UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The transition points of hexamethylane Williams, F. Campbell 1946

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata


831-UBC_1946_A7 W5 T7.pdf [ 1.88MB ]
JSON: 831-1.0059143.json
JSON-LD: 831-1.0059143-ld.json
RDF/XML (Pretty): 831-1.0059143-rdf.xml
RDF/JSON: 831-1.0059143-rdf.json
Turtle: 831-1.0059143-turtle.txt
N-Triples: 831-1.0059143-rdf-ntriples.txt
Original Record: 831-1.0059143-source.json
Full Text

Full Text

mmm. H* Moot of the Sfefeg& C<j£-po<rati0a $tt$ ma W J F TM& tmoQtii:a%±on ottos m& In tite m m lxxhoj:a%csrf m m <loro fear tern ara*as*i&g# «HM»» r9tl«otlsr tMa HMEIE o«ais T O tlso mmm$m&m off TOFTON* tifl© data* . Ooo it 1$ of i»t«s*©#& &m «m asagtaeoslsg PALSFC of beetle tta* ^ T F Ioiei!wy «f «*ea^ C t« tteifc GOB lx» sMsim&sd* In ^ » fesfc ffcs? y^ars a cj&*<& mak of Tmmmsah hm fcosa &&m % ts&a potssetami %TM$S&&*> ry cm fcii© dtetMenlwtloifc <sT fe£» $dw«fco«l steiisal sarogoxfcfaNi of t;.-» Iq^ MMOriboa* TONNHM* is f^aie* Hi aiitOE^ otlVG fm&s i t baa 1a®m fotasl ttaft #0&t&&Jt teaaatsaa gtQMiit^ j*39»sr* Havana® I^rri^t.?55rletihtffi^ totraaofeJ^ THitgow) hae *b®m fosnt i^n it £# toort-SISFE to fs«ps? i ts piqwSi«Rfi S B O M T S M B <^ s0E^ 0t0 teoanso ito riensoEilSar tmniMo: onft »t?ttotnvo t&a of£&o§ of tm» ^tm^a?© OB ito ::.^ 5rs£o l^ sonWPtiMNp l!No»0t3930tIiots» im % solid at os&taW7 tctaporattse** it taolto afc 30fM CS ^ <?t 206*6 0* fABLB 09 COMKHTS jt Introduction 1 Theory on Crystal F«ras.. . . . • 4 Material 6 Apparatus....... 6 Temperature Control . . . . . 6 Experimental Procedure (ft) Mlatoaeter ? (b) billing the Bulb... . . . . . . 8 (e) SeasuxeBents................... 9 Results (a) Calibration of Capillary.......10 (b) Calculation of Densities.......11 (©) Densities......................12 (d) Results 13 Discussion of Results • .14 Appendix.... ...16 LIST OF ILLUSTRATION Figure 1. Apparatus for Pilling the Bulb 8A Figure 2m Constant temperature Bath. . . . . . . . . . . . . . 81 Figure 3* Density-Teapftrature Curve 12A IB! 2, 20*90 $7*6 90*9* *3*96 300*4 95*08 931*0 06*98 613^ 2 100*00 $35*6 sell* 100*03 036,C uqaia mum mf«* F*«a tins** £i#gr&s ft esi» bo gam tfeat t&s ^ 3?6««*Wa tli«fc is ujawaiod it ?/ill Tttkixfixrlz& ij&o t?>o ataewxawam *s*r r^iaiy, '1% eaa al»o &t tfe&t if tfc* t&mmwftm, tm not 3&sr« tii&t ti»» <j<sntoneMi *$gn»n* j i i w i «f Wm lojsurit^  t&at of atm^Aorie sgaMHM* ste boat of *x#*aat;io& at ssss&ta t^ p**o*uro was fot&& to to iRgsry «2JM» to tl*&& of S tffiMmfe&m* tooiijj* 12KWU3 /rtol cud olae tfc® ©ofcaa* i* 103 T&ltfk raafeaa it ws«tttl in gasftliacs Wmi£$m# t » ^ M M » I . « i * M ^ M ^ M M l * f R the ?I*ld «tf ir+.ra^ &lr*aalfa" r<K :^raa&«3frn§«. X. fcyaletil M u l l «f BPtstipiE f!