UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Design, construction, and operation of a piston type sampler for a liquid-liquid extraction spray column Hawrelak, Richard Alan 1960

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1960_A7 H28 D3.pdf [ 8.5MB ]
Metadata
JSON: 1.0059229.json
JSON-LD: 1.0059229+ld.json
RDF/XML (Pretty): 1.0059229.xml
RDF/JSON: 1.0059229+rdf.json
Turtle: 1.0059229+rdf-turtle.txt
N-Triples: 1.0059229+rdf-ntriples.txt
Original Record: 1.0059229 +original-record.json
Full Text
1.0059229.txt
Citation
1.0059229.ris

Full Text

DESIGN, CONSTRUCTION, AND OPERATION OE A PISTON TYPE SAMPLER FOR A LIQUID-LIQUID EXTRACTION SPRAY COLUMN  by RICHARD ALAN HAWRELAK B . A . S c , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1958  A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE  i n t h e Department o f  CHEMICAL ENGINEERING  We a c c e p t t h i s t h e s i s as c o n f o r m i n g to the required  standard  The U n i v e r s i t y o f B r i t i s h J u n e , I960  Columbia  In the  presenting  requirements  f o r an  of  B r i t i s h Columbia,  it  freely available  agree that for  that  copying or  gain  shall  Department  not  advanced degree a t  for reference  and  study.  I  for extensive be  copying  granted  publication  the  It i s  of t h i s t h e s i s  a l l o w e d w i t h o u t my  o f C^u^ryiJ^&A  4-.  by  Columbia,  of  of  University shall  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r $, C a n a d a . Date  the  Library  his representatives.  be  fulfilment  the  p u r p o s e s may  o r by  in partial  I agree t h a t  permission  scholarly  Department  this thesis  make  further this  Head o f  thesis my  understood  for financial  written  permission.  ii  ABSTRACT  A p i s t o n type o f s a m p l e r was  designed  t o sample the d i s p e r s e d phase of a s p r a y e x t r a c t i o n tower. sampling  The  aim was  the d i s p e r s e d phase.  and  constructed  liquid-liquid  t o check a p r e v i o u s method of T h i s method depended on the  use  o f a l o n g probe w h i c h descended i n t o the column f r o m above  and  t h r o u g h w h i c h samples were removed by s u c t i o n .  Calculated  v a l u e s of the d i s p e r s e d phase c o n c e n t r a t i o n u s i n g t h e p i s t o n t y p e sampler were f o u n d t o be g e n e r a l l y l o w e r t h a n t h e corresponding The  c o n c e n t r a t i o n s u s i n g t h e d i s p e r s e d phase p r o b e . system s t u d i e d was  methyl i s o b u t y l ketone  (the d i s p e r s e d p h a s e ) - a c e t i c a c i d (the s o l u t e ) - water (the continuous  phase).  aqueous p h a s e , w h i c h was  The  s o l u t e was  saturated w i t h methyl i s o b u t y l ketone,  t o the o r g a n i c phase, w h i c h was t r a n s f e r d a t a were g a t h e r e d I.D.  column w h i c h was  t r a n s f e r e d f r o m the  saturated w i t h water.  Mass  f o r t h i s system i n a 1 . 5 - i n .  approximately  7 » 3 - f t . i n height.  iii TABLE OF CONTENTS Page 1  INTRODUCTION EXPERIMENTAL METHODS  5  . . . ..  Apparatus  5  Procedure  36  CALCULATIONS  49  RESULTS....  56  ,  69  DISCUSSION Operating Conditions  69  C r o s s - S e c t i o n a l C o n c e n t r a t i o n Measurements  71  P i s t o n Samples Compared t o Probe Samples  I..  74  Approximation of E r r o r s  82  S a l i n o m e t e r Measurements  85  CONCLUSIONS  86  NOMENCLATURE  88  LITERATURE CITED  91  APPENDIX I  -  Sample C a l c u l a t i o n s  II  -  Volume Changes Due To Changes I n Mutual S o l u b i l i t y  94  99  iv  LIST OP TABLES Table I. II. III. TV". 7.  Page Key to Figure 2 . . . .  7  Calibration of Salinometer  46  Sampling Rate and Purging Time  59  Gver-all Transfer Data  60  Concentration Profiles i n Cross-Sections Perpendicular to the Column Axis As Determined By Sampling With The Hypodermic Syringe  VI.  61  Concentration of the Water Phase at Position 6 as a Function of Time After Start-Up of a Run  VII. VIII.  Hypodermic Syringe Sampling Rates  XII. XIII.  66  Maximum Approximate Error of Calculated I n i t i a l Ketone Concentration, G k i . . .  XI.  65  Results of Immediate Separation of the Two Phases i n the Piston Samples of Run 85  X.  65  Concentrations and Comparison of Piston and Probe Samples  IX.  62  67  Comparison of Two Methods of Analysis  68  Simulated Piston Samples  84  Summary of Results For Sample Calculation No. 7  104  V  L I S T OF FIGURES Figure  Page  1.  S a m p l i n g Tubes i n O p e r a t i o n  2  2.  Schematic  6  3.  Piston  10  4.  B o r i n g H o l e s Through P i s t o n W a l l s  11  5.  Coating P i s t o n With Solder  12  6.  Machining Solder Surface of P i s t o n  13  7.  Piston Block  15  8.  B o r i n g o f I.D.  9.  Completion  Flow Diagram  of P i s t o n B l o c k  of B o r i n g I.D.  16  of P i s t o n Block  16  10.  R e d u c t i o n o f Weight o f P i s t o n B l o c k  17  11.  Damage t o Aluminum P i s t o n A f t e r S e i z u r e  19  12.  S c o r i n g on C y l i n d e r W a l l s  19  13.  C o l l e c t i o n Funnel F i t t e d t o Underside  of  Piston Block  21  14.  C o l l e c t i o n Funnel.....  22  15.  Assemblage o f Components o f F u n n e l  23  16.  Collection Flask  24  17.  C o l l e c t i o n F l a s k Drawing  25  18.  F l a s k H e l d i n P o s i t i o n by T e n s i o n S p r i n g s t o Piston Block  26  19.  Column Support i n E a r l y S t a g e s o f C o n s t r u c t i o n . .  27  20.  Column S u p p o r t  28  vi Figure  Page  21.  B r a c i n g P a t t e r n of Column S u p p o r t  29  22.  Assembled Column  29  23.  E l g i n Head S u p p o r t  31  24.  C o n i c a l S e c t i o n Support  32  25.  E l g i n Head and I t s S u p p o r t  33  26.  C o n i c a l S e c t i o n and I t s S u p p o r t  33  27.  C l a m p i n g Arrangement  34  28.  Sampler S u p p o r t  35  29.  Clamping Arrangement  30.  T i p P a t t e r n s f o r Ketone N o z z l e  39  31.  S i m p l i f i e d Bridge C i r c u i t  45  32.  S a l i n o m e t e r C a l i b r a t i o n Curve...  47  33.  S i m p l i f i e d Drawing o f S a m p l i n g P r o c e d u r e  51  34.  P o s i t i o n s i n Column C r o s s - S e c t i o n s a t Which Hypodermic  35.  f o r P i s t o n Sampler S u p p o r t .  S y r i n g e Samples Were C o l l e c t e d  64  M u t u a l S o l u b i l i t y Curve f o r t h e System M e t h y l I s o b u t y l Ketone-Acetic Acid-Water, at 2 5 ° C . . .  36.  36  Single-stage Contact E x t r a c t i o n Mixer  100 101  ACKNOWLEDGEMENTS  The a u t h o r would l i k e t o e x p r e s s s i n c e r e t h a n k s t o D r . S.D. C a v e r s f o r t h e a s s i s t a n c e , and h e l p f u l c r i t i c i s m s  offered  throughout the course o f t h i s p r o j e c t . Thanks a r e a l s o due t o D r . J.D.H. S t r i c k l a n d , Senior S c i e n t i s t , of the P a c i f i c Oceanographie Group, Nanaimo, B.C., f o r t h e u s e of h i s  salinometer. A p p r e c i a t i o n i s expressed t o the N a t i o n a l  R e s e a r c h C o u n c i l o f Canada f o r f i n a n c i a l  assistance.  1  INTRODUCTION  In continuous  countercurrent  solvent extraction  columns, many a t t e m p t s have been made t o o b t a i n  mass-transfer  c o e f f i c i e n t s b y measuring c o n c e n t r a t i o n d i s t r i butions w i t h i n an e x t r a c t o r ( 1 , 2 , 3 , 4 , 5 , 6 , 7 ) '  T h i s a p p r o a c h s h o u l d be more  a c c u r a t e t h a n t h e a l t e r n a t i v e o f u s i n g a l o g a r i t h m i c mean d r i v i n g f o r c e computed o n l y f r o m t h e c o n c e n t r a t i o n s i n c o m i n g and o u t g o i n g  of the  streams.  C a v e r s and Ewanchyna (2),  and Choudhury (1) measured  concentration p r o f i l e s by i n t e r n a l sampling of both the continuous  and d i s p e r s e d p h a s e s .  I n t h e i r work t h e a u t h o r s  o b t a i n e d samples b y means o f l o n g , s t a i n l e s s s t e e l t u b e s w h i c h descended i n t o t h e column t o any d e s i r e d h e i g h t  (la).  Figure  1 i s a p h o t o g r a p h o f a s e c t i o n o f t h e column showing Choudhury's sampling tubes i n o p e r a t i o n .  G i e r and Hougen (3) a l s o measured  c o n c e n t r a t i o n p r o f i l e s f o r both phases. C a v e r s and Ewanchyna (2)  and Choudhury (1) r e p o r t e d  c o n c e n t r a t i o n p r o f i l e s w h i c h showed a c o n s i d e r a b l e end e f f e c t at the continuous  phase i n l e t t o t h e column under c e r t a i n  operating conditions. only the continuous  O t h e r w o r k e r s (4,5,6,7) who sampled  phase o f s p r a y columns, a l s o r e p o r t e d a  Figure considerable column.  end  T h i s end  1.  Sampling  effect  a t the  effect  From t h e  unexpectedly  point  of the  t a k e p l a c e when t h e d r o p s  at  the  extraction  end  column.  Hixson  (4) a t t r i b u t e d  by  the  c o a l e s c e n c e of the drops, but  in  interfacial  t e n s i o n might  the  at  this an  appears  o f the d i s p e r s e d phase c o a l e s c e  t o p o f the  this  to  continuous  continuous phase  of the t o t a l  to  at the  the  showing a d i s c o n t i n u i t y  of view  large portion  interface  c o n t i n u o u s phase i n l e t  i s m a n i f e s t e d by  phase c o n c e n t r a t i o n p r o f i l e point.  Tubes i n O p e r a t i o n  effect  a l s o be  Geankoplis  to turbulence suggested important.  that  and  caused changes  Newman ( 8 ) s u g g e s t e d t h a t t h e end e f f e c t f o u n d G e a n k o p l i s e t a l a t the c o n t i n u o u s phase i n l e t was  the  by  result  o f v e r t i c a l m i x i n g o f t h e c o n t i n u o u s phase due t o t h e movement o f the drops. C a v e r s and Ewanchyna ( 2 ) , upon o b t a i n i n g c o n c e n t r a t i o n p r o f i l e s f o r each p h a s e , n o t e d d i s c o n t i n u i t i e s i n b o t h p r o f i l e s at the i n t e r f a c e .  For t r a n s f e r of a c e t i c a c i d from the  c o n t i n u o u s aqueous phase t o t h e d i s p e r s e d ketone phase t h e d i s c o n t i n u i t y i n t h e w a t e r c o n c e n t r a t i o n p r o f i l e c o u l d be b r o k e n i n t o two p a r t s :  one r e p r e s e n t i n g t h e e f f e c t s o f drop  a g i t a t i o n a t t h e i n t e r f a c e , and t h e o t h e r t h e e f f e c t o f b a c k m i x i n g i n t h e aqueous p h a s e .  The d i s c o n t i n u i t y i n t h e  phase c o n c e n t r a t i o n p r o f i l e was due o n l y t o t h e  ketone  agitation  effect (2). Choudhury, i n j u s t i f y i n g h i s s a m p l i n g t e c h n i q u e ( l b ) , s u g g e s t s t h a t t h e r a t e o f s a m p l i n g may  be an i m p o r t a n t f a c t o r  t o be c o n s i d e r e d i n i n t e r p r e t i n g the r e s u l t s o b t a i n e d .  Low  s a m p l i n g r a t e s t e n d t o p r o d u c e drop c o a l e s c e n c e a t t h e d i s p e r s e d phase s a m p l i n g probe e n t r a n c e , w h i c h c o u l d i n f l u e n c e t h e c o n c e n t r a t i o n o f t h e d r o p s b y a s i m i l a r phenomenon t o t h a t j u s t d e s c r i b e d as t a k i n g p l a c e a t the column i n t e r f a c e .  High  s a m p l i n g r a t e s , on t h e o t h e r hand, w o u l d cause d i s t u r b a n c e s i n t h e s t e a d y s t a t e o p e r a t i o n o f t h e column a t t h e p o i n t o f s a m p l i n g , and, i n t u r n , i n f l u e n c e t h e c o n c e n t r a t i o n o f b o t h p h a s e s t h r o u g h o u t t h e column.  4  W h i l e removing d i s p e r s e d phase  samples a t low  s a m p l i n g r a t e s , Choudhury n o t e d t h a t t h e k e t o n e d r o p s d i d n o t r i s e i m m e d i a t e l y up t h e d i s p e r s e d phase p r o b e .  The  drops  l i n g e r e d a t the entrance f o r a short time (see F i g u r e 1 ) , c o a l e s c e d , and t h e n p a s s e d up t h r o u g h t h e probe i n t o t h e sampling f l a s k s .  I t was  suggested t h a t t h i s short r e s i d e n c e  t i m e and c o a l e s c e n c e o f t h e k e t o n e d r o p s a t t h e probe e n t r a n c e would a l l o w an e x t r a amount o f a c e t i c a c i d t o be  transferred  i n t o t h e k e t o n e d r o p s and t h e r e f o r e produce e r r o n e o u s l y h i g h r e s u l t s f o r d i s p e r s e d phase  concentrations.  Under h i g h e r s a m p l i n g r a t e s t h i s l i n g e r i n g  and  c o a l e s c e n c e o f k e t o n e d r o p s a t t h e probe e n t r a n c e was observed.  V a r i a t i o n s i n s a m p l i n g r a t e s p r o d u c e d no  not  appreciable  changes i n t h e measured probe c o n c e n t r a t i o n s o f e i t h e r phase ( l c ) T The p r e s e n t i n v e s t i g a t i o n was d e s i g n e d t o g i v e a n o t h e r independent method o f s a m p l i n g t h e d i s p e r s e d phase i n o r d e r t o check t h e probe method.  The system s t u d i e d was a c e t i c  methyl i s o b u t y l ketone-water. same as t h a t u s e d by Choudhury.  Much o f t h e a p p a r a t u s was  acidthe  However, a p i s t o n t y p e  s a m p l i n g d e v i c e was d e s i g n e d and c o n s t r u c t e d t o remove q u i c k l y a sample o f b o t h phases f r o m the e x t r a c t i o n column w h i c h had been o p e r a t i n g under s t e a d y s t a t e c o n d i t i o n s .  A l t h o u g h mass  t r a n s f e r between the d i s p e r s e d phase and t h e c o n t i n u o u s phase c o n t i n u e d a f t e r r e m o v a l o f t h e sample f r o m the column by means o f t h i s p i s t o n , i n i t i a l k e t o n e c o n c e n t r a t i o n s c o u l d be * As p o i n t e d out l a t e r t h e c o n d i t i o n s under w h i c h t h e s e s a m p l i n g r a t e e x p e r i m e n t s were made were f a r from i d e a l s i n c e a t t h e l o c a t i o n s t u d i e d the phases were n e a r e q u i l i b r i u m .  5  calculated.  These have been compared w i t h t h e  concentrations  o f k e t o n e samples w h i c h were t a k e n w i t h t h e k e t o n e phase p r o b e a t t h e same l o c a t i o n and under t h e same  operating  c o n d i t i o n s as a p p l i e d when t h e p i s t o n sample was Numerous c r o s s - s e c t i o n a l c o n c e n t r a t i o n  taken. traverses  t h e c o n t i n u o u s w a t e r phase were made u s i n g hypodermic the n e e d l e s o f w h i c h e n t e r e d gaskets at g l a s s to glass  t h e column t h r o u g h t h e  l i m i t e d because o f  However a s u f f i c i e n t amount o f d a t a was  direct future  syringes,  asbestos  flanges.  E x p e r i m e n t a l work was delays.  of  construction  c o l l e c t e d to  studies.  EXPERIMENTAL METHODS  Apparatus Plow O u t l i n e A s c h e m a t i c f l o w d i a g r a m o f t h e a p p a r a t u s i s shown i n F i g u r e 2, w h i c h i s a s l i g h t m o d i f i c a t i o n o f t h a t g i v e n Choudhury ( I d ) . The  A key t o F i g u r e 2 i s p r e s e n t e d i n T a b l e I .  d e t a i l e d d e s c r i p t i o n o f much o f t h e a p p a r a t u s has  p r e s e n t e d by Choudhury (1) and here.  by  o t h e r s and w i l l n o t be  been repeated  FIGURE  2. SCHEMATIC  FLOW  DIAGRAM  Table  I  Key t o F i g u r e 2  A - C o n t i n u o u s phase f e e d t a n k B - C o n t i n u o u s phase r e c e i v e r and s t o r a g e t a n k C - D i s p e r s e d phase r e c e i v e r and s t o r a g e t a n k D - D i s p e r s e d phase f e e d t a n k E - C o n t i n u o u s phase c o n s t a n t head t a n k F - D i s p e r s e d phase c o n s t a n t head t a n k G - C o n t i n u o u s phase r o t a m e t e r H - D i s p e r s e d phase r o t a m e t e r I - C o n t i n u o u s phase i n l e t sample v a l v e J , , J p - C o n t i n u o u s phase f l o w r a t e c o n t r o l v a l v e s K,,K - D i s p e r s e d phase f l o w r a t e c o n t r o l v a l v e s L - D i s p e r s e d phase i n l e t sample v a l v e M - 6 i n c h I.D. t o p end s e c t i o n N - C o n t i n u o u s phase i n l e t p i p e s 0 - D r a i n v a l v e f o r t o p end s e c t i o n P, , Pp - C e n t r i f u g a l f e e d pumps f o r c o n t i n u o u s and d i s p e r s e d phases r e s p e c t i v e l y Q - Level of Interface R - Column p r o p e r Vfc. i n c h I.D. S - D i s p e r s e d phase n o z z l e T ^ T ,' T^, T^ - Thermometers U - Bottom end s e c t i o n V - Vent t o atmosphere W - Pressure e q u a l i z i n g vent X - Control f o r interface level PS-p PS£ - P i s t o n samples PTS - P i s t o n Type Sampler m - M e r c u r y manometer h, k, - S a m p l i n g b o t t l e s n - Aspirator a, b, - S t a i n l e s s s t e e l sampling tubes e, f , - Sample v a l v e s c - Wooden b l o c k t o w h i c h sampling tubes a r e a t t a c h e d d - Scale 2  2  8 The c e n t r i f u g a l f e e d pumps P^, and P 2 ,  supply  w a t e r and k e t o n e t o c o n s t a n t head t a n k s w h i c h i n t u r n s u p p l y these phases t o rotameters  f e e d i n g t h e column.  