST 1 : WORD 14: BLKW WORD  2 1 CHAR4+1  .ASCII / / BLKB BYTE EVEN  S 20O  ; CALL CHARAC TO CONVERT BINARY TO ASCII ; THE BINARY DIGIT ; ADDRESS OF THE DIGITAL PART OF THE STRING ;2 BLANK BYTES :6 BYTES: 1ST BYTE IS A SIGN : LAST BYTE IS 200  END OF SUBROUTINE IECHO END  ro LD  SUBROUTINE  VERSION 1.1  INFO  DEC ASL ADD ADD MOV MOV  1-MAR-81  *•***•»*•*•******«•****•****#*****************«*****•*#*»»*«»»»*».,....,»,...  THE FUNCTION OF THIS SUBROUTINE IS TO SHOW AND MODIFY THE INFORMATION TABLE AND THE SPECTRUM STATUS TABLE THE INFORMATION TABLE CONTAINS SOME RECORDS ABOUT HOW THE SPECTRUM WAS OBTAINED. THE SPECTRUM STATUS TABLE CONTAINS THE CURRENT MEMORY AND DISPLAY STATUS OF THE SPECTRUM.  WORD .BLKW  10. t  XCUR : YCUR : FACTOR MODE : SPTAD1 SPTAD2 SPTAD3 SPTAD4 STKAD1  WORD .WORD .WORD BLKW BLKW .BLKW BLKW BLKW BLKW  4095 0 0 1 1 1 1 1 1  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR Y COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY SUM OF SCANS THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK) USED TO STORE THE SPECTRA  R5.SAVE •12.R5 R5.M0DAD  CURIN: NOT IN:  *MSG1.1 #0NE,R5 #1 ,R3 #4.R2 R3.PM0DAD NOT IN R5 *4,R5 R3 R2.CURIN R5  MOVB BICB  *LIST1,R5 #MSG1,STRGAD #2.LIST1 #ARGU1,ARGAD1 PC.EXTRAC ARGU1.R5 *I777G0.R5  *INFOT.R3 SPTADN.R5 12IR5).R4 #7 , R2  ADD MOV MOV ADD ADD SOB  *22 R3 (R4 ) +(R3) + (R4)+.(R3) *2 .R3 *2.R4 R2 . 1$  :R3 POINTS TO THE POSITION OF THE ASCII * :MOVE IN THE ASCII NUMBER  *HDING1  ;PRINT HEADING AND INFORMATION TABLE  MOV MOV JSR TSTB BEQ .PRINT .PRINT .GTLIN  ;R5 POINTS TO A TABLE CONTAINING SOME :R3 USED TO TEST IF SPECT_N IS IN ;LOOP 4 TIMES ;IF BIT_N=0. SPECTN NOT IN ;(4 BYTES FOR EACH NUMBER)  12(R5).R4 #62.,R4 64.(R4) #HDING2 R4  ;R4=ADDRESS OF INFORMATION TABLE .OUTPUT 7 PARAMETERS  ;ADVANCE 2 BYTES FOR <12><15> ;ADVANCE 2 BYTES FOR COMMA AND BLANK  R4 POINTS TO INFORMATION TABLE AGAIN R4 POINTS TO THE DESCRIPTION FIELD STOP PRINTING HERE PRINT (' DESCRIPTION ') PRINT DESCRIPTION FIELD  #LIST2.R5 #MSG2.QUESAD PC.QUERY ANSWER 1$ #MSG3 R4 R4.#MSG4  ;ASK:  WANT TO CHANGE THE DESCRIPTION?'  IF 'NO' THEN ASK IF CHANGE PARAMETERS ELSE PRINT ('OLD LINE:' ) PRINT OLD_LINE PRINT ('NEW LINE: ')THEN INPUT NEWLINE  PARAMETERS IN INFORMATI :PRINT A LINEFEED AND RETURN  ;INPUT SPECTRUM NUMBER :. INPUT 1 MOV MOV MOV MOV JSR  MOV MOV MOV MOV  ; I F 'NO' THEN GO SEE IF SHOW STATUS ELSE SHOW INFORMATION TABLE :R3 POINTS TO THE TABLE TO BE PRINTED  THE INFORMATION TABLE:  ;OUTPUT SPECT#'S OF CURRENTLY DISPLAYED SPECT  PRINT MOV MOV MOV BITB BEQ PRINT ADD ASL SOB .PRINT  ;ASK: 'WANT TO SEE THE INFORMATION TABLE?'  #MSG1.2.QUESAD *LIST2.R5 PC.QUERY ANSWER STATUS  MOV ADD CLRB .PRINT .PRINT  ;SAVE THE LINK ;R5 NOW POINTS TO 'MODE' ; MODAD - ADDRESS OF MODE  SHOW THE CURRENT STATUS ON DISPLAY: URRENT•  ; R5 = *SPTAD_N ;R5 NOW POINTS TO THE SPECT STATUS TABLE : SPTADN POINTS TO THE SPECT STATUS TABLE  MOV MOV JSR TSTB BEQ  PRINT  TITLE INFORMATION_OF_A_SPECTRUM . GLOBL INFO.QUERY.EXTRAC.BINARY.IECHO MCALL .PRINT, GTLIN MOV ADD MOV  :R5 NOW = OFFSET OF #SPTAD_N TO *SPTAD_1  SHOW INFORMATION TABLE:  THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: LIST: SAVE:  R5 R5 SAVE.R5 *14.R5 (R5),R5 R5.SPTADN  ;INPUT SPECT* :ARGU1 - SPECT* TO BE INPUT  :R5 = N IN BINARY  1$:  MOV MOV JSR TSTB BEQ  *MSG5.QUESAD *LIST2.R5 PC.QUERY ANSWER STATUS  .PRINT SUB MOVB CLRB .PR INT  #MSG3 #62..R4 62 (R4).BUFFER 62.(R4 ) R4  ;ASK: 'WANT TO CHANGE PARAMETERS?'  THEN SEE IF WANT TO SEE STATUS ELSE CHANGE PARAMETERS AS ABOVE R4 POINTS BACK TO BEGINNING OF INFO STORE THIS BYTE TEMPORARY STOP PRINTING HERE  ro _> ro  GTLIN MOVB  MOV MOV MOV MOV MOV JSR  R4.#MSG4 ;GET A NEW LINE BUFFER.62.(R4) ;RESTORE THE ORIGINAL BYTE  SHOW THE STATUS OF THE SPECTRUM: STATUS: MOV MOV JSR TSTB BNE JMP  #MSG6.QUESA0 #LIST2.R5 PC.QUERY ANSWER 1$ OTHER  ;ASK: "WANT TO CHECK THE STATUS TABLE?'  i$:  MOV MOV  SPTADN.R4 #BUFFER,R3  MOV MOV SUB NEG MOV MOV MOV MOV SUB MOV MOV MOV MOV  SAVE,R2 24(R2).R2 20(R4).R2 R2 R2.(R3> + 22(R4).(R3)+ 10(R4),(R3)+ #4095:.(R3) 2<R4).(R3)+ 4(R4),(R3)+ 6<R4),(R3>* 14(R4).(R3)+ 16(R4).(R3)+  ;R4 POINTS TO STATUS TABLE :R3 IS A BUFFER TO STORE THE PARAMETERS ; IN THE RIGHT ORDER  MOV MOV PRINT MOV MOV MOV  #3.R2 #BUFFER,R3 #HDING3 #STAT1.RO #LIST4.R5 #2.Rt  ;PRINT 3 MEMORY STATUS WORDS FIRST ;R3 POINTS TO THE PARAMETER LIST ;PRINT THE HEADING ;R0 POINTS TO THE STATUS ITEMS TO BE PRINTED  PRINT MOV MOV JSR ADD SOB  RO <R3)+.14 #LIST4.R5 PC.IECHO #46.,R0 R2.2$  ;PRINT HEADING ;PRINT THE PARAMETER  MOV PRINT MOV SOB PRINT  #5.R2 #HDING4 #STAT2.R0 Rl .2$ #BLANK  ;PRINT 5 DISPLAY STATUS WORDS ;PRINT HEADING  #MSG7.0UESAD #LIST2.R5 PC.QUERY ANSWER OTHER  :ASK: 'WANT TO CHANGE STATUS?'  2$:  R2 = ADDRESS OF THE STACK 1  ; ; 1 :2. ;S.  R2 = POSITION OF THE SPECTN IN STACK 1 . LOCATION IN STACK START POINT* IN MEM SIZE(WORDS)  ;4. ;5. :6. ;7. ;8.  START POINT* IN OSCIL # OF POINTS STEP~SIZE SCALE FACTOR SEPERATION_FROM_BASELINE  ;SECONDLY. PRINT DISPLAY STATUS  ;MOVE TO NEXT HEADING  ;T0 WIPE OUT THE SECOND PRINT OF HDING4  CHANGE STATUS: MOV MOV JSR TSTB BEQ INPUTS: MOV  #MSG8.STRGAD  :CONVERT TO BINARY: MOV #ARGAD1.R4  ;IF 'YESTHEN OUTPUT THE STATUS TABLE : ELSE GOTO SEE IF ANOTHER SPECT REQUIRED  ;,  ; IF ANSWER IS NO ; THEN SEE IF OTHER SPECTRUM IS REQUIRED ELSE INPUT NEW PARAMETERS  #ARGU1,ARGAD1 #ARGU2.ARGAD2 #ARGU3,ARGA03 #4,LIST1 #LIST1.R5 PC.EXTRAC  1$:  MOV MOV MOV  #BUFFER.R3 #3.R2 #LIST3.R5  MOV JSR MOV SOB  (R4)*.ASCIAD PC.BINARY BINUM,<R3)* R2.1$  ;ARGU1 ;ARGU2 ;ARGUS ;THERE  NOW IS THE START POINT* ON DISPLAY IS # OF POINTS TO BE DISPLAYED NOW IS THE STEP SIZE ARE 4-1=3 PARAMETERS  ;R4 POINTS TO A TABLE OF THE ADDRESSES OF THE PARAMETERS ; R3 POINTS TO A BUFFER FIELD FOR BINARY # ;THERE 3 PARAMETERS ;ASCIAD = ADDRESS OF THE ASCII DIGITAL STRING ;CONVERT AND STORE THE BINARY TO BUFFER  ;STORE TO THE SPECTRUM STATUS TABLE: MOV SPTADN,R4 ;R4 POINTS TO THE SPECTRUM STATUS TABLE MOV -(R3).6(R4) :STEP_SIZE MOV -(R3).4(R4) :# OF POINTS TO BE DISPLAYED MOV #4095..2(R4) SUB -(R3).2(R4) jPOSITION OF 1ST POINT ON OSCILLISCOPE MOV (RS1.R3 ;R3 = ADDR. OF THIS POINT RELATIVE TO POINT 0 SUB 22(R4).R3 :R3 = ADDR. OF THIS POINT RELATIVE TO ; START_POINT IN THE MEMORY BGE 2$ :IF POSITIVE, THEN CONTINUE PRINT #MSG9 : ELSE PRINT 'POINT OUT OF RANGE ' BR OTHER : SET NO DIFFERENCE 2$: ASL R3 ;THIS OFFSET IS IN BYTES NOW DIV 6(R4).R2 ;R2 IS THE ACTUAL OFFSET IN MEMORY ADD 20(R4).R2 :R2 IS THE ACTUAL ADDRESS OF THE POINT IN MEM MOV R2.1R4) :THIS ADDRESS IS CALLED SPECTN IN TABLE ;CHANGE SCALE: CHSCAL: MOV MOV JSR TSTB BEQ MOV MOV MOV MOV JSR MOV CMPB BNE INC 1$: . MOV JSR MOV  #MSG9.1.QUESAD #LIST2,R5 PC,QUERY ANSWER OTHER #2.LI5Tt #MSG9.2.STRGAD #ARGU1.ARGAD1 #LIST1.R5 PC.EXTRAC #ARGU1.ASCIAO #'-.ARGU1 1$ ASCIAD #LIST3.R5 PC.BINARY BINUM.141R4)  ;ASK: 'CHANGE SCALE?' ;IF 'NO' : THEN GO SEE IF WANT TO CHECK OTHER SPECTRA ; ELSE INPUT NEW SCALE VALUE ;ARGU1 NOW IS THE SCALE FACTOR :CONVERT IT TO BINARY :IF FIRST BYTE IS NOT '-' : THEN JUST CONVERT IT : ELSE MOVE POINTER TO THE DIGITAL PART ;STORE THE NEW SCALE  :CHECK OTHER SPECTRUM: OTHER:  MOV  #MSG1O.QUESAD  :ASK: 'WANT TO CHECK ANOTHER SPECTRUM?'  ro LO CO  MOV JSR TSTB BEO JMP  #LIST2.R5 PC.QUERY ANSWER FINISH INPUT 1  IF ANSWER IS NO THEN STOP ELSE INPUT THE SPECTRUM »  1$:  ASCII BYTE  < 12x 15>/WANT TO CHANGE THE DESCRIPTIONS? / 200  MSG3 :  ASCII BYTE ASCII BYTE  /OLD LINE: / 200 /NEW LINE: / 200  MSG5 :  ASCII BYTE EVEN  <12><15>/WANT TO CHANGE THE PARAMETERS? / 20O  HDING1 INFOT:  ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCIZ  <12x15>/THE INFORMATION TABLE OF THIS SPECTRUM: /<12><15> / #_SPECT_IN_FILE: /<12><15> / SIZE(BLOCKS): /<12><15> / RATE(MSEC): /<12><15> / #_SCANS_PER_SPECT: /<!2x15> / START_POINT#: /<12><15> / #_POINTS_OBTAINED: /<12><1S> / STEP_SIZE: /<12><15>  HDING2  ASCIZ  <12><15>/THE DESCRIPTION ABOUT THIS SPECTRUM IS: /  MSG6 :  ASCII  <12><15>/WANT TO CHECK THE STATUS OF THIS SPECTRUM? /<200>  HDING3 STAT 1 :  ASCII ASCII ASCII ASCII  <12x1S>/THE MEMORY STATUS OF THIS SPECTRUM:/<200> <12><15>/ RELATIVE POSITION IN STACK(BYTES): /<200> <12><1S>/ POINT* OF THE 1ST POINT IN MEMORY: /<200> -:12X15>/ SIZE OF MEMORY FOR THE SPECTRUM! WORDS) : /<200>  ASCII ASCII ASCII ASCII ASCII ASCII ASCIZ  < 12x 15X 12>/THE DISPLAY STATUS OF THIS SPECTRUM: /<200> <12><I5>/ POINT* OF THE 1ST POINT ON DISPLAY: /<200> <12><15>/ * OF POINTS BEING DISPLAYED: /<200> <12X15>/ STEP SIZE ON DISPLAY: /<200> <12><15>/ SCALEMOO FOR THE DISPLAY: /<200> <12><15>/ SEPERATION FROM THE BASELINE: /<200> <15>/ /  MSG4 :  JOB DONE: FINISH  MSG2  .PRINT #MSG13 MOV #77777.R5 SOB R5.1$ RTS PC  ;PRINT 'COMMAND 'INFO' FINISHED.' :SET A DELAY TO OUTPUT ALL OUTPUT BUFFER  ;DATA FIELD: SAVE:  BLKW  1  LINK OF THE PARAMETER LIST  .BLKW  1  ADDRESS OF THE DISPLAY MODE IN 'DISPLA'  SPTADN: .BLKW  1  ADDRESS OF THE SPECTRUM STATUS TABLE  BUFFER:  BLKW  8.  