Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Synthesis and characterisation of ruthenium octaethylporphyrin complexes Sishta, Chand 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A6_7 S55.pdf [ 3.22MB ]
Metadata
JSON: 831-1.0059662.json
JSON-LD: 831-1.0059662-ld.json
RDF/XML (Pretty): 831-1.0059662-rdf.xml
RDF/JSON: 831-1.0059662-rdf.json
Turtle: 831-1.0059662-turtle.txt
N-Triples: 831-1.0059662-rdf-ntriples.txt
Original Record: 831-1.0059662-source.json
Full Text
831-1.0059662-fulltext.txt
Citation
831-1.0059662.ris

Full Text

SYNTHESIS AND CHARACTERISATION OF RUTHENIUM OCTAETHYLPORPHYRIN COMPLEXES  By CHAND SISHTA B.Sc.(Honours), U n i v e r s i t y o f New Brunswick, 1984  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE  in THE  FACULTY OF GRADUATE STUDIES (Department o f Chemistry)  We accept t h i s t h e s i s as conforming t o the r e q u i r e d  standard.  THE UNIVERSITY OF BRITISH COLUMBIA May 1986 © C h a n d S i s h t a , 1986  )E-6  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the  requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t t h e L i b r a r y s h a l l make it  f r e e l y a v a i l a b l e f o r reference  and study.  I further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by t h e head o f my department o r by h i s o r her r e p r e s e n t a t i v e s .  It i s  understood t h a t copying o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain  s h a l l n o t be allowed without my  permission.  Department o f  CHEMISTRY  The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T  1Y3  Date  (3/81)  written  Abstract  The Ru  synthesis  and c h a r a c t e r i s a t i o n o f some h i g h e r  octaethylporphyrin  complexes a r e d i s c u s s e d .  valent  These  complexes, Ru(OEP)(X)(X«) (X=X'=Br,Cl and X=SbF ,X'=THF) a r e 6  of t h e o x i d a t i o n  s t a t e IV and I I I , r e s p e c t i v e l y , w i t h e i t h e r  4  a t r i p l e t d , S=l i n t e r m e d i a t e s p i n ground s t a t e 5  X=X'=Br, CI) o r a d , S=l/2 low s p i n ground s t a t e . The a l t e r n a t i v e R u f o r m u l a t i o n s a r e r u l e d out.  1 1 1  (for  ( f o r X=SbF ,X'=THF) 6  or R u  1 1  7T-cation r a d i c a l  The f i r s t Ru-X bond  frequencies  -1  (X=Br,179 cm ;X=Cl,289 c n f ^ K B r ) i n Ru-porphyrin systems a r e a s s i g n e d . The  NMR data i n d i c a t e t h a t c o n t a c t  contributions  dominate t h e i s o t r o p i c s h i f t s b u t d i p o l a r r e l a x a t i o n i s responsible The  f o r t h e r e l a x a t i o n o f t h e resonances observed.  m e t a l - p o r p h y r i n Tf-bonding a r i s e s from l i g a n d - t o - m e t a l  charge t r a n s f e r i n a l l t h r e e complexes and t h e R u complex l i k e l y has a p - f l u o r o b r i d g e w i t h Nujol. (>8 0%)  The simple p r e p a r a t i v e and t h e s t a b i l i t y  f sb-F  I I I :  =  (SbF ) 6  6  5  0  1  1  c "" /  r e a c t i o n s have h i g h y i e l d s  o f these complexes make them e x c e l -  l e n t precursors f o r f u r t h e r chemistry i n high-valent ruthenium p o r p h y r i n s .  ii  To my Parents and Bhavini  iii  T a b l e o f Contents Page  Abstract  i i  T a b l e o f Contents  iv  L i s t of Tables  vi  L i s t of Figures  v i i  L i s t of Abbreviations  x  Acknowledgements Chapter  x i i  I: Introduction  1  References Chapter  .  I I : Experimental  7 9  A. Reagents and S o l v e n t s  9  B. P h y s i c a l Measurements  11  C. P r e p a r a t i o n o f Ruthenium Complexes .  14  References  25 I V  Chapter I I I : The C h a r a c t e r i s a t i o n o f R u ( O E P ) ( X ) and R u  I:tI  2  ( O E P ) (SbF ) (THF)  26  6  IV  I I I . l : A n a l y s i s o f t h e data f o r R u ( O E P ) (X)  26  2  v A. N u c l e a r Magnetic  Resonance  Spectroscopy  26  B. O p t i c a l S p e c t r a  42  C. Infrared/Resonance D. Mass Spectroscopy E. Magnetic  Raman Spectroscopy  42  .  44  S u s c e p t i b i l i t y , and E l e c t r o n iv  Paramagnetic  Resonance Spectroscopy  I I I . 2 : A n a l y s i s o f the Data f o r R u  Ii:I  48  (OEP)  (SbF )(THF)  49  6  A. N u c l e a r Magnetic  Resonance  Spectroscopy  49  B. E l e c t r o n Paramagnetic  Resonance  Spectroscopy  55  C. O p t i c a l S p e c t r a  60  D. Mass Spectroscopy  60  E. I n f r a r e d Spectroscopy  63  References Chapter IV: The Chemistry o f  65 I V  Ru (0EP)(X)  2  Complexes  68  References  73  Chapter V: C o n c l u s i o n  74  Appendix I : The O x i d a t i o n Chemistry o f R u  I I I  (0EP)  (PPh ) (Br)  76  3  Appendix I I : T a b u l a t i o n o f S p e c t r o s c o p i c Data f o r Ru P o r p h y r i n Complexes  v  81  L i s t of Tables Table  page  IV  111.1  T  111.2  T  111.3  Data f o r t h e C u r i e P l o t o f the I s o t r o p i c  x  Data f o r R u ( O E P ) (Br)  35  2  IV  x  Data f o r R u ( O E P ) ( C I )  s h i f t v s Inverse Temperature (X)  36  2  f o r Ru(OEP)  complexes  2  39  111.4  T  111.5  Data f o r t h e C u r i e P l o t o f t h e I s o t r o p i c  1  Data f o r R u  111  (OEP)(SbF )(THF) 6  S h i f t v s Inverse Temperature  . . .  f o r Ru(OEP)  (SbF ) (THF)  56  6  A.II.l  T a b u l a t i o n o f *H NMR  Data f o r Ru  P o r p h y r i n Complexes A.II.2  53  81  T a b u l a t i o n o f Resonance  Raman/Infrared  Data f o r Ru P o r p h y r i n Complexes  vi  . . . .  82  L i s t of F i g u r e s Figure  1.1  Page  The  Heme U n i t of N a t u r a l l y O c c u r r i n g  Henoproteins  ( p r o t o p o r p h y r i n IX  dicar2  b o x y l i c acid) 1.2  H i g h l y Symmetric S y n t h e t i c used i n Research  II.1  with  Porphyrins  Model Complexes  .  4  Apparatus used f o r the T r a n s f e r of S o l v e n t s and Reagents under  Anaerobic 10  Conditions II. 2  An Anaerobic  11.3  Temperature-controlling  12  Optical Cell Oven Apparatus  f o r the Vacuum P y r o l y s i s of Ru(OEP) 16  Complexes 11.4  Apparatus f o r P h o t o l y s i s of Ru(OEP) 20  Complexes 111.1  A View of the E t h y l Groups with P y r r o l e Ring as the  the  M i r r o r Plane  of 26  Symmetry 111.2  X  Theoretical H  NMR  Spectra  for  OEP 27  Complexes 111.3  Ligand 11  Ru ,  Field Splitting d  6  Low  diagram f o r a  S p i n Octahedral  Complex 2S  with A x i a l D i s t o r t i o n 111.4  The MO  Diagram f o r Ru(OEP)(X)  2  type  of 30  Complexes vii  III.5 III. 6  •'•H NMR Spectrum o f R u ( O E P ) ( B r ) X  K NMR Spectrum o f Ru(OEP) (CI)  . . . .  2  111.7  . . . .  2  32  P l o t o f the S i g n a l I n t e n s i t y vs delay D2 to Obtain the T  111.8  x  Value f o r R u ( O E P ) ( X )  2  .  I V  111.9  4  Paramagnetic Complexes . . . 2  111.10  Curie Plot f o r Ru(0EP)(Cl)  40 i n t h e Temp-  2  e r a t u r e Range -50 t o +50 °C 111.11  41  The O p t i c a l Spectrum o f R u ( 0 E P ) ( X ) Complexes i n C H C 1 2  2  43  2  111.12  Resonance Raman Spectrum o f R u ( 0 E P ) ( B r )  111.13  Resonance Raman Spectrum o f R u ( O E P ) ( C l )  111.14  Mass Spectrum o f R u ( 0 E P ) ( X ) Complexes .  2  2  2  X  45 46 47  H NMR Spectrum o f Ru(OEP)(SbF )(THF) i n 6  CDC1 111.16  51  3  Plot o f the Signal Intensity vs the delay D2 t o C a l c u l a t e  V a l u e s f o r Ru  (OEP) (SbF ) (THF)  54  6  111.17  C u r i e P l o t f o r Ru(OEP)(SbF )(THF) 6  for  the Temperature Range -50 t o +50 °C  111.19  34  C u r i e P l o t f o r R u ( O E P ) ( B r ) i n t h e Tempe r a t u r e Range -50 t o +50 °C  111.18  37  The Three P o s s i b l e d - o r b i t a l Occupancies of R u , d  111.15  31  1  9  . .  F NMR Spectrum o f Ru(OEP)(SbF )(THF) . 6  57 58  EPR Spectrum o f Ru(OEP)(SbF )(THF) i n 6  1:1 THF: Toluene  59  111.20  O p t i c a l Spectrum o f Ru(OEP)(SbF )(THF)  111.21  Mass Spectrum o f Ru(OEP)(SbF )(THF)  6  g  viii  .  61  . .  62  III.22  N u j o l M u l l I n f r a r e d Spectrum of Ru(OEP) (SbF ) (THF)  64  6  AI.l  *H NMR  AI.2  O p t i c a l Spectrum of [Ru(OEP)Br] 0  Spectrum o f [Ru(OEP)Br] 0 . . . . 2  2  ix  . . .  78 79  L i s t o f A b b r e v i a t i o n s and Symbols  atm  atmosphere  br  broad  CHC1  3  chloroform  CH Cl2  dichloromethane  CH CN  acetonitrile  C  benzene  2  3  H  6 6  cm"  1  wavenumber  °C  degrees c e n t i g r a d e  CO  carbon monoxide  D  deuterium  d  doublet  EtO  ethoxide  EtOH  ethanol  eV  electron  FT  Fourier  GHZ  gigahertz  HBr  hydrogen  bromide  HC1  hydrogen  chloride  *H  proton  K  degrees K e l v i n  m  multiplet  mCPBA  meta-chloroperbenzoic  MeOH  methanol  mg  milligram  mL  millilitres  1  volt transform  X  acid  mm  millimeters  ms  milliseconds  mW  milliwatt  nm  nanometer  OEP  octaethylporphyrin  PhIO  iodosylbenzene  porp  porphyrin  PPh PR  3  dianion  triphenylphosphine trialkylphosphine  3  ppm  parts per m i l l i o n  py  pyridine  Ru  ruthenium  s  singlet  SbF  dianion  6  hexafluoroantimonate(V)  t  triplet  THF  tetrahydrofuran  TMP  tetramesitylporphyrin  TMS  tetramethylsilane  anion  dianion  spin l a t t i c e relaxation TPP  tetraphenylporphyrin  jj[ ff  magnetic moment  e  \) \  m  X  a  dianion  infrared x  frequency  a b s o r p t i o n maximum magnetic s u s c e p t i b i l i t y  xi  Acknowledgements  I would l i k e t o thank Drs. B.R. James and D. D o l p h i n f o r t h e i r p a t i e n c e and support when each was needed and f o r showing me t h a t c h e m i s t r y i s not e v e r y t h i n g i n l i f e !  I also wish  t o thank Dr. F. Aubke and Dr. M. Camenzind f o r many i n t e r e s t ing  d i s c u s s i o n s on f l u o r i n e c h e m i s t r y and g e n e r a l  t h e o r e t i c a l / p r a c t i c a l chemistry, r e s p e c t i v e l y ; and l a s t l y , my w i f e f o r h e r enduring l o v e and support.  xii  Chapter I ; INTRODUCTION  The  i n s e r t i o n o f ruthenium i n t o the p o r p h y r i n core  t r i r u t h e n i u m dodecacarbonyl c a r b o n y l complex  1  with  ( R u ( C O ) ) r e s u l t s i n a metal3  1 2  11  o f the type R u ( p o r p h y r i n ) C O which, be2  cause o f t h e u s u a l s y n e r g i c Ru-CO bonding , e f f e c t i v e l y  ties  up one a x i a l l i g a t i o n p o s i t i o n . Consequently, t h e e a r l y research  3  i n ruthenium p o r p h y r i n chemistry  focused  l i g a n d t r a n s t o t h e CO s i n c e t h e t r a n s e f f e c t l i g a n d a t t h i s p o s i t i o n . The p o r p h y r i n s n a t u r a l l y occurring porphyrins v i n y l groups, see F i g u r e 1.1)  4  on t h e  l a b i l i s e s the  used were n o t t h e  (which may c o n t a i n r e a c t i v e but i n s t e a d were t h e e a s i l y  s y n t h e s i s e d , h i g h l y symmetric macrocycles o c t a e t h y l p o r p h y r i n (H OEP), t e t r a p h e n y l p o r p h y r i n  6  2  tetramesitylporphyrin t h e i r h i g h symmetry  7  5  (H TPP), and 2  (H TMP); these systems, because o f 2  (see F i g u r e  1.2),  simplified  charac-  t e r i s a t i o n by s p e c t r o s c o p i c methods. There a r e two known methods f o r t h e d e c a r b o n y l a t i o n o f Ru(porphyrin)CO complexes: p h o t o l y s i s o f the CO p r e c u r s o r i n donor s o l v e n t s such as p y r i d i n e , a c e t o n i t r i l e o r t e t r a h y d r o furan leads t o R u ( p o r p ) ( s o l v e n t )  8 2  complexes t h a t a r e  p r i m a r i l y used as s t a r t i n g m a t e r i a l s f o r other systems; o r a l t e r n a t i v e l y , t h e a d d i t i o n o f t e r t i a r y phosphines (PR ) t o 3  the CO complex can form R u ( p o r p ) ( P R ) 3  some R u ( p o r p ) ( P R ) 3  2  2  complexes.  9 - 1 1  While  s p e c i e s e x h i b i t the a b i l i t y t o decarbony1  CH=CH  CH. 2  H  CH=CH.  ( C H  F i g u r e 1.1:  2  )  2  C O O H  H  ( C H ^  C O O H  The heme u n i t o f n a t u r a l l y o c c u r r i n g proteins  hemo-  ( p r o t o p o r p h y r i n IX d i c a r b o x y l i c  2  acid)  l a t e aldehydes c a t a l y t i c a l l y ,  1 2  '  1 3  Ru  ( o b t a i n e d by t r e a t i n g R u ( O E P ) ( P P h ) 3  2  1 1 1  (OEP)(PPh )(Br) 3  with H B r / a i r ) ,  o x i d i s e d w i t h excess m e t a - c h l o r o p e r b e n z o i c a c i d iodosylbenzene  7T-cation r a d i c a l Ii:[  when  (mCPBA) o r  (PhIO), forms a h i g h l y o x i d i s e d , monomeric  complex c o n t a i n i n g a metal-oxo  Ru  1 4  s p e c i e s formulated as t h e  [0=Ru (OEP 7 T - c a t i o n r a d i c a l ) ]Br. Both IV  IV  ( O E P ) (PPh ) (Br) and [0=Ru (OEP+.) ]Br  1  5  3  '  1  6  i n the  presence o f mCPBA o r PhIO were found t o a c t i v a t e t h e C-H bonds o f o r g a n i c s u b s t r a t e s r e s u l t i n g i n c a t a l y t i c As documented i n Appendix  oxidation.  A.I o f t h i s t h e s i s , a l l attempts i n  t h i s p r e s e n t study t o i s o l a t e t h e R u p l e x l e d t o a mixture o f R u  I V  I V  TT-cation r a d i c a l com-  p-oxo b r i d g e d "dimers" and  t r i p h e n y l p h o s p h i n e oxide (0=PPh ) formed by o x i d a t i o n o f the 3  liberated  PPh : 3  excess mCPBA 2Ru  II]C  (0EP) (PPh )Br  r"j  Br—Ru  3  U  or PhIO  (  I V  t  i  j~J —0—Ru  I V  U  ) = OEP"  —Br  + 2 0=PPh  2  Appendix  A.I a l s o documents t h e o x i d a t i o n o f t h e Ru(OEP)  (CH CN)  complex u s i n g excess mCPBA. A t e i t h e r ambient  3  2  or low (-60°C) temperatures, dimers,  3  (19°C)  t h e primary p r o d u c t s were u-oxo  i n d i c a t i n g t h a t t h e dimers a r e extremely  "thermodynamic" s i n k s f o r Ru(OEP) c h e m i s t r y .  3  1 7  stable  R  R  R R = CH CH , R'= 2  3  R = H, R*= R = H, R'=  phenyl  R H  :octaethylporphyrin :tetraphenylporphyrin  2,4,6-trimethylbenzyl  (or m e s i t y l e n e ) :  tetramesitylporphyrin  F i g u r e 1.2: H i g h l y symmetric s y n t h e t i c p o r p h y r i n s used i n r e s e a r c h with model complexes.  4  I t was apparent  t h a t t h e formation o f a h i g h o x i d a t i o n s t a t e  complex would be g r e a t l y a s s i s t e d by t h e f o r m a t i o n o f a Ru I I I p r e c u r s o r which c o n t a i n e d no o x i d i s a b l e l i g a n d s t h a t might i n t e r f e r e i n t h e subsequent p u r i f i c a t i o n o f any new h i g h v a l e n t Ru(OEP) complexes. Although  t h e chemistry o f  Ru(OEP) has expanded g r e a t l y from t h e i n i t i a l  work on t h e C0-  complexes, r e l a t i v e l y l i t t l e r e s e a r c h on l i g a n d systems other than those noted above has been c a r r i e d out u n t i l r e c e n t l y . Collman e t a l . have p u b l i s h e d i n t h e p a s t two y e a r s t h e preparation o f Ru  III:  ( O E P ) (EtO) (EtOH) and s e v e r a l new  Ru(OEP)(R)(R') compounds (where R=R'= alkyl,R=vacant carbene o r c a r b o x y l a t e )  1 7 - 1 9  w i t h R'=  v i a a n o v e l K [Ru°(porp)] 2  complex. Some o f t h e t r a n s f o r m a t i o n s i n d i c a t e t h a t new and e x c i t i n g o r g a n o m e t a l l i c chemistry i s p o s s i b l e a t ruthenium p o r p h y r i n c e n t r e s . A l s o , Groves and Quinn have r e c e n t l y publ i s h e d the preparation of R u ( T M P ) ( 0 ) V I  and noted  2 0 2  (a di-oxo complex)  i t s a b i l i t y to oxidise olefins to epoxides.  2 1  In  l i g h t o f these developments, i t was hoped t h a t t h e a v a i l a b i l i t y of a Ru for  I3:i  ( 0 E P ) X complex (X=halide)  would allow  f u r t h e r study o f t h e a c t i v a t i o n o f C-H bonds i n o r g a n i c  s u b s t r a t e s by ruthenium p o r p h y r i n s . Collman e t a l . covered an e x c e l l e n t R u  1 1  2  2  dis-  p r e c u r s o r t h a t was o b t a i n e d by the  1 1  vacuum p y r o l y s i s o f R u ( O E P ) ( p y ) . T h i s n o v e l compound, 2  [Ru(0EP)] , had no a x i a l l i g a n d s and was found t o be d i m e r i c : 2  u  D )= OEP -2  0 5  The work d e s c r i b e d i n t h i s t h e s i s shows t h a t upon o x i d a t i o n IV  of the dimer, n o v e l R u ( O E P ) X  (X= Br, CI) complexes are  2  formed i n s t e a d of the hoped f o r R u these R u  I V  I I I  ( O E P ) X complex. Although  complexes d i d not c a t a l y s e the o x i d a t i o n o f o r -  g a n i c s u b s t r a t e s , they d i d l e a d t o the s y n t h e s i s o f many ruthenium p o r p h y r i n c o m p l e x e s . t e r i s a t i o n of these new  23  The  chemistry  and  charac-  compounds and t h e i r c o n v e r s i o n  o t h e r compounds w i l l be d i s c u s s e d i n t h i s  6  thesis.  new  into  References  1. Fleischer,E.B.;Thorp,R.;Venerables,D.,J.Chem.Soc., Chem.Commun.,1969.475. 2. Collman,J.P.;Hegedus,L.S..Principles and A p p l i c a t i o n s o f O r a a n o t r a n s i t i o n Metal C h e m i s t r y . U n i v e r s i t y S c i e n c e Books, Mill  Valley,California,1980,p.29.  3(a).Eaton,S.S.;Eaton,G.R.,Inorg.Chem.,16,72(1977).(b)Faller, J.W.;Chen,C.C.;Malerich,C.J.,J.Inorg.Biochem.,11,151(1979). (c)Eaton,G.R.;Eaton,S.S.,J.Am.Chem.Soc.,97,235(1975). 4. Cotton,F.A.;Wilkinson,G..Advanced Comprehensive  I n o r g a n i c Chemistry: A  T e x t . 4 — ed.,Wiley Interscience,New  York,1980,p.1199. 5.  Paine,J.B.,III;Dolphin,D.,J.Org.Chem.,41,3857(1976).  6. Adler,A.D.;Longo,F.R.;Finarelli,J.D.;Goldmacher,J.;Assour, J.;Korsakoff,L.,J.Org.Chem.,32,476(1967). 7. Groves,J.T.;Nemo,T.E.,J.Am.Chem.Soc.,105,6243(1983). 8. Antipas,A.;Buchler,J.W.;Gouterman,M.;Smith,.P.D.,J.Am.Chem. SOC.,100,3015(1978). 9. James,B.R.;Mikkelsen,S,R.;Leung,T.W.;Williams,G.M.;Wong,R., Inorg.Chim.Acta,85,209(1984). 10. Barley,M.;Dolphin,D.;James,B.R.;Kirmaier,C.;Holten,D.,J. Am.Chem.Soc.,106,3937(1984) . 11.  Ariel,S.;Dolphin,D.;Domazetis,G.;James,B.R.;Leung,T.W.;  Rettig,S.;Trotter,J.;Williams,G.,Can.J.Chem.,62,755(1984). 12. Domazetis,G.;Tarpey,B.;Dolphin,D.;James,B.R.,J.Chem.Soc.,  7  Chem.Commun.,939(1980). 13. Domazetis,G.;James, B. R.;Tarpey,B.;Dolphin,D..ACS Ser..152 f C a t a l . A c t . C a r b o n  Symposium  Monoxide).1981,p.243.  14. James,B.R.;Dolphin,D.;Leung,T.W.;Einstein,F.W.B.;Will i s , A.C.,Can.J.Chem.,62,123 8(1984). 15.  Dolphin.D.;James,B.R.;Leung,T.W.,Inorg.Chim.Acta,  79,25(1983) . 16.  Leung,T.W.;James,B.R.;Dolphin,D.,Inorg.Chim.Acta,  79,180(1983). 17. Collman,J.P.;Barnes,C.E.;Brothers,P.J.;Collins,T.J.;0zawa, T.;Ga1lucei,J.A.;Ibers,J.A.,J.Am.Chem.Soc..106.5151(1984). 18. Collman,J.P.;Brothers,P.J.;McElwee-White,L.;Rose,E.; Wright,L.J.,J.Am.Chem.Soc.,107,4570(1985). 19. Collman,J.P.;Brothers,P.J.;McElwee-White,L.;Rose,E., J.Am.Chem.Soc..107.6110(1985). 20. Groves, J.T. ;Quinn,R. ,Inorg.Chem. ,23., 3844 (1984) . 21.  Groves,J.T.;Quinn,R.,J.Am.Chem.Soc.,107,5790(1985).  22. Collman,J.P.;Barnes,C.E.;Swepston,P.N.;Ibers,J.A.,J.Am. Chem.Soc.,106,3 500(1984). 2  3.Sishta,C.;Ke,M.;James,B.R.;Dolphin,D.,J.Chem.Soc.,Chem. Commun.,787 (1986).  8  Chapter I I : EXPERIMENTAL.  A. Reagents and S o l v e n t s . Tetrahydrofuran nitrile  ( B D H , a n a l y t i c a l reagent g r a d e ) , a c e t o -  (Eastman,spectroscopic grade) and  dichloromethane  ( F i s h e r , r e a g e n t grade) were r e f l u x e d under argon over c a l c i u m hydride  ( F i s h e r , p u r i f i e d grade) p r i o r t o f r e s h l y  i n t o storage f l a s k s .  Toluene  distilling  ( F i s h e r , reagent grade) and  hexanes (BDH,Omnisolv grade) were a l s o d i s t i l l e d  from c a l c i u m  h y d r i d e p r i o r t o use. A l l the above s o l v e n t s were s t o r e d m o l e c u l a r s i e v e s (MCB,4A p e l l e t s ) and THF was dark t o p r e v e n t p e r o x i d e p r o d u c t s from forming  over  s t o r e d i n the ( a l l the above  s o l v e n t s were used without t e s t i n g f u r t h e r f o r p u r i t y ) . Pyridine  (BDH,reagent grade) and benzene  (Fisher,ACS  grade) were s t o r e d over a c t i v a t e d m o l e c u l a r s i e v e s without any p r e v i o u s p u r i f i c a t i o n . Methanol ethanol  ( F i s h e r , r e a g e n t grade) were used as o b t a i n e d .  Deuterated s o l v e n t s f o r NMR c i a l treatment: benzene-dg dichloromethane-d tilled  (BDH,Omnisolv grade) and  2  (MSD  s t u d i e s were a l s o g i v e n spe-  (SCI Isotopes,99.5%  Isotopes,99.8%  D)  and  D) were vacuum d i s -  i n t o a n a e r o b i c sample s t o r a g e b o t t l e s i n which ac-  t i v a t e d m o l e c u l a r s i e v e s had been p r e v i o u s l y p r e p a r e d . NMR  s o l v e n t s were freeze-pump-thawed t h r i c e p r i o r t o use t o  remove any a i r o r h i g h l y v o l a t i l e i m p u r i t i e s . The used  The  apparatus  f o r vacuum t r a n s f e r o f s o l v e n t s and reagents i s shown i n  9  TO VACUUM LINE (B-19 SOCKET)  VorihQ'-TPTgy  ACTIVATED MOLECULAR SIEVES  1  F i g u r e I I . i : Apparatus used f o r the t r a n s f e r o f s o l v e n t s and reagents under anaerobic  10  conditions.  F i g u r e I I . 1 . Methanol-d form-d-^ (MSD  Isotopes,  (KOR  4  99.8%  T r i p h e n y l p h o s p h i n e was sodium e t h o x i d e was  obtained  D)  Isotopes, 99.5%  and  chloro  D) were "used as  obtained.  s u p p l i e d from MCB  Chemical  Co.  from A l d r i c h Chemical Co.  and  both were used as s u p p l i e d . Sodium d i t h i o n i t e was  used as i  t a i n e d i n i t s p u r i f i e d grade from J.T.Baker Chemical Ruthenium t r i c h l o r i d e t r i h y d r a t e was Johnson Matthey L i m i t e d  and  Co.  s u p p l i e d on l o a n  octaethylporphyrin  was  by  kindly  s u p p l i e d by Dr. T i l a k W i j e s e k e r a . Argon was  supplied  from Linde and, when needed f o r  r i g o r o u s c o n d i t i o n s , p u r i f i e d by p a s s i n g an a c t i v a t e d m o l e c u l a r s i e v e column and  sucessively  a Redox c a t a l y s t  column ( F i s h e r S c i e n t i f i c ) t o remove moisture and r e s p e c t i v e l y . Carbon monoxide was and  used as o b t a i n e d .  Matheson and Chemical Co.  Nitrous  grade by L i n d e . used as  The  also supplied  Anhydrous HBr^gj was  t e c h n i c a l grade H C l ^ oxide was  was  oxygen,  from  obtained  s u p p l i e d by  s u p p l i e d as the  hydrogen h a l i d e and  throu  N0 2  Lind from BDH  purified  gases were  supplied.  B. P h y s i c a l Measurements.  O p t i c a l s p e c t r a were obtained photometer w i t h 0.1,0.5 and  10 mm  A n a e r o b i c s p e c t r a were recorded  using  a Cary 17D  pathlength  quartz  u s i n g an a n a e r o b i c  spectrcells. spectro  5 mm  TEFLON STOPCOCK  (CAPPED  B-14  CONE  WHEN  IN USE)  • QUARTZ C E L L WINDOW  Figure  I I . 2 : An a n a e r o b i c o p t i c a l  12  cell  photometer c e l l  (see F i g u r e I I . 2 ) . A l l i n f r a r e d s p e c t r a un-  l e s s i n d i c a t e d otherwise were obtained u s i n g a N i c o l e t 5 DX-FT spectrometer  utilising  i n a l l cases cesium  N u j o l . N u c l e a r magnetic resonance V a r i a n XL-300 FT spectrometer.  i o d i d e windows and  s p e c t r a were o b t a i n e d on a  E l e c t r o n paramagnetic  resonance  measurements were made on a V a r i a n E3 spectrometer  utilising  a l i q u i d n i t r o g e n Dewar f o r low temperature  (77°K)  s p e c t r a . Anaerobic EPR and NMR s p e c t r a were o b t a i n e d u s i n g a n a e r o b i c c e l l s s i m i l a r t o t h a t shown i n F i g u r e 11.2. A Kratos-AEI impact  MS902 mass spectrometer  operating i n the electron  (70 eV), d i r e c t i n s e r t i o n mode a t 200-300°C source  temperatures  was used  were performed  f o r mass s p e c t r a l d a t a . M i c r o a n a l y s e s  by P e t e r Borda o f t h i s department.  Magnetic  s u s c e p t i b i l i t i e s were measured u s i n g Evans' method, b e i n g r e c o r d e d on an XL-300 NMR spectrometer.  1  the d a t a  E q u i v a l e n t con-  d u c t i v i t y measurements were made i n CH3CN, CH C1 , o r CHC1 2  using a c e l l with a c e l l constant  (K)  2  o f 1.0 cm"  3  1  and a RCM  15B1 C o n d u c t i v i t y b r i d g e from t h e A r t h u r H. Thomas Company. The r e s i s t a n c e o f t h e a p p r o p r i a t e samples were measured and converted t o c o n d u c t i v i t y u s i n g :  2  3  3  K x 1 0 ( c o n v e r s i o n f a c t o r L-^cm ) Conductivity =  1  •  1  • .  •  • »  c o n c e n t r a t i o n of s o l u t i o n x measured r e s i s t a n c e  High p r e s s u r e chemistry was c a r r i e d out u s i n g a B a s k e r v i l l e  13  and L i n d s a y High P r e s s u r e Hydrogenation a u t o c l a v e .  C. P r e p a r a t i o n of Ruthenium Complexes.  Dodecacarbonyltriruthenium(O) ( 1 ) .  T h i s s t a r t i n g m a t e r i a l was  prepared i n e a r l i e r  a t a y i e l d o f 40% u s i n g Mantovani's dure based on Bruce's method and methanol (200 mL)  4  was  method,  3  studies  but a new  proce-  developed. R u C l . 3 H 0 (3 g) 3  2  were p l a c e d i n t o a h i g h - p r e s s u r e c  a u t o c l a v e and s t i r r e d a t 150°C under 70 atm o f 0 ( g ) f o r twenty-four hours. The r e a c t i o n mixture was v e n t e d and t e r e d t o y i e l d crude R u ( C O ) . The f i l t r a t e was 3  1 2  fil-  then r e -  p l a c e d i n t o the a u t o c l a v e w i t h y e t another 3 g o f R u C l . 3 H 0 3  2  and r e p r e s s u r i z e d under the c o n d i t i o n s d e s c r i b e d p r e v i o u s l y . T h i s p r o c e s s was was  continued u n t i l a l l a v a i l a b l e  exhausted. The crude R u ( C O ) 3  1 2  was  trichloride  p u r i f i e d by  extraction  i n t o hexanes u s i n g a S o x h l e t apparatus and, upon c o o l i n g t o -20 °C o v e r n i g h t , b r i g h t y e l l o w i s h c r y s t a l s were o b t a i n e d which were f i l t e r e d and a i r d r i e d  "Mco)™  2058  '  ~'  2 0 2 0 a n d 1 9 9 5 cm  1  14  (80% y i e l d ) .  C a r b o n v l ( e t h a n o l ) ( o c t a e t h y l p o r p h y r i n a t o ) r u t h e n i u m ( I I ) (2).  T h i s p r e c u r s o r was made a c c o r d i n g t o t h e method developed by B a r l e y e t a l . (C0)~  V  1  9  2  2  c  n  "  1  5  -  Bis(triphenylphosphine)(octaethylporphyrinato)ruthenium(II) (3) .  T h i s complex was  a l s o prepared by a l i t e r a t u r e method.  6  A n a l y s i s C H N P R u ( 1 1 5 8 g/mole),calculated:C=74.65, 7 2  7 4  4  2  H=6.4 6,N=4.85% ;found:C=74.73,H=6.50,N=4.85%. NMR(C D ,anaerobic): 6  o-H;  6  1.70(t), CH ;  3.68(g), CH ;  3  2  4.20(d),  6.2-6.8(m), m-,p-H; 9.16(s), meso-H.  (4 1 .  (Triphenylphosphine)(octaethylporphyrinato)ruthenium(II) 200°C,2 Ru  1 1  5  h,lxl0" torr  (OEP) (PPh ) 3  •  2  Ru  1 1  (OEP) (PPh ) 3  +  (PPh ) 3  A f a r s i m p l e r method t o prepare t h i s compound than t h a t 7  p u b l i s h e d by James e t a l . i s v i a p y r o l y s i s o f the b i s phosphine complex  (3). Ru(OFP)(PPh )  p l a c e d i n t o a 10 mm l i n e attachment  3  2  (100 mg,0.1 mmoles) w a s  diameter t e s t tube which has a vacuum  (see F i g u r e I I . 3 ) . By use of an engraver, t h e  p a r t i c l e s which adhered t o the w a l l s were a g i t a t e d t o the  15  TEMPERATURE CONTROLLING THERMOMETER  TO TEMPERATURE CONTROLLER  . B-14 CONE (TO VACUUM LINE)  ^  5 mm GLASS VALVE  B^14 CONE/SOCKET  GLASS REACTION FLASK TEMPERATURE CONTROLLING OVEN  POWER SUPPLY TEMPERATURE SET DIAL Figure I I . 3 :  T e m p e r a t u r e - c o n t r o l l i n g oven apparatus f o r t h e vacuum p y r o l y s i s o f Ru(OEP) complexes.  16  bottom o f the tube. The p u r p l e powder was then heated a t 200°C a t l x l O "  5  t o r r vacuum f o r two hours u s i n g a temperature  c o n t r o l l i n g tube oven  (Kugelrohr oven from B u c h i ) .  The  l i b e r a t e d t r i p h e n y l p h o s p h i n e appears as a white r e s i d u e at the mouth o f the.oven and the f i v e - c o o r d i n a t e phosphine comp l e x remains a t the bottom of the tube. (95% y i e l d ) . Analysis for  C H N PRu(896g/mole),calculated:C=72.40, 54  59  4  H=6.59,N=6.2 6%;found:C=72.49,H=6,70,N=6.13%. NKR(C D ,anaerobic): 6  o-H;  6  6.4 5(m), m-H;  2.02  ppm(t), CH ; 3  6.68(d), p-H;  9.50,  3 . 9 2 ( g ) ,  CH ; 2  4.45(d),  meso-H.  +  +  MS(70 ev E I ) : 895 m/e,Ru(OEP)(PPh ) ; 634,Ru(OEP) , 3  +  262,PPh . 3  Bromo(triphenylphosphine^ ( o c t a e t h y l p o r p h y r i n a t o ) ruthenium f l i p  (5). CH C1 2  Ru  1 1  (OEP) (PPh ) 3  + HBr/0  •  2  2  Ru  1 1 1  (OEP) (PPh ) Br + HO* 3  An improvement over a p r e v i o u s method r e p o r t e d compound i s the use of the monophosphine complex of the b i s p h o s p h i n e complex  2  6  for this  (4) i n s t e a d  ( 2 ) ; t h i s avoids separation  of t h e o x i d i s e d phosphine formed d u r i n g the r e a c t i o n . A 10 mL s o l u t i o n , made by b u b b l i n g anhydrous HBr^gj t o s a t u r a t i o n i n t o C H C 1 , was 2  2  added t o 100 mg  (0.1 mmoles) o f (4.) under  i n e r t c o n d i t i o n s v i a vacuum t r a n s f e r . A f t e r exposure t o the r e a c t i o n mixture was  c o o l e d t o i c e - b a t h temperature,  17  air, and  c o l d hexanes added t o p r e c i p i t a t e t h e p r o d u c t . The p r e c i p i t a t e was then r e c r y s t a l l i s e d twice  from  CH Cl -hexanes 2  2  t o y i e l d a r e d d i s h powder (95% y i e l d ) . A n a l y s i s f o r C H N RuPBr(975g/mole),calculated:C=66.53, 54  5g  4  H=6.06,N=5.75,Br=8.11%,found:C=66.3 3,H=6.24,N=5.49,Br=7.8 5%.  Bis(pyridine)(octaethvlporphyrinato)ruthenium(II)  (6).  hv,24 h , A r 11  Ru (OEP)(CO)(EtOH) +  2  Py  «  Ru  1 1  (OEP) (Py)  2  +  CO + EtOH  T h i s compound was prepared a c c o r d i n g l i s h e d by A n t i p a s diagrammed  et a l .  i n Figure  lamp w i t h a quartz photolysis(90%  using the p h o t o l y s i s  pub-  cell  I I . 4 . A Hanovia 450 Watt mercury vapor  water-cooler  j a c k e t was used f o r t h e  yield).  NMR(C D , a n a e r o b i c ) : 6  8  t o t h e method  6  2.03 ppm(t),CH ; 2.26(d),m-H; 3  3.97(q),CH ; 4.17(m),o-H;  4.33(d),p-H;  2  9.74(s),meso-H.  A n a l y s i s f o r C H N Ru(791g/mole),calculated:C=69.79,H=6.83, 46  54  g  N=10.62%;found:C=69.39,H=6.83,N=10.72%.  Bis(acetonitrile)(octaethylporphyrinato)ruthenium(II) ( 7 ) . 1W,24 h , A r Ru  1 1  (OEP) (CO) (EtOH) + 2 C H C N 3  Ru  1 1  (OEP) ( C H C N ) 3  2  +  CO + EtOH  T h i s complex was prepared u s i n g a p h o t o l y s i s procedure  18  (see p r e p a r a t i o n o f 6) adapted from t h a t used by Walker. Ru(OEP)(CO)(EtOH) (130 mg,0.2 mmoles) was p l a c e d i n a t e s t tube and  CH3CN (10 mL) added. Although t h e CO complex does  not f u l l y d i s s o l v e , the p h o t o l y s i s causes t h e a c e t o n i t r i l e t c r e f l u x and thus d i s s o l v e  the s t a r t i n g material. A f t e r  p h o t o l y s i s f o r 12 hours under argon, t h e s o l u t i o n was s l o w l y c o o l e d t o room temperature under a purge o f argon and t h e product  p r e c i p i t a t e d as l a r g e , shiny p u r p l e c r y s t a l s . These  were f i l t e r e d under argon, washed with a c e t o n i t r i l e and d r i e d on a vacuum l i n e a t room temperature a t an 80% y i e l d .  This  method r e s u l t s i n the presence of a s m a l l amount (5%) of the CO complex. Samples s u i t a b l e f o r m i c r o a n a l y s i s and f u t u r e Xray c r y s t a l s t r u c t u r e d e t e r m i n a t i o n dry, a n a e r o b i c [Ru(0EP)]  CH3CN (2 mL) t o samples o f t h e dimer  (10 mg,0.008 mmoles)  2  were obtained by adding  under anaerobic, vacuum  c o n d i t i o n s . The s o l u t i o n was then r e f l u x e d under vacuum and c o o l e d s l o w l y o v e r n i g h t t o p r e c i p i t a t e l a r g e , shiny  purple  c r y s t a l s which were f i l t e r e d , d r i e d under vacuum a t room temp e r a t u r e and s t o r e d under D(C N) =  =  2  2  6  0  H (g)2  1  cm" .  NMR(CD C1 , a n a e r o b i c ) : -2.70 ppm(s),CH3CN; 1 . 9 5 ( t ) , C H ; 2  2  3.98(q),CH  3  2  ; 9.96(s),meso-H.  A n a l y s i s f o r C 4 H N R u (7l6g/mole) , c a l c u l a t e d : C=63 . 69 , H=6. 98 , t)  50  6  N=11.73%;found:C=63.82,H=7.11,N=11.80%.  19  COOLING WATER IN  COOLING WATER OUT  ARGON GAS OUTLET  ARGON GAS INLET  GLASS REACTION FLASK  WATER JACKET FOR COOLING  MERCURY VAPOR LAMP  F i g u r e I I . 4 : Apparatus f o r p h o t o l y s i s o f Ru(OEP) complexes,  20  B i s r (octaethvlporphvrir.ato) ruthenium(II) 1  h,lxl0~ torr  200°c,2 2 Ru  This to  1 1  5  (OEP) (Py)  ^  2  dimeric  t h e method  c o m p l e x was  6  prepared  of Collman e t  NMR(C D ,anaerobic):  3.52  6  . (8) .  al.  1  0  [Ru  I 3 :  (OEP)]  from complex  6  + 4 Py  2  according  .  ppm(t),CH ; 3  10.22(s),meso-H;11.2l  (n),CH ;  26.13(m),CH .  Analysis  f o r C H NgRu (1268g/mole),calculated:C=68.14,  2  2  7 2  8 8  2  H=6.94,N=8.83 %;found:C=68.4 9,H=7.01,N=8.91%.  Dibrono{octaethvlporphvrinato)ruthenium(IV)  1/2  [Ru  To  1 1  (OEP)]  HBr/Br *  *  see chapter  anhydrous HBr^gj  vacuum t r a n s f e r . cooled  to ice-bath  precipitate  small  recrystallised room X-ray  The  I V  ^  2  Ru (OEP) (Br)  of a s o l u t i o n ,  to saturation  2  crystals  diffusion aerobic Analysis  structure  of n-pentane  conditions  hexanes  s a m p l e was  t e m p e r a t u r e u n d e r vacuum. L a r g e c r y s t a l s crystal  addeu  added  w h i c h were f i l t e r e d  f r o m C H C 1 / h e x a n e s . The 2  2  then exposed t o t h e  t e m p e r a t u r e , and c o l d  2  KBr  made by  i n C H C 1 , was  r e d s o l u t i o n was  reddish  +  2  IV  r  air, to  +  8. (100 mg 0.08 mmoles) , 10 mL  bubbling via  2  (9).  dried at  suitable  f o r ar,  d e t e r m i n a t i o n were grown u s i n g  vapcur  into  (90%  CHC1  3  solutions  of  (9) under  yield).  f o r C H N.RuBr (791g/mole),calculated:C=54.55, 3 6  4 4  and  2  21  H=5.56,N=7.08,Br=2 0.08%;found:C=54.35,H=5.70,N=7.00,Br=2 0.091 EPR s i g n a l s were unobserved a t ambient o r low(77 K) temperatures i n 1:1 t o l u e n e .'dichloromethane. NMR(CDC1 ,aerobic,19 3  ° C ) : 60.lppm(broad),CH (16);7.10(br), 2  CH (24);3.90(br),meso-H(4). 3  Magnetic s u s c e p t i b i l i t y : / i f f = 2-5 B.M. u s i n g 2% t - b u t y l e  alcohol i n CH C1 . 2  2  +  MS( E I , 70eV,280°C): 1268 m / e , [ R u ( O E P ) ] ; 2  +  634,Ru(OEP) ;  +  80,HBr . 1  1  C o n d u c t i v i t y ( a t 20 ° C ) : 0.5(CH C1 ) and 12(CH CN) ohm~ M" cm. 2  UV/VIS(CH C1 ,aerobic):360 2  2  3  nm,sh(log € =4.75),398,Soret(4.90);  2  505(4.23); 535(4.16).  Dichlorofoctaethylporphyrinato)ruthenium(IV) f l O ) .  T h i s compound was prepared u s i n g the method d e s c r i b e d f o r t h e dibromo analogue but u s i n g HCl^gj i n p l a c e o f HBr^g^ (90%  yield).  Analysis f o r C H N RuCl (703g/mole),calculated:C=61.23, 36  44  4  2  H=6.24,N=7.94,Cl=10.07%;found:C=60.98,H=6.17,N=7.83,Cl=9.88%. EPR s i g n a l s were unobserved a t ambient o r low(77 K) temperatures in  1:1 toluene:dichloromethane s o l u t i o n s .  NMR(CDC1 ,aerobic,19 3  ° C ) : 57.2 ppm,CH (16); 2  8.00,meso-H(4);  6.44,CH (24). 3  Magnetic s u s c e p t i b i l i t y : f l f f e  22  2.6 B.M. u s i n g 5% t - b u t y l  alcohol  i n dichloromethane.  MS(EI,70  +  eV,300°C): 1268  +  m / e , [ R u ( O E P ) ] ; 634,Ru(OEP) . 2  1  C o n d u c t i v i t y ( a t 20°C): 0.7  1  ohm~ M" cm(CH C1 ); 14 2  ohm"  2  1  -1  M cm(CH CN). 3  UV/VIS(CH C1 ,aerobic): 2  i d e n t i c a l t o t h a t of t h e  2  dibromide  analogue.  Tetrahydrofuran(hexafluoroantimonate(V) ) (octaethylporphyrinato)  ruthenium(III)  IV  Ru (0EP) ( C l )  2  (11).  + AgSbF  6  + THF  ^» Ru +  I I J  ( 0 E P ) (SbF ) ( T H F )  1/2  6  Cl  2  + AgCl*  * see Chapter IV In a Schlenk f l a s k , 10 hexafluoroantimonate(V) dry, degassed THF  (100 mg,0.13 mmoles) and  (86 mg,0.25 mmoles) were d i s s o l v e d i n  (50 mL).  The r e s u l t i n g r e d s u s p e n s i o n v a s  s t i r r e d under dry argon f o r t h i r t y minutes  and then  through a Schlenk f i l t e r t o remove the suspended products  (presumably A g C l ) . n-Pentanes (100 mL)  cannulated  silver  filtered  reaction were then  i n t o the f i l t r a t e with s t i r r i n g t o p r e c i p i t a t e t h e  p r o d u c t as a brown powder. T h i s was THF/n-pentanes  r e c r y s t a l l i z e d twice fror,  and d r i e d under vacuo a t 80°C f o r s i x hours  (90% y i e l d ) . Analysis for  C H N RuSbF O(941g/mole),calculated:C=51.06, 40  52  4  6  H=5.53,N=5.95%;found:C=51.19,H=5.65,N=5.87%. NMR (CDCl-j, a n a e r o b i c , 19 °C):17.5 ppm, CH  23  2  (8) ; 6. 