UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Liquid-liquid mass transfer in cocurrent pipe flow Watkinson, Alan Paul 1966

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1966_A7 W3.pdf [ 8.13MB ]
Metadata
JSON: 831-1.0059056.json
JSON-LD: 831-1.0059056-ld.json
RDF/XML (Pretty): 831-1.0059056-rdf.xml
RDF/JSON: 831-1.0059056-rdf.json
Turtle: 831-1.0059056-turtle.txt
N-Triples: 831-1.0059056-rdf-ntriples.txt
Original Record: 831-1.0059056-source.json
Full Text
831-1.0059056-fulltext.txt
Citation
831-1.0059056.ris

Full Text

LIQUID - LIQUID MASS TRANSFER IN COCURRENT P I P E FLOW '"•  by  ,  ALAN PAUL WATKINSON B. E n g . , M c M a s t e r U n i v e r s i t y ,  1962  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS MASTER  FOR THE DEGREE OF  OF A P P L I E D SCIENCE  i n t h e Department of CHEMICAL ENGINEERING We a c c e p t t h i s required  thesis  as c o n f o r m i n g  standard  THE U N I V E R S I T Y OF B R I T I S H COLUMBIA F e b r u a r y , 1966  to the  In presenting this thesis in partial  fulfilment  of the  requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make it freely for reference and study.  available  I further agree that permission for  extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. , It  is understood that copying or publication of this thesis for  financial gain shall not be allowed without my written permission  Department The University of B r i t i s h Columbia Vancouver 8, Canada Date  -2<Z  PtitMoll  )$<oC  i  ABSTRACT  Mass t r a n s f e r b e t w e e n n - b u t a n o l been s t u d i e d i n c o c u r r e n t  p i p e l i n e flow.  c o n s i s t e d of a feed n o z z l e , a g l a s s pipe gravity settler.  measurements.  total  f l o w r a t e and  input ratio directly  The  contactor  zero end  and  total  length.  flow rate.  e f f e c t s was  estimated  that occurred  settling.  c o n t a c t o r was  the  End  and  a  refractive  drop  input r a t i o  efficiencies cent.  Welsh  phase  ratio,  and  The  by m e a s u r i n g t h e  (10),  velocities  and  the  contactor  v a r i e d from near magnitude of  with v i r t u a l l y zero contactor e f f e c t s were l a r g e .  described  i n the  f o u n d t o be  s u p e r i o r i n terms of  and  requirements.  the  amount o f mass  The  compared t o o t h e r e x p e r i m e n t a l  e x t r a c t i o n devices  energy  and  Phase NTU's , d e t e r m i n e d  individual  to n e a r l y one-hundred per  before  Pressure  by a method p r o p o s e d by C o l b u r n  Mass t r a n s f e r s t a g e  transfer  apparatus  a l s o h a v e b e e n d e t e r m i n e d as a f u n c t i o n o f  a l s o w e r e d e p e n d e n t on  length.  The  contactor  has  v a r i a b l e s s t u d i e d w e r e mass i n p u t  were found t o c o r r e l a t e w i t h and  water  C o m p o s i t i o n s w e r e d e t e r m i n e d by  index  holdup r a t i o  and  length  pipeline . liquid-liquid  literature,  and  was  "contactor effectiveness"  ii  TABLE OF CONTENTS  ABSTRACT  i  L I S T OF TABLES  iv  L I S T OF FIGURES  v  ACKNOWLEDGMENT  v i i  NOMENCLATURE  viii  INTRODUCTION  1  APPARATUS  8  EXPERIMENTAL METHODS  16  a ) Mass T r a n s f e r M e a s u r e m e n t s  16  b) P r e s s u r e  19  Drop M e a s u r e m e n t s  c ) Holdup R a t i o Measurements  20  DESIGN OF EXPERIMENTS  22  OBSERVATIONS  2h  RESULTS AND DISCUSSION  28  a) Mass T r a n s f e r  Measurements  b) R e p r o d u c i b i l i t y c) Pressure  o f Mass T r a n s f e r  28 Results  Drop R e s u l t s  d) Holdup R a t i o R e s u l t s  57 62 65  COMPARISON OF P I P E L I N E CONTACTOR WITH OTHER TYPES OF EXTRACTION EQUIPMENT  6b  CONCLUSIONS  72  RECOMMENDATIONS FOR FUTURE WORK  7*+  REFERENCES  76  iii  TABLE OF CONTENTS APPENDIX A  CALIBRATION OF ROTAMETER  APPENDIX B  REFRACTIVE INDEX - COMPOSITION  APPENDIX C  MASS TRANSFER DATA  APPENDIX D  PROPERTIES OF n-3UTAN0L AND n-BUTANOL-WATER SYSTEMS .  