UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The determination of physical properties of the cis and trans isomers of decahydronaphthalene Davenport, Charles Henry 1939

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1939_A7_D2_D3.pdf [ 15.43MB ]
Metadata
JSON: 831-1.0059276.json
JSON-LD: 831-1.0059276-ld.json
RDF/XML (Pretty): 831-1.0059276-rdf.xml
RDF/JSON: 831-1.0059276-rdf.json
Turtle: 831-1.0059276-turtle.txt
N-Triples: 831-1.0059276-rdf-ntriples.txt
Original Record: 831-1.0059276-source.json
Full Text
831-1.0059276-fulltext.txt
Citation
831-1.0059276.ris

Full Text

o f t h e C i s and T r a n s of  Isomers  Decahydronaphthalene."  by  C h a r l e s H.  Davenport  A Thesis Submitted i n P a r t i a l  Fulfillment  of the Degree  of  Master of A p p l i e d Science i n Chemical  The U n i v e r s i t y  of B r i t i s h  1938 -  1939.  Engineering  Columbia  Table of Contents,  Part 1  General Summary of Previous  Investigation  .  Page 1  1. P u r i f i c a t i o n of T e c h n i c a l D e c a l i n ' U s e d . 4 2. The R e c t i f i c a t i o n Apparatus. .......................... ^ . . 5 'a) The R e c t i f y i n g C o l u m n . 6 ;b) The Condensing U n i t . 7 c ) The R e c e i v i n g Unit 7 d) The Pressure Manometers............................. 7 3. The Separation of Gis and Trans D e c a l i n . . . . . . . . . . . . . . . . . . . 8 'a) The Experimental Prodecure. 8 ^b) The Experimental Results....,..'..................... 9 4. The P i n a l P u r i f i c a t i o n of Gis and Trans D e c a l i n by Fractional Crystallization......................... . 14 (a) The Apparatus and Experimental Procedure............ 14 (b) Experimental Results f o r Gis D e c a l i n , . . . . . . . . . . . . . . . 15 (c) Experimental R e s u l t s f o r Trans Decalin....16 5. Results of the 2nd S e r i e s of R e c t i f i c a t i o n s and C r y s t a l l i z a t i o n s of Trans D e c a l i n . . . . . . . . . . . . . . . . . . . 17  Part  11  Section. I V a r i a t i on with Temperature of Density.....". 1 .,»-.„, a Observati ons and C a l c u l a t i o n s f o r C i s D e c a l i n . , . . , , . ;b Observati ons and C a l c u l a t i o n s f o r Trans D e c a l i n , . . . , Section II V a r i a t i on With Temperature of V i s c o s i t y . . . . . . . . . . . a Observati ons and C a l c u l a t i o n s f o r C i s D e c a l i n . . . , , . , ;b Observati ons and C a l c u l a t i o n s f o r Trans D e c a l i n . . , . . Section m V a r i a t i on With Temperature of Surface Tension Observati ons and C a l c u l a t i o n s f o r C i s D e c a l i n . . . . . . . Observati ons and Calculation?, f o r Trans D e c a l i n . . . . ,  21 22 24 25 25 27 28 29 30  Part  111  Page The M a t h e m a t i c a l T r e a t m e n t o f t h e E x p e r i m e n t a l R e s u l t s . . . . . . . 1. A S t u d y o f t h e P l o t t e d R e s u l t s  f o r the P h y s i c a l  properties  2. A S t u d y o f t h e P l o t t e d R e s u l t s  for the P h y s i c a l  Properties  3. 4. 5„ 6. 7. 8.  The V a r i a t i o n w i t h T e m p e r a t u r e o f D e n s i t y . . . The V a r i a t i o n w i t h T e m p e r a t u r e of S u r f a c e T e n s i o n . D e t e r m i n a t i o n of Parachors The T o t a l and M o l e c u l a r S u r f a c e E n e r g i e s The L a t e n t H e a t s o f V a p o r i z a t i o n and F u s i o n . . . . . . . . . . . . . . . The V a r i a t i o n w i t h T e m p e r a t u r e o f V i s c o s i t y Part  31  35 38 41 45 47 49  IV  Information Obtained from F u r t h e r R e c t i f i c a t i o n Crystallization  and  52  1 . R e s u l t s o f t h e R e c t i f i c a t i o n of C i s and T r a n s D e c a l i n 2 . The F i n a l P u r i f i c a t i o n o f C i s and T r a n s - " D e c a l i n "by • •* Fractional Crystallization ( a ) A p p a r a t u s and E x p e r i m e n t a l P r o c e d u r e (bJExperimental Results for Cis Decalin. ( c J E x p e r i m e n t a l R e s u l t s f o r Trans D e c a l i n . . . .  52 57 57 57 58  Part V A S t u d y o f t h e E f f e c t o f H e a t on t h e D e c o m p o s i t i o n C i s and T r a n s D e c a l i n ( a ) The E x p e r i m e n t a l P r o c e d u r e (b) R e s u l t s of the Heat T r e a t m e n t . .  of  60 61 63  Table of Diagrams  1. Graph Showing V o l t s Across Heating C o i l s f o r A d i a b a t i c Operation of the R e c t i f y i n g Column ..... 2. Apparatus f o r Vacuum, F r a c t i o n a l D i s t i l l a t i o n of D e c a l i n , 3. Graph Showing V a r i a t i o n of Index of R e f r a c t i o n with Composition. 4. Apparatus f o r P u r i f i c a t i o n by R e c r y s t a l l i z a t i o n of the Isomers of D e c a l i n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Apparatus f o r Determination of Density, V i s c o s i t y and Surface Tension of the Isomers of D e c a l i n . . . . . . . . . . . 6„ Graph Showing V a r i a t i o n with Temperature of Surface" """ Tension, Density and V i s c o s i t y of Gis D e c a l i n . . . . . . . 7 . Graph Showing V a r i a t i o n with Temperature of Surface Tensions Density and V i s c o s i t y of Trans D e c a l i n . . . . . 3. Graph Showing A p p l i c a t i o n of Law of C a i l l e t e t and llathias to Isomers of D e c a l i n . ,.. 9. Graph Showing Ferguson's Equation A p p l i e d to the Isomers of Decalin.................................. . 10. Graph Showing V a r i a t i o n w i t h Temperature of Molecular Surface Energy of Isomers of Decalin..,......,.'.,... 11. Graph Showing B a t s c h i n s k i ' s Equation A p p l i e d to the Isomers of D e c a l i n .  {  6 7 9 14 21 31 34 37 42 47 51  1.  Part  During the l a s t  few y e a r s  done on t h e h y d r o c a r b o n , decalin),  as i t  i n at l e a s t  c o n s i d e r a b l e r e s e a r c h has b e e n  decahydronaphthalene,  has been e s t a b l i s h e d t h a t t h i s  two i s o m e r i c f o r m s ;  "drawback t o a l l structure lies  l._  investigation i n the f a c t  (Ci6^18--abbreviate compound  t h e c i s and t h e t r a n s .  that  t h e two f o r m s a r e v e r y  and a l s o t h a t  of p a r t i a l  there i s  t h a n two i s o m e r s p r e s e n t . research i s  investigation  The f i r s t was t h a t forms.  1  c o n v e r s i o n o f one f o r m to  a possibility  of the c i s in this  there the  of t h e r e b e i n g more  S i n c e the u l t i m a t e aim of the  and t r a n s ,  following  a brief  three  summary  f i e l d w i l l now be p r e s e n t e d . ••  who p o s t u l a t e d t h e p o s s i b i l i t y  The e x i s t e n c e o f t h e s e ,  different  separation  p r e d i c t i o n of the e x i s t e n c e of isomers of  of M o h r ,  definitely  difficult  to determine the v a r i a t i o n w i t h temperature of  of the p h y s i c a l p r o p e r t i e s of p r e v i o u s  The  isomeric  t h e more c o m p l i c a t e d when we c o n s i d e r t h a t  i s always a p o s s i b i l i t y other,  The g r e a t  i n t h i s f i e l d regarding the  t o s e p a r a t e f r o m one a n o t h e r i n t h e p u r e s t a t e . a p p e a r s t o be a l l  exists  of two  decalin stable  t h e c i s and t r a n s , h a s now b e e n  e s t a b l i s h e d , b u t no agreement h a s y e t b e e n r e a c h e d b y investigators  as t o t h e p h y s i c a l and c h e m i c a l  properties  2 of each.  A s h o r t time l a t e r ,  were p o s s i b l e f o r  Wightman  showed t h a t f i v e  isomers  decalin.  I n 1 9 2 4 , r e s e a r c h on t h e s u b j e c t was a d v a n c e d b y  Willstatter  3  and S e i t z  who r e p o r t e d t h a t t h e y h a d p r e p a r e d t h e c i s f o r m  1. M o h r , J . •, p f y . Chem., 9 8 , 3 1 5 , (1918) 1 0 3 , 3 1 6 , (1922) 2. Wightman, J . Chem. S o c . , 1 2 7 , 1421 (1925). 3 . W i l l s t a t t e r and S e i t z , B e r i c h t e , 5 7 B . , 683-4 (1924).  in  s i x d i f f e r e n t ways a t t e m p e r a t u r e s r a n g i n g f r o m 2 0 - 8 0 ° G . product i n a l l units tive  c a s e s d i d n o t show v a r i a t i o n s  i n the 4 t h decimal place f o r indices.  or t r a n s .  Pollok  1  catalyst  g r e a t e r than a few ,  the d e n s i t i e s  I n t h e same y e a r , N . 0 . Z e l i n s k y  he had i s o l a t e d a 3 r d i s o m e r ; cis  either  that  is,  of aluminum b r o m i d e , Also  cis  one d i s t i n c t  from  As p r e v i o u s l y  c o u l d be t r a n s f o r m e d  they claimed that  either  Turova-  stated, different  investigators  into  do n o t  presents  the f o l l o w i n g  For  W . Huckel  valuesJ  d|° »  0  8695  ,_20 1.46958 ir . 20 1.47950 % " D  *  .8940  F ,P.  B  ^36°0  s  P.P.  * -51°C  A c c o r d i n g t o H u c k e l . , H e r z ° a p p e a r s t o have b e e n t h e f i r s t attempt the s e p a r a t i o n of t h e isomers by f r a c t i o n a l  to  distillation.  A l t h o u g h H e r z was u n s u c c e s s f u l , h i s methods s u g g e s t e d  possibilities  w h i c h were l a t e r r e a l i z e d i n t h e r e s e a r c h work c a r r i e d on a t University  of B r i t i s h  the  Columbia.  At t h i s U n i v e r s i t y ,  t h e f i r s t work on t h i s  c a r r i e d on b y L. M. K i r k , 4  1. 2. 3. 4.  the  agree  of the isomers.  i n d e x o f r e f r a c t i o n and f r e e z i n g p o i n t ,  &2  a  process.  density,  decalin  that  o t h e r i s o m e r s of d e c a l i n were  a s t o t h e p h y s i c a l and c h e m i c a l p r o p e r t i e s  decalin  refrac-  announced  F u r t h e r r e s e a r c h b y Z e l i n s k y and M. B.  formed d u r i n g the t r a n s f o r m a t i o n  Cis  1  or  i n 1 9 2 5 , showed t h a t a t 1 0 0 ° C . i n t h e p r e s e n c e o f  trans form.  Trans  Their  compound was  who, u s i n g d e c a l i n p r e p a r e d b y  Z e l i n s k y , N . 0 . and T u r o v a - P o l l a k , M. B . , B e r i c h t e , H u c k e l , W . , A n n a l e n der Chemie; 4 4 1 , 1 (1925) Herz, Z. P h y s i c s , Chem. 1 0 1 , 269 ( 1 9 2 2 ) . K i r k , L. M . , B. A . S c . , T h e s i s ( 1 9 3 5 )  58B.,  1292-98 (1925),  3.  D. M a n l e y  by r e d u c t i o n of  1  s e p a r a t i o n of the c i s rectification if  tetralin,  and t r a n s  obtained a  isomers.  partial  The method u s e d was  a t 100 mms. p r e s s u r e , b u t i t was l a t e r  t h e r e c t i f i c a t i o n were a t 10 mms. p r e s s u r e ,  w o u l d be o b t a i n e d s i n c e t h e d i f f e r e n c e two i s o m e r s w o u l d b e much i n c r e a s e d . at the h i g h e r p r e s s u r e s ,  thought  a better  separati  in b o i l i n g point  of  ment i n s i d e t h e d e c a l i n  that  s e t up i n  column, are apt to b r i n g about d e c o m p o s i t i o n or p o s s i b l y  the  rearrange  molecule.  K i r k ' s w o r k was s u p p l e m e n t e d i n t h e same y e a r b y t h a t W. P.  Cornett  c i s and t r a n s  who c a r r i e d o u t t e s t s  i n various mixtures  isomers at temperatures  the presence of a c a t a l y s t . t h a t c i s was changed i n t o  g r e a t e r a t 100°C t h a n a t 2 0 ° C . was o b t a i n e d f o r  of  of  o f 20°C and 1 0 0 ° C ,  the  without  T h i s work i n d i c a t e d w i t h o u t  trans,  doubt  t h e r a t e o f change b e i n g much H o w e v e r , no c o n c l u s i v e  the r e v e r s e a c t i o n ,  evidence  the changing of t r a n s  into  CIS, The i d e a c o n c e r n i n g t h e e f f e c t e x p e r i m e n t e d w i t h b y R. D. W a l k e r W. P.  Seyer , 4  pressure, made.  3  o f l o w e r p r e s s u r e was now in conjunction with  Prof.  T h e i r method c o n s i s t e d i n r e c t i f i c a t i o n a t 10 rams,  of t e c h n i c a l d e c a l i n .  Selected fractions  In a l l ,  ten r e c t i f i c a t i o n s  o f h i g h p e r c e n t a g e c i s and t r a n s  t h e n r e c r y s t a l l i z e d u n t i l no f u r t h e r  change i n f r e e z i n g  were were  point  « • • « •  1, 2. 3, 4.  on  the  A l s o i t was r e a l i z e d  the h i g h e r temperatures  that  M a n l e y , U., B.A. S c , , T h e s i s "(1934) C o r n e t t , W. P., B. A. S c . , T h e s i s (1935) W a l k e r , R. D . , Iff. A. S c . , T h e s i s ( 1 9 3 7 ) ' ~ ; S.eyer, W. P., A s s o c . P r o f , i n Ghem. E n g . , U n i v e r s i t y o f B.  C.  4.  c o u l d "be d e t e c t e d ,  the r e s u l t  o f t h i s b e i n g a b o u t 150 c . c .  of  each i s o m e r i n what was t h o u g h t t o b e a f a i r l y h i g h s t a t e purity.  .The v a l u e s  are tabulated  they obtained f o r  the p h y s i c a l  constants  thuss Cis  Freezing Point Density  of  (°C)  -43.19-0.2  (Dg )  Index' o f R e f r a c t i o n  (N^Q)  o f t h e two i s o m e r s ,  O  .8699.  1.48113  eutectic  temperature l i e s  the r e s u l t s  1.46968  various  i n d i c a t i n g that  b e t w e e n - 6 0 ° and - 7 0 ° C .  the  Also for  measurements w e r e made o f \ d e n s i t y a n d  index.  Decalin  —31.29- 0 2  o f f r e e z i n g p o i n t s were made' f o r  mixtures  same'mixturesj  Trans  .8963  0  Determinations  Decalin  these  refractive  '  •  The above h a s b e e n a p r e s e n t a t i o n of t h e m a i n a v a i l a b l e on t h e s e i s o m e r s up t o t h e p r e s e n t how we o b t a i n e d s u b s t a n t i a l  time.  amounts of  The f o l l o w i n g w i l l  each pure isomer by  t h e W a l k e r - S e y e r m e t h o d , and f i n a l l y my d e t e r m i n a t i o n of viscosity  and s u r f a c e  1. P u r i f i c a t i o n  t e n s i o n over a temperature  data show •  following  density,  range.  of the T e c h n i c a l D e c a l i n _ U s e d .  The sample o f d e c a l i n r e c e i v e d f r o m t h e Eastman K o d a k L a b o r a t o r i e s was y e l l o w - o r a n g e impurities components,  in color,  o f an a r o m a t i c n a t u r e .  and c o n t a i n e d  To remove t h e s e  various  objectionable  s u c h a method as t h e f o l l o w i n g was u s e d .  