Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Simultaneous reaction and separation using a distillation column Daniel, Patrick D. 1970

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1970_A7 D35.pdf [ 26.58MB ]
Metadata
JSON: 831-1.0059125.json
JSON-LD: 831-1.0059125-ld.json
RDF/XML (Pretty): 831-1.0059125-rdf.xml
RDF/JSON: 831-1.0059125-rdf.json
Turtle: 831-1.0059125-turtle.txt
N-Triples: 831-1.0059125-rdf-ntriples.txt
Original Record: 831-1.0059125-source.json
Full Text
831-1.0059125-fulltext.txt
Citation
831-1.0059125.ris

Full Text

SIMULTANEOUS REACTION AND SEPARATION USING A DISTILLATION COLUMN by PATRICK D. DANIEL B. Sc. (Chem. Eng.), The U n i v e r s i t y of A l b e r t a , 196 8 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n the Department of CHEMICAL ENGINEERING We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1970 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree th a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood t h a t p u b l i c a t i o n , i n p a r t or i n whole, or the copying of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. PATRICK D. DANIEL Department of Chemical Engineering The U n i v e r s i t y of B r i t i s h Columbia Vancouver 8, Canada Date V 0 L U M i i ABSTRACT A study has been made using computer simulation of a fractionating column with simultaneous d i s t i l l a t i o n and chemical reaction occurring. The assumptions of 100% eff ic ient .trays and ideal i ty of vapor-liquid equilibrium and thermal properties were made. Results show that the extent to which a reversible reaction can be driven, or an irreversible side reaction inhibited, is a strong function of the ease with which the reaction products may be removed using the separating capacity of the fractionating column. The quantity of l iquid holdup per plate is also a factor of considerable importance in the performance of a fractionating column with chemical reaction, but i ts effect is not simple, interacting as i t does with the re-flux rat io . The effect of system pressure is complex. In-creasing pressure raises temperatures, and therefore reaction rates but decreases separation factors. The influence of this with respect to the main reaction and any undesirable side reactions is so specific to the chemical reaction being studied that no overall generalization can usefully be made. Considering only the point of view of the amount of reaction achieved, a fractionating column can show con-siderable improvement over a continuous st irred tank reactor. i i i TABLE OF CONTENTS Page VOLUME 1 ABSTRACT i i LIST OF TABLES V LIST OF FIGURES v i i ACKNOWLEDGEMENTS x INTRODUCTION 1 THEORETICAL CONSIDERATIONS 6 A. General 6 B. The Physical Model 15 C. The Mathematical Model 2 0 D. Simulation Technique 24 E . Evaluation of System Parameters 28 RESULTS AND DISCUSSION 37 A. Benzene-Toluene-(Pseudo)Xylene System . . . 38 B. Ethyl Alcohol-Acetic Acid-Water-Ethyl Acetate System 61 C. Acetic Anhydride-Water-Acetic Acid System 93 RESUME 117 CONCLUSIONS 119 NOMENCLATURE 120 REFERENCES 129 i v Page APPENDIX I I - l A. Description of Computer Program I - l B. Description of Functions of the Subroutines 1-10 C. Logic Diagram 1-16 D. Program List ing 1-35 VOLUME 2 APPENDIX II I l - i A. Computer Output I I - l B. Program List ing 11-164 V LIST OF TABLES Table Page 1. Rate of Convergence at various Plate Liquid Holdups (no reaction occurring) 41 2. Holdup Effect on Final Plate Compositions - no reaction 43 3. Acetate Purity and Yield for Seven and Fourteen Plate Columns at High and Low Pressure 66 4. Concentration Profiles and Net Amount of Reaction on each Plate at Holdup =10.0 £ / p l a t e 75 5. Concentration Profiles and Net Amount of Reaction on each Plate at Holdup = 50.0 £ / p l a t e 7 6 6. Concentration Profiles and Net Amount of Reaction on each Plate at Holdup = 125.0 £ / p l a t e 77 7. Concentration Profiles and Net Amount of Reaction on each Plate (14-plate column) at Holdup = 1.0 £ / p l a t e 82 8. Concentration Profiles and Net Amount of Reaction on each Plate (14-plate column) at Holdup = 50.0 £ / p l a t e 83 9. Concentration Profiles and Net Amount of Reaction on each Plate for Anhydride System - Marek data 99 10. Concentration Profiles and Net Amount of Reaction on each Plate for Anhydride System - low pressures 104 11. Reaction coefficients on Feed Plate at P = 760 mm Hg and P = 200 mm Hg . . . 106 v i Table Page 12. Relationship of Boil-Up Rate and Moles of Acetic Anhydride in Bottom Product 107 13. Concentration Profiles and Net Amount of Reaction on each Plate as a Function of Boil-Up Rate 109 14. Anhydride Yield as a Function of Reflux Ratio 112 15. Concentration Profiles and Net Amount of Reaction on each Plate at R = 7 .0 114 16. Concentration Profiles and Net Amount of Reaction on each Plate at R = 4.0 115 v i i LIST OF FIGURES Figure Page 1. A Hypothetical Example of the Usefulness of a D i s t i l l a t i o n Column as a Chemical Reactor 8 2. A Hypothetical Example of an Unfavourable Reaction in a D i s t i l l a t i o n Column 10 3. Equilibrium Conversion versus Reactor Temperature for Reversible Reactions Occurring Isothermally 13 4. Physical Model of the Reboiler 16 5. Physical Model of a Typical Stage 17 6. Physical Model of the Feed Plate 18 7 . Physical Model of the Condenser 19 8. The Mathematical Model 2 3 9. In i t ia l i za t ion and Stopping Control of the Simulation 26 10. Iterative Sequence for the Simulation 27 11. Concentration Profiles for Benzene-Toluene-Xylene System with no Reaction 40 12. Convergence versus Iteration Number at Various Holdups (no reaction) 4 2 13. Comparison of Reboiler Models - -Belck and . this Work 45 14. Validation of Program Including Chemical Reaction 4 6 15. Equilibrium Conversion versus Temperature for Reversible Endothermic Reactions Occurring Isothermally 50 v i i i Figure Page 16. Pressure Effect on Benzene-Toluene-Pseudoxylene System with no Reaction 55 17. Pressure Effect on Benzene-Toluene-Pseudoxylene System with Reaction 55 18. Column Pressure versus Total Pseudo-xylene Production 56 19. Total Pseudoxylene Production Versus Holdup and Reflux Ratio 5 8 20. Top Product Purity versus Column Pressure . . 64 21. Total Acetate Production versus Column Pressure 65 22. Top Product Purity and Acetate Production versus Reflux Ratio 68 23. Plate Number versus Reaction Rate at Different Reflux Ratios 69 24. Top Product Purity and Acetate Production versus Plate Holdup 72 25. Examples of Uniform and Distributed Holdup 7 9 26. Top Product Purity and Acetate Production versus Feed Plate Location 86 27. Plate Number versus Liquid Concentrations . . 87 28. Top Product Purity and Total Acetate Produced versus Number of Plates 89 29. Comparison of Purity Obtained from a CSTR and a Reacting D i s t i l l a t i o n Column 92 30. Comparison of Marek Results with Results of this Work 9 8 31. Column Pressure versus Moles Anhydride Produced -^ 2 ix Figure Page 32. Purity of Anhydride Bottom Product versus Boil-Up Rate I l l 33. Mole Fraction Anhydride versus Reflux Ratio . . . 113 X ACKNOWLEDGEMENTS I would l ike to extend my sincere gratitude to Dr. J . S . Forsyth for his time and support during the course of this project. It is recognized that a certain amount of the pre-liminary work involved in simplifying the program of Hanson, et a l . , to a working simulation of a single d i s t i l l a t i o n column (not including reaction) was done by Dr. J .S . Forsyth using the f a c i l i t i e s provided by the Imperial College of Science and Technology in London. I wish to thank the National Research Council of Canada for f inancial assistance and the University of Br i t i sh Columbia for a Graduate Fellowship. x i INTRODUCTION The function of this work was to study the behavior of a fractionating column as a chemical reactor. D i s t i l l a t i o n may be accompanied by both favourable and unfavourable reactions. By judiciously varying column parameters such as pressure (hence temperature and reaction rate) , plate holdup (hence l iquid residence time and extent of reaction), number of plates, and reflux rat io , i t is possible to promote or inhibit the reaction to improve separation—provided of course, that the relative v o l a t i l i t i e are also conducive to such separation. By removing, by makin use of v o l a t i l i t y differences, one or more products from the reaction zone, the equilibrium of the system is shifted, and according to Le Chatelier's pr inc iple , the system w i l l react so as to counteract this . Hence a yie ld much greater than that at equilibrium conversion is possible. There are numerous cases in both industry and laboratory where reacting d i s t i l l a t i o n columns are in use today 11,2,3,4,5,6,7,8,] , and as a result , the need for d i g i t a l simulation in design and optimization of operation of such systems is obvious. Although industrial processes u t i l i z e fractionating columns as chemical reactors, and a l -though hand calculation techniques 15,6,7,9,10,11,12] have 2 long been used for analysis of these systems, the approach to their design and operation can be greatly fac i l i ta ted through the use of a computer calculation for such systems. Indeed, the ready ava i lab i l i ty of a rapid calculation technique could lead to examination of old processes and new proposed processes in a l ight which may suggest ins ta l -lation of reacting d i s t i l l a t i o n columns to provide improved y ie ld . The intent of the present work was to study on a much larger scale than had been previously done, the factors affecting a d i s t i l l a t i o n column with chemical reaction and to t ie these studies i n , wherever possible, with the calcula-tions already done and the experimental or industrial work which was on hand. The method chosen to do the calculation was to do a simulation on a d i g i t a l computer (I.B.M.360/67). Choice of a simulation technique was based on the ready ava i lab i l i ty of a Hanson [21] type d i s t i l l a t i o n simulation on which previous work involving holdup and re-action had been in i t iated by Forsyth [13], and Nguyen [14]. Completion of the incorporation of the holdup and reaction model into the simulation, and application of the technique to what data was available was included in the scope of this project. Comparisons of reacting columns to other separation techniques are given where possible. Although an awareness of the use and importance of simultaneous reaction and d i s t i l l a t i o n is not a recent 3 d i s c o v e r y , i t was the advent of the computer i n more r e c e n t times t h a t made examination of such systems f e a s i b l e . S e v e r a l workers performed hand c a l c u l a t i o n s by the u s u a l l a b o r i o u s techniques, but the time and e f f o r t r e q u i r e d to analyze any-t h i n g but the most elementary systems undoubtedly discouraged e x t e n s i v e s t u d i e s . I n t r o d u c t i o n of such systems i n t o i n d u s t r i a l p l a n t s was no doubt hindered by the u n c e r t a i n t y of c a l c u l a t i o n s ( i f indeed, any were attempted), and hence d e s i g n , y i e l d s , and economics were unknown f a c t o r s . Research concerning the types of systems i n q u e s t i o n has not been c o n f i n e d to hand c a l c u l a t i o n t e chniques, however. Both the analog [15] and . . h y b r i d [16,17] computers have been used to model such systems. Although no attempt has been made i n t h i s work to examine the advantages and disadvantages o f the h y b r i d and analog methods i n comparison with t h i s d i g i t a l s i m u l a t i o n , the major (and p o s s i b l y d e c i d i n g ) advantage o f the d i g i t a l work i s the ready a v a i l a b i l i t y of t h i s type o f computer. A l s o , s i n c e most d i s t i l l a t i o n c a l c u l a t i o n techniques are a v a i l a b l e i n the form of programs i n d i g i t a l computer language, i n c o r p o r a t i o n of t h i s work i n t o such programs w i l l be more f e a s i b l e than had t h i s work used a d i f f e r e n t computer. The model and b a s i c d i s t i l l a t i o n c a l c u l a t i o n technique are d i s c u s s e d i n d e t a i l i n the body of t h i s t h e s i s . E x p l o r a t o r y work f o r t h i s t h e s i s was performed on h y p o t h e t i c a l r e a c t i o n s ( i n v o l v i n g a c r o s s s e c t i o n of systems where products were more v o l a t i l e than r e a c t a n t s , r e a c t a n t s 4 more volat i le than products, reaction unfavourable and reaction favourable), in order that an extensive search for equilibrium and kinetic data would not be necessary at a time when the main concern was in validating the simulation program. The value of these i n i t i a l studies is reflected in the fact that some of the results obtained therein are i n -cluded in this text. Although these results have no real industrial application (because the systems are hypothetical) they, are invaluable for determining the effect of the various column parameters in improving or worsening separation for a variety of general cases. Application of the conclusions reached from this exploratory work to real systems fa l l ing into the same general categories has been greatly fac i l i tated by careful examination of these otherwise meaningless results . In order to substantiate the conclusions reached by using hypothetical systems i t was fe l t to be necessary to test the simulation by using real data or at least data available in the l i terature and used in the hand calculation techniques of earl ier workers. Although generally incomplete, this data usually provided sufficient information to allow use of the simulation program. In cases where information was incomplete, i t was supplemented with data from other sources. Small discrepancies in reported results as compared with this thesis work may be a result of this variation in data sources. 5 Of the hypothetical systems examined, only one was previously reported in the l i terature . This was a hypothetical toluene-xylene-benzene system and results of the two studies are reported in the body of this work. Also studied were several systems in extensive use in industry today. Esteri f icat ion [4,6,18,19] is achieved through removal of the reaction products (ester and water) from the presence of the reactants (alcohol and acid) and, as a result , studies of the production of ethyl acetate were carried out. It was also fe l t that a case where an unfavour-able reaction accompanies d i s t i l l a t i o n [2,3,7,8] should be examined. Therefore, the manufacture of acetic anhydride in the presence of water, where one attempts to inhibi t the water--anhydride reaction was.studied. The conclusions•con- ; cerning most favourable operating conditions for these systems are reported in this text and compared with those of other workers using different techniques. Throughout the course of this work, 100% eff ic ient plates were assumed as were ideal i ty of vapor-liquid equi l ib-rium and thermal properties. It is realized that at least the latter assumption w i l l be becoming less re l iable as high concentrations of some components are being reached a n c ^ a s azeotropes are reached, but for present purposes this l imitation is not considered binding. For the purposes of this work an adiabatic column has been assumed. This simulation model is for a column equipped with a reboiler and condenser, neither of which con-tributes to d i s t i l l a t i o n but which have chemical reaction occurring. 6 THEORETICAL CONSIDERATIONS A. General The principles involved in the use of a fractionating column as an aid in forcing a chemical reaction towards com-pletion are: the law of mass action, the kinetic laws, and the laws of d i s t i l l a t i o n . These three laws, which are well understood, when applied simultaneously, explain how d i s t i l l a t i o n can be an eff icient means of performing l iquid phase reactions i f the products dif fer considerably in their v o l a t i l i t i e s from the reactants. In this specific context, d i s t i l l a t i o n is being made use of to remove the reaction products from the reacting mixture, while the fractionating tower minimizes the simul-taneous removal of the reactants. This process is actually an example of an application of Le Chatelier's Principle: the removal of one or more of the products formed tends to shift the chemical equilibrium to the right (using standard notation), i . e . more reactants are consumed. Theoretically, then, i f a l l products of the reaction are removed instantaneously from the reaction zone (in this case, by means of d i s t i l l a t i o n ) , i t would be possible to obtain 1 0 0 per cent conversion of the reactants. This is 7 in contrast to a steady-state backmix flow reactor, where only equilibrium conversion can be reached. Consider the following reaction, k f A + B C C + D k M.V.C. L . V . C . r M.V.C. = Most Volat i le Component L . V . C . = Least Volat i le Component If reactants A and B are fed to the middle of the column, and reacted in the l iquid holdup on a l l plates, and i f the component C formed were to be removed overhead in the column tops and component D were removed as column bottoms, due to v o l a t i l i t y differences, then with a reverse reaction i t would be possible to force the equilibrium of the system to the r ight . L i t t l e reverse reaction is possible i f component C and component D are kept in separate sections of the column, and i f the concentration of one or other of the two is usually so small that the rate of the reverse reaction, k [C]ID] , is very small. Figure 1 indicates the possible separation. Of course, the foregoing description is grossly oversimplified. A l l components w i l l appear in a l l parts of the column, but preferential ly , component C is going to appear towards the top and component D towards the bottom. And preferential ly , the reactants A and B are going to disappear during their passage through the column. Nevertheless, 8 0 CONDENSER PRODUCT C REACTANTS A a B REBOILER Figure 1 A Hypothetical Example of the Usefulness of a D i s t i l l a t i o n Column as a Chemical Reactor the aim of the fractionating column is to separate the two products physically one from another to minimize the reverse reaction, but s t i l l allowing the reactants to stay together in reasonably high concentrations in order to promote the forward reaction. This study is concerned primarily with reversible reactions; for irreversible reactions i t would, in most cases, be more economical to let the reaction go to completion and then to d i s t i l l the reaction mixture to remove the product overhead. (However, in the case of inhibit ion of unwanted side reactions, irreversible reactions are of real concern.) Some chemical reactions in d i s t i l l a t i o n columns may be undesirable [2,3,7,8]. These chemical reactions unfavourably affect the course of the rect i f icat ion and reduce the yie ld of the components being separated. Once again, i f v o l a t i l i t y differences permit, i t might be possible to d i s t i l l off one'of the reactants causing this undesirable reaction, and as a result , increase the yield of some other more valuable product. In this general case, both reversible and irreversible reactions come into consideration as inhibit ion of reaction can be equally effective in both cases. A schematic of a separation system in which i t is desirable to inhibi t a reaction, and the effect of d i s t i l -lat ion in doing so, is given in Figure 2. E + F -> G (M.V.C.) (L.V.C.) (undesirable) By removing component E overhead, and out of the presence of component F (which is the least vo la t i l e , and goes out as column bottom product), i t is possible to obtain a higher yie ld of component E than i f the two were not separated. If component E is not removed from the presence of component F, i t is consumed in reaction. E a F REBOILER SPLITTER 10 CONDENSER PRODUCT E PRODUCT ^ F Figure 2 A Hypothetical Example of an Unfavourable Reaction in a D i s t i l l a t i o n Column It would appear that for the kind of system being discussed, the following parameters might have an effect on the column as a reactor and as a separating device: 1. Column pressure 2. Individual plate holdup 3 . Reflux ratio 4 . Heat input to the reboiler 5 . Type of reaction—whether endothermic or exothermic 6 . Number of plates. 11 The extent of the effects of these variables on various systems w i l l l ike ly be a strong function of the compon-ents of the systems themselves. Although the des irabi l i ty of varying these parameters is very system dependent, certain general effects of each parameter can be hypothesized. 1. Column Pressure As pressure increases in a column, temperature w i l l increase and relative v o l a t i l i t i e s w i l l be reduced. The increase in temperature w i l l result in an increase in reaction rate. As a result , the characteristics of the system would be expected to determine whether or not an increase (or de-crease) in column pressure would produce an improved reaction and separation. 2. Individual Plate Holdup In a continuously operating fractionating column, the amount of l iquid held up on each plate has no effect on the end products produced, except in as much as the functional performance of a plate depends on an adequate amount of l iquid being present on i t . If, however, chemical reaction is taking place in the l iquid phase on a plate, then clearly the amount of chemical reaction which w i l l take place on that plate w i l l depend on the mean residence time of l iquid on the plate and for a given through-put, this in turn w i l l depend on the l iquid holdup. 1 2 3 . R e f l u x R a t i o E v e n f o r a g i v e n l i q u i d h o l d u p on e a c h p l a t e , a n d f o r a f i x e d amount o f t o p p r o d u c t p e r u n i t o f f e e d , an i n -c r e a s e i n t h e r e f l u x r a t i o w i l l r e p r e s e n t an i n c r e a s i n g r a t e o f l i q u i d f l o w down t h r o u g h t h e c o l u m n a nd h e n c e a d e c r e a s e i n t h e r e s i d e n c e t i m e f o r a f i x e d h o l d u p . I t i s t h u s s e e n t h a t t h e r e f l u x r a t i o a f f e c t s t h e r e a c t i n g c o l u m n i n two w a y s ; f i r s t l y , b y a f f e c t i n g t h e t i m e a v a i l a b l e f o r r e a c t i o n , and s e c o n d l y , b y i n f l u e n c i n g t h e d e g r e e o f s e p a r a t i o n o f t h e v a r i o u s s p e c i e s w i t h i n t h e c o l u m n . The r e f l u x r a t i o a l s o h a s an i n f l u e n c e a s a r e s u l t o f i t s c o n t r o l on t h e amount o f v a r i o u s c o m p o n e n t s r e c y c l e d , and h e n c e , on t h e c o n c e n t r a t i o n d r i v i n g f o r c e s f o r t h e r e a c t i o n s . T h i s c h a n g e i n c o n c e n t r a t i o n p r o f i l e s i s n a t u r a l l y a c c o m p a n i e d b y a c h a n g e i n s t a g e t e m p e r a t u r e s a nd h e n c e , an a l t e r a t i o n i n r e a c t i o n r a t e s . 4. H e a t I n p u t t o t h e R e b o i l e r I f a l l o t h e r i n d e p e n d e n t c o l u m n v a r i a b l e s a r e h e l d c o n s t a n t , a n d o n l y t h e h e a t l o a d t o t h e r e b o i l e r , i . e . , t h e b o i l - u p - r a t e , i s v a r i e d , t h e r a t e o f r e a c t i o n o n e a c h p l a t e w i l l v a r y s t r o n g l y w i t h t h e b o i l - u p - r a t e . A s b o i l - u p i s i n c r e a s e d , v a p o r f l o w r a t e s up t h e c o l u m n i n c r e a s e , a n d a s s u m i n g a c o n s t a n t r e f l u x r a t i o , l i q u i d f l o w r a t e s down t h e c o l u m n w i l l i n c r e a s e a n d p l a t e r e s i d e n c e t i m e i s a f f e c t e d . A l s o , t h e c o n c e n t r a t i o n p r o f i l e s ( h e n c e c o n c e n t r a t i o n d r i v i n g f o r c e s ) a r e c h a n g e d a nd t h e 13 rate of reaction is altered. The reaction rate is also usually temperature dependent to a certain degree, and the boil-up-rate thus has a second effect on reaction rate in that i t alters column temperatures. 5. Type of Reaction (Endothermic or Exothermic) The temperature at which a reaction takes place has a definite effect on the equilibrium conversion in any kind of reactor, backmix, plug flow, or batch, [20]. For reversible reactions, these effects are displayed in Figure 3. Figure 3 Equilibrium Conversion versus Reactor Temperature for Reversible Reactions Occurring Isothermally With regard only to the rate and extent of a reaction, the optimum temperature for an endothermic reaction is simply 14 the highest possible operating temperature—this not only produces the fastest reaction but also has the highest equilibrium conversion y ie ld . Whether or not a high temper-ature is also conducive to a good rect i f icat ion in a reacting d i s t i l l a t i o n column is entirely dependent on the system being studied. Exothermic reactions pose more complex problems, however, when the effect of temperature on conversion is considered. Although reaction rates increase with increasing temperature for an exothermic reaction, the equilibrium con-version drops signif icantly as can be seen in Figure 3 . Choice of an optimum temperature for operation then becomes dependent on the reaction characteristics of the system. Admittedly, this choice of an optimum temperature is somewhat inflexible—as the temperature must l i e within the range of boi l ing points of the most and least volat i le components— however, the problem should not be overlooked. 6 . The Number of Plates The number of plates has an effect on the separation in any conventional d i s t i l l a t i o n . This effect is magnified in the case of simultaneous reaction and d i s t i l l a t i o n , as the addition of plates not only adds to the separation capacity of a column but also to the reaction capacity. 15 B. The P h y s i c a l Model In order to mathematically model and simulate a system, the p h y s i c a l l a y o u t of the apparatus must be s p e c i f i e d . The f o l l o w i n g s e c t i o n s g i v e a p h y s i c a l d e s c r i p t i o n of the type of r e b o i l e r , type of condenser, t y p i c a l stage and type of r e a c t o r around which the mathematical model of the column was developed. However, the computer s i m u l a t i o n i s capable of a c c e p t i n g change i n these models by subsequent a l t e r a t i o n o f the a p p r o p r i a t e s e c t i o n i n the program. 1 . R e b o i l e r Model A t o t a l r e b o i l e r of p a r t of the l i q u i d l e a v i n g the bottom p l a t e i s used. Bottom product i s removed i n a s p l i t t e r which sends p a r t of the l i q u i d to the r e b o i l e r to be r e t u r n e d to the column as vapor. Hence the vapor composition l e a v i n g the r e b o i l e r [GENY(I,KMl)] i s the same as the l i q u i d composition i n the r e b o i l e r . . The schematic i n F i g u r e ' 4 "represents the p h y s i c a l system. See Appendix A f o r d e s c r i p t i o n of nomenclature. 16 VAPOR (KMU-GENY(I,KMI) REBLD QUID(KM) GENX(I.KM) ^ QUID(KMI) GENXtt,KMI) VAPOR(N) = v a p o r f l o w l e a v i n g s t a g e N [ m o l e s / u n i t t i m e ] QUID(N) = l i q u i d f l o w l e a v i n g s t a g e N [ m o l e s / u n i t t i m e ] t h GENY(I,N) = mole f r a c t i o n o f I component i n v a p o r l e a v i n g s t a g e N GENX(I,N) REBLD mole f r a c t i o n o f I component i n l i q u i d l e a v i n g s t a g e N = h e a t i n p u t t o r e b o i l e r [ h e a t u n i t s / u n i t t i m e ] F i g u r e 4 P h y s i c a l M o d e l o f t h e R e b o i l e r 2 . T y p i c a l S t a g e M o d e l The m odel f o r a t y p i c a l column s t a g e c l o s e l y r e -s e m b l e s t h a t f o r a n o r m a l d i s t i l l a t i o n c olumn e x c e p t f o r t h e f a c t t h a t c h e m i c a l r e a c t i o n i s o c c u r r i n g on e a c h p l a t e . T h i s m o del i s p r e s e n t e d i n F i g u r e 5. PLATE N-1 QUID(N-I) GENX(I,N-I) AVAPOR(N) V GENYU.N) PLATE N VAPOR(N+l) GENY(I,N+I) QUID(N) GENX(I.N) PLATE N+l DXIN(I,N) = moles of component I consumed on plate N due to reaction Figure 5 Physical Model of a Typical Stage 3. Feed Plate Model The feed plate is physically the same as a typical plate except for the addition of a side stream (feed) assumed to be a l iquid at i t s bubble point. The schematic in Figure 6 describes the arrangement. 18 TOTFD = moles of feed per unit time EXTFD(I) = mole fraction of component I in feed Figure 6 Physical Model of the Feed Plate 4. Condenser Model A total condenser of the top vapor product is used. Therefore the top product and reflux stream are of the same composition as the overhead vapor stream. A schematic is given in Figure 7. 19 VAPOR(KN) GENY(I,KN) A ^SCON DENSER QUID(KNI) GENXd.KNI) QUITOP GENX(I.KNI) Figure 7 Physical Model of the Condenser 5. Reaction Model Up to this point the modelling of the column has been, to a considerable extent, along well established l ines . At this point, however, a major departure from standard procedure must be made in as much as chemical reaction has to be considered. The assumption that chemical reaction occurs only in the l iquid phase was adopted. Such an assumption seems just i f iable in the present circumstances where the res-idence time of the reacting substances in the vapor phase is very small. Because in the opinion of.many workers [1,3,5,6, 7,11,16] the vapor phase reaction is negligible, and because of the lack of refinement in other parts of the program, one would seem to preclude the need for a very precise model in 20 this particular feature. The modelling of a plate in a column was done on the basis of perfect mixing in the l iquid phase and therefore the situation was s t r i c t l y comparable to a continuous st irred tank reactor. It is realized that such a model can only be approximately representative of a real plate i f the plate is small; but then i f large plates were to be considered, they would very probably have subsidiary internal weirs, and the modelling could be adjusted to represent a CSTR on each sub-section of the main plate. Pract ical experience shows that there are stagnant areas, especially around the downcomers, in d i s t i l l a t i o n columns. However, as a f i r s t approximation and remembering that the present work is exploratory in nature and that many other refinements in modelling have been ignored, i t seems not inappropriate to accept the CSTR model. C. The Mathematical Model The mathematical model representing steady-state for simultaneous reaction and d i s t i l l a t i o n in a fractionating column is given in Figure 8, and represents the physical phenomena described in the previous section. This model can generally be divided into three dis t inct parts: a reboiler model, a typical stage model (the feed plate model is a sl ight variation of th i s ) , and a condenser model. This overall 21 model i s a m o d i f i c a t i o n o f t h a t o f Hanson, e t a l . [21], and t h e o n l y s i g n i f i c a n t a l t e r a t i o n s a r e c o n c e r n e d w i t h t h e h o l d u p f e a t u r e s and t h e r e a c t i o n f e a t u r e s . N e v e r t h e l e s s , i t w i l l be n e c e s s a r y t o o u t l i n e t h e c a l c u l a t i o n p a t t e r n o f Hanson, e t a l . , i n o r d e r t h a t i t s p l a c e i n t h e o v e r a l l scheme be u n d e r s t o o d . The p r i n c i p a l e q u a t i o n s u s e d t o d e s c r i b e t h e t r a y s a r e s t a t e m e n t s o f t h e m a t e r i a l and e n t h a l p y b a l a n c e s , v a p o r -l i q u i d e q u i l i b r i u m and r e a c t i o n k i n e t i c s . Component b a l a n c e s a r e d e s c r i b e d by an e q u a t i o n o f t h e f o r m : Q U I D ( N - 1 ) * G E N X ( I , N - 1 ) + VAPOR(N+l)*GENY(I,N+1) = k k QUID(N)*GENX (I,N) + VAPOR(N)*GENY(I,N) + D X I N ( I , N ) T o t a l m a t e r i a l b a l a n c e : QUID (N-1) + VAPOR (N+l) = QUID (N) + VAPOR (N) + SDXIN(N) E n t h a l p y b a l a n c e : QUID(N - 1 )*QUIM0H(I,N - 1 )*GENX(I,N - 1 ) + VAPOR(N+l)* VAPMOH(I,N+l)*GENY(I,N+l) = QUID(N)*GENX(I,N)* QUIM0H(I,N) + _VAP0R*GENY (I ,N) *VAPM0H (I ,N) + HOR(N) (summed o v e r a l l I) As d e s c r i b e d i n t h e s e c t i o n THEORETICAL CONSIDERATIONS, ( E . l ) , t h e v a p o r - l i q u i d e q u i l i b r i u m i s e x p r e s s e d u s i n g R a o u l t ' s law: k k See NOMENCLATURE f o r d e s c r i p t i o n o f F o r t r a n s ymbols u s e d . 22 GENY(I,N) = EQUILK(A,B,C,T,P) • GENX(I,N) This assumes that the l iquid and vapor leaving the tray are in physical equilibrium, and therefore that the tray is 100% eff ic ient . Reaction kinetics are described by the law of mass action (see section THEORETICAL CONSIDERATIONS, ( E . 3 ) ) , in conventional nomenclature rate = k^C^C^ - k C^C^ , for an elementary reaction of f A B r C D the type A + B ^ C + D . in Fortran nomenclature: DXIN(I,N) = FNMOLS (I, IR) *((GENX (I ,N) *RHO) **ORDER (I, IR) ) *REACKF(N,IR)*SPR(N) -FNMOLS(I,IR)* ( (GENX(I,N)*RHO)**ORDER(I,IR) ) *REACKR(N,IR)*SPR(N) Pressure is assumed constant throughout the column. Dew point calculations are based on: ^ GENX(I,N) = 1.0 and are performed when the composition of the vapor is known. Bubble point calculations are based on: ^ GENY(I,N) =1.0 and are performed when the composition of the l iquid is known. These equations are inter-related as shown on the following diagram. 23 « w to •z w Q Z O O I I I I I I I I I i ? t TEMP (N) TEMP(N) MASS BALANCE (LIQUID HOLDUP) FLFEED (I) =FLFEED (D+DXIN (I,N) (for a l l I) h D X I N ( I , N ) GENX ( I , N ) BUBBLE POINT GENY(I,N)=1.0 TEMP ( N ) 3 REACTION RATE - r A = k f C A C B ~ k r C C C D QUID ( K N ] . ) = MASS BALANCE (R) VAPOR (KN) (R+l .0) QUID(KN1) QUIMOH(I,KN1) IQUITOP w o < in < u H a, >< <g. J T E M P j N ) J G E N X J I J N ) QUID (N-1) VAPOR (N), MASS BALANCE (LIQUID HOLDUP) FLFEED (I)=FLFEED(I)+DXIN(I,N) (for a l l I) FLFEED ) I 1 I QUIMOH(I,N-1) GENY (I , h ISENTHALPIC FLASK CALCULATION (see page 2.1 f o r equations) DXIN(I,N) 4 TEMP(N) REACTION RATE - r A = k f C A C B - k r C C C D TOTFD TOTFDH EXTFD ( I ) (only i f stage i s feed plate) QUID(N) GENX(I,N) W M O m w K QUID (KM1) VAPOR (KM1) — = £8»— VAPMOH(KM1) GENY (I,KM1) QUID(KM) GENX(I,KM) REBLD MASS AND ENTHALPY BALANCE VAPOR (KM1)~ = REBLD  (VAPMOH (KM 1) -QUIMOH (>'.M' JT" TEMP ( N ) -=s5H TEMP(N) DEW POINT GENX (I,N) = 1.0 • <ij -TEMP(KM 325 G E N X ( I , K M 1 ) I REACTION RATE -r =k,C„C -k C„C A f A B r C D DXIN (I,N) MASS BALANCE (LIQUID HOLDU: ^JFLFEED (I) =FLFEED (D+DXIN (I,N) (for a l l I ) **See page 22 f o r Fortran Nomenclature. • Figure 8 The Mathematical Model 24 D. Simulation Technique The basic technique used in this work to simulate steady-state in a reacting d i s t i l l a t i o n column was a stage-to-stag.e simulation of the system. This method considers a single plate, which has an input l iquid and vapor, and by some device calculates the l iquid and vapor flows and compositions leaving this plate. The calculation then goes to the next plate, and using one of these calculated streams from the previous plate as at least part of the information input to this second stage, repeats the operation. Having repeated this a sufficient number of times passing up and down the column, the situation is such that the composition of each stream has been successively up-dated to the correct answer. This calculational technique can be contrasted to a real plate-to-plate method in' which the dominance of the assumed end products persists a l l the way up or down the column. One of the major reasons for using this technique is that, generally speaking, i t is very stable—although also quite slow. Although convergence by direct i teration was employed, in the case of high reaction coefficients (or large holdup, such that the change in number of moles due to reaction on each plate was re lat ively large), i t was necessary to introduce the reaction slowly, i . e . , start with reaction coefficients a fraction of the real values and slowly increase their values (in steps, after a certain number of iterations) 25 to the f inal desired values. No accelerating technique was used to force convergence. The type of simulation used was that of Hanson, et a l . [14]. A simplified flow chart for the general simulation procedure is given on Figure 9. This diagram indicates the external control method on the actual column iterations and outlines the stopping cr i ter ion . A more detailed description of the actual "up-and-down" iterative technique in the column is seen in Figure 10 (a three-stage column is used for exemplary purposes), and is described below. An additional virtue of the Hanson simulation is that i t is very simple. Once a complete temperature, compo-s i t ion , and flow map is set up for the entire column , the i terative sequence begins by performing an isenthalpic vaporiz-ation calculation on the reboi ler . An isenthalpic flash is--next calculated on the second stage, using as input the flow of vapor just calculated from the f i r s t stage plus the l iquid or ig inal ly assumed to be entering from the stage above. Similarly the next stage up is calculated, using as part of the feed, the vapor just calculated from the stage below. Although the l iquid and vapor flows, their compo-si t ions, and the stage temperatures must be i n i t i a l i z e d in order to allow the i terative sequence to begin, the numerical values of these in i t ia l i za t ions can be selected almost at random. In fact, throughout the entire course of the work presented in this text, the i n i t i a l conditions were not changed once. No study was done on the effect on convergence rate of these i n i t i a l conditions; however, i t was fe l t to be s l ight . INITIALIZE COLUMN PARAMETERS stage temperatures stage compositions liquid 8 vapor flows I SET INDEPENDENT VARIABLES = number of plates feed plate no. 8 feed composition plate holdup, reflux ratio heat input to reboiler DO ONE ITERATION UP AND DOWN COLUMN O.K. CALC. HEAT ON EACH UNBALANCE PLATE \ CHECK OVERALL ATOMIC BALANCES NOT O.K. CHECK PLATE MOLE BALANS. A O.K. STOP NOT 0:K. F i g u r e 9 I n i t i a l i z a t i o n and S t o p p i n g C o n t r o l o f t h e S i m u l a t i o n INITIALIZE COLUMN TEMPERATURE, COMPOSITION AND FLOW MAP (FIRST ITERATION ONLY) CONDENSER BUBBLE POINT CALC. AND MASS BALANCE USING REFLUX RATIO I STAGE 3 ISENTHALPIC FLASH CALC. I STAGE 2 ISENTHALPIC FLASH CALC I STAGE 1 ISENTHALPIC FLASH CALC. I STAGE 3 ISENTHALPIC FLASH CALC. I STAGE 2 ISENTHALPIC FLASH CALC I STAGE 1 ISENTHALPIC) FLASH CALC REBOILER DEW POINT CALC.AND SIMULTANEOUS SOLUTION OF MASS AND ENERGY ;R ~" '- J BALANCES CHECK COLUMN MOLE BALANCE J Figure 10 (ONE ITERATION FOR A THREE-STAGE COLUMN) Iterative Sequence for the Simulation 28 After the condenser has been calculated, the procedure is repeated, this time working down the column, and using the previously calculated vapor flows from the "up-calculation" and the newly calculated l iquid flows from the "down-calculation". This sequence is continued unt i l the column is in mass balance. E . Evaluation of System Parameters As there is a wide variety of possible equations available for representing the physical characteristics in the systems used, a brief explanation of why each particular expression was chosen is fe l t necessary. It was intended that the particular method of calculating physical properties would be incorporated in separate subroutines or statement functions, which would transmit the f ina l calculated value to the main program or relevant subroutine for use therein, but which could be removed in a block and replaced by a subroutine or statement function incorporating other assumptions or methods of calculation. Hence, the overall assemblage was not to be in any way dependent on a particular mode of calculation of physical data, although the core program, i . e . , the simulation per se, would of course not be changeable without major mod-if icat ions . In assembling and testing the essential part of the program--simulation with chemical reaction—there was no point in using sophisticated subroutines or statement functions to calculate the working data, when simpler ones would suffice. These would be easier to write (and maybe even already existed) and would make direct comparison with some calculated data possible. and the new part, i . e . , reaction component, was tested, probed and ver i f ied , the introduction of more rea l i s t i c calculations for vapor-liquid equilibrium, reaction rates, densities of complex mixtures, e tc . , could be undertaken and real systems could be more accurately represented. 1. Vapor-Liquid Equilibrium Expression Raoult's general vapor pressure law (applicable for ideal solutions) was used to calculate the vapor-liquid equilibrium relationship. The assumption of ideal solutions is not truly val id for a l l the systems used, but as has been already explained, this point is not regarded as one at issue. From the definit ion of i d e a l i t y , [22], As soon as the program was sat is factori ly running f . k. x. i mole fraction fugacity constant of proportionality. Hence, assuming a perfect gas, for a binary solution, P B "A B 30 and, yAP = x ^ yBP = x ^ ' y A = mole fraction A in vapor phase x^ = mole fraction A in l iquid phase P^ = part ia l pressure of A P A ° = pure component vapor pressure of A P = total system pressure. The vapor in equilibrium with any l iquid can therefore be determined from a knowledge of the equilibrium vapor pressures of the pure components at the temperature in question. This calculation appears in the form of a function statement in the main program and in the BUBPT and DEWPT subroutines. 2. Vapor Pressure Expression In order to apply Raoult's law to determine vapor-l iquid equilibrium, values for the vapor pressure of the various components must be calculated. One widely used expression for vapor pressure is Antoine's equation: l o g 1 Q P = [Perry (23)] A./B/C are empirically determined constants for a particular substance and T is the absolute temperature. This equation is derived from the basic equation for two phases of the same pure substance in neutral equilibrium at constant temperature and pressure, i . e . , 31 which reduces to the Clapeyron equation, dP AH dT~~ = T •Av^ and, with certain assumptions, further A reduction yields In P = =; + B; Assumptions made in this derivation are: 1. One of the phases is assumed to be a vapor behaving as a perfect gas and the molal volume of the denser phase is assumed to be negligible in relation to the vapor phase. 2. AH (heat of vaporization) is independent of temperature. The Anto'ine equation is very simple and data is readily available [24,28], in the form of constants A , B , C . The equation i s , l o g 1 0 P = A-B/(C+t + 273) P [=] mm Hg t [=] °C Because the d i s t i l l a t i o n program being used calculates temperatures in degrees F, the above equation was modified to, ( (A-B/((T-32)/1.8)+C))* 2.303** P - e This calculation appears in the form of a function statement in the main program and in the BUBPT and DEWPT subroutines. 32 T [=] °F P [=] mm Hg. 3. Expression for Rate of Chemical Reaction For many reactions, and in particular,elementary reactions, the rate expression can be written as a product of a temperature-dependent term and a composition-dependent term, or RATE = (TEMPERATURE TERM)*(COMPOSITION TERM) The following sections deal with these terms separately. (a) Composition dependent term - The relationship of this term to reaction rate was obtained from the Law of Mass Action, which states that the rate of forward reaction is proportional to the concentration of the reactants, and the rate of reverse reaction is proportional to the concentration of products. Hence, for the general reaction, A + B ^ C + D, (-rA) = k f[A][B] - k r[C][D] However, only in the case of elementary reactions, where the rate equation is suggested by ' a stoichiometric equation which represents the actual mode of action, can this law of mass action be applied. This was assumed to be the case for a l l examples tested in this work. An alternate rate expression would become necessary in the case of non-elementary reactions, where there is no direct correspondence between the.stoichiometric equation and the rate expression. (b) Temperature dependent term - Arrenhius' law has been found to represent the temperature dependent term (the reaction rate coefficient) very well for most reactions: k = k e " E A / R T o k Q = frequency factor E = activation energy k = reaction coefficient R = gas constant T = absolute temperature Advantages: i . F i ts experimental data well over wide temper-ature ranges. i i . Suggested as being a reasonable f i r s t approx-imation to the true temperature dependency. The frequency factor kQ does not affect the temperature sensi t iv i ty of a reaction, whereas in real reactions there might be a sl ight temperature dependency of this term (this is minor though) and we have assumed k Q to be constant in this work. This reaction rate calculation is done in the sub-routine . REACTN. 34 4. Temperature Dependence of Reaction Heats In order to perform enthalpy (heat) balances on a l l plates in the d i s t i l l a t i o n column, the heat of reaction at each individual plate temperature must be known. Hence, an expression relating AH^ to T is necessary. From Moore [25], T 2 • • • REACTANTS + PRODUCTS reactants + A H T 2 + products T • • • REACTANTS -> PRODUCTS AH 1 Assuming that the heat capacities C p are constant over y ^\ t ciri t s the temperature range, and'where C p = EC p for a l l reactants in the stoichiometric equation, applying the f i r s t law yields; A H T i + C p ? r ( T 2 - T l ) = C / 6 ( T 2 - T l ) + A H ^ A Hi T 2 _ A H T x T - T 2 1 = AC P Hence the AH^ at any temperature T 2 can be calculated knowing the AH^ at some reference temperature T^, and the heat capacities of the reactants and products. This calcula-tion is performed in the subroutine called HEATRX in this simulation. In practice, C p is known to vary with temperature, but following the pattern of keeping substitutions for data to the lowest level of complexity, this factor has been ignored. 5. Enthalpy Relationship Assuming ideal gas behaviour, at constant pressure, dH = C dT P T' , 2 AH = H„ - H, = / C dT 2 1 T P 1 or, i f is assumed independent of T, AH = H 2 - H x = C p ( T 2 - T l ) Hence the enthalpy of a gas at any temperature can be obtained from C p data. This equation can be rearranged to give, H„ = C T n - C T n + H, and, hence, a knowledge of ^ 2 p 2 p 1 1 ^ C , and H^ at some temperature T^, gives H 2 at a temperature H 2 = (Cp) • T 2 - (Cp) • (Tx) + (Hx) H 2 can be calculated at any T 2 . These calculations are done in function statements in the main program. 36 6. Density Relationship Because the l iquid holdups on the plates had to be in terms of molal units and because the actual volume on the plates was fixed—as is true in any physical s i tuation--i t was necessary to calculate the molal density of a l l l iquid mixtures. Thus the actual number of moles held up on a plate could be determined and for a given flow down the column, the residence time on each plate could be computed. The density calculation involves taking the inverse of the molal volumes of the mixture at the stage temperature. The molal volume of the mixture is calculated from the molal volumes of the components assuming addit iv i ty . Therefore, This calculation is done in the subroutine called . DEN'STY. 7 . System Holdup The units in which plate l iquid holdups are normally quoted are volumetric units, i . e . , l i t r e s or cubic feet, etc. Because reaction rates are determined from a knowledge of the total number of moles of each component present, and because concentrations are normally given in mole fractions, conversion of this volumetric holdup to molar holdup was necessary. Hence density data was input in units of moles/ unit volume of each component. From this data, the total molar holdup on each plate could easily be calculated. 