Methyl  i s o b u t y l k e t o n e ( k e t o n e ) i s pumped f r o m t h e aluminum s t o r a g e t a n k ( I f ) , D i n F i g u r e 2, t o a c o n s t a n t head t a n k ( 8 ) , F i n F i g u r e 2.  P a r t o f t h e o r g a n i c phase o v e r f l o w s b a c k t o t h e  s t o r a g e t a n k , D, w h i l e t h e d e s i r e d amount f l o w s b y g r a v i t y t h r o u g h r o t a m e t e r , H, and t h e n t o t h e d i s p e r s e d phase n o z z l e ( I f ) , S i n F i g u r e 2.  The n o z z l e d i s p e r s e s t h e k e t o n e phase  i n t o drops which r i s e c o u n t e r c u r r e n t l y t o the descending w a t e r phase.  The k e t o n e d r o p s e v e n t u a l l y c o a l e s c e i n t h e  u p p e r expanded s e c t i o n ( 8 ) , M i n F i g u r e 2, and a r e removed f r o m t h e t o p o f t h e column t o t h e s t o r a g e t a n k , C. The aqueous phase i s pumped f r o m s t o r a g e t a n k , A, t o t h e c o n s t a n t head t a n k , E, where p a r t r e t u r n s t o t h e s t o r a g e t a n k , A, and t h e d e s i r e d amount f l o w s t h r o u g h r o t a m e t e r ,  G.  The w a t e r phase d i s c h a r g e s t h r o u g h two 1 / 8 - i n c h S c h e d u l e 4-0 Type 304 s t a i n l e s s s t e e l p i p e s , N, i n t o t h e b o t t o m o f t h e expanded s e c t i o n , M.  I t t h e n f l o w s t h r o u g h t h e column, R,  and up t o t h e i n t e r f a c e c o n t r o l l e r ( I ) , X i n F i g u r e 2.  By  varying the height of the i n t e r f a c e c o n t r o l l e r the i n t e r f a c e , Q, i n t h e expanded s e c t i o n , M, can be a c c u r a t e l y c o n t r o l l e d . The aqueous phase p a s s e s f r o m t h e i n t e r f a c e arrangement t o s t o r a g e t a n k , B.  controller  9 C a l i b r a t i o n curves f o r the rotameters,  and  e q u i l i b r i u m r e l a t i o n s h i p s were o b t a i n e d f r o m Choudhury*s work ( l h ) . The  sampling  t u b e s ( l i ) , a and b i n F i g u r e 2,  clamped t o a wooden b l o c k and c o u l d be a d j u s t e d t o any h e i g h t w i t h r e s p e c t t o the n o z z l e t i p s .  were desired  S a m p l i n g r a t e s were  c o n t r o l l e d by a vacuum arrangement and by g l a s s c a p i l a r y t u b e s between the sample v a l v e s , e and f , and t h e sample c o l l e c t o r s , h and k, r e s p e c t i v e l y i n F i g u r e 2.  Vacuum was  c r e a t e d i n the  w a t e r a s p i r a t o r , n, and c o n t r o l l e d by an a i r v e n t l e a d i n g f r o m t h e atmosphere t o the b o t t o m of a mercury column t h e h e i g h t w h i c h c o u l d be v a r i e d .  The  sampling  above the s u r f a c e of t h e m e r c u r y , and  a p p a r a t u s was  approximately  by t h e column o f m e r c u r y .  constant  and  equal to t h a t  By c o n t r o l l i n g  of t h e c a p i l a r i e s t h e s a m p l i n g  phase c o u l d be a d j u s t e d t o any d e s i r e d v a l u e . s a m p l e r , PTS  i n the  i n F i g u r e 2,  was  PS  2  the  p i s t o n type  f l a n g e d t o the g l a s s column by  I n a l l c a s e s t h e p i s t o n a x i s was  nozzle t i p s .  exerted  r a t e s o f each  The  means o f s t a n d a r d C o r n i n g Type I f l a n g e s and h a r d gaskets.  sampling  T h i s arrangement i s shown  s c h e m a t i c a l l y as v a l v e r i n F i g u r e 2. vacuum and by use  connected  as l o n g as a i r b u b b l e d  t h r o u g h the m e r c u r y f r o m t h e v e n t t h e p r e s s u r e a p p a r a t u s was  asbestos  1 . 5 9 - f t . above t h e  P i s t o n samples were c o l l e c t e d , a t p o i n t s PS^  i n F i g u r e 2,  of  i n t o s p e c i a l l y designed  slamming t h e p i s t o n f r o m one  collection flasks  and by  s i d e t o the o t h e r of i t s t r a v e l .  I J_ | p  t  -L. w o l l t h i c k n e s s , column  T,-~  brass  sections.  A 2,1-20 Allen head set screws  \  6  -  5.  r-  2 — 0 Bolt „ Circle.  8  3,1  4  — 20,. fiot  D  head  s c r e w s , countersunk -g-  SECTION  A - A  50%  tin, 5 0 %  lead,  heat c o a t e d  to 3gO.C\brass  tubing.  H' 3  T  8  Column tight  FIGURE  3 •  PISTON  sections  fitted  and  ond  brass  soldered  end  into  plates  piace.  11 The  design  of  column was  the  not  p i s t o n was  such t h a t the  operation  of  the  interupted.  Piston Figure sampling.  The  3#-in. I.D. brass  by  3»  i s a drawing showing the p i s t o n used  p i s t o n was  1/8-in. wall  p l a t e s were r e c e s s e d  the  piston.  O.D.  of the  machined from  Approximately  thickness. t o f i t and  standard One  quarter  soldered  1 / 3 2 - i n . was  brass  tubing,  inch  to the  then machined  in  hard  ends off  of the  piston.  Two perpendicular  Figure  h o l e s were t h e n b o r e d t h r o u g h t h e to i t s l o n g i t u d i n a l a x i s .  4.  Boring  See  piston  Figure  Holes Through P i s t o n  Walls  4.  walls  12  The standard  diameter o f these h o l e s was such t h a t two  b r a s s p i p e s , l ) 4 - i n . I.D. by 3 / 1 6 - i n . w a l l  c o u l d be f o r c e - f i t t e d i n t o p o s i t i o n .  These s m a l l e r  p i p e s were a l s o s o l d e r e d t o the p i s t o n , and, s i n c e l e n g t h exceeded the O.D.  thickness, brass their  o f the p i s t o n , they had t o be  machined down t o t h i s d i m e n s i o n .  These two b r a s s p i p e s were  t h e n bored t o l /?-in. I.D. 1  Next a c o a t i n g o f a 50-50 m i x t u r e o f l e a d and t i m was a p p l i e d t o the p i s t o n .  Figure The  5.  See F i g u r e  5.  C o a t i n g P i s t o n With  c o a t i n g was a l l o w e d  Solder  to c o o l completely  machined t o f i t the p i s t o n b l o c k w i t h i n a t o l e r a n c e inches.  See F i g u r e  6.  and then o f 0.001  13  Figure  The  6.  piston  which i s flanged is  Machining Solder  Surface  of Piston  i s moved b y means o f a h a n d d r i v e n r o d  t o the p i s t o n  f i x e d to the flange  a t one e n d .  The d r i v i n g r o d  b y means o f two # - i n . A l l e n h e a d s e t  screws.  The  piston  described  above i s j u s t one p i s t o n  in a  s e r i e s o f a t t e m p t s t o a r r i v e a t a c o m b i n a t i o n o f p i s t o n and piston block leakage. the  next  dimensions that  would a l l o w  The p r o b l e m s i n v o l v e d section  will  e a s y movement  and no  be c o v e r e d i n d e t a i l i n  i n which the p i s t o n b l o c k  i s described.  14  P i s t o n Block The  p i s t o n b l o c k was p r e s s u r e c a s t f r o m p h o s p h o r  b r o n z e by M a i n l a n d F i g u r e 7»  F o u n d r y , V a n c o u v e r , B.C.  I t i s shown i n  The h o l e f o r t h e p i s t o n was d r i l l e d i n t h e C h e m i c a l  E n g i n e e r i n g Shop a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a .  A  p h o t o g r a p h o f t h e b l o c k a s t h e I.D. was b e i n g b o r e d i s shown i n F i g u r e 8.  F i g u r e 9 i s a p h o t o g r a p h a f t e r t h e b o r i n g had  been c o m p l e t e d . F i g u r e 1 0 . i s a p h o t o g r a p h o f t h e b l o c k h a v i n g some of i t s dimensions reduced t o decrease i t s weight. A f t e r t h e I.D. was machined t h r o u g h a s l i g h t was f o u n d t o e x i s t f r o m one end t o t h e o t h e r . described previously'was  taper  The p i s t o n  s e t i n t o the block, the block  assembled i n t o t h e s p r a y e x t r a c t i o n column, and a s i x f o o t head o f w a t e r was a p p l i e d by f i l l i n g t h e column t o a h e i g h t o f s i x f e e t above t h e b l o c k .  The p i s t o n was f o u n d t o move  f r e e l y i n the block but leakages were  as h i g h as 25 m i s . / m i n .  encountered. I t was f e l t t h a t t h e e x i s t i n g t a p e r was t h e cause  o f t h e l e a k a g e and t h a t t h i s t a p e r s h o u l d be c o r r e c t e d .  The  c y l i n d e r was t h e n s e n t o u t t o be r e b o r e d b y C a n a d i a n C a r P a c i f i c L t d . , V a n c o u v e r , B.C.  Following the reboring a  c o a t i n g o f chromium was a p p l i e d e l e c t r o l y t i c a l l y t o t h e c y l i n d e r , b u t o n l y t o t h e i n s i d e s u r f a c e , b y Hudson P l a t i n g ,  13,  3" ~  Deep, 4 Holes  1 -|t\J  5f  i  Material :  Phosphor  Bronze  +  -His  "—KM  ^4— i  42--  2  i  -|~ Drill Through,  I g-  C'bore  5" Q Deep,  2 Holes l" 1^  3^- Bolt Diameter For 8 Stondard Flange  | - I 8 , |  Deep  3 Holes Spaced  Equally  FIGURE  4.002 Plate  7.  Drill, Chromium to 4 . O O f  PISTON  BLOCK  2  Bolt Diometer  Drill  4  Through  -20, 3 Holes Spaced  ^  Deep  Equolly  16  17  Figure  10.  V a n c o u v e r , B.C. Car  Pacific  surface at  R e d u c t i o n o f Weight  of Piston  The c y l i n d e r was t h e n s e n t  Ltd.,  who t h e n a t t e m p t e d  t o t h e s p e c i f i e d I.D.  Block  back t o Canadian  t o hone t h e i n s i d e  Some g r i n d i n g  was a l s o  done  t h e ends. In  conjunction  w i t h t h i s work a s o l i d  was m a c h i n e d b y C a n a d i a n C a r P a c i f i c cylinder.  Ltd.  Once a g a i n t h i s p i s t o n b l o c k  aluminum  t o f i t t h e chromed  was s e t u p i n t h e  c o l u m n . The a l u m i n u m p i s t o n was p u t i n t o p l a c e , head o f w a t e r a p p l i e d  and a s i x f o o t  The aluminum  piston  was s h o v e d b a c k a n d f o r t h a f e w t i m e s a n d i t f i n a l l y  seized  completely l e a k a g e was  so t h a t  t o t h e assembly.  piston  i t was i m p o s s i b l e  encountered.  t o move i t .  However, no  18 The  u n i t was  t a k e n down a g a i n and i t was  found t h a t  s l i g h t i m p e r f e c t i o n s i n t h e chromium p l a t i n g and p i s t o n w a l l s had caused t h e s e i z u r e .  The p i s t o n b l o c k was  sent back f o r  r e c h r o m i n g by Hudson P l a t i n g and l a p p i n g by C a n a d i a n C a r . The method o f l a p p i n g c o n s i s t e d o f r o t a t i n g back and  forth  i n t h e p i s t o n b l o c k an a p p r o x i m a t e l y 2 /4-in. l o n g b r a s s 1  c y l i n d e r whose O.D. t h e I.D.  was  a p p r o x i m a t e l y Q005 i n c h e s l e s s  of the p i s t o n b l o c k .  than  A l a p p i n g compound, w h i c h  c o n s i s t e d o f a m i x t u r e o f emery d u s t and f i n e grade machine o i l , was u s e d between t h e two was  surfaces.  The  aluminum p i s t o n  a g a i n machined t o f i t t h e rechromed and l a p p e d p i s t o n  block. Upon b e i n g s e t up a t h i r d t i m e t h e aluminum p i s t o n once a g a i n s e i z e d a f t e r a few p a s s a g e s t h r o u g h t h e F i g u r e 11 i s a p h o t o g r a p h  cylinder.  o f t h e aluminum p i s t o n showing the  damaged s u r f a c e , whereas F i g u r e 12 shows t h e  corresponding  s c o r i n g of the c y l i n d e r w a l l . Once a g a i n t h e p i s t o n and p i s t o n b l o c k were s e n t back to Canadian Car.  T h i s t i m e a B a b b i t t p i s t o n was made  t o s p e c i f i c a t i o n s and t h e i n s i d e o f t h e p i s t o n b l o c k  was  l a p p e d as b e f o r e e x c e p t t h a t an a p p r o x i m a t e l y 1 4 - i n . l o n g C . I . p i p e , machined on t h e s u r f a c e , was brass cylinder.  used i n s t e a d of the  B a b b i t t metal i s a white a n t i f r i c t i o n  alloy  composed o f c o p p e r , antimony,, and v a r y i n g p r o p o r t i o n s o f t i n . Upon b e i n g s e t up a f o u r t h t i m e t h e s a m p l e r was  found to l e a k  19  Figure 12.  S c o r i n g on C y l i n d e r W a l l  20 at approximately  20 m i s . / m i n .  At t h i s point the p r o j e c t  a p p e a r e d t o he i m p o s s i b l e b u t ,one more a t t e m p t was made t o reduce t h e leakage. The  f i f t h attempt c o n s i s t e d o f r e s o l d e r i n g t h e  o r i g i n a l p i s t o n made i n t h e department shop ( a s d e s c r i b e d e a r l i e r ) and t r y i n g i t i n t h e chromed and l a p p e d p i s t o n block.  T h i s t i m e d i m e n s i o n s were s u c h t h a t no l e a k a g e  occurred  when t h e p i s t o n was o v e r t o t h e r i g h t i n t h e b l o c k .  When t h e  p i s t o n was s h o v e d t o t h e l e f t i n t h e b l o c k a l e a k a g e  rate of  one  t o two m i s . / m i n . was e n c o u n t e r e d a f t e r a few s e c o n d s .  The  p i s t o n , however, moved v e r y e a s i l y i n t h e b l o c k , and i t  was  p o s s i b l e t o sample o n l y f r o m one s i d e i n o r d e r t o keep  the leakage  a t a minimum.  S a m p l i n g was a c c o m p l i s h e d b y  s h o v i n g t h e p i s t o n f r o m i t s r i g h t t o l e f t hand p o s i t i o n i n the b l o c k .  F o l l o w i n g sampling  i t was r e t u r n e d t o t h e r i g h t  hand p o s i t i o n i n w h i c h no l e a k a g e  occurred.  s t e a d y s t a t e o p e r a t i o n o f t h e column c o u l d be  I n t h i s way maintained.  As much d a t a as p o s s i b l e were o b t a i n e d w i t h t h e equipment o p e r a t i n g i n t h i s manner. C o l l e c t i o n Funnels F i g u r e 14 i s a d r a w i n g o f a c o l l e c t i o n f u n n e l , w h i c h f i t s i n t o t h e o u t s i d e o f each o f t h e two h o l e s on the underside  of the p i s t o n block.  The f u n n e l s a r e f i t t e d  s n u g l y i n t o t h e c o u n t e r s u n k p o r t i o n o f t h e h o l e s and a r e  21 held  tight  Figure  by a f l a n g e  arrangement  to prevent  leakage.  See  1J.  The assembled  components  funnel  of the c o l l e c t i o n  a r e shown i n F i g u r e  15•  funnel  and  the  22  Section  A-A  Material: Stainless  Steel  To  Fit § - 1 6  Ground Glass  FIGURE  14.  COLLECTION  FUNNEL  Female Joint  23  Til Figure  15•  Assemblage  o f Components o f F u n n e l  The n e c k o f t h e f u n n e l female p o r t i o n of a  Collection  shown i n p o s i t i o n was  divisions that  on t h e b o t t o m o f a c o l l e c t i o n as t o t h e t o t a l volume  a s shown i n F i g u r e  17.  The f l a s k  mark w h e r e a s  i n t h e sample w o u l d  separate  The  and t h e n e c k  was  designed  t h e volume  was  ml.  o f t h e p i s t o n sample would f a l l  below the top c a l i b r a t i o n  flask  funnel.  b y C a v e and Co. L t d . i n one m l . and 0.1  t h e t o t a l volume  expected  joint.  16 i s a p h o t o g r a p h o f t h e c o l l e c t i o n  calibrated  calibrated  ground g l a s s  to f i t the  Flask  Figure  flask  §-16  i s tapered  so  just  of ketone  i n the graduated  portion  24  of the neck. of  117.0  The  mis.  t o p c a l i b r a t i o n mark i n d i c a t e d a v o l u m e  The  The  neck  of the funnel  a  §-16  ground  of the  expanded  were u s e d  was  fitted  joint,  funnels.  matching Supporting  to hold  the f l a s k  18.  The  o v e r t h e 117  ml.  ml.  range.  a female p o r t i o n the taper  of the  f l a s k was  range.  of neck  h o o k s were l o c a t e d  Wire  tension  on  springs  i n p o s i t i o n on t h e f u n n e l  c a l i b r a t i o n s were c h e c k e d by  points  with  s e c t i o n of the f l a s k .  shown i n F i g u r e The  glass  the c o l l e c t i o n  c a l i b r a t e d o v e r a 15  n e c k was  as  c a l i b r a t e d by C a v e &  the w r i t e r at a t o t a l  Co. of  13  PYREX 117 ml. 20°C  FIGURE  17.  COLLECTION  FLASK  Figure  Column  F l a s k H e l d i n P o s i t i o n by Springs to P i s t o n Block  Tension  Support Figure  which the  various  attached.  Figure  early  18.  stage  of  20  i s a drawing of the  s e c t i o n s of the 19  column support  e x t r a c t i o n column  i s a photograph of the  support  to  are in  an  i t s construction.  Thirty-seven  inch lengths  i r o n were u s e d t o b r a c e t h e  three  of  mild  1  x  1 x  1/8-in.  steel pipes  angle  together.  