UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Direct contact heat transfer between two immiscible liquids during vaporization Prakash, Chandra Bhanu 1966

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1966_A1 P7.pdf [ 21.57MB ]
Metadata
JSON: 831-1.0059269.json
JSON-LD: 831-1.0059269-ld.json
RDF/XML (Pretty): 831-1.0059269-rdf.xml
RDF/JSON: 831-1.0059269-rdf.json
Turtle: 831-1.0059269-turtle.txt
N-Triples: 831-1.0059269-rdf-ntriples.txt
Original Record: 831-1.0059269-source.json
Full Text
831-1.0059269-fulltext.txt
Citation
831-1.0059269.ris

Full Text

^ D I R E C T CONTACT HEAT TRANSFER B E T W E E N TWO IMMISCIBLE LIQUIDS DURING VAPORIZATION by CHANDRA BHANU PRAKASH B. Sc. , Agra University, India, 1954 M. Sc. (Maths.), Agra University, India, 1956 B . S c (Chem. Eng.'),. B&naras Hindu University, India, I960 A THESIS SUBMITTED IN PARTIAL F U L F I L M E N T O F T H E REQUIREMENTS FOR T H E D E G R E E OF DOCTOR OF PHILOSOPHY in the Department of CHEMICAL ENGINEERING We accept this thesis as conforming to the required standard T H E UNIVERSITY OF BRITISH COLUMBIA April , 1966 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r ee t h a t t he L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r ee t h a t p e r m i s s i o n f o r e x -t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y pu rpo se s may be g ran by the Head o f my Depar tment o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n -c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . C h e m i c a l E n g i n e e r i n g -Depar tment o f The U n i v e r s i t y o f B r i t i s h C o l u m b i a Vancouve r 8, Canada M a y 1 3 , 1 9 6 6 Date The U n i v e r s i t y o f B r i t i s h C o l u m b i a FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY CHANDRA BHANU PRAKASH Bo Sc., A g r a U n i v e r s i t y , I n d i a , 1954 M.Sc. ( M a t h s . ) , A g r a U n i v e r s i t y , I n d i a , 1956 B.Sc. (Chem. Eng.), Banaras H i n d u U n i v e r s i t y , I n d i a , 1960 IN ROOM 207, CHEMICAL ENGINEERING BUILDING of MAY 10, 1966, AT 3:30- P.M. COMMITTEE IN CHARGE Chairman: S. H. Z b a r s k y R. M. R. B r a n i o n S. D. C a v e r s N„ E p s t e i n H. M. M c l l r o y K. L. P i n d e r D. A, Ratkowsky E x t e r n a l Examiner: Z. Rotem I s r e a l i I n s t i t u t e o f Technology H a i f a R e s e a r c h S u p e r v i s o r : K. L. P i n d e r DIRECT CONTACT HEAT TRANSFER BETWEEN TWO IMMISCIBLE LIQUIDS' DURING VAPORIZATION . ABSTRACT A single-drop study using motion picture photogra-phy was used to predict the heat transfer with a change of phase (vaporization) between two immiscible l i q u i d s . I n . a l l , three systems were studied using furan, i s o -pentane, and cyclopentane as the dispersed phase l i q u i d s and d i s t i l l e d water as the continuous phase l i q u i d . The c o r r e l a t i o n which predicted the o v e r a l l heat transfer c o e f f i c i e n t for a l l the three systems was Nu = 0.0505 ( P e ' ) ' 4 1 7 CJ^Z-D. l"25, where the Nusselt number and the modified Peclet number were based on the dispersed phase l i q u i d properties. This c o r r e l a t i o n was developed from the experimental data only up to ten percent evaporation and was not found to hold well for the t o t a l evaporation range, when the t o t a l evaporation time from t h i s c o r r e l a t i o n was com-pared with that obtained by a dilatometric method. Individual equations for each system, however, gave good agreement between experimental and t h e o r e t i c a l t o t a l evaporation time. The average rate of heat transfer f o r a l l the three 2 systems i s given by the: equation, = C d i &t, where 'C i s a constant which i s d i f f e r e n t for. each system. GRADUATE STUDIES F i e l d of Study: Chemical Engineering Mathematical Operations i n Chemical Engineering J . Lielmezs' D i s t i l l a t i o n J . S. Forsyth Process Heat Transfer K. L. Pinder Control of Process Variables K. L. Pinder Mathematical Operations- ( s t a t i s t i c s ) i n Chem. Eng, - D. A. Ratkowsky F l u i d and P a r t i c l e Dynamics D. M. R. Branion Topics i n Chemical Engineering J , S. Forsyth S. D. Cavers N. Epstein J . Lielmezs Related F i e l d s of Study: F l u i d Mechanics M. C. Quick Thermodynamics and Heat Transfer F. G. Furse Applied Calculus and D i f f e r e n t i a l Equations W. H. Gage S u p e r v i s o r : Dr. K. L. P i n d e r i i A B S T R A C T A s i n g l e - d r o p study u s i n g m o t i o n p i c t u r e photography was u s e d to p r e d i c t the heat t r a n s f e r w i t h a change of phase ( v a p o r i z a t i o n ) between two i m m i s c i b l e l i q u i d s . In a l l , t h r e e s y s t e m s w ere s t u d i e d u s i n g f u r a n , isopentane, and cyclopentane as the d i s p e r s e d phase l i q u i d s and d i s t i l l e d w a t e r as the continuous phase l i q u i d . The c o r r e l a t i o n w h i c h p r e d i c t e d the o v e r a l l heat t r a n s f e r c o e f f i c i e n t f o r a l l the t h r e e s y s t e m s was m o d i f i e d P e c l e t n u m b e r w e r e b a s e d on the d i s p e r s e d phase l i q u i d p r o p e r -t i e s . T h i s c o r r e l a t i o n was d e v e l o p e d f r o m the e x p e r i m e n t a l data o n l y up to ten p e r c e n t e v a p o r a t i o n and was not found to h o l d w e l l f o r the t o t a l e v a -p o r a t i o n range, when the t o t a l e v a p o r a t i o n t i m e f r o m t h i s c o r r e l a t i o n was c o m p a r e d w i t h that obtained b y a d i l a t o m e t r i c method. I n d i v i d u a l equations f o r each s y s t e m , however, gave good agreement between e x p e r i m e n t a l and t h e o r e t i c a l t o t a l e v a p o r a t i o n t i m e . The average r a t e of heat t r a n s f e r f o r a l l the t h r e e s y s t e m s i s g i v e n 2 by the equation, q = C d i fa t, where 'C i s a constant w h i c h i s d i f f e r e n t f o r each s y s t e m . Nu = 0. 0505 (Pe') . 4 1 7 where the N u s s e l t n u mber and the i i i T A B L E O F C O N T E N T S Page C H A P T E R O N E - L I T E R A T U R E R E V I E W 1.1 A. F l u i d f l o w and i n t e r f a c i a l phenomena . 2 I.. E a r l y concepts 2 II. D r a g 3 III. F l o w around a s o l i d s p h e r e 5 IV. F l o w around a f l u i d body and c i r c u l a t i o n 5 V.. T e r m i n a l v e l o c i t y 9 VI. D r o p d i s t o r t i o n and o s c i l l a t i o n 10 B. Heat t r a n s f e r j . 11 I. N u c l e a t i o n and-boiling heat t r a n s f e r 11 II. Heat t r a n s f e r to s o l i d and f l u i d s p h e r e s 14 1. O u t s i d e f i l m r e s i s t a n c e 15 2. Inside f i l m r e s i s t a n c e 17 3. O v e r a l l r e s i s t a n c e 19 C. ; I m p o r t a n t s i d e e f f e c t s 24 I. E f f e c t of s u r f a c t a n t s 24 II. E n d e f f e c t s 2 5 III. E f f e c t of dro p d i a m e t e r 26 IV. M u l t i p a r t i c l e i n t e r a c t i o n 28 C H A P T E R TWO - I N I T I A L D E C I S I O N S 30 A. Mode of study 30 B. D a t a c o l l e c t i o n 32 C F a c t o r s to be s t u d i e d 33 D. F a c t o r s to be o m i t t e d 33 E. Side e f f e c t s to be e l i m i n a t e d 34 F. T o t a l e v a p o r a t i o n t i m e 35 i v P a g e C H A P T E R T H R E E - S E L E C T I O N A N D P R O P E R T I E S O F T E S T .' > F L U I D S 37 A. S e l e c t i o n of t e s t f l u i d s 37 B. P r o p e r t i e s of t e s t f l u i d s 39 I. T e m p e r a t u r e - V a p o r p r e s s u r e r e l a t i o n s h i p 39 . II. L a t e n t heat 40 III. V i s c o s i t y 40 IV. Heat c a p a c i t y 41 V. L i q u i d d e n s i t y at b o i l i n g p o i n t 42 VI. D e n s i t y of the v a p o r 42 VII. T h e r m a l c o n d u c t i v i t y 43 V I I I . S u r f a c e and I n t e r f a c i a l t e n s i o n s 43 C H A P T E R F O U R - E Q U I P M E N T A N D E X P E R I M E N T A L P R O C E D U R E 46 A. Eq u i p m e n t d e t a i l s 46 I. M a i n column-', and i t s a c c e s s o r i e s 46 .1. M a i n column: 46 2. Constant t e m p e r a t u r e baths 52 3. P o t e n t i o m e t e r 52 4. D i s p e r s e d phase f e e d i n g s y s t e m . 54 5. P r e s s u r e r e g u l a t i n g s y s t e m 57 II. P h o t o g r a p h i c equipment 59 1.. C a m e r a and c a m e r a stand 59 2. L i g h t i n g 67 3. P r o b o s t r o b e 68 4. L i g h t m e t e r 68 III. A d d i t i o n a l setup f o r t o t a l e v a p o r a t i o n t i m e 71 B. E x p e r i m e n t a l p r o c e d u r e 75 I. M a i n e x p e r i m e n t 7 5 1. R un p r e p a r a t i o n 75 2. Run e x e c u t i o n 79 Page 3. Data processing 81 II. Evaluation of total evaporation time 85 1. Run preparation 85 2. Run execution 86 3. Data processing 87 C H A P T E R F I V E - ANALYSIS OF D A T A AND RESULTS 96 A . Qualitative analysis 96 I. Drop release 96 II. Drop vaporization 96 III. Experimental limitations 97 B . Reproducibility and precision of data 98 C. Quantitative analysis 102 C H A P T E R SIX - CONCLUSIONS AND RECOMMENDATIONS 133 A . Conclusions 133 B . Recommendations for further work 135 N O M E N C L A T U R E 136 L I T E R A T U R E CITED 139 A P P E N D I X I - F L U I D PROPERTIES AND DETAILS OF EQUIPMENT 145 A . Properties of test fluids 145 B . Equipment specifications 153 A P P E N D I X II - C O M P U T E R PROGRAMS 156 Computer program for main calculations 159 Computer program for total evaporation time 162 Computer program for multiple regression 164 A P P E N D I X III - T A B L E S OF D A T A 166 Raw data 167 Processed data 208 L I S T O F T A B L E S T a b l e Page I - S e l e c t i o n of d i s p e r s e d phase l i q u i d s 38 II - P r o p e r t i e s of d i s p e r s e d phase l i q u i d s 45 III - E x p o s u r e t i m e s 70 I V - Range of the v a r i a b l e s c o v e r e d d u r i n g the e x p e r i m e n t s 80 V - C o r r e l a t i o n s f o r d i f f e r e n t s y s t e m s u s i n g d i s -p e r s e d phase p r o p e r t i e s 107 VI - C o r r e l a t i o n s f o r d i f f e r e n t s y s t e m s u s i n g d i s -p e r s e d phase p r o p e r t i e s and ( £t — P )/Qc a s a d e n s i t y group 110 VII - C o m p a r i s o n of t o t a l e v a p o r a t i o n t i m e , 'furan' ' 119 VIII - C o m p a r i s o n of t o t a l e v a p o r a t i o n t i m e , 'isopentane' 120 I X - C o m p a r i s o n of t o t a l e v a p o r a t i o n t i m e , ' c y c l o p e n -tane' 121 X - C o m p a r i s o n of i m p o r t a n t p h y s i c a l p r o p e r t i e s f o r continuous and d i s p e r s e d phase l i q u i d s 125 A l - V a p o r p r e s s u r e of f u r a n 145 A l l - V i s c o s i t y of f u r a n 146 A I H - S u r f a c e t e n s i o n of f u r a n 147 A I V - V a p o r p r e s s u r e , v a p o r d e n s i t y and l a t e n t heat of isopentane 148 A V - V a p o r p r e s s u r e of cyclopentane 150 A V I - V i s c o s i t y of cyclopentane 151 A VII - Raw data, f u r a n 167 A V I I I - Raw data, isopentane 184 AIX1 - Raw data, c y c l o p e n t a n e 198 A X - P r o c e s s e d data, f u r a n 208 A X I - P r o c e s s e d data, isopentane 225 A X I I - P r o c e s s e d data, c y c l o p e n t a n e 239 v i i L I S T O F F I G U R E S F i g u r e „ & Page 1 - C o l u m n a s s e m b l y , f r o n t e l e v a t i o n 48 2 - C o l u m n a s s e m b l y , s i d e e l e v a t i o n 49 3 - C o l u m n a s s e m b l y , plans 50 4 - C o l u m n support 53 5 - F l o w d i a g r a m ( m a i n e x p e r i m e n t ) 56 6 - N o z z l e a s s e m b l y 58 7 - C a m e r a stand 61 8 - C a m e r a stand, D e t a i l A 62 9 - C a m e r a stand, D e t a i l B 63 10 - C a m e r a stand, D e t a i l C 64 11 - C a m e r a stand, D e t a i l D 65 12 - C a m e r a stand, D e t a i l E 66 13 - P h o t o g r a p h i c setup 69 13a - Photographs of the v a p o r i z i n g drop (Run No I 19) 69a 14 - D i l a t o m e t e r 74 15 - F l o w d i a g r a m ( t o t a l e v a p o r a t i o n t i m e ) 76 16 - Respo n s e of a s e c o n d - o r d e r s y s t e m 89 17 - Response c u r v e c o m p a r i s o n 89 18 - A v e r a g e irate of fe e d i n g a i r (15 cc) 91 19 - A v e r a g e ra t e of fe e d i n g a i r (10 cc) 92 20 - A v e r a g e r a t e of fe e d i n g a i r (7 cc) 93 21 - A v e r a g e r a t e of f e e d i n g a i r (5 cc) 94 22 - D i l a t o m e t e r r e s p o n s e c o r r e c t i o n c u r v e 95 23 - E f f e c t of n u c l e a t i o n - a i r 103 24 - C o m p a r i s o n of a c t u a l and t e r m i n a l v e l o c i t i e s 113 2 5 - D e n s i t y r a t i o v e r s u s p e r c e n t e v a p o r a t i o n 114 26 - C o m p a r i s o n of e x p e r i m e n t a l and t h e o r e t i c a l t o t a l e v a p o r a t i o n t i m e , f u r a n - d i s t i l l e d w a t e r s y s t e m 122 C o m p a r i s o n of e x p e r i m e n t a l and t h e o r e t i c a l t o t a l e v a p o r a t i o n t i m e , i s o p e n t a n e - d i s t i l l e d w a t e r s y s t e m C o m p a r i s o n of e x p e r i m e n t a l and t h e o r e t i c a l t o t a l e v a p o r a t i o n t i m e , c y c l o p e n t a n e - d i s t i l l e d w a t e r s y s t e m C o m p a r i s o n w i t h K l i p s t e i n ' s m o del, f u r an-d i s t i l l e d w a t e r s y s t e m C o m p a r i s o n w i t h K l i p s t e i n ' s and. Sideman's m o d e l s , i s o p e n t a n e - d i s t i l l e d w a t e r s y s t e m C o m p a r i s o n w i t h K l i p s t e i n ' s model, c y c l o p e n t a n e d i s t i l l e d w a t e r s y s t e m V i s c o s i t i e s of f u r an and cyclopentane A C K N O W L E D G E M E N T The author w i s h e s to acknowledge the guidance and a d v i c e g i v e n b y Dr. K. L. P i n d e r , throughout the c o u r s e of t h i s p r o j e c t . The author a l s o w i s h e s to thank a l l the m e m b e r s of the F a c u l t y of C h e m i c a l E n g i n e e r i n g D epartment and the p e r s o n n e l of the C h e m i c a l E n g i n e e r i n g W o r k s h o p f o r t h e i r u s e f u l s u g gestions and t i m e l y help. . The h e l p and a s s i s t a n c e g i v e n b y M r . V. C. R a i d u r i n g the experime n t a l runs i s a l s o g r e a t l y a p p r e c i a t e d . F i n a n c i a l a s s i s t a n c e was r e c e i v e d f r o m the N a t i o n a l R e s e a r c h C o u n c i l of Canada, and f r o m the U n i v e r s i t y of B r i t i s h C o l u m b i a i n the f o r m of U. B. C. Graduate F e l l o w s h i p s , f o r w h i c h the author i s r e a l l y g r a t e f u l . C H A P T E R O N E L I T E R A T U R E R E V I E W ,The work done on the topic of direct contact heat transfer between two immisc ib le liquids with change of phase is quite l imited and recent. It appears that this phenomenon has been studied only at two schools. The first study was made by Klipstein at MIT under the supervision of Professor Gil l i land. Klipstein's work (1) was .publishedin.,the form of his D. Sc. thesis in June 1963. Simultaneous studies were c a r r i e d out by Dr . Side man and coworkers at Israel Institute of Technology, Haifa. The first publication,from this school was by Sideman and Tai te l (2), which appeared in the October 1964 issue of the International Journal of Heat and Mass Transfer . A few other interesting publications (3, 4, 5, 6) have been put out by the latter school on this or related topics during;recent years . Besides this, considerable work was found in the l iterature on all ied topics in, heat transfer. This includedthe direct contact heat transfer between two immisc ib le liquids without a change of phase, and boil ing'from smooth-liquid surfaces. Much more work has been, done on corresponding-topics in mass transfer and a l o t of valuable in forma-tion can be gathered f rom these papers. .Visualizing: the complexity of the nature of the present work, an 2 attempt has been made d u r i n g t h i s l i t e r a t u r e s u r v e y to c o v e r a l l i m p o r t -ant and r e l a t e d a s pects as w e l l as the m a i n f i e l d of study. F l u i d f l o w and i n t e r f a c i a l phenomena-: w i l l be r e v i e w e d f i r s t , then the a l l i e d t o p i c s i n heat and m a s s t r a n s f e r w i l l be c o n s i d e r e d and l a s t l y the w o r k on the m a i n t o p i c w i l l be d i s c u s s e d . The l i t e r a t u r e c o n c e r n i n g l e s s obvious s i d e e f f e c t s w i l l be b r i e f l y r e v i e w e d i n the end, to show what p r e c a u t i o n s w e r e n e c e s s a r y i n the e x p e r i m e n t a l work. A. F L U I D F L O W A N D I N T E R F A C I A L P H E N O M E N A The i m p o r t a n c e of f l u i d f l o w to t h i s study l i e s i n i t s e f f e c t on the nat u r e of the i n s i d e and o u t s i d e r e s i s t a n c e s to heat flow. 1. E a r l y concepts E a r l y w o r k on fl o w around s u b m e r g e d b o d i e s , drops and bubbles was m o s t l y t h e o r e t i c a l . It was b a s e d on the a s s u m p t i o n s that the continuous phase was an i d e a l , i n c o m p r e s s i b l e and n o n v i s c o u s f l u i d . R e s u l t s o b t a i n e d under these a s s u m p t i o n s w e r e of l i t t l e p r a c t i c a l use, although they p r e d i c t e d the v e l o c i t y and p r e s s u r e d i s t r i b u t i o n s f o r a l i m i t e d range of flow. The N a v i e r - S t o k e s equations w e re next d e v e l o p e d to p r e d i c t the f l o w b e h a v i o r , but a g e n e r a l s o l u t i o n of these equations has not yet been obtained. However, N a v i e r - S t o k e s equations have been s o l v e d f o r c r e e p i n g flow, p o t e n t i a l f l o w and c e r t a i n other s p e c i a l c a s e s . A t l o w R e y n o l d s n u m b e r s when the i n e r t i a l f o r c e s a r e not s i g n i f i c a n t the fl o w p a t t e r n s i n the a p p r o a c h and wake zones a r e s i m i l a r . F o r l a r g e R e y n o l d s n u m b e r s the s i t u a t i o n b ecomes e n t i r e l y d i f f e r e n t . The i n e r t i a f o r c e s a r e then of m u c h m o r e i m p o r -3 tance than a r e the v i s c o u s f o r c e s , at l e a s t at a s u f f i c i e n t d i s t a n c e f r o m the w a l l s of the body i . e. , w i t h the e x c e p t i o n of the l a y e r of f l u i d adjacent to the o b s t a c l e . H owever, i f the i n f l u e n c e of v i s c o s i t y i s c o m p l e t e l y n e g l e c t e d e r r o n e o u s r e s u l t s a r e obtained. P r a n d t l (7) made an i m p r o v e m e n t on t h i s s i t u a t i o n , he divided'the f l o w i n t o two r e g i o n s . (a) S u r r o u n d i n g the s u r f a c e of the body t h e r e is. a t h i n l a y e r of f l u i d i n w h i c h the v e l o c i t y g r a d i e n t g e n e r a l l y b e c o m e s v e r y l a r g e , so that even w i t h v e r y s m a l l v a l u e s of the v e l o c i t y the s h e a r s t r e s s a s s u m e s v a l u e s w h i c h cannot be ne g l e c t e d . T h i s depth of f l u i d i s known as the b o u n d a r y l a y e r , and i t i s c o n v e n t i o n a l l y d e f i n e d to extend f r o m the i n t e r f a c e out to a point w here the v e l o c i t y i s 99 p e r c e n t of the f r e e s t r e a m v e l o c i t y (8). (b) In the r e g i o n outside the b o u n d a r y layer,, the v e l o c i t y g r a d i e n t does not become as l a r g e , and the i n f l u e n c e of v i s c o s i t y i s n e g l i g i b l e . In t h i s r e g i o n the f r e e s t r e a m v e l o c i t y p r e v a i l s and i d e a l f l u i d b e h a v i o r can be assumed. Such a d i v i s i o n of the f i e l d of flow, b r i n g s about a c o n s i d e r a b l e s i m p l i f i c a t i o n i n the m a t h e m a t i c a l t h e o r y of the m o t i o n of a f l u i d of l o w v i s c o s i t y . I I . D r a g When a body moves t h r o u g h a f l u i d at r e s t , i t e x p e r i e n c e s a f o r c e i n a d i r e c t i o n opposite to that of i t s m o t i o n . T h i s f o r c e i s c a l l e d the 'drag 1. 4 T o t a l d r a g i s c o m p o s e d of t h r e e components (9). (a) D e f o r m a t i o n d r a g : T h i s i s a p a r t of the f r i c t i o n d r a g f o r v e r y l o w R e y n o l d s n u m b e r s . The w o r k done by d e f o r m a t i o n d r a g i s u l t i m a t e l y d i s s i p a t e d as heat i n the t o t a l f i e l d . (b) F r i c t i o n d r a g : -This r e s u l t s f r o m the f r i c t i o n f o r c e s t a n g e n t i a l to the s u r f a c e of the body. (c) P r e s s u r e d r a g : A change i n the g e o m e t r y of the s t r e a m l i n e shapes causes a change i n the p r e s s u r e f i e l d and c o n s e q u e n t l y l e a d s to a p r e s s u r e d r a g . U n l i k e d e f o r m a t i o n drag, the w o r k of the f r i c t i o n d r a g i n i t s m o r e r e s t r i c t e d sense and that of the p r e s s u r e d r a g a r e d i s s i p a t e d i n t o heat m o r e s p e c i f i c a l l y i n the wake of the body. The s i z e of each d r a g f o r c e c o n t r i b u t i o n depends on the f o r m and the n a t u r e of the body as w e l l as on the R e y n o l d s number. The d r a g c o e f f i c i e n t i s d e f i n e d as ^ 2 F ^ g ,. C D = D *c (1 - 1) A ? v 2 where, F = t o t a l f o r c e e x e r t e d on the body. The d r a g c o e f f i c i e n t depends on the shape of the body and on the R e y n o l d s number. A s r e v i e w e d b y Hughes and G i l l i l a n d (10), a c c e l e r a t i o n a l s o a f f e c t s 5 the d r a g c o e f f i c i e n t s f o r d r o p s . The bodies b e i n g a c c e l e r a t e d have h i g h e r d r a g c o e f f i c i e n t s than those m o v i n g at a constant v e l o c i t y . III. F l o w around a s o l i d body B e f o r e d i s c u s s i n g the f l o w b e h a v i o r a round drops and bubbles i t w o u l d be b e t t e r to have a good u n d e r s t a n d i n g of the f l o w p a t t e r n s a r o u n d a s o l i d body. C o n s i d e r i n g f l o w a round a s p h e r e l e t us v i s u a l i z e the changes i n f l o w p a t t e r n w i t h i n c r e a s i n g R e y n o l d s n u m b e r s . A t low R e y n o l d s n u m b e r s the flow i s s y m m e t r i c a l and s a t i s f i e s Stokes' s o l u t i o n f o r c r e e p i n g flow. The v e l o c i t y f i r s t i n c r e a s e s on the up-s t r e a m s u r f a c e and then d e c r e a s e s on the d o w n s t r e a m s u r f a c e of the sphere. A l o n g the d o w n s t r e a m s i d e as the v e l o c i t y d e c r e a s e s the i n i t i a l p r e s s u r e •l.o.' i s r e c o v e r e d . W i t h i n c r e a s i n g f r e e s t r e a m v e l o c i t y the i n e r t i a l e f f e c t s b ecome i m p o r t a n t and one has b o u n d a r y l a y e r flow. A t t h i s stage l o s s e s b e come s i g n i f i c a n t and the p r e s s u r e r e c o v e r y at the r e a r s t a g n a t i o n p o i n t i s no l o n g e r c o m p l e t e . T h i s t r e n d continues u n t i l s e p a r a t i o n of the f o r w a r d f l o w o c c u r s at about R e y n o l d s number equal to 17, when a v e r y s m a l l t o r o i d a l v o r t e x i s f o r m e d near the r e a r s t a g n a t i o n point. The v o r t e x gains s t r e n g t h as the R e y n o l d s number i n c r e a s e s , and the point of s e p a r a t i o n advances to w a r d s the equator. A t a Re y n o l d s number equal to about 450, the angle of s e p a r a t i o n i s e q u a l to 104° (11). A t t h i s stage the wake b e c o m e s un-sta b l e and w i t h i n c r e a s i n g R e y n o l d s number o s c i l l a t e s about the a x i s of m o t i o n s p i l l i n g i t s contents d o w n s t r e a m (12). IV. F l o w a r o u n d a f l u i d body and c i r c u l a t i o n If we now r e p l a c e the r i g i d s p h e r e w i t h a f l u i d s p h e r e , the f o l l o w i n g 6 s i g n i f i c a n t c h a n g e s m a y o c c u r : (a) T h e f l u i d w i t h i n t h e s p h e r e c a n m o v e u n d e r s h e a r c a u s i n g a f i n i t e v e l o c i t y at t h e i n t e r f a c e . (b) T h e f l u i d s p h e r e m a y d i s t o r t a n d o s c i l l a t e u n d e r t h e i n f l u e n c e of t h e h y d r a u l i c a n d d y n a m i c p r e s s u r e g r a d i e n t s . T h e t r a n s f e r o f s h e a r e n e r g y w i l l d e p e n d u p o n t h e s u r f a c e t e n s i o n a n d t h e v i s c o s i t y o f t h e d r o p p h a s e f l u i d . I f t h e d r o p i s s m a l l o r t h e v i s c o s i t y o f t h e d r o p p h a s e f l u i d i s h i g h , s h e a r r e s i s t a n c e i n t h e d r o p w i l l b e g r e a t a n d t h e f l u i d d r o p s w i l l b e h a v e m o r e l i k e r i g i d d r o p s . O n the o t h e r h a n d w i t h l a r g e d r o p s i z e a n d a l o w v i s c o s i t y o f t h e d r o p p h a s e l i q u i d , c i r c u l a t i o n m a y d e v e l o p i n t h e d r o p s . D u r i n g c i r c u l a t i o n n e w s u r f a c e i s c r e a t e d at t h e f r o n t o f t h e d r o p , t h e n e c e s s a r y e n e r g y b e i n g s u p p l i e d b y t h e l o s s o f s u r f a c e at t h e b a c k o f t h e d r o p . F o r a f l u i d w i t h a n a p p r e c i a b l e v i s c o s i t y s o m e o f t h i s e n e r g y w i l l b e l o s t due t o f r i c t i o n a n d c i r c u l a t i o n w i l l s o o n d a m p out. S k i n f r i c t i o n , h o w e v e r , p r o v i d e s e n e r g y t o o v e r c o m e t h i s v i s c o u s d a m p i n g . So i f s k i n f r i c t i o n i s s u f f i c i e n t l y g r e a t , a f a i r a m o u n t o f c i r c u l a t i o n c a n b e e x p e c t e d . H e n c e i t c a n b e c o n c l u d e d (10): (a) B u b b l e s o f gas i n l i q u i d s a r e n e a r l y a l w a y s c i r c u l a t i n g . (b) L i q u i d d r o p s i n g a s e s a r e r a r e l y c i r c u l a t i n g . (c) L i q u i d d r o p s i n l i q u i d s a r e u s u a l l y i n t h e t r a n s i t i o n r e g i o n . F u l l y d e v e l o p e d c i r c u l a t i o n c a n be a c h i e v e d o n l y w h e n s k i n f r i c t i o n i s s u f f i c i e n t t o s u p p l y a l l t h e e n e r g y n e e d e d t o o v e r c o m e t h e s u r f a c e f o r c e s . T h e e n e r g y r e q u i r e d t o f o r m t h e s u r f a c e i s ; Z7C r T u e r g s / s e c ( 1 3 ) , where, u = Tangential v e l o c i t y of the s u r f a c e at the equator of the sphere T = I n t e r f a c i a l tension r = Radius of the sphere Thus fluids with low i n t e r f a c i a l tension w i l l c i r c u l a t e m o r e e a s i l y than w i l l those with high i n t e r f a c i a l tensions. . , Many workers have t r i e d to c o r r e l a t e the amount of c i r c u l a t i o n with other p r o p e r t i e s of the f l u i d . The c l a s s i c a l t h e o r i e s of H a d a m a r d (14) and B o u s s i n e s q (15) postulate c i r c u l a t i o n i n f l u i d droplets under a l l c i r c u m s t a n c e s . However, G a r n e r and Skelland (16, 17) showed that c i r c u l a t i o n starts only after a c e r t a i n value of Reynolds number which depends, for a given s i z e droplet, on the v i s c o s i t i e s of the continuous and the d i s p e r s e d phases and on the i n t e r f a c i a l tension between the two f l u i d s . A c c o r d i n g to Davies (18). the percent c i r c u l a t i o n inside a drop i s given by; -1 % C i r c u l a t i o n ^ 100 -f 3 C s (2-1) 1 + 1-5 A inner r 2 g outer where the percent c i r c u l a t i o n i s defined by the f r a c t i o n of the total l i q u i d in the drop which i s c i r c u l a t i n g . Savic (19) c l a i m e d that an i m m o b i l e cap f o r m s at the back of the drop, and c i r c u l a t i o n is confined to its front part, since v e l o c i t i e s i n the vicinity, of the r e a r stagnation point are r e l a t i v e l y s m a l l (20). G a r n e r and Hammerton (13) studied the t r a n s i t i o n f r o m r i g i d to 8 c i r c u l a t i n g conditions for s e v e r a l liquids, and found that the c r i t i c a l radius of t r a n s i t i o n was not in accordance with the f o r m u l a of Bond and Newton (21). A c c o r d i n g to E l z i n g a and Banchero (22), i n t e r n a l c i r c u l a t i o n causes a shift i n the point of boundary l a y e r separation on the drop surface, which i n turn d e c r e a s e s the drop drag coefficient. Internal c i r c u l a t i o n also causes a m a r k e d i n c r e a s e i n drop d i s t o r t i o n . The p r e sence of i m p u r i t i e s or surfactants g r e a t l y reduces the in t e r n a l c i r c u l a t i o n i n the drops (18, 23, 24, 25). G a r n e r and Hale (26) during.their mass t r a n s f e r studies between l i q u i d droplets and a contin-uous l i q u i d phase concluded that the p r e s e n c e of t r a c e quantifies of surface active m a t e r i a l s r e t a r d e d or a r r e s t e d the i n t e r n a l c i r c u l a t i o n i n the drops, which was otherwise present. R e d f i e l d and Houghton (27) studied the mass t r a n s f e r and dr a g coef f i c i e n t at different values of Reynolds number for single bubbles of carbon dioxide r i s i n g i n pure water and var i o u s other aqueous solutions and a r r i v e d at the following c o n c l u s i o n s -(a) At Reynolds number l e s s than 0" 2 the dr a g coefficients are d e s c r i b e d by.the c i r c u l a t i n g sphere models of H a d a m a r d - Ry b c z y n s k i . (b) At Reynolds number of 0-2 - 1-0, the bubbles are s t i l l s p h e r i c a l but the drag coe f f i c i e n t is l a r g e r than that for c i r c u l a t i n g spheres, indica t i n g that boundary l a y e r and separation effects are begin-ning to influence the behavior. (c) F o r Reynolds number between 1 and 10, s m a l l deviations f r o m 9 the s p h e r i c a l shape o c c u r , but the d r a g c o e f f i c i e n t appears to be a f u n c t i o n of o n l y R e y n o l d s number. (d) F o r Re y n o l d s number g r e a t e r than 10 t u r b u l e n c e appears to deve l o p i n the wake of the bubble, the d r a g c o e f f i c i e n t p a s s e s t h r o u g h a m i n i m u m and becomes a f u n c t i o n of the p h y s i c a l p r o p e r -t i e s of the s o l u t i o n as w e l l as of the bubble s i z e . (e) When the R e y n o l d s number l i e s between 100 and 5000 the shape of the bubbles s l o w l y changes f r o m oblate s p h e r o i d a l to a mush-r o o m shape, the wake b e c o m i n g i n c r e a s i n g l y t u r b u l e n t . F u r t h e r -more,, the path of the bubbles at h i g h R e y n o l d s n u m b e r s changes f r o m a s t r a i g h t v e r t i c a l t r a j e c t o r y t h r o u g h a s p i r a l path and a sid e to side z i g - z a g path back to a s t a b l e v e r t i c a l t r a j e c t o r y f o r the m u s h r o o m shaped bubbles w i t h s p h e r i c a l caps. " C l e a r l y , at Reynolds n u m b e r s g r e a t e r than 10 the i n f l u e n c e of bubble shape, bubble m o t i o n and wake t u r b u l e n c e begins to dominate o v e r the i n t e r n a l c i r c u l a t i o n and bou n d a r y l a y e r e f f e c t s . In t h i s r e g i m e , any t r a n s p o r t m o d e l s h o u l d account f o r a l l f i v e phenomena, a v i r t u a l l y i n s u r m o u n t a b l e p r o b l e m i n analysis'.'(27). V. T e r m i n a l v e l o c i t y T e r m i n a l v e l o c i t y i s d e f i n e d as the v e l o c i t y at w h i c h d r a g f o r c e s and g r a v i t a t i o n a l f o r c e s e x a c t l y b a l a n c e each other. M a n y e m p i r i c a l and s e m i - e m p i r i c a l equations a r e a v a i l a b l e f o r c a l c u l a t i n g t e r m i n a l v e l o c i t i e s f o r l i q u i d drops (28, 29, 30, 31). Datta, N a p i e r and N e w i t t (32) s t u d i e d the p r o p e r t i e s and b e h a v i o u r 10 of gas bubbles r i s i n g i n a l i q u i d column. F r o m a.review of the past work and th e i r own e x p e r i m e n t a l results, they made a l i s t of the following factors which may change the shape of the t e r m i n a l v e l o c i t y v e r s u s bubble radius plot: (a) T e m p e r a t u r e (b) W a l l effect (c) Turbulence (d) Measurement of bubble s i z e (e) V e l o c i t y measurement G a r n e r and Hammerton (13) m e a s u r e d the v e l o c i t i e s of bubbles in water and gave a c o r r e l a t i o n i n the f o r m of a plot between d r a g coe f f i c i e n t and Reynolds number. The Reynolds number was b a s e d on the equivalent s p h e r i c a l diameter of the bubble. Up to Reynolds number of 600 the curve is quite c l o s e to that for s o l i d spheres, but beyond this the drag co-ef f i c i e n t i n c r e a s e s r a p i d l y with Reynolds number un t i l a Reynolds number of 3000 after which the drag coe f f i c i e n t becomes more or l e s s constant. VI. Drop d i s t o r t i o n and o s c i l l a t i o n Drop d i s t o r t i o n and o s c i l l a t i o n w i l l change the shape of a moving drop, hence w i l l change the drag c o e f f i c i e n t and t e r m i n a l v e l o c i t y . D i s t o r t i o n w i l l also affect the s u r f a c e a r e a and thus the rate of heat t r a n s f e r . It is also a cause of i n t e r n a l c i r c u l a t i o n . D i s t o r t i o n and o s c i l l a t i o n tend to i n c r e a s e the drag and reduce the t e r m i n a l v e l o c i t y over that for a r i g i d sphere of equal volume. A c c o r d i n g to Calderbank and K o r c h i n s k i (33) o s c i l l a t i o n causes some boundary l a y e r degradation 11 and thus increases the continuous phase transfer coefficient. Many efforts have been made to correlate the shape and amount of distortion as a function of drop or bubble size and other measurable system properties (10, 13, 18, 34). Johnson and Braida (35) found that drop oscillation depends on: (a) 1 Drop diameter (b) Drop velocity (c) Physical properties of the system. Harmathy (31) correlated drag coefficients with the Eotvos number with in.+_ 20 percent, for values of dispersed phase Reynolds number greater than 500, taking into account the oscillation and distortion effects. So far no method is available for predicting the exact nature or the amount of distortion of a fluid drop of any given size. B . H E A T T R A N S F E R I. Nucleation and boiling heat transfer • A bubble cannot originate from a surface of zero radius and boiling w i l l not start unless finite curvatures are present (36). When finite curvatures are present boiling begins at a superheat ' A t ' of the liquid given by (37), A t = (3 - 1) where and (5 - 1) (4 - 1) 12 This relationship predicts that a nucleus wi l l form only when the vapor pressure of the liquid at a given temperature exceeds the system pressure sufficiently,to overcome the curvature and surface tension effects. Moore (38) working on the nucleation of Freon-12 droplets in an aqueous continuous phase, showed that liquids can superheat to 1* 35 times their absolute boiling point before nucleation begins. The nucleation tendencies are not influenced by surfactants or random I vibrations. Nucleation by ionizing radiation has also been tr ied but it has not been successful. The alternate device by which high superheating can be avoided is heterogeneous nucleation. The presence of solid particles or dissolved gases which are easily wetted by the vaporizing liquid can provide active nucleation sites (36). Young and Hummel (39) have obtained high heat transfer coefficients without significant superheating in the lower region of nucleate boiling regime by providing teflon coated areas which are not easily wetted by,the liquid phase. The various regimes in the boiling heat transfer from a submerged heating surface are well known (40): 5 (a) Natural convection a . , , A j . / . H / A C< ( A t ) 4 (b) • Nucleate boiling . (At) 3 t o 4 (c) --Partial f i lm boiling (d) F i l m boiling The effect of t e m p e r a t u r e d r i v i n g f o r c e i s s i g n i f i c a n t i n a l l the r e g i m e s , but i t i s e s p e c i a l l y s t r o n g f o r n u c l e a t e b o i l i n g . Hence a l l the wo r k done on t h i s t o p i c has been p l o t t e d on one of the f o l l o w i n g set of axes f o r c o r r e l a t i o n : U v e r s u s ^ t ^/A v e r s u s £ t U v e r s u s ^ A A n o t h e r i m p o r t a n t aspect of b o i l i n g heat t r a n s f e r i s the stu d i e s made on e v a p o r a t i o n f r o m a l i q u i d - l i q u i d i n t e r f a c e . The supe r h e a t s r e q u i r e d to i n i t i a t e b o i l i n g f r o m a l i q u i d s u r f a c e w e r e h i g h e r than those f o r b o i l i n g f r o m a s o l i d s u r f a c e . Gordon, Singh and W e i s s man (41) r e p o r t e d some p r e l i m i n a r y r e s u l t s f o r water, . methanol, and ethanol b o i l i n g f r o m a m e r c u r y s u r f a c e at a t m o s p h e r i c p r e s s u r e . T h e i r v a l u e s f o r m a x i m u m heat t r a n s f e r c o e f f i c i e n t s were, 2 o Methanol, E t h a n o l 4320 k - c a l / ( h r ) ( m •) ( C) W a t e r at t = 33°C 9000 k c a l / ( h r ) ( m ) (°C). V i s k a n t a and L o t t e s (42) s t u d i e d the b o i l i n g of w a t e r and n-hexane f r o m a m e r c u r y s u r f a c e i n a m o r e s o p h i s t i c a t e d apparatus. H i g h speed ( f r o m 2000 to 5000 f r a m e s p e r second) m o t i o n p i c t u r e s w e r e a l s o taken. T h e y r e p o r t e d a h i g h e r v a l u e of m a x i m u m heat t r a n s f e r c o e f f i c i e n t f o r w a t e r - m e r c u r y s y s t e m than g i v e n by G o r d o n et. a l . V i s k a n t a and L o t t e s a l s o r e p o r t e d an e f f e c t of s u r f a c e aging and of the c h e m i c a l n a t u r e of the l i q u i d - l i q u i d i n t e r f a c e on n u c l e a t e b o i l i n g . A g i n g was e x p l a i n e d by the p r e s e n c e of dust p a r t i c l e s as w e l l as a d s o r b e d and a b s o r b e d gases 14 on the mercury surface. Studies on boiling from bulk systems have also been undertaken recently. Harriott and Wiegandt (43) studied a counter current heat transfer process between an alternately vaporizing and condensing immiscible transfer agent and sea water. Poplack (44) while working on evaporative cooling with Isopentane-Water system reported lower efficiencies with increasing flow rates. Porter (45) during his work ori direct contact heat transfer with its application to sea water conversion proposed the correlation: r ~ - 0- 7 2-1 - 0-4 UA ^ f D (6 - 1) V 1 to theiiE' studies of heat transfer to individual bubbles, Strenge et. al . (46) examined the rate of bubble growth for boiling pentane and ether. Waldman and Houghton (47) studied the various mechanisms of the spherical phase growth in superheated liquids, and proposed a correlation for radial growth of the bubble. • II. Heat transfer to solid and fluid spheres F r o m a fundamental approach the total resistance to heat transfer can be divided into three individual resistances: (a) Outside f i lm resistance (b) Resistance of the interface or separating wall (c) Inside f i lm resistance It is obvious that in direct contact heat transfer between two 15 l i q u i d s the r e s i s t a n c e due to the s e p a r a t i n g w a l l w i l l not be p r e s e n t . How-eve r , i f a f i l m i s f o r m e d on the i n t e r f a c e due to the p r e s e n c e of i m p u r i t i e s o r s u r f a c t a n t s i n the s y s t e m , i t s t h i c k n e s s would be much too s m a l l to o f f e r any r e s i s t a n c e to heat t r a n s f e r . Hence the l i t e r a t u r e r e v i e w of t h i s s e c t i o n has been made i n t h r e e p a r t s , n a m e l y o u t s i d e f i l m r e s i s t a n c e , i n s i d e f i l m r e s i s t a n c e , and o v e r a l l r e s i s t a n c e . 1. O u t s i d e f i l m r e s i s t a n c e A s r e v i e w e d b y S i d e m a n and Shabtai (6) many w o r k e r s (8, 40, 48, 49) have d e t e r m i n e d the continuous phase heat t r a n s f e r c o e f f i c i e n t a s s u m -i n g some f o r m of v e l o c i t y p r o f i l e i n the b o u n d a r y l a y e r . The b o u n d a r y l a y e r s o l u t i o n s apply o n l y to the f r o n t p a r t of the drop, up to the poi n t of s e p a r a t i o n (1, 50, 51). F o r t u n a t e l y at l o w Re y n o l d s n u m b e r s v e r y l i t t l e t r a n s f e r takes p l a c e i n the wake r e g i o n (52). Hence f a i r l y good e s t i m a t e s of heat t r a n s f e r c o e f f i c i e n t s can be obt a i n e d by the g e n e r a l equation f o r the f o r w a r d h a l f of the drop. 1/2 1/3 Nu = C (Re) ( P r ) (7 - 1) K r a m e r s (48) d e r i v e d the f o l l o w i n g equation f o r s p h e r e s at low Rey n o l d s n u mbers, but r e p o r t e d that f o r v e r y s m a l l v a l u e s of R e y n o l d s n u m b e r s t h i s equation g i v e s v e r y h i g h v a l u e s of N u s s e l t number • N u = 2 - 0 + l-.3(Pr)°* 1 5 + 0. 66 (Pr)°' 3 1(Re)°' 5 ' (o - 1) At i n c r e a s i n g R e y n o l d s n u m b e r s the t h i c k n e s s of the b o u n d a r y l a y e r i s r e d u c e d and t u r b u l e n c e grows i n the wake r e g i o n , m a k i n g i t more important for heat transfer. The thinning of the boundary layer also increases the transfer rate to the outside fluid (53). Drew and Ryan (54) reported equal rates of heat transfer for front and rear portions of the sphere at high Reynolds numbers. The increasing wake region transfer shifts the Reynolds number exponent of 0. 5 to higher values. Steinberger and Treybal (55) suggested 0.62 for the Reynolds number exponent, whereas an exponent of 1. 0 has been suggested by Harriott (56). In fluid drops where the interface has a non-zero velocity, the she is reduced and the boundary layer separation is postponed, thus making the boundary layer thinner and allowing it to cover more of the surface. At very high Reynolds numbers the approximation of potential flow around the droplet has been made by many workers (1, 37). The validity of this assumption has also been proved by a number of experiments (57, 58, 59) for many practical applications. Boussinesq (15) first applied the potential flow theory in solving steady state forced-convection heat transfer problems; Ruckenstein (37) used it in determining heat transfer coefficients at the interface of growing vapor bubbles. With certain simplifying assumptions, the pro-posed equation was, Nu= 1.13 (Be) ° * 5 ( 9 _ 1 } Handlos and Baron (60) also agreed with the above equation for the external f i lm heat transfer coefficient in a l iquid-l iquid system, at high Reynolds numbers. In spite of some c r i t i c i s m (61) for the above approach, photograp-hic evidence shows that separation o c c u r s v e r y c l o s e to the r e a r of c i r c u l a t i n g drops for systems of low d i s p e r s e d phase v i s c o s i t y , so that the assumption of potential flow seems reasonable (1). T e r j e s e n and coworkers (23, 24) explained the high t r a n s f e r coefficients of c i r c u l a t i n g l i q u i d drops i n contrast t o those for n o n - c i r c u l a t i n g drops, as due to th e i r higher v e l o c i t i e s . T h e i r experiments p r o v e d that the effect of i n t e r f a c i a l agitation i s s m a l l compared with that of v e l o c i t y . The higher co-efficients are attributed t o hydrodynamic disturbances i n the unstable boundary l a y e r and the vortex f o r m e d behind the moving drop. Thus they p r o v e d that for l i q u i d drops the r e l a t i v e importance of the front and r e a r areas of heat t r a n s f e r has been r e v e r s e d f r o m that"f6f' L'soli'd''spheres. 2. Inside f i l m r e s i s t a n c e The following equation has been developed for c a l c u l a t i n g the temperature change of a sphere being heated by the m e c h a n i s m of pure r a d i a l conduction (36). In the development of this equation it was assumed that there was no outside f i l m r e s i s t a n c e and that the temperature of the drop s u r -face was the same as the average temperature of the s u r r o u n d i n g medium. v 6 r - * T I - V I - 4 * T T | i T = i p r e x p — + 4 e x P —pr 'r • " J (10 - 1) V e r m e u l e n (62), based on his e x p e r i m e n t a l work, suggested a better solution to this problem. H i s equation was l a t e r m o d i f i e d by Johnson and H a m i e l e c (63) to give 18 OO E 1 A n exp ( 1 1 - 1 ) n=l The f a c t o r R i s a f u n c t i o n of the r a t i o between the r a t e of heat t r a n s f e r b y p u r e c o n d u c t i o n and the a c t u a l i n t e r n a l r a t e of heat t r a n s f e r ; the. v a l u e of R b e i n g u n i t y f o r p u r e conduction. K r o n i g and B r i n k (64) s o l v e d the F o u r i e r - P o i s s o n equation and d e r i v e d equations f o r the t e m p e r a t u r e d i s t r i b u t i o n and heat t r a n s f e r i n s i d e a d r o p with i n t e r n a l c i r c u l a t i o n as d e s c r i b e d by H a d a m a r d (14). Under the a s s u m p t i o n that d i f f u s i o n i s n e g l i g i b l e along the s t r e a m - l i n e s and that the i s o t h e r m s at any p a r t i c u l a r moment c o i n c i d e w i t h the s t r e a m - l i n e s , and o m i t t i n g outside r e s i s t a n c e they o b t a i n e d the f o l l o w i n g equation; K r o n i g and B r i n k ' s equation gives heat t r a n s f e r c o e f f i c i e n t s about 2' 5 t i m e s h i g h e r than the s o l i d d r o p m o d e l . The c o r r e c t n u m e r i c a l v a l u e s been c a l c u l a t e d by E l z i n g a and B a n c h e r o (65). A s i m p l e r e m p i r i c a l equation, a c c u r a t e l y f i t t i n g e quation (12 - 1) was p r o p o s e d b y C a l d e r b a n k and K o r c h i n s k i (33). E m of the constants 'An' and the e i g e n v a l u e s 'X n' i n equation (12 - 1) have E m = 1 - exp 1/2 ( 13 - 1 ) Handlos and B a r o n (60) p r o p o s e d another m o d e l f o r h i g h e r v a l u e s 19 of R e y n o l d s n u m b e r s . A s s u m i n g t h a t t h e d r o p s , v i b r a t e o r o s c i l l a t e , t h e y s u p e r i m p o s e d r a n d o m r a d i a l m o t i o n o n t h e i n t e r n a l c i r c u l a t i o n p a t t e r n s . T h e y c o m p u t e d t h e m e a n s q u a r e d i s p l a c e m e n t due t o t h i s m o t i o n , a s s u m e d i t s c h a r a c t e r i s t i c t i m e e q u i v a l e n t t o t h e K r o n i g a n d B r i n k a v e r a g e c i r c u l a t i o n t i m e , a n d a r r i v e d at an e x p r e s s i o n f o r e d d y d i f f u s i v i t y v i a t h e E i n s t e i n e q u a t i o n . P e ' d ,, „ r2 2 0 4 8 (6 W - 8 W + 3 ) - ( 1 4 - 1 ) w h e r e . i P e , = P e . , d d 1 + A d A c W 4 x 'x' b e i n g t h e r a d i a l d i s t a n c e f r o m t h e c e n t e r o f t h e c i r c u l a t i o n t o r o i d . . U s i n g t h e f i r s t e i g e n v a l u e o n l y t h e y s h o w e d t h a t t h e a b o v e e q u a t i o n t a k e s t h e f o r m ; i N u , = 0 • 0 0 3 7 5 P e ' . . _ . . d d — — ( 15 - 1 ) T h e i r e x p e r i m e n t a l d a t a a g r e e d w i t h i n 20 p e r c e n t o f t h e t h e o r e t i c a l v a l u e s . 3. O v e r a l l r e s i s t a n c e T h e o v e r a l l r e s i s t a n c e w i l l b e t h e c o m b i n a t i o n of t h e o u t s i d e a n d t h e i n s i d e r e s i s t a n c e s w h i c h h a v e a l r e a d y b e e n d i s c u s s e d . - So f a r , i t h a s n o t b e e n e s t a b l i s h e d w i t h c e r t a i n t y w h i c h r e s i s t a n c e i s c o n t r o l l i n g f o r 20 heat t r a n s f e r under each c o n d i t i o n . A l l d i v e r s i f i e d r e s u l t s o b t a i n e d b y v a r i o u s w o r k e r s a r e s u m m a r i z e d h e r e . C o u g h l i n and Von B e r g (66) d i d an e x p e r i m e n t a l study of heat and m a s s t r a n s f e r i n a : m i x e r - s e t t l e r . T hey d i s p e r s e d w a t e r drops i n a continuous phase of h i g h l y r e f i n e d k e r o s e n e . F i l m c o e f f i c i e n t s f o r heat and m a s s t r a n s f e r w e r e developed f r o m the e x p e r i m e n t a l i n f o r m a t i o n and f r o m i t they e s t i m a t e d drop l i f e t i m e s and v e l o c i t i e s . The e x p e r i m e n t a l v a l u e s w e re c o m p a r e d w i t h those p r e d i c t e d b y s e v e r a l t h e o r i e s . In g e n e r a l the e x p e r i m e n t a l r e s u l t s agree b e t t e r w i t h the m o d e l s b a s e d on eddy d i f f u s i o n i n a v i b r a t i n g drop, s u c h as one suggested b y Hand-l o s and B a r o n (60), than those m o d e l s w h i c h p o s t u l a t e a stagnant o r a c i r c u l a t i n g drop. F o r heat t r a n s f e r i n w ater d r o p s , the c o e f f i c i e n t s c a l c u l a t e d f r o m the stagnant and c i r c u l a t i n g drop m o d e l s were h i g h e r than those p r e d i c t e d b y the e d d y / d i f f u s i o n m o d e l f o r an o s c i l l a t i n g drop. M c D o w e l l and M y e r s (67) s t u d i e d the p r o c e s s of heat t r a n s f e r to a l i q u i d drop r i s i n g t h r o u g h another l i q u i d . In e x p e r i m e n t a l runs v a r i o u s s i z e d drops of'SAE 10 l u b r i c a t i n g o i l , k e r o s e n e and x y l e n e w e r e heated w i t h water; al s o , w a t e r drops w e re heated w i t h v a r i o u s o r g a n i c l i q u i d s . F o r o i l d rops, w h i c h d i d not c i r c u l a t e , the continuous phase r e s i s t a n c e c o n t r i b u t e d l e s s than four p e r c e n t of the o v e r a l l r e s i s t a n c e . When c i r -c u l a t i o n o c c u r r e d the d i s p e r s e d phase r e s i s t a n c e was r e d u c e d but r e m a i n e d c o n t r o l l i n g . T r a n s f e r c o e f f i c i e n t s w e r e i n the v i c i n i t y , o f 400 k c a l / (m^) (°C) (hr) f o r t h i s c a se. When a c i r c u l a t i n g d r o p of water was heated b y a continuous phase of a k e r o s e n e - t r i c h l o r o e t h y l e n e m i x t u r e , 21 the resistance of the continuous phase increased, becoming nearly,equal to the resistance of dispersed phase. Concerning the circulation it was concluded that, i f the viscosity of the dispersed phase liquid is low enough compared with the viscosity of the continuous phase liquid, the liquid in the drop wi l l circulate. Elzinga and Banchero (65) based on their study of heat transfer to drops in l iquid-l iquid systems found that dispersed phase physical properties were important in determining continuous phase heat trans> fer coefficients. Calderbank and Moo-Young (68) have shown that the density difference between the continuous and dispersed phase liquids is one of the important factors in determining transfer rates. Klipstein (1), who studied the heat transfer mechanism of evaporating drops in a continuous l iquid phase, took a sequence of s t i l l photographs of the drops of ethyl-chloride r is ing in a water column at constant temperature. He suggested that the internal phase is well mixed at a l l times and thus offers no appreciable resistance to heat transfer. Hence, assuming the outside resistance to be controlling, he proposed the following relationship. Nu = 2 + 0-094 Re ° ' 9 3 P r 1 / 3 , j 6 _ The dimensionless groups in equation (16 - 1) are for the continuous phase properties. Klipstein also proposed an equation for average rate of heat 22 transfer; q = 2-84 di A t . ( 1 7 - 1 ) A Sideman and Taitel (2) using the assumption that the continuous , phase resistance i s controlling and a number of,other simplifications suggested the following e q u a t i o n . / „ 2^ \ 0- 5 0-5 N u = ^ cos^ - cos £ + 2 \ p e \ 7T where, ^ = the opening half angle of vapor phase. -(18-1) They claimed that their experimental results with butane and pentahe as dispersed phase liquids and disti l led and sea water as continuous phase liquids, were in good agreement with the model. In a subsequent paper Sideman and Hirsch (3) modified their former view that only the continuous phase resistance is important. Now both continuous and dispersed phase resistances were taken into account and an ellipsoidal shape rather than a spherical shape was assumed for the r is ing drop. For the pentane - water system theoretical expressions for outside and inside heat transfer coefficients were proposed which should be valid only beyond three percent evaporation. -1/2 -1/6 ha = 0-2-1 a. m , . ( 1 9 - 1 ) hi = 2 m 1 . O A . . T T - r - a ( 20 - 1 ) 5 . .1 -m i They also claimed that Tai te l 1 s data (5) was found to be in good agreement with the proposed correlations. It was shown that, although external resistance may be regarded as controlling over some 70 percent 23 of the evaporation process; internal resistance, though mainly predominant in the first stage of evaporation, is definitely not to be neglected. After reviewing Sideman and Hirsch 's paper (3) it was found that the derivation of equation (20-1).was wrong, and that in fact it should be, hi = 2 -mi . . - (20a- 1 ) 1 - m This agrees with equation (15-1) for inside f i lm resistance, since in both these equations the heat transfer coefficient is independent of drop diameter. Sideman, Hi rsch and Gat (4) used an overall average resistance concept and found it more convenient to relate the average resistance to the ini t ial drop diameter by an equation in the form; C V ; R = B d i : — ( 2 i - 1 ) The overall resistance was later written in terms of the more conven-tional overall heat transfer coefficient. Q max = A t q = A ® R v q A = 1T.A. At ^ A l l Ui = 1 / R A i c42 -1 Ui = (B 7T di ) -(c+2) = B l d i ( 2 2 - 1 ) The equation suggested f o r pentane - s e a w a t e r s y s t e m was U i - 5.07 x 1 0 4 d i - ° ' 6 4 (23 - 1) w r e r e , ^ ^ ^ (hr) ( m ) (°C) and d i i s i n m m A s i m i l a r r e l a t i o n s h i p was suggested f o r the a v e r a g e o v e r a l l heat t r a n s f e r c o e f f i c i e n t b a s e d on a v e r a g e instantaneous a r e a f o r the pentane s e a w a t e r s y s t e m . 3 -0.64 U = 4 . 3 x 1 0 d i (24 - 1) The exponent of -0. 64 on 'di' as c o m p a r e d w i t h an exponent of -0. 5 s u g g e s t e d by S i d e m a n and T a i t e l (2), was e x p l a i n e d as due to the fa c t that S i d e m a n and T a i t e l n e g l e c t e d the i n s i d e f i l m r e s i s t a n c e w h i c h i s i m p o r t a n t in the b e g i n n i n g of the e v a p o r a t i v e p r o c e s s . The c o r r e c t exponent of -0. 64 accounts f o r o u t s i d e as w e l l as i n s i d e f i l m r e s i s t a n c e f o r heat t r a n s -f e r . S i n c e the exponent on the P e c l e t number i s u n i t y f o r i n s i d e f i l m r e s i s t a n c e and 0.5 f o r o u t s i d e f i l m r e s i s t a n c e i n the p r o p o r t i o n a l i t y r e l a t i o n -s h i p between the N u s s e l t number and the P e c l e t number, i t s e e m s m o r e l o g i c a l that the exponent f o r c o m b i n e d c a s e s h o u l d be betwee 0. 5 and 1. 0. H e nce the o v e r a l l heat t r a n s f e r c o e f f i c i e n t s h o u l d be p r o p o r t i o n a l to the d i a m e t e r w i t h an exponent between 0 and -0. 5 and not -0. 64. C. I M P O R T A N T S I D E E F F E C T S 1. E f f e c t of s u r f a c t a n t s 25 The importance of surfactants in heat and mass transfer processes between a single drop or a bubble and the continuous-phase have been predicted by many workers (25, 56, 69). Garner and Hale (26) studied the effect of surface active agents in liquid extraction processes. They found that trace quantities of surfac-tants had a marked effect on the rate of mass transfer. The presence of adsorbed molecules at the interface reduced the rate of mass transfer from drops which do not circulate and also retarded internal circulation in circulating drops. Elzinga and Banchero (22)'claimed that surface active materials slow down internal circulation, cause the point of separation to remain near the equator of the drop and thus decrease the transfer rate. Klipstein (1) studied the effects of surfactants on the heat transfer rate to an individual drop vaporizing in an immiscible continuous phase liquid. He concluded that surfactants act to lower the rate largely,by repressing circulation and interfacial rippling, and that they increase the rate by increasing the oscillation tendencies. Quantitatively he found a 30 percent gain in the rate for small drops (d = 0- 239 cm), no change in the medium sized drops (d = 0- 301 cm), and a 20 percent rate loss in large drops (d = 0« 379 cm), due to the presence of surface active agents. II. End effects In mass transfer studies the importance of end effects is well known, but in heat transfer the importance of end effects is doubtful. 