$ft*«&sjftta& % C a U ^ 6 « r t , mmm*. resisted &s& $bi$Sae% x« &&* fifliass* s©»». m i H y ^ B t i G a t i o a n ha-*® ahawa t*Kst lebm t t*» m&sYvaxr CJpoupir^  i s fryn^trieal, as i s tfao with tMa <w»2w?Uft£ * t & e r s i s a peculiar *ffsot ttf xtt&vta&Sag tl*o liquid rxog& etmhixs&rtlth m %mm Immmm in tlx* d a c s i t y th* *m®»* nmfit o<asp*x*4 t o tts> aorsal Saseaar* <&» f&Uja&iie &ota i s S gtnmt tgr ilwean* g a r t e r * oaxl n wmmm <* 150*5 l^^ttiylatJt&Ds* 10$*6 {&oubl« quaternary tiio a «Basa& iatocr coal as fcfgb as hcHCft&ootaae (C H > rot^inii^ t£s$ volatility to- to «xpo«t«& s£ a • f . tv*& 0Fy«tcOliciv r«r3» at ~%m 0 » m n d ' tlie s*a£ *ss? twtisii&UNi (4.SO s$a&/i$2f# Fran ©callus a^fea -afefca£n«l Sztxi 9*soa£«9i «k»w» at tt» :t&yX 0a*p»-ati«&, Boaoargh fete* osXtii** -oUst* B$*3M@» t&o ofest'i* is osystal mGnetmrn M M . w» *M»- *w «••• ««* «» *» -»w «» " W F -mm* •*«* ™» «w *»• *•* •«* •*«» &%1DG3#X&30 It WQS ' Haar to t',**& a to l s v o e t & * Smssity and t^ &ssitisim 10 I t teas &©sfn £ « i a & by x-af^r • t u & l a * W t u w l l J * * EMXlar* Fij*s% 3*32$ ©tis§r# t i « * issssy fass&sar# o f tfe* isars i f f ts along w i t h o t h e r long c i sa l i i hydroes^bones e x i s t i n s e T B ^ a l ^ n a n t l s ^ o p i e $oacQ»v a t u a i a e Is**^ AtwMi ttsst a t &m p o i n t oC tjfiinsi i o n frees om QTjstalllm tGta t o another th©r© i ® easier a v e r y 8 l | e$& : «Jk9B9» ixt-.tb* I x u M of t lnj j n t t&t&l* tat a vwey l ^ g * d&aiig® I n t in* 001 £a£$bN» sw&eisgs , r e s u l t i n g i n a ohaap^ lis. tli© d e i i s i t y * O S O O M o f t n l « f a s t * d e n s i t y e&a&go« «£tt*. tMB^eifrej&i&M* M B 1B t » ' Heasrus-a the t r a n s i t Ion p o i n t s and t&» r r a a t i o i s sh ip botw&as the d f l a s i ty and the o.r>sibl® o i ' y B t r i l l i G e f o m s , appears t o b® gsae3?al jtg$M»tt8& t h a t ttm a l i p h a t ^ e ZjpffiKMM&boai « s £ a t i s mt l & a a t tftMe> c ^ y s t a l l i n © forms-* • B*B&$m<K. .^at tarson, SMqn** Cftte* 0©&* 6 6 , 1 ? © , 1 0 4 4 I (5) The chain axis is vertical to the 001 plane and the planar spacings are a direct measure of the length of the aoleoules. Evan members of CIS or more carbon atoms and odd members of OH or more carbon atoms show this fora near the melting point. B Fora A lower form of symmetry-- the crystals are not rect-angular in Gross section and the chains may be inclined at a constant relative to the base. Even number paraffins up to 024i at normal temperatures crystallise with the chain axis 10 inclined at a constant angle to the col plane. Mailer found that the 001 spacings of this modification are shorter than the spacing* for the A fora. As an example, for 026 the spacing for the A fora is 34.95 A? while for the B fora it is fhis fora has a rectangular cress section with the chain tilted relative to the base of the crystals. m 'f*m imsmm^hM^ws &ma$k& mm wop liaa W tb* W&g&&* *x& 3£HS4*BV I t tms p * o - « r o a fey tfeo o^nii&«Bac^lom o f tstf mtfegrl a o l i&HMtaanro ??itfc m&m&$em eSkJae&lo-Pmmim ana aaXt-lxtg ©tar^o© «PO o^ atgoft « a tba fcost ffero&icaa* Frcn t M s a&t& tfeo p s r l t ^ of t h o produota 4® oofe* QN&S&t£ tO bO 99*9G ± 2301 por «023&% 2!s© ooastunt ta«@a9s$$aje vagd rmn -oUsilm to tn£la> used is SMa tete&*o*5r fw otfcaa* tematop «»©o*oli in 8t?o£g£& atoftia 2h«3 toat& oo&s£oto*i of a S^jo gS&u® ocaafc&Sitsi? &roisto& t&tife ^rmm$®$&®$? 