24 ,meso-H (4 ) ;  3.80,CH (S;;2.00,THF(4);1.89,CH (24); 2  3  EPR s i g n a l s were u n o b s e r v e d 77  K,g =2.3  and  -1.05,THF(4).  a t room t e m p e r a t u r e b u t a t  g =2.8 were m e a s u r e d u s i n g  an 1:1  THF  (I  toluene,  anaerobic s o l u t i o n .  Conductivity(at  2 0 ° C ) : 9.0  1  1  ohm" M~ cm i n C H C l . 3  UV/VIS(CHC1 ,anaerobic)t386  S o r e t ( l o g £ =4.94);501(4  3  528 ( 4 . 0 1 ) .  24  References  1. Evans,D.F.,J.Chem.Soc.,1959,2003. 2. A t k i n s , P . W . . P h y s i c a l  Chemistry.W.H.  Freeman  and  Co.,San  Francisco,1978,p.819. 3. M a n t o v a n i , A . ; C e n i n i , S . . I n o r g . ed;McGraw-Hill,New  York,  Synth..vol XVI;F.Basolo,  1976.p.47.  4. B r u c e , M . I . ; M a t i s o n s , J . G . ; W a l l i s , R . C . ; P a t r i c k , J . M . ; Skeleton,B.W.;White,A.H.  , J.Chem.Soc.,Dalton  T r a n s . , 1983.2365.  5. B a r l e y , M . ; B e c k e r , J . Y . ; D o m a z e t i s , G . ; D o l p h i n , D . ; J a m e s , B . R . , Can.J.Chem.,61,2389(1983). 6. J a m e s , B . R . ; D o l p h i n , D . ; L e u n g , T . W . ; E i n s t e i n , F . W . B . ; W i l l i s , A.C.,Can.J.Chem.,62,12 3 8 ( 1 9 8 4 ) . 7. James,B.R. ; M i k k e l s e n , S .R. ; Leung, T.W. .-Williams, G .M. ;Wong,R. , Inorg.Chim.Acta,85,209(1984). 8. A n t i p a s , A . ; B u c h l e r , J.W. ;Gouterman,M. ;Smith,P.D. ,J.Am.Cher,. Soc.,100,3015(1978). 9. W a l k e r , S . G . ,  M.Sc.  Thesis,  University  of B r i t i s h  Columbia,  1980. 10. C o l l m a n , J . P . ; B a r n e s , C . E . ; S w e p s t o n , P . N . ; I b e r s , J . A . , J . A m . Chem.Soc.,106,3500(1984).  25  Chapter I I I ; The C h a r a c t e r i s a t i o n  Ru  Ii:I  o f Ru  (OEP)(X)  2  and  (OEP) (SbF ) (THF) . c  Section  III.l;  RuroEP) r e p  2  f  Analysis  o f the data f o r R u ( O E P ) ( B r ) 9 and 2 f  10.  A.NMR Spectroscopy.  1  The use o f H NMR indispensable  i n d i a g n o s i n g Ru(OEP) complexes  i s an  t o o l , as t h e e i g h t e t h y l groups o f OEP a r e sen-  s i t i v e probes o f t h e symmetry about t h e ruthenium:  Figure  I I I . l : A view o f t h e e t h y l groups w i t h t h e p y r r o l e as t h e m i r r o r p l a n e o f symmetry.  The f r e e r o t a t i o n about t h e C C 1  being equivalent  2  bond r e s u l t s i n H  and t h e r o t a t i o n about t h e C C 2  i n t h e methyl p r o t o n s a l s o b e i n g e q u i v a l e n t .  3  a  and H  b  bond r e s u l t s  Thus, f o r  Ru(OEP) ( h y o p t h e t i c a l l y , without any a x i a l l i g a n d s ) , one obs e r v e s an A B 2  1 3  H NMR p a t t e r n  26  f o r t h e e t h y l groups i n t h e i r  u s u a l c h e m i c a l s h i f t range. S i n c e Ru(OEP) has D the meso p r o t o n s  4 n  symmetry,  (H ) would be e q u i v a l e n t and r e s u l t i n a m  s i n g l e t . The i n c l u s i o n o f a x i a l l i g a n d s w i l l a f f e c t t h e overall  symmetry o f t h e complex i n two g e n e r a l ways: i f both the  a x i a l l i g a n d s a r e i d e n t i c a l , then a D p r e s e r v e d and an A B 2  3  n n  symmetry w i l l be  spectrum would r e s u l t ; however, i f the  a x i a l l i g a n d s a r e d i f f e r e n t from each o t h e r , then t h e D symmetry i s l o s t and t h e H  a  and  n n  protons become  i n e q u i v a l e n t , r e s u l t i n g i n two methylene peaks o f equal i n tensity  (ABX  spectrum).  3  1  These d i f f e r e n c e s a r e diagrammed  below:  (a) A B 2  3  spectrum  (b)ABX  3  spectrum  4 2 ppm 4 2 ppm F i g u r e I I I . 2 : T h e o r e t i c a l H N M R s p e c t r a f o r OEP 1  complexes:(a)mirror  symmetry p r e s e n t  (x a x i s =  y a x i s ) , ( b ) n o m i r r o r symmetry p r e s e n t .  Complexes 9 and i Q , having  s i m i l a r nonproton  axial  l i g a n d s , e x h i b i t H N M R s p e c t r a with o n l y t h r e e s i g n a l s 1  (-CH ,-CH ,-H ) because a m i r r o r plane o f symmetry i s p r e s e n t 2  3  m  (see F i g u r e I I I . l ) . The chemical s h i f t s o f these t h r e e s i g nals i n D  n h  symmetry g e n e r a l l y depend on the metal's o x i d a -  27  t i o n s t a t e and  the a x i a l l i g a n d s p r e s e n t . A R u  n e u t r a l a x i a l l i g a n d s would have a d tetragonal  6  1 1  complex with  octahedral  (with  a x i a l s t r e t c h i n g d i s t o r t i o n ) c o n f i g u r a t i o n which  i s shown i n F i g u r e Ru  I:c  ,d  III.3:  2  6  d 2_ 2 x  y  d 2_y2,d 2 x  I 1 I I L  2  d2 2  •  (d o r b i t a l s )  lh  . Jl_  no l i g a n d f i e l d  Jld^ R  Jtd ,d I N \K xz'~yz  JJ_ iL xz' yz' xy d  d  octahedral  d  field  x z  tetragonal  axial  stretching distortion Figure  I I I . 3 : Ligand f i e l d s p l i t t i n g diagram f o r a R u low  spin octahedral  ,d  6  complex w i t h a x i a l d i s t o r t i o n .  A paramagnetic complex such as 9 or 10 has electrons  I][  i n the metal d - o r b i t a l s , and  are p e r t u r b e d from t h e i r normal 0-12  unpaired  so the chemical s h i f t s  ppm  diamagnetic range.  For paramagnetic s h i f t s , the observed i s o t r o p i c s h i f t i s based on the t h r e e  (  A  H  The  /  H  )  I  S  O  =  contact  ( A H / H )  sources:  contact  ^  H  /  H  )  dipolar _  (^H/H)  diamagnetic  s h i f t a r i s e s from the p a r t i a l t r a n s f e r of  paired spin density of i n t e r e s t , and constant A  +  3  i n t o an o r b i t a l c e n t e r e d on the  i s proportional  t o the h y p e r f i n e  nucleus  coupling  (which r e f l e c t s the u n p a i r e d s p i n d e n s i t y  28  un-  at  the  nucleus); and i s i n v e r s e l y p r o p o r t i o n a l t o the temperature. D i p o l a r s h i f t s p r i m a r i l y a r i s e from the magnetic a n i s o t r o p y or  i n e q u i v a l e n c e i n the x,y,z axes o f t h e m e t a l ,  proportional to r  4  and a r e  where r i s the m e t a l - t o - p r o t o n nucleus  distance. Since the d i p o l a r s h i f t diminishes according to a r~  3  f u n c t i o n , i t s e f f e c t i s secondary t o t h a t o f t h e c o n t a c t  s h i f t i n many cases where paramagnetism i s p r e s e n t . 1  The H NMR s p e c t r a o f 9 and 10 (see F i g u r e s I I I . 5 and I I I . 6) e x h i b i t a l l t h e c h a r a c t e r i s t i c s o f a L-*-M CT system for  m e t a l - p o r p h y r i n 7T-bonding. The t r a n s f e r o f s p i n d e n s i t y  between t h e metal d o r b i t a l s and the m o l e c u l a r o r b i t a l s o f the l i g a n d can occur v i a  cr- and/or 7T-bonding. F o r 7T-bonding,  e i t h e r a l i g a n d - t o - m e t a l charge t r a n s f e r m e t a l - t o - l i g a n d charge t r a n s f e r  (L-*M CT) o r a  ( i e . backbonding) (M—*L CT)  i s p o s s i b l e ; ^ and which p r o c e s s occurs i s dependent on t h e energy o f t h e metal d o r b i t a l s r e l a t i v e t o the p o r p h y r i n energy l e v e l s  6  (see Figure I I I . 4 ) .  I f the a x i a l ligands exert  s i g n i f i c a n t 7T-bonding t o t h e metal, then t h e eg o r b i t a l s o f the metal become d e s t a b i l i s e d and i n c r e a s e i n energy, ing  bring-  them c l o s e r t o t h e energy l e v e l o f t h e p o r p h y r i n egTT*  orbital.  7  In t h i s case, a M-*L charge t r a n s f e r i s l i k e l y , a n d  the t r a n s f e r r e d charge r e s i d e s l a r g e l y a t t h e p o r p h y r i n meso p o s i t i o n , c a u s i n g the H  m e s o  ^-H NMR s i g n a l t o s h i f t g r e a t l y u p -  f i e l d o f TMS compared t o the diamagnetic s h i f t of  (the p o s i t i o n s  t h e p y r r o l e hydrogens tend t o s h i f t s l i g h t l y d o w n f i e l d at  the same t i m e ) .  8  In t h e case o f a weaker7F-donor, t h e metal e  29  l e v e l s become l e s s d e s t a b i l i s e d and now a r e nearer t o the p o r p h y r i n 3 e 7T- o r b i t a l energy l e v e l , r e s u l t i n g i n a L-^M g  CT. In t h i s case, most o f the e l e c t r o n d e n s i t y i s donated from t h e p y r r o l e carbons r a t h e r than the meso carbons, and 1  thus the e t h y l H NMR resonances s h i f t d o w n f i e l d w h i l e the meso NMR resonance s h i f t s s l i g h t l y u p f i e l d . Thus, the ^-H NMR s p e c t r a o f 9 and 10 e x h i b i t a l l the c h a r a c t e r i s t i c s o f a L—»M CT system because t h e methylene peak appears as a broad s i n g l e t a t ~ 6 0 ppm, t h e methyl peak peak  a t ~7.0 ppm and t h e meso  between 3-9 ppm (see F i g u r e s I I I . 5 and I I I . 6 ) . The c o r -  responding diamagnetic p o s i t i o n s a r e +3.97, +2.03 and +9.74 1 1  ppm r e s p e c t i v e l y f o r R u ( O E P ) ( p y ) • 2  2  x -y z  2  2  py(7T*) 4e (7T*) a  r JL  JL  JL  a u 2  a  xy(n.b.)  JL  X Z  'Y  Z  (e > g  i (7T) u  (ID  py (77)  porphyrin  metal  axial  F i g u r e I I I . 4 : The MO diagram f o r R u ( O E P ) ( p y ) I V  f o r the R u ( O E P ) ( X )  30  2  complexes  2  ligand  as a model 9 and 10.  6  Figure I I I . 5 : The * H NMR spectrum of Ru(OEP)(Br) i n CDC1 , 2  300 M H z ,  3  19 °C, under aerobic c o n d i t i o n s .  cn. CIL  J —\  60.6  >  <  —  60.2 59.8 H  cnci3  JJ » » t ; i » i i l t i » i i i t i t | i i i i | i » i i t i » » i ; i t i t | » i t t i i i i i | i i t t i t t t i | i i i » | » » ' • t  7.0  • 0  3.0  «.t  9.0  » •  W  Figure III.6: The *H NMR 300 MHz,  spectrum o f  Ru(OEP) ( C l ) i n CDC ,  19 °C, under aerobic  2  3  conditions.  CM, to  CDC1. 57.8  57.2  56.6  AJ__A ; T » T » | i i > i | i » T i | t t » i | i i i i | » I T t f l i t f | t , » t | i i i i ; » i i t | i i i t | t i t i | i i > i > i » i i t ; i i i t j > i i i ; T t l i ; t l i l |  ISO  17 0  II. 0  10.0  t.O  0  0  7.*  0.0  9.9  **•  The  assignments o f the OEP  peaks were deduced from  the  r e l a t i v e i n t e n s i t i e s and by the i n t e g r a t i o n of the s i g n a l s o b s e r v e d . A l t h o u g h chemical effects  s h i f t s a r i s e m a i n l y from  f o r paramagnetic molecules,  r e l a x a t i o n r a t e s are  p r i m a r i l y e f f e c t e d by d i p o l a r r e l a x a t i o n t e r m s , diminish according to r ~  6  contact  where r i s the  9  which  metal-to-proton  d i s t a n c e . Thus, by s t u d y i n g the s p i n - l a t t i c e r e l a x a t i o n r a t e s (Tj^)"  1  by the i n v e r s i o n - r e c o v e r y NMR  t h e V a r i a n XL-300 NMR  method  operating m a n u a l )  1 0  and  c o r r e l a t i n g these v a l u e s t o ' r ' , one  can  t h e NMR  III.l  s p e c t r a observed  (see T a b l e s  (as d e s c r i b e d i n  a s s i g n unambiguously and  F i g u r e I I I . 7 ) . I f the r e l a x a t i o n r a t e i s f a s t i s s m a l l ) , then t h e resonant and  frequency  v i c e - v e r s a . F o r t h i s reason,  width  the NMR  intuitively  III.2  and  (short (dF)  T^ie.dt  i s large,  s p e c t r a o f 9 and 10  b o t h have broad s i g n a l s w i t h no o b s e r v e d s p l i t t i n g s  or  couplings. The  r e l a t i v e o r d e r i n g of the ruthenium d - o r b i t a l s i s  o f c o n s i d e r a b l e i n t e r e s t because, t o our knowledge, £ and 12. are the  first  intermediate  spin, t r i p l e t  s t a t e S=l,  ruthenium  p o r p h y r i n complexes known. There a r e t h r e e p o s s i b l e o r d e r i n g s o f t h e ruthenium's d - o r b i t a l s energy f o r a R u figuration The a L-»M  (see  S=2  CT  I V  , d  4  con-  Figure III.8).  c o n f i g u r a t i o n i n Figure III.8  argues  against  system i n f a v o u r of o— bonding because the  orbital  i s of cr- symmetry, and the o r b i t a l s needed f o r  o r M-*L  CT system are o f  e 7T/7T* a  33  d 2_ 2 x  v  L->M  symmetry. A l s o , t h a t S i s  equal t o one  (two  ments o f 1 and  unpaired  10,  from magnetic measure-  i n d i c a t e s t h a t the S=2  f i g u r a t i o n i s considered c i n Figure  electrons)  h i g h s p i n con-  l e s s l i k e l y than the o t h e r two  I I I . 