26 -On the basis of various mass transfer studies (16, 58, 63), one may-expect to find s imilar results during heat transfer, but in the absence of experimental verification the end effects are s t i l l uncertain. McDowell and Myers (67), while studying the mechanism of heat transfer to individual l iquid drops, found no evidence of end effects. Garwin and Smith (70) during their work on heat transfer in a l iquid-l iquid spray tower, encountered a moderate end effect at the dispersed phase entry point when heat transfer was taking place from the continuous to the dispersed phase, but none when the reverse occurred. Calderbank and Korchinski (34) during their study of heat transfer to or from bromobenzene drops falling in hot or cold glycerol-water s olutions reported insignificant end effects. III. Effect of drop diameter For predicting the effect of drop diameter on transfer rates and transfer coefficients, the drops have been generally divided into various size categories, such as small , medium and large (1, 24, 68). But it seems that no r igid classification can be made on this basis, since the exact transition value depends on the physical properties of the system involved. Calderbank and'Moo-Young (68) in gas-liquid dispersions, and Thorsen and Terjesen (24) during their work on l iquid-l iquid systems, reported abrupt change in heat and mass transfer coefficients in the transition zone (based on the drop diameter). This change was at t r i -27 buted to the onset of circulation in this region. Calderbank and Moo-Young(68) also suggested different corre-lations for the smal l and large drop size ranges, and substantiated them with experimental data from various other workers. For a small drop size (1 - 3 mm. in diameter) they found Nu = 2+ 0-31 (Ra) 1 / 3 , ,_ . , c — • \d.o - i. ) For large drops (2 - 7 mm. in diameter), they predicted; - c = o . « (AeM^c y » ^ » (26.u The above equations indicate that the heat transfer coefficients are independent of drop diameter (if Nu » 2), for heat transfer to non-evaporating drops. Other workers (2, 25, 71) found that their experimental work with drops and bubbles in the size range 2 - 7 mm. in diameter, satisfied an equation of the form N u • c P e °'5 t z i - n This model shows a small decrease in the heat transfer coefficient with increasing drop diameter. This also agrees with the Higbie's penetration theory. Hammerton and Garner (72) while working on: water absorption of carbon dioxide and ethylene bubbles (2 - 3 mm. in diameter), showed that the mass transfer coefficients were directly proportional to the bubble diameter. Leonard and Houghton (73) also agreed with this result. Hence the effect of drop diameter on the transfer coefficients is 28 s t i l l not unanimous. On the b a s i s of t h i s l i t e r a t u r e r e v i e w i t can be c o n c l u d e d that the m a i n f a c t o r s i n f l u e n c i n g the heat t r a n s f e r to d r o p -l e t s a r e the p r e s e n c e o r absence of c i r c u l a t i o n , the c o n t r o l l i n g m e chan-i s m of the t r a n s f e r p r o c e s s , and the p h y s i c a l p r o p e r t i e s of the s y s t e m s i n v o l v e d . TV. M u l t i p a r t i c l e i n t e r a c t i o n The i m p o r t a n c e of m u l t i p a r t i c l e i n t e r a c t i o n w i l l d e t e r m i n e the p o s s i b i l i t y of extending the r e s u l t s o btained f r o m a s i n g l e d r o p study, to s i m i l a r m u l t i d r o p phenomena.. . H a p p e l and P f e f f e r (74) s t u d i e d the m o t i o n of two s p h e r e s f o l l o w i n g one another o r m o v i n g side by s i d e at v e r y l o w R e y n o l d s n u m b e r s . F o r f a l l i n g s p h e r e s f o l l o w i n g e ach o t h e r they p r e d i c t e d that the l o w e r s p h e r e w i l l s l o w down due to i n e r t i a l e f f e c t s . Rowe and Henwood (.75) s t u d i e d the d r a g f o r c e s and p a r t i c l e i n t e r -a c t i o n i n a f l u i d i s e d bed. They c o n c l u d e d that the d r a g f o r c e on a s p h e r e depends on the a r r a n g e m e n t of i t s n e i g h b o u r s . In a p a c k e d a s s e m b l y , the d r a g on a sp h e r e i s i n c r e a s e d b y one or two o r d e r s of magnitude o v e r that on a sp h e r e at the same n o m i n a l v e l o c i t y but i n i s o l a t i o n . A d j a c e n t p a r t i c l e s r e p e l one another and i t i s g e n e r a l l y o n l y when s p h e r e s are i n l i n e that t h e y r e d u c e the d r a g on e a c h other. W i t h an i n c r e a s e i n p o p u l a t i o n d e n s i t y , the i n t e r a c t i o n between drops w i l l a l s o i n c r e a s e . A l l the drops except the f i r s t one w i l l p a s s t h r o u g h a continuous phase i n w h i c h some t u r b u l e n c e has been g e n e r a t e d b y the p r e c e d i n g d r o p s . T h i s w i l l tend to i n c r e a s e the t r a n s f e r r a t e . 29 Pierce et a l . (76), however, while studying heat transfer in mercury-water spray columns, found lower heat transfer coefficients than those reported for stationary spheres. They also found no appreciable effect of drop diameter on the heat transfer coefficient. The independence of heat transfer coefficients with drop diameters was also supported by the results of Johnson and Minard (77) and Bowman and Johnson (71). Johnson and Minard found that the density of the dispersed phase in a spray column had little effect on the heat transfer coefficient over a wide range of operating conditions. Before flooding conditions are reached, flow rate also has only a minor effect on transfer efficiency. Gar win and; Smith (70) found that the heat transfer efficiency decreased as the dispersed phase flow rate was Increased. Bowman and Johnson (71) claimed that a ten fold increase in the rate of the dispersed phase caused only a 35 percent increase in the mass transfer coefficient. The literature cited indicates that the results from single drop studies can be extended to give a good approximation of a similar multidrop phenomena. . 30 C H A P T E R TWO INITIAL DECISIONS At this stage, having reviewed al l the pertinent literature and previous work, it was tfe erne d war fa while to make certain prel iminary decisions regarding the technique by which the present work would be conducted. The important aspects to be decided were, the mode of study, the data to be collected, factors to be and not to be studied, and the various side effects to be avoided. A . MODE O F STUDY In most of the experimental studies of a fundamental nature it is always best to keep the experimental technique quite simple but at the same time adequate enough to provide a l l the needed information. Keeping this in mind the following decisions were made. I. Single drop study The heat transfer mechanism between two immiscible liquids could be studied either between the bulk of both continuous and disper-sed phases or between the bulk of one and a l imited amount of the other phase. For the present work it was decided to study the heat transfer mechanism between the bulk of a continuous phase and individual drops of the dispersed phase. The preference for a single drop study was based on the following reasons: (a) Easier temperature control: The continuous phase wi l l be an infinite heat source for a single evaporating drop and thus temperature control of the continuous phase should pose no problem. (b) Results independent of the equipment used: In a single drop study, wall effects would be negligible i f a large enough container is used, and hence the results would be independent of the specific equipment used. (c) Simpler analysis of results: Analysis of the results would be much easier in the case of a single drop study, since multiparticle interaction or other s imi lar effects would not mask the basic nature of the process. II. Nucleation Since the main aim of this work is to study the heat transfer phenomenon during vaporization, the manner in which the dispersed phase drops start vaporizing is not c r i t i ca l . -Moreover, considering the high superheats reported (38, 41), it was planned to achieve nucle ation art if icial ly. The possible means for initiating evaporation which were open for use were: (a) Dispersed air in liquid (5) (b) Hot wire method (1) (c) Presence of solid particles (36) (d) External rough edges (e) A i r bubble within the drop Out of these, ini t ial experiments were made to test the last thre techniques. The method of putting an air bubble into each dispersed phase l iquid drop appeared to be best suited for the present study. III. Lighter dispersed phase liquids A drop of the dispersed phase liquid w i l l rise or fall through the continuous phase liquid depending on whether it is lighter or heavier than the continuous phase liquid. In an experimental set up, drops may be fed from either the top or bottom of a liquid column. For the present study it was decided to use dispersed phase liquids lighter than the continuous phase liquid. This combination sets the placement of the feed nozzle at the bottom of the liquid column. Although pressure feed is necessary with this arrangement, it was pre-ferred since falling drops would tend to reverse direction or to shed the vapor err/elope during evaporation. B . D A T A C O L L E C T I O N Cine photography is one of the most suitable methods available for studying a continuously changing mechanism. It was also recommended by a previous worker (1) for the present type of study. By filming a reference scale with the r is ing drop, the cine f i lm would easily provide the following parameters (a) Time (b) Distance (c) Size and shape of the drop (d) Vapor content in the drop (e) Velocity of the drop It was therefore decided to follow the drop as it rises and evapor-33 ates in the bulk of the continuous phase with a movie camera which moves at the same speed as the drop. The measurements on the f i lm would provide the required information about the drop behaviour, .from'which the heat transfer data could be evaluated. C. FACTORS TO B E STUDIED The work of Taitel and Klipstein became available before the initiation of the experimental part of the present work. After considering their results, which were contradictory in certain aspects, it was felt that the following variables should be considered during the present work. I. Dispersed phase properties To determine the effect of the dispersed phase properties alone or in dimensionless groups on the heat transfer, three dispersed phase liquids were chosen for use with water. II. Drop diameter Drop diameter wi l l be varied by using nozzles of different inside diameters and also by• controlling the amount of the dispersed phase liquid in each drop. III. Temperature driving force The temperature driving force w i l l be controlled by changing the temperature of the continuous phase liquid or by changing the pressure on the main column. D. FACTORS TO B E O M I T T E D Other variables which were of less importance or which would have complicated the present study were omitted. 34 I. Column size The size or shape of the column was not important except that it should be large enough to eliminate wall effects. : II. The type and material of construction of nozzle Since the drop size would be evaluated from the movie fi lm, the material of construction of nozzle, the angle of the nozzle tip and other such variables were insignificant. III. Flow rate of the continuous phase The continuous phase liquid was kept stationary in the column and its temperature was also constant throughout, during a particular run. This did not restr ict the study of heat transfer phenomenon in any way but provided a considerable simplification in the experimental procedure. IV. Effect of surfactants It was decided not to study the effect of surfactants, but care would be taken to avoid any. contamination by them during the experimental work. A l l new equipment in contact with the liquids was soaked'in'distilled water and oi l was removed from metallic parts with organic solvents. E . SIDE E F F E C T S TO B E E L I M I N A T E D I. Mass transfer To eliminate any mass transfer during the experiment it was decided to use dispersed phase liquids which were insoluble in the.contin-uous phase. Since there is always slight solubility, both phases were saturated with the other prior to their use. II. Heat transfer during drop formation 35 To eliminate evaporation during the period in which the drop of dispersed phase liquid sits on the nozzle tip, a continuous phase bulk temperature lower than the boiling point of the dispersed phase liquid was maintained in the lower portion of the column. III. Wall effects The terminal velocities of the drops and bubbles are always affected by the presence of container walls. In the absence of some definite relationship to account for this effect, it was decided to use a large diameter column in which any such effect would be negligible. F . T O T A L E V A P O R A T I O N TIME In the previous s imilar studies by Taitel (5) and Klipstein (1), overall average heat transfer coefficients were calculated from the values of the total evaporation time for individual drops. The methods used by the above workers for estimating the totaL evaporation time were not very convincing. Taitel (5) plotted the total heat input to the drop versus time on log-log papery getting separate straight lines for each value of ini t ia l drop diameter and temperature driving force. The values of total heat input to the drop and time were calculated from the observations measured from movie films (observations were possible only up to ten percent evaporation). By extrapolating the above plots to 100 percent evapor-ation he obtained the total evaporation time, which he said he also con-firmed by visual observation. The extrapolation could only be justified if the heat transfer rate was constant, which should not be assumed with-36 out sufficient proof. The visual observations can not be rel ied upon, in view of the changing and unpredictable geometry of a r is ing and evaporating drop. Klipstein (1) plotted total heat content in the drop versus time on arithmetic paper, and joined a few points with a straight line, ignoring other points which did not fall on this line. The line was extrapolated and the value of total evaporation time was estimated, corresponding to the total heat transfer necessary for complete evaporation of the drop. Neither of these methods seems very reliable, although each gave 'consistent' values for total evaporation time. But this consistency did not preclude the possibility that they might be estimating a consis-tently higher or a lower value of total evaporation time. The values of total evaporation time reported by the above two workers could not be compared with each other since different liquids were used for the dis-persed and continuous phases in the two cases. Also, a general cor re -lation was not given for estimating the total evaporation time in terms of drop diameter, temperature driving force, and physical properties of the liquids used. Understanding the importance of the value of total evaporation time, it was decided to use a more powerful and accurate method, preferably one of the dilatometric type to determine its value. 37 C H A P T E R T H R E E S E L E C T I O N A N D P R O P E R T I E S O F T E S T F L U I D S A. S E L E C T I O N O F T E S T F L U I D S The c h o i c e of the continuous phase l i q u i d was b a s e d on the f o l l o w i n g c o n s i d e r a t i o n s ; (a) It s h o u l d be t r a n s p a r e n t (b) It s h o u l d have l o w v a p o r p r e s s u r e at ambient t e m p e r a t u r e (c) It s h o u l d be of h i g h p u r i t y . On these b a s e s i t was d e c i d e d to use ' d i s t i l l e d water'as the c o n t i n -uous phase l i q u i d . In v i e w of the i n d u s t r i a l i m p o r t a n c e of the p r e s e n t p r o b l e m , the use of s e a w a t e r or tap water f o r the p u r p o s e would have been e q u a l l y good. But to a v o i d the p r e s e n c e of s u r f a c e a c t i v e m a t e r i a l s o r any other f o r e i g n i m p u r i t y , d i s t i l l e d w ater was p r e f e r r e d i n t h i s f u n damental study. > The s e l e c t i o n of d i s p e r s e d phase l i q u i d s was then made on the f o l l o w i n g p o i n t s ; (a) It s h o u l d be i m m i s c i b l e w i t h water (b) It s h o u l d be l i g h t e r than water (c) It s h o u l d b o i l at a r e a s o n a b l y l o w t e m p e r a t u r e , p r e f e r a b l y between 20° and 6 0 ° C (d) It s h o u l d not r e a c t w i t h w a t e r o r f o r m a complex. 38 (e) It should be noncorrosive, and easily available in its pure form. On these bases three dispersed phase liquids were selected (78) , namely (i) Furan (ii) Isopentane (iii) Cyclo pentane These three liquids of extra pure quality were obtained frpm Matheson Coleman & Be l l Company, Inc. T A B L E I S E L E C T I O N OF DISPERSED PHASE LIQUIDS (78) Liquid Formula Specific Boil ing Solubility weight gravity point C in water _ _ __ Furan 6 8 . 0 7 0 . 9 3 7 3IT 32 insoluble 19 Isopentane 7 2 . 1 5 0 . 6 2 1 2 7 . 9 5 insoluble 2 0 / 4 Cyclopentane 7 0 . 1 3 0 . 7 4 5 4 9 - 5 0 insoluble 39 B . PROPERTIES. OF TEST FLUIDS Properties of the fluids needed for various calculations during the present investigation were: temperature-vapor pressure relationship, latent heat, viscosity, heat capacity, thermal conductivity, density of liquid and vapor, and the surface and interfacial tensions. Wherever available the properties were taken from the published sources. Those properties not available from: the literature were estimated using well ^ known empirical relationships or were experimentally determined. For disti l led water a l l the properties were well known and readily available, so no reference is made to their source. Properties of the dispersed phase fluids, as they have been taken from different sources, are l isted below. •I. Temperature-Vapor pressure relationship The temperature-vapor pressure data for fur an have beentakeu from the work of Guthrie et. a l . (79). They measured the vapor pressure of furan from 2 to 62°C by comparative ebulliometry, The vapor pressure and temperature values are given in Appendix I, Table A l . Beal l (80) reported the physical and thermodynamic properties of isopentane. •- The vapor pressure and temperature values for the range of the present work are l isted in Appendix I,. Table AIV. Temperature-vapor pressure data of Willingham (81) were used for cyclopentane. The actual values appear in Appendix I, Table A V . Vapor pressure as a mathematical relation of temperature was needed to estimate the boiling point at pressures inside the column. 40 T h e s e r e l a t i o n s h i p s a r e g i v e n w i t h the data i n A p p e n d i x I. II. L a t e n t heat (Heat of v a p o r i z a t i o n ) H e at of v a p o r i z a t i o n data f o r f.uran was obtained f r o m G u t h r i e et. a l . (79). The v a l u e s w e re c l a i m e d to be a c c u r a t e within. +_ 0* 1 p e r cent, i n the t e m p e r a t u r e range of 280 - 305 degrees K e l v i n . The equation suggested i s , A H vap = 8854 - 1-882 T - 0-01949T 2 c_al m o l e l 1 " ' 3 ) where T = t e m p e r a t u r e i n degrees K e l v i n F o r isopentane the v a l u e s of l a t e n t heat at v a r i o u s t e m p e r a t u r e s were given b y B e a l l (80). T h e s e v a l u e s within,the r e q u i r e d range a r e g i v e n i n A p p e n d i x I, T a b l e A i V . The heat of v a p o r i z a t i o n f o r cy c l o p e n t a n e was t a k e n f r o m the I n t e r n a t i o n a l C r i t i c a l T a b l e s (82). The equation s u g g e s t e d f o r heat of v a p o r i z a t i o n i s , 2 A H vap = 1-9869 __B c a l (2 - 3) k gm. m o l e T^ = b o i l i n g point i n degrees K e l v i n k B = 29-5 III. V i s c o s i t y The v i s c o s i t y f o r f u r a n was e x t r a p o l a t e d f r o m the v a l u e s g i v e n b y T i m m e r m a n s (83). T hese v a l u e s appear i n A p p e n d i x I, T a b l e A l l . The v i s c o s i t y . o f isopentane was c a l c u l a t e d u s i n g the e x p r e s s i o n g i v e n i n the I n t e r n a t i o n a l C r i t i c a l T a b l e s (84) ••= Al (B + t) n ( 3 - 3 ) where, A = 391* 101 B = 208- 6 n - 2-2186 t = Temperature in degrees Centigrade = viscosity in poise For cyclopentane the viscosity was obtained by extrapolating the values given in the International Cr i t ica l Tables (84). The values are listed in Appendix I, Table AVI . IV. Heat Capacity Guthrie et. al . (79) gave the heat capacity of l iquid furan at the saturation pressure within + 0 - 05 percent, in the form of the empirical equation: Cp •= 35-1.7 - 0- 1486T + ,5-695 x 10~ 4 T 2 -7 3 - 5-322 x 10 T cal /degmole ( 4 -This equation was obtained from their experimental data using a least-squares method. Heat capacity for isopentane was obtained by extrapolating the values given in the International Cr i t ica l Tables (85). ' McCullough et. al. (86) have suggested an empirical equation for the heat capacity of cyclopentane. Cp = 10-158 + 0-11189T -3-881 x 10" 5 T 2 cal/deg mole — (5 -T = temperature in degrees Kelvin This expression is valid for the range of the present experimental work. 42 V. Liquid density at boiling point Densities of the liquids at their normal boiling points are generally not available in the literature. This necessitated the use of an empirical method for their estimation. For al l the three liquids the values of densities at their respective boiling points under experimental conditions were calculated using Schroeder's method (87). This method is claimed to give results within three to four percent except for highly associated liquids. The statement of Schroeder's method and the actual calculations are given in Appendix I. VI. Density, of the vapor The vapor density for furan and cyclopentane was calculated using the gas law equation. P^V •= RT + B P where, B = second v i r i a l constant. The values of second v i r i a l constants were obtained from the following expressions; (a) For furan (79) B = 279 - 22-6 exp (950/T) c c / m o l e ( 7 - 3 ) (b) For cyclopentane (86) B = 192 - 59-59 exp (800 /T) c c / m o l e ( 8 - 3 ) where, T = temperature in degrees Kelvin To evaluate the vapor-density of isopentane the data of Beal l (80) 43 were used. The values for the present experimental range are l isted in Appendix I, Table AIV. VII. T h e r m a l conductivity The valuesof thermal'conductivity for furan and isopentane were not available, so the empir ica l equation by Weber (87) was used to estimate these values. The equation used is K = 3- 59 x 10 (6 - 3) Weber's method is easier to use than other empir ica l methods and st i l l yields about the same average e r r o r . E r r o r s of 5 to 15 percent can be expected with this method. The thermal conductivity of cyclopentane was taken from the results of Sakiadis and Coates(88)-VIII. Surface and Interfacial tensions The value of surface tension for furan was taken f r o m the results of T immermans (83), which are l isted in Appendix I, Table AIII. The values of surface tension for isopentane and interfacial tension between isopentane and water were taken from the International C r i t i c a l Tables (89). The surface tension of cyclopentane and the values of interfacial tensions for cyclopentane - water and furan - water systems were not available in the l i terature. These values were experimentally deter-mined by means of a Cenco-duNouy tensiometer (model number 10402). F i r s t the tensiometer was standardized and then during the m e a s u r e m e n t s t h e p r o c e d u r e d e s c r i b e d i n t h e i n s t r u c t i o n b u l l e t i n w a s c l o s e l y f o l l o w e d . A n u m b e r o f m e a s u r e m e n t s w e r e m a d e at r o o m t e m -p e r a t u r e f o r t h e s u r f a c e a n d i n t e r f a c i a l t e n s i o n v a l u e s . T o e v a l u a t e t h e e x a c t v a l u e - o f i n t e r f a c i a l t e n s i o n n e a r t h e b o i l i n g p o i n t , i t w o u l d be n e c e s s a r y t o k n o w t h e v a l u e s o f i n t e r f a c i a l t e n s i o n at l e a s t at t h r e e d i f f e r e n t t e m p e r a t u r e s . It w a s p l a n n e d t o u s e t h e a p p r o x i m a t e v a l u e s o f i n t e r f a c i a l t e n s i o n s , as o b t a i n e d at r o o m t e m p e r -a t u r e , t o c h e c k i t s e f f e c t o n t h e h e a t t r a n s f e r c o r r e l a t i o n s . I f t h e e f f e c t h a d b e e n f o u n d t o be s i g n i f i c a n t t h e n t h e e x a c t ' v a l u e s w o u l d h a v e b e e n o b t a i n e d b y a m o r e e l a b o r a t e e x p e r i m e n t a l t e c h n i q u e . T h e r i n g m e t h o d f o r s u r f a c e a n d i n t e r f a c i a l t e n s i o n s , B u l l e t i n No. 101 C e n t r a l S c i e n t i f i c C o m p a n y , C h i c a g o , C H . E. -1725.. T A B L E II P R O P E R T I E S O F D I S P E R S E D P H A S E LIQUIDS Properties at JNT. B . P. F u r a n Isopentane Cyclopentane Normal Boil ing point C 31.5 27.95 49.6 Density / f t ' 0.8831 0. 61 0.668 gm/cc Viscos i ty / k ' c . p . 0.34 0.273 0.322 T h e r m a l conductivity 'k' c a l / ( s e c ) ( c m ) ( ° C ) 0. 332x10° 0.255x10" 0. 301xl0" 3 Heat capacity 'Cp' c a l / ( ° C ) (gm) ' 0.4091 0.568 0. 3113 * Interfacial tension'*"' 14.0 49.64 52.0 dynes / c m • ' Heat of vaporization 98.5 83. 3 99.2 c a l / g m Prandtl number 4.189 . 6.102 3. 33 * The values of interfacial tension are at room temperature (approx. 2 2 ° C ) . 46 C H A P T E R F O U R E Q U I P M E N T A N D E X P E R I M E N T A L P R O C E D U R E A. E Q U I P M E N T D E T A I L S T h e c o m p l e t e e q u i p m e n t w a s d e s i g n e d a n d f a b r i c a t e d i n t h r e e m a i n s e c t i o n s : I. M a i n c o l u m n a n d i t s a s s e s s o r i e s I I . P h o t o g r a p h i c e q u i p m e n t I I I . A d d i t i o n a l s e t u p f o r g e t t i n g t o t a l e v a p o r a t i o n t i m e . A l l t h e s e t h r e e s e c t i o n s w i l l b e c o n s i d e r e d i n d e t a i l i n t h e a b o v e o r d e r . •I . - M a i n c o l u m n a n d i t s a s s e s s o r i e s 1. M a i n c o l u m n S i n c e t h e d r o p m o t i o n w a s t o be f o l l o w e d b y a m o v i e c a m e r a i t w a s n e c e s s a r y t o h a v e a t r a n s p a r e n t c o l u m n . C o n s i d e r i n g m a n y a s p e c t s s u c h as f a b r i c a t i o n , s t a b i l i t y u n d e r e x p e r i m e n t a l c o n d i t i o n s e t c . , a p e r s p e x c o l u m n w a s f o u n d m o s t s u i t a b l e f o r t h e j o b . T h e m a i n c o l u m n a s s e m b l y ( F i g u r e s 1, 2, 3) c o n s i s t e d of t w o c o n c e n t r i c c o l u m n s , t h e i n n e r one c i r c u l a r and,the o u t e r o n e s q u a r e i n s h a p e . T h e s q u a r e c o l u m n , a l t h o u g h d i f f i c u l t t o f a b r i c a t e , w a s n e c e s s a r y to m i n i m i z e d i s t o r t i o n . T h e a n n u l a r s p a c e w a s u s e d f o r c i r c u l a t i n g w a t e r f r o m c o n s t a n t t e m p e r a t u r e b a t h s t o c o n t r o l t h e t e m p e r a t u r e o f t h e c o n t i n u o u s p h a s e l i q u i d i n t h e c i r c u l a r c o l u m n . 47 The height of the column was decided in view of the previous studies (1, 2) to accomodate the complete vaporization of a drop between O- 15 - 0' 5 cm. in diameter within it. The entire column was divided into two parts. A lower portion four inches in length and a upper portion 44 inches in length. The annular sections for these two portions were completely separate from each other. The two portions, in the inner column were separated by,a doughnut type baffle, which reduced the direct mixing of the continuous phase liquid in these portions. In the lower portion of the circular column a temperature much below the boiling point of the dispersed phase liquid can be maintained by cir.- • culating cold water or any other suitable liquid in the corresponding annular space. Whereas a temperature, higher than the boiling point of the dispersed phase liquid, can be maintained in the rest of the column by circulating hot water through the annular space of the upper portion. This temperature difference also helped reduce mixing in the two sections. These two temperatures could be adjusted and. controlled at any desired level between 10 and 80 degrees Centigrade using two constant temperature baths. An inlet and an outlet were provided in both the annular sections for the circulating water. The lower section had an inlet at the bottom and outlet on the side near its top. The upper section had the inlet on the side near its bottom and outlet at its top. The circular column has three openings, one at the top and the 48 COLUMN ASSEMBLY (Sectioned at A A ) 3/8' -4 Brass Flange Perspex Lid -Glued Thermocouples or alternate sides after every 3" Doughnut Baffle ~ Glass Column 1/8 4 " -^—1/8" Perspex Columns 0 -Ring Seals Scale — Full Size Aluminum Flange FRONT ELEVATION FICURE 1 49 COLUMN ASSFMRI Y Heating Water Outlet 1/4" NPT Cooling Water Outlet 1/4" NPT Scale — Full Size Try ^5/16" Thermocouple hole L l 'Scale /// / / 0 - Ring Seal /// 5/16' Cooling Water Inlet 1/4" NPT Nozzle hole 1/8" NPT 0 -Ring Seals Outlet 1/4" NPT SIDE ELEVATION F I G U R E 2 50 COLUMN ASSEMBLY §s*t- F „ H s i z e — 1 f A F I G U R E 3 other two at its bottom. The.top opening was used as a pressure regula-tor connection and to remove the vapors and air . This opening was made by-cutting a hole l r 7 5 inches in diameter in the column top. An appro-priate sized perspex l i d with an O-Ring seal was fitted into i t . The l i d was further secured in place by a rectangular brass flange, which was screwed to the column top. A quarter inch compression fitting was provided in the perspex l i d for tube connections. One opening at the bottom was used for inserting a nozzle through an one eighth inch com-pression fitting, where as the other was used for draining or f i l l ing the column. Fifteen Copper-Constantan;thermocouples were provided to measure the temperature of the continuous phase l iquid . One thermocouple was fitted in the lower portion and the remaining fourteen were in the upper portion. They were spaced at a distance of three inches on alternate sides of'the=column. Since the thermocouples had to passthrough the annular section, a spacer made by dri l l ing through a solid perspex piece was used for each thermocouple hole. The thermocouples were inserted in these holes through O-Ring seals. A scale, three and a half feet long and marked in sixteenths of an inch, was permanently glued in the upper portion of the c i rcular column so as to protude from the middle of one side. This position was chosen so that the scale would always remain in focus along with the r is ing and evaporating drop of the dispersed phase, which should travel up the center of the column. f A l l the thermocouples were calibratedusing a standard mercury ther-mometer. During the experimental work, the perspex in the lower portion of the circular column was attacked by, the dispersed phase and became translucent. This complete portion was removed and replaced by a glass column as a separate piece. Using O-Ring seals the small glass column was attached on one end to the main column and on the other end to an aluminum flange. The bottom connections in the circular column were now made in this aluminum piece. This arrangement provided an extra advantage in the ease with which the lower portion of the column, could be cleane d. The complete column was supported on a metallic stand. Details of this stand are shown in Figure 4. Specifications and dimensions of the column are l isted in Appendix I. 2. Constant temperature baths Two constant temperature baths were used, one for each section of the column. Water at desired temperatures was continuously circulated from these, to the annular spaces of the column to maintain a constant temperature of the continuous phase. A 'Temptrol 153' was used for the upper portion, and a 'Colora Ultra Thermostat, type K 1 , was used for the lower portion. The details of these two pieces of equipment are given in Appendix I. 3. Potentiometer A Leeds and Northrup mil l ivol t potentiometer was used to deter-mine the potential of the thermocouples. A l l the thermocouples were 53 C O L U M N SUPPORT Column Position Wood 1 Screw —— Pipe l/2"(7/8"OD) Brace 4" from top Angle iron both faces in line of each other and 9 0 ° to base A f\ 5/8" PLAN T T I T I Pipe -(l>4"0D) 1/4" Plywood £ > 'f : l>2"x 1/8" Mild Steel Bar Wood Screw mu 4' 10" 4 '9 ^8" i i 3/4' 15 Scale 1/4 Full Size ELEVATION F I G U R E 4 54 c o n n e c t e d t o a m u l t i p o i n t s w i t c h a n d t h e l e a d s f r o m t h e s w i t c h w e r e t a k e n t o t h e p o t e n t i o m e t e r . T h e t e m p e r a t u r e r e a d i n g o f t h e t h e r m o c o u p l e s w a s d e t e r m i n e d f r o m s t a n d a r d t a b l e s . T h e d e t a i l s of t h e p o t e n t i o m e t e r a r e g i v e n i n A p p e n d i x I. 4. D i s p e r s e d p h a s e f e e d i n g s y s t e m B e f o r e d e s i g n i n g t h e d i s p e r s e d p h a s e f e e d i n g s y s t e m t h e f o l l o w i n g a s p e c t s w e r e f u l l y v i s u a l i z e d . (a) D i s p e r s e d P h a s e i s l i g h t e r t h a n . t h e c o n t i n u o u s p h a s e : S i n c e t h e d i s p e r s e d p h a s e l i q u i d s u s e d d u r i n g t h e p r e s e n t s t u d y w e r e a l w a y s l i g h t e r t h a n t h e c o n t i n u o u s p h a s e l i q u i d , i t w a s n e c e s s a r y t o i n t r o d u c e t h e d i s p e r s e d p h a s e at t h e b o t t o m o f t h e c o n t i n u o u s p h a s e c o l u m n . (b) P r e s s u r e f e e d : I t w a s e s s e n t i a l t o s u p p l y t h e d i s p e r s e d p h a s e l i q u i d at a p r e s s u r e s u f f i c i e n t t o o v e r c o m e t h e c o l u m n h e a d o f t h e c o n t i n u o u s p h a s e l i q u i d . (c) C o n t r o l o f d r o p s i z e : S i n c e t h e d r o p s i z e w a s one o f t h e i n d e p e n d e n t v a r i a b l e s , . t h e r e s h o u l d b e s o m e p r o v i s i o n , f o r c o n t r o l l i n g t h e s i z e of t h e d r o p . (d) N u c l e a t i o n : A s d e c i d e d e a r l i e r an a r t i f i c i a l n u c l e a t i n g a g e n t w o u l d b e u s e d i n e a c h d r o p . T h u s a d e q u a t e p r o v i s i o n s h o u l d b e m a d e i n t h e f e e d i n g s y s t e m f o r i t t o be i n j e c t e d . (e) C o n t a m i n a t i o n : 55 The presence of impurities and contaminants can change the heat transfer conditions to a great extent (1, 26). Hence it was of ut-most importance to check any contamination of the dispersed phase liquid. Considering these points, a dispersed phase feeding system was designed. (See flow diagram - Figure 5). It consisted of a dispersed phase liquid container made of glass, having a,funnel shaped inlet fitted with a teflon stopcock. The container was pressurized, through another opening in ,the top, using the laboratory air supply through a pressure regulator. The dispersed phase l iquid from the bottom of the container passed through aneedle valve, a syringe, and then, to an appropriately .sized nozzle in ,the bottom of the main ,column. The syringe was mounted on a metal block and the displacement of its piston was controlled by the movement of a finely,threaded screw. This gave a better control of the quantity of l iquid released for each drop and hence of the d rops ize . Nucleation was achieved by injecting a tiny air bubble (0- 1 - 0 - 3 mm. in diameter) inside each liquid drop formed at the nozzle tip. For this purpose a very fine (1 /5000 of an i n c h l . D. ) stainless steel tube was placed inside the dispersed phase feeding nozzle through a Neoprene rub-ber packing. The outer end of this fine tube was connected to a one way rubber bulb. By pressing the rubber bulb it was possible to force the air bubble inside the drop. There was a provision for collecting the dispersed phase vapor in a cold finger, which could easily be connected to the column top. Since F L O W D I A G R A M ( MAIN E X P E R I M E N T ) B L E E D CONSTANT TEMPRATURE BATH MAIN COLUMN MERCURY MANOMETER ® TEFLON STOP COCK PRESSURE REGULATOR •NOZZLE AIR SUPPLY • t o y DISPERSED "PHASE LIQUID CONTAINER RUBBER BULB N E E D L E VALVE i ^ S Y R I N G E F I G U R E 5 a v e r y s m a l l q u a n t i t y o f t h e d i s p e r s e d p h a s e l i q u i d w a s c o n s u m e d d u r i n g a n e x p e r i m e n t t h i s d e v i c e w a s s e l d o m u s e d . T h e d e t a i l s o f t h e n o z z l e a r e s h o w n i n F i g u r e 6. 5. P r e s s u r e r e g u l a t i n g s y s t e m T h e t e m p e r a t u r e d r i v i n g ; f o r c e h a s a l w a y s b e e n a n i m p o r t a n t v a r i -a b l e i n h e a t t r a n s f e r s t u d i e s . In t h e p r e s e n t w o r k t h e t e m p e r a t u r e d r i v i n f o r c e at a n y . p o i n t i n t h e c o l u m n w i l l b e t h e d i f f e r e n c e b e t w e e n t h e c o n -t i n u o u s p h a s e b u l k t e m p e r a t u r e a n d t h e b o i l i n g p o i n t o f t h e d i s p e r s e d p h a s l i q u i d at t h a t p o i n t . V a r i a t i o n i n t h e a t m o s p h e r i c p r e s s u r e w i l l c h a n g e t h e p r e s s u r e at a n y p o i n t i n s i d e t h e c o l u m n a n d t h e r e f o r e t h e b o i l i n g p o i n t o f t h e d i s p e r s e d p h a s e w o u l d a l s o v a r y , t h u s c h a n g i n g t h e t e m p e r -a t u r e d r i v i n g f o r c e . T h e r e f o r e t o r e p r o d u c e t h e t e m p e r a t u r e d r i v i n g f o r c e c o n d i t i o n s d u r i n g s u b s e q u e n t r u n s i t w a s n e c e s s a r y t o c o n t r o l t h e p r e s s u r e i n t h e c o l u m n . T h e s y s t e m d e s i g n e d t o r e g u l a t e t h e p r e s s u r e i n s i d e the, c o l u m n p r o v i d e d r e p r o d u c i b l e t e m p e r a t u r e c o n d i t i o n s a n d a l s o m a d e i t p o s s i b l e f o r e x p e r i m e n t s t o b e p e r f o r m e d at h i g h e r p r e s s u r e s ( u p t o 2 a t m o s p h e r e i f n e c e s s a r y . A q u a r t e r i n c h n y l o n t u b e w a s c o n n e c t e d f r o m t h e l a b o r a t o r y a i r s u p p l y l i n e t h r o u g h a p r e s s u r e r e g u l a t o r to t h e t o p o f t h e c o l u m n ( s e e f l o w d i a g r a m F i g u r e 5, p a g e 56 ). A n o t h e r t u b e w a s c o n n e c t e d to t h i s m a i n t u b e u s i n g a s t a n d a r d q u a r t e r i n c h T e e . T h i s t u b e w a s c o n n e c t e d t o o n e a r m o f a m e r c u r y m a n o m e t e r w h o s e o t h e r a r m w a s k e p t o p e n to a t -m o s p h e r e . A c o n t i n u o u s b l e e d w a s p r o v i d e d at t h e c o l u m n t o p t h r o u g h a N O Z Z L E A S S E M B L Y s s Scale — 4 X Full Size T E F L O N S L E E V E STAINLESS S T E E L s NOZZLE 1/8" OD T U B E 1/8" OD SOLDERED - Z Z Z Z Z Z Z Z 7 7 7 IMPERIAL COMPRESSION FITTING 1/8" UNION PLAN STAINLESS S T E E L TUBE FOR AIR 1/5000" I D ELEVATION ( S E C T I O N E D AT ' A A ' ) F I G U R E 6 59 valve. This bleed removed the dispersed phase vapors and also prevented any pressure build up in the column. It was possible to set and maintain any desired pressure above atmospheric in the column by adjusting .the pressure regulator. II. Photographic equipment 1. Camera and camera stand. A 16 millimeter H 16 EX Paillard Bolex movie camera was used for taking photographs of the drops. It has filming speeds from 12 to 64 frames per second. It also has a variable shutter which made it possible to reduce the exposure time without changing the filming speed and thus to get sharp definition in shots of moving objects* This was especially useful for frame by frame studies. To follow the drop, as it moved upwards in the column it was essential to devise some means by which the camera could move with the same speed as that of the drop. An electrical device was decided against since it would be too complicated and possibly would be matte difficult to control. Another alternative was to make a versatile hand operated camera stand. For such a stand the following qualities were of importance. (a) Stability: The camera stand should be quite stable against sideways and back and forth motion while the earner a moved up and down. (b) Smoothness and counterbalance: The motion of the earner a on its stand should be very, smooth. It 1 ; • —;—; equipped with a 25 mm. f : 1.8 lens was also essential for following the drop motion with this type of hand operated device, that the camera could be raised or lowered with a slight touch. Visualizing the above requirements a special camera stand was designed (For details see Figures 7, 8, 9, 10, 11 and 12). It was made as a separate unit so that no vibrations could be transferred to the main column by the movement of the camera. The camera stand was five feet high and consisted of a movable platform, this platform moved on two hollow smooth pipes (1 1 /2 inch O. D . ) . The smooth pipes were fixed in position on a mi ld steel plate fourteen inches by twelve inches by one inch, and supported by inclined pipes (3/8 inch O. D . ) . For the smooth motion of the platform five bearings (# SR 4D R M Bearing) were prov-ided on each pipe, three of them mounted on the platform itself and the other two on the platform supports. Counter weights we re provided inside the hollow smooth pipes, one in each, to keep the platform plus camera in equilibrium in any position. Each counterweight was hooked to a wire which passed over a brass pulley and then was attached to the side of the platform. The above arrangement made the motion of the camera very smooth. By a slight push the camera could be taken to any position along the column height. It was possible with this device to follow the r is ing and evapor-ating drops very closely. The stand was also perfectly stable. 61 CAMERA STAND Scole - 1/4 Full Size 1 2 " Detail A COUNTER WEIGHTS 3/8" PIPE — . BOLTED WITH 20 SCREWS 14' l4 l/2" 10 3/4" Z 2 5" |'/2"0D SMOOTH PIPE PLAN 6 5/8"--1/4" ALLEN HEAD CAP SCREW > i i c i .J E L E V A T I O N 5—1/4"- 20 SET SCREW FIGURE 7 62 CAMERA STAND — DETAIL %A' Scale — Double Size F I G U R E 8 63 CAMERA STAND DETAIL B Scale — Double Size 5/32" CLEAR BEARING SR 4 D / 5 / B ' RM BEARING P L A N ALUMINUM F O U R REQ D E L E V A T I O N F I G U R E 9 64 CAMERA STAND — DETAIL C Scale — DOUBLE SIZE ALUMINUM  T W O R E Q ' D ' I 3/8 » ALLEN HEAD SIDE ELEVATION C A P S C R E W F I G U R E 10 65 CAMERA STAND — DETAIL ' D ' Scale — 1/2 Full Size ALUMINUM ONE REQ*D FISH PLATE FIGURE 11 66 CAMERA STAND - DETAIL V Scale — Full Size u 2 ,/2-SIDE E L E V A T I O N E L E V A T I O N FIGURE 12 2. , Lighting Adequate lighting was essential to achieve satisfactory results in photography. • For this, type of work both back and side lighting.could be used (90). Back lighting was preferred in this case because of the need to photograph a distance scale and because of interference from the therm-ocouples. Liquid drops moving in a liquid medium are difficult to photograph due to the small differences ihefcnerrflcok)vm<ktxd;fce$r&ci£icGSm33!.c.es Sf heThe present situation was even more complex due to the presence of a vapor phase in the r is ing drop. . The simple solution ,pf using a dye in the drop was first considered, and a suitable dye (soluble in the dispersed phase but insoluble in the. continuous phase)' was: tr ied with favourable results. Later on this idea was abandoned due to uncertainty of its influence on the heat'transfer mechanism in the drop. Another device, however, worked very well and had no objectionable side effects. Strips, of black masking tape approximately one quarter inch wide and spaced one quarter inch apart were glued vert ical ly on ,the diffuser screen (91). The diffuser screen of white perspex was attached to the back of the column stand. The pattern of light bars was refracted in the drop and gave a,reasonable contrast between the two liquid phases and between the liquid phases and the vapor phase. Asepaarate light stand was built;, fitted with four flood light lamps of 150 watts each. , The lights were kept behind the diffuser screen and approximately 15 inches from it. A variac was used to control the lamps 68 to avoid excessive heating of the main column and the liquid in i t , during ini t ia l settings. Separate on and off switches were used for the top two lamps, while, the, lower two lamps were operated by a common switch. The photographic setup is shown in Figure 13. 3. Probostrobe Since the time was measured from the f i lm frame number, . it was very important to know the exact frame speed of the movie camera. For calibrating the frame speed of the camera,' a Nichol 's Probostrobe model E 116 A , . was used. 4. Lightmeter A cadmium--cell M i c r O s i x L lightmeter was used to determine the exact lighting .conditions in the column. It can give shutter ; speed readings from 1 /4000 of a second to 8 hours, and 'f-numbers' from 1 to 90. • F r o m the various combinations .of time and f-number values obtained from the lightmeter, the appropriate f-number was selected to correspond to the: equivalent exposure time as given in Table III. This table was supplied with the earner a l i ter ature. The shutter lever was kept preferably at setting 2 or 1, equivalent to keeping the shutter 3/4 or 1 /2 closed. This was done to reduce the depth-of-field so that a sharp definition of the main object wou^d be produced against a blurred background. Literature and instructions for Pa i l l a rd Bolex H 16 Reflex camera (Ch.E. 2146). P H O T O G R A P H I C S E T U P COLUMN S U P P O R T FIGURE 13 69a 0. 49% evaporation 0. 97% evaporation FIGURE 13a Photographs of the vaporizing drop (Run No. I 19) 70 T A B L E III E X P O S U R E T I M E S Shutter Open 1/4 C l o s e d 1 12 C l o s e d 3/4 C l o s e d C l o s e d L e v e r Up on 1/2 on 1 on. 2 down Speed 'fps' 12 1/30 1 /40 1 /60 1 /120 0 16 1 /40 1 ISA 1 /80 17160 0 18 1 /45 1/60 1/90 1/180 0 24 1 /60 1 /80 1/120 1.-/240 0 32 1/80 1 /108 1 /160 1 /320 0 64 1 /160 1 /216 1/320 1/640 0 Speed C o n t r o l knob on Si n g l e - f r a m e e x p o s u r e 12 fps 1 /30 1 /40 1/60 - 0 16-64 fps 1 /35 1/46 1 /70 - 0 71 III. Additional setup for total evaporation time A dilatometr.ic method was used to evaluate the total evaporation ' : time for an individual drop. A dilatometric .method is one in which a phenomenon going on in a system is estimated by measuring a change in volume. In view of the drop sizes studied during the present work (0- 15 to 0" 5 cm. in diameter), the total change in volume when a drop com-pletely vaporizes, considering all the three dispersed phases, ranged from 0' 5 to roughly 20 cubic centimeters. Thus any method based on the measurement of the volume change should be accurate enough for the small changes and should also accommodate: ,the upper range of the volume change. Several options were available for registering the volume change of the system. (a) ' Using a float on. the surface of a l iquid (b) ' Measuring the change in liquid level using, a resistance wire (c) Using a photoelectric cel l and an opaque liquid (d) (Using a soap bubble It was decided to try.methods (b) and (c). Method (a) was not chosen because of the possibility of the float sticking when the volume change is smal l . Method (d)was discarded due to the need for a complicated photo-graphic technique to photograph both the ini t ia l drop size and the soap bubble motion. For any dilatometric method it is essential to keep the system free of air or vapor, otherwise, due to their compressibility, . the measurement 72 of the volume change would be inaccurate. In the present study an air bubble was used for nucleation, and a dispersed phase was being vapor-ized. Hence it was necessary to devise a technique for removing the vapor and air from the system after :.each run, to avoid any build up of compressible fluids in the system. For this purpose a solenoid valve (1/8 inch orifice) was fitted on the top opening of the column. The control switch for the valve was placed near the column controls at the bottom of the column so that the valve could be closed quickly at the start of a run. The change of level of a salt solution in a narrow column was meas-ured by the change in resistance of a resistance wire probe. To prevent mixing between column fluid and salt solution, a cyl indrical perspex container was designed with a rubber diaphragm in its center. A narrow vert ical tube was connected on one side of this container. The side containing the narrow tube was filled with salt water. The other side was connected with the nylon tube coming from the bottom of the column, and was filled with the continuous phase liquid. A resistance wire in a U -shape was dipped in the narrow tube and its two ends were connected to a Bausch and Lomb recorder. It was expected that any change in the volume of the system, caused by the evaporation of a drop, wjould push the diaphragm and increase the salt water level in the narrow tube, thereby changing the resistance of the wire-salt water circuit . But after a few trials it was found that the resistance of the wire was increas-ing constantly. This fault was attributed to polarization on the wire. 73 Hence the salt water was replaced by mercury. But, since the perspex container was not suitable for holding mercury, a simple glass dilato-meter was used in its place. It is shown in Figure 14. The nylon tube coming from the bottom of the column was connected at C, and the continuous phase liquid fil led the narrow glass tube and a part of tube D. Mercury filled the lower portions of tubes D and E . The U shaped resistance wire was dipped in the mercury column of tube E . This device worked satisfactorily except for the deficiency that some-times even when the change in the mercury level was significant in the tube E, the response on the recorder due to the change in the resistance of the wire was not large. This was caused by poor contact between the mercury and the wire possibly due to the presence of impurities on the wire surface. Next, method (c) was tried. The same dilatometer was used in this case. A light was thrown through a slot onto tube E, and a highly sensitive photoelectric ce l l (#B 17) was placed on the other side of the tube. As the mercury level changed in the tube E, it varied the amount of light reaching the photoelectric ce l l . The two leads of the photocell were directly connected to a Bausch and Lomb recorder which recorded the change in current. This system worked very efficiently, and a good break in the expansion curve was recorded corresponding to the end of the evaporation of the drop. The event marker pen in the recorder was used to indicate the starting point for evaporation. DILATOMETER 74 S C A L E « 1/2 S I Z E D I S T I L L E D W A T E R "* M E R C U R Y s FIGURE 14 75 The time between the starting point and the break in the current curve should indicate the total.evaporation time for a drop. Since the chart speed of the recorder was known it was easy to estimate the total evaporation time. The flow diagram of this experimental setup is shown in Figure 15. B . E X P E R I M E N T A L P R O C E D U R E The entire experimental work was conducted in two phases. I. Experiments for evaluating the heat transfer data II. Experiments for evaluating the total evaporation time for an individual drop. The first phase covered the main heat transfer experiments, whereas the second phase was conducted to extend certain correlations developed during the first phase, by testing their validity over the entire evapor-ation range. I. Main experiment The experimental procedure for the first phase of the work wi l l be described in three major sections namely, run preparation, run execution, and data processing. 1. Run preparation (a) Main column The column was properly leveled so that the drop' would rise centrally in it, and then it was filled with disti l led water. The temper-ature of the continuous phase to be used for particular sets of runs was decided, and a temperature, approximately two to three degrees centi-F L O W D I A G R A M ( T O T A L EVAPORATION TIME ) LIGHT SOURCE T LIGHT S L O T RECORDER PHOTOELETRIC C E L L DILATOMETER CONSTANT T E M P . BATH SOLENOID VALVE MAIN COLUMN PRESSURE REGULATOR 4 DISPERSED ^ PHASE LIQUID CONTAINER RUBBER BULB NOZZLE * ] 4-AIR SUPPLY NEEDLE VALVE SYRINGE F I G U R E 15 77 grade higher than the desired value, was set on the regulator of the constant temperature bath for the upper portion of the column: The lower portion constant temperature bath was set at 18-20 degrees centigrade. Both constant temperature baths were then switched on. P r i o r to a set of experiments with a given dispersed phase liquid, the continuous phase was saturated with the dispersed phase by bubbling dispersed phase liquid through it. After three to four hours the continuous phase temperature was steady. The temperature, was checked and recorded throughout the column length by means of the fitted thermocouples. Atmospheric pressure was noted and the desired pressure (greater than atmospheric) was set in the column using the pressure regulating system. (b) Dispersed phase feeding system The dispersed phase liquid container (see figure 5, page 56 ) was filled with the dispersed phase liquid, and the pressure regulator in the feeding system was adjusted to a pressure higher than the pressure at the bottom of the main column. . The needle valve was now opened to allow the dispersed phase liquid to flow out of its container and f i l l the connecting line, the syringe, and the nozzle. The valve was then closed. (c) Photographic system Calibration of frame speed The frame speed of the movie camera was -calibrated using a Probostrobe. The Probostrobe was first calibrated following the manu-78 facturer's instructions closely. The desired frame speed was set on the movie camera and the camera was then loaded with a developed f i lm. The camera speed was calibrated with the developed f i lm in the camera for the following reasons; (i) The camera should not be run without f i lm at a frame speed higher than 24 frames per second. (ii) :It would provide a greater s imi lar i ty between the calibration conditions and actual working conditions. The turret was rotated to expose the shutter and the camera aperture was turned towards the neon lamp of the Probostrobe. The dial of the. Strobe was kept on the reading corresponding to the chosen frame speed. The neon lamp of the Strobe was switched on and the dial was turned in either direction until the shutter motion appeared to stop. The Probostrobe reading gave the correct frame speed of the camera. It was noticed that at higher frame speeds (32 and 64fps), the speed did not remain uniform throughout the running period of the motor, but that near the end of the run for one winding the speed decreased. Hence it was decided to rewind the motor after filming each drop. Normally one filming would use up about fifteen percent of the camera run. S ettin g the c ame r a F i r s t of a l l the camera stand was leveled with the main column, so that the motion of the camera and drop were paral lel . Now, without disturbing the frame speed setting, the exposed f i lm was removed and the camera was loaded with an unexposed f i lm. The camera was then mounted 'Page 5 - Operating instructions for Nichols Probostrobe Model E 116A. Ch. E . 2008. 79 on the stand and the lights were switched on. The light intensity, was measured with the lightmeter and proper settings were made for f-number and variable shutter position on the camera using table T i l (page 70) corresponding to the previously set frame speed. The camera was focused on the scale at the center of the column. When in focus, the camera was roughly two inches away from the front wall of the column. It may be mentioned here that a number of ini t ia l tests were carr ied out on different types of films, using various frame speeds and shutter openings. The results of these tests concluded that the most suitable conditions were: F i l m : Eastman Kodak P l u s - X ' P X N 455': This is a medium-speed, panchromatic negative f i lm well suited to general motion picture photography indoors with good lighting and outdoors under average lighting conditions. Frame speed: 64 or 32 frames per second. Shutter position: 3/4 or 1/2 closed Another f i lm from Kodak, Linagraph - Shellburst 'SG 449' (Gray base) was found to give better contrast but facilities are not available for its processing in Vancouver. 2. Run Execution After making al l the preliminary settings as described, in the previous section, a known volume of dispersed phase liquid which was saturated, with water, was forced out of the syringe. This formed a small drop on the tip of the nozzle. By squeezing the rubber bulb a tiny air bubble was pushed 80 into the drop. The air bubble rose to the top portion of the drop. After repeated practice it was possible to control the size of the air bubble and to push it quickly inside the drop, before the drop could leave the nozzle tip. As the drop left the nozzle it was photographed with the movie camera throughout its path in the column. A number of runs were filmed using different drop sizes without changing the other variables. A s imi lar procedure was repeated with various temperatures of the continuous phase liquid. The complete equipment was drained and thoroughly washed before changing over to a new system. T A B L E IV RANGE OF V A R I A B L E S C O V E R E D DURING THE E X P E R I M E N T S Variables Furan-Dist i l led Isopentane-Dis - Cyclopentane-water t i l led water Dist i l led water Drop diame-ter, cm Temperature driving force, °C Column pres-sure, mm of mercury Nusselt num-ber Modified Pec -let number 0.14 - 0. 5 1.7 - 9. 8 755 - 830 0.01 - 131 637 - 24610 0.2 - 0. 46 0.2 - 13. 7 770 - 830 0.04 - 175 3340 - 20656 0. 18 - 0. 51 4. 0 - 13. 5 770 0.04 - 50 1800 - 10728 81 Since the effect of column pressure was to change the temperature driving force only, it was decided to keep the variation in column pressure to a minimum to avoid any leaks in the various column fittings. The drop size was restricted, as mentioned in Chapter Two, due to the requirement that the initial shape of the drop be spherical and due to the size of the nozzle which could be made. The temperature driving force was limited by the short total evaporation times encountered at high temperature differences. 