UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The thermal conductivity of some higher hydrocarbons Kolke, Oscar Ernest 1950

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1950_A7 K6 T4.pdf [ 5.75MB ]
Metadata
JSON: 831-1.0059193.json
JSON-LD: 831-1.0059193-ld.json
RDF/XML (Pretty): 831-1.0059193-rdf.xml
RDF/JSON: 831-1.0059193-rdf.json
Turtle: 831-1.0059193-turtle.txt
N-Triples: 831-1.0059193-rdf-ntriples.txt
Original Record: 831-1.0059193-source.json
Full Text
831-1.0059193-fulltext.txt
Citation
831-1.0059193.ris

Full Text

THE THERMAL CONDUCTIVITY OF SOME HIGHER HYDROCARBONS  by Osoar E . Koike, B.A.So.  A T h e s i s submitted i n p a r t i a l f u l f i l l m e n t o f the requirements f o r the degree o f MASTER OF APPLIED SCIENCE in CHEMICAL ENGINEERING  THE UNIVERSITY OF BRITISH COLUMBIA  THE THERMAL CONDUCTIVITY OF SOME HIGHER HYDROCARBONS  Osoar E . Koike  THE  U N I V E R S I T Y O F BRITISH C O L U M B I A VANCOUVER. CANADA  DEPARTMENT OF CHEMISTRY  October 18,  To Whom I t May  1950,  Concern:  T h i s i s t o c e r t i f y t h a t the t h e s i s  entitled  "The Thermal C o n d u c t i v i t y o f Some Higher Hydrocarbons" by Mr. Oscar E. Koike measures up t o the r e q u i r e d standards of the Master's t h e s i s i n t h i s  Department* Yours t r u l y ,  -ew  ABSTRACT  The u s u a l Bridgman c e l l f o r measurement o f thermal c o n d u c t i v i t y has been m o d i f i e d t o a l l o w but a minimum o f oonduotion.  The f i l m t h i c k n e s s f o r l i q u i d s used i s ap-  p r o x i m a t e l y G . 0 4 5 cm.v and hence a v e r y s m a l l sample w i l l s u f f i c e f o r measurement.  D i f f e r e n t i a l thermo-  couples were used f o r d e t e r m i n i n g the temperature  drop.  Most o f the heat l o s s e s i n the metal oontaot have been prevented by a needle  mounting.  Measurements have been c a r r i e d  out on the f o u r  s i n g l e - o h a i n s a t u r a t e d a l i p h a t i c hydrocarbons Ggg °£6  H  54, 30 62 G  H  a n < 1  c  3 4 ? 0 over a range o f temperatures H  above t h e i r m e l t i n g p o i n t s .  The thermal  conductivities  tend t o i n c r e a s e w i t h i n c r e a s i n g moleoular weight and w i t h d e c r e a s i n g temperature.  ACKNOWLEDGEMENTS  The author wishes t o acknowledge the a s s i s tance o f Dr. D. S. S o o t t under whose s u p e r v i s i o n t h i s work was performed.  He a l s o wishes t o thank  Dr. L . W. Shemilt f o r i n f o r m a t i o n i n t h e p r e p a r a t i o n o f the hydrocarbons used.  TABLE OF CONTENTS Page I,  Introduction  1  I I . Theory  2  I I I . Apparatus  6  IV. Procedure*.  • 14  V. M a t e r i a l s .  .15  VI. R e s u l t s  ..  A. C e l l C a l i b r a t i o n ,  ,....17  B. Thermal C o n d u c t i v i t y o f the Hydrocarbons  18  1. Docosane  18  2. Hexacosane..  19  3. Triacontane  19  4. T e t r a t r i a o o n t a n e  20  VII. Discussion of Results  20  V I I I . Appendix A. Suggestions f o r P r o c e d u r a l  Changes  85  B. M o d i f i c a t i o n s i n C e l l Design  25  G. Experimental  28  IX. B i b l i o g r a p h y  Data  30  LIST OF ILLUSTRATIONS  Page Fig.  1 D e t a i l s of C e l l . .  Fig.  2 Assembly of Apparatus.  Fig.  3 Photograph o f C e l l  Fig.  4 E l e o t r i o a l C o n t r o l Diagram...............13  Fig.  5 Photograph o f Equipment  ISA  Fig.  6A  Thermal C o n d u c t i v i t i e s v s . Temperature.  21A  Fig.  6B  Thermal C o n d u c t i v i t y Weight  Fig.  7 Suggested M o d i f i c a t i o n  ...  7 . 10 11  vs. Moleoular 213 27  I... INTRODUCTION  There i s l i t t l e  a v a i l a b l e data on the c o n d u c t i v i t y  of h i g h e r hydrocarbons•  Palmer and Hazzard  (8) u s i n g  the law o f c o r r e s p o n d i n g s t a t e s have p r e d i c t e d the approximate value o f hydrocarbons.  L i q u i d hydrocarbons  w i t h chains up to twelve carbon atoms i n l e n g t h have been measured.  I t i s t h e r e f o r e l o g i o a l to begin Inves-  t i g a t i o n s i n t o the thermal c o n d u c t i v i t y of h i g h e r hydrocarbons.  Four hydrocarbons, s o l i d at room temperature  and w i t h m e l t i n g p o i n t s r a n g i n g from 44.4°0 to 78.9°C have been chosen.  Measurements were c a r r i e d out u s i n g  a m o d i f i e d Bridgman  oell.  2.  I I . THEORY  A mathematical  d e f i n i t i o n of heat c o n d u c t i v i t y  p r e s e n t e d by F o u r i e r i n the e q u a t i o n :  was  Q. ~-  Q = r a t e of heat f l o w  where  = temperature g r a d i e n t A - area p e r p e n d i c u l a r t o heat f l o w K ~ the thermal c o n d u c t i v i t y whioh i s a p r o p e r t y of the m a t e r i a l through whioh heat i s f l o w i n g .  This equation gives  an o v e r a l l s i m p l i f i e d p i c t u r e o f heat conduction but does n o t e x p l a i n the •means whereby i t takes p l a o e . Attempts t o e x p l a i n the mechanism  o f heat conduction  i n l i q u i d s have t o date met with l i t t l e s u c c e s s .  However,  s e v e r a l equations whioh r e l a t e p h y s i c a l p r o p e r t i e s to thermal c o n d u c t i v i t y have been advanced. About 1880, Weber (2) proposed the equation JUL  ( 0 1 -  Constant. Where £ i s the d e n s i t y o f the l i q u i d C i s i t s s p e o i f i o heat M i s i t s m o l e c u l a r weight On i n v e s t i g a t i o n i t has been found t h a t Weber s 1  constant v a r i e s f o r d i f f e r e n t l i q u i d s .  