Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Densities and melting points of normal straight chain hydrocarbons Keays, John Lake 1942

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1942_A7 K3 D3.pdf [ 14.04MB ]
Metadata
JSON: 1.0059116.json
JSON-LD: 1.0059116+ld.json
RDF/XML (Pretty): 1.0059116.xml
RDF/JSON: 1.0059116+rdf.json
Turtle: 1.0059116+rdf-turtle.txt
N-Triples: 1.0059116+rdf-ntriples.txt
Original Record: 1.0059116 +original-record.json
Full Text
1.0059116.txt
Citation
1.0059116.ris

Full Text

DENSITIES AND MELTING POINTS OF - i .NORMAL STRAIGHT-CHAIN HYDROCARBONS by JOHN LAKE KEAY'S T h e s i s s u b m i t t e d . i n P a r t i a l F u l f i l l m e n t of the Requirements f o r the Degree : ... ' of. MASTER- OF.APPLIED SCIENCE ' ' ~" , • i n the Department of ' CHEMICAL ENGINEERING:- The U n i v e r s i t y of B r i t i s h Columbia May, 1942. PREFACE The work d e s c r i b e d i n t h i s t h e s i s r e p r e s e n t s ; ( l ) the author's own r e s e a r c h e s d u r i n g the past y e a r , and (2) a c o r r e l a t i o n of t h i s work w i t h t h a t of o t h e r workers i n the same f i e l d , , , p a r t i c u l a r l y of those who preceded the author i n t h i s l a b o r a t o r y . The u l t i m a t e purpose of t h i s p r o j e c t was t o c o l l e c t ; , d a ta on the normal s t r a i g h t - c h a i n h ydrocarbons, such d a t a t o be of v a l u e t o the pet r o l e u m i n d u s t r y and those w o r k i n g w i t h petroleum p r o d u c t s . That ..the p e t r o l e u m i n d u s t r y i s i n t e r e s t e d 1 i n such i n f o r m a t i o n i s proved by the f a c t . t h a t i t sponsors a v a s t amount of p h y s i c a l and c h e m i c a l r e s e a r c h . I n p a r t i c u l a r , the p r e s e n t work was made p o s s i b l e by a s c h o l a r s h i p from: the: Standard O i l Company o f ' B r i t i s h Columbia, and the a u t h o r wishes t o e x p r e s s h i s thanks f o r t h i s a s s i s t a n c e . I n a d d i t i o n , the author would / l i k e t o thank Dr. W.F... Beyer, of the Department of C h e m i s t r y , f o r h i s c o n s t a n t h e l p and a d v i c e throughout the course of the work. - • - S e v e r a l o f . t h e s e n i o r .students, a l s o , gave v a l u a b l e a s s i s t a n c e i n .the p r e p a r a t i o n and p u r i f i c a t i o n of the h y d r o  carbons ; two of the most h e l p f u l were E .L.. .Smith, and S. Cavers. Signed? May, 1942. CONTENTS I n t r o d u c t i o n . .1 M a t e r i a l s Used ' S y n t h e s i s . . . . . v.. . ...................... .2 P u r i f i c a t i o n . . . . . . . ; . <,.«,2;/ E x p e r i m e n t a l Procedure Temperature C o n t r o l . . . . . . . . . . . . . . . . . . . . . . . . . . 10 D i l a t o m e t e r Tube * . . l l C a l i b r a t i o n of D i l a t o m e t e r Tube. . . . . 1 2 M e l t i n g P o i n t s of the Hydrocarbons .15: (Table o f S e l e c t e d V a l u e s ) . . . . . . . . . . . . . ... . .58 G~©n© 1^ 3,1 Tfi© Gjtr*y«»* • • • • * • • • • •» • • • * • • * • • * ••«•»«• 3.3 R e s u l t s and Ge n e r a l D i s c u s s i o n of Each Hexadecahe .... .....46 S i c o s £ixi© •••••« • i » • » i » • c • » » » • • • « » » t » Docosane... Tetracosane Hexacosane. Octacosane. Nonacosane. • • • • i. p « 0 «•••-•<• c 5^ * • # • • • e <• s •• « • • © • 55,-- • • • « ••**«*« »« e *59 fii. . . . . ...66 T r i a c o n t a n e . ............... ..... . .68 D o t r i a c o n t a n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 C o r r e l a t i o n of R e s u l t s sjL*tjxon . P o i x i t 3 • » • • • • • « « « » • e**• • « » » • • • • 75...- . L i m i t of T r a n s i t i o n P o i n t s . . . ...77 Shape of. Curves over E n t i r e Range.'.............81 3 utiniiiSjX1 y •• • • • « • • «« * • «***.».» • •. • ^ » » •«• • *»«««.•»•.«.*.• ••»••• 35 Bit) o^ 3^ *3i^ )i!i » • * • • • • • • « • • * * • * • • •<»«•.• ».•»•.*••.• • •.«8 6 Appendix... I (Pre par a t i on and Pur i f i c a t i o n ) 8'9 Appendix I I (Sample C a l c u l a t i o n s ) ....................*95 Appendix I I I ( S p e c i f i c Volume of Mercury)...... . 9 8 " Appendix;.IV/ ( D e n s i t y V a l u e s ) ........ .........100 DENSITIES AND MELTING POINTS OF NORMAL STRAIGHT-CHAIN HYDROCARBONS This investigation and others carried out in the same laboratory are intended' to serve two ends. From a purely theoretical point of view, they add to the general accumulation of s c i e n t i f i c data. In addition, they are a primary need in design work. The design of plants or the? development of chemical processes on a commercial scale w i l l be, i n general, e f f i c i e n t and profitable i n direct proportion! to the number of unknown factors which can be eliminated. These unknowns usually involve physical constants of the reacting substances. The pr e c i p i t a t i o n of the heavy hydrocarbons i n petroleum by the addition of l i g h t paraffins may be taken as a p r a c t i c a l example of the need for exact physical data. In order to increase the eff i c i e n c y of the process, i t was f i r s t necessary to obtain accurate and complete data on the mutual s o l u b i l i t y of the paraffins. A study of these solu b i l i t i e s led:to an investigation into the phase r e l a t i o n  ships between different members of the par a f f i n series.. A part of this work dealt with the s o l u b i l i t y of 32 in various lower members of the normal, straight-chain a l i p h a t i c s e r i e s . 2 ^ It was discovered that the freezing-— 2 - - point curves of d i c e t y l i n propane and "butane showed a change in curvature at approximately 15°C below the melting- point of the d i c e t y l . 2 ^ This deviation was attributed to the fact.that d i c e t y l existed i n at least two c r y s t a l l i n e forms, and i t was found necessary to obtain more precise information on the c r y s t a l l i n e structure of the paraffin hydrocarbons. • Since variation i n c r y s t a l l i n e structure was known to be accompanied i n many cases by variation i n density,, i t : was decided to study the change of density of the pure par a f f i n members with change i n temperature. The d i l a t o - metric method, seemed to be best suited for t h i s purpose. The investigation into the density and t r a n s i t i o n points off the higher a l i p h a t i c hydrocarbons was begun by Morris-^ and continued by Yatabe32 and Patterson 2 1-'. MATERIALS USED Synthesisi It was necessary f i r s t of a l l to obtain•individual members of the series i n as pure a state as possible. The homologues studied thus far have been 16-34- inclusive for the even members, and the single odd member 2 9 . The sources of each specimen used, together with d e t a i l s of p u r i f i c a t i o n , are given i n Appendix. I. P u r i f i c a t i o n ; In the case of p r a c t i c a l l y a l l the hydrocarbons synthesized i n this laboratory, the f i r s t step i n p u r i f i -cation was to heat the crude product with small portions of concentrated sulphuric acid at 130°C, following the method: of P i p e r 2 2 . ' The.sulphuric acid quantitatively removed ketones and alcohols. In general this treatment tends to raise somewhat the melting point of the sample. Because the fatty acids are soluble to an appreciable extent i n sulphuric; acid, whereas theoretically the hydrocarbons are not, t h i s treatment should also be effective i n removing any fatty acid impurity remaining from the Peterson synthesis.(cf. p.. ) The melting'points of the paraffins being somefehat higher: - than those of the corresponding fatty acids from which they are made, i t i s reasonable to suppose that removal of any acid impurity present .would raise the melting point of the. hydrocarbon. In practice i t i s found that there i s considerable: loss of hydrocarbon i n the hot, concentrated sulphuric ac&dU Piper mentions a loss up to 2<2?o9 but i n the case of 2 0 at least, the loss,was closer to 5 0 ^ before completely chair- free, sulphuric.acid was obtained upon heating with the hydrocarbon. In the case of 18 the hydrocarbon was consi dered too valuable to r i s k losing a l l or any part of i t i n this was; i n consequence i t was not treated with sulphuric, acid. For those paraffins synthesized by a Grignard reagent, Oldham and Ubbelohde 1^ suggest that a more rapid p u r i f i c a t i o n can "be effected by heating the par a f f i n with 2 0 ^ oleum at 100°C. u n t i l the test for halide i s negative, then heating for a short time with concentrated sulphuric, acid a t 130°G; i n order to remove any sulphonic acids present. Following i s a description of the general method and apparatus used i n the p u r i f i c a t i o n of many of the homo- logues .investigated. The method described was employed for 18, 2 0 , 2 6 , and 3 4 . The most common method of p u r i f i c a t i o n involves the r e c r y s t a l l i z a t i o n of the hydrocarbon from some solvent such as acetic acid, ethyl alcohol, or ether. Acetic acid i s considered to be the best solvent, because the higher members of the paraffin series are only s l i g h t l y soluble i n g l a c i a l acetic acid at b o i l i n g temperatures, and- almost • completely insoluble i n the acid at room temperatures. The larger the volume of solvent used for a given weight of hydrocarbon, the greater w i l l be the amount of soluble impurity removed. In practice the paraffi n i s dissolved in hot, g l a c i a l acetic acid by reflux i n g to the extent of from 1-3 grams of hydrocarbon per l i t e r of acid. Upon cooling, the hydrocarbon c r y s t a l l i z e s out i n a mass of small, white needles. This procedure i s repeated u n t i l the sample gives a constant melting point. In some cases i t was found necessary to repeat the cr y s t a l l i z a t i o n s as many as twenty times, ,the final'melting point being approached assymptoMcally. In order to f a c i l i  tate the operation -and to reduce the p o s s i b i l i t y of contamin ation from outside sources, the apparatus shown i n Figure I was devised and blown from pyrex glass. Two 6 - l i t e r flasks are connected as shown across a condenser. The hydrocarbon to be p u r i f i e d isr. dissolved i n pure g l a c i a l acetic acid and poured into flask B-3 through the* condenser under vacuum applied through 1 and 3 . If t h i s method i s not p r a c t i c a l , then B3is f i l l e d with thd acid andt the soled hydrocarbon i s dropped down through the condensers Flask B5is then heated and the mixture i s allowed to r e f l u x for several hours. By this method i t was possible to purify up to 5 0 grams of the hydrocarbon at one time. The acid was allowed to cool to room temperature, whereupon the hydrocarbon c r y s t a l l i z e d out and collected as a diffuse white, cloud-like layer on top of the acid. The section marked ( 6 ) i n figure I consists of four inches of. 1-inch bore pyrex: glass, joined on to i - i n c h bore tubing. This tubing i s connected through stop-cock 4. to flask A. The expanded section 6 . i s f i l l e d with acid-washed", glass wool and so packed as to provide a f i l t e r for the hydro carbon crystals and whatever s o l i d or insoluble impurity might be with the sample being p u r i f i e d . With stopcocks 3 and 2 closed, suction i s applied through 1 , transmitted through stopcock 4 , through 5 and 6 to the bottom of flask B. When a l l the mother liquor has "been drawn into A from; B, stop cocks 2 and 4 are closed, 3 i s opened, and heat i s applied to flask A. Acid i s d i s t i l l e d into B u n t i l one or two inches remain i n the bottom of A. With successive cycles of operation the hydrocarbon in B. becomes cleaner and the acid i n A becomes d i r t i e r . At, regular intervals a sample of hydrocarbon i s withdrawn from B. This i s done as follows? when a l l but 50-100cc. of acid has been suctioned into A, a long glass tube i s inserted i n to B through the mouth of the condenser at 7, through which several cc.of acid and crystals are drawn o f f . The crystals are f i l t e r e d off, washed thoroughly with d i s t i l l e d water, dried, and a melting point determination i s made. When the hydrocarbon i s considered s u f f i c i e n t l y pure, as indicated by constant melting point, stopcocks 3 and 4- are closed, pressure i s applied through 2, and the d i r t y acid i s discharged through 2. The cold acid, which by this time contains megligible soluble impurity, i s drawn from B:3 into A, heated i n order to ensure complete cleansing of ,A, and as before, H>lown out .through 1. Mask B3 i s then r e f i l l e d with fresh acetic, acid, heated to boiling,., and the: entire contents of the flask, that i s , acid and whatever liquid, hydrocarbon was not taken into solution during the refluxing, are drawn over into A. From there they are drawn or blown d i r e c t l y into a receiving flask. A l l passages are: — 8 — cleared of hydrocarbon by drawing hot acid washings down through 7 , ; up. through 6, 5 , and 4 , and out at 1 . The method was found to be slow i n the case of 34,_as the higher members of the series are increasingly insoluble i n acetic acid. Carothers^- made use of the following solvents for the p u r i f i c a t i o n of higher aliphatic: members; Member.. Melting Point. Solvent used for C r y s t a l l i z a t i o n 2 0 ' 3 5 . 0 - 35*6' Absolute Ethyl alcohol 30 6 5 . 0 - 6 6 . 0 Absolute Ethyl plus Ethyl Ether 40 8 0 . 5 r 8 1 . 0 Ethylene Chloride 5 0 ; 91 . 9 - 9 2 . 3 : : L i g r o i n plus Petroleum Ether 60 9 8 . 5 - 9 9 . 3 . ' Butyl Acetate 70 1 0 5 * - 1 0 5 . 