27  Figure 1 9 .  Column S u p p o r t i n E a r l y S t a g e s of C o n s t r u c t i o n  F i g u r e 21 i s a p h o t o g r a p h o f t h e b r a c i n g p a t t e r n w h i c h may n o t be c l e a r i n F i g u r e 2 0 . A 15 f o o t l e n g t h o f 2 x 2 x % ~ l n . a n g l e i r o n was welded t o each o f two o f t h e p i p e s as shown i n F i g u r e The p i p e s were t h e n s e t u p r i g h t and w e l d e d t o a i r o n p l a t e w h i c h i n t u r n was b o l t e d t o t h e f l o o r .  21.  i n . thick Figure  22 i s a p h o t o g r a p h o f t h e assembled, column and a l s o shows how t h e s u p p o r t was f i x e d t o one o f t h e beams i n t h e u n i t operations labroatory.  FIGURE 20. COLUMN  SUPPORT  F i g u r e 21.  B r a c i n g P a t t e r n o f Column S u p p o r t  F i g u r e 22.  Assembled  Column  30  E l g i n Head and  Conical  Section'Supports  F i g u r e s 23 and s u p p o r t and  the  s u p p o r t s can be height.  24  conical section supports, respectively. clamped t o t h e  E i g u r e 25  column s u p p o r t a t any  These  desired  i s a p h o t o g r a p h o f t h e E l g i n head and i t s  s u p p o r t , whereas E i g u r e 26 s e c t i o n and  are d r a w i n g s o f the E l g i n head  conical  B o t h s u p p o r t s are clamped t o  the  column s u p p o r t by means o f 3^-in. A l l e n head s e t s c r e w s  set  against  A~in.  n  i t s support.  i s a p h o t o g r a p h o f the  thick mild  s t e e l pressure plates.  o f c l a m p i n g i s shown i n F i g u r e  T h i s method  27.  F i g u r e 25 a l s o shows the column i n t e r f a c e which i s bolted  t o one  controller  s i d e o f the E l g i n head s u p p o r t .  FIGURE 2 3 .  ELGIN  HEAD  SUPPORT  All  other  FIGURE  dimensions  24.  CONICAL  as  in  FIGURE  SECTION  23.  SUPPORT  F i g u r e 25.  Figure 26.  E l g i n Head and I t s S u p p o r t  C o n i c a l S e c t i o n and I t s S u p p o r t  F i g u r e 27»  Clamping Arrangement  P i s t o n Sampler Support F i g u r e 28 i s a d r a w i n g o f t h e p i s t o n support.  sampler  The p i s t o n b l o c k i s b o l t e d t o t h e s u p p o r t by  )£-in. machine screws.  One  t h e back o f t h e s u p p o r t .  s i d e of the support i s welded  f a b r i c a t e d b u t no use o f i t was  e v e r made.  i t e m has been o m i t t e d on F i g u r e 28. showing how  to  A s i m i l a r s i d e , w h i c h c o u l d be  b o l t e d t o t h e r i g h t s i d e o f t h e back o f t h e s u p p o r t ,  photograph  4,  Therefore t h i s  F i g u r e 29 i s a  the p i s t o n sampler support  clamped t o the column s u p p o r t .  was  was  AdJListaole  collars  1o  limit,, p i s t o n  Mxed  handle  by  2, j  set  to  — 20  travel Allen  each  head  screws.  I" 2  S m a l i key to prevent D^ton from p i 31 o n  FIGURE  28.  SAMPLER  relating block.  SUPPORT VJ1  Figure  29.  Clamping Arrangement Sampler Support  for Piston  Procedure  As (1),  i n the  references  t h i s work i s a c o n t i n u a t i o n o f C h o u d h u r y ' s work sense  s h o u l d be  consideration  (a)  (b)  of j u s t i f y i n g  The  of the f o l l o w i n g  steady state  readings,  etc.  analysis  The  and  for a  detailed  points:  o p e r a t i o n of the e x t r a c t i o n  interface  throughout (c)  made t o h i s t h e s i s  including  The  h i s sampling technique,  adjustments,  periodic  column,  rotameter  (lj). h a n d l i n g o f a l l samples  the course  of the  experiment ( l k ) .  method o f s a m p l i n g w i t h t h e  including purging ( l b ) .  taken  probes,  37  (d)  The c o r r e c t i o n o f t h e measured c o n c e n t r a t i o n o f a c e t i c a c i d i n t h e k e t o n e probe samples  because  of a p p r e c i a b l e water entrainment ( l k ) . (11).  (e)  The achievement o f mutual s a t u r a t i o n  (f)  The d e s c r i p t i o n and s o u r c e o f a l l r e a g e n t s ( l m ) . The m e t h y l i s o b u t y l ketone u s e d t h r o u g h o u t t h e  e x p e r i m e n t a l work was t e c h n i c a l grade and was made up o f v a r i o u s b a t c h e s f r o m d i f f e r e n t companies.  The f o l l o w i n g r e f r a c t i v e  i n d i c e s were o b t a i n e d : Source o f MIBK G.C. Henderson Co. L t d .  C a n a d i a n C h e m i c a l Co.  Refractive  Index  Temperature  O r d e r N o . l 1.3951  20.1°C  O r d e r No.2  1.394-9  20.2°C  Drum No.2  1.3948  20.2°C  (No sample f r o m Drum No. 1 was a v a i l a b l e f o r t e s t i n g a l t h o u g h some k e t o n e f r o m t h i s drum was used i n the r e s e a r c h ) MIBK as p u r i f i e d and p l a c e d i n aluminum t a n k s a t time t h e s e were commissioned  (1)  1.3947  20.1°C  The r e f r a c t i v e i n d e x o f 99% p u r e MIBK i s 1.3958 a t 20°C(1).  1-ell.  38  With, t h e s e p o i n t s c o v e r e d * i n - d e t a i l i n C h o u d h u r y s 1  work the o p e r a t i n g p r o c e d u r e can "be e x p l a i n e d v e r y The  l i n e a r v e l o c i t y of ketone through  c a s e s was  0.36  briefly.  the n o z z l e t i p s i n a l l  f t . / s e c , w h i l e t h e d i r e c t i o n o f t r a n s f e r was  a l w a y s f r o m t h e aqueous phase t o the k e t o n e phase. patterns corresponding f o u n d i n F i g u r e 30.  Nozzle t i p  t o the v a r i o u s k e t o n e f l o w r a t e s may  Those f o r Lk = 36.5  and 72.9  be  were a l s o  u s e d by Choudhury. The rotameters  r e q u i r e d f l o w r a t e s were s e t by means o f  and a s u f f i c i e n t amount o f t i m e was  allowed f o r  the tower t o change i t s c o n t e n t s t h r e e t o f o u r t i m e s D u r i n g t h i s time t h e i n t e r f a c e c o n t r o l l e r a d j u s t e d t o h o l d the i n t e r f a c e a t one  the  particular  (lm). was  level.  Throughout a l l t h e r u n s t h e i n t e r f a c e r e m a i n e d t h r e e t o f o u r i n c h e s b e l o w the t o p o f the t o p p l a t e o f t h e E l g i n head. D u r i n g each r u n the i n t e r f a c e e l e v a t i o n r e m a i n e d s t e a d y  but  v a r i e d o v e r a one  height  i n c h range f r o m r u n t o r u n .  Thus t h e  o f the column ( n o z z l e t i p s t o i n t e r f a c e ) i s r e p o r t e d 7 - f t . 3"#-in. -  1/2-in.  Throughout t h e c o u r s e  of  a r u n , numerous c h e c k s were made on t h e i n t e r f a c e h e i g h t and  on  the f l o w meter s e t t i n g s . readjustment  was  f o r a l l runs.  as  I t was  necessary.  found t h a t l i t t l e  or  no  FIGURE  30.  TIP  PATTERNS  •  BLOCKED  FOR  KETONE  OUT  NOZZLE  40  l u n s 71 t o 73? and 76 t o 78 were made t o j u s t i f y t h e s y r i n g e method o f s a m p l i n g t h e w a t e r phase and t o check whether o r n o t a c o n c e n t r a t i o n g r a d i e n t e x i s t e d i n a p a r t i c u l a r c r o s s - s e c t i o n i n t h e column a t r i g h t a n g l e s t o t h e a x i s o f t h e column and a t a p a r t i c u l a r h e i g h t above t h e nozzle t i p s .  When s t e a d y s t a t e c o n d i t i o n s were assumed t o  p r e v a i l i n t h e tower hypodermic at  s y r i n g e samples were t a k e n  d e f i n i t e positions i n the cross-section.  The n e e d l e o f  t h e s y r i n g e e n t e r e d t h e column t h r o u g h t h e a s b e s t o s g a s k e t s at  c e r t a i n f l a n g e s i n the apparatus.  A f t e r a s y r i n g e sample  had been t a k e n t h e s y r i n g e was washed w i t h d i s t i l l e d and t h e n d r i e d .  B e f o r e a n o t h e r s y r i n g e sample was t a k e n ,  15 c . c . o f w a t e r phase were w i t h d r a w n  a t the next sampling  p o s i t i o n and u s e d t o r i n s e t h e s y r i n g e . of  water  Then a 30 c . c . sample  t h e w a t e r phase was removed a t t h a t p o s i t i o n and t h e w a s h i n g ,  d r y i n g , and r i n s i n g p r o c e d u r e r e p e a t e d p r i o r t o s a m p l i n g a t the next p o s i t i o n . In Runs 74 and 75 s y r i n g e samples were t a k e n a t one p o s i t i o n i n a c r o s s - s e c t i o n a t v a r i o u s time i n t e r v a l s  after  t h e s t a r t - u p o f a r u n and c o n t i n u e d w e l l i n t o t h e s t e a d y s t a t e p e r i o d o f o p e r a t i o n o f t h e column.  The o b j e c t was t o d e t e r m i n e  whether o r n o t t h e s y r i n g e samples, t a k e n d u r i n g t h e s t e a d y s t a t e p e r i o d a t t h i s one p o i n t , would show any v a r i a t i o n i n t h e measured c o n c e n t r a t i o n o f a c e t i c a c i d . * The hypodermic n e e d l e s used f o r s a m p l i n g were s t a n d a r d Y a l e B-D 19 w i t h t h e p o i n t o f t h e n e e d l e f i l e d o f f so t h a t t h e n e e d l e end lay i n a p l a i n a t r i g h t angles t o the needle a x i s .  41  When t h e p i s t o n s a m p l e r was i n c o r p o r a t e d i n t o t h e a p p a r a t u s t h e p r o c e d u r e was s l i g h t l y d i f f e r e n t .  When s t e a d y  s t a t e c o n d i t i o n s were assumed t o p r e v a i l i n t h e tower t h e p r o b e s were l o w e r e d t o t h e e l e v a t i o n o f t h e a x i s o f t h e p i s t o n where p u r g i n g and s a m p l i n g o f b o t h p h a s e s t o o k p l a c e simultaneously.'  P u r g i n g and s a m p l i n g r a t e s and p u r g i n g t i m e s  are r e p o r t e d l a t e r i n t h i s t h e s i s .  I n l e t and o u t l e t samples o f  b o t h phases were t a k e n when t h e probe samples were b e i n g t a k e n . When s u f f i c i e n t volumes o f b o t h p h a s e s had been o b t a i n e d , t h e p r o b e s were removed f r o m t h e p a t h o f t h e p i s t o n . Water phase samples were t a k e n i m m e d i a t e l y above and b e l o w t h e p i s t o n b l o c k b y means o f t h e hypodermic  syringe, the  n e e d l e o f w h i c h e n t e r e d t h e column t h r o u g h t h e a s b e s t o s g a s k e t s s e a l i n g t h e g l a s s column t o t h e p i s t o n b l o c k .  The s y r i n g e  was washed, d r i e d , and r i n s e d i n a manner d e s c r i b e d e a r l i e r a f t e r each s y r i n g e sample was t a k e n . The l>&-in. I.D. h o l e i n t h e p i s t o n t h a t was t o s l i d e i n t o l i n e w i t h t h e column was f i l l e d w i t h e i t h e r w a t e r phase w h i c h had l e a k e d f r o m t h e p i s t o n o r w i t h o u t l e t phase f r o m t h e column i f t h e r e was no s u c h l e a k a g e .  water In this  way when a p i s t o n sample was t a k e n t h e column c o n t i n u e d t o o p e r a t e w i t h no a p p r e c i a b l e d i s t u r b a n c e .  I t was i n t e r e s t i n g  t o observe t h a t when a p i s t o n sample was t a k e n a gap i n t h e k e t o n e phase o c c u r r e d , w h i c h appeared t o move up t h e column. T h i s d i s c o n t i n u i t y i n t h e k e t o n e phase, however, d i s a p p e a r e d a f t e r i t had " r i s e n " one t o two f e e t .  42  The c o l l e c t i o n f l a s k was c o n n e c t e d t o t h e f u n n e l w h i c h was t o r e c e i v e t h e p i s t o n sample.  When t h e p i s t o n was  slammed from one p o s i t i o n t o t h e o t h e r , t h e removed s e c t i o n o f t h e column would q u i c k l y empty i t s c o n t e n t s i n t o t h e collection flask.  The c o l l e c t i o n f l a s k had t o be removed  q u i c k l y from t h e r e c e i v i n g f u n n e l because i n a few seconds w a t e r phase would s t a r t t o l e a k i n t o t h e f l a s k . A f t e r a p i s t o n sample had been t a k e n s u f f i c i e n t t i m e was a l l o w e d t o change t h e c o n t e n t s o f t h e column a t l e a s t twice t o assure steady s t a t e conditions again.  The s a m p l i n g  p r o c e d u r e was t h e n r e p e a t e d w i t h t h e p i s t o n b e i n g moved i n the o p p o s i t e d i r e c t i o n . I n Run Nos. 82 t o 85 s a m p l i n g t o o k p l a c e o n l y f r o m right to l e f t ,  s i n c e no l e a k a g e o c c u r r e d when t h e p i s t o n was  over t o the r i g h t i n the p i s t o n b l o c k .  A f t e r a sample had  been t a k e n t h e p i s t o n was i m m e d i a t e l y r e t u r n e d t o t h e r i g h t hand p o s i t i o n and t h e s a m p l i n g p r o c e d u r e r e p e a t e d f r o m r i g h t t o l e f t a f t e r s u f f i c i e n t t i m e had p a s s e d f o r s t e a d y s t a t e t o be  re-established. D u r i n g Run No. 8 0 , an a p p r e c i a b l e volume o f ketone  phase was e n t r a i n e d i n t h e c o n t i n u o u s phase samples t a k e n b y t h e s y r i n g e s i n t h e g a s k e t s i m m e d i a t e l y above and b e l o w t h e piston block.  T h i s volume was l a r g e enough so t h a t an  a p p r e c i a b l e t r a n s f e r of a c e t i c a c i d took plaee out o f the w a t e r p a r t o f t h e sample and i n t o t h e k e t o n e p a r t a f t e r a  43  sample was t a k e n .  A t t h i s p o i n t i n t h e work t h e s y r i n g e samples  were d i s c o n t i n u e d because o f t h e n e a r i m p o s s i b i l i t y o f c o r r e c t i n g f o r such t r a n s f e r i n the circumstances o b t a i n i n g . I t was d e c i d e d t h a t t h e w a t e r phase probe sample, w h i c h showed no k e t o n e e n t r a i n m e n t , c o u l d be u s e d i n p l a c e o f t h e s y r i n g e samples, i f i t was assumed t h a t t h e probe sample gave a r e p r e s e n t a t i v e sample o f t h e w a t e r p h a s e .  T h i s sample  o r d i n a r i l y was t a k e n on t h e a x i s o f t h e p i s t o n . The two phases o f t h e p i s t o n samples were a l l o w e d t o s e p a r a t e and t h e i r volumes were measured.  Part of the water  phase was drawn from t h e f l a s k and t h e r e m a i n i n g c o n t e n t s dropped i n t o a sample b o t t l e .  Any k e t o n e w h i c h r e m a i n e d i n  t h e f l a s k was t h e n washed i n t o t h e sample b o t t l e w i t h t h e w a t e r phase p o r t i o n w h i c h had been drawn f r o m t h e f l a s k earlier. The sample b o t t l e s c o n t a i n i n g p i s t o n samples were shaken v i g o r o u s l y f r o m t i m e t o time o v e r a t h r e e t o f o u r hour p e r i o d p r i o r to a n a l y s i s .  A f t e r t h i s t i m e , and because  o f t h e s m a l l volume o f k e t o n e , i t was assumed t h a t t h e two phases were i n e q u i l i b r i u m .  D u r i n g s t o r a g e t h e f l a s k s were  s e a l e d w i t h i c o r k s c o v e r e d w i t h aluminum  foil.  The samples were t h e n a n a l y z e d f o r t h e i r  acetic  a c i d c o n t e n t by t i t r a t i o n w i t h sodium h y d r o x i d e s o l u t i o n  (lk).  44  An a t t e m p t was  made t o a n a l y z e the  concentrations  o f the w a t e r phase samples by measurement o f t h e i r r e s i s t a n c e s w i t h t h e s a l i n o m e t e r o f the P a c i f i c O c e a n o g r a p h i c Group, F i s h e r i e s R e s e a r c h B o a r d o f Canada, a t Nanaimo, B.C. o f c o n s t r u c t i o n , o p e r a t i o n and maintenance o f the may  be f o u n d e l s e w h e r e (11).  designed  The  b r i d g e was  Details  salinometer  specifically  f o r the d e t e r m i n a t i o n o f the s a l i n i t y o f sea w a t e r (12)  by measurement o f i t s e l e c t r i c a l c o n d u c t i v i t y . P a q u e t t e a d v i s e s t h a t t h e b r i d g e w o u l d u n d o u b t e d l y work f o r a c e t i c  a c i d s o l u t i o n and would y i e l d c o n d u c t a n c e o r r e s i s t a n c e r a t i o s i f u s e d i n the p r o p e r way.  The  r a t i o s a r e the u s u a l Wheatstone  b r i d g e r e s i s t a n c e r a t i o s w i t h r e s p e c t to a r e f e r e n c e A s i m p l i f i e d schematic  solution.  d i a g r a m o f the c i r c u i t  t h e s a l i n o m e t e r i s shown i n F i g u r e 31.  The  bridge  of  design  a v o i d s the n e c e s s i t y of p r e c i s e t e m p e r a t u r e c o n t r o l i n t h e c o n d u c t i v i t y c e l l by u s i n g as the a d j a c e n t r e s i s t o r i n the W/heatstone b r i d g e a s e c o n d , n e a r l y i d e n t i c a l , c o n d u c t i v i t y cell  (Y i n F i g u r e 31)  in. t h e same c o n s t a n t t e m p e r a t u r e b a t h ,  and f i l l e d w i t h r e f e r e n c e s o l u t i o n o f a p p r o x i m a t e l y c o n c e n t r a t i o n as t h e sample t o be a n a l y z e d  the same  (Cell X).  