Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The production of uniform sized drops in liquid-liquid systems Izard, John Arthur Whitaker 1962

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1963_A7 I9 P7.pdf [ 8.6MB ]
Metadata
JSON: 831-1.0059154.json
JSON-LD: 831-1.0059154-ld.json
RDF/XML (Pretty): 831-1.0059154-rdf.xml
RDF/JSON: 831-1.0059154-rdf.json
Turtle: 831-1.0059154-turtle.txt
N-Triples: 831-1.0059154-rdf-ntriples.txt
Original Record: 831-1.0059154-source.json
Full Text
831-1.0059154-fulltext.txt
Citation
831-1.0059154.ris

Full Text

THE PRODUCTION OF UNIFORM SIZED DROPS I N LIQUID-LIQUID SYSTEMS  by  JOHN ARTHUR WHITAKER IZARD B. Eng. (Chem.) M c G i l l U n i v e r s i t y  1946  A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE  i n t h e Department o f  CHEMICAL ENGINEERING  We accept t h i s t h e s i s as c o n f o r m i n g to the required standard.  The U n i v e r s i t y o f B r i t i s h Columbia October,  1962  In presenting this thesis in. partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make i t freely available for reference and study.  I further agree that permission  for extensive copying of this thesis for scholarly purposes may  be  granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.  J . A. I z a r d .  Department of  Chemical Engineering  The University of British Columbia, Vancouver 3, Canada.  NOV 10 1962  Date  ii ABSTRACT  The  p r o d u c t i o n o f u n i f o r m - s i z e d drops  without  s m a l l f o l l o w e r drops o r " t r a i l e r s " i n l i q u i d - l i q u i d systems was  s t u d i e d u s i n g a p e r i o d i c i n j e c t i o n technique  d i s p e r s i n g one other.  l i q u i d t h r o u g h a s h a r p edged n o z z l e i n t o  Previous i n v e s t i g a t o r s u s i n g a continuous  technique  for  found t h a t u n i f o r m s i z e d drops w i t h o u t  the  flow trailers  were l i m i t e d t o systems o f h i g h e r i n t e r f a c i a l t e n s i o n . The  e f f e c t s o f n o z z l e i n s i d e diameter,,  m a t e r i a l , and o f v e l o c i t y - t i m e p r o f i l e o f t h e  nozzle  dispersed  f l u i d t h r o u g h a n o z z l e a t drop f o r m a t i o n v/ere examined using> , two  systems; n - b u t a n o l  and w a t e r o f v e r y low  interfacial  t e n s i o n , and m e t h y l i s o b u t y l ketone and w a t e r o f low f a c i a l tension.  These two  inter-  systems were chosen so t h a t the  r e s u l t s o f t h i s s t u d y c o u l d be i n t e g r a t e d w i t h o t h e r work. The  v e l o c i t y - t i m e p r o f i l e s were o b t a i n e d by u s i n g  a p o s i t i v e displacement  b e l l o w s pump, t h e s t r o k e o f w h i c h  was  f o l l o w e r through a v a r i a b l e r a t i o  c o n t r o l l e d by a cam  l i n k a g e u s i n g t h r e e d i f f e r e n t cam The  profiles.  c o n d i t i o n s under w h i c h u n i f o r m  s i z e d drops ;"  w i t h o u t t r a i l e r s were formed, were l o c a t e d f o r b o t h systems. r  The  e f f e c t s o f s u r f a c e a c t i v e contaminants and  w e t t i n g o f t h e n o z z l e t i p by the d i s p e r s e d phase were  the  considered.  xii  ACKNOWLEDGEMENTS  The a u t h o r wishes t o acknowledge t h e a s s i s t a n c e he has r e c e i v e d I n t h i s r e s e a r c h from Dr. J . S. F o r s y t h and Dr. S. D. Cavers•. He a l s o w i s h e s t o acknowledge" t h e f i n a n c i a l a s s i s t a n c e g i v e n by t h e N a t i o n a l R e s e a r c h C o u n c i l o f Canada.  i i i TABLE OF  CONTENTS Page 1  INTRODUCTION EXPERIMENTAL INVESTIGATION I  II  PRELIMINARY INVESTIGATION  11 11  (A)  SCOPE  11  (B)  APPARATUS  11  (C)  PROCEDURE  17  MAIN INVESTIGATION  21  (A)  SCOPE  21  (B) ... .  MODIFICATIONS TO E X I S T I N G APPARATUS  22  (I)  D e s i g n o f pump a n d calibration  22  Pump m e c h a n i s m  27  Cams  28  Piping modifications  37  Optical modifications  37  (6) EXPERIMENTAL WORK WITH THE _ . N-BUTANOL AND WATER SYSTEM (i) Charging the . ; apparatus  48  . (ii) (Iii) (iv) (vj  (II)  (iii)  (iv)  48  Examination o f drops produced w i t h s t a i n l e s s s t e e l nozzles  49  E x a m i n a t i o n o f drops produced w i t h brass nozzles  55  Examination o f drops produced w i t h T e f l o n tipped nozzles  J6  iv Page (D) EXPERIMENTAL WORK WITH . METHYL ISOBUTYL KETONE AND WATER-SYSTEM. . . RESULTS AND DISCUSSION  8l 96  CONCLUSION  112  SUGGESTIONS FOR FURTHER STUDY  114  APPENDICES Appendix A  116  Appendix B  117  REFERENCES  118  V  LIST GP FIGURES FIGURE  PAGE  1.  O b l a t e s p h e r o i d drop shape ......  4  2.  Apparatus f o r t h e P r e l i m i n a r y Investigation  12  3.  Diagrammatic l a y o u t o f a p p a r a t u s , Preliminary Investigation  13  4.  O p t i c a l arrangement, P r e l i m i n a r y Investigation  18  5.  Hoke 1/8 i n . b e l l o w s  seal  needle v a l v e  23  6.  Bellows  24  7.  Pump d r i v e components  8.  Cam o p e r a t e d a d j u s t a b l e  v a l v e pump  29  s t r o k e mechanism  30  Cam f o l l o w e r  32  10.  Cam "A"  33  11.  Cam "A" and "B"  34  12.  Apparatus  39  13.  Mounted F r e s n e l l e n s  41  14.  R e v i s e d m i r r o r arrangement  43  15.  Portable mirror holders  44  16.  Apparatus s e t up w i t h Bo l e x H16 R e f l e x Camera Runs 14 t o 24. Types o f drops produced, l / 8 i n . I.D. s t a i n l e s s s t e e l n o z z l e , Cam "A" f o r w a r d , n - b u t a n o l and water  9.  17.  46  52  vi FIGURE 18.  19.  20.  21. i  22.  23.  24..  PAGE Run 35 • Types o f drops produced and r e g i o n o f s i n g l e d r o p s , 5/32 i n . I.D. s t a i n l e s s s t e e l n o z z l e , Cam "A" r e v e r s e d , n - b u t a n o l and.water...  54  Run 38. Types o f drops produced and r e g i o n o f s i n g l e d r o p s , 5/32 i n . * I.D. brass,, n o z z l e , Cam "A" f o r w a r d , nr-butanol and w a t e r  57  Run 39. Types o f drops produced and r e g i o n o f s i n g l e d r o p s , 5/32 i n . I.D.. b r a s s . , , ., n o z z l e , Cam "A" r e v e r s e d , n - b u t a n o l and w a t e r . .  58  Run 40. Types o f drops produced and r e g i o n . o f . s i n g l e d r o p s , 5/32 i n . I.D. b r a s s n o z z l e , Cam "A" forward,, 1 / 4 , i n . s p a c e r , n - b u t a n o l and w a t e r  59  Run 4 1 . Types of. drops. .„,., produced and r e g i o n o f s i n g l e -drops, 5/32 i n . I.D., b r a s s , , n o z z l e , Cam "B", n - b u t a n o l and w a t e r . . . . . . . . . . . . . . . . . . . , . ,  60  Run 42.. Types of, drops. produced and r e g i o n o f s i n g l e d r o p s , 5/32, In.., I.D... b r a s s n o z z l e , Cam "A" f o r w a r d ( r e p a i r e d ) , n - b u t a n o l and w a t e r .  61  Run 4 3 . " Types of. drops .. . . p r o d u c e d , 1/8 i n . I.D. b r a s s nozzle,, Cam "A" forward,, , . . , n - b u t a n o l and w a t e r  62  Run 4 4 . Types o f drops . , „ . p r o d u c e d , 1/8 i n . I.D. b r a s s n o z z l e , Cam "A" r e v e r s e d , n - b u t a n o l and water,.  63  t  rtt  s  25.  f  ;  vii FIGURE 26.  27.  28.  29.  30.  31.  32.  33. f>  34.  PAGE Run 4 5 . Types o f drops . produced,, 3/16 i n . , I.D. b r a s s • ' n o z z l e , Gam "B", n - b u t a n o l and w a t e r .  64  Run 46. Types o f drops produced, 3 / l 6 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d , n - b u t a n o l and water  65  Run 4 7 . Types o f 'drops produced, 3 / l 6 i n . I*D. b r a s s n o z z l e , Cam "A" r e v e r s e d , n - b u t a n o l and w a t e r .  66  Run 5 ! . Region o f s i n g l e d r o p s , 11/64 i n . I . D . . b r a s s , n o z z l e , Cam "A" f o r w a r d , n - b u t a n o l and w a t e r .  67  Run. 5 2 . Regions o f , s i n g l e drops,.11/64 i n . I.D.,brass n o z z l e . Cam "A" r e v e r s e d , . .. ., n - b u t a h o l and water  68  Run 5 3 . Region o f s i n g l e d r o p s , 11/64 i n . I.D. b r a s s n o z z l e , Cam "B", n - b u t a n o l and w a t e r . . . , . . , . . ; . . . . . . . . . . , . .  69  Run 5 4 , r e p e t i t i o n o f Run 5 1 . R e g i o n . o f s i n g l e d r o p s , 11/64 i n . I.D. brass„nozzle, Cam "A" f o r w a r d , n - b u t a n o l and w a t e r . . . .  70  Run 55, r e p e t i t i o n o f Run 5 3 . Regions o f s i n g l e d r o p s , 11/64 i n . I.D. b r a s s , n o z z l e , Cam "B" n - b u t a n o l and water..,.....'  71  E f f e c t s of Contamination Run 5 3 , Frame 2 0 , b e f o r e cont a m i n a t i o n , Run ^ ^ F r a m e 2 1 , a f t e r contamination.  73  viii FIGURE 35.  PAGE Run 48. Types o f drops produced, 11/64 i n . I.D. ''Teflon" nozzle,' Gam "A" f o r w a r d , n - b u t a n o l *and w a t e r . . •  .78,  Run 49. Types o f drops produced,. 11/64 i n . I.D. " T e f l o n " n o z z l e , Cam "A'J r e v e r s e d , n - b u t a n o l and w a t e r . . .  79  37.  11/64 I n . I.D. " T e f l o n " t i p p e d n o z z l e , n - b u t a n o l and w a t e r . . . . .  80  38.  B e l l o w s pump......... **  84  39;  Run 57; R e g i o n o f s i n g l e d r o p s , 1/8 i n . I.D. b r a s s n o z z l e , Cam "A" r e v e r s e d , m e t h y l i s o b u t y l ketone and water;*.**...  86  Run 58* R e g i o n o f s i n g l e d r o p s , 1/8 i n . I.D. b r a s s n o z z l e ; Cam "A" f o r w a r d , .methyl i s o b u t y l ketone and w a t e r . * . * . . *  87  Run 59. R e g i o n o f s i n g l e d r o p s , 1/8 i n . I.D; b r a s s n o z z l e , Cam "B", m e t h y l i s o b u t y l ketone and*water. ;**.*. *  88  36;  40;  41*  42.  43.  44.  **..  Run 60; R e g i o n o f s i n g l e ' d r o p s , 11/64 i n . I.D. b r a s s 1 n o z z l e , Cam "B", c o n t a m i n a t e d m e t h y l i s o b u t y l ketone and water..  89  Run 63. R e g i o n o f s i n g l e drops-, 11/64 i n . I.D.. b r a s s n o z z l e , Cam "B", methyl* ..•>•, I s o b u t y l ketone and water.........  90  Run 64. Region o f s i n g l e d r o p s , 11/64 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d , - m e t h y l . I s o b u t y l ketone and w a t e r .  91  ix FIGURE 45.  46.  PAGE Run 6 7 . Region drops, 7/64 i n . n o z z l e , Cam "A" i s o b u t y l ketone  of single I.D. b r a s s forward, methyl and water.......  92  Run 68. Region o f s i n g l e drops, 5/32 i n . I.D. b r a s s n o z z l e , Cam "A" forward, methyl i s o b u t y l ketone and water  93  Run 3 6 , Frame 3 , S i n g l e Drops without T r a i l e r s  99  x  47. 48a. 48b. 49a. 49b. 50a. 50b. 51a. 51b. 52a. 52b.  ••••>•  Run 37* Frame 15, S i n g l e Drops, without T r a i l e r s  100  Run 37* Frame 16, S i n g l e Drops without" T r a i l e r s  100  Run 4 2 , Frame 2, S i n g l e Drops without T r a i l e r s  101  Run 4 3 , Frame 15, S i n g l e Drop and.One T r a i l e r . . .  101  Run 46, Frame 9* One Drop and Two T r a i l e r s  102  Run 5 1 , Frame 22, S i n g l e Drop without T r a i l e r s  102  Run 5 6 , Frame 4, S i n g l e Drop without T r a i l e r s  103  Run 5 6 , Frame 1 3 , S i n g l e Drop xvithout T r a i l e r s  103  Run 6 7 , Frame 4, S i n g l e Drop without T r a i l e r s *  104  Run 68, Frame 6, S i n g l e Drop w i t h o u t . T r a i l e r s  104  X  FIGURE 53  54  PAGE E f f e c t o f Cam S p a c e r , F i g u r e s 21 and 22 superimposed, n - b u t a n o l and w a t e r . .  107  S t a i n l e s s s t e e l and b r a s s n o z z l e s , F i g u r e s 18"and'20 s u p e r . imposed, n - b u t a n o l . and w a t e r . . . .  108  xi LIST OF TABLES  Key t o F i g u r e 1..  ...  Key t o F i g u r e 3....... Key t o F i g u r e 4... C a l i b r a t i o n o f 1/8 i n . Hoke B e l l o w s S e a l V a l v e #432 Key t o F i g u r e 8 Key t o F i g u r e 12. Runs made w i t h b r a s s n o z z l e s w i t h n - b u t a n o l - w a t e r system S u r f a c e T e n s i o n Measurements.... D. E x p e r i m e n t a l I n v e s t i g a t i o n M e t h y l I s o b u t y l Ketone-Water System Measurement o f drop s i z e s by p r o j e c t i o n on g r a p h paper using a s l i d e - s t r i p f i l m projector.  INTRODUCTION Although throughout t h i s century a considerable amount o f a t t e n t i o n has been g i v e n t o t h e s t u d y o f drops and b u b b l e s i n g a s - l i q u i d systems, o n l y i n t h e l a s t t h r e e decades has much i n t e r e s t been shown i n s t u d i e s o f drops i n l i q u i d - l i q u i d systems.  As t h e p r e s e n t i n v e s t i g a t i o n i s  concerned w i t h t h i s l a t t e r f i e l d , o n l y p e r t i n e n t  literature  on drop f o r m a t i o n i n l i q u i d - l i q u i d systems w i l l be c o n s i d e r e d . Hayworth and T r e y b a l ( l ) s t u d i e d t h e f o r m a t i o n o f drops f o r t h e c o n t i n u o u s f l o w o f one l i q u i d i n t o a n o t h e r t h r o u g h sharp-edged n o z z l e s .  Prom t h i s s t u d y , t h e y d e v e l o p e d  a s e m i e m p i r i c a l e q u a t i o n f o r c a l c u l a t i n g drop s i z e based upon a f o r c e b a l a n c e -during drop f o r m a t i o n on t h e t i p o f a nozzle.  F o r n o z z l e f l o w v e l o c i t i e s up t o 10 cm. p e r second  t h i s e q u a t i o n p r e d i c t e d t h e d i a m e t e r o f t h e drops produced, and from 10 t o 30 cm. p e r second, t h e d i a m e t e r o f t h e l a r g e s t drops p r o d u c e d .  Drop s i z e was found t o be " u n i f o r m " and t o  i n c r e a s e I n s i z e w i t h i n c r e a s e i n v e l o c i t y up t o 10 cm. p e r second, and t h e n t o d e c r e a s e b o t h i n u n i f o r m i t y and i n s i z e w i t h f u r t h e r i n c r e a s e i n v e l o c i t y from 10 t o 30 cm. p e r second. uniform".  Above 30 cm. p e r second drop s i z e was v e r y "nonThey a l s o o b s e r v e d t h a t a t c e r t a i n v e l o c i t i e s a  v e r y s m a l l drop below each l a r g e r drop was formed.  2 K&ftttn and H i x s o n ( 2 ) p l o t t e d drop s i z e d i s t r i b u t i o n of t o l u e n e d i s p e r s e d i n w a t e r and showed t h a t f o r a 4.33 I.D. g l a s s n o z z l e and a t o l u e n e f l o w o f 1.50 (a n o z z l e v e l o c i t y o f 10.3  mm.  c c . p e r second  cm. p e r second) t h e r e was more  t h a n 10$ d e v i a t i o n from t h e mean f o r 10$ o f t h e drops formed. A p p a r e n t l y , e x c e p t where f l o w r a t e s were v e r y s m a l l (up t o 10 cm. p e r second) and i n t e r f a c i a l t e n s i o n s r e l a t i v e l y the  large,  word " u n i f o r m " must have been used l o o s e l y when a p p l i e d  t o sifcSootfi d r o p s i n b o t h o f t h e s e i n v e s t i g a t i o n s . K e i t h and H i x s o n a l s o o b s e r v e d t h a t f o r a g i v e n n o z z l e s i z e and system t h e r e was a p a r t i c u l a r f l o w v e l o c i t y w i t h i n t h e range o f 0 t o 40 cm. p e r second f o r minimum drop s i z e and maximum i n t e r f a c i a l a r e a .  They found t h a t t h e drop  e c c e n t r i c i t y o f t h e o b l a t e s p h e r o i d a l drops, z/x f i g u r e 1, was d i r e c t l y p r o p o r t i o n a l t o t h e drop s i z e d i a m e t e r based on a sphere o f e q u i v a l e n t volume.  They n o t e d t h a t s o l v e n t s o f  h i g h e r v i s c o s i t y and l o w e r i n t e r f a c i a l t e n s i o n would not form i n d i v i d u a l drops from t h e i r l a r g e r n o z z l e s . L e w i s , Jones and P r a t t (3)  o b s e r v e d t h a t t h e two  h o r i z o n t a l a x i s d i a m e t e r s x and y f i g u r e 1, were e q u a l , and t h a t a l t h o u g h drops above 1 mm.  r a d i u s appeared as o b l a t e  s p h e r o i d s , drops o f l e s s t h a n 1 mm.  r a d i u s appeared as s p h e r e s .  P u j i n a w a , Maruyama and N a k a i k e ( 4 ) , s t u d y i n g t h e d i s p e r s i o n o f benzene i n t o w a t e r , d i s t i n g u i s h e d f o u r p a t t e r n s of drop f o r m a t i o n and r e l a t e d them t o t h e change i n v e l o c i t y o f the  emergent benzene.  -  These p a t t e r n s were:  f i r s t , where t h e speed was l o w (below  30 cm. p e r second) and t h e benzene column j u s t came i n t o v i e w and drops were formed a t t h e n o z z l e ; second, ("laminar f l o w " from 30 t o 50 cm. p e r second) where t h e benzene  column  i n c r e a s e d up t o maximum h e i g h t and drops were formed a t t h e top; t h i r d , ("turbulent  f l o w " from 60 t o 80 cm. p e r second)  where j e t l e n g t h d e c r e a s e d ; and f o u r t h , where t h e j e t was deformed and v e r y f i n e d r o p l e t s were produced.  These  phenomena had been r e p o r t e d by o t h e r s , ( l , 2, 5) Siemes and Kauffmann  (5) s t u d i e d drop s i z e  distri-  b u t i o n a f t e r j e t break-up as a f f e c t e d by i n t e r f a c i a l t e n s i o n and d e n s i t y d i f f e r e n c e between t h e phases, and by t h e v i s c o s i t y o f t h e c o n t i n u o u s phase.  They found a maximum  I n t e r f a c i a l a r e a i n t h e l o w e r v e l o c i t y range as d i d K e i t h and H i x s o n ( 2 ) .  Siemes and Kauffmann  (5) a l s o o b s e r v e d t h a t  t h e d i s t r i b u t i o n o b t a i n e d by d i s p e r s i n g a l i g h t l i q u i d i n t o a heavy one t h r o u g h a n o z z l e p o i n t i n g upwards was t h e same as t h a t o b t a i n e d by d i s p e r s i n g t h e heavy l i q u i d i n t o t h e l i g h t e r one t h r o u g h t h e n o z z l e p o i n t i n g downwards. Tanweer (6) c o r r e l a t e d drop s i z e w i t h d i a m e t e r o f the o r i f i c e . reported that:  He r e f e r r e d t o t h e work o f J o s h i (7) who  FIGURE  I  "OBLATE SPHEROID SHAPE ( TWO  CONJOINED  OBLATE  DROP" SEMI SPHEROIDS )  TABLE 1 Key t o F i g u r e 1  H o r i z o n t a l diameter o f drop H o r i z o n t a l diameter o f drop p e r p e n d i c u l a r t o x Semi minor diameter o f lower o b l a t e semi  spheroid  Semi minor diameter o f upper o b l a t e semi  spheroid  h , + hg, minor diameters o f the c o n j o i n t o b l a t e semi  spheroids  6 1.  Drop s i z e was Independent o f d i s p e r s e d f l o w r a t e a t very low r a t e s o f f o r m a t i o n .  2.  Volume o f each drop i n c r e a s e d w i t h d e c r e a s e i n relative density.  3.  Volume o f each drop i n c r e a s e d w i t h I n c r e a s e i n i n t e r f a c i a l tension.  4.  V i s c o s i t y e f f e c t s were n e g l i g i b l e , o n l y 7$ i n c r e a s e i n volume o f drop r e s u l t i n g from a change from 128 t o 1500 c e n t i s t o k e s . N u l l and Johnson (8) o b t a i n e d a c o r r e l a t i o n which  t h e y c l a i m e d gave t h e volume o f drops formed from s i n g l e n o z z l e s t o w i t h i n an a c c u r a c y o f 20$ t h r o u g h o u t t h e range o f "uniform" drops. K l e e and T r e y b a l (9) f o u n d , as d i d K e i t h and H i x s o n (2) ana n o t e d e a r l i e r , t h a t f o r a g i v e n system t h e drop e c c e n t r i c i t y was d i r e c t l y p r o p o r t i o n a l t o t h e e q u i v a l e n t drop d i a m e t e r , t h a t I s , t o t h e d i a m e t e r o f a sphere o f t h e same volume as t h e d r o p .  They a l s o r e l a t e d t e r m i n a l drop v e l o c i t i e s  t o e q u i v a l e n t drop d i a m e t e r s and p h y s i c a l p r o p e r t i e s . Hu and K l n t n e r (10) o b s e r v e d t h a t by p l o t t i n g t e r m i n a l v e l o c i t y a g a i n s t e q u i v a l e n t drop d i a m e t e r t h e c u r v e e x h i b i t e d a maximum v a l u e a t t h e onset o f o s c i l l a t i o n and deformation o f the drop. Johnson and B r a i d a ( l l ) o b s e r v e d c i r c u l a t i o n I n d r o p s and drop o s c i l l a t i o n .  They added a c o r r e c t i o n f o r  7 v i s c o s i t y o f t h e c o n t i n u o u s phase t o t h e Hu and K I n t n e r (10) c o r r e l a t i o n , and s e p a r a t e d t h e c o r r e l a t i o n c u r v e i n t o r e g i o n s o f o s c i l l a t i n g drops and n o n - o s c i l l a t i n g d r o p s . E l z i n g a and Banchero  (12) found t h a t d r a g c o e f f i c i e n t s  f o r drops cannot be r e l a t e d e n t i r e l y t o p h y s i c a l p r o p e r t i e s t h a t c a n be measured e a s i l y , because s m a l l q u a n t i t i e s o f s u r f a c e a c t i v e contaminants have a s i g n i f i c a n t  effect.  T r a c e q u a n t i t i e s o f t h e s e contaminants may account f o r t h e d i s c r e p a n c i e s between r e p o r t e d c o r r e l a t i o n s . Roger, T r i c e and Rushton  (13) r e p o r t e d on t h e s i g -  n i f i c a n t e f f e c t o f s u r f a c e contaminants on t h e s e t t l i n g t i m e o f d i s p e r s i o n s , and t h e presence o f a p e a r l y g r e y f i l m a t t h e i n t e r f a c e when t h e s e were p r e s e n t . J . T. D a v i e s (14) r e p o r t e d on s u r f a c e e f f e c t s and n o t e d t h e l a r g e e f f e c t o f a s m a l l amount o f s u r f a c e a c t i v e i m p u r i t y on drop c i r c u l a t i o n , p a r t i c u l a r l y I n s m a l l s i z e d drops.  O n l y one m o l e c u l e aasorbed, p e r 1 0 5 o 2 A  o f drop s u r f a c e would p r e v e n t c i r c u l a t i o n i n 0.01 cm. r a d i u s d r o p s . He a l s o observed t h a t when an e m u l s i o n was b e i n g produced by s h e a r i n g an o i l water m i x t u r e between two p l a t e s , t h e c o n t i n u o u s phase o f t h e e m u l s i o n tended t o be t h a t w h i c h wetted the p l a t e s .  8  Buchanan ( 1 5 ) i n v e s t i g a t e d a t d i f f e r e n t t h r o u g h put v e l o c i t i e s t h e e f f e c t o f t h e d i s p e r s e d phase w e t t i n g and not w e t t i n g t h e o r i f i c e t h r o u g h w h i c h t h e d i s p e r s i o n was formed. I n a l l t h e aforementioned published  literature  s t u d i e s were l i m i t e d t o c o n t i n u o u s f l o w o f t h e d i s p e r s e d phase t h r o u g h e i t h e r n o z z l e s o r o r i f i c e p l a t e s i n t o a c o u n t e r - c u r r e n t l y moving o r i n t o a s t a t i o n a r y c o n t i n u o u s phase.  Not o n l y have s e v e r a l drop s i z e d i s t r i b u t i o n  s t u d i e s been r e p o r t e d , but a l s o seen i n most p u b l i s h e d photographs and o c c a s i o n a l l y mentioned, were s m a l l drops ( c a l l e d " t r a i l e r s " i n t h i s i n v e s t i g a t i o n ) which f o l l o w e d each main drop form.  R o c c h i n i ( 1 6 ) i n h i s s t u d y o f drop  s i z e d i s t r i b u t i o n o f m e t h y l i s o b u t y l ketone d i s p e r s e d t h r o u g h n o z z l e s a t 11 cm. p e r second i n a d i l u t e aqueous s o l u t i o n of a c e t i c a c i d , p l o t t e d frequency o f occurrence a g a i n s t e q u i v a l e n t drop d i a m e t e r and found two modes i n h i s f r e q u e n c y d i s t r i b u t l o n e c u r v e s . These modes presumably r e p r e s e n t e d drops and t r a i l e r s .  The v e l o c i t y t h r o u g h t h e  n o z z l e was w i t h i n t h e a c c e p t a b l e range suggested by K e i t h and  Hl£s;onn ( 2 ) .  Thus, e x c e p t perhaps where f l o w r a t e s were  v e r y s m a l l and i n t e r f a c i a l t e n s i o n s r e l a t i v e l y l a r g e , i t would appear t h a t d i s p e r s i o n s o f t r u l y u n i f o r m drops were n o t produced.  9  Drop s i z e a f f e c t s I n t e r f a c i a l a r e a , h o l d - u p o f t h e d i s p e r s e d phase, mass t r a n s f e r c o e f f i c i e n t , and b a c k - m i x i n g which a r e t h e f o u r i m p o r t a n t  ( 1 7 ) ,  factors c o n t r o l l i n g the operation  o f l i q u i d - l i q u i d spray columns.  I n t e r f a c i a l area i s i n -  d i r e c t l y dependent upon drop s i z e and drop shape o f t h e d i s p e r s e d phase.  B o t h t h e h o l d - u p o f t h e d i s p e r s e d phase and  mass t r a n s f e r c o e f f i c i e n t a r e dependent upon t h e drop v e l o c i t y r e l a t i v e t o t h e continuous  phase ( 1 8 ) .  i s i n t u r n a l s o a f u n c t i o n o f drop s i z e .  This  velocity  I t follows that  s t u d i e s I n v o l v i n g t h e above f o u r i m p o r t a n t  f a c t o r s would be  g r e a t l y f a c i l i t a t e d i f a method c o u l d be o b t a i n e d t o produce a l l t h e drops o f a t r u l y u n i f o r m e x t r a c t i o n spray  size i na liquid-liquid  column.  Sharkey ( 1 9 )  a p p l i e d a n o v e l approach t o t h e  p r o d u c t i o n o f t r u l y u n i f o r m drops by u s i n g a p e r i o d i c i n j e c t i o n technique used.  i n s t e a d o f t h e continuous  flow formerly  He i n j e c t e d a l i m i t e d q u a n t i t y o f t h e d i s p e r s e d  l i q u i d e q u a l t o t h e volume o f a d r o p , by means o f a m e c h a n i c a l l y d r i v e n s y r i n g e , w h i c h had t o be r e f i l l e d f o r each drop produced.  Greene  (20)  Improved on t h i s by u s i n g a d i e s e l  f u e l i n j e c t i o n pump w h i c h had an a b r u p t l y ended s t r o k e and t h e advantages o f a d j u s t a b l e speed, and a d j u s t a b l e volume per s t r o k e .  He r e p o r t e d t h e f o r m a t i o n o f s i n g l e drops  t r a i l e r s a t low n o z z l e t h r o u g h p u t and l o w pump speed.  without The  c h a r a c t e r i s t i c o f t h i s pump was s u c h t h a t where no t r a i l e r s were formed t h e drops would be o f u n i f o r m  size.  10  I n v i e w o f t h e p r o m i s i n g r e s u l t s r e p o r t e d by Greene, t h e purpose o f t h i s p r e s e n t i n v e s t i g a t i o n was t o s t u d y t h e f e a s i b i l i t y o f o b t a i n i n g t r u l y u n i f o r m d r o p s , t o reproduce  the  r e s u l t s o f Greene, and t o s t u d y t h e e f f e c t s o f n o z z l e diameter, nozzle v e l o c i t y time p r o f i l e , n o z z l e m a t e r i a l , of t y p e o f system on t h e p r o d u c t i o n u n i f o r m s i z e d r o p s . A  and  11  EXPERIMENTAL INVESTIGATION I PRELIMINARY INVESTIGATION (A) Scope. The purpose o f t h i s p a r t o f t h e r e s e a r c h was t o examine t h e f e a s i b i l i t y o f o b t a i n i n g s i n g l e drops i n an nb u t a n o l - w a t e r system and t o attempt t o r e p r o d u c e t h e r e s u l t s o b t a i n e d by Greene  (20).  He c l a i m e d t o have produced  s i n g l e u n i f o r m drops w i t h o u t t r a i l e r s by pumping t h e nb u t a n o l t h r o u g h a l / 8 i n . I . D. s h a r p edged s t a i n l e s s  steel  n o z z l e i n t o w a t e r by means o f a D i e s e l f u e l i n j e c t i o n pump c o u p l e d t o a Graham v a r i a b l e speed t r a n s m i s s i o n d r i v e n by a h.p. e l e c t r i c motor.  The volume pumped p e r s t r o k e  was  a d j u s t e d by p o s i t i o n i n g t h e a c c e l e r a t o r l i n k a g e w i t h b r a s s shims o f v a r i o u s gauge t h i c k n e s s .  By p l o t t i n g mass  t h r o u g h p u t based on t o t a l shim t h i c k n e s s a g a i n s t pump speed based on speed t r a n s m i s s i o n d i a l s e t t i n g h e " p l o t t i n g r e g i o n s o f "no t r a i l e r s " , " t r a i l e r s w i t h some d r o p s " , "more t h a n one t r a i l e r p e r d r o p " , and "main drop s p l i t s . " (B) A p p a r a t u s . F i g u r e 2 i s a p h o t o g r a p h and f i g u r e 3 a diagrammatic layout of the apparatus used i n t h i s p a r t o f the I n v e s t i g a t i o n . The d i e s e l f u e l i n j e c t i o n pump, d r i v e and cam-actuated s w i t c h u s e d by Greene a r e not shown i n f i g u r e 2 as t h i s p a r t o f t h e a p p a r a t u s was mounted on t h e f l o o r t o a v o i d t r a n s m i t t i n g v i b r a t i o n t o t h e r e m a i n d e r o f t h e a p p a r a t u s mounted on t h e  12  FIGURE 2 Apparatus f o r the P r e l i m i n a r y  Investigation  13  *—  U  A  H  I  1  M  o  A  -x—I  B  GENERAL  LAYOUT  I  15" ELECTRIC C O U N T E R CIRCUIT S  J  ELECTRONIC F L A S H CIRCUIT  FIGURE  3  DIAGRAMMATIC LAYOUT O F APPARATUS PRELIMINARY  INVESTIGATION  0  14 TABLE 2 Key t o F i g u r e 3 A  2000 m l . g l a s s s t o r a g e b o t t l e  B  Screw clamp cock  C  Glass tee  D  50 m l . b u r e t t e  E  D i e s e l f u e l i n j e c i t i o n pump  F  Graham v a r i a b l e speed [ t r a n s m i s s i o n and §• h.p. e l e c t r i c motor  G  Cam on d r i v e s h a f t t o a c t u a t e m i c r o s w i t c h e s I and J  H  F i l l i n g f u n n e l f o r w a t e r phase  I  Microswitch t o actuate e l e c t r i c  J  Microswitch t o actuate e l e c t r o n i c  K  A c c e l e r a t o r l i n k a g e r a c k end  L  N o z z l e a d a p t e r and n o z z l e  M  " R o c c h i n i " square g l a s s column w i t h round l | i n . , column on t o p  N  Discharge  0  P r e s s u r i s i n g connection  P  storage  Transformer  Q  Electric  counter  R  Variable resistance  S  Switch t o operate f l a s h  T  Braun F60 e l e c t r o n i c  circuit  flash  counter flash  1  l a b o r a t o r y bench.  5  The d i s p e r s e d phase, n - b u t a n o l f l o w e d  by g r a v i t y from an o u t l e t n e a r t h e bottom o f a 2,000 m l . s t o r a g e b o t t l e A, t h r o u g h screw clamp cock B, t o g l a s s t e e C.  Connected t o t t h e upper s i d e o f t h e t e e C was a 50 m l .  b u r e t t e D v e n t e d back t o t h e t o p o f s t o r a g e b o t t l e A.  The  n - b u t a n o l f l o w e d down t h r o u g h C t o t h e i n j e c t i o n pump mechanism.  By i n j e c t i o n pump E i t was pumped t h r o u g h copper  t u b i n g t o t h e n o z z l e L and I n t o t h e c o n t i n u o u s w a t e r phase i n t h e square column M and t h e round column above.  Here i t  c o a l e s c e d and f l o w e d t o t h e u s e d b u t a n o l s t o r a g e v e s s e l N, a 1,000  ml. erlenmeyer f l a s k .  The square column was b u i l t by  R o c c h i n i and d e s c r i b e d I n h i s t h e s i s (16).  The c r o s s  s e c t i o n was s q u a r e , t h e d i s t a n c e between t h e o p p o s i t e w a l l s b e i n g 1.5 i n . An e l e c t r i c c o u n t e r Q powered by a transformer P with a variable resistance R i n series f o r adjustment was a c t u a t e d by a cam o p e r a t e d s w i t c h I mounted on t h e d r i v e s h a f t o f t h e pump.  T h i s c o u n t e r counted pump  revolutions. i-  The 50-ml. b u r e t t e was f i t t e d t o measure t h e  volume o f d i s p e r s e d f l u i d pumped.  By o p e n i n g t h e screw  clamp cock B, t h e b u r e t t e f i l l e d t o a p p r o x i m a t e l y t h e l e v e l of t h e f l u i d i n t h e s t o r a g e b o t t l e A. the  Then by c l o s i n g cock B,  f l u i d pumped was made t o come o n l y from t h e b u r e t t e .  measuring t h e t i m e i n t e r v a l , t h e number o f r e v o l u t i o n s  By  16 and the volume r u n from t h e b u r e t t e , both volume p e r s t r o k e and r e v o l u t i o n s p e r second o f the pump were o b t a i n e d . The o p t i c a l system was .-.arranged so t h a t the drops i n the column would be photographed s i m u l t a n e o u s l y i n .two d i r e c t i o n s at r i g h t a n g l e s .  By t h i s arrangement  all  three  axes o f each drop were o b t a i n e d i n the same photograph. F i g u r e 4 shows the o p t i c a l system used f o r the p r e l i m i n a r y investigation.  A v e r t i c a l s l o t 1§- i n . wide was  v e r t i c a l s u p p o r t i n g p a n e l behind t h e column.  cut i n the A wooden box Y  c o n t a i n i n g a Braun F60 e l e c t r o n i c f l a s h T at the back and a ground g l a s s d i f f u s e r X at the f r o n t , was  screwed t o the back  o f the p a n e l o f t h e apparatus behind the l | - i n . wide v e r t i c a l slot.  A t r a c i n g paper r e f l e c t o r and d i f f u s i n g s c r e e n V  p r o v i d e d even i l l u m i n a t i o n at the back o f the column.  To  improve c o n t r a s t a dark background was p r o v i d e d d i r e c t l y behind the drops by f i x i n g two v e r t i c a l 3 / 8  i n . wide opaque s t r i p s  (W) at the v e r t i c a l c e n t e r l i n e s o f the r e a r f a c e s o f the column.  