Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Ferrocenylphosphine derivatives of iron and ruthenium cluster carbonyls Chacon, Stephanie Teresa 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A6_7 C52.pdf [ 5.07MB ]
Metadata
JSON: 831-1.0060508.json
JSON-LD: 831-1.0060508-ld.json
RDF/XML (Pretty): 831-1.0060508-rdf.xml
RDF/JSON: 831-1.0060508-rdf.json
Turtle: 831-1.0060508-turtle.txt
N-Triples: 831-1.0060508-rdf-ntriples.txt
Original Record: 831-1.0060508-source.json
Full Text
831-1.0060508-fulltext.txt
Citation
831-1.0060508.ris

Full Text

FERROCENYLPHOSPHINE DERIVATIVES OF IRON AND RUTHENIUM CLUSTER CARBONYLS By STEPHANIE TERESA CHACON B . S c , The U n i v e r s i t y of B r i t i s h C olumbia, 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF CHEMISTRY We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA January 1986 • S t e p h a n i e T e r e s a Chacon, 1986 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by t h e head o f my department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f C h e m i s t r y  The U n i v e r s i t y o f B r i t i s h Columbia 1956 M a i n Mall Vancouver, Canada V6T 1Y3 Date F e b r u a r y 9, 1986 A b s t r a c t The s u b s t i t u t i o n r e a c t i o n s of F e 3 ( C O ) 1 2 and R u 3 ( C O ) 1 2 w i t h the f e r r o c e n y l p h o s p h i n e s PBuPhFc , PPh 2Fc , P P h F c 2 , P F c 3 and F e ( C g H 4 ) 2 P P h were c a r r i e d by i n i t i a t i o n w i t h the d i p h e n y l -k e t y l r a d i c a l a n i o n , or u s i n g p h o t o c h e m i c a l or t h e r m a l c o n d i t i o n s . The p r o d u c t s Fe(CO> 4L (L=PBuPhFc, P P h 2 F c , P P h F c 2 and P F c 3 ) ; F e 3 ( C O ) n L (L=PBuPhFc and P P h 2 F c ) ; F e 3 ( C O ) 1 n L 2 , (L=PBuPhFc), R u ( C O ) 4 ( P F c 3 ) , R u 3 ( C O ) n L (L=PPh 2Fc, P P h F c 2 , P F c 3 and F e ( C 5 H 4 ) 2 P P h ) ; R u 3 ( C O ) 1 Q L 2 (L=PPh 2Fc, P P h F c 2 , P F c 3 and F e ( C 5 H 4 ) 2 P P h ) , and R u 3 ( C O ) g L 3 (L=PPh 2Fc and PPhFc 2> were o b t a i n e d i n moderate t o h i g h y i e l d s w i t h the e x c e p t i o n of R u ( C O ) 4 ( P F c 3 ) which was o b t a i n e d i n a v e r y low y i e l d and c h a r a c t e r i z e d by X-ray c r y s t a l l o g r a p h i c a n a l y s i s . The b e s t method f o r the s u b s t i t u t i o n r e a c t i o n s was found t o be i n d u c t i o n w i t h the d i p h e n y l k e t y l r a d i c a l a n i o n . P y r o l y t i c r e a c t i o n s of t h r e e of the t r i m e t a l l i c r uthenium d e r i v a t i v e s produced h i g h t o moderate y i e l d s of compounds w i t h i n t e r e s t i n g s p e c t r o s c o p i c d a t a . A s t r u c t u r e (XXXI) i s proposed f o r the p r o d u c t o b t a i n e d from t h e p y r o l y s i s of R u 3 ( C O ) l Q ( P P h 2 F c ) 2 . I t c o n t a i n s a f e r r o c e n e m o l e c u l e b r i d g i n g two m e t a l atoms, a f l u x i o n a l benzyne r i n g a s s o c i a t e d w i t h a l l t h r e e m e t a l atoms, and b o t h d o u b l y and t r i p l y b r i d g i n g phosphido and p h o s p h i n i d e n e l i g a n d s , r e s p e c t i v e l y . 11 T a b l e of C o n t e n t s A b s t r a c t i i T a b l e of C o n t e n t s i v L i s t of T a b l e s v i i L i s t of F i g u r e s i x L i s t of Schemes x L i s t of S t r u c t u r e s * x i L i s t of A b b r e v i a t i o n s x i i i Acknowledgements xv Chapter One - F e r r o c e n y l p h o s p h i n e s 1.1 I n t r o d u c t i o n 1 1.2 E x p e r i m e n t a l 1.2.1 G e n e r a l Methods 6 1.2.2 C h e m i c a l s and S u p p l i e s 7 1.2.3 P r e p a r a t i o n of PBuPhFc 7 1.2.4 P r e p a r a t i o n of PPh 2Fc 8 1.2.5 P r e p a r a t i o n of P P h F c 2 9 1.2.6 P r e p a r a t i o n of P F c 3 10 1.2.7 P r e p a r a t i o n of F e ( C 5 H 4 > 2 P P h 11 1.3 D i s c u s s i o n 12 Chapter Two - R e a c t i o n s of F e r r o c e n y l p h o s p h i n e s w i t h M e t a l C a r b o n y l s 2.1 I n t r o d u c t i o n 18 2.1.1 M e t a l C a r b o n y l s of I r o n and Ruthenium 18 i v 2.1.2 Phosphine D e r i v a t i v e s of I r o n C a r b o n y l s 21 2.1.3 Phosphine D e r i v a t i v e s of Ruthenium C a r b o n y l s 25 2.2 E x p e r i m e n t a l 34 2.2.1 G e n e r a l Methods 34 2.2.2 C h e m i c a l s and S u p p l i e s 35 2.2.3 P r e p a r a t i o n of Phosphine D e r i v a t i v e s of I r o n and Ruthenium C a r b o n y l s 35 2.3 D i s c u s s i o n 57 2.3.1 R e a c t i o n s of Phosphines w i t h F e 3 ( C O ) 1 2 57 2.3.2 R e a c t i o n s of Phosphines w i t h R u 3 ( C O ) 1 2 61 2.3.3 G e n e r a l Comments on R e a c t i o n Types . 63 2.3.4 C h a r a c t e r i z a t i o n of Compounds 65 2.3.5 G e n e r a l Trends E n c o u n t e r e d i n S p e c t r o s c o p i c and A n a l y t i c a l S t u d i e s 69 • 2.3.6 Cone Angle D e t e r m i n a t i o n f o r P F c 3 81 Chapter Three - The P y r o l y s i s of F e r r o c e n y l p h o s p h i n e D e r i v a t i v e s of I r o n and Ruthenium C a r b o n y l Compounds 3.1 I n t r o d u c t i o n 84 3.1.1 The E x i s t e n c e of F e r r o c y n e 88 3.2 E x p e r i m e n t a l 92 v 3.2.1 G e n e r a l Methods 92 3.3 D i s c u s s i o n 98 3.3.1 P y r o l y s i s of R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 98 3.3.1.1 D i s c u s s i o n of the 1H NMR Spectrum 101 3.3.2 P y r o l y s i s of R u 3 ( C O ) 1 1 ( P P h 2 F c ) 105 3.3.3 P y r o l y s i s of R u 3 ( C O ) l Q ( P P h F c 2 ) 2 .... 106 Chapter Four - C o n c l u s i o n s 108 B i b l i o g r a p h y 113 v i L i s t of T a b l e s T a b l e I R e a c t i o n s of F e 3 ( C O ) 1 2 w i t h F e r r o c e n y l p h o s p h i n e s : L 37 Ta b l e I I R e a c t i o n s of R u 3 ( C O > 1 2 w i t h F e r r o c e n y l p h o s p h i n e s : L 39 T a b l e I I I D e s c r i p t i o n of the F e 3 ( C O ) l 2 D e r i v a t i v e s 41 Ta b l e IV D e s c r i p t i o n of t h e R u 3 ( C O > 1 2 D e r i v a t i v e s 42 Ta b l e V I s o l a t i o n and Some P r o p e r t i e s of the F e 3 ( C O ) 1 2 D e r i v a t i v e s 43 T a b l e VI I s o l a t i o n and Some P r o p e r t i e s of the R u 3 ( C O ) 1 2 D e r i v a t i v e s 45 Ta b l e V I I 1H NMR Ch e m i c a l S h i f t Data f o r the F e 3 ( C O ) l 2 D e r i v a t i v e s (80 MHz) 47 Ta b l e V I I I 1H NMR Ch e m i c a l S h i f t Data f o r the R u 3 ( C O ) 1 2 D e r i v a t i v e s 49 T a b l e IX IR Data f o r t h e F e 3 ( C O ) 1 2 D e r i v a t i v e s 51 T a b l e X IR Data f o r t h e R u 3 ( C O ) 1 2 D e r i v a t i v e s 52 T a b l e XI Mass S p e c t r o s c o p i c Data f o r the F e 3 ( C O > 1 2 D e r i v a t i v e s 53 Ta b l e X I I Mass S p e c t r o s c o p i c Data f o r the R u 3 ( C O ) 1 2 D e r i v a t i v e s 54 v i i T a b l e X I I I T a b l e XIV Ta b l e XV T a b l e XVI T a b l e XVII T a b l e X V I I I T a b l e XIX T a b l e XX T a b l e XXI T a b l e XXII E l e m e n t a l A n a l y t i c a l Data f o r the F e 3 ( C O ) l 2 and R u 3 ( C O ) 1 2 D e r i v a t i v e s A n a l y s i s of Mass S p e c t r o s c o p i c Data f o r F e ( C O ) 4 L Compounds A n a l y s i s of Mass S p e c t r o s c o p i c Data f o r R u ^ C O l ^ L Compounds I s o t o p e C o m b i n a t i o n s f o r the M o l e c u l e / I o n F e 3 I s o t o p e C o m b i n a t i o n s f o r the M o l e c u l e / I o n F e 3 C l 9 S e l e c t e d A n g l e s and D i s t a n c e s f o r the M o l e c u l e Ru(CO)-(PFc,) Used t o Determine 4 3 the Cone Angle f o r P F c 3  P y r o l y t i c R e a c t i o n s of the F e 3 ( C O ) 1 2 and R u 3 ( C O ) l 2 D e r i v a t i v e s NMR Che m i c a l S h i f t Data f o r Some P r o d u c t s of the P y r o l y t i c R e a c t i o n s IR Data f o r Some P r o d u c t s of t h e P y r o l y t i c R e a c t i o n s Mass S p e c t r o s c o p i c Data f o r the P r o d u c t O b t a i n e d by t h e P y r o l y s i s of R u 3 ( C O ) l Q ( P P h 2 F c ) 2  56 74 77 79 80 83 93 95 97 97 v i i i L i s t of F i g u r e s F i g u r e 1 P h o t o c h e m i c a l R e a c t i o n V e s s e l 64 F i g u r e 2 S i m p l i f i e d View of the S t r u c t u r e of R u ( C O ) 4 ( P F c 3 ) 67 F i g u r e 3 S t r u c t u r e of R u ( C O ) 4 ( P F c 3 ) 67 F i g u r e 4 S t r u c t u r e of R u ( C O ) 4 ( P F c 3 ) Showing Numbering 68 F i g u r e 5 I s o t o p e P a t t e r n f o r F e 3 79 F i g u r e 6 I s o t o p e P a t t e r n f o r F e 3 C i g 80 F i g u r e 7 Cone Angle D e t e r m i n a t i o n 82 F i g u r e 8 1H NMR Spectrum of (XXXI) - F e r r o c e n y l Region 103 F i g u r e 9 1H NMR Spectrum of (XXXI) - P h e n y l Region 104 i x L i s t of Schemes Scheme 1 Fo r m a t i o n of P F c 3 Under F r i e d e l - C r a f t s C o n d i t i o n s 3 Scheme 2 Fo r m a t i o n of F e r r o c e n y l p h o s p h i n e s 13 Scheme 3 Fo r m a t i o n of FcHgCl 15 Scheme 4 F o r m a t i o n of P F c 3 from FcHgCl and P C 1 3 ... 16 Scheme 5 Fo r m a t i o n of PFc^ from F c H g C l , n-BuLi and P C 1 3 16 Scheme 6 F o r m a t i o n of P F c 3 from F c H g C l , N-bromosuccinimide, n-BuLi and P C 1 3 17 Scheme 7 F o r m a t i o n of R u ( C O ) 3 ( P P h 3 ) 2 26 Scheme 8 The R a d i c a l A n i o n R e a c t i o n 31 Scheme 9 M e t a l - Halogen I n t e r c o n v e r s i o n i n the R e a c t i o n of F c C l w i t h B u L i 89 Scheme 10 M e t a t h e s i s i n t h e R e a c t i o n of F c C l w i t h B u L i 90 Scheme 11 R e a c t i o n of a S u b s t i t u t e d H a l o f e r r o c e n e .. 91 Scheme 12 R e a c t i o n of R u 3 ( C O ) 1 2 w i t h P h L i 110 Scheme 13 R e a c t i o n of M(CO) g (M=Cr and W) w i t h (XXXVII) 111 x L i s t of S t r u c t u r e s ( I ) F e r r o c e n e 2 ( I I ) P P h F c 2 4 ( I I I ) PPh 2Fc 4 ( I V ) P t ( B u ) 2 ( d p p f ) 5 ( V ) F e ( C 5 H 4 ) 2 P P h 5 . ( V I ) dppf 9 ( V I I ) PBuPhFc 12 ( V I I I ) F e ( C O ) 5 2 0 ( I X ) R u ( C O) 5 2 0 ( X ) F e 2 ( C O ) g 2 0 ( X I ) M 2 ( C O ) g (M=Ru or Os) 2 0 ( X I I ) F e 3 ( C O ) 1 2 21 ( X I I I ) R u 3 ( C O ) 1 2 21 ( X I V ) Fe 3(CO) 1 1 ( P P h 3 ) • 2 5 ( X V ) R u ( C O ) 3 ( P M e 3 ) 2 2 8 ( X V I ) Ru 3(CO) 1 1 ( P P h 3 ) 3 0 ( X V I I ) R u 3 ( C O ) n L 3 3 ( X V I I I ) R u 3 ( C O ) l 0 L 2 3 3 ( X I X ) R u 3 ( C O ) g L 3 3 3 ( X X ) R u 3 ( C O ) g L 4 3 3 ( X X I ) R U 3 ( C O ) I 0 ( I T L ) 3 3 ( X X I I ) R U 3 ( C O ) 8 ( I T L ) 2 3 3 ( X X I I I ) [ R u 3 ( C O ) 1 1 ] 2 ( U - L T L ) 3 3 x i (XXIV) O s 3 ( C O ) g ( P P h 2 ) ( P h ) ( P P h C g H 4 ) 86 (XXV) O s 3 ( C O ) ? ( P P h 2 ) 2 ( C 6 H 4 ) 86 (XXVI) H O s 3 ( C O ) g ( P P h 3 ) ( P P h C g H 4 ) 86 (XXVII) H O s 3 ( C O ) ? ( P P h 2 ) ( P P h 3 ) ( C g H 4 ) 86 (X X V I I I ) H O s 3 ( C O ) g ( P P h 3 ) ( P P h 2 C 6 H 4 ) 87 (XXIX) H O s 3 ( C O ) 7 ( P P h 2 ) ( P P h 2 C g H 4 C 6 H 3 ) 87 (XXX) R u 3 ( C O ) 7 ( P A r 2 ) 2 ( A r ' ) (Ar=Ph, m-MeC 6H 4, and 2-MeC 6H 4, Ar'=C 6H 4 and C 6H 3Me r e s p e c t i v e l y ) 88 (XXXI) R u 3 ( C O ) ? ( P P h F c ) ( P P h ) ( F c ) ( C g H 4 ) 99 (XXXII) F e 3 ( C O ) 6 ( y - C O ) 2 ( P h C 2 P h ) 2 99 ( X X X I I I ) H R u 3 ( C O ) g ( P P h F c 2 ) ( P C g H 4 F c 2 ) 107 (XXXIV) R u 3 ( C O ) g H ( C 6 H 5 C C 6 H 4 ) 110 (XXXV) R u 3 ( y - H ) ( y - 0 = C M e ) ( C O ) 1 0 , 111 (XXXVI) R u 3 U - H ) ( y - B r ) ( C O ) l 0 111 (XXXVII) F e ( n 5 ~ C 5 H 4 P P h 2 ) ( n 5 - C 5 H 4 L i ) 111 (XXX V I I I ) ( n 5 - C 5 H 4 F e ( C O ) C p ) F e ( n b - C 5 H 4 P P h 2 ) 112 c 1 c 1 (XXXIX) ( n°-C 5H 4C(0)Fe(CO)Cp)Fe(n ~ C 5 H 4 P P h 2 ) 112 x i i L i s t of A b b r e v i a t i o n s br broad Bu normal b u t y l : C H 3(CH 2> 2CH 2 Bz b e n z y l : C g H 5 C H 2 C C e l s i u s cm c e n t i m e t r e Cp c y c l o p e n t a d i e n y l d d o u b l e t dppf 1 , 1 * - b i s ( d i p h e n y l p h o s p h i n o ) f e r r o c e n e dppm diphenylphosphinomethane Et e t h y l : CH 3CH 2 FAB f a s t atom bombardment Fc f e r r o c e n y l : ( n 5 - C 5 H 5 ) F e ( n 5 - C 5 H 4 ) FT F o u r i e r t r a n s f o r m g gram h hour 1H p r o t o n IR i n f r a r e d L l i g a n d m m i l l i m m u l t i p l e t M molar m/e mass over charge ( u n i t s of mass s p e c t r a ) Me m e t h y l : CH 3 min m i n u tes x i i i mL mi 1 1 i l i t r e mol mole n- normal NMR n u c l e a r magnetic resonance pet p e t r o l e u m Ph p h e n y l : c g H 5 R a l k y l o r a r y l s s i n g l e t s s t r o n g sh s h o u l d e r t - t e r t i a r y THF t e t r a h y d r o f u r a n TMED N , N , N ' r N ' , - t e t r a m e t h y l e t h y l e n e d i a m i n e UV u l t r a v i o l e t v s v e r y s t r o n g vw v e r y weak w weak X h a l i d e : F, C I , B r , I x i v Acknowledgements I w i s h t o e x p r e s s my deep g r a t i t u d e t o P r o d e s s o r W. R. C u l l e n f o r a l l h i s h e l p throughout the c o u r s e of t h i s work. I am, i n a d d i t i o n , g r a t e f u l f o r the a s s i s t a n c e of P r o f e s s o r M i c h a e l Bruce of the U n i v e r s i t y of A d e l a i d e , who was v i s i t i n g U. B. C. d u r i n g the i n i t i a t i o n of t h i s p r o j e c t . My a p p r e c i a t i o n i s extended t o the s t a f f of the s p e c t r o s c o p i c and m i c r o a n a l y t i c a l l a b o r a t o r i e s . Acknowledgement i s g i v e n t o P r o f e s s o r J . R. Sams and h i s group f o r the generous use of the IBM PC. A s p e c i a l t h a n k s goes t o Dr. Ian R. B u t l e r who has been a b i g h e l p and p l e a s a n t company i n the l a b o r a t o r y . I would l i k e t o thank the C h e m i s t r y Department, U. B. C. f o r f i n a n c i a l s u p p o r t i n the form of a t e a c h i n g a s s i s t a n t s h i p . x v Chapter One - F e r r o c e n y l p h o s p h i n e s 1.1 I n t r o d u c t i o n The f o l l o w i n g f e r r o c e n y l p h o s p h i n e s were p r e p a r e d i n o r d e r t o i n v e s t i g a t e t h e i r r e a c t i o n s w i t h the i r o n and ruthenium c a r b o n y l s , F e ^ C O ) ^ and R u 3 ( C O > 1 2 : n - b u t y l f e r r o c e n y l p h e n y l -phosphine (PBuPhFc), f e r r o c e n y l d i p h e n y l p h o s p h i n e ( P P h 2 F c ) , d i f e r r o c e n y l p h e n y l p h o s p h i n e (PPhFc 2>, t r i f e r r o c e n y l p h o s p h i n e ( P F c 3 ) f and the f e r r o c e n o p h a n e 1 , 1 ' - f e r r o c e n e d i y l p h e n y l -phosphine (Fe(CgH 4> 2PPh). G e n e r a l p r e p a r a t i o n s of f e r r o c e n y l -p h o s phines and some of t h e i r s y n t h e t i c uses a r e d e s c r i b e d , s i n c e t h e s e p h o sphines have been s t u d i e d l e s s than o t h e r s . 5 5 F e r r o c e n e or d i c y c l o p e n t a d i e n y l i r o n , ( n -CgHg)Fe ( n -CgHg), ( I ) , was d i s c o v e r e d i n 1951. 1 I t p r o v e d t o be the f i r s t example of a sandwich compound. T h i s s t r u c t u r e was 2 f i r s t p roposed m a i n l y on the b a s i s of the i n f r a r e d a b s o r p t i o n spectrum which shows o n l y one C-H s t r e t c h i n g f r e q u e n c y . 3 L a t e r c r y s t a l l o g r a p h i c e v i d e n c e s u p p o r t s the sandwich s t r u c t u r e and i n d i c a t e s an e c l i p s e d a r r a y of t h e two r i n g s . F u r t h e r c r y s t a l l o g r a p h i c e v i d e n c e shows the p r e s e n c e of a m o l e c u l a r ' i n v e r s i o n c e n t r e and hence s u p p o r t s a s t a g g e r e d arrangement of the two c y c l o p e n t a d i e n y l r i n g s . A f t e r much A i n v e s t i g a t i o n , t h e e v i d e n c e l e a d i n g t o the s t a g g e r e d f o r m a t i o n was a t t r i b u t e d t o d i s o r d e r i n the c r y s t a l . The most 5 r e c e n t c r y s t a l l o g r a p h i c s t u d y c o n f i r m s t h a t the two r i n g s a r e e c l i p s e d i n the f e r r o c e n e m o l e c u l e and sandwich th e i r o n atom 1 between them. T e r t i a r y p h o sphines a r e commonly used as l i g a n d s i n o r g a n o t r a n s i t i o n m e t a l compounds. G e n e r a l l y they a r e p r e p a r e d by t h e r e a c t i o n of h a l o p h o s p h i n e s and or g a n o h a l o p h o s p h i n e s (PXg, R P X 2 a n ( ^ R 2 P X ^ w i t h G r i g n a r d (R'MgCl) o r o r g a n o l i t h i u m ( R ' L i ) r e a g e n t s . T h i s a f f o r d s the t e r t i a r y p h o s phines P R*3» RPR* 2 and R 2PR', r e s p e c t i v e l y . When a l l t h r e e s u b s t i t u e n t s on the phosphorus atom a r e d i f f e r e n t , t he phosphine i s c h i r a l and can be used t o s y n t h e s i z e compounds u s e f u l f o r c a t a l y t i c or s t o i c h i o m e t r i c asymmetric r e a c t i o n s . The p l a n a r c h i r a l i t y of 1, 2 - u n s y m m e t r i c a l l y s u b s t i t u t e d f e r r o c e n e m o l e c u l e s can a l s o be u t i l i z e d t o s y n t h e s i z e o p t i c a l l y a c t i v e f e r r o c e n e d e r i v a t i v e s . C h i r a l f e r r o c e n y l p h o s p h i n e s a r e r e a d i l y p r e p a r e d by way of s t e r e o s e l e c t i v e l i t h i a t i o n of (+)- o r (-)- N,N-d i m e t h y l - 1 - f e r r o c e n y l e t h y l a m i n e which i s e a s i l y r e s o l v e d w i t h ( R ) - ( + ) - t a r t a r i c a c i d . 6 ' 7 The f i r s t compound w i t h phosphorus bonded t o a f e r r o c e n e o carbon atom, t r i f e r r o c e n y l p h o s p h i n e (PFc^) was r e p o r t e d i n 1962. At t h i s t i m e , a r o m a t i c hydrocarbons were known t o r e a c t 2 w i t h phosphorus t r i c h l o r i d e i n the presence of aluminum t r i c h l o r i d e t o g i v e a r y lphosphonous d i c h l o r i d e s and d i a r y l -p hosphinous c h l o r i d e s . The f o r m a t i o n of t r i f e r r o c e n y l -p h osphine under F r i e d e l - C r a f t s c o n d i t i o n s (Scheme 1 ) , was t h e r e f o r e u nexpected, s i n c e a t e r t i a r y phosphine had not p r e v i o u s l y been p r e p a r e d i n t h a t way, and e s p e c i a l l y because a t h r e e - f o l d e x c e s s of phosphorus t r i c h l o r i d e was used. T r i s u b s t i t u t i o n o c c u r s even w i t h r e l a t i v e l y s h o r t r e f l u x p e r i o d s which might be e x p e c t e d t o f a v o u r m o n o s u b s t i t u t i o n . A I C , F C P C I 2 f^TT + P C I 3 -j ? l l ^ - * F c 2 P C I F c 3 P Scheme 1 F o r m a t i o n of PFc^ Under F r i e d e l - C r a f t s C o n d i t i o n s The f i r s t t r a n s i t i o n m e t a l complex of t r i f e r r o c e n y l -p h osphine t h a t was p r e p a r e d , i s t r a n s - b i s ( t r i f e r r o c e n y l -p h o s p h i n e ) c h l o r o c a r b o n y l r h o d i u m ( I ) ([Rh(CO)Cl (PFc.j) 2 ]) which i s formed from rhodium d i c a r b o n y l c h l o r i d e dimer ( [ R h ( C O ) 2 C 1 ] 2 ) by r e a c t i o n w i t h t h e phosphine. I n f r a r e d s t u d i e s i n a l a t e r i n v e s t i g a t i o n 1 ^ i n d i c a t e t h a t t r i f e r r o c e n y l p h o s p h i n e i s a b e t t e r a-donor l i g a n d than t r i p h e n y l p h o s p h i n e on comparison of t h e c a r b o n y l s t r e t c h i n g f r e q u e n c i e s of the m o n o s u b s t i t u t e d d e r i v a t i v e s of M(CO)g (M=Cr, Mo, W), Fe(CO)g, and M n 2 ( C O ) i n . The t r i f e r r o c e n y l -p h osphine d e r i v a t i v e s e x h i b i t bands a t lower e n e r g i e s , i n d i c a t i n g g r e a t e r back-bonding from t h e m e t a l i n t o C-0 3 a n t i b o n d i n g o r b i t a l s . S i m i l a r s t u d i e s show t h a t the c o o r d i n a t i n g a b i l i t i e s of the phosphines P P h 2 F c , P P h F c 2 and PFc^, i n c r e a s e w i t h an i n c r e a s e i n the number of f e r r o c e n y l groups p r e s e n t . The unsymmetric t e r t i a r y p h o s phines d i f e r r o c e n y l p h e n y l -phosphine ( P P h F c 2 ) ( I I ) , and f e r r o c e n y l d i p h e n y l p h o s p h i n e 1 2 ( P P h 2 F c ) ( I I I ) , a r e p r e p a r e d by the r e a c t i o n of f e r r o c e n e w i t h phenylphosphonous d i c h l o r i d e ( P h P C l 2 ) and d i p h e n y l -phosphinous c h l o r i d e ( P h 2 P C l ) r e s p e c t i v e l y . The r e a c t i o n i s c a r r i e d out under F r i e d e l - C r a f t s c o n d i t i o n s and y i e l d s of 75% f o r PPhFc,, and 65% f o r PPh,Fc a r e r e p o r t e d . The 1,1'-phosphine s u b s t i t u t e d f e r r o c e n e s a r e r e a d i l y 1 3 p r e p a r e d i n h i g h y i e l d s , s i n c e s o l u t i o n s of n - b u t y l l i t h i u m and N , N , N ' , N ' , - t e t r a m e t h y l e t h y l e n e d i a m i n e (TMED), r e a d i l y d i l i t h i a t e f e r r o c e n e , and d i l i t h i o f e r r o c e n e r e a d i l y r e a c t s w i t h o r g a r i o h a l o p h o s p h i n e s . These b i d e n t a t e f e r r o c e n y l p h o s p h i n e s have been more w i d e l y used as l i g a n d s than s i m p l e t e r t i a r y f e r r o c e n y l -p h o s p h i n e s . An e a r l y example i n v o l v e s s t u d i e s of the t h e r m a l s t a b i l i t y of p l a t i n u m complexes such as d i - n - b u t y l [ 1 , 1 ' -b i s ( d i p h e n y l p h o s p h i n o ) f e r r o c e n e ] p l a t i n u m d l ) 1 4 , ( I V ) . The 4 b i d e n t a t e c h e l a t i n g l i g a n d was used t o show t h a t t h e d i s s o c i a t i o n of a phosphine l i g a n d i s the r a t e d e t e r m i n i n g s t e p i n t h e d e c o m p o s i t i o n of the p l a t i n u m compound. C H 2 C H 2 C H 2 C H 3 C H 2 C H 2 C H 2 C H 3 P h 2 (IV) P t ( B u ) 2 ( d p p f ) The r e a c t i o n of a s o l u t i o n of 1 , 1 ' - d i l i t h i o f e r r o c e n e / T M E D w i t h o r g a n o d i c h l o r o p h o s p h i n e s g i v e s f e r r o c e n o p h a n e s , 1 5 - 1 8 c o n t a i n i n g a b r i d g i n g phosphorus u n i t , an example of which i s 1 , 1 ' - f e r r o c e n e d i y l p h e n y l p h o s p h i n e ( F e ( C g H 4 ) 2 P P h ) 1 5 — 1 9 ( V ) . Two examples of m e t a l c a r b o n y l d e r i v a t i v e s of t h i s l i g a n d a r e r e p o r t e d , F e ( C O ) 4 ( F e ( C g H 4 ) 2 P P h ) and W ( C O ) g ( F e ( C g H 4 ) 2 P P h ) , formed by the d i r e c t r e a c t i o n s of F e 2 ( C O ) g and (THF)W(CO) 5 r e s p e c t i v e l y , w i t h t h e f e r r o c e n o -phane. In b o t h t h e s e compounds the ferrocenophane s t r u c t u r e i s r e t a i n e d . Ferrocenophanes have a l s o been used as 20 i n t e r m e d i a t e s i n t h e f o r m a t i o n of o l i g o m e r s and p o l y m e r s . F e . PPh (V) F e ( C 5 H 4 ) 2 P P h 5 1.2 E x p e r i m e n t a l 1.2.1 G e n e r a l Methods To a v o i d o x i d a t i o n of phosphine compounds, r e a c t i o n s were c a r r i e d out i n a n i t r o g e n atmosphere on a do u b l e m a n i f o l d vacuum a p p a r a t u s u s i n g s t a n d a r d Schlenk p r o c e d u r e s . S e p a r a t i o n of p r o d u c t s was c a r r i e d out by column chromatography u s i n g 2.5 by 40 cm columns c o n t a i n i n g n e u t r a l A l u m i n a , Broekman a c t i v i t y 1, 80-200 mesh. Columns were s t a r t e d i n p e t r o l e u m e t h e r and e l u t i o n was c a r r i e d out by i n c r e a s i n g s o l v e n t p o l a r i t y t h r o u g h g r a d u a l a d d i t i o n of d i e t h y l e t h e r and then methylene c h l o r i d e . P r o t o n NMR s p e c t r a were performed by t h e U.B.C. NMR s e r v i c e on Bru k e r WP-80, V a r i a n XL-100, or Br u k e r HXS-270 s p e c t r o m e t e r s . Samples were p r e p a r e d i n d e u t e r a t e d c h l o r o f o r m . C h e m i c a l s h i f t s were measured r e l a t i v e t o r e s i d u a l s o l v e n t p r o t o n s ( CHC1 3 , 6 = 7.24). Low r e s o l u t i o n mass s p e c t r o s c o p i c a n a l y s e s were c a r r i e d out by t h e U.B.C. s e r v i c e on a KRATOS MS 50 i n s t r u m e n t . The m/e v a l u e s g i v e n r e p r e s e n t t h e most i n t e n s e peak of a group made up from the d i f f e r e n t i s o t o p i c c o m b i n a t i o n s . When the peak of g r e a t e s t i n t e n s i t y c o u l d not be d e t e r m i n e d , the v a l u e i n t he c e n t r e of t h e group of peaks i s quoted. E l e m e n t a l a n a l y s e s were performed by Mr. P e t e r Borda of t h i s department. M e l t i n g p o i n t s were measured u s i n g a K o f l e r m i c r o h e a t i n g 6 s t a g e , and a r e u n c o r r e c t e d . 