BUFFER FIELD FOR TEMPORARY STORAGE  LI ST 1 : STRGAD: ARGAD1: ARGAD2: ARGAD3:  . WORD BLKW .BLKW .BLKW .BLKW  4 1  CALL EXTRAC. # OF ARGUMENTS STRGAD = MESSAGE ADDRESS ADDRESS OF THE ARGUMENT  ARGU1: ARGU2: ARGU3:  .BLKW BLKW .BLKW  3 3 3  ARGUMENT IS A 6 BYTES BUFFER  HDING4 STAT2:  LIST2: WORD OUESAD: BLKW ANSWER: .BLKB EVEN  2  CALL QUERY TO GET A DECISION ADDRESS OF THE QUESTION RETURN ANSWER 0=NO 1=YES  BLANK:  LIST3: . WORD ASCIAD: . BLKW BINUM: .BLKW  2  MODAD:  LIST4: 14 :  . WORD .BLKW  MSG 1 :  ASCII  MSG1.1:  ASCII .BYTE  1 1 1  1 1  1 1 1 1  =4-1  CALL BINARY TO CONVERT ASCII DIGIT TO BINARY ASCIAD - ADDRESS OF THE ASCII DIGIT STRING RETURN BINARY NUMBER CALL I ECHO TO ECHO AN 14 NUMBER 14 IS THE BINARY NUMBER  MSG7 :  ASCII <12x15> /YOU MAY MODIFY THE ST ARTPO I NT *. #_POINTS. STEP_SIZE/ ASCII / OF THE SPECTRUM SEGMENT/*12><15> ASCII /BEING DISPLAYED ON OSCILLISCOPE. WANT TO DO IT? / BYTE 200  MSG8 :  ASCII  /INPUT THE START_P0INT#. #_P0INTS. STEP_SIZE: /<200>  MSG9 :  ASCII ASCIZ  /»•»«> THE SPECIFIED POINT* IS OUT OF RANGE. NOW TAKE THE / /MINIMUM./  MSG9.1  ASCII ASCII ASCII ASCII ASCII ASCII  <12><15>/THE SCALE OF A SPECTRUM WILL BE CHANGED BACK TO / /ONE BEFORE SCALING OR WRIT ING/< 12x 15> / THE SPECTRUM TO DISK /< 1 2x15> /YOU MAY CHANGE THE SCALE FACTOR HERE WITHOUT ACTUAL / /SCALING THE SPECTRUM./<12><15> /WANT TO DO THIS? /<200>  /INPUT THE SPECTRUM # : /<200> /SPECT#'S OF CURRENTLY DISPLAYED SPECTRA ARE : / 200  MSG1.2: .ASCII  /WANT TO SEE THE INFORMATION TABLE ABOUT THIS SPECTRUM? /<200>  MSG9.2  ASCII  /INPUT NEW SCALE*100: /<200>  ONE :  / 1 /<200>/ 2 /<200>/ 3 /<200>/ 4 /<200>< 12>< 12>< 15x200>  MSG 10:  ASCII  <12XI5>/WANT TO CHECK ANOTHER SPECTRUM? /<200>  .ASCII  MSG 13: .ASCIZ /COMMAND 'INFO' FINISHED. BACK TO 'DISPLAY'./ EVEN !END OF SUBROUTINE INFO . END  ro  LO  MOVB BACKUP : MOV JSR TSTB BEO  #1.FLAG #LIST1,R5 PC,STORE FLAG END  FUNCTION OF THIS SUBROUTINE IS TO. UPON A DATA MANIPULATION REOUEST THROUGH A KEYBOARD INTERRUPT. SAVE THE CURRENT DATA BANK. THEN INPUT A COMMAND AND INTERPRET IT. THE CONTROL THEN WILL PASS TO A SUITABLE DATA MANIPULATING SUBROUTINE TO PERFORM THE REOUIRED JOB. THE CURRENT DATA BANK IS SAVED IN TWO BACK UP FILES ON SYSTEM DISK ALTERNATIVELY (SY:BKUP1.RCD AND SY:BKUP2.RCD). HENCE THE DATA BEFORE THE LAST DATA MANIPULATING COMMAND TOOK PLACE CAN BE RELOADED. THE RELOAD PROCESS IS DONE BY A DATA MANIPULATING COMMAND 'RELOAD'.  INPUT:  MOV JSR  #LIST2.R5 PC,EXTRAC  MOV CMP BNE CLRB BR  ARGU1,R0 RELOAD,RO INTERP FLAG BACKUP  TO ADD A NEW DATA MANIPULATING SUBROUTINE. ONE SHOULD:  '; INTERPRET THE COMMAND:  1. 2. 3. 4.  INTERP : MOV MOV  SUBROUTINE  KYINHD  VERSION 1.1  1-MAR-B1  DEVELOPE AND TEST THE NEW SUBROUTINE ADD THE NAME OF THE SUBROUTINE TO THE GLOBLE LIST OF THIS SUBROUTINE PUT THE FIRST TWO LETTERS OF THIS NAME TO THE COMMAND TABLE (CMDTBL:) PUT THE NAME OF THE SUBROUTINE TO THE SUBROUTINE LIST (SUBLST:) IN THE SAME POSITION CORRESPONDED TO THAT IN THE COMMAND TABLE 5. PUT THE DOCUMENTATION OF THIS SUBROUTINE IN THE SUBROUTINE 'HELP'  1 ;THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: CALL KYINHD .WORD 10. JUST: ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' 1 BLKW :SAVE: (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR 4095 . WORD ;XCUR: Y COORDINATE OF THE CURSOR ;YCUR: WORD 0 SCALE FACTOR USED FOR DISPLAY SUM OF SCANS ;FACTOR WORD 0 1 THE DISPLAY MODE BLKW ;MODE: 1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT 1 BLKW ;SPTAD1 1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 BLKW ;SPTAD2 1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 . BLKW :SPTA03 1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ;SPTAD4 .BLKW 1 ADDRESS OF STACK 1 USED TO STORE THE SPECTRA ;STKAD1 .BLKW  1$ :  TITLE GLOBL .GLOBL GLOBL GLOBL .MCALL  KEYBOARD INTERRUPT HANDLER OUT.KYINHD.EXTRAC BACK.ADDSUB,CLEAR.CHANGE.INFO LEVEL.SEPERA.PLOT.SMOOTH.HELP SHOW. SUM. STORE .WRITE . SCALE .PRINT  MOV MOV SOB MOV MOV MOV MOV MOV  RS,SAVE #77777.R5 R5. 1$ RO.-(SP) RI.-(SP) R2,-(SP) R3.-(SP) R4.-(SP)  ;ALL SUBROUTINES FOR DATA MANIPULATION  :SET A DELAY TO OUTPUT ALL OUTPUT BUFFER :SAVE R0.R1.R2.R3.R4  BACKUP THE CURRENT DATA FIELD BEFORE CHANGING IT BY STORED IT IN DISK:  INPUT COMMAND R0=1ST TWO CHAR OF THE COMMAND IF THIS IS NOT A RELOAD INSTRUCTION THEN GO TO INTERPRET THE COMMAND ELSE SET A FLAG AND CALL STORE TO GET DATA BACK  Rl POINTS TO COMMAND TABLE R2 POINTS TO SUBROUTINE ADDR,TABLE  CMPB BNE CLR  #200.RO 1$ RO  IF NO INPUT  CMP BEO ADD BR  RO.(R1)+ CALSUB #2,R2 1$  SEARCH THE COMMAND AND GO TO CALL THE CORRESPONDING SUBROUTINE  SAVE,R5 PC.»(R2)  END : 1$ :  MOV SOB MOV MOV MOV MOV MOV RT S  #77777,R5 R5 . 1$ ( SP1 + .R4 (SP)+.R3 (SP)+.R2 (SP)+.R1 (SP)+.RO PC  DUMMY:  .PRINT  #MSG2  RETURN  .PRINT RTS  #MSG3 PC  ;SAVE THE LINK  IF AFTER RELOAD. THEN GO OUT ELSE JUST CONTINUE TO GET INPUT COMMAND  #CMDTBL.R1 #SUBLST,R2  CALSUB : MOV JSR  ***»******************************+*****»************************************  FLAG = 1 FOR SAVE. -0 FOR RELOAD  THEN SET IT TO ZERO  CALL CORRESPONDING SUBROUTINE SET A DELAY TO OUTPUT ALL OUTPUT BUFFER RESTORE R4.R3.R2.R1.RO  ARGU1 IS AT THE END OF THE COMMAND TABLE. ITS CORRESPONDING SUBROUTINE IS DUMMY. IT PRINTS 'INVALID COMMAND' NO INPUT OR JUST 'RETURN'  : DATA FIELD: LIST 1 : . WORD SAVE : . B.LKW  2 1  FLAG:  .BLKB . EVEN  1  CALL STORE TO STORE THE DATA FIELD ADDRESS POINTS BACK TO PARA. LIST OF CALLING 'KYINHD' AND OTHER DATA MANIPULATING SUBR. A FLAG - 1 FOR SAVE. - 0 FOR RELOAD  LIST2:  . WORD  2  CALL EXTRAC  TO GET THE COMMAND  ro  Icr. X)  WORD .WORD MSG 1 :  MSG 1 ARGU 1  : ADDRESS OF THE MESSAGE ,ADDRESS OF COMMAND  ASCII /000M00000^0000000000000000000^000N00^000ftf/000000tt00tf000tttttt/ ASCI I /###########/<12><15> ASCII /NOW IN DATA MAN IPULATION MODE. TYPE IN COMMAND ./< 12x 15>/# / BYTE 20O EVEN  MSG3 :  ASCII . EVEN  /NO OPERATION. BACK TO DISPLAY./<12x15xt2><200>  ;END OF SUBROUTINE KYINHD .»+****  . END  ;COMMAND NAME TABLE: RELOAD:  ASCII  /RE/  'RELOAD' IS A SPECIAL COMMAND TO RELOAD DATA  CMDTBL:  ASCII ASCII ASCII ASCII ASCII ASCI I ASCII ASCI I ASCII ASCII ASCI I ASCI I ASCI I ASCII ASCII ASCI I WORD  /AD/ /BA/ /CH/ /CL/ /HE/ /IN/ /LE/ /OU/ /PA/ /PL/ /SC/ /SE/ /SH/ /SM/ /SU/ /WR/ 0  COMMAND TABLE  4  INPUT COMMAND IS STORED HERE IF COMMAND IS NOT FOUND IN COMMAND TABLE THEN IT WILL HEAD HERE AND CALL 'DUMMY'  ARGU 1 : BLKW  IF NO INPUT. COMMAND CHANGED TO ZERO  ;DATA MANIPULATING SUBROUTINE LIST: SUBLST:  MSG2 :  WORD WORD WORD WORD WORD WORD WORD WORD WORD WORD WORD WORD WORO WORD WORD WORD WORD  ADDSUB BACK CHANGE CLEAR HELP INFO LEVEL OUT INFO PLOT SCALE SEPERA SHOW SMOOTH SUM WRITE RETURN  ADDSUB BACK CHANGE CLEAR HELP INFO LEVEL OUT PART: INFO HAS ALL THE FEATURES FOR PART PLOT SCALE SEPERA SHOW SMOOTH SUM WRITE IF NO INPUT, THEN JUST 'RETURN'  WORD  DUMMY  IF INVALID COMMAND. 'DUMMY' WILL BE CALLED TO PRINT AN ERROR MESSAGE  ASCIZ  /»»» INVALID COMMAND. TYPE 'HELP' IF CONFUSED./  ro  LD  BGE .PRINT CLR SUBROUTINE  LEVEL  VERSION 1.1  1-MAR-81  THE PARAMETER LIST PASSED TO THIS SUBROUTINE  !LIST: ;SAVE:  WORD .BLKW  10. 1  ;XCUR: ;YCUR: ;FACTOR ;MODE: ;SPTAD1 ;SPTAD2 :SPTAD3 ;SPTAD4 ;STKAD1  .WORD .WORD .WORD . BLKW BLKW BLKW BLKW .BLKW . BLKW  4095. 0 0 1 1 1 1 1 1  INPUT :  CLR ASL DIV ADD MOV LPHEAD: MOV SUB MOV TST BGE NEG CMP 2$ : BLT 2$ :  *•******•**«.•*•*•**************»**•***•*****•***•********"****************** THE FUNCTION OF THIS SUBROUTINE IS TO TAKE OUT SOME SPIKES IN A SPECTRUM. A SPIKE IS DEFINED AS A POINT WHERE THE DIFFERENCE WITH THE RIGHT ONE AND THE DIFFERENCE WITH THE LEFT POINT BOTH EXCEEDS THE SPECIFIED CRITERIA. IS:  C A L L A DATA M A N I P U L A T I N G S U B R O U T I N E ADDRESS OF PARAMETER L I S T TO C A L L ' D I S P L A ' ( J U S T USED FOR FURTHER M O D I F I C A T I O N ) X COORDINATE OF THE CURSOR Y COORDINATE OF THE CURSOR SCALE FACTOR USED FOR D I S P L A Y SUM OF SCANS THE D I S P L A Y MODE ADDRESS OF SPECTRUM S T A T U S T A B L E OF S P E C T 1 ADDRESS OF SPECTRUM S T A T U S T A B L E OF S P E C T 2 ADDRESS OF SPECTRUM S T A T U S TABLE OF S P E C T 3 ADDRESS OF SPECTRUM S T A T U S T A B L E OF S P E C T 4 ADDRESS OF STACK 1 USED TO STORE THE S P E C T R A  TITLE GLOBL .MCALL  LEVEL OUT THE SPIKES EXTRAC.BINARY.I ECHO.QUERY,LEVEL .PRINT  MOV  R5.SAVE  ADD MOV  #14.R5 R5.TABLSP  MOV JSR  #LIST1,R5 PC.EXTRACT  :INPUT START POINT*. # OF POINT, :RIGHT DIFFERENCE. SPECT#  MOV MOV MOV MOV MOV JSR MOV SOB  #ARGAD1.R4 #START.R3 #4.R2 (R4)+.ASCIAD #LIST2.R5 PC.BINARY BINUM.