8 ) . These l a s t two  (b or  cases are c o n s i s t e n t with  a L—*M CT p i c t u r e but are not e a s i l y d i s t i n g u i s h e d u s i n g common  spectroscopic  methods. I f one  (a)  (b) z  2  Yd"* d  —  x z  ,d  4  (  d X  Z 2  d  ^  d  d  d  J_ xz' yz  t h r e e p o s s i b l e d - o r b i t a l occupancies  2  d  d  1  configuration.  y) ( xz' yz^  ) (d^)  2  -T-H _t_ w  d  paramagnetic complexes:(a)an S=2  3  v z  d  iL xy I I I . 8 : The  (b)an S=l  2  2  x -v  d  d  I V  r*V  l_ xz' yz  _L_  d  . -L_ xy Figure  d  r —  _L- xz' yz d  of R u , d  d  d2  z  r  axial  (c)  d2  (d  chooses an  2  configuration  configuration  (c)an  S=l  s t r e t c h i n g d i s t o r t i o n i n s t e a d of an a x i a l compression d i s t o r tion  ( i e . Ru-Br,2.55 k vs Ru-N,2.05 A(ave.) f o r Ru(OEP)  (PPh )Br),  2 7 b  3  then c o n f i g u r a t i o n c i n F i g u r e  best representation A C u r i e Law should  I V  for a Ru ,d  p l o t of the  4  III.8  i s the  complex.  i s o t r o p i c s h i f t versus  r e s u l t i n a s t r a i g h t l i n e o n l y i f one  T  - 1  spin state i s  p o p u l a t e d over the temperature range s t u d i e d . Another t e s t -1  f o r C u r i e behaviour i s t h a t as T - > should  approach 0 ppm  p o s i t i o n ) and,  0, the  isotropic shift  ( i e . the c o r r e s p o n d i n g diamagnetic  i f both c o n d i t i o n s are met,  s a i d t o f o l l o w the C u r i e L a w .  34  11  the compound i s  Although a l l the  proton  Table I I I . l :  T  Data f o r  1  Ru (OEP)(Br) .5 I V  2  Interpulse d e l a y fms)fe  Intensity(CH )  Intensity(CH )  2  3  Intensity(H _ ) m c  2  11.0  -92.0  -2.01  1.OxlO"  1  9.12  -94.0  -2.02  5.OxlO"  1  10.4  -94.0  -2.20  1.0  11.0  -91.2  1.22  4.0  19.8  -75.7  3.06  8.0  26.0  -59.8  7.00  20  47.0  -13.9  13.5  50  80.9  75.4  16.8  80  99.6  137  17.6  100  108  166  17.2  300  123  260  18.2  500  124  270  18.8  50.5  79.4  13.0  5.0X10"  i  (ns)fi  • in CDCI3  a t 19°C  ( a e r o b i c sample);  peak h e i g h t s ( a r b i t r a r y  0  i n t e n s i t i e s given  scale) •  — s t a n d a r d time d e l a y t o a l l o w f o r p a r t i a l r e l a x a t i o n of t h e s p i n magnetization — obtained  vector.  from a computer-aided c u r v e - f i t t e d p l o t of s i g n a l  i n t e n s i t y vs. i n t e r p u l s e d e l a y u t i l i s i n g the data above.  35  Table I I I . 2 : T  IV  1  Data f o r R u ( O E P ) (CI) .-^ 2  Interpulse delav(ms)IntensityfCH )  Intensity(CH ) IntensityfH __)  2  T  m c  2  5.0X10"  2  5.32  -80.9  -7.04  1.0X10"  1  5.02  -80.7  -8.24  5.0X10"  1  6.00  -79.2  -6.04  1.0  7.01  -77.4  -6.00  4.0  11.7  -66.7  1.00  8.0  16.5  -52.9  6.00  20  21.3  -46.2  8.11  50  56.4  37.8  20.2  80  83.1  114  22.1  100  89.8  141  22.4  300  102  235  22.0  500  98.9  251  23.0  50.1  89.7  13.2  0  x  (ms) -  — i n CDC1  3  a t 19°C ( a e r o b i c sample); i n t e n s i t i e s g i v e n as  peak h e i g h t s i n an a r b i t r a r y — standard  time d e l a y t o a l l o w f o r p a r t i a l r e l a x a t i o n o f t h e  spin magnetization — obtained  scale.  vector.  from a computer-aided c u r v e - f i t t e d p l o t o f s i g n a l  i n t e n s i t y vs. i n t e r p u l s e d e l a y u t i l i s i n g t h e data above.  36  Figure III.7:  P l o t of the  s i g n a l i n t e n s i t y vs. i n t e r p u l s e  d e l a y t o o b t a i n the f o r 9 and  10.  37  corresponding  values  resonances o f 9 and o n l y the CH  3  10 gave s t r a i g h t l i n e s f o r C u r i e p l o t s ,  resonances f o r 9 and  10 and the H  m e s o  f o r 10 gave e x t r a p o l a t e d i n t e r c e p t s near zero ppm - 1  at T - » 0  (see Table I I I . 3 and  o t h e r t h r e e peaks (the CH H  Figure  I I I . 9 and  resonance f o r 9 and  2  resonance (± 5  III.10). The  10 and  meso resonance f o r 9) do not f o l l o w the C u r i e Law.  presence of s p i n - o r b i t c o u p l i n g may Curie  behaviour.  ppm)  the The  be the o r i g i n of the n o n -  1 2  A f u r t h e r p o i n t i s t h a t OEP  has  22 7F-electrons  with a  4n+2 Huckel resonance c o n f i g u r a t i o n . I f an e l e c t r o n i s added or removed from the r i n g , the r e s u l t i n g r a d i c a l i s then s t a b i l i s e d by many resonance s t r u c t u r e s .  1 3  s i b l e e l e c t r o n i c c o n f i g u r a t i o n f o r 9,and 10  Thus, another posi s t h a t of a  77-cation r a d i c a l p o r p h y r i n complex, i n which an e l e c t r o n has been removed ( o x i d a t i o n ) from the r i n g t o t h e metal c e n t r e i n IV  comparison t o a R u ( O E P ) f o r m u l a t i o n . T h i s would r e s u l t i n a [Ru  111  ( 0 E P ( + . ) ) X ] X i o n i c complex o r an  n e u t r a l complex. Morishima e t a l .  1  4  7f-cation r a d i c a l complexes, although 1  l i g a n d , e x h i b i t v e r y broad H +60  ppm  w i t h the -CH  downfield of TMS.  2  and  -CH  NMR 1 3  and the meso-H NMR  H  [Ru  111  (OEP(+.))X ] 2  have shown t h a t such c o n t a i n i n g an a x i a l  CO  s i g n a l s i n the range -60 NMR  to  resonances w e l l  resonance s h i f t e d w e l l u p f i e l d 1  Both 9 and 10 do not e x h i b i t t h i s type of a H  NMR  spectrum and both are n o n - e l e c t r o l y t e s . 1  On the s t r e n g t h of the H  NMR  f o r m u l a t i o n with an i n t e r m e d i a t e  38  data, the Ru(0EP)X  2  s p i n , t r i p l e t ground s t a t e  T a b l e I I I . 3 : Data f o r t h e C u r i e P l o t o f t h e I s o t r o p i c s h i f t vs. Inverse  Temperature.  shift(CH )  shift(CH )  3  T  ,o a -lf- io+3 c  x  T  L. Data f o r  K  -l)  obsfe/corrS-  Ru(OEP)(Br) 2' —  2  0  obs^/corr -  shift(H ) m  0  obsj^/corr -  -  -50  4.48  9.69/7.66  83.3/79.3  6.49/-3.30  -30  4.12  8.88/6.85  75.0/71.0  5.79/-3.95  -10  3.80  8.06/6.03  68.0/64.0  4.77/-4.77  10  3.53  7.09/5.06  62.3/58.3  4.16/-5.58  30  3.30  6.92/4.89  57.9/53.9  3.67/-6.07  50  3.10  6.13/4.10  52.9/48.9  3.23/-6.51  (.Data f o r Ru(OEP)(Cl) 2' -50  4.48  9.39/7.36  82.2/78.2  10.9/1.13  -30  4.12  8.49/6.66  74.7/70.7  9.93/0.13  -10  3.80  7.66/5.63  67.7/63.7  9.10/-0.64  10  3.53  6.98/4.95  62.0/58.0  8.44/-1.30  30  3.30  6.43/4.40  57.2/53.2  7.92/-1.81  50  3.10  6.06/4.04  53.9/49.9  7.61/-2.13  — temperature d e v i a t i o n + 0.5 °C. — obtained  i n CDC1 , a e r o b i c  sample.  3  I I  — diamagnetic c o r r e c t i o n ( R u ( 0 E P ) ( p y ) / C D , 2  CH =2.03, CH =3.97, 11^=9.74 ppm. 3  2  39  6  6  anaerobic):  2.0  4.0 T' , ( x 10 1  3  K'  6.0 1  )  Figure III.9: Curie P l o t f o r Ru(OEP)(Br)  2  temperature range -50 t o +50  40  9, i n the °C.  temperature  range  41  -50  t o +50  °C.  Ru  ,d  metal c e n t e r seems almost c e r t a i n .  The a x i a l  bonding  1  i s due t o cr bonding w i t h a p p r e c i a b l e 7T donor c h a r a c t e r , and the m e t a l - p o r p h y r i n 7T-bonding i s l i k e l y L-»M CT.  B. O p t i c a l S p e c t r a .  The presence o f a p o r p h y r i n TT-cation r a d i c a l complex i s invariably  indicated i n the v i s i b l e region of the o p t i c a l  spectrum: a broad peak a t 620-680 n m  15  i s characteristically  d i a g n o s t i c o f a TT-cation r a d i c a l . The absence o f such a peak i n t h e o p t i c a l s p e c t r a o f 9 and 10 supports t h e c o n c l u s i o n s reached by NMR, and as t h e o p t i c a l s p e c t r a y i e l d no f u r t h e r i n f o r m a t i o n except f o r i d e n t i f i c a t i o n purposes, t h e data a r e p r e s e n t e d i n Figure I I I . 1 1 without d i s c u s s i o n .  C. I n f r a r e d and Resonance Raman Spectroscopy.  The i n f r a r e d characteristic  s p e c t r a o f 9 and 10 a r e both d e f i c i e n t  s t r o n g peak a t 1520-70 cm"  1  p r e s e n t i n OEP 7T-catibn r a d i c a l c o m p l e x e s .  which 16  of a  i s typically  Thus, t h e IR  s p e c t r a o f these compounds a g a i n support t h e c o n c l u s i o n s from the  NMR d a t a . The assignment o f t h e Ru-X bond frequency was  i n v e s t i g a t e d because no such halogen f r e q u e n c i e s w i t h i n porp h y r i n systems have been r e p o r t e d t o date. An assignment was attempted u s i n g FT-IR data but t h e presence o f many bands due t o water o r carbon d i o x i d e i n t h e f a r - I R r e g i o n (some o f  42  Figure I I I . 1 1 : The o p t i c a l spectrum o f R u ( 0 E P ) ( X ) 2.0  C H C 1 . (C = 2.50  4  2  2  xlO"  5  2  M, p a t h l e n g t h  398 nra ( l o g 6 = 4.90)  1.6  wi.2  360 nm .(4.751  ca cc  O I/) CO <  0.8  0.4  535 nm (4.16)  400  500 WAVELENGTH, nm  complexes i n  600  = 1.0  cm).  which may o v e r l a p w i t h any l e g i t i m a t e s i g n a l s p r e s e n t ) made t h i s task i m p o s s i b l e .  1 7  region, suggesting that  There were no i n t e n s e peaks i n t h i s due t o t h e centrosymmetric  nature o f these compounds, some bands may be p r e s e n t i n the resonance Raman s p e c t r a o f 9 and 10. U s i n g argon i o n l a s e r e x c i t a t i o n a t 457.9 nm, a KBr m a t r i x (1 mg sample/100 mg KBr) 1  was  found t o g i v e t h e Ru-Br bond frequency a t 178 cm" (no  o b s e r v a b l e i s o t o p e s p l i t t i n g ) and t h e Ru-Cl cm"  1  frequency a t 2 89  (again, no i s o t o p e s p l i t t i n g o b s e r v e d ) ; both peaks ap-  pear as i n t e n s e , but broad bands (see F i g u r e s III.12 and III.13) and t h e c h a r a c t e r i s t i c 100 cm"  1  s e p a r a t i o n between  the bromide and c h l o r i d e analogues was o b s e r v e d .  1 8 3  resonance Raman s p e c t r a were measured by Dr. Laura ( U n i v e r s i t y o f Oregon) t o whom I am extremely  The Andersson  grateful.  1 8 b  D. Mass Spectroscopy.  A s u r p r i s i n g f e a t u r e o f t h e mass s p e c t r a o f 9 and 10 i s t h a t t h e i r most i n t e n s e peaks a r e due t o t h e Ru(OEP) u n i t , w i t h no p a r e n t i o n b e i n g observed; t h e d i m e r i c [ R u ( 0 E P ) ]  + 2  and t h e monomeric Ru(OEP)"*" s p e c i e s g i v e r i s e t o t h e most i n tense s i g n a l s . The o n l y o t h e r peaks r e s u l t e d from t h e u s u a l fragmentation p a t t e r n of the r i n g  (see F i g u r e I I I . 1 4 ) . By  mimicking t h e c o n d i t i o n s o f a mass spectrometer i n a l a b o r a t o r y experiment,  i t was found t h a t  c o n v e r t e d back t o t h e dimer  9 and .10 c o u l d be  (8) i n a q u a n t i t a t i v e y i e l d (see  44  F i g u r e I I I . 1 3 : The Raman resonance spectrum  of Ru(OEP)(Cl)  2  in a  KBr matrix. (* denotes a matrix RR band).  672 cm" , porphyrin mode  o>  1  289 cn" ,HRu-Cl)  WAVENUMBERS, cm  iff •f  ....  R  ( «<  0 E P  +  »2  *f 4f Zf  i i I i i i i i i i i i I i i i i i i i i i I i i i i i i i i i I i i i i "i i if r^f4"'f'rSt' I I > I I I I I I I I I I I I I I r • M  I . Iff  N  T E  IfSf  II f f  IISf  IZff  IZSf  I3ff  II S f  •f tf 4f Zf f  I I I I I I I I | I I I I I  N  I I | I I I I I  7Sf  I I | I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | I I I I I I I I  • ff  • 6f  »ff  96f  Ifff  S I T  (34  Iff  Ru(OEP)+  • f tf 4f  Y  2f  589  i i i i [ i i i i i i i i i I i 4ff  i | i i i i i t i i f | i " ! " .r ^ f V f r i  4Ef  6ff  .  ,i  11  f ^ T ^ ' r ^ h  i - | ' i i ' i i Ii iI iI iI iI | | I I  tff  SSf  iSf  7 f f  Iff •f tf 4f  Br ( m i s s i n g i n t h e c h l o r i d e  Zf  _  f  H  analogue)  79  52  | l l . | J , ,i,l|i,,ill ln,| |  5f  |  317  , i , | " | i"T-|'t M 'ri"T'i i' i " p i ' l N i i i i i | i i i i i i r h  ?  II fI f  ISf  Z f f  I ZSf  i  r I 'I I I I I | I I I I I I  3ff  MASS UNITS, m/e Figure  I I I . 1 4 : The mass s p e c t r u m analogue  of Ru(OEP)(Br) .  i s i d e n t i c a l except  2  (The c h l o r i d e  f o r p e a k a t 79 m/e).  SSf  chapter IV).  E. M a g n e t i c S u s c e p t i b i l i t y and E l e c t r o n  Paramagnetic  Resonance.  The s o l u t i o n magnetic s u s c e p t i b i l i t i e s o f 9 and 10 were 2.5 X , m  and 2.6  B.M.,  r e s p e c t i v e l y , and were e s t i m a t e d u s i n g  t h e molar s u s c e p t i b i l i t y ,  method  2 0  (B.M.  «= 9 . 