5 Butyl Acetate Table I., A slight modification i n the above method of: p u r i  f i c a t i o n was necessary for the lower members such as 2 0 . In t h i s case the hydrocarbon was too soluble i n the acid aU room temperatures to effect;a good separation of crystals,, so flask B^was kept under a spray of cold water after refluxing. The above method made i t possible to keep the hydrocarbon from the a i r and other possible sources of — 9 — contamination during p u r i f i c a t i o n . The sources of contamin ation were thus reduced to the apparatus i t s e l f , the reagents used, and subsequent treatment of the hydrocarbon. The f i r s t source was eliminated insofar as possible by cleaning the apparatus successively with dichromate solu tion, d i s t i l l e d water, and acetic acid. In order to e l i m i  nate the p o s s i b i l i t y of contamination from the vasseline used on the stopcocks, several l i t e r s of hot acetic acid were drawn through a l l stopcocks,, before the hydrocarbon was introduced into the flask. The second source of contamination, namely, the acid i t s e l f , could never be completely controlled. In the case of one sample of 3 4 , the specimen being p u r i f i e d had a decidedly yellow tinge which was not removed by forty c r y s t a l l i z a t i o n s . The acid residues were removed several times, but each time after several d i s t i l l a t i o n s the r e s i  dues were yellow i n color. In this case i t was suspected that either a l l the acid used was contaminated, or i n some, manner decomposed upon repeated heating. It may be mentioned that t h i s particular sample of 34 was never obtained color less, and i n the dilatometer gave a setting point of 71.5::* which i s several degrees lower than the accepted value. (cf p.38) The question arose as to whether or not this method of p u r i f i c a t i o n could be used to advantage on quantities o f material greater than that soluble in b o i l i n g acetic acid.. — 10-- The refluxing ensures intimate contact "between the hydrocarbon! and the acid, and i n spite of the fact that i t was no longer a matter of -straight r e c r y s t a l l i z a t i o n , i t was believed that;: considerable quantities of pure paraffin could be obtained by this method regardless of whether or not a l l the hydro carbon actually had been taken into solution and crystallized: out. EXPERIMENTAL PROCEDURES The apparatus and technique used by a l l investiga tors in this work have been essentially the same. Fbr t h i s reason only a rough outline of,the equipment and procedure followed.is given, except for those d e t a i l s which are consi dered of importance and have not appeared elsewhere. Temperature Controls The constant-temperature bath used-*-^ consist&dl o f a large glass container equipped w i t h ^ s t i r r e r , variable heating c o i l , stand for dilatometer bulb, c i r c u l a t i o n appara-i» tus for cold water, f a c i l i t i e s for keeping the l e v e l of: water constant i n the bath, and thermoregulator. Originally i t was the practice to change the sensi- tive l i q u i d i n the thermoregulator bulb whenever required. The author found i t more convenient to arrangd- a"complete series of sensitive l i q u i d s covering the range from 15-9.0°© In approximately 5°C; in t e r v a l s . Once made, these tubes could: be placed i n the c i r c u i t whenever needed, and could be used i n d e f i n i t e l y , thus saving on time and materials. The sensitive l i q u i d control i s dependent upon baro metric pressure, and the temperature of the hath was found to fluctuate i f l e f t unattended^ hut by careful manual control i t was possible to maintain any temperature i n the range 20°~ 80° to within 1/50 of a degree for as long a period as desired. The t o t a l range covered was from 0-95 °®» the hlghesti temperature obtainable with the bath used. using a high boiling-point l i q u i d i n the bath (glycol, for example) and with a s l i g h t modification of the dilatometer tubes to take care of the increased volume needed £or the added expansion of the hydrocarbon,. the density curves could be investigated at higher temperatures. Dilatometer Tubes;• Some d i f f i c u l t y was encountered i n placing the sample i n the dilatometer bulbs.. From a piece of small-bore thin-walled glass tubing i s drawn a tiny funnel as shown. This funnel i s cut off to such a length as w i l l just clear the dilatometer bulb stem. Figure II The bulb, funnel and cork are placed i n an oven atL 100°G^, and the l i q u i d sample i s poured i n . The entire unit i s withdrawn from the bath with as l i t t l e disturbance as possible and the hydrocarbon Is allowed to s o l i d i f y . An ice: bath may be used i f necessary. The f i l t e r i s then withdrawn, i f possible i n such a manner that i t does not touch the walls of the stem. I f this i s not possible, then a certain amount of hydrocarbon w i l l c l i n g to the walls of the dilatometer bulb stem. To remove t h i s , the bulb i s inverted (freezing the hydrocarbon i f i t i s l i q u i d at room temperature), and a--; small twist of clean paper used to remove a l l trace of hydro carbon from the walls. During the course of thi s and subse quent operations, the hydrocarbon should be protected as much as possible from the atmosphere. A complete description of the method of preparing the dilatometer bulbs and tubes i s given by Patterson.. 2 0 Calibration of the tubes: The theory of the determination of absolute density i s r e l a t i v e l y simple. A weighed sample of pure hydrocarbon i s placed i n a bulb attached to a c a p i l l a r y stem. A weighed amount of Hg i s placed i n the remainder of the bulb, and i t s height i s measured above a fixed reference point on the stem at some fixed temperature. This gives us the weight of mercury alone, and, the specific, volume of mercury being accurately known, i t s volume at the temperature required. By removing — 1 3 — the hydrocarbon and replacing i t with mercury, measuring the- height at the same temperature and making corrections for: the expansion of the glass, we can obtain the volume of the mercury plus hydrocarbon. Subtracting one from the other gives the volume of hydrocarbon alone, and dividing into the weight gives the density. By measuring c a p i l l a r y heights at various tempera tures and making the necessary calculations, we can obtain temperature-density curves. The shape of the courve obtained indicates the changes of c r y s t a l l i n e structure with tempera*- ture. A sample of the calculation necessary for c a l i b r a t i o n of the tubes and conversion of c a p i l l a r y heights to densities i s given i n Appendix II.. For the convenience of anyone who might be making: the same calculations, which are somewhat tedious, the speci f i c volume of mercury at one degree intervals i n the range 0-100°C:is given in Appendix. I I I . MELTING POINTS OF THE NORMAL STRAIGHT CHAIN HYDROCARBONS Diiring the course of the investigation into the temperature-density curves, i t was found feasible at the same? time to study the melting-point relationships of the normal straight-chain paraffin series.. A survey of the l i t e r a t u r e reveals that considerable? variation may exist i n the melting-point values given for any h • I was reached within a few minutes, 'but not so i n the curves sections A-^-Bland B^ -G:;. As the regions of sharp transition- were approached, the time required for the mercury level to reach a constant value increased rapidly. . In the •0.1-0.2°© interval between ti^., and (that i s , at a temperature just below the setting point):. i t required from one to two weeks for equilibrium to be established. During th i s time i t was necessary to control the temperature as closely as possible. In actual practice, due to the necessity for leaving the bath unattended overnight, the temperature varied by as much Temperature Figure I I I . When .the highest possible mercury l e v e l had been reached, the temperature was lowered by suitable increments,, readings taken, ..and the values plotted i n order to provide a check on the previous curve. It.was found that on a descend ing* temperature scale, ;. the point GO f o r any given sample? The cap i l l a r y heights, were plotted Immediately as found. This was done for two reasons. The c a p i l l a r y height- temperature curves w i l l "be close i n shape to the density- temperature curve, .and therefore any discrepancy In the la t t e r (due to impurity, say) w i l l show up at once i n the latter:. Further, the c a p i l l a r y height-density curves show at: a glance the temperature at which any t r a n s i t i o n points occur and thus indicate what regions must be reinvestigated. The 'general method of obtaining these curves follows. After the tubes had been placed i n the constantt temperature bath, the height.of the mercury column i n the dilatometer stem, above a. fixed zeno c l i p , was plotted: against: temperature. , The general, form.of the curve obtained i s shown i n Figure III,,where Hi represented the f i r s t t r a n s i t i o n point .and C.'the second t r a n s i t i o n or melting point. Readings were begun at.O°"Gj. The bath was kept at this temperature u n t i l a constant reading of the mercury l e v e l had been obtained;: the temperature was then raised several degrees and held constant u n t i l equilibrium had been reached. The process was repeated at temperature intervals s u f f i c i e n t l y close together., to ensure a smooth and continuous curve. The: curve given i n Figure III i s an idealized form of the curve- for. a l l members of the. aliphatHc, series greater than 18 and less ..than 44. In the regions AAA1,, B;-B?-, . and OG^j equilibrium n Melting Points. Observed', b.v; This Lab. Hildebrandl Piper 16 18? 2 0 36.4- 36:.55 22 4 4 . 0 4 4 . 0 24. 5 0 . 9 5 1 . 0 26' 56SO 5 7 , 0 5 6 . 4 - 5 6 . 6 : 28 6 1 . 4 . 6 2 . 0 61.4-61.55 29 6:3.5. 6 4 . 0 6 3 . 4 - 6 3 . 6 30 6 5 . V 6 6 . 0 65;. 6-65" . 8 3.2 6 9 . 8 : 70 6 9 .55 - 6 9 . V, 34 . 7 2 . 9 7 3 . 5 Table I I . setting point, obtained upon cooling, as distinguished fronr the melting point, obtained.upon heating, for purposes of establishing the purity of the members under investigation. Where the exact.melting point was found to be somewhatt indeterminate, or at least variable, with observer and rate o heating, the setting point, determined by the appearance of. the f i r s t c r y s t a l upon slow cooling', could be reproduced to within ,0.2.-0.1°G3 for any one sample. As can be seen from the density temperature curves, the same t r a n s i t i o n values were obtained upon heating or cooling with a l l members except; 16 and 1 8 , and i n the case of these, members the higher value i s taken as being i n best agreement with values obtained from other sources.. one hydrocarbon. Hildebrand and Wachter0-; for example, found that the melting-points recorded for 32 varied from 68°C:.to7S°C:« Selecting the best values available i n the- range 19 to 3 8 , they plotted the number of carbon atoms against the melting point, and from the resulting curve, suggested a set of values i n the range 19 to 3 6 . This method, i s probably as satisfactory as any, so long as the melting points vary regularly with the number of carbon atoms, and provided there i s no alternation between the melting points of the odd and even members of the series in the range con sidered. It was our purpose to extend the above correlation, and to discover what i r r e g u l a r i t i e s , i f any, existed. The purity of the samples used i n t h i s work was f i r s t determined by the constancy of the melting-point, deter mined by the method of P i p e r 2 2 * The values obtained.are given i n Table II, together with the .corresponding values according to Hildebrand, and those given for the same members- by Piper. A l l the values obtained except that for 22 are lower than those suggested by Hildebrand, but they are i n good agreement with Piper's values. As pointed out by Piper the slow heating used i n his method, results i n values 0 . 4 - o . 7 ° lower than those obtained by the usual method of melting point determination. In our work i t was found advisable to use the could be determined with an accuracy limited only be the r i g i d i t y of temperature control, the accuracy of temperature measurement, and the patience of the observer. In the case of 20, for example, an i n i t i a l deter mination fixed point 03 between 3690J and 37°C'. The temperature was raised to approximately 50°CT (that i s , well above the melting point) and readings retaken along C^-ffi. The temper ature was lowered by 0.1°C. increments below 37GG.:, and Gj was found to l i e between 36.2: and 36 .3°0- . . The temperature was once more raised well above the melting point and 0:'~ffi retraced.to 36 .3°CC The temperature of the bath was held 1 constant.at 3 6 . 3°C for half an. hour, during which no change in the mercury height could be observed.. The temperature was then powered".by 0.02°C: increments and kept constant at. each point u n t i l i t was certain that the height did not change.. / This procedure was repeated u n t i l the temperature, had been lowered to 36.22°G-;. While the temperature was dropping from 36.24- to 36.22°C_, the l e v e l i n the dilatometer tufee. wavered for a few seconds and then suddenly dropped. With the temperature being maintained at 36.22-36.20°G: for two days, c a p i l l a r y heights were recorded at regular intervals u n t i l equilibrium had been reached. Table III gives the values obtained just below the f i r s t t r a n s i t i o n point (,cf, p.. 14) for 22, and these figures plotted i n Figure IW. Capillary Height. Time. 29.70 1 min 28.9.5. 2 11 28.42 5. 11 2 7 . 7 2 10 11 it 2 6 . 0 8 2 0 11 <.i 2 5 . 6 8 . . 30 . 111! 24 .80. ' 40 lilt 24.10 5.0 III! 23.48? 60 III! 22.36. 80 fill 2 1 . 4 5 100 till 2 0 . 6 0 1 2 0 Utl 18/68. J* 3 hours 17 .34 r 4: 11 1 6 . 2 0 5 11 1 5 . 0 3 6..' 11 14 .75J 7. ti 14 .30 8 11 14 . 0 0 9 ti 13.92 10 11 1 3 . 8 9 15 it Table III 200.,. 3 0 0 . 400 5 0 0 Time i n Minutes 6 0 0 FI&URE IV. It:.can be seen that considerable time i s required; for the hydrocarbon to reach equilibrium at the t r a n s i t i o n point under,conditions of constant temperature. The curve is assymptotic.to a c a p i l l a r y height of 1 3 . 8 5 cms, this value representing equilibrium. In the case of 2 0 , . point C was determined three times, the values obtained agreeing within I / 5 0 of a degree CC. This point,, being fixed,, determinable to a high degree of.accuracy, and exactly reproducable, i s taken as the setting point for 2 0 . , The corresponding values thus found for the other hydrocarbons investigated are given i n Table IV/.. n. Setting Point 16-:; - 18.3'-' 18. 2 7 . 6 ' 2 0 3 6 . 2 22. 44. l ' 24 50.77 2 6 5 5 . 8 2 8 ; 6 1 . 2 2.9: 6 3 . 2 3 0 . 6 5 . 4 . 32 6 9 . 5 . 34: 72.9. . Table: IV/, As.has been;shown, these setting points are reproducible with a high degree of coincidence for any given sample. The same high degree of reproducabllity i s not obtain able, however,, with different specimens of the same member. In the case of 3 2 , for instance, two different samples from two different sources, supposedly of an equal degree of purity were used;, the melting points found i n Piper's apparatus checked within 0.2°G j, but the setting points obtained by the dilatometer method varied by 0 . 5 ° 0 i It may be assumed that thid difference i n melting point was due to difference i n purity. 