APPENDIX E  PRESSURE DROP MEASUREMENTS  APPENDIX F  HOLDUP RATIO MEASUREMENTS AND PHASE VELOCITY  CALIBRATION  CALCUATIONS  APPENDIX G  DESIGN AND SELECTION OF THE SETTLER  APPENDIX H  DIFFERENCES AMONG DRUMS OF n-BUTANOL  iv  LIST OF TABLES TABLE I II III IV V VI VII  Page R e p r o d u c i b i l i t y Runs  59  Differences  59  Among n-Butanol Drums  R e p r o d u c i b i l i t y of Mass T r a n s f e r  Results  60  R e p r o d u c i b i l i t y of Pressure Drop Measurements  6*+  R e p r o d u c i b i l i t y of Holdup Ratio Measurements  67  T y p i c a l Energy Requirements  70  Comparison of Energy Requirements of Various Contactors  71  V I I I Comparison of C o n t a c t o r E f f e c t i v e n e s s Contactors  of Various  71  A - 1  C a l i b r a t i o n of Rotameter Ch.E.2291 f o r Water  A - 2  A - 2  C a l i b r a t i o n of Rotameter Ch.E.2292 f o r n-Butanol  A - 2  B - 1  C a l i b r a t i o n o f Drum 1 of n-Butanol  B - 3  B - 2  C a l i b r a t i o n of Drum 2 of n-Butanol  B - h  B - 3  C a l i b r a t i o n of Drum 3 of n-Butanol  B - 5  B - h  C a l i b r a t i o n of Drum h of n-Butanol  B - 6  C - 1  Mass T r a n s f e r  D - 1  Properties  Data  of n-Butanol  C - 7,8,9,10 '  D - 2 '• Mutual S o l u b i l i t y of n-Butanol and Water  D - 1 •  D - 3  E - 1  Pressure Drop Data  E - 10,11,12  F - 1  Holdup Ratio  F -  F - 2  Average Phase V e l o c i t i e s  F - 10  G - 1  Evaluation  G - 6  Data  o f S e t t l e r Designs  8,9  V  LIST OF FIGURES Figure  Diagram o f Mass T r a n s f e r Apparatus  Page  1  Schematic  2  Feed  3  Glass Pipe C o n t a c t o r  10  k  Settler  12  5  Schematic  6  D e t a i l o f Pressure Taps  ma  7  Holdup R a t i o  lha  8  Approach t o Steady  9  Appearance of Flow with I n c r e a s i n g W<j>  9 10  Nozzle  Diagram o f Pressure Drop  Apparatus  Apparatus  ll+  18  State  25  10  Phase E f f i c i e n c y  versus W  T  (B/W = 0.125)  30  11  Phase E f f i c i e n c y  versus W  T  (B/W = 0.25)  31  12  Phase E f f i c i e n c y  versus w  (B/W = 0.375.)  32  13  Phase E f f i c i e n c y  versus w  T  (B/W = 0.50)  33  Phase E f f i c i e n c y  versus W  T  (B/W = 1.00)  3^  Phase E f f i c i e n c y  versus W  (B/W = 2.00)  35  15  T  T  16  Phase NTU versus Contactor Length  (B/W = 0.125)  38  17  Phase NTU versus Contactor Length  (B/W = 0.375)  39  18  Phase NTU versus Contactor Length  (B/W = 1.00)  ho  19  NTU  A  versus G  g  (Z =  20  NTU  0  versus G  g  (Z = 5.i0  21  NTU  A  versus Input Mass :Ratio  (Z = 5.0 f e e t )  22  NTU  versus Input Mass Ratio ' .  (Z = 5.0 f e e t )  0  5.0 f e e t ) feet)  h6  23  NTU  A  c o r r e c t e d f o r end e f f e c t s versus G (Z = 5.0ft)^8  2*+  NTU  0  c o r r e c t e d f o r end e f f e c t s versus G (Z=5.0 f t ) *+9  fi  R  vi  Figure  Page  25  NTU  versus Aqueous Phase V e l o c i t y  ( Z = 5.0  feet)  50  26  NTUQ  versus Aqueous Phase V e l o c i t y  (Z  5.0  feet)  51  27a  Mass T r a n s f e r Data of K i l k s o n  27b  P l o t of k  28a  F r i c t i o n F a c t o r versus S u p e r f i c i a l V e l o c i t y  63a  28b  Lockhart-Martinelli  63b  29  Holdup Ratio Versus Input Volume R a t i o  A  versus Water Mass V e l o c i t y  =  56 ( Z = 5.0  P l o t of Pressure Drop Data  feet)56  66.  A - 3  A - 1  Rotameter C a l i b r a t i o n  B - 1  Composition - R e f r a c t i v e  E - 1  D i f f e r e n t i a l Pressure Meter C a l i b r a t i o n Apparatus E - 5  E - 2  C a l i b r a t i o n Curve f o r D.P.  