3. Data processing Each film was developed and left in the negative form, since this gave the sharpest picture. The film was projected onto a millimeter ruled graph paper, with a hand operated movie projector which enabled the study of individual frames. The distance between the projector and.the graph paper was adjusted to achieve roughly a twenty fold magnification. The exact magnification was noted by measuring a scale division (1/1& inch) on the column scale as it appeared on the graph paper. For each run the following observations were made on the film: ( i) Initial diameter of the drop (ii) Initial diameter of the air bubble • C i i i ) Diameter or two axes of the vapor phase in the drop, depending on whether the drop is spherical or spheroidal in shape. This observation was made only after every few frames when it was noticed that a measurable change had 82 taken place in the vapor phase volume, (iv) Scale position corresponding to every observation in ( i i i ) . The scale was fitted only in the upper portion of the column so that its zero was at the base of the heated zone. (v ) Frame number, starting the count when the drop entered the heated portion of the column. Besides getting rough size estimates from the graph paper, the exact values of the measurements (i), (ii), and (iii) were obtained by picking off the dimensions with a divider and a mil l imeter scale. The ini t ia l drop diameter measurement gave the ini t ial volume and hence the weight of the dispersed phase liquid drop; the ini t ial air bubble size gave the amount of air in the drop; from the vapor dimensions were calculated the volume of the vapor at any instance and hence the fraction or percent liquid evaporated; the scale reading provided the position of the drop in the column and hence the temperature and pressure in the drop; finally-from the count of the frame number was calculated the time from the start of heating operation. A l l the measurements with the exception of that of the vapour volume were straight forward and quite accurate, but while evaluating the vapor volume difficulties were encountered due to the change in the shape of the vapor phase from spherical through oblate spheroidal to a mushroom shaped bubble with a spherical cap. With.two dimensional photography it was possible to estimate the vapor volume only as long as the shape of the 83 bubble remained spheroidal, which was roughly up to ten percent evapor-ation (this l imi t depends on the ini t ia l drop diameter). Therefore all the measurements were terminated when the shape of the bubble changed from spheroidal to mushroom type or when the drop began to vibrate. With strip back-lighting this end point was sharply defined when-the refracted strips became distorted. A computer program was developed to convert these observations into useful results. For computer program see Appendix II. Basic steps in calculations The boiling point of the dispersed phase liquid was continuously chang-ing due to the change in hydrostatic head as the drop rose in the column. Therefore the instantaneous values of boiling point were calculated. The method used to get the boiling point was. one of t r i a l and er ror . The true boiling point was given at any instance when the sum of the vapor pressures of the dispersed and the continuous phase equaled the total pressure. A l l the physical properties for both the phases were known as a function of temperature as was explained in Chapter Three and are given in Appendix I. F r o m the vapor bubble dimensions and the ini t ia l air volume, the volume of the vapor '¥:v' was calculated and hence the mass of the vapor formed 'Mv ' was found from, Mv - Vv ^ v Taking two such consecutive measurements the amount of l iquid evaporated during the time interval was calculated. Let the amount of the vapor formed or liquid evaporatedbe'dm^ 1 grams in 'd$' sec. 84 Then, Heat transferred Q = dmv A Rate of heat transfer q = dmv A = U A ^ t In this equation the temperature driving force '^t' was known and the area 'A' was taken to be the average equivalent spherical area. Thus the overall heat transfer coefficient was obtained. The velocity of the drop or bubble was calculated using the scale readings and frame numbers. Considering two such consecutive observations let the number of frames between two observations be 'n\ then the t i m e in seconds between these two observations would be The difference between the two scale readings would give the distance travelled by the drop, say'Ax'. Then the average velocity between these two points would be, The average density of the drop, which was c o n s t i t u t e d partly of l i q u i d and partly of vapor, at any instance was evaluated in terms of the i n i t i a l d r o p diameter 'di1, and the instantaneous equivalent spherical diameter 'd !, by the expression, n/ (Frame speed in fps) = A©. v = Ax/A© cm / sec. Total initial liquid mass instantaneous volume 85 A l l other dimensionless groups were then easily calculated using these average values of U, v, P , A t , & , and the physical properties of The computer program used for the above calculations for the furan-dist i l led water system appears in Appendix II. The programs for the other two systems were s imi la r . The raw and processed data from al l the experimental runs are listed in Appendix III. II. Evaluation of total evaporation time These experiments were conducted completely independently of the experiments made during the first phase of the work. The aim during these experiments was to evaluate the total evaporation time for a drop of given size under a known temperature driving force. These values would then be compared with the values predicted from the results of the heat transfer experiments. The experimental procedure for this section w i l l again be covered under the same three headings, i . e . , run preparation, run execution, and data processing. 1., Run preparation Basical ly, the procedure for run preparation was the same as that used during the first experimental phase. The only additional setting was for the dilatometer, which was connected to the bottom of the central column. The portion of dilatometer up to the mercury level (see Figure 14 page 74), and three quarters of the glass funnel at the top of the solenoid the liquids. 86 valve were filled with distilled water. Any air bubble in the connecting nylon tube was flushed by opening the stopcock in the dilatometer. Similar steps were taken for preparing;the dispersed phase feeding;system and photographic system as in Section A. However, in the present case the frame speed calibration was not necessary since the camera was used only to record the initial drop diameter. The frame speed setting was still kept at 32 or 64 frames per second td capture a sharp picture of the drop in the lower portion of the column. 2. Run ^execution The system was completely closed to the atmosphere-except at the dilatometer, by closing the solenoid valve at the top of the column. The lights for the main column and for dilatometer were switched on, and the current recorder was started with the chart speed at its maximum (20 inches per minute). The desired volume of the dispersed phase liquid was released from the syringe. When the dispersed phase drop sat on the nozzle tip, an air bubble was introduced into it. The drop was photographed as soon as it left the nozzle, and the event marker switch was pressed when the drop entered the heated upper portion of the column. Expansion caused by the evaporation of the drop increased the level of mercury in the dilatometer, thus reducing the light on the photocell. A corresponding decrease in milliamps was shown on the recorder chart. The end of the evaporation process was marked on the recorder chart by a sharp break in the current curve. The- mercury level ^remained stationary after the evaporation, except for some small vibrations. This 87 w a s t h e e n d o f a r u n . B e f o r e s t a r t i n g a n o t h e r r u n , t h e s o l e n o i d v a l v e w a s o p e n e d a n d t h e a i r a n d v a p o r w e r e r e l e a s e d , w h i c h b r o u g h t t h e m e r c u r y l e v e l i n t h e d i l a t o m e t e r b a c k t o i t s o r i g i n a l p o s i t i o n . A n u m b e r of r u n s w e r e t a k e n f o r e a c h s y s t e m c o v e r i n g a r a n g e of d r o p s i z e s a n d o f t e m p e r a t u r e d r i v i n g f o r c e . 3. D a t a p r o c e s s i n g T h e m o v i e f i l m w a s p r o c e s s e d a n d p r o j e c t e d as i n S e c t i o n A, a n d t h e i n i t i a l d r o p d i a m e t e r w a s m e a s u r e d u s i n g a p a i r o f d i v i d e r s a n d a m i l l i -m e t e r s c a l e . On. t h e r e c o r d e r c h a r t , t h e d i s t a n c e b e t w e e n t h e m a r k m a d e b y t h e e v e n t m a r k e r p e n and. t h e p o i n t w h e r e t h e r e s p o n s e c u r v e f l a t t e n e d w a s n o t e d ( s a y , i t i s x i n c h e s ) . T h e c h a r t s p e e d o f t h e r e c o r d e r w a s k n o w n , t h u s t h e t o t a l e v a p o r a t i o n t i m e f o r a d r o p w a s e v a l u a t e d . If t h e c h a r t s p e e d i s y i n c h e s / m i n u t e , t h e n t h e t o t a l e v a p o r a t i o n t i m e = x 60 + F s e c o n d s y w h e r e , F i s t h e t i m e c o r r e c t i o n f a c t o r f o r s e c o n d o r d e r r e s p o n s e o f t h e d i l a t o m e t e r . T i m e c o r r e c t i o n f a c t o r C o n s i d e r i n g t h e s e c o n d o r d e r r e s p o n s e o f t h e d i l a t o m e t e r , w h i c h i s v e r y s i m i l a r t o t h a t f o r a m e r c u r y m a n o m e t e r , t h e b r e a k i n t h e r e s p o n s e c u r v e w o u l d be b e f o r e o r a f t e r t h e a c t u a l e n d o f t h e e v a p o r a t i o n o f t h e d r o p d e p e n d i n g u p o n w h e t h e r t h e s y s t e m i s u n d e r d a m p e d o r o v e r d a m p e d . H o w -ever,, i f t h e s y s t e m i s c r i t i c a l l y d a m p e d t h e n t h e b r e a k i n t h e r e s p o n s e 88 curve would nearly coincide with the end of the evaporation process. In such a case time correction factor ' F ' would be zero. F rom the shape of the recorder curves it is evident that the system was slightly underdamped. The response of a second order underdamped system can be sketched on a Bode type diagram (Figure 16). This diagram shows that the magnitude ratio is a function of frequency or in the present case the rate of change of the volume. Hence the value of the time correction, factor wi l l be affected more by the rate of change of volume than by the volume itself. Since it was not possible to evaluate this correction term theoreti-cally without making quite a few significant assumptions, thereby possibly giving considerable error, it was decided to estimate its value experi-mentally. To reproduce the experimental conditions closely it was necessary to introduce an air volume, exactly equal to the total vapor volume of an evaporated drop, into the column through a hypodermic syringe at roughly the same rate as the actual drop would evaporate under the given temper-ature conditions in the column. The syringe needle was pierced into the column through the lowest thermocouple hole, in which the thermocouple was replaced with a glass tube of the same outside diameter as the thermocouple tube, and fitted on one end with a serum rubber cap. The beginning and the end of the process were marked by the event marker pen on the recorder chart. A response curve for an experimental total evaporation time run for furan-distilled water system, and another for air are shown in Figure 17. 89 10 < or ui Q z o < 0*1 I FREQUENCY FIGURE 16 - Response of a second-order system A I R - 10 cc FURAN — DISTILLED WATER SYSTEM RUN NO. 17 VAPOR VOLUME- 8'36 cc FIGURE 17 - Response curve comparison 90 The total evaporation time at various evaporation levels, for the three dispersed phase liquids, was estimated from the final correlation at cor res -ponding temperature conditions as shown in Figures 18, 19, 20 and 21. F rom these plots the average rate for feeding fifteen, ten,,, seven and five cubic centimeters of air was approximated. The results from feeding these four volumes of air were used to estimate the value of the time correction factor. A graph was plotted between time correction factor and vapor volume, as shown in Figure 22, which was used for evaluating the value of ' F ' for each experimental total evaporation time run. Fortunately, the temperature conditions while evaluating the total evaporation time for the three dispersed phase liquids experimentally, were such that the rate of evaporation was not much different in the three cases. This is shown in Figures 18, 19, 20 and 21, where evaporation time is plotted against vapor volume for three dispersed phase liquids. T o if) UJ r-CP o A I* O A O A O A O A O A O A 2 2 * O FURAN A ISOPENTANE R 1 1 % CYCLOPENTANE 1 1 1 0 3 6 9 12 15 VAPOR VOLUME — F I G U R E 18 - A v e r a g e r a t e o f f e e d i n g a i r (15 c c ) C C o <p co i UJ O g A C P A A o o A A • e o A O A 2 2 8 8 G O FURAN A ISOPENTANE • CYCLOPENTANE 0 1 1 to 2 4 6 8 VAPOR VOLUME — cc F I G U R E 19 - A v e r a g e r a l e of feeding a i r (10 cc) 10 u (fi UI I -o o' -o O A O A O A 1 O A x o A O A 1 2 8 O F U R A N A I S O P E N T A N E m C Y C L O P E N T A N E F I G U R E 20 2 3 4 VAPOR VOLUME Average rate of feeding air (7 cc) — CC o O A A O A @ a o o "CP A • # W O • _0 O F U R A N 4 A I S O P E N T A N E ^ A C Y C L O P E N T A N E i 1 2 3 4 5 VAPOR VOLUME — cc F I G U R E 21 - A v e r a g e rate of feeding air (5 cc) I I 0 O'l 0*2 TIME CORRECTION FACTOR - Sec F I G U R E 22 - Dilatometer response c o r r e c t i o n curve. 96 C H A P T E R F I V E ANALYSIS OF D A T A AND RESULTS The analysis of data and the experimental results w i l l be dealt with in three main sections; qualitative analysis, reproducibility and precision of data, and quantitative analysis. A. Q U A L I T A T I V E ANALYSIS Certain important visual observations were made during the experi-ments, which wi l l be discussed briefly in this section. I. Drop release Initially when a stainless steel nozzle was used, the release of the drop from the nozzle tip was not regular. At times the drop, would sit on the nozzle tip and flatten out towards the sides of the nozzle. The reason for this behaviour could have been the preferential wetability of nozzle surface by the continuous phase liquid. In an attempt to make the nozzle tip preferably wetted by the dispersed phase rather than the continuous phase liquid, a teflon sleeve was fitted inside the nozzle hole. "With this change the dispersed phase drop was neatly released from the nozzle. II. Drop vaporization The vaporization in the drop started as soon as it entered the upper portion of the column. For the first few inches of the column height the vaporization process was slow but after that it was quite rapid. As the vaporizing drop rose up in the column, the vapor phase stayed on the top of the liquid phase and the two phases were in contact with each other throughout the process. The behaviour of the vapor phase was domin-ated by changes in shape ranging from almost spherical through oblate spheroidal to a mushroom-shaped bubble with a spherical cap. The path of the drop in the continuous phase liquid column was reasonably straight and showed only a few oscillations. As would be expected it was noticed that the temperature driving force affected the rate of vaporization. At higher values of A t ( & 15°C), the vaporization was so rapid that it appeared to be almost instantaneous. III. Experimental limitations 1. Dispersed phase liquid As noted earlier, the choice of the dispersed phase liquid was restr ted due to the conditions la id on its selection, v iz : (a) it should be lighter than water (b) it should boil at a reasonable temperature (c) it should be insoluble and nonreactive with the continuous phase. Within these limitations it was impossible to select liquids having a good range in their Prandtl numbers, which was a desirable condition to obtain a general correlation for a heat transfer process. However, in selecting the dispersed phase organic liquids care was taken that they should be of different chain structures to provide a good diversity in types of compounds. Prandtl numbers of the selected liquids at their 98 r e s p e c t i v e b o i l i n g p o i n t s at t h e n o r m a l p r e s s u r e a r e l i s t e d i n T a b l e II, p a g e 45. 2. D r o p s i z e A l a r g e r a n g e o f d r o p s i z e w a s d e s i r e d t o p r e d i c t t h e e f f e c t o f d r o p d i a m e t e r o n t h e h e a t t r a n s f e r m e c h a n i s m . B u t , due t o t h e l i m i t a t i o n s p o s e d b y t h e d i f f e r e n c e i n d e n s i t y b e t w e e n t h e c o n t i n u o u s a n d d i s p e r s e d p h a s e l i q u i d s , t h e i r i n t e r f a c i a l t e n s i o n , a n d t h e n o z z l e s i z e , t h e d r o p d i a m e t e r s t u d i e d d u r i n g t h e p r e s e n t w o r k h a d a r a n g e b e t w e e n o n l y 0- 14 a n d 0- 51 c e n t i m e t e r s . I t w a s a l s o n o t i c e d t h a t as t h e d r o p d i a m e t e r r e a c h e d r o u g h l y 0* 6 c e n t i m e t e r , t h e d r o p w a s no l o n g e r s p h e r i c a l i n s h a p e . 3. T e m p e r a t u r e d r i v i n g f o r c e W i t h a s i m i l a r r e a s o n i n g as p r e s e n t e d f o r t h e d r o p d i a m e t e r , a l a r g e r a n g e o f t e m p e r a t u r e d r i v i n g f o r c e w a s f a v o u r e d . B u t t h e a c t u a l o p e r a t i n g r a n g e f o r t e m p e r a t u r e d r i v i n g f o r c e w a s s e t b y t h e s p e e d o f r e s p o n s e o f t h e c a m e r a a n d o p e r a t o r , a n d t h e f r a m e s p e e d a v a i l a b l e f o r t h i s s t u d y ( f a s t e s t s p e e d a v a i l a b l e b e i n g 64 f r a m e s p e r s e c o n d ) . T h e r a n g e c o v e r e d f o r t h e v a l u e o f t e m p e r a t u r e d r i v i n g f o r c e d u r i n g t h i s e x p e r i m e n t a l w o r k w a s f r o m 0'2 t o 13-7 c e n t i g r a d e ; d e g r e e s . B. R E P R O D U C I B I L I T Y A N D P R E C I S I O N O F D A T A B e f o r e d r a w i n g a n y q u a n t i t a t i v e c o n c l u s i o n s f r o m t h e e x p e r i m e n t a l r e s u l t s , i t w a s t h o u g h t p r o p e r t o e v a l u a t e t h e d a t a p r e c i s i o n a n d t h e a c c u r a c y o f t h e e x p e r i m e n t a l w o r k . 99 I. Reproducibility 1. Drop diameter In spite of trying various techniques no method was found for controlling the drop size exactly, hence the drop diameter was not exactly reproducible. However, it was easy to get a drop in a parti -cular size range such as 0- 15 to 0- 25 centimeter, 0- 25 to 0- 35 centi-meter, and 0- 35 centimeter and bigger in diameter. 2. Temperature driving force Temperature driving force was the difference between the contin-uous phase bulk temperature and the boiling point of the dispersed phase liquid at any point in the column. By using the temptrol constant temperature bath the continuous phase bulk temperature was controlled within one fifth;, of a degree centigrade. The boiling point of the dispersed phase liquid at any point in the column was a function of the pressure at that point. The pressure regulating system controlled the column pressure to plus or minus one millimeter of mercury, hence the corresponding change in the boiling point of the dispersed phase liquid was negligible. Thus it was possible to reproduce the values of the temperature driving force to one fifth of a degree centigrade. II Precision and accuracy 1. Measurements on the film As discussed earlier a low speed, fine grain film was used for the photography. The drop's film image was approximately 3/16 of its 100 actual size. A magnification of slightly more than one hundred was achieved by projecting the film, thereby producing an overall twenty fold magnification of the drop as it appeared on the screen. Thus the smallest drop 0" 15 centimeter in diameter) would appear roughly three centi-meters in diameter on the screen. The maximum error in measure-ment on the screen was plus or minus one mil l imeter , hence the measurements on the f i lm were accurate to within three percent. As the drop grew in size, the shape of the vapor phase changed from spherical to spheroidal and then to a mushroom shaped bubble with a spherical cap. Hence the measurements of the vapor phase for evalu-ating its volume were only reliable up to about ten percent evaporation. When the bubble no longer had a regular spheroidal shape two dimen-sional photography as used in the experiments, was not able to predict the exact shape of the drop. Thus all the measurements were terminated at the point when the vapor phase in the drop deviated from the spheroi-dal shape, or when the drop started vibrating. Three dimensional photography was considered (using moving mirrors) but the added equipment complications plus the problems of shape at higher drop sizes, of vibrations, and of velocity all l imited the usefulness of the results with the shutter speeds available. There-fore it was decided to use two dimensional photography as far as it was applicable. 2. Surface area It was most difficult to assess the correct value of the heat transfer 101 a r e a i n a d r o p . T h e h e a t c o u l d be t r a n s f e r r e d f r o m t h e c o n t i n u o u s p h a s e l i q u i d t o t h e d i s p e r s e d p h a s e l i q u i d as w e l l as t o t h e d i s p e r s e d p h a s e v a p o r i n t h e d r o p . B u t i i s e e m e d m o r e l o g i c a l t o b e l i e v e t h a t m o s t of t h e h e a t w a s t r a n s f e r r e d t h r o u g h t h e l i q u i d p h a s e . E v e n i f t h e r e w a s s o m e t r a n s f e r t h r o u g h the v a p o r p h a s e , i n s p i t e of t h e h i g h h e a t t r a n s f e r r e s i s t a n c e i n t h e v a p o r , i t w o u l d be n e g l i g i b l e i n c o m p a r i s o n to i t s c o u n t e r p a r t i n t h e l i q u i d p h a s e ( 1 , 5). T h u s t h e m o s t a p p r o p r i a t e v a l u e f o r s u r f a c e a r e a w a s t h e a r e a o f t h e l i q u i d s u r f a c e i n t h e d r o p . B u t due t o l i q u i d s p r e a d i n g t e n d e n c i e s , s p l a s h i n g o f l i q u i d , a n d u n r e l i a b i l i t y o f t w o d i m e n s i o n a l p h o t o g r a p h s i n p r e d i c t i n g s u c h o d d s h a p e s i t w a s i m p o s s i b l e t o d e t e r m i n e a t r u e v a l u e f o r t h e l i q u i d s u r f a c e a r e a . T h e p o s s i b i l i t y o f a t h i n l i q u i d f i l m b e i n g p r e s e n t a l l a r o u n d t h e v a p o r p h a s e w a s a l s o c o n s i d e r e d , b u t a f t e r w r i t i n g a s u r f a c e f o r c e b a l a n c e a r o u n d t h e d r o p i t w a s d i s p r o v e n . I n t h e a b s e n c e o f a t r u e v a l u e f o r t h e s u r f a c e a r e a t h e o n l y a l t e r n -a t i v e s l e f t w e r e ; (a) T o e x p r e s s t h e p r o d u c t o f o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t a n d a r e a as s u c h i n t h e r e s u l t s (b) T o e x p r e s s t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t , b a s e d o n s o m e h y p o t h e t i c a l a r e a . T h e h y p o t h e t i c a l v a l u e s f o r a r e a w o u l d b e t h e i n i t i a l d r o p a r e a , o r an i n s t a n t a n e o u s a r e a c a l c u l a t e d as e q u i v a l e n t s p h e r i c a l s u r f a c e a r e a f o r t h e t o t a l v o l u m e of t h e d i s p e r s e d p h a s e l i q u i d a n d v a p o r i n t h e d r o p . 102 C o r r e l a t i o n s i n t h e l i t e r a t u r e (2, 4) h a d u s e d an e q u i v a l e n t s p h e r i c a l a r e a , s o f o r t h e s a k e o f c o m p a r i s o n i t w a s d e c i d e d t o u s e t h e v a l u e o f o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t - b a s e d o n t o t a l e q u i v a l e n t s p h e r i c a l a r e a f o r a l l t h e c o r r e l a t i o n s i n t h e p r e s e n t w o r k . H o w e v e r , t h e n u m e r i c a l v a l u e of o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t e v a l u a t e d o n t h i s b a s i s w i l l b e m u c h l e s s t h a n i t s a c t u a l v a l u e b a s e d o n t h e l i q u i d s u r f a c e a l o n e . 3. E f f e c t o f n u c l e a t i o n - a i r T o c h e c k t h e e f f e c t o f n u c l e a t i o n - a i r , i f any, on h e a t t r a n s f e r , a f e w r u n s w e r e m a d e w i t h o u t u s i n g a n a i r b u b b l e f o r n u c l e a t i o n . I n s u c h c a s e s n u c l e a t i o n w a s a c h i e v e d b y p l a c i n g n e a r t h e d o u g h n u t t y p e b a f f l e a r o u g h e d g e d s u r f a c e , w h i c h w h e n t o u c h e d b y t h e d r o p n u c l e a t e d t h e v a p o r i z a t i o n . T h e h a p h a z a r d n a t u r e of t h i s n u c l e a t i o n t e c h n i q u e r u l e d o u t i t s g e n e r a l u s e i n t h i s s t u d y . T h e r e s u l t s a r e g i v e n i n t h e f o r m of a p l o t ( F i g u r e 2 3) b e t w e e n t h e r a t e o f h e a t t r a n s f e r p e r u n i t a r e a a n d c o l u m n h e i g h t f o r d r o p s o f t h e s a m e s i z e v a p o r i z i n g u n d e r e x a c t l y s i m i l a r l y c o n d i t i o n s w i t h a n d w i t h o u t a i r . T w o r u n s w i t h a i r a r e c o n s i d e r e d , e a c h u s i n g a d i f f e r e n t a m o u n t o f n u c l e a t i o n - a i r w i t h t h e s a m e s i z e d d r o p . T h e a b o v e m e n t i o n e d d i a g r a m i n d i c a t e s no e f f e c t o n h e a t t r a n s f e r p h e n o m e n o n due t o t h e p r e s e n c e of a i r as n u c l e a n t . C. Q U A N T I T A T I V E A N A L Y S I S T h e i n i t i a l d a t a a n d t h e v a r i o u s o b s e r v a t i o n s f r o m t h e f i l m w e r e f e d t o t h e c o m p u t e r , w h i c h p r o v i d e d a l l t h e c a l c u l a t e d v a l u e s s u c h a s ; i n s t a n t a n e o u s h e a t t r a n s f e r c o e f f i c i e n t b a s e d o n e q u i v a l e n t t o t a l s p h e r i -SYSTEM Furan - Distilled Water Drop Diameter = 0-3175 cm • Without Air o With Air, Dair= 0-0381 cm A With Air , Dair = 0-0571 cm 10 20 30 Column Height — Cm F I G U R E 23 - E f f e c t of n u c l e a t i o n - a i r 104 leal area, percent evaporation, density ratio, and various other dieoen-sionless groups. A l l the data, are listed in Appendix III under the headings of raw data and processed data. The computer program used for the calculations is given in Appendix II. While developing the correlations based upon the experimental results, the few ini t ial observations in which the Nusselt number was less than 0- 5 were omitted. F r o m Tables A X , AXI , and AXII in Appendix III, it is evident that the values of Nusselt number less than 0- 5 \ ; corresponded to very low percent evaporations, where the measurements were less accurate. In certain runs the first observation of drop velocity was also wrong. This happened when the drop entered the heated zone without being recorded on the f i lm. Such observations were automatically rejected under the criterion of the Nusselt number less than 0' 5. Due to the large number of variables encountered in the present problem, it was init ial ly decided to make use of dimensional analysis. But considering al l possible variables, the dimensional analysis tech-nique resulted in too large a number of dimensionless groups. Hence it was felt that the choice of the terms for the correlation could best be made by logically altering the correlations of the previous workers. Two well known models were available from direct contact l iquid-liquid heat transfer studies without change of phase as presented by Handlos and Baron (60). 105 For the external f i lm coefficient Nu = 1-13 (Pe) 0- 5 (1 - 5) For the internal f i lm coefficient, Nu = 0- 00375 (Pe ) (2 - 5 ) These-e^u^li^ns^^Wdi'ct'that the Peclet number or the modified Peclet number is an important variable in heat transfer. The importance of Peclet number was also substantiated by the experimental work of Side-man (2) and Klipstein (1) for l iquid-l iquid heat transfer with change of phase. Sideman et. al . (4) suggested that surface tension or interfacial tension could be an important variable in the correlation of the heat trans-fer coefficient. Therefore, a dimensionless group the 'Weber number' which contains a surface or interfacial tension term was also considered. As most of the heat transfer was going to take place between the two liquids rather than between a liquid and a vapor, it was more logical to use interfacial tension between the two liquids in the Weber group. Since change of phase was involved during the present heat transfer studies, a group which signifies the change of phase and also accounts for the buoyancy and acceleration effects, such as a density group in some form was thought to be of importance. The first density group tried was ffc Thus in general we may write that Nu = f (Pe, We ?c_ ) e ( 3 - 5 ) 106 Using the multiple regression technique the significance of each term on the right hand side of equation (3-5) on the value of Nusselt number was tested. This was done separately using the continuous phase as well as dispersed phase properties. In both cases the Weber group was found not to be significant, whereas the Peclet number and the density group were highly significant. At this stage the Weber number was discarded and multiple regression was again used to evaluate the exponents on the other two groups, and the coefficient. The best fit relating the Nusselt number with the Peclet number and the density group was obtained separately for the three systems. In these three best fit equations the exponents on the-Peclet number and the density group, as well as the coefficients were a l l different from each other. To evaluate the present experimental results in terms of the well known models of internal or external controlling films, the exponent on the Peclet number in the equations of best fit for the three systems was forced to 0. 5 and 1. 0. A l l these equations are listed in Table V. A l l the data for the three systems were next combined and the equa tion of best fit was obtained When the exponent on the modified Peclet number in equation (4-5) was forced to 0. 5 and 1. 0, the equation changed into the following forms Nu = 0. 0505 (Pe 1) .417 (4 - 5) £ - 0.086469 T A B L E V CORRELATIONS FOR D I F F E R E N T SYSTEMS USING DISPERSED PHASE"'PROPERTIES System Best fit : Peclet number exponent forced to 0. 5 Peclet number exponent forced to 1. 0 Furan-dis t i l led Nu=0. 0053 (Pe)°* 1 5 Nu=0. 0401 (Pe')0' 5f?<1,24 water Isopentane-distilled '=0.058577 0 -=O. 065371 water Nu=0. 000OOI ( P e J * 5 ^ & J ' 5 3 Nu=0.0 2,(Pe 1. 28 '=0. 112956 Cyclopentane •» -Distilled water Nu=0.000057(Pe f =0. 121681 Nu=0.00 5 ( P e / 0 ' 5 ^ ' 3 8 Nu=0. 000.58(pe'/* ° ( f c ^ ' 0 5 0- 2=O. 064378 Nu-0. 000?6(p e ') 1 ' °$c?' ^ 2 W ff =0. 115444 Nu=0. 000 32(Pe') ' ^" •=0. 081086 0 - =0.083476 =0.081716 108 Nu= 0.0257 ( P e ' ) 0 , 5 1 , 2 1 5 (p-= 0. 086727 (5 - 5) Nu = 0. 00045 (Pe') ,i^?ey 9 9 7 ^ ^ (T = 0. 102897 Another possible density group ? c - , seemed to be more logical since its numerator is directly proportional to the buoyant force. Also the numerical value of this second density group became the same for the three l iquid systems used in these experiments beyond five per-cent evaporation and its value asymptotically approached unity as the percent evaporation reached its final value, (see Figure 25, page 114). Using c^ - ? in place of Pc as a density group, a s imi lar Pc ~T~ group of equations as are l isted in Table V were fitted. The se equations are shown in Table VI. The values of variance for the equations using Pc - ? as density group were in most cases smaller than for those using c , but the exponent on the new density group was always very much e different for furan - distil led water system than for the other two systems. However, due to the low numerical values of the group ^c - ? , which were always close to unity, the effect of the value of the exponent was not very pronounced. When al l the data for the three systems were combined the equation of best fit was Nu = 0. 5 (Pe 1 ) ' / ? c ^ f-c 445 / n o i l . 81 (7. - 5) ff-2 = 0. 103298 109 Nu = 0.304 ( P e ' ) ° ' 5 / ?c - ? U ' 7 8 2 Forcing the exponent on the modified Peclet number to 0. 5 and 1. 0 in equation (7 - 5 ) , the following equations were obtained. ^ = 0.103263 Nu = 0.0033 (Pe') (Zc - f j ' 4 3 _ ( 9 _ 5 ) ^c ^ = 0. 117717 For the combined data of al l the systems, using the continuous phase properties, the equation of hest fit was N u c = 0.62 ( P e T " 5 (l^.-9 , 1 0 - 5 , and - 0. 115688 Considering a l l these equations, the combined data of the three systems are best represented by equation (4-5), which has the smallest variance from the actual data. Equation (5-5), in which the exponent on the modified Peclet number is forced to 0. 5, is nearly as good as equation (4-5). The reason for a very small change in the variance caused by the change in the exponent on the modified Peclet number is the scatter in the data. This amount of scatter was to be expected i n a technique which is based on stepwise calculations from photographic data on a moving eva-porating drop. Equation (5-5) is s imi lar in form to equation (1 ??5) suggested by Handlos and Baron, except for the additional density ratio group in equation (5-5) which is effectively a measure of the (degree of evaporation. The 95 percent confidence interval for the average value of the Nusselt number for given values of the modified Peclet number and density ratio, T A B L E VI CORRELATIONS FOR D I F F E R E N T SYSTEMS USING DISPERSED PHASE PROPERTIES AND — AS A DENSITY GROUP Pc -_ „ ^ Peclet number exponent Peclet number exponent System Best fit n ^ , ~ forced to 0. 5 forced to 1.0 Furan-Dis t i l led Nu=0. 28(Pe P ' 54/?c-?\ l163 Nu=0. 395(Pe) 0 , 5/Pc-? V ' 6 5 Nu=0. 005(Pe) /feTp\*' 4 2 water CIT/ \Jcl <j-2=0.033479 o~2 = 0-033487 <j-2=0.043578 Isopentane-Dist- Nu=: OOOgfPe)1' 1 7 6 / ^ _ - ^ \ 3 ' 1 Nu=. 58(Pe') 0 , 5 /^-P\ 3' 6 8 Ntg=0,0Qg(Pe) /Pc-pf'25 water > c J \ fc / \ fC / ^=0.086334 ^=089627 $-2=0. 086355 Cyclopentane - N u = Q > 0 2 7 ( P ( / ) 0 . 8 5 / g , 3 ^ , 0 . 5 f . 3 . 54 Q p < , ^ f 3.25 Dxstxlled water ^ _ _ J \ ^ c / (j-2=0.025342 o- 2=0.027163 0^=0.025574 111 within the experimental range, was evaluated (92). The result is expressed in terms of percentage variation of equation (4-5) to give Nu= .0505 ( P e 1 ) * 4 1 7 / ?c \ 1 , 2 5 + 20% ' [—p—J - (4a . 5) Since the measurements of the vapor volume were possible, at the most, up to ten percent evaporation, a l l the correlations discussed so far are valid only for this range. In order to calculate the theoretical total evaporation time from these equations it was necessary to express al l the variables as a function of the instantaneous drop diameter. The values of the drop diameter corresponding to the beginning and the end of the evaporation process (d, and d ) were known. The in i t ia l drop diameter 'd . 1 was measured x max l from the f i lm and the maximum diameter 1 d ' was evaluated from the max vapor volume of a fully vaporized drop. The velocity at any instant can be estimated very closely from the terminal velocity conditions. This fact is shown in Figure 24 where measured drop velocities at various times after the initiation of evapor-ation are compared with the terminal velocity curve. The values of drag coefficients used in the calculation of terminal velocities were taken from the data of Garner and Hammerton (13) for the vapor bubbles. Mathemati-cally the terminal velocity can be expressed as v = >, „ , , ( 1 1 - 5 ) 112 The two density groups can be expressed in terms of the drop diameters and the known densities. (12 - 5) f c f c -(13 - 5 ) Since the variables such as velocity and the density groups can be expressed in terms of the drop diameter, it is possible to use the various correlations predicting the heat transfer coefficient, in the heat balance equation, to estimate the total evaporation time of a drop theoretically. If the theoretical total evaporation time calculated by any of these equations agrees with the experimental value, then that particular correlation can be said to hold for the complete evaporation range. F I G U R E 2 4 - C o m p a r i s o n of a c t u a l and t e r m i n a l v e l o c i t i e s FURAN ISO P E N T A N E A CYCLO P E N T A N E X -L _L 0 10 20 70 30 40 50 60 PERCENT EVAPORATION FIGURE 25 - Density ratio versus percent evaporation 80 90 100 115 Theoretical total evaporation time The expression for theoretical total evaporation time was developed by writing all the variables in the heat balance equation in terms of drop diameter. The rate of heat transfer is.cdefined as q = dQ dO A jd<9 = JjL 3 Q - - (14 .5 ) q Now Q = mX = fyvj X jr :^ v Vv A which gives Va = Vv The volume of the liquid unevaporated in a drop at any instance va = Vi - Vf} a Vi - ?v Vv Hence, the total volume V T = Vi* + Vv % j_ d 6 where 'd' is the instantaneous equivalent spherical drop diameter. Substituting for the value of V^ , Vi - fy. Vv + Vv = 1 ^ d 3 hence, Vv = ^ j . fl- d 3 - V i ^ ^/ (l - JV_j _ 1 _> ,3 ^Pt _ 3 - -7 rt di - x(U~ 6 T d ; - i A ?y ? t 2L (a 3 - di 3 ) 116 Therefore, dQ = A ? y fy. TT d 2 d (d) The rate of heat transfer 'q ' is given by q =U A A t = U 7 T d 2 A t -(15 - 5) (16 - 5) Using any of the correlations relating the Nusselt number to the modified Peclet number and the density group, the overall heat transfer coefficient ' U ' can be expressed in terms of the drop diameter and the phy-sical properties of the system. Hence substituting for 'dQ' and 'q ' in equation (14 - 5) one gets friax .... ; <t>Q - = \ * — — ( I T . . 5 ) U * TJLz At The integral on the right hand side of equation (17 - 5) was evaluated by Simpson's rule on an I B M 7040 digital computer. A special program for Simpson's rule was written in which the interval between 'd max' and 'd i ' was divided into 50 intervals, and the last interval (ca l -culating from d max to di) was again subdivided into 50 more intervals. By this technique the value of the drop diameter close to ini t ia l drop diameter, where the rate of evaporation was very slow, changed in very small increments giving a more accurate value of the integral. The computer program used for this purpose is given in Appendix II. — Note that ' U ' is a function of 'd' 117 The actual evaporation time was estimated experimentally by using a dilatometric method. A number of correlations, based on the combined data of the three systems or on the individual systems, were used to evaluate the theoretical total evaporation time. The best values of the theoretical total evaporation time for the furan-distilled water system were given by the individual equation for this system with an exponent of unity on the modified Peclet number. N „ = 0.005 (Pe.> ( I g . 5 ) The best values of the theoretical total evaporation time for the isopentane-distilled water system were given by equation (8-5), whereas, for the cyclopentane-distilled water system the best values were given by equation (6-5). These values are compared with the experimental values of the total evaporation time in Figures 26, 27 and 28. Total evaporation times were also calculated using the values of the overall heat transfer co-efficients calculated from equation (5-5) and are compared with the experi -mental values on the same graphs. The numerical values corresponding to the above mentioned plots are listed in Tables VII, VIII and IX. When equation (5-5), which represents the combined data of a l l three systems reasonably well within the measurable experimental range, was used to evaluate the theoretical total evaporation time, it predicted smaller values than the actual experimental total evaporation time for al l three systems. The reason for this difference could be the higher 118 numerical values of the density group ?c in the later stages of the e evaporation process as compared to the values in the measured range. The equation which gave the best agreement between the theoretical and experimental total evaporation times was different for each system. Equation (18 - 5) which gives the best estimate of total evaporation time for the furan-distilled water system also predicted the ini t ial experimen-tal data within plus or minus ten percent. This equation, therefore, may be used over the entire evaporation range. For the isopentane-distilled water system the best equation for estimating the total evaporation time was (8- - 5), which was based on the combined data. The corresponding equation based on the data for only the isopentane-distilled water system gave smaller values of total evaporation time. The reason for this could be the higher coefficient of this latter equation. This causes the prediction of higher values of the overall heat transfer coefficient and hence reduces the time for total evaporation. Equation (6 - 5) was the best equation for estimating the total evaporation time for the cyclopentane-distilled water system. The cor res -ponding equation based on the data for only this system gave higher values of total evaporation time. The reason for this was possibly the larger incorrected value of the sensible heat for this system (b.p. - in i t ia l temperature = 28 °C),. The sensible heat transfer effectively reduced the evaporative heat transfer coefficient in the ini t ial range of evaporation. T A B L E VII COMPARISON OF T O T A L EVAPORATION T I M E " - F U R A N Initial Temperature run Vapor Time Experimental Corrected Theoretical Theoretical driving force number diameter Volume Correction time Expe r i - , Time , Time . , .. 'sec using 'sec using mental time / 1 0 ' f \ /c- c\ eq (18^5) eq (5-5) 2 -0.3256 5.3 0.025 2.7181 2.7431 2.8997 2. 0339 6 0,4400 13.13 0.25 3.75 4.00 3.6700 3. 1630 5.3 7 0.4224 11.63 0.22 3.0939 3. 3139 3. 5537 2.9810 9 0. 3872 8.95 0. 155 2.9061 3.0611 3; 3188 2. 6244 10 0.2640 .2.83 0 2. 5312 2. 5312 2.47.67 1.4963 14 0.2552 2. 56 0 2.625 2. 625 2.-5090 1, 4796 15 0.4048 10.21 0.19 3.375 3. 565 3.5729 2. 9168 16 0.2284 1.82 0 2. 16 2. 16 2.3102 1, 2583 5.1 177 0.3784 8.36 0.135 3.00 3.135 3.3851 2. 6359 19 0. 3168 4. 89 0 2.906 2.906 2.9508 2. 0305 20 0.4136 10.89 0.215 3.375 3. 590 3.6321 3.0039 T A B L E VIH COMPARISON O F T O T A L EVAPORATION TIME ^ I S O P E N T A N E run _, , Initial Temperature , . f . number dr( driving force , „ , ,o , diameter Volume •op Vapor Time Experimental Corrected Theoretical Theoretical Correction time Exper i - Time Time 1 sec' using eq (5-5) mental time 'sec' using •sec' eq(8-5) 9. 15 9. 85 4 5 6 8 11 13 14: 155 0.3960 0. 3784 0.4136 0.3784 0. 3344 0.4048 0.3080 0.3344 6.61 5. 77 7. 52 0. 08 0. 035 0. 12 3. 0937 3. 00 3.1875 3. 1737 3. 0350 3. 3075 2. 7801 2.6160 2.9440 5. 77 3.99 06 3. 11 3.99 0.035 0 0.095 0 0 2.8125 2.4375 3.00 2.3437 2.4375 2.8475 2.4375 3.0950 2.3437 2.4375 2. 4323 2. 0602 2.6610 1. 8432 2. 0602 •0. 9598 0.8976 1/0221 -0. 8345 0.6948 •0.9214 0.6145 0. 6948 T A B L E I X I COMPARISON OF T O T A L EVAPORATION TIME - C Y C L O P E N T A N E Temperature driving force run number I n i t i a l drop Vapor Time Experimental Corrected Theoretical Theoretical diameter Volume Correction time Exper i - Time Time ' cm ' 'cc ' 'sec' 'sec' mental 'sec' using 'sec' using time 'sec' eq(6-5) eq(5-5) 5. 3 6. 58 1 5 7 10 0.2728 2. 36 12 13 16 17 20 0. 3960 7.23 0.3872 6. 76 0.3080 0.3344 0. 3960 0.3168 0.4136 0. 3344 3. 40 0. 105 0:10 0 3.00 3.9375 3.75 3. 1875 3.00 4.0425 3. 85 3. 1875 2.7369 3. 8473 3,7722 3, 0655 4. 35 7.23 3.71 8.25 4. 35 0. 105 0. 135 2.8125 3.1875 2.8125 3. 3750 2.9062 2.8125 3. 2925 2.8125 3. 51 2.9062 2.6705 3. 0989 2.5369 3. 2159 2.-6705 1.7962 3,0865 2.9901 2,1458 1,9511 2. 4861 1,8015 2. 6464 1. 9511 FIGURE 26 - Comparison of experimental and theoretical total evaporation time,' furan - distilled water system T H E O R E T I C A L T I M E - S e c FIGURE 27 - C o m p a r i s o n o f e x p e r i m e n t a l and t h e o r e t i c a l t o t a l e v a p o r a t i o n t i m e , i s o p e n t a n e - d i s t i l l e d w a t e r s y s t e m T H E O R E T I C A L TIME - S e c F I G U R E 28 - C o m p a r i s o n of e x p e r i m e n t a l and t h e o r e t i c a l t o t a l e v a p o r a t i o n t i m e , c y c l o p e n t a n e - d i s t i l l e d wa te r s y s t e m 125 T A B L E X COMPARISON OF IMPORTANT P H Y S I C A L PROPERTIES FOR CONTINUOUS AND DISPERSED PHASE LIQUIDS Property Continuous phase Dispersed phase Furan Isopentane Cyclopentane Prandtl number 3. 945 4. 189 6. 102 3. 333 Viscosi ty 1 Centipoise 1 •0. 5988 0. 34 0. 273 0. 322 Thermal Conduc-tivity ' k c a l / (h r ) ( .mM°C) 0.5461 0.1125 0.0916 0.1084 A l l thelproperties for continuous phase are at its average temperature corresponding to a l l the three systems (approx. 45 C). 126 Based on theoretical considerations it is very difficult to draw definite conclusions about the controlling.resistance for this type of heat transfer process. The dispersed phase resistance is governed by the physical properties and presence or absence of circulation in the drop. The continuous phase resistance depends on the physical properties and the drop motion. Let us consider the physical properties of the continuous phase and the three dispersed phase liquids (Table X) . The Prandtl numbers for the continuous and the dispersed phase liquids are quite close to each other; the continuous phase is slightly more viscous than the dispersed phases, but the thermal conductivity of the continuous phase is roughly five times more than that of the dispersed phases. According to McDowell and Myers (67), the major heat transfer resistance for such systems would lie in the dispersed phase even when circulation within the drop is well developed. It would be rather premature to predict anything about the circulation dn the dispersed phase liquid, since it could be arrested by the presence of the slightest amount of impurities (26) in the dispersed phase. The presence of circulation however, would decrease the resistance in the dispersed phase. The Reynolds number values covered in this work (450 - 65, 000) suggest that most of the vaporization process would be in the forced convection region. Garner (12) states that free convection is significant over a range 1 Re<1000 and forced convection entirely predominates above this range. At high Reynolds numbers most of the heat transfer to the liquid drop takes place through the turbulent wake region according to 127 Terjesen (23). This hypothesis is quite logical in view of the fact that the bulk of the transfer apparently takes place into the dispersed phase liquid which is at the rear of the drop. An attempt has been made to compare the equations of Klipstein and Sideman with those developed for the present experimental work. Although it is not completely justified to compare the equations which were developed for different systems, under slightly different experimental conditions, these equations were employed to calculate the theoretical total evaporation time. As shown in Figures 29, 30, and 31, theoretical evaporation times predicted by Klipstein's model are always much less than, the experimentally d etermined values. Besides the fact that Klipstein's model was based on a different system, the deviation could be explained by the fact that in the present experiments the dispersed phase l iquid drop entered the bulk of the continuous phase at a temperature less than its boiling point. Therefore it was not possible to separate the sensible and latent heat transfer effects. Although quantitatively the sensible heat was small in comparison to the latent heat, it may, due to ini t ia l low rates of heat transfer, contribute a certain fraction of the total evaporation time. Similar ly , Klipstein formed his droplets in the heated liquid zone and may have experienced appreciable evaporation bn^he nozzle. Sideman, Hirsch and Gat's (4) equation was available for the isopen-tane-distilled water system. From!. 'Figure 30 it can be seen that the total evaporation times predicted by their model lie between those of Klipstein's and the present work. In his work (2, 3) Sideman has neglected FIGURE 29 - Comparison with Klipstein's model, furan - distilled water system FIGURE 30 - Comparison with Klipstein's andSideman's models, isopentane -distilled water system FIGURE 31 - Comparison with Klipstein's model, cyclopentane - distilled water system 131 the ini t ia l portion of heat transfer, usually up to three percent vaporization. This would definitely make a significant change in the total evaporation time, since this would exclude the period of very low ini t ia l heat transfer rates, and thus make the values of total evaporation time less than the actual experimental total evaporation time. drop, it is possible to calculate the average rate of heat transfer for the overall process. The average heat transfer rate was found to be related to the ini t ia l drop diameter and the temperature driving force as 2 was suggested by Klipstein who found q = 2. 84 di A t, for the system ethyl chloride-water. The equations obtained for the three systems studied during the present work are given below F r o m the experimental value of the total evaporation time for a Furan -Disti l led water 1.41 di 2. 24 A t .94 (19 - 5) Isopentane -Disti l led water = 0. 5 di 1.93 At -, -93 (20 - 5) c. Cyclopentane -Disti l led water = 1. 02 di 2. 19 At .94 (21 - 5) Equations (19 - 5), (20 - 5) and (21 - 5) have different coefficients whereas the exponehteon the ini t ia l drop diameter and the temperature driving force are nearly the same for a l l the three cases. The variation 132 in the coefficients may be due to the difference in some physical properties of the three systems not accounted for in these equations, and due to the experimental e r ror . 133 C H A P T E R SIX CONCLUSIONS AND RECOMMENDATIONS A. CONCLUSIONS I. A single drop study using motion picture photography was found to be adequate to provide significant information regarding direct contact heat transfer between two immiscible liquids. II. During the vaporization process the shape of the vaporizing drop (partly vapor and partly liquid) changed from spherical through spheroidal to mushroom shaped bubble with a spherical cap as was reported previous-ly for vapor bubbles alone. (27). III. The velocity of r ise for the vaporizing drop was nearly equal to the corresponding terminal velocity. IV. The best equation which predicted the overal l heat transfer co-efficient for a l l the three systems within the experimental range was, Nu = .0505 ( P e ' ) ° * 4 ^ / Pc \ ^ ' ^ j where the Nusselt number and the modified Peclet number were based on the dispersed phase liquid proper-^ ties. This equation predicted the values of the overall heat transfer coefficients within plus or minus twenty percent, for a l l there systems. V. It is possible to predict the results for each system within the experimental range with greater accuracy by separate equations (Tables V and VI) than is possible by the general correlation. VI. The total evaporation time for each system was given by a different correlation. It is recommended that a number of different systems be 134 studied to determine the effect of the physical properties on the heat transfer rate. With more data it should be possible to predict the total evaporation time for a l l the systems by a single equation. VII. The average rate of heat transfer was found to be a function of ini t ia l drop diameter and the temperature driving force. The corre-2. D . lations obtained are of the form q = C di A t , where C is a constant which is different for each system. VIII. The dilatometric method was quite accurate for predicting the total evaporation time of a drop. IX. The actual total evaporation time of a drop obtained by the dilato-metric method was always greater than that predicted by Klipstein's or Sideman's model. Thus the present investigation gives a more conservative correlation for a large scale utilization of this phenomenon. 135 B. RECOMMENDATIONS FOR F U R T H E R WORK I. The effect of sensible heat was not accounted for during the present investigation. In view of the low ini t ial heat transfer rates it would be worth while to study this aspect in any future work of this type. II. The experimental data were l imited to ten percent of the vaporization due to the inability to estimate the correct vapor volume using two dimensional photography. If the amount of vaporization could be known more accurately during the whole process, abetter correlation could be found. Therefore in any further work a dilatometric or any other suitable method should be tr ied for estimating vapor volume. 'III. The area of the liquid surface which is the true heat transfer area could not be evaluated from the two dimensional photography. Hence a l l the results were based on the total equivalent spherical area. A method which could provide the correct liquid area should be tr ied to improve the correlation. IV. Disti l led water was used as the only continuous phase liquid with al l the three dispersed phase liquids in the present study. It would be interesting to see the effect on the present correlation of using different continuous phase liquids. The liquids should be chosen, to give a good range in Prandtl numbers. V. It is expected that the results of this investigation wi l l hold good for a large scale utilization, but it would be worthwhile to conduct the next study using multidrop vaporization! 136 N O M E N C L A T U R E A =• A r e a , 'sq. c m . ' A i = I n i t i a l d r o p a r e a , 'sq. c m . ' A n = C o n s t a n t a i = M a j o r a x i s o f t h e e l l i p s e i n i t i a l l y C = C o n s t a n t C ^ = C o m p r e s s i o n a l m o d u l u s o f s u r f a c e o r i n t e r f a c i a l f i l m , s 2 ' d y n e s / c m o r g m / s e c '. D = P i p e d i a m e t e r d = d r o p d i a m e t e r , 'cm'. E-v- = T r a n s f e r e f f i c i e n c y , ( t o - t i ) / . . ' ( t c - t i j f ^ = N u m e r i c a l c o e f f i c i e n t g = A c c e l e r a t i o n due t o g r a v i t y h o = O u t s i d e h e a t t r a n s f e r c o e f f i c i e n t h i = I n s i d e h e a t t r a n s f e r c o e f f i c i e n t J ~ M e c h a n i c a l e q u i v a l e n t o f h e a t k = T h e r m a l c o n d u c t i v i t y M = M o l e c u l a r w e i g h t m = E v a p o r a t i o n r a t i o , v a p o r w e i g h t f r a c t i o n i n t h e d r o p N u = N u s s e l t n u m b e r ( U d / k ) , d i m e n s i o n l e s s P e = P e c l e t n u m b e r (dv / « K ), d i m e n s i o n l e s s P e ' = M o d i f i e d P e c l e t n u m b e r ( P e / M* d ) d i m e n s i o n l e s s A c P r - P r a n d t l n u m b e r ( C p / * * / k ) , d i m e n s i o n l e s s A,p = P r e s s u r e d i f f e r e n c e i n s i d e a n d o u t s i d e t h e b u b b l e o r d r o p 137 Q = Total heat transferred q = Rate of heat transfer q = Average rate of heat transfer A . R = Dimensionless correlation factor, overall average resistance 3 Ra = Raleigh number (d g / ^ c c ^ c ) > dimensionless Re = Reynolds number ( d\p?//*.) , dimensionless r = Radius of the drop, 'cm'. Ts = Saturation temperature, 1 °K '. t = Temperature, ' ° C ' . A O A t = Temperature difference, temperature driving force, ' C'. U = Overall heat transfer coefficient, 'K cal/ (hr) (sq. m) (°C) ' . Ui = Overall heat transfer coefficient based on initial drop area, K cal/ (hr) (sq. m) ( C). Ui = Average overall heat transfer coefficient based on initial drop area, K cal / (hr) (sq. m) ( C). V = Volume, 'cc'. V T = Total volume, 'cc'. V^£ = Volume of the liquid left or unevaporated, 'cc'. v = Velocity, 'cm/sec', x = Distance Y = Theoretical temperature difference ratio (t - t _) / (t - t ) 138 Greek Letters o< = •:Th'^mM:'.di«fifs:t-vit?t7 (3 = Opening half angle of vapor phase (9 = t ime , 'sec 1 . <9V = Total evaporation time of a drop, 'sec 1 . P = Density, Average density, dfjthficdis.persed phase, 'gm/cc. ' A ? = Diffe rence in density between the dispersed and the continuous phase liquids /*• = Viscosity, 'poise. ' 0" = Surface tension, 'dynes/cm'. CF£ = Interfacial tension, 'dynes/cm'. A - Latent heat of vaporization, ' ca l /gm' . Ay) = Eigen values O - V a r i a n c e o n t h e l o g b a s i s Subscripts d - Dispersed phase, Drop. £ - Dispersed phase liquid, v s Dispersed phase vapor, c =• Continuous phase liquid, i - in i t ia l , inside o a Outside, continuous phase 139 L I T E R A T U R E CITED Klipstein, D. H . , "Heat transfer to a vaporizing immiscible drop", D.Sc. Thesis, Dept. of Chem. Eng. , Massachusetts Inst, of Tech. , June 1963. Sideman, S. , and Taitel, Y. , Int. J . Heat Mass Transfer, 7, 1273 (1964). Sideman, S. , and Hirsch, G. , Israel Journal of Technology, 2, 234 (1964). Sideman, S. , Hirsch, G. , and Gat,. Y. , Paper presented in 8th National Heat Transfer Conference, Los Angeles, August 1965. Taitel, Y . , "Direct contact heat transfer with a change of phase (evaporation)", M . S c Thesis, Israel Institute of Technology, Haifa, 1963. Sideman, S. , and Shabtai, H . , Can. J . Chem. Eng. , 42, 107 (1964). Prandtl, L . , Proc . 3rd Intern. Math. Cong. , Heidelberg, 1904. Schlichting, H . , "Boundary Layer Theory, " M c G r a w - H i l l , New York, 1955. Prandtl, L . , and Tietjens, O. G. , "Applied Hydro and Aero-mechanics, " Dover, New York, 1957. Hughes, R. R. , and Gill i land, E . R. , Chem.Eng. Prog. , 48, 497 (1952). Garner, F . H . , and Grafton, R. W. , Proc . Roy. Soc. , A224, 64 (1954). Garner, F . H . , Jenson, V. G. , and Keey, R. B . , Trans. Inst, of Chem. Engrs . , 37, 191 (1959). Garner, F . H . , and Hammerton, D. , Chem. Eng. Sci . , _3, 1 (1954). Hadamard, J . , Comp. Rend. Acad. Sci . , Par i s , 152, 1735 (1911). 140 15. Boussinesq, M . , Ann. Chim, Phys. , 2 9 , 364 (1913). 16. Garner, F . H . , and Skelland, A. H . P . , Trans. Inst. Chem. Engrs. , 29, 315 (1951). 17. Garner, F . H . , and Skelland, A . H . P . , Chem. Eng. Sc i . , 4, 149 (1955). 18. Davies, J . T. , and Ride al,. E . K . , 'Interfacial Phenomena", 2nd ed. , Acadamic Press , New York, 1963. i ' 19- Savic, P . , Nat. Res. Council of Canada Rept. MT-22 , 1953. 20. Hamielec, A . E . , and Johnson, A . I. , Can. J . Chem. Eng. , 40, 41 (1962). 21. Bond, W . M . , and Newton, D. A . , P h i l . Mag. , 5, 794 (1928). 22. Elzinga, E . R . , and Banchero, J . T. , A . I. Ch. E . Journal, I, 394 (1961) 23. Boyce-Christensen, G. , and Terjesen, S. G. , Chem. Eng. Sc i . , 9, 225 (-1959). 24. Thorsen, G. , and Terjesen, S. G. , Chem. Eng. Sic. , 17, 137(1962) 25. Baird , M . H . I. , and Davidson, J . F . , Chem. Eng. Sic. , 17_, 87 (1962), 26. Garner, F, H . , and Hale, A . R. , Chem. Eng. Sci . , 2_, 157 (1953). 27. Redfield, J . A. , and Houghton, G. , Chem. Eng. Sc i . , 20, 131 (1965). 28. Hu, S. , and Kintner, R. C , A . h Ch. E . Journal, 1_, 42 (1955). 