Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structure and bonding in some mono- and bisfluorosulfates Mailer, Kathleen O'Sullivan 1970

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1970_A1 M33_2.pdf [ 6.45MB ]
Metadata
JSON: 831-1.0059866.json
JSON-LD: 831-1.0059866-ld.json
RDF/XML (Pretty): 831-1.0059866-rdf.xml
RDF/JSON: 831-1.0059866-rdf.json
Turtle: 831-1.0059866-turtle.txt
N-Triples: 831-1.0059866-rdf-ntriples.txt
Original Record: 831-1.0059866-source.json
Full Text
831-1.0059866-fulltext.txt
Citation
831-1.0059866.ris

Full Text

STRUCTURE AND  SOME MONO- AND  BONDING IN  BIS-FLUOROSULFATES  by KATHLEEN O SULLIVAN MAILER 1  B.Sc. U n i v e r s i t y M.Sc.  St. Francis  o f T o r o n t o , 1964.  Xavier  U n i v e r s i t y , 1966.  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF  in.the  PHILOSOPHY  Department;  . of Chemistry  We accept t h i s t h e s i s as conforming t o t h e required  standard  THE UNIVERSITY OF BRITISH COLUMBIA August, 1970  In p r e s e n t i n g  this thesis  in p a r t i a l  an advanced degree at the U n i v e r s i t y the  Library  shall  of B r i t i s h  requirements f o r  Columbia,  make i t f r e e l y a v a i l a b l e f o r reference  I f u r t h e r agree t h a t p e r m i s s i o n f o r s c h o l a r l y purposes may representatives.  be granted by  his  of  t h i s t h e s i s f o r f i n a n c i a l gain  It i s understood that  permission.  Department of  Chemistry  The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada  6 October  the Head of my  1970  Columbia  shall  not  I agree and  f o r e x t e n s i v e copying o f  by  written  f u l f i l m e n t o f the  that  study.  this thesis Department  copying or  or  publication  be allowed without  my  ABSTRACT  The s i n g l e c r y s t a l reported.  X-ray a n a l y s e s o f KSO^F and NH^SO^F are  Both are orthorhombic  (space group:  dimensions a = 8 . 6 2 A, b = 5 . 8 4 , c = 7.35 c = 7.54  respectively.  disordered i n KS0 F 3  between NH^  Two  (i.e.  Pnma) w i t h  and a = 8.97  cell  A, b =  5.99,  o f the a n i o n l i g a n d p o s i t i o n s are c o m p l e t e l y  S 0 X ~ , X = 50% F and 50% 0 ) . 2  A hydrogen  2  and one o f the SO^F  d i s o r d e r e d p o s i t i o n s causes  bond  that  l i g a n d p o s i t i o n t o be o c c u p i e d p r e f e r e n t i a l l y by oxygen i n NH^SO^F. The  l a s e r Raman spectrum o f CH^C(OH)^SO^F  The v i b r a t i o n a l  s p e c t r a and SO^F  K S 0 F , C H C ( 0 H ) S 0 F , and 3  3  2  (CH )  3  3  dimensions sn(SC^F)  s u r p r i s i n g l y c o n s t a n t w i t h o n l y S-F  are compared i n NK^SO^Fr The  2 <  i s determined.  S 0 F ~ dimensions  are  3  i n (CFL)„Sn (SO„F)„ f i n which t h e r e  i s g r e a t e s t X-OSO-F i n t e r a c t i o n ) s h o r t e r than i n the o t h e r s .  v  c  increases with i n c r e a s i n g c a t i o n - a n i o n i n t e r a c t i o n . +  The v i b r a t i o n a l K, +  N H , Rb , +  Cs ,  +  +  4  i n c r e a s e s 108  s p e c t r a o f the f l u o r o s u l f a t e s o f L i , Na ,  ( C H ) N , and +  3  4  (C H ) As 6  5  +  4  are r e p o r t e d .  cm * w i t h p o l a r i z i n g power o f the c a t i o n  to L i ) and ^g_Q +  +  v  g  (from  p  (C^Hj-^As*  (average) i n c r e a s e s i n the same s e r i e s by 35 cm  The p r e p a r a t i o n and c o n d u c t i v i t y i n HS0 F o f S n ( S 0 F ) 3  Pb(S0 F) 3  2  are r e p o r t e d .  Mossbauer parameters  3  Both are weaker bases than C a ( S 0 F ) . 3  of S n ( S 0 F ) 3  2  (6 = +4.17  2  mm/sec,'A = 0.73  ^. and  2  The mm/sec)  i n d i c a t e i t i s one o f the most i o n i c SnII compounds y e t r e p o r t e d . A new  p r e p a r a t i v e r o u t e f o r o b t a i n i n g M(SC> F)  HSO,F) i s r e p o r t e d .  3  The v i b r a t i o n a l  2  (MfJXDCC^FL.)  2  s p e c t r a o f the b i s - f l u o r o s V i l f a t e s  +  ii  -  o f Mg£l), Cajl), Sift I), Baft I), Snil), PbftD, CuGl), Znftll Cdfcl), Mn(tl), and Hgftl) are r e p o r t e d .  Vg ^ (average)  i z i n g power o f t h e c a t i o n o r  and Vg p cannot  be c o r r e l a t e d w i t h p o l a r -  i o n i z a t i o n p o t e n t i a l but a r e i n a l l  cases h i g h e r than f o r t h e m o n o - f l u o r o s u l f a t e s .  The d i f f e r e n c e s among  the s p e c t r a a r e e x p l a i n e d i n terms o f p o l a r i z i n g power o f t h e c a t i o n , some m u l t i p l e bonding SO, F~  anion.  t o f l u o r i n e and d i f f e r e n t s i t e - s y m m e t r i e s  f o r the  - iii  -  TABLE OF CONTENTS  Page  ABSTRACT  ...................  TABLE OF CONTENTS  .  LIST OF TABLES  i ....  .  i i i  .. .  v  LIST OF FIGURES  ..  ACKNOWLEDGEMENT  ...  1.  GENERAL INTRODUCTION  2..  CRYSTAL STRUCTURE OF KS0 F 3  •..., .  v i i ...  viii  .......  1  . ..  12  Introduction  12  Experimental Crystal  .•  Data  12 .......  13  Structural Analysis Discussion  3. '  14 %  ...  CRYSTAL STRUCTURE OF N H S 0 F 4  3  20  .  27  Introduction  27  Experimental Crystal  Data  • .. ..  28 28  Structural Analysis  29  Discussion  36  - iv -  Page 4.  'COMPARISON OF FOUR FLUOROSULFATE-CONTAINING  COMPOUNDS  WHOSE CRYSTAL STRUCTURES ARE KNOWN  50  Introduction  ...  Experimental  ..  53  Results  53  Discussion  5.  .  53  VIBRATIONAL SPECTRA OF THE MONO-FLUOROSULFATES .......  61  Introduction  61  Experimental  62  Discussion  64  Appendix  6.  50  .  80  VIBRATIONAL SPECTRA OF THE BIS-FLUOROSULFATES Introduction  REFERENCES  82 32  ...  Experimental  89  Discussion  (Part I )  99  Discussion  (Part I I )  ••••  • •.  1  0  8  125  -  V  -  LIST OF TABLES Page  I.  I n f r a r e d Data f o r Some C o v a l e n t F l u o r o s u l f a t e s  II.  C o r r e l a t i o n T a b l e f o r T^, C ^  III.  S t r u c t u r e F a c t o r s f o r KSOjF  IV.  Positional  V.  I n t e r a t o m i c D i s t a n c e s and A n g l e s f o r KSO^F  VI.  a) P o s i t i o n a l P a r a m e t e r s ' f o r KSOgF Assuming  and C^  v  v  .....  2  Symmetry  8  -.  16  Parameters f o r KS0 F  ;  3  .. ...  Symmetry  19 21  23  b) Bond D i s t a n c e s and A n g l e s f o r KSO^F Assuming C^ VII.  v  Symmetry  ..  23  C e l l Dimensions o f F i v e S i m i l a r Orthorhombic Compounds  30  VIII.  I n t e r a t o m i c D i s t a n c e s and A n g l e s f o r NH^SO^F  •  IX.  Raman and I n f r a r e d V i b r a t i o n a l Data f o r NH^SO^F and KS0 F  35  3  X.  P o s i t i o n a l Parameters and Temperature  Factors f o r  NH S0 F  :.•  4  33  ........  3  XI.  Structure Factors f o r NH S0 F  XII.  Magnitude  4  ..  3  .  37 .......  38  and D i r e c t i o n o f t h e P r i n c i p a l Axes o f  Thermal V i b r a t i o n f o r N H S 0 F 4  '  3  :..  XIII.  Final NH  XIV.  I n t e r l i g a n d D i s t a n c e s f o r t h e S 0 F ~ A n i o n i n KSOjF  + 4  P o s i t i o n a l Parameters and Bond D i s t a n c e s .  4  4  3  $  3  and NH.S0_F  4  9  - vi -  Page  XV.  XVI.  Bond Lengths and Bond A n g l e s i n Four  Fluorosulfate-  C o n t a i n i n g Compounds  .'  Raman and  SO^F  I n f r a r e d V i b r a t i o n a l Data f o r the  A n i o n i n Four F l u o r o s u l f a t e - C o n t a i n i n g XVII.  51  Compounds ..  52  I n f r a r e d and Raman V i b r a t i o n a l Data f o r the monoFluorosulfates  ........... .  65  %  XVIII.  P o l a r i z i n g Power o f the Monovalent  Cations  68  XIX.  Some P h y s i c a l Data f o r the D i v a l e n t  Metals  86  XX.  E l e m e n t a l A n a l y s e s o f the b i s - F l u o r o s u l f a t e s  94  XXI.  Some P h y s i c a l Data f o r the b i s - F l u o r o s u l f a t e s  95  XXII.  I n f r a r e d and Raman V i b r a t i o n a l F r e q u e n c i e s f o r the bis-Fluorosulfates  XXIII.  97  C o n d u c t i v i t y R e s u l t s f o r the b i s - F l u o r o s u l f a t e s o f T i n , Lead, and Cadmium  XXIV.  101  y-values f o r S n ( S 0 F ) , P b ( S 0 F ) , 3  SrCS0 F) 3  2  3  2  Ba(S0 F) 3  2  and 103  2  XXV.  Mossbauer Data f o r Some S n ( I I ) Compounds  •  XXVI.  P o l a r i z i n g Power, C a t i o n R a d i i , and V i b r a t i o n a l  107  F r e q u e n c i e s f o r the b i s - F l u o r o s u l f a t e s o f Magnesium, Manganese, Z i n c , C a l c i u m , Cadmium, and Mercury XXVII.  Comparison Cu(S0 F) 3  2  of Infrared Results f o r Z n ( S 0 F ) 3  2  ....  117  and  Reported by Goubeau and M i l n e and  O b t a i n e d i n t h e P r e s e n t Work  122  -  V l l  LIST OF  -  FIGURES Page  1.  ir-bond O v e r l a p i n the  2.  The  Normal T, and d  3.  The  Symmetry o f the  SO^F  Anion  5  C, V i b r a t i o n a l Modes 3v SO^F  9  A n i o n when I n t e r a c t i n g  Through 1, 2, o r 3 o f I t s Oxygen Atoms 4.  The  Effect of Rotational  O s c i l l a t i o n on  • a Bond  Length  ..........  5.  Bonding i n N H S 0 F  6.  Chain Structure  7.  Unit C e l l of Dimethyltin  8.  4  •  •  :  3  10.  A P o s s i b l e AX  2  ...  bis-Fluorosulfate  56  ......... C r y s t a l Layer Structure  Apparatus Used f o r the P r e p a r a t i o n  of A i r  Sensitive 91  Conductances o f S n C S 0 F ) , P b C S 0 F ) , and 3  P l o t t e d Against 12.  Unit  13.  Infrared  2  3  2  Cd(S0 F) 3  Concentration  C e l l o f SnC& Spectra  70 84  Fluorosulfates 11.  54  o f R e p r e s e n t a t i v e Monovalent  Fluorosulfates 9.  41 46  of Acetate Acidium F l u o r o s u l f a t e  V i b r a t i o n a l Spectra  10  2  o f the b i s - F l u o r o s u l f a t e s  2  102 .  109 HO  - viii -  In c o m p l e t i n g t h i s work my thanks a r e due t o a g r e a t many p e o p l e - most prominent among them a r e Dr. F. Aubke, Dr. R.C. Thompson and Dr. J . T r o t t e r .  CHAPTER 1  • GENERAL INTRODUCTION  V  S i n c e the f i r s t p r e p a r a t i o n o f p o t a s s i u m f l u o r o s u l f a t e (KSO^F) 1 2 by Traube i n 1913,  the f l u o r o s u l f a t e anion has  5  interesting species.  The  proved t o be  a very  s o l v e n t system, HSO^F, has been e x p l o r e d  in  3-7 g r e a t d e t a i l by  r e c e n t workers.  Many s o l i d compounds c o n t a i n i n g  t h e f l u o r o s u l f a t e group are known: metals and coyalent  simple  the a l k a l i n e e a r t h m e t a l s ,  alkyl  and  aryl  i o n i c s a l t s o f the  alkali  o t h e r b i n a r y metal f l u o r o s u l f a t e s ,  e s t e r s , metal o x y f l u o r o s u l f a t e s , and  metal  halide fluorosulfates. The  preparative routes  compounds a r e d i v e r s e and 1913  until  1958  for obtaining fluorosulfate-containing  a comprehensive survey  i s g i v e n by Cady i n h i s review o f  o f methods used from sulfur-fluorine  g chemistry.  S i n c e then,  a new  reagent, p e r o x y d i s u l f u r y l d i f l u o r i d e  9 (FO2SO-OSO2F),  has been s y n t h e s i z e d , opening new  f o r f l u o r o s u l f a t e compounds. s y n t h e s i z e d w i t h t h i s new published  i n 1966.  The  reagent  In t h i s  p r e p a r a t i v e avenues  v a s t number o f c o v a l e n t f l u o r o s u l f a t e s are reviewed by R u f f ^  same a r t i c l e he b r i n g s up  i n an  article  to date the  list  o f f l u o r o s u l f a t e s s y n t h e s i z e d by o l d e r methods. i n f l u o r o s u l f a t e chemistry The  are p r o v i d e d  Two f u r t h e r reviews 11 12 by Woolf and W i l l i a m s o n .  known f l u o r o s u l f a t e compounds have been c l a s s i f i e d  the r e v i e w authors  as h a v i n g  the r e s t o f the m o l e c u l e ,  wholly  or w h o l l y  c o v a l e n t bonding between SO^F i o n i c bonding:  c a t i o n and  by and SO_F  - 2 -  anion. The  c o v a l e n t compounds a r e gases o r v o l a t i l e  exception i s oxalyl sublimable by F  19  fluorosulfate,  13  liquids.  (One  JC ( 0 ) O S 0 F ] , which i s a r e a d i l y 2  s o l i d a t room temperature.)  2  These have been c h a r a c t e r i z e d  14 15 NMR and i t was found by Emsley et a l , and Hohorst and Shreeve  t h a t f o r t h e c o v a l e n t l y bonded f l u o r o s u l f a t e s , resonances i n t h e -50 ppm r e g i o n o f t h e spectrum  (measured r e l a t i v e t o t r i c h l o r o f l u o r o m e t h a n e ) a r e  d i a g n o s t i c o f the f l u o r i n e the c o v a l e n t  i n SO^F.  Some i n f r a r e d data a l s o e x i s t f o r  f l u o r o s u l f a t e s , and a r e p r e s e n t a t i v e sampling  of this  data  i s g i v e n i n T a b l e I.  Table I I n f r a r e d Data f o r Some C o v a l e n t F l u o r o s u l f a t e s  Compound  S-0 sym. s t r .  S-0 asym. s t r .  S-F str.  C£CF S0 F  1257  1486  835  2  3  cm  - 1  cm"  1  Reference cm  (16)  C F C(0)S0 F  1250  1490  843  (16)  NF S0 F  1250  1492  840  (17)  1253  1493  845  £18)  . 1250  1490  840  (13)  1252  1494  835  3  7  2  3  3  P0(S0 F) 3  3  [CCO)OSO F] 2  CC£(S0 F) 3  The both  2  .  3  S-F and S-0 s t r e t c h i n g f r e q u e n c i e s f a l l  • (13)  i n a v e r y narrow r e g i o n and  t h e symmetric and asymmetric S-0 s t r e t c h i n g f r e q u e n c i e s a r e c o n s i d e r -  a b l y h i g h e r than  t h e i r counterparts  f o r the i o n i c f l u o r o s u l f a t e s .  For  - 3 -  example, the t y p i c a l i o n i c f l u o r o s u l f a t e , s t r e t c h a t 1079 S-F  cm ,  an S-0  -1  s t r e t c h a t 749  cm . -1  No  KSO^F, has an S-0  asymmetric s t r e t c h  a t 1288  cm  symmetric 1  and  an  s y s t e m a t i c study has been made o f the  c o v a l e n t i n f r a r e d data f o r the f l u o r o s u l f a t e s .  The use o f t h i s  t e c h n i q u e has been l i m i t e d t o t h a t o f a f i n g e r p r i n t i n g t o o l . The  ionic fluorosulfates  are white  c r y s t a l l i n e s o l i d s whose  b e h a v i o u r i n HSO^F s o l u t i o n has, f o r the most p a r t , been w e l l c h a r a c t e r 3  ized.  I n f r a r e d d a t a f o r many o f the s o l i d  discussed i n l a t e r chapters.  No  however, had been r e p o r t e d u n t i l The  of this f i e l d .  structures,  '  chemistry  The  data  i n these r e v i e w a r t i c l e s have a l l o w e d the a u t h o r s t o  c o v a l e n t bonding  c o n t a i n i n g compounds i n terms o f i o n i c  to the f l u o r o s u l f a t e  groups.  o f p a r t i a l i o n i c o r p a r t i a l c o v a l e n t bonding is  be  the p r e s e n t work.  importance  c l a s s i f y t h e known f l u o r o s u l f a t e or  s i n g l e c r y s t a l X-ray  f o u r review a r t i c l e s d e a l i n g w i t h f l u o r o s u l f a t e 8 10-12  a t t e s t t o t h e i n t e r e s t and accumulated  compounds e x i s t and w i l l  About the b r o a d r e g i o n  to SO^F  little  or nothing  known. Until  1961,  the i n t e r e s t  been m a i n l y p r e p a r a t i v e .  I t was  in solid  fluorosulfate  known t h a t the f l u o r o s u l f a t e  a m o l e c u l a r g r o u p i n g w i t h t h e t h r e e oxygen and one tetrahedrally  t o s u l f u r but  little  thought  was  w i t h i n the a n i o n or between the f l u o r o s u l f a t e molecule. able before  T h i s was 1961.  due, p e r h a p s ,  compounds had anion  was  f l u o r i n e atom bonded  g i v e n t o the  bonding  group and the r e s t o f the  to the lack of s t r u c t u r a l data a v a i l -  At t h i s time, C r u i c k s h a n k h e d r a l , i n o r g a n i c groups and  wrote on TT-bonding i n t e t r a -  s t r e s s e d the importance o f the 3d  orbitals  o f the c e n t r a l atom i n the ir-bonding between the c e n t r a l atom and ligands.  He  considered  TT-bonding between t h i r d row  oxygen or n i t r o g e n as a cause o f the u n u s u a l l y X-ray c r y s t a l l o g r a p h i c analyses t h a t i s , when compared to the Schomaker-Stevenson  equation  r  T h i s equation  Applying  B but  and  s h o r t bonds found  i n t e t r a h e d r a l groups.  by  Unusually  short,  s i n g l e bond d i s t a n c e s c a l c u l a t e d from  the  20  AB  =  r  A  +  r  B  t a k e s i n t o account the  between atoms A and  elements  the  not  " °-  0 9  < A- B> X  X  electronegativity difference .  IT-bonding.  C r u i c k s h a n k ' s bonding scheme to the SO^F  ion,  there  3 a r e found 18 i n n e r s h e l l  e l e c t r o n s , f o u r a-bonds o f the sp  s i x e l e c t r o n s r e m a i n i n g f o r TT-bonding: f r o m the oxygen l i g a n d s , and the  ion.  The  unfilled  o f t h e 3d t y p e and  one  two  from s u l f u r and  from the n e g a t i v e  type one  and each  charge r e s i d i n g on  o r b i t a l s on s u l f u r r e m a i n i n g f o r TT-bonding  the oxygen o r b i t a l s are 3p  From a c o n s i d e r a t i o n o f F i g u r e  are  type.  1 i t can be  seen t h a t  the  s u l f u r 3d o r b i t a l s most f a v o r a b l y a l i g n e d t o o v e r l a p w i t h the oxygen 3p o r b i t a l s a r e 3d 9 ' ? and 3d 9 . I t s h o u l d be noted t h a t i n t h i s x^y z y  simple  z  p i c t u r e o f bonding, two  oxygen are f i l l e d orbital  z  with  o f the p o r b i t a l s on  each  lone p a i r e l e c t r o n s so o n l y one  remains to i n t e r a c t w i t h  oxygen p  the s u l f u r TT-bonding o r b i t a l s  rather  - 5 -  than the two o r t h o g o n a l ones n e c e s s a r y as shown i n the f i g u r e . difficulty  This  can be circumvented by a l i n e a r combination o f a l l the 2p  o r b i t a l s on the oxygen atoms and the 3d^ _y2  a  n  2  ^  orbitals  from  s u l f u r i n a manner as d e s c r i b e d by C r u i c k s h a n k .  •'  Figure 1  TT-Bond O v e r l a p i n the SO„F A n i o n  F o l l o w i n g C r u i c k s h a n k ' s paper, G i l l e s p i e and Robinson attempted  t o c o r r e l a t e bond l e n g t h s and bond angles o f S-0  compounds  (many o f them c o n t a i n i n g t e t r a h e d r a l s u l f u r ) w i t h t h e i n f r a r e d s t r e t c h i n g f r e q u e n c i e s o f t h e S-0 bond i n the compounds.  He a l s o  s p e c u l a t e d on t h e m u l t i p l e b o n d i n g i n compounds w i t h oxygen and f l u o r i n e attached to tetrahedral s u l f u r .  I t was n o t e d a t t h i s  point  - 6 -  that  very l i t t l e  for solid  i n f r a r e d d a t a and no s t r u c t u r a l d a t a were a v a i l a b l e  compounds c o n t a i n i n g This  the f l u o r o s u l f a t e  group.  work, t h e n , was undertaken t o p r o v i d e s t r u c t u r a l i n f o r  mation f o r t h e i o n i c f l u o r o s u l f a t e s by s i n g l e I t was hoped t h a t  a covalently  f l u o r o s u l f a t e , could proved u n f e a s i b l e  c r y s t a l , X-ray  bonded f l u o r o s u l f a t e compound, o x a l y l  a l s o be s t u d i e d  by X-ray a n a l y s i s , but t h i s  as the compound decomposed r a p i d l y i n t h e X-ray  beam; both a t room temperature and a t 77°K.  The f u r t h e r  aim o f t h e  t h e s i s WIS t o p r e p a r e and examine simple metal f l u o r o s u l f a t e s M^ ) +  analysis  by i n f r a r e d s p e c t r o s c o p y .  (M  +  and  The metal f l u o r o s u l f a t e s chosen s t a r t  w i t h t h e p r e d o m i n a n t l y i o n i c a l k a l i metal compounds and work through to p a r t i a l l y c o v a l e n t l y  bonded ones' t o attempt t o f i l l  in this  r e l a t i v e l y unknown area o f f l u o r o s u l f a t e c h e m i s t r y . Single tool  c r y s t a l X-ray a n a l y s i s  f o r s t u d y i n g bonding and s t r u c t u r e  i s perhaps t h e most p o w e r f u l of s o l i d materials,  and was  thus t h e l o g i c a l c h o i c e f o r s t a r t i n g t h i s s t u d y . The advantages  o f X-ray a n a l y s i s  are w e l l known and a p p r e c -  i a t e d as can be seen from t h e number o f c r y s t a l s t r u c t u r e s  published  22-24 each y e a r .  Many t e x t s  are a v a i l a b l e  f o r explaining  t h e o r y o f X-ray d i f f r a c t i o n and f o r c o v e r i n g p r a c t i c a l s o l u t i o n both i n r e f i n i n g t h e X-ray c r y s t a l l o g r a p h i c importantly, i n assessing results.  the b a s i c structure  d a t a , and more  t h e a c c u r a c y and the s i g n i f i c a n c e o f the  No attempt, t h e n , w i l l be made t o reproduce such i n f o r m a -  tion i n this thesis.  - 7 -  One p o i n t s h o u l d be made though, about thermal motion o f atoms i n a c r y s t a l  and t h e c o r r e c t i o n f a c t o r which must be a p p l i e d t o  measured bond l e n g t h s because o f i t .  These bond l e n g t h c o r r e c t i o n s  f o r thermal r i d i n g motion a r e l a r g e i n the NH^SO^F s t r u c t u r e determi n e d i n t h i s work.  I t was f e l t ,  then, t h a t the t h e o r y o f t h e r m a l 25 26  r i d i n g , motion o f atoms as developed  by Cruickshank  '  and Busing  27 and Levy  s h o u l d be d i s c u s s e d .  o f the s t r u c t u r a l  T h i s w i l l be found  a n a l y s i s o f NH^SO^F i n Chapter  i n the d i s c u s s i o n  3.  B e s i d e s t h e m a n i f e s t advantages o f X-ray c r y s t a l l o g r a p h y t h e r e a r e , u n f o r t u n a t e l y a few d i f f i c u l t i e s a s s o c i a t e d w i t h structural tool.  The m a t e r i a l t o be s t u d i e d must e x i s t as a s i n g l e  c r y s t a l r a t h e r than as an amorphous powder t o y i e l d exact parameters;  this  structural  i t must n o t decompose when i r r a d i a t e d w i t h X-rays  (this  i s n o t as g r e a t a problem w i t h i n o r g a n i c m a t e r i a l s as i t i s w i t h b i o l o g i c a l o n e s ) ; and a s i n g l e s t r u c t u r a l a n a l y s i s may take a g r e a t d e a l o f time  - from two months t o a y e a r o r more.  The p r i n c i p l e s o f v i b r a t i o n a l  (or i n f r a r e d ) s p e c t r o s c o p y a r e  a l s o w e l l known and a p p r e c i a t e d , e s p e c i a l l y among chemists with r e l a t i v e l y weight.  s m a l l molecules  composed o f atoms o f low atomic  The t h e o r y o f v i b r a t i o n a l  f o r molecular  elementary  identification  and advanced t e x t s  s p e c t r o s c o p y and i t s g e n e r a l use  and a n a l y s i s have been p r e s e n t e d i n many 28—31 and so w i l l n o t be r e p e a t e d  I n f r a r e d s p e c t r o s c o p y i s most u s e f u l SQ_F  working  here.  f o r characterizing  because o f the anion's r e l a t i v e l y h i g h symmetry.  As mentioned  - 8 -  p r e v i o u s l y , t h e i s o l a t e d a n i o n i s t e t r a h e d r a l i n shape, but the symmetry i s lowered from  to  because o f the f l u o r i n e  ligand.  The normal modes o f v i b r a t i o n o f a t e t r a h e d r a l XY^ molecule and o f a C^  molecule a r e g i v e n i n F i g u r e 2.  v  will for a C  split  The l o w e r i n g o f symmetry  the T^ degenerate v i b r a t i o n s and the c o r r e l a t i o n  table  t h i s i s g i v e n i n T a b l e I I a l o n g w i t h the f u r t h e r s p l i t t i n g s i f  3 v  XY^Z molecule i s r e p l a c e d by C  2 y  X  V  Z 2  2'  31  Table II C o r r e l a t i o n T a b l e f o r T,, C, and C„ d' 3v 2v  P o i n t Group  V  V C  3v  V  2  V  3X  3  V  4  E(R)  F (I,R)  F (I,R)  E(I,R)  A^^R) +  AjCI.R) + E(I,R)  2  2  E(I,R) C  2v  AjCI.R) +  AjCI.R) +  A  B ^ I . R ) +'  £R)  2  A ^ I . R ) + BjCI.R) +  B (I,R) 2  B (I,R) 2  I t w i l l be noted from t h e t a b l e t h a t o f t h e f o u r v i b r a t i o n modes i n t h e T^ p o i n t group o n l y two a r e i n f r a r e d a c t i v e w h i l e a l l f o u r are Raman a c t i v e .  In C^  v  the i n a c t i v e  IR modes become a c t i v e  because t h e p r e s e n c e o f t h r e e s i m i l a r atoms and one d i f f e r e n t one at  t h e c o r n e r s o f a t e t r a h e d r o n means t h a t any m o l e c u l a r v i b r a t i o n  9  1*  v CE)  v CF )  2  3  2  r  o  O  V (E) 6  Figure 2  r  v ^ )  Normal v i b r a t i o n a l modes f o r T, Symmetry (upper row) SO. as an example Normal v i b r a t i o n a l _ m o d e s f o r Symmetry (lower row) SO^F as an exampYe  - 10 -  will  cause a d i p o l e moment change i n the molecule.  