Moreover, the  constant v a r i e s f o r one l i q u i d at d i f f e r e n t  temperatures.  3.  T h i s proved  the equation o f l i t t l e use i n p r e d i c t i n g  v a l u e s o f thermal c o n d u c t i v i t y . In 1923 an equation was put f o r t h by Bridgman (1) i n the form  where  K  2 <*•  V/g*.  «C i s the gas constant V i s the v e l o c i t y o f sound i n l i q u i d 6 i s the mean d i s t a n c e between oentres o f mole-  cules.  T h i s i s a r r i v e d a t by use o f the formula  assuming c u b i c a l arrangement o f the m o l e c u l e s . M i s the absolute weight o f one molecule v  i n the  liquid. On checking t h i s e q u a t i o n a g a i n s t measured v a l u e s i t was found to show a maximum d e v i a t i o n o f 39$ and a mean d e v i a t i o n o f 16$. In 1936 Smith (5) proposed  an e m p i r i c a l equation t h a t  has been the most c o n s i s t e n t i n i t s a p p l i c a t i o n t o d a t e . I t was i n the form  IS - O o o o o / / where  3  y \±£.—^——  Gp i s the s p e c i f i c  A  a  y i — i l l y, J i  heat  £ i s the density M i s the m o l e c u l a r weight and Y i s the kinematic v i s c o s i t y i n o e n t i s t o k e s . T h i s e q u a t i o n checked w i t h an average  e r r o r o f 6.7$.  However, i n some cases i t was subjeot to a l a r g e e r r o r and i t has been p o i n t e d out, t h a t i n the f i e l d o f thermal  4 o o n d u o t i v i t y , i t i s i m p o s s i b l e to p r e d i c t when l a r g e devi a t i o n s from the equations might  oeour.  In 1948, Palmer (8) p o i n t e d out t h a t there was a tendency  for liquids  to d i v i d e themselves  into  classes,  those t h a t can be f i t t e d with e m p i r i c a l equations and those that d e v i a t e c o n s i d e r a b l y .  In t h e l a t t e r  class  o c u l d be found the a s s o c i a t e d l i q u i d s such as water and the  alcohols. Palmer s t a t e s that molecular weight i s one o f the  most important f a c t o r s i n thermal c o n d u c t i v i t y , conduct i v i t y g e n e r a l l y d e c r e a s i n g with molecular weight, statement  i s made f o r c o r r e s p o n d i n g temperatures,  case a t .56 o f the c r i t i c a l temperature.  i'his i n this  Symmetry may be  a f a c t o r , s i n c e carbon t e t r a c h l o r i d e w i t h a h i g h e r molec u l a r weight a l s o has a h i g h e r c o n d u c t i v i t y than  chlor-  oform. However, a s s o c i a t e d l i q u i d s have a h i g h e r i v i t y than expected. hydrogen bond.  conduct-  T h i s l e d him to c o n s i d e r the  Obviously the equations put f o r t h to  date needed a f a c t o r which was s e n s i t i v e to hydrogen bonding.  The entropy o f v a p o r i z a t i o n  was chosen as the most p r o m i s i n g .  (Trouton's  Constant)  The equation o f  Weber (2) was chosen t o be m o d i f i e d s i n c e i t was the s i m p l e s t form proposed.  By assuming 21 as an a r b i t r a r y  value f o r Trouton's oonstant Palmer equation  Q.94 7p  fyf/y  (8) a r r i v e d a t t h e \  5  where  p i s the d e n s i t y o f the l i q u i d Gp i s the s p e c i f i c heat M L  i s the molecular weight v  i s the m o l e c u l a r l a t e n t heat o f v a p o r i z a t i o n .  On checking t h i s equation w i t h 48 l i q u i d s the average e r r o r was found to be 8.8$.  One i n t e r e s t i n g f e a t u r e o f  t h i s equation i s the f a c t t h a t i t f i t s l i q u i d s b e t t e r than the o t h e r s .  the a s s o c i a t e d  The average e r r o r being  5.5$ as compared to 8*8$ o v e r - a l l  average.  The e r r o r i n the equation as g i v e n by Weber (2) may be due to the equation or due to t h e e r r o r i n v a l u e s o f thermal c o n d u c t i v i t i e s as e x p e r i m e n t a l l y measured and g i v e n i n the l i t e r a t u r e . The d i f f e r e n c e i n values as determined  by d i f f e r e n t  methods o f thermal c o n d u c t i v i t y measurements i s as g r e a t and g r e a t e r than the above mentioned The t h i o k d i s k method as used by Bates  discrepancies.  (11) (12) g i v e s  r e s u l t s h i g h e r than those determined by the Bridgman t h i n s h e l l method.  A comparison  d u c t i v i t y o f water a t 3 o ° C t o be  shows the thermal  con-  /+&ox /s*by Bates (11)  -6  t h i c k d i s k method and t h i n s h e l l method.  */o  by the Briagman (1)  Thus i t seems i m p r a c t i c a l to attempt  to o b t a i n an e x p r e s s i o n f o r more accurate p r e d i c t i o n o f thermal c o n d u c t i v i t i e s u n t i l a s t a n d a r d and exact method o f experimental measurement i s developed.  6.  Ill  APPARATUS  To make the thermal c o n d u c t i v i t y measurements i n t h i s i n v e s t i g a t i o n a Bridgman o e l l  (1) w i t h Sehoening's (6)  suggested m o d i f i c a t i o n s was used. (see f i g u r e 1 ) , were assembled  Two brass c y l i n d e r s ,  concentrically.  The out*,  s i d e diameter o f the i n n e r oore was 0.84 om and the i n s i d e diameter o f the outer c y l i n d e r was 0.93 om.  T h i s l e f t an  annular space 0.045 cm wide between the two c y l i n d e r s . The bottom o f the c e n t r e core, which was 6.2 om i n l e n g t h , was  supported by a p o i n t e d p i n made o f s t e e l  the base o f the outer c y l i n d e r .  and s e t i n  The space about the cen-  t r e oore contained the l i q u i d to be measured.  