29- Licht, W. , and Narasimhamurty, G. S. R. , A . I. Ch. E . Journal, 1_, 366 (1955). 30. Klee, A . J . , and Treybal, R. E . , A . I. Ch. E . Journal, Z_, 444 (1956). 31. Harmathy, T. Z. , A . I. Ch, E . Journal, 6, 281 (I960) 32. Datta, R. L . , Napier, D. M . , and Newitt, D. M . , Trans. Instn. Chem. Engrs. , 28, 14 (1950). 141 33. Calderbank, P . H . , and Korchinski , I. J . O . , Chem. Eng. S c i . , 6, 65 (1956). 34. Spilhans, A . F . , J . Met. , 5, 108 (1948). 35. Johnson, A . I. , and Braida, L . , Can. J . Chem. Eng. , 35, 165 (1957). 36. Jakob, M . , "Heat Transfer, V o l . I and I I " , John Wiley, New York, 1964. 37. Ruckenstein, E . , Chem. Eng. Sci . , 10, 22 (1959). 38. Moore, G. R . , "Vaporization of Superheated drops in liquids", Ph. D. Thesis, Dept. of Chem. Eng. , Michigan Ann Arbor, 1956. 39- Young, R. K. , and Hummel, R. L . , Chem. Eng. Prog. , 60, 53 (1964). 40. ; McAdams, W. H. , "Heat transmission", 3rd ed. , McGraw H i l l , New York, 1954. 41. Gordon, K. F. , Singh, T. , and Weissman, E . Y . , Int. J. . Heat Mass Transfer, _3, 90 (1961). 42. Viskanta, R. , and Lottes, P . A . , "Proceedings of the 1962 Heat transfer and fluid mechanics institute", Stanford Univer-sity Press , 1962. 43. Harriott, P . , and Wiegandt, H . , Private Communication to Dr . K . L . Pinder, October 1963. 44. Poplack, B . , B . A . Sc. Thesis, Dept. of Chem. Eng. , The University of B . C. , 1964. 45. Porter, J . W. , "Studies of direct contact heat transfer with application to sea water conversion", Ph. D. Thesis, Dept. of Chem. Eng. , University of California. 46. Strenge, P. H . , Ore l l , A . , and Westwater, J . W. , A . I. Ch. E . Journal, 1, 578 (1961). 47. Waldman, L . A . , and Houghton, G. , Chem. Eng. Sci . , _20, 625 (.1965). 48. Kramers , H . , Physica, 12, 61 (1946). 142 49. Friedlander, S. K . , A . I. Ch, E . Journal, 3, 43 (1957). 50. Ranz, W. E . , and Marshal l , W. R. , Chem. Eng. Prog. , 48_, 141 (1952). i 51. Ranz, W. E . , and Marshal l , W. R. , Chem. Eng. Prog. , 48, 173 (1952). 52. Baird , M . H . I . , and Hamielec, A . E . , Can. J . Chem. Eng. , 40, 119 (1962)r 53. Bowman, C . W . , Ward, D. M . , Johnson, A-1 . , and Trass, O. , Can. J . Chem. Eng. , 39, 9 (1961). 54. Drew, T. B . , and Ryan, W. P . , Ind, Eng. Chem. , 2_3, 945 (1931). 55. Steihberger, R. L . , and Treybel, R. E . , A . I. Ch. E . Journal, _6, 227 (I960) 56. , Harriott, P . , Can. J . Chem, Eng. , 40, 60 (1962). 57. Deindoerfer, F . H . , and Humphrey, A . E . , Ind. Eng. Chem., _53, 755 (1961). 58. Heertjes, P . M . , Holve, W. A. , and Talsma, H . , Chem. Eng. Sc i . , 3, 122 (1954). 59- Ward, D. M . , Trass, O- , and Johnson, A , I. , Can. J . Chem. • Eng. , 40, 164 (1962). 60. Handlos, A . E . , and Baron, T. , A . I. Ch, E . Journal, 3, 127 (1957) 61. Conkie, W. R. , and Savic, P . , Mech. Eng. Report #23, National Res. Council of Canada, October 1953. 62. Vermeulen, T. ,. Ind. Eng. Chem. , 45, 1664 (1953) 63. Johnson, A . I . , and Hamielec, A - E . , A . I. Ch. E . Journal, 6, 145 (1960). 64. Kronig, R. , and Brink, J . C Appl . Sci . Res. A - 2 , 142 (1950). 65. Elzinga, E . R . , and Banchero, J . T. , Chem. Eng. Progr . Symp. Series, 55, 149 (1959). 66. Coughlin, R. W. , and VonBerg, R. L . , Chem. Eng. Sci . , 2 1 , 3 (1966). McDowell, R. V. , and Myers, J. E. , A. I. Ch. E. Journal, 2, 384 (1956) Calderbank, P. H . , and Moo-Young, M. B . , Chem. Eng. Sci. , 16, 39 (1961) 1 Sternling, C. V. , and Scriven, L. E. , A. I. Ch. E. Journal, 5, 514 (195|9). Garwin, L. , and Smith, B. D. , Chem. Eng. Prog. , 49, 591 (1953). Bowman, C. W. , and Johnson, A. I. , Can. J. Chem. Eng. , 40, 139 (1962). Hammerton, p. , and Garner, F . H . , Trans. Inst. Chem. Engrs. , 32, 518 (1954). Leonard, J. H. , and Houghton, G. , Chem. Eng. Sci. , 18, 133 (1963). Happel, J. , and Pfeffer, R. , A. I. Ch. E . Journal, 6, 129 (1960). Rowe, P. N . , and Hen wood, G. A. , Trans. Instn. Chem. Engrs. , 39, 43 (1961). Pierce, R. D. , Dwyer, O. E. , and Martin, J. T., A. I. Ch. E. Journal, 5, 257 (1959). Johnson, A-1. , Minard, G. W. , et al. , A. I. Ch. E. Journal, 3, 101 (1957). Perry, John H . , "Chemical Engineers Handbook", Table 3-2, 4th Edition, McGraw Hill, New York, 1963. Guthrie, G. B. , Scott, D. W. , et al. , J. Am. Chem. Soc., 74, 4662 (1952). Beall, I. N . , Refiner Natural Gasoline Mfr., 1_4, 437 (1935). Willingham, C.B. , Taylor, J. , et al. , J. Research Natl. Bur. Standards, _35, 219 (1945). International Critical Tables, Vol. HI, Page 342, McGraw Hill, New York. Timmermans, J. , Roland, M . H . , J . Chim. Phys. , 56, 984 (1959), International Cri t ical .Tables, V o l . VII, Page 216, McGraw H i l l , New York. International Cr i t i ca l Tables, V o l . V, Page 109, McGraw H i l l , New York. McCullqugh, J- P- , et a l . , J\ Am. Chem. Soc. , 81_, 5880 (1959). Reid, R. C. , and Sherwood,. T. K . , "The properties of gases and liquids", McGraw H i l l , New York, 1958. Sakiadis, B . C . , Coates, Jesse, A- T. Ch. E . Journal, 3, 121 (1957). International Cr i t i ca l Tables, Vol IV, Page 436, McGraw H i l l , New York. Kintner, R. C. , Horton, T. J . , Graumann, R. E . , and Amberkar, S. , Can. J . Chem* Eng . , 3_9, 235 (1961). Sideman, S. , Shorter Communications, Chem. Eng. , Sc i - , ^9, 426 (1964). Bennett, C - A . , and Franklin, N . L . , "Statistical Analysis in Chemistry and the Chemical Industry", Page 245-264, John Wiley & Sons. , New York, 1963. 145 A P P E N D I X I F L U I D PROPERTIES AND EQUIPMENT DETAILS A. PROPERTIES OF TEST FLUIDS I. Furan: Vapor pressure - temperature relationship T A B L E A l VAPOR PRESSURE OF F U R A N (79) Boiling point Pressure, mm of mercury of Furan C Observed Calculated by equation (1 - A) 2. 552 233. 72 233. 71 7. 267 289-13 289- 13 12. 018 355.22 355. 27 16. 797 433. 56 433. 54 21. 614 525. 86 525. 81 26. 469 633. 99 634. 00 31. 357 760.00 760. 00 36. 279 906. 06 906. 02 41. 241 1074.60 1074. 70 46. 2 32 1268. 00 1268. 00 51. 265 1489.10 1489- 20 56. 329 1740.80 1740. 80 61. 430 2026. 00 2025. 90 An Antoine equation was fitted to the data, using the least squares treatment and giving al l points equal weight. The equation obtained is , log p = 6-9752 3 - 1060-851 / (t + 227-740) ( 1 - A) 146 Viscos i ty T A B L E A l l ' VISCOSITY O F F U R A N (83) Temperature , „ n n • o * 10'90 20 25 C Viscosi ty 0'419 0-380 0*361 C-P- ; F r o m these data log of viscosity was plotted against the rec iprocal of absolute temperature, which gave a straight line. This plot was used to evaluate viscosity at any required temperature. (See Figure 32) Liquid density at boiling point Schroeder's method (87) was used to evaluate l iquid density at boiling point. The simple rule given by Schroeder was to count the number of atoms of carbon, hydrogen, oxygen, and nitrogen, add one for each double bond, and multiply the sum by seven. This gives the volume in cubic centimeters per gram mole. Furan Molecular weight = 68-07 C H - C H C H C H mola l volume = ( 4 + 4 + 1 + 2)- 7 ^ © =77 cc /gm. mole Hence, density = 68- 07 77 = 0-8831 g m / c c 14? Vapor density P V = RT + B P B= -279 - 22-6 exp (950/T) C C / m o l e 1 V RT + B P I EHL - P x 68-07 v cc ~ RT + B P On substituting the values of R and B, ^ v = ( P x 68-07) / |^62300T + -279 -22-6 exp (950/T)J PJ g m / c c ( 2 - A ) Thermal conductivity Weber's method (87) was used for estimating the thermal conductivity of furan. . k = 3 -59x10 " 3 c n / Q \ p Using equation (4-3) (Page 41) at 32 °C, Cp = 27- 82 ° a l / m o l e c al or Cp = 0- 4091 /gm. k = 0-000332 C a l / ( s e c ) (cm) (°C) Surface and Interfacial tensions T A B L E A1.II S U R F A C E TENSION OF F U R A N (83) temperature 't' Surface tension ! Y ' dy C dynes /cm dt 16.40 20 25 24. 24. 23. 57 10 38 0. 138 148 The interfacial tension between furan and distilled water obtained by using Cenco-DuNony tensiometer, at room temperature (approximately 22 °C) was 14 dynes/cm. II. Isopentane T A B L E AIV VAPOR PRESSURE, VAPOR DENSITY AND L A T E N T H E A T O F ISOPENTANE (80) Temperature 't' Pressure 1 p' Vapor density 'Xy-' Latent heat C mm of mercury gm/cc 'A' cal/gm 10. 50 400. 00 - o .... •.. _J „ 27. 90 760. , 20 .. 003027"* 83.3 28. 88 775. . 72 .003171 'Qz.9 > 30. 00 796. 4 0 .003299 82,0 , 31.11 837. 77 .003427 81.5 ; 32. 22 873. . 97 .003572 81,3 33. 33 915. . 35 .003700 81.0 34, 44 951. , 55 .003844 80.5 ^  35. 55 i992. 92 .003972 80.1 36. 66 1029. , 12 .004100 79.6 ' 37. 17 1070. 49 .004244 79.3 The points were fitted using the method of least square to give appropriate relationships for vapor pressure, vapor density, and latent heat in terms of temperature. The equations thus obtained are listed below: log p = 7. 37 - 1351. 35 / (t +273) -( 3 - A ) $V = --000479 + -0001233 t (4 - A ) and X = 97.3 - -.'5 t (5 - A ) 149 Heat capacity The value of heat capacity for isopentane was available only at two temperatures (85) At 0°C Cp = 0-5124 cal/(gm) (°C) At 8°C Cp = 0-5265 cal/(gm) (°C) It was not possible to accurately fit any normal type of heat capacity equation with only two points, hence a linear relationship between tem-perature and heat capacity was assumed, and value of heat capacity at the required temperature was estimated. Liquid density at boiling point Isopentane molecular weight = 72- 15 CH3 H H I I I H - C - C - C - H molal volume = (5 + 12 ) . 7 I I I CH3 H H =119 cc/gm/mole Hence, density = 72 • 15 = 0* 61 gm/cc 119 Thermal conductivity 3-59 x 10" 3 cp « 1 / 3 3'59 x 10" 3 x • 568 x - 6 l ( . 61 ) 1 / 3 72-15 0-0002546 cal/(sec) (cm) (°C) Surface and Interfacial tensions The values of surface and interfacial tensions were taken from the 150 International Cr i t i ca l Tables (89), these values were available at 20 C. Isopentane - water • Interfacial tension = 49-640171163/01x1 Surface tension of isopentane - 13-72 dynes/cm III Cyclopentane: Vapor pressure - temperature relationship T A B L E A V VAPOR PRESSURE OF C Y C L O P E N T A N E (81) Temperature 't' Vapor pressure 'p' o _ . C mm of mercury 15. 701 217. 19 20. 196 261.71 25. 196 324.94 31.172 402.45 37.119 500.74 43.574 627.97 48. 131 732. 12 48.621 744.10 49.073 755.30 49-587 768.07 50.031 779.47 The equation based on above data is , log p = 6- 87798 - 1119-208 / (2 30-7 38 + t) — (6 - A) 151 Viscosi ty T A B L E AVI VISCOSITY OF C Y C L O P E N T A N E (84) Temperature 't' o „ 0 15 20 25 30 Viscos i ty 1 centipoise 0. 572 0.. 47.7 0.456 0,.427 0.406 The log of viscosity was plotted against the reciprocal of absolute temperature, which gave a straight l ine. This plot was used to evaluate the viscosity of cyclopentane at any required temperature (See Figure 32). Liquid density at boiling point Cyclopentane CH 2 / \ Chz CHi \ I CHZ - CHZ Hence, density = 70' 13 105 Vapor density P V= RT + B P molecular weight = 70* 13 molal volume = (5 + 10 ) .7 • = 105 cc /gm. mole = 0* 668 gm/cc B V • 192 - 59 59 exp (800/ T ) cc/mole P  RT + B P LLI CO O Q_ O I l-Ol 0*6 0-3 O'l Q F U R A N 0 C Y C L O P E N T A N E i I •003 ' 0031 '0032 '0033 -0034 '0035 l / T ( T in degrees Kelvin ) •0036 '0037 FIGURE 32 - "Viscosities of furan and cyclopentane 153 _1_ v gm cc P x 70.13 RT • + • B P on substituting the valuescof R and B it gives f v = (P x 70-13 ) / jl>2300 T + £ -192 -59 . 59 exp (800 I^) j p j cc- •i 7 - A) Surface and Interfacial tensions The r values of surface tension for cyclopentane, and the interfacial tension between cyclopentane and water were obtained by using Cenco-DuNony tensiometer. The values at room temperature (approximately 22°C) were, Surface tension = Interfacial tension cyclopentane-water ( = B . EQUIPMENT SPECIFICATIONS I. Column details Material of construction : Inner circular column : 21.96 dynes /cm 52 dynes/cm Outer square column Length of the upper portion Length of the lower portion Volume of circular column Volume of annular space Perspex and Glass I .D . = 2.625 inches O. D. = 3. 0 inches Each side 3. 65 inches from inside 44 inches 3.75 inches Upper portion 0. 138 cu. ft. Lower portion 0. 0117cu. ;ft. Upper portion 0. 18 cu. ft. Lower portion 0.0153cu.ft. 154 II. Constant temperature baths (Civ. E . 22 59) 1. COLORA Ultra-Thermostats Type K (Used for the lower portion of the column) Operating range -30 to + 150 °C Constancy of temperature (mean value) ' _+ 0.02 °C Current supply 110 volts 60 cycles Bath contents approx. 1. 6 l i ters Motor 45 watts Speed 2700 R P M Pump capacity (water) approx. 10 l i ters per min. Head attainable approx. 4 meters of water Heating (normal) 300 watts Valves 1 x Valvo P L 21 (2D21) Dimensions of instrument 190 mm. diameter 340 mm. height Weight approx. 7 kilograms 2. T E M P T R O L 153 (Ch. E . 2257) Operating range 20 to 100 °C Constancy of temperature (between 50 - 220 °F) 1 +_ 0. 02°F Heating (3 heat switch) low 250 watts medium 500 watts high 1000 watts III. Potentiometer (Ch. E . 2289) 8686 Mi l l ivo l t Potentiometer Leeds & Northrup Company 155 R a n g e -10. 1 m v t o + 100. 1 m v ( f o r g e n e r a l u s e ) L i m i t s o f e r r o r + _ ( 0 . 0 3 % o f r e a d i n g + 3/t»v) w i t h o u t r e f e r e n c e j u n c t i o n c o m p a r i s o n +_(0. 0 3 % o f r e a d i n g + 6/ov) w i t h r e f e r e n c e j u n c t i o n c o m p a r i s o n R e f e r e n c e J u n c t i o n C o m p a r i s o n R a n g e 0 t o 5 m i l l i v o l t s , a d j u s t a b l e t o + 2 m i c r o v o l t s S t a n d a r d c e l l A d j u s t m e n t R a n g e 1. 0170 t o 1. 0200 v o l t s I V . L a b o r a t o r y r e c o r d e r V. O. M, -5 ( Ch. E 2255) F r o m B a u s c h & L o m b I n c o r p o r a t e d R o c h e s t e r 2, N e w Y o r k F u l l s c a l e s p a n R e s p o n s e t i m e S e n s i t i v i t y A c c u r a c y C h a r t s p e e d s P o w e r r e q u i r e m e n t s V o l t a g e s o u r c e M i l l i a m p e r e s 0. 01, 0.1, ; 1.0, 10, 100 M i l l i v o l t s 10, 000 V o l t s 1, 10, 100, 500 O h m s 1, 10, 100, 1000, 10K, 1 0 0 K 1 /2 s e c o n d f u l l s c a l e o n a l l r a n g e s 0. 25 % of f u l l s c a l e C u r r e n t s c a l e s +_ 2 % o f f u l l s c a l e M i l l i v o l t + 0. 5 % o f f u l l s c a l e V o l t a g e s c a l e s +_ 2 % o f f u l l s c a l e O h m s s c a l e s + 7 % o f f u l l s c a l e 0.05, 0.2, 1, 5, a n d 20 i n . / m i n . 60 c y c l e s u p p l y - 0 . 5 a m p e r e s 50 c y c l e s u p p l y - 0. 55 a m p e r e s 60 + 2 c y c l e s - 105 t o 125 v o l t s 60 + 2 c y c l e s - 105 t o 12 5 v o l t s E v e n t m a r k e r 2 50 m a at 6. v o l t s d. c. 156 A P P E N D I X II C O M P U T E R PROGRAMS The symbols and abbreviations used in the computer programs are explained below: I. Computer program for main- calculations T A = Temperature of the continuous phase l iquid in the lower 'portion of the column, 1 C TB = Temperature of the continuous phase liquid in the upper portion of the column, 1 C . A T M P = Pressure at the column top, 'mm of mercury. ' F P M = Camera speed, ' Frames per minute'. DDROP= Initial drop diameter, ' c m ' . DAIR = Diameter of air bubble, ' cm ' . VBUBA= Volume of air bubble, ' cc ' . VDROP= Initial volume of the drop, ' cc ' . PAI = Pressure at the bottom of the column, 'mm of mercury 1 . T = Boiling point of dispersed phase liquid at any instance, ' ° C . HTWC = , Height of the water column above any point in the column, 'ft', DVA and DVB = Dimensions of vapor bubble in the shape of an oblate spheroid, ' cm ' . F N = Frame number PI = Pressure at any point in the column, 'mm of mercury 1 . VBUB = Volume of the vapor bubble at anytime, ' cc ' . COLHT= Column height, 'meters ' . P F = Vapor pressure of furan, 'mm of mercury ' . PW = Vapor pressure of water, 'mm of mercury ' . 157 V B U B A C V F U RH.O V F U L VLIQ T O T A L V T O T A L D T O T A L A AINI D E L V F U TIME V E L A A W T F Q FMASS F M A S S L P C E V A P T T I M E T O T A L Q UAPR UINST XNUNO PECNO P E C M O RHOAV RATIO Corrected volume of air at any point, ' c c ' . . Volume of furan in the vapor, ' cc 1 . Vapor density of furan, ' gms /cc ! . Volume of liquid furan equivalent to V F U , ' cc ' . Volume of liquid furan unvaporized, ' cc ' . Total volume of l iquid and vapor,, ' cc ' . Total equivalent spherical diameter, ' cm ' . Total equivalent spherical area, 'sq. cm. 1 Initial drop area, 'sq. cm. ' Differential volume of furan evaporated, ' cc ' . Time, 'min. ' Velocity of vaporizing drop, ' cm/sec ' . Average area, 'sq. cm ' . Rate of evaporation of furan, 'gm/hr ' . Rate of heat transfer, ' ca l /h r ' . Total mass of furan drop, 'gm' . Mass of furan unvaporized, 'gm' . Percent evaporation Total time for the start of vaporization, 'sec' . Total heat transferred,, ' c a l ' . Overal l heat transfer coefficient based on ini t ial drop area, •k cal/(hr) (sq. m) (°C) ' . Instantaneous overall heat transfer coefficient based on equivalent spherical area, ' k cal /(hr) (sq. m) ( C) ' . Nusselt number based on the dispersed phase properties Peclet number based on the dispersed phase properties Modified Peclet number Average density of vaporizing drop at any instance, 'gm/cc ' . Density group, ( fc-?) /^c 158 II. Computer program for total evaporation time R E = Reynolds number using density and viscosity of the continuous phase CD = Drag coefficient T A V = Average boiling point of the dispersed phase drop in the column, ' C . H L = Heat of vaporization, ' ca l /gm' . D M A X = Maximum spherical diameter when the drop is completely vaporized, ' cm ' . H •= Incre^ment in diameter, ' c m ' . X = Symbol for the variable diameter, ' c m 1 . DCD = Difference in drag coefficients DRE = Difference in Reynolds numbers CDA = Average drag coefficient GRUP, G l = Combination of certain terms as written V C A L = Calculated velocity, ' cm/sec ' . V E L A = Average velocity, ' cm/sec ' . Y = Value of integral for each increament in. the value of X A R E A = Value of the total integral by Simpson's Rule III. Computer program for multiple regression Y, X I , X2 - Variables as defined C l l , C12, C21, C22 = Elements of the inverse matrix B l , B2 = Regression coefficients T B I , TB2 = Values of t-statistics C O N F L = Lower l imi t of the 95 percent confidence interval CONFU = Upper (limit of the-9 5 per cent confidence interval C A L N U = Calculated Nusselt number 2 VARI = Variance ' ff~ •' COMPUTER PROGRAM FOR MAIN CALCULATIONS 159 $JOB 16084 C.B.PRAKASH $TI ME 18 SIBFTC CBP C FILM 8 FURAN—D.I ST I LLED WATER SYSTEM RUNS F1-F22 ODIMENSION H T W C ( 5 0 ) » D V A ( 5 0 ) , D V B ( 5 0 ) * V B U B ( 5 0 ) » V B U B A C ( 5 0 ) , V F U < 5 0 ) • 1WTF(50) »T<50) »Q(50> »TIME(50) »RHO(50) * V F U L ( 5 0 ) , V L I Q ( 5 0 ) •UA(50) ,FN(5 20) » V E L ( 5 0 ) » T O T A L D ( 5 0 ) * T T ( 2 ) •TOTALA(50) READ(5*2)NRUN : 2 FORMAT(13) DO 7090 KK = 1»NRUN READ (5 »10)TA »IB »ATMP » FPM »DDROP » DA IR »NDATA »RUNNO 10 FORMAT(6F10.4*213) , VBUBA=(DAIR**3)*0.5238 VDROP=(DDROP**3)*0.5238 PAT=ATMP+(22.4852*3.5) T ( 1 ) = 32.0 DO 100 1 = 1»NDATA I F ( I - l ) 14»14*13 13 T.(.I)=T( I - l ) 14 READ(5 » 1 2 ) H T W C ( I ) » DVA( I ) * D V B ( I ) • F N ( I ) 12 FORMAT(4F10.5) PI-ATMP+(22.4852*HTWC(I)) VBUB(I)=DVA(I)*DVA(I)*DVB<I)*0.5238 COLHT=(3•5-HTWC(I))*0.3048 DO 64 K=l» 20 WRITE ( 6 ?.:6 ) T ( I ) » I 6 F O R M A T ( 1 X » F 1 0 . 4 , I 3 ) . PF = EXP(2*303*(6.97523-1060.851/(T( I )+227.74) )•) PW = EXP (2.303* ( 9. 754-25,00 .0/1 T( I ) +273 • 0 ) ) ) PSUM=PF+PW . IF(ABS(PSUM-PI)-2.0) 120*120*125 125 IF(PSUM-PT) 123*123,122 122 T (T ) =T (T ) - ( PSUM/P I )*T ( I ) *0 .005 GO TO 65 123 T ( I ) = T ( I ) + (PI/P SUM)*T(I)*0.00 5 6 5 IF(K-19) 64*66.67 66 TT(1)=T( I ) , GO TO 64 • v.-^/vv" 67 T T ( 2 ) = T ( I ) 64 CONTINUE T ( r ) = ( T T ( l ) + T T ( 2 ) ) * 0 . 5 120 WRITE(6*7)K 7 FORMAT(IX* 12// ) WRITE(6*8)RUNNO 8 FORMAT(IX » 9H RUN NO=F,I3/) WRITE(6*111)T ( I ) 111 FORMAT(IX » 2HT= » F10•6/) WRITE(6*101)PF 101 FORMAT(1X» 3HPF= » E16.8/ ) VBUB AC (I ) =VBUBA* ( T ( I ) /'TA ) * (PA I VP I ) V F U ( I ) = ( V B U B ( I ) - V B U B A C ( I ) ) * ( P F ) / ( P F + P W ) RHO( T) = ( PI* 6 8 . ) /'{• < 62300**1 T( 1 )+273. ) ) + ( -279 .-22 . 6*EXP ( 950 . / ( T ( I ) + 12 73. ) ) )*PI )• W R I T E ( 6 » 9 9 ) I * R H 0 ( I ) l o u 9 9 F O R M A T ( I X , 4 H R H 0 ( » I 2»2H) = , E16.8/) VFUL ( I )=VFU( I ) *RHO ( I ) 70.-8831 VLIGM 1)=VDROP-VFUL ( I ) TOTALV=VBUB(I) + VLIQ( I) T O T A L D ( I ) = ( l i 9 0 9 1 2 * T 0 T A L V ) * * 0 . 3 3 3 TOTALA( I )=3.14285*(TOTALD* I ) )**2 AINI=3.14285*DDR0P*DDR0P I F ( I - l ) 96 » 96,97 96 DELVFU=VFU( I ) TI ME(I) =FN ( I)/FPM V E L ( I ) = ( (5.5-HTWClI) )*0.508)/TI ME(I) AA=(AINI+TOTALA(I ) )/2.0 GO TO 98 97 DELVFU=VFU(I)-VFU(I-1) T I ME ( I ) = ( F N ( I ) - F N ( 1 - 1 ) )/FPM VEL ('!)•=( ( HTWC ( I - l )-HTWC( I ) ) *0 . 508 ) V T I ME ( I ) A A = ( T O T A L A ( I ) + T O T A L A ( I - l ) ) / 2 . 0 98 WTF(I)=DELVFU*60.0*RHO(I)/TIME(I) Q( I)=WTF( I )•*( 130.20588-0. 02767*(T( I ) +273 ••>-0 . 00028* ( T ( I )+273. 1**2) DELT=TB-T(I) U A ( I ) = Q ( I ) / D E L T FMASS=VDROP*0.8831 FMASSL=VLIQ(I)*0.8831 PCEVAP = ( FMASS-FMASSL).*100.0/FMASS TTIME=FN(1)*60.0/FPM WRI T E ( 6 » 21 ) TT IME • TOT AL D ( I ) • 21 F0RMAT(1X»7H T T I M E = » F 1 0 . 4 , 3 X » 1 I H TOTAL D I A = » F I 0 « 4 / ) • T O T A L Q = V F U L ( I ) * 0 . 8 8 3 1 * ( 1 3 0 . 2 0 5 8 8 - 0 . 0 2 7 6 7 * ( T ( I ) + 2 7 3 . ) - 0 . 0 0 0 2 8 * 1 ( T ( I ) + 2 7 3 • ) * * 2 ) W R I T E ( 6 > 2 2 ) T O T A L A ( I ) » T 0 T A L Q 22 FORMAT ( 1X • 15HTOTAL SPH AREA= »F 10 . 5 » 3X • 7HTOTALQ=»» F10. 7/ ) UAPR=(UA(I)*10.0)/AINI UINST=(UA(I)*10.0)/AA WRITE(6 »1001)TA »TB »ATMP.FPM »DDROP»DA IR 1001 OFORMAT(1X,3HTA= »F5•1K5X » 3HTB = » F5.1•5X•5HATMP-•F7•2•5X »4HFPM=,F6.0» 1 5 X » 6 H D D R O P = » F 7 . 4 » 5 X , 5 H D A I R = , F 7 . 4 / / ) WRITE16*1002) 1002 O F O R M A T ( 4 X » 1 H Q » 8 X » 2 H U A » 7X•4MDELT » 5X » 5HCOLHT•1 OX »4HUAPR * 7 X * 5 H U I N S T » 7 IX *3HWTF»5X » 3 H V E L » 5 X , 6 H P C E V A P / ) W R I T E ( 6 » 1 0 0 4 ) Q ( I ) »UA(I)»DELT »COLHT,UAPR »UINST » W T F ( I ) • V E L ( I ) • P C E V A P 1004 F 0 R M A T ( 1 X , 4 F 9 . 4 » 2 F I 3 . 2 , 3 F 9 . 4 / ) XNUNO=UINST*TOTALD(I)/11#25 PECNO=VEL(I)*TOTALD(I)*1155.5 PECM0=PECN0/1.567 W R I T E ( 6 » 8 8 9 ) X N U N O » P E C N O » P E C M O 889 O F O R M A T ( T X » 1 2 H NUSSELT N 0 = » F 1 0 • 4 » 5 X • 1 1 H PECLET N 0 = , F l 0 . 2 » 5 X » 1 5 H MOD 1 PECLET N0- » F 1 0 . 2 / ) RH0AV=(VDROP*0•8831)/TOTALV RHOC=0.99 DIFF=RHOC-RHOAV RAT 10=DIFF/RHOC RATI02=RH0C/RH0AV W R I T E ( 6 » 8 8 7 ) R A T I 0 , R A T I 0 2 887 FORMAT(IX »7H RAT I 0 = » F 6 . 4 • 1 O X , 8 H RAT I 02=*F10.4///) W R T T E ( 7 » 3 0 0 ) D D R 0 P » D A I R » F N ( I ) » T T I M E , H T W C ( I ) » D E L T • D V A ( I ) , D V B ( I ) » V E L ( I I ) 161 300 F O R M A T ( 2 F 8 » 4 » F 8 . 2 » 6 F 8 . 4 ) WRITE(7 » 4 0 0 ) T O T A L D ( I ) , P C E V A P , U A < I ) » U I N S T • R A T 10•XNUNO»PECMO 400 F O R M A T ( 3 F 1 0 . 4 » F 1 0 . 2 » 2 F 1 0 . 4 , F 1 0 . 2 ) 100 CONTINUE 7090 CONTINUE 3 0 STOP ' ' END SENTRY C O M P U T E R P R O G R A M FOR T O T A L E V A P O R A T I O N T I M E $ J O B 1 6 0 8 4 C . B . P R A K A S H $ T I ME 5 S I B F T C C B P C E S T I M A T I O N OF T O T A L E V A P O R A T I O N T I M E C Y C L O P E N T A N E D I M E N S I O N R E ( 2 0 0 ) , C D ( 2 0 0 ) » X < 2 0 0 ) » Y ( 2 0 0 ) » H ( 2 0 ) R E A D ( 5 » 1 0 0 ) ( R E ( I ) » 1 = 1 » 1 3 ) 1 0 0 F O R M A T ( 9 F 5 . 0 » 4 F 6 . 0 ) R E A D ( 5 » 1 0 1 ) ( C D ( I ) » I = 1 » 1 3 ) 1 0 1 F O R M A T ( 1 3 F 5 . 2 ) R E A D ( 5 » 1 ) N 1 F O R M A T ( 1 3 ) DO 2 0 0 J = T »N R E A D ( 5 * 2 ) T-B > T A V • DDROP 2 F O R M A T ( 3 F 1 0 . 4 ) R H O V = 0 . 0 0 3 R H O L = 0 . 6 6 8 H L = ( 1 . 9 8 6 9 / 2 0 6 8 . 8 ) * ( ( T A V + 2 7 3 . ) * * 2 ) D E L T = T B - T A V DMAX = D D R O P * ( ( R H O L / R H O V ) * * 0 . 3 3 3 ) H 1 = ( D M A X - D D R 0 P ) / 5 0 . I L = 1 H ( I D = ( D M A X - D D R O P - H l ) / 5 0 . A S U M = 0 . 0 X ( 1 ) = D M A X GO TO 7 9 I L = I L + 1 7 S U M = 0 . 0 DO 33 K = l » 5 1 8 V E L = 2 0 . 1 1 R E A = X ( K ) * V E L * 2 0 4 . 4 5 1=1 I F ( R E A - 4 0 0 0 . ) 1 2 , 1 2 » 1 9 12 I F ( R E A - R E ( I ) ) 1 3 » 1 4 ? 1 5 1 4 C D A = C D < I ) GO TO 16 1 5 1=1+1 GO TO 12 13 1 1 = 1 - 1 D C D = C D ( I ) - C D ( I I ) D R E = R E ( I ) - R E ( I I ) C D A = C D ( -I-i )+DCD*'( R E A - R E ( I 1 ) ) / D R E GO TO 16 1 9 C D A = 2 . 6 5 ; 16 G R U P = ( 1 . 3 3 * ( l e - ( R H 0 L / . 9 8 4 ) * ( ( D D R O P / X ( K ) ) * * 3 ) ) * X ( K ) * 9 8 0 . / C D A ) V C A L = S Q R T ( G R U P ) I F ( A B S ( V C A L - V E L ) . L E . 1 . 0 ) GO TO 2 4 I F ( V C A L - V E L ) 2 1 » 2 2 , 2 2 2 1 V E L = V E L - 1 . GO TO 11 2 2 V E L = V E L + 1 . GO TO 11 2 4 V E L A = ( V E L + V C A L ) * 0 . 5 G 1 = H L * R H 0 V * 4 3 2 . 6 4 / ( ( R H O L - R H O V ) * D E L T ) i t : Y ( K ) = G l / ( ( ( l . - ( R H 0 L A . 9 8 4 ) * ( ( D D R O P / X 1 K ) ) * * 3 ) ) * * 1 . 7 5 ) * V E L A ) I F ( K . E Q o l ) GO TO 3 5 I F ( K . E Q . 5 1 •)• GO TO 35 A K = K A M = A K / 2 . M = AM M = 2 * M I F ( M . E Q . K ) GO TO 3 4 SUM= SUM+2 » * Y ( K ) GO TO 3 5 3 4 S U M = S U M + 4 . * Y { K ) 3 5 C O N T I N U E 3 3 X ( K + 1 ) =X ( K.) - H ( I L ) A R EA = ( H ( I L ) / 3 • ) * ( S U M + Y ( 1 ) + Y ( 5 1 ) ) A S U M = A S U M + A R E A W R I T E ( 6 * 5 ) D D R O P » A S U M » D E L T 5 F O R M A T ( 1 X » 6 H D D R 0 P = * F 1 0 . 4 » 3 X » 1 0 H E V A P T I M E = » F 1 0 . 4 » 3 X » 5 H D E L T = , F 1 0 . 4 ) H ( T L + 1 ) = H l / 5 0 . I F ( I L . G T • 1 ) G O TO 2 0 0 X ( 1 ) = X ( 5 1 ) GO TO 9 2 0 0 C O N T I N U E S T O P END S E N T R Y COMPUTER PROGRAM FOR MULTIPLE' REGRESSION 164 $JOB 16084 C.B.PRAKASH • $TI ME 5 SIBFTC CBP C XNUN0=C0NSTANT*(PECM0**B1)*(RATI0**B2) TOTAL DATA DIMENSION X K 1500)»X2(1500)»Y(1500)»XNUNO(1500)»PECM0(1500)»RATIO( 115 00) TS=1.96 N = 392 DO 11 I=1,N R EAD C 5» 22 ) TOTALD » PCEVAP »-UA » UI NST » RAT 10 (• I ) »XNUNO ( I ) ,PECM0( I ) 22' FORMAT(3F10 '.4»F10.2.2F10.4»F10.2-) Y(r)=ALOG10(XNUNO( I ) ) XI(I)=ALOG10(PECMOC I ) ) X2(I)=ALOG10(RATIO( I ) ) 11 CONTINUE SIGY=0. SIGX1=0. SIGX2=0. SIGY2=0. SIGX1Y=0. SIGX2Y=0. SIGXX=0. SIGX12=0. SIGX22=0. DO 21 1=1 »N SIGY=SIGY+Y(I) SIGY2 = SIGY2+Y(I)*Y( I ) SIGX1 = SIGX1+X1(I ) SIGX2=SIGX2+X2(I) SIGX1Y = SIGX1Y+X1(I)*Y( I ) SIGX2Y = SIGX2Y+X2(I)*Y( I) SIGX12 = SIGX12+X1(I)*X1 ( I ) SIGX22=SIGX22+X2(I)*X2( I ) S'IGXX=SIGXX+X1( I >*X2< I ) 21 CONTINUE AN=N SX12=SIGX12~SIGX1*SIGX1/AN SX22=SIGX22-SIGX2*SIGX2/AN SY2=SIGY2-SIGY*SIGY/AN SX1Y=SIGX1Y-SIGX1*SIGY/AN • SX2Y=SIGX2Y-SIGX2*SIGY/AN SXX=SIGXX-SIGX1*SIGX2/AN DET=SX12*SX2 2-SXX*SXX C11=SX22/DET C12=-SXX/DET C21=C12 C22-SX12/DET WRITE < 6'» 15 )C119C12 »C22 15 FORMAT(1X»4HC11=9F20.8»5X»4HC12=»F20.8»5X»4HC2 2=»F20.8/) B1=C11*SX1Y+C12*5X2Y B2=C2T*SX1Y+C22*SX2Y X1B=SIGX1/AN X2B=SIGX2/AN YB=SIGY/AN 165 W R I T E ( 6 ? 3 0 ) B 1 » B 2 » X 1 B . X 2 B » Y B 30 FORMAT(1X 9 4H B l = , F10 . 6 » 5X • 4H B2= » FLO•6 » 5 X »5H X1B=,F10.6,5X» 15H X2B=*F10.6»5X»4H Y B = » F 1 0 . 6 / / ) XL0GC = YB-B1*X1B-*B2*X2B •CONST»(10*0)**XLOGC WRITE(6 » 5)CONST 5 FORMAT(IX »1 OH CONSTANT= » F l 5 • 8 / ) S2=(SY2-Bl*SXLY-B2*SX2Y)/(AN-3.0) • TB1 = B-1/SQRT(S2*C11 ) TB2=B2/SQRT(S2*C22S WRITE(6,40 JTBl»TB2 40 F 0 R M A T C 1 X » 5 H 'TB1=»F10.6»5X»5H- TB2=»F10.6//)-SQR1=SQRT(S2*C11) SQR2 = SQRT(S2*C22 1 W R I T E ( 6 » 7 0 ) S Q R l 9 S Q R 2 70 F0RMAT(1X96H S Q R 1 = » F 1 0 . 4 » 5 X , 6 H SQR2=•Fl0.4/) C0NFL1=B1-TS*(SQRT(S2*C11)) C 0 N F U T = B 1 + T S * « S Q R T ( S 2 * C 1 1 ) ) CONFL2=B2-TS*(SQRTCS2*C22)) CONFU2=B2+TS*(SQRT(S2*C22) ) WRI :TE(6»50)CONFL1 »C0NFU1 • 50 FORMAT(IX•19H CONFIDENCE FOR B 1 = » F 1 0 . 4 » 3 X • 5 H AND= 9F10.4/) WRITE(6 ? 60)CONFL2 »CONFU2 60 FORMAT(IX »19H CONFIDENCE FOR B2=*F10.4 9 3X»5H AND=,F10.4//) W R I T E ( 6 » 8 0 ) 8 0 FORMAT ( 7X » 5HXNUNO »8X » 5 HCALNU * 8X» 5HPCENT • 1 OX * 2H-X1 »12X-9 2HX2/ ) DEVI=0. DO 99 1 = 19 N CALNU = CONST* ( ( P E C M O H ) ) * * B 1 ) * ( ( R A T I 0( I ) ) * * B 2 ) DIF=CALNU-XNUNO(I) PCENT = DT F* 100'« /XNUNO( I ) YH=ALOG10(CALNU) DEVI=DEVI+(Y(I)-YH)**2 W-RITE(6»-90)XNUNO( I ) »CA LNU 9 PCENT , X1 ( I ) »X2( I) 90 FORMAT ( lX*3F13«4»2F13«-6')' 99 CONTINUE VARI = DEVI/(AN-3. ) WR I T E ( 6 » 1 0 0 ) V A R I 100 F O R M A T ( 5 X » 1 0 H • V A R I A N C E = » F l 0 . 6 ) STOP END SENTRY 166 A P P E N D I X III T A B L E S OF DATA Abbreviations used for the table headings of raw and processed data are explained below: DDROP = Initial drop diameter, ' cm ' . DAIR = Diameter of the air bubble, ' c m ' . F N = Frame number of the f i lm T T I M E = Total time from the start of vaporization, 'sec' . HTWC = Height of the water column, 'ft'. D E L T = Temperature driving force, ' ° C . DVA, DVB = Dimensions of vapor bubble in the shape of an oblate spheroid, ' c m ' . V E L = Velocity of drop, ' cm/sec ' . T O T A L D = Instantaneous equivalent spherical diameter, ' cm ' . P C E V A P = Percent evaporation UA = Product of overall heat transfer coefficient and heat transfer area,.''kf cal/(hr) ( C) ' . UINST = Instantaneous overall heat transfer coefficient based on equivalent spherical area, ' k cal/(hr) (sq. m. ) ( C) ' . RATIO = Density group, ( f t - ? ) / XNUND = Nusselt number based on the dispersed phase properties P E C M O = Modified Peclet number based on the dispersed phase properties. T A B L E A V I I R A W D A T A F O R D I S T I L L E D W A T E R F U R A N S Y S T E M 167 F I L M 8-1 D D R O P D A I R F N 0 . 4 2 0 0 0 . 0 1 1 2 5.00 0 . 4 2 0 0 0 . 0 1 1 2 1 0 . 0 0 0 . 4 2 0 0 0 . 0 1 1 2 1 5 . 0 0 0 . 4 2 0 0 0 . 0 1 1 2 4 4 . 0 0 0 . 4 2 0 0 0 . 0 1 1 2 4 9 . 0 0 0 . 4 2 0 0 0 . 0 1 1 2 5 4 . 00 0 . 4 2 0 0 0 . 0 1 1 2 5 9 . 0 0 0 . 4 2 0 0 0 . 0 1 1 2 6 4 . 0 0 0 . 4 2 0 0 0 . 0 1 1 2 7 7 . 0 0 0 . 4 2 0 0 0 , 0 1 1 2 9 4 . 00 F I L M 8- 1 D D R O P D A I R F N 0 . 3 9 2 0 0 . 0 1 1 2 5.00 0 . 3 9 2 0 0 . 0 1 1 2 1 0 . 0 0 0 . 3 9 2 0 0 . 0 1 1 2 15 .00 0 . 3 9 2 0 0 . 0 1 1 2 2 7 . 0 0 0 . 3 9 2 0 0 . 0 1 1 2 41 .00 0 . 3 9 2 0 0.0.1.12 5 2 . 0 0 0.39,2 0 0 . 0 1 1 2 5 8 . 0 0 0.39J2 0 0 . 0 1 1 2 6 5 . 00 0.39 ]2 0 •0.0112 8 4 . 0 0 0 . 3 9 2 0 0 . 0 1 1 2 1 0 2 . 0 0 F I L M 8-•1 D D R O P D A I R F N 0 . 3 6 4 0 0 . 0 1 1 2 5.00 0 . 3 6 4 0 0 . 0 1 1 2 1 0 . 0 0 0 . 3 6 4 0 0 . 0 1 1 2 1 5 . 0 0 0 . 3 6 4 0 0 . 0 1 1 2 2 0 . 0 0 0 . 3 6 4 0 0 . 0 1 1 2 2 5 . 0 0 0 . 3 6 4 0 0 . 0 1 1 2 3 0 . 0 0 0 . 3 6 4 0 0 . 0 1 1 2 3 5 . 0 0 0 . 3 6 4 0 0 . 0 1 1 2 5 5 . 0 0 0 . 3 6 4 0 0 . 0 1 1 2 8 2 . 0 0 R U N F l T T I M E H T W C D E L T 0 . 1 5 4 6 3 . 4 5 3 1 1 . 8 4 6 3 0 . 3 0 9 3 3 . 4 1 6 6 1 . 9 3 4 6 0 . 4 6 3 9 3.3 75 0 1 . 9 3 4 6 1 . 3 6 0 8 3 . 0 0 0 0 2 . 2 6 1 9 1 . 5 1 5 5 2 . 9 1 1 4 2 . 2 6 1 9 1 . 6 7 0 1 2 . 8 2 2 9 2 . 3 5 1 2 1 . 8 2 4 7 2 . 7 2 9 1 2 . 3 5 6 5 1 . 9 7 9 4 2 . 6 3 0 2 2 . 5 1 8 0 2 . 3 8 1 4 2 . 3 5 4 1 2 . 6 7 9 0 2 . 9 0 7 2 1 . 9 7 9 1 2 . 9 9 9 0 R U N F 2 T T I M E - H T W C D E L T 0 . 1 5 4 6 3 . 4 6 3 5 1 . 8 4 6 2 0 . 3 0 9 3 3 . 4 1 1 4 1 . 9 3 4 8 0 . 4 6 3 9 3 . 3 5 4 1 1 . 9 3 4 8 0.8 351 3 . 1 8 2 2 2 . 0 9 8 6 1 . 2 6 8 0 2 . 9 3 7 5 2 . 2 6 1 7 1 . 6 0 8 2 2 . 7 1 8 7 2 . 4 2 3 9 1 . 7 9 3 8 2 . 5 8 3 3 2 . 5 8 4 9 2 . 0 1 0 3 2 . 4 4 2 7 2 . 5 8 4 9 2 . 5 9 7 9 2 . 0 2 0 8 2 . 9 0 6 6 3 . 1 5 4 6 1.58 33 3 . 2 2 5 2 R U N F 3 . T T I M E H T W C D E L T 0 . 1 5 4 6 3 . 4 5 31 1 . 8 4 6 3 0 . 3 0 9 3 3 . 3 9 0 6 1 . 9 3 6 7 0 . 4 6 3 9 3 . 3 2 2 9 1 . 9 3 6 7 0 . 6 1 8 6 3 . 2 5 0 0 2 . 1 0 0 1 0 . 7 7 3 2 3 . 1 7 7 0 2 . 1 0 0 1 0 . 9 2 7 8 3 . 0 8 3 3 2 . 1 0 0 1 1 . 0 8 2 5 2 . 9 5 3 1 2 . 2 6 3 1 1 . 7 0 1 0 2 . 5 7 8 1 2 . 5 8 6 9 2 . 5 3 6 1 2 . 0 1 0 4 2 . 9 0 8 7 D V A D V B VEL1 0 . 0 2 2 4 0 . 0 2 2 4 9 . 2 4 4 2 0 . 0 3 3 6 0 . 0 3 3 6 7 . 1 9 4 3 0 . 0 4 4 8 0 . 0 4 4 8 8 . 1 9 9 5 0 . 2 1 2 8 0 . 1 3 4 4 1 2 . 7 4 3 8 0 . 2 3 5 2 0 . 1 5 1 2 1 7 . 4 6 3 4 0 . 2 5 7 6 0 . 1 9 0 4 1 7 . 4 4 3 7 0 . 2 8 0 0 0 . 2 0 7 2 1 8 . 4 8 8 4 0 . 3 2 4 8 0 . 2 0 7 2 1 9 . 4 9 3 6 0 . 4 4 8 0 0 . 3 0 2 4 2 0 . 9 3 0 9 0 . 8 6 8 0 0 . 3 9 2 0 2 1 . 7 3 9 4 i D V A D V B V E L 0 . 0 2 8 0 0 . 0 2 8 0 7 . 1 9 4 3 0 . 0 4 4 8 0 . 0 4 4 8 1 0 . 2 6 9 1 0. 1 0 0 8 0 . 0 7 2 8 1 1 . 2 9 4 1 0 . 1 4 5 6 0 . 1 0 0 8 1 4 . 1 1 7 6 0 . 2 6 3 2 0 . 1 5 6 8 1 7 . 2 2 5 5 0 . 3 0 2 4 0 . 1 8 4 8 1 9 . 6 0 2 9 0 . 3 5 2 8 0 . 2 4 0 8 2 2 . 2 3 9 9 0 . 4 0 3 2 0 . 2 8 0 0 1 9 . 7 9 4 9 0 . 7 2 8 0 0 . 4 2 0 0 2 1 . 8 8 3 7 1 . 6 2 4 0 0 . 5 6 0 0 2 3 . 9 5 3 6 D V A D V B V E L 0 . 0 3 9 2 0 . 0 3 9 2 9 . 2 4 4 2 0 . 0 5 6 0 0 . 0 5 6 0 1 2 . 3 1 9 0 0 . 1 2 3 2 0 . 0 8 4 0 1 3 . 3 4 3 9 0 . 1 4 5 6 0 . 0 9 5 2 1 4 . 3 6 8 9 0 . 1 8 4 8 0 , 1 2 3 2 1 4 . 3 8 8 6 0 . 2 1 2 8 0 . 1 4 0 0 1 8 . 4 6 8 6 0 . 2 6 8 8 0 . 1 5 6 8 2 5 . 6 6 2 9 0 . 3 8 0 8 0 . 2 1 2 8 1 8 . 4 7 8 5 0 . 6 1 6 0 0 . 5 0 4 0 2 0 . 7 2 1 5 F I L M 8 - 1 R U N F 4 168 DDROP D A I R F N TT I ME HTWC . D E L T DVA D V B V E k 0 . 4 2 0 0 $ . 0 2 8 0 6 . 0 0 0 . 1 8 5 6 3 . 4 3 7 5 1 . 8 4 6 6 0 • 0 4 4 8 0 . 0 4 4 8 1 0 . 2 6 5 8 0 . 4 2 0 0 0 . 0 2 8 0 1 1 . 0 0 0 . 3 4 0 2 3 . 3 8 0 2 1 . 9 3 7 8 0 . 0 8 4 2 0 . 0 6 1 6 11 . 2 9 4 1 0 . 4 2 0 0 0 . 0 2 8 0 1 6 . 0 0 0 . 4 9 4 8 3 . 3 1 2 5 1 . 9 3 78 0 . 1 2 8 8 0 . 0 8 4 2 1 3 . 3 4 3 9 0 . 4 2 0 0 0 . 0 2 8 0 2 1 . 0 0 0 . 6 4 9 5 3 . 2 3 9 5 2 . 1 0 1 3 0 . 1 6 8 0 0 . 1 1 7 6 1 4 . 3 8 8 6 0 . 4 2 0 0 0 . 0 2 8 0 2 6 . 0 0 0 . 8 0 4 1 3 . 1 5 6 2 2 . 1 0 1 3 0 . 2 1 8 4 0 . 1 4 Q 0 1 6 . 4 1 8 8 0 . 4 2 0 0 0 . 0 2 8 0 3 1 . 0 0 0 . 9 5 8 8 3 . 0 6 7 7 2 . 1 8 8 8 0 . 2 2 4 0 0 . 1 6 8 0 1 7 . 4 4 3 7 0 . 4 2 0 0 0 . 0 2 8 0 3 6 . 0 0 1 . 1 1 3 4 2 . 9 7 3 9 2 . 1 8 88 0 . 2 6 3 2 0 . 1 7 9 2 1 8 . 4 8 8 4 0 . 4 2 0 0 0 . 0 2 8 0 5 1 . 0 0 1 . 5 7 7 3 2 . 6 8 7 5 2 . 5 1 3 3 0 . 3 1 9 2 0 . 2 1 8 4 18 . 8 1 6 9 0 . 4 2 0 0 0 . 0 2 8 0 6 1 . 0 0 1 . 8 8 6 6 2 . 4 7 3 9 2 . 6 7 3 8 0 . 5 2 0 8 0 . 2 8 0 0 2 1 . 0 5 0 7 0 . 4 2 0 0 0 . 0 2 8 0 7 6 . 0 0 2 . 3 5 0 5 2 . 1 5 1 0 2 . 8 3 4 0 0 . 8 4 0 0 0 . 2 6 3 2 21 . 2 1 5 0 F I L M 8 - 1 R U N F 5 • DDROP D A I R F N TT I ME HTWC D E L T D V A D V B V E L 0 . 4 2 0 0 0 . 0 5 0 4 4 . 0 0 0 . 1 2 37 3 . 4 5 3 1 1 . 8 4 6 3 0 . 0 6 1 6 0 . 0 6 1 6 1 1 . 5 5 5 2 0 . 4 2 0 0 0 . 0 5 0 4 9 . 0 0 0 . 2 7 8 4 3 . 3 9 5 8 1 . 9 3 6 3 0 . 1 0 0 8 0 . 0 7 2 8 1 1 . 2 9 4 1 0 . 4 2 0 0 0 o 0 5 0 4 1 4 . 0 0 0 . 4 3 3 0 3 . 3 2 8 1 1 . 9 3 6 3 0 . 1 4 0 0 0 . 0 9 5 2 1 3 o 3 4 3 9 0 . 4 2 0 0 0 . 0 5 0 4 1 9 . 0 0 0 . 5 8 7 6 3 . 2 5 0 0 2 . 0 9 9 7 0 . 1 5 6 8 0 . 1 1 2 0 1 5 . 3 9 3 8 0 . 4 2 0 0 0 . 0 5 0 4 2 4 . 0 0 0 . 7 4 2 3 3 . 1 6 6 6 2 . 0 9 9 7 0 . 1 8 4 8 0 . 1 2 3 2 1 6 . 4 3 8 5 0 . 4 2 0 0 0 . 0 5 0 4 2 9 . 0 0 0 . 8 9 6 9 3 i 0 7 8 1 2 . 1 0 1 0 0 . 2 0 1 6 0 . 1 4 5 6 1 7 . 4 4 3 7 0 . 4 2 0 0 0 . 0 5 0 4 3 4 . 0 0 1 . 0 5 1 5 2 . 9 8 4 3 2 . 2 6 3 8 0 . 2 1 8 4 0 . 1 5 6 8 1 8 . 4 8 8 4 0 . 4 2 0 0 0 . 0 5 0 4 3 9 . 0 0 1 . 2 0 6 2 2 . 8 8 5 4 2 . 2 6 3 8 0 . 2 6 8 8 0 . 1 9 0 4 1 9 . 4 9 3 6 0 . 4 2 0 0 0 . 0 5 0 4 4 4 . 0 0 1 . 3 6 0 8 2 . 7 8 1 2 2 . 4 2 5 7 0 . 2 8 5 6 0 . 2 0 1 6 2 0 . 5 3 8 2 F I L M 8 -•1 R U N F 6 DDROP D A I R F N TT I ME HTWC D E L T DVA D V B V E L 0 . 4 2 0 0 0 . 0 2 0 0 2 6 . 0 0 0 . 8 0 4 1 3 . 2 3 9 5 2 . 0 1 2 3 0 . 1 4 0 0 0 . 1 0 0 8 9 . 8 7 4 2 0 . 4 2 0 0 0 . 0 2 8 0 3 1 . 0 0 0 . 9 5 8 8 3 . 1 6 6 6 2 . 1 0 1 9 0 . 1 8 4 8 0 . 1 3 4 4 1 4 . 3 6 8 9 0 . 4 2 0 0 0 . 0 2 8 0 3 6 . 0 0 1 . 1 1 3 4 3 . 0 8 3 3 2 . 1 0 1 9 0 . 2 0 7 2 0 . 1 5 1 2 1 6 . 4 1 8 8 0 . 4 2 0 0 0 . 0 2 8 0 4 1 . 0 0 1 . 2 6 8 0 3 . 0 0 0 0 2 * 2 6 4 7 0 . 2 3 5 2 0 . 1 5 6 8 1 6 . 4 1 8 8 0 . 4 2 0 0 0 . 0 2 8 0 4 5 . 0 0 1 . 3 9 1 8 2 . 9 1 1 4 2 . 2 6 4 7 0 . 2 5 2 0 0 . 1 6 8 0 2 1 . 8 2 9 3 0 . 4 2 0 0 0 . 0 2 8 0 5 5 . 0 0 1 . 7 0 1 0 2 . 7 2 9 1 2 . 4 2 6 8 0 . 2 8 0 0 0 . 2 0 7 2 1 7 . 9 6 6 0 0 . 4 2 0 0 0 . 0 2 8 0 6 1 . 0 0 1 . 8 8 6 6 2 . 6 2 5 0 2 . 5 1 3 5 0 . 3 0 8 0 0 . 2 2 4 0 1 7 . 0 9 8 8 F I L M 8 - 2 R U N F 7 DDROP D A I R F N T T I M E HTWC D E L T DVA D V B V E L 6.2 52 0 0 . 0 2 8 0 8 . 0 0 0 . 2 4 7 4 3 . 4 1 1 4 2 . 5 1 0 5 0 . 0 7 8 4 0 . 0 4 4 8 1 0 . 9 1 4 6 0 . 2 5 2 0 0 . 0 2 8 0 1 3 . 0 0 0 . 4 0 2 1 3 . 3 2 8 1 2 . 5 1 0 5 0 . 1 1 2 0 0 . 0 8 4 0 1 6 . 4 1 8 8 0 . 2 5 2 0 0 . 0 2 8 0 18 . 0 0 0 . 5 5 6 7 3 . 2 3 9 5 2 . 5 1 0 5 0 . 1 4 5 6 0 . 1 2 3 2 1 7 . 4 6 3 4 0 . 2 5 2 0 0 . 0 2 8 0 2 3 . 0 0 0 . 7 1 1 3 3 . 1 5 1 4 2 . 6 7 3 8 0 . 2 0 1 6 0 . 1 4 5 6 1 7 . 3 6 4 9 0 . 2 5 2 0 0 . 0 2 8 0 2 8 . 0 0 0 . 8 6 6 0 3 . 0 5 7 2 2 . 6 7 3 8 0 . 2 7 4 4 0 . 1 5 1 2 1 8 . 5 6 7 2 0 . 2 5 2 0 0 . 0 2 8 0 3 8 . 0 0 1 . 1 7 5 3 2 . 8 5 4 2 2 . 8 3 6 5 0 . 5 6 0 0 0 . 2 3 5 2 2 0 . 0 0 6 1 0 . 2 5 2 0 0 . 0 2 8 0 4 4 . 0 0 1 . 3 6 0 8 2 . 7 2 9 1 2 . 9 9 8 0 0 . 9 4 0 8 0 . 2 3 5 2 2 0 . 5 4 8 1 F I L M 8-2 i RUN F 8 169 DDROP DAIR FN TT I ME HTWC DELT DVA DVB V E L 0 . 2 8 0 0 0 . 0 2 8 0 3.00 0 . 0 9 28 3 . 4 5 3 1 2 * 4 3 3 8 0 . 0 3 9 2 0 . 0 3 9 2 1 5 . 4 0 7 0 0 . 2 8 0 0 0 . 0 2 8 0 7.00 0 . 2 1 6 5 3 . 4 1 1 4 2 . 4 3 3 8 0 . 0 5 6 0 0 . 0 5 6 0 1 0 . 2 7 4 0 0 . 2 8 0 0 0 . 0 2 8 0 1 1 . 0 0 0 . 3 4 0 2 3 . 3 5 9 3 2 . 4 3 3 8 0 . 0 9 5 2 0 . 0 6 1 6 1 2 . 8 3 6 4 0 . 2 8 0 0 0 . 0 2 8 0 1 5 . 0 0 0.46 39 3 . 2 9 6 8 2 . 5 2 4 7 0 . 1 1 2 0 0 . 0 6 7 2 1 5 . 3 9 8 8 0 . 2 8 0 0 0 . 0 2 8 0 1 9 . 0 0 0 . 5 8 7 6 3 . 2 2 9 1 2 . 5 2 4 7 0 . 1 4 0 0 0 . 0 8 9 6 1 6 . 6 7 9 9 0 . 2 8 0 0 0 . 0 2 8 0 2 3 . 0 0 0 . 7 1 1 3 3 . 1 6 1 4 2 . 6 8 7 7 0 . 1 5 6 8 0 . 1 2 8 8 1 6 . 6 7 9 9 0 . 2 8 0 0 0 . 0 2 8 0 2 7 . 0 0 0 . 8 3 5 1 3 . 0 9 3 7 2 . 6 8 7 7 0 . I 9 6 0 0 . 1 4 5 6 1 6 . 6 7 9 9 0 . 2 8 0 0 0 . 0 2 8 0 4 5 . 0 0 1 . 3 9 1 8 2 . 7 5 0 0 2 . 9 3 8 4 0 . 4 7 0 4 0 . 2 3 5 2 1 8 . 8 1 8 0 0 . 2 8 0 0 0 . 0 2 8 0 6 1 . 0 0 1 . 8 8 6 6 2 . 4 1 6 6 3 . 1 8 6 9 0 . 8 9 6 0 0 . 3 3 6 0 2 0 . 5 3 5 8 F I L M 8-2 RUN F 9 DDROP DA1R FN TT I ME HTWC DELT DVA DVB V E L 0 . 2 8 0 0 0 . 0 2 2 4 4 . 0 0 0 * 1 2 3 7 3 . 4 2 1 8 2 . 4 3 6 4 0.03 36 0 . 0 3 3 6 1 9 . 2 6 6 9 0 . 2 8 0 0 0 . 0 2 2 4 8 .00 0 . 2 4 7 4 3 . 3 7 5 0 2 . 4 3 6 4 0 . 0 5 6 0 0 . 0 5 6 0 11 . 5 3 0 6 0 . 2 8 0 0 0 . 0 2 2 4 1 2 . 0 0 0 . 3 7 1 1 3 . 3 1 7 7 2 . 5 2 5 2 0 . 0 8 9 6 0 . 0 8 9 6 1 4 . 1 1 7 6 0 . 2 8 0 0 0 . 0 2 2 4 1 6 . 0 0 0 . 4 9 4 8 3 . 2 5 0 0 2 . 5 2 5 2 0 . 1 4 0 0 0, 1 1 2 0 1 6 . 6 7 9 9 0 . 2 8 0 0 0 . 0 2 2 4 2 5 . 0 0 0 . 7 7 3 2 3 . 0 8 8 5 2 . 6 8 8 6 0 . 2 1 2 8 0 . 1 6 8 0 1 7 . 6 8 4 6 0 . 2 8 0 0 0 . 0 2 2 4 3 0 . 0 0 0 . 9 2 7 8 3 . 0 0 0 0 2 . 6 8 8 6 0 . 2 7 4 4 0 . 1 7 9 2 1 7 . 4 4 3 7 0 . 2 8 0 0 0 . 0 2 2 4 5 5 . 0 0 1 . 7 0 1 0 2 . 4 7 9 1 3 . 1 7 5 9 0 . 9 8 0 0 0 . 2 5 2 0 2 0 . 5 3 4 3 F I L M 8-•2 RUN F 1 0 DDROP DAIR • FN ' T T I M E HTWC DELT DVA DVB V E L 0 . 2 8 0 0 0 . 0 2 2 4 2. 00 0 . 0 6 1 9 3 . 4 4 7 9 2 . 4 3 4 2 0 . 0 3 3 6 0 . 0 3 3 6 2 5 . 6 7 2 8 0.28 00 0 . 0 2 2 4 7.00 0 . 2 1 6 5 3.39 58 2 . 4 3 4 2 0 . 0 6 1 6 0 . 0 6 1 6 1 0 . 2 6 9 1 0 . 2 8 0 0 0 . 0 2 2 4 1 2 . 00 0 . 3 7 1 1 3 . 3 2 2 9 2 . 5 2 2 9 0 . 1 3 4 4 0 . 0 8 4 0 1 4 . 3 6 8 9 0 . 2 8 0 0 0 . 0 2 2 4 2 2 . 0 0 0 . 6 8 0 4 3 . 1 5 6 2 2 . 6 8 6 0 0 . 1 9 6 0 0 . 1 5 6 8 1 6 . 4 2 8 6 0 . 2 8 0 0 0 . 0 2 2 4 2 7 . 0 0 0 . 8 3 5 1 3 . 0 6 7 7 2 . 6 8 6 0 0 . 2 3 5 2 0 . 1 5 6 8 1 7 . 4 4 3 7 0 . 2 8 0 0 0 . 0 2 2 4 4 2 . 0 0 1 . 2 9 9 0 2 . 7 6 5 6 2 . 9 3 5 6 0 . 3 9 2 0 0 . I 9 6 0 1 9 . 8 4 8 4 0.28 00 0 . 0 2 2 4 5 4 . 0 0 1 . 6 7 0 1 2 . 5 1 0 4 3 . 0 9 7 0 0 . 8 8 4 8 0 . 2 5 2 0 2 0 . 9 5 8 7 F I L M 8-•2 RUN F l l DDROP DAIR FN T T I M E HTWC DELT DVA DVB VEL 0 . 2 8 0 0 0 . 0 2 2 4 3.00 0 . 0 9 2 8 3 . 4 5 8 3 2 . 3 5 0 7 0.-0392 0 . 0 3 9 2 1 3 . 6 9 8 7 0 . 2 8 0 0 0 . 0 2 2 4 8. 00 0 . 2 4 7 4 3 . 3 9 5 8 2 . 5 1 4 6 0 . 0 7 8 4 0 . 0 6 1 6 1 2 . 3 1 9 0 0 . 2 8 0 0 0 . 0 2 2 4 1 3 . 0 0 0 . 4 0 2 1 3 . 3 2 2 9 2 . 5 1 4 6 0 . 1 2 3 2 0 . 0 8 4 0 1 4 . 3 6 8 9 0 . 2 8 0 0 0 . 0 2 2 4 1 8 . 00 0 . 5 5 6 7 3 . 2 3 9 5 2 . 5 1 4 6 0 . 1 5 6 8 0 . 1 1 2 0 1 6 . 4 3 8 5 0 . 2 8 0 0 0 . 0 2 2 4 2 3 . 0 0 0 . 7 1 1 3 3 . 1 4 5 8 2 . 6 7 7 8 0 . 1 9 0 4 0 . 1 4 5 6 1 8 . 4 6 8 6 0 . 2 8 0 0 0 . 0 2 2 4 2 5 . 0 0 0 . 7 7 3 2 3 . 1 0 9 3 2 . 6 7 7 8 0 . 2 0 1 6 0 . 1 5 1 2 1 7 . 9 8 5 7 0 . 2 8 0 0 0 . 0 2 2 4 3 0 . 0 0 0 . 9 2 7 8 3 . 0 1 5 6 2 . 6 7 7 8 0 . 2 3 5 2 0 . 1 6 8 0 1 8 . 4 6 8 6 0 . 2 8 0 0 0 . 0 2 2 4 3 9 . 0 0 1 . 2 0 6 2 2 . 8 3 8 5 2 . 8 4 0 5 0 . 3 5 2 8 0 . 1 8 4 8 1 9 . 3 9 2 8 0 . 2 8 0 0 0.02 24 4 7 . 00 1 . 4 5 3 6 2 . 6 7 7 0 3 . 0 0 2 2 0 . 4 7 6 0 0 . 2 2 4 0 1 9 . 8 9 5 2 0 . 2 8 0 0 0 . 0 2 2 4 5 9 . 0 0 1 . 8 2 4 7 2 . 4 1 6 6 3.16 33 1 . 0 0 8 0 0.28 00 2 1 . 3 8 5 8 F I L M 8-2 RUN F 1 2 170 DDROP DAIR FN TT I ME HTWC DELT DVA DVB V E L 0 . 3 6 4 0 0 . 0 2 8 0 4.00 0.12 37 3 . 4 5 3 1 2 . 4 3 3 8 0 . 0 5 0 4 0 . 0 5 0 4 1 1 . 5 5 5 2 0 . 3 6 4 0 0 . 0 2 8 0 8.00 0 . 2 4 7 4 3 . 4 1 6 6 2 . 4 3 3 8 0 . 0 6 7 2 0 . 0 6 7 2 8 . 9 9 2 9 0 . 3 6 4 0 0 . 0 2 8 0 1 6 . 0 0 0 . 4 9 4 8 3 . 3 2 8 1 2 . 5 2 2 1 0 . 0 9 5 2 0 . 0 7 8 4 10.90.23 0 . 3 6 4 0 0 . 0 2 8 0 2 0 . 0 0 0 . 6 1 8 6 3 . 2 7 6 0 2 . 5 2 2 1 0 . 1 0 6 4 0 . 0 8 4 0 1 2 . 6 3 6 4 0 . 3 6 4 0 0 . 0 2 8 0 2 4 . 0 0 0 . 7 4 2 3 3 . 2 1 8 7 2 . 5 2 4 7 0 . 1 2 8 8 0 . 0 8 4 0 1 4 2 1 1 7 6 0 . 3 6 4 0 0.02 80 2 8 . 0 0 0 . 8 6 6 0 3 . 1 5 6 2 2 . 6 8 7 7 0 . 1 4 0 0 0 . 0 8 9 6 15 . 3 9 8 8 0 . 3 6 4 0 0 . 0 2 8 0 3 2 . 0 0 0 . 9 8 9 7 3 . 0 9 3 7 2 . 6 8 7 7 0 . 1 7 3 6 0 . 1 1 7 6 1 5 . 3 9 8 8 0 . 3 6 4 0 0 . 0 2 8 0 3 6 . 0 0 1 . 1 1 3 4 3 . 0 3 1 2 2 . 6 8 7 7 0 « 1 9 0 4 0 . 1 4 0 0 1 5 . 3 9 8 8 0 . 3 6 4 0 0 . 0 2 8 0 4 0 . 0 0 1 . 2 3 7 1 2 . 9 6 3 5 2 . 7 7 6 8 0 . 2 0 1 6 0 . 1 4 5 6 1 6 . 6 7 9 9 0 . 3 6 4 0 0 . 0 2 8 0 4 4 . 0 0 1 . 3 6 0 8 2 . 8 9 5 8 2 . 7 7 6 8 0 . 2 1 2 8 0 . 1 5 1 2 1 6 . 6 7 9 9 0 . 3 6 4 0 0 . 0 2 8 0 4 8 . 00 1 . 4 8 4 5 2 . 8 2 2 9 2 . 9 3 8 5 0 . 2 2 4 0 0 . 1 5 6 8 1 7 . 9 6 1 1 0 . 3 6 4 0 0 . 0 2 8 0 5 6 . 0 0 1 . 7 3 2 0 2 . 6 7 1 8 2 . 9 3 8 5 0 . 2 4 0 8 0 . 1 6 8 0 1 8 . 6 1 4 0 0. 3 6 4 0 0 . 0 2 8 0 6 6 . 0 0 2 . 0 4 1 2 2 . 4 7 9 1 3 . lOOO 0 . 2 9 6 8 0 . 2 0 1 6 1 8 . 9 9 1 0 0 . 3 6 4 0 0 . 0 2 8 0 7 3.00 2 . 2 5 7 7 2 . 3 3 85 3 . 2 6 0 3 0 . 4 0 3 2 0 . 2 1 2 8 1 9 . 7 9 4 9 0 . 3 6 4 0 0 . 0 2 8 0 7 8 . 0 0 2 . 4 1 2 4 2 . 2 3 9 5 3 . 2 6 0 3 0 . 4 6 4 8 0 . 2 9 1 2 1 9 . 5 1 3 3 0 . 3 6 4 0 0 . 0 2 8 0 8 3 . 0 0 2 . 5 6 7 0 2 . 1 3 5 4 3 . 4 1 9 8 0 . 6 3 8 4 0 . 3 3 6 0 2 0 . 5 1 8 5 0 . 3 6 4 0 0 . 0 2 8 0 9 4 . 0 0 2 . 9 0 7 2 1 . 9 0 1 0 3 . 5 7 8 6 0 . 9 6 3 2 0 . 3 6 4 0 2 1 . 0 0 0 5 F I L M 8- 2 RUN F 1 3 DDROP DAIR FN TT I ME HTWC DELT DVA DVB V E L 0 . 3 6 4 0 0 . 0 2 2 4 3. 00 0 . 0 9 2 8 3 . 4 6 8 7 2 . 3 4 6 7 0 . 0 3 9 2 0 . 0 3 9 2 1 0 . 2 8 2 3 0 . 3 6 4 0 0 . 0 2 2 4 6.00 0. 1 8 5 6 3 . 4 4 2 7 2 . 4 3 5 7 0 . 0 5 0 4 0 . 0 5 0 4 8 . 5 4 1 2 0 . 3 6 4 0 0 . 0 2 2 4 1 0 . 0 0 0 . 3 0 9 3 3 . 4 0 1 0 2 . 4 3 5 7 0 . 0 7 8 4 0 . 0 5 6 0 1 0 . 2 7 4 0 0 . 3 6 4 0 0 . 0 2 2 4 2 2 . 0 0 0 . 6 8 0 4 3 . 2 6 0 4 2 . 5 9 9 2 0 . 1 1 2 0 0 . 0 8 4 0 11 . 5 4 7 0 0 . 3 6 4 0 0 . 0 2 2 4 2 6 . 0 0 0 . 8 0 4 1 3.20 31 2 . 5 9 9 2 0 .12 32 0 . 0 8 4 0 1 4 . 1 1 7 6 0 . 3 6 4 0 0 . 0 2 2 4 3 0 . 0 0 0 . 9 2 7 8 3 . 1 4 0 6 2 . 5 9 9 2 0 . 1 5 1 2 0 . 1 0 0 8 1 5 . 3 9 8 8 0 . 3 6 4 0 0 . 0 2 2 4 3 4 . 0 0 1 . 0 5 1 5 3 . 0 7 8 1 2 . 6 8 9 1 0 . 1 7 3 6 0. 1 1 7 6 1 5 . 3 9 8 8 0 . 3 6 4 0 0 . 0 2 2 4 3 8 . 0 0 1 . 1 7 5 3 3 . 0 1 0 4 2 . 6 8 9 1 0 . 2 0 1 6 0 . 1 4 0 0 16.6,799 0 . 3 6 4 0 0 . 0 2 2 4 4 2 . 0 0 1 . 2 9 9 0 2 . 9 4 2 7 2 . 8 5 1 2 0 . 2 0 7 2 0. 1512 1 6 . 6 7 9 9 0 . 3 6 4 0 0 . 0 2 2 4 4 6 . 00 1. 4 2 2 7 2 . 8 6 9 7 2 . 8 5 1 2 0 . 2 1 8 4 0 . 1 5 6 8 1 7 . 9 8 5 7 0 . 3 6 4 0 0.0 2 2 4 5 0 . 0 0 1 . 5 4 6 4 2 . 7 9 6 8 2 . 8 5 1 2 0 . 2 3 5 2 0. 1 6 2 4 1 7 . 9 6 1 1 0 . 3 6 4 0 0 . 0 2 2 4 5 4 . 0 0 1 . 6 7 0 1 2 . 7 2 3 9 3 . 0 1 2 6 0 . 2 4 6 4 0 . 1 6 8 0 1 7 . 9 6 1 1 0 . 3 6 4 0 0 . 0 2 2 4 6 0.00 1 . 8 5 5 7 2 . 6 0 9 3 3 . 0 1 2 6 0 . 2 5 2 0 0 . 1 8 4 8 1 8 . 8 2 3 4 0 . 3 6 4 0 0 . 0 2 2 4 6 9 . 00 2 . 1 3 4 0 2 . 4 3 2 2 3 . 1 7 3 4 0 .30 24 0 . 2 0 7 2 1 9 . 3 9 2 8 0 . 3 6 4 0 0 . 0 2 2 4 8 0 . 0 0 2 . 4 7 4 2 2 . 2 0 8 3 3 . 3 3 3 5 0 .5 1 5 2 0 . 2 8 0 0 2 0 . 0 5 9 8 0 . 3 6 4 0 0 . 0 2 2 4 1 0 0 . 0 0 3 . 0 9 2 8 1 . 7 7 6 6 3 . 6 5 2 3 1 . 0 8 0 0 0 . 3 8 0 8 21 . 2 7 2 4 F I L M 8-2 RUN F 1 4 DDROP DAIR- FN TT I ME HTWC DELT DVA DVB VEL 0 . 3 3 6 0 0 . 0 2 8 0 3.00 0 . 0 9 2 8 3 . 4 3 7 5 2 . 4 3 5 1 0 . 0 6 7 2 0 . 0 6 7 2 2 0.5 3 1 7 0 . 3 3 6 0 0 . 0 2 8 0 1 0 . 0 0 0 . 3 0 9 3 3 . 3 5 4 1 2 . 4 3 5 1 0 . 1 0 0 8 0 . 0 7 8 4 11 . 7 4 1 8 0 . 3 3 6 0 0 . 0 2 8 0 1 5 . 00 0 . 4 6 3 9 3 . 2 7 6 0 2 . 5 9 8 6 0 . 1 2 3 2 0. 1 0 0 8 1 5 . 3 9 3 8 0 . 3 3 6 0 0 . 0 2 8 0 2 0 . 0 0 0 . 6 1 8 6 3 . 1 9 7 9 2 . 5 9 8 6 0 . 1 4 5 6 0 . 1 1 7 6 1 5 . 3 9 3 8 0 . 3 3 6 0 0 . 0 2 8 0 2 5 . 0 0 0 . 7 7 3 2 3 . 1 1 4 5 2 . 6 0 0 5 0 . 1 9 0 4 0 . 1 4 0 0 1 6 . 4 3 8 5 0 . 3 3 6 0 0 . 0 2 8 0 3 0 . 0 0 0 . 9 2 7 8 3 . 0 2 6 0 2 . 7 6 3 3 0 . 2 0 7 2 0 . 1 5 6 8 1 7 . 4 4 3 7 : 171 0 . 3 3 6 0 0 . 0 2 8 0 3 5 . 0 0 0 . 3 3 6 0 0 . 0 2 8 0 4 0 . 0 0 0.3 3 6 0 0 . 0 2 8 0 4 5 . 0 0 0 . 3 3 6 0 0 . 0 2 8 0 5 0 . 0 0 0 . 3 3 6 0 0 . 0 2 8 0 5 9 . 0 0 0 . 3 3 6 0 0 . 0 2 8 0 6 6 . 0 0 0 . 3 3 6 0 0 . 0 2 8 0 7 6 . 0 0 F I L M 8-•2 DDROP D A I R FN 0.3 36 0 0 . 0 1 6 8 3.00 0 . 3 3 6 0 0 . 0 1 6 8 8.00 0 . 3 3 6 0 0 . 0 1 6 8 1 3 . 0 0 0 . 3 3 6 0 0 . 0 1 6 8 1 8 . 0 0 0.3 3 6 0 0 . 0 1 6 8 2 3 . 0 0 0 . 3 3 6 0 0 . 0 1 6 8 33 .00 0 . 3 3 6 0 0 . 0 1 6 8 3 8 . 0 0 0 . 3 3 6 0 0 . 0 1 6 8 7 8 * 0 0 0.3 3 6 0 0 . 0 1 6 8 9 3 . 0 0 F I L M 8-•3 DDROP DAIR FN 0 . 4 0 6 0 0 . 0 5 8 0 8.00 0 . 4 0 6 0 0 . 0 5 8 0 1 2 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 2 0 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 2 4 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 2 8 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 3 2 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 3 6 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 4 8 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 5 2 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 5 6 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 6 0 . 0 0 0 . 4 0 6 0 0 . 0 5 8 0 6 8 . 00 F I L M ' 8-4 DDROP DAIR FN 0 . 3 9 4 4 0 . 0 5 8 0 7.00 0 . 3 9 4 4 0 . 0 5 8 0 1 1 . 0 0 0 . 3 9 4 4 0 . 0 5 8 0 1 4 . 00 0 . 3 9 4 4 0 . 0 5 8 0 1 9 . 0 0 0 . 3 9 4 4 0 . 0 5 8 0 2 4 . 0 0 0 . 3 9 4 4 0.058Q 3 2 . 0 0 0 . 3 9 4 4 0 . 0 5 8 0 3 9 . 0 0 0 . 3 9 4 4 0 . 0 5 8 0 4 3 . 0 0 0 . 3 9 4 4 0 . 0 5 8 0 4 8 . 0 0 0 . 3 9 4 4 0 . 0 5 8 0 5 8 . 00 1 . 0 8 2 5 2 . 9 3 2 2 2 . 7 6 3 3 0 . 2 1 8 4 0 . 1 6 2 4 1 8 . 4 8 8 4 1 . 2 3 7 1 2 . 8 4 6 8 2 . 9 2 5 0 0 . 2 5 2 0 0 . 1 6 2 4 1 6 . 8 3 2 7 1 . 3 9 1 8 2 . 7 3 9 5 2 . 9 2 5 0 0 . 2 8 5 6 0 . 17 3 6 2 1 . 1 4 9 3 1 . 5 4 6 4 2 . 6 4 0 6 3 . 0 1 3 6 0 . 3 4 7 2 0 . 1 7 9 2 1 9 . 4 9 3 6 1 . 8 2 4 7 2 . 4 4 7 9 3 . 1 7 4 4 0 . 4 9 2 8 0 . 2 2 9 6 2 1 . 1 0 1 1 2 . 0 4 1 2 2 . 3 0 2 0 3 . 2 6 2 5 0 . 6 8 8 8 0 . 2 4 6 4 2 0 . 5 4 1 1 2 . 3 5 0 5 2 . 0 7 2 9 3 . 4 2 2 2 0 . 9 5 2 0 0 . 3 9 2 0 2 2 . 5 7 8 3 RUN F 1 5 T T I M E HTWC DELT DVA DVB V E L 0 . 0 9 2 8 3 . 4 3 7 5 2 . 4 3 5 1 0 . 0 3 9 2 0 . 0 3 9 2 2 0 . 5 3 1 7 0 . 2 4 7 4 3 . 3 8 5 4 2 . 4 3 5 1 0 . 0 5 0 4 0 . 0 5 0 4 1 0 . 2 6 9 1 0 . 4 0 2 1 3 . 3 2 2 9 2 . 5 2 3 7 0 . 0 6 1 6 0 . 0 6 1 6 1 2 . 3 1 9 0 0.5 567 3 . 2 5 5 2 2 . 5 2 3 7 0 • 0 8 4 0 0 . 0 7 2 8 1 3 . 3 4 3 9 0 . 7 1 1 3 3 . 1 7 7 0 2 . 6 1 4 1 0 . 1 1 2 0 0 . 0 8 4 0 1 5 . 4 1 3 5 1 . 0 2 0 6 3 . 0 0 5 2 2 .7 7 6 8 0 .16 24 0 . 1 1 7 6 1 6 * 9 3 1 2 1 . 1 7 5 3 2 . 9 1 6 6 2 . 7 7 6 8 0 . 2 0 1 6 0 . 1 2 8 8 1 7 . 4 6 3 4 2 . 4 1 2 4 2 . 1 2 5 0 3 . 4 2 5 4 0 . 7 0 0 0 0 . 2 8 0 0 1 9 . 5 0 3 4 2 . 8 7 6 3 1 . 7 9 1 6 3 . 5 8 4 6 1 . 0 4 7 2 0 . 3 8 0 8 2 1 . 9 0 4 8 RUN F 1 6 T T I M E HTWC DELT DVA DVB V E L 0 . 2 4 7 4 3 . 4 1 6 6 1 . 8 4 5 1 0 . 0 6 9 6 0 . 0 6 9 6 1 0 . 2 740 0 . 3 7 1 1 3.38 54 1 . 8 4 5 1 0 • 1 0 4 4 0 . 0 8 1 2 7.6 8 7 1 0 . 6 1 8 6 3 . 3 2 2 9 1 . 8 4 5 7 0 . 1 3 9 2 0 . 0 9 8 6 7 . 6 9 9 4 0 . 7 4 2 3 3 . 2 8 6 4 1 .9 3 5 9 0 . 1 5 6 6 0 . 1 1 0 2 8 . 9 9 2 9 0. 8 6 6 0 3 . 2 5 0 0 1 . 9 3 5 9 0 . 1 7 4 0 0 . 1 3 3 4 8 . 9 6 8 2 0 . 9 8 9 7 3 . 2 0 8 3 1 . 9 3 5 9 0 . 1 9 7 2 0 . 1 5 0 9 1 0 . 2 7 4 0 1 . 1 1 3 4 3 . 1 6 1 4 2 . 0 2 6 0 0 . 2 0 8 8 0 . 1 6 8 2 1 1 . 5 5 5 2 1 . 4 8 4 5 3 . 0 0 0 0 2 . 1 8 9 1 0 . 2 7 8 4 0 . 2 1 4 6 1 3 . 2 5 5 2 1 . 6 0 8 2 2 . 9 3 7 5 2 . 1 8 9 1 0 . 3 0 1 6 0 . 2 4 3 6 1 5 . 3 9 8 8 1 . 7 3 2 0 2 . 8 6 9 7 2 . 1 8 9 1 0 . 3 4 8 0 0 . 2 5 5 2 1 6 . 7 0 4 6 1 . 8 5 5 7 2 . 8 0 2 0 2 . 3 5 1 3 0 . 3 5 9 6 0 . 2 7 8 4 1 6 . 6 7 9 9 2 . 1 0 3 1 2 . 6 5 6 2 2 . 3 5 1 3 0 . 4 3 5 0 0 . 3 0 1 6 1 7 . 9 6 1 1 RUN F L 7 -T T I M E HTWC DELT DVA DVB V E L 0 . 2 1 6 5 3 . 4 1 6 6 2 . 6 7 5 8 0 . 2 3 2 0 0 . 1 7 4 0 1 1 . 7 4 1 8 0 . 3 4 0 2 3 . 3 6 9 7 2 . 6 7 5 8 0 . 2 4 3 6 0 . 1 8 5 6 1 1 . 5 5 5 2 0 . 4 3 3 0 3 . 3 2 8 1 2 . 6 7 5 8 0 . 2 5 5 2 0 . 2 0 3 0 1 3 . 6 6 5 9 0 . 5 8 7 6 3 . 2 5 0 0 2 . 7 6 4 7 0 . 2 7 8 4 0 . 2 2 0 4 1 5 . 3 9 3 8 0 . 7 4 2 3 3 . 1 7 1 8 2 . 7 6 4 7 0 . 2 9 5 8 0 . 2 3 2 0 1 5 . 4 1 3 5 0 . 9 8 9 7 3 . 0 4 1 6 2 . 9 2 6 8 0 . 3 3 0 6 0 . 2 4 9 4 1 6 . 0 3 9 3 1 . 2 0 6 2 2 . 9 1 6 6 3 . 0 1 4 4 0 . 3 7 1 2 0 . 2 7 2 6 1 7 . 5 9 8 6 1 . 3 2 9 9 2 . 8 4 3 7 3 . 0 1 4 4 0 . 3 9 4 4 0 . 2 8 4 2 1 7 . 9 6 1 1 1 . 4 8 4 5 2 . 7 5 0 0 3 . 1 7 5 0 0 . 4 1 7 6 0 . 2 9 0 0 1 8 . 4 6 8 6 1 . 7 9 3 8 2 . 5 5 2 0 3 . 3 3 4 7 0 . 4 5 2 4 0 .35 38 1 9 . 5 1 3 3 F I L M 8 - 4 R U N F 1 8 1 7 2 D D R O P D A I R F N • T T I M E H T W C D E L T D V A D V B V E L 0 . 4 2 9 2 0 . 0 5 8 0 4 . 0 0 0 . 1 2 3 7 3 . 4 6 3 5 2 . 6 0 2 0 0 . 1 2 1 8 0 . 0 8 7 0 8 . 9 9 2 9 0 . 4 2 9 2 0 . 0 5 8 0 1 8 . 0 0 0 . 5 5 6 7 3 . 3 2 8 1 2 . 7 6 4 7 0 . 1 7 9 8 0 . 1 4 5 0 9 . 5 3 1 4 0 . 4 2 9 2 0 . 0 5 8 0 2 1 . 0 0 0 . 6 4 9 5 3 . 2 9 6 8 2 . 7 6 4 7 0 . 1 8 5 6 0 . 1 5 6 6 1 0 . 2 8 2 3 0 . 4 2 9 2 0 . 0 5 8 0 2 5 * 0 0 0 . 7 7 3 2 3 . 2 4 4 7 2 . 7 6 4 7 0 . 1 9 7 2 0 . 1 6 2 4 1 2 . 8 3 6 4 0 . 4 2 9 2 0 . 0 5 8 0 3 1 . 0 0 0 . 9 5 8 8 3 • 1 6 6 6 2 . 7 6 4 7 0 . 2 2 6 2 0 . 1 7 4 0 1 2 . 8 2 8 2 0 . 4 2 9 2 0 . 0 5 8 0 3 8 . 0 0 1 . 1 7 5 3 3 . 0 7 8 1 2 . 9 2 6 6 0 . 2 4 9 4 0 . 1 9 1 4 1 2 . 4 5 9 8 0 . 4 2 9 2 0 . 0 5 8 0 4 3 . 0 0 1 . 3 2 9 9 3 . 0 0 0 0 2 . 9 2 6 6 0 . 2 7 8 4 0 . 2 1 4 6 1 5 . 3 9 3 8 F I L M 8 -- 4 R U N F 1 9 D D R O P D A I R F N T T I M E H T W C D E L T D V A D V B V E L 0 . 4 2 9 2 0 . 0 5 8 0 4 . 0 0 0 . 1 2 3 7 3 * 4 5 8 3 2 . 6 0 2 5 0 . 1 7 4 0 0 . 1 2 7 6 1 0 . 2 7 4 0 0 . 4 2 9 2 0 . 0 5 8 0 8 . 0 0 0 . 2 4 7 4 3 . 4 1 6 6 2 . 6 0 2 5 0 . 1 8 5 6 0 . 1 3 9 2 1 0 . 2 7 4 0 0 . 4 2 9 2 0 . 0 5 8 0 1 2 . 0 0 0 . 3 7 1 1 3 . 3 6 9 7 2 . 6 8 9 9 0 . 2 0 8 8 0 . 1 5 0 8 1 1 . 5 5 5 2 0 . 4 2 9 2 0 . 0 5 8 0 1 5 . 0 0 0 . 4 6 3 9 3 . 3 3 3 3 2 . 6 8 9 9 0 . 2 2 6 2 0 . 1 6 2 4 1 1 . 9 5 7 6 0 . 4 2 9 2 0 . 0 5 8 0 1 8 . 0 0 0 . 5 5 6 7 3 . 2 9 1 6 2 . 6 8 9 9 0 . 2 3 7 8 0 . 1 7 4 0 1 3 . 6 9 8 7 0 . 4 2 9 2 o . a s s o • 2 . 1 . 0 0 0 . 6 4 9 5 3 . 2 5 0 0 2 . 7 7 7 2 0 . 2 4 9 4 0 . 1 7 9 8 1 3 . 6 6 5 9 0 . 4 2 9 2 0 . Q 5 8 0 2 6 . 0 0 0 . 8 0 4 1 3 . 1 7 7 0 2 . 7 7 7 2 0 . 2 6 6 8 0 . 1 9 1 4 1 4 . 3 8 8 6 0 . 4 2 9 2 0 . 0 5 8 0 3 2 . 0 0 0 . 9 8 9 7 3 . 0 8 3 3 2 . 9 3 8 9 0 . 2 8 4 2 0 . 2 0 8 8 1 5 . 3 9 0 5 0 . 4 2 9 2 0 . 0 5 8 0 3 5 . 0 0 . 1 . 0 8 2 5 3 . 0 3 6 4 2 . 9 3 8 9 0 . 3 1 9 0 0 . 2 2 6 2 1 5 . 4 0 7 0 0 . 4 2 9 2 0 . 0 5 8 0 4 2 . 0 0 1 . 2 9 9 0 2 . 9 1 6 6 2 . 9 4 1 5 0 . 3 4 8 0 0 . 2 3 7 8 1 6 . 8 6 6 5 F I L M 8 " • 4 R U N F 2 0 D D R O P D A I R F N T T I M E H T W C D E L T D V A D V B V E L 0 . 4 6 4 0 0 . 0 5 8 0 1 4 . 0 0 0 . 4 3 3 0 3 . 3 4 8 9 2 . 6 7 6 4 0 . 1 5 6 6 0 . 1 1 6 0 1 0 . 6 3 6 6 0 . 4 6 4 0 0 . 0 5 8 0 1 7 . 0 0 0 . 5 2 5 8 3 . 3 2 8 1 2 . 6 7 6 4 0 . 1 6 8 2 0 . 1 2 7 6 6 . 8 3 2 9 0 . 4 6 4 0 0 . 0 5 8 0 2 1 . 0 0 0 . 6 4 9 5 3 . 2 8 1 2 2 . 6 7 6 4 0 . 1 7 9 ' 8 0 . 1 3 9 2 1 1 . 5 5 5 2 0 . 4 6 4 0 0 . 0 5 8 0 2 4 . 0 0 0 . 7 4 2 3 3 . 2 5 0 0 2 . 7 6 5 2 0 . 2 0 3 0 0 . 1 5 0 8 1 0 . 2 4 9 4 0 . 4 6 4 0 0 . 0 5 8 0 3 7 . 0 0 1 . 1 4 4 3 3 . 0 7 2 9 2 . 9 2 7 1 0 . 2 4 3 6 0 . 1 7 4 0 1 3 . 4 2 5 8 0 . 4 6 4 0 0 . 0 5 8 0 4 2 . 0 0 1 . 2 9 9 0 3 . 0 0 0 0 2 . 9 2 7 1 0 . 2 6 6 8 0 . 2 0 3 0 1 4 . 3 6 8 9 0 . 4 6 4 0 0 . 0 5 8 0 4 7 . 0 0 1 . 4 5 3 6 2 . 9 1 6 6 3 . 0 1 4 7 0 . 3 0 7 4 0 . 2 3 2 0 1 6 . 4 3 8 5 0 . 4 6 4 0 0 . 0 5 8 0 5 2 . 0 0 1 . 6 0 8 2 2 . 8 3 3 3 3 . 0 1 4 7 0 . 3 1 9 0 0 * 2 6 1 0 1 6 . 4 1 8 8 0 . 4 6 4 0 0 . 0 5 8 0 5 5 . 0 0 1 . 7 0 1 0 2 . 7 7 6 0 3 . 1 7 5 2 0 . 3 5 3 8 0 . 2 7 2 6 1 8 . 8 2 3 4 F I L M 8 -- 4 R U N F 2 1 D D R O P D A I R F N T T I M E H T W C D E L T D V A D V B V E L 0 . 4 6 4 0 0 . 0 5 8 0 8 . 0 0 0 . 2 4 7 4 3 . 4 1 6 6 2 . 6 7 5 8 0 . 1 5 6 6 0 . 1 1 0 2 1 0 . 2 7 4 0 0 . 4 6 4 0 0 . 0 5 8 0 1 2 . 0 0 0 . 3 7 1 1 3 . 3 7 5 0 2 . 6 7 5 8 0 . 1 7 4 0 0 . 1 2 7 6 1 0 . 2 4 9 4 0 . 4 6 4 0 0 . 0 5 8 0 1 6 . 0 0 0 . 4 9 4 8 3 . 3 3 3 3 2 . 6 7 5 8 0 . 1 9 1 4 0 - 1 4 5 0 1 0 . 2 7 4 0 0 * 4 6 4 0 0 . 0 5 8 0 2 9 . 0 0 0 . 8 9 6 9 3 . 1 6 6 6 2 . 8 3 8 3 0 . 2 4 9 4 0 . 1 6 8 2 1 2 . 6 3 7 4 0 . 4 6 4 0 0 . 0 5 8 0 3 5 . 0 0 1 . 0 8 2 5 3 . 0 8 3 3 2 . 8 3 8 3 0 . 2 8 4 2 0 . 2 0 8 8 1 3 . 6 8 2 3 0 . 4 6 4 0 0 . 0 5 8 0 4 0 . 0 0 1 . 2 3 7 1 3 . 0 0 0 0 2 . 9 9 9 8 0 . 3 0 7 4 0 . 2 3 2 0 1 6 . 4 1 8 8 0 . 4 6 4 0 0 . 0 5 8 0 4 5 . 0 0 1 . 3 9 1 8 2 . 9 1 6 6 2 . 9 9 9 8 0 . 3 3 6 0 0 . 2 4 3 6 1 6 . 4 3 8 5 0 . 4 6 4 0 0 . 0 5 8 0 4 9 . 0 0 1 . 5 1 5 5 2 . 8 3 3 3 3 . 0 0 3 0 0 . 3 4 8 0 0 . 2 5 5 2 2 0 . 5 2 3 5 F I L M 8-4 RUN F 2 2 173 DDROP DAIR FN - T T I ME HTWC DELT DVA DVB V E L 0 . 4 9 3 0 0 . 0 5 8 0 8.00 0 . 2 4 7 4 3 . 4 1 6 6 2 . 6 7 5 8 0. 1 7 4 0 0 .12.76 1 0 . 2 7 4 0 0 . 4 9 3 0 0 . 0 5 8 0 1 2 . 0 0 0 . 3 7 1 1 3 . 3 6 9 7 2 . 6 7 5 8 0 . 1 9 1 4 0 . 1392 1 1 . 5 5 5 2 0 . 4 9 3 0 0 . 0 5 8 0 1 5 . 0 0 0 . 4 6 3 9 3 . 3 3 3 3 2 . 6 7 5 8 0 . 2 0 3 0 0 .1 5 0 8 11 . 9 5 7 6 0 . 4 9 3 0 0 . 0 5 8 0 2 2 . 0 0 0 . 6 8 0 4 3 . 2 5 0 0 2 . 7 6 4 7 0 . 2 3 2 0 0 .1 6 8 2 1 1 . 7 2 7 7 0 . 4 9 3 0 0 . 0 5 8 0 2 5 . 0 0 0 . 7 7 3 2 3 . 2 0 8 3 2 . 7 6 4 7 0 . 2 4 3 6 0 .1 8 5 6 1 3 . 6 9 8 7 0 . 4 9 3 0 0 . 0 5 8 0 2 8 . 0 0 0 . 8 6 6 0 3 . 1 6 6 6 2 . 7 6 4 7 0 . 2 5 5 2 0 . 1 9 7 2 1 3 . 6 9 8 7 F I L M 9-•4 RUN F 2 3 DDROP DAIR FN TT I ME HTWC DELT DVA DVB V E L 0 . 1 8 2 6 0 . 0 1 6 6 1 2 . 0 0 0 . 1 8 9 5 3 . 4 5 3 1 9 . 5 9 6 3 0. 1 6 6 0 0 . 1 3 2 8 7 . 5 4 4 6 0 . 1 8 2 6 0 . 0 1 6 6 1 4 . 0 0 0 . 2 2 1 1 3 . 4 3 7 5 9 . 5 9 6 3 0. 1 8 2 6 0 . 1 5 7 7 1 5 . 0 5 7 1 0 . 1 8 2 6 0 . 0 1 6 6 1 6 . 0 0 0 . 2 5 2 6 3 . 4 2 1 8 9 . 5 9 6 3 0 . 2 1 5 8 0 . 1 8 2 6 1 5 . 1 5 3 7 0 . 1 8 2 6 0 . 0 1 6 6 1 8 . 0 0 0 . 2 8 4 2 3 . 4 0 1 0 9 . 5 9 6 3 0 . 2 4 0 7 0 . 1 9 9 2 2 0 . 0 7 6 2 0 . 1 8 2 6 0 . 0 1 6 6 2 0 . 0 0 0 . 3 1 5 8 3 . 3 8 0 2 9 * 5 9 6 3 0 * 2 8 2 2 0 . 2 1 5 8 2 0 . 0 7 6 2 0 . 1 8 2 6 0 . 0 1 6 6 2 2 . 0 0 0 . 3 4 7 4 3 . 3 5 4 1 9 . 5 9 6 3 0 . 3 4 0 3 0 . 2 4 9 0 2 5 . 1 9 1 7 0 . 1 8 2 6 0 . 0 1 6 6 2 4 . 0 0 0 . 3 7 8 9 3 . 3 2 8 1 9 . 6 8 5 4 0 . 3 6 5 2 0 . 3 3 2 0 2 5 . 0 9 5 2 0 . 1 8 2 6 0 . 0 1 6 6 2 6 . 00 0 . 4 1 0 5 3 . 3 0 7 2 9 . 6 8 5 4 0 . 4 6 4 8 0 . 3 6 5 2 2 0 . 1 7 2 7 0 . 1 8 2 6 0 . 0 1 6 6 2 8 . 00 0 . 4 4 2 1 3 . 2 9 1 6 9 . 6 8 5 4 0.53 59 0 . 3 8 1 8 1 5 . 0 5 7 1 F I L M 9-'4 RUN F 2 4 DDROP D A I R FN T T I M E HTWC DEL T DVA DVB V E L 0 . 2 3 2 4 0 . 0 1 6 6 8.00 0 . 1 2 6 3 3 . 4 4 2 7 9 * 5 9 7 1 0 . 1 6 6 0 0 . 1 4 9 4 1 3 . 8 2 6 5 0 . 2 3 2 4 0 . 0 1 6 6 1 3 . 0 0 0 . 2 0 5 3 3 . 4 0 1 0 9 . 5 9 7 1 0 . 2 4 0 7 0 . 1 9 0 9 1 6 . 0 9 9 5 0 . 2 3 2 4 0 . 0 1 6 6 1 5 . 0 0 0 . 2 3 6 8 3 . 3 8 0 2 9 . 5 9 7 1 0 . 2 7 3 9 0 . 2 0 7 5 2 0 . 0 7 6 2 0 . 2 3 2 4 0 . 0 1 6 6 1 7 . 0 0 0 . 2 6 8 4 3 . 3 5 9 3 9 . 5 9 7 1 0.3 237 0 . 2 3 2 4 20 . 1 7 2 7 0 . 2 3 2 4 0 . 0 1 6 6 1 9 . 0 0 0 . 3 0 0 0 3 . 3 3 3 3 9 . 6 8 5 7 0 . 3 4 8 6 0 . 2 4 9 0 2 5 . 0 9 5 2 0 . 2 3 2 4 0 . 0 1 6 6 2 1 . 0 0 0 . 3 3 1 6 3 . 3 0 7 2 9 . 6 8 5 7 0 . 4 0 6 7 0 . 2 9 0 5 2 5 . 1 9 1 7 F I L M 9-•4 RUN F 2 5 DDROP DAIR FN T T I M E HTWC DELT DVA DVB VEL 0 . 2 3 2 4 0 . 0 1 6 6 7.00 0 . 1 1 0 5 3 . 4 3 7 5 9.59 75 0. 1 8 2 6 0 . 1 4 1 1 1 7 . 2 3 5 7 0. 2 3 2 4 0 . 0 1 6 6 1 4 . 00 0 . 2 2 1 1 3 . 3 8 0 2 9 . 5 9 7 5 0 . 2 4 9 0 0 . 2 0 7 5 2 0 . 0 7 6 2 0 . 2 3 2 4 0 . 0 1 6 6 1 6 . 0 0 0 . 2 5 2 6 3 . 3 5 9 3 9 . 5 9 7 5 0 . 3 0 7 1 0 . 2 1 5 8 2 0 . 1 7 2 7 0 . 2 3 2 4 0 . 0 1 6 6 1 8 . 0 0 0 . 2 8 4 2 3 . 3 3 8 5 9 . 6 0 0 0 0 . 3 3 2 0 0 . 2 3 2 4 2 0 . 0 7 6 2 0 . 2 3 2 4 0 . 0 1 6 6 2 0 . 0 0 0 . 3 1 5 8 3 . 3 1 7 7 9 . 6 8 9 5 0.36 52 0 . 2 7 3 9 2 0 . 0 7 6 2 0 . 2 3 2 4 0 . 0 1 6 6 22 .00 0 . 3 4 7 4 3 . 2 9 1 6 9 . 6 8 9 5 0 . 4 3 1 6 0 . 3 6 5 2 2 5 . 1 9 1 7 0 . 2 3 2 4 0 . 0 1 6 6 2 4 . 0 0 0.37 89 3 . 2 6 5 6 9 . 6 8 9 5 0 . 4 8 1 4 0 . 4 1 5 0 2 5 . 0 9 5 2 F I L M 9-4 RUN F 2 6 174 DDROP DAI R FN 0 . 2 4 9 0 0 . 0 1 6 6 1 0 . 0 0 0 . 2 4 9 0 0 . 0 1 6 6 1 2 . 0 0 0 . 2 4 9 0 0 . 0 1 6 6 1 4 . 0 0 0.2 49 0 0 . 0 1 6 6 1 6 . 0 0 0 . 2 4 9 0 0 . 0 1 6 6 1 8 . 0 0 0 . 2 4 9 0 0 . 0 1 6 6 2 0.00 0 . 2 4 9 0 0 . 0 1 6 6 2 2 . 0 0 0 . 2 4 9 0 0 . 0 1 6 6 2 4 . 0 0 0 . 2 4 9 0 0 . 0 1 6 6 2 6 . 00 F I L M 9-4 DDROP DAIR FN 0 . 2 7 3 9 0 . 0 1 6 6 1 8 . 0 0 0 . 2 7 3 9 0 . 0 1 6 6 2 0 . 0 0 0 . 2 7 3 9 0 . 0 1 6 6 2 2 . 0 0 0 . 2 7 3 9 0 . 0 1 6 6 2 4 . 0 0 0. 2 7 3 9 0 . 0 1 6 6 2 6 . 00 0 . 2 7 3 9 0 . 0 1 6 6 2 8 . 0 0 0 . 2 7 3 9 0 . 0 1 6 6 3 0 . 0 0 0.2 7 3 9 0 . 0 1 6 6 3 2 . 0 0 F I L M 9-4 DDROP DAI R FN 0 . 3 1 5 4 0 . 0 1 6 6 2 1 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 2 3 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 2 5 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 2 7 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 2 9 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 3 1 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 3 3 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 3 5 . 0 0 0 . 3 1 5 4 0 . 0 1 6 6 3 6 . 0 0 F I L M 1 0 -1 DDROP DAI R FN 0 . 1 8 2 6 0 . 0 2 4 9 6.00 0 . 1 8 2 6 0 . 0 2 4 9 1 2 . 0 0 0 . 1 8 2 6 0 . 0 2 4 9 1 6 . 0 0 0 . 1 8 2 6 0 . 0 2 4 9 2 1 . 0 0 0 . 1 8 2 6 0 . 0 2 4 9 2 3 . 0 0 0 . 1 8 2 6 0 . 0 2 4 9 2 5 . 0 0 0 . 1 8 2 6 0 . 0 2 4 9 2 7 . 0 0 0 . 1 8 2 6 0 . 0 2 4 9 2 9 . 0 0 0 . 1 8 2 6 0 . 0 2 4 9 3 7 . 0 0 T T I M E HTWC DELT DVA DVB V E L 0 . 1 5 7 9 3 . 4 3 7 5 9 . 5 9 7 5 0 . 2 1 5 8 0 . 1 4 9 4 1 2 . 0 6 5 0 0. 1 8 9 5 3 . 4 2 1 8 9 . 5 9 7 5 0 . 2 4 9 0 0 . 2 0 7 5 1 5 . 1 5 3 7 0 . 2 2 1 1 3 . 4 0 1 0 9 . 5 9 7 5 0 .270 5 0 . 2 2 4 1 2 0 . 0 7 6 2 0 . 2 5 2 6 3 . 3 8 0 2 9 . 5 9 7 5 0 . 3 2 3 7 0 . 2 4 0 7 2 0 . 0 7 6 2 0 . 2 8 4 2 3 . 3 5 9 3 9 . 5 9 7 5 0 . 3 8 1 8 0 . 2 5 7 3 2 0 . 1 7 2 7 0 . 3 1 5 8 3 . 3 3 3 3 9 . 6 8 6 1 0 . 4 3 1 6 0 . 2 8 2 2 2 5 . 0 9 5 2 0 . 3 4 7 4 3 . 3 0 7 2 9 . 6 8 6 1 0 . 4 6 4 8 0 . 3 2 3 7 2 5 . 