mode c a u s i n g red  a d i p o l e change i n t h e molecule w i l l be a c t i v e i n i n f r a -  spectroscopy. Any d i s t o r t i o n o f t h e C_  anion  Any v i b r a t i o n a l  symmetry o f SO-F  i n t e r a c t i o n o r c o o r d i n a t i o n o f t h e anion  through c a t i o n -  through one o r two o f  i t s oxygen atoms o r intermolec'ular i n t e r a c t i o n s w i t h i n t h e c r y s t a l l i n e s t r u c t u r e w i l l have an e f f e c t on t h e i n f r a r e d and Raman s p e c t r a . effect will  be t w o - f o l d :  lowering  o f the symmetry t o C  symmetry) and s h i f t i n g t h e f r e q u e n c i e s h i g h e r o r lower wavelengths.  g  This  (mirror  o f t h e v i b r a t i o n a l modes t o  This i s i l l u s t r a t e d  i n Figure  3 below.  Figure 3 Distortion of  symmetry t o C  g  symmetry f o r SO^F  Q  (a)  undistorted C  GO  C  s  C  g  oxygen atoms s i m i l a r , one d i f f e r e n t )  symmetry through c o o r d i n a t i o n o f two oxygen atoms  (two Cd)  symmetry  symmetry through c o o r d i n a t i o n o f one oxygen atom  (two 00  3v  oxygen atoms s i m i l a r , one d i f f e r e n t ) symmetry - c o o r d i n a t i o n o f a l l t h r e e oxygen atoms  ( a l l three  oxygen atoms s i m i l a r )  - 11 -  T h i s study d e f i n e s t h e i s o l a t e d f l u o r o s u l f a t e anion i n KS0 F  (Chapter 2) and.in NHjSC^F  X-ray  crystallographic analysis.  3  (Chapter 3) by s i n g l e While  crystal,  the work was i n p r o g r e s s  the X-ray a n a l y s i s o f a m e t a l - f l u o r o s u l f a t e , b r i d g e bonded  structure,  33 (CH^^Sn (SO^F)^  a  n  d one o f the complex, a c e t i c a c i d - f l u o r o -  34 sulfuric acid,  were completed.  These w i l l be compared t o t h e i o n i c  f l u o r o s u l f a t e s t r u c t u r e s i n Chapter Chapter  5 c o n t a i n s an . i n f r a r e d study o f t h e monofluoro-  s u l f a t e s , MSG^F where M = L i (CH ) N , +  3  4  4.  +  , Na , K , Rb , C s , ( C H ) A s , +  +  +  +  +  6  5  4  NH . +  4  Chapter  6 c o n t a i n s a study o f the b i s - f l u o r o s u l f a t e s .  A  new p r e p a r a t i v e r o u t e f o r s y n t h e s i z i n g b i s - f l u o r o s u l f a t e s i s g i v e n and s e v e r a l new compounds a r e r e p o r t e d .  An i n f r a r e d study o f the  b i s - f l u o r o s u l f a t e s o f Mg(II), C a ( I I ) , S r ( I I ) ,  Ba(II), Zn(II), Cd(II),  H g ( I I ) , M n ( I I ) , C u ( I I ) , S n ( I I ) , and P b ( I I ) comprises o f Chapter Pb(S0 F) 3  2  t h e main p a r t  6 (Part I I ) , w h i l e the s o l u t i o n b e h a v i o r o f S n ( S 0 F ) 3  i n . H S 0 F i s d i s c u s s e d i n P a r t I o f Chapter 3  study o f t h e new compound S n ( S 0 F ) 3  2  6.  2  and  A Mossbauer  i s i n c l u d e d i n P a r t I o f Chapter 6.  A b r i e f d e s c r i p t i o n o f Mossbauer s p e c t r o s c o p y as a s t r u c t u r a l t o o l i s a l s o g i v e n i n Chapter  6 because i t i s f e l t t h a t t h i s t e c h n i q u e i s  not as w e l l u n d e r s t o o d  as i n f r a r e d s p e c t r o s c o p y , f o r example.  A Raman study o f a l l the m o n o - f l u o r o s u l f a t e s and b i s f l u o r o s u l f a t e s d i s c u s s e d i n t h i s t h e s i s was a l s o attempted, with l i m i t e d success. M ( S 0 F ) and M ( S 0 F ) 3  3  2  The reasons  but met  f o r t h e poor Raman s p e c t r a f o r  are not u n d e r s t o o d .  - 12 -  CHAPTER 2  Introduction  The logical first  c r y s t a l s t r u c t u r e o f potassium  s t e p i n b e g i n n i n g the study o f metal f l u o r o s u l f a t e s .  H i s t o r i c a l l y , i t was compound known."''  the f i r s t s o l i d , f l u o r o s u l f a t e - c o n t a i n i n g  However, i t s importance  i s more than h i s t o r i c a l solvent  i n f l u o r o s u l f a t e chemistry  f o r i t i s a p r i m a r y s t a n d a r d i n the HSO^F  system. The p u r i f i e d  is  fluorosulfate i s a  s t a b l e i n dry a i r .  salt  i s a white c r y s t a l l i n e m a t e r i a l  which  In s o l u t i o n o r i n moist a i r i t s l o w l y  hydrolyzes to ^SO^  and HF.  The h y d r o l y s i s i n a i r i s slow  so t h a t the c r y s t a l  s t r u c t u r e d e t e r m i n a t i o n was  enough  not a f f e c t e d .  35 Lange was  showed from g r o s s morphology s t u d i e s t h a t KSO^F  isomorphous w i t h KCJIO^ and so had a barium  sulfate structure.  36 From X-ray powder data Sharp as f o l l o w s :  a = 8.57  ± 0.03  determined A, b = 5.93  In t h e p r e s e n t study, the c e l l  dimensions  the KSO^F c e l l ± 0.05  dimensions  X, c = 7.36  ± 0.03  have been determined  g r e a t e r a c c u r a c y and the geometry o f the SO^F  with •  ion elucidated.  Experimental KSO^F was  p r e p a r e d by a d d i n g doubly d i s t i l l e d  KC£ and removing the excess a c i d under vacuum a t 120°C.  HSO^F t o 37  The  A.  salt  - 13 -  was r e c r y s t a l l i z e d o f 0.1N KOH.  from water kept a t pH = 7.0 by the dropwise a d d i t i o n  The r e s u l t i n g c r y s t a l s a r e c o l o r l e s s p l a t e s e l o n g a t e d  a l o n g b_. The c r y s t a l chosen f o r X-ray a n a l y s i s had a c r o s s - s e c t i o n 0.4 x 0.2 mm  and was mounted w i t h t h e b_ a x i s p a r a l l e l t o the <J> a x i s  of the goniostat. The c and a c r y s t a l accurately the high  dimensions were determined by measuring  a n g l e r e f l e x i o n s on a zero  l a y e r Weissenberg 38  photograph  (6 = 70-80°) and p l o t t i n g the N e l s o n - R i l e y  function.  The b_ c r y s t a l dimension was d e t e r m i n e d from r o t a t i o n photographs and c o r r e c t e d by measuring a c c u r a t e l y t h e 20 p o s i t i o n o f the OkZ r e f l e x i o n s on t h e  diffTactometer. Crystal  X(CuKa  1  = 1.54051 X; C u K a  orthorhombic,  2  Data  = 1.54433 A)  a = 8.62 A; b = 5.84 A; c_ = 7.35 X  ( a l l ± 0 . 0 1 A)  U = 370.0 A 3  D c a l c = 2.48 gm/cc Z = 4  • MW  D meas = 2.48 gm/cc  = 138.2  F(000) = 272 Absorption  coefficients  u ( C u K ) = 167 cm.  1  a  '  ' • • -1 yfMoK ) = 18 cm. a Absent s p e c t r a :  0k£ when (k + £) i s odd, hkO when h i s odd.  Space group from t h e s e absences Pnma(D„,  16  ) o r Pn2..a(C„  9  ).  From  - 14 -  comparison w i t h K P O 2 F 2  and from s t r u c t u r a l a n a l y s i s ,  space  group  Pnma was chosen. A G e n e r a l E l e c t r i c XRD-5 S p e c t r o g o n i o m e t e r w i t h a scintillation the  c o u n t e r and p u l s e h e i g h t a n a l y z e r was used t o c o l l e c t  3-dimensional d a t a .  (zirconium f i l t e r  A p p r o x i m a t e l y monochromatic  MoK^  radiation  and p u l s e h e i g h t a n a l y z e r ) and a 0-29 scan were  used. C o r r e c t i o n s f o r background r a d i a t i o n were determined s e p a r a t e l y from r e f l e x i o n p l a n e measurement by measuring and p l o t t i n g the background over a 20 range 2-50°.  The r e s u l t i n g p l o t was used  to determine t h e background  f o r each i n d i v i d u a l  correction  L o r e n t z and p o l a r i z a t i o n f a c t o r s  Structural  were a l s o a p p l i e d  reflexion.'  to the data.  Analysis 40  The b a r i u m s u l f a t e p o s i t i o n a l parameters initial  KSO^F parameters t o c a l c u l a t e  The f o u r  liga'nds  surrounding s u l f u r  were used as t h e  the s t r u c t u r e  (three oxygens  factors ( F ) . c  and one f l u o r i n e )  were i n t r o d u c e d i n t h e s t r u c t u r a l r e f i n e m e n t as oxygens.  Since the  s c a t t e r i n g powers o f oxygen and f l u o r i n e f o r X-rays d i f f e r by o n l y one e l e c t r o n ,  the structure  should r e f i n e quite  r e a d i l y and a d e c i s i o n  as t o which s u l f u r l i g a n d was f l u o r i n e , i t was f e l t , the b a s i s  of final  c o u l d be made on  S-X bond l e n g t h s and X-S-X bond a n g l e s .  Of t h e t o t a l 451 r e f l e x i o n s to a minimum i n t e r p l a n a r  (20 MoK  < 54.5°) c o r r e s p o n d i n g  s p a c i n g o f 0.78 A) 40 were unobserved.  The  - 15  -  unobserved r e f l e x i o n s were i n c l u d e d given  F  values  b  =0.6  o  F„, , ,. threshold  i n the  The  n  s t r u c t u r e refinement  s t r u c t u r e was  and  r e f i n e d by J  2 l e a s t squares methods, m i n i m i z i n g E w ( F - F ) .  block-diagonal values  Q  o f w are as  follows:  w = 1 for = F*/|F  w  w = 0.9  1  F  o  <  1  | for IF  for  1  o  F*  |F j > F* 1  (F*  210,  211,  212,  303,  and  =  10)  I unobserved  Twelve s t r o n g r e f l e x i o n s , (002, 132,  The  c  401),  020,  040,  were c o r r e c t e d  102,  112,  122,  f o r e x t i n c t i o n by  41 the method o f Pinnock, T a y l o r  and  Lipson.  No  absorption  corrections  were a p p l i e d . The was  0.069.  R value  before  r e f i n e m e n t was  0.30;  E x a m i n a t i o n o f the bond a n g l e s and  point, revealed  that  i t was  the  final  bond l e n g t h s  R  value  at  not p o s s i b l e t o a s s i g n f l u o r i n e t o a  unique s u l f u r l i g a n d p o s i t i o n , so t h a t the t o t a l r e f i n e m e n t o f SO^F  i o n was  (That  i s , the oxygen s c a t t e r i n g f a c t o r was  ligands.)  The  c a r r i e d out  w i t h the  measured and  this  four s u l f u r ligands  as  the  oxygens.  used f o r a l l f o u r s u l f u r  c a l c u l a t e d s t r u c t u r e f a c t o r s are  found i n  f  T a b l e I I I and are  the  found i n T a b l e  f i n a l p o s i t i o n a l parameters and IV.  thermal parameters  - 16 -  Table III Measured  and C a l c u l a t e d for  Structure  Factors  KS0 F 3  (Unobserved R e f l e c t i o n s have F^ = -0.6 Hj-hrgghoicP'  - 17 -  k  I  F_ o  F c  h=0 0 •0 0 0 1 ]  1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6  2 4 6 8 1 3 5 7 9 0 2 6 8 1 3 5 7 0 2 6 1 3 5 7 0 2  6  7 7  0 0 0 0 0 0 0 0 0 1 t 1 1 I 1 1  1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4  1 3  75.2 -75r_2 16.5 -16-5 29.3 2*-* 27.2 -281.0 28.3 35..I8 6.6 3.W9 32.3 33W9 ..6.3 5w« 18.3 -IB.6 101.3 - 1 0 5 ~ 7 5.3 3.-1 2 7.0 2 7/-'9 22.2 -21.S 16.1 16.3 13.0 12V2 12.6 -10-.-4 24.2 -25i_,l -l.l a-jB 74.2 80.^ 25.1 -27-3 9.3 -9>.* 18.2 17/. 6 16.0 16--* 9.9 -9. 3 13.5 13-5 6.9 31.8 -38-2 14.5 14V.\9 6.9 • 1.A -1.2 u-* -1.2 0-^9  h=l  1  2 3 5 6  7 8 9 1  2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6  7 8 1  22.3 51.3 20.6 17.7 7.7 5.1 12.8 16.0 3.0 12.3 64.e 37.9 20.8 3.4 11.6 17.8 2.4 5.7 30.6 55.2 23.6 29.6 23.9 16.0 22.3 10.9 4.7 -0.7 51.0 14.7 31.6 9.6 19.1 16.9 -1.2 10.6  -17?-S -51-3 -17/.'9 ls-:2 S..'5 -4W5 12_i7 -15.6 -1-5 -It.* -6«.fl 4 0>-8 2P-3 -12:. 3 -1Zw6 -E.'5 4. ..'5 301.7, 58J..6 -235-3 -3S-.I 23;-3 15_'9 -235^0 10W 3 *._3 3-5 51.2 -1 -34.1 -8S-.S 18). 5 16-6 -D-'O -8-ii  4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7  2 3 4 5 6 7 1 2 3 4 5 6 1 2 3 4 5 1 2 3  27.2 3.2 16.4 7.4 3.5 10.2 8.9 17.8 15.2 9.4 2.4 3.8 4.0 15.7 3.4 11.3 7.7 -1.2 14.7 2.5  -28.3 3.2 17.6 -6.9 -4.4 10.2 -6.3 -18.0 15.6 . 10.0 -0.7 -3.9 3.2 15.6 -3.2 -11.3 6.2 2.0 13.8 -4.3  h=2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1-1 1 I ]  2 2 2 2 2  ?  2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 0 1  21.8 29.7 33.B 36.0 16.9 23.4 4.4 11.7 7.6 14.2 102.9 68.0 46.5 14.7 3.2 24.'; 29.2 13.9 15.9 7.3 26.9 34.0 -^0.6 6.8 7.3 17.9 5.4 3.7 3.4 32.5 27.2 13.7 3.1 7.8 17.6 20.1 9. 3 8.7 2.6 . 5.3 10.7 16.3 8.8 13.0 2.6 4.8 40.7 28.9 22.2 8. 5 -1.0 13.0 16.0 -1.0 2.4  19.0 29.2 -33.6 -39.9 15.5 22.4 -4.0 12.0 -7.5 -13.7 -92.9 64. 1 45.3 -13. 1 4.1 -24. 1 -30.6 13.4 16.4 -7.1 24.7 34.0. -0.5 6.6 -6.1 -17.8 5.6 -3.7 2.8 34.3 -27.2 -13.9 3. 3 -7.4 17.5 20.3 -8.8 -9.0 1.1 2.4 -10. 1 -15.0 8.8 13.5 -3.4 4.4 -40.7 27.3 23.3 -7.7 1.9 -10.8 -16.1 -0.5 -1.0  6 6 6 6 7 7 7  2 3 4 5 0 1 2  5.3 10.2 3.6 4.6 13.8 10.2 5.9  0 0 0 0 p b 0 0 0  3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7  1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 1 2 3 4 5 1 2  16.8 30.3 53.8 17.6 14.5 5.8 11.3 -1.1 8.0 15.9 38.5 27.8 10.0 27.9 4.9 -1.0 14.9 15.4 9.9 40.0 40.6 13.3 22.2 9.2 6.8 4.1 27.6 35.8 6.9 31.6 5.2 6.6 12.2 11.2 -0.9 27.9 19.2 8.8 7.5 6.6 -1.0 15.3 8.0 4.6 9.1 3. 1 6.7 3.7 14.6 5.5 5.5 4.7 7.6  0 0 0 0 0 0 0 0 C 1 1 1  0 1 2 3 4 5 6 7 8 0 1 2  37.5 87.7 21.6 41.4 4.3 34.0 8.2 23.8 2.9 33.5 1.9 31.2  4.4 6.4 -4.2 -5.8 13.3 -9.7 -6.2  h=3  J I l l i i 2 2 2 2 2 2 2 2 3 3 3 i  -16.1 27.3 52.2 16.4 -13.7 -4.5 -11.2 -1.0 7.3 -11.6 41.7 -27.6 -9.5 28.3 -4.7 -1.0 15. 1 14.6 10. 1 -44.3 -45.1 13.3 22.7 9. 1 -5.9 -4.3 -27. 1 36.9 7.3 -33.4 4.7 6.5 -12.5 -10.4 -0.2 27.8 17.4 -8.9 -8.2 -6.9 -0.6 15.2 -10.0 -5.4 9.7 -3.2 6.8 2.4 -15.8 -10.3 5.7 -3.6 -7.5  12.5 -1.1 -1.2 7.5 22.7 3.6  -12.4 -2.0 0.2 7.2 -21.4 -3.4  8.7 20.0 8.2 -1.2 10.0  8.3 -20.8 -7.8 0.6 9.5  h=4 -39.1 83.4 19.4 -44.7 5.7 -36.2 -9.4 25.3 2.9 30.5 -1.2 29.6  - 18 -  4 4 4 4 4 5 5 5 5 5 6 6 6  2 3 4 5 6 1 2 3 4 5 1 2 3  6. 1 22.7 5. 1 6.2 8.2 7.4 8.4 17.6 2.8 8.7 5.7 -1.2 13.0  6.2 -22.5 4.9 7. 1 -7.9 6.8. -7.6 -17.1 3.2 8.8 -5.7 -2.6 13.1  h=6 0 0 C 0 0 0 0 0 1  0 1 2  3 4 5 6 7 0 1 2 3 4 5 6 7 0  1 1 1 1  1 1 I 2 2 2 2 2 2 2 2 3  3 3 3 3 3 3 4 4 4 4 4 4  ! 1  5  5 5 5 5 6 i 6  -  20.8 8.0 19.7 4.0 11. 9 7.7 9. 5 2.5 30.0 46.2 7.0 3.5 3.0 22.1 8.2  13.3 16.3 1 4.0 2 6.0 3 -0.9 4 5.0 5 5.8 6 10.5 7 3.0 0 22.2 1 28. 1 2 7.8 3 2.4 4 2.3 5 16.7 6 5.8 0 3.2 1 4.1 2 7.7 3 2.6 4 8.3 5 4.2 6 4.5 0 14.9 1 29.9 7.0 2 3 5.4 4 -1.2 0 2.9 1 2.6 2 2.9  -TF.~9 7.7 18.0 -2.6 -12.7 7.5 8.6 3. 1 -29.3 -52.2 9.5 2.8 2.4 21.7 -7.3 -13.2 -14.3 -4.0. 5.6 0.9 5.2 -5.7  -10.5 -2.8 21.1 27.6 -7.4 2-5 . -2.3 -16.5 6.2 -2.7 4.5 6.4 -2.4 -8.4 4.3  6.8 -14.1 -29.2 6.2 5.1 1.0 0.4 -2.1 -2.7  h=7 n 0 0 0 0 c 0  1 2 3 4 5 6 7 1 2 3 4 5 6  17.7 31.1 10.8 16.6 2.8 -1.1 6.8 6. 3 18.2 20.5 5.6 4. 1 11.3  16.6 -30.9 -10.2 16.0 2.3 -1.7 -5.9 -5.1 17.4 19.3 -4.8 -3.8 11.4  1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5  7  9.7  1  20.3 23.C 22.2 9.7 13.8 3.2 7.0 18.4 18.9 12.1 5. 3 13.2 10.9 17.8 11.2 10.2 6.0 3.7 6.2 9.2  2 3 4 5 6 1  2 3 4 5 6 1 2 3 4 5 1 2 3  -9.5 -19.B 22.0 22.2 -8.6 -13.9 -2. 1 6.4 -18.2 -18.4 11.5 5.5-13.4 10.5 -16.8 -11.1 9.2 5.8 -3.4 6.1 9.0  3  3  4 4  1 2  0  0  0 0  1 2 3 4 0  0 1 2 3 4 5 6 0 1 2 3 4 5 6 0  0 0 0 0 c  1 2 3 4 5  2 3 4 5 6 0 1 2 3 4 5 0 1  2 3 4 0 1  45.5 21.4 16.0 6.0 3.0 7.5 12.0 7.2 4.7 -1.0 2.9 8.6 13.1 3. 1 33. 1 7.3 9.1  -1. 1 7.2 6.9 14.6 10.9 -1.1 3.4 -1.1 5.8 10.2 28.8 11.5 10.4 2.6 2.6 -1.2 4.3  1  1 1  1 I 2 2 2 2 3 3  2 3 4 5 1 2 3 4 1 2  3.1 -1.1 2.3  1 1 1 2 2 2 2 3 3  2 3 0 1  10.6 -1.2 23. 1 2.5 13.8 4.8 -1.2 7.8 4.6 5.8 14.2 3.8  0  1  -1.2  0  0 1  1  2 3 0  1  2.5 -1.4 3.0 12.1 -1.7  23.5 -1.8 -15.1 5.0 1.4 -6.9 -5.0 -6. 1 -15.5 3.5  h-ll -50.8 -21.6 17.6 6.2 4.2 7.3 -12.3 -5.8 -5.9 -1.3 2.2: 8.5 -13.2 -3.2 34.4 6.9 -8.5 1.0 -6.8 -6.8 10.7 10.7 0.5 -3.6 -0.5 -5.7 10.4 -29.0 -10.9 11.1 2.3 3.2 -0.1 -4.6  h=9 4.4 8.3 7.9 8.0 5.0 -1.1 19.2 4.6 15.8 5.4 3.4 14.0 2.5 15.3 -1.1 16.0  -1.8 -2.4 7.8  h=10  h=8 0 0 0 0 0 0 0 1 ' 1 1 1 1 1 1 ? 2 2 2 2 2 2 3 3 3 3 '3 3 4 4 4 4 4 5 5  -1.2 2.9 6.2  -3.4 7.7 7.3 -7.5 4.6 1.3 19.0 -3.5 -15.6 -6.2 2.7 -13.8 -5.5 15.4 1.0 -15.7  3.3  - 19 -•  T a b l e IV  Final positional  ( f r a c t i o n a l ) w i t h Standard 2 2 ( A ) , and A n i s o t r o p i c Thermal Parameters ( A x 10 )  Deviations  Atom  Parameters  X  y  z  a(x)  a(y)  a(z)  K (l)  0.1756  1/4  0.1605  0.0035  0  0. 0037  S(2)  0.0693  1/4  -0.3072  0.0040  0  0. 0039  X(3)  0.1953  1/4  -0.4460  0.012  0  0. 012  X(4)  '-0.0786  1/4  -0.4094  0.012  0  0. 014  0(5)  0.0809  -0.2009  0.009  0.010  0. 009  +  0.0468  mean —11  -12  —13  U, 22  2.64  0  0.16  3 .46  0  3 .37  0.15  S(2)  2.97  0  -0.12  2 .87  0  2 .41  0.16  X(3)  3.30  0  1.66  5 .72  0  2 .68  0.6  X(4)  . 2.45  0  -1.86  6 .29  0  4 .35  0.6  0(5)  3.80  0.22  0.29  4 .06  3 .74  0.4  Atom K  + 1  (D  -23  u, 33  1.10  - 20  -  Discussion From T a b l e V i t i s seen t h a t indicate  that  the  i o n i s C^^  identical.  The  l e n g t h S-0(5), 1.42  d i s t a n c e s and difference the  X(3)  It i s f e l t  positions  ing  are  not  Pn2^a.  the  and  X(4)  bond  i s most S-X(4)  equal  (the  significant)  time.  The  crystallographically would p e r s i s t X(3)  nor  i f the the  (i.e. fluorine)  and  so t h a t  fluorine X(4)  this  disorder-  space group chosen were  X(4)  that  X(3)  then  position  an  atom o f  s h o u l d occupy one  y i e l d the  low  greater  unique  position  ion. The  symmetry and  isolated  SO^F  -  i o n would most c e r t a i n l y p o s s e s s  c r y s t a l p a c k i n g f o r c e s do  symmetry o f the red  the  0(5)-S-X(4) a n g l e s are  thermal parameters which would i n d i c a t e  i n the  and  are'completely disordered with  F u r t h e r , n e i t h e r the  d e n s i t y than oxygen  X(3)  S-X(3) and  g r e a t enough t o be  angles  0(5)'  (5) p o s i t i o n  s i n c e the  o n e - h a l f the  related  is a real effect  that  that  0(5)-S-X(3) and  X(4)  and  a m i r r o r p l a n e and  indicate  o c c u p y i n g each p o s i t i o n positions  by  between them i s not  and  bonds and  angle 0 ( 5 ) - S - 0 ( 5 ) ' , 112.9°, and A,  c e r t a i n l y oxygen.  SO^F  symmetric w i t h 0(5)  crystallographically related also  the  individual  ions.  not  seem t o a f f e c t  b e i n g lowered from C ^ .  We  can. now  calculate  meters f o r f l u o r i n e when i t i s i n p o s i t i o n  evidence o f the the  positional  (3) or  parameters f o r oxygen when i t i s i n t h e s e p o s i t i o n s  o  (4)  and  v  the  T h i s i s demonstrated i n the  spectrum o f KSOgF^'^'^** which shows no  C^  the  from the  infrasymmetry parapositional crystallo-  -' 21 -  Table V Interatomic  distances  SO^F  (A) and A n g l e s - KSO^F  ion - C  1.490  S-X(4)  1.480  Mean S-X  1.485  S-0(5)  1.424  X(3)-X(4)  2.376  X(3)-0(5)  2.372 .  2.373  X(3)-S-X(4)  106.3°  X(3)-S-0(5)  108.9  X(4)-S-0(5)  109.8  0(5)-S-0(5)'  112.9  Deviations  a(S-O)  0.009  a (S-X)  0.012  a(S-F) a(angles)  K  C2x)  K-X K-0  (2x)  2.376  0(5)-0(5)*  Standard  K-0  symmetry  S-X(3)  X(4)-0(5)  K-X  2 v  +  M).02 0.7°  Coordination  2.81  K-0 C2x)  3.02  2.83  K-X  (2x)  3.22  2.90  K-X  (2x)  3.55  2.91  - 22 -  graphically  r e f i n e d mean p o s i t i o n s  assuming t h a t  a l l the O-S-0  angle 0 ( 5 ) - S - 0 ( 5 ) ' we  X(3) and X ( 4 ) .  a n g l e s are the same.  can c a l c u l a t e p o s i t i o n s  and F(4) are found by s i m i l a r l y assuming t h a t  This  i s done by  S i n c e we know  0(3) and 0 ( 4 ) . a l l angles 0-S-F  the same and t h a t  f l u o r i n e i s on the l i n e j o i n i n g 0 ( 3 ) . . . X ( 3 )  0(4)...X(4).  r e s u l t i n g p o s i t i o n a l parameters  Table VI.  The  i m a t e l y 0.4 because  The  A.  differences  Because o f the v e r y s m a l l d i f f e r e n c e  i t would seem u n l i k e l y t h a t including  these p a r t i a l  and  approx-  involved  (expected t o be g r e a t e s t  0 (3) .•. . F (3), and 0 ( 4 ) . . . F ( 4 ) d i r e c t i o n )  are  are g i v e n i n  0(3)...F.(3) and 0 ( 4 ) . . . F ( 4 ) are  the thermal v a r i a t i o n  F(3)  i s greatest  and  i n an  i n the b_ d i r e c t i o n ,  f u r t h e r r e f i n e m e n t o f the s t r u c t u r e  o c c u p a n c i e s would improve  T h e r e f o r e , such .refinement was  not attempted  -  —  the s i t u a t i o n .  and the f l u o r i n e  and  oxygen d i s p l a c e m e n t s from the measured X(3) and X(4) p o s i t i o n s  were  accounted  The  f o r by a l l o w i n g  anisotropic  s u l f u r thermal v i b r a t i o n was The  v i b r a t i o n o f a l l atoms.  found t o be n e a r l y  i s o t r o p i c as  thermal v i b r a t i o n o f 0(5) i s expected t o be s l i g h t l y  expected.  anisotropic  as i t i s " r i d i n g " on the S-0(5) bond w h i l e S i s f i x e d i n p o s i t i o n three other ligands. nearly  But the 0(5) thermal e l l i p s o i d  by  indicates  isotropic vibration. The  S-0  and S-F bond d i s t a n c e s assuming C^  v  the r e l a t e d bond a n g l e s are g i v e n i n T a b l e VIb. a n g l e s were c a l c u l a t e d  symmetry  These d i s t a n c e s and  from the oxygen p o s i t i o n c a l c u l a t e d  as above; the f l u o r i n e p o s i t i o n c a l c u l a t e d  and  f o r X(3)  f o r X(4) as above;  and  Table V i a  SO^F  P o s i t i o n Parameters Assuming C ^  Atom 1/2 1/2 1/2 1/2  X  0.215 0.171 -0.101 -0.062  FC3) 0(3) F(4) 0(4)  v  Symmetry  L  z  1/4 1/4 1/4 1/4  -0.435 -0.460 -0.389 -0.425  T a b l e VIb SO^F" Dimensions Assuming C^  v  Symmetry  S-F S-0  1.57 (1.58*) 1.424 CI-43*)  F-0 0-0  2.39 2.37  F-S-0. O-S-O  105;8 112.9  Corrected f o r rotary  oscillation.  C  - 24 -  the oxygen 0(5)  and 0(5)'  determined parameters.  p o s i t i o n s from t h e c r y s t a l l o g r a p h i c a l l y G i l l e s p i e p r e d i c t e d from e l e c t r o n - p a i r  44 t h a t t h e F-S-0 angles  r e p u l s i o n theory 0-S-O angles  would be s m a l l e r than t h e  s i n c e t h e S-0 bonds have some Tr-bond c h a r a c t e r .  This  i s found t o be t h e case as noted i n T a b l e VIb.  19 45 46 Cruickshank  '  '  has d i s c u s s e d TT-bonding i n approx-  i m a t e l y t e t r a h e d r a l s p e c i e s as SO^F  (as was mentioned i n t h e  He suggests t h a t a t o t a l Tr-bond o r d e r o f 2.0 e x i s t s  Introduction).  2i n t h e S-0 bonds o f S0^  , ^O^F >  a n c  * ^2^2  a n c  *'  n  '"'"bonding e x i s t s  0  2between s u l f u r and f l u o r i n e .  i n S0^  Therefore  0.5  TT-bonding; i n SO^F , each has 0.67  has  one Tr-bond.  each S-0 bond has  TT-bonding; and i n S 0 F , 2  A comparison o f t h e S-0 bond l e n g t h s  2-  o  4 7  _  each  2  i n these  „  molecules (1.49 A i n S0 ; 1.43 A i n S0 F ; and 1.405 A i n S 0 F i n d i c a t e s t h a t t h i s i s q u a l i t a t i v e l y c o n s i s t e n t . The O-S-0 bond a n g l e s i n these s p e c i e s show i n c r e a s i n g s i z e w i t h i n c r e a s i n g S-0 4  3  2  Tr-bond o r d e r ,  (109.5°  2  48 2  47  i n SO.  ; 112.0°  i n SO F ; and 1 2 4 . 0 ° i n  48 S0 F 2  ) , a l s o consistent with G i l l e s p i e ' s  2  Assuming 0.67  theory.  TT-bonding i n each S-0 bond i n SO^F  Tr-bond f o r each S-0 bond i n S 0 F 2  2  and one  would mean t h a t t h e S-F bonds i n  o each a r e s i n g l e bonds. i n KS0 F and 1.585  The measured S-F d i s t a n c e i s 1.58  ± .001  3  o  A inS O ^ .  48  ±.02 A  These d i s t a n c e s i n d i c a t e  s i m i l a r S-F bonds i n t h e two compounds but they a r e much s m a l l e r than the S-F s i n g l e bond Stevenson e q u a t i o n  20  (1.64  A) c a l c u l a t e d from t h e Schomacher-  and d i f f e r e n t a l s o from t h e measured S-F longer  )  25  o bond d i s t a n c e i n SF^ some Tr-bonding 50^2-  49  (1.646 ± .003 A ) .  I t i s p o s s i b l e , then,  does e x i s t between s u l f u r and f l u o r i n e  i n SO^F  that and  T h i s p o s s i b i l i t y w i l l be c o n s i d e r e d a g a i n i n the c h a p t e r s  on M ( S 0 F ) and'M(S0 F) 3  infrared spectra.  3  As was  b r i e f l y mentioned i n the I n t r o d u c t i o n , G i l l e s p i e and  21 Robinson  have worked out from known S-0 bond l e n g t h s and  s t r e t c h i n g f r e q u e n c i e s a c o r r e l a t i o n between the two. c o r r e l a t i o n curve and  an O-S-0  angle o f 112-113° i n S 0 F  .  3  this X  This distance i s noticeably  from t h i s s t r u c t u r e o f 1.43 X  o f 1 1 2 . 9 ° i s -in the range they  t h e measured a n g l e  However, the S-0  From  they have p r e d i c t e d an S-0 bond l e n g t h o f 1.47  g r e a t e r than t h e v a l u e determined although  S-0  predict.  s t r e t c h i n g f r e q u e n c i e s they used a r e from s o l u t i o n s  o f HS0 F i n a c e t i c a c i d . 3  from Raman and i n f r a r e d  I f one uses t h e s t r e t c h i n g f r e q u e n c i e s 36 42 43 s p e c t r a o f s o l i d KS0 F ' ' one c a l c u l a t e s 3  o an S-0 bond l e n g t h o f 1.45  A which i s i n b e t t e r agreement w i t h t h e  c r y s t a l l o g r a p h i c v a l u e determined Gillespie  here.  and Robinson a l s o e s t a b l i s h a l i n e a r  between bond o r d e r and s t r e t c h i n g authors  assumed  f o r c e constant obtained  a bond o r d e r o f 1.67 o f 8.7  f o r the S-0 bond.  f o r t h e S-0 bond i n S 0 F 3  x 10^ dynes cm.  ^ from s t r e t c h i n g  from a s o l u t i o n o f HS0 F i n H00CCH .  f o r c e constant found  frequency  3  from the s o l i d  correlation  3  The and a  frequencies  I f we c a l c u l a t e a  KS0 F s t r e t c h i n g f r e q u e n c i e s i t i s  t o be 9.4 x 10^ dynes cm.  3  T h i s would seem t o be a more  r e l i a b l e v a l u e because o f t h e b e t t e r agreement i n S-0 bond  lengths  - 26 -  mentioned above.  Hov^ever, i t d e s t r o y s the l i n e a r f o r c e  constant-  bond o r d e r r e l a t i o n s h i p p r e s e n t e d i n G i l l e s p i e and Robinson's paper. This  does n o t n e c e s s a r i l y  e x i s t , but i n d i c a t e s correlations  mean t h a t  a l i n e a r r e l a t i o n s h i p does not  the u n c e r t a i n t i e s  involved  i n e s t a b l i s h i n g such  and the need f o r more e x p e r i m e n t a l l y measured  d i s t a n c e s and f o r c e  constants.  S-0  bond  - 27 -  CHAPTER 3  Introduction  S i n c e t h e KSO^F s t r u c t u r a l a n a l y s i s i n d i c a t e d a SOgF  disordered  a n i o n , i t seemed u s e f u l t o examine t h e s i n g l e c r y s t a l s t r u c t u r e  o f NH^SO^F.  The s t r u c t u r e o f NH^PO^F ^  i n d i c a t e d two normal hydrogen  bonds from NH^ t o oxygens i n two d i f f e r e n t ?0^F^  anions and the  p o s s i b i l i t y o f two b i f u r c a t e d hydrogen bonds t o the a n i o n .  In t h e  34 recently reported was  CH^COOH.HSO^F c r y s t a l s t r u c t u r e  a l s o i n d i c a t e d between t h e a c e t a t e  sulfate ion.  hydrogen bonding  a c i d i u m i o n and t h e f l u o r o -  In b o t h o f t h e s e s t r u c t u r e s  the hydrogen bonding was  d i r e c t e d t o the oxygen atoms o f t h e f l u o r o s u l f a t e groups and not t o the  fluorine.  I f t h i s were t h e case i n NH^SO^F, i t was p o s s i b l e  that  the oxygen p o s i t i o n s would be f i x e d i n the c r y s t a l s t r u c t u r e by hydrogen bonding and so t h e SO^F  a n i o n would n o t be  T h i s would a l l o w us t o make a more c o n f i d e n t lengths  disordered.  e s t i m a t e o f t h e bond  and angles i n t h e f l u o r o s u l f a t e i o n . NH^SO^F i s a white c r y s t a l l i n e compound which i s not as  a i r s t a b l e as KSC^F.  I t was thought t h a t h y d r o l y s i s t o  and  HF might be f a s t enough t o cause p a r t i a l  the  c r y s t a l d a t a c o l l e c t i o n was complete.  was  sealed  collected.  (NH ) S0 4  2  4  decomposition before  For t h i s reason the c r y s t a l  i n a q u a r t z c a p i l l a r y b e f o r e t h e s t r u c t u r a l data were  - 28 -  Experimental NH^SO^F was p r e p a r e d from NH^CJi and f l u o r o s u l f u r i c i n t h e same manner as KSO^F. vacuo at 100°C.  39  Excess a c i d was removed by h e a t i n g i n  R e c r y s t a l l i z a t i o n from d r y , e t h a n o l a t room temp-  e r a t u r e produced c o l o r l e s s , t h i n p l a t e s . allized  acid  sample ( i . e .  The p u r i t y o f t h e r e c r y s t -  t h e absence o f s u l f a t e ) was checked by i n f r a r e d  spectroscopy. The c r y s t a l  finally  chosen f o r X-ray a n a l y s i s was  i n a t h i n q u a r t z t u b e b e f o r e mounting i n t h e X-ray beam. mounted w i t h b_ p a r a l l e l  sealed  I t was  t o t h e <J> a x i s o f t h e g o n i o s t a t and had c r o s s -  s e c t i o n 0.2 mm x 0.04 mm.  The c r y s t a l was a t h i n hexagon e l o n g a t e d  a l o n g b_ w i t h bounding f a c e s {001} d e v e l o p e d , and s m a l l e r {100}, and {210} forms. The c e l l dimensions o b t a i n e d from r o t a t i o n and z e r o - l a y e r Weissenberg d a t a were used t o g e n e r a t e t h e p o s i t i o n s o f t h e r e f l e x i o n p l a n e s f o r t h e NH^SC^F c r y s t a l .  The 29 p o s i t i o n s o f 17 hOO,  OkO,  and 00I p l a n e s f o r CuKa^ and CuKa^ were measured as a c c u r a t e l y as p o s s i b l e and t h e s e measurements were used t o c a l c u l a t e t h e f i n a l cell  dimensions r e p o r t e d h e r e .  Crystal (X,  Data  CuKotj = 1.54051 A, A, C u K a  2  = 1.54433 A; A, CuKa = 1.5418 X)  o r t h o r h o m b i c ; a = 8.97 A, b = 5.99 X, c = 7.54 X ( a l l ± 0.01 A ) . U = 405.8 D  X  . =1.91 calc  3  6  gm/cc  D meas  = 2 . 0 0 gm/cc  - 29 -  (To measure the d e n s i t y o f NH^SO^F a sample was weighed  suspended  i n CCii^ u s i n g a Berman b a l a n c e .  s p e c i f i c g r a v i t y o f CCl^ Z = 4  MW  F(000) =  i n a i r and  U s i n g t h e known  the d e n s i t y o f the s a l t was  determined.)  = 117.10  240  Absorption c o e f f i c i e n t Absent  weighed  spectra:  OkZ  u(CuKa) = 63 cm * (k + £) i s odd, hkO when h i s odd.  From t h e s e  absences and from comparison w i t h KSO^F, the space group was  A G e n e r a l E l e c t r i c XRD-6 Spectrogoniometer a s c i n t i l l a t i o n c o u n t e r and CuKa r a d i a t i o n h e i g h t a n a l y z e r ) were used t o c o l l e c t s c a n width i n 20 equal t o (1.80 + 0.86  (card  (nickel f i l t e r  PnmafD^^'''^).  automated), and p u l s e  the t h r e e d i m e n s i o n a l d a t a . t a n 0) was  used.  This  A  compensated  f o r the wider r e f l e x i o n peak a t h i g h e r a n g l e s by a l o n g e r scan time.. The background  count on e i t h e r s i d e o f a r e f l e x i o n peak was  t h e averaged background  r a d i a t i o n count was  measured and  s u b s t r a c t e d from the peak  count. Of 332 r e f l e x i o n s w i t h 29 < 120° o b s e r v e d above background  r a d i a t i o n count.  (d = 0.89  A ) , 297 were  The unobserved  were g i v e n zero weight, and were thus not i n c l u d e d i n the structural  reflexions subsequent  analysis.  Structural Analysis  *  NH.S0_F was 4 3  assumed t o have the barium s u l f a t e s t r u c t u r e , as  do KS0,F and N F L P 0 F , s i n c e the c e l l 9  9  dimensions o f a l l are s i m i l a r  - 30 -  and t h e space groups i d e n t i c a l  (Table V I I , below).  Table VII C e l l Dimensions  BaSO, 4  40  o f F i v e S i m i l a r , Orthorhombic  Compounds  39  KS0 F  NH S0 F  KP0 F  3  4  2  NH P0 F  3 9  4  2  A  a  8.87 A  8.62 A  8.972 A  8.04  b  5.45  5.84  5.996  6.21  6.43  c  7.15  7.35  7.542  7.64  7.86  2  5 2  A  8.13  T h e r e f o r e , " t h e f i n a l p o s i t i o n a l parameters f o r KSO^F were used as t h e s t a r t i n g parameters which  f o r NI-^SO^F.  S i n c e i t was not known  o f t h e f o u r l i g a n d s around s u l f u r were oxygen  f l u o r i n e a l l were r e f i n e d  as oxygens  initially  and which  was  i n the s t r u c t u r a l a n a l y s i s .  To  b e g i n a l l atoms were a s s i g n e d a temperature f a c t o r o f 4.0 A^ and t h i s was a l l o w e d t o v a r y i s o t r o p i c a l l y .  The i n i t i a l  R i n a f u l l matrix  l e a s t - s q u a r e s a n a l y s i s o f t h e above s t r u c t u r e was 0.25. is  The R v a l u e  2 r e l a t e d t o t h e f u n c t i o n b e i n g m i n i m i z e d , Z W | F - F | , by:  °  -'31  -  1  The 6.3  + 0.025  w e i g h t i n g scheme adopted  |F  | + 0.0025  |F  Q  |  2  f o r t h e d a t a was  + 0.002  |F  | .  This  3  i m a t e l y equal weight t o a l l r e f l e x i o n data w i t h F d e c r e a s i n g weights  to a l l r e f l e x i o n s with F  was a r r i v e d a t by t r i a l  Q  2  ff  =  gave approx-  < 1 0 and g r a d u a l l y  Q  > 10.  The above  and e r r o r i n a t t e m p t i n g t o minimize  formula  R and i t s  v a l i d i t y was t e s t e d by d i v i d i n g t h e d a t a i n t o 1 0 c l a s s e s based on 2  F , ( = F ) and c a l c u l a t i n g t h e mean (w F F !) f o r each c l a s s , obs o . o c 2 ' The form o f o~ g i v i n g t h e most c o n s t a n t s e r i e s o f mean ( W | F | |F |)' 6  1  1  1  1  Q  C  i s t h e one g i v e n above. Absorption c o r r e c t i o n s f o r the experimental c a l c u l a t e d by a program adapted  t o the 3 6 0 / 6 7  d a t a were  IBM computer a t UBC  by Dr. F . H . A l l e n from t h e o r i g i n a l program by R a b i n o v i t c h , Coppens and L i e s e r o w i t z . ( 0 1 1 , 0 2 0 , and 0 4 0 ) were e x c l u d e d  Three s t r o n g r e f l e x i o n s from t h e r e f i n e m e n t extinction.  ^  s i n c e i t was f e l t  t h a t these were a f f e c t e d by  The c r i t e r i o n f o r d e c i d i n g t h i s was ,  C  q  F  ~  F  ZwC|F l " | F h 0  N  c >  > 2  = number o f observed reflexions  3.0  1/2  N  c  v  = number o f v a r i a b l e s  N -N o v  When t h e R v a l u e was reduced  so t h a t t h e p o s i t i o n s o f t h e  atoms were v a r y i n g by no more than 0 . 0 0 2 A an attempt d e c i d e which o f t h e s u l f u r  l i g a n d s was f l u o r i n e .  was made t o  T a b l e V I I I i n the  - 32 -  first  column g i v e s the bond a n g l e s , d i s t a n c e s and  i n the SO^F  standard d e v i a t i o n s  i o n when the f o u r s u l f u r l i g a n d s were r e f i n e d as oxygens.  Let us assume f o r t h e moment t h a t p o s i t i o n position unit  (4) i s f l u o r i n e i n a l l SO^F  is  symmetric.  u n i t s i n the c r y s t a l and  T h i s means t h a t angles F(4)-S-0(5)  F(4)-S-0(3)  s h o u l d be the same, and  0(5)-S-0(3)  s h o u l d a l s o be the same, and the two  differ and  significantly.  F(4)-S-0(3),  angles 0 ( 5 ) - S - 0 ( 5 ) '  (1.7°) and between 0 ( 5 ) - S - 0 ( 5 )  t o be "the same w i t h i n e x p e r i m e n t a l  2 - 3a d i f f e r e n t  from  C^  symmetric.  v  from C^ (C  2 y  v  Two  possibilities  (4) i s f l u o r i n e and real.  So we  ( i i ) There i s p a r t i a l  0(5)-S-0(3), be  On the o t h e r hand, the can say t h a t the  from a  (3) and  4a  anion  different  completely  (4) as found f o r  2.  e x i s t t o e x p l a i n these r e s u l t s .  the observed  should  F(4)-S-0(5)  approximately  symmetry would r e s u l t  f l u o r o s u l f a t e i n Chapter  and  error".  symmetric and  d i s o r d e r e d d i s t r i b u t i o n between p o s i t i o n s potassium  s e t s o f angles  1  SO^F  and  so the compared angles cannot  means o f the compared s e t s d i f f e r by 4a. is  each  and  In f a c t , t h e d i f f e r e n c e s between  (2.5°) a r e b o t h 2 - 3a d i f f e r e n t and said  (3) i s oxygen and  d e v i a t i o n s from C ^  symmetry are  d i s o r d e r i n g i n the c r y s t a l  i s o c c u p i e d by f l u o r i n e i n a p p r o x i m a t e l y  ( i ) Atom  and p o s i t i o n  t h r e e q u a r t e r s o f the  (4)  anions  i n t h e c r y s t a l w h i l e oxygen o c c u p i e s t h i s p o s i t i o n i n the o t h e r q u a r t e r o f the anions.  If possibility  ( i ) were'the case, then the  s u l f a t e i o n would be s i g n i f i c a n t l y d i f f e r e n t ammonium s a l t s .  fluoro-  i n the potassium  and  They a r e not as can be seen i n T a b l e IX which g i v e s  -33 -  Table VIII Bond l e n g t h s  (A) and v a l e n c y a n g l e s  (degrees) i n t h e SO„F  Atom 4 refined as 0  Atom 4 refined as F  Assuming symmetry  S-F (4) S-0(3) S-0 (S)  1.513 1.467 1.443  1.502 1.476 1.443  1.55 1.45 1.45  0(3)-S-F (4) 0(5)-S-F (4) 0(5)-S-0(3) 0(5)-S-0(5)'  106.1 107.8 110.8  106.1 108.1 110.5  106 106 (2x) 113 (2x)  o = 0.008 A and 0.5°  ion  3v  (2x)  - 34 -  the NH^SO^F and o f the two  KSO^F v i b r a t i o n a l f r e q u e n c i e s .  s a l t s are s i m i l a r and  be d i s c u s s e d  later.  The  lengths  then r e f i n e d f u r t h e r by u s i n g the  f o r p o s i t i o n (4).  i n c r e a s e d as expected and parameters.  symmetry, as  The  t h e r e was  thermal parameters o f  a s m a l l change i n the  The  angles  0C5)-S-F(4) and 0 ( 3 ) - S - F ( 4 ) are now  almost 5a d i f f e r e n t .  We  and  with  fluorine F(4)  and bond  no  l o n g e r see the and  v  3 - 4a from each.  The  decreased  distances recorded 52  C^  0(5)-S-0(3)  symmetric, d i f f e r i n g  v  and by  increased s l i g h t l y  by a s m a l l amount and  distances  and  i s s h o r t e r than  i n " I n t e r n a t i o n a l Tables  from o t h e r measured S-F  —  (4) p o s i t i o n as unique  bond d i s t a n c e S-0(3) has  the S-F(4) d i s t a n c e has  slightly  the angles 0(5)-S-0(5') and  the i o n appears halfway between C^  Crystallography"  (4)  when f l u o r i n e i s r e f i n e d i n p o s i t i o n (4).  g r e a t e r than 2a d i f f e r e n t  the u s u a l S-F  explained  positional  T a b l e V I I I , column 2 g i v e s the r e f i n e d angles  i n the SO^F  will  fluorine.  s t r u c t u r e was  s c a t t e r i n g curve  spectra  d i s o r d e r i n g between p o s i t i o n s (3) and  (4) p r e d o m i n a n t l y The  vibrational  f e a t u r e s o f the s t r u c t u r e can b e s t be  on the b a s i s o f a p a r t i a l position  indicative of  The  (1.53  f o r X-Ray - 1.59  Three hydrogens were l o c a t e d from a C o u r i e r d i f f e r e n c e  9 A). map  o_3 w i t h peak h e i g h t s  o f 0.4  - 0.7  e.A  .  The  but were the o n l y ones c l o s e t o n i t r o g e n . 4.0  X  2  was  assigned  peak h e i g h t s were not  large  A temperature f a c t o r o f  t o each hydrogen and two  further cycles of  least-  squares a n a l y s i s were done r e f i n i n g the p o s i t i o n a l parameters o f the hydrogens but not the temperature f a c t o r s .  The  scattering factor  -35  -  T a b l e IX  A Comparison o f I n f r a r e d F r e q u e n c i e s  for  KSO^F and NH„S0 F  KS0 F  NH. S 0 F 4  3  Sharpe  3  Goubeau  present  § Milne  work  Sharpe  present work  1084  1079s  1072s  1077s  732s  741  749s  737s  740m  565m  571  570w  1299s  1285  1288s  583s  587  588m  *  589w  -  405  410m  *  410m  1073s S-0 sym. str.. 821 U CA) 2  S-F s t r . *  571w  S-0 sym.def.  S-0  1304s  1280s  asym.str.  u CE) 5  S-0 asym.def. U (E) 6  S-F d e f . * n o t examined below 650 cm  - 36  c u r v e f o r hydrogen was hydrogens are  final  sulfur refined The  R v a l u e f o r the  as oxygens and  final  . The  l i g a n d i n the  fluorine scattering  four  The  ligands  f o u r hydrogens r e f i n e d fluorine  final  taken from the  of  was  scattering,  (4) p o s i t i o n around s u l f u r was  f i n a l p o s i t i o n a l parameters and  These are  Simpson.  nitrogen.  system w i t h the  found i n T a b l e X and "the  i n T a b l e XI.  about  system w i t h the  w i t h the  R v a l u e f o r the  c u r v e used f o r the  NH^SO^F are  o f Stewart, Davidson, and  approximately t e t r a h e d r a l  The  0.081.  that  -  0.078.  temperature f a c t o r s  structure  f a c t o r s are  r e f i n e m e n t which i n c l u d e d  for given the  curve.  Discussion The suggest t h a t  observed dimensions o f the about 75%  fluorine in position  o f the  ( 4 ) , and  E x a m i n a t i o n o f Raman and (Table IX)  indicates  anions i n the 25%  that  the  (Table V I I I )  oriented  with f l u o r i n e i n p o s i t i o n  with  (3).  NH^SO^F,  s i x fundamental v i b r a t i o n a l modes f o r  I f the  t h i s would be  seen i n s p l i t t i n g  conclude t h a t  the  The  c r y s t a l are  i n f r a r e d d a t a f o r KSO^F and  symmetry are p r e s e n t .  symmetric.  fluorosulfate ion  i s o l a t e d i o n were o f a lower symmetry,  o f the  degenerate  (E)  modes, so  we  i s o l a t e d S0_F i o n i n ammonium f l u o r o s u l f a t e i s C_ 3. 3v d i s t o r t i o n o f the i n f r a r e d spectrum due to the hydrogen  b o n d i n g shows m a i n l y i n the  NH*  stretching  f r e q u e n c i e s as d i s c u s s e d  by  36 Sharp.  On  this basis  dimensions o f the  i t s h o u l d now  be  isolated fluorosulfate  possible ion.  to d e r i v e  the  actual  - 37 -  Table X  Final Positional Deviations  Parameters  ( f r a c t i o n a l ) w i t h Standard 2 2 ( A ) , and A n i s o t r o p i c Thermal Parameters ( A x 10 )  x  Atom  y  z  a(x)  C(y)  cr(z)  N(l)  0.1751  1/4  0.1638  0.,010  0  0.013  S(2)  0.0755  1/4  -0.3076  0..003  0  0.002  0(3)  0.1933  1/4  -0.4443  0..008  0  0.008  F(4)  -0.0700  1/4  -0.4061  0..007  0  0.008  0(5)  0.0828  -0.2026  0..005  0.005  0.005  0.0492  imean Atom  ^12  "l3  ^23  (U)  "ll  ^22  ^33  N(l)  3.78  5.91  3.68  0  0.24  0  0.59  S(2)  3.55  3.79  2.79  0  0.03  0  0.15  0(5)  5.65  6.50 .  3.27  0  2.09  0  0.47  F(4)  4.77  11.94  8.36  0  0  0.54  0(5)  5.21  4.40  4.92  -0.09  1.45  0.30  -3.44 • 0.28  - 38  Table  -  XI  Measured and C a l c u l a t e d S t r u c t u r e  Factors  f o r NH S0 F 4  3  Unobserved r e f l e c t i o n s are marked w i t h an  asterisk  - .39 -  p»  oc re ec  • en cr en c. —f •ccN  c  H  <• C tf m o !*•»  to tt'- ec <** C  • —  n  CI  —  —  o- p- o  1  . f  P  IT  C C O C  IT  a f- C- «ff «C  f\. i "  . f\  tr• P- c —  r% if  «o P-  f  *d  (\. a < fI  cv —< p*pg or  P>  kT  c(P  •- fv  V-. f~ *r-  •—  •i- f« p'- or .  r- o t  fsj f. p>  IM  *-  ' -4  PI  «f  ir> -c e •f\  C O O  a  j  f ^ c P- tf  ri  IT  ^ O - M  i  p- *f  - 0  H  M  er r-  o". ir i  Of.  IP- IP t  (ft  0C  c\.  cPv tf  vt- IT  f\jC\ (N N  tf  > pi «o o cc.  .$-(r>»ctf-»-f\p*ft »o '~ — p. p-. ^  c o o e o c  - «c o- r-  CI  : o <o c cc  ,  ri  r,  f\ K f\ f  ri ^  ir> ^  p* p". p' p>  P*  ^ < * •* (T- U"ir *r.  ' M r * i^  J  P~  C- r\. »t .<0  ij *o CC P*  If • PfM  s  P"  p  1  ; —  : o o c c c c i  * *  ' IS if (C f. >f C -f CO (T. P- «f0D f~ r c: f\  c  O  *  «f iD CO  MT.  r-t  c  P-  0" P J  -c  —  OT:  P^  sf  *r  1  P  1  fV  PJ  JO  tC  P^ (ft f- PJ if ^) . P". (A O Pv n r * < «f ir. U*> IT. *G •£  4" tr. .  (V  —  (\! N fv  J  h  in  o c c~ e c  iC  f  PJ PI *T « ^ p-  C  —> P. PI*j  (f>  rv P"  *o  ^  tr. •& —  ^  f^' P" •* (ft IT. IT. 1ft  (T.  ij (f• C  P-  rv i  r»  IT-  • p-- cr.  * tf. —  P»  m  >l 4 «J  or .  • ^  ,i  m  •j c r-. (T f.  * f~  if IT. >C •  iC CC £  P~  -( (\ PI  c c- c o c c  IP -  (f  -  N  ,£1  IS — C P>  < IM  >f IT. •£  IT H  *  • p- 0- IT •-• K  o  Htto o f c i  P^ »ftf*i£  -NIT  r •  —  P~ i  -C  o o o c c c <  e (  J If. <  IN;  — i C P*  If^  tr> e- *- r c c (  >1 <  I"  o P- <\i  »-< (V  • *D O •* — If r -i MO  J C f  *t *t # (  pg — . P-  if IP. Wi IP iP, -  «4 *!• *t*J  >f  t  (\ C' (\ I  •:  J IT. C — (M PI -f C  I'I  P.  if  - ~  ^ Ifl C -J N  „ P. prt P^ if. P"-  — r  P\  :• cv o• * <* m P (\ iC «f M C C I I  m >  f. tr. C t  if r-  - pj p-  t  C rv.  — *•  p* p. <\ CM fs| (V Pi P.p~ p. P"> p". p- r"P*.  pg  c  tr.  If O P- c » P. P* -J IT -C . O w (\ ci if IT'\f: C  - r  P-  ^ N n >J c ^ r, n >r c « rv f p"> >r if, C  r-  r (p. P - Py •I sj l "  *N  ! c. c o o o — -  w < 4 <  c r-  i<- u\ r~ rr v. r  w*-  (T- fS. IT. *t fNec  O  IT  < n  f  Cf *r  CP  r- C <— (\J P": . (T • P* P" PI  ft*  PI p" CI if (I  C 1 r-  1  %J -r 0C  <;  r~ o —< r\ P> if • ^  IT.  * C  - J P-  c  P-  (A IP (ft it "C  P0  C O <M Pu  ccwIT.I M ai « o Ci i  r- CD ^- r*.PI  if Ift  P- CO • f\ P~ ifu^sep-ep^-ifsfp •f *ft O P- — rv -  - pvj  r\i pi *M r\ <M M N  c  <\ p-i »r u- c —  i t -f «J (T. (f>If -  if if PI PvJ CD PI t  r~ u-  -M^  : r- a> ^- ^- ^  *0 P J -  O  i  - O  — rs. P I ij- (f.  c c c- o o c c <  *c •  C  n  o  4  f  n f. r- rr, f'  p", if if  - 40 -  The disordering  problem i n NH^SO^F i s not the simple one o f t o t a l  between t h e X(3) and X(4) p o s i t i o n s  S-X(3) and S-X(4) bonds as i n KSO^F.  giving  identical  In t h e ammonium compound we  have no a c c u r a t e way t o e x p e r i m e n t a l l y measure the occupancy numbers o f t h e (3) and (4) p o s i t i o n s  s i n c e we a r e l o o k i n g  d i f f e r e n c e between the two p o s i t i o n s  o f l e s s than one e l e c t r o n .  i s not p o s s i b l e  f o r us t o r e s o l v e  we d i d f o r KSO^F s i n c e  t h e d i f f e r e n c e m a t h e m a t i c a l l y as  That i s , we cannot c o n s i d e r  a l l the S-0  and 0-S-O bond a n g l e s the same s i n c e hydrogen bonding  (to be d i s c u s s e d can,  It  t h e assumptions n e c e s s a r y f o r a mathematical  s o l u t i o n do not a p p l y h e r e . bond d i s t a n c e s  fora  later) i s associated  however, o b t a i n  w i t h the X(3) p o s i t i o n .  the same r e s u l t s w i t h i n  We  e x p e r i m e n t a l e r r o r by  taking:  S-0  = S-0 (5)  S-F  = [S-F (4)] + f S - 0 ( 3 ) J  O-S-0  = 0(5)-S-0(5)'  F-S-0  = F(4)-S-0(3)  These c a l c u l a t e d  -  [S-0(5)J  dimensions o f t h e SO^F  i o n then have t o be 27  corrected  f o r angular r o t a t i o n a l o s c i l l a t i o n e r r o r s . 25  Busing and Levy  26  and  Cruickshank  '  have d i s c u s s e d  and  Cruickshank"s c o r r e c t i o n f a c t o r  d e t e r m i n a t i o n ) i s o u t l i n e d below.  these r o t a t i o n a l - o s c i l l a t i o n (which was used i n t h i s  effects  structure  - 41 -  Figure 4  The molecule i s assumed t o be a r i g i d body w i t h bond R-T.  Atom R i s  c o n s i d e r e d f i x e d w i t h r e s p e c t t o atom T and atom T o s c i l l a t e s spending h a l f t h e time at Q and h a l f t h e time at Q'. averaged p o s i t i o n o f atom T i s p o s i t i o n B.  28° ..  Then the time  To f i n d the c o r r e c t i o n ,  BT, t o add t o t h e observed bond l e n g t h C r u i c k s h a n k develops the formula:  BT  d i s t a n c e RQ:  2 y  ,w  2  =  w  2 1 + y_ 2p  + 1 +  w 2p  s i n c e we do not know RQ and s i n c e BT i s s m a l l  w i t h r e s p e c t t o RQ, measured bond  y  1_ 2r  then RQ may be approximated by RB, the  length.  me an square amplitude o f o s c i l l a t i o n d i s p l a c e m e n t where y' 2 i s p e r p e n d i c u l a r t o RT and w 2 y •  i s p e r p e n d i c u l a r t o RT and t o  - 42 -  P  Gaussian b r e a d t h parameter  =  A ' an atom ~ TT 7 7 N 2  o f e l e c t r o n d e n s i t y peak at  3  N  =  number o f o r b i t a l  A  =  peak d e n s i t y o f an atom from F  The  and the bonds are 13.8° The  t o t h e S-X  (Z except f o r i o n s ) q  synthesis.  r^-axes o f the thermal e l l i p s o i d s were found t o l i e  approximately p a r a l l e l  S-F(4).  electrons  t o the S-X  bond; the a n g l e s between r^-axes  f o r S-0(.5), 13.4°  f o r S-0(3), and 2° f o r  and r ^ thermal axes are a p p r o x i m a t e l y p e r p e n d i c u l a r  bond.  The v i b r a t i o n s p a r a l l e l  t o the bond are a l l approx-  i m a t e l y the same and c o r r e s p o n d t o displacement motion o f the i o n as a whole.  T h i s i s as expected s i n c e the  c o r r e c t i o n s assume t h a t the SO^F to c o r r e c t  group  rotary-oscillation  i s a r i g i d body.  In an  f o r v i b r a t i o n a l o r d i s p l a c e m e n t e f f e c t s at r i g h t  t o the bonds, the C r u i c k s h a n k  f o r m u l a i s a p p l i e d t o the  effort  angles  difference  i n t h e r m a l motion between s u l f u r and a l i g a n d i n b o t h the r directions.  SO^F  2  and r ^  The magnitude and d i r e c t i o n o f the p r i n c i p a l axes o f the  t h e r m a l v i b r a t i o n e l l i p s o i d s are g i v e n i n T a b l e X I I . These c o r r e c t i o n s a p p l y o n l y i n the case o f s m a l l molecules o r i o n s w i t h s m a l l angles o f o s c i l l a t i o n which i s the p r e s e n t case i n SO^F  ions.  be viewed  Even so, the bond l e n g t h c o r r e c t i o n s so determined must  w i t h c a u t i o n s i n c e , i n g e n e r a l , the motion o f such  i s v e r y complex i n v o l v i n g v i b r a t i o n s as w e l l as  groups  rotary-oscillations.  - 43 -  Table XII  Magnitudes  (A) and D i r e c t i o n s o f t h e P r i n c i p a l Axes  o f t h e Thermal V i b r a t i o n  Ellipsoids  Angles made w i t h S - l i g a n d bonds  Magnitudes M-2  u  3  »1  »2  ~3  V  N(l)  0.17  0.19'  0.26  S(2)  0.17  0.19  0.19  0(3)  0.13  0.25  0.27  13  90  77°  F(4)  0.16  0.33  0.34  2  . 