22 was similarly checked, using two samples made from the'same acid by i d e n t i c a l methods of synthesis, p u r i f i e d i n the same manner, and enclosed i n almost i d e n t i c a l tubes, buH even here the melting points varied by 0.2°G3, It .was therefore assumed that the hydrocarbons were •not. s u f f i c i e n t l y pure to warrant recording their settings points to within more than 1/10°G j. Particular are was taken in the p u r i f i c a t i o n of theyhydrocarbon samples, but there s t i l l remains p o s s i b i l i t y of contamination... ...from the materials used in the synthesis and not completely removed during p u r i f i c a t i o n , from,the chemicals used i n p u r i f i c a t i o n , or possibly introduced while setting up the dilatometer bulbs. Nevertheless, we believe that the dilatometer method described here can be refined to provide means of determining melting: points within any desired degree of refinement, and should he seriously considered as a means for determining microanalyiii- c a l l y the melting points of: such homologous series as the.:. p a r a f f i n s , f a t t y a c i d s , a l c o h o l s , e t c . A d e t e r m i n a t i o n of the s e t t i n g p o i n t f o r 22 as d e s c r i b e d above took a t l e a s t two weeks, and t h i s f a c t would made the procedure as o u t l i n e d p r o h i b i t i v e i n many cas e s . However, a dilatometer- tub®-; s i m i l a r t o the one shown i n Figures-V/'might be used t o s h o r t e n c o n s i d e r a b l y the time off m e l t i n g - p o i n t or s e t t i n g - p o i n t d e t e r m i n a t i o n . The sample t o be t e s t e d c o u l d be p l a c e d i n the bulb) and kept i n a molten s t a t e w h i l e the mercury was poured i n t o f i l l c o m p l e t e l y . t h e b u l b and e n l a r g e d stem. The bulb) c o u l d then be p l a c e d on i c e , and-mercury added as needed, so t h a t at.some r e f e r e n c e temperature, say 0°S^ the mercury would be l e v e l w w i t h the g r a d u a t i o n on the d i l a t o m e t e r stem. W i t h the stem i n s e r t e d and the mercury s e a l f i l l e d , t he com p l e t e d d i l a t o m e t e r tube would be ready to be p l a c e d i n a co n s t a n t temperature b a t h . I f the m e l t i n g p o i n t were known, w i t h i n a degree or so, i t s h o u l d be p o s s i b l e t o determine 7 the t r u e m e l t i n g p o i n t t o any d e s i r e d degree of accuracy w i t h i n a few h o u r s . I n c o r r e l a t i n g the m e l t i n g - p o i n t s o f the normal p a r a f f i n s e r i e s ^ , we attempted i n s o f a r as p o s s i b l e t o s e l e c t . v a l u e s o b t a i n e d by one s e t of worke r s . For t h i s purpose we • 5 have used the s e l e c t e d v a l u e s of Deanesly and C a r l e t o n f o r the range 6-18, and our own from 18-34. F or 40, 5 0 , 60 and 70 we s e l e c t e d the m e l t i n g p o i n t s g i v e n by Garothers^-, and < j r G a p i l l a r y stem, s m a l l bore r B u l b C a p i l l a r y , l a r g e bor C a l i b r a t e d 0 Ground'glass j o i n t ; Proposed D i l a t ometer Tube for . , 3 6 , 5 2 , 6 2 , and 64, those of Gascard.^^ No single curve could he found to f i t the entire series, which i s -shown plotted as melting point versus number of carbon atoms i n Figure V/K M o u l l i n 1 1 suggested that the single equation log(n - 2 ) = 1 .0655 4" 5 • 2 9t i/ l0.2 could, be used. From this equation he obtained values for melting- points calculated from 3 to 3 1 . A comparison with the values-, from the International C r i t i c a l Tables^.selected values, together with Moullin's calculated melting points, i s given in Table W. . Moullin suggests that a discontinuity occurs at n=28, the line being displaced approximately 3°G3parallel to i t s e l f * This is scarcely borne out by a comparison of the calculated values with the suspect International C r i t i c a l Tables values given i n column 3> .even less so with the selec ted values given i n column 5« FIGURE VI o Yl = Y\o • C. oToms. Table V/. ru m. p. (Calc'd) m. p. (1926IC.T) Dev. m. p. (Selected) Dev. 3 * 2 0 0 - 1 9 0 - 1 0 4 -1453 - 1 3 5 - 1 0 5 - 1 1 1 - 1 3 1 2 0 7 . 8 6 . - 8 7 . 5 . - 9 4 6 . 5 - 9 5 . 3 : 7i — 6 9 . 5 ; - 9 0 2 0 . 5 - 9 0 . 6 : 2 1 . 1 8 • - 5 4 . 5 - 5 6 . 5 , 2 - 5 6 . 8 2 . 3 9 - 4 3 . 5 - 5 1 . 0 7 . 5 . i -53 . 7? 1 0 . 2 - 3 0 . 7 7 - 3 2 . 0 1 . 3 -29.71 - 1 . .0 i i - 2 1 . . 0 - 2 6 . 5 5 . 5 - 2 5 . 6 : 4 . 6 " . 12 - 12 5 - 12..b " — 0 . 5 . - 9 . 6 - 2 . 9 13 - 4 . 6 - 6,21 1 . 6 - 6 . 0 1 . 4 14. • - 2 . 7 : 5*5'. - 2 . 8 5 . 5 - 2 . 8 1 5 . 9 . 3 . 10 - 0 . 7 1 0 . 0 -0 .7? ' 16: 1 6 . 3 2 0 - 3 . 7 1 8 . 1 - 1 . 8 17. 2 1 25 . - 1 . 5 2 2 . 0 - 1 . 0 18 2 6 . 3 28 - 1 . 7 2 8 . 0 - 1 . 7 19 3 1 . 2 32 - 0 . 8 3 1 . 4 - 0 . 2 2 0 3 6 38 - 2 . 0 3 6 . 2 - 0 . 2 2 1 4 0 . 5 4 0 . 4 . 0 . 1 4 0 . 4 0 . 1 2 2 4 4 . 6 . 4 4 , 4 0 . 2 4 4 . 0 0 . 6 2 3 4 8 . 6 . 4 7 . 8 0 . 9 4 7 . 0 1 . 6 24 5 2 . 5 5 1 . 0 1,5 5 0 . 6 . 1 . 9 25. 5 6 . 1 5 4 . 0 2 . 1 5 3 . 3 2 . 8 26 5 9 . 6 6 0 - 0 . 4 5 5 . 8 2.8 27 63.O 5 9 . 5 3 .5 . . 5 9 . 1 2 , 9 28 6 6 . 2 65 1 . 2 6 1 . 2 4 . 0 29 6 9 . 3 ; '63.6.:. 5 . 7 . J 6.3.2 6 , 1 30 7 2 . 2 66 . 6 . 2 6 5 . 4 . 6 . 8 3 1 75. 68 7 . 0 6 8 . 0 7 . 0 32.. As shown i n figure ¥ 1 and as pointed out by Tsakalotos and others^"1", the n-mp;curve i s irregular at least as high as Gl . Tsakolotos proposed the equation 15 t = 8 5 - 0 . 0 1 8 8 2 ( n - 1 ) 2 where n i s the number of carbon n-1 s, atoms and t i s the difference i n melting point between n and the next.lowest member of the series. As shown i n Table VI, values calculated from his equation are i n excellent agreement. from 16 to 35 with values taken from K r a f f t - ^ : (from which the or i g i n a l equation was derived), and with the single value of 60 taken from H e l l and Hagelle . m. p... m. p Dev?. m. p. Dew. Tsak.Eqn. E r a f f t Selected". lo"; 17 . 1 18? - 0 . 9 1 8 . 1 - 1 . 0 17. • 2 3 2 2 . 5 0 . 5 2 2 . 0 1 . 0 18 : 2 7 . 7 2 8 . 0 0 . 3 28 . 0 - 0 . 3 19 3 2 . 0 3 ? 0 . 0 31 .4 - 0 . 6 2 0 3 6 . 2 36^7? •-Q.5' 3 6 . 2 - 0 . 0 2 1 40 . 1 40 .4 - 0 , 3 . 40 .4 - 0 . 3 22 4 3 , 7 . 4 4 . 4 - 0 . 7 . 4 4 . 0 - 0 . 3 2 3 ' 4 7 . 2 4 7 . 7 - 0 . 5 4 7 . 0 0 . 2 24 50.4 . 5 1 . 1 - 0 . 7 5 0 . 6 - 0 . 2 : 25 5 3 . 5 5 3 . 3 0 . 2 26 5 6 . 4 5 5 . 8 0 . 6 ; 27 59.8 5 9 . 5 0 . 3 5 9 . 1 0 . 7 28 6 2 . 4 6 1 . 2 1 . 2 29 64 .9 6 3 . 2 1 .77 3 0 6 7 . 3 : 6 5 . 4 1 . 9 3 1 6 9 . 0 : 6B.1L 0 . 3 68 1 . 0 32 11*2 7 0 . 5 • ' 0 . 7 . 6 9 . 5 5 1.7/ 33 7 3 . 3 7 2 . 0 1 . 3 : 34 7 5 . 3 7 3 . 5 1 . 8 35 7 7 . 0 7 4 . 7 2 . 3 75 2 . 0 36 7 8 . 8 76 2 . 8 6 0 1 0 1 . 5 1 0 1 . 0 - 5 4 , 9 8 . 9 2.6-- Table V.I A comparison of the calculated...values with those selected i n th i s work, however, shows that although the agreement i s excellent from.,16 to 2 5 , a definite and almost^constant deviation i s shown for members greater than 2 8 . Garner^, from a plot of Q/T versus n and Q versus n for the hydrocarbons 2 2 , 2 6 , 3 0 , 3 4 , obtained the eauations s Q/T: - 0^001991n ~ 0.00404 andi Q = 0.6085n - 1.753 whene Q «=> heat of t r a n s i t i o n and T = absolute temperature of t r a n s i t i o n . Eliminating Q gives the equation: Tf - 0.6085n - 1..751: , 0.00149In - 0.00.404 He used this equation to obtain the setting spoints of the hydrocarbons from 5 - 70. The values thus calculated are compared with the f i n a l selected values (cf page 3 8 ) in Table VTI. Considering the small number of paraffins used to obtain the equation, melting points derived from i t are i n f a i r l y good agreement with the selected values throughout the entire range. In the case of the above members, ie 22, 26,, 30, and 34, agreement i s within 0.2°C. Figure M I shows a plot of the selected values a against log(n-2). From Figure VII four equations have been obtained, and these equations, together with, the malting points calculated from"and the difference between selected and calculated values are given i n the following sections. - r 3 0 — n m. p. m. p.. Dev/. Gale 1& Selected 6 -126.7 - 93: - 3 3 . 7 7 7 , - 99.1 - 89 .7 - 9 . 9 8. >- 7 7 . 8 - 5 6 . 7 - 2 1 . 1 9 - 5 9 . 6 - 54.1 - 5 . 5 10 - 4 4 . 2 - 29.77 -14.5 11 - 31.1 - 27 . 6 - 3 . 5 , 12 - 19.8. - 10 . 0 - 9 . 8 13 - 9 . 9 - 6 . 3 - 3 . 6 ' 14 - 1 . 3 5 , 5 . - 4 . 2 15 6 . 4 . 10 .5; - 4 . 1 165 13 .3 1 8 . 0 ~ 4.7. 17r 19 .7. 2 2 . 5 - 2 . 5 18 25.O 2 8 . 3 - 3 . 3 19. . 3 0 . 0 ; 3 2 . 0 - 2.0 2 0 34. 7/ 3 6 , 2 ~ 1.53 22 43 . 0 43 . 2 - 0.2 26. 5 5 . 6 4 4 . 4 0.1 30 65 .6 . : 65>7f - 0 . 1 34. 73 , 0 73 .0 - 0.0 353 74 . 7 . 74 .4 0.3. 36 7 6 . 2 7 5 . 6 0.6 40 8 1 . 6 : 8 0 . 4 , 1.6 5 0 92 .0 90 .6 : 1.4: 54. 94 .9 94 . 0 0.9 60 9 9 . 9 99 - 0.2 62 100.5 100.5 - 0.6:' 64. 101 .0 102 - 1.0 70 104.2 105.4- - 1.2 Table TO The equation log(n-2) - 1.067 - 0.004l0t was found to correlate most s a t i s f a c t o r i l y the members 7-9-11-13- 1 5 - 1 6 . . n 2 C\i Z5 cnGLr d /_ O - a o -P-p - I CP 0 ox • o o o (2-u)0l9oi FIGURE VII ' n IE. p. O'alc'd m. p. Selected dev. 7 - 8 9 . 7 - 9 0 . 6 0 . 9 9 * " - 5 4 . 1 - 5 3 . 7 - 0 . 4 11 - 2 7 . 6 - 2 5 . 6 - 2 . 0 13 - 6 . 2 5 . - 65.0 - 0 . 3 . 15. 1 1 . 4 1 0 . 0 1 . 4 16. - 1 9 . 3 1 8 . 1 1 . 2 Table VIII The calculated! values are f a i r l y close to the observed values, except in the case of C - q. Members lower than 0^ ,, for both the odd and even members, are not included, as the deviation of observed from calculated melting points are too great. For the even members 6.-8-10-12-14-16, the best: equation was found to be log(n-2) =• 1 . 0 5 1 — 0.0048lt. n. m. p» Calc'd. m.p.. Selected: dev/. 65 - 9 3 . 3 - 9 5 . 3 2 . 0 8 - 5 6 . 7 • - 5 6 . 8 : 0 . 1 1 0 - 2 9 . 7 - 3 0 . 8 - 1 . 1 1.2 . - 9 . 6 - 1 0 . 6 - 1 . 1 14. 5 . 5 5 . 2 0.35 16: 1 9 . 3 18.-1 1 . 5 Table IX Here again the correlation i s f a i r l y good, apart from The 1941 edition of Hydrocarbon Constants^^ giv.es the melting point of Cg'-to be -94.5, which would reduce the deviation to 1.20C, but there i s no reason to assume that, t h i s l a t t e r value, taken from Parks 1 0-, Is any more r e l i a b l e than that.of -95.3, obtained by Shepard2^". I t may be noted i n reference to the melting-points recorded by Deanesly and Carelton, that. C^g, was used as a reference point, and that the properties of both G^and' C]_2 were carefully checked by them. Their melting-point values for C_12 were -9.6o4°C =-0.003,. and for G ^ . 18.145°G = 0 .003; . It .is possible to obtain an equation applicable to 1 0 - 1 2 - l 4-and 1 6 , giving deviations from observed values of less than 0.5°C, but G^^would then be calculated 3.5.°G. too high. From Figure VII i t can be seen that three of the lines converge i n the neighborhood of C-j_ga . Assuming that the break from one curve to another i s not sharp,\ as shown, then the calculated melting-points for G^ g-, G^ y;/ and G-iq w i l l be too high. As shown i n Table X, ..these three values are a l l calcu lated too high.. The range C^g to 0^4 i s covered by the equation log(n - 2 ) 1.02 - 0.0065t A l l of the. calculated values between 19 and: 29 are too low, and an equation can be obtained for this: range with a maximum deviation of 0 .5° as. shown i n Table XIT. - 3 4 - n. m. p. m. p. • dev. Galc'd Observed 16-. 19.4: 18.145 1.3 17 . , 24.0 22.0 2.0 18 28.3: 28.0 0.3 19 32.4. 31.4 1.2 20 36.2 36.2 -0.0 21 39.8: 40.4 - 0 . 6 - ; 22. 43.2 44.0 - 0 . 8 2 3 . 46.5 47.0 - 0 . 5 24 . 49.6 5 0 . 6 6 - 1 . 0 25 52.5 53.3 - 0 . 8 2 6 55*4. 55.8 - 0 . 4 27. 58.1 59.1 - 1 . 0 28 60.7 61.2 - 0 . 5 5 : 29 63.3 - 63.2 - 0 . 0 3 0 65.7 65.4 0 . 3 i 31 68.1 68 0 . 1 32 70.3 69.5 0 . 8 33 72.5 72.0 0 . 5 34. 74.6 73.5 1 . 1 35 76.6 75,0 2 . 1 Table X. n dev.. 20 0 . 5 21 —0.1 22 -0.3 2 3 -0.00 24. - 0 . 5 255 - 0 . 3 . 26:: 0.1 27; - 0 . 5 28. -0.0 29 0 . 5 , 30 -0.® 31 - 0 . 6 : 32 - 1 . 3 Table XI However, the data used for the calculations shown i n Table XI is not considered s u f f i c i e n t l y r e l i a b l e to draw any conclusions from.the small deviations thus obtained. For the remainder of the series, from 33 up to 7 0 , , was derived the equation: . log(n - 2 ) = 1 , 0 2 - 0 . 0 0 6 5 t . n m. p», Calc'd m. p. Observed 7 Ref. Dev. 28 64 .0 61.2 2 . 8 29 $5>65 63.3... «•# 2 . 4 30 6 7 . 2 6 6 . 4 , *•» 1 . 8 3 1 6 8 . 7 6 8 \ 365 0 . 7 32 . 7 0 . 2 6 9 . 5 0 . 7 33 71.67 7 2 . 0 8 - 0 . 4 34 . 7 3 . 0 7 2 . 9 0 . 1 3 5 ; 365 7 4 . 4 . 75, 8 - 0 . 6 " 75:. 6 7 765 8 - 0 . 4 377 7 6 . 9 7 6 . 4 7 ' 3 5 3 5 ? 0 . 5 38.. 7 8 . 0 : 77 . 6 ? 3 5 3 5 . 0 . 4 39 7 9 . 2 7 8 . 8 ? 35357 0 . 4 4 0 8 0 . 4 80.7? 37 37 - 0 . 3 41 81 . 5 8 1 . 7 7 3535 . - 0 . £ 42 82.65 8 2 . 9 35355' - 0 . 3 5 437 8 3 . 6 8 3 . 8 35357 - 0 . 2 4 4 84.8 8 6 . 4 . 3 35 - 1 . 6 5P 9 0 . 6 9 2 . 1 7? 3 -1.5 5 4 9 4 . 0 9 5 . 0 3. 7 - 1 . 0 60 9 8 . 7 9 8 . 9 7 3 - 0 . 2 62 1 0 0 . 2 1 0 0 . 5 T( 77 - 0 . 3 64. 1 0 2 . 2 1 0 2 . 0 33 li 0 . 2 70 1 0 5 . 4 . 1 0 5 . 3 3 33,1 Values obtained i n t h i s laboratory. Table XII The closeness of the agreement to a general equation i n t h i s range i s rather surprising. 4 4 and 5 0 show appreciable deviation, but out of 20 melting points compared, selected from half a dozen o r i g i n a l sources, twelve of them are with i n 0 .4°C of the calculated value, and 17 are within 0 . 7 ° C The apparent smoothness of this curve i s a l l the more remarkable when i t i s considered how l i t t l e work has been done on the higher members of the a l i p h a t i c hydrocarbons series, and how d i f f i c u l t i t i s to obtain the individual mem< bers i n the pure form. Included among the various attempts made to f i n d relationships between the molecular weights and melting points of homologous series, Austen!- proposes the equation: log M = A - 4 t / l 0 4 where A i s a constant dependent upon the series considered. Table XIII givds the value of A for the paraf f i n series., calculated for the melting points shown. n. m.1 p. A/.. 2 0 3 6 . 2 2 . 3 0 5 5 22 4 4 . 1 : 2 . 3 1 6 0 24. 5 0 . 7 2 . 3 2 6 9 26 5 5 . 8 2.3400 28 6 1 . 2 2.3510 29 6 3 . 2 2 . 3 5 8 0 3 0 $ 5 . 4 2 . 3 6 4 0 32 6 9 . 8 2 . 3 7 5 0 Table XIII The plot of A-n. shown i n Figure VIII shows that the va r i a t i o n of the constant i s linear with the. range considered- and Austen's equation becomest . log M = A - Ht - 4 t / l o \ where B i s another constant. This equation, similar to a l l others proposed for homologous series, holds good only over a limited range of the t o t a l series. From the foregoing data and cu r v e - f i t t i n g , we suggest the following values for the melting points of the normal straight-chain hydrocarbon members. n mp. dev. n mp. dev. n mp. dev. 6 -93.0 1.0 • 26 .55.5 0,3 46 7 -89.7 0.5 2 7 . 58.1 0.5? 47 8- -56.7 0.3 28 60.7, 0.5 48 9 -54.1 0.3 j 29 63.3 0.3 49 10 . - 2 9.7 0.5 • ! 30 65.7 0.3 5 0 90.6: 0.2 11 -27,6 ; 1.0 ! 