1 9 1 7 0.3 7 8 9 3 . 2 8 1 2 9 . 6 8 6 1 0 . 5 6 4 4 0 . 4 3 1 6 2 5 . 0 9 5 2 0 . 4 1 0 5 3 . 2 6 0 4 9 . 6 8 6 1 0 . 6 6 4 0 0 . 5 2 2 9 2 0 . 0 7 6 2 RUN F 2 7 TTIME- HTWC DELT DVA DVB V E L 0 . 2 8 4 2 3 . 4 0 1 0 9 . 6 7 5 0 0 . 2 1 5 8 0 . 1 6 6 0 10 . 6 1 7 2 0 . 3 1 5 8 3 . 3 8 5 4 9 . 6 7 5 0 0 . 2 4 9 0 0 . 1 9 9 2 1 5 . 0 5 7 1 0 . 3 4 7 4 3 . 3 6 4 5 9 . 6 7 5 0 0 . 2 8 2 2 0 .2 1 5 8 2 0 . 1 7 2 7 0 . 3 7 8 9 3 . 3 4 3 7 9 . 6 7 5 0 0 . 3 1 5 4 0 . 2 3 2 4 2 0 . 0 7 6 2 0 . 4 1 0 5 3 . 3 1 7 7 9 . 6 7 5 0 0 . 3 6 5 2 0 . 2 4 9 0 2 5 . 0 9 5 2 0 . 4 4 2 1 3 . 2 9 1 6 9 . 6 7 5 0 0 . 3 9 8 4 0 . 2 6 5 6 2 5 . 1 9 1 7 0.47 37 3 . 2 6 5 6 9 . 6 7 5 0 0 . 4 5 6 5 0 .3 569 2 5 . 0 9 5 2 0 . 5 0 5 3 3 . 2 4 4 7 9 . 6 7 5 0 0 . 5 4 7 8 0 . 4 1 5 0 2 0 . 1 7 2 7 RUN F 2 8 T T I M E HTWC DELT' ' DVA DVB V E L 0 . 3 3 1 6 3 . 3 8 5 4 9 . 6 7 5 4 0 . 2 7 3 9 0 . 2 3 2 4 1 0 . 5 3 4 5 0. 3 6 3 2 3 . 3 6 4 5 9 . 6 7 5 4 0 . 2 9 8 8 0 . 2 3 2 4 2 0 * 1 7 2 7 0 . 3 9 4 7 3 . 3 4 3 7 9 . 6 7 5 4 0 . 3 4 0 3 0 . 2 4 0 7 2 0 . 0 7 6 2 0 . 4 2 6 3 3 . 3 1 7 7 9 . 6 7 5 4 0 . 3 6 5 2 0 . 2 5 7 3 2 5 . 0 9 5 2 0 . 4 5 7 9 3 . 2 9 1 6 9 . 6 7 5 4 0 . 4 1 5 0 0 . 2 9 8 8 2 5 . 1 9 1 7 0 . 4 8 9 5 3 . 2 7 0 8 9 . 6 7 5 4 0 . 4 8 1 4 0 . 3 8 1 8 2 0 . 0 7 6 2 0 . 5 2 1 1 3 . 2 5 0 0 9 . 6 7 5 4 0 . 5 8 1 0 0 . 4 6 4 8 2 0 . 0 7 6 2 0 . 5 5 2 6 3 . 2 2 9 1 9 . 6 7 8 5 0 . 7 0 5 5 0 . 3 7 3 5 2 0 . 1 7 2 7 0 . 5 6 8 4 3 . 2 0 3 1 9 . 7 6 8 3 0 . 7 8 8 5 0 . 4 2 3 3 5 0 . 1 9 0 4 RUN F 2 9 T T I M E HTWC DELT DVA DVB V E L 0 . 0 9 7 3 3 . 4 7 9 1 8 .2 2 6 3 0 . 0 8 3 0 0 . 0 4 9 8 6 . 5 4 7 3 0 . 1 9 4 6 3 . 4 6 3 5 8 . 2 2 6 3 0 . 0 9 1 3 0 . 0 7 4 7 4 . 8 8 7 0 0 . 2 5 9 5 3 . 4 4 7 9 8 . 2 2 6 3 0 . 1 1 6 2 0 . 0 9 9 6 7 . 3 3 0 4 0 . 3 4 0 5 . 3 . 4 1 6 6 8 . 2 2 6 3 0 . 1 7 4 3 0 . 1 4 9 4 1 1 . 7 6 6 3 0 . 3 7 3 0 3 . 4 0 1 0 8 .2 2 6 3 0 . 2 0 7 5 0 . 1 8 2 6 1 4 . 6 6 0 9 0 . 4 0 5 4 3 . 3 8 0 2 . 8 . 3 1 5 3 0 . 2 4 0 7 0 . 2 0 7 5 1 9 . 5 4 7 8 0 . 4 3 7 8 3 . 3 5 9 3 8 . 3 1 5 3 0 . 3 0 7 1 0 . 2 1 5 8 1 9 . 6 4 1 8 0 . 4 7 0 3 3 . 3 3 8 5 8 . 3 1 5 3 0 . 3 5 6 9 0 .26 56 1 9 . 5 4 7 8 0 . 6 0 0 0 3 . 2 5 0 0 8 . 4 0 4 5 0 .72 21 0 . 4 9 8 0 2 0 . 7 9 3 1 F I L M 10--1 DDROP DAI R FN 0 . 1 9 0 9 0 . 1 9 0 9 0. 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 6 . 0 0 3 0 . 0 0 F I L M 10 -1 DDROP DAI R FN 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0. 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0.0 2 4 9 ' 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 5 .00 9.00 1 1 . 0 0 1 5 . 00 1 6 . 0 0 1 8 . 00 2 0 . 0 0 2 3 . 0 0 2 4 . 0 0 2 7 . 00 3 1 . 0 0 F I L M 10 -1 DDROP DAI R FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 00 2 6 . 0 0 3 2 . 0 0 F I L M 10 -1 DDROP DAI R FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0.2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 6.00 9.00 1 2 . 0 0 1 6 . 00 1 9 . 0 0 2 1 . 0 0 2 4 . 00 2 6 . 0 0 2 8 . 0 0 3 2 . 0 0 RUN F 3 0 T T I M E HTWC DELT 0. 1 9 4 6 3 . 4 3 7 5 8 . 3 0 4 6 0 . 2 2 7 0 3 . 4 1 6 6 8 . 3 0 4 6 0 . 2 5 9 5 3 . 3 9 5 8 8 . 3 0 4 6 0 . 2 9 1 9 3 . 3 7 5 0 8 . 3 0 4 6 0 . 4 2 1 6 3 . 2 8 6 4 8 . 3 0 4 6 0 . 4 8 6 5 3 . 2 5 0 0 8 . 3 9 5 0 RUN F 3 1 T T I M E HTWC DELT 0 . 0 8 1 1 3 . 4 8 4 3 8 . 2 2 5 9 0 . 1 4 5 9 3 . 4 6 3 5 8 . 2 2 5 9 0 . 1 7 8 4 3 . 4 4 7 9 8 . 2 2 5 9 0 . 2 4 3 2 3 . 4 2 1 8 8 . 2 2 5 9 0 . 2 5 9 5 3 . 4 1 4 0 8 . 2 2 5 9 0 . 2 9 1 9 3 . 3 9 0 6 8 . 2 2 5 9 0 . 3 2 4 3 3 . 3 6 9 7 8 . 3 1 5 8 0 . 3 7 3 0 3 . 3 3 8 5 8 . 3 1 5 8 0 . 3 8 9 2 3 . 3 2 8 1 8 . 3 1 5 8 0 . 4 3 7 8 3 . 2 9 1 6 8 . 3 1 5 8 0 . 5 0 2 7 3 . 2 5 0 0 8 . 4 0 4 9 RUN F 3 2 T T I M E HTWC DELT 0 . 2 9 1 9 3 . 3 9 5 8 8 . 3 0 5 7 0 . 3 2 4 3 3 . 3 7 5 0 8 . 3 0 5 7 0 . 3 5 6 8 3 . 3 5 4 1 8 . 3 0 5 7 0 . 3 8 9 2 3 . 3 3 3 3 8 . 3 0 5 7 0 . 4 2 1 6 3 . 3 1 2 5 8 . 3 0 5 7 0 . 5 1 8 9 3 . 2 5 0 0 8 . 3 9 6 0 RUN F 3 3 TT IME HTWC DELT 0 . 0 9 7 3 3 . 4 7 3 9 8 . 2 2 6 7 0 . 1 4 5 9 3 . 4 5 3 8 8 .2 2 6 7 0 . 1 9 4 6 3 . 4 4 2 7 8 . 2 2 6 7 0 . 2 5 9 5 3 . 4 1 6 6 8 . 2 2 6 7 0 . 3 0 8 1 3 . 3 9 0 6 8 . 2 2 6 7 0 . 3 4 0 5 3 . 3 6 9 7 8 . 3 1 6 5 0 . 3 8 9 2 3 . 3 3 3 3 8 . 3 1 6 5 0 . 4 2 1 6 3 . 3 0 7 2 8 . 3 1 6 5 0 . 4 5 4 1 3 . 2 8 6 4 8 . 3 1 6 5 0 . 5 1 8 9 3 . 2 5 0 0 8 . 4 0 5 6 175 DVA DVB V E L 0 . 1 4 9 4 0 . 1 2 4 5 9 . 7 8 9 6 0 . 2 0 7 5 0 . 1 7 4 3 19 . 6 4 1 8 0 .23 24 0 . 2 0 7 5 1 9 . 5 4 7 8 0 . 2 6 5 6 0 .2 1 5 8 1 9 . 5 4 7 8 0 . 5 6 4 4 0 . 3 6 5 2 2 0 . 8 1 6 6 0 . 7 0 5 5 0 . 3 7 3 5 1 7 . 1 0 4 4 DVA DVB VEL 0 . 0 9 1 3 0 . 0 581 5 . 9 0 1 9 0 . 1 2 4 5 0 . 0 9 1 3 9 . 7 7 3 9 0 . 1 3 2 8 0 . 1 1 6 2 1 4 . 6 6 0 9 0 . 1 7 4 3 0 . 1 4 9 4 1 2 . 2 6 4 4 0 . 1 8 2 6 0 . 1 6 6 0 1 4 . 6 6 0 8 0 . 2 1 5 8 0 . 1 9 0 9 21 . 9 9 1 3 0 . 2 6 5 6 0 . 2 0 7 5 1 9 . 6 4 1 8 0 . 3 4 0 3 0 . 2 3 2 4 1 9 . 5 4 7 9 0 . 3 6 5 2 0 . 2 4 9 0 1 9 . 5 4 7 8 0 . 4 6 4 8 0 . 3 6 5 2 2 2 . 8 6 8 5 0 . 6 7 2 3 0 . 3 8 1 8 1 9 . 5 4 7 8 DVA DVB V E L 0 . 1 9 9 2 0 * 1 7 4 3 1 0 . 8 8 0 8 0 . 3 6 5 2 0 .1 9 9 2 '19.5478 0 . 3 0 7 1 0 . 2 4 0 7 1 9 . 6 4 1 8 0 . 3 4 8 6 0 . 2 7 3 9 1 9 . 5 4 7 8 0 . 3 9 8 4 0 . 2 9 0 5 1 9 . 5 4 7 8 0 . 5 7 2 7 0 . 4 2 3 3 1 9 . 5 7 9 2 DVA DVB V E L 0 . 0 9 1 3 0 . 0 6 6 4 .8*1763 0 . 1 3 2 8 0 . 0 9 1 3 1 2 . 5 9 3 3 0 . 1 5 7 7 0 . 1 2 4 5 6 . 9 5 4 5 0 . 1 9 0 9 0 . 1 5 7 7 1 2 . 2 6 4 4 0 . 2 2 4 1 0 . 1 9 0 9 16 . 2 8 9 9 0 . 2 4 9 0 0 . 2 0 7 5 1 9 . 6 4 1 8 0 . 3 4 0 3 0 . 2 7 3 9 2 2 . 8 0 5 8 0 . 3 9 0 1 0 . 2 9 8 8 2 4 . 5 2 8 8 0 . 4 3 1 6 0 . 3 4 3 6 1 9 . 5 4 7 9 0 . 6 6 4 0 0 . 3 7 3 5 1 7 . 1 0 4 4 F I L M 1 0 - 1 • DDRGP DAIR FN 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0.2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 6.00 2 5 . 0 0 2 7 . 0 0 2 9 . 0 0 3 2 . 0 0 3 5 . 00 3 9 . 0 0 F I L M 1 0 -2 DDROP DAI R FN 0.19-92 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 5.00 9.00 1 1 . 0 0 1 5 . 0 0 1 8 . 0 0 2 1 . 0 0 2 4 . 0 0 2 7 . 00 32 . 00 F I L M 1 0 -•2 DDROP DAI R FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0.2 0 7 5 0 . 2 0 7 5 0.2 0 7 5 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 5.00 1 2 . 0 0 2 3 . 0 0 2 6 . 00 2 9 . 0 0 3 4 . 0 0 3 6 . 0 0 4 2 . 0 0 F I L M 1 0 -2 DDROP DAI R FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 0 2 4 9 0 . 0 2 4 9 . 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 6.00 2 9 . 0 0 3 3 . 0 0 3 6 . 00 4 1 . 00 RUN F 3 4 T T I M E HTWC DELT 0 . 0 9 7 3 : 3 . 4 7 9 1 8 . 2 2 6 3 0 . 4 0 5 4 3 . 4 0 1 0 8 . 2 2 6 3 0 . 4 3 7 8 3 . 3 8 5 4 8 . 2 2 9 4 0 . 4 7 0 3 3 . 3 6 4 5 8 . 3 1 9 3 0 . 5 1 8 9 3 . 3 3 3 3 8 . 3 1 9 3 0 . 5 6 7 6 3 . 2 9 6 8 8 . 3 1 9 3 0 . 6 3 2 4 3 . 2 5 0 0 8 . 4 0 8 0 RUN F 3 5 T T I M E HTWC DELT 0 . 0 8 1 1 3 . 4 7 9 1 7 . 2 4 3 8 0.1459 3 . 4 5 3 8 7 . 2 4 3 8 0. 1 7 8 4 3 . 4 4 7 9 7 . 2 4 5 5 0 . 2 4 3 2 3 . 4 2 1 8 7 . 3 3 7 9 0 . 2 9 1 9 3 . 3 9 5 8 7 . 3 3 7 9 0 . 3 4 0 5 3 . 3 6 4 5 7 . 3 3 7 9 0 . 3 8 9 2 3 . 3 3 3 3 7 . 3 3 7 9 0 . 4 3 7 8 3..3020 7 . 4 2 9 0 0 . 5 1 8 9 3 . 2 5 0 0 7 . 4 2 9 0 RUN F 3 6 T T I M E HTWC DELT 0 . 0 8 1 1 3 . 4 7 9 1 7 . 2 4 3 8 0 . 1 9 4 6 3 . 4 5 3 8 7 . 2 4 3 8 0 . 3 7 3 0 3 . 4 1 6 6 7 . 3 3 6 8 0 . 4 2 1 6 3 . 4 0 1 0 7 . 3 3 6 8 0 . 4 7 0 3 3 . 3 8 0 2 7 . 3 3 6 8 0 . 5 5 1 4 3 . 3 3 3 3 7.3 3 68 0.5 8 38 3 . 3 1 2 5 7 . 3 3 9 7 0 . 6 8 1 1 3 . 2 5 0 0 7 . 4 3 4 8 RUN F 3 7 * T T I M E HTWC DELT 0 . 0 9 7 3 . 3 . 4 7 9 1 7 . 2 4 3 8 0 . 4 7 0 3 3 . 3 7 5 0 7 . 4 1 4 8 0 . 5 3 5 1 3 . 3 3 3 3 7 . 4 1 4 8 0 . 5 8 3 8 3 . 3 0 2 0 7 . 4 1 4 8 0 . 6 6 4 9 3. 2 5 0 0 7 . 4 1 4 8 DVA DVB V E L 0 . 0 6 6 4 0 . 0 4 1 5 6 . 5 4 7 3 0 . 1 9 9 2 0 . 1 8 2 6 7 . 7 2 6 1 0 . 2 0 7 5 0. 1992 1 4 . 6 6 0 9 0 . 2 7 3 9 0 . 2 3 2 4 1 9 . 6 4 1 8 0 . 3 5 6 9 0 . 3 3 2 0 1 9 . 5 4 7 8 0 . 4 1 5 0 0 . 3 4 8 6 2 2 . 8 6 8 5 0 . 4 9 8 0 0 . 3 7 3 5 2 1 . 9 9 1 3 DVA DVB V E L 0 . 0 9 1 3 0 . 0 6 6 4 7 . 8 5 6 7 0 . 1 3 2 8 0 . 1 1 6 2 1 1 . 8 8 8 5 0 . 1 4 9 4 0 . 1 2 4 5 5 . 5 4 4 8 0 . 1 7 4 3 0 . 1 4 1 1 1 2 . 2 6 4 4 0 . 1 9 9 2 0 . 1 6 6 0 1 6 . 2 8 9 9 0 . 2 5 7 3 0 . 1 9 9 2 1 9 . 6 1 0 5 0 . 3 0 7 1 0 . 2 2 4 1 1 9 . 5 4 7 8 0 . 3 4 8 6 0 . 2 6 5 6 1 9 . 6 1 0 5 0 . 5 3 9 5 0 . 4 8 1 4 19 . 5 4 7 8 DVA DVB V E L 0 . 0 8 3 0 0 . 0 6 6 4 7 . 8 5 6 7 0 . 0 9 9 6 0 . 0 7 4 7 6 . 7 9 3 4 0 . 1 4 1 1 0 . 1 1 6 2 6 . 3 5 6 5 0 . 1 7 4 3 0 . 1 4 9 4 9 . 7 7 3 9 0 . 2 1 5 8 0 . 1 9 0 9 1 3 . 0 3 1 9 0 . 3 1 5 8 0 . 2 3 2 4 1 7 . 6 3 0 6 0 . 3 4 0 3 0 . 2 4 0 7 1 9 . 5 4 7 8 0 . 5 3 9 5 0 . 4 5 6 5 1 9 . 5 7 9 2 DVA DVB V E L 0 . 0 8 3 0 0 . 0 6 6 4 6 . 5 4 7 3 0 . 2 1 5 8 6.1909 8 . 5 0 7 2 0 . 3 0 7 1 0 . 2 3 2 4 19 . 5 9 4 8 0 . 3 6 5 2 0.27 39 1 9 . 6 1 0 5 0 . 5 3 9 5 0 . 4 4 8 2 1 9 . 5 4 7 8 F I L M 1 0 - 2 RUN F 3 8 177 DDROP DAIR FN 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0.2 3 2 4 0.2 3 2 4 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0.0 2 49 0 . 0 2 4 9 8. 00 1 1 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 6 . 0 0 2 9 . 0 0 3 3. 00 4 2 . 0 0 F I L M 10 -2 DDROP DAIR FN 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0.2 3 2 4 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 8.00 1 1 . 0 0 1 8 . 0 0 2 4 . 0 0 2 6 . 00 3 1 . 0 0 3 4 . 0 0 3 8 . 0 0 4 3 . 0 0 4 5 . 0 0 F I L M 10 -3 DDROP DAIR FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0.2 07 5 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 6.00 8. 00 1 1 . 0 0 1 4 . 0 0 1 7 . 0 0 2 0 . 0 0 2 3 . 0 0 2 7 . 0 0 3 3 . 0 0 3 5 . 0 0 F I L M 10 -3 DDROP DAI R FN 0 . 2 1 5 8 0 . 2 1 5 8 0 . 2 1 5 8 0 . 2 1 5 8 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 8.00 1 2 . 0 0 2 2 . 0 0 2 6 . 0 0 0 . 2 1 5 8 0 . 0 2 4 9 3 4 . 0 0 T T I M E HTWC DELT 0 . 1 2 9 7 3 . 4 5 3 8 7 . 2 4 5 1 0 . 1 7 8 4 ' 3 . 4 4 2 7 7 . 2 4 9 2 0 . 2 5 9 5 3 . 4 1 6 6 7 . 3 4 1 6 0 . 2 9 1 9 3 . 4 0 1 0 7 . 3 4 1 6 0 . 3 2 4 3 3 . 3 8 5 4 7 . 3 4 1 6 0 . 3 5 6 8 3 . 3 6 9 7 7 . 3 4 1 6 0 . 4 2 1 6 3 . 3 3 3 3 7 . 3 4 1 6 0 . 4 7 0 3 3 . 3 0 2 0 7 . 3 4 6 9 0 . 5 3 5 1 3.2 5 0 0 7 . 4 4 1 2 0 . 6 8 1 1 3 . 1 6 6 6 7 . 4 4 1 2 RUN F 3 9 T T I M E HTWC DELT 0. 1 2 9 7 3 . 4 5 3 8 7 . 2 4 5 1 0. 1 7 8 4 3 . 4 4 7 9 7 . 2 4 5 7 0 . 2 9 1 9 3 . 4 1 6 6 7 . 3 3 8 5 0 . 3 8 9 2 3 . 3 8 5 4 7 . 3 3 8 5 0 . 4 2 1 6 3 . 3 6 9 7 7 . 3 3 8 5 0 . 5 0 2 7 3 . 3 3 3 3 7 . 3 3 8 5 0 . 5 5 1 4 3 . 3 0 2 0 7 . 4 2 9 5 0 . 6 1 6 2 3 . 2 5 0 0 7 . 4 2 9 5 0 . 6 9 7 3 3 . 1 9 2 7 7 . 4 2 9 5 0 . 7 2 9 7 3 . 1 6 6 6 7 . 5 2 0 8 RUN F 4 0 T T I M E HTWC DELT 0 . 0 9 7 3 3 . 4 5 3 1 6 . 3 8 8 3 0. 1 2 9 7 3 . 4 3 7 5 6 . 3 8 8 3 0 . 1 7 8 4 3 . 4 1 6 6 6 . 3 8 8 3 0 . 2 2 7 0 3 . 3 9 0 6 6 . 3 8 8 3 0 . 2 7 5 7 3 . 3 6 4 5 6 . 3 8 8 3 0 . 3 2 4 3 3 . 3 3 3 3 6 . 4 8 2 9 0 . 3 7 3 0 3 . 2 9 6 8 6 . 4 8 2 9 0 . 4 3 7 8 3 . 2 5 0 0 6 . 4 8 2 9 0 . 5 3 5 1 3. 1 8 7 5 6 . 5 7 7 9 0 . 5 6 7 6 3 . 1 6 6 6 6 . 5 7 7 9 RUN F 4 1 T T I M E HTWC DELT 0 . 1 2 9 7 3 . 4 1 6 6 6 . 3 8 9 6 0 . 1 9 4 6 3 . 3 8 5 4 6 . 3 8 9 6 0.3 568 3 . 2 9 1 6 6 . 4 8 4 1 0 . 4 2 1 6 3 . 2 5 0 0 6 . 4 8 4 1 0 . 5 5 1 4 3 . 1 6 6 6 6 . 5 8 0 6 DVA DVB V E L 0 * 1 4 1 1 0 . 0 9 1 3 1 0 . 8 5 4 7 0 . 1 5 7 7 0 . 1 1 6 2 6 . 9 5 4 5 0 . 1 9 9 2 0 . 1 4 9 4 9 . 8 1 1 5 0 . 2 1 5 8 0 . 1 5 7 7 1 4 . 6 6 0 9 0 . 2 2 4 1 0 . 1 8 2 6 1 4 . 6 6 0 9 0 . 2 4 0 7 0 . 1 9 0 9 1 4 . 7 5 4 8 0 . 2 6 5 6 0 . 2 2 4 1 1 7 . 1 0 4 4 0 . 2 9 0 5 0 . 2 3 2 4 1 9 . 6 1 0 5 0 . 3 3 2 0 0 . 2 6 5 6 2 4 . 4 3 4 8 0 . 5 5 6 1 0 . 3 7 3 5 1 7 . 4 1 7 6 DVA DVB V E L 0 . 0 9 9 6 0 . 0 8 3 0 1 0 . 8 5 4 7 0 . 1 1 6 2 0 . 0 8 3 0 3 . 6 9 6 5 0 . 1 3 2 8 0 . 1 2 4 5 8 . 4 0 4 5 0 . 1 8 2 6 0 . 1 4 1 1 9 . 7 7 3 9 0 . 2 0 7 5 0 . 1 6 6 0 1 4 . 7 5 4 8 0 . 2 5 7 3 0 . 2 2 4 1 13 . 6 8 3 5 0 . 2 9 8 8 0 . 2 4 9 0 1 9 . 6 1 0 5 0 . 3 4 8 6 0 . 2 7 3 9 2 4 . 4 3 4 8 0 . 4 3 1 6 0 . 3 4 8 6 2 1 . 5 4 0 2 0 . 5 3 1 2 0 . 3 8 1 8 2 4 . 5 2 8 8 DVA DVB V E L 0 . 1 3 2 8 0 . 1 1 6 2 1 4 . 6 9 2 2 0 . 1 8 2 6 0 . 1 4 1 1 1 4 . 6 6 0 9 0 . 1 9 9 2 0 . 1 5 7 7 1 3 . 0 9 4 6 0 . 2 2 4 1 0 . 1 7 4 3 1 6 . 2 8 9 9 0 . 2 4 0 7 0 . 1 9 0 9 1 6 . 3 5 2 5 0 . 2 8 2 2 0 . 2 0 7 5 1 9 . 5 4 7 8 0 . 3 3 2 0 0 . 2 3 2 4 2 2 . 8 6 8 5 0 . 3 9 8 4 0 . 3 3 2 0 2 1 . 9 9 1 3 0 .5 3 1 2 0 . 3 8 1 8 1 9 . 5 7 9 2 0 . 6 3 0 8 0 . 3 9 0 1 1 9 . 6 4 1 8 DVA DVB V E L 0 . 1 4 9 4 0 . 1 2 4 5 7 . 8 5 6 7 0 . 1 7 4 3 0 . 1 3 2 8 1 4 . 6 6 0 9 0 . 3 0 7 1 0 . 2 1 5 8 1 9 . 5 9 4 8 0 . 3 9 8 4 0 . 3 1 5 8 1 9 . 5 4 7 8 0 .6557- 0 . 3 7 3 5 1 9 . 5 9 4 8 o o o o o o o o o o o H * H " H " r - J r - 1 1—' (—> r - J r-J h-i Ch ch Ch o> Ch a* Ch cr> ch Ch Ch ch ch ch Ch Ch Ch Ch ch ch Ch ch o o o o o o o o o o o o o o o o o o o o o o • • • • • • • » • • e o o o o o o o o o o o IV) ho IV) rv) IV) IV) IV) IV) ro IV) rv> -P- -p- •p- -p- 4> 4> 4> •p- 4> vO vo vO vO vO vO vO vO UJ ro IV) IV) IV) ro r - J (-J (-> 00 ch -p- IV) o UJ H J vO - J 0 • 0. • a • • • • • • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o • • • • • • • • • • co 00 Ch UI 4> UJ rv) IV) o- H 1 U l 00 IV) UJ o 4> oo r - J CD U I tvl o - J U I I-1 o UJ 1—> 00 - J o U I o UI o IV) rv) -0. IV) —J UJ UJ oo UJ UJ UJ UJ UJ UJ UJ UJ o I—" 1—" r-J IV) rv> IV) UJ UJ -p- -p-o 4>- t-1 UI vO UI CD o IV) r-> o - J UJ o cr- •p- o r-J r - J o H J Ch o UI o co H J IV) o 00 ro I\) ro IV) rv> IV) IV) rv) IV) rv> IV) 00 00 co ~J —J -~4 -^1 -4 -J CD 00 co vO vO o o o o o UJ UJ UJ -p- -p- 4> -P- -p- -p- -p- -p-U I U I UI U I U I UI o o o o o o o o o o o o o o o o • a • • • • • • • e • UJ IV) IV) IV) 1—" H J H J H J r-1 o H " o Ch UJ t - J vO Ch -p- UJ H J vO U I ~ J U I IV) Ui vO Ch rv) Ch vO o 1—• Ch '4> CO IV) o -p- CO IV) Ch o o Q o o o o o o o o IV) IV) IV) ro H " r - " r - 1 r-J H J o -p- Ui o vO CD ch UJ r - J -o oo IV) -^1 o rv) Ch rv) •p- Ch CO o 4> U I vO Ch o 00 Ul rv) Ch rv> h-J r-' H " H J r-> r - J r - 1 H I r-J o —J — J U l UJ rv) o o co • • • • o • • • • • • uo CD -4 oo CO IV) rr> r - J vO IV) o U i o o r-> IV) -p- -P-o o o o o UI IV) CO UJ UJ o o UJ U I UJ UJ Ch o U l - j —J PO o o o o o o o • • • 0 0 0 o IV) IV) rv> IV) ro ro o vO vO vO v£> o o o o o o o o UI UI Ul Ul Ul Ui ~o -n n r—l o o o o o o o l ~ • • 0 0 0 0 o r~ > o o o o o o > t—1 rv) ro IV) IV) ro ro 4> J> •p? -p- •J> -p-r-1 vO vO vO vO r-J r-J 1 o 1 1 r—1 1 UJ U) U) -p- -p- r-i -n UI o 00 00 -n o 0 0 0 0 o o o o o o o o o o o o o —I o o o o o o —1 —1 • • 0 0 0 0 —1 M CO CO -J UJ 1—1 vO I—1 -J r-1 o ro 73 m c r-J o CD UJ CD vO m c vO oo -p- Ul r-J n UJ UJ UJ UJ UJ UJ "n X X -p-•H UI r-1 r-J t-J ro -p- -p- —1 -p-s: o Ch UJ ro Ch n J> Ch IV) vO -J 00 n r-J Ch ~J Ul o -J Ch Ch Ch Ch Ch Ch o o m UI UI Ul Ul UJ U) m r- Ch Ch Ch Ch CD CD r~ —1 J> f\J IV) ro -J -J -i -J UI Ul Ul o o o o o o o o • 0 0 0 0 0 < Ch -p- UJ r-J o < > Ch Ch UJ UJ o -il > -p- -p- r-J IV) -p-o co Ch o vO ->l o o o o o o < J? UJ UJ ro o o < CD K) J-4 UJ Ul vO Ul CD UJ UJ IV) ^ 1 r-* 00 UJ U) o UJ UJ 1—" rv> IV) ro r-> UJ J> r-l —4 -J < • 0 m 0 0 0 < m -p- Ul o o UJ m v IV) vO rv> Ul I -UI 00 \-l Ul UJ o co UJ o 4> vO o o o o o o o O o o o o o o o o o o O o 0 0 0 0 0 0 0 0 0 O ro IV) ro ro ro ro ro ro ro ro O ro ro IV) ro ru ro ro ro IV) O -p- -p- -p- -P- -P-4> -P- 73 ro ru ro ro rv> ro ro ro ro 73 o o o o o o o o o o O •P--P- -p- -P- -P-4> 4> O ~J ->J -~J ->i -^1 ~ j 13 r-> r-J r-> r-1 HJ HJ H» HJ H* TJ T| m o o o o o o o o o o 1—i O o o O o o o o o r—H 0- 0 0 0 0 0 0 0 0 0 O f - 0 0 0 0 0 0 0 0 0 O !~ o o o o o o o o o o > s. . o o o o o o o o o > IV) ro ro ro ro ro IV) ro ro ro ro ro ro ro ro ro ro ro ro *—< •p- •p- -p- -f> •P- 4> -P- -p- -P- 73 -P* 4> J> •P- -P- -p- 4> -p- 73 vO vO vO vO vO vO vO vO vO vO o vO v6 vO vO vO o 1 o 1 U) I UJ UJ UJ UJ ro ro ro ro r-J UJ ro ro ro ro H* HJ vO Ul vO -J Ul UJ -P- v£> Ch "n -P- v£> - i Ul H> -4 -P- vO Ch n 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 o o o o O o o o o o o o o o o O o o o o o o o O o o o o o o o o p o o o o o o o o o o o o o o o —1 o o o o o o o o o —1 0 0 0 0 o 0 0 0 0 - H Ch Ul Ul •p- -P- -r-UJ rv> 1—J o •—t Ul •p- •p- UJ ro ro 1—1 o i—i UJ Ch o ~J UJ o -J ro J> vO 73 Ul ~J UJ o -p- -4 ro •p- 73 ro ro o -~J Ul UJ —J Ul m C r-J o —J Ul o Ui -j Ul m G -p- Ch UJ CO ^ > o o vG UJ 4> UJ co -p- Ul -^1 o vO UJ 2 UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ n UJ UJ UJ UJ UJ uo UJ UJ UJ X X r-J ro ro IV) ro UJ UJ UJ -P-4> — i UJ ro ro ro UJ -UJ UJ •p- —) ro Ch o Ul -J vO" I—1 uo vO r-1 UJ s: co Ul uo -4 vO HJ ro s: Ch 00 o o ro UJ o Ch ro n ~J o Ch ch CO Ul Ul Ch -4 n Ch UJ o CD Ch ui UJ Ch Ch ro Ul o o CO Ul o 00 Ch o Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 c Ul Ul -p- •p- -p--P- -P- UJ UJ UJ m Ul 4> -p- -P- •P" uo UJ UJ UJ m -J -J CD cb CD oo co vG vO vO r~ —4 co CD 00 oo vO v£> vO vO F --J -^1 -p- 4> -P- -P-O O O -\ vO •P- -p- -p* -p- o O o o — i Ch Ch Ul Ul m Ul Ul O O O ro 4> -p- -p- -p- -p- 4> 4> o o o o o o o O O o o o o o o o O o o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o -p- UJ IV) ro ro ro ro r-J r-> r-J < Ul UJ UJ UJ ro ro HJ 1—' o < vO vO vO Ul J> ro 4> U) o > oo Ch Ul o -P- o Ch o vO > 00 oo CD UJ ~ j o -P-vO ro -J r-J Ui Ch v£) Ch HJ o -p-CO UJ ~ j r-J -P- 00 vO o ro vO HJ o Ul O UJ o o o o o o o o o o o o o o o o O o o 0 0 0 0 0 0 0 0 0 0 UJ ro ro ro ro h- l r-J r-J o < UJ UJ ro IV) ro H» HJ o o < vO vO ro M o v£) 4> M co CD Ul r-J - ^ i hj Ch UJ vO Ch CD o co J> Ul - j o 1—" •p* UJ Ch Ul UJ vO -p- Ch IV) vO Ch r-J co r-J CO Ul vO UJ l-j U1 o vO CD vO o H* O co Ch -p-r-J r-• r-J t - j M r-J ro ro ro r-" HJ 1—I (-J ro vO vO V0 vO vO H vO vO r-J UJ •P-vO vO - 1 UJ -4 Ch ro o 0 0 0 o 0 0 0 0 0 < 0 0 0 0 0 0 0. 0 0 < Ul Ul Ul Ul Ch Ul vQ ->i ro rn -p-•P- Ul Ul H* o 00 Ul CO m vO vO 4> -p- 4> -p- Ch -J 1^ UJ t~ o UJ -p- vO *Ji UJ HJ H* Ch r~ r—» -p- -p- -J r-J Ch UJ UJ o Ul 4> ^1 4> H» HJ vO Ul co 03 00 00 CD CO CO 00 vO vO Ul o CO co 00 -p- vO HJ vO Ui oo F I L M 1 1 - 1 RUN F 4 6 179 DDROP DAI R FN 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 1 9 9 2 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 1.00 2 3 . 0 0 2 5 . 0 0 2 7 . 0 0 2 9 . 0 0 31 .00 3 3 . 0 0 3 5 . 0 0 3 8 . 0 0 F I L M 1 1 - 1 DDROP D A I R FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 3.00 7.00 1 9 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0 3 2 . 0 0 3 4 . 0 0 3 8 . 00 F I L M 1 1 - 1 DDROP DAIR FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 0 2 4 9 0.0 24 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 4.00 8.00 •11.00 1 7 . 00 2 0 . 0 0 2 3 . 0 0 2 5 . 0 0 2 7 . 0 0 2 9 . 0 0 3 1 . 0 0 3 4 . 0 0 4 0 . 0 0 F I L M 1 1 -1 DDROP DAI R FN 0 . 2 4 9 0 0.2 4 9 0 0 . 0 2 4 9 0 . 0 2 4 9 6.00 1 0 . 0 0 0 . 2 4 9 0 0 . 0 2 4 9 1 4 . 0 0 T T I M E HTWC DELT 0 . 0 3 1 2 0 . 7 1 8 7 0 . 7 8 1 2 0 . 8 4 3 7 0 . 9 0 6 2 0 . 9 6 8 7 1 . 0 3 1 2 1 . 0 9 3 7 1 . 1 8 7 5 3 . 4 7 9 1 3 . 3 4 8 9 3 . 3 2 8 1 3 . 3 0 2 0 3 . 2 7 0 8 3 . 2 3 9 5 3 . 2 0 3 1 3 . 1 6 6 6 3 . 1 0 9 3 2 . 6 2 6 3 2 . 7 1 7 8 2 . 7 1 7 8 2 . 7 1 7 8 2 . 7 1 7 8 2 . 8 0 7 6 2 . 8 0 7 6 2 . 8 0 7 6 2 . 8 9 7 6 RUN F 4 7 T T I M E HTWC DELT 0 . 0 9 3 7 0 . 2 1 8 7 0 . 5 9 3 7 0 . 6 8 7 5 0 . 7 5 0 0 0 . 8 1 2 5 0 . 8 7 5 0 0 . 9 3 7 5 1 . 0 0 0 0 1 . 0 6 2 5 1 . 1 8 7 5 3 . 4 6 3 5 3 . 4 3 7 5 3 . 3 3 3 3 3 . 2 9 1 6 3 . 2 6 0 4 3 . 2 2 9 1 3 . 1 9 2 7 3 . 1 5 6 2 3 . 1 1 9 7 3 . 0 8 3 3 3 . 0 1 0 4 2 . 6 2 7 6 2 . 6 2 7 6 2 . 7 9 3 6 2 . 7 9 3 6 2 . 7 9 3 6 2 . 7 9 3 6 2 . 7 9 3 6 2 . 7 9 3 6 2 . 8 8 4 4 2 . 8 8 4 4 2 . 9 7 3 6 RUN* F 4 8 T T I M E HTWC DELT 0 . 1 2 5 0 0 . 2 5 0 0 0 . 3 4 3 7 0 . 5 3 1 2 0 . 6 2 5 0 0 . 7 1 8 7 0 . 7 8 1 2 0 . 8 4 3 7 0 . 9 0 6 2 0 . 9 6 8 7 1 . 0 6 2 5 1 . 2 5 0 0 3 . 4 5 8 3 3 . 4 3 7 5 3 . 4 1 6 6 3 . 3 6 9 7 3 . 3 4 3 7 3 . 3 0 7 2 3 . 2 7 6 0 3 . 2 4 4 7 3 . 2 0 8 3 3 . 1 7 1 8 3 . 1 1 4 5 3 . 0 0 0 0 2 . 7 0 4 0 2 . 7 0 4 0 2 . 7 0 4 0 2 . 7 0 4 0 2 . 7 0 4 0 2 . 7 0 4 0 2 . 7 0 7 7 2 . 7 9 8 3 2 . 7 9 8 3 2 . 7 9 8 3 2.8 8 89 2 . 9 7 8 5 RUN F 4 9 T T I M E , HTWC DELT 0. 1 8 7 5 0 . 3 1 2 5 0 . 4 3 7 5 3 . 4 1 6 6 3 . 3 7 5 0 3 . 3 2 8 1 2 . 7 0 4 0 2 . 7 0 4 0 2 . 7 0 4 0 DVA DVB V E L 0 . 0 4 1 5 0 . 0 4 1 5 2 0 . 3 8 5 0 0 . 0 9 9 6 0 . 0 9 9 6 5 . 7 7 2 4 0 . 1 1 6 2 0 .1 1 6 2 1 0 . 1 4 3 7 0 . 1 4 1 1 0 . 1 4 1 1 1 2 . 7 2 8 5 0 . 1 6 6 0 0 . 1577 1 5 . 2 1 5 6 0 . 1 9 0 9 0 .1 8 2 6 1 5 . 2 6 4 4 0 . 2 1 5 8 0 .19 9 2 1 7 . 7 5 1 5 0 . 2 4 9 0 0 .2 1 5 8 1 7 . 8 0 0 3 0 . 3 1 5 4 0 . 2 6 5 6 1 8 . 6 2 9 4 DVA DVB V E L 0 . 0 4 9 8 0 . 0 4 9 8 1 1 . 8 6 6 9 0 . 0 7 4 7 0 . 0 7 4 7 6 . 3 398 0 . 1 3 2 8 0 . 1 3 2 8 8 . 4 6 9 4 0 . 1 4 9 4 0 . 1 4 9 4 1 3 . 5 5 7 5 0 . 1 6 6 0 0 . 1 6 6 0 1 5 . 2 1 5 6 0 . 1 9 0 9 0 . 1 7 4 3 1 5 . 2 6 4 4 0 . 2 0 7 5 0 . 1 9 0 9 1 7 . 7 5 1 5 0 . 2 4 0 7 0 . 2 1 5 8 1 7 . 8 0 0 3 0 . 2 7 3 9 0 . 2 4 9 0 1 7 . 8 0 0 3 0 . 3 0 7 1 0 . 2 6 5 6 1 7 . 7 5 1 6 0 . 3 9 0 1 0 * 3 3 2 0 1 7 . 7 7 5 9 DVA DVB V E L 0 . 0 4 9 8 0 . 0 4 9 8 1 0 . 1 6 8 1 0 . 0 6 6 4 0 . 0 6 6 4 5 . 0 7 1 9 0 . 0 8 3 0 0 . 0 8 3 0 6 . 7 9 5 0 0 . 1 0 7 9 0 . 1 0 7 9 7.6 2 4 1 0 . 1 3 2 8 0 . 1 2 4 5 8 . 4 5 3 1 0 . 1 4 9 4 0 . 1 4 1 1 11 . 8 6 6 9 0 . 1 5 7 7 0 . 1 5 7 7 1 5 . 2 1 5 6 0 . 1 8 2 6 0 . 1 7 4 3 1 5 . 2 6 4 4 0 . 1 9 9 2 0 . 1 8 2 6 1 7 . 7 5 1 6 0 . 2 1 5 8 0 . 1 9 0 9 1 7 . 8 0 0 3 0 . 2 9 0 5 0 . 2 4 9 0 1 8 . 6 2 9 4 0 . 4 3 1 6 0 . 3 0 7 1 1 8 . 6 1 3 1 DVA DVB V E L 0 . 1 2 4 5 0 . 1 0 7 9 1 0 . 1 6 8 1 0 . 1 4 1 1 0 . 1 2 4 5 1 0 . 1 4 3 7 0 . 1 5 7 7 0 . 1 4 9 4 1 1 . 4 3 6 1 180 0.2490 0.0249 17.00 0.5312 3.2864 2 .7040 0 . 1743 0 .1577 13.5575 0.2490 0.0249 19.00 0.5937 3.2552 2 .7941 0 . 1826 0 . 1743 15.2156 0.2490 0.0249 21.00 0.6562 3.2187 2 .7941 0 .1992 0 .1826 17.8003 0.2490 0.0249 24.00 0.7500 3.1666 2 .7941 0 .2241 0 . 1909 16.9388 0.2490 0.0249 26.00 0.812 5 3.1302 2 .8840 0 .2573 0 .2158 17.7515 0.2490 0.0249 30.00 0.9375 3.0572 2.8840 0 .3071 0.2573 17.8003 0.2490 Q.0249 34. 00 1.0625 2.9847 2 .9754 0 . 3 7 35 0 .2739 17 .6784 FILM 11--1 RUN F50 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.2573 0.0249 4. 00 0. 1250 3.4583 2 .7040 0 .0664 0 .0664 10.1681 0.2573 0.0249 26.00 0.8125 3.2604 2 .7937 0 .1577 0 .1577 8.7738 0.2 573 0.0249 28. 00 0.8750 3.2291 2 .7937 0 . 1743 0 . 1660 15.2644 0.2573 0.0249 30.00 0.9375 3 . 1979 2 .7937 0 . 18 26 0 .1826 15.2156 0.2573 0.0249 32 . 00 1.0000 3.1666 2 • 79f37 0 . 1992 0 . 1909 15.2644 0.2 573 0.0249 34.00 1.0625 3 . 1302 2.8836 0 .2241 0 . 1992 17.7515 0.2573 0.0249 38. 00 1.1875 3.0572 2 .8836 0 .2573 0 . 2490 17.8003 0.2573 0.0249 41.00 1. 2812 3.0000 2 .9738 0 .3071 0 .2656 18.5969 0.2573 0.0249 45. 00 1.4063 2.9218 2 .9738 0 .3901 0 .2988 19.0683 FILM 11' -2 RUN F51 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.1411 0.0249 5.00 0.1562 3.4531 1 .6451 0 .0415 0 .0415 9.1489 0.1411 0.0249 11.00 0.3437 3.4166 1 .7380 0 .0747 0 .0747 5 .9334 0.1411 0.0249 14.00 0.4375 3 . 3958 1 .7380 0 .0913 0 .0913 6.7625 0.1411 0.0249 17. 00 0.5312 3.3697 1 .7380 0 .1162 0 .1162 8 .4856 0.1411 0.0249 20.00 0.6250 3.3333 1 .7380 0 .1328 0 .1328 11.8344 0.1411 0.0249 23.00 0.7187 3 .2864 1 .8304 0 .1660 0 . 1577 15.2481 0.1411 0.0249 25.00 0.7812 3.2500 1 .8304 0 .1826 0 . 1743 17.7515 0.1411 0.0249 27.00 0.8437 3 .2135 1 .8304 0 .2075 0 . 1909 17.8003 0.1411 0.0249 30.00 0.9375 3.1614 1 • 9220 0 .2656 0 .2324 16 .9388 0.1411 0.0249 32.00 1.0000 3.1250 1 .9220 0 .2988 0 .2490 17.7 515 0.1411 0.0249 36.00 1.1250 3.0520 1 .9220 0 .3569 0 .2988 17.8003 0.1411 0.0249 39.00 1.2187 2.9947 2 .0163 0 .4150 0.3652 18.6294 FILM 11 -2 RUN F52 DDROP DAIR FN TTIME HTWC DELT DVA DVB , VEL 0.1743 0.0249 4.00 0. 1250 3.4531 1.6451 o. 0498 0 .0498 11 .4361 0.1743 0.0249 12.00 0 . 3750 3.4166 1.7380 0. 6640 0 .0664 4 .4501 0.1743 0.0249 24.00 0. 7500 3.3281 1.7380 0. 1079 0 .0996 8 .1150 0.1743 0.0249 29.00 0. 9062 3.2708 1.8317 o. 1328 0 . 1328 11 .1776 0.1743 0 .0249 32.00 1. 0000 3.2291 1.8317 o. 1660 0 .1577 13 .5 575 0.1743 0.0249 36.00 1. 1250 3.1614 1 .9231 0. 2075 0 .2075 16 .5080 0.1743 0.0249 39. 00 1.2187 3.1093 1.9231 0. 2407 0 .2324 16.9388 0.1743 0.0249 42.00 1. 3125 3.0520 1 .9231 o. 2988 0 .2490 18 .6294 0.1743 0.0249 46. 00 1. 4375 2.9739 2.0927 o. 3984 0 .2988 19 .0439 F I L M 1 1 - 2 RUN F 5 3 181 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 1 9 0 9 0 . 0 2 4 9 3.00 0 . 0 9 3 7 3 . 4 5 8 3 1 . 6 4 4 9 0 . 0 4 9 8 0 . 0 4 9 8 13 . 5 5 7 5 0 . 1 9 0 9 0 . 0 2 4 9 7.00 0 . 2 1 8 7 3 . 4 3 7 5 1 . 7 3 6 1 0 . 0 6 6 4 0 . 0 6 6 4 5 . 0 7 1 9 0 . 1 9 0 9 0 . 0 2 4 9 1 0 . 0 0 0 . 3 1 2 5 3 . 4 1 6 6 1 . 7 3 6 1 0 . 0 8 3 0 0 . 0 8 3 0 6 . 7 9 5 0 0 . 1 9 0 9 0 . 0 2 4 9 1 3 . 0 0 0 . 4 0 6 2 3 . 3 9 0 6 1 . 7 3 6 1 0 . 0 9 9 6 0 . 0 9 1 3 8 . 4 5 3 1 0 . 1 9 0 9 0 . 0 2 4 9 1 6 . 0 0 0 . 5 0 0 0 3 . 3 6 4 5 1 . 7 3 6 1 0 . 1 0 7 9 0. 1 0 7 9 8 . 4 8 5 6 0 . 1 9 0 9 0 . 0 2 4 9 1 9 . 0 0 0 . 5 9 3 7 3 . 3 3 3 3 1 . 7 3 6 1 0 . 1 2 4 5 0 . 1 2 4 5 10 . 1 4 3 7 0 . 1 9 0 9 0 . 0 2 4 9 2 2 . 0 0 0 . 6 8 7 5 3 . 2 9 6 8 1 . 8 2 7 9 0 . 1 4 1 1 0 . 1 4 1 1 11 . 8 6 6 9 0 . 1 9 0 9 0 . 0 2 4 9 2 5 . 0 0 0 . 7 8 1 2 3 . 2 5 5 2 1 . 8 2 7 9 0 . 1 5 7 7 0 . 1 5 7 7 13 . 5 2 5 0 0 . 1 9 0 9 0 . 0 2 4 9 2 8 . 0 0 0 . 8 7 5 0 3 . 2 0 8 3 1 . 8 2 7 9 0 . 1 8 2 6 0 . 1 6 6 0 15 . 2 4 8 1 0 . 1 9 0 9 0 . 0 2 4 9 3 1 . 0 0 0 . 9 6 8 7 3 . 1 5 6 2 1 . 9 2 0 2 0 . 1 9 9 2 0 . 1 8 2 6 16 . 9 3 8 8 0 . 1 9 0 9 0 . 0 2 4 9 3 5 . 0 0 1 . 0 9 3 7 3 . 0 8 3 3 1 . 9 2 0 2 0 . 2 4 0 7 0 . 2 3 2 4 17 . 7 7 5 9 0 . 1 9 0 9 0 . 0 2 4 9 3 9 . 0 0 1 . 2 1 8 7 3 . 0 0 5 2 2 . 0 1 3 8 0 . 3 0 7 1 0 . 2 4 9 0 19 . 0 4 3 9 0 . 1 9 0 9 0 . 0 2 4 9 4 3 . 0 0 1 . 3 4 3 7 2 . 9 2 7 0 2 . 0 1 3 8 0 . 3 6 5 2 0 . 2 9 0 5 19 . 0 6 8 3 F I L M 1 1 -2 RUN F 5 4 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 2 0 7 5 0 . 0 2 4 9 4.00 0. 1 2 5 0 3 . 4 5 8 3 - 1 . 6 4 4 9 0 . 0 4 9 8 0 . 0 4 9 8 10 . 1 6 8 1 0 . 2 0 7 5 0 . 0 2 4 9 7.00 0 . 2 1 8 7 3 . 4 3 7 5 1 . 7 3 6 1 0 • 0 6 6 4 0 . 0 6 6 4 6 . 7 6 2 5 0 . 2 0 7 5 0 . 0 2 4 9 1 0 . 0 0 0 . 3 1 2 5 3 . 4 1 6 6 1 . 7 3 6 1 0 • 0 8 3 0 0 . 0 8 3 0 6 . 7 9 5 0 0 . 2 0 7 5 0 . 0 2 4 9 1 4 . 0 0 0 . 4 3 7 5 3 . 3 9 0 6 1 . 7 3 6 1 0 . 0 9 9 6 0 . 0 9 9 6 6 . 3 3 9 8 0 . 2 0 7 5 0 . 0 2 4 9 1 7 . 0 0 0.5 3 1 2 3 . 3 6 4 5 1 . 7 3 6 1 0 . 1 1 6 2 0 . 1 0 7 9 8 . 4 8 5 6 0 . 2 0 7 5 0 . 0 2 4 9 2 0 . 0 0 0 . 6 2 5 0 3 . 3 3 3 3 1 . 7 3 6 1 0 . 1 3 2 8 0 . 1 3 2 8 10 . 1 4 3 7 0 . 2 0 7 5 0 . 0 2 4 9 2 3 . 0 0 0 . 7 1 8 7 3 . 2 9 6 8 1 . 8 2 7 9 0 . 1 4 9 4 0 . 1 4 1 1 11 . 8 6 6 9 0 . 2 0 7 5 0 . 0 2 4 9 2 6 . 00 0 . 8 1 2 5 3 . 2 5 0 0 1 . 8 2 7 9 0 . 1 6 6 0 0 . 1 5 7 7 15 . 2 1 5 6 0 . 2 0 7 5 0 . 0 2 4 9 3 0 . 0 0 0 . 9 3 7 5 3 . 1 8 7 5 1 . 8 2 7 9 0 . 1 9 9 2 0 . 1 8 2 6 15 . 2 4 0 0 0 . 2 0 7 5 0 . 0 2 4 9 3 3 . 00 1.031 2 3.13 54 1 .9 2 1 8 0 . 2 0 7 5 0 . 2 0 7 5 16 . 9 3 8 8 0 . 2 0 7 5 0 . 0 2 4 9 3 6 . 0 0 1.12 50 3 . 0 8 3 3 1 . 9 2 1 8 0 . 2 5 7 3 0 . 2 1 5 8 16 . 9 3 8 8 0 . 2 0 7 5 0 . 0 2 4 9 4 1 . 0 0 1 . 2 8 1 2 3 . 0 0 0 0 2 . 0 1 5 7 0 . 3 0 7 1 0 . 2 6 5 6 1 6 . 2 4 9 5 0 . 2 0 7 5 0 . 0 2 4 9 4 4 . 0 0 1 . 3 7 5 0 2 . 9 4 2 7 2 . 0 1 5 7 0 . 3 5 6 9 0 . 2 8 2 2 18 . 6 2 9 4 F I L M 1 1 -2 RUN F 5 5 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 2 5 7 3 0 . 0 4 9 8 5. 00 0. 1 5 6 2 3 . 4 4 2 7 1 . 7 3 3 1 0 . 0 8 3 0 0 . 0 8 3 0 11 .177'6 0 . 2 5 7 3 0 . 0 4 9 8 8. 00 0 . 2 5 0 0 3 . 4 1 6 6 1 . 7 3 3 1 0 • 0 9 1 3 0 . 0 9 1 3 8 . 4 8 5 6 0 . 2 5 7 3 0 . 0 4 9 8 1 2 . 0 0 0 . 3 7 5 0 3 . 3 8 5 4 1 . 7 3 3 1 0 . 1 0 7 9 0 . 1 0 7 9 7 . 6 0 7 8 0 . 2 5 7 3 0 . 0 4 9 8 1 6 . 0 0 0 . 5 0 0 0 3 . 3 5 4 1 1 . 7 3 3 1 0 . 1 2 4 5 0 . 1 1 6 2 7 . 6 3 2 2 0 . 2 5 7 3 0 . 0 4 9 8 1 8 . 0 0 0 . 5 6 2 5 3 . 3 3 3 3 1 . 7 3 3 1 0 . 1 3 2 8 0 . 1 2 4 5 10 . 1 4 3 7 0 . 2 5 7 3 0 . 0 4 9 8 2 2 . 00 0 . 6 8 7 5 3 . 2 8 6 4 1 . 8 2 6 0 0 . 1 4 9 4 0 . 1 4 1 1 11 . 4 3 6 1 0 . 2 5 7 3 0 . 0 4 9 8 2 5 . 0 0 0 . 7 8 1 2 3 . 2 5 0 0 1 . 8 2 6 0 0 . 1 6 6 0 0 . 1 4 9 4 11 . 8 3 4 4 0 . 2 5 7 3 0 . 0 4 9 8 2 8 . 0 0 0 . 8 7 5 0 3 . 2 0 8 3 1 . 8 2 6 0 0 . 1 7 4 3 0 . 1 6 6 0 13 . 5 5 7 5 0 . 2 5 7 3 0 . 0 4 9 8 3 1 . 0 0 0 . 9 6 8 7 3 . 1 6 1 4 1 . 9 1 8 1 0 . 1 9 0 9 0 . 1 7 4 3 15 . 2 4 8 1 0 . 2 5 7 3 0 . 0 4 9 8 3 4 . 0 0 1 . 0 6 2 5 3 . 1 1 4 5 1 . 9 1 8 1 0 . 2 1 5 8 0 . 1 9 0 9 15 . 2 4 8 1 0 . 2 5 7 3 0 . 0 4 9 8 3 7 . 0 0 1 . 1 5 6 2 3 . 0 6 7 7 1 . 9 1 8 1 0 . 2 4 0 7 0 . 2 0 7 5 15 . 2 1 5 6 0 . 2 5 7 3 0 . 0 4 9 8 4 2 . 0 0 1 . 3 1 2 5 2 . 9 7 3 9 2 . 0 8 7 8 0 . 2 7 3 9 0 . 2 4 0 7 18 . 2 9 7 8 0 . 2 5 7 3 0 . 0 4 9 8 4 7 . 0 0 1 . 4 6 8 7 2 . 8 8 0 2 2 . 0 8 7 8 0 . 3 5 6 9 0 . 2 8 2 2 1 8 . 2 7 8 2 0 . 2 5 7 3 0 . 0 4 9 8 5 1 . 0 0 1 . 5 9 3 7 2 . 8 0 2 0 2 . 1 7 8 2 0 . 4 6 4 8 0 . 3 0 7 1 19 . 0 6 8 3 F I L M 11--3 DDROP DAI R FN 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0 . 1 9 0 9 0. 1 9 0 9 0 . 1 9 0 9 0. 1 9 0 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0.0 249 2. 00 5.00 8.00 1 1 . 0 0 1 4 . 0 0 1 6 . 0 0 1 9 . 0 0 2 2 . 0 0 2 4 . 00 F I L M 11 -3 DDROP DAI R FN 0 . 1 9 9 0 0. 1 9 9 0 0 . 1 9 9 0 0 . 1 9 9 0 0 . 1 9 9 0 0 . 1 9 9 0 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 1 0 . 00 1 3 . 0 0 1 6 . 0 0 1 9 . 0 0 2 1 . 0 0 3 0 . 0 0 F I L M 11 -3 DDROP DAIR FN 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 2.00 5. 00 7. 00 1 0 . 0 0 1 3 . 0 0 1 5 . 0 0 2 6 . 0 0 F I L M 11 -3 DDROP DAIR FN 0 . 2 5 7 3 0 . 2 5 7 3 0 . 2 5 7 3 0 . 2 5 7 3 0 . 2 5 7 3 0 . 2 5 7 3 0 . 2 5 7 3 0 . 2 5 7 3 0 . 2 5 7 3 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 2.00 5.00 8.00 1 1 . 0 0 1 5 . 0 0 1 7 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 RUN F 5 6 T T I M E HTWC DELT 0 . 0 6 2 5 3 . 4 6 3 5 4.0 276 0. 1 5 6 2 3 . 4 4 2 7 4 . 0 2 7 6 0. 2 5 0 0 3 . 4 1 6 6 4 . 0 2 7 6 0 . 3 4 3 7 3 . 3 8 5 4 4 . 0 2 9 4 0 . 4 3 7 5 3 . 3 4 3 7 4 . 1 2 1 0 0 . 5 0 0 0 3 . 3 0 7 2 4 . 1 2 1 0 0 . 5 9 3 7 3 . 2 5 0 0 4 . 1 2 6 0 0 . 6 8 7 5 3 . 1 9 2 7 4 . 2 9 1 5 0 . 7 5 0 0 3 . 1 5 6 2 4 . 2 9 1 5 RUN F 5 7 T T I M E HTWC DELT 0 . 3 1 2 5 3 . 4 1 6 6 4 . 1 0 5 1 0 . 4 0 6 2 3 . 3 8 0 2 4 . 1 0 5 1 0 . 5 0 0 0 3 . 3 3 8 5 4 . 1 0 5 1 0 . 5 9 3 7 3 . 2 8 6 4 4 . 1 0 5 1 0 . 6 5 6 2 3 . 2 5 0 0 4 . 1 9 5 5 0 . 9 3 7 5 3 . 0 7 2 9 4 . 3 6 0 8 RUN F 5 8 T T I M E HTWC DELT 0 . 0 6 2 5 3 . 4 6 3 5 4 . 0 2 7 6 0 . 1 5 6 2 3 . 4 3 7 5 4 . 0 2 7 6 0 . 2 1 8 7 3 . 4 1 6 6 4 . 0 2 7 6 0 . 3 1 2 5 3 . 3 7 5 0 4 . 1 1 6 8 0 . 4 0 6 2 3 . 3 3 3 3 4 . 1 1 6 8 0 . 4 6 8 8 3 . 2 9 6 8 4 . 1 1 6 8 0 . 8 1 2 5 3 . 0 8 3 3 4 . 2 8 2 9 RUN F 5 9 T T I M E HTWC DELT 0 . 0 6 2 5 3 . 4 6 8 7 4 . 0 2 7 2 0 . 1 5 6 2 3 . 4 4 2 7 4 . 0 2 7 2 0 . 2 5 0 0 3 . 4 1 6 6 4 . 0 2 7 2 0 . 3 4 3 7 3 . 3 8 5 4 4 . 0 2 9 6 0 . 4 6 8 8 3 . 3 3 3 3 4.12 20 0 . 5 3 1 2 3 . 3 0 2 0 4 . 1 2 2 0 0 . 6 2 5 0 3.2 5 00 4 . 1 2 6 3 0 . 6 8 7 5 3 . 2 1 3 5 4 . 2 1 7 3 0 . 7 5 0 0 3 . 1 7 1 8 4 . 2 1 7 3 DVA DVB V E L 0 . 0 4 9 8 0 . 0 4 9 8 17 . 8 0 0 3 0 . 0 8 3 0 d . 0 8 3 0 6 . 7 6 2 5 0 . 1 0 7 9 0 . 1 0 7 9 8 . 4 8 5 6 0 . 1 4 9 4 0 . 1 4 1 1 10 . 1 4 3 7 0 . 1 8 2 6 0 . 1 6 6 0 13 . 5 5 7 5 0 . 2 0 7 5 0 . 1 9 0 9 17 . 8 0 0 3 0 . 2 4 9 0 0 . 2 1 5 8 18 . 5 9 6 9 0 . 3 2 3 7 0 . 2 9 0 5 18 . 6 2 9 4 0 . 4 3 1 6 0 . 2 9 0 5 17 . 8 0 0 3 DVA DVB V E L 0 . 1 2 4 5 0. 1 2 4 5 8 . 1 3 4 5 0 . 1 5 7 7 0 . 1 4 1 1 11 .8 3 4 4 0 . 1 9 0 9 0 . 1 5 7 7 13 . 5 5 7 5 0 . 2 2 4 1 0 . 1 9 0 9 16 . 9 3 8 8 0 . 2 4 9 0 0 .2 1 5 8 17 . 7 5 1 5 0 . 5 3 9 5 0 . 3 4 0 3 19 . 1 9 2 9 DVA DVB V E L 0 . 0 8 3 0 0 . 0 8 3 0 17 . 8 0 0 3 0 . 1 1 6 2 0 . 1 1 6 2 8 . 4 5 3 1 0 . 1 4 1 1 0 . 1 3 2 8 10 . 1 9 2 5 0 . 1 7 4 3 0 . 1 4 9 4 13 . 5 2 5 0 0 . 1 9 0 9 0 . 1 7 4 3 13 . 5 5 7 5 0 . 2 1 5 8 0 . 1 9 0 9 17 . 8 0 0 3 0 . 5 0 6 3 0 . 3 4 0 3 18 . 9 3 0 9 DVA DVB V E L o. 0 5 8 1 0 . 0 5 8 1 15 . 2 6 4 4 o. 0 9 1 3 0 . 0 9 1 3 8 . 4 5 3 1 o. 1 1 6 3 0 . 1 1 6 2 8 . 4 8 5 6 o. 1 4 9 4 0 . 132 8 10 . 1 4 3 7 o. 1 8 2 6 0 . 1 6 6 0 12 . 7 0 4 1 0. 2 0 7 5 0 . 1 7 4 3 15 . 2 6 4 4 o. 2 4 9 0 0 .21 5 8 16 . 9 0 6 2 o. 2 9 0 5 0 . 2 2 4 1 17 . 8 0 0 3 o. 3 2 3 7 0 . 2 4 9 0 20 . 3 3 6 3 F I L M 1 1 - 3 RUN F 6 0 183 DDROP DAI R FN 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 8.00 1 2 . 0 0 1 7 . 0 0 2 0 . 0 0 2 3 . 0 0 2 7 . 0 0 3 0.00 3 6 . 0 0 F I L M 11--4 DDROP DAIR FN 0 . 2 2 4 1 0 . 2 2 4 1 0.2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 8.00 11 .00 1 5 . 0 0 1 9 . 0 0 2 3 . 00 2 8 . 0 0 3 2 . 00 3 6 . 0 0 4 0 . 0 0 5 3 . 00 F I L M 11 -4 DDROP DAI R FN 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 2 2 4 1 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 1 2 . 0 0 1 6 . 0 0 1 9 . 0 0 2 3 . 0 0 2 7 . 0 0 3 0.00 3 4 . 0 0 3 8 . 0 0 4 0 . 0 0 4 4 . 0 0 4 8 . 0 0 F I L M 11 -4 DDROP DAIR FN 0 . 2 4 9 0 0 . 2 4 9 0 0 . 2 4 9 0 0 . 2 4 9 0 0 . 2 4 9 0 0 . 2 4 9 0 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 1 0 . 0 0 1 5 . 0 0 1 9 . 0 0 2 3 . 0 0 2 8 . 0 0 3 2 . 0 0 T T I M E HTWC DELT 0.25 00 0 . 3 7 5 0 0 . 5 3 1 2 0 . 6 2 5 0 0 . 7 1 8 7 0 . 8 4 3 7 0 . 9 3 7 5 1 . 1 2 5 0 3 . 4 1 6 6 3 . 3 8 5 4 3 . 3 3 3 3 3 . 2 8 6 4 3 . 2 3 9 5 3 . 1 6 6 6 3 . 1 0 9 3 3 . 0 0 0 0 4 . 0 2 7 6 4 . 0 2 9 4 4 . 1 2 1 8 4 . 1 2 1 8 4 . 2 1 1 1 4 . 2 1 1 1 4 . 3 0 0 8 4 . 3 0 5 9 RUN F 6 1 T T I M E HTWC DELT 0 . 1 2 5 0 0 . 1 7 1 9 0 . 2 3 4 4 0 . 2 9 6 9 0 . 3 5 9 4 0 . 4 3 7 5 0 . 5 0 0 0 0 . 5 6 2 5 0.62 50 0 . 8 2 8 1 3 . 4 4 7 9 3 . 4 3 7 5 3 . 4 1 6 6 3 . 3 9 5 8 3 . 3 6 9 7 3 . 3 3 3 3 3 . 2 9 6 8 3 . 2 6 0 4 3 . 2 1 3 5 3 . 0 6 2 5 4. 1 0 4 0 4 . 1 0 4 0 4 . 1 0 4 0 4 . 1 0 4 0 4 . 1 0 4 0 4 . 1 0 4 0 4 . 1 0 4 0 4 . 1 9 3 7 4 . 1 9 3 7 4 . 3 5 9 0 RUN F 6 2 T T I M E HTWC DELT 0 . 1 8 7 5 0 . 2 5 0 0 0 . 2 9 6 9 0 . 3 5 9 4 0 . 4 2 1 9 0 . 4 6 8 8 0 . 5 3 1 2 0 . 5 9 3 7 0 . 6 2 5 0 0 . 6 8 7 5 0 . 7 5 0 0 3 . 4 5 3 1 3 . 4 3 7 5 3 . 4 1 6 6 3 . 3 9 0 6 3 . 3 5 9 3 3 . 3 3 3 3 3 . 2 9 1 6 3 . 2 5 0 0 3 . 2 2 9 1 3 . 1 9 2 7 3 . 1 4 5 8 4 . 0 2 7 2 4 . 0 2 7 2 4 . 0 2 7 2 4 . 0 2 7 2 4 . 1 1 7 7 4 . 1 1 7 7 4 . 1 1 7 7 4 . 2 0 6 7 4 . 2 0 6 7 4 . 2 0 6 7 4 . 2 0 6 7 RUN F 6 3 T T I M E HTWC DELT 0 . 1 5 6 2 0 . 2 3 4 4 0 . 2 9 6 9 0.35 94 0 . 4 3 7 5 0 . 5 0 0 0 3 . 4 4 2 7 3 . 4 1 6 6 3 . 3 9 5 8 3 . 3 6 9 7 3 . 3 3 3 3 3 . 2 9 1 6 4 . 0 2 7 6 4 . 0 2 7 6 4 . 0 2 7 6 4 . 1 1 7 2 4 . 1 1 7 2 4 . 1 1 7 2 DVA DVB V E L 0 . 0 9 9 6 0 . 0 9 9 6 7 . 6 2 4 1 0 . 1 2 4 5 0 . 1 2 4 5 7 . 6 0 7 8 0 . 1 6 6 0 0 . 1 4 9 4 10 . 1 6 3 3 0 . 1 9 0 9 0 . 1 7 4 3 1 5 . 2 4 8 1 0 . 2 2 4 1 0 . 18 2 6 1 5 . 2 4 8 1 0 . 2 7 3 9 0 .2 1 5 8 1 7 . 7 7 5 9 0 . 3 0 7 1 0 . 2 6 5 6 1 8 . 6 2 9 4 0 . 4 7 3 1 0 . 3 3 2 0 1 7 . 7 6 7 8 DVA DVB ; VEL 0 . 0 8 3 0 0 . 0 8 3 0 6 . 7 6 2 5 0 . 0 9 9 6 0 . 0 9 9 6 6 . 7 6 2 5 0 . 1 1 6 2 0 .1 1 6 2 1 0 . 1 9 2 5 0 . 1 3 2 8 0 . 132 8 1 0 . 1 4 3 7 0 . 1 5 7 7 0 . 1 4 9 4 1 2 . 7 2 84 0 . 1 8 2 6 0 . 1 6 6 0 1 4 . 2 0 1 2 0 . 2 0 7 5 0 . 1 9 0 9 1 7 . 8 0 0 3 0 . 2 3 2 4 0 . 2 0 7 5 1 7 . 7 5 1 5 0 . 2 5 7 3 0 . 2 2 4 1 2 2 . 8 7 2 2 0 . 4 8 1 4 0 . 3 3 2 0 22 . 6 5 8 4 DVA DVB V E L 0 . 0 7 4 7 0 . 0 7 4 7 3 . 8 0 3 9 0 . 1 0 7 9 0 . 1 0 7 9 7 . 6 0 7 8 0 . 1 3 2 8 0 . 1 2 4 5 1 3 . 5 9 0 0 0 . 1 4 9 4 0 . 1 4 1 1 12 . 6 7 9 7 0 . 1 8 2 6 0 . 1 6 6 0 1 5 . 2 6 4 4 0 .1 9 9 2 0 . 1 8 2 6 1 6 . 9 0 6 2 0 . 2 3 2 4 0 . 2 0 7 5 2 0 . 3 3 6 3 0 . 2 6 5 6 0 . 2 4 9 0 20 . 2 8 7 5 0 . 3 1 5 4 0 . 2 6 5 6 2 0 . 3 8 5 0 0 . 3 9 8 4 0 . 3 0 7 1 17 . 75 15 0 . 5 1 4 6 0 . 3 3 2 0 2 2 . 8 7 2 2 DVA DVB V E L 0 . 0 8 3 0 0 . 0 8 3 0 8 . 1 1 5 0 0 . 1 0 7 9 0 . 1 0 7 9 1 0 . 1 8 2 8 0 . 1 2 4 5 0 . 1162 1 0 . 1 4 3 7 0 . 1 4 9 4 0 . 132 8 1 2 . 7 2 8 4 0 . 1 8 2 6 0 . 1 6 6 0 1 4 . 2 0 1 2 0 . 1 9 9 2 0 . 1 7 4 3 2 0 . 3 3 6 3 T A B L E A V I I I 184 RAW DATA FOR D I S T I L L E D WATER - I S O PENTANE S Y S T E M F I L M 1 2 - 2 RUN I I DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 3 1 6 0 . 0 1 6 6 4 0 . 0 0 0 . 6 9 5 7 2 . 8 8 5 4 0 . 5 1 9 5 0 . 1 7 4 3 0 . 1 4 9 4 2 6 . 9 2 8 7 0 . 4 3 1 6 0 . 0 1 6 6 4 4 . 0 0 0 . 7 6 5 2 2 . 8 3 8 5 0 . 5 1 9 5 0 . 2 0 7 5 0 . 1 8 2 6 2 0 . 5 4 9 2 0 . 4 3 1 6 0 . 0 1 6 6 4 8 . 00 0 . 8 3 4 8 2 . 7 9 1 6 0 . 6 0 0 7 0 . 2 2 4 1 0 . 1992 2 0 . 5 4 9 2 0 . 4 3 1 6 0 . 0 1 6 6 5 2 . 0 0 0 . 9 0 4 3 2 . 7 4 4 7 0 . 6 0 0 7 0 . 2 4 0 7 0 . 2 0 7 5 20 . 5 4 9 2 0 . 4 3 1 6 0 . 0 1 6 6 5 6 . 0 0 0 . 9 7 3 9 2 . 7 0 3 1 0 . 6 0 0 7 0 * 2 5 7 3 0 .2 1 5 8 1 8 . 2 2 7 0 0 . 4 3 1 6 0 . 0 1 6 6 6 4 . 00 1 . 1 1 3 0 2 . 6 1 4 5 0 . 7 4 9 1 0 . 2 9 0 5 0 . 2 2 4 1 1 9 . 4 1 0 0 0 . 4 3 1 6 0 . 0 1 6 6 8 6 . 00 1 . 4 9 5 7 2 . 3 6 9 7 0 . 8 9 7 0 0 . 3 6 5 2 0 . 2 7 3 9 1 9 . 5 0 1 7 0 . 4 3 1 6 0 . 0 1 6 6 1 1 0 . 0 0 1 . 9 1 3 0 2 . 0 9 3 7 1 . 1 9 0 5 0 . 4 8 1 4 0 . 3 3 2 0 2 0 . 1 5 4 9 0 . 4 3 1 6 0 . 0 1 6 6 1 1 7 . 0 0 2 . 0 3 4 8 2 . 0 0 0 0 1 . 1 9 0 5 0 . 5 7 2 7 0 . 3 4 8 6 2 3 . 4 5 9 8 F I L M 12 -2 RUN 12 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 3 9 9 0 . 0 2 4 9 1 0 . 0 0 0 . 1 7 3 9 3 . 3 3 3 3 0 . 2 0 0 0 0 . 0 6 6 4 0 . 0 6 6 4 2 9 . 2 1 5 8 0 . 4 3 9 9 0 . 0 2 4 9 1 4 . 0 0 0 . 2 4 3 5 3 . 2 9 6 8 0 . 2 0 0 0 0 . 0 8 3 0 0 . 0 7 4 7 1 5 . 9 9 2 5 0 . 4 3 9 9 0 . 0 2 4 9 1 8 . 0 0 0 . 3 1 3 0 3 . 2 5 5 2 0 . 2 0 0 0 0 . 0 9 9 6 0 . 0 9 9 6 1 8 . 2 2 7 0 0 . 4 3 9 9 0 . 0 2 4 9 22 .00 0 . 3 8 2 6 3 . 2 1 8 7 0 . 2 0 1 4 0 . 1 2 4 5 0 . 1 0 7 9 15 . 9 9 2 5 0 . 4 3 9 9 0 . 0 2 4 9 2 6 . 0 0 0 . 4 5 2 2 3 . 1 8 2 2 0 . 3 5 1 6 0 . 1 4 9 4 0 . 1 2 4 5 1 5 . 9 9 2 5 0 . 4 3 9 9 0 . 0 2 4 9 3 0 . 0 0 0 . 5 2 1 7 3 . 1 4 5 8 0 . 3 5 1 6 0 . 1 6 6 0 0 . 1 4 1 1 1 5 . 9 4 8 7 0 . 4 3 9 9 0 . 0 2 4 9 3 8 . 0 0 0 . 6 6 0 9 3 . 0 6 7 7 0 . 3 5 1 6 0 . 2 0 7 5 0 . 1 5 7 7 1 7 . 1 0 9 8 0 . 4 3 9 9 0 . 0 2 4 9 5 2 . 0 0 0 . 9 0 4 3 2 . 9 3 7 5 0 . 5 0 1 3 0 . 2 2 4 1 0 . 2 0 7 5 1 6 . 2 9 9 2 0 . 4 3 9 9 0 . 0 2 4 9 6 4 . 0 0 1 . 1 1 3 0 2 . 8 1 7 7 0 . 5 0 7 7 0 . 2 6 5 6 0 . 2 2 4 1 1 7 . 4 9 6 8 0 . 4 3 9 9 0 . 0 2 4 9 8 0 . 0 0 1 . 3 9 1 3 2 . 6 6 1 4 0 . 6 5 6 9 0 . 3 3 2 0 0 . 2 3 2 4 1 7 . 1 2 0'7 0 . 4 3 9 9 0 . 0 2 4 9 8 8 . 0 0 1 . 5 3 0 4 2 . 5 7 2 9 0 . 8 0 4 9 0 .36 52 0 . 2 5 7 3 1 9 . 3 8 8 1 0 . 4 3 9 9 0 . 0 2 4 9 9 6 . 0 0 1 . 6 6 9 6 2 . 4 8 4 3 0 . 8 0 4 9 0 . 4 0 6 7 0 . 2 6 5 6 1 9 . 4 1 0 0 0 . 4 3 9 9 0 . 0 2 4 9 1 0 3 . 0 0 1 . 7 9 1 3 2 . 4 0 1 0 0 . 9 5 2 1 0 . 4 3 1 6 0 . 3 0 7 1 20 . 8 5 5 9 0 . 4 3 9 9 0 . 0 2 4 9 1 1 0 . 0 0 1 . 9 1 3 0 2 . 3 1 7 7 0 . 9 5 2 1 0 . 4 8 9 7 0 . 3 4 8 6 2 0 . 8 5 5 9 F I L M 12--2 RUN I 3 DDROP DAIR FN T T I M E HTWC DELT DVA DVB VEL 0 . 4 1 5 0 0 . 0 1 6 6 2 0 . 0 0 0 . 3 4 7 8 3 . 1 4 5 8 0 . 3 5 8 9 0 . 0 6 6 4 0 . 0 6 6 4 3 1 . 0 3 8 5 0 . 4 1 5 0 0 . 0 1 6 6 3 2 . 0 0 0 . 5 5 6 5 3 . 0 3 1 2 0 . 3 5 8 9 0 . 1 2 4 5 0 . 1 2 4 5 1 6 . 7 3 7 3 0 . 4 1 5 0 0 . 0 1 6 6 4 4 . 0 0 0 . 7 6 5 2 2 . 9 1 6 6 0 . 5 0 8 6 0 . 1 8 2 6 0 . 1 6 6 0 1 6 . 7 3 7 3 0 . 4 1 5 0 0 . 0 1 6 6 4 8 . 0 0 0 . 8 3 4 8 2 . 8 8 0 2 0 . 5 0 8 6 0 . 2 0 7 5 0 . 1 8 2 6 1 5 . 9 4 8 7 0 . 4 1 5 0 0 . 0 1 6 6 5 6 . 0 0 0 . 9 7 3 9 2 . 8 0 2 0 0 . 5 9 0 1 0 . 2 4 0 7 0 . 1 9 9 2 1 7 . 1 3 1 7 0 . 4 1 5 0 0 . 0 1 6 6 6 1 . 0 0 1 . 0 6 0 9 2 . 7 5 0 0 0 . 5 9 0 1 0 . 2 6 5 6 0 . 2 0 7 5 1 8 . 2 2 7 0 0 . 4 1 5 0 0 . 0 1 6 6 7 0 . 0 0 1 . 2 1 7 4 2 . 6 6 6 6 0 . 7 3 8 4 0 . 2 9 8 8 0 .2 1 5 8 1 6 . 2 4 0 8 0 . 4 1 5 0 0 . 0 1 6 6 9 4 . 00 1 . 6 3 4 8 2 . 4 1 6 6 0 . 8 8 6 2 0 . 4 1 5 0 0 . 2 6 5 6 18 . 2 5 6 2 0 . 4 1 5 0 0 . 0 1 6 6 1 0 1 . 0 0 1 . 7 5 6 5 2 . 3 3 3 3 0 . 8 8 6 2 0 . 4 6 4 8 0 . 2 9 0 5 2 0 . 8 5 5 9 F I L M 1 2 - 2 RUN 14 185 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 5 6 5 0 . 0 1 6 6 2 0 . 0 0 0 . 3 4 7 8 3 . 1 4 0 6 0 . 3 5 9 1 0 . 0 5 8 1 0 . 0 5 8 1 3 1 . 4 9 4 2 0 . 4 5 6 5 0 . 0 1 6 6 2 6 . 00 0 . 4 5 2 2 3 . 0 8 3 3 0 . 3 5 9 1 0 . 0 9 9 6 0,.0996 1 6 . 7 3 7 3 0 . 4 5 6 5 0 . 0 1 6 6 3 4 . 0 0 0 . 5 9 1 3 2 . 9 9 4 7 0 . 4 4 1 1 0 . 1 2 4 5 0 . 1 2 4 5 1 9 . 4 1 0 0 0 . 4 5 6 5 0 . 0 1 6 6 42 • 00 0 . 7 3 0 4 2 . 9 1 1 4 0 . 4 4 1 1 0 . 1 5 7 7 0 . 1 4 1 1 1 8 . 2 4 9 0 0 . 4 5 6 5 0 . 0 1 6 6 4 9 . 0 0 0 . 8 5 2 2 2 . 8 3 3 3 0 . 5 9 0 3 0 . 2 0 7 5 0 . 1 7 4 3 1 9 . 5 5 4 0 0 . 4 5 6 5 0 . 0 1 6 6 5 7 . 0 0 0 . 9 9 1 3 2 . 7 5 0 0 0 . 5 9 0 3 0 . 2 2 4 1 0 . 1 9 9 2 1 8 . 2 4 8 9 0 . 4 5 6 5 0 . 0 1 6 6 6 5 . 0 0 1 . 1 3 0 4 2 . 6 6 6 6 0 . 7 3 8 6 0 . 2 5 7 3 0 . 2 1 5 8 1 8 . 2 7 0 9 0 . 4 5 6 5 0 . 0 1 6 6 7 4 . 0 0 1 . 2 8 7 0 2 . 5 8 3 3 0 . 7 3 8 6 0 . 2 9 0 5 0 . 2 2 4 1 1 6 . 2 2 1 3 0 . 4 5 6 5 0 . 0 1 6 6 8 2 . 00 1 . 4 2 6 1 2 . 5 0 0 0 0 . 8 8 6 1 0 . 3 3 2 0 0 . 2 4 9 0 1 8 . 2 4 8 9 0 . 4 5 6 5 0 . 0 1 6 6 9 0 . 0 0 1.5 6 52 2 . 4 1 6 6 0 . 8 8 6 1 0 . 3 6 5 2 0 . 2 7 3 9 1 8 . 2 7 0 9 0 . 4 5 6 5 0 . 0 1 6 6 9 8 . 0 0 1 . 7 0 4 3 2 . 3 3 3 3 0 . 8 8 6 1 0 . 3 9 8 4 0 . 3 4 0 3 1 8 . 2 4 8 9 0 . 4 5 6 5 0 . 0 1 6 6 1 1 3 . 0 0 1 . 9 6 5 2 2 . 1 6 6 6 1 . 0 3 3 4 0 . 4 9 8 0 0 . 3 4 8 6 1 9 . 4 7 7 2 0 . 4 5 6 5 0 . 0 1 6 6 1 2 0 . 0 0 2 . 0 8 7 0 2 . 0 8 3 3 1 . 1 7 9 6 0 . 5 3 1 2 0 . 3 9 8 4 2 0 . 8 5 5 9 F I L M 12 -3 RUN I 5 DDROP DAIR FN T T I M E HTWC DELT DVA DVB VEL 0 . 3 5 6 9 0 . 0 1 6 6 2 4 . 0 0 0 . 4 1 7 4 3 . 1 6 6 6 2 . 3 0 7 9 0 . 0 9 9 6 0 . 0 9 9 6 2 4 . 3 4 6 5 0 . 3 5 6 9 0 . 0 1 6 6 3 2 . 0 0 0 . 5 5 6 5 3 . 0 8 3 3 2 . 3 0 7 9 0 . 1 4 1 1 0 . 1 2 4 5 1 8 . 2 4 8 9 0 . 3 5 6 9 0 . 0 1 6 6 3 9 . 0 0 0 . 6 7 8 3 3 . 0 0 0 0 2 . 3 8 9 6 0 . 1 8 2 6 0 . 1 4 9 4 2 0 . 8 5 5 9 0 . 3 5 6 9 0 . 0 1 6 6 4 7 . 00 0 . 8 1 7 4 2 . 9 1 6 6 2 . 3 8 9 6 0 . 1 9 9 2 0 . 1 6 6 0 1 8 . 2 7 0 9 0 . 3 5 6 ? 0 . 0 1 6 6 5 4 . 0 0 0 . 9 3 9 1 2 . 8 3 3 3 2 . 5 3 8 8 0 . 2 1 5 8 0 . 1 8 2 6 2 0 . 8 5 5 9 0 . 3 5 6 9 0 . 0 1 6 6 61 .00 1 . 0 6 0 9 2 . 7 5 0 0 2 . 5 3 8 8 0 . 2 5 7 3 0 . 1 9 0 9 2 0 . 8 5 5 9 0 . 3 5 6 9 0 . 0 1 6 6 6 8 . 0 0 1 . 1 8 2 6 2 . 6 6 6 6 2 . 6 8 7 2 0 . 2 9 0 5 0 . 2 2 4 1 2 0 . 8 8 1 0 0 . 3 5 6 9 0 . 0 1 6 6 7 5 . 0 0 1 . 3 0 4 3 2 . 5 8 3 3 2 . 6 8 7 2 0 . 3 7 3 5 0 . 2 5 7 3 2 0 . 8 5 5 9 0 . 3 5 6 9 0 . 0 1 6 6 8 2 . 0 0 1 . 4 2 6 1 2 . 5 0 0 0 2 . 8 3 4 7 0 . 4 3 9 9 0 . 2 9 0 5 2 0 . 8 5 5 9 0 . 3 5 6 9 0 . 0 1 6 6 8 9 . 0 0 1 . 5 4 7 8 2 . 4 1 6 6 2 . 8 3 4 7 0 . 4 9 8 0 0 . 3 8 1 8 2 0 . 8 8 1 0 F I L M 12--3 RUN 16 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 4 8 6 0 . 0 1 6 6 4 8 . 0 0 0 . 8 3 4 8 2 . 8 8 5 4 2 . 4 6 9 5 0 . 1 9 9 2 0 . 1 4 9 4 2 2 . 4 4 0 6 0 . 3 4 8 6 0 . 0 1 6 6 6 3 . 0 0 1 . 0 9 5 7 2 . 7 0 8 3 2 . 6 2 5 8 0 . 2 5 7 3 0 . 1 9 9 2 1 8 . 2 7 0 9 0 . 3 4 8 6 0 . 0 1 6 6 6 6 . 0 0 1 . 1 4 7 8 2 . 6 6 6 6 2 . 6 2 5 8 0 . 2 7 3 9 0 . 2 0 7 5 2 4 . 3 6 1 1 0 . 3 4 8 6 0 . 0 1 6 6 7 3 . 0 0 1 . 2 6 9 6 2 . 5 8 3 3 2 . 7 7 3 6 0 . 3 4 0 3 0 . 2 4 9 0 2 0 . 8 5 5 9 0 . 3 4 8 6 0 . 0 1 6 6 8 0 . 0 0 1 . 3 9 1 3 2 . 5 0 0 0 2 . 7 7 3 6 0 . 4 1 5 0 0 . 2 8 2 2 2 0 . 8 5 5 9 0 . 3 4 8 6 0 . 0 1 6 6 1 0 1 . 0 0 1 . 7 5 6 5 2 . 2 5 0 0 2 . 9 2 3 3 0 .69 72 0 . 4 3 1 6 2 0 . 8 5 5 9 0 . 3 4 8 6 0 . 0 1 6 6 1 0 7 . 0 0 1 . 8 6 0 9 2 . 1 6 6 6 3 . 0 6 9 8 0 .76 36 0 . 5 3 9 2 2 4 . 3 6 1 1 F I L M 12--3 RUN 17 DDROP DAIR FN T T I M E HTWC DELT DVA DVB VEL 0 . 3 9 0 1 0 . 0 2 4 9 6. 00 0 . 1 0 4 3 3 . 3 7 5 0 2 . 1 4 7 8 0 . 0 6 6 4 0 . 0 6 6 4 3 6 . 5 1 2 5 0 . 3 9 0 1 0 . 0 2 4 9 1 0 . 0 0 0 . 1 7 3 9 3 . 3 3 3 3 2 . 1 4 7 8 0 • 0 8 3 0 0 . 0 8 3 0 1 8 . 2 7 0 9 0 . 3 9 0 1 0 . 0 2 4 9 1 8 . 0 0 0 . 3 1 3 0 3 . 2 5 0 0 2 . 1 4 7 8 0 . 1 1 6 2 0 . 0 9 9 6 18 . 2 4 8 9 0 . 3 9 0 1 0 . 0 2 4 9 2 2 . 0 0 0 . 3 8 2 6 3 . 2 0 8 3 2 . 2 3 0 1 0 . 1 3 2 8 0 . 1 1 6 2 1 8 . 2 7 0 9 0 . 3 9 0 1 0 . 0 2 4 9 2 6 . 0 0 0 . 4 5 2 2 3. 1 6 6 6 2 . 2 3 0 1 0 . 1 4 9 4 0 . 1 3 2 8 1 8 . 2 7 0 9 0 . 3 9 0 1 0 . 0 2 4 9 3 0 . 0 0 0 . 5 2 1 7 3 . 1 2 5 0 2 . 2 3 0 1 0 .1 6 6 0 0 . 1 4 9 4 1 8 . 2 2 7 0 F I L M 1 2 - 3 RUN 18 186 DDROP DAIR FN 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 3 8 1 8 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 0 . 0 3 3 2 1 6 . 0 0 2 0 . 0 0 2 4 . 0 0 2 8 . 0 0 3 2 . 0 0 3 9 . 0 0 4 6 . 0 0 5 3 . 0 0 6 0 . 00 8 8 . 0 0 F I L M 12--3 DDROP DAIR FN 0 . 3 7 3 5 0 . 3 7 3 5 0.3 73 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 6 6 . 0 0 7 0 . 0 0 7 6 . 0 0 8 0 . 0 0 8 8 . 0 0 1 0 0 . 0 0 1 0 3 . 0 0 F I L M 12 -4 DDROP DAIR FN 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 2 8 . 0 0 3 4 . 0 0 3 7.00 4 4 . 0 0 5 1 . 0 0 5 8 . 0 0 6 5 . 00 7 8 . 00 F I L M 1 2 -4 DDROP DAIR FN 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 0 9 9 6 0 . 0 9 9 6 0 . 0 9 9 6 0 . 0 9 9 6 0 . 0 9 9 6 0 . 0 9 9 6 0 . 0 9 9 6 0 . 0 9 9 6 2 3 . 0 0 3 0 . 0 0 3 7 . 0 0 4 4 . 0 0 5 5 . 0 0 5 8 . 0 0 6 6 . 0 0 7 0 . 0 0 T T I M E HTWC DELT 0 . 2 7 8 3 3 . 2 5 0 0 2 . 1 5 4 3 0 . 3 4 7 8 3 . 2 0 8 3 2 . 1 5 9 2 0 . 4 1 7 4 3 . 1 6 6 6 2 . 3 0 9 4 0 . 4 8 7 0 3 . 1 2 5 0 2 . 3 0 9 4 0 . 5 5 6 5 3 . 0 8 3 3 2 . 3 0 9 4 0 . 6 7 8 3 3 . 0 0 0 0 2 . 3 9 1 0 0 . 8 0 0 0 2 . 9 1 6 6 2 . 3 9 1 0 0 . 9 2 1 7 2 . 8 3 3 3 2 . 5 4 0 2 1 . 0 4 3 5 2 . 7 5 0 0 2 . 5 4 0 2 1.5 3 0 4 2 . 4 1 6 6 2 .8 3 7 4 RUN 19 TT IME HTWC DELT 1 . 1 4 7 8 2 . 6 6 6 6 2 . 6 2 6 3 1 . 2 1 7 4 2 . 6 1 9 7 2 . 6 2 6 3 1 . 3 2 1 7 2 . 5 4 6 8 2 . 7 7 4 3 1 . 3 9 1 3 2 . 5 0 0 0 2 . 7 7 4 3 1 . 5 3 0 4 2 . 4 0 6 2 2 . 7 7 5 0 1 . 7 3 9 1 2 . 2 5 0 0 2 . 9 2 2 6 1 . 7 9 1 3 2 . 2 0 8 3 2 . 9 2 8 4 RUN I 10 T T I M E HTWC DELT 0 . 4 8 7 0 3 . 1 0 9 3 3 . 7 1 0 6 0 . 5 9 1 3 3 . 0 4 1 6 3 . 7 1 0 6 0 . 6 4 3 5 3 . 0 0 0 0 3 . 7 9 2 1 0 . 7 6 5 2 2 . 9 1 6 6 3 . 7 9 2 1 0 . 8 8 7 0 2 . 8 3 3 3 3 . 9 4 1 3 1 . 0 0 8 7 2 . 7 5 0 0 3 . 9 4 1 3 1 . 1 3 0 4 2 . 6 6 6 6 4 . 0 8 9 6 1 . 3 5 6 5 2 . 5 0 0 0 4 . 2 3 7 0 RUN 1 1 1 T T I M E HTWC DELT 0 . 4 0 0 0 3 . 1 6 6 6 3 . 6 9 7 9 0 . 5 2 1 7 3 . 0 8 3 3 3 . 6 9 7 9 0 . 6 4 3 5 3 . 0 0 0 0 . 3 . 8 4 7 4 0 . 7 6 5 2 2 . 9 1 6 6 3 . 8 4 7 4 0 . 9 5 6 5 2 . 8 0 2 0 3 . 9 9 6 1 1 . 0 0 8 7 2 . 7 5 0 0 3 . 9 9 6 1 1 . 1 4 7 8 2 . 6 5 6 2 3 . 9 9 6 1 1 . 2 1 7 4 2 . 6 0 4 1 4 . 1 4 4 1 DVA DVB V E L 0 . 1 2 4 5 0 . 1 0 7 9 2 7 . 3 8 4 4 0 . 1 4 9 4 0 . 1 2 4 5 1 8 . 2 7 0 9 0 . 1 6 6 0 0 . 1 4 1 1 1 8 . 2 7 0 9 0 . 1 8 2 6 0 . 1 5 7 7 1 8 . 2 2 7 0 0 . 1 9 0 9 0. 1 6 6 0 1 8 . 2 7 0 9 0 . 2 1 5 8 0 . 1 7 4 3 2 0 . 8 5 5 9 0 . 2 5 7 3 0 . 1 9 0 9 2 0 * 8 8 1 0 0 . 2 8 2 2 0 . 2 0 7 5 2 0.8 55 9 0 . 3 4 0 3 0 . 2 2 4 1 2 0 . 8 5 5 9 0 . 5 6 4 4 0 . 4 1 5 0 2 0 . 8 6 8 5 DVA DVB V E L 0 . 2 9 8 8 0 . 2 3 2 4 2 2. 1 3 0 6 0 . 3 4 8 6 0 . 2 4 9 0 2 0 . 5 4 9 2 0 . 4 1 5 0 0 . 2 9 0 5 21 . 2 9 4 1 0 . 4 4 8 2 0 . 3 1 5 4 2 0 . 5 0 5 4 0 . 5 3 9 2 0 . 3 8 1 8 2 0 . 5 4 9 2 0 . 8 4 6 6 0 . 4 6 4 8 2 2 . 8 1 3 0 0 . 8 9 6 4 0 . 5 6 4 4 2 4 . 3 6 1 1 DVA' DVB V E L 0 . 1 5 7 7 0 . 1 2 4 5 2 4 . 4 5 5 0 0 . 1 9 0 9 0 . 1 4 9 4 1 9 . 7 7 5 2 0 . 2 1 5 8 0 . 1 6 6 0 2 4 . 3 0 2 7 0 . 2 6 5 6 0 . 1 9 9 2 2 0 . 8 8 1 0 0 . 3 2 3 7 0 . 2 4 0 7 2 0 . 8 5 5 9 0 . 4 3 1 6 0 . 2 8 2 2 2 0 . 8 5 5 9 0 . 5 4 7 8 0 . 3 2 3 7 2 0 . 8 8 1 0 0 . 7 5 5 3 0 . 3 7 3 5 2 2 . 4 6 0 2 DVA DVB VEL 0 . 2 3 2 4 0 * 1 7 4 3 1 9 . 7 0 2 9 0 . 2 7 3 9 0 . 2 2 4 1 2 0 . 8 5 5 9 0 . 3 4 0 3 0 . 2 3 2 4 2 0 . 8 5 5 9 0 . 3 5 6 9 0 . 3 1 5 4 2 0 . 8 8 1 0 0 . 4 9 8 0 0 . 3 7 3 5 18 . 2 5 8 9 0 . 5 3 9 2 0 . 3 8 1 8 3 0 . 3 7 8 4 0 . 7 4 7 0 0 . 3 9 8 4 2 0 . 5 4 9 2 0 . 7 6 3 6 0 . 5 3 9 2 2 2 . 8 2 7 6 F I L M 12' -4 DDROP DAIR FN 0 . 3 5 6 9 0 . 3 5 6 9 0 . 3 5 6 9 0 . 3 5 6 9 0 . 3 5 6 9 0 . 3 5 6 9 0 . 3 5 6 9 0 . 3 5 6 9 0 . 3 5 6 9 0 . 0 7 4 7 0 . 0 7 4 7 0 . 0 7 4 7 0 . 0 7 4 7 0 . 0 7 4 7 0 . 0 7 4 7 0 , 0 7 4 7 0 . 0 7 4 7 0 . 0 7 4 7 6.00 1 0 . 0 0 1 7 . 0 0 2 5 . 0 0 3 3 . 0 0 6 2 . 0 0 6 9 . 0 0 7 4 . 0 0 8 1 . 0 0 F I L M 12--4 DDROP DAI R FN 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 2 8 . 0 0 3 0 . 0 0 3 8 . 0 0 4 5 . 0 0 5 2 . 0 0 5 8 . 0 0 6 5 . 0 0 7 2 . 0 0 7 8 . 0 0 F I L M 12 -4 DDROP DAIR FN' 0.3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 3 4 0 3 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 1 0 . 0 0 1 8 . 00 2 6 . 0 0 3 3 . 0 0 4 0 . 0 0 4 8 . 00 5 5 . 00 6 2 . 0 0 6 9 . 0 0 7 8 . 0 0 F I L M 12 -4 DDROP DAI R FN 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 4 8 . 0 0 5 0 . 0 0 5 8 . 0 0 6 4 . 0 0 7 1 . 0 0 75 .00 8 4 . 00 RUN I 12 T T I M E HTWC DELT 0 . 1 0 4 3 0 . 1 7 3 9 0 . 2 9 5 7 0 * 4 3 4 8 0 . 5 7 3 9 1 . 0 7 8 3 1 . 2 0 0 0 1 . 2 8 7 0 1.40 87 3 . 3 7 5 0 3.33 33 3 . 2 5 0 0 3 . 1 6 6 6 3 . 0 8 3 3 2 . 7 5 0 0 2 . 6 6 6 6 2 . 5 9 3 7 2 . 5 0 0 0 3 . 5 4 7 8 3 . 5 4 7 8 3 . 5 4 7 8 3 . 6 9 8 2 3 . 6 9 8 2 3 . 9 9 7 6 3 .99 76 4 . 1 4 5 6 4 . 1 4 5 6 RUN I 13 T T I M E HTWC DELT 0.48 70 0 . 5 2 1 7 0 . 6 6 0 9 0 . 7 8 2 6 0 . 9 0 4 3 1 . 0 0 8 7 1 . 1 3 0 4 1 . 2 5 2 2 1 . 3 5 6 5 3 . 1 0 9 3 3 . 0 8 3 3 3 . 0 0 0 0 2 . 9 1 6 6 2 . 8 3 3 3 2 . 7 5 0 0 2 . 6 6 6 6 2 . 5 8 3 3 2 . 5 0 0 0 3 . 7 1 0 6 3 . 7 1 0 6 3 . 7 9 2 1 3 . 7 9 2 1 3 . 9 4 1 3 3 . 9 4 1 3 4 . 0 8 9 6 4 . 0 8 9 6 4 . 2 3 7 0 RUN 114 T T I M E HTWC DELT 0 . 1 7 3 9 0 . 3 1 3 0 0 . 4 5 2 2 0 . 5 7 3 9 0 . 6 9 5 7 0 . 8 3 4 8 0 . 9 5 6 5 1 . 0 7 8 3 1 . 2 0 0 0 1 . 3 5 6 5 3 . 3 3 3 3 3 . 2 5 0 0 3 . 1 6 1 4 3 . 0 8 3 3 3 . 0 0 0 0 2 . 9 1 1 4 2 . 8 3 3 3 2 . 7 5 0 0 2 . 6 6 6 6 2 . 5 5 7 2 3 . 5 5 0 0 3 . 5 5 0 0 3 . 7 0 0 3 3 . 7 0 0 3 3 . 8 4 9 8 3 . 8 4 9 8 3 . 8 4 9 8 3 . 9 9 8 7 3 . 9 9 8 7 4 . 1 4 6 9 RUN I 15 T T I M E HTWC DELT 0 . 8 3 4 8 0 . 8 6 9 6 1 . 0 0 8 7 1 . 1 1 3 0 1 . 2 3 4 8 1 . 3 0 4 3 1 . 4 6 0 9 2 . 8 5 9 3 .: 2 . 8 3 3 3 2 . 7 4 4 7 2 . 6 6 6 6 2 . 5 8 3 3 2 . 5 3 1 2 2 . 4 1 1 4 3 . 8 7 0 6 3 . 8 7 0 6 4 . 0 1 9 3 4 . 0 1 9 3 4 . 1 6 7 2 4 . 1 6 7 2 4 . 1 7 0 7 DVA DVB V E L 0 . 1 2 4 5 0 . 1 2 4 5 3 6 . 5 1 2 5 0 . 1 4 9 4 0 . 1 3 2 8 1 8 . 2 7 0 9 0 . 1 6 6 0 0 . 1 4 9 4 2 0 . 8 5 5 9 0 . 2 0 7 5 0 . 1 6 6 0 1 8 . 2 7 0 9 0 . 2 4 9 0 0 . 1 9 9 2 1 8 . 2 4 8 9 0 . 5 6 4 4 0 . 3 7 3 5 2 0 . 1 4 2 8 0 . 7 0 5 5 0 . 3 9 8 4 2 0 . 8 8 1 0 0 . 8 8 8 1 0 . 4 5 6 5 25 . 5 5 2 9 1 . 1 6 2 0 0 . 4 7 3 1 2 3 . 4 5 9 8 DVA DVB V E L 0 . 1 6 6 0 0 . 1 3 2 8 2 4 . 4 5 5 0 0 . 1 7 4 3 0 . 1 4 1 1 2 2 . 7 8 3 8 0 . 2 0 7 5 0 . 1 6 6 0 1 8 . 2 4 8 9 0 . 2 3 2 4 0 . 1 8 2 6 2 0 . 8 8 1 0 0 . 2 5 7 3 0 . 1 9 9 2 2 0 . 8 5 5 9 0 . 2 9 8 8 0 . 2 2 4 1 2 4 . 3 3 1 9 0 . 3 7 3 5 0 . 2 8 2 2 2 0 . 8 8 1 0 0 . 5 3 9 2 0 . 3 6 5 2 2 0 . 8 5 5 9 0 . 6 0 5 9 0 . 4 1 5 0 2 4 . 3 3 1 9 DVA DVB V E L 0 • 0 6 6 4 0 . 0 6 6 4 2 9 . 2 1 5 8 0 . 0 9 1 3 0 . 0 9 1 3 1 8 . 2 4 8 9 0 . 1 1 6 2 0. 1 1 6 2 1 9 . 4 1 0 0 0 . 1 5 7 7 0 . 1 3 2 8 1 9 . 5 5 4 0 0 . 1 9 9 2 0 . 1 5 7 7 2 0 . 8 5 5 9 0 . 2 4 9 0 0 . 1 8 2 6 1 9 . 4 1 0 0 0 . 2 9 0 5 0 . 2 2 4 1 1 9 . 5 5 4 0 0 . 3 4 8 6 0 . 2 6 5 6 2 0 . 8 5 5 9 0 . 4 3 9 9 0 . 2 8 2 2 2 0 . 8 8 1 0 0 . 5 3 9 2 0 . 3 9 8 4 2 1 . 3 0 3 8 DVA DVB V E L 0 . 2 5 7 3 0 . 1 9 9 2 2 3 . 3 9 3 6 0 . 2 6 5 6 0 . 2 0 7 5 2 2 . 7 8 3 8 0 . 3 6 5 2 0 . 2 5 7 3 1 9 . 4 1 0 0 0 . 4 4 8 2 0 . 2 9 8 8 2 2 . 8 1 3 0 0 . 4 8 1 4 0 . 3 5 6 9 2 0 . 8 5 5 9 0 . 6 3 0 8 0 . 4 6 4 8 2 2 . 8 2 7 6 0 . 7 6 3 6 0 . 5 0 6 3 2 3 . 3 2 9 1 F I L M 1 2 - 4 DDROP D A I R FN 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 2 3 2 4 0 . 0 2 4 9 6.0249 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 1 7 . 0 0 2 7 . 0 0 3 1 . 0 0 3 4 . 0 0 3 8 . 0 0 4 2 . 0 0 4 8 . 0 0 5 5 . 0 0 6 2 . 0 0 6 9 . 0 0 8 2 . 0 0 F I L M 12' -4 DDROP DAI R FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 2 0 . 0 0 2 4 . 0 0 2 8 . 0 0 3 2 . 00 3 5 . 00 3 8 . 0 0 4 2 . 00 4 9 . 0 0 5 6 . 0 0 6 3 . 0 0 F I L M 13 -1 DDROP DAIR FN 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 2 4 0 7 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 8.00 1 6 . 0 0 2 0 . 0 0 2 3 . 00 3 4 . 0 0 3 7 . 0 0 4 1 . 0 0 4 4 . 00 4 8 . 0 0 F I L M 13 -1 DDROP DAI R FN 0 . 2 8 2 2 0 . 2 8 2 2 0 . 2 8 2 2 0 . 2 8 2 2 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 8.00 1 6 . 0 0 2 0 . 0 0 2 3 . 0 0 RUN 1 1 6 T T I M E HTWC DELT 0 . 2 9 5 7 3 . 2 5 0 0 3 . 5 5 4 3 0 . 4 6 9 6 3 . 1 6 6 6 3 . 7 0 4 6 0 . 5 3 9 1 3 . 1 1 9 7 3 . 7 0 4 6 0 . 5 9 1 3 3 . 0 8 3 3 3 . 7 0 4 6 0 . 6 6 0 9 3 . 0 4 1 6 3 . 7 0 4 6 0 . 7 3 0 4 2 . 9 9 4 7 3 . 8 5 4 0 0 . 8 3 4 8 2 . 9 1 6 6 3 . 8 5 4 0 0 . 9 5 6 5 2 . 8 3 3 3 3 . 8 5 4 0 1 . 0 7 8 3 2.75 00 4 . 0 0 2 9 1 . 2 0 0 0 2 . 6 6 1 4 4 . 0 0 2 9 1 . 4 2 6 1 2 . 5 0 0 0 4 . 1 5 1 2 RUN I 17 T T I M E HTWC DELT 0 . 3 4 7 8 3 . 2 5 0 0 3 . 5 5 4 3 0 . 4 1 7 4 3 . 2 0 8 3 3 . 5 5 9 2 0 . 4 8 7 0 3 . 1 6 6 6 3 . 7 0 9 4 0 . 5 5 6 5 3 . 1 1 4 5 3 . 7 0 9 4 0 . 6 0 8 7 3 . 0 7 8 1 3 . 7 0 9 4 0 . 6 6 0 9 3 . 0 4 1 6 3 . 7 0 9 4 0 . 7 3 0 4 3 . 0 0 0 0 3 . 7 9 1 0 0 . 8 5 2 2 2 . 9 1 6 6 3 . 7 9 1 0 0 . 9 7 3 9 2 . 8 3 3 3 3 . 9 4 0 2 1 . 0 9 5 7 2 . 7 5 0 0 3 . 9 4 0 2 RUN I 18 T T I M E HTWC DELT 0. 1 2 9 7 3 . 3 3 3 3 4 . 3 5 0 0 0 . 2 5 9 5 3 . 2 5 0 0 4 . 3 5 0 0 0 . 3 2 4 3 3.20 83 4 . 4 3 2 0 0 . 3 7 3 0 3 . 1 7 1 8 4 . 4 3 2 0 0 . 5 5 1 4 3 . 0 4 1 6 4 . 5 8 2 0 0 . 6 0 0 0 3 . 0 0 0 0 4 . 5 8 2 0 0 . 6 6 4 9 2 . 9 5 8 3 4 . 5 8 2 0 0 . 7 1 3 5 2 . 9 1 6 6 4 . 5 8 2 0 0 . 7 7 8 4 2.8 6 9 7 4 . 7 3 1 1 RUN 119 T T I M E HTWC DELT 0 . 1 2 9 7 3 . 3 2 8 1 4 . 3 5 0 3 0 . 2 5 9 5 3 . 2 4 4 7 4 . 3 5 0 3 0 . 3 2 4 3 3 . 2 0 3 1 4 . 4 3 2 6 0 . 3 7 3 0 3 . 1 6 6 6 4 . 4 3 2 6 188 DVA DVB V E L 0 . 0 9 9 6 0 . 0 9 9 6 2 5 . 7 7 3 5 0 . 1 6 6 0 0 . 1 4 1 1 1 4 . 6 1 6 7 0 . 1 8 2 6 0 . 1 4 9 4 2 0 . 5 4 9 2 0 . 2 0 7 5 0 . 1 6 6 0 2 1 . 2 6 4 9 0 . 2 2 4 1 0 . 1 8 2 6 1 8 . 2 7 0 9 0 . 2 5 7 3 0 . 1992 2 0 . 5 4 9 2 0 . 3 1 5 4 0 . 2 3 2 4 2 2 . 8 1 3 0 0 . 3 8 1 8 0 . 2 9 8 8 2 0 . 8 5 5 9 0 . 4 9 8 0 0 . 3 3 2 0 2 0 . 8 5 5 9 0 . 6 3 0 8 0 . 3 8 1 8 2 2 . 1 8 2 9 1 . 1 4 5 4 0 . 4 4 8 2 21 . 7 5 9 2 DVA DVB V E L 0 . 1 2 4 5 0 . 1 2 4 5 2 1 . 9 0 7 5 0 . 1 7 4 3 0 . 1 4 9 4 1 8 . 2 7 0 9 0 . 2 0 7 5 0 . 1 6 6 0 1 8 . 2 7 0 9 0 .23 24 0 . 1 8 2 6 2 2 . 8 2 7 6 0 . 2 4 9 0 0 . 1992 2 1 . 2 6 4 9 0 . 2 9 8 8 0 . 2 3 2 4 2 1 . 3 2 3 3 0 . 3 4 8 6 0 . 2 6 5 6 1 8 . 2 2 7 0 0 . 4 6 4 8 0 . 3 8 1 8 2 0 . 8 8 1 0 0 . 6 3 0 8 0 . 4 1 5 0 2 0 . 8 5 5 9 0 . 7 0 5 5 0 . 4 9 8 0 2 0 . 8 5 5 9 DVA DVB V E L 0 . 1 1 6 2 0 . 1 1 6 2 3 9 . 1 6 6 2 0 . 1 7 4 3 0 . 1 4 9 4 1 9 . 5 7 1 3 0 . 1 9 9 2 0 . 1 5 7 7 1 9 . 5 9 4 8 0 . 2 2 4 1 0 . 1 6 6 0 22 . 8 6 8 5 0 . 3 4 0 3 0 . 2 2 4 1 2 2 . 2 4 7 6 0 . 3 6 5 2 0 . 2 9 0 5 2 6 . 0 6 3 8 0 . 4 6 4 8 0 . 2 9 8 8 1 9 . 5 9 4 8 0 . 4 7 3 1 0 . 3 3 2 0 2 6 . 1 2 6 4 0 . 6 8 8 9 0 . 3 9 8 4 2 2 . 0 3 8 3 DVA DVB V E L 0 . 0 9 9 6 0 . 0 9 9 6 4 0 . 3 8 7 9 0 . 1 5 7 7 0 . 1 3 2 8 1 9 . 5 9 4 8 0 . 1 8 2 6 0 . 1 4 1 1 1 9 . 5 4 7 8 0 . 2 0 7 5 0 . 1 4 9 4 22 . 8 6 8 5 189 0 . 2 8 2 2 0 . 0 2 4 9 3 0 . 0 0 0 . 4 8 6 5 3 . 0 8 8 5 4 . 5 8 2 4 0 . 2 4 9 0 0 . 1 9 0 9 2 0 . 9 7 1 0 0 . 2 8 2 2 0 . 0 2 4 9 3 4 . 0 0 0 . 5 5 1 4 3 . 0 4 1 6 4 . 5 8 2 4 0 . 2 7 3 9 0 . 2 0 7 5 2 2 . 0 3 8 3 0 . 2 8 2 2 0 . 0 2 4 9 3 8 . 00 0 . 6 1 6 2 3 . 0 0 0 0 4 . 5 8 2 4 0 . 3 0 7 1 0 . 2 3 2 4 1 9 . 5 4 7 8 0 . 2 8 2 2 0 . 0 2 4 9 4 5 . 00 0 . 7 2 9 7 2 . 9 1 6 6 4 . 5 8 2 4 0 . 3 8 1 8 0 . 2 9 8 8 2 2 . 3 9 4 1 0 . 2 8 2 2 0 . 0 2 4 9 4 9 . 0 0 0 . 7 9 4 6 2 . 8 7 5 0 4 . 7 3 1 5 0 . 4 7 3 1 0 . 3 4 0 3 1 9 • 5 4 7 8 0 . 2 8 2 2 0 . 0 2 4 9 5 6 . 0 0 0 . 9 0 8 1 2 . 7 9 1 6 4 . 7 3 1 5 0 . 6 3 0 8 0 .3 8 1 8 2 2 . 3 9 4 1 0 . 2 8 2 2 0 . 0 2 4 9 6 0 . 0 0 0 . 9 7 3 0 2 . 7 4 4 7 4 . 7 3 1 5 0 . 6 6 4 0 0 . 4 3 1 6 2 2 . 0 3 8 3 0 . 2 8 2 2 0 . 0 2 4 9 6 6 . 0 0 1 . 0 7 0 3 2 . 6 6 6 6 4 . 8 7 9 9 0 . 9 5 4 5 0 . 5 2 2 9 2 4 . 4 6 6 1 F I L M 13--1 RUN I 20 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 2 3 2 4 0 . 0 3 3 2 1 3 . 0 0 0. 2 1 0 8 3 . 2 8 1 2 4 . 3 5 2 7 0 . 1 7 4 3 0 . 1 4 1 1 3 1 . 6 3 5 1 0 . 2 3 2 4 0 . 0 3 3 2 1 6 . 00 0 . 2 5 9 5 3 . 2 5 0 0 4 . 3 5 2 7 0 . 1 9 9 2 0 . 1 4 9 4 1 9 . 5 4 7 8 0 . 2 3 2 4 0 . 0 3 3 2 2 0 . 0 0 0 . 3 2 4 3 3 . 2 0 3 1 4 . 4 3 4 8 0 . 2 1 5 8 0 . 1 6 6 0 2 2 . 0 3 8 3 0 . 2 3 2 4 0 . 0 3 3 2 2 3 . 0 0 0 . 3 7 3 0 3 . 1 6 6 6 4 . 4 3 4 8 0 . 2 4 9 0 0 . 1992 2 2 . 8 6 8 5 0 . 2 3 2 4 0 . 0 3 3 2 3 0 . 0 0 0 . 4 8 6 5 3 . 0 8 3 3 4 . 5 8 4 6 0 . 3 0 7 1 0 . 2 3 2 4 2 2 . 3 6 7 2 0 . 2 3 2 4 0 . 0 3 3 2 3 4 . 0 0 0 . 5 5 1 4 3 . 0 3 6 4 4 . 5 8 4 6 0 . 3 5 6 9 0 . 2 9 0 5 2 2 . 0 3 8 3 0 . 2 3 2 4 0 . 0 3 3 2 3 7 . 0 0 0 . 6 0 0 0 3 . 0 0 0 0 4 . 5 8 4 6 0 . 4 5 6 5 0 . 3 0 7 1 2 2 . 8 0 5 8 0 . 2 3 2 4 0 . 0 3 3 2 4 4 . 0 0 0 . 7 1 3 5 2 . 9 1 6 6 4 . 5 8 4 6 0 . 6 2 2 5 0 . 3 6 5 2 2 2 . 3 9 4 1 0.2 3 2 4 0 . 0 3 3 2 4 8 . 0 0 0 . 7 7 8 4 2 . 8 6 4 5 4 . 7 3 3 7 0 . 7 4 7 0 0 . 4 5 6 5 2 4 . 4 8 1 8 F I L M 13 -2 RUN 1 2 1 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 6 5 2 0 . 0 2 4 9 9. 00 0 . 1 4 5 9 3 . 3 3 3 3 7 . 1 5 0 0 0 . 0 7 4 7 0 . 0 7 4 7 3 4 . 8 1 4 4 0 . 3 6 5 2 0 . 0 2 4 9 1 3 . 00 0 . 2 1 0 8 3 . 2 9 1 6 7 . 1 5 0 0 0 . 1 2 4 5 0 . 1 0 7 9 1 9 . 5 9 4 8 0 . 3 6 5 2 0 . 0 2 4 9 1 7 . 0 0 0 . 2 7 5 7 3 . 2 5 0 0 7 . 1 5 0 0 0 . 1 6 6 0 0 . 1 3 2 8 1 9 . 5 4 7 8 0 . 3 6 5 2 0 . 0 2 4 9 2 1 . 0 0 0 . 3 4 0 5 3 . 2 0 8 3 7 . 2 3 2 0 0 . 1 9 9 2 0 . 1 4 9 4 19 . 5 9 4 8 0 . 3 6 5 2 0 . 0 2 4 9 2 5 . 0 0 0.40 54 3. 1 6 1 4 7 . 2 3 2 0 0 . 2 3 2 4 0 . 1 6 6 0 2 2 . 0 3 8 3 0 . 3 6 5 2 0 . 0 2 4 9 2 8 . 0 0 0 . 4 5 4 1 3 . 1 2 5 0 7 . 2 3 2 0 0 . 2 5 7 3 0 . 1 8 2 6 2 2 . 8 0 5 8 0 . 3 6 5 2 0 . 0 2 4 9 3 1 . 0 0 0 . 5 0 2 7 3 . 0 8 3 3 7 . 3 8 1 8 0 . 2 9 0 5 0 . 1 9 0 9 2 6 . 1 2 6 4 0 . 3 6 5 2 0 . 0 2 4 9 3 8 . 0 0 0 . 6 1 6 2 3 . 0000. 7.3 818 0 . 3 4 8 6 0 . 2 3 2 4 2 2 . 3 6 7 2 0 . 3 6 5 2 0 . 0 2 4 9 4 5 . 0 0 0 . 7 2 9 7 2 . 9 1 6 6 7 . 3 8 1 8 0 . 4 9 8 0 0 . 3 4 8 6 2 2 . 3 9 4 1 0 . 3 6 5 2 0 . 0 2 4 9 5 2 . 0 0 0 . 8 4 3 2 2 . 8 2 8 1 7 . 5 3 1 1 0 . 6 6 4 0 0 . 4 3 9 9 23 . 7 6 3 5 F I L M 13 -2 RUN 122 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 4 8 6 0 . 0 8 3 0 2 2 . 0 0 0 . 3 5 6 8 3 . 1 6 6 6 7 . 3 0 7 9 0 . 2 7 3 9 0 . 2 2 4 1 2 8 . 4 8 4 5 0 . 3 4 8 6 0 . 0 8 3 0 2 9 . 0 0 0 . 4 7 0 3 3 . 0 8 3 3 7 . 3 0 7 9 0 . 3 9 0 1 0 . 2 9 0 5 2 2 . 3 6 7 2 0 . 3 4 8 6 0 . 0 8 3 0 3 6 . 0 0 0 . 5 8 3 8 3 . 0 0 0 0 7 . 3 8 9 6 0 . 5 5 6 1 0 . 3 0 7 1 22 . 3 6 7 2 0 . 3 4 8 6 0 . 0 8 3 0 4 0 . 0 0 0 . 6 4 8 6 2 . 9 5 8 3 7 . 3 8 9 6 0 . 5 9 7 6 0 . 4 1 5 0 1 9 . 5 9 4 8 0 . 3 4 8 6 0 . 0 8 3 0 4 8 . 0 0 0 . 7 7 8 4 2 . 8 6 4 5 7 . 5 3 8 7 0 . 8 0 5 1 0 . 4 6 4 8 2 2 . 0 3 8 3 F I L M 1 3 -2 DDROP DAIR FN 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 9. 00 1 3 . 0 0 1 7 . 0 0 2 1 . 0 0 2 4 . 0 0 3 7 . 0 0 4 1 . 00 4 4 . 0 0 5 3 . 0 0 F I L M 1 3 -2 DDROP DAI R FN 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 2 0 7 5 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 6.00 1 1 . 0 0 1 5 . 00 1 9 . 0 0 4 8 . 0 0 F I L M 1 3 -2 • DDROP DAIR FN 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 5.00 9.00 1 3 . 0 0 1 7 . 0 0 2 1 . 0 0 2 4 . 0 0 2 8 . 0 0 3 1 . 0 0 3 8 . 0 0 4 4 . 0 0 5 1 . 0 0 5 6 . 0 0 F I L M 1 3 -•2 DDROP D A I R FN 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 2 9 8 8 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 9.00 1 3 . 0 0 1 7 . 0 0 2 1 . 0 0 25 . 00 2 8 . 00 31 .00 3 8 . 0 0 4 6 . 0 0 6 1 . 00 RUN 123 T T I M E HTWC DELT 0 . 1 4 5 9 3 . 3 3 3 3 7 . 1 5 0 0 0 . 2 1 0 8 3 . 2 9 1 6 7 . 1 5 0 0 0 . 2 7 5 7 3 . 2 5 0 0 7 . 1 5 0 0 0 . 3 4 0 5 3 . 2 0 3 1 7 . 2 3 2 4 0 . 3 8 9 2 3 . 1 6 6 6 7 . 2 3 2 4 0 . 6 0 0 0 3 . 0 0 0 0 7 . 3 8 2 5 0 . 6 6 4 9 2 . 9 5 3 1 7 . 3 8 2 5 0 . 7 1 3 5 2 . 9 1 6 6 7 . 3 8 2 5 0 . 8 5 9 5 2 . 8 0 7 2 7 . 5 3 1 9 RUN 124 T T I M E HTWC DELT 0 . 