1.2.2 C h e m i c a l s and S u p p l i e s Reagent grade s o l v e n t s were used f o r r o u t i n e column chromatography as r e c e i v e d . P e t r o l e u m e t h e r r e f e r s t o low b o i l i n g (35-60°C) or h i g h b o i l i n g (60-80°C) f r a c t i o n s i n t e r c h a n g e a b l y , a l t h o u g h low b o i l i n g p e t r o l e u m e t h e r was p r e f e r r e d s i n c e i t i s more e a s i l y removed. S o l v e n t s used f o r r e a c t i o n s and c r y s t a l l i z a t i o n s were d r i e d and d i s t i l l e d i n a n i t r o g e n atmosphere u s i n g s t a n d a r d p r o c e d u r e s ; hexanes and d i e t h y l e t h e r were d i s t i l l e d from c a l c i u m h y d r i d e . S p e c t r o s c o p i c grade s o l v e n t was used f o r t h e d i s s o l u t i o n of samples f o r s p e c t r o s c o p i c a n a l y s i s . T h i n l a y e r chromato-g r a p h i c p l a t e s were MERCK s i l i c a g e l 60 F254 on aluminum. Alumina was s u p p l i e d by F i s h e r and f e r r o c e n e , d i c h l o r o p h e n y l -p h o s p h i n e , c h l o r o d i p h e n y l p h o s p h i n e , and n - b u t y l l i t h i u m i n hexanes were o b t a i n e d from the A l d r i c h C h e m i c a l Company. A l l c h e m i c a l s were used w i t h o u t f u r t h e r p u r i f i c a t i o n . N i t r o g e n was L i n d e U.S.P. Grade (Union C a r b i d e Canada L t d . ) . 1.2.3 P r e p a r a t i o n of PBuPhFc n - B u t y l l i t h i u m (126 mL, 1.6 M, 0.20 mol) was added t o f e r r o c e n e (25 g, 0.13 mol) i n d i e t h y l e t h e r (150 mL). The s o l u t i o n was s t i r r e d (20 h) a t room t e m p e r a t u r e a f t e r which i t was c o o l e d i n a d r y i c e - a c e t o n e b a t h and P h P C ^ (15 g, 0.08 mol) added d r o p w i s e . The s o l u t i o n was a l l o w e d t o warm t o room 7 t e m p e r a t u r e w i t h s t i r r i n g and l e f t f o r two hours a f t e r which water (50 mL) was added. The d i e t h y l e t h e r f r a c t i o n was i s o l a t e d , reduced i n volume on a r o t a r y e v a p o r a t o r , and a p p l i e d t o a c h r o m a t o g r a p h i c column. U n r e a c t e d f e r r o c e n e was e l u t e d w i t h a p e t r o l e u m e t h e r / d i e t h y l e t h e r (20:1) m i x t u r e . PBuPhFc was e l u t e d w i t h a p e t r o l e u m e t h e r / d i e t h y l e t h e r (9:1) m i x t u r e , e v a p o r a t e d t o d r y n e s s under reduced p r e s s u r e , r e c r y s t a l l i z e d from hexanes as a y e l l o w orange s o l i d , and o b t a i n e d i n a p p r o x i m a t e l y 40% y i e l d . 1H NMR ( s ) : 7.50-7.45 (m, 2H), 7.31-7.28 (m, 3H), 4.35-4.32 (m, 2H), 4.30-4.27 (m, 2H), 4.14 ( s , 5H), 1.99-1.91 (m, 2H), 1.50-1.38 (m, 4H), 0.94-0.88 (m, 3H). Mass s p e c , m/e: 350 ( P B u P h F c + ) , 293 ( P P h F c + ) , 216 ( P F c + ) , 186 ( F c + ) , 121 ( C p F e + ) , 77 ( P h + ) . E l e m e n t a l a n a l y s i s : c a l c u l a t e d f o r C 2 n H 2 3 F e P : C 68.58, H 6.63%, found C 68.41, H 6.60%. M. p.: 38-39°C. 1 2 1.2.4 P r e p a r a t i o n of PPh 2Fc n - B u t y l l i t h i u m (32 mL, 1.6 M, 0.05 mol) was added t o f e r r o c e n e (13 g, 0.07 mol) i n d i e t h y l e t h e r (75 mL). The s o l u t i o n was s t i r r e d (60 h) a t room te m p e r a t u r e a f t e r which i t was c o o l e d i n a d r y i c e - a c e t o n e b a t h and P h 2 P C l (9 g, 0.04 mol) added d r o p w i s e . The s o l u t i o n was a l l o w e d t o warm t o room t e m p e r a t u r e w i t h s t i r r i n g and l e f t f o r two hours a f t e r which water (50 mL) was added. The d i e t h y l e t h e r f r a c t i o n was i s o l a t e d , reduced i n volume on a r o t a r y e v a p o r a t o r , and a p p l i e d t o a c h r o m a t o g r a p h i c column. U n r e a c t e d f e r r o c e n e was 8 e l u t e d w i t h a p e t r o l e u m e t h e r / d i e t h y l e t h e r (20:1) m i x t u r e . P Ph 2Fc was e l u t e d w i t h a p e t r o l e u m e t h e r / d i e t h y l e t h e r (1:1) m i x t u r e , e v a p o r a t e d t o d r y n e s s under reduced p r e s s u r e , and the y e l l o w orange s o l i d r e c r y s t a l l i z e d from hexanes. T h i s phosphine was a l s o a byproduct of the r e a c t i o n d e s i g n e d t o 2 1 produce 1 , 1 ' - b i s ( d i p h e n y l p h o s p h i n o ) f e r r o c e n e (dppf) ( V I ) , and a d d i t i o n a l samples were o b t a i n e d from Dr. I.R. B u t l e r from our l a b o r a t o r y . 1H NMR ( 6 ) : 7.35-7.33 (m, 10 H ) , 4.35-4.30 (m, 2H), 4.13-4.10 (m, 2H), 4.08 ( s , 5H). Mass spec, m/e: 370 ( P P h 2 F c + ) , 293 ( P P h F c + ) , 186 ( F c + ) , 78 ( P h + ) . <CCZ57~ PPhz (VI) dppf 1 2 1.2.5 P r e p a r a t i o n of P P h F c 2 n - B u t y l l i t h i u m (63 mL, 1.6 M, 0.10 mol) was added t o f e r r o c e n e (25 g, 0.13 mol) i n d i e t h y l e t h e r (150 mL). The s o l u t i o n was s t i r r e d (60 h) a t room temperature a f t e r which i t was c o o l e d i n a d r y i c e - a c e t o n e b a t h and P h P C l 2 (7 g, 0.04 mol) added d r o p w i s e . The s o l u t i o n was a l l o w e d t o warm t o room temperature w i t h s t i r r / i n g and l e f t f o r two h o u r s a f t e r which water (50 mL) was added. The d i e t h y l e t h e r f r a c t i o n was i s o l a t e d , i t s volume reduced on a r o t a r y e v a p o r a t o r , and a p p l i e d t o a c h r o m a t o g r a p h i c column. U n r e a c t e d f e r r o c e n e was e l u t e d w i t h a p e t r o l e u m e t h e r / d i e t h y l e t h e r (20:1) m i x t u r e . 9 PBuPhFc, o b t a i n e d as a b y p r o d u c t , was e l u t e d w i t h a p e t r o l e u m e t h e r / d i e t h y l e t h e r (9:1) m i x t u r e . P P h F c 2 was e l u t e d w i t h a d i e t h y l e t h e r / c h l o r o f o r m (9:1) m i x t u r e , e v a p o r a t e d t o d r y n e s s under reduced p r e s s u r e , and r e c r y s t a l l i z e d from a h e x a n e s / d i e t h y l e t h e r (9:1) m i x t u r e as an orange y e l l o w s o l i d . Y i e l d s v a r i e d from 25 - 60%. 1H NMR ( 6 ) : 7.65-7.27 (m, 5H), 4.30-4.25 (m, 4H), 4.23-4.13 (m, 2H), 4.10 ( s , 10 H), 4.03-3.90 (m, 2H). Mass sp e c , m/e: 470 ( P P h F c 2 + ) , 401 ( P F c 2 + ) , 335 ( P C p F e F c + ) , 304 ( C p F e F c + ) , 216 ( P F c + ) , 186 ( F c + ) , 121 ( F e C p + ) , 78 ( P h + ) . E l e m e n t a l a n a l y s i s : c a l c u l a t e d f o r C 2 6 H 2 3 F e 2 P : C 65.31, H 4.86%, found C 65.12, H 4.87%. 1.2.6 P r e p a r a t i o n of P F c 3 L i t e r a t u r e methods were used t o p r e p a r e t h i s compound ' w i t h some m o d i f i c a t i o n s . N , N - d i e t h y l -phosphoramidous d i c h l o r i d e (8.7 g, 0.05 mol) i n hexanes (100 mL) was added drop w i s e d u r i n g 15 minutes t o f e r r o c e n e (27.9 g, 0.15 mol) and A1C1 3 (6.7 g, 0.05 mol) i n c h l o r o f o r m (250 mL). The s o l u t i o n was r e f l u x e d w i t h s t i r r i n g (20 h) under n i t r o g e n , the volume reduced t o 250 mL on a r o t a r y e v a p o r a t o r , and h y d r o l y s e d w i t h water (300 mL). The o r g a n i c l a y e r was i s o l a t e d , e v a p o r a t e d t o d r y n e s s under reduced p r e s s u r e , and washed w i t h hexanes (200 mL). The s o l i d was then e x t r a c t e d w i t h benzene (150 mL) u s i n g a S o x h l e t e x t r a c t o r . The benzene s o l u t i o n was reduced i n volume on a r o t a r y e v a p o r a t o r and a p p l i e d d i r e c t l y t o a c h r o m a t o g r a p h i c column and the PFc-10 e l u t e d w i t h benzene. E v a p o r a t i o n t o d r y n e s s under reduced p r e s s u r e , and r e c r y s t a l l i z a t i o n from a c h l o r o f o r m / e t h a n o l (1:1) m i x t u r e gave a 40% y i e l d of a p a l e y e l l o w s o l i d . The 23 1 i d e n t i t y was c o n f i r m e d by IR s p e c t r o s c o p y , H NMR (&): 4.33 ( s , 2H), 4.20 ( s , 2H), 4.09 ( s , 5H). Mass spec, m/e: 586 ( P F c 3 + ) , 456 ( P C p 2 F e 2 F c + ) , 401 ( P F c 2 + ) , 337 ( P C p F e F c + ) , 216 ( P F c + ) , 185 ( F c + ) , 121 ( C p F e + ) . 1.2.7 P r e p a r a t i o n of F e ( C 5 H 4 ) 2 P P h 1 5 - 1 8 n - B u t y l l i t h i u m (65 mL, 1.6 M, 0.10 mol) and TMED (6 g, 0.05 mol) were added t o f e r r o c e n e (9.3 g, 0.05 mol) i n d i e t h y l e t h e r (50 mL). The s o l u t i o n changed from orange y e l l o w i n c o l o u r t o r e d and then t o orange as i t was s t i r r e d o v e r n i g h t . The s o l u t i o n was c o o l e d i n a d r y i c e - a c e t o n e b a t h and P h P C l 2 (8 g, 0.04 mol) added d r o p w i s e . The s o l u t i o n was a l l o w e d t o warm t o room tem p e r a t u r e w i t h s t i r r i n g , and water (25 mL) was added. The o r g a n i c l a y e r was i s o l a t e d , reduced i n volume on a r o t a r y e v a p o r a t o r and a p p l i e d t o a c h r o m a t o g r a p h i c column. The p r o d u c t was e l u t e d w i t h a p e t r o l e u m e t h e r / d i e t h y l e t h e r (5:1) m i x t u r e , e v a p o r a t e d t o d r y n e s s under reduced p r e s s u r e , and r e c r y s t a l l i z e d from hexanes t o g i v e y i e l d s of a p p r o x i m a t e l y 30%. The i d e n t i t y of the p r o d u c t was c o n f i r m e d 15 18 by NMR s p e c t r o s c o p y and mass s p e c t r o s c o p i c a n a l y s i s . 11 1.3 D i s c u s s i o n The c h a l l e n g e i n making th e s e phosphines i s t o a c h i e v e the p r o p e r b a l a n c e between the q u a n t i t i e s of r e a g e n t s and the r e a c t i o n t i m e s . When l i t h i a t i o n by n - b u t y l l i t h i u m i s employed, i t i s n e c e s s a r y t o use an e x c e s s of f e r r o c e n e when m o n o l i t h i a t i o n i s r e q u i r e d , o t h e r w i s e , c o n s i d e r a b l e d i l i t h i a t i o n o c c u r s . However, the e x c e s s f e r r o c e n e i s then d i f f i c u l t t o remove. I f l i t h i a t i o n i s a l l o w e d t o pr o c e e d f o r a s h o r t e r p e r i o d of t i m e , m o n o l i t h i a t i o n i s found t o be p r e f e r r e d over d i l i t h i a t i o n . T h i s , however, r e s u l t s i n the presence of an exce s s of n - b u t y l l i t h i u m , which r e a c t s w i t h the org a n o h a l o p h o s p h i n e t o g i v e n - b u t y l s u b s t i t u t e d p h o s p h i n e s . The p r e v i o u s l y u n r e p o r t e d p h o s p h i n e , n - b u t y l f e r r o c e n y l p h e n y l -phosphine (PBuPhFc) ( V I I ) , was f i r s t i s o l a t e d and c h a r a c t e r i z e d i n the p r e s e n t i n v e s t i g a t i o n as a bypr o d u c t from the s y n t h e s i s of PPhFc 2« T h i s phosphine has t h r e e d i f f e r e n t s u b s t i t u e n t s bonded t o the phosphorus atom, so the p o s s i b i l i t y e x i s t s f o r t h e s e p a r a t i o n of o p t i c a l i s o m e r s f o r use i n the s y n t h e s i s of c a t a l y t i c a l l y a c t i v e compounds f o r asymmetric r e a c t i o n s . — P B u P h ( V I I ) PBuPhFc The f o r m a t i o n of phosphine b y p r o d u c t s i s another 12 d i f f i c u l t y , so u s u a l l y , a s m a l l e r a m o u n t o f o r g a n o h a l o -p h o s p h i n e t h a n r e q u i r e d b y t h e s t o i c h i o m e t r y o f t h e r e a c t i o n (Scheme 2 ) was u s e d t o c i r c u m v e n t t h e b y p r o d u c t s . The s m e l l i s u n p l e a s a n t , a n d t h e p r e s e n c e o f t h e b y p r o d u c t s makes s e p a r a t i o n by c o l u m n c h r o m a t o g r a p h y m o r e d i f f i c u l t s i n c e t h e y c a u s e f e r r o c e n e a n d t h e p h o s p h i n e p r o d u c t s t o e l u t e m o r e q u i c k l y a n d c o n s e q u e n t l y s e p a r a t i o n i s o f t e n i n c o m p l e t e . R e p e a t e d c h r o m a t o g r a p h y i s o f t e n n e c e s s a r y when l a r g e a m o u n t s o f p h o s p h i n e b y p r o d u c t s a r e p r e s e n t , o n e c o l u m n t o r e m o v e m o s t o f t h e b y p r o d u c t s , a n d a n o t h e r c o l u m n t o s e p a r a t e f e r r o c e n e 7 a n d t h e p h o s p h i n e p r o d u c t s . Kumada a n d c o w o r k e r s u s e d a s o d i u m h y d r o x i d e s o l u t i o n t o r e m o v e p h o s p h i n e b y p r o d u c t s , b u t t h i s m e t h o d i s n o t u s e f u l f o r t h i s s t u d y . The a d d i t i o n o f a s m a l l a m o u n t o f p e t r o l e u m e t h e r t o t h e c r u d e r e a c t i o n m i x t u r e , a f t e r r e m o v a l o f s o l v e n t by r o t a r y e v a p o r a t i o n , was f o u n d t o be u s e f u l t o r e m o v e e n o u g h o f t h e p h o s p h i n e b y p r o d u c t s t o make c o l u m n c h r o m a t o g r a p h y c o n v e n i e n t . I t a l s o s e r v e s t o r e m o v e some o f t h e e x c e s s f e r r o c e n e . n F c L i + P R 3 - n C l n * P R 3 - n F c n + n L i C I Scheme 2 F o r m a t i o n o f F e r r o c e n y l p h o s p h i n e s P h o s p h i n e o x i d e f o r m a t i o n was i n i t i a l l y a m a j o r c a u s e o f a d e c r e a s e i n y i e l d o f p h o s p h i n e p r o d u c t s , s o a i r was e x c l u d e d d u r i n g t h e i r s y n t h e s i s . The p r e s e n c e o f p h o s p h i n e o x i d e s i s r e v e a l e d b y i n f r a r e d s p e c t r o s c o p y ; t h e P - 0 s t r e t c h i n g 13 frequency i s i n the range 1200-1170 cm . The presence of f e r r o c e n y l p h o s p h i n e o x i d e s i s a l s o r e v e a l e d by t h i n l a y e r chromatography as y e l l o w or orange y e l l o w bands t h a t run beh i n d the o r i g i n a l p h o s p h i n e . The f o r m a t i o n of phosphine o x i d e s i s e s p e c i a l l y a problem d u r i n g the s y n t h e s i s of t r i f e r r o c e n y l p h o s p h i n e . T r i f e r r o c e n y l p h o s p h i n e i s d i f f i c u l t t o o b t a i n i n r e a s o n a b l e y i e l d s by the l i t e r a t u r e methods. In the f i r s t Q r e p o r t e d p r e p a r a t i o n of PFc^r i t was i s o l a t e d as the o x i d e i n a y i e l d of 11%, u s i n g P C 1 3 , and a r e f l u x time of f i v e hours 22 (Scheme 1 ) . The phosphine was a c t u a l l y c h a r a c t e r i z e d l a t e r , when i t was o b t a i n e d i n 47% y i e l d , u s i n g N , N - d i e t h y l -phosphoramidous d i c h l o r i d e i n t h e p r e p a r a t i o n i n s t e a d of P C 1 3 , and w i t h i n c r e a s e d r e f l u x t i m e s of 20 h o u r s . The reason f o r the improved y i e l d when ( C 2 H 5 ) 2 N P C 1 2 i s used i n s t e a d of P C 1 3 seems t o be t h a t t h e i n t e r m e d i a t e s p e c i e s formed by the c o o r d i n a t i o n of aluminum c h l o r i d e t o a n i t r o g e n atom a r e more a c t i v e than t h o s e formed by c o o r d i n a t i o n t o a phosphorus 2 3 atom. I t was found t h a t the r e a c t i v i t i e s of aluminum c h l o r i d e c a t a l y z e d r e a c t i o n s w i t h f e r r o c e n e a r e i n the o r d e r P C I 3 « R 2 N P C 1 2 > (R 2N) 2PC1> (R 2N) 3 P . 2 3 In t h e p r e s e n t i n v e s t i g a t i o n , a t t e m p t s t o reproduce t h e p r e p a r a t i o n of p p c 3 gave much lower y i e l d s than t h o s e 23 r e p o r t e d . However, i t was found t h a t when c h l o r o f o r m i s used as s o l v e n t i n s t e a d of a h y d r o c a r b o n , the y i e l d s improve. Use of a S o x h l e t e x t r a c t o r f o r the e x t r a c t i o n w i t h benzene, as 14 24 suggested i n a more r e c e n t p r e p a r a t i o n , f a c i l i t a t e s i s o l a t i o n , however, the proc e d u r e i s s t i l l u n s a t i s f a c t o r y as i t i s v e r y time consuming and messy. S i n c e the F r i e d e l - C r a f t s method i s l e s s than s a t i s f a c t o r y , an a l t e r n a t e r o u t e u s i n g l i t h i o f e r r o c e n e s i s under i n v e s t i g a t i o n . The d i r e c t l i t h i a t i o n of f e r r o c e n e produces mono- and d i s u b s t i t u t e d f e r r o c e n e s , and such a s o l u t i o n of l i t h i a t e d f e r r o c e n e s i s e x p e c t e d t o r e a c t w i t h P C 1 3 t o g i v e a low y i e l d of t h e d e s i r e d t r i f e r r o c e n y l p h o s p h i n e a l o n g w i t h p o l y m e r i c compounds. For t h i s r e a s o n , a p o s s i b l e p r e p a r a t i o n of PFc^ f i r s t i n v o l v e s t h e s y n t h e s i s of a 26 m o n o s u b s t i t u t e d f e r r o c e n e such as c h l o r o m e r c u r i f e r r o c e n e , w hich i s formed i n the r e a c t i o n between m e r c u r i c a c e t a t e , f e r r o c e n e and l i t h i u m c h l o r i d e (Scheme 3 ) , and can be o b t a i n e d w i t h o u t d i s u b s t i t u t e d i m p u r i t i e s . T h i s m o n o s u b s t i t u t e d f e r r o c e n e compound c o u l d be used t o p r e p a r e p F c 3 by a p p r o p r i a t e s e l e c t i o n of the r o u t e s o u t l i n e d i n Schemes 4-6. S g l 5 > D H 9 ( C 2 H 3 0 2 ) 2 £ ^ 2) LfCI * Scheme 3 F o r m a t i o n of FcHgCl To c i r c u m v e n t p o s s i b l e problems w i t h t h e F r i e d e l - C r a f t s 15 method f o r the s y n t h e s i s of PPh 2Fc and PPhFc 2» l i t h i a t i o n p r o c e d u r e s were d e v e l o p e d . In t h e s e c a s e s s m a l l amounts of d i l i t h i a t e d f e r r o c e n e do not pose as much of a problem and r e a c t i o n s p r o ceed i n moderate y i e l d s w i t h easy work-up. 27 A r e c e n t p u b l i c a t i o n d e s c r i b e s an improved v e r s i o n of the F r i e d e l - C r a f t s p r o c e d u r e , which has been s u c c e s s f u l l y r e p e a t e d i n the s e l a b o r a t o r i e s f o r t h e s y n t h e s i s of PPh-Fc. Scheme 4 F o r m a t i o n of P F c , from FcHgCl and PCI ^ " H 9 C I n - B u L i Fe Fe Fe Fe Scheme 5 F o r m a t i o n of P F c 3 from F c H g C l , n-BuLi and PCI 16 H9 C I N-bromosuccinimide Fe .Fe •Br <CgZ$?—Br n " B u L i Fe. Fe. L i L i PCI-P F c 2 Scheme 6 F o r m a t i o n of PFc^ from F c H g C l , N-bromosuccinimide, n-BuLi and PC1-, 17 Chapter Two - R e a c t i o n s of F e r r o c e n y l p h o s p h i n e s w i t h M e t a l C a r b o n y l s 2.1 I n t r o d u c t i o n The r e a c t i o n s of the f e r r o c e n y l p h o s p h i n e s d e s c r i b e d i n Chapter One, w i t h the m e t a l c a r b o n y l s Fe^(CO) ^ a n < ^ R U g t C O ) ^ were i n v e s t i g a t e d . Phosphine s u b s t i t u t e d mono- and t r i n u c l e a r p r o d u c t s were i s o l a t e d and c h a r a c t e r i z e d . As an i n t r o d u c t i o n t o t h i s c h a p t e r , t h e r e i s a d e s c r i p t i o n of the c h e m i s t r y of the m e t a l c a r b o n y l s , f o l l o w e d by a more e x t e n s i v e r e v i e w of t h e i r r e a c t i o n s w i t h t e r t i a r y p h o s p h i n e s . 2.1.1 M e t a l C a r b o n y l s of I r o n and Ruthenium M e t a l c a r b o n y l c h e m i s t r y began i n 1890 when Mond and 28 coworkers d i s c o v e r e d t e t r a c a r b o n y l n i c k e l ( N i ( C O ) 4 > . T h i s v o l a t i l e compound was i s o l a t e d from the r e a c t i o n of carbon monoxide, a t a p r e s s u r e of one atmosphere, w i t h n i c k e l m e t a l a t 30°C. E x t e n s i v e i n v e s t i g a t i o n found t h a t the o n l y o t h e r m e t a l t h a t can be c o n v e r t e d t o a c a r b o n y l by t h i s low p r e s s u r e 29 30 r o u t e i s i r o n , ' which y i e l d s p e n t a c a r b o n y l i r o n (Fe(CO)g). 30 Mond and Quinke r e p o r t e d the f o r m a t i o n of n o n a c a r b o n y l d i i r o n ( F e 2 ( C O ) g ) , by the a c t i o n of l i g h t on p e n t a c a r b o n y l i r o n . M e t a l c a r b o n y l c l u s t e r c h e m i s t r y , where c l u s t e r r e f e r s t o a compound w i t h a d i s c r e t e u n i t c o n t a i n i n g t h r e e o r more m e t a l atoms i n which m e t a l - m e t a l bonding i s p r e s e n t , was i n i t i a t e d 31 w i t h the d i s c o v e r y of d o d e c a c a r b o n y l t r i i r o n ( F e ^ C O ) ^ ) * o b t a i n e d by h e a t i n g nonaqueous s o l u t i o n s of n o n a c a r b o n y l -18 . . 32 d u r o n . D o d e c a c a r b o n y l t r 1 i r o n i s b e s t p r e p a r e d by the o x i d a t i o n , w i t h manganese d i o x i d e , of a l k a l i n e s o l u t i o n s c o n t a i n i n g c a r b o n y l f e r r a t e s . The f i r s t r u t h e n i u m c a r b o n y l was o b t a i n e d , a g a i n by Mond 33 and coworkers i n 1910, as an orange c r y s t a l l i n e s o l i d by the a c t i o n of 400 atmospheres of carbon monoxide on m e t a l l i c r u thenium a t 300°C. The p r o d u c t was e s t a b l i s h e d as a ruthenium c a r b o n y l , but i t was not c o r r e c t l y c h a r a c t e r i z e d u n t i l i t was f o r m u l a t e d as R u 3 ( C O > 1 2 by Corey and D a h l i n 1961 on the b a s i s of X-ray c r y s t a l l o g r a p h y . The b e s t c u r r e n t p r e p a r a t i o n 35 of t h i s compound was r e p o r t e d by Bruce and coworkers and i n v o l v e s the c a r b o n y l a t i o n of a 1% methanol s o l u t i o n of h y d r a t e d ruthenium t r i c h l o r i d e ( R u C l 3 * x H 2 0 ) a t 50-60 atmospheres of c a r b o n monoxide and 125°C. Almost q u a n t i t a t i v e c o n v e r s i o n r e s u l t s when the mother l i q u o r s a r e r e c y c l e d w i t h f r e s h r uthenium t r i c h l o r i d e . P e n t a c a r b o n y l r u t h e n i u m i s o b t a i n e d i n poor y i e l d from r u t h e n i u m powder and carbon 36 monoxide under p r e s s u r e and e l e v a t e d t e m p e r a t u r e . 