88  90  0(5)  • 0.18  0.23  0.25  14  78  84  - 44  -  For the S-0(5) bond the The  c a l c u l a t e d c o r r e c t i o n f o r the  c a l c u l a t e d c o r r e c t i o n i s +0.01  X.  S-0 (3) bond i s +0.02 X and  the  for  o S-F  bond i t i s +0.05 A.  with caution atoms may  s i n c e the  not be  These c o r r e c t i o n s , we  least-squares  and  bond a n g l e s  r a t h e r a r e s u l t o f the  taken  disordering.  standard  deviations  f o r the bond l e n g t h s  (0.5°) are  f e l t to be  an u n d e r e s t i m a t e o f the  e r r o r because o f t h i s same d i s o r d e r i n g and to double them when d i s c u s s i n g the SO^F To  must be  l a r g e r thermal parameters observed f o r these  a r e a l e f f e c t but  The  repeat,  o b t a i n the  final  measured S-0(5) d i s t a n c e  and  so i t would seem  true appropriate  dimensions.  dimensions f o r the  formulae mentioned e a r l i e r are used:  (0.008 X)  SO^F  anion  bond l e n g t h S-0  bond l e n g t h S-F  the  i s t a k e n as  i s the sum  o f S-0 (3)  S-F(4) minus S-0(5) (plus r o t a r y - o s c i l l a t i o n c o r r e c t i o n s i n b o t h The  d a t a from columns 1 o r 2 (Table V I I I ) may  they both y i e l d  the same r e s u l t .  The  are  found i n T a b l e V I I I , column 3.  for  the bond l e n g t h s The  and  are  The  longest  dimensions f o r the  standard  1° f o r the bond  final  NH^  +  shown i n T a b l e X I I I .  p o s i t i o n s cannot be i s the  The  deviations  considered  o f the t h r e e  H-bond between H(6) HC6)...0(3) i s 2.0  and O  A.  and  0(3).  0.02  angles.  distances  highly accurate.  and  the  the  hydrogen  5 we  can  angle N-H(6)-0C3) i s 176°  T h i s appears t o be  bond  Bond d i s t a n c e  r e f e r r i n g to F i g u r e The  cases).  SO^F  are  p o s i t i o n a l parameters and The  and  be used i n the c a l c u l a t i o n  hydrogen p o s i t i o n s were r e f i n e d without v a r y i n g  thermal p a r a m e t e r s . distances  final  the  N-H(6)  see  a  and  the o n l y p o s s i b l e H-bond i n  ion X  -' 45 -  Table XIII • "\  Hydrogen Atoms  2 P o s i t i o n a l Parameters Bond Lengths Atom  H(6)  (fractional;  (a ^ 0.15 A ) , and V a l e n c y Angles x_  •  a ^ 0.15 A; J3 taken as 4 A ) , (a ^ 1 5 ° ) .  y_  z_  0.19  1/4  0.29  H(7)  0.13  1/4  0.15  H(8)  0.20  0.13  0.09  N-H  0.4, 0.9, 0.9, 1.0  mean 0.8 A  H-N-H  90 ( 2 x ) , 104, 116, 124 (2x)  mean 108°  i  2  Q  0  5  \ \  If 1/  H6  0  2.96  5  0  F i g u r e 5_  3  -  A!  Nearest C a t i o n - A n i o n Approach i n NH^SO^F  47  the m o l e c u l a r and  w i t h no  o f the NH^  framework w i t h the next c l o s e s t H...0  other s t r a i g h t group i s not  +  The  -  approach 2.49  l i n e N-H...0 approaches.  the same as i n ammonium  H-bond to atom 0(3)  A  The o r i e n t a t i o n  difluorophosphate.  would account f o r oxygen  occupying  t h i s p o s i t i o n more r e a d i l y than f l u o r i n e , s i n c e i t appears t h a t oxygen forms hydrogen bonds more r e a d i l y than does f l u o r i n e . However, the H-bond i s not v e r y expect to see  a greater effect  strong. i n the  Were i t v e r y s t r o n g we  i n f r a r e d spectrum.  a c i d i u m - f l u o r o s u l f a t e s t r u c t u r e , which has bonds t o each f l u o r o s u l f a t e a n i o n , vibrational infrared  would expect s h i f t s  the m o l e c u l e and  As  it  no hydrogen bonding) i s q u i t e  in infrared  3  is difficult  We  two.  We  angles  would expect,  then,  f o r the  S0 F  angles  because o f e l e c t r o n r e p u l s i o n  are assuming zero TT-bonding f o r the S-F  to estimate  i f this  i s true.  I f we  accept (1.55  and bond  the X)  been c o r r e c t e d f o r d i s o r d e r i n g and hence, as the " t r u e "  bond l e n g t h , then t h i s  l e n g t h i s s h o r t e r than the KS0,F S-F  -  3  the O-S-0  bond'length c o r r e c t e d f o r r o t a r y - o s c i l l a t i o n e f f e c t s having  of  f r e q u e n c i e s when compared  s t a t e d f o r KS0 F t h e t o t a l TT-bond o r d e r  find.  present  i n e l e c t r o n d e n s i t y o f the TT-bonding system  t o be g r e a t e r than F-S-0 do  Further,—  frequencies.  i o n i s expected t o be  t h i s we  E  I f s t r o n g hydrogen bonding were  hence, s h i f t s  t o KSOgF v i b r a t i o n a l  acetate  w e l l d e f i n e d hydrogen  mode i s f a r more pronounced than i n NH^SO^F.  s i m i l a r to t h a t o f NH^SO^F. we  two  would  In the  the s p l i t t i n g o f the S-0  s p e c t r a o f KSO^F (which has  '^  S-F as S-F  bond  and  -  48  -  which i n t u r n i s s h o r t e r than the accepted It  i s p o s s i b l e t h a t the s h o r t S-F  s i n g l e bond  than one  f o r S-F  p o s s i b i l i t y o f some Tf-bonding t o f l u o r i n e occurs 39 50  difluorophosphates  '  length.  bond l e n g t h as measured i n these  compounds i n d i c a t e s bond o r d e r h i g h e r The  S-F  bonds.  a l s o f o r the  54 '  where the measured P-F  bond l e n g t h s  are  s h o r t e r than the c a l c u l a t e d l e n g t h . The  SO^F  tetrahedron  compound as i n KSO^F. t h e 0...0  distances.  The  i s not  0...F  as r e g u l a r i n the  ammonium  d i s t a n c e s are s l i g h t l y s h o r t e r than  T h i s tends t o c o n f i r m our view o f the  (4)  p o s i t i o n as f l u o r i n e . . Because o f the d i s o r d e r i n g i n the KSO^F c r y s t a l , the n o t be  effect  ( s h o r t e r 0...F  d i s t a n c e s ) was  seen i n l i g a n d - l i g a n d d i s t a n c e s .  are given i n Table The  The  could  i n t e r l i g a n d distances  XIV.  apparent r e d u c t i o n o f the N-H  s p e c t r o s c o p i c a l l y measured v a l u e  o f 1.01  d i f f r a c t i o n measurements o f the N-H t h i s i s caused by  averaged and  bond d i s t a n c e s below  A"*^  o r 0-H  the  i s common t o a l l X-ray  bond.  It i s b e l i e v e d that  the H e l e c t r o n c l o u d b e i n g d i s p l a c e d from the  n u c l e a r p o s i t i o n toward the atom t o which i t i s bonded.  - 49 -  T a b l e XIV  KSO„F and NH.SO^F  o X(3)-XC4) XC3)-0(5) X(4)-0C5) 0(5)-0(5)'  2.38 A 2.37 2.38 2.37  o 0C3)-F(4) 0(3)-0(5) F(4)-0(5) 0(5)-0(5)'  2.38 A 2.40 2.39 2.41  - 50 -  CHAPTER 4  Introduction  The fluorosulfate  crystal structures group a r e known.  o f four  compounds c o n t a i n i n g t h e  These are KSO^F which was  discussed  i n Chapter 2 o f t h i s t h e s i s ; NH^SO^F which was d i s c u s s e d i n Chapter 3; a c e t a t e a c i d i u m f l u o r o s u l f a t e  [CH^CfOH^^O^F 33  and  dimethyltin  bis-fluorosulfate,  [(CH^) Sn(SO^F)^] » 2  l e n g t h s and v a l e n c y angles f o r t h e f l u o r o s u l f a t e structure  group i n each  a r e g i v e n i n T a b l e XV. Infrared  "throe  The bond  d a t a e x i s t and the s p e c t r a  the c c r r p c d s  The  have been a s s i g n e d f o r  spC'Ctru.m ^~ c r t h e f o u r t h  RCLITIS.II  coTpound  a c e t a t e a c i d i u m f l u o r o s u l f a t e , has been determined f o r t h i s and  w i l l be d i s c u s s e d i n t h i s c h a p t e r .  data f o r the four  fluorosulfate  The c o l l e c t e d  study  vibrational  compounds a r e g i v e n i n T a b l e XVI.  In t h i s c h a p t e r an attempt t o a s s e s s t h e s t r u c t u r a l o b t a i n e d f o r these f o u r i n f r a r e d data w i l l discussing  compounds w i l l be made.  be c o r r e l a t e d  the f l u o r o s u l f a t e This discussion  since  the four  Also,  data  t h e Raman and  with the s t r u c t u r a l data i n  anion.  i s central  t o t h e purpose o f t h e t h e s i s  compounds form a s e r i e s  l a r g e l y unperturbed f l u o r o s u l f a t e  e x t e n d i n g from  group o f p o t a s s i u m  the.ionic, fluorosulfate  through t h e weakly hydrogen bonded ammonium f l u o r o s u l f a t e ,  t o the  Table  XV  A Comparison o f Bond A n g l e s and i n Four S t r u c t u r e s C o n t a i n i n g  KS0 F 3  the SO^F  Group  Cli^C (OH) 2 ^ 3 ^  NH S0 F 4  Distances  3  o  '  (  C H 3  )  S  n  2  (S0 F) 3  o  S-F  1.57(1.58)A  1.54(1.59)A  1.56(1.58)A  1.50(1.56)A  S-0(3)  1.42(1.43)  1.44(1.46)  1.42(1.44)  1.42(1.47)  S-0(5)(2x)  1.42(1.43)  1.44(1.45)  1.43(1.44)*  1.43(-)**  0(5)-S-0(5)  112.9°  113°  112.4°  111.7°  0(5)-S-0(3)  112.9  113  116.0  110.5  0(5)-S-F(4)  105.8  106  103.0  106.9  0(3)-S-F(4)  105.8  106  104.7  105.9  The bond l e n g t h c o r r e c t e d f o r r o t a t i o n a l o s c i l l a t i o n i s g i v e n i n brackets. * The bond l e n g t h between s u l f u r and t h e oxygen atom which i s hydrogen bonded to t h e a c e t a t e  acidium i o n .  ** The bond l e n g t h between s u l f u r and t h e oxygen atoms which are bonded t o t h e t i n atoms. had  The r o t a t i o n a l - o s c i l l a t i o n c o r r e c t i o n t o t h i s bond  n o t been c a l c u l a t e d a t t h e time o f t h i s w r i t i n g .  P r i v a t e communication  w i t h Dr. J . T r o t t e r i n d i c a t e d t h a t i t would most l i k e l y be t o t h a t a p p l i e d t o t h e S-0(3) bond.  equivalent  - 52 -  T a b l e XVI I n f r a r e d and Raman F r e q u e n c i e s  f o r t h e SO^F  Group  i n Four F l u o r o s u l f a t e C o n t a i n i n g S t r u c t u r e s  NH S0 F 4  IR  V  l>"  ;  v {E) 5  v CA) 3  KS0 F  3  R  CHjC(OH) SO F  3  IR  R  ,R  (CH ) S n ( S O F ) 2  IR  R  1280  1280 1272  1288  1288  1310 1287  1360 1180  1355  1077  1075  1079  1079  1070  1080 1072  1088 1070  739  740  749  749  767  825  826  589  595 590  588  592 588  585 573  658  -  • 571  570  570  570  562  725  711  407  410  410  410  420  420  -  2  - 53 -  s t r o n g l y hydrogen bonded a c e t a t e acidium to the p a r t i a l l y  f l u o r o s u l f a t e , and f i n a l l y  c o v a l e n t l y bonded f l u o r o s u l f a t e group o f d i m e t h y l t i n  bis-fluorosulfate.  .Experimental The  p r e p a r a t i o n o f acetate acidium  described previously.*^  f l u o r o s u l f a t e has been  The crude m a t e r i a l was r e c r y s t a l l i z e d  from  n i t r o m e t h a n e and f i l t e r e d under an atmosphere o f d r y n i t r o g e n . Excess n i t r o m e t h a n e was removed under vacuum i n a p p r o x i m a t e l y t h i r t y minutes. Acetate  acidium  f l u o r o s u l f a t e was packed i n a pyrex Raman  tube under d r y box c o n d i t i o n s and t h e Raman spectrum r u n The  Raman instrument  immediately.  was a Cary 81 model w i t h a He-Ne l a s e r .  Results The  r e s u l t s o f t h e Raman s t u d i e s a r e g i v e n i n T a b l e XVI  t o g e t h e r w i t h t h e known i n f r a r e d and Raman d a t a f o r t h e o t h e r t h r e e compounds.  Discussion CH^C (OH^SO^F CH^COOH and HSO^F.  i s t h e 1:1 a d d i t i o n compound formed from  I t s f o r m u l a t i o n as a c e t a t e acidium  d e r i v e d from t h e s i n g l e c r y s t a l  fluorosulfate i s  a n a l y s i s which shows a long c h a i n s t r u c -  t u r e w i t h t h e f l u o r o s u l f a t e group l i n k e d t o two a c e t a t e acidium by H-bonds through two o f i t s oxygens.  groups  T h i s i s shown i n Figure. 6.  complete s t r u c t u r e i s an i n f i n i t e a r r a y o f such p a r a l l e l  chains.  The  The  -  -  54  s  \  s \ \  acetate acidium  fluorosulfate  Figure 6  -  Chain S t r u c t u r e o f CH.^C ( O H ) S 0 F  (after: Kvick  2  et a l  34  )  3  ion  ion  - bi> -  0(5)-H...0(2) and 0(4)-H...0(1) hydrogen bonds a r e w e l l d e f i n e d a l t h o u g h they a r e somewhat l o n g e r than.the  c o r r e s p o n d i n g hydrogen  bonds i n t h e a c e t i c a c i d - s u l f u r i c a c i d system.  The S-0(5) and S - 0 ( £ )  bond l e n g t h s a r e n o t a p p r e c i a b l y l o n g e r than S-0 (3) 0(5)'  a r e i n v o l v e d i n hydrogen bonding  modes a r e s p l i t of  t h e SO^F  from  The Raman  The E v i b r a t i o n a l  i n t o two bands as we would expect  a n i o n has been lowered  (where 0 ( 5 ) and  and 0(3) i s n o t ) .  d a t a f o r t h i s compound a r e g i v e n i n T a b l e XVI.  /  to C  s i n c e t h e symmetry g  by t h e hydrogen  bonding. The  c r y s t a l s t r u c t u r e o f d i m e t h y l t i n b i s - f l u o r o s u l f a t e has  r e c e n t l y been completed sulfate unit  by A l l e n , L e r b s c h e r and T r o t t e r .  i s bonded through  Each  -  fluoro-  two o f i t s oxygen atoms t o two t i n atoms  and t h e complete s t r u c t u r e c o n s i s t s o f p a r a l l e l p o l y m e r i c s h e e t s o f t h e i n t e r - c o n n e c t e d d i m e t h y l t i n u n i t s with t h e f l u o r o s u l f a t e u n i t s . i s shorn i n F i g u r e 7. Yeats  was  This  The i n f r a r e d d a t a f o r t h i s compound, r e p o r t e d by  57 e t a l , a r e g i v e n i n T a b l e XVI. 57  s u p p l i e d by Dr. F. Aubke  .  The Raman d a t a f o r t h i s  (The Raman spectrum  compound  was d i f f i c u l t t o  o b t a i n and t h e assignments a r e made by comparison w i t h t h e c l e a r e r i n f r a r e d data.) of  The i n f r a r e d spectrum  t h e degenerate  E modes.  f o r t h i s compound shows  T h i s a r i s e s from t h e s t r o n g  splitting  interaction  between two t i n atoms and two o f t h e oxygen l i g a n d s o f t h e SO^F The  i n t e r a c t i o n o f two oxygen atoms lowers  a n i o n from C^  v  to  anion.  t h e symmetry o f t h e SO^F  as d e s c r i b e d i n Chapter  1.  The s p l i t t i n g o f  t h e E modes i s more pronounced f o r t h i s compound than f o r t h e a c e t a t e acidium f l u o r o s u l f a t e .  T h i s s u p p o r t s t h e view t h a t g r e a t e r X-0  - 56 -  F i g u r e 1_  (CH ) Sn(S0 F) 3  2  3  projection  2  Crystal along  Structure  [100]  <  (This diagram was  kindly supplied  by Dr. John L e r b s c h e r . )  oo  LL  OO  - 58  i n t e r a c t i o n o c c u r s i n the  -  t i n compound than i n the mixed a c i d -  hydrogen bonded compound. KSO„F and 3 structure.  chain  isomorphous and r  T h i s s t r u c t u r e can be  a n i o n s and The  NH.SO,F are 4 3  then two  cations  s t r u c t u r e i s not  acidium-fluorosulfate  thought o f as two  forming chains  p a r a l l e l t o the  structures.  present  data  The  (given i n T a b l e XVI)  A comparison o f the shows v e r y  little  Raman and  four structures. the three  At  first  and  S-F  SO^F  would seem t h a t the S-OX  s h o u l d be  length  bond l e n g t h s  n o t e , though, t h a t the  bond l e n g t h  to reserve  (strongly or  i s measured.  longer  i s not  than the S-0  S-F  bond l e n g t h  length  greater  i s s h o r t e r i n the most  d i f f e r e n c e i s only  judgement on the  It  found among the d i f f e r e n t compounds.  s t r o n g l y bonded f l u o r o s u l f a t e c o n t a i n i n g compound The  XV  among the  I t would a l s o seem s u r p r i s i n g t h a t a  bond l e n g t h  t h a n i n the o t h e r s .  i n Table  a n i o n i s bonded  S-0  We  workers.^'^2,  agree w e l l w i t h t h e i r r e s u l t s .  weakly) t o the c a t i o n , o n l y one  v a r i a t i o n i n S-0  several  glance i t would seem s u r p r i s i n g t h a t i n  s t r u c t u r e s i n which the  i n a given molecule.  ammonium)  i n f r a r e d data f o r  s t r u c t u r a l data given  v a r i a t i o n i n S-0  (and  f l u o r o s u l f a t e a n i o n as i s common  t h e s e i o n i c f l u o r o s u l f a t e s have been t a b u l a t e d by The  c-axis.  acetate  s t r u c t u r e because the p o t a s s i u m from the  BaSO. 4  fluorosulfate  as obvious as t h a t o f the  c a t i o n s are w e l l s e p a r a t e d to a l l i o n i c crystal  have the  0.02  [(CH^) Sn(SO^F) ] 2  A so we  would have  significance of t h i s difference u n t i l  have examined the v i b r a t i o n a l d a t a .  2  we  - 59 -  The  v i b r a t i o n a l r e s u l t s (Table XVI) show a  v a r i a t i o n i n S - 0 and S-F s t r e t c h i n g f r e q u e n c i e s  systematic  as we pass from  ammonium f l u o r o s u l f a t e t o d i m e t h y l t i n d i f l u o r o s u l f a t e . The S-F s t r e t c h i n g frequency v a r i a t i o n i s p a r t i c u l a r l y notable a p r o g r e s s i v e l y stronger from t h e ammonium s a l t  (and t h e r e f o r e  v i b r a t i o n a l data data  s h o r t e r S-F bond) i n going  to the potassium s a l t  compound t o t h e d i m e t h y l t i n compound.  and i n d i c a t e s  t o t h e mixed a c i d  I t seems, then t h a t t h e  support the o b s e r v a t i o n  we made from the s t r u c t u r a l  t h a t t h e S-F bond i s a s h o r t e r s t r o n g e r bond i n t h e d i m e t h y l t i n  compound than i n t h e o t h e r  compounds  considered.  From the v i b r a t i o n a l d a t a we a l s o n o t i c e t h a t t h e S - 0 asymmetric s t r e t c h i n g f r e q u e n c y i n c r e a s e s v  c  does.  This  i n t h e same manner as  i n d i c a t e s i n c r e a s i n g S - 0 and S-F bond s t r e n g t h s  as  o—r the X - 0 i n t e r a c t i o n i n c r e a s e s The S-0  (as i n X - O S O 2 F ) .  r e a s o n s f o r t h e i n c r e a s i n g s t r e n g t h o f t h e S-F and  bonds as t h e X - 0 i n t e r a c t i o n i n c r e a s e s have not been  explained. increases  I t can be s p e c u l a t e d the p o s i t i v e n u c l e a r  the d - o r b i t a l s on s u l f u r . e f f e c t i v e l y with Tr-bonds.  charge on S and lowers the energy o f  The lowered d - o r b i t a l s would Tr-bond more  o f whether F i s i n c l u d e d  system o f t e t r a h e d r a l a n i o n s , general  that increasing X-0 i n t e r a c t i o n  the oxygen l i g a n d s , t h e r e b y y i e l d i n g  The q u e s t i o n  introduction..  completely  as SO^F  and  stronger S-0  i n the ir-bonding '  W  a  S  r a  ^-  s e c  * ^  n  t n  e  The s t r u c t u r a l r e s u l t s f o r d i m e t h y l t i n b i s -  f l u o r o s u l f a t e suggest t h e p o s s i b i l i t y  o f m u l t i p l e bonding between  - 60  s u l f u r and  fluorine  -  i n explaining  dimethyltin bis-fluorosulfate.  the  The  s h o r t e n i n g o f the  t r e n d i n Vg  p also  S-F  bond i n  supports  this. The time f o r the are  not  foregoing discussion data a v a i l a b l e ,  will  p a r t i c u l a r l y the  e x t e n s i v e or c o n c l u s i v e .  f o r other f l u o r o s u l f a t e s a l l o w us  to be  b o n d i n g system.  is largely  (to be  s p e c u l a t i o n at structural  I t i s hoped t h a t p r e s e n t e d i n the  more d e f i n i t e i n our  this  results,  vibrational  following  assessment o f the  data  chapters) SO^F  - 61 -  CHAPTER 5  Introduction  The  i n f r a r e d and Raman v i b r a t i o n a l s p e c t r a o f t h e a l k a l i  metal f l u o r o s u l f a t e s tetraphenylarsonium chapter.  and o f ammonium, tetramethylammonium, and fluorosulfate  a r e r e p o r t e d and d i s c u s s e d i n t h i s  While t h e Raman s p e c t r a g i v e n here  t h a t o f KSO^F) a r e r e p o r t e d f o r t h e f i r s t  time,  o f many o f these monovalent f l u o r o s u l f a t e s previously.  Siebert^  s o l u t i o n o f NaSO^F. the a l k a l i  spectra  have been r e p o r t e d  Sharp  36  reported the i n f r a r e d spectra o f a l l except  lithium.  study by G i l l e s p i e and Robinson  vibrational  the i n f r a r e d  examined t h e Raman spectrum o f an aqueous  metal f l u o r o s u l f a t e s  Raman s p e c t r a l SO^F  2  Cvith the exception o f  An i n f r a r e d and  59  has d e f i n e d t h e  frequencies o f the anion i n t h e l i q u i d  phase.  58 Goubeau and M i l n e solid  KSO^F.  have examined t h e i n f r a r e d and Raman s p e c t r a f o r  Since our i n t e r e s t  f r e q u e n c i e s we' f e l t same instrument  i t important  i s a detailed  comparison o f band  t o o b t a i n our own s p e c t r a on t h e  f o r a l l compounds.  A l s o p r e v i o u s workers do not  agree e n t i r e l y i n t h e i r assignments f o r t h e broad i n the numerical f o r potassium  \)g ^ CE) mode, and  v a l u e s o f o t h e r fundamental modes, n o t a b l y v„ „ (A)  fluorosulfate.  And, f i n a l l y ,  i n most o f t h e p r e v i o u s  r e p o r t s t h e s p e c t r a were not examined below 650 cm r e s u l t s a r e r e p o r t e d down t o 250 cm  whereas, o u r  - 62 -  The o v e r a l l o b j e c t o f t h i s work was between  t o study the c o o r d i n a t i o n  d i f f e r e n t c a t i o n s and the f l u o r o s u l f a t e  on a n i o n symmetry and b o n d i n g .  Hence, we  anion t o see the e f f e c t  looked more c l o s e l y than  p r e v i o u s workers a t the v i b r a t i o n a l band assignments and the n u m e r i c a l band assignments o f broadened v i b r a t i o n a l E modes.  The use o f l a s e r  Raman s p e c t r o s c o p y immeasurably a i d e d the i n t e r p r e t a t i o n t h e s e E modes seen i n t h e i n f r a r e d spectrum.  Of the compounds r e p o r t e d  i n t h i s c h a p t e r no s p e c t r a have been r e p o r t e d u n t i l now CCH_).NSO„F, and D 4 D  o f many o f  o f LiSO^F,  CCJirO .AsSO_F. O D 4 J  Experimental Seven monovalent  fluorosulfates  r e s p e c t i v e anhydrous c h l o r i d e s . +  sulfates and  +  ( L i , Na  (CgH^) As . +  4  +  +  , K , Rb  37  have been p r e p a r e d from the  These are t h e a l k a l i metal  +  , and Cs ) and the f l u o r o s u l f a t e s  of  same method - t h a t  methylammonium  chloride.  f o r p e r i o d s up t o t e n hours a t 120°C and f l u o r o s u l f u r i c a c i d d i s t i l l e d onto them.  A l l the monovalent  i n HSO^F g i v i n g  were removed  using  i s , f l u o r o s u l f u r i c a c i d and anhydrous t e t r a -  The anhydrous, a n a l y t i c a l r e a g e n t grade c h l o r i d e s  dissolved  NH^  An e i g h t h compound which i s i n c l u d e d i n the s t u d y  [ ( C H ^ ^ N S © . ^ ] was p r e p a r e d p r e v i o u s l y i n t h e s e l a b o r a t o r i e s ^ the  fluoro-  +  chlorides  a clear solution.  was  used i n t h i s study  HC£ and excess HSO^F  under vacuum at temperatures between  d r i e d p r o d u c t s a r e white c r y s t a l l i n e s o l i d s .  were d r i e d  50° and 60°C.  The  These were h a n d l e d at a l l  - 63 -  times i n a dry box except f o r t e t r a p h e n y l a r s o n i u m f l u o r o s u l f a t e was  stored  f o r two y e a r s under  which  l a b o r a t o r y c o n d i t i o n s and showed no  signs o f decomposition. The  e l e m e n t a l a n a l y s e s o f a sample o f  recrystallized for  from dry e t h a n o l gave the f o l l o w i n g r e s u l t s :  (C H ) AsS0 F: 6  5  4  (C^H^^AsSOgF  C, 59.76; H, 4.18;  3  C, 59.57; H, 4.30;  S, 6.46;  were c a r r i e d out by Mr.  F, 3.86.  S, 6.65;  F, 3.94.  Calculated  Observed:  The carbon and hydrogen  analyses  P. Borda o f the U n i v e r s i t y o f B r i t i s h  and the s u l f u r and f l u o r i n e a n a l y s e s were o b t a i n e d i n the A.  Columbia, Bernhardt  M i c r o a n a l y t i c a l L a b o r a t o r i e s , Germany. Infrared vibrational  s p e c t r a were t a k e n o f the  s a l t s m u l l e d w i t h n u j o l and mounted between KRS-5 p l a t e s . p l a t e s , s u p p l i e d by Harshaw Chemical Co.,  fluorosulfate These  are a mixture o f 42% T£Br  and 58% T£I, and have a s p e c t r a l t r a n s m i s s i o n range o f 0.5-40 microns. They were used f o r o b t a i n i n g a l l s p e c t r a r e p o r t e d i n t h i s t h e s i s . no i n s t a n c e d i d we and the sample.  f i n d any evidence f o r r e a c t i o n between t h e p l a t e s  They are more s u i t a b l e f o r t h i s work than the more  commonly used AgC& i n f r a r e d p l a t e s s i n c e they do not darken on t o l i g h t ; they are more e a s i l y p o l i s h e d ; and they are not as deformed  In  by p r e s s u r e .  exposure  easily  Moreover AgCJl i s not t r a n s p a r e n t above 20 m i c r o n s .  