0 9 7 3 3 . 3 7 5 0 7 . 1 4 7 8 0 . 1 7 8 4 3 . 3 3 3 3 7 . 1 4 7 8 0 . 2 4 3 2 3 . 2 9 1 6 7 . 1 4 7 8 0 . 3 0 8 1 3 . 2 5 0 0 7 . 1 4 7 8 0 . 7 7 8 4 2 . 8 9 5 8 7 . 4 4 9 1 RUN 125 T T I M E HTWC DELT 0 . 0 8 1 1 3 . 3 7 5 0 7 . 1 4 7 8 0 . 1 4 5 9 3 . 3 3 3 3 7. 1 4 7 8 0 . 2 1 0 8 3 . 2 9 1 6 7 . 1 4 7 8 0 . 2 7 5 7 3 . 2 5 00 7 . 1 4 7 8 0 . 3 4 0 5 3 . 2 0 3 1 7 . 2 9 8 0 0 . 3 8 9 2 3 . 1 6 6 6 7 . 2 9 8 0 0 . 4 5 4 1 3 . 1 2 5 0 7 . 2 9 8 0 0 . 5 0 2 7 3 . 0 8 3 3 7 . 2 9 8 0 0 . 6 1 6 2 3 . 0 0 0 0 7 . 4 4 7 5 0 . 7 1 3 5 2 . 9 1 6 6 7 . 4 4 7 5 0 . 8 2 7 0 2 . 8 3 3 3 7 . 4 4 7 5 0 . 9 0 8 1 2 . 7 7 0 8 7 . 5 9 6 4 RUN I 26 T T I M E HTWC DELT 0 . 1 4 5 9 3 . 3 3 3 3 7 . 1 5 0 0 0 . 2 1 0 8 3 . 2 9 1 6 7 . 1 5 0 0 0 . 2 7 5 7 3 . 2 5 0 0 7 . 1 5 0 0 0 . 3 4 0 5 3 . 2 0 8 3 7 . 2 3 2 0 0 . 4 0 5 4 3 . 1 6 1 4 7 . 2 3 2 0 0 . 4 5 4 1 3 . 1 2 5 0 7 . 2 3 2 0 0 . 5 0 2 7 3 . 0 8 3 3 7 . 3 8 1 8 0 . 6 1 6 2 3 . 0 0 0 0 7 . 3 8 1 8 0 . 7 4 5 9 2 . 9 1 1 4 7 . 3 8 6 0 0 . 9 8 9 2 2 . 7 2 9 1 7 . 5 3 5 7 190 DVA DVB V E L 0 . 0 9 9 6 0 . 0 9 9 6 3 4 . 8 1 4 4 0 . 1 4 9 4 0 . 1 3 2 8 1 9 . 5 9 4 8 0 . 1 9 0 9 0 . 1 4 9 4 1 9 . 5 4 7 8 0 . 2 1 5 8 0 . 1 6 6 0 2 2 . 0 3 8 3 0 . 2 4 0 7 0 . 1 8 2 6 2 2 . 8 6 8 5 0 . 3 7 3 5 0 . 2 3 2 4 2 4 . 0 8 7 8 0 . 4 4 8 2 0 . 2 9 0 5 2 2 . 0 3 8 3 0 . 5 0 6 3 0 . 3 4 0 3 22 . 8 6 8 5 0 . 7 4 7 0 0 . 4 4 8 2 2 2 . 8 4 7 6 DVA DVB VEL 0 • 0 6 6 4 0 . 0 6 6 4 3 9 . 1 5 8 3 0 . 1 1 6 2 0 . 1 1 6 2 1 5 . 6 7 5 9 0 . 1 6 6 0 0 . 1 4 1 1 1 9 . 5 9 4 8 0 . 2 1 5 8 0 . 1 6 6 0 1 9 . 5 4 7 8 0 . 6 8 8 9 0 . 3 9 8 4 2 2 . 9 5 7 0 DVA DVB V E L 0 • 0 6 6 4 0 . 0 6 6 4 4 6 . 9 9 0 0 0 . 0 9 9 6 0 . 0 9 9 6 1 9 . 5 9 4 8 0 . 1 3 2 8 0 . 1 1 6 2 1 9 . 5 9 4 8 0 . 1 7 4 3 0 . 1 4 1 1 1 9 . 5 4 7 8 0 . 2 0 7 5 0. 1 6 6 0 2 2 . 0 3 8 3 0 . 2 3 2 4 0. 1 7 4 3 2 2 . 8 6 8 5 0 . 2 4 9 0 0 . 1 9 0 9 1 9 . 5 4 7 8 0 . 2 6 5 6 0 . 1 9 9 2 2 6 . 1 2 6 4 0 . 3 7 3 5 0 . 2 4 0 7 2 2 . 3 6 7 2 0 . 4 5 6 5 0 . 3 4 8 6 2 6 . 1 2 6 4 0 . 6 6 4 0 0 . 4 0 6 7 22 . 3 6 7 2 0 . 8 4 6 6 0 . 4 5 6 5 2 3 . 4 9 5 0 DVA DVB V E L 0 . 0 9 1 3 0 . 0 9 1 3 3 4 . 8 1 4 4 0 . 1 4 9 4 0 . 1 0 7 9 1 9 . 5 9 4 8 0 . 1 8 2 6 0 . 1 4 9 4 1 9 . 5 4 7 8 0 . 2 1 5 8 0 . 1 5 7 7 1 9 . 5 9 4 8 0 . 2 4 9 0 0 . 1 9 0 9 2 2 . 0 3 8 3 0 . 2 6 5 6 0 . 2 1 5 8 2 2 . 8 0 5 8 0 . 3 1 5 4 0 . 2 2 4 1 2 6 . 1 2 6 4 0 . 4 1 5 0 0 . 2 8 2 2 2 2 . 3 6 7 2 0 . 5 0 6 3 0 . 3 7 3 5 2 0 . 8 1 6 6 1 . 1 6 2 0 0 . 4 6 4 8 2 2 . 8 4 3 4 F I L M 1 3 - 2 RUN 127 191 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 2 9 0 5 0 . 0 1 6 6 5.00 0 . 0 8 1 1 3 . 3 7 5 0 7 . 1 4 7 8 0 . 0 6 6 4 0 . 0 6 6 4 4 6 . 9 9 0 0 0 . 2 9 0 5 0 . 0 1 6 6 9.00 . 0 . 1 4 5 9 3 . 3 3 3 3 7 . 1 4 7 8 0 . 0 9 9 6 0 . 0 9 9 6 1 9 . 5 9 4 8 0 . 2 9 0 5 0 . 0 1 6 6 1 3 . 0 0 0 . 2 1 0 8 3 . 2 9 1 6 7 . 1 4 7 8 0 . 1 4 1 1 0. 1 2 4 5 1 9 . 5 9 4 8 0 . 2 9 0 5 0 . 0 1 6 6 1 7 . 0 0 0 . 2 7 5 7 3.2 5 0 0 7 . 1 4 7 8 0 . 1 7 4 3 0 . 1 4 9 4 1 9 . 5 4 7 8 0 . 2 9 0 5 0 . 0 1 6 6 2 1 . 0 0 0 . 3 4 0 5 3 . 2 0 8 3 7 . 2 3 0 1 0 . 2 1 5 8 0 . 1 6 6 0 1 9 . 5 9 4 8 0 . 2 9 0 5 0 . 0 1 6 6 2 5 . 0 0 0 . 4 0 5 4 3 . 1 6 6 6 7 . 2 3 0 1 0 . 2 4 0 7 0 . 1 8 2 6 1 9 . 5 9 4 8 0 . 2 9 0 5 0 . 0 1 6 6 3 2 . 0 0 0 . 5 1 8 9 3 . 0 8 3 3 7 . 3 7 9 9 0 . 3 0 7 1 0 . 2 3 2 4 2 2 . 3 6 7 2 0 . 2 9 0 5 0 . 0 1 6 6 3 5 . 00 0 . 5 6 7 6 3 . 0 4 1 6 7 . 3 7 9 9 0 . 3 9 8 4 0 . 2 6 5 6 2 6 . 1 2 6 4 0 . 2 9 0 5 0 . 0 1 6 6 3 8 . 0 0 0 . 6 1 6 2 3 . 0 0 0 0 7 . 3 7 9 9 0 . 4 3 1 6 0 . 3 1 5 4 2 6 . 0 6 3 8 0 . 2 9 0 5 0 . 0 1 6 6 4 5 . 0 0 0 . 7 2 9 7 2 . 9 1 6 6 7 . 3 8 2 0 0 . 7 4 7 0 0 . 3 7 3 5 2 2 . 3 9 4 1 0 . 2 9 0 5 0 . 0 1 6 6 5 0 . 0 0 0 . 8 1 0 8 2 . 8 4 8 9 7 . 5 3 1 2 0 . 9 0 4 7 0 . 5 1 4 6 2 5 . 4 4 9 8 F I L M 13 -3 RUN I 28 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 7 3 5 0 . 0 1 6 6 9.00 0 . 1 4 5 9 3 . 3 3 3 3 1 0 . 5 5 0 0 0 . 0 5 8 1 0 . 0 5 8 1 3 4 . 8 1 4 4 0 , 3 7 3 5 0 . 0 1 6 6 1 3 . 0 0 0 . 2 1 0 8 3 . 2 9 1 6 1 0 . 5 5 0 0 0 . 0 8 3 0 0 . 0 8 3 0 1 9 . 5 9 4 8 0 . 3 7 3 5 0 . 0 1 6 6 1 7 . 00 0 . 2 7 5 7 3 . 2 5 0 0 1 0 . 5 5 0 0 0 . 1 4 9 4 0. 13 2 8 1 9 . 5 4 7 8 0 . 3 7 3 5 0 . 0 1 6 6 2 1 . 0 0 0 . 3 4 0 5 3 . 2 0 3 1 1 0 . 6 3 2 4 0 . 2 2 4 1 0 . 1 6 6 0 2 2 . 0 3 8 3 0 . 3 7 3 5 0 . 0 1 6 6 2 4 . 0 0 0 . 3 8 9 2 3 . 1 6 6 6 1 0 . 6 3 2 4 0 . 3 2 3 7 0 . 2 0 7 5 2 2 . 8 6 8 5 0 . 3 7 3 5 0 . 0 1 6 6 3 0 . 0 0 0 . 4 8 6 5 3 . 0 8 8 5 1 0 . 7 8 2 2 0 . 5 3 9 5 0 . 2 7 3 9 2 4 . 4 6 6 1 0 . 3 7 3 5 0 . 0 1 6 6 3 7 . 0 0 0 . 6 0 0 0 3 . 0 0 0 0 1 0 . 7 8 2 2 0 . 6 3 0 8 0 . 3 7 3 5 23 . 7 6 3 5 F I L M 13 -3 RUN 129 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 3 2 0 0 . 0 2 4 9 1 4 . 0 0 0 . 2 2 7 0 3 . 2 5 0 0 1 0 . 5 5 4 3 0 . 1 9 9 2 0 . 1 5 7 7 3 3 . 5 6 4 3 0 . 3 3 2 0 0 . 0 2 4 9 1 8 . 0 0 0 . 2 9 1 9 3 . 2 0 3 1 1 0 . 6 3 6 3 0 . 2 7 3 9 0 . 1 9 9 2 2 2 . 0 3 8 3 0 . 3 3 2 0 0 . 0 2 4 9 2 1 . 0 0 0 . 3 4 0 5 3 . 1 6 6 6 1 0 . 6 3 6 3 0 . 3 7 3 5 0 . 2 3 2 4 2 2 . 8 6 8 5 F I L M 13 -3 RUN 130 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 4 8 6 0 . 0 8 3 0 9.00 0 . 1 4 5 9 3 . 3 3 3 3 1 0 . 5 5 0 0 0 . 1 5 7 7 • 0. 1 3 2 8 3 4 . 8 1 4 4 0 . 3 4 8 6 0 . 0 8 3 0 1 3 . 0 0 0 . 2 1 0 8 3 . 2 9 1 6 1 0 . 5 5 00 0 . 1 9 0 9 0 . 1 4 9 4 19 . 5 9 4 8 0 . 3 4 8 6 0 . 0 8 3 0 1 7 . 0 0 0 . 2 7 5 7 3 . 2 4 4 7 1 0 . 5 5 0 0 0 . 2 5 7 3 0 . 1 8 2 6 2 2 . 0 3 8 3 0 . 3 4 8 6 0 . 0 8 3 0 2 0 . 0 0 0 . 3 2 4 3 3 . 2 0 8 3 1 0 . 6 3 2 0 0 . 2 9 8 8 0 . 2 0 7 5 2 2 . 8 0 5 8 0 . 3 4 8 6 0 . 0 8 3 0 2 3 . 0 0 0 . 3 7 3 0 3 . 1 6 6 6 1 0 . 6 3 2 0 0 . 3 4 8 6 0 . 2 2 4 1 2 6 . 1 2 6 4 0 . 3 4 8 6 0 . 0 8 3 0 2 6 . 0 0 0 . 4 2 1 6 3 . 1 2 5 0 1 0 . 6 3 2 0 0 . 4 1 5 0 0 . 2 4 0 7 2 6 . 0 6 3 8 0 . 3 4 8 6 0 . 0 8 3 0 2 9 . 0 0 0 . 4 7 0 3 3 . 0 8 3 3 1 0 . 7 8 1 8 0 . 4 9 8 0 0 . 2 7 3 9 2 6 . 1 2 6 4 0 . 3 4 8 6 0 . 0 8 3 0 3 5 . 0 0 0 . 5 6 7 6 3 . 0 0 0 0 1 0 . 7 8 1 8 0 . 6 4 7 4 0 . 3 9 8 4 2 6 . 0 9 5 1 F I L M 1 3 -•3 DDROP DAI R FN 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 5.00 9.00 1 3 . 0 0 1 7 . 0 0 2 0 . 0 0 2 3 . 0 0 2 6 . 0 0 3 5 . 0 0 F I L M 1 3 -3 DDROP DAIR FN 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 3 6 5 2 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 5.00 9.00 1 1 . 0 0 1 6 . 0 0 1 9 . 0 0 2 2 . 0 0 2 5 . 0 0 2 7 . 0 0 F I L M 1 3 -3 DDROP DAI R FN 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 0 . 0 1 6 6 6.00 1 0 . 0 0 1 2 . 0 0 1 6 . 0 0 1 8 . 0 0 2 2 . 0 0 2 5 . 0 0 2 8 . 0 0 3 1 . 0 0 3 4 . 0 0 3 9 . 0 0 F I L M 1 3 -3 DDROP DAIR FN 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 0 9 1 3 0 . 0 9 1 3 0 . 0 9 1 3 0 . 0 9 1 3 0 . 0 9 1 3 0 . 0 9 1 3 5.00 9. 00 1 3 . 0 0 1 5 . 0 0 1 8 . 0 0 2 1 . 0 0 RUN 1 3 1 192 T T I M E HTWC DELT DVA DVB V E L 0 . 0 8 1 1 3 . 3 7 5 0 1 0 . 5 4 7 8 0 . 0 9 1 3 0 . 0 9 1 3 4 6 . 9 9 0 0 0 . 1 4 5 9 3 . 3 3 3 3 1 0 . 5 4 7 8 0 . 1 3 2 8 0. 1 2 4 5 1 9 . 5 9 4 8 0 . 2 1 0 8 3 . 2 9 1 6 1 0 . 5 4 7 8 0 . 1 7 4 3 0. 1 4 9 4 1 9 . 5 9 4 8 0 . 2 7 5 7 3 . 2 5 0 0 1 0 . 5 4 7 8 0 . 2 7 3 9 0 . 1 9 0 9 1 9 . 5 4 7 8 0 . 3 2 4 3 3 . 2 0 8 3 1 0 . 6 3 0 1 0 . 3 9 8 4 0 . 2 3 2 4 2 6 . 1 2 6 4 0 . 3 7 3 0 3 . 1 6 6 6 1 0 . 6 3 0 1 0 . 4 7 3 1 0 . 2 8 2 2 2 6 . 1 2 6 4 0 . 4 2 1 6 3 . 1 2 5 0 1 0 . 6 3 0 1 0 . 6 0 5 9 0 . 3 3 2 0 2 6 . 0 6 3 8 0 . 5 6 7 6 3 . 0 0 0 0 1 0 . 7 8 0 2 0 . 9 9 6 0 0 . 3 9 8 4 2 6 . 1 0 5 6 RUN 132 T T I M E HTWC DELT DVA DVB V E L 0 . 0 8 1 1 3 . 3 7 5 0 1 0 . 5 4 7 8 0 . 1 4 1 1 0 . 1 0 7 9 4 6 . 9 9 0 0 0 . 1 4 5 9 3 . 3 3 3 3 1 0 . 5 4 7 8 0 . 2 0 7 5 0 . 1 4 9 4 1 9 . 5 9 4 8 0 . 1 7 8 4 3 . 3 1 2 5 1 0 . 5 4 7 8 0. 2 3 2 4 0 . 1 6 6 0 1 9 . 5 4 7 8 0 . 2 5 9 5 3 . 2 5 0 0 1 0 . 5 4 7 8 0 . 4 1 5 0 0 . 2 3 2 4 2 3 . 4 9 5 0 0 . 3 0 8 1 3 . 2 0 8 3 1 0 . 6 3 0 1 0 . 5 1 4 6 0 . 2 8 2 2 2 6 . 1 2 6 4 0 . 3 5 6 8 3 . 1 6 6 6 1 0 . 6 3 0 1 0 . 6 5 5 7 0 . 3 4 8 6 2 6 . 1 2 6 4 0 . 4 0 5 4 3. 1 2 5 0 1 0 . 6 3 0 1 0 . 7 0 5 5 0 . 3 9 0 1 2 6 . 0 6 3 8 0 . 4 3 7 8 3 . 1 0 4 1 1 0 . 7 1 1 8 0 . 8 3 8 3 0 . 4 1 5 0 1 9 . 6 4 1 8 RUN I 33 T T I M E HTWC DELT DVA DVB V E L 0 . 0 9 7 3 3 . 3 7 5 0 1 0 . 5 4 7 8 0 . 0 8 3 0 0 . 0 8 3 0 3 9 . 1 5 8 3 0. 1 6 2 2 3 . 3 3 3 3 1 0 . 5 4 7 8 0 . 1 3 2 8 0 . 1 1 6 2 1 9 . 5 9 4 8 0 . 1 9 4 6 3 . 3 1 2 5 1 0 . 5 4 7 8 0 . 1 5 7 7 0 . 1 3 2 8 1 9 . 5 4 7 8 0 . 2 5 9 5 3 . 2 7 0 8 1 0 . 5 4 7 8 0 . 2 1 5 8 0 . 1 8 2 6 1 9 . 5 9 4 8 0 . 2 9 1 9 3 . 2 5 0 0 1 0 . 5 4 7 8 0 . 2 4 9 0 0 . 1 9 0 9 1 9 . 5 4 7 8 0 . 3 5 6 8 3 . 2 0 3 1 1 0 . 6 9 8 0 0 . 3 1 5 4 0 . 2 0 7 5 2 2 . 0 3 8 3 0 . 4 0 5 4 3 . 1 6 1 4 1 0 . 6 9 8 0 0 . 3 8 1 8 0 . 2 3 2 4 2 6 . 1 2 6 4 0 . 4 5 4 1 3. 1 1 9 7 1 0 . 6 9 8 0 0 . 4 9 8 0 0 . 2 7 3 9 2 6 . 1 2 6 4 0 . 5 0 2 7 3 . 0 7 8 1 1 0 . 6 9 8 0 0 . 5 5 6 1 0 . 3 2 3 7 2 6 . 0 6 3 8 0 . 5 5 1 4 3 . 0 3 6 4 1 0 . 6 9 8 0 0 . 6 7 2 3 0 . 3 9 8 4 2 6 . 1 2 6 4 0 . 6 3 2 4 2 . 9 7 9 1 1 0 . 8 4 7 6 1 . 0 1 2 6 0 . 4 3 9 9 2 1 . 5 4 0 2 RUN 134 T T I M E HTWC DELT DVA DVB V E L 0 . 0 8 1 1 3 . 3 7 5 0 1 0 . 5 4 7 8 0. 2 3 2 4 0 • 1 6 6 0 4 6 . 9 9 0 0 0 . 1 4 5 9 3 . 3 2 8 1 1 0 . 5 4 7 8 0 . 3 3 2 0 0 . 2 1 5 8 2 2 . 0 3 8 3 0 . 2 1 0 8 3.2 708 1 0 . 5 4 7 8 0 . 4 7 3 1 0 . 2 4 0 7 2 6 . 9 2 5 3 0 . 2 4 3 2 3 . 2 4 4 7 1 0 . 5 4 7 8 0 . 4 8 1 4 0 . 2 8 2 2 2 4 . 5 2 8 8 0 . 2 9 1 9 3 . 2 0 8 3 1 0 . 6 3 0 1 0 . 5 5 6 1 0 . 3 0 7 1 2 2 . 8 0 5 8 0 . 3 4 0 5 3 . 1 6 6 6 1 0 . 6 3 0 1 0 . 5 9 7 6 0 . 3 7 3 5 2 6 . 1 2 6 4 F I L M 1 3 - 3 DDROP D A I R FN 0.3320 0.0166 9.00 0.3320 0.0166 13.00 0.3320 0.0166 17.00 0.3320 0.0166 21.00 0.3320 0.0166 25.00 0.3 320 0.0166 29.00 0.3320 0.0166 32.00 0.3320 0.0166 39.00 F I L M 13-3 DDROP D A I R FN 0.3320 0.0664 5.00 0.3320 0.0664 9.00 0.3320 0.0664 13.00 0.3320 0.0664 17.00 0.3320 0.0664 22.00 0.3320 0.0664 25.00 F I L M 13- 3 DDROP D A I R F N 0.3320 0.0747 5.00 0.3320 0.0747 9.00 0.3320 0.0747 12.00 0.3320 0.0747 15.00 0.3 32 0 0.0747 18.00 0.3320 0.0747 21.00 0.3320 0.0747 23. 00 F I L M 14- 1 DDROP D A I R FN 0.4150 0.0830 8.00 0.415 0 0.0830 12.00 0.415 0 0.0830 16.00 0.415 0 0.0830 20.00 0.415 0 0.0830 22.00 F I L M 14- 1 DDROP D A I R FN 0 . 3 8 1 8 0 . 0 1 6 6 8 . 0 0 0 . 3 8 1 8 0 . 0 1 6 6 1 3 . 0 0 0 . 3 8 1 8 0 . 0 1 6 6 1 7 . 0 0 RUN 135 T T I M E HTWC D E L T 0.1459 3.3333 10.5500 0.2108 3.2916 10.5500 0.2757 3.2500 10.5500 0.3405 3.2083 10.6320 0.4054 3.1666 10.6320 0.4703 3.1250 10.6320 0.5189 3.0833 10.7818 0.6 324 3.0000 10.7818 RUN 136 T T I M E HTWC D E L T 0.0811 3.3750 10.5478 0.1459 3.3333 10.5478 0.2108 3 . 2812 10.5478 0.2757 3.2291 10.5478 0.3568 3 . 1666 10.6982 0.4054 3.1250 10.6982 RUN 137 T T I M E HTWC D E L T 0.0811 3.3750 10.5478 0.1459 3.3281 10.5478 0.1946 3.2916 10.5478 0.2432 3.2500 10.5478 0.2919 3.2083 10.6301 0.3405 3.1666 10.6301 0.3 730 3.1406 10.6301 RUN 138 T T I M E HTWC D E L T 0.1263 3.3750 13.4227 0.1895 3.3281 13.42 27 0.25 26 3.2812 13. 5734 0.3158 3.2291 13.5734 0.3474 3.2031 13.5734 RUN 139 T T I M E HTWC D E L T 0.1263 3.3802 13.4976 0.2053 3.3333 13.4976 0.2684 3.2916 13.49 76 193 DVA DVB : V E L 0.0498 0.0498 14 .8144 0.0830 0.0664 1.9.5948 0 . 1162 0.0747 T9.5478 0.1411 0.0996 19.5948 0.1992 0.1411 19.5948 0.3818 0.2241 19.5478 0.4731 0.2656 26.1264 0.76 36 0.3403 22.3672 DVA DVB ';• V E L 0.1245 0 . 1162 46.9900 0.1992 0 . 1577 19.5948 0.3320 0.1992 24.4818 0.4316 0.2490 24.4818 0.5395 0.3154 23.4950 0.5976 0.3320 26.0638 DVA DVB V E L 0.1411 0.1411 46.9900 0.2573 0.1826 22.0383 0.3486 0.2324 22.868 5 0.4399 0.2490 26.0638 Q.5561 0.2905 •2 6.1264 0.6225 0 . 3735 26.1264 Q.72 21 0.4150 24.4348 DVA DVB V E L 0.2158 0.1743 20.0762 0.3403 0.2324 22.6339 0.4731 0.3071 22.6339 0.5146 0.3486 2 5.1435 0.7470 0.3984 2 5.0952 DVA DVB V E L 0.1162 0.0996 20.0762 0.2324 0.1826 18.1072 0.3154 0.2241 20.1244 194 0 . 3 8 1 8 0 . 0 1 6 6 2 1 . 0 0 0 . 3 8 1 8 0 . 0 1 6 6 2 5 . 0 0 0 . 3 8 1 8 0 . 0 1 6 6 2 8 . 0 0 0 . 3 8 1 8 0 . 0 1 6 6 3 2 . 0 0 FILM 1 4 - 1 DDROP DAIR FN 0 . 3 9 8 4 0 . 0 1 6 6 8 . 0 0 0 . 3 9 8 4 0 . 0 1 6 6 1 2 . 0 0 0 . 3 9 8 4 0 . 0 1 6 6 1 6 . 0 0 0 . 3 9 8 4 0 . 0 1 6 6 1 9 . 0 0 0 . 3 9 8 4 0 . 0 1 6 6 2 5 . 0 0 0 . 3 9 8 4 0 . 0 1 6 6 3 0 . 0 0 0 . 3 9 8 4 0 . 0 1 6 6 3 4 . 0 0 FILM 1 4 - 2 DDROP DAIR FN 0 . 3 6 5 2 0 . 0 1 6 6 6 . 0 0 0 . 3 6 5 2 0 . 0 1 6 6 1 0 . 0 0 0 . 3 6 5 2 0 . 0 1 6 6 1 4 . 0 0 0 . 3 6 5 2 0 . 0 1 6 6 1 8 . 0 0 0 . 3 6 5 2 0 . 0 1 6 6 2 2 . 0 0 0 . 3 6 5 2 0 . 0 1 6 6 2 9 . 0 0 0 . 3 6 5 2 0 . 0 1 6 6 3 5 . 0 0 0 . 3 6 5 2 0 . 0 1 6 6 4 1 . 0 0 FILM 1 4 - 2 DDROP DAIR FN 0 . 3 5 6 9 0 . 0 1 6 6 9 . 0 0 0 . 3 5 6 9 0 . 0 1 6 6 1 3 . 0 0 0 . 3 5 6 9 0 . 0 1 6 6 1 6 . 0 0 0 . 3 5 6 9 0 . 0 1 6 6 3 5 . 0 0 0 . 3 5 6 9 0 . 0 1 6 6 3 9 . 0 0 0 . 3 5 6 9 0 . 0 1 6 6 4 2 . 0 0 0 . 3 5 6 9 0 . 0 1 6 6 5 0 . 0 0 FILM 1 4 - 2 DDROP DAIR FN 0 . 3 9 0 1 0 . 0 4 9 8 8 . 0 0 0 . 3 9 0 1 0 . 0 4 9 8 1 3 . 0 0 0 . 3 9 0 1 0 . 0 4 9 8 1 7 . 0 0 0 . 3 9 0 1 0 . 0 4 9 8 2 1 . 0 0 0 . 3 9 0 1 0 . 0 4 9 8 2 5 . 0 0 0 . 3 9 0 1 0 . 0 4 9 8 3 1 . 0 0 0 . 3 9 Q 1 0 . 0 4 9 8 3 5 . 0 0 0 . 3 3 1 6 3 . 2 5 0 0 1 3 . 4 9 7 6 0 . 3 9 4 7 3 . 2 0 3 1 1 3 . 6 4 7 8 0 . 4 4 2 1 3 . 1 6 6 6 1 3 . 6 4 7 8 0 . 5 0 5 3 3 . 1 1 9 7 1 3 . 6 4 7 8 RUN I 4 0 TTIME HTWC DELT 0 . 1 2 6 3 3 . 3 7 5 0 1 3 . 4 2 2 7 0 . 1 8 9 5 3 . 3 3 3 3 1 3 . 4 2 2 7 0 . 2 5 2 6 3 . 2 8 6 4 1 3 . 5 7 3 4 0 . 3 0 0 0 3 . 2 5 0 0 1 3 . 5 7 3 4 0 . 3 9 4 7 3 . 1 7 1 8 1 3 . 5 7 3 4 0 . 4 7 3 7 3 . 1 0 4 1 1 3 . 7 2 3 2 0 . 5 3 6 8 3 . 0 4 6 8 1 3 . 7 2 3 2 RUN 1 4 1 TTIME HTWC DELT 0 . 0 9 4 7 3 . 4 1 6 6 8 . 1 7 2 7 0 . 1 5 7 9 3 . 3 7 5 0 8 . 1 7 2 7 0 . 2 2 1 1 3 . 3 3 3 3 8 . 1 7 2 7 0 . 2 8 4 2 3 . 2 9 1 6 8 . 3 2 3 4 0 . 3 4 7 4 3 . 2 5 0 0 8 . 3 2 3 4 0 . 4 5 7 9 3 . 1 6 6 6 8 . 3 2 3 4 0 . 5 5 2 6 3 . 0 8 3 3 8 . 4 7 3 3 0 . 6 4 7 4 3 . 0 0 0 0 8 . 4 7 3 3 RUN I 4 2 TTIME HTWC DELT 0 . 1 4 2 1 3 . 3 7 5 0 8 . 2 4 7 8 0 . 2 0 5 3 3 . 3 3 3 3 8 . 2 4 7 8 0 . 2 5 2 6 3 . 3 0 2 0 8 . 2 4 7 8 0 . 5 5 2 6 3 . 0 8 3 3 8 . 3 9 8 5 0 . 6 1 5 8 3 . 0 4 1 6 8 . 3 9 8 5 0 . 6 6 3 2 3 . 0 0 5 2 8 . 5 4 8 0 0 . 7 8 9 5 2 . 9 0 6 2 8 . 5 4 8 0 RUN 1 4 3 TTIME • HTWC DELT 0 . 1 2 6 3 3 . 3 7 5 0 8 . 1 7 2 7 0 . 2 0 5 3 3 . 3 3 3 3 8 . 1 7 2 7 0 . 2 6 8 4 3 . 2 9 1 6 8 . 3 2 3 4 0 . 3 3 1 6 3 . 2 5 0 0 8 . 3 2 3 4 0 . 3 9 4 7 3 . 2 0 8 3 8 . 3 2 3 4 0 . 4 8 9 5 3 . 1 3 0 2 8 . 3 2 3 4 0 . 5 5 2 6 3 . 0 8 3 3 8 . 4 7 3 3 0 . 4 1 5 0 0 . 2 5 7 3 2 0 . 0 7 6 2 0 . 5 1 4 6 0 . 3 4 8 6 2 2 . 6 3 3 9 0 . 5 9 7 6 0 . 3 6 5 2 2 3 . 4 8 6 5 0 . 6 4 7 4 0 . 3 9 0 1 2 2 . 6 3 3 9 DVA DVB VEL 0 . 1 2 4 5 0 . 1 0 7 9 2 0 . 0 7 6 2 0 . 1 9 0 9 0 . 1 5 7 7 2 0 . 1 2 4 4 0 . 2 4 9 0 0 . 1 8 2 6 2 2 . 6 3 3 9 0 . 2 9 0 5 0 . 1 9 9 2 2 3 . 4 2 2 2 0 . 4 1 5 0 0 . 2 4 9 0 2 5 . 1 5 9 6 0 . 6 2 2 5 0 . 3 4 8 6 2 6 . 1 3 7 6 0 . 8 7 1 5 0 . 4 3 9 9 2 7 . 6 5 3 0 DVA DVB VEL o . 0 4 9 8 0 . 0 4 9 8 2 6 . 8 3 2 6 0 . 0 7 4 7 0 . 0 7 4 7 2 0 . 0 7 6 2 o . 1 1 6 2 0 . 0 9 9 6 2 0 . 1 2 4 4 o . 1 5 7 7 0 . 1 3 2 8 2 0 . 1 2 4 4 o . 1 9 0 9 0 . 1 5 7 7 2 0 . 0 7 6 2 0 . 2 9 8 8 0 . 1 9 9 2 2 2 . 9 9 9 3 o . 3 9 8 4 0 . 2 3 2 4 2 6 . 8 0 0 4 o . 5 6 4 4 0 . 3 3 2 0 2 6 . 8 0 0 4 DVA DVB VEL 0 . 0 7 4 7 0 . 0 7 4 7 2 6 . 8 1 1 1 0 . 1 1 6 2 0 . 0 9 9 6 2 0 . 1 2 4 4 0 . 1 3 2 8 0 . 1 1 6 2 2 0 . 1 4 0 5 0 . 3 2 3 7 0 . 2 1 5 8 2 2 . 2 1 9 9 0 . 3 8 1 8 0 . 2 5 7 3 2 0 . 1 2 4 4 0 . 4 1 5 0 0 . 3 0 7 1 2 3 . 4 2 2 2 0 . 5 6 4 4 0 . 3 2 3 7 2 3 . 8 8 8 7 DVA DVB VEL 0 . 1 4 1 1 0 . 1 3 2 8 1 6 . 0 6 0 9 0 . 1 9 0 9 0 . 1 4 9 4 1 6 . 0 9 9 5 0 . 2 8 2 2 0 . 1 9 9 2 2 0 . 1 2 4 4 0 . 4 1 5 0 0 . 2 5 7 3 2 0 . 0 7 6 2 0 . 4 7 3 1 0 . 3 3 2 0 2 0 . 1 2 4 4 0 . 6 3 9 1 0 . 3 5 6 9 2 5 . 1 2 7 4 0 . 9 1 3 0 0 . 4 1 5 0 2 2 . 6 3 3 9 195 FILM 14-2 RUN 144 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.2905 0. 1660 25.00 0.3947 3.2083 8 .3235 0.2324 0.1909 26.8326 0.2905 0.1660 28.00 0.4421 3.1666 8 .3235 0.2573 0.2075 26.8326 0.2905 0.1660 34.00 0.5368 3.0833 8 .4734 0.2988 0.2241 26.8004 0.2905 0.1660 41 .00 0.6474 2.9947 8 .4734 0.4150 0.2656 24.4333 0.2905 0.1660 47.00 0.7421 2.9166 8 .5548 0.6059 0.3901 25.1274 FILM 14-2 RUN 145 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.3984 0.0166 21. 00 0.3316 3.2500 8. .2543 0.0830 0 .0830 22.9810 0.3984 0.0166 30.00 0.4737 3.1666 8 .4046 0.1245 0.1245 17.8884 0.3984 0.0166 40.00 0.6316 3.0781 8 .4046 0.1826 0.1577 17.0840 0.3984 0.0166 48.00 0.7579 3.0000 8 .4867 0.3652 0.2573 18.8455 0.3984 0.0166 52.00 0.8211 2.9583 8 .4867 0.5312 0.2822 20.1244 0.3984 0.0166 60.00 0.9474 2 .8593 8.6358 0.8466 0.4482 23.8887 FILM 14- 2 RUN 146 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.3984 0.0581 20.00 0.3158 3.2500 8 .2543 0.1411 0.1411 24.1300 0.3984 0.0581 24.00 0.3789 3.2083 8 .2592 0 .2656 0.1992 20.1244 0.3984 0.0581 28.00 0.4421 3.1666 8 .4094 0.2988 0.2158 20.1244 0.3984 0.0581 35.00 0.5526 3.0833 8 .4094 0.3652 0.2407 22.9718 0.3984 0.0581 42.00 0.6632 3.0000 8 .4910 0.4980 0.3652 22.9718 0.3984 0.0581 49. 00 0.7737 2.9166 8 .4910 0.7055 0.3984 22.9993 0.3984 0.0581 56.00 0.8842 2.8333 8 .6402 0.8300 0.4980 22.9718 FILM 14-•2 RUN 147 DDROP DAIR FN TTIME HTWC DELT DVA. DVB VEL 0.4150 0.0415 10.00 0.1579 3.3697 8 .2481 0.0830 0.0830 25.1531 0.4150 0.0415 14.00 0.2211 3.3333 8 .2481 0.1079 0.1079 17.5666 0.4150 0.0415 22.00 0.3474 3.2500 8 .2481 0.1411 0.1411 20cl003 0.4150 0.0415 26.00 0.4105 3.2083 8 .33 03 0.1820 0.1660 20.1244 0.4150 0.0415 30.00 0.4737 3.1666 8 .3303 0.2490 0.1820 20.1244 0.4150 0.0415 34.00 0.5368 3.1250 8 .3303 0.2988 0.2075 20.0762 0.4150 0.0415 41.00 0.6474 3.0416 8 .4803 0.4731 0.3154 22 .9993 0.4150 0.0415 48.00 0.7579 2.9583 8.4803 0.6806 0.3984 2 2.9718 FILM 14-•2 •RUN 148 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.4067 0.0166 14.00 0.2211 3.3333 8 .2500 0. 0664 0.0664 22.9855 0.4067 0.0166 23.00 0.3632 3.2 500 8 .2500 0.0996 0 .0996 17.8669 0.4067 0.0166 31.00 0.4895 3 . 1666 8 * 4003 0.1411 0.1328 20.1244 196 0 . 4 0 6 7 0 . 0 1 6 6 4 0 . 0 0 0 . 6 3 1 6 3.08.33 8 . 4 0 0 3 0 . 2 0 7 5 0 . 1 8 2 0 1 7 . 8 6 6 9 0 . 4 0 6 7 0 . 0 1 6 6 4 8 . 0 0 0 . 7 5 7 9 3 . 0 0 0 0 8 . 5 4 9 8 0 . 4 7 3 1 0 . 2 8 2 2 2 0 . 1 0 0 3 0 . 4 0 6 7 0 . 0 1 6 6 5 2 . 0 0 0 . 8 2 1 1 2 . 9 5 8 3 8 . 5 4 9 8 0 . 5 3 9 5 0 . 3 3 2 0 2 0 . 1 2 4 4 0 . 4 0 6 7 0 . 0 1 6 6 5 5 . 0 0 0 . 8 6 8 4 2 . 9 1 6 6 8 . 5 4 9 8 0 . 6 7 2 3 0 . 3 4 8 6 2 6 . 8 3 2 6 0 . 4 0 6 7 0 . 0 1 6 6 6 1 . 0 0 0 . 9 6 3 2 2 . 8 3 3 3 8 . 5 4 9 8 1.Q541 0 . 3 9 0 1 2 6 . 8 0 0 4 F I L M 1 4 - 2 DDROP DA I R FN 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 1 1 6 2 0 . 1 1 6 2 0 . 1 1 6 2 0 . 1 1 6 2 0 . 1 1 6 2 5.00 1 3 . 00 2 1 . 0 0 2 9 . 0 0 3 6 . 0 0 RUN T T I M E 0 . 0 7 8 9 0 . 2 0 5 3 0 . 3 3 1 6 0 . 4 5 7 9 0 . 5 6 8 4 149 HTWC 3 . 4 1 6 6 3 . 3 3 3 3 3 . 2 5 0 0 3. 1 6 6 6 3 . 0 8 3 3 DELT 8 . 1 7 2 7 8 . 1 7 2 7 8 . 3 2 3 5 8 . 3 2 3 5 8 . 4 7 3 4 DVA 0 . 1 6 6 0 0 . 2 4 0 7 0 . 3 2 3 7 0 . 3 9 0 1 0 . 5 3 9 5 DVB VEL 0 . 1 3 2 8 3 2 . 1 9 9 1 0 . 1 9 9 2 2 0 . 1 0 0 3 0 . 2 4 0 7 2 0 . 1 0 0 3 0 . 2 6 5 6 2 0 . 1 2 4 4 0 . 3 5 6 9 2 2 . 9 7 1 8 F I L M 1 4 - 2 DDROP DA I R FN 0 . 4 1 5 0 0 . 4 1 5 0 0 . 4 1 5 0 0 . 4 1 5 0 0 . 4 1 5 0 0 . 4 1 5 0 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 0 . 1 2 4 5 0 . 1 2 4 5 5. 00 9.00 1 3 . 0 0 2 0 . 0 0 2 5 . 0 0 3 1 . 0 0 RUN T T I M E 0 . 0 7 8 9 0 . 1 4 2 1 0 . 2 0 5 3 0 . 3 1 5 8 0 . 3 9 4 7 0 . 4 8 9 5 1 5 0 HTWC 3 . 4 1 6 6 3 . 3 7 5 0 3 . 3 3 3 3 3 . 2 5 0 0 3 . 1 8 7 5 3 . 1 1 4 5 DELT 8 . 1 7 2 7 8 . 1 7 2 7 8 . 1 7 2 7 8 . 3 2 3 5 8 . 3 2 3 5 8 . 4 0 5 2 DVA 0 . 2 4 9 0 0. 2 9 0 5 0 . 3 6 5 2 0 . 4 9 8 0 0 . 5 8 9 3 0 . 6 7 2 3 DVB V E L 0 . 1 6 6 0 3 2 . 1 9 9 1 0 . 1 9 9 2 2 0 . 0 7 6 2 0 . 2 4 0 7 2 0 . 1 2 4 4 0 . 3 0 7 1 2 2 . 9 7 1 8 0 . 3 9 8 4 2 4 . 1 3 0 0 0 . 4 3 1 6 2 3 . 4 8 6 5 F I L M 1 4 - 2 DDROP DAIR FN 0 . 4 0 6 7 0 . 4 0 6 7 0 . 4 0 6 7 0 . 4 0 6 7 0 . 4 0 6 7 0 . 4 0 6 7 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 5 .00 1 3 . 0 0 2 1 . 00 2 7 . 0 0 3 2 . 0 0 4 1 . 0 0 RUN T T I M E 0 . 0 7 8 9 0 . 2 0 5 3 0 . 3 3 1 6 0 . 4 2 6 3 0 . 5 0 5 3 0 . 6 4 7 4 151 HTWC 3 . 4 1 6 6 3 . 3 3 3 3 3 . 2 5 0 0 3. 1 7 7 0 3 . 1 1 4 5 3 . 0 0 0 0 DELT 8 . 1 7 2 7 8 . 1 7 2 7 8 . 3 2 3 5 8 . 3 2 3 5 8 . 4 0 5 2 8 . 4 8 7 2 DVA 0 . 1 4 1 1 0 . 2 0 7 5 0 . 3 5 6 9 0 . 4 5 6 5 0 . 5 8 1 0 0 . 8 7 1 5 DVB 0 . 1 3 2 8 0 . 1 6 6 0 0 . 2 2 4 1 0 . 3 3 2 0 0 . 3 4 8 6 0 . 3 6 5 2 V E L 3 2 . 1 9 9 1 2 0 . 1 0 0 3 2 0 . 1 0 0 3 2 3 . 4 8 6 5 2 4 . 1 3 0 0 2 4 . 5 5 9 0 F I L M 1 4 - 2 DDROP DA I R FN 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 3 7 3 5 0 . 1 1 6 2 0 . 1 1 6 2 0 . 1 1 6 2 0 . 1 1 6 2 0 . 1 1 6 2 0 . 1 1 6 2 6.00 1 0 . 0 0 1 4 . 0 0 2 1 . 0 0 2 8 . 0 0 3 5 . 0 0 RUN T T I M E 0 . 0 9 4 7 0 . 1 5 7 9 0.2211. 0 . 3 3 1 6 0 . 4 4 2 1 0 . 5 5 2 6 I 52 HTWC 3 . 4 1 6 6 3 . 3 7 5 0 3 . 3 3 3 3 3 . 2 5 0 0 3. 1 6 6 6 3 . 0 8 3 3 DELT 8 . 1 7 2 7 8 . 1 7 2 7 8 . 1 7 2 7 8 . 3 2 3 5 8 . 3 2 3 5 8 . 4 7 3 4 DVA 0 . 1 6 6 0 0 . 1 9 9 2 0 . 2 4 9 0 0 . 3 6 5 2 0 . 5 3 1 2 0 . 8 1 3 4 DVB 0 . 1 4 1 1 0. 1 5 7 7 0 . 1 9 0 9 0 . 2 5 7 3 0 . 3 3 2 0 0 . 3 7 3 5 VEL 2 6 . 8 3 2 6 2 0 . 0 7 6 2 2 0 . 1 2 4 4 2 2 . 9 7 1 8 2 2 . 9 9 9 3 22 . 9 7 1 8 197 F I L M 1 4 - 2 DDROP DAIR FN 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 3 4 8 6 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 0 . 0 4 1 5 9.00 1 3 . 0 0 1 7 . 0 0 2 1 . 0 0 2 5 . 0 0 2 9 . 0 0 3 7 . 0 0 4 2 . 0 0 5 0 . 0 0 F I L M 1 4 -2 DDROP DAIR FN 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 2 9 0 5 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 0 . 0 6 6 4 6.00 1 3 . 0 0 2 0 . 0 0 2 7 . 0 0 3 3 . 0 0 3 6 . 00 F I L M 1 4 -•2 DDROP DAIR FN 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 3 3 2 0 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 9.00 1 3 . 0 0 2 0 . 0 0 2 4 . 0 0 3 0 . 0 0 3 4 . 0 0 4 1 . 00 4 5 . 00 5 1 . 0 0 5 5 . 0 0 F I L M 1 4 -•2 DDROP DAI R FN 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 3 1 5 4 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 0 . 0 2 4 9 5. 00 1 3 . 0 0 2 1 . 0 0 2 8 . 0 0 3 5 . 0 0 4 2 . 0 0 4 9 . 0 0 RUN 153 T T I M E HTWC DELT 0 . 1 4 2 1 3 . 3 7 5 0 8 . 2 4 7 8 0 . 2 0 5 3 3 . 3 3 3 3 8 . 2 4 7 8 0 . 2 6 8 4 3 . 2 9 1 6 8 . 2 4 7 8 0 . 3 3 1 6 3 . 2 5 0 0 8 . 2 4 7 8 0 . 3 9 4 7 3 . 2 0 8 3 8 . 3 3 0 1 0 . 4 5 7 9 3 . 1 6 1 4 8 . 3 3 0 1 0 . 5 8 4 2 3.05 72 8 . 4 8 0 0 0 . 6 6 3 2 3 . 0 0 0 0 8 . 4 8 0 0 0 . 7 8 9 5 2 . 8 9 5 8 8 . 6 2 9 0 RUN I 54 T T I M E HTWC DELT 0 . 0 9 4 7 3 . 4 1 6 6 8 . 1 7 2 7 0 . 2 0 5 3 3 . 3 3 3 3 8 . 1 7 2 7 0 . 3 1 5 8 3 . 2 5 0 0 8 . 3 2 3 5 0 . 4 2 6 3 3 . 1 6 6 6 8 . 3 2 3 5 0 . 5 2 1 1 3.08 33 8 . 4 7 3 4 0 . 5 6 8 4 3 . 0 4 1 6 8 . 4 7 3 4 RUN 1 5 5 T T I M E HTWC DELT 0 . 1 4 2 1 3 . 3 7 5 0 8 . 2 4 7 8 0 . 2 0 5 3 3 . 3 3 3 3 8 . 2 4 7 8 0 . 3 1 5 8 3 . 2 5 5 2 8 . 2 4 7 8 0 . 3 7 8 9 3 . 2 0 8 3 8 . 3 3 0 1 0 . 4 7 3 7 3 . 1 3 0 2 8 . 3 3 0 1 0 . 5 3 6 8 3 . 0 8 3 3 8 . 4 7 9 9 0 . 6 4 7 4 3 . 0 0 0 0 8 . 4 7 9 9 0 . 7 1 0 5 2 . 9 4 7 9 8 . 4 7 9 9 0 . 8 0 5 3 2 . 8 7 5 0 8 . 6 2 9 0 0 . 8 6 8 4 2.82.29 8 . 6 2 9 0 RUN 156 T T I M E HTWC DELT 0 . 0 7 8 9 3 . 4 1 6 6 8 . 1 7 2 7 0 . 2 0 5 3 3 . 3 3 3 3 8 . 1 7 2 7 0 . 3 3 1 6 3 . 2 5 0 0 8 . 3 2 3 5 0 . 4 4 2 1 3 . 1 6 6 6 8 . 3 2 3 5 0 . 5 5 2 6 3 . 0 8 3 3 8 . 4 7 3 4 0 . 6 6 3 2 3 . 0 0 0 0 8 . 4 7 3 4 0 . 7 7 3 7 2 . 9 1 6 6 8 . 5 5 4 8 DVA DVB V E L 0 . 0 7 4 7 0 . 0 7 4 7 2 6 . 8 1 1 1 0 . 0 9 9 6 0 . 0 9 9 6 2 0 . 1 2 4 4 0 . 1 2 4 5 0 . 1 2 4 5 2 0 . 1 2 4 4 0. 1 8 2 6 0 . 1 4 9 4 2 0 . 0 7 6 2 0 . 2 4 0 7 0 . 1 6 6 0 2 0 . 1 2 4 4 0 . 3 0 7 1 0 .1 9 9 2 2 2 . 6 3 3 9 0 . 3 9 8 4 0 . 2 5 7 3 2 5 . 1 4 3 5 0 . 5 3 9 5 0 . 3 3 2 0 2 2 . 0 8 3 8 0 . 7 8 8 5 0 . 4 1 5 0 2 5 . 1 4 3 5 DVA DVB V E L 0 . 1 4 1 1 0 . 1 2 4 5 2 6 . 8 3 2 6 0 . 2 3 2 4 0 . 1 5 7 7 2 2 . 9 7 1 8 0 . 2 8 2 2 0 . 1 9 0 9 2 2 . 9 718 0 . 3 4 8 6 0 . 2 0 7 5 2 2 . 9 9 9 3 0 . 4 5 6 5 0 . 2 9 0 5 2 6 . 8 0 0 4 0 . 5 3 9 5 0 . 3 9 0 1 2 6 . 8 3 2 6 DVA DVB V E L 0 . 0 7 4 7 0 . 0 7 4 7 2 6 . 8 1 1 1 0 . 0 9 9 6 0 . 0 9 9 6 2 0 . 1 2 4 4 0 . 1 7 4 3 0 . 1 4 1 1 21 . 5 3 7 7 0 . 2 1 5 8 0 . 1 7 4 3 2 2 . 6 3 3 9 0 . 2 6 5 6 0 . 1992 2 5 . 1 2 7 4 0 . 3 1 5 4 0 .2 1 5 8 2 2 . 6 3 3 9 0 . 4 1 5 0 0 . 2 6 5 6 2 2 . 9 7 1 8 0 . 4 4 8 2 0 . 3 3 2 0 2 5 . 1 4 3 5 0 . 6 3 0 8 0 . 3 4 8 6 2 3 . 4 5 4 4 0.69 72 0 . 4 1 5 0 25 . 1 4 3 5 DVA DVB V E L 0 . 0 4 9 8 0 . 0 4 9 8 3 2 . 1 9 9 1 0 . 0 8 3 0 0 . 0 8 3 0 2 0 . 1 0 0 3 0. 1 4 9 4 0 . 1328 2 0 . 1 0 0 3 0 . 2 2 4 1 0 . 1 9 0 9 2 2 . 9 9 9 3 0 . 3 0 7 1 0 . 2 4 0 7 2 2 . 9 7 1 8 0 . 4 7 3 1 0 . 2 5 7 3 2 2 . 9 7 1 8 0 . 6 4 7 4 0 . 3 4 8 6 22 . 9 9 9 3 TABLE A IX 198 RAW DATA FOR DISTILLED WATER - CYCLO PENTANE SYSTEM FILM 15-1 RUN CI DDROP DAIR FN TTIME HTWC DELT . DVA DVB VEL 0.4185 0.0744 16. 00 0.2526 3 .3333 4 .0206 0 .1023 0.1023 17.8669 0.4185 0.0744 25.00 0.3947 3 .2500 4 .1530 0 . 1395 0.1209 17.8669 0.4185 0.0744 33.00 0.5211 3 . 1666 4 .1530 0 .1674 0.1395 20.1244 0.418 5 0.0744 41.00 0.6474 3 .0833 4 .2839 0 .1953 0.1581 20.1003 0.4185 0.0744 49. 00 0.7737 3 . 0000 4 .2839 0 .2325 0.1767 20.1003 0.4185 0.0744 57. 00 0.9000 2.9166 4 .4137 0 .2511 0.1953 2 0.1244 0.4185 0.0744 65.00 1.0263 2 .8333 4 .4137 0 .2790 0.2139 20.1003 0.4185 0.0744 72. 00 1.1368 2 . 7500 4 .5426 0 .2976 0.2325 22.9718 0.4185 0.0744 80.00 1.2632 2 . 6666 4 .5426 0 .3255 0.2511 20.1244 0.4185 0.0744 88. 00 1.3895 2 .5833 .4 .6709 0 .3720 0.2883 20.1003 0.4185 0.0744 95 .00 1.5000 2 .5000 4 .6709 0 .4185 0.2976 22.9718 0.4185 0.0744 102.00 1.6105 2 .4166 4 .79 86 0 .4371 0.3348 22.9993 0.4185 0.0744 109.00 1.7211 2 .3333 4 .7986 0 .5115 0.3534 2 2.9718 0.4185 0.0744 115.00 1.8158 2 .2500 4 .9260 0 .6045 0.3720 26.8004 0.4185 0.0744 126.00 1.9895 2 . 1250 4 .9260 0 .7626 0.4743 21.9364 FILM 15- 1 RUN C2 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.3627 0.0279 7. 00 0.1105 3.4166 4 .0206 0 .0465 0.0465 22.9993 0.3627 0.0279 17.00 0.2684 3.3333 4 .0206 0 .0651 0.0651 16.0802 0.3627 0.0279 27.00 0.4263 3.2500 4 .1530 0 .0837 0 .0837 16.0802 0.3627 0.0279 45.00 0.7105 3.0833 4 .2839 0 .1209 0.1023 17.8 776 0.3627 0.0279 53. 00 0.8368 3.0000 4 .2839 0 .1581 0.1302 20.1003 0.3627 0.0279 61. 00 0.9632 2.9166 4 .4137 0 .1953 0.1674 20.1244 0.362 7 0.0279 69.00 1.0895 2.8333 4 .4137 0 .2418 0 . 1953 20.1003 0.3627 0.0279 76.00 1.2000 2.7552 4 .5420 0 .2883 0.2418 21.5377 0.3627 0.0279 84. 00 1.3263 2.6666 4 .5420 0 .3534 0 .2790 21.3792 0.3627 0.0279 91.00 1.4368 2.5833 4 .6703 0 .3906 0.3162 22 .9718 0.3627 0.Q279 98.00 1.5474 2.5000 4 .6703 0 .5301 0.3441 22.9718 FILM 15- 1 RUN C3 DDROP DAIR FN TTIME HTWC DELT DVA DVB VEL 0.2790 0.0186 7.00 0.1105 3.4166 4 .0206 0 .0372 0.0372 22.9993 0.2790 0.0186 17.00 0.2684 3.3333 4 .0206 0 .0558 0.0558 16.0802 0.2790 0.0186 27.00 0.4263 3.2500 4 .1530 0 .0837 0.0744 16.0802 0.2790 0.0186 37.00 0.5842 3 . 1666 4 .1530 0 .1209 0.1116 16o0995 0.2790 0.0186 45.00 0.7105 3.0833 4 .2839 0 . 1767 0.1581 20.1003 0.2790 0.0186 52.00 0.8211 3.0000 4 .2839 0 .2604 0.1953 22.9718 0.2790 0.0186 59.00 0.9316 2.9166 4 .4137 0 .3441 0.2790 22 .9993 0.2790 0.0186 66. 00 1.0421 2.8333 4 .4137 0 .4557 0.325 5 22.9718 0.2790 0.0186 73.00 1.1526 2.7500 4 .5426 0 .5301 0.3627 22.9718 199 F I L M 1 5 - 1 RUN C4 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 9 9 9 0 . 1 1 1 6 3 0 . 0 0 0 . 4 7 3 7 3 . 1 4 5 8 4 . 2 6 6 0 0 . 2 3 2 5 0 . 2 0 4 6 20 . 9 1 0 1 0 . 3 9 9 9 0 . 1 1 1 6 3 6 . 0 0 0 . 5 6 8 4 3 . 0 7 8 1 4 . 2 6 6 0 0 . 2 5 1 1 0 . 2 1 3 9 21 . 7 8 1 3 0 . 3 9 9 9 0 . 1 1 1 6 4 3 . 0 0 0 . 6 7 8 9 3 . 0 0 0 0 4 . 2 6 6 0 0 . 3 1 6 2 0 . 2 3 2 5 21 . 5 3 7 7 0 . 3 9 9 9 0 . 1 1 1 6 5 0 . 0 0 0 . 7 8 9 5 2 . 9 1 6 6 4 . 3 9 8 6 0 . 3 4 4 1 0 . 2 6 9 7 2 2 . 9 9 9 3 0 . 3 9 9 9 0 . 1 1 1 6 5 7 . 00 0 . 9 0 0 0 2 . 8 3 3 3 4 . 3 9 8 6 0 . 3 9 0 6 0 . 2 8 8 3 2 2 . 9 7 1 8 0 . 3 9 9 9 0 . 1 1 1 6 6 4 . 00 1 . 0 1 0 5 2 . 7 5 0 0 4 . 5 2 9 9 0 . 4 3 7 1 0 .3 1 6 2 2 2 . 9 7 1 8 0 . 3 9 9 9 0 . 1 1 1 6 7 1 . 0 0 .1.1211 2 . 6 6 6 6 4 . 5 2 9 9 0 . 5 2 0 8 0 . 3 4 4 1 2 2 . 9 9 9 3 0 . 3 9 9 9 0 . 1 1 1 6 7 9 . 0 0 1 . 2 4 7 4 2 . 5 7 8 1 4 . 6 6 0 7 0 . 6 6 0 3 0 . 3 9 0 6 2 1 . 3 5 5 0 F I L M 1 5 -1 RUN C5 DDROP D A I R FN T T I M E HTWC DELT DVA DVB VEL 0 . 3 3 4 8 0 . 0 3 7 2 7.00 0. 1 1 0 5 3 . 4 1 6 6 4 . 0 2 0 6 0 . 0 5 5 8 0 . 0 5 5 8 2 2 . 9 9 9 3 0 . 3 3 4 8 0 . 0 3 7 2 3 5 . 0 0 0 . 5 5 2 6 3 . 1 6 6 6 4 . 2 6 5 8 0 . 1 3 9 5 0 . 1 2 0 9 1 7 . 2 3 5 7 0 . 3 3 4 8 0 . 0 3 7 2 4 4 . 0 0 0 . 6 9 4 7 3 . 0 7 8 1 4 . 2 6 5 8 0 . 1 8 6 0 0 . 1 4 8 8 1 8*9823 0 . 3 3 4 8 0 . 0 3 7 2 5 2 . 0 0 0 . 8 2 1 1 2 . 9 9 4 7 4 . 2 6 5 8 0 . 2 3 2 5 0 . 1 8 6 0 2 0 . 1 2 4 4 0 . 3 3 4 8 0 . 0 3 7 2 5 9 . 0 0 0 . 9 3 1 6 2 . 9 1 1 4 4 . 3 9 9 1 0 . 2 8 8 3 0 . 2 2 3 2 2 2 . 9 7 1 8 0 . 3 3 4 8 0 . 0 3 7 2 6 6 . 0 0 1 . 0 4 2 1 2 . 8 2 8 1 4 . 3 9 9 1 0 . 3 4 4 1 0 . 2 6 9 7 2 2 . 9 7 1 8 0.3 348 0 . 0 3 7 2 7 3 . 0 0 1 . 1 5 2 6 2.75 00 4 . 5 3 0 3 0 . 4 0 9 2 0 . 3 0 6 9 2 1 . 5 3 7 7 0.3 348 0 . 0 3 7 2 8 0. 00 1 . 2 6 3 2 2 . 6 6 6 6 4 . 5 3 0 3 0 . 4 6 5 0 0 . 3 4 4 1 2 2 . 9 9 9 3 0 . 3 3 4 8 0 . 0 3 7 2 8 7 . 0 0 1 . 3 7 3 7 2 . 5 8 3 3 4 . 6 6 0 5 0 . 5 2 0 8 0 . 3 6 2 7 2 2 . 9 7 1 8 F I L M 1 5 - 1 RUN C6 DDROP DAI R FN T T I M E HTWC DELT DVA DVB .. V E L 0 . 4 0 9 2 0 . 1 2 0 9 4 5 . 0 0 0 . 7 1 0 5 3 . 0 7 2 9 4 . 2 7 7 7 0 . 2 4 1 8 0 . 1 8 6 0 1 8 . 3 2 1 6 0 . 4 0 9 2 0 . 1 2 0 9 5 1 . 0 0 0 . 8 0 5 3 3 . 0 0 0 0 4 . 2 7 7 7 0.28 83 0 . 2 0 4 6 23 . 4 5 4 4 0 . 4 0 9 2 0 . 1 2 0 9 5 8 . 0 0 0 . 9 1 5 8 2 . 9 2 1 8 4 . 4 0 7 8 0 . 3 2 5 5 0 .22 32 21 . 5 6 5 3 0 . 4 0 9 2 0 . 1 2 0 9 6 6 . 00 1 . 0 4 2 1 2 . 8 3 3 3 4 . 4 0 7 8 0 . 3 8 1 3 0 . 2 5 1 1 2 1 . 3 5 5 0 0 . 4 0 9 2 0 . 1 2 0 9 7 3 . 0 0 1 . 1 5 2 6 2 . 7 5 0 0 4.5 3 77 0 . 4 4 6 4 0 . 2 9 7 6 2 2 . 9 7 1 8 0 . 4 0 9 2 0 . 1 2 0 9 8 1 . 0 0 1 . 2 7 8 9 2 . 6 6 1 4 4 . 5 3 7 7 0.5 3 9 4 0 . 3 5 3 4 2 1 . 3 7 9 2 0 . 4 0 9 2 0 . 1 2 0 9 1 0 1 . 0 0 1 . 5 9 4 7 2 . 4 1 6 6 4 . 7 8 0 7 0 . 7 9 0 5 0 . 4 0 9 2 2 3 . 6 2 8 1 F I L M 1 5 -•1 RUN C7 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 2 6 9 7 0 . 0 1 8 6 5 1 . 0 0 0 . 8 0 5 3 3 . 0 8 3 3 4 . 2 7 7 3 0 . 2 4 1 8 0 . 2 0 4 6 15 . 7 7 2 5 0 . 2 6 9 7 0 . 0 1 8 6 5 8 . 0 0 0 . 9 1 5 8 3 . 0 0 0 0 4 . 2 7 7 3 0 * 3 1 6 2 0 . 2 5 1 1 2 2 . 9 7 1 8 0 . 2 6 9 7 0 . 0 1 8 6 6 5 . 0 0 1 . 0 2 6 3 2 . 9 1 6 6 4.40 81 0 . 3 9 9 9 0 . 3 0 6 9 2 2 . 9 9 9 3 0 . 2 6 9 7 0 . 0 1 8 6 7 2 . 0 0 1 .1368 2 . 8 3 3 3 4 . 4 0 8 1 0 * 5 1 1 5 0 . 3 5 3 4 2 2 . 9 7 1 8 0 . 2 6 9 7 0 . 0 1 8 6 7 9 . 0 0 1 . 2 4 7 4 2 . 7 5 0 0 4 . 5 3 7 9 0 . 5 9 5 2 0 . 3 8 1 3 2 2 . 9 7 1 8 F I L M 1 5 - 1 RUN C8 200 DDROP DAI R FN 0 . 2 5 1 1 0 . 2 5 1 1 0 . 2 5 1 1 0.2 511 0 . 2 5 1 1 0 . 2 5 1 1 0 . 2 5 1 1 0 . 0 7 4 4 0 * 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 2 5 . 0 0 3 4 . 0 0 4 0 . 0 0 4 7 . 0 0 5 4 . 0 0 6 3 . 0 0 8 0 . 00 F I L M 1 5 -1 DDROP DAIR FN 0 . 2 5 1 1 0 . 2 5 1 1 0 . 2 5 1 1 0 . 2 5 1 1 0 . 2 5 1 1 0 . 2 5 1 1 0.05 58 0 . 0 5 5 8 0 . 0 5 5 8 0.05 58 0 . 0 5 5 8 0 . 0 5 5 8 8.00 1 7 . 0 0 2 6 . 0 0 4 7 . 00 6 0 . 0 0 7 5 . 0 0 F I L M 1 5 - 1 DDROP DAIR FN 0 . 2 9 7 6 0 . 2 9 7 6 0 . 2 9 7 6 0 . 2 9 7 6 0 . 2 9 7 6 0 . 2 9 7 6 0 . 0 6 5 1 0 . 0 6 5 1 0 . 0 6 5 1 0 . 0 6 5 1 0 . 0 6 5 1 0 . 0 6 5 1 1 5 . 0 0 2 4 . 0 0 3 3 . 0 0 5 4 . 0 0 62 .00 7 2 . 00 F I L M 1 5 -•1 DDROP DAIR FN 0 . 3 9 0 6 0 . 3 9 0 6 0 . 3 9 0 6 0 . 3 9 0 6 0 . 3 9 0 6 0 . 3 9 0 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 3 0 . 0 0 4 1 . 0 0 7 0 . 0 0 7 8 . 00 8 5 . 0 0 9 2 . 00 F I L M 1 5 -•2 DDROP DAI R FN 0 . 2 7 9 0 0 . 2 7 9 0 0 . 2 7 9 0 0 . 2 7 9 0 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 1 5 . 0 0 2 3 . 0 0 3 1 . 0 0 4 1 . 0 0 T T I M E HTWC DELT DVA DVB V E L 0 . 3 9 4 7 3 . 2 4 4 7 4 . 1 5 6 0 0 . 1 8 6 0 0. 1 6 7 4 1 9 . 7 1 3 2 0 . 5 3 6 8 3 . 1 4 5 8 4 . 1 5 6 0 0 . 2 2 3 2 0 . 2 0 4 6 2 1 . 2 1 3 0 0 . 6 3 1 6 3 . 0 8 3 3 4 . 2 8 6 4 0 . 2 6 0 4 0 . 2 2 3 2 2 0 . 1 0 8 3 0 . 7 4 2 1 3 . 0 0 0 0 4 . 2 8 6 4 0 . 3 0 6 9 0 . 2 6 9 7 2 2 . 9 7 1 8 0 . 8 5 2 6 2 . 9 1 6 6 4 . 4 1 5 8 0 . 3 7 2 0 0 . 2 8 8 3 2 2 . 9 9 9 3 0 . 9 9 4 7 2 . 8 1 2 5 4 . 4 1 5 8 0 . 5 3 9 4 0 . 3 5 3 4 2 2 . 3 2 8 3 1 . 2 6 3 2 2 . 6 0 4 1 4 . 6 5 9 3 0 . 7 7 1 9 0 . 4 2 7 8 2 3 . 6 6 4 4 RUN C9 .TTIME HTWC DELT DVA DVB VEL 0 . 1 2 6 3 3 . 4 1 6 6 4 . 0 2 0 6 0 . 0 8 3 7 0 . 0 8 3 7 2 0 . 1 2 4 4 0 . 2 6 8 4 3 . 3 3 3 3 4 . 0 2 0 6 0 . 1 2 0 9 0 . 1 0 2 3 1 7 . 8 6 6 9 0 . 4 1 0 5 3 . 2 4 4 7 4 . 1 5 3 6 0 . 1 6 7 4 0 . 1 4 8 8 1 9 . 0 0 3 7 0 . 7 4 2 1 3 . 0 0 0 0 4 . 2 9 4 2 0 . 3 2 5 5 0 . 2 8 8 3 2 2 . 4 9 3 8 0 . 9 4 7 4 2 . 8 4 3 7 4 . 4 3 1 0 0 . 5 6 7 3 0 . 3 6 2 7 2 3 . 2 0 9 3 1 . 1 8 4 2 2 . 6 6 6 6 4 . 5 6 7 0 0 . 8 3 7 0 0 . 3 7 2 0 2 2 . 7 9 1 6 RUN C I O T T I M E HTWC DELT DVA DVB V E L 0 . 2 3 6 8 3 . 3 3 3 3 4 . 0 2 3 4 0. 1 0 2 3 0 . 0 9 3 0 21 . 4 5 3 2 0 . 3 7 8 9 3 . 2 5 0 0 4. 1 5 5 3 0 . 1 3 0 2 0 . 1 1 1 6 1 7 . 8 6 6 9 0 . 5 2 1 1 3 . 1 6 6 6 4 . 1 5 5 3 0 . 1 6 7 4 0 . 1 3 9 5 1 7 . 8 8 8 4 0 . 8 5 2 6 2 . 9 1 6 6 4 . 4 0 0 3 0 . 3 3 4 8 0 . 2 6 9 7 2 2 . 9 8 1 0 0 . 9 7 8 9 2 . 8 3 3 3 4 . 4 0 0 3 0.48 36 0 . 3 2 5 5 2 0 . 1 0 0 3 1 . 1 3 6 8 2 . 7 0 8 3 4 . 5 3 6 2 0 . 6 3 2 4 0 . 3 5 3 4 2 4 . 1 3 0 0 RUN G i l T T I M E HTWC DELT DVA DVB V E L 0 . 4 7 3 7 3 . 1 7 7 0 4. 1 6 4 0 0 . 1 0 2 3 0 . 0 8 3 7 2 0 . 7 8 4 0 0 . 6 4 7 4 3 . 0 8 3 3 4 . 2 9 3 2 0 . 1 3 0 2 0 . 1 0 2 3 1 6 . 4 4 3 5 1 . 1 0 5 3 2 . 7 7 6 0 4 . 5 3 7 2 0 . 2 7 9 0 0 . 2 2 3 2 2 0 . 4 5 5 6 1 . 2 3 1 6 2 . 6 6 6 6 4 . 5 3 7 2 0 . 3 7 2 0 0 . 3 2 5 5 2 6 . 3 9 8 2 1 . 3 4 2 1 2 . 5 8 3 3 4 . 6 6 6 3 0.43 71 0 . 3 5 3 4 2 2 . 9 7 1 8 1 . 4 5 2 6 2 . 5 0 0 0 4 . 6 6 6 3 0 . 4 9 2 9 0 . 3 8 1 3 2 2 . 9 7 1 8 RUN C 1 2 T T I M E HTWC DELT DVA DVB V E L 0 . 2 3 6 8 3 . 3 3 3 3 9 . 3 0 4 6 0. 1 6 7 4 0 . 1 3 0 2 2 0 . 1 0 0 3 0 . 3 6 3 2 3 . 2 5 0 0 9 . 3 0 4 6 0 . 2 3 2 5 0 . 1 8 6 0 2 0 . 1 0 0 3 0 . 4 8 9 5 3 . 1 6 1 4 9 . 4 3 8 5 0 . 3 7 2 0 0 . 2 7 9 0 21 . 3 7 9 2 0 . 6 4 7 4 3 . 0 4 1 6 9 . 5 6 5 3 0 . 5 5 8 0 0 . 3 6 2 7 2 3 . 1 2 6 2 201 F I L M 15--2 RUN C T 3 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 1 8 6 0 0 . 1 0 2 3 1 2 . 0 0 0 . 1 8 9 5 3 . 3 6 9 7 9 . 3 0 4 6 0 . 1 7 6 7 0 . 1 4 8 8 2 2 . 6 3 3 9 0. I 8 6 0 0 . 1 0 2 3 1 5 . 0 0 0 . 2 3 6 8 3 . 3 3 3 3 9 . 3 0 4 6 0 . 2 1 3 9 0 . 1 7 6 7 2 3 . 4 2 2 2 0 . 1 8 6 0 0 . 1 0 2 3 2 1 . 0 0 0 . 3 3 1 6 3 . 2 7 0 8 9 . 3 0 4 6 0 . 2 5 1 1 0 . 2 1 3 9 2 0 . 1 0 8 3 0. 1 8 6 0 0 . 1 0 2 3 2 4 . 0 0 0 . 3 7 8 9 3 . 2 3 9 5 9 . 4 2 9 3 0 . 3 0 6 9 0 . 2 6 0 4 2 0 . 1 4 0 5 0. I 8 6 0 • 0 . 1 0 2 3 2 8 . 0 0 0 . 4 4 2 1 3 . 1 9 2 7 9 . 4 2 9 3 0 . 3 7 2 0 0 . 2 7 9 0 2 2 . 5 8 5 7 0. 1 8 6 0 0 . 1 0 2 3 3 1 . 0 0 0 . 4 8 9 5 3 . 1 5 6 2 9 . 4 2 9 3 0 . 3 9 9 9 0 . 3 1 6 2 2 3 . 4 8 6 5 0 . 1 8 6 0 0 . 1 0 2 3 4 4 . 0 0 0 . 6 9 4 7 3 . 0 0 0 0 9 . 5 6 2 5 0 . 7 4 4 0 0 . 3 8 1 3 2 3 . 1 9 4 5 F I L M 15 -2 RUN C 1 4 DDROP DAIR FN T T I M E HTWC DELT DVA DVB VEL 0 . 2 6 9 7 0 . 0 2 7 9 8. 00 0 . 1 2 6 3 3 . 4 1 6 6 9 . 3 0 4 6 0 . 0 4 6 5 0 . 0 4 6 5 2 0 . 1 2 4 4 0 . 2 6 9 7 0 . 0 2 7 9 1 8 . 0 0 0 . 2 8 4 2 3 . 3 3 3 3 9 . 3 0 4 6 0 . 0 7 4 4 0 . 0 6 5 1 1 6 . 0 8 0 2 0 . 2 6 9 7 0 . 0 2 7 9 2 8 . 0 0 0 . 4 4 2 1 3 . 2 5 0 0 9 . 3 0 4 6 0 . 1 5 8 1 0. 1 2 0 9 1 6 . 0 8 0 2 0 . 2 6 9 7 0 . 0 2 7 9 3 5 . 0 0 0.5 5 26 3 . 1 6 6 6 9 . 4 3 7 9 0 . 3 0 6 9 0 o 2 1 3 9 2 2 . 9 9 9 3 0 . 2 6 9 7 0.02 79 3 9 . 0 0 0 . 6 1 5 8 3 . 1 1 4 5 9 . 4 3 7 9 0 . 4 4 6 4 0 . 2 7 9 0 2 5 . 1 4 3 5 0 . 2 6 9 7 0 . 0 2 7 9 5 3 . 0 0 0 . 8 3 6 8 2 . 9 4 2 7 9 . 5 7 6 5 0 . 8 7 4 2 0 . 4 5 5 7 2 3 . 6 8 8 8 F I L M 15 -2 RUN C 1 5 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 5 3 4 0 . 1 4 8 8 1 0 . 0 0 0 . 1 5 7 9 3 . 3 5 4 1 9 . 3 0 4 6 0 . 2 4 1 8 0 . 1 8 6 0 2 4 . 1 3 0 0 0 . 3 5 3 4 0 . 1 4 8 8 3 3 . 0 0 0 . 5 2 1 1 3 . 1 0 4 1 9 . 4 4 5 2 0 . 4 1 8 5 0 . 3 2 5 5 2 0 . 9 8 2 6 0. 3 5 3 4 0 . 1 4 8 8 4 2 . 0 0 0 . 6 6 3 2 3 . 0 0 0 0 9 . 5 7 5 9 0 . 6 0 4 5 0 . 3 6 2 7 2 2 . 3 2 8 3 F I L M 15 -2 RUN C 1 6 DDROP DAI R FN T T I M E HTWC DELT DVA DVB VEL 0 . 3 0 6 9 0 . 0 2 7 9 7.00 0 . 1 1 0 5 3 . 4 1 6 6 9 . 3 0 4 6 0 . 0 4 6 5 0 . 0 4 6 5 2 2 . 9 9 9 3 0 . 3 0 6 9 0 * 0 2 7 9 1 7 . 0 0 0 . 2 6 8 4 3 . 3 3 3 3 9 . 3 0 4 6 0 . 0 8 3 7 0 . 0 8 3 7 1 6 . 0 8 0 2 0 . 3 0 6 9 0 . 0 2 7 9 2 6 . 0 0 0 . 4 1 0 5 3 . 2 5 0 0 9 . 3 0 4 6 0 . 1 2 0 9 0 . 1 2 0 9 1 7 . 8 6 6 9 0 . 3 0 6 9 0 . 0 2 7 9 3 4 . 0 0 0 . 5 3 6 8 3 . 1 6 6 6 9 . 4 3 7 9 0 . 1 8 6 0 0 . 1 6 7 4 2 0 . 1 2 4 4 0 . 3 0 6 9 0 . 0 2 7 9 4 1 . 0 0 0 . 6 4 7 4 3 . 0 8 3 3 9 . 4 3 7 9 0 . 3 4 4 1 0 . 2 3 2 5 2 2 . 9 7 1 8 0 . 3 0 6 9 0 . 0 2 7 9 5 5 . 0 0 0 . 8 6 8 4 2 . 9 1 6 6 9 . 6 8 1 2 0 . 7 5 3 3 0 . 3 5 3 4 2 2 . 9 8 5 5 0 . 3 0 6 9 0 . 0 2 7 9 4 8 . 00 0 . 7 5 7 9 3 . 0 0 0 0 9 . 5 7 0 7 0 . 5 1 1 5 0 . 3 0 6 9 2 2 . 9 9 9 3 F I L M 15 -2 RUN C 1 7 DDROP DAI R FN T T I M E HTWC DELT DVA DVB VEL 0 . 3 2 5 5 0 . 0 2 7 9 7.00 0 . 1 1 0 5 3 . 4 1 6 6 9 . 3 0 4 6 0 . 0 4 6 5 0 . 0 4 6 5 22 . 9 9 9 3 0 . 3 2 5 5 0 . 0 2 7 9 1 5 . 0 0 0 . 2 3 6 8 3 . 3 3 8 5 9 . 3 0 4 6 0 . 0 8 3 7 0 . 0 7 4 4 1 8 . 8 4 5 5 0 . 3 2 5 5 0 . 0 2 7 9 4 0 . 0 0 0 . 6 3 1 6 3 . 0 8 3 3 9 . 5 4 8 7 0 . 3 3 4 8 0 . 2 5 1 1 1 9 . 7 0 5 5 0.32 5 5 0 . 0 2 7 9 4 7 . 0 0 0 . 7 4 2 1 3 . 0 0 0 0 9 . 5 4 8 7 0 . 4 1 8 5 0 . 3 2 5 5 2 2 . 9 7 1 8 0.32 5 5 0 . 0 2 7 9 5 7 . 0 0 0 . 9 0 0 0 2 . 8 8 0 2 9 . 6 7 7 1 0 . 8 0 9 1 0 . 4 1 8 5 2 3 . 1 2 6 2 F I L M 1 5 - 2 R U N C 1 8 2 0 2 DDROP D A I R F N T T I M E HTWC D E L T DVA DVB V E L 0 . 1 8 6 0 0 . 1 8 6 0 0 . 1 8 6 0 0 . 1 8 6 0 0 . 1 8 6 0 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 8 . 0 0 1 9 . 0 0 2 7 . 0 0 3 3 . 0 0 4 4 . 0 0 0 . 1 2 6 3 0 . 3 0 0 0 0 . 4 2 6 3 0 . 5 2 1 1 0 . 6 9 4 7 3 , 3. 3 . 3 3 , 4 1 6 6 3 3 3 3 2 5(H) 1 8 2 2 0 4 6 8 9 . 3 0 4 6 9 . 3 0 4 6 9 . 3 0 4 6 9 . 4 3 6 0 9 . 5 6 2 6 0 . 0 6 5 1 0 . 0 6 5 1 2 0 . 1 2 4 4 0 . 1 5 8 1 0 . 1 3 0 2 1 4 . 6 1 8 4 0 . 2 5 1 1 0 . 1 9 5 3 2 0 . 1 0 0 3 0 . 3 4 4 1 0 . 2 7 9 0 2 1 . 8 1 3 5 0 . 5 5 8 0 0 . 3 4 4 1 2 3 . 7 6 1 5 F I L M 1 5 - 2 DDROP D A I R F N 0 . 2 4 1 8 0 . 2 4 1 8 0 . 2 4 1 8 0 . 2 4 1 8 0 . 2 4 1 8 0 . 0 5 5 8 0 . 0 5 5 8 0 . 0 5 5 8 0 . 0 5 58 0 . 0 5 5 8 1 8 . 0 0 2 1 . 0 0 2 6 . 0 0 3 4 . 0 0 3 9 . 0 0 RUN T T I M E 0 . 2 8 4 2 0 . 3 3 1 6 0 . 4 1 0 5 0 . 5 3 6 8 0 . 6 1 5 8 C 1 9 HTWC 3 . 3 3 3 3 3 . 3 0 2 0 3 . 2 5 0 0 3 . 1 5 1 0 3 • 0 9 3 7 D E L T 9 . 3 0 4 6 9 . 3 0 4 6 9 . 3 0 4 6 9 . 4 3 9 7 9 . 4 3 9 7 DVA 0 . 1 3 9 5 0 . 1 8 6 0 0 . 2 8 8 3 0 . 4 4 6 4 0 . 6 1 3 8 D V B V E L 0 . 1 1 1 6 1 6 . 0 8 0 2 0 . 1 3 9 5 2 0 . 1 4 0 5 0 . 2 0 4 6 2 0 . 0 7 6 2 0 . 3 1 6 2 2 3 . 8 8 8 7 0 . 3 3 4 8 2 2 . 1 2 2 4 F I L M 1 5 - 2 R U N C 2 0 DDROP D A I R F N T T I M E HTWC D E L T DVA DVB V E L 0 . 2 6 0 4 0 . 0 7 4 4 1 2 . 0 0 0 . 1 8 9 5 3 . 3 6 9 7 9 . 3 0 4 6 0 . 1 3 0 2 0 . 12 09 1 8 . 1 0 7 1 0 . 2 6 0 4 0 . 0 7 4 4 1 5 . 0 0 0 . 2 3 6 8 3 . 3 3 3 3 9 . 3 0 4 6 0 . 1 6 7 4 0 . 1 3 9 5 2 3 . 4 2 2 2 0 . 2 6 0 4 0 . 0 7 4 4 1 9 . 0 0 0 . 3 0 0 0 3 . 2 9 1 6 9 . 3 0 4 6 0 . 2 0 4 6 0 . 1 5 8 1 2 0 . 1 2 4 4 0 . 2 6 0 4 0 . 0 7 4 4 2 3 . 0 0 0 . 3 6 3 2 3 . 2 5 0 0 9 . 3 0 4 6 0 . 2 6 0 4 0 . 1 9 5 3 2 0 . 0 7 6 2 0 . 2 6 0 4 0 . 0 7 4 4 2 7 . 0 0 0 . 4 2 6 3 3 . 1 9 7 9 9 . 4 3 4 2 0 . 3 4 4 1 0 . 2 3 2 5 2 5 . 1 4 3 5 0 . 2 6 0 4 0 . 0 7 4 4 3 1 . 0 0 0 . 4 8 9 5 3 . 1 4 5 8 9 . 4 3 4 2 0 . 4 0 9 2 0 . 2 6 0 4 2 5 . 1 4 3 5 0 . 2 6 0 4 0 . 0 7 4 4 4 6 . 0 0 0 . 7 2 6 3 2 . 9 6 8 7 9 . 5 7 0 3 0 . 9 7 6 5 0 . 4 2 7 8 2 2 . 7 9 1 6 F I L M 1 5 - 2 R U N C 2 1 DDROP D A I R F N T T I M E HTWC D E L T DVA D V B V E L 0 . 2 6 9 7 0 . 0 4 6 5 3 . 0 0 0 . 0 4 7 4 3 . 4 5 8 3 9 . 1 9 2 3 0 . 0 6 5 1 0 . 0 6 5 1 2 6 . 8 32 6 0 . 2 6 9 7 0 . 0 4 6 5 8 . 0 0 0 . 1 2 6 3 3 . 4 1 6 6 9 . 1 9 2 3 0 . 0 8 3 7 0 . 0 8 3 7 1 6 . 0 9 9 5 0 . 2 6 9 7 0 . 0 4 6 5 1 3 . 0 0 0 . 2 0 5 3 3 . 3 7 5 0 9 . 3 1 8 8 0 . 1 0 2 3 0 . 0 9 3 0 1 6 . 0 6 0 9 0 . 2 6 9 7 0 . 0 4 6 5 1 8 . 0 0 0 . 2 8 4 2 3 . 3 3 3 3 9 . 3 1 8 8 0 . 1 3 0 2 0 . 1 1 1 6 1 6 . 0 9 9 5 0 . 2 6 9 7 0 . 0 4 6 5 2 4 o 0 0 0 . 3 7 8 9 3 . 2 9 6 8 9 . 3 1 8 8 0 . 1 5 8 1 0 . 1 3 0 2 1 1 . 7 4 3 3 F I L M 1 6 - 1 R U N C 2 2 DDROP D A I R F N T T I M E HTWC D E L T DVA D V B V E L 0 . 4 3 7 1 0 . 0 9 3 0 2 3 . 0 0 0 . 3 6 3 2 3 . 2 5 0 0 9 . 1 8 5 3 0 . 1 5 8 1 0 . 1 5 8 1 • 2 0 . 1 0 0 3 0 . 4 3 7 1 0 . 0 9 3 0 3 1 . 0 0 0 . 4 8 9 5 3 . 1 6 6 6 9 . 1 8 5 3 0 . 2 0 4 6 0 . 1 7 6 7 2 0 . 1 2 4 4 0 . 4 3 7 1 0 . 0 9 3 0 3 8 . 0 0 0 . 6 0 0 0 3 . 0 8 3 3 9 . 3 1 5 9 0 . 2 4 1 8 0 . 1 8 6 0 2 2 . 9 7 1 8 0 . 4 3 7 1 0 . 0 9 3 0 4 5 . 0 0 0 . 7 1 0 5 3 . 0 0 0 0 9 . 3 1 5 9 0 . 2 9 7 6 0 . 2 0 4 6 2 2 . 9 7 1 8 0 . 4 3 7 1 0 . 0 9 3 0 5 2 . 0 0 0 . 8 2 1 1 2 . 9 1 6 6 9 . 4 4 5 4 0 . 3 7 2 0 0 . 2 5 1 1 2 2 . 9 9 9 3 0 . 4 3 7 1 0 . 0 9 3 0 5 9 . 0 0 0 . 9 3 1 6 2 . 8 3 3 3 9 . 4 4 5 4 0 . 3 9 0 6 0 . 3 5 3 4 2 2 . 9 7 1 8 0 . 4 3 7 1 0 . 0 9 3 0 6 6 . 0 0 1 . 0 4 2 1 2 . 7 5 0 0 9 . 5 7 4 0 0 . 5 3 9 , 4 0 . 3 6 2 7 2 2 . 9 7 1 8 0 . 4 3 7 1 0 . 0 9 3 0 7 4 . 0 0 1 . 1 6 8 4 2 . 6 6 1 4 9 . 5 7 4 0 0 . 6 6 9 6 0 . 4 2 7 8 2 1 . 3 7 9 2 F I L M 1 6 - 1 R U N C 2 3 2 0 3 DDROP D A I R F N 0 . 4 2 7 8 0 . 4 2 7 8 0 . 4 2 7 8 0 . 4 2 7 8 0 . 4 2 7 8 0 . 4 2 7 8 0 . 4 2 7 8 0 . 4 2 7 8 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 0 . 0 7 4 4 2 3 . 0 0 3 2 . 0 0 4 0 . 0 0 4 8 . 0 0 5 5 . 0 0 6 3 . 0 0 7 0 . 0 0 8 3 . 0 0 F I L M 1 6 - 1 DDROP D A I R F N 0 . 4 4 6 4 0 . 4 4 6 4 0 . 4 4 6 4 0 . 4 4 6 4 0 . 4 4 6 4 0 . 4 4 6 4 0 . 4 4 6 4 0 . 0 5 58 0 . 0 , 5 58 0 . 0 5 5 8 0 . 0 5 5 8 0 . 0 5 5 8 0 . 0 5 58 0 . 0 5 5 8 1 6 . 0 0 2 5 . 0 0 3 3 . 0 0 6 5 . 0 0 7 2 . 0 0 7 8 . 0 0 8 9 . 0 0 F I L M 1 6 - 1 DDROP D A I R F N 0 . 5 0 2 2 0 . 5 0 2 2 0 . 5 0 2 2 0 . 5 0 2 2 0 . 5 0 2 2 0 . 5 0 2 2 0 . 5 0 2 2 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 3 3 . 0 0 3 8 . 0 0 4 8 . 0 0 5 8 . 0 0 6 6 . 0 0 7 2 . 0 0 7 4 . 0 0 F I L M 1 6 - 1 DDROP D A I R F N 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 5 1 1 5 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 0 . 0 1 8 6 7 . 0 0 1 6 . 0 0 2 5 . 0 0 3 3 . 0 0 4 1 . 0 0 4 9 . 0 0 5 7 . 0 0 6 5 . 0 0 7 2 . 0 0 7 9 . 0 0 8 6 . 0 0 T T I M E HTWC D E L T DVA DVB V E L 0 . 3 6 3 2 3 . 2 5 0 0 9 . 1 8 3 0 0 . 1 2 0 9 0 . 1 2 0 9 18 . 9 1 7 9 0 . 5 0 5 3 3 . 1 6 6 6 9 . 1 8 3 0 0 . 1 4 8 8 0 . 1 3 0 2 1 7 . 8 8 8 4 0 . 6 3 1 6 3 . 0 8 3 3 9 . 3 1 3 9 0 . 1 9 5 3 0 . 1 5 8 1 2 0 . 1 0 0 3 0 . 7 5 7 9 3 . 0 0 0 0 9 . 3 1 3 9 0 . 2 4 1 8 0 . 1 8 6 0 2 0 . 1 0 0 3 0 . 8 6 8 4 2 . 9 1 6 6 9 . 4 4 3 7 0 . 2 9 7 6 0 . 2 0 4 6 2 2 . 9 9 9 3 0 . 9 9 4 7 2 . 8 3 3 3 9 . 4 4 3 7 0 . 3 7 2 0 0 . 2 6 9 7 2 0 . 1 0 0 3 1 . 1 0 5 3 2 . 7 5 0 0 9 . 5 7 2 6 0 . 4 8 3 6 0 . 3 2 5 5 22 . 9 7 1 8 1 . 3 1 0 5 2 . 5 8 8 5 9 . 7 0 0 2 • 0 . 7 6 2 6 0 . 4 1 8 5 2 3 . 9 8 1 5 RUN C 2 4 T T I M E HTWC D E L T DVA DVB V E L 0 . 2 5 2 6 3 . 3 3 3 3 9 . 0 5 0 6 0 . 0 9 3 0 0 . 0 9 3 0 1 7 . 8 6 6 9 0 . 3 9 4 7 3 . 2 5 0 0 9 . 1 8 3 0 0 . 1 1 1 6 0 . 1 1 1 6 1 7 . 8 6 6 9 0 . 5 2 1 1 3 . 1 6 6 6 9 . 1 8 3 0 0 . 1 3 0 2 0 o 1 3 0 2 2 0 . 1 2 4 4 1 . 0 2 6 3 2 . 8 3 3 3 9 . 4 2 8 6 0 . 3 2 5 5 0 . 2 4 1 8 2 0 . 1 0 6 3 1 . 1 3 6 8 2 . 7 5 0 0 9 . 5 5 9 9 0 . 4 0 9 2 0 . 2 7 9 0 2 2 . 9 7 1 8 1 . 2 3 1 6 2 . 6 6 6 6 9 . 5 5 9 9 0 . 4 9 2 9 0 . 3 0 6 9 2 6 . 8 3 2 6 1 . 4 0 5 3 2 . 5 3 1 2 9 . 6 9 6 3 0 . 7 9 0 5 0 . 5 0 2 2 2 3 . 7 6 1 5 R U N C 2 5 T T I M E HTWC D E L T DVA DVB V E L 0 . 5 2 1 1 3 . 2 1 3 5 9 . 1 8 9 7 0 . 0 9 3 0 0 . 0 9 3 0 1 6 . 7 5 9 4 0 . 6 0 0 0 3 . 1 6 6 6 9 . 1 8 9 7 0 . 1 3 9 5 0 . 1 2 0 9 1 8 . 1 0 7 2 0 . 7 5 7 9 3 . 0 8 3 3 9 . 3 1 9 5 0 . 2 0 4 6 0 . 1 6 7 4 1 6 . 0 8 0 2 0 . 9 1 5 8 3 . 0 0 0 0 9 . 3 1 9 5 0 . 2 7 9 0 0 . 2 0 4 6 1 6 . 0 8 0 2 1 . 0 4 2 1 2 . 9 1 6 6 9 . 4 4 8 4 0 . 3 8 1 3 0 . 3 4 4 1 2 0 . 1 2 4 4 1 . 1 3 6 8 2 . 8 3 3 3 9 . 4 4 8 4 0 . 5 1 1 5 0 . 4 4 6 4 2 6 . 8 0 0 4 1 . 1 6 8 4 2 . 7 9 1 6 9 . 4 4 8 4 0 . 5 2 0 8 0 . 5 2 0 8 4 0 . 2 4 8 8 RUN C 2 6 T T I M E HTWC D E L T D V A DVB V E L 0 . 1 1 0 5 3 . 4 1 6 6 9 . 0 5 0 6 0 . 0 3 7 2 0 . 0 3 7 2 22 . 9 9 9 3 0 . 2 5 2 6 3 . 33 33 9 . 0 5 0 6 0 . 0 6 5 1 0 . 0 6 5 1 1 7 . 8 6 6 9 0 . 3 9 4 7 3 . 2 5 0 0 9 . 1 8 3 0 0 . 0 9 3 0 0 . 0 9 3 0 1 7 . 8 6 6 9 0 . 5 2 1 1 3 . 1 6 6 6 9 . 1 8 3 0 0 . 1 2 0 9 0 . 1 1 1 6 2 0 . 1 2 4 4 0 . 6 4 7 4 3 . 0 8 3 3 9 . 3 1 3 9 0 . 1 5 8 1 0 . 1 2 0 9 2 0 . 1 0 0 3 0 . 7 7 3 7 3 . 0 0 0 0 9 . 3 1 3 9 0 . 1 8 6 0 0 . 1 5 8 1 2 0 . 1 0 0 3 0 . 9 0 0 0 2 . 9 1 6 6 9 . 4 4 3 7 0 . 2 3 2 5 0 . 1 7 6 7 2 0 . 1 2 4 4 1 . 0 2 6 3 2 . 8 3 3 3 9 . 4 4 3 7 0 . 3 2 5 5 0 . 2 1 3 9 2 0 . 1 0 0 3 1 . 1 3 6 8 2 . 7 5 0 0 9 . 5 7 2 6 0 . 3 7 2 0 0 . 2 6 9 7 2 2 . 9 7 1 8 1 . 2 4 7 4 2 . 6 6 6 6 9 . 5 7 2 6 0 . 5 2 0 8 0 . 3 6 2 7 2 2 . 9 9 9 3 1 . 3 5 7 9 2 . 5 8 3 3 9 . 7 0 0 9 0 . 6 2 3 1 0 . 3 8 1 3 2 2 . 9 7 1 8 F I L M 1 6 - 1 RUN C 2 7 204 DDROP DAI R FN T T I M E HTWC DELT DVA DVB VEL 0 . 4 9 2 9 0 . 1 0 2 3 4 0 . 0 0 0 . 6 3 1 6 3 . 0 3 6 4 9 . 3 0 9 1 0 . 3 4 4 1 0 . 2 4 1 8 2 2 . 3 7 3 3 0.49 29 0 . 1 0 2 3 4 3 . 0 0 0 . 6 7 8 9 3 . 0 0 0 0 9 . 3 0 9 1 0 . 3 5 3 4 0 . 2 6 9 7 2 3 . 4 2 2 2 0 . 4 9 2 9 0 . 1 0 2 3 4 9 . 0 0 0 . 7 7 3 7 2 . 9 3 2 2 9 . 4 3 7 8 0 . 4 0 9 2 0 . 3 1 6 2 2 1 . 8 1 3 5 0 . 4 9 2 9 0 . 1 0 2 3 5 8 . 0 0 0 . 9 1 5 8 2 . 8 2 8 1 9 . 4 3 7 8 0 . 5 5 8 0 0 . 3 4 4 1 2 2 . 3 2 8 3 0 . 4 9 2 9 0 . 1 0 2 3 7 0 . 0 0 1 . 1 0 5 3 2 . 6 8 2 2 9 . 5 7 5 7 0 . 7 9 0 5 0 . 5 1 1 5 2 3 . 4 7 0 4 F I L M 1 6 - 1 RUN C 2 8 DDROP DAI R FN • T T I M E HTWC DELT DVA DVB V E L 0 . 4 3 7 1 0 . 1 0 2 3 1.1.00 0 . 1 7 3 7 3 . 3 7 5 0 9 . 0 5 2 0 0 . 1 4 8 8 0 . 1 3 0 2 21 . 9 3 6 4 0 . 4 3 7 1 0 . 1 0 2 3 1 5 . 0 0 0 . 2 3 6 8 3 . 3 3 3 3 9 . 0 5 2 0 0 . 1 6 7 4 0 . 1 3 9 5 2 0 . 1 2 4 4 0 . 4 3 7 1 0 . 1 0 2 3 2 3 . 0 0 0 . 3 6 3 2 3 . 2 5 0 0 9 . 1 8 4 2 0 . 2 1 3 9 0 . 1 5 8 1 2 0 . 1 0 0 3 0 . 4 3 7 1 0 . 1 0 2 3 3 1 . 00 0 . 4 8 9 5 3. 1 6 6 6 9 . 1 8 4 2 0 . 2 6 0 4 0 . 1 8 6 0 2 0 . 1 2 4 4 0 . 4 3 7 1 0 . 1 0 2 3 3 8 . 0 0 0 . 6 0 0 0 3 . 0 8 3 3 9 . 3 1 4 9 0 . 2 9 7 6 0 . 2 1 3 9 2 2 . 9 7 1 8 0 . 4 3 7 1 0 . 1 0 2 3 4 5 . 00 0 . 7 1 0 5 3 . 0 0 0 0 9 . 3 1 4 9 0 . 3 5 3 4 0 . 2 4 1 8 2 2 . 9 7 1 8 0 . 4 3 7 1 0 . 1 0 2 3 5 3 . 0 0 0 . 8 3 6 8 2 . 9 1 6 6 9 . 4 4 4 5 0 . 4 4 6 4 0 . 2 7 9 0 20 . 1 2 4 4 0 . 4 3 7 1 0 . 1 0 2 3 6 0 . 0 0 0 . 9 4 7 4 2 . 8 3 3 3 9 . 4 4 4 5 0 . 5 3 0 1 0 . 3 4 4 1 22 . 9 7 1 8 0 . 4 3 7 1 0 . 1 0 2 3 6 6 . 0 0 1 . 0 4 2 1 2 . 7 6 0 4 9 . 5 7 2 1 0 . 6 5 1 0 0 . 3 9 0 6 2 3 . 4 5 4 4 F I L M 1 6 - 1 RUN C 2 9 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 5 5 7 0 . 1 2 0 9 6. 00 0 . 0 9 4 7 3 . 4 1 6 6 9 . 0 5 0 6 0. 1 7 6 7 0 . 1 4 8 8 2 6 . 8 3 2 6 0 . 4 5 5 7 0 . 1 2 0 9 1 4 . 00 0 . 2 2 1 1 3 . 3 3 3 3 9 . 0 5 0 6 0 . 2 4 1 8 0 . 1 8 6 0 2 0 . 1 0 0 3 0 . 4 5 5 7 0 . 1 2 0 9 2 2 . 0 0 0 . 3 4 7 4 3.2 5 00 9 . 1 8 3 0 0 . 2 8 8 3 0 . 2 1 3 9 2 0 . 1 0 0 3 0 . 4 5 5 7 0 . 1 2 0 9 3 0 . 0 0 0 . 4 7 3 7 3. 1 6 6 6 9 . 1 8 3 0 0.3 348 0 . 2 3 2 5 2 0 . 1 2 4 4 0 . 4 5 5 7 0 . 1 2 0 9 3 8 . 0 0 0 . 6 0 0 0 3 . 0 8 3 3 9 . 3 1 3 9 0 . 3 8 1 3 0 . 2 6 9 7 2 0 . 1 0 0 3 0 . 4 5 5 7 0 . 1 2 0 9 5 0 . 0 0 0 . 7 8 9 5 2 . 9 5 8 3 9 . 4 3 8 8 0. 5 3 0 1 0 . 3 0 6 9 2 0 . 1 0 8 3 F I L M 1 6 -2 RUN C 3 0 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 3 9 0 6 0 . 1 0 2 3 2 7 . 0 0 0 . 4 2 6 3 3 . 2 0 8 3 1 3 . 0 7 0 3 0.23 25 0. 1 7 6 7 2 0 . 8 5 5 5 0 . 3 9 0 6 0 . 1 0 2 3 3 8 . 0 0 0 . 6 0 0 0 3 . 0 8 3 3 1 3 . 2 0 0 0 0. 3 0 6 9 0 . 2 2 3 2 21 . 9 3 6 4 0 . 3 9 0 6 0 . 1 0 2 3 4 9 . 00 0 . 7 7 3 7 2 . 9 6 8 7 1 3 . 2 0 0 0 0 . 4 5 5 7 0 . 2 8 8 3 2 0 . 1 1 1 3 0 . 3 9 0 6 0 . 1 0 2 3 5 4 . 0 0 0 . 8 5 2 6 2 . 9 1 6 6 1 3 . 3 2 8 9 0 . 5 0 2 2 0 . 3 3 4 8 2 0 . 1 1 4 8 0 . 3 9 0 6 0 . 1 0 2 3 6 1 . 0 0 0 . 9 6 3 2 2 . 8 3 3 3 1 3 . 3 2 8 9 0 . 6 9 7 5 0 . 3 7 2 0 2 2 . 9 7 1 8 F I L M 1 6 -•2 RUN C 3 1 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 3 7 1 0 . 0 5 5 8 7.00 0 . 1 1 0 5 3 . 4 1 6 6 1 2 . 9 3 0 6 0 . 0 9 3 0 0 . 0 8 3 7 22 . 9 9 9 3 0 . 4 3 7 1 0 . 0 5 5 8 1 7 . 0 0 0 . 2 6 8 4 3 . 3 3 3 3 1 2 . 9 3 0 6 0 . 1 8 6 0 0 . 1 4 8 8 1 6 . 0 8 0 2 ' 0 . 4 3 7 1 0 . 0 5 5 8 2 6 . 0 0 0 . 4 1 0 5 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 2 6 9 7 0. 1 9 5 3 1 7 . 8 6 6 9 0 . 4 3 7 1 0 . 0 5 5 8 3 4 . 0 0 0 . 5 3 6 8 3 . 1 6 6 6 1 3 . 0 6 3 0 0 . 3 7 2 0 0 . 2 7 9 0 2 0 . 1 2 4 4 0 . 4 3 7 1 0 . 0 5 5 8 4 3 . 0 0 0 . 6 7 8 9 3 . 0 5 7 2 1 3 . 1 9 7 0 0 . 4 9 2 9 0 . 3 4 4 1 2 3 . 4 6 5 1 0 . 4 3 7 1 0 . 0 5 5 8 5 2 . 0 0 0 . 8 2 1 1 2 . 9 4 7 9 1 3 . 3 2 2 6 0 . 7 2 5 4 0 . 4 1 8 5 2 3 . 4 4 3 6 F I L M 1 6 - 2 RUN C 3 2 205 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 0 9 2 0 . 0 4 6 5 8. 00 0. 1 2 6 3 3 . 4 1 6 6 1 2 . 9 3 0 6 0 . 0 6 5 1 0 . 0 6 5 1 2 0 . 1 2 4 4 0 . 4 0 9 2 0 . 0 4 6 5 1 6 . 0 0 0 . 2 5 2 6 3 . 3 3 3 3 1 2 . 9 3 0 6 0 . 0 9 3 0 0 . 0 9 3 0 2 0 . 1 0 0 3 0 . 4 0 9 2 0 . 0 4 6 5 2 4 . 0 0 0 . 3 7 8 9 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 1 6 7 4 0 . 1 4 8 8 2 0 . 1 0 0 3 0 . 4 0 9 2 0 . 0 4 6 5 3 2 . 0 0 0 . 5 0 5 3 3 . 1 6 6 6 1 3 . 0 6 3 0 0 . 2 3 2 5 0 . 1 6 7 4 2 0 . 1 2 4 4 0 . 4 0 9 2 0 . 0 4 6 5 4 0 . 0 0 0 . 6 3 1 6 3 . 0 7 8 1 1 3 . 1 9 4 5 0 . 2 7 9 0 0 . 1 9 5 3 2 1 . 3 5 5 0 0 . 4 0 9 2 0 . 0 4 6 5 4 7 . 0 0 0 . 7 4 2 1 3 . 0 0 0 0 1 3 . 1 9 4 5 0 . 3 2 5 5 0 . 2 2 3 2 2 1 . 5 3 7 7 0 . 4 0 9 2 0 . 0 4 6 5 5 4 . 00 0 . 8 5 2 6 2 . 9 1 6 6 1 3 . 3 2 4 2 0 . 4 5 5 7 0 . 3 7 2 0 2 2 . 9 9 9 3 0 . 4 0 9 2 0 . 0 4 6 5 6 5 . 0 0 1 . 0 2 6 3 2 . 7 7 6 0 1 3 . 4 5 0 0 0 . 6 9 7 5 0 . 4 1 8 5 2 4 . 6 7 4 0 F I L M 16--2 RUN C 3 3 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0.3 72 0 0 . 0 8 3 7 1 5 . 0 0 0. 2 3 6 8 3 . 3 2 8 1 1 2 . 9 3 0 6 0. 1 3 0 2 0 . 1 3 0 2 2 1 . 3 5 5 0 0 . 3 7 2 0 0 . 0 8 3 7 2 9 . 00 0.45 79 3 . 1 6 6 6 1 3 . 1 7 5 8 0 . 2 8 8 3 0 . 2 2 3 2 2 2 . 2 6 8 5 0 . 3 7 2 0 0 . 0 8 3 7 3 6 . 0 0 0 . 5 6 8 4 3 . 0 8 3 3 1 3 . 1 7 5 8 0 . 3 3 4 8 0 . 2 9 7 6 2 2 . 9 7 1 8 0 . 3 7 2 0 0 . 0 8 3 7 4 3 . 00 0 . 6 7 8 9 3 . 0 0 0 0 1 3 . 1 7 5 8 0 . 5 1 1 5 0 . 3 4 4 1 2 2 . 9 7 1 8 0 . 3 7 2 0 0 . 0 8 3 7 5 3 . 0 0 0 . 8 3 6 8 2 . 8 8 0 2 1 3 . 3 1 2 8 0 . 9 1 1 4 0 . 4 4 6 4 2 3 . 1 2 6 2 F I L M 16--2 RUN C 3 4 DDROP DAI R FN T T I M E _ HTWC DELT DVA DVB VEL 0 . 4 0 9 2 0 . 0 5 5 8 1 4 . 0 0 0 . 2 2 1 1 3 . 3 3 3 3 1 2 . 9 3 0 6 0 . 0 9 3 0 0 . 0 9 3 0 2 0 . 1 0 0 3 0 . 4 0 9 2 0 . 0 5 5 8 3 0 . 0 0 0 . 4 7 3 7 3 . 1 6 6 6 1 3 . 1 7 5 8 0 . 1 3 9 5 0 . 1 2 0 9 2 0 . 1 1 2 4 0 . 4 0 9 2 0.05 58 5 1 . 0 0 0 . 8 0 5 3 2 . 9 1 6 6 1 3 . 3 0 8 5 0 . 3 3 4 8 0 . 2 5 1 1 2 2 . 9 8 1 0 0 . 4 0 9 2 0 . 0 5 5 8 5 8 . 0 0 0 . 9 1 5 8 2 . 8 3 3 3 1 3 . 3 0 8 5 0 . 5 0 2 2 0 . 3 3 4 8 2 2 . 9 7 1 8 0 . 4 0 9 2 0 . 0 5 5 8 65 .00 1 . 0 2 6 3 2 . 7 5 0 0 1 3 . 4 3 9 8 0 . 6 5 1 0 0 . 3 9 0 6 2 2 . 9 7 1 8 F I L M 16 -2 RUN C 3 5 DDROP DAI R FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 6 5 0 0 . 0 4 6 5 7.00 0 . 1 1 0 5 3 . 4 1 6 6 1 2 . 9 3 0 6 0 . 0 6 5 1 0 . 0 6 5 1 22 . 9 9 9 3 0 . 4 6 5 0 0 . 0 4 6 5 2 4 . 0 0 0 . 3 7 8 9 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 1 1 1 6 0 . 1 0 2 3 1 8 . 9 1 7 9 0 . 4 6 5 0 0 . 0 4 6 5 3 2 . 00 0 . 5 0 5 3 3 . 1 6 6 6 1 3 . 0 6 3 0 0 . 1 4 8 8 0 . 1 2 0 9 2 0 . 1 2 4 4 0 . 4 6 5 0 0 . 0 4 6 5 4 0 . 00 0 . 6 3 1 6 3 . 0 8 3 3 1 3 . 1 9 3 9 0 . 2 2 3 2 0. 1 8 6 0 2 0 . 1 0 0 3 0 . 4 6 5 0 0 . 0 4 6 5 5 1 . 0 0 0 . 8 0 5 3 2 . 9 5 8 3 1 3 . 3 1 8 8 0 . 3 4 4 1 0 . 2 2 3 2 2 1 . 9 3 6 4 0 . 4 6 5 0 0 . 0 4 6 5 5 4 . 0 0 0 . 8 5 2 6 2 . 9 1 6 6 1 3 . 3 1 8 8 0 . 3 8 1 3 0 . 2 6 0 4 2 6 . 8 3 26 0 . 4 6 5 0 0 . 0 4 6 5 6 1 . 0 0 0 . 9 6 3 2 2 . 8 3 3 3 1 3 . 3 1 8 8 0 . 5 1 1 5 0 . 3 3 4 8 2 2 . 9 7 1 8 0 . 4 6 5 0 0 . 0 4 6 5 6 6 . 0 0 1 . 0 4 2 1 2 . 7 7 6 0 1 3 . 4 4 5 4 0 . 6 4 1 7 0 . 3 6 2 7 2 2 . 1 2 2 4 0 . 4 6 5 0 0 . 0 4 6 5 7 6 . 0 0 1 . 2 0 0 0 2 . 6 5 6 2 1 3 . 4 4 5 4 0 . 9 3 9 3 0 . 5 1 1 5 2 3 . 1 2 6 2 F I L M 1 6 - 2 RUN C 3 6 206 DDROP DAIR FN T T I M E HTWC DELT DVA DVB V E L 0 . 4 0 9 2 0 . 0 9 3 0 1 5 . 0 0 0 . 2 3 6 8 3 . 3 3 3 3 1 2 . 9 3 0 6 0 . 1 5 8 1 0 . 1 5 8 1 2 0 . 1 0 0 3 0 . 4 0 9 2 0 . 0 9 3 0 2 2 . 0 0 0 . 3 4 7 4 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 2 4 1 8 0 . 1 8 6 0 2 2 . 9 7 1 8 0 . 4 0 9 2 0 . 0 9 3 0 3 0 . 0 0 0 . 4 7 3 7 3 . 1 6 6 6 1 3 . 0 6 3 0 0 . 3 1 6 2 0 . 2 3 2 5 20 . 1 2 4 4 0 . 4 0 9 2 0 . 0 9 3 0 3 9 . 0 0 0 . 6 1 5 8 3 . 0 6 7 7 1 3 . 1 9 5 8 0 . 4 1 8 5 0 . 2 9 7 6 2 1 . 2 1 2 9 0 . 4 0 9 2 0 . 0 9 3 0 4 8 . 0 0 0 . 7 5 7 9 2 . 9 5 8 3 1 3 . 3 2 0 4 0 . 6 3 2 4 0 . 4 0 9 2 2 3 . 4 6 5 1 FI1_M 1 6 -2 RUN C 3 7 DDROP DAI R . FN T T I M E HTWC DELT DVA DVB V E L 6 . 3 8 1 3 0 . 0 6 5 1 7.00 0 . 1 1 0 5 3 . 4 1 6 6 1 2 . 9 3 0 6 0 . 1 0 2 3 0 . 1 0 2 3 22 . 9 9 9 3 0 . 3 8 1 3 0 . 0 6 5 1 1 5 . 0 0 0 . 2 3 6 8 3 . 3 3 3 3 1 2 . 9 3 0 6 0* 1-674 0 . 1 3 9 5 2 0 . 1 0 0 3 0 . 3 8 1 3 0 . 0 6 5 1 2 2 . 0 0 0 . 3 4 7 4 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 2 1 3 9 0 . 1 6 7 4 2 2 . 9 7 1 8 0 . 3 8 1 3 0 . 0 6 5 1 2 9 . 0 0 0 . 4 5 7 9 3 . 1 6 6 6 1 3 . 0 6 3 0 0 . 2 5 1 1 0 . 1 9 5 3 22 . 9 9 9 3 0 . 3 8 1 3 0 . 0 6 5 1 4 0 . 0 0 0 . 6 3 1 6 3 . 0 3 6 4 1 3 . 1 9 9 4 0 . 3 2 5 5 0 . 2 6 9 7 2 2 . 8 4 8 9 0 . 3 8 1 3 0 . 0 6 5 1 5 1 . 0 0 0 . 8 0 5 3 2 . 9 1 6 6 1 3 . 3 2 8 4 0 . 5 2 0 8 0 . 3 5 3 4 2 1 . 0 2 3 8 F I L M 1 6 -•2 RUN C 3 8 DDROP DAI R FN T T I M E HTWC DELT DVA DVB • V E L 0 . 4 2 7 8 0 . 0 5 5 8 1 4 . 0 0 0 . 2 2 1 1 3 . 3 3 3 3 1 2 . 9 3 0 6 0 . 0 9 3 0 0 . 0 9 3 0 20 . 1 0 0 3 0 . 4 2 7 8 0 . 0 5 5 8 2 2 . 0 0 0 . 3 4 7 4 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 1 6 7 4 0 . 1 3 0 2 2 0 . 1 0 0 3 0 . 4 2 7 8 0 . 0 5 5 8 3 0 . 0 0 0 . 4 7 3 7 3 . 1 6 6 6 1 3 . 0 6 3 0 0 . 2 0 4 6 0. 1 6 7 4 2 0 . 1 2 4 4 0 . 4 2 7 8 0 . 0 5 5 8 3 8 . 0 0 0 . 6 0 0 0 3 . 0 8 3 3 1 3 . 1 9 3 9 0 . 2 6 9 7 0 . 1 8 6 0 2 0 . 1 0 0 3 0 . 4 2 7 8 0 . 0 5 5 8 4 6 . 0 0 0 . 7 2 6 3 3 . 0 0 0 0 1 3 . 1 9 3 9 0 . 3 2 5 5 0 . 2 4 1 8 2 0 . 1 0 0 3 0 . 4 2 7 8 0 . 0 5 5 8 5 3 . 0 0 0 . 8 3 6 8 2 . 9 1 6 6 1 3 . 3 2 3 7 0 . 4 2 7 8 0 . 3 2 5 5 2 2 . 9 9 9 3 0 . 4 2 7 8 0 . 0 5 5 8 6 1 . 0 0 0 . 9 6 3 2 2 . 8 2 2 9 1 3 . 3 2 3 7 0 . 6 6 0 3 0 . 3 8 1 3 2 2 . 6 0 9 8 F I L M 1 6 -•2 RUN C 3 9 DDROP DAI R FN T T I M E HTWC DELT DVA DVB VEL 0 . 4 3 7 1 0. 1 2 0 9 2 0 . 0 0 0 . 3 1 5 8 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 2 7 9 0 0 . 2 1 3 9 2 2 . 9 7 1 8 0 . 4 3 7 1 0 . 1 2 0 9 3 5 . 0 0 0 . 5 5 2 6 3 . 0 8 3 3 1 3 . 1 9 3 9 0 . 3 7 2 0 0 . 2 6 9 7 2 1 . 4 5 3 2 0 . 4 3 7 1 0 . 1 2 0 9 4 3 . 0 0 0 . 6 7 8 9 2 . 9 9 4 7 1 3 . 1 9 3 9 0 . 5 1 1 5 0 . 3 2 5 5 2 1 . 3 7 9 2 0 . 4 3 7 1 0 . 1 2 0 9 5 2 . 0 0 0 . 8 2 1 1 2 . 8 9 5 8 1 3 . 3 2 6 2 3 . 6 6 9 6 0 . 3 9 0 6 2 1 . 2 1 3 0 F I L M 1 6-•2 RUN C40-DDROP DAIR FN T T I M E . HTWC DELT DVA DVB V E L 0 . 2 3 2 5 0 . 0 9 3 0 1 4 . 0 0 0 . 2 2 1 1 3.33 8 5 1 2 . 9 3 0 6 0 . 1 7 6 7 0 . 1 4 8 8 21 . 5 3 7 7 0 . 2 3 2 5 0 . 0 9 3 0 2 2 . 0 0 0 . 3 4 7 4 3 . 2 5 0 0 1 3 . 0 6 3 0 0 . 3 2 5 5 0 . 2 1 3 9 2 1 . 3 5 5 0 0 . 2 3 2 5 0 . 0 9 3 0 2 5 . 0 0 0 . 3 9 4 7 3 . 2 1 3 5 1 3 . 0 6 3 0 0 . 3 4 4 1 0 . 3 4 4 1 2 3 . 4 8 6 5 0 . 2 3 2 5 0 . 0 9 3 0 4 5 . 0 0 0 . 7 1 0 5 2 . 9 7 3 9 1 3 . 3 0 7 7 1 . 1 7 1 8 0 . 4 9 2 9 2 3 . 1 2 6 2 F I L M 16 ' - 2 RUN C 4 1 DDROP D A I R F N T T I M E HTWC 0 . 3 9 9 9 0 . 3 9 9 9 0 . 3 9 9 9 0 . 3 9 9 9 0 . 3 9 9 9 0 . 3 9 9 9 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 1 3 . 0 0 2 0 . 0 0 3 1 . 0 0 3 6 . 0 0 4 3 . 0 0 5 2 . 0 0 0 . 2 0 5 3 0 . 3 1 5 8 0 . 4 8 9 5 0 . 5 6 8 4 0 . 6 7 8 9 0 . 8 2 1 1 3 . 3 3 3 3 3 . 2 5 0 0 3 . 1 3 5 4 3 . 0 8 3 3 3 . 0 0 0 0 2 . 9 0 1 0 F I L M 16 - 2 R U N C 4 2 DDROP D A I R F N T T I M E HTWC 0 . 3 9 9 9 0 . 3 9 9 9 0 . 3 9 9 9 0 . 3 9 9 9 0 . 0 6 5 1 0 . 0 6 5 1 0 . 0 6 5 1 0 . 0 6 5 1 4 3 . 0 0 4 9 . 0 0 5 4 . 0 0 6 6 . 0 0 0 . 6 7 8 9 0 . 7 7 3 7 0 . 8 5 2 6 1 . 0 4 2 1 3 . 0 2 6 0 2 . 9 5 8 3 2 . 8 9 5 8 2 . 7 5 0 0 F I L M 16 ' - 2 R U N C 4 3 DDROP D A I R F N T T I M E HTWC 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 0 . 0 8 3 7 1 4 . 0 0 2 2 . 0 0 2 9 . 0 0 3 7 . 0 0 4 4 . 0 0 5 9 . 0 0 0 . 2 2 1 1 0 . 3 4 7 4 0 . 4 5 7 9 0 . 5 8 4 2 0 . 6 9 4 7 0 . 9 3 1 6 3 . 3 3 3 3 3 . 2 5 0 0 3 . 1 6 6 6 3 . 0 8 33 3 . 0 0 0 0 2 . 8 2 2 9 F I L M 16 - 2 R U N C 4 4 DDROP D A I R F N T T I M E HTWC 0 . 4 0 9 2 0 . 4 0 9 2 0 . 4 0 9 2 0 . 4 0 9 2 0 . 4 0 9 2 0 . 0 9 3 0 0 . 0 9 3 0 0 . 0 9 3 0 0 . 0 9 3 0 0 . 0 9 3 0 1 5 . 0 0 2 2 . 0 0 2 9 . 0 0 3 7 . 0 0 4 5 . 0 0 0 . 2 3 6 8 0 . 3 4 7 4 0 . 4 5 7 9 0 . 5 8 4 2 0 . 7 1 0 5 3 . 3 3 3 3 3 . 2 5 0 0 3 . 1 6 6 6 3 . 0 8 3 3 3 . 0 0 0 0 F I L M 16 - 2 R U N C 4 5 DDROP DAT R F N T T I M E HTWC 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 4 3 7 1 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 0 . 0 4 6 5 1 9 . 0 0 3 0 . 0 0 3 8 . 0 0 4 6 . 0 0 5 3 . 0 0 6 0 . 0 0 6 7 . 0 0 7 4 . 0 0 0 . 3 0 0 0 0 . 4 7 3 7 0 . 6 0 0 0 0 . 7 2 6 3 0 . 8 3 6 8 0 . 9 4 7 4 1 . 0 5 7 9 1 . 1 6 8 4 3 . 2 8 1 2 3 . 1 6 6 6 3 . 0 8 3 3 3 . 0 0 0 0 2 . 9 1 6 6 2 . 8 3 3 3 2 . 7 5 0 0 2 . 6 6 6 6 2 0 7 D E L T DVA DVB V E L 1 2 . 9 3 0 6 0 . 1 3 9 5 0 . 1 3 0 2 2 2 . 9 7 1 8 1 3 . 0 6 3 0 0 . 2 2 3 2 0 . I 8 6 0 2 2 . 9 7 1 8 1 3 . 1 8 7 8 0 . 3 2 5 5 0 . 2 3 2 5 2 0 . 1 1 1 3 1 3 . 1 8 7 8 0 . 3 4 4 1 0 . 2 5 1 1 2 0 . 1 1 4 8 1 3 . 1 8 7 8 0 . 4 6 5 0 0 . 3 5 3 4 2 2 . 9 7 1 8 1 3 . 3 2 0 4 0 . 6 9 7 5 0 . 4 1 8 5 21 . 2 3 4 4 D E L T DVA DVB V E L 1 3 . 1 7 6 8 0 . 2 7 9 0 0 . 1 9 5 3 2 0 . 9 4 4 8 1 3 . 3 0 4 4 0 . 3 3 4 8 0 . 2 3 2 5 2 1 . 7 8 1 3 1 3 . 3 0 4 4 0 . 4 1 8 5 0 . 3 1 6 2 2 4 . 1 3 0 0 1 3 . 4 3 6 3 0 . 6 9 7 5 0 . 4 1 8 5 2 3 . 4 5 4 4 D E L T DVA DVB V E L 1 2 . 9 3 0 6 0 . 1 6 7 4 0 . 1 3 0 2 2 0 . 1 0 0 3 1 3 . 0 6 3 0 0 . 2 2 3 2 0 . 1 6 7 4 2 0 . 1 0 0 3 1 3 . 0 6 3 0 0 . 3 2 5 5 0 . 2 2 3 2 2 2 . 9 9 9 3 1 3 . 1 9 3 9 0 . 3 6 2 7 0 . 2 5 1 1 2 0 . 1 0 0 3 1 3 . 1 9 3 9 0 . 4 1 8 5 0 . 2 9 7 6 2 2 . 9 7 1 8 1 3 . 3 3 4 8 0 . 8 6 4 9 0 . 4 0 9 2 2 2 . 7 9 1 6 D E L T DVA DVB V E L 1 2 . 9 3 0 6 0 . 1 8 6 0 0 . 1 4 8 8 2 0 o l 0 0 3 1 3 . 0 6 3 0 0 . 2 3 2 5 0 . 1 7 6 7 2 2 . 9 7 1 8 1 3 . 0 6 3 0 0 . 2 8 8 3 0 . 2 0 4 6 2 2 . 9 9 9 3 1 3 . 1 9 3 9 0 . 3 5 3 4 0 . 2 3 2 5 2 0 . 1 0 0 3 1 3 . 1 9 3 9 0 . 4 2 7 8 0 . 2 9 7 6 2 0 . 1 0 0 3 D E L T DVA D V B V E L 1 3 . 0 6 1 7 0 . 1 1 1 6 0 . 1 1 1 6 2 2 . 2 3 0 1 1 3 . 0 6 1 7 0 . 1 4 8 8 0 . 1 3 0 2 2 0 . 1 1 1 3 1 3 . 1 9 2 8 0 . 2 1 3 9 0 . 1 4 8 8 2 0 . 1 0 0 3 1 3 . 1 9 2 8 0 . 2 6 0 4 0 . 1 8 6 0 2 0 . 1 0 0 3 1 3 . 3 2 2 8 0 . 3 7 2 0 0 . 2 4 1 8 22 . 9 9 9 3 1 3 . 3 2 2 8 0 . 4 1 8 5 0 . 2 9 7 6 2 2 . 9 7 1 8 1 3 . 4 5 1 8 0 . 5 8 5 9 0 . 3 5 3 4 2 2 . 9 7 1 8 1 3 . 4 5 1 8 0 . 9 4 8 6 0 . 4 3 7 1 2 2 . 9 9 9 3 i TABLE A X PROCESSED DATA FOR DISTILLED WATER - FURAN SYSTEM FILM 8-1 RUN F l TOTALD PCEVAP UA U I NS T RATIO XNUNO PECMO 0.4204 0.0000 0.0168 0.30 0.1081 0.0113 2865.61 0.4204 0.0002 0.0473 0.8 5 0.1084 0.0319 2230.43 0.4205 0.0004 0.0921 1.66 0.1091 0.0619 2542.67 0.4315 0.0271 1.5531 27.22 0. 