37 N o n a c a r b o n y l d i r u t h e n i u m was not r e p o r t e d u n t i l 1977 and was o n l y p a r t i a l l y c h a r a c t e r i z e d by low temperature i n f r a r e d s t u d i e s . P e n t a c a r b o n y l i r o n ( V I I I ) and p e n t a c a r b o n y l r u t h e n i u m (IX) a r e t r i g o n a l b i p y r a m i d a l i n s t r u c t u r e as d e t e r m i n e d by X-ray 3 8 c r y s t a l l o g r a p h y f o r i r o n , and as i n d i c a t e d by s p e c t r o s c o p i c 39 s t u d i e s f o r r u t h e n i u m . Three c a r b o n y l l i g a n d s a r e e q u a t o r i a l l y bound and two a r e a x i a l l y bound t o the c e n t r a l 19 m e t a l atom. The X-ray c r y s t a l s t r u c t u r e 4 0 of n o n a c a r b o n y l d i i r o n (X) shows the p r e s e n c e of . t h r e e c a r b o n y l l i g a n d s which b r i d g e the two i r o n atoms, and s i x t e r m i n a l l y bound c a r b o n y l l i g a n d s , t h r e e on each i r o n atom. The s t r u c t u r e of n o n a c a r b o n y l d i -37 ruthenium ( X I ) has not been d e t e r m i n e d , but i t i s thought t o 37 be s i m i l a r t o t h a t of nonacarbonyldiosmium ( X I ) . 0 C O C — F e : C 0 .CO '0 ( V I I I ) Fe(CO), 0 c O C — R u : .CO '0 c 0 (IX) Ru(CO), 0 oc- \ 0 F e 0 "~ F e — F e C 0 (X) F e 2 ( C O ) g ,0 0 ° C oc 0 c M c 0 *c 0 0 c M c 0 (XI) M 2 ( C 0 ) g (M=Ru or Os) CO c o D o d e c a c a r b o n y l t r i i r o n ( X I I ) has a s l i g h t l y d i s t o r t e d i s o c e l e s t r i a n g l e of m e t a l atoms w h i l e d o d e c a c a r b o n y l t r i -r uthenium ( X I I I ) has a s l i g h t l y d i s t o r t e d e q u i l a t e r a l t r i a n g l e 20 of m e t a l atoms. The i r o n d e r i v a t i v e has one i r o n atom c o o r d i n a t e d t o two a x i a l and two e q u a t o r i a l t e r m i n a l c a r b o n y l l i g a n d s , and the o t h e r two m e t a l atoms each bond t o t h r e e t e r m i n a l and two b r i d g i n g c a r b o n y l l i g a n d s , ( y - C O ) . 4 1 The two c a r b o n y l groups b r i d g e the same edge of the t r i a n g l e which i s s h o r t e r than the o t h e r two edges. In t h e ruthenium d e r i v a t i v e , a l l the c a r b o n y l l i g a n d s a r e t e r m i n a l l y bound, f o u r bonded t o each m e t a l atom, two i n a x i a l and two i n e q u a t o r i a l p o s i t i o n s . 4 2 n ( X I I ) F e 3 ( C O ) l 2 ( X I I I ) R U 3 ( C 0 ) 1 2 2.1.2 Phosphine D e r i v a t i v e s of I r o n C a r b o n y l s 43 In 1948 Reppe and Schwekendick r e p o r t e d the s y n t h e s i s of phosphine d e r i v a t i v e s of an i r o n c a r b o n y l . D i r e c t r e a c t i o n of F e ( C O ) 5 w i t h t r i p h e n y l p h o s p h i n e ( P P h 3 ) r e s u l t s i n the s u b s t i t u t i o n of c a r b o n y l l i g a n d s by the phosphine t o y i e l d ( t r i p h e n y l p h o s p h i n e ) t e t r a c a r b o n y l i r o n [ F e ( C O ) 4 ( P P h 3 ) ] and b i s ( t r i p h e n y l p h o s p h i n e ) t r i c a r b o n y l i r o n [ F e ( C O ) , ( P P h . ) 5 ] . 21 C o t t o n and P a r i s h r e i n v e s t i g a t e d t h e s e p r o d u c t s and c o n c l u d e d on the b a s i s of i n f r a r e d s p e c t r o s c o p y t h a t t h e s e mono and b i s d e r i v a t i v e s a r e a x i a l l y s u b s t i t u t e d t r i g o n a l 45 b i p y r a m i d a l compounds. The t h e r m a l r e a c t i o n of nonacar-b o n y l d i i r o n w i t h b e n z y l d i m e t h y l p h o s p h i n e (PMe2Bz) a l s o a f f o r d s b oth the mono- and the d i s u b s t i t u t e d mononuclear s p e c i e s , F e ( C O ) 4 ( P M e 2 B z ) and F e ( C O ) 3 ( P M e 2 B z ) 2 . L a t e r s t u d i e s 4 6 4 8 found t h a t F e ( C O ) 4 L and F e ( C O ) 3 L 2 compounds can a l s o be formed by the r e a c t i o n of d o d e c a c a r b o n y l t r i i r o n and the phosphine ( L ) . T h i s p r e p a r a t i o n i s more c o n v e n i e n t s i n c e the d o d e c a c a r b o n y l d e r i v a t i v e i s a c r y s t a l l i n e s o l i d w h i l e p e n t a c a r b o n y l i r o n i s a v o l a t i l e , l i g h t s e n s i t i v e , t o x i c l i q u i d . The X-ray c r y s t a l s t r u c t u r e s of ( t r i - t - b u t y l p h o s p h i n e ) -49 t e t r a c a r b o n y l i r o n and ( t r i p h e n y l p h o s p h i n e ) t e t r a c a r b o n y l -50 i r o n , show t h a t the t r i g o n a l b i p y r a m i d a l compounds a r e a x i a l l y s u b s t i t u t e d . 51 In 1960, Manuel and Stone r e p o r t e d t h e f o r m a t i o n of the f i r s t t r i s u b s t i t u t e d i r o n c a r b o n y l , t r i s ( t r i p h e n y l p h o s -p h i n e ) d i c a r b o n y l i r o n . T h i s t r i s ( p h o s p h i n e ) was o b t a i n e d from the r e a c t i o n of t r i p h e n y l p h o s p h i n e w i t h ( b u t a d i e n e ) t r i c a r -b o n y l i r o n o r w i t h ( c y c l o o c t a t r i e n e ) t r i c a r b o n y l i r o n . I t was thought t o have been o b t a i n e d as a m i x t u r e of isomers s i n c e the r e l a t i v e i n t e n s i t i e s of t h e two a b s o r p t i o n bands seen i n the c a r b o n y l r e g i o n of t h e i n f r a r e d spectrum were found t o change somewhat from experiment t o e x p e r i m e n t . The i d e n t i t y 22of the t r i s ( p h o s p h i n e ) complex was l a t e r d i s p u t e d . The s y n t h e s i s of t r i s ( t r i e t h y l p h o s p h i n e ) d i c a r b o n y l i r o n ( F e ( C O ) 2 ~ [ P ( C 2 H 5 ) 3 3 3 ) by the p r o l o n g e d h e a t i n g of t r i e t h y l p h o s p h i n e w i t h ( b u t a d i e n e ) d i c a r b o n y l i r o n , i n a s e a l e d tube a t 150°C, was c l a i m e d as the f i r s t a u t h e n t i c t r i s u b s t i t u t e d i r o n c a r b o n y l . S o l l o t t and coworkers r e p o r t e d t h a t the t h e r m a l r e a c t i o n of p e n t a c a r b o n y l i r o n w i t h one of the l i g a n d s of i n t e r e s t i n the p r e s e n t s t u d y , p F c 3 , y i e l d e d f i r s t t he m o n o s u b s t i t u t e d 53 p r o d u c t and then the t r i s u b s t i t u t e d p r o d u c t on p r o l o n g e d r e a c t i o n . No e v i d e n c e f o r the presence of an i n t e r m e d i a t e d i s u b s t i t u t e d c a r b o n y l was o b t a i n e d . The t r a n s f o r m a t i o n from the m o n o s u b s t i t u t e d p r o d u c t d i r e c t l y t o the t r i s u b s t i t u t e d p r o d u c t i s thought t o oc c u r by a d i s p r o p o r t i o n a t i o n p r o c e s s . 53 The d i s u b s t i t u t e d c a r b o n y l can be formed from the r e a c t i o n of t h e m o n o s u b s t i t u t e d complex w i t h t r i f e r r o c e n y l p h o s p h i n e . A nother isomer of the t r i s ( p h o s p h i n e ) d i c a r b o n y l i r o n , which i s s t r u c t u r a l l y u n s p e c i f i e d , i s o b t a i n e d from the r e a c t i o n of t h e 53 l i g a n d w i t h ( b u t a d i e n e ) t r i c a r b o n y l i r o n . The m o n o s u b s t i t u t e d p r o d u c t was e a r l i e r s u g g e s t e d 1 0 t o have been a x i a l l y s u b s t i t u t e d because of the s i m i l a r i t y of the i n f r a r e d spectrum t o t he s p e c t r a of the t r i p h e n y l p h o s p h i n e d e r i v a t i v e s , which a r e known t o be a x i a l l y s u b s t i t u t e d . I f s u f f i c i e n t l y m i l d c o n d i t i o n s a r e employed f o r a s h o r t p e r i o d of t i m e , t r i m e t a l l i c d e r i v a t i v e s such as ( t r i p h e n y l -p h o s p h i n e ) u n d e c a c a r b o n y l t r i i r o n [ F e 3 ( C O ) 1 1 ( P P h 3 ) ] (XIV) a r e o b t a i n e d 4 8 , 5 4 from the r e a c t i o n of Fe,(CO),, w i t h a t e r t i a r y 23 phosphine. The X-ray c r y s t a l s t r u c t u r e of t h i s example was 55 56 d e t e r m i n e d ' and i t c o n s i s t s of an i s o s c e l e s t r i a n g l e of i r o n atoms b r i d g e d on one s i d e by two c a r b o n y l groups. Phosphine s u b s t i t u t i o n has o c c u r r e d e q u a t o r i a l l y , and two i s o m e r i c forms e x i s t . One isomer i s s u b s t i t u t e d a t the i r o n not bonded t o any b r i d g i n g c a r b o n y l l i g a n d s , and the o t h e r , s u b s t i t u t e d a t an i r o n bonded t o b r i d g i n g c a r b o n y l l i g a n d s . As d i s c u s s e d below, the d i p h e n y l k e t y l r a d i c a l a n i o n was l a t e r 57 used i n the s y n t h e s i s of t h i s compound w i t h a much improved y i e l d . I t i s a l s o p o s s i b l e t o form t r i s u b s t i t u t e d t r i m e t a l l i c C D d e r i v a t i v e s , as i s shown w i t h the s y n t h e s i s of d i - y -c a r b o n y l h e p t a c a r b o n y l t r i s ( d i m e t h y l p h e n y l p h o s p h i n e ) t r i i ron ( F e 3 ( C O ) g ( P M e 2 P h ) 3 ) , the s t r u c t u r e of w h i c h 5 8 ' 5 9 shows e q u a t o r i a l phosphine s u b s t i t u t i o n a t each m e t a l atom. 48 In 1978, a s t u d y by Grant and Manning of the r e a c t i o n of d o d e c a c a r b o n y l t r i i r o n w i t h each of s i x d i f f e r e n t phosphines was u n d e r t a k e n . I t was found t h a t c l u s t e r breakdown d u r i n g the f o r m a t i o n of t r i n u c l e a r s p e c i e s t o g i v e t h e w e l l known mono- and t r a n s - d i s u b s t i t u t e d mononuclear s p e c i e s , i s promoted by h i g h e r r e a c t i o n t e m p e r a t u r e s , by more r a p i d a d d i t i o n of p h o s p h i n e s , and by the p r e s e n c e of phosphine o x i d e s . I t was r e p o r t e d t h a t a t t e m p t s t o make t r i s ( p h o s p h i n e ) t r i n u c l e a r s p e c i e s were f r u i t l e s s , w i t h c l u s t e r breakdown always r e s u l t i n g . The p r e v i o u s l y known t r i s ( p h o s p h i n e ) t r i n u c l e a r C D compound, F e 3 ( C O ) g ( P M e 2 P h ) 3 , was o r i g i n a l l y s y n t h e s i z e d 24 u t i l i z i n g a one hour r e f l u x of F e ^ C C O ) ^ and the phosphine i n t e t r a h y d r o f u r a n s o l u t i o n , w h i l e the 1978 study used l o n g e r r e f l u x t i m e s of t h r e e t o s i x hours i n benzene, c o n d i t i o n s which must have been t o o f o r c i n g f o r the i s o l a t i o n of the t r i s u b s t i t u t e d t r i n u c l e a r s p e c i e s . 2.1.3 Phosphine D e r i v a t i v e s of Ruthenium C a r b o n y l s The f i r s t example of a phosphine d e r i v a t i v e of a ruthenium c a r b o n y l , r e p o r t e d i n 1965,^° i s t r a n s - b i s ( t r i -p h e n y l p h o s p h i n e ) t r i c a r b o n y l r u t h e n i u m ( R u ( C O ) 3 ( P P h 3 ) 2 ) . I t ; i s o b t a i n e d when b i s ( t r i p h e n y l p h o s p h i n e J d i c a r b o n y l d i c h l o r o -r u t h e n i u m ( I I ) ( R u C l 2 ( C O ) 2 ( P P h 3 ) 2 ) , ( o b t a i n e d by the c a r b o n y l a t i o n of h y d r a t e d r u t h e n i u m t r i c h l o r i d e f o l l o w e d by r e a c t i o n of t h e p r o d u c t w i t h t r i p h e n y l p h o s p h i n e ) i s reduced by z i n c i n t h e pr e s e n c e of car b o n monoxide (Scheme 7 ) . 25 r-p r . t r n y l 2PPh 3 ,65°C ° C ^ . I / P R h : LRuCI 2 (C0) 2 ] n ^ > Ru ^ C H 3 O H ^ I X n 3 OC I Pph, CI ^ ' P p h 3 Zn,DMF,IOO°C * R u ' ^ I X D C0 ,60ps i ' , 24hr OC I P P h 3 CI • 400 kPa Ph: P V O C — R u p Ph, . - c o c 0 Scheme 7 F o r m a t i o n o f R u ( C O ) 3 ( P P h 3 ) 2 A f e w y e a r s l a t e r a m o n o s u b s t i t u t e d r u t h e n i u m c a r b o n y l , 6 1 ( t r i p h e n y l p h o s p h i n e ) t e t r a c a r b o n y l r u t h e n i u m [ R u ( C O ) 4 ( P P h 3 ) ] , was f o r m e d by t h e d i r e c t r e a c t i o n o f p e n t a c a r b o n y l r u t h e n i u m w i t h t r i p h e n y l p h o s p h i n e u s i n g u l t r a v i o l e t i r r a d i a t i o n . I f i n d u c e d t h e r m a l l y , 6 1 t h e r e a c t i o n p r o d u c e s t h e d i s u b s t i t u t e d m o n o n u c l e a r c o m p o u n d . The d i r e c t r e a c t i o n o f t h e t r i n u c l e a r 26 r u t h e n i u m c a r b o n y l , d o d e c a c a r b o n y l t r i r u t h e n i u m , w i t h the f o l l o w i n g p h o s p h i n e s : t r i p h e n y l p h o s p h i n e , d i p h e n y l m e t h y l -p h o s p h i n e , and t r i - n - b u t y l p h o s p h i n e , i n d u c e d p h o t o c h e m i c a l l y w i t h Pyrex f i l t e r e d s u n l i g h t or f l u o r e s c e n t t u b e s , a l s o a f f o r d s the mono- and t r a n s - d i s u b s t i t u t e d mononuclear . 62,63 compounds. ' An X-ray c r y s t a l l o g r a p h i c s t u d y 6 4 of R u ( C O ) 3 ( P M e 3 ) 2 ( X V ) , shows the s t r u c t u r e t o be the e x p e c t e d d i a x i a l l y s u b s t i t u t e d t r i g o n a l b i p y r a m i d . The phosphorus met h y l and the r u t h e n i u m c a r b o n y l groups m i n i m i z e i n t e r l i g a n d r e p u l s i o n by a d o p t i n g a m u t u a l l y s t a g g e r e d c o n f o r m a t i o n . The d i a x i a l l y s u b s t i t u t e d ruthenium compound i s o b t a i n e d by t h e r e a c t i o n of R u 2 ( y - C H 2 ) 3 ( P M e 3 ) g w i t h carbon monoxide a t f i v e atmospheres p r e s s u r e a t 60°C. The f a t e of the -CH 2~ b r i d g e s i s unknown; no methane was d e t e c t e d by mass s p e c t r o s c o p y i n the r e s i d u a l gases. A t r i n u c l e a r phosphine s u b s t i t u t e d r u t h e n i u m c a r b o n y l was r e p o r t e d 6 5 i n 1966. T r i s ( t r i p h e n y l p h o s p h i n e ) n o n a c a r b o n y l t r i -r u t h e n i u m ( R u 3 ( C O ) g ( P P h 3 ) 3 ) i s formed d u r i n g the t h e r m a l r e a c t i o n of t r i p h e n y l p h o s p h i n e w i t h d o d e c a c a r b o n y l t r i -r u t h e n i u m . In 1967 a t r i s u b s t i t u t e d , t r i n u c l e a r complex was r e p o r t e d 6 6 f o r t h e t r i - n - b u t y l p h o s p h i n e l i g a n d . The t h e r m a l r e a c t i o n of PMe 2Bz w i t h d o d e c a c a r b o n y l t r i r u t h e n i u m a l s o 45 y i e l d s the t r i s u b s t i t u t e d t r i n u c l e a r s p e c i e s , R u 3 ( C O ) g ( P M e 2 B z ) 3 . 27 Me P 0 C Me (XV) R u ( C O ) 3 ( P M e 3 ) 2 D e s p i t e t h e i n i t i a l r e p o r t s of mononuclear phosphine s u b s t i t u t e d r u t h e n i u m c a r b o n y l s formed from the r e a c t i o n s of d o d e c a c a r b o n y l t r i r u t h e n i u m w i t h p h o s p h i n e s , most r e a c t i o n s of t h i s t y pe r e s u l t i n r e t e n t i o n of the t r i a n g l e of m e t a l 69 atoms. The r e t e n t i o n of the m e t a l t r i a n g l e f o r the ruthenium complexes c o n t r a s t s t h e c l u s t e r breakdown w i t h d o d e c a c a r b o n y l -t r i i r o n , as i n d i c a t e d above. T h i s i n c r e a s e d ease of c l u s t e r breakdown i s presumably due t o the d e c r e a s e i n t h e s t r e n g t h o f m e t a l - m e t a l bonds on d e c r e a s i n g a t o m i c mass i n the t r a n s i t i o n 70 m e t a l t r i a d . I n v e s t i g a t i o n s of the t h e r m a l r e a c t i o n s of the t r i s u b s t i t u t e d t r i n u c l e a r d e r i v a t i v e s i n a c a r b o n monoxide atmosphere, i n d i c a t e t h a t m o n o s u b s t i t u t e d mononuclear s p e c i e s 69 were formed. I f e x c e s s phosphine i s p r e s e n t , h e a t i n g i n a 28 carbon monoxide atmosphere y i e l d s d i s u b s t i t u t e d mononuclear 66 71 complexes. ' When s o l i d ( t r i p h e n y l p h o s p h i n e ) t e t r a c a r b o n y l -ruthenium i s h e a t e d , i t forms t h e t r i s u b s t i t u t e d t r i n u c l e a r 63 complex w i t h e v o l u t i o n of carbon monoxide. B e f o r e 1972, mono- or d i s u b s t i t u t e d t r i n u c l e a r s p e c i e s had not been i s o l a t e d . T h i s was a s c r i b e d t o t h e i r thermodynamic i n s t a b i l i t y r e l a t i v e t o the t r i s u b s t i t u t e d 69 s p e c i e s . S u b s e q u e n t l y , i t was found t h a t r e a c t i o n of low-v a l e n t p l a t i n u m complexes c o n t a i n i n g t e r t i a r y p hosphines w i t h 72 d o d e c a c a r b o n y l t r i r u t h e n i u m a f f o r d mono- , d i - , and t r i -phosphine s u b s t i t u t e d t r i r u t h e n i u m c a r b o n y l compounds, as a r e s u l t of l i g a n d t r a n s f e r from the p l a t i n u m complexes. 73 C o n t i g u o u s l y , i t was d i s c o v e r e d t h a t i f ch r o m a t o g r a p h i c s e p a r a t i o n of t h e r e a c t i o n p r o d u c t s i s employed, r a t h e r than c r y s t a l l i z a t i o n as had p r e v i o u s l y been used, mono- and d i s u b s t i t u t e d t r i n u c l e a r p r o d u c t s can be i s o l a t e d from the t h e r m a l l y i n d u c e d r e a c t i o n s , a l t h o u g h the t r i s u b s t i t u t e d complexes p r e d o m i n a t e . The p h o t o c h e m i c a l r e a c t i o n of d o d e c a c a r b o n y l t r i r u t h e n i u m w i t h t r i p h e n y l p h o s p h i n e was l a t e r found t o produce ( t r i p h e n y i p h o s p h i n e ) u n d e c a c a r b o n y l t r i r u t h e n i u m (XVI) as w e l l as the mono- and t r a n s - d i s u b s t i t u t e d mononuclear s p e c i e s . C r y s t a l l o g r a p h i c a n a l y s i s of (XVI) shows an e q u a t o r i a l l y s u b s t i t u t e d t r i a n g l e of ruthenium atoms w i t h a l l c a r b o n y l groups t e r m i n a l l y bound. 29 O C — R u — N R u I \ c ' Nccc/ ^ c 0 ^ 0 0 (xv i ) R U 3 ( C O ) 1 . ( P P h 3 ) In g e n e r a l , t h e r m a l or p h o t o c h e m i c a l r e a c t i o n c o n d i t i o n s induce the f o r m a t i o n of a m i x t u r e of s u b s t i t u t i o n p r o d u c t s . The column chromatography r e q u i r e d t o s e p a r a t e t h e s e m i x t u r e s i s time consuming and t h e y i e l d s of the d e s i r e d compounds a r e o f t e n low. For such r e a c t i o n s , r e a s o n a b l e y i e l d s of c l u s t e r compounds a r e l i m i t e d t o the t r i s u b s t i t u t e d p r o d u c t s , f o r which e x c e s s phosphine can be used. 57 In 1982, Bruce and coworkers r e p o r t e d t h a t the r a d i c a l a n i o n g e n e r a t e d from d o d e c a c a r b o n y l t r i r u t h e n i u m and sodium d i p h e n y l k e t y l (Pi^CONa) r e a c t s r e a d i l y w i t h p h o s p h i n e s . Thus, the a d d i t i o n of c a t a l y t i c amounts of a d i p h e n y l k e t y l r a d i c a l a n i o n s o l u t i o n t o the m e t a l c l u s t e r , a l o n g w i t h a p p r o p r i a t e s t o i c h i o m e t r i c amounts of p h o s p h i n e s , a f f o r d s t h e mono-, d i - , t r i - , o r t e t r a s u b s t i t u t e d c l u s t e r compounds. The r e a c t i o n s a r e complete w i t h i n f i v e minutes a t room t e m p e r a t u r e . T h i s method a l s o works f o r d o d e c a c a r b o n y l t r i i r o n . The r e a c t i v e s p e c i e s i s thought t o be a d o d e c a c a r b o n y l -t r i r u t h e n i u m r a d i c a l a n i o n ( [ R u , ( C O ) . , ] ' ) , where the e x t r a e l e c t r o n i s i n an a n t i b o n d i n g o r b i t a l , l e a d i n g t o a weakened rutheni u m - r u t h e n i u m m e t a l bond. T h i s bond c l e a v e s , l e a v i n g a seventeen e l e c t r o n r u t h e n i u m c e n t r e , which can undergo a t t a c k by t h e phosphine w i t h e l i m i n a t i o n of CO. R e f o r m a t i o n of the m e t a l - m e t a l bond y i e l d s a s u b s t i t u t e d r a d i c a l a n i o n [RUgfCO) 1^L]', which t r a n s f e r s an e l e c t r o n t o an u n s u b s t i t u t e d ruthenium c l u s t e r t o c o n t i n u e the c a t a l y t i c c y c l e (Scheme 8 ) . [ R u 3 ( C 0 ) l 2 ] + P h 2 C OT >• [ R u 3 ( C 0 ) 1 2 ]T + Ph 2 CO [Ru 3 (CO) l 2 ] - + L > [ R u 3 ( C 0 ) , , L ] " + CO [ R u 3 ( C 0 ) n L ] ' + [ R u 3 ( C 0 ) i 2 ] > [Ru 3 (C0) , ,L ] + [ R u 3( C X ) ) l 2 ] " Scheme 8 The R a d i c a l A n i o n R e a c t i o n There a r e t h r e e r e q u i r e m e n t s f o r t h i s r e a c t i o n t o o c c u r : (1) the c l u s t e r c a r b o n y l has t o be reduced w i t h o u t f r a g m e n t a t i o n , and t h e r e s u l t i n g a n i o n has t o have a l o n g 31 enough l i f e t i m e t o a l l o w f o r s u b s t i t u t i o n ; (2) t o f a c i l i t a t e the t r a n s f e r of an e l e c t r o n from the s u b s t i t u t e d t o the u n s u b s t i t u t e d r a d i c a l a n i o n , t h e s u b s t i t u t i n g l i g a n d must be a b e t t e r L ewis base than the c a r b o n y l l i g a n d ; (3) t h e l i g a n d must not be reduced by the d i p h e n y l k e t y l r a d i c a l a n i o n . When these c o n d i t i o n s a r e met, t h i s method a l l o w s f o r s h o r t r e a c t i o n t i m e s , m i l d c o n d i t i o n s and h i g h p r o d u c t y i e l d s , and has l e d t o the i s o l a t i o n of many complexes which were p r e v i o u s l y d i f f i c u l t t o o b t a i n . ' ' The u t i l i t y of t h i s t e c h n i q u e was i l l u s t r a t e d i n a 75 subsequent paper by Bruce and c o w o r k e r s , which d e s c r i b e s the s y n t h e s i s of over s i x t y s u b s t i t u t e d r uthenium c a r b o n y l c l u s t e r compounds. E i g h t e e n of t h e s e compounds a r e phosphine s u b s t i t u t e d t r i n u c l e a r r u t h e n i u m c a r b o n y l complexes. These compounds i n c l u d e R u 3 ( C O ) n L ( X V I I ) , R u 3 ( C O ) l Q L 2 ( X V I I I ) , R u 3 ( C O ) g L 3 ( X I X ) , and R u 3 ( C O ) Q L 4 (XX), where L i s a t e r t i a r y phosphine l i g a n d . D i ( t e r t i a r y p h o s p h i n e s ) a f f o r d complexes s u b s t i t u t e d as i n (XXI) and ( X X I I ) , where the d i p h o s p h i n e s a r e bonded i n a b i l i g a t e b i m e t a l l i c mode a c r o s s a ruthenium-ruthenium m e t a l bond, and a n o t h e r compound which c o n t a i n s two u n d e c a c a r b o n y l t r i r u t h e n i u m u n i t s j o i n e d by a b r i d g i n g b i d e n t a t e phosphine l i g a n d ( X X I I I ) . 76 More r e c e n t l y , Bruce and coworkers s y n t h e s i z e d a ruthenium complex c o n t a i n i n g a f e r r o c e n y l p h o s p h i n e l i g a n d , [ b i s ( d i p h e n y l p h o s p h i n o ) f e r r o c e n e ] d e c a c a r b o n y l t r i r u t h e n i u m [ R u 3 ( C O ) 1 0 ( d p p f ) ] . The X-ray c r y s t a l s t r u c t u r e has been 32 76 d e t e r m i n e d , and i t shows the f e r r o c e n y l p h o s p h i n e bonded i n a b i l i g a t e b i m e t a l l i c mode a c r o s s a r u t h e n i u m - r u t h e n i u m m e t a l bond as i n ( X X I ) . T h i s compound i s the f i r s t c h a r a c t e r i z e d ruthenium c a r b o n y l c l u s t e r c o n t a i n i n g a f e r r o c e n y l p h o s p h i n e l i g a n d . (C0) 4 Ru (C0>4 / \ ( C 0 ) 3 L RU4- L ( 0 C ) 3 R u — R u ( C 0 ) 3 L Ru / \ / \ ( 0 C ) 4 R u — R u(C0 ) 3 L L ( 0 C ) 3 R u — Ru(C0 ) 3 L ( X V I I ) R u 3 ( C O ) n L ( X V I I I ) R u 3 ( C O ) 1 ( ) L 2 (XIX) R u 3 ( C O ) g L 3 <co3 R u ^ J ( C O ) 2 L 2 / L / R u v ( 0 C ) 4 R u — R u ( C 0 ) 3 r, / R u v ,) / \ L x / \ X L L(0C ) 3 R u — Ru(C0 ) 3 L (0C ) 3 Ru — Ru(C0) 3 (XX) R u 3 ( C O ) G L 4 (XXI) R u 3 ( C O ) i 0 ( I T L ) ( X X I I ) R u 3 ( C O ) g ( L ~ L ) 2 (C0) 4 (C0) 4 Ru Ru / \ / \ (0C ) 4 R u — Ru ( C 0 ) 3 (0C ) 3 R u — R u(C0) 4 \ / L L ( X X I I I ) [ R u 3 ( C O ) 1 1 ] 2 ( y - L L) 33 2.2 E x p e r i m e n t a l The e x p e r i m e n t a l methods, c h e m i c a l s and s u p p l i e s were the same as d e s c r i b e d i n Chapter One u n l e s s o t h e r w i s e mentioned. 