31 68.0 0.3 51 12 -10.0 0.5 32 70.0 0.5 5 2 13 - 6.3 0.3 33 71.6 0.4 5 3 14 . 5.5 0.3 34 73.0 0.4 54. 94.0 0.2 15:;. 10.5 0.5 : 35. 74.4 0.4 55 16 18.0 0.2 36 75.6 0.4 5 6 ' 17 22.5 0.5 37. 76.9 0.4 57 18 28.3 0.3 38 78.0 0.4 58 19 32.0 0.5 39 79.2 0.4. 59 20 36.2 0.2 : 40 80.4 .0.4 6 0 99.0 0.2 21 • 39.8 0.4 41 81.5 0.4 61 22; 43.2 0.5 42. 82.6" 0.3 62 100.55 0 . 2 •; 23 46.5 0.5 43 J83.7 0.3 63 24 49.6. 0.5 44 84.8 0.3 64 102 0.2 2 5 . 52.5 0.5 45 ; 6 5 ; 66 67 68 69 70 105.4 0.2 Table XIW General Theory The normal a l i p h a t i c hydrocarbons being completely symmetrical and uninfluenced by the presence of polar groups, lend themselves to a study of atomic structure and molecular ' measurements. X-ray studies on the series, made.by Saville^S, M u l l e r ^ ± u , P i p e r " , and others, have established the fact that many members of the p a r a f f i n series exist i n several enantiotropic forms.. These studies have shown that at the p o i n t of t r a n s i t i o n from,one c r y s t a l l i n e form t o a n o t h e r , t h e r e i s a l a r g e change i n the 001 l a t t i c e s p a c i n g s w i t h a r e l a t i v e l y s m a l l change i n the a r e a of the b a s a l p l a n e . That : i s t o say, in- the change from one form t o another t h e r e i s a change i n the. d e n s i t y . : Because of t h i s f a c t , the d e n s i t y changes can be u t i l i z e d i n the d e t e r m i n a t i o n of the temperature a t which t r a n s i t i o n o c c u r s . One of the o b j e c t s of t h i s work was a use of the d i l a t o m e t r i c measurements as a means of t h r o w i n g some l i g h t on the complex c r y s t a l l i n e s t r u c t u r e and c r y s t a l changes of the p a r a f f i n s , as w e l l as to f i n d some r e l a t i o n s h i p b e i n g d e n s i t y change and c r y s t a l l i n e form. There appears t o be g e n e r a l agreement t h a t the a l i p h a t i c hydrocarbons e x i s t i n a t l e a s t t h r e e c r y s t a l l i n e forms,: A form. •• The c h a i n a x i s i s v e r t i c a l t o the 001 p l a n e , and the p l a n a r spacings' are a d i r e c t measure of the l e n g t h of the m o l e c u l e s . Even members o f 18 or more carbon atoms and odd members o f 11 or more carbon atoms show t h i s form near the m e l t i n g p o i n t ( t h a t i s , i n the t r a n s i t i o n r e g i o n ) . M u l l e r 1 - ^ g i v e s the f o l l o w i n g 0 0 1 s p a c i n g s : n A . u n i t s 26 34.95 27 36.38 28 37 29 38.68 30 40.5 31 41.5 32 42.33 34 45-5 • 35 46.64 36 47.5 Table XV/ Prom the above d a t a i t can,be seen t h a t the s p a c i n g s are a d i r e c t measurement of the c h a i n l e n g t h . B,form: Even-numbered p a r a f f i n s up t o 24 a t normal temperatures c r y s t a l l i z e w i t h the c h a i n axes i n c l i n e d a t a c o n s t a n t angle t o the 001 p l a n e . The s p a c i n g s , as g i v e n by , M u l l e r , are g i v e n i n Table XVI. r , — 4 1 — n. u n i t s ' 26 31 28 3 3 . 2 5 32 3 7 . 8 34 3 9 . 8 6 36 4 2 . 3 3 Table XVI The 00 1 s p a c i n g s of t h i s m o d i f i c a t i o n a r e s h o r t e r t h a n the A form of t h e . t r a n s i t i o n r e g i o n . On c o o l i n g , the hydrocarbons resume the B form. C form: 26 i s the o n l y hydrocarbon t h a t shows a l l t h r e e forms, and the v a l u e of the 00 1 s p a c i n g i s g i v e n ad 3 2 . 6 : , t h a t i s , i t shows a value, l y i n g between the o t h e r two s p a c i n g s . The A f o r m ' i s supposed t o be t h a t form i n t o which.the odd- numbered members n o r m a l l y c r y s t a l l i z e . The even-numbered members c r y s t a l l i z e w i t h a t i l t e d C form, and show a h i g h e r t r a n s i t i o n temperature. T h i s i s borne out by the t e m p e r a t u r e - d e n s i t y curve o b t a i n e d f o r 29 ( c f page 6 8 )} as c o n t r a s t e d w i t h the c u r v e s o b t a i n e d f o r the even members. — 4 2 — Odd-numbered p a r a f f i n s , never assume the C form. I n our -work i t was found t h a t w i t h some members the d e n s i t y curve o b t a i n e d upon h e a t i n g d i f f e r e d from t h a t o b t a i n e d upon c o o l i n g . M u l l e r 1 - ^ o b t a i n e d v a l u e s f o r t h e l o n g s p a c i n g s ; i e , those .spacings dependent ma i n l y on the l e n g t h of the carbon c h a i n . Two such v a l u e s were r e c o r d e d f o r 18 and 2 0 . A s i m i l a r phenomenon occurs w i t h 2 2 , v a l u e s f o r which are not g i v e n . .' n d l V 18 2 5 . 3 2 3 . 3 20 2 7 . 4 2 5 . 4 The c o n n e c t i o n i s not apparent, but the above s p a c i n g s may account f o r the f a c t t h a t 20 and 22 e x h i b i t the same g e n e r a l d e n s i t y - t e m p e r a t u r e . c h a r a c t e r i s t i c s as 24, 26, e t c . , on a r i s i n g temperature s c a l e , and they possess the same form as the lower even-numbered members on a d e c r e a s i n g temperature s c a l e . As the hydrocarbons are heated 0 ( F i g u r e IX) approaches 60°, showing hexagonal c l o s e p a c k i n g above the m e l t i n g p o i n t . 18 and 20 do not r e a c h the s t a t e a t the m e l t i n g p o i n t , whereas 22 does. T h i s l i q u i d c r y s t a l l i n e c o n d i t i o n may be an extreme case of m o l e c u l a r space arrangement i n l i q u i d s , as s u g g e s t e d by S t e w a r t 2 ^ i n h i s paper d e a l i n g w i t h c y b o t a x i s a-a F i g u r e I X I t i s p o s s i b l e t h a t above the m e l t i n g p o i n t the hexagonal c r y s t a l arrangement of the p a r a f f i n molecules i n c r e a s e s w i t h temperature, and, on ap p r o a c h i n g the b o i l i n g p o i n t , the c r y s t a l l i n e s t a t e g i v e s way i n a re g u l a r m manner t o a s t a t e of random m o l e c u l a r d i s t r i b u t i o n . A r e l a t i v e l y s imple i n t e r p r e t a t i o n can be made o f the change i n d e n s i t y a t the t r a n s i t i o n p o i n t . The hydrocarbon e x i s t s i n the s o l i d s t a t e as c r y s t a l s of the B form. ;;»'.>• When i t i s h e a t e d , the on l y change i s a r e g u l a r i n c r e a s e i n the 001 s p a c i n g . When the f i r s t t r a n s i t i o n p o i n t i s re a c h e d , the p i c t u r e becomes. the volume o c c u p i e d per molecule i n c r e a s e s r a p i d l y , and t h e r e i s a sharp decrease i n d e n s i t y . Throughout the t r a n s i t i o n r e g i o n a r i s e i n temperature i s marked Toy c u b i c a l expansion o n l y , w i t h no change i n c r y s t a l l i n e s t r u c t u r e ( a t l e a s t no s t r u c t u r a l change measureably e f f e c t i n g the t e m p e r a t u r e ) . At. the m e l t i n g p o i n t t h e r e i s a u n i f o r m , r a p i d change t o the hexagonal c l o s e p a c k i n g above the m e l t i n g p o i n t , and a t the m e l t i n g p o i n t t h e r e i s a r a p i d decrease i n d e n s i t y . I n the case o f 20 and 22, where no t r a n s i t i o n was o b t a i n e d upon h e a t i n g , the C form passes over i n t o the hexagonal form of the l i q u i d s t a t e . Upon c o o l i n g from the l i q u i d s t a t e , a l l members above 16" show the two t r a n s i t i o n s . T h i s s u b j e c t w i l l be d e a l t w i t h a t g r e a t e r l e n g t h i n the d i s c u s s i o n of the i n d i v i d u a l h y d r o c a r b o n s . • • For the even-numbered p a r a f f i n s g r e a t e r than 1 6 , . as they are c o o l e d from the l i q u i d s t a t e , c r y s t a l l i z a t i o n f i r s t t a k e s p l a c e i n the normal or A-form. T h i s A form c o n t r a c t s __45~ w i t h r e g u l a r l y i n c r e a s i n g d e n s i t y u n t i l the second t r a n s i t i o n p o i n t i s reached. I t has not y e t been determined e x a c t l y what change i n the i n t e r m o l e c u l a r and i n t r a m o l e c u l a r f o r e e s i n v o l v e d causes t h i s change i n t o the s t a b l e A form. As the temperature decreases the d e n s i t y i n c r e a s e s , the molecules come c l o s e r t o g e t h e r , the f o r c e s of cohesion i n c r e a s e , and a t the t r a n s i t i o n p o i n t the e q u i l i b r i u m e x i s t i n g b e f o r e between th e s e f o r c e s i s d e s t r o y e d and another c r y s t a l l i n e form appears, e i t h e r the B form or 0 form w i t h t i l t e d a x i s . A c c o r d i n g t o P i p e r 2 2 and K o l v o o r t ^ , the lower t r a n s i t i o n p o i n t i s more s t r o n g l y a f f e c t e d by c o n t a m i n a t i o n than the upper. T h i s i s l o g i c a l i n view of the d e l i c a t e e q u i l i b r i u m e x i s t i n g between opposing m o l e c u l a r f o r c e s . RESULTS F o l l o w i n g are the r e s u l t s o b t a i n e d . I n the case of each i n d i v i d u a l hydrocarbon a graph i s i n c l u d e d , t o g e t h e r w i t h a d i s c u s s i o n of the c u r v e . I n order t o cut down the main body of t h i s work, the a c t u a l d e n s i t i e s are g i v e n i n Appendix IV. --46-- Hexadecane The f i r s t sample t e s t e d known to he impure ( c f page 53), hut f o r purposes of comparing i t w i t h o t h e r members of the s e r i e s , i t was d e c i d e d t o make the d e n s i t y c a l c u l a t i o n s . No t r a n s i t i o n comparable t o t h a t found i n the h i g h e r members was found. As seen from F i g u r e X, two separate curves were o b t a i n e d i n the s o l i d s t a t e . The exa,ct c o n d i t i o n s by which one form i s c o n v e r t e d i n t o the o t h e r c o u l d not be determined. The lower s e c t i o n (A) was. o b t a i n e d a t l e a s t t w i c e w i t h the temperature g o i n g down. A r e g i o n o f i n s t a b i l i t y was encountered w i t h r i s i n g temperature a t 12-13°G, and i n an e f f o r t t o f i n d a smooth curve i n t h i s p a r t i c u l a r r e g i o n , the temperature was h e l d c o n s t a n t f o r as l o n g a time as p o s s i b l e . The temperature was s e t a t 1 2 . 5°C one n i g h t ; the f o l l o w i n g morning i t was s t i l l 1 2 , 5°C, and the mercury l e v e l had dropped t o a p o i n t c o r r e s p o n d i n g to. curve B. P o i n t s on t h i s second curve were o b t a i n e d from 1 2 . 5 down t o o°C, and back up t o the m e l t i n g p o i n t , but i t was not p o s s i b l e t o d u p l i c a t e t h i s c urve. A smooth curve (B) c o u l d be p l o t t e d from the m e l t i n g - p o i n t down to 0°C and from 0-12°C and rechecked w i t h good r e s u l t s , but from 12°C t o the m e l t i n g p o i n t , c o n s i s t e n t r e a d i n g s c o u l d not be o b t a i n e d . I t s h o u l d be emphasized t h a t t h i s p a r t i c u l a r sample had o b v i o u s l y become contaminated. I t was somewhat y e l l o w i n c o l o r , gave a m e l t i n g p o i n t a t l e a s t 2 degrees too low, and was o n l y used because at the time no other speciman was a v a i l a b l e . N e v e r t h e l e s s , v a l u e s f o r the d e n s i t y i n the l i q u i d s t a t e are i n good agreement w i t h v a l u e s o b t a i n e d by exact measurement. For i n s t a n c e , Deanesley^ g i v e s the d e n s i t y o f hexadecane a t 20°G as 0 . 7 7 3 3 5 , and our v a l u e was 0 . 7 7 3 6 . E v i d e n t l y s u f f i c i e n t i m p u r i t y t o a l t e r the m e l t i n g p o i n t by s e v e r a l degrees i s not s u f f i c i e n t t o cause any marked change i n . t h e d e n s i t y . A second sample o f hexadecane, o b t a i n e d from the S h e l l O i l Development Company was i n v e s t i g a t e d , and was found t o have a m e l t i n g p o i n t of 1 8 . 3°C and a s e t t i n g p o i n t o f l6.6°C. At the time of w r i t i n g the d e n s i t y c a l c u l a t i o n s f o r t h i s sample have not been made, b u t a rough c a l c u l a t i o n p l a c e s the d e n s i t y of the s o l i d phase ( f o r which o n l y one curve was obta i n e d ) i n the neighborhood o f A r a t h e r t h a n B. S i c o s a n e : With the even-numbered p a r a f f i n s below 26, i n the s o l i d s t a t e , they assume the B form, w i t h a s p a c i n g between t h a t o f the C and A form, a a c o r d i n g to Muller... I t does not appear e v i d e n t on t h e o r e t i c a l grounds t h a t these 001 spacings can be taken- as a d i r e c t measurement of the d e n s i t i e s ; t h a t i s , as evidence t o prove t h a t the d e n s i t y measurements are a d i r e c t f u n c t i o n of these s p a c i n g s . Q u a l i t a t i v e l y , i t i s i n d i c a t e d . I f the assumption i s t r u e , t h e n the v a l u e s o f the d e n s i t i e s f o r 20, 22, 24, i n those r e g i o n s c l o s e t o the t r a n s i t i o n temperature s h o u l d f a l l somewhere between the d e n s i t i e s i n the A form and those of the C form. \ . n. ( l ) D e n s i t y 2°C below t r a n s n. (2 ) D e n s i t y 2 ° below trans.. 30 0 . 8 7 6 32 0 . 8 7 3 34 0 . 8 7 9 16 0 . 8 9 9 20 0 . 9 0 9 22 0 . 9 0 6 n. ( 3 ) D e n s i t y 2 ° below, t r a n s . 30 0 . 9 2 4 32 0 . 9 2 3 34 0 . 9 2 3 Table XVII — 5 0 — ( l ) w i l l c orrespond t o the B form, (2). t o the A form, and ( 3 ) t o the, C form. - The c o r r e l a t i o n appears good f o r these members, but i n the case of 24, the B form i s a c t u a l l y h i g h e r than t h a t f o r the C form, r a t h e r than lower. I f the above assumption were c o r r e c t , namely, t h a t the A, B, and C c r y s t a l l i n e forms were a f u n c t i o n of the s e c t i o n s of the d e n s i t y c u r v e s , then the s o l i d r e g i o n f o r 2 6 , 2 8 , 32 and 34 s h o u l d l i e i n one r e g i o n , those f o r 1 8 , 2 0 , 2 2 , and 24 i n another, and the t r a n s i t i o n p o i n t s f o r 2 6 , 2 8 , 3 2 , 3 4 , i n s t i l l a n o t h er. Whether t h i s i s so, or whether the d e n s i t y f o r a l l even members of the s e r i e s from 16 t o 3 4 a t 0°C s h o u l d show a p r o p o r t i o n a l i n c r e a s e w i t h i n c r e a s e i n c h a i n l e n g t h , i s not c e r t a i n . Temperature i n °Q- FIGURE X I Docosane: C o n s i d e r a b l e d i f f i c u l t y was encountered i n o b t a i n i n g good r e a d i n g s f o r t h i s sample, p a r t i c u l a r l y f o r ascending, t e mperatures. No t r a n s i t i o n was o b t a i n e d on r i s i n g tempera t u r e , and t h e r e appeared a tendency towards d i s t u r b a n c e of e q u i l i b r i u m a t a p p r o x i m a t e l y 10°C.below the m e l t i n g p o i n t . The mercury s u r f a c e , as viewed through the cathatometer t e l e  scope, was seen t o q u i v e r , and i n t h i s temperature r e g i o n r e a d i n g s were o b t a i n e d at d i s t a n c e s c o n s i d e r a b l y below the l i n e shown. .In.