(R3)* R2. 1$  .CONVERT  MOVB BIC DEC ASL ADD MOV  ARGU5.R5 #177760.R5 R5 R5 TABLSP.R5 (R5).R4  MOV MOV SUB  3$ :  4$:  ;SAVE THE LINK ;TABLSP POINTS TO A TABLE OF ADDRESSES OF ; THE SPECTRUM STATUS TABLES  ARGU1, 2.  LEFT  LPEND: :JOB  3. 4 TO BINARY  tSTORE AS START.NPOINT,LEFT.RIGHT :ASCIAD = THE ADDRESS ASCII DIGITAL STRING  ;R5  = SPECT* IN BINARY  ;R5 ;R5 ;R4  • OFFSET FROM *SPTAD N TO #SPTAD_1 = ADDRESS OF THE POINTER TO STATUS TABLE POINTS TO THE SPECTRUM STATUS TABLE  20(R4).R3  :R3  = HEAD ADDRESS OF  START. R*1 22(R4).R1  ;R1  = POINT* OF N - POINT* OF  SPECTN 1ST POINT  IN MEM  RO R1 6(R4 ) ,RO 20(R4).RO NPOINT,R3 ( RO > + . R 1 ( RO ) , R 1 R 1 , R2 R1 2$ R 1 R1.LEF r LPEND  IF  POSITIVE THEN CONTINUE ELSE PRINT 'POINT OUT OF RANGE' AND CLEAR DIFFERENCE  R1 NOW IN BYTES RO = R1 / STEP SIZE RO = ACTUAL ADDRESS OF STARTPOINT  R2=LEFT_P0INT-CURRENT_P0INT R1=ABS(CURRENT POINT-LEFT IF R K L E F T CRITERIUN THEN-NO OPERATION  MOV SUB SUB TST BGE NEG CMP BLT  (RO).R1 2(R0).R1 R 1 , R2 R1 3$ R1 R 1 .RIGHT LPEND  TST BGE NEG SUB SUB BLT  R2 4t R2 LEFT.R2 RIGHT.R2 LPEND  MOV ADD ASR SOB  -2(R0).(R0) 2(R0).(RO) (RO) R3.LPHEAD  UNTIL SEARCH OVER NPOINTS  *MSG2 PC  PRINT 'COMMAND ' L E V E L ' RETURN  POINT)  ELSE R2=(LEFT POINT-CURRENT POINT)(CURRINT_POINT-RIGHT_POINT ) R1=ABS(CURRENT POINT-RIGHT POINT) IF R1<RIGHT CRITERION THEN NO OPERATION ELSE R2=ABS(LEFT_P0INT+RIGHT_P0INT-2CURRENT) R2=R2-(LEFT CRITERION+RIGHT CRITERION) IF NEGATIVE THEN JUST A SLOPE, NOT A SPIKE ELSE CURRENT POINT =(LEFT_P0INT+RIGHT_P0INT)/2  FINISHED:  FINISH:  ;DATA  •BINUM = THE RETURNED BINARY NUMBER  2$ *MSG1.1 R1  .PRINT RTS  FINISHED'  FIELD:  SAVE:  BLKW  1  ;LINK OF THE PARAMETER LIST  TABLSP:  BLKW  1  ;TABLSP POINTS TO A TABLE OF THE POINTERS ; TO THE SPECTRUM STATUS TABLE  6 MSG 1 ARGU 1 ARGU2 ARGU3 ARGU4  ;CALL EXTRACT  . WORD . WORD . WORD .WORD . WORD . WORD  TO GET 5 INPUT PARAMETERS  ro  ARGADS: .WORD MSG 1:  ARGU5  L1ST2 WORD ASCIAD: BLKW BINUM BLKW  2 1 1  ;CALL BINARY TO CONVERT ASCII TO BINARY :ASCIAD IS THE ADDRESS OF THEASCII STRING :BINUM IS THE RETURNED BINARY NUMBER  START BLKW NPOINT: BLKW LEFT : BLKW RIGHT BLKW  1 1 1 1  ;START POINT* FOR THE SEARCH ;# OF POINTS 10 BE SEARCHED ;LEFT CRITERION AS A SPIKE ;RIGHT CRITERION AS A SPIKE :ASCII ;ASCII ;ASCI I :ASCII ;ASCII  ARGU1 ARGU2 ARGU3 ARGU4 ARGUS  BLKW BLKW . BLKW BLKW BLKB  3 3 3 3 2  MSG 1 .  ASCII .ASCIZ  /<»<><> THESPECIFIED POINT IS OUT OF RANGE. NOW TAKF THE / /MINIMUM /  ASCIZ  /COMMAND 'LEVEL' FINISHED. GO BACK TO DISPLAY ' . / < 1 2 > '.  MSG2:  SUBROUTINE  ASCII /SEARCH SPIKES. /< 12><15> ASCII /INPUT START_POINT#. *_POINTS, LEFTCRlTERI ON. / ASCIZ /RIGHT CRITERION. AND SPECT*. / EVEN  INPUT INPUT INPUT INPUT INPUT  1HE  FUNCTION  THE  PARAMETER  LIST : SAVE :  . WORD . BLKW  XCUR : YCUR: FACTOR: MOOE : SPTAD1: SPTAD2: SPTAD3: SPTAD4: STKA01:  . WORD . WORD .WORD . BLKW .BLKW .BLKW .BLKW . BLKW .BLKW TITLE GLOBL  AS START AS NPOINT AS LEFT AS RIGHT AS SPECT*  OUT:  : C L EAR LOOP :  15 > H :  NOT  IN:  :RE STORE  LIST  SUBROUTINE  PASSED  IS  TO T H I S  10. 1  TO JUMP  OUT OF  SUBROUTINE  THE  INFINITE  DISPLA*  ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS  OF  OF OF OF OF OF  S P E C T R U M S T A T U S T A B L E OF S P E C T 1 S P E C T R U M S T A T U S T A B L E OF S P E C T 2 S P E C T R U M S T A T U S T A B L E OF S P E C T 3 S P E C T R U M S T A T U S T A B L E OF S P E C T 4 S T A C K . U S E D TO S T O R E T H E S P E C T R A  OISPLAV  *12.R5 (R5I+.R4  ;R4 «  R4.M0DE » 1 . R 3  : R 5 P O I N T S TO P O I N T E R OF S T A T U S T A B L E ;R3 • A ONEBIT BITTEST REFERENCE BETWEEN  (R5I,R2 20<R2).Rl 10(R2 ) .RO  R2 Rl RO  SUB SOB CLR  (6<R2).(Rt)* RO. » » 16< R2 >  CLEAR  ADO ASLB CMPB BGE  #2.R5 R3 #20,R3 LOOP  # 2 , SP (SP)* (SP)* (SP)* (SP)* (SP)* *2 . SP ( S P )• < SP l * *4 . S P MODE  »t *4 .  SP  PC  R4 R3 R2 Rl RO R5 RO  POINTS - HEAD - SIZE OUT  TO S T A T U S ADDRESS I N WORDS THE  1  TALBE  SEPERATION  U P D A T E THE S T A T U S C H E C K N E X T ONE IF  AND T R A C E  MODE  T H E B A S E L I N E AND T H E S P E C T R A F I R S T : IF T H E S P E C T R U M I S NOT ON D I S P L A Y T H E N G O T O C H E C K N E X T ONE  MOV MOV MOV  ALL REGISTERS  TABLE  C H E C K E D L E S S THAN THEN CHECK NEXT E L S E CONTINUE  BACK  THE  4  SPECTRA  CONTROL:  V I R T U A L L Y R E T U R N TO RESTORE R4.R3.R2.R1 IN 'KYINHD'  V I R T U A L L Y R E T U R N TO B 5 . R 0 A R E S A V E O I N ' KE V | N T '  OF  OISPLA' DISPLA*  V I R T U A L L Y R E T U R N TO IF SCAN IS OFF THEN JUST RETURN ELSE SKIP EFFECT RETURN  FIELD  MODE:  BLKW Of  1  SUBROUTINE END  ;DISPLAY OUT  LOOP.  IS:  C A L L A DATA M A N I P U L A T I N G SUBROUTINE A D D R E S S OF P A R A M E T E R L I S T TO C A L L 'DISPLA' ( J U S T U S E D FOR F U R T H E R M O D I F I C A T I O N ) X COORDINATE OF T H E C U R S O R ¥ COORDINATE OF THE C U R S O R S C A L E F A C T O R U S E D FOR O I S P L A V SUM OF S C A N S T H E D I S P L A Y MODE  4095 0 0 1 1 1 1 1 1 our OUT  I-NAR-S1  MOV MOV  i srR BGE ADD Rl S  It:  :END  OF T H I S  I . I  ADO MOV  ADD MOV MOV MOV MOV MOV ADD MUV MOV ADD  ;DATA  VERSION  OUT T H E S E P E R A T I O N R3 . R 4 BITB NOT I N BEO  END OF SUBROUTINE LEVEL END  OUT  MOOE,  BTH BIT  -  1 IF  SCAN  I S ON  ****** ******* *•*•*«******•***•«******»***•*•«**•*•**********•*»****•*••»••••*  SUBROUTINE  PARAME  VERSION  .1  1-MAR-8 1  ****** ******* •*•*****•»*«••«•«•****•*•***•••*•***•«*«•*»***•*••***•*••«»•*••*  FUNCTI ON OF THIS SUBROUTINE IS TO INPUT SCANNING PARAMETERS, CONVERT THEM TO BINARY AND RETURN THESE VALUES. THE PARAMETER LIST PASSED THIS SUBROUTINE IS AS FOLLOWS: LIST: RATE : NSCAN: STARPT NPOINT STEP : SIZEWD  .WORD BLKW .BLKW . BLKW .BLKW BLKW BLKW  5  1 1 1  1 1 1  5 ARGUMENTS(RATE,NSCAN.START.END.STEP) RATE OF SCAN IN MILLISEC NUMBER OF SCANS WHERE TO START SCANNING HOW MANY POINTS TO BE SCANNED THE STEP SIZE OF THE OUTPUT VOLTAGE THE SIZE OF MEMORY ALLOCATED TO THIS SPECTRUM  RAMP=170440 X0UT =170444  ;RAMP OUTPUT BUFFER REGISTER ;X AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE  PARAME: MOV MOV MOV MOV MOV  R5.SAVE RO.-(SP) R1,-(SP) R2.-(SP) R3,-(SP)  ;SAVE THE LINK SAVE RO.R1.R2.R3  2$: 1$:  MOV PRINT MOV MOV MOV ADO MOV MOV JSR TSTB BEO NEG BLT CLR CLR BR  #-1.SWITCH #MSGO #7777,RAMP RAMP.XOUT #MAX +1,R1 SWITCH.Rl (Rl).OUESAD #LIST2.R5 PC.QUERY ANSWER RANGOK SWITCH 2$ RAMP XOUT 1»  SWITCH BETWEEN MAXIMUM AND MINIMUM PRINT 'CHECK OUTPUT VOLTAGE RANGE' SHOW MAXIMUM VOLTAGE OUTPUT R1 POINTS BETWEEN ADDRESSES OF MAX AND MIN R1 NOW POINTS TO ADDRESS OF MAX OR MIN ASK: 'WANT TO CHECK MAX/MIN VOLTAGE ?' (FIRST TIME SHOW MAX BUT ASK MIN) IF NO THEN GO TO RANGE OK ELSE IF SHOWING MINIMUM THEN SWITCH MAXIMUM ELSE SHOW MINIMUM VOLTAGE OUTPUT  SHOW DEFAULT VALUE: RANGOK: .PRINT MOV MOV ADD MOV PRDEFT: .PRINT  #MSG1 SAVE.R2 #5,R1 #2 . R2 #MSG1.1.R3 R3  MOV MOV JSR TSTB BNE  #MSG4.QUESAD #LIST2.R5 PC.QUERY ANSWER FINISH  ;IF ANSWER YES : THEN RETURN  :R2 POINTS TO #RATE(TABLE TO STORE PARAMETERS) ;PRINT HEADING :NAME OF FIRST ARGUMENT(SAME AS ECHOED ONES) ;R1 = ARGUMENT COUNT  :PRINT THE DEFAULTED PARAMETER VALUE ;POINT TO NEXT ITEM : PRINT '<12><15>' ;ASK:'ARE THE DEFAULT VALUES ACCEPTABLE? '  GETPAR  MOV ADD PRINT MOV MOV  SAVE,R2 #2.R2 #MSG5 #MSG1.1.MSGAD *5.R1  INPUT:  MOV JSR CMPB BEQ MOV JSR MOV ADD ADD SOB  #LIST3,R5 PC,EXTRAC #200.ARGU IS #LIST4,R5 PC.BINARY NUMBER.(R2) #20..MSGAD #2 . R2 R1.INPUT  1$ :  :INPUT RATE,NSCAN,START,NPOINT.STEP ;TEST IF DEFAULT : THEN SKIP AND KEEP THE OLD VALUE ; ELSE CONVERT AND UPDATE THE NEW VALUE ;POINTS TO NAME OF NEXT ARGUMENT :ADVANCE THE POINTER  CALCULATE THE SIZE OF MEMORY TO BE ALLOCATED TO THIS SPECTRUM IN WORDS:  CHECK THE OUTPUT VOLTAGE RANGE: BEGIN:  (R2 )+.14 #LIST1.R5 PC.IECHO *20.,R3 R1.PRDEFT #MSG3  GET PARAMETERS  ****** ******* **•********•****•***•.««.****••*•*••.**.********************+***  .TITLE GET SCANN NG PARAMETERS GLOBL BINARY.EXTRAC.I ECHO.QUERY,PARAME .MCALL PRINT  MOV MOV JSR ADD SOB .PRINT  ;PRINT(' THE DEFAULT SCANNING PARAMETERS ARE:' R1=ARGUMENT COUNT R2=#RATE (A TABLE CONTAINING THE PARAMETERS) R3 POINTS TO THE MESSAGE PRINT PARAMETER NAME  GETSZB  UPDSZB  CLR MOV DIV TST BEQ INC ASH MOV  RO -4 ( R2 ) . R 1 #256..RO R1 UPDSZB RO  #8..RO RO.(R2)  :-4(R2)=NP0INT ; IF NO REMINDER ;THEN JUST UPDATE SIZEBK BY QUOTIENT ;ELSE SIZEBK=QU0TIENT*1 :R0 = SIZEWD (A MULTIPLE OF 256 WORDS) :STORE SIZEWD  JOB DONE: FINISH  MOV MOV SUB  SAVE.R2 #4095..R1 G(R2).R1  MOV MOV  R1.XOUT R1.RAMP  :PRINT THE UPDATED PARAMETERS: .PRINT #MSG7 MOV #5. R 1 ADD #2 , R2 MOV #MSG1.1.R3 PRVALU PRINT R3 MOV (R2 )+. 