The upper  end o f the oore was supported by a dome shaped  cap w i t h  three p o i n t e d l e g s made o f s h o r t p i e c e s o f piano w i r e . The whole o f the core and dome were h e l d f i r m l y i n p l a c e by a p i n which screwed down through the top support. To ensure c o n c e n t r i c p l a c i n g a probe was used t o t e s t the d i s t a n c e between the c y l i n d e r s . Heat was s u p p l i e d to the i n n e r c y l i n d e r by p a s s i n g a c u r r e n t o f e l e c t r i c i t y through a h i g h - r e s i s t a n c e wire i n the h e a t e r channel.  T h i s wire was s o l d e r e d to t h e  base o f the i n n e r c o r e by f o r c i n g s o l d e r i n t o the lower end o f the h e a t e r channel.  The heat flowed r a d i a l l y  through the i n n e r c y l i n d e r and l i q u i d to the outer cyl i n d e r from which i t flowed d i r e c t l y i n t o the constant temperature  o i l bath.  The o e l l was i n d i r e c t c o n t a c t  with the bath due to the r e v i s e d c o n s t r u c t i o n whioh  7.  Thermocouple  Overflow  We//  fVe//s  Top Support  in  Heater Channel  CELL  AS  USED  F/G.  /  8.  allowed a t h i n brass p i p e 8 i n c h e s l o n g to be screwed directly outer  onto a threaded  s e o t i o n on the upper p a r t o f the  cylinder. Heat leakage  through m e t a l l i c contact due t o s i l v e r  s o l d e r i n g the ends o f the o r i g i n a l was reduced supports.  Bridgman type o f o e l l  to a minimum by u s i n g s h a r p l y p o i n t e d m e t a l l i c A l s o heat  l o s s e s from the ends o f the o e l l  were reduoed as o n l y one end o f the o e l l was exposed, the lower end being covered  by the l i q u i d under i n v e s t i g a t i o n .  Thus the lower end c o n t r i b u t e d t o the area o f l i q u i d which heat The  flows.  temperature d i f f e r e n c e o f the c y l i n d e r s , was  measured by three d i f f e r e n t i a l series.  aoross  thermocouples p l a o e d i n  Thus the r e a d i n g obtained was three times the  temperature drop and i n c r e a s e d the accuracy.  In t a k i n g  these readings i t i s assumed t h a t the temperature at the thermocouple j u n c t i o n i s the same as at the s u r f a c e o f the l i q u i d , i n n e r and outer, r e s p e c t i v e l y .  T h i s approx-  i m a t i o n i s very olose due t o the h i g h thermal  conduc-  t i v i t y o f the metal as compared to t h a t o f "the l i q u i d s . The  thermocouples were c o n s t r u c t e d o f Leeds and Northrup  30-guage, g l a s s - c o v e r e d , duplex, and were s o l d e r e d t o g e t h e r . s i t u a t e d that t h e i r  copper-constantan  wire  The thermocouples were so  j u n c t i o n s came h a l f way down the  i n n e r c y l i n d e r t o a v o i d end e f f e c t s as f a r as p o s s i b l e . The  couples were wrapped with  s i l k thread and i n s u l a t e d  9.  w i t h s e v e r a l coats of g l y p t a l . wool was  A small p i e c e o f c o t t o n  p l a c e d a t the bottom of the w e l l i n t o whioh they  were i n s e r t e d .  Then s e v e r a l drops o f o i l were p l a o e d i n  the w e l l to a f f o r d b e t t e r heat conduction t o the thermocouple w h i l e the c o t t o n wool s u p p l i e d i n s u l a t i o n from the bottom.  The w e l l s were s i t u a t e d at 120-degree i n t e r v a l s  around the c e l l . simple  The f i l l i n g  of the m o d i f i e d c e l l  as a few drops o f l i q u i d c o u l d be p l a c e d i n the  bottom of the o e l l and  the centre core i n s e r t e d whioh  f o r c e d the l i q u i d up the s i d e s i n t o the annular The  was  ring.  o e l l as c o n s t r u c t e d r e q u i r e d o n l y the brass p i p e t o  be screwed onto the top t o prevent seeping i n t o the o e l l .  the bath o i l from  However, i n s e r t i o n o f the thermo-  couples i n t o the w e l l s oaused some d i f f i c u l t y and f o r o i n g o f t e n oaused a s h i f t i n the p o s i t i o n o f the core whioh then had  to be r e o e n t r e d .  A s l i g h t m o d i f i c a t i o n des-  c r i b e d i n d e t a i l l a t e r would e l i m i n a t e t h i s i n a new The  difficulty  oell. o i l bath temperature was  cury type thermoregulator  c o n t r o l l e d by a mer-  whioh a c t u a t e d a mercury r e l a y  t h a t c o n t r o l l e d the 25G watt k n i f e h e a t e r . o f the k n i f e heater was  The  input  f u r t h e r c o n t r o l l e d by a v a r i a c  whioh a i d e d a great deal i n c u t t i n g down i n p u t l a g . h i g h e r temperatures was  At  a supplementary 125 watt k n i f e h e a t e r  used to a s s i s t i n r a i s i n g the temperature more r a p -  i d l y , thus c u t t i n g down time between r e a d i n g s . t h i s arrangement i t was ature constant to  With  p o s s i b l e to h o l d the bath  t o o t  temper-  degrees at 45 degrees  10.  ft u. Her <S£ojope.y-  O/ass £u.6e /.eaafs to //eater  ce//  -/.eettsts -&o/r? Aeater  Ce//  CELL  AsseAi&Ly  he//  F i g . 3 Photograph o f  Cell  12.  cent!grade. The o e l l h e a t e r ourrent was l e a d storage b a t t e r y . h e a t e r was of  c y l i n d e r o f the o e l l . that the p o t e n t i a l drop negligible.  The p o t e n t i a l drop  measured by two  the h e a t e r wire and  The  s u p p l i e d by a s i x v o l t across the  oell  tapes, one p l a o e d at the top  the other s o l d e r e d t o the o u t e r T h i s was through  ourrent was  done on the  assumption  the b r a s s c y l i n d e r  was  a l s o passed i n suoh a d i r -  e c t i o n as to g i v e the low p o t e n t i a l on the wire s o l d e r e d to  the o u t s i d e o f the o e l l thus h a v i n g zero p o t e n t i a l  that s i d e .  