-.. 3 -samples, 20, 22,, and p a r t i c u l a r l y 26, t h e r e was a r e g i o n ( i n a l l cases a p p r o x i m a t e l y 10°C below the m e l t i n g p o i n t ) where a c o n s i s t e n t l y smooth;curve c o u l d not be drawn from the p o i n t s o b t a i n e d on r i s i n g t emperature. As mentioned i n the note on m e l t i n g p o i n t s , c e r t a i n s e c t i o n s of the d e n s i t y c u r v e s , m a i n l y i n the l i q u i d r e g i o n , c o u l d , w i t h any one sample- be d u p l i c a t e d any number o f times w i t h i n the l i m i t o f a c c u  r a c y of the i n s t r u m e n t s used. A l l t r a n s i t i o n r e g i o n s are s e n s i t i v e t o temperature change, and p a r t i c u l a r l y so i n the case of 22 and 26. I t i s b e l i e v e d t h a t the p o i n t s l y i n g on these s e c t i o n s of the curves are not r e l i a b l e . The p a r t s o f . t h e curve so c o n s i d e r e d are d o t t e d , a l t h o u g h the d e n s i t y v a l u e s have been i n c l u d e d . .The s e c t i o n s i n heavy l i n e s are r e p r o d u c i b l e and c o n s i d e r e d t o be r e l i a b l e . The d o t t e d r e g i o n s w i l l bear — 5 3 — f u r t h e r i n v e s t i g a t i o n , employing a more r i g o r o u s method of temperature c o n t r o l over a l o n g e r p e r i o d of t i m e . Te^raoos^Mj B e f o r e d i s c u s s i n g the curve o b t a i n e d f o r 2 4 , . i t m i g h t be p e r t i n e n t , a t t h i s p o i n t t o g i v e a resume^ of a r e c e n t / a r t i c l e by K o l v o o r t 0 - ' o n the c r y s t a l l i n e s t r u c t u r e of. t h i s homologue. He used a sample of s e t t i n g - p o i n t e q u a l t o 50.B,; a v a l u e almost i d e n t i c a l w i t h t h a t found i n t h i s l a b o r a t o r y , . By e x - r a y measurements, K o l v o o r t found two t r a n s i t i o n p o i n t s and t h r e e c r y s t a l l i n e s forms, : g i v e n below. Form Range T r a n s i t i o n Temperature 50.8-46- 50-. 8} bo. 46 -41 46 CV. below 41 41 l)ablefXVlIT[li He suggests t h a t ; the c form i s m o n o c l i n i c , Upon h e a t i n g i t p asses over i n t o the orthorhombic bo form, r e t a i n i n g the o r i e n t a t i o n of the molecules w i t h r e s p e c t t o each o t h e r i n the 001 p l a n e . The o r i g i n a l l y t i l t e d molecule i n - t h e c form t a k e s up a p o s i t i o n p e r p e n d i c u l a r t o the 001 plane w i t h no r o t a t i o n o f the zigzag?, m o l e c u l e s .above t h e i r l o n g i t u d i n a l axes.. K o l v o o r t ..made a d i l a t o m e t r i c i n v e s t i g a t i o n of the sample,, and found t h a t .in the change from.the c t o the b.form, a marked change took p l a c e i n the d e n s i t y . No d e n s i t y change was o b s e r v a b l e i n the t r a n s f o r m a t i o n from the c t o the a form. I n the c form the angle between.the o p t i c a l axes decreases within-,0.3 degrees by 20/£ of i t s former v a l u e . I n the b: f orm the a x i a l angle g r e a t l y depends on the temperature up t o the p o i n t of t r a n s i t i o n from the b t o the a form a t 46, a t which p o i n t the f i g u r e f o r u n i a x i a l c r y s t a l s i s formed. Up t o the m e l t i n g p o i n t , the c r y s t a l remains u n i a x i a l . d u l l e r notes t h a t a change t a k e s p l a c e f i r s t w i t h 24. The a and b,axes a l t e r t h e i r l e n g t h as the temperature i n  c r e a s e s , J u s t as they d i d i n the case of 20 and 22, but when a c e r t a i n temperature has been reached ( c o r r e s p o n d i n g t o the t r a n s i t i o n p o i n t ) , : t h e r e i s a sudden change i n s t r u c t u r e . The; temperature of t h i s t r a n s i t i o n i s g i v e n as 40-41. Assuming- t h a t t h i s v a l u e i s the t r a n s i t i o n .point, we -have the t h r e e '- f o l l o w i n g v a l u e s ? T r a n s i t i o n P o i n t . Source 41 40-41 47.9. K o l v o o r t 0 - 5 M u l l e r 1 ^ - ' T h i s L a b i T a ble XIX: There i s no apparent e x p l a n a t i o n f o r t h i s wide v a r i a t i o n - . K o l v o o r t o b t a i n e d one v a l u e of.. 36°G. f o r t h i s t r a n s i t i o n p o i n t , from a sample known t o be impure. I t i s p o s s i b l e t h a t the change i n d e n s i t y t a k e s p l a c e a t the f i r s t t r a n s i t i o n , . 45.8- 46.4, which would be i n f a i r l y good agreement w i t h our v a l u e . For comparison, 3 i n t e r p r e t a t i o n s of the c r y s t a l l i n e changes of: octacosane are g i v e n i n F i g u r e XIW. M i l l a r s o l i d t r , p t . orthorhomblc or t r i c l i n i c transition m.p. hexagonal l i q u i d . Piperr- _B^£orai molecule obliaue to 001 t, A form molecule^ 1 001 m.- Kolvoort monoclinic ortho- rhombic ipseudo- hexagonal hexagonal m.p, FIGURE XIV - 5 8 - Temperatu're "m Figure XV Hexacosane; " '. • • Two specimens of 26 were i n v e s t i g a t e d . I n the f i r s t case, shown in. F i g u r e X V I I , the d e n s i t y c a l c u l a t i o n s were not made. As seen from the c a p i l l a r y h e i g h t - t e m p e r a t u r e curve", t h i s specimen showed marked d e v i a t i o n s from: the u s u a l c u r v e s . These can be no q u e s t i o n as t o the shape of the curves o b t a i n e d . S e c t i o n A-B'^Gjof F i g u r e XVII was r e p e a t e d t h r e e t i m e s , ,and i n one case, p o i n t :A was h e l d f o r 24 hours a t 4-9.84o.04°G:. on descending temperature s c a l e . As b e f o r e , the d o t t e d p a r t of the curve marks a r e g i o n of u n c e r t a i n r e a d i n g s . A r e g i o n . o f i n s t a b i l i t y was found t o e x i s t on r i s i n g temperature between D and E. The mercury had a t e n  dency t o o s c i l l a t e , and i n some cases two r e a d i n g s a t the same temperature were w i d e l y d i v e r g e n t f o r c o n s e c u t i v e r u n s . . Another sample was p u r i f i e d and i n v e s t i g a t e d . The d e n s i t y curve i s shown i n F i g u r e XVIII,, and i t i s the l e a s t r e l i a b l e of those o b t a i n e d by the a u t h o r . The r e a d i n g s were t a k e n i n a h u r r y , i t b e i n g d e s i r e d t o o b t a i n the g e n e r a l shape of the d e n s i t y curve f o r purposes of comparison. A g a i n t h e r e was a r e g i o n of i n s t a b i l i t y and the same r i s e ( t o a much l e s s e r e x t e n t ) was observed a t the t r a n s i t i o n p o i n t . No other member of the s e r i e s showed t h i s phenomenon. The f i r s t sample d i f f e r e d from the second i n t h a t the former showed no i n d i c a  t i o n whatsoever of a sudden drop i n c a p i l l a r y h e i g h t a t the t r a n s i t i o n p o i n t , whereas i n the second case t h e r e wa.s the u s u a l .drop, a l t h o u g h the mercury dropped s e v e r a l cm. below thee value.shown on the c u r v e , and t h e n r o s e a g a i n . As g i v e n i n the g e n e r a l d i s c u s s i o n on t h e o r y , 26 showed e-ray r e s u l t s d i f f e r i n g from any o t h e r of the s e r i e s . I n a p l o t of s p a c i n g vs number o f carbon atoms, g i v e n i n F i g u r e XVI:, P i p e r , u s i n g h i s own v a l u e s f o r 2 6 , 2 7 2 8 , 2 9 , 3 0 , 3 1 , 3 2 , 3 4 , 35,, and 36',' and those o f M u l l e r and S a v i l l e f o r 2 0 , 2 2 , and 24, shows t h a t 26 has t h r e e s p a c i n g s , i n c o n t r a s t t o the other two well-marked s e r i e s . Thus i t might be expected t h a t 26 would d i f f e r from the o t h e r members, but no e x p l a n a t i o n can be o f f e r e d f o r the reasons why i t s h o u l d show such marked d e v i a t i o n s from the a d j a c e n t members. - so F i g u r e XV! . C e r t a i n l y w i t h the apparatus used the temperature c o n t r o l was not s u f f i c i e n t l y e x a c t t o o b t a i n a smooth cnvve i n the r e  g i o n of t r a n s i t i o n . With descending temperature, i t was found I m p o s s i b l e t o o b t a i n good r e a d i n g s from 40-56°C. I n the f i r s t . , sample i n v e s t i g a t e d , t h i s r e g i o n was c a r e f u l l y checked, the temperature b e i n g kept w i t h i n t h i s range f o r s e v e r a l weeks,'and, the r e g i o n B3-B3* ( F i g u r e XVII), was checked every 0.2° eqch way f o r 15°G. The l i n e was found t o c o r r e s p o n d i n s l o p e t o s i m i l a r l i n e s found i n the same r e g i o n f o r o t h e r members. The s t r a i g h t . — 6 1 — l i n e o b t a i n e d was ^ p r o d u c i b l e w i t h i n the degree of a c c u r a c y of the cathatometer, and the c r y s t a l l i n e form was e v i d e n t l y a s t a b l e one, - 6 3 — FIGURE XV7III — 6 4 — Octacosane; The octacosane curve was r e g u l a r w i t h r e s p e c t t o t r a n s i  t i o n and m e l t i n g p o i n t . The heavy curve i s the one assumed, hut i t i s not the o n l y one o b t a i n e d . When the sample was f i r s t i n v e s t i g a t e d , the temperature was r a i s e d t o 8 5°G and thee curve p l o t t e d on a descending temperature s c a l e . The heavy l i n e was o b t a i n e d . On t a k i n g the temperature up from 0°Gj, the p o i n t s checked u n t i l p o i n t A was reached. From then on a u n i f o r m d i v e r g e n c e took p l a c e , and the same curve was t r a c e d on .the way back. The e n t i r e curve was t r a c e d f o u r times more, and of the s i x curves o b t a i n e d , f o u r f o l l o w e d A-B-: and two f o l l o w e d A-C., w i t h i n the l i m i t of measurement. I t i s d i f f i c u l t t o see what caused t h i s d i v e r g e n c e . I t may be t h a t i n s o l i d i f y i n g , minute v o i d s are formed which the mercury does not f i l l c o m p l e t e l y . I f t h i s were t r u e , t h e n the;- mercury would not drop f a r enough, the c a p i l l a r y - h e i g h t r e a d i n g s would be too h i g h , and the d e n s i t y would be too low. I n t h a t case, however, i t would seem l i k e l y t h a t the e n t i r e curve would be .'displaced v e r t i c a l l y , r a t h e r than w i t h the c o n s t a n t d e v i a t i o n a c t u a l l y o b t a i n e d . FIGURE XIX — 6 6 — Nonacosane; . M u l l e r a t t r i b u t e s a t l e a s t t h r e e c r y s t a l l i n e forms t o 2 9 : orthorhombic, m o n o c l i n i c , and t r i c l i n i c , w i t h a hexagonal arrangement i n the t r a n s i t i o n r e g i o n . As d i s c u s s e d elsewhere the odd members w i t h 11 or more carbon atoms n o r m a l l y c r y s t a l  l i z e i n the A form, and the f i r s t t r a n s i t i o n i s not accompan i e d by a change i n the 0 0 1 s p a c i n g . For the t r a n s i t i o n r e g i o n has been p o s t u l a t e d 2 0 a c r y s t a l l i n e form h a v i n g the same 0 0 1 s p a c i n g s as the A f o r m - ( i n which the t r a n s i t i o n form n o r m a l l y c r y s t a l l i z e s ) b u t of d i f f e r e n t c r o s s s e c t i o n . T h i s form may corr e s p o n d t o M u l l e r ' s type B ::with no m o l e c u l a r t i l t . From the f o r e g o i n g i t might be expected t h a t the s o l i d s e c t i o n f o r 2 9 would be i n the same r e g i o n as the t r a n s i t i o n forms f o r the even members. From the curve i t can be seen t h a t the t r a n s i t i o n ,1s f a r l e s s marked than f o r the even members, and by comparison w i t h 28 and 3 0 , ' i n c l u d e d f o r comparison, the curve shows the same g e n e r a l shape as p o s t u  l a t e d . Temperature .in °C FIGURE XX. T r i a c o n t a n e ; ; The 0 form i s the c r y s t a l l i n e c o n f i g u r a t i o n i n the s o l i d s t a t e f o r the* even members, M u l l e r 1 ^ - mentions t h a t the C form i s o n l y o b s e r v a b l e when the c r y s t a l s are o b t a i n e d from a s o l v e n t , except when the members are i n the neighborhood of 3 0 . I t i s h a r d t o see how t h i s can be i n t e r p r e t e d i n the l i g h t ^ of the f a c t t h a t a l l o f the members i n v e s t i g a t e d by the d i l a t o m e t e r method show p r a c t i c a l l y p a r a l l e l l i n e s i n the s o l i d s t a t e . I t : may be n o t e d t h a t i n t h i s work the samples must of n e c e s s i t y be c r y s t a l l i z e d from.the l i q u i d s t a t e . I n 3 0 t h e r e are 2 l i n e s formed i n the x - r a y d i f f u s i o n p a t t e r n i n the t r a n s i t i o n r e g i o n o n e close, t o the o r i g i n a l 1 1 0 l i n e s , and the second ;weaker, about h a l f way between the o r i g i n a l 1 10 and 2 0 0 r e f l e c t i o n s . The angle 0 (o£' p>43) approaches 60° near the m e l t i n g p o i n t , i n d i c a t i n g hexagonal c l o s e p a c k i n g f o r the l i q u i d range. ". ?. 3 0 appears t o be e n t i r e l y r e g u l a r as r e g a r d s m e l t i n g , p o i n t , t r a n s i t i o n temperature and range, and lower s o l i d and upper l i q u i d r a n g e s , so whatever changes or d i f f e r e n c e s i n c r y s t a l l i n e s t r u c t u r e may r e s u l t from the above s p a c i n g r e l a  t i o n s h i p s , they do not show up i n d e n s i t y v a r i a t i o n s of measu r a b l e magnitude. — 7 0 — D o t r i a c o n t a n e t .: Three separate samples of 32 were i n v e s t i g a t e d . The t h r e e curves o b t a i n e d are very c l o s e t o one another throughout the e n t i r e range. 2 6 , 2 8 , 3 0 , 32 and 34 show good c o r r e l a t i o n i n the r e l a t i o n s h i p between d e n s i t y c u r v e s . 