14 MOV "LIST 1,R5  INITIALIZE XAX1S OF OSCILLOSCOPE ; AND VOLTAGE OUTPUT TO SPECTROMETER ; (R1=4096.-START_POINT)  ;PRINT(' THE SCANNING PARAMETERS ARE: ') :R1=ARGUMENT COUNT ;R2 = #RATE (A TABLE CONTAINING THE PARAMETERS) :R3 POINTS TO THE MESSAGE ;PRINT PARAMETER NAME ;PRINT THE DEFAULTED PARAMETER VALUE  JSR ADD SOB PRINT  PC.IECHO #20.,R3 R1.PRVALU #MSG3  MOV MOV JSR TSTB BNE JMP  #MSG6.OUESAD #LIST2.RS PC.OUERY ANSWER 1$ BEGIN  MOV MOV MOV MOV  (SP)*.R3 (SPI+.R2 (SP)*.R1 (SP)*.RO  RTS  PC  POINT TO NEXT ITEM PRINT -<12x15>'  ;ASK: 'SCAN NOW ?' :IF YES. ; THEN GO BACK TO MAIN ; ELSE GO TO BEGIN AGAIN  RETURN  ;LINK OF THE PARAMETER LIST  LIST1 : 14 :  . WORD BLKW  1 1  :CALL IECHO  WORD LIST2: OUESAD: .BLKW ANSWER: BLKW . EVEN  2 1 1  CALL QUERY ADDRESS OF OUESTION ANSWER BYTE  LIST3: MSGAD: ARGAD:  2 1 ARGU  CALL EXTRAC ADDRESS OF MESSAGE ADDRESS OF ARGUMENT  BLKW  4  ARGUMENT IS A 8 BYTE BUFFER  LIST4: WORD STRGAD: .WORD  2  CALL BINARY ADDRESS OF THE STRING TO BECONVERTED TO BINARY (NO SIGN) BINARY NUMBER  SWITCH: MAX : MIN :  BLKW WORD WORD  MSGO: MSG0.1:  ASCIZ ASCII .ASCII MSGO.2: .ASCII .ASCII MSG 1 :  .ASCII  ASCIZ  ARGU 1 1 MSGO.1 MSG0.2  A SWITCH SWITCHING BETWEEN MSGO.1 TO MSGO.2 MAX: ADDRESS OF THE MESSAGE OF SHOWING MAX MIN: ADDRESS OF THE MESSAGE OF SHOWING MIN  < 12><15>/0UTPUT VOLTAGE RANGE CHECK:/ /NOW SHOWING THE MAXIMUM OUTPUT VOLTAGE. / /WANT TO CHECK MINIMUM? /<200> /NOW SHOWING THE MINIMUM OUTPUT VOLTAGE. / /WANT TO CHECK MAXIMUM? /<200> <12x15>/THE DEFAULT SCANNING PARAMETERS ARE : /< 12>< 15x200:-  /<200> /<200> /<200> /<200> /<200>  /  MSG4  ASCI I /ARE THE DEFAULT VALUES OK? / . BYTE 200  MSG5  .ASCI I <12>/INPUT NEW SCANNING PARAMETERS: (DEFAULT - OLD VALUE)/ ASCII <12x15x200> ASCI I <12>/SCAN NOW? /<200> .ASCI I < 1 2 x 1 2 x 1 2 x 1 2 x 1 2 x 1 2 x 1 2 x 1 2 x t 2 x 1 2 x 1 2 x 1 2 x 1 2 x 1 2 x 1 2 > ASCIZ /THE SCANN ING PARAMETERS ARE:/ .EVEN  ; END OF SUBROUTINE PARAME 1  BLKW  /  MSG7  BLKW  NUMBER:  MSG3  MSG6  SAVE :  ARGU:  <12><15>/ RATE IN mSEC : <12><15>/ # OF SCANS: < 12x 15>/ START POINT*: <12X15>/ # OF POINTS: < 12x 15>/ STEP SIZE:  ;RESTORE R3.R2.R1.RO  ;DATA FIELD:  .WORD .BLKW .WORD  MSG 1 1 : ASCII MSG 1 2 : .ASCI I MSG 1 3 : . ASCI I MSG 1 4 : .ASCI I MSG 1 5 : . ASCI I  . END  SUBROUTINE  VERSION 1.1  PLOT  1-MAR-81  *****************************************************************************  FUNCTION OF THIS SUBROUTINE IS TO PLOT A SPECTRUM. TWO VOLTAGES CORRESPONDED TO THE X AXIS AND Y AXIS ARE OUTPUT TO A PLOTTER. THE TIME OF THE PEN RESIDED AT A POINT IS A LINEAR FUNCTION OF THE DIFFERENCE BETWEEN THE VALUES OF THE CURRENT POINT AND THE NEXT POINT. THIS DELAY IS FURTHER ADJUSTED BY A SHIFTING FACTOR. A SPECIAL KEYBOARD INTERRUPT HANDLER DURING PLOTTING. THE OPTIONS ARE: + ' TO SCALE UP THE PLOT BY 2 TO SCALE DOWN THE PLOT BY 2 F ' TO SPEED UP THE PLOT '" S' TO SLOW DOWN THE PLOT 0' TO QUIT THE PLOT  IS LINKED TO HANDLE  INTERRUPTS  WORD .BLKW  10. 1  XCUR: YCUR: FACTOR MODE : SPTAD1 SPTAD2 SPTAD3 SPTAD4 STKAD1  .WORD .WORD .WORD BLKW BLKW .BLKW .BLKW .BLKW .BLKW  4095 0 0 1 1 1 1 1 1  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR Y COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY SUM OF SCANS THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  1$: 2$ :  «*»**•**•**«** ******  .TITLE .GLOBL MCALL  PLOT EXTRAC.QUERY.PLOT .PRINT  DATA INITIALIZATION: CTCR =1677G2 CTBR =167774 CKCR =170420 CKBR =170422 RAMP =170440 XOUT =170444 YOUT =170442 KEYCR =177560 KEYBR = 177562 TTCR =177564  COUNTER CONTROL REGISTER COUNTER BUFFER REGISTER REAL TIME CLOCK CONTROL REGISTER REAL TIME CLOCK BUFFER REGISTER RAMP OUTPUT BUFFER REGISTER X AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE Y AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE KEYBOARD INPUT CONTROL REGISTER KEYBOARD INPUT BUFFER REGISTER TERMINAL OUTPUT CONTROL REGISTER  INPUT THE SPECTRUM NUMBER AND SPEED NUMBER: PLOT:  MOV  R5.SAVE  ;SAVE THE LINK  BEGIN:  MO OVV M JSR  #LIST1.R5 #LIST1,R5 PC.EXTRACT  ;INPUT SPECT*.SPEED  ARGU1,R5 * 177760.R5 R5 SAVE.R5 #12.R5 (R5 ) .R4  ;R5 = N IN ASCII :R5 = N IN BINARY :R5 = OFFSET FROM SPTAD_N TO SPTAD1 + 2  MOV MOV MOV MOV  (R4 )+.R3 (R4)+.XOUT XOUT.RAMP (R3 ) .YOUT  ;R3=START POINT ;INITIALIZE VOLTAGE OUTPUT TO X AXIS AND VOLTMETER INITIALIZE Y AXIS BY THE 1ST POINT  MOV MOV JSR TSTB BEQ  #MSG2,OUESAD »LIST2.R5 PC.QUERY ANSWER FINISH  MOV DEC MOV  (R4)+,R5 R5 ( R4).R4  ;R5=NPT N :SHOW NPOINT-1 POINTS IN THE LOOP ; R4=STEP_N  MOVB CMPB BNE CLR BR CMPB BNE MOVB BIC CMPB BEQ NEG CLR  ARGU2.R2 #200.R2 1$ R2 3$ #'-.R2 2$ ARGU2+1,R2 #177760.R2 #'-.ARGU2 3$ R2 FACTOR  :ARGU2=SPEED# IN ASCII.LARGER # FASTER SPEED ;IF NO INPUT  ;R5 POINTS TO SPTAD_N :R4=#SPECT_N  ;PLOT  THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: LIST : SAVE :  MOVB BIC ASL ADD ADD MOV  3$:  ;ASK:'IS IT THE PLOTTER READY NOW?' :IF ANSWER: 'NO' ; THEN RETURN TO 'DISPLA' :ELSE PLOT:  ;  THEN JUST SET SPEED CONTROL TO ZERO  ;IF NEGATIVE THEN MOVE THE DIGITAL PART IN ;R2=SPEED IN BINARY ;IF NEGATIVE THEN LOWER THE SPEED. SO DON'T NEG R2 ;R2 USED AS SHIFTING FACTOR TO CONTROL SPEED :SET FACTOR TO ZERO  :SET INTERRUPT HANDLER: MOV MOV MOV CLR  9#60.INTBUF #KEYINT.»#60 #100.KEYCR »#62  ;STORE THE ORIGINAL VECTOR ;ENABLE INTERRUPT  :PLOT POINTS: PLOTLP: MOV ASH MOV MOV ASH SUB TST BGE NEG ADD 1$: ASH  (R3)*,R1 FACTOR.R1 R1,YOUT (R3 ) ,R1 FACTOR.Rl Y0UT.R1 R1 1$ R1 #100.R1 R2 . R 1  ;Y-AXIS=POINT(I)•2"'FACTOR  ;R1=100+ABS(Y AXIS(I-1)-Y AXIS(l)) ; REDUCE THIS BY 2"R2 BECAUSE R2 IS NEGATIVE  o  THE CLOCK COUNTS UP TO ZERO, SO NEGATE R1 INITIALIZE THE BUFFER REGISTER OF THE CLOCK START COUNTING  NEG MOV MOV  R1 R1 , CKBR *4 1 .CKCR  CMP BNE  *240.CKCR DELAY  SUB SUB SOB  R4.XOUT R4.RAMP RS.PLOTLP  ;OUTPUT X_AXIS(I+1) :VOLTMETER(I*1) ;UNTIL NPOINT-1 POINTS HAVE BEEN PLOTTED  MOV ASH MOV  (R3),R1 FACTOR.Rl R1 . YOUT  ;SHOW THE LAST POINT  1$:  INTBUF . »*60 »#62  ;MOVE OUT INTERRUPT HANDLER OF THIS ROUTINE  MOV MOV JSR TSTB BNE JMP  *MSG4.QUESAD *LIST2.R5 PC.OUERY ANSWER 1$ BEGIN  ;ASK: 'STOP NOW?'  PRINT RTS  *MSG3 PC  ;PRINT 'COMMAND 'PLOT' FINISHED. ; RETURN TO DISPLA'  ;IF 'YES' ; THEN STOP ; ELSE PLOT AGAIN  KEYBOARD INTERRUPT HANDLE OF THE PLOTTING ROUTINE:  3$:  MOV RT I  *100,e#KEYCR  ;ENABLE THIS INTERRUPT HANDLER AGAIN ;RETURN TO INTERRUPT POINT  ; DATA FIELD:  JOB DONE: FINISH: MOV CLR  RETURN:  CLR MOV  KEYCR #*KEYBR,RO  DISABLE FURTHER INTERRUPT RO=THE KEY PRESSED  CMPB BNE DEC BR CMPB BNE INC BR  #'F.RO 1$ R2 RETURN *'S.RO 2$ R2 RETURN  IF NOT 'F' THEN COMPARE OTHERS ELSE MAKE R2 MORE NEGATIVE TO FASTEN SPEED  CMPB BNE INC BR CMPB BNE DEC BR CMPB BNE MOV ADD JMP  * ' + . RO 3$ FACTOR RETURN * ' - . RO 4$ FACTOR RETURN *'Q.RO RETURN *1O0.»*KEYCR #4 . SP FINISH  IF NOT '•' THEN COMPARE OTHERS ELSE INCREASE FACTOR TO ENLARGE YAX1S  IF NOT 'S' THEN COMPARE OTHERS ELSE MAKE R2 LESS NEGATIVE TO REDUCE SPEED  IF NOT '-' THEN COMPARE OTHERS ELSE REDUCE FACTOR TO REDUCE YAXIS IF NOT 'Q' (QUIT) THEN RETURN 70 PLOT ELSE RETURN ABNORMALLY TO THE END OF PLOT  SAVE :  .BLKW  1  ;LINK TO THE PARAMETER LIST  FACTOR  .BLKW  1  :SCALE FACTOR FOR THE PLOTTER  BLKW  1  ;BUFFER STORES THE ORIGINAL INTERRUPT VECTOR  3 MSG 1 ARGUt ARGU2  ;CALL EXTRAC  INTBUF  LIST) : . WORD WORD WORD WORD ARGU1 : ARGU2:  BLKB BLKB  2 2  LIST2: QUESAD ANSWER  . WORD . BLKW BLKB  2 1 1  MSG 1 :  .ASCI I /INPUT SPECT* TO BE PLOTTED AND SPEED* (LARGER.FASTER,EG . 4)/ .ASCI I /: /<200>  MSG2:  ASCII . BYTE  /IS THE PLOTTER READY NOW? / 200  MSG3 :  .ASCIZ  /COMMAND 'PLOT' FINISHED.  MSG4 :  *  ; SPECTRUM * ;SPEED #  ASCI I /STOP NOW? /<200> . EVEN  ; END OF SUBROUTINE PLOT . END  GO BACK TO 'DISPLAY'./  SUBROUTINE  OUERV  VERSION 1.1  1-MAR-81  *****************************************************************************  FUNCTION OF THIS SUBROUTINE IS TO PRINT A OUESTION AND INPUT AN ANSWER. IF THE ANSWER IS 'YES'. THEN IT RETURNS A FLAG AS '1'. IF THE ANSWER IS 'NO'. THEN IT RETURNS A FLAG AS '0'. OTHERWISE. IT ASKS THE OUESTION AGAIN. THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS AS FOLLOWS: LIST: WORD 2 OUESAD: .BLKW 1 ANSWER: BLKB 1 .EVEN  ;ADDRESS OF THE OUESTION ;RETURN ANSWER 0=N0 1=YES  ***••**•*»**********»***+#********•+****•»•*•*»*****»******+*****«**+**••****  TITLE .GLOBL .MCALL QUERY:  MOV MOV MOV ASK : GTLIN MOV CMPB It: BEQ CMPB BEQ CMPB BEO CMPB BEO CMPB BEQ CMPB BEO CMPB BEO BR YES: MOV MOVB BR NO: MOV CLRB RETURN: MOV RTS  OUERY_AND_GET_YES/NO QUERY .PRINT. GTLIN RO.-(SP) R5.SAVE 2(R5),R5 •ANSWER.R5 •ANSWER,RO #' .