5  About 2 l i t r e s thoroughly acid.  o f sample were m e a s u r e d o u t and s h a k e n  i n t h e c o l d w i t h 400 c . c .  After  a l l o w i n g the l a y e r s  was drawn o f f  of c o n c e n t r a t e d  to s e p a r a t e ,  sulphuric  the b l a c k a c i d  layer  and d i s c a r d e d ; t h e u p p e r l a y e r was c o l l e c t e d and  s u b j e c t e d t o a second, s i m i l a r  treatment.  A t o t a l of t h r e e s u c h -••  a c i d t r e a t m e n t s was r e q u i r e d b e f o r e t h e sample a p p e a r e d  practically  colorless. To remove a c i d f r o m t h e s a m p l e , o f 10% s o d i u m c a r b o n a t e i n both l a y e r s , separated,  solution,  even a f t e r  it  was now s h a k e n w i t h 100  a persistent milkiness  standing overnight.  solution.  The l a y e r s  T h i s again produced m i l k i n e s s ,  gave w e l l - d e f i n e d l a y e r s .  After  separating again,  l a y e r was t e s t e d w i t h 2 d r o p s of p h e n o l p h t h a l e i n , pink color  showing t h a t a l l  s e v e n t i m e s w i t h 200 c . c . persisted after The f i n a l  this  portions  by f i l t e r i n g  of w a t e r .  s t e p was t o remove a l l  of h e a v y f i l t e r  o f 3% but  the bottom the  resulting  i t was washed  Slight  milkiness  treatment.  T h i s was a c c o m p l i s h e d b y f i r s t ,  chloride.  were  a c i d had been d e s t r o y e d .  l o w i n o r d e r t o r e n d e r t h e sample n e u t r a l ,  still  remaining  and t h e u p p e r l a y e r was now s h a k e n w i t h 200 c . c .  sodium h y d r o x i d e  traces  filtering  of w a t e r and m i l k i n e s s .  through a s i n g l e  p a p e r t o remove t h e b u l k of t h e w a t e r ,  through a double sheet  sheet  and s e c o n d ,  c o n t a i n i n g anhydrous  calcium  Our sample o f d e c a l i n now a p p e a r e d as a c o l o r l e s s  2 . The R e c t i f i c a t i o n  liquid.  Apparatus.  The a p p a r a t u s u s e d f o r t h e r e c t i f i c a t i o n s t h e same as t h a t  c.c.  was  essentially  employed b y R. D. W a l k e r and P r o f . W. P .  Seyer.  9  6,  The c h i e f  improvements  (a) the use of  e l e c t r i c heaters  h e a t i n g the column. w i t h the r e s u l t  c o n s i s t e d i n the  followingj  i n p l a c e o f gas b u r n e r s  T h i s r e d u c e d t h e d a n g e r of h e a t i n g  t h a t we c o u l d h e f a i r l y  for  surges,  safe i n i n t e r p r e t i n g  ... *,  t e m p e r a t u r e c h a n g e s a t t h e t o p o f t h e column a s b e i n g due t o i n the c o m p o s i t i o n of the l i q u i d d i s t i l l i n g s e p a r a t i o n of f r a c t i o n s (b)  c o u l d be  over.  Hence  i n s u c h a manner  t h a t an a b s o l u t e vacuum c o u l d be m a i n t a i n e d a t a l l  t i m e s above  the  t h e a p p a r a t u s was r u n c o n t i n u o u s l y  day  tube.  ( c ) when i n o p e r a t i o n , and n i g h t u n t i l  improved  expected.  t h e m e r c u r y manometer was r e c o n s t r u c t e d  mercury i n the c l o s e d  changes  the c o m p l e t i o n of the r e c t i f i c a t i o n  of t h e  decalin  charge. The f o l l o w i n g d e s c r i p t i o n , details  of the apparatus  a l o n g w i t h the diagram, gives  used.  ( a ) The R e c t i f y i n g C o l u m n - - T h i s  c o n s i s t e d of a g l a s s  1 i n c h i n d i a m e t e r and 95 i n c h e s l o n g , w i t h a. 3000 c . c . b l o w n on i t s bulb.  lower end.  Except f o r  the  A small i n l e t  tube,  glass  t u b e was a t t a c h e d t o  bulb  the  t h e h e a t i n g s u r f a c e a t t h e b o t t o m and f o r  a  s m a l l peep h o l e i n t h e ; s i d e o f t h e b u l b , b o t h column and b u l b were c o m p l e t e l y l a g g e d w i t h a s b e s t o s . f o r heat l o s s e s  to t h e a t m o s p h e r e ,  w i r e were wound i n p a r a l l e l  Also,  i n order to  two h e a t i n g c o i l s  of  a b o u t t h e column n e x t t o t h e  compensate nichrome glass,  one c o i l  c o v e r i n g t h e t o p , and t h e o t h e r t h e b o t t o m h a l f  column.  The a c c o m p a n y i n g g r a p h , r e p r o d u c e d f r o m t h e r e s u l t s  R. D. W a l k e r and P r o f .  W. P .  Seyer,  shows  of  the  the v o l t s r e q u i r e d  o f • • •* across  H 1j  • i  'i  G r iph Showinq Volfe across \ leafing Coils •for Aciiatx itic Operator i of Hie Rec Jrfyina Colurr m • . .. •  • • ; ' • • • < ;  |  4  .  70  e  '  M ,|  (  .  -  • '•  5  lop of Inferior| of Column (°  1  E  C  ~ . •  -  \—  ..„•  ' ,  :  i  i  s  j  emperafure D fference betw  'I 1  1  ,  •  10  1  )  Volls aero ss Heating G ills  20  1  1 ••: If  • ••  •  i  21  • -• ' -. • •  }  :  •  ••• i j  !j  i  7.  the double coi.l i n o r d e r to m a i n t a i n a d i a b a t i c interior jack  o f t h e colll^was p a c k e d w i t h N o . 18  operation.  The  galvanized-iron  chain. ( b ) The C o n d e n s i n g U n i t - ~ B I o w n on t o t h e s i d e o f t h e  column  a few i n c h e s f r o m t h e t o p , was t h e c o n d e n s i n g u n i t .  T h i s was  made up o f two r e f l u x  condensers j o i n e d i n p a r a l l e l ,  and  from the f o o t of t h i s  c o m b i n a t i o n was a c a p i l l a r y  w h i c h t h e p r o d u c t was t a k e n o f f . into  Also,  leading  tube through . • »  a t h e r m o m e t e r was  t h e t o p o f t h e c o l u m n , e x t e n d i n g down as f a r as t h e  inserted outlet  tube to the condensers.  • ..  ( c ) The R e c e i v i n g U n i t - - T h i s  apparatus,  was made up o f f i v e r e c e i v i n g b u l b s , the bottom of a g l a s s  casing.  c a s i n g and f u s e d on t o i t the condensers, discharge  spout.  all  joined separately  this  a t t h e t o p , was t h e p r o d u c t t u b e f r o m  t h e l o w e r end of t h e t u b e p o s s e s s i n g a s m a l l The s p o u t c o u l d b e r o t a t e d f r o m one r e c e i v i n g ,  the r e s u l t being that  on a p i v o t .  outside the  glass  t h e magnet a t t r a c t e d s m a l l  b a r s a t t a c h e d to the d i s c h a r g e t u b e , circularly  to  Running through the c e n t r e of  b u l b t o t h e n e x t b y m o v i n g an e l e c t r o m a g n e t casing,  as t h e d i a g r a m shows,  iron  the whole then moving  To make s u r e t h a t  during  distillation  t h e d i s c h a r g e s p o u t w o u l d n o t wander o u t o f p o s i t i o n when onceset f o r a p a r t i c u l a r b u l b , s i d e of the  a permanent magnet was s t r a p p e d t o  casing.  ( d ) The P r e s s u r e M a n o m e t e r s - - A m e r c u r y manometer measuring absolute pressure i n the apparatus, sulphuric  the  and a  for  differential  a c i d manometer f o r d e t e c t i n g s m a l l f l u c t u a t i o n s  in  8.  pressure,  were e m p l o y e d .  as the f o r m e r .  The l a t t e r was 7 . 3 t i m e s as  sensitive  The m e r c u r y manometer was o n l y u s e d a t t h e  b e g i n n i n g , of a r u n u n t i l p r e s s u r e t h e n t h e s t o p c o c k on one l i n k  e q u i l i b r i u m was  -  established-;  o f t h e a c i d manometer was c l o s e d ,  and f u t u r e p r e s s u r e c h a n g e s w e r e o b s e r v e d on t h i s  scale.  3 , The S e p a r a t i o n o f C i s and T r a n s D e c a l i n . ( a ) The E x p e r i m e n t a l P r o c e d u r e - - A s r e c t i f i c a t i o n was made c o n t i n u o u s ; d e c a l i n used i n t h e column b u l b , on day and n i g h t u n t i l i n the b u l b .  that i s ,  for  t h e r e c t i f i c a t i o n was  a l l but a l i t t l e  l i q u i d residue  condenser water temperature,  carried remained temperature,  and a l s o o f  I n t h i s way we were a b l e t o m a i n t a i n a d i a b a t i c  o f t h e c o l u m n , and o b t a i n good s e p a r a t i o n of t h e v a r i o u s Moreover,  it  difficulty  time.  fractions.  t o 10 mms. o f m e r c u r y ) , b u t  was e x p e r i e n c e d h e r e , f o r  equilibrium,  operation  e n a b l e d u s t o k e e p good c h e c k on t h e p r e s s u r e  was k e p t as c l o s e a s p o s s i b l e  each  each b a t c h o f  R e a d i n g s were made e v e r y , h o u r o f v a p o u r  room t e m p e r a t u r e , pressure.  previously stated,  (which little  once t h e l e v e l s h a d come t o  they u s u a l l y would remain constant f o r hours at  Slight variations  i n p r e s s u r e were c o r r e c t e d f o r  a  by  a d j u s t i n g a stopcock which connected the apparatus through a d r y i n g tube to the atmosphere.  The f o u r W i n c h e s t e r b o t t l e s  shown i n t h e d i a g r a m and h a v i n g a t o t a l s e r v e d as p r e s s u r e  litres,  equalizers, -  I t may h e r e be m e n t i o n e d t h a t apparatus  c a p a c i t y o f 10  as  the r e f l u x r a t i o  in  the  c o u l d not be measured b u t c o u l d o n l y be judged by  o b s e r v a t i o n o f t h e amount o f v a p o u r c o n d e n s i n g .  I t was  found  that the number of drops per minute overflow through the c a p i l l a r y and discharge tubes had a tendency to decrease s l i g h t l y a s , t h e ' r e c t i f i c a t i o n proceeded.  However, the r e f l u x  r a t i o was kept as constant as p o s s i b l e by c o n t r o l l i n g the temperatures and the amounts of condenser water used. condenser water was bath. '  The  pumped from a l a r g e constant-temperature -  •(b)'The Experimental R e s u l t s - - I n the f o l l o w i n g t a b u l a t i o n s w i l l be found the r e s u l t s of our four r e c t i f i c a t i o n s .  The  f i r s t two, i t w i l l be noted, were run using our washed d e c a l i n , the purpose b e i n g to obtain s u f f i c i e n t q u a n t i t i e s of the p a r t i c u l a r f r a c t i o n s which were h i g h i n c i s or trans content. Then, u s i n g these h i g h percentage f r a c t i o n s , we combined them i n the t h i r d and f o u r t h r e c t i f i c a t i o n s r e s p e c t i v e l y , i n order to obtain our f i n a l h i g h c i s and trans f r a c t i o n s . The r e f r a c t i v e index at 20°C. and f o r D-sodium l i g h t  was  recorded f o r each f r a c t i o n , use being made of a P u l f r i c h refractometer.  Then, employing the r e f r a c t i v e i n d i c e s of pure  c i s and trans as determined by R. D. Walker and W. E. Seyer and assuming a l i n e a r r e l a t i o n s h i p between the i n d i c e s and composition, the accompanying graph was graph, the approximate  constructed. Prom t h i s  composition of each f r a c t i o n could be  read o f f .  -  '  Other data and general information concerning the r e c t i f i c a t i o n s , appears i n the f o l l o w i n g r e s u l t s .  C h a r a c t e r i s t i c s of Charge; (a) 2000 c.c. of washed d e c a l i n (Eastman Kodak) (b) D| (c)  =  0  =  .8920 1.47965  (d) approximate composition  -  87% c i s  Bulb 1 Bulb 2 Bulb 3 Bulb 4 Bulb 5 ' B o i l i n g Point of F r a c t i o n (°C) 60.8-64.0 63.9-64.2: 64.2-67.8 67.8-69.2 69.2-63.0 Volume of F r a c t i o n (c.c.) 121 332 743 .352 290 Time f o r F r a c t i o n (hrs.) 3.75 12.0 34,0 20.5 15.5 Rate of F r a c t i o n a t i o n : (c.c./hr,) 32.3 27.7 21.9 l$i7; 17:. 2 Index of R e f r a c t i o n 1.47081 1.47170 1.47975 1.48229 1.48113 -1 : " :(^| ) Approximate Composition {% of c i s ) .'9,. 18 88 99 >100 0  F i n a l residue  i n column bulb = 40 c.c 0  Hence t o t a l l o s s during The  f a c t that the f i r s t  r e c t i f i c a t i o n **  B  JL 2 2  o9o  f r a c t i o n s (that i s , those with the  lower b o i l i n g points) were high i n trans  content, i n d i c a t e d that of  the two isomers, trans has the lower b o i l i n g p o i n t . of Bulb 5 shows the presence of i m p u r i t i e s  of high b o i l i n g point,  they b e i n g such that t h e i r i n d i c e s of r e f r a c t i o n had i n f l u e n c e on the index of pure c i s .  The a n a l y s i s  Evidently,  these  were not a f f e c t e d by the i n i t i a l washing treatment.  considerable impurities  11.  R e c t i f i c a t i o n No. 2 Characteristics  October 23--0ctober of  (a)^ 2025 c . c . (b) D  ChargR: o f washed d e c a l i n  «  (Eastman K o d a k )  1.47965  (d) approximate c o m p o s i t i o n  B o i l i n g P o i n t of F r a c t i o n ( °C) Volume o f F r a c t i o n (c.c.) Time f o r F r a c t i o n (hrs.), Rate of F r a c t i o n a t i o n (c;c./hr.) Index of R e f r a c t i o n Approximate Composition {% of C i s )  Bulb 1  =  Bulb \A  Qn% c i s  2 f^J  .57. 0 - 6 2 , 4 6 2 . 4 - 6 4 , 4 225  -  X) U J_ u o  -tSulb 4  64.4-67.4 745  10.-5  14.5  56.0  30.0  21.4  '"16.6  13,3  13,4  1.47076 8  1.47455 ",  Hence t o t a l l o s s  1.48283  97  > 100 97  a  during r e c t i f i c a t i o n  i n s t e a d of f i v e ,  i t was f o u n d t h i s  c o u l d be o b t a i n e d .  a g a i n appear i n our l a s t  315  this  T h i s was  [  c.c.  rectification main  probably  rectification,  s i n c e we u s e d a s m a l l e r r a t e o f p r o d u c t d i s c h a r g e . impurities  =  time that four  due t o b e t t e r c o n t r o l and s e p a r a t i o n d u r i n g t h i s  point  —  c.c.  A l t h o u g h t h e same t y p e o f d e c a l i n was u s e d f o r as was u s e d f o r t h e f i r s t ,  -------  1.48098  43  Bulb 5  67.4-73.2 " 403  240  F i n a l r e s i d u e i n column b u l b  fractions,  1937.  T  .8920  20  (c)  S8  fraction.  The h i g h  boiling  Characteristics  of  ( a ) 1725 c , c .  Charge; of h i g h c i s  decalin,  c o m p r i s i n g b u l b s 4 and  5 o f R e c t i f i c a t i o n N o . 1 and b u l b s 3 and 4 o f R e c t i f i c a t i o n No. (b)  -  2.  1.48166  (c) approximate composition  s  >100%  cis  Bulb 1 Bulb 2 Bulb 3 Bulb 4 B u l b "W ' ' • -—:— . B o i l i n g P o i n t of •' F r a c t i o n (°c) 60.4-63.5 63.5-66.7 64.5-67.8 •67.8-66.9 66.9-64.6 Volume o f F r a c t i o n (c.c.) 162 423 540 114 203 Time f o r F r a c t i o n (hrs.) 18.0 42.0 38.5 13.5 13.0 Rate of F r a c t i o n a t i o n (c.c./hr.) 9.0 10.0 14.0 15.. 