32 i s somewhat d i f f e r  ent from the o t h e r s i n t h a t the change from one s t a t e t o another through the t r a n s i t i o n r e g i o n f o l l o w s a p e r f e c t l y r e g u l a r curve and does not show the same l i n e of c o n s t a n t s l o p e ( i n d i c a t i n g a s t a b l e c r y s t a l l i n e form i n the t r a n s i t i o n r e g i o n ) as do the o t h e r s . I t was wondered whether or hot the d e n s i t y curves c o u l d be u t i l i z e d as a means of i n d i c a t i n g the p u r i t y of the specimen. The most obvious check would be the m e l t i n g p o i n t , but as shown by P i p e r 2 2 , two hydrocarbons of unequal l e n g t h c o u l d be combined i n such a p r o p o r t i o n as t o g i v e the same m e l t i n g point, as a homologue l y i n g between them. A c c o r d i n g t o P i p e r 2 2 and K o l v o o r t 0 , the lower t r a n s i t i o n p o i n t i s p a r t i c u l a r l y s e n s i t i v e t o i m p u r i t y , and t h e r e f o r e might be t a k e n as a c r i t e r i o n o f p u r i t y . T h i s i s of l i t t l e p r a c t i c a l importance, at p r e s e n t , however, as the lower t r a n s i t i o n p o i n t s are not known w i t h a s u f f i c i e n t degree of r e l i a b i l i t y . . The one specimen i n v e s t i g a t e d which showed a marked depre s s i o n of m e l t i n g p o i n t was 1 6 . I t may be seen from F i g u r e s X. and X X I I t h a t the 16 and 32 curves have one p r o p e r t y i n common i n t h a t the change from the s o l i d t o the l i q u i d form f o r 1 6 , and — T i  the change front l i q u i d t o t r a n s i t i o n forms i n 3 2 , show a broad curved s e c t i o n . The r e a s o n i n each case may be the same; mamely,.the presence of i m p u r i t y . On the other hand, i n the l i g h t of the f a c t t h a t 3 s i m i l a r curves were o b t a i n e d f o r 3 0 , i t may be t h a t 32 shows t h i s i r r e g u l a r i t y because of i n t e r - m o l e c u l a r f o r c e s p e c u l i a r t o i t s c h a i n l e n g t h . The change from l i q u i d t o s o l i d s t a t e w i t h o u t t r a n s i t i o n was e x t r e m e l y sharp i n the case of the pure sample of 1 6 ; on the b a s i s of t h i s evidence i t would appear as though some cons t a n t impur i t y were p r e s e n t i n a l l t h r e e samples of 32 examined T e t r a t r l a c o n t a n e ; 34, the d e n s i t y curve f o r which i s shown i n F i g u r e X X I I I , appeared normal i n every r e s p e c t . — 7 2 — FIGURE "XXI I . Temperature i n °C FIGURE X X I I I CORRELATION OP RESULTS T r a n s i t i o n P o i n t s : The temperature o f the second t r a n s i t i o n , p o i n t ( o b t a i n e d upon c o o l i n g ) i s g i v e n i n Table XX; I n c l u d e d w i t h these exper i m e n t a l l y determined temperatures i s the s i n g l e v a l u e f o r 44. A c c o r d i n g t o M u l l e r 1 ^ , . the' t r a n s i t i o n p o i n t becomes i n d i s t i n g u i shable from the m e l t i n g p o i n t f o r 44. Assuming t h i s t o be t r u e T r a n s i t i o n P o i n t 16 None 18" 20 32 22 40 24. 47 .9 26 48.8 28 54.0 29 57.1 30- 60,0 32 63.5 34. 68.4 44 84.8 Table XX. and u s i n g our s e l e c t e d v a l u e s f o r the m e l t i n g p o i n t o f 44,, (cf. p.. ) i t s va l u e i s taken as the t r a n s i t i o n p o i n t of 44. These v a l u e s are p l o t t e d i n F i g u r e XXIV. From the curve o b t a i n e d , v a l u e s of the second t r a n s i t i o n p o i n t have been s e l e c t e d and I n Table XXI they are compared w i t h t r a n s i t i o n temperatures g i v e n by P i p e r . 24 shows the g r e a t e s t d e v i a t i o n from a smooth curv e . I n the d i s c u s s i o n on 24 ( c f . p.55...) i t was p o i n t e d out t h a t t h i s member showed marked d i f f e r e n c e s i n s e v e r a l r e s p e c t s . — 7 6 — 00 Transition Temperatures plotted against Number of Carbon Atoms for the n-straight chain a l i p h a t i c s , 90 80 18 20 22 24 26 28 3 0 3 2 34 36 38 40 42 44 46 48 5 0 Number of Carbon Atoms, FIGURE XXIV I t i s not p o s s i b l e t o g i v e a c l o s e comparison of the s e l e c t e d v a l u e s and those of P i p e r . The t r a n s i t i o n - , p o i n t s o b t a i n e d from the t e m p e r a t u r e - d e n s i t y curves are o b t a i n e d i n e x a c t l y the same manner as the s e t t i n g p o i n t , and they can be measured w i t h any degree of f i n e n e s s d e s i r e d ( c f . p v i e ) , whereas P i p e r . r e c o r d s two s e t s of v a l u e s , one r e s u l t i n g from a descending, the oth e r from an as c e n d i n g temperature, and fu r t h e r m o r e , they are g i v e n i n a range. n. S e l e c t e d Trans p t . P i p e r ' s V a l u e s ' f o r Trans P o i n t C o o l i n g . H e a t i n g . Observed Trans p t . D i f f . 18 26.0 19 29.7 32.0°C: 20 33.2 -1.2°C 21 3 6 . 3 : 22 40.0 40.0 -0.0 23 42 ..2 24 45.0 47.9: . 2 . 9 25 47.8 2 6 50.2. 48.3 51.5-52.0 48.8" -0.4 27 52.9 5 1 . 0 52.8-53-0 28 55.2 54 57.0-57.5 54.0 -1.2 29 57.5 55-8 57.3-57.5 ., 57.1 -0.4 30 60.0 58.0 59.0-59.5..:, .-' 60.0 0.0 31 62.3 61.8 62.0-62.5 32 . 64.5 63.9 65.2-65.4 63.5 -1.0 33 66.8 34 68.6. 68.5 69.2-69.4 68.4 -0.2 35 70.4 70.5 71.8-72.0 36 72.8 ••7.2.5 73.9-74.1 37 74.2 38 76.0 39 77.6 40 79.1 41 80.8 42 82.0 43 83.4 44 84.8 45 Table XXIT — 7 8 — The t r a n s i t i o n p o i n t can approach the m e l t i n g p o i n t i n e i t h e r one or both of two ways. The temperatures can converge, or the d e n s i t y , o f the t r a n s i t i o n s t a t e ' can approach t h a t of the s o l i d s t a t e . I n Table X X I I i s r e c o r d e d the d e n s i t y of the hydrocarbons i n v e s t i g a t e d a t the t r a n s i t i o n p o i n t , t o g e t h e r w i t h the t r a n s i t i o n temperature, the s e t t i n g p o i n t temperature, and the d i f f e r e n c e between them. I n F i g u r e XXV i s shown a p l o t of. t. vs n. The p o i n t s are too s c a t t e r e d t o warrant drawing a curve through them, a l t h o u g h t h e r e does seem a tendency f o r d i f f e r e n c e between the t r a n t i s i o n temperature and m e l t i n g p o i n t t o approach 0 a t n = 44. I f the d e n s i t i e s of the A and C forms ( c f . p . 3 9 ) approach each.other a t 44, t h e n (from F i g u r e XXV0, the d e n s i t y of 44 i n the s o l i d s t a t e s h o u l d be a p p r o x i m a t e l y O . 8 9 8 . I n F i g u r e y \ i s shown an e x t r a p o l a t i o n of s o l i d form d e n s i t i e s (based on an assumption t h a t the s o l i d phase d e n s i t y curve f o r 44 w i l l be o n l y s l i g h t l y above t h a t of 34) down t o the m e l t i n g p o i n t of 44. The d e n s i t y of 44 a c c o r d i n g t o t h i s e x t r a p o l a t i o n would be 0.917/ compared t o the O . 8 9 8 from F i g u r e XXVI. From F i g u r e X i t - would appear t h a t the l a t t e r f i g u r e i s too low, and t h a t the p r e d o m i n a t i n g e f f e c t w i t h i n c r e a s i n g c h a i n l e n g t h i s a d i m i n i s h i n g - t r a n s i t i o n range. n D e n s i t y a t . t .p. Temp. of t .p. m.p. t . 18^  20 0 . 8 6 7 0 3 2 . 0 ; 3 6 . 2 4 . 2 22 0 . 8 6 9 0 4 0 . 0 4 4 . 1 4 . 1 2 4 0 . 8 6 7 3 4 7 . 9 5 0 . 7 , 2 . 6 26 0 . 8 7 2 2 48 .8 5 5 . 8 7 . 0 .28 0 . 8 7 8 8 5 4 . 0 . 6 1 . 2 7 . 2 -30 0 . 8 8 0 2 6 0 . 0 6 5 . 4 5 . 4 32 0 . 8 7 8 2 6 3 . 5 6 9 . 5 6 . 0 3 4 0 . 8 8 3 6 . 6 8 . 4 7 2 . 9 4 . 5 29 5 7 . 1 * 6 3 . 3 6 . 2 3 1 6-1.8* 6 8 . 0 6 . 2 35 7 0 . 5 ^ 74 .4 3 . 9 * Val u e s t a k e n from P i p e r . T a b l e X X I I Plot of _ Number of Carbon Atoms vs Density at the Transition Point for the.Normal Straight-Chain A l i p h a t i c Hydrocarbons• \ o \ \ o \ Plot of Number of Carbon Atoms? vs -Temperature Difference between^ Melting Point and•Transition Pointi f o r the Normal Straight Chain Al i p h a t i c 1 Hydrocarbons • \ \ \ \ \ \ o \ \ \ 18 2 0 2 2 2 4 26 2 8 3 0 32 34 ' . FIGURE 36^ 38 4 0 4 2 44 46 48 The q u e s t i o n a r i s e s as t o the shape of the d e n s i t y curves over the e n t i r e temperature range from 0-500°Abs, t h a t i s from a b s o l u t e zero t o w e l l above the b o i l i n g p o i n t . Since the co e f f i c i e n t o f expansion of a c r y s t a l l i n e substance becomes zero v a l u e c l o s e t o 1.0 a t v e r y low temperatures. The d e n s i t i e s of the l o n g - c h a i n members have not been measured at h i g h e r t e m p e r a t u r e s , b u t i t was thought p o s s i b l e t o o b t a i n some knowledge of these r e g i o n s from data a l r e a d y o b t a i n e d f o r the lower members. I f we assume t h a t the l i q u i d l i n e s f o r a l l hydrocarbons are p a r a l l e l and of the same g e n e r a l shape throughout, then the s l o p e 'of a l l members a t any g i v e n temperature i n t e r v a l between b o i l i n g - p o i n t and m e l t i n g - p o i n t ( s a y , h a l f - w a y between')' s h o u l d be a p p r o x i m a t e l y the same. The data, g i v e n i n Table X X I I T i s t a k e n from Deanesley. The temperature i n t e r v a l between b o i l i n g poSlnt and f r e e z  i n g p o i n t f o r 26 i s 366.4-55, or 311°GV I n F i g u r e XXVII, t h i s i n t e r v a l i s d i v i d e d i n t o d e c i m a l f r a c t i o n s , and v a l u e s of the c o e f f i c i e n t of expansion a t f r a c t i o n a l d i s t a n c e s w i t h i n t h i s i n t e r v a l ( t a k e n from the l a s t b o i l i n g p o i n t we know, ( i t i s e s s e n t i a l l y i n f i n i t y . ) We a l s o know t h a t d 2 ( d ) / d t 2 i s 0 f o r the 15-20°Gj. range .above the a t 0°Abs,.it i s probable t h a t the d e n s i t y approaches some column o f Table 'XXIII are p l o t t e d . n d(d)/dt tup., at;. ts 5, bp t,20° F r a c t i o n of 20°CJ 760 mm. 76b mm.. t o f p t o mp. b e t h . bp and f p . 2> 0.000975 36.1 -129.7 165.8 •> 149 . 7 0 . 9 6 2 6 0.0008917 68.7 ' - 95.3 164.0 115.3 0.704 7 0.0008407 98.4 - 90.6 - 56.8 189.0' 110.6 0.584 8 0.000803 ; 1 2 5 . 6 182.4 76.8 0.421 9 0.000774 1 5 0 . 7 : - 5 3 . 7 . 204.4 73.7 O . 3 6 0 10 0.000751 1 7 4 . 0 - 29.7: 203.7; 4 9 . 7 0.244 11 0.000733 195.8 - 25.6: 221.4 45.6 0.2062 12 0.000719 216.2 - 9 . 6 0 225.8 29.6 0 . 1 3 1 13 0.000708 2 3 5 . 5 - 6.00 241 . 5 26 .0 0.108 14 0.000699 253.65 5 . 5 248.1 14 . 5 0.058 15 0.000692 270.6:': 10.0 260.6 10. 0.042 16 0 . 0 0 0 6 8 6 286 . 5 18.1 268.4 2'. 0 ..007 .T&ble X X I I I I m e l t i n g p o i n t (deduced from the l i n e of constant d e n s i t y change o b t a i n e d i n the case of each hydrocarbon i n v e s t i g a t e d . ) Table XXIV g i v e s the v a l u e s of d ( d ) / d t . i m m e d i a t e l y above the m e l t i n g p o i n t f o r the even members. n. d ( d ) / d t 18 20 O . P 0 0 6 3 4 24 O .OOO632 26 0 . 0 0 0 6 2 2 28 O .OOO668 30 0 . 0 0 0 6 2 8 32 . 0 . 0 0 0 6 4 1 34 0 . 0 0 0 6 2 0 Average: O .O0O636 Table XIF7. T h e r e f o r e the curve i n F i g u r e XXVII s h o u l d be asymptotic, t o d ( d ) / d t = O .OOO636 a t the lower boundary l i m i t . A c t u a l l y the lower l i m i t i n g v a l u e of d ( d ) / d t from the curve i s O.OOO68 t o 0 . 0 0 0 6 9 . I t i s not p l a i n why the c a l c u l a t e d v a l u e of d(d)/dt'. a t the m e l t i n g p o i n t s h o u l d be so much h i g h e r than the observed v a l u e . D e s p i t e the u n s a t i s f a c t o r y q u a n t i t a t i v e r e l a t i o n s h i p shown i n F i g u r e X X V I I , however, i t does i n d i c a t e t h a t t h e r e i s p r o b a b l y no marked i n c r e a s e I n the s l o p e of the d e n s i t y curve as the temperature approaches the b o i l i n g p o i n t , and t h a t the sharp decrease i n d e n s i t y a t the b o i l i n g p o i n t t a k e s p l a c e w i t h i n a s m a l l range, say l e s s than 5°®.. — 8 5 — SUMMARY.. 1. M e l t i n g .Point v a l u e s f o r the e n t i r e n - p a r a f f i n hydrocarbons have been compared and a t a b l e o f t e n t a t i v e v a l u e s a rranged. 2. D e n s i t y curves f o r 16,20,22,26, and 34 have been o b t a i n e d . 3 . The above c u r v e s , t o g e t h e r w i t h those f o r 2 4 , 2 8 , 2 9 , 3 0 , and 32 have been d i s c u s s e d i n terms of c r y s t a l l i n e s t r u c t u r e i n the l i q u i d , t r a n s i t i o n and s o l i d s t a t e s . 4. T r a n s i t i o n p o i n t s o f a l l members from 16 t o 44 o f the even s e r i e s have been c o r r e l a t e d , and the approach of m e l t i n g p o i n t and t r a n s i t i o n p o i n t w i t h i n c r e a s i n g c h a i n l e n g t h d i s c u s s e d . 5 . An attempt has been made t o p r e d i c t the shape of the d e n s i t y temperature curves f o r the even n - p a r a f f i n hydrocarbons of. l o n g carbon c h a i n over the e n t i r e temperature range. BIBLIOGRAPHY I . . A u s t en. J . Am, Chen. Soc. 5 2 , , 1 0 4 9 , 1930. (Give s r e l a t i o n between m e l t i n g p o i n t s and number of carbon atoms f o r a l l homologous s e r i e s . ) 2 ' B u c k l e r and Graves. I n d . Eng. Chem., 19, 718, 1927. |A study of hydrocarbons i n v a r i o u s k i n d s of waxes.) 3 , G a r o t h e r s . H i l l . K l r b y . Jacobson.. J . Am. Chem. .Soc., 5 2 . . 5 2 7 9 , , . 1930. ( G i v e s m e l t i n g p o i n t s f o r 40 , 5 0,60,70, a l s o s y n t h e s i s . ) 4-' Go 11 i n s . J . Soc. Chem. End.-, 5 4 , 3 3 , 1935. (The acids: of Chinese and E s p a r t o Grass Waxes and the Hydrocarbons of E s p a r t o and ande 1 i l i a . Waxes ..)'.. 5> Deanesley and Gar l e t on. J.'Phy. Chem. 4 5 , 1104, 1941.. ( P h y s i c a l Constants o f Hydrocarbons.) 6 . . G a r n e r . Van B i b b e r , and K i n g . J . Chem. Soc. 1 5 3 3 , , 1931.. (The M e l t i n g P o i n t s and Heats of C r y s t a l l i z a t i o n o f the Normal Long-Chain HydrocBbons,) 7 . Gascard. Ann. Chem, 1921, 1 5 , 3 3 2 . . ( G i v e s m e l t i n g points' o f 36^ 5 4 , 62, and 64.) 8. H i l d e b r a n d and Wachter. J . Am Chem. Soc.,, 5 1 , 2 4 8 7 , 1929. (The M e l t i n g P o i n t s of Normal Parefffins.) 9 . K o l v o o r t . J o u r n . I n s t . P e t . Tech.,, 24„ 3 3 8 , 1938. "["Crystal Twins of Normal 24 and the I n f l u e n c e o f Phase T r a n s i t i o n s on T h e i r O r i e n t a t i o n . ) 10. M o r r i s . M aster's T h e s i s . U n i v e r s i t y of B r i t i s h Columbia. ( M e l t i n g p o i n t and d e n s i t i e s f o r 3 2 . ) 1 9 3 8 . I I . M o i l l l n . . P r o c . Camb. P h i l . S o c , 34, 459, 1938. Ja note on t h e M e l t i n g P o i n t s of P a r a f f i n s and F a t t y A c i d s . ) 12. M u l l e r . .Proc. Roy. Soc.(Lond) A120, 437, -1028.. Ifeasurement on a s i n g l e c r y s t a l of 29 ( x - r a y . ) ) ,13. - M u l l e r . P r o c . Roy. Soc. (Lond) A124, 3 1 7 , 1929. ( E x p l a i n s why odd and even members behave d i f f e r e n t l y . ) 14. M u l l e r . . P r o c . Roy. Soc. (Lond.) A127, . 3 0 , 1930. (The C r y s t a l S t r u c t u r e o f the Normal P a r a f f i n s at.Temper a t u r e s Ranging from t h a t of L i q u i d A i r t o the M e l t i n g P o i n t s ) _ _ 8 7 — •: BIBLIOGRAPHY .(Continued) 1 5 . M u l l e r . P r o c . Roy. Sbc. ( L o n d ) A 1 5 4 , 624, 1 9 3 1 . (The Van der W a l l s P o t e n t i a l and the L a t t i c e Energy of a NormaL-CH 2 Chain M o l e c u l a r I n a P a r a f f i n C r y s t a l . ) 16. M u l l e r . P r o c . Roy. Soc. (Lond) 5 1 4 , 1 9 3 2 . (An x - r a y I n v e s t i g a t i o n of the Normal P a r a f f i n s Near T h e i r M e l t i n g P o i n t s . ) 1 7 . Oldham, and.Ubbelohde• J . Chem. Sbc. 2 0 0 , - 1 9 3 8 . . (A M o d i f i e d G r i g n a r d R e a c t i o n i n the S y n t h e s i s of Hydro carbons .) 