(R0)+ 1t #'Y,-(RO) YES #171,(RO) YES #'0. (RO) YES #157.(RO) YES #'N.(RO) NO #156.(RO) NO ASK SAVE,R5 #1,4(R5) RETURN SAVE.R5 4(R5) (SP)*.RO PC  SAVE RO PRINT THE QUESTION AND GET THE ANSWER SKIP THE PRECEEDING BLANKS IS ANSWER Y? YES.THEN GO TO YES IS ANSWER y? YES,THEN GO TO YES IS ANSWER 'OK' YES, THEN GO TO YES IS ANSWER 'ok' YES THEN GO TO YES IS ANSWER N? YES THEN GO TO NO IS ANSWER n? YES. THEN GO TO NO OTHERWISE GO AND REPEAT THE QUESTION IF AFFIRMATIVE ANSWER SET FLAG TO 1 RESTORE AND RETURN IF NEGATIVE SET FLAG TO 0 AND RESTORE RO RETURN  ;DATA FIELD: SAVE: ANSWER:  BLKW BLKW  1 10  END OF SUBROUTINE QUERY . END  ;LINK TO THE PARAMETER LIST ;BUFFER TO STORE THE ANSWER STRING OJ  o  PRINT SUBROUTINE  SCALE  VERSION 1.2  30-MAR-81  • *•**•*•***•**•»***•* + *****•*************** + * + **** + ••**•****••"""*"""*'" FUNCTION OF THIS SUBROUTINE IS TO CHANGE THE SCALE OF THE DISPLAYED PORTION OF A SPECTRUM AS SPECIFIED BY THE USER (INPUT SCALE*100. SO THAT CAN BE SCALED TO THE SECOND DECIMAL PLACE). THE SPECTRUM WILL BE SCALED BACK TO UNITY (SCALE*100 = 100) FIRST. BEFORE SCALING TO THE NEW FACTOR. OVERFLOW WILL BE CHECKED. USER'S DECISION WILL BE ASKED IF OVERFLOW OCCURS. THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: JLIST: ;SAVE :  WORD .BLKW  10. 1  ;XCUR: ;YCUR: :FACTOR ;MODE: ;SPTAD1 ;SPTAD2 ;SPTAD3 ;SPTAD4 ;STKAD1  .WORD WORD .WORD BLKW BLKW BLKW .BLKW BLKW .BLKW  4095 . O 0 1 1 1 1 1 1  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'OISPLA' (JUST USEO FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR Y COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY SUM OF SCANS THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 AODRESS OF SPECTRUM STATUS TABLE OF SPECI3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK 1 USEO TO STORE THE SPECTRA  MOV JSR CMPB BEQ  MOV CMPB BEQ CMPB BNE INC INC : NOT INC: MOV JSR CMP BEO  MOV MOV TSTB BEO SUB  #MSG3  PRINT <CRxLR>  #LIST2.R5 PC.EXTRAC #200,ANS NOTHIS  ASK FOR NEW SCALE FACTOR NO ENTRY-DO NOT CHANGE SPECTRUM  ;SET UP STRING ADDRESS TO CONVERT TO BINARY #ANS.ADDRNO ANS.#053 CHECK IF SIGN BIT INC PRESENT 053 = + ANS.#055 055 = NOT INC THEN POINT TO BYTE AFTER SIGN ADDRNO CONVERT SCALE #LIST3,R5 FACTOR TO BINARY PC.BINARY IF NEW SCALE FACTOR NEWSCA. 14(R4 ) SAME AS OLD DON'T CHANGE SPECTRUM NOTHIS  (R4),R3 4(R4),R2 FLAG OLDSCA N0TDID.R2  FETCH ADDRESS OF FIRST POINT TO BE CHANGED FETCH NO.OF POINTS DISPLAYED IF NO OVERFLOW OCCURRED AND A RESTART THEN RESET ALL POINTS ELSE RESET ONLY THE CHANGED POINTS  •»**.****»»**********»****•****•*************»*******•******•****************  .TITLE SCALE SPECIF ED_SPECTRA .MCALL .PRINT GLOBL IECHO.EXTRAC BINARY.SCALE.QUERY ADD MOV MOV MOV MOV : MOV DEC ASL ADD MOV CLRB BIT BNE JMP  PRINT MOV MOV JSR .PRINT MOV MOV JSR  #12.R5 (R5)+.M0DE R5.TABLSP #1.TSTBIT #1.SPECTN SPECTN.R4 R4 R4 TABLSP.R4 (R4),R4 FLAG TSTBIT.MODE AROUND NOTHIS  #MSG1 SPECTN.14 #LIST1.R5 PC,IECHO #MSG2 141 R4 ) . 14 #LIST1.R5 PC.IECHO  :TABLSP POINTS TO POINTERS OF STATUS TABLES  OLDSCA: MOV SUB CLR MUL DIV MOV SOB  (R3),RO 16(R4).RO R1 #100..RO 14(R4),R0 RO.(R3) + R2.OLDSCA  : FETCH FIRST POINT ;SUBSTRACT SEPARATION REMOVE SCALE FACTOR STORE VALUE R2 CONTAINS NO.OF POINTS  :FETCH ADDRESS OF SPECTRUM PARAMETERS ;R4 POINTS TO POINTERS OF STATUS TABLE N ;R4 POINTS TO STATUS TABLE N ;CLEAR FLAG SO THAT OVERFLOW WILL BE TESTED ;TEST IF SPECTRUM IS BEING DISPLAYED  ;PRINT THE SCALE OF SPECTRUM :PRINT SPECTRUM NUMBER ;PRINT "IS" :FETCH SCALE FACTOR ;PRINT SCALE FACTOR  : MOV MOV MOV CLRB :SCALE: SCALP: MOV CLR MUL DIV BVC TSTB BNE MOV INCB MOV JSR  4( R4).R2 (R4 ) ,R3 NEWSCA.14(R4) FLAG  FETCH FIRST STORE CLEAR  NO.OF POINTS DISPLAYED ADDRESS OF FIRST POINT NEW SCALE FACTOR THE FLAG SO OVERFLOW WILL BE CHECKED  (R3),R0 R1 NEWSCA.RO #100..RO 1$ FLAG 1$ R2.N0TDID FLAG #LIST4,R5 PC.QUERY  FETCH VALUE 32BIT MULTIPLICATION COMPUTE NEW VALUES OVERFLOW? IF NOT, GOTO 1$ AND CONTINUE IF NOT FIRST TIME OF OVERFLOW THEN CONTINUE TO DO IT NOTDID = # OF POINTS HAVE BEEN DONE ELSE SET FLAG AND ASK USER'S DECISION ASK: 'DATA OVERFLOWED. STILL WANT TO DO IT?  CO  o cn  TSTB BNE BR  ANSWER  IF 'YES' THEN CONTINUE ELSE TRY AGAIN  ADD MOV SOB  1G(R4).RO RO,(RS) + R2.SCALP  : ADD SEPARATION .STORE VALUE  ASL INC CMP BLT JMP PRINT RTS  TSTBIT SPECTN #4,SPECTN RETURN NEXTSP *MSG5 PC  ;GO TO NEXT SPECTRUM  H  AROUND  MSG5:  .ASCIZ  /COMMAND 'SCALE' COMPLETED.  FLAG:  .BLKB .EVEN  1  ;END OF SUBROUTINE SCALE . END  :PRINT 'COMMAND 'SCALE' FINISHED.  DATA FIELD: ;ADDRESS POINTS TO POINTERS OF STATUS TABLES  TABLSP:  BLKW  1  NOTDID:  BLKW  1  ;NO OF POINTS REMAINED UNCHANGED  LI ST 1 : WORD WORD 14 :  1 O  ;CALL I ECHO TO ECHO AN 14 NUMBER ;NUMBER TO BE ECHOED  MSG 1 : MSG2 : MSG3 :  ASCII /THE SCALE*100 OF SPECTRUM /<200> ASCII / IS /<200> .ASCI I <12><15x200> EVEN  LIST2:  WORD .WORD WORD  ANS : MSGtO:  6 BLKB ASCI I /PLEASE ENTER NEW SCALE VALUE: (MOO) / .ASCI I <200> EVEN  SPECTN: MODE : TSTBIT: LISTS: ADDRNO: NEWSCA:  BLKW .BLKW .BLKW .WORD .BLKW BLKW  LIST4: WORD OUESAD: WORD ANSWER: .BLKB MSG4:  2 MSG 10 ANS  CALL EXTRAC TO INPUT NEW SCALE FACTOR  1 1 1 2 1 1  SPECTRUM NUMBER TO BE ALTERED SPECIFIES SPECTRA BEING DISPLAYED TESTS WHICH BITS IN MODE ARE SET  2 MSG4 1  CALL QUERY TO ASK USER'S DECISION ADDRESS OF THE OUESTION RETURNED ANSWER 0-NO. 1=YES  .ASCII /»<»?> SCALE TOO LARGE. DATA OVERFLOWED. .BYTE 200  STILL WANT TO DO IT? /  GO BACK TO 'DISPLAY'./  :A FLAG. IF 0 DETERMINE OVERFLOW, ELSE NOT  SUBROUTINE  SCAN  VERSION 1.1  THE FUNCTIONS OF THIS SUBROUTINE ARE TO SUPERVISE THE FOLLOWING PROCESSES: A) A REAL TIME CLOCK MEASURES A SPECIFIED TIME DURATION B) A COUNTER COUNTS SOME PULSES C) SUBROUTINE DISPLA TO SHOW THE CURRENT SCANNING RESULT D) A MAIN PROCESS TO SET UP THESE PROCESSES. JUDGE THE FLOW OF CONTROL. AND OUTPUT A RAMP VOLTAGE TO THE SPECTOMETER. THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS :LIST:  WORD WORD .WORD WORD  3 L I ST 1 LIST2 LISTS  HOW TO SCAN WHERE TO STORE IN MEMORY WHERE TO STORE IN DISK  THE ABOVE LISTS ARE: LIST 1 : RATE : NSCAN: STARPT: NPOINT: STEP : SIZEWD:  .STKAD1 ;SPTAD1 :SPTAD2 :SPTAD3 ;SPTAD4 ;FLAGAD  WORD .WORD .WORD WORD .WORD .BLKW  : LIST3: WORD ; FNAMAD: .BLKW ; DSTART: BLKW ; DADDR: BLKW ;DSIZE: BLKW ; DSTATU: BLKB . EVEN  7 MODE  STACK 1 SPECT1 SPECT2 SPECT3 SPECT4 1  SAME LIST AS THAT FOR CALLING DISPLA ADDRESS OF THE DISPLAY MODE BIT 1 = 1 SPECT1 IS TO BE DISPLAYED BIT 2 = 1 SPECT2 IS TO BE DISPLAYED BIT 3 = 1 SPECTS IS TO BE DISPLAYED BIT 4 = 1 SPECT4 IS TO BE DISPLAYED BIT 9 = 0 A NEW SCAN 1 RESTART A TERMINATED JOB TO GET MORE SCAN (SEE SUBROUTINE SCAN) 8=0 SCAN IS OFF 1 SCAN IS ON (SPECT2 IS THE RESULT) ADDRESS OF STACK 1 ADDRESS OF THE STATUS TABLE OF SPECTRUM 1 ADDRESS OF THE STATUS TABLE OF SPECTRUM 2 ADDRESS OF THE STATUS TABLE OF SPECTRUM 3 ADDRESS OF THE STATUS TABLE OF SPECTRUM 4 ADDRESS OF A FLAG FOR COMMUNICATION BETWEEN 'SCAN' AND DISPLA'  FILENAME ADDRESS STARTING BLOCK NUMBER STARTING ADDRESS OF THE DATA FIELD TO BE USED * OF BLOCKS TO BE TRANSFERED STATUS: BIT 1 = 1 IF WRITE TO DISK , BIT 1 = 0 IF READ FROM DISK UPON RETURNED: NEGATIVE IF FAILED  SCANDATA SCAN,DISK.I ECHO.CHARAC,DISPLA .PRINT..GTLIN  CTCR=1 677G2 CTBR= 1G7774 CKCR= 170420 CKBR=170422 CKPC=4 40 CKPS=4 42 RAMP=1 70440 XOUT=170444 YOUT=170442  COUNTER CONTROL REGISTER COUNTER BUFFER REGISTER REAL TIME CLOCK CONTROL REGISTER REAL TIME CLOCK BUFFER REGISTER REAL TIME CLOCK INTERRUPT VECTOR REGISTER REAL TIME CLOCK INTERRUPT STATUS REGISTER RAMP VOLTAGE OUTPUT BUFFER REGISTER X AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE Y AXIS OUTPUT BUFFER REGISTER TO OSCILLISCOPE  KEYCR=177560 KEYBR=177562 TTCR=177564 TTBR=177566 IVECTR=60 ISTATU=62  KEYBOARD CONTROL REGISTER KEYBOARD BUFFER REGISTER TERMINAL CONSOL OUTPUT CONTROL REGISTER TERMINAL CONSOL OUTPUT BUFFER REGISTER SYSTEM KEYBOARD INTERRUPT VECTOR SYSTEM KEYBOARD INTERRUPT STATUS  5 ARGUMENTS!RATE.NSCAN.START.END,STEP) RATE OF SCAN IN MILLISEC NUMBER OF SCANS WHERE TO START SCANNING HOW MANY POINTS TO BE SCANNED THE STEP SIZE OF THE OUTPUT VOLTAGE THE SIZE OF MEMORY ALLOCATED TO THIS SPECTRUM  WORD .BLKW .BLKW .BLKW BLKW .BLKW .BLKW  LIST2: WORD MODAD: .WORD  TITLE GLOBL .MCALL  1-MAR-81  1$:  ADD MOV MOV MOV  #2.R5 (R5)+,TABLE 1 (R5)+,TABLE2 (R5).TABLES  MOV ADD BIS BIT BNE CLR MOV MOV MOV MOV  TABLE2.R5 *2 , R5 *202.(»(R5) #400.»