2 7 x l 0 "  t-butyl alcohol i n CH C1 2  2 4  1 9  1  s o l u t i o n were added t o a long melt-  2  (1-2 mg)  and the 5% t - b u t y l  (500 pL) were then added t o an NMR  tube and the m e l t i n g p o i n t tube was p l a c e d 1  i n s i d e . The H NMR  spectrum was 1  the s e p a r a t i o n of t h e two H NMR cohol  o b t a i n e d by Evans'  J T" ) : 50 uL o f a 5%  i n g p o i n t sample tube. 2 o r 10 alcohol solution  which was  sample  co-axially  o b t a i n e d immediately, and resonances f o r t - b u t y l a l -  ( i n two d i f f e r e n t environments) was measured  ( t y p i c a l l y 7-9 H z ) . Xg calculated.  2 0  (gram s u s c e p t i b i l i t y )  was  Diamagnetic c o r r e c t i o n s were made u s i n g  Pascal's c o n s t a n t s ,  2 1  and the r e s u l t i n g s u s c e p t i b i l i t e s were  w i t h i n e x p e r i m e n t a l e r r o r of the s p i n - o n l y v a l u e of B.M.  f o r an S=l  2 2  system. ,  2 3  No EPR s i g n a l s of 9 and 10 a t e i t h e r ambient 1:1  2.83  or 77 K i n  t o l u e n e : d i c h l o r o m e t h a n e were observed. There are  s e v e r a l p o s s i b l e reasons f o r t h i s : t h e s h o r t r e l a x a t i o n tir.es d i s c u s s e d e a r l i e r f o r t h e p r o t o n s would  48  l e a d t o the broaden-  ing  o f any  field  signal;  splitting  lastly, rise  2 4  secondly, which can  the unpaired  the t r i p l e t  The  s p i n s can  couple  with  were  has  zero-  obscured;  each o t h e r ,  giving  cause a s i g n a l  to  be  2 5  EPR  presence  S=l  c a u s e s i g n a l s t o be  t o s p i n - s p i n i n t e r a c t i o n s which can  broadened.  state  spectra of these  of a sharp  signal  compounds w o u l d h a v e shown t h e  a t g=2.00 i f a 7 T ~ c a t i o n  radical  present.  Section  I I I . 2 ; A n a l y s i s of the  Data  for Ru  1 1 1  (THF)  fOEPWSbF ) e  11.  A.  NMR  Spectroscopy.  The from  *H  NMR  t h a t o f 9 and  integrating (ie. 10  no  spectra  plane  such  Secondly,  the  spectrum  CH  peaks,  2  mirror  o n l y one  CH  i n CH CN-d 3  3  whereas  solvent  o r MeOH-d  4  appear  w i t h many meso-H p e a k s s u g g e s t i n g t h a t t h e  a n d / o r THF  can  be  easily  d i s p l a c e d by  s o l v e n t s . Because o f s o l u b i l i t y  49  and  peak.  2  i s s o l v e n t dependent little  each  symmetry  i s p r e s e n t whereas 9  exhibit  of H  of H  two  s h o w i n g t h a t no  o f symmetry) and  has  o f t h e p r e v i o u s c o m p l e x e s show  complicated  dinating  ways: H  i n two  symmetry  dependence. S p e c t r a  unit  10  differs  6  to eight protons,  mirror  have  of Ru(OEP)(SbF )(THF), H ,  spectrum  SbF  s t r o n g l y coor-  problems,  the  6  measurement o f the NMR CDCI3  spectrum  of i i  i s r e s t r i c t e d to using  or p o l a r c o o r d i n a t i n g s o l v e n t s ; thus, the *H NMR  i n C D C I 3 i s shown i n F i g u r e I I I . 1 5 . The CH s h i f t e d g r e a t l y from  3  spectrum  resonance has  i t s diamagnetic p o s i t i o n of 2.03  whereas the meso-H and CH  2  not  ppm  peaks have s h i f t e d g r e a t l y  from  t h e i r diamagnetic p o s i t i o n s . The meso-H peak has s h i f t e d 9.74  t o 6.25  ppm  and the CH  peaks are a t 3.80  2  compared t o the diamagnetic p o s i t i o n of 3.97 presence of two CH  peaks and t h e i r p o s i t i o n  2  and 17.5  ppm.  from  ppm  The  indicates that  the e l e c t r o n i c environment on one s i d e of the p o r p h y r i n plane i s d i f f e r e n t from the o t h e r s i d e of the p o r p h y r i n p l a n e , with one CH of 3.97 dimer ppm,  2  ppm.  peak  c l o s e t o the normal diamagnetic 1  T h i s type of H  [Ru(OEP)] , 2  3  i s s i m i l a r t o t h a t of the  (which has two CH  the o t h e r a t 11.2  (PPh )(Br)  NMR  ppm)  (having two CH  2  position  2  resonances;one  and a l s o t o t h a t of R u resonances a t 8.8  The s e p a r a t i o n between the two CH  2  at I I I  26.1  (0EP)  and 18.5  peaks (about 10-15  ppm). ppm)  in  the l a s t two cases have been a s c r i b e d t o d i f f e r e n c e s i n m e t a l - p o r p h y r i n charge t r a n s f e r a t each CH p r o t o n s i t e and a 2  s i m i l a r e f f e c t i s p o s t u l a t e d f o r 11. The assignment experiments  of the  *H  s p e c t r a of i i  was  as d i s c u s s e d i n the p r e v i o u s NMR  ( I I I . l . A ) . A s i m i l a r c o r r e l a t i o n between T^'s  made u s i n g section  and r (the  m e t a l - t o - p r o t o n d i s t a n c e ) , as observed f o r 9 and l f j , found f o r H  (see T a b l e III.4 and  exception that f o r i i ,  the CH  2  50  was  Figure I I I . 1 6 ) , with the  resonance a t 17.5  ppm  has a  27  F i g u r e I I I . 1 5 : The *H NMR  spectrum o f Ru(OEP)(SbF )(THF) i n 6  CDC1 , 300 MHZ 3  a n a e r o b i c sample a t 19 °C.  CDC1.  CH,  Ho 2  CH.  CH.  H  THF  i  i i i i i i i i i i i i i i i i i | > i i i | i i i i i i i i i i i i i i i i i i i I i i i i i » i i i j  IB  IB  14  12  10  a  i i  ll I I I I I  j  I I I I  I  I I I I  j  I I I I  I  1  ' ' ' ' j ' '''I' ' ' j ' '''  I  /  longer ppm.  r e l a x a t i o n time than t h e CH  Since the  2  p r o t o n s a t 3.8 0  r e l a x a t i o n , by d e f i n i t i o n , r e f e r s t o t h e  r e l a x a t i o n of a spin with the help of the surrounding  lattice  of s o l v e n t and o t h e r molecules p r e s e n t , t h e r e l a x a t i o n monitored by t h e CH  2  protons a t 17.5 ppm must be slower than  the r e l a x a t i o n f o r t h e o t h e r CH  9  2  protons a t 3.80 ppm. The  reason f o r t h i s d i f f e r e n c e i n r e l a x a t i o n r a t e s i s not apparent; although, presuming still  dominant, t h e r  that the d i p o l a r relaxation i s  v e c t o r must be s h o r t e r f o r t h e f a s t e r  r e l a x i n g p r o t o n s as a consequence o f t h e T^'s dependence on r ~ . The presence o f an o u t - o f - t h e - p l a n e Ru would account f o r 6  t h i s shortening of the r and R u  I I I  (OEP)  m  p  v e c t o r (both t h e [Ru(OEP)]  2  dimer  ( P P h ) ( B r ) have an o u t - o f - t h e - p l a n e 3  ruthenium). The use o f T  1  1  spectrum does n o t always  experiments t o a s s i g n a H NMR l e a d t o an unambiguous s o l u t i o n ; f o r  example, i n t h i s case, t h e T^ data cannot be used t o d i s t i n g u i s h which CH  2  resonance o r i g i n a t e s from which s i d e of the  p o r p h y r i n p l a n e (the SbFg s i d e v s t h e THF s i d e ) . In such c a s e s , deuterium l a b e l l i n g i s needed f o r a complete assignment. The p l o t o f t h e i s o t r o p i c s h i f t v s T line,  gave a s t r a i g h t  i n d i c a t i n g t h a t o n l y one s p i n s t a t e i s o c c u p i e d over  the temperature Table  - 1  range s t u d i e d  (-50 t o +50 °C i n CDC1 , 3  see  I I I . 5 and F i g u r e I I I . 1 7 ) . The h i g h temperature ex_1  t r a p o l a t i o n s t o T ->-0 o f t h e i s o t r o p i c s h i f t s gave v a l u e s within experimental e r r o r  (+ 5 ppm) o f 0 ppm f o r a l l the  52  Table III.4: T  x  Data f o r Ru  (OEP)(SbFg)(THF).—  I n t e r p u l s e CH (17.5 ppm) CH (3.80 ppm) 2  D3 (ms) OxlO"  1  1^  CH  Intensity— Intensity—  Intensity-  2  Intensity-91.0  -24.7  -29.7  -209  1.0  -93.0  -20.2  -34.0  -222  4.0  -75.1  -8.00  -30.4  -187  8.0  -48.3  18.2  -20.4  -128  20  4.25  37.0  10.3  -14.0  50  62.0  46.0  14.5  159  80  85.4  47.2  19.9  243  100  93.6  46.0  24.0  272  300  104  61.0  55.4  337  500  103  61.1  55.0  336  34.2  10.3  9.3  44.7  (ms)S  3  — i n C D C I 3 a t 19°C (anaerobic sample). — peak h e i g h t i n an a r b i t r a r y s c a l e . — o b t a i n e d from a computer-aided c u r v e - f i t t e d p l o t o f s i g n a l i n t e n s i t y vs. i n t e r p u l s e d e l a y u t i l i s i n g t h e d a t a s u p p l i e d above.  53  F i g u r e I I I . 1 6 : P l o t of the s i g n a l i n t e n s i t y vs. i n t e r p u l s e d e l a y t o c a l c u l a t e T,  54  values.  resonances except t h a t of the H .  The  m  obtained  -CH  and  2  -CH  data  3  from the C u r i e p l o t s obeyed the C u r i e Law  within  the  temperature range s t u d i e d i n d i c a t i n g t h a t o n l y a s i n g l e ground s t a t e i s p o p u l a t e d . The Figure  1 9  F  NMR  spectrum of H  i l l . 1 8 has  (CDC1 , anaerobic) shown i n 3  a lineshape  and  position vastly different  from t h a t of f r e e KSbFg i n Freon-11. Free S b F ~ appears as a g  broad resonance (+ 10 ppm)  centered  a t -119  ppm  relative to  28  F r e o n - 1 1 ; t h u s , t h i s r e s u l t i n d i c a t e s t h a t the S b F dinated  (11 i s a l s o a n o n - e l e c t r o l y t e  i n CHC1 ) and  as i s suggested by the IR data d i s c u s s e d  6  i s coornot  3  in section  free  III.2.E.  B.EPR Spectroscopy.  The  EPR  spectrum of l i i s c h a r a c t e r i s t i c of a complex  w i t h m i r r o r symmetry (g ) and was  (g^).  obtained  GHz)  a t 10 mW  s o l u t i o n of H served  2 9  The  (X=YfZ), s i n c e one  spectrum i s shown i n F i g u r e  signals: III.19  microwave power and  a d i l u t e 1:1  under a n a e r o b i c c o n d i t i o n s . No  observed w i t h g  (THF:toluene) s i g n a l was  at -196°C (77°K), an  at 2530 + 20 G  (g=2.8 + 0.1)  (g=2.3 + 0.1)  T h i s spectrum and  i t s l i n e s h a p e are s i m i l a r t o t h a t of  I I I  (0EP) complexes.  2713  The  w i t h no h y p e r f i n e  alternative, possible  55  ob-  intense  g^ at 2950 + 20 G  Ru  and  u s i n g X-band microwave frequency r a d i a t i o n ( 9 . 1 1  a t room temperature but  s i g n a l was  sees two  and  splittings. other  formula-  Table I I I . 5 : Data f o r the C u r i e P l o t o f the I s o t r o p i c s h i f t v s . I n v e r s e Temperature  f o r 11.  shift(CH )  shift(H )  obs|/corr?  obsj/corr-  3  T. ° C -  T'^-fxlO  3  1  K" )  m  -50  4.48  1.31/-0.72  9.31/-0.43  -30  4.12  1.35/-0.68  8.52/-1.22  -10  3.80  1.41/-0.62  7.64/-2.10  10  3.53  1.35/-0.68  6.96/-2.78  30  3.30  1.42/-0.61  6.47/-3.27  50  3.10  1.43/-0.60  6.07/-3.67  shift(CH ,17ppm)  shift(CH ,3ppm)  2  2  obs^/corr-  obs^/corr-  -50  4.48  20.6/16.6  3.41/-0.59  -30  4.12  19.7/15.7  3.53/-0.47  -10  3.80  18.7/14.7  3.71/-0.29  10  3.53  17.8/13.8  3.67/-0.33  30  3.30  17.1/13.1  3.74/-0.26  50  3.10  16.6/12.6  3.75/-0.25  - temperature d e v i a t i o n + 0.5 °C. - obtained  i n CDC1 , a e r o b i c 3  sample. 1 1  - diamagnetic c o r r e c t i o n ( R u ( O E P ) ( p y ) , c D , 2  CH =2.03, CH =3.97, 1^=9.74 ppm. 3  2  56  6  6  anaerobic):  CH.  16  cit  CH,  o  to  o O  2.0 T  _j 4.0 , ( x 10  3  6.0  _j K )  F i g u r e I I I . 1 7 : C u r i e P l o t f o r Ru(OEP)(SbF )(THF) 6  the temperature range -50 t o +50  57  in C.  F i g u r e III.18: The  1 9  11,in  F NMR CDCI3  spectrum o f Ru(OEP)(SbF )(THF), 6  (obtained a t 19 °C a t 300  u s i n g an anaerobic sample).  MHz  Figure III.19: The EPR spectrum of Ru(OEP)(SbF )(THF) i n 1:1 6  THF:toluene (anaerobic) at -196 °C. (9.11 GHz X-band r a d i a t i o n at 10 mW microwave power).  t i o n of H is ruled  11  as a R u ( O E P ) ( S b F g ) ( T H F ) c a t i o n r a d i c a l  out. Such a r a d i c a l  complex  complex would behave from an EPR  p o i n t of view as an i s o l a t e d  o r g a n i c r a d i c a l which g i v e s  to a sharp s i g n a l  ( 3200 G ).  C. O p t i c a l  a t g = 2.0  rise  Spectra.  As d i s c u s s e d  i n a previous  s e c t i o n ( I I I . l . B ) , the o p t i -  c a l spectrum of a c a t i o n r a d i c a l does not show t h i s c h a r a c t e r i s t i c TT-cation r a d i c a l  i s d i s t i n c t i v e and, s i n c e  H  absorption, a  formulation i s ruled  out. The  optical  spectrum of 11 i s shown i n Figure I I I . 2 0 .  D. Kass  Spectroscopy.  