1 8 . Parks and Huffmann. J . Am. Chem. Soc. 5 2 , 1 0 3 0 , 1 9 3 0 . • TGives Heats of C r y s t a l l i z a t i o n of 5 , 6 , 7 * 8 , and 2 0 and m e l t i n g p o i n t s of these members.) 19 P a r k s and Todd. Ind. Eng. Chem. 2 1 , 1236,.. 1 9 2 9 . (Heats of F u s i o n o f Some P a r a f f i n Hydrocarbons.) 2 0 . P a t t e r s o n , M a s t e r 8 s T h e s i s ; U n i v e r s i t y of B r i t i s h Columbia 1 9 4 0 , , ( P r e p a r a t i o n (The D e n s i t i e s and T r a n s i t i o n P o i n t s of C e r t a i n Long Chain P a r a f f i n Hydrocarbons.) 21. P e t e r s o n . Z e i t . E l e c t r o c h e m i s . 1 2 , 141, 1936. ( P r e p a r a t i o n s o f Normal S t r a i g h t - c h a i n hydrocarbons by E l e c t r o l y s i s . ) 2 2 . P i p e r . e t . a l . ...Bio. J . 2 5 , ; 2 0 7 2 , . 1 9 3 1 . ( S y n t h e s i s and C r y s t a l l i n e Spacings o f C e r t a i n Long Chain P a r a f f i n s , Ketones, and Secondary A l c o h o l s . ) 2 3 . S a v i l l e . . Chem Soc. 1 2 7 , 5 9 1 , . 1 9 2 5 . (Arrangement of A l i p h a t i c Chains.) . ... 24. Sever. J . Am. Chem. Soc. 6 0 , 8 2 7 , 1 9 3 8 . ( F r e e z i n g P o i n t Curves of 32 i n 1 2 , 1 0 , 8 , 6 , Cyclohexane and Benzene.) 2 5 . Seyer and F o r d y c e . J o u r n . Am. Chem. Soc. 5 8 , 2 9 2 9 , 1 9 3 6 . ( F r e e z i n g P o t a t / C u r v e o f 32 i n Propane and Butane.) 2 6 . Shepard, Henne„ and M i d g e l e y . J . Am Chem. Soc. 5 8 , 1 9 4 8 , 1 9 3 1 . ( P h y s i c a l P r o p e r t i e s of the n o r m a l - P a r a f f i n Hydrocarbons, Pentane t o Dodecane.). 2 7 . S t e w a r t . Chem. Reviews, 6 , 4 8 3 , 1 9 2 9 . X l o l e c u l a r S t r u c t u r e as I n t e r p r e t e d by x-Ray d i f f r a c t i o n Measurements i n L i q u i d s . ) — 8 8 — 28. Stewart jand Morrow. P h y s i c a l Reviews, 2 9 / 9 1 9 , 1 9 2 7 . . . 3 0 , 2 3 2 , 1 9 2 7 . . ( M o l e c u l a r Arrangement C a l l e d C y h o t a x i s , g i v i n g x - r a y d i f f r a c t i o n p a t t e r n s . ) .* , P h y s i c a l Reviews, 3 1 , 2, 1 9 2 8 . . 3 2 , 5 5 8 , 1 9 2 8 . ( D e t a i l e d account of x - r a y d i f f r a c t i o n p a t t e r n s and •conclusions.) 2299 Stoll-Gbmpte. R u z i k a . H e l v . Actfea. 9 , 4 9 9 , , 1 9 2 6 . . t I n c l u d e s d e n s i t y curve r e l a t i o n s h i p f o r normal aliphatics«,) 3 0 . St o i l and S t o l l - C o m p t e . Helv.. Chim. A c t a . 1 3 , I I 8 5 , 1930 TStudy o f Hydrocarbon R i n g s . ) 3 1 . i T s a k o l o t o s . Compt Rend. .143, 1 2 3 5 , 1 9 0 0 . (On the M e l t i n g P o i n t s of Hydrocarbons Homologous w i t h ' .' Methane.) 3 2. Yatabe. Master's T h e s i s . U n i v e r s i t y of B r i t i s h Columbia,, 1 9 3 9 . (The D e n s i t y and T r a n s i t i o n P o i n t s of n-24.) 3 3 . K r a f f t , B e r , 1 9 , 2 2 1 9 , 1 8 8 6 . . . (.Synthesis of-Hydrocarbons.) 3 4 . H e l l and H a g e l l e . Ber.. 35• Hydrocarbon Constants.. 3 6 . . I n t e r n a t i o n a l C r i t i c a l T a b l e s . 3 7 . S o r a b j i . J . Chem. Soc. 4 7 , 3 9 , . 1 8 8 5 . X M o d i f i c a t i o n of K r a f f t S y n t h e s i s of Hydrocarbons.) • 1 ' APPENDIX I PREPARATION AND PURIFICATION OF THE HYDROCARBONS TetradecaneV : ;Pentadecane, and Hexaclecane: : These t h r e e members were o b t a i n e d from Parks of the U n i v e r s i t y of S t a n f o r d , and were p a r t of the same m a t e r i a l s used i n heat of f u s i o n measurements. 14 and 15 were c o n s i d e r e d t o be of s u f f i c i e n t p u r i t y t o be employed as r e c e i v e d The sample of 16 was found t o have a s e t t i n g p o i n t of 1 5 . 9°G, a t l e a s t 2 .0°C below the acc e p t e d v a l u e ( c f page 3 8 ) , and i t was deemed ne c e s s a r y t o r e p e a t the d e n s i t y d e t e r m i n  a t i o n . A.5-gram sample was o b t a i n e d through the c o u r t e s y of the S h e l l Development Company, and was p a r t of a specimen used by Deanesly and C a r r o t h e r s ^ i n d e n s i t y , m e l t i n g - p o i n t , and r e f r a c t i v e index measurements. T h i s sample was c o n s i d e r e d t o be of the h i g h e s t p o s s i b l e p u r i t y , . a n d i n order t o a v o i d any 'contamination, .was t r a n s f e r r e d t o a d i l a t o m e t e r b u l b w i t h as l i t t l e exposure t o a i r a s p o s s i b l e , and w i t h o u t f u r t h e r t r e a t m e n t . Octadecane: . 18 was s y n t h e s i z e d by the P e t e r s o n s y n t h e s i s ( c f page 8 9 - 9 0 ) from Kodak C a p r i c a c i d . A c e t i c a c i d was used as a solvent,', the c r y s t a l l i z e d n e edles b e i n g f i l t e r e d o f f a t a temperature, j u s t s l i g h t l y above the f r e e z i n g p o i n t o f the a c e t i c a c i d - h y d r o c a r b o n s o l u t i o n . - - 9 0 - - APPENDIX I (Continued) E i c o s a n e : 20 was s y n t h e s i z e d from D e c y l a l c o h o l (Kodak) by the same method as t h a t used f o r 2 4 , 2 8 , and 3 2 , then p u r i f i e d from s u l p h u r i c a c i d , a c e t i c a c i d , and e t h y l a l c o h o l . Due to the care taken i n t h e s y n t h e s i s and p u r i f i c a t i o n of 2 0 , i t was c o n s i d e r e d t o be one of the p u r e s t members, used. The S o r a b j i - ^ m o d i f i c a t i o n of the K r a f f t - ^ r e a c t i o n i s a g e n e r a l one, and the f o l l o w i n g e q u a t i o n s are a p p l i c a b l e i n form t o 24, 2 8 , and 3 2 . 1 , C 1 0 H 2 ^ 0 H 4. HI — — * C 1 0 H 2 3 I -t- HgO ". 2 . ••2QiG>H-^i' 2Na —» 2NaI C g o H ^ ' - Docosane: 22 was s y n t h e s i z e d from L a u r i e a c i d (Kodak) by e l e c t r o l y s i s . The method o f p r e p a r a t i o n , ' t a k e n from P e t e r s o n 2 1 i s as f o l l o w s : a. N e u t r a l i z e 15 g. ! a u r i c a c i d by warming w i t h a p p r o x i m a t e l y 5g. of K 2 C 0 ^ p l u s 7 5 c c of water. b. Add t o g e t h e r w i t h 5 0 c c of 96% e t h y l a l c o h o l and another 5 g . of l a u r i c a c i d . c. P l a c e s o l u t i o n i n a 3 0 0 c c beaker, and when the temperature has dropped t o 45°C, pass a c u r r e n t o f 0 .84 amps C D . between 2 p l a t i n u m e l e c t r o d e s ( I f the e l e c t r o d e s are smooth, the s u r f a c e a r e a s h o u l d be a p p r o x i m a t e l y 1 5 c m ? ) , h o l d i n g the temperature between 45 and 50°C. — 9 1 — APPENDIX I (Continued) d. Every two hours add 6g. of l a u r i c a c i d d i s s o l v e d I n a l c o h o l u n t i l 40g. of l a u r i c a c i d have been added, the e l e c t r o l y s i s p r o c e e d i n g f o r f i f t e e n h ours. The hydrocarbon c o l l e c t s on the s u r f a c e as an o i l y l i q u i d and can be removed as a s o l i d upon c o o l i n g t o room temperature. e. R e f l u x ; w i t h a s o l u t i o n of potassium carbonate or hy d r o x i d e i n o r d e r t o remove the decomposed l a u r i c a c i d . f . B o i l w i t h w ater, a l t e r n a t e l y c o o l i n g , p o u r i n g o f f the water, and a d d i n g f r e s h water and b o i l i n g u n t i l a c l e a r s o l u t i o n i s o b t a i n e d . g. R e f l u x w i t h a l c o h o l i c potash i n order to s a p o n i f y complete l y any C / q H ^ C O Q C ^ H ^ formed. The c h i e f r e a c t i o n s i n the P e t e r s o n synthesis a r e : . 1 . .•2G 1 1H 2 4 0 0 0 H • >: 2C 1 1H 2 3CpO + H 2 2. 2.C 1 1H 2 5C00 -t-H 20 > 2'C 1 : LH 2 3G00H + 0 3.. 2 0 ^ 2 ^ 0 0 0 »- °22 H46 •+ 2C0 2 4. 2 C 1 1 H 2 5 C 0 0 C i l H 2 3 C 0 0 C l l H 2 3 . 5. .'CiiHgjCOOH + CH 5CH 20H > C-^H^COOC^ These r e a c t i o n s are q u i t e g e n e r a l , and any of the r a d i c a l used i n o b t a i n i n g other members of the s e r i e s c o u l d be s u b s t i t u t e d f o r the C-^H^ group. APPENDIX I (Continued) Docosane; (Continued) R e a c t i o n 3 i s the o n l y one d e s i r e d . R e a c t i o n 4 i s suppressed by the a d d i t i o n of potassium c a r b o n a t e . P e t e r s o n d e c i d e d from the h i g h s a p o n i f i c v alue of h i s p r o duct t h a t a p p r o x i m a t e l y 4.4% of C^Hg-jCOOC^Hg,^ and a p p r o x i m a t e l y 2.9%, of C^Hg^QOOCgH^. were formed d u r i n g the e l e c t r o l y s i s . They are removed by procedure ' f ' above. That: r e a c t i o n , of e q u a t i o n (2) t a k e s p l a c e t o some e x t e n t was deduced from the highe c u r r e n t consumption. The per cent y i e l d i s from 85 t o 9 0 . The p a r t i c u l a r sample of 20 used was not t r e a t e d w i t h s u l p h u r i c a c i d , a f a c t which may account f o r the somewhat low m e l t i n g p o i n t ( c f page .21.) .... Tet r a c o s a n e : 24 was s y n t h e s i z e d from Eastman Kodak Company L a u r y l a l c o h o l , u s i n g the K r a f f t method ( c f page 90).' Of a l l the hydrocarbon members i n v e s t i g a t e d , 24 gave the most marked d e v i a t i o n s from homologous p r o p e r t i e s , and f o r t h i s r e a s o n ' may be c o n s i d e r e d t o be t h e most suspect as r e g a r d s p u r i t y . — 9 3 — . APPENDIX I (Continued) Hexacosane: 26 was .prepared i n thes same manner as 2 2 , u s i n g m y r i s t i c a c i d (Eastmann Kodak) under the f o l l o w i n g c o n d i t i o n s 15g. m y r i s t i c a c i d p l u s 4|- g. potassium carbonate t o g e t h e r w i t h 7 5 c c water p l u s 5 0 c c 9Q% a l c o h o l , u s i n g a c u r r e n t d e n s i t y o f 0 .96 amps at a temperature of 55-60°C. The per cent y i e l d was 85-90 Octacosane: 28 was o b t a i n e d from m y r i s t i c a c i d (Kodak), by means of the F i t t i g R e a c t i o n : -j a. - 2 5 g . of m y r i s t i c a c i d i s melted and hydrogen i o d i d e i s - bubbled i n , the HI b e i n g generated by the a c t i o n of water (1 p a r t ) and I 2 (11 p a r t s ) . The r e a c t i o n i s c o n s i d e r e d complete when a l l the m a t e r i a l i n the r e a c t i o n f l a s k remains l i q u i d / a t room temperature. T e t r a d e c y l i o d i d e i s formed. b. The product i s s l o w l y poured i n t o 2 0 0 c c of dry e t h e r c o n t a i n i n g a s l i g h t excess of the t h e o r e t i c a l amount of Ns r e q u i r e d f o r the r e a c t i o n . c. The m i x t u r e I s r e f l u x e d f o r s i x h o u r s . d. The-ether i s e v a p o r a t e d o f f and the excess Na removed w i t h 95% e t h y l a l c o h o l . - _ 9 4 - - APPENDIX I (Continued) Octacosane: (Continued) e. The a l c o h o l i s evaporated o f f and the hydrocarbon formed i s p u r i f i e d by treatment w i t h s u l p h u r i c a c i d and a c e t i c a c i d . NOnacosane: The sample of 29 used was o b t a i n e d from the American Bureau of Standards. I t was p u r i f i e d by r e p e a t e d c r y s t a l l i z a t i o n from g l a c i a l a c e t i c a c i d and pure e t h e r . T r i a c o n t a n e or d i c e t y l : ' 30 was o b t a i n e d by e l e c t r o l y t i c s y n t h e s i s , u s i n g as o r i g i n a l . c h a r g e 2 0 g. of p a l m i t i c a c i d (Kodak), 5 g. of KOH, lOOcc of water, and 7 5 c c o f e t h y l a l c o h o l , m a i n t a i n i n g a c u r r e n t d e n s i t y o f 2 . 5 amps/square decimeter a t 5 v o l t s , a t a temperature of 70°C. . 3 g - of p a l m i t i c a c i d , d i s s o l v e d i n hot a l c o h o l , were added every two hou r s , and the product was p u r i f i e d by treatment w i t h c o n c e n t r a t e d s i k l p h u r i c a c i d and c r y s t a l l i z a t i o n from g l a c i a l a c e t i c a c i d . D o t r a i c o n t a h e : 3 2 .was s y n t h e s i z e d from C e t y l a l c o h o l (Kodak), by the same method as t h a t f H P f i used f o r 2 0 . I t was p u r i f i e d i n the u s u a l manner. I n t h i s case 3 d e n s i t y - t e m p e r a t u r e curves were obtained- 1- 0, two from s y n t h e s i z e d samples and one from a sample o f the hydrocarbon o b t a i n e d from the Eastman Kodak Company. — 9 5 — APPENDIX I (Continued) T e t r a t r i a c o n t a n e : The P e t e r s o n e l e c t r o l y t i c method was used to s y n t h e s i z e 3 4 . U s i n g Kodak s t e a r i c a c i d , an r e c o v e r y of 7 5 - 8 0 % was ) o b t a i n e d w i t h a c u r r e n t d e n s i t y of O .98 a t a temperature of 7 5 ° C One sample o b t a i n e d by t h i s method was found i m p o s s i b l e t o o b t a i n e d i n a c o l o r l e s s s t a t e . I t i s p o s s i b l e t h a t the r e a s o n l i e s In t h e f o l l o w i n g statement of Oldham and Ubbelohde t "Owing t o the a p p r e c i a b l e o x i d a t i o n of c e r t a i n l i q u i d p a r a f f i n s a t 130°G, i t was a d v i s a b l e t o h i n d e r the c i r c u l a t i o n of a i r over the s u r f a c e of the p a r a f f i n d u r i n g the p u r i f i c a t i o n . " T h i s we d i d not do, and i t may be t h a t r e p e a t e d p u r i f i c a t i o n a t temperatureswe 1 1 over 100°C r e s u l t e d In the f o r m a t i o n of p r o d u c t s of o x i d a t i o n which contaminated the sample we were a t t e m p t i n g t o p u r i f y . - - 9 6 - - APPENDIX I I CALIBRATION OF HEXADECANE DILATOMETER TUBE Mass of mercury 7 6 . 1 7 7 5g Volume of mercury a t 50°G 5 . 6 5 4 1 1 5g Volume of mercury a t 30°C 5 .633722,g, D i f f e r e n c e i n volumes of mercury at 50°C and 30°C 0 . 0 2 0 3 9 3 C o r r e c t i o n f o r expansion of g l a s s = 3 0 ( 5 . 6 3 3 7 2 2 ) ( 0 . 0 0 0 0 0 9 6 ) 0 .001566p ; Net e x p a n s i o n of mercury. 0 . 0 1 9 3 1 1 D i f f e r e n c e i n mercury l e v e l s 3 . 1 2 0 cm. A = c r o s s - s e c t i o n a l a r e a of tube = 0 . 0 1 9 3 1 1 / 3 . 1 2 0 0 . 0 0 6 1 6 3 cm 2 (Average v a l u e o f A found over range 0 -80°C range 0 . 0 0 6 l 7 5 c m 2 Volume of b u l b t o 0 - p o i n t a t 30 SC = V 3 0 '= V30 " h A = 5 . 6 3 3 7 2 2 - 5 2 4 . 8 7 5 5 0 . 0 0 6 1 7 5 5 5 . 4 8 0 4 4 cc — 9 7 — APPENDIX I I (Continued) C a l c u l a t i o n of d e n s i t y : t = temperature a t which r e a d i n g was taken h - h e i g h t of mercury column above zero c l i p A = c r o s s - s e c t i o n a l a r e a of c a p i l l a r y tube V^0= volume of the b u l b to z e r o - p o i n t a t 30°C h v^0= t o t a l volume of mercury t o h e i g h t h a t 30°C ~- V| Q - hA = t o t a l volume to h e i g h t h a t t°C = V 3 0 " v | Q ( t - 3 0 ) ( 0 . 0 0 0 0 0 9 6 ) , where 0 . 