37 RESULTS AND DISCUSSION It has been found most convenient and in te l l i g ib l e to present the results of this study and discuss them at the same time. The f i r s t calculations done were directed to estab-l ishing that the simulation program that had been developed was re l iab le . And once this was confirmed, three separate chemical systems were examined under a variety of conditions to evaluate the effectiveness of a d i s t i l l a t i o n column with reaction as a reaction and separation device. Where possible, these systems were studied under conditions similar to those used by other workers in order that the process of validation could most effectively be carried out. Runs under conditions which have not yet been reported extend the range of infor-mation available. The systems studied were: A. BENZENE-TOLUENE-XYLENE and BENZENE-TOLUENE-PSEUDOXYLENE 2 TOLUENE ^ BENZENE + XYLENE TOLUENE + BENZENE ^ PSEUDOXYLENE ** Pseudoxylene was arb i t rar i l y given the properties of having a molecular formula of ci2^14 a n d t ^ l e P n Y s i c a l properties (including vapor pressure) of para-xylene- This imaginary reaction was used so that no search for new physical properties would be required and an entirely imaginary set of reaction rates could be incorporated without doing violence to a physical s ituation. B. ETHYL ALCOHOL - ACETIC ACID - WATER - ETHYL ACETATE (ESTERIFICATION REACTION) ETHYL ALCOHOL + ACETIC ACID ^ WATER + ETHYL ACETATE C. ACETIC ANHYDRIDE - WATER - ACETIC ACID (SIDE REACTION IN MANUFACTURE OF ACETIC ANHYDRIDE) ACETIC ANHYDRIDE + WATER + ACETIC ACID. A. Benzene-Toluene-(Pseudo) Xylene System The study of the Benzene-Toluene-Xylene system was very useful because of the data available and the numerous results obtained by other workers [9,13,14]. These data and results made possible a validation of the simulation program both for simple d i s t i l l a t i o n calculations, by compar-ing with the well known work of Robinson and G i l l i l a n d [26>] , and for simultaneous chemical reaction and d i s t i l l a t i o n calculations, by comparing with the work of Belck [9]. 1. Validation of Program with Respect to Separation Only Validation of the program as a d i s t i l l a t i o n calcu-lation can be performed simply by altering input data so that the reaction coefficients are zero and the heat of reaction is zero. Hence, there is no change in plate compo-s i t ion due to reaction, as there is no reaction (the holdup on each plate need not be set to zero for this study—as is discussed in the following section 2). 39 Since the data used for this validation run was not exactly the same as that used by Robinson and G i l l i l a n d [26] (this difference was imposed by function statements in the program as discussed ear l i er ) , and since the model used in their hand calculations was for an equilibrium reboiler, and this work's was not, certain discrepancies in the results can be expected. However, minor variations are not important and the results are in good agreement as can be seen on Figure 11. 2. Effect of Holdup with Respect to Separation Only The amount of l iquid holdup on a d i s t i l l a t i o n plate in a real case for a steady state continuous column (with no reaction) has no effect on f inal product or stream compositions. This simulation was run (in the case of zero reaction) at various holdups in order to prove i ts va l id i ty s t r i c t l y as a d i s t i l l a t i o n program with holdup. The existence of such programs (if indeed such do exist) is rare today. For the purposes of this report, four holdups were used: 0.0 to 1000.0 (arbitrary units) . The simulation was run for a maximum of 500 iterations. Note that only in the cases of holdup = 0.0 and holdup = 10.0 did the program converge to within the allowed tolerances in less than 500 iterations (Table 1). A comparison with the results at holdup = 100.0 is s t i l l possible, however, as the tolerance is almost met. The f ina l temperature, composition and flow COMPOSITION OF LIQUID ON PLATE (mole fraction) F i g u r e 11 C o n c e n t r a t i o n P r o f i l e s f o r B e n z e n e - T o l u e n e - X y l e n e System W i t h No R e a c t i o n o 41 maps, Table 2r are essentially the same for each holdup--indicating a true representation of a known industrial and laboratory fact. Table 2 indicates that the holdup on the plates has no effect on the f inal steady state compositions and temper-atures of streams for the case of no reaction. However, holdup does have an effect on the rate of convergence to this f ina l map for this simulation. For the same conditions as i l lustrated just previously, i . e . , with no reaction, the rates of convergence were noted. Table 1 i l lustrates that as holdup increases, the rate of convergence decreases. Table 1 Rate of Convergence at Various Plate Liquid Hold-ups (no reaction occurring) HOLDUP (volume units/plate) NUMBER OF ITERATIONS TO CONVERGENCE PERCENT UNBALANCES ATOMIC OVERALL 0.0 9 .0087;- .0898 .1809 10.0 52 - .0164;- .0830 .0977 100.0 500 (not converged) -1.1446;-1.2189 - .9575 1000.0 500 (not converged) .5070;- .2685 4 .3259 Figure 12 gives an indication of the rate of conver-gence for the f i r s t ten iterations in the simulation for various holdups. Note the osc i l la t ion effect in a l l cases but note especially the wild fluctuations for holdup = 1000.0. The osc i l latory nature obviously is magnified as holdup increases. Suggestions for minimizing this w i l l appear later in this text. T 200 O HOLDUP = 0.0 units/plate • HOLDUP =10.0 A HOLDUP= 100.0 © HOLDUP= 1000.0 100 1 0 UJ o § -100 < 1-200 o z UJ o uj -300 CL - 4 0 0 _L 4 5 6 ITERATION 8 10 g u r e 12 C o n y e r g e n c e y e r s u s I t e r a t i o n Number a t V a r i o u s H o l d u p s (no r e a c t i o n ) TABLE 2 Holdup Effect on Final Plate Compositions—no 'reaction PLATE NUMBER COMPOSITION OF LIQUID ON PLATE (MOLE FRACTION) PLATE NUMBER COMPOSITION OF LIQUID ON PLATE (MOLE FRACTION) XYLENE TOLUENE BENZENE XYLENE TOLUENE BENZENE 6 (COND) 7 8 9 10 (FEED) 11 12 13 14 (REB) ,000252 ,001557 006526 ,023577 ,073330 075527 086432 142406 142705 .027910 .068508 .127670 .201941 .272768 .292599 .339744 .421925 .424231 .971837 .929936 .865805 .774482 .653903 .631874 .573824 .435669 .433064 6 (COND) 7 8 9 10 (FEED) 11 12 13 14 (REB) 000267 001596 ,006599 ,023660 073342 075509 086337 142232 142295 .028798 .069584 .128715 .202750 .272762 .292065 .338398 .419976 .420375 .970936 .928820 .864687 .773590 .653895 .632426 .575265 .437792 .437330 HOLDUP = 0.0 HOLDUP = 10.0 6 (COND) .000258 .027901 .971841 6 (COND) .026729 .154431 .818840 7 .001569 .068008 .930423 7 .052648 .229724 .717628 8 .006548 .126804 .866648 8 .075246 .274035 .650719 9 .023608 .201092 .775301 9 .090142 .295475 .614383 10 (FEED) .073348 .271920 .654731 10 (FEED) .098600 .306157 .595243 11 .075445 .290698 .633857 11 .102593 .324635 .572772 12 .086195 .336393 .577413 12 .117414 .367295 .515291 13 .142024 .417498 .440478 13 .186275 .433699 .380027 14 (REB) .142097 .417673 .440280 14 (REB) .186216 .433597 .380187 HOLDUP = 100.0 HOLDUP = 1000.0 44 3. Validation of Program Including Chemical Reaction (Benzene-Toluene-Xylene System) This system was examined for the case where the following hypothetical reaction was occurring: 2 TOLUENE £ BENZENE + XYLENE M.V.C. L . V . C . M.V.C. = most volat i le component L . V . C . = least volat i le component. The reasons for chosing this system and this reaction were many. Much previous work had been done by Forsyth [13] using these components and hence data and results for certain conditions were available. There were also some published results available, (Belck [9]), with which the results of this work could be compared. The data given by Belck was ut i l i zed in this simu-lation in order to allow a comparison of results . As certain data important to the simulation was missing from the published data of Belck, some physical characteristics of the components were derived from other sources, and as a result , an exact duplication of the Belck data was impossible. However, this was not important as results identical to those of Belck were not required. The purpose of this study was to indicate that the effect of reaction on d i s t i l l a t i o n as determined by Belck could be adequately displayed by the simulation—in-volving no rigorous hand calculations. 45 One major difference in Belck's model and the model used in this work was that Belck used an equilibrium reboiler whereas this work used a total reboiler of part of the l iquid bottoms. The difference in the two models is i l l u s -trated in Figure 13. BELCK THIS WORK Figure 13 Comparison of Reboiler Models--Belck and this Work This difference in reboiler models meant that a quantitative comparison of results is not possible. Since this work was not trying to duplicate the results of Belck, i t was fe l t that the remodelling and rewriting of this simu-lat ion necessary to duplicate the model of Belck, would not be worth the satisfaction of getting numerically exact answers--and because of data differences, this s t i l l might not have been possible. The s imilari ty of concentration profi les is i l lus trated on Figure 14, and indicate that the simulation sat i s factor i ly portrays the occurrence of simultaneous re-action and d i s t i l l a t i o n . T 1 r • THIS WORK O BELCK condenser 0.2 0.3 0.4 0.5 0.6 , 0.7 0.8 COMPOSITION OF LIQUID ON PLATE (mole fraction) 0.9 Figure 14 Validation of Program Including Chemical Reaction . 4. Effect of Various System Parameters At this stage i t was fe l t that the program had no errors in i t other than those possibly due to the new subroutines or concepts which had been included, and of course these were checked as carefully as the author knew how, and have been further checked by an overall consistency in the results obtained, and with this insurance, the work then advanced to studying specific effects not included in the example just described. The benzene-toluene-pseudoxylene system was studied with the following reaction occurring: BENZENE + TOLUENE ^ P SEUDOXYLENE M.V.C. L . V . C . Since this reaction is purely hypothetical only the qualitative nature of the results was important. Brief examinations of the effects of various para-meters on yield and product purity were made on a relative basis only. More detailed studies, of a quantitative nature, were performed on other systems of real industrial concern. Cursory studies of the following parameters were made as guidelines for future work: (a) Heat of reaction--endothermic and exothermic reactions (b) Column Pressure (c) Reflux ratio (d) Plate holdup 48 (e) From the r e s u l t s of these s t u d i e s , optimum column operating c o n d i t i o n s were suggested. The standard set of c o n d i t i o n s around which parameters were v a r i e d was as f o l l o w s : Reflux R a t i o 2.0 'Pressure 760 mm H g ( i d e n t i c a l on a l l p l a t e s ) Heat of Reaction 0.0 Holdup 10.0 f t 3 / p l a t e . (a) Heat of Reaction—Endothermic and Exothermic Reactions -The e f f e c t of heat of r e a c t i o n on a system i n which simultaneous r e a c t i o n and d i s t i l l a t i o n are o c c u r r i n g i s very complex and a strong f u n c t i o n of the s p e c i f i c r e a c t i o n being considered. Hence g e n e r a l i z a t i o n s encompassing a l l systems are very d i f f i c u l t . I t i s known t h a t , (i) For exothermic r e a c t i o n s , e q u i l i b r i u m conversion goes down as temperature goes up, ( i i ) For endothermic r e a c t i o n s , e q u i l i b r i u m conversion goes up as temperature goes up. Thus, f o r endothermic r e a c t i o n s i t would appear to be advantageous to operate at a higher temperature because the e q u i l i b r i u m conversion increases and a l s o , normally the r e a c t i o n r a t e c o e f f i c i e n t s i n c r e a s e . Both e f f e c t s r e i n f o r c e to give high y i e l d s q u i c k l y . For exothermic r e a c t i o n s the case i s l e s s c l e a r because equilibrium limitations and changes in reaction rate coefficients operate in opposite directions. That i s , although reaction rates increase with increasing temperature, the equilibrium conversion decreases. Hence, a general statement to the effect that an increase in temperature normally increases the reaction rate and produces more product is not necessarily true, because this increase in temperature may be causing substantial reductions in equilibrium conversion. It is essential , therefore, for any system being studied, that one keep in mind this variation in equilibrium conversion with temperature. Although i t was stated earl ier that, for the general endothermic case, the best column operating temperature was clearly defined, this problem is not as easily solved as f i r s t assumed. Because the hypothetical reaction (BENZENE + TOLUENE PSEUDOXYLENE) being studied was considered to be endothermic, a more detailed examination of the general endo-thermic case was fe l t to be necessary. Consider Figure 15 which shows the relationship between equilibrium conversion of reactants and temperature for an endothermic reaction. If a reactor (single stage) were operating at T^ then, simply by allowing sufficient residence time, a high percentage conversion would result . At T^, however, conver-. sion would be small in a batch reactor or a CSTR even i f considerable time for reaction were allowed. It must be T2 T3 TEMPERATURE Figure 15 Equilibrium Conversion versus Temperature for Reversible Endothermic Reactions Occurring Isothermally remembered that Figure 15 has as i t s ordinate the fraction of reactants (fed as a charge of reactants only) which w i l l be converted at equilibrium. At P a l l of that i n i t i a l pure charge which can react w i l l have done so. If however, by the use of some separation device', a l l the products were to be removed from this equilibrium mixture, then the same fraction (P) of the remaining reactants would again be converted result ing, through the use of the fractionating device, in a conversion greater than the equilibrium value P at the temperature T^. While the same argument applies at T^, the gain to be made by removing reactants is small and possibly not worth while. We see, therefore, that at a high yield is ob-tained because the thermodynamics are favorable for this , while at T 2 a high yield is obtained by forcing favorable mass-law conditions. A further point arises. If, at the reaction rates and residence times obtained were such that the reaction on a plate of the column had reached close to equilibrium, say Q, then the reaction rate would slow down substantially and i t might be favourable to raise the temperature to so that for the same conversion Q, the reaction would not slow down much due to this approach to equilibrium. It even might become more rapid because of the effect of temperature on reaction rate coefficients. This advantage of more rapid conversion would have to be made at the expense of a decrease in the separation power of the column since separation factors normally decrease V with temperature, and probably at the expense of a more costly column because the temperature could only be changed in a system with coexisting l iquid and vapor by changing the pressure. A check as to whether Q did in fact come near to P was made for the benzene-toluene-pseudoxylene system. k f = .15096 x 1 0 H e -19900 /RT k = .93600 x 109 e - 1 9 5 0 ° / R T r The temperature range encountered (for the entire range of variables used) was: 139°F to 266°F or 599°R to 726°R at T = 599°R at T = 726°R k f = .001154 k = .000131 K = = — = 8.809 eq k r k f = .227 k = .023 r k f Keq =• iT = 9 - 8 7 8 ^ r [PSEUDQXYLENE] [BENZENE][TOLUENE] [PSEUDQXYLENE] [BENZENE][TOLUENE] Inspection of the results for this system show that at no plate in the column did the numerical value of [PSEUDOXYLENE] , . _ . . [BENZENE] [TOLUENE] a P P r o a c h either of the two values given above, the highest value being about 2.3 at K = 9.878. It would therefore seem that unless the reaction rate coefficients are f a i r l y strongly temperature dependent and favourable to the forward reaction, l i t t l e advantage would be gained in running the column at a higher pressure in order to obtain higher temperatures and higher possible equilibrium conver-sion . The reader is reminded that the case being considered is not equivalent to an adiabatic reactor in which complete conversion cannot take place, because a maximum temperature is set to the reacting system by the simultaneous requirements 53 of the equilibrium relationship with respect to temperature, and the temperature which could be achieved by the adiabatic reaction. In the fractionating column the temperature is governed by the boil ing point of the mixture on the plate at the pressure existing on that plate,and so clearly different conditions obtain. (b) The Effect of Column Pressure - To get a true idea of the effect of pressure on systems with reaction, i t is necessary to take into consideration the sl ight changes in compositions caused by the effect of the pressure on the dis -t i l l a t i o n alone. This effect can be seen by examining the concentration profi les in Figure 16 for a case of no reaction and two different pressures. For this case of d i s t i l l a t i o n only, there are sl ight changes in top and bottom product compositions for the two different pressures, but as these compositions change, so do the amounts of top and bottom streams. The net result is that although the increase in pressure causes a decrease in the mole fraction of the most volat i le component in the top product and bottom product, i t also changes the total flows of top and bottom products. Of course, with no reaction, the total amount of each component leaving the column (through top and bottom streams) is not changed. With a reaction occurring, however, the effect is quite different. For the case being considered, i . e . , 54 BENZENE + TOLUENE t PSEUDOXYLENE, the increase in pressure (and subsequent increase in temperature) results in faster reaction and hence more reaction product is formed. Note on Figure 17 that the mole fraction of pseudoxylene (product) increases substantially in both top and bottom products. This increase is summarized, at various pressures, on Figure 18. As can be seen by comparing Figures Mr and 7if7', the pressure change from 380.0 mm Hg to 1140.0 mm Hg has had a much greater effect on concentration profi les for the case of simultaneous reaction and d i s t i l l a t i o n than a similar change had on the d i s t i l l a t i o n case alone. (c) Effect of Reflux Ratio - The reflux ratio has a very definite effect on the amount of material reacted (and hence on stream compositions) in a reacting d i s t i l l a t i o n column. Figure 19, curve a, indicates the amount of pseudoxylene formed by reaction as a function of the column reflux ratio (al l other column parameters were held constant during each run). The trend, over the range of reflux ratios examined, is towards more reaction at the lower reflux rat io . As reflux ratio is decreased: (i) The mole fraction of the most volat i le component in the column decreases, hence, for this system, the rate of reaction would decrease (because of decrease in concentration of reactants). However, the con-55 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 COMPOSITION OF LIQUID ON PLATE (mole fraction) Figure 16 Pressure Effect on Benzene-Toluene-Pseudoxylene System with No Reaction J I I I L 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 COMPOSITION OF LIQUID ON PLATE (mole fraction) Figure 17 Pressure Effect on Benzene-Toluene-Pseudoxylene System with Reaction 380.0 570.0 760.0 950.0 COLUMN PRESSURE (mm. Hg) 1140.0 Figure 18 Column Pressure versus Total Psaudoxylene Production centration of toluene increases as reflux ratio decreases (toluene is also a reactant), and hence some of the loss of driving force is made up for. The net effect, in this case would l ike ly be a s l ight decrease in the rate of forward reaction, i i ) The l iquid flow across each plate decreases, and hence residence time on each plate increases. As a result , the amount of material reacted increases, i i i ) Mole fraction of the most volat i le component decreases, causing higher temperatures throughout the column. (d) Effect of Holdup - General comments concerning the effect of holdup on a reacting d i s t i l l a t i o n column w i l l be held to a minimum here. Obviously, an increase in holdup means an increase in residence time on each plate, and this w i l l usually result in more reaction. This is the case for this system (Benzene-Toluene-Pseudoxylene) as i l lustrated on Figure 19, curve b. Work of a more specific nature, such as varying holdup depending on what section of the column is most desirable for reaction to be occurring, w i l l be dealt with in discussions of other systems. The effect of holdup is a strong function of the equilibrium conversion, and hence, the specific reaction being considered. LIQUID HOLDUP (litres/plate) 5.0 [OO 15.0 20.0 ~l 1 1 l—i J 1 I |_ 10 2.0 3.0 4.0 REFLUX RATIO Figure 19 Total Pseudoxylene Production versus Holdup and Reflux Ratio 59 (c) Optimum - B e c a u s e o f t h e i n t e r a c t i o n o f many column p a r a m e t e r s , c h o i c e o f an optimum s e t o f v a l u e s ( t h a t i s , c o n d i t i o n s w h i c h w o u l d p r o d u c e t h e most p s e u d o x y l e n e ) i s n o t s t r a i g h t f o r w a r d . The p r e l i m i n a r y s t u d i e s o f p r e s s u r e , r e f l u x , and h o l d u p p r e s e n t e d i n t h e p r e c e d i n g s e c t i o n s o f t h i s t e x t , w o u l d s u g g e s t t h a t , f o r t h i s column w i t h t h i s s y s t e m , t h e b e s t o p e r a t i n g c o n d i t i o n s w o u l d be: R e s u l t i n g M o l e F r a c t i o n H i g h p r e s s u r e 1140.0 P s e u d o x y l e n e Low r e f l u x 1.0 } .39 8 H i g h h o l d u p 2 0.0 I n e a r l i e r s t u d i e s p r e s e n t e d i n t h i s t e x t , t h e maximum mole f r a c t i o n s o f p s e u d o x y l e n e f o r e a c h i n d i v i d u a l s t u d y ( p r e s s u r e , r e f l u x , h o l d u p ) were: M o l e F r a c t i o n P s e u d o x y l e n e P r e s s u r e = 1140.0 .289 R = 1.0 .290 H = 20.0 .340 T h i s improvement ( i n mole f r a c t i o n p s e u d o x y l e n e i n b o t t o m p r o d u c t ) t o .39 8 i s n o t as l a r g e a s wou l d be e x p e c t e d . I n g o i n g f r o m P = 380.0 t o 1140.0, t h e improvement was: ,150 t o .289. ( a l l o t h e r p a r a m e t e r s k e p t c o n s t a n t ) I n g o i n g f r o m R = 4.0 t o R = 1.0, t h e improvement was: .151 t o .290. ( a l l o t h e r p a r a m e t e r s k e p t c o n s t a n t ) I n g o i n g f r o m H = 5.0 t o H = 20.0, t h e improvement was: .159 t o .340. ( a l l o t h e r p a r a m e t e r s k e p t c o n s t a n t ) 60 But in going from, P = 380.0 to P = 1140.0 the improvement was only .1025 to .398. H = 5.0 to H = 20.0 and R = 4.0 to R = and At this point i t was fe l t that the program had been validated to the extent that i t was rel iable as a d i s t i l l a -tion program and as a d i s t i l l a t i o n and reaction program. Because the systems dealt with to this point were based on hypothetical reactions, no conclusions concerning the appl icabi l i ty of simultaneous reaction and d i s t i l l a t i o n to a real case could be reached. However, the simulation had obviously been proven to be an effective tool in pre-dicting the effects of various column parameters on a react-ing d i s t i l l a t i o n column. From here, studies of a more quantitative nature based on real industrial cases could be carried out with confidence in this calculational technique. 61 B. Ethyl Alcohol-Acetic Acid-Ethyl Acetate-Water System (Esterif ication Reaction—Production of Ethyl Acetate) Esteri f icat ion reactions are, in many cases, perfect examples of how d i s t i l l a t i o n can aid in improving the yield of the reaction. Although there are many systems more readily susceptible to the react ion-dis t i l la t ion technique than the ETHYL ALCOHOL + ACETIC ACID ^ ETHYL ACETATE + H20 system (for * * example, the production of butyl acetate ), complete data for such systems is not always available. Also, some previous work by Guinot and Clark [4] made use of the ethyl acetate system and so made possible a comparison with this work. The reaction is as follows: Boiling ETHYL ALCOHOL + ACETIC ACID t ETHYL ACETATE + HO Point: 78 .3°C 118°C 77°C 1D0°C Three azeotropes are encountered: Composition Boiling Point (°C) (mole percent) ethyl acetate 60.1 alcohol 12.4 70.3 water 27.5 ethyl acetate 54.0 71.8 alcohol 46.0 . water 24.0 70.4 ethyl acetate 7 6.0 water 10.6 78.15 alcohol 89.4 ACETIC ACID + BUTANOL^BUTYL ACETATE + WATER 118.3!C 116.8°C . 124°C 100°C Note that the products (acetate and H20) comprise the most and the least volat i le components—making their separation faci le --hence l i t t l e reverse reaction w i l l occur. 61a The following reaction coefficients were used for this system: -4 2.38 x 10 litres/gm.mole sec. -4 .815 x 10 litres/gm.mole sec. The available data [27] indicates that the reaction coeffic-ients for this system are substantially temperature independent. This was the only data available for a mineral acid catalyzed system of ethyl alcohol-acetic acid-water-ethyl acetate. It has since been brought to the author's attemtion that this reaction cannot be considered temperature independent. This fact, and the fact that the assumption of ideal i ty made previously does not hold in a system where azeotropes are encountered, renders the study of this system somewhat hypothetical. However, the resemblance of this system to the real industrial system is quite strong and many important conclusions can be reached regardless of the simplifying assumptions. 62 The fact that the reaction coefficients used for this system could be assumed to be temperature independent, allowed some studies of the effects of column parameters which would not otherwise have been possible. If the temper-ature coefficient of the reaction coefficient is not zero, the separation function of the d i s t i l l a t i o n column and i t s reaction function w i l l mask one another and make independent study d i f f i c u l t . That i s , a change in pressure changes temperature (hence the rate of reaction—and the amount of material reacted), but i t also changes the amount of material being refluxed and hence the residence time on a l l plates. So the effect on the amount of reaction in the column due to temperature change (caused by pressure change) may be masked by the amount of reaction due to residence time change (caused by pressure change). This case of temperature-constant re-action coefficients allows such a study. The ethyl acetate system was used as the basis for discussing the significance of the following parameters: 1. Pressure 2. Reflux ratio 3. Holdup—both uniformly and selectively distributed 4. Feed plate 5. Column size. A comparison of a reacting d i s t i l l a t i o n column and a contin-uous s t irred tank reactor was also made. It should be noted that the feed rate and feed composition were the same for a l l 63 runs in the above mentioned studies. Organizationally i t is often convenient to discuss more than one of these effects at the same time. 1. The Effect of Pressure In the present work the assumption is made that the pressure is constant throughout the whole column. It is realized that this assumption is unrealist ic but has been adopted to simplify comparisons being made and to avoid these comparisons becoming so complicated that general principles become obscured. A modification to the programs used to allow for varying pressure would be very simple. As w i l l be seen from Figures 20 and 21, both the amount of acetate formed (hence the amount of reaction) and the mole fraction of acetate in the top product increase with decreasing column pressure for both a seven-stage column and for a fourteen-stage column. Hence, in order to obtain the greatest y ie ld of product at the highest purity, the columns should be operated at the lowest possible pressure. However, the improvement in both yield and purity is not large for f a i r l y substantial reductions in pressure (8 - f o l d ) , part icularly for the seven-plate column. These results are summarized in Table 3. — This cr i ter ion of amount of acetate formed is not in i t s e l f an indication of the effectiveness of the column. It must be remembered that a certain amount of this acetate formed is going out as waste in the bottom product. 0.25 I -o z> Q O oc 0. 0.20 Q. O UJ I -LU O < 0.15 g i -o < or u. UJ o 2 0.10 64 • 14 PLATES O 7 PLATES -L 3800 760.0 1140.0 1520.0 COLUMN PRESSURE (mm. Hg) F i g u r e 20 Top Product P u r i t y versus Column Pressure 0.44 • 14 PLATES O 7 PLATES 380.0 760.0 1140.0 1520.0 COLUMN PRESSURE (mm. Hg) F i g u r e 21 T o t a l A c e t a t e P r o d u c t i o n v e r s u s Column P r e s s u r e 66 Table 3 Acetate Purity and Yield for Seven and Fourteen Plate Columns at High and Low Pressure** Column Pressure Top Product Purity (mole fraction) Moles Acetate Produced (mm Hg) 7-plates 14-plates 7-plates 14-plates 1520.0 .155 .171 .448 .460 190 . 0 .213 .245 .517 .569 2. The Effect of Reflux Ratio The effect of changing reflux on the number of moles of acetate formed and on the purity of the top product is indicated on Figure 22 (only the case of a seven-plate column has been studied). Because of the strong interaction of reflux ratio with such column parameters as residence time, plate concen-trations, plate temperatures and product s p l i t , a quantitative discussion of the effect of reflux ratio is essentially impossible. As seen from Figure 22, as the reflux ratio is increased from 1.0 to 2.0 there is a gradual increase in top product purity from .14 0 to .17 7 but as the reflux ratio * * These runs for studying the effect of pressure variation and the subsequent runs studying the effect of re-flux ratio were done at Holdup = 10.0 l i t re s /p la te . This is a re lat ive ly low holdup and was used simply because i t pro-vided a good indication of the effect of pressure and reflux rat io , at a holdup which allowed relat ively rapid convergence. Much higher acetate yields and acetate purity can be obtained at higher holdups as w i l l be seen in later sections. 67 i s i n c r e a s e d t o 5.0, t h e p u r i t y g r a d u a l l y d e c r e a s e s f r o m .177 t o .158. Hence, as f a r as t o p p r o d u c t p u r i t y i s c o n -c e r n e d , o p e r a t i o n a t a r e f l u x r a t i o o f 2.0 w o u l d be most e f f e c t i v e . The e f f e c t o f r e f l u x r a t i o on t h e t o t a l number o f m o l e s f o r m e d i n t h e column i s e v e n l e s s p r e d i c t a b l e . As c a n be s e e n f r o m F i g u r e 22, no t r u e optimum i s o b v i o u s o v e r t h e r a n g e o f r e f l u x r a t i o s e x a m i n e d . The l o w e s t p r o d u c t i o n o f a c e t a t e o v e r t h e r a n g e examined o c c u r s a t R = 1.5 and i s .470 m o l e s / s e c o f a c e t a t e , whereas t h e maximum i s a t R = 1.0 where t h e m o l e s a c e t a t e f o r m e d i s .499 m o l e s / s e c . G e n e r a l l y s p e a k i n g , a s R i n c r e a s e s , t h e mole f r a c t i o n o f t h e most v o l a t i l e c o m p o n e n t - - a l c o h o l — i n c r e a s e s on e v e r y p l a t e , and s i m i l a r l y , t h e mole f r a c t i o n o f t h e l e a s t v o l a t i l e component d e c r e a s e s on e v e r y p l a t e . As a r e s u l t , a t h i g h r e f l u x r a t i o s ( i . e . R = 5.0) t h e r e i s a h i g h c o n c e n t r a t i o n o f t h e most v o l a t i l e a l c o h o l t h r o u g h o u t t h e column b u t a l s o a r e l a t i v e l y low c o n c e n t r a t i o n o f a c e t i c a c i d . T h i s low c o n c e n t r a t i o n o f a c e t i c a c i d m a i n t a i n s a low c o n c e n t r a t i o n d r i v i n g f o r c e — a n d t h e r e i s l e s s r e a c t i o n . A t t h e l o w e s t r e f l u x r a t e , t h e o p p o s i t e i s t r u e ; t h e r e i s a h i g h a c i d c o n -c e n t r a t i o n ( r e l a t i v e l y ) and a low a l c o h o l c o n c e n t r a t i o n — t h e most f a v o u r a b l e d r i v i n g f o r c e c o n d i t i o n s a r e f o u n d a t t h e i n t e r m e d i a t e r e f l u x r a t i o o f R = 2.0. T h i s b e h a v i o r i s i l l u s t r a t e d i n F i g u r e 23 w h i c h shows t h a t t h e m a j o r p a r t o f t h e r e a c t i o n a t h i g h r e f l u x r a t i o o c c u r s i n t h e l o w e r column 0.21 0 0.20 £0.191 z> o o a. a. 0.f8| o £0.I7| I l l o < §0.161 or w 0.15| o 2 0.f4 1.0 2.0 3.0 4.0 REFLUX RATIO 68 0.50 0.49 0 4 8 -o E 0.47 o O 0.46g 0. UJ & 0.45 g < O 0.44 1-0.43 5.0 F i g u r e 22 Top Product P u r i t y and A c e t a t e P r o d u c t i o n versus Reflux R a t i o REACTION RATE (moles/sec.) Figure 2 3 Plate Number versus Reaction Rate 70 because the concentration of the least volat i le component in the top is too small for significant reaction to take place. Similarly, the reaction is in the upper section at R = 1.0 and the alcohol concentration is too small on the lower section to cause much reaction. At high reflux rat io , the column stage temperatures are a l l lower than at low reflux and hence the relative v o l a t i l i t i e s are greater•-and better separation would be expected. However, the decrease in temperature causes a decrease in reaction rate -and as a result there is both a tendency to increase the top product purity and a tendency to decrease the top product purity. 3. The Effect of Holdup In studying the effect of holdup, certain rea l i s t i c l imits must be observed. Although i t is theoretically possible to set the holdup on each plate to an in f in i te ly large, or infinitesimally small number, these two extremes are not realizable in a real column. The physical limitations of fractionating column design would suggest that, for columns of equal diameter, i t is unlikely that the range of holdup on a plate would ever exceed ten to one. However, in a theoretical study of the effect of holdup, i t well could be advantageous to study very high and very low holdups, because i f a clear advantage was shown to result from holdups lying outside the range 71 normally used, then usefully one might consider modifying the physical design of columns which are to be used as reactors. For example, i t might well be worth considering additional holdup for each plate, this holdup being inactive with respect to the fractionating process. However, this thought is entirely speculative at this point. The effect of holdup on the purity of the top product and on the number of moles of acetate formed, is indicated in Figure 24 for both a seven-plate column and a fourteen-plate column. The detailed discussion which now follows is prim-a r i l y based on the results for a seven-plate column as d is -cussion of both at once becomes unnecessarily complex. Com-parison of the relative effectiveness of the two columns w i l l be made later with reference back to Figure 24. There is a substantial increase in the number of moles of acetate formed by reaction using holdups of 1.0 l i t res /p la te up to a holdup of about 50.0 or 60.0 l i t r e s / plate. However, after this point (50.0 a 60.0 l i t r e s /p la te ) , increases in holdup do not tend markedly to increase the number of moles of acetate formed. Similarly, as holdup increases up to about 60.0 l i t re s /p la te , the purity of the top product improves considerably, but after H = 60.0 l i t r e s / plate, further increases in holdup do not result in substantial improvements in purity. MOLE FRACTION ACETATE IN TOP PRODUCT •+m* *S • o M 'p. b> oo ° w TOTAL ACETATE PRODUCTION (moles/sec.) ZL The r e a s o n f o r t h i s f l a t t e n i n g - o u t p r o f i l e i s o b v i o u s when one e x a mines t h e amount o f r e a c t i o n on e a c h p l a t e . N ote f r o m T a b l e 4 t h a t a t h o l d u p = 10.0 l i t r e s / p l a t e , t h e f o r w a r d r e a c t i o n d o m i n a t e s on e v e r y p l a t e i n t h e c o l u m n . T h a t i s , * f = R = 2 > 9 2 > t C A C E T A T E ] . [ C H 2 0 ] r M ALCOHOL ACID and t h e change i n t h e number o f m o l e s o f a c e t a t e on e a c h p l a t e i s p o s i t i v e f o r a l l p l a t e s . As l o n g a s , TC 1 TC 1 ACETATE 1 H ? 0 J -jr— =pj——- , < 2.9 2 , t h e f o r w a r d r e a c t i o n p r o d u c e s ALHOHOL L ACID J more a c e t a t e t h a n t h e r e v e r s e r e a c t i o n consumes. However, once tC I\C 1 t h e p l a t e c o m p o s i t i o n i s s u c h t h a t 1 ACETATE H20 J J r T7c 1 > 2 « 9 2 ' ALCOHOL 1 ACID J t h e o p p o s i t e i s t r u e and t h e r e v e r s e r e a c t i o n d o m i n a t e s . So, f o r c a s e s o f h i g h e r ( r e l a t i v e l y ) h o l d u p , t h e c o n c e n t r a t i o n s o f p r o d u c t ( e s t e r and w a t e r ) become h i g h enough on some p l a t e s t o c a u s e t h e r e v e r s e r e a c t i o n t o p r e d o m i n a t e on t h o s e p l a t e s (see T a b l e s 5 and 6 ) . And as a r e s u l t , i n -c r e a s i n g h o l d u p on e v e r y p l a t e d o e s n o t n e c e s s a r i l y i n c r e a s e t h e number o f m o l e s o f a c e t a t e p r o d u c e d o r t h e p u r i t y o f t h e t o p p r o d u c t . Once t h e h o l d u p has b e en i n c r e a s e d t o 50.0 l i t r e s / p l a t e , t h e c o n c e n t r a t i o n o f e s t e r and w a t e r on t h e u p p e r p l a t e becomes l a r g e enough t o c a u s e t h e r e v e r s e r e a c t i o n t o p r e d o m i n a t e . Hence a c e t a t e and w a t e r a r e b e i n g consumed on the upper plate. As the amount of acetate and water formed due to reaction increases in going from a holdup of 10.0 l i t res /p la te to 50.0 l i t re s /p la te , the concentration driving forces naturally decrease. Hence, as can be seen from a comparison of Tables 4 and 5, a f ive-fold increase in holdup does not produce a f ive-fold increase in the reaction rates on the plates. For example, comparing the amount of reaction on the feed plates for the cases of 10.0 l i t res /p la te and 5'0.0 l i t re s /p la te , i t is seen that in the former case, .119 moles/sec. are reacted and for the latter case, .335 moles/ sec. This is approximately a three-fold increase in reaction rate--much less than the f ive-fold increase which would be obtained i f the concentration driving force was constant. Similar comparisons can be made between the two different sets of conditions on other plates (e.g. the top plate under conditions of holdup = 10.0 l i t res /p la te and under conditions of holdup = 50.0 l i t r e s /p la t e ) . When the holdup is increased to 125.0 l i t re s /p la te , the reverse reaction predominates on the top two plates--see Table 6--and concentration driving forces are even less favorable than at 50.0 l i t re s /p la te . The increase in reaction rates due to the increase in holdup is obviously being counteracted by the loss of concentration driving forces and the development of reverse reaction zones. TABLE 4 Concentration Profiles and Net Amount of Reaction on each Plate at Holdup = 10.0 l i t res /p la te COMPOSITION OF LIQUID ON (MOLE FRACTION) PLATE (MOLES OF REACTION SUBSTANCE FORMED/SEC.) PLATE NUMBER ETHYL ALCOHOL ACETIC ACID WATER ETHYL ACETATE ETHYL ALCOHOL ACETIC ACID WATER ETHYL ACETATE 6 (COND) 0 .800670 0 .006489 0 .015714 0 .177127 -0 .002417 -0 .002417 0 .002417 0.002417 7 0 .771067 0 .025595 0 .039164 0 .164174 -0 . 010463 -0 .010463 0 .010463 0.010463 8 0 .708227 0 .074399 0 .070374 0 .147000 -0.031266 -0 .031266 0 .031266 0.031266 9 0 .599272 0 .183390 0 .096859 0 .120478 -0 .072565 -0 .072565 0 .072565 0 .072565 10 (FEED) 0 .451421 0 .371962 0 .093293 0 .083324 -0.119321 -0 .119321 0 .119321 0.119321 11 0 .318084 0 .452828 0 .146854 0 .082234 -0.109574 -0 .109574 0 .109574 0.109574 12 0 .173057 0 .589227 0 .179561 0 .058155 -0.084283 -0 .084283 0 .084283 0 . 084283 13 0 .069574 0 .735146 0 .166021 0 .029259 -0 .043621 -0 .043621 0 .043621 0.043621 14 (REB) 0 .069569 0 .735150 0 .166024 0 .029257 -0 .043618 -0 .043618 0 .043618 0.043618 HOLDUP = 10. 0 l i t res /p la te TABLE 5 Concentration Profiles and Net Amount of Reaction on each Plate at Holdup = 50.0 l i t res /p la te COMPOSITION OF LIQUID ON (MOLE FRACTION) PLATE (MOLES OF REACTION SUBSTANCE FORMED/SEC. ) PLATE * NUMBER ETHYL ALCOHOL ACETIC ACID WATER ETHYL ACETATE ETHYL ALCOHOL ACETIC ACID WATER ETHYL ACETATE 6 (COND) *0 .572662 0.009784 0.049523 0 . 368031 0 .001512 0 .001512 -0 .001512 -0 .001512 7 0 .525002 0.031451 0.114555 0 .328992 -0 .009674 -0 .009674 0 .009674 0 .009674 8 0 .451440 0.077025 0.190732 0 .280803 -0.051542 -0 .051542 0 .051542 0 .051552 9 0 .364009 0.170191 0.244438 0 .221362 -0.159109 -0 .159109 0.159109 0 .159109 10 (FEED) 0 .282238 0.340637 0.225962 0 .151163 -0.334875 -0 .334875 0.334875 0 .334875 11 0 .157481 0.395506 0.312634 0 .134379 -0.222916 -0 .222916 0.222916 0 . 22 2"9.16. 12 0 .071781 0.494208 0.345790 0 .088221 -0.133107 -0 .133107 0.133107 0 .133107 13 0 .026721 0.616269 0.312987 0 .044023 -0.063972 -0 .063972 0.063972 0 . 063972 14 (REB) 0 .026719 0.616336 0.312920 0 .044025 -0 .063971 -0 .063971 0.063971 0 .063971 HOLDUP - 50.0 l i t res /p la te TABLE 6 Concentration Profiles and Net Amount of Reaction on each Plate at Holdup = 125 .0 l i t res /p la te COMPOSITION OF LIQUID ON (MOLE FRACTION) PLATE (MOLES REACTION OF SUBSTANCE FORMED/SEC.) PLATE NUMBER ETHYL ALCOHOL ACETIC ACID WATER ETHYL ACETATE ETHYL ALCOHOL ACETIC ACID WATER ETHYL ACETATE 6 (COND) 0 . 460432 0.019.487 0 . 074788 0 . 0445293 0.013642 0.013642 -0 . 013642 -0.013642 7 0.409143 0.047811 0.152968 0.390078 0.005693 0.005693 -0.005693 -0.005693 8 0.346485 0.089067 0.232326 0.332122 -0.034424 -0.034424 0 .034424 0.034424 9 0.285797 0.158509 0.284934 0.270760 -0.170981 -0.170981 0.170981 0.170981 10 (FEED) 0.237334 0.300350 0.264865 0.197451 -0.523343 -0.523343 0.523343 0 .523343 11 0.132077 0.331694 0.357761 0.178468 -0.255410 -0.255410 0.255410 0.255410 12 0 . 062647 0.412726 0.403345 0.121281 -0.125935 -0.125935 0 .125935 0.125935 13 0.024256 0.530454 0.381971 0.063319 -0.067886 -0.067886 0 .067886 0.067886 14 (REB) 0. 024262 0.530455 0.381943 0.063340 -0.067906 -0.067906 0 .067906 0.067906 HOLDUP = 125.0 l i t res /p la te 78 There is a way, however, of avoiding this occurrence of net reverse reaction on certain plates. If the holdup on the plates where reverse reaction is predominating is kept as small as pract ical ly possible, the net consumption of acetate w i l l be minimized. In other words, by allowing large holdups on the plates where acetate is being formed and reactant concentrations are relat ively high, and theoretically no holdup on plates where acetate is consumed, i t should be possible to produce significant increases in the amount of acetate formed. Two runs were carried out where the holdup on a plate was not necessarily the same as on i ts neighbour. Since some standard of comparison was required, i t was decided to use an overall column holdup of 9 0 0.0 l i t r e s . This number was chosen because i t represented the same total holdup as the case of seven-plates (plus reboiler and condenser) with a holdup of 100.0 l i t r e s each—a case for which results had previously been obtained. Results for the standard ( 9 plates of 100.0 l i t r e s each) and the two cases of selectively varied holdup are quoted in Figure 25 and indicate the advantage of varying the holdup from plate to plate. A B C 79 - Overall holdup is same in a l l three cases (900.0 l i tres) - Area of shading is proportional to holdup on plate MOLES ACETATE } 1.14 FORMED TOP PRODUCT } .41 PURITY Figure 25 Uniform and Distributed Holdup These numbers accompanying Figure 25 clearly support the expectations for increased reaction already advanced. A more careful study of the best possible distribution of holdups might well result in higher reaction and purity figures. But i t was fe l t at this point that the argument had been substantiated and there was l i t t l e point in optimiz-ing conditions for a column as arbitrary as that for which the comparison has been made. 1.38 .48 1.36 .50 80 The majority of runs for this system were performed for a column with seven plates (plus reboiler and condenser). This re lat ive ly small number of plates was chosen to allow fast convergence and hence, less use of computer time--and yet s t i l l permit a f u l l examination of a l l column parameters. However, i t was fe l t that a brief examination of the acetate system for a column with more plates would be informative. Hence, the number of plates in the column was doubled (to fourteen plus reboiler and condenser) and a series of runs performed. Results indicate a marginal improvement over the seven plate column in the purity of the top product at holdup = 1.0, 5.0, 10.0, 20.0 and 50.0 l i t res /p la te (see Figure 24). Doubling the number of plates in a column (from seven to fourteen), doubles the overall holdup in the column and hence i t would be expected that much more reaction would occur. This should lead to higher acetate concentra-tion in the top product--and i t does, but as mentioned, only marginally higher. From an examination of the f ina l maps (Tables 7 and 8) of the compositions, and amount of reaction for the holdups ranging from 1.0 l i t res /p la te to 50.0 l i t r e s /p la t e , the following points were noted. (a) At holdup = 1.0 l i t re s /p la te , the improvement in purity of the acetate on the top five plates is almost negligible. Also, concentrations are such on these top plates that very l i t t l e reaction is occurring. Hence the 81 a d d i t i o n o f p l a t e s has s e r v e d no u s e f u l p u r p o s e i n t h e t o p s e c t i o n o f t h e c olumn. They n o t o n l y a r e n o t s e p a r a t i n g b u t t h e y a r e n o t c o n t r i b u t i n g much t o r e a c t i o n due t o low c o n c e n t r a t i o n d r i v i n g f o r c e s . 2. A t h o l d u p = 50.0 l i t r e s / p l a t e , t h e r e i s enough a c e t a t e and w a t e r formed i n t h e c e n t r a l s e c t i o n o f t h e c olumn t h a t t h e c o n c e n t r a t i o n s o f t h e s e two components on t h e t r a y s above t h e c e n t r a l s e c t i o n , p a r t i c u l a r l y t h e t o p f o u r p l a t e s , r e a m i n s r e l a t i v e l y h i g h and t h e r e v e r s e r e a c t i o n p r e d o m i n a t e s . Hence t h e a d d i t i o n o f p l a t e s , i n t h i s c a s e , has o n l y r e s u l t e d i n more r e v e r s e r e a c t i o n o c c u r r i n g and t h e r e i s l i t t l e a d v a n t a g e g a i n e d . A t i n t e r m e d i a t e h o l d u p s (from 1.0 l i t r e s / p l a t e t o 50.0 l i t r e s / p l a t e ) t h e c o m b i n a t i o n o f t h e s e two f a c t o r s m e n t i o n e d above r e s u l t s i n l i t t l e improvement i n t o p p r o d u c t p u r i t y o v e r a s e v e n - s t a g e c o l u m n . 4. E f f e c t o f F e e d P l a t e L o c a t i o n A s e v e n - p l a t e e s t e r i f i c a t i o n column was s t u d i e d w i t h r e g a r d t o optimum l o c a t i o n o f t h e f e e d p l a t e . The r e s u l t s , as p r e s e n t e d i n F i g u r e 26, i n d i c a t e t h e f a c t t h a t no g e n e r a l p o s t u l a t i o n c a n be made c o n c e r n i n g t h e b e s t l o c a t i o n f o r t h e f e e d p l a t e . F o r t h e s y s t e m s t u d i e d — a t t h e s p e c i f i c h o l d u p o f 10.0 l i t r e s / p l a t e — t h e h i g h e s t t o p p r o d u c t p u r i t y was o b t a i n e d w i t h t h e f e e d p l a t e a t l o c a t i o n 1 3 — t h e b o t t o m p l a t e TABLE 7 Concentration Profiles and Net Amount of Reaction on each Plate at Holdup = 1.0 l i t res /p la te COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC.) PLATE ETHYL ACETIC WATER ETHYL ETHYL ACETIC WATER ETHYL NUMBER ALCOHOL ACID ACETATE ALCOHOL ACID ACETATE 6 (COND) 0 ,9 620 36- 0 .000128 . 0.000168 0 .037668 -0 .000008 -0 .000008 0 .000008 0 . 000008 7 0 .962826 0 .000503 0.000445 0 .036227 -0 .000032 -0 .000032 0 .000032 0 .000032 8 0 .962266 0 .001492 0.000922 0 .035321 -0 .000095 -0 .000095 0 .000095 0 .000095 9 0 .959474 0 .004101 0.001725 0 .034701 -0 .000262 -0 .000262 0 .000262 0 .000262 10 0 .951907 0 .010938 0.003021 0 .034134 -0 .000698 -0 .000698 0 .000698 0...000698 11 0 .933231 0 .028531 0.004943 0 . 