The u s u a l Ru(OEP) peaks were observed i n the MS with the peaks f o r the S b F +  pattern SbF , 3  +  SbF , 2  SbFg* i s  unit.  and S b F  respectively) i s readily parent  6  +  (178, 159, 140  observed  not p r e s e n t ,  In f a c t , t h e  (see F i g u r e  indicating  along  fragmentation m/e III.21)  t h a t the SbFg  but the unit  might be t h e r m a l l y decomposed. No parent peak f o r the complex was p r e s e n t m/e  and the THF was the f i r s t  of 71.  60  fragment observed a t  503  -j—i—i—i—r  T—r  500  T—i—i—r T - T - r - r - r  62S  550  T—r 675  r  r~ ~ t00  T—r  534 1  T" 625  T—i—r  ~[—r  I  1  1  1  700  675  >i0  428  407  275  ~i *~t—i—i—i—i—i—i—i—r 275  300  T—|—1—1—I 326  1—|—I—I 350  1 — I — | 1 1—I—I—| 1—I—I 376 400  1  f 425  - i — i — i — i — i — i — i — i — I — i — r r 450  475  159 SbF. ,79  177  52  SbF ,,„ 3  212  21  I' f l 50  75  -r^T—r**-j—i—i—i Jl •!••[—i—r 100  126  VI40  i,  |  I'T 150  i 'i |'"I i i'T"| i 176  III.21:  Mass s p e c t r u m o f R u ( O E P ) ( S b F ) ( T H F ) . 6  |il i i| i  i—i—r  I T  200  MASS UNITS, m/e  Figure  227  SbF  I  225  250  E.Infrared  Spectroscopy.  The t y p i c a l 7 T - c a t i o n r a d i c a l peak f o r OEP i n the  spectrum  i s not p r e s e n t  o f 2 2 , showing a g a i n t h a t the  cation  radical  f o r m u l a t i o n i s i n a p p r o p r i a t e . Based on data f o r o t h e r metal-SbF  6  compounds,  30  i s assigned to ^(sb-F)* sharp SbF ), 6  (and not broad and  the band a t 650 T  ^ i  s  cm"  1  ( F i g u r e III.22)  s t r e t c h i n g frequency appears  as would be expected  The I R data i n d i c a t e s t h a t t h e S b F 1 9  F  1  NMR,  These d i f f e r e n c e s i n data may 30  weakly c o o r d i n a t e d .  63  H  6  NMR,  6  complex.  i s uncoordinated, and  t o be  for a bridging  i s i n t h e c o r r e c t a r e a f o r an i o n i c S b F  in c o n f l i c t w i t h the  ji-fluoro  3 1  and i s  conductivity data.  be due t o the SbFg  being  Figure I I I . 2 2 : The i n f r a r e d spectrum o f Ru(OEP)(SbF )(THF) i n 6  a Nujol mull.  ^  • J ^-f-J— —« !  1458.7  1  127Q. 1  •  H  1  llOl.S 023. OS 740. 38 WAVENUMBERS <CM-1>  1  500.70  »  301. l O  — - 4 -  213  References.  1. Pople,J.A.;Schneider,W.G.;Bernstein,H.J..High  Resolution  N u c l e a r Magnetic Resonance.McGraw-Hill,New York,1959,p.103. 2. B a l l h a u s e n , C . J . . I n t r o d u c t i o n t o Ligand F i e l d McGraw-Hill,New  York,1962.  3. LaMar,G.N.;Walker,F.A..The P o r p h y r i n s . V o l Academic  Theory.  IV,D.Dolphin,Ed.,  Press,New York,1979,p.61.  4. Jesson,J.P..NMR o f Paramagnetic M o l e c u l e s : P r i n c i p l e s and Applications;G.N.LaMar.Ed..Academic Press,New York, 1973, p.2. 5. Reference 3, p. 67. 6. Adapted  from:Antipas,A.;Buchler,J.W.;Gouterman,M.;Smith,P.  D.,J.Am.Chem.Soc.,100,3015(1978). 7. Goff,H.;LaMar,G.N.;Reed,C.A.,J.Am.Chem.Soc.,99,3641(1977). 8. R e f e r e n c e 3, pp.74. 9.Swift,T.J..NMR o f Paramagnetic M o l e c u l e s : P r i n c i p l e s and Applications;G.N.LaMar.Ed..Academic Press,New York, 1973, p. 53. 10. P a t t , S . , V a r i a n XL-300 NMR Advanced  Operations  Manual.Version 4.1,Varian A s s o c i a t e s , P a l o Alto,1984. 11. Earnshaw,A..Introduction t o Magnetochemistrv.Academic Press,London,1968. 12. LaMar,G.N..NMR o f Paramagnetic M o l e c u l e s : P r i n c i p l e s and A p p l i c a t ions;G.N.LaMar,Ed.,Academic 13. Hoard,J.L..Hemes and  Press,New York, 1973.  Hemoproteins.R.Chance,Ed.,Academic  65  Press,New York,1966. 14.  Morishima,I.;Shiro,Y.;Takamuki,Y.,J.Am.Chem.Soc.,106,  7666 (1984). 15. Barley,M.;Becker,J.Y.;Domazetis,G.;Dolphin,D.;James,B.R., J.Chem.Soc.,Chem.Commun.,19,982(1981). 16.Shimomura,E.T.;Phillippi,M.A.;Goff,H.M.;Scholz,W.F.; Reed,C.A.,J.Am.Chem.Soc..103.6778(1981). 17.Banwell,C.N..Fundamentals Ed.,McGraw-Hill  of Molecular Spectroscopy.2—  Books,Maidenhead,1972,p.112.  18(a).Maslowsky,E.,Jr..Vibrational Compounds.Wiley-Interscience,New L., p e r s o n a l  Spectra o f Organometallic York,1977,(b).Andersson,  communication.  19. Cotton,F.A.;Wilkinson,G..Advanced I n o r g a n i c Chemistry:A Comprehensive T e x t . 4 — E d . , I n t e r s c i e n c e Publishers,New York,1966,p.540. 20. Evans,D.F.,  J.Chem.Soc.,1959,2003.  21. Reference 11, p . 6. 2 2 . I b i d . , p . 35. 23.  Mulay,L.N.,Anal.Chem.,34,343(1962).  24. W e r t z , J . E . ; B o l t o n , J . R . . E l e c t r o n  Spin Resonance:Elemental  Theory and A p p l i c a t i o n s ; M c G r a w - H i l l Book Co.,New York, 1972,p.227. 2 5 . I b i d . , p . 241. 26.Walling.C..Free R a d i c a l s i n S o l u t i o n . W i l e y and Sons,New York,1957. 27(a).Collman,J.P.,.Barnes,C.E.;Swepston,P.W.;Ibers,J.A.;J.  66  Am.Chem.Soc..106.3500(1984),(b)James,B.R.;Dolphin,D.; Leung,T.W.;Einstein,F.W.B.;Willis,A.C.,Can.J.Chem.,62, 1238(1984). 28. W r a y , V . , A n n u a l Editor,Vol  Reports  10b,Academic  on NMR  Spectroscopy,G.A.Webb,  Press,New  York,1980.  29. P a l m e r , G . , B i o c h e m . S o c . T r a n s . , 1 3 , 5 4 8 ( 1 9 8 5 ) . 30.Shelly,K.;Bartczak,T.;Scheidt,W.R.;Reed,C.A.,Inorg.Chem., 34/4325(1985). 31. Q u r e s h i , A.M. ; H a r d i n , A. H. ; Aubke, F . , Can. J . Chem. ,49.,816(1971) .  67  Chapter IV: The Chemistry o f the RvpMOEP) complexes 9 and 10.  The o x i d a t i o n o f 9 and 10 i n C H C 1 2  a t room temperature  2  u s i n g e i t h e r mCPBA o r PhIO d i s p l a y e d two t r e n d s : a t low oxidant t o porphyrin r a t i o s  (<10:1), no r e a c t i o n was  observed  (the resonance f o r f r e e o x i d a n t c o u l d be e a s i l y observed u s i n g *H NMR)  and t h i s behaviour was  independent of r e a c t i o n  time o r r a t e o f s t i r r i n g . A t h i g h e r r a t i o s o f o x i d a n t t o porphyrin  (>15:1), t h e s e same c o n d i t i o n s r e s u l t e d i n b l e a c h e d  s o l u t i o n s w i t h concomitant l o s s o f the p o r p h y r i n ' s  NMR  resonances and o p t i c a l s p e c t r a . C l e a r l y , the macrocycle  was  b e i n g d e s t r o y e d by t h e o x i d a n t s , and the same r e a c t i v i t y observed f o r two-phase r e a c t i o n s u s i n g H 0 2  2  was  or t e r t i a r y -  b u t y l h y d r o p e r o x i d e i n aqueous media as o x i d a n t s . The attempted o x i d a t i o n o f cyclohexene i n C H C 1 2  2  (0.1 M)  u s i n g excess (>20x) mCPBA o r PhIO i n the presence o f 9 o r 10 (lxlO  - 3  M)  a t 19 °C d i d not r e s u l t i n any  oxidised  cyclohexene p r o d u c t s (as t e s t e d by GC), and the macrocycle was  s t i l l d e s t r o y e d . R e g r e t t a b l y , 9_ and JLO do not e x h i b i t  any  a b i l i t y t o c a t a l y s e the o x i d a t i o n o f t h i s o r g a n i c s u b s t r a t e . S o l u t i o n s o f 9 and 10 i n C H C 1 2  2  (lxlO  - 3  M) were unaf-  f e c t e d i n the l i g h t o r dark when exposed t o a i r . They were a l s o unchanged i n the presence o f t r a c e amounts o f water but the s p e c i e s were h y d r o l y s e d t o the u-oxo dimers (X=Br o r OH)  i n excess water  68  [Ru(OEP)X] 0 2  1  (xlOO) as s t u d i e d by H  NMR  (see  t o f i v e atmospheres of pure 0  Appendix A . I ) . Exposure  2  or  N 0 2  f o r two days a l s o r e s u l t e d i n unreacted s o l u t i o n s of 9 and JLO (again, l x l O "  3  M). Thus, these complexes are  inert  o x i d a n t s t e s t e d t o date. Heating a n a e r o b i c NMR (CDCI3,  lxlO"  4  The r e a c t i o n of 9 and 10 (lxlO""  borohydride  (Na S 0 ) 2  samples  a t 1 0 0 °C f o r two hours under l i g h t or d a r k  M)  c o n d i t i o n s l e d t o the thermal decomposition  dithionite  toward  2  4  in CH C1 2  (NaBH ) i n THF 4  M) w i t h excess sodium  or w i t h excess sodium  2  l e d t o the r a p i d f o r m a t i o n of  11  1  R u ( O E P ) ( C O ) as judged by the H A . I I . l ) . The source of CO  3  of the compounds.  NMR  spectrum  (see Appendix  f o r these r e a c t i o n s i s unknown b u t  c a r b o n y l f o r m a t i o n i s f r e q u e n t l y encountered  during  e x p e r i m e n t a t i o n . S o l u t i o n s of 9 and 10 i n C H C 1 2  exposed t o one atm of H  2  2  (lxlO  - 4  M),  f o r 12 hours showed no r e a c -  t i v i t y towards dihydrogen, as monitored by  visible  spectroscopy. The presence of the peak f o r the [Ru(OEP)]  2  dimer i n the  mass s p e c t r a o f 9 and 1 0 i n d i c a t e d t h a t the complexes were b e i n g reduced  i n the mass spectrometer. By h e a t i n g these com-  pounds (7 mg)  i n an a n a e r o b i c NMR  tube a t 200°C and  t o r r vacuum f o r one hour, the dimer was 1  r e g e n e r a t e d . The H  NMR  lxlO  quantitatively  of the p y r o l y s e d p r o d u c t d i d not have  any resonances due t o the s t a r t i n g m a t e r i a l and o n l y one resonance was  observed  - 5  H  m  ( f o r the d i m e r ) . Although the p r e s s u r e  i n the vacuum l i n e d i d i n c r e a s e d u r i n g c o n t i n u e d pumping ( i n d i c a t i n g t h a t a v o l a t i l e m a t e r i a l was  69  e v o l v e d ) , the  v o l a t i l e has not y e t been i d e n t i f i e d . The most l i k e l y sibility  i s halogen  lxl0~  production v i a a r a d i c a l  5  1/2 [ R u  •  2  process:  2h  torr,  IV  Ru (OEP) ( X )  pos-  I:E  (OEP)]  + 2 X*radicals  2  200°C X  The  above f i n d i n g s l e a d one 1  t o g u e s t i o n the o r i g i n of the  o x i d a n t f o r the r e v e r s e R u ^ — » R u  I V  preparative reaction.  U s i n g s t o i c h e i o m e t r i c amounts o f B r t o the R u  I V  2  2  as the o x i d a n t d i d l e a d  p r o d u c t s but w i t h s i d e - p r o d u c t s which made  purification difficult.  Chromatography under e i t h e r  anaerobic  o r a e r o b i c c o n d i t i o n s , u s i n g e i t h e r alumina o r s i l i c a  gel  ( a c t i v i t y I->-IV) w i t h a v a r i e t y of s o l v e n t systems (MeOH: CH C1 2  2  o r neat C H 3 C N o r neat MeOH), always r e s u l t e d i n decom-  posed p r o d u c t s . U s i n g excess t r a c e amounts o f X 2 ( g ) '  1  (P  H X  u r e  (g)» *  considered to contain  anhydrous HX^gj s h o u l d  be  c o l o u r l e s s but the gases o b t a i n e d from s u p p l i e r s have a f a i n t y e l l o w c o l o r ) gave c l e a n samples o f £ and 1 0 ; indeed, excess HF(g)  t o o x i d i s e the dimer d i d not g i v e the analogous  IV  R u ( O E P ) ( F ) 2 complex because HF^gj does not have any as a t r a c e i m p u r i t y . Ru  I I  -»Ru  I V  using  2  Another p o s s i b l e o x i d a n t f o r the  o x i d a t i o n was  Gaseous HX  thought t o be HX^gj  c o u l d p o s s i b l y o x i d i s e the  dimer, consequently  ^2 (g)  itself.  [Ru  I V  forming the R u ( 0 E P ) ( X )  70  2  I I  (0EP)]  2  compounds and  dihydrogen  (H ): 2  anaerobic conditions 4 HX  + [Ru  ( g )  I3:  (OEP)]  2  2  E»  •  H  2  (g)  S e v e r a l attempts were made t o d e t e c t H  +  2  u s i n g the  2  procedure: i n an i n e r t atmosphere g l o v e box, [Ru(OEP)]  2  dimer was  s i d e arm septum p o r t  2  following  2 0 mg  o f the  loaded i n t o an a n a e r o b i c f l a s k w i t h a (2 mL volume) s i m i l a r t o t h a t shown i n  f i g u r e I I . 3 . A s a t u r a t e d s o l u t i o n o f HX^ j g  was  I V  Ru (OEP)(X)  i n CH C1 2  (1  2  vacuum t r a n s f e r r e d i n t o the f l a s k c o n t a i n i n g the  and the r e s u l t i n g s o l u t i o n was  mL)  dimer  thawed t o a l l o w the reagents  t o r e a c t . Upon r e f r e e z i n g t o 77°K t o t r a p out the excess HX^gj and s o l v e n t , a 1 mL  sample o f the vapor phase  was  withdrawn u s i n g a g a s t i g h t s y r i n g e and i n j e c t e d d i r e c t l y the GC.  The  f o r m a t i o n o f ^2(g)  chromatography temperature,  ( C a r l e GC:  c  o  u  l  d  n  o  t  b  e  d e t e c t e d by  into  gas  6' Porapak Q column, 25°C oven  20 mL/min gas flow, 1 mL gas samples). I f ,  a c c i d e n t a l l y , the r e a c t i o n i s exposed  t o the a i r b e f o r e the  r e a g e n t s have had s u f f i c i e n t time t o r e a c t  (about 5 minutes),  the c o r r e s p o n d i n g u-oxo dimer  i s formed.  [Ru(0EP)X] 0 2  The  most l i k e l y source o f the o x i d a n t i n the p r e p a r a t i v e r e a c t i o n i s t r a c e halogen i n gaseous hydrogen In an attempt t o prepare  halide.  