1755 1.044 2 4055.15 0.4356 0.0371 3.4137 57.79 0.1982 2.2373 5608.89 0.4429 0.0560 6.1472 101.37 0.2376 3.9911 5697.28 0.4490 0.0718 5.1674 82.67 0.2680 3.2993 6120.82 0.4580 0.0964 7.5139 116.24 0.3107 4.7325 6584.16 0.5128 0.2658 18.6539 251.08 0.5089 11.4451 7914.87 0.7172 1.2813 76.3299 624.91 0.8206 39.8365 11496.47 FILM 8-1 RUN F2 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.3924 0.0001 0.0368 0.76 0.1083 0.0265 2081 .78 0.3926 0.0005 0.1205 2.49 0.1093 0.0868 2972.63 0.3940 0.0041 1.1500 23.66 0.1188 0.8285 3280.97 0.3969 0.0117 0.9465 19.26 0.1384 0.6795 4132.17 0.4146 0.0594 4.6737 90.29 0.2439 3.3271 5265.85 0.4259 0.0919 3.8218 68.84 0.3029 2.6064 615 7.05 0.4487 0. 1624 14.1866 235.87 0.4037 9.4073 7358.23 0.4730 0.2457 14.4007 215.59 0.4912 9.0649 6904.69 0.6561 1.1887 53.2077 517.52 0.8095 30.1831 10587.98 1.1527 7.7989 354.7546 1283.17 0.9649 131.4822 20 361 .37 FI LM 8-1 RUN F3 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.3645 0.0004 0.1079 2.59 0.1091 0.0838 2484.79 0.3648 0.0012 0.2043 4.89 0.1112 0.1585 3313.91 0.3675 0.0088 1.9421 46.09 0.1309 1.5056 3616.48 0.3694 0.0139 1.2100 28.36 0.1437 0.9311 3913.57 0.3746 0.0289 3.5559 81.76 0.1793 2.7225 3974.82 0.3796 0.04 34 3.4543 77.28 0.2113 2.6076 5169.89 0.3908 0.0774 7.4836 160.43 0.2772 5.573 2 7395.56 0.4294 0.2088 6.3517 119.89 0.4553 4.5764 5851.28 0.6208 1.2752 33.8791 378.41 0.8199 20.8800 948 5.11 FILM 8-1 RUN F4 209 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.4205 0.0003 0.0863 1.55 0.1091 0.0581 3183.43 0.4212 0.0018 0.6135 11.02 0.1132 0.4126 3507.71 0.4230 0.0061 1.6945 30.26 0.1244 1.137 9 4162.01 0*4265 0.0147 3.1267 55.14 0.1461 2.0907 4525.46 0.4326 0.0297 5.4491 93.96 0.1815 3.6130 5237.31 0.4357 0.0374 2.7256 , 46.01 0.1988 1.7820 5604.03 0.4425 0.0551 6.1764 101.91 0.2356 4.0091 6033.37 0.4587 0.0982 4.4043 69. 00 0.313 5 2.8130 6364.24 0.5 314 0.3336 33.7070 435.29 0.5588 20.5615 8248.96 0.6379 0.8090 42.9914 396.90 0.7450 22.5046 9978.95 FILM 8-1 RUN F5 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.4208 0.0002 0.0800 1 .44 0.1108 0.0539 3585.59 0.4218 0.0024 0.8963 16.07 0. 1168 0.6024 3512.45 0.42 39 0.0075 1.9896 35.41 0. 1298 1.3342 4170.59 0.4255 0.0114 1.4466 25.52 0.1399 0.9653 4829 .86 0.4281 0.0179 2.3603 41.22 0. 1558 1.5689 5189.81 0.4312 0.0255 2.7681 47.70 0.1738 1 .8286 5546.82 0.4340 0.0324 2.3453 39 .87 0. 1895 1.5382 5916.85 0.4448 0.0602 9.3920 154.75 0.2473 6. 1187 6394.06 0.4493 0.0719 3.7489 59.68 0.2696 2.3835 6804.46 FI LM 8-1 RUN F6 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.4241 0.0087 0.6336 11.32 0.1311 0.4267 3087.59 0.4288 0.0204 4.2424 74.22 0.1599 2.8294 4543.75 0.4322 0.0288 3.0768 52.81 0.1796 2.0292 5233.29 0.4361 0.0385 3.2770 55.31 0.2012 2.1441 5279.94 0.4396 0.0472 3.7315 61.94 0.2199 2.4200 7075.58 0.4490 0.0717 3.8794 62.53 0.2680 2.4956 5947.90 0.4571 0.0936 5.5923 86.70 0.3063 3.5223 5763.09 FI LM 8-2 RUN F7 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.2538 0.0050 0.2060 10.25 0.1230 0.2311 2042.53 0.2577 0.0212 1.0602 51.57 0.1629 1.1814 3120.57 0.2653 0.0534 2.1172 98.46 0.2328 2.3223 3416.85 0.2801 0.1216 4.2131 180.08 0.3482 4.4843 3587.13 0.3017 0.2340 6.9478 260.89 0.4781 6.9954 4130.04 0.4477 1.5122 37.1890 812.05 0.8405 32.3162 6604.67 0.6072 4.2574 126.0757 1409.80 0.9361 76.0876 9199.84 FILM 8-2 RUN F8 210 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.2806 0.0004 0.0614 2.49 0 . 1104 0.0621 3188.04 0.2811 0.0021 0.2030 8.19 0.1150 0.2046 2129.62 0.2827 0.0079 0.6723 26.92 0.1300 0.6765 2675.93 0.2839 0.0122 0.4820 19.11 0.1409 0.4822 3 223.51 0.2876 0.0260 1.5420 60.09 0.1739 1.5361 3537.54 0.2932 0.0472 2.2366 84.38 0.2201 2.1990 3606.07 0.3023 0.0836 3.8391 137.76 0.2886 3.7018 3718.21 0.4199 0.7757 14.8173 352.26 0.7348 13.1470 5826.21 0.6628 3.9891 71.4737 738.84 0.9327 43.5298 10036.90 FILM 8-2 RUN F9 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.2805 0.0003 0.0360 1.46 0.1095 0.0364 3985.41 0.2811 0 .0024 0.2418 9.75 0.1150 0 .2437 2390.07 0.2834 0.0106 0.9205 36.77 0.1362 0.9261 2949.98 0.2894 0.0329 2.4932 96.72 0 . 1888 2.4879 3 5 59.15 0.3095 0.1142 3.8044 134.87 0.3370 3.7100 4035.68 0.3 287 0.2022 7.4268 2 31.87 0.4469 6.7751 4228.24 0.6411 3.5859 48.2702 591 .74 0.9256 33.7230 9707.95 FILM 8-2 RUN F10 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.2805 0.0003 0.0721 2.92 0.1095 0.072 9 5310.48 0.2813 0.0033 0.2755 11.11 0.1173 0.2777 2130.45 0.2866 0.0227 1.7402 68.65 0.1655 1.7491 3037.17 0.3039 0.0905 2.8587 104.25 0.2995 2.8158 3681.09 0.3131 0.1301 3.3542 112.11 0.3600 3.1206 4027.84 0.3736 0.4491 8.2 203 220.17 0.6232 7.3106 5467.33 0.6027 2.9245 75.4629 955.12 0.9104 51.1688 9314.61 FI LM 8-2 RUN F l l TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.2806 0.0006 0.1039 4.21 0.1104 0.1050 2834.57 0.2820 0.0055 0.4340 17.45 0.1231 0.4374 2561.25 0.2857 0.0190 1.2190 48. 15 0.1568 1.2226 3026.73 0.2916 0.0413 2.0062 76.62 0.2071 1.9859 3534.36 0.3011 0.0793 3.2125 116.35 0.2804 3.1145 4101 .24 0.3 043 0.0922 2.7540 95.62 0.3026 2.5863 4035.80 0.3152 0.1392 3.9906 132.29 0.3727 3.7067 4292.98 0.3557 0.3435 9.0653 255.35 0.5637 8.0745 5087.10 0.4174 0.7554 19.4668 411.86 0.7301 15.2814 6123.78 0.6738 4.2074 103.0759 1044.12 0.9359 62.5343 10625.44 F I L M 8 - 2 R U N F 1 2 211 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 3 6 4 7 0 . 0 0 0 7 0 . 1 6 5 5 3 . 9 7 0 . 1 1 0 3 0 . 1 2 8 6 3 1 0 7 . 4 3 0 . 3 6 5 1 0 . 0 0 1 9 0 . 3 0 8 7 7 . 3 8 0 . 1 1 3 5 0 . 2 3 9 4 2 4 2 1 . 2 7 0 . 3 6 6 1 0 . 0 0 4 7 0 . 3 4 5 1 8 . 2 1 0 . 1 2 0 9 0 . 2 6 7 3 2 9 4 3 . 5 3 0 . 3 6 6 7 0 . 0 0 6 3 0 . 4 0 6 8 9 . 6 4 0 . 1 2 5 2 0 . 3 1 4 2 3 4 7 1 . 3 5 0 . 3 6 7 8 0 . 0 0 9 3 0 . 7 4 7 1 1 7 . 6 2 0 . 1 3 3 0 0 . 5 7 6 2 3 8 2 9 . 1 9 0 . 3 6 8 7 0 . 0 1 1 8 0 . 5 7 5 3 1 3 . 5 0 0 . 1 3 9 2 0 . 4 4 2 4 4 1 8 6 . 8 0 0 . 3 7 3 0 0 . 0 2 4 0 2 . 8 2 8 6 6 5 . 4 3 0 . 1 6 8 9 2 . 1 6 9 6 4 2 3 5 . 9 3 0 . 3 7 6 7 0 . 0 3 4 5 2 . 4 1 8 2 5 4 . 7 5 0 . 1 9 2 7 1 . 8 3 3 3 4 2 7 7 . 1 2 0 . 3 7 8 6 0 . 0 4 0 2 1 . 2 8 7 5 2 8 . 7 2 0 . 2 0 5 2 0 . 9 6 6 7 4 6 5 7 . 1 6 0 . 3 8 0 8 0 . 0 4 6 4 1 . 4 1 5 2 3 1 . 2 3 0 . 2 1 8 6 1 . 0 5 7 1 4 6 8 3 . 5 5 0 . 3 8 3 1 0 . 0 5 3 3 1 . 4 7 0 2 3 2 . 0 6 0 . 2 3 2 7 1 . 0 9 2 0 5 0 7 4 . 1 3 0 . 3 8 7 3 0 . 0 6 5 8 1 . 3 4 1 8 2 8 . 7 7 0 . 2 5 7 5 0 . 9 9 0 5 5 3 1 6 . 2 8 0 . 4 0 4 3 0 . 1 1 9 5 4 . 3 3 5 9 8 8 . 0 1 0 . 3 4 7 5 3 . 1 6 3 3 5 6 6 2 . 4 2 0 . 4 3 6 1 0 . 2 3 2 2 1 2 . 3 3 0 7 2 2 1 . 8 8 0 . 4 7 9 9 8 . 6 0 0 5 6 3 6 5 . 0 6 0 . 4 8 0 8 0 . 4 2 1 3 2 8 . 9 4 5 4 4 3 7 . 1 5 0 . 6 1 2 2 1 8 . 6 8 4 6 6 9 1 8 . 9 5 0 . 5 6 9 8 0 . 9 1 5 3 7 2 . 0 1 8 5 8 2 4 . 3 8 0 . 7 6 7 1 4 1 . 7 5 6 9 8 6 2 1 . 8 4 0 . 7 2 7 6 2 . 2 4 3 9 8 4 . 3 5 3 6 6 2 8 . 4 6 0 . 8 8 8 2 4 0 . 6 4 7 1 1 1 2 6 7 . 6 3 F l L M 8 - 2 R U N F 1 3 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 3 6 4 5 0 . 0 0 0 3 0 . 1 0 4 1 2 . 5 0 0 . 1 0 9 1 0 . 0 8 0 9 2 7 6 3 . 8 2 0 . 3 6 4 7 0 . 0 0 0 8 0 . 1 5 9 2 3 . 8 1 0 . 1 1 0 3 0 . 1 2 3 5 2 2 9 6 . 8 9 0 . 3 6 5 2 0 . 0 0 2 3 0 . 3 8 0 0 9 . 0 8 0 . 1 1 4 3 ' 0 . 2 9 4 7 2 7 6 6 . 9 9 0 . 3 6 7 0 0 . 0 0 7 1 0 . 3 8 8 5 9 . 2 2 0 . 1 2 7 0 0 . 3 0 0 9 3 1 2 4 . 8 3 0 . 3 6 7 5 0 . 0 0 8 6 0 . 3 6 2 9 8 . 5 6 0 . 1 3 0 9 0 . 2 7 9 6 3 8 2 6 . 1 5 0 . 3 7 0 1 0 . 0 1 5 7 1 . 6 8 5 3 3 9 . 4 3 0 . 1 4 8 5 1 . 2 9 6 9 4 2 0 1 . 9 9 0 . 3 7 3 0 0 . 0 2 4 1 1 . 9 6 0 4 4 5 . 1 8 0 . 1 6 8 9 1 . 4 9 8 2 4 2 3 5 . 9 3 0 . 3 7 8 1 0 . 0 3 8 8 3 . 3 8 4 8 7 6 . 3 5 0 . 2 0 1 8 2 . 5 6 6 0 4 6 5 0 . 6 4 0 . 3 8 0 0 0 . 0 4 4 2 1 . 1 9 3 0 2 6 . 4 2 0 . 2 1 3 5 0 . 8 9 2 3 4 6 7 3 . 4 8 0 . 3 8 2 2 0 . 0 5 0 8 1 . 4 6 5 5 3 2 . 1 1 0 . 2 2 7 4 1 . 0 9 0 8 5 0 6 9 . 3 8 0 . 3 8 5 6 0 . 0 6 0 9 2 . 2 2 7 7 4 8 . 0 9 0 . 2 4 7 7 1 . 6 4 8 3 5 1 0 7 . 4 4 0 . 3 8 8 3 0 . 0 6 9 1 1 . 7 0 4 6 3 6 . 2 2 0 . 2 6 3 3 1 . 2 5 0 2 5 1 4 3 . 2 4 0 . 3 9 1 7 0 . 0 7 9 3 1 . 4 2 8 5 2 9 . 8 8 0 . 2 8 2 1 1 . 0 4 0 4 5 4 3 6 . 8 2 0 . 4 0 6 8 0 . 1 2 7 5 4 . 2 3 0 1 8 4 . 4 2 0 . 3 5 9 0 3 . 0 5 2 3 5 8 1 6 . 6 4 0 . 4 9 6 7 0 . 4 9 7 6 2 5 . 1 5 5 9 3 8 8 . 3 7 0 . 6 4 8 3 1 7 . 1 4 8 2 7 3 4 7 . 7 0 0 . 7 8 9 1 2 . 9 4 1 8 8 3 . 4 7 5 3 6 1 1 . 0 1 0 . 9 1 2 4 4 2 . 8 5 6 5 1 2 3 7 7 . 7 2 F l L M 8 - 2 R U N F 1 4 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 3 3 7 3 0 . 0 0 2 4 0 . 6 3 2 2 1 7 . 7 5 0 . 1 1 5 0 0 . 5 3 2 2 5 1 0 6 . 0 7 0 . 3 3 8 7 0 . 0 0 6 7 0 . 4 9 4 7 1 3 . 7 8 0 . 1 2 6 3 0 . 4 1 4 9 2 9 3 2 . 5 3 0 . 3 4 0 8 0 . 0 1 3 1 0 . 9 6 4 7 2 6 . 5 9 0 . 1 4 2 5 0 . 8 0 5 6 3 8 6 8 . 6 6 0 . 3 4 3 5 0 . 0 2 1 5 1 . 2 6 3 6 3 4 . 3 4 0 . 1 6 2 8 1 . 0 4 8 6 3 8 9 9 . 7 5 0 . 3 5 0 7 0 . 0 4 3 9 3 . 3 7 7 8 8 9 . 1 9 0 . 2 1 2 9 2 . 7 8 0 2 4 2 5 0 . 8 8 0 . 3 5 5 1 0 . 0 5 8 2 2 . 0 3 7 6 5 2 . 0 6 0 . 2 4 2 0 1 . 6 4 3 2 4 5 6 7 . 7 9 212 0 . 3 5 7 8 0 . 0 6 6 9 1 . 2 4 3 8 3 1 . 1 5 0 . 2 5 8 8 0 . 9 9 0 6 4 8 7 7 . 5 9 0 . 3 6 4 3 0 . 0 8 9 0 2 . 9 7 1 0 7 2 . 5 1 0 . 2 9 8 2 2 . 3 4 8 2 4 5 2 2 . 1 6 0 . 3 7 3 7 0 . 1 2 1 9 4 . 4 3 6 5 1 0 3 . 6 4 0 . 3 4 9 9 3 . 4 4 2 9 5 8 2 8 . 4 8 0 . 3 9 0 7 0 . 1 8 5 7 8 . 3 1 5 7 1 8 1 . 0 3 0 . 4 3 1 0 6 . 2 8 6 9 5 6 1 5 . 9 2 0 . 4 5 4 3 0 . 4 7 7 4 2 0.0 3 2 6 3 5 5 . 1 2 0 . 6 3 8 1 1 4 . 3 3 8 9 7 0 6 8 . 0 9 0.5 3 6 9 0 . 9 9 7 5 4 4 . 7 0 9 2 5 7 5 . 2 6 0 . 7 8 0 9 2 7 . 4 5 2 9 8 1 3 2 . 0 0 0 . 7 3 2 1 3 . 0 1 4 1 1 1 5 . 6 4 5 6 8 9 2 . 8 5 0 . 9 1 3 7 5 8 . 1 0 4 9 1 2 1 8 9 . 2 7 F I L M 8-2 RUN F 1 5 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 3 3 6 5 0 . 0 0 0 5 0 . 1 2 4 1 3.49 0 . 1 0 9 4 0. 1 0 4 5 5 0 9 5 . 2 6 0 . 3 3 6 7 0 . 0 0 1 1 0 . 0 9 5 3 2.68 0 . 1 1 1 0 0 . 0 8 0 1 2 5 4 9 . 9 5 0.3 3 7 1 0 . 0 0 2 0 0 . 1 4 3 3 4.02 0 . 1 1 3 4 0 . 1 2 0 4 3 0 6 1 .78 0 . 3 3 7 9 0 . 0 0 4 4 0 . 3 7 8 6 1 0 . 5 8 0. 1 1 9 9 0 . 3 1 7 7 3 3 2 4 . 5 8 0 . 3 3 9 4 0 . 0 0 9 1 0 . 7 0 4 3 1 9 . 5 4 0 . 1 3 2 0 0 . 5 8 9 5 3 8 5 8 . 0 3 0 . 3 4 5 3 0 . 0 2 6 9 1 . 2 5 2 1 3 3 . 9 9 0 . 1 7 5 2 1 . 0 4 3 1 4 3 1 0 . 5 5 0 . 3 5 1 1 0 . 0 4 5 3 2 . 6 0 1 9 6 8 . 2 8 0 . 2 1 5 8 2 . 1 3 1 1 - 4 5 2 1 . 4 8 0 . 5 5 9 3 1 . 1 6 5 8 1 6 . 0 1 5 5 2 3 3 . 6 8 0 . 8 0 6 3 1 1 . 6 1 8 2 8 0 4 4 . 2 9 0 . 7 6 8 9 3 . 5 1 7 0 8 5 . 9 7 5 6 6 0 5 . 1 9 0 . 9 2 5 5 41 . 3 6 1 9 1 2 4 1 9 . 4 4 F l LM 8-3 RUN F 1 6 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 4 0 7 0 0 . 0 0 0 5 0 . 1 0 6 6 2.05 0. 1 1 2 4 0 . 0 7 4 3 3 0 8 3 . 8 0 0 . 4 0 8 1 0 . 0 0 3 2 1 . 2 7 4 6 2 4 . 4 1 0. 1 1 9 6 0 . 8 8 5 7 2 3 1 3 . 5 2 0 . 4 1 0 2 0 . 0 0 8 3 1 . 1 9 0 4 2 2 . 6 2 0. 1 3 2 7 0 . 8 2 4 9 2 3 2 8 .80 0 . 4 1 1 7 0 . 0 1 2 2 1 . 7 5 4 8 3 3 . 0 6 0 . 1 4 2 5 1 . 2 1 0 0 2 7 3 0 . 3 9 0 . 4 1 4 3 0 . 0 1 8 9 2 . 9 5 3 8 5 5 . 0 9 0. 1 5 8 6 2 . 0 2 9 0 2 7 4 0 . 1 5 0 . 4 1 7 9 0 . 0 2 7 9 4 . 0 3 9 7 7 4 . 2 3 0. 1 7 9 7 2 . 7 5 7 3 3 1 6 5 . 7 6 0 . 4 2 0 6 0 . 0 3 5 2 3 . 0 9 2 8 5 5 . 9 9 0 . 1 9 5 8 2 . 0 9 3 3 3 5 8 4 . 1 6 0 . 4 3 7 4 0 . 0 8 1 0 6 . 0 3 0 4 1 0 4 . 2 0 0 . 2 8 5 1 4 . 0 5 1 6 4 2 7 5 . 7 6 0 . 4 4 6 9 0 . 1 0 8 1 1 0 . 7 2 8 3 1 7 4 . 5 9 0 . 3 2 9 3 6 . 9 3 4 8 5 0 7 3 . 9 8 0 . 4 6 1 0 0 . 1 5 0 9 1 6 . 9 5 1 3 2 6 1 . 7 2 0 . 3 8 9 2 1 0 . 7 2 4 0 5 6 7 8 . 2 2 0 . 4 6 8 8 0 . 1 7 5 8 9 . 1 9 6 9 1 3 5 . 3 9 0 . 4 1 9 3 5 . 6 4 2 0 5 7 6 6 . 3 0 0 . 4 9 8 8 0 . 2 7 8 3 1 8 . 9 1 3 9 2 5 6 . 8 8 0 . 5 1 7 8 1 1 . 3 8 8 6 6 6 0 5 . 6 9 F l LM 8-4 RUN F 1 7 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 4 1 3 8 0 . 0 4 9 2 8 . 2 9 6 1 1 6 1 . 5 4 0 . 2 2 5 8 5 . 9 4 2 4 3 5 8 3 . 1 0 0 . 4 1 7 0 0 . 0 5 8 0 2 . 6 1 9 4 4 8 . 2 9 0 . 2 4 3 4 1 . 7 9 0 1 3 5 5 3 . 2 6 0 . 4 2 1 2 0 . 0 6 9 8 4.6 7 1 3 8 4 . 6 2 0 . 2 6 5 7 3. 168 0 4 2 4 4 . 4 3 0 . 4 2 8 3 0 . 0 9 0 4 4 . 7 4 3 0 83 .64 0 . 3 0 1 8 3 . 1 8 4 4 4 8 6 1 . 9 5 0 . 4 3 4 1 0 . 1 0 7 4 3 . 9 3 6 8 6 7 . 3 7 0 . 3 2 9 2 2 . 5 9 9 4 4 9 3 3 . 6 2 0 . 4 4 6 0 0 . 1 4 4 3 5 . 0 2 1 0 8 2.49 0 . 3 8 1 8 3 . 2 7 0 3 5 2 7 5 . 3 4 0 . 4 6 2 6 0 . 1 9 8 7 8 . 2 2 4 1 1 2 6 . 7 3 0 . 4 4 6 0 5 . 2 1 1 4 6 0 0 3 . 6 6 0 . 4 7 2 7 0 . 2 3 3 6 9 . 2 5 4 2 1 3 4 . 6 0 0 . 4 8 0 9 5 . 6 5 6 2 6 2 6 1 . 2 1 0 . 4 8 2 0 0 . 2 6 6 9 6 . 7 3 4 0 9 4 . 0 1 0 . 5 1 0 3 4 . 0 2 8 0 6 5 6 4 . 6 8 0 . 5 1 1 5 0 . 3 8 0 8 1 0 . 9 3 7 2 14 0.91 0 . 5 9 0 2 6 . 4 0 6 0 7 3 5 9 . 4 5 F I L M 8 - 4 R U N F 1 8 213 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 4 3 1 9 0 . 0 0 4 4 1 . 7 1 5 3 2 9 . 4 4 0 . 1 2 2 3 1 . 1 3 0 3 2 8 6 3 . 9 2 0 . 4 3 7 9 0 . 0 1 8 6 1 . 4 9 2 5 2 5 . 1 1 0 . 1 5 7 8 0 . 9 7 7 3 3 0 7 7 . 4 3 0 . 4 3 9 1 0 . 0 2 1 5 1 . 4 4 7 4 2 3 . 9 5 0 . 1 6 4 8 0 . 9 3 4 9 3 3 2 9 . 1 4 0 . 4 4 0 7 0 . 0 2 5 3 1 . 4 1 2 0 2 3 . 2 2 0 . 1 7 3 8 0 . 9 0 9 5 4 1 7 1 . 1 0 0 . 4 4 5 1 0 . 0 3 6 0 2 . 6 3 9 6 4 2 . 8 2 0 . 1 9 8 0 1 . 6 9 4 1 4 2 0 9 . 9 6 0 . 4 5 0 0 0 . 0 4 8 4 2 . 4 7 8 7 3 9 . 3 7 0 . 2 2 4 4 1 . 5 7 5 1 4 1 3 4 . 8 7 0 . 4 5 7 7 0 . 0 6 7 8 5 . 4 4 7 9 8 4 . 1 5 0 . 2 6 2 6 3 . 4 2 3 2 5 1 9 5 . 2 3 F I L M 8 - 4 R U N F 1 9 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 4 3 6 4 0 . 0 1 5 2 5 . 9 2 6 8 1 0 0 . 6 6 0 . 1 4 9 4 3 . 9 0 5 1 3 3 0 6 . 3 4 0 . 4 3 8 0 0 . 0 1 9 0 1 . 5 2 4 2 2 5 . 3 7 0 . 1 5 8 8 0 . 9 8 7 8 3 3 1 8 . 6 3 0 . 4 4 1 1 0 . 0 2 6 5 2 . 8 1 5 9 4 6 . 3 7 0 . 1 7 6 3 1 . 8 1 8 1 3 7 5 8 . 5 7 0 . 4 4 4 1 0 . 0 3 3 7 3 . 6 5 2 3 5 9 . 3 3 0 . 1 9 2 6 2 . 3 4 1 8 3 9 1 5 . 4 5 0 . 4 4 6 6 0 . 0 4 0 0 3 . 2 1 8 2 5 1 . 6 3 0 . 2 0 6 4 2 . 0 4 9 7 4 5 1 1 . 4 8 0 . 4 4 8 9 0 . 0 4 5 6 2 . 7 4 2 0 4 3 . 5 2 0 . 2 1 8 2 1 . 7 3 6 4 4 5 2 3 . 1 4 0 . 4 5 2 8 0 . 0 5 5 6 2 . 9 7 4 1 4 6 . 5 6 0 . 2 3 8 7 1 . 8 7 4 0 4 8 0 4 . 7 4 0 . 4 5 8 0 0 . 0 6 9 0 3 . 1 0 9 5 4 7 . 7 0 0 . 2 6 4 4 1 . 9 4 1 9 5 1 9 8 . 3 0 0 . 4 6 7 6 0 . 0 9 4 4 1 1 . 7 8 2 5 1 7 5 . 0 0 0 . 3 0 8 6 7 . 2 7 3 8 5 3 1 2 . 4 2 0 . 4 7 6 2 0 . 1 1 7 9 4 . 7 2 2 6 6 7 . 4 7 0 . 3 4 5 6 2 . 8 5 6 0 5 9 2 3 . 0 5 F I L M 8 - 4 R U N F 2 0 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 4 6 8 7 0 . 0 0 8 6 1 . 1 8 0 3 1 7 . 2 7 0 . 1 3 2 6 0 . 7 1 9 4 3 6 7 6 . 2 3 0 . 4 6 9 9 0 . 0 1 1 1 1 . 6 1 9 1 2 3 . 3 9 0 . 1 3 9 0 0 . 9 7 7 0 2 3 6 7 . 4 3 0 . 4 7 1 2 0 . 0 1 4 0 1 . 4 1 0 4 2 0 . 2 7 0 . 1 4 6 3 0 . 8 4 9 0 4 0 1 4 . 9 8 0 . 4 7 3 8 0 . 0 1 9 7 3 . 5 0 8 7 5 0 . 0 1 0 . 1 6 0 1 2 . 1 0 6 0 3 5 8 0 * 5 6 0 . 4 7 9 8 0 . 0 3 3 1 1 . 8 2 5 9 2 5 . 5 6 0 . 1 9 1 3 1 . 0 9 0 0 4 7 4 9 . 7 9 0 . 4 8 5 7 0 . 0 4 6 5 4 . 7 5 2 0 6 4 . 8 9 0 . 2 2 0 4 2 . 8 0 1 1 5 1 4 5 . 8 1 0 . 4 9 6 0 0 . 0 7 0 9 8 . 3 4 9 2 1 1 0 . 2 6 0 . 2 6 8 1 4 . 8 6 1 2 6 0 1 2 . 0 5 0 . 5 0 2 2 0 . 0 8 5 8 5 . 1 6 3 1 6 5 . 9 5 0 . 2 9 4 9 2 . 9 4 4 0 6 0 7 9 . 8 1 0 . 5 1 2 0 0 . 1 1 0 4 1 3 . 3 3 6 0 1 6 5 . 0 2 0 . 3 3 4 5 7 . 5 0 9 6 7 1 0 6 . 0 4 F I L M 8 - 4 R U N F 2 1 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 4 6 8 5 0 . 0 0 8 1 1 . 9 5 7 1 2 8 . 6 4 0 . 1 3 1 4 1 . 1 9 2 9 3 5 4 9 . 3 0 0 . 4 7 0 2 0 . 0 1 2 0 1 . 8 4 4 7 2 6 . 6 4 0 . 1 4 1 1 1 . 1 1 3 6 3 5 5 4 . 0 3 0 . 4 7 2 4 0 . 0 1 6 7 2 . 2 9 9 8 3 2 . 9 4 0 . 1 5 2 9 1 . 3 8 3 2 3 5 7 9 . 0 1 0 . 4 8 0 0 0 . 0 3 3 6 2 . 3 6 4 0 3 3 . 1 7 0 . 1 9 2 3 1 . 4 1 5 1 4 4 7 2 . 7 0 0 . 4 8 9 0 0 . 0 5 4 6 6 . 3 5 0 7 8 6 . 0 7 0 . 2 3 6 5 3 . 7 4 1 6 4 9 3 4 . 0 5 0 . 4 9 6 0 0 . 0 7 1 0 5 . 6 9 3 9 7 4 . 6 9 0 . 2 6 8 1 3 . 2 9 2 7 6 0 0 4 . 8 4 0 . 5 0 3 4 0 . 0 8 9 1 6 . 2 5 9 8 7 9 . 7 6 0 . 3 0 0 1 3 . 5 6 9 2 6 1 0 2 . 1 2 0 . 5 0 7 8 0 . 1 0 0 0 4 . 7 5 8 3 5 9 . 2 2 0 . 3 1 8 2 2 . 6 7 3 3 7 6 8 5 . 5 4 I 214 F I L M 8-4 RUN F 2 2 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 9 8 6 0 . 0 1 0 0 2 . 8 8 0 7 3 7 . 2 9 0 . 1 3 5 8 1 . 6 5 2 5 3 7 7 7 . 2 1 0 . 5 0 0 2 0 . 0 1 3 4 1 . 9 6 4 4 2 5 . 0 6 0 . 1 4 4 3 1 . 1 1 4 3 4 2 6 2 . 2 8 0 . 5 0 1 7 0 . 0 1 6 4 2 . 3 5 9 7 2 9 . 9 2 0 . 1 5 1 8 1 . 3 3 4 2 4 4 2 3 . 7 5 0 . 5 0 5 4 0 . 0 2 4 2 2 . 4 8 9 9 3 1 . 2 4 0 . 1 7 0 5 1 . 4 0 3 6 4 3 7 0 . 8 7 0 . 5 0 8 0 0 . 0 2 9 6 4 . 0 0 3 1 4 9 . 6 1 0. 1 8 2 8 2 . 2 4 0 1 5 1 3 1 . 1 3 0 . 5 1 0 3 0 . 0 3 4 5 3 . 7 3 2 4 4 5 . 8 1 0 . 1 9 4 1 2 . 0 7 8 2 5 1 5 4 . 8 4 F I L M 9-4 RUN F 2 3 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 1 3 9 0 . 2 0 2 2 1 . 0 7 7 1 8 6 . 6 8 0 . 4 4 2 1 1.647 8 1 1 8 9 . 7 7 0 . 2 2 4 9 0 . 2 9 0 5 2 . 8 2 6 7 1 8 6 . 7 4 0 . 5 2 0 6 3 . 7 3 3 6 2 4 9 7 . 3 9 0 . 2 4 4 5 0 . 4 6 9 9 5 . 7 3 7 1 3 3 0 . 7 0 0 . 6 2 7 1 7 . 1 8 8 7 2 7 3 2 . 6 5 0 . 2 6 0 4 0 . 6 3 7 5 5 . 3 6 6 1 2 6 7 . 5 7 0 . 6 9 1 3 ' 6 . 1 9 3 8 3 8 5 5 . 3 1 0 . 2 8 5 6 0 . 9 4 8 9 9 . 9 6 6 7 4 2 4 . 5 1 0 . 7 6 6 1 1 0 . 7 7 8 2 4 2 2 8 . 5 3 0.3 2 6 ? 1 . 5 9 1 3 2 0 . 5 5 4 7 6 9 4 . 0 2 0 . 8 4 4 1 2 0 . 1 6 8 7 6 0 7 3 . 1 7 0 . 3 6 9 3 2 . 4 4 3 3 2 7 . 0 0 8 5 7 0 6 . 5 0 0 . 8 9 1 9 2 3 . 1 9 2 6 6 8 3 4 . 0 7 0 . 4 3 9 6 4 . 3 5 0 9 6 0 . 4 7 0 0 1 1 6 7 . 5 0 0 . 9 3 5 9 4 5 . 6 1 6 6 6 5 3 8 . 6 0 0 . 4 8 7 2 6 . 0 4 4 3 5 3 . 6 9 8 5 7 9 3 . 6 9 0 . 9 5 2 9 3 4 . 3 6 9 5 5 4 0 9 . 0 2 F l LM 9-4 RUN F 2 4 TOTALD P C E V A P UA U I NST R A T I O XNUNO PECMO 0 . 2 5 5 7 0 . 1 1 0 3 1 . 8 1 7 4 9 6 . 8 6 0 . 3 2 7 7 2 . 2 0 1 7 2 6 0 7 . 2 7 0 . 2 8 7 1 0 . 2 9 6 3 4 . 9 0 5 9 2 1 1 . 2 0 0 . 5 2 5 1 5 . 3 8 9 8 3 4 0 8 . 3 1 0 . 3 0 4 3 0 . 4 1 6 9 7 . 9 5 7 0 2 8 9 . 3 5 0 . 6 0 1 1 7 . 8 2 5 6 45 0 4 . 3 0 0 . 3 3 3 1 0 . 6 5 1 9 1 5 . 5 0 0 2 4 8 4 . 7 1 0 . 6 9 5 9 1 4 . 3 4 9 7 4 9 5 4 . 2 2 0 . 3 4 9 9 0 . 8 1 0 0 1 0 . 3 3 7 2 2 8 1 . 8 9 0 . 7 3 7 8 8 . 7 6 7 7 6 4 7 5 . 2 2 0.39 28 1 . 2 8 5 2 3 1 . 0 7 4 8 7 1 4 . 5 7 0 . 8 1 4 8 2 4 . 9 5 0 1 7 2 9 6 . 9 4 F l LM 9-4 RUN F 2 5 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 5 8 7 0 . 1 2 6 1 2 . 3 7 3 6 1 2 4 . 9 1 0 . 3 5 0 6 2 . 8 7 2 2 32 8 7 . 7 8 0 . 2 9 4 2 0 . 3 4 4 5 3 . 8 5 8 2 1 4 8 . 3 3 0 . 5 5 8 7 3 . 8 7 9 0 4 3 5 5 . 5 4 0 . 3 2 0 6 0 * 5 4 4 8 1 3 . 2 1 0 4 4 4 4 . 0 1 0 . 6 5 9 0 1 2 . 6 5 2 6 4 7 6 8 . 7 8 0 . 3 3 6 8 0 . 6 8 5 4 9 . 2 8 0 3 2 7 3 . 14 0 . 7 0 6 0 8 . 1 7 7 4 4 9 8 6 . 0 9 0 . 3 6 6 2 0 . 9 7 7 5 1 9 . 0 7 5 6 4 9 0 . 3 9 0 . 7 7 1 3 1 5 . 9 6 2 7 5 4 2 1 . 2 2 0 . 4 3 1 9 1 . 8 1 8 9 5 4 . 9 7 5 5 1 0 9 1 . 1 4 0 . 8 6 0 7 4 1 . 8 8 8 4 8 0 2 2 . 7 5 0 . 4 7 7 2 2 . 5 6 9 7 4 9 . 0 9 3 5 7 5 4 . 2 4 0 . 8 9 6 7 3 1 . 9 9 1 0 8 8 3 0 . 0 1 215 F I L M 9-4 RUN F 2 6 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 8 2 1 0. 1 5 1 7 2 . 4 5 8 3 1 1 0 . 4 8 0 . 3 8 4 5 2 . 7 7 0 7 2 5 1 0 . 0 5 0 . 3 0 5 0 0 . 2 8 0 4 1 0 . 4 4 0 7 3 8 4 . 9 4 0 . 5 1 2 7 1 0 . 4 3 4 9 3 4 0 7 . 6 8 0 . 3 1 7 1 , 0 . 3 5 7 3 6 . 2 3 9 6 2 0 5 . 1 4 0 . 5 6 6 7 5 . 7 8 2 4 4 6 9 4 . 6 2 0 . 3 4 4 0 0 . 5 4 9 3 1 5 . 5 7 7 6 4 5 2 . 8 7 0 . 6 6 0 6 1 3 . 8 4 7 5 5 0 9 2 . 4 8 0 . 3 7 5 6 0 . 8 1 6 5 2 1 . 6 7 8 0 5 3 1 . 8 5 0 . 7 3 9 3 1 7 . 7 5 5 1 5 5 8 6 . 6 8 0 . 4 0 8 2 1 . 1 4 4 1 2 6 . 3 4 3 7 5 4 4 . 8 8 0 . 7 9 7 0 1 9 . 7 7 0 0 7 55 3.59 0 . 4 4 0 3 1 . 5 2 0 9 3 0 . 3 2 3 8 5 3 5 . 3 4 0 . 8 3 8 2 2 0 . 9 5 0 9 8 1 7 8 . 7 0 0 . 5 3 4 6 2 . 9 8 8 0 1 1 7 . 9 2 1 0 1 5 6 4 . 6 8 0 . 9 0 9 7 7 4 . 3 4 7 2 9 89 2.01 0 . 6 2 6 2 5 . 0 0 7 7 1 6 2 . 3 5 1 0 1 5 2 4 . 0 8 0 . 9 4 3 8 8 4 . 8 3 4 3 9 2 7 0 . 3 7 F l LM 9-4 RUN F 2 7 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 3 0 4 9 0 . 1 2 6 5 1 . 5 0 4 6 5 6 . 9 9 0 . 3 5 1 2 1 . 5 4 4 8 2 3 8 7 . 3 4 0 . 3 2 0 7 0 . 2 0 2 1 8 . 0 9 6 7 2 6 3 . 1 4 0 . 4 4 2 1 7 . 5 0 0 3 3 5 6 0 . 2 5 0 . 3 3 5 6 0 . 2 8 1 2 8 . 4 6 8 5 2 5 0 . 1 3 0 . 5 1 3 5 7 . 4 6 1 8 4 9 9 2 . 2 3 0 . 3 5 2 3 0 . 3 7 8 0 1 0 . 3 8 5 4 2 7 9 . 1 6 0 . 5 7 9 5 8 . 7 4 1 9 5 2 1 5 . 4 8 0 . 3 7 7 5 0 . 5 4 2 7 1 7 . 6 5 1 3 4 2 1 .28 0 . 6 5 8 3 1 4 . 1 3 6 8 6 9 8 5 . 9 8 0. 3 9 7 4 0 • 6 8 8 4 1 5 . 6 3 9 6 3 3 1 . 3 0 0 . 7 0 7 0 1 1 . 7 0 1 6 7 3 8 1 . 3 1 0 . 4 5 6 1 1 . 2 1 3 8 5 6 . 2 7 6 1 9 7 8 . 6 4 0 . 8 0 6 4 3 9 . 6 7 8 4 8 4 4 0 . 6 5 0 . 5 2 5 3 2 . 0 3 1 3 8 7 . 5 6 3 8 1 1 5 1 . 3 3 0 . 8 7 3 3 5 3 . 7 5 8 8 7 8 1 3 . 8 6 F l LM 9-4 RUN F 2 8 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 6 5 7 0. 1 8 6 9 2 . 9 0 8 7 7 9 . 3 8 0 . 4 2 5 9 2 . 5 8 0 1 2 8 4 0 . 6 2 0 . 3 7 3 7 0 . 2 2 2 3 5 . 8 0 4 4 1 3 5 . 1 0 0 . 4 6 2 3 4 . 4 8 8 3 5 559«61 0 . 3 9 0 0 0 . 2 9 8 5 1 2 . 4 7 1 9 2 7 2 . 0 0 0 . 5 2 6 9 9 . 4 2 9 4 5 7 7 3 . 7 2 0 . 4 0 3 6 0 . 3 6 7 3 1 1 . 2 6 8 7 2 2 7 . 6 4 0 . 5 7 3 2 8 . 1 6 7 1 7 4 6 9 . 0 9 0 . 4 3 6 0 0 . 5 5 0 4 2 9 . 9 6 6 9 5 4 0 . 2 4 0 . 6 6 1 4 2 0 . 9 3 6 3 8 0 9 8 .85 0 . 4 9 3 0 0 . 9 4 5 9 6 4 . 6 6 9 7 9 5 0 . 1 8 0 . 7 6 5 9 4 1 . 6 3 7 9 7 2 9 8 . 2 0 0 . 5 7 2 9 1 . 6 7 6 3 1 1 9 . 4 4 9 8 1 3 3 0 . 5 8 0 . 8 5 0 9 6 7 . 7 6 2 4 8 4 8 1 . 6 7 0 . 6 0 0 9 1 . 9 8 5 1 5 0 . 5 9 3 9 4 6 7 . 0 6 0 . 8 7 0 8 2 4 . 9 4 7 6 8 9 3 8 . 7 1 0 . 6 6 5 0 2 . 8 0 9 8 2 6 7 . 2 4 2 1 2 1 1 7 . 1 4 0 . 9 0 4 7 12 5 . 1 3 9 6 2 4 6 1 0 . 4 6 F I L M 1 0 - 1 RUN F 2 9 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 1 8 6 3 0 . 0 1 7 7 0 . 2 1 4 4 2 0 . 0 5 0 . 1 5 5 4 0 . 3 3 2 0 8 9 9 . 3 0 0 . 1 8 8 9 0 . 0 3 3 3 0 . 1 8 8 1 1 7 . 0 1 0 . 1 9 0 5 0 . 2 8 5 6 6 8 0 . 8 0 0 . 1 9 5 4 0 . 0 7 3 4 0 . 7 2 8 5 6 2 . 7 4 0 . 2 6 8 9 1 . 0 9 0 0 1 0 5 6 . 4 4 0 . 2 2 0 1 0 . 2 5 0 7 2 . 5 7 5 4 1 8 9 . 1 7 0 . 4 8 8 2 3 . 7 0 0 8 1 9 0 9 . 5 5 0 . 2 4 0 9 0 . 4 3 5 1 6 . 6 9 6 1 4 0 0 . 1 9 0 . 6 1 0 0 8.570 0 2 6 0 4 . 5 5 0 . 2 6 2 8 0 . 6 6 6 0 8 . 2 9 6 3 4 1 5 . 4 2 0 . 6 9 9 4 9 . 7 0 2 9 3 7 8 7 . 5 9 0 . 2 9 8 0 1 . 1 2 7 7 1 6 . 5 9 4 4 6 6 8 . 9 6 0 . 7 9 4 1 1 7 . 7 2 1 0 4 3 1 6 . 4 1 0 . 3 4 1 8 1 . 8 7 4 5 2 6 . 8 3 9 6 8 3 0 . 5 4 0 . 8 6 3 6 2 5 . 2 3 4 3 4 9 2 6 . 9 8 0 . 6 4 2 5 1 4 . 3 6 8 9 1 1 1 . 0 3 8 5 1 3 3 4 . 1 1 0 . 9 7 9 5 7 6 . 1 9 3 6 9 8 5 1 . 3 8 F I L M 1 0 - 1 R U N F 3 0 216 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 2 1 3 8 0 . 1 3 4 0 0 . 9 1 7 7 7 1 . 0 9 0 . 3 6 2 0 1 . 3 5 0 9 1 5 4 3 . 3 1 0 . 2 4 3 8 0 . 3 6 3 7 9 . 4 4 1 6 5 7 1 . 3 4 0 . 5 7 0 1 1 2 . 3 8 3 3 3 5 3 1 . 6 8 0 . 2 6 3 0 0 . 5 4 3 4 7 . 3 9 2 6 3 6 5 . 6 9 0 . 6 5 7 6 8 . 5 5 0 2 3 7 9 1 . 5 3 0 . 2 8 1 1 0 . 7 3 8 2 8 . 0 1 4 8 3 4 4 . 1 3 0 . 7 1 9 6 8 . 5 9 8 9 4 0 5 2 . 0 1 0 . 4 9 7 5 5 . 6 3 5 4 5 0 . 3 2 0 9 9 8 0 . 6 1 0 . 9 4 9 5 4 3 . 3 6 7 4 7 6 3 7 . 1 0 0 . 5 7 7 4 9 . 0 0 1 8 6 8 . 5 0 3 3 7 5 0 . 3 3 0 . 9 6 7 7 3 8 . 5 1 3 8 7 2 8 3 . 1 9 F I L M 1 0 - 1 R U N F 3 1 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 1 9 5 5 0 . 0 2 2 4 0 . 3 7 1 4 3 1 . 6 5 0 . 1 6 5 9 0 . 5 5 0 1 8 5 0 . 9 9 0 . 2 0 3 3 0 . 0 6 7 7 0 . 9 3 9 5 7 5 . 1 3 0 . 2 5 8 3 1 . 3 5 7 9 1 4 6 5 . 5 2 0 . 2 0 8 3 0 . 0 9 8 5 1 . 2 7 9 4 9 6 . 0 7 0 . 3 1 0 4 1 . 7 7 9 0 2 2 5 2 . 2 3 0 . 2 2 5 9 0 . 2 1 9 5 2 . 5 0 9 7 1 6 9 . 1 0 0 . 4 5 9 5 3 . 3 9 6 0 2 0 4 3 . 2 1 0 . 2 3 2 3 0 . 2 6 7 8 4 . 0 1 5 6 2 4 3 . 4 1 0 . 5 0 2 5 5 . 0 2 5 1 2 5 1 0 . 8 5 0 . 2 5 1 4 0 . 4 3 0 6 6 . 7 5 9 0 3 6 7 . 2 2 0 . 6 0 7 7 8 . 2 0 5 2 4 0 7 6 . 2 6 0 . 2 7 8 6 0 . 7 0 9 8 1 1 . 4 5 8 4 5 1 7 . 8 3 0 . 7 1 2 0 1 2 . 8 2 4 6 4 0 3 5 . 4 2 0 . 3 2 3 6 1 . 3 0 4 7 1 6 . 2 9 1 8 5 6 8 . 5 3 0 . 8 1 6 3 1 6 . 3 5 4 5 4 6 6 4 . 8 7 0 . 3 4 2 5 1 . 6 0 9 8 2 5 . 0 6 6 4 7 1 8 . 3 7 0 . 8 4 5 1 2 1 . 8 7 1 4 4 9 3 7 . 2 1 0 . 4 4 1 1 3 . 8 2 2 3 6 0 . 5 6 6 9 1 2 3 5 . 9 4 0 . 9 2 7 5 4 8 . 4 5 5 1 7 4 3 7 . 5 8 0 . 5 6 3 8 8 . 3 5 6 5 9 2 . 1 1 8 9 1 1 4 3 . 9 5 0 . 9 6 5 3 5 7 . 3 3 3 8 8 1 2 7 . 4 5 F I L M 1 0 - 1 R U N F 3 2 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 2 5 1 4 0 . 2 6 0 8 1 . 5 2 8 8 9 1 . 5 5 0 . 4 9 6 5 2 . 0 4 6 0 2 0 1 7 . 2 6 0 . 3 2 8 8 1 . 0 0 3 9 3 9 . 2 1 1 0 1 4 5 6 . 7 5 0 . 7 7 5 0 4 2 . 5 6 9 5 4 7 3 8 . 7 8 0 . 3 1 6 4 0 . 8 5 7 1 - 7 . 7 1 1 6 - 2 3 5 . 7 4 0 . 7 4 7 5 - 6 . 6 2 9 5 4 5 8 2 . 3 3 0 . 3 4 8 3 1 . 2 5 6 5 2 1 . 0 9 5 3 6 0 6 . 3 9 0 . 8 1 0 7 1 8 . 7 7 1 8 5 0 2 0 . 0 5 0 . 3 8 0 4 1 . 7 4 0 0 2 5 . 5 4 4 4 6 1 1 . 1 2 0 . 8 5 4 8 2 0 . 6 6 4 3 5 4 8 3 . 3 3 0 . 5 2 8 5 5 . 2 3 4 7 6 0 . 8 5 0 5 9 1 3 . 3 3 0 . 9 4 5 9 4 2 . 9 0 3 0 7 6 2 9 . 7 2 F I L M 1 0 - 1 R U N F 3 3 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 2 1 2 0 0 . 0 2 0 1 0 . 3 5 5 9 2 5 . 7 4 0 . 1 5 9 9 0 . 4 8 5 0 1 2 7 8 . 2 7 0 . 2 1 9 6 0 . 0 6 0 1 1 . 4 2 1 5 9 7 . 0 9 0 . 2 4 3 8 1 . 8 9 5 1 2 0 3 9 . 0 7 0 . 2 2 9 4 0 . 1 1 6 3 1 . 9 9 8 4 1 2 6 . 1 1 0 . 3 3 7 0 2 . 5 7 1 6 1 1 7 6 . 4 6 0 . 2 4 5 1 0 . 2 1 6 6 2 . 6 7 1 6 1 5 0 . 8 5 0 . 4 5 6 4 3 . 2 8 6 5 2 2 1 6 . 6 0 0 . 2 6 4 8 0 . 3 6 1 7 5 . 1 5 6 7 2 5 2 . 0 7 0 . 5 6 9 0 5 . 9 3 2 8 3 1 8 0 . 5 4 0 . 2 7 9 5 0 . 4 8 5 7 6 . 5 3 6 4 2 8 0 . 6 0 0 . 6 3 3 7 6 . 9 7 1 8 4 0 4 8 . 5 1 0 . 3 4 3 9 1 . 1 9 7 4 2 5 . 0 1 8 4 8 1 0 . 6 1 0 . 8 0 3 4 2 4 . 7 8 0 1 5 7 8 3 . 5 3 0 . 3 7 8 9 1 . 7 1 5 7 2 7 . 3 5 5 3 6 6 4 . 7 7 0 . 8 5 3 1 2 2 . 3 9 1 4 6 8 5 3 . 8 7 0 . 4 1 7 8 2 . 4 1 4 1 3 6 . 8 4 7 3 7 3 7 . 0 9 0 . 8 9 0 4 2 7 . 3 7 2 0 6 0 2 1 . 9 6 0 . 5 5 7 6 6 . 2 0 9 4 9 8 . 9 8 9 6 1 2 9 7 . 6 6 0 . 9 5 3 9 6 4 . 3 1 6 7 7 0 3 2 . 6 9 F I L M 1 0 - 1 RUN F 3 4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 4 2 1 0 . 0 0 3 8 0 . 1 0 6 6 5.82 0 . 1 1 9 5 0 . 1 2 5 3 1 1 6 8 . 7 9 0 . 2 7 7 0 0 . 1 7 5 0 1 . 4 9 8 0 7 0 . 4 4 0 . 4 1 2 3 1 . 7 3 4 3 1 5 7 7 . 9 9 0 . 2 8 2 6 0 . 2 0 7 2 2 . 6 8 0 1 1 0 8 . 9 1 0 . 4 4 7 0 2 . 7 3 6 1 3 0 5 5 . 5 8 0 . 3 1 5 6 0 . 4 2 1 8 1 7 . 6 4 7 9 6 2 5 . 7 3 0 . 6 0 2 8 1 7 . 5 5 3 0 4 5 7 0 .86 0 . 3 8 3 2 1 . 0 2 3 0 3 2 . 9 7 1 1 8 5 1 . 5 0 0 . 7 7 8 2 2 9 . 0 0 1 4 5 5 2 3 . 1 0 0 . 4 1 9 8 1 . 4 5 1 1 2 3 . 5 2 2 2 4 6 3 . 3 8 0 . 8 3 1 4 1 7 . 2 9 0 7 7 0 7 8 . 8 4 0 . 4 7 4 0 2 . 2 3 7 5 3 2 . 0 4 6 9 5 0 8 . 6 9 0 . 8 8 2 9 2 1 . 4 3 3 3 7 6 8 6 . 6 4 F I LM 1 0 - 2 RUN F 3 5 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 0 4 1 0 . 0 2 3 4 0 . 4 9 8 9 3 9 . 0 4 0 . 1 6 6 2 0 . 7 0 8 1 1 1 8 2 . 1 9 0 . 2 1 5 4 0 . 0 8 9 4 1 . 7 6 4 8 1 2 7 . 5 7 0 . 2 9 1 1 2 . 4 4 2 5 1 8 8 8 . 2 2 0.2 205 0 . 1 2 1 7 1 . 7 2 1 0 1 1 5 . 2 6 0 . 3 3 9 4 2 . 2 5 9 2 9 0 1 . 6 0 0 . 2 3 0 4 0 . 1 8 8 3 1 . 7 5 6 7 1 0 9 . 9 1 0 . 4 2 0 9 2 . 2 5 1 0 2 0 8 3 . 6 4 0 . 2 4 4 0 0 . 2 8 9 6 3 . 5 6 8 4 2 0 1 . 6 2 0 . 5 1 2 7 4 . 3 7 3 2 2 9 3 1 . 1 5 0 . 2 7 6 4 0 . 5 8 0 5 1 0 . 2 3 2 8 4 7 8 . 9 2 0 . 6 6 5 0 1 1 . 7 6 8 7 3 9 9 7 . 6 6 0 . 3 0 7 5 0 . 9 3 0 2 1 2 . 3 1 0 1 4 5 8 . 2 1 0 . 7 5 6 6 1 2 . 5 2 3 3 4 4 3 2 . 0 8 0 . 3 4 2 6 1 . 4 2 0 8 1 7 . 0 5 0 8 5 1 2 . 1 0 0 . 8 2 4 0 1 5 . 5 9 3 1 4 9 5 3 . 6 1 0. 5 2 8 7 6 . 1 6 2 4 9 8 . 8 3 5 0 1 5 8 4 . 6 2 0 . 9 5 2 2 7 4 . 4 7 5 6 7 6 2 1 . 4 9 F I LM 1 0 - 2 RUN F 3 6 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 1 1 3 0 . 0 1 6 9 0 . 4 0 8 2 2 9 . 6 2 0 . 1 5 1 3 0 . 5 5 6 2 1 2 2 4 . 1 7 0 . 2 1 3 4 0 . 0 2 8 0 0 . 1 9 1 2 1 3 . 4 9 0. 1 7 6 1 0 . 2 5 5 9 1 0 6 9 . 0 0 0 . 2 2 4 3 0 . 0 8 9 4 0 . 6 6 6 0 4 4 . 2 1 0 . 2 9 1 0 0 . 8 8 1 6 1 0 5 1 . 5 2 0 . 2 3 8 2 0 . 1 7 6 3 3 . 4 5 3 4 2 0 5 . 2 6 0 . 4 0 7 8 4 . 3 4 6 0 1 7 1 6 . 7 7 0 . 2 6 1 4 0 . 3 4 6 1 6 . 7 4 9 4 3 4 3 . 3 9 0.5 5 2 1 7 . 9 7 9 5 2 5 1 2 . 1 4 0 . 3 1 7 9 0 . 9 0 2 6 1 3 . 2 8 0 0 4 9 8 . 7 9 0 . 7 5 1 2 1 4 . 0 9 6 7 4 1 3 3 . 5 4 0 . 3 3 2 7 1 . 0 8 5 2 1 0 . 9 0 4 6 3 2 7 . 6 5 0 . 7 8 2 9 9 . 6 9 0 2 4 7 9 5 . 9 8 0 . 5 2 1 2 5 . 1 7 0 7 8 0 . 1 4 5 3 1 3 3 3 . 7 4 0 . 9 4 3 6 6 1 . 7 9 5 8 7 5 2 5 . 4 8 F I L M 1 0 - 2 RUN F 3 7 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 1 1 3 0 . 0 1 6 9 0. 3 4 0 1 2 4 . 6 8 0 . 1 5 1 3 0 . 4 6 3 5 1 0 2 0 . 1 4 0 . 2 6 1 4 0 . 3 4 6 1 1 . 6 8 8 9 9 5 . 1 2 0 . 5 5 2 1 2 . 2 1 0 4 1 6 3 9 . 9 3 0 . 3 1 3 7 0 . 8 5 3 9 1 4 . 9 8 5 6 5 7 1 . 8 1 0 . 7 4 1 0 1 5 . 9 4 6 8 4 5 3 3 . 3 1 0 . 3 5 6 9 1 . 4 2 2 6 2 2 . 3 9 3 1 6 3 0 . 9 8 0 . 8 2 4 2 2 0 . 0 1 9 9 5 1 6 1 . 6 6 0 . 5 1 8 3 5 . 0 7 5 7 8 6 . 2 3 9 7 1 3 8 5 . 8 2 0 . 9 4 2 6 6 3 . 8 4 2 3 7 4 7 0 . 5 8 FILM 10-2 RUN F38 218 TOTALD PCEVAP UA UINST 0.2434 0.0499 1.0572 59.40 0.2493 0.0797 1.6849 .88.31 0.2646 0.1642 2.8297 136.23 0.2712 0.2035 3.2924 145.92 0.2792 0.2541 4.2472 178.37 0.2871 0.3065 4.3929 174.29 0.3051 0.4380 5.5141 199.92 0.3182 0.5431 5.8799 19 2.55 0.3472 0.8104 11.0594 317.33 0.5039 3.1920 43.7384 743.36 FILM 10-2 RUN F39 TOTALD PCEVAP UA UINST 0.2377 0.0222 0.4707 27.11 0.2394 0.0305 0.4675 26.14 0.2455 0 .0604 0.7154 38.71 0.2587 0.1300 1.9456 97.33 0.2703 0.1978 5.6805 2 5 8.23 0.3016 0.4110 7.1454 277.20 0.3266 0.6160 11.3169 364.46 0.3579 0.9213 12.6604 343.18 0.4263 1.7954 28.9634 594.86 0.4935 2.9786 96.7503 1447.90 FI LM 10-3 RUN F40 TOTALD PCEVAP UA UINST 0.2226 0.0816 1.8574 127.65 0.2392 0.1886 7.3112 435.89 0.2479 0.2510 2.8488 152.79 0.2607 0.3513 4.5754 224.94 0.2716 0.4438 4.2256 189.70 0.2943 0.6635 9.8689 391.58 0.32.58 1.0280 16.3912 541.16 0.3950 2.1133 36.5800 888.06 0.4884 4.3171 48.8173 787.32 0.5473 6.2165 126.2305 1492.91 FILM 10-3 RUN F41 TOTALD PCEVAP UA UI NST 0.2344 0.0986 1.8249 110.56 0.2418 0.1434 • 1.7258 96.87 0.3122 0.7258 11.5126 416.69 0.3918 1.7870 40.2104 1019.38 0.5544 5.7180 73.4045 1013.60 RATIO XNUNO PECMO 0.2205 1.2852 1948.43 0.2744 1.9570 1278.52 0.3935 3.2045 1914.64 0.4365 3.5177 2931.99 0.4838 4.4273 3018.82 0.5250 4.4477 3123.58 0.6044 5.4222 3848.41 0.6512 5.4456 4600 .84 0.7317 9.7938 6256.10 0.9123 33.2932 6471.43 RATIO XNUNO PECMO 0.1627 0.572 7 1902.59 0.1809 0.5563 652.67 0.2404 0.8448 1521o67 0.3506 2.2381 1864.39 0.4309 6.2048 2941.06 0.5904 7.4315 3043.21 0.6774 10.5790 4722. 18 0.75 51 10.9192 6449.53 0.8551 2 2.540 3 6770.89 0.9066 63.5106 8925.60 RATIO XNUNO PECMO 0.2739 2.5255 2411.34-0.4150 9.2667 2585.61. 0.4746 3.3667 2393.61 0.5486 5.2136 3132.10 0.6006 4.5797 3274.91 0.6862 10.2442 4242.35 0.7687 15.6708 5493.60 0.8703 31.1777 6404.85 0.9315 34.1833 7051.97 0.9513 72.6226 7926.38 RATIO XNUNO PECMO 0.3007 2.3033 1357.86 0.3629 2.0816 2613.61 0.7044 11.5642 4511.29 0.8506 35.5054 5648.21 0.9473 49.9465 80,09.98 FILM 10-3 RUN F42 219 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0.2280 0.0169 0.4838 30.12 0.1497 0.6105 3845.46 0.2319 0.0362 1.1116 66.88 0.1910 1.3785 1114.05 0.2464 0. 1161 2.7491 152.81 0.3263 3.3473 1420.82 0.2642 0.2275 6.3894 311.46 0.4537 7.3156 2539.25 0.2931 0.4428 9.1361 ,373.26 0.6000 9.7263 3707.53 0.3264 0.7481 12.9637 '428.63 0.7103 12.4356 4716.05 0.3587 1.1112 30.8273 834.04 0.7818 26.5944 5170.76 0.3765 1.3407 19.52 81 459.50 0.8114 15.378 7 6784.19 0.5086 3.8325 83.3773 1324.98 0.9235 59.9015 8811.64 FILM 10-3 RUN F43 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.2465 0.0243 0.8626 46.25 0. 1656 1.0132 3860.07 0.2530 0.0560 2.2548 115.00 0.2289 2.5866 1823.65 0.2579 0.0805 1.0488 51.13 0.2718 1.1721 1858.73 0.2834 0.2249 3.3718 146.16 0.4512 3.6814 2500.50 0.2926 0.2841 6.2377 239.23 0.5017 6.2227 4218.08 0.3027 0.3528 7.2387 2 5 9.88 0.5498 6.992 3 4384.09 0.3114 0.4157 6.6275 223.67 0.5864 6.1902 4487.98 0.3 2 39 0.5137 10.3136 325.10 0.6329 9.3614 4669.58 0.3945 1.2178 36.49 86 891.49 0.7967 31.2577 5699.47 0.4800 2.4820 65.5589 1080.85 0.8873 46.1159 6935.53 FI LM 10-3 RUN F44 TOTALD PCEVAP UA UINST RATIO • XNUNO PECMO 0.2921 0.0044 0.2055 7.70 0.1196 0.2001 1584.15 0.2950 0.0152 0.3698 13.65 0.1449 0.3580 1549.92 0.3 755 0.4144 5.8301 162.73 0.5856 5.4310 3902.96 0.4420 0.9029 44.6409 844.63 0.7461 33.1845 7167.58 0.4720 1.1774 50.2175 764.25 0.7916 32.0644 8537.26 0.5952 2.7194 112.6976 1242.95 0.8961 65.7549 10311*10 FILM 11-1 RUN F45 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0* 1775 0.0712 1 .3765 146.88 0.2660 2.3168 1164.62 0* 1834 0 . 1141 1.8489 180.65 0.3352 2.9452 1371 .87 0* 1894 0.1604 1.9933 182.47 0.3966 3.0723 1416.86 0* 1963 0.2170 2.4426 208.87 0.4580 3.6448 '1842.55 0* 2094 0.33 53 2.5549 197.39 0. 5532 3.673 3 2156.99 0* 2280 0.5318 5.4675 363.18 0.6541 7.3596 2557.84 0* 2381 0.6522 5.0390 295.14 0.6963 6.245 7 3124.84 0. 2510 0.8219 7.0953 377.32 0.7408 8.4177 3294.32 0* 2759 1.2025 15.3976 704.45 0.8049 17.2744 3611.10 o. 3039 1.7214 21.0057 793.38 0.8542 21.4349 3989.54 o. 3826 3.7679 55.1838 1470.59 0.9270 50.0184 5733.45 F I L M 1 1 - 1 RUN F 4 6 220 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 0 0 1 0 . 0 0 2 0 0 . 3 0 5 5 2 4 . 3 9 0 . 1 1 6 0 0.43 3 8 3 0 0 8 . 1 6 0 . 2 0 7 5 0 . 0 4 1 1 0 . 2 6 3 5 2 0 . 1 8 0 . 2 0 6 8 0 . 3 7 2 2 8 8 3 . 1 3 0 . 2 1 1 9 0 . 0 6 5 9 1 . 8 3 5 7 1 3 2 . 8 3 0 . 2 5 5 3 2 . 5 0 1 8 1 5 8 4 . 8 8 0 . 2 2 0 7 0. 1 1 8 8 3 . 9 1 6 7 2 6 6 . 2 6 0 . 3 4 1 3 5 . 2 2 3 8 2 0 7 1 . 6 6 0 . 2 3 0 8 0 . 1 8 4 2 4 . 8 4 8 0 3 0 2 . 5 4 0 . 4 2 3 7 6. 2 0 6 0 2 5 8 9 . 2 1 0 . 2 4 4 4 0 . 2 8 2 5 7 . 0 5 4 2 3 9 7 . 3 2 0 . 5 1 5 0 8 . 6 3 1 4 2 7 5 0 . 9 3 0 . 2 5 8 2 0 . 3 9 3 8 7 . 9 9 7 6 4 0 2 . 6 0 0 . 5 8 8 9 9 . 2 4 1 2 3 3 8 0 . 2 3 0 . 2 7 7 3 0 . 5 6 7 9 1 2 . 5 0 4 8 5 5 4 . 2 5 0 . 6 6 8 0 1 3 . 6 6 1 2 3 6 3 9 . 7 0 0 . 3 2 5 1 1 . 1 2 1 3 2 5 . 6 5 6 3 8 9 4 . 3 0 0 . 7 9 4 1 2 5 . 8 4 1 3 4 4 6 5 . 6 6 F I L M 1 1 - 1 RUN F 4 7 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 0 8 8 0 . 0 0 3 7 0 . 2 1 5 5 1 5 . 8 3 0 . 1 2 0 1 0 . 2 9 3 7 1 8 2 6 . 9 2 0 . 2 1 1 0 0 . 0 1 4 8 0 . 4 8 0 6 3 4 . 7 1 0 . 1 4 7 6 0 . 6 5 1 0 9 8 6 . 4 0 0 . 2 2 4 5 0 . 0 8 7 6 0 . 9 8 7 3 6 6 . 18 0 . 2 9 2 8 1 . 3 2 0 9 1 4 0 2 . 2 4 0 . 2 3 0 9 0 . 1 2 4 9 2 . 0 3 3 6 1 2 4 . 7 6 0 . 3 4 9 8 2 . 5 6 0 7 2 3 0 8 . 4 5 0 . 2 3 8 4 0 . 1 7 1 6 3 . 8 0 6 3 2 1 9 . 8 8 0 . 4 0 9 4 4 . 6 5 9 8 2 6 7 4 . 9 6 0 . 2 4 8 4 0 . 2 3 8 4 5 . 4 5 3 8 2 9 2 . 7 6 0 . 4 7 7 9 6 . 4 6 4 4 2 7 9 6 . 0 8 0 . 2 5 8 1 0 . 3 0 8 5 5 . 7 2 3 4 2 8 3 . 8 1 0 . 5 3 4 7 6 . 5 1 1 6 3 3 7 8 . 6 6 0 . 2 7 8 0 0 . 4 6 9 3 1 3 . 1 1 4 2 5 8 0 . 0 0 0 . 6 2 7 5 1 4 . 3 3 0 7 3 6 4 8 . 5 6 0 . 3 0 2 4 0 . 7 0 1 3 1 8 . 3 2 1 0 6 9 1 . 0 7 0 . 7 1 0 7 1 8 . 5 7 5 5 3 9 6 9 . 1 5 0 . 3 2 4 0 0 . 9 3 9 6 1 8 . 8 5 3 5 6 1 0 . 8 2 0 . 7 6 4 9 1 7 . 5 9 1 9 4 2 4 1 . 2 1 0 . 3 9 0 3 1 . 8 9 3 3 3 6 . 5 4 4 7 9 0 3 . 7 9 0 . 8 6 5 6 3 1 . 3 5 5 6 5 1 1 6 . 0 1 F I L M 1 1 - 1 RUN F 4 8 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 0 8 8 0 . 0 0 3 7 0 . 1 5 7 2 1 1 . 5 5 0 . 1 2 0 1 0 . 2 1 4 3 1 5 6 5 . 3 9 0 . 2 1 0 1 0 . 0 1 0 1 0 . 2 6 9 6 1 9 . 5 6 0 . 1 3 6 2 0 . 3 6 5 2 7 8 5 . 6 3 0 . 2 1 2 2 0 . 0 2 0 7 0 . 5 9 2 3 4 2 . 2 8 0 . 1 6 1 5 0 . 7 9 7 4 1 0 6 3 . 0 0 0 . 2 1 7 1 0 . 0 4 6 6 0 . 7 2 5 4 5 0 . 1 0 0 . 2 1 7 6 0 . 9 6 6 9 12 2 0 . 5 5 0 . 2 2 3 6 0 . 0 8 2 0 1 . 9 9 0 1 1 3 0 . 4 1 0 . 2 8 3 5 2 . 5 9 1 5 1 3 9 3 . 4 9 0 . 2 2 9 7 0 . 1 1 8 0 2 . 0 1 8 4 1 2 4 . 9 9 0 . 3 3 9 9 2 . 5 5 2 5 2 0 1 0 . 4 0 0 . 2 3 4 5 0 . 1 4 7 0 2 . 4 4 6 8 1 4 4 . 4 6 0 . 3 7 9 5 3 . 0 1 1 5 2 6 3 1 . 3 3 0 . 2 4 5 5 0 . 2 1 8 2 5 . 7 9 3 7 3 1 9 . 9 1 0 . 4 5 8 8 6 . 9 7 9 8 2 7 6 2 . 8 3 0.2 5 3 1 0 . 2 7 2 0 4 . 3 8 8 0 2 2 4 . 5 9 0 . 5 0 6 7 5 . 0 5 3 7 3 3 1 3 . 6 6 0 . 2 6 1 4 0 . 3 3 3 6 5 . 0 2 8 7 2 4 1 . 6 6 0 . 5 5 2 1 5 . 6 1 5 5 3 4 3 1 . 4 2 0 . 3 1 0 7 0 . 7 8 8 9 2 3 . 9 2 2 1 9 2 3 . 4 5 0 . 7 3 3 3 2 5 . 5 0 0 3 4 2 6 7 . 6 2 0 . 4 0 4 4 2 . 1 4 3 3 3 4 . 5 4 4 1 8 4 5 . 3 6 0 . 8 7 9 2 3 0 . 3 8 6 9 5 5 5 0 . 2 9 F I L M 1 1 - 1 RUN F 4 9 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 5 3 7 0 . 0 1 7 5 2 . 5 4 5 4 1 2 8 . 1 9 0. 1 5 3 0 2 . 8 9 0 7 3 8 0 4 . 2 2 0 . 2 5 8 0 0 . 0 3 6 1 1 . 3 5 1 7 6 5 . 7 0 0. 1 9 4 9 1 . 5 0 6 8 1 9 3 4 . 5 2 0 . 2 6 2 0 0 . 0 5 3 7 1 . 2 8 2 0 6 0 . 3 4 0 . 2 3 1 0 1.40 5 2 1 9 5 9 . 6 1 221 0 . 2 6 7 9 0 . 0 8 0 7 1 . 9 6 4 1 8 9 . 04 0 . 2 8 0 5 2 . 1 1 9 9 2 2 5 8 . 7 8 0 . 2 7 2 8 0 . 1 0 4 1 2.2 748 9 9 . 0 5 0 . 3 1 8 7 2 . 4 0 1 6 2 7 2 6 . 8 2 0 . 2 7 7 3 0 . 1 2 6 3 3 . 1 3 6 3 1 3 1 . 9 4 0 . 3 5 1 3 3 . 2 5 1 7 3 1 1 0 . 7 6 0 . 2 8 3 3 0 . 1 5 7 4 4 . 3 9 5 7 1 7 8 . 0 0 0 . 3 9 2 3 4 . 4 8 3 0 3 7 1 9 . 0 1 0 . 2 9 2 7 0 . 2 0 8 2 4 . 7 7 9 7 1 8 3 . 2 6 0 . 4 4 9 0 4 . 7 6 8 7 3 6 5 6 . 4 3 0 . 3 1 0 0 0 . 3 1 0 3 1 3 . 9 4 3 3 4 8 8 . 1 4 0 . 5 3 6 0 1 3 . 4 4 9 5 4 0 5 7 . 4 4 0.3,413 0 . 5 2 6 4 1 4 . 7 6 4 7 4 4 2 . 0 4 0 . 6 5 2 4 1 3 . 4 0 9 9 4 4 7 9 . 6 6 0 . 3 7 7 2 0 . 8 2 7 9 1 9 . 9 8 0 4 4 9 1 . 3 5 0 . 7 4 2 7 1 6 . 4 7 5 5 4 9 1 7 . 4 5 F I L M 1 1 - 1 RUN F 5 0 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0.2 5 9 1 0 . 0 0 5 3 0 . 4 2 7 0 2 0 . 3 8 0. 1 2 3 0 0 . 4 6 9 3 1 9 4 2 . 8 0 0 . 2 7 6 0 0 . 0 7 7 1 1 . 0 1 3 1 4 4 . 9 9 0 . 2 7 4 5 1 . 1 0 3 6 1 7 8 5 . 6 4 0 . 2 8 0 8 0 . 0 9 9 2 3 . 4 3 8 6 1 4 1 . 1 5 0 . 3 1 1 2 3 . 5 2 3 2 3 1 6 0 . 8 4 0 . 2 8 5 2 0 . 1 1 9 7 3 . 2 0 3 7 1 2 7 . 2 8 0 . 3 4 2 3 3 . 2 2 6 3 3 1 9 9 . 5 3 0 . 2 9 1 1 0 . 1 4 9 0 4.5 5 28 1 7 4 . 4 5 0 . 3 8 1 9 4 . 5 1 4 5 3 2 7 6 . 9 2 0.3 6 0 4 0. 1 9 6 8 7 . 2 0 9 1 2 6 2 . 1 8 0 . 4 3 7 3 7 . 0 0 0 2 3 9 3 1 .93 0 . 3 2 2 6 0 . 3 2 3 9 9 . 5 8 9 3 3 1 4 . 0 6 0 . 5 4 5 9 9 . 0 0 6 1 4 2 3 4 . 5 8 0 . 3 4 8 0 0 . 4 9 1 9 1 6 . 3 7 8 8 4 6 2 . 9 1 0 . 6 3 8 2 1 4 . 3 1 8 0 4 7 7 1 . 7 7 0 . 3 9 6 9 0 . 8 9 1 4 2 9 . 2 1 1 0 6 6 7 . 1 9 0 . 7 5 6 3 2 3 . 5 3 8 7 5 5 8 0 . 8 4 F I L M 1 1 - 2 RUN F 5 1 TOTALD P C E V A P UA • UI NST R A T I O XNUNO PECMO 0 . 1 4 2 6 0 . 0 0 5 7 0 . 0 9 8 8 1 5 . 6 2 0. 1 3 0 1 0 . 1 9 8 0 9 6 1 .77 0 . 1 4 8 0 0 . 0 4 8 6 0 . 5 8 7 5 8 8 . 5 2 0 . 2 2 2 9 1 . 1 6 4 7 6 4 7 . 6 4 0 . 1 5 3 1 0 . 0 9 1 3 1 . 1 6 9 9 1 6 4 . 1 8 0 . 2 9 7 6 2 . 2 3 4 1 7 6 3 . 4 0 0 . 1 6 3 8 0 . 1 9 1 6 2 . 7 4 4 5 3 4 7 . 3 9 0 . 4 2 6 9 5 . 0 5 8 7 1 0 2 5 . 0 8 0 . 1 7 2 9 0 . 2 8 7 2 2 . 6 2 3 4 2 9 4 . 2 4 0 . 5 1 2 8 4 . 5 2 2 5 1 5 0 8 .99 0 . 1 9 2 9 0 . 5 3 5 3 6 . 4 5 4 5 6 1 2 . 1 2 0 . 6 4 9 0 1 0 . 4 9 4 5 2 1 6 8 . 6 7 0 . 2 0 5 2 0 . 7 1 6 2 7 . 0 7 2 8 5 6 7 . 4 9 0 . 7 0 8 6 • 1 0 . 3 5 1 6 2 6 8 6 . 1 9 0 . 2 2 2 7 1 . 0 1 3 2 1 1 . 6 0 8 3 8 0 5 . 3 8 0 . 7 7 2 2 1 5 . 9 4 5 4 2 9 2 3 . 5 8 0 . 2 6 7 9 2.0 223 2 5 . 0 1 1 4 1 3 1 1 . 4 1 0 . 8 6 9 1 3 1 . 2 2 6 4 3 3 4 5 . 9 5 0 . 2 9 2 6 2 . 7 4 0 5 2 6 . 7 4 5 1 1 0 8 1 . 4 1 0 . 8 9 9 6 2 8 . 1 2 8 0 3 8 3 0 . 3 5 0 . 3 4 4 5 4 . 6 8 4 9 3 6 . 2 0 5 4 1 1 2 7 . 9 0 0 . 9 3 8 5 3 4 . 5 3 4 0 4 5 2 1 .25 0 . 4 0 3 4 7 . 7 3 6 4 7 2 . 1 6 6 7 1 6 3 1 . 9 1 0 . 9 6 1 7 5 8 . 5 2 3 1 5 5 4 2 . 1 9 F l LM 1 1 - 2 RUN F 5 2 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 1 7 5 9 0 . 0 0 6 5 0 . 2 6 3 7 2 7 . 3 6 0 . 1 2 8 3 0 . 4 2 7 9 1 4 8 3 . 7 5 0 . 3 2 5 8 1 . 9 2 8 5 3 7 . 1 8 5 6 1 7 2 5 . 9 1 0 . 8 6 3 0 4 9 . 9 8 3 6 1 0 6 9 . 1 3 0 . 1 8 6 5 0 . 0 7 4 6 1 . 1 9 6 6 1 1 2 . 9 7 0 . 2 6 7 8 1 . 8 7 2 6 1 1 1 5 . 8 2 0 . 1 9 7 2 0 . 1 5 2 2 2 . 2 8 3 0 1 9 7 . 2 6 0 . 3 8 0 9 3 . 4 5 7 4 1 6 2 5 . 2 4 0 . 2 1 3 1 0 . 2 8 3 5 6 . 4 3 7 1 4 8 6 . 0 9 0 . 5 0 9 3 9 . 2 0 5 5 2 1 2 9 . 9 3 0 . 2 4 2 5 0 . 5 8 3 9 1 0 . 5 2 3 2 6 4 2 . 7 1 0 . 6 6 7 3 1 3 . 8 5 3 5 2 9 5 1 . 8 3 0 . 2 6 5 8 0 . 8 7 9 5 1 3 . 8 2 6 3 6 7 9 . 5 6 0 . 7 4 7 6 1 6 . 0 5 8 3 3 3 2 0 . 5 3 0 . 3 0 2 0 1 . 4 5 1 0 2 6 . 7 1 9 9 1 0 5 0 . 3 4 0 . 8 2 7 9 2 8 . 1 9 7 4 4 1 4 8 . 8 8 0 . 3 7 4 9 3 . 0 9 3 4 5 2 . 8 8 7 2 1 4 5 1 . 9 2 0 . 9 1 0 1 4 8 o 3 9 0 6 5 2 6 5 . 3 7 F I L M 1 1 - 2 RUN F5 3 222 TOTALD P C E V A P UA U I N S T R AT 10 XNUNO PECMO 0 . 1 9 2 3 0 . 0 0 4 9 0 . 3 5 1 8 3 0 . 4 8 0 . 1 2 3 5 0 . 5 2 1 1 1 9 2 2 . 8 4 0 . 1 9 3 9 0 . 0 1 3 4 0 . 4 3 2 7 3 6 . 9 2 0 . 1 4 3 9 0 . 6 3 6 2 7 2 5 . 0 0 0 . 1 9 6 3 0 . 0 2 7 4 0 . 9 4 9 9 7 9 . 4 3 0 . 1 7 5 5 1 . 3 8 5 9 9 8 3 . 5 6 0 . 1 9 9 1 0 . 0 4 4 1 1 . 1 3 6 1 9 2 . 4 7 0 . 2 1 0 4 1 . 6 3 6 8 1 2 4 1 .32 0 . 2 0 2 0 0 . 0 6 1 7 1 . 1 9 1 7 9 4 . 2 3 0 . 2 4 4 0 1 . 6 9 2 3 1 2 6 4 . 2 7 0 . 2 0 7 4 0 . 0 9 5 3 2 . 2 8 8 3 1 7 3 . 6 8 0 . 3 0 1 2 3 . 2 0 2 0 1 5 5 1 . 3 9 0 . 2 1 4 0 0 . 1 3 9 3 2 . 8 3 8 4 2 0 3 . 3 7 0 . 3 6 3 9 3 . 8 6 8 7 1 8 7 2 . 7 1 0 . 2 2 1 8 0 . 1 9 4 8 3 . 5 8 4 2 2 4 0 . 0 8 0 . 4 2 8 8 4 . 7 3 3 8 2 2 1 2 . 2 7 0 . 2 3 2 2 0 . 2 7 5 0 5 . 1 9 0 7 3 2 0 . 2 5 0 . 5 0 2 5 6 . 6 1 1 3 2 6 1 1 .39 0 . 2 4 2 4 0 . 3 6 0 1 5 . 2 4 0 9 2 9 5 . 9 7 0 . 5 6 2 3 6 . 3 7 6 5 3 0 2 7 . 3 7 0 . 2 7 3 5 0 . 6 6 9 0 1 4 . 2 4 7 3 6 7 8 . 9 5 0 . 6 9 5 4 1 6 . 5 0 4 9 3 5 8 4 . 7 7 0 . 3 1 2 3 1 . 1 6 5 9 2 1 . 8 6 5 4 8 0 7 . 3 9 0 . 7 9 5 6 2 2 . 4 1 4 8 4 3 8 5 . 9 0 0 . 3 5 7 5 1 . 9 2 0 1 3 3 . 2 1 8 2 9 3 7 . 9 1 0.86 3 8 2 9 . 8 0 8 4 5 0 2 7 . 4 2 F l LM 1 1 - 2 RUN • F 5 4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 0 8 8 0 . 0 0 3 8 0 . 2 6 3 8 1 9 . 3 8 0. 1 2 0 1 0 . 3 5 9 6 1 5 6 5 . 3 9 0 . 2 1 0 1 0 . 0 1 0 4 0 . 5 7 6 9 4 1 . 8 6 0 . 1 3 6 2 0 . 7 8 1 5 1 0 4 7 . 5 1 0 . 2 1 2 2 0 . 0 2 1 3 0 . 9 4 9 9 6 7 . 8 2 0 . 1 6 1 5 1 . 2 7 8 9 1 0 6 3 . 0 0 0 . 2 1 5 2 0 . 0 3 7 6 1 . 0 6 2 2 7 4 . 0 3 0 . 1 9 6 5 1 . 4 1 6 0 1 0 0 6 .01 0 . 2 1 8 5 0 . 0 5 5 8 1 . 5 9 4 2 1 0 7 . 8 6 0 . 2 3 2 7 2 . 0 9 5 0 1 3 6 7 . 3 0 0 . 2 2 4 5 0 . 0 9 0 3 3.00 70 1 9 4 . 9 4 0 . 2 9 2 7 3 . 8 9 0 7 1 6 7 9 . 4 4 0 . 2 2 9 7 0 . 1 2 1 7 2 . 6 0 6 2 1 6 0 . 7 2 0 . 3 3 9 9 3 . 2 8 2 2 2 0 1 0 . 3 8 0 . 2 3 7 1 0 . 1 6 8 1 3 . 8 5 2 6 2 2 4 . 9 6 0 . 3 9 9 2 4 . 7 4 0 4 2 6 5 9 . 8 0 0.2 531 0 . 2 8 0 5 6 . 9 9 5 5 3 7 0 . 1 2 0 . 5 0 6 7 8 . 3 2 8 2 2 8 4 4 . 7 9 0 . 2 6 1 6 0 . 3 4 5 8 5 . 1 6 6 5 2 4 8 . 0 7 0 . 5 5 3 2 5 . 7 6 9 2 3 2 6 7 . 9 5 0 . 2 8 5 4 0 . 5 5 2 8 1 6 . 3 3 5 3 6 9 3 . 3 2 0 . 6 5 6 1 1 7 . 5 9 1 9 3 5 6 5 . 4 3 0 . 3 2 4 0 0 . 9 6 8 3 1 8 . 7 7 0 0 6 4 0 . 6 1 0 . 7 6 4 9 1 8 . 4 4 9 5 3 8 8 2 .24 0 . 3 5 5 4 1 . 38 77 3 1 . 6 0 7 5 8 6 9 . 6 3 0 . 8 2 1 9 2 7 . 4 7 3 6 4 8 8 2 . 3 9 F l LM 11- 2 RUN F 5 5 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 6 0 5 0 . 0 0 7 5 0 . 7 5 1 3 3 5 . 6 6 0 . 1 3 6 9 0 . 8 2 5 8 2 1 4 7 . 0 6 0 . 2 6 1 4 0 . 0 1 1 4 0 . 6 4 4 9 3 0 . 1 3 0 . 1 4 6 0 0 . 7 0 0 2 1 6 3 5 . 7 6 0 . 2 6 3 8 0 . 0 2 1 5 1 . 2 6 5 2 5 8 . 3 7 0 . 1 6 9 1 1 . 3 6 8 8 1 4 7 9 . 9 6 0 . 2 6 6 4 0 . 0 3 2 6 1 . 3 9 1 2 6 2 . 9 8 0 . 1 9 3 0 1 . 4 9 1 4 1 4 9 9 . 2 4 0 . 2 6 8 2 0 . 0 4 0 7 2 . 0 1 3 5 8 9 . 6 5 0 . 2 0 9 5 2 . 1 3 7 6 2 0 0 6 . 3 6 0 . 2 7 2 6 0 . 0 6 0 2 2 . 3 1 1 0 1 0 0 . 5 6 0 . 2 4 6 8 2 . 4 3 6 4 2 2 9 8 . 6 3 0 . 2 7 6 8 0 . 0 7 9 8 3 . 1 1 8 3 1 3 1 . 4 7 • 0 . 2 8 1 1 3 . 2 3 5 2 2 4 1 5 . 9 5 0 . 2 8 0 8 0 . 0 9 8 6 2 . 9 8 3 1 1 2 2 . 0 8 0 . 3 1 1 2 3 . 0 4 7 2 2 8 0 7 . 4 0 0 . 2 8 6 2 0 . 1 2 5 2 4 . 0 1 5 5 1 5 8 . 9 2 0 . 3 4 9 7 4 . 0 4 3 5 3 2 1 8 . 4 6 0 . 2 9 6 2 0 . 1 7 6 7 7 . 7 6 6 2 2 9 1 . 2 8 0 . 4 1 3 2 7 . 6 6 9 1 3 3 3 0 . 5 3 0 . 3 0 7 6 0 . 2 4 0 1 9.5 7 2 7 3 3 4 . 0 0 0 . 4 7 6 3 9 . 1 3 3 8 3 4 5 1 . 7 8 0 . 3 2 7 6 0 . 3 6 2 2 1 0 . 1 6 2 2 3 2 0 . 2 3 0 . 5 6 6 2 9 . 3 2 4 1 4 4 1 9 . 7 4 0 . 3 7 5 7 0 . 7 2 3 2 3 0 . 0 2 6 8 7 6 9 . 1 9 0 . 7 1 2 5 2 5 . 6 8 4 6 5 0 6 3 . 2 3 0 . 4 3 6 8 1 . 3 3 6 3 6 1 . 0 6 9 6 1 1 7 0 . 7 6 0 . 8 1 7 3 4 5 . 4 6 0 3 6 1 4 2 . 2 9 F I L M 1 1 - 3 RUN F'56 223 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 1 9 2 3 0 . 0 0 4 9 0 . 2 1 6 2 18". 7 4 0 . 1 2 3 5 0 . 3 2 0 4 2 5 2 4 . 5 9 0 . 1 9 6 3 0 . 0 2 6 7 0 . 6 3 9 0 5 3 . 8 4 0. 1 7 5 5 0 . 9 3 9 4 9 7 8 . 8 6 0 . 2 0 2 0 0 . 0 6 0 0 0 . 9 7 4 9 7 8 . 17 0 . 2 4 4 0 1 . 4 0 4 0 1 2 6 4 . 2 8 0 . 2 1 6 5 0. 1 5 1 9 2 . 6 9 3 1 1 9 5 . 4 6 0 . 3 8 5 3 3.760 8 1 6 1 9 . 1 1 0 . 2 3 2 3 0..2676 3 . 3 1 7 5 2 0 9 . 4 5 0 . 5 0 2 5 4 . 3 2 4 0 2 3 2 1 . 8 9 0 . 2 4 7 8 0 . 3 9 7 4 5 . 5 9 1 3 3 0 8 . 5 0 0 . 5 9 0 3 6 . 7 9 4 6 3 2 5 2 . 3 2 0 . 2 7 3 1 0 . 6 4 6 6 7 . 1 4 6 9 3 3 4 . 4 5 0 . 6 9 4 2 8 . 1 1 9 4 3 7 4 5 . 2 2 0 . 3 3 4 5 1 . 4 7 1 3 2 2 . 7 0 8 3 7 7 5 . 0 2 0 . 8 3 3 6 2 3 . 0 4 1 6 4 5 9 4 . 6 6 0 . 3 9 3 8 2 . 6 1 3 8 4 7 . 2 1 6 8 1 1 2 5 . 6 6 0 . 8 9 8 1 3 9 . 4 0 0 8 5 1 6 8 . 6 8 F I LM 1 1 - 3 RUN F 5 7 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 1 4 4 0 . 0 8 1 9 0 . 8 0 0 1 5 9 . 5 1 0 . 2 8 3 0 1 . 1 3 4 0 12 8 5 . 7 8 0.22 53 0 . 1 4 9 5 2 . 2 0 5 9 1 4 5 . 1 9 0 . 3 8 2 2 2 . 9 0 7 0 1 9 6 5 . 6 8 0 . 2 3 9 1 0 . 2 4 5 2 3 . 1 2 2 4 1 8 4 . 1 5 0 . 4 8 3 4 3 . 9 1 3 6 2 3 9 0 . 2 2 0 . 2 5 9 7 0 . 4 0 9 1 5 . 3 5 0 0 2 7 3 . 2 8 0 . 5 9 6 8 6 . 3 0 7 4 3 2 4 3 . 2 4 0 . 2 7 7 2 0 . 5 7 1 1 7 . 7 5 6 9 3 4 2 . 1 9 0 . 6 6 8 7 8 . 4 3 1 2 3 6 2 8 . 3 7 0 . 4 7 4 5 4 . 2 1 5 8 3 7 . 2 9 7 0 7 8 5 . 9 5 0 . 9 3 4 1 3 3 . 1 4 9 7 6 7 1 5 . 5 2 F I LM 1 1 - 3 ' RUN F 5 8 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 4 4 3 0 . 0 1 1 4 1 . 0 0 1 1 5 4 . 1 7 0 . 1 4 3 0 1 . 1 7 6 2 3 2 0 6 * 4 1 0 . 2 4 9 7 0.03.5.5 1 . 4 2 1 2 7 4 . 11 0 . 1 9 7 9 1 . 6 4 5 0 1 5 5 6 . 6 3 0 . 2 5 5 3 0 . 0 6 1 6 2 . 2 9 6 6 1 1 4 . 5 7 0 . 2 4 9 8 2 . 6 0 0 3 1 9 1 9 . 1 5 0 . 2 6 4 7 0 . 1 0 7 5 2 . 6 4 0 3 1 2 4 . 2 2 0 . 3 2 6 5 2 . 9 2 2 6 2 6 3 9 . 7 6 0 . 2 7 3 0 0 . 1 5 1 2 2 . 5 2 1 6 1 1 0 . 9 7 0 . 3 8 6 5 2 . 6 9 3 2 2 7 2 9 . 6 5 0 . 2 8 3 9 0 . 2 1 2 4 5 . 2 9 0 9 2 1 6 . 9 8 0 . 4 5 4 5 5 . 4 7 6 4 3 7 2 6 . 9 9 0 . 4 6 5 9 2 . 0 9 6 0 2 8 . 4 0 6 8 6 0 7 . 2 9 0 . 8 7 6 7 2 5 . 1 4 8 9 6 5 0 3 . 4 8 F I L M 1 1 - 3 RUN F 5 9 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 5 8 6 0 . 0 0 3 5 0 . 3 7 1 7 1 7 . 7 7 0 . 1 1 8 1 0 .408 5 2 9 1 1 . 1 2 0 . 2 6 1 4 0 . 0 1 4 7 0 . 8 0 5 3 3 7 * 9 0 0 . 1 4 6 0 0 . 8 8 0 6 1 6 2 9 * 4 7 0 . 2 6 5 3 0 . 0 3 0 8 1 . 1 5 4 7 5 2 . 9 7 0 . 1 8 3 1 1 . 2 4 9 2 1 6 6 0 . 1 1 0 . 2 7 1 7 0 . 0 5 8 3 1 . 9 8 0 7 8 7 . 3 9 0 . 2 3 9 8 2 . 1 1 0 9 20 3 2 . 6 2 0 . 2 8 2 9 0 . 1 0 9 2 2 . 6 7 9 9 1 1 0 . 8 4 0 . 3 2 6 2 2 . 7 8 7 0 2 6 4 9 * 9 9 0 . 2 9 0 9 0 . 1 4 8 1 4 . 1 0 0 8 1 5 8 . 5 3 0 . 3 8 0 1 4 . 0 9 8 5 3 2 7 3 . 8 0 0 . 3 1 2 4 0 . 2 6 4 1 , 8 . 1 3 6 1 2 8 4 . 2 3 0 . 4 9 9 7 7 . 8 9 1 6 3 8 9 4 . 0 0 0 . 3 3 0 2 0 . 3 7 3 3 1 1 . 2 4 6 0 3 4 6 . 4 0 0 . 5 7 6 5 1 0 . 1 6 7 3 4 3 3 4 . 1 5 0 . 3 5 0 8 0 . 5 1 4 5 1 4 . 5 6 4 6 3 9 9 . 3 3 0 . 6 4 6 9 1 2 . 4 5 2 4 5 2 6 0 . 6 7 F I L M 1 1 - 3 RUN Fe;o 2 2 4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 9 4 7 0 . 0 1 3 3 0 . 5 6 4 0 2 0 . 8 8 0 . 1 4 2 4 0 . 5 4 6 9 1 6 5 6 . 7 8 0 . 2 9 8 3 0 . 0 2 6 3 1 . 0 0 4 7 3 6 . 3 7 0 . 1 7 2 9 0 . 9 6 4 2 1 6 7 3 . 2 7 0 . 3 0 6 2 0 . 0 5 6 4 1 . 8 2 3 9 6 3 . 5 1 0.23 59 1 . 7 2 8 9 2 2 9 5 . 0 7 0 . 3 1 4 0 0 . 0 8 7 0 3. 1 0 1 1 1 0 2 . 5 9 0 . 2 9 1 1 2 . 8 6 3 2 3 5 3 0 . 3 7 0 . 3 2 3 2 0 . 1 2 5 7 3.82 76 1 1 9 . 9 5 0 . 3 5 0 2 3 . 4 4 6 4 3 6 3 4 . 3 3 0 . 3 4 4 2 0 . 2 2 1 7 7. 1 3 0 4 2 0 3 . 5 2 0 . 4 6 2 0 6 . 2 2 6 9 4 5 1 1 .83 0 . 3 6 7 5 0 . 3 4 2 8 1 1 . 7 4 4 8 2 9 4 . 8 0 0 . 5 5 8 0 9 . 6 2 9 9 5 0 4 8 . 2 9 0 . 4 6 2 3 1 . 0 1 4 3 3 2 . 4 9 9 8 59 2.99 0 . 7 7 8 2 2 4 . 3 6 7 9 6 0 5 7 . 0 4 F I L M 1 1 - 4 RUN F 6 1 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 2 8 2 0 . 0 1 6 5 0 . 7 8 1 2 4 8 . 1 2 0 . 1 5 1 0 0 . 9 7 6 0 1 1 3 7 . 7 4 0 . 2 3 0 8 0 . 0 2 9 0 1 . 1 6 5 0 7 0 . 3 9 0 . 1 7 9 8 1 . 4 4 4 1 1 1 5 0 . 8 8 0 . 2 3 4 4 0 . 0 4 6 5 1 . 2 1 8 7 7 1 . 6 8 0 . 2 1 6 8 1 . 4 9 3 3 1 7 6 1 . 5 2 0 . 2 3 9 0 0 . 0 6 9 7 1 . 6 2 0 8 9 2 . 0 6 0 . 2 6 1 2 1 . 9 5 5 5 1 7 8 7 . 5 0 0 . 2 4 6 7 0 . 1 1 0 9 2 . 8 7 7 5 ,155.20 0 . 3 2 8 8 3 . 4 0 3 9 2 3 1 5 . 8 1 0 . 2 5 6 3 0 . 1 6 5 3 3 . 0 4 6 5 1 5 3 . 1 6 0 . 4 0 1 4 3 . 4 8 9 6 2 6 8 4 . 1 3 0 . 2 6 9 3 0 . 2 4 5 6 5 . 6 1 3 2 2 5 8 . 4 6 0 . 4 8 3 7 6 . 1 8 6 3 3 5 3 4 . 3 6 0 . 2 8 2 3 0 . 3 3 4 9 6 . 1 1 4 9 2 5 5 . 6 3 0 . 5 5 2 3 6 . 4 1 5 7 3 6 9 5 . 9 2 0 . 2 9 6 8 0 . 4 4 3 0 7 . 4 1 1 3 2 8 1 . 0 8 0 . 6 1 4 5 7 . 4 1 4 7 5 0 0 5 . 2 0 0 . 4 4 5 0 2 . 2 9 2 3 3 7 . 4 4 1 9 8 3 2 . 7 0 0 . 8 8 5 8 3 2 . 9 4 1 6 7 4 3 5 . 9 6 F I LM •11-4 RUN- F 6 2 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 2 7 2 0 . 0 1 1 9 0 . 2 3 6 0 1 4 . 6 5 0 . 1 3 9 7 0 . 2 9 5 8 6 3 7 . 1 8 0 . 2 3 2 5 0 . 0 3 7 1 1 . 7 9 4 6 1 0 8 . 1 0 0 . 1 9 7 3 2 . 2 3 3 8 1 3 0 4 . 0 9 0 . 2 3 8 1 0 . 0 6 5 3 2 . 6 7 6 5 1 5 3 . 8 1 0 . 2 5 3 2 3 . 2 5 5 5 2 3 8 6 . 2 1 0 . 2 4 3 6 0 . 0 9 3 9 2 . 0 3 6 4 1 1 1 . 6 8 0 . 3 0 2 5 2 . 4 1 8 2 2 2 7 7 . 5 9 0 . 2 5 6 3 0. 1 6 5 5 4 . 9 8 2 3 2 5 3 . 5 7 0 . 4 0 1 4 5 . 7 7 7 3 2 8 8 5 . 0 7 0 . 2 6 4 7 0 . 2 1 6 6 4 . 7 5 7 4 2 2 2 . 9 8 0 . 4 5 6 6 5 . 2 4 6 8 3 3 0 0 . 0 9 0 . 2 8 2 3 0 . 3 3 5 1 8 . 2 5 4 9 35 0.69 0 . 5 5 2 3 8 . 8 0 1 5 4 2 3 4 . 0 7 0 . 3 0 6 7 0.52 52 1 2 . 9 6 8 6 4 7 4 . 8 0 0 . 6 5 0 9 1 2 . 9 4 6 2 4 5 8 8 . 9 0 0 . 3 3 5 3 0 . 7 8 9 8 3 6 . 0 8 1 5 1 1 1 1 . 6 6 0 . 7 3 2 9 3 3 . 1 3 6 5 5 0 4 0 . 7 9 0 . 3 9 1 5 1 . 4 5 6 2 4 5 . 4 3 7 4 1 0 8 8 . 1 7 0 . 8 3 2 2 3 7 . 8 6 7 6 5 1 2 4 . 6 1 0 . 4 6 2 8 2 . 6 2 3 6 7 9 . 6 3 5 5 1 3 7 9 . 2 6 0 . 8 9 8 5 5 6 . 7 3 6 1 7 8 0 5 . 0 4 F I L M 1 1 - 4 RUN F 6 3 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 5 2 4 0 . 0 1 2 0 0 . 6 4 2 6 32 .35 0 . 1 3 9 7 0 . 7 2 5 8 1 5 1 0 . 2 0 0.2 5 59 0 . 0 2 7 0 1 . 1 6 9 8 5 7 . 6 3 0 . 1 7 4 9 1 . 3 1 0 9 1 9 2 1 .53 0.2 586 0 . 0 3 8 9 1 . 1 6 3 5 5 5.93 0 . 2 0 0 9 1 . 2 8 5 9 1 9 3 4 . 6 8 0 . 2 6 4 3 0 . 0 6 4 4 2 . 4 3 0 2 1 1 3 . 0 8 0 . 2 5 1 3 2 . 6 5 6 7 2 4 8 0 . 8 5 0 . 2 7 6 0 0 . 1 2 0 5 4 . 2 9 0 6 1 8 6 . 9 3 0 . 3 4 2 8 4 . 5 8 6 8 2 8 9 0 . 7 6 0 . 2 8 2 0 0 . 1 5 0 6 2 . 8 7 9 0 1 1 7 . 6 7 0 . 3 8 3 3 2 . 9 4 9 1 4 2 2 8 . 2 5 T A B L E A XI 22 5 P R O C E S S E D DATA FOR D I S T I L L E D W A T E R - I S O PENTANE S Y S T E M F I L M 1 2 - 2 RUN I 1 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 3 9 9 0 . 0 2 8 2 5 . 9 6 0 0 9 9 . 8 7 0 . 4 1 8 4 4 . 7 9 2 7 1 1 5 1 1 . 6 0 0 . 4 4 5 5 0 . 0 4 8 9 4 3 . 7 1 3 8 7 0 9 . 6 4 0 . 4 4 0 2 3 4 . 4 9 2 9 8 8 9 6 . 9 4 0 . 4 4 9 1 0 . 0 6 2 1 2 4 . 3 2 0 4 3 8 6 . 7 5 0 . 4 5 3 4 1 8 . 9 4 8 7 8 9 6 7 . 9 4 0 . 4 5 2 4 0 . 0 7 4 6 2 2 . 8 8 6 5 3 5 8 . 4 4 " 0 . 4 6 5 3 1 7 . 6 9 0 4 9 0 3 3 . 8 1 0 . 4 5 6 0 0 . 0 8 8 7 2 5 . 6 9 8 3 3 9 6 . 3 4 0 . 4 7 8 0 1 9 . 7 1 8 8 8 0 7 7 . 5 3 0 . 4 6 3 3 0 . 1 1 6 8 2 0 . 9 5 1 5 3 1 5 . 4 9 0 . 5 0 2 2 1 5 . 9 4 6 5 8 7 3 8 . 9 3 0 . 4 8 9 1 0 . 2 2 4 3 2 4 . 1 1 3 3 3 38 . 10 0 . 5 7 7 0 1 8 . 0 4 0 8 9 2 6 9 . 0 5 0 . 5 3 9 8 0 . 4 6 7 2 3 7 . 8 3 9 1 4 5 3 . 8 6 0 . 6 8 5 3 2 6 . 7 2 6 3 1 0 5 7 1 . 8 3 0 . 5 7 9 4 0 . 6 9 4 4 1 2 0 . 0 2 5 9 1 2 1 8 . 1 3 0 . 7 4 5 7 7 6 . 9 9 8 7 1 3 2 0 8 . 7 9 F I L M 1 2 - 2 RUN 12 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 4 0 8 0 . 0 0 1 6 3 . 6 7 2 7 6 0 . 2 7 0 . 3 8 7 8 2 . 8 9 8 2 1 2 5 1 3 . 9 2 0 . 4 4 1 1 0 . 0 0 2 9 7.65 5 2 12 5.27 0 . 3 8 9 4 6 . 0 2 9 1 6 8 5 5 . 8 9 0 . 4 4 1 9 0.00 57 1 6 . 3 3 7 3 2 6 6 . 6 3 0 . 3 9 2 7 1 2 . 8 5 5 8 7 8 2 8 . 1 2 0 . 4 4 3 1 0 . 0 0 9 8 2 3 . 4 5 8 2 3 8 1 . 1 4 0 . 3 9 7 5 1 8 . 4 2 5 5 6 8 8 6 . 4 7 0 . 4 4 5 0 0 . 0 1 6 3 2 1 . 6 2 3 3 3 4 8 . 9 4 0 . 4 0 5 0 1 6 . 9 3 9 7 6 9 1 5 . 4 2 0 . 4 4 6 8 0 . 0 2 2 9 2 1 . 6 7 1 3 3 4 6 . 8 1 0 . 4 1 2 4 1 6 . 9 0 6 2 6 9 2 5 . 2 1 0 . 4 5 1 6 0 . 0 4 0 1 2 8 . 3 4 6 0 4 4 6 . 9 4 0 . 4 3 0 9 2 2 . 0 2 0 4 7 5 0 8 . 7 8 0 . 4 5 7 4 0 . 0 6 1 2 1 4 . 1 5 3 1 2 1 7 . 9 7 0.45 24 1 0 . 8 7 8 2 7 2 4 5 . 5 1 0 . 4 6 5 8 0.Q929 2 4 . 1 7 9 6 3 6 0 . 9 9 0 . 4 8 1 5 1 8 . 3 4 6 0 7 9 2 0 . 6 5 0 . 4 8 0 4 0 . 1 4 9 8 2 5 . 3 9 8 3 36 0.96 0 . 5 2 7 3 1 8 . 9 1 7 5 7 9 9 2 . 4 7 0 . 4 9 2 6 0 . 1 9 9 6 3 6 . 6 1 0 1 4 9 2 . 11 0 . 5 6 1 6 2 6 . 4 4 6 7 9 2 8 0 . 9 8 0 . 5 0 5 4 0 . 2 5 5 6 4 0 . 4 4 0 2 5 1 6 . 6 7 0 . 5 9 4 1 2 8 . 4 8 9 1 9 5 3 3 . 3 0 0.52 21 0 . 3 3 1 0 5 3 . 7 1 5 4 6 4 7 . 3 5 0 . 6 3 1 9 3 6 . 8 7 3 9 1 0 5 8 1 . 8 9 0.55 25 0 . 4 8 3 8 1 0 6 . 7 3 1 2 1 1 7 5 . 4 9 0 . 6 8 9 3 7 0 . 8 4 8 8 1 1 1 9 6 . 8 2 F I L M 1 2 - 2 ' RUN 13 TOTALD P C E V A P UA 1 U I N S T R A T I O XNUNO PECMO 0 . 4 1 5 9 0.00 20 1 . 0 9 0 3 2 0 . 1 0 0 . 3 8 8 2 0 . 9 1 2 0 1 2 5 4 5 . 5 5 0 . 4 1 9 0 0 . 0 1 3 6 1 0 . 4 4 2 7 1 9 0 . 6 3 0 . 4 0 1 8 8 . 7 1 5 3 6 8 1 5 . 8 5 0.42 58 0 . 0 3 8 8 1 6 . 1 5 3 3 2 8 8 . 0 4 0 . 4 2 9 6 1 3 . 3 7 9 5 6 9 2 5 . 0 2 0 . 4 3 0 0 0 . 0 5 5 1 3 1 . 2 7 8 9 5 4 3 . 6 1 0 . 4 4 6 3 2 5 . 5 0 1 3 6 6 6 4 . 1 5 0 . 4 3 6 5 0 . 0 8 0 6 2 1 . 2 6 2 7 3 6 0 . 4 3 0 . 4 7 0 7 1 7 . 1 6 3 9 7 2 6 6 . 8 7 0 . 4 4 1 8 0 . 1 0 2 3 2 8 . 6 1 6 5 4 7 2 . 1 0 0 . 4 8 9 7 2 2 . 7 5 6 4 7 8 2 5 . 9 7 0 . 4 4 9 6 0 . 1 3 3 9 1 8 . 9 1 6 4 3 0 2 . 9 7 0 . 5 1 5 6 1 4 . 8 6 0 0 7 0 9 5 . 3 1 0 . 4 8 9 4 0 . 3 1 6 1 3 3 . 6 3 0 3 4 8 4 . 5 7 0 . 6 2 4 7 2 5 . 8 7 4 2 8 6 8 3 . 1 2 0 . 5 1 2 0 0 . 4 3 38 7 4 . 0 9 8 2 9 3 9 . 9 6 0 . 6 7 2 2 5 2 . 5 0 1 4 1 0 3 7 6 . 2 9 F I L M T O T A L D 0 . 4 5 7 2 0 . 4 5 84 0 . 4 5 9 9 0 . 4 6 2 4 0 . 4 6 8 5 0 . 4 7 2 3 0 . 4 7 8 5 0 . 4 8 5 2 0 . 4 9 6 9 0 . 5 0 8 8 0 . 5 3 0 3 0 . 5 6 6 2 0 . 5 9 1 9 F I L M T O T A L D 0 . 3 5 9 8 0 . 3 6 3 6 0 . 3 6 9 8 0 . 3 7 3 7 0 . 3 7 8 2 0 . 3 8 7 5 0 . 4 0 0 9 0 . 4 3 3 4 0 . 4 6 6 7 0 . 5 1 9 2 F I L M T O T A L D 0 . 3 6 4 4 0 . 3 8 1 8 0 . 3 8 7 1 0 . 4 1 4 6 0 . 4 4 9 7 0 . 6 3 1 2 0 . 7 0 8 5 F I L M T O T A L D 0 . 3 9 1 1 0 . 3 9 1 7 0 . 3 9 3 4 0 . 3 9 4 9 0 . 3 9 6 8 0 . 3 9 9 2 1 2 - 2 P C E V A P 0 . 0 0 1 0 0 . 0 0 5 2 0 . 0 1 0 2 0 . 0 1 8 5 0 . 0 3 9 4 0 . 0 5 2 5 0 . 0 7 4 6 0 . 0 9 8 7 0 . 1 4 2 5 0 . 1 8 9 7 0 . 2 8 0 5 0 . 4 4 6 4 0 . 5 7 7 2 1 2 - 3 P C E V A P 0 . 0 1 0 9 0 . 0 2 7 4 0 . 0 5 5 0 0 . 0 7 2 7 0 . 0 9 3 4 0 . 1 3 8 8 0 . 2 0 6 6 0 . 3 9 2 2 0 . 6 1 0 9 1 . 0 2 9 0 1 2 - 3 P C E V A P 0 . 0 7 0 0 0 . 1 5 5 0 0 . 1 8 2 9 0 . 3 3 7 0 0 . 5 6 8 1 2 . 4 3 8 5 3 . 6 3 3 7 1 2 - 3 P C E V A P 0 . 0 0 2 3 0 . 0 0 4 7 0 . 0 1 1 3 0 . 0 1 7 2 0 . 0 2 5 0 0 . 0 3 4 8 RUN UA 0 . 7 1 9 9 1 0 . 0 9 6 4 7 . 3 1 3 6 1 2 . 2 6 0 4 2 6 . 3 7 3 3 1 4 . 4 3 2 2 1 9 . 6 7 8 6 1 8 . 8 8 3 8 3 2 . 5 3 0 7 3 4 . 6 1 7 5 6 6 . 6 2 0 4 5 6 . 2 7 7 0 8 4 . 1 7 6 2 RUN UA 0 . 4 8 6 3 2 . 2 1 8 0 4 . 1 0 0 7 2 . 3 0 0 7 2 . 9 4 2 8 6 . 3 4 4 8 9 . 0 5 58 2 4 . 5 0 5 1 2 7 . 6 7 3 9 5 2 . 3 7 8 1 RUN UA 1 . 3 6 5 2 5 . 5 0 9 2 8 . 2 1 4 1 1 8 . 5 0 1 8 2 7 . 5 5 8 1 9 2 . 7 7 7 5 1 5 2 . 3 0 2 1 RUN UA ' 0 . 5 7 2 0 0 . 8 9 6 6 1 . 2 4 2 1 2 . 1 7 5 8 2 . 8 2 3 8 3 . 5 5 8 6 1 4 U I N S T 1 0 . 9 8 1 5 3 . 2 8 1 1 0 . 3 7 1 8 3 . 4 5 3 8 7 . 3 5 2 0 7 . 5 5 2 7 7 . 0 4 2 5 8 . 7 7 4 2 9 . 2 2 4 3 5 . 5 0 7 8 4 . 8 4 5 9 5 . 1 1 7 9 8 . 5 2 I 5 U I N S T 1 2 . 0 5 5 3 . 9 4 9 7 . 0 2 5 2 . 9 8 6 6 . 2 6 1 3 7 . 7 1 1 8 5 . 3 3 4 4 7 . 4 0 4 3 4 . 2 2 6 8 3 . 9 5 1 6 U I N S T 3 4 . 16 1 2 1 . 8 2 1 7 6 . 8 2 3 6 5 . 9 7 4 6 8 . 8 0 8 2 1 . 4 5 1 0 7 6 . 5 0 I 7 U I NST 1 1 . 9 3 1 8 . 6 2 2 5 . 6 5 4 4 . 5 7 5 7 . 3 4 7 1 . 4 7 R A T I O 0 . 3 8 7 0 0 . 3 9 2 0 0 . 3 9 7 9 0 . 4 0 7 4 0 . 4 3 0 4 0 . 4 4 3 9 0 . 4 6 56 0 . 4 8 7 1 0 . 5 2 2 7 0 . 5 5 55 0 . 6 0 7 5 0 . 6 7 7 4 0 . 7 1 7 7 R A T I O 0 . 3 9 8 7 0 . 4 1 7 3 0 . 4 4 6 1 0 . 4 6 3 1 0 . 4 8 2 1 0 . 5 1 8 8 0 . 5 6 5 5 0 . 6 5 6 0 0 . 7 2 4 6 0 . 8 0 0 1 R A T I O 0 . 4 6 0 8 0 . 5 3 1 0 0 . 5 5 0 2 0 . 6 3 3 8 0 . 7 1 3 2 0 . 8 9 6 4 0 . 9 2 6 7 R A T I O 0 . 3 8 8 7 0 . 3 9 1 5 0 . 3 9 9 2 0 . 4 0 6 1 0 . 4 1 4 8 0 . 4 2 5 4 XNUNO 0 . 5 4 7 4 7 . 6 6 6 3 5 . 5 3 8 1 9 . 2 53 9 1 9 . 7 9 8 4 1 0 . 6 9 3 2 1 4 . 4 6 3 7 1 3 . 6 9 6 9 2 3 . 2 6 9 2 2 4 . 1 7 6 3 4 5 . 4 0 9 9 3 6 . 7 5 7 8 5 1 . 5 6 1 2 XNUNO 0 . 4 7 2 9 2 . 1 3 9 6 3 . 9 1 4 4 2 . 1 5 9 6 2 . 7 3 3 8 5 . 8 2 2 4 8 . 1 0 7 0 2 1 . 1 5 2 2 2 2 . 1 0 7 4 3 8 . 7 4 1 2 XNUNO 1 . 3 5 8 1 5 . 0 7 4 1 7 . 4 6 8 1 1 6 . 5 5 1 7 2 3 . 0 0 0 1 5 6 . 5 6 6 8 8 3 . 2 0 5 1 XNUNO 0 . 5 0 9 0 0 . 7 9 58 1 . 1 0 0 7 1 . 9 2 0 0 2 . 4 8 2 3 3 . 1 1 3 0 2 2 6 PECMO 1 3 9 9 1 . 9 7 7 4 5 6 . 3 2 8 6 7 4 . 9 7 8 1 9 9 . 7 8 8 9 0 2 . 5 7 8 3 7 4 . 9 3 8 4 9 6 . 7 2 7 6 4 7 . 8 6 8 8 1 2 . 2 7 9 0 3 4 . 6 3 9 4 0 5 . 0 3 1 0 7 1 5 . 9 9 1 1 9 9 5 . 4 9 PECMO 8 5 1 3 . 2 5 6 4 4 8 . 2 5 7 4 9 4 . 7 9 6 6 3 4 . 3 7 7 6 6 4 . 4 1 7 8 5 4 . 3 7 8 1 3 5 . 9 4 8 7 8 2 . 9 5 9 4 5 8 . 2 0 1 0 5 3 5 . 4 2 PECMO 7 9 4 7 . 7 2 6 7 7 8 . 5 8 9 1 6 4 . 7 3 8 4 0 1 . 9 6 9 1 1 4 . 2 5 1 2 7 9 2 . 7 3 1 6 7 7 1 . 9 8 PECMO 1 3 8 7 7 . 2 9 6 9 5 4 . 9 4 6 9 7 6 . 1 6 7 0 1 1 . 2 9 7 0 4 5 . 7 3 7 0 7 1 . 6 5 2 2 7 FILM 1 2 - 3 RUN 1 8 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0 . 3 8 5 9 0 . 0 1 4 7 1 . 2 9 0 3 2 7 . 8 6 0 . 4 0 3 5 1 . 1 7 3 1 1 0 2 7 0 . 4 2 0 . 3 8 8 4 0 . 0 2 4 7 3 . 5 3 5 5 7 5 . 0 5 0 . 4 1 4 8 3 . 1 8 0 0 6 8 9 5 . 9 7 0 . 3 9 0 8 0 . 0 3 4 7 3 . 3 0 0 7 6 9 . 1 9 0 . 4 2 5 6 2 . 9 5 0 0 6 9 3 9 . 0 9 0 . 3 9 3 8 0 . 0 4 7 1 4 . 0 7 3 8 8 4 . 2 3 0 . 4 3 8 5 3 . 6 1 8 3 6 9 7 4 . 8 3 0 . 3 9 5 5 0 . 0 5 4 2 2 . 3 5 3 0 4 8 . 0 8 0 . 4 4 5 7 2 . 0 7 4 3 7 0 2 1 . 5 8 0 . 3 9 9 8 0 . 0 7 2 7 3 . 3 8 6 7 6 8 . 1 5 0 . 4 6 3 5 2 . 9 7 2 7 8 1 0 3 . 1 0 0 . 4 0 9 0 0 . 1 1 3 5 7 . 4 0 0 1 1 4 3 . 9 6 0 . 4 9 8 9 6 . 4 2 3 5 8 2 9 9 . 1 9 0 . 4 1 6 6 0 . 1 4 7 8 5 . 9 6 3 8 1 1 1 . 3 6 0 . 5 2 5 8 5 . 0 6 0 9 8 4 4 2 . 8 3 0 . 4 3 3 9 0 . 2 3 2 4 1 4 . 4 5 7 6 2 5 4 . 3 0 0 . 5 8 0 4 1 2 . 0 3 7 7 8 7 9 3 . 7 9 0 . 5 7 2 4 1 . 1 7 2 9 3 6 . 1 2 6 8 4 4 5 . 6 6 0 . 8 1 7 4 2 7 . 8 2 8 9 1 1 6 0 7 . 4 9 FILM 1 2 - 3 RUN 1 9 ^ TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0 . 4 1 7 8 0 . 1 9 8 3 3 . 2 5 4 2 6 5 . 9 3 0 . 5 6 0 0 3 . 0 0 5 5 8 9 8 5 . 7 1 0 . 4 3 5 2 0 . 2 8 9 1 2 4 . 6 1 8 8 4 3 0 . 4 5 0 . 6 1 0 7 2 0 . 4 3 6 9 8 6 9 0 . 4 0 0 . 4 6 7 4 0 . 4 7 5 4 3 2 . 1 5 9 2 5 0 1 . 7 6 0 . 6 8 5 9 2 5 . 5 8 7 0 9 6 7 2 . 3 9 0 . 4 8 6 9 0 . 6 0 2 1 3 2 . 5 0 6 5 4 5 4 . 1 3 0 . 7 2 2 0 2 4 . 1 2 1 4 9 7 0 1 . 4 8 0 . 5 4 6 1 1 . 0 5 4 9 5 8 . 0 8 9 4 6 9 0 . 6 4 0 . 8 0 3 1 4 1 . 1 4 7 0 1 0 9 0 5 . 1 4 0 . 7 2 6 8 3 . 1 4 8 3 1 7 0 . 6 3 2 1 1 3 1 3 . 8 Q 0 . 9 1 6 6 1 0 4 . 1 7 8 7 1 6 1 1 3 . 3 0 0 . 7 9 5 7 4 . 2 8 4 9 3 6 9 . 0 4 4 1 2 0 2 2 . 1 6 0 . 9 3 6 4 1 7 5 . 5 3 6 5 1 8 8 3 6 . 5 2 FI LM 1 2 - 4 RUN n o TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0 . 3 4 1 4 0 . 0 4 2 5 0 . 8 1 6 6 2 2 . 9 1 0 . 4 3 3 4 0 . 8 5 3 5 8 1 1 4 . 1 8 0 . 3 4 8 0 0 . 0 7 4 9 2 . 8 9 7 4 7 7 . 5 7 0 . 4 6 4 9 2 . 9 4 5 2 6 6 8 7 . 6 3 0 . 3 5 4 2 6 . 1 0 6 0 5 . 5 0 8 3 1 4 2 . 1 8 0 . 4 9 2 4 5 . 4 9 3 8 8 3 6 4 . 3 5 0 . 3 7 0 2 0 . 1 9 2 8 6 . 5 2 4 5 1 5 8 . 1 9 0 . 5 5 5 5 6 . 3 8 8 7 7 5 1 1 . 6 4 0 . 3 9 5 5 0 . 3 4 4 2 1 1 . 0 4 1 8 2 3 9 . 4 5 0 . 6 3 5 6 1 0 . 3 3 1 7 8 0 1 5 . 6 7 0 . 4 4 6 7 0 . 7 1 7 6 2 7 . 0 3 0 5 4 8 3 . 2 8 0 . 7 4 7 1 2 3 . 5 5 0 7 9 0 5 2 . 8 1 0 . 5 1 1 1 1 . 3 1 8 7 4 2 . 2 6 3 7 5 8 3 . 7 3 0 . 8 3 1 3 3 2 . 5 4 9 8 1 0 3 7 1 . 3 3 0 . 6 2 9 1 2 . 8 7 « 4 5 6 . 8 6 3 2 5 5 0 . 7 9 0 . 9 0 9 6 3 7 . 8 0 2 0 1 3 7 3 0 . 7 8 FILM 1 2 - 4 RUN 1 1 1 TOTALD PCEVAP UA UI NST RATIO XNUNO PECMO 0 . 3 7 3 0 0 . 0 9 2 4 3 . 0 6 7 9 7 3 . 9 8 6 . 4 9 7 0 3 . 0 1 0 5 7 1 4 1 . 6 3 0 . 3 8 9 9 0 . 1 8 0 4 7 . 8 5 0 3 1 7 1 . 6 0 0 . 5 5 9 7 7 . 2 9 8 9 7 9 0 1 . 9 5 0 . 4 1 0 8 0 . 2 9 9 0 1 0 . 2 6 5 0 2 0 3 . 6 4 0 . 6 2 3 7 9 . 1 2 7 0 8 3 2 6 . 2 2 0 . 4 3 5 4 0 . 4 5 5 9 1 3 . 4 6 4 7 2 3 9 . 1 0 0 . 6 8 4 0 1 1 . 3 5 8 3 8 8 3 5 . 4 1 0 . 5 1 2 7 1 . 0 7 0 8 3 2 . 4 9 0 0 4 5 6 . 9 2 0 . 8 0 6 6 2 5 . 5 6 0 1 9 0 9 8 . 1 0 0 . 5 3 5 0 . 1 . 2 8 7 0 4 1 . 7 1 6 1 4 8 3 . 4 5 0 . 8 2 9 7 2 8 . 2 1 6 6 1 5 7 9 3 . 1 0 0 . 6 4 1 4 2 . 5 9 7 0 9 4 . 7 7 6 4 8 6 4 . 5 1 0 . 9 0 1 3 6 0 . 4 9 9 2 1 2 8 0 9 . 3 1 0 . 7 0 8 5 . 3 . 6 6 0 3 1 5 0 . 5 8 0 4 1 0 4 9 . 1 4 0 . 9 2 6 7 8 1 . 0 8 9 5 1 5 7 1 6 . 0 3 F I L M 1 2 - 4 RUN 112 228 TOTALD 0 . 3 6 2 2 0 . 3 6 4 8 0 . 3 6 7 7 0.3 7 5 0 0 . 3 8 6 9 0 . 5 4 7 5 0 . 