033297 -0 .001794 -0 .001794 0 .001794 0 .001794 12 0 .889313 0 .071791 0.007303 0 .031596 -0 .004337 -0 .004337 0 .004337 0 .004337 13 0 .795520 0 .167545 0.008899 0 .028037 -0 .009154 -0 .009154 0 .009154 0 .009154 14 (FEED) 0 .632618 0 .338427 0.007185 0 .021771 -0 .014893 -0 .014893 0 .014893 0 .014893 15 0 .619630 0 .340967 0.010752 0 .028651 -0 .014630 -0 .014630 0 .014630 0 .014630 16 0 .596163 0 .354105 0.016014 •o .033718 -0 .014626 -0 .014626 0 .014626 0 .014626 17 0 .542424 0 .397301 0.025625 0 .035649 -0 .015086 -0 .015086 0 .015086 0 .015086 18 0 .425320 0 .506122 0.036704 0 .031855 -0 .015459 -0 .015459 0 .015459 0 . 015459 19 0 .248643 0 .684967 0.044921 0 .021469 -0 .012636 -0 .012636 0 .012636 0 .012636 20 0 .100266 0 .848868 0.040598 0 .010268 -0 .006416 -0 .006416 0 .006416 0 .006416 21 (REB) 0 .100266 0 .848868 0.040601 0 .010266 -0 .006417 -0 .006417 0 .006417 0 .006417 HOLDUP = : 1 .0 l i tres /p late oo TABLE 8 Concentration Profiles and Net Amount of Reaction on each Plate at Holdup- 50.0 l i t res /p la te COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC .) PLATE ETHYL ACETIC WATER ETHYL ETHYL ACETIC WATER ETHYL NUMBER ALCOHOL ACID ACETATE ALCOHOL ACID ACETATE 6 (COND) 0 .525626 0 . 007351 0 .039168 0.427855 0 .004119 0 .004119 -0 .004119 -0 .004119 7 0 .49 7 0 34 0.018688 0 .084059 0.400219 0 .005314 0 .005314 -0 .005314 -0 .005314 8 0 .456968 0.034448 0 .137677 0.370907 0 .004570 0 .004570 -0 .004570 -0 .004570 9 0 .414247 0.053458 0 .191761 0.340535 0 .000612 0 .000612 -0 .000612 -0 .000612 10 0 . 376823 0.074077 0 .237573 0.311528 -0 .008266 -0 .008266 0 .008266 0 .008266 11 0 .349121 0.096455 0 .268829 0.285595 0 .025603 -0 .025603 0 .025603 0 .025603 12 0 .331139 0.126693 0 .280449 0.261719 -0 .061254 -0 .061254 0 .061254 0 .061254 13 0 .318590 0.184568 0 .262262 0.234580 -0 .139316 -0 .139316 0 .139316 0 .139316 14 (FEED) 0 .302563 0.312656 0 .191459 0.193323 -0 .291166 -0 .291166 0 .291166 0 .291166 15 0 .222039 0.308591 0 .248263 0.221107 -0 .184200 -0 .184200 0 .184200 0 .184200 16 0 .153564 0.327303 0 .309887 0.209247 -0 .115765 -0 .115765 0 .115765 0 .115765 17 0 .094789 0.371372 0 .367074 0.166765 -0 .068676 -0 .068676 0 .068676 0 .068676 18 0 .050086 0.441361 0 .397097 0.111456 -0 .038749 -0 .038749 0 .038749 0 .038749 19 0 .022250 0.533653 0 .381744 0.062353 -0 .022094 -0 .022094 0 .022094 0 .022094 20 0 .008244 0.640144 0 .322799 0.028813 -0 .011918 -0 .011918 0 .011918 0 .011918 21 (REB) 0 .008257 0.640127 0 .640127 0.322761 -0 .011945 -0 .011945 0 .011945 0 .011945 HOLDUP = 50.0 l i tres /plate 00 84 of the column. However the total moles of acetate produced is not at a maximum with the feed located at plate 13, as can be seen in Figure 26. Whether or not this position would be considered an optimum would therefore depend on the cr i ter ion of evaluation (whether i t be purity, total y ie ld , or a combination of these two factors). Because of these non-simple trends as i l lustrated in Figure 26, one might hesitate to make a prediction about the optimum feed plate location before calculations are done. When the feed is introduced on the bottom plate, the enriching capacity of the column is at i t s greatest—with no stripping capacity. Also, a higher concentration of the alcohol is maintained in the lower part of the column—where i t is usually quite low and concentration driving forces are at a re lat ively high level throughout the column. A combination of these factors leads to high top product purity. The lowest value for top product purity was obtained with the feed plate located at the top of the column—on the top plate. Also plotted on Figure 26 is the total number of moles of acetate formed in the column. The maximum in this case is obviously when the feed is introduced at the top plate in the column. Hence, the most moles of acetate formed (.559 moles/sec.) and the lowest top product purity (.168 mole fraction acetate) correspond to the same feed plate location. This is due to the fact that although introduction of the ethyl alcohol and acetic acid at the top 85 of the column maintains the concentration driving force of these reactants at a high level throughout the column—and hence much more reaction occurs than when the feed plate is at lower positions—the separation capacity of the column becomes somewhat limited due to a lack of enriching stages. An examination of the concentration profiles on Figure 27, i l lustrates for the case of the feed plate at the top of the column, the unique behavior achieved with regard to ethyl acetate concentrations. Because acetate is being formed on a l l plates in the column, where reactant concentrations are high, and because the acetate is more vo lat i le than acetic acid or water, the acetate concentration increases in both directions away from the feed plate. This behaviour is never observed in conventional d i s t i l l a t i o n . Because of the strong interaction of feed plate location with various separation and reaction factors, a quantitative discussion of the osci l latory nature of the top product purity as the feed plate location is moved up or down the column, is impossible. This complex interaction of parameters is indeed one of the major reasons why computer calculations are invaluable in this analysis. Any attempt to analyze such a system without a rapid calculation technique would be extremely d i f f i c u l t . I - J I I I I 0.0 0.2 0.4 0.6 Q8 LO LIQUID MOLE FRACTION F i g u r e 27 P l a t e Number v e r s u s L i q u i d C o n c e n t r a t i o n s 5. Effect of Number of Plates A study was carried out to determine the effect of the number of plates in a column on the top product purity (mole fraction acetate) and the total number of moles of acetate formed by reaction. The results of this study are presented in Figure 29. Both the acetate concentration and the total moles of acetate produced increase sharply as the number of column plates is increased from one to three (excluding re-boiler and condenser). In increasing from three to seven plates the increase continues to be quite sharp but lessening to a certain extent. In going from seven to fourteen plates there is a definite leveling-off of the profi le--the increase in number of plates produces l i t t l e improvement in top product purity and in the total number of moles of acetate formed. Optimum Conditions A l l previously discussed results for the ethyl acetate system were obtained by varying one column parameter over a certain range and holding a l l other column parameters constant during the study. Hence the best value of each parameter for most eff ic ient operation was determined (within the range of values used). However, due to the interaction of many of the system parameters, optimum column operation is not necessarily determined by individual optimum values for the various parameters. MOLE FRACTION ACETATE IN TOP PRODUCT [?. P P o o p p iS" o o '— — ro K) d O Oi O Oi O Oi TOTAL ACETATE PRODUCTION (moles/sec.) 68 90 Because optimum conditions w i l l naturally involve high holdups, runs to determine such conditions consume much computer time—and convergence may be poor. During the course of this work, certain conditions have been suggested as l ike ly optimums for column operation—assuming that the variable to be maximized is top product purity (mole fraction acetate). A run was done at: P = 190.0 mm Hg. R = 2.0 No. of Plates = 14 (Plus reboiler and condenser) H = 300 l i t res /p la te on the three central plates. The top product obtained from this run was X„_,m T : i r > = .635 --much higher than any other value reached during this study. -However, this concentration could not be reached be-cause i t "exceeds the ester concentration in the azeotrope," thereby serving to emphasize that'the ideal equilibrium laws at these high ester concentrations are not' applicable. 'Never-theless, the same restrict ions apply qualitat ively to a l l the other runs and so the fact that this shows a higher ester concentration than any previous run is qualitat ively acceptable. Comparison of Simultaneous Reaction and D i s t i l l a t i o n with a Continuous Stirred Tank Reactor Calculations were done in order to allow a compar-ison of the conversion obtained in a CSTR with that obtained in a reacting d i s t i l l a t i o n column. For the acetate system in question, the equilibrium conversion (that i s , the con-version obtainable at an inf in i te holdup in a CSTR) for a feed with 0.5 mole fraction ethyl alcohol and 0.5 mole fraction acetic acid would be: XACID = , 1 8 5  XALCOHOL = • 1 8 5  X H 2 0 = - 3 1 5 XESTER = ' 3 1 5 Hence, at a feed rate of 4.90566 moles/sec, the total moles of acetate formed would be 1.545 moles/sec. In the case of simultaneous reaction and d i s t i l l a -tion at a pressure of 190.0 mm Hg, with a holdup of 300 l i t r e s / plate on the three central plates (total holdup = 9 00.0 l i tres) i t was possible to obtain a purity of X E S T E R = .635 (top product). Use of higher holdups (entirely feasible) would produce even higher acetate purity—the advantage of the reacting d i s t i l l a t i o n column over a CSTR, in which the highest purity obtainable is X E S T E R = .315, is clear. In order to allow a more detailed study of the advantage of a reacting d i s t i l l a t i o n column over a CSTR, calculations of the conversion obtainable at various CSTR holdups were done. Results of this study are summarized on Figure 29. Note that the ethyl acetate concentration crosses the equilibrium conversion l ine (denoting maximum acetate concentration using a CSTR) at a relat ively low holdup. The 92 225.0 450.0 675.0 TOTAL HOLDUP ( l i t r e s ) 900.0 1125.0 F i g u r e 29 Comparison of P u r i t y Obtained from a CSTR and a Reac t i n g D i s t i l l a t i o n Column 93 ordinate of Figure 29 is in units of litres/plate—hence a value of 100.0 l i t res /p la te corresponds to a total holdup of 900.0 l i t r e s . CSTR calculations are naturally based on the total holdup values. Clearly, as seen in Figure 26, increased concen-tration may be obtained at the expense of decreased yie ld and a decision as to the best conditions at which to operate the column would depend on local conditions and the ava i lab i l i ty of auxil iary separation equipment. B. Acetic Anhydride-Water-Acetic Acid System (Manufacture of Acetic Anhydride) In the foregoing examples, d i s t i l l a t i o n was used to promote desirable reactions in order to improve the overall y ie ld of the product. In these cases column parameters were varied in an attempt to maximize the top product purity or overall yield of one of the products of a reaction. However, i t is also often desirable to l imit the extent of a reaction in order to improve the overall y ie ld of a component being consumed by the reaction. As discussed earl ier in this text, this inhibit ion of a reaction may be accomplished by removing one or more of the reactants from the reaction zone, thus minimizing the extent of the reaction. This removal can often be best accomplished in a d i s t i l l a t i o n column. A p r i m e example o f s u c h a s y s t e m i s e n c o u n t e r e d i n t h e i n d u s t r i a l m a n u f a c t u r e o f a c e t i c a n h y d r i d e . A l t h o u g h t h e r e a r e s e v e r a l d i f f e r e n t p r o c e s s e s u s e d f o r t h e p r o d u c t i o n o f a c e t i c a n h y d r i d e , two a r e o f p a r t i c u l a r i n t e r e s t t o t h i s s t u d y . T h e s e two p r o c e s s e s e n c o u n t e r t h e p r o b l e m o f r e d u c t i o n i n y i e l d due t o a c h e m i c a l r e a c t i o n w h i c h consumes v a l u a b l e a c e t i c a n h y d r i d e . C ase 1, [ 1 ] , i s a p r o c e s s i n w h i c h a c e t a l d e h y d e i s o x i d i z e d by a i r t o t h e p r o d u c t s o f a c e t i c a n h y d r i d e , w a t e r , and a c e t i c a c i d , w h i c h a r e f e d t o a b u b b l e c a p column f o r s e p a r a t i o n . CH 3CHO + °2 CH 3COOOH ( a c e t a l d e h y d e ) (oxygen) ( p e r a c e t i c a c i d ) CH 3COOOH + CH 3CHO + ( C H 3 C O ) 2 0 ( p e r a c e t i c a c i d ) ( a c e t a l d e h y d e ) (water) ( a c e t i c a n h y d r i d e ) ( C H 3 C O ) 2 0 + H 20 ->• 2 CH 3COOH ( a c e t i c a n h y d r i d e ) (water) ( a c e t i c a c i d ) C a s e 2, [ 8 ] , i n v o l v e s t h e h i g h t e m p e r a t u r e d e h y d r a -t i o n o f a c e t i c a c i d t o k e t e n e and w a t e r , A 1 P 0 4 CH 3COOH -> C H 2 = C = 0 + H 20 ( a c e t i c a c i d ) 700°C ( k e t e n e ) (water) A c e t i c a c i d i s added t o t h e p y r o l y s i s p r o d u c t s t o r e a c t w i t h t h e k e t e n e , CH 2 = C = O + CH3COOH -> (CH3CO)20 , (ketene) (acetic acid) (acetic anhydride) and so, to some considerable extent, prevent the reverse reaction of water + ketene ->• acetic acid. But in addition, the intimate contacting of the pyrolysis products with this reacting acetic acid stream brings the temperature of the mass down to a level at which a l l reactions are slowed down and at which a d i s t i l l a t i o n column can profitably act. This reaction of ketene and acetic acid to acetic anhydride is extremely fast and the resulting stream is composed of acetic anhydride, water, and acetic acid, but in different concentrations than encountered in the acetaldehyde oxidation process. However, both processes present the same problem, namely that of inhibit ing the reaction of the water and the acetic anhydride present in the product streams of these two processes. Since the anhydride is the least volat i le component and the water the most volat i le component present, a rect i f icat ion of the mixture is effective. This system (acetic anhydride-water-acetic acid), involving simultaneous reaction and d i s t i l l a t i o n , has been studied and reported in two separate papers [2,3]. Marek [2] in 1956, operated a thirty-plate plant rect i f icat ion column to determine experimentally the effect of simultaneous reaction and d i s t i l l a t i o n , and to help verify a method de-veloped earl ier by him £ 12J, for calculation of the number of theoretical plates for continuous plate columns, where the rect i f icat ion is accompanied by a chemical reaction. This thirty-plate column had a l iquid holdup of 3.1 l i t r e s / plate with an average measured overall plate efficiency of 50%. Because i t is desirable to l imit the extent of the anhydride reaction, Marek carried out the rect i f icat ion - at low pressures (400 mm Hg) in order to lower the temperature and the reaction rate. Because one theoretical plate (at 100% efficiency) corresponds to two actual plates (at 50% eff ic iency) , Marek did his graphical calculations based on a fifteen-plate column. In order to compare the experimental results and calculational results , i t was necessary to have the same total column holdup so that the reaction would have the same effect in both cases. This was accomplished by assuming 3.1 x 2 = 6.2 l i t res /p la te for the theoretical calculation. The va l id i ty of the simulation technique of this work was tested by applying i t to the system of Marek because of the re lat ive ly complete set of data presented by him. The calculational rapidity of the simulation technique in comparison with the above mentioned hand calculational techniques made a quite extensive study of this system possib in re lat ive ly l i t t l e time. Extension of the study of Marek to a more thorough examination of the effect of a l l column parameters became very easy. Once again, the problem of reboiler type occurred—Marek used an equilibrium reboiler, whereas this simulation did not (see page 15). As discussed in deta i l at various other points in this text, the exact duplication of other workers' data was not at a l l necessary. Figure 30 gives a comparison of the experimental and calculational results of Marek with the results of this work, in the form of column concentration prof i les . Table 9 indicates the number of moles (of each component) reacted per unit time on each plate in the column, and that the major part of the reaction occurs in the central section of the column. In fact, the feed plate, where concentrations of the reacting components are at a maximum, has the highest amount of reaction (22.8% of the total reaction occurs here according to Marek; 29% according to this work). As mentioned by Marek, with the decrease in concentration of one of the reacting components above or below the feed plate, the extent of the reaction decreases. Notice, from Figure 30, or Table 9 that the reaction causes a decrease in the anhydride concentration in the direction away from the feed plate in the stripping section of the column at f i r s t , but as the water concentration becomes very low towards the bottom of the column, the rect i f icat ion pre-dominates over the reaction and the anhydride concentration increases in the direction away from the feed plate. This phenomenon (the decrease in concentration of the heavy component—(anhydride)—in both directions from the feed plate) , is never observed in conventional d i s t i l l a t i o n . I 1 1 1 1 I I I I L_ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 COMPOSITION OF LIQUID ON PLATE (mole fraction) F i g u r e gO C o m p a r i s o n o f Marek R e s u l t s w i t h R e s u l t s o f t h i s Work CO TABLE 9 C o n c e n t r a t i o n P r o f i l e s and N e t Amount o f R e a c t i o n on E a c h P l a t e f o r A n h y d r i d e System - Marek D a t a COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC. ) PLATE ACETIC WATER ACETIC ANHYDRIDE WATER ACID NUMBER ACID ACID 2 (COND) 0.000000 0 0-849325 0.150674 -0.000002 -0 .000002 0 .000004 3 0.000003 0.756768 0.243228 -0.000012 -0.000012 0.000023 4 0.000022 0.649004 0.350974 -0 .000056 -0 .000056 0.000111 5 0.000118 0.535132 0.464750 -0 .000207 -0.000207 0.000413 6 0.000505 0.426912 0.572582 -0 .000618 -0 .000618 0.001235 7 0.001801 0.334193 0.664006 -0.001571 -0.001571 0.003142 8 0.005567 0.261653 0.732780 -0 . 003576 -0.003576 0.007151 9 0.015443 0.208794 0.775763 -0.007581 -0.007581 0.015162 10 (FEED) 0.039307 0.172059 0.788633 -0.015296 -0.015296 0.030592 11 0.037178 0.107145 0.855677 -0 .008793 -0 .008793 0.017585 12 0.036903 0.064201 0.898896 -0.005166 -0 .005166 0.010333 13 0.038801 0.037390 0.923809 -0.003142 -0.003142 0 .00,6284 14 0.044307 0.020270 0.934422 -0.002030 -0.002030 0.004060 15 0.056757 0.011811 0.931432 -0.001433 -0.001433 0.002866 16 0.082826 0.006356 0.910818 -0.001110 -0.001110 0.002221 17 0.134269 0.003264 0.862466 -0 .000904 -0.000904 0.001808 18 0.227332 0.001563 0.771105 -0 .000709 -0.000709 0.001418 19 (REB) 0.227347 0.0J01564 0.771089 -0 .000001 -0.000001 0.000003 100 Similarly, the increase in water concentration away from the feed plate in the enriching section, is at f i r s t slowed by the fact that much water is being consumed by the reaction, and not unt i l the anhydride concentration becomes very small (so that l i t t l e water w i l l be reacted) does the increase in water concentration become large. According to Marek, 35.5% of the total amount of the anhydride in the feed is reacted, and hence a calculation of the rect i f icat ion neglecting a chemical reaction occurring to such an extent, would lead to incorrect results . Similarly, the calculations of this work indicate that 35% of the anhydride feed is reacted. The close agreement of the results of this work with the experimental and calculated results of Marek would further indicate that the simulation used in this method is a val id one for predicting behavior of systems of simultaneous reaction and d i s t i l l a t i o n in a fractionating column. A search for the best conditions under which to run a column in which an undesirable reaction is occurring becomes very faci le and fast using this computer program. As men-tioned ear l i er , a study of a number of different cases, i . e . , different column operating conditions, could be done in a fraction of the time required by Marek's graphical method. Using the Marek data as a basis, column parameters were varied over a limited range in an attempt to discover conditions yielding greater acetic anhydride production than 101 that of the Marek example. Admittedly, Marek is not claiming his conditions to be optimum--however, the results obtained from the present work, as presented in the following paragraphs, indicate the relative advantages of altering various column parameters for this system. 1. The Effect of Pressure As mentioned ear l ier , i t is desirable to l imit this anhydride consuming reaction--and one method of doing so is to reduce the rate of reaction. This may be accomplished by lowering column pressure, and hence column temperature. Although Marek used an operating pressure of 400 mm Hg, his reasons for chosing 400 mm Hg, and the effect of operating at a higher pressure (or a lower pressure) were not discussed quantitatively. Much work would have been needed involving long, detailed hand calculations similar to those for determin-ing the results for 400 mm Hg. However, the simulation method used in this work was able to evaluate the effect of varying pressure in only seconds of computer time. Results, as presented in Figure 31, indicate the advantage of operating at a low pressure--the anhydride concentration in the bottom product is much higher at the low pressures. Runs at pressures of 200.0 mm Hg and 300.0 mm Hg (lower than the 400.0 mm Hg pressure used by Marek) indicate the definite advantage of low pressure operation. Choice of 103 an optimum pressure would involve, however, an economic study of the cost of operating low pressure equipment. Final maps (see Appendix II) indicate the advantage of low pressure in keeping temperatures (hence reaction rates) at low values in the column. Excerpts from these maps are given in Table 10 -note that the concentration profi les at 200.0 mm Hg and 300.0 mm Hg pressure would appear actually to favor faster reaction than the profi les at 400.0 mm Hg. This is caused by the fact that more of the most volat i le component (water) is being refluxed at the lower pressures, and hence, the concen-tration of water is much higher in the stripping section of the column. As mentioned ear l i er , i t was the very low concentrations of water in the column stripping section at a pressure of 4 00.0 mm Hg that limited the extent of reaction-now, at pressures of 200.0 mm Hg and 300.0 mm Hg, the water concentrations have become much higher. However, the decrease in plate temperatures due to the higher concentrations of the most vo lat i le component (water) together with those due to lower pressure, more than compensates for the increase in reaction driving force due to concentrations. At a pressure of 20 0.0 mm Hg, the temperature range from the top to the bottom of the column is 154 .2°F to 1 9 2 . 9 ° F , whereas at a pressure of 700 mm Hg, the temperature range is from 215 .6°F to 2 5 3 . 6 ° F . Because the reaction co-eff ic ient for the anhydride reaction is strongly temperature dependent, the lowering of column temperature greatly reduces TABLE 10 Concentration Profiles and Net Amount of Reaction on Each Plate for Anhydride System - Low Pressures COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC.) PLATE TEMP NUMBER OF ANHYDRIDE WATER ACID ANHYDRIDE WATER ACID 2 (COND) 215. 6 0.000000 0.886951 0.163049 -0.000000 -0 .000000 0.000001 3 218. 6 0 .000001 0.729868 0.270132 -0 .000005 -0 .000005 0 .000010 4 221. 9 0 .000007 0.605933 0.394060 -0.000037 -0 .000037 0.000074 5 225. 8 0 .000051 0.479010 0.520939 -0 .000183 -0 .000183 0 .000365 6 229 . 7 0 .000277 0.364810 0.634913 -0.000667 -0 .000667 0 .001335 7 223. 2 0.001160 0.273732 0.725107 -0.001953 -0.001953 0.003907 8 235 . 9 0 .004028 0.208027 0.787945 -0.004942 -0 .004942 0 .009884 9 238. 0 0.012202 0.164185 0.823613 -0.011496 -0.011496 0 .022992 10 (FEED) 239 . 7 0 .033443 0.136821 0.829736 -0 .025563 -0 .025563 0 .051126 11 242 . 4 0.030172 0.079518 0.890310 -0.013244 -0.013244 0 .026487 12 244. 1 0.029070 0.044742 0.926187 -0 .007148 -0.007148 0.014296 13 245 . 1 0.029809 0.024592 0.945599 -0 .004020 -0.004020 0.008040 14 245. 8 0.033040 0.013250 0.953710 -0 .002395 -0.002395 0 .004790 15 266 . 4 0.040717 0.006987 0.952296 -0 .001550 -0.001550 0.003099 16 247 . 1 0.056998 0.003581 0.939421 -0.001102 -0 .001102 0.002205 17 248 . 1 0.089751 0.001766 0.908483 -0 .000842 -0.000842 0.001684 18 250. 1 0.151920 0.000830 0.847250 -0 .000651 -0.000651 0.001303 1 9(REB) 253. 6 0.151876 0.000830 0 . 847294 -0 .000001 -0.000001 0.000002 PRESSURE = 760 mm Hg TABLE 10 (continued) COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC.) PLATE TEMP ANHYDRIDE WATER ACID ANHYDRIDE WATER ACID NUMBER OF 2 (COND) 154 .2 0 . 000004 0.857629 0.142367 -0.000008 -0.000008 i 0 .000016 3 155.7 0.000012 0.780329 0.219660 -0.000018 -0 .000018 0.000036 4 157 .4 0.000046 0.691626 0.308328 -0.000052 -0.000052 0 .000105 159.4 0.000182 0.596114 0.403704 -0 .000150 -0.000150 0.000300 6 161.6 0.000657 0.500508 0.498835 -0 .000394 -0 .000394 0.000789 7 163.8 0.002133 0.411875 0.585992 -0 .000944 -0.000944 0.001888 8 165.8 0.006304 0.335439 0.658257 -0.002091 -0.002091 0.004183 9 167.7 0.017177 0.273279 0.709544 -0 .004354 -0 .004354 0.008708 10 (FEED) 169 .7 0.043461 0.224398 0.732141 -0 .008539 -0.008539 0.017078 11 171.9 0.042499 0.150903 0.806597 -0 .005389 -0 .005389 0 .010778 12 173.7 0.043683 0.096960 0.859356 -0 .003472 -0 .003472 0 .006944 13 175.0 0.048433 0.060043 0.891524 -0 .002347 -0 .002347 0.004693 14 176 . 2 0.060096 0.035987 0.903916 -0.001723 -0 .001723 0 .003446 15 177.4 0.085558 0.020813 0.893629 -0 .001397 -0 .001397 0.002794 16 179.1 0.137160 0.01146 2 0.851378 -0.001206 -0 .001206 0.002411 17 182.0 0.231856 0 .005852 0.762292 -0.001009 -0 .001009 0.002018 18 186 .6 0.380244 0.002663 0.617094 -0 .000733 -0 .000733 0.001465 19, (REB) 192.9 0.380575 0.002663 0.616762 -0 .000001 -0 .000001 0.000003 PRESSURE = 2 00 mm Hg o 106 the reaction rate. Table 11 gives a comparison of conditions on the respective feed plates at the two different operating pressures. TABLE 11 Reaction Coefficients on Feed Plate at P = 760.0 mm Hg and P = 200.0 mm Hg Column Pressure Feed Plate Temp Reaction Rate (mm Hg) (°F) Coefficient L i t r e s / Mole °K 760 239 .7 .002556 200 169 .7 .000357 In decreasing pressure from 760.0 mm Hg to 200.0 mm Hg there is a greater than seven-fold decrease in reaction rate coefficients. The net result , considering the increase in reaction rate due to a greater concentration driving force, and the slowing of reaction rate due to lower temperatures, is an overall decrease in reaction rate as can be seen from the moles of each component reacted on each plate as shown in Table 10. Because of the very strong temperature dependence of the reaction coefficients for this system, operating pressure becomes a very c r i t i c a l column parameter in deter-mining f ina l compositions. 107 2. The E f f e c t o f B o i l - U p R a t e The h e a t i n p u t t o t h e r e b o i l e r u s e d i n t h e s t a n d a r d c a s e was 30,000 c a l . / s e c . V a r i a t i o n s i n b o i l - u p r a t e a r o u n d t h i s s t a n d a r d were p e r f o r m e d i n o r d e r t o s t u d y t h e e f f e c t o f t h i s p a r a m e t e r on t h e a n h y d r i d e c o n c e n t r a t i o n i n t h e b o t t o m p r o d u c t and on t h e t o t a l amount o f a n h y d r i d e b e i n g p r o d u c e d . The i n d i c a t i o n f r o m F i g u r e 32 i s t h a t t h e h i g h e r t h e b o i l - u p r a t e , t h e g r e a t e r t h e mole f r a c t i o n o f t h e a c e t i c a n h y d r i d e i n t h e b o t t o m p r o d u c t . R e s u l t s a t t h e h i g h e r r a t e s ( h e a t i n p u t o f 35,000 c a l . / s e c . and 40,000 c a l . / s e c . ) a r e somewhat u n r e l i a b l e as c o n v e r g e n c e was v e r y s l o w and t h e u n b a l a n c e i n p r o d u c t s t r e a m s was between 5% and 10%. T a b l e 12 i n d i c a t e s t h e m o l e s o f a c e t i c a n h y d r i d e removed i n t h e b o t t o m p r o d u c t f o r t h e v a r i o u s b o i l - u p r a t e s . TABLE 12 R e l a t i o n s h i p o f B o i l - u p R a t e and M o l e s o f A c e t i c A n h y d r i d e i n B o t t o m P r o d u c t H e a t I n p u t t o R e b o i l e r ( c a l . / s e c . ) 25000 28000 30000 v 35000 40000 M o l e s A n h y d r i d e i n B o t t o m ( m o l e s / s e c . ) . 071 .085 .097 .103 .104 N o t i c e t h a t a l t h o u g h F i g u r e 32 i n d i c a t e s a s u b s t a n -t i a l i n c r e a s e i n mole f r a c t i o n o f a n h y d r i d e i n t h e b o t t o m p r o d u c t , T a b l e 12 i n d i c a t e s t h a t t h e a c t u a l number o f m o l e s o f a n h y d r i d e d o e s n o t change s i g n i f i c a n t l y i n g o i n g f r o m h e a t i n p u t r a t e s o f 30,000 c a l . / s e c . t o 40,000 c a l . / s e c . T n e a d v a n t a g e o f a d d i n g more h e a t t o t h e r e b o i l e r i s t h e r e f o r e one o f i m p r o v i n g t h e p u r i t y o f t h e d e s i r e d p r o d u c t a n h y d r i d e - n o t so much one o f r e d u c i n g t h e r a t e o f a n h y d r i d e consump-t i o n . T h e r e i s l i t t l e d i f f e r e n c e i n t h e t e m p e r a t u r e p r o f i l e s f o r t h e two h e a t i n p u t . r a t e s o f 25,000 c a l . / s e c . and 35,000 c a l . / s e c . --however, t h e l o w e r b o i l - u p r a t e t e n d s t o i n c r e a s e t h e c o n c e n t r a t i o n o f t h e most v o l a t i l e component (water) on a l l p l a t e s . T h i s i n c r e a s e has t h e most e f f e c t i n t h e l o w e r s e c t i o n s o f t h e c o l u m n , where t h e c o n c e n t r a t i o n o f t h e a n h y d r i d e i s h i g h e s t . The h i g h e r w a t e r c o n c e n t r a t i o n r e s u l t s i n f a s t e r r e a c t i o n as c a n be s e e n f r o m T a b l e 13, c o m p a r i n g t h e r e s u l t s f o r 25,000 c a l . / s e c . b o i l - u p r a t e and 35,000 c a l . / s e c . b o i l - u p r a t e . Hence, i t w o u l d be a d v i s a b l e t o o p e r a t e a t h i g h b o i l - u p r a t e s i n o r d e r t o m i n i m i z e t h e c o n s u m p t i o n o f a c e t i c a n h y d r i d e . 3. The E f f e c t o f R e f l u x R a t i o The r e f l u x r a t i o u s e d by Marek was 5.18. A s t u d y was p e r f o r m e d i n t h i s work on t h e e f f e c t o f r e f l u x r a t i o by v a r y i n g i t a r o u n d t h i s v a l u e . R e s u l t s i n F i g u r e 33 i n d i c a t e t h a t t h e l o w e r t h e r e f l u x r a t i o , t h e g r e a t e r t h e p u r i t y o f t h e a c e t i c a n h y d r i d e i n t h e b o t t o m p r o d u c t . T a b l e 14 i n d i c a t e s t h e number o f mole TABLE 13 Concentration Profiles and Net Amount of Reaction on Each Plate as a Function of Boil-Up Rate COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC.) PLATE TEMP ANHYDRIDE WATER ACID ANHYDRIDE WATER ACID NUMBER OF 2 (COND) 184.8 0. 000000 0 . 831981 0.168019 -0.000001 -0 .000001 0 .000002 3 186.8 0.000002 0.744770 0.255228 -0.000006 -0.000006 0 .000011 4 189 .1 0.000012 0.849207 0.350781 -0.000031 -0.000031 0 .000061 5 191.6 0.000071 0.551508 0.448421 -0.000131 -0.000131 0 .000263 6 194 .1 0.000340 0.458722 0.540938 -0.000463 -0.000463 0.000926 7 196 .5 0.001363 0.376845 0 .621792 -0.001395 -0 .001395 0.002791 8 198.7 0.004745 0.309299 0.685956 -0 .003739 -0 .003739 0.007478 9 200 . 6 0.014734 0.256587 0.728679 -0 .009167 -0 .009167 0.018334 10(FEED) 202 . 6 0.041544 0.217019 0.741437 -0 .020828 -0.020828 0.041657 11 205.2 0.037378 0.144341 0.818281 -0.012074 -0 .012074 0.024149 12 207.2 0.035255 0.091993 0.872752 -0 .007135 -0.007135 0.014269 13 208.6 0.034806 0.056733 0.908460 -0 .004305 -0 .004305 0 .008609 14 209 . 8 0.036482 0.034090 0 .929428 -0.002696 -0 .002696 0 .005392 15 210 .4 0.041960 0.020001 0 .938039 -0 .001810 -0 .001810 0 .003620 16 211.1 0.055203 0.011417 0.933380 -0.001348 -0 .001348 0 .002697 17 212.2 0.084447 0.006269 0.909284 -0 .001116 -0 .001116 0.002232 18 214.0 0.144633 0.003240 0.852127 -0 .000963 -0.000963 0.001925 19. (REB) 217.6 • 0.144566 0.003244 0.852190 -0 .000002 -0 .000002 0.000003 HEAT TO REBOILER = 25,000 ca l . / sec . o KD TABLE 13 (continued) PLATE NUMBER TEMP OF COMPOSITION OF LIQUID ON PLATE (MOLE FRACTION) REACTION (MOLES OF SUBSTANCE FORMED/SEC.) ANHYDRIDE WATER ACID ANHYDRIDE WATER ACID 2 (COND) 3 4 5 6 7 8 9 10 (FEED) 11 12 13 14 15 16 17 18 19 (REB) 185.5 188.3 191.4 194 . 8 197.9 200 .6 202 .7 204 .3 205.8 207.8 209.2 210.2 210.9 211.8 213.0 215.2 218.8 224 .3 0.000002 0.000011 0.000058 0.000245 0.000844 0.002501 0.006653 0.016363 0.037836 0.037151 0.037151 0.042462 0.051804 0.071304 0.003764 0.181096 0.298641 0.298596 0.80 0067 0.683172 0.556374 0.434369 0.330093 0.249773 0.192753 0.154521 0.129681 0.076865 0.044154 0.024776 0.013609 0.007288 0.886357 0.001840 0.000831 0.00831 0.199931 0.316817 0 .443568 0 .565386 0.669063 0 .747726 0 .800593 0.829116 0 .832483 0.885984 0.917470 0 .932762 0.934587 0.921407 0.886357 0.817064 0 .700529 0.700574 -0.000006 -0 .000031 -0.000110 -0.000308 -0 .000725 -0.001525 -0 .003011 -0.005774 -0 .010912 -0 .006246 -0 .003676 -0 .002269 -0.001511 -0.001102 -0.000862 -0 .000675 -0 .000485 -0.000001 -0 .000006 -0 .000031 -0.000110 -0.000308 -0 .000725 -0 .001525 -0 .003011 -0 .005774 -0.010912 -0 .006246 -0.003676 -0.002269 -0.001511 -0 .001102 -0 .000862 -0 .000675 -0 .000485 -0.000001 0.000013 0.000062 0.000220 0.000616 0.001450 0.003050 0.006021 0.011548 0.021825 0.012492 0.007351 0.004538 0.003022 0.002205 0.001724 0.001350 0.000970 0.000002 HEAT TO REBOILER = 3 5,000 cal . /sec 1—' I — 1 O TTT 112 of the anhydride in the product at the various reflux ratios and the percentage of anhydride consumed in each case. TABLE 14 Reflux Ratio Moles Anhdyride in Bottom (moles/sec.) Percent Anhydride Consumed 5. 18 .097 34.7 7 . 00 .091 39 .2 4. 00 .098 33.8 The higher reflux ratio results in a greater mole fraction of the most volat i le component (water) in the column (hence higher water concentrations on every plate) and a lower temperature. As can be seen from Tables 15 and 16, the difference in temperatures for the two cases is not large --however, there are substantial differences in plate compositions—with the water concentration much higher in the reaction zone for the case of highest reflux. Hence, more reaction is occurring at the higher reflux ra t io , see Tables 15 and 16, and i t would be advisable to operate at the lower reflux rat io . Tables 15 and 16 represent an interesting inter-action between the single column presently being studied and the auxil iary apparatus which might almost inevitably be associated with i t . Considering only this column, a decrease in the reflux ratio increases the concentration of the REFLUX RATIO F i g u r e 3 3 Mole F r a c t i o n A n h y d r i d e v e r s u s R e f l u x R a t i o TABLE 15 Final Temperature, Composition, and Moles Reacted Map at Reflux Ratio =7.0 COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC.) PLATE NUMBER TEMP OF ANHYDRIDE WATER ACID ANHYDRIDE WATER ACID 2 (COND) 183. 8 0.000000 0 . 882662 . 0 .117338 -0 .000001 -0.000001 ' 0 .000001 3 185 . 3 0.000001 0.811762 0 .188237 -0 .000005 -0.000005 0 .000010 4 187. 3 0.000009 0.723339 0 .276652 -0 .000030 -0.000030 0.000059 5 189 . 8 0.000058 0.621433 0 .378509 -0 .000135 -0 .000135 0 . 000271 6 192. 6 0.000298 0 .514505 0 .485197 -0 .000488 -0 .000488 0 .000976 7 195. 4 0.001242 0.413122 0 .585637 -0 .001446 -0 .001446 0 .002892 8 198. 1 0.004372 0.326002 0 .669626 -0 .003683 -0.003683 0 .007366 9 200 . 6 0.013458 0.257248 0 .729295 -0 .008407 -0 .008407 0.016815 10 (FEED) 202 . 9 0.037161 0.206343 0 .756496 -0 .017673 -0 .017673 0.035345 11 205 . 5 0 .034436 0.133445 0 .832118 -0 .010259 -0.010259 0 .020519 12 207 . 5 0 .033483 0.082590 0 .883927 -0 .006072 -0.006072 0.012144 13 208 . 9 0.034319 0.049462 0 .916219 -0 .003695 -0 .003695 0 .007390 14 209. 9 0 .037867 0.028868 0 .933265 -0 .002365 -0.002365 0 .004731 15 210. 7 0.046555 0.016448 0 .936997 -0 .001646 -0 .001646 0.003292 16 211. 5 0.065572 0.009107 0 .925321 -0 .001270 -0.001270 0 .002541 17 212 . 8 0.104889 0.004841 0 .890320 -0 .001060 -0.001060 0 .002119 18 215. 1 0.180284 0.002416 0 .817300 -0 .000882 -0.000882 0 .001764 19 (REB) 219 . 1 0.180301 0.002416 0 .817283 -0 .000002 -0.000002 0 .000003 REFLUX RATIO = 7.0 TABLE 16 Final Temperature, Composition, and Moles Reacted Map at Reflux Ratio = 4.0 PLATE NUMBER 2 (COND) 3 4 5 6 7 8 9 10 (FEED) 11 12 13 14 15 16 17 18 19 (REB) JL COMPOSITION OF LIQUID ON PLATE REACTION (MOLE FRACTION) (MOLES OF SUBSTANCE FORMED/SEC.) TEMP OF ANHYDRIDE WATER ACID ANHYDRIDE WATER ACID 185. 6 0 . 000001 0 .798988 0 .201011 -0 .000005 -0 .000005 0 .000010 188. 4 0 .000010 0 .678669 0 .321321 -0 .000027 -0 .000027 0 .000053 191. 5 0 .000054 0 .552553 0 .447393 -0 .000100 -0 .000100 0 .000201 194. 8 0 .000237 0 .434271 0 .565492 -0 .000297 -0 .000297 0 .000594 197 . 8 0 .000844 0 .334783 0 .664373 -0 .000738 -0 .000738 0 .001477 200 . 3 0 .002579 0 .258663 0 .738758 -0 .001639 -0 .001639 0 .003278 202. 3 0 .007050 0 .204574 0 .788376 -0 .003407 -0 .003407 0 .006815 203. 8 0 .017751 0 .168067 0 . 814182 -0 .006850 -0 .006850 0 .013700 205 . 3 0 .041863 0 .144107 0 .814031 -0 .013454 -0 .013454 0 .026908 207. 5 0 .040456 0 .086245 0 .873299 -0 .007636 -0 .007636 0 .015272 209 . 1 0 .041253 0 .049891 0 .908856 -0 .004462 -0 .004462 0 .008925 210. 1 0 .045076 0 .028127 0 .926797 -0 .002732 -0 .002732 0 .005465 210 . 9 0 .054260 0 .015491 0 .930249 -0 .001800 -0 .001800 0 .003599 211. 8 0 .073688 0 .008302 0 .918010 -0 .001296 -0 .001296 0 .002593 213. 0 0 .112293 0 .004281 0 .883427 -0 .001001 -0 .001001 0 .002001 215. 2 0 .183680 0 .002084 0 .814236 -0 .000775 -0 .000775 0 .001549 218 . 9 0 .301578 0 .000936 0 .697487 -0 .000552 -0 .000552 0 .001104 224. 4 0 .301566 0 .000936 0 .697498 -0 .000001 -0 .000001 0 . 000002 REFLUX RATIO = 4.0 I—1 116 anhydride i n the bottom product and t h e r e f o r e eases any subsequent s e p a r a t i o n of a c i d and anhydride which may be r e q u i r e d . At the same time i t w i l l be n o t i c e d t h a t a t R = 7 . 0 , the overhead product' i s approximately 12% a c e t i c a c i d , whereas at R = 4.0 i t i s about 20% a c e t i c a c i d and t h e r e f o r e one might conclude t h a t again R = 4.0 i s the d e s i r a b l e s i t u a t i o n i n as much as onl y 80% water would have to be d i s t i l l e d o f f i n the secondary column as opposed to 88% water i n the case of R = 7 . 0 . However, the number of moles g i v e n a t R = 4.0 i s 0.67 moles sec. and t h a t a t R = 7 . 0 . i s - 0 . 4 0 moles/sec. and a c c o r d i n g l y the load r e q u i r e d to separate water from the overhead a c e t i c a c i d - H 2 0 mixture i s n o t i c e a b l y l e s s i n the case of R = 7 . 0 . There-f o r e we f i n d t h a t R = 4.0 i s more d e s i r a b l e i n the main column but R = 7.0 i s more d e s i r a b l e i n the a u x i l i a r y . In the r e a c t i o n column i t s e l f , i t w i l l be seen from Table 15 t h a t somewhat more anhydride i s consumed a t the h i g h e r r e f l u x r a t i o than a t the lower r e f l u x r a t i o , and so i f recover y of anhydride were the s o l e c o n s i d e r a t i o n , then R = 4.0 would c l e a r l y be the more f a v o u r a b l e case. 117 RESUME Now tha t a program, however s i m p l i f i e d and r e s t r i c t e d i n i t s assumptions, has been made to work e f f e c t i v e l y over a range of c o n d i t i o n s , the next step would be to t e s t the r e -s u l t s of the program, and p o s s i b l y i t s p r e d i c t i o n s , against a r e a l operating p l a n t . One attempt to do t h i s was f r u s t r a t e d by the re l u c t a n c e of one chemical company to make i t s con-f i d e n t i a l data a v a i l a b l e to the author, and so f a r , no approach to another company has been made. Without such p r a c t i c a l proving, i t w i l l be d i f f i c u l t to evaluate the success of t h i s e x e r c i s e , but should p r a c t i c a l proof be forthcoming, one might expect a cautious increase i n the use of r e a c t i n g d i s t i l l a t i o n columns to be p o s s i b l e , as the l i k e l i h o o d of a s u c c e s s f u l process could be f o r e c a s t at a higher l e v e l of c e r t a i n t y . I t c l e a r l y w i l l be necessary to r e f i n e the program i n p l a c e s , p a r t i c u l a r l y w i t h respect to the e v a l u a t i o n of v a p o r - l i q u i d e q u i l i b r i u m data used t h e r e i n . But even without such refinements, the p o s s i b i l i t y of q u a l i t a t i v e comparisons of p l a n t r e a c t i o n to changes i n parameters and the correspond-ing changes i n the computed r e s u l t s might w e l l give good quidance as to p l a n t changes which might be e f f e c t i v e . C a l c u l a t i o n of v a p o r - l i q u i d e q u i l i b r i u m i s n o t o r i o u s l y d i f f i c u l t f o r complex systems of non-simple molecules and this aspect of the work w i l l have to be left to others. Almost as d i f f i c u l t is the calculation of consistent thermal properties for these systems, but the calculated results are less sensitive to errors in these parameters and so the need for accurate prediction is not as great. Both these fields are being studied in detai l by other workers, but experience shows that the problem w i l l not be solved easily or soon. While a l l of this work has been undertaken in the context of d i s t i l l a t i o n , clearly a combination of a separation process with a chemical reactor is equally possible in other connections. A l iqu id - l iqu id extraction process with chemical reaction occurring in one phase would require a program in no significant deta i l different from that outlined herein and might even be a more promising area in which to do experimental work. The behavior of absorption columns in which chemical reaction takes place between the absorbed gas and the solvent has of course been studied for a very long time, but the emphasis in these investigations has been directed more to the influence of chemical reaction upon the rate of absorption of the gas than toward the goal of maximizing the production of some new chemical substance. 119 CONCLUSIONS 1. Systems involving simultaneous reaction and d is -t i l l a t i o n are much more complex than those of conventional d i s t i l l a t i o n . 2. Computer f a c i l i t i e s are therefore essential i f studies of such systems are to be carried out. 3. L i t t l e work has been done in this f i e ld to date because of the computational complexities; however, this should increase now due to the ready ava i lab i l i ty of computers. 4. Design of a column with reaction is going to have to be done a lot more carefully than for conventional d is -ti l lation,because the available corrective factors are no longer so predictable. 120 NOMENCLATURE 1. F o r t r a n Nomenclature A(I) AF (IR) AR (IR) B(I) BALAT(IR) BALT BDFERR BUBPT C(I) CMW(I) CONDLD C P ( I ) DELT DELV DEN (I) Constant i n Antoine equation f o r component I Frequency f a c t o r f o r A r r h e n i u s equation f o r forward r e a c t i o n IR Frequency f a c t o r f o r A r r h e n i u s equation f o r re v e r s e r e a c t i o n IR** Constant i n Antoine equation f o r component I O v e r a l l atomic unbalance f o r r e a c t i o n IR O v e r a l l molar unbalance f o r column Maximum a l l o w a b l e e r r o r f o r sum of components i n bubble p o i n t and dew p o i n t c a l c u l a t i o n s Subroutine f o r c a l c u l a t i o n of bubble p o i n t Constant i n Antoine equation f o r component I M o l e c u l a r weight of component I, mass units/mole Counter used to al l o w r e a d i n g i n of more than one s e t of data Heat c a p a c i t y of component I i n l i q u i d , heat units/mole P r e d i c t e d temperature change on p l a t e , °F P r e d i c t e d change i n amount of vapor of a com-ponent from i s e n t h a l p i c f l a s h c a l c u l a t i o n , moles/sec. D e n s i t y of component I, moles/unit volume U n i t s of the r a t e c o n s t a n t are a f u n c t i o n of the r e a c t i o n o r d e r , i . e . , f o r the n t n order r e a c t i o n , ( t i m e ) ~ i ( c o n c e n t r a t i o n ) l ~ n 121 DENSTY DEWPT D X I N ( I , N ) E F ( I R ) E N T H K ( I ) , E N T H L ( I ) 1 E N T H U ( I ) , ENTHW(I) EQCST E Q U I L K ( A , B , C,T,P) ER (IR) E X T F D ( I ) FACTOR F L F E E D ( I ) F L F E E S F L L FLLIQ(I) F L L I Q 1 ( I ) F L L I S C F L L I S O S u b r o u t i n e f o r c a l c u l a t i o n o f l i q u i d d e n s i t y -S u b r o u t i n e f o r c a l c u l a t i o n o f dew p o i n t Change i n number o f m o l e s o f component I o n p l a t e N due t o r e a c t i o n , m o l e s / u n i t t i m e A c t i v a t i o n e n e r g y i n A r r h e n i u s e q u a t i o n f o r f o r w a r d r e a c t i o n I R , h e a t u n i t s / m o l e Component d e p e n d e n t c o n s t a n t s f o r e u t h a l p h o f l i q u i d s Component d e p e n d e n t c o n s t a n t s f o r c u t h a l p y o f v a p o r s S t o r a g e f o r v a p o r - l i q u i d e q u i l i b r i u m c o n s t a n t V a p o r - l i q u i d e q u i l i b r i u m f u n c t i o n A c t i v a t i o n e n e r g y i n A r r h e n i u s e q u a t i o n f o r r e v e r s e r e a c t i o n I R , h e a t u n i t s / m o l e M o l e f r a c t i o n o f component I i n f e e d C a l c u l a t i o n a l number u s e d i n p l a t e f l o w b a l a n c e s Amount o f l i q u i d c o mponent I t o a r e a c t i o n o r amount o f l i q u i d a n d v a p o r component I t o f l a s h c a l c u l a t i o n , m o l e s / u n i t t i m e Sum o f i n d i v i d u a l c omponent amounts t o a r e a c t i o n o r f l a s h c a l c u l a t i o n , m o l e s / u n i t t i m e A ssumed l i q u i d f l o w f r o m a p l a t e , m o l e s / u n i t t i m e Amount o f l i q u i d c o mponent I r e s u l t i n g when F L F E E D ( I ) f l a s h e d i n i t e r a t i v e f l a s h c a l c u l a t i o n , m o l e s / u n i t t i m e Amount o f l i q u i d c o mponent I r e s u l t i n g when F L F E E D ( I ) f l a s h e d a t s t a g e t e m p e r a t u r e 1°F h i g h e r , m o l e s / u n i t t i m e C a l c u l a t e d t o t a l l i q u i d a f t e r one s t e p i n f l a s h c a l c u l a t i o n , m o l e s / u n i t t i m e O l d v a l u e o f l i q u i d ( f r o m p r e v i o u s i t e r a t i o n ) on and f r o m p l a t e , u s e d i n p r e d i c t i n g new l i q u i d f l o w , m o l e s / u n i t t i m e 1 2 2 FLLISP FLOW FLV FLVAP(I) FLVAP(I) FLVASC FLVASO FLVASP FMASRF(IR) FMASRR(IR) FMW FNATOM(NA,I) FNMOLS(I,IR) GENX(I,N) GENY(I,N) HBALOK Predicted l iquid from flash calculation, moles/ unit time Equal to FLLISP , moles/unit time Assumed vapor flow from stage, used in flash calculation, moles/unit time Amount of vapor component I resulting when FLFEED(I) flashed in i terative flash calculation, moles/unit time Amount of vapor component I resulting when FLFEED(I) flashed at stage temperative 1 ° F higher, moles/ unit time Calculated total vapor flow after one step in flash calculation, moles/unit time Old value of vapor flow from plate, used in pre-dicting new l iquid flow, moles/unit time Predicted vapor flow leaving stage, moles/unit time Forward concentration driving force, Reverse concentration driving force, Feed molecular weight, mass units/mole Fixed point form of NATOMS(NA,I) Fixed point representation of NUMOLS(I,IR) Mole fraction of component I in l iquid on plate N Mole fraction of component I in vapor leaving plate N Check on change of a l l vapor and l iquid flows from iteration to i terat ion. If during an iteration any predicted fractional vapor or l iquid flow change is greater than a certain tolerance, HBALOK is set to 1 . 0 . Convergence tests are satisfied i f HBALOK is not 1 . 0 * * Units dependent on reaction rate expression. 