3 ingfeeo <5f sfoo& «ool» 2b* a^^ fe 90B#&m& & tetta* afegRrov*, ism Im&tem, oaA «. to^)othifeaj» ©oii$*ool* 0J» Iw^ os* i^s so !§&©B t l » fea&a Jt**t m8&T tba *s<ttjS*a<5 tstspaj^ &sare onA WMWBA wm£$m feofitssr m^ s Gmsmtteti to t3»^tw;4»wte»» o©»~ tso& fm ntdok U^OBS fine t«iE*B?o£tiB>a etgiijfpt* O t£> to 7Q Q a jjesroury oonferot m*e usocl« Eto&wt&ff* at M f j t e $©^>watH*a itwaa found tb$fe tbaro mis a leg in m la moKt&oH m& t3» ism* eoatroi %e> Im $m®lm& mm m $m n m wmmm i m m m m m wa&smte m m m m turn l&t* ni&gt tne* $©£3. mm tt» mmmmmm «*• tfcwr mam mm* lit lias iNB|Jio$ poiafc tti& 1&9»JA is in «$t*mtset*«& its vspmie. aa& s o&aag® Surtfc* tagp«NP«i^!» Q i m a tag* •bona* Is $1* mOmm «f «b» mrjaa?* HH* «iss&g» si*** & W igtlar a w t l » mmaXtSsm p&itm mA awtimt jetafji t&» Mas ust&s®* mtmm& Siac&ssim $ w ^ e ^ Sooi «f tfc* j>oiats aia n&t tjo © . ^ ^ t a r l ^ far fa ta*s*3e®« @4 isii^le la plwoa £& tfe» bulfe satl ill &@mm& W Q$m£U3m ms^mm W» i$ «»leef Vfousrw She ohaxm in fcae t*i*$& «t t$*» la^sl of tl*s Esassas?r isi tfca e ^ U t e y g i w tin* ofeaa* in wow* «r to* a M m a * o w t t » tqapBg^ae» rooc^iod* Sims tsts* w*& mZmt* a* «b» jswrets^  m Taiomi m& ®m calculated. Corrections are »ade for the expansion of glass and the buoyancy ©f the sir. She capillary tube was : i a P i e C e ©f snail selected here capillary tubing ©f unifam diameter. She diameter was calibrated by aeasmring the length of a weighed anount of aercury. Heavy pyrex tubing was used to blow the glass bulb. fhe tubing was sealed to the bulb and aercury distilled into -4 the bulb under a pressorc of 1 x 10 an. Filling tfaq Bulb. difficulty was encountered in filling the bulb with the hydrocarbon* fhe high vapour pressure and the narrow liquid range of the ooapound aade it difficult to handle. To prevent the formation of crystals en the capillary wall of the bulb the following method was used. She anpoule of hydrocarbon, the bulb, and funnel were sealed in the glass tube. She tube was evacuated and filled with hydrogen at a 2 pressure of 25#/in. fhe sides of the container were grad-ually heated and the hexaaethyletbane flowed through the funnel into the bulb. flw© samples of hydrocarbon were received froa the 12 Bthyl Corporation, tilth the first sample R.B.Bennett plotted aost of the density curve but did not complete the curve of the less dense phase. With the second saaple the ssaoe procedure was followed but it was found for. four different trials that c at 98 C the vapour pressure of the hydrocarbon foreed the 12. B.B.Bennett, Master's thesis, The University of B.C.,1945. F i l l i n g the Bu lb F i g . 