In u s e , t h e unknown s o l u t i o n i s p l a c e d i n C e l l X and the r e f e r e n c e s o l u t i o n , i n the p r e s e n t case a s o l u t i o n of' c o n c e n t r a t i o n Cv^,  i s p l a c e d i n C e l l Y.  Arm Ry i s s e t a t a  v a l u e c h a r a c t e r i s t i c o f the p a r t i c u l a r c e l l i n use and c o n c e n t r a t i o n o f s o l u t i o n i n the r e f e r e n c e c e l l the p r e s e n t c a s e ) .  The  (700  the  ohms i n  bridge i s then brought to balance  with  45  PHASING  CAPACITANCE  OSCILLATOR  FIGURE  31.  SIMPLIFIED  BRIDGE  CIRCUIT  Table I I C a l i b r a t i o n of Salinometer  SampleConcentration of Acetic A c i d i n R e s i s t a n c e Made-up Water Phase S a m p l e o f C e l l X 2  lb. moles/ft.  x 10^  ohms  50.2  694.15  ^w2  32.5  739.44  1  36.2  728.04  2  36.9  718.68  3  4-3.4  710.24  4  46.7  702.44  wl  *  Samples o b t a i n e d by making up v a r i o u s volumes o f i n l e t and o u t l e t w a t e r phase s o l u t i o n f r o m Run 84. C o n c e n t r a t i o n s o f t h e s e samples were o b t a i n e d b y titration. I n l e t w a t e r phase s o l u t i o n f r o m Run 84 was u s e d as r e f e r e n c e s o l u t i o n i n C e l l Y. I t s c o n c e n t r a t i o n was d e t e r m i n e d b y t i t r a t i o n . Samples d e s i g n a t e d by t h e symbol f o r t h e i r concentration.  47 REFERENCE  CELL  FROM  84.  RUN  TEMPERATURE  X  CONTAINS  REFERENCE OF  BATH  INLET DIAL  AT  WATER SET  AT  PHASE 700 00  5°C  730  726  718k  714 <0  o ,710  706f-  702r-  698r-  694  h 36  38  •  40  42  CONCENTRATION FIGURE-32.  OF  44 ACETIC  SALINOMETER  AC|D  48  46 lb. moles,  CALIBRATION  ClJRVF  50 10 -  48  Ex.  Rx i s now  a s i n g l e - v a l u e d n e a r l y l i n e a r f u n c t i o n o f the  a c e t i c a c i d c o n c e n t r a t i o n o f the w a t e r phase. A number o f w a t e r phase c a l i b r a t i o n samples were prepared  by m i x i n g v a r i o u s volumes o f i n l e t and o u t l e t w a t e r  phase t a k e n f r o m Run  84.  P i s t o n samples f r o m Run  84 were  a l l o w e d t o s t a n d f o r 24 h o u r s b e f o r e t h e two phases were separated  and  a n a l y z e d by t i t r a t i o n .  phase p o r t i o n s were p l a c e d i n 125 t i n f o i l - c o v e r e d corks.  The  The  remaining  ml. f l a s k s and  water  sealed with  f l a s k s were k e p t a t 2°C  for 5  days b e f o r e t a k i n g them t o Nanaimo t o measure t h e i r r e s i s t a n c e s . The  c a l i b r a t i o n samples were s e a l e d and  stored i n a  similar  manner f o r t h e same p e r i o d and t h e i r r e s i s t a n c e s measured d u r i n g t h e same v i s i t t o Nanaimo and w i t h the same Ry s e t t i n g u s e d f o r the p i s t o n samples.  The  r e s i s t a n c e s of t h e w a t e r  phase c a l i b r a t i o n samples, whose c o n c e n t r a t i o n had d e t e r m i n e d by t i t r a t i o n , were measured, and the c u r v e shown i n F i g u r e 52 was  as  prepared.  been  calibration  F i g u r e 32 r e l a t e s t h e  c o n c e n t r a t i o n o f the w a t e r phase t o t h e r e s i s t a n c e Rx.  The  c a l i b r a t i o n c u r v e , however, i s s p e c i f i c o n l y f o r Run  as  84  column aqueous f e e d f r o m t h i s r u n ( c o n c e n t r a t i o n Cw^)  was  u s e d i n the R e f e r e n c e C e l l Y of the s a l i n o m e t e r f o r t h e p a r t i c u l a r s e r i e s of measurements r e l a t e d t o t h a t C e l l X was  a l w a y s washed t h r e e t i m e s w i t h  w a t e r phase s o l u t i o n whose r e s i s t a n c e was The  w a t e r phase s o l u t i o n was See  Table I I .  run. the  t o be measured.  always p i p e t t e d from the bottom  o f t h e sample f l a s k t o i n s u r e t h a t any k e t o n e , w h i c h had f a i l e d t o be s e p a r a t e d f r o m t h e w a t e r phase p o r t i o n , w o u l d n o t be t a k e n up i n t o t h e p i p e t t e .  The p i p e t t e a l s o r e c e i v e d  t h r e e t h o r o u g h washings w i t h the s o l u t i o n whose r e s i s t a n c e was t o be measured.  P r e v i o u s experience i n measuring the  r e s i s t a n c e o f the w a t e r phase s o l u t i o n w i t h the s a l i n o m e t e r showed t h a t t h e p r e s e n c e o f two phases i n C e l l X w o u l d a f f e c t the r e s i s t a n c e readings c o n s i d e r a b l y .  Thus i t was  n e c e s s a r y t o w i t h d r a w the w a t e r phase p o r t i o n c a r e f u l l y w i t h a p i p e t t e i f any minor k e t o n e l a y e r was  present.  The f i v e p i s t o n samples f r o m Run 84- were a n a l y z e d f o r a c e t i c a c i d u s i n g the salinometer i n c o n j u n c t i o n w i t h the c a l i b r a t i o n curve.  The r e s u l t s were compared w i t h t h e  v a l u e s o b t a i n e d by t i t r a t i o n .  U n f o r t u n a t e l y the r e s u l t s  d i d n o t agree and t h e method was n o t u s e d f u r t h e r i n t h e present research.  CALCULATIONS  The r a t e o f t r a n s f e r o f a c e t i c a c i d a c r o s s t h e i n t e r f a c e i n t h e column was two d i f f e r e n t e q u a t i o n s .  c a l c u l a t e d i n l b . m o l e s / h r . by  One was b a s e d on t h e t o t a l change  i n c o n c e n t r a t i o n of the w a t e r phase, and t h e o t h e r was  based  on t h e c o r r e s p o n d i n g t o t a l change i n c o n c e n t r a t i o n o f t h e k e t o n e phase.  These e q u a t i o n s were  50  N H = LwA(Cw  - Cw )  1  Nk = LkACCk^ - C k )  2  1  2  2  V a l u e s o f Nvr and Nk v a r i e d s l i g h t l y and an average v a l u e was d e t e r m i n e d b y N = Nw + Nk  3  2  The p e r c e n t a g e d e v i a t i o n was c a l c u l a t e d  for  each  r u n as a measure o f t h e q u a l i t y o f t h e e x p e r i m e n t a l work. The  e q u a t i o n used was Percentage D e v i a t i o n =  ^  N k  )100  4  An a c e t i c a e i d b a l a n c e e q u a t i o n was w r i t t e n between t h e i n i t i a l c o n d i t i o n s e x i s t i n g i n t h e column a t t h e t i m e o f s a m p l i n g i n t h e f o u r i n c h h i g h p i s t o n s e c t i o n , and t h e f i n a l e q u i l i b r i u m c o n d i t i o n s e x i s t i n g i n t h e removed p i s t o n sample. The  e q u a t i o n was Ck  ±  Vk + C.^ Yw = C k  f  Vk + Cw  f  Vw  5  and when used was s o l v e d f o r C k i . Figure 33 i s a s i m p l i f i e d drawing r e p r e s e n t i n g t h e s a m p l i n g p r o c e d u r e t o w h i c h E q u a t i o n 5 was a p p l i e d . S t e a d y s t a t e c o n d i t i o n s were assumed t o e x i s t i n t h e e x t r a c t i o n column p r i o r t o s a m p l i n g and any volume changes a f t e r s a m p l i n g have been n e g l e c t e d .  Volume changes w i t h  r e s p e c t t o t h e i n l e t and o u t l e t s t r e a m s , have a l s o : be ere n e g l e c t e d .  'wp  •kp REMOVED  Ketone Volume  PISTON  SAMPLE  Phose = V^  C o n c e n t r a t i o n = C f in K  Equilibrium Water  With the  Phase Average  Initial  Concentrations in 4" Piston Section and  Water Volume = Concentration  FIGURE  33.  SIMPLIFIED  DRAWING  OF  SAMPLING  PROCEDURE  are C,  Kl  52  Volume changes m i g h t be e x p e c t e d as a r e s u l t o f a c e t i c a c i d t r a n s f e r and changes i n t h e m u t u a l s o l u b i l i t y o f k e t o n e and w a t e r accompanying the t r a n s f e r o f a c e t i c a c i d .  A sample  c a l c u l a t i o n t o show why t h e s e volume changes have been n e g l e c t e d i s i n c l u d e d i n the Appendix. The w a t e r phase c o n c e n t r a t i o n p r o f i l e i s assumed t o be l i n e a r o v e r t h e s i x i n c h l e n g t h o f column between CW^^  and CwO-g.  T h i s a s s u m p t i o n was a r r i v e d a t b y e x a m i n a t i o n o f w a t e r phase c o n c e n t r a t i o n p r o f i l e s f r o m Choudhury's work ( 1 ) . I n h i s work t h e w a t e r phase c o n c e n t r a t i o n p r o f i l e s w h i c h showed t h e g r e a t e s t c u r v a t u r e o v e r a seven f o o t l e n g t h o f column c o u l d be assumed t o be l i n e a r o v e r a s i x i n c h l e n g t h o f column a t any p o i n t on t h e profile. I n some r u n s , i n t h e p r e s e n t work Cw^ was f o u n d b e f o r e t a k i n g a p i s t o n sample b y w i t h d r a w i n g w a t e r phase samples and C w ^ g ,  Cw^^  w i t h a hypodermic s y r i n g e a t t h e t o p , ),£, and a t t h e  bottom, ) , of the p i s t o n b l o c k . B  Thus i f a l i n e a r p r o f i l e c a n be  assumed t o e x i s t between Cw^),j, and Cw^)^, Cw.^ c a n be a p p r o x i m a t e d by Cw  ±  = Cw ) ±  T  +  Cw ) i  B  6  2  I n o t h e r r u n s Cw^ was o b t a i n e d by t a k i n g a sample w i t h t h e w a t e r phase p r o b e a t t h e e l e v a t i o n o f t h e a x i s o f t h e p i s t o n samples.  Vk and Vw were o b t a i n e d f r o m t h e c a l i b r a t i o n s on  t h e c o l l e c t i o n f l a s k , whereas Cwf was o b t a i n e d b y a n a l y s i s o f t h e w a t e r phase p o r t i o n o f t h e p i s t o n sample a f t e r  53 e q u i l i b r i u m bad been r e a c h e d w i t h the ketone phase p o r t i o n . Ckf  was o b t a i n e d from the e q u i l i b r i u m r e l a t i o n s h i p  volume Vk i s i n s u f f i c i e n t holdups.  since  f o r a n a l y s i s a t low ketone phase  A t h i g h e r h o l d u p s , (see Run 84, Table VIII,' and  Run 85, T a b l e I X ) , a s u f f i c i e n t amount was p r e s e n t f o r one analysis.  Combining E q u a t i o n s 5 and 6 and r e a r r a n g i n g t o  s o l v e f o r Ck^ g i v e s Vw Ck, = £g Vk  Cw  x  -  f  Cw.^-j + C k  f  As mentioned e a r l i e r the t a k i n g o f samples r e p r e s e n t e d i n E q u a t i o n 7 by Cw^)j- and Cw^)g had t o be d i s c o n t i n u e d . the  When  probe sample taken on the a x i s o f the p i s t o n sampler i s  used i n s t e a d , on the assumption t h a t Cw  = Cw., E q u a t i o n 7  becomes  C k  i  =  vf *  ( C w  f" V C  +  C k  f  8  In Run 85, the major p o r t i o n o f the water phase was s e p a r a t e d from the ketone phase i m m e d i a t e l y a f t e r the  p i s t o n samples.  taking  The ketone phase and the s m a l l r e m a i n i n g  volume o f water phase were a l l o w e d t o come t o e q u i l i b r i u m b e f o r e some o f the ketone phase was withdrawn f o r a n a l y s i s . The o r i g i n a l  c o n c e n t r a t i o n o f the ketone drops i n t h e column  c o u l d be c a l c u l a t e d by the f o l l o w i n g m a t e r i a l b a l a n c e Ck. = Cw. Vw Vk 1  1  +  Cw1  Vw Vk  +  Ck. 1  - Cw_ Vw Vk p  equation  9  54  The  k e t o n e phase h o l d u p was c a l c u l a t e d f r o m t h e  measured volumes o f t h e k e t o n e and w a t e r phases o f t h e p i s t o n samples b y t h e f o l l o w i n g e q u a t i o n  " <Vk ! Y w k  H  The  )  1  0  0  %  1  0  maximum e r r o r s t h a t c o u l d be e x p e c t e d i n t h e  p i s t o n samples were c a l c u l a t e d by t h e method s e t o u t b y B l i c k l e y , Sherwood and Reed ( 1 0 ) . B r i e f l y , t h e method i s t o r e l a t e the e r r o r of the c a l c u l a t e d quantity to the e r r o r s of the measured q u a n t i t i e s i n t h e form o f a p a r t i a l  differential  equation such as dQ » M ^ i *  2&.dq  — • •  + 2  11  • -2&.<£q -' +  n  i n w h i c h t h e d i f f e r e n t i a l s dq-^, dqg,..., d q o f t h e measured n  quantities are replaced  by s m a l l f i n i t e  . * A q , , a n d , s i m i l a r l y dQ by n  AQ.  increments  The e x p r e s s i o n  £»q-£> A q g . . .  takes the  form  AQ agQAq^  3q The  x  quantities  +  A q + .... + 2  ^q  e r r o r s i i i q^, q^, the  q  n  ....  12  3qn  2  Aq-p  A  A q » ...» 2  q , and n  Aq  AQ  error i n the calculated quantity,  n  may be c o n s i d e r e d as  i s , t o good a p p r o x i m a t i o n , Q.  E q u a t i o n 12 h o l d s  f o r any t y p e o f e r r o r s , p r o v i d i n g o n l y t h a t t h e y a r e s m a l l . On t h e o t h e r hand, E q u a t i o n 12 does n o t u t i l i z e a l l t h e  55 i n f o r m a t i o n t h a t may be a v a i l a b l e and c o n s e q u e n t l y o f t e n overestimates the e r r o r i n the calculated quantity.  This  p o i n t w i l l be d i s c u s s e d l a t e r w i t h t h e a i d o f an example. A p p l y i n g E q u a t i o n 12 t o E q u a t i o n 5 we g e t t h e r e s u l t i n g expression ACk  t  =  A'-ACk  f  + !• AVw + O A v k + D» A C w  f  + E-&Cw  ±  where A' = ack^  =  2  3Ck^  B = 3Ck. = 3Vw  _1_ . (Cw. - Cw, ) Vk  C = 9Ck.  - V K . ( C W ~ - Cw. )  gVk  =  1  1  1  1  1  D = 3Ck. = Vw 3Cwi Vk f ?  E = 3Ck. = 3Cw^  Vw Vk  E s t i m a t e d v a l u e s o f AVw,  AVk, ACw , f  A Ck^ have been u s e d t o c a l c u l a t e v a l u e s o f  A C w ^ and  ACk^.  v a l u e s were - 0.2 m i s . f o r t h e volume v a r i a t i o n and .  "5  - 0.1 x 10  3  l b . moles a c e t i c a c i d / f t . f o r a l l t h r e e  concentration variations.  These  13  56  An a c e t i c a c i d m a t e r i a l "balance was  calculated for  t h e o v e r a l l o p e r a t i o n o f t h e e x t r a c t i o n column as  an  a d d i t i o n a l check on t h e q u a l i t y o f t h e e x p e r i m e n t a l work. The  e x p r e s s i o n was  P e r c e n t a g e D i f f e r e n c e = A c i d I n - A c i d Out Acid In  IOQ%  ( LyACw^+LkACk^ ) - (LwACw^+LkACk-^ ) LwACw-^ + L k A C k  2  14  A complete d e s c r i p t i o n o f a l l t h e symbols u s e d i n E q u a t i o n s 1 t o 14 may  be f o u n d i n t h e Nomenclature.  c a l c u l a t i o n s u s i n g t h e s e e q u a t i o n s may  Sample  be found i n t h e  Appendix.  RESULTS  Tables I I I t o X I i n c l u s i v e present a l l the d a t a o b t a i n e d i n the o p e r a t i o n o f t h e e x t r a c t i o n column and v a r i o u s sampling d e v i c e s .  the  Table I I I g i v e s the sampling r a t e s  and p u r g i n g t i m e s w h i c h were used when s a m p l i n g was p l a c e w i t h t h e w a t e r phase and ketone phase p r o b e s .  taking In  some c a s e s t h e p u r g i n g t i m e does n o t c o r r e s p o n d t o t h e minimum p u r g i n g t i m e t o o b t a i n u n i f o r m c o n c e n t r a t i o n s g i v e n by Choudhury ( l n ) .  57  T a b l e IV g i v e s the o v e r a l l t r a n s f e r d a t a f o r each run.  T a b l e s V and V I I show the c o n c e n t r a t i o n d a t a w h i c h were  o b t a i n e d by s a m p l i n g  the w a t e r phase w i t h the hypodermic  s y r i n g e a t v a r i o u s p o s i t i o n s i n column c r o s s - s e c t i o n s e a c h o f a d e f i n i t e e l e v a t i o n above t h e n o z z l e t i p s .  The p o s i t i o n s i n  t h e column c r o s s - s e c t i o n s a t w h i c h the hypodermic s y r i n g e samples were c o l l e c t e d may  be s e e n i n F i g u r e 34.  Table VI g i v e s  the  c o n c e n t r a t i o n of t h e w a t e r phase a t P o s i t i o n 6 as a f u n c t i o n of time a f t e r the s t a r t - u p of a run. T a b l e s V I I I and f o r s i x r u n s and  IX g i v e the k e t o n e phase h o l d u p s  a l s o compares t h e c o n c e n t r a t i o n s o f  k e t o n e phase ( C k ^ ) , as c a l c u l a t e d by E q u a t i o n s  the  7 and 8 w i t h  t h e k e t o n e phase c o n c e n t r a t i o n s o f t h e samples w h i c h were o b t a i n e d w i t h t h e probe (Ck ). Run  T a b l e IX g i v e s t h e d a t a f o r  85 i n w h i c h the two p h a s e s were s e p a r a t e d  immediately  after  t a k i n g the p i s t o n sample. T a b l e X shows t h e a p p r o x i m a t e maximum e r r o r o f c a l c u l a t e d i n i t i a l ketone c o n c e n t r a t i o n (Ck^). t h i s t a b l e a r e t h e e r r o r s due  the  Included i n  t o the i n d i v i d u a l v a r i a b l e s .  T a b l e X I shows t h e c o m p a r i s o n o f t h e  concentrations  o f t h e p i s t o n samples f o r Run  84 as d e t e r m i n e d by the  and by the t i t r a t i o n method.  The  salinometer  samples u s e d i n c a l i b r a t i n g  the s a l i n o m e t e r and the p i s t o n samples were h a n d l e d i n an i d e n t i c a l manner and t h e i r r e s i s t a n c e s measured w i t h  respect  58  t o t h e same s o l u t i o n i n t h e R e f e r e n c e C e l l Y.  