A P e r k i n Elmer 457  g r a t i n g i n f r a r e d spectrophotometer  was  used f o r o b t a i n i n g a l l s p e c t r a . Powdered samples bottomed p y r e x tubes  (3 mm  f o r Raman a n a l y s i s were packed  in flat  i . d . ) which were t h e n flame s e a l e d .  A  - 64 -  Cary 81 Raman i n s t r u m e n t w i t h a He-Ne l a s e r 15,800 cm  (exciting  wavelength  25-100 m i l l i w a t t output) was used f o r a l l samples. The i n f r a r e d and Raman r e s u l t s and v i b r a t i o n a l band  ments f o r t h e SO^F  a n i o n f o r t h e monovalent  r e p o r t e d i n T a b l e XVII.  assign-  f l u o r o s u l f a t e s are  F o r t h e t e t r a p h e n y l a r s o n i u m and (CH^^N*  s a l t s t h e c a t i o n v i b r a t i o n a l bands were determined  from t h e s p e c t r a  o f t h e r e s p e c t i v e c h l o r i d e s and t h e s e peaks a r e n o t r e p o r t e d .  Discussion Before we d i s c u s s t h e i n f r a r e d and Raman r e s u l t s found here i t would be advantageous of a salt free ion.  t o c o n s i d e r t h e f a c t o r s a f f e c t i n g t h e spectrum  i n t h e condensed  phase which would n o t be o p e r a t i n g on the  To do t h i s t h e symmetry o f t h e monovalent  fluorosulfates  w i l l be c o n s i d e r e d . KSO^F and NH^SO^F a r e orthorhombic c o r r e s p o n d i n g p e r c h l o r a t e s as deduced 36 Sharp  and isomorphous  with the  from s i n g l e c r y s t a l a n a l y s e s .  35 and Lange  have shown from gross morphology and X-ray powder  d a t a t h a t a l l t h e a l k a l i metal f l u o r o s u l f a t e s a r e isomorphous  and have  the s t r u c t u r e s o f t h e c o r r e s p o n d i n g p e r c h l o r a t e s . (LiSO^F, however, was 6162 not i n c l u d e d i n t h e study.) Schusterius ' has s t u d i e d t h e a l k a l i metal p e r c h l o r a t e s and found them t o be orthorhombic, space group Pnma. +  +  +  In t h e K , NH^ , Rb , and Cs environments  +  f l u o r o s u l f a t e s t h e n t h e SO^F  —  anion  s h o u l d be s i m i l a r ; t h e o n l y d i f f e r e n c e s among them w i l l  be due t o t h e d i f f e r i n g c a t i o n s .  The s t r u c t u r e s o f t h e r e m a i n i n g  T a b l e XVII  Li IR V  2  + V  I n f r a r e d and Raman Band Assignments  Na  +  R  IR  K  +  R  1350  5  V CE)  1340  S-0  1271  4  asym.str.  1112 S-0  -  1298  IR  +  1288  R  IR  R  1320 1288  1280'  1285 1118  + •  ' Rb  +  1330 1309  NH, 4  f o r the mono-Fluorosulfates  IR  Cs R  1307 1280  IR  +  R  (CH ) IR  N R  +  1299  (cm  )  (C H ) A s IR ,R 5  +  4  1280  1280  1300  1272  1278  1278  1289  1272  1095  1101  1079  1079  1077  1075  1076  1077  1074  1075  1072  1072  1068  1068  775  780  749  747  740  740  729  730  716  717  705  720  704  698  sym.str. 812  V (A) 2  S-F s t r . i 584  V (E) S  S-0 3  615  579  587  588  592  589  592  580  584  574  578  573  575  574  589  572  567  570  570  571  570  562  560  557  558  559  557  570sh.  418  410  410  407  -  408  -  406  sym.def . 0  V (E)  430  6  S-F  cn i  asym.def .  V (A) S-0  ON  def . n  402  -  388 398  374 309 v  2  + v  5  (calc.)  1432  1354  * r e g i o n u n a s s i g n e d as noted i n the t e x t  1337  1328  1309  T295  1278  1278  - 66  compounds, MCSO^F), are not From a d i s c u s s i o n  -  known. on  the  symmetry o f the  c r y s t a l s we  turn  63 t o the  e f f e c t o f symmetry on v i b r a t i o n a l s p e c t r a .  p o i n t e d out  that  o f atoms i n the configuration  i n discussing  i n the  the  c r y s t a l w i l l be  first  For  (P  the  free  can  i s the  crystallographic  symmetry o f the  and ion  discuss  parts.  n m a  )  the  space  r e l a t i o n s h i p among d i f f e r e n t  a  n  <  i  monovalent f l u o r o s u l f a t e s b e l o n g to the have f o u r m o l e c u l e s per  is  i n the  we  need c o n s i d e r o n l y one  the  We  infrared  mole—  i n t h i s case d i f f e r e n t f l u o r o s u l f a t e a n i o n s ) i n the c r y s t a l .  example:  ' ^2h~^  differ..  equilibrium  condensed phase i n two  group which i s concerned w i t h the (or  r e f l e c t e d i n the  condensed phase spectrum may  The  cules  symmetry o f t h e i r  Because o f " c r y s t a l " i n f l u e n c e s  symmetry o f the  has.  v i b r a t i o n a l motions o f a c o l l e c t i o n  condensed phase, the  Raman measurements. spectrum and  the  Halford  same c r y s t a l environment as  spectral The  unit c e l l .  space group  E v e r y SO^F  e v e r y o t h e r SO^F  a n i o n and  so  " t y p e " o f f l u o r o s u l f a t e a n i o n i n examining  data. o t h e r type o f symmetry which must be  considered i s  symmetry each a n i o n p o s s e s s e s because o f i t s p o s i t i o n i n the In t h e s e s a l t s each f l u o r o s u l f a t e a n i o n i s on m i r r o r p l a n e and  therefore  S i n c e we isomorphous and ment then the  anion  i t can be  have s a i d t h a t  that  each SO^F  differences  the  no  a  unit  cell.  crystallographic  l e s s symmetric than  Cs  monovalent f l u o r o s u l f a t e s  a n i o n i s i n the  the  are  same c r y s t a l e n v i r o n -  n o t e d i n the v i b r a t i o n a l s p e c t r a  among  the  - 67 -  compounds  s t u d i e d w i l l be due t o the p e r t u r b i n g  upon t h e a n i o n .  (Since  +  w  e f f e c t o f the c a t i o n  j o not know the s t r u c t u r e s  e  o f the f l u o r o -  +  s u l f a t e s o f L i , Na , and the l a r g e c a t i o n s we cannot be sure the  above d i s c u s s i o n a p p l i e s a l s o t o them.  this  i n examining the i n d i v i d u a l s p e c t r a . )  on t h e e f f e c t o f j u x t a p o s i n g  c a t i o n and SO^F  .  We t u r n next t o a d i s c u s s i o n  must be a coulombic a t t r a c t i o n between  But beyond t h i s t h e r e  i z a t i o n o f the electrons  We s h a l l be c o n s c i o u s o f  a simple c a t i o n and an a n i o n .  In t h e s e s a l t s t h e r e the  that  w i l l be a mutual p o l a r -  o f t h e c a t i o n and t h e a n i o n .  a n i o n because i t has more e l e c t r o n s  In g e n e r a l , the  than p r o t o n s w i l l have i t s e l e c t r o n  c l o u d d i s t o r t e d by the c a t i o n w h i l e the c a t i o n e l e c t r o n c l o u d remain r e l a t i v e l y u n a f f e c t e d .  will  The p o l a r i z i n g power o f t h e c a t i o n  upon SO^F" depends upon b o t h t h e i o n i c p o t e n t i a l o f the c a t i o n and on how M  +  the  e f f e c t i v e l y the c a t i o n n u c l e u s i s s h i e l d e d electrons.  from the a n i o n by the  A q u a n t i t a t i v e measure o f t h i s p o l a r i z i n g e f f e c t o f 64  c a t i o n has been determined by Janz and James  Cartledge^  from the work o f  and A h r e n s . ^ 1 27 p  I  -  r  Z =  r  5  Z -" 1  1/2  r l  i o n i c charge  o r =  cation radius  (A)  I =  i o n i z a t i o n p o t e n t i a l o f the c a t i o n (v)  P =  p o l a r i z i n g power  - 68 -  I t has been p o i n t e d out by Wells r a d i u s i s a r e l a t i v e one! ion i s i n f i n i t e  and P a u l i n g  t h a t t h e term  ionic  The e l e c t r o n d i s t r i b u t i o n f u n c t i o n o f an  and no one c h a r a c t e r i s t i c s i z e can be a s s i g n e d t o a  g i v e n i o n t o h o l d f o r d i f f e r e n t p h y s i c a l p r o p e r t i e s and i n d i f f e r e n t compounds.  Because o f t h e e m p i r i c a l o r s e m i - e m p i r i c a l n a t u r e  o f the  r a d i i measurements t h e t r e n d i n . p o l a r i z i n g power among d i f f e r e n t c a t i o n s w i l l have g r e a t e r s i g n i f i c a n c e than t h e a b s o l u t e v a l u e s o f different  cations.  Table  XVIII g i v e s t h e p o l a r i z i n g power o f t h e  monovalent c a t i o n s c o n s i d e r e d  Table P o l a r i z i n g Power  i n this  chapter.  XVIII  (P) o f t h e A l k a l i Metal  I-P. (y)  Cations  r (A)  P  Li  +  5.363  0.60  Na  +  5.12  0.95  1.06  4.318  1.33  0.76  K  +  '"  2.01  Rb  +  4.159  1.48  0.67  Cs  +  3.87  1.69  0.59  The p o l a r i z i n g powers o f t e t r a m e t h y l c a t i o n s a r e taken  ammonium and  as zero and the p o l a r i z i n g power o f t h e ammonium  c a t i o n can t e n t a t i v e l y be p l a c e d between those rubidium  tetraphenylarsonium  from c o n s i d e r a t i o n o f u n i t c e l l  size.  o f p o t a s s i u m and 36  - 69 -  The  infrared  s u l f a t e s are l i s t e d power.  and Raman r e s u l t s f o r the monovalent  i n T a b l e XVII i n o r d e r o f descending  fluoro-  polarizing  F i g u r e 8 shows r e p r e s e n t a t i v e i n f r a r e d s p e c t r a o f t h e s e 71  fluorosulfates.  A c c o r d i n g t o Nakamoto  a tendency  t i o n between c a t i o n and a n i o n s h o u l d r e s u l t stretching frequencies. Vg Q o r Vg_p  We  would expect  toward c o o r d i n a -  i n s h i f t s o f the  symmetric  then t o f i n d a t r e n d i n  (symmetric) p a r a l l e l t o the d e c r e a s i n g d i s t o r t i o n o f the  SO^F a n i o n g o i n g from l e f t t o r i g h t a c r o s s T a b l e XVII. And d e c r e a s e i n v„ „ i s the most n o t a b l e f e a t u r e o f the r e s u l t s . b-F lithium salt t h e SO^F salts  i n which the c a t i o n i s i n t e r a c t i n g most s t r o n g l y w i t h  a n i o n the S-F  s t r e t c h i n g frequency  i s 812  i n which c a t i o n - a n i o n i n t e r a c t i o n i s l e a s t  (C^Hj.^AsSO.jF) "Vg_p  i s 100  cm  1  lower  (705 cm  1  ) .  cm~*  The  The v  1068  cm  values.  g  p  assignments  data.  s t r e t c h i n g f r e q u e n c i e s [Vg_Q(A)] show a  l e s s pronounced t r e n d w i t h Vg QCA) h i g h e s t f o r the  s i m i l a r but (1112  symmetric S-0  w h i l e i n the  (.CCH^^NSO^F and  i n t h e s e compounds agree w e l l w i t h p r e v i o u s s p e c t r a l  salt  the In the  cm  *).  and  lowest  f o r the l a r g e c a t i o n s a l t s  (1072  lithium  and  These r e s u l t s a l s o agree w e l l w i t h p r e v i o u s l y r e p o r t e d  Nothing  can be s a i d , however, about the v a r i a t i o n i n S-0  bond  s t r e n g t h among the compounds from a c o n s i d e r a t i o n o f Vg Q ( A ) a l o n e . We  must c o n s i d e r the asymmetric S-0  s t r e t c h i n g f r e q u e n c y as  I t i s i n t h i s r e g i o n o f the S-0  well.  asymmetric s t r e t c h i n g  [Vg Q C E ) ] t h a t the p r e s e n t r e s u l t s d i f f e r w i t h p r e v i o u s work.  frequency The  i n f r a r e d s p e c t r a l r e g i o n from 1250-1350 cm  * i s a strong, poorly defined  band i n a l l the m o n o - f l u o r o s u l f a t e s except  L i S 0 , F and  (CAi  ) ,As*S0„F.  - 70 -  F i g u r e 8_  Infrared  Spectra  o f Three m o n o - F l u o r o s u l f a t e s  (The s p e c t r a have been condensed by o m i t t i n g 1000-800 cm  the s p e c t r a l r e g i o n  The d i s c o n t i n u i t y i s i n d i c a t e d by a break i n t h e  s p e c t r a and by t h e s c a l e at the bottom o f t h e page.)  from  - 72 -  Sharp has d i s c e r n e d two bands i n t h i s r e g i o n f o r a l l t h e f l u o r o s u l f a t e s One he a s s i g n e d t o Vg Q C E ) and one t o t h e . c o m b i n a t i o n  he examined.  (v + ^5)-  band  2  Sharp  The assignments  l a c k e d t h e n u m e r i c a l v a l u e f o r v^ f o r a l l t h e a l k a l i  fluorosulfates  except t h e p o t a s s i u m  We have c a l c u l a t e d band from o u r measured v l i n e o f T a b l e XVII. the  were made on an a r b i t r a r y b a s i s  2  t h e f r e q u e n c y o f t h e ( v + v^) c o m b i n a t i o n 2  and Vg v a l u e s .  We have, a l s o  These a r e g i v e n i n t h e l a s t  examined a l l t h e Raman s p e c t r a i n  1250-1350 cm * r e g i o n q u i t e c l o s e l y b u t f i n d t h a t t h e low i n t e n s i t y  t h e s e a r e i n f a c t two peaks o r j u s t one. 2  metal  salt.  o f t h e band found i n t h i s r e g i o n makes i t d i f f i c u l t  Cv  + Vg) as noted i n T a b l e XVII.  i s a s h o u l d e r on t h e fundamental methylammonium f l u o r o s u l f a t e  t o d e c i d e whether  We have a s s i g n e d Vg Q ( E ) and  In a l l c a s e s t h e c o m b i n a t i o n band peak.  And i n a l l cases b u t t e t r a -  the v i b r a t i o n a l frequency assigned t o the  c o m b i n a t i o n band i s o f l e s s o r equal i n t e n s i t y t o t h e fundamental For i n Vg_Q(E) 1280  since  tetramethylammonium f l u o r o s u l f a t e  assignment  exists.  cm * and t h e c a l c u l a t e d  A (GHj)^N  +  cation  an a d d i t i o n a l  ( v + Vg) mode i s 1278 cm 2  (1280 cm  From t h e i n f r a r e d  w i t h ,a s l i g h t  shoulder  fundamental  the l i t h i u m s a l t  The Raman  shows.no s i g n s  spectrum we see o n l y a broadened (1305 cm * ) .  made t o make v i b r a t i o n a l assignments For  problem  peak i s found a t  spectrum o f t h i s compound shows a peak a t 1287 which of s p l i t t i n g .  mode.  peak  No attempt has been  f o r t h i s band.  t h e r e i s no o v e r l a p between t h e V g _ p ( E )  and (v~ + Vr) c o m b i n a t i o n , f o r t h e c a l c u l a t e d  value f o r the  - 73 -  c o m b i n a t i o n band the  (1432 cm  c o m b i n a t i o n band  will  ) p l a c e s i t 100 cm  from Vg_Q(E).  Because  i s so f a r away from t h e fundamental E mode i t  not be enhanced by resonance w i t h t h i s mode and so w i l l be v e r y  weak.  Indeed i t was not seen i n any v i b r a t i o n a l  s p e c t r a o f LiSO^F.  In g e n e r a l , c o m b i n a t i o n v i b r a t i o n a l bands a r e v e r y weak. They may, however, be comparable  i n i n t e n s i t y t o t h e fundamental modes  i f t h e y appear as s a t e l l i t e s o f t h i s fundamental and a r e enhanced by Fermi resonance. the  That i s , t h e c o m b i n a t i o n band w i l l  fundamental mode i f t h e v i b r a t i o n a l  frequencies o f both are  s i m i l a r and t h e y a r e o f t h e same symmetry. b i n a t i o n band o f E symmetry which w i l l  interact with  ^2^-)  +  V  5 ^  gi-  v e  a  com-  appear a t a p p r o x i m a t e l y t h e  same f r e q u e n c y as Vg Q ( E ) and so t h i s p o s t u l a t e d i n t e r a c t i o n  i s quite  likely. One a d d i t i o n a l  problem e x i s t s  i n assigning vibrational  t o t h e 1250-1350 cm ^ r e g i o n o f t h e i n f r a r e d anion.  The fundamental v i b r a t i o n a l  degenerate E mode. indicates  the  spectrum o f t h e SO^F  mode a p p e a r i n g t h e r e i s a  We have s a i d p r e v i o u s l y t h a t s p l i t t i n g  a l o w e r i n g o f t h e symmetry o f t h e SO^F  anion i n t e r a c t i o n .  modes  o f t h i s mode  i o n due t o c a t i o n -  How, t h e n , a r e we t o d e c i d e on t h e s p l i t t i n g o f  fundamental E mode i f a c o m b i n a t i o n band o f comparable  t o t h e fundamental E mode l i e s i n a p p r o x i m a t e l y t h e same  intensity  spectral  region? In LiSO^F anion i n t e r a c t i o n ,  (where we expect the g r e a t e s t amount o f c a t i o n and so t h e l a r g e s t  E mode s p l i t ) t h e problem o f  - 74 -  i n t e r p r e t i n g peaks a split band  i n t h e 1250-1350 cm  E mode and a c o m b i n a t i o n band does not e x i s t .  The c o m b i n a t i o n  i s f a r enough from the E mode not t o i n t e r a c t and so the two  d e f i n e d peaks  found a t 1271  degeneracy o f Vg_^CE). other  and 1340 cm~^  S-0 d e f o r m a t i o n [ 6  bands a t 615 and 569 cm and 388 cm .  i n the v i b r a t i o n a l  spectrum  1  imply t h a t t h e  i n t o two s e p a r a t e peaks.  The  Q C E ) ] i s a s s i g n e d t o the v i b r a t i o n a l  g  and 6  „(E) i s a s s i g n e d t o the bands at  C  spectrum below 400 cm  appear.  (which would  well  split  The assignment o f t h e l a t t e r bands i s t e n t a t i v e  1  LiSO^F w i l l  a r e a s s i g n e d t o the  T h i s l a r g e s p l i t t i n g would  E modes a r e a l s o s p l i t  asymmetric  site  s p e c t r a l r e g i o n i n terms o f  1  430  because  t h e l a t t i c e modes o f  Without a complete t h e o r e t i c a l  a n a l y s i s o f the  r e q u i r e knowledge o f the LiSO^F space group  symmetry) the exact assignment o f bands below 400 cm  1  and  is  impossible.  The Raman spectrum o f LiSO^F i s v e r y poor and o n l y Vg Q ( A )  at 1118  c o u l d be d i s c e r n e d .  cm  1  check t h e i n f r a r e d v i b r a t i o n a l  I t was  not p o s s i b l e , t h e r e f o r e t o  assignments w i t h Raman d a t a .  no a s s u r a n c e t h a t LiSO^F i s isomorphous w i t h the o t h e r a l k a l i fluorosulfates, the CilO^  -  (LiCilO^ i s , i n f a c t , hexagonal, space group  a n i o n has s i t e symmetry C^-y.)  that the S 0 F 3  a n i o n may  exist  72  *  We  have  metal 4  and  There i s t h e p o s s i b i l i t y '  i n two o r more d i f f e r e n t  environments  i n t h e c r y s t a l , thus g i v i n g r i s e t o a d d i t i o n a l v i b r a t i o n a l bands.  If  t h i s were the case the A v i b r a t i o n a l modes would be doubled i n number, and t h e y do not appear t o be s p l i t .  So we  conclude t h a t t h e  SO^F  a n i o n i n L i S 0 , F i s s u f f i c i e n t l y d i s t o r t e d t o reduce i t s symmetry t o  - 75 -  at l e a s t C . s The sodium c a t i o n has a p p r o x i m a t e l y h a l f t h e p o l a r i z i n g power t h a t l i t h i u m does and e x a m i n a t i o n o f the NaSO^F spectrum shows no s i g n , o f E mode s p l i t t i n g i n t h e two E modes which appear i n t h e spectrum. (Sg_p(E) has a low i n t e n s i t y and i s not apparent i n t h e i n f r a r e d s p e c t r a o f s e v e r a l o f the XOSC^F compounds s t u d i e d . ) t e c h n i q u e because o f i t s g r e a t e r r e s o l v i n g i n NaSO^F.  The l a s e r Raman .  power shows E mode s p l i t t i n g  The E modes a r e not c o m p l e t e l y r e s o l v e d even i n t h e Raman  spectrum so we can conclude t h a t t h e d i s t o r t i o n o f t h e SO^F  -  a n i o n by  sodium i s f a r l e s s than i t i s by l i t h i u m and t h e i n f r a r e d spectrum shows t h i s d i s t o r t i o n by a b r o a d e n i n g o f t h e E v i b r a t i o n a l modes r a t h e r than by a complete s p l i t t i n g o f t h e bands. The p o t a s s i u m f l u o r o s u l f a t e  •• infrared  s p l i t t i n g o f t h e degenerate E modes i n d i c a t i n g  spectrum shows no (as we have a l r e a d y  c l u d e d from s t r u c t u r a l e v i d e n c e ) t h a t t h e f l u o r o s u l f a t e l a r g e l y unperturbed.  con-  anion i s  The Raman spectrum o f KSO^F shows a broadened  6g_Q(E) and we have t e n t a t i v e l y a s s i g n e d two peaks t o t h i s r e g i o n (592 and 588 cm * ) .  N e i t h e r o f t h e o t h e r two degenerate modes can be seen  as two peaks  i n t h e Raman spectrum a l t h o u g h b o t h o f t h e modes a r e ' 5 8 s l i g h t l y broadened. Goubeau and M i l n e have r e p o r t e d the Raman x  spectrum o f KSO^F but do not comment on t h e appearance o f t h e E modes. The ammonium  salt  s p l i t t i n g o f t h e asymmetric 6„  shows i n i t s Raman spectrum a s l i g h t v i b r a t i o n a l modes o f b o t h Vg Q C E ) and  ( E ) . We have noted t h a t t h e p o l a r i z i n g power o f the ammonium  - 76  cation SOgF  i s l e s s than that a n i o n i s due  Chapter 3) r a t h e r The and  -  o f p o t a s s i u m and  the  s l i g h t d i s t o r t i o n of  to hydrogen bonding e f f e c t s than the  (as d i s c u s s e d  p o l a r i z i n g e f f e c t caused by  r e m a i n i n g monovalent f l u o r o s u l f a t e s :  + (C^HjO^As , show no  d i s t o r t i o n o f the  i n f r a r e d o r Raman s p e c t r a .  An  undistorted,  spectrum appears f o r each compound. does show two  peaks i n the  SO^F  The  _  era  From our and  e x a m i n a t i o n o f the we  c a t i o n w i t h the  a n i o n can be  the  v  „(A), ds—r  c  would say  that  Since n e i t h e r  cannot e x p l a i n  the the  Raman SO^F  to the p o l a r i z i n g power l i t h i u m and  band s t r u c t u r e .  decreasing  distortion I f we  o n l y i n the SO^F  tetra-  tetramethylammonium  and  anion e s s e n t i a l l y  I t would appear from changes i n Vg i n d i c a t o r o f the  of  consider  note a s t e a d y d e c r e a s e from l i t h i u m t o  t e t r a p h e n y l a r s o n i u m s a l t s i s the  most s e n s i t i v e  of  the p e r t u r b a t i o n o f the  is related  d i s c e r n e d from the  however, we  undisturbed.  symmetric  band appearances o f the  d i s t o r t i o n g r e a t e s t by  phenylarsonium i n d i c a t i n g that the  v  their  i n f r a r e d spectrum o f CsSO^F  From r u b i d i u m t o t e t r a p h e n y l a r s o n i u m no  the  , (CH^^N ,  s i x l i n e , C^  r e g i o n o f <5g Q ( E ) .  a n i o n i n monovalent f l u o r o s u l f a t e s  to rubidium.  cation.  \  infrared spectra,  o f the  in  anion i n e i t h e r  o t h e r E modes o f t h i s compound appear s p l i t , we e x t r a band a t 584  Rb  the  the  p(A)  that  e f f e c t o f c a t i o n upon the  i t is SO^F  the  group.  73 C i r u n a and and  infrared  would be  spectra  Robinson  have r e c e n t l y  o f a l k a l i and  r e p o r t e d the  preparation  alkaline earth chlorosulfates.  i n t e r e s t i n g t o compare t h e s e c h e m i c a l l y s i m i l a r compounds  It  - 77  with the  fluorosulfates.  chlorosulfates  or C  v  does d i s p l a y  f o r SOgF .  The  s p e c t r a are  i n the  S-C£  and  C^  symmetry.  s  chlorine  o f the  most n o t a b l e d i f f e r e n c e s stretching  C i r u n a and  S-F  bond.  and  so  i s t o be  solution  spectrum  between the  two  They have not  that  solution  The  the  fluorine  infrared vibrational  spectra  have been i n t e r p r e t e d  by and  e f f e c t o f E mode  c o n s i d e r e d the  in different site  symmetries  crystal., We  might expect the  fluorosulfates  t o be  chlorosulfates.  The  quite  c r y s t a l structures  o f the  d i f f e r e n t from those o f the  SO_C£ t e t r a h e d r o n w i l l be  alkali  metal  corresponding  distorted  from  T,  3 symmetry as  i s borne out  of a chlorosulfate cation  N0  the  counter-  fundamental, c o m b i n a t i o n ,  s p l i t t i n g o r band d o u b l i n g f o r SO_C£  +  be  of  appearance s i m i l a r to  expected s i n c e  different.  Robinson i n terms o f  the  alkali  d e f o r m a t i o n band f r e q u e n c i e s o f  a l k a l i metal c h l o r o s u l f a t e s  o v e r t o n e bands.  within  solid  c o n s i d e r a b l y lower than t h e i r  This  masses are  solid  The  symmetry w i t h an  v  bond, b o t h o f which are  p a r t s f o r the  i n f r a r e d d a t a f o r the  show e l e v e n to f i f t e e n bands, many more than would  e x p e c t e d o f s i m p l e C^ SO^CX  The  -  i s not  d by  the  only reported single  containing structure,  74 NOSO^CJZ.  d i r e c t l y comparable t o the  crystal  structure  A l t h o u g h the  hetero-  a l k a l i m e t a l s , r e c e n t work  75 by  Aubke et a l .  T h e r e f o r e , an i n v i e w i n g the The  has  shown t h a t  e x a m i n a t i o n o f the MSO^CJl i n f r a r e d  NOSO^F  and  KSO^F are  NOSO^CJl s t r u c t u r e  isostructural.  might prove  helpful  data.  space group o f N 0 S 0 C £ i s P 2 j / c 3  Oaonoclinic).  N0  +  and  - 78 -  e x i s t as d i s c r e t e i o n s i n the c r y s t a l are i n i d e n t i c a l anion i s Cg -  c r y s t a l l o g r a p h i c environments.  The  v  Any  The  symmetric  c o m b i n a t i o n and o v e r t o n e bands.  a l k a l i metal c h l o r o s u l f a t e s .  them from combinations o f fundamental cm  N0  +  be  1  C i r u n a and Robinson d i d not observe the Vg r j £ ^ A )  a v a l u e o f 395  expected  one w i t h one v i b r a t i o n a l band f o r t h e  o t h e r modes i n t h e spectrum would most c e r t a i n l y  d i r e c t l y f o r the s o l i d  anions  symmetry o f the  i n f r a r e d spectrum o f t h i s compound might be  t o be a s i m p l e cation.  