F - 1  C a l i b r a t i o n of Pipe f o r Holdup Measurements  F - 2  G - 1  Glass S e t t l e r with Packing  G - 5  1  Index C a l i b r a t i o n  Meter  B - 7  E - 6  vii  ACKNOWLEDGMENTS  I wish t o thank Dr. S.D.Cavers, under whose direction  this  i n v e s t i g a t i o n was conducted, f o r h i s guidance  throughout t h i s study. I a l s o wish t o thank Mr. R. Muelchen  and h i s  s t a f f f o r t h e i r a s s i s t a n c e and c o o p e r a t i o n i n the c o n s t r u c t i o n o f the a p p a r a t u s , a n d my w i f e , ;  Elizabeth  f o r t y p i n g t h i s manuscript. I am indebted t o the N a t i o n a l Research C o u n c i l and the Chemical E n g i n e e r i n g Department o f the U n i v e r s i t y of B r i t i s h  Columbia  f o r f i n a n c i a l support.  viii  NOMENCLATURE p  A  cross  s e c t i o n a l area  o f pipe  ft  B  n-butanol mass r a t e  D  pipe  E  mass t r a n s f e r e f f i c i e n c y  (approach t o e q u i l i b r i u m  contactor  hr"""^  r  E  diameter  effectiveness  F  t o t a l volumetric  G  molar v e l o c i t y  H  R  lb/minute  holdup  flow r a t e  ft-Vhr  lb-moles/hr-ft  2  ( superficial)  ratio  K  o v e r a l l mass t r a n s f e r c o e f f i c i e n t  L  l e n g t h of pressure  M  molecular weight  N  number of t h e o r e t i c a l mass t r a n s f e r stages  NTU  number of t r a n s f e r u n i t s  P  pressure  Q  flow r a t e  Be  R e y n o l d s number  R.I.  refractive  T  tamperature  U  bulk v e l o c i t y  (UA/V) v o l u m e t r i c  drop s e c t i o n  poundals/ft f t - V second  index °C ft/second  heat t r a n s f e r c a p a c i t y  v.  superficial velocity  W  water mass r a t e  w  T  ft/hr  coefficient  ft/second  lb/minute  t o t a l ( n - b u t a n o l + water) mass v e l o c i t y  X  weight f r a c t i o n of n-butanol i n water  Y  weight f r a c t i o n of water i n n-butanol  Z  length  of glass contactor  ft  lb/hr-ft^  ix  £  e n e r g y r e q u i r e d f o r mass t r a n s f e r h p / s t a g e / ( l i t e r / m l n u t e )  <J>  Martinelli  parameter  X  Martinelli  parameter  2 area  3  a  interfacial  ft /ft  f  friction factor  k  p h a s e mass t r a n s f e r c o e f f i c i e n t lb moles/hr-ft 2  inches  u n i t mole f r a c t i o n d i f f e r e n c e  p  pressure  water  v  volume  x  mole f r a c t i o n o f n - b u t a n o l  i n water  y  mole f r a c t i o n o f w a t e r i n  n-butanol  y  kinematic  p  density  l±  viscosity  f t ^  viscosity  SUBSCRIPTS A  aqueous phase  g  B  n-butanol  i  0  organic  TP  two  W  water  1  inlet  2  o u t l e t of  phase  phase  of contactor settler  1  gas i n t e r f a c e value liquid  t  turbulent  v  viscous  To  total  regime  regime  1  INTRODUCTION  •\  Research  c a r r i e d out i n the department o f Chemical  E n g i n e e r i n g a t the U n i v e r s i t y of B r i t i s h Columbia by Hayduk (1) and Lamont (2) on gas a b s o r p t i o n i n c o c u r r e n t pipe flow s t i m u l a t e d i n t e r e s t i n the corresponding e x t r a c t i o n mass t r a n s f e r problem.  liquid-liquid  The purpose o f t h i s e x p l o r -  a t o r y work was t o d e s i g n an apparatus  for liquid-liquid  c o n t a c t i n g , and t o measure the e f f e c t s o f some o f the important v a r i a b l e s on mass t r a n s f e r r a t e s .  Energy requirements  t r a n s f e r a l s o were to be determined  t o compare a p i p e l i n e  c o n t a c t o r with other types o f l i q u i d - l i q u i d The  f o r mass  e x t r a c t i o n equipment.  o b j e c t of the c o n t a c t o r was t o u t i l i z e the energy  of the f l o w i n g f l u i d s t o cause breakup and d i s p e r s i o n ,of one phase and thereby promote mass t r a n s f e r .  Since c o c u r r e n t  c o n t a c t i n g l i m i t s the mass t r a n s f e r t o one t h e o r e t i c a l  stage,  a p i p e l i n e c o n t a c t o r probably would be used as a mixer i n a c o u n t e r c u r r e n t cascade.  The l i q u i d s t o be c o n t a c t e d would be  i n t r o d u c e d i n t o the s u c t i o n s i d e of the pump t o take advantage of the mixing a c t i o n of the pump. concerned  The present work was  with the more simple case where the l i q u i d s were  i n t r o d u c e d i n t o a h o r i z o n t a l pipe. of a p i p e l i n e c o n t a c t o r were thought  The major advantages t o be the high mass  t r a n s f e r r a t e s a s s o c i a t e d w i t h t u r b u l e n t flow c o n d i t i o n s , and the low c a p i t a l c o s t s .  