0, 8.8 j Index of R e f r a c t i o n 1.48024 1.48108 1.48113 1.48118 1.48118 A p p r ox i m a t % Compo s i t i o n ; {% o f c i s ) 92.5 100 100 100 100 U  Final  r e s i d u e i n column b u l b =  Hence t o t a l l o s s  95  c.c.  during r e c t i f i c a t i o n  s  188  c.c.  B u l b s 3 , 4 and 5 w e r e o b t a i n e d w i t h t h e r e c t i f i c a t i o n p r e s s u r e slightly  less  than that used f o r bulbs  was now c o n c e n t r a t e d i n t h e l a s t being i n the b u l b  1 and 2.  four bulbs,  the c h i e f  decalin  impurities  1.  Before proceeding w i t h the t r a n s , thoroughly by r e f l u x i n g i n i t  t h e column was now washed  f o r 7 hours a charge of d e c a l i n which  .had an a p p r o x i m a t e c o m p o s i t i o n o f 37% t r a n s . made up o f t h r e e f r a c t i o n s rectifications.  Our h i g h c i s  •  T h i s w a s h i n g c h a r g e was -  o b t a i n e d f r o m t h e R. B. W a l k e r - W. F .  Seyer  13.  R e c t i f i c a t i o n JNb. 4 Characteristics  Nov.emberT6 V - November 1 9 , 193'7 , !  of Charge:  ( a ) 1490 c . c .  • •.. .  of h i g h t r a n s d e c a l i n ,  c o m p r i s i n g b u l b s 1 and- *  2 o f R e c t i f i c a t i o n N o . 1; b u l b 1 o f R e c t i f i c a t i o n N o . -2; \  and 3 .washed, h i g h t r a n s f r a c t i o n s ¥ . F. ( b ) N^  (c)  Q  =  Seyer  f r o m t h e R. D.  rectifications.  1.46987  a p p r o x i m a t e c o m p o s i t i o n - 100%  B o i l i n g P o i n t of F r a c t i o n (°C) Volume o f F r a c t i o n (c.c.) Time f o r F r a c t i o n (hrs.) Rate of F r a c t i o n a t i o n . fc..c./hr.) Index of R e f r a c t i o n Approximate Composition {% t r a n s )  Bulb 1  •* B u l b : 2  trans.  Bulb 3  Bulb 4  230  490  8,0 28.7 1.46192 >100  ' :  .  23.5 20.9 : 1.46918 >100  240  195  13 « 5  From t h e i n d e x g r a p h , i t  appears that  141  f • ij  11,5  ; '?. 8  5  •  17.8  17.0  -16.6..'  1.46958  : 1,46968  1.47100  100'  100  1  .|  89  c.c.  Hence t o t a l l o s s d u r i n g r e c t i f i c a t i o n  =  29  c.c.  the index f o r  f r a c t i o n i n b u l b 1 i s v e r y much s m a l l e r t h a n t h e a c c e p t e d  Tow-boiling  BuTb~5~^~"!  5 0 . 5 - 6 4 . 0 6 4 , 0 - 6 0 . 2 6 0 . 2^59.5 59,5-»60.9 : 6 0 . 9 - 6 1 . 8  F i n a l r e s i d u e i n column b u l b * 165  f o r pure t r a n s .  Walker-  the index  Thus b u l b 1 must h a v e c o n t a i n e d a g r e a t d e a l , o f  some  inpurity.  i  4.  The F i n a l P u r i f i c a t i o n of C i s and Trans Decalin__by_ . , _ - p -tj i crystallization. r a c  ij jj  o n a  This method of p u r i f i c a t i o n i s based on the formation of a . e u t e c t i c When a mixture of c i s and trans d e c a l i n i s f r o z e n .  |j  Thus,  u  i f we have d e c a l i n c o n t a i n i n g a c e r t a i n percentage of trans, and  »  we  Jj  cool i t slowly, there w i l l be a c e r t a i n temperature  trans c r y s t a l s commence to separate out.  at which •  This separation of trans  c r y s t a l s w i l l continue w i t h f u r t h e r c o o l i n g u n t i l we reach the e u t e c t i c temperature,  jjj  at which point a l l remaining l i q u i d w i l l f r e e z e J  to  give the e u t e c t i c mixture.  Since the. e u t e c t i c mixture w i l l  of  no use to us, then, i n order to obtain the h i g h trans by  be  this  method,, i t w i l l be necessary to stop c o o l i n g before reaching the e u t e c t i c temperature  and to pour o f f the remaining l i q u i d .  trans c r y s t a l s obtained, along with a l i t t l e  The<*  of the c l i n g i n g l i q u i d * * ;  w i l l consequently be of higher trans content than the o r i g i n a l d e c a l i n ^.mixture.  I f we. repeat the process now  with the c r y s t a l mixture -  obtained, we w i l l remove a l i t t l e more l i q u i d , and f i n a l l y , after- • t- . doing many of these c r y s t a l l i z a t i o n s , w i l l a r r i v e at the stage where the removal  of a p o r t i o n of l i q u i d w i l l not lower the  at which c r y s t a l s f i r s t  separate out.  temperature  This c o n d i t i o n w i l l  then  i n d i c a t e that the l i q u i d i s pure, and the constant temperature  will  be the true f r e e z i n g p o i n t . (a) The Apparatus diagram  and Experimental Procedure--The  shows the set-up of apparatus  a d d i t i o n a l explanation i s r e q u i r e d . v e r t i c a l line-image was when ,the b r i d g e was  accompanying  employed, and very I t may  little  be mentioned that a  formed on the graduated glass s c a l e ,  balanced, t h i s l i n e was  1  and  at the centre of the  15.  scale.  Resistance readings could be converted to temperatures  by a p p l i c a t i o n of C a l l e n d a r ' s formulae. The l i q u i d to be p u r i f i e d was placed i n a l a r g e glass tube i n the Dewar, and was cooled by the surrounding medium of s o l i d , carbon d i o x i d e .  During the f i r s t few c r y s t a l l i z a t i o n s ,  mechanical  s t i r r i n g was employed, but t h i s had the disadvantage of leaving- • a t h i c k c r u s t of c r y s t a l s around the periphery of the Dewar, with the r e s u l t that the heat t r a n s f e r was lowered and the thermometer could not be kept surrounded w i t h l i q u i d at a l l times. toward  Hence,  the end of p u r i f i c a t i o n s , hand s t i r r i n g was employed f o r  each run. In c a r r y i n g through a c r y s t a l l i z a t i o n , the l i q u i d was cooled slowly u n t i l a constancy was obtained i n the r e s i s t a n c e readings,• > .this corresponded to c i s (or trans, as the case may be) c r y s t a l l i z i n g out, and the times of constancy could be used f o r judging r e l a t i v e p u r i t i e s of s u c c e s s i v e c r y s t a l l i z a t i o n s .  When pure, there was no  e u t e c t i c , and the temperature was constant f o r the g r e a t e s t time. When the temperature  s t a r t e d to drop again, i t was i n each case  observed f o r s e v e r a l minutes, and then the remaining l i q u i d was . decanted o f f . Supercooling was one of the c h i e f d i f f i c u l t i e s experienced. We.found that t h i s could be minimized u s u a l l y by vigorous hand s t i r r i n g and by u s i n g a slow r a t e of heat t r a n s f e r ; when these methods f a i l e d , seeding was always  successful.  .(b) Experimental R e s u l t s f o r C i s Decalin--The f r a c t i o n s s e l e c t e d f o r the p u r i f i c a t i o n were bulbs 2,3,4 and 5 of R e c t i f i c a t i o n No. 3.  I t r e q u i r e d about twenty separate c r y s t a l l i z a t i o n s to obtain  16.  the  pure isomer, the f i n a l volumetric y i e l d being 3 1 3 c.c.  An a p p r e c i a b l e amount of water was absorbed from the atmosphere during the' p u r i f i c a t i o n , but t h i s was e a s i l y removed by t r e a t ment w i t h m e t a l l i c sodium,  and then by f i l t r a t i o n .  to give a low r a t e of heat t r a n s f e r i n the f i n a l  In order  stages, the  l i q u i d was placed i n a l a r g e g l a s s tube possessing a hollow w a l l (resembling a Dewar), the hollow space containing a i r . A l s o , at the same time, the dry i c e medium was replaced by one of methyl a l c o h o l c o n t a i n i n g . d r y i c e ,  The temperature of t h i s  medium was maintained at - 5 5 ° C . , and was measured with a pentane thermometer. For  c i s d e c a l i n our f i n a l r e s u l t i s :  F.P.  R. D  c  F.P.  s  -43.26  t  .04 °C.  and  1.48113  s  Walker and W. F. Sever gave. =  -43.19  i  .2  °C.  and 1^0  =  1.48113  (c) Experimental R e s u l t s f o r Trans Decalin--The p u r i f i c a t i o n of t h i s isomer gave considerable t r o u b l e . of c r y s t a l l i z a t i o n s based, f i r s t ,  From a l a r g e number  on bulb 2 , and second, on  bulbs 3 and 4 , a l l of R e c t i f i c a t i o n No. 4 , i t was discovered that no constancy i n f r e e z i n g point could be obtained.  This  f a c t appeared to i n d i c a t e the presence of some impurity whose index of r e f r a c t i o n ,  f r e e z i n g point and b o i l i n g p o i n t , are very  c l o s e to that of trans d e c a l i n .  The presence of such a substance  appears a l l the more remarkable- when we consider that i t d i d "•• not give t r o u b l e at t h i s stage i n the research of R. D. Walker •• and W. IP. Seyer.  Since these i n v e s t i g a t o r s used unwashed d e c a l i n  i n t h e i r r e c t i f i c a t i o n s , i t seems p o s s i b l e that the presence of other i m p u r i t i e s (that are removed by washing) must i n some way help to cause the removal of t h i s Impurity encountered i n our h i g h trans f r a c t i o n s . To avoid f u r t h e r l o s s of time, we considered i t advisable to f r a c t i o n a t e a quantity of unwashed d e c a l i n .  The r e s u l t s  obtained are now presented. 5. R e s u l t s of the 2nd S e r i e s of R e c t i f i c a t i o n s , and C r y s t a l l i z a t i o n s of Trans D e c a l i n .  (Over)  18.  January 6 — J a n u a r y 8 , 1938.  R e c t i f i e a t i on N o ^ _ l _ l a l C h a r a c t e r i s t i c s of Charge;  (a) 2000 c.c. of unwashed d e c a l i n (Eastman Kodak) (h) D  20 •D (c) W 20  s s  .8890 1.47829  (d) approximate: composition  B o i l i n g Point of * F r a c t i o n (°C) Volume of F r a c t i o n (c,c.) Time f o r F r a c t i o n (hrs.) Rate of F r a c t i o n a t i o n (c.c./hr,) Index of R e f r a c t i o n *20 Approximate Composition {% t r a n s ) (  }  Bulh 1  Bulh 2  s.,23% trans  Bulh 3  Bulh 4  Bulh-5  70.7-72.2 72.2-69.0 69.0-68.0 68.0-69.9 69.9-73.1 288  135  140  173  17.0  9.0  8.0  12.0  8.0  16.9  15.0  14.4  11.5  1.46938 >100  1.46958 100  17.5 . 1.46983  1.47150  100  84  , 92  1.47760 31 '  The pressure was s l i g h t l y greater i n t h i s r e c t i f i c a t i o n thani n previous ones.  I t w i l l he noted from the. compositions obtained  that v e r y good r e c t i f i c a t i o n was accomplished.  This was due t o .  our maintenance of a slow r a t e of discharge, and also to the f a c t that we d i s t i l l e d over l e s s than h a l f of the bulb charge, since we were not concerned now with the c i s isomer (which has the higher b o i l i n g p o i n t ) .  The f r a c t i o n s obtained were spread over  the 5 bulbs to give b e t t e r s e p a r a t i o n .  ;  19.  g^ctrfication^^^al  January 12 -  January 15.  ' C h a r a c t e r i s t i c s of; Charges ••(a) 1330 c.c. of Sastraan Kodak d e c a l i n (unwashed) as used i n R e c t i f i c a t i o n ITo„ l ( a ) plus bulbs 2, 3 and . 4 of Recti f i c a t i o n No,. 4.  B o i l i n g P o i n t of F r a c t i o n (°C) Volume of F r a c t i o n (c.c.) :Time f o r F r a c t i o n v.:'.:.." : 'thrs .") Rate of F r a c t i o n a t i o n (c,c'./hr.) Index of R e f r a c t i o n ;  ;  Approximatg Compo s i t i on {%~ t r a n s ) u  Bulb 1 59.8-62.0 325 18.5 17.6; 1.46898, >100  Bnlb P KA. J L V (Zj  -DUJ.D o  Bulb 4  62.0- 62.4 . - 6 2 . 4 - 6 1 . 6 61.6Y61.5 180  361  380  10,0  19.0  27,0  ""18.0  19.0  14.1  1.46968 ' 1.46968 100  •  100  measurements suggested the p o s s i b i l i t y of f u r t h e r  ......  99.5  r  index  purification  This was attempted, but i t was found  that a constant f r e e z i n g point could not be obtained, r e c t i f i c a t i o n was t h e r e f o r e necessary,  '  .1.46987  The h i g h q u a l i t y of f r a c t i o n s 2 and 3 as i ridicated "oy  by r e c r y s t a l l i z a t i o n .  Bulb 5  A third  j-  20.  R e c t i f i c a t i o n No. 3 (a) Characteristics  J a n u a r y 2 6 - - J a n u a r y 28,  of  Charge:.  ( a ) 820 c . c , •-'.  comprising bulbs  R e c t i f i c a t i o n No.  Bulb 1  B o i l i n g Point'Of F r a c t i o n (°C) Volume o f F r a c t i o n (c.c.) Time f o r F r a c t i o n (hrs.) Rate of F r a c t i o n a t i o n (c.c./hr.) . Index of R e f r a c t i o n  was 165 c . c .  P.  14.0  9.0  13.0  6.0.  18.0  18.5/'  18,3  12,6"  17.0  :  1.46908  1,46953  >100  100  our f i n a l  treatment.  P.  =  rectification.  The  -31.29 —  100  pressure  b e i n g k e p t a t a b o u t 18 rams. subjected  I t was f o u n d t h a t a b o u t  the e f f e c t  our f i n a l .2  °C. Seyer  .2 °C.  eight  constant  t h e v o l u m e t r i c y i e l d of t h e p u r e  isomer  o f t h e h i g h e r p r e s s u r e was  i n t h e r e m o v a l of t h e c o n f l i c t i n g  -31,49 ±  1.45953  100  were r e q u i r e d i n o r d e r t o o b t a i n t h e and t h a t  76  1.46953  100  than p r e v i o u s l y ,  R. D. W a l k e r and ¥ , E . F.  1.46958  and 5 were now combined t o g e t h e r and  factor  =  Bulb 5  4.5  For trans decalin, F.  Bulb 4  238  Evidently,  a beneficial  Bulb 3  167  to the c r y s t a l l i z a t i o n  freezing point,  Bulb 2  252  was m a i n t a i n e d h i g h e r  crystallizations  2(a).  76  The above r e p r e s e n t s  2,3,4  2,3 and 4 of  65.8-66,9 66.9-67,3 67.3-69.2 69.2-69,3 69.3-68,1  Approximate Composition {% t r a n s )  Bulbs  1938.  result and  1^  is: 1.46953  0  gave: and N?  =  1.46968  impurities.  -•I  21. PART -II T h e J D e t e r m i n a t i o n o f _^hy_sJjoaIjConstants o f C i s and T r a n s |  S e c t i o n 1 — V a r i a t i o n w i t h Temperature of  Decalin  Density  The method e m p l o y e d f o r t h i s p u r p o s e was an a p p l i c a t i o n Archimedes'  Principle  (see accompanying d i a g r a m ) .  employed may he d e r i v e d as .  Let:  T  follows:  t r u e mass o f plummet i n vacuum a  mass o f plummet i n d r y a i r  Wwa  m  mass o f plummet i n p u r e w a t e r )  Wli  s  mass o f plummet i n  Pair  s  d e n s i t y of dry a i r  )  decalin  Pwa  s  d e n s i t y o f pure w a t e r  Pli  =  d e n s i t y of  decalin  v o l u m e o f plummet at t ° C .  