6 2 4 1 0 . 7 3 9 3 0 . 8 8 0 0 F I L M TOTALD 0 . 3 8 2 4 0 . 3 8 3 8 0 . 3 9 0 1 0 . 3 9 6 0 0 . 4 0 2 9 0 . 4 1 6 4 0 . 4 5 0 6 0 . 5 4 0 7 0 . 5 8 8 7 F I L M TOTALD 0 . 3 4 1 5 0 . 3 4 2 8 0 . 3 4 5 1 0 . 3 4 9 9 0 . 3 5 7 7 0 . 3 7 0 4 0 . 3 8 8 0 0 . 4 1 5 5 0 . 4 5 4 6 0 . 5 3 7 1 .FILM TOTALD 0 . 3 5 4 7 0.3 585 0 . 4 0 3 5 0 . 4 5 0 3 0 . 4 8 4 8 0 . 5 9 9 8 0 . 6 8 7 9 P C E V A P 0 . 0 1 3 8 0.0253' 0 . 0 3 8 1 0 . 0 7 1 6 0. 1 2 9 2 1 . 2 9 7 2 2 . 1 6 7 0 3 . 9 1 8 9 6 . 9 5 8 7 1 2 - 4 P C E V A P 0 . 0 3 53 0 . 0 4 1 4 0 . 0 6 8 9 0 . 0 9 5 0 0 . 1 2 6 4 0 . 1 9 1 8 0 . 3 7 5 3 1 . 0 1 2 4 1 . 4 4 4 5 1 2 - 4 P C E V A P 0 . 0 0 3 7 0 . 0 0 9 7 0 . 0 2 0 0 0 . 0 4 2 2 0 . 0 7 9 5 0 . 1 4 3 9 0 . 2 4 0 5 0 . 4 0 8 2 0 . 6 9 0 8 1 . 4 5 7 0 1 2 - 4 P C E V A P 0 . 2 1 0 4 0 . 2 3 3 6 0 . 5 4 4 7 0 . 9 5 2 9 1 . 3 0 5 7 2 . 9 1 9 9 4 . 6 6 0 2 UA 1 . 6 0 0 3 2 . 0 1 0 9 1 . 2 7 9 8 2 . 8 1 7 1 4 . 8 3 1 5 2 5.03 74 7 7 . 1 5 58 2 1 1 . 4 6 1 2 2 6 0 . 2 3 3 9 RUN UA 0 . 9 6 5 5 2 . 3 2 1 7 2 . 5 8 4 5 2 . 8 0 1 6 3 . 2 8 8 6 7 . 8 6 4 9 1 8 . 3 5 7 5 6 3 . 3 4 0 9 49 .0 8 1 5 RUN UA 0 . 2 2 1 7 0.45 52 0 . 7 5 0 1 1 . 8 3 9 1 2 . 9 9 9 5 4 . 4 9 6 6 7 . 7 0 3 2 1 2 . 9 9 9 1 2 1 . 7 1 7 6 4 4 . 4 4 4 5 RUN UA 1 . 9 3 8 9 5 . 1 1 9 5 1 6 . 6 4 9 5 2 8 . 9 9 7 0 2 1 . 0 6 4 1 1 6 6 . 0 5 3 7 7 9 . 5 2 1 8 U I N S T 3 9 . 3 8 48 .41 3 0 . 3 6 6 5 . 00 1 0 5 . 9 1 3 5 4 . 4 7 7 1 2 . 2 8 1 4 3 7 . 5 0 1 2 5 3 . 7 2 I 13 U I N S T 2 1 . 5 0 5 0 . 3 4 5 4 . 9 1 5 7 . 7 0 6 5 . 5 8 1 4 9 . 0 8 3 1 0 . 3 3 8 1 3 . 7 0 4 8 8 . 8 8 I 14 U I N S T 6.07 1 2 . 3 7 2 0 . 1 7 4 8 . 4 6 7 6 . 2 4 1 0 7 . 9 1 1 7 0 . 3 8 2 5 6 . 0 1 3 6 4 . 3 7 5 7 1 . 1 7 1 1 5 'UINST 5 4 . 7 6 1 2 8 . 0 8 3 6 3 . 6 5 5 0 4 . 7 2 3 0 6 . 1 9 17 7 6 . 8 4 6 0 7 . 5 8 R A T I O 0 . 4 1 0 6 0 . 4 2 3 2 0 . 4 3 6 5 0 . 4 6 8 8 0 . 5 1 6 4 0 . 8 2 9 6 0 . 8 8 5 0 0 . 9 3 0 8 0 . 9 5 9 0 R A T I O 0.42 58 0 . 4 3 2 2 0 . 4 5 9 5 0 . 4 8 3 1 0 . 5 0 9 3 0 . 5 5 5 5 0 . 6 4 9 3 0 . 7 9 7 1 0 . 8 4 2 9 R A T I O 0 . 3 9 0 2 0 . 3 9 7 3 0 . 4 0 9 1 0 . 4 3 3 0 0 . 4 6 9 5 0 . 5 2 2 3 0 . 5 8 4 2 0 . 6 6 1 5 0 . 7 4 1 8 0 . 8 4 3 5 R A T I O 0 . 5 6 6 9 0 . 5 8 0 5 0 . 7 0 5 8 0 . 7 8 8 4 0 . 8 3 0 4 0 . 9 1 0 5 0 . 9 4 0 7 XNUNO 1 . 5 5 6 4 1 . 9 2 7 0 1 . 2 1 7 7 2 . 6 5 9 1 4 . 4 7 0 4 2 1 . 1 7 4 3 4 8 . 5 0 0 2 1 1 5 . 9 4 6 3 1 2 0 . 3 5 9 3 XNUNO 0 . 8 9 7 1 2 . 1 0 7 7 2 . 3 3 7 3 2 . 4 9 2 5 2 . 8 8 2 5 6 . 7 7 2 6 1 5 . 2 5 6 1 4 7 . 9 9 6 9 3 1 . 3 9 9 0 XNUNO 0 . 2 2 6 2 0 . 4 6 2 7 0 . 7 5 9 5 1 . 8 4 9 8 2.97 52 4 . 3 6 0 9 7 . 2 1 1 3 1 1 . 6 0 4 1 1 8 . 0 7 2 4 3 3 . 4 6 9 4 XNUNO 2 . 1 1 9 3 5 . 0 0 9 6 1 6 . 0 0 8 9 2 4 . 7 9 6 3 1 6 . 1 9 3 5 1 1 6 . 2 6 3 7 4 5 . 5 9 7 3 PECMO 1 2 8 5 2 . 8 3 6 4 7 7 . 7 4 7 4 5 2 . 1 3 6 6 5 8.11 6 8 6 1 .39 1 0 7 1 7 . 6 6 1 2 6 6 4 . 6 1 1 8 3 5 8 . 5 8 2 0 0 6 1 . 0 3 PECMO 9 0 8 7 . 1 0 8 4 9 7 . 5 4 6 9 1 8 . 7 7 8 0 3 5 .13 8 1 6 5 . 8 6 9 8 4 6 . 0 6 9 1 4 3 . 6 5 1 0 9 5 7 . 8 9 1 3 9 2 0 . 1 4 PECMO 9 6 9 5 . 8 0 6 0 7 9 . 8 2 6 5 0 9 . 4 6 6 6 4 8 . 4 2 7 2 5 0 . 1 0 6 9 8 6 . 9 3 7 3 7 2 . 0 4 8 4 2 0 . 3 7 9 2 2 5 . 2 8 1 1 1 1 9 . 7 2 PECMO 8 0 6 4 . 1 7 7 9 3 7 . 8 8 7 6 1 1 .15 9 9 8 3 . 2 6 9 8 2 5 . 1 0 1 3 3 0 4 . 7 3 1 5 5 9 4 . 8 7 F I L M 1 2 - 4 RUN 1 1 6 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 3 8 7 0 . 0 3 8 9 0 . 4 3 9 6 2 5 . 2 1 0 . 4 3 0 3 , 0 . 6 5 6 4 5 9 7 7 . 5 1 0 . 2 5 4 5 0 . 1 5 5 1 2 . 1 5 1 0 1 1 2 . 4 4 0 . 5 3 0 4 3. 1 2 2 2 3 6 1 5 .29 0 . 2 6 0 0 0. 1 9 9 0 2 . 0 2 6 9 9 7 . 4 3 0 . 5 5 9 6 2 . 7 6 3 8 5 1 9 2 . 3 7 0 . 2 7 0 3 0 . 2 8 6 0 5 . 3 5 4 4 2 4 2 . 2 5 0 . 6 0 7 9 7 . 1 4 3 0 5 5 8 4 . 9 7 0 . 2 7 9 2 0 . 3 6 7 3 3 . 7 5 0 7 1 5 8 . 0 9 0 . 6 4 4 3 4 . 8 1 5 0 4 9 5 6 . 9 1 0 . 2 9 5 4 0 . 5 2 5 6 7 . 1 2 8 9 2 7 4 . 6 4 0 . 6 9 9 7 8 . 8 5 0 1 5 8 9 8 . 2 7 0 . 3 2 9 2 0 . 9 2 2 3 1 1 . 7 4 3 5 3 8 2 . 0 5 0 . 7 8 3 1 1 3 . 7 2 1 1 7 2 9 7 . 9 5 0 . 3 8 2 7 1 . 7 3 8 5 2 0 . 7 1 6 0 5 1 7 . 3 3 0 . 8 6 2 0 2 1 . 5 9 9 7 7 7 5 6 . 4 4 0 . 4 5 5 8 3 . 2 6 8 8 3 7 . 6 7 4 8 6 7 6 . 8 2 0 . 9 1 8 4 3 3 . 6 5 7 5 9 2 3 8 . 1 8 0 . 5 4 7 4 6 . 0 3 2 2 6 7 . 5 8 7 2 8 4 7 . 6 7 0 . 9 5 2 9 5 0 . 6 2 1 8 1 1 7 9 9 . 9 8 0 . 8 4 2 5 2 3 . 2 1 8 8 2 1 8 . 8 9 7 5 1 3 8 0 . 0 3 0 . 9 8 7 1 1 2 6 . 8 4 2 3 1 7 8 1 4 . 3 4 F I L M 1 2 - 4 RUN 117 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 2 2 1 7 0. 1 0 9 1 0 . 7 4 6 4 5 1 . 5 0 0 . 4 9 4 4 1 . 2 4 5 9 4 7 2 0 . 8 2 0 . 2 3 8 2 0 . 2 5 7 1 5 . 0 5 8 0 3 0 3 . 9 7 0. 5 9 2 0 7 . 8 9 8 0 4 2 2 8 . 5 8 0.2 5 26 0 . 4 0 2 8 4 . 8 3 0 7 2 5 5 . 0 9 0 . 6 5 8 0 7 . 0 2 9 0 4 4 8 4 . 4 8 0 . 2 6 6 0 0 . 5 5 5 9 5 . 0 2 6 2 2 3 7 . 7 2 0 . 7 0 7 2 6 . 8 9 8 7 5 9 0 0 .85 0 . 2 7 7 2 0 . 6 9 6 3 6 . 1 4 2 7 2 6 4 . 8 2 0 . 7 4 1 4 8 . 0 0 9 4 5 7 2 8 . 7 1 0 . 3 0 9 6 1 . 1 7 0 1 2 0 . 7 3 1 5 7 6 3 . 8 4 0 . 8 1 4 5 2 5 . 8 0 2 1 6 4 1 5 . 9 4 0 . 3 4 5 3 1 . 8 1 5 0 2 0 . 8 3 6 3 6 1 6 . 3 9 0 . 8 6 6 3 2 3 . 2 2 2 1 6 1 1 6 . 6 4 0 . 4 5 0 2 4 . 6 3 8 6 5 1 . 8 3 6 8 1 0 2 4 . 7 9 0 . 9 3 9 7 5 0 . 3 2 9 2 9 1 3 4 . 5 5 0 . 5 5 7 8 9 . 2 3 4 7 8 1 . 7 2 9 7 1 0 1 2 . 3 1 0 . 9 6 8 3 6 1 . 6 0 3 6 1 1 3 0 5 . 0 0 0 . 6 3 4 9 1 3 . 8 6 1 9 8 1 . 8 0 4 7 7 2 8 .88 0 . 9 7 8 5 5 0 . 4 8 6 4 1 2 8 6 7 . 6 1 F I L M 1 3 - 1 RUN I 18 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 4 9 7 0 . 0 5 6 1 1 . 3 1 1 7 6 9 . 3 9 0 . 4 4 7 5 1.890 4 9 5 0 4 . 3 4 0 . 2 6 4 6 0 . 1 6 4 0 2 . 5 2 6 8 1 2 1 . 4 5 0 . 5 3 6 0 3 . 5 0 6 6 5 0 3 3 . 3 3 0.2 726 0 . 2 2 5 9 2 . 8 6 4 9 1 2 6 . 3 1 0 . 5 7 5 3 3.75 6 2 5 1 9 0 . 2 6 0 . 2 8 1 6 0 . 3 0 1 2 4 . 6 1 6 7 1 9 1 . 2 9 0 . 6 1 4 8 5 . 8 7 6 5 6 2 5 7 . 5 3 0 . 3 4 1 7 0 . 9 3 4 4 1 0 . 2 7 3 7 3 3 3 . 4 9 0 . 7 8 4 6 1 2 . 4 3 2 1 7 3 8 7 . 4 4 0 . 3 7 4 8 1 . 3 9 5 5 2 7 . 3 5 5 0 6 7 6 . 7 4 0 . 8 3 6 8 2 7 . 6 7 1 9 9 4 9 3 . 0 7 0 . 4 2 7 9 2 . 3 2 5 7 4 1 . 3 9 0 1 8 1 3 . 9 1 0 . 8 9 0 4 3 8 . 0 0 0 3 8 1 4 8 . 9 3 0 . 4 4 5 0 2 . 6 7 7 4 2 0 . 8 6 3 7 3 4 8 . 3 6 0 . 9 0 2 5 1 6 . 9 1 1 0 1 1 2 9 7 . 1 3 0 . 5 8 7 1 6 . 7 7 5 8 1 7 7 . 4 3 1 6 2 0 8 0 . 5 1 0 . 9 5 7 6 1 3 3 . 2 6 8 0 1 2 5 7 4 . 2 9 F I L M TOTALD 0 . 2 8 6 6 0 . 2 9 5 7 0 . 3 0 0 9 1 3 - 1 P C E V A P 0 . 0 2 1 7 0 . 0 7 3 9 0 . 1 0 5 2 RUN UA 0 . 8 1 7 3 1 . 9 6 9 1 2 . 3 3 6 4 I 19 U I N S T 3 2 . 1 5 7 3 . 8 9 8 3 . 5 3 R A T I O 0 . 4 1 1 4 0 . 4 6 4 1 0 . 4 9 1 6 XNUNO 1 . 0 0 5 3 2 . 3 8 3 7 2 .742 4 PECMO 1 1 2 4 9 . 1 6 5 6 3 0 . 5 9 5 7 1 6 . 6 1 0 . 3 0 7 1 23( 0 . 1 4 4 1 3 . 8 3 6 5 1 3 2 . 0 4 0 . 5 2 1 9 4 . 4 2 4 6 6 8 2 5 . 8 2 0 . 3 2 5 1 0 . 2 6 4 1 4 . 9 5 2 3 1 5 7 . 5 4 0 . 5 9 6 9 5 . 588 0 6 6 2 5 . 6 9 0 . 3 3 6 5 0 . 3 4 7 6 5 . 9 8 2 8 1 7 3 . 9 2 0 . 6 3 6 3 6 . 3 8 4 1 7 2 0 5 . 6 4 0 . 3 5 4 2 0 . 4 8 9 6 1 0 . 1 8 4 1 2 7 1 . 5 9 0 . 6 8 8 2 1 0 . 4 9 3 6 6 7 2 7 . 6 0 0 . 4 0 4 1 0 . 9 7 3 6 1 9 . 8 2 8 3 4 3 7 . 0 3 0 . 7 9 0 2 1 9 . 2 6 7 3 8 7 9 4 . 2 2 0 . 4 6 1 8 1 . 6 9 3 4 5 0 . 4 1 8 5 8 5 2 . 0 3 0 . 8 5 9 5 4 2 . 9 2 7 5 8 7 7 2 . 6 4 0.5 582 3 . 3 7 8 2 6 6 . 9 1 2 0 8 1 1 . 2 6 0 . 9 2 0 5 4 9 . 4 0 6 1 1 2 1 4 7 . 9 6 0 . 5 9 6 4 4 . 2 3 1 5 5 9 . 3 0 8 5 56 5.59 0 . 9 3 4 8 3 6 . 8 0 1 3 1 2 7 7 2 . 9 3 0 . 7 9 2 0 1 0 . 5 3 5 1 2 8 4 . 5 4 3 5 1 8 4 2 . 0 3 0 . 9 7 2 2 15 9 . 1 6 8 9 1 8 8 3 1 . 1 9 F I L M 1 3 - 1 . RUN 120 TOTALD P C E V A P UA ' UI NST R A T I O X NUNO^" PECMO 0 . 2 5 6 6 0 . 1 7 0 5 2 . 2 0 8 9 1 1 7 . 3 1 0 . 5 4 1 5 3 . 2 8 3 4 7 8 8 7 . 0 6 0 . 2 6 4 6 0 . 2 3 6 8 3 . 7 2 1 8 1 7 4 . 3 7 0 . 5 8 2 1 5 . 0 3 3 5 5 0 2 6 . 3 1 0.2 7 2 9 0 . 3 0 8 7 3 . 0 0 2 2 1 3 2 . 2 3 0 . 6 1 9 1 3 . 9 3 6 9 5 8 4 4 . 4 4 0 . 2 9 2 1 0 . 4 9 4 7 1 0 . 2 5 2 9 4 0 8 . 2 6 0 . 6 8 9 6 1 3 . 0 1 1 9 6 4 9 2 . 2 4 0 . 3 2 5 5 0 . 8 7 5 0 8.76 39 2 9 i . 5 8 0 . 7 7 5 6 1 0 . 3 5 3 3 7 0 7 4 . 3 6 0 . 3 6 7 2 1 . 4 7 9 1 2 4 . 1 7 7 5 6 3 9 . 0 1 0 . 8 4 3 8 2 5 . 6 0 0 5 7 8 6 4 . 4 8 0 . 4 2 4 4 2 . 5 6 0 0 5 7.6 848 1 1 6 5 . 5 9 0 . 8 9 8 8 5 3 . 9 6 4 6 9 4 0 5 . 0 1 0.5 3 5 6 5 . 6 6 4 0 7 0 . 9 9 5 4 9 6 7 . 5 2 0 . 9 4 9 7 5 6 . 5 3 5 5 1 1 6 5 5 . 8 5 0 . 6 4 3 4 1 0 . 1 4 0 0 1 7 4 . 9 4 0 0 1 5 8 8 . 4 4 0 . 9 7 1 0 1 1 1 . 5 0 1 9 1 5 3 0 7 . 5 0 F I L M 1 3 - 2 RUN I 21 TOTALD P C E V A P UA U I NST R A T I O , XNUNO PECMO 0 . 3 6 6 6 0 . 0 0 4 1 0 . 1 8 0 1 4 . 2 8 0 . 3 9 0 9 0 . 1 7 1 1 1 2 4 0 2 . 9 0 0 . 3 6 9 7 0 . 0 1 7 1 1 . 2 9 9 9 3 0 . 5 2 0 . 4 0 6 0 1 . 2 3 0 8 7 0 3 9 . 4 5 0 . 3 7 4 4 0 . 0 3 7 8 2 . 0 5 7 0 4 7 . 2 8 0 . 4 2 8 4 1 . 9 3 1 4 7 1 1 3 . 1 6 0 . 3 7 9 8 0 . 0 6 1 3 2 . 3 1 7 1 5 1 . 8 4 0 . 4 5 2 1 2 . 1 4 7 9 7 2 3 1 . 2 2 0 . 3 8 6 6 0 . 0 9 2 8 3 . 1 0 0 3 6 7 . 1 8 0 . 4 8 0 8 2 . 8 3 3 5 8 2 8 0 .15 0 . 3 9 3 4 0 . 1 2 5 2 4 . 2 5 1 1 8 8 . 9 1 0 . 5 0 7 4 3 . ^ 1 6 3 8 7 1 9 . 6 8 0 . 4 0 1 9 0. 1 6 6 0 5 . 3 4 0 3 1 0 7 . 4 4 0 . 5 3 7 8 4 . 7 1 0 7 1 0 2 0 3 . 8 2 0.42 54 0 . 2 9 1 2 6 . 9 0 1 0 1 2 8 . 2 1 0 . 6 1 0 4 5 . 9 5 1 0 9 2 4 7 . 4 3 0 . 5 1 3 0 0 . 8 9 1 9 3 3 . 1 1 3 9 4 7 4 . 4 4 0 . 7 7 7 9 2 6 . 5 5 2 7 1 1 1 6 3 . 7 9 0 . 6 2 3 2 1 . 9 9 0 0 5 9 . 6 6 1 3 5 8 2 . 7 3 0 . 8 7 6 2 3 9 . 6 1 9 5 1 4 3 9 1 . 4 5 F I L M 1 3 - 2 RUN 1 2 2 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 8 9 9 0 . 1 8 8 8 2 . 9 0 7 9 6 7 . 6 5 0 . 5 5 9 6 2 . 8 7 7 6 1 0 7 9 2 . 0 6 0 . 4 4 2 4 0 . 5 1 4 7 1 5 . 7 7 7 0 2 8 8 . 7 6 0 . 6 9 8 6 1 3 . 9 3 6 1 9 6 1 5 . 2 7 0 . 5 1 5 7 1 . 1 1 5 4 2 8 . 8 4 5 0 3 9 7 . 6 5 0 . 8 0 9 9 2 2 . 3 7 1 8 1 1 2 0 8 . 8 8 0 . 5 7 5 0 1 . 7 4 6 8 5 2 . 9 1 9 3 5 6 4 . 4 7 0 . 8 6 2 9 3 5 . 4 1 2 7 1 0 9 4 9 . 8 2 0 . 6 9 9 7 3 . 5 4 2 5 7 4 . 2 4 6 2 5 7 6 . 0 5 0 . 9 2 3 9 4 3 . 9 7 1 7 1 4 9 8 4 . 3 4 2 31 F I L M 1 3 - 2 RUN I 23 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 6 8 0 0 . 0 1 0 2 0 . 4 5 1 1 1 0 . 6 8 0 . 3 9 7 9 0 . 4 2 8 8 1 2 4 5 0 . 5 0 0 . 3 7 2 8 0 . 0 3 0 8 2 . 0 4 5 8 4 7 . 4 4 0 . 4 2 0 8 1 . 9 2 9 6 7 0 9 8 . 7 4 0 . 3 7 8 6 0 . 0 5 6 6 2.5 6 7 9 5 7.88 0 . 4 4 7 2 2 . 3 9 0 8 7 1 9 2 . 6 3 0 . 3 8 3 9 0 . 0 8 0 2 2 . 3 3 4 8 5 1 . 1 1 0 . 4 6 9 5 2. 140 3 •: 8 2 2 0 . 9 3 0 . 3 9 0 2 0 . 1 0 9 7 3 . 8 7 6 5 8 2 . 3 4 0 . 4 9 4 9 3 . 5 0 5 1 8 6 7 1 . 0 3 0 . 4 3 3 0 0 . 3 3 4 5 6 . 6 8 9 7 1 2 5 . 3 2 0 . 6 3 0 4 5 . 9 1 9 6 1 0 1 3 5 . 1 3 0 . 4 7 4 8 0 . 6 0 2 1 2 5 . 8 1 5 9 3 9 7 . 9 1 0 . 7 1 9 8 2 0 . 6 1 0 2 1 0 1 6 7 . 7 0 0 . 5 1 4 0 0 . 9 0 0 1 3 8 . 3 2 2 5 4 9 8 . 1 4 0 . 7 7 9 2 2 7.932 5 1 1 4 2 2 . 0 5 0 . 6 6 7 9 2 . 5 6 6 3 7 0 . 2 9 3 3 6 2 9 . 8 3 0 . 8 9 9 4 4 5 . 8 9 2 5 1 4 8 2 8 . 9 0 F I L M 1 3 - 2 RUN I 24 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 1 0 1 0 . 0 1 6 2 0 . 1 9 6 9 1 4 . 3 7 0 . 4 0 5 1 0 . 3 2 9 4 7 9 9 3 . 4 7 0 . 2 1 9 3 0 . 0 8 8 6 1 . 0 5 7 4 72 .97 0 . 4 7 7 1 1 . 7 4 5 7 3 3 4 0 . 3 5 0 . 2 3 4 3 0 . 2 2 0 2 2 . 4 0 1 8 1 4 8 • 4 4 0 . 5 7 1 3 3 . 7 9 4 0 4 4 6 1 . 1 0 0 . 2 5 5 6 0 . 4 3 8 3 3 . 9 7 9 4 2 1 0 . 6 7 0 . 6 6 9 9 5 . 8 7 4 0 4 8 5 4 . 9 8 0 . 5 8 2 2 1 0 . 6 1 0 2 2 4 . 6 2 2 6 3 8 7 . 5 4 0 . 9 7 2 1 2 4 . 6 1 7 1 1 2 9 8 9 . 3 5 F I L M 1 3 - 2 RUN I 25 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 4 9 8 0 . 0 0 3 2 0 . 2 2 1 4 5.78 0 . 3 8 9 9 0 . 2 2 0 5 1 5 9 7 1 . 7 3 0.3 516 0 . 0 1 1 5 0 . 7 2 0 0 1 8 . 6 3 0 . 3 9 9 6 0 . 7 1 4 6 6 6 9 5 . 9 9 0.3 5 4 5 0 . 0 2 4 2 1 . 0 9 9 0 2 8 . 0 5 0 . 4 1 3 ? 1 . 0 8 4 9 6 7 4 9 . 8 7 0 . 3 6 0 3 0 . 0 5 1 0 2 . 3 1 7 1 5 7 . 7 2 0 . 4 4 1 9 2 . 2 6 8 8 6 8 4 4 . 2 7 0 . 3 6 7 5 0 . 0 8 4 8 2 . 8 8 8 8 6 9 . 4 1 0 . 4 7 4 0 2 . 7 8 2 8 7 8 7 0 . 0 2 0 . 3 7 3 0 0 . 1 1 1 7 3 . 0 5 1 0 7 0 . 8 2 0 . 4 9 6 9 2 . 8 8 1 8 8 2 8 8 . 6 0 0.3 7 8 7 0 . 1 4 0 6 2 . 4 4 5 2 5 5 . 0 8 0 . 5 1 9 3 2 . 2 7 5 6 7 1 9 3 . 2 9 0 . 3 8 3 7 0 . 1 6 7 0 2 . 9 8 3 2 6 5 . 3 2 0 . 5 3 8 1 2 . 7 3 4 6 9 7 4 2 . 7 8 0 . 4 2 3 5 0 . 3 9 7 1 1 0 . 9 8 7 8 2 1 4 . 0 8 0 . 6 5 6 6 9 . 8 9 1 5 9 2 0 5 . 7 6 0 . 4 8 6 1 0 . 8 5 9 5 2 5 . 6 4 5 2 3 9 2 . 5 8 0 . 7 7 3 0 2 0 . 8 2 1 4 1 2 3 4 2 . 8 2 0 . 6 0 4 7 2 . 1 2 2 1 6 0 . 0 1 7 0 6 3 4 . 4 4 0 . 8 8 2 1 4 1 . 8 5 5 1 1 3 1 4 3 . 7 2 0 . 7 1 6 8 3 . 8 5 0 6 1 1 3 . 6 8 5 4 8 2 2 . 6 2 0 . 9 2 9 3 6 4 . 3 3 0 2 1 6 3 6 5 . 9 5 F l LM 1 3 - 2 RUN 12 6 \-TOTALD P C E V A P UA -; UI NST R A T I O XNUNO PECMO 0 . 3 0 2 0 0 . 0 1 4 3 0 . 3 4 6 7 1 2 . 2 3 0 . 4 0 2 7 0 . 4 0 2 7 1 0 2 1 6 . 0 2 0 . 3 0 7 9 0 . 0 4 5 6 1 . 7 0 5 4 5 8 . 3 6 0 . 4 3 6 3 1 . 9 6 0 1 5 8 6 2 . 1 4 0 . 3 1 6 6 0 . 0 9 4 5 2 . 6 6 3 8 8 6 . 9 2 0 . 4 8 1 9 3 . 0 0 2 5 6 0 1 4 . 7 5 0 . 3 2 4 3 0 . 1 3 9 0 2 . 4 1 3 1 7 4 . 7 6 0. 5 1 7 8 2 . 6 4 4 8 6 1 7 4 . 8 6 0 . 3 3 7 9 0 . 2 2 4 1 4 . 5 8 5 2 1 3 3 . 0 4 0 . 5 7 3 8 4 . 9 0 4 3 7 2 3 6 . 5 6 0 . 3 4 7 5 0 . 2 8 8 3 4 . 6 1 0 7 1 2 4 . 9 0 0 . 6 0 8 2 4 . 7 3 4 9 7 7 0 1 . 0 3 0 . 3 6 5 9 0 . 4 1 9 9 9.3 868 2 3 4 . 5 7 0 . 6 6 4 6 9 . 3 6 4 8 9 2 9 1 . 0 8 0 . 4 2 2 1 0 . 9 1 5 6 1 4 . 9 6 5 8 3 0 5 . 1 3 0 . 7 8 1 6 1 4 . 0 5 2 8 9 1 7 5 . 8 3 0 . 4 9 6 2 1 . 8 0 3 5 2 3 . 4 4 7 6 3 5 1 . 5 4 0 . 8 6 5 6 1 9 . 0 3 1 8 1 0 0 3 8 . 4 1 0 . 8 6 6 9 1 1 . 7 5 6 4 1 3 7 . 6 3 4 5 8 7 7 . 8 7 0 . 9 7 4 8 8 3 . 0 2 4 2 1 9 2 4 3 . 4 6 F l LM 1 3 - 2 RUN 2 3 2 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 9 2 0 0.29-47 0 . 3 0 0 3 0 . 3 0 7 7 0 . 3 1 8 5 0 . 3 2 7 6 0 . 3 5 9 5 0 . 4 0 5 4 0 . 4 3 6 5 0 . 6 1 4 7 0 . 7 6 2 9 0 . 0 0 5 9 0 . 0 2 0 3 0 . 0 5 1 1 0 . 0 9 3 7 0 . 1 5 9 3 0 . 2 1 8 0 0 . 4 4 9 3 0 . 8 6 4 3 1 . 2 0 4 6 4 . 2 7 3 1 8 . 5 8 7 2 0 . 2 3 6 3 0 . 7 2 0 1 1 . 5 4 3 8 2 . 1 3 3 6 3 . 2 6 0 6 2 . 9 0 8 5 6 . 4 5 2 9 2 6 . 8 7 1 9 2 2 . 0 3 4 4 8 5 . 1 3 3 8 16 5 . 3 3 1 6 8.86 2 6 . 6 2 5 5 . 5 0 7 3 . 4 5 1 0 5 . 7 9 8 8 . 6 5 1 7 3 . 5 8 5 8 2.40 3 9 5 . 0 7 9 5 3 . 2 1 1 0 9 6 . 2 1 0 . 3 9 2 9 0 . 4 0 9 4 0 . 4 4 1 8 0 . 4 8 1 3 0 . 5 3 2 4 0 . 5 7 0 2 0 . 6 7 4 9 0 . 7 7 3 4 0 . 8 1 8 5 0 . 9 3 5 1 0 . 9 6 6 1 0 . 2 8 2 4 0 . 8 5 6 0 1 . 8 1 8 2 2 . 4 6 5 6 3 . 6 7 6 2 3 . 1 6 8 4 6.8083:' 2 5.760V;' 1 8 . 8 1 4 9 6 3 . 9 2 0 8 9 1 . 2 3 5 3 1 3 3 3 4 . 2 0 5 6 1 1 . 5 2 5 7 1 8 . 1 7 5 8 4 5 . 2 5 6 0 6 5 . 3 9 6 2 3 8 . 1 5 7 8 1 4 . 3 5 1 0 2 9 3 . 5 1 1 1 0 5 6 . 3 6 1 3 3 7 6 . 3 9 1 8 8 6 6 . 9 9 F I L M 1 3 - 3 RUN I 28 ^ TOTALD P C E V A P UA UI NST R A T I O ,XNUNO PECMO 0 . 3 7 4 3 0 . 3 7 5 2 0 . 3 8 0 8 0 . 3 9 2 7 0 . 4 1 9 7 0 . 5 0 8 8 0 . 5 8 5 1 0 . 0 0 1 8 0 . 0 0 5 5 0.0 288 0 . 0 8 0 8 0 . 2 1 0 9 0 . 7 6 9 0 1 . 4 3 3 6 0 . 0 5 8 9 0 . 2 6 3 6 1 . 6 7 8 5 3 . 7 3 1 3 1 2 . 4 1 1 0 2 6 . 3 4 4 6 2 6 . 8 3 1 8 1 .34 5.97 3 7 . 3 8 7 9 . 3 5 2 3 9 . 0 6 3 8 5 . 4 1 2 8 4 . 0 2 0 . 3 8 8 0 0 . 3 9 2 3 0 . 4 1 8 6 0 . 4 7 0 1 0 . 5 6 5 9 0 . 7 5 6 5 0 . 8 3 9 9 0-.0547 0 . 2 4 4 4 1.552 7 3 . 3 9 9 9 1 0 . 9 4 6 2 2 1 . 3 9 2 3 1 8 . 1 3 0 0 1 2 6 6 4 . 4 9 7 1 4 4 . 9 7 7 2 3 3 . 5 2 8 4 1 0 . 6 7 9 3 2 7 . 0 7 1 2 0 9 6 . 3 6 1 3 5 1 1 . 5 9 F I L M 1 3 - 3 RUN I 29 TOTALD P C E V A P UA U I N S T RATIO: XNUNO PECMO 0 . 3 5 0 2 0 . 3 7 2 3 0 . 4 1 0 2 0 . 0 8 6 3 0 . 2 0 6 1 0 . 4 4 7 4 1 . 2 4 8 7 6 . 0 3 0 2 1 6 . 1 7 1 4 3 4 . 12 1 4 6 . 8 7 3 3 5 . 3 0 0 . 4 7 5 0 0 . 5 6 3 2 0 . 6 7 3 5 1 . 3 0 3 8 5 . 9 6 5 9 1 5 . 0 0 6 5 1 1 4 2 3 . 1 8 7 9 7 4 . 0 1 9 1 1 6 . 5 7 F I L M 1 3 - 3 RUN I 30 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 5 7 8 0 . 3 6 3 2 0 . 3 7 9 3 0 . 3 9 3 6 0 . 4 1 1 4 0 . 4 3 7 6 0 . 4 7 9 4 0 . 5 9 3 3 0.0 285 0 . 0 5 4 1 0 . 1 3 3 6 0 . 2 1 0 0 0 . 3 1 3 ? 0 . 4 8 3 6 0 . 7 9 5 0 1 . 9 7 0 3 0 . 7 4 1 5 1 . 5 0 2 1 4 . 6 6 0 9 5 . 9 6 4 0 8 . 0 5 9 7 1 3 . 1 6 6 8 2 4 . 0 6 7 2 4 5 . 0 0 5 5 1 8 . 9 1 3 6 . 7 7 1 0 7 . 5 5 1 2 7 . 0 4 1 5 8 . 2 1 2 3 2 . 2 3 3 6 3 . 4 6 4 9 2 . 2 3 0 . 4 3 0 0 0 . 4 5 5 4 0 . 5 2 1 6 0 . 5 7 2 0 0 . 6 2 5 4 0 . 6 8 8 8 0 . 7 6 3 3 0 . 8 7 5 2 0 . 7 3 8 1 1 . 4 5 7 3 4 . 4 5 0 0 5 . 4 5 5 0 7 . 1 0 1 5 1 1 . 0 8 7 8 1 9 . 0 1 0 9 3 1 . 8 6 0 5 1 2 1 0 4 . 1 0 6 9 1 6 . 9 3 8 1 2 2.48 8 7 2 2 . 7 7 1 0 4 4 6 . 0 9 1 1 0 8 4 . 6 9 1 2 1 7 2 . 3 3 1 5 0 4 5 . 1 7 2 3 3 F I L M 1 3 - 3 RUN 131 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 5 1 0 0 . 0 0 8 8 0 . 4 1 3 3 1 0 . 7 5 0 . 3 9 6 5 0 . 4 1 1 5 1 6 0 2 9 . 6 2 0 . 3 5 4 9 0 . 0 2 6 0 1 . 0 0 6 8 2 5 . 7 2 0 . 4 1 5 8 0 . 9 9 5 6 6 7 5 7 . 2 3 0 . 3 6 0 9 0 . 0 5 4 0 1 . 6 4 4 5 4 0 . 8 5 0 . 4 4 4 9 1 . 6 0 8 4 6 8 7 2 . 9 9 0 . 3 8 4 3 0 . 1 7 1 1 6 . 8 6 5 6 1 5 7 . 1 6 0 . 5 4 0 3 6 . 5 9 0 0 7 3 0 1 . 0 7 0 . 4 2 9 6 0 . 4 3 9 9 2 0 . 9 0 2 6 4 0 0 . 3 6 0 . 6 7 0 9 1 8 . 7 6 2 8 1 0 9 0 6 . 2 7 0 . 4 7 2 4 0 . 7 5 3 4 2 4 . 3 3 21 3 7 9 . 7 8 0 . 7 5 2 6 1 9 . 5 7 4 4 1 1 9 9 4 . 7 3 0 . 5 4 7 3 1 . 4 5 4 1 5 4 . 3 8 1 4 6 6 2 . 0 5 0 . 8 4 1 0 3 9 . 5 3 0 0 1 3 8 6 1 . 9 0 0 . 7 5 8 3 4 . 6 8 9 4 8 2 . 8 2 0 4 6 0 2 . 7 0 0 . 9 4 0 3 4 9 . 8 5 7 8 1 9 2 3 6 . 1 3 F I L M 1 3 - 3 . RUN 132 TOTALD P C E V A P UA U I NST R A T I O XNUNO PECMO 0 . 3 7 0 8 0 . 0 1 7 4 0 . 9 4 0 5 2 2 . 0 9 0 , 4 1 1 6 0 . 8 9 3 9 1 6 9 3 4 . 0 7 0 . 3 8 0 9 0 . 0 6 2 0 3 . 0 0 6 5 6 7 . 7 0 0 . 4 5 7 1 2 . 8 1 3 3 7 2 5 3 . 3 7 0.3 8 6 6 0 . 0 8 8 4 3 . 5 5 5 0 7 6 . 8 0 0 . 4 8 0 8 3 . 2 3 9 4 7 3 4 4 . 5 3 0 . 4 4 6 0 0 . 4 1 1 7 1 7 . 4 3 7 9 3 1 8 . 4 7 0 . 6 6 2 0 1 5 . 4 9 7 9 1 0 1 8 4 . 2 6 0 . 4 9 7 7 0 . 7 7 0 8 3 2 . 1 5 1 0 4 5 8.01 0 . 7 5 6 9 2 4 . 8 7 1 5 1 2 6 3 7 . 5 1 0 . 5 8 3 0 1 . 5 5 0 6 6 9 . 5 9 0 4 7 5 3 . 6 1 0 . 8 4 8 8 4 7 . 9 3 2 6 1 4 8 0 1 . 8 3 0.62 34 2 . 0 1 0 3 4 1 . 0 1 4 6 3 5 8 . 2 9 0 . 8 7 6 3 2 4 . 3 6 6 7 1 5 7 8 8 . 9 7 0 . 6 9 7 4 3 . 0 1 2 9 1 3 4 . 0 9 1 3 9 7 5 . 2 0 0 . 9 1 1 7 7 4 . 2 0 2 7 1 3 3 1 2 . 4 2 F I L M 1 3 - 3 RUN 13 3 TOTALD P C E V A P UA ; U I N S T R A T I O XNUNO PECMO 0 . 2 9 3 1 0 . 0 1 1 7 0 . 2 6 4 1 9.87 0 . 3 9 9 6 0 . 3 1 5 5 1 1 1 5 3 . 0 9 0 . 2 9 8 7 0 . 0 4 2 2 1 . 0 3 6 9 3 7 . 6 8 0 . 4 3 2 9 1 . 2 2 7 9 5 6 8 7 . 8 6 0 . 3 0 3 3 0 . 0 6 8 2 1 . 7 5 9 2 6 1 . 7 8 0 . 4 5 8 3 2 . 0 4 4 3 5 7 6 1 . 5 9 0 . 3 2 1 0 0. 1 7 5 7 3 . 6 5 0 1 1 1 9 . 0 8 0 . 5 4 3 3 4 . 1 7 0 9 6 1 1 3 . 2 4 0 . 3 3 1 4 0 . 2 4 4 7 4 . 6 7 7 4 1 3 9 . 7 9 0 . 5 8 5 0 5 . 0 5 5 0 6 2 9 6 . 2 7 0 . 3 5 6 2 0 . 4 2 4 4 6 . 0 6 5 8 1 6 3 . 0 6 0 . 6 6 5 7 6.336 5 7 6 2 8 . 4 8 0 . 3 8 7 9 0 . 6 9 6 6 1 2 . 1 5 4 1 2 7 8 . 8 4 0 . 7 4 1 3 1 1 . 8 0 1 9 9 8 4 9 . 7 2 0 . 4 5 2 0 1 . 3 9 7 0 3 1 . 2 6 8 5 5 6 0 . 8 7 0 . 8 3 6 5 2 7 . 6 5 5 8 1 1 4 7 4 . 9 4 0 . 4 9 9 2 2 . 0 5 8 8 2 9 . 5 4 5 8 4 1 4 . 6 6 0 . 8 7 8 7 2 2 . 5 8 1 5 1 2 6 4 3 . 0 0 0 . 5 8 8 7 3 . 7 0 3 6 7 3 . 4 3 3 7 7 8 4 . 4 6 0 . 9 2 6 1 5 0 . 3 8 1 2 1 4 9 4 6 . 1 6 0 . 7 7 9 5 9 . 2 2 5 1 1 4 6 . 5 6 8 1 9 7 7 . 4 9 0 . 9 6 8 2 8 3 . 1 2 9 9 1 6 3 1 7 . 1 2 F I L M 1 3 - 3 RUN 1 3 4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 7 1 9 0 . 0 9 2 6 4 . 3 4 3 4 1 0 6 . 3 7 0 . 4 9 2 6 4 . 3 1 6 1 1 6 9 8 2 . 9 6 0 . 4 0 4 6 0 . 2 7 0 0 1 0 . 4 0 0 3 2 1 9 . 1 6 0 . 6 0 5 9 9 . 6 7 3 2 8 6 6 4 . 2 7 0 . 4 5 8 2 0 . 6 3 0 1 2 1 . 1 1 4 8 3 5 9 . 6 4 0 . 7 2 8 8 1 7 . 9 7 8 1 1 1 9 8 8 . 9 5 0 . 4 7 5 7 0 . 7 6 8 0 1 6 . 1 7 4 7 2 3 5 . 9 3 0 . 7 5 7 8 1 2 . 2 4 5 5 1 1 3 4 0 . 1 4 0 . 5 1 5 7 1 . 1 1 8 7 2 7 . 4 0 1 0 3 5 4 . 2 3 0 . 8 0 9 9 1 9 . 9 2 8 8 1 1 4 2 8 . 6 3 0 . 5 5 9 8 1 . 5 7 7 0 3 5 . 5 7 0 5 3 9 0 . 7 8 0 . 8 5 1 4 2 3 . 8 6 4 3 1 4 2 1 1 . 8 0 F I L M 1 3 - 3 RUN 135 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 3 2 7 0 . 0 0 1 6 0 . 0 3 6 2 1.04 0 . 3 8 7 8 0 . 0 3 7 9 1 1 2 5 7 . 2 0 0 . 3 3 3 7 0 . 0 0 6 2 0 . 2 3 4 3 6.71 0 . 3 9 3 2 0 . 2 4 4 4 6 3 5 5.01 0 . 3 3 5 4 0 . 0 1 3 9 0 . 3 8 6 7 1 0 . 9 9 0 . 4 0 2 1 0 . 4 0 2 2 6 3 7 0 . 8 6 0 . 3 3 8 2 0 . 0 2 7 3 0 . 6 7 6 8 1 8 . 9 8 0 . 4 1 7 1 0 . 7 0 0 5 6 4 4 0 . 5 5 0 . 3 4 8 4 0 . 0 7 7 2 2 . 5 1 0 9 6 7 . 7 6 0 . 4 6 6 9 2.57 5 9 6 6 3 4 . 6 9 0 . 4 1 0 7 0 . 4 5 1 1 1 8 . 7 9 7 0 4 1 2 . 3 5 0 . 6 7 4 7 1 8 . 4 7 6 9 7 8 0 2 . 0 3 0 . 4 5 7 8 0 . 8 1 6 5 2 4 . 3 4 1 2 4 0 9 . 4 6 0 . 7 6 5 2 2 0 . 4 5 2 4 1 1 6 2 4 . 1 0 0 . 6 1 6 5 2.72 54 5 4 . 1 2 6 1 5 8 4 . 0 6 0 . 9 0 3 9 3 9 . 2 8 6 0 1 3 4 0 1 . 2 2 F I L M 1 3 - 3 RUN 1 3 6 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 3 7 7 0 . 0 1 8 4 0 . 7 4 5 7 2 1 . 1 6 0 . 4 1 4 4 0 . 7 7 9 6 1 5 4 2 1 . 1 0 0 . 3 5 0 2 0 . 0 8 0 1 3 . 1 2 7 3 8 4 . 0 8 0 . 4 7 5 0 3 . 2 1 2 4 6 6 6 8 . 9 7 0 . 3 8 8 4 0 . 2 9 7 7 1 1 . 0 1 7 3 2 5 6 . 3 1 0 . 6 1 5 3 1 0 . 8 6 1 8 9 2 4 1 . 3 0 0 . 4 3 6 1 0 . 6 3 6 1 1 7 . 1 4 2 5 3 1 9 . 8 3 0 . 7 2 8 3 1 5 . 2 1 7 6 1 0 3 7 5 . 7 9 0 . 5 0 4 2 1 . 2 5 8 4 2 5 . 0 2 8 0 3 5 8 . 3 5 0 . 8 2 4 3 1 9 . 7 1 3 3 1 1 5 1 2 . 5 7 0 . 5 3 7 0 1 . 6 2 7 2 2 4 . 5 7 7 2 2 8 8 . 2 4 0 . 8 5 4 6 1 6 . 8 8 6 6 1 3 6 0 1 . 3 2 ' F I L M 1 3 - 3 RUN 137 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 4 0 6 0 . 0 2 9 6 1 . 1 9 9 1 3 3 . 7 3 0 . 4 2 9 3 1 . 2 5 3 3 1 5 5 5 4 . 2 5 0 . 3 6 5 4 0 . 1 5 8 2 6 . 5 1 1 9 1 6 6 . 0 8 0 . 5 3 7 7 6 . 6 2 0 1 7 8 2 4 . 8 0 0 . 4 0 1 8 0 . 3 8 2 0 1 5 . 1 1 4 6 3 2 6 . 11 0 . 6 5 2 5 1 4 . 2 9 5 7 8 9 2 9 . 5 6 0 . 4 3 9 2 0 . 6 5 8 3 1 8 . 6 6 0 8 3 3 5 . 0 9 0 . 7 3 4 1 1 6 . 0 5 7 7 ' 1 1 1 2 5 . 4 0 0 . 5 0 1 6 1 . 2 3 1 8 3 8 . 5 8 6 6 5 5 2 . 3 1 0 . 8 2 1 6 3 0 . 2 2 7 6 1 2 7 3 6 . 5 2 0 . 5 6 5 6 1 . 9 9 0 0 5 0 . 8 3 4 6 5 6 6 . 0 2 0 . 8 7 5 5 3 4 . 9 2 5 3 1 4 3 5 9 . 4 3 0 . 6 3 1 8 2 . 9 7 9 9 9 9 . 5 4 7 8 88 0.96 0 . 9 1 0 8 6 0 . 7 2 6 9 1 5 0 0 3 . 2 7 F I L M 1 4 - 1 ; RUN 138 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 4 3 0 4 0 . 0 5 1 2 3 . 2 7 8 0 5 7 . 7 0 0 . 4 4 8 1 2 . 7 0 9 5 8 3 9 7 . 9 0 0 . 4 6 1 8 0 . 1 8 4 9 1 0 . 6 7 0 3 1 7 0 . 3 8 0 . 5 5 3 1 8 . 5 8 3 8 1 0 1 5 7 . 4 1 0 . 5 1 9 4 0 . 4 7 9 8 2 3 . 3 7 5 0 3 0 7 . 9 3 0 . 6 8 6 1 1 7 . 4 5 0 2 1 1 4 2 4 . 9 2 0 . 5 4 6 9 0 . 6 4 6 6 1 3 . 1 7 4 4 1 4 7 . 3 5 0 . 7 3 1 2 8 . 7 9 2 7 1 3 3 6 4 . 1 6 0 . 6 6 4 2 1 . 5 6 6 2 1 4 5 . 2 8 2 5 1 2 4 8 . 8 2 0 . 8 5 0 0 9 0 . 4 9 4 6 1 6 1 9 8 . 0 2 F I L M 1 4 - 1 RUN 139 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 8 5 2 0 . 0 1 2 2 0 . 6 4 7 1 1 3 . 9 7 0 . 4 0 0 1 0.58 7 1 75.15.2 0 0 . 4 0 3 4 0 . 0 8 9 8 3 . 8 3 8 0 7 8 . 5 0 0 . 4 7 7 8 3 . 4 5 5 0 7 0 9 8 . 3 5 0.42 73 0 . 2 0 3 0 7 . 0 0 1 7 1 2 9 . 0 2 . 0 . 5 6 0 7 6 . 0 1 5 1 8 3 5 7 . 0 9 0 . 4 6 4 1 0 . 5 2 8 7 0 . 5 7 0 6 0 . 6 0 2 5 FILM TOTALD 0 . 4 0 2 2 0 . 4 1 0 4 0 . 4 2 1 1 0 . 4 3 1 2 0 . 4 7 3 5 0 . 5 8 2 8 0 . 7 3 4 4 FILM TOTALD 0 . 3 6 5 9 0 . 3 6 6 6 0 . 3 6 8 9 0 . 3 7 3 6 0 . 3 7 9 3 0 . 4 0 5 3 0 . 4 4 0 7 0 . 5 3 6 3 •FILM TOTALD 0 . 3 5 8 3 0 . 3 6 0 7 0 . 3 6 2 5 0 . 4 0 8 4 0 . 4 3 6 2 0 . 4 6 1 5 0 . 5 2 9 4 FILM TOTALD 0 . 3 9 6 1 0 . 4 0 2 0 0 . 4 2 2 4 0 . 4 6 9 8 0 . 5 1 1 2 0 . 5 8 9 4 0 . 7 3 9 2 0 . 4 0 3 7 0. 8 3 6 3 1. 1816 1.4813. 1 4 - 1 PCEVAP 0 . 0 1 3 4 0 . 0 4 6 2 0 . 0 9 0 5 0 . 1 3 4 4 0 . 3 4 2 9 1 . 0 7 4 1 2 . 6 5 6 6 1 4 - 2 PCEVAP 0 . 0 0 1 2 0 . 0 0 4 3 0 . 0 1 4 0 0 . 0 3 4 2 0 . 0 5 9 6 0 . 1 8 4 6 0 . 3 8 0 7 1 . 0 9 1 7 1 4 - 2 PCEVAP 0 . 0 0 4 6 0 . 0 1 4 9 0 . 0 2 2 8 0 . 2 5 0 7 0 . 4 1 5 9 0 . 5 8 3 3 1 . 1 3 7 2 1 4 - 2 PCEVAP 0 . 0 2 0 9 0 . 0 4 4 9 0 . 1 3 3 4 0 . 3 7 5 8 0 . 6 3 1 2 1 . 2 4 0 0 2 . 9 2 8 3 1 2 . 4 0 3 5 2 6 . 6 1 7 9 2 8 . 1 7 2 4 1 8 . 3 4 0 7 RUN UA 0.8 3 8 2 2 . 3 1 3 2 3 . 1 1 5 5 4 . 0 8 9 8 9 . 7 1 3 2 4 0 . 5 7 8 7 1 0 9 . 4 8 3 3 RUN UA •' 0 . 0 7 2 2 0 . 2 7 3 5 0 . 8 6 5 3 1 . 7 8 4 3 2 . 2 2 7 5 6 . 2 6 8 3 1 1 . 3 4 7 6 4 0 . 9 0 6 0 ' RUN UA 0 . 1 6 7 8 0.85 54 0 . 8 6 5 8 3 . 9 0 0 4 1 3 . 4 2 0 1 1 8 . 0 7 8 8 2 2 . 1 2 5 0 -!_. RUN UA 1 . 4 0 4 3 2.0889 1 9 . 4 9 6 0 2 5 . 9 2 5 1 2 7 . 3 3 4 0 4 3 . 4 1 5 9 1 7 8 . 3 4 7 0 1 9 8 . 3 1 3 4 2 . 2 4 2 9 6 . 3 0 1 6 9 . 5 2 140 UINST 1 6 . 6 1 4 4 . 5 8 5 7 . 3 3 7 1 . 6 4 1 5 0 . 7 3 4 5 7 . 9 8 7 9 2 . 6 6 141 UINST 1.72 6.49 2 0 . 3 6 4 1 . 19 5 0 . 0 0 1 2 9 . 4 4 2 0 1 . 4 1 5 4 0 . 2 4 142 UINST 4.17 2 1 . 0 5 2 1 . 0 6 8 3 . 2 2 2 3 9 . 16 2 8 5 . 2 9 2 8 5 . 4 5 143 UINST 2 8 . 7 6 4 1 . 7 3 1 7 7 . 7 4 4 1 3 . 3 8 3 6 0 . 8 7 4 5 3 . 9 2 1 2 6 9 . 8 0 0 . 6 5 7 2 0 . 7 6 8 2 0 . 8 1 5 6 0 . 8 4 3 4 RATIO 0 . 4 0 1 5 0 . 4 3 6 6 0 . 4 7 8 6 0 . 5 1 4 2 0 . 6 3 3 2 0 . 8 0 3 5 0 . 9 0 1 8 RATIO 0 . 3 8 7 2 0 . 3 9 0 9 0 . 4 0 2 1 0 . 4 2 4 5 0 . 4 5 0 2 0 . 5 4 9 4 0 . 6 4 9 7 0 . 8 0 5 6 RATIO 0 . 3 9 1 3 0 . 4 0 3 3 0 . 4 1 2 1 0 . 5 8 9 1 0 . 6 6 2 6 0 . 7 1 5 3 0 . 8 1 1 4 RATIO 0 . 4 1 1 8 0 . 4 3 7 1 0 . 5 1 4 7 0 . 6 4 7 5 0 . 7 2 6 4 0 . 8 2 1 6 0 . 9 0 9 6 1 0 . 0 4 1 5 1 9 . 7 4 0 8 1 8 . 4 4 3 8 1 1 . 1 4 2 3 XNUNO 0 . 7 2 8 9 1 . 9 9 6 0 2 . 6 3 4 1 3 . 3 7 0 1 7.78 5 8 2 9 . 1 2 0 2 6 3 . 5 0 6 6 XNUNO 0 . 0 6 8 6 0 . 2 5 9 5 0 . 8 1 9 3 1 . 6 7 9 0 2 . 0 6 9 4 5 . 7 2 3 7 9 . 6 8 4 8 3 1 . 6 0 7 6 XNUNO 0 . 1 6 3 2 0 . 8 2 8 6 0 . 8 3 3 1 3 . 7 0 8 4 11.3£| 1 0 1 4 . 3 6 5 0 1 6 . 4 8 5 6 XNUNO 1.243 2 1 . 8 3 0 3 8. 190 2 2 1 . 1 8 7 4 2 0 . 1 2 5 3 2 9 . 1 8 7 2 1 0 2 . 4 0 5 3 2 3 5 9 0 5 4 . 8 3 1 1 6 2 8 . 9 9 1 3 0 2 2 . 2 3 1 3 2 5 1 . 2 4 PECMO 7 8 4 7 . 4 0 8 0 2 6 . 6 0 9 2 6 3 . 1 1 9 8 1 4 . 2 1 1 1 5 7 6 . 2 1 1 4 8 0 3 . 4 4 1 9 7 3 4 . 3 1 PECMO 9 5 4 0 . 3 6 7 1 5 2 . 2 9 7 2 1 4 . 0 8 7 3 0 6 . 4 0 7 4 0 0 . 6 8 9 0 5 8.8 3 1 1 4 7 8 . 9 3 1 3 9 6 6 . 6 6 PECMO 9 3 3 6 . 6 8 7 0 5 4 . 7 7 7 0 9 5 . 4 4 8 8 1 9 . 6 4 8 5 3 0 . 2 3 1 0 5 0 5 . 1 6 1 2 2 8 8 . 9 9 PECMO 6 1 8 2.98 6 2 8 9 . 2 5 8 2 5 9 . 9 2 9 1 6 5 . 6 4 9 9 9 6 . 8 1 1 4 3 9 1 . 6 3 1 6 2 5 9 . 1 1 F l LM TOTALD 0 . 3 2 6 9 0 . 3 3 7 2 0 . 3 5 4 6 0 . 4 1 2 6 0 . 5 5 1 1 FILM TOTALD 0 . 4 0 0 0 0 . 4 0 2 8 0 . 4 0 9 5 0 . 4 6 0 4 0 . 5 2 2 6 0 . 7 2 6 4 FILM TOTALD 0 . 4 0 4 6 0 . 4 2 6 2 0 . 4 3 5 5 0 . 4 5 6 9 0.5 3 56 0 . 6 3 9 0 0 . 7 3 9 8 FILM TOTALD 0 . 4 1 6 5 0 . 4 1 7 8 0 . 4 2 0 7 0 . 4 2 5 7 0 . 4 3 6 0 0 . 4 4 8 3 0 . 5 2 1 7 0 . 6 3 4 5 FILM TOTALD 0 . 4 0 7 7 0 . 4 0 9 0 0 . 4 1 2 3 1 4 - 2 PCEVAP 0 . 0 6 0 7 0 . 1 3 1 3 0 . 2 5 9 6 0 . 7 8 7 0 2 . 7 7 7 9 1 4 - 2 PCEVAP 0 . 0 0 4 5 0 . 0 1 5 3 0 . 0 4 1 9 0 . 2 7 2 7 0 . 6 3 2 8 2 . 5 3 8 6 1 4 - 2 PCEVAP 0 . 0 2 0 0 0 . 1 1 0 1 0 . 1 5 1 1 0 . 2 5 3 4 0 . 7 1 7 2 1 . 5 7 3 2 2 . 7 0 8 3 1 4 - 2 PCEVAP 0 . 0 0 3 2 0 . 0 0 8 1 0 . 0 1 9 1 0 . 0 3 8 1 0 . 0 7 9 0 0. 1 3 0 2 0 . 4 9 5 7 1 . 2 9 7 1 1 4 - 2 PCEVAP 0.00 22 0 . 0 0 7 4 0 . 0 1 9 8 RUN UA 7 . 0 0 2 5 4 . 1 5 3 4 3 . 7 3 7 3 1 3 . 0 9 2 6 5 7 . 2 0 3 2 RUN UA 0 . 0 9 9 0 0 . 5 4 3 3 1 . 1 9 8 4 1 2 . 9 2 0 0 4 0 . 2 8 7 5 1 0 5 . 0 6 6 5 RUN UA 0 . 4 5 9 2 1 0 . 3 4 5 4 4 . 6 9 3 7 6 . 5 9 7 1 2 9 . 6 9 2 9 5 4 . 6 9 3 6 7 1 . 9 1 7 0 RUN UA 0 . 1 6 8 5 0 . 6 3 0 8 0 . 7 1 5 6 2 . 4 4 8 9 5 . 2 6 6 1 6 . 5 9 2 0 2 6 . 4 8 1 8 5 7 . 9 5 1 9 RUN UA 0 . 0 7 5 1 0 . 2 8 4 7 0 . 7 4 5 8 144 UINST 2 2 1 . 0 2 1 1 9 . 8 3 9 9 . 3 1 2 8 1 . 4 6 7 6 8 . 0 9 145 UINST 1.98 1 0 . 7 3 2 3 . 1 2 2 1 6 . 5 6 5 2 8 . 4 8 8 3 4 . 9 9 146 UINST 9.06 1 9 0 . 6 5 8 0.44 1 0 5 . 3 6 3 8 1 . 2 3 5 0 0 . 6 9 4 7 8 . 8 9 147 • UINST 3.10 1 1 . 5 4 1 2 . 9 5 4 3 . 51 9 0 . 2 4 1 0 7 . 2 5 3 5 6 . 1 4 5 4 6 . 5 5 148 UI NST 1.44 5.43 1 4 . 0 7 RATIO 0 . 5 6 7 4 0 . 6 0 6 0 0 . 6 6 1 3 0 . 7 8 5 1 0 . 9 0 9 8 RATIO 0 . 3 9 1 2 0 . 4 0 3 8 0 . 4 3 2 6 0 . 6 0 1 1 0.72 73 0 . 8 9 8 5 RATIO 0 . 4 1 1 7 0 . 4 9 6 9 0 . 5 2 8 6 0 . 5 9 1 9 0 . 7 4 6 7 0 . 8 5 0 9 0 . 9 0 4 0 RATIO 0 . 3 9 0 6 0 . 3 9 6 3 0 . 4 0 8 8 0 . 4 2 9 4 0 . 4 6 9 1 0 . 5 1 1 6 0 . 6 9 0 2 0 . 8 2 7 9 RATIO 0.38 83 0 . 3 9 4 5 0 . 4 0 8 8 XNUNO 7 . 8 8 2 2 4 . 4 0 8 6 3 . 8 4 2 4 1 2 . 6 7 0 3 4 6 . 1 7 8 0 XNUNO 0 . 0 8 6 3 0 . 4 7 1 6 1 . 0 3 2 8 1 0 . 8 7 8 3 3 0 . 1 3 2 3 6 6 . 1 6 9 3 XNUNO 0 . 4 0 0 0 8 . 8 6 5 0 3 . 8 2 2 1 5 . 2 5 2 1 2 2 . 2 7 6 2 3 4 . 9 0 3 5 3 8 . 6 5 4 2 XNUNO 0 . 1 4 0 9 0 . 5 2 5 8 0 . 5 9 4 6 2 . 0 2 0 5 4 . 2 9 3 0 5 . 2 4 5 9 2 0 . 2 7 0 6 3 7 . 8 3 3 6 XNUNO 0 . 0 6 4 1 0 . 2 4 2 5 0 . 6 3 2 9 PECMO 8 5 2 3 . 6 1 8 7 9 2 . 9 9 9 2 3 6 . 0 0 9 7 9 7 . 2 8 1 3 4 5 6 . 1 7 PECMO 8 9 3 2 . 0 8 7 0 0 1 . 4 2 6 7 9 7 . 9 1 8 4 3 2 . 1 3 1 0 2 2 0 . 6 3 •:Pcf&62.36 PECMO 9 4 8 6 . 4 7 8 3 3 4 . 9 5 8 5 1 7 . 4 3 1 0 2 0 0 . 3 7 1 1 9 5 6 . 3 7 1 4 2 8 1 .35 1 6 5 1 5 . 8 9 PECMO 1 0 1 7 9 . 8 1 7 1 3 1 . 7 7 8 2 1 7 . 7 2 8 3 2 5 . 1 3 8 5 2 7 . 5 6 8 7 4 7 . 0 7 1 1 6 6 0 . 1 7 1 4 1 6 4 . 2 7 PECMO 9 1 0 5 . 7 3 7 1 0 2 . 0 4 8 0 6 3 . 1 8 0.42 22 0 . 5 0 7 1 0.5 4 7 1 0 . 6 0 7 7 0 . 7 9 3 1 0 . 0 5 8 7 0 . 4 7 0 7 0 . 7 2 0 1 1 . 1 7 4 3 3 . 2 3 0 4 2 . 0 7 8 6 2 4 . 3 6 7 2 2 9 . 4 8 0 4 7 1 . 5 5 9 3 16 2 . 0 0 6 3 3 7 . 9 8 3 5 6 . 1 6 3 3 7 . 1 8 6 8 1 . 1 8 1 0 3 2 . 7 3 0 . 4 4 9 5 0 . 6 8 2 4 0 . 7 4 7 1 0 . 8 1 5 6 0 . 9 1 7 1 1 . 7 4 9 6 1 9 . 7 0 3 1 2 0 . 1 2 3 7 4 5 . 1 5 8 7 2 37 7 3 3 0 . 6 8 9 9 0 4 . 7 9 1 0 6 9 8 . 4 8 1 5 8 4 5 . 0 1 8 9 . 3 5 9 7 2 0 6 5 6 . 0 6 F I L M 1 4 - 2 RUN 149 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 8 2 4 0 . 0 IT 1 0 . 8 4 6 3 1 8 . 8 5 0 . 4 2 6 0 0 . 7 8 6 4 1 1 9 6 5 . 5 6 0 . 3 9 9 5 0 . 0 8 7 9 3 . 6 7 1 8 7 6 . 4 0 0 . 4 9 6 7 ' 3 . 3 3 0 0 7 8 0 4 . 0 8 0 . 4 2 6 2 0 . 2 2 0 3 6 . 2 3 6 8 1 1 6 . 3 0 0 . 5 8 5 4 5 . 4 0 7 6 8 3 2 4 . 6 9 0 . 4 5 2 3 0 . 3 6 7 7 6 . 9 2 1 7 1 1 4 . 0 4 0 . 6 5 3 3 5 . 6 2 7 9 8 8 4 6 . 1 5 0 . 5 3 8 0 0 . 9 7 8 1 3 2 . 3 1 4 2 4 1 6 . 1 8 0 . 7 9 4 1 2 4 . 4 3 0 0 1 2 0 1 1 . 2 0 F I L M 1 4 - 2 RUN 1 5 0 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 3 4 3 0 . 0 5 1 1 5 . 3 6 1 2 9 4 . 5 4 0 . 4 6 2 8 4 . 4 7 9 8 1 3 5 9 0 . 4 8 0 . 4 4 5 5 0 . 0 9 7 5 6 . 0 7 4 2 9 9 . 8 5 0. 5 0 2 3 4 . 8 5 3 1 8 6 9 1 . 9 1 0 . 4 6 9 8 0 . 2 0 6 2 1 4 . 2 5 5 3 2 1 6 . 4 2 0 . 5 7 5 5 1 1 . 0 9 1 8 9 1 8 6 . 8 9 0 . 5 2 8 4 0 . 5 1 6 9 2 2 . 9 4 9 2 2 9 2 . 1 4 0 . 7 0 1 9 16.841.9 1 1 7 9 6 . 2 1 0 . 5 9 3 9 0 . 9 5 6 8 4 5 . 3 3 3 7 4 5 6 . 5 2 0 . 7 9 0 1 2 9.579 0 1 3 9 2 6 . 2 9 0 . 6 4 3 1 1.3 541 3 4 . 0 5 5 0 2 8 2 . 8 3 0 . 8 3 4 7 1 9 . 8 4 2 5 1 4 6 7 7 . 3 6 F I L M 1 4 - 2 RUN 151 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 1 2 3 0 . 0 1 6 4 1 . 6 2 0 9 3 0 . 7 5 0 . 4 0 8 8 1 .383 4 1 2 9 0 1 .22 0 . 4 2 0 9 0 . 0 5 0 5 2 . 0 9 9 0 3 8 . 4 7 0 . 4 4 4 4 1 . 7 6 6 8 8 2 2 1 . 9 4 0 . 4 5 7 7 0 . 2 1 1 0 9.75 04 1 6 0 . 4 6 0 . 5 6 8 1 8 . 0 1 3 0 8 9 4 0 . 7 9 0 . 5 1 4 7 0 . 5 1 6 5 2 4 . 6 8 8 5 3 3 1 . 1 3 0 . 6 9 6 4 1 8 . 5 9 5 3 1 1 7 4 8 . 2 5 0 . 5 6 9 5 0 . 8 7 8 3 3 4 . 9 2 5 6 3 7 7 . 1 9 0 . 7 7 5 8 2 3 . 4 3 3 9 1 3 3 5 3 . 3 1 0 . 7 0 0 4 2 . 0 6 8 8 6 3 . 1 1 4 1 4 9 2 . 8 8 0 . 8 7 9 6 3 7 . 6 6 3 7 1 6 7 1 6 . 2 8 F I L M 1 4 - 2 RUN 152 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 3 8 2 9 0.0133 0 . 8 4 7 5 1 8 . 8 5 0 . 4 2 8 3 0 . 7 8 7 4 9 9 8 4 . 8 4 0 . 3 8 8 2 0 . 0 3 6 4 2 . 2 0 6 7 4 7 . 2 3 0 . 4 5 1 4 2 . 0 0 0 2 7 5 7 3 . 9 8 0.4001 0 . 0 9 0 8 5 . 1 9 8 8 1 0 6 . 4 4 0 . 4 9 9 0 4 . 6 4 6 5 7 8 2 5.44 0 . 4 4 2 2 C) • 3 0 8 5 1 1 . 7 1 0 2 2 0 9 . 5 3 . 0 . 6 2 8 9 1 0 . 1 0 8 4 9 8 7 1 .62 0 . 5 2 6 1 0 . 8 8 4 6 3 0 . 9 0 9 0 4 1 6 . 4 5 0 . 7 7 9 8 2 3 . 9 0 2 3 1 1 7 5 8 . 3 0 0 . 6 6 8 2 2 . 3 6 0 3 7 8 . 1 2 2 8 6 8 7 . 3 6 0 . 8 9 2 6 5 0 . 1 0 9 0 1 4 9 1 6 . 7 1 2 3 8 F I L M 1 4 - 2 RUN 153 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 5 0 1 0 . 3 5 1 6 0 . 3 5 4 2 0 . 3 6 2 1 0 . 3 7 3 5 0 . 3 9 4 1 0 . 4 3 6 6 0 . 5 1 7 7 0 . 6 6 9 0 0 . 0 0 3 6 0 . 0 1 0 5 0 . 0 2 1 7 0 . 0 5 8 2 0 . 1 1 3 4 0 . 2 2 2 8 0. 4 8 3 2 1. 1 4 5 3 3 . 0 4 3 2 0 . 1 2 3 7 0 . 5 2 6 4 0 . 8 6 8 0 2 . 8 1 2 8 4 . 2 2 1 6 8 . 3 4 6 2 9 . 8 1 5 3 3 9 . 7 2 5 8 7 0 . 2 5 3 8 3.2 3 1 3 . 6 1 2 2 . 1 7 6 9 . 7 8 99 . 29 1 8 0 . 1 6 1 8 0 . 5 6 5 5 1 . 1 9 6 2 4 . 7 1 0 . 3 9 1 7 0 . 3 9 9 6 0 . 4 1 2 3 0 . 4 5 0 0 0 . 4 9 8 9 0 . 5 7 3 8 0 . 6 8 6 5 0 . 8 1 2 1 0 . 9 1 3 0 0 . 1 2 3 2 0 . 5 2 1 9 0 . 8 5 6 8 2 . 7 5 6 3 4 . 0 4 5 6 7 . 7 4 6 7 8 . 5 9 9 8 3 1 . 1 3 4 1 4 5 . 5 9 7 2 9 1 2 1 . 8 1 6 8 7 6 . 9 9 6 9 2 6 . 1 3 7 0 6 3 . 8 0 7 3 0 3 . 5 4 8 6 6 9 .12 1 0 6 6 7 . 0 2 1 1 1 1 1 . 0 8 1 6 3 4 7 . 0 1 F I L M 1 4 - 2 RUN I 54 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 0 0 3 0 . 3 2 1 1 0 . 3 4 1 3 0 . 3 6 7 8 0 . 4 3 9 6 0 . 5 1 6 5 0 . 0 4 1 6 0. 1 6 6 9 0 . 3 0 3 9 0 . 5 1 0 4 1 . 2 3 2 0 2 . 3 1 9 1 1 . 2 4 8 0 3 . 2 1 6 8 3 . 4 8 2 5 5 . 2 1 3 4 2 0 . 9 8 2 4 6 2 . 9 6 2 6 4 5 . 4 9 1 0 5 . 9 1 1 0 0 . 9 1 1 3 1 . 7 6 4 0 6 . 4 2 8 7 1 . 0 3 0 . 4 4 1 9 0 . 5 4 3 5 0 . 6 2 0 1 0 . 6 9 6 4 0 . 8 2 2 3 0 . 8 9 0 5 1.490 5 3 . 7 1 0 2 3 . 7 5 7 9 5 . 2 8 7 1 1 9 . 4 9 2 5 4 9 . 0 7 8 8 7 8 3 0 . 5 1 7 1 6 7 . 9 3 7 6 2 0 . 0 1 8 2 2 0 . 5 1 1 1 4 4 9 . 4 3 1 3 4 6 7 . 1 6 F I L M 1 4 - 2 RUN 15 5 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 3 3 6 0 . 3 3 5 3 0 . 3 4 4 8 0 . 3 5 5 2 0 . 3 7 0 2 0 . 3 8 7 4 0 . 4 3 5 0 0 . 4 6 9 0 0 . 5 5 9 3 0 . 6 1 9 4 0.00 54 0 . 0 1 3 3 0 . 0 5 9 1 0 . 1 1 1 8 0. 1 9 3 8 0 . 2 9 4 5 0 . 6 2 8 0 0 . 9 1 5 8 1 . 8 9 4 4 2 . 7 5 5 2 0 . 1 6 0 6 0 . 5 2 6 5 1 . 7 3 7 5 3 . 4 8 7 9 3 . 6 0 1 6 6 . 6 0 1 8 1 2 . 3 4 6 6 1 8 . 6 4 6 7 4 1 . 8 0 2 7 5 4 . 8 5 7 7 4 . 6 1 1 4 . 9 8 4 7 . 8 0 9 0 . 5 8 8 7 . 0 8 1 4 6 . 3 4 2 3 1 . 5 9 2 8 9 . 9 7 4 9 9 . 3 2 5 0 1 . 2 6 0 . 3 9 2 6 0 . 4 0 1 8 0 . 4 4 9 8 0 . 4 9 6 8 0 . 5 5 5 5 0 . 6 1 2 1 0 . 7 2 6 2 0 . 7 8 1 6 0 . 8 7 1 3 0 . 9 0 5 3 0 . 1 6 7 9 0 . 5 4 7 8 1 . 7 9 8 0 3 . 5 1 0 0 3 . 5 1 6 9 6 . 1 8 4 4 1 0 . 9 9 0 6 1 4 . 8 3 8 1 3 0 . 4 6 5 4 3 3 . 8 7 3 6 8 6 9 2 . 2 5 6 5 5 7 . 6 0 7 2 1 6 . 5 7 7 8 1 2 . 4 5 9 0 3 9 . 2 0 8 5 1 9 . 9 4 9 7 1 0 . 7 7 1 1 4 6 0 . 4 9 1 2 7 4 6 . 8 9 1 5 1 3 4 . 8 1 F I L M 1 4 - 2 RUN I 56 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 1 6 2 0 . 3 1 7 7 0 . 3 2 5 4 0 . 3 4 4 9 0 . 3 7 8 3 0 . 4 4 6 3 0 . 5 6 1 5 0 . 0 0 1 6 0 . 0 0 8 9 0 . 0 4 7 4 0. 1 5 4 1 0 . 3 6 3 4 0 . 9 2 2 5 2 . 3 3 4 1 0 . 0 7 3 6 0 . 2 0 9 0 1 . 0 9 0 1 3 . 4 4 8 6 6 . 6 7 6 7 1 7 . 7 6 1 8 4 4 . 5 2 84 2.35 6.62 3 3 . 5 5 9 7 . 6 1 1 6 2 . 1 3 3 3 0 . 2 5 5 5 0 . 7 7 0 . 3 8 8 1 0 . 3 9 6 6 0 . 4 3 8 5 0 . 5 2 8 9 0 . 6 4 2 8 0 . 7 8 2 6 0 . 8 9 1 0 0 . 0 8 1 0 0 . 2 2 9 4 1 . 1 9 0 9 3 . 6 7 3 2 6 . 6 9 0 6 1 6 . 0 8 0 0 3 3 . 7 4 1 1 9 8 9 3 . 3 2 6 2 0 4 . 9 0 6 3 5 5 . 1 8 7 7 0 9 . 7 2 8 4 4 4 . 0 1 9 9 6 2 . 8 3 1 2 5 5 0 . 3 7 T A B L E A X I I 239 P R O C E S S E D D A T A F O R D I S T I L L E D W A T E R - C Y C L O P E N T A N E S Y S T E M F I LM 1 5 - 1 R U N C I T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 4 2 0 9 0 . 0 0 0 3 0 . 4 3 0 8 7 * 7 5 0 . 3 3 1 6 0 . 3 0 1 1 3 1 0 9 . 9 2 0 . 4 2 3 3 ' 0 . 0 0 7 5 1 . 1 0 7 7 1 9 . 7 8 0 . 3 4 2 9 0 . 7 7 2 5 3 1 2 7 . 6 0 0 . 4 2 6 2 0 . 0 1 6 1 1 . 5 0 5 5 2 6 . 5 6 0 . 3 5 6 1 1 . 0 4 4 0 3 5 4 6 . 6 5 0 . 4 3 0 0 0 . 0 2 7 8 1 . 9 9 0 6 3 4 . 5 6 0 . 3 7 3 2 1 . 3 7 1 0 3 5 7 4 . 3 9 0 . 4 3 6 2 0 . 0 4 7 2 3 . 2 8 8 9 5 5 . 7 8 0 . 3 9 9 8 2 . 2 4 4 9 3 6 2 6 . 2 7 0 . 4 4 1 0 0 . 0 6 2 3 2 . 5 0 6 9 4 1 . 4 6 0 . 4 1 9 1 1 . 6 8 6 7 3 6 7 0 . 3 5 0 . 4 4 8 3 0 . 0 8 6 0 3 . 9 1 1 5 6 2 . 9 4 0 . 4 4 7 0 2 . 6 0 3 0 3 7 2 6 . 5 5 0 . 4 5 4 7 0 . 1 0 7 5 3 . 9 5 5 4 6 1 . 7 3 0 . 4 7 0 1 2 . 5 8 9 5 4 3 1 9 . 9 8 0 . 4 6 4 2 0 . 1 4 0 2 5 . 2 4 4 7 7 9 . 0 4 0 . 5 0 1 9 3 . 3 8 4 7 3 8 6 3 . 3 1 0 . 4 8 3 9 0 . 2 1 2 7 1 1 . 2 8 2 5 1 5 9 . 6 9 0 . 5 6 0 3 7 . 1 2 8 1 4 0 2 2 . 1 1 0 . 5 0 0 6 0 . 2 7 8 9 1 1 . 8 0 0 4 1 5 4 . 9 1 0 . 6 0 3 0 7 . 1 5 4 3 4 7 5 6 . 0 0 0 . 5 1 5 9 0 . 3 4 3 1 1 1 . 1 4 6 9 1 3 7 . 2 7 0 . 6 3 7 2 6 . 5 3 2 6 4 9 0 6 . 6 3 0 . 5 4 9 2 0 . 4 9 7 0 2 6 . 6 5 4 4 2 9 8 . 7 4 0 . 6 9 9 5 1 5 . 1 3 6 4 5 2 1 7 . 8 2 0 . 5 9 3 5 0 . 7 3 2 4 4 6 . 2 1 7 4 4 4 9 . 8 0 0 . 7 6 1 8 2 4 . 6 2 5 5 6 5 7 7 . 6 1 0 . 7 0 3 7 1 . 4 8 6 0 8 0 . 6 7 3 9 6 0 5 . 8 7 0 . 8 5 7 2 3 9 . 3 2 9 1 6 3 8 3 . 4 6 F I L M 1 5 - 1 R U N C 2 T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 3 6 3 3 0 . 0 0 0 4 0 . 0 5 4 7 1 . 3 2 0 . 3 2 3 3 0 . 0 4 4 3 3 4 5 5 . 7 0 0 . 3 6 3 8 0 . 0 0 1 9 0 . 1 4 1 0 3 . 3 9 0 . 3 2 5 7 0 . 1 1 3 9 2 4 1 9 . 0 2 0 . 3 6 4 5 0 . 0 0 4 6 0 . 2 4 1 4 5 . 7 9 0 . 3 3 0 0 0 . 1 9 4 8 2 4 2 4 . 2 0 0 . 3 6 6 8 0 . 0 1 2 3 0 . 3 7 8 7 9 . 0 1 0 . 3 4 2 4 0 . 3 0 4 9 2 7 1 1 . 8 9 0 . 3 7 1 1 0 . 0 2 7 2 1 . 6 4 4 2 3 8 . 4 3 0 . 3 6 5 0 1 . 3 1 5 7 3 0 8 4 . 7 8 0 . 3 7 8 5 0 . 0 5 3 6 2 . 8 3 7 0 6 4 . 2 5 0 . 4 0 1 6 2 . 2 4 3 5 3 1 5 0 . 1 7 0 . 3 8 9 9 0 . 0 9 6 0 4 . 5 4 4 8 9 7 . 9 5 0 . 4 5 2 4 3 . 5 2 2 8 3 2 4 0 . 6 8 0 . 4 0 8 0 0 . 1 6 9 2 8 . 6 9 6 8 1 7 3 . 7 9 0 . 5 2 2 3 6 . 5 4 1 1 3 6 3 3 . 9 6 0 . 4 3 5 5 0 . 2 9 2 8 1 2 . 8 7 7 7 2 3 0 . 0 9 0 . 6 0 7 4 9 . 2 4 5 0 3 8 5 0 . 8 5 0 . 4 5 7 9 0 . 4 0 5 0 1 3 . 0 0 3 1 2 0 7 . 2 1 0 . 6 6 2 1 8 . 7 5 2 2 4 3 4 9 . 7 2 0 . 5 2 4 5 0 . 8 1 0 1 4 6 . 8 0 9 6 6 1 4 . 5 0 0 . 7 7 5 3 2 9 . 7 3 3 5 4 9 8 2 . 8 6 F I L M 1 5 - 1 R U N C 3 ' T O T A L D P C E V A P U A U I N S T R A T I O X N U N O P E C M O 0 . 2 7 9 6 0 . 0 0 0 7 0 . 0 4 1 2 1 . 6 8 0 . 3 2 3 4 0 . 0 4 3 3 2 6 5 9 . 1 6 0 . 2 8 0 1 0 . 0 0 3 0 0 . 0 9 8 3 4 . 0 0 0 . 3 2 7 2 0 . 1 0 3 2 1 8 6 2 . 6 3 0 . 2 8 1 6 0 . 0 0 9 5 0 . 2 7 0 2 1 0 * 9 0 0 . 3 3 7 7 0 . 2 8 3 1 1 8 7 2 . 3 9 0 . 2 8 6 1 0 . 0 3 0 2 0 . 8 6 0 3 3 3 . 9 7 0 . 3 6 9 0 0 . 8 9 6 7 1 9 0 5 . 1 7 0 . 2 9 9 0 0 . 0 9 1 9 3 . 0 9 9 3 1 1 5 . 1 5 0 . 4 4 7 0 3 . 1 7 6 2 2 4 8 5 . 4 3 0 . 3 2 7 2 0 . 2 4 6 5 8 . 8 7 4 4 2 8 7 . 4 7 0 . 5 7 8 1 8 . 6 7 6 7 3 1 0 8 * 2 3 0 . 3 7 9 8 0 . 6 1 4 5 2 0 . 4 9 3 7 5 1 9 . 0 0 0 . 7 3 0 3 1 8 . 1 8 3 2 3 6 1 2 . 2 7 0 . 4 4 6 9 1 . 2 5 4 4 3 5 . 6 6 4 2 6 5 9 . 8 4 0 . 8 3 4 6 2 7 . 2 0 3 1 4 2 4 5 . - 5 5 0 . 4 9 8 0 1 . 8 8 9 2 3 4 . 4 0 1 8 4 8 8 . 9 9 0 . 8 8 0 5 2 2 . 4 6 3 6 4 7 3 0 * 7 4 240 FT LM 1 5 - 1 RUN C4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 2 2 0 0 . 0 4 8 7 2 . 5 1 5 2 4 6 . 6 9 0 . 4 2 1 6 1 . 8 1 7 7 3 6 4 9 . 5 8 0 . 4 2 6 5 0 . 0 6 3 9 3 . 0 3 6 9 5 3 . 6 8 0 . 4 3 9 6 2.112 0 3 8 4 2 . 0 2 0 . 4 4 3 7 0. 1 2 5 5 1 0 . 4 6 4 5 1 7 5 . 8 2 0 . 5 0 2 2 7 . 1 9 5 9 3 9 5 1 . 7 0 0 . 4 5 7 9 0. 1 8 0 2 9 . 0 3 8 1 1 4 1 . 4 9 0 . 5 4 7 1 5 . 9 7 6 6 4 3 5 5 . 0 6 0 . 4 7 6 2 0 . 2 5 5 7 1 2 . 4 6 6 4 1 8 1 . 7 6 0 . 5 9 7 6 7 . 9 8 5 5 4 5 2 4 . 2 8 0 . 4 9 9 2 0 . 3 5 8 8 1 6 . 5 1 5 9 2 2 0 . 8 0 0 . 6 5 0 6 1 0 . 1 6 8 2 4 7 4 2 . 3 0 0 . 5 3 9 7 0 . 5 6 4 5 3 2 . 9 2 9 5 3 8 7 . 7 1 0 . 7 2 3 6 1 9 . 3 0 3 9 5 1 3 3 . 4 2 0 . 6 1 6 2 1 . 0 4 6 3 6 5 . 4 3 2 8 6 2 0 . 6 1 0 . 8 1 4 3 3 5 . 2 7 6 2 5 4 4 1 . 5 2 F I L M 1 5 - 1 RUN C5 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 3 5 7 0 . 0 0 0 5 0 . 0 5 5 3 1.57 0 . 3 2 4 9 0 . 0 4 8 5 3 1 9 2 . 8 0 0 . 3 4 2 0 0 . 0 2 4 1 0 . 5 8 7 2 1 6 . 2 7 0 . 3 6 1 7 0 . 5 1 3 4 2 4 3 7 . 7 0 0 . 3 4 9 8 0 . 0 5 4 3 2 . 3 3 7 7 6 2 . 1 7 0 . 4 0 3 3 2 . 0 0 5 9 2 7 4 5 . 7 3 0 . 3 6 2 6 0 . 1 0 7 0 4 . 6 0 6 1 1 1 5 . 4 7 0 . 4 6 4 7 3 . 8 6 2 9 3 0 1 8 . 0 0 0 . 3 8 3 0 0. 1 9 8 4 8 . 8 2 9 5 2 0 1 .99 0 . 5 4 5 6 7 . 1 3 6 2 3 6 3 8 . 1 7 0 • 4 1 1 2 0 . 3 4 1 6 1 3 . 8 5 1 8 2 7 9 . 1 8 0 . 6 3 2 9 1 0 . 5 9 0 0 3 9 0 6 . 2 2 0 . 4 4 6 3 0 . 5 4 9 9 1 9 . 5 4 6 6 3 3 7 . 7 4 0 . 7 1 3 1 1 3 . 9 0 6 7 3 9 7 5 . 6 2 0 . 4 8 1 9 0 . 7 9 4 7 2 3 . 0 2 1 0 3 3 9 . 5 8 0 . 7 7 2 0 1 5 . 0 9 4 7 4 5 8 3 . 0 9 0 . 5 1 4 0 1 . 0 4 9 9 2 3 . 3 2 4 5 2 9 9 . 0 4 0 . 8 1 2 2 1 4 . 1 7 8 9 4 8 8 2 . 8 1 F I L M 1 5 - 1 TOTALD P C E V A P RUN 0 . 4 3 0 1 0 . 4 4 0 9 0 . 4 5 1 9 0 . 4 7 2 0 0 . 5 0 3 8 0 . 5 5 5 3 0 . 6 8 6 5 0 . 0 3 8 7 0 . 0 7 4 8 0 . 1 1 3 9 0 . 1 8 9 2 0 . 3 2 2 9 0 . 5 7 7 0 1 . 4 6 4 7 UA 1 . 0 9 1 4 7 . 6 4 3 5 6 . 8 9 6 2 1 1 . 6 1 5 8 2 2 . 8 6 4 9 3 8 . 0 2 5 5 5 0 . 4 1 4 5 C6 U I N S T 1 9 . 7 1 1 2 8 . 2 2 1 1 0 . 1 0 1 7 3 . 1 1 3 0 5 . 3 2 4 3 0 . 4 3 4 1 1 . 4 6 R A T I O 0 . 4 1 4 5 0 . 4 5 6 4 0 . 4 9 5 4 0 . 5 5 7 0 0 . 6 3 5 8 0 . 7 2 8 2 0 . 8 5 6 2 XNUNO 0 . 7 8 1 9 5 . 2 1 4 7 4 . 5 9 0 1 7 . 5 3 7 2 1 4 . 1 9 0 0 2 2 . 0 5 0 4 2 6 . 0 5 9 3 PECMO 3 2 5 8 . 9 1 4 2 7 6 i 1 3 4 0 3 0 . 5 5 4 1 6 8 . 1 4 4 7 8 5 . 9 9 4 9 0 9 . 7 7 6 7 0 8 . 4 2 F I L M 1 5 - 1 TOTALD P C E V A P RUN 0 . 3 1 6 3 0 . 3 5 5 1 0 . 4 0 9 5 0 . 4 8 2 0 0 . 5 3 6 5 0 . 2 4 7 0 0 . 5 1 7 6 1 . 0 1 0 9 1 . 8 9 9 6 2 . 7 7 2 0 UA 1 . 7 5 9 0 1 4 . 0 6 6 1 2 4 . 8 6 1 6 4 4 . 8 2 3 1 4 2 . 7 6 3 0 C7 U I N S T 6 4 . 7 9 3 9 5 . 8 9 5 3 8 . 5 4 7 1 3 . 1 1 5 2 3 . 1 8 R A T I O 0 . 5 7 8 1 0 . 7 0 1 8 0 . 8 0 5 8 0 . 8 8 0 9 0 . 9 1 3 7 XNUNO 1 . 8 9 0 3 1 2 . 9 6 7 1 2 0 . 3 4 5 6 3 1 . 7 0 5 4 2 5 . 8 9 4 9 PECMO 2 0 6 3 . 0 5 3 3 7 3 . 0 4 3 8 9 5 . 1 7 4 5 7 8 .59 5 0 9 6 . 9 7 F I L M 1 5 - 1 TOTALD P C E V A P RUN 0 . 2 7 8 9 0.2 966 0 . 3 1 4 2 0 . 3 4 5 6 0 . 3 8 2 0 0 . 4 9 1 2 0 . 6 4 6 4 0. 1 2 3 0 0 . 2 3 5 5 0 . 3 6 2 0 0 . 6 2 3 5 0 . 9 9 2 8 2 . 5 9 0 9 6 . 4 3 2 5 UA 1 . 4 8 5 0 3 . 7 8 5 1 6 . 1 8 2 2 1 0 . 9 5 8 0 1 5 . 0 1 0 6 5 0 . 4 5 7 2 6 0.8 6 1 4 C8 U I N S T 6 7 . 1 1 1 4 5 . 3 5 2 1 0 . 7 6 3 1 9 . 6 7 3 6 0 . 0 2 . 8 2 9 . 3 6 5 8 7 . 6 6 R A T I O 0. 5 0 3 0 0 . 5 8 6 8 0 . 6 5 2 6 0 . 7 3 9 0 0 . 8 0 6 8 0 . 9 0 9 2 0 . 9 6 0 2 XNUNO 1.726 5 3 . 9 7 6 5 6 . 1 0 8 7 1 0 . 1 9 0 9 1 2 . 6 8 6 3 3 7 . 5 7 9 3 3 5 . 0 4 1 5 PECMO 2 2 7 3 . 4 6 2 6 0 1 . 6 4 2 6 1 2 . 8 0 3 2 8 2 . 9 0 3 6 3 3 . 1 1 4 5 3 5 . 4 5 6 3 2 5 . 7 7 F I L M 1 5 - 1 TOTALD P C E V A P RUN 0 . 2 5 4 5 0 . 2 5 9 1 0 . 2 7 1 7 0 . 3 5 9 3 0 . 5 0 9 6 0 . 6 5 0 9 0 . 0 0 4 2 0 . 0 2 7 6 0 . 0 9 6 3 0 . 7 7 0 2 2 . 9 6 3 4 6.60 2 2 UA 0 . 1 6 3 4 0 . 8 1 1 6 2 . 3 0 9 7 9 . 3 7 4 8 4 7 . 7 5 1 0 6 6 . 7 1 0 8 C9 UI NST 8.13 3 9 . 1 5 1 0 4 . 2 6 2 9 3 . 9 4 7 8 1 . 4 8 6 2 1 . 2 2 R A T I O 0 . 3 4 6 0 0.3 8 02 0 . 4 6 2 8 0 . 7 6 7 9 0 . 9 1 8 7 0 . 9 6 1 0 XNUNO 0 . 1 9 1 0 0 . 9 3 5 8 2 . 6 1 3 6 9 . 7 4 3 7 3 6 . 7 4 0 1 3 7 . 3 0 1 2 PECMO 2 1 1 8 . 1 3 1 9 1 4 . 4 3 2 1 3 5 * 5 7 3 3 4 2 . 6 5 4 8 9 1 . 5 0 6 1 3 4 . 9 4 F I L M 1 5 - 1 TOTALD P C E V A P RUN UA C I O U I N S T R A T I O XNUNO PECMO 0 . 3 0 1 6 0 . 3 0 4 9 0 . 3 1 2 0 0 . 3 8 4 0 0 . 4 6 7 9 0 . 5 5 1 2 0 . 0 0 4 6 0 . 0 1 8 8 0 . 0 4 9 8 0 . 4 5 3 0 1 . 1 5 3 8 2 * 1 4 6 0 0 . 1 5 9 8 0 . 7 9 3 3 1 . 7 3 4 9 9 . 1 0 6 3 4 1 . 5 7 8 1 4 5 . 7 3 5 1 5.66 2 7 . 4 5 5 8 . 0 2 2 3 6 . 7 3 7 2 2 . 2 1 5 5 6.84 0 . 3 4 5 9 0 . 3 6 7 1 0 . 4 0 9 2 0 . 6 8 3 5 0 . 8 2 5 1 0 . 8 9 3 0 0 . 1 5 7 6 0 . 7 7 2 0 1 . 6 6 9 8 8 . 3 8 6 5 3 1 . 1 7 0 7 2 8 . 3 1 2 5 2 6 7 5 . 5 7 2 2 5 2 . 8 7 2 3 0 7 . 7 9 3 6 4 9 * 6 3 3 8 8 9 . 0 7 5 4 9 9 . 9 7 F l L M 1 5 - 1 TOTALD P C E V A P RUN UA C l l U I N S T R A T I O XNUNO PECMO 0 . 3 9 2 9 0 . 3 9 4 7 0 . 4 2 5 6 0 . 4 7 1 3 0 . 5 0 2 8 0.5 3 3 9 0 . 0 0 5 9 0 . 0 1 1 7 0 . 1 1 7 3 0 . 3 0 3 4 0 . 4 5 4 3 0 . 6 2 1 7 0 . 2 2 1 7 0 . 5 8 4 4 3 . 7 8 4 9 2 4 . 1 9 8 3 2 1 . 8 2 4 7 2 4 . 2 7 4 7 4.6 0 I T . 99 7 1 . 4 9 3 8 1 . 8 5 2 9 2 . 4 3 2 8 7 . 2 4 0 . 3 3 1 6 0 . 3 4 0 9 0 . 4 7 4 4 0 . 6 1 3 1 0 . 6 8 1 4 0 . 7 3 3 9 0 . 1 6 6 6 0 . 4 3 6 7 2 . 8 0 6 7 1 6 . 6 0 2 3 1 3 . 5 6 3 9 1 4 . 1 4 6 0 3 3 7 6 . 7 5 2 6 8 4 . 0 8 3 6 0 0 . 3 9 5 1 4 5 . 2 7 4 7 7 6 . 4 9 5 0 7 1 .58 F I L M 1 5 - 2 TOTALD P C E V A P RUN 0 . 2 9 4 1 0 . 3 1 7 0 0 . 3 9 2 2 0 . 5 1 2 3 0 . 0 4 1 5 0 . 1 6 0 6 0 . 6 9 1 5 2 . 0 6 8 5 UA 1 . 0 7 5 3 2 . 7 5 4 9 1 2 . 0 8 8 1 2 4 . 7 5 1 3 C 1 2 U I N S T 4 0 . 9 0 9 3 . 7 5 3 0 2 . 4 7 3 7 8 . 3 3 R A T I O 0 . 4 1 9 2 0.53 59 0 . 7 5 5 2 0 . 8 9 0 3 XNUNO 1 . 1 0 9 9 2 . 7 4 1 4 1 0 . 9 4 4 6 1 7 . 8 8 0 8 PECMO 2 4 4 5 . 1 0 2 6 3 4 . 8 3 3 4 6 7 . 9 2 4 8 9 9 . 7 6 242 F I L M 1 5 - 2 RUN C 1 3 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0. 2 2 3 2 0 . 1 2 8 8 1 . 8 2 0 9 12 4.42 0 . 6 0 5 9 2 . 5 6 2 2 2 0 8 9 . 4 1 0 . 2 4 4 2 0 . 3 4 5 1 3 . 9 5 1 7 2 2 9 . 7 6 0 . 6 9 9 0 5. 1 7 5 5 2 3 6 5 . 1 8 0 . 2 7 1 2 0 . 6 8 4 0 3 . 0 9 8 4 1 4 8 . 0 3 0 . 7 8 0 5 3 . 7 0 4 1 2 2 5 5 . 5 8 0 . 3 1 4 1 1 . 3 7 8 9 1 2 . 5 1 2 3 4 6 2 . 3 6 0 . 8 5 8 6 1 3 . 3 9 6 1 2 6 1 5 . 9 3 0 . 3 5 5 8 2 . 2 6 1 0 1 1 . 9 3 0 6 3 3 7 . 0 9 0 . 9 0 2 8 1 1 . 0 6 4 0 3 3 2 3 . 1 9 0 . 3 8 4 8 3 . 0 0 8 7 1 3 . 5 0 0 0 3 1 2 . 8 0 0 . 9 2 3 2 1 1 . 1 0 3 4 3 7 3 7 . 3 7 0 . 6 0 0 9 1 3 . 0 3 5 5 4 1 . 0 7 9 9 5 1 3 . 4 3 0 . 9 7 9 9 2 8 . 4 6 2 1 5 7 6 4 . 0 4 F I L M 1 5 - 2 RUN C 1 4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 2 7 0 5 0 . 0 0 1 0 0 . 0 2 0 7 0.90 0 . 3 2 5 3 0 . 0 2 2 5 2 2 5 1 . 3 3 0 . 2 7 1 7 0.00 6.4 0 . 0 8 9 6 3.88 0 . 3 3 4 0 0 . 0 9 7 2 1 8 0 6 .73 0 . 2 8 3 2 0 . 0 6 1 2 0 . 9 1 6 1 3 7 . 8 5 0 . 4 1 2 0 0 . 9 8 8 9 1 8 8 3 . 2 8 0 . 3 4 1 5 0 . 4 1 3 8 8 . 2 8 6 0 2 6 7 . 9 4 0 . 6 6 4 7 8 . 4 4 0 0 3 2 4 7 . 7 3 0 . 4 2 2 1 1 . 1 4 1 8 2 9 . 9 5 6 1 6 4 6 .80 0 . 8 2 2 6 2 5 . 1 8 3 5 4 3 8 8 . 6 5 0 . 7 1 5 9 7 . 1 3 1 8 6 9 . 3 4 0 6 6 3 8 . 9 6 0 . 9 6 3 7 4 2 . 1 9 6 0 7 0 1 2 . 9 1 F I L M 1 5 - 2 RUN C 1 5 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 8 0 7 0 . 0 2 6 3 3 . 7 2 2 8 8 4 . 5 5 0 . 4 5 5 8 2 . 9 6 9 0 3 7 9 8 . 6 3 0 . 4 6 6 0 0 . 4 4 7 4 6 . 7 7 1 6 1 1 9 . 0 3 0 . 7 0 3 5 5 . 1 1 6 6 4 0 4 3 . 4 5 0 . 5 6 0 9 1.13 51 2 7 . 8 8 5 8 3 3 3 . 7 1 0 . 8 3 0 1 1 7 . 2 6 8 0 5 1 7 9 . 4 3 F I L M 1 5 - 2 RUN C 1 6 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 0 7 6 0 . 0 0 0 7 0 . 0 2 3 6 0.80 0 . 3 2 4 2 0 . 0 2 2 6 2 9 2 5.87 0 . 3 0 9 3 0 . 0 0 7 5 0. 167.6 5.60 0 . 3 3 5 3 0 . 1 5 9 9 2 0 5 6 . 9 5 0 . 3 1 3 4 0 . 0 2 4 0 0 . 4 5 1 6 1 4 . 8 2 0 . 3 6 0 8 0 . 4 2 8 5 2 3 1 5 . 4 6 0 . 3 2 6 5 0 . 0 8 0 2 1 . 7 0 4 0 5 2 . 9 6 0 . 4 3 4 6 1 . 5 9 4 8 2 7 1 6 . 9 1 0 . 3 8 3 7 0 . 3 8 3 0 1 0 . 4 8 8 2 2 6 2 .98 0 . 6 5 2 0 9 . 3 0 8 5 3 6 4 5 . 0 6 0 . 6 1 1 8 2 . 7 8 5 6 4 0 . 5 0 4 4 4 9 4 . 2 6 0 . 9 1 4 3 2 7 . 8 9 4 8 5 8 1 5 . 4 3 0 . 4 7 7 9 1 . 1 1 6 4 5 7 . 1 2 0 6 6 0 3 . 1 8 0 . 8 2 0 0 2 6 . 5 9 0 1 4 5 4 5 . 1 2 F I L M 1 5 - 2 RUN CT7 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 3 2 6 2 0 . 0 0 0 6 0 . 0 2 3 6 0.71 0 . 3 2 3 8 0 . 0 2 1 3 3 1 0 2 . 4 3 0 . 3 2 7 5 0 . 0 0 5 5 0 . 1 8 1 4 5.40 0 . 3 3 1 9 0 . 1 6 3 2 2 5 5 2 . 3 3 0 . 3 9 7 3 0 . 3 2 8 4 3 . 6 8 9 0 8 8 . 5 6 0 . 6 2 5 9 3 . 2 4 5 7 3 2 3 7 . 3 5 0 . 4 5 0 6 0 . 6 6 4 3 1 3 . 7 3 3 0 2 4 2 . 1 9 0 . 7 4 3 7 1 0 . 0 6 7 1 4 2 8 0 . 6 2 0 . 6 7 5 1 3 . 1 8 7 6 7 1 . 0 9 3 9 6 8 6 . 7 0 0 . 9 2 3 9 4 2 . 7 6 8 4 6 4 5 6 . 8 0 243 FILM ' 15-2 RUN C18 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0*1889 0*0020 0.0137 1.24 0*3497 0.0216 1572.40 0.2134 0,1896 0*9 341 73.16 0.5490 1•440 4 1290.27 0*2658 0*7586 3.8978 213.48 0.7666 5.2342 2209.29 0*3405 2 .0595 11.7077 399.37 0.8891 12.5434 3071.31 0*4840 6.6936 22.4448 407.87 0.9614 18.2118 4756.22 FILM 15-2 RUN C 19 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0*2539 0.0502 0.6069 31 . 0 9 0.4119 0.7281 1688.49 0*2669 0.1262 3•0496 142.99 0.4939 3.5211 2223.36 0*3148 0.4744 8.3844 313.25 0.6915 9.0958 2613.28 0.4256 1.7877 19.4674 442•11 0.8753 17.3582 4204.60 0.5193 3.5840 42.6347 601.83 0.9314 28.8314 4750.94 FILM 15-2 RUN C20 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0*2704 0.0241 0.8592 38 • 19 0.3922 0.9527 2025.14 0.2787 0.0667 2.1376 90.21 0.4445 2,3190 2699.14 0.2898 0.1288 2.3330 91.85 0.5063 2.4556 2412 . 0 0 0*3140 0*2803 5*6999 198 . 6 5 0.6119 5 .7543 2606.96 0.3563 0.6074 12.1186 341.96 0.7344 11.2388 3704.48 0*3942 0*9737 13.5938 306 . 4 1 0 .8040 11 .1428 4098.99 0*7514 9.2661 80.6727 712.96 0.9718 49.4229 7082*71 FILM 15-2 RUN C21 TOTALD PCEVAP UA UINST ' RATIO XNUNO PECMO 0*2713 0.0007 0.0366 1.59 0.3312 0.0399 3010.65 0.2727 0.0071 0.2172 9.34 0.3415 0.2350 1815*69 0.2744 0.0151 0.2674 11.37 0.3538 0.2878 1822*77 0.2784 0.0340 0.6325 26.34 0.3813 0.6765 1853.7$ 0.2842 0.0621 0.7814 31*42 0.4180 0.8236 1380.03 FILM 1 6 - i .• RUN C22 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0*4442 0*0097 0.9600 15*61 0.3524 0*6396 3692.70 0*4500 0.0264 1.5071 23.99 0*3769 0*9957 3744.82 0*4556 0*0433 1.7157 26.63 0.3997 1.1191 4328.24 0*4669 0.0782 3.5568 53.18 0.4424 2.2908 4435.78 0.4910 0. 1586 8.0474 111.54 0.5206 5.052 5 4670.20 0*5161 0.2507 9*2398 115*86 0.5873 5.5167 4903.22 0.5738 0.4992 24 .5269 262.03 0.6997 13.8707 5451.24. 0*6502 0*9127 3 5*7391 3 02.41 0.7937 18.1398 5748.91 F I L M 1 6 - 1 RUN C 2 3 244 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 3 1 4 0 . 0 0 4 0 0 . 2 4 3 7 4.19 0 . 3 3 6 8 0 . 1 6 6 7 3 3 7 4 . 6 9 0 . 4 3 3 3 0 . 0 0 9 7 0 . 4 3 3 6 7.38 0 . 3 4 5 9 0.29 5 1 3 2 0 5 * 7 1 0 . 4 3 8 8 0 . 0 2 6 0 1 . 3 5 7 8 2 2 . 7 2 0 . 3 7 0 2 0 . 9 1 9 7 3 6 4 7 . 8 4 0 . 4 4 7 0 0 . 0 5 1 0 2 . 0 8 1 8 3 3 . 7 6 0 . 4 0 4 3 1 . 3 9 2 2 3 7 1 6 . 0 8 0 . 4 5 8 8 0 . 0 8 8 3 3.50 8 2 5 4 . 4 1 0 . 4 4 8 9 2 . 3 0 2 7 4 3 6 3 . 7 3 0.48 73 0 . 1 8 7 0 8 . 1 0 2 8 1 1 5 . 1 1 0 . 5 4 0 2 5 . 1 7 4 6 4 0 5 0 . 7 1 0 . 5 3 6 5 0 . 3 8 6 3 1 8 . 4 4 1 6 2 2 3 . 4 2 0 . 6 5 5 5 1 1 . 0 5 7 1 5 0 9 6 . 5 3 0 . 6 8 4 7 1 . 2 4 1 7 4 2 . 0 2 8 3 3 5 3 . 4 5 0 . 8 3 4 4 2 2 . 3 2 7 1 6 7 9 1 . 0 6 F I L M 1 6 - 1 RUN C 2 4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 4 8 1 0 . 0 0 1 7 0 . 1 5 5 5 2.47 0 . 3 2 7 9 0 . 1 0 2 0 3 3 1 0 . 9 5 0 . 4 4 9 1 0 . 0 0 4 4 0 . 2 2 8 9 3.62 0 . 3 3 2 2 0. 1 4 9 9 3 3 1 8 . 0 9 0 . 4 5 0 4 0 . 0 0 8 1 0 . 3 5 7 6 5.62 0 . 3 3 8 2 0 . 2 3 3 7 3 7 4 8 . 5 2 0 . 4 8 5 9 0 . 1 1 4 2 2 . 4 7 4 7 3 5 . 8 8 0 . 4 7 3 0 ! 1 . 6 0 8 1 4 0 4 0 . 2 6 0 . 5 1 3 9 0 . 2 0 9 5 1 0 . 0 4 2 5 1 2 7 . 7 5 0 . 5 5 4 7 6 . 0 5 7 0 4 8 8 2 * 5 2 0 . 5 4 6 8 0 . 3 3 4 6 1 5 . 4 0 1 2 1 7 4 . 0 3 0 . 6 3 0 4 8 . 7 7 9 0 6 0 6 7 . 9 7 0 . 7 3 8 0 1 . 4 1 0 8 7 0 . 9 7 0 2 5 3 5 . 3 5 0 . 8 4 9 8 3 6 . 4 4 5 6 7 2 5 1 . 6 4 F I L M 1 6 - 1 RUN C 2 5 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 5 0 3 6 0 . 0 0 2 5 0 . 0 8 3 8 1.05 0 . 3 2 6 1 0 . 0 4 9 0 3 4 9 0 . 3 9 0.5 056 0 . 0 0 7 5 1 . 0 8 5 0 1 3 . 5 6 0 . 3 3 4 1 0 . 6 3 2 4 3 7 8 6 . 2 2 0 . 5 1 1 6 0 . 0 2 2 4 1 . 6 0 5 2 1 9 . 7 4 0 . 3 5 7 2 0 . 9 3 1 8 3 4 0 2 , 1 5 0.5 2 27 0 . 0 5 0 8 3 . 0 6 5 7 3 6.47 0 . 3 9 7 3 1.758 5 3 4 7 5 . 8 5 0 . 5 6 1 2 .0.1596 1 4 . 4 3 1 5 - 1 5 6 . 1 3 0 . 5 1 3 3 8 . 0 8 3 9 4 6 7 0 . 9 4 0 . 6 2 4 3 0 . 3 7 1 7 3 7 . 5 5 1 8 3 3 9 . 0 8 0 . 6 4 6 5 1 9 . 5 2 8 5 6 9 1 9 . 3 3 0 . 6 4 4 5 0 . 4 4 9 0 4 1 . 2 4 3 3 3 2 5 . 9 9 0 . 6 7 8 7 1 9 . 3 8 1 4 1 0 7 2 7 . 4 8 F I L M 1 6 - 1 RUN C 2 6 TOTALD P C E V A P UA UI NST R A T I O XNUNO PECMO 0 . 5 1 1 9 0 . 0 0 0 1 0 . 0 1 8 3 0.22 0 . 3 2 2 1 0 . 0 1 0 5 4 8 6 8 . 9 6 0 . 5 1 2 2 0 , 0 0 0 8 0 . 0 8 9 1 1.08 0 . 3 2 3 2 0 . 0 5 1 1 3 7 8 4 . 5 3 0 . 5 1 2 9 0 . 0 0 2 4 0 . 2 0 6 5 2 . 5 0 0 . 3 2 5 9 0 . 1 1 8 3 3 7 8 9 . 4 7 0 . 5 1 3 9 0 . 0 0 4 9 0 . 3 6 2 2 4.37 0 . 3 3 0 0 0 . 2 0 7 3 4 2 7 6 . 9 5 0 . 5 1 5 6 0 . 0 0 9 1 0 , 6 0 0 1 7.21 0 . 3 3 6 7 0 . 3 4 2 8 4 2 8 6 . 3 2 0 . 5 1 8 7 0 . 0 1 6 5 1 . 0 5 2 2 1 2 . 5 2 0 . 3 4 8 4 0 . 5 9 8 9 4 3 1 1 .59 0 . 5 2 3 7 0 . 0 2 8 8 1 . 7 2 9 3 2 0 . 2 6 0 . 3 6 6 8 0 .978.6 4 3 5 8 . 3 3 0.5 3 9 1 0 . 0 6 8 2 5,5 3 36 62 .34 0 . 4 1 9 7 3. 1 0 0 3 4 4 8 1 . 3 4 0.5 5 54 0 . 1 1 2 2 6 . 9 6 9 8 7 4 . 0 4 0 . 4 6 9 3 3 . 7 9 3 2 5 2 7 6 . 0 4 0 . 6 1 4 6 0 . 2 9 5 1 2 8 . 9 1 7 3 2 6 8 . 1 9 0 . 6 0 8 5 1 5 . 2 0 5 3 5 8 4 5 . 6 2 0 . 6 5 5 5 0 . 4 4 3 6 2 3 . 1 9 7 7 1 8 2 . 8 4 0 . 6 7 7 3 1 1 . 0 5 6 2 6 2 2 7 . 0 5 2 4 5 FILM 16-1 RUN C27 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO. 0•5296 0.0880 2.2400 27.23 0.4523 1.3305 4900.33 0*5355 0.1049 5.7947 65.00 0.4703 3.2114 5187.39 0.5570 0 . 1699 10.8951 116.13 0.5292 5.9669 5024.57 0.6098 0*3517 20.3373 . 189.73 0.6414 10.6737 5631.22 0.7597 1.0638 58.7632 394.02 0.8146 27.6143 7373.88 FILM 16-1 RUN C 28 TOTALD PCEVAP UA UINST RATIO' XNUNO PECMO 0.4424 0.0013 0.0864 1.42 0.3444 0.0580 4013.65 0.4442 0.0063 0.9142 14*80 0.3521 0.6065 3696.58 0*4497 0.0225 1.4614 23.28 0.3758 : 0.9657 3738.13 0.4584 0.0486 2.3536 36.32 0.4106 1.53 59 3814.81-0*4682 0.0793 3.1237 46.30 0.4469 1.9998 4447.71 0 • 4847 0.1336 5.5254 77.43 0.5014 3.4621 4604.27 0.5182 0.2564 10.7573 135.97 0.5922 6.5004 4312*86 0.5648 •• 0*4541 19.8151 214.63 0.6851 11.1822 5365.23 0.6289 0.7856 38.1963 340.21 0.7720 19.7377 6100.04 FILM 16-1 RUN C29 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.4634 0.0014 0.1975 2*97 0.3536 0.1272 5142,10 0.4728 0.0282 2.7782 40.33 0.3916 • - . 1.7594 3930.49 0.4829 0.0579 3.0361 42.30 0.4288 1*8843 . 4014,01 0*4944 0.0933 3.6234 48*28 6.4679 2.2019 4114.78 0.5117 0.1496 5.6771 71*36 0.5200 3.3684 4253,38 0.5655 0.3502 13.2952 145.47 0.6445 7.5887 4702.67 FILM 16-2 RUN C30 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.4108 0.0473 0.6328 12*53 0.4153 0.4749 3542,66 0.4322 0 . 1253 2.5392 45.45 0.4982 1.8122 3921,00 0.4925 Oo3884 8.5622 126.89 0.6610 5.7654 4096,43 0.5241 0•5549 •, 11.8080 145*26 0.7188 7.0234 4359,91 0.6216 1.2065 32.9902 317.55 0.8315 18.2100 5905,35 FILM 16-2 RUN C31 TOTALD PCEVAP UA UINST RATIO . XNUNO PECMO 0*4387 0.0015 0.1073 1.78 0.3276 .'. 0*0721 . 4172,83 0*4462 0.0231 1.1063 17.98 0.3611 0.7401 2967.43 0.4609 0.0672 2.4877 38.47 0.4201 1*6355 3405.29 0.4963 0.185.8 7.5160 104.28 0.5356 4.773 8 4130.17 0.5508 0.4038 12.1676 140.88 0.6604 7.1578 5344,64 0.6718 1.0647 36.4743 3 07.57 0.8130 19.0613 6513,24 FILM 16-2 RUN C32 2 TOTALD PCEVAP •*••• UA UINST RATIO XNUNO PECMO 0«4101 0.0002' 0.0095 0.18 0.3245 0.0068 3413.16 0.4112 0.0033 0.1651 3.11 0.3297 0.1181 3417.73 0.4177 0.0233 , 1.0396 19.26 0.3606 0.7421 3471.89 0.4268 0.0522 1.5025 26.81 0.4007 1.0557 3551.80 0.4377 0.0886 1.8744 31.91 0.4446 1.2887 3865.69 0.4519 0.1382 2.9283 47.08 0.4953 1.9627 4025.16 0.5262 0.4543 18.3829 243.12 0.6805 11.8030 5005.36 0.6476 1.1958 27.2069 248.62 0.8287 14.8540 6608.58 FILM 16-2 RUN C33 TOTALD PCEVAP UA U INST RATIO XNUNO PECMO 0.3776 0.0061 0•3542 7.96 0.3497 0.2773 3334.76 0.4124 0 . 1352 2.8527 58.06 0.5010 2.2089 3798.02 0.4395 0.2515 5.1550 90.30 0.5879 3.6615 4175.62 0.5210 0.6963 19.6872 269.63 0.7527 12.9594 4949.54 0.7496 2.8970 67.3883 514.62 0.9170 35.5854 7168.80 FI LM 16-2 RUN C34 TOTALD PCEVAP UA •  • UINST RATIO XNUNO PECMO 0.4112 0.0023 0.1224 •:• 2.31 0.3297 0.0876 3417.74 0.4142 0.0114 0.2365 4.42 0.3443 0.1688 34.44,94 0.4591 0.1635 2.9512 49.12 0.5187 2.0805 4363.38 0.5347 0.4942 19.2685 246.85 0.6955 12.1770 5080.00 0.6160 0.9701 27.4550 262.58 0.8009 14.9210 5851.87 FILM 16-2 RUN C35 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.4658 0.0001 0.0109 0.16 0.3237 0.0069 4430.22 0.4673 0.0042 0.1450 2 .12 0.3303 0.0914 3655.97 0.4694 0.0098 0.4319 6.26 0.3394 0.2713 3906.82 0.4792 0.0364 2.0062 28.37 0.3788 1.2542 3983.07 0.5028 0 . 1054 3.7508 49.48 0.4625 2.2950 4561.50 0.5174 0 . 1512 9.1393 111.73 0.5068 5,3329 5741.62 0.5730 0.3502 17.0135 181.65 0.6369 9,6016 5443.19 0.6297 0.5975 29.2862 257.14 0.7265 14.9365 5760.59 0.8195 1.8008 71.2529 424.54 0.8760 32.0950 7837.53 FILM 1 6 - 2 RUN C 3 6 TOTALD PCEVAP UA •. UINST RATIO XNUNO PECMO 0.4173 0.0118 0.7996 14.79 0.3587 0.5692 3468.5 5 0.4301 0.0530 2.4446 43.32 0.4145 1.7188 •4085.87 0.4513 0.1261 3.8087 62.37 0.4931 2.5964 3755.66 0.4942 0.2969 7.8121 l l l f 0 0 0.6142 5.060 5 4335.34 0.6143 0.9549 29.7881 304.94 0.7993 17.2820 5961.50 FILM 16-2 • RUN C37 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.3841 0.0029 0.1421 3.09 0.3347 0.1094 3653.35 0.3904 0.0238 0.8870 18.82 0.3664 0.6778 3245.18 Q.3984 0.0513 1.3245 27.09 0.4039 0.9957 3784.94 0.4079 0.0853 1.6375 . 32.05 0.4447 1.2061 3880.05 0.4381 0.2039 3.5950 63.84 0.5519 2.5802 4140.04 0.5327 0.6940 14.6762 196.30 0.7509 9.6473 4631.79 FILM 16-2 RUN C38 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.4296 0.0020 0.1224 2.11 0.3287 0.0838 3571.21 0*4347 0.0168 0.8786 14.97 0.3519 0.6003 3613.30 0*4405 0.0342 1.0342 17.18 0.3773 0.6983 3666.18 0.4514 0.0679 1.9864 31.77 0.4214 1.3232 3752.40 0.4703 0.1302 3.6686 54.93 0.4885 2.3834' 3909.65 0•5166 0.3053 11.6466 151.83 0.6142 7.2365 4913.94 0.6251 0.8535 31.9037 308.73 0.7823 17.8020 5844.52 FILM 16-2 RUN C39 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.4647 0.0601 2.3921 36.95 0.4343 1.5839 4414.51 0.4945 0.1603 3.3552 46.37 0. 5308 2.1153 4387.61 0.5525 0.3916 14.5146 167.99 0.6636 8.5622 4884.77 1.7450 25.4224 1378.8976 2619.26 0.9894 421.6318 15307.88 FILM 16-2 RUN C40 TOTALD PCEVAP UA UINST RATIO XNUNO PECMO 0.2585 0.0869 1.1622 59.18 0.5045 1.4113 2302.43 0.3279 0.6707 5.5655 203.13 0.7575 6.1450 2896.06 0.3764 1.2550 14.8651 379.63 0.8396 13.1804 3655.52 0.8823 21.7292 76.5236 529.23 0.9876 43.0768 8438.49 F I L M 1 6 - 2 RUN C 4 1 248 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 0 5 5 0 . 0 0 7 0 0 . 5 2 1 7 1 0 . 1 7 0 . 3 4 7 6 0 . 3 8 0 4 3 8 5 1 . 9 6 0 . 4 1 8 7 0 . 0 4 9 9 2 . 3 7 7 0 4 4 . 5 3 0 . 4 0 7 4 1 . 7 1 9 9 3 9 7 7 . 2 0 0 . 4 4 6 0 0 . 1 4 7 4 3 . 4 0 8 7 5 7 . 9 7 0 . 5 0 9 9 2 . 3 8 5 2 3 7 0 9 . 2 4 0 . 4 5 4 3 0 . 1 7 9 5 2 . 4 7 8 7 3 8 . 9 1 0 . 5 3 6 5 1 . 6 3 1 1 3 7 7 9 . 4 6 0 . 5 1 9 7 0 . 4 7 4 4 1 6 . 2 0 2 8 2 1 6 . 4 0 0 . 6 9 0 3 1 0 . 3 7 3 9 4 9 3 6 . 8 3 0 . 6 4 4 0 1 . 2 7 7 2 3 3 . 9 2 4 6 3 1 5 . 2 6 0 . 8 3 7 4 1 8 . 7 2 9 2 5 6 5 5 . 2 9 F I L M 1 6 - 2 RUN 1 C 4 2 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 2 9 6 0 . 0 9 2 0 0 . 9 8 7 8 1 8 . 1 8 0 . 4 5 1 7 0 . 7 2 0 5 3 7 2 1 . 2 6 0 . 4 4 8 4 0 . 1 6 0 6 4 . 3 5 9 0 7 1 . 9 4 0 . 5 1 7 6 2 . 9 7 5 4 4 0 3 8 . 6 1 0 . 4 9 2 4 0 . 3 4 5 4 1 4 . 0 7 7 0 2 0 2 . 0 1 0 . 6 3 5 9 9 * 1 7 5 7 4 9 1 3 . 3 5 0 . 6 4 4 0 1 . 2 7 7 4 2 9 . 2 6 6 1 2 8 3 . 4 0 0 . 8 3 7 4 1 6 . 8 3 6 6 6 2 4 6 . 5 2 F I L M 1 6 - 2 RUN C 4 3 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 4 3 7 0 . 0 1 0 8 0 . 7 0 5 2 1 1 . 5 0 0 . 3 5 0 1 0 . 4 7 0 6 3 6 8 8 . 4 2 0 . 4 5 1 5 0 .0 3 3 7 1 . 4 4 9 6 2 3 . 0 2 0 . 3 8 3 2 0 . 9 5 8 8 3 7 5 3 . 1 2 0 . 4 7 5 2 0 . 1 0 8 0 5 . 3 8 7 7 7 9 . 7 9 0 . 4 7 1 0 3 . 4 9 8 0 4 5 1 9 . 8 2 0 . 4 8 8 6 0 . 1 5 3 5 2 . 8 6 1 0 3 9 . 1 9 0 . 5 1 3 5 1.766 5 4 0 6 1 . 7 4 0 . 5 1 3 9 0 . 2 4 5 6 6 . 6 1 8 6 8 3 . 7 6 0 . 5 8 1 8 3 . 9 7 0 9 4 8 8 1 . 8 2 0 . 7 2 9 8 1 . 4 7 0 8 4 0 . 5 0 2 7 3 2 3 . 5 1 0 . 8 5 4 2 2 1 . 7 8 0 9 6 8 7 9 . 0 4 F I L M 1 6 - 2 RUN C 4 4 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 1 9 5 0 . 0 1 8 9 1 . 0 9 8 1 2 0 . 1 7 0 * 3 6 9 1 0 . 7 8 0 8 3 4 8 7 . 4 3 0 . 4 2 7 7 0 . 0 4 5 1 1 . 5 5 5 6 2 7 . 5 8 0 . 4 0 4 6 1 . 0 8 8 1 4 0 6 3 . 1 5 0 . 4 4 0 8 . 0.0 8 9 1 2 . 6 2 1 9 4 4 . 2 3 0 . 4 5 6 3 1 . 7 9 8 6 4 1 9 3 . 0 1 0 . 4 6 0 5 0 . 1 6 0 3 3 . 6 6 5 4 5 7 . 3 9 0 . 5 2 3 1 2 . 4 3 8 2 3 8 2 8 . 1 5 0 . 4 9 7 4 0 . 3 1 0 0 7 . 7 1 5 3 1 0 6 . 8 6 0 . 6 2 1 5 4 . 9 0 3 0 4 1 3 4 . 2 7 F I L M 1 6 - 2 RUN C 4 5 TOTALD P C E V A P UA U I N S T R A T I O XNUNO PECMO 0 . 4 3 9 9 0 . 0 0 56 0 . 1 4 8 9 2 . 4 6 0 . 3 3 2 9 0 . 1 0 0 0 4 0 4 3 . 7 9 0 . 4 4 2 4 0 . 0 1 2 8 0 . 3 3 4 4 5.47 0.3 4 4 4 0 . 2 2 3 2 3 6 7 9 * 5 8 0 . 4 4 9 0 0 . 0 3 1 9 1 . 1 9 5 4 1 9 . 1 5 0 . 3 7 2 8 0 . 7 9 3 0 3 7 3 2 . 1 8 0 . 4 5 8 4 0 . 0 5 9 9 1 . 7 6 1 4 2 7 . 2 3 0 . 4 1 0 5 1 . 1 5 1 3 3 8 1 0 , 1 1 0 . 4 8 9 2 0 . 1 6 0 8 7 . 1 5 1 7 1 0 1 . 2 6 0 . 5 1 5 3 4 . 5 7 0 1 4 6 5 3 . 1 7 0 . 5 1 3 9 0 . 2 5 0 4 6 . 3 7 8 1 8 0 . 6 3 0 . 5 8 1 8 3 . 8 2 2 2 4 8 8 1 . 7 7 0 . 5 8 9 3 0 . 5 8 3 7 2 3 . 3 9 8 9 2 4 3 . 5 6 0 . 7 2 2 8 1 3 . 2 4 1 2 5 5 9 8 . 4 7 0 . 7 8 0 6 1 . 8 9 0 1 9 1 . 6 8 4 3 6 0 9 . 9 2 0 . 8 8 0 8 4 3 . 9 2 0 0 7 4 2 4 . 3 8 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059269/manifest

Comment

Related Items