2.2.1 G e n e r a l Methods S e p a r a t i o n of p r o d u c t s was a l s o c a r r i e d out u s i n g F l o r i s i l F-100, 60-100 mesh. When t e t r a h y d r o f u r a n was used as r e a c t i o n s o l v e n t i t was removed and r e p l a c e d by c y c l o h e x a n e b e f o r e a d d i t i o n t o the column. S o l u t i o n s were e v a p o r a t e d t o d r y n e s s under reduced p r e s s u r e and p r o d u c t s were r e c r y s t a l l i z e d from hexanes, h e x a n e s / d i e t h y l e t h e r , o r from methylene c h l o r i d e l a y e r e d w i t h c y c l o h e x a n e . P r o t o n NMR s p e c t r a were a l s o run on a Br u k e r WH-400 s p e c t r o m e t e r . I n f r a r e d s p e c t r a were run u s i n g a P e r k i n - E l m e r 598 i n f r a r e d s p e c t r o p h o t o m e t e r u s i n g t h e p o l y s t y r e n e band a t 1601 cm 1 f o r c a l i b r a t i o n . F o u r i e r t r a n s f o r m i n f r a r e d s p e c t r a were run w i t h a s s i s t a n c e from Mr. C h r i s Chan of t h e U.B.C. H i g h R e s o l u t i o n M o l e c u l a r S p e c t r o s c o p y Group u s i n g a BOMEM s p e c t r o m e t e r . L i q u i d c e l l s were used w i t h KBr windows a t a 0.2 mm s e p a r a t i o n and samples were d i s s o l v e d i n c y c l o h e x a n e o r d i c h l o r o m e t h a n e . F a s t atom bombardment mass s p e c t r a were run on a AEI MS 9 s p e c t r o m e t e r by t h e U. B. C. s e r v i c e . Some f a s t atom bombardment mass s p e c t r a l a n a l y s e s were c a r r i e d out i n the l a b o r a t o r i e s of P r o f e s s o r J . M. M i l l e r of Brock U n i v e r s i t y i n 34 S t . C a t h e r i n e s , O n t a r i o . 2.2.2 C h e m i c a l s and S u p p l i e s T e t r a h y d r o f u r a n was l e f t over c a l c i u m h y d r i d e o v e r n i g h t a f t e r which i t was d i s t i l l e d from sodium w i r e and benzophenone. F l o r i s i l was s u p p l i e d by F i s h e r . F e ^ f C O ) ^ was o b t a i n e d from Mr. Ben C l i f f o r d i n t h i s department. R u ^ f C O ) ^ was o b t a i n e d from Dr. Roland K. Pomeroy from S.F.U. and from P r o f e s s o r M i c h a e l I . Bruce from The U n i v e r s i t y of A d e l a i d e i n A u s t r a l i a . 2.2.3 P r e p a r a t i o n of Phosphine D e r i v a t i v e s of I r o n and Ruthenium C a r b o n y l s D i p h e n y l k e t y l r a d i c a l a n i o n i n i t i a t e d r e a c t i o n s were c a r r i e d out a t room temperature i n t e t r a h y d r o f u r a n s o l u t i o n s t o which 1 mL of sodium d i p h e n y l k e t y l s o l u t i o n ( a p p r o x i m a t e l y 7 5 0.025 mM) was added d r o p w i s e w i t h s t i r r i n g . Work-up was i n i t i a t e d t e n minutes a f t e r m i x i n g . P h o t o c h e m i c a l r e a c t i o n s were c a r r i e d out i n degassed hexanes s o l u t i o n s c o o l e d by d r y i c e - a c e t o n e s l u r r y s . A 100 W Hanovia lamp (903A-1) was used a t a d i s t a n c e of t e n cm from a Pyrex Schlenk type a p p a r a t u s , f i t t e d w i t h an i n t e r n a l w e l l t o c o n t a i n t h e d r y i c e - a c e t o n e s l u r r y . Three or f o u r i r r a d i a t i o n p e r i o d s of twenty minutes were used, between which the s l u r r y was renewed. Longer p e r i o d s of i r r a d i a t i o n r e s u l t e d i n l o s s of c o o l i n g agent. 35 The t h e r m a l r e a c t i o n s were c a r r i e d out i n e i t h e r hexanes or t e t r a h y d r o f u r a n s o l u t i o n s which were h e a t e d j u s t below r e f l u x f o r t e n t o t h i r t y m i n u t e s . The r e a c t i o n s were m o n i t o r e d by t h i n l a y e r chromatography. The r e a c t i o n s c a r r i e d o u t , a d e s c r i p t i o n of the compounds s y n t h e s i z e d and c h a r a c t e r i z e d , the i s o l a t i o n t e c h n i q u e f o r the p r o d u c t s , t h e i r m e l t i n g p o i n t s , NMR and IR d a t a , mass s p e c t r o s c o p i c peaks, and a n a l y t i c a l d a t a a r e l i s t e d i n T a b l e s I - X I I I . 36 T a b l e I R e a c t i o n s of F e _ ( C 0 ) 1 9 w i t h F e r r o c e n y l p h o s p h i n e s : L . • * F e ^ v C O ) ^ L R e a c t i o n Cndns P r o d u c t s Y i e l d Amount Amount S o l v e n t F e 3 ( C O ) 1 2 100 mg 0.20 mmol PBuPhFc 70 mg 0.20 mmol uv i r r a d i a t i o n 45 min 10 mL hexanes F e 3 ( C O ) n L F e 3 ( C O ) 1 ( ) L 2 moderate moderate F e 3 ( C O ) 1 2 1 00 mg 0.20 mmol PPh 2Fc 73.4 mg 0.20 mmol ** 1 mL k e t y l 10 mL THF heat 30 min 10 mL THF uv i r r a d i a t i o n 60 min 10 mL hexanes F e 3 ( C O ) n L h i g h F e ( C O ) 4 L F e 3 ( C O ) n L Fe(CO).L 4 F e 3 ( C O ) n L low moderate low moderate F e 3 ( C O ) 1 2 100 mg 0.20 mmol P P h F c 2 80 mg 0.20 mmol 1 mL k e t y l 10 mL THF Fe(CO)„L 4 low 200 mg 0.40 mmol 190 mg 0.40 mmol heat 20 min 10 mL THF F e ( C O ) 4 L h i g h 37 F e 3 ( C O ) l 2 P F c 3 heat 10 min F e ( C O ) 4 L h i g h 100 mg 90 mg 10 mL THF 0.20 mmol 0.20 mmol * y i e l d s a r e e s t i m a t e d by v i s u a l i n s p e c t i o n of t . l . c . p l a t e s ** d i p h e n y l k e t y l r a d i c a l a n i o n s o l u t i o n 38 T a b l e I I R e a c t i o n s of R u 3 ( C O ) 1 2 w i t h F e r r o c e n y l p h o s p h i n e s : L R U j l ' C O ) ^ L R e a c t i o n Cndns P r o d u c t s Y i e l d Amount Amount S o l v e n t ** R u 3 ( C O ) 1 2 PPh 2Fc 2 ml k e t y l R u 3 ( C O ) n L h i g h 100 mg 57.9 mg 10 mL THF 0.16 mmol 0.16 mmol heat 10 min R u ^ C C O ^ L low 10 mL THF R u 3 ( C O ) l Q L 2 low R u 3 ( C O ) g L 3 h i g h uv i r r a d i a t i o n R U 3 ( C O ) 1 Q L 2 low 35 min R u 3 ( C O ) g L 3 h i g h 20 mL hexanes R u 3 ( C O ) 1 2 P P h F c 2 1 ml k e t y l R u ^ C O ^ L h i g h 100 mg 74.8 mg 10 mL THF R u 3 ( C O ) l Q L 2 low 0.16 mmol 0.16 mmol heat 10 min R u ^ C C O ^ L low 10 mL THF R u 3 ( C O ) l Q low R u 3 ( C O ) g L 3 low 39 R u 3 ( C O ) 1 2 P F c 3 0.5 mL k e t y l R u 3 ( C O ) n L h i g h 100 mg 91.6 mg 5 mL THF 0.16 mmol 0.16 mmol heat 10 min R u ^ C C O ^ L low 10 mL THF R u 3 ( C O ) l Q L 2 moderate R u 3 ( C O ) l 2 F e ( C 5 H 4 ) 2 P P h 1 mL k e t y l R u 3 ( C O ) n L h i g h 100 mg 46.7 mg 15 mL THF 0.16 mmol 0.16 mmol 100 mg 93.5 mg 2 mL k e t y l R u 3 ( C O ) 1 ( ) L 2 h i g h 0.16 mmol 0.32 mmol 15 mL THF * y i e l d s a r e e s t i m a t e d by v i s u a l i n s p e c t i o n of t . l . c . p l a t e s ** d i p h e n y l k e t y l r a d i c a l a n i o n s o l u t i o n 40 T a b l e I I I D e s c r i p t i o n o f t h e F e ^ C O ) , , D e r i v a t i v e s S t r u c t u r a l F o r m u l a P h y s i c a l D e s c r i p t i o n M o l e c u l a r F o r m u l a F e ( C O ) 4 ( P B u P h F c ) y e l l o w s o l i d C 2 4 H 2 3 F e 2 0 4 P F e 3 ( C O ) 1 1 ( P B u P h F c ) d a r k g r e e n s o l i d C 3 1 H 2 3 F e 4 ° 1 1 P F e 3 ( C O ) l Q ( P B u P h F c ) 2 o l i v e g r e e n s o l i d C 5 0 H 4 6 F e 5 ° l O P 2 F e ( C O ) 4 ( P P h 2 F c ) o r a n g e s o l i d C 2 6 H l 9 F e 2 ° 4 P F e 3 ( C O ) 1 1 ( P P h 2 F c ) d a r k g r e e n s o l i d C 3 3 H l 9 F e 3 ° 1 1 P F e ( C O ) 4 ( P P h F c 2 ) o r a n g e r e d s o l i d C 3 0 H 2 3 F e 3 ° 4 P F e ( C O ) 4 ( P F c 3 ) o r a n g e s o l i d C 3 4 H 2 7 F e 4 0 4 P 41 T a b l e IV D e s c r i p t i o n of t h e R u , ( C 0 ) 1 9 D e r i v a t i v e s S t r u c t u r a l Formula P h y s i c a l D e s c r i p t i o n M o l e c u l a r Formula R u 3 ( C O ) 1 1 ( P P h 2 F c ) Ru 3(CO) 1 ( ) ( P P h 2 F c ) 2 R u 3 ( C O ) g ( P P h 2 F c ) 3 R u 3 ( C O ) 1 1 ( P P h F c 2 ) R u 3 ( C O ) 1 0 ( P P h F c 2 ) 2 R u 3 ( C O ) g ( P P h F c 2 ) 3 R u ( C O ) 4 ( P F c 3 ) R u 3 ( C O ) 1 1 ( P F c 3 ) R u 3 ( C O ) 1 ( ) ( P F c 3 ) 2 R u 3 ( C O ) 1 1 ( F e ( C 5 H 4 > 2 P P h ) orange s o l i d R u 3 ( C O ) 1 0 ( F e ( C 5 H 4 ) 2 P P h ) 2 r e d orange s o l i d orange s o l i d dark p u r p l e s o l i d dark p u r p l e s o l i d orange s o l i d dark r e d s o l i d dark p u r p l e s o l i d orange s o l i d orange s o l i d dark r e d s o l i d C 3 3 H l 9 F e 0 1 1 P R u 3 C 5 4 H 3 8 F e 2 ° l 0 P 2 R u 3 C 7 5 H 5 7 F e 3 ° 9 P 3 R u 3 C 3 7 H 2 3 F e 2 ° 1 1 P R u 3 C 6 2 H 4 6 F e 4 ° l 0 P 2 R u 3 C 8 7 H 6 9 F e 6 ° 9 P 3 R u 3 C 3 4 H 2 7 F e 3 ° 4 P R U C 4 1 H 2 7 F e 9 ° 1 1 P 3 R u 3 C 7 0 H 5 4 F e 6 ° l 0 P 2 R u 3 C 2 7 H l 3 F e O n P R u 3 C 4 2 H 2 6 F e 2 ° l 0 P 2 R u 3 42 T a b l e V I s o l a t i o n and Some P r o p e r t i e s of the Fe^(CO) D e r i v a t i v e s Compound I s o l a t i o n M o l . Wt. M e l t i n g P t . Technique (g/mole) (°C) or Chromatographic Medium Fe(CO) 4(PBuPhFc) c r y s t a l l i z a t i o n 518.13 f o l l o w i n g d e c o m p o s i t i o n from s o l u t i o n of Fe 3(CO) (PBuPhFc) 73-75 M F e 3 ( C O ) 1 1 ( P B u P h F c ) Alumina 825.90 pet e t h e r / E t j O (1:1) F e 3 ( C O ) l Q ( P B u P h F c ) 2 Alumina E t 2 0 1148.14 59-62 F e ( C O ) 4 ( P P h 2 F c ) F l o r i s i l pet e t h e r 538.14 169-173 43 F e 3 ( C O ) 1 1 ( P P h 2 F c ) F l o r i s i l 7 9 0 . 0 3 9 5 - 1 0 0 E t 2 0 / C H 2 C 1 2 ( 4 : 1 ) F e ( C O ) 4 ( P P h F c 2 ) F l o r i s i l 6 4 6 . 0 7 165 M p e t e t h e r / E t 2 0 ( 4 : 1 ) F e ( C O ) 4 ( P F c 3 ) A l u m i n a 7 5 3 . 9 7 2 2 5 - 2 3 0 p e t e t h e r * M = m e l t e d , o t h e r c o m p o u n d s d e c o m p o s e d 44 T a b l e VI I s o l a t i o n and Some P r o p e r t i e s of the R u 3 ( C O ) 1 2 D e r i v a t i v e s Compound I s o l a t i o n M o l . Wt. M e l t i n g P t . or Chromatographic (g/mole) (°C) Medium R u 3 ( C O ) 1 1 ( P P h 2 F c ) Alumina 981.55 110 t u r n e d E t 2 0 / C H C 1 3 (1:1) deep r e d 112-115 R u 3 ( C O ) 1 ( ) ( P P h 2 F c ) 2 Alumina 1323.76 103-107 E t 2 0 / C H C 1 3 (1:1) R u 3 ( C O ) g ( P P h 2 F c ) 3 Alumina 1665.97 E t 2 0 / C H C 1 3 (2:1) R u 3 ( C O ) 1 ( P P h F c 2 ) Alumina 1089.47 147-150 pet e t h e r / E t 2 0 (1:2) R u 3 ( C O ) l Q ( P P h F c 2 ) 2 Alumina 1539.62 117-119 E t 2 0 / C H 2 C 1 2 (18:1) 45 R u 3 ( C O ) g ( P P h F c 2 ) 3 Alumina 1989.77 CH 2C1 2 R u ( C O ) 4 ( P F c 3 ) c r y s t a l l i z a t i o n 799.22 f o l l o w i n g d e c o m p o s i t i o n from s o l u t i o n of R u 3 ( C O ) 1 1 ( P F c 3 ) R u 3 ( C O ) 1 1 ( P F c 3 ) F l o r i s i l 1594.42 115-116 E t 2 0 R u 3 ( C O ) i n ( P F c 3 ) 2 F l o r i s i l 1755.47 CH 2C1 2 R u 3 ( C O ) 1 . ( F e ( C 5 H 4 ) 2 P P h ) c r y s t a l l i z a t i o n 903.43 R u 3 ( C O ) l Q ( F e ( C 5 H 4 ) 2 P P h ) 2 c r y s t a l l i z a t i o n 1167.52 - — * a l l compounds decomposed 46 Table V I I H NMR Chemical S h i f t Data ( <*) f o r Fe 3(CO) D e r i v a t i v e s (80 MHz) Compound P h e n y l F e r r o c e n y l B u t y l Region Region Region Fe(CO) 4(PBuPhFc) 7.93-7.65 4.50-4.33 1.70-0.70 m 2H m 3H br m 9H 7.55-7.40 4.33-4.22 m 3H m 1H 4.00 s 5H F e 3 ( C O ) n ( P B u P h F c ) 7.95-7.63 4.55-4.18 2.13-2.20 br m 3H br m 4H br m 2H 7.63-7.38 4.13 s 5H 1.70-1.25 br m 3H br m 4H 1.10-0.80 br m 3H F e 3 ( C O ) l Q ( P B u P h F c ) 2 7.88-7.15 4.60-3.95 2.40-0.70 br m 5H br m 9H br m 9H F e ( C O ) 4 ( P P h 2 F c ) 7.70-7.33 4.56-4.45 m 10H m 4H 3.78 s 5H 47 F e 3 ( C O ) 1 1 ( P P h 2 F c ) 7.75-7.35 m 10 H 4.55-4.40 m 2H 4.18-4.08 m 2H 3.93 s 5H F e ( C O ) 4 ( P P h F c 2 ) 8.23-7.95 4.60-4.52 m 2H m 2H 7.52-7.38 4.48-4.40 m 3H m 6H 3.98 s 10H 48 T a b l e V I I I H NMR C h e m i c a l S h i f t Data («) f o r Ru 3(CO) D e r i v a t i v e s Compound P h e n y l Region F e r r o c e n y l Region NMR Frequency R u 3 ( C O ) n ( P P h 2 F c ) 8.03-7.48 m 2H 4.52-4.49 m 2H 400 MHz 7.43-7.40 m 3H 4.21-4.18 m 2H 3.97 s 5H Ru 3(CO) 1 ( ) ( P P h 2 F c ) 2 7.75-7.35 m 10H 4.45 m 2H 80 MHz 4.20 m 2H 3.93 s 5H R u 3 ( C O ) 1 1 ( P P h F c 2 ) 7.90-7.60 m 2H 4.55-4.42 m 4H 80 MHz 7.43-7.27 m 3H 4.40-4.31 m 2H 4.20 s 5H 4.15-4.05 m 2H R u 3 ( C O ) l Q ( P P h F c 2 ) 2 7.81-7.67 m 2H 4.49 m 2H 400 MHz 7.36-7.29 m 3H 4.45 m 2H 4.40 m 2H 4.19 S 10H 4.13 m 2H 49 R u 3 ( C O ) . . ( P F c 3 ) 100 MHz R u 3 ( C O ) 1 0 ( P F C 3 ) 2 100 MHz 4.50-4.47 m 4H 4.14 S 5H 4.42-4.31 m 4H 4.13 S 5H R u 3 ( C O ) 1 1 ( F e ( C 5 H 4 ) 2 P P h ) 7.88-7.68 m 2H 5.00-4.87 m 2H 80 MHz 7.63-7.42 m 3H 4.68-4.56 m 2H 4.56-4.45 m 2H 4.38-4.23 m 2H Ru 3(CO) 1 ( ) ( F e ( C 5 H 4 ) 2 P P h ) 2 7.87-7.65 m 2H 5.00-4.85 m 2H 80 MHz 7.52-7.26 m 3H 4.62-4.50 m 2H 4.50-4.39 m 2H 4.33-4.20 m 2H 50 T a b l e IX IR Data f o r the F e 3 ( C O ) l 2 D e r i v a t i v e s * — 1 Compound Spec S o l v e n t A b s o r p t i o n (cm ) Fe(CO) 4(PBuPhFc) FT C 6 H 1 2 2 0 5 0 s 1975s 1943VS 1936VS F e 3 ( C O ) 1 1 ( P B u P h F c ) N C 6 H i 2 2 0 8 3 w 2030m 2010m 2007m F e 3 ( C O ) i n ( P B u P h F c ) 2 FT C 6 H 1 2 2 0 5 3 s 2029w 2007vs 1980s I959sh I945sh I930w 1816m 1794m F e ( C O ) 4 ( P P h 2 F c ) . FT c e H i 2 2 0 5 0 s 1977m 1947s 1936s F e 3 ( C O ) 1 1 ( P P h 2 F c ) N C 6 H 1 2 2 0 8 5 m 2 0 3 3 s 2012s 2002sh F e ( C O ) 4 ( P P h F c 2 ) N C 6 H 1 2 2 0 4 0 s 1970s 1937VS 1932VS F e ( C O ) 4 ( P F c 3 ) N C H 2 C 1 2 2 0 5 5 s 1968m 1932vs *IR s p e c t r o m e t e r used: FT=BOMEM s p e c t r o m e t e r , N=Perkin-Elmer 598 s p e c t r o m e t e r 51 T a b l e X IR Data f o r the R u 3 ( C O ) l 2 D e r i v a t i v e s * — i Compound Spec S o l v e n t A b s o r p t i o n (cm ') R u 3 ( C O ) 1 1 ( P P h 2 F c ) FT C 6 H 1 2 R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 FT C 6 H 1 2 R u 3 ( C O ) 1 1 ( P P h F c 2 ) R u 3 ( C O ) 1 0 ( P P h F c 2 ) 2 R u ( C O ) 4 ( P F c 3 ) R u 3 ( C O ) 1 1 ( P F c 3 ) FT C 6 H 1 2 2099sh 2095m 2060sh 2046s 2028sh 2015s 2003sh I997sh 1986m 1970W 1964W 2075w 2063w 2045vw 2019m 1998s I990sh 1976m 1960m 1921W 2096w 2045s 2028m 2015s 1995W I984w I966vw I958vw FT CH 2C1 2 2075w 2044w 2029s 2005sh 1998s 1974VW 1957VW 1948VW FT • CH 2C1 2 2056s 1978W 1938s N CH 2C1 2 2100m 2045s 2016s I970sh Ru-,(CO) , , (Fe(CcH„).,PPh) N C,H 1 1 5"4'2' '6"12 I955sh . 2l00w 2050s 2030m 2020s 2000sh I995sh 1988W 1964W 1956sh 2025s 2 0 l 0 s h I998sh 1990s 1975sh I967sh I953sh 1945sh I932sh !925sh * IR s p e c t r o m e t e r used: FT=BOMEM s p e c t r o m e t e r , N=Perkin-Elmer 598 s p e c t r o m e t e r R u 3 ( C O ) 1 Q ( F e ( C 5 H 4 ) 2 P P h ) 2 N C g H 1 2 52 T a b l e XI Mass S p e c t r o s c o p i c Data f o r the Fe 3(CO) D e r i v a t i v e s Compound Peak (m/e v a l u e ) Probe Temperature (°C) Fe(CO) 4(PBuPhFc) 110 F e 3 ( C O ) 1 1 ( P B u P h F c ) 250 F e 3 ( C O ) l Q ( P B u P h F c ) 2 150 F e ( C O ) 4 ( P P h 2 F c ) 120 F e 3 ( C O ) 1 1 ( P P h 2 F c ) 140 F e ( C O ) 4 ( P P h F c 2 ) 100 F e ( C O ) 4 ( P F c 3 ) 180 56, 78, 121, 186, 216, 226, 241, 272, 293, 350, 406, 434, 462, 490, 518 56, 78, 121, 186, 226, 272, 293, 350, 406, 756, 784, 840 56, 78, 121, 186, 272, 293, 350, 406, 434, 462, 490, 518, 756 56, 121, 213, 262, 293, 317, 346, 370, 426, 454, 482, 510, 538 56, 84, 121, 171, 226, 293, 370, 426, 454, 482, 510, 538 59, 74, 121, 186, 239, 304, 346, 370, 401, 478, 534, 562, 590, 618, 646 304, 321, 335, 370, 388, 401, 456, 502, 568, 586, 642, 670, 726, 754 *mass s p e c t r o m e t e r used: N=KRATOS MS 50 s p e c t r o m e t e r 53 T a b l e X I I Mass S p e c t r o s c o p i c D a t a f o r t h e R u 3 ( C O ) D e r i v a t i v e s * Compound T y p e Peak ( m / e v a l u e ) P r o b e T e m p e r a t u r e ( ° C ) R u 3 ( C O ) 1 1 ( P P h 2 F c ) N 5 2 , 6 3 , 7 8 , 9 3 , 1 0 5 , 1 2 1 , 1 8 6 , 297 100 3 0 3 , 3 4 7 , 3 6 2 , 3 8 9 , 4 1 9 , 4 4 4 , 4 7 3 , 5 0 1 , 5 2 0 , 5 2 7 , 5 8 3 , 5 9 6 , 6 1 1 , 6 4 0 , 6 7 9 , 6 9 8 , 730 R u 3 ( C O ) 1 1 ( P P h 2 F c ) FAB 5 7 2 , 6 0 0 , 6 2 8 , 6 5 6 , 6 7 3 , 6 8 4 , 7 0 1 , 7 1 2 , 7 2 9 , 7 4 0 , 7 5 7 , 7 8 5 , 8 1 3 , 8 4 1 , 8 6 9 , 8 9 7 , 9 2 5 , 9 5 3 , 981 R u 3 ( C O ) 1 ( ) ( P P h 2 F c ) 2 N 5 2 , 5 6 , 6 3 , 7 8 , 121 , 1 5 4 , 1 8 6 , 280 2 6 2 , 2 9 3 , 3 2 1 , 3 3 7 , 3 7 0 , 4 0 2 , 4 2 8 , 4 4 6 , 4 8 7 , 4 9 6 , 5 7 2 , 6 0 2 , 6 3 0 , 6 5 5 , 7 1 3 , 770 R u 3 ( C O ) 1 0 ( P P h 2 F c ) 2 FABM 1 0 7 , 1 3 5 , 1 7 7 , 2 0 5 , 2 3 4 , 2 7 5 , 3 0 4 , 3 3 9 , 3 7 0 , 4 3 7 , 4 6 6 , 5 0 1 , 5 6 9 , 6 2 9 , 6 5 4 , 6 8 6 , 7 1 4 , 8 1 5 , 889 R u 3 ( C O ) g ( P P h 2 F c ) 3 N 5 2 , 7 8 , 1 2 1 , 1 5 4 , 1 8 6 , 2 6 2 , 3 2 1 , 150 370 R u 3 ( C O ) 1 1 ( P P h F c 2 ) N 5 6 , 7 8 , 1 2 1 , 1 8 6 , 2 0 7 , 2 2 1 , 2 6 2 , 100 2 8 1 , 4 0 1 , 4 2 9 , 4 7 8 , 5 0 3 , 5 7 7 , 6 0 7 , 6 3 5 , 6 6 3 , 680 54 R u 3 ( C O ) 1 1 ( P P h F c 2 ) FAB 607, 635, 680, 708, 736, 764, 781 , 809, 820, 837, 848, 865, 876, 893, 921 , 949, 977, 1005, 1033, 1061 , 1089 Ru 3(CO) 1 ( ) ( P P h F c 2 ) 2 N 58, 78, 121, 186, 239, 262, 304, 100 370, 478, 554, 602, 607, 635, 648, 671 , 710, 746, 768 R u 3 ( C O ) 1 1 ( P F c 3 ) N 57, 121 , 149, 167, 189, 279, 305, 210 318, 370, 398, 415, 444, 472, 500, 529, 586, 612, 640 R u 3 ( C O ) i n ( P F c 3 ) 2 N 370, 401 , 455, 586 100 R u 3 ( C O ) 1 1 ( F e ( C 5 H 4 ) 2PPh) N 358, 370, 389, 415, 441 , 464, 494, 100 522, 538, 551 , 568 , 578 , 595, 623 651 , 681 , 709, 734, 765, 793, 819, 847 R u 3 ( C O ) 1 0 ( F e ( C 5 H 4 ) 2 P P h ) 2 N 78, 186 280 *mass s p e c t r o m e t e r used: N=KRATOS MS 50 s p e c t r o m e t e r , FAB=AEI MS 9 s p e c t r o m e t e r FABM=measured i n t h e l a b o r a t o r i e s of P r o f e s s o r J . M. M i l l e r 55 T a b l e X I I I E l e m e n t a l A n a l y t i c a l D a t a f o r t h e F e 3 ( C O > 1 2 a n d R u , ( C 0 ) , o D e r i v a t i v e s P e r c e n t C P e r c e n t H P e r c e n t 0 C o m p l e x C a l c . F o u n d C a l c . F o u n d C a l c . F o u n d F e 3 ( C O ) 1 Q ( P B u P h F c ) 2 52 . 3 0 51 . 8 8 4 . 0 5 4 . 00 1 3 . 9 4 1 4 . 0 9 F e ( C O ) 4 ( P P h 2 F c ) 58 . 0 2 57 . 7 9 3 . 5 7 3 . 63 1 1 . 8 9 1 2 . 2 0 F e ( C O ) 4 ( P P h F c 2 ) 55 . 7 7 55 . 7 9 3 . 6 0 3 . 70 9 . 9 1 9 . 9 2 R u 3 ( C O ) 1 1 ( P P h 2 F c ) 40 . 3 8 40 . 7 8 1 . 9 6 2 . 15 1 7 . 9 3 1 7 . 9 7 R u 3 ( C O ) l 0 ( P P h 2 F c ) 2 48 . 9 9 49 . 2 4 2 . 9 0 3 . 00 1 2 . 0 7 1 2 . 2 5 R u 3 ( C O ) 1 1 ( P P h F c 2 ) 40 . 7 9 41 . 1 1 2 . 1 3 2 . 20 1 6 . 1 5 1 6 . 0 R u 3 ( C O ) l 0 ( P P h F c 2 ) 2 48 . 3 6 45 . 7 5 3 . 0 2 3 . 21 1 0 . 3 9 1 0 . 3 4 R u 3 ( C O ) 1 0 ( P P h F c 2 ) 2 • 1 . 5 C H 2 C 1 2 45 . 7 5 45 . 7 5 2 . 9 7 3 . 21 9 . 6 0 1 0 . 3 4 R u 3 ( C O ) n ( P F c 3 ) 41 . 1 3 41 . 4 5 2 . 2 7 2 . 47 1 4 . 7 0 56 2.3 D i s c u s s i o n The r e a c t i o n s between the f e r r o c e n y l p h o s p h i n e s d e s c r i b e d i n t h e f i r s t c h a p t e r and the m e t a l c a r b o n y l s F e 3 < C O ) 1 2 a n < 3 R u 3 ( C O ) 1 2 were i n v e s t i g a t e d . The r e a c t i o n s were c a r r i e d out u s i n g the d i p h e n y l k e t y l r a d i c a l a n i o n , o r u s i n g t h e r m a l or p h o t o c h e m i c a l p r o c e d u r e s . The d e t a i l s of the r e a c t i o n c o n d i t i o n s , p r o d u c t s , and y i e l d s e s t i m a t e d by v i s u a l i n s p e c t i o n of t h i n l a y e r c h r o m a t o g r a p h i c p l a t e s a r e g i v e n i n T a b l e s I and I I . E i g h t e e n phosphine s u b s t i t u t e d c a r b o n y l s were o b t a i n e d and a r e d e t a i l e d i n T a b l e s I I I and IV. 76 W i t h the e x c e p t i o n of R u 3 ( C O ) 1 Q ( d p p f ) , t h e s e compounds i n c l u d e the f i r s t examples of c l u s t e r compounds c o n t a i n i n g f e r r o c e n y l p h o s p h i n e l i g a n d s . 2.3.1 R e a c t i o n s of Phosphines w i t h F e 3 ( C O ) l 2 The 1:1 r a d i c a l a n i o n r e a c t i o n w i t h the phosphine PPh^Fc a f f o r d s the e x p e c t e d p r o d u c t , F e ^ t C O j ^ L i n h i g h y i e l d . Under the same c o n d i t i o n s , t h e r e a c t i o n w i t h the more b u l k y l i g a n d P P h F c 2 does not g i v e t h e e x p e c t e d p r o d u c t . I n s t e a d , s m a l l amounts of F e ( C O ) 4 L a r e o b t a i n e d . I t seems l i k e l y t h a t t h e more b u l k y l i g a n d c auses the F e ^ t C O j ^ L compound t o be u n s t a b l e . The low y i e l d of the F e ( C O ) 4 L compound c o u l d r e s u l t from breakdown of the i n i t i a l l y formed [ F e 3 ( C O ) 1 1 L ] T , t h e breakdown o c c u r i n g b e f o r e the e x t r a e l e c t r o n can be passed a l o n g t o an F e 3 ( C O ) 1 2 m o l e c u l e t o complete the r a d i c a l a n i o n c h a i n r e a c t i o n . 57 Another F e 3 ( C O ) l 2 d e r i v a t i v e t h a t has been s y n t h e s i z e d 5 7 u s i n g the d i p h e n y l k e t y l r a d i c a l a n i o n i s F e ^ ( C O ) 1 1 ( P P h ^ ) . The t h e r m a l r e a c t i o n s were a l l c a r r i e d out w i t h 1:1 molar r a t i o s of phosphine t o m e t a l c a r b o n y l . C l u s t e r breakdown i s e v i d e n t as F e ( C O ) 4 L compounds a r e formed f o r the l i g a n d s P P h j F c , PPhFc2 and PFc^. Only one t r i n u c l e a r compound, F e 3 ( C O ) 1 1 ( P P h 2 F c ) , was i s o l a t e d , p r o b a b l y because of the s t e r i c b u l k of l i g a n d s c o n t a i n i n g more than one f e r r o c e n y l s u b s t i t u e n t . In the i n i t i a l s t u d i e s 4 5 , 4 6 of the t h e r m a l r e a c t i o n of F e 3 ( C O ) 1 2 w i t h t h e phosphine P P ^ r o n l y the mononuclear p r o d u c t s F e ( C O ) 4 L and F e ( C O ) 3 L 2 were o b t a i n e d . T h i s i s presumably because the r e a c t i o n m i x t u r e s were r e f l u x e d u n t i l the green c o l o u r of the p a r e n t i r o n c a r b o n y l d i s a p p e a r e d , t o ensure complete r e a c t i o n . S i n c e the t r i n u c l e a r p r o d u c t s a r e gree n , d e c o m p o s i t i o n of t r i n u c l e a r p r o d u c t s i s a l s o i n e v i t a b l e 47 54 under such c o n d i t i o n s . L a t e r s t u d i e s ' show the f o r m a t i o n of b o t h mono- and t r i n u c l e a r s p e c i e s under l e s s f o r c i n g c o n d i t i o n s . C o n s e q u e n t l y , c a r e was ta k e n i n t h e p r e s e n t i n v e s t i g a t i o n not t o use c o n d i t i o n s t h a t a r e too f o r c i n g . P h o t o c h e m i c a l r e a c t i o n s were c a r r i e d out w i t h the two l e a s t b u l k y phosphines PBuPhFc and P P h 2 F c . W i t h the former l e s s b u l k y phosphine, both mono- and d i s u b s t i t u t e d t r i n u c l e a r compounds a r e o b t a i n e d . The more b u l k y P P h 2Fc phosphine y i e l d s F e ( C O ) 4 L and F e 3 ( C O ) n L . The F e ( C O ) 4 L compounds s y n t h e s i z e d a r e a l l y e l l o w or 58 y e l l o w orange i n c o l o u r , whereas F e - ^ C O J ^ L and F e ^ C O ) ^ ! ^ a r e a l l dark g r e e n . In r e a c t i o n s where b o t h mono- and t r i n u c l e a r compounds a r e formed, the mononuclear compounds are found t o e l u t e more s l o w l y than t h e t r i n u c l e a r compounds on t h i n l a y e r chromatography. I n c r e a s i n g s u b s t i t u t i o n i n compounds of the same n u c l e a r i t y causes d e c r e a s i n g r a t e s of e l u t i o n on t h i n l a y e r chromatography. The p r e s e n t s t u d y shows no e v i d e n c e f o r the f o r m a t i o n of t r i n u c l e a r compounds c o n t a i n i n g f e r r o c e n y l p h o s p h i n e s w i t h more than one f e r r o c e n e s u b s t i t u e n t . The phosphine PPh 2Fc a f f o r d s F e ^ ( C O ) 1 1 ( P P h j F c ) , and two d a r k green compounds a r e o b t a i n e d from the s u b s t i t u t i o n r e a c t i o n i n v o l v i n g the phosphine PBuPhFc, F e 3 ( C O ) 1 Q ( P B u P h F c ) 2 and F e 3 ( C O ) 1 1 ( P B u P h F c ) . The former was i s o l a t e d as the o n l y a n a l y t i c a l l y pure powder o b t a i n e d f o r a phosphine s u b s t i t u t e d c a r b o n y l i n t h i s s t u d y . The t r i n u c l e a r s p e c i e s t h a t have been i s o l a t e d 47 47 58 p r e v i o u s l y c o n t a i n the phosphine l i g a n d s P E t 3 , PMe 2Ph, ' P E t 2 P h , 4 7 P M e P h 2 , 4 7 P E t P h 2 , 4 ? P P i ^ C M e ^ 7 and P P h 3 . 