Maximum c o n t r a s t Is v e r y n e c e s s a r y when photographing  n-butanol drops I n water as the d i f f e r e n c e i n r e f r a c t i v e Indices i s very small.  The two a d j u s t a b l e m i r r o r s U and the  two f i x e d m i r r o r s Z enabled the camera, Exakta I l a w i t h B i o t a r l e n s 2 / 5 8  a 35-mra«  reflex  f i t t e d with extension  tubes, t o photograph the drops I n two p e r p e n d i c u l a r d i r e c t i o n s at the one t i m e .  17  The  o p t i c a l system was a d j u s t e d by r o t a t i n g and  moving t h e a d j u s t a b l e m i r r o r s U u n t i l t h e n o z z l e t i p n o t o n l y appeared d i r e c t l y i n f r o n t o f t h e .dark s t r i p ¥ I n each v i e w , b u t a l s o was i n f o c u s i n each v i e w when o b s e r v e d t h r o u g h t h e v i e w f i n d e r o f t h e camera. (C) P r o c e d u r e . E x a m i n a t i o n o f t h e i n j e c t i o n pump E f i g u r e 3 showed t h a t a c o n s i d e r a b l e amount o f i n t e r n a l c o r r o s i o n had t a k e n place.  The i n j e c t o r was r e p l a c e d , and a l l p a r t s exposed t o  t h e pumped f l u i d were t h o r o u g h l y washed o u t w i t h acetone and t h e n w i t h The  1  first  n-butanol.  s t o r a g e b o t t l e A was.charged w i t h t e c h n i c a l  grade n - b u t a n o l ,  as u s e d by Greene, and t h e column f i l l e d  w i t h d i s t i l l e d water. The  b r a s s s p a c e r system (20) f o r " t h r o t t l e " a d j u s t -  ment on t h e pump was found t o be u n s a t i s f a c t o r y ; as i t p r o v i d e d a much t o o c o a r s e a d j u s t m e n t .  Even t h e t h i c k n e s s ? o f a p i e c e  o f p a p e r made a c o n s i d e r a b l e d i f f e r e n c e t o t h e volume pumped. I n v i e w o f t h i s , a v e r y s i m p l e screw adjustment was p r o v i d e d , and t h e b a c k l a s h i n t h e r a c k - p i n i o n l i n k a g e was removed b y p a c k i n g o u t t h e r a c k and s p r i n g - l o a d i n g t h e r a c k  longitudinally.  18  I  CAMERA  FIGURE 4  OPTICAL ARRANGEMENT PRELIMINARY INVESTIGATION SCALE' 3" = r-0 ,r  18  TABLE 3 Key t o F i g u r e 4  T  Braun F 6 0 e l e c t r o n i c f l a s h  U '•  A d j u s t a b l e m i r r o r s s i l v e r e d on t h e f r o n t s i d e  V  T r a c i n g paper d i f f u s e r  W  3/Q i n . v e r t i c a l opaque s t r i p  X  Ground o p a l gjLass  Y  Wood box w i t h l i d h o u s i n g e l e c t r o n i c f l a s h and opal glass  Z  screen  F i x e d m i r r o r s s i l v e r e d on t h e f r o n t  side.  19 To reduce t h e a i r leakage i n t o t h e system a 6 f t . w a t e r head o f a i r p r e s s u r e was a p p l i e d t o t h e system a t 0 ( f i g u r e 3). A l t h o u g h t h i s e l i m i n a t e d a i r l e a k a g e a t low speeds, i t f a i l e d t o do so a t h i g h speeds and h i g h deliveries.  Once a i r l e a k e d i n t o t h e system, t h e r e s u l t i n g  f l u i d , n - b u t a n o l and a i r mixture,was c o m p r e s s i b l e ,  and t h e  e f f e c t o f t h e r a p i d i n j e c t i o n and shut o f f was l o s t . S e v e r a l t e s t r u n s t h e n were made t o f i n d t h e b e s t o p t i c a l system.  The b e s t p o s i t i o n s o f t h e e l e c t r o n i c  f l a s h T and d l f f u s e r g l a s s e s X a r e shown i n f i g u r e 4.  The  b e s t n e g a t i v e s were o b t a i n e d w i t h camera l e n s a p e r t u r e s e t t i n g f . l 6 , Kodak H i g h C o n t r a s t P o s i t i v e f i l m , t e n minute development o f t h e f i l m i n Kodak D - l l d e v e l o p e r  a t 70°F, and  f i x i n g w i t h Kodak F-5 F i x e r . To t a k e a p h o t o g r a p h , t h e camera s h u t t e r s e t a t B u l b was opened and s w i t c h S ( f i g u r e 3) c l o s e d m a n u a l l y . As soon as t h e cam G on t h e pump d r i v e s h a f t c l o s e d t h e m i c r o s w i t c h J and completed t h e c i r c u i t , t h e f l a s h was fired.  The s h u t t e r was t h e n r e l e a s e d and s w i t c h S opened.  S y n c h r o n i z a t i o n o f t h i s l/lOOO second f l a s h w i t h a s p e c i f i c p a r t o f t h e drop f o r m a t i o n c y c l e was a d j u s t e d by r o t a t i n g t h e cam G r e l a t i v e t o t h e s h a f t .  ,  20 E l e v e n runs were made u s i n g Greenes 1/8 I n . I.D. s t a i n l e s s s t e e l n o z z l e ( 2 0 ) , I n w h i c h s e l e c t e d pump speeds ranged from 6 t o 1.67 s t r o k e s p e r second, and t h e volume per  s t r o k e v a r i e d from 0 t o ( a maximum o f ) 0 . 0 2 0 m l . f o r  each s e l e c t e d pump speed.  I n none o f t h e s e runs were  c o n s i s t a n t s i n g l e drops w i t h o u t t r a i l e r s o b s e r v e d .  Even  when v i s u a l i n s p e c t i o n t h r o u g h t h e column f a i l e d t o i d e n t i f y t h e p r e s e n c e o f t r a i l e r s , p r o j e c t i o n on a s c r e e n of t h e photograph n e g a t i v e s i n v a r i a b l y showed t h e p r e s e n c e of one o r more t r a i l e r s p e r d r o p . A 5/32 i n . I.D. s t a i n l e s s s t e e l n o z z l e was made, f o l l o w i n g t h e c i d e s i g n o f Greene's 1/8 i n . s t a i n l e s s  steel  n o z z l e except f o r t h e i n s i d e d i a m e t e r . Runs 12 a n d . 1 3 were Soiisecutive made w i t h t h i s n o z z l e , and up t o e l g n t s i n g I e drops w i t h o u t A  t r a i l e r s were produced a t a drop s i z e o f 0.005 m l . and a f r e q u e n c y o f I . 6 5 t o I . 8 5 s t r o k e s p e r second. As a r e s u l t o f t h e s e p r o m i s i n g r e s u l t s w i t h t h e 5/32 i n . I.D. s t a i n l e s s s t e e l n o z z l e , I t was d e c i d e d t o c o n t i n u e t h i s i n v e s t i g a t i o n w i t h a more v e r s a t i l e pump where t h e v e l o c i t y p r o f i l e o f t h e d i s c h a r g e c o u l d be v a r i e d , and w i t h t h e a p p a r a t u s m o d i f i e d by i m p r o v i n g t h e p i p i n g and the  o p t i c a l systems.  21 I I MAIN INVESTIGATION (A) SCOPE The main i n v e s t i g a t i o n was  planned t o  study  t h e e f f e c t o f a number o f f a c t o r s on t h e r e g i o n o f s i n g l e drops o b t a i n e d i n p l o t s o f drop volume a g a i n s t t h e number o f pump s t r o k e s p e r second.  These f a c t o r s under s t u d y were  nozzle s i z e , nozzle m a t e r i a l , velocity-time p r o f i l e  of  d i s p e r s e d phase f l o w t h r o u g h t h e n o z z l e a t drop f o r m a t i o n , pump s t r o k e s p e r second and t h e p a r t i c u l a r system u s e d . The  n o z z l e s i z e s t o be examined,were t o be t h o s e  produced s i n g l e drops most e a s i l y . were s t a i n l e s s s t e e l Type 316, d i f f i c u l t y experienced  The  that  n o z z l e m a t e r i a l s used  b r a s s , and T e f l o n .  by t h e workshop i n  Due  to  manufacturing  s a t i s f a c t o r y s h a r p edged s t a i n l e s s s t e e l n o z z l e s , b r a s s n o z z l e s were us«d .for t h e main p a r t o f t h i s i n v e s t i g a t i o n . !  The  bore c o u l d not be made s t r a i g h t f o r t h e whole l e n g t h o f  the s t a i n l e s s s t e e l n o z z l e s .  These n o z z l e s were t h e r e f o r e  d r i l l e d from e a c h end r e s u l t i n g i n a s t e p midway down t h e nozzle.  Two  r u n s were made w i t h a T e f l o n n o z z l e , T e f l o n  b e i n g chosen as a m a t e r i a l t h a t would not be wet by t h e w a t e r phase. The  d e s i r e d t y p e s o f v e l o c i t y - t i m e p r o f i l e s appeared  t o be most e a s i l y o b t a i n e d by u s i n g a cam displacement cam  profile.  pump, where t h e f l o w was  operated p o s i t i v e  d i r e c t l y r e l a t e d t o the  22  (B) MODIFICATIONS TO EXISTING APPARATUS. (i)  D e s i g n o f pump and c a l i b r a t i o n .  As t h e d i e s e l i n j e c t i o n pump was u n s u i t a b l e f o r a d a p t i o n t o t h e u s e o f d i f f e r e n t cams, and as t h e i n j e c t o r d e s i g n d i d n o t p e r m i t t h e p r e v e n t i o n o f a i r leakage i n t o t h e system, t h i s pump was abandoned. A Hoke 1/8 i n c h b e l l o w s  s e a l needle valve  (figure  5) was examined f o r a d a p t a t i o n t o u s e as a b e l l o w s pump. By u s i n g a b e l l o w s as t h e pump no l e a k a g e o f a i r was possible,  and by c o m p r e s s i n g t h e b e l l o w s w i t h a p l u n g e r  i n s t e a d o f t h e screw c a p , a p o s i t i v e d i s p l a c e m e n t resulted.  ••• . , The  pump .  c h a r a c t e r i s t i c s o f t h i s v a l v e u s e d as a pump  ( f i g u r e 6) were t e s t e d , t o see i f t h e volume pumped v a r i e d d i r e c t l y w i t h t h e s t r o k e , and t o see i f t h e maximum volume pumped was adequate. constant  A c a p i l l a r y t u b e , assumed t o be o f  j  c r o s s s e c t i o n , was c a l i b r a t e d i n ml. p e r i n c h o f l e n g t h  by f i l l i n g 25 i n . o f i t w i t h w a t e r , a l l o w i n g t h e w a t e r t o r u n i n t o a 25 m l . g r a d u a t e d c y l i n d e r . 3i0w&d f o r a t o t a l o f f o u r t i m e s .  T h i s p r o c e d u r e was f o l By d i v i d i n g t h e t o t a l  volume by 1 0 0 , t h e c a p a c i t y p e r u n i t l e n g t h o f c a p i l l a r y t u b i n g was,determined.  23  A  Valve bellows  seal  B  Cap t h r e a d  C  Valve  discharge  D  Valve  inlet  E  V a l v e cap  FIGURE 5 Hoke 1/8 i n  b e l l o w s s e a l needle v a l v e  24  F  Hoke b e l l o w s v a l v e  G  Cap t h r e a d o f v a l v e  H  V a l v e h o l d e r ( F i g u r e 7)  I  Machine screws  FIGURE 6 B e l l o w s v a l v e pump  25  The c a p i l l a r y was connected t o t h e v a l v e "by means o f an I m p e r i a l adapter.  i n . tube x l / 8 female I.P.S. c o m p r e s s i o n  A f e r r u l e made from T e f l o n t a p e was u s e d .  The b e l -  lows v a l v e and p a r t o f t h e c a p i l l a r y tube were f i l l e d  with  w a t e r and a p i e c e o f graph paper 10 d i v i s i o n s x 10 d i v i s i o n s t o t h e §• i n c h p l a c e d b e h i n d t h e tube so t h a t t h e d i s t a n c e o f any movement a l o n g t h e t u b e c o u l d be e s t i m a t e d t o 0.01m. By s c r e w i n g down t h e cap ( c o m p r e s s i n g t t h e b e l l o w s s e a l ) f i g u r e 5* t h e w a t e r was f o r c e d up t h e c a p i l l a r y t u b e .  The  d i s t a n c e t h e meniscus t r a v e l l e d a t t h e end o f each q u a r t e r t u r n was n o t e d , and i s shown i n t a b l e 4. From t h i s c a l i b r a t i o n t e s t t h e average d i s c h a r g e p e r q u a r t e r t u r n was 0.204 i n . o f c a p i l l i a r y , and t h e maximum d e v i a t i o n from t h i s mean between §• and 1§ t u r n s was l e s s t h a n 10$. The average change i n volume o f t h e b e l l o w s f o r a c o m p r e s s i o n o f 0.01 i n c h e s was found t o be 0.0088$ m l . T h e r e f o r e , f o r t h e e s t i m a t e d maximum c o m p r e s s i o n o f t h e b e l l o w s o f l / l 6 i n . t h e volume pumped was 0.056 m l .  As  t h e maximum volume o f n - b u t a n o l pumped p e r s t r o k e i n t h e p r e l i m i n a r y i n v e s t i g a t i o n was 0.020 m l . , t h e volume pumped by t h i s b e l l o w s s e a l v a l v e pump was c o n s i d e r e d adequate f o r t h e n - b u t a n o l water system.  26 TABLE NG. 4 CALIBRATION OF 1/8 i n . HOKE BELLOWS SEAL VALVE #432 FOR CHANGE I N VOLUME PER STROKE DISTANCE (a)  C a l i b r a t i o n o f measuring c a p i l l a r y tube assumed t o be of uniform c r o s s - s e c t i o n . Volume measured f o r 100 i n . l e n g t h = 4 . 5 - m l . Volume p e r 1 i n . l e n g t h = 0.o4'5-ml.  (b)  C a l i b r a t i o n o f bellows s e a l v a l v e .  Total turns . o f cap.  e i  Reading on graphnpaper s c a l e  Change o f h e i g h t  inches  inches  0.9  i+  1.15  0.25  i 2  1.35  0.20  3/4  1.55  0.20  1  1.75  0.20  1.97  0.22  2.17  0.20  H  Volume p e r r e v o l u t i o n o f cap. = (0.82) (0.045) m l . 0.0369 m l . = 1/24 i n . P i t c h of thread Volume p e r 0.01 i n . advance = 0.00886 m l . The r e a d i n g s f o r t h e 0 and \ t o t a l t u r n s o f t h e cap were n e g l e c t e d t o a v o i d any b a c k l a s h e r r o r .  27'/' Two check v a l v e s were made by d r i l l i n g 5/32 i n . d i a m e t e r h o l e s h a l f way t h r o u g h two 1/8 i n . I.P.S. x 3/16 i n . t u b i n g f l a r e d h a l f u n i o n s I m p e r i a l 48P. was  I n one t h e h o l e  d r i l l e d from t h e t h r e a d end and i n t h e o t h e r from t h e  f l a r e d end.  A 1/8 i n . s t e e l b a l l b e a r i n g was t a p p e d c i n t o  t h e bottom o f each o f t h e s e h o l e s t o produce a s p h e r i c a l l y shaped s e a t i n p l a c e o f t h e cone from t h e d r i l l i n g o p e r a t i o n . A 1/8 i n . s t a i n l e s s s t e e l b a l l b e a r i n g was t h e n dropped i n t o t h e h o l e t o r e p l a c e t h e s t e e l b a l l , and a s m a l l k e e p e r f o r c e d i n a t t h e t o p t o a l l o w t h e b a l l about 1/32 i n . movement b u t not p e r m i t i t t o come o u t o f t h e a d a p t e r .  Although  these  check v a l v e s c l o s e d by g r a v i t y t h e y were more p o s i t i v e i n a c t i o n than spring-loaded commercial u n i t s . The Hoke v a l v e was t h e n made i n t o a b e l l o w s pump by a t t a c h i n g w i t h a p p r o p r i a t e f i t t i n g s two check v a l v e s t o each o f t h e d i s c h a r g e and t h e s u c t i o n ends.  At each end one  check v a l v e was an I m p e r i a l No. 6 3 P and t h e o t h e r made by the author. opening  The Hoke v a l v e was a r r a n g e d so t h a t t h e  i n t h e v a l v e t o t h e b e l l o w s was on t h e d i s c h a r g e  side. ( i i ) Pump mechanism. The b e l l o w s v a l v e was t h e n screwed i n t o a h o l d e r ( f i g u r e s 6 and 7) w h i c h , i n t u r n , was screwed t o a camo p e r a t e d a d j u s t a b l e - s t r o k e mechanism, m o d i f i e d from t h e apparatus u s e d by Thomson ( 2 1 ) .  A p l u n g e r r o d cap a l s o  28 shown i n f i g u r e 7 was  f i t t e d t o the r o d o f t h e s t r o k e  arm,  and p r e s s e d a g a i n s t t h e t o p o f t h e b e l l o w s v a l v e . F i g u r e 8 shows t h e cam-operated a d j u s t a b l e s t r o k e mechanism. B ( f i g u r e s 8 and 9) 3/8 post  Cam  A o p e r a t e d t h e m o d i f i e d cam f o l l o w e r  by p r e s s i n g a g a i n s t a f o l l o w e r wheel,a  i n . p r e c i s i o n D e p a r t u r e R2 b e a r i n g , f i t t e d on t h e b e a r i n g ( f i g u r e 7)  mounted i n t h e f o l l o w e r .  The  cam  follower B  ( f i g u r e 8) o p e r a t e d t h e v e r t i c a l r a t i o l e v e r C about t h e movable f u l c r u m D c o n t r o l l e d by the k n u r l e d knob E.  The  vertical  r a t i o l e v e r C, o s c i l l a t i n g about f u l c r u m D, a c t u a t e d s t r o k e arm F w h i c h i n t u r n o p e r a t e d t h e pump. k n u r l e d knob E, t h e f u l c r u m was  By t u r n i n g  moved up o r down changing  t h e r a t i o between the motions o f t h e cam stroke  the  f o l l o w e r and  the  arm. The  volume pumped p e r s t r o k e f o r a g i v e n cam  was  c o n t r o l l e d by a d j u s t i n g knob E w h i c h p o s i t i o n e d t h e movable f u l c r u m D.  The  v e l o c i t y p r o f i l e o f t h e s t r o k e arm F  c o n t r o l l e d by t h e cam p r o f i l e , cam movable f u l c r u m  was  speed, and p o s i t i o n o f  D.  ( i i i ) Cams. Two  cams were d e s i g n e d  ( f i g u r e 11) and made t o  p r o v i d e t h e pump d i s c h a r g e s t r o k e w i t h t h e f o l l o w i n g motions: (a)  Cam  A ( f i g u r e 10) r o t a t i n g i n f o r w a r d  direction  ( c o u n t e r - c l o c k w i s e ) produced u n i f o r m a c c e l e r a t i o n , t h e n c o n s t a n t v e l o c i t y and f i n i s h e d w i t h a sudden s t o p . w i l l be c a l l e d Cam  "A"  forward.  