0 0 0 0 0 9 6 i s the c o e f f i c i e n t of c u b i c a l expansion of g l a s s , (Pyrex) W =• t o t a l mass of mercury i n d i l a t o m e t e r w i t h hydrocarbon V.J. =• volume of mercury i n d i l a t o m e t e r a t t°C or ( W ) ( s p e c i f i c volume of mercury a t t°C) w ~ weight of the hydrocarbon i n d i l a t o m e t e r b u l b , v^ =• volume of hydrocarbon In b u l b a t t°C = V t ~ V t D t = d e n s i t y of hydrocarbon a t t°C = w/Vt — 9 8 — APPENDIX I I (Continued) Example: c a l c u l a t i o n of the d e n s i t y of hexadecane a t 30°C t = 3 0 U C h = 2 6 . 5 5 cm. A = 0 . 0 0 6 1 7 5 sq. cm. hA = ( 2 6 . 5 5 ) ( 0 . 0 0 6 1 7 5 ) = O . I 6 3 8 I V° 5 . 4 8 0 4 4 3o V 3 0 = V 3 0 " h A Z 5 . 4 8 0 4 4 - 0 . 1 6 3 8 1 5 . 6 4 4 2 5 - 5 . 6 4 4 2 5 ( S i n c e t h e r e i s no c o r r e c t i o n f a c t o r ) W = 6 3 . 6 8 0 0 g. v£ = ( 0 . 0 7 3 9 5 5 2 ) (63.6800) 4 . 7 0 9 4 7 v t = v£ - V t - 5 . 6 4 4 2 5 - 4 . 7 0 9 4 7 . . i 0 . 9 3 4 7 8 w = o ' . 7 l 6 7 g. D. z w/v, = 0 . 7 1 6 7 / 0 . 9 3 4 7 8 / / 0 . 7 6 6 6 — 9 9 — APPENDIX I I I SPECIFIC VOLUMES OF MERCURY FROM 0°C t o 95°C The v a l u e s from 0-40°C are taken from the Chemical E n g i n e e r s Handbook ( P e r r y ) , page 3 5 8 , and those from 40 - 9 5°C are c a l c u l a t e d from the f o l l o w i n g e q u a t i o n : V t - 0 . 0 7 3 5 5 4 0 1 1 ->- 1 0 _ 6 ( l 8 l . 4 5 6 t •+- 0 . 0 0 9 2 0 5 t 2 0 . 0 0 0 0 0 6 6 0 8 t 3 + 0 . 0 0 0 0 0 0 0 6 7 3 2 0 t 4 & t ) Temp. Spec. Volume Temp. Spec. Volume 0 . 0 0 . 0 7 3 5 5 6 6 2 5 . 0 0.0738966 1.0 5 6 9 4 2 6 . 0 9 0 3 6 2 . 0 5 8 2 8 2 7 . 0 9 1 7 0 3 - 0 5 9 6 1 2 8 . 0 9 3 0 4 4 . 0 6095 2 9 . 0 9 4 3 7 5 . 0 6 2 2 8 3 0 . 0 9571 6 . 0 6 3 6 2 3 1 . 0 9705 7 . 0 6 4 9 6 3 2 . 0 9 8 3 9 8 . 0 6 6 2 9 33*0 9 9 7 3 9 - 0 6 7 6 3 34 . 0 0 . 0 7 4 0 1 0 7 6 8 9 3 0241 1 0 . 0 6 8 9 3 3 5 . 0 1 1 . 0 7 0 3 0 3 6 . 0 0 3 7 4 1 2 . 0 7 1 6 4 3 7 . 0 0 5 0 8 1 3 . 0 7 2 9 8 38.O 0642 1 4 . 0 7 4 3 1 3 9 . 0 0 7 7 6 1 5 . 0 7 5 6 5 4 0 . 0 0 8 9 1 1 6 . 0 7 6 9 9 4 1 . 0 1024 17 . 0 7832 4 2 . 0 1158 1 8 . 0 7 9 6 6 4 3 . 0 1223 19 . 0 8100 4 4 . 0 1426 2 0 . 0 8 2 3 3 4 5 . 0 1560 2 1 . 0 8367 4 6 . 0 1695 2 2 . 0 8 5 0 1 4 7 . 0 1829 2 3 . 0 8635 4 8 . 0 1963 2 4 . 0 8 7 6 8 4 9 . 0 2 0 9 7 - - 1 0 0 - - APPENDIX I I I (Continued) Temp. Spec- Volume Temp. Spec. Volume 50.0 0.0742231 75.0 0.0745087 5 1 . 0 2365 76.0 5733 5 2 1 0 2500 77 . 0 5868 5 3 . 0 2634 78.0 5 9 9 6 54.0 2768 79 . 0 6130 55.0 2903 80.0 6264 56.0 . 3 0 3 7 81.0 6399 57.0 3171 82 . 0 6535 58.0 3305 83.0 6670 5 9 . 0 3440 84.0 6804 6 0 . 0 3843 8 5 . 0 6939 61.0 3709 86.0 7074 62.0 3843 87-0 7209 6 3 . 0 3978 88 . 0 7344 64.0 4112 89.O 7479 65.O 4246 90.0 7584 6 6 . 0 4381 91 . 0 7749 67,:0 4516 92.0 7884 68.0 4650 93.0 8019 69.0 4785 94.0 8154 7 0 . 0 4919 95-0 8288 7 1 . o r 5053 ^ 2 . 0 5188 7 3 . 0 5 3 2 2 74.0 5457 7 — 1 0 1 — APPENDIX IV Hexadecane: Lower Curve Upper Curve, same Temp. 8 5 5C down t o 1 5 . 6 D e n s i t y . Temp. D e n s i t y . 8 5 . 6 0 . 7 2 6 4 1 5 . 6 0 . 7 7 6 5 8 4 . 0 0 . 7 2 8 2 1 5 . 1 0 . 8 3 9 8 8 2 . 0 0 . 7 2 9 4 1 5 . 0 0 . 8 4 6 5 7 8 . 0 0 . 7 3 2 4 1 4 . 9 0 . 8 5 0 1 7 6 . 0 0 . 7 3 3 6 1 4 . 8 0 . 8 5 2 6 7 4 . 0 0 . 7 3 5 4 1 4 . 7 0 . 8 5 4 3 7 0 . 0 0 . 7 3 8 3 1 4 . 6 0 . 8 5 5 6 6 6 . 0 0 . 7 4 1 2 1 4 . 5 0 . 8 5 7 1 6 2 . 0 0 . 7 4 4 0 1 4 . 4 0 . 8 5 8 4 5 8 . 0 0 . 7 4 6 4 1 4 . 3 0 . 8 5 9 6 5 4 . 0 0 . 7 4 9 6 1 4 . 2 0 . 8 6 0 7 5 0 . 0 0 . 7 5 2 4 1 4 . 1 0 . 8 6 1 5 4 6 . 0 0 . 7 5 5 2 1 4 . 0 0 . 8 6 2 5 4 2 . 0 0 . 7 5 7 9 1 3 . 9 0 . 8 6 3 2 3 8 . 0 O . 7 6 0 8 1 3 . 8 0 . 8 6 4 0 3 4 . 0 0 . 7 6 3 7 1 3 . 7 0 . 8 6 5 1 3 0 . 0 0 . 7 6 6 6 1 3 . 6 0 . 8 6 5 5 2 8 . 0 0 . 7 6 8 1 1 3 . 5 0 . 8 6 6 1 2 6 . 0 0 . 7 6 9 5 • 1 3 . 1 0 . 8 6 8 6 2 4 . 0 0 . 7 7 0 9 1 3 . 0 0 . 8 6 9 1 2 2 . 0 0 . 7 7 2 9 1 2 . 5 0 . 8 7 1 2 2 0 . 0 0 . 7 7 3 6 1 2 . 0 0 . 8 7 4 3 1 8 . 0 0 . 7 7 4 8 11.5 0 . 8 7 4 9 1 7 . 0 0 . 7 7 6 1 1 1 . 0 0 . 8 7 5 9 1 6 . 0 0 . 7 7 6 0 1 0 . 5 ,; 0 . 8 7 7 4 1 5 . 6 0 . 7 7 6 5 1 0 . 0 0 . 8 7 8 1 1 5 . 0 0 . 8 4 7 1 9 . 0 0 . 8 7 9 5 1 4 . 9 0 . 8 5 3 6 8 . 0 0 . 8 8 1 0 1 4 . 8 . 0 . 8 6 1 3 7 . 0 0 . 8 8 2 3 1 4 . 7 . 0 . 8 7 0 7 6 . 0 O . 8 8 3 6 1 4 . 5 0 . 8 7 7 4 5 . 0 0 . 8 8 5 4 1 4 . 0 0 . 8 9 3 7 : 4 . 0 0 . 8 8 6 4 1 3 . 5 O . 8 9 8 I 3 . 0 0 . 8 8 7 6 1 2 . 0 0 . 9 0 4 6 2 . 0 0 . 8 8 9 0 1 0 . 0 0 . 9 0 8 0 1 . 0 0 . 8 9 0 2 8 . 0 0 . 9 0 9 9 0 . 0 0 . 8 9 1 6 6 . 0 0 . 9 1 0 9 4 . 0 0 . 9 1 2 0 2 . 0 0 . 9 1 2 9 0 . 0 0 . 9 1 3 7 - - 1 0 2 - - E l c o s a n e : APPENDIX IV (Continued) Temp. D e n s i t y Temp. D e n s i t y 7 5 . 0 0.7573 35-5 0 .8978 7 4 . 0 0 .7581 3 5 - 0 0 .9065 7 3 . 0 0 .7583 3 4 . 0 0 . 9 1 0 8 7 2 . 0 0 .7587 3 3 . 0 0.9108 7 1 . 0 0 . 7 6 0 0 32.O 0 .9102 7 0 . 0 0 . 7 6 0 1 30.O 0 .9102 6 9 . 0 O .7603 2 8 . 0 0.9106 6 8 . 0 0 .7609 2 6 . 0 0.9124 6 7 . 0 0.7616 2 2 . 0 0.9149 6 6 . 0 0 . 7 6 2 0 2 0 . 0 0.9159 6 5 . 0 0.7628 1 6 . 0 0 .9180 o 4 . 0 0.7635 14 . 0 0 .9190 03.O 0 . 7 6 4 0 1 2 . 0 0.9199 6 2 . 0 0 .7631 1 0 . 0 . 0 .9207 6 1 . 0 0.7651 8 . 0 0.9214 6 0 , 0 O . 7 6 5 6 . 4 . 0 0 .9229 5 9 . 0 0 .7661 0 . 0 0 .9242 5 8 . 0 0 .7666 5 7 . 0 0.7675 5 6 . 0 0 .7676 5 5 . 0 0.7686 F a l l i n g Temperature 5 4 . 0 0 . 7 6 8 9 . 5 3 . 0 0.7695 . Teirra. D e n s i t y 5 2 . 0 0.7699 * 36.O 0 .8315 5 1 . 0 0.7705 3 5 . 5 O .8525 7 0 . 0 0.7712 34.O 0.862$ 4 9 . 0 0.7711 3 3 . 5 0 . 8 6 2 1 48 . 0 .0.7718 3 3 . 0 O .8654 4 7 . 0 0 .7726 3 2 . 5 0 . 8 6 6 2 46 . 0 0 .7733 3 2 . 0 0.8677 4 5 . 0 0.7735 3 1 . 9 0 .8978 4 4 . 0 0.7741 3 1 . 7 0 . 9 0 6 0 43.0. 0 .7749 3 1 . 3 0 . 9 0 7 3 42 . 0 0.7755 41 . 0 0.7748 40 . 0 0 .7763 3 9 . 0 0 . 7 7 7 1 3 8 . 0 0.7776 3 7 . 0 0.7782 36.30 0 . 7 7 9 0 ' — 1 0 3 — APPENDIX IV (Continued) Docosane: L i q u i d Range Temp. D e n s i t y 9 5 . 0 0 .7462 9 4 . 0 o.7466 92 . 0 0.7505 84 . 0 0 .7531 8 0 . 0 0.7556 74 . 0 0.7596 7 0 . 0 0 . 7 6 2 0 6 2 . 0 O .7672 5 8 . 0 O .7696 5 4 . 0 0 . 7 7 2 1 53 . 0 0 .7733 46 . 0 0 .7785 4 4 . 1 0.7797 Temp. Dropping Temp. D e n s i t y 43 . 5 0 . 8 5 9 6 4 3 . 0 0 .8628 42 . 0 O .8650 41 . 0 0 .8670 40 . 0 0 .8690 39 .8 0 .8900 39 .6 0 .9012 39 . 4 0 . 9 0 2 7 3 9 . 0 " 0 .9039 Temp. R i s i n g . Temp. D e n s i t y . 43 . 4 0 .8882 4 3 . 0 0 .8970 42 . 8 O .8989 42 . 4 0 .9010 42 . 0 0 .9022 4 l.o 0.9033 40 . 0 0 .9040 39 .0 0 .9010 38 .0 0 .9029 37 .0 0 .9052 34 .0 0 .9081 32 .0 0 .9096 3 0 . 0 0 .9108 2 8 . 0 0 .9120 26 . 0 0 .9138 24 . 0 0 .9148 20 . 0 0 .9173 1 6 . 0 0.9199 1 5 . 0 0 .9200 1 2 . 0 0.9218 1 9 . 0 O .9227 8 .0 O .9237 4 . 0 O .9251 0 .0 0 .9268 — 1 0 4 — APPENDIX IV (Continued) T e t r a c o s a n e : Temp. D e n s i t y . 7 5 .0 0 . 7 6 2 1 7 0 . 0 0 . 7 6 5 1 65 . 0 0 . 7 6 8 1 60 . 0 0 . 7 7 1 3 5 5 . 0 0 . 7 7 4 4 52 . 0 0 . 7 7 6 4 50 . 7 0 .7772 5 0 . 6 0 . 8 4 6 8 50 . 5 0 .8601 5 0 . 0 0 . 8 6 1 6 49 . 0 0 . 8 6 4 8 4 8 . 3 0 . 8 6 5 8 4 8 . 0 0 . 8 6 6 3 4 7 . 8 0 . 8 7 2 2 4 7 . 6 0 . 8 9 3 2 4 7 . 5 0 . 8 9 3 9 4 7 . 2 0 .8974 4 7 . 1 0 . 9 1 3 6 4 6 . 8 0 . 9 1 4 7 4 6 . 6 0 . 9 1 7 2 4 6 . 0 0 . 9 2 0 5 4 5 . 0 0 . 9 3 0 6 4 2 . 0 0 .9322 4 0 . 0 0 • 9 3 4 7 3 5 .0 0 . 9 3 4 © 3 5 . 0 •0 . 9 3 5 4 30 . 0 0 . 9 3 7 0 25 . 0 0 . 9 3 8 6 2 0 . 0 0 . 9 3 9 9 15 . 0 0 . 9 3 9 7 10 . 0 ' 0 . 9 4 0 9 5 . 0 0 . 9 4 2 0 — 105 — APPENDIX IV (Continued) Hexacosane: Temp. D e n s i t y 90.0 0 .7565 80.0 0 .7642 70.0 0.7707 •60.0 0.7768 5 6 . 0 0.7793 55.8 0 .7796 55.6 0.8574 55.2 0.8607 54.-8 0.8623 5 4 .5 0 . 8 6 3 4 54.0 0.8640 53.0 O .8658 52.0 0.8672 5 1 . 0 0.8688 50.0 0.8702 48.8 0 . 8 7 2 2 48.6 0.8960 48.2 0.8992 48,. 0 0.9020 47.0 0.9055 46.0 O .906O 44.0 0.9071 40.0 0.9097 36.0 O .9120 32.0 ' 0.9145 28.0 O.9169 24.0 0.9193 20.0 0.9219 16.0 0.9241 12.0 0.9266 8.0 O .9290 4.0 0 . 9 3 1 3 9.0 0.9340 — 1 0 6 — Hexacosane: ( C a p i l l a r y H e i g h t s ) Temperature R i s i n g . ( C h e c k e d 4 times) Temp. He i g h t Temp. Height •10.9 12 .0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 42.0 8 . 0 0 8 . 2 8 9 . 2 0 10.15 11 .10 12 .08 13 .05 1 4 . 0 2 15 . 0 0 15 .49 Temperature F a l l i n g ( F o l l o w i n g p o i n t s .make smooth curve w i t h those g i v e n above) Temp. 4 4 . 0 4 6 . 0 4 8 . 0 ' 4 9 . 0 5 0 . 0 5 1 . 0 5 1 . 5 5 2 . 0 52 .2 5 2 . 2 5 2 . 4 5 2 . 6 5 2 . 8 5 3 . 0 5 3 . 1 5 3 . 2 5 3 . 3 5 3 . 4 55.5 5 3 . 6 5 3 . 7 5 3 . 8 5 3 . 9 5 4 . 0 5 4 . 3 5 4 . 4 5 4 . 6 5 4 . 8 5 5 . 0 H e i g h t . 15.95 1 6 . 4 2 16 .88 17 .10 17.35 17 .58 1 7 . 7 0 1 7 . 8 0 17 .85 1 7 . 8 9 17-90 1 7 . 9 7 1 8 . 0 5 18.12 18.15 1 8 . 2 0 18.25 1 8 . 2 9 1 8 . 3 4 I 8 . 3 8 1.8.42 1 8 . 4 9 18.55 1 8 . 6 1 18.75 18 .88 19 .03 1 9 . 2 1 19 .39 55 55 55 55 55 5 5 . 6 5 5 . 7 5 5 . 8 55-9 56.O 1 9 . 5 0 1 9 . 6 3 19.75 19 .90 2 0 . 0 9 2 0 . 3 5 2 0 . 9 0 25.OO 2 8 . 6 0 2 8 . 6 0 Temperature 4 5 . b 4 6 . 0 4 6 . 5 4 7 . 0 4 7 . 5 4 8 . 0 4 8 . 2 4 8 . 4 49 . 0 4 9 . 5 5 0 . 0 5 0 . 2 5 0 . 4 5 0 . 6 5 0 . 8 5 1 . 0 5 1 . 2 5 1 . 4 5 1 . 6 5 1 . 8 5 2 . 0 5 2 . 2 5 2 . 4 5 2 . 6 5 2 . 8 5 3 . 0 5 3 . 2 5 3 . 4 5 3 . 6 5 3 . 8 5 4 . 0 5 4 . 2 5 4 . 4 5 4 . 6 5 4 . 8 16. 16. .16. 16. 16.. 16. 16. 16. 16. 16. 16. .16. 16 . 16. 16 . 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 18. 18. 18. 1 8 . 18. 18. 19. R i s i n g 13 18 ' 20 24 28 34 37 39 48 5 7 70 75 80 85 9 1 00 06 10 16 124 33 .40 • 49 • 58 68 78 78 98 00 24 38 5 4 70 88 08 --1Q7-- Hexadosane: ( C a p i l l a r y H e i g h t s , continued) Temperature R i s i n g . Temp. 48.2 H e i g h t . Temp. H e i g h t . 16.37 5 2 . 5 9.78 48.4 16.39 53.0 10.17 49.0 16.48 53.5 10.65 49.5 16.57 54.0 11.26 50.0 16.70 54.5 12.00 50.2 16.75 55.0 13.16 50.4 1 6 . 8 9 50.6 16.85 Temperature F a l l i n g . 50.8 16.91 Continuous, smooth 51.0 -17.00 curve from 95 C . 51.-2 17.06 5 1 . 4 17.10 Temo. Height 5 1 . 6 17.16 55-2 14.24 5 1 . 8 17.24 55.3 15.19 5 2 . 0 17.33 •. 55.5 18.00 5 2 . 2 17.40 55.8 2 8 . 6 0 5 2 . 4 17.49 57.0 28.88 5 2 . 6 17.58 59.0 29.35 5 2 . 8 • 17.68 60.0 29.59 5 3 . 0 . 17.78 62.0 30.08 5 3 . 2 17.78 64.0 30.55 5 3 . 4 17-98 66.0 31 .025 53.6 18.10 68.0 3 1 . 6 1 53.8 18.24 70.0 32.00 54.0 18.38 72.0 32.50 54.2 18.54 74.0 32.99 54.4 18.70 76.0 33.57 54.6 18.88 / 78.0 33-98 54.8 19J38 80.0 34.47 5 5 . 0 . • 19.34 82.0 34.97 55.2 19 . 5 6 84.0 35.45 55.4 19.85 86.0 B5 = 94 55.6 20.35 > 88.0 36.43 5 6 , 0 28 . 6 0 90.0 36.95 92.0 37.55 Readings Down 93.0 37.69 f r om 95.0°C 94.0 37.93 95.0 38.22 Temp. Height • 47.2 14.1 p l u s 47.3 • 6 . 6 1 48.0 7.12 49.2 7.98 51.0 8 . 3 6 52.0 8 . 9 0 5 2 . 0 9.46 — 108 — APPENDIX IV (Continued) Octacoaane: Temperature D e n s i t y 8 0 . 0 0 .7673 7 5 . 0 0.7705 70.0 0 .7737 6 8 . 0 0 .7751 6 6 . 0 0.7764 65 .8 0.7765 65 .7 0.7766 65 .6 0.7767 65 .4 0.7769 65 .3 0.7769 65 .2 0 .7770 65.O 0 .7771 64 . 5 0.7774 ' 64 . 0 0.7778 63 .2 0 .7783 63.O 0 .7785 62 .5 0 .7788 6 2 . 0 0.7791 6 1 . 4 0.7796 61 .2 0.7797 61 .2 0 . 8 2 6 3 6 1 . 0 0.8335 60 .5 0 .8637 6 0 . 0 O .8676 59 .5 0 .8695 5 9 . 0 - 0 . 8 7 0 5 58 .5 0.8712 5 8 . 0 0 . 8 7 2 3 5 7 . 5 0.8,730 5 7 . 0 0 .8737 56 .5 0 .8745 56.O 0 .8751 5 5 . 5 0 .8760 55.0 0 .8769 54.O 0.8804 53-0 0 . 9 0 7 3 5 2 . 0 0 .9095 5 1 . 0 0 .9099 5 0 . 0 0 .9108 48 . 8 0.9117 45.O 0 .9131 40 . 0 0.9159 34 .9 0.9182 3 0 . 0 0 . 9 2 0 4 25.O 0 .9228 17 .3 0 . 9 2 6 3 8 . 0 0 . 9 2 9 7 0 . 0 0 .9324 Nonacosane: — 109 — APPENDIX IV (Continued) Temperature D e n s i t y 8 0 . 0 0 .7696 7 5 - 0 0.7727 7 0 . 0 0.7760 6 8 . 0 0 .7774 6 6 . 0 0.7785 6 5 . 8 0.7787 6 5 . 7 0 .7788 6 5 . 6 0.7789 65-5 0 .7790 6 5 . 4 0.7792 6 5 . 3 0 .7793 6 5 . 2 0 . 7 7 9 3 65.O 0.7795 6 6 . 5 0.7798 6 4 . 0 0 . 7 8 0 0 6 3 . 2 0 . 7 8 0 7 63.O 0.7825 63.O 0.7832 6 2 . 5 0.7936 6 2 . 0 0.7939 6 1 . 4 0.7952 6 1 . 2 0 . 7 9 5 3 , 6 1 . 0 0 .7953 6 0 . 5 0 . 7 9 6 0 6 0 . 0 0 .7968 5 9 . 5 0 .7970 5 9 . 0 0 .7970 5 8 . 5 0 .7968 5 8 . 0 0 . 7 9 8 3 5 7 . 5 0 . 7 9 9 0 5 7 . 0 0 .8088 5 6 . 5 0.8139 5 6 . 0 0 .8143 5 5 . 5 0.8142 5 5 . 0 0.8142 5 4 . 0 0 . 8 1 5 0 5 3 . 0 0.8179 5 2 . 0 0 . 8 1 9 1 51-0 0 .8199 5 0 . 0 0 .8207 4 8 . 0 0 . 8 2 2 4 45.O 0 . 8 2 4 9 4 0 . 0 0 .8282 3 4 . 9 : 0 . 8 3 2 0 .30.0 0 .8371 2 5 . 0 0 . 7 4 0 4 17 . 3 0 . 8 4 5 0 8 . 0 0 . 8 4 9 4 0 . 0 0.8523-— H Q - APPENDIX IV (Continued) T r i a c o n t a n e : Temp. Dens i t y 8 0 . 0 0 .7731 7 5 . 0 0 .7763 7 0 . 0 0 .7795 6 8 . 0 0 .7808 6 6 . 0 0 .7819 6 5 . 8 0 .7821 6 5 . 7 0 .7822 6 5 . 6 0 .7822 6 5 . 5 0 .7823 6 5 . 3 0 .7824 6 5 . 3 0 .8098 6 5 . 3 0 .8160 6 5 . 2 0 .8612 6 5 . 0 0 .8689 6 4 . 5 0 .8720 6 4 . 0 0 .8731 6 3 . 2 0 .8743 63 .O 0 .8746 6 2 . 5 0 . 8753 6 2 . 0 0 .8761 6 1 . 4 0 .8771 61 .2 0 .8774 6 1 . 0 0 .8777 60 .5 0 .8784 6 0 . 0 0 . 8 8 0 1 Temp. D e n s i t y . 5 9 . 5 0.9172 5 9 . 0 0.9214 5 8 . 5 0.9236 5 8 . 0 0 .9238 5 7 . 5 0.9242 5 7 . 0 0.9246 5 6 . 5 0 .9243 5 6 . 0 0 .9253 ' 5 5 . 5 O.9256 5 5 . 0 O.9259 5 4 . 0 0 .9270 5 3 . 0 0.9275 5 2 . 0 0 .9280 5 1 . 0 O .9285 5 0 . 0 0 .9291 4 8 . 0 0 .9305 4 5 . 0 0 .9321 4 0 . 0 0 . 9 3 5 0 54.9 0.9372 3 0 . 0 0 .9396 2 5 . 0 0 .9423 17-3 0 .9453 8 .0 0 . 9 4 8 8 0 . 0 0.9512 " I l l - - AppENDIX IV (Continued) D o t r i a c o n t a n e : Temp. D e n s i t y . 86.75 0.7715 8 0 . 0 8 0.7756 7 5 . 0 0.7787 7 3 . 0 O .7801 71 .0 0.7816 69.I 0.7827 68 . 1 0 .8628 67.O 0.8708 6 6 . 0 0.8738" 65.O • 0 .8758 63-95 0 .8780 6 3 . 5 0 .8780 63.O O .8885 62 .5 0 .9080 . 6 2 . 4 0 .9102 62.24 0.9113 6 2 . 0 0.9122 6 0 . 0 0 .9156 5 5 . 0 0 .9208 4 7 - 6 0 . 9 2 7 1 0 .9329 42.8 0.9300 4 9 . 9 5 O .9252 4 5 . 1 2 0 .9286 40 . 1 2 0 .9310 3 5 . 0 3 0.9345 3 0 . 6 0 .9366 24 . 7 0 .9293 . 21 .2 0.9399 15 .4 0 .9450 9 . 2 5 0 .9445 0 . 10 0 .9471 - - 1 1 2 - - APPENDIX IV (Continued) T e t r a t r i a c o n t a n e : Temperature. Dens i t y . 95-0 0 . 7 7 1 6 9 0 . 0 0 . 7 7 5 1 8 5 . 0 0 . 7 7 8 1 8 0 . 0 0 . 7 8 1 0 7 4 . 0 0 . 7 8 4 7 7 2 . 9 0 . 7 8 5 3 7 2 . 4 0 . 8 5 5 0 7 2 . 2 O . 8 6 5 O 7 2 . 0 0 . 8 6 8 6 7 1 . 8 0 . 8 7 1 6 71 . 6 0 . 8 7 3 4 7 1 . 4 0 . 8 7 4 8 7 1 . 2 0 . 8 7 6 0 7 1 . 0 0 . 8 7 7 0 7 0 . 5 0 . 8 7 8 8 7 0 . 0 0 . 8 7 9 8 6 9 . 0 0 . 8 8 2 0 6 8 . 2 O . 8 8 3 6 6 8 . 0 0 . 9 0 4 0 6 7 . 5 0 . 9 1 3 6 6 7 . 0 0 . 9 1 7 0 6 6 . 5 ' 0 . 9 1 9 2 6 6 . 0 0 . 9 2 0 6 6 4 . 0 0 . 9 2 3 2 6 2 . 0 0 . 9 2 4 9 6 0 . 0 0 . 9 2 6 0 5 5 . 0 0,<9292 5 0 . 0 0 . 9 3 2 0 4 5 . 0 0 . 9 3 4 8 4 0 . 0 0 . 9 3 7 0 3 5 . 0 0 . 9 3 9 7 3 0 . 0 0 . 9 4 2 2 2 5 . 0 0 . 9 4 4 3 2 0 . 0 0 . 9 4 6 8 1 5 . 0 0 . 9 4 8 6 1 0 . 0 0 . 9 5 0 2 5 . 0 0 . 9 5 1 9 0 . 0 0 . 9 5 2 0 

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 4 0
Japan 2 0
China 1 0
City Views Downloads
Tokyo 2 0
Ashburn 2 0
Mountain View 2 0
Beijing 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059116/manifest

Comment

Related Items

Admin Tools

To re-ingest this item use button below, on average re-ingesting will take 5 minutes per item.

Reingest

To clear this item from the cache, please use the button below;

Clear Item cache