123 HBAOKl HBAOK2 -, Individual checks on fractional flows, used to set HBA0K3 HBALOK to 1.0 when tolerances not satisfied HBAOK4 HCAP Amount of additional enthalpy present i f flash conducted 1°F higher, heat units HEATRX Subroutine for calculation of heat of reaction HOR(N) Heat of reaction on stage N, heat units/unit time HORTO Heat of reaction based on some reference temper-ature TO, heat units/mole I Component subscript INPUT Subroutine for input of data and map i n i t i a l i z a t i o n IR Number of reactions being considered IRMAX Number of reactions ITERAT Counter for number of iterations ITER2 Counter used to set ITPRIN back to zero after each print out of intermediate maps ITMAX Maximum number of iterations allowed ITPRIN Iteration interval at which map printed out KF Number of feed plate KM Number of bottom plate KM1 Number of reboiler KN Number of top plate KNl Number of condenser KP Controls up and down sequence of iterations KTIMES Indicator for number of plates to be calculated for each iteration (up and down column) LOOP1 Not used in this program MAXK Storage location for value of reaction rate co-ef f ic ient , used in slow introduction of reaction 124 N NA NAME(I) NAMAX NATOM (NA,I) NCOMPS NDELTA NUMOLS(I,IR) ORDER(I,IR) OUTPUT PRDERR PRES PRSERR QIN QUID (N) QUIDN QUIDX (I) QUIH QUIH1 QUIMOH(N) Plate subscript Atomic species subscript Name of component I Number of different atomic species fed to system Number of atoms of species NA in component I Number of components Counter controlling upwards and downwards calculational procedure Stoichiometric number moles of component I in reaction IR; positive for products, negative for reactants Order of component I in reaction IR Subroutine for output of f inal values Tolerance used to determine: whether or not the fractional change in flow from a stage is acceptable, or whether overall atomic balance is acceptable Column pressure, mm Hg Fractional unbalance of atoms on column Total enthalpy of material to flash calculation, heat units unit time Liquid flow from stage N, moles/unit time New predicted l iquid flow from a stage, moles/ unit time Moles of component I in l iquid phase in dew point or bubble point calculation, moles/unit time Liquid enthalpy after one step of i terative flash calculation, heat units/unit time Liquid enthalpy at stage temperature 1°F higher, heat units/unit time Molar enthalpy of l iquid leaving stage N, heat units/mole 125 QUITOP QUNBAL(N) R RANKIN REACKF(IR) REACKR(IR) REACTN REBLD RCONST RESTIM RHO SDXIN (N) SLOPE SPR(N) SUMX SUMXO SUMY SUMYO T (N) TEMP(N) Liquid top product, moles/unit time Enthalpy unbalance on stage N, heat units/ unit time Reflux ratio Stage temperature, °R Forward reaction coefficient for reaction IR, volume units/(mole)(unit time) Reverse reaction coefficient for reaction IR, volume units/(mole)(unit time) Subroutine for calculation of reaction Heat input to reboiler, heat units/(unit time) Universal gas constant, heat u n i t s / ( m o l e ) ( ° A b s o l u t e ) Residence time of l iquid on plate, unit time Density of mixture on plate, moles/unit volume Total change in number of moles due to reaction on plate N, moles/sec. Slope of the curve of sum of mole fractions versus temperature in dew point and bubble point calculations Liquid holdup on plate N, volume units Sum of mole fractions of components in l iquid phase Sum of mole fractions of components in l iquid phase at a temperature 10°F higher than SUMX Sum of mole fractions of components in vapor phase Sum of mole fractions of components in vapor phase at a temperature 10°F higher than SUMY Temperature of stage N, °F Temperature of stage N, °F 126 THALP(Y,Z,T) TO TOT TOTATI(N) TOTFD TOTFDH VAPH VAPH1 VAPMOH(N) VAPOR(N) VAPORN VAPY(I) Enthalpy function, heat units/mole Reference temperature at which heat of reaction obtained, °F Total changes in number of moles due to reaction, moles/unit time Total number of atoms of atomic species N being fed to column, atoms/unit time Total feed to column, moles/unit time Feed enthalpy, heat units Vapor enthalpy after one step of i terative flash calculation, heat units/unit time Vapor enthalpy at stage temperature 1°F higher, heat units/unit time Molar enthalpy of vapor leaving stage N, heat units/mole Vapor flow leaving stage N, moles/unit time New predicted vapor flow from a stage, moles/ unit time Moles of component I in vapor phase in dew point or bubble point calculations, moles/unit time 2. Conventional Nomenclature a, A Constant in Antoine equation b, B Constant in Antoine equation c, C Constant in Antoine equation C A Concentration of component A, moles/unit volume C ^ Q I n i t i a l concentration of component A , moles/ unit volume C Heat capacity—rate of increase of enthalpy per p unit increase in temperature, heat units* / (unit temperature*mole) ** Calories or B .T .U . ' s Energy of activation, heat units Fugacity of component i , psia Gibbs free energy, heat units Enthalpy, heat units Heat of reaction, heat units Heat of reaction at temperature T^, heat units Heat of vaporization, heat units ** Reaction rate coefficient (general) Reaction equilibrium constant Forward reaction rate coefficient Constant of proportionality Frequency factor * * Reverse reaction rate coefficient Least volat i le component Most vo lat i le component Total system pressure, mm Hg Part ia l pressure of A, mm Hg Pure component vapor pressure of A, mm Hg Gas constant, heat units/(mole) ("absolute) Rate of disappearance of component A due to reaction, moles A/(unit volume)(unit time) Temperature, "absolute Volumetric flow rate to reactor, volume units/ unit time volume of reactor, volume units Units are dependent on reaction rate expression. 128 AV Change in volume, volume units Mole fraction of component i in l iquid Mole fraction of component i in vapor phase [A] Concentration of component A, moles/unit volume 3 . Greek Symbols p Density of mixture, moles/unit volume Density of component i , moles/unit volume T Residence time, units time 129 REFERENCES 1. Shreve, R .N . , "Chemical Process Industries", McGraw-H i l l Book Co. , New York, Third ed. , (1967). 2. Marek, J . , Collection Czechoslav. Chem. Commun., 21, 1560, (1956). 3. Jeffreys, G . V . , Barker, P . E . , Mamers, H . , A paper given at Paris meeting of Society Chim. Ind. , Paris , (1968). 4. Guinot, H . , Clark, F . H . , Transactions-Institution of Chemical Engineers, 16, 189 , (1938). 5. Longtin, B. , Randall, M. , I . E . C . , 34_, 292 , (1942). 6. Berman, S., Isbenjian, H . , Sedoff, A . , Othmer, D . F . , I . E . C . , £ 0 , 2139, (1948). 7. Leyes, C . E . , Othmer, D . F . , A . I . C h . E . J . , 41, 157, (1945) . 8. Morrison, R . T . , Boyd, R . N . , "Organic Chemistry", Allyn and Bacon, Inc. , Boston, (1966). 9. Belck, L . H . , A . I . C h . E . J . , 1, 467, (1955). 10. 'White, W.B., Johnson, S.M., Dantzig, G . B . , J . Chem. Phys. , 2_8, 751, (1958) . 11. Borto l in i , P . , Guarise, B . B . , Ing. Chim. I t a l . , 5, 89, (1969). 12. Marek, J . , Collection Czechoslov. Chem. Commun., 19, 1055, (1954). 13. Forsyth, J . S . , Private Communication, University of Br i t i sh Columbia. 14. Nguyen, A . , Private Communication, University of Br i t i sh Columbia. 15. Deland, E . C . , Wolf, M.B. , I . E . C . Process Design and Development, 3_, 100, (1964). 130 16. Carlson, A . M . , Electronic Associates, Inc. , Applications Reference Library (6.5.3h), (1968). 17. RuszKay, R. , Mitche l l , E . E . L . , Proceedings-Spring Joint Computer Conference, (1966). 18. Berman, S., Melnyschuk, A . A . , Othmer, D . F . , I . E . C . , 40_, 1312 , (1948) . 19. Groggins, P . H . , "Unit Processes in Organic Synthesis", McGraw-Hill Book Co . , Third Edit ion, (1947). 20. Levenspiel, 0. , "Chemical Reaction Engineering", John Wiley and Sons, Inc. , New York, (1966). 21. Hanson, D .N . , Duffin, J . H . , Somerville, G . F . , "Computation of Multistage Separation Processes", Reinhold Publishing Corp., New York, (1962). 22. Hala, E . , Wichterle, I . , Polak, J . , Boublik, T . , "Vapor-Liquid Equilibrium Data at Normal Pressures", Pergamon Press,. 23. Perry, J . H . , "Chemical Engineers' Handbook, McGraw-H i l l Book Company, Fourth Edit ion. 24. Rossini, F . D . , "Selected Values of Properties of Hydrocarbons and Related Compounds", A.P.I.-Research Project #44. 25. Moore, W . J . , "Physical Chemistry", Prentice Ha l l , Inc. , Third Edit ion, (1962). 26. Robinson, C . S . , G i l l i l a n d , E . R . , "Elements of Fractional D i s t i l l a t ion" , McGraw-Hill Book Company, Fourth Edit ion, (1950). 27. Glasstone, S., "Textbook of Physical Chemistry", D. Van Nostrand Co . , Inc. , Second Edit ion, (1946). 28. Hala, E . , Pick, J . , Fr ied , V . , Valim, O . , "Vapor Liquid Equilibrium", Pergamon Press, Second Edit ion, (1967) . 29. Conte, S.D. , "Elementary Numerical Analysis: An Algorithmic Approach", McGraw-Hill Book Co . , (1965). I - l APPENDIX I A. Description of Computer Program This program is based on the d i s t i l l a t i o n program of Hanson, et a l . [ 2 1 ] , for several interlinked columns, each with several feeds--it has been simplified to deal with one column and one feed. Also, the effect of l iquid phase reaction has been incorporated into heat and mass balances. A l l vapor and l iquid flow rates in the column are calculated, along with the composition of a l l flows (and of the l iquid on the plate) , the total moles formed by-reaction on each plate, the number of moles of each component reacted on each plate, and the temperature on each plate. The nomenclature used in this program is summar-ized in the section NOMENCLATURE. Input data required by this program can be broken down into the following three c lass i f icat ions: 1-2 DATA REQUIREMENTS Column Parameters Physical Data for System Simulation Components Data Number of Plates Molecular Weights I n i t i a l Plate Temps Reboiler Heat Densities I n i t i a l Plate Latent heats Compositions Location of Feed Antoine Coefficients Max Number of Plate Iterations Reflux Ratio CP Data (vs. T) Tolerances Feed Rate and Reaction Coefficients I n i t i a l Flows Composition Pressure Reaction Order Holdup on Plates Number of Reactions Number of Components Number of Each Atomic Species in each Component Heat of Reaction For the program, as described, the input data cards must come in the following order with the units prescribed. INPUT DATA CARDS Card Variable Definition and Explanation Format Column 1 NCOMPS Number of components 13 1-3 KN Top plate 13 4-6 KF Feed plate 13 7-9 KM Bottom plate 13 10-12 CONDLD F3.1 13-15 2 PRES Column Pressure [mm Hg] 3 A(I) Reads NCOMPS Antoine Coeffic-ients A 9F8.0 (continued) 1 - 3 Variable Definition and Explanation Format Column B(I) C(I) ENTHK(I) ENTHL(I) ENTHU(I) ENTHW(I) PRDERR BDFERR EXTFD (I), TOTFD TOTFDH T CMW(I) Reads NCOMPS Antoine coeffic-ients B Reads NCOMPS Antoine coeffic-ients C Reads NCOMPs l iquid C 's P r BTU 1 (Mole I) (°F) J Reads NCOMPS l iquid Enthalpies r BTU  L Mole I ] Reads NCOMPS vapor C p ' s r BTU 1(Mole I) ( ° F ) J Reads NCOMPS vaporization heats [- BTU mole I -] Limit below which atomic un-balance must be in order for column to be in balance Limit of accuracy on bubble point calculation(EGENY(I,N) must be within BDFERR of unity) , and on dew point calculation Reads NCOMPS mole fractions in feed Total feed rmole1 sec Enthalpy of feed [BTU] I n i t i a l temperature used to calculate bubble point of feed [°F] Reads NCOMPS molecular weights 9F8 . 0 9F8 .0 9F8 .0 9F8 .0 9F8 . 0 9F8 .0 F8.0 F8 .0 F8.0 F8.0 F8 . 0 F8 .0 9F8 . 0 1-8 9-16 1-8 9-16 17-24 1-4 (continued) Card Variable Definition and Explanation Format Column 14 • SPR(KP) Reads ONE plate holdup on each card [ l i tres] (KM-KN+1+2) #Cards Req'd (for this example, say the column has 3 plates plus reboiler and condenser) F5.1 1-5 19 IRMAX Number of reactions 14 1-4 NAMAX Number of atomic species 14 5-8 20 NAME (L,NM) Reads NCOMPS names of components 5A4 1-20 21 « • • NATOM (NA, NM) and number of atoms of each atomic species in each component (NCOMPS)*(2) = #Cards Req'd (say 4 components for this e.g.) 1014 28 • • NUMOLS (I,IR) Stoichiometric number of moles of each component in each reaction IRMAX = #Cards Req'd (say 1 reaction for this e.g.) 1014 29 ORDER (I,IR) Order of each component in each reaction IRMAX = #Cards Req'd (say 1 reaction for this e.g.) 9F6 .2 30 AF (IR) Forward frequency factor C l i t r e , (mole)(sec.) 6E10.5 1-10 EF (IR) Forward activation energy BTU lmole J 11-20 AR CIR Reverse frequency factor r l i t r e , mole sec. 21-30 1-5 (continued) Card Variable Definition and Explanation Format Column ER (IR) Reverse activation energy 31-40 •-BTU , LmoleJ 31 RCONST . . rBTU , Gas constant [—^  OTTJ mole °R 6F10.5 1-10 32 TEMP(N) Reads one i n i t i a l tempera- 9F8 .0 1-8 ture, one i n i t i a l vapor flow, 9-16 17-24 • and one i n i t i a l l iquid flow on each card (KM-KN+1+2) = #Cards Reg'd (for this example, 5) 37 Q U I T O P Liquid top product (not used) 9F8.0 1-8 R Reflux ratio 9-16 38 REBLD Heat to reboiler [BT—] sec 9F8.0 1-8 39 HORTO tr " *. -r 4- • r BTU , Heat of reaction [—*—] mole 9F8.0 1-8 TO Reference temperature where above obtained [°F] 9-16 CP(I) Read NCOMPS heat capacities BTU Lop J 17-40 DEN (I) Read NCOMPS molar densities 9F8 .0 l-moles, L l i t r e J 41 ITMAX Maximum number of iterations 616 1-6 ITRRIN Print out interval 7-12 The f printed out by ollowing table describes the information the program: 1 - 6 I n i t i a l Conditions Final Conditions Degree of Convergence Type of Condenser Type of Reboiler Location of Top, Feed, and Bottom Plates Name of Each Component Reflux Ratio Heat Input to Reboiler Enthalpy of Feed Column Pressure Antoine Coefficients Enthalpy Data Density of Components CP Data Component Mol. Wts. Feed Mol. Wt. Feed Rate Feed Composition Tolerances Reaction Stoic. Coefficients, Orders, Reac. Coefficients No. of Atoms in Each Component I n i t i a l Temp. Flow and Plate Holdups Cone, of Each Component in L i q . on each Plate Temp, of each Plate Molar Vap. Enthalpy on Each Plate Molar L i q . Enthalpy on Each Plate Vapor Flow from Each Plate Liquid Flow from Each Plate Heat Unbalance Each Plate Total Change in No. Moles on Each Plate Change in Moles of Each Component on Each Plate Moles Top Product Moles Bottom Product No. of Inter-ations per-formed % Each Atom Unaccounted For % Overall Mass Unbalance The following pages give typical input data f i l es and output by the computer program. TYPICAL INPUT DATA 1 4 7 11 131.0 2 760 .0 3 8 . L6290 7.18807 7 .96681 7. 10232 4 1623.2201416.7001688.2101245.239 5 228 .980 211.000 228.000 217.941 6 0.0 0.0 0.0 , 0 .0 7 0.0 0.0 0.0 ' 0.0 3 0 .0 0 .0 0.0 0.0 9 9395. 9 5805. 9720. 7040. 10 0.001 0.0001 11 0.5 0.5 0.0 0 .0 12 260.0 0.0 212.0 13 46.0 60 .0 18.0 88.0 14 75.0 15 75. 0 16 7 5. 0 17 75.0 18 75.0 19 75. 0 20 75. 0 21 75.0 22 75.0 23 1 3 24 ETHYL ALCOHOL 25 2 4 2 26 ACETIC ACID 27 2 6 1 28 WATER 29 0 2 1 30 ETHYL ACETATE "J, l 4 8 2 32 -1 - 1 1 1 -0 -0 -0 -0 -0 -0 33 1.0 1 .0 1.0 1.0 34 .23800E -030.0 .81500E-040.0 . 35 1.104 36 212 .0 2 .0 2.5 37 212.0 2.0 2.5 38 212.0 2.0 2.5 39 212 .0 2 .0 2.5 40 212.0 2 . 0 2.5 41 212.0 2.0 2.5 42 212 .0 2 .0 2.5 43 212.0 2.0 2.5 . 44 212.0 2.0 2.5 45 0.0 2.0 46 600 00. 47 0 .0 0-0 0.0 0.0 0.0 0.0 47. 1 17.159 17.48 55.56 10.23 48 1000 100 TYPICAL COMPUTER OUTPUT JLJUirAI CUfiD_EJ1_$.ER_IS USED RE TURN 1 NG SATURATED I.IQU1 D A TOTAL KFUGILEK OK PART OF THE COLUMN L 1 QU I D IS USED RE1URNING SATURATE D VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TUP PLATE IS 7 FEED PLATE IS 11 BOTTOM PLATE IS 13 COMPONENT 1 IS ETHYL ALCOHOL COMPONENT 2 I S ACETIC. AC 10 CCKPONENT 3 IS W AT F.R COMPONENT 4 IS ETHYL ACETATE REFLUX RATIO = 2.000 HEAT INPUT TO REBOILER = 60000.0 ENTHALPY OF FEED = 0 .0 COLUMN PRESSURE IS 760.00 A 8.1629 7. 1001 7.9668 7.1023 Ii 1623.2200 1416.7000 1688 .2100 1245.2388 C 228.9800 21 I.. 0000 223.0000 217.9410 ENTHK 0 .0 0. 0 0.0 0. 0 ENTHl 0 .0 0.0 0 .0 0.0 ENTHU 0 .0 0. 0 0.0 0.0 ENTHK 9395 .898*1 5805.0000 9720.0000 7040. 0000 OENSITY 17.1590 17.4800 55.5600 10.2300 CP 0 .0 0. 0 0.0 0. 0 C CMPONE N T MOLECULAR WTS. 46 .00000 60 .00000 18.00000 80.00000 FEED MOLECULAR WT . 53.00000 FEED RATE (MOLES) 4 .90566 FEED LI QUID 0.500000 0.500000 0 .0 0 .0 TOLERANCES BDFERR 0.000100 PRDERR 0.001 000 REACTIONS CONSIDERED ARE RE AC TI ON COMPONENT AF . EF AR ER 1 2 3 4 5 6 7 8. 9 1 -1 -1 1.0 1.0 1 1.0 1 1.0 0 0 0 0 0 0 .238000E-03 0.0 0 .815000E-04 0. 0 REACTION FORWARD REACTION COEFF. REVERSE REACTION C O E F F . 1 ATOMIC MAKE-UP OF MOLECULES MOLECULE 1 2 3 4 5 6 7 8 9 ATOM  1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 INITIAL CONDITIONS TEMP VAPOR QUID HOLDUP 212.0 2.0000 2 .5000 75.0000 2 1.2 .0 2 .0000 2.5000 75.0000 212.0 2 .0000 2 .5000 75.0000 212.0 2.0000 2.5000 75.0000 212 .0 2 .0000 2.5000 75.0000 212.0 2 .0000 2 .5000 75.0000 2 12 .0 2.0000 2 .5000 75. 0000 212 .0 2.0000 2.5000 75.0000 212.0 2 .0000 2 .5000 75.0000 C O N V E R G E N C E I S N O T M E T I T E R A T XI X2 FINAL CONDITIONS X3 X 4 X 5 X 6 6 1 7 4 . 9 7600 4 0 .0 2 .3890 4 .7779 59999 .58 0 . 0 0 .007423 0. 007423 - 0 . 0 0 7 4 2 3 - 0 . 0 0 7 4 2 3 7 178.8 8371. 8 0 . 0 7. 1668 4 .7695 0 .09 0 . 0 0 .003280 0 . 0 0 3 2 8 0 - 0 . 0 0 3 2 8 0 - 0 . 0 0 3 2 8 0 8 134 .0 3409 9 0 .0 7 .1345 4 .7505 0 .07 0. 0 - C 0 1 H 3 3 8 - 0 . 0 1 8 3 3 8 0 . 0 1 8 3 3 8 0 .018338 9 190. 1 8432 3 0 . 0 7-1155 4 .7402 0 . 0 6 0 . 0 - 0 . 0 8 0 8 5 9 - 0 . 080859 0 .080859 0 .080859 10 196 .7 8401 9 0 .0 7 .1412 4 .8157 0 .06 0 .0 - 0 .219459 - 0 . 2 1 9 4 5 9 0 . 2 1 9 4 5 9 0 .219459 1000 9 10 1 I 12 13 14 0 .495049 0 .436476 0 .363217 0 .291160 0 .233236 __0_._tJ2J36 3_0_ 0 . 0 3 6 i l 6 0 .031112 0 .031117 0 .016446 0 .042582 0 .C81921 0 .141013 0 .236562 0. 39534J3_ 0."485 195 0 .609582 0 .609625 0 .072169 0 .154698 0 .Z44685 0 .317008 0 .340051 _0_. 2 8 298 I_ 0 .333587 0 .309161 0 .309097 0 .416335 0 .366244 0 .310176 0. 25 0819 0 . 190152 _ 0 . 126046_ 67c95108 0 .050146 0.050161 T E M P V A P M O H Q U I M O H V A P O R Q U I D OUNBAl S O X I N D X I N U . N ) 0 X I N ( 2 , N ) D X I N ( 3 , N ) 11 2 04 .1 8245 .0 0 .0 7 .2771 9 .9070 ' 0 .04 0 . 0 - 0 . 4 3 9 4 5 8 - 0 . 4 3 9 4 5 8 0 . 439458 0 .439458 12 2 1 4 . 8 7983 .6 0 . 0 7 .5154 10.1814 0 .03 0 . 0 - 0 . 2 3 8 7 6 1 - 0 . 2 3 8 7 6 1 0. 238761 0 .233761 13 2 2 5 . 2 7641 .2 0 . 0 7. 8522 10 .6216 0 .05 0 . 0 - 0 . 1 0 9 6 4 6 - 0 .109646 0 . 109646 0 . 109646 14 233 .1 7 1 8 8 . 7 C .0 8 .3464 2 .2795 0 .01 0. 0 - 0 . 109668 - 0 . 1 0 9 6 6 3 0 . 109668 0 .109668 M O L E S O F B O T T O M P R O D U C T = 2.279544 M O L E S OF T O P P R O D U C T 2 .388951 P E R C E N T O F E A C H A T O M U N A C C O U N T E O F O R P E R C E N T O V E R A L L U N B A L A N C E S T O P 0 E X E C U T I O N T E R M I N A T E D 0.1065 1.2827 4 .8348 4 .4502 SGET DATA1 R E A D Y . SP.UN S P A R E 2 5=0ATA1 E X E C U T I O N B E G I N S H I 1 - 1 0 The program of this work is largely that of Hanson, et a l . , (program 9 ) , rewritten by Forsyth [ 1 3 ] so that a much simpler case could be considered—that case of one column rather than several interacting columns and one feed stream rather than several. The differences from Hanson's program are that a certain amount of subdividing into subroutines was done, a reaction subroutine, density subroutine, and heat of reaction subroutine were added, and, as found to be necessary later in the studies performed, a section was required to introduce reaction slowly. B. Description of Program Subroutines This simulation program is composed of a main program and seven subroutines, each performing a specific task to supply certain pertinent information to the main program calculation. These are l i s ted below with the c a l l name of each in brackets: 1 . Main Program 2. Input Subroutine [INPUT] 3 . Dew Point Subroutine [DEWPT] 4 . Bubble Point Subroutine [BUBPT] 5 . Reaction Subroutine [REACTN] 6. Output Subroutine [OUTPUT] 7. Density Subroutine [DENSTY] 8 . Heat of Reaction Subroutine [HEATRX] 1-11 The following paragraphs give a detailed description of the function performed by each section of this program. 1. Main Program This section of the program serves the following functions: (a) Cal ls a l l other subroutines to supply a required service (input, dew point, bubble point, reaction, output, density, heat of reaction). (b) Controls print out at regular intervals to allow examination of convergence. (c) Directs i terative sequence up and down column. (d) Calculates feed to each reaction calc . (e) Introduces reaction coefficients slowly. (f) Calculates feed to each dew point, bubble point, and isenthalpic flash calculation. (g) Performs a l l isenthalpic flash calcs. (h) Calculates a l l vapor and l iquid flows. (i) Calculates heat unbalances. (j) Calculates mass and atomic unbalances, (k) Checks for convergence A detailed description of the operations occurring in this subroutine is given on the logic diagram, Appendix I, C, and in Hanson, et a l . , [14], However, a brief description of the method of calculating the temperature on each stage 1 - 1 2 w i l l be presented here. This was fe l t to be necessary because of the unique method used by Hanson, et a l . , for this purpose. Each typical stage calculation begins by sp l i t t ing the i n -coming l iquid and vapor flows in proportion to the calculated flows from the previous i terat ion. An iterative flash calculation is then done at a fixed temperature to calculate the new amounts of each component in vapor and l i q u i d . From these flows and compositions, the l iquid and vapor enthalpies (QUIH and VAPH) are determined. The temperature of the flash calculation is now raised by 1 ° and new l iquid and vapor compositions are determined, allowing evaluation of the l iquid and vapor enthalpies once again (QUIHl and VAPHl). By subtracting (QUIH + VAPH) from (QUIHl + VAPHl), the heat required to raise the temperature 1 ° [HCAP] is obtained. Hence, by taking the difference of input enthalpy from out-put enthalpy, and dividing by HCAP, a predicted rise in stage temperature is obtained. This increment is added to the stage temperature to obtain a new stage temperature. 2 . Input Subroutine [INPUT] This subroutine is called from the main program and performs the task of reading in the required data (as l i s ted in Appendix A) . It also performs the following tasks: (a) Cal l ing of the bubble point calculation for feed and subsequent calculation of feed enthalpy from this bubble point temperature. 1-13 (b) Calculation of feed molecular weight from feed composition and molecular weights of each species (and subsequent calculation of molar feed rate from mass rate) . (c) Print out of i n i t i a l conditions. (d) In i t ia l i za t ion of molar enthalpies on each plate and compositions on each plate. (see logic diagram in Appendix I, C and Hanson, et a l . , [13]. 3. Dew Point Subroutine [DEWPT] This subroutine is called from the main program and is used to calculate the reboiler (total) temperature knowing the vapor composition leaving the reboiler from the l iquid composition in the reboiler. This calculation is performed by predicting a temperature, and knowing the vapor composition, calculating the sum of the l iquid mole fractions using the equilibrium constant. If this SUMX ^ 1.0, then a temperature 10 .0°F higher is chosen and SUMX re-evaluated. From here, a secant method [29] search is used to obtain the dew point temperature. Dew point calculations are always performed when * - n e v a P ° r composition is known, (see Logic Diagram in Appendix I , C and Hanson, e t a l . , [21]. 4. Bubble Point Subroutine [BUBPT] Although this subroutine is called from two parts of the program—input subroutine, where i t is used to calculate the temperature of the feed at i t s bubble point; and main program—its primary use is in the main program where i t is used to calculate the temperature in the condenser Knowing the vapor composition leaving the top plate (KN), the temperature at which l iquid of this same composition w i l l be formed can be calculated. A temperature is predicted, and knowing the vapor composition, the sum of the vapor mole fractions at this temperature is obtained. If SUMX ^ 1.0 then a temperature 1 0 . 0 ° F higher is chosen and SUMX re-evaluated. The secant method [29] is then used to converge to the bubble point temperature. A bubble point temperature is calculated when the l iquid composition is known. (see Logic Diagram in Appendix I C and Hanson, et a l . , [21]. 5. Reaction Subroutine [REACTN] The reaction subroutine is called from the main program for each plate in the column for each upwards or downwards i terat ion. The rate at which each component is being consumed or produced is calculated in this subroutine in moles/unit time. This change in number of moles is returned to the main program and is used in material balances 1-15 for the plate. The change in number of moles of each component is calculated from the law of mass action using the Arrhenius law for reaction coefficients and the temperature and l iquid composition on the plate. The upper l imit on the number of moles of each component which can be consumed i s , of course, the total number of moles of that component present. This is not realized by the rate expression and a section to control this was written into the reaction subroutine. 6. Output Subroutine [OUTPUT] The function of this subroutine is very straight-forward. It simply outputs the f inal values obtained from each simulation run (see Appendix I, A) in a specified format. It is called from the main program after a l l stopping cr i ter ion are sat isf ied. 7. Density Subroutine [DENSTY] Given the mole fractions, temperature of l iquid on each plate, and the density of each pure component, the density of the mixture is calculated. Density is considered to be a l inear function of mole fraction and hence is calculated as follows: E" GENX (T, N) I DEN (I) (see Logic Diagram in Appendix I, D and Hanson, et a l . , [21]). Logic Diagram ^ START ^ T DEFINE EQUILK IHALP(Y,Z,T CALL INPUT AND READ ITMAX, ITPRIN I T E R A T = 0 I T E R Z = 0 FACTOR = 1 0 L O O P 1 = 0 I NO YES :ONDLD<0 G> SLOW INTRO. OF REACTION NO 0 WRITE CONVERGENCE NOT MET' STOP CALL OUTPUT STOP ^ A WRITE 1REQS. NOT MET 1 T NO CALL OUTPUT I ITER2= ITER2-ITPRIN CALL DENSTY I CALC. FLFEED(I) FLFEES (TO RXN) CTER2< ITPRIN YES NO HBALOK=0.0 HBAOKl , 2 , 3 , 4,=0.0 N=KM1 tf)ELTA=-l CALC. FLFEED(I) FLFEES (TO RXN) 0? YES .REBOILER CALL DENSTY I CALC. FLFEED(I) FLFEES (TO RXN) CALL REACTN CALL DENSTY I CALC. FLFEED(I) FLFEES (TO RXN) I CALL REACTN RECALC. FLFEED(I) FLFEES (TO FLASH) H OO CALL REACTN I RECALC. FLFEED(I) FLFEES (TO FLASH) I CALL DENSTY I CALL HEATRX I CALC. QIN CALL REACTN I RECALC. FLFEED(I) FLFEES I CALL DENSTY I CALL HEATRX I CALC. QIN RECALC. FLFEED(I) FLFEES (TO FLASH) CALL DENSTY CALC. HEATRX T~ CALC. QIN CALL DENSTY zn CALL HEATRX CALC . QIN J I CALC. FLL FLV NO PREDICT V-L SPLIT TO BE SAME AS LAST ITER. NO YES CALC, FLL FLV CALC. EQCST CALC. GENX(I,KM) QUIDX(I) I CALL BUBPT I CALC. QUIMOH(KNl) VAPMOH(KNl) I CALC . QUID(KM) QUITOP • CALC. VAPY(I) GENX(I,KMl) GENY(I, KMl) I CALL DEWPT I CALC. QUIMOH(KMl) VAPMOH(KMl) I CALC. VAPOR(KMl) I CALC. QUID(KMl) O 4 . CALC. FLLIQ (I) FLVAP(I) ~ ~ T -CALC. QUIH VAPH 1 T=TEMP (N) +1.0 ~ T — CALC. EQCST ~~r~ CALC. FLVAP1(I) FLLIQ1 (I): n i CALC. VAPHl QUIHl CALC. HCAP TEMP(N)= TEMP(N)+ DELT C A L C DELV + ,0 y | DELV | -" FLVAP (I> DELV= -FLVAP (I) CALC. FLVAP(I) CALC. FLLIQ(I) CALC. FLVASP FLLISP DELV= FLLIQ(I) I LO CALC. GENY(I,N) GENX(I,N) CALC. EQCST 7 CALC. VAPMOH(N) QUIMOH(N) CALC. VAPORN QUIDN I HBALOK= HBA0K1 CALC . VAPOR(N) I CALC . DENSTY CALC . QUID(N) 5> HBAOK2 : 1.0 I HBALOK= HBAOK2 f ~ CALC . QUID(N) See Program L i s t i n g CALC. VAPOR (N) J GO TO NEX1 PLATE "OWN START DOWN SEQUENCE NO HBAOK4=l.0 HBALOK= HEAOK4 I CALL DENSTY I CALC . QUID(N) I CALC. VAPOR(N) GO UP DNE PLATE 1-29 SUBROUTINE INPUT DEFINE THALP(Y,Z,T! • READ IN DATA ~ T -CALC. FEED RATE IN MOLES7TIME t CALC. BUB. PT. AND ENTH. OF FEED READ IN REACTION QATA PRINT OUT DATA z n INITIALIZE COMPSNS. OF LIQUID & VAPOR RETURN END SUBROUTINE DEWPT 1-30 DEFINE EQUILK(A,B, C,T,P) T KTIMES=1 CALC . QUIDX(I) SUMX RETURN - , o END + SUMX-1.0 -BDFERR KTIMES= KTIMES-1 SLOPE= + SUMX-SUMXO T-TO YES WRITE 'SLOPE IS ZERO IN DEWPT CALC' RETURN END NO SUMXO=SUMX TO=T T = 1.0-SUMX SLOPE +T SUMXO=SUMX TO=T T=T+10.0 SUBROUTINE BUBPT 1-31 DEFINE EQUILK(A,B, C,T,P) KTIMES=1 CALC . QUIDX (I) SUMY RETURN END YES WRITE 'SLOPE IS ZERO IN BUBPT CALCI I RETURN END SLOPE= SUMY-SUMYO T-TO 1 SUMYO=SUMY TO=T I T= 1.0-SUMY SLOPE •4-T KTIMES= KTIMES SUMYO= SUMY TO=T SUBROUTINE REACTION 1-32 RANKIN= TEMP (N) + 460.0 _ H CALL DENSTY CALC. RESTIM FNMOLS(I,IR =NUMOLS (I,IR) CALC. JFMASRF (IR) 1-33 CALC. FMASRR (IR) I CALC. DXIN (I,N) NO DXIN (I,N)+ -FLFEED (I) +1.0E-20 FLFEED (I) + DXIN(I,N) <0.0 I I CALC. SDXIN I CALC. FLFEED (I) FLFEED I CALC. GENX (I,N) I RETURN END SUBROUTINE OUTPUT PRINT OUT FINAL CONDS I STOP END SUBROUTINE DENSTY RHO= GENX(I fN) DEN(I) RHO= 1.0/RHO * RETURN END SUBROUTINE HEATRX 1-35 Program List ing 1-36 £ >|< V- A * * * ;!- A V * $ * '!* A '-!>' # =i< »' * ^ * * # >!- * v * V V * < V >!- ^ V j-.ft. it if -k ^  it s rt j;c jit * _ C S I W'U L A T I C N MKCnRAM FOR S K'.U 1.1 A.NFCOS F. AC T ! ON AND D I S T I L L A T I O N C B A S I C HANSOM " R O G R A W I T H MODIFICATIONS C •< FUR ITT E M FOR i.iNE CULU".N C riCLOU" I \ T R O 0 l ) C F O • C - "FACT ION! OCCURS ON P L A T E S  C HEAT CP R F A C 1 I O N E N T E R S INTO E N l n A L P Y B A L A N C E S C C O N O F N S E K I S K N 1 , TOP P L A T E I S K M , F C E C PL AT F I S KF, C BOTTOM P l . A T F I S K M , P. F 3 0 IL I: !"< I S KM1. C M A X . * PI .ATF 3 = 1 0 0 : M A X . « C 0 M R C. M E N T S = 9 ; M A X . * R E A C T I C N S = 6 C VAPOR — L I CO U 10 F O i j I i . 13 P H I P E x °R E S S I CN U S E D : R A O U L T ' S LAW C V A ^ O O P R F S S ' . H F S O ^ T A l N E O F R O M A N T O I N F E Q U A T I O N  ' c A " R H F : - I I O S - T Y ^ E E X P R E S S nn U S E D F O R R F A C T I O N C O E F P I C 1 E N rs C A L L T E ^ ' F R A T U P - F S A R E I N O E G R E C S F C . F L O W S ARB \-l U N I T S OF M O L E S / U N I T T I H F C F EE 0 I S I N T R O O U C E O AT ITS BO B i l l . E P O I N T C. T C T A L R E B O I L E R C F PART OF C O L U M N BOTTOM L I OJ 10 I S U S E D C T01 Al CONOE-JSFR L S E O •  C £ v * rt >'* " iV V V> -*!< >- * V K R - V * : T ^ 1 • is « =< -Je « y: « £ rt IT * »- *t A »< J;; J * jc ^  ?t * :fr: 01 M E N S ION SPR ( 100 ) , P A L AT ( 10 ) , N A M E ! 6 , 10.) , A F ( 1 0 ) , E F ( 1 0.1.., A =. ( 1 0 ) , 1 F R ( I 0 ) , TiTTATI ( 1 0 1 , H O I . O X ( 9 , 1 0 0 ) • • 0 1 M R U S I ' lN G f N X ( 9 , 1 0 0 ) , G F ' : Y ( 0 , 1 0 0 ) , F X T F 0 ( 1 0 0 ) , A ( 9 ) , B ( 9 ) , C I 9 ) , 1 E N T I •' K ( ° ) . F N T M L ( ° ) , E N T H M O ) , E N 7 HW ( ^ ) , T F M P ( I Q O ) .  2 VA •>'.!« ( 1 0 0 ) , 0 U 1 [)( 1C, 0 ) , ( L F E E O ( 1 3 0 ) , V A I ' Y ( 1 0 0 ) , 0 0 I C X ( 1 0 0 ) , S 'J X ( 1 0 0 ) , 3 SUMY ( I O C ) , O U I M O H C IOC 1 , V A P M U H t 1 0 C ) , F L V A P I 1 0 0 ) , F L L I 0 ( 1 0 0 ) . F L V A P 1 4 ( 1 0 0 ) , F I . L 1 0 1 ( 1 0 0 ) , S I ) M P 0 ( 1 0 0 ) , O U N B A L ( 1 0 0 . 1 , P * D S U M ( 0 , 1 0 0 ) D I M E N S I O N M 0 MP) L S ( C< , 6 ) R F N ' - '0 L S ( 9 , 6 ) , 0 X 1 N ( 9 , 1 0 0 ) , F MA S R F ( 6 ) , 1 F M A S R R (6 ) , OK'~>ER ( 9 , 6 ) , K E A C < F ( !. 0 0 , 6 ) , R E A C K P . ( 1 0 0 , 6 ) , S D X I N ( 1 0 : ) , 2 F N A T 0 ''• ( 9 , 6 ) , ; i A T O V ( Q , M  D I M E N S ION H O - ( 1 0 0 ) , CP I 9 ) , O F N ( 9 ) COr--MC-\ wQPT C , T O , C P , O E N C O M O N G E n X , G F . n y , 6 X T F D , . . A , | j , C , F N T H K , F N T H L , =NTHU, 1 E-MTH'W, T E M P , V A W 1 R , UUIJ, F ' L F E ' r D , V A R Y , O U I O X , S U M X , S U V Y , 2 O U t K O H , V A P M C H , C L V A P , F L L 1 0 , F L V A P ] , F l . L 1 0 1 , S U M F C , 0 U N 3 A L , 3 P R OSU'•' • R E B L n , C O M O I - 0 , TOTFiO , TOT F P U , R , R CONST . PRRS ,  4 F N M O L S , UX I N , F M A S R F , FM A S R P , O P . 0 E R , R E A C K F , R E A C .<•'{ , SO X I N , H Q L O X , ' 5 S P R , 5 At. A T , A F , E F , A R , E R , S A L T , K N . K f , K F , N A T U M , N U M O L S , F N A T O M , N A M E 7 4 6 F O R M A T ! ]H ) 7 4 7 F C P P A T ( l h l ) ' ~ ~ " ~ " " ' ' ' F O U I I.K ( A , B , C , T , P ) = ( E X P ( ( A - B / ( ( T - 3 2 ) / l . 8 + C ) 1 * 2 . 3 0 3 ) ) I? T H A I . P ( Y , ? . , T ) = Y T -t- I  1 C C N 1 1 t - : u E W R l T C ( f c , 7 4 7 ) C _ c I N P U T D A T A A N O I N I T I A L I Z A T I O N O F T F M P S , F L O W S , C O M P O S if I O N S C C A L L I N P U T ( N C O ^ P S , P R O E P R , c o F E R P , i P . M A X , N , R F S T I M , F L E E E S , N A M A X )  1 R = 1. R E A L MAX;< M A X K = AF t I R ) _ _ c ' C D E V I C E T O R E A D M A X I M U M a O F I T E R A T I O N S r. 1 - 3 7 P E A H 5 , 3 0 0 0 > I T N A X , I T P R I N 3 0 0 0 F O R M A T ( M 6 ) WR I T[f ( <s, 4 5 2 ) I T N A X , O U I T O P n : i c r . M O L O . i . T .o .c ) G C T O no Kf'Jl = KN - ] K " 1 = K •> 1 I T E P A 1 = 0 I I T R ? = 0 P A C T O R = 1 0 . " no vr.GKPs 2 suvro< i ) = E X T F O < 11>.<TOTFO L O f l P l = 0 ! 5 3 C O N T I N U E G C S L O W . . l . N T R O D ' J C T 1 C N . C F R F A C T I O N ____ ; C I P. = 1 I F ( I T P R A T . F C . O ) O H T O 5 0 0 G O T 0 5 !.i 3 50 0 A H I R ) - C . 0 0 1 v A F ( 1 ? ) A R ( ! R ) = 0 . 0 0 1 ~- A R ( I S ) _ _ _ G O TO 5 0 9 . . . 5 0 3 I H I T P R AT . F 0 . ? 5 ) GO T O 5 0 4. ' . r-0 T O 5 0 5 5 0 4 A H ! R ) = , ' . t l I P I - I O . O A R ( I » ) = Ap. ( 1 P ) * 1 0 . 0 G O T O 5 C ' < , . . . . _ . _ 5 0 5 I H I T F P . A T . r-o. S O ) GO T G 5 0 6 . . G C T O 5 0 7 5 0 6 A F < R ) = A F ( [ P 1 0 . 0 A P I I P. )= i R ( I P. )* 1 0 . 0 GO TO SC<5 5 0 7 I F( I TFR A l . F-C . 10.0) GO 1 C . . 5 0 8 . GC TO 5 0 9 5 0 8 AT ( 1 R ) = i : F - ( I P ) * 1 C . 0 A k 1 1 R ) = AR ( I R )<• i a. 0 '  5 0 9 C C N T I M U F I F ( I T F R A T . F 0 . 1 T i v A x ) 0 0 TO 6 0 0 1 F ( I T F R ? . L T . ITPR IN)_GO TO. 61. . C C P R I M T OUT OF I N T E R R E D ! A T F MAP TO C H E C K C G N V E P G E N C E C W R 1 T E ( 6 , 1 0 0 0 ) 1 0 0 0 ' FORMAT ( 1 H 0 , oOHR FQ'J IP.EV>ENT S- A P E NOT MET WP.I TE ( t , 7 4 6 ) WP. I TE ( 6 , 1.0 0 1 IPPSfRft, l -BACK 1 . HBAOK ? , OB A 0 K. 3 , H n AO K 4 1 0 0 1 F (IP A T I 1 X , 7H P R S F P R = F6 . 4 , 5X , 7 HHP A OK 1 = F6 .4 , 5 X , 7 H H 6 A 0 K 2= Ffr . 4 , 5X , 1 7 H H & 4 0 K 3 = p 6 . 4 , 5X , 7H Hii A G K 4= F 6 . 4 ) C A L L OUTPUT ( I T F P . A T , NC CM PS , QU I TOP , N A M A X ) H E P ?= I T F P . 2 - I T P R I N ..... _ . . 6 h R A L O K = C . O . H U A C K 1 = 0 . 0 uv-.kOK?=••:,. o • •• b o A G K 3 = 0 . 0 H H A 0 K 4 = 0 . 0 C _ _ _ _ . _ „ C O E G I N I T E R A T I V E S E Q U E N C E AT R E B O I L E R S I N C E Q R F . B . S P E C I F I E O M - K M 1 1-38 N O C L T A = - 1 K T I M E S = 2 " ( K M ] - K M ) nn 1 2 5 K C O J N T = i , K T I M E S F L F E E S = C O I F ( N - K " 1 ) 2 C i< 4 . «. c f. f < F I * O I L E « R E A C T I O N C A L C U L A T I O N c 4 no 5 i = i. , N C . C M F S C A L L D F N ' S T Y (ij-f-jy , 1 F M P ( M ) , HHO , N , D F N , N C O M P S ) r L F E E 0 ( 1 ) = GEN •< ( 1 , K M 1 l - ' S P R ( K M l ) v » H D 5 F L F R F S = E L E = E S t - E L F F - E D ( I ) C A L L H EACT.-J ( VCOMPS . N , 1 RMAX , RE ST 1 M , F L F E E S I F L F E F S = 0 0 0 SO I = 1 , N C . C M F S F L E ' E E O U ) = E L E C E D U ) + GENX I 1 , K M ) * OU1D<KM) SO F L F E E S = F L F E E S + F L F E H D ( 1 ) C A L L DE NST Y (f-F,\X , T F . y P l N ) , P H 0 , N , fl E N , N'C GM PS )  C A L L H E A T R X ( I - M p ( ,\ ) , 0 X 1 H ,HuR ( N I , N , HOR 1 0 , 1 0 , C P . NtJMO L S , N C C M P i , I I P ) Q 1 N = vj U 1 D ( K M ) * C U I MCH(KM) + R E B L D + S P R ( K _M 1 ) * C U. I .M C H ( K M1 ) * RH. C-.HO R ( M ) GO TO 11 2 0 6 I F ( N - KF ) 2 0-* , 2 0 7 , 2 0 9 C C F E E D P L A T E R E A C T I O N C A L C U L A T I O N C 207 DO 2 0 8 1 = 1 , N C O M P S . . C A L L D E N S T Y (GE NX , TEMPI N ) , RHO, N , T E N , NCOMPS ) F L F F E O t I )=r,E'IX( I , K F ) •'" S P R I K F ) = R H 0 2 0 8 F L E E T S = F I, F E ES + FL F K F I) ( I )  C A L L K E A C 1 N ( N C O M P S , N , I R M A X , R E S T I M , F L F E E S ) F L F E E S = 0 . 0 0 0 20>l<0 1 = 1 , NCOMFS F L F E F 0 ( I ) = F L E E t E M I l + G E M Y t I , K F + 1 )»= V A P O R ( K F +1 l + G E N X I I . K F - 1 ) 1 *QU I 0 ( K F - 1 I + T O T E O - E XTFO( I ) 2 0 8 0 F L F E E S = F L F F F S + F L F F F 0 ( I 1  C A L L O E u S T Y < ; ; g N X , T ' - M P l N ) , R H 0 , N , : E N , N C O M H S ) C A L L H E A T R X ( T E M P ( N ) , D X I N , H O R ( N ) , N , HOR TO , TO , CP , N UMO L S , NC OM, PS , . 1 I R ) _ . . .. G I N = OU I D ( K F - 1 ) * OU I y i U H (' KF — 1 ) + V A P O R < K F + 1 ) * V A P M O H ( K F + 1 I + T O T F D H 1 + S P I U K F I " C U I MOH ( KF ) * R H O - H O R (N ) GO TO U  2 0 9 I F- ( N - K N l ) 7 , 7 , 9 C C C O N D E N S E R R E A C T I O N C A L C U L A T I O N c •' ' " ' ' ' 7 DC 3 I = -1 , NCOMPS C A L L D E N S T Y ; G E N * • T F M P ( N ) , ? H P , N , 0 E N , N C O M P S )  F L E E E!) ( 1 ) = 0 E' •' X ( I , K N' 1 ) S P R I K IM 1 ) *• R H n 8 F L F E E S = F L F E E S + F L E E E O ( I ) C A L L R E A C T N ( N C O M P S , N., IR_M A x , R FIST I M , F LF F.E S ) F L F E c S = 0 . 0 DO 7C I = 1 . NCOMPS F L F E E D ! j ) = EL E E ED ( I ) + GEN Y ( I , K'l ) *V A P OR U N )  7 0 F L F F E S = F L E E F S + P L F E E D l I ) C A L L D E N S T Y ( G E N X , T E M P I N ) , P H O , N , O E N , N C O M P S ) C A L L H E A T R X < T F M, P ( N) ., IX . I N , HO P J N ) , .Nj HO PTO,.TO,. CP »_NLIMOL S, NCOMPS,... 1 I R ) G I N = V A P C R ( K M * V A P Y 0 H ( K N ) + S P R ( K \ 1 ) *QU I MO F ( KIM 1 ) * R H O - H G R ( N) 0 0 TO 1 1 1-39 c C . T Y P I C A L P L A T E R E A C T I O N C A L C U L A T I O N C 9 0 0 10 I = 1 , N C O M P S C A L L O i . N S l Y J C . E M X , T E M P ( N ) . RHO , N , D E N , NCOM PS ) F L E P E P ( 1 )= GENX ( I , N > * S ? R ( M * R H O  H i F L F E E S = E L E E E S + E L F E E O l 1 ) 3 0 0 F O R M A T [ <!E K>./ , ) C A L L R E A C T N ( N C O M P S t N , I R M A X , RE ST I M . , F L F E E S).._ . . _ F L F F E S = r.o 0 0 12 1= 1 , N C O M P S F! H ' . ' ( I I - f" L E E r 0 ( I ) + GENX ( I , N - 1 ) *QU I 0 ( N - 1 ) + GEN Y( I , N » 1 ) * VA ^ 0 R ( N+ 1 ) 12 F L F E E S = ^ L F F E S - t E L F E E D ( I ) C A L L D C N S T YI G E N X , TE V P ( N ) , i - 'Hfl, K , D E N , NCOMPS ) C A L L HE ATP.X (1 E M P ( N ) , DX I M , |,C)R ( N U N , HOR TO , TO , CP , N U M O L S , NC OM => S . HR) C I N = O U I D ( N - ! ) * 0 U IMU H( N - 1 ) + V A o O R ( N + ] ) v V A PMOH ( N+ 1) + S PR ( N) *RHO<-' i ou; •>•; ••-) -•<"•< ( N )  11 C O N T I N U E c C C A L C U L A T I O N O F . C O M P O N E N T . FLOWS . . F R O M ..A . . S T A G E . . C I F t N - K M 1 ) 2 1 3 , 2 1 0 , 2 1 0 2 1 0 C O N T I N U E ; ' C C T H A T IS S T A G E I S R E B O I L E R C . _ _ . __ DO 2 1 8 I = I , N C O M F S , V A P Y t1 > = F L F - E C ( I ) / E L F E E S G E N X ( | , K M l ) =G.FNX ( I , KM 1 ^ _ 2 1 3 G E N Y I 1 , K M l ) = V A i - 1 Y ( I ) C A L L D E W P T I V A P Y , O U I D X , T E M P ( K M 1 ) , A , B • C , N C O M P S , K , P D F E R R , P R E S ) Q U I M O H ! K M l ) = 0 . 0 . . . . . _ ._ V A P M O F ( K M 1 ) = 0 . C 0 0 2 1 2 1 = 1 , N C C M P S QUI MPH ( K M l ) = Qi.U MQH ( K M l ) + T H ALP ( ENTHK ( I ) , F N T HL ( I ) , T FM P ( K *•' I ) ) 1 G F N X I I , K. v 1 ) 2 1 2 . V A P M 0 H IK M1 ) = V A P v C h ( K M l ) + T H A L P I E N T H U I I ) , E N T H W ( I ) , T E M P ( K M 1) ) . 1 ' "GENY ( [ , K M ) _ _ ._ _ V A P O R ( KM 1 ) = ?.EHL D/( V A P M 0 H ( K M 1 ) - O U I MOH( KM ) ) G U I O l K M l ) = O U I O ( K M ) +SOX IN ( K M l ) - V A P O R ( K M l ) A 5 0 Fr;p"'i.U(^rio.6)  4 5 1 F O R M A T ( 1 2 ) 4 5 2 F O R M A T ! 12 , F 1 0 . 6 ) 4 5 3 C O N T I N U E . . . . . . . GOTO 122 2 1 3 I F ( N - K N l ) 2 1 4 , 2 1 4 , 2 1 7 2 1 4 C O N T I N U E . c c r T H A I I S S T A G E I S C O N D E N S E R L DO 2 1 9 I = 1 , N C O M P S — •~ • — — - - • • GEN XI 1 ,.<N1 ) = C L F E E D ( I ) / F L F E E S 2 1 0 OU I DX ( 1 )= G E ' X ( 1 ,K M I. ) C A L L K L B P T ( C J I DX , V A P Y , T EMP( K M J , A , B, C , N C O M P S , K , B D E E R R , P R E S ) V A P M O H ( K N l ! = 0 . 0 Q U I M C H ( K N l ) = 0 . 0 . . . . _ _ DO 2 16 I = 1 , N C O M P S V A P M O H ( K NI ) = V A P M O H I K N 1 ) + T H A L P ( E N T H U ( I) , E N T H W ( I ) , T E M P ( K M ) ) 1-40 216 OU 1MOHINN1 I = OUWIHIKM] v T H A L a ( E N TH K ( I ) , E N TH L ( I ) , T E M P ( KN 1 ) ) " 1 G E N X I 1 , K M ) QUID! K M ) = (K/ IP + 1 . 0 ) 1 ' VAPOR ( K M OUITCP = V A P Q R I K M +Snx I M K N 1 )-OU I D( KN 1) 454 CONTINUE OQ TO 122  217 CONTINUE C C THAT IS STAGE IS , PL.AT E...IN" THE. C OL U V N C 96 FLVASC = VAPOR ( N ) CALL DENSTY I E.ENX , TEMP ( M ) ,'-' HE;, N , 0 E N . NC Cm P S )  ELL I SO = 0UIQ('.') + SPR< M vPHC I E 1 F L L I S 0 - r-LVASU) S 7 , 9 3 , Jfi 97 ELL = FLEEES/ I FLVASC/ELL ISO + . 1 . 0 ) _ _.. FLV = F L F F F S - FLL GO TO 9 9 • 9R FLV = F l .EEES/( FLL I S C / F L V ' S O + 1 . 0 )  FLL = F L F E E S - FLV 99 FLVASO = O.C FLLISC = 0 . 0 _ OUIH = 0 . 0 VAPH = 0 . 0 DO 100 I = 1. , N G C ^ P S  EGCST = EGUII.K ( A( U , !M I ) , C ( I ) , TF* » ( N ) , P R. E S ) E L V A P ( I ) = F l F E E O I I )/I FLL/FLV/EOCST + 1 . ) ) ELI I'.) ( I ) = FLFEEOI I ) / I E L V : : E CC ST / F LL ' + .. 1 .9 ) _ FLVASC. = FLVASC + F L V A P ( I ) •FLLISC = F L L I S C + E L L I 0 ( 1 ) OUIH = OUIH < E LL I 01 I )* TH ALP( ENTHK ( 1 ) , FNTHI. ( I ) , TEMP ( N ) )  100 VAPH = VAPH + F L V a P ( I ) * THALP(EN 1hU( I ) ,EN 1HWI I ) , TEMP(N) ) 773 FORMAT(/T 5 , E 1 0 . 4 ) SUMX(N) = F L i . ISC/EI.I. . SUMY(N) = FLVASC/FLV T = TEMPIN) + 1 . 0 00 I HI = 0 . 0  VAPH1 = 0 . 0 ' 00 101 1 = 1 , N C 0 " P S EQCST = EOU ILK ( A ( I ) , [W I ) , C( I) , T , PRE S ) F L V A P l ( I ) = c L E F E O ( I 1/( FLL/FLV/ECCST + 1 . 0 ) F L I . I 0 1 ( I ) = FLFEEOI I ) / I F L V"' E GC S T / E L L + 1 . 0 ) VAi 'Hl = VApn i + F LV A P 1 ( I ) ! 'T H AL P ( F N T i l U I I ) , E N T H W I I ) , T) ; 101 0UIH1 = 0UIH1 + ELL 101 ( I ) - T H A L P ( E N T H K ( l ) , E N T H L ( l ) , T) HCAP = VAPH1 + QUI HI - VAPH - OUIH 1 F ( HC A P . EQ . r ' . 0 ) GO .JC . 774 OELT = IOIN - OUIH - VAPHl/HCAP 301 FORMAT (6 F15 . 4 ) GO TO 772  7 7 4 0 E L T = 0 . 0 77 2 T EMP(N ) = T EM PIN)+DELT FLVASP = C>.<" • FLL ISP = 0 . 0 00 107 I = 1.NC0WPS OEI.V = PELT ( F L V A P 1 I I ) - E L V A p ( I ) )  IF IOELV ) 1 0 2 , 1 0 6 , id 102 I F I A B S ( O E L V ) - FLVA PI I ) ) 10 6 , 1 0 3 , 103 103 D EL V = - F L V A P ( I ) _ GC TO 106 104 IF IOELV - F L L I 0 I I 1 ) 1 0 6 , 1 0 6 , 1 0 5 105 OELV = F1.1 I 01 I ) 1 0 6 F I. V A P ( I ) = F L V A P ( I ) + D C I. V FL I . 1 0 ( 1 ) = r L L 1 0 ! I ) - O C L V . F L V A S P = F L V ' S P + F L V A P I I) 1 0 7 F L L I S P = F L L I S P 1- F L L I O ( I ) V A P M O H ! N ) = ) . 0 G U I MQH I N ) = '. . 0  4 0 4 F U R " A T { ' K V A L U E S A F T E R T E E R A T U R E C H A N G E ' ) 0 0 1 0 8 I = l . N ' C O M P S G E N Y ! I,N) = E L V A P U )/I F L V A S P ..1 . O F - 2 0 . ) G E N XI I . N ) = E L L I Q I I ) / ( F L L I S P + 1 . 0 E - 2 0 ) E C C S T = E ) U I L K I A( I ) , [\l I ) , C I I ) , T E M P I M , P R E S ) V A P M ( . ) H ( M = V A P M Q H ( , \ ) + G C N Y ( I , N ) " 1 H A I. P I EM THU ( I ) , E N T H W ( I ) , 1 T E ?•' P I N ) ) ioa O U I M O H ( M ) = ' : U I N C H I M + G E N X I I , N ) * - T H A L P ( E N T H M I >, E N T H L <T >, . 1 T EMP (N ) ) _ . . :  V A P C R N = F L V - ' - S P G U I O N = r i . L I S P I F ( E l V A S P / r-| y - 1 . 0 ) l C 9 , I C " . 1 1 1  1 0 9 I E ( V A P C P N / E L E E E S - 1 . O S - 4 ) 1 1 0 , 1 1 0 , 1 1 1 1 1 0 H B A 0 K 1 = 1 . 0 F B A L C K = H B A C K 1 . _ _ _ V A P O R ! N) = F L F E E S 1 . 0 E - 4 C A L L O E N S T Y l O E N X , T E M P I N ) , R H O , N , O E N , N C 0 M P S ) QUI 01 El) = 0U I O N - S PR ( N ) " R H 0 • ' C O TO 122 1 1 1 I F ( F L L I S P / F L L - 1 . 0 ) 1 1 2 , 1 1 2 , 1 14 . c. 1 1 2 C O N T I N U E . . . . C A L L O E N S T Y I O E N X , T F M p ( N ) , R H 0 , N , O C N , N C O M F S ) T = O U I O N - S P P , C: ) * R H 3 ' l F ( T / P L - E E S - I . 0 E - 4 ) 1 1 3 , 1 1 3 , 1 1 4  1 1 3 H R A 0 K . 2 = 1 . 0 F 8 A L C K = H B . K . K 2 . O U I O ( N ) =" F L F E E S . . * . .1 . .0E . - .4 V A P O R ( N' ) = V A P O R N 0 0 T O 1 2 2 1 1 4 I F U R S I F L V - F L V A S P i / F L V 1 1 5 I F I A Q S I E L L - F L L I S P ) / F L L - F A C T O R * P R D E R ^ / T O T F 0 ) 1 1 7 , 1 1 7 , 1 1 6 1 1 6 F L V = F L V A S " F L L =. F L L I S P . _ G O T O 9 9 1 1 7 1 F I A B S ( F L V A S P - F L V A S C ) / F L F E E S - P R D E R F / T O T F D ) 1 1 9 , 1 1 9 , 11 S 1 1 8 HBAQX 3 = 1 . ; F B A L C K = H P A C K 3 • • G O T O 121 C . _ . _ _ C N O T E T H E D I F F E R E N C E FROM H A N S O N ' S , D U E T O H O L D UP C F L O W I S F L O W OF L I C U I O FROM ONE P L A T E TO T H E ONE 8 E L CW C FLOW IS SA>'E AS O ' l ID IN )  1 1 9 C A L L D E N S T Y ! G E N X , T E P I N ) , <JH 0 , N , O E N , N C O M P S ) F L 0W = F L L I S P . . _ . . . . I F ( A Fi S ( F L C W - R L L I S C ) / F L F E E S - P R 0 E R R * F A C T 0 H* T O T F 0 ) 1 2 1 , 1 2 1 , 12^-1 2 0 H B A O K 4 = 1 . 0 F T< A t. C K = H R . ' - C K A •  1 2 1 C O N T I N U E C A L L O E N S T Y ( 9 £ N X , T E M p l N ) , R H O , N , D E N , N C O M P S ) cui D ( N ) =ou I r-'.-s P R ( N i -•• R H ; ; .._ V A P O R ( N ) = V A P C R N 4 5 5 C O N T I N U E 1 2 2 I F 1 N - * M ) 1 ? ^ , 1 2 * , i 2 4  - F A C T C R ^ P P O E P . R / T 0 T F D I 1 1 5 , 1 1 5 , 1 1 6 1-42 c C C H A N G E O F N O H . T A F R O M - 1 Tl) + 1 R E V E R S E S S I M U L A T I O N F R O M U P W A R D S C T O D O W N W A R D S W O R K I N G C 1 2 3 C C N T I N C F N l.i r L T A = 1  1 2 4 N= N + N 0 F. L f A 1 2 5 C O N T I N U E C c C A L C U L A T E ' ~ H E A T ' U N B A L A N C E S ~ " " " ' ." " c no 1 4 1 N = K N 1 , K M 1  C A L L H E A T R X ( I E M P ( N) , OX I N , i ' O R ( N ) , N , H O R T O . T O , CP , N I J M C L S , N C O M P S , 1 I R ) I F I N - K M 1 ) 1 2 " , 1 2 7 , 1.2 7 1 2 7 O U N B A L I N) = Q U I 0 I K M ) >'OU 1 MOF . I K M ) + R E B L C - O i j I C ( K M 1 I * O I J ' i M O H I M ) 1 — V A P 0 P. ( N ) " V A P K 0 h ( N ) — H 0 R ( N ) GO TO 1 4 1  1 2 8 I F ( '! - K N 1 ) 1 2 9 , 1 2 9 , 1 J O 1 2 9 Q ON ti A L ( K M 1 ) = V A P O P . ( K N ) * V A P M O H ( K N ) - OU I D ( K N 1 ) *QUI M O H ( K M ) 1 - C U I T O P » O U I v O H ( K M ) - H O R ( N ) , V A P O R ( K N l ) = Q U I T E " " ' G O TO 1 4 1 1 3 0 C I V . AI { N) = V A a g p ( K + l ) - " V A P M P H 1 N + I ) + 0 U I D ( N - 1 ) " 0 1) IWQH ( N - 1 ) - HO - ( N )  1 F ( N - K F ) 1 3 1 , 1, 3 2 , 1 31. 1 3 2 COUNBAI. I K F ) = O U N H A L ( K F ) + T O T F O H 1 3 1 O U N B A L I N ) = Q U N B A L I M - V A P O R ( N ) * V A P M O H ( N ) - OU I 0 ( N )*6lJ I M C H ( N ) 1 4 1 C O N T I N U E 1 4 5 C C N T I N U E 1 4 6 C U N T I N U C  C C C H E C K C O N V E R G E N C E C _ . • D O 3 3 3 N A = 1 , ' M M A X 7 " ~ ~ " ~ B A L A T ( f v A I = 0 . 0 T Q T A T i ( NA ) = 0 . 0 ; 1 0 T = 0 . 0 0 0 1 4 8 1 = 1 , N C C - ' P S D O 1 4 7 N = K N 1 , KM 1 . . . . _ 1 4 7 T O T = T O T + O X I N ( I . N ) " " " ~ " B A L AT ( NA ) = 0 AL AT ( N A ) +( T O T F D * E X T F 0 ( 1 ) ~ U U I T O P * G E N X ( I , K N 1 ) - O U ID( K M . l ) * G 1 E N X I [ , K M l ) ) N A TO v ( N4 • 1 )  1 O T AT 1 (!•, A ) = T 0 I AT I ( N A ) + F N A T O M l N A , 1 ) '''-TO T F O " * E X T F 0 1 I ) 1 4 3 • C O N T I N U F 8 AL A T. ( r> A ) = H A L AT ( N A ) / T CT A T I ( N A J 3 3 3 C O N T I N U E ' " ' ~ ' " ' B A L T = ( T O T F D + T O T - C U I T C P - C U I D I K M 1 ) 1 M C 0 . C / T O T F O P P S F P P . = 0 . 0 0 0 1 4 9 N A = 1 , NAM AX 1 4 9 P R S E R R = P R . S E P R + A B SI B A L A T I N A ) ) C „ _ _ _ _ ' C C H E C K A T O M I C U N B A L A N C E ' " ~ : : " " " " " " ' C • • ' I F I A P S I P P S E R R ) - " ^ O E P P . ) 1 5 0 , 1 5 0 , 1 5 2 ; • C : ' ' C C H E C K F L O W S F R O M S T A G E S C _ _ _ _ 1 5 0 I F ( H 8 A L C K ) 1 5 1 , 1 5 1 , 6 0 3 " " " " ' ' C C . C H F C K T f S E E I F R E A C T I O N C 0 E F F I C I F f-'T I S AT O F S I P E O V A M . J F , c 1 5 1 I F ( A F ( I R ) . l .T . ( M A X * - . 0 0 0 0 1 ) 1 G O T O 6 C 3 0 C P R I N T O U T F I N A L C O N D I T I O N S C WP. I TC ( 6 . 1 0 0 3 )  1 0 0 3 F O R M A T ( 5 ? * i 1 6 F F J N A L C O N D I T I O N S ) ' C A L L U L T P U T ( I T F R A T , N C CM P S i O U 1 T O P , N A X A X ) G O TO 17C _ • 1 5 ? CONTINUE C _C IN C. R F A S F C ('".;'N T F P. A N O C O N T I N U F C O L U M N I T E R A T I O N S  C 6 0 3 I T F R A T = I T F R A T + 1 I T F P 2 = I T F P . 2 + 1 _ . . G O T C . 1 5 3 6 0 0 w R 1 T F 1 6 , 6 0 1 ) _C . ' C C D . W F R G E N C F N O T P E T P.IJT M A X . H I T E R AT I C O S P E A C H E D C 6 0 1 F O R M A T (• 1 ' , T 5 , ' C f . N V E R G E N C E I S N O T M E T ' ) _ 6 0 2 C A L l O U T P U T ( 1 T E R A T , N C C M P S , 0 U ! T O : > , N A M A X ) 1 7 0 S T O P E N D S U B R O U T I N F I >> P U T ( NC C M P S , P P D F R R , ;.