The o u r r e n t was  obtained by measuring the  p o t e n t i a l drop across a standard 1-ohm s e r i e s with the h e a t e r Uorthrup  on  resistance i n  (see f i g u r e 4 ) , by a Leeds  student potentiometer.  and  The product o f the  two  measurements g i v e s the power i n p u t to the o e l l . The  emf developed  by the thermocouples was  with a White double p o t e n t i o m e t e r . to  temperature  The emf was  measured converted  by use o f a o a l i b r a t i o n chart whioh  was  c o n s t r u c t e d from the same wire as the o e l l thermocouples and c a l i b r a t e d every f i v e degrees between 45 and  90  degrees u s i n g a p l a t i n u m r e s i s t a n c e thermometer w i t h an SF.B.S. c e r t i f i c a t e .  Oi Stirrer  Bath  r.  //eater  1  i  Motor  Reotran  Var. Resistance Ce// //eater ^  / Re /ay StandarcC  —  1  —  <  —  1  —  '  •  MP* AO.  /?es/St  Ammeter  f  73 Petenti-o/ne-tey-  7~A *rm o regru/ator  E / e c t r / c a /  C o n i r o /  F/Q. <f.  ISA  f i g . S photograph o f Equipment  14.  IV 1.  PROCEDURE  The o e l l was c l e a n s e d o f any hydrocarbon p r e v i o u s l y  used by f i l l i n g with o i l and h e a t i n g to a  temperature  above the m e l t i n g p o i n t of the hydrocarbon. the hydrocarbon  T h i s caused  to go i n t o s o l u t i o n i n t h e o i l .  The c e l l  was then thoroughly washed with e t h e r and a l o o h o l .  It  was then heated  and p l a c e d i n a vacuum o f 20 t o 30 mm f o r  s e v e r a l hours.  A f t e r t h i s the outer c y l i n d e r was p l a c e d  i n a s m a l l beaker  c o n t a i n i n g water heated above t h e  m e l t i n g p o i n t o f the hydrocarbon  to be measured.  hydrocarbon was then p l a c e d i n the o e l l oore s l o w l y lowered i n t o p o s i t i o n . then screwed down f i r m l y .  The  and the oentre  The top support was  A f t e r t h i s the thermocouple  w i r e s were i n s e r t e d and t h e p r o t e c t i v e brass p i p e screwed onto the c e l l .  The threads were s e a l e d with plumbers  oement and a ooat o f Genoo l a b e l v a r n i s h a p p l i e d t o p r e vent o i l leakage.  The o e l l l e a d s were then s o l d e r e d t o  the potentiometer and h e a t e r l e a d s . was p l a o e d i n the oonstant 2.  temperature  bath.  The bath was brought up t o t h e d e s i r e d  and the thermoregulator a d j u s t e d . aid  After t h i s the o e l l  temperature  T h i s was done w i t h the  o f a mercury thermometer to give a rough  oheok on the  temperature. 3.  The r e s i s t a n c e thermometer was t h e n p l a c e d i n t h e  bath. 4.  The o e l l h e a t e r was switched on and the apparatus  allowed to come to e q u i l i b r i u m as evidenced by a steady  15.  r e a d i n g on the potentiometer.  The o e l l was allowed t o heat  a s u f f i c i e n t l e n g t h o f time t o ensure a o u r r e n t as cons t a n t as p o s s i b l e t o reduce e r r o r i n heat i n p u t r e a d i n g s . 5.  Potentiometer r e a d i n g s f o r heat i n p u t and thermo-  couple emf were taken.  R e s i s t a n c e r e a d i n g s f o r the t h e r -  mometer were a l s o taken. 6.  The bath was allowed to heat to "the next d e s i r e d  temperature  and the r e a d i n g s were r e p e a t e d .  Emf r e a d i n g s were taken to the n e a r e s t 0.1 ^c\s f o r c a l i b r a t i o n purposes, t h i s was n e c e s s a r y due to the low emf r e a d i n g . introduced.  By so d o i n g an e r r o r o f l e s s than 0.35$ was For the emf v a l u e s t o determine  ature drop a c r o s s the hydrocarbons  the temper-  (except i n t h e case  o f doeosane) the v a l u e s were taken t o  /juts  as t h i s  i n t r o d u c e d a p o s s i b l e e r r o r o f l e s s than 0.33$.  In the  oase o f doeosane t h e r e a d i n g s were taken t o 0.1 yd keep the e r r o r below 0.33$.  to  Three r e a d i n g s were taken  at each p o i n t and the average used to o a l o u l a t e  Y  \/  results.  MATERIALS  In t h i s i n v e s t i g a t i o n the thermal c o n d u c t i v i t i e s o f f o u r hydrocarbons —  dooosane, hexaoosane, t r i a o o n t a n e  and t e t ^ a t r i a o o n t a n e were measured.  The hydrocarbons  prepared by the e l e c t r o l y s i s o f f a t t y a c i d s .  were  The f a t t y  aoids were o b t a i n e d from the Eastman Kodak Company and were o f C P . grade.  F i f t e e n grams of t h e f a t t y a c i d were  16. •  warmed with f i v e grams K 2 G O 3 - i n 75 ml. water a f t e r whioh 50 ml absolute The  a l c o h o l and 5 grams f a t t y a c i d were added.  s o l u t i o n was then e l e o t r o l y z e d u s i n g - a o u r r e n t  p r o x i m a t e l y 1 ampere.  o f ap-  Approximately 5 grams a o i d was-  added e v e r y hour.  The s o l u t i o n was kept at a constant  temperature d u r i n g  electrolysis.  Aoids and temperatures used i n tbe e l e c t r o l y s i s were as  follows: Hydrocarbon  Aoid  Temperature °G  Dooosane  Laurie  55  Hexaeosane,  Myristio  60  Triaoontane  Palmitic  70  Tetratriacontane  Stearic  78  The  r e a c t i o n on e l e c t r o l y s i s u s i n g  l a u r i c a o i d as an  example i s as f o l l o w s :  The  •  2 C/zHaCOOH — >  2 0,/H^COO + E  2 C^H^COO + H^O  —  2 C^HJBOO  •  2  z  - •  CH^OOH + 0 2 GO*  — ^  other aoids r e a c t i n a l i k e  fashion.  