(R5)+ 1$ NSCNOB (R5)+.STKAD1 (R5)+,TABLE4 (R5)+.TABLES #FLAG1,4(R5)  CLRB MOV ADD  FLAG1 TABLE 1,RS *2 , RS  TABLE 1 : HOW TO SCAN TABLE2: HOW TO STORE TABLE3: HOW TO STORE SEE THE DATA FIELD  (LIST2 OF MAIN) IN MEM (LISTS) IN DISK (LIST5) FOR DETAILS  SET SCAN ON AND DISPLAY SPECT2 IF JUST CONTINUE TO GET MORE SCANS THEN KEEP NSCNOB(# OF SCANS OBTAINED) ELSE CLEAR IT STKAD1=#STACK1 TABLE4 = SPECTRUM STATUS TABLE OF SPECT1 TABLES = SPECTRUM STATUS TABLE OF SPECT2 SET UP THE FLAG ADDRESS AND COMMUNICATE WITH 'DISPLA' (RS)=#LIST2 (R3)=#RATE  > THE CLOCK BUFFER: MOV NEG  (R3)+.CKBR CKBR  : GET SCANNING PARAMETERS: MOV (R3)+.NSCAN MOV (R3)».START MOV (R3)+.NPOINT MOV (R3)+.STEP MOV (R3).SIZEWD MOV SIZEWD.SIZEBY ASL SIZEBY  MOVE RATE TO CLOCK BUFFER COUNT UP UNTIL ZERO ;GET A COPY OF THE SCANNING PARAMETERS  :SIZEBY = SIZE OF SPECTRUM IN BYTES  :INITIALIZE THE SPECTRUM STATUS TABLES OF THE SPECTRUM 1 AND 2. STATUS: MOV  TABLE4.R3  :RS POINTS TO STATUS TABLE OF SPECT1  MOV MOV MOV ADD MOV SUB MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV CLR CLR MOV MOV ADD MOV MOV  TABLES.R1 STKAD1,(R3)+ STKAD1, <R1 ) SIZEBY.(R1) + #4095..(R3) START.(R3) (R3).(R1)+ (R3 )+.RAMPST RAMPST.RAMP NPOINT,(R3) + NPOINT, (Rt )<• STEP.(R3)+ STEP.(R1) + SIZEWD.(R3)+ SIZEWD.(Rl) + (R3)+.INF01 (R1)+,INF02 #100.(R3) + #100.(R1)+ (R3) + (R1) + STKAD1,< R3)* STKAD1.(Rl) SIZEBY.< Rl) + START.(R3 > + START.(Rl ) +  Rl POINTS TO STATUS TABLE OF SPECT2 SPECT 1 = #STACK1 SPECT2 = #STACK1 + SIZEBYOFSPECT1 BEGIN1=4096.-START BEGIN2=BEGINI (INITIALIZE THE RAMP OUT) (RAMPST IS ANOTHER COPY OF BEGIN 1> NPT1=NP0INT NPT2=NP0INT STEP1=STEP STEP2=STEP SIZWD1=SIZEWD SIZWD2»SIZEWD kicrn T ADI C OF nC C DCTT) INF01=ADDR nOFc TINFO TABLE SPECT1 INF02-AUUH Ur INrU 1AbLt Ur bKCL1^ SET THE INITIAL SCALE FACTOR • = 100 SEPER1=0 SEPER2=0 HEAD 1=STKAD1 HEAD2=STKAD1+SIZEWD*2 Tticnn-.nnn  AFTER SCANNING ALL REQUIRED SCANS. CONTROL IS STILL IN DISPLA'. THE USER IS ASKED TO INTERRUPT IT AND USE THE 'OUT' COMMAND TO PASS THE CONTROL BACK TO THE CALLING ROUTINE. IN THIS CASE 'SCAN'. OUTPUT THE INFORMATION BLOCK OF THIS SET OF SPECTRA TO BLOCK 0 OF THE FILE: INFOUT: MOV MOV ADD CLR MOV MOV MOVB  FLAGO=1 THE FIRST CYCLE  :SET COUNTING PROCESS #3.CTCR MOV  COUNTING UP MODE HEAD2 = HEAD OF SPECT2 R4=P0INTER FOR SPECT 1 R3=P0INTER FOR SPECT 2 PTCTR=POINT COUNTER RAMPST=1ST POINT OF RAMP  MOV ASH MOV MOV MOV ADD MOV MOV MOV  CTCR  RESET COUNTER  ;TRIGGER THE CLOCK PROCESS AND THE COUNTING PROCESS MOV #14 1 .CKCR TURN ON THE CLOCK #2.CTCR .TURN ON THE COUNTER MOV  3$:  TSTB BNE RT I  FLAGO 3$  CLRB MOV JSR  FLAGO TABLE2.R5 PC.DISPLA  .IF FIRST TIME COME HERE. THEN GO TO CALL DISPLA ELSE RETURN TO INTERRUPTED POINT AT DISPLA ;FIRST CYCLE GO TO DISPLA  #1.(R4 )  ;R5=#SPECT1 ;R4 POINTS TO PARAMETER LIST FOR DISK ;R4=#DSTART :PUT INFORMATION TO 1ST BLOCK OF DATA ;PUT ADDRESS OF INFO TABLE 1 TO DADDR ;DSIZE=64. ;SET UP WRITE MODE  14(R3 >,RO #-B.,RO RO,(R2 )• 2(R3),(R2 ) + #1.(R2)+ #6.R3 (R3)+.(R2)+ (R3)+,(R2)+ <R3).(R2)  ;1. SIZE # SPECT=NSCAN ;2. IN # OF BLOCKS ; 1 BLOCK = 256 WORDS ;3. RATE ;4. NSCAN ;5. START ;6. NPOINT :7. STEP  MOV CLRB MOV TWICE: MOV BLANKS: MOV MOV 1$: MOV SOB  INF01,R4 FLAGO #T ABLE6,R2 #7 , R3 #64.,R1 R4 , R5 BLANK.(R5)+ R1 , 1$  ; INF01=ADDRESS OF INFO BLOCK OF SPECT1 :LATER ON OUTPUT INF02. FLAGO USED AS FLAG ;CONVERT THESE TO ASCII CHARACTERS :R3 = PARAMETER COUNT :BLANK OUT THE INFO_TABLE(64 WORDS)  13$ :  MOV MOV JSR MOV MOV CMPB BNE MOVB BR  #LIST2.R5 (R2)+,BINUM PC.CHARAC #4.R0 #CHAR4.R1 #200.(R1) 10$ #40.(R4)+ 1 1$  :CALL CHARAC ;BINUM = BINARY NUMBER TO BE CONVERTED  10$ : MOVB 1 1 $ : SOB  (R1)*,(R4)+ RO.12$  ;CONVERTS AND STORES 4 DIGITS  MOV  COMMA.(R4 ) +  ;PUT A COMMA AND A BLANK AT THE END  SOB  R3.13$  :REPEAT UNTIL 7 PARAMETERS ARE DONE  TSTB BNE  FLAGO TODISK  :IF INF02 HAS BEEN UPDATED : THEN OUTPUT INF0TABLE1 TO DISK  ;SCAN POINT BY POINT: NEXTPT: CLR  TABLE4.R5 TABLE3.R4 #4 , R4 (R4 ) + INF01, ( R4) + #64. .< R4 ) +  ;UPDATE INFORMATION TABLE: MOV ;R3 POINTS TO SCANNING INFO TABLE TABLE 1.R3 MOV #TABLE6.R2 ;SET UP A TABLE CONTAINING THE INFO MOV NSCNOB. (R2 ) + PARAMETERS IN RIGHT ORDER  START 1=START START2=START  ;SET UP CLOCK INTERRUPT: MOV #CKINT.CKPC CKPS CLR INCB FLAGO  ;START SCANNING: MOV STKAD1.HEAD2 SIZEBY.HEAD2 ADD BEGSCN: MOV STKAD1,R4 MOV HEAD2.R3 NPOINT.PTCTR MOV RAMPST,RAMP MOV  ( •'NOTE : R3 .R4SHOULD NOT BE USED IN DISPLA' WHILE SCANNING)  12$ :  :R0 = BYTE COUNT (4 BYTES FOR EACH) ;200 INDICATES END OF CHAR4 ;PUT BLANKS UNTIL GOT 4 CHAR'S  MOV MOV MOV MOV INCB BR  INF02.R4 #TABLE6.R2 #1.(R2) NSCNOB.G(R2) FLAGO TWICE  ELSE DO THE SAME THINGS TO INF02 EXCEPT # SPECT = 1 # SCAN = NSCNOB(# OF SCANS OBTAINED) SET FLAG TO INDICATE IT'S SECOND TIME END_OF_IF  ;OUTPUT INFORMATION BLOCK TO THEDUMP FILE ON DISK: INF01,R4 #60.,R4 MSG0.(R4)+ R4.#MSG2 #200,65.(R4)  OUTPUT INFO TABLE 1 TO DISK FIRST 60 BYTES ARE PARAMETERS NEXT 2 BYTES ARE LINE FEED AND RETURN INPUT DESCRIPTION AS THE NEXT 64 BYTES #200 AT THE END  MOV JSR  TABLE3.R5 PC.DISK  OUTPUT TO DISK  MOV ADD MOV MOV MOV SOB  INF02.R5 #60.,R5 #33.,R3 -2(R4),(R5>+ (R4 )•.(RS) + R3 . 1$  MOVE THE 66 BYTES DESCRIPTION FIELD MOVE THE 60TH AND 61ST BYTES FIRST THEN MOVE THE 66 BYTES DESCRIPTION  RTS  PC  RETURN TO MAIN  TODISK: MOV ADD MOV GTLIN MOVB  1$:  MOV MOV MOV BIC ADD DEC BEO SUB CLR JMP  #17.CTCR CTBR.(R4) #100,f#KEVCR #170000,<R4) (R4)+.(R3)+ PTCTR 4$ STEP,RAMP »#KEYCR NEXTPT  PC,DISK  OUT :  CMP BEO  NSCAN,NSCNOB OUT  :IF ALL REQUIRED SCANS ARE OVER ; THEN OUT  TSTB BNE  F LAG 1 OUT  MOV JMP  (SP)*. RO BEGSCN  ;TEST FLAG . IF SET BY 'DISPLA' ; THEN OUT ; ELSE CONTINUE TO GET SCANS :RESTORE RO ELSE GET ANOTHER SCAN  MOVB MOV MOV RT I  #-1.F LAG 1 (SP)+. RO #100.P#KEYCR  ENABLE TO READ CTBR STORE COUNTS ENABLE KEYBOARD INTERRUPT MOV 12 BIT COUNT TO SPECT1 SPECT2 = SUM OF THE SCANNED DATA  TABLE 1  .BLKW  TABLE2  BLKW  TABLE3  1  ;RETURN BACK TO THE INTERRUPTED 'DISPLA'  SAVE R0.R5  # 1 .<R4) + STKAD1,(R4)+ SIZEWD,(R4)• #1 .(R4 )  START BLOCK # IS ONE AT THE BEGINNING STORE SPECT1 STORE SPECT1 SET THE WR MODE  R5 POINTS PARAMETER LIST FOR 'DISK'  ;LINK TO FIRST LIST OF PARAMETERS ;WHICH INCLUDES ALL THE SCANNING PARAMETERS  1 '  LINK TO SECOND LIST OF PARAMETERS .WORD MODE .WORD STACK 1 .WORD SPECT1 WORD SPECT2 .WORD SPECT3 WORD SPECT4 WORD FLAG  .BLKW  1  LINK TO THIRD LIST OF PARAMETERS (HOW TO CALL DISK)  TABLE4  .BLKW  1  ADDRESS OF SPECTRUM STATUS TABLE OF SPECTRUM 1: SPECT1: .BLKW 1 BEGIN 1 : BLKW 1 NPT1: .BLKW 1 STEP 1: BLKW 1 SIZWD1: .BLKW 1 INF01: BLKW 1 SCALE 1: .BLKW 1 SEPER1: BLKW 1 HEAD 1 : BLKW 1 START 1: BLKW 1 (SEE THE MAIN PROGRAM)  TABLE5  .BLKW  1  ADDRESS OF PSECTRUM STATUS TABLE OF SPECTRUM 2  ONE SCAN IS OVER STEP DOWN THE RAMP DISABLE KEYBOARD INTERRUPT AND GET MORE POINTS  RO.-(SP) R5.-(SP) TABLES,R5 R5.R4 #4,R4 NSCNOB 5$ SIZEWD.RO #-8.,RO RO,(R4)+ 6%  ;SET FLAG1 TO NEGATIVE TO STOP 'DISPLA' ;RESTORE RO  ; DATA FIELD:  ONE SCAN IS OVER, STORE THE PREVIOUS SCAN AND PREPARE FOR OTHER SCANS: STORE: 4$ : MOV MOV MOV MOV ADD TST BEO MOV ASH ADD BR MOV 5$: MOV 6»: MOV BISB  '  ;CHECK IF GO OUT OR GOTO GET ANOTHER SCAN: MOV (SP1+.R5 ;RESTORE R5 TO THE INTERRUPTED POINT  INITIALIZE THE DESCRIPTION OF SPECTRUM2  CLOCK INTERRUPT HANDLER: t:KINT:  JSR  ;PRINT MESSAGE OF HOW MANY SCANS HAVE BEEN OBTAINED: .PRINT #MSG1 :PRINT:('# OF SCANS OBTAINED IS : INC NSCNOB ;NSCNOB: # OF SCANS OBTAINED MOV NSCNOB . 14 MOV #LIST1 . R5 :PRINT NSCNOB PC,IECHO JSR .PRINT #MSGO :PRINT (LINEFEED/RETURN)  IF 1ST TRANSFER THEN START_BLOCK=1 UPDATE STARTING BLOCK # OF THIS TRANSFER  TABLES: .BLKW  7  TEMP STORGE FOR 7 BINARY NUMBERS  RAMPST: PTCTR:  J  STARTING POINT OF RAMP POINT COUNTER  BLKW BLKW  NSCAN: BLKW BLKW START: NPOINT: .BLKW .BLKW STEP:  J  NUMBER OF SCAN REQUIRED START POINT* NUMBER OF POINTS TO BE SCANNED STEP SIZE  SIZEBV: SIZEWD:  BLKW BLKW  ;  SIZE OF MEMORY IN BYTES SIZE OF MEMORY IN WORDS  FLAGO: FLAG1:  . BYTE .BYTE EVEN  0 O  FLAG 0 IS USED TO DETERMINE SOME CONDITIONS FLAG t IS USED TO COMMUNICATE WITH 'DISPLA'  1  STKAD1: BLKW BLKW HEAD2: INF01: .BLKW INF02: .BLKW INTRAD: BLKW  1 1 1  ADDRESS OF STACK 1 HEAD OF SPECT2 ADDRESS OF INFO TABLE OF SPECT1 ADDRESS OF INFO TABLE OF SPECT2 ADDRESS OF KEYBOARD INTERRUPT HANDLER  NSCNOB: .WORD  0  NUMBER OF SCAN OBTAINED  LI ST 1 : .WORD 14 : BLKW  1  LIST2: BINUM:  .WORD .BLKW WORD  2 1 CHAR4  CHAR4: COMMA: BLANK:  . ETLKW ASCII ASCII  3 /. / / /  MSGO:  ASCII  <12><15><200>  MSG 1 :  ASCII  / * OF SCANS OBTAINED IS: /<200>  MSG2 :  ASCII EVEN  /TYPE IN DESCRIPTION: /<200>  1  ;CALL IECHO TO ECHO AN 14 NUMBER  1  ;CALL BINARY ;B1NARY * ;CHAR4 SHOULD HAVE  ;END OF SUBROUTINE SCAN . END  CO I  o  INPUT:  *  * **..  •**'*  SUBROUTINE  SEPERA  VERSION  *.*...**. . 1  1-MAR-81  .«*..*...***..•**.***,***.. •*.* ***...******........*...*......*.....****•,,•.  THIS SUBROUTINE IS TO FUNCTION OF AND THE BASE LINE.  