Calibration  samples were p r e p a r e d by m i x i n g v a r i o u s volumes o f i n l e t  and  o u t l e t w a t e r phases f r o m Run 84-, and t i t r a t i n g the m i x t u r e s . I n most c a s e s t h e r e s u l t s have been r e d u c e d t o three s i g n i f i c a n t figures.  However, f o u r s i g n i f i c a n t  figures  were used i n t h e i r c a l c u l a t i o n , as can be seen from t h e sample c a l c u l a t i o n s  i n Appendix  1.  Table I I I S a m p l i n g R a t e and P u r g i n g Time Run No.  Sampling r a t e m l . /min. Water phase probe  Purging time min.  Ketone phase probe  Minimum Purge Time as s p e c i f i e d by, Choudhury ( l n ) , m i n . Water Ketone phase phase probe probe  79  6.0  6.5  10  11  + 2  12  + 2  80  5.0  6.4  15  13  + 2  12  + 2  81 82  7.4  3.5  15  5.2  4.7  24 .  13  + 2  16 + 2  83  5.1  5.1  30  13  + 2  15  + 2  84  4.8  5.4  10  13  + 2  15  + 2  4.7  5.2  11  13  + 2  15  + 2  5.0  6.6  15  13  + 2  12  + 2  85  8 + 2  + X  20 + 2  F i r s t p r o b e sample t a k e n b e f o r e t h e e i g h t p i s t o n samples, and the s e c o n d a f t e r . T h i s f i g u r e i s t h e t o t a l o f t h e s a m p l i n g and purge t i m e s f o r t h e p r e c e e d i n g p r o b e sample. Between t h e two p r o b e samples t h e p r o b e s were moved above t h e a x i s o f t h e p i s t o n w i t h t h e f l u i d i n t h e p r o b e t u b e s t a g n a n t , x i s a t l e a s t 10 min.  Table IV O v e r - A l l T r a n s f e r Data Run I n l e t and O u t l e t C o n c e n t r a t i o n s No. l b . m o l e s / c u . f t . x 10^ Water I n Cw-j^ Out C w  2  Flow Rates ^ Ft?/hr./ftf P  Water Ketone Out Ck-j^ In C k w L  2  71  — —  72  49.9  36.5  6.9  22.9  42.5 42.5  73 74  50.2  36.4  50.0  36.1  6.9 6.8  22.7 22.8  75  50.2  6.8  76  50.2  36.3 36.6  6.8  77 78  50.0 50.0  36.7 36.8  79  49.9  80  50.0  35.7 22.2  6.9 7.0 7.0  81  50.0  21.7  6.8 6.8  82  50.0  32.4  6.8  83 84  50.0  32.4  50.2  32.5  85  50.2 ,  32.5  •  O v e r a l l A c e t i c A c i d Percentage T r a n s f e r Rates , D e v i a t i o n s l b . m o l e s / h r . x 1CK N - N xlOO  W  Ketone Water Ketone  \  w  \  7.01  7.36  43.0 43.0  37.5 37-5 36.3 36.8  7.29 7.32  7.03 7.28  22.6  43.4  36.3  7.36  22.6 22.6 22.6  43.0  7.18  42.9 42.8  36.3 36.8 36.4  7.03  7.14 7.02 7.04  6.94  23.9 21.5 21.6  43.0  36.8  36.5 36.5  73.0  7.47 12.4  72.9  72.2  6.8  24.7 24.8  7-1 7.1  24.8 24.8  v  Acetic Acid Material Balance % Difference  Average N  7.18 7.16  -4.87  -1.19  +3.63  +0.89  7.30  +0.55  +0.30  7.25  +3.03  +1.10  7.10 7.04  +2.30  +0.47  -0.04  -0.03  6.97  6.96  -0.43  -0.10  7.56 12.8  -2.38  -0.54  -5.16  -2.34  12.7  7.65 13.1 13.2  13.0  -3.85  -1.72  72.9  15.6  15.9  15.8  -1.90  -0.60  72.2  72.5  15.6  16.0  15.8  -2.09  -0.66  90.9  90.5 90.5  19.8 19.8  19-7  19.7  +0.20  +0.03  19.7  19.7  +0.20  +0.03  90.9  o  61 Table V C o n c e n t r a t i o n P r o f i l e s i n C r o s s - S e c t i o n s P e r p e n d i c u l a r To The Column A x i s as Determined b y S a m p l i n g w i t h t h e Hypodermic N e e d l e  Concentration of Acetic Acid l b . m o l e s / f t ^ x 10 3  Position (  Run Number  QAQ  P i g . 34)  71  72  73 47.5 47.2 47.4 46.8 46.8  1 2  36.2 36.4  36.7 36.8  3 4  36.7 36.5 36.9 37-7 37.7  34.3 35-8  5  6 7 8. 9 10 11 12  36.7  7A  46.2  13 14 15  16 17  18 19  Average Con36.8 centration Standard Deviation ±0.5 H e i g h t above 4" Nozzle Tips Average Ketone Entrainment I n E a c h 30 m l . Sample,mis. 0.5 #  76  77  78  46.8  37.1  37.4  46.8  36.9  37.2  46.8  36.9  37.1  46.9  36.7  36.8  46.8 47.1 46.9 46.9 46.8 46.8 46.8 46.8 47.0 47.1 47.1  36.7 36.9 36.8 37.0  36.8 37.0  36.4* 36.8*  46.5  37-0  75  36.7 36.8 36.4 35.8 35.8 36.4 36.8  37.0  37.0 37.0 37.0 36.8 36.9 36.8 37.1  37.4  36.2  46.9  36.4  36.8  46.9  36.7  37.0  ±0.9  ±0.5  ±0.4  ±0.1  ±0.1  ±0.4  ±0.2  6' 4#"  4"  4#"  6' 4#"  4"  4"  0.?  1.0  0.5  0.5  0.?  0.5  4"  o.?  1  '  r  Average o f 6 samples t a k e n a t p o s i t i o n 6 a s a f u n c t i o n o f t i m e a f t e r s t e a d y s t a t e had been r e a c h e d i n t h e column.See T a b l e V I .  62  Table V I C o n c e n t r a t i o n o f Water Phase a t P o s i t i o n 6 as a F u n c t i o n o f Time A f t e r S t a r t - U p o f a Run  Sample No.  Time A f t e r Start-up min. Run 7 4  Concentration of A c e t i c A c i d i n Sample Taken by Hypodermic Needle at P o s i t i o n 6 lb. moles/ft3 x K)3  Run 7 5  1  5  :.  2  15  8  3  25  4  Run 7 4  Run  75  33.8 38.2  36.2  18  36.8*  36.7**  35  28  36.6*  36.7**  5  49  38  35.5*  36.9**  6  59  48  36.4*  36.8**  7  69  58  36.5*  8  79  68  36.5*  3 6  ' **, 7  36.7**  *  Average  36.4  **  36.8  Samples 3 t o 8 have been a v e r a g e d t o r e p r e s e n t t h e s t e a d y s t a t e c o n c e n t r a t i o n o f t h e w a t e r phase a t p o s i t i o n 6 i n the c r o s s - s e c t i o n . The S t a n d a r d D e v i a t i o n o f t h e s e 6 samples i s ± 0.4 x 1 0 ~ 3 . Samples 3 t o 8 have been a v e r a g e d t o r e p r e s e n t t h e s t e a d y s t a t e c o n c e n t r a t i o n o f t h e w a t e r phase a t p o s i t i o n 6 i n the c r o s s - s e c t i o n . The S t a n d a r d D e v i a t i o n o f t h e s e samples i s ± 0.1 x 1 0 - 3 .  63  Table V I I Hypodermic S y r i n g e S a m p l i n g  Rates  mis./min. v o c e  Run  Number  74  75  76  77  78  10  10  10  10  10  10  10  10  10  15  10  10  9  15  10  10  10  10  10  10  11  10  10  10  12  10  10  10  13  10  10  10  14  10  10  10  15  10  10  10  16  10  10  10  17  10  10  10  18  10  10  10  19  10  10  10  71  72  73  1  30  8.5  2  30  7.5 12.6  3  30  12.0  7.0  4  30  12.9  9.4  5  30  10.3  8.6  6  15  7  15  Fig.34)  8.6  8.0 10.0  9.1  10.0*  10.0*  8  Average k e t o n e s a m p l i n g r a t e i n 6 samples t a k e n a t P o s i t i o n 6.  A C T U A L S Y R I N G E  L O C A T I O N  OF  S A M P L E S  F u l l Size  FIGURE  34.  POSITIONS H Y P O D E MIC  IN  C O L U M N S Y R I N G E  C R O S S - S E C T I O N S A M P L E S  W E R E  AT  W H I C H T A K E N  65  Table V I I I C o n c e n t r a t i o n s and Comparison o f P i s t o n and Probe Samples" Sample Volumes mis. Ketone Water V,.  Run No.  w  79  i ii iii iv  C o n c e n t r a t i o n s of A c e t i c A c i d l b . m o l e s / f t $ x 105  Holdup  H  C  wf  °kf  C  3.8 3.7 3.5 4.0  111.7 112.0 111.7 111.9  3.4 3.3 3.1 3.6  39.6 39.8 39.2  20.1 20.2 20.3 19.8  9.3  106.4  8.0  25.1  12.2  8.2  108.5 106.2  7.0 7.3 7.3  25.2 25.6  12.3  39.5  *  80 i  8.4 8.4  107.5  C  40.2  a  9.5  83  i ii iii iv 84 i ii iii iv V  vi vii viii  105.3  105.5  8.7  8.3  9.6 9.4 9.8 9.8  101.8 105.4 105.4 105.0  8.6 8.2  15.6 13.1 13.6 13.1 14.6  101.4  11.8 11.4 11.8 11.4  13.7 13.7  14.2  101.7  101.4 101.6 100.9 101.3 101.3 101.3  8.5 8.5  12.7  11.9 11.9 12.3  kp  C  15.0  -8.2 26.8  10.3 9.1  26.8  10.8  41.4  16.0  12.5  20.1 20.0  39.5  39.4 39.4  20.0 20.1 20.1  39.5 39.5  59.6  40.2  19.7 19.7  f  40.2  40.2  12.3  15.6 11.5 12.4 12.2 14.1  41.2  41.2  16.3  19.6 19.6  19.5  19.6 19.7  19.6  10.1 16.2  10.5  20.2  40.3 40.3 40.2 40.2 40.0 40.2 40.3 40.3  ki  3.8  0  10.0  41.0  C  6.5  b 25.3  *  82i ii  wp  0.7  25.5  *  81i ii iii  wi  41.2  16.4  12.9 12.2 12.0 11.1  11.0 12.1 13.0 12.7  I n a l l cases- the a x i s of t h e p i s t o n was 1.59 f t . above the nozzle t i p s . P r o b e s were l o c a t e d one i n c h above p i s t o n a x i s , i . e . one i n c h too h i g h . " . C a l c u l a t e d by E q u a t i o n 6 " C i t a k e n f r o m Run 80 C i t a k e n as Cwp f r o m Run 85 C ^ i t a k e n as Cwp Owi t a k e n as Cwp f Cfcf c o n c e n t r a t i o n s i n Run 84 o b t a i n e d by t i t r a t i o n . C k f c o n c e n t r a t i o n s i n Runs 79,80,81,82,83,were o b t a i n e d f r o m e q u i l i b r i u m curve. a  w  c  d  w  e  Table IX Results  Run No.  o f t h e Two P h a s e s i n t h e P i s t o n Samples o f Run 85  o f Immediate S e p a r a t i o n  Volumes o f P i s t o n Samples mis.  V  5  w  n  \  V w  V  k  Holdup  Concentration  H  of A c e t i c  l b . moles/ft3 x  %  103  Acid  ki  %  19.6  11.2  17.0  —n  ^wp  ^wf  41.2  40.1  38.6  C  wf  C  kf*  C  85  i  100.0  1.0  101.0  13.2  11.6  ii  100.5  0.6  101.1  13.1  11.5  40.2  38.5  19.5  11.9  iii  100.3  0.8  101.1  13.2  11.5  40.3  38.5  19.5  12.9  iv  100.0  1.2  101.2  13.6  11.9  40.2  38.3  19.4  12.0  The a x i s o f t h e p i s t o n was 1 . 5 9 - f t . above t h e n o z z l e O b t a i n e d by  titration.  tips.  Table X Maximum A p p r o x i m a t e E r r o r o f C a l c u l a t e d P i s t o n Sample Volumes mis. Water Ketone Ketone Water  Run Plow R a t e s No. f t $ / h r . / f t ?  75i ii iii iv 80 i  w 43.0  V 36.8  r  3.8  V  w  E r r o r Due t o Each V a r i a b l e i n Water Phase A c e t i c E q u a t i o n 14** Acid Concentrations o f P i s t o n Samples l b . m o l e s A c e t i c A c i d / f t ^ x 10^ l b . m o l e s / f t ? x 105 A'AC k f B A V CAV,. DAC EAC C.wf wf wx w wi 40.2  0.1 0.1  0.05  1.40  2.94  2.94  0.73  3.03 3.19  2.80  3.03 3.19  2.80  1.07 0.98  111.7 111.9  25.1  25.3  0.1  0.00  0.05  1.14  1.14  25.3  0.1  0.00 0.01  0.03  1.32  1.26  1.32  0.09  0.1  0.01 0.02  0.10 0.22  1.05 1.11  1.05 1.11  0.1  0.02  0.18  1.06  0.1  0.01  1.12  1.06 1.12  39.5  0.1  0.01  39.6  0.1  0.01  0.17 0.15 0.13  0.1  0.01 0.01 0.01  9.3  106.4  81 i ii  36.5  72.9  8.2 8.4  108.5 106.2  25.2  82 i ii  72.2  72.9  10.0  105.3  39.5  9.5  105-5  39.4  40.2  83 i ii iii iv 84 i ii iii iv v vi vii v±Li  72.2  9.6 9.4  101.8 105.4 105.4 105.0  39.4  40.2  101.4  40.3 40.3 40.2 40.2  9.8 9.8  90.5  0.04  0.03 0.02  4.0  111.7 112.0  73.0  90.9  0.1 0.1  39.5 39.6 39.8 39.2  3.7 3.5  36.5  72.5  I n i t i a l Ketone C o n c e n t r a t i o n , C  13.6 13.1 13.6 13.1 14.6 13.7 13.7  14.2  101.7 101.4 101.6 100.9 101.3 101.3 101.3  25.6  39.5  40.0  40.2 40.3 40.3  41.2  0.1 0.1  0.1 0.1 0.1  0.01  0.1  0.02 0.01 0.01 0.01  0.1 0.1 0.1  0.10 0.11 0.11 0.12 0.11 0.11 0.10 0.09  1.26  1.07  1.07  1.07  1.07  0.75 0.78  0.75 0.78  0.75 0.78 0.69 0.74 0.74 0.71  0.75 0.78 0.69 0.74 0.74 0.71  Approx. Total Max. Error  AC k i 7.1 7.2 7.2 7.2 2.4 2.8 2.7 2.2 2.5 2.3 2.5 2.4 2.3 1.7 1.8 1.7 1.8 1.6 1.7 1.7 1.6  Water phase a c e t i c a c i d c o n c e n t r a t i o n s o f p i s t o n samples t a k e n f r o m T a b l e V I I I See sample c a l c u l a t i o n i n A p p e n d i x  ^  68  Table X I C o m p a r i s o n o f Two Methods o f A n a l y s i s  Samples from Run 84  Salinometer Readings ohms R  x  Concentration of Acetic Acid i n Water Phase P i s t o n Samples l b . moles/ft? x l b By S a l i n o m e t e r Calibration (See P i g . 32)  5  By T i t r a t i o n  i  728.99  35.9  40.3  ii  729.13  35.8  40.3  iii  728.04  36.2  40.2  iv  726.74  35.7  40.2  727.15  36.5  40.0  718.35  40.0  41.2  V  C^ wp  Lower case Roman n u m e r a l s a r e p i s t o n samples f r o m Run 84.  69  DISCUSSION  Operating Conditions The  o v e r - a l l mass t r a n s f e r r e s u l t s f o r r u n s o f t h e  same o p e r a t i n g c o n d i t i o n s were found t o be f a i r l y r e p r o d u c i b l e as shown i n T a b l e IV.  The maximum e r r o r t o be e x p e c t e d i n t h e  mass t r a n s f e r r a t e (Nw o r Nk) was  c a l c u l a t e d from an  s i m i l a r t o E q u a t i o n 12 w i t h t h e i n d e p e n d e n t f l o w r a t e and c o n c e n t r a t i o n .  equation  v a r i a b l e s t a k e n as  T h i s maximum p e r c e n t a g e  error  - 3% and o c c u r s i n r u n s w i t h t h e s m a l l e s t t r a n s f e r r a t e .  was  This  r e s u l t was b a s e d on a - 0.004 c u . f t . / h r . f l u c t u a t i o n i n t h e + -3 / 3 r e p o r t e d f l o w r a t e , and a - 0.1x10 l b . m o l e s / f t . e r r o r i n the y  analysis for acetic  acid.  A t t h i s p o i n t i t s h o u l d be mentioned t h a t t h e attempted  author  t o t i t r a t e a l l t h e samples t o what appeared t o be  same p i n k i s h c o l o r w h i c h r e p r e s e n t e d t h e e n d - p o i n t i n the base t i t r a t i o n .  A t i t r a t i o n o f a ketone phase b l a n k  the acid-  solution  showed t h a t one drop o f base t u r n e d t h e c o l o r o f t h e b l a n k c o n s i d e r a b l y darker than t h a t reached at the end-point of the samples.  The b l a n k c o n s i s t e d o f 5 m i s . o f k e t o n e , 30 t o 40 m i s . of  e t h a n o l , and 3 drops o f p h e n o l p h t h a l e i n , w h i c h was t i t r a t e d sample.  s i m i l a r to a  As a r e s u l t no b l a n k t i t r a t i o n c o r r e c t i o n  a p p l i e d t o t h e measured c o n c e n t r a t i o n s o f t h e ketone  samples.  s i m i l a r b l a n k was p r e p a r e d f o r the w a t e r phase samples and no b l a n k c o r r e c t i o n was  needed.  was A  again  70 I n t i t r a t i n g t h e w a t e r phase samples some d i f f i c u l t y was o b t a i n e d i n r e a c h i n g t h e e n d - p o i n t because o f t h e a u t h o r ' s i n a b i l i t y to d i s t i n g u i s h the f i r s t stages of pink from the c o l o r l e s s s o l u t i o n of the i n i t i a l  sample.  As a r e s u l t , t h e  t i t r a t i o n o f 10 samples o f t h e same w a t e r phase  solution  y i e l d e d c o n c e n t r a t i o n s w h i c h had a s t a n d a r d d e v i a t i o n o f - 0.1x10 ^ l b . m o l e s / f t .  T h i s w o u l d be e q u i v a l e n t t o  a p p r o x i m a t e l y - 2 d r o p s o f t h e sodium h y d r o x i d e s o l u t i o n . The k e t o n e phase was much e a s i e r t o t i t r a t e of the  t h e much more d i s t i n c t c o l o r changes.  because  As t h e e n d - p o i n t o f  ketone phase was a p p r o a c h e d , and, i n f a c t , as one d r o p o f  sodium h y d r o x i d e was added t h e c o l o r o f t h e s o l u t i o n would turn a d i s t i n c t yellow.  One more d r o p o f base w o u l d c a u s e t h e  c o l o r t o change t o a d i s t i n c t p i n k .  T i t r a t i o n o f 10 k e t o n e  phase samples o f t h e same c o n c e n t r a t i o n showed no v a r i a t i o n i n t h e volume o f base r e q u i r e d t o r e a c h each e n d - p o i n t . However, a i O . l x l O ^ l b . m o l e s / f t ? v a r i a t i o n i n t h e -  c o n c e n t r a t i o n o f t h e k e t o n e phase was a l s o a p p l i e d i n d e t e r m i n i n g t h e e r r o r s i n v o l v e d i n t h e v a r i o u s measured q u a n t i t i e s f o r c a l c u l a t i o n o f t h e maximum e r r o r t o be e x p e c t e d i n t h e mass t r a n s f e r r a t e s (Nw o r Nk) and i n t h e c a l c u l a t e d i n i t i a l ketone c o n c e n t r a t i o n  (Cki).  I t s h o u l d a l s o be m e n t i o n e d t h a t t h e same b a t c h o f sodium h y d r o x i d e s o l u t i o n was used t o t i t r a t e f r o m Runs 7 3 t o 8 5 .  a l l t h e samples  A check on t h e n o r m a l i t y o f t h e sodium  71  hydroxide  s o l u t i o n a t t h e end o f a l l t h e e x p e r i m e n t a l work  showed no change i n t h e n o r m a l i t y o f t h e s o l u t i o n f r o m t h a t w h i c h a p p l i e d a t t h e b e g i n n i n g o f t h e e x p e r i m e n t a l work. The  t r a n s f e r r a t e s and a c e t i c a c i d m a t e r i a l b a l a n c e s  f o r Runs 79 t o 85 have been c a l c u l a t e d n e g l e c t i n g any l e a k a g e I n Run 79 t h e average  tihat o c c u r r e d a t t h e p i s t o n sampler.  t o t a l r a t e o f l e a k a g e was 15 mis./min. w h i l e i n Runs 80 t o 85 the average l e a k a g e r a t e was 10 m i s . / m i n . when t h e p i s t o n was i n the l e f t - h a n d p o s i t i o n i n the p i s t o n block.  No  leakage  t o o k p l a c e i n Runs 80 t o 85 w h i l e t h e p i s t o n was p l a c e d i n t h e right-hand p o s i t i o n i n the p i s t o n block.  As was m e n t i o n e d  e a r l i e r , s a m p l i n g i n t h e s e r u n s was c o n d u c t e d  by moving t h e  p i s t o n from r i g h t t o l e f t , the p i s t o n b e i n g r e t u r n e d t o the r i g h t a f t e r a sample was t a k e n . C r o s s - S e c t i o n a l C o n c e n t r a t i o n Measurements T a b l e V shows t h e c o n c e n t r a t i o n d a t a o b t a i n e d by s a m p l i n g t h e w a t e r phase w i t h t h e hypodermic s y r i n g e a t p a r t i c u l a r c r o s s - s e c t i o n s at r i g h t angles to the a x i s o f the column.  No c o n c e n t r a t i o n g r a d i e n t was o b s e r v e d .  