5 4 These phosphines a r e a l l l e s s b u l k y than the l i g a n d s used i n t h i s s t udy t h a t would not form t r i n u c l e a r s p e c i e s . I t seems l i k e l y , t h e r e f o r e , t h a t s t e r i c b u l k i s r e s p o n s i b l e f o r the l a c k of f o r m a t i o n of t h e s e s p e c i e s i n the p r e s e n t s t u d i e s . The cone a n g l e of P F c 3 i s e s t i m a t e d i n t h i s s t u d y t o be 178° (see 2.3.6 Cone Angle D e t e r m i n a t i o n f o r P F c 3 ) which i s o n l y s l i g h t l y l e s s b u l k y than P ( C M e 3 ) 3 , f o r which t h e cone a n g l e i s 1 8 2 ° . 7 7 Other r e p r e s e n t a t i v e cone a n g l e s f o r 59 t e r t i a r y p hosphines a r e 118° f o r PMe 3, 132° f o r P E t 3 , 136° f o r PMePh2 and 145° f o r P P h 3 . 7 7 From t h e s e v a l u e s i t can be i n f e r r e d t h a t P P h j F c , which forms a t r i n u c l e a r i r o n compound, i s s l i g h t l y l e s s b u l k y than PPh2CMe 3 p r e v i o u s l y found i n the t r i n u c l e a r i r o n compounds F e 3 ( C O ) 1 1 ( P P h 2 C M e 3 ) and F e 3 ( C O ) i n ( P P h 2 C M e 3 ) 2 . 4 4 No Fe(CO) 3L.2 s p e c i e s were i s o l a t e d d u r i n g the c o u r s e of t h i s s t u d y , p o s s i b l y because a 1:1 molar r a t i o of c a r b o n y l t o l i g a n d was used, and t h i s i s not e x p e c t e d t o f a v o u r the f o r m a t i o n of such s p e c i e s . A l s o , i t seems t h a t t h e s e s p e c i e s a r e not e a s i l y i s o l a t e d by column chromatography. The t h r e e t r i n u c l e a r i r o n c a r b o n y l s o b t a i n e d i n the p r e s e n t i n v e s t i g a t i o n , F e 3 ( C O ) 1 1 ( P B u P h F c ) , F e 3 ( C O ) 1 Q ( P B u P h F c ) 2 and F e 3 ( C O ) 1 1 ( P P l ^ F c ) , a l l decompose t o t h e m o n o s u b s t i t u t e d mononuclear i r o n c a r b o n y l s , Fe(CO)^L (L=PBuPhFc and P P h j F c ) . Even i n S c h l e n k tubes under n i t r o g e n a t -20°C, y e l l o w c r y s t a l s of F e ( C O ) 4 L form from dark green s o l u t i o n s of t h e t r i n u c l e a r compounds. T h i n l a y e r chromatography r e s u l t s f o r t h e s e s o l u t i o n s i n i t i a l l y do not i n d i c a t e the p resence of any o t h e r c o l o u r e d s p e c i e s . The presence of Fe(CO)^L compounds i s i n d i c a t e d on e x a m i n a t i o n by t h i n l a y e r chromatography, a f t e r a p e r i o d of time v a r y i n g from t h i r t y m inutes t o o v e r n i g h t . In a l l t h e s p e c t r o s c o p i c s t u d i e s of the t r i n u c l e a r i r o n compounds i n s o l u t i o n , t h i s d e c o m p o s i t i o n t o mononuclear m o n o s u b s t i t u t e d compounds i s e v i d e n t . When a l o n g time i s n e c e s s a r y f o r the c o l l e c t i o n of s p e c t r o s c o p i c d a t a , t h i s 6 0 d e c o m p o s i t i o n i s a d i f f i c u l t y , c a u s i n g c o m p l i c a t i o n of the s p e c t r o s c o p i c i n f o r m a t i o n . 2 . 3 . 2 R e a c t i o n s of Phosphines w i t h R u 3 ( C O ) 1 2 R a d i c a l a n i o n r e a c t i o n s of each of the f o u r phosphines w i t h R u 3 ( C O ) L 2 u s i n g a 1:1 molar r a t i o of r e a c t a n t s , and one r e a c t i o n w i t h a 1:2 molar r a t i o of m e t a l c a r b o n y l t o l i g a n d a l l g i v e t h e a n t i c i p a t e d p r o d u c t s i n good y i e l d s R u ^ l C O ^ L (L=PPh 2Fc, P P h F c 2 , P F c 3 and F e ( C G H 4 ) 2 P P h ) and R u 3 ( C O ) 1 0 ( F e ( C 5 H 4 ) 2 P P h ) 2 . In one c a s e , w i t h t h e phosphine P P h F c 2 , a s m a l l amount of R U 3 ( C O ) 1 Q L 2 was u n e x p e c t e d l y produced. I t i s p o s s i b l e t h a t t h i s d i s u b s t i t u t e d p r o d u c t was formed i n a t h e r m a l or p h o t o c h e m i c a l r e a c t i o n o c c u r r i n g c o n c u r r e n t l y . 57 75 78 P r e v i o u s s t u d i e s ' ' have used th e d i p h e n y l k e t y l r a d i c a l a n i o n t o produce a v a r i e t y of phosphine s u b s t i t u t e d r u t h e n i u m c a r b o n y l compounds i n good y i e l d s . Mono-, d i - , and t r i n u c l e a r t r i s u b s t i t u t e d compounds a r e o b t a i n e d from the t h e r m a l r e a c t i o n s . W i t h th e l e a s t b u l k y l i g a n d used, P P h 2 F c , the t r i s u b s t i t u t e d s p e c i e s p r e d o m i n a t e s . The more b u l k y l i g a n d , P P h F c 2 , y i e l d s e q u a l amounts of d i - and t r i s u b s t i t u t e d s p e c i e s , and s m a l l e r amounts of m o n o s u b s t i t u t e d d e r i v a t i v e s . The most b u l k y l i g a n d used, P F c 3 , does not y i e l d any t r i s u b s t i t u t e d s p e c i e s , a l t h o u g h the d i s u b s t i t u t e d compound i s s t i l l formed i n g r e a t e r y i e l d s than the m o n o s u b s t i t u t e d c l u s t e r . 61 T r i s u b s t i t u t i o n i s known t o predominate i n the t h e r m a l r e a c t i o n s . 4 8 , 6 5 6 8 I t i s n o n e t h e l e s s not un u s u a l t h a t the r e a c t i o n s i n t h i s s tudy produced l e s s h i g h l y s u b s t i t u t e d c a r b o n y l s , s i n c e e q u i m o l a r r a t i o s of phosphine t o c a r b o n y l were used. I t i s s u r p r i s i n g t h a t i n some c a s e s the f o r m a t i o n of t r i s u b s t i t u t e d s p e c i e s i s not a t a l l f a v o u r e d . T h i s i s most l i k e l y due t o t h e h i g h b u l k of f e r r o c e n e c o n t a i n i n g phosphine l i g a n d s . P h o t o c h e m i c a l r e a c t i o n s were c a r r i e d out f o r R u 3 ( C O ) 1 2 w i t h P P h j F c , and y i e l d b o t h t h e d i - and the t r i s u b s t i t u t e d c a r b o n y l s . E a r l i e r s t u d i e s of p h o t o c h e m i c a l r e a c t i o n s of phosphines w i t h RUgl'CO)^ r e p o r t the p r o d u c t i o n of o n l y mononuclear d e r i v a t i v e s , Ru(CO) 4L and R u ( C O ) 3 L 2 ( L = P P h 3 , 6 2 ' 6 3 P M e P h 2 6 3 and 63 PBu^ ) when an e x c e s s of l i g a n d i s used. In a l a t e r 74 p h o t o c h e m i c a l s t u d y , which used 1:3 molar r a t i o s of c a r b o n y l t o p h o s p h i n e , R u 3 ( C O ) 1 1 ( P P h ^ ) was i s o l a t e d from the r e a c t i o n m i x t u r e as w e l l as t h e Ru(CO) 4L and R u ( C O ) 3 L 2 mononuclear p r o d u c t s . The R U j t C O j ^ L compounds s y n t h e s i z e d a r e a l l orange or orange r e d i n c o l o u r . As s u b s t i t u t i o n i n c r e a s e s , the c o l o u r deepens t o shades of r e d and p u r p l e and the compounds a r e s l o w e r t o e l u t e on t h i n l a y e r chromatography, as i s the case f o r t h e i r o n c a r b o n y l d e r i v a t i v e s . One mononuclear compound, R u ( C O ) ^ ( P F C j ) , was i s o l a t e d and i t s s t r u c t u r e d e t e r m i n e d . T h i s compound i s o b t a i n e d o n l y i n 62 a v e r y low y i e l d , by c r y s t a l l i z a t i o n from a s o l u t i o n c o n t a i n i n g R u 3 ( C O ) 1 1 ( P F c 3 ) , the l a t t e r produced by the r a d i c a l a n i o n r e a c t i o n . The f o r m a t i o n of t h i s mononuclear s p e c i e s i s p r o b a b l y due t o c l u s t e r breakdown caused by the g r e a t s t e r i c b u l k of the P F c 3 l i g a n d . 2.3.3 G e n e r a l Comments on R e a c t i o n Methods. The r a d i c a l a n i o n r e a c t i o n i s the most u s e f u l f o r p r e p a r i n g s p e c i f i c compounds. Y i e l d s a r e good and column chromatography i s not r e q u i r e d a l t h o u g h i t was u s u a l l y employed t o s i m p l i f y c r y s t a l l i z a t i o n and c h a r a c t e r i z a t i o n because i t removed most benzophenone and b y p r o d u c t s formed i n the r e a c t i o n s . T h i s method i s t h e l e a s t w a s t e f u l of r e a c t a n t s . When ex c e s s phosphine i s a v a i l a b l e , t h e t h e r m a l r e a c t i o n i s f a i r l y c o n v e n i e n t f o r the p r o d u c t i o n of t r i s u b s t i t u t e d compounds, s i n c e t h e r e a c t i o n s s t i l l t a k e p l a c e i n a r e l a t i v e l y s h o r t p e r i o d of t i m e . The p h o t o c h e m i c a l p r o c e s s was found t o be the l e a s t u s e f u l , but t h i s may be m a i n l y because of problems e n c o u n t e r e d i n t h e development of a s m a l l s c a l e system ( F i g u r e 1 ) . A l l the o t h e r p h o t o c h e m i c a l equipment on hand n e c e s s i t a t e s the use of much l a r g e r volumes of s o l v e n t and s c a r c e r e a g e n t s than d e s i r e d . 63 3.0cm F i g u r e 1 P h o t o c h e m i c a l R e a c t i o n V e s s e l The r e a c t i o n v e s s e l shown i n F i g u r e 1 has t h e f o l l o w i n g f e a t u r e s : (1) a c e n t r a l c o o l i n g w e l l f i l l e d w i t h a d r y i c e -acetone s l u r r y t o e l i m i n a t e t h e r m a l r e a c t i o n s , (2) a s m a l l s o l u t i o n volume a l l o w i n g e f f i c i e n t c o o l i n g , (3) an o u t l e t t o a l l o w f o r d e g a s s i n g by freeze-pump-thaw c y c l e s , and (4) an o u t l e t f o r s a m p l i n g of s o l u t i o n s f o r m o n i t o r i n g p u r p o s e s . 64 Two main problems were e n c o u n t e r e d w i t h t h i s a p p a r a t u s . F r o s t forms on the o u t s i d e of the r e a c t i o n v e s s e l which reduces t h e e f f i c i e n c y of i r r a d i a t i o n and t h e c o o l i n g m i x t u r e i s e x h a u s t e d w i t h i n t h i r t y minutes so i t has t o be r e g e n e r a t e d . P o s s i b l e improvements i n an a p p a r a t u s t o s t u d y p h o t o c h e m i c a l r e a c t i o n s , e s p e c i a l l y f o r r e a c t i o n s of t h i s t y pe which a r e i n d u c e d t h e r m a l l y a t low t e m p e r a t u r e s , would be t h e u t i l i z a t i o n of f i b r e o p t i c s . S i n c e l i g h t can be t r a n s m i t t e d t h r o u g h g l a s s or q u a r t z f i b r e s by i n t e r n a l r e f l e c t i o n s , but heat would not be t r a n s m i t t e d i n t h e same way, i r r a d i a t i o n of c o l d r e a c t i o n m i x t u r e s by l i g h t t r a n s m i t t e d by f i b r e s would be u s e f u l t o e s t a b l i s h the d i s t i n c t i o n between t h e r m a l and p h o t o c h e m i c a l r e a c t i o n s . 2.3.4 C h a r a c t e r i z a t i o n of Compounds The compounds F e 3 ( C O ) 1 Q ( P B u P h F c ) 2 , F e ( C O ) 4 ( P P h 2 F c ) , and F e ( C O ) 4 ( P P h F c 2 ) and R u 3 ( C O ) n L (L=PPh 2Fc, P P h F c 2 and P F c 3 ) and R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 were c h a r a c t e r i z e d u s i n g NMR and IR s p e c t r o s c o p y , mass s p e c t r o s c o p i c and e l e m e n t a l a n a l y s i s , and m e l t i n g p o i n t s were measured. The compounds F e ( C O ) 4 ( P B u P h F c ) , F e 3 ( C O ) 1 1 ( P B u P h F c ) , F e 3 ( C O ) 1 1 ( P P h 2 F c ) , R u 3 ( C O ) 1 ^ and R u 3 ( C O ) 1 Q L 2 (L=Fe(CgH 4) 2PPh) a r e c h a r a c t e r i z e d by a l l the above methods e x c e p t e l e m e n t a l a n a l y s i s because samples c o u l d not be r e a d i l y o b t a i n e d t h a t g i v e good a n a l y t i c a l r e s u l t s . The d a t a i n d i c a t e t h a t the 65 f e r r o c e n o p h a n e b r i d g e has remained i n t a c t i n the compounds c o n t a i n i n g the phosphine F e ( C 5 H 4 > 2 P P h . M e l t i n g p o i n t s were measured f o r Fe(CO> 4(PBuPhFc) and F e 3 ( C O ) 1 1 ( P P h j F c ) . The known compound F e ( C O ) 4 ( P F c 3 ) , was made from F e 3 ( C O ) l 2 r a t h e r than Fe(CO)g as o u t l i n e d i n the o r i g i n a l p r e p a r a t i o n . 1 ^ The m e l t i n g p o i n t and i n f r a r e d spectrum compare w i t h t h e 53 l i t e r a t u r e v a l u e s and t h e mass spectrum c o n f i r m s t h e f o r m u l a t i o n . R u 3 ( C O ) 1 Q ( P P h F c 2 ) 2 i s c h a r a c t e r i z e d by NMR and IR s p e c t r o s c o p y and mass s p e c t r o s c o p i c a n a l y s i s . The e l e m e n t a l a n a l y t i c a l d a t a s u g g e s t s t h e p r e s e n c e of 1.5 moles of C H 2 C 1 2 per mole of p r o d u c t . T h i s i s c o n f i r m e d by the NMR spectrum. The c r y s t a l s s u b m i t t e d f o r a n a l y s i s were w e l l formed, and t h i n l a y e r chromatography showed them t o be f r e e from c o l o u r e d i m p u r i t i e s . The compounds of p r o b a b l e f o r m u l a R u 3 ( C O ) 1 Q ( P F c 3 ) 2 , and Ru 3(CO)<jL 3 (L=PPh 2Fc and P P h F c 2 ) were s y n t h e s i z e d ; the l i m i t e d d a t a o b t a i n e d , NMR and mass s p e c t r a f o r R u 3 ( C O ) 1 Q ( P F c 3 ) 2 , a mass spectrum f o r R u 3 ( C O ) g ( P P h 2 F c ) 3 , and t h i n l a y e r chromatography r e s u l t s f o r a i l t he compounds s u p p o r t the p r o b a b l e f o r m u l a t i o n s . A few unique c r y s t a l s formed i n a s o l u t i o n of what was i n i t i a l l y R u 3 ( C O ) 1 1 ( P F c 3 ) , and they were found t o be R u ( C O ) 4 ( P F c 3 ) by X-ray c r y s t a l l o g r a p h i c a n a l y s i s . The s t r u c t u r e ( F i g u r e s 2-4) i s an a x i a l l y s u b s t i t u t e d t r i g o n a l b i p y r a m i d . C r y s t a l s of R u 3 ( C O ) 1 1 ( P P h 2 F c ) and 66 R u ^ f C O ) . Q (PPIIFC2 ) 2 h a v e a l s o b e e n s u b m i t t e d f o r X - r a y c r y s t a l s t r u c t u r e d e t e r m i n a t i o n . I t i s p r o b a b l e t h a t s u c c e s s i v e s u b s t i t u t i o n t a k e s p l a c e a t d i f f e r e n t r u t h e n i u m a t o m s i n t h e m u l t i s u b s t i t u t e d c l u s t e r s a s i s known f r o m t h e X - r a y c r y s t a l l o g r a p h i c r e s u l t s f o r o t h e r c o m p o u n d s o f t h e same t y p e s u c h a s F e 3 ( C O ) g ( P M e 2 P h ) 35 6 a n d R u 3 ( C O ) g ( P M e 3 ) 37 8 . F i g u r e 2 S i m p l i f i e d V i e w o f t h e S t r u c t u r e o f R u ( C O ) . ( P F c , ) F i g u r e 3 S t r u c t u r e o f R u ( C O ) 4 ( P F c 3 > 67 R U ( 1 ) C(11) C(14) F i g u r e 4 S t r u c t u r e of R u ^ O ^ P F c ^ ) Showing Numbering E l l i p s o i d s E n c l o s e 50% P r o b a b i l i t i e s M e l t i n g p o i n t s of the compounds s y n t h e s i z e d can be found i n T a b l e s V and V I . Most of the compounds decomposed b e f o r e m e l t i n g . The o n l y compounds t h a t m e l t e d c l e a n l y were the two mononuclear i r o n d e r i v a t i v e s , Fe(CO)^(PBuPhFc) and F e ( C O ) 4 ( P P h F c 2 ) . The compounds c o n t a i n i n g t h e phosphine l i g a n d c o n t a i n i n g t h e b u t y l group m e l t e d o r decomposed a t lower t e m p e r a t u r e s than the o t h e r compounds. E l e m e n t a l a n a l y s i s c l e a r l y d i s t i n g u i s h e s between the 68 l i k e l y c o m p o s i t i o n s f o r the p r o d u c t s of the r e a c t i o n s of the m e t a l c a r b o n y l s w i t h t h e phosphines used. A n a l y t i c a l l y pure samples were d i f f i c u l t t o o b t a i n because of problems e n c o u n t e r e d i n the c r y s t a l l i z a t i o n of t h e s e compounds. For a l l s p e c t r o s c o p i c s t u d i e s , o b t a i n i n g the compound i n a pure form i s a major d i f f i c u l t y . T h i s makes c r y s t a l l i z a t i o n t he most i m p o r t a n t t e c h n i q u e i n t h i s s t u d y . The most easy t o c r y s t a l l i z e have the l o w e s t degree of s u b s t i t u t i o n and the l o w e s t number of f e r r o c e n y l s u b s t i t u e n t s on the phosphorus atom of t h e s u b s t i t u t i n g l i g a n d . 2.3.5 G e n e r a l Trends E n c o u n t e r e d i n S p e c t r o s c o p i c and A n a l y t i c a l S t u d i e s NMR d a t a a r e l i s t e d i n T a b l e s V I I and V I I I . In a l l the compounds p r e p a r e d , p r o t o n s from t h e u n s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g r e s o n a t e as a s h a r p s i n g l e t between 3.78 ppm and 4.20 ppm. P r o t o n s from the s u b s t i t u t e d r i n g r e s o n a t e between 3.95 and 5.00 ppm and appear as one m u l t i p l e t , two m u l t i p l e t s of 3:1 or 1:1 or as f o u r s e p a r a t e m u l t i p l e t s . P h e n y l resonances appear as one broad m u l t i p l e t o r as two broad m u l t i p l e t s of r a t i o 3:2. The s m a l l e r , more d e s h i e l d e d m u l t i p l e t c o r r e s p o n d s t o the two p r o t o n s o r t h o t o the s i t e of s u b s t i t u t i o n , w h i l e t h e l a r g e r i s a s s i g n e d t o the t h r e e p r o t o n s p a r a and meta t o the s i t e of s u b s t i t u t i o n . P h e n y l p r o t o n s r e s o n a t e between 8.23 and 7.15 ppm. The b u t y l p r o t o n s appear between 2.40 and 0.70 ppm as m u l t i p l e t s i n a 2:4:3 69 r a t i o from low t o h i g h f i e l d . Some g e n e r a l t r e n d s can be o b s e r v e d . W i t h i n c r e a s e d s u b s t i t u t i o n on the m e t a l c l u s t e r , the l i g a n d p r o t o n s become l e s s s h i e l d e d . T h i s i s presumably because the d o n a t i o n of the l i g a n d d e c r e a s e s w i t h d e c r e a s i n g numbers of i r-acceptor c a r b o n y l l i g a n d s . As t h e o - d o n a t i n g a b i l i t i e s of the l i g a n d s i n c r e a s e from P h j F c P t o Fc.jP, the l i g a n d p r o t o n s s h o u l d become l e s s s h i e l d e d . G e n e r a l l y t h a t seems t o be the c a s e , but the d i f f e r e n t s p l i t t i n g p a t t e r n s make comparison d i f f i c u l t and t h e r e a l s o must be some e l e c t r o n i c and s t e r i c e f f e c t s t h a t the l i g a n d s u b s t i t u e n t s have on each o t h e r . S i n c e t h e number of f e r r o c e n e groups i s d i f f e r e n t f o r each l i g a n d , t h e s e comparisons of NMR f r e q u e n c i e s a r e d u b i o u s . In a l l of the compounds but two, t h e p r o t o n s from t h e s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g of the f e r r o c e n e a r e d e s h i e l d e d compared t o t h e p r o t o n s on the u n s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g . The e x c e p t i o n s a r e R u 3 ( C O ) 1 1 ( P P h F c 2 ) and R u 3 ( C O ) 1 0 ( P P h F c 2 ) 2 f where two of t h e p r o t o n s of the s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g a r e more s h i e l d e d than the p r o t o n s of t h e u n s u b s t i t u t e d r i n g . I t i s i n t e r e s t i n g t o note t h a t t h e m o n o s u b s t i t u t e d mononuclear i r o n d e r i v a t i v e of t h e same l i g a n d does not show t h i s phenomenon!. M e t a l c e n t r e s of the c l u s t e r o t h e r than t h e one c o o r d i n a t e d t o t h e l i g a n d c o u l d have a s h i e l d i n g e f f e c t and be r e s p o n s i b l e f o r t h e s h i f t of f r e q u e n c i e s . 