B  Assume a n e g l i b l e b u o y a n t e f f e c t of  The f o r m u l a e  Wair  V  of  of l i q u i d s  on immersed  portion  wire .  . T - Wair « V P a i r  and T - Wwa  . V Pwa .  .  V E  W a i r . - Wwa Pwa - P a i r  To o b t a i n P l i we again use t h i s formula, s u b s t i t u t i n g P a i r by P l i . ".  P l i - Pwa 4 -  Wwa  ~ Wli V  The standard value of t employed i n my determinations was and the values of WwagQ and ^wago  w  e  r  e  used as equation constants.  Hence: Pli  * 4apo + •wa 0 2  W  wa  20.00°C.  2 0  ~  ^lit° .0  YV  APPARATUS FOR DETERMINATION OF DENSITY, SURFACE TENSION & VISCOSITY OF ISOMERS OF DFCAI IN  OVERHEAD PLATFORM -  LEADS TO THERMOSTATIC CONTROL""  WIRE HEATER FOR CLOSE TEMPERATURE CONTROL  SURFACE TENSION APPARATUS  SENSITIVE LIQUID TUBE FOR AUTOMATIC THERMOSTAT  SLASS CONTAINER , LASS-ED, AMD EXTERNALLY LINED WITH HEATING COIL  iinufiiiiH'l BATH LI&UID (OIL, WATER OR ALCOHOL)  ii.iiiiiiiiiiiiiiiiuii.iiuu  milium  22.  Having got V  2 Q  from air-water measurements, Vt° could be  c a l c u l a t e d from  - .  yt° = V where  ,000038  -4- ( V ) ( t - 2 0 . 00) (.000038) 2 0  = c o e f f i c i e n t of c u b i c a l expansion of ) quartz glass plummet  4  ^waon 2  s  0  _  •^airon* 2  ( a )  2 Q  j  .99823  from *- ^  s  ,00120  l  I  n  n  t  ...  e  r  n  a  ,  t  i  o  „  n  i  ,  ^l£iali2£s_an_d C a l c u l a t i o n s f o r C i s D e c a l i n  Mass of suspension (constant)  .*. Mass of plummet i n pure water at 20,00°C.  l  ) C r i t i c a l Tables  0  Mass of suspension 4 - plummet i n pure water at 20.00°C.  a  -  o  1219 gr.  =  22,6381 gr.  =  22.5162 gr.  Mass of plummet i n dry a i r at 20.00°C..  -  . ° . Volume of plummet at 20.00°C. (from formula)  =  31.0059 gr. 8.5150 c.c.  23.  T e m p e r a t u r e Mass o f s u s p e n s i o (T°C.) 4 Plummet (gr)  Mass o f plummet  Volume o f ( g r ) plummet ( V t  c.c  Density ( D p . of d e c a l i n  -40,00 -30.00  23.1751  23,0532  -20.00  8.4988  23.2402  ,9350  23.1183  -10.00  8.5020  .9274  23.3068  23.1849  0.00  8,5053  .9196  23,3715  23.2496  10,00  8.5085  .9120  23,4366  23,3147  20.00  8.5117  .9044  23,5020  23,3801  8.5150  .8967  23.5665  23.4446  8.5182  .8892  23.6311  23.5092  8.5215  ,8817  23,6955  23.5736  8.5247  23,7599  23.6380  8.5279.  23,8243  23.7024  8,5312  23.8873  23.7654  8.5344  23.9527  23.8308  8.5376  24.0169  23.8950  8.5409  24.0804  23,9585  8.5441  24.1460  24,0241  8.5473  24.2101  24.0882  8,5506  24.2773  24.1554  8.5538  24.3467  24.2248  24.4154  24.2935  8.5603  24.4857  24,3638  8.5635  24,5551  24.4332  8.5668  30.00 40.00 50.00 60,00 70,00 80.00 90.00 100.00 110.00 120,00 130,00 140,00 150.00 160,00 170.00 180,00  .  8.5570  ,8742 .8667 « 3502 ,8519 .8442 .8368 .8294 ,8218 .8144 ,8066 .7986 .7906 .7825 .7745  24. (°) QbserTations and C a l c u l a t i o n s f o r Trans D e c a l i Temperature5 Mass of susTJensioii Mass of Volume of Density : - v , t i ° C ) . -4- Plummet \gv) plummet (gr ) plummet (Vt c.c.'of d e c a l i n j --.-40. GO , v-.3Q.-dO.'''  23.4114  23,2895  8,4988  .9072  23.4757  23.3538  8.5020.  .8997..  23.5396  23.4177  8.5053  .8922  23.6027  23.4808  8.5085  .3849.  10.00  23.6658  23.5439  8.5117  .8775  20.00  23.7296  23.6077  .8.5150  .8700  /; ; 30.00 :  23.7927  23.6703  8.5182  .8627  ,.40.00-  23.8559  23,7340  8.5215 -  .8553  50.00  23.9190  23.7971  8.5247  ,8480.  60.00  23.9831  23.8612  3.5279  .3405  24.0472  23.9253  8.5312  .8331  [  80.00  24.1120  23.9901  8.5344  , .8255  ;;  90.00  24.1781  24,0562  3.5376  .8178  .,-10.00 0.00  ''  70.00  v  :!  •  VJ  100.00  24.2424  24,1205  8.5409  .8104  !|  110.00  24.3106 .,'  24.1887  8.5441  ..8025  1  120.00  24,3736  24.2517  .8.5473  .7952  1  130.00  24.4390  24.3171  8.5506 ,.  .7876  t  •  140,00  . . '.' 24.5063  24.3844  8.5538  150.00  24.5764 -..  24.4545  8.5570  .7717  160.00  .24.6448.  24.5229  8.5603  .7638  170.00  -./' 24.7164  .24.5945  8.5635.  .7555  8.56-68  .7474  180.00  ;  r ;  24.7865  24.6546  .  .7798 . i  ;  E o r v i s c o s i t y measurements, employed,  ' T h i s was s u i t a b l y  an O s t w a l d v i s c o m e t e r was  suspended, along w i t h the s u r f a c e  t e n s i o n and d e n s i t y - m e a s u r i n g a p p a r a t u s , bath,  thermostatically  controlled.  in a  •  constant-temperature  (see accompanying d i a g r a m ) .  The m a t h e m a t i c a l r e l a t i o n employed was t h e w e l l known e q u a t i o n , for relative  viscosities i.e.  U]_ . U  i n w h i c h , f o r two l i q u i d s absolute, v i s c o s i t y , employed.  d-^t-j  2  d  1 and 2,  2 2 t  " U " , " d " and " t " a r e  d e n s i t y and t i m e to f l o w t h r o u g h t h e  Hence, by knowing the v a l u e s of  stated temperature f o r a p a r t i c u l a r that temperature,  liquid,  " U " and  •other temperatures,  M  capillary  d " at  some  one may measure " t "  and t h e n , u s i n g t h e s e v a l u e s ,  i n t h e above e q u a t i o n .  obtain a  however,  at  constant  T h i s c o n s t a n t w i l l be s a t i s f a c t o r y  changes i n t h e d i m e n s i o n s  for  o n l y when we assume t h e a b s e n c e o f  of the c a p i l l a r y .  u s e d i n my e x p e r i m e n t s was p u r e b e n z e n e , t e m p e r a t u r e was  respectively  The s t a n d a r d i z i n g  and t h e  -=  liquid  standardizing  20°C.  (a) Observations  and C a l c u l a t i o n s  for Cis  Decalin  D e n s i t y o f b e n z e n e a t 20°C = .8787 g r / c . c . ) from . )International A b s o l u t e v i s c o s i t y o f b e n z e n e a t 20°C <= .00649 , ) C r i t i c a l Tables O b s e r v e d t i m e f o r b e n z e n e t o r u n down c a p i l l a r y = 7 8 . 3 V .  Constant <  « (78.3)(.8787) 0  d t 2  = 2  .*. Working Equation i s :  0  6  4  9  -  U s  sec.  .00009433  (t)(d)(.00009433)  26  Temperature (T°C)  Time t o f l o w t h r o u g h c a p i l l a r y (t sec.)  Absolute v i s c o s i t y decalin (D!)  -40.00 -30.00  .9350  1730.0  - 2 0 . 00  .9274  1240,0  -10,00  .9196  851 „0  :• . 0 , 0 0  .9120  636.0  10.00  . 9044  489.5  20,00  .8967  392,8  .03323  30.00  .8892  319.4  .02679  .40.00  .8817  266.0  V; 5 0 , 0 0  .8742  224.5  60.00  .8667  192,2  ?o oo;-  ,8592  167,5  80,00 -  ,8519  149.5  90,00  ,8442  132.5  .01055  100,00  .8368  117.4  ,00927  110,00 '  ,8294  105,6  .00826  120,00  .8218  95.7  ,00742  130,00  .8144  87.8  .00674  140.00  .8066  80.4  .00612  150,00  .7986  74.5  .00561  160.00  .7906  69.0  .00515  170.00  .7825  64.5  .00476  180,00  .7745  60.2  .00440  e  .15259 ,10848 .07382 .05472 ,04176  .02212 ,01851 ,01571 .01358 .01201  !  of  27,  (  t  )  g ^ T - I ^ ^  |Temperature (T°C)  Density  (4)  f o r Trans  Time t o f l o w t h r o u g h c a p i l l a r y (t sec.)  w u r ,  Ahsolute v i s c o s i t y decalin (u|)  -=40.00 -30,00  .9072  853,0  .07300  -20,00  .8997  629,8  .05345  -10,00  .8922  484,9  ,04081  0.00  .8849  383.5  .03201  10,00  ,8775  310,6  .02571  20.00  ,8700  •258.3  .02120  30.00"  ,3627  219.4  ,01785  40 00  ,8553  187,0  ,01509  50,00  ,8480  161.3  ,01290  60,00  ,8405  141.1  ,01119  70,00  ,8331  125.5  ,00986  80,00  .8255  112.6  ,00877  90,00  ,8178  102.0  . 00787  100.00  ,8104  92.5  .00707  110.00  .8025  84.2  .00637  120,00  .7952  77.0  ,00578  130 00  .7876  72,1  ,00536  140.00  .7798  66.6 .  .00490 •  150.00  .7717  63.0  .00459  160.00  ,7638  58.6  .00422  170,00  ,7555  54.. 5  .00388  180,00  .7474  51.2  .00361  e  c  of"  28  Section 1 1 1 - - v a r i a t i o n with Temperature of Surface Tension. Determinations  of surface tension were c a r r i e d out  the method of Richards, Speyers and C a r v e r diagram).  1  employing  (see accompanying  -Their equation i s of the form  whe're  Y  surface t e n s i o n  d  •»  d e n s i t y of l i q u i d  used  K  t  constant  H  •&  d i f f e r e n c e In l e v e l s i n the two c o r r e c t e d f o r the meniscuses.  The value of H i s given by the equation H s (h  x  -•  h ) 2  -V  ( l " r  r  2)  tubes,  ;  -  3 where h^ and hg  observed heights of c a p i l l a r y i n the two  a  tubes  above plane s u r f a c e , r ^ and r  2  - r a d i i of the two  tubes.  Since the l a s t term i s n e g l i b l e i n t h i s work, the equation becomes H' s (h-L -  h )  - ( 2 " r  2  r  l)  3 The constants K, r  1  and r  g  : ;• \ f o r the apparatus used i n my measure2  ments were determined by R. Bennett  by c a l i b r a t i o n with pure  benzene.• T h e i r values ares K  i  23.63 dynes, cms./gr. ( c o r r e c t e d f o r meniscuses) •  =  r-^ r  .033  r  ,121  2  ,  -  cms. cms.  1. Richards, Speyers and Carver; J . Am. Chem. Soc., 46, 1196 2. Bennett, R., B. A. Sc., Thesis (1935). .  '  (1924)  29,  (a) O b s e r v a t i o n s and C a l c u l a t i o n s f n r p.i«, D e c a l i n Temperature D i f f e r e n c e i n Corrected Difference i Density Surface Tension :: v ( T ° C ) levels i n l e v e l s (H cms.) • of D e c a l i n (4) , (jti^ - .tig cms. \ (0^ dynes/cm) r  : ; -40.00 ; -30.00  1.750  1.7 21  ,9350  / -=20. 00  1,710  1.681  ,9274  / -10.,00;  1.670  i;64i  .9196  35.65  ?v.;^.a.ob-  1,630  1.601  ,9120  34.50  I  1.-561  .9044  33,36  ' j  1.519 "  .8967;  32.18  • '. j  .8892  31.01  'j  • '|  ;  10.00  V;  1.590  '  .  :  38.02  ;  36.83/  /  20.00  1.548  30.00  1.505  1.476  1.460  1 © 431  ,8817  29.81  l Q 4l 5  1.386  .8742  28.63  1,380  1 © 35X  .8667  27.67  1,350  1«3 2IL  ,8592  26.82  1,315  1.286  .8519  25.88  . ||  1.280  1.251  .8442  24.95  ;|  : 1.245  1.216  .8368  24.04  .8294  23.14  .8218  22e 25  1  .8144  21.38 :  ; ::\4o,.oo . > ;  50.00 60, 00  ~  ; 1/7/0.00 ; >80.Q0 90,00  ; >;ioo-.oo  ,  . •  • . •. 4  iio.oo  1.210  1.181  /jt2Q,.0O  1.175  1.146  •130.00  - 1.140  140.00  "1.108  1.079  .8066  20.56  1.07 6  1,047  .7986  19.76  , 160. :qo^  1.040  1.011  .7906  18.89 .  : 170.00  1.005 •'•  .976  .7825  18.04  >:i8o:.oo  _ .968 -  .939  .7745  17.18  r  ' • •  ' 150.00  IL * *L JL  '/ :  ••  rt  |'j ;  1  W-Pftservatlona^^ Temperature2 D i f f e r e n c e i n (T°C) levels ( h j - hg cms.  f  o  r  T r a r m  Corrected D i f f e r e n c e Densit]7 Surface Tension i n l e v e l s (H cms. ) of D e c a l i n Qt dynes/cm)  -40.00 V -30.00,  1.675  1,646  .9072  '35,29  1,635'  1.606  .8997  34.14  1.592  1.563  ,8922  32 95  1.526  .8849  31.91  1.518  1.439  .8775  30.87  1.483  1.454 •' .  .87 00  29.89  1.445  1.416  ..8627  28,87  1.405  1.376-  .8553  27,81  50.00 '  1.365  1.336  ,8480  26.77  60.00  1.329  1.300  .8405  25.82 ..  •70,00  1.290  1.261  . 8331  24.82.  80,0,0  :- ' 1.257  1.228  .8255  23.95  1.220  1.191  .8178  23.02  1.179  1,150  .8104  22,02  110.00  1.139  1.110  .8025  21.05  1-20.00  " . 1.105  1.076  .7952  20.22  130.00  1.071  1.042  .7876  19.39  T40.00  1.041  1.012  .7798  18.65  150.00  .1.008  ,979  .7717'. :  17.85  .970  .941  ,7638'  16.98  .935  .906  ,7555  16.17  .903  .874  .7474  15,44  20,00; ,-io,ob  p''  0.00 10,00  19 : :  .'' 20.00 "I: 30.00 4O.O0  ]  90.00  ' "  c  : 10/0^00 •.; : ;  :  160.00; 170.00 180,00  .i  555  ,  \  e  31 PART I I I The Mathematical Treatment of the The  ^ P T - S ^ + SI  f o l l o w i n g work represents  r e s u l t s obtained trans d e c a l i n ,  an extensive  Results study of  the  f o r the three p h y s i c a l p r o p e r t i e s of c i s and Por  the most part i t i n v o l v e s the a p p l i c a t i o n  of well-known formulae, the main object being to secure values f o r various  t h e o r e t i c a l q u a n t i t i e s and  constants,  the e f f e c t of temperature on these values. conclusions decalin.  are drawn regarding  to note  1  By t h i s means, s e v e r a l  t r a n s i t i o n s i n the s t r u c t u r e of • •  A l s o , i n t h i s work, values  heats of v a p o r i z a t i o n and  and  f o r such q u a n t i t i e s as l a t e n t  f u s i o n , c r i t i c a l temperature, etc. were  c a l c u l a t e d , the object being  to have these c a l c u l a t e d q u a n t i t i e s  as guides i n f u r t h e r research  to be done on the d e c a l i n .  1, A Study of the P l o t t e d Results f o r the P h y s i c a l P r o p e r t i e s of C i s D e c a l i n . The  accompanying graph shows the e f f e c t of temperature on  the p h y s i c a l p r o p e r t i e s of c i s d e c a l i n .  Close  examination of '  these curves shows that each i s marked by c h a r a c t e r i s t i c breaks', indicating possible transitions.  I t w i l l be noticed that  curve f o r surface tension i s l i n e a r but and  another at 120° - 130° C.;  i s l i n e a r but  the  shows a break at 50° - 60°-  the curve f o r logarithm  of v i s c o s i t y  shows four breaks at approximate-temperatures of  -5° - 0° C.j 35° - 40° C.|  60°-  70° C ;  A f t e r the c o o l i n g down to -30° were remeasured at 20° C. f o l l o w i n g conclusions  may  C.,  120° - 130° C. the p h y s i c a l p r o p e r t i e s  Since no changes were observed the be drawn:  I  E  o  «*3 +=  . o CO  00 o  cn  <U u a  glco CD  IT «7  <D  E  -I.  4 -  f  I  4  o  o  T!  0>  f I CO co  § i  — •  U0I9U9J^  SDDjJflg  K|I90D9I^  JO LULJ|UD6O-|'  I  3 I  32  (!) i f a t r a n s i t i o n from one form to another does take p l a c e on lowering the temperature,  then the f orm 'produced must "be very  unstable at 20° C. (2) i f a t r a n s i t i o n to a form s t a b l e at 20° C does occur on lowering the temperature,  then the t r a n s i t i o n must be a time  • r e a c t i o n , r e q u i r i n g a much longer time than was used i n these experiments. S i m i l a r l y , a f t e r the h e a t i n g to 180° C., the p h y s i c a l _  . •  p r o p e r t i e s were remeasured  at 20° C.  ..  . . .  ' .... ..  ...  j  Considerable changes were  [  discovered, as the f o l l o w i n g record shows s  ii  (1) i n surface t e n s i o n apparatus, H had increased to 1.551 cms.,' corresponding to XgQ  =  32.92.  $20  "  32.18 f o r c i s d e c a l i n .  the true value f2)  T h i s i s an i n c r e a s e of 2.30% over •  i!j  i n d e n s i t y apparatus, the mass of suspension -\- plummet  had decreased to 23.4902 gr., corresponding to i s an i n c r e a s e of ,17% over the true value  s  IK  ,8982.  jf  This  \;j 'p 4|  = .8967 f o r  2  cis decalin. .  (3) i n v i s c o s i t y apparatus, the time had i n c r e a s e d to. 403.5 see.,:! corresponding to 1J  .03419.  s  T h i s i s an i n c r e a s e of 2,89% over ||  ' the t r u e value  U20  ~  .03323'for  If HI;  c i s decalin.  This evidence, then, along with that obtained from the graph, i s  (| ''j  s u f f i c i e n t to show that changes occur on heating, and that these  |  changes are accompanied, by a c e r t a i n amount of i r r e v e r s i b i l i t y .  ;|  To i n v e s t i g a t e f u r t h e r the e f f e c t of heat, f r e s h samples of  :;|  pure c i s d e c a l i n were employed and t r e a t e d by the f o l l o w i n g scheme; l !  1. Apparatus heated to 70°G. _ Readings checked with previous readings at t h i s temperature.> Apparatus cooled to 20°G, » ,  Readings checked with previous readings at t h i s temperature'. -  2. Apparatus heated to 100°C.  Readings checked with previous readings at t h i s temperature.  Apparatus cooled to 20° C.  Readings checked w i t h previous readings at t h i s temperature,.  3. Apparatus heated to 120°C. Apparatus cooled to 70° C.  4. Apparatus heated to 130°C, '  Apparatus cooled to 70° C. '5. Apparatus heated to 140°G.  Readings checked w i t h previous ; readings a t t h i s temperature.. •• <•. f Readings "for density'and viscosity;) checked with previous' readings I; hut i n surface t e n s i o n apparatus • H had increased to 1,326 cms-, jj Readings checked w i t h previous | readings at t h i s temperature, - • |: '  . . . . . . . . . .  ||!  Readings f o r d e n s i t y and viscosity!; checked w i t h previous readings f hut i n surface tension apparatus H had increased to 1,336 cms. Readings checked w i t h previous readings at t h i s temperature.  Apparatus heated to 160°C.  Readings checked with previous readings a t t h i s temperature. . < -  Apparatus cooled to 70° C.  Readings f o r d e n s i t y and v i s c o s i t y checked with previous readings hut i n surface tension"apparatus H remained at 1,536. cms.  Apparatus cooled to 20° C.  Readings f o r d e n s i t y and v i s c o s i t y checked"wlth"previous 'readings btit i n " surface" tension apparatus I-I had changed to 1.534 cms. :  With respect to the above r e s u l t s ,  i t w i l l be noted that no  changes i n surface t e n s i o n (which appears to be more s e n s i t i v e either  than  density or v i s c o s i t y ) were observed u n t i l a f t e r the d e c a l i n -  had been subjected to 120° C.  |  Now the graph i n d i c a t e s that a r a d i c a l  34.  change occurs i n the region 50° - 60° C.  Since no changes were  observed on c o o l i n g to 20° C. even a f t e r the h e a t i n g to 100° C , we are thus l e d to the c o n c l u s i o n that whatever happens around 50° - 60° .0. i s r e v e r s i b l e .  The ease of r e v e r s i b i l i t y i s apparently  great, as the c o o l i n g was accomplished q u i c k l y .  The p o s s i b i l i t y  that the abrupt change at 50° - 60° C. may have been due to some change i n the apparatus, may be d i s c r e d i t e d , as a l l readings made i n the h e a t i n g to 70°, 100°, 120°, 130°, 140°and 160° i n the above check t e s t (using f r e s h d e c a l i n ) d u p l i c a t e d the previous readings. The heat treatment at 120° and 130° produced a change i n thesurface t e n s i o n at 70°C. and 20°C., no f u r t h e r change b e i n g e f f e c t e d by higher h e a t i n g .  This apparently i n d i c a t e s t r a n s i t i o n i n the -  r e g i o n 120° - 130° C. temperatures  Since the readings at 120°, 130° and higher  checked w i t h previous readings, and since the time  of h e a t i n g was f a i r l y short, i t may be concluded that the forward a c t i o n of t h i s t r a n s i t i o n i s r a p i d .  The backward a c t i o n , as the  c o o l i n g shows, i s incomplete, f o r at 20° C. H now possessed the value of 1,534 cms which corresponds to K » 32.50, or an i n c r e a s e of .99% over the t r u e v a l u e f o r c i s d e c a l i n .  The i n c r e a s e at 20°C.  i n the previous readings was, as s t a t e d , 2.30%.  However, since  the check t e s t was done i n much shorter time than were the previous observations, i t would appear that the longer the heat treatment, the g r e a t e r i s the tendency to produce II.  irreversibility.  A Study of the P l o t t e d R e s u l t s f o r the P h y s i c a l P r o p e r t i e s of Trans Decalin., The accompanying graph shows the e f f e c t of temperature  p h y s i c a l p r o p e r t i e s of trans d e c a l i n .  on the  As In the case of the c i s  form, examination of the curves r e v e a l s c h a r a c t e r i s t i c breaks, again  .«3  =^3  a o  Q  o  CO  CO  j-.  o a CO  C D  C_3  S  ^7  "I-  I  a  ¥Q Ud  s I  sa. I  indicating possible transitions.  I t w i l l be n o t i c e d that  curve f o r surface tension i s l i n e a r but 50° - 60° C.s  and  120° - 130°  C.;  the  shows breaks at -10° - 0-° C. ,  the curve f o r density i s l i n e a r  . but f a l l s "off r a p i d l y beyond 80° C. ; the curve f o r logarithm v i s c o s i t y i s l i n e a r but of -10°  to -15°  C.|  of • • ^ '.  shows four breaks at approximate temperatures  10° - 20° C f  60° - 70° G. ; 120° - 130°  C.  . ¥o  change was observed i n the p h y s i c a l p r o p e r t i e s of trans o o d e c a l i n at 20 C. a f t e r the c o o l i n g down to -30 C. Hence, regarding the c o o l i n g treatment, the same conclusions may  be drawn f o r trans  as f o r c i s , Following  the heat treatment to 180° C.,  were again measured at 20° C,  However, u n l i k e the case f o r c i s  d e c a l i n no changes were observed f o r t r a n s , to .the f a c t that any  the p h y s i c a l p r o p e r t i e s  This would then point  t r a n s i t i o n s i n s t r u c t u r e produced by  heating  trans d e c a l i n ( the graph's show that such t r a n s i t i o n s must occur) are t o t a l l y unstable  at lower temperatures? that i s , the  reactions  are r e v e r s i b l e . As a b r i e f summary we may (1) between -10°  and  0°G,,  now  say  that:  a completely r e v e r s i b l e r e a c t i o n  occurs for, both isomers. (2) between 50° and  60°C., a completely r e v e r s i b l e r e a c t i o n  occurs f o r both isomers, (3) between'120° and  130°C., a r e a c t i o n occurs,  completely  r e v e r s i b l e f o r trans, but not so f o r c i s . I I L The V a r i a t i o n w i t h Temperature of The D  4  v.s.  Density.  e f f e c t of temperature on the l i n e a r c h a r a c t e r i s t i c s of the o t r e l a t i o n s h i p has been p r e v i o u s l y mentioned. For  •' cis  decalin,  the l i n e a r  s e c t i o n . r a n g e s f r o m -30°C.. t o 1 3 0 ° C . and  36 is  g i v e n f a i r l y w e l l by =  .9120  -  D e v i a t i o n s from, t h i s "For .trans d e c a l i n ,  .000752 t e q u a t i o n do n o t exceed, . 02%  . "... * *  the l i n e a r , r e l a t i o n s h i p ranges f r o m - 3 0 ° C .  t o 80°0  and i s w e l l r e p r e s e n t e d h y K  .8849  s t  Deviations  -  from t h i s  .000742 t  ' • •  1  e q u a t i o n do n o t e x c e e d .01%.  The i n c l u s i o n c  s q u a r e t e r m s i n an a t t e m p t t o e x t e n d t h e s e e q u a t i o n s o v e r t h e w h o l e t e m p e r a t u r e r a n g e s t u d i e d , was f o u n d to he  unsatisfactory.  As a means o f g e t t i n g a p p r o x i m a t e v a l u e s f o r t h e c r i t i c a l o f t h e two i s o m e r s ,  t h e l a w of C a i l l e t e t  and M a t h i a s was  The a c c o m p a n y i n g t a b l e and g r a p h s i l l u s t r a t e V a l u e s of  densitie  investigated.  t h e manner o f  procedure.  " d " ( s a t u r a t e d v a p o r d e n s i t y ) were c a l c u l a t e d from., the; i d e a l  gas law,, u s i n g v a p o r p r e s s u r e s p r e v i o u s l y d e t e r m i n e d - by- Nemetz and- . Henniker-*-.  On p l o t t i n g a v e r a g e d e n s i t y a g a i n s t  s t r a i g h t - " l i n e s were o b t a i n e d . _±_ Deviations and f o r t r a n s  _-___L_  from, t h i s  =  .4560  ..  .000376. t  t ,. ...  t e n s i o n ( s e e page 39) we may t a k e t h e  critica  and t r a n s as 428°C, and 4 1 0 ° C . r e s p e c t i v e l y . ;  d e n s i t y of  d a t a show t h e l i n e f o r is  .000368 ..  e q u a t i o n do n o t e x c e e d .01%  s u b s t i t u t i n g i n t h e above e q u a t i o n s  it  ..  From t h e work on s u r f a c e of c i s  .4424  2  Deviations from t h i s  temperatures,  -  i s w e l l given by  e q u a t i o n do n o t e x c e e d ,02%  £- = .  a critical  the l i n e  the-usual  by —  temperatures  For c i s ,  temperature,  ( o r e x t r a p o l a t i n g ) , we t h u s  , 2 9 5 0 f o r c i s and .2915 f o r t r a n s . trans to f a l l  off  g r a d u a l l y at the  probable that the c r i t i c a l  l o w e r than ,2915, p o s s i b l y around 1. E e m e t z , H . and H e n n i k e r ,  On-, obtain  Since.the higher  d e n s i t y of trans  is  .2880.  C . , M.A.  S c . and B . A . S c . r e s p e c t i v e l y Thesis (1938).  cis  for Temperature ( C) e  D;  -50  .9350  -20  .9274  -10  f o r trans D: 4 d  74~  t  2  Z£-  t  t  o  .4675  .9072  0  .4536  0  .4637  .8997  0  .4493  .9196  0  .4598  .8922  0  .4461.  0  .9120  0  .4560  .8849  0  .4424  10  .9044  0  .4522  .8775  0  .4387  20  .8967  0  .4483  .8700  0  .4350  30  .8892  .0001  .4446  .8627  ,0001  .4314  40  ;8817  .0001  .4409  .8553  .0001  .4277  50  .8742  .0001  .4371  .8480  .0001  ,4240  60  .8667  .0001  .4334  .8405  . 0003  .4204  70  ,8592  .0001  .4296  .8331  .0004  .4167  80  .8519  .0002  .4260  .8255  .0006  .4130  90  .8442  .0003  .4222  ,8178  .0008  .4093  100  .8368  .0003  .4185  .8104  .0009  .4056  110  .8294  .0005  .4149  .8025  .0011  .4018  120  .8218  .0007  .4112  .7952  .0012  .3982  130  .8144  .0008  .4076  .7876  .0016  .3946  140  .8066  .0011  .4038  .7798  . 0018  .3908  150  .7986  .0014  .4000  .7717  .0022  ,3869  160  .7906  .0018  .3962  .7638  .0026  .3832  170  .7825  . 0022  .3923  .7555  .0029  .3792  180  .7745  . 0028  .3886  .7474  .0035  .3754  .  .38. As a means o f g e t t i n g a p p r o x i m a t e v a l u e s f o r  the  critical  p r e s s u r e s , we c a n n o t u s e t h e i d e a l gas l a w due t o t h e h i g h p r e s s u r e s \ i n v o l v e d , b u t we may make u s e of t h e e q u a t i o n o f c o r r e s p o n d i n g ^ equation (  In t h i s  p ^ •" TT - P P tt _ _ ,»  +  ) (  p a r t i a l pressures ^100  =  1  6  '  0  4  1  IV.  *  fa  cms. f o r  (J) -*  8  0  <  c  a t 1 0 0 ° C . of P  law,, we f i n d t h a t Pc i s and t r a n s  }  V tt _ _ = V Vc . Y o f dc = . 2 9 5 0 f o r c i s and P  Employing the v a l u e s  1  trans;  1 0 Q  states  dc dc dt dc -  and  8 - Tt . •. T.V -. • .2880 f o r t r a n s T C  = 5 . 8 2 1 cms. f o r c i s  and c a l c u a l t i n g d  1  0  Q  and.  from the i d e a l  e q u a l t o 4 6 . 1 and 4 5 . 0 a t m o s p h e r e s f o r  gas  cis  respectively.  The V a r i a t i o n w i t h T e m p e r a t u r e o f S u r f a c e T e n s i o n . As p r e v i o u s l y  stated the curves f o r  b u t show c h a r a c t e r i s t i c  breaks.  Eor c i s  ;  surface tension are decalin,  linear'-  the c o n d i t i o n s  are  well represented by: (a)  =34.50  -  .1162 t  which holds from  (b)  K.s 3 3 , 2 4  -  ,0920 t  w h i c h h o l d s from.  -  .0835 t  which holds from  (c)  ft  = 32.24  Deviations  -30°C.  to  50°C.  6O?Cy«$Q-%%.0°0.. 1 3 0 ° 0 . to 1 3 0 ° C . «r:,  i n e q u a t i o n ( a ) do n o t e x c e e d .09% and i n e q u a t i o n s  (b)  and  ( c ) do n o t e x c e e d . 1 % . E o r t r a n s d e c a l i n , we h a v e t h e ( a ) -fl  :  31,78  following:  -•  .1170 t  which holds from  -30°C. to  -10°C.  0°G. t o  50°0.  (b)  # =31.91  -  .1020 t  which holds from  '(c)  31.39  -  .0930 t  which holds from  60°C. to 120°C.  •(d)  if • 3 0 . 3 3  -  .0835 t  which holds from  130°C. to 180°C.  Deviations  i n equations  ( c ) and ( d ) do n o t  ( a ) and ( b ) do n o t  e x c e e d .09% and i n  t e m p e r a t u r e o f e a c h o f t h e two i s o m e r s ,  .  equations  exceed .4% and .1% r e s p e c t i v e l y .  . As a means o f g e t t i n g an a p p r o x i m a t e v a l u e f o r t h e  .  critical  t h e E d t v o s e q u a t i o n was  3 9«  employed? t h i s b e i n g g i v e n b y jf(Mvf  k ( t c — t - 6).'  s  S i n c e t h i s e q u a t i o n c o n t a i n s two unknowns, k a n d t c , i t was necessary to use p a i r s of temperatures t o e f f e c t a s o l u t i o n . The r e l a t i o n h o l d s s t r i c t l y f o r t h e h i g h e r t e m p e r a t u r e s b u t i n o r d e r t o show what h a p p e n s a t l o w e r t e m p e r a t u r e s , t h e a c c o m p a n y i n g t a b l e shows c a l c u a l t i o n s c o v e r i n g t h e w h o l e The  following i s a brief  temperature range.  summaryi  1. f o r c i s d e c a l i n ( a ) f r o m -30°C. t o 50°C., a v e r a g e k = 2.S3 a n d a v e r a g e t c a 353*3  Ge  ( b ) f r o m 60°C. t o 180°C., a v e r a g e k « 2.24 and a v e r a g e t c 428.6° C. ( c ) assuming Guldberg-Guye  l a w , Tc <= ~ Tb, t o h o l d , and t a k i n g  b o i l i n g p o i n t o f c i s as 193°G., we g e t tc  »  | ( 2 7 3 4- 193) -273 ® 426°C.  T h i s i s i n good agreement w i t h r e s u l t s g i v e n i n ( b ) 2, f o r t r a n s  decalin  0 o ( a ) f r o m -30 C. t o 50 G., a v e r a g e k  =  2.51 and a v e r a g e t c 374.5° C.  ( b ) f r o m 60°C„ t o 180°G., a v e r a g e k  s  2.24 a n d a v e r a g e t c = 409.5° C.  ( c ) assuming Guldberg-Gnye  l a w t o h o l d and t a k i n g  boiling  p o i n t o f t r a n s a s 185°C; we g e t tc  a  | ( 2 7 3 f 185) - 273 s 414°G.  ' >  T h i s i s i n good agreement w i t h r e s u l t g i v e n i n ( b ) . The v a l u e , k = 2.24, f o r E o t v o s c o n s t a n t , i s n o r m a l and t h e same  55  f o r b o t h c i s and t r a n s ; s i n c e i t i s n o t a b n o r m a l l y l o w , no a s s o c i a t i o n  4 0 ,  l e u l a t i o n s o f _ C r i t i c a l T e m p e r a t u r e and E 5 t r o s -r P a i r o f Temperatures3 (°c) -•20, - 3 0  ~_ ; V a l u e of t 3  flhn«t:»Ti+.  . ' • :- • .•".trans • .•--•-•'•-—••> V a l u e o f ic V a l u e o f t<: V a l u e o f k (°C)  356.4  2.79  343.1  2.74  . 363,0  2.74  376,4  -10> 20  2,50  363.1  2.74  383.1  - 1 0 , 30  2.45  358.6  2. 78  380.8  2.47  352.3  2.82  363.7  2.60  20  359,3  2,77  383.1  -2.45  0, 30  355.1  2,81  380.8  .2,47  |  20  348.6  2.87  396,4  2.37  [  20, 30  348.5  2.87  369.3  30, 40  2.55  340.1  2.95  358.5  .'• 40, 50  2.64  341.7  2.93  359.0  50, 60  2.63  410.8  . 2,56.  388,. 6  2.40  436.9  2.19  393.7  j;  5-o, i o o  2.36 -.  424,5  2,27  385.3  ' j-  70,; 90  2.42 •  418.6.  2.31  403.7  2 29 2.39  -10,  0 ;  - 3 0 , 50 ' : o  ;5  10,  -  - 6 0 , 80 ;  ;  ..-  '  /,  418.5  2,31  389.0  SO, 120  420.1  2,30  384.1  ; n o , i2o  429.0  2.24  411,7  2.20  1 1 0 , 130  425.8  2.26  413.8  .2.19  9 0 , 140  4 28.4  2 » 25  401.1  2.3i  449,0  2.09  449.0  1.94 . '  441.7 433.7 440,4 432,3 428.9 422.4 426.0  2 © X5 '. 2.20 2.15 2 2 J. 2.24 2,30 2.27  428.7 415.4 •418.1 420,7 405.8 393,3 414.1  2,08 2,17 . 2.15' 2 913 2.28 2.39 2 2. Q  ISO,-. 150 120, 170 ;130, 160 130, 180 60, ISO 150, 160 160, 170  ft  .  'j .;!  I,  9  ,70, 100  . l50»;;no v  • • "I  ,| II. •. 1  2.44 .  ft  ... ;i '•  '•'1  j! . '| [  occurs a t the h i g h e r temperatures. "With the purpose of o b t a i n i n g f u r t h e r confirmation of the . above r e s u l t s f o r c r i t i c a l temperature, Ferguson's e q u a t i o n next i n v e s t i g a t e d .  •  This i s of the form  I t - U i - »»)"  where "a" and "n» are constants. the  was  1  On d i f f e r e n t i a t i n g , we'obtain  s t r a i g h t l i n e equation  y ( dt ) c\V '  h  K  t  1__ ""an  n  c  t  .We would thus expect that at the c r i t i c a l temperature, where Y t 1 i /) a 0, — - —- ? 0, from which t c = - . a +  The accompanying  t a b l e gives the necessary c a l c u l a t i o n s and the X. (  graphs show the r e s u l t of p l o t t i n g  )  v.s. t .  Since the  graphs are by no means r e g u l a r , no attempt was made, to determine tc from any one p o r t i o n of them.  However, i t w i l l be noted that  the  p l o t f o r c i s i s approximately l i n e a r i n three s e c t i o n s , and  the  breaks occur i n the p r e v i o u s l y mentioned ranges of -10° - 0°C.,  50° - 60°C., and 120° - 13Q°C.  The p l o t f o r trans appears a l i t t l e  more complex. The c h a r a c t e r i s t i c changes at -10° - 0°C., 50° - 60°C, o o and 120  - 130 G. are quite evident, but i n a d d i t i o n there are  breaks at 80°C and 100°C. V. Determination of Parachors.  "  C a l c u l a t i o n s of parachors were c a r r i e d out employing Sugden's  2  equation P •_  Y .25  M  D  t  -  a t  1. "Surface Tension and Surface Energy" by R. S. Willows & E. Hatschek ' 2. Sucden ' g d C n  T J  -  (  c  ^era. Soc., 125, 1177  (.1924).  3  R  D  E  D  « )  4 3 - 4 4 .  D a t a and C a l c u l a t i o n s I n v o l v e d . i n P l o t t i n g F e r g u s o n ' s E q u a t i o n . cis trans ' T e m p e r a t u r e Mean t" A* "~in) d t A}f i n dt: Range thi s (°C) dT thi s mean t t. mean t { t » 20°C Rang el Range 1  -30 to  -10  -20  2.37  8.44  36.83  .311.0  2.34  -20 to  0  8.54 34.14  291.5  -10  2.33  8.58  35,65  306.0  2.23  -10 to  8.97 32.95  295.5  410  0  2.29  8,73  34.50  301.5  ,2.08  • 0 to  20  9.61 31.91  307.0  10  2.32  8.62  33.36  287.5  2.02  10 t o  30  9,90 30.87  3 05.5  20  P  8.50  32.18  273,5  20 t o  2 40  2.00 1 0 . 0 0 2 9 . 8 9  298.9  30  2.37  8.44  ,31.01  262.0  2.08  30 t o  50  9,61 28.87  278.0  40  2.38  8.40  29.81  250.5  2.10  40 t o  60  9.53 27.81  265. 0  50  2.14  9.34  28,63  267,5  1.99  50 t o  70  10.05 26.77  269. 0  60  1.81 1 1 . 0 5  27.67  30G.0  1,95  60 t o  80  10.26 25.82  265.0  70  1.79  11.18  26,82  300.0  1.87  70 t o  90  10.70 24,82  265.5  80  1,87  10.70  25.88  277.0  1.80  80 t o 100  11.10 23.95  26.6.0  90  1.84  10.88  24.95  271,5  1,93  90 t o 110  10;. 37 2 3 . 0 2  238.5  100  1.81  11.05  24.04  265.5  1.97  120  10,15 22.02  224,0-  110  1.79 1 1 . 1 8  23.14  258.5  1.80  110 t o 130  11.10 21,05  234,00  120  1.76 1 1 . 3 5  2 5 3 , o|  1.66  120 t o  140  12.05 20.22  243,5  130  1.69  11.83  21.38  253.0  1.57  130 t o 150  12.74 19,39  247. 0  140  1.62  12  20.56  253.5,  1,54  1 3 . 00 1 8 . 6 5  242.0  100 t o  140 t o  160  150  1.67  11.98  19.76  236,5|  1.67  150 t o  170  11,95 17.85  214.0  160  1.72  11.62  18.89  219.5  1.68  160 t o 180  11,90 16.98  202.0  170  1.71 1 1 . 7 0  18,04  211. C  I . 54 1 3 . 0 0 1 6 . 1 7  210.0  1  4 3 ,  The accompanying  t a b l e gives the necessary data and c a l c u l a t i o n s .  The r e s u l t s show that we may  take averages f o r each isomer over  two separate temperature ranges, thus; 1. f o r c i s d e c a l i n (a) from -30°C. to 30°C,  P - 366.9  (b) from 4 0 ° C . to 150°C,  P * 365.6  2. f o r trans d e c a l i n (a) from -30°C to 40°C  S  (b) from 50°G to 150°C,  P -  371*1  P = 369.7  Parachor of Double 6-Membered Ring. Prom Sugden's work we have the f o l l o w i n g parachors: f o r carbon, P - 4.3; f o r hydrogen, P = 17.1; and f o r double bond P s  23.2.  Knowing the formula of d e c a l i n to be C^O^IS and  assuming the a d d i t i v e nature of the parachors, we obtain the f o l l o w i n g v a l u e s f o r the parachor of the double 6-membered r i n g ; 1. from c i s d e c a l i n (a) from -30°C to 30°G,  P =  11.1  (b) from 40°C to 150°C,  P =  9.3  to 40°G,  P =  15.3  (b) from 50°C to 150°C,  P =  13.9  2. from trans d e c a l i n (a) from - 3 0 ° C  As a supplement  t o . t h i s work, the parachor f o r t h i s s t r u c t u r e  worked out from data on naphthalene.  Prom I n t e r n a t i o n a l C r i t i c a l  Tables we are given the v a l u e s at 80.2°G. = 32.26, and P = 7,5 mms „ i s 312.1.  (melting p o i n t ) s D  4  was . '  = .9779,  The c a l c u l a t e d parachor from t h i s data  On s u b t r a c t i n g parachors due to carbon, hydrogen and  44.  D a t a and C a l c u l a t i o n s o f  Parachors  CIS  trans.  temperature (°C)  Parachor  -30,00'  38,02  -20.00  36.83  -10.00  Parachor  .9350  0  366.9  35.29 .9072  0  371,1  .9274  0  366.9  34.14 .8997  0  371.1  35.65  .9196  0  367.1  32,95 ,8922  0 . 00  0  371,0  34,50  .9120  0  367.1  31.91 .8849  0  371.0  10.00  33.36  .9044  0  367,1  30.87 .8775  2 0 , 00  0  371.1  32.18  .8967  0  366.9  29.89 .8700  0  371.3  30.00  31.01  .8892 . 0 0 0 1  366.6  28,87 .3627 . 0 0 0 1  371.2  40,00  29.81  ,8817 . 0 0 0 1  . 366.1  27.81 .8553 , 0 0 0 1  •370;©  50,00  28,63  .8742 . 0 0 0 1  365,. 6  26.77 .8480 , 0 0 0 1  370.6  60.00  27.67  .8667 . 0 0 0 1  365.6  25.32 .8405 ., 0003 370.6  70,00  .26,82  .8592 . 0 0 0 1 ,  365,9  24.82 ,8331 , 0004  370.3  80.00  25,88  ,8519 .000  365.8  23 a 95j .8255 .0006  370,5  90.00  24,95  .8442 . 0003  365.8  23,02 ,8178 .0008  370.4  100.00  24. 04  .8368 .0003,  365,7  22.02 .8104 .0009  369.7  110.00  23,14  .8294 .0005  365,5  21.05 .8025 .0011  369.2 .  120.00  22.25  .8218 . 0007  365.4  20.22 ,-7952 ,0012  368.9  130.00  21,38  ,8144 ,0008  365.1  19.39 .7876 .0016  368,8  140.00  30.56  .8066 . 0011  365,2  18.65 .7798 . 0018  369,0  150.00  19.76  ,7936 .0014  365.3  17,85 ,7717 . 0022  369.0  1.60.00  18.89  .7906  0018  365.1  16.98 .7638 .0026  368.4  170.00  18.04  .7325  00221  364.9  16.17 .7555 ,0029  363.1  130.00  17.18  .7745 . 0023  364.4  15.44 ,7474 .0035  368.1  :  45„  double bonds we  o b t a i n P = 11.3  f o r that of the double S-membered r i n g  This agrees f a i r l y w e l l with the parachor from c i s d e c a l i n from -30°C to 30°C., i n d i c a t i n g a s i m i l a r i t y i n c o n f i g u r a t i o n . A s s t a t e d , the value P = 23.2 i n the c a l c u l a t i o n s .  I t may  f o r the double bond, i s used  be mentioned, however, that since- a  double bond possesses modified p r o p e r t i e s i n a 6-element r i n g to what i t possesses i n say ethylene, we may  not be j u s t i f i e d i n  assuming the parachor the same f o r both cases, Parachor  of S i n g l e 6-Membered Ring.  For t h i s , Sugden gives the value P = 6.1,  Since t h i s  was,  no doubt, obtained from data on benzene (unsaturated), i t was  of  i n t e r e s t to see i f the same r e s u l t would be obtained from data on Cyclohexane ( s a t u r a t e d ) . Prom I n t e r n a t i o n a l C r i t i c a l Tables are given the values a t 20°C. : D  4  » ,7790,  : we  lf = 25.30, and,  P = 76.9 rams. The c a l c u l a t e d parachor from t h i s data i s 242.2. On s u b t r a c t i n g parachors due to carbon and hydrogen we obtain P • 8,2. f o r that of the s i n g l e 6-element r i n g .  This d i f f e r s  considerably from Sugden s value, and, as with the double 1  ring,  i s probably due to some e f f e c t of the double bonds. VI.  The T o t a l and Molecular Surface E n e r g i e s . The accompanying t a b l e shows the c a l c u l a t i o n s of t o t a l surface  energy, where t o t a l surface energy = K + T ( — ) . The value of dt M (really -AL) was obtained by t a k i n g A t = 10°C and g e t t i n g dt At corresponding values of  .  The f o l l o w i n g i s a b r i e f summary  of the r e s u l t s ; 1, f o r c i s d e c a l i n (a) from -30°C to 50°C, average £l » .117 and average t o t a l dt ' "- - ~ surface energy = 66.'44 ergs.  46.  Data and. C a l c u l a t i o Temperatur (°C)  -30.00 -20,00 -10.00' 0,00 10.00 20.00 30,00 40,00 50.00 60.00 70.00 80,00 90,00 100,00 110.00 . 120.00 130,00 140,00 150.00 150.00 170,00 180.00  Tt 38.02 36.83 35,65 34,50 33.36 32.18 31,01 29.81 23,63 27,67 26.82 25,88 24,95 24.04 23,14 22,25 21,38 20,56 19.76 13,39 18,04 17.18  Surface Energies.  ^^JlotaJ^3Ji^  cis A*  1.19 1.18 1,15 1.14 1,18 1.17 1.2Q 1.18 ,96 .85 .94 .93 ,91 .90 .89 .37 .82 .80 .87 .85  Total Surface Energy •_.Lergs ) 66.45 66.43 66.42 65.44 66,47 66,46 66.46 '65.43 66.42 56,97 . 57,00 56.94 56.89 56,86 56.34 56.83 56,84 56.90 56.98 56,99 57,02 57.04  Molecular Surface Energy . ( ergs ) 1062.6 1034.9 1007.4 980.3  Tt  35,29 34,14 32,95 31,91  953.2  30,87  924.7  29,89  396.2 865,4 836.8  28.87 27,81 26.77  813.4  25,82  793.0  24,821  769,6 746,4  23.95 23,02  723,4  22.02  700,5  21.05  577.7  20.2  655.1  19.39  634.1 '  13,65  613,5  17.85  590.4  16,98  567.7  16*171  544.4  15.44  j | ] t r aTnost a T T n Molecular AO Surface Surface Energy Energy (ergs) _(ergsT' 1,15 1.19 1,04 1.04. 98 1.021 1. 06 | 1.04 95 1. 001 .87 .93 1.00 .97 .83 S3 .74 .80 .37 .31 ,73  61.05  1006,3  60,96  978,9  60.83  950.1  60.85  925.1  60.87  900.0  60.95  876.4  60.99  851,3  50,99  824.8  61.01  798.5  57,45  774.7  57,40  749,1  57,48  727,3  57,50  703.4  57.45  677.0  57.43  651.4  51,55  629,5  51,63  607.6  51.69  588.3  51.69  567.0  51.62  543.0  51.61  520,9  51,68  501.0  1  4 7 .  (b) from 60°C to 180°C, average ^jr - .088 and average t o t a l surface energy = 56.92 ergs. 2. f o r trans d e c a l i n  , >. >  (a) from -30°C to 50°C, average  f f ~ • .106 and average t o t a l  surface energy = 60.94 ergs. > (b) from 60°C to 110°C, average  - .095 and average t o t a l  surface energy » 57.45 ergs.(c) from 120°C to 180° C, average  M_  • • •••  _ .080 and average t o t a l  dt surface energy = 5 1 . 6 5 ergs. I t w i l l be noted that the agreement between values of t o t a l  surface  energies f o r d i f f e r e n t temperatures i n any one temperature range, i s very good. The values of molecular surface energy (the Q(WV)  of the Eotvos  equation-), are t a b u l a t e d and the v a r i a t i o n w i t h temperature i s shown on the accompanying  graph.  The curves are l i n e a r , and, as might be -  expected, are very s i m i l a r to those f o r |f v.s. t .  The  characteristic  breaks are again evident, those f o r both isomers showing up at 50° - 60°C and 120° - 130°C. VII  The l a t e n t Heats of V a p o r i z a t i o n and F u s i o n . As a means of g e t t i n g an approximate v a l u e f o r the l a t e n t heat of  v a p o r i z a t i o n , the work of Walder?- was i n v e s t i g a t e d .  "vYe have the  equation:  W < ° j > K where  AE  T  .  3.64  '.  = l a t e n t heat of v a p o r i z a t i o n per gram = d e n s i t y of l i q u i d at b o i l i n g p o i n t  ^  = surface t e n s i o n of l i q u i d at "boiling point  1. "Surface Tension and Surface Energy" by R. S. Willows & . E. Hatschek ( 3 r d ed.) 41-42,  S 6 J 3 UI :  feu^j souj-Jng jDpg|o[Aj'  Values.of D  and ^  4  were o b t a i n e d b y e x t r a p o l a t i o n ,  d e t e r m i n e d as i n t h e f o l l o w i n g  AH^, i n c a l o r i e s p e r  cis  1§.»05  ,7638  76,5  trans  14,99  . • .7433  73.4  These v a l u e s f o r however, w i t h v a l u e s This i s  to a b n o r m a l i t i e s  AH  c a l c u l a t e d from the  Clausius-Clapeyron  shown i n t h e f o l l o w i n g t a b l e ,  i n the values  Temperature  gr.  do n o t seem t o be i n good a g r e e m e n t ,  T  of  , Vapor  191.7°C.  Pressure  74.276  202,6°G.  101.47  and may b e due  % and ID a t t h e b o i l i n g  t h u s r e n d e r i n g t h e e x t r a p o l a t i o n an i l l e g i t i m a t e  trans  AH,  table:  .Kb  equation.  and  AH  V  point,  procedure.  in calories  per  cms. cms.  17 X # 3 0«  5 9 . 7 1 0 cms.  187.3°C.  80,485  91.0  :  54,9  cms.  