CHANGE THE SEPARATION BETWEEN A SPECTRUM  1$ :  THE PARAMETER LIST PASSED TO THIS SUBROUTINE LIST: SAVE :  WORD .BLKW  10. 1  XCUR : YCUR : FACTOR MODE : SPTAD1 SPTAD2 SPTAD3 SPTAD4 STKAD1  . WORD WORD .WORD BLKW BLKW BLKW BLKW BLKW .BLKW  4095 . 0 O 1 1 1 1 1 1  *..******.*.*.*.».****•.•**.*».**.*•******•**•**••»•*...****••«*•*** .........  SEPERA:  SEPARATION SPECT AND BASELINE SEPERA,EXTRAC. IECHO.BINARY .PRINT  ADD MOV MOV  #12.R5 (R5I+.M0DE R5,TABLSP  MOV BITB BEO  #1 .N MODTST,MODE NEXT  MODE = THE DISPLAY MODE ;TABLSP POINTS TO POINTERS OF STATUS TABLES  :OUTPUT OLD SEPERATION: PRINT OUTPUT: #MSG1 MOV N. 14 MOV #LIST1,R5 PC. I ECHO JSR .PRINT #MSG2 MOV DEC ASL ADD MOV MOV MOV USR PRINT  IF  SPECTN IS NOT BEING DISPLAYED THEN CHECK NEXT ONE ELSE OUTPUT OLD SEPERATION. INPUT NEW ONE  ;PRINT ('SPECTRUM ;PRINT N PRINT ('  IS  MOV CMPB BNE INC  #ARGU1 ASCIAD #'-.ARGU1 1$ ASCIAD  ;IF  NEGATIVE  ;  THEN SKIP THE SIGN BYTE  CMPB BEO  #200.ARGU1 NEXT  ;IF ;  NO INPUT THEN DON'T CHANGE THIS SPECTRUM  MOV JSR  #LIST3.R5 PC.BINARY  :CONVERT  ;GET NEW VALUE  -  ')  POSITIONED AT  ')  VALUE TO BINARY  ;UPOATE THE STATUS TABLE AND MOVE THE SPECTRUM VERTICALLY OPERAT: MOV NEWVAL 1S(R4) :UPDATE SEPER N SUB 14.NEWVAL :NEWVAL =NEWVAL-OLDVAL  i$:  TO NEW POSITION:  MOV MOV MOV  201R4) R1 10(R4) R2 NEWVAL R4  ;R1=P0INTER . :R2># OF POINTS IN THE WHOLE SPECTRUM :R4=VERTICAL POSITION TO BE CHANGED  ADD SOB  R4. (R1 )* R2. 1$  :MOVE THE SPECT_N  :CHECK THE NEXT NEXT : INC ASLB CMP BLE  ONE : N MODTST N. #4 LOOP  VERTICALLY  :CHECK NEXT SPECTRUM ;UNTIL N>4 M0DE=#10 WHEN N=4  :JOB DONE: FINISH:  ;CHECK IF THE SPECTRUM IS BEING DISPLAYED: MOVB #1.MODTST LOOP :  #LIST2 R5 PC.EXTRAC  IS:  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR Y COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY SUM OF SCANS THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT 1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  TITLE .GLOBL .MCALL  MOV JSR  :DATA  .PRINT RTS  #MSG5 PC  ;PRINT 'COMMAND 'SEPERA' :RETURN  FINISHED.'  FIELD:  MODE :  . BLKW  1  ;THE DISPLAY MODE  TABLSP:  . BLKW  1  ;TABLSP POINTS TO THE POINTERS OF THE ; SPECTRUM STATUS TABLES  LI ST 1 : 14 :  . WORD .BLKW  1 1  ;CALL  IECHO TO ECHO AN 14 NUMBER  N.R4 R4 R4 TABLSP.R4 (R4),R4 161R4 ) . 14 #LIST1.R5 PC.IECHO  R4 = OFFSET FROM #SPTAD N TO #SPTAD 1 R4 POINTS TO POINTER TO SPECTRUM STATUS TABLE R4 POINTS TO THE SPECTRUM STATUS TABLE OUTPUT THE SEPERATION  LIST2:  . WORD . WORD . WORD  2 MSG4 ARGU 1  ;CALL EXTRAC TO INPUT THE NEW VALUE  PRINT SEPER_N PRINT •('ABOVE  LISTS: ASCIAD: NEWVAL:  . WORD . BLKW . BLKW  2 1 1  ;CALL BINARY TO CONVERT ASCII TO BINARY  #MSG3  ;INPUT NEW VALUE:  THE BASELINE  .' < >  3  THE  .BLKW  1  S P E C T * OF THE SPECTRUM B E I N G  MODTST :  BLKB  1  A ONE-BIT B I T - T E S T REFERENCE  G1:  .ASCII .BYTE  /THE S P E C T R U M 200  |MSG2:  .ASCII .BYTE  / I S P O S I T I O N E D AT / 200  MSG3:  ASCIZ  MSG4:  ASCII .BYTE  ARGU1: N:  |MSGS:  BLKW  ASCIZ EVEN  ASCII  DIGITAL STRING CHECKED  /  / ABOVE THE B A S E L I N E . / / P L E A S E ENTER NEW V A L U E : / 200 /COMMAND  ; END OF S U B R O U T I N E  'SEPERA' F I N I S H E D .  GO BACK  TO ' D I S P L A Y ' . /  SEPERA  . ENO  CO  ro  .*•****•  •SUBROUTINE  SHOW  VERSION  .1  1-MAR-81  . * * * * * * ** • * • • * * « « • * • * • * . * » + • * • * • * * • » • * * * * • * * * » • • • • • * . • * » * * * • * * + * « * • • « * • » * * • * • «  • FUNCTION OF THIS SUBROUTINE IS TO PRINT OUT A NUMBER (SELECTED BV USER) OF POINTS ADJACENT TO A CURSOR DISPLAYED TOGETHER WITH THE SPECTRUM. :3 PARAMETERS ARE REQUESTED FROM THE USER: :(1) SPECTRUM NUMBER - IF DEFAULT. ENTERED NO. OF PTS. REQUESTED ARE PRINTED ': FOR EACH SPECTRUM •BEING DISPLAYED. REGARDLESS OF CURSOR V POSITION. :(2) SPECIFY WHETHER POINTS GREATER THAN (ENTER SYMBOL >) OR LESS THAN ( < ) CURSOR'S Y POSITION ARE TO BE SHOWN - IF DEFAULT. ALL POINTS ARE SHOWN. ; THE SEPARATION OF A SPECTRUM FROM BASELINE IS SUBTRACTED FROM BOTH CURSOR • AND SPECTRUM VALUE BEFORE COMPARISON. (ENTRY VALID ONLY IF SPECTRUM NO. NOT DEFAULT) : ( 3) NOOF POINTS TO BE COMPARED - IF ENTRY -VE. POINTS TO THE LEFT OF THE CURSOR'S X POSITION ARE SEARCHED: OTHERWISE. POINTS TO THE RIGHT ARE : SEARCHED. DEFAULT: 15 POINTS TO THE RIGHT (DEFAULT IS INOICATEO BY A BYTE 200 AS THE FIRST BYTE OF THE INPUT) : THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: ;LIST: :SAVE:  .WORD .BLKW  10. 1  ;XCUR: :YCUR: :FACTOR ;MO0E: ;SPTAD1 ;SPTAD2 ;SPTAD3 ;SPTAD4 ;STKAD1  .WORD WORD WORD .BLKW BLKW .BLKW BLKW BLKW BLKW  4095 0 0 1 1 1 1 1 1  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER L I S I IU L A L L UlbPLfl (JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR Y COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY SUM OF. SCANS THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT2 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  ..••.*.**«*•*•••***...**•**•**•**••*•«*«**•**•••»•********«*•*•***••«*•*****•*  TITLE SHOW VALUES OF SOME POINTS IN A SPECTRUM MCALL PRINT .GLOBL EXTRAC.BINARY.IECHO.SHOW :INPUT SPECTRUM NUMBER. SEARCH CRITERIA. AND NUMBER OF POINTS TO BE SEARCHED: SHOW:  MOV MOV JSR CMPB BNE CLR CLRB BR  NODE F: MOVB  R5.SAVER5 #LISTEX,R5 PC.EXTRAC #200,SPECTN NODEF RO GTLT POINTS  SPECTN.RO  SAVE THE LINK CALL EXTRAC TO GET INPUT CHECK FOR DEFAULT VALUE IF SPECT. NO. DEFAULTED SHOW POINTS REQUESTED ON ALL SPECTRA  :COMPUTE SPECTRUM NO.  SUB CMPB BNE CLRGT: CLRB BR CHECK: CMPB BNE MOVB BR iRTHAN: MOVB  #60.RO #200.GTLT CHECK GTLT POINTS #GTLT.#074 GRTHAN #-1.GTLT POINTS #1.GTLT  POINTS: CMPB BNE MOV BR CNVERT: MOV CMPB BEQ CMPB BEQ BR I NCR : INC NOT INC: MOV JSR CMPB BNE  #200.NPTS CNVERT #15.NSH0W NOTNEG #NPTS.ASCIAD NPTS.#053 INCR NPTS.#055 INCR NOT INC ASCIAD #LISBIN.R5 PC.BINARY NPTS.#055 NOTNEG  NOTNEG: MOV MOV TST BNE MOV MOV TESTSP: BIT BNE ASL INC CMP BLE JMP  SAVER5.R5 RO.SNUM . RO GOSHOW #1.TSTBIT #1.SNUM TSTBIT.12(R5) GOSHOW TSTBIT SNUM SNUM.#4 TESTSP CMPLET  GOSHOW: MOV SUB BGE .PRINT JMP GOOD : MOV ADD ADD MOV MOV SUB NEG ASL  #4095..Rl 4(R5).Rl GOOD #MSG3 ABORT R5.R4 SNUM.R4 SNUM.R4 12(R4).R4 22(R4).R3 R 1 . R3 R3 R3  :ARE WE LOOKING FOR PTS. > OR < CURSOR VALUE :IF BYTE IS 200 THEN ASSUME DEFAULT VALUE :SHOW ALL POINTS ;ASCI I 074 = <  :ANY OTHER ASCII CHAR. ASSUME '>' ENTERED  :COMPUTE NO. OF POINTS TO CHECK :DEFAULT IS 15. :IF NOT DEFAULT CONVERT STRING TO BINARY ;CHECK IF FIRST CHARACTER IS A SIGN :+ - ASCII 053 :- = ASCII 055 :IF THERE IS A SIGN POINT TO CHARACTER AFTER  ;NSHOW -VE MEANS SCAN PTS. TO LEFT OF CURSOR  ;IF RO (SPECTRUM NO.) NOT ZERO SHOW ONLY 1 :SPECTRUM ;R0 = 0 MUST LOOK FOR WHICH SPECTRA BEING DISPLAYED ' : ROTATE THROUGH MODE LOOKING FOR A BIT SET  :COMPUTE POINT # WHERE CURSOR IS LOCATED : IF -VE COMPLAIN ;GET ADDRESS OF PARAMETER BLOCK FOR THAT ;SPECTRUM ;GE T VALUE OF START_N ;COMPUTE ADDRESS OF CURSOR PT.  1$:  BGE .PRINT CLR CLR DIV ADD  1$ • MSG5 R3 R2 6(R4),R2 20(R4),R2  ;PRINT 'CURSOR OUT OF RANGE'  COMPUTE FIRST (MINPT) AND LAST (MAXPT) PTS. TO BE SHOWN - ALSO COMPUTE ADDRESS OF MINPT TST BPL MOV MOV INC MUL ADD MOV ADD ADD MOV NEG BR AROUND: MOV MOV DEC MUL ADD MOV MOV  NSHOW AROUND R1,MAXPT NSHOW,R1 R1 6(R4),R1 MAXPT.R1 R1.MINPT NSHOW.R2 NSHOW,R2 R2.MINADR NSHOW CHCKPT Rl.MINPT NSHOW.R1 R1 6(R4),R1 MINPT,R1 R1.MAXPT R2.MINADR  CHCKPT: CMP BGE PRINT MOV MOV BPL NEG MUL 3$: ADD MOV 1*: MOV MUL ADD MUL CMP BGE PRINT MCtV  MINPT.22(R4) 1$ • MSG6 22(R4).MINPT NSHOW.Rl 3* R1 G(R4).R1 MINPT,R1 R1.MAXPT 10(R4),R3 6(R4),R3 22IR4),R3 6(R4),R3 R3.MAXPT 2$ •MSG7 R3,MAXPT  2$:  MOV SUB MOV PRINT  G(R5),R3 16(R4),R3 RO.-(SP) •MSG4  BACK:  ;IF NSHOW -VE CURSOR IS LAST PT .  LESS:  MOV MOV JSR .PRINT MOV  SNUM.14 •LECHO.R5 PC , I ECHO •HEADER (SP )+,RO  MOV MOV SUB TSTB BEO BMI CMP BGT BR CMP BLT  MINADR,R1 (R1 )+.R2 16(R4),R2 GTLT SHOWIT LESS R3.R2 AGAIN SHOWIT R3.R2 AGAIN  PRINT 'SPECTRUM N" PRINT ' POINT  VALUE'  COMPARE PT. VALUE WITH Y CURSOR FETCH SPECTRUM VALUE SUBTRACT SEPARATION ARE WE LOOKING FOR PTS. > OR < Y CURSOR GTLT " 0 SHOW ALL POINTS REOUESTED GTLT < 0 SHOW POINTS LESS THAN Y CURSOR VALUE GTLT > 0 SHOW POINTS GREATER THAN Y CURSOR ;VALUE R3 CONTAINS Y CURSOR VALUE MINUS SEPARATION GO TO AGAIN TO GET NEXT POINT  ;EACH PT. IS 2 BYTES  ;IF NSHOW IS +VE THEN CURSOR IS FIRST POINT  ;CHECK IF MINPT IS OUT OF RANGE OF SPECTRUM ;MINPT IS OUT OF RANGE - TELL USER ;AND SET MINPT TO A VALUE THAT WILL WORK  SHOWIT : MOV MOV JSR MOV . PRINT MOV MOV JSR PRINT MOV 1$: SOB MOV AGAIN: ADD CMP BLE  ;IF MINPT IS OUT OF RANGE I.E. LESS THAN ;FIRST SPECTRUM POINT LIKELY MAXPT IS ALSO ;LESS THAN FIRST SPECTRUM POINT ;CHANGE IT AS WELL :CHECK IF MAXPT IS OUT OF RANGE OF SPECTRUM  ;TELL USER 'MAXIMUM POINT OUT OF RANGE' [CHANGE MAXPT TO ACCEPTABLE VALUE  [FETCH Y CURSOR VALUE .SUBTRACT SEPARATION  ABORT: CMPLET OUT :  MOV TST BNE ASL INC JMP .PRINT BR PRINT RTS  MINPT.14 •LECH0.R5 PC ,IECHO RO.