< C F E R R , If- M A X , N , P. F S T I M , F L F E E S , N A M A X ) Q « **v*»v «:'( « vif-ic # Jf >;; <i/< >}: >|:« >|: i(: * # ¥ £ * ?c * * # £ i! << # « w if V * * c C. H A N S O N S I N P U T S U B R O U T I N E R E W R I T T E N F O R C N F C O L U M N AND O N E F E E D C • — M O C I F I E O T O A L L O W R E A C T I O N D A T A A D D I T I O N C • D A T A R E Q U I R E D  C V A L U E S O F C O L U M N I N D E P E N D E N T V A R I A B L E S C P H Y S I C A L C O N S T A N T S O F C O M P O N E N T S . c — - D A T A R E C U I R E D .BY. CGMPI.IT PR S I M U L A T I O N M E T H O D _ C Tc'-'PFPATURCS, F L O W S , AND C O M P O S I T I O N S A R E I N I T I A L I Z E D H E R E C C ; C Q Ti<. _, i: £ •-_ i- *; ti _ -*i>;-. i: :\ V: r,; y.t- i~ >S -*"- JX > c« >'s V. it >: j :rt V:V: rt >. *^ ^  — ¥ **; *?- V £ ^ : D I M E N S ! 0 M S P R I 1 JO ) , B A 1. A T ( 1 0 ) , M A M E 1,6 . , 1 0 ) , A F I 1 0 ) , F F I ). 0 ) , A K ( 1 0 ) , . 1 E R ( 1 0 ) , l - O L O X I 9 , 1 CC ) , C P I 9 ) , O E N I 9 ) D I M E N S 1 C > G C N X I 9 , 1 0 0 ) , G E N Y 1 9 , 1 0 0 ) , E X T F 0 ( 1 0 0 ) , A ( 9 ) , G I ° ) , C I 9 ) , 1. F K T I - i K I 9 ) . F N T ' L m . E N T H I J ( Q ) , F M T HV,' I 9 ) . T F M P M C O ) .  2 V A P O P ( 1 0 0 ) , 0 0 1 0 1 If. 0 ) , F L F E E D I 1 0 0 ) , V A P Y I 1 0 0 ) , O U 1 0 XI I O C ) , S L - ' X I 1 0 0 ) 7 ' 3 S U M Y ( 1 0 0 ) , O U I M O H I 1 0 0 ) , V A P M O H ( l O O ) , F L V A f I 1 0 0 ) , F l L 1 0 1 iOO.) , F L V A P 1 A I 1 0 C 1 , C L L. 1 0 11 1 00 1 , . S U ; , F D ( 1 C O ). , : jL 'Nl i A L < 1 O ) , P R O S U M ( 9 , 1 D O ) D I M E N S I O N N U ' ^ O L S 1 9 , 6 ) , F N 0 L S I 9 , 6 ) , D X I N ( 9 , 1 0 0 ) , F M . \ S R F ( 6 ) , I F M A S P R ( 6 ) , O R D E R ( <: , 6 1 , R E A C K F I 1 0 0 , 6 ) , P. E A C KR I 1 0 0 , 6 ) , S O X I N I 1 0 0 ! , 2 F N A T 0 M ( 9 . 6 ) , : I A T O M ( 9 , 6 )  C C M M C N H C F r i j , T O , C P , G E N C O M M O N G E N X , Q E N Y , E X T F O , A , B , C , E N T H K , ' E N T H L , E N T HLI, 1 E . N T H W , T F P P , V A O O R , OU 1 0 , F L F E E D , V A P Y , O U I D X , S U M X , S U M Y , 2 Q U I M O M , V A ' ^ O H , F L V A P , F L L I C , F L V A P 1. , • El. 1. I 0 1 , S U M F C , OIK. H A L , 3 P P 0 S U M , R E B L D . O O N D L O , T 0 TT 0 , T 0 T F D M , P , R C O N S T , PP . E S , A F N M O L S , 0 X 1 N , F M A S R F , F M A S P R , 0 R 0 E R . R E A C K E , R F A C KP. , S O X I N . H C L D X ,  5 S P R , B A L A T , A F , '-V- , A P. , F K , Ii A L T , K N , K M , K F , N A T C M , N U M U L S , F N AT C M , N A'-' E 1 F O R M A T (', 1 3 , 2 F 3 . 1 ) 2 F O R M A T ( ? F 8 . 0 ) _ _ _ _ _ 3 F O R M A T ) 1 0 1 A ) ' - - - - ~ - - . A F O R M A T ( 5 A A ) 5 T O P M A T ( 9 F * . •> ) 1-44 6 F O R M A T ( 6 E 1 0 . 5 ) 1 0 1 F O R M A T ( 1 X , 5 2 ' < A T O T A L C O N D E N S E R I S U S E D R E T U R N I N G S A T U R A T E D I. 1 0 LI 1 0 ) 1 0 2 F O R M A T I 1X , 5 3 HA T O T A L R E B O I L E R OF P A R T O F T H E C O I . U ' O N L I Q U I D I S U S E D 1 ) 1 0 3 F 0 R M A T ( 4 X , 7 9 ' ' R E T U R N I N G , S A T U R A T E D V A P O U R O F T H E S A M E C O M P O S I T I O N A S 1 T l ) c C O L U M N ! n T T Q » P R O Q U O 1 ) 1 0 4 F O R M A T I I X , 1 2 F T 0 P P L A T E I S I 4 , 1 0 X , 1 3 HE E f.O P L A T E I S I 4 , 1C X , 1 5 H I U J T T C 1M P L A T E I S 1 4 ) 1 0 5 ' F O P M M ' ( 5 X , 1 4 - R E F L U X R A T I O = F 1 2 • 3 » I P X , 2 4 ' - M E A T I N P U T T C P E D C I L E R = 1 F 1 2 . 1 , 1 0 < , 1 o H E N T H A L P Y OF F E E D = F 1 2 . 1 ) 1 0 6 F O R M A T ( 7X , 1 2H.\ °F 1 1 , 4 ) 1 0 7 P O P . ( 7X , I ?r--\ 9 E 11 . 4 1 1 0 3 F 0 R v A T ( 7 X , 1 2 - C ° E 1 1 . ) 1 0 0 F O R M A T < 7 X , 1 O M E N T H K OF 1 1 . 4 ) 1 1 0 F O R M A T I 7 X , 1. 2 ^ E N T H L 9 F 1 1 . 4 ) 1 1 1 F O R M A T I 7 X , 1 2 H E N T H U 9 F 1 1 . 4 1 1 1 2 F O R M A T ( 7 X , 1 2 H E M 1HW 9 E 1 1 . 4 / ) 1 1 3 F O R ' - ' A T I 7X , 1 Z H F C F D I I 01.11 n r 1 5 . 6 , 6 F 1 C . 6 ) 1 1 4 F O R M A T ( 5 X , 1 C i i TF) L ER 4 NC E S ) 1 1 5 F O R M AT ( 2 0 X , I C H r t O F E " R F <?. 6 , 1 5 X , 1 C ' H P R D E R R F Q . 6 ) 1 1 7 F O R M A T I 4 0 X , 4 rt 0 A T A / / ) 1 IP. FOR'-* A T ( 1X , 4 OH I N 1 T I A L C O N D I T I O N S 1 1 9 F 0 R M A 1 I 2 2 X , 4 nT E M P , 1 4 X , 5 F V A P 0 R » 1 4 X , 4 H O U I 0 , 1 7 X , 6 H H 0 L D 0 P ) 1 2 0 F O R M A T ( 2 O X , F 6 . 1 , 1 OX , c 1 0 . 4 , 1 O X , F 1 0 . 4 , 1 C X , F 1 0 , 4 ) 1 2 1 F O R M A T I 6 X , l H ' i , 1 5 X , 2 H l 1 , 6 X , 2 H 1 2 , f-X , 2 H 1 3 , fcX , 2 H 1 4 , 6 X , 2 H 1 5 , 6 X , 2 H 1 6 , 6 X , 1 .2 H1 7 , 6 X , 2 H1 R , 6 X , , 2 H 1 o , (, x , ? H 2 0 ) 1 2 2 F O R M A T ( 6 X , R H V A P O R I N ) , 3.X , 1 0 F B . 1 ) _ 1 2 3 F O R M A T ( 6 X , 7 H O U I I ) ( N ) , 4 X , 1 0 F 9 . 1 ) 1 2 4 , F O R M A T I 1 0 X , 1 - 2 H C 0 M F C N E N T 1 2 , 3 H I S , 5 A 4 / ) 1 2 5 F O R M A T ! I X , 4 0HR E A0. T 1 ON S C O N S f D E R E 0 A P E ) 1 2 6 F O R M A T I I X , - MR F A C T 1 ON , 2 2 X , 9 h C GM->0N EN T , 2 5 X , 2 H A F , 1 1 X , 2 H E F , 1 5 X , 2 H A R , 1 1 2 X , 2H E R ) 1 2 7 F O R M A T 1 1 6 X , 4 1 H 1 2 ?. 4 5 6 7 3 .9 . ) 1 2 3 E O P M A T ( 5 X , 1 2 , B X , ? ( I 2 , 3 X ) , E 1 5 . 6 , E 1 3 . 6 , E 1 7 . 6 , E 1 4 . 6 ) 1 2 9 F O R M A T ! 1 2 X , ^ 5 . 1 ) 1 3 0 F O R M A T ( 2 X , 6 5 E R E A C T I O N F O R W A R D R E A C T I O N C O E F F . R E V E R S E R E A C T 1 I ON C 0 1 E F . ) 1 3 1 F O R M A T ! 1 * , I 3 , 1 4 X , F 1 0 . 4 , 1 H X , F 1 0 . 4 ) 1 3 2 F O R M A T ( I X , 4 0 h A T 0 M I C M AK E - U P 0 F M O L FC U L E S :  1 3 3 F O R M A T I i n x , S H M O L f C U L E , 12X , 1 H 1 , ' -X , 1 H 2 , 4 X , 1 H 3 , 4 X , 1 H 4 , 4 X , 1 H 5 , 4 X , 1 H 6 , 1 4 X , 1 H 7 , 4 X , 1 H K , 4 X , 1 H 9 / / J 1 3 4 F t l i - M A T 1 I C ' X H A T t c / / ) 1 3 5 F O R M A T I 1 1 X , I 2 , 1 5 X , I 3 , B I 2 X , I 3 ) ) 1 3 6 ' F O R M A T ( I f H - " = S T IM - F 6 . 3 ) • 3 0 0 F O R M A T ! 1 X , 6 E 1 2 . 4 ) 3 0 1 F O R ' ' ' A 1 ( I X , 1 OF 8 . 4 ) 3 0 2 F O ° M A T I 1 X , 6 16 ) 3 0 3 F O R M A T ! 1 X , 4 Q H E N D C F D A T A ) 7 4 6 F O R ' - ' A T ( 1H ) 7 4 7 F C R M A T ( 1 HI ) . T H A 1 . P ( Y , 7 , T ) = Y*T +.2 __ ; K = 1 C C O N D L O I S U S E D A S A D U M M Y S E N T I N E L T O S I G N I F Y T H F E N D O F D A T A _C P O S I T I V E r i R / . E R M M F A N S C O N T I N U E N E G A T I V E S T O P S  C T E S T C E C C N D L D I S I N M A I N P R O G R A M M E R E A D ! 5 , 1 ) N C O M P S , K N , K F , K M . C O N O L O R E A D ! 5 , 2 1 P R F S _ ._ . . . I F I C G N D L D . L T . 0 . 0 ) G O T O 6 9 R E A D ( 5 , 2 ) ( A l l ) , I = 1 , N C O M P S ) R F A 0 I 5 , , - ; ) (>>.(!), 1 = I , M C O ' - ' P S )  1-45 ' K F A !1 ( 5 , 2 ) ( f. I I ) , I = 1 , N C O M P S ) R C A P ( 5 , , ? I < C N T H K ( I ) , I = 1 , N C C M P S ) R E A 0 < 5 , 2 ) ( E N T H I ( I ) , I = 1 , N C O M P S ) REACH 5 , 2 1 I E N T H U ( 1 1 , 1 = l . N C C M P S ) R E A D l 5 , 2 ) < F N T H w l I ) , I = 1 , N C O M P S ) R E A P ! 5 . ? ) P R R F [ V P , R Q F r R P  R E A 0 1 5 . 2 ) ( r - v T E O I l ) , I = l , t .CC f<>S) R E A O I 5 i 2 ) TOT F O , TOT I O H , T DO 5 0 2 1=1 . N C C M P S . „ O U I O K I I l = E X T P n ( I ) 5 0 2 C O N T I N U E D I MP- M S I ON C "w ( 9 )  R E A D ! 6 , 2 ) I C M A( I ) , 1= 1 , N C O M P S ) F M W = O . A DO 5 0 0 1 = 1 , NCCMPS . . . ' 5 0 0 E MV! = FMl-;-t OMU I I ) C X T F 01 I ) " T C T F O = T O T F D / F M W £ n i ;/ : . - ;r _ • * H _•_ i: i: >/1_- rz r. v- -f.i: _r. wfliii i : V . >• j(: i: tn-it V; u s[: V; & jf. '^ & C ' C A L C U l . AT IC'N OF BUB B L E PO INT A NO E N T H A L P Y OF F E E D C * >< * jgc * * >:• * # * * * * * *•«>•• v fc #**>* * « * * # * fc fc fc v fc » fc * fc * fc fc v fc fc fc * fc -» # * C A L L B U E P T I O N I U X , V A P Y , T ,.A , ri , C., NCDM "S , K , EDFE PR ,P.PF S) DO 501 1 = 1 , N C C M P S 5 0 1 T O T F O H = T 0 T F 0 H + E X T F D I I )*THALP IENTHK I I ) , CNTHL I I ) ,T) T OT FOH~ T0T P DM*T0T ED  KN1 = KN - ] K M l = KM + 1 DO < | C T 7 . K P = K N 1 , K M 1 9 9 9 R E A D ! 5 , 7 ) S P R I K F ) 7 F O R M A T ( F 5 . 1 ) d -.'^ afc tf" ~c y: -\ TC. >t a; rj; T: »•. T£ IC .'_ V A ^»«<:r;^ >'; £ A A « _.- 5": >f A ir ;i i|< i't £ v: i.)1!)!^ ).^ *)1; .V ve ),: i' _ : C T H I S P A R T I S T H E E X T R A I N P L T N E C E S S A R Y F O R A COLUMN W I T H C _ .. R E A C T I O N S . C A L L R E A C T I O N S A R E WR 1 T E N F R O M L E F T T C F I G H T C N U M O L S I S T H F S I D I C H 10 M A T 0 I C N U M B E R O F M O L E C U L E S O F E A C H SPECIES C F N M O L S I S T : i F F I X E D P O I N T F O R M O F N U M O I . S  C C O M P O N E N T S W H T C H H A V E M I N U S S I G N D E C R E A S E AS REACTION .GOES C C O M P O N E N T S W H I C H H A V E P L U S S I G N I N C R E A S E A S R E A C T I O N G O E S C N C C M P S I S N U M P F R OF. C O M P O N E N T S . _ . _ C I R M A X I S N U M B E R O F R E A C T I O N S C S P R I N ) I S H O L D U P C N P L A T E N X H O P . T O I S H F A T O F of A C T I O N A T R E F E R F M C E T E M P E R A T U R E T O  C CP I 1 ) I S H E A T C A P A C I T Y C F C O M P O N E N T 1 C • D E N ( I ) I S D E N S I T Y C F C O M P O N E N T I C ._ __ _ „ . . . ' . . .. C )[.-^«i':;,;i():T:;:^r:;T-i ~.t * 5 J/ V * * *: : < if ~+ It £ V- ti i,: v * * V fc V fc fc fc fc fc fc fc X^  fc X< fc fc " fc ^  R E A D ( 5 , 3 ) IP M A X , N A M A X no 3 P N-M= l . - icoMPs  REAfM'j ,4) I N A M E ( L , N M ) , L = 1 , 5 ) 3 0 R E A O I . 5 , 3) ( N A T O M(N A , N M) , N A = 1 , N A M A X ) C O 3 1 I P. = l . I R M A X R E A L M ! . , 2 ) ( N U M C L S ( I , I R ) , I - 1 , 9 ) R E A M ( 5 , 5 ) ( O R D E R ! I , I R ) , I = 1 , 9 ) 3 1 R E A 0 ( 5 , , 6 ) A F ( I R ) , E F ( I R ) , A P. ( I R ) , E R. ( I R 1  R E A D ! 5 , 6 ) RCONST DO 3 2 1= 1. . N C O M P S DO 3 2 I R = 1 , 1 RMAX F N M! IL S ( 1 , I R ) = N U ' ' C L S ( I » I P ) DO 32 NA = l . N A V A X F N A T O M ( N A , 1 ) = N A T C M ( M A , I ) 1-46 32 CO-NT J HUP 0 0 2H N = K N l , K H ] C NOTE C H A N O P IN OA f A R E 0 0 I CP M E NT S PROM NOW ON R E A D I 5 , ? ) T E M P ( N ) , V A P O R ' ( M , O U I O ( N ) 2B CCNT I NC'P R EA:~i| 5' , 2 1 0 L ! TOP . R ; ' -R E A R ! ' 5 , 2 ) R E R L P R E A O ! 5 , 2 ) H O R T O , T O , ( C P ( I ) , 1 = 1 , N C C M P S ) R E A O ! 5 , 2 ) ( O E M I ) , I = 1, NC OM P S ) _ __ C C P R I N T I N P U T OATA _C :  W P I T E ( 6 , 1 1 7 ) K.RI TE( fc i 7/«6 ) W R I T E ( 6 , 10 1 ) WRI TE ( 6 , 7 4 c ) ' W R I T P ( 6 , 1 0 2 ) WR I T E ( 6 . ) '"M ) . WRI TE ( 6 , 7<-t> ) W R I T E ! 6 , 1 O A ) K N . K F . K M WRI TE ( 6 , 7 4 6 ) _ _ _ . 0 0 3 3 NM = l.NCCMPS' " ' W R I T E ( 6 , 1 2 4 ) N M , < N A M E ! L , N M ) , L = 1,5) _33 CONT I NU 1 7  W R I T E ( 6 , 7 4 6 ) W R I T E ( 6 , 1 0 5 1 R» R E H L O , T O T F D H WR I TE ( 6 , 7 4 6 ) WR I TE ( 6 , 7 4 6 ) * " " " " W R I T E ( 6 , 1 3 7 ) P R E S 1 3 7 F O R M A T { IPX , 2 ^ - l C O L U M N o p r . S S U R E IS F 1 0 . 2 )  W R I T E ! 6 , 1 0 6 ) .( A ( M ) , M = 1 , N C O M P S ) W R I T E ( 6 , 1 0 7 ) ( 6 ( M ) , M = 1 , N C 0 M ° S ) WRI TE ( 6 , 10.° ) ( C ( M ) , v = l . N C C M P S ) W R l T E f t , ICS! ) ( E N T H K ( M | , , M = 1 , N C O M P S ) W R I T E ( 6 , 1 1 G ) ( E N l h L ( M ) , M = 1 , N C O M P S ) W R 1 T F ( 6 , 1 M ) ( C - N T H U C M , M = 1 , N C O M P S )  WK I TE ( 6 , 1 12 ) - ( ENTH., 1 ( M ) , M = I , N C O M P S ) WR I TE ( 6 , 6 0 0 ) ( OE N ( I ) , 1 =1 , N 'COK D S ) WR I TE ( 6 - 6." 1 ) ( CP ( I ) , I = 1 . N C O M P S ) _ 6 0 0 FORMAT ( 7 X , 1 .2H0ENS ITY . 9 F 1 1 . 4 ) " " " " 6 0 1 F O R M A T ( 7 X , 1 2 H C P . 9 F 1 1 . 4 1 W R I T E ( 6 , 7 4 6 )  WRI EE ( 6 , 1 3 3 ) ( C M n ( v ) ,>'=\ , N CO MRS ) ' WRIT E( 6 , 7 4 6 ) • 1 3 8 FORMAT ( 2X , 2 4 H C 0 ' - ' P 0 N ENT M O l . E C U l A = W T S . , 2 X , « F 10 . 5) _ _ W R 1 T E ( 6 , 1 3 9 ) F M w , t C T F 0 " " " " ' 1 3 9 ro R M A T ( 2 X , 1 •!!- F r: E 0 M C L E C U L A R W T . , 2 X , F1 C . 5 . 5 X , 1 7 H F F E C R A T E ( M O L E S ) , I 2 X , F 1 0 . 5 )  W R I T E ( 6 , l l i ) ( E X T F O C ) , M = 1 , N C O M P S ) W R I T E ! 6 . 7 4 6 ) W R I T E ( 6 , 1 1 4 ) KP.I TE ( 6 , 1 1 5 ) E< 0 F E R R , PROERR W R I T E ( 6 , 7 4 6 ) W R 1 T F ( 6 , 7 4 6 ) • •  W R ! T E 1 6 , 7 4 0) W R I T E ( 6 , 7 4 6 ) WRI TF (6 , 1 2 5 ) • W R I T F ( 6 , 7 4 6 ) W R I T F ( 6 , 1 2 6 ) WRITF ( 6 , 7 4 6 ) 1-47 Q *t X K & <t /: i> i> >[i s> >: tft >;: * Xt * A << >  >'< >  * * >': •-• ^ * »: 3i:i': & f KI:>( ^  & HI Ml? MS ION SIM.' ( ICO ) , R.ALA T( I 0 I , NA ML< 6 , K) , A I- I 1 C ) , F I 1 0 ) , A R I 1 0 ) , 1 F R I 1 0 ) , l i C L P X I <J , 1 0 0 ) , RXNX I J ) , CP (> ) , r:f.N 1 9 ) Q I M P N S I U N N u v n i . S I 9 . 6 ) , FNMOL SI 9 , fc ) ,DX 1 N I 9 , 1 OC ) , F M A S R F (6 ) , 1 F H A S « R I 6 ) , 11R01:R ( 9 , 6 ) , R E A C ' . F ( 1 OC , 6 ) , R FACKR I 1 O C , 6 ) , SDX I N I 1 0 0 ) , 2F NA l l ) » ( 9 , 6 1 , RAT CM I 9 , 6 )  0 I '•' F.I! S U N G C N X I 9 , 1 t• C ) , G E N Y I 9 , IOC) , F X T F 0 I 1 0 0 I , A ( 9 ) , B ( 9 ) , C ( 9 ) , 1 F N T H K ( O ) , F N T H l . ( 9 ) , E N T P U ( 9 ) , E N T F W ( C W , TC . "P( K'O ) , 2 VAPOR ( 1 0 0 ) . QUI n u CO) , E i - E E O ( i 0 " ) , VAPY I 1 0 0 ) , OU I ( ICC; I , SUk'X ( ICC )', 1 SUMY I 1 0 0 ) , :;iJ IMGH( 100 ) , V A P M O H ! 1!~ 0 ) , F L V A " ( 1 0 0 ) , F L L I 0 I 1 0 0 ) , F L V A P1 4 ( 1 0 0 ) .F, LI . 1 .'1 ( 1 0 0 ) , SUMFO ( 1 0 0 ) . O U N f i A L ( ICO ) , " R O S U M I 9 , 1 0 0 ) f.ffl ! ' ] l . l« FOR TO, T i l ,C P , DEN  COMMON G O ' X , G F N Y , ft X T f" 13, A , L i , C , F N T H K , E N T H L , E N T H U , . 1 E N T H l - . , T E . ; , : ' , V A P C K , C H I D , F L F F . E D , V A P Y , OU I O X , S U M X , S U M Y , 2 Q U I M O H , V A P M O H , . F L V A P , F L L I Q , r L V A P l , F L L 1 01 , S U M E 0 , C U N B A L , 3 PRDS ' JM , E EEiL C . C C N D L D , T OT F D , T OT TOM, P., F. CON ST , PR 8 S , 4 F N M 0 L S ,DX I N ,F MASRF , F M A S R R . C R D F ' - 1 , R F A C K F , ° F A C K R , S DX I N , Hr jLPX , 6S PR , F>AL AT , A F. FF , AR , PR , B A L T , KN , KF , N A T CM , NUMOL S , c N A T CM , N AME  R A N K I N = T E M P ( \ ) + 4 6 0 . 0 K N 1 = K N - 1 C A L L O E N S T Y I G E N X , T E M P I N I , R H O , N , D E N , N C O M F S ) _ _ I F ( N . E C . K F ) GC TC 1 2 I F ( N . E Q . K N L ) GO TO 10 1 5 FORMAT ( 3 F 1 Q . 7 ) R E S I 1 M = 2 * S P R ( N ) '•••HHO/I O U I D I N ) + C01 0 ( N - 1 ) ) 0 0 T O 11 1 0 C O N T I N U E R E S T I M = S P R ( N ) * P H O / ( V A P O R I K N ) ) ,GC T O 11 1 2 C O N T I N U E R E S T I M = 2 * S P R ( N ) * « H 0 / I 0 U 1 0 ( N ) + 0 U I 0 ( N - 1 ) + 1 0 T F D ) 0 0 1 0 0 1 = 1 , N C O M P S 0 0 IOC IR = 1 , IR M A X R E A C K R IN , I R ) = A P. ( I R ) « E X P I - E R I IR ) / ( R C. ON S T A R AN K I N ) ) R E A C K F I N , I R ) = AF ( I R) *E XP ( - E F 1 I R) / I RC CMS T'-R AN K I N ) ) ENMQL SI 1 , 1R)= NU"OL SI I , IR )  0 0 1 I= 1 , N C C M F S 1 0 X I N ( I , N ) = 0 . 0 CO 4 I R = 1 , IRMAX F M A S R F ( IP , ) = 1 . 0 F M A S R R ! I R ) = 1 . 0 0 0 4 I = 1 , NCf MPS ; R X N X I I ) = E L P E E 0 < I ) / ( F L F E F S + i . 0 E - 2 0 ) C .1 F ( G E N X ( I , N ) . L E . 0 . 0 ) GENX I I , N ) = 1 . O f - 10 . _ _ . I F ( N U M O L S ( I , I R ) ) 2 , 4 , 3 2 F M A S R F ( IP ) = F M A S R F ( I R ) * ( < 0 E N X( I , N ) * P U 0 ) * * 0 R D E R I I , I R ) ) GQTf] 4  3 F M A S R R I 1 R ) =F A S R P. ( I R ) '•' ( ( G E N X ! 1 , N ) >•- R H C ) *" v C E 0 E R I I , 1 R ) ) 4 CONT I NUE 0 0 7 IR= 1 , I RMAX 0 0 5 1= 1 , N C O M P S D X I N ( 1 , N ) = D X 1 N I 1 , N ) + F N M O L S I I , I R ) * F MA S P E I I R ) * P E A C K F ( N , I R ) * 1 S P v I N ) 5 C O N T I N U E 0 0 6 1 = 1 , N C C M P S D X I N ( I ,t<) =0X1 N ( I , M - F N K C L S ( . I , I " ^ J o ^ ' S . R R ( I >*REAC.KR 1 N , I R ) * I S P R ( N ) 6 I F ( ( F L F E E D ( I ) + O X I M I , N ) ) . L T . 0 . 0 ) D X I N I I , N ) = - F L F E E D ! I > + 1 . 0 E - 2 0 7 C O N T I N U E 1-48 SOX i N ( N ) = 0 . 0 DO :l i = l , \ f . C C P 5 SOX I N ( N ) = SOX IN ( M ) • 0 X 1 N ( I , N ) 8 • F L F E E C U ) = F L F I. E 0 ( I I + 0* IN( I ,N ) F l . F E E S = F I. F F F S + S P X I N I N ) DO 9 1 = 1 , NCO ' - 'PS  9 . G E N X ( I , N ) = F L F E I: D ( I I / ( F L F E E S + 1 . C E - 2 0 ) R E T U R N END S U B R O U T I N E O U T P U T ( I T F R AT , N CO M PS , OU IT 0 P , N AN. AX ) £ ii: V ? ^  K 4 v »'« A r a )'. i 1 , >!; a ^  V - « , : ;" ; ; ^ -i; »" V " ^  •= n it rr- « * ** « V. -"->'« *. V. c^u.vt _c s . i i . t ? . n u T V'-s- F P H O U T P J T n t ^ F I N , U M A P S  £ # ;|t V N; ^ V ^ £ * ^ ^ >'•' ^  Jji JS >,< X J'; ^ ' '^ .< >;*V .5 £ * >;« J|( V ^  # ^ :[', if >^ * # ^ _,•( >; C I v E N S I : ) » ! SPR ( 1 0 0 )• MALA I( 10 ) ,NANF,< 6 , 1C) , A F ( 10) , E F ( 10) , AF ( 1 0 1 , 1 ER ( 1 "il . H G L O X ( 9 , 1 0 0 ) ,('.R ( 9 ) , D E N (9 ) DI M E N S I O N G E N X I 9 , 1 0 0 , O F N Y I 9 , 100) , E X T F D I l OC ) , A ( 9 ) , H (9 ) , C ( 9 ) , 1 F N T h K ( 9 ) , _ N T H 1 . ( ! > ) , E N T H U ( 9 ) , E N T H W 1 9 ) , T E i ' P ( l O O ) , 2 V A P O R ( ) QO) , i-)IJI r ( 1 Q ) ) , F-i_F „ E P ( I o n ) . y APY ( 1 ) 0 ) , 0 0 I OX ( 10 ; ) , S'.)•" X ( ICQ ) , 3 SUM Y( 1 . 0 ) , DUI MflHl n ; i .vAPKOrt I IOC ) , F L V A ' M 1 0 . ) , FI .L I CM 1 0 0 ) , F L V A P 1 4 ( 1 ,)n) . F L L I ) U 1 0 0 ) , SUM F D I I 0 0 ) , QUNB AL ( 1 0 0 ) , PR DSUM ( 9 , 1 0 0 ) D I M E N S I O N N i jMOLSf 9 , 6 ) , F N M O L S ( 9 , 6 ) , 0 X I N (9 , 1 O C ) , FMAS RF (6 ) , " 1 F M A S R R ( A ) , OR'IER ( 9 , 6 ) , P E A C K F ( 1 OC , 6 ) , R E AC K R ( 1 0 0 , 6 ) , SD X I N ( 1 0 0 ) , 2 F N A T 0 M ( 9 , 6 ) , N A T 0 M ( 9 , 6 ) C Q M ' - ' O N HOP T 0 , TQ , C P , OF N . ' COMMON O F N X , G E N Y , E X T F P , A , B , C , E N T H K , E N T H L , E N T H U , 1 E N M H U , T F V 7 1 , V A » C ! K , C U I D , F L F E E D , V A R Y , O U I D X , S U M X , S U M Y , 2 0 0 I •10 H , V A P M O U , F L V A P , F L L I O , P L V A P l , F I L I 0 1 , SI.IMFD, O U N B A L , 3 P R D S U M , R E B L D , CONOI.D , T C T F O , TOT F D H , R , R CON ST , P R E S , 4>F NMOL S , 0 X I N . F M A S P . F , EM ASRR . O R D E R , R F A C K F , RE ACKP , S D X I N , HCLOX , 5 S PR , OA I A T , A F, F F , AR , ER , fi A L T , K.N , KM , KF , N A T C M , NIJMfl L S , F N A T r M , \ A M E  20 F O R " AT ( I X , I 2 , 9 X , 14 , <_ X » o F 1 (' . 6 ) 2 1 F O R M A T ( 2 X , I 2 , 1 9 X , 6 F 1 C . 6 ) 7 4 6 F O R M A T ( I H ) 7 4 7 F O R M A T ( 1 H 1 ) 1 0 0 3 F O R M A T ( '>0X, 16HF I N A L C O N D I T I O N S ) 1 0 0 4 FORMAT ( 1 X , 2 H \ , " X , 6 H T F K AT , \ Q X , 2H X 1 , 0 X , ?U X 2 , 8 X , 2H X 3 , 8 X , 2H X4 , 8 X , 1 2 i I X 5 , 8 X , 2 H X 6 ) 1 0 0 9 F O R M A T ! I X , 2 H N , 3 X , A H T E M P , 7 X , 1 C H V A P M O H , 1 OH Q U I M C H , 2 X , 1 1.0H V A P O R . . . 1 0 H _CUID. . . 2 X , K-H O U N B A L . ; , 2 X , 6 H S D X I N , 2 1 X , 9HD X I N ( 1 , N ) , 1 X , 9 h 0 X I N ( 2 , N ) , 1 x , Q )• pX 1 N ( 3 , N ) ) 10 10 F O R M A T ( IX , I 2 , F 8 . 1 , 2 X , 2F 10 . 1 , 2 X , 2F- H . A , 2 X , F 1 0 . 2 , 2 X , F 1 0 . 6 , 1 9 E 1 0 . 6 )  1 0 1 1 F O R M A T ( 1 X , 3 8 H P E P C E N T CF E A C H ATOM U N A C C O U N T E D F C K 6 F 1 0 . A ) 1 0 1 2 ' F O R M A T ( IX , A 6 H R F . R C E N T O V E R A L L U N B A L A N C E F 1 0 . A ) 1 0 1 3 F O R M A T ( 1 X , 2 6 H M 0 L E S ..CF _BC]..J C M._PK C DUCT _ = F 1 0 . 6 , 10 X, 2 3 FMOL F S OF TOP 1 P P 0 D U C T E 1 C . 6 ) K M = K Iv - 1 KM1 = KM + 1  W R I T E ! 6 , 1 0 0 3) W R I T E ( 6 , 7 A 6 ) WRI TE ( 6 , 7 4 6 ) W R I T E ( 6 , 1 0 0 4 ) W R I T E ( 6 , 7 4 6 ) W'R I T E ( 6 i 20 ) K M 1 , I T E R A T , ( G C N X ( I , K N1 ) , I DO 2b N = K N , K M l W P I T E ( 6 , 2 1 ) N, ( G E N X ( M , N ) , C . 2 5 C O N T IN OF . . . W P I T E ( 6 , 7 4 6 ) W R I T E ( 6 , 7 4 6 ) WR I T c ( 6 , 1 0 0 5 ] '= 1 , N C O M P S ) = 1,NCOMPS) 1-49 w m m c , 1 2 7 ) W K I T r ( 6 , 74 6 1 Ull 3 4 1 R = 1 , IRM a X W R. IT f- ( 6 , 1 2 . ) IR , ( Nil MO L S I I , IR ) , I = l , 9 ) , A F ( l R I , C F ! l R ) , A R < m , E R ( I R ) 1 ) WR I IT ( 6 , 12 = ) ( C'XDciJ. ( I , I fi ) , I =1 , \ r . O K P S I 34 C O N T I N U E WRI T C 1 6 , 74 6) W R I T E ( 6 , 1 3C 1 W R I T E ( 6 , 74 6 ) DO 3 5 I R = 1 , I R M A X 3 5 W R I T f: ( 6 , I '3 1 ) I R WRIT E ( 6 , 74 6 I W R I T F ( 6 , 1 3 2 ) WRIT E ( 6 , 1 3 3 ) W R I T E ! 6 , 1 3 4 ) DO 3 6 NA = 1 , N AMAX 3 6 K R 1 T E ( 6 , 1 3 5 ) NA , ( N A T OM ( N A , I ) , 1 = 1 , N C C M P S 1^  . WR1T E ( 6 , 7 4 6 ) W R I T E ( 6 , 7 4 6 ) WR I TF ( 6 ,1 1 8.) W R I T E ( 6 , 7 4 6 ) W R I T E ( 6 , 1 1 9 ) WRI TE 1 6 , 7 4 6 ) ; DO 2 9 N = K N 1 , K M 1 \ 2 9 W R I T E ( 6 , 1 2 0 ) T E M P ( N ) , V A P O R ( N ) , O U I D(N1 , S P R ( N ) r W R I T E ( 6 , 7 4 6 ) _ ._ U c c . I N I T I A L I Z E C O M P O S I T I O N S OF L 100 IC AND V A P O R F L F E E S = 0 . 0 F l X V = C O F I XL = 0 . 0 DO 84 I = 1 , N C O M P S F L F E E D ( I ) = E X T F D I I ) 8 4 F L F E E S = F L F ' - S + F L F F F n ( I ) 85 E L V AS = 0 . 5 ••  F L F E E S F L L I S = F L F E E S - F L V A S CO 3 8 N = N 1 , K M 1 CO I MflH I M = C- .O ' V A P M O O ( N ) = 0 . 0 DO 87 I - 1 , •JCOMPS G E N X ( I , N ) = E X I E 0 ( I ) O U I M O H ( N ) = O I J I M O H ( N ) + G E N X l I , N ) « T H A L P ( F N T H K ( 1 ) , E N T H L ( I ) , 1 T E M P ( N ) ) G E- N V ( I , N) = F X T E D ( I ) H O L D X ( I , N ) = E X T F D I I ) 87 V A P M O H ( N ) = V A P M O F ( N ) + C EN Y ( I , N ) *T U AL P ( E NT HU ( I ) • E N TH W ( I ) , 1 T E M P I N ) ) 0 3 C O N T I N U E R E T U R N 8 9 W R I T E ! 6 , 3 0 3 ) R E T U R N • END SUB ROUT I IMF. DEWPT ( VA PY , 0 0 I DX , T , A , B , C , N C O M P S , K, B O F E P R , P R E S ) C I'c t< - V: if >.' if. >'•• if ^. if if * ti * ii if fc fc fc fc fc fc fc if if fc if if fc fc fc fc fc V fc fc fc X' fc fc * fc * V fc fc fc fc fc C S U B R C U T INF FOR C . A L C . OF DEW P O I N T O F A M I X T U R E . . C >',' # V v >|t # * *'c K- *T- * '•• .',t '»>'<>;x'.) , - - :^>.fr_(«>: « t'fii iit'f TI ft if *• xf ri U _*_ V; _^  D I M E N S I O N Q U I O X ( I O O ) , V A P Y ( I O O ) , A ( 9 ) , P ( 9 ) , C ( 9 ) F 01 U |. K ( A , 8 , 0 , r , P ) = ( F X P ( ( A - ! V ( ( T - 3 ? ) / 1 .IHC. ) )*2 . 3 0 3 ) ) / » 1-50 K l 1 R E S = 1 1 S U M X = 0.0 D O 2 1 = 1, MO. c MI>S O U I DX ( I ) = V A i ' Y I I ) / E O U 11-K I A I I ) , B< I 1 , C ( I ) , T , P R E S ) 2 S U M X = S U M X Q U I OX I I ) I F ( V < S ( S U M X - 1.0) - B O E E R R ) h , 6 , 3  3 K T I V E S = K V l M-s - 1 IEIKT1MES) 5 , ' . , 4 4 S U M X O = S U M X T O = T T = T «• 10.0 G O T U 1  5 S L O P E = ( S U M X - S U M X O ) / I T - T O ) I E ( S L 0 f' E . E Q . 0 . 0 ) G O TO 7 S U M X O = S U M X T O = T T = I { 1.C - S U M X ) / S L O P E ) + T G O T O I. '  7 W R I T E ( 6 , ! 0 i. ) 101 F O R M A T (• 1 ' i Tr>, ' S L C P E I S Z E R O I M D E W P T C A L C ' ) W R I T E ( 6 , 1 00 ) I O U I D X I I ) , I = 1 , N ' C Q M P S ) _ . . . J . . 100 F O R M A T I / T 5 , 3 F I 0 . 7 ) 6 R E T U R N F N n S i m S O U T I N E B U B P T ( O U I 0 X , V A P Y , T , A , B , C , N C O M F S , K , B C F E R R , P R E S ) c V \i t: a if •>'-"h. i' A A JJC A *): x.- A it A ri a A rt A A J; C S U B R O U T I N E F O P C A L C . O F B U B B L E •> I . O F A M l X T O R E c * ¥ ¥ 4 X 4 « * * # * » >.: 1 if X. * * <: <: * # A >••• i * * * * i-£ 1% # £ >)c £ # ft # -v >i-' # £ X* * D I M E N S I O N V A P Y I 1 0 0 ) , Q U I 0 X I 1 0 0 ) , A ( 9 ) , B ( 9 ) , C ( 9 > E C U I I K ( " i , 3 , C , T , P ) = ( E X P ( ( A - B / l ( T - 3 2 ) / T , 8 + C ) 1 * 2 . 3 0 3 ) ) / » K T I M E S = 1 1 S U M Y = 0 . 0 D O 2 I = 1 , N C C M P S E O C S T = E O U I L K | A l I ) , .3 I I ) , C ( I I , f , P R E S ) V A P Y I 1 ) = E C O I l .K I A ( I ) , E I I ) , C I I ) , T , P R E S ) * O U I D X ( I ) 2 S U M Y = S U M Y +• V A P Y ( I )  I F ( . l i iS ( S U " Y - 1.0) - t > O F E » » ) 6,fti3 3 K T I ^ ' E S = K T I M E S - 1 I F ( K T I M F S ) 5 , 4 , A _ _ 4 S U . M Y O = S U M Y T O = T T = T + 10.0  G O T O L ' 5 S L O P S = ( S U M Y - S U M Y G ) / ( T - T O ) . I Fi S L O P E . E Q .0.0.). G O I C .7 S U M Y O = S U M Y T O = T T =1(1.0 - S U M Y ) / S L O P E ) + T  G O T O 1 7 W R I T F ( 6 , 1 0 1 ) 101 F O R ' - ' . A T ( • 1', T 5 , ' S L O ° E I S Z E R O I N D E W P T C A L C ' . > W R I T E (6 ,100 ) I V A P Y ( I ) , 1 = 1 , N C O M P S ) I C O F O R M A T ( / T 5 , 3 F 1 0 . 7 ) 6 P F T U R N END C R E A C T I O N SU3R0I.J T IN E R E AC TNI NC C M P S , N , I R M A x , KF ST I M , F |_ F E E S ) ._ . . , £ ftAKV:r A 1: \t v « rp a £ A A * A A i\ A n \: v V *' A *^ A K *: y. A >.t w A A £ * v h A v A A A w A A A' C S U B R O U T I N E C0R C A L C . OF R A T E AT WHICH C E A C H C O M P O N E N T IS !i F IK G R E A C T E D 1-51 WRI TF ( 6 , 74 6 ) 0 0 26 N = K N ] , K M l WR IT E ( 6 , 10 1 F> ) N » T E M P ( N ) , V A P M C H ( N ) , C U I M O H ( N ) , V A P f l R ( N ) , O U I D ( . M ) , 1 0 U N 6 At. ( N) , SOX I N I N'l , I DX I N( 1 , N ) , I = 1 , NCOMPS > 2 6 C C N T 1NIJI WRIT ( 6 , 7 A 6 I  WRI T t I 6 , 10 1'31 O U I C ( K M I ) , O l ' I T O P WRI T E I 6 , 74 6 ) OC 30 NA = 1 , N A V A X 3 0 B A l AT ( N A ) = B Al. AT I N A ) >•• 1 00 . 0 W R I T L: ( 6 , 10 1 1 I I B A L A T ( M ) , M = 1 , N A M A X ) W R I I F R S I 1 2 ) B A I. T  R E T U R N E N D S U P R O U I I N I : D E N S T Y ( G E N X , T , R F 0 , N , 0 E N , N C O M P S ). c V: A K r, -i. \\ ?. A A v. A ij. \* :t A x; A A A \e A » i; A T ^ i f i o.iRi ' i S ^ ^ J l l A w B j i i r t v ^ t ^ i l t f t r t c S U P R O U T I N E - C O R C M C . 0 P D E N S I T Y O F A M I X T U R E c A A A A A J1" A < A * A i'-' £ £ A * A A * " * A A A & A V: s1,: A A A A * A A A A A A A A A * * XC A D I M E N S K . N G E M X < 9 , I O C ) , D E N I 9 ) R H O = O . C 1 0 F O R M A T ( 3 F 1 0 . 7 ) D O 5 1 = 1 , N C O M P S 5 RHO = RH G + O E N X ( I , N ) / D E N I I ) R H O = 1 . O A - H O 1 1 F O R M A T ( 4 E 1 0 . 7 ) R E T U R N E N D . . . _ . • .... S O B R O U T K . ' E H E A T P X ( T , 0 X I N , F O R , N , H O R T O , TO , C P , N U M O L S , N C OMP S , I R ) c . # £ :> £ X: £ £ * * * ;: * * )^  3 5> * V * * X: * # * V X; =:= * X A- * >r V * * K * # * * Jjt * A c S U B R O U T I N E r-f)R C A L C . O F F E A T OF R E A C T I O N ' c y,i \: x: r,; A A -t ^  •- ( >.- *: it >x A A A A v A A A *; v A A . A :i A >:»: s; A TJ A A A A )p J,:)(< A A A « D I M E N S I O N C P 1 9 ) , N U M 0 L S ( 9 , 6 ) , D X I N I 9 , } 0 0 ) 1. . . . F O P ' - " A T ( 3 F 1 0 . 5 ) D E L = 0 . 0 0 0 4 1 = 1 , N C O M P S I F I N U M O I S I I , H ) 1 2 , 4 , 3 2 D E L = O E L - C P I 1 1 G O T O 4 3 . C E L = D E L + C P ( I ) . . . . . . . _ 4 C O N T I N U E ' H O R M O H = D E L * ( T - T O l + H O R T O H O R = H O l i M 0 H ' / - 0 " I N ( 1 , N 1 R E T U R N E N D V O L U M E 2 Detailed computer output for the cases studied and summarized in the tables in the main body of the work are contained in APPENDIX II which comprises a second separate volume. I l - i APPENDIX II The large volume of computer output results assoc-iated with this text made i t necessary to divide this thesis into two volumes. This volume (Appendix II) is composed primarily of computer output with a program l i s t ing included at the back of this text. Computer output for each heading of the RESULTS AND DISCUSSION section in the main text appear in this volume under identical headings and in the order encountered in Volume 1. These computer results are arranged such that for every set of column conditions examined, a map of i n i t i a l conditions is given and followed by a map of f inal conditions (appearing on the bottom of the page of i n i t i a l conditions or on the following page(s)). A table of contents for Appendix II appears on the following page. I l - i i TABLE OF CONTENTS (Volume 2) Page A. Computer Output I I - l 1. Benzene-Toluene-(Pseudo)Xylene System . . . I I - l a. Validation of Program with Respect to Separation Only II-2 b. Effect of Holdup with Respect to Separation Only II-4 c. Validation of Program Including Chemical Reaction 11-36 d. Effect of Various System Parameters . . 11-54 (i) Heat of Reaction-Endothermic and no Exothermic Reactions (computer) output (i i) The Effect of Column Pressure . . ( i i i ) Effect of Holdup 11-54 (iv) Effect of Reflux Ratio 11-58 (v) Optimum 11-62 2. Ethyl Alcohol-Acetic Acid-Water-Ethyl Acetate System 11-64 a. The Effect of Pressure 11-65 b. The Effect of Reflux Ratio 11-81 c. The Effect of Holdup 11-91 d. The Effect of Feed Plate Location . . . 11-123 e. Optimum Conditions 11-135 f. Effect of Number of Plates 11-137 I I - i i i Page 3. Acetic Anhydride-Water-Acetic Acid System 11-141 a. Comparison with Marek Work 11-142 b. The Effect of Pressure 11-144 c. The Effect of Boil-Up Rate 11-150 d. The Effect of Reflux Ratio 11-158 B. Program List ing 11-164 I I - l A. Computer O u t p u t 1. B e n z e n e - T o l u e n e - ( P s e u d o ) X y l e n e S y s t e m I I - 2 A IOI.'.I i - ' f 'T i i rp. o r p i . r nr m g c m i m * i . i w m is u s r e . RnURN'IW" SAU-KArg"- V A P.C'C .„UF—TM£„S.A« f.. CiW.C.S IT IO!! .A S TUP- COLUMN B01 !0H PRfJIHICJ TOP °\ AT P 15 2 l-PPD PI.A1F IS 9 BUI TOM PI. A t t IS 1 f! Cf"!>0 W '.'' 1 fS PSFUOOXYI. • \ ' F ~ f p>:pn,vF'!T ; . is m.uFNF. Cr»Pn.NF««T 5 IS RENiFNF FiFI.ll>: - A V 1T - 2 . 0 C J HFAV INPUT TP RGPO.tl.FR = 9015.0 ENfHAtPY OF FFF.0 = 0 .0 r a m t t *ncssi»f IF 7*0.00 1 ;..oo>.~ >.q<\*,r. ^.<50f>0 "a 1-•'..',?••>- 1 y<>98 1T1 1 , o ; - 9 » r. OH?-: 21 = . ' . soc 2 2 0 . 7 9 0 0 CHTH* 0 . . 0 . * . Q . 0 . 0 _. FNTHI 0 . 0 C O 0 . 0 ? N T K ' 0 . 0 ' - .0 0 . 0 ? M T H I . •>*•-* . roo * '5000.0000 *oor>.oooo n F M S ! T Y ir.oT-r o.oooo oT^rr r.p 0 . 0 0 . 0 0 . 0 C W W N E K T '••Ol.rruL&R WIS. - 06. I ^ 9 4 7B.10999 F F F 0 »HI Ff. 'LAR . . T . 55.1 2 *V6 F F F P 1 1 A T F IMPI.FS) 0. 9"«<><? - E F D I 1 0 U I O 0 . 1 T . 0 0 0 0.300O0O 0.600000 TCLF.RA\tF vS. . . „ . . . . _. _. KDF-RR O.OOOiOO PROERR O.OOIOCC REACT I OR 5 : : '-:s !.'•• >,•*':'.. :.. •  RF. AC i l ON COMPCNENT 1 .0 ,0 . . . . P . O . _P...o_ FHF..'i.RP RE-'XTiiT. CCIErc. r^VFRSF. REACTION C P F F F . A T U K I C K A K F - l l " Or MCLC'.'JLES Kf LFCULF I N 1 T I M . CO'.": I T Ifi'lT. T ~ 'AP QUID HOLDUP ..?H..0... 2 1 _ . 0 2 1 2 . 0 j L L f . o .2 .0000. . .?.-o 00 2 .0000 2 .0000 2.0000 2 .0000 _2 .000.0... 2 .oooo" 2 .0000 2.0000 ..2. :>ooq ~? .0000 2.000 0 2 .0000 2 .'J00Q_ 2.5000 2 .5000 2 .5000 10.0000 IC-.OOOO" 10.0000 10.0000 2 1 ; 21? .2 '! 2 ! / 2!'-. 0 J. 12.0 212.0 212.0 217.0 . 2 : y . o . . 2.'.000 2 .5000 2.5090. 2. ''.000 2 . r'000 ;• . 5 orin ~ T 0 f ~ " 2.-)C!ur 2 . 0 0 0 0 . 2 . 0 O i ) 0 5 000 5000 ' 5 000 5 000 2.5 000 2.5000 10.0000 10.0000 10 .0000 ' 10.0000 10.0 000 1.0 . I 0. 0 1 0 . 0 0 0 s 1 0 . 0 0 0 0 1 0 . 0 0 0 0 1 0 . 0 0 0 0 1 0 . 0 0 0 0 1 0 . 0 0 0 0 1 0 . 0 0 0 0 K'.OOOO c c r-. ^-rv co ir . o f\_ C NC h-rj- -C. r*" <—< <f x r- m c c c- o • c o o o . r\> m c\j r - <~ <x — r- c t<~, *-* o c o c: o c c o c c c o o c c- o C : • • • • c o c ; f\! r-, C" 0 IT . fV . CX f"' C C C i C ' C (-.' o c . o . o c C ' ; r- a'. O- O C X" O C" n". if. a. a:, r-- a: ex -> r-" a- C ' . O O <j vr r - (X p.' 0 M h- C c-sO- Ef x- r--• C C C . C c • C. O- \S\ r*~. (X » LT o ^ ("**• — c c r \ - rx m «a if • .c fx cr. • C C . o o o o c o c c o o I I I I o o o o o o o o o o I I I I o o o c o 0 o o o o o 1 I I I I I o o o o c c 0 o o c o 1 I I I I o o o a o o o o o o o c o c o a . r-o o c o r*. fx f\; fx o o o c c c C O O O C : c o o c c O O C, O C: c c o c-c o o c o O C. O o o c o c c o ir IT x IT. •c -D f- r - u • rv f\ <j ir o c o o c o o o o o o e o o o o c c I I I I I a o o o c - o o f - o o o o — — fx rv. rv O O O O CJ x <x c: a: T cr C • C C O C C -c c o c c c i c e c- o O O O O C, ~ o c o . a o c Lf U". _f If LT, uT 1 n — ex -3 - s- a . c o r*- x a o « I I -3 c o o c e a o o o o o o o o o o o o O O O O o c o o o c c o I I I I I O O C O C O o o c o c o 0- — fx f . r— r j (x fx o f\ o o c , o • _: o rv rv: rv <x rv. ex-rx rx rxi tx r\ o o o o o c* o o o c c c c- o c o c c , O C ' O O IT. LT- li"' L.' '-f' <• CC O if' o -^ --< r- o f <— r v . \j r" f fx rv rv rv r.. I I - 4 A TOTAL CONDENSER IS USED RETURNING SATURATED LIOUIP 4 TOTAL RfROILER OF PART OF THE COLUMN LICU10 IS USED RETURNING SATURATED VAPOUR OF THE SAMF COMPOSITION AS THE COLUMN HOTTQH PRODUCT TOP PLATE IS • 7 FEED PLATE IS 10 BOT TOM PLATE IS 13 _ __. _ _ _ _ _ _ _ _ _ _ _ . _ COMPONENT 2 IS • TOLUENE . _ . . . COMPONENT J IS BENZENE REFLUX c.AT 10 = 2.000 HEAT INPUT TO REBOILER = 2R050.0 ENTHALPY OF FEED = 18113.8 COLUMN PRESSURE IS 760.00 A 6.9910 6.9550 6.^060 B 145 3. ',299 1341.7993 1 21 1 . 0330 C 215.0370 21O.4B00 220.7900 ENTHK f.0.0000 55.0000 49.3000 ENTHL -23G0.OOO0 -2709 .0000 -2400 .0000 ENTHU '•7.0000 16.8300 37.0000 ENTHK lftqOO.OOOO 14250.0000 13150.0000 COMPONENT MOLECULAR WTS. 1 0 6 . 1 5 9 ° 9 92.12999 7B.10999 FEED MOLFCULAR WT. 35. 12095 FEED ^ AT E (MOLES) 2.34960 FEED LI QUI 0 O.LOOOOO 0 .300000 0.600000 TOLERANCES BDFERR 0.000100 PRDERR 0.001000 REACTIONS CONSIDERED A-REACTION 1 2 COMPONENT 4 5 6 _.EF . 1 REACTION 1  1 - 1 -1 1.0 1.0 1.0 0 0.0 0.0 0 . 0 FORWARD REACTION COEF<=. REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MOLECULE ATOM 1 13 7 6 _2 14 8 6 INITIAL CONDITIONS TEMP VAPOR QUID HOLDUP 212.0 2 .0000 2.5000 0.0 212.0 2.0000 2.5000. 0.0 . . . . 212.0 2.0000 2.5000 . 0.0 .. . _ 212.0 2.0000 2.5000 0.0 212.0 2.0000 2.5000 0.0 212.0 2.0000 2.5000 0.0 212.0 2 .0000 2.5000 . 0.0 212.0 2.0000 2.5000 0.0 212.0 .2.0000 2.5000 • 0 . 0 . . . . . . . , .. • 0 -o.cooooo REQUIREMENTS ARE NOT MFT PRSERR=0.7549 HBAOKl=0 .0 HBAOK2=0.0 HBA0K3=1.0000 FINAL CONDITIONS H B A 0 K 4 - 0 . 0 ITERAT 1 XI 0 .023972 0.0461 22 X2 0 .169784 0 .245617 X3 0 .806243 0.708261 X5 X6 9 10 1 1 12 13 062027 072933 0 .090542 0^4741 103943 135959 0 .283314 0 .301189 0 .309169 0 .321010 0 .341044 C. 376390 0 .654659 0 .625877 0. 600289 0. 534250 0 . 555008 0 .487651 14 0 .100000 0 .300000 0 .600000 TEMP 1 8 3 . 9 VAPMOH 21384 .9 OUIMOH 6 9 1 6 . 3 VAPOR 1.0706 QUID 2 .1413 OUNBAL .41736. 22 SOXIN D X I N ( l . N ) D X I N ( 2 , N ) D X I N I 3 . N ) 0. 0 - 0 . 0 - 0 . 0 - 0 . 0 9 10 11 12 1 P8 . 7 191 .5 193 .1 19^.7 105 .0 1 9 6 . 7 20536. 3 20739 .4 20356 .5 20972 .0 21020 .3 21152 .0 7258 .9 7460 .0 7577 .0 7 7 0 4 . 7 7 7 4 0 . 5 7861 .4 3 . 1140 2 .9289 2 .7558 2 .5757 2. 4276 2 .2517 2 .08 11 2 .0477 2 .0320 4 .3707 4 .3421 4 .3073 -3502.81 -3436 . 73 -3580 .94 -3147 .91 -3335 .07 -3383 .32 0. 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 - 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 13 14 2 0 1 . 0 2 1 5 . 7 21^91.0 22688 .8 3181 .0 8 8 1 9 . 7 2 .0705 1.9944 4.2312 0 .5056 - 0 . 0 2 13278 .24 MOLES OF BOTTOM PRODUCT = 0 .505578 PERCENT OF EACH ATOM UNACCOUNTED FOR MOLES OF TGP PRODUCT 3 7 . 2 2 7 6 38.2645 0 . 0 0 . 0 1 .070633 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 PERCENT OVERALL UNBALANCE R E T I R E M E N T S ARE NOT MET PRSERR=0.6510 HBAOK1=0.0 HBA0K2=0.0 3 2 . 9 1 5 7 HBA0K3=1.0000 FINAL CONDITIONS HBA0K4=1.0000 9 10 11 12 13 ITERAT 2 XI 0 .005398 _ 0 . 016501 0 .0299 05 0 .045920 0 .032398 0 .085203 0 .094993 0 . 146833 X2 0 .095045 _ 0 .176823 "0. 2 3 89 31"' 0 .278902 0 .300731 0 .315292 0 .346672 0 .409035 X3 0 .899557 _ 0 . 806676 0."7'31165 0 .675179 0 .616871 0 .599415 0. 558335 0 .444132 14 0 .135959 0 .376390 0 .487651 N TEMP VAPMOH GUIMCH VAPOR OUID 6 179 .9 21220 .8 6628 .7 0. 6843 1. 3685 OUNBAL SDXIN D X I N U . N ) D X I N ( 2 , N ) 0 X I N ! 3 , N ) 28014.41 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 1 7 184 .0 20203 .0 6 9 1 1 . 5 2 .0602 1.3368 - 1 7 7 . 1 9 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 8 187 .4 20450 .1 7 1 5 4 . 9 2 .0348 1.3111 - 1 6 9 . 1 3 0 .0 -0 .0 - 0 . 0 - 0 . 0 9 190 .? 20653 .9 7 3 5 3 . 4 2 .0134 1.2905 - 2 0 0 . 8 1 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 193 .7 20898 .9 7629 .8 1.9857 3 .6373 - 2 7 1 . 2 2 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 11 194 .6 • 2 0 9 7 1 . 3 7 6 9 3 . 7 1.9725 3.6261 - 3 9 . 3 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 1 9 6 . 9 21152.5 7855 .8 1.9606 3 .5954 23 .41 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 13 204 .2 21748 .3 8 4 C 3 . 0 1.9239 3 .5039 0 . 1 7 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 2 3 . 9 23489 .1 9 3 9 7 . 3 1.8324 2. 3989 5705 .06 . 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 HOLES OF BOTTOM PRODUCT = 2. 398851 MOLES OF TOP PRODUCT 0 .684272 PERCENT OF EACH ATOM UNACCOUNTED FOR - 3 2 . 3970 - 3 2 . 7 0 4 4 PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR=0.0270 HBAOK1=0.0 HBAOK2=0.0 -31 .2192 HBA0K3=1.0000 FINAL CONDITIONS HBA0K4=0.0 ITERAT 3 XI X2 X3 X4 X5 X6 0 .001688 0 .066628 0 .931635 7 0 .006697 0 .137166 0. 856137 3 0 .015939 0 . 204578 0. 779484 9 0 . 03345? 0. 258441 0 .708108 10 0 .077737 0. 294747 0. 627516 11 0 .080625 0. 313467 0 . 605907 12 0.002033 0. 354263 0. 5536^4 13 0 . 149043 0. 425546 0. 425411 14 0 .146833 0 . 409035 0 . 444132 N TEMP . VAPMOH OUIMOH VAPOR QUID OUNBAL SOXIN OXINI 1,N) OXINI 2,N) DXI N (3 ,N) 6 178 .6 21168 .5 6 5 3 9 . 4 0. 6860 1.3719 27830 .94 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 181 .6 20044 .1 6 7 4 4 . 5 2.0599 1.3440 - 7 6 . 8 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 3 18 4 . 9 20278 .9 6975 .4 2 .0368 1.3157 - 7 7 . 2 3 0 . 0 -0 .0 - 0 . 0 - 0 . 0 9 188 .4 20528 .1 7227 .5 2.0138 1.2878 - 2 7 . 65 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 192 .9 20847 .6 7576.1 1.9879 3 .6282 - 4 8 . 3 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 194. 1 20933 .6 7655 .8 1.9799 3 .6125 -31 .47 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 12 1 "7 .0 21169.7 7R62.8 1.9649 3 .5727 - 2 1 . 3 5 0 .0 - 0 . 0 - 0 . 0 -0 .0 13 205 .3 21851.2 8479 .9 1.9224 3 .4752 - 0 . 0 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 226 .5 23773 .4 9591 .5 1.8249 1.6789 - 1 0 2 . 4 1 0 .0 -0 .0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT 1.678925 MOLES OF TCP PRODUCT 0 .695963 PERCENT OF EACH ATOM UNACCOUNTED FOR - 1 . 2 6 6 8 - 1 . 4 3 C 0 PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR = 0 .C11 I HB40K1=0.0 HBA0K2=0.0 HBA0K3=1.0000 FINAL CONDITIONS HBA0K4=0.0 ITERAT 4 XI X2 X3 X5 0 . 0 0 0 7 0 5 0 .050829 0 .948466 0 .003379 0 .111363 0 .885253 i * cn; 8 0 .010246 0 . 178466 0 .811289 9 0 .027799 0 . 241102 0 .731099 TO 0 .075406 0. 2 8 ° 0 7 8 0. 635517 1 1 0 .078141 0. 310125 0 .611734 12 0 .CR9952 0. 356044 0 .554004 \ 13 0 .148099 0. 432692 0 .419209 -1A 0 .149043 0 . 425546 0 .425411 • N TEMP VAPMOH OUIMOH VAPOR QUID QUNBAL SDXIN D X I N d N) D X I N I 2 , N) DX I Nt 3 , N) 6 178 .0 21142 .3 6 4 9 5 . 6 0.6881 1.3761 27831 .27 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 180 .4 19959.8 6659 .3 2. 06 61 1. 35 18 - 1 7 . 6 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 133 .4 20176.2 6871 .8 2 .0462 1.3235 - 1 7 . 8 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 187 .2 20441 .8 7140 .4 2. 0233 1. 2910 - 7 . 1 1 0 . 0 -0 .0 - 0 . 0 - 0 . 0 10 1 9? .4 203 11.3 7540 .1 1.9930 3 .6308 - 1 7 . 2 5 0. 0 - 0 . 0 - 0 . 0 - 0 . 0 11 193. 6 20906 .9 7623.2 1.9849 3 .6128 - 2 6 . 5 1 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 12 196 .7 21157 .6 7844 .7 1.9679 3 .5683 - 3 3 . 7 2 0 . 0 - 0 . 0 - 0 . 0 -0 .0 13 2 0 5 . 5 21374 .9 3489 .1 1.9225 3 .4673 0 .05 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 227 .4 23979 .6 9659 .0 1.8215 1.6538 - 5 0 . 9 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.653762 MOLES OF TOP PRODUCT 0 .688068 PFRCFNT OF EACH ATOM UNACCOUNTED FOR - 0 . 4335 - 0 . 6 7 3 8 PERCENT OVERALL UNBALANCE 0 .3306 REQUIREMENTS ARE NOT MET PRSERR=0.0060 HB40K1=0.0 HBA0K2=0.O HBA0K3=1.0000 HBA0K4= 0. 0 FINAL CONDITIONS N ITERAT XI X2 X3 X4 • X5 X6 6 5 0 .000412 0 . 0 4 1 5 7 9 0 .958009 7 0 .002245 0 . 094873 0 .902882 3 0 .003047 0. 160073 0. 831876 9 0 .025432 0 . 227827 0 .746741 10 0 .074327 0. 234154 0.641478 11 0 .076390 0. 306057 0 .617053 12 0 .088568 0 . 354310 0 .557122 13 0 .146394 0. 434177 0 .419430 14 0 .148099 0 . 432692 0 .419209 N TEMP VAPMOH OUIMOH VAPOR OUID QUNBAL SOX IN O X I N U N) D X I N I 2 , N) 0 X I N ( 3 , N ) 6 177 .6 21127 .6 6 4 7 1 . 3 0 .6897 1.3794 27831 .37 0 . 0 - 0 . 0 - 0 . 0 -0 .0 7 1 7 9 . 6 19910.8 6 6 1 0 . 7 2 .0703 1.3581 - 8 . 3 7 0 . 0 - 0 . 0 - 0 . 0 -0 .0 8 1 8 2 . 5 20112.1 6808 .6 2 .0517 1.3306 - 9 . 1 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 186 .4 20384 .5 7084 .2 2 .0279 1.2957 - 9 . 9 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 192 .0 20784 .8 7515 .0 1.9941 3 . 6354 - 2 4 . 02 0. 0 - 0 . 0 - 0 - 0 - 0 . 0 11 l « 3 . 2 20881.2 7598 .3 1.9848 3 .6172 - 2 6 . 2 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 196 . 5 21139.2 7825 .7 1. 9671 3 . 5715 - 2 0 . 5 7 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 13 205 .3 21369 .0 8479 .7 1.9218 3 .4694 0 .10 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 1. J 14 227 . 5 23904.3 9671.2 1.8196 1.6476 0 .83 C O - 0 . 0 - 0 . 0 - 0 . 0 M H MOLES CF BOTTOM PRODUCT 1.647629 MOLES OF TOP PRODUCT 0 .689718 I PERCENT OF EACH ATOM UNACCOUNTED FOR - 0 . 1738 - 0 . 4 2 9 3 PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR=0.OC52 HBAQK1=0.0 H8ACK2-0 .0 0 . 5 2 1 4 HRA0K3=1.0000 FINAL CONDITIONS HBAOK4=0.0 ITERAT 6 XI 0 .000314 0 .001835 X2 X3 X5 X6 0 .035933 0 .963753 8 0 .007175 0 .147492 0. 845333 9 0 .024413 0 .218161 C . 757427 10 0 .073822 0 .280230 0. 645898 1 1 0 .076249 0 .302073 0. 621677 12 0 .087690 0 .351022 0 . 561238 13 0 .144874 0 .432644 0. 422482 14 0 .146394 0 .434177 0 . 4 19430 N TEMP VAPMOH QUtMQH VAPOR QUID QUNBAL SDXIN D X I N U . N ) D X I N I 2 . N ) 0 X I N ( 3 , N ) 6 177 .4 21118 .8 6456 .9 C.6902 1.3803 . 27799 .76 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 179 .2 19882.3 6 5 3 3 . 3 2 .0706 1.3613 - 8 . 81 0 . 0 - 0 . 0 - 0 . 0 -0 .0 8 1 8 2 . C 20073 .7 6 7 7 2 . i 2.0529 1.3350 - 7 . 4 5 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 9 1 8 5 . 9 20349 .7 7052 .0 •2.0235 1.2990 - 8 .48 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 1 0 1 . e 20767 .4 7 4 9 9 . 6 1.9931 3 .6388 - 1 5 . 3 7 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 11 1 9 3 . 0 20862 .9 7 5 8 2 . 3 1 .9837 3.6211 - 1 0 . 3 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 196 .3 21121 .4 7 8 1 0 . 6 1 .9669 3 .5754 - 3 . 7 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 205 .1 21851 .8 8465 .3 1.9225 3 .4728 0. 10 0 .0 - 0 . 0 - 0 .0 -0 .0 14 227 .4 23892 .8 9 6 6 0 . 6 1.3199 1.6495 3 .25 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES GF BOTTOM PRODUCT = 1 .649487 HOLES OF TOP PRODUCT 0 . 6 9 0 1 6 5 PERCENT OF EACH ATOM UNACCOUNTED FOR - 0 . 1 4 3 1 - 0 . 3 8 1 7 PERCENT OVERALL UNBALANCE 0 .4233 REQUIREMENTS ARE NOT ME T PRSERR=0.0044 HBA0K1=0.0 HB4OK2=0.0 HBA0K3 = 0 . 0 HBAOK4=0.0 FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 7 0 .000278 0 .032419 0 .967304 7 0 .001675 0 .077464 0 . 9 2 0862 e 0.006812 0 .139101 0. 354086 9 0 .023965 0. 21 1459 0. 764577 10 0 .073533 0 .277352 0. 649065 11 0. 075916 0 .298690 0. 625394 12 0 .087153 0 .347497 0. 565350 13 0 .143806 0 .429890 0 . 426304 14 N TEMP 6 177 .3 0 .144374 0 .432644 0 .422482 VAPMOH OUIMOH VAPOR QUID 211 13 .5 6 4 4 8 . 1 0 .6904 1.3807 QUNBAL SDXIN D X I N d . N ) DXIN(2 ,N> D X I N I 3 . N ) 27790 .67 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 H ; 5 7 179 .0 19864.7 6 5 6 6 . 5 2 .0713 1 .3628 - 5 . 2 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 181 .7 20050 .0 6750 .2 2 .0541 1.3369 - 4 . 4 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 185 .6 20328 .4 7033 .2 2 .0295 1.3003 - 2 . 2 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 191 .7 20756 .4 7 4 9 0 . 6 1. 9934 3 .6404 - 2 . 7 7 0 .0 -0 .0 - 0 . 0 - 0 . 0 11 1 9 2 . 9 20849 .6 7 5 7 1 . 7 1.9846 3.6231 0 .27 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 196 .1 21 105.0 7797 .6 1.9634 3 .5777 - 0 . 6 8 0 . 0 - 0 . 0 - 0 . 0 • - 0 . 0 13 2 0 4 . 9 21830 .9 8 4 49 .2 • 1. 9241 3 .4746 0. 08 0 .0 - 0 . 0 - 0 . 0 - 0 .0 14 227 .1 23868 .3 9 6 4 2 . 7 1.8211 1.6518 - 1 4 . 5 0 . 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.651758 MOLES OF TOP PRODUCT 0 .690368 PFRCFNT OF FACH ATOM UNACCOUNTED FOR - 0 . 1156 - 0 . 3 2 0 2 PERCENT OVERALL UNBALANCE 0 .3180 REQUIREMENTS ARE NOT MET PRSERR=0.0027 HBAOK1=0.0 HBA0K2=0.0 HBA0K3=1.0000 HBAOK4=0.0 FINAL CONDITIONS  N ITERAT XI X2 X3 X4 X5 X6 6 8 0 .000263 0 .030217 0 .969520 _ 7 0 .001608 0 .073126 0 .925267 S 0 .006655 0 .133632 0 .859713 9 0 .023765 0 .206985 0 .769251 10 0 .073465 0 .275273 0 .651262 1 1 0 .075736 0. 296062 0.628202 12 0 .086827 0 .344372 0 .563801 13 0 . 1431 33 0 .426937 0 .429930 14 0. 143306 0 .429890 0.426304" TEMP 177 .2 VAPMOH 21110 .3 QUIMOH 6 4 4 2 . 8 VAPOR 0 .6909 QUI 0 1.3819 OUNBAL 27806 .63 SDXIN D X I N U . N ) . D X I N 1 2 . N I OXINI 3,N) 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 8 o 10 11 12 178. 8 131 .4 135 .4 191 .6 192 .7 1 95 . 9 19852.9 20034 .0 20313 .6 20748.4 20838 .8 21090 .0 65 5 4 . 9 6 7 3 5 . 0 7 0 1 9 . 8 7483 .9 7 5 6 2 . 8 7785.2 0733 0566 0317 9950 9864 9702 1.3643 1.3334 1.3011 3 .6414 3 .6245 3 .5791 - 0 . 0 1 - 0 . 8 8 2 .18 1 .17 - 0 . 38 - 4 .86 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 13 14 2 0 4 . 7 2 2 6 . 9 21810.1 23842 .7 MOLES CF BOTTOM PRODUCT 8433 .1 9 6 2 5 . 3 1.652409 1.9257 1.8222 3 .4755 1.6524 0 .08 - 2 1 . 6 8 0 .0 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF TOP PRODUCT 0 .690928 PERCENT OF EACH ATOM UNACCOUNTED FOR - 0 . 0 5 3 1 -0 .2182 PERCENT OVERALL UNBALANCE 0 .2665 REQUIREMENTS ARE NOT MET PRSFRR=0.0013 HBAOK1=0.0 HBAOK2=0.0 HBAOK3=0.0 FINAL CONDITIONS HBAOK4=0.0 ITERAT XI X2 X5 .X6 0 .000256 0 .028819 0.970925 0 .001576 0 .070340 C.928085 c 8 0 .006576 0 . 130059 0. 863365 -1 9 0 . 02 36 56 C. 203995 0 .772349 10 0 . 073389 0 . 273812 0 . 652799 11 0. 075619 0 . 294086 0. 6 3 0 2 ° 5 12 0 .086605 0 .341803 0. 57159? 1? 0. 142705 0 .424231 0 . 433064 J f 1 4 0. 143133 0. 426937 0. 429930 •< N TEMP VAPMOH OUIMOH VAPOR OUIO OUNBAL SDXIN O X I N I 1 , N ) D X I N ( 2 , N ) D X I N I 3 . N ) 6 177.1 21108 .1 6439 .3 0 .6916 1.3831 27821 .96 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 178 .7 19845.1 6547 .2 2.0751 1.3659 1.8 1 0 . 0 -0 .0 - 0 . 0 - 0 . 0 8 181 .3 2 0 0 2 3 . 0 6724 .4 2 .0586 1.3401 1. 07 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 185 .3 20302 .8 7009 .6 2 .0337 1.3023 2 .53 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 10 191 .5 20742. 1 7 4 7 8 . 4 1.9964 3 .6428 - 0 . 6 3 0 . 0 -0 .0 - 0 . 0 - 0 . 0 1 1 1 9 2 . 6 20830 .0 7554 .9 1.9877 3 .6260 - 3 . 2 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 1.2 195 .7 21077.1 77 74.3 1.9715 3 .5808 - 6 . 0 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 204 .5 21791 .8 8419 .8 1.9269 3 .4768 0. 06 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 2 6 . 7 23820 .6 9610 .7 1.8229 1.6526 - 1 5 . 0 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLFS OF BOTTOM PRODUCT = 1.652608 PERCENT OF F AC H ATOM UNACCOUNTED FOR MOLES OF TOP PROOUCT -0 .0022 - 0 . 1 3 0 7 0 .691558 PERCENT OVERALL UNBALANCE 0 .2312 FINAL CONDITIONS FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 9 0 .000252 0 .027910 0 .971837 7 0 .001557 O.C6850S 0. 929936 8 ' 0 .006526 0 .127670 0 .865805 _ 9 0 .023577 0. 201941 0. 774 482 10 0 .073330 0 .272768 0 .653903 11 0 .075527 0 .292599 0 .631874 12 0 .0B6432 0 .339744 0 .573824 13 0 .142406 0 .421925 0 .435669 14 0 .142705 0 .424231 0 .433064 N TEMP VAPMOH OUIMOH VAPOR OUIO OUNBAL SDXIN O X I N ( l . N ) 0 X I N I 2 . N ) D X I N ( 3 , N ) 6 177 .1 7 1 7 3 . 6 8 181 .2 21106 .7 19840.4 20016 .0 6 4 3 7 . 0 6 5 4 ? . 7 6 7 1 7 . 9 0 .6919 2 .0759 2 .0596 1. 3838 1.3671 1.3415 27825 .37 1 .05 1 .07 0 . 0 0 . 0 0 . 0 -0 .0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 10 11 12 13 _1__ 185 . 191, 192 195 2 04, 20295 .7 20737 .6 20823 .3 21067.1 21777.1 23302.4 7 0 0 3 . 0 7474 .3 7549 .2 7 7 6 5 . 9 84 07 .5 9 5 9 9 . 0 2 .0346 1.9969 1.9881 1.9720 1 .9277 1.8234 3036 6441 6277 5827 4784 1.6534 1.36 - 1 . 84 - 2 . 7 6 - 3 . 38 0 . 0 7 - 7 . 4 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 -0 .0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT 1.653441 PERCENT OF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE MOLES OF TOP PROOUCT 0 .0087 - 0 . 0 8 9 3 0 . 