On e l e o t r o -  l y s i s the hydrocarbon separated as an o i l whioh formed a l a y e r at the s u r f a c e  o f t h e s o l u t i o n i n the o e l l .  To  p u r i f y the hydrocarbons t h e f o l l o w i n g treatment was used. The hydrocarbons were f r e e d o f a c i d by b o i l i n g 15 grams o f product with 5 grams K 2 C O 3 product was then r e p e a t e d l y  I  N  7  5 - m l water.  The  b o i l e d i n d i s t i l l e d water.  A f t e r t h i s t h e y were f r e e d o f e s t e r s by b o i l i n g i n 75 ml water c o n t a i n i n g  5 grams KOH.  The product was again  17  r e p e a t e d l y b o i l e d i n d i s t i l l e d water. a t i o n was  The f i n a l  purific-  done by r e c r y s t a l i i z i n g from absolute a l c o h o l  u n t i l a constant m e l t i n g p o i n t was o b t a i n e d on c o n s e c u t i v e reerystallizations.  71  RESULTS  A. CELL CALIBRATION For c a l i b r a t i o n of the o e l l a h i g h grade o f conduct i v i t y water was used.  The f i r s t  c a l i b r a t i o n was done be-  f o r e any hydrocarbons were measured. r a t i o n was  The second c a l i b -  done a f t e r doeosane and hexaoosane  were measured.  Sinoe an experimental constant had to be o b t a i n e d to allow f o r t h e shape of the o e l l - t h e F o u r i e r equation was m o d i f i e d as:  <? =  KAT  C where Q, i s the r a t e o f heat flow i n c a l s / s e o . K i s the thermal c o n d u c t i v i t y o f water at the tempe r a t u r e measured i n oal/om/sec/°C.  The v a l u e s of  K used were those as determined by Bridgman ( 1 ) . A T i s the temperature drop a c r o s s the f i l m i n °C. G i s the c e l l constant i n  1/om.  The average value o f C o b t a i n e d f o r both c a l i b r a t i o n runs had an average d e v i a t i o n from the mean o f approx f o r a temperature range o f 30 °G.  2.5$  18.  C a l i b r a t i o n Run #1 G 1/cm  Temperature °C 44.95  0.002690  50.03  0.002594  55.11  0.002627  60.19  0.002578  65.16  0.002564  70.35  0.002549  75.37  0.002576  C average f o r r u n #1 = 0.002599. - 0.000044 cm'';  C a l i b r a t i o n Run #2 Temperature °G  0 1/om  40.05  0.002727  50.32  0.002508  60.31  0.002553  70.41  0.002497  C average f o r r u n #2 - 0.002569 ± 0.000092 C average f o r both runs = 0.002587  ±  0.000067 c™~'  B. THERMAL CONDUCTIVITY OF HYDROCARBONS 1. Dooosane C 2 3 4 6 H  The m e l t i n g p o i n t o f the dooosane used was 44.4 - 0.1 °G as compared t o 44.44 g i v e n i n the  International C r i t i c a l  Tables.  19  °G  T e m p e r a t u r e  °G.  0.1  45.34  0.000348  50.15  0.000349  60.62  0.000345  70.22  0.000344  80.65  0.000342  m e l t i n g  T h e  56  °e,  i s  56.8 oc.  w h i l e  p o i n t  s e t t i n g  t h e  0.1  65.4  (14)  °e.  °G  i  t h e  p o i n t  a s  h e x a c o s e n  g i v e n  p o i n t  a s  ° G  by*  u s e d  by  g i v e n  K  £  (13)  i  s  (14)  c a l / p m / s e o / ° C  8.000349  80.56  0.000346  90.97-  0.000346 B~62  u s e d  T h e  p o i n t  s e t t i n g  t h e  56.8  P e t e r s e n  70.53-  G30  w a s  R a l s t o n  0.000352  t r i a c o n t a n e  w h i l e  s  f  60.78  T R I A O O I T A N E  T h e  o  m e l t i n g  T e m p e r a t u r e  3.  o a l / o m / s e o / ° 0  Cgg H 5 4  2. HEXACOSAEE T h e  K  m e l t i n g  h a d  a s  a  m e l t i n g  g i v e n  p o i n t  a s  by  p o i n t  o  f  R a l s t o n  g i v e n  by  (13)  P e t e r s e n  66.1 °G T e m p e r a t u r e  ° Q  K  o a l / o m / s e o /  70.52  0.000353  75.37  0.000352  80.70  0.000352  85.60 90.85  0.000350 0.000352  66.1-  0  C  i  s  2 0  4 .  834570  S e t r a t r i a o o n t a n e  S h e  S h e  p r o d u c t  s e t t i n g  P e t e r s e n  u s e d  p o i n t  ( 1 4 )  h a d ,  a s  g i v e s  t  h  w a s  u s e d  t o  /&  m e a s u r e d  t h e  e e l l  t h e  o r a t i o n  w a t e r  O F  o  r  o  t h e  t  f  n o  o  v e r y  C  t h e  f  b e i n g  t h e  t h e  T h i s  C  i  t  e  e q u a t i o n  i  n  t h e  w a s  t h i s  t  o  v a l u e .  T h e  u s e d  v a r i a b l e  d u e  o  c  o o n t a o t  b y  t o  f  a  l  0 . 0 0 2 5 8 7  s h o w s  a  ±  v a r i a t i o n  o  f l u c t u a t i o n  i  i  w a s  n  t h e  l e s s  e e l l .  t h a n  f  n  v a l u e s  b a t h  T h e  o n e  o  f  G  o o u l d  t e m p e r a t u r e  a n d  t e m p e r a t u r e  d e g r e e ,  t h u s  b e  o r  S o h o e n i n g  o o n -  d r o p  a  a c c o u n t e d  w a t e r  a o r o s s  f l u o t u a t i o n  f  e v a p -  t h e  i  n  -  6 7  t h a t  g r e a t  m e t a l  n  t h e  c o n c l u s i o n  m e t a l  T h i s  a s  t o  I  v a l u e  t h a t  t h e  t o  t h e  Q-£££  o e l l .  f o u n d  a o m p a r e d  l e a d s .  w a s  h  c h e c k i n g  d u e  o e l l  t  f a c t o r  l e a d s  B r i d g m a n  f a c t o r  o e l l  w i t h  l e a k a g e  w i r e  e  o e l l  0 . 0 0 2 5 2 2  v a l u e .  t h e r m o c o u p l e  o v e r  O n  o l o s e l y  s e r i o u s  h  R E S U L T S  l e a k a g e .  T h e  b y  f  f  r e p l a c e d  t h e  t a o t  D I S C U S S I O N  w h i l e  e a l s / e m / s e e / ° 0  0 . 0 0 0 3 5 4  l  °G  ° G .  7 2 . 9  9 0 . 8 7  i  ° C .  ± . 0 . 1  7 2 . 3  0 . 0 0 0 3 5 6  f o r  w h i o h  s  8 5 . 6 1  v a l u e  n  i  0 . 0 0 0 3 5 5  o u l a t e d  i  7 2 . 8  8 0 . 6 0  c h e c k e d ,  I m p r o v e m e n t  f  0 . 