70 The NMR s p e c t r a of the t r i n u c l e a r i r o n complexes have broadened s i g n a l s , p r o b a b l y due t o the f o r m a t i o n of s m a l l q u a n t i t i e s of paramagnetic i r o n compounds. I n f r a r e d s p e c t r o s c o p y i s a v e r y u s e f u l t e c h n i q u e f o r the c h a r a c t e r i z a t i o n of t h e s e compounds due t o the presence of c a r b o n y l l i g a n d s which show c h a r a c t e r i s t i c s h a r p i n t e n s e a b s o r p t i o n bands. I n f r a r e d a b s o r p t i o n f r e q u e n c i e s of the compounds s y n t h e s i z e d i n t h i s s t u d y a r e g i v e n i n T a b l e s IX and X. The mononuclear c a r b o n y l compounds [M(CO) 4L (M=Fe, L=PBuPhFc, P P h 2 F c , P P h F c 2 and P F c 3 ; M=Ru, L=PFc 3>] most l i k e l y have a x i a l l y m o n o s u b s t i t u t e d t r i g o n a l b i p y r a m i d a l s t r u c t u r e s . I f the l i g a n d L i s c o n s i d e r e d t o be a p o i n t , the compounds have C 3 v symmetry and t h r e e i n f r a r e d a c t i v e bands a r e e x p e c t e d i n the c a r b o n y l r e g i o n 2 a 1 and e. The l o w e s t 52 f r e q u e n c y band i s a s s i g n e d t o the e mode and the h i g h e r of the two a 1 modes i s m a i n l y due t o the e q u a t o r i a l symmetric 80 s t r e t c h e s . L e s s symmetric l i g a n d s can d e c r e a s e the symmetry of the complex t o C g so t h a t i t e x h i b i t s f o u r i n f r a r e d a c t i v e bands i n t h e c a r b o n y l r e g i o n , one f o r each c a r b o n y l l i g a n d p r e s e n t . The e x t r a band can be r e g a r d e d as a r i s i n g from a 81 s p l i t t i n g of the e mode i n a C 3 v spectrum. The s o l u t i o n i n f r a r e d s p e c t r a of the mononuclear compounds, M ( C O ) 4 ( P F c 3 ) (M=Fe and Ru), c o n t a i n i n g t h e most symmetric l i g a n d used i n t h i s s t u d y , show t h r e e c a r b o n y l s t r e t c h i n g 8 2 v i b r a t i o n a l f r e q u e n c i e s . Other M(CO).L (M=Fe, L=PMe~ and 71 P P h 3 ; M=Ru, L=PBu 3 , P P h 3 D , and PMePh 2° ) compounds g i v e t h r e e i n f r a r e d s t r e t c h i n g modes. The r e m a i n i n g M(CO) 4L (M=Fe, L=PBuPhFc, P P h 2 F c and P P h F c 2 ) compounds s y n t h e s i z e d i n t h i s s t u d y show f o u r i n f r a r e d a c t i v e bands i n t h e c a r b o n y l 48 r e g i o n as do the r e p o r t e d compounds M(CO) 4L (M=Fe, L=PMe 2Bz and P ( C M e 3 ) 3 8 3 ) . The symmetry of M 3 ( C O ) ^ 1 2 - n ) L n ^ M = F e o r R u » L = P R 3 ^ compounds i s g e n e r a l l y q u i t e low so t h a t many bands a r e seen i n t h e i n f r a r e d s p e c t r a . For t h e s i m p l e s t a n a l y s i s of these s p e c t r a , each m e t a l c e n t r e u n i t can be c o n s i d e r e d as a s e p a r a t e e n t i t y w i t h the a p p r o p r i a t e symmetry a t t h a t c e n t r e . E l e c t r o n i c and s t e r i c e f f e c t s a r e r e l a y e d from one m etal c e n t r e of t h e c l u s t e r t o a n o t h e r , t o f u r t h e r c o m p l i c a t e the 75 s p e c t r a . N e v e r t h e l e s s , p a t t e r n s can be r e c o g n i z e d t h a t a r e i n d i c a t i v e of mono-, d i - and t r i s u b s t i t u t e d t r i n u c l e a r compounds. An i n c r e a s e i n s u b s t i t u t i o n i s accompanied by a d e c r e a s e i n the f r e q u e n c y of c a r b o n y l bands. There i s a l s o an i n c r e a s e i n the band w i d t h . Phosphine l i g a n d s a r e b e t t e r o-donors than c a r b o n y l l i g a n d s , so w i t h i n c r e a s i n g s u b s t i t u t i o n more * e l e c t r o n d e n s i t y i s s h i f t e d t o t h e IT - a n t i b o n d i n g o r b i t a l s of t h e r e m a i n i n g c a r b o n y l l i g a n d s . The m e t a l - c a r b o n bond i s 8 5 s t r e n g t h e n e d which i n d u c e s l e n g t h e n i n g of t h e CO bonds. T h i s enhancement of i f-back-bonding causes l o w e r i n g of the f r e q u e n c y of the i n f r a r e d s t r e t c h i n g v i b r a t i o n s . T h i s t r e n d 47 75 has been shown f o r a number of compounds ' and i s 72 m a i n t a i n e d by the compounds s y n t h e s i z e d i n t h i s s t u d y . As t h e number of f e r r o c e n e c o n s t i t u e n t s i n the s u b s t i t u t i n g l i g a n d i s i n c r e a s e d , the f r e q u e n c i e s of the a b s o r p t i o n bands of the c a r b o n y l l i g a n d s d e c r e a s e . T h i s i s i n agreement w i t h the s t u d i e s of K o t z and N i v e r t , 1 1 and t h o s e of P i t t m a n and E v a n s , 1 0 as d i s c u s s e d i n the i n t r o d u c t i o n t o t h i s c h a p t e r . The e f f e c t appears t o be enhanced w i t h t h e more h i g h l y s u b s t i t u t e d compounds, where t h e r e a r e fewer c a r b o n y l l i g a n d s . F o r the same r e a s o n , the e f f e c t i s l e s s extreme f o r the c l u s t e r s than f o r t h e mononuclear compounds. The a~ d o n a t i n g a b i l i t y of PBuPhFc appears t o be about the same as f o r P P l ^ F c , by comparison of i n f r a r e d f r e q u e n c i e s . When making comparisons of i n f r a r e d s t r e t c h i n g f r e q u e n c i e s from s o l u t i o n s t u d i e s , i t i s i m p o r t a n t t o c o n s i d e r which s o l v e n t s have been used. As the a c c e p t o r a b i l i t y of the s o l v e n t i n c r e a s e s , the c a r b o n y l s t r e t c h i n g f r e q u e n c i e s 84 85 d e c r e a s e . ' C o n s e q u e n t l y , a compound d i s s o l v e d i n c y c l o h e x a n e w i l l show h i g h e r c a r b o n y l f r e q u e n c i e s than the same compound d i s s o l v e d i n methylene c h l o r i d e . A problem e n c o u n t e r e d i n the p r e s e n t i n v e s t i g a t i o n , w i t h the h i g h e r m o l e c u l a r weight compounds, i s t h e i r low s o l u b i l i t y . The b e s t s o l v e n t s a r e t h o s e such as c y c l o h e x a n e which i n t e r a c t n e g l i g i b l y w i t h the compound of i n t e r e s t , and do not have any major bands i n the r e g i o n of i n t e r e s t . Such s o l v e n t s a l l o w f o r s h a r p , w e l l r e s o l v e d bands. U n f o r t u n a t e l y many of the new c a r b o n y l c l u s t e r s a r e i n s u f f i c i e n t l y s o l u b l e 73 i n c y c l o h e x a n e t o a c h i e v e a h i g h enough c o n c e n t r a t i o n f o r a n a l y s i s , even w i t h the a v a i l a b i l i t y of more s e n s i t i v e F.T. i n s t r u m e n t s . D i c h l o r o m e t h a n e o f t e n has t o be used t o a c h i e v e optimum c o n c e n t r a t i o n f o r a n a l y s i s , and s p e c t r a a r e o f t e n b r o a d , p o o r l y r e s o l v e d , and weak. E l e c t r o n impact mass s p e c t r o s c o p i c a n a l y s i s p r o v e d t o be v e r y u s e f u l f o r the i d e n t i f i c a t i o n of mononuclear compounds. A l l of t h e s e compounds show p a r e n t peaks and o t h e r peaks i n d i c a t i n g s e q u e n t i a l l o s s of t h e f o u r c a r b o n y l l i g a n d s , f o l l o w e d by l o s s of t h e c e n t r a l m e t a l atom ( T a b l e X I V ) . S m a l l e r peaks a r e a s s o c i a t e d w i t h f r a g m e n t a t i o n of t h e l i g a n d . T a b l e XIV A n a l y s i s of Mass S p e c t r o s c o p i c Data f o r F e ( C O ) 4 L Compounds L Fragment < Observed (m/e v a l u e ) F e ( C O ) 4 L + F e ( C O ) 3 L + F e ( C O ) 2 L + F e ( C O ) L + F e L + L + PBuPhFc 518 490 462 434 406 350 P P h 2 F c 538 510 482 454 426 370 P P h F c 2 646 618 590 562 534 478 P F c 3 754 726 670 642 586 The i r o n c l u s t e r s F e 3 ( C O ) 1 0 ( P B u P h F c ) 2 and F e 3 ( C O ) n ( P P h 2 F c ) show c l u s t e r breakdown and e x h i b i t Fe(CO) 4 ^ 74 fragments and fragments o r i g i n a t i n g from i t s breakdown as do the mononuclear d e r i v a t i v e s of the same l i g a n d s . I n a d d i t i o n , they show e v i d e n c e f o r l o s s of methylene groups. W i t h compounds of h i g h e r n u c l e a r i t y , t he e l e c t r o n impact mass s p e c t r a a r e l e s s u s e f u l . The c l u s t e r compounds seem t o be l e s s s t a b l e r e s u l t i n g i n more f r a g m e n t a t i o n of the l i g a n d from the c l u s t e r which tends t o swamp the d e t e c t o r so t h a t o n l y the l i g a n d peak and i t s f r a g m e n t a t i o n peaks can be ob s e r v e d t o any g r e a t e x t e n t . Some s u c c e s s was a c h i e v e d by i n c r e a s i n g the probe t e m p e r a t u r e . Thus, t h e spectrum of R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 i n i t i a l l y a f f o r d e d a fragment c o r r e s p o n d i n g t o t h e l i g a n d as the peak of h i g h e s t m/e when the probe was he a t e d t o 150°C. When i t was heated t o 280°C, a peak c o r r e s p o n d i n g t o R u 2 ( C O ) 7 ( P P h 2 F c ) 2 + was o b s e r v e d . I t would be worth t r y i n g t h e s e c o n d i t i o n s w i t h o t h e r samples. E l e c t r o n impact i o n i z a t i o n was u s e f u l f o r t h e compound R u 3 ( C O ) 1 1 ( F e ( C g H 4 ) 2 P P h ) f o r which the l a r g e s t fragment c o r r e s p o n d s t o the p a r e n t peak minus two c a r b o n y l l i g a n d s . S m a l l e r fragments c o r r e s p o n d t o s e q u e n t i a l l o s s of c a r b o n y l l i g a n d s , breakdown of the m e t a l c l u s t e r , and f r a g m e n t a t i o n of the l i g a n d ( T a b l e X V ) . G e n e r a l l y , the compounds w i t h h i g h e r m o l e c u l a r weight seem l e s s l i k e l y t o show p a r e n t peaks. The compound R u 3 ( C O ) l Q ( P P h 2 F c ) 2 g i v e s fragments c o r r e s p o n d i n g t o L + ( 3 7 0 ) , R u 2 P P h F c + ( 4 9 6 ) , Ru(CO)L + ( 5 0 1 ) , ^ 2 L + * 5 7 2 ) ' R u 2 ( C 0 ) L + ( 6 0 2 ) , R u 2 ( C O ) 2 L + ( 6 3 0 ) , R u 2 ( C O ) 3 L + ( 6 5 5 ) , R u 2 ( C O ) 5 L + (713) 75 and R u 3 ( C O ) 1 Q P P h 2 + ( 7 7 0 ) . The compound R u 3 ( C O ) 1 Q ( P P h F c 2 ) 2 + + shows fragments c o r r e s p o n d i n g t o L ( 4 7 8 ) , R u 2 P F c 2 ( 6 0 3 ) , Ru(CO)L + ( 6 0 7 ) , R u ( C O ) 2 L + ( 6 3 5 ) , R u 2 ( C O ) 2 ( P P h C p F e F c ) + ( 6 7 1 ) , R u 2 ( C O ) L + (710) and R u 3 ( C O ) ( P P h C p F e F c ) + ( 7 4 6 ) . I t seems t h a t w i t h e l e c t r o n impact i o n i z a t i o n , f r a g m e n t a t i o n of t h e phosphine l i g a n d can o c c u r b e f o r e l o s s of the c a r b o n y l l i g a n d s . Peaks c o r r e s p o n d i n g t o l a r g e r fragments than the l i g a n d s a r e not o b s e r v e d f o r the compounds R u 3 ( C O ) g ( P P h 2 F c ) 3 , R u 3 ( C O ) 1 1 ( P F c 3 ) and R u 3 ( C O ) 1 Q ( P F c 3 ) 2 , and f o r the compound R u 3 ( C O ) l 0 ( F e ( C g H 4 ) 2 P P h ) 2 peaks o b s e r v e d were of lower m/e v a l u e s than e x p e c t e d f o r the l i g a n d . F a s t atom bombardment (FAB) mass s p e c t r a of the compounds F e 3 ( C O ) 1 1 ( P P h 2 F c ) , R u 3 ( C O ) 1 1 ( P P h 2 F c ) , R u 3 ( C O ) 1 1 ( P P h F c 2 ) , Ru 3(CO) 1 ( ) ( P P h 2 F c ) 2 and Ru 3(CO) 1 Q ( P F c 3 ) 2 were o b t a i n e d . I n i t i a l l y the s p e c t r a were run i n g l y c e r o l , t h i o g l y c e r o l , n i t r o p h e n y l o c t y l e t h e r and s u l p h o l a n e w i t h o u t s u c c e s s . D i a m y l p h e n o l was t r i e d f o r R u 3 ( C O ) 1 g ( P P h 2 F c ) 2 and peaks were o b t a i n e d f o r the f o r m u l a t i o n R u 2 ( C O ) 4 ( P P h 2 F c ) + . The i s o t o p i c a r r a y and r e l a t i v e i n t e n s i t i e s of the peaks o b t a i n e d a l s o f i t t h i s f o r m u l a t i o n . The compound F e 3 ( C O ) 1 1 ( P P h 2 F c ) , was d i s s o l v e d i n methanol and c h l o r o f o r m and then g l y c e r o l was added, but the fragment of g r e a t e s t m/e o b s e r v e d was o n l y due t o the l i g a n d i o n . The next sample, R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 , gave a l a r g e r fragment which c o r r e s p o n d s t o R u _ ( C O ) ( P P h ~ F c ) + , when methanol, benzene and 76 p o l y e t h y l e n e g l y c o l were used. F i n a l l y d i a l l y l p h t h a l a t e was used f o r the samples R u 3 ( C O ) 1 1 ( P P h j F c ) and R u 3 ( C O ) 1 1 ( P P h F c 2 ) , bo t h of which gave p a r e n t peaks and peaks c o r r e s p o n d i n g t o the l o s s of c a r b o n y l l i g a n d s and f r a g m e n t a t i o n of t h e c l u s t e r of m e t a l atoms and f r a g m e n t a t i o n of t h e l i g a n d ( T a b l e XV). T a b l e XV A n a l y s i s of Mass S p e c t r o s c o p i c Data f o r R u 3 ( C O ) 1 1 L Compounds Compound R u _ ( C O ) 1 1 L L Fe(C : 5 H 4 ) 2 P P h P P h 2 F c PPhFc Fragment* m/e V a l u e R u 3 ( C O ) 1 , L 981 1089 R U 3 ( C O ) 1 0 L 953 1061 R u 3 ( C O ) g L 847 925 1033 R u 3 ( C O ) g L 819 897 1005 R u 3 ( C O ) ? L 793 869 977 R u 3 ( C O ) g L 765 841 949 R u 3 ( C O ) 5 L 734 813 921 R u 3 ( C O ) 4 L 709 785 893 R u 3 ( C O ) 3 L 679 757 865 R u 3 ( C O ) 2 L 651 729 837 Ru 3(CO)L 623 701 809 R u 3 L 595 673 781 R u 2 ( C O ) ? L 876 77 R u 2 ( C O ) g L 740 848 R u 2 ( C O ) 5 L 712 820 R u 2 ( C O ) 4 L 684 R u 2 ( C O ) 3 L 578 656 764 R u 2 ( C O ) 2 L 550 628 736 Ru 2(CO)L 522 600 708 Ru 2L 494 572 680 Ru(CO) 2L 635 Ru(CO)L 607 Thus, FAB mass s p e c t r a i n d i a l l y l p h t h a l a t e show the presence of p a r e n t i o n s f o r c l u s t e r s when e l e c t r o n impact mass s p e c t r o s c o p y f a i l s . The i s o t o p i c p a t t e r n f o r the peaks of a mass spectrum of a fragment (M +) of a p a r t i c u l a r f o r m u l a , can be c a l c u l a t e d u s i n g the computer program ISOC. Two examples a r e g i v e n i n T a b l e s XVI and XVII and F i g u r e s 5 and 6. These t h e o r e t i c a l p a t t e r n s can be compared w i t h the p a t t e r n s o b t a i n e d t o c o n f i r m peak a s s i g n m e n t . 78 T a b l e XVI I s o t o p e C o m b i n a t i o n s f o r the M o l e c u l e / I o n Fe^ Nominal Peak R e l a t i v e Mass Mass Abundance 164 163.814133 1 .207717 166 165.809449 19.024851 167 166.809906 0.908900 168 167.804769 100.000000 169 168.805223 7.160471 170 169.803454 1.249733 100 6 0 6 0 4 0 2 0 Fe 164 165 166 167 168 N o m i n a l M a s s 169 170 F i g u r e 5 I s o t o p e P a t t e r n f o r F e 3 " 79 T a b l e X V I I I s o t o p e C o m b i n a t i o n s f o r t h e M o l e c u l e / I o n F e , C 1 Q+ N o m i n a l Peak R e l a t i v e Mass Mass A b u n d a n c e 392 3 9 1 . 8 1 4 1 3 8 1 . 2 0 1 0 1 5 393 3 9 2 . 8 1 7 1 9 2 0 . 2 8 4 7 3 8 394 3 9 3 . 8 0 9 4 6 7 1 8 . 9 4 2 6 4 4 395 3 9 4 . 8 1 2 2 7 4 4 . 9 3 8 7 3 2 396 3 9 5 . 8 0 4 8 3 1 1 0 0 . 0 0 0 0 0 0 397 3 9 6 . 8 0 7 4 0 8 2 8 . 3 6 1 5 9 1 398 3 9 7 . 8 0 8 5 4 6 4 . 9 0 4 0 8 3 399 3 9 8 . 8 0 9 6 2 1 0 . 6 0 7 1 5 9 100 8 0 o c 6 0 Z3 < " 4 0 V en 2 0 F e 3 C I 9 + 3 9 2 3 9 3 3 9 4 3 9 5 3 9 6 3 9 7 3 9 8 3 9 9 Norn i no I M a s s F i g u r e 6 I s o t o p e P a t t e r n f o r F e ^ C ^ * 80 2.3.6 Cone Angle D e t e r m i n a t i o n f o r P F c 3 The u s e f u l concept of cone a n g l e has been i n t r o d u c e d and 74 d e f i n e d by Tolman, and i s g e n e r a l l y a c c e p t e d as a measure of b u l k of a l i g a n d . The f e r r o c e n y l p h o s p h i n e s a r e e x p e c t e d t o be b u l k y , and i t i s d e s i r a b l e t o have some s e m i q u a n t i t a t i v e e x p r e s s i o n of t h i s degree of b u l k . S i n c e the s t r u c t u r e of oc on R u ( C O ) 4 ( P F c 3 ) i s known, 0 0 the d a t a l i s t e d i n T a b l e X V I I I have been used i n s c a l e drawings t o d e t e r m i n e the cone a n g l e as shown i n F i g u r e 7, of P F c 3 , t o be 178°. The cone a n g l e i s d e f i n e d as the apex a n g l e of a c y l i n d r i c a l e cone, c e n t e r e d 2.28 A from t h e c e n t r e of the phosphorus atom i n the d i r e c t i o n of the m e t a l , t o t h e edge of the van der Waals r a d i i of t h e outermost atoms i n the l i g a n d . A van der * 88 Waals r a d i u s of 1.2 A f o r the hydrogen atom was used. For u n s y m m e t r i c a l l i g a n d s , two t h i r d s of t h e sum of the h a l f a n g l e s ( e/2) i s e q u a l t o the cone a n g l e . The v a l u e s from T a b l e X V I I I t h a t d e t e r m i n e the cone a n g l e a r e t h o s e f o r the hydrogen atoms 219, 224 and 234. 81 p F i g u r e 7 Cone A n g l e D e t e r m i n a t i o n 82 T a b l e X V I I I S e l e c t e d A n g l e s a n d D i s t a n c e s f o r t h e M o l e c u l e R u ( C O ) . ( P F c 0 ) * H A t o m A n g l e R u - P - H ( ° ) D i s t a n c e P-H ( A ) 114 7 2 . 1 3 . 1 2 5 119 7 8 . 8 4 . 7 1 2 124 7 2 . 8 3 . 1 2 5 129 8 3 . 5 4 . 9 1 0 134 7 2 . 0 3 . 1 3 6 139 8 1 . 0 4 . 8 5 7 214 7 2 . 0 3 . 1 0 6 219 7 4 . 9 4 . 7 1 0 224 7 2 . 6 3 . 1 1 2 229 81 . 4 4 . 7 7 5 234 7 2 . 8 3 . 1 1 9 239 8 4 . 1 5 . 0 4 3 * The f i r s t c o l u m n number r e f e r s t o t h e t w o m o l e c u l e s i n t h e u n i t c e l l ; t h e s e c o n d c o l u m n n u m b e r i s d i c t a t e d by t h e c h o i c e o f t h r e e f e r r o c e n e m o l e c u l e s ; t h e t h i r d number i s a f o u r f o r t h e h y d r o g e n a t o m a t t a c h e d t o t h e c a r b o n a t o m o f t h e s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g t h a t i s c l o s e s t t o t h e r u t h e n i u m a t o m , a n d a n i n e i s f o r t h e c o r r e s p o n d i n g c a r b o n a t o m o f t h e u n s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g . 83 C h a p t e r T h r e e - The P y r o l y s i s o f F e r r o c e n y i p h o s p h i n e D e r i v a t i v e s o f I r o n a n d R u t h e n i u m C a r b o n y l Compounds 3 . 1 I n t r o d u c t i o n One p u r p o s e o f t h e p r e s e n t i n v e s t i g a t i o n i s t o e s t a b l i s h i f t h e c o m p o u n d s d e s c r i b e d i n C h a p t e r Two w o u l d p r o d u c e n o v e l c o m p l e x e s by p y r o l y t i c r e a c t i o n s . I t i s p a r t i c u l a r l y i n t e r e s t i n g t o d e t e r m i n e i f t h e f o r m a t i o n o f a b e n z y n e f r a g m e n t w o u l d be m o r e f a v o u r a b l e t h a n t h e f o r m a t i o n o f a f e r r o c y n e f r a g m e n t . The p r e p a r a t i o n o f a compound c o n t a i n i n g a f e r r o c y n e f r a g m e n t w o u l d be a s i g n i f i c a n t a c h i e v e m e n t . As a n i n t r o d u c t i o n , a s u r v e y o f t h e t h e r m a l d e c o m p o s i t i o n r e a c t i o n s o f t h i s t y p e i s g i v e n . 8 9 - 9 1 M u e t t e r t i e s h a s s u g g e s t e d t h a t m e t a l c a r b o n y l c l u s t e r c o m p o u n d s a r e a t t r a c t i v e m o d e l s o f m e t a l s u r f a c e s i n v o l v e d i n c h e m i s o r p t i o n a n d h e t e r o g e n e o u s c a t a l y s i s . I n h e t e r o g e n e o u s c a t a l y s i s , t h e c a t a l y t i c r e a c t i o n s o c c u r b e t w e e n c h e m i s o r b e d r e a c t a n t s on t h e s u r f a c e o f t h e c a t a l y s t . A l i g a t e d m e t a l c l u s t e r c a n be c o n s i d e r e d t o be a m o d e l o f t h e s u r f a c e o f a m e t a l w h e r e t h e r e i s c h e m i s o r p t i o n . The c l u s t e r l i g a n d s a r e a n a l o g o u s t o a c h e m i s o r b e d s p e c i e s on t h e m e t a l s u r f a c e . T h u s , m i g r a t i o n o f a t o m s o r s m a l l m o l e c u l e s o v e r o r w i t h i n p o l y m e t a l a g g r e g a t e s w h i c h c o n t a i n m e t a l - m e t a l b o n d s i s o f c o n s i d e r a b l e i n t e r e s t w i t h r e g a r d t o t h e p o s s i b l e r e l a t i o n s h i p o f s u c h m i g r a t i o n s t o t h o s e o c c u r r i n g d u r i n g t h e c h e m i s o r p t i o n o f s u b s t r a t e s on a m e t a l s u r f a c e . 84 92 — 94 The c h e m i s t r y of O s 3 ( C O ) 1 2 a f f o r d s e a r l y examples of m o l e c u l e s d e r i v e d from m e t a l c l u s t e r s which seem t o emulate 92 m e t a l s u r f a c e s . The t h e r m a l r e a c t i o n of P P h 3 and O s 3 ( C O ) l 2 i n the molar r a t i o 2:1, i n x y l e n e , g i v e s p r i n c i p a l l y t he e x p e c t e d s u b s t i t u t i o n p r o d u c t s O s 3 ( C O ) i 2 - n ^ P P h 3 ^ n ^ n = 1 " 3 ) as w e l l as low y i e l d s of s i x o t h e r d e r i v a t i v e s , most of which 92 93 a r e c h a r a c t e r i z e d ' by X-ray c r y s t a l l o g r a p h i c a n a l y s i s . These a r e O s 3 ( C O ) g ( P P h 2 ) ( P h ) ( P P h C g H 4 ) ( X X I V ) , O s 3 ( C O ) ? ( P P h 2 ) 2 ( C 6 H 4 ) (XXV), H O s 3 ( C O ) g ( P P h 3 ) ( P P h 2 C g H 4 ) (X X V I ) , where the h y d r i d e , a l t h o u g h not l o c a t e d i n the c r y s t a l s t r u c t u r e , i s thought t o b r i d g e the two osmium atoms t h a t s h are t h e b r i d g i n g p h e n y l p h o s p h i n e , H O s 3 ( C O ) ? ( P P h 2 ) ( P P h 3 ) ( C g H 4 ) ( X X V I I ) , where t h e u n l o c a t e d h y d r i d e i s thought t o be t e r m i n a l l y bound, and H O s 3 ( C O ) g ( P P h 3 ) ( P P h 2 C 6 H 4 ) ( X X V I I I ) , where th e u n l o c a t e d h y d r i d e i s thought t o b r i d g e t h e two osmium atoms w i t h osmium-phosphorus bonds. C r y s t a l s s u i t a b l e f o r X-ray c r y s t a l l o g r a p h i c a n a l y s i s were not o b t a i n e d f o r t h e compound O s 3 ( C O ) g ( P P h 3 ) ( P P h 2 ) , which i s thought t o have formed from l o s s of an o r t h o - h y d r o g e n atom from one of t h e p h e n y l groups. An a d d i t i o n a l compound o b t a i n e d from the t h e r m a l d e c o m p o s i t i o n 93 r e a c t i o n of O s 3 ( C O ) l Q ( P P h 3 ) 2 was H O s 3 ( C O ) ? ( P P h 2 ) ( P P h 2 C g H 4 C 6 H 3 ) ( X X I X ) , where th e u n l o c a t e d h y d r i d e i s thought t o be t e r m i n a l l y bound. T h i s compound (XXIX) i s a l s o c h a r a c t e r i s e d by X-ray c r y s t a l l o g r a p h y . The d e c o m p o s i t i o n of the osmium c l u s t e r t o g i v e t h e s e p r o d u c t s i s 85 suggested t o proceed v i a the h y d r i d e s (XXVI) and ( X X V I I I ) s i n c e t h e i r y i e l d s d e c r e a s e as the r e a c t i o n t ime i s i n c r e a s e d . PPh. PhoP (C0) 3 Os ^ J = - 0 s ( C 0 ) 3 ( C 0 ) 3 0 s PPh. Os(CO). (XXIV) O s 3 ( C O ) g ( P P h 2 ) ( P h ) ( P P h C g H 4 ) (XXV) O s 3 ( C O ) ? ( P P h 2 ) 2 ( C 6 H 4 ) (CO)-Os ' Ph Ph ( C 0 ) 3 0 s ^ 0 s ( C 0 ) 2 ( P P h 3 ) PhoP ( C 0 ) 3 0 s — 0 s ( C 0 ) 2 ( P P h 3 ) (XXVI) H O s 3 ( C O ) g ( P P h 3 ) ( P P h 2 C g H 4 ) (XXVII) H O s 3 ( C O ) ? ( P P h 2 ) ( P P h 3 ) ( C g H 4 ) 86 ( X X V I I I ) H O s 3 ( C O ) g ( P P h 3 ) ( P P h 2 C 6 H 4 ) (XXIX) H O s 3 ( C O ) ? ( P P h 2 ) ( P P h 2 C 6 H 4 C g H 3 ) The compounds so g e n e r a t e d c o n t a i n a remarkable s e t of new l i g a n d s a t t a c h e d t o the c l u s t e r i n a v a r i e t y of ways. On some of the p h e n y l r i n g s i n (XXIV) and ( X X V I I I ) t h e C-H bonds have been i n v o l v e d i n o x i d a t i v e a d d i t i o n r e a c t i o n s which r e s u l t i n p h e n y l carbon atoms b r i d g i n g Os-Os bonds v i a o-bonds. In ( X X V I ) , a f i v e membered c h e l a t e r i n g i s formed on one edge of t h e m e t a l c l u s t e r . Some P P h 3 m o l e c u l e s have l o s t p h e n y l r i n g s t o g i v e b r i d g i n g P P h 2 phosphido groups as i n (XXV). In (XXV) and ( X X V I I ) , t h e t h r e e osmium atoms a r e b r i d g e d by a benzyne fragment. The f o r m a t i o n of the phosphine l i g a n d i n (XXIX) can be thought t o be due t o an i n t r a c l u s t e r a s s i s t e d c o u p l i n g r e a c t i o n between the benzyne fragment and a p h e n y l r i n g of a t e r m i n a l phosphine l i g a n d . T h i s b r e a k i n g of C-H and f o r m a t i o n of C-C bonds, which o c c u r s d u r i n g t h e f o r m a t i o n of t h e s e compounds, i s f o r m a l l y analogous t o r e a c t i o n s t h a t o c c u r a t m e t a l s u r f a c e s . 73 Compounds of t h i s t y pe have a l s o been proposed f o r some 87 d e r i v a t i v e s o f r u t h e n i u m c l u s t e r s , R u 3 ( C O ) 7 ( P A r 2 ) 2 ( A r ' ) ( A r = P h , m - M e C g H 4 a n d p - M e C 6 H 4 ; A r ' = C 6 H 4 a n d C g H 3 M e r e s p e c t i v e l y ) ( X X X ) . T h e s e c o m p o u n d s a r e o b t a i n e d b y h e a t i n g s o l u t i o n s c o n t a i n i n g R u 3 ( C O ) g L 3 ( L = P P h 3 , P ( m - M e C g H 4 ) 3 a n d P ( g -M e C g H 4 ) 3 ) . The p r o p o s e d s t r u c t u r e s (XXX) a r e b a s e d on e l e m e n t a l a n a l y s e s , mass s p e c t r a , I R s p e c t r a a n d 1 H NMR s p e c t r a . T h e r e was no e v i d e n c e f o r a n y r u t h e n i u m h y d r i d e s p e c i e s , u n l i k e t h e o s m i u m s y s t e m . (XXX) R u 3 ( C O ) 7 ( P A r 2 ) 2 ( A r ' ) ( A r = P h , m - M e C g H 4 a n d p_-MeCgH 4 ; A r ' = C g H 4 a n d C g H 3 M e ) 3 . 1 . 1 T h e E x i s t e n c e o f F e r r o c y n e Many a r o m a t i c h a l o g e n c o m p o u n d s a r e known t o r e a c t w i t h s t r o n g b a s e t o a f f o r d p r o d u c t s t h a t a r e r a t i o n a l i s e d by i n v o k i n g a b e n z y n e i n t e r m e d i a t e . S u c h r e a c t i o n s w o u l d be e x p e c t e d t o p r o c e e d l e s s r e a d i l y f o r h a l o f e r r o c e n e s , b e c a u s e 88 of the e l e c t r o n - r i c h n a t u r e of t h e m e t a l l o c e n e n u c l e u s and the d i f f i c u l t y of f o r m i n g a f o r m a l t r i p l e bond i n a five-membered r i n g . N e v e r t h e l e s s , the e x i s t e n c e of f e r r o c y n e as an 95 i n t e r m e d i a t e was proposed f o r the r e a c t i o n of c h l o r o -f e r r o c e n e w i t h b u t y l l i t h i u m which g i v e s b u t y l f e r r o c e n e and b i f e r r o c e n y l . These r e a c t i o n s c o u l d a l s o o c c u r by m e t a l -h a l o g e n i n t e r c o n v e r s i o n (Scheme 9) f o l l o w e d by m e t a t h e s i s (Scheme 10). S t r o n g e r e v i d e n c e f o r a f e r r o c y n e i n t e r m e d i a t e 96 was l a t e r r e p o r t e d , as shown i n Scheme 11, f o r the r e a c t i o n of a s u b s t i t u t e d h a l o f e r r o c e n e . I t i s d i f f i c u l t t o e n v i s a g e any o t h e r mechanism which would y i e l d t h e two p r o d u c t s i n a p p r o x i m a t e l y e q u i m o l a r q u a n t i t i e s . Thus, i t may be p o s s i b l e t o i s o l a t e a f e r r o c y n e fragment i f i t i s a s s o c i a t e d w i t h a m e t a l c l u s t e r . Scheme 9 M e t a l - H a l o g e n I n t e r c o n v e r s i o n i n t h e R e a c t i o n of F c C l w i t h B u L i 89 ^gf^>— C4H9 Scheme 10 M e t a t h e s i s i n t h e R e a c t i o n o f F c C l w i t h B u L i 90 CI C H 3 + C 4 H 9 L i Scheme 11 R e a c t i o n o f a S u b s t i t u t e d H a l o f e r r o c e n e 91 3.2 E x p e r i m e n t a l The methods and s u p p l i e s used a r e as a l r e a d y d e s c r i b e d u n l e s s o t h e r w i s e mentioned. 