1809 0 .691906 H 7< 2 : u- ir-C' o « o o c c- o o o o c: o i o c o c o 11,111 i o o o o i o o o o t i: i C O O O o c o c c O c o o I I I I ! o c o o I I I C O O O O . o c . o o o o o o c O C- O C-•C a: r- — CC — LP c.1 >,'_' >i- C <J P"- C. r~i r*". -J-. —' ^-i <-> r*"> rv; - j i r>. p.j cr. r> ir. iv r- n; r-- rvi rvi c o c C r\; rv rv c r- cr c rr r- rv- r - r*" -r — o < u". r- C c < LT. r-- -j -r~ c r • c o rv h-1 c ! c o o ! rv rvi <v r- r- (X Lf'' *C r : -6 c e O rv ' —' — r\J rv r- cc' c- c i 11-12 A M C ' T ' U . _ C O > O J \ N ^ A TOTAL RPEOILEK OF PAR' OF THE COLUMN L. 10(11 n 15 USED RETURNING SATURATED VAPOUR OF THE SAMF COMPOSITION AS THE COLUMN PPTTOM PRODUCT TOP PLATE IS 7 FEED PL ATE IS 10 BOTTOM PLATE IS 13 C F U PONE N'T 1 IS PSEUDOXYLENE COMPONENT 2 I S TOLUENE COMPONENT •3 IS BENZENE REFLUX " AT 10 = 2 .000 HEAT INPUT TO PE BO!LER = 28050.0 ENTHALPY OF FEED = SM18.8 CFIUMN PRESSURE IS 760.00 A. ft .9910 6.9550 6.9060 P 145 • . 429S 1344.7998 1 21 1 . 0330 C 215.0370 219.4300 220.7900 ENTHK 60 .0000 55.0000 49.F0OO ENTHL -230C .0000 • -2700.0O0G -2400.0000 ENTHU 47 .0000 46.3300 37.0000 ENTHV: 169CC . 0000 14250.0000 13150.0000 COMPONENT MOLECULAR WTS. 106.159=9 92.12999 78.10999 FEED V-0L ECUL AR V>'T . ?5.120<>6 FEED RATE (VOLES) 2.34960 FEED LIQUID 0.105000 0.300000 0.600000 TCL E R AN'C ES BDFE P R 0.000100 PRDERR 0.001000 REACTIONS CONSIDERED ARE REACTION _ COMPONENT AF EE AR E" 1 2 3 4 5 6 7 8 9 1 1 -1 -1 0 0 0 0 0 0 0.0 0.0 0.0 0 . 0 1.0 1.0 1.0 REACTION FORWARD REiCTION CO EE F . REVERSE REACTION CDEFE. 1 ATOMIC MAKE-UP OF MOLECULES MOLECULE 1 2 3 4 5 6 7 8 9 ATOM 1 13 7 6 I 14 3 6 I N I T I A L C O N D I T I O N S T E K B VAPOR QUID HOLDUP 212.0 2.0000 2.5000 10.OCOO 212.0 2.000 0 2.5000 10.0000 212.0 2.0000 2 .5 000 ' 10.0000 212.0 2 .0000 2.5000 10.0000 212.0 2.0000 2.5000 10.0000 2 12.0 2 .0000 2.50"0 1.0.0000 2 1.2 . 0 2 .0000 2.5000 10.0000 212.0 2.COO0 2.5000 10.0000 212.0 2 .0000 2.5000 10.0000 REQUIREMENTS ARE NOT MET PR SE RR =0.0R4R HBA0K1=C 1.0 HRAOK2=0.0 H B A 0 K 3 - 1 . 0 0 0 0 HBA0K4* 0 . 0 FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 1 0 .060993 0 .233146 0 .705861 7 0. 089961 0 .233241 0. 621793 8 0. 100001 0. 303276 0. 596723 9 0 . 103282 0 .306967 0 . 589751 10 0 .103356 0. 307075 0. 589569 11 0 . 104639 0 .310224 0. 585087 12 0. 1073^6 0 .317722 0 . 574381 13 0. 1290 30 0. 345978 0. 524991 14 - 0 . 100000 0 .300000 0. 600000 N TEMP VAPMOH QUIMOH VAPOR QUIO OUNBAL SDXIN O X I N I I » N ) D X I N I 2 . N ) D X I N ( 3 1 N) 6 188.8 21587 .6 7 2 3 6 . 6 1.8448 3 .6896 6 6 0 1 7 . 5 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 193.1 20863 .7 7 6 0 5 . 4 5 .0971 3 .5805 - 1 0 6 2 3 . 6 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 ' 194.5 20970 .8 7 7 1 0 . 5 4 .5810 3 .5346 - 1 0 2 9 9 . 8 2 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 194 .9 21000 .8 7740 .1 4 .0856 3 .5068 - 1 0 1 1 1 . 1 7 0 . 0 -0 .0 - 0 . 0 - 0 . 0 10 1 ° 4 . 8 20998 .3 7737 .3 3 .5992 5 .8255 - 1 0 2 8 3 . 6 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195.2 21022 .6 7 7 6 0 . 9 3 .0970 5.8041 - 1 0 1 7 7 . 8 2 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 195.7 21064 .8 7 7 9 8 . 0 2 .6063 5 .7707 - 1 0 2 9 9 . 9 2 0 . 0 -0 .0 - 0 . 0 - 0 .0 13 198.8 2 1304.7 30 26 .6 2 .0913 5.6872 4 7 . 0 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 1 5 . 7 22688 .8 8819 .7 1.9944 0.5056 2 4 3 8 9 . 7 0 0 . 0 -0 .0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 0 .505578 PERCENT OF EACH ATOM UNACCOUNTED FOR MOLES OF TOP PRODUCT 3. 7800 4.6971 1 .844782 PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR=1.9045 H B A O K l - 0 . 0 HBAOK2=0.0 - 0 . 0 3 2 5 HBA0K3=1 .0000 FINAL CONDITIONS H B A O K 4 = 0 . 0 ITERAT 2 XI 0 .049225 0 .075147 X2 0 .208188 0 . 265957 X3 0 .742588 0 .653897 X4 X5 X6 10 11 12 _1 J _ 14 N TEMP _ ]_____ 0 .092833 0 .100288 0. 101717 0 .103402 0 .107593 0 .139759 0 .294797 0 .303347 0 .304374 0. 309472 0 .321757 0 .362619 0 .612320 0 .595865 0.593409 0 .587126 0 .570650 0.497612 0 .129030 0 .345979 0 .524991 VAPMOH QUIMOH VAPOR QUIO 21512 .6 7 1 5 1 . 6 0 .6716 1 . 3431 OUNBAL SDXIN D X I N I l . N ) D X I N ( 2 , N ) D X I N I 3 . N ) 27008 .55 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 191.5 2 0 7 2 8 . 3 7 4 7 4 . 7 1.9980 I .3298 - 2 4 5 . 7 2 0.0 -0.0 -0.0 -0.0 a I<H.O 20920 .5 7665 .6 1.9340 1.3279 - 1 7 7 . 9 6 0 . 0 -0 .0 - 0 . 0 - 0 . 0 9 195.0 20992 .4 7 7 3 7 . 5 1.9801 1. 3361 - 2 7 6 . 2 2 0 .0 -0 .0 - 0 . 0 -0 .0 10 195.2 2 1 0 0 4 . 3 7750 .1 1.9734 3 .6995 - 7 7 . 0 2 0 . 0 -0.0 -0.0 -0 .0 11 195.5 21031 .7 7775 .2 1.5774 3 .7090 - 9 1 . 0 5 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 12 196.4 21104 .7 7341 .0 1.9741 3 .7100 - 8 . 6 6 0 . 0 - 0 . 0 - 0 . 0 -0 .0 13 2 0 1 . 0 2146 4 . 6 8179 .6 1.9523 3.6621 3 2 7 . 9 8 0 . 0 - 0 . 0 - 0 . 0 -0 .0 14 218 .9 22988.1 9094.2 1.8748 3 . 8 123 - 1 6 2 7 7 . 2 7 0 . 0 -0 .0 - 0 . 0 -0.0 MOLES OF BOTTOM PROOUCT = 3 .812343 MOLES OF TOP PRODUCT 0 .671556 PFRCFNT O F EACH ATDM UNACC HUNT F 0 FOP. - 5 4 . 7 8 6 9 - 9 5 . 6 6 7 2 PERCENT OVERALL UNBALANCE" " - 9 0 . 8 3 6 9 RECU TREMENTS ARE NOT MET PRSERR=0.1467 HBAOK1=0.0 HBA0K2=0.0 H8A0K3=1 .0000 HBAOK4=0.0 F I NAL CONDITIONS  N ITERAT X I X 2 X 3 X4 X 5 X 6 6 3 0 . 0 4 0 1 7 7 0 . 1 8 8 2 0 9 0 . 7 7 1 6 1 4 7 0 . 0 6 7 3 4 1 0 . 2 5 5 4 2 9 0 . 6 7 7 2 3 0 8 0 . 0 8 6 9 15 0 . 2 8 8 5 0 1 0 . 6 2 4 6 8 4 9 0 . 0 9 7 0 3 0 0 . . 3 0 0 9 0 0 0 . 6 0 2 0 7 0 1 0 0 . 1 0 0 5 0 2 0 . 3 0 3 9 6 7 0 . 5 9 5 5 3 2 1 1 0 . 1 0 2 6 1 9 0 . 3 1 0 8 6 4 0 . 5 8 6 5 1 7 1 2 0 . 1 0 9 3 0 9 0 . 3 3 0 4 2 6 0 . 5 6 0 2 6 5 1 3 0 . 1 5 2 5 4 6 C . 3 9 0 Q O O 0 . 4 6 6 5 5 4 1 4 0 . 1 3 9 7 6 9 0 . 3 6 2 6 1 9 0 . 4 9 7 6 1 2 N TEMP VAPMOH OU IMOH VAPOR QUID 0UN8AL SOX IN D X I N t l . N ) D X I N ( 2 , N ) 0 X I N t 3 , N ) 6 135.6 21455.1 7043 .1 0 .6680 1.3361 27366 .11 0 . 0 -0.0 - 0 . 0 -0.0 7 190.4 20653 .6 7395 .7 2 .0089 1.3008 - 1 6 5 . 7 4 0 . 0 - 0 . 0 - 0 . 0 -0 .0 8 193 .3 20867 .4 7 6 1 0 . 9 1.9901 1.2831 - 1 5 5 . 0 3 0.0 - 0 . 0 -0.0 - 0 . 0 9 194 .7 20966 .8 7 7 1 1 . 8 1.9802 1.2775 4 7 . 9 2 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 195.0 2 0 « 9 3 . 3 7738 .2 1.934 1 3 .6218 - 2 6 . 7 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 1 95 . 5 21032 . 3 7773 .4 1.98 18 3 .6139 - 2 8 . 3 9 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 12 197 .0 21150 .7 7880 .2 1.9725 3 .5938 1 8 . 5 5 0 . 0 -0 .0 - 0 . 0 - 0 . 0 ' 13 2 0 3 . 0 21632 .9 8329 .6 1 .9399 3 .5233 185 .45 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 222 .6 2 3 344 .6 9 3 2 8 . 0 1.8497 1.8125 - 8 7 9 . 0 6 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 MOLES CF BOTTOM 1 PPODUCT = 1.812466 MOLES OF TOP PRODUCT 0 .668036 PERCENT OF EACH ATOM UNACCOUNTED FOR - 7 . 1743 - 7 . 4 9 5 6 PERCENT OVERALL UNBALANCE - 5 . 5 7 1 4 REQUIREMENTS ARE NOT MET PRSERR=C.0509 FBAOK1=0.0 HBA0K2=0.0 KBA0K3=1.0000 H B A 0 K 4 - 0 . 0 FINAL CONDITIONS  H N I T E R A T XI X2 X 3 X 4 X 5 X 6 ^ 6 4 0 . 0 3 3 0 0 9 0 . 1 7 1 3 5 9 0 . 7 9 5 6 3 2 J> 7 0 . O 5 Q 6 5 5 0 . 2 4 3 3 5 9 0 . 6 Q 6 4 8 6  8 0 .080634 ' 0. 2821 56 0. 637209 9 0 .093240 0 .298063 0 .608698 10 0 .099358 0 .303634 0 .597008 11 0 .101928 0 .312966 0 .535105 12 0 .110790 0 .338500 C.550709 13 0 .161155 C.393874 0.4^4972 14 0 .152546 C.330900 0 .466554 N TEMP VAPMOH OUIMOH VAPOR QUID QUNBAL SDXIN D X I N U . N ) D X I N ( 2 , N ) D X I N I 3 . N ) 6 184 .5 21409.1 6 9 6 5 . 3 0 .6725 1.3451 2 7 5 7 4 . 6 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 189.3 20575 .4 7 3 1 3 . 0 2 .0232 1.3056 - 9 7 . 6 8 0 . 0 - 0 . 0 - 0 . 0 -0 .0 8 192.5 20808 .9 7548 .6 2 .0044 1.2801 - 6 1 . 7 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 194.2 20933 .0 7675 .2 1.9951 1 .2670 - 7 5 . 7 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 194.8 20981 .7 7724 .4 1.9897 3.6101 - 3 8 .84 0 . 0 -o.b - 0 . 0 - 0 . 0 11 195 .4 21032 .5 7769 .5 1.9351 3 .5986 - 2 3 . 4 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 197.4 21188 .6 7909 .7 1.9729 3 .5697 3 7 . 2 4 0 . 0 -0 .0 - 0 . 0 - 0 . 0 13 204.3 21750 . 1 8423 .9 1.9363 3 .4880 110 .23 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 224 .8 23560 .4 9 4 8 8 . 6 1.3417 1.6816 - 1 1 4 . 2 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.681595 MOLES OF TOP PRODUCT 0 .672530 PEPCFNT OF FACH ATOM UNACCOUNTED FOP. - 2 . 3371 - 2 . 7551 PERCENT OVERALL UNBALANCE - 0 . 1 9 2 7 REQUIREMENTS ARE NOT MET PRSERP=0.0444 HRAOK1=0.0 HBA0K2=0.O MBA0K3=1.0000 HBA0K4=0.0 FINAL CONDITIONS ITERAT X2 X3 X4 X5 X6 6 5 0 .027263 0 .156825 0 .8 15912 7 0 .052448 0. 232131 0 . 715371 8 0 .074307 0. 275444 0. 650249 Q 0 .C89078 0. 295319 0 . 6 15603 10 0.098126 0. 303525 0. 599348 1 1 0 .101171 0. 315177 0. 583652 12 0.11179R 0 . 345438 0 . 542764 13 0 .167705 0. 404394 0. 427901 14 0 .161155 c. 393874 0. 444972 N TFMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N d . N ) D X I N I 2 , N ) D X I N ( 3 , N ) 6 183 .5 21370 .9 6896 .8 0 .6763 1.3527 27638 .34 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 188.2 20503 .8 7237 .4 2. 0329 1. 3144 - 1 1 9 . 4 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 191 .6 2 0 7 5 0 . 2 7 4 8 5 . 8 2 .0118 1.2886 - 1 1 9 . 0 9 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 9 193.5 2 0 3 9 2 . 9 7630 .0 1.9988 1.2724 - 9 2 .21 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 194.6 2 0 9 6 9 . 9 7 7 0 9 . 9 1.9900 3. 6140 - 5 6 . 0 6 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .3 21032 .6 7 7 6 5 . 4 1.9831 3 .6008 - 3 7 . 3 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 197.7 2 1 2 1 8 . 9 7 9 3 1 . 9 1.9686 3 .5672 1.21 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 2 0 5 . 3 21841 .5 8502 .5 1.9278 3 .4784 81 .60 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 H 14 226 .7 23763 .9 9626 .4 1.3291 1.6539 5 2 . 6 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.658869 MOLES OF TOP PRODUCT 0 .676328 _ l _ CJ1 PFRCFNT OF EACH ATOM UNACCOUNTED FOR - 2 . 4 6 8 3 PERCENT OVERALL UNBALANCE 0 .6129 REOUIRE MENTS ARE NOT MET PRSERR= 0 . C 5 2 7 HBAOKl=0 .0 HBA0K2" =0.0 HBA0K3=1.0000 HBAOK4=0.0 FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 6 0 .022625 0 .144146 0 .833228 7 0 .045913 0 .220851 0 .733237 8 0 .068017 0 .263481 0 .663502 9 0.0345 85 0 .292420 0 .622995 10 0 .096756 0 .3034C8 C .599836 11 0 . 100246 0 .317147 0 .582607 IZ 0. 11228 6 C .351184 C . 536530 13 0.172151 0 .412575 0 .415274 14 0 .167705 0 .404394 0 .427901 N TEMP VAPMOH QUIMOH VAPOR QUID OUNBAL SDXIN D X I N ( l . N ) D X I N ( 2 , N ) D X I N ( 3 , N ) 6 182.8 2133B.9 6 3 3 9 . 7 0. 6777 1. 3553 2 7 6 5 4 . 0 3 0 . 0 -0 .0 - 0 . 0 - 0 . 0 7 137.2 20436 .6 7 1 6 5 . 3 2 .0336 1.3185 - 1 6 5 . 9 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 190.8 20692 .9 7 4 2 4 . 5 2 .0090 1.2936 - 1 5 1 . 9 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 193.0 20857 .6 7591 .2 1.9933 1.2790 - 1 0 3 . 1 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 194.4 20959 .9 7697 .5 1.9337 3.6210 - 6 8 . 5 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195.3 21033 .5 7762 .8 1 .9756 3 .6078 - 4 3 . 1 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 1_2 19.7 .9 21 24 4 7 9J5J .4 1 .9602 J. .jjj 2 2 11 .33 0 .0 . - 0 . 0 - 0 . 0 - 0 . 0 13 206". 1 21915. 6 8562 .3 1 .9189 3 .4814 7 0 . 5 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 228 .1 23909 .3 9725 .4 1 .8206 1.6577 135.31 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES CF BOTTOM PRODUCT - 1.657745 MOLES OF TOP PRODUCT 0 . 6 7 7 6 5 5 PERCENT OF EACH ATOM UNACCOUNTED FOR - 2 . 3 5 1 2 - 2 . 9 2 3 3  PFRCFNT OVERALL UNBALANCE 0 .6042 REQUIREMENTS ARE NOT MET PRSERR=0.0653 HBA0K1=0.0 HBA0K2=0.0 HBA0K3=1.0000 H B A 0 K 4 - 0 . 0 FINAL CONDITIONS  N ITERAT XI X2 X3 X4 X5 X6 6 7 7 0 .019864 0 .040097 0 .133010 0 .210050 0 .848126 0 .749853 8 9 10 11 12 13 0 .061932 0 .079925 0 .095266 0 .099127 0. 112273 0. 175053 0 .261398 0 .289366 0 .303168 0 .318721 0 .355814 0 .419113 0 .676670 0 .630709 0 .601566 0 .582152 0 .531913 0 .405834 14 0 .172151 0 .412575 0 .415274 N TEMP 6 132.1 VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N d . N ) D X I N ( 2 , N ) D X I N I 3 . N ) 21 311 .9 6791 . 7 0 .6763 1 . 3527 27523 .35 0 . 0 -0 .0 - 0 . 0 - 0 . 0 9 10 11 _12_ 13 14 4 0 5 3 3 2_ 7C6 . 3 2 2 9 . 1 136. 190. 192 . 1 9/,. 195 , J 9 J L , 20376 .8 20640 .8 20325 .4 20952 .1 21036 .2 21268 .3 21975 .6 24019 .1 7102 .2 7369 .3 7556 .7 7 6 8 8 . 7 7 7 6 3 . 6 7970 .7 2 .0270 2 .0016 1.9856 1.9749 1.9674 1.9531 1.3181 1.2941 1.2796 3 .6225 3 .6097 3.5731 - 1 6 3 . 4 5 -139 .23 - 1 0 5 . 3 8 - 5 6 . 3 9 - 1 8 . 5 4 33 . 38 0 . 0 0 . 0 0 . 0 0 .0 0 .0 0 .0 - 0 . 0 -0 .0 -0 .0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 -0 .0 8612.1 9798 .2 .1.9125 1.3148 3 .4810 1.6666 62 .07 8 6 . 7 7 . 0 .0 0 . 0 -0 .0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT 1.666574 PERCENT OF EACH AT CM UNACCOUNTED FOR MOLES OF TOP PRODUCT -2 .9515 - 3 . 5 8 2 0  0 . 6 7 6 3 3 3 PERCENT OVERALL UNBALANCE 0 . 2 8 4 7 REQUIREMENTS ARE NOT MET PRSERR=0.0698 HBA0K1=0.0 HBAOK2=0.0 HBAQK3=1.0000 FINAL CONDITIONS HBAOK4=0.0 ITERAT 8 XI 0 .015797 0 .034932 X2 0 .123171 0 .199872 X3 0 .861033 0.765146 X5 10 11 1 2 _L3_ 0 .056183 0 .075262 0 .093716 0 .097360 0 .111877 0 . 176304 0 .254347 286211 302793 319923 359571 0 .424448 0 .689470 0 .633526 0.603491 0 .582217 0 .523551 0. 398748 14 0 .175053 0 .419113 0 .405B34 N TEMP VAPMOH QUIMOH VAPOR QUID OUNS AL SDXIN DXI N ( 1 , N). OX I Nl 2 , N) D X I N I 3 . N ) 6 181 .5 21283 .9 6750 .9 0. 6742 1 .3433 2 7 4 7 0 . 5 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 185 .7 20326 .3 7 0 4 9 . 0 2 .0207 1.3155 - 1 2 2 . 2 3 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 3 189 .4 2 0 5 9 4 . 2 7320 .5 1.9968 1.2913 - 1 0 7 . 8 4 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 192.2 207O5.3 7524.6 1.9R10 1.2752 - 7 9 . 5 4 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 194.2 20946 .4 7682 .8 1.9697 3 .6182 - 1 9 . 9 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .4 21039 .2 7 7 6 5 . 7 1 .9640 3 .6047 8 .80 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 1 Z 19ft. 5 2 1 287 ._6 79 8 6 .9 K_9 5 07 L i l & 6 0 34 . 33 0 . 0 - 0 . 0 - 0 . 0 - 0 .0 13 2 0 7 . 4 22 072 .0 8649 .6 1.9093 3 .4722 4 9 . 7 5 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 2 9 . 8 24097 .9 9849 .4 1.8113 1.6697 - 8 . 7 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.669706 MOLES OF TOP PRODUCT 0 . 6 7 4 1 5 6 -PERCE N T OF EACH ATO M UNACCOUNTED FOR - 3 . 1579 - 3 . 8265  PERCENT OVERALL UNBALANCE 0 .2441 REQUIREMENTS ARE NOT MET PRSERR=0.0645 HBAOK1=0.0 HBA0K2=0.0 HBA0K3=0.0 HBA0K4=0.0 FINAL CONDITIONS  -N TTERAT 6 9 0 .013277 0.1 14423 0 .372300 ->J I 7 0 .030515 0. 190364 0.779121 J 8 0 .050850 0 .247462 0 .701688 9 0.070722 0 .233023 0 .646255 10 0 .092169 0 .302323 0 .605508 11 0 .096521 0 .320847 0 .582633 12 0 .111219 0 .362684 0 .526097 1 3 0 . 177727 0. 428 923 0. 393350 14 0 .176804 0 .424448 0 .398748 N TEMP VAPMOH OUIMOH VAPOR QUIO QUNBAL SDXIN D X I N t l . N ) D X I N I 2 . N ) D X I N ( 3 , N ) 6 131.1 21269 . 1 6 7 1 5 . 9 0 .6733 1 .3467 27417 .79 0 . 0 -0 .0 - 0 . 0 - 0 . 0 7 185.1 20283 .0 ' 7003 .7 2 .0206 1.3141 - 7 2 . 9 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 188 .8 20551 .6 7275 .9 1.9984 1.2382 - 6 9 . 3 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 191 .8 20766 .4 7 4 9 4 . 0 1 .9825 1.2694 - 4 4 . 5 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 194 .2 2094Q.7 7 6 7 7 . 0 1.9706 3 .6117 5.41 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .4 21039 .8 7765 .2 1.9561 3 .5959 9 .33 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 19 8 .7 21300 .4 7996 .5 1.9517 3. 5539 13. 57 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 2 0 7 . 8 22056 .0 8675 .6 1.9079 3 .4581 34 .67 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 3 0 . 3 24153 .9 9 3 8 4 . 9 1.8092 1.6630 - 7 4 . 8 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.663000 MOLES OF TOP PRODUCT 0 . 6 7 3 3 3 9 PERCENT OF EACH ATOM UNACCOUNTED FOR - 2.88 51 - 3 . 565C PERCENT OVERALL UNBALANCE 0 .5643 CONVERGENCE IS NOT MET FINAL CONDITIONS ITERAT XI X2 X3 X5 X6 6 7 8 9 10 _1_1_ 10 0 .0 11193 0 .026625 0 .045962 0 .066339 0 .090665 0 .095165 0 .106601 0 .181517 0 .24C814 0 .279854 0 .301802 0 .321550 0 .832206 0 .791858 0. 713224 0 .653757 0 .607532 0 .583295 12 13 14 0 . 1 10373 0 .177999 0 .177727 0 .365263 0 .432714 0 .428923 0 .524365 0. 389287 0 .393350 N TEMP VAPMOH OUIMOH VAPOR QUID QUNBAL SOXIN D X I N U . N ) D X I N I 2 . N ) D X I N I 3 . N ) 6 180 .6 7 184 .5 8 1 P 8 . 3 9 1" 1 . 4 __LQ 15.4_._I_ 11 195 .4 12 198 .7 13 2 0 9 . 0 14 2 3 0 . 7 21251 .9 20243.9 20511 .0 20737.1 20932 .3 21036 .0 21306 .9 2207".6 24193.7 . M O L E S CF..BorroM P R O D U C T . 6 6 8 5 . 6 6962 .8 7233.1 7462 .4 _2663__4 7 759 .6 7999 .3 S691 .9 9909.4 -= 1.650573 PERCENT OF EACH ATOM UNACCOUNTED FOR PFKCEN1 H V r R A t U UNUAt. ANCT 0 .6748 2 .0272 2 .0060 1.9892 U 9 7 5 3 _ 1 .9 699 1.9530 1 .9070 1.3076 1.3495 1.3164 1.2881 1.2659 3 .6067 3 .5883 3 .5434 3 .4458 1.6506 27505 .75 - 3 8 . 0 9 - 4 5 . 2 7 - 3 1 . 0 4 - 2 . 05 C O 0 . 0 C O 0 . 0 0 . 0 - 1 2 . 5 2 - 8 . 3 2 20 .36 - 7 7 . 8 6 -0 .0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 -co - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF TOP PRODUCT -2 . 3772 - 3 . 0 5 5 5 ! .0331 0 . 0 0 . 0 C O 0 .0 0 .674750 - 0 . 0 -0 .0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 -co - 0 . 0 -o.-o - 0 . 0 - 0 . 0 - 0 . 0 K coi o c c o c c o o o o c- o o <r o o o o o o o o o c I I I 1 c o o o o o c o o c c e o o c C O C O C: 0 o o o 1 I I I c o o o o c. o e o c o o o o c- o r- —i r~ _ r- • _1 IT 'O re. C r- <•"*• c < O o L" C CM (V (V i - r <-. <f fx. c- f -- 'i. t_> r-. f-- o o o c o. _> r\> r\ .« v -r, cr; -c c r- r-\j r\. r\J <\J •C r- co c* C -1 1 - 2 0 A TO I'M. CflNOFNSFR IS USfD RETURNING SATURATE!) LI OA) 1 f) A TOTAL HF?PILER OP PART OF THE COLUMN L 1 OU 10 IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 CTMPONE-iT 1 IS PSEUOOXYLENE CCPONENT 2 IS TOLUFNE CCPONFK'T 3 IS BENZENE REFLUX RATIO = 2.000 HEAT INPUT TO REPOILER = 28050.0 ENTHALPY OF EEEO COLUMN PRESSUR E I s 760.00 A 6, .9910 6.95 50 6.9060 8 1453. .4299 1 344.. 7993 121 1. .0330 C 215. 0370 219.4800 220.7900 ENTHK 60, .0000 55.0000 '49.8000 ENTHL - 2 3 0 C . ,0000 -2700.0000 -2400 .0000 ENTHU 47, .0000 46.3300 37.0000 ENTHK 16900, .0000 14250.0000 13150.0000 COI'.POMENT "OLECULAR WTS. 106.15999 92.12999 78.10999 FEED MOLECULAR WT. FEED LIQUID e5.12096 FEED RATE (HOLES) 0.100000 0.300000 0.600000 TOLERANCES 0.000100 PRDE PR 0.001000 REACTIONS CONSIDERED ARE REACTION 1 2 3 COMPONENT 4 5 6 7 ER 1 REACT ION 1 1 -1 - 1 1.0 1.0 1.0 FORWARD REACTION C O E F F . 0 .0 0.0 OEVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MOLECULE ATOM 1 2 13 14 7 8 6 6 INITIAL CONDITIONS TEMP VAPOR QUID HOLDUP 212.0 212 .0 212.0 212.0 212.0 212.0 2.0000 2.0000 2 .0000 2.0000 2.0000 2.0000 2.5000 2 .5000 2.5000 ' 2.5000 2.5000 2.5000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 212 .0 212.0 212 .0 2.0000 2.0000 2.0000 2 .5 000 2.5000 2.5000 100.0000 100.0000 100.0000 0 0.000000 REQUIREMENTS ARE NOT MET PRSERR = 3.7127 HBAOK1 = 0.0 HBAOK 2=1.0000 HBA0K3=1.0000 HBA0K4=0.0 FINAL CONDITIONS / N ITERAT XI X2 X3 X4 X5 X6 6 1 0.079655 0.264939 0.655406 7 0.100884 0.302210 0.596906 a 0.104745 0.308166 0.587089 9 0. 105057 0. 303836 0. 586107 10 0 . 105304 0.308808 0.585888 11 0.105407 0. 3091 73 0. 585420 12 0. 105502 0.309646 0.584852 13 0.110666 0.317902 0.571432 14 0.100000 0.300000 0.600000 N TEMP VAPMOH QUIMOH VAPOR OUID QUNRAL SDX IN DXIN(liN) DXINI2, N) DXINI 3,N) 6 191.5 21696.6 7484.5 6.3872 12.7743 228065.87 0.0 -0.0 -0.0 -0.0 7 194.5 20971.3 7713.0 17.7137 11.0844 -43734.25 0.0 -0.0 -0.0 -0.0 8 195.1 21013.7 7753.7 1 5. 1 154 9. 5256 -40809.62 0.0 -0 .0 -0.0 -0 .0 Q 195.1 21016.4 7755.6 12.6130 8.0793 -81955.69 0.0 -0.0 -0.0 -0.0 10 195.1 21016.9 7756.2 8.1854 10.0995 -4667.75 0.0 -0 .0 -0.0 -0.0 11 195.1 21018.7 7757.7 7.3462 7.6856 -28240.10 0. 0 -0.0 -0.0 -0 .0 12 195.2 21023.2 7762.5 5.6113 5.5299 -23178.42 0.0 -0.0 -0.0 -0.0 13 196.0 21034.3 7820.9 3. 7038 3. 3369 -16012.51 0.0 -0 .0 -0.0 -0.0 14 215.7 22688 .8 8819 .7 1.9944 0.5056 4942.27 0.0 -0.0 -0.0 -0.0 MOLES OF BOTTOM PRODUCT = 0.505578 MOLES CF TOP PRODUCT 6.387173 PERCENT OF EACH ATOM UNACCOUNTED FOR -186.4668 -184.8039 PERCE NT OVFRALL UNBALANCE -193.3588 RE CUIR EM EN T S ARE NOT MET PRSERR=0.1834 H3A0K1=0.0 HBA0X2=0.0 HBACK3=1.0000 HBA0K4= 0.0 FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 2 0.077579 0.261145 0.661276 7 0.096391 0.294704 0.608905 p 0.103765 0.306676 0.589559 9 0.104321 0.3034C5 0.586774 10 0.104717 0.307916 0.587367 11 0.105191 0.308304 0.586005 12 0.105493 0.309948 0.584559 13 0 . ! 146.47 0.324362 0.560991 14 0. 1 10666 0.317902 0.571432 H H N TEMP VAPMOH QUIMOH VAPOR QUID QUNR OL SDXIN DXINI1,N) D X I N ( 2 , N) D X I NI 3 . N ) 1 ro V. 6 191.2 21683.8 7461.3 0.6760 1.3571 24504. 39 0.0 -0.0 -0.0 -0.0 J 7 1 9 4 . 3 20937 .8 7636 .8 1.8931 1.4780 - 1 1 6 4 . 7 5 0 . 0 -0 .0 - 0 . 0 - 0 . 0 8 195 .4 21021 .5 7767 .6 1.8907 1. 6034 - 1 1 6 5 . 6 4 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 9 1 9 5 . 6 21034 .5 7780 .3 1.3861 1.7423 - 1 1 9 5 . 6 2 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 195 .6 21032 .5 7770 .n 1.8818 4 .2323 - 9 7 8 . 3 8 0 . 0 -0 .0 - 0 . 0 - 0 . 0 11 195 .6 21038 .2 7 7 3 4 . 0 1.8941 4 .3725 - 9 6 0 . 4 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 1 9 5 . 7 21042 .4 7786 .9 1.9009 4 .4990 253 .94 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 13 196 .7 2 1133.2 7373 .9 1.9515 4.5191 990 .70 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 1 5 . 9 22701 .8 8 3 66 .4 1.8850 1.4519 9408 .26 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.451900 PERCENT OF EACH ATOM UNACCOUNTED FOR MOLES CF TOP PRODUCT 9 . 4 2 1 7 9 . 4 221 0 .676034 PERCENT OVFRALL UNBALANCE REQUIREMENTS ARE NOT MET PPSERR=0.8413 HBA0K1=0.0 HBA0K2=0.0 9 .4341 HBA0K3=1.0000 FINAL CONDITIONS H8A0K4=0.0 N ITERAT XI X2 X3 X4 X5 X6 6 3 0 .075540 0 .257584 0 .666776 7 0 .095634 0. 293772 C . 6 1 0 5 ° 4 8 0. 103411 0. 306182 0 . 590408 9 0. 104751 C. 303265 0. 586984 10 0 . 104363 0 . 307382 0. 583254 11 0 . 105124 0 . 308745 0 .586131 12 0 . 105674 0. 310764 0. 583562 13 0 . 1 13851 0 . 331024 0 . 550 125 14 0. 114647 0. 324362 0 .560991 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N I l , N ) D X I N ( 2 , N ) D X I M 3 ,N) 6 19C.9 21671 .3 7439 .7 0 .6527 1.3054 26535.36 0 . 0 - 0 . 0 - 0 . 0 -0 .0 7 194.2 20929 .2 7677 .9 1 .9639 1.2791 - 1 4 6 . 2 4 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 1 ° 5 . 4 21013 .2 7764 .5 1.9538 1.2729 7 3 . 2 7 0 . 0 -0 .0 - 0 . 0 - 0 . 0 9 195 .6 2! 033 .7 7 T 7 9 . 5 1.9583 1.2636 - 1 9 8 . 9 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 195 .5 21027 .3 7774 .0 1.9492 3 .6159 - 1 2 4 . 5 2 0 . 0 -0 .0 - 0 . 0 . -o.o-11 195 .6 21036 .9 7 7 8 2 . 5 1.9483 3.6142 67 .61 0 . 0 - 0 . 0 - 0 . 0 -0 .0 1 2 1 5 5 . 8 2 1 049 . 3 7 7 Q 4 .0 1.9512 3 .6198 - 3 4 8 . 5 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 197 .7 21 202 . 7 7 9 3 9 . 3 1. 9247 3 .6553 112 1.41 0 .0 -0 .0 - 0 . 0 - 0 . 0 14 2 1 8 . 1 22911 .6 8999 .4 1.8653 2 .6538 - 6 7 3 5 . 3 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT 2 .653754 PERCENT OF EACH A T C M UNACCOUNTED FOR MOLES CF TCP PRODUCT - 4 1 . 9 2 5 9 - 4 2 . 2 0 5 6 0 .652681 PERCENT OVFRALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR=0.1039 HBA0K1=0.0 HBA0K2=0.0 - 4 0 . 7 2 3 5 HBA0K3=1.0000 FINAL CONDITIONS HBA0K4=0.0 ITFRAT XI X2 X5 X6 0 .073749 0 .254098 0 .672153 0 .094833 0 .292759 0 .612407 H ro i 8 0 .103068 0 .305728 0 .591204 9 0 .104632 C. 3081 20 0. 587198 10 0 .104061 0 .306940 0 .588999 11 0 .105036 0 .308596 0 .586268 12 0 .105966 0 .311933 0 .582102 13 0 .12 3 0 0 9 _ 0 .337444 0 .539547 14 0 .118851 '0. 331024 0. 550125 TF.KP VAPMOH OUIMOH VAPOR QUID OUNBAL SOXIN D X I N I 1 . N ) 0 X I N I 2 . N ) D X I M 3 . N ) 6 190 .6 21660 .2 7 4 1 8 . 6 0 .6576 1.3153 26813 .07 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 194.1 20922 .0 7670 .7 •1.9311 1.2919 31 .57 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 195 .3 21014 .S 7761 .2 1.9311 1. 2795 54 .38 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 195 .5 21031 .1 7776 .6 1.9332 1.2679 4 1 . 7 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 1 9 5 . 4 21022 .8 7763 .6 1.9826 3 .6028 17 .19 0 .0 - 0 .0 - 0 . 0 - 0 . 0 11 1 9 5 . 6 21035 .8 7 7 8 1 . 3 1.9327 3 .5944 5 2 . 9 5 0 . 0 -0 .0 - 0 . 0 - 0 . 0 12 1 9 5 . 8 21052 .8 7 7 9 5 . 9 1 .9826 3 .5782 103 .33 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 198.4 21254 .2 7937 .5 1.9652 3 .5501 615 .61 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 14 218 .9 2 2 989 .8 9058 .2 1.8637 1.7915 - 7 5 0 . 52 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1 .791615 MOLES OF TOP PRODUCT 0 .657646 PERCENT OF EACH ATOM UNACCOUNTED FOR - 5 . 0 9 8 8 - 5 . 2 9 3 5 PERCENT OVERALL UNBALANCE - 4 . 2 4 1 7 REQUIREMENTS ARE NOT MET P R S E R ° . = 0 . 0 2 7 1 H8A0K1= 0 .0 HBA0K2=0.0 HBAOK3=0.0 HBA0K4= 0 . 0 FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 5 0 . 071902 0 .250678 0 .677420 7 0 .093Q88 0 .291662 0 . 614350 8 0 . 102714 0 . 305274 C. 592012 9 0 . 104595 0 .307944 0. 587461 10 0 . 1 03795 0 .306561 0 . 539644 1 1 0 .104941 0. 308685 0. 586374 12 0 . 106300 0 .313286 0. 530414 13 0 .126934 0 .343370 0 . 529697 14 0 .123009 0. 337444 0. 539547 N TEMP VAPMOH QUIMOH VAPOR QUI D QUNBAL SDX IN D X I N U . N ) DXIN(2 ,N> D X I N I 3 . N ) 6 190 .3 21648 .8 7393 .1 0 .6635 1.3271 27035 .95 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 7 194 .0 20914 .0 7662 .9 1 .9993 . 1 .3016 2 . 4 4 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 B 195 .2 21010 .3 7756 .5 1.9976 1.2857 5. 00 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 195 .5 21023.4 7773 .5 1 .9961 1.2748 3 2 .31 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 1 9 5 . 3 21018 .7 7764 .2 1.9956 3 .6121 2 9 . 2 4 0 . 0 -0 .0 - 0 . 0 - 0 . 0 11 195 .5 21033 .7 7778 .6 1.9963 3 .6000 7.21 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 / 12 155 .8 21057 .8 7799 .3 1.9924 3 .5840 10 1.32 0 .0 -0 .0 - 0 . 0 - 0 . 0 13 14 198 .9 2 1 9 . 8 21298 .6 23071 .9 8027.1 9 1 1 8 . 7 1.9723 1.3595 3 .5356 1.6906 46 7. 73 - 4 2 . 8 0 MOLES CF BOTTOM PRODUCT = 1.690570 PERCENT OE EACH A TOM UNACCPUNTFD TGR MOLES OF TOP PRODUCT 0 . 0 0 .0 0 .663526 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 H H I PO OJ PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR=0.0298 HBAOK1=0.0 HBAOK2=0.0 HBAOK3=0.0 FINAL CONDITIONS HBAOK4=0.0 ITERAT 6 XI 0 .070098 0 .093104 X2 0 .247321 0 .290497 X5 X6 0 .682582 0 .616399 8 0. 102347 0 .304817 0 .592836 9 0 .104490 0 .307741 0 .587770 10 0 .103560 0 .306238 0 .5902C2 11 0 .104847 0 .308722 0 .586431 12 0 .106668 0 .314777 0 .578555 13 0 .130624 0 .348329 0 .520546 14 0 .126934 0. 343370 0. 529697 N TEMP VAPMOH QUIMOH VAPOR QUID OUNBAL SDXIN D X I N U t N ) D X I N ( 2 , N ) DXINI 3 , N ) 6 190 .1 21637 .7 7 3 7 8 . 0 0 .6696 1.3391 27346 .03 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 1 9 3 . 9 20904 .7 7653 .4 2.0171 1.3096 - 5 7 . 4 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 195 .2 21004 .7 7 7 5 0 . 4 2 .0115 1.2907 - 3 6 . 5 2 0 . 0 - 0 . 0 - 0 . 0 - 0 .0 9 195 .4 21025 .8 7770 .5 2 .0069 1.2811 2 5 . 0 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 1 9 5 . 3 21015.2 7 7 6 0 . 4 2 .0068 3 .6200 0 .25 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .5 21030 .8 7 7 7 4 . 8 2 .0062 3 .6052 - 4 9 . 9 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 155 .8 21063.3 7 8 0 3 . 0 1.9977 3 .5883 21 .93 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 199 .3 21338 .4 8 0 6 1 . 7 1. 9716 3 . 5301 407 .63 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 2 0 . 6 23151 .3 9 1 7 6 . 7 1.8546 1.6810 19 .74 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES CF BOTTOM PRODUCT 1.681014 MOLES OF TOP PRODUCT 0 .669551 PERCENT OF EACH ATOM UNACCOUNTED FOR - 1 . 3 4 4 9 - 1 . 6 3 6 1 PERCENT OVERALL UNBALANCE - 0 . 0 4 1 2 REQUIREMENTS ARE NOT MET PRSE RR=0.0395 HBA0K1 = 0 . 0 HBAOK2=0.0 HBAOK3=0.0 HBA0K4=0.0 FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 • 6 7 C .068336 0 .244025 0 . 6 8 7 6 3 9 7 0 .092190 0 .239277 0 .618533 8 0 .101962 0 .304348 0 .593690 9 0 .104368 0. 307516 0. 588116 10 0 . 10 3356 0 .305974 0 .590670 11 0 .104757 C.308812 0 .586431 12 0 .107065 0 .316370 0 .576566 13 0 . 1 3 40 74 0 .353847 0 .512079 14 0 .130624 0 .343829 0 .520546 N TEMP VAPMOH QUIMOH VAPOR QUID 6 189 .8 2 1 626 19 7358 .5 0 .6751 1. 3503 QUNBAL SDXIN O X I N U . N ) D X I N ( 2 , N ) DXINI 31 N ) 27560 .97 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 H H I ro V 7 193 .7 8 195 .0 9 195. ' . 10 195 .2 11 195. ' . 12 195 .9 20393. 7 7641 .8 20998 .6 7743 .6 21023.1 7767.6 21011.4 7756 .1 21027 .3 7 7 7 0 . 0 21068.1 7305 .5 2 .0324 1.3158 2.0218 1.296C 2 .0157 1.2874 2.0152 3 .6249 2.010' . 3- 6080 1.9968 3 .5876 - 1 2 9 . 4 2 - 5 8 . 8 3 1.23 - 6 5 . 6 1 - 1 2 3 . 5 6 - 6 2 . 7 6 0 .0 - 0 . 0 0 .0 - 0 . 0 0 . 0 - 0 . 0 0 .0 - 0 . 0 0 .0 - 0 . 0 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 J 13 199 .7 14 2 2 1 . 4 21376 .8 8095 .1 23226 .3 9 2 3 0 . 6 1.9635 3 .5296 1.8497 1.6804 4 1 7 . 4 8 . 58 .20 0 .0 - 0 . 0 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 < MOLES OF BOTTOM PRODUCT = 1.680387 MOLES OF TOP PRODUCT 0 .675134 PERCENT OF EACH ATOM UNACCOUNTED FOR - 1 . 8 0 1 6 - 2 . 1 4 5 4 PERCENT OV ER AL L UNBALANCE - 0 . 2521 REQUIREMENTS ARE NOT MET PRSEP.R=0 .0517 HBA0K1=0.0 H3A0K2=0.0 HBAOK3=0.0 FINAL CONDITIONS HBAOK4=0.0 N ITERAT XI X2 X3 X4 X5 X6 6 7 8 0 .066620 0 .091249 0 .240793 0 .692587 0 .238003 0 .620742 3 9 10 11 12 13 0 .101556 0 .104234 0 .103136 0 .104676 0 . 107477 0 .137239 0 .303856 0 .594588 C. 307283 0. 583483 0 .305768 0 .591046 C.308956 0 .586368 0 .318021 0 .574502 0 .353453 0 .504258 14 0 .134074 0 .353847 0 .512079 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N d . N ) D X I N I 2 , N ) 0 X I N ( 3 , N ) 6 139 .5 21616 .4 7 3 3 9 . 5 0 .6795 1.3591 27703 .54 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 193 .5 8 194 .9 9 195 .3 10 195.1 11 195 .3 12 195 .9 20881 .4 7623 .5 20992 .5 7736 .8 21019 .9 7 7 6 4 . 0 21006 .5 7750 .3 21023 .1 7764 .2 21072 .7 7 8 0 7 . 6 2 .0433 1.3208 2 .0234 1.3021 2.0221 1.2927 2 .0133 3 .6270 2 .0074 3 .6083 1.9384 3 .5863 - 1 8 6 . 7 9 - 7 4 . 7 7 - 5 8 . 6 4 - 1 6 0 . 5 0 - 2 0 5 . 2 8 - 8 3 . 8 0 0 . 0 - 0 . 0 0 . 0 - 0 . 0 0 . 0 - 0 . 0 0 .0 - 0 . 0 0 . 0 - 0 . 0 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 200 .2 14 222 .1 21415.2 8129 .4 23295.6 9 2 8 0 . 5 1.9520 3. 5339 1.8453 1.6843 456.e5 9 8 . 1 5 0 . 0 - 0 . 0 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 1.684306 MOLES OF TOP PRODUCT 0 .679535 PERCENT OF FACH ATOM UNACCOUNTED FOR - 2 . 3 9 0 3 - 2 . 7 8 3 7 PERCENT OVERALL UNBALANCE - 0 . 6 0 6 2 REQUIREMENTS ARE NOT MET PRSERR=0.0657 HBA0K1 = 0 . 0 H8AOK2=0.0 HBAOK3=0.0 FINAL CONDITIONS HBA0K4=0.0 N ITERAT XI X2 X3 X4 X5 X6 H H 1 6 7 9 0 .064950 0 .090232 0 .237631 0 .657418 0 .236693 0 .623025 ro Olj 8 0 .101127 0.303341 0.595532 o 0 .104095 0 .307053 0 .588852 10 0 .103046 0 .305618 0 .591336 11 0 .104603 0. 3091 47 0. 586250 12 0 . 107986 0 .319683 0 .572431 13 C . 140279 0 .362686 0 .497035 / f 14 0 . 1 37289 0. 358453 0. 504258 \ N TEMP VAPMOH OUIMOH VAPOR QUID OUNBAL SDXIN D X I N ( l . N ) D X I N I 2 . N ) OXINI 3 , N ) 6 189 .3 2 1606.2 7 3 2 1 . 0 0 .6822 1.3644 27765.50 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 193 .3 20868 .4 7614 .5 2 .0435 1.3253 - 2 1 9 . 1 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 194 .8 20986 .2 7 7 3 0 . 0 2 .0314 1. 3076 - 1 1 4 . 8 5 0 . 0 - 0 . 0 - 0 . 0 - 0 .0 9 195 .2 21015.4 77 59 .6 2 .0239 1.2953 - 1 6 2 . 6 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 1 ° 5 . 0 21000 .5 774 2.8 2. 0148 3 . 6259 - 2 6 2 . 4 2 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 . 195.1 21018 .5 7 7 5 7 . 9 1.9962 3 .6073 - 2 5 2 . 1 8 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 195 .9 21078 .6 7811 .4 1.9743 3 .5896 - 1 9 . 6 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 2 0 0 . 7 21453 .7 8164 .7 1.9414 3. 5425 4 8 8 . 6 0 0 . 0 - 0 . 0 - 0 . 0 - 0 .0 14 2 2 2 . 7 23359 .4 9326 .2 1.8418 1.6922 135.02 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES CF BOTTOM PRODUCT = 1.692173 MOLES OF TOP PROOUCT 0 .682196 PERCE NT OF EACH ATOM UNACCOUNTED FOR - 3 . 0 6 4 9 - 3 . 5 0 5 8 PERCENT OVERALL UNBALANCE - 1 . 0 5 4 3 CONVERGENCE IS NOT MET FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 10 10 _u_ 0.063331 0 .039290 0.100681 0 . 103959 0 .102933 0. 104513 0 .234543 0 .235331 0 .302812 0 .306843 0 .305516 0 .305336 0 .702125 0 .625379 0 .596507 0 .589199 0 .591550 0 .586152 12 13 14 0 . 108274 0 . 143055 0. 140279 0 .321312 0 .366530 0 .362636 0 .570414 0 .490365 0 .497035 N TEMP VAPMOH OUIMOH VAPOR QUID OUNBAL SDX IN D X I N U . N ) D X I N I 2 . N ) DXINI 3 , 6 1 8 9 . 0 21596 .2 7303 .1 0 .6830 1.3659 27753.32 0 . 0 - 0 . 0 - 0 . 0 - C O 7 193. 1 20855 .5 7600 .6 2.0432 1 . 3282 - 2 4 3 . 6 4 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 194 .7 20979 .2 7722 .1 2 .0300 1.3094 - 2 1 3 . 7 3 0 . 0 -0 .0 - 0 . 0 - 0 . 0 9 195 .1 21008 .6 7 7 5 0 . 3 2 .017S 1 . 2 9 1 ° -491 .44 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 194 .8 20993 .3 7733 .7 1.9911 3 .6250 - 2 5 7 . 2 3 0 . 0 -0 .0 - 0 . 0 - 0 . 0 11 195.1 21017 .0 7 7 5 5 . 5 1.9720 3 .6181 - 1 6 3 . 0 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 196 .0 21087 .3 7813 .8 1.9539 3 .6092 112.11 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 201 . 2 21491 .5 8199 .7 1. 9347 3. 5631 487 .36 C O - 0 . 0 - 0 . 0 - 0 . 0 14 2 2 3 . 3 23418 .6 . 9363 .7 1 .3389 1.7036 232 .80 0 . 0 - C O - 0 . 0 - 0 . 0 MPLFS OF BOTTOM PROOUCT = 1 .703633 MOLFS OF TOP PRODUCT 0 .682974 PERCENT OF EACH ATOM UNACCOUNTED FOR - 3 . 8 0 7 6 - 4 . 2 9 4 6 PERCENT OVERALL UNBALANCE - 1 . 5 7 5 4 n-27 —' r*. -C r- mi • o — rv rv r. c o o c o ir U* r-r- co " o — CC o •J CM <• r- r-fo <r ^ c c o C c 1 1 ( 1 1 c o o O 'o o o o o o e c c c- o o c o c o ( t i l l C O O O •jr. o cr; .^ c: i vr rv r- r-<*• — rv! i — I r-. r\ rv o — rv r- c; tv r- sf. IA IS- —' o f =C c rv o r~ ^ C c c o C rv rv r\i *~ - uj C r«; r-• G O C. C : _t rv rv r\ r- t: o- C j"; r- cr cr O o o o o c o c o o c o o r- 0- rv ir %f. ir rv rv rv rv <. if Ci rv rv u" c r; .? O rv — tv rv —' rvi ci <j n-2 8 A .TOTAL CONDENSER. I S_ US F 0 RF1U3NING S A TU f! A T F 0_ I. 1 QIJ I I) _ A TOTAL RF30ILFR OF PART THE COLUMN I. IOUIO IS USED RETURNING SATURATE!) VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS 7 FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT 1 I S PSEUDOXYLENE COMPONENT 2 IS TOLUENE COMPONENT 3 I S BENZFNE REFLUX RATIO = 2.000 HEAT INPUT TO REBOILER = 23050 .0 ENTHALPY OF FEED = 18113.3 COLUMN PRESSURE IS 760.00 A 6. 9910 6.9550 6.9060 IT 14 5 3 . 4 2° 9 1344.799R 1211.0330 C 215. 0370 219.4S00 220.7900 ENTHK 60 . 0000 55.0000 49.8000 ENTHL - 2 3 0 0 . 0000 -2700.0000 -2400.0000 ENTHI) 4 7. 0000 46.8300 37.0000 EMTHW 16900. 0000 14250.0000 13150.0000 COMPONENT MOLECULAR WTS. 106.15999 92.12999 78.10999 FEED MOLECULAR WT. FEED LIQUID 3 5.12096 FEED RATE (MOLES) 0.100000 0.300000 0.600000 TOLERANCES 0.000100 PRDERR 0.001000 REACTIONS CONSIDERED ARE REACTION 1 2 3 COMPONENT 4 5 6 7 AR 1 -1 -1 1.0 1.0 1.0 0 0 0 0 0 .0 0.0 0 .0 0.0 REACT ION _J FORWARD REACTION COEFF. REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MOLECULE 1 3 14 INITIAL CONDITIONS TEMP QUI D HOLDUP 2L2. 0 2 .0000 2.5000 1000.0000 212.0 2.0000 2.5000 1000.0000 212.0 2 .0000 2.5000 1000.0000 212 .0 2.0000 2.5000 1000.0000 2 1.2 . 0 2.0000 2.5000 1000.0000 212.0 2.0000 2.5000 1000.0000 212.0 2.0000 2.5000 1000.0000 212.0 2.0000 2.5000 1000.0000 212.0 2.0000 2.5000 1000.0000 0 0 .000000 REQUIREMENTS - R E NOT MET PRSERR=5 .0409 H,BA0K1 = 0 . 0 HBA0K2=1.0000 H B A 0 K 3 - 0 . O FINAL CONDITIONS HBA0K4=0.0 10 11 12 13 ITERAT 1 XI 0 . 0 9 6 7 4 9 0 . 1 0 1 9 30 X2 303326 0 .101360 0 .101509 0 .101323 C . 101345 0 .101240 0 .294319 _ p 0 0 0 0 0 X3 0 .60B932 0 .594744 0 .101449 302356 302618 303156 302336 302161 0 .302521 0 .596284 0 .595373 0 .595021 0 .596319 0 .596600 0 .596030 14 C.100000 0 .300000 0 .6000C0 7 8 o 10 11 12 TEMP 194.1 205 . 0 207 .6 2 0 7 . 1 205 . 9 207 .6 2 0 7 . 9 VAPMOH 21801 .6 OUIMOH 7 6 7 4 . 2 VAPOR 7 .8016 QUID 15.6032 QUNBAL 543450 .75 SDXIN D X I N U . N ) D X I N ( 2 , N ) D X I N I 3 . N ) 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 21395.4 21494 .8 21475 .2 21431 .4 21495 .5 21503 .6 82 64 .8 8 3 9 7 . 3 8 3 7 1 . I 8312 .6 8393 .2 R4 15 .6 33 .7953 26 .0974 23 .0266 18 .8628 13.5691 9 .5162 0 .0563 0 .0545 0 .0542 0. C541 0 .0 534 0 .0531 - 4 2 8 3 0 . 5 0 - 6 6 4 4 8 . 4 4 - 9 0 2 4 0 . 0 6 - 9 4 4 5 8 . 6 9 - 8 6 9 9 3 . 06 - 8 5 4 4 4 . 4 4 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 14 2 0 9 . 2 2 1 5 . 7 21562.4 22688 .3 84 84 .9 3819 .7 5. 5293 1.9944 0 .0528 0 .5056 -73984 .63 •21042 .71 MOLES OF BOTTOM PROOUCT = 0 .505578 PERCENT OF EACH ATOM UNACCOUNTED FOR MOLES OF TOP PROOUCT - 2 5 2 . 2 0 3 0 - 2 5 1 . 8 8 0 0 0 . 0 0 .0 7 . 8 0 1 5 8 1 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR=8.5390 HBAOK1=0.0 -253 .5567 HBAOK2=1.0000 H8A0K3=1.0000 HBA0K4=0.0 FINAL CONDITIONS ITERAT 2 XI 0 .091328 0 . 104308 X2 0 .234967 0 .307333 X3 ,0.623705 0 .588359 X5 X5 a 9 10 11 12 13 14 N TEMP 6 193 .2 0 . 1 0 3 9 6 9 0 .103334 0 .103663 0 .102993 0 . 102308 0 . 10 3559 0 .306316 0 .305351 0 .306311 0 .305177 0 .304336 0 .306158 0 .539215 0.590765 0 .590021 0 .591830 0. 592307 0. 10 1449 0. 302521 590283 596030 VAPMOH OUIMOH VAPOR QUID 0UN8AL SDXIN D X I N U . N ) D X I N I Z . N ) D X I N ( 3 , N ) 21767^9 7613 .3 14 .4828 28 .9655 503737. 56 0. 0 - 0 . 0 - 0 . 0 - 0 . 0 ft I ro 7 195 .0 21007 .5 7747 .7 39 .7249 16.8574 97762 .88 0 . 0 - 0 .0 - 0 . 0 - 0 .0 8 199 .2 2 1 1 7 4 . 6 7967 .4 39 .7819 0 .0574 - 9 9 9 6 0 . 94 0. 0 - 0 . 0 - 0 . 0 -0 .0 9 201 . 0 21243 .2 8060 .0 28 .8213 0 .0552 - 1 2 6 0 5 9 . 1 2 0 .0 - 0 .0 - 0 . 0 - 0 . 0 10 2 0 0 . 0 21203.1 8005 .3 22 .9300 0 .0550 - 9 2 3 7 4 . 5 6 0 .0 -0 .0 - 0 . 0 - 0 . 0 1 1 202 .3 21292 .4 9 125.7 17 .6443 0 .0 54 2 - 1 0 7 1 6 9 . 3 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 2 0 2 . 9 21315 .8 8157 .0 12 .5972 0 .0537 - 1 0 5 3 8 1 . 8 1 0 .0 - 0 .0 - 0 . 0 - 0 . 0 13 204 .4 21379 .9 8237 .5 7. 63C4 0 .0531 - 1 1 8 3 2 9 . 5 0 0 . 0 -0 .0 - 0 . 0 - 0 . 0 14 2 1 5 . 7 22688 .8 8825 .1 1.9748 - 1 . 9 2 2 0 - 4 8 6 . 3 3 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 HOLES CF BOTTOM PROOUCT = - 1 . 9 2 2 0 0 9 PERCFNT HE EACH A TOM UNACCOUNTED FOR MOLES CF TOP PRODUCT -427 .7756 - 4 2 6 . 1 2 5 5 14 .482788 PERCENT OVERALL UNBALANCE RE CUI REM ENTS ARE NOT MET PRSERR=7.1202 FBA0K1=0.0 -434 .5"28 HBAOK2=1.0000 HBA0K3=1.0000 FINAL CONDITIONS HBA0K4=1.0000 ITERAT 3 X I 0 .086834 0 . 102944 X2 0 .277191 0 .305201 X3 0 .635975 0 .591855 X5 X6 8 0 .105173 0 .308845 0 . 585977 9 0. 105236 0. 309006 0. 585758 10 0 .105185 0 .308880 0. 535935 11 0 .105105 0 .308782 0 . 586113 12 0 .104461 0 . 3 0 7 7 6 0 0. 587779 13 0 .106102 0 .310493 0. 583406 14 0. 103559 0. 3061 58 C. 590283 N TEMP VAPMOH OUIMOH VAPOR OUID OUNBAL SDXIN D X I N I 1 , N ) D X I N ( 2 , N I DXI N( 3 ,N) 6 192.6 21740 .1 7563.1 12.3442 25 .6884 51 1 6 ° 9 . 19 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 7 194. 9 20995 .9 7737 .7 38 .2515 25 .6912 - 1 7 6 1 3 3 . 1 9 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 8 195 . 1 21018 .5 7753 .3 30 .0449 2 5 .4146 - 1 2 0 9 . 6 9 0 .0 - 0 , 0 - 0 . 0 - 0 . 0 9 195.1 21019 .4 7759 .1 29 .9090 17 .0725 - 54858.75 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 195 .2 21019.1 7759 . 3 .24 . 2 2 U 12.1758 16041 .44 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .6 21038 .0 7783 .9 22 .2948 0 .3867 - 8 2 8 2 8 . 13 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 12 1 9 7 . 7 21116 .7 7 3 8 9 . 5 13 .9579 0 .0543 - 1 1 C 9 5 9 . 12 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 1 9 8 . 3 21149.5 7925 .6 8 .5677 0 .0535 - 1 3 7 1 9 3 . 0 6 0 . 0 - o . o - 0 . 0 - 0 . 0 14 216 .0 22718 .7 8849 .9 1 .9370 - 1. 8 8 39 - 6 0 0 . 8 0 0 . 0 - 0 . 0 - 0 .0 - 0 . 0 MOLES OF BOTTOM PRODUCT = - 1 . 3 8 3 9 1 4 MOLES OF TOP PRODUCT 12 .344208 PERCENT GF EACH ATCM UNACCOUNTED FOR - 3 5 7 . 1 4 1 4 - 3 5 4 . 8828 PERC ENT OVERALL UNBALANCE - 3 6 6 . 4 7 5 3 REQUIREMENTS ARE NOT MET PRSERR=0.4978 HBA0K1=0.0 HBAOK2=0 . 0 HBA0K3=1.0000 HBA0K4=0 .0 FINAL CONDITIONS ITERAT 4 X I X2 X3 0 .085163 0 .274270 0 .640568 0 .101967 0 .303629 0 .594403 i OJ o f 8 0 .104975 0 .303522 0 .586502 \ 9 0 .105182 0. 308908 0. 535911 10 0 .105132 0 .308798 0 .535070 11 0 .105254 0 . 3 0 ° 0 4 1 0 .585704 12 0. 10 52R4 C.309219 0 .585496 \ — 13 0 .107553 0 .312943 0 .579499 / 14 0. 106102 0. 310493 0. 583406 \ N TFMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N I 1 , N) D X I N ( 2 , N) D X I N 1 3 . N ) 6 192 .3 21729 .7 7544 .4 4 .8836 9 .7772 187996.62 0 .0 - 0 . 0 - 0 . 0 -0 .0 7 194 .7 20983 .7 7725 .7 14.2321 9 .8989 - 7 4 2 1 . 6 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 1 9 5 . 3 21022 .7 7 7 6 4 . 5 13.9817 10.3682 - 4 5 3 2 . 3 8 0 . 0 -0 .0 - 0 . 0 - 0 . 0 9 155 .3 21024 .9 7 7 6 6 . 4 13.9538 10.8354 - 4 6 8 . 6 2 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 195. 2 21020 .6 7761 .1 14 .1030 13.3665 - 1 9 3 8 0 . 9 4 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .1 21019 .3 7 7 5 8 . 9 13. 2565 13. 3484 - 1 1 1 7 5 0 . 9 4 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 195. 1 2 10 19.6 7758 .8 7 .9318 13.3535 - 1 2 4 5 3 3 . 8 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 195 .5 21046 .6 7 7 8 4 . 6 2 .0064 13.3262 6 7 4 . 6 9 0 . 0 -0 .0 - 0 . 0 - 0 . 0 14 216 .5 22762 .1 8 8 8 3 . 9 1 .8906 - 1 . 8 3 7 1 103055 .75 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = - 1 . 8 3 7 1 2 6 MOLES OF TOP PRODUCT 4 .888626 PERCENT OF EACH ATOM UNACCOUNTED FOR - 2 5 . 4 2 7 3 - 2 4 . 3 5 1 7 PERCENT OVFRALL UNBALANCE - 2 9 . 8 7 3 3 REQUIREMENTS ARE NOT MET PRSERR=8.7090 H8ADK1 = 0 . 0 HBAOK2=0.0 HBA0K3=l .0000 HBA0K4= 0 . 0 F INAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 5 0 .084815 0 .273659 0 .641527 7 0 . 101641 0. 303089 0. 595270 8 0 .104964 0 .308512 0 .586524 G 0. 105229 0 .3C8987 0. 585785 10 0 . 105115 0 .308772 0 .586113 11 0 . 105252 0 .309038 0 .535709 12 0. 105231 0. 309226 0. 585493 13 0 .108060 0 .313805 0 .573135 14 0 .107553 0 .312948 0 .579499 N TFMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN DXINI 1, N) DXI Nl 2, N) DXI Nl 3 ,N) 6 192 .3 21727 .7 7 5 4 0 . 6 1. 0219 2 .0439 37109 .26 0 . 0 -0 .0 - 0 . 0 - 0 .0 7 1 9 4 . 6 20976 .6 7 7 1 7 . 7 2 .3712 2 .0303 - 7 5 1 5 . 6 7 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 195 .1 21015.1 7754 .7 2 .5205 2 .0144 - 7 3 6 7 . 5 6 0 . 0 - 0 . 0 - 0 . 0 - 0 .0 9 195 .1 21018 .5 7 7 57 .9 2 .1673 2 .0090 - 3 5 9 5 . 2 1 0 . 0 - 0 . 0 - 0 . 0 -0 .0 10 195. 1 21017.1 7 7 5 6 . 6 1.9947 4 .3474 - 9 2 1 . 0 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .1 21019 .2 7 7 5 8 . 6 1. 9515 4. 3657 - 6 7 8 . 5 7 0 .0 -0 .0 - 0 . 0 - 0 . 0 12 195.2 21020 .7 7760 .2 1.9262 4 .4292 - 3 1 7 . 1 7 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 13 14 195. 6 2 17 .1 21053 .7 22814 .7 MOLES CF BOTTOM PRODUCT 7791 .7 3 9 1 8 . 9 11 .459923 1.9319 4 .4839 1.8662 11 .4599 1339 .75 -68382 .38 PERCENT OF EACH ATOM UNACCOUNTED FOR MOLES OF TOP PRODUCT •434 .9958 - 4 3 5 . 8 9 9 4 0 . 0 0 .0 1 .021934 -0 .0 - 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 -0 .0 H H PFRCFNT OVFRALL UNBALANCE - 4 3 1 . 2 3 3 6 REQUIREMENTS ARE NOT MET PRSFRR=0.7955 H B A O K l - O . O H B A O K 2 - 0 . 0 HBAOK3=l .0000 H6A0K4=0.0 v, FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 6 0 .084595 0 .273272 0 .642133 7 0 .101546 0. 302943 0. 595512  8 0 .104941 0 .308476 0 .586583 9 0 .105225 0 .308979 0.585796 10 0 .105073 0 .3C8701 0 .586227 11 0 .105253 0.309041 0 .585706 12 0 .105284 C.309248 0 .585468 13 0 . 103603 0 . 314718 0 . 576679  14 0 .108060 0 .313305 0 .578135 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N U . N ) D X I N I 2 . N ) D X I N I 3 . N ) 6 192 .2 21726 . 3 7 5 33 .2 0. 6483 1. 2966 2 5 9 1 0 . 2 0 0 . 0 -0 .0 - 0 . 0 - 0 . 0 7 1 9 4 . 6 20975 .5 7716 .6 1.9342 1.2847 - 2 7 9 . 1 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 , 8 195.1 21015.3 7755 .0 I . Q 2 3 9 1.3035 - 7 1 . 8 3 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 195.1 21018 .7 7758 .2 1.9295 1.3158 - 8 7 . 0 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 195.1 21016 .6 7756.1 1.9318 3 .6653 - 2 2 6 . 4 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .1 21018 .8 7758.1 1.9241 3.6572 - 2 5 1 . 7 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 12 155.2 2 1021 .3 7761 .0 1.9093 3 .6809 2 3 . 0 4 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 195. 7 21062.4 7800 .7 1.9159 3 . 7554 1490 .25 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 14 2 1 7 . 4 22843 .7 8937 .1 1.8635 2.6204 - 5 6 6 6 . 1 1 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES OF BOTTOM PRODUCT = 2 .620352 MOLES OF TOP PRODUCT 0 . 6 4 3 3 1 9 PERCENT OF EACH ATOM UNACCOUNTED FOR - 3 9 . 7 0 4 7 - 3 9 . 3 4 5 3  PERCENT OVERALL UNBALANCE - 3 9 . 1 1 6 2 REQUIREMENTS ARE NOT MET PRSERR=0.1643 HBAOK1=0.0 HBACK2=0.0 HBAOK3=0.0 HBAOK4=0.0 FINAL CONDITIONS  N ITERAT XI X2 X3 X4 X5 X6 6 7 0 .084378 0 .272890 0 .642732 _ 7 0 .101474 0. 302836 0. 595690 8 0 .104923 0 .308449 0 .586628 9 0 .105225 0 .308979 0 .585796 10 0 .105031 0 .308631 0 .586337 11 0 .105249 0 .309035 0 .585717 12 0 .105238 C.309275 0 .585437 13 0 . 109143 0 . 315621 0. 575236 14 0 .108603 0 .314718 0 .576679 N TEMP VAPMOH OUIMOH VAPOR QUID QUNBAL SOXIN D X I N U . N ) 0 X I N I 2 . N ) D X I M 3 . N ) 6 192 .2 21725 .0 7 5 3 5 . 7 0. 6420 1. 2 S 4 Q 25713 .49 0 . 0 -0 .0 - 0 . 0 -0 .0 >-7 1 9 4 . 6 20974 .7 7715 .8 1.9179 1.2700 - 2 4 1 . 8 7 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 8 195 .1 21015 .5 7755 .3 1 .9085 1.2839 - 2 2 8 . 8 6 0 . 0 -0 .0 - 0 . 0 - 0 . 0 9 195 .1 21018 .5 7 7 5 7 . 9 1.9049 1.2856 - 1 5 0 . 62 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 1') * . 1 7 10U- .1 7 7 r. 5 . 6 1 . 0 9 8 7 3. f-?87 - 1 9 3 . 7 1 0 . 0 -0 .0 - 0 . 0 - 0 . 0 11 195 . 1 21019 .0 7758 .4 1.3914 3 .6423 - 1 6 . 3 6 0 .0 -0 .0 - 0 . 0 - 0 . 0 12. 1 9 5 . 7 2 1 0 2 ? . 0 7761 .9 1 .8959 3 .6650 175.74 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 1 9 5 . 9 21071 .5 7810.2 1.9064 3 .7502 1573 .17 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 14 2 1 7 . 5 22854 .0 8945 .0 1.8634 1.8920 - 2 2 . 2 7 0 . 0 - 0 . 0 - 0 . 0 -0 .0 MOLES OF BOTTOM PRODUCT 1.892002 MOLES CF TOP PROOUCT 0 . 6 4 2 0 0 7 .PERCENT OF EACH ATOM UNACCOUNTED FOR - 8 . 1 7 8 1 -8 .2 563 PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERP. = 0 . 1566 HBAOK1 = 0 . 0 HBAOK2=0.0 -7 .8487 HBA0X3=0.0 FINAL CONDITIONS HBA0K4=0.0 N ITERAT XI X2 X3 X4 X5 X6 6 8 0 .084163 0 .272513 0 .643324 7 0 .101401 0. 302730 0. 595869 8 0 .104903 0 . 30 84 26 0 . 586666 9 0. 105224 0. 308976 0 . 585800 10 0 . 104990 0. 308563 0. 586447 1 1 0 . 105243 0 . 309026 0 . 585731 12 0. 105292 C . 309304 0. 585404 13 0 .109676 0. 316511 0. 573813 14 0 .109143 0 . 315621 0 . 575236 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N U . N ) D X I N 1 2 . N ) D X I N I 3 . N ) 6 192 .2 21723 .6 7 5 3 3 . 3 0 .6366 I .2732 25499.11 0 . 0 -0 .0 - 0 . 0 - 0 . 0 7 194 .5 20973 .9 7 7 1 5 . 0 1.9017 1.2 59 8 - 2 2 3 . 14 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 155.1 21015.3 7 7 5 5 . 1 1.8934 1.2612 - 1 5 6 . 18 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 195.1 21018 .4 7 7 5 7 . 8 1.8886 1.2625 - 1 4 4 . 5 6 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 195.1 21015 .6 7755 .1 1 .8826 3 .6060 - 1 8 2 . 8 5 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 11 195.1 21019 .3 7 7 5 8 . 9 1.8761 3 .6233 19 .85 0 . 0 -0 .0 - 0 . 0 - 0 . 0 12 195 .2 21022 .9 7 7 6 3 . 0 1.83 37 3 .6531 227 .83 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 13 1 9 6 . 0 21080 .7 7 S 1 9 . 9 1.9011 3 .7439 1607 .75 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 14 217 .6 22865 .0 8953 .2 1.8632 1.8871 - 3 1 . 4 7 0 . 0 -0 .0 - 0 . 0 - 0 . 0 MOLES CF BOTTOM PROOUCT = 1.387055 MOLES OF TOP PRODUCT 0 .636579 -PERCENT OF EACH ATOM UNACCOUNTED FOR - 7 . 7 8 5 3 - 7 . 8 7 5 0 PERCENT OVERALL UNBALANCE REQUIREMENTS ARE NOT MET PRSERR=0.1478 HBA0K1=0.0 HBAOK2=0.0 - 7 . 4 0 7 1 H B A Q K 3 - 0 . 0 FINAL CONDITIONS HBA0K4=0.0 ITERAT X2 X3 X5 0 .083951 0 .272140 0 .643909 0. 101329 0 .302624 0 .596048 H H I OJ OJ. 8 0 .104895 0 . 308408 0 .586698 " N 9 0 .105220 0 .309969 0 .585812 10 0 .104950 0 .3C8495 0 .586555 11 0 .105236 0 .309015 0 .585749 12 0. 105294 0. 309334 0. 585373 13 0 .110204 0 . 