and a l l t h e SO.jC£  vibrations  They have e s t i m a t e d  frequencies.  They a s s i g n e d Vg  Q^CA)  * and they c o n s i d e r t h e v a l u e t o be u n a f f e c t e d by  changes i n the c a t i o n .  However, t h e y d i d note a d e c r e a s e i n Vg_Q(A) as  the p o l a r i z i n g power o f the c a t i o n d e c r e a s e d . f l u o r o s u l f a t e s we  F o r the a l k a l i  noted a l a r g e d e c r e a s e i n v„ ( A ) C  metal  concomitant  with  p o l a r i z i n g power d e c r e a s e , and o n l y a s m a l l d e c r e a s e i n Vg_Q(A). would seem t o s u p p o r t the view t h a t f l u o r i n e p a r t i c i p a t e s tr-bonding system.  This p a r t i c i p a t i o n i s greatest  This  i n the  SO^F  i n the l i t h i u m  salt  where, we p o s t u l a t e d the d-ir system o f s u l f u r i s lowered most i n energy, w h i l e i n t e t r a p h e n y l a r s o n i u m f l u o r o s u l f a t e , f l u o r i n e l e a s t p a r t i n t h e IT-bonding Robinson  v  g_c£^  s  e  e  m  s  t  0  to s u l f u r .  be independent  takes  From the r e s u l t s o f C i r u n a and o f the c a t i o n .  I t would  appear  t h a t the S-C£ bond i s u n a f f e c t e d by t h e c a t i o n i n t e r a c t i n g w i t h the SC* C£~ a n i o n . 3  The  SOjC£~ TT-bonding i s not unexpected  c h l o r i n e atom, t h e n does not p a r t i c i p a t e  i n the  system as n o t i c e a b l y as f l u o r i n e does i n SO^F s i n c e IT-bonding  between s u l f u r and  .  This  c h l o r i n e would  - 79 -  have t o i n v o l v e 3 p - o r b i t a l s on c h l o r i n e i n c o n t r a s t t o t h e 2 p - o r b i t a l s used inTr-^bonding  between f l u o r i n e and s u l f u r .  o v e r l a p would be v e r y  The r e s u l t i n g diT-pTr  poor.  Ross and coworkers have s t u d i e d t h e i n f r a r e d s p e c t r a o f t h e 76 77 a l k a l i metal p e r c h l o r a t e s .  5  The p e r c h l o r a t e s  are. i s o e l e c t r o n i c  w i t h t h e f l u o r o s u l f a t e s and so t h e c a t i o n e f f e c t would be expected t o be  s i m i l a r i n both The  ClO^  cases. a n i o n has t e t r a h e d r a l symmetry and so t h e unperturbed  a n i o n w i l l have f o u r v i b r a t i o n a l modes. The Q ( A ) modes f o r t h e + + + + + p e r c h l o r a t e s o f L i , Na , K , Rb , and Cs a r e a l l a p p r o x i m a t e l y t h e same (938 ± 4 cm a c t i o n between M C£0^  Ross c o n c l u d e s from t h i s t h a t i n c r e a s e d +  T^ spectrum.  and CitO^  inter-  appears t o have l i t t l e o r no e f f e c t on t h e  - 80 -  Appendix  A f t e r t h i s chapter dealing valent  fluorosulfates  w i t h the s p e c t r a  had been p r e p a r e d , a l i t e r a t u r e r e p o r t  p a r a l l e l i n g t h e work came t o our a t t e n t i o n . an  o f t h e mono-  78  This report  closely  contains + + +  i n f r a r e d and Raman study o f t h e m o n o f l u o r o s u l f a t e s o f L i , Na , K , +  +  Rb , and Cs , a l t h o u g h , f o r LiSO^F and NaSO^F R o u f f and coworkers were not  a b l e t o o b t a i n Raman s p e c t r a .  An attempt was a l s o made i n t h e  course o f t h i s p a r a l l e l work t o c a l c u l a t e modes i n t h e f a r i n f r a r e d .  and a s s i g n l a t t i c e  T h i s was not too  In g e n e r a l t h e i r r e s u l t s agree q u i t e  vibrational  successful. well  with ours.  (We  were a b l e t o o b t a i n a Raman spectrum f o r NaSO^F and two bands i n the Raman f o r L i S O ^ F , however.) The t r e n d s i n s t r e t c h i n g f r e q u e n c i e s (primarily i n v ( A ) ) and s p l i t t i n g i n the E modes f o r L i S 0 _ F were o—r o a l s o o b s e r v e d by these workers. c  C  However, the i n t e r p r e t a t i o n that  R o u f f e t a l . gave t h e i r  d i f f e r s from o u r s .  We f e l t  v i b r a t i o n a l spectra  were d i f f e r e n t amounts o f c a t i o n - a n i o n  t h e most important e f f e c t s on the  due t o c a t i o n p o l a r i z i n g power and some m u l t i p l e Rouff et a l ascribed and  the s p e c t r a l  "counter p o l a r i z a t i o n " .  results  interaction  bonding t o f l u o r i n e .  trends to c l a s s i c a l packing  The l a t t e r term was used f i r s t  effects  by  79 Goldschmidt.  It indicates  that  as the r a d i u s o f the c a t i o n  h e t e r o a n i o n c o u n t e r a c t s t h i s by p h y s i c a l l y c o n t r a c t i n g . t h i s R o u f f e t a l c i t e t h e i n c r e a s e i n v„  p  with increasing  d e c r e a s e s the  As p r o o f o f polarizing  -  power o f the c a t i o n .  We  feel  81  -  t h a t t h i s assumption  p o l a r i z a t i o n " i s , perhaps, not j u s t i f i e d h e r e . t r a c t i o n were the cause o f i n c r e a s e i n V  c  If a physical  con-  „ (CsSC> F t o LiSO_F)  o  o—r Vg q(average)  o f "counter-  then  o  s h o u l d i n c r e a s e t o r o u g h l y the same e x t e n t .  We  can  80 c a l c u l a t e Vg Q(average) from Lehmann's rule: Vg_^(average) = 2v (E) + v (A) S-0 S-0^ . These r e s u l t s are as f o l l o w s : Vg g f a v e r a g e ) : 3 J  Li  +  Cs  +  V  (1241  cm  (1206);  ); Na  (C^H *) As 5  (1230); K  +  4  +  +  (1215).  (1218); N H  + 4  (1212); Rb  (1212);  A l t h o u g h t h e r e i s a decrease i n  ( a v e r a g e ) concomitant w i t h the decrease i n v , i t i s a decrease o—U o—r o f 35 cm compared t o the Vg p d e c r e a s e o f 108 cm . The p u b l i s h e d spectrum f o r LiSO^F showed b e t t e r r e s o l u t i o n c  n  c  1  1  t h a n ours and what appear as p o s s i b l e s h o u l d e r s f o r v ( A ) • o—U n  and v  (A) £>~F C  i n our s p e c t r a appear as peak p l u s s h o u l d e r and d o u b l e t r e s p e c t i v e l y i n R o u f f ' s spectrum.  This s l i g h t  says i s due t o the e f f e c t o f s i t e correct.  The  s p l i t t i n g o f the A modes the r e p o r t symmetry.  We  f e e l that t h i s i s  e f f e c t s o f s i t e symmetry on i n f r a r e d  spectra w i l l  be  d i s c u s s e d i n the next c h a p t e r . R o u f f e t a l have n o t e d the e x t r a band at 578 Cs(S0.jF) spectrum which we n o t e d .  cm  1  i n the  They have not a s s i g n e d i t t o any  v i b r a t i o n a l mode. In c o n c l u s i o n we  f e e l t h a t the a u t h o r s have not c o n s i d e r e d  p o l a r i z a t i o n o f the a n i o n t h r o u g h c a t i o n - a n i o n i n t e r a c t i o n Tf-bonding e f f e c t s on the i n f r a r e d spectrum. d i c t a t e the s p e c t r a l d i f f e r e n c e s  observed.  We  and  f e e l that these forces  - 82 -  CHAPTER 6  In Chapter 5 i t was shown, t h a t structures  to a large  adopted by simple monovalent f l u o r o s u l f a t e s  o f t h e bonding i n these compounds i s r e l a t e d o f the c a t i o n . potential the  and t h e n a t u r e  t o t h e p o l a r i z i n g power  T h i s l a t t e r q u a n t i t y i s determined by t h e i o n i z a t i o n  o f the c a t i o n  and t h e c a t i o n  a l k a l i metal s e r i e s , t h e c a t i o n s  radius.  +  +  with the other s a l t s i n t h i s s e r i e s . fluorosulfate  i o n , n o t a b l y g_p» v  c a t i o n p o l a r i z i n g power.  In p a r t i c u l a r , i n  with the l a r g e s t  powers, L i and N a , g i v e f l u o r o s u l f a t e s  the  e x t e n t , the  polarizing  which a r e not isomorphous  The v i b r a t i o n a l f r e q u e n c i e s o f decrease r e g u l a r l y with decreasing  This i s attributed  to decreasing  cation-anion  interactions. T h i s c h a p t e r d e s c r i b e s an e x t e n s i o n o f the work t o the  p r e p a r a t i o n and study  include  ( l a r g e l y by i n f r a r e d s p e c t r o s c o p y ) o f a  number o f metal b i s - f l u o r o s u l f a t e s .  The p o l a r i z i n g powers o f t h e  bivalent  metals a r e g r e a t e r than t h o s e f o r a l l t h e a l k a l i metals except  lithium.  I t would be i n t e r e s t i n g , t h e n , t o see i f v a r i a t i o n among t h e .  spectra  o f the b i s - f l u o r o s u l f a t e s  can be r e l a t e d  to the p o l a r i z i n g  power o f t h e c a t i o n . Unfortunately, single any  o f the b i v a l e n t  pretation  c r y s t a l X-ray s t u d i e s  metal f l u o r o s u l f a t e s ,  o f t h e i r v i b r a t i o n a l spectra.  do not e x i s t f o r  thus hampering the i n t e r Little  i s known, a l s o ,  about  - 83 -  the  crystal  s t r u c t u r e s o f anhydrous b i v a l e n t metal p e r c h l o r a t e s  might be expected t o be isomorphous w i t h some o f t h e compounds  which studied  here. At  t h i s point  i t would be i n s t r u c t i v e t o c o n s i d e r  the p o s s i b l e  s t r u c t u r e s o f the metal b i s - f l u o r o s u l f a t e s . 81 ' ' .  '  In l a r g e l y i o n i c compounds  o f t h e type A X  2  s t r u c t u r e s adopted a r e determined by the c a t i o n / a n i o n The  simplest  difluorides. rutile  AX  2  These a r e t h e f l u o r i t e  structure i f A /X  rutile  structure i f A /X 2 +  l i e s between 0.41 and 0.73.  2 +  structure.  coordination  radius  ratios.  s t r u c t u r e s a r e found f o r t h e metal d i o x i d e s and  t i o n , a n i o n t o c a t i o n , i s 4:8 f o r t h e f l u o r i t e the  the c r y s t a l  From t h i s i n f o r m a t i o n  we would expect 2+  In g e n e r a l  i f t h e M /A 2+  The c o o r d i n a -  s t r u c t u r e and 3:6 f o r  o f t h e c a t i o n s and anions i f t h e M /A  l a r g e and lower c o o r d i n a t i o n  > 0.73 o r t h e  radius  higher  radius r a t i o i s  r a t i o i s small.  t h e s e simple o r d e r e d s t r u c t u r e s a r e found o n l y f o r  the metal d i f l u o r i d e s and d i o x i d e s  a l r e a d y mentioned.  Other A X  2  mole-  c u l e s tend t o c r y s t a l l i z e i n l a y e r s t r u c t u r e s , as f o r example, t h e one shown i n F i g u r e symmetrically  9.  In t h i s F i g u r e we note t h a t t h e c a t i o n i s surrounded  by s i x anions b u t t h e anions a r e i n an unsymmetrical  environment w i t h t h e i r A to the other  side.  shown i n F i g u r e  2 +  n e i g h b o r s t o one s i d e and t h e i r X  W e l l s mentions t h a t composite l a y e r s l i k e  9 can pack t o g e t h e r  neighbors those  i n d i f f e r e n t ways t o r e s u l t i n  c u b i c o r hexagonal environments f o r X , o r a d i r e c t s u p e r p o s i t i o n o f the  l a y e r s c a n be found.  . 84  -  O O  Layer ;v  Crystal  Struct^  - 85  We  -  cannot p r e d i c t from the M /S0^F  radius r a t i o s  +  s t r u c t u r e s o f the metal b i s - f l u o r o s u l f a t e s c o n s i d e r e d but we  can note t h a t a mixture o f d i f f e r e n t types  c o u l d give r i s e  to more than one  sulfate ion.  To  radius  estimate  a sphere and  chapter,  o f l a y e r packing fluoro-  I t i s p o s s i b l e too t h a t the s t r u c t u r a l  w i t h the M^/SO^F  atom.  in this  type o f environment f o r t h e  t i o n d e r i v e d from the i n f r a r e d s p e c t r a can be  which was  the  informa-  c o r r e l a t e d i n some  ratios.  the SO^F  a n i o n r a d i u s we  approximate SO^F  determine the sphere r a d i u s as the bond d i s t a n c e  measured i n Chapter 2 and  This w i l l  way  give us the SO^F  S-0  3 p l u s the r a d i u s o f the oxygen a n i o n r a d i u s o f 2.09  -  by  A.  The  cation  70 radii  are t a k e n from P a u l i n g .  T a b l e XIX  lists  the r a d i u s  ratios,  the p o l a r i z i n g powers, and o t h e r r e l e v a n t d a t a f o r the b i v a l e n t metals considered  in this The  chapter.  b i v a l e n t c a t i o n s were chosen p r i m a r i l y on the b a s i s o f  their ionization potentials. the f i r s t  and  t r a n s f o r m MX other  2  I t was  felt  t h a t the  lower the sum  second i o n i z a t i o n p o t e n t i a l s , the e a s i e r i t would be to M ( S 0 F ) .  f a c t o r s l i k e MX  3  2  2  T h i s i s indeed  lattice  energies  a v e r y simple  t h e approach seemed t o work w e l l . synthesized with r e l a t i v e  -  for X  but  to  approach s i n c e  and promotion e n e r g i e s  a l s o determine the ease o f s u b s t i t u t i n g SO^F  will  f o r our  study  A l l the b i s - f l u o r o s u l f a t e s were  ease.  There are f i v e g e n e r a l methods f o r p r e p a r i n g metal sulfates.  of  fluoro-  - 86 -  T a b l e XIX  Some P h y s i c a l Data f o r t h e .Bivalent M e t a l s Considered i n Chapter 6  r  M  2  +  M  /  S0 F" 3  IP CeV) 2  IP +IP (eV) 1  2  P  Mg  0.65  0.31  14.96  22.6  3.07  Mn  0.80  0.38  15.70  23.1  2.15  Zn  0.74  0.35  17.89  27.2  2.12  Ca  0.99  0.47  11.82  17.9  : 2.07  Sn  0.93  0.44  12.05  21.8  1.85  Sr  1.13  0.54  10.98  16.7  1.83  Cu  0.72  0.34  20.34  28.0  1.59  Ba  1.35  0.65  9.95  15.14  1.54  Cd  , 0.97  Hg Pb  0.46'  16.84  25.8  1.50  1.10  0.53  18.65  29.0  1.39  1.21  0.57  14.96  21.4  1.21  1.  MCI  n  +nHSO_F •+ l P 3  + SO F~ 3  +  +nHC£+.  T  T h i s method has been used f o r the a l k a l i metal and the more i o n i c b i v a l e n t 37 by B a r r e t a l .  metal f l u o r o s u l f a t e s  The more i o n i c c h l o r i d e s  dissolve 82  s u l f u r i c a c i d a t room temperature  and Woolf  t r a n s i t i o n metal b i s - f l u o r o s u l f a t e s chlorides  and was  fluorosulfates f i r s t reported  readily i n fluoro-  83 '  has p r e p a r e d  several  by r e f l u x i n g the l e s s s o l u b l e  metal  w i t h f l u o r o s u l f u r i c a c i d f o r l o n g p e r i o d s o f time.  KC9 2.  MCJl  2  + 2HS0 F  > . M C S O ^ F ) ^ + 2HCA+.  3  58 Goubeau and M i l n e  have used t h i s method t o p r e p a r e CuCSO^F)^  Z n C S O j F ^ and FeCSO^F)^ a t room temperature. metals are i n s o l u b l e mixture a i d s  i n HSO^F.  The a d d i t i o n  The c h l o r i d e s o f KC£ t o the  o f these reaction  metal b i s - f l u o r o s u l f a t e p r o d u c t i o n i n a manner not  well  understood.  3.  M(ObCC H ) 6  5  2  +2HS0 F 3  T h i s method was The metal benzoate  M(S0 F) 3  dissolved  this reaction  +2C H C0 H. 6  5  2  d e v i s e d i n the course o f the p r e s e n t s t u d y .  s u l f a t e product p r e c i p i t a t e d follow  2  i n f l u o r o s u l f u r i c a c i d and the almost immediately.  v i s u a l l y w i t h Mn (OOCC^Hg)  d i s a p p e a r e d as soon as t h e a c i d was  2  fluoro-  We were a b l e t o Cpink).  The p i n k  added t o the ben.zoate.  color  - 88 -  4.  M  S 0 F -M(S0 F) .  +  2  6  2  3  2  The use o f p e r o x y d i s u l f u r y l d i f l u o r i d e as a f l u o r o s u l f o n a t i n g 84 reagent  was d i s c u s s e d  i n the i n t r o d u c t i o n .  Roberts and Cady  u s e d t h i s method t o p r e p a r e H g ( S 0 F ) . 3  5.  MF  n  have ,  2  + nSO„ -»- M(SO,F) . 3 3 'n 85 86 T h i s method has been used  '  with only l i m i t e d success to  p r e p a r e metal f l u o r o s u l f a t e s . The r e a c t i o n s a r e g e n e r a l l y and  elaborate r e a c t i o n conditions are  incomplete  necessary.  The d i s c u s s i o n above i s i n t e n d e d  o n l y as an o u t l i n e , and b r i e f  h i s t o r y o f the g e n e r a l p r e p a r a t i v e methods f o r m e t a l f l u o r o s u l f a t e s . The e x p e r i m e n t a l  d e t a i l s o f those  ( r e a c t i o n s 1-4) w i l l be g i v e n  f o u r methods used f o r t h i s work  i n the experimental  f l u o r o s u l f a t e s o f the a l k a l i n e earths,  37  section.  C u l l and Z n l l ,  52  The b i s and Mn(II)  83 and  Cd(II)  have been r e p o r t e d p r e v i o u s l y .  f o u r compounds,  though, by the more convenient  The p r e p a r a t i o n o f S n ( S 0 F ) , P b ( S 0 F ) 3  f o r the f i r s t  2  3  3  2  i n HS0 F. 3  3  2  are r e p o r t e d  here  time.  and t o a s m a l l e r e x t e n t C d ( S 0 F ) 3  The e l e c t r i c a l  investigated.  metal benzoate method.  and M g ( S 0 F )  2  Of t h e new compounds s y n t h e s i z e d Pb(S0 F)  We have s y n t h e s i z e d the  f o r t h i s study 2  Sn(S0 F) , 3  2  were found t o be s o l u b l e  c o n d u c t i v i t y o f t h e s e m a t e r i a l s i n HSOjF  was  - 89 -  Experimental The g e n e r a l p r e p a r a t i v e methods l a b e l l e d  1-4  i n the  i n t r o d u c t i o n have been used t o p r e p a r e the b i s - f l u o r o s u l f a t e s whose  Tribrational s p e c t r a are r e p o r t e d i n t h i s c h a p t e r .  1..  Ca(S0 F) , Ba(S0 F) , Sr(S0 F) , Pb(S0 F) , Sn(S0 F) . 3  2  3  2  3  2  3  2  3  These compounds have been p r e p a r e d from t h e i r  2  dichlorides  i n a manner analogous t o t h a t d e s c r i b e d f o r the a l k a l i metal sulfates.  fluoro-  The anhydrous d i c h l o r i d e s o f B a l l and S r I I were o b t a i n e d  £rom t h e d i h y d r a t e and h e x a h y d r a t e , r e s p e c t i v e l y by h e a t i n g at f o r p e r i o d s up t o f i v e days. anhydrous was  That t h e d i c h l o r i d e s used were  checked by i n f r a r e d  r e a c t i o n was  150°C  spectroscopy.  checked by weight r a t i o s .  The completeness o f  In a t y p i c a l  experiment, the  f o l l o w i n g d a t a was r e c o r d e d :  weight  2.  PbC£  4.112  2  gm  e x p e c t e d weight  Pb(S0 F)  5.993 gm  measured weight  Pb(S0,F)  5.986 gm  3  Mg(S0 F) . 3  2  T h i s compound was  p r e p a r e d by the method o f Goubeau and  58 Milne  .  E q u i m o l a r amounts o f anhydrous magnesium c h l o r i d e  anhydrous p o t a s s i u m c h l o r i d e  and  (and a t e f l o n - c o a t e d s t i r r i n g b a r ) were  p l a c e d i n a 500 ml., round bottom f l u o r o s u l f u r i c a c i d were d i s t i l l e d  flask.  Between 200 and 300  onto the s a l t s .  ml  An adaptor, f i t t e d  - 90 -  with a t e f l o n - s t e m , F i s h e r P o r t e r g r e a s e l e s s stopcock was the f l a s k and the v e s s e l was  a t t a c h e d t o a vacuum l i n e and  The r e a c t i o n v e s s e l i s shown i n F i g u r e 10a. c o n s t a n t vacuum and s t i r r i n g , was  The r e a c t i o n ,  The r e a c t i o n was  under days.  distilled  amount o f l i q u i d between 200 and 300  The p r o d u c t , M g ( S 0 F ) , 3  w a  2  shown i n F i g u r e 10b. f l u o r o s u l f u r i c acid  ml.  s  f i l t e r e d under  solution.  dry n i t r o g e n i n the apparatus  To remove a l l t r a c e s o f KSO^F l a r g e amounts o f (200-300 ml) were used t o r i n s e the p r o d u c t .  f i l t e r i n g apparatus was  The  then t r a n s f e r r e d t o a drybox and t h e p r o d u c t  removed t o a c l e a n , d r y , round bottom  flask.  Excess  fluorosulfuric  removed from the magnesium f l u o r o s u l f a t e by h e a t i n g i n vacwuw Jr  55°C f o r a p p r o x i m a t e l y e i g h t  3.  into  deemed complete when a sample o f the s o l i d p r o d u c t  i n the f l a s k gave a n e g a t i v e c h l o r i d e t e s t w i t h s i l v e r n i t r a t e  a c i d was  on  evacuated.  a l l o w e d t o p r o c e e d f o r 7-8  As the l e v e l o f HSO^F f e l l below 100 ml, more a c i d was the f l a s k t o keep the t o t a l  fitted  hours.  Mn(S0 F) , Zn(S0 F) , Cu(S0 F) 3  2  These  3  2  3  2 >  Cd(S0 F) 3  2 <  compounds were p r e p a r e d by the metal benzoate  method.  The d i v a l e n t metal benzoates were p r e p a r e d by m i x i n g s o l u t i o n s o f NaOOC(C H ) and M C £ 6  benzoate.  5  2  ( r a t i o 2:1)  and f i l t e r i n g  o f f the r e s u l t i n g  The pH o f the metal c h l o r i d e s o l u t i o n was  t e s t paper by the a d d i t i o n o f d i l u t e HC£.  T h i s was  f o r m a t i o n o f b a s i c metal s a l t s d u r i n g metal benzoate The metal benzoate  s a l t s were d r i e d  initially  metal  made a c i d i c t o pH t o p r e v e n t the precipitation.  at 110°C but i t was  - 91  -  •(b) Figure  10  -  Apparatus f o r the  Preparation  of A i r Sensitive Fluorosulfates  - 92 -  found that  some d e c o m p o s i t i o n o c c u r r e d at t h i s temperature  s a l t s used  i n the f i n a l  vacuum a t room  analyses indicated  by  H,  (One  Cd,  a n a l y s e s and m e t a l , carbon, and hydrogen that  the metal benzoate  under  29.5;  Typical  elemental  compounds were p a r t i a l l y  e x c e p t i o n i s CufOOCC^H^) which was  t h i s method.)  Calc.:.  f l u o r o s u l f a t e p r e p a r a t i o n s were d r i e d  temperature.  Infrared  fiydrated.  and so the  p r e p a r e d anhydrous  a n a l y s e s a r e i l l u s t r a t e d by Cd (OOCC Hj.) . l - ^ 6  C, 44.06; H,  3.41.  Found:  Cd,  29.4;  2  reactor  C, 44.51;  2  was  p l a c e d on the s i n t e r e d  shown i n F i g u r e 10b.  glass  d i s c o f the  200-300 ml o f doubly d i s t i l l e d  fluoro-  s u l f u r i c a c i d were then added by means o f a s e p a r a t o r y f u n n e l .  The  e x c e s s a c i d was  a t the  drawn through the f i l t e r  t o the waste r e s e r v o i r  b o t t o m o f the a p p a r a t u s .  Additional  fennel  f l u o r o s u l f a t e product.  t o r i n s e the metal  then t r a n s f e r r e d  HSO^F was  added from the s e p a r a t o r y The r e a c t i o n  t o a dry box and the metal f l u o r o s u l f a t e  removed t o a d r y , round bottom f l a s k  (Figure  10a).  t h i s s y n t h e s i s were l e s s than f i f t e e n minutes  apparatus product  Excess HSO^F  removed under vacuum a t a p p r o x i m a t e l y 55°C f o r 8 h o u r s . for  2  3.06.) M(OOCC^Hg)  was  H 0.  was  R e a c t i o n times  - t h e time taken to.  draw a l l t h e f l u o r o s u l f u r i c a c i d through the f i l t e r  disc.  S e v e r a l attempts were made t o p r e p a r e M g f S O ^ F ^ by t h i s method b u t the e l e m e n t a l a n a l y s e s o f the p r o d u c t i n v a r i a b l y amd  low f l u o r i n e r e s u l t s .  I t i s not known why  p r e p a r e d as a pure p r o d u c t by t h i s method.  gave h i g h  MgfSO^F),, cannot  sulfur be  - 93  4.  Hg(S0 F) . 3  2  This An  -  accurately  two  compound was  p r e p a r e d by  weighed amount o f reagent grade mercury  grams) was  p l a c e d i n the  t e f l o n c o a t e d s t i r r i n g bar Excess ^2^S^2  ( PP a  under vacuum. f o r 7-10  r o x  The  days.  weight o f the  i  m a 1 : e  The  was  ly  vessel  was  the  No  vessel  distilled  The  A  evacuated. mercury  contents  stirred  removed under vacuum and  the  reaction.  f l u o r o s u l f u r i c a c i d was  e l e m e n t a l a n a l y s e s o f the  Lead was  distilled  lead  s a l t s are  as t h e i r p r e p a r a t i o n would i n d i c a t e .  soluble  CdCS0 F) 3  2  r e m a i n i n g b i s - f l u o r o s u l f a t e s are  s a l t s were handled and  stored  bis-fluorosulfates as the  i n the  Alfred  The  calcium,  i n f l u o r o s u l f u r i c acid  i s sparingly insoluble  difficult  a white s o l i d .  s o l u b i l i t i e s o f the  The  soluble  i n the  t o measure s i n c e  the  the  b i s - f l u o r o s u l f a t e s are  exact  decomposed product  approximate d e c o m p o s i t i o n temperatures given i n Table  XXI.  in  acid.  i n a drybox at a l l t i m e s .  b i s - f l u o r o s u l f a t e s decomposed on h e a t i n g , but  temperature was  sulfate.  Germany.  b i s - f l u o r o s u l f a t e s are white s o l i d s .  the  twice  analyzed g r a v i m e t r i c a l l y  Laboratories,  s t r o n t i u m , barium, t i n , and  The  was  onto the  the  o t h e r e l e m e n t a l a n a l y s e s were c a r r i e d out  HSO^F, and  and  f u r t h e r p u r i f i c a t i o n o f the b i s - f l u o r o s u l f a t e s mentioned  attempted.  