T h i s motion  l~No. 5 0 Drill, 2-56 U N C - 2 B  (-5  44-  £ 5. Drill x i deep 16 4  T I—KvJ L.  BEARING Scale :  js*-l_ight press fit with |-'Departure R 2 ball bearing used as a follower wheel.  T'22l~\  ROD  POST  Scale  Twice Size  ^ - 28 UN - 2B  § Dfi\l z  VALVE Scale.  HOLDER Full  FIGURE PUMP  DRIVE SCALES  2 holes  Size  7 COMPONENTS AS  SHOWN  CAP Twice Size  FIGURE  Cam  8  o p e r a t e d a d j u s t a b l e - s t r o k e mechanism  331  TABLE NO. 5  Key t o F i g u r e 8  CAM OPERATED ADJUSTABLE-STROKE MECHANISM  A  Cam  B  M o d i f i e d Cam F o l l o w e r ( f i g u r e  C  V e r t i c a l Ratio Lever  D  Movable  E  K n u r l e d C o n t r o l Knob  F  S t r o k e Arm  G  Valve  Fulcrum  Holder  7)  I 2  it"rnr  -|00  JJ=UL  4  -|cM  _1  t  1  -|OB  2 ^4^ 3  3 8  . 3, 16  8  Drill ft Tap for existing postA Drill  0 2000 02003 I 16  win  R  R N° 5 0 D r i l l ,  N ° 50 Drill,  2 - 56 UNC - 2B  FIGURE CAM  9  FOLLOWER  SCALE *  TWICCSIZE  2- 56 UNC-2B  »  34  Cam " A " Forward r o t a t i o n  )  Reverse r o t a t i o n  }  FIGURE 11 Cams  " A " and  "B  (b) Cam  A r o t a t i n g i n the reverse  direction  ( c l o c k w i s e ) produced u n i f o r m a c c e l e r a t i o n , t h e n  constant  v e l o c i t y and f i n i s h e d w i t h u n i f o r m d e c e l e r a t i o n . w i l l be c a l l e d Cam (c)  Cam  harmonic m o t i o n .  diagram.  This motion  "A" r e v e r s e d .  ,  B i n e i t h e r d i r e c t i o n produced  simple  T h i s m o t i o n w i l l be c a l l e d Cam  "B".  F i g u r e 10 shows t h e d e s i g n o f cam  A and t h e  The  were a c c e l e r a t e d  cam  f o l l o w e r (and s t r o k e arm)  cam  from 0°-3O° r o t a t i o n , k e p t a t c o n s t a n t v e l o c i t y from 30°-90° and t h e n s u d d e n l y stopped a t 90°. and s t r o k e arm were a t r e s t .  The  From 90°  t o 150°  the f o l l o w e r  f o l l o w e r and s t r o k e  arm 150°-  were a c c e l e r a t e d u n i f o r m l y i n t h e n e g a t i v e d i r e c t i o n from 180°,  k e p t a t u n i f o r m v e l o c i t y from l80°-240°, and  u n i f o r m l y t o r e s t from 2 4 0 ° - 2 7 0 ° . was  decelerated  From 270°-360°, t h e f o l l o w e r  at r e s t . To f a c i l i t a t e  t h e manufacture o f t h e cam  and  enable\  i t t o be made i n t h e Department workshop, " m i l l i n g machine c u t t e r " t r a v e l d i s t a n c e from maximum r a d i u s o f t h e cam each 2° o f r o t a t i o n was  tabulated.  The  cam  for  c o u l d t h e n be  set  up 4n a r p t a t i n g head o f t h e m i l l i n g machine, r o t a t e d 2°from t h e maximum r a d i u s p o s i t i o n , and t h e c u t t e r f e d i n t o t h e up t o t h e t a b u l a t e d c u t t e r t r a v e l d i s t a n c e . r o t a t e d a f u r t h e r 2°, and phe t r a v e l distance.  T h i s was  The  cam  cam  was  c u t t e r f e d t o t h e next t a b u l a t e d  repeated u n t i l  t h e minimum r a d i u s  36  was r e a c h e d .  To a v o i d b a c k l a s h t h e cam was always r o t a t e d  i n the d i r e c t i o n o f reducing radius.  The cam was l i g h t l y  rubbed w i t h f i n e emery p a p e r t o remove t h e d i s c o n t i n u i t y humps. The cam p r o f i l e was checked by a s s e m b l i n g i n the. cam o p e r a t e d  t h e cam  a d j u s t a b l e s t r o k e mechanism ( f i g u r e 8 ) .  A d i a l gauge r e a d i n g d i r e c t l y t o 0.0005 i n . and e s t i m a t e d t o 0.0001 in.was p l a c e d a t t h e end o f t h e s t r o k e arm t o measure t h e s t r o k e arm t r a v e l .  Knob E was a d j u s t e d  until  a change i n d i a l r e a d i n g o f 0.025 i n . was o b t a i n e d p e r cam revolution.  As t h e maximum d e s i g n e d  cam f o l l o w e r t r a v e l was  01250 i n . f o r cam A, t h e r a t i o o f cam f o l l w e r t r a v e l t o s t r o k e arm t r a v e l was 10:1. C o n s e q u e n t l y t h e cam f o l l o w e r t r a v e l was measured w i t h a p r e c i s i o n 0.001 i n . W h i l e t h e a p p a r a t u s was r u n a t a s u i t a b l e speed, t h e d i a l gauge was photographed w i t h t h e B o l e x 16H R e f l e x movie camera a t 64 frames p e r second.  By p l o t t i n g t h e r e a d i n g s  against  frame numbers t h e a c t u a l cam p r o f H e was o b t a i n e d . determined t h a t I.635  0  I t was  o f r o t a t i o n o c c u r r e d p e r camera frame.  TJie maximum d e v i a t i o n from t h e d e s i g n e d  p r o f i l e was found, t o  be 0.005 i n . The cam B was d e s i g n e d  t o g i v e s i m p l e harmonic  m o t i o n and t h e r e f o r e was s i m p l y an e c c e n t r i c d i s c 1/8 i n . from t h e s h a f t c e n t r e l i n e . discharge  centered  The d u r a t i o n o f t h e  s t r o k e f o r cam B was t h e r e f o r e 180° o f r o t a t i o n ,  37 whereas f o r cam A forward' i t was 90° o f r o t a t i o n , and f o r cam A r e v e r s e d i t was 120  o f rotation'.  (iv) Piping modifications. Considerable  m o d i f i c a t i o n was made t o t h e p i p i n g  o f the a p p a r a t u s , based o n b o t h the e x p e r i e n c e gained f r o m the p r e l i m i n a r y i n v e s t i g a t i o n and the p r o p o s e d f u t u r e use o f methyl i s o b u t y l " k e t o n e . by a 5-ml.  The 50-ml. b u i e t t e was r e p l a c e d  b u r e t t e t o e n a b l e volumes t o be measured w i t h  greater" p r e c i s i o n .  A l l neoprene t u b i n g e x c e p t f o r the v e n t  f r o m the b u r e t t e D ( f i g u r e 12) t o t h e 2000 m l . storage b o t t l e £: was  r e p l a c e d by copper t u b i n g .  "Kovar"' g l a s s t o copper  a d a p t e r s were used a t the o u t l e t o f the s t o r a g e b o t t l e A and the b u r e t t e . -  The screw clamp cock between the  storage  b o t t l e . A and t h e b u r e t t e was r e p l a c e d by a 1/8 i n . . Hoke #**32 b e l l o w s s e a l v a l v e C. A s t a i n l e s s s t e e l a i r t r a p E a d a p t e d from a c o n s t a n t  head tank was i n s t a l l e d i n the  U n e between  the b u r e t t e D and the pump, t o prevent any a i r e n t e r i n g t h e pumping system. Hoke #*32 b e l l o w s Cv)  T h i s a i r t r a p was v e n t e d t h r o u g h a 1/8- i n . s e a l v a l v e F.  O p t i c a l modifications...  •ks the p h o t o g r a p h i c r e s u l t s from the  preliminary  i n v e s t i g a t i o n were v e r y disappointing,., a more t h o r o u g h e x a m i n a t i o n o f the o p t i c a l system was made... A l s o i n v i e w o f the i n t e n d e d  use o f a B o l e x Hl6 R e f l e x movie camera w i t h a  Lytar  B e r t h i o t l e n s 1.8/25,  S.O.M.  f l a s h was u n s u i t a b l e .  t h e use o f the e l e c t r o n i c  38 A 16 i n . x 12 i n . F r e s n e l l e n s a v a i l a b l e i n t h e Department was mounted i n a i i n . p l y wood box. The back end was f i t t e d w i t h a 2 i n . tube t h r o u g h w i c h an a u t o m o b i l e head lamp, mounted i n a 2 i n . d i a m e t e r h o l d e r , c o u l d be moved i n and o u t , e n a b l i n g t h e f i l a m e n t o f t h e lamp t o be placed i n f r o n t o f , a t , o r behind t h e focus o f the l e n s .  By  h a v i n g t h e f i l a m e n t a t t h e f o c u s , a v e r y p o o r background appeared b e h i n d t h e d r o p s , b u t by p l a c i n g a 60 watt f r o s t e d b u l b a t t h e back o f t h e tube i n l i e u o f t h e a u t o m o b i l e head lamp, n o t o n l y d i d a r e a s o n a b l y  c o l l l m a t e d beam o f l i g h t  appear, b u t a l s o a good even background f o r t h e drops resulted.  By u s i n g an a u t o - t r a n s f o r m e r  any d e s i r e d l i g h t  i n t e n s i t y was o b t a i n e d . Due t o b o t h t h e i m p e r f e c t i o n s o f t h e l e n s , and t h e f a c t t h a t t h e r e was no c h r o m a t i c  c o r r e c t i o n , monochromatic  l i g h t o b t a i n e d by p l a c i n g r e d c e l l o p h a n e  over the l | i n . s l i t  b e h i n d t h e column ( f i g u r e s 12 and 14) g r e a t l y improved image sharpness. F i g u r e 14 shows t h e o p t i c a l l a y o u t u s e d f o r t h i s part of the research.  The c o l l l m a t e d beam o f l i g h t passed  through the r e d cellophane, then through the s l i t B t o the r e a r f i x e d m i r r o r s C mounted a t r i g h t a n g l e s t o one a n o t h e r on t h e column.  These m i r r o r s s p l i t t h e beam i n t o two h a l v e s ;  each, a f t e r b e i n g r e f l e c t e d from t h e r e a r a d j u s t a b l e mounted  Rear  Front FIGURE 12 Apparatus  40  TABLE 6 Key t o F i g u r e  12  A  Storage b o t t l e  B  Electric  C  Hoke v a l v e r e p l a c i n g f o r m e r screw clamp c o c k  D  5-ral» measuring  E  A i r trap  F  Hoke v a l v e , v e n t t o a i r t r a p  G  Outlet valve of a i r trap  H  Nozzle l i n e  counter  burette  41  FIGURE 1 3 Mounted F r e s n e l Lens  42  m i r r o r s D, passed t h r o u g h t h e square column normal t o t h e rear faces.  The f r o n t a d j u s t a b l e m i r r o r s E r e f l e c t e d t h e s e  beams t o t h e f r o n t f i x e d m i r r o r s F (mounted a t 7 0 ° t o one a n o t h e r ) where t h e two beams were r e f l e c t e d t o t h e s t i l l o r movie camera and f o c u s e d  on t h e f i l m .  T h i s system  provided  v e r y good c o n t r a s t , and as a r e s u l t Kodak P l u s X Pan f i l m was used f o r s t i l l p i c t u r e s i n l i e u o f t h e Kodak H i g h  Contrast  P o s i t i v e so t h a t i t might be as n e a r l y s i m i l a r as p o s s i b l e t o t h e 16 mm f i l m Eastman P l u s X r e v e r s a l f i l m a v a i l a b l e f o r t h e movie camera. I n o r d e r t o make t h e o p t i c a l system more r i g i d , t h e square column and p o r t a b l e m i r r o r h o l d e r s  (figure 1 5 ) f o r the  «  -  -  a d j u s t a b l e f r o n t and r e a r m i r r o r s were f a s t e n e d w i t h screws  t o a 1/16 i n . b r a s s p l a t e w h i c h was r i g i d l y mounted one i n . above t h e h o r i z o n t a l s h e l f o f t h e a p p a r a t u s .  Supports f o r  b o t h t h e B o l e x 16H R e f l e x camera and t h e E x a k t a camera were m o d i f i e d t o a l l o w f o r t h i s a d d i t i o n a l h e i g h t o f t h e column. The  adjustment and a l i g n m e n t o f t h e f r o n t s i l v e r e d  m i r r o r s and F r e s n e l l e n s were c a r r i e d out as f o l l o w s :  each  r e a r a d j u s t a b l e m i r r o r D ( f i g u r e 14) was r o t a t e d and moved in  and out u n t i l , viewed t h r o u g h t h e a p p r o p r i a t e f r o n t f a c e  o f t h e square column a l o n g a l i n e p e r p e n d i c u l a r t o t h e f a c e and p a s s i n g t h r o u g h t h e n o z z l e , t h e w i d e s t  and b r i g h t e s t  s t r i p o f l i g h t appeared c e n t r e d b e h i n d t h e n o z z l e .  1  The r e a r  SCALE  FIGURE REVISED  14  MIRROR ARRANGEMENT  :  1/2 SIZE  44  ^ Drill, csk. for No. 4screw 2 holes  -'..-,1 .  HOLDER  4  BASE  r  3_ 8  -Solder  -|CM  OJ No. 36 Drill No. 6-32UNe-2B  Ploce | - I 6 U N C - 2 B nut a washer on post  3  before soldering top.  —I CM  |-I6UNC-2Ao  MIRROR  HOLDER T  i" Brass 16  HOLDER  FIGURE PORTABLE SCALE:  rowo  STRIP  15  MIRROR FULL  HOLDERS  SIZE  45  a d j u s t a b l e m i r r o r s were next p l a c e d i n t h e m i r r o r h o l d e r s and r o t a t e d and moved i n and out u n t i l two views o f t h e n o z z l e appeared d i r e c t l y i n f r o n t o f t h e b r i g h t bands and were b o t h i n f o c u s when observed i n t h e v i e w f i n d e r o f t h e E x a k t a camera with f . 2 lens aperture  setting.  Rotating the front adjustable  m i r r o r s moved t h e two Images t o g e t h e r o r a p a r t and a l s o t h e v i e w s o f t h e n o z z l e s i n r e l a t i o n t o t h e b r i g h t background bands. Moving t h e m i r r o r s away from t h e column i n c r e a s e d t h e o b j e c t d i s t a n c e b u t moved t h e images towards one a n o t h e r .  I n order  t o have a s u i t a b l e d i s t a n c e o f f o c u s f o r a s a t i s f a c t o r y image s i z e i t was found t h a t by h a v i n g t h e f r o n t f i x e d m i r r o r s if a t 90° w i t h one a n o t h e r , t h e p h o t o g r a p h images were a t t h e extreme o u t s i d e s o f t h e frame.  By r e d u c i n g t h i s i n c l u d e d a n g l e  t o 70° t h e images were a d j a c e n t  t o one a n o t h e r .  With t h i s  arrangement 2.5 cm. e x t e n s i o n t u b e s were u s e d w i t h t h e E x a k t a camera and a l / l 6 I n . shim under t h e l e n s o f t h e B o l e x H16 R e f l e x camera. The  F r e s n e l l e n s ( f i g u r e s 13 and 16) was next  l o c a t e d f o r b o t h cameras by f i r s t s e t t i n g t h e E x a k t a camera a p e r t u r e a t f . l 6 and t h e n a d j u s t i n g t h e l o c a t i o n o f t h e F r e s n e l l e n s u n t i l an e v e n l y d i v i d e d and b r i g h t background appeared i n t h e v i e w f i n d e r . f.2,  The a p e r t u r e was t h e n opened t o  and s h u t t e r speed s e t at 1/1000 s e c .  46  FIGURE 1 6 Apparatus s e t up w i t h B o l e x H 1 6 R e f l e x Camera  47  A 60 v o l t s e t t i n g w i t h t h e a u t o - t r a n s f o r m e r  provided  t h e c o r r e c t l i g h t i n t e n s i t y f o r Kodak P l u s X Pan w i t h t h e camera s e t a f . 2 and 1/1000 s e c . when t h e m i r r o r s were b r i g h t and new.  S i m i l a r l y a 40 v o l t s e t t i n g p r o v i d e d t h e  c o r r e c t l i g h t i n t e n s i t y f o r Eastman P l u s X r e v e r s a l f i l m w i t h t h e B o l e x camera s e t a f . 1.8, 64 f . p . s . ,  and,shutter  one q u a r t e r open ( e q u i v a l e n t o f an exposure t i m e o f 1/640 sec).  As t h e f r o n t s i l v e r e d m i r r o r s t a r n i s h e d t h e s e  had t o be i n c r e a s e d .  voltages  48 (C)  EXPERIMENTAL WORK WITH THE N-BUTANOL AND WATER SYSTEM ( i ) Charging the apparatus. • A f t e r t h e m o d i f i c a t i o n s had been completed a l l t h e  equipment i n c o n t a c t w i t h t h e n - b u t a n o l was washed o u t w i t h acetone and t h e n water.  The p i p i n g was d i s c o n n e c t e d a t t h e  b o t t o m o f t h e a i r t r a p E ( f i g u r e 12) and t h e l i n e s and pump removed and blown out w i t h a i r .  The p i p i n g t h e n was r e -  connected t o t h e bottom o f t h e a i r t r a p , and t h e n o z z l e l i n e H connected t o a vacuum pump.  A l l v a l v e s were c l o s e d and t h e  s t o r a g e b o t t l e A ( f i g u r e 12) f i l l e d w i t h water s a t u r a t e d t e c h n i c a l grade n - b u t a n o l .  V a l v e C was opened, and t h e n F  opened u n t i l N - b u t a n o l f l o w e d o u t o f t h e vent from t h e a i r t r a p E.  V a l v e P was t h e n c l o s e d .  The vacuum pump t h e n was  s t a r t e d and a f t e r maximum vacuum was r e a c h e d a v e r y s m a l l amount o f n - b u t a n o l was a l l o w e d t o pass t h r o u g h "G".  After  t h e vacuum was a g a i n a t a maximum t h e p r o c e s s was r e p e a t e d . The r u b b e r l i n e t o t h e vacuum pump from t h e copper n o z z l e l i n e was clamped and t h e n v a l v e G opened, a l l o w i n g t h e nb u t a n o l t o f i l l t h e e v a c u a t e d b e l l o w s pump and l i n e .  The  vacuum pump next was removed and t h e n o z z l e a d a p t e r and 1/8 i n . s t a i n l e s s s t e e l n o z z l e assembled The column t h e n was f i l l e d w i t h d i s t i l l e d  i n t h e column. water.  The r e a s o n f o r t h e e v a c u a t i o n was t o remove any a i r from t h e I n s i d e o f t h e b e l l o w s . very successful.  T h i s procedure  proved  49 ( i i ) Examination o f drops produced . steel nozzles. A d e t a i l e d study o f drops n o z z l e s was made u s i n g t h e f o l l o w i n g (a)  f  with  stainless  formed w i t h s t a i n l e s s  steel  procedure:  T h e Graham V a r i a b l e S p e e d T r a n s m i s s i o n was s e t a t a selected value.  (b)  T h e v o l u m e p e r s t r o k e o f t h e pump was r e g u l a t e d b y a d j u s t i n g k n o b E ( f i g u r e 8) o f t h e cam o p e r a t e d a d j u s t a b l e s t r o k e mechanism u n t i l was  a minimum v a l u e  o b t a i n e d f o r t h e d e s i r e d drop c o m b i n a t i o n (one  drop and zero t r a i l e r , etc.).  one d r o p a n d one t r a i l e r  As t h e i n v e s t i g a t i o n was c a r r i e d o u t i n  t h e d i r e c t i o n o f i n c r e a s i n g volume p e r s t r o k e f o r each s e l e c t e d value i n ( a ) , t h e values  obtained  r e p r e s e n t e d f i r s t change i n t o t h e p a r t i c u l a r combination under study.  drop  O b s e r v a t i o n o f t h e drops  b e i n g f o r m e d was b e s t made b y l o o k i n g t h r o u g h t h e v i e w f i n d e r o f t h e E x a k t a camera w i t h t h e f o c u s s i n g magnifier i n place. (c)  Valve C f i g u r e  12)  meniscus passed  t h e z e r o m a r k o n t h e b u r e t t e D,  both the e l e c t r i c started.  was c l o s e d , a n d when t h e  c o u n t e r was r e a d a n d t h e c l o c k  After a suitable i n t e r v a l of time,  s i m u l t a n e o u s l y t h e c l o c k was s t o p p e d and t h e c o u n t e r r e a d .  The t i m e  and t h e b u r e t t e  i n seconds, t h e  v o l u m e pumped i n m i l l i l i t r e s a n d t h e d i f f e r e n c e i n  50 r e v o l u t i o n s were r e c o r d e d .  V a l v e C was t h e n  opened, a l l o w i n g t h e b u r e t t e t o r e f i l l . (d)  During t h e time i n t e r v a l i n ( c ) , s t i l l  photographs  were t a k e n w i t h t h e E x a k t a camera so as t o have a permanent r e c o r d . (e)  P r o c e d u r e s ( b ) and ( c ) were r e p e a t e d f o r each drop c o m b i n a t i o n a t each s e l e c t e d speed i n ( a ) . By d i v i d i n g t h e number o f r e v o l u t i o n s i n t o t h e  volume pumped, and t h e t i m e i n seconds i n t o t h e number o f r e v o l u t i o n s , t h e volume p e r s t r o k e and t h e number o f pump s t r o k e s p e r second were o b t a i n e d . To determine t h e b o u n d a r i e s o f t h e v a r i o u s a r e a s o f drop c o m b i n a t i o n s o b t a i n e d i n graphs w i t h volume p e r s t r o k e as o r d i n a t e , and pump s t r o k e s p e r second as a b s i s s a , t h e above minimum v a l u e s were p l o t t e d .  As t h e main p u r -  pose o f t h i s i n v e s t i g a t i o n was t h e s t u d y o f u n i f o r m s i z e d drops w i t h o u t t r a i l e r s , i n r e g i o n s where t h i s drop comb i n a t i o n e x i s t e d , b o t h t h e upper and t h e l o w e r b o u n d a r i e s and sometimes, i n a d d i t i o n , i n t e r m e d i a t e p o i n t s were what was d e t e r m i n e d . I n r u n s 14 t o 24 some 300 o b s e r v a t i o n s o f drop c h a r a c t e r i s t i c s and number o f t r a i l e r s were made i n a range o f drop volume from a p p r o x i m a t e l y 6.0 x 10"^ t o 33 x 10"^ m l . and o f pump speed from 0 t o 4.33 s t r o k e s p e r second, u s i n g n - b u t a n o l and w a t e r system w i t h m u t u a l l y s a t u r a t e d p h a s e s ,  51 a 1/8 i n . I.D. n o z z l e and Cam A f o r w a r d . F i g u r e 17 shows t h e t y p e s o f drops produced up t o a pump speed o f a p p r o x i m a t e l y  2 . 5 s t r o k e s p e r second.  Nowhere d u r i n g t h e s e o b s e r v a t i o n s were any s i n g l e drops w i t h out t r a i l e r s f o u n d .  The l i n e marked "bounce" i n d i c a t e s t h e  l o w e r l i m i t o f t h e r e g i o n where t h e s m a l l t r a i l e r f o l l o w i n g each l a r g e r d r o p , i s a c c e l e r a t e d p a r t way up t h e column, s t r i k e s t h e bottom o f t h e main drop and bounces o f f t o one side.  T h i s phenomena was r e p o r t e d by Buchanan ( 1 5 ) «  The  t r a n s i t i o n between t h e f o r m a t i o n o f m u l t i p l e drops and drops w i t h t r a i l e r s was q u i t e sharp a t 0.48 s t r o k e s p e r second. As no s i n g l e drops w i t h o u t t r a i l e r s were o b s e r v e d during the examination I.D.  o f drop f o r m a t i o n w i t h t h e 1/8 i n .  s t a i n l e s s s t e e l n o z z l e , t h i s n o z z l e was r e p l a c e d by  t h e 5/32 i n . I.D. s t a i n l e s s s t e e l n o z z l e , and t h e column r e f i l l e d w i t h d i s t i l l e d water. pump was o p e r a t e d  Then t h e b e l l o w s  d i s p e r s i n g t h e n-butanol  valve  i n t o t h e water  u n t i l t h e c o n c e n t r a t i o n t r a i l s b e h i n d each drop ceased t o be formed. the  The w a t e r t h e n was assumed t o be s a t u r a t e d w i t h  n-butanol. P o r t a b l e s p a c e r p i e c e s o f 1/4, 5/l6 and 3/8 i n .  t h i c k n e s s were made f o r f i t t i n g o v e r t h e cam f o l l o w e r g u i d e . These l i m i t e d t h e t r a v e l o f t h e cam f o l l o w e r B ( f i g u r e 8) so t h a t t h e f o l l o w e r wheel c o n t a c t e d o n l y t h a t p o r t i o n o f t h e  LEGEND MINIMUM VALUES FOR g  I DROP  8  6  I. DROP  & 2 TRAILERS  I TRAILER  O  I DROP a 3 TRAILERS  O BOUNCE  DROP S I LARGE TRAILER  9  0-50  9-  100  2-00  PUMP  STROKES 7 S E C .  FIGURE 17 RUNS 14-24 TYPES OF DROPS PRODUCED !/8 STAINLESS STEEL NOZZLE CAM A" FORWARD n - B U T A N O L and WATER !!  M  53 cam o f l a r g e r r a d i u s .  I n o r d e r t h a t t h e s t r o k e arm have  t h e s a m e t t r a v e l as p r e v i o u s l y , t h e r a t i o o f s t r o k e arm t r a v e l t o cam f o l l o w e r t r a v e l had t o be i n c r e a s e d , r e s u l t i n g i n a more r a p i d s t r o k e w i t h a more abrupt s t o p . Runs 26 t o 32 were made u s i n g cam' A f o r w a r d i n some r u n s and r e v e r s e d i n o t h e r s , w i t h and w i t h o u t 5/16  i n . spacers.  i n . and  These r e s u l t s gave v a r i o u s s i z e d r e g i o n s  o f s i n g l e drops when p l o t s were, made i n w h i c h volume p e r s t r o k e was p l o t t e d a g a i n s t s t r o k e s p e r second. However i t appeared t h a t t h e f l u c t u a t i n g t e m p e r a t u r e o f t h e room where t h e e x p e r i m e n t s were b e i n g c a r r i e d out had more e f f e c t t h a n t h e o t h e r v a r i a b l e s . moved t o ' C o n s t a n t  The a p p a r a t u s was t h e n  Temperature Room"where f o r some o f t h e t i m e  t h e t e m p e r a t u r e was s t i l l f a r from c o n s t a n t , v a r y i n g from 23°G t o 27°C.  Nevertheless  t h e r e s u l t s from Runs 26 -  d i d i n d i c a t e t h a t t h e abrupt f i n i s h t o t h e d i s c h a r g e  32  stroke  as o b t a i n e d by cam A f o r w a r d , and by t h e use o f s p a c e r p i e c e s on t h e cam f o l l o w e r d i d not i n c r e a s e t h e area o f t h e " s i n g l e drop w i t h o u t t r a i l e r s " r e g i o n on t h e p l o t s o f drop volume v e r s u s pump s t r o k e s p e r second. F i g u r e 18 shows a p l o t o f Run 35 where cam A was r e v e r s e d , t h e t e m p e r a t u r e o f t h e system m a i n t a i n e d 2 2 . 4 ° and 2 3 . 0 ° C , and t h e n - b u t a n o l i n . I.D. n o z z l e .  between  i n j e c t e d through a  5/32  LEGEND  50  2  -  O  I  DROP  a  0 TRAILER  0  I  DROP  a  I TRAILER  +  2  DROPS a  I TRAILER  0  3  DROPS a  I TRAILER  LIMIT  OF APPARATUS  40  ^ ML£« T R  3  30  DR0  p S  &  -  UJ  o  cc h20  -  111  3  O >  I  DROP  a  I  TRAILER  I 0  ^ — f r ERRATIC 0 50  I DROP  1  a ..  I TRAILER 0  /  STROKE  100 1-50 PUMP S T R O K E S / SEC.  FIGURE 18  RUN 3 5  T Y P E S O F DROPS P R O D U C E D AND REGION O F SINGLE DROPS 5 / 3 2 " I.D. S T A I N L E S S S T E E L N O Z Z L E C A M "A" REVERSED n - B U T A N O L and W A T E R  200  ( i i i ) Examination  o f drops produced w i t h b r a s s n o z z l e s .  As c o n s i d e r a b l e d i f f i c u l t y was Department workshop i n m a n u f a c t u r i n g  e x p e r i e n c e d by  sharp edged  s t e e l n o z z l e s as d e s c r i b e d by Greene ( 2 0 ) ,  the  stainless  brass nozzles,  b e i n g e a s i e r t o machine, were u s e d f o r t h e r e m a i n d e r o f this investigation  w i t h the e x c e p t i o n of b r i e f study w i t h a  Teflon nozzle. A comparison between t h e r e s u l t s o f Run  35  ( f i g u r e 18}  5/32  i n . stainless  ( f i g u r e 20,  5/32  i n . brass n o z z l e ) , a l l other conditions  s t e e l n o z z l e ) and Run  b e i n g as n e a r l y "as p o s s i b l e t h e same, showed v e r y d i f f e r e n c e r e s u l t i n g from t h e change, ( f i g u r e  39  little  54).  T a b l e 7 l i s t s t h e runs made w i t h t h e sharp-edged brass n o z z l e s i n t h i s study of the n-butanol-water R e s u l t s from Runs 38-47 i n c l u s i v e  system.  (figures  19  showed t h a t drops w i t h o u t t r a i l e r s were produced i n t h e butanol-water  system by t h e 5/32  were produced by t h e 1/8 additional  i n . and 3/16  n o z z l e o f 11/64  between t h e 5/32 The  i n . I.D.  i n . I.D.  i n . n o z z l e and t h e 3/16  " l i m i t of apparatus"  was  erratic.  nozzles.  i n . nozzle  shown i n f i g u r e s  53 x 10"3  n-  An  t h e n made, b e i n g  r e p r e s e n t s t h e upper l i m i t o f r e l i a b i l i t y . per stroke of approximately  28)  n o z z l e s , but none  i n . I.D.  was  -  sizes. 18 t o  23  Above t h i s volume  m l . t h e pump d i s c h a r g e  TABLE NO. 7 RUNS MADE WITH BRASS NOZZLES WITH N-BUTANOL-WATER SYSTEM. Run No.  Nozzle s i z e I . D. inches  Cam  Spacer. Temperature thickness . inches °C  38  5/32  A forward  nil  21.7-22.6  19  7103,-6  39  5/32  A reversed  nil  "21.8-23.1  20  7104-5  40  5/32 •  A forward  I  22.0-22.1  21  7107-8  41  5/32  B S.H.M.  nil  21.5-22.0  22  J109-10  42  5/32  22.7-23.4  23  7111-2  43  1/8  A forward  nil  22.6-22.9  24  7113-4  44  1/8  A reversed  nil  22.8-23.5  25  44A  1/8  B  S.H.M.  nil  24.0-24.1  -  7115-6  45  3/16  B  S.H.M.  nil  22.5-22.6  26  7118  46  3/16  A forward  nil  22.7-22.9  27  7119  47  3/16  A reversed  nil  22.5-22.9  28  7120  51  11/64  A forward  nil  22.6-24.0  29  7124-5  52  11/64  A reversed  nil  22.8-23.4  30  7126-7  53  11/64  B S.H.M. ( n o z z l e : contaminated)  nil  22.6-22.9  31  7128  54  11/64  A forward  nil  22.8-24.1  32  , 7133  55  11/64  B  nil  22.8-23.a  33  •7133-4  A forward n i l (cam r e p a i r e d )  S.H.M.  F i g . D a t a Book* No. pages •  v  7117  * Log books, Dept. o f C h e m i c a l E n g i n e e r i n g , U n i v e r s i t y ~ o f B r i t i s h Columbia  LEGEND  0 50  1-50  I 00 PUMP STROKES / SEC.  FIGURE 19  RUN 3 8  T Y P E S OF DROPS PRODUCED AND REGION O F SINGLE DROPS 5/32" I.D. BRASS N O Z Z L E C A M "A" FORWARD n . - B U T A N O L and WATER  200  _j  050  i  :  I 00  i  150  PUMP S T R O K E S / S E C .  FIGURE  20  RUN 39  TYPES OF DROPS PRODUCED AND REGION OF SINGLE DROPS 5 / 3 2 " I.D. BRASS NOZZLE CAM A REVERSED n - B U T A N O L and WATER TT  A  L_  2 00  LEGEND O O  I DROP  &  0 TRAILER  1 DROP ft 2 DROPS ft MORE THAN  I TRAILER I TRAILER I DROP  LIMIT OF APPARATUS  I DROP  a  TRAILER  -9" ERRATIC 0 50  I 0  DROP a I TRAILER »| " 0  STROKE  "I 00 50 PUMP STROKES / SEC.  FIGURE 21;  RUN 40  T Y P E S OF DROPS PRODUCED AND REGION O F S I N G L E DROPS 5/32" I.D. B R A S S NOZZLE C A M "A" F O R W A R D , l / 4 SPACER n - B U T A N O L and WATER u  2  _L  00  6 E ND  LE O LIMIT OF A P P A R A T U S  ERRATIC"  0-50  I DROP  0  . ••  a  " 0  I DROP  9  I DROP  *  2 DROPS  I TRAILER  »  100  a  0 TRAILER  a  I TRAILER  & I TRAILER  /  /  STROKE  i  »  1-50  PUMP S T R O K E S / S E C .  FIGURE 22  RUN 41  T Y P E S O F DROPS PRODUCED AND REGION OF SINGLE DROPS 5/32" I.D. B R A S S N O Z Z L E CAM " B " n - B U T A N O L and W A T E R  200  L E G E N D 50  -  O Q  4 or  ro  40  J  o  DROP a DROP a 2 DROPS a 3 DROPS a  LIMIT  OF APPARATUS  TRAILER TRAILER  TRAILER TRAILER MORE THAN I DROP 3BR0PS &ITRAILER -«f #-  30 tr CO  20  TRAILER  LL)  O >  I 0  -"0 ERRATIC- I DROP a I TRAILER 0 0  0-50  /  /  STROKE  PUMP  100  FIGURE  150 STROKES / SEC.  23  RUN 4 2  T Y P E S OF DROPS PRODUCED AND REGION O F SINGLE DROPS 5 / 3 2 " I.D. BRASS N O Z Z L E CAM "A" FORWARD ( R E P A I R E D ) n - B U T A N O L and WATER  200  LEGEND Q I D R O P & I TRAILER 6  I DROP a 2 TRAILERS  ro  ERRATIC -  —J 0-50  I DROP  0  1  it  a  I TRAILER  ii 0  II  100 PUMP  /STROKE /  I 1-50  STROKES/ SEC.  FIGURE 24 RUN 4 3 TYPES OF DROPS PRODUCED 1/8 " I.D. BRASS N O Z Z L E CAM "A" FORWARD n-BUTANOL and WATER  II  L_ 2 00  LEGEND -o O  t  DROP a  I  TRAILER  I  DROP a  2  TRAILERS  1  DROP  3  TRAILERS  a  BO UNCE 2  DROPS a  TRAILERS  3  DROPS a  TRAILERS  2  TRAILERS/DROP  -6  DBOP 2 DROPS a  TRAILERS  ®-  -O— ^TRAILERS  /  DROP  THAN I DROP MORE TRAILER a  ERRATIC -  I DROP 0 M  a I TRAILER / S T R O K E " 0 » / II  !  0-50  00  t  1-50 PUMP S T R O K E S / SEC  FIGURE 25  RUN 4 4  TYPES OF DROPS PRODUCED 1/8" I.D. BRASS NOZZLE CAM "A" REVERSED n- BUTANOL and WATER  2 00  LEGEND  40 I  Q rO  30  o cr »co  3 TRAILERS / 20  JL  O  \  UJ 2 _J  O >  •" 9  6  A  2  T R A I L E R / DROP 0  -  O  2  Q_  -O— ERRATIC —  TRAILERS  o-  ./  I  a  TRAILER  6  I  DROP a  2 TRAI L E R S  -O  I  DROP a  3 TRAI L E R S  O-  LU  DROP  BOUNCE  .  DROP  DROPc)  o——5—O———  I DROP  a "  I TRAILER 0  /  STROKE  JL 0  0 50  i 00 I 50 PUMP STROKES / S E C .  FIGURE  26  T Y P E S O F DROPS 3/16"  I.D. B R A S S  RUN 4 5 PRODUCED NOZZLE  CAM "B" n - BUTANdL and WATER  2 00  GE ND  ERRATIC -  I DROP a  0 0  «  I TRAILER  » 0  »  100  0-50 PUMP  /  STROKE  /  "  150  S T R O K E S / SEC  FIGURE  27  TYPES OF DROPS PRODUCED 3/16" I.D. BRASS NOZZLE CAM 'K FORWARD n-BUTANOL and WATER R U N 46  a  I TRAILER  a  2 TRAILERS  a  3 TRAILERS  a  4 TRAILERS  LEGEND I DROP  Q  I TRAILER 2 TRAILERS  6  I DROP  a  -O  I DROP  a 3 TRAILERS  '  BOUNCE  O-  m  a  40-  6 X  ERRATIC  \ 0  a  I DROP  I  I  050  100  I  TRAILER /  STROKE I I 50  PUMP STROKES / SEC  FIGURE  28  RUN 47  T Y P E S O F DROPS PRODUCED 3/16" I.D.  BRASS  NOZZLE  CAM "A" R E V E R S E D n - B U T A N O L and W A T E R  L_ 2 00  I \ LIMIT  OF \  APPARATUS  DROPS WITH MULTIPLE TRAILERS  REGION OF SINGLE DROPS - ZERO TRAILERS MULTIPLE  DROPS a TRAILERS  OL  0-50  •00  •50  1 2 00  2-50  300  PUMP STROKES / SEC.  FIGURE  29  REGION OF SINGLE DROPS 11/64" I.D. BRASS NOZZLE CAM "A" FORWARD n-BUTANOL and WATER RUN 51  1  1  3-50  4-00  LIMIT  OJ  OF'APPARATUS  I  I  I  I  I  I  I  0-50  1-00  150  200  2-50  300  3 50  ! 4 00  PUMP S T R O K E S / SEC.  FIGURE REGIONS 11/64"  30  O F SINGLE  I.D. B R A S S  CAM  DROPS NOZZLE  "A * REVERSED  n-BUTANOL RUN  1  and 52  WATER  !  I  I  I  4-50  500  5-50  6 00  I 6-50  L 7-00  LIMIT OF APPARATUS  50  40 ro O x  30  LU  o  REGION  cc 20-  O F SINGLE  DROPS -  ZERO  TRAILERS  1UJ 3  O >  0  0'50  100  •50  2 00 PUMP  2-50 STROKES/SEC.  FIGURE  31  REGION OF SINGLE DROPS 11/64" I.D. BRASS NOZZLE CAM "B" n-BUTANOL.and RUN 53  WATER  300  3-50  400  4-50  LIMIT O F A P P A R A T U S  50f-  ro 404i  o NO  SINGLE  LOCATED  30| UJ O  rr f-  co 201  UJ S  3  5 .01  I  0-50  •00  1-50  200  PUMP S T R O K E S / S E C .  FIGURE  32  REGION OF SINGLE DROPS 11/64" I.D. BRASS NOZZLE CAM  A  FORWARD  n - BUTANOL and WATER RUN 54 REPETITION OF RUN 51  2-50  300  DROPS  BEYOND  LIMIT OF APPARATUS  PUMP STROKES / SEC.  FIGURE 33 RUN 55 11/64" I.D. BRASS NOZZLE REGIONS OF SINGLE DROPS CAM B " n-BUTANOL and WATER 11  REPETITION OF RUN 53  72 Runs 5 1 ,  52 and 53 were made w i t h t h e 11/64 i n .  I.D. n o z z l e ( f i g u r e s 2 9 , 3 0 and 31)  and much l a r g e r r e g i o n s  of s i n g l e drops w i t h o u t t r a i l e r s found t h a n w i t h t h e 5/32 i n . I.D. n o z z l e . second a t 7.75  However a t t h e end o f Run 5 2 , w i t h s t r o k e s p e r and volume o f drop a t 8 . 6 0 x 10" ^ i. t h e ra  n o z z l e t i p became w e t t e d on one s i d e by t h e n - b u t a n o l .  A  s i m i l a r o c c u r r e n c e was o b s e r v e d i n Run 53 a t 4 . 1 3 s t r o k e s p e r second and 2 1 . 