1 Constant Temperature B a t h F i g . 2 (9) mercury out of the dilatometer* On cheeking the vapour pressures as observed by Calingaert, Soroos, Hnizda, and 2 Shapiro, it was decided that some of the solvent used in the preparation of hexamethylethane must still be present in the hydrocarbon. To overcome this a bulb was filled with the hydrocarbon and joined to the dilatometer capillary tube* The dilatometer was then connected to a system which was evacuated by a Cenco vacuum pump and by a mercury vacuum pump -4 until the pressure was 1 x 10 • The hydrocarbon was then melted and vapourized but immediately solidified again in the U of the dilatometer with dry ice. When the hydrocarbon was heated the highly volatile solvents were vapourized and pulled off by the vacuum pumps* The pressure in the system was raised to atmospheric and the hydrocarbon distilled back into the bulb by placing dry ice around the bulb and gently heating the hydrocarbon in the U of the dilatometer. This sample gave the true melting point. Measurements The only experimental measurements necessary were the heights of mercury in the capillary and the corresponding temperature ofthe bath. The temperature was measured by a thermometer calibrated against a platinum resistance thermo-meter. The capillary heights were measured by a cathetometer graduated in 0.001 am. The capillary heights were plotted as the readings were taken so that any sudden or large change in density could be detected • In this way (10) It was apparent where to take readings over a saall change in temperature te determine the exact transition points. It was found that at the lower temperatures equilibrium was reached in about 15 minutes. After 80°§ it took about 30 minutes to reeh equilibrium and near the transition points it required 7H hrs. before the capillary heights came to a constant reading. Calibration of the Capillary ffabe. 'So determine the cross section of the capillary tube of the dilatometer a known weight of mercury was placed in the capillary and the length of the aercury measured at intervals along the capillary. These results were later checked when the bulb icas filled with mercury and the expansion measured between two temperatures, tor the first method a value of 0.0039? sq.cm. was determined and for this second method a value ef 0.00396 sq.cm. Sample Calculation. Mass of Hg - 149.2362 gms Tol. at 84.80°C. * 11.14663 cc Vol. at 43.94°C. = 11.06362 cc Difference - 0,08301 cc Correction for the expansion of glass = 40.86 (11.06362X0.0000096) - 0.00434 cc Set expansion of Hg - 0.07867 cc. Difference in Bg levels = 19*853 ems. Area of cross section = 0.07867 = 0.00396 sq.cms. 19*853 Calculation of Densities;  Symbols o t - temperature at which readings were taken in C h - height of Hg above sera mark A • cross section area of capillary V29°: Volume of the bulb to the sero mark at 29°C Y29h - ?otal volume to height a at 29*G s Y29 + hA s total volume to height h at t°C » 729* + T29k(t-29)(a) where a - 0.0000096ce/c©/°G W - Total mass of mercury V t s volume of mercury at t°C w a Mass of hydrocarbon in bulb v t » Yelume of hydrocarbon in bulb at t°C 5 vt"vt Dt » density of hydrocarbon at t°C a w *t Example of calculations: h s 18.359 cms. t » 80.96 0C A » 0.00396 sq. em. hA s 18.559 (0.00396) ' 0.0727 ee. V29° 8 4.8600 cc. V29n « 4.8600+0.0727 " 4.9327 ©o. V* s 4.9327 + 4.9327(80.96 - 29)(0.0000096) 8 4.9352 cc. (12) Example of calculations: (Cont'd) W - 53.0967 gas. V t - 53.096?(©•0746393) ee - 3.9631 co Ii v t - t t - Y t - 4.9352 - 3.9631 * 0.9721 ce * s 0.7635 ga. vt 0.7633 B*. s - = — • 0.7852 gs/cc % v t 0.9721 R e s u l t a . 20.00 0.8230 gs/o c 88.50 0.7792 ga/cc 29.00 0.8196 89.74 0.7782 48.20 0.8070 91.32 0.7767 52.75 0.8047 93.24 0.7751 62.25 0.7986 95.89 0.7725 66.50 0.7955 97.10 0.7708 70.20 0.7928 98.35 0.7690 71.56 0.7919 99.45 0.7683 73.00 0.7913 99.96 0.7652 74.42 0.7900 100.10 0.7641 75.85 0.7890 100.54 0.7601 76.23 0.7887 100.52 0.7538 77.20 0.7830 100.56 0.7519 78.46 0.7871 100.63 melting point 79.10 0.7866 100.71 0.6568 79.55 0.7863 100.84 0.6566 80.10 0.7859 101.18 0.6563 80.96 0.7852 101.92 0.6557 62.00 0.7844 102.28 0.6553 83.15 0.7836 102.58 0.6551 84.20 0.7829 102.81 0.6549 85.78 0.7816 103.50 0.6542 86.02 0.7810 87.70 0.7797 mm ** tt»f9Ml £MN* 0»$89ft &*?st& *4*&s a s b « » *4*3& n » f w 0I^NHW i»«*8B 2te sain ?*»aal% or -.J» »S*K£POS i * t&» 4>-m£t3r t^ aapip* atsara msrw* &its ot*3?*» In » x>iefe «f tfco doaoitioo* otttaOtftfe* »imm a iy&tmiNa&mt y&vem ft&o £m&ta* £o$*oe» t&a- J & $ M » m hmzlTi* o»3 fct» teas?- eurro esc oooMss* i^lrtrt # t^ taaitiitoB poisfc «ft oes&isig m& fmaafi. to bo 39*65 0* and th* o o samA trtjnaition w fauns $o oo 74* S3 8* 4% ?i.m a* *mrv& ter*^> « $ « B i d o»£ c-gftIn Jo&iai t&o mrv& oofcalasafc for o o o o 53 a» OTA mtgna* coolie, tro^ ?4#as t& m #* t&o «KF*» f&llsm t&a ejrt0|iHl. doxMitif Mast* fife* Booking- isoiafc wr» o mm to t* (2| f^donsity ofc a* *tm fww& to &o SySSSO im «$roo~ C s l ?a? Wm X£fata t ho o p o o l f £ s n o l a n » o g n s & t e i was fons& l o s t o f m$&m&sm i s Isgr $©0#&3&& mtfm/ £* Wtm tHsw^gvotattss ?*9$o * M A aoowatst^ to ± d*M -0 et£& fcJao oop&l&iry iMl^ httt w » ro«4 a ® 8 » W | * «• * 6*008 m» ;a&o vioigfcfc o f tbo isaroury oca: tho oasight of t&o l^ RSrottBt&NBt tour ;:<lsg8# o f eMMS* t&» iralwo© t£*o <Sonflfity. noram*, a^g^ai^g *§» tgnrfftear t&e tro>3 amotion oaf «&t>£Xlory tube «r O#0O39$ a$ os €&»?sri5Si by t&o -mmm^ nettist? & t m w r of 1 aftesr*. l » tho fonrik f t g « » sffcor tho a&oisssl* 2ta*afG&* aey oonoSBi&o tiM tfte ^mttfets* {|tw are &*>* XT &MO&ty « e * * » fa* li<t«f&# $a *s&»&-3o£sfeoS to o 13 BO 0 it agroo* -eoiTT tt» ««M3Bai «^ @ait©eP9^* Tbo fteifi fcore Is Hmf2m 0$fm «m&«aM to fib* rult» . . . f a&/oo %femmm& igr  :®e3$mfflm%* Is -«ho 4stt«ifc? mtiom