However, t h e  measurements a r e n o t i d e n t i c a l and s t a n d a r d d e v i a t i o n s o f - 0.9x10"^ l b . m o l e s / f t ? and l e s s a p p e a r i n T a b l e Y.  These  s t a n d a r d d e v i a t i o n s r e f e r t o t h e c o n c e n t r a t i o n measurements o f a s i n g l e r u n as l i s t e d i n t h e t a b l e . +  The c o n c e n t r a t i o n —3  l e v e l c o r r e s p o n d i n g t o t h e f i g u r e o f - 0.9 x 10 36.2 x 10"^ l b . m o l e s / f t ? and f o r t h e o t h e r r u n s the same l e v e l a p p l i e d .  was approximately  72  The volume o f k e t o n e e n t r a i n e d a l o n g w i t h t h e w a t e r phase o f t h e s y r i n g e sample v a r i e d f r o m 0.5 t o 1.0 m i s .  The  t o t a l volume o f t h e s e samples was a p p r o x i m a t e l y 30 c c . A m a t e r i a l b a l a n c e c a l c u l a t i o n was made t o d e t e r m i n e a p p r o x i m a t e l y how much t h e c o n c e n t r a t i o n o f t h e w a t e r phase o f a t y p i c a l s y r i n g e sample w o u l d change, from c o n d i t i o n s e x i s t i n g i n t h e column, because o f t h e p r e s e n c e o f 1 ml o f ketone p h a s e . -3  -3  change was f o u n d t o be f r o m 37.0x10 ^ t o 36.6x10 o f 0.4-xlO""^ l b . m o l e s / f t ^  The  o r a change  From t h e p o i n t o f v i e w o f t a k i n g a  number o f samples a t one c r o s s - s e c t i o n , t h e c o n c e n t r a t i o n s s h o u l d be f a i r l y comparable  since almost a l l the syringe  samples c o n t a i n e d a p p r o x i m a t e l y t h e same volume o f k e t o n e . I t s h o u l d be n o t e d a l s o t h a t i n t h e column t h e r e were a l a r g e number o f s m a l l k e t o n e d r o p s w h i c h d i d n o t appear t o be moving v e r y f a s t r e l a t i v e t o t h e column w a l l s .  When t h e s e d r o p s came  n e a r t h e s y r i n g e n e e d l e e n t r a n c e t h e y c o u l d be o b s e r v e d e n t e r i n g the needle.  Because o f t h e s i z e o f t h e s e d r o p s and because o f  t h e i r s l o w a s c e n t i t i s p o s s i b l e t h a t t h e y would be v e r y c l o s e t o b e i n g i n e q u i l i b r i u m w i t h t h e w a t e r phase o f t h e e l e v a t i o n (above t h e n o z z l e t i p s ) b e i n g sampled.  I f t h i s h y p o t h e s i s was  v a l i d , and i f t h e s e d r o p s formed t h e t o t a l volume o f k e t o n e e n t r a i n m e n t i n t h e s y r i n g e samples, l i t t l e  e x t r a c t i o n would  r e s u l t because o f t h e p r e s e n c e o f t h i s e n t r a i n m e n t and t h e measured w a t e r phase c o n c e n t r a t i o n i n t h e s y r i n g e  samples  w o u l d have been v e r y c l o s e t o t h e c o n c e n t r a t i o n o f t h e w a t e r phase i n t h e column a t t h a t p o i n t .  However, l a r g e r  73  ketone drops h i t t i n g the needle entrance would a l s o p r o v i d e some e n t r a i n m e n t p r e s u m a b l y , so t h a t some u n c e r t a i n t y i n t h e r e s u l t s o f t h e s y r i n g e samples r e m a i n s . T a b l e ..VT g i v e s t h e c o n c e n t r a t i o n o f t h e w a t e r phase a t P o s i t i o n 6 as a f u n c t i o n o f time a f t e r t h e s t a r t - u p o f a run.  The o b j e c t i n Sun 74 and 75 was t o d e t e r m i n e w h e t h e r o r  not consecutive  s y r i n g e s a m p l e s , t a k e n a t one p o s i t i o n i n t h e  c r o s s - s e c t i o n d u r i n g t h e s t e a d y s t a t e o p e r a t i o n o f t h e column w o u l d show any v a r i a t i o n i n t h e measured c o n c e n t r a t i o n o f + acetic acid.  -3  I n Run 74 a s t a n d a r d d e v i a t i o n o f - 0.4x10  l b . m o l e s / f t ? was c a l c u l a t e d f o r s i x samples t a k e n d u r i n g t h e s t e a d y s t a t e o p e r a t i o n o f t h e column.  A s i m i l a r value of  i 0.1x10""^ l b . m o l e s / f t ^ was c a l c u l a t e d f o r Run 75.  The  a v e r a g e c o n c e n t r a t i o n s f o r t h e s e s i x samples f o r Runs 74 and 75 were 56.4x10"^ and 3 6 . 8 x l 0 ~ ^  l b . moles/ft^ respectively.  I n Run 74 one m l . o f k e t o n e was e n t r a i n e d i n each s y r i n g e sample, whereas i n Run 75 o n l y 0.5 m i s . o f k e t o n e was e n t r a i n e d i n each s y r i n g e sample.  The measured c o n c e n t r a t i o n  o f a c e t i c a c i d i n w a t e r phase and k e t o n e phase samples + -3 3 i n c l u d e s a - 0.1x10 ' l b . m o l e s / f t . v a r i a t i o n due t o t h e t i t r a t i o n technique consecutive  of the author.  This being the case,  s y r i n g e s a m p l e s , t a k e n a t one p o s i t i o n i n t h e  c r o s s - s e c t i o n d u r i n g the steady w o u l d be e x p e c t e d  s t a t e o p e r a t i o n o f t h e column,  t o show some v a r i a t i o n i n t h e measured  concentration of a c e t i c a c i d .  74-  P i s t o n Samples Compared To P r o b e Samples T a b l e s V I I I and  IX show t h e v a l u e s o f t h e i n i t i a l  k e t o n e c o n c e n t r a t i o n s , C k i , as c a l c u l a t e d by E q u a t i o n s  7»8,  o r 9» f o r Runs 79 t o 85.  the  Included i n these t a b l e s are  v a l u e s o f t h e i n i t i a l k e t o n e c o n c e n t r a t i o n s , Ckp,  as measured  w i t h the k e t o n e phase p r o b e and t o w h i c h the v a l u e s o f C k i a r e to be compared.  T a b l e I I I g i v e s t h e s a m p l i n g r a t e s and  t i m e s w h i c h were u s e d t o o b t a i n a l l t h e probe samples.  purging In  some runs the v a l u e s o f C k i and Ckp a r e n o t comparable f o r a number o f r e a s o n s . a p o s i t i o n one  I n some c a s e s t h e p r o b e s were s a m p l i n g  at  i n c h too h i g h above t h e p i s t o n a x i s and i n o t h e r  c a s e s t h e purge t i m e t o o b t a i n u n i f o r m c o n c e n t r a t i o n s i n the p r o b e samples d i d n o t meet the minimum p u r g e t i m e as  specified  by Choudhury i n h i s work ( l n ) . Each r u n w i l l t h e r e f o r e be d i s c u s s e d i n t u r n t o e x p l a i n how v a l u e s o f C k i were c a l c u l a t e d d e s p i t e t h e s e e r r o r s i n e x p e r i m e n t a l work. Run  79  T h i s was  t h e f i r s t r u n t h a t was  made w i t h t h e  p i s t o n sampler£: and average t o t a l l e a k a g e s o f 15 were e n c o u n t e r e d . m i n u t e s w h i c h was  mis./min.  The p u r g i n g time f o r b o t h p r o b e s was  10  t h r e e t o f o u r m i n u t e s l e s s t h a n Choudhury's  recommended minimum purge t i m e .  However, i t i s f e l t t h a t  the c o n c e n t r a t i o n of t h e sample w h i c h was. o b t a i n e d by  the  probe (15.0x10""^ l b . m o l e s / f t ^ ) i s f a i r l y r e p r e s e n t a t i v e s i n c e  i t a g r e e s w i t h Choudhury's v a l u e (16.0x10  l b . moles/ft.)  o b t a i n e d i n Run 61 ( 1 ) f o r a p p r o x i m a t e l y t h e same o p e r a t i n g c o n d i t i o n s and a t t h e same h e i g h t above t h e n o z z l e t i p s . A s i d e from t h i s , t h e v a l u e s o f C k i as c a l c u l a t e d by E q u a t i o n 7 d i f f e r by a v e r y wide m a r g i n f r o m t h e v a l u e o f Ckp and no r e a l c o m p a r i s o n between C k i and Ckp i s p o s s i b l e .  I n Run 79  the k e t o n e h o l d u p i s v e r y l o w ( a p p r o x i m a t e l y 3.5%)• situation  corresponds  t o a highYw/y^ r a t i o .  E q u a t i o n 7, i t i s easy t o see t h a t  Upon  This  examining  'fcwf - if Cwi)p + Cwifo? L J2 J must be known v e r y a c c u r a t e l y i n o r d e r t o c a l c u l a t e v a l u e s o f C k i w i t h some degree o f a c c u r a c y .  r  ;  I f this difference i s  out b y much, when m u l t i p l i e d b y h i g h Vw/y^ r a t i o s ,  calculated  v a l u e s o f C k i become g r o s s l y i n e r r o r , a s c a n be seen i n Table V I I I .  I n a d d i t i o n i t i s v e r y easy t o measure Vw b u t  much more d i f f i c u l t t o measure Vk.  At t h i s high Vw/^  ratio  e r r o r s i n Vk c o n t r i b u t e s i g n i f i c a n t l y t o e r r o r s i n C k i ( s e e Group C AVk i n T a b l e X ) , a s , a l s o , do e r r o r s i n Cwf and C w i (see Groups D ACwf and E /SCwi). I t s h o u l d a l s o be p o i n t e d o u t t h a t Cwi f o r Run 79 i n T a b l e V I I I was o b t a i n e d b y t a k i n g s y r i n g e samples o f t h e w a t e r phase i m m e d i a t e l y  above and b e l o w t h e p i s t o n b l o c k ,  a n a l y z i n g them, and a p p l y i n g t h e r e s u l t s t o E q u a t i o n 6.  As  can be seen i n T a b l e V I I I t h i s v a l u e o f Cwi does n o t agree e x a c t l y w i t h t h e v a l u e o f Cwp, w h i c h was o b t a i n e d b y a n a l y s i s o f a w a t e r phase sample t a k e n a t t h e a x i s o f t h e p i s t o n b y t h e  76  w a t e r phase pre/be.  One  the p r e s e n c e o f 0.5  mis.  s y r i n g e sample.  reason f o r t h i s disagreement could o f k e t o n e phase e n t r a i n e d i n each  T h i s c o u l d produce a f i n a l c a l c u l a t e d v a l u e  o f Cwi low by as much as - 0.2  x 10  J  l b . moles/ft.  r e a s o n c o u l d be t h a t i n s u f f i c i e n t t i m e was  A  second  allowed f o r  t h e p r o b e s i n o r d e r t o o b t a i n a sample o f the p r o p e r concentration.  be  purging  uniform  A t h i r d reason, mentioned e a r l i e r , c o u l d  be  t h a t s y r i n g e s a m p l e s , t a k e n a t one p o i n t i n the c r o s s - s e c t i o n d u r i n g the s t e a d y s t a t e o p e r a t i o n o f t h e column, may  not  a l w a y s be t r u l y r e p r e s e n t a t i v e of the w a t e r phase a t t h a t particular  cross-section.  t i t r a t i o n technique Admittedly  T h i s , p l u s the u n c e r t a i n t y of  c o u l d cause Cwi  and Cwp  t h e d i f f e r e n c e between t h e s e two  t o be  are i m p o r t a n t  i n producing  decided  errors  79•>  e r r o r i n C k i (Table  Upon e x a m i n i n g t h e r e s u l t s was  different.  i n Table V I I I i s  s m a l l , but p a r t i c u l a r l y f o r the c o n d i t i o n s o f Run i n Cwi  obtained  i n Run  X). 79 i t  to r e a d j u s t the f l o w r a t e v a l v e s to i n c r e a s e  k e t o n e phase h o l d u p and  the  t o c r e a t e a more f a v o u r a b l e Vw/y^  the ratio.  Runs 80 and 81 r e s u l t e d . Runs 80 and  81  I n Runs 80 and 81 i t was been l o c a t e d one s a m p l i n g was  f o u n d t h a t the p r o b e s  i n c h t o o h i g h above t h e p i s t o n a x i s when  t a k i n g p l a c e w i t h them.  what the p u r g i n g  had  As a r e s u l t , no  t i m e s f o r t h e p r o b e s were, no  matter  proper  c o m p a r i s o n o f C k i w i t h the r e s u l t i n g v a l u e of Ckp  can be made.  77  However, t o draw some form o f c o m p a r i s o n r e f e r e n c e i s made t o Run 66 by Choudhury ( 1 ) w h i c h i s a r u n o f a p p r o x i m a t e l y t h e same o p e r a t i n g c o n d i t i o n s , and i n w h i c h , p r o p e r p u r g i n g t i m e s were used f o r h i s s a m p l i n g w i t h t h e p r o b e s .  Choudhury's  values  f o r Cwp and Ckp, a t a h e i g h t above t h e n o z z l e t i p s a t w h i c h t h e a x i s o f o u r p i s t o n was l o c a t e d ( 1 . 5 9 - f t . ) , were 2 5 . 3 x 10""^ -3 / 3 and 10.0x10 ^ l b . moles/ft-; r e s p e c t i v e l y . A v a l u e o f C w i was o b t a i n e d f o r each r u n b y use o f t h e s y r i n g e samples f r o m Run 80 and a p p l y i n g them t o E q u a t i o n 6. f r o m Choudhury's  The r e s u l t a g r e e s w i t h Cwp  work i n Run 66 a t t h e same l o c a t i o n .  O n l y one p i s t o n sample was t a k e n i n Run 80 because i n a d v e r t e n t l y t h e p i s t o n compartment, w h i c h was t o s l i d e  into  l i n e w i t h t h e column when a sample was t a k e n , was n o t f i l l e d w i t h w a t e r phase s o l u t i o n .  When t h e p i s t o n sample was t a k e n  t h e o p e r a t i o n o f t h e column was d i s r u p t e d c o m p l e t e l y and no f u r t h e r s a m p l i n g was p o s s i b l e . However, t h e one v a l u e o f C k i w h i c h was c a l c u l a t e d , 9.1 x 10"^ l b . mole  was o f t h e c o r r e c t o r d e r o f -3  magnitude b u t s l i g h t l y l o w e r t h a n t h e v a l u e o f 10.0 x 10 ' l b . moles/ft?  w h i c h was o b t a i n e d from Choudhury's  work ( 1 ) .  Run 81 was a r e p e a t o f Run 8 0 , e x c e p t t h a t t h e s y r i n g e samples had t o be o m i t t e d because t o o much k e t o n e phase  ( 2 t o 3 m i s . i n Run 81) was b e i n g e n t r a i n e d a l o n g w i t h  t h e w a t e r phase.  However, v a l u e s o f C k i were c a l c u l a t e d f o r  t h e two p i s t o n samples b y u s i n g Cwi f r o m Run 80 as a l r e a d y  78 mentioned.  The  f i r s t v a l u e o f C k i (10.1x10""^) a g r e e d very-  w e l l w i t h Choudhury's v a l u e ( 1 0 . O x l O ^ ) hut -  the s e c o n d v a l u e  —3  o f C k i (16.2 The  x 10  ) was  r e a s o n t h a t the  t o be  so h i g h was  provide  t h a n Choudhury's v a l u e .  second p i s t o n v a l u e o f C k i was  t h a t Cwf  (25.3x10""^).  t h a n Cwi  much h i g h e r  (25.6x10""^) was  f o u n d t o be  A t h i r d p i s t o n sample was  a n a l y s e s were n o t  and,  as can be  t h e e r r o r s i n Vk do n o t in Cki.  seen i n T a b l e X, contribute  Vw/y^. r a t i o  e x t r a c t i o n was  s i g n i f i c a n t l y t o t h e error-,  t a k e n Cwf  d i f f e r e d very l i t t l e  81  was  t a k i n g p l a c e i n the column i n  the r e g i o n of the p i s t o n sampler. were n e a r e q u i l i b r i u m t h e r e .  was  i n the C A V k Group,  However, t h e main d i f f i c u l t y i n Runs 80 and  t h a t too l i t t l e  the  c a r r i e d out.  I n Runs 80 and 81 a more f a v o u r a b l e obtained,  higher  taken to  a check on t h e k e t o n e phase h o l d u p v a l u e s o f  o t h e r p i s t o n samples and  was  calculated  I n o t h e r words t h e p h a s e s  Thus when a p i s t o n sample from Cwi.  This small  was  difference  v e r y h a r d t o p i c k up by the t i t r a t i o n t e c h n i q u e and  i t was  d e c i d e d t o r e a d j u s t the f l o w r a t e s so t h a t the g r e a t e r p a r t the o v e r - a l l e x t r a c t i o n of t h e column t o o k p l a c e i n t h e o f the p i s t o n s a m p l e r . Runs 82 and  82,  as i n Runs 80 and  82.  resulted.  81, t h e .probes were  i n c h t o o h i g h above the a x i s of t h e p i s t o n when  s a m p l i n g w i t h them. o f Run  83  region  83  I n Run l o c a t e d one  Runs 82 and  of  The  the a x i s of the  As a r e s u l t Run  83 was  made as a r e p e a t  p r o b e s were r e l o c a t e d t o sample b o t h phases a t piston.  79  In  Run 83 more t h a n t h e minimum purge t i m e t o o b t a i n  a u n i f o r m sample w i t h t h e p r o b e s was u s e d as can be seen i n Table I I I .  F o r reasons mentioned  e a r l i e r t h e s y r i n g e samples  were d i s c o n t i n u e d and Cwi was t a k e n as Cwp alternative presented i t s e l f .  s i n c e no o t h e r  V a l u e s o f C k i were c a l c u l a t e d ,  b o t h i n Runs 82 and 83, w i t h Cwi t a k e n as Cwp  f r o m Run 83.  In  t h e s e two r u n s c a l c u l a t e d v a l u e s o f C k i v a r i e d f r o m 10.5x10 to  14.1x10"^ l b . m o l e s / f t ? , a l l o f w h i c h were l o w e r t h a n t h e  v a l u e o f Ckp of  ( 1 5 . 6 x 1 0 " ^ ) , a g a i n from Run 83.  V a l u e s o f Cwf  and  C k f d i d n o t v a r y by more t h a n 0.2x10"^ l b . m o l e s / f t ^ i n b o t h  r u n s and t h e d i f f e r e n c e s i n t h e c a l c u l a t e d v a l u e s o f C k i must be a t t r i b u t e d m o s t l y t o t h e d i f f e r e n c e s i n t h e Vw/yjj. r a t i o v a r i e d f r o m 10.6 The  which  t o 11.1, as can be c a l c u l a t e d f r o m T a b l e V I I I .  f l o w r a t e s i n Runs 82 and 83 were s u c h t h a t the  d e s i r e d , g r e a t e r percentage of the t o t a l e x t r a c t i o n of the column t o o k p l a c e i n t h e r e g i o n o f t h e p i s t o n s a m p l e r .  Thus  a f t e r a p i s t o n sample had been t a k e n a g r e a t e r amount o f e x t r a c t i o n c o n t i n u e d t o t a k e p l a c e f r o m t h e w a t e r phase t o t h e ketone phase o f t h e p i s t o n sample t i l l  e q u i l i b r i u m was  reached.  