3.2.1 G e n e r a l Methods E x t r a c a r e was t a k e n i n t h e p y r o l y s i s e x p e r i m e n t s d e s c r i b e d below s i n c e the p r o d u c t s a r e e x p e c t e d t o be more a i r s e n s i t i v e than t h e i r p a r e n t compounds. S o l v e n t s not p r e v i o u s l y mentioned were of s p e c t r a l g r a d e , and a l l s o l v e n t s were degassed by freeze-pump-thaw c y c l e s . P r o t o n NMR s p e c t r a were a l s o run on a V a r i a n XL-300 s p e c t r o m e t e r . Phosphorus d a t a a r e g i v e n r e l a t i v e t o t r i m e t h y l p h o s p h i t e . The d e t a i l s of t h e t h e r m a l r e a c t i o n s c a r r i e d out a r e l i s t e d i n T a b l e XIX. S m a l l amounts (20 - 100 mg) of the f e r r o c e n y l p h o s p h i n e s u b s t i t u t e d m e t a l c a r b o n y l were d i s s o l v e d i n 10 - 20 mL of the a p p r o p r i a t e s o l v e n t and r e f l u x e d i n a n i t r o g e n atmosphere. S p e c t r o s c o p i c d a t a a r e t a b u l a t e d i n T a b l e s XX t o X X I I . IR s p e c t r a were FT and e l e c t r o n impact i o n i z a t i o n was used f o r mass s p e c t r o s c o p i c a n a l y s i s as d e s c r i b e d above. 92 T a b l e X I X P y r o l y t i c R e a c t i o n s o f t h e F e 3 ( C O ) l 2 a n d R u 3 ( C O ) 1 2 D e r i v a t i v e s . Compound S o l v e n t T i m e P r o d u c t D e s c r i p t i o n ( m i n ) a n d I s o l a t i o n F e ( C O ) 4 ( P P h 2 F c ) h e x a n e s 30 n o r e a c t i o n C g H 1 2 15 n o i s o l a b l e p r o d u c t s F e ( C O ) 4 ( P P h F c 2 ) h e x a n e s 60 no i s o l a b l e p r o d u c t s R u 3 ( C O ) 1 1 ( P P h 2 F c ) C 8 H i o 2 0 n o i s o l a b l e p r o d u c t s C 6 H 1 2 60 r e d o r a n g e s o l i d m o d e r a t e y i e l d , c h r o m a t o g r a p h i c s e p a r a t i o n on A l u m i n a p e t e t h e r / E t 2 0 ( 1 : 1 ) l e s s p o l a r t h a n r e a c t a n t R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 h e x a n e s 60 n o r e a c t i o n h e x a n e s / 60 n o r e a c t i o n C 6 H 1 2 ( 1 : 1 ) 93 C g H l 2 30 p u r p l e r e d s o l i d h i g h y i e l d , c h r o m a t o g r a p h i c s e p a r a t i o n on A l u m i n a E t 2 0 l e s s p o l a r t h a n r e a c t a n t R u 3 ( C O ) 1 Q ( P P h F c 2 ) 2 h e x a n e s 60 d a r k o r a n g e s o l i d h i g h y i e l d , c h r o m a t o g r a p h i c s e p a r a t i o n on A l u m i n a E t 2 0 / C H 2 C 1 2 ( 5 : 1 ) m o r e p o l a r t h a n r e a c t a n t 94 T a b l e XX NMR C h e m i c a l S h i f t D a t a ( 6 ) f o r Some P r o d u c t s o f t h e P y r o l y t i c R e a c t i o n s Compound P y r o l y s e d P h e n y l R e g i o n F e r r o c e n y l R e g i o n R u 3 ( C O ) 1 1 ( P P h 2 F c ) * 7 . 5 8 - 7 . 3 0 b r m 15H 5 . 5 3 m 2H 5 . 3 5 m 1H 5 . 1 5 m 1H 4 . 8 5 s 5H 4 . 8 0 m 1H 4 . 7 0 m 1H 4 . 0 2 s 5H 3 . 1 5 m 1H 3 . 0 3 m 1H ** R u 3 ( C O ) 1 0 ( P P h 2 F c ) 2 8 . 0 0 - 7 . 9 5 m 2H 4 . 5 5 b r s 1H 7 . 8 2 - 7 . 7 6 b r m 2H 4 . 4 4 - 4 . 4 1 m 2H 7 . 7 4 - 7 . 7 1 b r m 1H 4 . 2 9 s 5H 7 . 5 5 - 7 . 4 5 b r m 7H 4 . 0 9 b r s 1H 7 . 3 0 - 7 . 3 2 b r m 1H 4 . 0 1 b r s 1H 95 6.98-7.00 6.61-6.57 6.51-6.47 6.40-6.36 br m br m br m br m 1H 1H 1H 1H 4.00 3.78 3.69 2.88 s br s br s br s 5H 1H 1H 1H R u 3 ( C O ) i n ( P P h 2 F c ) 2 131.04 d, J ( P P ) 200 Hz, 67.82 d, J ( P P ) 200 Hz * 80 MHz Spectrometer H NMR ** 400 MHz Sp e c t r o m e t e r 1H NMR *** 270 MHz Spectrometer 3 1 P { 1H} NMR (109.3 MHz f o r 3 1 P ) 96 T a b l e XX I I R D a t a f o r Some P r o d u c t s o f P y r o l y t i c R e a c t i o n s Compound P y r o l y s e d A b s o r p t i o n (cm ' ) R u 3 ( C O ) 1 1 ( P P h 2 F c ) 2078 w, 2043 m, 2037 s , 2020 m, 2018 m, 1989 w, 1822 w R u 3 ( C O ) 1 ( ) ( P P h 2 F c ) 2 2 0 5 4 s , 2013 m, 2003 s , 1996 m, 1961 s h , 1956 m, 1951 w, 1943 s h R u 3 ( C O ) i n ( P P h F c 2 ) 2 2 0 7 0 m, 2048 m, 2 0 0 9 s , 1999 m, 1980 w, 1949 w T a b l e X X I I Mass S p e c t r o s c o p i c D a t a f o r t h e P r o d u c t O b t a i n e d by P y r o l y s i s o f R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 Peak ( m / e ) 1 1 6 3 , 1 1 0 6 , 1 0 7 9 , 1 0 5 0 , 1 0 2 3 , 9 9 4 , 9 6 7 , 8 8 8 , 8 2 1 , 8 1 0 , 7 8 3 , 7 6 6 , 7 4 6 , 7 3 4 , 7 0 3 , 6 5 5 , 6 0 0 , 5 7 7 , 5 0 3 , 4 8 9 , 4 7 8 , 4 4 6 , 4 2 9 , 4 1 5 , 4 0 1 , 3 8 6 , 3 7 0 , 3 5 5 , 2 6 2 , 1 8 6 , 1 4 9 , 1 2 1 , 7 7 , 56 97 3 . 3 D i s c u s s i o n The t h e r m a l d e c o m p o s i t i o n r e a c t i o n s o f t h e i r o n d e r i v a t i v e s F e ( C O ) 4 ( P P h j F c ) a n d F e ( C O ) 4 ( P P h F c 2 ) w e r e i n v e s t i g a t e d . I n b o t h c a s e s d e c o m p o s i t i o n t o a b r o w n s o l i d o c c u r s , f r o m w h i c h no i s o l a b l e p r o d u c t s c a n be o b t a i n e d . T h e r m a l d e c o m p o s i t i o n r e a c t i o n s o f t h e t h r e e r u t h e n i u m c a r b o n y l c l u s t e r c o m p o u n d s R u ^ ( C O ) 1 1 ( P P h 2 F c ) , R u 3 ( C O ) 1 Q ( P P h 2 F c ) 2 a n d R u 3 ( C O ) 1 Q ( P P h F c 2 ) 2 g i v e p r o m i s i n g r e s u l t s . I n i t i a l l y , p y r o l y s i s i n h i g h b o i l i n g s o l v e n t s was t r i e d b u t n o i s o l a b l e p r o d u c t s w e r e o b t a i n e d . P y r o l y s i s i n l o w e r b o i l i n g s o l v e n t s was more s u c c e s s f u l . T h e r e i s e v i d e n c e f o r t h e f o r m a t i o n o f o t h e r p r o d u c t s i f p y r o l y s i s i s a l l o w e d t o t a k e p l a c e f o r l o n g e r p e r i o d s t h a n t h o s e g i v e n , b u t t h e p r o d u c t i o n o f t h e f i r s t f o r m e d p r o d u c t was o p t i m i s e d . The p r o d u c t s a r e d a r k e r i n c o l o u r t h a n t h e p a r e n t c o m p o u n d s . 3 . 3 . 1 P y r o l y s i s o f R u 3 ( C O ) 1 Q ( P P h j F c ) 2 The d e c o m p o s i t i o n o f R u 3 ( C O ) 1 n ( P P h j F c ) 2 g i v e s a h i g h y i e l d o f a p r o d u c t f o r w h i c h NMR, I R a n d mass s p e c t r o s c o p i c d a t a w e r e o b t a i n e d . A s t r u c t u r e ( X X X I ) i s p r o p o s e d f o r t h i s c o m p o u n d w h i c h seems c o n s i s t e n t w i t h a l l t h e d a t a . The s t r u c t u r e c o n t a i n s t h r e e r u t h e n i u m a t o m s a n d s e v e n c a r b o n y l l i g a n d s , a b e n z y n e f r a g m e n t t h a t a c t s a s a t w o e l e c t r o n d o n o r t o t w o m e t a l a t o m s a n d i s f l u x i o n a l b e t w e e n a l l t h r e e m e t a l a t o m s , a n d a f e r r o c e n e g r o u p w h i c h b r i d g e s t w o m e t a l a t o m s . I n a d d i t i o n i t c o n t a i n s a t r i p l y b r i d g i n g p h o s p h i n i d e n e a n d a 9 8 d o u b l y b r i d g i n g phosphido group. The number of rut h e n i u m atoms proposed i s c o n s i s t e n t w i t h the c o l o u r of the complex and w i t h the mass s p e c t r o s c o p i c d a t a . The number of c a r b o n y l l i g a n d s i s s u p p o r t e d by i n f r a r e d d a t a and mass s p e c t r o s c o p i c d a t a . The IR spectrum i s s i m i l a r 97 t o t h a t o b t a i n e d f o r the t e r m i n a l c a r b o n y l r e g i o n of F e 3 ( C O > 6 ( y - C O ) 2 ( P h C 2 P h ) 2 r ( X X X I I ) , a c l u s t e r c o n t a i n i n g c a r b o n y l l i g a n d s t h a t a r e i n environments of s i m i l a r symmetry t o the c a r b o n y l l i g a n d s i n ( X X X I ) . (XXXI) R u 3 ( C O ) 7 ( P P h F c ) (PPh) (Fc) ( C ^ ) (XXXII) F e 3 ( C O ) 6 ( y - C O ) 2 ( P h C 2 P h ) 2 The presence of two phosphorus atoms i s s u p p o r t e d by mass s p e c t r o s c o p i c and NMR d a t a . The p r o t o n d e c o u p l e d phosphorus NMR spectrum shows two d o u b l e t s c o u p l e d by 200 Hz. The d i f f e r e n c e i n c h e m i c a l s h i f t s of t h e two phosphorus atoms i s 63 ppm. The d i f f e r e n c e i n c h e m i c a l s h i f t s of the two 98 phosphorus atoms i n I r 3 ( C O ) g ( P h ) ( P P h ) ( d p p m ) i s 152 ppm, so the two phosphorus atoms i n R u - ( C O ) _ ( P P h F c ) ( P P h ) ( F c ) ( C , H . ) 99 s h o u l d be i n c h e m i c a l environments t h a t a r e more s i m i l a r than t h o s e i n I r 3 (CO)^(Ph)(PPh)(dppm). I t i s proposed t h a t one of t h e phosphorus atoms i s i n v o l v e d i n a t r i p l y b r i d g i n g i n t e r a c t i o n between the t h r e e m e t a l atoms as a p h o s p h i n i d e n e , and t h a t the o t h e r phosphorus atom d o u b l y b r i d g e s two m e t a l atoms as a phosphido l i g a n d . Doubly b r i d g i n g phosphido l i g a n d s a r e w e l l known. Examples have been g i v e n i n ( X X I V ) , 9 2 ' 9 4 ( X X V I I ) , 9 3 , 9 4 ( X X I X ) , 9 3 , 9 4 ( X X V ) , 9 2 , 9 4 and ( X X X ) . 7 3 T r i p l y b r i d g i n g p h o s p h i n i d e n e s a r e l e s s w e l l known, but examples have been r e p o r t e d f o r i r i d i u m , 9 8 i r o n , 9 9 r u t h e n i u m , 1 0 0 102,104 a n ^ 1 0 3 osmium c l u s t e r s . The osmium example, Os^(CO)g(PEt)(C^H^) c o n t a i n s b o t h a t r i p l y b r i d g i n g phosphorus l i g a n d and a f l u x i o n a l benzyne group as proposed f o r ( X X X I ) . A ruthenium example, H ^ R U g ( C O ) g ( P P h ) 1 0 5 e x h i b i t s a p r o t o n d e c o u p l e d 3 1 P c h e m i c a l s h i f t of 137.4 ppm r e l a t i v e t o t r i m e t h y l p h o s p h i t e f o r t h e t r i p l y b r i d g i n g p h o s p h i n i d e n e group, which compares f a v o u r a b l y w i t h t h a t o b t a i n e d f o r ( X X X I ) , 131.04 ppm. The peak of the mass spectrum r e p r e s e n t i n g the l a r g e s t m/e v a l u e , 1163, c o u l d be a s s o c i a t e d w i t h an i o n of f o r m u l a R u 3 ( C O ) 7 ( P P h F c ) ( P P h ) ( F c ) ( C g H 4 ) + . Other peaks a t a p p r o p r i a t e i n t e r v a l s r e p r e s e n t t h e l o s s of two c a r b o n y l l i g a n d s f o l l o w e d by s e q u e n t i a l l o s s of t h e r e m a i n i n g f i v e . A f t e r l o s s of c a r b o n y l l i g a n d s , f u r t h e r peaks can be r a t i o n a l i z e d by l o s s of t h e benzyne, and f e r r o c e n e f ragments. 100 3 . 3 . 1 . 1 D i s c u s s i o n o f t h e H NMR S p e c t r u m C h e m i c a l s h i f t v a l u e s w e r e o b t a i n e d f r o m a 400 MHz s p e c t r u m ( T a b l e XX) a n d d e c o u p l i n g e x p e r i m e n t s w e r e r u n u s i n g a 300 MHz s p e c t r o m e t e r . The f e r r o c e n y l r e g i o n o f t h e 300 MHz NMR s p e c t r u m i s shown i n F i g u r e 8 . The t w o s i n g l e t s C a n d F a r i s e f r o m t h e t w o u n s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g s . The s i n g l e t F i s i n t h e u s u a l r e g i o n f o r f e r r o c e n y l p h o s p h i n e s a n d C i s a t l o w e r f i e l d t h a n u s u a l . T h e o t h e r p e a k s A , D, E , G, H a n d J a l l i n t e g r a t e a s one p r o t o n w h i l e B i n t e g r a t e s a s t w o p r o t o n s . The t o t a l number o f p r o t o n s i s t h e r e f o r e t e n f o r t h e t w o u n s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g s a n d e i g h t f o r t h e t w o s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g s . Two t y p e s o f f e r r o c e n y l g r o u p s a r e o b s e r v e d i n e q u i m o l a r q u a n t i t i e s , a s w e l l a s an i m p u r i t y l a b e l l e d I w h i c h seems t o r e p r e s e n t a n o t h e r c l u s t e r compound w i t h u n u s u a l f e r r o c e n y l p r o t o n c h e m i c a l s h i f t s . The c h e m i c a l s h i f t o f J i s v e r y h i g h f o r a f e r r o c e n y l p r o t o n a n d t h e o t h e r p r o t o n s f r o m t h e s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g s a r e i n t h e u s u a l r a n g e f o r f e r r o c e n y l p h o s p h i n e s . The a p p e a r a n c e o f t h e p r o t o n s a s s e p a r a t e p e a k s i s n o t u n u s u a l f o r h i g h f i e l d NMR s p e c t r a o f f e r r o c e n y l p h o s p h i n e s . H o m o n u c l e a r d e c o u p l i n g e x p e r i m e n t s w e r e u s e d t o d e t e r m i n e w h i c h r e s o n a n c e s a r e a s s o c i a t e d w i t h p r o t o n s f r o m e a c h s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g . I r r a d i a t i o n a t A showed t h a t i t c o u p l e d t o B a n d G s i n c e t h o s e p e a k s n a r r o w e d . The p e a k B was shown t o be c o u p l e d t o A , D r E , G , H a n d J . I r r a d i a t i o n a t G a n d H showed c o u p l i n g t o B , a n d i r r a d i a t i o n 101 a t J showe d c o u p l i n g t o B , D a n d E . Hence t h e p r o t o n s o f one o f t h e s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g s h a v e c h e m i c a l s h i f t s r e p r e s e n t e d b y A , B, G a n d H , w h i l e t h e o t h e r i s r e p r e s e n t e d by B , D, E a n d J . T h i s c o n f i r m s t h a t e a c h f e r r o c e n y l g r o u p i s m o n o s u b s t i t u t e d . The r i n g p r o t o n s r e p r e s e n t e d by A , B , G a n d H h a v e c h e m i c a l s h i f t s i n t h e u s u a l r e g i o n o f t h e NMR s p e c t r u m f o r m e t a l s u b s t i t u t e d f e r r o c e n y l p h o s p h i n e s , a n d p r o b a b l y b e l o n g t o t h e same f e r r o c e n y l g r o u p a s t h e c y c l o p e n t a d i e n y l r i n g a s s i g n e d t o F , a n d c o u l d a r i s e f r o m e i t h e r a t e r m i n a l o r a b r i d g i n g f e r r o c e n y l p h o s p h i n e . The u n u s u a l c h e m i c a l s h i f t v a l u e f o r J w h i c h i s a s s o c i a t e d w i t h B , D a n d E a n d p r o b a b l y C f o r w h i c h t h e r e i s a l s o an u n u s u a l c h e m i c a l s h i f t , c o u l d be d u e t o t h e i n t e r a c t i o n shown i n ( X X X I ) , w h e r e t h e f e r r o c e n e m o l e c u l e i s b r i d g i n g t w o o f t h e r u t h e n i u m a t o m s . T h i s s o r t o f l i g a t i o n i s 92 94 known f o r p h e n y l r i n g s a s shown i n ( X X I V ) . ' T e r m i n a l o-b o n d i n g o f a p h e n y l g r o u p i n a c l u s t e r t o a n i r i d i u m a t o m i s 98 a l s o k n o w n . P r e c e d e n c e f o r f e r r o c e n e b r i d g i n g t w o m e t a l s i n t h i s m a n n e r d o e s n o t e x i s t a p a r t f r o m t h e known s t r u c t u r e s o f 1 04 l i t h i o f e r r o c e n e s . 102 F i g u r e 8 H NMR Spectrum of (XXXI) - F e r r o c e n y l Region The 300 MHz *H NMR spectrum of the p h e n y l r e g i o n of the p r o d u c t i s shown i n F i g u r e 9. The peaks K, L, M and N a r e i n the u s u a l r e g i o n f o r p h e n y l p h o s p h i n e s . U s u a l l y m o n o s u b s t i t u t e d p h e n y l r i n g s appear i n a 3:2 r a t i o , the o r t h o and p a r a p r o t o n s i n the r e g i o n o c c u p i e d by N and the meta p r o t o n s i n t h e r e g i o n o c c u p i e d by K, L and M. Homonuclear d e c o u p l i n g e x p e r i m e n t s were found t o be p a r t i c u l a r l y i n f o r m a t i v e . I r r a d i a t i o n a t K d e c o u p l e d N; i r r a d i a t i o n a t L and M d e c o u p l e d 0; i r r a d i a t i o n a t N dec o u p l e d K, L and O, but not M c a u s i n g K and L t o form d o u b l e t s w i t h f i n e s t r u c t u r e ; i r r a d i a t i o n a t O showed t h e pr e s e n c e of c o u p l i n g a t L and N. T h i s means t h a t the p r o t o n s of one 103 p h e n y l group show c h e m i c a l s h i f t s a t K and N w i t h p r o t o n s i n the r a t i o 2:3 and the p r o t o n s of the o t h e r p h e n y l group show c h e m i c a l s h i f t s a t L, N and 0 w i t h p r o t o n s i n t h e r a t i o 2:2:1. The peak M as w e l l as some of N, i s p r o b a b l y caused by t h e i m p u r i t y mentioned above. F i g u r e 9 H NMR Spectrum of (XXXI) - P h e n y l Region 104 The p e a k s P, Q, R a n d S e x h i b i t u n u s u a l s p l i t t i n g p a t t e r n s f o r p h e n y l p h o s p h i n e s . H o m o n u c l e a r d e c o u p l i n g e x p e r i m e n t s i n v o l v i n g P, Q, R a n d S g i v e u n u s u a l r e s u l t s . I r r a d i a t i o n a t P c a u s e s Q t o d i s a p p e a r , w h i l e e f f e c t s a t R a n d S a r e d i f f i c u l t t o d e t e r m i n e d u e t o t h e p o o r q u a l i t y o f t h e s p e c t r u m i n t h a t r e g i o n . I r r a d i a t i o n a t Q a l s o c a u s e s P t o d i s a p p e a r a n d e f f e c t s a t R a n d S a r e a g a i n d i f f i c u l t t o a s c e r t a i n b e c a u s e o f t h e p r o x i m i t y o f t h e c h e m i c a l s h i f t s t o t h e i r r a d i a t e d a r e a . I r r a d i a t i o n b e t w e e n P a n d Q c a u s e s t h e m b o t h t o d e c r e a s e i n i n t e n s i t y , w h i l e i r r a d i a t i o n a t R c a u s e s S t o d i s a p p e a r a n d P a n d Q t o become s i n g l e t s . R e s u l t s f r o m d e c o u p l i n g a t S a r e d i f f i c u l t t o a n a l y s e d u e t o t h e " g l i t c h " i n t h a t a r e a . The t o t a l c o l l a p s e o f one p e a k d u e t o i r r a d i a t i o n a t a n o t h e r p e a k i s m o s t l i k e l y c a u s e d b y f l u x i o n a l p r o c e s s e s . F l u x i o n a l b e h a v i o u r c a n t r a n s f e r t h e s p i n s a t u r a t i o n e f f e c t s o f d e c o u p l i n g . I r r a d i a t i o n o f h y d r i d e r e s o n a n c e s h a s b e e n u s e d t o i n d i c a t e e x c h a n g e o f b r i d g i n g a n d t e r m i n a l h y d r i d e s when s i m i l a r c o l a p s e o f r e s o n a n c e s i s e n c o u n t e r e d . S i n c e t h e i n t e g r a t i o n o f t h e s e p e a k s shows t h e m t o be d u e 93 94 t o f o u r p r o t o n s , a C g H 4 b e n z y n e f r a g m e n t a s i n ( X X V I I ) ' , ( X X V ) 9 2 ' 9 4 a n d ( X X X ) 7 3 i s p r o p o s e d . An NMR s t u d y 1 0 8 o f o s m i u m c l u s t e r s c o n t a i n i n g b e n z y n e f r a g m e n t s f o r m e d f r o m O s 3 ( C O ) 1 1 ( E M e 2 P h ) a n d 0 s 3 ( C O ) 1 Q ( E M e 2 P h ) 2 (E=P o r A s ) , show 105 t h e s e f r a g m e n t s t o h a v e f l u x i o n a l b e h a v i o u r . T h e i r s p e c t r a show ABXY p a t t e r n s u p o n c o o l i n g t o 183 K. The b e n z y n e f r a g m e n t s u g g e s t e d f o r ( X X X I ) shows a s i m i l a r p a t t e r n a t room t e m p e r a t u r e so t h e f l u x i o n a l p r o c e s s m u s t be o c c u r r i n g somewhat m o r e s l o w l y , w h i c h seems r e a s o n a b l e i n l i g h t o f t h e i n c r e a s e d s t e r i c h i n d r a n c e o f t h e t w o f e r r o c e n e f r a g m e n t s i n t h e c l u s t e r . The f l u x i o n a l p r o p e r t i e s o f b e n z y n e f r a g m e n t s o f s i m i l a r m e t a l c l u s t e r s h a v e a l s o b e e n i n v e s t i g a t e d . 1 0 9 1 1 1 3 . 3 . 2 P y r o l y s i s o f R u 3 ( C O ) 1 1 ( P P h 2 F c ) I n t e r e s t i n g f e a t u r e s a r e o b s e r v e d f o r t h e p r o d u c t o b t a i n e d f r o m t h e p y r o l y s i s o f R u 3 ( C O ) 1 1 ( P P h 2 F c ) . The p r o t o n NMR s p e c t r u m i n t h e f e r r o c e n y l r e g i o n shows t h e p r e s e n c e o f t w o t y p e s o f f e r r o c e n y l g r o u p s , i n c l u d i n g a p r o t o n w i t h an u n u s u a l l y h i g h c h e m i c a l s h i f t v a l u e . A l s o p r e s e n t i s a s i n g l e t o f u n u s u a l l y l o w c h e m i c a l s h i f t v a l u e t h a t r e p r e s e n t s an u n s u b s t i t u t e d c y c l o p e n t a d i e n y l r i n g a s i s o b s e r v e d f o r ( X X X I ) . I n t e g r a t i o n o f t h e s p e c t r u m shows e v i d e n c e f o r t h e l o s s o f o n e p h e n y l g r o u p f o r e a c h t w o f e r r o c e n y l g r o u p s p r e s e n t . The i n f r a r e d s p e c t r u m i s s i m i l a r t o t h a t o f t h e e d g e 1 1 2 d o u b l e b r i d g e d c l u s t e r R u 3 ( y - H ) ( y - B r ) ( C O ) 1 0 , w h i c h s u g g e s t s a c o m p l e x w i t h a b r i d g i n g c a r b o n y l l i g a n d a n d a n o t h e r l i g a n d p e r h a p s a l s o b r i d g i n g o n e e d g e o f t h e c l u s t e r . 3 . 3 . 