2 x 10~3 m l . Run 5 3 , Frames 2CD and 21)  F i g u r e 34 (photographs  55-20  shows t h e drop f o r m a t i o n b e f o r e and  a f t e r t h e t i p was w e t t e d w i t h t h e n - b u t a n o l under t h e s e conditions. A new 11/64  i n . I.D. sharp-edged  n o z z l e was made,  but t h i s , , b e i n g o f s l i g h t l y l a r g e r d i a m e t e r (Appendix A ) , gave d i f f e r e n t r e s u l t s from t h o s e o b t a i n e d by t h e f o r m e r i n . nozzle, before wetting.  11/64  T h i s n o z z l e however became  w e t t e d by t h e n e b d t a n o l i n a v e r y few m i n u t e s . The 5/32 i n . n o z z l e used i n t h e e a r l i e r  Runs 38-42  was f i t t e d i n t h e a p p a r a t u s , and a f t e r a few minutes o f o p e r a t i o n was w e t t e d a t t h e t i p , a l t h o u g h i n Runs 38-42 such w e t t i n g d i d not o c c u r as c o n f i r m e d by s t i l l and movie photographs  (figure 49a).  No s i n g l e drops w i t h o u t t r a i l e r s  were produced w h i l e t h e t i p was w e t t e d by t h e n - b u t a n o l .  Run 53 Frame 20 Before  Run 53 Frame 21  contamination  After FIGURE  34  E f f e c t s of Contamination 11/64  i n . I.D. b r a s s n o z z l e , Cam " B " . n - b u t a n o l and w a t e r system  contamination  74 T h i s e v i d e n c e p o i n t e d s t r o n g l y t o i n t e r n a l contamination a f f e c t i n g the surface tensions of e i t h e r o r both of t h e n - b u t a n o l and t h e w a t e r .  S u s p i c i o n s were a r o u s e d  over the p o s s i b i l i t y o f contamination i n t h e Winchester o f d i s t i l l e d water b e i n g u s e d . of  The b o t t l e used up t o t h e end  Run 49 now c o n t a i n e d m e t h y l i s o b u t y l ketone b e i n g  saturated w i t h d i s t i l l e d water, f o r the future i n v e s t i g a t i o n of t h e m e t h y l i s o b u t y l k e t o n e - w a t e r system.  I n i t s place  a new " c l e a n " b o t t l e was r i n s e d o u t , f i r s t w i t h t a p w a t e r , and l a t e r w i t h d i s t i l l e d w a t e r , b e f o r e b e i n g f i l l e d d i s t i l l e d water.  with  D i s t i l l e d w a t e r was t h e n s t o r e d i n t h i s  b o t t l e i n t h e C o n s t a n t Temperature Room so as t o be a t t h e t e m p e r a t u r e o f t h e a p p a r a t u s when added t o I t . S u r f a c e t e n s i o n measurements were made w i t h a #70540 t y p e Cenco-du Nouy P r e c i s i o n I n t e r f a c i a l T e n s i o m e t e r u s i n g a #70542 t y p e P l a t i n u m a a n d I r i d i u m R i n g , on t h e n - l u t a n o l i n t h e a p p a r a t u s , t h e unused n - b u t a n o l , t h e d i s t i l l e d  water,  and on t h e d i s t i l l e d w a t e r from t h e s u s p e c t e d s t o r a g e b o t t l e , as shown i n t a b l e 8. From t h e s e r e a d i n g s b o t h t h e b o t t l e w a t e r and t h e n - b u t a n o l t h a t wet t h e n o z z l e had dropped i n s u r f a c e t e n s i o n . These f i n d i n g s p o i n t e d t o t h e e n t r a n c e o f a t r a c e o f "Calgon" i n t o t h e system from t h e s t o r a g e b o t t l e .  This cleansing  agent i s used f o r c l e a n i n g o u t t h e g l a s s w a r e i n t h e  TABLE NO. 8 SURFACE TENSION MEASUREMENTS TO DETERMINE PRESENCE OF CONTAMINATION Materials  S u r f a c e t e n s i o n Maximum Temp, Dynes/cm deviation from t h e mean o f 4 - 6 readings taken Dynes/cm 77.1  0.3  Water from b o t t l e  64.7  0.0  Unused n - b u t a n o l  27.5  0.0  Unused n - b u t a n o l s a t u r a t e d w i t h , p u r e d i s t i l l e d water  27.8  Former s a t u r a t e d n - b u t a n o l from a p p a r a t u s b e f o r e c ont aminat i o n  27.7  0.1  S a t u r a t e d n - b u t a n o l from contaminated a p p a r a t u s  26.9  0.0  Pure d i s t i l l e d water  0.1  69°F  Department s t o r e s , and p r o b a b l y t h e r e was a t r a c e o f t h e agent l e f t I n t h e b o t t l e , even though t h e b o t t l e had been r i n s e d w i t h d i s t i l l e d water p r i o r t o being f i l l e d w i t h i t . B o t h t h e water and t h e n - b u t a n o l were r e p l a c e d i n t h e a p p a r a t u s and t h e n o z z l e s c l e a n e d i n a c e t o n e .  The  n o z z l e s were s t i l l w e t t e d a t t h e t i p s by t h e n - b u t a n o l . B o i l i n g t h e n o z z l e s i n d i s t i l l e d water h e l p e d , but  still  t h e r e was a tendency f o r t h e n - b u t a n o l t o wet t h e t i p . F i n a l l y , by a c c i d e n t , i t was  found t h a t by h e a t i n g t h e  n o z z l e u n t i l t h e b r a s s j u s t changed c o l o u r and t h e n p l u n g i n g i t i n t o d i s t i l l e d w a t e r , t h a t t h e water wet t h e nozzle.  "Flamed" n o z z l e s t r e a t e d i n t h i s way, t h e n worked  s a t i s f a c t o r i l y , and , i n p a r t i c u l a r , t h e 5/32  i n . and  11/64  i n . I.D. n o z z l e s were no l o n g e r w e t t e d by t h e n - b u t a n o l . Runs 54 and 55  ( f i g u r e s 32 and 33)  reproduce  r e a s o n a b l y w e l l t h e r e s u l t s o f Runs 51 and 53 ( f i g u r e s 29 and 31)  respectively  made b e f o r e t h e c o n t a m i n a t i o n .  ( i v ) E x a m i n a t i o n o f drops produced w i t h a T e f l o n . tipped nozzle. T e f l o n was chosen f o r e x a m i n a t i o n as i t i s h i g h l y h y d r o p h o b i c and would be w e t t e d p r e f e r e n t i a l l y by n - b u t a n o l r a t h e r t h a n by water.  A c c o r d i n g l y an 11/64  i n . I.D. T e f l o n  t i p p e d nozzle^ was used f o r Run 48 w i t h cam A f o r w a r d , and f o r Run 49 w i t h Gam  A reversed.  F i g u r e s 35 and 36 show t h e  r e s u l t s o f t h e s e e x a m i n a t i o n s and f i g u r e 37 shows t h e nb u t a n o l w e t t i n g the t i p of the n o z z l e . w i t h o u t t r a i l e r s were f o u n d .  No s i n g l e  drops  This examination w i t h the T e f l o n nozzle concluded t h e e x p e r i m e n t a l work w i t h t h e n - b u t a n o l and water  system.  The apparatus, was t h e n p r e p a r e d f o r t h e e x p e r i m e n t a t i o n w i t h t h e second system, m e t h y l i s o b u t y l ketone and as d e s c r i b e d i n t h e next  section.  water  LEGEND 9 6 -O O  I DROP a I TRAILER I DROP a 2 TRAILERS I DROP a 3 TRAILERS BOUNCE  ro40  6  2 £  TRAILERS /DROP  ,  ^  30»-  2 TRAILERS /. DROP  LU  O  CC  6—  —6 TRAILER /  LU 3'  o-  o  -o-  I TRAILER /  DROP  BOUNCE O  —  DROP  r^- -9-  > ERRATIC -  I DROP 8 I . T R A I L E R 0 " "0 " I  0-50  00  /STROKE / " I 1-50  PUMP S T R O K E S / SEC  FIGURE.  35  TYPES OF DROPS PRODUCED 11/64" I. D. TEFLON NOZZLE CAM  '8' FORWARD  n-BUTANOL  -9-  and WATER  2 00  LEGEND  ro i  Q 6 -O O  4C -  O  LU O  3  I DROP a .1 TRAILER I DROP a 2 TRAILERS I DROP a 3 TRAILERS BOUNCE  C-  2 T R A I L E R S / DROP  -6  cr 2 C rV)  o >  I Cf-  o.  -o  9-  -9-  I TRAILER /  -9- — 0  0  0 50  DROP  -Q  9  I DROP  ERRATIC  a  . . . .  -6-  —BOUNCE O  I TRAILER / DROP  LU —I  -6  I  0  TRAILER.  /  "  i 100  -Q-  STROKE  /  "  ;  i  |-50  PUMP STROKES / SEC  FIGURE  36  TYPES OF DROPS PRODUCED 1 1 / 6 4 " I.D. TEFLON NOZZLE  C A M 'K REVERSED n - BUTANOL and WATER RUN  49  2 00  80  FIGURE 37 11/64  i n . I.D. T e f l o n T i p p e d N o z z l e n - b u t a n o l and w a t e r system  (D) EXPERIMENTAL WORK WITH THE METHYL ISOBUTYL KETONE AND . . . WATER SYSTEM The n - b u t a n o l was removed from t h e a p p a r a t u s i n the  f o l l o w i n g manner so as t o p r e v e n t a i r l e a k i n g i n t o t h e  pump.system.  The v a l v e G ( f i g u r e 12) a t t h e bottom o f t h e  a i r t r a p E was c l o s e d , t h e a i r vent v a l v e F opened, and t h e p l u g a t t h e c e n t e r t o p o f t h e a i r t r a p removed.  Through  t h i s opening t h e n - b u t a n o l was removed by s u c t i o n from an aspirator. To c l e a n out t h e n - b u t a n o l , f i r s t d i s t i l l e d water was f l u s h e d t h r o u g h by f i l l i n g t h e s t o r a g e b o t t l e A l e a v i n g v a l v e C open, and removing t h e w a t e r from t h e a i r t r a p . Second, t h e m e t h y l i s o b u t y l ketone was f l u s h e d t h r o u g h as above, u n t i l i t was r e a s o n a b l y sure t h a t t h e water had been displaced.  Then t h e a s p i r a t o r l i n e was removed, t h e p l u g  r e p l a c e d i n t h e a i r t r a p , vent v a l v e F c l o s e d , and t h e s t o r a g e b o t t l e A f i l l e d w i t h water s a t u r a t e d m e t h y l i s o b u t y l ketone.  The v a l v e G a t t h e bottom o f t h e a i r  t r a p was opened and t h e pump s t a r t e d i m m e d i a t e l y .  The  pump was r u n a t h i g h d e l i v e r y and moderate speed u n t i l t h e n - b u t a n o l i n i t had been d i s p l a c e d w i t h t h e m e t h y l i s o b u t y l ketone. Each o f t h e n o z z l e s was c l e a n e d by b e i n g r e p e a t e d l y h e a t e d t o a p p r o x i m a t e l y 250°C. i n a Bunsen f l a m e , and t h e n plunged i n t o d i s t i l l e d water u n t i l t h e n o z z l e was w e t t e d by t h e water.  82 The  1/8 i n . b r a s s n o z z l e was t h e n i n s t a l l e d i n t h e  column and t h e column f i l l e d w i t h d i s t i l l e d w a t e r s a t u r a t e d w i t h methyl i s o b u t y l ketone.  I t was observed t h a t t h e  b e l l o w s v a l v e pump l i m i t e d t o a p p r o x i m a t e l y p e r s t r o k e was inadequate w h i c h produced l a r g e r  i n c a p a c i t y f o r t h i s system  drops.  F i g u r e 38 shows an exploded l a r g e r b e l l o w s .pump.  53 x 10" 3 m l .  v i e w photograph o f a  T h i s was made from a §ln. x 3/4:in.  b e l l o w s B s o l d e r e d t o an a d a p t e r p i e c e A w i t h an 1/8 i n . I . P i S . threaded hole through t h e centre l e a d i n g t o t h e i n s i d e o f t h e b e l l o w s , and an e x t e r n a l t h r e a d t o mate w i t h t h e i n t e r n a l t h r e a d o f t h e body p i e c e C.  The body p i e c e C f i t t e d  over t h e o r i g i n a l b e l l o w s pump v a l v e h o l d e r E and was h e l d i n p o s i t i o n by two s e t s c r e w s .  I n s i d e t h e v a l v e h o l d e r was a  b r a s s s p a c e r p i e c e D t o connect t h e r o d cap F t o t h e end o f t h e b e l l o w s B. The  F i g u r e 38 shows a l s o t h e assembled pump.  check v a l v e s were t h o s e used w i t h t h e o r i g i n a l b e l l o w s  v a l v e pump.  The new pump was capable o f d e l i v e r i n g 120 x 10"" 3  ml. p e r s t r o k e w i t h o u t s t r a i n i n g t h e cam o p e r a t e d  adjustable  s t r o k e mechanism, and was i n a l l ways most s a t i s f a c t o r y . A c o r k s t o p p e r f i t t e d a t t h e t o p o f t h e round p a r t o f t h e columns i n l i e u o f t h e neoprene s t o p p e r used w i t h the n-butanol  and water system l e a k e d i n s p i t e o f a l l  a t t e m p t s t o make i t t i g h t .  I n view o f t h i s f a c t , a  83 polythene  s t o p p e r was  machined and d r i l l e d t o t a k e  thermometer, f u n n e l and g l a s s t u b e .  The  leakage  s t i l l t o o k p l a c e at t h e thermometer, tube and connections  was  that  funnel  s e a l e d by f i t t i n g a t i g h t hose clamp  around t h e o u t s i d e o f t h e p o l y t h e n e The  the  stopper.  o p e r a t i o n o f t h e e l e c t r i c c o u n t e r was  syn-  c h r o n i z e d w i t h t h a t o f t h e e l e c t r i c t i m e r by p l a c i n g a s w i t c h i n s e r i e s w i t h t h e two d e v i c e s .  The  r e a d i n g s d e s c r i b e d on page 49 was The  s w i t c h was  procedure f o r t a k i n g  altered accordingly.  c l o s e d u n t i l t h e c o u n t e r r e a c h e d a con-  v e n i e n t number - u s u a l l y an even hundred, and t h e n opened. The  c l o c k was  t u r n e d back t o z e r o .  Valve C ( f i g u r e  12)  was  c l o s e d so. t h a t t h e pump s u p p l y came o n l y from t h e b u r e t t e .  Immediately t h e meniscus i n t h e b u r e t t e passed t h e z e r o mark the s w i t c h was mark was  c l o s e d , and not opened t i l l a g i v e n m i l l i l i t r e  reached.  Thus t h e d i f f e r e n c e i n r e v o l u t i o n s , t h e  t i m e i n seconds, and t h e volume pumped were r e c o r d e d  ac-  c u r a t e l y , e s p e c i a l l y a t h i g h speeds. E l e v e n runs were made w i t h m u t u a l l y m e t h y l i s o b u t y l ketone and w a t e r . and t h e cam  p r o f i l e were v a r i e d .  saturated  Both the n o z z l e  size  T a b l e 9 summarizes t h e  e x p e r i m e n t a l work c a r r i e d out w i t h t h i s system.  84  FIGURE 38 B e l l o w s Pump  TABLE NO. 9 D.  EXPERIMENTAL INVESTIGATION  METHYL ISOBUTYL KETONE-WATER SYSTEM Run No.  Nozzle Size •D. i n I.D. inches  Cam  Temperature . oF  P i g . D a t a Book .No. . Page ,  56&56A  1/8  A f o r w a r d 74.5-75.0  57  1/8  A reversed 74.0-74.5  39  7138  58  1/8  A forward  73.0-75.5  40  7139  59  1/8  B S.H.M.  75.0-76.0  41  7140  60  11/64  B S.H.M.  72.O-73.O  42  7141  63  11/64  B S.H.M.  72.5  43  7143  64  11/64  A f o r w a r d 72.5  44  7144-5  65  11/64  A reversed  73.0  7146  66  3/16  A forward  73.0  7146  67  7/64  A f o r w a r d 72.5  45  7147  68  5/32  A forward  46  7148  73.0  7136-7  LIMIT  OF A P P A R A T U S  PUMP  STROKES  FIGURE  / SEC.  39  REGION OF SINGLE DROPS 1 / 8 " I.D. BRASS NOZZLE CAM "A" REVERSED METHYL ISOBUTYL KETONE and WATER RUN 57  iooh-  ui  I  6-50 .  V  J  I 00  : — _  1 I -50  1 ' 2 00  PUMP STROKES / SEC.  FIGURE  /'  40  REGION OF SINGLE DROPS 1/8" BRASS NOZZLE CAM "A" FORWARD METHYL ISOBUTYL KETONE and WATER RUN 58  >'*7  LIMIT OF APPARATUS  90  10  08O  -o  701  REGION OF SINGLE DROPS - ZERO  o  TRAILERS  DC 60  h  ui => O > 50  40  1 1-50  I  0-50  100 PUMP  STROKES / SEC,  FIGURE  41  REGION OF SINGLE DROPS 1/8" I.D. BRASS N O Z Z L E CAM "B METHYL ISOBUTYL KETONE and WATER RUN 59 u  S8  200  2-50  PUMP STROKES / SEC.  FIGURE  42  REGION OF SINGLE DROPS 11/64" I.D. BRASS NOZZLE CAM "B CONTAMINATED METHYL ISOBUTYL KETONE and WATER RUN 6 0 w  »  90  LIMIT  1(20  OF  APPARATUS  0  0  90  rO O x  80  6 LU  X o 701 OC *to  Ui  S60j  o >  -0-O-—  50  40 0-50  •00  1-50  2-00  2-50  300  3-50  400  PUMP S T R O K E S / SEC  FIGURE  43  REGION OF SINGLE DROPS II /64 BRASS NOZZLE CAM B METHYL ISOBUTYL KETONE and WATER n  M  RUN  9  63  4-50  500  5 50  6-00  6-50  700  LIMIT  20  It0  OF  APPARATUS  I—"  IOO \r  90 ro O x> E 80  REGION  LU o OT  OF SINGLE DROPS -  ZERO  TRAILERS  70  LU  3  o 60 >  50  X  40 0 50  100  . 1-50  200  2-50  3 00  3-50  PUMP S T R O K E S / S E C  FIGURE  44  REGION OF SINGLE DROPS 11/64-** I.D. BRASS NOZZLE CAM "A" FORWARD METHYL ISOBUTYL KETONE and WATER RUN 64  400  450  5 00  5-00  600  LIMIT  OF APPARATUS  NO  REGIONS FOUND BEYOND  IOO PUMP  STROKES  FIGURE  45  REGION OF SINGLE DROPS 7/64" I.D. BRASS NOZZLE CAM "A" FORWARD METHYL ISOBUTYL KETONE ond WATER RUN 67  PUMP  S T R O K E S / SEC  FIGURE *  46  REGION50F SINGLE DROPS 5/32" I. D. BRASS NOZZLE CAM "A" FORWARD . METHYL ISOBUTYL KETONE and WATER RUN 68  D u r i n g t h e r u n s 56 and 56A ketore-water  the m e t h y l i s o b u t y l  system g r a d u a l l y became c o n t a m i n a t e d .  Probably  i*as due t o t h e l e a c h i n g out o f the  t h i s contamination  p l a s t i c i z e r i n the polythene  of the stopper at the  top  o f t h e column, o r t o t h e d i s s o l v i n g o f s m a l l neoprene r i n g between t h e n o z z l e and t h e a d a p t e r . o f t h e above r e a s o n s may p a r a t u s was  l a t e r as Run 58.  As e i t h e r o r b o t h  have been r e s p o n s i b l e , the  f l u s h e d out a f t e r Run  56,  As each o f Runs 60,  be r e p r o d u c e d t h e a p p a r a t u s was  ap-  t h i s run being 61  "0"  and 62 c o u l d  repeated not  a l l o w e d t o s t a n d f o r a week  t o g i v e t h e m e t h y l i s o b u t y l ketone t i m e t o d i s s o l v e t t h e contaminants.  