I V  Ru (0EP)(X')  2  e q u i v a l e n t s o f s i l v e r hexafluoroantimonate(V) mg,0.01 mmoles), and 9 o r 10 r e a c t e d i n CDC1  3  i n an NMR  6  (AgSbFg, 4  (4 mg,0.005 mmoles), were 1  tube and the H  71  (X'= S b F ) ,  spectrum  of  the  two  r e a c t i o n mixture was  o b t a i n e d immediately.  resonances  10 were not p r e s e n t i n the spectrum of  f o r 9 and  the r e a c t i o n mixture only one H  m  familiar  and o n l y one p o r p h y r i n product  resonance) was  a n a l y s i s of the new  The  observed. (11),  product  i n d i c a t e d t h a t i t was  a Ru  1 1 1  NMR  (that i s ,  Further spectroscopic  along w i t h m i c r o a n a l y s i s ,  complex w i t h o n l y one SbFg u n i t  per ruthenium. T h i s r e s u l t i s s u r p r i s i n g because i t i n d i c a t e s IV  t h a t e i t h e r Ru - has o x i d i s e d A g a Ru V),  3  1 1 1  product  I  (the A g / A g  1 1  1  1 1  to A g ,  thereby  generating  r e d u c t i o n p o t e n t i a l i s near -2  or t h a t s i l v e r a s s i s t s the h o m o l y t i c cleavage of the R u -  X bond  (giving R u  1 1 1  and X» r a d i c a l s ) . In l i g h t of the v e r y 1  h i g h energy needed t o o x i d i s e A g ,  the l a t t e r reason  l i k e l y the cause of the r e d u c t i o n  of  i s most  ruthenium t o R u  1 1 1  . The  exact mechanism i s unknown as y e t and more work i s needed i n t h i s area t o v e r i f y the  mechanism.  72  References  l.Sharpe,A.G..Halogen Chemistry.V. Gutmann,Ed.,Vol.1,Acedemic Press,New York,1967,pp.1-67. 2.Simons,J.H..Inorg.  Synth..H.S.Booth.Ed.,Vol.1,McGraw-  H i l l , N e w York,1939,p.135. 3.CRC Handbook o f Chemistry and Physics,R.C.Weast.Ed.,63— ed.,CRC Press,Boca Raton,1982,pp. D-162-7.  73  Chapter  V:Conclusions  The  and S u g g e s t i o n s  for Future  I I  a d d i t i o n of H X j  t o the [ R u ( O E P ) ]  ( g  Studies.  dimer r e s u l t s  2  I v  i n t h e f o r m a t i o n o f h i g h l y o x i d i s e d , n o v e l complexes o f R u . All  t h e data o b t a i n e d t o date  indicate consistently that  I V  these compounds a r e R u ( O E P ) ( X ) a triplet  state,  (9=Br,10=C1) complexes with  2  i n t e r m e d i a t e s p i n ground s t a t e e l e c t r o n i c  c o n f i g u r a t i o n , and a r e t h e f i r s t r e p o r t e d . The a l t e r n a t e R u  1 1 1  such ruthenium  7T-cation r a d i c a l  porphyrins formulation i s  r u l e d out, and t h e f i r s t Ru-X IR/RR bond s t r e t c h i n g f r e q u e n c i e s (KBr p e l l e t s ) have been a s s i g n e d i n Ru p o r p h y r i n s 1  (X=Br,179  - 1  cm" ;X=C1,289 c m ) . An a n a l y s i s of the r e l a t i o n s h i p between m e t a l - a x i a l l i g a n d / m e t a l - p o r p h y r i n bonding,  and t h e  1  c o r r e s p o n d i n g H NMR spectrum has been attempted. The h a l i d e i s p r e d i c t e d t o be a weak7T-donor (p7T-d7T donation) metal,  and consequently,  t h e Ru-porphyrin  l i g a n d - t o metal  charge  transfer  back-donation).  The i s o t r o p i c s h i f t  to the  bonding i s a l s o a  (instead of metal-to-ligand i s mainly due t o c o n t a c t  c o n t r i b u t i o n s b u t d i p o l a r r e l a x a t i o n i s t h e dominant r e l a x a t i o n mechanism. The o x i d a n t , r e s p o n s i b l e f o r t h e R u o x i d a t i o n i s t r a c e *2(g)  *  n H x  (g)  a  n  d  *  s n  o  t  e  i  t  n  e  r  t  n  i t s e l f o r a i r / 0 . Both 2 and i O appear t o be e a s i l y 2  by common r e d u c i n g agents not have t h e a b i l i t y i n t h e presence  1 1  e  to Ru H  I V  X  reduced  but a r e o x i d a t i v e l y i n e r t and do  t o c a t a l y s e t h e o x i d a t i o n o f cyclohexene  o f monooxygen sources such as mCPBA o r Phio.  S i m i l a r l y , i i i s formulated t o be  74  Ru  1 1 1  (OEP)(SbF )(THF) 6  r a t h e r than a R u SbF  6  T T - c a t i o n r a d i c a l . As w i t h o t h e r M(porp)  1 1  complexes, a j i - f l u o r o b r i d g e d Ru-F-SbF  t u r e i s f a v o r e d w i t h Vsb-F  6  "  c o n f i g u r a t i o n i s t h a t of a R u  5  0  1 1 1  5  type o f s t r u c -  _ 1  c m ( K u j o l ) . The e l e c t r o n i c , d  5  low s p i n  (S=l/2)  complex. The above compounds (9-11)  are e x c e l l e n t precursors f o r  f u r t h e r study i n h i g h o x i d a t i o n s t a t e Ru p o r p h y r i n chemistry because o f t h e i r ease of p r e p a r a t i o n and i n h e r e n t s t a b i l i t y . One example o f t h i s i s t h e s u b s t i t u t i o n o f t h e a l k y l s i n p l a c e o f t h e h a l i d e s t o form the c o r r e s p o n d i n g R u ( O E P ) ( R ) compounds ( R = C H , p h e n y l , C H ) . 3  h a l i d e f o r the SbF  2  6  u n i t may  5  1  2  A l s o , t h e s u b s t i t u t i o n o f an  form a R u  1 1 1  (porp) (X) complex »  and t h i s complex would be an e x c e l l e n t p r e c u r s o r (as 11 may be) f o r s t u d y i n g the c a t a l y t i c o x i d a t i o n o f o r g a n i c s u b s t r a t e s as d i s c u s s e d i n the I n t r o d u c t i o n .  References  1.  Sishta,C.;Ke,K.;James,B.R.;Dolphin,D.,J.Chem.Soc.,Chem. Commun.,787(1986).  75  1  Appendix I:The O x i d a t i o n Chemistry  o f Ru -  11  (OEP)(PPh ) (Br) . 5 . 3  The o r i g i n a l method developed by L e u n g  1  f o r t h e syn-  t h e s i s o f an oxo complex i n v o l v e d s t i r r i n g 5 (100 mg,0.1 mmoles) and mCPBA (100 mg,0.6 mmoles) i n dry, degassed  CH C1 2  2  f o r t h i r t y minutes under argon. A green product was then p r e c i p i t a t e d by adding c o l d hexanes, f i l t e r e d and d r i e d under vacuum. Based on v i s i b l e and ESR s p e c t r a , Leung e t a l . sugIV  g e s t e d a [0=Ru (OEP+.)]Br f o r m u l a t i o n . procedure,  2  Following h i s  a brown powder was o b t a i n e d which was a n a l y s e d by  s p e c t r o s c o p i c t e c h n i q u e s . The v i s i b l e spectrum product  (12.)  was broad and d i f f u s e  (A  m a x  = 3 8 4 (log  6 =4.80),502(3.73),and 604(3.62) nm); t h e mass d i s p l a y e d peaks f o r o n l y 0=PPh ing  i n f r a r e d band f o r Uo=p  NMR spectrum  w  a  s  3  3  spectrum  (278m/e), and t h e correspond- 1  p r e s e n t a t 1190 c m .  o f 12, had two resonances  f o r t h e 0=PPh  o f t h e brown  3  1  The H  a t 7.15 and 7.58 ppm  protons and t h r e e p r o t o n s i g n a l s a t 9.35, 4.1-  4.4, 1.85 ppm ( f o r - 1 ^ , -CH  2  (two s i g n a l s ) , and -CH  3  r e s p e c t i v e l y ) f o r OEP. The %N o b t a i n e d from m i c r o a n a l y s i s was v e r y low, and was c o n s i s t e n t w i t h t h e o t h e r d a t a which sugg e s t e d c o n t a m i n a t i o n o f 12 w i t h 0=PPh . 3  Chromatography was attempted 0=PPh  3  alumina  i n order t o separate the  from t h e p o r p h y r i n r e s i d u e , u s i n g e i t h e r s i l i c a g e l or ( a c t i v i t y I-IV) and e l u t i n g w i t h a CH Cl /MeOH 2  vent system. The NMR spectrum  o f t h e CH Cl /MeOH 2  2  2  (1/25)  e l u a t e i n d i c a t e d t h a t two s p e c i e s were p r e s e n t : 0=PPh  76  sol-  3  and a  diamagnetic  p o r p h y r i n complex with t h e same chemical  shifts  as 12. T h i s s o l v e n t system was t h e only one found t o e l u t e all  o f t h e p o r p h y r i n product; u n f o r t u n a t e l y , i t c o - e l u t e s the 1  phosphine o x i d e . The H NMR and v i s i b l e s p e c t r a o f 12. were i d e n t i c a l t o those o f the ji-oxo dimer [Ru(OEP)Cl] ° r e p o r t e d 2  by Collman  (see F i g u r e s A l . 1 and A I . 2 ) .  4  A room temperature t i t r a t i o n o f 5 ( l x l 0 ~  4  MJ i n CgD  6  w i t h o n e - e l e c t r o n e q u i v a l e n t a l i q u o t s o f mCPBA i n C D (the 6  6  r e a c t i o n b e i n g f o l l o w e d by NMR) showed t h a t a s m a l l amount (<5%)  o f a second p o r p h y r i n compound was formed upon a d d i t i o n  of more than t e n e q u i v a l e n t s o f mCPBA. That t h i s minor product  i s n o t p r e s e n t i n samples which have aged o r been  p u r i f i e d by chromatography t i t r a t i o n carried  i s significant.  Indeed, t h e same  out a t -60 °C gave a b e t t e r y i e l d  (10%) of  the minor product as judged  by NMR. Due t o t h e complexity of  the p u r i f i c a t i o n procedure,  and t h e low y i e l d s  product,  f o r t h e minor  a new p r e c u r s o r which had no o x i d i s a b l e a x i a l  l i g a n d s was sought. A NMR t i t r a t i o n s i m i l a r 11  for Ru (OEP)(CH CN) 3  was  2  t o t h a t done f o r 5 was attempted  (2) t o t e s t whether a R u  1 1 1  precursor  r e a l l y needed t o study h i g h e r o x i d a t i o n s t a t e s o f Ru. At  e i t h e r 19 °C o r -60 °C, a t i t r a t i o n o f 1 ( l x l O " mCPBA i n C D 6  6  and C D C 1 2  2  4  M) with  (done i n a septum-capped NMR tube)  l e d t o t h e q u a n t i t a t i v e formation o f t h e p-oxo dimer [Ru(OEP)X] 0. Because t h e R u  I V  2  J J - O X O  dimers a r e diamagnetic,  the s h i f t s due t o t h e t h r e e s e t s o f OEP protons w i l l not v a r y  77  1  F i g u r e A . I . I : The H NMR spectrum o f [Ru(OEP) (X) ] 0 i n C D , 2  6  6  X  300 MHz a e r o b i c sample a t 19 °C. (Note: t h e H NMR spectrum o f 12 i s i d e n t i c a l t o t h a t o f t h e spectrum below with t h e e x c e p t i o n t h a t no mCPBA peaks a r e present.)  CO  —" 3 0 0  —  «  *oo  1——.  — 5  WAVULCWTTH. i w  0  0  1— b  0  0  g r e a t l y as d i f f e r e n t a n i o n i c l i g a n d s a r e s u b s t i t u t e d , and t h e presence o f t h e d i s t i n c t i v e ^-H NMR p a t t e r n  9.80,4.20-3.80(two  s e t s ) , and 1.90 ppm (-JL^, -CH , and -CH , r e s p e c t i v e l y ) i s 2  3  r e p r e s e n t a t i v e o f these b r i d g e d dimers. Thus, i t i s apparent t h a t a p r e c u r s o r which can be e a s i l y o x i d i s e d by oxygen-free reagents ( t o a v o i d ja-oxo dimer formation) would g r e a t l y a i d the s y n t h e s i s o f h i g h o x i d a t i o n complexes o f Ru.  References.  1.Leung,T.W., p e r s o n a l communication. 2(a).Dolphin,D.;James,B.R.;Leung,T.W.,Inorg.Chim.Acta,79,25 (1983),(b)Leung,T.W.;James,B.R.;Dolphin,D.,Inorg.Chim.Acta, 29,180(1983). 3. Moyer,B.A.;Sipe,B.K.;Meyer,T.J.,Inorg.Chem.,10,1475(1981). 4. Collman,J.P.;Barnes,C.E.;Brothers,P.J.;Collins,T.J.;0zawa, T.;Gallucci,J.A.;Ibers,J.A.,J.Am.Chem.Soc.,106,5151(1984).  80  Appendix.II: T a b u l a t i o n o f S p e c t r o s c o p i c Data f o r Ru P o r p h y r i n complexes.  T a b l e A . I I . l : T a b u l a t i o n o f -"-H NMR  RufOEP) fL) fL')  CH^  CH  axial liaand  3  L^EtOJ^L^CO, - 2  9.74(S)  4.00(q)  2.03(t)  L=L»=PPh ,^ 2  9.16(S)  4.20(q)  1.70(t)  3  3  L=vacent,L•=PPh ,- 4 3  L=Br,L'=PPh ,^ 3  5  9.50(S) 9.90(S)  3.92(q)  Data.  2.02(t)  f  8.85,18.5(m) 0.53(br)  L=L'=py,^ 6  9.74(S)  3.97(q)  2.03(t)  L=L'=CH CN,fe 7  9.96(S)  3.98(q)  1.95(t)  Dimer,^ 8  10.2(S)  11.2,26.1(111)  L=L'=Br,— 9  3.50(br)  60.1(br) 7.10(br)  L=L'=C1,^ 10  8.20(br)  59.7(br) 6.34(br)  3  e  g h  -2 .70,CH CN 3  3.52(t)  L=THF,L'=SbFg,— 11 6.24(br) 17.5,3.80(br) 1.89(br) i^  — C D (7.15 6  6  ppm), a e r o b i c sample.  — CgDg(7.18 ppm), a n a e r o b i c sample. — CDC1 (7.25  ppm), a e r o b i c sample.  — CDC1 (7.25  ppm), a n a e r o b i c sample.  3  3  — phenyl resonances:4.20(d),o-H;6.2-6.8(m),m-,p-H. — phenyl  resonances:4.45(m),o-H;6.45(m),m-H;6.68(d),p-H.  3 phenyl  resonances:2.72(m),p-H;14.6-14.8,o-,m-H.  — p y r i d i n e resonances:2.26(d),m-H;4.17(m),o-H;4.33(d),p-H. — THF resonances:2.00,-1.05.  81  T a b l e A . I I . 2 : T a b u l a t i o n o f Resonance Raman/Infrared  -1  compound  frequency(cm )  Ru (CO) , 1  2058 , 2020,1995  3  1 2  assignment,"})  C=0  Ru(OEP)(CO)(EtOH), 2  1922  C=0  Ru(OEP)(CH CN) , 2  2260  C=N  3  2  Data.  R U ( O E P ) ( B r ) , 9_  179  Ru-Br  Ru(OEP)(Cl) , I Q  289  Ru-Cl  650  Sb-F  2  2  Ru(OEP)(THF)(SbF ), 6  H  82  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059662/manifest

Comment

Related Items