-(SP) •BLANK R2 . 14 •LECH0.R5 PC.IECHO •CARRET •77777,RO RO. 1$ (SPI+.RO 6(R4).MINPT MINPT,MAXPT BACK  SAVER5.R5 RO CMPLET TSTBIT SNUM TESTSP •ABMESS OUT •OKMESS PC  PRINT PT. NO. AND VALUE PRINT POINT NUMBER PUT SPACING BETWEEN NUMBERS PRINT POINT VALUE PRINT CARRIAGE RETURN-LINEFEED DELAY ALLOWS CHARACTERS TO BE REMOVED FROM OUTPUT BUFFER OF TERMINAL GET NEXT POINT  DO WE WANT TO LOOK FOR ANOTHER SPECTRUM RO =0 THEN "SHOW" ALL SPECTRA BEING DISPLAYED OTHERWISE WE HAVE SHOWN SPECTRUM REQUESTED [THEREFORE FINISHED PRINT ERROR MESSAGE PRINT 'COMMAND COMPLETED.' RETURN  ; DATA FIELD: LISTEX  . WORD 4 WORD OUERIE . WORD SPECTN . WORD GTLT . WORD NPTS  CALL EXTRAC TO INPUT 3 PARAMETERS QUERY ADDRESS ADDRESS OF SPECTRUM NUMBER ADDRESS OF SEARCH CRITERION ADDRESS OF NUMBER OF POINTS  OUERIE: .ASCII BYTE BYTE ASCIZ SPECTN: ASCIZ GTLT : .ASCIZ NPTS: ASCIZ . EVEN  /PLEASE ENTER SPECTRUM, PTS. > OR < Y CURSOR (OR 012 015 /AND NO. OF POINTS (-VE INDICATES -X DIRECTION)/ /XX/ /XXX/ /XXXXXX/  LISBIN: . WORD ASCIAD: BLKW NSHOW: .BLKW  2 1 1  TSTBIT: BLKW SNUM: BLKW MSG3: .ASCIZ .EVEN MAXPT: .BLKW MINPT: .BLKW MINADR: • BLKW LECHO: .WORD 14 : .BLKW SAVER5: .BLKW HEADER: .BYTE .BYTE .ASCIZ CARRET: .BYTE BYTE MSG4 : .ASCI I BYTE BLANK: .ASCI I .BYTE MSG5 : ASCIZ MSG6 : ASCIZ MSG7: ASCIZ ABMESS: ASCIZ OKMESS: .ASCIZ . EVEN  1 :TEST BIT SEARCHES THROUGH MODE FOR SPECTRA 1 :SPECTRUM NUMBER BEING SHOWN /•«>» CURSOR AT NEGATIVE X AXIS - SEARCH FAILURE./  ;PARAMETER LIST FOR SUBROUTINE BINARY ;ADORESS OF THE DIGITAL ASCII STRING ;THE RETURNED BINARY NUMBER  1 :MAXIMUM POINT TO BE SEARCHED 1 ;MINIMUM POINT TO BE SEARCHED 1 ; ADDRESS OF MINIMUM POINT 1 :PARAMETER LIST FOR IECHO 1 1 012 015 /.POINT VALUE/ 040 ;CARRIAGE RETURN 000 /SPECTRUM / 200 /  /  200 /e»« CURSOR OUT OF RANGE/ /<«»» MINIMUM POINT OUT OF RANGE/ /e»a MAXIMUM POINT OUT OFRANGE/ /»»• SHOW COMMAND ABORTED . BACK TO DISPLAY./ /SHOW COMMAND COMPLETED, SACK TO DISPLAY./  END OF SUBROUTINE SHOW END  CO cn  SUBROUTINE SMOOTH  VERSION 1.1  DEC ASL ADD MOV  1-MAR-81  FUNCTION: PERFORM A 3-POINT SMOOTH FOR A SEGMENT OF SPECTRUM ON THE OISPLAV SMOOTHED_POINT_N = POINTN / 2 • (POINTN+1 * POINTN-1) / 4  LIST : SAVE :  . WORD .BLKW  10. 1  XCUR : VCUR : FACTOR MODE : SPTAD1 SPTAD2 SPTAD3 SPTAD4 STKAD1  WORD WORD WORD .BLKW .BLKW BLKW BLKW BLKW .BLKW  4095 0 0 1 1 1 1 1 1  .TITLE .GLOBL .MCALL SMOOTH: ADD MOV  CALL A DATA MANIPULATING SUBROUTINE ADDRESS OF PARAMETER LIST TO CALL 'DISPLA' 1 JUST USED FOR FURTHER MODIFICATION) X COORDINATE OF THE CURSOR V COORDINATE OF THE CURSOR SCALE FACTOR USED FOR DISPLAY SUM OF SCANS THE DISPLAY MODE ADDRESS OF SPECTRUM STATUS TABLE OF SPECT1 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT 2 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT3 ADDRESS OF SPECTRUM STATUS TABLE OF SPECT4 ADDRESS OF STACK 1 USED TO STORE THE SPECTRA  SMOOTH_A_SPECTRUM SMOOTH.EXTRAC.BINARY .PRINT #14.R5 R5.TABLSP  [TABLSP POINTS TO ADDRESSES OF POINTER TO : THE SEPCTRUM STATUS TABLES  INPUT SPECTRUM NUMBER AND NUMBER OF TIMES TO BE SMOOTHED: MOV JSR  #LIST1,R5 PC.EXTRAC  CALL EXTRAC TO GET SPECTRUM NUMBER AND # OF TIMES TO BE SMOOTHED  CMPB BEO  *200,ARGU1 INPUT  CMPB BNE MOV BR  #200.ARGU2 NODEFT #1 ,R0 GETSP  IF ARGU1 IS DEFAULTED THEN GO BACK TO INPUT BECAUSE NO DEFAULT ELSE CONTINUE IF ARGU2 IS NOT DEFAULTED THEN CONTINUE ELSE SET K TIMES TO 1 AND GOTO GET SPECTRUM #  MOV JSR MOV  #LIST2,R5 PC.BINARY BINUM.RO  CALL BINARY TO CONVERT # OF TIMES 10 BINARY RO - K TIMES TO BE SMOOTHED  [INTERPRET THE SPECTRUM NUMBER AND GET INFORMATION FROM ITS STATUS TABLE: GETSP:  MOVB BIC  ARGU1,R5 #177760.R5  ;R5 = SPECT* IN ASCI I [R5 = SPECT* IN BINARY  R5 = OFFSET FROM SPTAD_N TO SPTAD_1 R5 POINTS TO POINTER OF STATUS TABLE N R5 NOW = ADDRESS OF STATUS TABLE  [PERFORM THE SMOOTH: OPERAT: MOV MOV  TWO PARAMETERS TO BE INPUT: 1. SPECTRUM NUMBER: NO DEFAULT 2. NUMBER OF TIMES TO BE SMOOTHED: DEFAULT = 1 THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS:  R5 R5 TABLSP.R5 (R5),R5  1$ :  (R5),R4 4(R5 ) ,R3  ;R4 = ADDRESS OF 1ST POINT ON DISPLAY ;R3 = # OF POINTS ON DISPLAY  SUB ADD MOV  #2 . R3 #2 . R4 (R4).R2  [NOT SMOOTH THE 1ST AND LAST POINTS [SKIP THE 1ST POINT ;R2 IS A WORKING PAD  MOV MOV MOV ADD ASR ADD ASR SOB MOV  -2(R4).R1 R2.-2(R4 ) (R4)*.R2 (R4 ) ,R1 R1 Rl ,R2 R2 R3. 1$ R2 . -2(R4)  ;R1 = VALUE OF LEFT ADJACENT POINT :R2 = THE SMOOTHED VALUE OF THE LAST OPER. :R2 NOW = VALUE OF CURRENT POINT :R1 = SUM OF LEFT AND RIGHT ADJACENT POINTS [TAKE HALF OF THIS [ADD THIS TO THE PAD CONTAINS CURRENT POINT ;SMOOTH_PT_N = (PT_N)/2 + (PT_N+1 +PTN-1I/4  SOB  RO.OPERAT  [DO THIS KTIMES  #MSG2  [PRINT 'COMMAND FINISHED' ; RETURN  [STORE THE LAST SMOOTHED POINT  [JOB DONE: FINISH: .PRINT  [DATA FIELD: TABLSP:  BLKW  1  [POINTS TO POINTERS TO STATUS TABLES  LI ST 1 : WORD WORD . WORD . WORD  3 MSG 1 ARGU 1 ARGU2  CALL EXTRAC TO GET INPUT MESSAGE ADDRESS ADDRESS OF ARGUMENT  ARGU1: ARGU2:  BLKW BLKW  1 3  SPECTRUM # NUMBER OF TIMES TO BE SMOOTHED  LIST2:  . WORD WORD BLKW  2 ARGU2 1  CALL BINARY TO CONVERT ASCII DIGIT TO BINARY ADDRESS OF ASCII DIGIT THE RETURN BINARY #  BINUM: MSG 1 : MSG2 :  .ASCI I /SMOOTH THE SPECTRUM SEGMENT ON DISPLAY./<12><15> . ASCI I /INPUT SPECTRUM # AND TIMES TO BE SMOOTHED: /<200> ASCIZ EVEN  /COMMAND 'SMOOTH' FINISHED. GO BACK TO 'DISPLAY'./  END OF SUBROUTINE SMOOTH END  ****************************  SUBROUTINE  SQUEEZ  ***  VERSION 1 . 1  *.**.»*.•*******».***.**.**.  1-MAR-81  ...,,..,...»  *** ..***..•*.**..**.***+.*********.***•.****.••*.  FUNCTION OF THIS SUBROUTINE IS TO SQUEEZE OUT A HOLE IN THE STACK 1 WHERE ALL SPECTRA ARE STORED. IN ORDER TO STORE AN INCOMING NEW SPECTRUM. IF THE • INCOMING SPECTRUM IS SPECTRUM N. THEN SPECTRUM N+1 TO SPECTRUM 4 WILL BE AFFECTED. IF THESIZE OF THE NEW ONE IS LARGER THAN THE OLD ONE. THEN THE SPECTRA BEHIND WILL BE MOVED DOWN TO THE BOTTOM OF THE STACK 1 BY THE DIFFERENCE OF THE TWO SIZES. OTHERWISE THEY WILL BE MOVED UP. OR REMAINED UNCHANGED IF THE TWO SIZES ARE THE SAME. IF THE TOTAL SIZE OF THE SPECTRA AFTER BROUGHT IN THE NEW ONE EXCEEDS THE SIZE OF THE STACK 1, SOME DATA OF THE END SPECTRA WILL BE LOST. A QUERY WILL BE ISSUEDTO ASK THE USER'S DECISION BEFORE THE OPERATION. THE PARAMETER LIST PASSED TO THIS SUBROUTINE IS: LIST: WORD 6 NEWNUM: .BLKW 1 MODAD: WORD MODE NEWSIZ: BLKW 1 TABLSP: WORD SPTAD1 STKAD1: .BLKW 1 ERROR: .BLKB 1  CALL SOUEEZ THE SPECTRUM # OF THE INCOMING SPECTRUM ADDRESS OF MODE SIZE OF THE NEW SPECTRUM TABLE OF ADDRESSES OF SPECTRUM STATUS TABLES ADDRESS OF STACK 1 ERROR FLAG. SET IF ERROR OCCURRED  •*«*•»*»»*+*******...*******  .TITLE GLOBL .MCALL SQUEEZ: MOV MOV MOV MOV MOV  SQUEEZE A HOLE FOR A NEW SPECTRUM SQUEEZ.QUERY .PRINT R4,-(SP) R3.-(SP) R2.-(SP) R1.-ISP) RO.-(SP)  ;GET PARAMETERS: ADD #2.R5 MOV (R5)+.NEWNUM MOV (R5)+.MODAD MOV (R5)+.NEWSIZ MOV (R5)+,TABLSP MOV (R5)+.STKAD1 MOV R5.ERRAD  SAVE R4.R3.R2.R1.RO  IO(R5).R3 R3.DIFFER SIZGT SIZLT FINISH  ;R3»NEW SIZE-OLD SIZE ;DIFFER » NEW SIZE - OLD SIZE ;GO TO SIZE GREATER THAN IF NEW SIZE IS GREATR ;GO TO SIZE LESS THAN IF NEW SIZE IS SMALLER ;STOP IF SIZES ARE THE SAME (NO SQUEEZE)  :NEW SIZE IS GREATER THAN THE OLD SIZE: SIZGT: MOV TABLSP.R4 ;R4 POINTS TO ADDR OF PTRS OF STATUS TABLES MOV #4 , R2 ;CALCULATE TOTAL SIZE OF 4 SPECTRA ;SEE IF THE SIZE OF THE STACK 1 IS ENOUGH FOR THE NEW CONFIGURATION: IFENOU: MOV (R4 )+,R1 ADD 10(R1).R3 :R3=ACCUMULATED SIZE OF SPECTRA CMP BGE MOV JSR  #8192..R3 ENOUGH #LIST1,R5 PC.QUERY  TSTB BNE JMP  ANSWER CONTIN ERROR  ;IF STACK 1 CAN ACCOMODATE THESE ;THEN GET MORE SPECTRA .ASK: 'MORE THAN 32 BLOCKS OF DATA.SOME DATA AT THE END WILL BE LOST. OK?' IF 'YES' THEN CONTINUE ELSE RETURN WITH AN ERROR FLAG  ENOUGH: SOB  R2.IFENOU  CONTIN: MOV MOVB  -(R4 ) .SPTADB R2.NDEL  SPTADB = SPECT STATUS TABLE OF BOTTOM SPECT NDEL = # OF SPECT TO BE DELETED  CMP  SPTADN,SPTADB  IF SPTADN<=SPTADB  BLE  2$  THEN CONTINUE  : THE STACK 1 J A N N U 1 tVtN ACCOMDATE SPECTRUM 1 TO SPECTRUM N: PRINT #MSG2 ELSE PRINT)'INPUT TOO LARGE AND ABORTED') BR ERROR RETURN WITH AN ERROR FLAG : THE STACK) CANACCOMDATE AT LEAST SPECTRUM 1 TO SPECTRUM N AND THE LOST OF DATA IS OK  R5 POINTS TO THE FIRST PARAMETER NEWNUM = SPECTRUM NUMBER OF THE NEW ONE MODAD = ADDRESS OF MODE NEWSIZ » SIZE OF THE NEW SPECTRUM TABLSP = TABLE OF ADDRESSES OF SPTAD N STKAD 1 • = ADDRESS OF STACK 1 ERRAD = ADDRESS OF THE ERROR OUTPUT  RELOCATION: GET SPECTRUM STATUS TABLE: RELOCA: MOV NEWN