Then t h e m e t h y l i s o b u t y l ketone and w a t e r  replaced with mutually  s a t u r a t e d m e t h y l i s o b u t y l ketone  was and  w a t e r , t h e n o z z l e f l a m e d and t h e neoprene "0" r i n g r e p l a c e d with "Teflon". be no f u r t h e r  A f t e r these treatments  t h e r e appeared t o  contamination.  I n v i e w o f t h e r e g i o n s o f s i n g l e drops w i t h t h e 1/8  i n . I.D.  n o z z l e was  n o z z l e ( f i g u r e s 39,40 and 4 1 ) , a 7/64  made and  studied ( f i g u r e 45).  drops w i t h t h i s l a t t e r n o z z l e was The  11/64  i n . I.D.  ( f i g u r e 46)  range o f s i n g l e  small.  n o z z l e produced a l a r g e r e g i o n  o f s i n g l e drops ( f i g u r e s 42, 43 and 4 4 ) , nozzle  The  i n . I.D.  and t h e 5/32  produced a much s m a l l e r r e g i o n .  i n . I.D.  The- 3/16 i n . I.D. n o z z l e f a i l e d t o produce s i n g l e drops -per.stroke.  The methyl i s o b u t y l ketone flowed out i n  u n s t a b l e s p u r t s c o n s i s t i n g o f a;;-.series o f drops . o f v a r y i n g s i z e from down i n s i d e -the n o z z l e . With a s m a l l range o f s i n g l e drops without t r a i l e r s from the 7/64  i n . I.D. n o z z l e and no s i n g l e drops from the  3 / l 6 i n . I.D. n o z z l e , the range of n o z z l e s i z e s was s i d e r e d t o be adequately i n v e s t i g a t e d .  con-  96  RESULTS AND DISCUSSION '• The p r e l i m i n a r y e x a m i n a t i o n u s i n g t h e d i e s e l i n j e c t i o n pump f o r pumping t h e d i s p e r s e d phase n - b u t a n o l i n t o t h e c o n t i n u o u s water phase p r o v i d e d d a t a on drop shape and s i z e .  The p h o t o g r a p h i c arrangement r e c o r d i n g two. views  o f the. drops a t r i g h t a n g l e s s i m u l t a n e o u s l y , gave a f i e l d of view of n e a r l y 2 inches v e r t i c a l height at the n o z z l e . As t h e d i s t o r t i o n o s c i l l a t i o n caused by t h e f o r m a t i o n o f t h e drop was damped out i n t h i s d i s t a n c e , t h e s e showed t h e " t r u e " drop shape.  photographs  By p r o j e c t i n g t h e s e photo-  graphs by means o f a s t r i p f i l m p r o j e c t o r on a l a r g e sheet o f graph paper, t h e drop axes c o u l d be measured e a s i l y . The p o s i t i o n o f t h e graph paper was a r r a n g e d so t h a t t h e 1/8  i n . n o z z l e t i p i n Runs 6 - 1 1  covered 25 s m a l l squares  i n w i d t h , and t h e r e f o r e each s m a l l square r e p r e s e n t e d 0.005 in.  S i m i l a r l y , when measuring t h e drops i n Runs 12 and  t h e 5/32  i n . n o z z l e t i p c o v e r e d 31.25  squares.  Table  10  shows t h e r e s u l t s o f t h e s e measurements f o r Runs 12 and i n w h i c h t h e 5/32  i n . I.D. n o z z l e was u s e d .  "X" and  13  13  "y"  r e p r e s e n t t h e two p e r p e n d i c u l a r h o r i z o n t a l a x e s , and " z " the v e r t i c a l ( f i g u r e  l).  E x a m i n a t i o n o f t h e r e s u l t s i n T a b l e 10 shows t h a t except i n one case ( r u n 13,  frame 2) t h e v a l u e s o f "x" and  "y" v a r y no more t h a n t h o s e o f " z " , i n d i c a t i n g t h a t t h e h o r i z o n t a l axes are b o t h e q u a l and t h e h o r i z o n t a l s e c t i o n a circle.  The d e v i a t i o n i n Run 13,  frame 2,  c o u l d have been  TABLE NO.  10  Measurement o f drop s i z e s by p r o j e c t i o n on g r a p h paper using a s l i d e - s t r i p film Run Frame No. ...  projector...  Dimensions o f Drop Axes. No. .of i n . x 0.005 Trailers, L e f t view Right view z z .. x y  12  2  .. . 23  .13  .13  .7  32  12  13  32  .30  14  13  . . 30  14  17  12  Ill  16  19  12  18,  15  11  9 .  .  23  0  3  5,  17  2  3 , .3  12  19  0  11  i4|  1  **  13  16  6  2  11  0  10  23  0  io|.  20  0 .  10|  ..7  1  .27  -  8  19:  .11  11.  19.  0  .9.  17  io|  iQi  171  0  19  10|  11  18|  0  18.  11  12  19  5  7  11.  5,  10| *  2 . .  10.  Dia. of spherical Trailers, i n . x 0.005  .  ...  2  x and y an£ h o r i z o n t a l axes o f drops z i s v e r t i c a l a x i s o f drops'  4, 3 ,  98 due t o t i l t  o f the drop.  These r e s u l t s i n d i c a t e t h e drop  shape t o he o b l a t e s p h e r & f c l & l w i t h i n t h e s i z e range c o v e r e d by t h e t a b l e . The r e s u l t s o f Greene (20) c o u l d n o t be r e produced i n t h i s i n v e s t i g a t i o n a l t h o u g h t h e d e t a i l e d s t u d y made i n Runs 1-11 i n c l u s i v e was made u s i n g t h e same pump, n o z z l e and system. Runs 26-32 showed t h a t t h e e f f e c t o f t h e tempe r a t u r e was s i g n i f i c a n t i n t h e p r o d u c t i o n o f u n i f o r m d r o p s . T h i s v a r i a b l e was p a r t i a l l y e l i m i n a t e d by c o n d u c t i n g t h e r e m a i n d e r o f t h e i n v e s t i g a t i o n i n t h e "Constant  Temperature  Room". The main i n v e s t i g a t i o n showed t h a t n o z z l e i n s i d e d i a m e t e r s i z e was v e r y c r i t i c a l f o r t h e f o r m a t i o n o f s i n g l e drops w i t h systems o f v e r y l o w i n t e r f a c i a l t e n s i o n .  With  n - b u t a n o l - w a t e r system, t h e 5/32 i n . I.D., and 11/64  i n . I.D.  n o z z l e s produced r e g i o n s o f u n i f o r m drops ( f i g u r e s 47, and 50), w h i l e 1/8 i n . I.D. and 3/l6 ( f i g u r e s 49 and 50).  48,  49  i n . I.D. d i d n o t  The former n o z z l e t i p s were p r e f e r - ^  e n t i a l l y w e t t e d by t h e w a t e r and t h e l a t t e r by t h e n - b u t a n o l . The range o f n o z z l e s i z e t h a t produced s i n g l e drops  1  w i t h t h e m e t h y l i s o b u t y l system was from 7/64 11/64  i n . I.D. ( f i g u r e s 51 and 52).  i n . I.D. t o  T h i s range was c o n s i d e r -  a b l y g r e a t e r t h a n w i t h t h e system o f n - b u t a n o l - w a t e r o f l o w e r  99  Run 3 6  Frame 3  FIGURE 47 S i n g l e Drops w i t h o u t  Trailers  5 / 3 2 i n . I.D. s t a i n l e s s s t e e l n o z z l e 1/4 i n . s p a c e r and Cam "A" r e v e r s e d 2 9 . 0 x 10" 3 i . p e r s t r o k e 1.00 s t r o k e s p e r second n - b u t a n o l and w a t e r system m  Run 37  Frame 15 FIGURE  48a  S i n g l e Drops w i t h o u t  Trailers  5/32 i n . I.D. s t a i n l e s s s t e e l n o z z l e , Cam "A" f o r w a r d 3 8 . 5 x 10"3 m l . p e r s t r o k e 1.00 s t r o k e s p e r second n - b u t a n o l and water system  Run 37  Frame 16 FIGURE  48b  S i n g l e Drops w i t h o u t  Trailers  5/32 i n . I.D. s t a i n l e s s s t e e l n o z z l e , Cam "A" f o r w a r d 5 0 . 0 x 10" 3 m l . p e r s t r o k e 1.16 s t r o k e s p e r second n - b u t a n o l and water system  Run 42  Frame 2 FIGURE 49a  S i n g l e Drops w i t h o u t 28.6  Trailers  5/32 i n . I.D. b r a s s n o z z l e , Cam " A " f o r w a r d v i10 r r 3 ml. per s t r o k e s O.692 s t r o k e s p e r second n - b u t a n o l and water system  X  m  Run 43  Frame 15 FIGURE  49b  One Drop and One T r a i l e r 32.3  1/8 i n . I.D. b r a s s n o z z l e , Cam " A " f o r w a r d x 10~3 m l . p e r s t r o k e s 1.295 s t r o k e s p e r second n - b u t a n o l and water system  102  Run 46  Frame 9 FIGURE 50a  One Drop and Two  Trailers  3 / l 6 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d 21.3 x 10" 3 m l . p e r s t r o k e 1.16 s t r o k e s p e r second n - b u t a n o l and water system  Run 51  Frame 22 FIGURE 50b  S i n g l e Drop w i t h o u t  Trailer  11/64 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d 35»8 x 10~3 m l . p e r s t r o k e 3.45 s t r o k e s p e r second n - b u t a n o l and water system  103  Run 56  Frame 4 FIGURE  51a  S i n g l e Drops w i t h o u t T r a i l e r s 1/8 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d 8 3 . 3 x 10~3 m l . p e r s t r o k e 0.254 s t r o k e s p e r second M e t h y l I s o b u t y l ketone and w a t e r  Run 56  Frame 13 FIGURE  51b  S i n g l e Drops w i t h o u t T r a i l e r s 1/8 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d 6 6 . 7 x 10 - m l . p e r s t r o k e 1.18 s t r o k e s p e r second M e t h y l i s o b u t y l ketone and water -  5  104  Run 67  Frame 4 FIGURE 52a  S i n g l e Drops w i t h o u t T r a i l e r s 31.7  7/64 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d x 10~3 m l . p e r s t r o k e 1.43 s t r o k e s p e r second M e t h y l I s o b u t y l ketone and water  Run 68  Frame 6 FIGURE 52b  S i n g l e Drops w i t h o u t T r a i l e r s 5/32 i n . I.D. b r a s s n o z z l e , Cam "A" f o r w a r d 129.0 x 10" 3 m l . p e r s t r o k e 1.74 s t r o k e s p e r second M e t h y l i s o b u t y l ketone and water  195 i n t e r f a c i a l tension.  The region of single drops produced  with the 7/64 i n . I.D. nozzle was small, 1/3 i n . I.D. and 5/32  i n . I.D. larger, and that with the 11/64 i n . I.D.  nozzle large.  The 3/l6 i n . I.D. nozzle produced non uniform  drops i n spurts of several drops at a time. Appendix A gives the inside diameter of the nozzles measured accurately with a t r a v e l l i n g microscope. The p r e f e r e n t i a l wetting of the nozzle t i p by the continuous phase rather than by the dispersed phase appeared to be most important  f o r the formation of single drops.  no time were single uniform drops without t r a i l e r s  At  observed  when the t i p of the nozzle was wetted by the dispersed phase. Two general patterns were observed when p l o t s were made of volume per stroke against pump strokes per second. The f i r s t pattern was obtained when the dispersed phase wetted the nozzle t i p , and the second when the continuous phase wetted the nozzle t i p . When the dispersed phase wetted the nozzle t i p , small t r a i l e r s followed the larger drops, and "bounce" (where the small t r a i l e r drop accelerated, c o l l i d e d with the main drop and bounced o f f to one side) was present. The volume per stroke f o r bounce, and also the minimum volume for a drop to be formed at each stroke, each appeared to be  io5 independent of pump s t r o k e s p e r second, and o f the p r o f i l e used. o r cam  Regardless  cam  of nozzle s i z e , nozzle m a t e r i a l ,  p r o f i l e , so l o n g as t h e d i s p e r s e d phase w e t t e d t h e  n o z z l e t i p , t h e same g e n e r a l p a t t e r n r e s u l t e d and no s i n g l e drops w i t h o u t t r a i l e r s were formed, ( f i g u r e s 17 and 24 t o However, when t h e c o n t i n u o u s  28).  phase w e t t e d t h e  n o z z l e t i p , f o r a g i v e n t e m p e r a t u r e , system and n o z z l e , the r e s u l t i n g p a t t e r n s showed a c h a r a c t e r i s t i c shape.  These  p a t t e r n s d i d v a r y t o some degree w i t h cam p r o f i l e as shown i n f i g u r e s 19 t o 23 "and a l s o when s p a c e r s were used t o t h e t r a v e l of t h e cam  limit  f o l l o w e r ( f i g u r e 8) as shown i n  f i g u r e 53 where t h e p l o t o f Run 40 i s superimposed on t h e p l o t o f Run 42.  The  drops formed o u t s i d e t h e r e g i o n s of s i n g l e  drops i n the p l o t s where t h e c o n t i n u o u s n o z z l e t i p c o n s i s t e d o f one  s m a l l t r a i l e r and one o r more  l a r g e r drops o f a p p r o x i m a t e l y The  small.  F i g u r e 54 shows t h e p l o t o f  35 superimposed on t h a t o f Run i n . I.D.  t h e same s i z e .  e f f e c t o f changing n o z z l e m a t e r i a l from s t a i n l e s s  s t e e l t o b r a s s was  5/32  phase w e t t e d t h e  39.  Hun  35 was  made w i t h a 39  n o z z l e made w i t h s t a i n l e s s s t e e l and Run  w i t h b r a s s , a l l o t h e r c o n d i t i o n s b e i n g t h e same. the change from 11/64 I.D.  Run  i n . I.D.  However,  b r a s s n o z z l e t o a 11/64  in.  " T e f l o n " n o z z l e (the l a t t e r b e i n g s t r o n g l y h y d r o p h o b i c )  caused the n o z z l e t i p t o be w e t t e d by t h e n - b u t a n o l , the p l o t s t o o k t h e g e n e r a l p a t t e m f o r t h e d i s p e r s e d phase.  and  n o z z l e s w e t t e d by  then  ERRATIC-1 DROP , 0 " 0  0-50  a I T R A I L E R / STROKE "0 " | / "  |  100 1-50 PUMP S T R O K E S / SEC  FIGURE  §3  E F F E C T OF CAM SPACER FIGURES 2 * 8 23 SUPERIMPOSED n-BUTANOL and WATER  .  | 2  00  • 0  ERRATIC — | 0-50  I DROP" 0 "  ft I " 0  TRAILER | "  / /  STROKE "  100  1-50  PUMP S T R O K E S /  FIGURE  |  SEC  54  S T A I N L E S S S T E E L ft B R A S S N O Z Z L E S F I G U R E S 18 8 2 0 SUPERIMPOSED n - B U T A N O L on3 WATER  , 200  A l s o o b s e r v e d I n t h i s i n v e s t i g a t i o n was t h e veryl a r g e e f f e c t o f s u r f a c e a c t i v e agents on drop f o r m a t i o n . The v e r y s m a l l t r a c e amount o f contaminant t h a t must have been p r e s e n t i n Runs 52 and 53 caused t h e n o z z l e t i p s t o become w e t t e d by t h e n - b u t a n o l .  F i g u r e 34 shows photographs  o f t h e drop f o r m a t i o n j u s t b e f o r e and j u s t a f t e r t h e w e t t i n g o f t h e n o z z l e t i p by t h e n - b u t a n o l had t a k e n p l a c e .  Even a f t e r  t h e system was f l u s h e d o u t , t h e n o z z l e t i p was w e t t e d by t h e n - b u t a n o l .  still  Only by h e a t i n g t h e n o z z l e t o d i s c o l o u r a t i o n  t e m p e r a t u r e and t h e n p l u n g i n g i t i n t o d i s t i l l e d water was  the  n o z z l e t i p once a g a i n p r e f e r e n t i a l l y w e t t e d by t h e .water. From e x a m i n a t i o n o f t h e l i t e r a t u r e i t was t h a t Buchanan (15)  found  had d i s c o v e r e d t h a t when b r a s s and aluminum  o r i f i c e p l a t e s were h e a t e d t o about 600°C and quenched i n k e r o s e n e , b o t h e x h i b i t e d w e t t e d drop f o r m a t i o n when kerosene was d i s p e r s e d t h r o u g h them.  However when t h e y were quenched  i n w a t e r , t h e y e x h i b i t e d non-wetted drop f o r m a t i o n w i t h k e r o s e n e . ("Wetted drop f o r m a t i o n " was t h e p r o d u c t i o n o f drops a t a p l a t e w e t t e d by t h e d i s p e r s e d p h a s e ) . F i g u r e 42 shows t h e r e g i o n o f s i n g l e drops o b t a i n e d i n Run 60 w i t h t h e 11/64  i n . I.D. b r a s s n o z z l e and t h e m e t h y l  i s o b u t y l ketone system c o n t a m i n a t e d .  F i g u r e 43 shows t h e  r e g i o n o f s i n g l e drops o b t a i n e d i n Run 63 a f t e r t h e c o n t e n t s o f t h e a p p a r a t u s had been r e p l a c e d and t h e n o z z l e " f l a m e d " .  2M The r e p r o d u c i b i l i t y o f t h e r e s u l t s where t h e n o z z l e t i p was wetted by t h e n - b u t a n o l shown i n f i g u r e 17.  i n Runs 14 t o 24 i n c l u s i v e i s  S i n c e t h e e x p e r i m e n t a l work was  carried  out over a p e r i o d o f time from May 16th t o 2 9 t h , 1962, t h e f a c t that the s c a t t e r of r e s u l t s i s reasonably small i n d i c a t e s t h a t t h e r e p r o d u c i b i l i t y was good. However, t h e r e p r o d u c i b i l i t y o f t h e r e s u l t s where t h e n o z z l e t i p was not w e t t e d by t h e n - b u t a n o l was not so good.  T h i s f a c t was u n d o u b t e d l y due t o t h e c r i t i c a l  nature  o f t h e w e t t i n g p r e f e r e n c e s o f t h e phases on t h e n o z z l e t i p . Run 5 4 , f i g u r e 32 was a r e p e t i t i o n o f Run 5 1 , f i g u r e  29,  but had no r e g i o n o f s i n g l e drops a t h i g h s t r o k e s p e r second as had Run 51«  The n o z z l e i n Run 54 had been "flamed"  after  t h e c o n t a m i n a t i o n i n Run 53* and i t s s u r f a c e c o n d i t i o n may have been changed s l i g h t l y . r e p e t i t i o n o f Run 5 3 , was not v e r y good.  