3 P y r o l y s i s o f R u 3 ( C O ) . Q ( P P h F c 2 ) 2 The p r o d u c t o b t a i n e d f r o m h e a t i n g R u - ( C O ) , n ( P P h F c 7 ) 2 106 g i v e s a n i n f r a r e d s p e c t r u m t h a t i s v e r y s i m i l a r t o t h e s p e c t r u m r e p o r t e d f o r c o m p l e x H O s 3 ( C O ) g ( P P h 3 ( P P h 2 C g H 4 ) ( X X V I ) , so i t i s p o s s i b l e t h a t t h i s c o m p o u n d h a s t h e r e l a t e d s t r u c t u r e ( X X X I I I ) . To d a t e , t h e p r o d u c t s o b t a i n e d b y p y r o l y s i s o f f e r r o c e n y l p h o s p h i n e c o n t a i n i n g m e t a l c l u s t e r s h a v e n o t b e e n o b t a i n e d i n l a r g e e n o u g h a m o u n t s t o a l l o w f o r f u l l c h a r a c t e r i z a t i o n a n d e l u c i d a t i o n o f s t r u c t u r e s . I n i t i a l r e s u l t s i n d i c a t e t h a t b o t h t h e f e r r o c e n y l g r o u p s a n d t h e p h e n y l g r o u p s o f t h e p h o s p h i n e l i g a n d s a r e r e a c t i v e , a l t h o u g h o n l y a b e n z y n e f r a g m e n t seems t o be f o r m e d . T h e r e i s s t r o n g e v i d e n c e t h a t t h e f e r r o c e n e g r o u p s h a v e r e a c t e d t o f o r m u n u s u a l f r a g m e n t s . The i n i t i a l r e s u l t s a r e i n t e r e s t i n g a n d f u r t h e r i n v e s t i g a t i o n i n t o t h e n a t u r e o f t h e s e c o m p o u n d s s h o u l d be r e w a r d i n g . (C0)3Ru Ru(CO) 3 (PPhFc 2 ) ( X X X I I I ) H R u 3 ( C O ) g ( P P h F c 2 ) ( P C 6 H 4 F c 2 ) 107 C h a p t e r F o u r - C o n c l u s i o n s The r e a c t i o n s o f t h e f e r r o c e n y l p h o s p h i n e s PBuPhFc , P P h 2 F c , P P h F c 2 r P F c 3 a n d F e ( C g H 4 ) 2 P P h w i t h t h e m e t a l c a r b o n y l s F e 3 ( C O ) 1 2 a n d R u 3 ( C O ) 1 2 h a v e b e e n i n v e s t i g a t e d . F e r r o c e n y l p h o s p h i n e s r e a c t r e a d i l y w i t h b o t h m e t a l c a r b o n y l s . W i t h i r o n c a r b o n y l , m o n o n u c l e a r p r o d u c t s p r e d o m i n a t e , a n d w i t h r u t h e n i u m c a r b o n y l , t r i n u c l e a r c o m p l e x e s a r e t h e p r i n c i p a l p r o d u c t s a s f o l l o w s : F e ( C O ) 4 L ( L = P B u P h F c , P P h 2 F c , P P h F c 2 a n d P F c 3 ) ; F e 3 ( C O ) n L ( L = P P h 2 F c a n d P B u P h F c ) , F e 3 ( C O ) 1 Q ( P B u P h F c ) 2 , R u ( C O ) 4 ( P F c 3 ) , R u 3 ( C O ) n L ( L = P P h 2 F c , P P h F c 2 , P F c 3 a n d F e ( C 5 H 4 ) 2 P P h ) ; R u 3 ( C O ) l Q L 2 ( L = P P h 2 F c , P P h F c 2 , P F c 3 a n d F e ( C 5 H 4 ) 2 P P h ) , R u 3 ( C O ) g ( P P h 2 F c ) 3 a n d R u 3 ( C O ) g ( P P h F c 2 ) 3 . T h e s e c o m p o u n d s w e r e c h a r a c t e r i z e d u s i n g NMR a n d I R s p e c t r o s c o p y , mass s p e c t r o s c o p y , e l e m e n t a l a n a l y s i s , a n d i n one i n s t a n c e a n X - r a y c r y s t a l s t r u c t u r e d e t e r m i n a t i o n . The m e t h o d o f c h o i c e f o r t h e s y n t h e s i s o f t h e s e c o m p o u n d s i s t o i n i t i a t e t h e r e a c t i o n s a t r o o m t e m p e r a t u r e w i t h a s o l u t i o n o f t h e d i p h e n y l k e t y l r a d i c a l a n i o n . T h i s m e t h o d g i v e s h i g h y i e l d s a n d e a s y i s o l a t i o n o f p r o d u c t s . The p y r o l y t i c c h e m i s t r y o f t h e f e r r o c e n y l p h o s p h i n e c l u s t e r s seems t o be o f c o n s i d e r a b l e i n t e r e s t . The r e a c t i o n s s t u d i e d i n t h i s i n v e s t i g a t i o n a f f o r d h i g h y i e l d s o f p r i m a r i l y o n e p r o d u c t . The p a r t i a l c h a r a c t e r i z a t i o n o f one s u c h p r o d u c t g i v e s an i n d i c a t i o n o f t h e v a r i e t y o f new c o m p o u n d s t h a t c o u l d be e x p e c t e d t o be p r o d u c e d i n t h i s m a n n e r . U n f o r t u n a t e l y , 108 because of t h e i r c o m p l e x i t y , most c h a r a c t e r i z a t i o n s of un u s u a l metal c l u s t e r s r e l y on X-ray c r y s t a l l o g r a p h i c a n a l y s i s so t h a t f u r t h e r p r o g r e s s i n t h i s s t u d y w i l l be c o n s i d e r a b l y dependent on the growth of s u i t a b l e c r y s t a l s . N e v e r t h e l e s s , f u r t h e r study of the p r o d u c t s of the p y r o l y t i c r e a c t i o n s of f e r r o c e n y l p h o s p h i n e s s h o u l d be u s e f u l , e s p e c i a l l y i f these s t u d i e s i n c l u d e d e t a i l e d s p e c t r o s c o p i c s t u d i e s of compounds of known s t r u c t u r e s . W i t h the e s t a b l i s h m e n t of a broader knowledge of the s p e c t r o s c o p i c p r o p e r t i e s of these compounds, s t r u c t u r e s w i l l be more r e a d i l y a s s i g n e d w i t h o u t r e c o u r s e t o X-ray c r y s t a l l o g r a p h y . S i n g l e c r y s t a l s w i l l h o p e f u l l y be o b t a i n e d of the compound ( X X X I ) . More c e r t a i n s p e c t r o s c o p i c assignments s h o u l d then be p o s s i b l e . Other r e l a t e d s t u d i e s t h a t c o u l d g i v e i n t e r e s t i n g r e s u l t s would i n v o l v e the r e a c t i o n s of l i t h i o - c o m p o u n d s w i t h m e t a l c l u s t e r c a r b o n y l s . The r e a c t i o n s of a r y l - or a l k y l l i t h i u m compounds w i t h mononuclear m e t a l c a r b o n y l 113 complexes a r e w e l l known and l e a d t o m e t a l carbene complexes. R e a c t i o n s of l i t h i o - c o m p o u n d s w i t h m e t a l c l u s t e r 11 4 c a r b o n y l s a re much l e s s s t u d i e d . F i s c h e r has r e p o r t e d the r e a c t i o n of R U g t C O ) ^ w i t h p h e n y l l i t h i u m (Scheme 12) from which a v e r y low y i e l d was o b t a i n e d of Ru 3(CO) gH(CgH 5CCgH 4) (XXXIV). The s t r u c t u r e was e s t a b l i s h e d by X-ray c r y s t a l l o g r a p h i c a n a l y s i s . 11 5 The r e a c t i o n of Ru,(CO) 1 > ? w i t h MeLi and L i B r g i v e s 109 m o d e r a t e y i e l d s o f t h e e d g e d o u b l e b r i d g e d c l u s t e r s R u ^ l V H ) ( u - 0 = C M e ) ( C O ) 1 Q ( X X X V ) a n d R u 3 ( P - H ) ( v - B r ) ( C O ) . Q ( X X X V I ) . R u 3 ( C 0 ) | ? OL'CeHs/THF ? 2 ) H 3 P 0 4 / C H 3 0 H ( X X X I V ) R u 3 ( C O ) g H ( C 6 H 5 C C 6 H 4 ) Scheme 12 R e a c t i o n o f R u 3 ( C O ) l 2 w i t h P h L i 18 116 117 I t was shown ' ' t h a t t h e f e r r o c e n o p h a n e , F e ( C 5 H 4 ) 2 P P h ( V ) , i f c l e a v e d w i t h p h e n y l l i t h i u m , y i e l d s a m o n o l i t h i a t e d f e r r o c e n y l p h o s p h i n e F e ( n ^ - C g H ^ P P l ^ ) ( n ^ - C g H ^ L i ) ( t h e i n t e r m e d i a t e ( X X X V I I ) i n Scheme 1 3 ) . T h i s s p e c i e s r e a c t s w i t h c h r o m i u m a n d t u n g s t e n h e x a c a r b o n y l s t o f o r m 118 z w i t t e r i o n s a n d c a r b e n e b a s e d f e r r o c e n o p h a n e s (Scheme 1 3 ) . 110 The r e a c t i o n o f ( X X X V I I ) w i t h a m e t a l c l u s t e r c a r b o n y l , s u c h a s R u 3 ( C O ) 1 2 , c o u l d f o r m c o m p o u n d s o f t h i s t y p e , p e r h a p s w i t h a f e r r o c e n e f r a g m e n t b r i d g i n g t w o m e t a l s o f t h e c l u s t e r . I t w o u l d a l s o be i n t e r e s t i n g t o t r y t o c l e a v e t h e F e ( C g H 4 ) 2 P P h l i g a n d a l r e a d y a s s o c i a t e d w i t h a m e t a l c l u s t e r . The c o m p o u n d s R u 3 ( C O ) 1 ] ( F e ( C 5 H 4 ) 2 P P h ) a n d R u 3 ( C O ) 1 ( ) ( F e ( C 5 H 4 ) 2 P P h ) 2 , w h i c h w e r e p r e p a r e d i n t h i s s t u d y w o u l d be i d e a l . S u b s e q u e n t r e a c t i o n s o f t h e l i t h i o i n t e r m e d i a t e s c o u l d f o r m c a r b e n e s o r c o m p o u n d s c o n t a i n i n g a n a c y l g r o u p a s i n ( X X X V ) . (XXXV) R u 3 ( y - H ) ( y - 0 = C M e ) ( C O ) 1 Q ( X X X V I ) R u 3 ( p - H ) ( y - B r ) ( C O ) ( X X X V I I ) F e ( n 5 - C 5 H 4 P P h 2 ) ( n5 - C 5 H 4 L i ) Scheme 13 R e a c t i o n o f M ( C O ) g (M=Cr a n d W) w i t h ( X X X V I I ) 111 The r e a c t i o n s o f m e t a l c l u s t e r c a r b o n y l s c o n t a i n i n g h a l o g e n s w i t h l i t h i a t e d c o m p o u n d s may a l s o be a f r u i t f u l a r e a . A s o l u t i o n o f ( X X X V I I ) h a s b e e n r e a c t e d w i t h F e ( C O ) 2 C p I .1 1 9 Two o f t h e p r o d u c t s o b t a i n e d w e r e ( X X X V I I I ) a n d ( X X X I X ) . Edge d o u b l e b r i d g e d h a l i d e c o n t a i n i n g r u t h e n i u m c l u s t e r s a r e 11 5 a v a i l a b l e ( X X X V I ) a n d c o u l d be u s e d i n r e a c t i o n s o f t h i s t y p e w h i c h c o u l d p r o d u c e o - b o n d e d f e r r o c e n y l p h o s p h i n e o r a c y l c o n t a i n i n g c l u s t e r s . ( X X X V I I I ) ( X X X I X ) ( n 5 - C 5 H 4 F e ( C O ) C p ) F e ( n 5 - C 5 H 4 P P h 2 ) (n - C 5 H 4 C ( 0 ) F e ( C O ) C p ) F e ( n ~ C 5 H 4 P P h 2 ) S i n c e t h e s e c l u s t e r s a r e b e i n g s t u d i e d a s m o d e l s f o r c a t a l y t i c r e a c t i o n s o c c u r r i n g a t m e t a l s u r f a c e s , i t i s i m p o r t a n t t o i d e n t i f y t h e o r g a n i c p r o d u c t s p r o d u c e d d u r i n g t h e f o r m a t i o n o f t h e s e c o m p l e x c l u s t e r s . T h e r e h a s b e e n l i t t l e i on s t u d y i n t h i s a r e a so f a r , p r o b a b l y b e c a u s e o f t h e l a r g e n u m b e r o f p o s s i b l e p r o d u c t s . The f e r r o c e n y l p h o s p h i n e d e r i v a t i v e s i n t h i s s t u d y g i v e m o d e r a t e l y h i g h y i e l d s o f p r i m a r i l y one p r o d u c t , s o t h e y w o u l d be u s e f u l s y s t e m s f o r t h e s t u d y o f t h e o r g a n i c p r o d u c t s f o r m e d c o n c u r r e n t l y . 112 B i b l i o g r a p h y T . J . K e a l y a n d P . L . P a u s o n , N a t u r e ( L o n d o n ) , 1 9 5 1 , 1 6 8 , 1 0 3 9 . G. W i l k i n s o n , M. R o s e n b l u m , M. C . W h i t i n g a n d R. B . W o o d w a r d , J . Am. Chem. S o c . , 1 9 5 2 , 7 4 , 2 1 2 5 . J . D. D u n i t z a n d L . E . O r g e l , N a t u r e ( L o n d o n ) , 1 9 5 3 , 7 1 , 1 2 1 . P. S e i l e r a n d J . D. D u n i t z , A c t a C r y s t a l l o q r . , 1 9 7 9 , B35, 1 0 6 8 . P. S e i l e r a n d J . D. D u n i t z , A c t a C r y s t a l l o q r . , 1 9 8 2 , D. M a r q u a r d i n g , H . K l u s a c e k , G . G o k e l , P . H o f f m a n a n d I . U g i , J . Am. Chem; S o c . , 1 9 7 0 , 9 2 , 5 3 8 9 . T . H a y a s h i , T . M i s e , M. F u k u s h i m a , M. K a g o t a n i , N . N a g a s h i m a , T . Hamada , A . M a t s u m o t o , S . K a w a k a m i , M. K o n i s h i , K. Yamamoto a n d M. Kumada , B u l l . Chem. S o c . Jp jn . , 1 9 8 0 , 5 3 , 1 1 3 8 . G . P. S o l l o t t a n d E . H o w a r d J r . , J . O r g . C h e m . , 1 9 6 2 , 2 7 , 4 0 3 4 . J . T . Mague a n d J . P. M i t c h e n e r , I n o r g . C h e m . , 1 9 6 9 , 1 , 1 1 9 . C . U . P i t t m a n J r . a n d G . O . E v a n s , J . O r q a n o m e t . C h e m . , 1 9 7 2 , 4 3 , 3 6 1 . J . K o t z a n d C . L . N i v e r t , J . O r g a n o m e t . C h e m . , 1 9 7 3 , 52, 3 8 7 . G . P. S o l l o t t , H . E . ; M e r t w o y , S . P o r t n o y a n d J . L . S n e e d , J . O r g . C h e m . , 1 9 6 3 , 2 8 , 1 0 9 0 . J . J . B i s h o p , A . D a v i s o n , M. L . K a t c h e r , D . W. L i c h t e n b e r g , R. E . M e r r i l l a n d J . C . S m a r t , J . O r g a n o m e t . C h e m . , 1 9 7 1 , 2 7 , 2 4 1 . G . M. W h i t e s i d e s , J . F . G a a s c h a n d E . R. S t e d r o n s k y , J . Am. Chem. S o c . , 1 9 7 2 , 9 4 , 5 2 5 8 . A . G . O s b o r n e , R . H . W h i t e l e y a n d R. E . M e a d s , J . O r q a n o m e t . C h e m . , 1 9 8 0 , 1 9 3 , 3 4 5 . A . G . O s b o r n e , R. H . W h i t e l e y a n d R. E . H o l l a n d s , P r o c e e d i n g s o f t h e N i n t h I n t e r n a t i o n a l C o n f e r e n c e on 113 O r g a n o m e t a l l i c C h e m i s t r y , D i j o n , S e p t 3 - 7 , 1 9 7 9 , A b s t r a c t P 1 4 T . 1 7 . D. S e y f e r t h a n d H . P . W i t h e r s , J r . , J . O r q a n o m e t . C h e m . , 1 9 8 0 , 1 8 5 , C I . 1 8 . D. S e y f e r t h a n d H . P . W i t h e r s , J r . , O r g a n o m e t a l l i c s , 1 9 8 2 , 1, 1 2 7 5 . 1 9 . H . S t o e c k l i - E v a n s , A . G. O s b o r n e a n d R. H . W h i t e l e y , J . O r q a n o m e t . C h e m . , 1 9 8 0 , 1 9 4 , 9 1 . 2 0 . H . P. W i t h e r s , J r . , D . S e y f e r t h , J . D. F e l l m a n n , P . E . G a r r o u a n d S . M a r t i n , O r g a n o m e t a l l i c s , 1 9 8 2 , 1, 1 2 8 3 . 2 1 . I . R. B u t l e r , p e r s o n a l c o m m u n i c a t i o n . 2 2 . G. P . S o l l o t t a n d W. R. P e t e r s o n J r . , J . O r g a n o m e t . C h e m . , 1 9 6 5 , 5, 4 9 1 . 2 3 . G . P . S o l l o t t a n d W. R. P e t e r s o n J r . , J . O r g a n o m e t . C h e m . , 1 9 6 9 , 19, 1 4 3 . 2 4 . J . K o t z a n d C . L . N i v e r t , J . O r q a n o m e t . C h e m . , 1 9 7 3 , 52, 3 8 7 . 2 5 . K. N a k a m o t o , I n f r a r e d S p e c t r a o f I n o r g a n i c a n d  C o o r d i n a t i o n C o m p o u n d s , New Y o r k : J o h n W i l e y & S o n s , I n c . , 1 9 6 3 , p . 1 8 6 . 2 6 . R. W. F i s h a n d M. R o s e n b l u m , J . O r g . C h e m . , 1 9 6 5 , 30, 1 2 5 3 . 2 7 . A . W. S m a l l e y , O r g . P r e p . P r o c e d . I n t . , 1 9 7 8 , 10, 1 9 5 . 2 8 . L . M o n d , C . L a n g e r a n d F . Q u i n c k e , J . Chem. S o c . , 1 8 9 0 , 7 4 9 . 2 9 . M. B e r t h e l o t , C o m p t . R e n d . , 1 8 9 1 , 112, 1 3 4 3 . 3 0 . L . Mond a n d F . Q u i n c k e , J . Chem. S o c . , 1 8 9 1 , 6 0 4 . 3 1 . J . Dewar a n d H . O . J o n e s , P r o c . R. S o c . ( L o n d o n ) , 1 9 0 7 , A 7 9 , 6 6 . 3 2 . W. H i e b e r a n d G. B r e n d e l , Z . A n o r g . A l l g . C h e m . , 1 9 5 7 , 2 8 9 , 3 2 5 . 3 3 . L . M o n d , H . H i r t z a n d M. D . C o w a p , J . Chem. S o c . , 1 9 1 0 , 9 7 , 7 9 8 . 3 4 . E . R. C o r e y a n d L . F . D a h l , J . Am. Chem. S o c . , 1 9 6 1 , 8 3 , 114 2 2 0 3 . 3 5 . M. I . B r u c e , J . G . M a t i s o n s , R. C . W a l l i s , J . M. P a t r i c k , B. W. S k e l t o n a n d A . H . W h i t e , J . Chem. S o c . D a l t o n T r a n s . , 1 9 8 3 , 2 3 6 5 . 3 6 . W. M a n c h o t a n d W. J . M a n c h o t , Z . A n o r g . A l l g . C h e m . , 1 9 3 6 , 2 2 6 , 3 8 5 . 3 7 . J . R. Moss a n d W. A . G . G r a h a m , J . Chem. S o c . D a l t o n  T r a n s . , 1 9 7 7 , 1 , 9 5 . 3 8 . J . Donohue a n d A . C a r o n , A c t a C r y s t a l l o g r . , 1 9 6 4 , 1 7 , 6 6 3 . 3 9 . F . C a l d e r a z z o a n d F . L ' E p l a t t e n i e r , I n o r g . C h e m . , 1 9 6 7 , 6 , 1 2 2 1 . 4 0 . H . M. P o w e l l a n d R. V . G. E w e n s , J . Chem. S o c . , 1 9 3 9 , 2 8 6 . 4 1 . L . F . D a h l a n d C . H . W e i , J . Am. Chem. S o c . , 1 9 6 9 , 9 1 , 1351 . 4 2 . R. Mason a n d A . I . M. R a e , J . Chem. S o c . A , 1 9 6 8 , 7 7 8 . 4 3 . W. Reppe a n d W. J . S c h w e k e n d i e k , J u s t u s L i e b i g s A n n . C h e m . , 1 9 4 8 , 5 6 0 , 1 0 4 . 4 4 . F . A . C o t t o n a n d R. V . P a r i s h , J . Chem. S o c . , i 9 6 0 , 1 4 4 0 . 4 5 . R. L . B e n n e t t , M. I . B r u c e a n d F . G . A . S t o n e , J . O r q a n o m e t . C h e m . , 1 9 7 2 , 3 8 , 3 2 5 . 4 6 . A . F . C l i f f o r d a n d A . K. M u k h e r j e e , I n o r g . C h e m . , 1 9 6 3 , 2 , 1 5 1 . 4 7 . A . F . C l i f f o r d a n d A . K. M u k h e r j e e , I n o r g . S y n t h . , 1 9 6 6 , 8 , 1 8 5 . 4 8 . S . M. G r a n t a n d A . R. M a n n i n g , I n o r g . C h i m . A c t a , 1 9 7 8 , 3 1 , 4 1 . 4 9 . J . P i c k a r d t , L . R o s c h a n d H . S c h u m a n n , J . O r q a n o m e t . C h e m . , 1 9 7 6 , 1 0 7 , 2 4 1 . 5 0 . P. E . R i l e y a n d R. E . D a v i s , I n o r g . C h e m . , 1 9 8 0 , 1 9 , 1 5 9 . 5 1 . T . A . M a n u e l a n d F . G . A . S t o n e , J . Am. Chem. S o c . , 1 9 6 0 , 8 2 , 3 6 6 . 115 5 2 . A . R e c k z i e g e l a n d M. B i g o r g n e , J . O r g a n o m e t . C h e m . , 1 9 6 5 , 3 , 3 4 1 . 5 3 . G . P. S o l l o t t , D . L . D a u g h d r i l l a n d W. R. P e t e r s o n J r . , J . O r q a n o m e t . C h e m . , 1 9 7 7 , 1 1 3 , 3 4 7 . 5 4 . R. J . A n g e l i c i a n d E . E . S i e f e r t , I n o r g . C h e m . , 1 9 6 6 , 5 , 1 4 5 7 . 5 5 . D. J . Dahm a n d R. A . J a c o b s o n , J . Chem. S o c . Chem. C ommun . , 1 9 6 6 , 4 9 6 . 5 6 . D . J . Dahm a n d R. A . J a c o b s o n , J . Am. Chem. S o c . , 1 9 6 8 , 9 0 , 5 1 0 6 . 5 7 . M. I . B r u c e , D. C . K e h o e , J . G . M a t i s o n s , B . K. N i c h o l s o n , P . H . R i e g e r a n d M. L . W i l l i a m s , J . Chem. S o c . Chem. Commun . , 1 9 8 2 , 4 4 2 . 5 8 . W. S . M c D o n a l d , J . R. M o s s , G . R a p e r , B. L . Shaw, R. G r e a t r e x a n d N . N . G r e e n w o o d , J . Chem. S o c . Chem. Commun . , 1 9 6 9 , 1 2 9 5 . 5 9 . G . R a p e r a n d W. S . M c D o n a l d , J . Chem. S o c . A , 1 9 7 1 , 3 4 3 0 . 6 0 . J . C o l l m a n a n d W. R. R o p e r , J . Am. Chem. S o c . , 1 9 6 5 , 8 7 , 4 0 0 8 . 6 1 . F . L ' E p l a t t e n i e r a n d F . C a l d e r a z z o , I n o r g . C h e m . , 1 9 6 8 , 7 , 1 2 9 0 . 6 2 . B . F . G. J o h n s o n , J . L e w i s a n d M. V . T w i g g , J . O r g a n o m e t . C h e m . , 1 9 7 4 , 6 7 , C 7 5 . 6 3 . B . F . G . J o h n s o n , J . L e w i s a n d M. V . T w i g g , J . Chem. S o c . D a l t o n T r a n s . , 1 9 7 5 , 1 8 7 6 . 6 4 . R. A . J o n e s , G . W i l k i n s o n , A . M. R. G a l a s , M. B . H u r s t h o u s e a n d K. M. A . M a l i k , J . Chem. S o c . D a l t o n  T r a n s . , 1 9 8 0 , 1 7 7 1 . 6 5 . J . P . C a n d l i n , K. K. J o s h i a n d D . T . T h o m p s o n , Chem. I n d . ( L o n d o n ) , 1 9 6 6 , 4 7 , 1 9 6 0 . 6 6 . F . P i a c e n t i , M. B i a n c h i , E . B e n e d e t t i a n d G . S b r a n a , J . I n o r g . N u c l . C h e m . , 1 9 6 7 , 2 9 , 1 3 8 9 . 6 7 . M. I . B r u c e , C . W. G i b b s a n d F . G . A . S t o n e , Z . N a t u r f o r s c h . , 1 9 6 8 , B 2 3 , 1 5 4 3 . 116 B. F . G . J o h n s o n , R. D. J o h n s t o n , P. L . J o s t y , J . L e w i s a n d I . G . W i l l i a m s , N a t u r e ( L o n d o n ) , 1 9 6 7 , 2 1 3 , 9 0 1 . J . P . C a n d l i n a n d A . C . S h o r t l a n d , J . O r q a n o m e t . C h e m . , 1 9 6 9 , 16, 2 8 9 . J . L e w i s , P u r e A p p l . C h e m . , 1 9 6 5 , 10, 1 1 . F . P i a n c e n t i , M. B i a n c h i , E . B e n e d e t t i a n d G. B r a c a , I n o r g . C h e m . , 1 9 6 8 , 7, 1 8 1 5 . M. I . B r u c e , G. Shaw a n d F . G . A . S t o n e , J . Chem. S o c . D a l t o n T r a n s . , 1 9 7 2 , 1 7 8 1 . M. I . B r u c e , G . Shaw a n d F . G . A . S t o n e , J . Chem. S o c . D a l t o n T r a n s . , 1 9 7 2 , 2 0 9 4 . E . J . F o r b e s , N . G o o d h a n d , D . L . J o n e s a n d T . A . H a m o r , J . O r g a n o m e t . C h e m . , 1 9 7 9 , 182, 1 4 3 . M. I . B r u c e , J . G . M a t i s o n s a n d B . K. N i c h o l s o n , J . O r g a n o m e t . C h e m . , 1 9 8 3 , 247, 3 2 1 . M. I . B r u c e , I . R. B u t l e r , W. R. C u l l e n , F . W. B . E i n s t e i n , 0 . b . S h a w k a t a l y a n d A . C . W i l l i s , u n p u b l i s h e d r e s u l t s . C . A . T o l m a n , Chem. R e v . , 1 9 7 7 , 3 , 3 1 3 . M. I . B r u c e , J . G . M a t i s o n s , B . W. S k e l t o n a n d A . H . W h i t e , J . Chem. S o c . D a l t o n T r a n s . , 1 9 8 3 , 2 3 7 5 . M. S . W r i g h t o n , J . L . G r a f f , R . J . K a z l a u s k a s , J . C . M i t c h e n e r a n d C . L . R e i c h e l , P u r e A p p l . C h e m . , 1 9 8 2 , 1, 1 6 1 . M. A d a m s , M e t a l - L i q a n d a n d R e l a t e d V i b r a t i o n s , L o n d o n : E d w a r k A r n o l d P u b l i s h e r s . L t d . , 1 9 6 7 , p . 1 0 5 . W. R. C u l l e n , D . A . H a r b o u r n e , B . V . L i e n g m e a n d J . R. Sams, I n o r g . C h e m . , 1 9 6 9 , 8, 1 4 6 4 . M. B i g o r g n e , J . O r q a n o m e t . C h e m . , 1 9 7 0 , 24, 2 1 1 . H . S c h u m a n n , L . R o s c h , H - J . K r o t h , H . Newmann a n d B. N e u d a r t , Chem. B e r . , 1 9 7 5 , 108, 2 4 8 7 . V . G u t m a n n , M o n a t s h . C h e m . , 1 9 7 7 , 108, 4 2 9 . V . G u t m a n n , C o o r d . Chem. R e v . , 1 9 7 5 , 15, 2 0 7 . F . W. B . E i n s t e i n , A . C . W i l l i s , W. R. C u l l e n a n d S . T . 117 C h a c o n , u n p u b l i s h e d r e s u l t s . 8 7 . A . C . W i l l i s , p e r s o n a l c o m m u n i c a t i o n . 8 8 . R. C . Weas t a n d M. J . A s t l e , CRC H a n d b o o k o f C h e m i s t r y  a n d P h y s i c s , Boca R a t o n , F l o r i d a : C h e m i c a l R u b b e r P u b l i s h i n g C o m p a n y , 1 9 8 0 , p . D - 1 9 4 . 8 9 . E . L . M u e t t e r t i e s , B u l l . S o c . C h i m . B e l g . , 1 9 7 5 , 8 4 , 9 5 9 . 9 0 . E . L . M u e t t e r t i e s , S c i e n c e , 1 9 7 7 , 1 9 6 , 8 3 9 . 9 1 . E . L . M u e t t e r t i e s , J . O r q a n o m e t . C h e m . , 1 9 8 0 , 2 0 0 , 1 7 7 . 9 2 . C . W. B r a d f o r d , R. S . N y h o l m , G . J . G a i n s f o r d , J . M. G u s s , P. R. I r e l a n d a n d R. M a s o n , J . Chem. S o c . Chem. Commun . , 1 9 7 2 , 8 7 . 9 3 . G . J . G a i n s f o r d , J . M. G u s s , P. R . I r e l a n d , R. M a s o n , C . W. B r a d f o r d a n d R. S . N y h o l m , J . O r q a n o m e t . C h e m . , 1 9 7 2 , 4 0 , C 7 0 . 9 4 . C . W. B r a d f o r d a n d R. S . N y h o l m , J . Chem. S o c . D a l t o n  T r a n s . , 1 9 7 3 , 5 2 9 . 9 5 . J . W. H u f f m a n , L . H . K e i t h a n d R. L . A s b u r y , J . O r g . C h e m . , 1 9 6 5 , 3 0 , 1 6 0 0 . 9 6 . J . W. H u f f m a n a n d J . F . C o p e , J . O r g . C h e m . , 1 9 7 1 , 3 6 , 4 0 6 8 . 9 7 . V . B u s e t t i , G . G r a n o z z i , S . A i m e , R. G o b e t t o a n d D. O s e l l a , O r g a n o m e t a l l i c s , 1 9 8 4 , 3 , 1 5 1 0 . 9 8 . M. M. H a r d i n g , B . S . N i c h o l l s a n d A . K. S m i t h , J . Chem. S o c . D a l t o n T r a n s . , 1 9 8 3 , 1 4 7 9 . 9 9 . K. K n o l l , G . H u t t n e r , L . Z s o l n a i , I . J i b r i l a n d M. W a s i u c i o n e k , J . O r g a n o m e t . C h e m . , 1 9 8 5 , 2 9 4 , 9 1 . 1 0 0 . S . A . M a c l a u g h l i n , 'A. J . C a r t y a n d N . J . T a y l o r , C a n . J . C h e m . , 1 9 8 2 , 6 0 , 8 7 . 1 0 1 . S . L . Cook a n d J . E v a n s , J . Chem. S o c . Chem. Commum., 1 9 8 3 , 7 1 3 . 1 0 2 . F . I w a s a k i , M. J . M a y s , P . R . R a i t h b y , P . L . T a y l o r a n d P. J . W h e a t l e y , J . O r q a n o m e t . C h e m . , 1 9 8 1 , 2 1 3 , 1 8 5 . 1 0 3 . S . C . B r o w n , J . E v a n s a n d L . E . S m a r t , J . Chem. S o c . Chem. Commun . , 1 9 8 0 , 1 0 2 1 . 118 1 0 4 . I . R. B u t l e r , W. R. C u l l e n , J - J . N i a n d S . J . R e t t i g , O r g a n o m e t a l l i c s , i n p r e s s , a n d r e f e r e n c e s t h e r e i n . 1 0 5 . A . J . D e e m i n g , R. E . K i m b e r a n d M. U n d e r h i l l , J . Chem. S o c . D a l t o n T r a n s . , 1 9 7 3 , 2 5 8 9 . 1 0 6 . A . J . D e e m i n g , I . P . R o t h w e l l , M. B . H u r s t h o u s e a n d J . D. J u l i u s B a c k e r - D i r k s , J . Chem. S o c . D a l t o n T r a n s . , 1 9 8 1 , 1 8 7 9 . 1 0 7 . A . J . A r c e a n d A . J . D e e m i n g , J . Chem. S o c . D a l t o n  T r a n s . , 1 9 8 2 , 1 1 5 5 . 1 0 8 . A . J . D e e m i n g , J . O r g a n o m e t . C h e m . , 1 9 7 7 , 1 2 8 , 6 3 . 1 0 9 . M. L . M a r t i n , J . - J . D e l p u e c h a n d G . L . M a r t i n , P r a c t i c a l  NMR S p e c t r o s c o p y , L o n d o n : H e y d e n a n d Son L t d . , 1 9 8 0 , p p . 3 1 5 - 3 2 3 . 1 1 0 . F . A . L . A n e t a n d A . J . R. B o u r n , J . Am. Chem. S o c . , 1 9 6 7 , 8 9 , 7 6 0 . 1 1 1 . 0 . W. H o w a r t h , C . H . M c A t e e r , P . M o o r e , G . E . M o r r i s a n d N . W. A l c o c k , J . Chem. S o c . D a l t o n T r a n s . , 1 9 8 2 , 5 4 1 . 1 1 2 . H . D . K a e s z , p e r s o n a l c o m m u n i c a t i o n . 1 1 3 . E . O. F i s c h e r , A d v . O r g a n o m e t . C h e m . , 1 9 7 6 , 1 4 , 1 . 1 1 4 . A . W. P a r k i n s , E . O. F i s c h e r , G . H u t t n e r a n d D. R e g l e r , A n q e w . Chem. I n t . E d . E n g l . , 1 9 7 0 , 9 , 6 3 3 . 1 1 5 . N . M. B o a g , C . E . Kampe, Y . C . L i n a n d H . D. K a e s z , I n o r g . C h e m . , 1 9 8 2 , 21, 1 7 0 6 . 1 1 6 . I . R. B u t l e r a n d W. R. C u l l e n , C a n . J . C h e m . , 1 9 8 3 , 6 1 , 1 4 7 . 1 1 7 . I . R. B u t l e r , W. R. C u l l e n , T - J . K i m , S . J . R e t t i g a n d J . T r o t t e r , O r g a n o m e t a l l i c s , 1 9 8 5 , 4 , 9 7 2 . 1 1 8 . I . R. B u t l e r , W. R . C u l l e n , F . W. B . E i n s t e i n a n d A . C . W i l l i s , O r g a n o m e t a l l i c s , 1 9 8 5 , 4 , 6 0 3 . 1 1 9 . I . R. B u t l e r a n d W. R. C u l l e n , O r g a n o m e t a l l i c s , 1 9 8 4 , 3 , 1 8 4 6 . 1 2 0 . P . E . G a r r o u , Chem. R e v . , 1 9 8 5 , 8 5 , 1 7 1 . 119 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0060508/manifest

Comment

Related Items