317390 0 .572406 14 0 .109676 0.316511 0 .573813 " ~ ~S N TEMP VAPMOH QUIMOH VAPOR OUIO QUNBAL SDXIN D X I N U . N ) D X I N I 2 . N ) 0 X I N I 3 . N ) _6 192.1 21722.3 7531 .0 C . 6 3 I 2 1. 2624 25286.81 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 7. 194 .5 20973 .1 7714 .2 1 .8956 1.2500 - 2 1 7 . 2 B 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 8 195 .1 21014 .8 7754 .5 1.8780 1.2393 - 2 3 8 . 5 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 9 195.1 21013.6 7 7 5 8 . 0 1.8647 1.2520 - 6 7 . 5 6 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 10 195.1 21015.1 7754 .7 .1 .8667 3 .5974 - 1 6 3 . 2 4 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 11 195 .2 21019 .8 7759 .5 1.8617 3 .6184 7 2 . 1 4 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 12 195 .2 21024 .2 7764 .5 1 .3733 3 .6537 359. 16 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 13 196.2 21089 .9 7829 .7 1.9002 3 .7495 1595 .05 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 2 1 7 . 7 22875 .9 3961 .2 1.8630 1.8809 62 .12 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 MOLES CF BOTTOM PRCOUCT = 1.380851 MOLES OF TOP PRODUCT 0 .631199 PERCENT PF EACH ATOM UNACCOUNTED FOR - 7 . 3 3 9 5 - 7 . 4 4 C 3  PEPCENT OVERALL UNBALANCE - 6 . 9 1 4 1 r CONVERGENCE IS NOT MET \ FINAL CONDITIONS V N ITERAT XI X2 X3 X4 X5 X6 f 6 10 0 . 083742 0 .271771 0 .644488 •••• •-< 7 0 . 101256 0. 302517 0. 596227 8 0 .104332 0. 308390 0. 586729 . 9 0 . 105216 0 . 308961 0 . 585323 10 0 . 104909 0. 303423 0. 586663 11 0 .105227 0. 309001 0 . 585772 12 0 .105294 0 . 309363 0 . 585343 13 0 .110729 0. 313259 0. 571012 14 0 .110204 0 . 317390 0 . 572406 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN O X I N U ,N) D X I N I 2 , N ) D X I N I 3 . N ) 6 192 .1 21721 .0 7523 .7 0. 62 59 1.2517 25076 .77 0 . 0 -0 .0 - 0 . 0 - 0 . 0 7 194 .5 20972 .3 7 7 1 3 . 5 1.8697 1.2402 - 2 2 2 . 14 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 8 155.1 21014 .3 7753 .9 1.8622 1.2295 - .227.21 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 9 195 .1 21013 .7 7758 .3 1.8494 1.2412 - 6 8 . 6 9 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 10 195.1 21014 .7 7754 .3 1.8511 3 .5889 - 1 2 8 . 1 6 0 .0 - 0 . 0 - 0 . 0 - 0 . 0 11 195.2 21020.4 7760 .3 1.8404 3. 6152 134 .80 0 . 0 - 0 .0 - 0 . 0 - 0 . 0 12 195 .3 21025 .8 7 7 6 6 . 6 1.8650 3 .6692 506.01 0 . 0 - 0 . 0 - 0 . 0 - 0 .0 13 196 .3 21099 .0 7939 .2 1.9035 3 .7542 1541.78 0 . 0 - 0 . 0 - 0 . 0 - 0 . 0 14 217 .9 •22336. 7 8969 .2 1.8629 1.3866 54.11 0 . 0 -0 .0 - 0 . 0 - 0 . 0 H MOLES OF BOTTOM PRODUCT = 1.986592 MOLES OF TOP PRODUCT 0 .625872 H i PERCENT OF EACH ATOM UNACCOUNTED FOR - 7 . 4100 - 7 . 5235 OJ PEPCENT OVERALL UNBALANCE - 6 . 9 3 1 7 1 1 - 3 5 c  C" (""• C' CV — CC <, r- r\ cr; —. ir ™ ~- r- J; o a- • i • • c- o o c- c- o c. c fx- c v.. c. c. . • • • o c c o o c c o o o o o o o o o o o o c o c c:< o o c O Cl' c o o c o c c- o c c o r- r\ r- fvj r-C fv. fM rvi r v *o r- c  0' c o o o o o o a o C' c o a o o o o o c c o o o o o • C r - ~ r-j rvi r\i rvt i H w m n-36 A lrr.M. CI'MTVSPK is u s r o IT TURNING SATII«--Airr> i loinn A TOTAL " . rnriLTK or PART or n i r r o i UMN i . i Q i u n is u sro RFTURMINC. SAHiRArtr) vApnu" or IMP SAHI I'fMPpsi n o w AS m r c m I»M.N n n i u : » pronuci TOP n l AT!" IS rc«pfNFNT COMPONENT r r MP n N F M r i-Fcn PLAT r is 10 PPTTOM PI ATP IS 14 IS IS I s PS ruo.o vi. r.v r TOI ur.vr !>rN7FNF Pf H OY 3 A1 I p = ? . 5 HEAT INPUT TO R I .Pr i l . r R FN1IIALPY ! l , : I" I- [- 0 = CXI U*N PRFSSURF IS Tfrfl.OO c . O n i r 6."550 ft.9060 ri r. E \ ' T F K ENTHl FNTHU ENTHW 1453.4?Q9 PI 5.0370 0.03 3 3 - ! . 2 7 7 « 0.0760 9 . 3 P ^ ° 1 34'.. 75C3 •?. 1 9 ROO 0.0306 - I . ri000 0.0260 7.9167 12 11. 0330 2 2 0 . 7 ° 0 0 0.0?77 -1 .3333 0.0 20 6 7.3056 COMPONENT MCLLCUl.AR WTS. 106.15909 92.12999 79.10999 FFFD "PI.FCULAR WT. FFED LIQUID 92 . l?ooq 0.0 FEED PATE (HOLES! 1 .000000 c.0 C . c 9 8 50 TOIEPANCFS PPDERP 0.QO1000 REACTIONS CONSIDERED ARF RF AC TICK' COMPONENT 1 2 3 4 5 6 1 REACTION' 1  1 -2 1 1.0 2.0 1.0 0 0 .400000E-02 C . 0 .800000E-C2 O.C FORWARD REACTION COEFF. RFVERSE REACTION C O F F F . ATOMIC MAKF-UP OF MOLECULFS MCLFCULE INITIAL CONDITIONS TFMp VAPDP QUID HOLDUP 212.0 2 .0000 7 . r'000 0.0 212.0 2.OOOO 7.5 000 1.6000 212.0 ' 2 .0000 7.5 000 1.6 000 212.0 2.0000 2.5000 1.6000 212.0 2.0000 7. 5 0 0 0 1.6 000 212.0 7.0000 2.5000 1.6 000 212.0 2.OOOO 2 .5000 1 .6000 217.0 7.0000 2.5 000 1.6 000 217.0 7.0000 2 .5000 1.6000 712.0 2.OCOO 2.5O0O 1.6000 I I -cc c c. r- L-N r- cc v — cc >- — c; cc . c: u-r HZ f-: c c c c c\; c cc o cc — c o -— CJ c c o o • e c c a c c c o c cc — M cc »n. —• Cv — : cc cv-, c. LT*. •—• c: c : — C r- CC r- — KC C~> C ' ^ v.' r- c. HZ — • HZ -^ r - — -=r cr. cr; cc r- a, g O o -y <r r <-C r--" r- IA r: c: cr CV' V c r<; cc cc v.-: cc r- o >A p. c M T i N: ^ C C; O c c m S' -=T IT, <J IA i lA C K> t-z cc i>r tr. — cr. c\: ir. r-i cc a, in. cv cv' *o 0": cc c: *r t*~ c IA Ci -T c- o cc. cc IA in IA m cr. m ir, O C (•-, c in r- c <-" cc cr. cc cc ry c iT. c c. *r. o. r- j-. ir. •=.* r— c. v.- vc m. o. V; a. o. cc u: r.- r- cc cc • CC r- C O CC C C HZ IA cr a-, a. CC c c. — c c e c c c c c c o r- cc cv' cc cc HZ- or in cc CA HZ HZ <T <r «r. cr r- t— t~- r-cr cc cr ro cc cc — cr. cc *r. cc — — co ro LA iA ir i j a <c o o cc <C ZD f- </. £7. O - - CO — ^ cr ro a-. "A. oi r- — «• <7i »0 K: cc m cv] r~ -r r~-r- t-"; c. c: cc 'A *.C r- r-_ T,; C J ;N: w c,; r\; CAJ O CJ fr D-U-' i>) DATA A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID A TOTAL REBOILER OF PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT COMPONENT COMPONENT PSEUDOXYLENE TOLUENE BENZENE IS I S I S REFLUX RATIO = 2 .0 00 HEAT INPUT TO REBOILER 78050 .0 ENTHALPY UF FEED = 13280.6 COLUMN PRESSURE IS 3 8 0 . 0 0 A 6 .0910 6 .95 50 6 .9060 ~T5 C ENTHK ENTHL ENTHU ENTHW — 1 4 5 3 . 4 2 9 ? L 3 4 4 . 7>59b 12 1 1 .0330 215 .0370 219 .4800 220 .7900 6 0 . 0 0 0 0 55 .0000 4 9 . 8 0 0 0 - 2 3 0 0 . C O O O - 2 7 0 0 . 0 0 0 0 - 2 4 0 0 . 0 0 0 0 4 7 . 0 0 0 0 46 .8300 37 .0000 16900 .0000 14250.0000 13150.0000 COMPONENT MOLECULAR WTS. 106.15999 92 .12999 78 .10999 FEED MOLECULAR WT. FEED LIQUID 8 5 . 1 2 C 9 6 FEED RATE (MOLES) 0 .100000 0 .3C0000 0 .600000 2 .34960 TOLERANCES BDFERR 0 .000100 PROERR 0 .001000 REACTIONS CONSIDERED ARE : REACTION 1 2 3 COMPONENT 4 5 6 7 EF ER " T T ~TT~ ~TF~ I REACTION 1 1.0 1.0 1.0 FORWARD REACTION C O E F F . REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MOLECULE H H I OJ ATOM I N I T I A L CONDITIONS 13 14 TEMP VAPOR QUID HOLOUP 2 1 2 . 0 2.0000 2 . 5000 10 OOOu 212. 0 2 .0000 2. 5000 10 0 000 212. 0 2 .0000 t.. 5C00 10 0000 212. 0 2 .0000 2 . 5C00 10 0000 2 12. 0 2 .0000 2. 5000 10 oooc 212. 0 2 .0000 2 . 5 00C IC 0000 212. 0 2.0oL'li 2 . 5 0 00 212. 0 2 .0000 2. 5000 10 0000 212. 0 2 .0C00 2 . 50 00 10 0 000 ** C.CCOOOO V INAL CONDI 1 I UN S F I N A L CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 58 0 .01)0122 t ' . ' J l V l l v L'.vd06VV 7 0 .000904 0 .051799 0 .947297 8 0 .004529 0 .105586 0.389886 9 0 .019659 C.132555 0 .797786 10 0 .072224 0 .264674 0 .6631C2 1 1 0 .073363 0 .281600 0 .644537 12 0 .0h326y 0. 326346 0.5b : JH35 13 0 .139933 0 .414156 0 .445910 14 0 .139965 0 .414634 0 .445401 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL 6 139 .0 19 548 .3 4532.1 0 .6700 1 .3401 27843 .57 7 140. 2 1 8383 .8 4 60 3 .6 2.0101 1.3273 - 0 . 6 1 3 142 .2 18515 .9 4734 .8 " 1.9979 1.3C66 - 0 . 8 5 9 145. 8 18751 .4 4974 .3 1 .9767. 1 .2707 - 0 . 7 4 10 152.0 19167 .3 5413 .3 ' 1.9406 3 .6126 - 0 . 5 3 1 1 152 .8 1422'. .3 'J 4 / 2 . ' 1.9331 3 . 5 -1 6 -V . ( 12 155.4 19424 .8 5647 .3 1.920C 3 . 5 5 P 3 - 1 . 3 7 13 163 .7 20057 .9 6 2 2 6 . 7 1.8793 4527 -1 . 85 14 166.4 2204 7 .1 7433 .7 1.7731 1 . 6796 - 0 . 9 5 M01ES GF BOTTOM PROOUCT 1.679563 MOLES OF TOP PRODUCT C . 6 7 0 0 3 9 PERCENT OF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE STOP 0 EXECUTION TERMINATED - 0 . 0 3 5 6 - 0 . C 6 0 0 - 0 . C 0 0 4 H H I OJ J r A TOTAL CGNOENSFR IS USED RETURNING SATURATED LIQUID A TOTAL REBOILER OF PART OF THE COLUMN 'LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN 'BOTTOM PRODUCT TOP PLATE IS FF ED PLATE IS 10 BOTTOM PLATE IS 13 XTTR7U?7ETn 1 E5 PbtUOUXYLENE COMPONENT 2 IS TOLUFNE COMPONENT 3 IS BENZENE REFLUX RATIO = 2 . 0 0 0 HEAT INPUT TO REBOILER 2 3 0 5 0 . 0 ENTHALPY OF FEED = 18118.S COLUMN PRESSURE IS A 6 .9910 760 .00 6 .9550 6 .5060 ~B C ENTHK ENTHL FNTHU ENTHW 14? 3 .4295 1 344 . (998 12 I I .0 iii) 215 .0370 219 .4800 220 .7900 6 0 . 0 0 0 0 55 .0000 49 .8000 - 2 3 0 0 . 0 0 0 0 - 2 7 0 0 . 0 0 0 0 - 2 4 0 0 . 0 0 0 0 4 7 . 0 0 0 0 46 .8300 37 .0000 16900.0000 14250.0000 13150.0000 COMPONENT MOLECULAR WT S. 106 .15999 9 2 . 1 2 9 9 9 78 .10999 FEED MOLECULAR WT . FEED LIQUID 85 .12096 FEED RATE (MOLES) 0 .100000 0 .300000 0 .600000 2 .34960 TOLERANCES SDFERR 0 .000100 0 .001000 REACTIONS CONSIDERED ARE ; REACTION COMPONENT 1 2 3 4 5 6 PR I REACTION 1 i = i =T~ 1.0 1.0 1.0 0 . 0 FORWARD REACTION C O E F F . REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MGLECULFS MOLECULE i A TDM 1 13 7 6 2 1'. 8 6 I N I T I A L CONDITIONS -< TEMP VAPOR QUID HOLDUP 212. 0 2 . 0 0 C 0 2.5UUU H; . U'JOU 212. 0 2 .0000 2 .5000 10 0000 212 . 0 2 .0000 2 .50Q0 10 0 000 2 12. 0 2 .0000 2 .5000 10 GOOO 212. 0 2 .0 000 2 .5000 10 OOCO 212. 0 2 .0000 2 .5000 10 0000 2 12. 0 2. (.'1)00 2.5i.'0u 10 (MJU 212. 0 2 . 00C0 2 .5000 10 0000 212. 0 2 .0000 2 .5000 10 0 000 " 1ft h 1 MAL (.1;l>il> 1 1 i UNS F INAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 b 5 I . 0L'U2 ' .H L'.U2t>"4 U . 9 / 2 V C b 7 0 .001532 0 .066011 0 .932457 8 0.006454 0 .124240 0 .869305 ... 9 0.023451 0 .198854 0 .777696 10 0 .073220 0 .27C953 C.655827 1 1 0 .075332 0 .289628 0 .635040 12 u . u.-t603o (J. 335 1 2? (J. 5 ( ot!4 1 13 0 .141785 0 .416307 0 .441908 14 0 .141323 0 .416741 0 .4414 36 N TEMP VAPMOH OUIMOH VAPOR QUID OUNBAL 6 177 .0 21105 .0 6434.2 0 .6923 1.3845 27831 .88 7 17S . 6 19834 .4 6537 .2 2 .0770 1.3686 - 0 . 6 0 8 181.1 20007 . 0 6709 .7 2 .0609 1.3435 - 1 . 0 4 9 185 .1 20286 .4 6994 .9 2 .0358 1.3055 - 1 . 0 7 10 151.4 2073C .5 7468.4 1.9078 3.6465 - 0 . 6 3 U 1V2 .4 dO-i 1 1 . i \->i-).i. 1 .93''? J . O i O ' / -O.vU 12 195 .4 21046 .0 7748 .7 1 .9737 3 .5369 - 1 . 4 8 13 2 0 3 . 9 21742 . 9 8382 .0 • 1 .9296 3 4320 - 2 . 0 714 226 .2 23 75 5 .3 9569.1 1 .8247 1.6572 - C . 8 2 MOLES CF BOTTOM PRODUCT = 1.657249 MOLES OF TOP PRODUCT 0 .692310 P E R C E N T O F F A C H A T O M U N A C C O U N T E D F O R - 0 . 0 3 5 4 - 0 . 0 5 < ' P E R C E N T O V E R A L L U N B A L A N C E 0 . 0 0 1 6 1—I H SIOP 0 EXECUTION TERMINATED J^j A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID A TOTAL RCRCILER OE PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS 7 C O M P O N E N T COMPONENT COMPONENT FEED PLATE IS 10 T 5 PStUDGXYLENt IS TOLUENE IS BENZENE BOTTOM PLATE IS 13 REFLUX RATIO 2 . 0 0 0 HEAT INPUT TO REBOILER = 28050 .0 ENTHALPY OF FEED = 21293 .3 COLUMN PRESSURE IS 6 .9910 1140.00 6 .9550 6 .9060 li 1^53 4 2-jy 1 344. /9 5B 1211. 0 (3u c 21 5 037C 219 . 4300 220. 7900 ENTHK 6 0 0000 55. 00 00 4 9 . 8000 ENTHL - 2 3 0 0 000 0 - 2 7 0 0 . 0000 - 2 4 0 0 . 0000 ENTHU 47 0000 4 6 . 8300 37. 0000 FNTHW 16900 00 0 0 14750. 0000 13150. coco COMPONENT MOLECULAR H T S . 106. 15099 92 . 12909 7 e .1099 9 F EE 0 MOLECULAR WT. FEED LIQUID 8 5 .12096 O.ICOOOO FEED RATE (MOLES) 0 .300000 0 .600000 2 .3496C TOLE-kANC BDFERR 0 .0C0100 PKDERR 0.OOIOCO REACTIONS CONSIDERED A k ^ : RE AC T1CN COMPONENT AF EE AR FR 1 2 3 4 5 6 7 8 9 1 i =i =i ci o o o cr o ore crrci OTO o.u 1.0 1.0 1.0 REACTION FORWARD REACTION C O E F F . REVERSE REACTION C O E F F . ' 1 ATCMIC MAKE-UP OF MOLECULES MOLECULF 1 2 3 4 5 6 7 H 9 \ ATOM 1 13 7 6 K 2 14 8 6 I N I T I A L CONDITIONS \ TFMP VAPOR QUID HOLDUP 212 .0 2 . 00 7 .5000 11.1. i) 00 J 212 .0 2 . 00 00 2 .5000 10.0000 2 1 2 . 0 2 . 0000 2 . 5 0 0 0 10.0000 2 12.0 2 . 0000 2 .5000 10 .0000 2 1 2 . 0 2 . 00 00 2 .5000 10.0000 2 1 2 . 0 2 . 0000 2 .5 000 10.0000 2 12 .0 c . 01. Oil c . 5 0 u 'J l O . U O u u 212 .0 2 . 0000 2 .5000 10.0000 212 .0 2 . 0000 2 .5000 10 .0000 F 1 IvAL LLK.) 1 1 1 UNb F I NAL CONDI 11ONS N ITERAT XI X2 X3 X4 X5 X6 6 a / U . U U U}f4 0 .0 32 42 1 6/199 7 0 .C02075 0 . 075758 0. 922167 8 0 .CO70 13 0. 136160 o. 355027 9 0 .025977 0. 20 869 6 0. 7 6 6 3 2 7 10 0 . 0 ( 3 9 1 7 0. 27<-867 0 . 6 5 L 2 1 6 1 1 0.076368 Q. 29458 0 0. 629052 12 v.v.U-101 U . i i ' J C 1 a 0. 5C20Ei 13 0. 1 4 30 75 0. 4 1756 1 0. 439365 . _ . ' 1 A 0.143121 0. 417973 0. 438902 N TEMP VAPMOH QUIMOH VAPOR QUID OUNBAL 6 202 .1 22130 .6 " 768".6 0 .707 6 1.4153 27325 .62 7 2 0 3 . 0 2 0 / 9 6 . 7 78 16.4 2 . 1229 1.3964 - 0 . 9 7 8 2 0 6 . 7 20997 .7 8017.3 2 . 104 1. 1.3 688 - 1 . 1 5 " 9 211 . 0 21306 .0 8330 .7 2 .0765 1.3296 -1 .07 10 217.3 21764.5 8818 .9 2 . 0373 3 .6699 - 0 . 7 3 U 218 .4 2 L859 .0 890 i . i 2 . 0 2 B U - L i b 12 2 2 1 . 6 22120 .0 9133 .7 2 .0107 3 .6 064 - 1 .46 13 2 3 0 .4 22356.8 9300 .2 1 .9645 3.502 1 - 2 . 1 5 14 252 .3 24880 .6 10971.7 1 .8601 1 .6419 - 1 . 1 6 MOLES OF ROT TOM PRODUCT = 1 . 641915 MOLES OF TOP PRODUCT 0 . 7 0 7 6 3 3 PERCENT OE EACH ATOM UNACCOUNTED FOR -0 . 0375 - C O 6 2 ' H PERCENT OVERALL UNBAL ANCE 0.001 H SI OP C 1 EXECUTION TERMINATED e o J A TOTAL CONDENSER IS USED PETURNING SATURATED LIQUID COMPONENT 1 I S PSEUDUXYL ENE COMPONENT 2 I S TOLUENE COMPONENT 3 I s REN2ENE A TOTAL K F P n i l F K OF ('APT 111' TUP COLUMN t UJUIO IS USFO RETURNING SATURATED VAPOUR CF THE SAMP COMPOSITION AS THE COLUMN BOTTOM PROOUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 1 3 REFLUX RAT 10 2 .000 HEAT INPUT TO REBOILER = 2 8 0 5 0 . 0 ENTHALPY OF FEED = 21298.3 COLUMN PRESSURE IS A 6 .00 10 1140 .00 6.9550 6.9060 u I 4 5 3 4 2 99 1 344 . 7998 1 21 1 .0330 C 215 0370 219. 48 00 220.7900 ENTHK 6C 0000 55. 0000 49.8000 ENTHL -2300 000 0 -2700. 0000 -2400.0000 ENTHU 47 0000 46. 8300 37.0000 F N 7 H 'rt 16900 oroo 14250. 0000 13 150.0000 COMPONENT MOLECULAR WTS. 106.15999 92.12999 78.10999 FEED MOLECULAR WT. FEED LIQUID 5.12096 FEED RATE IM0LES1 0 .100000 0 .300000 0 .600000 TOLERANCES BDFERR 0 .000100 PRDERR 0 .001000 REACT IU N S CONSIDERED ARE . R E A C T I O N . COMPONENT. 1 2 3 4 5 EF AR ER 0 . 9 3 6 0 0 0 e 09 0 . 1 9 5 0 0 0 s 0 5 I REACTION" 1 1 -1 -1 1.0 1.0 1.0 FORWARD REACTION C O E F F . .150960E 11 0.199000E 05 REVERSE REACTION C O E F F . A T O M I C M A X L - U P OF WlF.Clt l .FS MOLECULE H H INITIAL. CONDITIONS 13 14 TEMP VAPOR ou i n HOI. D U P 212.0 2 . 0000 2.5000 10. 0000 212.0 2 . 0000 2.50C0 10. 0000 2 17.0 7 • 000 0 2.5000 1 0 . 0000 212 .0 2 . OOOC 2.5000 10. 0000 212.0 2. 0000 2.5000 10. 0000 212.0 2 . 0000 2.5 000 10. 0 000 212.0 2. 000 0 2.5000 10. 0000 212.0 2. oooo 2.5000 10. 0000 2 12.0 2 . 0000 2.5000 10. oooo ** c .COCOOO FINAL CONDITIONS FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 7 3 C .0026 15 0.024159 C.973226 7 0. 0145 52 C.G56741 0.928707 R 0. 0 3 8019 0.10734 4 C.354137 q 0 . 072973 0.177909 0.74^113 10 ' 0. 09 79 53 C.262553 0.639438 1 1 c. 1 108 76 0.2HC560 0.609564 I 2 0 . 14.46CI 0 . 3 1 •) 7 r 7 0.533011 13 0 . 764427 0.36212 4 0.373449 14 -0. 2 37182 0.35083 3 0.361985 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL 6 201 . 9 2 2 12 7.5 7673 .2 0.7224 1 .4449 23399.38 7 203 .8 20732 .4 73 26.5 2. 1672 1.4103 -8.68 8 207.3 2 1 0 1 6 . C 8092 .7 2. l'-CO 1 .3543 -20.02 9 212.6 21987.5 8497.0 2 .0976 1.2773 -43.01 10 2 1 3 . A 21825.4 8 9 2 1.7 2.04 74 3.5903 -28.67 11 220.2 2 1 972 .0 90 64 . 1 2.0268 3.537 7 -32.8« 12 225 . 1 22352.6 94 37.1 1.9918 3.4412 -43.28 . 13 237 .0 23414.7 10454.0 1.9 164 3.2920 -52.13 14 266 . 1 2 6 14 c . 8 12040.7 1.7932 1 .4459 645.76 MOLES OF EOT TOM PROOUCT = 1 .44 5 895 MOLES OF TOP PRODUCT 0.722403 P P P P I N l |-.r F AC H ATOM UNACCOUNTED PERCENT OVERALL UNBALANCE STOP 0 EXECUTION TERMINATED - O . f ' 5 30 2 . 4 6 51 H M I cn A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID A TOTAL REBOILER OF PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT COMPONENT COMPONENT IS I s IS PSEUDOXYLENE TOLUENE BENZENE REFLUX RATIO 2 .000 HEAT INPUT TO REBOILER = 2 8 0 5 0 . 0 ENTHALPY OF FEED 1 9 8 3 3 . 5 COLUMN PRESSURE IS 950 .00 A 6 .9910 6 .9550 6 .9060 B 1453 .4299 1 3 4 4. 7 9 5 8 1211.0330 C 215 .0370 219 . 4800 220 .7900 . , ENTHK _ _ 6 0 . 0 0 0 0 55 . 00 00 49 .8000 ENTHL - 2 3 0 0 . 0 0 0 0 - 2 7 0 0 . 00 0 0 - 2 4 0 0 . O O O C ENTHU 4 7 .0000 46 . 8300 37 .0000 ENTHW 1690C.0000 14250. COOO 13150.0000 COMPONENT MOLECULAR WTS. 106 .15999 •2.12999 78 .10999 FEED MOLECULAR WT. FEED LIQUID 85 .12096 FEED RATE (MOLES) 0 .100000 0 .300000 0 .600000 2 .34960 TOLERANCES BDFERR 0 .000100 PRDERR 0 .001000 REACTIONS CONSIDERED ARE R E A C T I O N ^ _ 1 2 3 COMPONENT 4 5 6 7 AF EF ER 1 -1 -1 1.0 1.0 1.0 0 0 0 .150960E 11 0 .199000E 05 0 .936000E 09 0 .195000E 0 5 REACT ION 1 FORWARD REACTION C O E F F . REVERSE REACTION C O E F F . ATOMIC M-JKF-UP OF MOLECULES MOLECULE H i ATOM I N I T I A L CONDITIONS 13 14 TFMP VAPOR QUID HOLDUP 212 . 0 2 .0000 2 .5000 10. 0000 212. 0 2 .0000 2 .5000 10. 0000 212 . 0 2 .0000 2 .5000 10. 0000 212 . 0 2 .0000 2 .5000 10. 0000 212. 0 2 .0000 2 .5000 10. 0000 212 . 0 2 .00 00 2 .5000 10. 0 000 2 12. 0 2 .0000 2 .500C 10. 0000 212 . 0 2 .0000 2 .5000 10. 0 000 . 212 . 0 7 .0000 2 .5000 10. 0000 * * 0 .000000 F INAL CONDITIONS FINAL CONDITIONS iN I TERAT XI X2 X3 X4 X5 X6 6 70 0 .002 1 1 7 0 .02356 0 .974315 7 0 .0103 36 0 .057532 0 .932132 _ _ 8 0 .027439 0 .110465 0 .8620"7 9 G • 0 6492 C.132359 0 .761150 10 0 . OS 95 56 0 .264332 0 .646112 1 1 0 .09 33 50 0 .2823 61 0 . 6 192 69 12 0 .12 5162 0 .323745 0 .551093 13 0 .226193 0 .3776 0 6 0 .396193 . . 1 4 0 .24 4410 0 .368565 0 .387025 N TEMP VAPMCh OUIMOH VAPOR QUID QUNBAL 6 190.4 21652 . 1 7 10 3.1 0 .7086 1.4186 28176 .04 7 192.2 2034 1 .2 72 3 0 . 9 2 . 1280 1.3914 - 5 . 89 8 195.2 20548 .2 74 5 8 .9 2 .1053 1.3459 - 1 3 . 3 2 9 200 .0 20383 .4 7 818 .1 . 2 . 0595 1.2822 - 2 8 . 0 7 10 2 0 6 . G 2 1 326 .2 3259 .9 2 .0239 3 .6056 - 1 8 . 4 0 . 11 207 . 5 2 14 4 1 . 9 S3 71 .9 2 .0082 3 .5666 - 2 0 . 9 6 12 2 1 1 . 6 21762 . 5 86 8 0 . 0 1 .9809 3 .487-6 - 2 7 . 6 6 13 223 .1 2 2 696 . 0 9571 .2 1.9159 3 .3453 - 3 8 . 1 8 1 4 250 . 1 2 524: . p 110 74 .4 . 1.7 39 7 1 . 5070 49 9 . 3 5 MOLES OF BOTTOM PRODUCT 1 . 506992 MOLES OF TOP PRODUCT 0 .708534 PERCENT CE EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE STOP C FXECUTICN TERMINATED '  - C . 0 4 36 - 0 . 0 5 3 4 2.1012 H H I -J> -si DATA A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID A TOTAL RE 301L ER OF PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE I S 13 COMPONENT COMPONENT COMPONENT IS I S IS P SEUDOXYL ENE TOLUENE BENZENE REFLUX RATIO 2 .000 HEAT INPUT TO REBOILER = 28050 .0 ENTHALPY OF FEED 18118 .8 COLUMN PRESSURE IS A 6 .9510 760 .00 6 .9550 6 .5060 C ENTHK ENTHL ENTHU ENTHK 1453.4299 1344.7958 1211.C330 2 1 5 . C 3 7 C 219 .4800 220 .7900 60 .0000 55 .0000 49 .8000 - 2 3 0 0 . 0 0 0 0 - 2 7 O 0 . C 0 0 0 - 2 4 C 0 . 0 0 0 0 4 7 . 0 0 0 0 46 .8300 37 .0000 16900.0000 14250.0000 13150.0000 COMPONENT MOLECULAR WTS. 106 .15999 92 .12999 78 .10999 FEED MOLECULAR WT. FEED LIQUID 85 .12096 FEED RATE (MOLES) 0 .1C0000 0 .300000 0 .600000 2 .34960 TOLERANCES BDFFRR 0 .000100 PKDfcRR 0 .001000 REACTIONS CONSIDERED ARE -REACTION _ COMPONENT _ 1 2 3 4 5 6 EE ER 0 .936000E 09 0 .195000E 05 1 REACT ION 1 1 -1 -1 1.0 1.0 1.0 0 0 .150960E 11 0 .199000E 05 FORWARD REACTION C O E F F . REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MCL ECUI.E H 00 . I N I T I A L CONDITIONS 13 14 TEMP VAPOR QUID HOLDUP 212 . 0 2 .0C00 2 .5000 10 .0000 212 . 0 2 .0000 2 .5000 10 .0000 212. 0 2 .0000 2 .5000 10 .0000 212 . 0 2.oooo 2 .5000 10 .0000 212. 0 2 .0000 2 .5000 10 .0000 212 . C 2 . 0 C 0 0 2 .5000 10 .0000 212 . G 2 .0000 2 .5000 10 .0000 212 . 0 2 .0000 2 .5 000 10 .0000 212 . C ' 2 .0000 2 .5000 10 .0000 F INAL CONDITIONS F INAL CONDITIONS N ITERAT x i x2 X3 X4 X5 X6 6 hi 0 .000975 0 .023365 0 .9 75660 7 0 .006184 0 .057334 0 .935982 3 C O 180 39 0. 1 1 18 17 0 .370144 9 0 .042120 0 .185266 0 .772614 10 C.032578 0 .265491 0 .651931 1 1 O.08332C 0 .283367 0.62 8 313 12 0 .107964 0 .326476 0 .565561 13 C 192463 0 . 391833 0.4 15704 ..14 0 .204552 0 .385902 0 .409546 N TEMP VAPMOH OUIMOH VAPOR OUIO QUNBAL 6 177 .0 2 110 1 .5 6429 .2 0 .6970 1.3939 23012 .46 7 I 7 8 . 5 19 326 .8 6537 .9 2 .090 9 1 .3773 - 3 . 4 4 8 131.2 20008 .9 6731 .9 2 .072 1 1 .3361 - 7 . 7 5 9 135 .6 2 0 3 1 1 .0 70 5 C . 7 2 . 0 4 1 8 1 . 2 333 - 1 5 . 9 3 10 101.7 20 75C .7 7502 .8 1.9999 3 .6144 - 1 0 . 2 8 1 1 193 .0 2 0 3^5 .5 7591 .7 I .9878 3.5861 - 1 2 . 0 0 12 196.5 21118 .0 7 3 4 7 .5 1.9664 3.5221 - 1 5 . 9 4 13 206 . 7 21933 .4 8 6 2 2 .6 1.9 108 3 .3907 - 2 3 . 8 9 14 232 .3 24293 .9 10025.1 1.7900 1.5670 313 .89 NOLFS CE BOTTOM PRODUCT = 1.567C33 MOLES OF TOP PROOUCT 0 .697006 PERCENT OF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE STOP C BXPCUTICN TERMINATED - C . 0 4 0 2 - 0 . 0 5 1 7 1.4340 H H I -£> y DATA A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID C. CM PONE NT 1 IS PSEUDOXYLENE COMPONENT 2 I S TOLUENE COMPONENT ' 3 IS BENZENE A TOTAL REBOILER OE PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 REFLUX RATIO 2 .000 HEAT INPUT TO REBOILER 28050 .0 ENTHALPY OF FEED 16C26 .0 COLUMN PRESSURE IS 570 .00 A 6 .9910 6 .9550 6 .9060 B 1453.4299 134 4 7 0 5 8 1211 0330 C 215 .0370 219 4800 220 7900 ENTHK 60 .0000 55 COCO 49 8000 ENTHL " - 2 3 C 0 . 0 0 0 0 -2 7 00 00 00 -2400 0000 ENTHU 4 7 .0000 46 8300 3 7 0000 E N T H V. 16900.0000 14250 COOO 13150 0000 COMPONENT MOLECULAR WIS. 106 .15999 92 .12999 78 .10999 FEED MOLECULAR WT. FEED LIQUID 85 .12096 FEED RATE (MQLESi 0 .100000 0 .300000 0 .600000 2 .34960 TOLERANCES BDFERR 0 .000100 PRDERR 0 .001000 REACTIONS CONSIDERED AR F REACTION 1 2 COMPONENT 4 5 6 AF EE AR ER 1 REACTION 1 1 -1 -1 1.0 1.0 1.0 0 0 .150960E 11 0 . 1 9 9 0 0 0 E 05 0 . 9 3 6 0 0 0 E 09 0 .195000E 05 FORWARD REACTION C O E F F . REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MCLECULE H I (Jl ATOM 1 13 7 6 2 14 8 6 I N I T I A L CONDITIONS T F M P V A P O R Q U I D H O L D U P 2 L 2 . 0 2 .0000 2 .5000 10 .0000 2 1 2 . Q 2.0000 2 .5000 10 .0000 212 .0 2 .0000 2 .5000 10 .0000 212 .0 2 .0000 2 .5000 10 .0000 212 .0 2 .0000 2 .5000 10 .0000 212 .0 2 .0000 2 .5000 10 .0000 212 .0 212 .0 212 .0 2 .0000 2 .0000 2 .0000 2 .5000 2 .5000 2 .5000 I O . O O O O 10.0000 10.0000 * * 0 .000000 FINAL CONDITIONS FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 63 0 .000519 0 .021595 0 .977836 7 0 .003454 O.C555C.5 0 .941042 8 0 .011231 0 .109674 0 .379096 9 0 .031157 0 .184763 0 .784080 10 0 .077446 0 .265359 0 .657195 _11 0 .03 1031 0. 282839 0 .636CB0 12 0 .09S555 0 .727096 0 .677349 13 0 .166925 0 .402486 0 .430589 14 . . . 0 .173578 0. 399397 0 .427025 N ' TEMP VA PMOH QUIMOH VAPOR QU ID QUNBAL 6 l b 0 . 5 20429 1 560 7 .6 0 .6345 1.3639 27911 .67 7 1 6 1 . ° 192C0 7 5693 . 4 2 .0534 1 . 3 520 - 1 . 6 5 8 16 4 .3 ' 19359 1 5862 . 0 2 . 0379 1.3233 - 4 . 0 0 9 16 8. 3 19630 2 6143 . 9 2 .0121 1 .2788 - 7 . 7 7 10 1 74 . 5 2006 1 4 6 59 6 . 7 1 .9732 3 .6155 - 5 . 1 2 . 1 1 17 5 .5 20139 7 6 66 7 . 7 1 .9635 3 . 5 94 9 - 5 . 9 2 12 17 8 . 6 20373 9 633 3 .0 1 .9465 3 .5423 - 8 . 0 6 ' 13 187 .3 21 103 1 7563 . 2 1 . 8932 3 .4219 - 1 2 . 7 5 14 212 .2 23291 2 8379 . 2 1 . 7835 1.6193 157.48 MOLES OF BOTTOM PRODUCT = 1.619268 'OLES OF TCP PRODUCT 0 . 6 8 4 4 5 3 PERCENT CF EACH ATOM UNACCOUNTED FOR - 0 . 0 4 0 3 - 0 . 0 5 6 0 PERCENT 0VFPA1 L UNBALANCE 0 .S147 STOP 0 EXECUTION TERMINATED DATA A TOTAL CONDENSES IS USED RETURNING SATURATED LIQUID A TOTAL REBOILER OF PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT COMPONENT COMPONENT IS PSEUOOXYLENE IS TOLUENE IS BENZENE REFLUX RATIO = 2 .000 HEAT INPUT TO REBOILER = 28050 .0 ENTHALPY OF FEED = 13280.6 COLUMN PRESSURE IS A 6 .9910 380 .00 6.0550 6 .9060 ENTHK ENTHL FNTHU ENTHK 1453.4299 1344 .7953 1211.G330 215 .0370 219 .4800 220 .7900 60 .0000 55 .COCO 4 9 . 8 0 0 0 - 2 3 0 0 . C O O C - 2 7 G 0 . 0 0 0 0 - 2 4 0 0 . 0 0 0 0 '47.0000 46 . 8300 37 .0000 169CC.C0G0 14250.COOO 13150.0000 COMPONENT MOLECULAR WTS. 106.15999 9 2 . 1 2 9 9 9 73 .10999 FEED MOLECULAR WT. FEED LIQUID 85 .12096 FEED RATE (MOLES) G.100000 0 .300000 0 .600000 2 .34960 TOLERANCES B D F E R R 0 .000100 PP.DEPR 0 .001000 REACTIONS CONSIDERED ARE REACTION 1 2 3 COMPONENT 4 5 6 7 EF AR ER O . 9 3 6 0 O 0 E 0 9 0 . 1 9 5 0 C O E 0 5 1 • REACTION 1 1 -1 -1 1.0 1.C 1.0 FORWARD REACTION C O E F F . 0 0- 0 .150960E 11 0 .199000E 05 REVERSE REACTION C O E E F . ATOMIC MAKE-UP OF MOLECULES MOLECULE H H I Ol A TOM 1 13 7 6 2 1 4 8 6 I N I T I A L CONDITIONS TEMP VAPOR QUID HOLDUP 2 1 2 . 0 2 . OOOO 2 .5000 10 .0000 2 1 2 . 0 2 . OC 00 2 .5000 10 .0000 212 .0 2 . OOOO 2 .5000 10 .0000 212 .0 2 . o o o o 2 .5000 10 .0000 212 .0 2. o o o o 2 .5000 10 .0000 212 .0 2 . OC CO 2 .5000 10 .0000 2 1 2 . 0 2. OOOO 2 .5000 10 . o o o o 212 .0 2. OOOO 2 .5000 10 .0000 - 212 .0 2. o o o o 2 .5000 10 .0000 v =15 7 .478882 FINAL CONDITIONS FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 61 0 .00C223 0 .018530 0 .981247 7 0 .001651 0 .050163 0 .948186 8 0 .0065 12 0. 102992 0 .890496 c 0 .023093 0 .17 964 0 .797265 1 0 0 .07 39 39 0 .263483 C.662578 11 0 .076200 0 .280133 0 .643517 12 0 .087174 0 .32498 6 0 .58 7840 13 0 .149942 0 .408388 0 .441170 14 0 .152762 0 .40783 3 0 .439405 N TEMP VAPMOH OUIM OH VAPOR CUID OUNBAL 6 139 .0 19547.6 4531.2 0 . 6705 1.3411 27862 .55 7 140. 1 13332.0 4603.1 2 .0116 1.3280 - 0 . 88 8 142.2 13515.1 47 3 6 .9 1 .999 1 1 .3050 - 1 . 6 2 9 14 5 .3 13754.1 4982 .0 . 1 .977 1' 1 .2664 - 3 . 0 2 10 152.0 19169.9 54 2 3 .2 1 .9406 3 .6 06 6 - 2 . 0 2 1 1 152 .9 152 S3.5 54 HO.O 1.9325 3 .5914 -2 .34 12 155 .6 19434.2 56 61 .8 1.9186 3 .5470 - 3 . 3 9 13 164 . 1 20033.4 6266.1 1.8759 3.4 34 6 - 5 . 4 6 14 13 7.6 22152.1 75 2 6 .6 1.7553 1.6606 56 . 49 MOLES OF BOTTOM PROOUCT = 1.66057? MOLES OF TCP PRODUCT 0 .670533 PERCENT CF EACH ATOM UNACCOUNTED FOR - 0 . 0 3 5 7 - 0 . T 5 4 7 PFRCFNT OVERALL UNBALANCE 0 . 3 5 C 5 EXECUT K I N TERMINATED Z_J c DATA A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID A TOTAL RE 1301L ER OF PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT I TS PSfcUtJOXYLENb COMPONENT 2 IS TOLUENE COMPONENT 3 IS BENZENE AFFLUX RATIO 3 00 HEAT INPUT TO REBOILER 2 8 0 3 0 . 0 ENTHALPY OF FEED = 18118.8 COLUMN PRESSURE IS 760 .00 A ft.0<?10 6 .9550 6 .9060 —1453 .'.2<iTi rrwrrw!!—1211 .0330 215 .0370 219 .4800 220 .7900 60 .0000 55 .0000 4 9 . 8 0 0 0 - 2 3 0 0 . 0 0 0 0 - 2 7 0 0 . O O O C - 2 4 0 0 . G O O C 47 .0000 46 .3300 37 .0000 16900.0000 14250.0000 13150 .0000 E C ENTHK ENTHL ENTHU ENTHW COMPONENT MOLECULAR WTS. 106 .15999 92 .12999 78 .10999 FEED MOLECULAR WT. FEED LIQUID 65 .12096 FEED RATE (MOLES) 0 .100000 0 .300000 0 .600000 2 .34960 l U L b r t A N l t S BDFERR O.COOIOO PRDERR 0 .001000 RfcACUUNS C U N S l U t K t D ARE — REACTION ' COMPONENT 1 2 3 4 5 6 AF EF 1 1^ =T 1.0 1.0 1.0 FORWARD REACTION C O E F F . U.15096UE 11 0. 194U00t '.'5 0 . 93 6 v OUt U4 0 . 1 9 5 (J Cue- 05 I REACT ION 1 REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MOLECULE H H I Oi J N , A TO." I N I T I A L CONDITIONS 13 14 VAPOR QUID HOLDUP ~zrr. 212. 2 12. 212. 212. 212. 2 .0000 2 .0000 2 .0000 2 . 0 0 0 0 2 .0000 2 .0000 2 . -JOOO 2 .5000 2 .5000 2 .5 C O O 2 .5000 2 .5000 5 . 0 0 0 0 5 .0000 5 . 0 0 0 0 5 .0000 5 .0000 5 .0000 2 12.0 2 . 0 0 0 0 2. D O O O 5 • OUuU -2 1 2 . C 2 .0000 2 . 5000 5 .0000 2 1 2 . 0 2 .0000 2 . 5000 5 .0000 EI NAL LUND 1 1 1UNS F INAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 3 1 U.0UU46P 0 . 0 2 5 / 2 2 U / i d 2 3 7 0 .002810 0 .063594 0. 933596 3 0 .C09570 0 .120664 0. 369766 9 0 .023385 0 .195043 0. 776572 10 0 .C75668 0 .269433 0 . 654899 1 1 0 .078664 0 .237914 0. 63 3422 12 0 .09 1532 0 .1328 50 0. 6 /5619 13 0 .154565 0 .410058 0. 435377 14 0 .157555 0 .408961 0. 433484 N • TEMP VAPMOH QUIMOH VAPOR QUID OUNBAL • 6 177 .0 21103 .9 6432 .5 0 .6936 1 .3 372 27881 . 95 7 178 .5 19831.9 6537 .0 2 .0308 1 .3696 -1 .14 8 181 .1 20006 .9 6715 .1 2 .0640 1.34 15 -2 . 49 9 135.2 20292 .3 7009.2 2 .0375 1 .2995 -4 . 55 10 191 .5 20735 .5 7477.1 1 . 9965 3 .6380 -2 .90 11 192 .5 20 8 19 .1' / 6 5 7 . 3 1 3 .6193 - .5 . 60 12 195 .6 21063 .5 7773 .0 1 .9720 3 .5702 -U . 89 13 204 .6 21790 .6 8441 .6 1 .925 1 3 .4579 - 7 . 25 14 2 2 7 . 8 23892 .5 9686.2 I .8 156 1 .6336 77 . 97 MOLES CE BOTTOM PRODUCT = 1.633559 MOLES OF TOP PRODUCT 0. 693597 PERCENT OF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE STOP 0 EXECUTION TERMINATED - 0 . 0 3 3 5 - 0 . 0 5 3 2 0 .3778 H i O 1 J DATA A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID A TOTAL RE ROIL ER OF PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT .TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT I H, PStUDGXYLENE COMPONENT 2 ' IS TOLUENE COMPONENT 3 IS BENZENE REFLUX RATIO 2 . 0 C 0 HEAT INPUT TO REBOILER = 78050 .0 ENTHALPY OF FEED 18118.8 COLUMN PRESSURE IS A 6 .9910 760 .00 6 .0550 6 .9060 1 4 6 3 . 4 2 9 9 1344. i"J9b 12 1 1 .0330 215 .0370 219 .4800 220 .7900 6 0 . 0 0 0 0 55 .00C0 49 .8000 - 2 3 0 0 . 0 0 0 0 - 2 7 0 0 . 0 0 0 0 - 2 4 0 0 . 0 0 0 0 4 7 . 0 0 0 0 46 .8300 37 .0000 16900.OOOC 14250.0000 13150 .0000 c ENTHK ENTHL ENTHU ENTHW COMPONENT MOLECULAR WTS. 106.15999 9 2 . 1 2 9 9 9 78 .10999 FEED MOLECULAR WT. FEED LI QUID 85 .12096 FEED RATE (MOLES) 0 .100000 0 .300000 0 .600000 2 .34960 TOLERANCES 0 .000100 PRDERR 0 .001000 REACTIONS CONSIDERED ARE '. REACTION 1 2 3 COMPONENT 4 5 6 7 AF EF ER U . I 5 0 9 6 U E 11 O . l O y U O U E 05 I REACTION 1 I =1 =~T 1.0 1.0 1.0 FORWARD REACTION C O E F F . 0 O .^360out OV- 0 .19 5000b 05 REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MOLECULE H H I (Jl _P2y ATOM 1 13 7 6 2 14 8 6 — < I N I T I A L CONDITIONS TFMP VAPOR QUID HOLDUP 212 .0 2 .0000 2.:>000 20.(MOO 212.0. 2 .0000 2 .5000 2 0 .0000 212 .0 2 .0000 2 .5000 20 .0000 212 .0 2 .0000 2 .5000 20 .0000 212 .0 2 .0000 2 .5000 20 .0000 212 .0 2.OOOO 2 . 5 0 0 0 ' 20 .0000 2 12.0 2 1 2 . 0 2 1 2 . 0 2 .0000 2 .0000 2 .0000 2. M.'LU 2 .5OC0 2 .5000 20 .0000 20 .0000 f F INAL F INAL CONDITIONS CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 J ? 6 132 0 .002466 0 .0 16964 0 .98C5 rn \ 7 0 .015300 0 .042170 0 .942530 8 0 .0 4 24 18 0 .C36931 0 .870652 0 .084391 0 .156451 0 .759159 10 0 .105222 0 .253410 0 .641368 I 1 0 .122459 0 .263906 0 .608635 12 0 . 16 /5 58 0. 30 3 4 2 2 0 .32 C021 13 0 .303763 0 .338727 0 .352510 14 C . 3 3 75 60 0. 32 41 47 0 .337893 N TEMP VAPMOH . OUIMOH VAPOR QUID QUNBAL 6 176 .8 21094.9 6420 .0 0 .7087 1.4173 28472 .49 7 178.4 19812.5 6539 .8 2 .1260 1.3855 - 9 . 0 7 3 181 .6 20015 .9 6781 .3 2. 10 18 1.3269 - 2 2 . 4 5 9 186 .9 20373.2 7132 .6 2 .0601 1 .2399 - 5 4 . 1 4 10 192 .7 20304 .5 7589 .9 2 .'009 1 3 .5 424 - 4 0 . 7 0 11 194 .6 . 20943 .6 llil.^t 1.9362 3.4 lib - 4 6 . 15 12 159 .8 21336.2 8132 .3 1.5478 3 .3637 -6 2 .15 13 2 1 3 . 8 22467 .2 9223 .9 1.3658 3 .2062 - 6 5 . 3 7 14 2 4 3 . 7 25391.4 10924.2 1 . 7350 1.4014 6 9 2 . 8 9 MOLES CF BOT TOM PRODUCT = 1.401423 MOLES OF I OP PROOUCT 0 .708668 PERCENT OF EACH ATOM UNACCOUNTED FOR - 0 . 0 4 4 3 - 0 . 0523 M PERCENT OVERALL UNBALANCE 2.9 6 54 i STOP 0 EXECUTION TERMINATED -si DATA A TflTAI C P N O F N S F R TS USED R E T U R N I N G S A T U R A T E D 1 I OU I D A TOTAL R E B O I L E R OF PART OF THE COLUMN L I Q U I D IS U S E D R E T U R N I N G S A T U R A T E D VAPOUR OF ..THE. SAME. CO«POS.I .TION_AS„TH£^COLUKN .BOTTOM P R O D U C T , TOP P L A T E I S F E E D P L A T E IS 10 BOTTOM PL-ATE IS 13 COMPONENT 1 IS P S E U D O X Y L E N E COMPONENT — 2 _ . . I S . TOLUENE . -COMPONENT 3 IS B E N Z E N E R E F L U X R A T I O = 1 . 0 0 0 HEAT I N P U T TO R E B O I L E R = 2 8 0 5 0 . C E N T H A L P Y OF F E E D 1 8 1 1 8 . 8 COLUMN P R E S S U R E IS 7 6 0 . 0 0 B 1 4 5 3 4 2 9 9 1 34 4 . 7 9 9 8 1 2 1 1 . 0 3 3 0 C 21 5 0 3 70 2 1 9 . 4 8 0 0 2 2 0 . 7 9 0 0 . . ENTHK. 6 0 OCOO 5 5 . 0 0 00 4 9 . 8 0 0 0 ENTHL - 2 3 0 0 0 0 0 0 - 2 7 0 0 . 0 0 0 0 - 2 4 C 0 . 0 0 0 0 ENTHU 6 7 CCOC 4 6 . 8 3 0 0 3 7 . 0 0 0 C FNTHW I 60 00 0 0 0 0 1 6 2 5 0 . o o o o 1 3 1 5 0 . 0 0 0 0 COMPONENT M O L E C U L A R WTS. 1 0 6 . 1 5 9 9 9 9 2 . 1 2 9 9 ? 7 8 . 1099<; F E E D M O L E C U L A R WT. F E E D L I Q U I D 8 5 . 1 2 0 9 6 FEED RATE ( M O L F S I ' O . I C O C O O 0 . 3 O 0 C 0 0 0 . 6 0 0 0 0 0 2 . 3 4 9 6 0 T O L E R A N C E S BDFERR 0 . 0 0 0 1 0 0 0 . 0 0 1 0 0 0 R E A C T I O N S C O N S I D E R E D ARE R E A C T I O N COMPONENT -1 2 3 4 5 6 EE 1 R E A C T ION 1 1 1.0 - I - 1 1 . 0 1 . 0 o o O . 1 5 0 9 6 0 E 11 0 . 1 9 9 0 0 0 E 0 5 0 . 9 3 6 0 0 0 E 09 0 . 1 9 5 0 0 0 E 0 5 FORWARD R E A C T I O N C O E F F . R E V E R S E R E A C T I O N C O E F F . ATOMIC M A K E - U P OF M O L E C U L E S M O L E C U L E H H (Jl m ATOM 1 13 7 6 2 14 3 6 INITIAL CONDITIONS TFMP VAPOR QUID HOLDUP 21?.0 2.DCOO 2. ' 3 1 0 0 10.0000 212.0 2.0000 2.5000 10.0000 212.0 .. 2 .0000 ... _. 2.5000 . . . _ . 10.C000 212.0 2.0000 2.5000 10.0000 212.0 2.0000 2.5000 10.0000 2 12.0 2 .0000 2 • 5000 10.00C0 212.0 2.0000 2.5000 10.0000 212.0 2.0000 2 . 5 0 0 0 1 0 . 0 0 0 0 - 2 1 2 . 0 . ._ . _ 2 . 0 0 0 0 . . - 2.5G00 . . 1C.0000 * * 0 . 0 FINAL CONDITIONS FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 19 0.009478 0.066616 0.923006 7 0.043365 0.141587 0.815048 8 0.08712.7 0. 205954. C.7C6919 9 0.119712 0.255320 0.624968 10 ' 0.111744 0.302763 0.535493 1 1 . 0 . 1 245 75 0.^35'1H4 0. 539541 12 0.162243 0.392249 0.445508 13 0.279779 0.434697 C.2S5523 14 0.2B8652 0.425137 0.236210 N TFMP VAPMOH OU[MOM VAPOR QUID OUNUAI 6 179.0 21185. 3 6575.0 1 .0290 1 0 30 5 28041. 07 . 7 18 3.8 .. 20179. 69 3 4.1 2.0 60 6 C 9 32 3 . . .-61 . 14 8 189.3 20552. 4 7344.0 2.0218 0 9 3 3 0 -73. 30 9 193.8 20878. 4 7678.4 1.9876 0 8 906 -80. 3 3 10 195.5 2 10 3 3. 9 77 8 7 . 6 1.96 7 6 3 21 64 - 2 7 . 3 4 11 198.2 21244. 7 7977.5 1.9505 3 1 73 1 - I t ) . 4 6 12 20'..2 21742. 1 842 1 .9 1.9173 3 0 96 9 -I . 3 3 13 217.6 ... 2291 1 . 0 944 5.2 1.8526 . . 2 9 93 3 14. 41 14 2 4 2 .1 25369. 1 10306.8 1 .7597 1 2009 359. 60 MOI FS OF BOTTOM PRODUCT 1.700863 MQ1FS OF TCP PRODUCT 1.079033 PERCENT OF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE STOP 0 FXFCIIT ION TFPMINATFD  -0.0363 -0.0092 1.1851 i cn cpj DATA A TntAI C.nNnFNSFR IS U S F 0 RF TURN TNG SATURATED I 101)10 A TOTAL REBOILER OF PART OF THE COLUMN LIQUID IS USEO RETURNING SATURATED VAPOUR OF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT _ TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT COMPONENT COMPONENT I s IS I S PSFUOOXYI. ENE TOLUENE BENZENE REFLUX RAT 10 = COLUMN PRESSURE IS Ji 6.991 0 HEAT INPUT TO REBOILER = 28050 -0 ENTHALPY OF FEED 18118 .8 760 .00 6 .95 50 6 .9060 B C ENTHK ENTHL ENTHU FNTHW 1453.4299 1344.7998 1211.0330 215 .0370 219 .4800 220 .7900 . 6G.GG00 55 .0000 49 .8000 - 2 3 0 0 . 0 0 0 0 - 2 7 0 0 . 0 0 0 0 - 2 4 0 0 . 0 0 0 0 47 .0000 46 .8300 37 .0000 1690C.Qf'00 14750. 0000 1 3150 .0000 COMPONENT MOLECULAR WTS. 106 .15999 9 2 . 1 2 9 9 9 78 .10999 FEED MOLECULAR WT. FEED LIQUID 8 5 . 1 2 C 9 6 FEED RATE (MOLES) 0 .100000 0 .300000 O.600C0O 2 .34960 TOLERANCES BDFERR 0 . 0 0 0 1 0 C PPDERR 0 .C01000 REACTIONS CONSIDERED ARE -REACTION . . COMPONENT.. . 1 2 3 4 5 6 EF ER 1 REACTION 1  1 -1 -1 1.0 1.0 1.0 0 0 .150960E II C.19900QH 05 0 .936000c 09 0 .15500GE 05 FORWARD REACTION C O E F F . REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MOLECULE H H I CD - I N I T I A L CONDITIONS T E M P V A P O R Q U I D H O L D U P 2 1 2 . C 2 . 0 0 0 0 2 . 5 C 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 . - 2 1 2 . 0 - - _ 2 . 0 0 0 0 . 2 . 5 0 0 0 _ 1 0 . 0 0 0 0 . 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 ) 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 C 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 - 2 1 2 . 0 , 2 . 0 0 C 0 2 . 5 0 0 0 1 0 . 0 0 0 0 . * * 1 . 0 5 0 9 8 0 E I NAL CONDI rIONS FINAL CONDITIONS I T E R A T X I X2 X 3 X4 X 5 6 6 0 0 . 0 0 0 4 9 6 0 . 0 1 2 7 7 3 0 . 9 8 6 7 3 2 7 0 . 0 0 2 4 6 9 0 . 0 3 2 5 6 1 0 . 9 6 4 9 8 0 . . . 8 .. - 0 . 0 0 3 2 4 4 0 . 0 7 1 5 9 6 0 . 9 2 0 1 6 0 9 0 . 0 2 5 3 3 6 0 . 1 4 C 8 3 2 0 . 8 3 3 7 8 3 1 0 ' 0 . 0 7 1 9 2 6 0 . 2 3 8 7 1 1 0 . 6 8 9 3 6 4 J J 0 . 0 7 5 3 5 8 0 . 2 4 9 3 C 9 0 . 6 7 5 3 3 2  1 2 0 . 0 8 7 6 2 9 0 . 2 8 0 3 3 7 0 . 6 3 1 5 3 4 1 3 0 . 1 5 1 4 2 8 0 . 3 4 6 6 6 5 0 . 5 0 1 9 0 7 . - 1 4 — - 0 . 1 5 9 9 2 6 0 . 3 4 2 1 3 3 0 . 4 9 7 9 4 0 . _ . _ . . . N V A P M O H Q U I M O H VAPQR QUIP Q U N R A L 6 1 7 6 . 6 . 7 1 7 7 . 4 8 1 7 9 . 1 9 1 8 2 . 8 1 0 1 3 9 . 3 2 1 0 8 4 . 7 . 1 9 7 5 1 . 5 1 9 8 6 9 . 0 2 0 1 1 6 . 3 2 0 6 0 6 . 4 6 4 0 1 . 2 6 4 5 8 . 2 6 5 8 2 . 1 6 8 4 4 . 5 7 3 6 1 . 7 0 . 4 2 0 4 2 . 1 0 3 0 2 . 0 9 0 9 2 . 0 6 6 1 2 . 0 1 9 6 1 . 6 8 2 4 1 . 6 6 9 0 1 . 5 4 1 2 1 . 5 S 8 3 3 . 9 2 1 2 2 3 0 7 7 . 0 5 - 1 . 5 0 - 3 . 7 9 - 8 . 3 1 - 3 . 1 4 1 1 1 9 0 . 5 1 2 1 9 2 . 8 1 3 2 0 0 . 8 1 4 2 2 5 . 5 2 0 6 5 9 . 3 2 0 3 3 2 . 4 2 1 4 4 3 . 8 2 3 5 8 9 . 6 7 4 1 2 . 8 7 5 7 9 . 6 8 1 8 1 . 8 9 5 1 3 . 6 2 . 0 0 7 9 1 . 9 9 3 0 1 . 9 4 7 5 1 . 8 2 0 6 3 . 9 0 0 9 3 . 8 4 9 0 3 . 7 1 3 6 1 . 8 6 6 1 - 9 . C 0 - 1 1 . 3 0 - 1 3 . 0 8 2 3 3 . 2 6 M 0 1 F S O F R O T T O M P R O D U C T = 1 . 3 6 6 1 21 M01 F S OF T O P P R O D U C T P E R C E N T C F E A C H A T O M U N A C C O U N T E D F O R - 0 . 0 3 7 5 - 0 . 0 5 0 7 P E R C E N T O V E R A L L U N B A L A N C E 1 . 1 5 5 8 S T O P C F y F F 11T I O N T E R M T M A T F - 0  0 . 4 7 0 3 7 2  B DATA A TOTAL CONDENSER IS USED RETURNING SATURATED LIQUID A TOTAL REBOILER OF PART OF THE COLUMN LIQUID IS USED RETURNING SATURATED VAPOUR OF. THE SAME COMPOSITION AS THE. COLUMN BOTTOM PRODUCT TOP P L A T E - IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT COMPONENT COMPONENT I S I S IS PSEUOOXYL p NE TOLUENE BENZENE REFLUX RATIO 1 .000 HEAT INPUT TO REBOILER = 23050 .0 ENTHALPY UF FEED = 21298 .3 COLUMN PRESSURE IS A 6 . 9 ' H n 1140.00 n .95 50 6 .9060 B C ENTHK ENTHL ENTHU ENTHW 1453.' .299 1344. 7993 1 2 U . 0330 215 .03 70 219 .4300 220 .7900 6 0 . 0 0 0 0 55 .0000 49 .8000 -2 300.0000 -2 700. 000.0 - 2 4 0 0 . 0 0 0 0 . 4 7 . 0 0 0 0 46 .3300 37 .0000 1690C.000C 14250.0000 13150.OCCO COMPONENT MOLECULAR WTS. 106 .15999 9 2 . 1 2 9 9 9 78 .10999 FEED MOLECULAR WT. FEED 1 I QUID 85 .12096 FEED RATE IMULFS! C .1C00C0 0 .3C00O0 0.60COOO 2 . 34960 TOLERANCES BDFERR .000100 PRDEPR 0 .CC1000 REACTIONS CONSIDERED ARE REACTION . COMPONENT 1 2 3 4 5 6 EF ER 1 REACT ION I 1 -1 - I 1.0 1.0 1.0 FORWARD REACTION C O E F F . 0 0 .150960E 11 0 .199000E 05 U . 9 J 6 0 0 0 E 09 0 . 1 9 5 0 0 0 E 05 REVERSE REACTION C O E F F . ATOMIC MAKE-UP OF MOLECULES MCI. FC UL E CD So) TEMP VAPOR QUID HOLDUP 2 12 . o 2 . 0 0 0 0 2 . 5 0 0 C 2 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 2 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 2 0 . 0 0 0 0 2 1 7 . 0 7 . 0 0 0 0 2 . 6 0 0 0 2 0 . 0 0 0 0 2 1 2 . 0 2 .C00C 2 . 5 0 0 0 2 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 7 . 5 0 0 0 7 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 2 0 . 0 0 0 0 2 1 2 . 0 7 . 0 0 0 0 2 . 5 0 0 0 2 0 . 0 0 0 0 2 . 0 0 0 0 P 1NAL 0 0NO [1 I 0-MS FINAL CONDITIONS ITERAT XI X2 X3 X4 X5 6 129 0 .040079 0 .053107 0 .906S14 7 0. 170145 0 . 1 0 I 8 M 0. 720013 3 0 .203451 0 .152077 0 .554473 9 ' 0 .^26756 0 . 1 9 « 2 0 8 0 .474^36 10 . 0 .211613 0 .297795 0 .496093 1 1 0 .231943 0 . 37 7120 P. 300937 12 0 364008 0 .372263 0 .273739 I 3 0 436077 0 .395883 0. 168**40 14 • 307746 0 .411936 0 .1903 19 N TEMP VAPMOH . QUIMOH VAPOR OU ID OUNBAL 6 2 0 5 . 1 2 22 54. 9 7944.1 1 .0969 1 0969 29350 .65 7 2 1 6 . 0 21550. 8 38 51 .0 2 .1938 0 9863 - 75 • ? 1 8 227 .3 22363. 5 97 64 .6 2 .0976 0 3546 -93 . 32 9 2 3 3.1 ? ? 8'. is . 6 10 19 8. a 2. 04 7 3 0 7590 - l ;<4 .2 1 10 223 .8 22508. o 9 7 51>. 7 2 .0769 7 9 4 7 8 -174 . 52 ** 1 1 2 3 7 . 3 23320. R 10431.7 1.04 26 18 0 3 - 1 9 ? .04 12 247 .8 24323. 0 11240.7 1.8676 2 6309 • - 1 2 9 .21 13 2 S " . 4 2 654 7. 2 1 2131 1.8110 2 7 6 7 0 2 63 . 4 8 14 278. 2. 27623. 3 13097.8 1 .3107 1 0 32 2 -975 . 1 6 MOLES CF 801 TOM PRODUCT = 1.032212 MOLES OF TOi"1 PRODUCT 1 . '96916 PERCENT CF EACH ATPK UN A C CPUN T fc 0 FOR 0 . 0 4 4 3 0 . 0526 |_j PERCENT OVERALL UNBALANCE - 3 . 7 2 5 4 | CD STOP C f" \ r r i n i o N IF K M I M A ; r n 11-64 2. Ethyl Alcohol-Acetic Acid-Water-Ethyl Acetate System ft 131 Al. CPAT'CNSiR IS USED ^ F Tl !PN ING SAV-NAILD I 1 0111 tl 11-65 A T 1 A1. - ' f U l l l . ER CI I- PART l , r - IMC Ci'LUMN U U U 1 0 IS USl'H RETURN I . S A T U R A T E ! ) VAfYjR OF THE S&tE CllM-'CISII I UN AS 1 Hi COI UMN BOTTOM PRODUCT KIP P1. A1 F IS 7 f = FD PLATE IS 10 I1C1TOM PLATE IS 13 CCMPUNEM 1 IS ETr-YL ALCOHOL COMPONENT 2 IS ACFTIC ACID COMPONENT 1 s WATER CCMPONENT 4 !S ETHYL ACETATE KEFI.I" RATIO • 2.000 HEAT INPUT 10 REHOILFR = 60000 .0 ENTrSLPY G r FEED = C O L U M N P R E S S U R E 15 1 9 0 . C C A B . If 2 9 7 . 1 3 P > 7 . 9 6 6 S 7 . . 1 0 2 3 li 1 6 2 3 . 2 - C O 1 4 1 6 . 7 0 C J 1 6 ? ? . 2 1 0 0 1 2 4 5 . • ?••:<:' C 2 2 8 . 9 J J 0 211.coc: 2 2 3 . 0 0 0 0 2 1 7 . . 94 10 E NT-iK 0 . 0 0 . 0 0 . 0 0 , . 0 E N ' - : L 0 . 0 0 . 0 O . O 0 . . 0 E N T K J 0 . 0 0 . 0 0 . 0 c. 0 E N T H K 9 3 9 5 . 8 = 5 4 5 8 05.ooo: 9 7 2 0 . 0 0 0 0 7 0 4 0 . . 0 0 0 0 D E \ S I T Y 1 7 . l ^ O 1 7 . 4 8 C J 5 5 . 5 6 0 0 1 C . , 2 3 0 0 CP 0 . 0 0 . 0 0 . 0 C . . 0 C O M P O N E N T M O L E C ULAP. M T S . 4 6 . C C 000 6 O . O O C O O 1 F . . O 0 O O C 8 8 . 0 0 0 0 0 F E E D M O L E C U L A R K T . 5 3 . " O O O O F E E " ! R A T E ( M O L F S ) 4 . 9 0 5 6 6 F E E O L I Q U I D 0 . 5 0 0 0 0 0 0 . 5C- .1000 0 . 0 • 0 . 0 T O L E P - A N C E S B D P F R R O . O C C I O O P R O E " R 0 . 0 0 1 0 0 0 R E A C T I O N S C O N S I D E R E D AO E REACTION COM PCNENT AF EF AR ER 1 2 3 4 5. 6 . 7 8 . . . 9 - .. .. 1 - 1 - 1 1 1 0 0 0 0 0 0.23fl< jOOE-03 0 .0 0.8 1 5000E-04 J . 0 1. .0 1 .0 1 .0 1 .0 R E A C T I O N FORWARD R E A C T I O N C O E F F . R E V E R S E R E A C T I O N C O E F F . 1 ATC"IC. MA*F-I)P n r MOLECULES C O L E C U L E 1 2 3 4 5 6 7 8 9 ATOM 1 2 2 0. . 4 2 4 6 2 8 3 2 1 I 2 IN ITIAL C0KD1T IONS TEMP VAPOR OU 1 D HOI. DUP 212.0 2.0000 2.5000 10.0CCO 212.0 2.0000 2 .5000 10.0 0 0 0 212.0 2. OOOO 2.5 000 . IO.OO0J 212.0 2 .0000 2.500 0 10. OOOO 212.0 2.0000 2.6000 10 .OOOC 212.0 2.0000 2.5000 I O . O O O J 212.0 2 .0000 2.5000 10.0000 212.0 2.OOOO 2 .5000 10.OODO 212.0 2.0000 2.5000 10. OOOi/ CONVERGENCE I S N O T M E T F I N A L C O N D I T I O N S I T E R A T XI X2 X4 X5 1000 9 1 0 1 1 3 . 7 7 0 0 9 1 0 . 7 3 0 5 0 7 0 . 7 3 5 2 0 8 0 . 6 2 6 5 6 2 0 . 4 6 9 0 3 3 0 . 3 3 2 8 4 8 0 . 0 0 6 0 1 9 0 . 0 2 4 5 5 2 0 . 0 7 3 0 4 0 0 . 1 8 3 2 0 0 0 . 3 7 4 4 1 5 0 . 4 5 3 5 3 1 0 . 0 1 1 3 2 1 0 . 0 3 3 0 6 1 0 . 0 6 4 2 6 1 0 . 0 9 3 5 9 9 0 . 0 9 2 8 1 4 0 . 1 5 1 7 3 0 0 . 2 1 2 0 6 9 C . 1 6 1 8 8 0 0 . 1 2 7 4 9 0 0 . 0 9 6 6 3 9 0 . 0 6 3 7 3 6 0 . 0 5 6 8 9 1 1 2 1 3 1 4 C . 18 0 2 4 5 0 . 0 7 2 3 6 7 0 . 0 7 2 3 6 0 0 . 5 9 2 0 1 1 -0 . 7 2 5 2 0 0 0 . 7 2 5 2 C8 0 . 1 9 2 ( , 3 7 0 . 1 8 7 4 6 3 0 . 1 8 7 4 7 0 0 . C J 5 0 5 7 0 . 0 1 4 9 6 4 0 . 0 1 4 9 6 3 N T E M P V A P M O H G U I M O K V A P O R Q U I D O U N B A L S D X I N D X I N I l . N ) 0 X I N I 2 , N ) D X I N( 3 . N ) 6 1 1 4 . 3 7 6 0 0 . 4 0 . 0 2 . 2 5 2 8 4 . 5 0 5 5 5 9 5 9 9 . 6 6 G . 0 0 0 0 0 0 - 0 . 0 0 2 0 5 3 - 0 . 0 0 2 0 5 3 0 . 0 0 2 0 5 3 0 . 0 0 2 0 5 3 7 1 1 5 . 9 8 8 7 7 9 0 . 0 6 . 7 5 8 3 4 - 4 7 8 1 0 . 0 0 0 . 0 - 0 . 0 1 0 2 9 1 - 0 . 0 1 0 2 9 1 0 . 0 1 0 2 9 1 0 . 0 1 0 2 9 1 8 1 1 8 . 5 8 9 1 4 4 0 . 0 6 . 7 3 0 6 4 . 5 2 6 2 0 . 0 4 0 . 0 0 0 0 0 0 - 0 • 0 3 2 9 3 7 - G . C 3 2 9 3 7 0 . C 3 2 5 3 7 0 . C 3 2 9 3 7 o 1 2 3 . 2 8 8 5 1 7 0 . 0 6 . 7 7 8 3 4 . 7 0 7 1 0 . 0 4 0 . 0 - 0 . 0 7 8 O Y 5 - 0 . 0 7 3 6 7 5 0 . 0 7 8 6 7 5 0 . 0 7 3 6 7 5 1 0 1 3 1 . 0 3 6 2 2 4 0 . 0 6 . ° 5 3 6 9 . 7 9 5 4 0 . 0 9 0 . 0 - 0 . 1 2 3 7 1 2 - C . 1 2 8 7 1 2 0 . 1 2 8 7 1 2 0 . 1 2 8 7 1 2 1 1 1 3 7 . 5 8 4 0 2 5 0 . 0 7 . 1 4 C 7 1 0 . 1 6 1 7 0 . 0 3 0 . 0 - 0 . 1 2 2 5 0 9 - 0 . 1 2 2 5 0 9 0 . 1 2 2 5 0 9 ( i . 1 2 2 5 0 9 12 1 4 7 . 9 7 9 9 3 0 . 0 7 . 5 0 6 2 1 0 . 7 6 3 3 0 . 0 7 n . 0 - 0 . 0 ° 4 5 2 8 - U . 0 9 4 5 2 3. 0 . 0 9 4 5 2 3 0 . 0 9 4 5 2 8 1 3 1 5 8 . 6 7 4 0 0 9 0 . 0 8 . 1 0 7 1 1 1 . 4 5 7 4 0 . 0 6 0 . 0 0 0 0 0 0 - 0 . 0 4 7 9 9 9 - 0 . 0 4 7 9 9 9 0 . C 4 7 9 9 9 0 . C 4 7 9 9 9 1 4 1 6 5 . 6 6 8 1 7 6 0 . 0 8 . 8 0 0 8 2 . 6 5 6 7 0 . 0 0 0 . 0 0 0 0 0 0 - 0 . 0 4 7 9 9 2 - 0 . 0 4 7 9 9 2 0 . 0 4 7 9 9 2 0 . 0 4 7 9 9 2 M O L E S OF B O T T O M P R O D U C T = 2 . 6 5 6 7 3 5 M C L E S OF T G P P R O D U C T 2 . 2 5 2 7 7 4 P E R C E N T O F E A C H A T CM U N A C C O U N T E D FOR C . 0 6 3 1 - 0 . 0 4 4 2 0 . 0 5 9 8 P E R C E N T O V E R A L L U N B A L A N C E - 0 . 0 7 8 4 S T O P 0 E X E C U T I O N T E R M I N A T E D $ G E T DAT A 1 R E A D Y . S R U N S P A R E 2 5 = D A T A 1 E X E C U T I O N B E G I N S A_l UT.AL CQNIiEA'SFR IS USfP RFTUg.MINO SATIIPAIFO 1.1 QUI 0 11-67 A 101AI. RIMUIILER OF PARI OF IMF COLUMN I. U-II10 IS USFP RETURNING SATURAI El) VApIHJU OF THE SAMf COMPOSITION AS THE COLUMN HOT TOM PRODUCT TOP PLATE IS 7 Fi-r-o PLATE IS 10 [Mil TDM PL AT r IS 1 3 CCMPCNENT 1 IS ETHYL ALCOOL COMPONENT ?. 1 s ACETIC AC1Y COMPONENT 3 1 s WAT ER COMPONENT 4 1 s ETHYL A C E ! ATE REPLUX R AT 10 = 2.000 I':": AT 1 \ P U r YC KF. BUI LEI' = 6 OOOO . .0 (:N1 HALPY UF PFrD = 0 .0 COLUMN PR ESSURC 1 s 380.00 A 8 . 1629 7.1981 7 .<=66B 7.1023 B 1623. 2200 1416.7000 1688 .2100 124 5.2338 C 228. « B 0 0 211. COOO 2 23 .COOO 2 17.9410 ENTHK 0. 0 0.0 0 .0 0.0 PN1HL 0. 0 0. r 0 .0 0.1 EM'HU 0. 0 0.0 0 C O ENTHW 9395. 8984 58C5.0000 97 20 .0000 7040.0000 DENSITY 17. 1590 17.4300 55 .5600 10.2300 CP 0 .0 0.0 0 . P C. C COMPONENT MOL EC UL IR WTS. 4 b.PCOOC 60.0000C 18.00.100 PS.OOCOO FEED MOLECULAR WT 53 .00000 FEED PATE 1 POL ESI 4 .90 566 FEED LIQUID 0.500000 0.500CCO 0 . 0 0 .0 TOLERANCES 3DEERP 0.00010C PRDEPR 0.00)000 REACTIONS CONSIDER EO ARE -- - - - ----- . . . REACTION COMPONENT AF E P AR 1 2 3 4 5 6 . 7 8 9 - -1 - 1 - 1 1 1 0 0 0 0 0 0.233000 E-03 0 .0 0.3 1 5000E-04 C. _ 1 .0 1.0 1 . 0 1 . 0 REACTION FORWARD REACTION COEFF. REVERSE REACTION COEFF. 1 ATflMIC MAKE-UP OF "01. EC ULF S MOLECULE 1 2 3 4 5 6 7 8 9 ATOM 1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 IN IT 1 Al. CONDI T IONS TEMP VASQP. OU 1 D HOL CUP 2 12.0 2 .0500 2.5000 10.OOOO 2 12 .0 2 .';-,no 2 .5005 10.000'j 2 12 .0 2.5000 2 .5 000 1O.OOOu 2 1 2 . 0 2 .0500 2.5000 i o . o o o o 2 1 2. C 2 .0 ' i00 2 .5000 10.0000 2 V 2 . 0 2.510 0 2 .5 000 10.0030 2 1 2 . 0 2.000 0 2.5000 10.0090 2 12. C 2 .0900 2 .5 000 10 .0040 2 12 .0 2.5000 2.5000 1 0 . OOOVJ CONVERGENCE IS NOT MET FINAL CONDITIONS I TERAT X2 X3 X4 X5 1000 10 11 0 .783600 0.77 40 58 C.720702 0 .6128 39 0 .4606 06 0 .3265 23 0 .006200 C. 0251 51 0. 073333 0 .183359 0 .3 73 024 0.4 5 53 08 '0 .01356 1 0.03'"787 0.066941 0 .094395 0.0928 53 0. 1 492 80 0 .156453 0 . 165004 0. 13 84 34 0 . 108907 0 .0734 27 0 .C68889 12 13 14 0 .17 77 33 0 .071597 0 .07 1590 0 .590262 0. 725959 0 .729964 0 . 186643 0. 1 774C8 0 . 177410 0 .045452 0. 02 1 03 7 0 .C21C35 N TEMP VAPMOH OU IMOH VAPOR QUID OUNB AL SDXIN DXI M 1 , M D X I N ( 2 , N ) D X I N ( 3 , N ) 6 142.2 7 6 0 0 . 4 0 . 0 2. 24 36 4. 4372 5 9999 .55 0 .000000 -0 . 0022 id - O . 0 C 2 2 3 O 0 . 0 C 2 2 3 C 0 .002230 7 143 .6 8 9 1 4 . 3 0 .0 6 . 7307 4 . 4827 0 .09 0 . 0 - 0. 010355 - 0 . 010355 0 .010355 0 .010355 8 146 . 3 8 9 2 0 . 9 0 . 0 6 . 7 2 5 8 6 . 5405 0 .04 0 .000000 - 0 . 032044 - C . 0 3 2 0 4 4 0 .032044 0 .032044 9 151 .4 8 8 4 5 . 3 0 . 0 6. 7832 4. 7226 0. 06 0 . 0 -o. 075535 -0 .075535 0 .075535 0 .075535 10 159 .8 8 6 1 4 . 7 0 .0 6 . 9 6 48 9 . 3157 0 . 0 3 0 . 0 - 0 . 124013 - 0 . 1240 13 0. 12401 3 0 .124018 1 1 166 .3 8 3 3 9 . 3 0 . 0 7. 16 20 10 . 1 32 0 0 .08 0 .0 - 0 . 11 o i 1 3 - 0 . 1 1 6 3 1 2 0. 116 3 13 0 .1163 13 12 176.1 7931 .5 0 .0 7. 5 1 74 10. 7 8 94 0. 07 0 . 0 - n. OOJ037 -u.090C 1 7 0 .090037 0 .0900 37 13 190. 1 7385 .4 0 . 0 8 . 1241 11 . 5114 0 .07 0 .000000 - 0 . 046320 - 0 . 0 4 6 3 2 0 0. 046320 0 .046320 14 198 .4 6 7 8 2 . 9 0 . 0 8. 8457 2. 6652 0.01 0 .000000 - 0 . 04o315 -0 .0463 15 0 .046315 0 .046315 MOLES OF BOTTOM PRODUCT = 2 .665186 MOLES CF TOP PRODUCT 2 . 243583 PERCENT OF EACH ATOM UNACCOUNTED FOR 0.0676 - 0 . C 2 7 7 0 .0518 PERCENT OVERALL UNBALANCE -0 .0633 STOP 0 EXECUTION TERMINATED $GET DAT A 1 READY. fR UN SPARE2 5 = DATA1 EXECUT ION BEGINS A i n AI rr-vf-p-j<;<•!• i s y T U R N I N G S A ' U I ' A U O L I Q U I D I I - 69 A T O T A L 3 0 3 0 1 1 . 1 ' 01" P i v i o r T H E C O L U M N L I Q U I D IS U S E D R E T U R N I N G S A T U R A T E : ' VAPP' . 