The e q u a t i o n g i v e n b y W a l d e n , and i n v o l v i n g t h e l a t e n t h e a t fusion,  is; ( AH^)(1T) ±  ,  ••  where  •  -  13.14  : - f. • T  AH^ = l a t e n t h e a t o f f u s i o n p e r . IC  « molecular  gr.  gram  weight  Tj. - a b s o l u t e t e m p e r a t u r e a t f r e e z i n g  point.  of  f o l l o w i n g t a b l e shows the c a l c u l a t e d v a l u e s :  F r e e z i n g point (°C) CIS  trans  VIII  AH^. i n c a l o r i e s per gr.  •-43.. 2 6 °  .21.8  -.31.49°  23.0  -  The V a r i a t i o n w i t h Temperature of V i s c o s i t y . The graph of u v.s. t was drawn f o r each isomer, and the curves-,  obtained appear p e r f e c t l y r e g u l a r and normal i n shape. l o g u i s p l o t t e d against  —  However., when *  ( o r , as shown on the accompanying graphs,  when l o g u i s p l o t t e d against t - - g i v i n g a curve form which i s s i m i l a r to the other but concave to the r i g h t ) , we obtain f o r each isomer a cufve_ which i s made up'of f i v e d i f f e r e n t s t r a i g h t l i n e s .  The  -  t r a n s i t i o n temperatures from one l i n e to another have been mentioned (see s e c t i o n s 1 and 2 ). ITow i t w i l l be r e c a l l e d that f i v e isomeric forms f o r d e c a l i n have been, p o s t u l a t e d by Wightman.  I t may be  p o s s i b l e , then, that these f i v e forms are represented by t h i s simple v i s c o s i t y - t e m p e r a t u r e r e l a t i o n s h i p . 1 Data f o r the v i s c o s i t y of benzene p l o t t e d s i m i l a r l y against  — .  were next obtained and were  The r e s u l t i n g curve i s made of two  l i n e a r p o r t i o n s , the change from one to the other being i n the r e g i o n 30° - 40°G.  Since the values of Eotvos constant are not :  abnormally low f o r e i t h e r benzene, or the isomers of d e c a l i n , such changes i n slope cannot be a t t r i b u t e d to changes i n a s s o c i a t i o n , 1.  :J.. Phy. Chem.  34. 1 5 9 9 - 1 6 0 6 .  50,  but  apparently are due to a l t e r a t i o n s To  investigate  further  i n the molecular c o n f i g u r a t i o n ,  t h i s evidence from v i s c o s i t y , s.nd to  l i n k up the v i s c o s i t y with other p h y s i c a l  1  Batschinski  was examined. —  s  data, the work of  He proposes the r e l a t i o n  c(v - a)  u where a and c are constants and v = s p e c i f i c volume. Hence  a straight The  plots  1 _ c — i i - ac u D line for i v.s. i . u r>  f o r t h i s equation are shown on the accompanying graph.  I t w i l l be n o t i c e d that the curve f o r c i s i s r e a l l y made up of four straight o and  80  l i n e s separated at temperatures of -10° - 0°, 30° - 40° o 90 ; the curve f o r trans i s composed of three  straight  l i n e s separated at temperatures o f 0° - 10° and 50° - 60°.  These  t r a n s i t i o n temperatures do not agree very w e l l with those p r e v i o u s l y given, and- no i n d i c a t i o n the p a r a l l e l i s m  i s given of any change near 120°;  however,  o f the curves i s quite marked, and the f a c t that  linear characteristics  are shown, proves the a p p l i c a b i l i t y of  B a t s c h i n s k i ' s relation;.,,.  © e « © »  1. B a t s c h i n s k i , A.,  Z e i t . physik. Ghem., 84, 643 (1913)  51.  ^^ilM^or_the_Pl  o t  of B a t s n h i ^ T H . .  CIS  Temperature ( ° c •)•  :  /  ;  1 u  t  2'' ,.  U  1 t •  -30.00  6.55  1.069  13.70  1,102  -,•20.0.0'  9.22  1.078  18.71  1.111  -io.oo  13.55  1,087  24.50  1.121  0.00  18.28  1.096  31.24  1 0 . 00  1.130  23.95  1.106  38.90  20,00  1.140  30.09  1.115  47.17  1.149  30.00  37.33  1 © X2 5  56.02  1 © 159  40.00  45,21  1.134  &o:.oo  54.02  '60.0.0:'  ':  - -6-6.27  1.169  1.144  77.52  1.179  63.65  1.154  89,37  1.190  70.00  73,64  1.164  101.42  1.200  so.oo  83.26  1.173  114.02  -L»2x1  90,00  94.79  1.184  127,06  1«223  100.00  107.91  !•• 195  141.44  1.234  110.00  121.03  1.206  156.99  1.246  120.00  134,79  1 © 21 *7  173.01  1.258  130,00  148.26  1.228  186,56 :  1.270  140,00  163,48  1.240  204.08  1.282  150.00  178.19  1 © 25 2  217.87  •1.296  160.00  1 94 $ 3o  1.265• ,  236.97  1.309  170.00  210.04  1.273  257.73  1.324  180.00  227.38  1.291  277.01  1.338  —-——  ._  :  52.  PART I V  Information Obtained from F u r t h e r R e c t i f i c a t i o n  and C r y s t a l l i z a t i o n .  I n o r d e r t o s e c u r e more o f e a c h p u r e i s o m e r f o r research,  i t was d e c i d e d t o f o l l o w a g a i n t h e r e g u l a r p r o c e d u r e  rectification  and c r y s t a l l i z a t i o n .  unwashed d e c a l i n , described.  Commencing w i t h t h e raw,  t h e method was p r e c i s e l y  t h e same as  and i t  several conclusions  . .......  previously  were e n c o u n t e r e d ( c h i e f l y  is  for this  i n the  r e a s o n , and i n o r d e r t o  crystallization present  t h a t t h i s w o r k h a s b e e n p r e s e n t e d i n some  detail. 1. R e s u l t s  of  S i n c e , h o w e v e r , r a t h e r l a r g e y i e l d s were o b t a i n e d , . •. v.  certain difficulties treatments)  subsequent. •  of the R e c t i f i c a t i o n  of C i s and T r a n s D e c a l i n .  (over)  Characteristics (a)  of  2000 c . c .  Charge: of E a s t m a n K o d a k  (b) D| -  ..  .8875  (c)  =  1.47834  q  (d) approximate c o m p o s i t i o n  " B o i l i n g P o i n t of F r a c t i o n (°C) Volume o f F r a c t i o n . (c.c.) Time f o r " F r a c t i o n (hrs.) Rate of F r a c t i o n a t i o n (c.c./hr) Index of R e f r a c t i o n  (iP )  Approximate  {$•  §omnos :  C1ST)  Bulb 1  Bulb 2  -r  decalin.  24.5% t r a n s .  B u l b .3  Bulb 4  Bulb 5  59.0-59.5 59.5-61.2 61.2-64.3 64.3-66.4 66.4-67.9 200  227  . 331  . 225  528  13.5  14.5  23.0  20.0  50.5  14.8  15.6  14.4  • 11.25  1.46983  1.46993  1.47255  1.47975  1.48118  25.6  88.1  >loo  i t i o n  1.9  2.2  F i n a l r e s i d u e i n column b u l b =.400  c.c.  Hence t o t a l l o s s d u r i n g r e c t i f i c a t i o n - 89  c.c.  •'> io/5t ,;]  i:  54.  R e c t i f i c a t i o n No. 2  October 6 - - 0 c t o b e r l 5 , 1958.  Characteristics  of Charge;  ItJ'^'  ( }  •? * * » c o m p r i s i n g 1475 c . c . o f raw iR^ t ? ? ? ^ ? ^ ^ e c t i f i c a t i o n N o .^ 1 ?f 330 c . c' . - o f bbuol tbt 'o3m s ' o f 1  e C !  l l n  6  0  1  f  4  0  0  c  c  o  f  ( b ) D4 = .8890 20 ( c ) IT| = 1.47849 o  ( d ) a p p r o x i m a t e c o m p o s i t i o n = 23% t r a n s  "Bo'il'ihg^Pbin't o f F r a c t i o n (°C) Volume o f F r a c t i o n (c.c.) Time f o r F r a c t i o n (hrs.) R a t e of F r a c t i o n a t i o n (c.c./hr) Index of R e f r a c t i o n —  (H  io>  Approximate Composition! {% c i s )  Bulb 1  Bulb 2  Bulb . 3  B u l b 4 ".  ;  B M . b 5"' l a  4;  59.5-60.2 60.2-62.0 62.0-64.9 64,9-67.8 ,67.8-68^ 370  500  24.5  33.0  15.1;  345 30.5;  1.47081  2. 0  11.2  42.5  11.3 1.47804  F i n a l r e s i d u e i n column b u l b » Hence t o t a l l o s s  • * 280  73.2  9.5  {  .••:':; -.* ' ' | 9  6v  1.48128  >100  >100  440 c . c . c  , \\.  X','  1.48123  d u r i n g r e c t i f i c a t i o n - 38  .]  29,0 * •  15,1  1.46988  405  .c.  :  :  (a)  2053 c . c . o f h i g h c i s d e c a l i n c o m p r i s i n g b u l b 5 o f R e c t i f i c a t i o n N o . 1; b u l b s 4 and 5 o f R e c t i f i c a t i o n Ho.. 2j and 840 c . c . of h i g h c i s d e c a l i n f r o m t h e c r y s t a l l i z a t i o n t r e a t m e n t s of 1 9 3 7 - 3 8 . ( b ) D,4 _ .8965 20 = 1.48118  ( c ) BP  ( d ) a p p r o x i m a t e c o m p o s i t i o n = 100% c i s  B o i l i n g P o i n t of . F r a c t i o n (°C) Volume o f F r a c t i o n (c.c.) Time f o r F r a c t i o n (hrs.) Rate of F r a c t i o n a t i o n (c.c./hr) Index of R e f r a c t i o n Approximate  Composition (% c i s )  Bulb 1 67.1-67.6  Bulb 2  Bulb 3  Bulb 4  Bulb  67.6-68,0 68.0-68.6 68.3-68.8 68.5^:68,  100  330  725  370  , 160  IO.O  32.0  74.5  38.5  17.0  10.0  10.3  1.48044 93.0  9.7.  9.6.  9. 4.  1.48108  1.48108  1.48108  1.48108  100  100  100  100  F i n a l r e s i d u e i n column b u l b = 240 C . c . Hence t o t a l l o s s d u r i n g r e c t i f i c a t i o n  =  128  c.c.  I t a p p e a r s f r o m t h e above t h a t p r a c t i c a l l y a l l t h e i m p u r i t i e s c o n c e n t r a t e d i n b u l b 1, d e c a l i n of very h i g h  and t h a t t h e r e m a i n i n g b u l b s c o n t a i n e d  Before proceeding w i t h the t r a n s ,  cis  t h e column was now washed  f o r 5-6 h o u r s a c h a r g e o f d e c a l i n w h i c h  h a d an a p p r o x i m a t e c o m p o s i t i o n o f 70% t r a n s . made up o f two f r a c t i o n s rectifications.  were  purity.  t h o r o u g h l y by r e f l u x i n g i n i t  5  T h i s w a s h i n g c h a r g e was  o b t a i n e d f r o m t h e R. D. W a l k e r - - W . F .  Seyer  56.  R e c t i f i c a t i o n Uo. 4 Characteristics  November 3--November 9 , of  1938  Charge;  ( a ) 1950 C . c . o f h i g h t r a n s d e c a l i n , c o m p r i s i n g b u l b s 1 and 2 o f R e c t i f i c a t i o n No. l j b u l b s 1 and 2 o f - •• • ' H R e c t i f i c a t i o n H o . 2; and 653 c , c . o f h i g h t r a n s • - ' ' d e c a l i n from the c r y s t a l l i z a t i o n treatments of 1937-38 (b) D |  0  (c)  •  .8700  = 1.47008  (d) approximate composition  B o i l i n g P o i n t of F r a c t i o n (°C) I volume o f F r a c t i o n (c.c.) Time f o r F r a c t i o n - (hrs.) Rate of F r a c t i o n a t i o n ' (c.c./hr) Index of R e f r a c t i o n Approximate S O m p o s i {% t r a n s )  tion  Bulb.1  =  96,6% t r a n s .  . B u l b 2 •>  Bulb 3  Bulb 4  59.0-61.0 61,0-61.7 61.6-62.3 62.3-61.5 85  378  6.5 13.1 1.46889  61.5-51.0  460  220  360  3 0 . 0 '.  43.0  ' 23.5  34.5,  12.6  10.7.  .9.4  10.4  1.46933  >100  , B u l b . 5.  1.46938  100  1.46933  100  1.46 9.43  100  100  F i n a l r e s i d u e i n column b u l b => 390 c . c . . Hence t o t a l l o s s  d u r i n g r e c t i f i c a t i o n = 57  The above t a b l e shows t h a t t h e c h i e f  impurities  c o n c e n t r a t e s were o f t h e l o w - b o i l i n g p o i n t a p p e a r s t o h a v e b e e n done q u i t e a r e of t h e same a p p r o x i m a t e  type.  efficiently,  composition.  c.c.  i n . our Their  trans removal  f o r bulbs 2,3,4  and 5  57.  2. The F i n a l P u r i f i c a t i o n o f C i s and T r a n s D e c a l i n b y Crystallization, (a) Apparatus changes,  and E x p e r i m e n t a l P r o c e d u r e .  Fractional  Except f o r  e v e r y t h i n g was t h e same as i n t h e p r e v i o u s w o r k .  case of the c i s ,  i t was f o u n d t h a t  the c r y s t a l l i z a t i o n s  done b y p l a c i n g o u r d e c a l i n i n an 800 c . c .  minor I n the -  c o u l d be w e l l  g l a s s Dewar ( u s i n g an  a i r w a l l ) : , and c o o l i n g t h e w h o l e w i t h s o l i d c a r b o n d i o x i d e i n a much l a r g e r D e w a r .  Hand s t i r r i n g was employed t h r o u g h o u t and no  t r o u b l e w i t h s u p e r c o o l i n g was e n c o u n t e r e d . it  was n e c e s s a r y  still  since i t s  further,  it  was n e c e s s a r y t o u s e m e c h a n i c a l  of t h e Dewar.  reduce  A l s o , .to r e d u c e h e a t  use a l l o w e d the f o r m a t i o n of a t h i c k l a y e r of  on t h e s i d e s  trans  to e v a c u a t e t h e 800 c . c . Dewar i n o r d e r to  t o a minimum t h e r a t e o f h e a t ' t r a n s f e r . transfer  However, f o r  .  .-v •,,'»*  stirring,  crystals*  Such t r e a t m e n t f a v o r e d t h e phenomenon  o f s u p e r c o o l i n g , b u t no d i f f i c u l t y was e x p e r i e n c e d as s e e d i n g was employed..  - •  •  (b) E x p e r i m e n t a l R e s u l t s selected for No. 3.  for Cis Decalin.  t h e p u r i f i c a t i o n were b u l b s 2 , 3 , 4  U s i n g a c o m b i n a t i o n of b u l b s  i t was f o u n d t h a t  eight  F.P.  =  result  -43.29 t  The p u r i f i c a t i o n  is :  o f b u l b 5,* •  were r e q u i r e d , t o  t h e v o l u m e t r i c y i e l d was 530 sodium.  For  c.c. this  .  ;  . 0 4 ° C . and  NgO * 1.48113.  ?  t r e a t m e n t as a p p l i e d t o a c o m b i n a t i o n  b u l b 3 and t h e r e m a i n i n g h a l f  •• « • j  and 5 of R e c t i f i c a t i o n •  2,4 and o n e - h a l f  As b e f o r e t h e p r o d u c t was d r i e d u s i n g m e t a l l i c our f i n a l  The f r a c t i o n s  separate c r y s t a l l i z a t i o n s  o b t a i n t h e p u r e i s o m e r and t h a t  material,  . '  of b u l b 5, g a v e v e r y  of  interesting  58.  results.  After  five  be p u r i f i e d f u r t h e r  crystallizations,  the m a t e r i a l c o u l d not  and gave a c o n s t a n t P. P. « - 4 3 . 0 8 ° C .  T h i s r e s u l t was o b t a i n e d a p p r o x i m a t e l y t h r e e weeks a f t e r fractionation  of the h i g h c i s  Ten d a y s a f t e r  d e c a l i n by R e c t i f i c a t i o n No. 3.  the d e t e r m i n a t i o n of t h i s f r e e z i n g p o i n t ,  t e s t was r u n on t h e same m a t e r i a l . freezing point later,  another  A g a i n , two months  i n d i c a t e d the f r e e z i n g p o i n t  t o be  still  The v o l u m e t r i c y i e l d o f t h i s m a t e r i a l was 590  T h i s w o r k on c i s  decalin clearly  some u n s t a b l e f o r m o f c i s i s o m e r . bulb 3, appears  c.c.  suggests the presence  I t s presence,  quite remarkable, none-the-less  our f i r s t  measurement on t h i s  t h r e e weeks a f t e r R e c t i f i c a t i o n N o . 3 . investigation along this  line,  it  following careful rectification  fortunate,  determinations separate  Hence,  concerning  further-  to suggest  decalin, freezing  f o r Trans D e c a l i n .  f o r the c r y s t a l l i z a t i o n  r u n s were made t o i n v e s t i g a t e  that,  point  As m e n t i o n e d  of t r a n s d e c a l i n .  