As can be seen f r o m T a b l e V I I I d i f f e r e n c e s between Cwf and of the  Cwi  0.6x10"^ t o 0 . 8 x l 0 ~ ^ l b . m o l e s / f t ? were c a l c u l a t e d f o r a l l p i s t o n samples o f b o t h r u n s . Upon e x a m i n i n g t h e r e s u l t s o f Runs 82 and 83 i t was  d e c i d e d t o i n c r e a s e t h e k e t o n e phase h o l d u p s t i l l  further  and  s t i l l m a i n t a i n a great percentage of the t o t a l e x t r a c t i o n i n the  r e g i o n of the p i s t o n sampler.  Runs 84 and 85 r e s u l t e d .  80 Runs 84 and 85 For  t h e f i r s t p r o b e sample o f Run 84 t h e p u r g i n g t i m e  u s e d p r i o r t o s a m p l i n g t h e w a t e r and k e t o n e phases a t t h e a x i s of  t h e p i s t o n was l o w e r t h a n t h e minimum purge t i m e s p e c i f i e d  by Choudhury.  F o r t h e second probe samples o f Run 84 and f o r  Run 85, a r e p e a t o f t h e o p e r a t i n g c o n d i t i o n s o f Run 8 4 , s u f f i c i e n t purge t i m e was a l l o w e d .  However, d e s p i t e t h e f a c t  t h a t s u f f i c i e n t purge t i m e was n o t a l l o w e d i n t h e f i r s t  probe  samples o f Run 84, t h e v a l u e o f Cwp a g r e e s w i t h t h a t o f t h e second probe sample f o r Run 84 and w i t h t h a t o f Run 85.  Ckp i n  Run 85 i s a l i t t l e h i g h e r t h a n Ckp o f Run 84, b u t t h e second v a l u e f o r Run 84 a g r e e s w i t h t h e f i r s t v a l u e f o r t h a t r u n . I n Run 84 t h e p r o b e s were l o w e r e d t o t h e a x i s o f t h e p i s t o n b o t h b e f o r e and a f t e r t h e 8 p i s t o n samples were t a k e n . are  two s e t s o f probe samples f o r t h i s r u n .  Thus t h e r e  I t w o u l d seem t h a t ,  i n f a c t , p u r g i n g t i m e s were r e a l l y adequate f o r a l l samples i n both runs. V a l u e s o f C k i i n Run 84 were c a l c u l a t e d u s i n g t h e w a t e r phase probe v a l u e , Cwp, as t h e i n i t i a l c o n c e n t r a t i o n o f the  w a t e r phase a t t h e t i m e o f s a m p l i n g , C w i .  The v a l u e s o f  the  c a l c u l a t e d i n i t i a l ketone c o n c e n t r a t i o n , C k i , f o r the 8 -3 -3 / 3 p i s t o n samples v a r i e d f r o m 11.0x10 ' t o 15.0x10 ^ l b . m o l e s / f t . T h e i r average was 12.1x10"^ l b . m o l e s / f t ^ and t h e i r s t a n d a r d + -3 3 d e v i a t i o n was - 0.7x10 ^ l b . m o l e s / f t . The average volume o f the  k e t o n e p h a s e , Vk, f o r t h e 8 p i s t o n samples was 13.6 m i s .  81 The  standard d e v i a t i o n  o f t h i s volume was  - 0.5  mis.  C o r r e s p o n d i n g v a l u e s f o r t h e w a t e r phase volumes, Vw, 101.3  m i s . and - 0.2  mis. r e s p e c t i v e l y .  were  A l l the v a l u e s of  t h e c a l c u l a t e d i n i t i a l k e t o n e c o n c e n t r a t i o n were l e s s t h a n t h e v a l u e o f Ckp  (16.4-xlO" ). 5  I n Run 85 t h e v a l u e s o f C k i as c a l c u l a t e d  by  E q u a t i o n 9, were v e r y c l o s e t o t h e v a l u e s o f C k i i n Run 84w h i c h were c a l c u l a t e d by E q u a t i o n 8. C k i f o r Run 85 was  12.0x10  y  The  average v a l u e o f  l b . moles/ft. w i t h a standard  d e v i a t i o n o f - 0.5x10""^ l b . m o l e s / f t ^ f o r t h e f o u r p i s t o n samples. I n a l l t h e r u n s t h e v a l u e o f C k i , as c a l c u l a t e d E q u a t i o n 7 o r 8, f o r t h e p i s t o n samples was  by  s m a l l e r than the  v a l u e as measured by the k e t o n e phase probe e x c e p t i n one case.  I n most c a s e s even the v a l u e o f C k i p l u s t h e  e x p e c t e d maximum e r r o r o f C k i was value of  s m a l l e r than the  corresponding corresponding  Ckp. As s t a t e d e a r l i e r i t was  thought  that values of  Ckp  p o s s i b l y c o u l d be too l a r g e because o f t h e r e s i d e n c e t i m e o f t h e ketone d r o p s a t the k e t o n e probe e n t r a n c e , and because o f t h e " i n t e r f a c e o f c o a l e s c e n c e " sometimes c r e a t e d t h e r e . of these c o n d i t i o n s would a l l o w t r a n s f e r of a c e t i c a c i d  Both into  t h e ketone p h a s e , and o f c o u r s e , such t r a n s f e r w o u l d n o t have o c c u r r e d i f t h e p r o b e s had n o t been p r e s e n t .  82 I n a d d i t i o n t o the r e l i a b i l i t y  o f Ckp  n e e d i n g c o n s i d e r a t i o n i s w h e t h e r o r n o t Cwp representative  ( o r , Cwi)  o f the p i s t o n sample.  average b u l k c o n c e n t r a t i o n  Cwp  to  be  i s assumed t o be  o f t h e w a t e r phase a t t h e  suggest t h a t the values  o f Cwp  phase probe may  t hose o f C k i  I n o t h e r words t h e w a t e r  not g i v e t r u e b u l k c o n c e n t r a t i o n s  o f the  accompanying t h e d r o p s i n t a k i n g a p i s t o n sample and i n v e s t i g a t i o n i s r e q u i r e d t o see w h e t h e r o r not Cwp the i n i t i a l w a t e r phase c o n c e n t r a t i o n  equation.  afford  T h i s would  would be t o o h i g h and  as c a l c u l a t e d by E q u a t i o n 8, t o o low.  an  sampling  I t i s p o s s i b l e t h a t the w a t e r phase probe does n o t  adequate s a m p l i n g o f t h e r e g i o n n e a r t h e d r o p s .  for  is a  sample o f t h e w a t e r phase c o n c e n t r a t i o n  compared w i t h Cwf  point.  samples, a p o i n t  material  further c a n be u s e d  i n the m a t e r i a l b a l a n c e  I n t h e case of t h e k e t o n e probe samples a  similar  e r r o r might be much more s e r i o u s because d r o p s a r e c o l l e c t e d out o f p r o p o r t i o n t o the a c t u a l h o l d up i n t h e  column.  Approximation of E r r o r s The  a p p r o x i m a t e maximum e r r o r due  t a k e n i n t o a c c o u n t i n E q u a t i o n 13 was can be seen t h e e x p e c t e d e r r o r due  t o each v a r i a b l e  summarized i n T a b l e X.  t o e a c h v a r i a b l e can  r e d u c e d by o p e r a t i n g a t l a r g e ketone h o l d u p s and by  As  be  adjusting  f l o w r a t e s t o encourage a l a r g e amount o f t h e e x t r a c t i o n t o t a k e p l a c e i n the r e g i o n of sampling. g i v i n g Vk,  Vw,  Cwf  and  (See  columns i n T a b l e X  Cwi).  I t can be seen t h a t the e r r o r i n a c a l c u l a t e d q u a n t i t y t h a t i s a f u n c t i o n o f s e v e r a l d i r e c t l y measured q u a n t i t i e s depends on ( a ) t h e n a t u r e o f the f u n c t i o n , (b) t h e magnitudes  83  o f the measured q u a n t i t i e s , and  ( c ) t h e magnitudes o f t h e  errors (10). I t i s p o s s i b l e t h a t E q u a t i o n 1-3,  as u s e d w i t h a l l  signs p o s i t i v e , q u i t e probably overestimates the e r r o r i n v o l v e d i n the c a l c u l a t e d q u a n t i t y .  I t t a k e s no account  p r o b a b i l i t y o f compensating e r r o r s .  of the  T h i s f a c t can be shown  e a s i l y by s i m u l a t i n g t h e t a k i n g o f a p i s t o n sample. phase, c a l l e d C k i , was  ketone  a n a l y z e d and f o u n d t o have a  c o n c e n t r a t i o n o f 7.06x10"^ l b . m o l e s / f t l c a l l e d C w i , was  A  A water phase,  a n a l y z e d and f o u n d t o have a c o n c e n t r a t i o n " o f  3 / 3 32.67x10 ^ l b . m o l e s / f t .  Volumes o f t h e s e phases were mixed  i n the c o l l e c t i o n f l a s k i n a r a t i o t y p i c a l o f a p i s t o n sample. The phases were w e l l m i x e d , a l l o w e d t o s e t t l e , and t h e i r volumes measured.  The phases were t h e n s e p a r a t e d and a n a l y z e d ,  c o n c e n t r a t i o n s b e i n g d e s i g n a t e d as C k f and Cwf. was  t h e n u s e d t o c a l c u l a t e C k i w h i c h was  their  Equation 5  compared t o C k i as  -3 measured i n i t i a l l y as 7*06x10 . T a b l e XiLf shows t h e r e s u l t s o f f o u r such e x p e r i m e n t s . The average v a l u e of C k i , as c a l c u l a t e d by E q u a t i o n 5,  was  -3 / 3 7.30x10 ^ l b . moles/ft-; +  I n d i v i d u a l v a l u e s d i f f e r e d f r o m t h i s a v e r a g e by - 0.3x10 lb.  -3 y  moles/ft? T h i s example i l l u s t r a t e s how  e r r o r s could tend to  be c o m p e n s a t i n g as the a v e r a g e v a l u e o f t h e c a l c u l a t e d C k i d i f f e r s from t h e measured v a l u e by o n l y 0.24x10"^ l b . m o l e s / ft2  However, E q u a t i o n 13 would l e a d one t o b e l i e v e t h a t  84  Table X I I S i m u l a t e d P i s t o n Samples  No.  Volumes  Concentrations of Acetic  Tr~+r,r^ m waxier +^ iietjone 1S  l b  a  Vk  Vw  Cwf Titrated  - moles/ft? x 10 Ckf  Cwi  Acid  5  Cki  Cki  Titrate! T i t r a t e d Calc'd  Titrated  1  10.0  104.9  31.89  15.15  32.67  6.97  7.06  2  10.5  104.7  31.89  15.15  32.67  7.37  7.06  3  10.3  105.2  31.89  15.15  32.67  7.19  7.06  104.5  31.89  15.15  32.67  7.60  7.06  i  4  Average  10.8  7.30  85  maximum e r r o r s o f a p p r o x i m a t e l y - 2.0x10"^ l b . m o l e s / f t ? would ' be p o s s i b l e f o r each, c a l c u l a t e d v a l u e o f C k i . S a l i n o m e t e r Measurements T a b l e X I shows t h e r e s u l t s o f t h e measurements o f t h e r e s i s t a n c e s o f t h e w a t e r phase p o r t i o n o f t h e f i r s t p i s t o n samples t a k e n i n Run 84.  five  I t a l s o shows the c o n c e n t r a t i o n s  o f t h e samples c o r r e s p o n d i n g t o t h e s e r e s i s t a n c e measurements as o b t a i n e d from F i g u r e 32, t h e c a l i b r a t i o n c u r v e , and  compares  t h e s e w i t h c o n c e n t r a t i o n s d e t e r m i n e d by t i t r a t i o n .  As can be  t h e two v a l u e s were f o u n d t o be q u i t e d i f f e r e n t .  I t was  seen  found  on  t h e t r i p t o Nanaimo t h a t t h e p i s t o n samples were h a z y , whereas t h e c a l i b r a t i o n samples were n o t . r e f r i g e r a t o r f o r f i v e days).  ( B o t h had been k e p t i n t h e The haze was  probably a f i n e  s u s p e n s i o n o f ketone w h i c h , as mentioned e a r l i e r , w o u l d a f f e c t the r e s i s t a n c e readings c o n s i d e r a b l y .  On r e t u r n i n g f r o m  Nanaimo t h e c o n c e n t r a t i o n s o f t h e f i v e p i s t o n samples were a n a l y z e d a g a i n by t i t r a t i o n and t h e r e s u l t s were f o u n d t o check w i t h t h e c o n c e n t r a t i o n s measured p r i o r t o t h e t r i p .  The  c o u l d be s a i d f o r t h e c a l i b r a t i o n samples w h i c h were a l s o  same checked.  As the s a l i n o m e t e r r e s u l t s d i d n o t agree w i t h t h e t i t r a t i o n r e s u l t s the method was n o t u s e d f u r t h e r i n t h e p r e s e n t research.  T a b l e X I s u g g e s t s t h a t t h e d i f f e r e n c e between t h e  s a l i n o m e t e r r e s u l t s and t h e t i t r a t i o n r e s u l t s depends on the source of the s o l u t i o n . confirm t h i s point.  However more work would be needed t o  86  CONCLUSIONS  Concentration  t r a v e r s e s of the continuous water  phase s o l u t i o n were made a c r o s s t h e c r o s s - s e c t i o n o f t h e column a t d e f i n i t e e l e v a t i o n s above t h e n o z z l e t i p s and no c o n c e n t r a t i o n g r a d i e n t s were f o u n d .  However,  standard  d e v i a t i o n s as h i g h as - 0 . 9 x 1 0 ^ l b . m o l e s / f t . about an average c o n c e n t r a t i o n o f 3 6 . 2 x 1 0 " ^ l b . m o l e s / f t ? were reported. The hypodermic s y r i n g e method o f m e a s u r i n g t h e c o n c e n t r a t i o n o f t h e w a t e r phase s o l u t i o n i n t h e t o w e r was n o t always o p e r a b l e because t h e p r e s e n c e o f a small volume o f k e t o n e phase c o u l d change t h e c o n c e n t r a t i o n o f t h e w a t e r phase as e x t r a c t i o n would c o n t i n u e a f t e r a s y r i n g e sample was t a k e n u n t i l e q u i l i b r i u m was r e a c h e d between t h e two p h a s e s . The volume o f k e t o n e i n t h e w a t e r phase samples was a p p r e c i a b l e when t h e column was o p e r a t e d a t h i g h e r k e t o n e h o l d u p s so t h a t the s y r i n g e method c o u l d n o t beused i n c o n j u n c t i o n w i t h many o f t h e r u n s i n w h i c h p i s t o n samples were t a k e n .  However,  when t h e c r o s s - s e c t i o n a l t r a v e r s e s were made, t h e h o l d u p was low and a p p r o x i m a t e l y t h e same s m a l l volume o f k e t o n e was e n t r a i n e d i n e a c h s y r i n g e sample. n o t much i n e r r o r and c e r t a i n l y  Therefore the r e s u l t s are  comparable.  87  C a l c u l a t e d i n i t i a l ketone c o n c e n t r a t i o n s are  still  u n c e r t a i n u n t i l i t can be d e t e r m i n e d whether o r n o t t h e measured w a t e r phase probe c o n c e n t r a t i o n s , Cwp, r e p r e s e n t a t i v e samples o f t h e aqueous phase.  are  I n the p i s t o n  method o f s a m p l i n g , t h e r e s u l t s a r e e x t r e m e l y s e n s i t i v e t o the  r e s u l t s o f t h e a n a l y s i s o f t h e w a t e r phase The v a l u e o f t h e c a l c u l a t e d i n i t i a l  samples. ketone  c o n c e n t r a t i o n f o r t h e p i s t o n samples, C k i , p l u s t h e a p p r o x i m a t e maximum e r r o r o f t h i s c a l c u l a t e d v a l u e ,  A C k i , was  l e s s t h a n t h e measured probe c o n c e n t r a t i o n , Ckp.  almost always Thus v a l u e s  of  Ckp, a r e p r o b a b l y t o o l a r g e because o f t h e r e s i d e n c e t i m e  of  the ketone d r o p s a t t h e k e t o n e probe e n t r a n c e and  of  t h e i n t e r f a c e sometimes c r e a t e d t h e r e .  however, i s c e r t a i n l y dependent  because  This conclusion,  on t h e w a t e r phase probe  sample  being representative. The p i s t o n sampler p r o v e d t o be a q u i c k and means o f l i t e r a l l y removing a s e c t i o n o f t h e o p e r a t i n g  easy column  f r o m the e x t r a c t i o n t o w e r w i t h o u t s e r i o u s l y i n t e r r u p t i n g t h e o p e r a t i o n o f t h e a p p a r a t u s . I t i s recommended t h a t i n a d d i t i o n to  c a r r y i n g o u t f u r t h e r s t u d i e s on s a m p l i n g w i t h t h e p i s t o n ,  f u r t h e r work be done on t h e e f f i e c t o f s a m p l i n g r a t e on t h e v a l u e of  the k e t o n e c o n c e n t r a t i o n o b t a i n e d by s a m p l i n g w i t h t h e p r o b e .  The work o f Choudhury ( l c ) was done a t a l o c a t i o n i n t h e column at  w h i c h t h e phases were c l o s e t o e q u i l i b r i u m so t h a t o n l y a  s m a l l e f f e c t on t h e k e t o n e c o n c e n t r a t i o n w o u l d r e s u l t  from  l i n g e r i n g and c o a l e s c i n g o f k e t o n e d r o p s a t t h e probe e n t r a n c e .  88  NOMENCLATURE  Symbols Cwi  C o n c e n t r a t i o n o f a c e t i c a c i d i n t h e w a t e r phase e n t e r i n g t h e t o p o f t h e column, l b . m o l e s / f t 3  Cw2  C o n c e n t r a t i o n o f a c e t i c a c i d i n w a t e r phase t h e b o t t o m o f t h e column, l b . m o l e s / f t v  Cki  C o n c e n t r a t i o n o f a c e t i c a c i d i n t h e k e t o n e phase l e a v i n g t h e t o p o f t h e column, l b . m o l e s / f t ?  Ck2  C o n c e n t r a t i o n o f a c e t i c a c i d i n t h e k e t o n e phas§ e n t e r i n g t h e b o t t o m o f t h e column, l b . m o l e s / f t ?  Cwi  I n i t i a l steady s t a t e c o n c e n t r a t i o n of a c e t i c a c i d i n the w a t e r phase i n t h e column a t t h e s a m p l i n g p o i n t , lb. moles/ft5  Cwf  F i n a l concentration of a c e t i c acid i n the water phase p o r t i o n o f t h e c o l l e c t e d p i s t o n sample a f t e r e q u i l i b r i u m has been r e a c h e d w i t h t h e k e t o n e phase p o r t i o n , lb. moles/ft?  Cwp  C o n c e n t r a t i o n o f a c e t i c a c i d i n t h e w a t e r phase a t t h e t i m e o f s a m p l i n g w i t h t h e w a t e r phase p r o b e , lb.  leaving  moles/ft5  Cki ; •  Calculated i n i t i a l steady-state concentration of a c e t i c a c i d i n k e t o n e phase i n t h e column a t t h e a x i s o f the p i s t o n , l b . m o l e s / f t 3  Ckf  P i n a l c o n c e n t r a t i o n of a c e t i c a c i d i n the ketone phase p o r t i o n o f t h e c o l l e c t e d p i s t o n sample a f t e r e q u i l i b r i u m has been r e a c h e d w i t h t h e w a t e r phase portion, l b . moles/ft2  Ckp  C o n c e n t r a t i o n o f a c e t i c a c i d i n t h e k e t o n e phase a t t h e t i m e o f s a m p l i n g w i t h t h e k e t o n e phase p r o b e , lb.  