The  also  the  heated t o 50°C and  complete  (between one  84  r e a g e n t s used i n p r e p a r i n g the b i s - f l u o r o s u l f a t e s were o f  Bernhardt M i c r o a n a l y t i c a l  The  was  excess p e r o x i d e was  a r e " g i v e n i n T a b l e XX. All  gm)  Cady.  shown i n F i g u r e 10a.  a l s o added and  8-10  a n a l y t i c a l reagent grade and  above was  reaction vessel  product i n d i c a t e d  The  b e f o r e use.  the method o f Roberts and  was  and  - 94 -  T a b l e XX Elemental Analyses f o r the b i s - F l u o r o s u l f a t e s  M  7 o -S  °/o F  calc.  30.66  22.44  13.30  obs.  30.62  22.53  13.40  calc.  40.94  19.12  11.33.  obs.  40.39  19.38  10.96  Cd  calc. obs.  36.20 35.92  20.65 20.62  12.24 12.37  Mn  calc. obs.  25.34 25.14  15.02 15.18  Mg  calc. obs.  28.83 28.86  17.08 17.21  Hg  calc. obs;  16.08 16.08  9.52 9.36  Sn  calc. obs.  -  20.24 20.41  11.99 11.90  Pb  calc. obs.  51.13 50.96  15.82 15.66  -  M(S0 F) 3  Sr  Ba  7o  2  -  - 95 -  T a b l e XXI  Some P h y s i c a l Data f o r t h e b i s - F l u o r o s u l f a t e s  M(S0 F) 3  2  Mol.  Wt.  decomposition  s o l u b i l i t y i n 100 gms.  p o i n t C°C)  HS0 F a t 25°C 3  Sn  361.81  186  2.0  Pb  405.36  270  >4.5  Cd  310.52  207  0.1  Mn  253.06  209  iMg  222.44  228  Hg,  398.71  297  - 96 -  As the  f o r the a l k a l i f l u o r o s u l f a t e s , the i n f r a r e d spectra o f  b i s - f l u o r o s u l f a t e s were measured as n u j o l m u l l s and as ke^gciiiPr'^Wbidi'e^  mounted between KRS-5 p l a t e s . spectra  The i n f r a r e d s p e c t r a . a n d those Raman l i n e s which  could  o b t a i n e d above t h e background a r e g i v e n i n T a b l e XXII. The  and  Raman  o f a l l t h e b i s - f l u o r o s u l f a t e s but t h e s e attempts were l a r g e l y  unsuccessful. be  Attempts were made t o o b t a i n  conductivities  o f the b i s - f l u o r o s u l f a t e s o f t i n , lead,  cadmium i n f l u o r o s u l f u r i c a c i d were measured a t 25 ± .002°C. 88  The  conductivity  cell  used was from t h e d e s i g n o f Jones and B o l l i n g e r .  A t y p i c a l weight o f HSO^F used f o r t h e c o n d u c t i v i t y The  cell  electrodes  were p l a t e d  w i t h p l a t i n u m b l a c k and t h e c e l l was  c a l i b r a t e d using standard potassium c h l o r i d e conductivity  solution.  shaken and r e p l a c e d  A f t e r each a d d i t i o n  i n the thermostated o i l bath.  measured a f t e r a 10-15 minute e q u i l i b r a t i o n time. solutions  B221A.  The s a l t whose  was b e i n g measured was added t o t h e c e l l by means o f a  weight b u r e t w i t h a wide-bore t a p .  the  runs was 50 gms.  The r e s i s t a n c e  was  The r e s i s t a n c e s o f  were measured w i t h a Wayne Kerr U n i v e r s a l  The c o n d u c t i v i t y  t h e c e l l was  B r i d g e , Model  r e s u l t s for the b i s - f l u o r o s u l f a t e s o f  cadmium, t i n , and l e a d a r e found i n T a b l e X X I I I and F i g u r e 11. A Mossbauer study o f S n C S O g F ^  a  t  room temperature and a t  77°K was c a r r i e d out by M i s s B.F.E. F o r d o f t h e U n i v e r s i t y Columbia. t o SnO_.  The isomer s h i f t  of British  o f t h e t i n n u c l e u s was 4.17 mm/sec r e l a t i v e  The measured quadrupole s p l i t t i n g was 0.73 mm/sec.  mu\[  T a b l e XXII  -  I n f r a r e d and Raman Band Assignments f o r t h e b i s - F l u o r o s u l f a t e s  Mg(II) IR  IR  1343sh S-0 asym.str. v (A) 2  Ca(II) R  1298s  Mn CI I) IR  1312sh  1320s  Zn(II)  •  IR  1298s  1139s  1120s  844s  829s  1128  1117s  1118s  838s  863s  1  Cd(II) IR  1267s  (cm" ) Cu(II)  Hg(II) IR  R  IR  'R  1281sh  1268sh  1300s  1255s  1221s  1213s  1107s  1089s  1095  1111s  1120  855s  856s  862  858s  865  598s  598  632m  636  568  605m  602  564m  572  S-0 sym.str.  v CA) 2  S-F s t r .  '  834sh?  606m  V CE)  614m  608m  605m  S-0 asym.def  596m  592m  590m  581  560m  574  S  575 V (A) 3  ms  568  567ms  422w  415w  416sh  409sh  612s  W  556sh  568  567m  559m  420w  418mw  415w  417w  }  .  S-0 sym.def v (E) 6  S-F  def  410  419  420  r  431  w  427  i to •^j i  T a b l e XXII  Sr(II) . IR  S-0 asyra. s t r .  -  continued  Ba(II) R  Sn(H)  IR  Pb(II) R  IR  IR  1357sh  1348sh  1296sh  1291sh  1299s  1307vs  1239vs  1269vs  1243s  1265vs  1179sh  1190sh  1073sh  1080  1177sh  S-0  sym.str.  1112s  1114  1086s  1091s  1093  976m  1084  1062s  s  1068  911w  972w  884w .  S-F  sym.str.  835vs  827s  833s  783vs  780ms  772s  749ms  729sh  850sh 828m  •  756m - -  730sh - 599m  V (E)  621ms  608s  606m  S-0 asym.def .  602ms  563s  592m  582 s  V (A)  584s  590s  572s  574 s  S-0 sym.def .  563s  567s  554s  560s  v (E)  419w  410  433sh  403mw  428  400w  400  418  5  3  6  S-F  def . n  395w  400 i i  w  .  i to 00 1  - 99  -  Discussion  Part  I:  The  Chemistry o f S n ( S 0 F ) 3  2  and  Pb(S0 F) 3  2  Group IV elements d i s p l a y a marked t r e n d from to e l e c t r o p o s i t i v e character increases. and  T i n and  germanium are  as the  particularly  chemically  atomic weight o f the  strength  of covalent  non-metallic  carbon to lead. and  bonds  (M-X)  or m e t a l l o i d .  aspect  of  d e c r e a s e s going down the  group from  A l s o the d i v a l e n t s t a t e becomes i n c r e a s i n g l y s t a b l e  pounds o f d i v a l e n t l e a d and  Very many i o n i c com-  t i n are known.  second i o n i z a t i o n p o t e n t i a l s o f t i n and  s i m i l a r to t h o s e o f the XIX.  One  silicon,  views Group IV elements i s t h a t  i s the dominant s t a t e among l e a d compounds.  The  element  l e a d are metals w h i l e carbon,  t h i s d i s c o n t i n u i t y o f p r o p e r t i e s as one the  electronegative  l e a d are  a l k a l i n e e a r t h metals as can be  very  seen i n T a b l e  A c o n s i d e r a t i o n o f these i o n i z a t i o n p o t e n t i a l s l e d us t o b e l i e v e  t h a t t i n and pounds. Sn(S0 F) 3  l e a d b i s - f l u o r o s u l f a t e s might be  This 2  and  i n d e e d p r o v e d t o be Pb(S0 F) 3  2  the  e s s e n t i a l l y i o n i c com-  case as the  solubility  of  i n HS0 F i n d i c a t e d . 3  A l t h o u g h t h i s t h e s i s i s concerned w i t h s t r u c t u r e and o f b i s - f l u o r o s u l f a t e s i n the s o l u t i o n c h e m i s t r y was synthesized  s o l i d s t a t e , a small  made i n o r d e r  excursion  bonding  into  t o c h a r a c t e r i z e these newly  compounds. 37  Barr,  G i l l e s p i e , and  Thompson  have s t u d i e d the  conductivity  o f the a l k a l i n e e a r t h f l u o r o s u l f a t e s i n f l u o r o s u l f u r i c a c i d .  They have  c o n c l u d e d t h a t t h e s e s a l t s are bases i n the a c i d , t h a t i s , thev  increase  - 100 -  the  c o n c e n t r a t i o n o f the f l u o r o s u l f a t e i o n i n s o l u t i o n .  cluded i n t h e i r report  that  proton t r a n s f e r process. lead  I t was con-  t h e f l u o r o s u l f a t e i o n conducts mainly by a  Our c o n d u c t i v i t y  studies  show t h a t  f l u o r o s u l f a t e a r e a l s o bases i n f l u o r o s u l f u r i c a c i d .  t i n and  This  was  d e t e r m i n e d by a d d i n g KSO^F, a known base i n HSO^F, t o t h e c o n d u c t i v i t y cell  at the conclusion  of a conductivity  run.  I f the r e s i s t a n c e  o f the  s o l u t i o n c o n t i n u e d t o d e c r e a s e the compound b e i n g s t u d i e d m$ a base. If the resistance the  o f the s o l u t i o n increased  then KSO^F was n e u t r a l i z i n g  compound i n s o l u t i o n and so t h e compound b e i n g s t u d i e d  wqs an a c i d .  On t h e graph shown i n F i g u r e 11 t h e conductance o f BaCSO^F^ as d e t e r 37 mined by Barr e t a l  i s plotted  f o r comparison.  Both PbCSO^F^ and  S n C S O ^ F ^ a r e weaker bases i n HSO^F than i s BaCSO^F^; and o f t h e two new compounds, P b f S O ^ F ^ i s t h e s t r o n g e r base.  The d i f f e r e n c e s among 2+ 2+ 2+  conductances o f t h e metal b i s - f l u o r o s u l f a t e s o f Ba Pb  2 +  , Sn  y values, that  per  mole o f s o l u t e ,  i s the number o f moles o f f l u o r o s u l f a t e i o n produced f o r these four  s a l t s a r e found i n T a b l e XXIV.  conductance v a l u e s f o r B a C S O ^ F ^ j S r C S O ^ F ^ and t h e f u l l y  s t a n d a r d , KfSO^F), were taken from t h e r e s u l t s o f Barr e t a l . ) results clearly  i n d i c a t e that Ba  It  , and  a r e most l i k e l y due t o d i f f e r e n t degrees o f i o n i z a t i o n among them.  The  (The  , Sr  2 +  > Sr  2 +  i s i n t e r e s t i n g t o note t h a t  character o f lead  ionized These  the o r d e r o f base s t r e n g t h i s > Pb  2 +  > Sn  consistent  2 +  w i t h t h e more e l e c t r o p o s i t i v e  compared t o t i n , t h e l e a d compound i s a s t r o n g e r base  t h a n t h e t i n compound.  - 101 -  T a b l e XXIII S p e c i f i c Conductances  o f the b i s - F l u o r o s u l f a t e s o f  T i n , Lead, and Cadmium  Pb(S0 F) 3  (molal)  Sn(S0 F)  2  3  10 K 4  10  2  2  (molal)  10 i 4  (ohm ^cm *)  -1-  (ohm  0.00  1.299  0.00  1.267  0.11  5.641  0.04  2.140 8.035  0.34  15.28  0.24  0.56  23.54  0.59  15.73  0.84  31.66  0.65  17.23  0.97  35.81  1.12  25.45  1.18  42.72  1.57  32.27  1-74  60.45  1.88  37.72  2.13  71.60  2.32  42.66  2.47  81.11  3.01  50.39  2.90  93.13  3.77  58.23  3.50  109.0  4.64  66.30  4.44  131.4  6.20  79.76  5.15  147.9  6.98  176.0  7.62  198.4  9.76  236.4  CdCS0 F) '2 3  10  2  (molal)  io i 4  (ohm '''cm 0.00  1.31  0.12  2.97  0.32  5.34  - 102 -  o  cd  t--  tN  CN  z—^  *•—A  Pk  U<  tO O <£, .a  to  o c  a,  CM / —  C/3  CM  /—i  to  o co  TO  U  IQ  o o •  LO  lo o  I—I  x  Q  O o  O  o  o  00  CD  F i g u r e 11  -  O  O  ^"  CM  specific  conductance  Conductances o f S n ( S 0 F ) 3  2 >  xlO  4  Pb(S0 F) 3  2 >  Cd(S0 F) 3  2  - 103 -  T a b l e XXIV  y - v a l u e s f o r Four b i s - F l u o r o s u l f a t e s  conc CIO  2  M m)  Ba  2 +  .  Y  Sr  2 t  Pb  Y'  2 +  Y  •  Sn  2 +  Y  0.5  1.76 .  1.80  1.64  1.04  1.0  1.73  1.65  1.50  0.90  1.5  1.72  1.64  1.47  0.83  2.0  1.74  1.58  1.41  0.76  2.5  1.64  1.52.  1.34  0.71  3. 0  1.62  1.50  1.27  0.67  3.5  1.61  .1.49  1.27  0.64  4.0  1.60  1.45  1.27  0.62  4.5  1.59  1.46  1.28  0.58  5.0  1.58  1.46  1.27  0.56  5.5  . 1.58  1.44  1.25  0.55  6.0  1.58  1.45  1.24  0.53  6.5  1.57  1.45  1.23  7.0  1.54  1.44  1.21  7.5  1.43  1.19  8.0  1.41  8.5  1.39  9.0  .  1.18 1.16 1.13  - 104 -  Before d i s c u s s i n g the Mossbauer parameters their  s i g n i f i c a n c e , a s h o r t d i s c u s s i o n on the Mossbauer t e c h n i q u e  would be  useful. Mossbauer s p e c t r o s c o p y i s the r e c o i l l e s s  reabsorption of nuclear y rays. s e p a r a t i o n between the f i r s t state.  The y r a y energy  excited state  e m i s s i o n and i s the  energy  ( n u c l e a r ) and the  ground  E m i s s i o n o c c u r s when, i n the course o f a n u c l e a r decay  p r o c e s s , a s t a b l e i s o t o p e i s formed below f o r the decay  _ 119m Sn  f o r SnCSO^F)^ and  of metastable  T/2 = 245 d — Y, = 65.66 keV 1  from a m e t a s t a b l e one  as.shown  Sn^^ . m  . _ ^ ^ 1st ex. s t a t e  T/2 = 1.84 x 10 — y = 23.875 keV m  sec  n u c l e a r s p i n 3/2  It  _ 119 -> Sn  nuclear spin  i s obvious t h a t a b s o r p t i o n ( i . e . e x c i t a t i o n i n t o the f i r s t  excited  s t a t e ) w i l l o c c u r o n l y when a) e m i s s i o n and a b s o r p t i o n are  recoilless,  t h a t i s o c c u r i n g w i t h o u t l o s s o f energy t o the c r y s t a l l i n e  lattice,  and b) the energy  s e p a r a t i o n o f b o t h the e x c i t e d s t a t e and the  s t a t e i s completely i d e n t i c a l  i n source and  ground  absorber.  C o n d i t i o n a) i s a s s i s t e d by c o o l i n g the a b s o r b e r to l i q u i d n i t r o g e n o r l i q u i d h e l i u m temperature.  At h i g h e r  temperatures  the number o f Mossbauer y r a y s d e c r e a s e s s i n c e i n some decay p r o c e s s e s energy i s l o s t  in lattice  phonon i n t e r a c t i oris •  1/2  - 105 -  Condition energy l e v e l  (b) i s more d i f f i c u l t  separation  i n the valence  shell.  to f u l f i l l  i s i n f l u e n c e d by t h e e l e c t r o n i c c o n f i g u r a t i o n T h i s feature turns  t h e t e c h n i q u e from a mere  p h y s i c a l r e s o n a n t phenomenon i n t o a v a l u a b l e modulation o f the emitted  y-rays  u s i n g the Doppler e f f e c t . c a l d r i v e with respect source,  since the nuclear  t o o l f o r t h e chemist.  A  over a s m a l l range i s p o s s i b l e by  T h i s i n v o l v e s moving t h e source v i a mechani-  t o the absorber.  resonant absorption  will  At a g i v e n v e l o c i t y o f t h e  occur.  The energy d i f f e r e n c e between  s o u r c e and a b s o r b e r i s t h e r e f o r e b e s t d e s c r i b e d  i n terms o f v e l o c i t y ,  t h a t i s i n mm/sec. The  d i f f e r e n c e o f the y^-ray  energy between the source and  the a b s o r b e r i s commonly c a l l e d t h e chemical avoid confusion,  t h e isomer s h i f t .  mentioned, i n mm/sec.  shift  o r more o f t e n , t o  The isomer s h i f t  6 i s measured, as  I t i s commonly used i n t i n Mossbauer  scopy as a measure o f t h e e l e c t r o n d e n s i t y d e n s i t y s i n c e these e l e c t r o n s penetrate  spectro-  (primarily 5 s-electron  and i n t e r a c t more w i t h t h e 119  n u c l e a r energy, l e v e l s ) . higher  6 i s p o s i t i v e f o r Sn  s-electron density w i l l  velocity.  This i s exemplified  i n t h e f o l l o w i n g diagram. Valence state  :  nuclear configuration observed : c a l c u l a t e d value  result  i n an isomer s h i f t  f o r the various valence  c 4+ Sn  SnIV  5s 5p  5s'5p  r e l a t i v e t o SnC^  to higher  states of t i n  _ o >• Sn  SnII  ,  • 5s 5p  o f 6*: -0.42mm/sec +1.75  *  which means t h a t  _ 2+ >• Sn  . +4.77  - 106 -  As can be seen from t h i s diagram, SnIV compounds and SnII compounds will  absorb on o p p o s i t e ends o f t h e s c a l e . A second Mossbauer parameter,  or i n s h o r t , quadrupole s p l i t t i n g ,  t h e n u c l e a r quadrupole  coupling  a r i s e s from t h e f a c t t h a t t h e f i r s t 119  e x c i t e d s t a t e has a n u c l e a r magnetic moment o f 3/2 i n Sn  .  Where a  n o n - s p h e r i c a l charge d i s t r i b u t i o n i s found around t h e a b s o r b e r ( i . e . when an e l e c t r i c be s p l i t  field  g r a d i e n t i s s e t up) t h e a b s o r p t i o n s i g n a l  into a doublet.  will  The s e p a r a t i o n between t h e component peaks  i s a l s o measured i n mm/sec. Large d e p a r t u r e s from a s p h e r i c a l e l e c t r o n d i s t r i b u t i o n result  i n l a r g e quadrupole s p l i t t i n g s .  several ligands o f d i f f e r i n g  will  T h i s i s obvious i n cases where  e l e c t r o n e g a t i v i t i e s surround t i n .  I f t h e bonding i n a p a r t i c u l a r SnII compound were i o n i c then t h e e l e c t r o n c o n f i g u r a t i o n o f t h e S n  2 +  strictly  i o n (accurately  2 d e s c r i b e d as 5s ) would be such t h a t no quadrupole s p l i t t i n g would be observed.  The o b s e r v e d s p l i t t i n g  for Sn(S0 F) 3  2  and f o r a l l o t h e r SnII  89 compounds i n d i c a t e s d e p a r t u r e from i o n i c i t y . In a d d i t i o n , the o b s e r v e d isomer s h i f t o f 4.17 mm/sec, t h e h i g h e s t so f a r observed f o r a SnII compound i s c o n s i d e r a b l y below t h e i d e a l v a l u e c a l c u l a t e d by 87 Ruby.  The observed parameters and some s e l e c t e d  are l i s t e d  i n T a b l e XXV below.  l i t e r a t u r e values  - 107 -  T a b l e XXV Mossbauer  Compound  Data f o r S e l e c t e d SnII Compounds  Isomer S h i f t * (mm/sec)  SnC£,  Quadrupole Splitting (mm/sec)  p r e s e n t work (89)  +3.9 +4.24  Sh ( S 0 F )  Reference  +4.17  0.73  SnSO,  +3.95  1.03  (89)  SnF,  +3.75 +3.65  0.80 1.67  (90) (89)  3  2  p r e s e n t work  r e l a t i v e t o SnO,  I t i s t o be expected t h a t t h e e v i d e n c e d c o v a l e n c y w i l l have some e f f e c t on t h e v i b r a t i o n a l  spectrum and i o n i s a t i o n  f a i l u r e t o f i n d any e v i d e n c e f o r a pure Sn The  l a r g e isomer s h i f t  i n HSO^F o f S n ( S 0 F ) 3  2+  2 <  c a t i o n i s not unexpected.  f o r SnfSO^F),, i s a good i n d i c a t i o n o f t h e h i g h  e l e c t r o n a f f i n i t y o f t h e SO^F  group.  I t i s i n t e r e s t i n g t o note, i n  p a s s i n g , t h a t t h i s same h i g h e l e c t r o n a f f i n i t y f o r t h e SO^F e v i d e n c e d by t h e u n u s u a l l y low isomer s h i f t  group i s  r e c o r d e d f o r SnIV i n the  92 S n ( S 0 F ) ^ compound. 3  r e l a t i v e t o SnO,,.  The  T h i s compound has a 6 v a l u e o f -0.27 mm/sec  91  - 108  SnCJ?^ and has  d e t e r m i n e d the  all  the  (This  i s shown, t o o ,  be  however, are  seen by  F i g u r e 12.  the  The  and We  3  ligands  the  Berg  finds  are  two  94 that  environments.  The  two  chlorine  environments  l a b e l l e d CZI has  as  in and  C&II.  three t i n  t i n n e i g h b o r s f a r t h e r away.  the  their structure  the  P b C S C ^ F ^ and  can,  The  infrared spectra  S p e c t r a o f the  than those o f the  infrared spectra  shown i n F i g u r e 13.  s i m p l e , 6 l i n e appearance t h a t we  g  related.  t i n compounds are  similar.  Sn^O^F^ vibrational a more d e f i n i t e  spectra state-  bis-Fluorosulfates  The  monofluorosulfates. Some o f the  associated  l a s t c h a p t e r or the symmetry.  iso-  o f the b i s - f l u o r o s u l f a t e s p r e s e n t a f a r  more complex p i c t u r e  with C  i n some way  perhaps, be made.  Vibrational  a n i o n i n the  two  II o f t h i s d i s c u s s i o n )  The  are  structures  t i n n u c l e a r environments o f each are  o f the  ment on  associated  o f SnCJ"^ and  t i n atoms; C£I  from Mossbauer d a t a t h a t  d i s c u s s e d i n Part  -  den  SnC&2 u n i t c e l l p r o j e c t i o n  surrounded by  (to be  SO-jF  Van  in different crystallographic  would tend to t h i n k  From a c o n s i d e r a t i o n  II:  93  the Mossbauer r e s u l t s . )  d i s t a n c e s and  s t r u c t u r a l , only that  Part  '  s i m i l a r i t y between the Mossbauer parameters o f SnCJ^  S n ( S 0 F ) 2 we cannot say  by  different chlorine  neighbors at short  91  in identical crystallographic  drawing o f the  C£II i s t e t r a h e d r a l l y  Because o f the  isostructural.  single c r y s t a l structure  t i n atoms are  ligands, can  PbCJ*^ are  -  These  spectra  w i t h the C^  simple n i n e - l i n e  v  have a  isolated spectra  b i s - f l u o r o s u l f a t e s with these  we spectra  - 109 -  o  o  CI  Sn(II)  F i g u r e 12  -  SnCl  2  C r y s t a l S t r u c t u r e , p r o j e c t i o n a l o n g [001]  Heavy c i r c l e s : atoms at z=3/4  atoms a t z=l/4;  light  ( a f t e r Vanden Berg  94  circles: )  - 110  Figure  -  13  I n f r a r e d S p e c t r a o f the . b i s - F l u o r o s u l f a t e s  (The by  s p e c t r a have been condensed, as f o r the  omitting the  raono-fluorosulfates,  s p e c t r a l r e g i o n from 1000-^-800 cm  o f BaCSO^F)^ i s not  complete.  bands a r e found i n T a b l e  The  XXII.)  frequencies  ^.  o f the  The  spectrum  omitted  - 113 -  -•114  are those o f Ca(ll), Cd(ll), Hg^I),  -  Mg&l), Mn(ll), Zn([l), and Ci^ILl  r e f e r t o them as Group A compounds.  We  will  These simple s p e c t r a d i f f e r  from t h o s e o f t h e m o n o f l u o r o s u l f a t e s i n t h a t they have a much s h a r p e r V _ C E ) mode. g  0  The  remaining b i s - f l u o r o s u l f a t e s  - Ba(l$, Sr(il), Pb^l),  Sn(Il) (Group B compounds) have the most complex s p e c t r a w i t h  and  eleven  or more v i b r a t i o n a l bands showing i n the i n f r a r e d s p e c t r a . Before d i s c u s s i n g the appearance o f the s p e c t r a w i t h i n the two  groups more f u l l y ,  i t would be w e l l t o b r i e f l y r e p e a t what  was  mentioned i n t h e g e n e r a l i n t r o d u c t i o n c o n c e r n i n g the expected t i o n a l modes f o r anion possesses are a c t i v e  and C  C^  v  g  symmetric groups.  The u n d i s t o r t e d  t h r e e symmetric  These s i x modes  t h r e e degenerate  E modes and  A modes.  o f the oxygen atoms i n the SO^F  to t h e o t h e r two  a n i o n i s not e q u i v a l e n t  oxygen l i g a n d s ( e i t h e r through bonding  or d i s t o r t i o n  g  C  i n t o two  Cmirror) symmetry each degenerate  E mode s p l i t s  symmetric.  A modes and n i n e l i n e i n f r a r e d and Raman s p e c t r a r e s u l t .  = 9) and  so C  a l l o w e d t o the SO^F  g  total is  symmetry d i s p l a y s a l l the v i b r a t i o n a l modes  system.  I f two  o f the oxygen atoms are bonded,  c o o r d i n a t e d or d i s t o r t e d by the c r y s t a l l a t t i c e C above, s i n c e a g a i n one  In  symmetric  The  number o f v i b r a t i o n a l modes f o r a f i v e atom system l i k e SO^F (3 x 5-6  comprise  ( i . e . non-degenerate)  by c r y s t a l p a c k i n g f o r c e s ) then the a n i o n becomes C g  SO^F  symmetry and d i s p l a y s 6 v i b r a t i o n a l modes which  i n both the i n f r a r e d and Raman.  I f one  vibra-  g  symmetry r e s u l t s  oxygen atom i s not e q u i v a l e n t t o the o t h e r  as  two.  -  115  -  I f a l l t h r e e oxygen atoms are c o o r d i n a t e d o r d i s t o r t e d e q u a l l y by c r y s t a l p a c k i n g f o r c e s then tional  symmetry a g a i n r e s u l t s .  f r e q u e n c i e s o f the 6 modes w i l l be d i f f e r e n t  undistorted t h e two  SO^F  I f two  c o n s i s t i n g o f two  extreme example, and crystal will yield  a spectrum  g  and  some doubled  t h o s e - w i t h the s i m p l e r s p e c t r a .  symmetry i n two  We  later. c  Examination  cm  Q  n  (E)  is~an  types o f a n i o n w i t h i n the  modes.  w i l l d i s c u s s C u C S O ^ F ^ and i t s  o f these i n f r a r e d  spectra reveal  environment w i t h i n the  that  crystal  Vg Q ( E ) which appears  between  i n the monofluorosulfates) with a s l i g h t  s h o u l d e r i n a l l cases except c  line  * f o r t h e s e compounds i s a sharp, v e r y s t r o n g peak  (compared w i t h Vg ( E )  broadened v  This  „(A) are s i n g l e l i n e s so we would conclude  a n i o n e x i s t s i n o n l y one  1350  see an e i g h t e e n  the b i s - f l u o r o s u l f a t e s o f Group A,  s t r u c t u r e o f these b i s - f l u o r o s u l f a t e s . and  different  s e p a r a t e l y from the o t h e r s f o r reasons which w i l l  t h a t V„ .-.(A) and v t h e SOgF  different  o f the  w i t h some l i n e s broadened, some l i n e s  Let us c o n s i d e r f i r s t  i n f r a r e d spectrum  environ-,  I f , f o r example,  superimposed n i n e l i n e s p e c t r a .  i n g e n e r a l two  a c c i d e n t a l l y degenerate,  1220  spectrum.  i n t h e c r y s t a l then i t i s p o s s i b l e we w i l l  become obvious  bonds i n  l a t t i c e then i t i s p o s s i b l e t o f i n d two  f l u o r o s u l f a t e anions a r e d i s t o r t e d t o C  spectrum  S-F  o r more f l u o r o s u l f a t e anions a r e i n d i f f e r e n t  s p e c t r a mentioned above superimposed i n one  sites  and  different.  ments w i t h i n the c r y s t a l  two  vibra-  from those o f the  a n i o n s i n c e the s t r e n g t h o f the S-0  c a s e s w i l l be  The  Z n l l and C a l l .  We  f o r t h e m o n o f l u o r o s u l f a t e s was  reasoned  that the  caused by  interaction  - 116 -  between the fundamental  mode and a c o m b i n a t i o n band.  s u l f a t e s o f t h i s group the v  +  2  combination band would l i e at too  h i g h a f r e q u e n c y t o i n t e r a c t w i t h the fundamental we  see a s h a r p e r fundamental  to  a slight  mode and t e n t a t i v e l y a s s i g n the s h o u l d e r  o f the E mode i s l i f t e d  bands s h o u l d be seen; i f the.degeneracy bands s h o u l d appear. and Z n ( S 0 F ) distinct  Therefore  s p e c t r a l r e g i o n from 550-620 cm ^ c o n t a i n s one E and  I f the degeneracy  3  Vg_^(E).  