0 0 0 3 5 6  d i m e n s i o n s  h a d  a s  K  s h a p e  a o t u a l  ( 6 )  ° 6  o  ( 1 2 )  p o i n t  a c c o u n t  f r o m  a n d  m e l t i n g  o  e q u a t i o n  h e a t e r  R a l s t o n  s t a n d a r d i z a t i o n  t h i s  f a c t o r  e  b y  p o i n t  7 5 . 4 5  T  t h e  m e l t i n g  g i v e n  S e m p e r a t u r e  I n  a  o  r  2 1 .  b a t h  o f  t e m p e r a t u r e  o v e r  m a d e  t h e  4  t o  i  n  a v o i d  b a t h  g i v i n g  %  t h e  r i n g  a t  t h i s  h e a t e r  t h e  w a s  t h u s  t e m p e r a t u r e  t o  o f  f a r  a n d  b e  t h e  s p a c e .  n o  a v e r a g e  w a s  v a l u e  d r a i n  o f  f o r  t h e  f l o w  t o  a  d r o p  e o u l d  n  a s  t o  b e  e m  m e a s u r e d  t h e  -  t  w a s  '  t o  v a l u e s  o v e r  e x c e s s i v e  w a t e r  w i t h  a n y  a  a  r i n g .  i  r  i  t h a t  t o  l o n g  o m  u s e  n  t h e y  ,  a n  .  m a y  b e  d u e  t o  b a t t e r y .  a l l o w i n g  a n d  s h o r t  e f f e c t  t h e  0 . 0 0 2 7 2 7  H o w e v e r ,  a  m e a s u r e d  o e l l  f o u n d  s t o r a g e  b y  w h e n  a n n u l a r  o m  t e m p -  t h e  d e c i d e d  6 7  b a t h .  h i g h e r  a n  o f  t h e  e q u i l i b r i u m  s t e a d y .  n o t e d  n  t h u s  a n n u l a r  e y e d r o p p e r  w a s  l e a d  p o s s i b l e  r e a c h  b e c o m e  i  t  a f t e r  e v a p o r a t i o n  t r a p p i n g  G  i  g i v e  l e v e l  i  t h o u t  o f  w a s  t h e  a t  o p e n i n g  a n  0 . 0 0 2 5 8 7  f r o m  f a r  c u r r e n t  s m a l l  i  p o w e r  o e l l  b y  t h e  0 . 0 0 2 4 9 7  w a s  o f  s m a l l e r  T h e  o f  T h e r e f o r e  w h i c h  a s  v a l u e s  o f  v a r i a t i o n  r e m e d i e d  t i m e  r a n g e  r e g u l a r i t y .  S o m e  s l o w  t h e  w l  a t t e m p t  e x p o s e d  w a s  b l e  b r i n g i n g  a d d e d  t h e  f i l m .  p o s s i  v a r i a t i o n  i m m e d i a t e l y  w o u l d  i n s e r t e d  e o u l d  w i t h  T h i s  a  t h e r m o r e g u l a t p r  w h i o h  t h e  A n  a p p r e c i a b l e  b e  w a t e r  a  s  u s e  T h u s  C .  g i v e  t e m p e r a t u r e  b y  e o u l d  o v e r  t h e  o e l l  w h i c h  s p r e a d  o f  f r o m  i  a r e a  a s  p o i n t  e x a m i n i n g  b y  f l o w .  t h i n  O n  f  o e l l  a c r o s s  t h e  f  c o u l d  r e a d i n g s  w a t e r  a n  h e a t  a s  v a l u e s  m a x i m u m  t h e  r e a d i n g  t o p  o  o f  g i v i n g  e l i m i n a t e d  t h e  d e g r e e s  t a k i n g  t h e  o f  d r o p  e a c h  o.oz  e u t  a t  t o p  p e r p e n d i c u l a r  t o  b y  e v a p o r a t i o n  e r a t u r e s  a f t e r  -  c a l c u l a t e d  r e a d i n g s  A l s o  w a s  o f  i  T h i s  c o n s i d e r a b l e  t h u s  n  t h e  t h e  m o s t  p e r i o d  o a s e s ,  o f  t i m e .  21B.  " O  / . T t a c / t Z ^ . O / / O . t  Sit  V  \J  22  Figure  6  (a) shows a p l o t o f t h e r m a l  o f the s t r a i g h t chain hydrocarbons, G26 H 5 4 ,  acosane  C34 H70 v s t e m p e r a t u r e .  increases chain  and t h e r e f o r e consistent  It  obvious that  fit  into Palmer s 1  fitted  ponding  states  since  m o l e c u l a r weight  with  These r e -  these h i g h e r hydrocarbons  equations.  critical  However^  (8). will  o f l i q u i d s w h i c h c a n be I t i s impossible to  data f o r these  compounds  the d e f i n i t e r e l a t i o n  i s a qualitative verification  s p e c i f i c heat  as h a v i n g  the thermal  i n thermal  with  ofhis  conductivity  and l a t e n t h e a t o f v a p o r i z -  a c o n s t a n t v a l u e , i t c a n be n o t e d  conductivity  the cube r o o t  varies  as t h e r e c i p r i c a l  o f the molecular weight.  measured v a l u e o f K v s relationship holds  tigated.  decreases  U s i n g h i s e q u a t i o n and a s s u m i n g t h e v a l u e s o f  the d e n s i t y ,  this  conductivity  the p r o p o s a l s o f Palmer  e m p h a s i s on m o l e o u l a r w e i g h t  ation  The  hydro-  r e s u l t s on t h e b a s i s o f h i s emphasis on c o r r e s -  i s not available.  values.  o f the four  coefficient  classification  with empirical  consider  o f t h i s graph i t  molecular weight.  with  hex-  tetratriacontane  a d e f i n i t e sequence.  s u l t s prove i s quite  -  conductivity  and t h e t e m p e r a t u r e  length  an<a  On e x a m i n a t i o n  i s n o t e d t h a t the thermal carbons has formed  d o e o s a n e Cgg H 4 6 ,  G30 H 6 2  triacontane  conductivities  $?=jf  ( f i g . 6b)  f o r the four  Palmer  (8)  of  On p l o t t i n g t h e i t i s seen  compounds  The v a l u e s f o r t h e l o w e r h y d r o c a r b o n s  g i v e n by Smith  that  that  invesa r e as  (5). states  that  the thermal  conductivity  83.  g e n e r a l l y deoreases with Inorease i n m o l e c u l a r / a t a c o r responding temperature.  The measured values i n c r e a s e with  molecular weight but these are f o r a s p e c i f i c and not f o r a corresponding temperature. temperature c o e f f i c i e n t  temperature  The n e g a t i v e  and i n o r e a s e i n c r i t i c a l  temper-  ature with i n c r e a s e i n molecular weight can v e r y s a t i s f a c t o r i l y e x p l a i n t h i s apparent d i s c r e p a n c y .  S i n c e the  thermal c o n d u c t i v i t y deoreases as temperature  increases,  a h i g h e r hydrocarbon"having a h i g h e r c r i t i c a l  temperature  may  thus have a lower thermal c o n d u c t i v i t y a t a oorres-.  