'R OF IMF S A M E C O M P O S 1TI ON AS T ME C O L U M N BOTTOH PRODUCT T O P P L A T E I S 7 ED P L A T E IS 10 B O T T O M P L A T E IS 13 C O M P O N E N T 1 IS E T H Y L A L C O H O L C O M P O N E N T 2 1S A C E T I C A C I D C O M P O N E N T 3 IS W A T E R COM PON EN r A 1 S E T H Y L A C E T A T E 5FFL1 IV R A T I O = 2 . 0 0 0 H E A T I N P U T T O R E B O I L E R = 6 0 0 0 0 . 0 E N T H A L P Y OF F E E D = 0 . 0 COLUMN PR ESS'.IRE I S 1 1 4 0 . 0 0 A 8 . 1 6 29 7 . 1 831 7 . 9 6 6 3 7 . 1 0 2 3 B 1 6 2 3 . 2 2 j 0 1 4 1 6 . 7 0 0 0 1( 38 . 2 1 0 0 12 .45 . 2 3 8 3 C 2 2 8 . 9C.10 21 1 .OCOO 2 2 3 . 0 0 0 0 2 1 7 . 9 4 1 0 ENTHK 0 . 0 0 . 0 0 . 0 0 . 0 FNTHI 0 . 0 0 . 0 0 . 0 0 . 0 FNTHU 0 . 0 0 . 0 0 . 0 0 . 0 ENTHW 9.19 5 . 8 c ; ? 4 5 8 0 6 . 0 0 0 0 9 7 2 0 . 0 0 0 0 7 0 4 0 . 0 0 0 0 D E N S I T Y 1 7 . 1 5 9 0 1 7 . 4 3 00 5 5 . 5 6 0 0 1 0 . 2 3 0 0 CP 0 . 0 0 . 0 0 . 0 0 . 0 r.puonNFNT wni ' o n AS . JTS . 46.00000 60.0000 1?.00000 83.00000 FEED M O L F C U L A P W T . 5 3 . 0 0 0 0 0 FEED RATE (MOLESI 4 . 9 0 5 6 6 FEED L I Q U I D 0 . 5 0 0 0 0 0 0 . 5 0 0 0 0 0 0 . 0 0 . 0 TOLERANCES PDF F R R 0 . 0 0 0 1 0 0 P R D E R R 0 . 0 0 1 0 0 0 R E A C T I O N S CONSIDERED ARE RE AC Tl ON COMPONENT AF EF AR ER 1 2 3 4 5 6 7 3 9 .. -1 - l 1 ."• - 1 1 . 0 1 1 . 0 1 . 1 0 0 0 0 0 0 0 . . 2 3 8 0 0 0 E - 0 3 0 . 0 0 . 8 1 5 0 0 0 E - 0 4 0 . 0 R E A C T I O N FC^ WARD 3 FACT ION C O E F F . REV ERSE REACTION C D E f F . 1 >TP»'r m t c - H P HE Km =:ri)| f-MOLECULE 1 2 3 4 5 6 7 8 9 h TOM 1 2 2 0 4 2 4 6 2 3 3 2 1 1 2 I N I T I A L CONDIT IONS T E M P V APOE ou io " H O L D U P 2 1 2 . 0 2 . O O i C O 2 . 6 0 0 0 1 0 . 0 0 0 0 212 . 0 2 . 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 • 2 . 5 0 0 0 I O . O O O O 2 1 2 . 0 2 . 0 0 C 0 2 . 5 00 0 1 0 . 0 0 0 0 212 . 0 2 . 0 0 6 0 2 . 6 0 0 0 10.oooo 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 . 2 . 5 0 0 0 1 0 . 0 0 0 0 CONVERGENCE IS NOT MET FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5. X6 ^ 6 900 0.SU910 0.00660?. 0 .0 17455 0 . 1 6 3 9 9 7 7 0 .770743 0. 025923 0 .042055 C.161279 H 0 .701268 0 .074971 0 .073565 0 .150097 9 0 .590557 0 .1S3955 0 .099373 0 . 1 2 6 1 1 5 10 0 .444659 0. 372161 0. 094587 0. 083592 1 1 0.31Q3 16 0 .4523 14 0. 146463 0. 0.89907  12 0 .168111 0 .589949 0 .175865 0 .064074 13 0.067.207 0. 738685 0. 1 59229 0. 034330 14 0 .067201 0 .738691 0 .159232 0 .034376 TEMP VAPMOH OUIMOH VA POP QUI D QUN3 AL SDXIN D X I N i r . N ) 0 X I N ( 2 , N ) 0 X I N ( 3 , N ) 6 193 0 7600 4 0 0 2. 2245 4 44 90 59999 .57 0 .0 - 0 .002545 - 0 . 0 0 2 5 4 5 0 . 0 0 2 5 4 5 0 . 0 0 2 5 4 5 7 194 .6 3 9 0 c 3 0 0 6. 6735 4 4 7 8.6 0 .01 0. 0 - 0 . 0106 14 - 0 . 0 1 0 6 1 4 0 .010614 0 .010614 8 197 6 S « 5 1 5 r\ 0 6 . 7027 4 5557 0 .10 0 .0 - 0 . 0 3 1 0 4 8 - 0 . 031048 0 .031048 0 .031048 9 203 . 5 3 3 50 5 0 0 6. 7792 4 7449 0 .08 0 .0 - 0 . 0 7 1 2 C 4 - 0 . 0 7 1 2 0 4 0 . 0 7 1 2 0 4 0 . 0 7 1 2 0 4 1 0 21 3 . 3 8611 0 0 0 6. ° 6 7 S 9 8536 0 .05 0 . 0 - 0 . 1 1 6 7 8 5 - 0 . 1 1 6 7 8 5 0 .116785 0 . 1 1 6 7 3 5 11 221 . 5 8367 6 0 0 7. 1705 10 2 33 1 0 .08 0 .0 - 0 . 105477 - 0 . 1 0 5 4 7 7 0 . 105477 0. 105477 12 2 34 .8 7947 3 0 n 7. 5492 10 8591 0. 08 0. 0 - 0 . 0 8 0 1 3 8 - 0 . 0 8 0 1 3 8 0 . 0 3 0 1 3 8 0 .080138 13 249 3 7 3 3 0 Q 0 0 3 . 1746 11 6229 0 .02 0 .0 - 0 . 0 4 1 3 0 1 - 0 . 0 4 1 3 0 1 0 .041301 0 .041301 14 260 0 6713 1 0 0 8. 9378 2 6354 0.01 0 .0 - 0 . 0 4 1 2 9 6 - 0 . 0 4 1 2 9 6 0 . C 4 1 2 9 6 0 . 0 4 1 2 9 6 M.PLF^ CE BOTTOM PROOUC 2 .635356 MOLES OF TOP PRODUCT 2 .224487 PEFCENT OF EACH ATOM UNACCOUNTED FOR P E D C E N T OVERALL UNBALANCE 0 .0769 - 0 . 0355 - 0 . 0 8 5 3 0 .043 5 STOP 0 EXECUTION TERMINATED SGET 0ATA1 READY. <P.UN S0ARE? 5=0ATA1( 1 ,181 + 123, 40 1-M45,48 ) EX ECUT ION BEGINS H V -0 O 11-71 .. A r n r - M C O N D E N S E R i s 1 1 s ; P M U - N I * I I ' . S A T U R A T E D i i i j n i " , . A i n m U F P P U E R O P P A P T H P T H E C O L U M N L I Q U I D is U S E D R E T U R N I N G SATIIRA1TI1 V A P O U R OF T H E S A M E C. O M P U S 1 T I U N A S T H E C O L U M N B O T T O M P R O D U C T T O P T L A T E I S 7 F F F O P L A T E I S 10 K O I T D M P L A T E I S 1 3 C r ' - ' P P N P N T 1 I S E T H Y L A L C O H O L C P M P O N E NT '2 I S A C E T I C A C I D C O M P O N E N T I S W A T E R C O M P O N E N T 1 S E T H Y L A C E T A T E R E - F L U X P A T I O = 2 . 0 0 0 H E A T I N P U T T O R F B O I I . F R = 6 0 0 0 0 . 0 C N T H A L P Y O F F E E D = 0 . 0 C O L U M N P R E S S U R E I S A S . 1 6 2 " B 1 6 2 3 . 2 2 0 ? • C 2 2 3 . 9 8 0 0 E N T H K 0 . 0 r N T w i 0 . 0 1 5 2 0 . 0 0 7 . 1 8 0 1 7 . 9 6 6 ? 7 . 1 0 2 3 1 4 1 6 . 7 0 0 0 1 6 8 3 . 2 1 0 0 1 2 4 5 . 2 3 3 8 2 1 1 . 0 0 0 0 2 2 3 . 0 0 0 0 2 1 7 . 9 4 1 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 E N T H U E N T H K 0 E N S 1 TY C P 0 . 0 03015 . 8 0 S -1 7 . 1 5 9 0 0 . 0 0 . 0 O . C 0 . 0 5 8 0 5 . O O C O 9 7 2 0 . 0 0 0 0 7 0 4 0 . 0 0 0 0 1 7 . 4 3 0 0 5 5 . 5 6 0 0 1 0 . 2 3 0 0 0 . 0 0 . 0 0 . 0 r n w n n N P N T M-H F C U I AR W I S . 4 . 0 0 0 0 0 6 0 . 0 0 0 0 0 1 3 . 0 0 0 0 0 8 8 . 0 0 0 0 0 F F F D k ' P L E C U I A R WT F E E D L 1 0 U I 0 •"3 . D O O m F E E D R A T E ( M O L E S ) ' . . 9 0 5 6 6 0 . 5 0 0 0 0 0 0 . 5 0 0 0 0 0 0 . 0 0 . 0 T O L E R A N C E S B D F E R R 0 . 0 0 0 1 0 0 P P D E R R 0 . 0 0 1 0 0 0 R E A C T I O N S C O N S I D E R E D A R E R E A C T I O N C O M P O N E N T A F E F A R ER 1 2 3 4 5 6 7 0 9 ) - 1 - 1 1. 1 0 0 0 0 0 O . 2 3 8 0 0 0 E - O 3 0 . 0 0 . 8 1 5 0 0 0 E - 0 4 0 . 0 1 . 0 1 . 0 1 . 0 1 . 0 . R E A C T I O N F O R W A R D R E A C T I O N C O E F F . R E V E R S E R E A C T I O N C O E F F . 1 ' ' M O L E C U L E A T O M 1 7. 0 4 ? 4 6 2 3 3 2 1 1 2 I N I T I A L C O N O I T I O N S T E M P V A P O R ' 0 U 1 D H O L D U P 2 1 2 . 0 7 . 0 0 0 0 2 . 6 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 • 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . O n o o 2 . 6 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . 0 0 0 0 2 . 6 0 0 0 1 0 . 0 0 0 0 2 1 2 . 0 2 . P 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 2 1. 2 . 0 2 . 0 0 0 0 2 . 5 0 0 0 1 0 . 0 0 0 0 i CONVERGENCE IS NOT MET FINAL CONDITIONS N 1TFRAT XI X?. X3 X4 X5 X6 r 6 ono 0 . S 2 0 5 4 0 0 .005634 0 .0 18672 0 . 1 54154- 1 7 0. 771 703 0. 025995 0 044004 0 . 1 5 3 2 9 3 8 0 . 6 9 7 6 0 7 0 . 075061 0 075780 0 . 1 5 1 5 5 2 9 0 . 5 3 5 4 4 6 0 . 183921 0 1003 66 0 . 1 2 9 7 67 10 0 . 4 4 0 4 0 9 0 . 3 7 1 0 8 1 0 095244 0 . 092276 I 1 0 . 3 0 6 2 6 5 0 . 452320 0 . 1 4 5 7 3 1 0 . 0 9 5 6 3 3 12 0. 14 69 74 0. 5 8 Q 9 2 0 0 .177795 0 . 0 7 7 312 13 0 . 0 6 5 6 5 7 0. 740732 0 154067 0. 039535 14 0 . 0 4 5 6 6 1 0 . 740733 0 . 1 5 4 0 7 0 0 . 0 3 9 5 3 1 N TEMP VAPMOH QUIMOH V APOR OHIO OUNBAL SDXIN D X I N Q . N ) DX IN I2 iN ) O X I N O . N ) 6 2 0 7 . 9 7600 4 0 . 0 2 . 2 1 8 7 4. 43 74 5 9 9 9 9 . 6 1 0 .0 - 0 . 0 0 2 6 2 3 - 0 . 0 0 2 6 2 3 0 . 0 0 2 6 2 3 0 . 0 0 2 6 2 3 7 2 0 9 . 5 9014 3 0 . 0 6 . 6 5 6 1 4 . 4 7 5 0 0 . 0 4 0 . 0 - 0 . 0 1 0 6 9 2 - 0 . 0 1 0 6 9 2 0 . 0 1 0 6 9 2 0 . 0 1 0 6 9 2 8 2 1 2 . 8 8964 2 0 . 0 6 . 6 9 3 2 4 . 5 5 7 3 0 . 0 5 0 .0 - 0 . 0 3 0 8 4 8 - 0 - 030848 0 . 0 3 0 3 4 8 0 . 0 3 0 8 4 8 9 2 1 3 . 9 33 56 0 0 . 0 6 . 7 7 5 0 4. 7492 0 . 0 9 0 .0 - 0 . 0 7 0 2 1 9 - 0 . 0 7 0 2 1 9 0 . 0 7 0 2 1 9 0 . 0 7 0 2 1 9 10 2 2 9 . 2 3612 8 0 . 0 6 . 9 4 6 3 9 . 8 6 30 .0 .04 0 . 0 - 0 . 11 5039 - 0 . 1 1 5039 0 . 1 1 5 0 3 9 0 . 1 1 5 0 3 9 11 2 3 7 . o 3363 6 0 . 0 7 . 1 7 3 9 10. 24 3 4 0 . 0 9 0 .0 - 0 . 1026 17 - 0 . 1 0 2 6 1 7 0 . 102617 0 . 102617 12 2 3 1 . 7 7938 2 0 . 0 7 . 5 5M4 10. 88 1 5 0- 03 0 . 0 - 0 . 0 7 7 2 4 5 - 0 . 0 7 7 2 4 5 0 . 0 7 7 2 4 5 0 . 0 7 7 2 4 5 13 2 6 7 . 0 7325 4 0 . 0 8 . l ° 0 6 1 1 . 6 5 5 7 0 . 0 5 0 . 0 0 0 0 0 0 - 0 . 0 3 9 6 8 2 - 0 . 0 3 9 6 8 2 0 . 0 3 9 6 8 2 0 . 03 9632 14 2 7 8 . 5 6693 1 0 . 0 8. 9645 2. 6912 0 . 0 0 0 . 0 0 0 0 0 0 - 0 . 0 3 9 6 7 8 - 0 . 0 3 9 6 7 8 0 . 0 3 9 6 7 8 0 . 0 3 9 6 7 8 MOLES OF BOTTOM PPOOUCT = 2 . 6 9 1190 MOLES OF TOP PRODUCT 2 . 2 1 8 6 9 5 PERCENT OF EACH ATOM UNACCOUNTED FOR 0 . 0699 - 0 . 0372 0. 0403 PERCENT OVERALL UNBALANCE - 0 . 0 3 5 1 STOP 0 EX FOOT ION TERMINATED $GET DATA1 RE ADY. «• SI G  I A T l ' l A I C l I V H ' N S r K I S U S I . I M I U R N 1 NC, S A 1 11 K A 1 ! \1 1 t l J U 1 I) 1 1 - 7 3 A 1 ill Al K!' !V II. IR II'' "AK 1 M l nn K:1IJ»MM'- SA1URAIL!) V.U'UI'l 1 ('Ol U.MN 1 1 OUIO 1 S USED F 1 H i SAM u l U i ' i l M 1 ION AS Till- COLUMN lift V TOM PRODUCT TOP AI i- is ? 1- r-1:0 PI.A1P IS IM hUTTOM PLATE IS 20 Cl.'ll'ONENl ! 1 s ETHYL ALl'IIHOI. OPPONENT r IS ACETIC AC ID COMPONENT 1 s WA ICR Ct MPUNLNI *' IS ETHYL AC! 1 Al £ KfFLUX RATIO - 2 .000 HEAT INPUT Tl) RE HOMIER = 60000.0 ENTHALPY OF FEED = 0 .0 tTlUM,\ PSESSUFF A S 1 s 1 .'• 2 -0 150.0 0 V . l S S i 7.9663 7.10 2 3 14 16. 7)t.O 1683.2100 1 24 5. 2333 211.0000 223.0000 217.9410 0 .0 0 .0 0.0 0.0 0 .0 CO c FN TH-< FNThL 228 0 9800 0 PNTHU EN TH A OEMS ITY 0 17 0 159 0 0.0 0 .0 C O 5P05.0000 9720.0000 7040.0000 17.4300 55.5600 1C.2300 CP 0.0 0.0 0.0 0.0 CQM"nNFNT MOLECULAR WIS. 46. 00000 6C.'.0000 18.0C00C 83. 00000 FEPP MOLECULAR WT. 53.00000 FEED RATE ( H O L E S ) 4.90566 FEED LICUIO 0. 500100 0.500003 0. 0 C O TOI.FRANCE S BOFL'RR 0.000100 PPOEPP. 0. 001000 REACTIONS CONSIDERED APE RE AC 1 1 ON COMPONENT AF EE AR ER 1 2 3 4 5 6 7 8 9 1 -1 -1 1.0 1 . 0 1 1.0 1 1 0 0 0 0 0 0 0 238000E-03 0.0 0 .815000E-04 0.0 REACT ION FORWARD RL ACT ION COEFF. P L VERSE REAC Tl ON COEFF. 1 ATOMIC MAKC-IIP OF -•"'.[ FCUI. PS PCLECULE 1 2 3 4 5 6 7 8 9 ATOM 1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 I N I T I A L C O N D I T I O N S TH'.p v A POP. QUID HOLDUP 2 12.0 2.0000 2.5000 10.0000 2)2.0 2 . O'.CO 2.6000 10.0000 2 12.0 2.0500 2. 500'.' 10.0000 2 12.0 2.0000 2 .5000 10.0000 212.0 2.0'.00 2.5 000 10.0000 2 12.0 2 .0 jOO 2.5000 io.oooo 2 12.0 2 . OOOO 2 .3001' i i .0000 2.L2 .0 2 .0000 2.5000 10.0000 2 1.2 . 0 2 .0000 2.5000 ' • 10 .0000 212.0 2.0500 2.5000 10.0000 212 .0 2 .0000 2.5030 10.0000 212.0 2.0000 2.5000 10.0000 2 12.0 2.0''00 ?.5000 10.OOOu 2 12.0 ,: .0000 2.5 000 10.0000 2 12.0 2.0500 2.5000 10.0000 2 12.0 2.0000 2. 5000 1.0.0000 CUNVLKGENCH IS NUT «fcT FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 ^ 5 ° 0 O C . 763 334 0 .OOOC3 1 . 0 .000948 0 .245587 7 0 .801056 0 .000315 0 .002772 0 .105847 8 0 .324746 0. 0C094B 0. 006190 0. 1681 16 9 0 .332338 0 .002715 0 .012374 0 .152573 10 0 .826119 0 .007733 0 .023076 0 .143C67 1 1 0 .802578 0. 02 1904 0. 040184 0. 135334  !2 0 .761310 0 .060037 0 .063253 0 .125400 13 0 .656847 0 .151608 0 .082901 0 .103644 14 0 .514715 0 .327258 0 .076094 0 .081933 15 0 .434167 0 .345342 0 .130605 0 .089835 16 0 .320636 0. 394619 0. 207251 0. 077494 1 7 0 .192559 0 . 473562 0 . 231378. O.C52002  18 0 .092976 C.562697 0 .316S64 0 .027461 19 0 .037764 0 .646748 0 .303560 0 .011928 20 .. . . 0.01.3234 0. 724582 0 . 257804 0 .004330 21 0 .013254 0 .724681 0 .257745 0 .C04320 M TEMP VAPMOH OUIMfJH VAPOR QUI D QUNBAL SDXIN D X I N l l . N ) D X 1 N ( 2 , N ) DXINI 3 , N l 6 1 13 .5 7 6 0 0 . 4 0 .0 2.26.35 4 .5370 59999. 19 0 .0 C .000010 0. 000010 - 0 . 0 0 0 0 1 0 - 0 . 0 0 0 0 1 0 7 114 .1 8816 .2 0 . 0 6 .8055 4 .4793 C . 0 4 0 . 0 - 0 . 0 0 0 0 3 7 - 0 . U U 0 0 3 7 0 . 0 0 0 0 3 7 0 .000037 8 114 .5 8893 .2 0 . 0 6 .7466 4 .4495 0 .04 0 . 0 - 0 . 0 0 0 2 4 2 - 0 . 0 0 0 2 4 2 0 . 0 0 0 2 4 2 0 .000242 9 114 .9 3934 . 8 0^0 6 . 7 152 4 . 4 3 62 0 .11 0 . 0 - 0 . 0 0 0 9 4 4 - 0 . 000944 0. 000944 0 .000944 10 115.4 8055 . 1 0. 0 6. 7030 4. 4365 0 .01 0 .000000 -0 .003153 - 0 . 0 0 3 1 5 8 0. 003158 0 .003153 11 116 .3 8958 .3 0 . 0 6 .6973 4.4561 0 .07 0 .0 - 0 . 009741 - 0 . 0 0 9 7 4 1 0 .009741 0 . 0 0 9 7 4 1 12 118.1 8938 .1 0 . 0 6 .7123 4 .5201 0 . 0 6 . 0 . 0 - 0 . 0 2 7 4 6 4 - 0 . 0 2 7464 0 . 0 2 7 4 6 4 0 .027464 13 121 .7 8861 .6 0 . 0 6. 7708 4. 6871 0 .09 0 .0 -0 .065841 -0 .0o5541 0 . 0 6 5 8 4 1 0 . 0 6 5 8 4 1 14 128.2 8 6 5 7 . 2 ' 0 . 0 6 .9306 9 .6783 0 . 0 6 0 . 0 - 0 . 1 1 7 2 7 6 - 0 . 1 1 7 2 7 6 0 .117276 0 .117276 15 130.3 5560. 4 0^0 7 .0089 9 .7906 0 .02 0 . 0 -0 . 109976 - 0 . 109976 0 . 109976 0. 109976 16 136 .4 8 4 4 1 . 1- u . O 7. 1081 9. 9792 0. 07 0 . 0 - 0 . 104240 - 0 . 104240 0 . 104240 0 . 104240 17 144 .9 8245 .3 0 .0 7 .2763 10.2684 0 .09 0 .0 - 0 . 0 8 7 2 6 6 - 0 . 0 3 7 2 6 6 0 . 0 3 7 2 6 6 0 .087266 18 153.3 7 9 5 0 . 7 0 . 0 7 .5465 10.6292 0 .07 0 .000000 - 0 . 0 5 5 4 6 4 - 0 . U 5 5 4 6 4 0 . 0 5 5 4 6 4 0 .055464 19 160 .5 7597 .3 0 . 0 7. 3975 11.0286 0. 05 0. 0 - 0 . 026245 - 0 . 0 2 6 2 4 5 0 . 0 2 6 2 4 5 0 .026245 20 164 .6 7231 .4 0 . 0 8.2971 11.4651 0 .04 0 .0 - 0 . 0 0 9 8 2 6 - 0 . 0 0 9 8 2 6 0 . 0 0 9 3 2 6 0 .009826 21 11,7 • :•' 6 8 o ( . • 7 0 . 0 8 • 7 3 7 .-i 2. 72 32 0 . 0 1 0 . 0 - 0 . 0 0 9 7 9 4 -0 . 0 U 9 7 9 4 0 . 0 0 9 7 9 4 0 . 0 0 9 7 9 4 MOLES.OF BOTTOM PRODUCT = 2 .728201 MOLES OF TOP PRODUCT 2 .263508 PERCENT OF EACH ATOM UNACCOUNTED FOR 0 .9250 -1 . 13 24 0 .6477 STOP 0 EXECUTION TERMINATED SOFT 0AT A 1 READY. IP UN SPARF.2 5=D4TAl FxECUTION BEGINS A i m <i CONOCNSFP is I'MM !!i r m i M n ; M i w i i n IIOUIII A if. I At K t ' W I l t K OP PAP! I'll IMP COLUMN I ICO II) IS UsPI! RPIUPNING S.MIIKA1II) VAPOUR OP ITU- SAMt C 0HIU1SI 1 I (IN AS TUP COLUMN LlOlTOM PROOUCT 11-75 TOP I'LA IF IS 1 f l-IO P I. A 1 1? 1 S 14 POT ! OH PLA1 1? IS 20 POMPOM NT 1 IS 1:1 HYL ALCOHOL COMPONENT 2 IS AC l : 1 1 C AC 10 COUPON!? Nl 3 1 s HATER CPMPONtNl IS P1IIY!. ACLTA1E Pf PI. UX PA1 10 = HEAT INPUT TO PI:BO 1 LER = ENTHALPY OF FEED = 0 . 0 COLUMN PRESSURE IS 3:10.00 A 3 . 162 0 7. 138! B 1 t .?? . 220 J 1 41 6. 7000 C. 22d.9S00 21 1. 0000 EMHK 0 . 0 0 . 0 EN 1 HI. Oj_0 0- 0 7 .0(301! Isfl8.21.00 228.0000 0 . 0 7 .1023 124 5.2388 217.94 1.0 0 . 0 -070- -orf F.NTHU ENTHW 0ENS ITY CP 0 . 0 0 . 0 9305 .8934 5805.0000 17.15°0 17.4300 0 . 0 0 . 0 9720.0000 7040.0000 55.5600 10.2300 0 . 0 0 . 0 COMPONENT MOLECULAR WTS. 46 .00000 60.00000 18.00000 83.00000 FEED MOLECULAR WT. FEED LIQUID 53.00000 PEED RATE (MULES! C.500000 0.500000 0 . 0 4 .90 565 TMLEKANCFS 0.000100 PPDERR 0.001000 REACH CNS CONSIDERED ARE REACTION COMPONENT 4 5 6 0 0 1. 1 2 - 1 - 1 1 1 0 . 2 3 8 0 0 0 E - 0 3 0 . 0 0 . 8 1 5 0 0 0 E - 0 4 0 . 0 REACH ON FORWARD REACTION COEFF. 1 ATOMIC MAKE-UP CF WOLI-CULFS  REVERSE REACTION COEFF. MOLECULE 1 2 3 4 5 6 7 8 9 ATOM  1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 INI 1!AL CONDITIONS V A P O R "I'.oooo 2 .0000 2.0000 2.0000 2.9000 JNOOOC Qui o 2.5000 2.5000 2.6000 2 .5000 2 .5000 2 .5000 2 .5000 2 .5000 2 .5000 2 .5000 2 . 5 000 HOLDUP 10 .0000 10.0000 " 2 1 2 . 0 2 1 2 . 0 2 1 2 . 0 2 1 2 . 0 2 1 2. 0 10. 10 1.0. 10 10 oooo oooo oooo oooo oooo "TT 212 21 2 2 I 2 212 -ffro-212. 0 212 . 0 OOOO OOOO OOOO OOOO 0 000_ 2 .0000 2-0000 2 .0000 •TTsooo" 2 . 5 000 2 .5000 10.oooo io .oooo 10.0000 10.0000 10 .0000 io.ocoo 10.0000 lo.oooo 10.oooo C O N V E R G E N C E IS N O T M E T I T E R A T XI X2 FINAL CONDITIONS X 3 X4 X 5 X6 1 2 0 7 3 1 0 1 0 0 0 6 0 6 5 3 C 0 6 3 4 8 8 0 . 1 4 4 B 4 9 I T 0 6 4 19 1 0 0 1 5 1 2 8 6 0 0 8 0 9 4 2 C . 1 2 5 8 6 3 14 0 5 0 6 9 0 6 0 3 2 4 7 6 5 0 0 7 2 8 9 7 0 . 0 9 5 4 3 2 1 5 0 6 3 0 1 4 3 0 3 3 7 7 3 S 0 12 2 3 8 7 0 . 1 0 9 7 2 7 1 6 0 3 2 6 1 2 9 o 3 7 8 9 ! 1 0 1 9 2 8 4 4 0 . 10 2 1 1 5 1 7 A 2 0 63 3 2 c 4 5 2 4 6 8 0 2 6 6 3 5 1 . 0 . 0 7 5 8 6 9 9 0 0 1 0 1 1 0 . 7 7 0 0 1 4 G . 7 9 6 2 2 9 0 . 3 0 9 1 7 5 0 . 8 1 1 7 0 4 0 . 8 0 3 4 3 6 . 7 7 9 9 1 2 0 . 0 0 0 0 9 3 0 . 0 0 C 3 5 4 0 . 0 0 1 0 4 2 0 . 0 0 2 9 1 5 0 . 0 0 8 1 2 2 0 . 0 2 2 5 1 8 0 . 0 0 1 2 2 5 C . 0 0 3 3 6 9 0 . 0 0 7 1 9 8 0 . 0 1 3 8 3 1 0 . 0 2 4 8 3 4 0 . 0 4 1 7 0 3 0 . 2 2 8 6 6 8 0 . 2 0 0 0 4 3 0 . 1 8 2 5 3 6 0 . 1 7 1 5 5 1 0 . 1 6 3 6 0 3 G . 1 5 5 8 6 7 1 8 1 9 2 0 2 1 0 . 1 0 4 1 7 3 0 . 0 4 3 7 4 4 0 . 0 1 5 5 9 6 0 . 0 1 5 5 6 3 5 4 6 2 ° 7 0 . 6 3 9 8 17 0 . 7 2 3 3 6 0 0 . 7 2 3 9 5 2 0 . 3 0 5 8 0 4 0 . 2 9 4 9 3 2 0 . 2 4 6 9 7 3 0 . 2 4 6 9 3 0 0 4 4 7 2 6 0 . 0 2 1 5 0 7 C . 0 0 8 5 7 2 0 . 0 0 8 5 5 5 N TEMP VAPMOH OU I MO H VA°OR « U I O OUNBAL SDXIN D X I N ( 1 , N ) UX I N I 2 , N ) D X I N ( 3 , N ) 6 i 4 1 . 5 7600 . 4 o . 0 2 2 5 81 6 .5162 5 9 9 9 9 . 2 1 0 . 0 0 .000013 0 . 0 0 0 0 1 3 - 0 . 000013 - 0 . 0 0 0 0 1 3 7 14 1 . 8 8856 . 3 0 . 0 6 77 44 4 . 4831 0 . 05 0 . 0 - 0 . 0 0 0 0 2 8 - 0 . 0 0 0 0 2 8 0 . 00 00 28 0 .000028 8 l - . ? . 0 3901 . 1 0 . 0 6 7 4 06 4 .4645 0 . 0 9 0 . 0 - 0 . 0 0 0 2 2 0 - 0 . 000220 0 .000220 0 .000220 9 1 4 2 . 3 6927 . 1 0 . 0 6 . 7210 4 .4562 0 . 0 3 0 .0 - 0 .000689 - 0 . 0 0 0 8 3 9 0. 000889 0 .0008 89 10 142 . 8 8940 .6 0 . 0 6 7 109 4 . 45 79 0 . 05 0. 0 - 0 . 0 0 3 0 0 9 - 0 . 0 0 3 0 0 9 0 . 00 3009 0 .00 3009 1 1 143. 3 3941 . 7 0 . 0 6 7 1 0 1 4 .4777 0 .06 0 .0 - 0 . 00 92 79 - 0 . 009279 0. 009279 0 .0092 79 12 14 5 . 7 8920 . 6 0 . 0 6 7260 6 . 5402 0 .03 0 .0 - 0 . 0 2 6 0 3 0 - 0 . U 2 6 0 3 0 0 . 026030 0 .026030 13 I 4 9 . 6 8845 .3 0 . 0 6 7833 4 .7032 0 . 0 5 0 .000000 - 0 . 0 6 2 2 6 7 - 0 . 0 o 2 2 6 7 0 . 062267 0 . 0 6 2 2 6 7 14 166. 6 8645 . 7 o . 0 6. 9398 9 .6991 0 .06 0 . 0 - 0 . 1 1 1 8 3 5 - 0 . 1 1 1 8 3 5 0 . 111335 C . 111835 15 159 . 1 3 5 6 ? . 1 0 . 0 7 02 40 9 . 8071 0 . 04 0 .0 - 0 . 1 0 1 9 1 6 - 0 . 1 0 1 9 16 0 . 10 19 16 0 . 1 0 1 9 16 16 1 6 4 . 3 8426 . 2 0 . 0 7 1206 9 . 9 7 4 4 0 . 1 0 0 . 0 - 0 . 0 9 4 8 7 3 - 0 . 0 9 4 6 7 3 C. 094878 G . 0948 78 17 1 7 2 . 8 8 2 53 . 5 0 . 0 7. 2 6 96 10 . 2376 0 .06 0 . 0 - 0 . 0 8 1 6 4 1 - 0 . 0 8 1 6 4 1 0. 08 1641 0 .081641 18 1 82 .7 7937 . 0 0 . 0 7 5 122 10 . 5964 0 . 04 0 .000000 - 0 . 0 5 5 7 6 7 - 0 . 0 5 5 7 8 7 0. 055737 0 .055787 19 190 .9 7 635 . 8 0 . 0 7 8577 1 1 .02 74 0 .04 0 . 0 - 0 . 0 2 8 3 1 5 - 0 . U 2 8 3 1 5 0. 0 2 8 3 1 5 0 .028315 2 0 156 .4 7241 . 3 0 . 0 8 2852 1 1 . 5149 0 .04 0 . 0 - 0 . 0 110 3 3 - 0 . 0 1 1 0 3 3 0 . 01 1033 0 .0 110 3 3 21 200 . 0 63 33 .0 0 . 0 8 7745 2 .7415 0 .00 0 . 0 - 0 . 0 1 1 0 0 1 - U . O i l u O l 0 . 011001 0 .011001 MQL ES OF BOTTOM PRODUCT 2 . 741437 MOL ES OF TOP PRODUCT 2 . 2 5 8 1 2 1 PERCENT OF EACH ATOM UNACCOUNT ED FOR 0 . 9 3 6 9 - 1 . 0 8 9 3 0 .5112 PERCENT OVERALL UNBALANCE - 1 . 9 1 4 9 STOP 0 EXFCUTION TERMINATED $GET D A T A 1 R E A D Y . S P U N S P A R E 2 5= D A T A 1 E X E C U T I O N B E G I N S V. Ull AL. CGNU.EN.SER....I i . J.lS,;iL.klC.Kl''Nl N.G. _S* I'M** ICS JJJ' L LI.P \ vni.M nri>nii.rs ni >'M-'i ur TH1' CPIUMN LIQUID IS us'"" I.TITIWKIMG S A 1 U R A T F I ) VM'HIlt OF IMF SAMF C OMPPS1 VI UN AS Ti<f- CHU'N rWTTOH I'RdnuCT inn "IAIF is 7 r F i: n PLATE IS I F - P T T O M PLATF IS 20 roupn\FNT 1 is ETHYL ALCOHOL r o M P p N F N i ? IS ACETIC ACID COMPONENT 3 IS WATER CPVPONENT 4 IS F TH YL AC F TATE RPFLUX RATIH = 2 . 0 0 " HEAT INPUT TO RC EPIL ER = 6 0 0 0 0 . 0 ENTHALPY OF FEED = 0 . 0 COL UMN PPE SSIIRE 1 S l ] 4 1.00 A 1 !>75 7. I ?8 l 7 .9663 7.102? u 1 6 2 3 . 2200 l M 6 . 7000 16 3 8 .2103 1 24 5 . 2383 C 22 a. 9 BOO 21 1 . OOOO 223.0000 217.9410 FNTHK 0 . rv 0. 0 0.0 0. 0 FNTHI 0. 0 0.0 0 .0 0-0 r:< run 0. 0 0. 0 0.0 0.0 FNTHK 9 3°K . 3 1 8 4 5305 .0000 Q 720.0000 7040. 0000 PENS! T Y 1 7. 1 590 17.4300 55.5600 10.2300 CP 0.0 0. 0 0.0 0. 0 r O f . t n n . N C N T M f l l rFUI AR WTS. 6.030'">0 <,n .00000 18 OOOQO 88.00000 FFED MOLECULAR WT 53 .000.1 0 FFED RATE (MOLES) 4 .90566 EE ED LI0U1D 0 . 5 00 000 0 .503300 3.0 0 .0 TOLERANCES F3DFFRR 0 .000100 PR DE RR 0 .001000 'FACTIONS CONSIDERED ARC 'FACTION COMPONENT AF EF AR ER 1 2 3 4 5 6 7 3 9 1 - 1 - 1 1 1 0 0 0 0 0 0 . 2 3 8 0 0 0 E - 0 3 0 . 0 0 . 8 1 5 0 0 0 E - 0 4 0 .0 l.o l.o l.o l.o ; REACTION FORWARD REACTION COFFF. REVERSE REACTION COEFF. V T n v i f MAKE-HP OF M i | c r . n t E s MOLECULE 1 2 3 4 5 6 7 3 9 ATOM 1 2 2 0 4 2 4 6 2. 3 3 2 1 1 2 I I - 7 7 INITIAL CONDITIONS TFMP VAPOR OHIO HOLDUP 212.0 2 .0000 2 .5000 l 0 . 0 0 0 0 212.1 2 .0000 2 .5000 ID.0000 212.0 2.9000 2 .6000 10.0000 212 .0 2.1000 2.5 000 10 .0000 212 .0 2 .0000 2 .5000 10.0000 212.1 2.0000 2.6 000 10.3000 212.1 2 . n 9 o 0 2 .4000 10.0000 2 12.0 2 . 000 0 2 . ' -000 10.0000 2 1. 2 . 0 2 .0000 2 .6100 10.0000 2 ) 2 . 0 2 .0000 2 .6000 10.0000 212 .0 2 .0000 2 .5000 10 .0000 212 .0 2 .0000 2 .6000 10.0000 212 .0 2 .0000 2 .5000 10.0 000 2 12 .0 2 .0000 2 . 6000 10 .0000 212 .0 2 .0000 2.6 000 10.0000 2 12 .0 2 .0000 2 .5000 10.0000 CONVERGENCE IS NOT YET I T E R A T XT FINAL CONDITIONS X2 X3 X5 X6 (b 900 0 .8 1204 4 0 . 0 0 0 1 1 7 0 .002030 0 .185809 . 7 0. 804856 0 .000430 0 . 005070 0 .139644 . 3 0 . 797120 0. 00122 5 0. 010046 0 . 1 ° 1 6 0 9 Q 0 . 736363 0 . 003308 0 . 017986 0 .191844 10 0. 770967 o. 00 88 94 o . 030143 0 .189996 1 1 o . 743Q16 o . 023860 0. 047357 0 .184867 1 2 0 . 695531 0 . 062473 0 . 057804 0 .173742 1 3 0 .613313 o. 1 52 542 0. 082191 0 .15 1954 14 0 . 4 3 8 8 5 9 0 . 323610 0. 071358 0. 115672 I 5 0. 411000 o . 331936 0 . 115905 0 .141159 16 0 . 314431 0. 364008 0. 176611 0 .144950 17 0 . 20 57 2 2 0 . 428703 0 . 241873 0 .123702 18 0. 110235 0.523382 0.280354 0 .036029 19 0 . 043295 0. 632606 0. 270195 0. 048905 20 0 . 0174 60 0 . 740206 0 . 219475 0 .022858 21 0. 017431 0. 74 02 30 0. 219464 0 .022825 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN OXINI 1,N) D X I N I 2 , N ) DXINI 3 ,N) 6 192 .3 7 6 0 0 . 4 0 . 0 2 .2324 4. 4 6 4 ° 5 0 0 0 9 . 2\ 0 . 0 0 . 0 0 0 0 1 9 0. 000019 - 0 . 0 0 0 0 1 9 - 0 .000019 7 192 .4 8 9 5 8 . 7 0 . 0 6 .6973 4 .4695 0 .08 0 . 0 - 0 . 0 0 0 0 0 9 - 0 . 000009 0 . 0 0 0 0 0 9 0 .000009 8 192 .6 8 9 5 2 . 6 0 . 0 6 .7019 4 .4731 0.04 0 . 0 - 0 . 0 0 0 1 7 6 - 0 . 000176 0 .000176 0 .000176 o 1 93 -0 8 9 4 3 . 6 0 .0 6 .7049 4 .4773 0 .04 0. o - 0 . 000798 - 0 . 000798 ' 0 .000793 0 .000793 10 1 9^ . 6 3 9 4 4 . 7 0 .0 6 .7078 4 .4860 0 .04 0 . 000000 - 0 . 0 0 2 7 9 6 - 0 . 0 0 2 7 9 6 0.002.796 0 .002796 1 1 1 94 .7 8 9 3 6 . 0 0 .0 6 . 7 1 4 4 4. 5091 0 .09 0. 0 - 0 . 0 0 8 6 6 9 - C . 008669 0 .008669 0 .008669 12 19 7.0, 3 9 0 9 . 6 0 . 0 6 .7342 4 .5721 0 . 0 5 0 . 0 - 0 . 0 2 4 1 6 1 - 0 . 024161 0 .024161 0 . 024161 13 2 0 1 . 4 8 8 3 2 . 7 0 .0 6 .7929 4. 7313 0 .09 0 . 000000 - 0 . 0 5 7 4 8 0 - 0 . 057480 0 . 0 5 7 4 8 0 0 . 0 5 7 4 8 0 14 209 .6 8637 .1 0 .0 6 . 0 4 6 S 9 .7410 0 .05 0. 0 - 0 . 104079 - 0 . 104079 0 .104079 0 .104079 15 2 1 2 . 3 8515 .4 0 . 0 7.0461 9.8593 0 .06 0 . o - 0 . 0 8 9 9 7 6 - 0 . 039976 0 . 0 8 9 9 7 6 0 .089976 16 21 7 .6 8 334 . 4 0 . 0 7 .1562 10. 0199 0.06 0. n - 0 . 0 7 8 8 0 7 -0 . G73807 0 .073807 0 . 0 7 8 8 0 7 17 2 2 6.1 8 2 1 6 . 8 0 .0 7 .30 20 10 .2596 0 .03 0. 0 - 0 . 066135 - 0 . 066135 0 . 0 5 6 1 3 5 0 .066135 18 236 . o 79 7 4 . 3 0 . 0 7 .5236 10.6117 0 .07 0 . 0 - 0 . 0 4 7 3 8 4 - 0 . 0 4 73 3 4 0 . 0 4 7 3 8 4 0 .047384 19 247 .4 7 6 3 3 . 3 0 . 0 7 .360 3 1 1 . 0821 0. 04 0. 0 - 0 . 0 2 6 1 5 7 - 0 . 026157 0 . 0 2 6 1 5 7 0 . 0 2 6 1 5 7 20 255. 7 7209 .2 0 .0 8 .32 2 7 11.6440 0 .04 0 . 0 - 0 . 0 1 0 8 5 5 - 0 . 010855 0. 01 C855 0 .010855 21 261 .6 6 7 5 4 . 9 0 . 0 8. 88 25 2 .7617 0 .00 0 . 0 - 0 . 0 1 0 8 3 0 - 0 . 010830 0 . 0 1 0 8 3 0 0 .0108 30 MOLES OF BOTTOM PRODUCT = 2 .761747 MOLES OF TOP PRODUCT 2 .232450 PERC ENT O E EACH ATOM UNACCOUNTED FOR 0 .9021 - 0 . 9298 0. 3460 3 E R C ENT GV SPALL UNBALANCE - 1 . 8 0 4 7 S T P f 0 EX FCUT ION TERMINAT ED SOFT DATA 1 R F A O Y . 5 P U N S P A P E 2 5 = 0 A T A1 E X E C U T I O N B E G I N S H H I -NI _CO_y yj -U l:\L_CCN2rjlSE !v. J.S._U.StD JLQUB-NI.MO _i^JUi: A V J i n y j j i j l o \ rm.M RFROI i.r1? OF "ART ni: run COLUMN i.muin is IKCD Riil iRNINP S.\I UK Al !•!) VAPOUR OF l|ir- SAMP 0 (IM "PS 111 ON AS Till" COLUMN BOTTOM PRnnilCT TOP PIA1T IS 7 FFFD PI ATP IS 14 BOTTOM PI.ATP IS 20 COMPONENT 1 1 S PTHYL ALCOHOL COMPONENT 2 1 s ACETIC ACID COMPONENT •>t IS WAT FX COMPONENT 4 1 s P TH V( ACPI ATE REFLUX D A T I 0 = • 2.000 HEAT !N"UT 10 REBOILER = 60000 .0 ENTHALPY OF F F ED = 0 .0 COLUMN PRESSURE IS 1520 .00 A 3 . 1 6 2 ° 7. 1881 7 . 9668 7.1023 B 1623 .2200 14 16.700 0 1688 .2100 1 245. 2'>S8 C 22 S.9800 211.0000 2 28 .0000 217.O410 ENT I'1'. 9 .0 0. 0 0 . 0 0. 0 FN TIM 0.0 0.0 0 .0 0.0 rNTI'U 0. 0 0. 0 0 . 0 0.0 ENT HW 9 3 ° r* . 8 9 q 4 580 5.0000 Q7?0 . OOOO 7040. OOOO DENS! TY 17.1 590 17.4100 55 .5600 10.?300 CP 0.0 0. 0 0 . 0 0. 0 C.PMl'njgr NT MCI F CULAR WT<:. 46 .00000 60 .00000 IB 00000 88.00000 FPFO MOLECULAR WT 53.00000 PEED RATE (MOLES! 4. 90566 FEED LI QUI 0 0.500000 0.500000 0 .0 0 .0 TOLERANCES BDFE^R 0. 000 100 PROERR 0.001000 REACTIONS CONSIDERED APE REACTION COMPONENT AF EE AR ER 1 2 3 4 5 6 7 8 9 1 - 1 - 1 1 1 0 0 0 0 0 0.23BOOOE-03 0.0 0 .815000E-04 0.0 1.0 1.0 1.0 1.0 ; REACTION FORWARD REACTION COEFF. REVERSE REACTION COEFF. 1 t T f V ' i r « f t y - - u p rn-- M O i F r i . n F S  1 MOLECULE 1 2 3 4 5 6 7 8 9 A T O M 1 2 2 0 4 2 4 6 . 2 8 3 2 1 1 2 INITIAL CONDITIONS TF MP V A POP. OU ID HOL DUP 212.0 2 .0000 2.5O00 10.OOOO 2 12.0 2.OOOO 2.5000 10.0000 212.0 2.OOOO 2.5 000 10.0000. 2 12.0 2 .0000 2.5000 10.OOOO 212.0 2.0000 2 .5000 l o . o o o o 212.0 2.0000 2.5000 l o . o o o o 212.0 2 .OOOO 2.5000 10.0000 ' 2 12.9 2.OOOO 2.5000 10.0000 212.0 2.0000 2.5 000 10.0900 212.0 2.0000 2 .6000 10.0000 212.0 2.OOOO 2.5000 io .oooo 212.0 2 .0000 2.5000 10.0000 212.0 2.OOOO 2.5000 10.0000 212.0 2.OOOO 2. 5000 10.0000 212.0 2 .0900 2.5000 10.0000 2! 2. 0 2.OOOO 2.5000 ' m . oooo CONVERGENCE IS NOT «ET ITERAT XI FINAL CONDITIONS X? X3 X4 X5 12 0.636675 0 .063167 0 070429 0. 179729 13 0.604951 0 .153312 0 08 4146 0 .157590 I A 0.4 29 17 0 .324001 0 073059 0.120013 1 5 0.60 3136 0 .331961 0 116664 C.143242 1ft 0 . 30 669 3 0 .362775 0 175490 0 .155242 1 7 0 .2002R5 0. 425691 0 237713 0. 13 6311 900 1 0 1 1 0 .8 2613 3 0 .81117? 0 .797717 0.783233 0 .766296 .735233 0 .000123 0 .000653 0. 001 280 0 .003429 0 .00"133 C. 02 43 07 0 .002373 0 .005792 0 .011255 0 .019763 0 .032486 0. 050073 . 1 71 370 ".182533 3.189748 ). 193570 • .194031 1---0332 1 8 19 20 21 0 . 107305 0. 047476 0 .017171 0.017144 0.520QOQ 0.632052 0 .743392 0 .743962 0 . 273729 0 .262195 0 .210541 0 .210536 0 .093375 0 .05 32 77 0 .023396 0 .023353 N TFMP VAPMOH OUIMOH VAPOR QU ID OUNB AL SDXIN DXINI 1,N1 DXI N( 2 ,N) DXI N(3 ,N) 6 207 .1 7 600 4 0 . 0 2 .2240 4. 4479 59999 .09 0 . 0 0 .000021 0 .000021 - 0 . 0 0 0 0 2 1 - 0 . 0 0 0 0 2 1 7 2 0 7 . 3 3992 Q 0 .0 6 .6713 4 . 4 6 ! 1 0 .05 0. 0 - 0 . 000003 - 0 . 0 0 0 0 0 3 0 .000003 0 .003003 8 207 . 5 .3975. 3 0 . 0 6 .6849 4 .4707 0 .13 0 . 0 - 0 . 0 0 0 1 6 2 - 0 . 0 0 0 1 6 2 0 .000162 0 .000162 9 2 07 .9 39.63 3 0 . 0 6 .6939 4 .4790 0. 05 0. 0 - 0 . 0 0 0 7 7 2 - 0 . 0 0 0 7 7 2 0 . 0 0 0 7 7 2 0 .000772 10 208. 6 8953 7 0 . 0 6 .7010 4 .4905 0 .06 0 . 0 - 0 . 0 0 2 7 5 0 - 0 . 0 0 2 7 5 0 0 .002750 0 .002750 1 1 2 0 9 . 8 8961 2 0 .0 6 .7104 4. 51 53 0.05 0 . 0 - 0 . 0 0 8 5 5 7 - 0 . 0 0 8 5 5 7 0 . 0 0 8 5 5 7 0 .003557 12 212 .2 3912 3 0 .0 6 .7322 6. 5793 0 .08 0 . 0 - 0 . 0 2 3 3 1 3 - 0 . 023813 0 .02 33 13 0 . 0 2 3 3 1 3 13 2 1 6 . 9 8833 3 0 . 0 6 .7920 4 .7333 -0 .0 0 .000000 -0 .056522 - 0 . 0 5 6 5 2 2 0 .056522 0 .056522 14 225 .4 8637 9 0 . 0 6 .9460 9 .7525 0. 1 1 0. 0 - 0 . 1 0 2 3 9 1 - 0 . 1 0 2 3 9 1 0 . 102391 0 .102391 ' 5 2 23 . 4 8510 5 0 . 0 7 .0501 9 .8771 0 .08 0 .0 - 0 . 087226 - 0 . 0 8 7 2 2 6 0 . 0 8 7 2 2 6 0 .087226 15 2 3 3 . 9 8 372 1 0. 0 7 .1666 10.0411 0 .09 0 .0 -0 .074747 - 0 . 0 7 4 7 4 7 0 . 0 7 4 7 4 7 0 .074747 17 242 .5 3199 3 0 .0 7 .3172 10.2304 0. 06 0 .000000 - 0 . 0 6 1 3 6 5 - 0 . 0 6 1 3 6 5 0 . 0 6 1 3 6 5 0 . 06L365 1 3 2 53. 6 7958 1 0 . 0 7 .5395 10 .6326 0 .07 0 .000000 - 0 . 0 4 3 5 6 8 - 0 . 0 4 3 5 6 8 0 . 0 4 3 5 6 8 0. 043568 19 2 64 .6 76 17 7 0 . 0 7. 3764 11. 1 108 0.03 0 . 0 - 0 . 0 2 4 2 0 6 - 0 . 0 2 4 2 0 6 0 .024206 0 .024206 2.0 2 7 3 . 6 7183 8 o .o 8 .3463 11.68"4 0 .05 0. 0 - 0 . 010154 - 0 . 0 1 0 1 54 0 .010154 0 .0 10 1 54 2 1 280 .2 6725 7 0 . 0 R . Q 2 09 7 .7677 0 .00 0 .0 - 0 . 0 1 0 1 3 2 - 0 . 0 1 0 1 3 2 0 .010132 0 . 0 1 0 1 3 ? MOLE S OF BOTTOM PRODUCT = 2 .767747 MOLES OF TOP PRODUCT 2 .223951 D E R C E N T OF EACH ATOM UNACCOUNTED FOR 0. 3632 - 0 . 8957 0.3052 PERCENT OVERALL UNBALANCE - 1 . 7 5 3 8 STOP 0 EXFCUTION TERMINATED iSJLG_ H H I 00 A_T.LU.A I CUNP-rNSFR IS U < I' II RF1PPN1HC. SAIURAir-Q LIQUID 11-81 A .TOT At P.FBOH.GR OF PART OT 11!!? COLUMN I. IOUIO IS USED RFIURNINC SAIURAITO VAPOUR OF 1 Hp SAMP COMPOS11IUN AS TUT 'COLUMN BOTTOM PRODUCT' 10P PI Al F IS V rFPD PI A TP IS IC 1.01 IC1K PLA1C IS 13 COMPONENT ) 1 S E10YL ALCOHOL COMPONENT 2 IS ACETIC ACm COMPONENT 3 1 s WATER COM PONE NT '< 1 s El IIYI. ACF.1 Al E RE FLUX RATIO = 1 .000 HE AT INPUT TO REBOILER = 6 0 0 0 0 . 0 ENTHALPY OP EEEO = 0 .0 COLUMN PR PS SUP P 1 s 760 .00 A 8 . 1 62 o 7 . IP 3 1 7.9668 7.1023 li I (.2 3 . 2200 1416. 7C00 1688.2100 1 24 5.23 88 C 2 2 8 . 9 ? 0 0 211.0C00 223.0000 217.9410 EN 1 UK 0 . 0 0 . 0 0 . 0 0 . 0 I'M T h i 0 . ;1 0 . 0 0 . 0 0 . 0 ENT HU 0 . 0 0 . 0 0 . 0 0 . 0 ENTHW 03 0 5 . 8 ° 3 4 5805.0000 9720.0000 7040.0000 DENSITY 17. 1500 17.4300 55.5600 10.2300 CP 0 . 0 0 . 0 0 . 0 0 . 0 COUPONtNT MOL FOIL AR NTS. ,, fc. 00010, 60.00000 1 3. 00000 83 . 00000 FEED MOLECULAR WT 53.00000 PEED RATE (MOLES) 4 .90566 FEED LlUUlD 0.500000 0.500000 0 . 0 0 . 0 TOLERANCES PDPCPli 0 .000100 PPL1 ERR 0 .001000 REACTIONS CONSIDERED ARE RP: AC T 1 CN COMPONENT AF' PF AR ER 1. 2 3 4 5 6 7 0 9 1 - 1 - 1 1 1 0 0 0 0 0 0 . 2 3 3 0 0 0 E - 0 3 0, .0 0 .815000E -04 0. C 1 . 0 1.0 1 . 0 1. 0 REACTION FORWARD REACTION COEFF. REVERSE REACTION COEFF. i ATflMlf M A^F - O P OF MOl r -r . l i l FS MOLECULE 1 2 3 4 5 6 7 8 AT OM 1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 IN IT I A L CONDI T IONS T P M I' VAPOR OU ID HULOUP 2 12 .0 2.0000 2.5 000 10.0000 212. 0 2 .0000 2.5000 10.OOOO 2.1 2 . 0 2.0000 2.5000 10.0000 2 1.2 . 0 2.0000 2.5 000 lo .oooo 212.0 2.OOOO 2.5 000 10.000 0 212. 0 2.0000 2.5000 io .oooo 2 12.0 2.OOOO 2.5000 10.0000 212.0 2.0000 2.5000 io .oooo 212.0 2.0000 2.5000 10.0000 i CONVERGENCE IS NO V MET FINAL CONDI Tl GNS y ITERAT .XI X2 X3 X 5 10 11 1000 0.549608 0 .180548 0 .129320 0 .139934 0 .318278 C.424745 C.178159 0.C78813 0 .205383 0 . 597226 0. 154329 0 .C42561 0 .160351 0. 705607 0. 1 1 0591 0 .02 3451 0 .142436 0 .774937 C.070033 C.012594 0 .047407 0 .884415 0 .061257 0 .006921 12 1 3 14 0 .014Q46 0. 937302 0. 0451 3 4 0 .002963 0 . 0 p 3 q 0 3 C .964349 0 .030639 C.CQ1109 0 .003903 0 .964346 0 .030642 0 .001109 6 134 .1 7600 . 4 0 0 3 5525 3 .5524 59999.43 0 . 0 -0 .064958 - 0 .064958 0 .064958 0 . 0 6 4 5 5 3 7 1 99 3 84 44 .3 rj 0 7 1049 3.904 1 0. 12 0. 0 - 0 . 107369 - 0 . 1 07369 0 .107369 0 . 1 0 7 3 6 9 8 211 1 3046 8 0 0 7 4564 4 .2205 0 .04 0 .0 - 0 . 101378 - 0 . 101878 0 .101878 C.101378 9 217 6 77 15 1 0 0 7 7728 4 .4639 0 . 05 0 .0 - 0 .091642 - 0 . 0 9 1 6 4 2 0 . 0 9 1 6 4 2 0 .09 1642 10 221 2 7435 4 0 .0 Q 0153 10.2367 0 . 0 5 0 . 0 - 0 . C 8 6 2 1 3 - 0 . C B 6 2 1 3 0 . 0 8 6 2 1 3 0 .C86213 TEMP VAPMCH CUI MCH VAPOR QU ID 0UN8 AL SDXIN DXI N( 1 ,N) DX1NI2 .N) D X I N U . N ) 1 ! 233 8 6 7 1 3 . 7 0 . 0 8. 9342 10.9302 0 .P6 0 . 0 0 0 0 0 0 - 0 . 0327 10 - 0 . 032710 0 C32710 0 .G327 10 12 239 $ 6 2 66 . 1 0 . 0 9. 5753 1 1. 2732 0.11 0 . 0 - 0 . 010116 - 0 . Oi 01 1 6 0 010116 0 . 0 1 0 1 1 6 13 242 3 6 0 4 9 . 7 0 . 0 0 9 1 79 1 1 .4559 0 .13 0 . 0 0 0 0 0 0 - 0 . 002842 - 0 . 002342 0- 002842 G.002842 14 243 2 5940 .4 0 . 0 1 C. 10C4 1.3554 0-00 1 0 .000000 - 0 . 002342 - 0 . 002842 0 00 28 4 2 0 . 0 0 2 8 4 2 MGLE S OF BOTTOM P F OD UC T -= 1 .355403 MOLES CF TOP PRODUCT 3 .552450 PERCENT CF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE STOP 0 EXECUTION TERMINATED 0 .0388 0 .0445 -0 .0448 -0 . 0821 $GET DAT A 1 READY. 5RUN SPARE2 5 = 0ATA1 Ex ECUT10N BEGINS M H I CO I I - 8 3 8, TO 1 A L CONOFNSER IS USFO RF TURNING SATURATED LIQUID A TOTAL RFPGiLER OF PART OF- ThE COLUMN LICU10 IS USFl) RETURNING SATURATED VAPOUR OF TNf S AM F COMPOSITION AS ThF COLUMN P.OTTOM PRODUCT T O P P L A T E IS 7 F E E D P L A T E IS 10 B O T T O M P L A T E IS 1 3 C O U P O N F N T I I S E T H Y L A L C C H O L C C P O N E N T 2 I s A C E 1 10. AC. 10 COMPONENT 3 1 s WATER C O M P O N E N T 4 I s E T H Y L A C E T A T E R E F L U X R A T I O - 1 .500 H E A T I N P U T T O R E B O I L E R = 60000.0 E N T H A L P Y OF F E E " = C O COLUMN PRESSURE IS 760 .00 A f. 162 9 7. 1881 7.9568 7. 1023 B 1623.2200 1416.7000 16 88.2100 1 24 5. 23 88 C 22P.9800 21 1 .0000 228 .0000 217.9410 ENTHK C O 0. 0 0. 0 O.C ENTHL 0.0 0.0 0.0 C 0 EN THU 0.0 0.0 0.0 0.0 ENTHW 9395.8084 5805. 0000 9720.0000 7040.0000 DENSITY 17.1590 17.4800 55.5600 10.2300 CP C. 0 0. 0 0.0 0.0 COMPONENT "OLECULAR WTS. 46.00000 60 .00000 18. .00000 88.00000 FEED MOLECULAR WT , 5 3.00000 FEED RATE (MOLES) 4.90566 FEED LIQUID 0.500000 0 .5000 00 0.0 0 .0 TOLERANCES BOFF"R 0. 000 100 PRDERR O.C01000 REACTIONS CONSIDERED ARE REACTION 1 2 3 COMPONENT 4 5 6 7 8 9 AF EF AR ER 1 -1 -1 1.0 1. 0 1 1.0 1. 1 0 , 0 0 0 0 0 0 .238000E-03 0. 0 0. B15000F-C4 0 . 0 REACT IDN FORWARD R E A CT ION COEFF. REVERSE REACT ION COEFF . 1 ATOMIC MAKE-UP OF MOLECULES MOLECULE 1 2 3 4 5 6 7 8 9 ATOM 1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 INITIAL CONDITIONS TEMP VAPOR QUID HOLDUP 212.0 2.0000 2.5000 10.0000 212.0 2.0000 2.5000 10.0000 212.0 2 .0000 2.6000 10.0000 212.0 2.0000 2 .5 000 10.0000 212.0 2.0000 2.5000 10.0000 212.0 2.0000 2.5000 10.0000 212.0 2. 0000 2.5000 10.0000 212.0 2.0000 2.5000 10.0000 212.0 2.0000 2.5000 1 0 .0000 CONVERGENCE IS NOT MET FINAL CONDITIONS ITERAT XI X2 X3 X4 X5 X6 900 9 10 11 C.727176 0 .602592 0. 460060 0 .336169 0 .249571 0 .114643 03C852 . 105032 .227762 .388324 .554677 0 .632497 G.072244 0 . 154745 0.210565 0.209151 0 .153170 0 .176732 0 .169728-0.137631 0 .101613 0 .066356 0 .037531 0 .026127 12 13 14 0 .042766 0.013701 0 .013701 0 .738185 0 .863512 0 .863524 0 .155672 0 . 1 17236 C. 117225 0 .C13376 0 .C05551 0 .C05551 TEMP VAPMOH OUIMOH VAPOR QUI D OUNBAL SDXIN D X I N U . N ) D X I N I 2 . N ) DXINI 3. N ) 6 1 7 5 . 9 7 6 0 0 . 4 0 .0 2 .6948 4 .0421 59999 .57 0 . 0 - 0 . 011277 - G . 011277 0. 01 1277 0 .011277 7 181 .7 8906 .1 0. 0 6. 7369 4 .1233 0 . 0 5 0 . 0 - 0 . 0 4 0 4 9 9 - 0 . 0 4 0 4 9 9 0 .040499 0 . 0 4 0 4 9 9 8 189 .8 8 7 9 7 . 7 0 . 0 6 .3199 4 .3018 0. 08 0 . 0 - 0 . 080843 - 0 . 0 8 0 8 4 3 0 .08 08 43 0 . 0 8 0 3 4 3 9 199. 0 8 5 7 0 . 8 0 . 0 7 .0005 4 .5902 0 .04 0 .0 - 0 . 110473 - C . 110473 0. 110473 0 .110473 10 2 0 7 . 8 8229 .8 0 . 0 7. 2906 10.0150 0 .09 0 .0 - 0 . 1 1 6 4 5 5 - 0 . 116455 0 . 116455 C.116455 11 2 2 0 . 8 7 6 8 1 . 8 0 .0 7 .8107 10.6432 0 .07 0 . 0 - 0 . C 6 8 8 9 9 - 0 . 0 6 8 8 9 9 0 .068899 0 .068899 12 231 .2 7108 .9 0. 0 8 .4401 11.2242 - 0 . 0 1 0 . 0 - 0 . 0 2 9 3 8 8 - 0 . 0 2 9 3 8 8 0 . 029388 0 .029383 13 237 .3 6 6 5 0 . 3 0 . 0 9. 0221 1 1. 6548 C . 0 9 0 . 0 - 0 . 0 0 9 8 9 1 - 0 . G 0 9 8 9 1 0 .009891 0 .009891 14 2 4 0 . 6 6 3 2 0 . 0 0 . 0 9 .4935 2 .2009 0 .01 0 . 0 - 0 . 0 0 9 8 9 1 - 0 . 0 0 9 8 9 1 0 .009891 0 .009891 MOLES OF BOTTOM PRODUCT 2 .200893 MOLES OF TOP PRODUCT 2 .694754 PERCENT OF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE - 0 . 1 4 0 7 0 .0219 0 .0480 0 .2041 STOP 0 EXECUTION TERMINATED SGET DATA1 R E A D Y . SRUN SPARE2 5= OAT A 11 1, 18 )-H 23, 40 ) + ( 45 , 48) EXECUTION BEGINS H H I CO J>_A_IDT AI C ON 1) I S_JJ 5. E D RETU R N.ING_5 AJ UR.Al ED_LJ Q UI 0_ 11-85 A TOTAL REBOILER OF PART OF THE COLUMN LIOUIO IS USED RETURN! NO SATURATED VAPOUR (IF THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS FEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT 1 IS ETHYL ALCOHOL COMPONENT Z IS ACFTIC ACID COMPONENT 3 IS WATER COMPONENT REFLUX RAT 10 = IS ETHYL ACETATE 3.000 HEAT INPUT TO REBOILER = 60000.0 ENTHALPY OF FEED 0.0 COLUMN PRESSURE IS 760.00 A 8.1629 7.1881 B 1623.2200 1416.7000 C 228.9800 211.0000 ENTHK 0 .0 0.0 EN THE CKO 0. 0 7.9668 7.1023 16R8.2100 1245.2389 228. 0000 21 7. 9410 0.0 0 .0 0 .0 0.0 ENTHU E NTH W DENSITY CP 0 .0 0.0 9395.8984 5805.0000 17. 1590 17.4800 0.0 0.0 0 .0 0.0 9720.0000 7040.0000 55.5600 10.2300 0 .0 0.0 C.OMPONFNT MOLECULAR WTS. 46. 00000 60. 00000 18.00000 88.00000 FEED MOLECULAR WT. FEED LIQUID TOLERANCES 53.00000 FEED RATE (MOLES) 0.500000 0.500000 0 . 0 4.90566 0.0 REACTIONS CONSIDERED ARE 1 - 1 - 1 1 1 1.0 1.0 1.0 1.0 COMPONENT 4 5 6 0 0 EF 0.238000E-03 0.0 ER 0.815000E-04 0 .0 REACTION FORWARD REACTION COEFF. 1 ATOMIC MAKF-UP DF MOLECULES  REVERSE REACTION C O E F F . MOLECULE 1 2 3 4 5 6 7 8 9 >. ATOM 2 1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 INITIAL CONDITIONS TEMP VAPOR OU ID HOLDUP 212.0 2.0000 2.5000 10.0000 212. 0 2.0000 2 .5000 10.0000 212.0 2.0000 2.5000 10.0000 212.0 2 .0000 2.5000 . 10.0000 212. 0 2 .0000 2.5000 io .oooo 212.0 2.0000 2.5000 10.0000 212.0 2 .0000 2.5000 10.0000 212.0 2.0000 2.5000 10.0000 212.0 2.0000 2.5000 10.0000 FINAL CONDI TIONS FINAL CONDITIONS N ITERAT XI X2 X3 X4 X5 X6 6 887 0 .821943 0 .003070 0 .005813 0 .169174 _Z 0 .312230 0 . 0 1 2 5 0 5 0 .014778 0. 160488 8 0. 779773 0. 041443 0 . 029289 0 . 149495 9 C . 7008 66 0. 1226C4 0. 046045 0. 130494 10 0 . 5505 12 0 . 304343 0 . 048556 0. 096589 11 0. 473888 0. 332232 0. 083139 0 . 1 10742 12 0. 346766 0 .426667 0. 126214 0. 100353 13 0 . 182982 0. 604205 0 . 149034 0 . 063779 14 0. 182983 0. 604203 0. 149036 0 .063778 N TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDX IN DXIN (1 ,N) DXINI2,N ) DXINI 3 ,N) 6 1 7 2 . 9 7 6 0 0 . 4 0 .0 1.6690 5 .0069 59999 .53 0 . 0 - 0 . 0 0 1 2 4 3 - 0 . 001243 0 .001243 0 .001243 7 173 .5 8 9 8 7 . 6 0 . 0 6 .6758 5.0141 0 .09 0 .0 - 0 . 0 0 5 4 2 9 - 0 . 0 0 5 4 2 9 0 .005429 0 . 0 0 5 4 2 9 8 175 .0 8978 .2 0 . 0 6 .6828 5. 0589 0 .04 0 . 0 - 0 . 0 1 8 5 0 6 - 0 . 0 1 8 5 0 6 0 .018506 0 .018506 9 1 7 8 . 6 8 9 1 8 . 7 0 . 0 6 .7274 5 .2095 0 . 0 8 0 .000000 - 0 . 052873 - 0 . 052873 0 .052873 0 .052873 10 186 .8 8 7 2 3 . 6 0 . 0 6 .8779 10.2071 0 .06 0 .0 - 0 . 1 1 0 4 0 3 - 0 . 1 1 0 4 0 3 0 . 1 1 0 4 0 3 0 . 110403 11 189 .7 8608 .4 0 . 0 6 .9699 10.3845 0. 07 0. 0 - 0 . 1 0 5 6 8 4 - 0 . 1 0 5 6 8 4 0 . 1 0 5 6 8 4 0 .105684 12 197. 2 8 3 9 4 . 7 0 . 0 7 .147 3 10 .8134 0 . 0 5 0 . 0 - 0 . 1 0 6 3 2 3 - 0 . 106323 0. 106323 0 .106323 13 2 1 1 . 5 7 9 1 9 . 5 0 . 0 7 .5762 11 .6584 0 .07 . 0 . 0 - 0 . 0 8 7 1 0 7 - 0 . 0 8 7 1 0 7 0 . 0 3 7 1 0 7 0 .087107 14 2 2 8 . 5 7 1 2 5 . 0 0 .0 8 .4210 3 .2378 0 . 0 0 0 . 0 - 0 . 0 8 7 1 0 8 - 0 . 0 8 7 1 0 8 0 .087108 0 .087108 MOLES OF BOTTOM PRODUCT 3 .237821 MOLES OF TOP PRODUCT 1 .668962 PERCENT OF EACH ATOM UNACCOUNTED FOR 0 .0466 0 .0303 - 0 . 0 1 9 0 PERCENT OVERALL UNBALANCE - 0 . 0228 STOP 0 EXECUTION TERMINATED SGET 0ATA1 R E A D Y . *S IG CD cn •A-JXT Al CJJii C LMi.Li: LSJ.II U U i L l Li IE'. S^J! "5 ^JLllgMLR, 11-87 A 10 1 A I. REHIIILER HI I'AKI 01- IMI: C.l'l UHN I. I Oil I I) IS UM 0 HtU>KNIHr- SATUKAI f ) VA"IH>« OF IMF SAM I COM POS I 1 I ON A S I ' l l ' COLUMN BOTTOM PRODUCT TOP r i . A1F IS 7 F r {0 FLA 1 C I S 10 F FT 1 D«l I'l. A l F IS 1 3 CCKPUNEM 1 IS 1 TnVI. AI.CUMI'I. CCV'IV'Nf Nl •} 1 s A C F V K AC ID CUM Pl INF NT 1 1 s W A 1 FR CCMP0NFN1 '. IS PlHYL AC El ATE KETI.UX RATIO * '..000 MEAT INPUT 10 REBOILER = 00000.0 EMhALPY OF FEED - 0.0 COLUMN PRES SURF IS 7 60. (.0 A « .162" 7. 13 3 1 7.966 3 7. 1023 LI 1 62 <. '200 1 '.1 6. 7000 1688.2100 I 2'i 5 . 2 3 33 C 2 21?. 9 ROC 211.00 00 2 28.0000 21 7. 94 10 FNTHK 0 .0 0.0 o.o • 0.0 r '< T 111 0. C 0. r 0.0 a.o FNTliU 0.0 C O 0.0 0. 0 E NTH Is "3 Q 5.3934 5305 . 0000 0720 .0000 7C40.0000 DEN SI 1Y 1 7. 1 500 1 7. '.3 00 55 .6600 10.2300 CP 0 .0 0.0 0.0 0. 0 COMPOMFNT MOLECULAR WTS. 46 .OCOOC 6 0 .00000 18.0C00O PB.00000 FEED MOLECULAR WT . 53.00000 FEED RAT F; (MOL ES 1 4. 90566 FEED LIQUID 0. 500000 0. 500000 0. 0 0 .0 TOLERANCES BOFFRC O.OOOIQC PKOEF.R 0.001000 REACTIONS CONSIDERED ARE COMPONENT 4 5 REACT ION 1 -1 1 1 1.0 1.0 LLO _ EE O.238O00E-03 0.0 0.815000E-04 0.0 REACTION FORWARD REACTION COEFF. 1 A T O M I r K A K F - I I P O F M n i . F C U l F S  REVERSE REACTION COEFF. 1 2 7. 0 4 2 4 6 2 a 3 2 1 1 2 INITIAL CONDI T IONS Oil ID 2 1 2 . 0 212.0 2 12.0 212.0 212.0 2L2, 2.0000 2.5000 "TTvoo-2.6000 2. 5000 2.5 0 00 2.5000 2.5000 TTToocT 2.5 000 10.0000 2.OOOO 2-0000 2 .0000 2.0000 2.0000 2 .0000 I O . O O O J 10.0000 10.0000 10 .0006 io.oooo 10.0000 1JT7U' 2 1.2 .0 2.0000 2.0000 IO.OOOO F INAL CONOI Tl C1NS F INAL CUND I T I ONS N ITERAT x i X2 X3 X4 X5 6 062 C.P.30862 0 .002330 0 .004075 0. 162732 _ ? 0.325U1.3 0 .009557 0 .010379 0. 155046  8 0. 799461 0 .C3V. .53 0. 021.419 G . 145453 9 0. 7293 11 0. 106513 0. 035549 C. 12857 1 IC 0. 5784 15 0 .28.5214 0 .0391 33 0 .096233 11 0.513596 0 .301326 0 .066729 0 .112849 1 2 0 .410734 0. 375 1-30 0. 1 05187 0. 1 03898 1 3 0 .240497 0 . 5483.80 0 . 135535 0 .075580 0 .24Q499 C.543378 0 .125536 0 .C75588 N TEW D VAP MI.1H OUIMOH VAPCR OUI D OUNBAL SOX IN DXIN I 1,N) DX INI 2, N I D X I N I 3 , N 1 6 172 . p 76 00 . 4 C .0 1 3326 5 3304 59999 67 0 . 0 - C . C 0 0 9 7 7 - C. 000977 0 .000977 0 . 000977 7 173 . 3 90 04 . 9 0 .0 6 66 30 5 3 3 5 0 0 05 0 .0 - 0 . 0 C 4 2 6 5 - 0 . 0 0 4 2 6 5 0 . 0 0 4 2 6 5 0 . 004265 8 1 74 . 5 1 0 . 0 6 6673 5 3736 0 09 0 .0 - 0 . 015347 - 0 . 015347 0. 015347 0. 01 5347 9 177 . 7 894 7 . 5 0 .0 6. 7057 5 5166 0 03 0 .000000 - 0 - 0 4 7 4 2 5 - 0 . 0 4 7 4 2 5 0 . 0 4 7 4 2 5 0. 0474 25 10 135 . 5 8 7 60 . 9 0 .0 6 34 86 10 4942 - 0 01 0. 0 - 0 . 107S94 - 0 . 1 C 7 3 9 4 0 . 107894 0 . 107394 1 1 1 5 7 . 4 8669. 9 0 . 0 6 92 04 10 6262 0 05 0 .0 - 0 . 1027 2 5 - 0 . 1 0 2 7 2 5 0. 102725 0. 102725 12 1 9 3 . 1 3 50 7 . 5 0 . n 7 05 26 10 5755 0 05 0 . 0 - 0 . 1 0 o 4 74 -0 . 106474 0 . 10 64 74 0 . 106474 13 2 06 . 1 .3 10 5. 9 0 . 0 7 4020 1 i 800 1 0 0 7 0 .0 - C. 100214 - 0 . 1 0 C 2 1 4 0 . 1 0 0 2 1 4 0 . 100214 14 225 .0 7253. 4 0 . 0 8 .2266 3 5738 0 00 0 .0 - 0 . 1002 15 - 0 . 100215 0 . 100215 0. 100215 MOLES CF PCTTCM PRCOUCT = 3 . 573773 MOLES OF TOP PRODUC T 1. 3326C c PERC ENT CF FACH A T OM UNACCOUNTED FOR 0.0427 0. C353 - 0 . 0 2 1 5 PERCENT OVERALL UNBALANCE - 0 . 0 1 4 6 STOP 0 EXECUTION TERMINATED SGET DATA 1 READY. SSIG H H i r - 8 9 ._A_J .UJ.AL -C .QND£NSE.R_1S^SXPUiUIUS^.LNJLijy'UajlE n„ L I QJ.I1J] , A TOTAL REBOILER OE PART Op THE COLUMN LIQUID 15 WSFn RETURNING SATURATED VAPOUR OE THE SAME COMPOSITION AS THE COLUMN BOTTOM PRODUCT TOP PLATE IS 7 PEED PLATE IS 10 BOTTOM PLATE IS 13 COMPONENT 1 IS ETHYL ALCOHOL COMPONENT 2 IS ACETIC AC 10 COMPONENT 3 1 S WATER COMPONENT 4 IS ETHYL ACETATE REFLUX RAT IO = 5.000 HEAT INPUT TO REBOILER = 60000.0 ENTHALPY OF FEED = 0.0 COLUMN PRESSURE I s 760.00 A 5 . 1629 7. 1881 7.9668 7. 1023 B 1.623 . 2200 1416.7000 1688.2100 124 5 . 2388 c 225 .9800 21 1. 0000 228.0000 217. 9410 ENTHK 0 .0 0.0 0.0 0.0 FN THL n .0 0.0 0.0 0-0 FNTHU 0 .0 0.0 0.0 0. 0 ENTHH 9395 . B984 5805.0000 9720.0000 7040.0000 DENSITY 17. 1590 17.4800 55.5600 10.2300 CP 0.0 0.0 0.0 0. 0 COMPONF NT MOLECULAR WTS 46. 00000 60. 00000 18 .00000 88.00000 FEED MOLECULAR WT. 53.00000 FEED RATE (MOLES) 4.90566 FEED LIQUID 0.500000 0.500000 0.0 0.0 TOLERANCES BDFEPR 0. 0001 00 PRDERR 0.001000 REACTIONS CONSIDERED ARE REACTION COMPGNENT AF EF AR ER 1 2 3 4 5 6 7 8 9 1 -1 - 1 1.0 1.0 1 1 .0 1 1.0 0 0 0 0 0 0 .238000E-03 0.0 0.815000E-04 0 . 0 REACTION FORWARD REACTION COEFF. REVERSE REACTION C O E F F . 1 ATOMIC MAKF-'IP OF MOI ECULES  MOL ECUL E ATOM 1 2 2 0 4 2 4 6 2 8 3 2 1 1 2 INITIAL CONDITIONS TF"P 212.0 212.0 212.0 212.0 212.0 212.0 212.0 212.0" 212.0 VAPOR 2.0000 2.0000 2.0000 2 .0000 2.0000 2.0000 2 .0000 2.0000 2.0000 QUID _2 i5000 . 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 HOLDUP 20_.o oop 10.oooo" 1,0. oooo 10. oooo io .oooo 10.0000 JO_.J2_OO_O_ 10.0000 io.oooo CONVERGENCE IS NOT MET FINAL CONDITIONS ITERAT XI X2 X3 X4 X 5 X6 900 9 10 11 12 13 14 0 .337066 0 .832730 0 .810692 0 .744685 0 .593374 0 .541328 0 .001981 0. 0081 53 0 .029520 0. 098205 0 .276676 0 .287158 0 .003337 0 .003496 0 .017964 0. 030905 0 .034965 0 .059302 0 .157616 0. 150570 0 .141824 0 . 126205 0 .094985 0 . 112212 0 .444496 0 .274877 0. 274331 0. 3495 es 0 .516914 0 .516910 0. 094575 0 . 127287 0 .127288 0.111341 0 .080921 0 .080920 6 172.8 7 6 0 0 . 4 0 . 0 1.1089 5 .5446 59999.63 0 . 0 - 0 . 0 0 0 8 4 9 - 0 . 0 0 0 8 4 9 0 . 0 0 0 8 4 9 0 . 0 0 0 8 4 9 7 173. 2 9 0 1 7 . 7 0 . 0 6 .6536 5 .5484 0 . 0 6 0 .0 - 0 . 0 0 3 7 0 6 - 0 . 0 0 3 7 0 6 0 . 0 0 3 7 0 6 0 .003706 8 174 .2 9 0 1 3 . 3 0 . 0 6 .6568 5.5842 0.04 0 .0 - 0 .013774 - 0 . 0 1 3 7 7 4 0 . 0 1 3 7 7 4 0 .013774 9 177 .2 8 9 6 5 . 5 0 .0 6 .6923 5 .7235 0 .06 0 . 0 - 0 . 0 4 4 5 8 2 - 0 . 044532 0 .044582 0 .044582 10 I 84. 9 8 7 8 2 . 3 0 . 0 6 .8315 10.6922 0 .05 0 . 0 - 0 . 1 0 6 5 3 2 - 0 . 1 0 6 6 3 2 0 .106632 0 .106632 11 186 .4 8 7 0 2 . 7 0 . 0 6 .8944 10 .8045 0.02 0 . 0 - 0 . 101221 - 0 . 11)1221 0 . 1 0 1 2 2 1 0 . 101221 12 191.1 8 5 6 3 . 4 0 .0 7 .0066 11 .1134 0 . 0 7 0 . 0 - o . 105595 - 0 . 1 0 5 5 9 5 0 .105595 0 . 105595 13 2 0 3 . 3 82C1 . 9 0 . 0 7. 3154 11.9157 0 .05 . 0 . 0 - 0 . 105942 - 0 . 1 0 5 9 4 2 0 . 105942 0 . 105942 14 222 .9 7391 .2 0 . 0 8 .1177 3 .7977 0. 00 0. 0 - 0 . 105944 - 0 . 1 0 5 9 4 4 0 . 105944 0 . 105944 MOLES OF BOTTOM PRODUCT = 3 .797687 MOLES OF TOP PRODUCT 1.108926 TEMP VAPMOH QUIMOH VAPOR QUID QUNBAL SDXIN D X I N I 1 . N ) D X I N ( 2 . N ) DXI NI 3 .N) PERCENT OF EACH ATOM UNACCOUNTED FOR PERCENT OVERALL UNBALANCE STOP 0 EXECUTION TERMINATED 0 .0827 0 .0699 -0 .0194 - 0 . 0 3 2 3 $GET DAT Al R E A D Y . {RUN SPARE2 5=DATA1( I , 1 8 ) <• 1 2 3 , 40 ) •» ( 4 5 , 48 I EXECUTION BEGINS H H I C O s A_ J.0,1 AU..CCM)EJM.itR_l S_Jib tILM l.U.'iM'N<5_S ATM A .< t-'O t. 100 11) II~9I A KFHI I I LTR III" P A R I DE I HE COLUMN L I U U I I ) I S U S E D RETURNING S A I U K A I L ! ) V A P O U R Of I HE S A M E C O M P O S I T I O N AS I HE COLUMN P O T T O * P R O O U C I TOP PI ATI: IS 7 FPPD Pl.AIF IS 10 HUT TOM PLATE IS 13 COMPONENT 1 1 S ETHYL AlCCHOI. COMPONENT -j IS ACE! IC AC II) COMPONENT 3 1 s WATER C CMPONE NT 4 IS ETHYL A C E 1 ATE R E F L U X R A T I O = 2.000 HEAT I N P U T TU RE P O I L ER = 60000.0 E N T H A L P Y CF F E E D = 0.0 COLUMN PRESSURE IS 7 6") .00 A 1 62 <) 7 . 1 F S 1 7.9663 7.1023 1! 1623. 2200 I'd fc. 7000 16 38.2100 1 24 5. 2 3 38 C 2 2 A . 9 POO 21 1.0000 228.0000 217.5410 ENTHK. 0. 0 0. 0 O.-O 0.0 PNTHL 0 . 0 C O 0. C C. 0 ENTHU 0 . 0 0.0 0.0 0.0 EN1HW 13 5 5. 898'. 5805.COCO 9720.0000 704 0.0000 DENSITY 17. 1590 17.4300 55.5600 1C.2300 CP 0. 0 0.0 0 .0 0.0 COMPONENT MOLECULA R WTS . 46 .00000 60 . 00000 IB. . OOOOC 3.3. 00000 FEEP MOLECULAR WT. 53 .coooo FEED RATE (MOLES) 4.90566 FEED LIQUID 0.500000 0.500000 0 .0 0.0 TOLERANCES PDFPRR 0. 000100 PRDERR 0. 001000 REACTIONS CONSIDERED ARE REACTICN COMPONENT AF EF AR EP. 1 2 3 4 5 6 7 8 9 1 -1 1.0 -1 1.0 1 1. 0 1 1 . 0 0 0 0 0 0 0 .238000E-03 0.0 0.815000E-04 0.0 R E A C T I O N FORWARD R E A C T I O N C O E F F . R E V E R S E R E A C T I O N C O E F P . 1 ATOMIC MAKE-UP OP MOLECULES MOLECULE 1 2 3 4 5 6 7 8 9 ATOM  2 2 0 4 4 6 2 8 2 1 1 2 INITIAL CONDITIONS TEMP VAPOR QUID HOLDUP 212.0 2.0000 2 .5000 1.0000 212.0 2.OOOO 2.5 000 1 .0000 212.0 2.0000 2.50C0 1.OOOO 212.0 2.0000 2.5000 I. .0000 212.0 2.0000 2.5O00 1 .0000 212.0 2 .0000 2.5000 1. 0000 212.0 2.OOOO 2 -5 000 1.0000 212.0 2.OOOO 2.50 00 i .oooo 212.0 2.0000 2.5000 i .oooc FINAL CONDITIONS FINAL CONDITIONS ITERAT 119 XI 0 .977160 0.950571 XZ 0 .009332 0. 031691 X3 0 .001407 0 .003746 X5 0 .013103 0 .013992 3 9 10 11 12 0.39 07 44 0 .770326 0 .552455 0.4.47253 0 .279544 0 .CS 775 1 0 .205831 C.397982 0 .506928 0 .694039 C.CC6572 0 .009772 0.005188 0 .014558 0 . 0 1 7 ° 4 0 0 .C14533 0 .C13572 0 .010335 0 .011222 0 .008429 0 .004223 14 0 113372 0 367119 0 0 153 64 0. C04146 N T EMP VAPMOH OU IMOH VAPOR OUID OUNBAL SDXIN DX I N (1 , N1 DXIN(2 ,N1 D X I N I 3 . N ) 6 173.2 7600 .4 0 0 2.1432 4 . 2664 59999 .57 0 .0 - 0 000563 - 0 . 0 0 0 5 6 3 0 . C 0 C 5 6 3 0 .000563 7 1 74 .1 9 3 3 1 . 2 0 n 6 .4300 4 . 3257 0 .07 0 .000000 -0 002086 - 0 . 0 0 2 0 8 6 0 .002086 0 .002086 8 176-2 9 2 7 1 . 9 0 o 6 .47 11 4 . 4292 0 . 0 5 0 .0 - o 0C5443 - C . 0 C 5 4 4 3 0 .005443 0 .005443 9 180 .9 9 1 3 3 . 3 0 0 6. 5654 4 . 64 3 2 0 .05 0 .0 - 0 011152 - 0 . 0 1 1 1 5 2 C.011152 0 .011152 10 189 .8 8339 .5 0 0 6 .7877 9. 7433 0 .07 0 . 0 - 0 016467 -0 .010457 0 .016467 0 .0 16467 11 156. 1 8 5 5 9 . a 0 0 6 .9769 10. 2499 0 .07 0 . 0 - 0 017000 - 0 . C170GC 0 .C17000 0 . 01 7000 12 2 0 9 . 5 3 0 1 7 . 6 0 a 7. 4 8 3 5 11. 2 3 6 0 0.08 c .0 -0 014140 - 0 .014140 0 .014140 0 .C14140 13 226 .5 7083 .3 0 .0 8 . 4 7 06 12. 3237 0 .04 0 . 0 - 0 00722? - 0 . CC722 9 0 .007229 0 .0072 29 14 238 . 4 6276. 2 0 0 9. 5599 2. 7633 0 .00 0 .0 - 0 007220 - 0 . 0 C 7 2 2 0 0 .007220 0 . 007220 MOLES CF ECT TOM PRCDUCT 2 .768305 PERCENT OF FACH ATOM UNACCOUNTED FOR MOLES OF TOP PRODUCT 0 .0030 - 0 . 0 8 7 5 - 0 . 0 0 9 0 2 .143194 PERCENT OVERALL UNBALANCE STOP 0 EXECUT ION TERMINATED - 0 . 1190 SGET 0ATA1 READY . $RUN SPAP.E2 5= DAT A1 EXECUTION BEGINS H H I CD 1 1 - 9 3 A TOIAI C O N D E N S E R is usi •> K E I U H M N C . S A U . I R A I F O L I Q U I D A TOTAL PO'CILER DF PART DF THE COLUMN L 1 C U I I I IS USFD Rl : TURN1 NO SATlKAIF.D VA"IHI