Cwi)m :  moles/ft3  I n i t i a l concentration of a c e t i c a c i d i n the water phase i n t h e column a t t h e t o p o f t h e p i s t o n b l o c k * by s a m p l i n g w i t h a hypodermic s y r i n g e , l b . m o l e s / f t ?  89  Cwi)  B  As Cwi)g, , e x c e p t a t t h e "bottom o f t h e p i s t o n  block.  Cwf  F i n a l c o n c e n t r a t i o n o f a c e t i c a c i d i n the w a t e r phase r e m a i n i n g w i t h t h e k e t o n e phase a f t e r i m m e d i a t e l y d r a w i n g t h e m a j o r p o r t i o n o f t h e w a t e r phase f r o m the k e t o n e phase o f t h e p i s t o n samples i n Run 85. . This v a l u e i s i n e q u i l i b r i u m w i t h the ketone phase, lb. moles/ft?  Cwf  F i n a l c o n c e n t r a t i o n o f a c e t i c a c i d i n the m a j o r p o r t i o n o f t h e w a t e r phase w h i c h was drawn f r o m t h e k e t o n e phase o f t h e p i s t o n samples i n Run 85» l b . moles/ft?  A Cwi  Assumed e r r o r i n C w i , l b . m o l e s / f t ?  •z  ACwf ACkf Lk Lw A Nw  Nk  Assumed e r r o r i n Cwf, l b . m o l e s / f t . Assumed e r r o r i n C k f , l b . m o l e s / f t ^ Ketone phase f l o w r a t e ,  ft?/hr.ft.  Water phase f l o w r a t e , f t ? / h r . f t ? 2 C r o s s - s e c t i o n a l a r e a o f t h e column, f t . T r a n s f e r r a t e o f a c e t i c a c i d b a s e d on t h e i n l e t and o u t l e t w a t e r phase c o n c e n t r a t i o n s , l b . m o l e s / h r . T r a n s f e r r a t e o f a c e t i c a c i d b a s e d on t h e i n l e t and o u t l e t c o n c e n t r a t i o n s of the ketone phase, l b . moles/hr. The c a l c u l a t e d v a l u e o f some unknown f u n c t i o n w h i c h c o n t a i n s a number o f measured q u a n t i t i e s .  Q t  q s Vw Vk  n Vw  The measured  q u a n t i t i e s i n some unknown f u n c t i o n .  Volume o f w a t e r phase p o r t i o n o f t h e c o l l e c t e d p i s t o n samples, m i s . Volume o f k e t o n e phase p o r t i o n o f the c o l l e c t e d p i s t o n samples, m i s . S m a l l volume o f w a t e r phase r e m a i n i n g w i t h t h e k e t o n e phase p o r t i o n a f t e r i m m e d i a t e l y d r a w i n g o f f t h e major p o r t i o n of t h e w a t e r phase i n t h e p i s t o n samples o f Run 85, m i s .  90 Vw  AVw H  Volume o f t h e m a j o r p o r t i o n o f w a t e r phase w h i c h was i m m e d i a t e l y drawn f r o m t h e p i s t o n samples i n Eun 8 5 , mis. Assumed e r r o r i n Vw, m i s . Percentage holdup, i . e . the percent of the t o t a l volume o f t h e p i s t o n sample o c c u p i e d b y k e t o n e . Groups i n E q u a t i o n 14  A' B C D E  9 C k i = 1, d i m e n s i o n l e s s 3Ckf 3 C k i • ^ (Cwf-Cwi), l b . m o l e s / f t ? m l . 3Vw 3Cki Vw 3Vk ~ ~ V k  2  (Cwf-Cwi), l b . m o l e s / f t ? m l .  Vw Vk '  dimensionless  Vw 3Cki 3 Cwi " Vk '  dimensionless  3Cki acwf  =  91  LITERATURE CITED  1.  Choudhury, P r o s e n j i t R a i , M.A. Se. T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1959.  la.  Ibid. ,  lb.  T^)id. , p - 5 4 .  lc.  I b i d . , P-50, 58.  Id.  I b i d . » P-7.  le.  Ibid. i P - l l .  If.  I b i d . , P-IO.  Ig.  I b i d . , p-16.  Ih.  I b i d . » P-12, 15, 24, 26.  Ii.  I b i d . ..  id.  I b i d . ,» P-21.  Ik.  I b i d . , p-22.  11.  I b i d . , P-23.  lm.  I b i d . , P-25.  ln.  I b i d . , P-59.  2.  C a v e r s , S.D., and Ewanchyna, J . E . , Can. J . o f Chem. Eng. 25,  p-17.  P-17.  1 1 3 , (1957).  3.  G i e r , T.E. and Hougen, J.O., I n d . E n g . Chem. 4£, 1562, (1955).  4.  G e a n k o p l i s , C . J . , and H i x o n , A.N., I n d . Eng. Chem. 42, 1141, ( 1 9 5 0 ) .  5.  ' G e a n k o p l i s , C . J . , W e l l s , P.L., and Hawk, E.L., I n d . Eng. Chem. 4J>, 1848, ( 1 9 5 1 ) .  6.  K r e a g e r , R.M., and G e a n k o p l i s , C . J . , I n d . Eng. Chem. 2156,  (1955).  92  7.  V o g t , H.J., and G e a n k o p l i s , C . J . , I n d . Eng. Chem. 46,  1763,  (195^).  8.  Lepage, N.A.W., B.A.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1956.  9.  Dean, R.R.,  10.  M i c k l e y , H.S., Sherwood, T.K., Reed, C.E., A p p l i e d Mathematics i n Chemical E n g i n e e r i n g , M c G r a w - H i l l Book Co., New Y o r k , 2 n d E d i t i o n , 1957.  11.  P a q u e t t e , R.G., A M o d i f i c a t i o n o f t h e Wenner-Smith-Soule S a l i n i t y Bridge For the Determination of S a l i n i t y I n Sea Water, T e c h n i c a l R e p o r t No. 61, Department o f Oceanography, U n i v e r s i t y o f W a s h i n g t o n , S e a t t l e 5, W a s h i n g t o n , 1958.  12.  P a q u e t t e , R.G., p e r s o n a l c o m m u n i c a t i o n accompanying R e f e r e n c e 11, June 2 , 1959.  1954.  B.E. T h e s i s , U n i v e r s i t y o f S a s k a t c h e w a n ,  93  A P P E N D I C E S  94 APPENDIX I SAMPLE CALCULATIONS The f o l l o w i n g sample  c a l c u l a t i o n s were made u s i n g  the d a t a from Run 84, P i s t o n Sample i . The d a t a u s u a l l y were r e c o r d e d i n the d a t a hooks t o f o u r s i g n i f i c a n t f i g u r e s whereas i n the t a b l e s o f t h i s t h e s i s the c o r r e s p o n d i n g d a t a have rounded o f f t o t h r e e s i g n i f i c a n t 1)  been  figures.  Rate o f T r a n s f e r o f A c e t i c A c i d (a)  Nw  = LwA  1  (Cwi - Cw2)  where Lw = 90.9  ft?/hr./ft?  A = 0.0122? f t ? Cwi = 5 0 . 2 3 x l 0 ~ Cw2 Nw  =  = 32.52xlO~  3  l b . moles/ft?  5  l b . moles/ft?  (90.9)(0.01227)(50.23xlO~ -32.52xlO~ ) 5  = 19.75x10"  5  3  l b . moles/hr.  r e p o r t e d as = 19.8x10"^ l b . moles/hr. (b)  2  Nk = L k A ( C k l - Ck2) where Lk = 90.5  ft?/hr./ft?  A = 0.01227 f t ? Cki  = 24.83xl0"  Ck2 = 7 . 0 6 x l O " Nk =  5  5  l b . moles/ft? l b . moles/ft?  (90.5)(0.01227)(24.83xl0" -7.06xl0"" )  = 19.72xl0~  5  5  l b . moles/hr.  r e p o r t e d as = 19.7x10"^ l b . moles/hr.  5  95  ( C  )  N  -  N  w  +  3  from ( a ) and (b) H -  1  9  ' 7 ^  1  Q  "  = 19.74xl0" r e p o r t e d as (d)  +  3  l ^ ? ^ "  3  l b . moles/hr.  3  = 19.7x10"^ l b . m o l e s / h r .  P e r c e n t a g e D e v i a t i o n = (22jj££)l00  4-  f r o m ( a ) , ( b ) , and ( c ) Percentage D e v i a t i o n .  ( 1 9  -7^ ^ ^Zg  = 0.158 r e p o r t e d as  e  >  xl0  "  3)3c100  %  =0.2%  A c e t i c A c i d M a t e r i a l Balance Percentage  Difference  P e r c e n t a g e D i f f e r e n c e = A c i d I n - A c i d Out x 100 Acid In =  ±JL  (LwACwl+LkACk2) - (LwACw2+LkACkl) x 100 LwACwl + LkACk2  Acid In =  (90.9)(0.01227)(50.23xl0~ )+(90.5)(0.0122?) 3  ,  (7.06x10"^) • 65.84x10" A c i d Out =  5  l b . moles/hr.  (90.9)(0.01227)(32.52xlO" )+(90.5)(0.01227)  ,  3  (24.83xl.0~ = 65.82xl0"^lb.  moles/hr.  P e r c e n t a g e D i f f e r e n c e = /63»84 - 6 5 . 8 2 ^ ^  (  gjTsZf—noo  = +0.05%  5  96 3.  C a l c u l a t e d I n i t i a l P i s t o n Ketone C o n c e n t r a t i o n s , C k i Cki =  H  (Cwf - Cwp)  assuming Cwp  + Ckf  8  = Cwi  Here, Vk = 13.6 Vw  mis.  = 101.4  mis.  Cwf  = 40.32xl0~  5  l b . moles/ft?  Cwp  = 41.23xl0"  5  l b . moles/ft?  C k f = 19.7x10"" l b . m o l e s / f t ? 5  C k i = 101.4 13.6 = 12.9 4.  (40.32xl0  x 10"  - 41.23xl0" ) +  - 3  5  19.?xl0"  5  l b . moles/ft?  5  Maximum A p p r o x i m a t e E r r o r A C k i = A'ACkf + B AVw where A' = 3 C k i = 1 3Ckf  + C AVk  B =  3 C k i = 1 (Cwf Vw Vk  C =  3 C k i = -Vw. Vk Vk  d  d  D =  g C k i = Vw 9Cwf Vk  E =  flCki = Vw 0Cwi Vk  and where C k i » Vw  + D A Cwf  + E A Cwi  Cwi)  (Cwf -  Cwi)  2  (Cwf - Cwi) + C k f  Vk Values of  AVw,  AVk,  e s t i m a t e d as e q u a l t o  AVkf,  A Cwf,  A Cwi have been  13  97 AVw = ±0.2 m i s . A V k = ±0.2 m i s . A C k f = ±0.1xl0"  5  l b . moles/ft?  ACwf = ±0.1xl0~  5  l b . moles/ft?  ACwi = ±0.1xl0~  5  l b . moles/ft?  v a l u e s have been g i v e n s i g n s s u c h t h a t  ACki i s a  maximum i n t h e f o l l o w i n g .*. +  ACki = ( l ) ( 0 . 1 x l 0 ~ ) + | (40.32xlO~ -4-1.23xlO~ ) 3  5  1  1 0  ^^2  (40.32xl0~ -41.23xl0 ) 5  3  > 6  - 5  (0  (0.2)+,101.4 (0.1xlO~ ^ 13.6 N  ;  + ^am^ao.ixio" ) 5  ^ 13.6  ;  = (0.1 + 0.01 + 0.1 + 0 . 7 5 + 0 . 7 5 ) 1 0 " = 1.71xlO" 5«  3  3  l b . moles/ft?  Ketone Holdup P e r c e n t a g e H =-  Vk xlOO Ww+Vk  10  (  ;  = / 13.6 \ 100 ^101.4+13.6 ;  = 11.8% The n e x t sample c a l c u l a t i o n was made u s i n g t h e d a t a from Sun 8 5 , P i s t o n Sample i .  3  98 6.  C a l c u l a t i o n o f C k i When Phases o f P i s t o n Sample Were S e p a r a t e d I m m e d i a t e l y A f t e r t h e P i s t o n Sample Was C k i » C f / V W N + Cwf/Vwx - Cwp  ,Vw\ ^Vk  w  W k  W k  ;  ;  Taken 9  + Ckf ;  where f o r Run 85, p i s t o n sample i Cwf = 40.09xl0""  l b . moles/ft? 5 Cwf = 38.6x10 ^ l b . m o l e s / f t . f r o m e q u i l i b r i u m 5  _x  •t  and i n e q u i l i b r i u m Ckf  = 19.59xlO"  l b . moles/ft?  5  Cwp = 41.17xl0"*  with  l b . moles/ft?  5  Vw = 100.0 m i s . Vw = 1.0 m i s . Vk = 13.2  mis.  Vw = Vw + Vw = 100.0 + 1.0 = 101.0 m i s . *" ) +/ +, 1. 1.0x(38.6--' " Ox (38.6x10"^) . *. C k i = ,100^0^(40.09x10*"^) ^1133 7 '"T3T2 . 22 5  (  n  k  ;  ;  ;  - ( 4 1 . 1 7 x l 0 " ) / l p l y O N + 19.59xlO"~ ^ 13.2 3  +  J  = 11.21 x IO"* l b . m o l e s / f t ? 5  5  5  curve  99  APPENDIX I I VOLUME CHANGES DUE TO CHANGES I N MUTUAL SOLUBILITY D a t a f o r t h e m u t u a l s o l u b i l i t y f o r t h e system m e t h y l i s o b u t y l k e t o n e - a c e t i c a c i d - w a t e r was t a k e n from Sherwood, T.K., E v a n s , J.E., and L o n g c o r , I n d . Eng. Chem., 3 1 , 1144, ( 1 9 3 9 ) . U s i n g t h e s e d a t a t h e s o l u b i l i t y c u r v e was drawn on t r i a n g u l a r g r a p h p a p e r , a s shown i n F i g u r e 35 • I t was d e s i r e d t o know whether o r n o t any volume changes o c c u r , o t h e r t h a n t h o s e due t o t h e t r a n s f e r o f a c e t i c a c i d because o f t h e change i n m u t u a l s o l u b i l i t y accompanying transfer.  this  As an example a s i n g l e - c o n t a c t m i x e r has been chosen.  I n t h i s example a c e t i c a c i d c o n c e n t r a t i o n s have been u s e d f o r the  i n l e t streams s i m i l a r t o t h o s e w h i c h a p p l i e d i n t h e  e x p e r i m e n t a l work. extraction  F i g u r e 3 6 , shows a t y p i c a l s i n g l e - c o n t a c t  mixer. The assumed c o m p o s i t i o n o f 1 0 0 l b s . o f i n l e t  water  phase s o l u t i o n , s a t u r a t e d w i t h MIBK, i s 4 . 3 l b s . o f a c e t i c a c i d , 1 . 7 l b s . o f MIBK, and 9 4 . 0 l b s . o f w a t e r , w h i c h c o r r e s p o n d s t o t h e c o m p o s i t i o n o f 1 0 0 l b s . o f i n l e t w a t e r phase u s e d i n t h e e x p e r i m e n t a l work. The assumed c o m p o s i t i o n o f 1 0 0 l b s . o f i n l e t  ketone  phase, w h i c h i s s a t u r a t e d w i t h w a t e r , i s 0.8 l b s . o f a c e t i c a c i d , 2 . 5 l b s . o f w a t e r , and 9 6 . 7 l b s . o f MIBK, w h i c h  ACETIC  ACID  MIBK  FIGURE  WATER  35-  MUTUAL  SOLUBILITY  CURVE  (WEIGHT ACETIC  %)  FOR  THE  ACID- WATER  SYSTEM AT  25°C  METHYL  ISOBUTYL  KETONE  —  101 c o r r e s p o n d s t o t h e c o m p o s i t i o n o f 100 l b s . of i n l e t  ketone  phase used i n t h e e x p e r i m e n t a l work. I n l e t w a t e r f e e d t o be extracted, F l b s .  O u t l e t w a t e r phase B lbs.  O u t l e t k e t o n e phase E lbs.  I n l e t k e t o n e phase or s o l v e n t , S l b s .  F i g u r e 36.  Single-Contact E x t r a c t i o n Mixer  The i n l e t w a t e r phase c o m p o s i t i o n and t h e i n l e t k e t o n e phase c o m p o s i t i o n have been l o c a t e d as p o i n t s F and S on F i g u r e 35•  The m i x e r i s assumed t o be an i d e a l s t a g e so  t h a t e q u i l i b r i u m i s e s t a b l i s h e d between t h e two p h a s e s .  Thus  t h e f i n a l c o m p o s i t i o n o f t h e two o u t l e t phases w i l l be on t h e o p p o s i t e ends o f a t i e - l i n e i n t h e two phase r e g i o n . A m a t e r i a l balance f o r the o p e r a t i o n i s F + S = E + E = M =  200 l b s .  1  M, r e p r e s e n t i n g t h e m i x t u r e o f f e e d and s o l v e n t , i s i n t h e t w o - l i q u i d phase r e g i o n as i n d i c a t e d on F i g u r e 35, and i s common t o b o t h i n l e t and o u t l e t s t r e a m s .  I t s l o c a t i o n can  be d e t e r m i n e d g r a p h i c a l l y on l i n e FS t h r o u g h t h e r e l a t i o n s h i p  102 F S .*.  =  l i n e MS  MS  fl line IM  =  S i n c e t h e m i x e r i s an i d e a l s t a g e , e q u i l i b r i u m i s established,  and t h e two phase m i x t u r e M produces  an o u t l e t  w a t e r phase and an o u t l e t k e t o n e phase R and E r e s p e c t i v e l y , the compositions o f which a r e l o c a t e d l i n e t h r o u g h p o i n t M.  on t h e ends o f t h e t i e -  The e x a c t l o c a t i o n s o f p o i n t s R and E  on F i g u r e 55 were d e t e r m i n e d g r a p h i c a l l y b y t r i a l - a n d - e r r o r tie-line  interpolations. The r e s p e c t i v e  magnitudes o f R and E may be computed  g r a p h i c a l l y by: R E  i.e.  _ =  EM RM  =  8  8.3 ' 6  R = 0.965 E  S u b s t i t u t i n g Equation 2 i n t o Equation 1 t o solve  2 f o r E we g e t  0 . 9 6 5 E + E = 200 E = 102 l b s . R = 200 - 102 = 98 l b s . The f i n a l c o m p o s i t i o n s o f R and E can be r e a d  from  F i g u r e 55 and were f o u n d t o be as f o l l o w s T r y b a l , R.E., L i q u i d E x t r a c t i o n , M c G r a w - H i l l Book Company, I n c . , New Y o r k , F i r s t E d i t i o n , Second I m p r e s s i o n , p - 2 3 , 1951.  Outlet  w a t e r phase ( 9 8 l b s . t o t a l )  MIBK  Water Acetic Acid  1.7%  =  1.67  lbs.  95.3%  =  93.39  lbs.  3.0% =  1.94-  lbs. lbs.  100.0% Outlet  98  ketone phase (102  lbs. total)  MIBK 9 5 - 0 %  96.9:  Water 3.0%  3.06  lbs.  2.04  lbs.  102  lbs.  Acetic Acid  2.0% 100.0%-  lbs.  A summary o f t h e r e s u l t s a p p e a r s i n T a b l e X I I I . I t s h o u l d be n o t e d t h a t t h e streams f r o m the  f i n a l composition of both outlet  s p r a y column u s u a l l y n e v e r r e a c h e d  c o m p o s i t i o n o f the o u t l e t streams g i v e n h e r e . p o s i t i o n s o f p o i n t s R and E f o r the R' and E  1  That i s t h e  e x p e r i m e n t a l work s a y  would be somewhere between P and R, and E and S  respectively. the  the  These f i n a l c o m p o s i t i o n s would be c l o s e r t o  i n i t i a l c o m p o s i t i o n s t h a n i s t r u e i n the  example.  Prom T a b l e X I I I i t can be seen t h a t i n the  water  phase s t r e a m , f o r the i d e a l s t a g e , a n e g l i g i b l e amount o f t r a n s f e r o c c u r s o t h e r t h a n the  transfer of acetic acid.  same can be s a i d f o r the k e t o n e phase s t r e a m . column o p e r a t i o n the t r a n s f e r o f m a t e r i a l ,  Por  the  The actual  other than that of  a c e t i c a c i d , would be somewhat l e s s t h a n what h a s been c a l c u l a t e d h e r e and v e r y much l e s s f o r the p i s t o n  samples.  Table  XIII  Summary o f R e s u l t s JTor Sample C a l c u l a t i o n No. 7  Water Phase  Ketone Phase  lbs. Inlet P Acetic; Acid Water" MIBK  Outlet R  lbs. Inlet S  Outlet E  4.3  2.94  0.8  2.04  94.0  93-39  2.5  3.06  1.7  1.67  96.7  96.90  100.0  98.0  100.0  102.0  105 I t i s t h e r e f o r e c o n c l u d e d t h a t the volume changes c o r r e s p o n d i n g t o t h e s e w e i g h t changes a r e n e g l i g i b l e because o f t h e d i l u t e concentrations  o f a c e t i c a c i d and t h e s m a l l change i n m u t u a l  s o l u b i l i t y o f w a t e r and k e t o n e i n the r e g i o n under consideration.  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 26 23
United States 9 0
Unknown 5 0
Canada 4 0
Hashemite Kingdom of Jordan 1 1
France 1 0
City Views Downloads
Beijing 24 0
Unknown 9 1
Ashburn 5 0
Markham 3 0
Shenzhen 2 23
Seattle 1 0
Sunnyvale 1 0
Boardman 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059229/manifest

Comment

Related Items