ponding temperature, even though the thermal o o n d u o t i v i t y i n c r e a s e s with molecular weight  at any one s p e c i f i c tem-  perature . On examining the p l o t m o l e c u l a r weight  o f thermal c o n d u c t i v i t y vs  ( F i g . 6b) we note t h a t a smooth curve  oan be drawn through the p r e v i o u s l y measured v a l u e s o f lower hydrocarbons  as measured by the t h i c k d i s k method  continued through the v a l u e s as determined i n t h i s i n v e s t i g a t i o n and r e c a l c u l a t e d on the b a s i s o f Bates v a l u e s f o r thermal c o n d u c t i v i t y o f water.  We  (11)  a l s o note  that the c o n d u c t i v i t y shows a tendency t o i n c r e a s e i n d e c r e a s i n g increments as the moleoular weight i n c r e a s e s . T h i s f a c t i s o o n s i s t a n t with other p r o p e r t i e s o f hydrocarbons such as b o i l i n g p o i n t s , m e l t i n g p o i n t s critical  and  temperatures.  It i s of interest  t o attempt to c o r r e l a t e our r e -  s u l t s with some e m p i r i c a l equations t h a t have been  24. advanced..  As p r e v i o u s l y s t a t e d the b e s t  e m p i r i o a l eq-...  u a t i o n by Smith (5) r e q u i r e s d e n s i t y , molecular s p e c i f i c heat and the molecular  viscosity.  to d a t e .  n a t i o n by Smith the value i n molecular  Of these o n l y d e n s i t y  weight are a v a i l a b l e and  of values i s impossible  weight and  weight, and  thus c a l c u l a t i o n  According  to the e q  r  o f K i n c r e a s e s w i t h increase.,  d e n s i t y at a s p e c i f i c  temperatur  T h i s i s v e r i f i e d by the values measured and p l o t t e d i n figure  6b.  „  25.  v T I I  A .  S u g g e s t i o n s  B y  t h e  u s i n g  v a l u e .  t h a n  w a t e r  d u c e  t h e  g r e a t e r  t h e  i  o  f  t h e  A n  b a t h  c a n  b e  h e a t e r  o b t a i n e d  M o d i f i c a t i o n  t o p  o  i  s  f  i m p r o v e m e n t  t h e  i  r e a d i n g  n  w i t h  f  d u e  b y  l e a d  t  t  c a l i b r a t i o n ,  o  a  v e r y  c o n d u c t i v i t y  a n d  f i l m  t o  t h u s  r  e  c o n s t a n t  t o  f a l l i n g  t o  t  o  e  -  t h e  c o n t a c t  a  u s e  t h u s  o  r e d u o e  f  i  n  -  r e a d i n g s  t r i p l i n g  t h e  o  b a t t e r i e s  o u r r e n t  t h e  m a g -  i  n  d e v i c e  c e l l  s e r i e s  a  h e a t e r  m o r e  a n d  c u r r e n t .  c o u l d  a  c o n s t a n t  m o r e  b e  u s e d  t  o  c o n t r o l  t e m p e r a t u r e  t h a n  r e l a y .  C e l l  c e l l  b e  t h r e e  c o r e  m a d e  s e p a r a t e  ( s e e  i  n  f  e r r o r .  s w i t c h  m e r c u r y  a n d  m e t a l  p r e c i s i o n  t h u s  h  t o  f e a s i b l e  s t o r a g e  s u p p l i e d  a  d u e  t a k i n g  s e r i e s  b e  g i v e  b e  t h e  r e d u c i n g  r e l a y  a n d  w o u l d  a i d e d  s e v e r a l  d u e  c o u l d  r  t h e r m a l  l e a k a g e  r e a d i n g s  a n d  c o u l d  o  e m f  o  l i m i t e d  l o w e r  a c r o s s  a l s o  c o n s t r u c t i n g  o  f  t  e l e c t r o n i c  e r r o r  a  t h e  i  d r o p  e l e c t r o n i c  t h e  t h a t  r e d u c e d  u t i l i z i n g  r e d u c e  w i t h  b e  f  r e a d i n g .  r e a d i n g s  a n  c o m p o u n d  c o u l d  g r e a t e r  t h e r m o c o u p l e s  e m p l o y i n g  B y  n  e r r o r  c u r r e n t  t h e  i  C h a n g e s .  b o i l i n g  c e l l  a  a p p e a r s  s t e a d y  B .  g i v e  T h i s  t h r e e  B y  o r  t h e  t e m p e r a t u r e  r e l a t i v e  n i t u d e  t  h i g h e r  c o m p o u n d  g r e a t l y  s t r u m e n t s .  t h e  P r o c e d u r a l  n  w o u l d  S i n o e  r  i  A  e r r o r  b e e n  o  s o m e  e v a p o r a t i o n  s m a l l  h a s  f  A P P E N D I X  f i g u r e  t h e  b r a c k e t s  7 )  a  a s s e m b l y  t o  g r e a t  o  f  t h e  s u p p o r t  d e a l  o  c e l l .  f  26.  T h i s  t o g e t h e r  t h e  w i l l  a s s e m b l y  o o r r e o t  l e a d s  d o m e  v e r y  i  n  l o w e r e d  a r e  s l o w l y  o v e r  p r o n g s  e x t e n d e d  t h e  b e  i s  r e m o v e d  o f  a  l  a s  d  m o r e  i  i  t o  n  n  o b j e c t i o n  i n t o  m  w o u l d  l  l  i  -  i  n  b e  t h e  m a d e  o r i g i n a l  i n v e s t i g a t i o n  b e n t  a r o u n d  b r e a k a g e  w o u l d  t h e  i  a f t e r  f i r m l y  t h e  b e  t h i s  t o  t  o n e  t h i s  c a u s e d  m o d i f i e d  i  a d j u s t m e n t  w e l l s  u s e d  i n s t a n o e s  s c r e w s  t h e  d r a w n  T h e n  t h e  d o w n  c e l l  o u t  c e l l ,  t h e  o u t e r  p o s i t i o n .  d o w n .  b r a c k e t s  n o t  t i g h t e n e d  l o n g  e  a s  b a d  m o d i f i e d  i n t o  i n t o  t h e  t h r e e  t o  t h e  f a s t e n e d  s e r t e d  H o w  h e a t e r  a n y  h  f o r  t o p  a s  f  a p p r o x i m a t e l y  b e  t h e  c e l l  c l e a n e d .  p l a c e d  s e o u r e l y  w o u l d  t o  o f  a l s o  p r e s e n t  t h e  t h e  b e  e  c e l l  l  -  s h o u l d  e l i m i n a t e d .  a s s e m b l e  t h o r o u g h l y  o f  m a o h i n e d  t h e r m o c o u p l e  t h e  c e l l  t h u s  p i p e  n e c e s s i t y  f r o m  c e l l  t h e  a n d  b e  T h e  s e v e r a l  n e a r l y  T o  w o u l d  c o r e  I n  t h e  W i t h  i m i n a t e d  b e  t o  w h i c h  l e a d s .  