Run 55 ( f i g u r e 33) was a  ( f i g u r e 3.1) but t h e r e p r o d u c i b i l i t y  The d i f f e r e n c e i n r e s u l t s may have been  due t o c o n t a m i n a t i o n a t t h e end o f Run 53 and t h e p o s s i b l e s u r f a c e c o n d i t i o n change o f t h e n o z z l e as a r e s u l t o f t h e flaming. P r i o r t o Run 66 i n w h i c h m e t h y l i s o b u t y l k e t o n e f l o w e d out o f t h e 3/16  i n . I.D. b r a s s n o z z l e i n i n t e r m i t t e n t  a n d i i r r e g u l a r s p u r t s o f m u l t i p l e d r o p s , s i n g l e drops w i t h o u t t r a i l e r s were c o n s i d e r e d t o be u n i f o r m i n s i z e .  This  u n i f o r m i t y was evidencedby t h e v i s u a l o b s e r v a t i o n o f t h e drops and v i s u a l i n s p e c t i o n o f t h e movie f i l m t a k e n .  However,  jLcia  of the regions of s i n g l e drops obtained i n p l o t s of volume per stroke against pump strokes per second show d e f i n i t e shape trends, but vary considerably i n a c t u a l shape and s i z e . This f a c t , together w i t h the i r r e g u l a r and i n t e r m i t t e n t spurts of methyl i s o b u t y l ketone when disbursed i n t o water through a 3/16 i n . I i D . brass n o z z l e , suggest that the drop s i z e o f s i n g l e drops without t r a i l e r s may not be as uniform as p r e v i o u s l y considered.  Consequently, the word  "uniform"  has not been used when d e s c r i b i n g s i n g l e drops without trailers. To provide a permanent record some 150 feet of 16 mm f i l m was f i l m e d at 16 and 64 frames per second w i t h the Bolex Camera, and processed negative.  S t i l l photographs  were taken throughout each r u n w i t h the 35 mm Exakta Camera. Unfortunately the s t i l l photographs of runs 58 t o 64 i n c l u s i v e were l o s t as a r e s u l t of a camera defect i n the Exakta Camera. A l l the negatives of the aboveIphotographs are f i l e d w i t h the Department of Chemical Engineering.  112 CONCLUSION The  production  o f s i n g l e drops without  u s i n g t h e p e r i o d i c i n j e c t i o n system technique  trailers  of this i n -  v e s t i g a t i o n r e q u i r e d t h a t t h e f o l l o w i n g c o n d i t i o n s be 1.  Correct nozzle The  size.  n o z z l e t i p i n s i d e d i a m e t e r was  critical  low i n t e r f a c i a l t e n s i o n .  diameter appeared  2.  interfacial  less c r i t i c a l  i n systems o f  tension.  was n o t w e t t e d b y t h e d i s p e r s e d  W e t t a b i l i t y was a f f e c t e d b y  4.  Tip  S i n g l e d r o p s w e r e f o r m e d o n l y when t h e n o z z l e tip  3«  very  f o r s i n g l e d r o p s t o be f o r m e d i n  systems o f v e r y  higher  fulfilled.  phase. ~  (a)  nozzle material  (b)  nozzle  (c)  surface a c t i v e contaminants.  diameter  The v o l u m e p e r d r o p , a n d t h e pump s t r o k e s per  s e c o n d h a d t o be w i t h i n s p e c i f i e d  for  each n o z z l e  limits  s i z e and system.  B o t h t h e temperature o f t h e system, and t h e v e l o c i t y time p r o f i l e o f the dispersed i n t h e n o z z l e as s t u d i e d w i t h d i f f e r e n t shapes, a f f e c t e d t h e areas o f s i n g l e drops on p l o t s o f volume p e r s t r o k e  phase cam  uniform against  pump s t r o k e s p e r second.  However t h e s e  f a c t o r s were l e s s i m p o r t a n t t h a n t h o s e i n items 1 t o 3 above.  SUGGESTIONS FOR FURTHER STUDY T h i s i n v e s t i g a t i o n was l i m i t e d t o two systems o f low i n t e r f a c i a l t e n s i o n , t h r e e n o z z l e m a t e r i a l s , and c y l i n d r i c a l l y bored sharp edged n o z z l e s .  The f o l l o w i n g  s u g g e s t i o n s a r e s u b m i t t e d f o r a f u r t h e r s t u d y o f t h e problem. 1.  A c c u r a t e drop s i z e measurements s h o u l d be made t o s t u d y  t h e u n i f o r m i t y o f t h e s i n g l e drops w i t h o u t t r a i l e r s .  These  measurements c o u l d be made from t h e 16 mm movie f i l m s o f s i n g l e drops w i t h o u t t r a i l e r s t a k e n d u r i n g t h i s r e s e a r c h and f i l e d w i t h t h e Department o f C h e m i c a l E n g i n e e r i n g .  However  more a c c u r a t e d e t e r m i n a t i o n s o f drop s i z e c o u l d be o b t a i n e d from photographs t a k e n w i t h t h e 35 mm E x a k t a Camera o f s i n g l e drops a t s u f f i c i e n t h e i g h t above t h e n o z z l e f o r t h e o s c i l l a t i o n s from drop f o r m a t i o n t o have d i e d o u t . 2.  O t h e r l i q u i d systems o f d i f f e r e n t i n t e r f a c i a l t e n s i o n  s h o u l d be examined t o f i n d t h e e f f e c t o f i n t e r f a c i a l t e n s i o n on t h e p r o d u c t i o n o f u n i f o r m drops w i t h v a r i o u s l y  sized  nozzles. 3.  Other n o z z l e m a t e r i a l s s h o u l d be t e s t e d , r a n g i n g from  h y d r o p h i l i c t o hydrophobic 4.  i n nature.  The cam o p e r a t e d a d j u s t a b l e s t r o k e mechanism s u f f e r s from  c o n s i d e r a b l e wear.  I t i s suggested  t h a t t h i s be r e b u i l t  i n c o r p o r a t i n g t h e p r e s e n t d e s i g n w i t h t h e f o l l o w i n g modifications:  ia}0 (a)  t h e body be e i t h e r m i l l e d from one p i e c e o f brass, o r constructed with accurately machined j o i n t s and made r i g i d .  (b)  r e p l a c e a b l e b u s h i n g s be used f o r t h e cam f o l l o w e r and s t r o k e arm r o d b e a r i n g s .  (c)  t h e moveable f u l c r u m be o p e r a t e d i n a s l i d e so t h a t t h e r e i s no l a t e r a l t h r u s t c a r r i e d by the adjustment screw.  5.  The Hoke v a l v e used as a pump be r e p l a c e d permanently by  the b e l l o w s pump.  The s t i f f n e s s o f t h e b e l l o w s s p r i n g i n  t h e Hoke b e l l o w s v a l v e pump caused most o f t h e wear i n t h e cam a c t u a t e d v a r i a b l e s t r o k e mechanism.  Il6<  APPENDIX  A  S i z e s o f B r a s s N o z z l e s Used'.  Nominal i n s i d e diameter i n . .  Measured i n s i d e d i a m e t e r (byt r a v e l l i n g microscope) cm.  1/8  0;323  o.ms  ll/6>  3/167  6.127 0.15$  5/32  ll/61f  in.  (Run 52 o n l y )  0.177' 0.179 0.189  I  1  1  7  APPENDIX  B  S u r f a c e T e n s i o n and I n t e r f a c i a l T e n s i o n Measurements a t 69°F Material  Surface Tension I n t e r f a c i a l dynes p e r T e n s i o n dynes cm. p e r cm. ~  D i s t i l l e d water  7  7  .  1  n-Butanol (tech)  2  7  .  5 ' 2 . 4  n - B u t a n o l and water M e t h y l I s o b u t y l Ketone M e t h y l I s o b u t y l Ketone and w a t e r  2  6  .  9 6.9  118 REFERENCES  Hayworth, C.B., and T r e y b a l , R.E., I n d . Eng. Chem. 42, 1174, (1950) K e i t h , F.W., and H i x s o n , A.N., I n d . Eng. Chem. 47., 258.(1955). L e w i s , J.B., J o n e s , I . , and P r a t t , H.R.C., T r a n s . I n s t . Chem. E n g r s . (London), 2£, 126 (1951). F u j i n a w a , K., Maruyama, T., and N a k a i k o , Y., Chem. Eng. (Japan) 21, No. .4.,. 194 (1957). Siemes, W., and Kauffmann, J . F . , Chem.-Ing.-Tech., 1, 32 (1957). Tanweer, A.K., J o u r n a l o f t h e I m p e r i a l C o l l e g e C h e m i c a l E n g i n e e r i n g S o c i e t y , _10, 51 (1956). J o s h i , J . D., Ph.D. T h e s i s , U n i v e r s i t y o f London (1951). N u l l , H. R., and Johnson, H.F., A.I.Ch.E. J o u r n a l , 4 , No...3, 273 (1958). . . . K l e e , A . J . , and T r e y b a l , R.E., A.I.Ch.E. J o u r n a l , 2, 444 (1956). . Hu, S., and K i n t n e r , R.C., A.I.Ch.E. J o u r n a l 1, 42 (1955). Johnson, A . I . . and B r a i d a , L.., Can. J . Chem. Eng., 165 (1957). E l z i n g a , E.R., and Banchero, J.T., A.I.Ch.E. 1, No. 3, 394 (1961).  Journal  Rodger, W.A., T r i c e , V.G., and Rushton, J.H., Chem. Eng. P r o g . , ^ 2 , No. 12, 515 (1956). . . D a v i e s , J.T., T r a n s . I n s t . Chem. E n g r s . (London), 38, 289 (I960). . . . .  119  15.  Buchanan, R.H., Aus. J . A p p l . S c i . , 3 ,  233 (1952).  16.  R o c c h i n i , R.J.., M.A.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, (1961).  17.  C a v e r s , S.D., and Ewanchyna, J.E., Can. J . Chem. Eng., 113 (1957).  18.  C o u l s o n , J.M. > and S k i n n e r , S . J . , Chem. Eng. S c i . , 1, No. 5 / 1 9 7 (1952).  19.  Sharkey, W.A., B.A.-Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia ( i 9 6 0 ) .  20.  Greene, R.A., B i A . S c . T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , (1961).  21.  Thompson, D.W., T r a n s . I n s t n . Chem. E n g r s , 39, 289 (1961).  FIGURE "OBLATE  I  SPHEROID  DROP"  SHAPE ( TWO  CONJOINED  OBLATE  SEMI  SPHEROIDS )  *—0  H  A  o  M  B  GENERAL LAYOUT  ELECTRIC COUNTER CIRCUIT  oft  J  "6  ELECTRONIC FLASH CIRCUIT FIGURE  3  DIAGRAMMATIC LAYOUT OF APPARATUS PRELIMINARY INVESTIGATION  ^ 3 6?  hGZ  FIGURE 4 OPTICAL ARRANGEMENT PRELIMINARY INVESTIGATION SCALE* 3" = r-O  a  ^ 5 £7  p63£7  No. 5 0 Drill, 2-56UNC-2B  IO  o o 6  £ Drill x | deep  r  Light press fit with f- Departure R2 ball bearing used as a follower wheel.  BEARING Scale:  ROD  POST  S c a l e '• Twice Size  Twice Size  28 U N - 2 B IB  I  long;  2 holes  VALVE  HOLDER  Scale:  Full  FIGURE PUMP  CAP  DRIVE SCALES  Size  7  COMPONENTS AS  SHOWN  FIGURE  9  CAM FOLLOWER SCALE *  TWICE-"SIZE  FIGURE  10  CAM "A" SCALE : 4 x SIZE  COLLI M A T E D LIGHT FROM FRESNEL LENS  1 1/2"  ^ R E D CELLOPHANE FILTER  WIDE S L H \  4 APPARATUS PANEL  R E A R ADJUSTABLE MIRROR '  FRONT ADJUSTABLE MIRROR  CAMERA  SCALE«  FIGURE REVISED  14  MIRROR ARRANGEMENT  1/2  SIZE  lg Brass —KM  - I CM  •i—No. 3 6 Drill No. 6 - 3 2 U N C - 2 B  Place | - I 6 U N C - 2 B nut ft washer on post before soldering top. |-I6UNC-2A  23 , 32 d  MIRROR i" 16  B  r  HOLDER 0  8  row)  8  2  HOLDER FIGURE PORTABLE SCALE:  •  STRIP 15  MIRROR  HOLDERS  F U L L SIZE  3*$  LEGEND MINIMUM VALUES FOR g  40  I TRAILER  6  I DROP  •O  I DROP 8 3 TRAILERS  10  i  I DROP a  6 2 TRAILERS  O- BOUNCE  o  I DROP A I L A R G E T R A I L E R  30  9—B—9-  al 2*  o ac o>20 ui 5 =J _l O >I0  MULTIPLE  "9" 0  DROPS  3L  V—p~°—°~ E R R A T I C - I DROP 0 , 0-50  100 PUMP  a M  I TRAILER / S T R O K E 0 " / « ,  1-50 STROKES / S E C .  FIGURE 17 RUNS 14-24 TYPES OF DROPS PRODUCED 1/8" STAINLESS S T E E L N O Z Z L E CAM"A" FORWARD n-BUTANOL and WATER  2  00  LL.  Oo  3 t $  LEOENO O 50  H  Q +  DROP DROP 2 DROPS 3 DROPS »  t  8 0 TRAILER & I TRAILER & I TRAILER a I TRAILER  LIMIT OF APPARATUS  ^•5  ro ^40  30  ui O  tc I-  20  2  I DROP  o >  ERRATIC -  10  I DROP a |0  0 50  H  »  I  a  TRAILER  I TRAILER 0  100  H  / |  STROKE  /  1-50  PUMP STROKES / SEC.  FIGURE 18  RUN 35 TYPES OF DROPS PRODUCED AND REGION OF SINGLE DROPS 5/32" I.D. STAINLESS STEEL NOZZLE CAM "A" REVERSED n-BUTANOL ond WATER  200  PUMP STROKES / SEC.  FIGURE 19  RUN 38  TYPES OF DROPS PRODUCED AND REGION OF SINGLE DROPS 5/32" I.D. BRASS NOZZLE CAM V FORWARD nrBUTANOL and WATER  O  Ci AO vQ  -J  0  0-50  n  " 0  .  11  /  L  "  I00  :  I  150  PUMP S T R O K E S / SEC.  FIGURE  20  RUN 3 9  T Y P E S O F DROPS PRODUCED A N D REGION O F SINGLE DROPS 5/32" I.D. B R A S S N O Z Z L E C A M "A" R E V E R S E D n - B U T A N O L and WATER  L  -  2 00  LEGEND  O O m X>  I DROP a 1 DROP a 2 DROPS a MORE T H A N  0 I I I  TRAILER TRAILER TRAILER DROP  I  LIMIT OF A P P A R A T U S  E R R A T I C 'T  0 50  a  DROP  I Q  I  TRAILER  DROP a  I TRAILER  " 0  H |  " /  100  /  STROKE  "j  1-50  PUMP STROKES / SEC.  FIGURE 2 |  RUN 40  T Y P E S O F DROPS PRODUCED A N D REGION O F S I N G L E DROPS 5 / 3 2 " ID. B R A S S N O Z Z L E C A M "A" F O R W A R D , 1/4" S P A C E R n - B U T A N O L and W A T E R  200  LEGEND O LIMIT OF A P P A R A T U S  ERRATIC I  0 50  I  DROP  0 | 100 II  a  I  DROP  a  O TRAILER  9  I DROP  a  I  *  2 DROPS  &  I TRAILER  I TRAILER  n 0  /  /  II  TRAILER  STROKE  | n I 50  PUMP S T R O K E S / S E C .  FIGURE 22  RUN 41  T Y P E S O F DROPS PRODUCED A N D REGION O F SINGLE DROPS 5/32" I.D. B R A S S N O Z Z L E CAM " B " n - B U T A N O L and W A T E R  | 200  fr  L E G E N D 50  to  40  O P  LIMIT  OF APPARATUS  I DROP & 0 TRAILER I DROP a I TRAILER  4 2 DROPS a I TRAILER 0 3 DROPS a I TRAILER \5 MORE THAN I DROP 3 B R 0 P S aiTRAILER  4  o 30  cor 20  5  10  DROP  a  I  TRAILER  -<? ERRATIC- I DROP a  X  0-50  I TRAILER  /  STROKE  JL  I 00 PUMP  FIGURE  I 50 STROKES / SEC.  23  RUN 4 2  T Y P E S O F DROPS PRODUCED A N D REGION O F S I N G L E DROPS 5 / 3 2 " I.D. B R A S S N O Z Z L E C A M "A" FORWARD ( R E P A I R E D ) n - B U T A N O L and W A T E R  200  LEGEND 9  I D R O P & I TRAILER  6  I DROP a 2 T R A I L E R S  -O I DROP a 3 TRAILERS O 4  BOUNCE 2 DROPS a I TRAILER 2 T R A I L E R S / DROP  -6MULTIPLE  2  DROPS  NO  MULTIPLE  ^R^LERS/DROP-  DROPS  °*0P  2 T R A I L E R S / DROP  S  6  6  I TRAILER /  ERRATICI 050  I DROP ^0 H  ft H  DROP  I TRAILER 0 II  100 PUMP  °"  / STROKE \ /  I 50 STROKES/ SEC.  F I G U R E 24 RUN 43 TYPES OF DROPS PRODUCED 1/8* I.D. BRASS NOZZLE CAM "A"FORWARD n-BUTANOL and WATER  II  2 00  LEGEND  o o  so  I DROP 8 I TRAILER I DROP a 2 TRAILERS 1 DROP ft 3 TRAILERS BOUNCE 2 DROPS a TRAILERS 3 DROPS a TRAILERS  ro  64 0 2 TRAjLERS/DROP  e Ui30  o  OC  2 OROPS a TRAILERS  ~  w 20  s  • OROP  • >  -J O >  10  -  ERRATIC-  I OROP a 0  0-50  " I  I TRAILER / S T R O K E •• / n  » 0  I  I 00 1-50 PUMP STROKES / SEC  FIGURE 25  X  200  RUN 4 4  TYPES OF DROPS PRODUCED 1/8 I.D. BRASS NOZZLE w  CAM  "A" R E V E R S E D  n-BUTANOL and WATER  ^ 3  te~7  LE6END  40 I  ro  '6  I  O 3 TRAILERS /  I  1 DROP a  •O  30  DROP &  TRAILER  2 TRAILERS  DROP a 3 T R A I L E R S  BOUNCE  .  DROP  o £ 20 co Ul 2 3  _l O >  io ERRATIC-  0 50  I, D R O P 0 "  X  a I TRAILER " 0 "  / /  STROKE u  X  00 1-50 PUMP STROKES / S E C .  FIGURE 2 6 RUN 4 5 TYPES OF OROPS PRODUCED 3/16" LD. BRASS N O Z Z L E CAM " B " n- BUTANdL and WATER  200  L  0?  LEGEND S  I DROP  ft  I TRAILER  I D R O P ft 2 T R A I L E R S  ro i  40  -  O  e  I OROP  a  I DROP  a 4  3 TRAILERS TRAILERS  BOUNCE 30  ' Ul  o £ to  20  Ul  I TRAILER /  £b  /—BOUNCE  DROP  "0*  O  3 .o  I TRAILER /  DROP  p—  o >  E R R A T I C - (I DROP a I T R A I L E R 0 » •* 0 <•  / STROKE / ••  I 0-50 PUMP  l _  100 STROKES / SEC  FIGURE  1-50  27  TYPES OF DROPS PRODUOED 3/16" I.D. BRASS NOZZLE CAM W. FORWARD n-BUTANOL and WATER RUN 46  P7  LEGEND Q  I DROP  a  I TRAILER  6  I DROP  a  2 TRAILERS  -O  I DROP  a 3 TRAI L E R S  O-  BOUNCE  o&o?  2 TRAILERS /  DROP  BOUNCE TRAILER  -Q  0ERRATIC  050  I DROP  a  I  TRAILER /  ±  100 PUMP S T R O K E S /  FIGURE  DROP  _9_  STROKE  I 50 SEC  28  /  200  RUN 47  T Y P E S O F DROPS PRODUCED 3/16"  I.D. B R A S S N O Z Z L E  CAM 'W REVERSED n-BUTANOL  and  WATER  hi  8  LEGEND I DROP  a  I  TRAILER  I  DROP  a  2  TRAILERS  DROP  a  3  TRAILERS  -O  O  I  BOUNCE  T R A I L E R S / DROP  2  2.TRAILERS  I TRAILER /  -O-Q—.  050  -6— BOUNCE  -o TRAILER /  •9ERRATIC-  DROP  / . DROP  f>  -o-  —  DROP  V -9-  1 DROP Q M  a II  I TRAILER Q II  -9-  /STROKE II  /  -I  I  100  1-50 PUMP STROKES / SEC  FIGURE,  35  TYPES OF DROPS PRODUCED II / 6 4 I.D.TEFLON NOZZLE CAM 'W FORWARD n-BUTANOL and WATER RUN 48 w  200  ro i  4C  S  -  -O  o  O  i  •  LEGEND I DROP a .1 TRAILER  I DROP a 2 TRAILERS  I DROP a 3 TRAILERS BOUNCE  3 C -  ui  *  o ce  -6  20-  (0  Ul _l  O >  6-  I TRAILER / DROP  v.  s  2 TRAILERS / OROP  9-  -o  BOUNCE  _o  I TRAILER / DROP  <? ERRATIC  I DROP 8  -  II  0  0 50  -6-  "QI  n 0  TRAILER: "  / STROKE /  "  X •00  150  PUMP STROKES / SEC  FIGURE 36 TYPES OF DROPS PRODUCED 11/64" I.D. TEFLON NOZZLE CAM A ' " REVERSED n-BUTANOL and WATER RUN 49  200  co  50 -  RUN 40 FIGURE 2:1 RUN 42 FIGURE 23  /  io  \\ 2 DROPS a  2 40  /  I TRAILER  ui 30 o OC W  5  20 -  10 .  I DROP &  I TRAILER  ERRATIC-1 DROP a I TRAILER / STROKE c  JL  0  050  II  H  o  "  -  I  "  100 1-50 PUMP STROKES/ SEC  FIGURE §5 EFFECT OF CAM SPACER FIGURES 2t a 23 SUPERIMPOSED n-BUTANOL and WATER  2-00  p ^  sr  ERRATIC — i  0  0-50  I  0  DROP  »  8  1 TRAILER  » 0  |  *  /  STROKE  /  *  t  1 00 I-SO PUMP STROKES/ SEC FIGURE §4 STAINLESS STEELS BRASS NOZZLES FIGURES 18 a 20 SUPERIMPOSED n-BUTANOL an* WATER  ,  2-00  ft  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059154/manifest

Comment

Related Items