different  effects,  and i t  c o n c l u d e d t h a t , when a d r y i c e c o o l i n g medium i s  t h e u s e o f m e c h a n i c a l s t i r r i n g and a w e l l mms.), are n e c e s s a r y .  former  >>  s e v e r a l p r e c a u t i o n s had to be t a k e n i n o r d e r t o o b t a i n •  optimum c o n d i t i o n s  produces  As  its  fractions.  previously,  finally  and  s h o u l d be commenced as s o o n as p o s s i b l e w i t h t h e  (c) Experimental Results  trial  in-  sample was made a b o u t  seems p l a u s i b l e  of c i s  of  predominately  c o n c e n t r a t i o n may b e a t t r i b u t e d t o c a r e f u l r e c t i f i c a t i o n . s t a t e d above,  •  T h i s showed t h e c o n s t a n t - • -  t o h a v e f a l l e n now t o - 4 3 . 1 4 ° C .  another t e s t  -43.14°C.  the  Further,  Many was  employed,'  e v a c u a t e d Dewar (10^ - . 1,0*1": ;  i t was d e m o n s t r a t e d t h a t hand  stirring!  t h e same f r e e z i n g p o i n t as m e c h a n i c a l s t i r r i n g , b u t i n  c a s e t h e r a t e o f c o o l i n g i s much g r e a t e r due t o t h e  the  crystals  59  f o r m i n g w i t h i n t h e h u l k o f t h e l i q u i d and n o t b e i n g swept t o sides  of the  flask.  U s i n g a c o m b i n a t i o n of b u l b s 4 , 5 all  of R e c t i f i c a t i o n No. 4,  crystallizations  The f r e e z i n g p o i n t s  .04°C.  1  and t h e v o l u m e t r i c y i e l d was 135 c-.  o f the. two b a t c h e s a g r e e d .  +  that  were r e q u i r e d - ,  For trans  is?  P. = - 3 1 . 1 6  3,  H o w e v e r , u s i n g b u l b 2 and  of b u l b 3, twenty c r y s t a l l i z a t i o n s  our f i n a l r e s u l t  of b u l b  were r e q u i r e d t o o b t a i n t h e p u r e i s o m e r and  to o b t a i n the constant p o i n t ,  P.  and o n e - h a l f  i t was f o u n d t h a t s i x s e p a r a t e  t h e v o l u m e t r i c y i e l d was 500 c . c . the other h a l f  the  and  =  1.46954  decalin  60. PART V . A S t u d y of; t h e E f f e c t Trans  o f H e a t on t h e D e c o m p o s i t i o n o f C i s  and  Decalin.  That heat produced d e c o m p o s i t i o n i n the isomers of d e c a l i n • seemed a p p a r e n t f r o m t h e d i s c o v e r y o f t h e p r e s e n c e of i n the h e a t - t r e a t e d of d e n s i t y ,  liquids  unsaturateds  w h i c h had u n d e r g o n e t h e measurements . •  s u r f a c e t e n s i o n and v i s c o s i t y .  In the case of the  l i q u i d t h e r e d u c t i o n o f a l k a l i n e p o t a s s i u m permangamate was rapid;  i n the case of the t r a n s  observed but  l i q u i d t h e r e d u c t i o n was  the r e f r a c t i v e  that.refractive  s e n s i t i v e p h y s i c a l p r o p e r t y - of t h e s e i s o m e r s . f r o m t h i s , *then, t h a t a t t h e h i g h e r  w e r e f o r m e d ; and t h a t than f o r  trans.  reaction,  it  is  when h y d r o g e n i s that  index is. not a  I t would appear  temperatures  c i s and t r a n s  t o t h e u n s a t u r a t e d compounds f r o m w h i c h t h e y t h e t e n d e n c y t o do so i s much g r e a t e r f o r  S i n c e hydrogen would be g i v e n o f f  p r e s e n t , b u t on t h e o t h e r hand i t  r e a d too  is  pressure  t h e u n s a t u r a t e d compound i n t h e p u r e  decalin.  d i v e r g e n c e f r o m t h e t r u e v a l u e s may a l s o b e e x p e c t e d  those obtained f o r density, elevated temperatures, be. t h i s  high  possible  t h i s may b e c o m p e n s a t e d b y t h e l o w e r i n g i n v a p o u r  A slight  surface  and i t  divergence which i s  i n the curves at the h i g h e r  is  t e n s i o n and v i s c o s i t y  i n t e r e s t i n g to n o t e t h a t  at  in the  it,may--  r e s p o n s i b l e f o r the s l i g h t f a l l i n g temperatures.  of t h e f o r m a t i o n o f u n s a t u r a t e d s  again i s  cis  i n such a  q u i t e p o s s i b l e t h a t vapour pressures  from the s o l u t i o n of  cis.  i n d e x r e m a i n e d t h a t of t h e p u r e  i s o m e r — o n e i n s t a n c e of the f a c t  d e c a l i n tend to r e v e r t  quite  also  t h e t i m e r e q u i r e d was much l o n g e r t h a n f o r t h e  In both cases,  cis  Experimental indicated,  off--  verification  this  time  in  61  the data obtained f o r  cis.  As t h e author.? s work shows-, the-heat>>. • *v  treatment r e s u l t e d i n the c i s l i q u i d h a v i n g a h i g h e r d e n s i t y , t e n s i o n and v i s c o s i t y , a t 2 0 ° C . t h a n t h e p u r e c i s . p o s s e s s e s . would i n d i c a t e a p a r t i a l of p u r e c i s  change a t l e a s t  indicates  t o be h i g h e r t h a n t h o s e o f t h e , s a t u r a t e d To i n v e s t i g a t e more f u l l y it  its  configUrati  physical  (as pure c i s or  t h e amount o f s t r u c t u r a l  was d e c i d e d t o f o l l o w t h e p r o d u c t i o n o f  b y f o l l o w i n g t h e change i n i o d i n e number. the f o l l o w i n g r e s u l t s  change.-  unsaturateds  I t I s quite :possible- that  do n o t i n d i c a t e u n s a t u r a t i o n o n l y ,  s u b s t i t u t i o n w o u l d be r e t a r d e d b y t h e u s e of l o w since differences  was deemed s u f f i c i e n t l y  as some  were  This  temperatures.  o n l y were d e s i r e d , a b s o r p t i o n a t  accurate for  t h e p u r p o s e , and a l l  20°C.  measurements  reproducible. ( a ) The E x p e r i m e n t a l P r o c e d u r e .  essentially  The method employed was  t h a t due t o Hub1 w i t h t h e i m p o r t a n t m o d i f i c a t i o n  suggested by W i j s . 1  Two l i t r e s  o f g l a c i a l a c e t i c a c i d were  distilled  t w i c e i n t h e p r e s e n c e of p o t a s s i u m permanganate i n o r d e r to any a l c o h o l  or a c e t a l d e h y d e .  was r e j e c t e d .  The f i r s t  was p a s s e d i n t o  o f each  distillate  and' t h e n washed and d r i e d  chlorine.  t h e s o l u t i o n u n t i l t h e c o l o r changed f r o m d a r k brown  to reddish yellow.  That t h i s  o f t h e s o l u t i o n was j u s t Sutton,  50 c . c .  oxidize  T h i s d o n e , a b o u t 6 . 5 grams o f p u r e i o d i n e w e r e  d i s s o l v e d i n the p u r i f i e d a c i d ,  1.  properti  trans).  s u b s t i t u t i o n may a l w a y s t a k e . p l a c e d u r i n g t h e a b s o r p t i o n .  However,  This- -  t o t h a t o f an u n s a t u r a t e d , f o r a s t u d y o f t h e d a t a o n -the  unsaturated double r i n g (naphthalene)  undergone,  of t h e s a t u r a t e d  surface  c o l o r change o c c u r r e d when t h e  double t h a t of the i n i t i a l  "Volumetric Analysis",  iodine  titer  solution,  1.0th e d i t i o n , page 4 1 2 - 4 1 5 .  62.  was shown b y t i t r a t i o n s w i t h s t a n d a r d s o d i u m t h i o s u l p h a t e on-- - the i n i t i a l  i o d i n e and f i n a l  chlorinated-solutions.  t h i o s u l p h a t e was p r e p a r e d b y V o l h a r d ' s m e t h o d . used as s o l v e n t f o r  The  standard  C h l o r o f o r m was  the d e c a l i n ; a l s o used i n the t i t r a t i o n s -  were ,a 10% s o l u t i o n o f p o t a s s i u m i o d i d e and a f r e s h l y - p r e p a r e d - > 1% s t a r c h s o l u t i o n .  E a c h t i t r a t i o n was done i n a 250 c . c ,  Pyrex f l a s k possessing a well-ground glass In making a d e t e r m i n a t i o n , (about  chloroform,  and 20 c . c .  stopper.  a w e i g h e d sample of t h e  . 8 grams) was p l a c e d i n t h e f l a s k ,  clean,  decalin  d i s s o l v e d i n 10 • c . c . - o f  of the i o d i n e m o n o c h l o r i d e s o l u t i o n added.  The f l a s k was c o r k e d and s h a k e n w e l l and a l l o w e d t o s t a n d f o r . 2 h o u r s i n the dark,  a f t e r w h i c h t i m e 10 c . c .  and 100 c . c ,  o f w a t e r were a d d e d .  i o d i n e by v o l a t i l i z a t i o n ,  of potassium i o d i d e  In order to prevent  solution  loss  of-  t h e l i q u i d s were a l l o w e d t o r u n a r o u n d ,  t h e w i d e - l i p p e d n e c k a b o u t t h e s t o p p e r , w h i c h was p a r t i a l l y to a l l o w the s o l u t i o n to e n t e r the f l a s k . t i t r a t e d w i t h sodium t h i o s u l p h a t e , The p r e p a r a t i o n o f manner.  The e x c e s s i o d i n e was  using starch indicator  After  e a c h w i t h a 2-3 c . c . b u l b on t h e  each bulb.'  The s a m p l e s were  f r o z e n i n a " d r y i c e " medium and w h i l e i n t h i s were b l o w n on t o a s e r i e s  following  t h o r o u g h c l e a n i n g a s m a l l amount of pure*  d r y d e c a l i n was i n t r o d u c e d i n t o  from a mother tube.  at the end.  t h e d e c a l i n s a m p l e s was done i n t h e  About twenty s m a l l t u b e s ,  end, were p r e p a r e d .  removed  of T-tubes  then  c o n d i t i o n the  extending v e r t i c a l l y  tubes,  outwards  B y c o n n e c t i n g one end o f t h e mother t u b e t o  vacuum pump, t h e w h o l e c o u l d b e e v a c u a t e d .  T h i s done, the d e c a l i n  was u n f r o z e n u n d e r vacuum t o remove d i s s o l v e d a i r , was a d m i t t e d t o t h e a p p a r a t u s .  Finally,  frozen,  and t h e s e r i e s  the whole r e - e v a c u a t e d ,  a  and t h e n h y d r o g e n  t h e d e c a l i n was once of t u b e s s e a l e d  again off  u n d e r vacuum. The h e a t  treatment  of the v a r i o u s  a small constant-temperature hath, stirrer  s a m p l e s was done  equipped w i t h  employing  thermometer,  and t h e r m o s t a t i c m e c h a n i s m .  (b) R e s u l t s analyses  of the Heat T r e a t m e n t s .  Prior  to t h e h e a t i n g ,  o f t h e p u r e c i s and t r a n s i s o m e r s p r e p a r e d i n  indicated for  e a c h an a p p a r e n t i o d i n e number of  1937-38,  .08 w h e r e a s  t h e p u r e i s o m e r s p r e p a r e d i n 1938-39 t h e number was . 0 4 .  These  s m a l l i o d i n e numbers may b e a t t r i b u t e d to s u b s t i t u t i o n . c o n f i r m a t i o n of the r e s u l t s permanganate,  analysis  for  In  obtained with alkaline-potassium •  of the h e a t - t r e a t e d  cis  f r o m 1938 i n d i c a t e d a p p a r e n t i o d i n e numbers o f  and t r a n s .36 and  liquids  .15  respectively. Heat t r e a t m e n t of t h e d e c a l i n samples i n the evacuated failed  t o p r o d u c e any u n s a t u r a t e d compounds.  d e c a l i n prepared i n 1937-38, after  T h u s , u s i n g the- p u r e  t h e i o d i n e number r e m a i n e d .08  even  20 h o u r s h e a t i n g a t 1 7 0 ° C . a n d . 6 h o u r s h e a t i n g a t 2 0 0 ° C - •  T e s t s w e r e c a r r i e d o u t a t 1 7 0 ° C . w i t h open t u b e s and i t  was f o u n d  t h a t a l t h o u g h s m a l l amounts o f u n s a t u r a t i o n were p r o d u c e d , r e s u l t s were not r e p r o d u c i b l e f o r d i f f e r e n t discolorations  tubes.  i n some o f t h e t u b e s i n d i c a t e d t h a t t h e change  the tubes from the hot o i l  obtained in t h i s  getting  serves to c l a r i f y  several  r e s e a r c h on d e c a l i n :  lw The i o d i n e numbers f o u n d t o e x i s t f o r t h e h e a t - t r e a t e d and t r a n s  liquids  in  bath.  The aho've w o r k on h e a t t r e a t m e n t results  the  Slight  i o d i n e number c o u l d b e a t t r i b u t e d to m i n u t e amounts o f o i l into  tubes  o f 1 9 3 8 , were p r o b a b l y due t o s l i g h t  amounts  cis of  o i l vapor g e t t i n g i n t o  t h e open d e n s i t y t u b e ( v i s c o m e t e r  s u r f a c e t e n s i o n t u b e were c l o s e d ) . r e s p o n s i b l e f o r p a r t of the ,2.  Irreversible  and  O x i d a t i o n may h a v e b e e n  change.  structural  changes w i t h o u t  the  formation  o f u n s a t u r a t e d s must o c c u r f o r c i s d e c a l i n a t e l e v a t e d  temperatures  T h i s e v i d e n c e i s . o b t a i n e d f r o m t h e changes w h i c h o c c u r e d i n the- , c l o s e d v i s c o m e t e r and s u r f a c e t e n s i o n t u b e . conclusions, 3. cis  such changes f o r  The r e s u l t s  indicate  trans are that i f  As n o t e d i n  previous  reversible.  unsaturateds  are formed from  and t r a n s d e c a l i n a t t e m p e r a t u r e s up t o 2 0 0 ° C . i n ^ c l o s e d  the r e a c t i o n s  are r e v e r s i b l e  on c o o l i n g .  tubes,  6,i  1.  Mohr,  J , P h y s . Chem.,  9 8 , 315 (1918)  2. - Wightman, J . Chem. S o c . , 1 2 7 , 1421 3.  Willstatter & Seitz, Berichte,  4.  Zelinsky,  1 0 3 , 316 ( 1 9 2 2 ) .  (1925).  57B.,  .-. 7 .  Chem. 1 0 1 , 269  L. M . , B. A . S c . ,  8.  Manley, D.,  9.  Cornett,  B. A . S c . ,  W. P . ,  Thesis Thesis  B. A . S c . , Sc.,  11*  S e y e r , W. E . , A s s o c i a t e P r o f e s s o r  Bennett,  R.,  B. A . S c . ,  14.  Nemetz, H. & H e n n i k e r ,  15.  W i l l o w s , R.  16.  S u g d e n , J . Chem. S o c . ,  17.  Batschinski, A.,  18.  Sutton,  I |  (1925).  I I J  (1934).  W a l k e r , R. D . , M. A .  13.  58B.,  (1935).  Thesis Thesis  Speyers & Carver;  i  (1922).  10.  12. ' R i c h a r d s ,  (1924).  N. 0 . & T u r o v a - P o l l a k , M. B . , B e r i c h t e , 1292-98 (1925).  Herz, Z. Physik. Kirk,  I  683-4  5 . " H u c k e l , W., A n n a l e n d e r C h e m i e , 4 4 1 , 1 6.  j  |  (1935).  j  (1937).  •  . I  of'B.  C.|  (1924).  |  in Chemistry, U n i v e r s i t y  J . Am. Chem. S o c ,  Thesis  ;  4 6 , 1196  (1935).  1  C . , M. A . S c . & B. A . ' S c . , T h e s i s . respectively (1938).  v  h '• sj  S. &. H a t s c h e k , E.y. " S u r f a c e T e n s i o n and S u r f a c e Energy '|j. (3rd e d . ) , 41-44. !|| 1  1 2 5 , 1177  Z. P h y s i k .  (1924).  C h e m . , 8 4 , 643  "Volumetric Analysis",  f] (1913).  1 0 t h e d . , p. 4 1 2 - 4 1 5 .  jij |j  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059276/manifest

Comment

Related Items