a n y  a c c e s s i b l e  c e l l .  s m a l l  d i s t a n c e  t h e  p o s i t i o n .  e a s i l y  t h e  a  e l i m i n a t e  s i n c e  B r i d g m a n  b e  t h e  a n n u l a r . s p a c e  m e t e r  a s  w i t h  m o r e  A f t e r  t h e  t h r e e  t h e  t h a n  1  mm  s u p p o r t  i  l  e y e d r o p p e r .  e  d  m a c h i n e d  a n n u l a r  i n t o  t h e  A f t e r  l  t h i s  t o  r i n g  t h e  t h e  t h e  i  r  s  t  p i p e  s  t h e n  b r a c k e t s  i  w i t h  a n n u l a r  o e n t r e  i  m e a s u r e d  c o r e  l o w  f  b e  f  T h e  t h e  b e  t'o  w o u l d  c y l i n d e r .  s e o u r e l y .  c a n  c e l l  l i q u i d  i n t o  w h i o h  t h e  s  i  s p a c e .  h a v e  m a c h i n e d  p i p e  b y  -  t h e  c o r e  o v e r f l o w  n  u s e  27.  8u6<3ES TED  MODIFICA T/O/V  F/G. 7.  2 8 .  C .  E x p e r i m e n t a l  ( a )  C a l i b r a t i o n  T e m p .  D a t a  o  K H  ° C .  2  f  C e l l  T . C .  /tV.  0  H e a t e r  H e a t e r  T . C .  e g •  v o l t s  a m p s  yU.V./°C  F a c t o r G  4 4 . 9 5  0 . 0 0 1 4 7 4  3 0 . 0  0 - 5 4 7 5  1 . 0 3 6 7  4 0 . 4  0 . 0 0 2 6 9 0  5 0 . 0 3  0 . 0 G 1 4 8 5  3 0 . 4  0 . 5 5 3 0  1 . 0 3 0 2  4 2 . 6  0 . 0 0 2 5 9 4  5 5 . 1 1  0 . 0 0 1 4 9 7  3 1 . 0  0 . 5 5 5 6  1 . 0 3 1 7  4 3 . 0  0 . 0 0 2 6 2 7  6 0 . 1 9  0 . 0 0 1 5 0 8  3 0 . 0  0 . 5 5 7 4  1 . 0 1 8 9  4 3 . 1  0 . 0 0 2 5 7 8  6 5 . 1 6  0 . 0 0 1 5 1 9  3 0 . 3  0 . 5 6 5 5  1 . 0 2 7 1  4 3 . 1  0 . 0 0 2 5 6 4  7 0 . 3 5  0 . 0 0 1 5 2 9  3 2 . 2  0 . 5 9 7 0  1 . 0 4 7 1  4 3 . 1  0 . 0 G 2 5 4 9  7 5 . 3 7  0 . 0 0 1 5 4 1  3 1 . 5  0 . 5 8 8 5  1 . 0 3 6 0  4 3 . 1  0 . 0 0 2 5 7 6  4 0 . 0 5  0 . 0 0 1 4 6 2  8 0 . 0  1 . 3 5 7 6  1 . 1 0 0 5  4 0 . 0  0 . 0 0 2 7 2 7  5 0 . 3 2  0 . 0 0 1 4 8 5  7 6 . 2  1 . 3 5 6 5  1 . 1 0 3 0  4 2 . 6  0 . 0 0 2 5 0 8  6 0 . 3 1  0 . 0 0 1 5 0 9  7 8 . 0  1 . 3 5 2 4  1 . 1 0 2 5  4 3 . 1  0 . 0 0 2 5 5 3  7 0 . 4 0  0 . 0 0 1 5 3 0  7 5 . 3  1 . 3 3 4 8  1 . 1 0 7 5  4 3 . 1  0 . 0 0 2 4 9 7  ( b )  T h e r m a l  ( i )  T e m p ° C  C o n d u c t i v i t i e s  D o c o s a n e  T . C .  H e a t e r  H e a t e r  /JL7  V o l t s  A m p s  T . C . e q  K  j u y . / ° C  4 5 . 3 4  1 3 1 . 8  0 . 5 6 9 3  1 . 0 6 9 0  4 0 . 4  0 . 0 0 0 3 4 8  5 0 . 1 5  1 3 8 . 6  0 . 5 7 1 1  1 . 0 7 2 8  4 2 . 6  0 . 0 0 0 3 4 9  6 0 . 6 2  1 4 3 . 2  0 . 5 7 3 0  1 . 0 7 9 0  4 3 . 1  0 . 0 0 0 3 4 5  7 0 . 2 2  1 4 1 . 8  0 . 5 7 1 2  1 . 0 7 0 9  4 3 . 1  0 . 0 0 0 3 4 4  8 0 . 6 5  1 3 7 . 3  0 . 5 5 9 8  1 . 0 4 9 2  4 3 . 1  0 . 0 0 0 3 4 2  2 9 .  ( i i )  T e m p  H e x a c o s a n e  H e a t e r  H e a t e r  yU.V  V o l t s  A m p s  6 0 . 7 8  3 3 0  1 . 3 3 9 1  1 . 0 8 4 8  4 3 . 1  0 . 0 0 0 3 5 2  7 0 . 5 3  3 3 2  1 . 3 3 9 7  1 . 0 8 1 0  4 3 . 1  0 . 0 0 0 3 4 9  8 0 . 5 6  3 3 7  1 . 3 4 7 0  1 . 0 8 4 1  4 3 . 1  0 . 0 0 0 3 4 6  9 0 . 9 7  3 5 5  1 . 3 4 6 8  1 . 0 8 2 5  4 5 . 4  0 . 0 0 0 3 4 6  O  0  T . C .  T . G . e q  K  ^LV/°C  ( i i i )  T e m p  T r i a c o n t a n e  T . G .  °C  H e a t e r  H e a t e r  V o l t s  A m p s  T . G . e q  K  / v / ° C  7 0 . 5 2  3 3 2  1 . 3 5 1 7  1 . 0 8 4 4  4 3 . 1  0 . 0 0 0 3 5 3  7 5 . 3 7  3 3 3  1 . 3 5 4 0  1 . 0 8 5 6  4 3 . 1  0 . 0 0 0 3 5 2  8 0 . 7 0  3 3 5  1 . 3 6 4 3  1 . 0 8 2 7  4 3 . 1  0 . 0 0 0 3 5 2  8 5 . 6 0  3 5 2  1 . 3 7 8 9  1 . 0 8 0 3  4 4 . 7  0 . 0 0 0 3 5 0  9 0 . 8 5  3 5 6  1 . 3 8 2 8  1 . 0 7 7 8  4 5 . 4  0 . 0 0 0 3 5 2  ( i v )  T e m p  T e t r a t r i a o o n t a n e  T . G .  °C  H e a t e r  H e a t e r  V o l t s  A m p s  T . C . e q  K  yUV/°C  7 5 . 4 5  3 2 9  1 . 3 5 1 4  1 . 0 8 7 3  4 3 . 1  0 . 0 0 0 3 5 6  8 0 . 6 0  3 3 l '  1 . 3 5 4 5  1 . 0 8 7 6  4 3 . 1  0 . 0 0 0 3 5 5  8 5 . 6 1  3 4 2  1 . 3 5 5 5  1 . 0 8 6 0  4 4 . 7  0 . 0 0 0 3 5 6  9 0 . 8 7  3 5 0  1 . 3 5 7 3  1 . 0 8 5 2  4 5 . 4  0 . 0 0 0 3 5 4  3 G .  .  B I B L I O G R A P H Y  1 .  B r i d g m a n ,  P r o c .  A m .  A o a d .  A r t s  .  3 .  S m i t h ,  I n d .  E n g .  C h e m . ,  2 2 ,  1 2 4 6  4 .  S m i t h ,  I n d .  E n g .  G h e m . ,  2 3 ,  4 1 6  5 .  S m i t h ,  T r a n s .  6 .  S c h o e n i n g ,  7 .  D e n b i g h ;  8 .  P a l m e r ,  9 .  S t u l l ,  M . A . S c .  .  S o c *  I n d .  I n d .  E n g i  U . B . C .  6 5 j  G h e m . , ' 4 0 ,  H a z z a r d ,  5 8 ,  6 1  8 9 ' ( 1 9 4 8 )  3 9 ,  5 1 7 * ( l 9 4 7 )  E n g .  G h e m .  B a t e s ,  I n d .  E n g ;  C h e m .  2 5 ,  4 3 1  ( 1 9 3 3 )  1 2 .  B a t e s ,  I n d .  E n g .  G h e m .  2 8 ,  4 9 4  ( 1 9 3 6 )  IZi  R a l s t o n ,  a n d  •  T h e i r  •  1 4 .  P e t e r s e n ,  Z .  1 5 .  B a t e s  H a z z a r d ,  I n d .  1 6 .  D a n i l o f f ,  J  S . ,  a n d  .  C .  1 9 3  D e r i v a t i v e s  1 2 ,  E n g .  5 4 ,  3 7 ,  8 7 7 - 8 ,  E l e c k t r o o h e m . ,  A .  ( 1 9 3 6 )  ( 1 9 4 6 )  1 1 .  A c i d s  7 1 9  ( 1 9 4 9 )  B a t e s  F a t t y  I n d .  ( 1 9 3 1 )  E n g . ,  I n d . ,  C h e m . ,  ( 1 9 3 0 )  1 0 .  -  a n d  C h e m .  E n g .  ( 1 8 8 0 )  M e o h .  T h e s i s ,  5 9 .  ( 1 9 2 3 )  W i e d .  S o c .  1 0 1  S c i e n c e  1  W e b e r ,  A m .  1 0 ,  4  2 .  J  A n n . ,  1  a n d  1 4 1  C h e m . ,  ( 1 9 4 5 )  3 5 7 ,  ( 1 9 4 8 )  ( 1 9 0 6 )  3 3 ,  1 3 2 8 * ( 1 9 3 2 )  3 7 5  ( 1 9 4 1 )  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059193/manifest

Comment

Related Items