s p l i t t i n g o f the degenerate E mode.  The A mode.  In the b i s - f l u o r o -  2  For C a ( S 0 F ) 3  2  t h e r e are two bands.  then a t o t a l o f t h r e e  i s not l i f t e d  t h e n o n l y two  t h e r e are t h r e e bands; f o r C d ( S 0 F ) 3  Mg(S0 F) 3  2  and M n ( S 0 F ) 3  2  Hg(S0 F) 3  but two o f them are v e r y weak.  2  approx-,  a l s o shows f o u r bands i n t h i s  region  To e x p l a i n the e x t r a band i n the f o u r  l i n e s p e c t r a we must p o s t u l a t e a combination o r overtone mode.  The  s p e c t r a l r e g i o n i n q u e s t i o n has f r e q u e n c i e s too h i g h f o r l a t t i c e v i b r a t i o n a l modes, but at a p p r o x i m a t e l y the c o r r e c t f r e q u e n c i e s f o r combinations or overtones o f l a t t i c e modes. 6„ „(E) a t r o u g h l y 410 cm * i s v e r y weak.  Some s p l i t t i n g o f  o—r  t h i s mode i s n o t e d , though, The  f o r the magnesium and c a l c i u m compounds.  o t h e r compounds d i s p l a y a sharp peak. Of a l l these compounds, t h e n , o n l y Z n ( S 0 F ) 3  spectrum o f t h e C or  l e s s e r degree,  d e v i a t i o n from C„  3 v  SOjF show C  anion. g  2  2  have  f o u r l i n e s p e c t r a i n t h i s r e g i o n w i t h a l l the l i n e s o f  i m a t e l y equal i n t e n s i t y .  one  p o s s e s s e s the  The o t h e r compounds, to a g r e a t e r  symmetry i n t h e i r i n f r a r e d s p e c t r a .  The  symmetry, based on the s p l i t t i n g o f the v „ _ ( E ) n  - 117 -  mode, i s not v e r y g r e a t f o r t h e r e m a i n i n g compounds. deviation  from C ^  v  symmetry they can t e n t a t i v e l y be a r r a n g e d :  Cd  < Mn £ Ca = Mg < Hg  In t h e l a s t c h a p t e r i t was seen t h a t a sensitive  v a r i a t i o n i n Vg p was  indication of cation-anion interaction  fluorosulfates.  In o r d e r o f  among t h e mono-  There seems t o be no such t r e n d i n Vg p f o r t h i s group  of b i s - f l u o r o s u l f a t e s .  The s m a l l v a r i a t i o n  i n v„ „ shown i n t h e t a b l e S-F  below cannot be c o r r e l a t e d cation  or the c a t i o n  w i t h e i t h e r t h e p o l a r i z i n g power o f the  size.  T a b l e XXVI Polarizing  Power  Fluorosulfates  P  (P), R a d i i ,  of Mgll,  r  Mnll,  nr2+  and v  g  p  , v  Znll, Ca  V  2 +  S-F  g  0  C A ) , . V g Q(£)  , Cdll,  f°  r  the bis-  and H e l l .  Vo< >  V o  A  (  Mg  3.07  0.66  844 cm""  1139 cm""  Mn  2.15  0.80  838  1117  1312 1298  Zn  2.12  0.74  863  1118  1267  Ca  2.07  0.99  829  1120  1298  Cd  1.50  0.97  855  1107  1281 1255  1.10  856  1089  1268 1221  Hg  . 1.39  1  ,  1  -  E  )  1343 cm 1320  1  - 118 -  The  value  o f v . „, however, i s much h i g h e r o-r  monofluorosulfates The  where t h e h i g h e s t  value  i n a l l cases than i n t h e was 812 cm ^ f o r LiSO^F.  o f Vg ^ (A) and Vg Q C E ) a r e a l s o s l i g h t l y h i g h e r  values  f o r the b i s -  fluorosulfates. The  crystal  s t r u c t u r e s o f t h e Group A compounds cannot be  d e t e r m i n e d from t h e i n f r a r e d s p e c t r a . compounds w i l l their  be isomorphous based on t h e s i m i l a r i t y o f  s p e c t r a and t h e v a l u e s  higher are  probably  of their  cation/anion  the monofluorosulfates.  c o o r d i n a t i o n between c a t i o n and anion The SO^F  anion  group i s n o t f a r d i s t o r t e d from C ^ The  radius r a t i o s .  The  noted f o r Vg_Q(A), Vg Q ( E ) , and p a r t i c u l a r l y Vg p  frequencies  i n d i c a t i v e o f greater  this  We would s a y , though, t h a t the  v  than i n  i n a l l compounds c o n s i d e r e d i n symmetry.  i n f r a r e d spectrum o f copper f l u o r o s u l f a t e ( f i r s t , d e t e r 58  mined by Goubeau and M i l n e  ) i s different  above i n t h a t i t shows a d i s t i n c t C  symmetric.  v  Q  N  ( E ) i s split  magnitude; 6g Q ( E ) i s s p l i t and  6  nine  from t h e s p e c t r a mentioned  l i n e p a t t e r n i n d i c a t i v e o f SO^F  i n t o two w e l l s e p a r a t e d  peaks o f equal  i n t o two peaks, though o f unequal magnitude;  (E) i s a weak broadened peak which i s j u s t b a r e l y r e s o l v e d as P—r  two  peaks. Copper i n s i x - c o o r d i n a t e d  distorted  short  octahedron o f l i g a n d s .  and two l o n g c o p p e r - l i g a n d  a s c r i b e d to the J a h n - T e l l e r  complexes u s u a l l y p o s s e s s e s a  These a r e most o f t e n found as f o u r 95 bonds.  effect.  T h i s d i s t o r t i o n has been  If i n Cu(S0 F) 3  2  the Cu0  6  skeleton  were d i s t o r t e d so as t o g i v e f o u r s h o r t and two l o n g Cu-0 bonds then  - 119  each SO^F the  group would have two  t h i r d oxygen.  A C  Copper i s o n l y one but  i s the  i n Group A  included  (Table XIX).  in this  cations  study.  i n Group B are a l l l a r g e r than those  crystal  the view t h a t  structure.  SO^F  As  p o s s i b i l i t y of d i f f e r e n t crystallographic sites s p e c u l a t i o n on  two  d i s t i n c t peaks and  The  spectral region  from 550-650 cm  expect a doubled E mode and the we  f o u r peaks as can  v  1  g_o^  r e m a i n i n g bands t h a t we  Vg_Q(E)  anion.  * S-F V  a  r  ^  e  2 A modes.  degenerate modes are  o  t  n  split  and  would be  S0,F  appear.  inclined  s i t e has  in  shows  doubled.  Since  we can  assign  Alternatively t h a t the  would expect i n t h i s s p e c t r a l r e g i o n  degeneracy o f at l e a s t one  the  e a s i e s t to assign  a doubled A mode i n t h i s r e g i o n we  s h o u l d e r o f Vg Q ( E ) we  So  a  anions becomes  shows f o u r peaks.  a c c i d e n t a l l y degenerate w i t h bands t h a t do o f the  a n c  2 degenerate E modes and  assume t h a t the  (not  t h e s e compounds i s a v a i l a b l e .  symmetries f o r the  a shoulder.  less l i k e l y .  f o r the  spectrum o f S r C S O ^ F ^ i s perhaps the different site  the  t h e s e symmetry s i t e s w i l l have to  w a i t u n t i l more s t r u c t u r a l knowledge on  terms o f two  the r a d i i o f  ions< c l o s e pack as spheres  good a p p r o x i m a t i o n t o b e g i n w i t h ) becomes l e s s and  The  layer  W e l l s c o u l d account f o r t h e d i f f e r e n t a n i o n  s i t e - s y m m e t r i e s w i t h i n the  Further  effect,  I t i s p o s s i b l e , then, t h a t a m i x t u r e o f  p a c k i n g s as mentioned by  more l i k e l y .  than  symmetric i n f r a r e d spectrum would show t h i s .  g  r a d i i o f the  cations increase,  oxygen atoms c l o s e r to the metal  o f the m e t a l s which shows t h i s J a h n - T e l l e r  o n l y one The  -  From the  to t h i n k t h a t  been l i f t e d by  two  are appearance the  asymmetry.  - 120 -  So the s p e c t r a l r e g i o n from 550-650 cm  should contain at l e a s t  The r e m a i n i n g E v i b r a t i o n a l mode f o r S r ( S 0 F ) ,  more band.  3  one  ^g_p>  2  appears t o be two broad weak bands. The spectrum o f B a ( S 0 F ) 3  of SrCS0 F) . 3  v  2  g_ ^ 5  and \ ) _  A  0  g  i s s i m i l a r i n appearance  2  to that  are both doubled and <5g_ (E) i s  F  F  doubled and each o f the r e s u l t i n g bands can be r e s o l v e d i n t o a main peak and a s h o u l d e r . (Sr(S0 F) 3  v  s-0 ^  s  n  o  w  s  t  w  o  m  a  i  bands and two s h o u l d e r s ,  n  d i s p l a y e d o n l y one s h o u l d e r i n t h i s ' r e g i o n ) .  2  Four v i b r a -  t i o n a l bands appear i n the 550-650 cm * r e g i o n o f the spectrum. spectrum o f BaCSO^F)^ shows i n a d d i t i o n two weak bands a t 884 911  cm ^ and a medium s t r o n g band at 749 cm ^.  been a s s i g n e d . spectrum may  spectrum c o n t a i n s the f o l l o w i n g bands: 988 mw,  637 m,  e x t r a peaks  604  s.  checked.  1195  and  These bands have n o t -  The p o s s i b i l i t y t h a t the e x t r a bands i n the  be due t o BaSO, i m p u r i t y was  The  Ba(S0 F) 3  The BaSO^ i n f r a r e d  cm * s, 1117  s, 1070 v s ,  None o f t h e s e c o i n c i d e w i t h the s o - c a l l e d  i n the B a ( S 0 F ) 3  2  spectrum.  The v i b r a t i o n a l s p e c t r a o f S n ( S 0 F ) 3  i n c e r t a i n r e s p e c t s from t h e two  2  and P b ( S 0 F ) 3  spectra just reported.  2  differ  Vg Q ( E ) i s  c o n s i d e r a b l y b r o a d e r f o r the t i n and l e a d s a l t s than i t i s f o r the s t r o n t i u m and barium s a l t s .  A main peak and two  s h o u l d e r s can be  seen i n t h i s r e g i o n f o r the t i n and l e a d compounds. as one peak w i t h a s h o u l d e r .  Vg g(A)  appears  Vg p i s doubled as i t i s f o r the  s t r o n t i u m and barium compounds but i n a d d i t i o n t h e r e i s a s h o u l d e r at 730 cm * i n b o t h the t i n and l e a d s a l t s .  2  Four bands  appear  -  between 550 cm BaCSO^F),,.  and 650 cm  In P b ( S 0 F ) , 6 3  2  -  121  s i m i l a r t o those g  of Sr(S0 F) 3  2  and  p ( E ) i s a weak broad band j u s t  as two peaks a t 400 and 428 cm  resolved  In t h i s r e g i o n o f t h e S n ( S 0 F ) 3  2  spectrum o n l y one band appears, a sharp peak a t 403 cm ^. Because o f t h e c o m p l e x i t y structural  o f t h e s p e c t r a and .the l a c k o f  knowledge o f t h e b i s - f l u o r o s u l f a t e s  group, t h e v i b r a t i o n a l tentative.  considered  i n this  assignments g i v e n them i n T a b l e XXIV a r e  More d e f i n i t i v e assignments w i l l have t o await  i n f o r m a t i o n f o r these  four  structural  bis-fluorosulfates.  We have s p e c u l a t e d t h a t t h e c r y s t a l s t r u c t u r e s o f SnC& and  Sn(S0 F) 3  2  2  may be s i m i l a r from c o n s i d e r a t i o n o f t h e i r Mossbauer  "  spectra. Previous  infrared  s p e c t r a f o r ZnCSO^F),, and C u ( S 0 F ) 3  2  have  58 been r e p o r t e d by Goubeau and M i l n e . the s p e c t r a o u r r e s u l t s numerical  In t h e o v e r a l l  appearance o f  agree q u i t e w e l l w i t h t h e i r s but i n t h e  v a l u e o f s e v e r a l o f t h e bands, p a r t i c u l a r l y i n Z n ( S 0 F ) , 3  bands a r e as much as 30 cm our v a l u e s f o r Cu(S0.jF)  2  1  h i g h e r than t h e i r s .  and Z n ( S 0 F ) 3  2  2  our  T a b l e XXVII compares  w i t h t h e v a l u e s o f Goubeau and  Milne. The  p r e p a r a t i o n o f an aqueous s o l u t i o n o f copper 104  s u l f a t e has been r e p o r t e d by Sharp and Sharpe, to o b t a i n t h e s o l i d m a t e r i a l by e v a p o r a t i o n  fluoro-  but they were  unable,  o f the solvent.  We have attempted t o e x p l a i n t h e complex s p e c t r a o f t h e b i s fluorosulfates  o f s e v e r a l metals.  I t might be i n s t r u c t i v e  t o conclude  - 122 -  Table The  Infrared  XXVII  Vibrational  for Cu(S0 F) 3  and  2  Cu(S0 F) 3  GoubeauctMilne U4(E)  1308 1207  U  ZnCS0 F) 3  2  Zn(S0 F)  2  p r e s e n t work  3  Goubeau^Milne  2  p r e s e n t work  1300 1213  1271  1267  1098  1111  1099 1067  1118  u2CA)  842  858  832  863  U5CE)  633 607  632 605  623  612  U (A)  562  564  571  568  u6CE)  431 422  431 420  422  418  x  (A)  3  cm"  Band Assignments  1  - 123  -  by b r i e f l y c o n s i d e r i n g some s p e c t r a r e p o r t e d  f o r other  heteroanions  o f d i v a l e n t metals. The and  crystal  s t r u c t u r e s o f the d i n i t r a t e s o f P b l l ,  C a l l , have been shown t o be  n e u t r o n d i f f r a c t i o n . s t u d y he has  isomorphous by  Birnstock.  SrII,  96  Ball,  From a  c o n c l u d e d t h a t the space group i s  4 T -P2^3  with  f o u r molecules per u n i t c e l l .  There are two  non-  i n t e r a c t i n g s e t s o f 4 n i t r a t e groups each i n the u n i t c e l l .  Each set  is i n a different  c r y s t a l l i n e environment but the p e r t u r b i n g f o r c e s % 97-99 a c t i n g on each s e t are o f comparable s t r e n g t h . Schutte has s t u d i e d the  i n f r a r e d and  Raman s p e c t r a o f t h e s e f o u r compounds  f i n d s the v i b r a t i o n a l modes can be  assigned  i n t e r a c t i n g n i t r a t e groups i n d i f f e r e n t f i n d s , as we  do  non-  c r y s t a l environments.  Schutte  f o r the b i s - f l u o r o s u l f a t e s a l t s , t h a t broad bands  envelope some doubled s t r e t c h i n g modes and resolve.  on the b a s i s o f 2  and  S c h u t t e has  f u r t h e r determined t h a t the  degenerate E v i b r a t i o n a l modes o f a NO^ c r y s t a l environment i s caused by the f o u r i d e n t i c a l NO^ Several  these are d i f f i c u l t  anion  s p l i t t i n g of  to the  i n one p a r t i c u l a r  c o u p l i n g between the v i b r a t i o n s o f  ions i n that  set.  i n f r a r e d s t u d i e s o f the monovalent and  *• i 1.1 * i. t. . • i 72, metal p e r c h l o r a t e s have been r e p o r t e d .  100-103  divalent  _ . .,• But t h e s e  reports  have been concerned w i t h the h y d r a t e s or methyl c y a n i d e complexes so the r e s u l t s b e a r l i t t l e The  s p e c t r a o f one  reported,  r e l a t i o n to those r e p o r t e d  in this  anhydrous metal p e r c h l o r a t e , though, has  that of Cu(C£0^) . 2  102  and  study.  been  U n d e r h i l l f i n d s t h a t the symmetry  of  - 124 -  the C£0^ C^  v  a n i o n has been reduced  i n anhydrous CufCWD^^.  from  ( i n t h e metal h y d r a t e s ) t o  He c o n c l u d e s from t h e completeness o f  t h e T, -*- C„ t r a n s i t i o n t h a t t h e C £ 0 . d 2v 4  i o n s a r e a c t i n g as b i d e n t a t e b  l i g a n d s through two o f t h e i r oxygen atoms and t h a t the p e r c h l o r a t e groups  a r e v e r y s t r o n g l y c o o r d i n a t e d t o copper i n t h e anhydrous com-  pound. 73 C i r u n a and Robinson infrared  have r e p o r t e d t h e p r e p a r a t i o n and  s p e c t r a o f the b i s - c h l o r o s u l f a t e s o f C a  2 +  ,  Sr  T h e y f i n d t h e s p e c t r a f a r more complex than t h e 6 l i n e e x p e c t e d f o r a C^  v  symmetric  symmetry f o r t h e SO^CZ  a n i o n o r a 9 l i n e spectrum  anion.  , and B a . 2 +  spectra expected f o r  As w i t h t h e m o n o c h l o r o s u l f a t e s  t h e y have a s s i g n e d t h e s p e c t r a i n terms o f fundamental c o m b i n a t i o n and overtone bands.  2 +  modes and  REFERENCES  W. Traube,  Ber., 46_, 2513 (1913).  W. Traube,  Ber., 46, 2525  (1913).  R.J. G i l l e s p i e , J.B. M i l n e , and R.C. Thompson, Inorg. Chenr. , 5_, 468 (1966). R.J. G i l l e s p i e , J.B. M i l n e , and J.B. S e n i o r , I n o r g . Chem., 5_, 1233 (1966). R.J. G i l l e s p i e , A c c t s . Chem. Res., 1, 202 (1968). R.C. Thompson i n " I n o r g a n i c S u l f u r Chemistry", ed.) E l s e v i e r P u b l . Co., Amsterdam  (G. N i c k l e s s ,  (1968), p. 587.  r  L. N e e r i n g , Ph.D. D i s s e r t a t i o n , U n i v e r s i t y o f B r i t i s h Columbia,  (1970).  G.H. Cady i n "Advances i n I n o r g a n i c Chemistry and Radiochemistry", Vol.  (H.J. Emeleus and A.G. Sharpe, eds.)  2, Academic P r e s s , New York  (1960), p. 105.  F.B.  Dudley and G.H. Cady, J.A.C.S., 79, 513 (1957).  J.K.  R u f f i n " P r e p a r a t i v e I n o r g a n i c R e a c t i o n s " , (W.L. J o l l y , ed.) V o l . 3, John W i l e y and Sons, New York  (1966),  p. 35. A.A.  Woolf i n "New Pathways i n I n o r g a n i c C h e m i s t r y " (E.A.V. Ebsworth, A.G. Maddock, A.G. Sharpe, eds.) The U n i v e r s i t y P r e s s , Cambridge  (1968).  S. W i l l i a m s o n i n " P r o g r e s s i n I n o r g a n i c Chemistry ed.) V o l . 7, I n t e r s c i e n c e P u b l . Co., New York ,  p. 39.  (F.A. C o t t o n , (1966),  - 126 -  13.  D.D. DesMarteau, I n o r g . Chem., 7_, 434 (1968).  14.  J.W. Emsley, J . Feeney, N u c l e a r Magnetic  and L.H. S u t c l i f f e , "High R e s o l u t i o n  Resonance S p e c t r o s c o p y " , V o l . 2, (1966),  p. 930-940. 15.  F.A. Hohorst and J.'M. Shreeve,  16.  D.D. DesMarteau, I n o r g . Chem. , 5_, 169 (1966).  17.  M. L u s t i g and G.H. Cady, Inorg. Chem., 2_, 388 (1963).  18.  _  I n o r g . Chem. , 5_, .2069 (1966).  D.D. DesMarteau and G.H. Cady, I n o r g . Chem., 5_, 1829 (1966).  19.  D.W.J. C r u i c k s h a n k , J.C.S. , 5486  (1961).  20.  V. Schomaker and D.P. Stevenson, J.A.C.S., 63, 37 (1941).  21.  R.J. G i l l e s p i e and E.A. Robinson, Can. J . Chem., 41, 2074  ~"~  (1963). 22.  M.J. Buerger, " C r y s t a l S t r u c t u r e A n a l y s i s " , John W i l e y and Sons, New York  23.  I. Naray-Szabo,  "Inorganic C r y s t a l Chemistry",  K i a d o , Budapest 24.  (1960). Akademiai  (1969).  G.H. S t o u t and L.H. J e n s e n , "X-ray S t r u c t u r e D e t e r m i n a t i o n " , M a c m i l l a n Co., New York  (1968).  25.  D.W.J. C r u i c k s h a n k , A c t a C r y s t . , £ , 757 (1956).  26.  D.W.J. C r u i c k s h a n k , A c t a C r y s t . , 14, 896 (1961).  27.  W.R. Busing and H.A. Levy, A c t a C r y s t . , 17, 142 (1964).  28.  C.N. Banwell, "Fundamentals McGraw H i l l  29.  o f Molecular Spectroscopy",  Co., New York  (1966).  G.M. Barrow, " I n t r o d u c t i o n t o M o l e c u l a r S p e c t r o s c o p y " , McGraw H i l l  Co., New York  (1962).  G. Herzberg, " M o l e c u l a r S p e c t r a and M o l e c u l a r S t r u c t u r e , II:  I n f r a r e d and Raman S p e c t r a o f P o l y a t o m i c  M o l e c u l e s " , Van Nostrand Co., P r i n c e t o n , New Jersey  (1945).  K. Nakamoto, " I n f r a r e d S p e c t r a o f I n o r g a n i c and C o o r d i n a t i o n Compounds", 2nd ed., John W i l e y and Sons, New York (1970). K. Nakamoto, i b i d . , p.  113.  F.H. A l l e n , J . L e r b s c h e r , and J . T r o t t e r , p r i v a t e  communica-  tion. A. K v i c k , P.-G. J o n s s o n , and I . O l o v s s o n , I n o r g . Chem., 8_, 2775  (1969).  W. Lange, Ber., 62, 786 (1929). D.W.A. Sharp, J.C.S., 3761, (1957). J.  B a r r j R.J. G i l l e s p i e ,  and R.C. Thompson, Inorg. Chem.,  3, 1149 (1964) . J.B. N e l s o n and D.P. R i l e y , Proc. Phys.  Soc. , 57_, 160 (1945)  R.W. H a r r i s o n , R.C. Thompson, and J . T r o t t e r , J.C.S., A, 1775  (1966).  R.W.G. Wyckoff,  " C r y s t a l S t r u c t u r e s " , V o l . 3, I n t e r s c i e n c e  P u b l . , New York  (1965), p. 45.  P.R. Pinnock, C A . T a y l o r , and H. L i p s o n , A c t a C r y s t . , 9_, 173  (1956).  H. S i e b e r t , Z. anorg. Chem., 289, 15 (1957). Present  results.  - 128 -  44.  R.J. G i l l e s p i e and R.S. Nyholm, Quart. Rev. , 9_, 339 (1957).  45.  D.W.J. C r u i c k s h a n k , A c t a C r y s t . , 17, 671 (1964).  46.  D.W.J. C r u i c k s h a n k  and E.A. Robinson,  Spectrochim. A c t a ,  22, 555 (1966). 47.  M. A t o z i and R.E. Rundle, J . Chem. Phys.,  48.  D.R. L i d e , D.E. Mann, and R.M. F r i s t r o m , J . Chem. 26, 734 (1957).  29, 1306 (1958). Phys.,  "• .  49.  W.M. T o l l e s and W.D. Gwinn, J . Chem. Phys.,  36, 1119 (1962).  50.  R.W. H a r r i s o n and J . T r o t t e r , J.C.S., A, 1783 (1969).  51.  P. Coppens, L. L e i s e r o w i t z , and D. R a b i n o v i t c h , A c t a C r y s t . , 1_8, 1035 (1965).  52.  " I n t e r n a t i o n a l T a b l e s f o r X-ray C r y s t a l l o g r a p h y " , V o l . 3, Kynoch P r e s s , Birmingham  53.  (1962), p.  267.  R.F. Stewart, E.R. Davidson, and W.T. Simpson, J . Chem. 42,  3175 (1965).  . "  Phys.,  '  54.  J . T r o t t e r and S.H. Whitlow, J.C.S., A, 1383 (1967).  55..  Chem. Soc. Spec. P u b l . , No. 18, 1965.  56.  R.C. P a u l , S.K. V a s i s h t , K.C. M a l h o t r a , and S.S. P a h i l , A n a l . Chem., 34, 820 (1962).  57.  P.A. Y e a t s , B.F.E. F o r d , J.R. Sams, and F. Aubke, Chem. Comm., 791  (1969); Dr. F. Aubke, p r i v a t e  communication.  58.  J . Goubeau and J.B. M i l n e , Can. J . Chem.,45, 2321 (1967).  59.  R.J. G i l l e s p i e and E.A. Robinson, Can. J . Chem., 40, 644 i  (1962). 60.  W. Reed, D.W. S e c r e t , R.C. Thompson, and P.A. Y e a t s , Can. J . Chem., 47, 4275  (1969).  - 129 -  61.  C.A. S c h u s t e r i u s , Z. K r i s t . ,  62.  C.A. S c h u s t e r i u s and J . G o t t f r i e d , Z. K r i s t . , 84, 65 (1933).  63.  R.S. H a l f o r d , J . Chem. Phys., 14, 8 (1946).  64.  G.J. Janz and D.W.  65.  C.H. C a r t l e d g e , J.A.C.S., 50, 2855  66.  L.H. Ahrens, Nature, 174, 644 (1954).  67.  A.F. W e l l s , " S t r u c t u r a l  James, J . Chem. Phys., 35, 739 (1961). (1928).  I n o r g a n i c Chemistry", 3 r d ed.,  Clarendon Press, Oxford 68.  76, 455 (1931).  (1962).  L. P a u l i n g , "The Nature o f t h e Chemical  Bond", 3 r d ed.,  C o r n e l l U n i v e r s i t y P r e s s , I t h a c a , New York 69.  (1960).  "Handbook o f C h e m i s t r y and P h y s i c s " , 47th ed., (R.C. Weast, e d . ) , Chemical Rubber Co. ( P u b l . ) , C l e v e l a n d , Ohio (1966).  70.  L. P a u l i n g , op. c i t . , p. 514.  71.  K. Nakamoto, op. c i t . , p. 169.  72.  C D . West, Z. K r i s t . , 88_, .198 (1934).  73.  J.A. C i r u n a and E.A. Robinson, Can. J . Chem., 46, 1715 (1968).  .74.  Th. Hohle and F.C. M i j l h o f f , R e c u e i l , 86, 1153 (1967).  75.  F. Aubke, H.A. C a r t e r , and A.M. Q u r e s h i , Can. J . Chem., i n press.  76.  S.D. Ross, Spectrochim. A c t a , 18, 225 (1961).  77.  A. H e z e l and S.D. Ross, Spectrochim. A c t a , 22, 1949 (1966).  78.  A. R o u f f , J.B. M i l n e , G. Kaufmann, and M. L e r o y , Z. anorg. a l l g e m , chem., 372, 119 (1970).  79.  V.M. Goldschmidt, Norsk V i d . Akad. O s l o , S k r . Mat. Nat. 2, 64 (1926).  Kl.,  -  130  80.  W.J.  Lehmann, J . Mol. S p e c t r y . , 7_, 261  (1961).  81.  A.F. W e l l s , op. c i t . , p.  82.  J.N.  B r a z i e r and A.A.  83.  A.A.  Woolf, J.C.S., A, 355  84.  J . E . Roberts and G.H.  85.  E. Hayek, A. C z a l o u n , and B. Krismer, Monatsh., 87,  77.  Woolf, J.C.S., A, 99  (1967).  (1967).  Cady, J.A.C.S., 82, 353  (1960). 741  (1956). 86.  E.L. M u e t t e r t i e s and D.D.  Coffmann, J.A.C.S., 80,  5914  (1958). 87;  A . I . V o g e l , "A Textbook  o f Q u a n t i t a t i v e A n a l y s i s " , 3rd  ed., John Wiley and Sons, New 88.  M.M.  Jones and D.M.  89.  M. Cordey  York  (1961).  B o l l i n g e r , J .A.C.S. , 5_7, 280  (1935).  Hayes i n "Chemical A p p l i c a t i o n s o f Mossbauer  Spectroscopy"  ( V . I . G o l ' d a n s k i i and R.H.  Academic P r e s s , New 90.  S.L.  Ruby and G.M.  91.  J.D.  Donaldson  York  (1968), p.  C a l v i u s , Phys. Rev.,  Herber,  317. 159,  239  (1967).  i n "Progress i n Inorganic Chemistry",  (F.A. C o t t o n , ed.) V o l . 8, I n t e r s c i e n c e P u b l . , York P.A.  eds.)  New  (1967).  92.  Mr.  Yeats, p r i v a t e  93.  R.E.  Rundle  94.  J.M.  Van den.Berg,  95.  F.A.  C o t t o n and G. W i l k i n s o n , "Advanced I n o r g a n i c C h e m i s t r y " ,  and D.H.  communication.  O l s o n , Inorg. Chem., 3_, 596  A c t a C r y s t . , 14, 1002  2nd ed., I n t e r s c i e n c e P u b l . , New 96.  R.  B i r n s t o c k , Z. K r i s t . ,  124,  310  (1961).  York  (1967).  (1964).  (1967).  - 131 -  97.  K. Buys and C.J.H. S c h u t t e , Spectrochim. A c t a , 18, 307 (1962) .  98.  C.J.H. S c h u t t e , Z. P h y s i k . Chem., (Neue F o l g e ) , 39, 241 (1963) .  99.  C.J.H. S c h u t t e , Z. K r i s t . ,  126, 397 (1968).  100..  F.A. M i l l e r  and C.H. W i l k i n s , A n a l . Chem., 25_, 1253 (1952)  101.  B . J . Hathaway, Proc. Chem. Soc., 344 (1958).  102..  B.J. Hathaway  103,.  A. W e i l and J.-P. Mathieu, Compt. Rend., 238, 2510 (1954).  104.  D.W.A. Sharp and A.G. Sharpe, J.C.S., 1858 (1956).  and A.E. U r i d e r h i l l , J.C.S. , 3091 (1961).  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059866/manifest

Comment

Related Items