for tfe* XtegM tfce « o o f f I i i - t*£§©M itf&ab I* i » &$so#^ sm& #i^(^ t tJ» t w ^ R - eo t^f33o&as& for tai* labore^ofy Tot$b» t^ easAV for sor?se& isa* 14> Yato&e* -.Swots, ;^rt ,«9Po*ty -nf $rlt£sti Ck>la5bia 1^3»» (15) a coefficient of 0,00064. It la to be expected that the value for hexataethylethane would he larger, because for normal hydrocarbons hexagonal packing was assumed, but for hexa-•ethylethane tie nay as suae body-centered packing of roughly 15 spherical aols as interpreted by CD.West. At the melting point the percentage decrease in density is 12.5%, or the density of the liquid is 87.5% of the density of the solid immediately before melting. On cooling the liquid it first forms an opaque solid. This would suggest a random distribution of small crystals which prevent light from passing through. On farther cooling to 99.65°C, the first transition point, a less dense packing occurs for the decrease in density is A.5%. It is interesting to note that at the second tran-sition points 74.25 C. the percentage increase is A.5%. From this we may assume that the solid crystallises in two forms, "a* and "b". On heating free room temperature it exists in form "a" until it melts. However, en cooling it transforms to the less dense form "b* at 99.65*0 and exists as form *b" until e o 74.25 C. At 74.25 C the hydrocarbon changes back to the store 15 dense form "a*. 0.B.Vest determined that hexamethylethane was plastic and isotropic and sublimed into well-formed dodecahedrons. Therefore we may Assume that the crystals of hexamethviethane in the more dense form are dodecahedrons. 15. CD.West, Zeltehriste fur Kristalographie, 88, 195, 1934. APPENDIX Specific Volume of mercury from 0*0 to i05°C. for the specific volume of mercury the following values were usee: Temp. Spec. Vol. Temp. Spec. Vol. 20.0 0.0738233 63.0 0.0744246 21.0 8367 64.0 4381 22.0 8501 65.0 4516 23.0 8635 66.0 4650 24.0 8765 67.0 4785 25.0 8902 68.0 4850 26.0 9036 69.0 4835 27.0 9170 70.0 4919 28.0 9304 71.0 5053 29.0 9437 72.0 5188 30.0 9571 73.0 5322 31.0 9705 74.0 5457 32.0 9839 75.0 5587 33.0 9973 76.0 5733 34.0 0.0740107 77.0 5868 35.0 0241 78.0 5996 36.0 0374 79.0 6130 37.0 0508 80.0 6264 38.0 0642 81.0 6399 39.0 0776 82.0 6535 40.0 0891 83.0 6670 41.0 1024 84.0 6804 42.0 1158 85.0 6939 43.0 1823 86.0 7074 44.0 1426 87.0 7209 45.0 1560 88.0 7344 46.0 1695 89.0 7479 47.0 1829 90.0 7614 48.0 1963 91.0 7749 49.0 2097 92.0 7884 50.0 2231 93.0 6019 51.0 2365** 94.0 8154 52.0 2500 95.0 8288 53.0 2634 96.0 8423 54.0 2768 97.0 8558 55.0 2003 98.0 8695 56.0 3037 99.0 8828 57.0 3171 100.0 3965 58.0 3305 101.0 9008 59.0 344® 102.0 9143 60.0 3843 103.0 9278 61.0 3978 104.0 9413 62.0 4112 105.0 9548 


Citation Scheme:


Citations by CSL (citeproc-js)

Usage Statistics



Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            async >
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:


Related Items