There i s no p o s s i b i l i t y  -»  2  of  f l o o d i n g i n c o c u r r e n t pipe flow as can occur i n spray  columns.  In a d d i t i o n to the c o c u r r e n t o p e r a t i o n , with  the r e s u l t i n g l i m i t a t i o n o f mass t r a n s f e r to one t h e o r e t i c a l stage, the major disadvantage was high energy .of  costs.  No i n s t a n c e s o f commercial use  a pipeline contactor f o r l i q u i d - l i q u i d  were known;  p l a t e s to promote, mixing has been  (3) . Cocurrent flow o f tv/o l i q u i d  physical properties i n a c y l i n d r i c a l  phases o f d i f f e r e n t  duct i s extremely  complex, i n v o l v i n g s e v e r a l flow regimes.' and Govier  s t r a t i f i e d , and  Bubble flow occurs at low flow r a t e s and i n s i t u  volume r a t i o s o f the phases d i f f e r unity.  R u s s e l l , Hodgson,  (h) have c h a r a c t e r i z e d three types o f flow i n  a study o f an o i l - w a t e r system: bubble, mixed.  extraction  however^ the use o f -a s i m i l a r de'vice with  a s e r i e s of o r i f i c e reported  anticipated  Stratified  c o n s i d e r a b l y from  flow occurs where i n s i t u volume r a t i o s  are c l o s e r to u n i t y , and can p e r s i s t with a wavy i n t e r f a c e to  high flow r a t e s .  Mixed flow, which occurs at high flow  r a t e s , covers the range from  partially  f l o w i n g d i s p e r s i o n s and emulsions.  stratified  Cengel  flows to  (5) has suggested  that t h r e e - l a y e r e d flows can e x i s t , with the c e n t e r l a y e r being a d i s p e r s i o n .  As w e l l as the modes o f flow  listed  above which are c h a r a c t e r i z e d by v i s u a l appearance, e i t h e r one o f both o f the phases i n some cases can be i n laminar, t r a n s i t i o n a l or t u r b u l e n t flow. The upper phase o f a mixed  3  flow can be laminar, f o r example, while the lower phase i s i n the t r a n s i t i o n regime. The major emphasis i n the present work was  to be  on the mixed flow regime where mass t r a n s f e r r a t e s presumably would be h i g h e s t .  The  down i n t o the laminar  equipment was stratified  designed  to handle  flows  regime.  C o r r e l a t i o n of both mass t r a n s f e r and momentum t r a n s f e r r e s u l t s i n two-phase l i q u i d flow i s complicated d i f f i c u l t i e s i n a s s i g n i n g a p p r o p r i a t e ReynoldsJ numbers f r i c t i o n factors.  and  There have been s e v e r a l attempts, f o r  example, to d e f i n e u s e f u l v i s c o s i t i e s and f o r flowing d i s p e r s i o n s .  The  Reynolds  numbers  t r a n s i t i o n from laminar  t u r b u l e n t flow has not been w e l l e s t a b l i s h e d f o r two l i q u i d flow.  by  Further complications  a r i s e due  e x i s t e n c e of s l i p between the phases (W),  to phase  to the  resulting in  the i n s i t u volume r a t i o being, i n g e n e r a l , d i f f e r e n t from the input volume r a t i o .  The  holdup r a t i o ,  (>+, 22)  defined  as the r a t i o of input volume to i n s i t u volume r a t i o i s one measure o f t h i s phenomenon. Although s e v e r a l workers have used p i p e l i n e cont a c t o r s f o r l i q u i d - l i q u i d e x t r a c t i o n , no g e n e r a l study mass t r a n s f e r between l i q u i d s i n cocurrent was  available.  of  p i p e l i n e flow  K i l k s o n (7) s t u d i e d mass t r a n s f e r between  l i q u i d s i n both c o c u r r e n t and  countercurrent  stratified  flow f o r the s p e c i a l case where the i n t e r f a c e between the l i q u i d s was  at the c e n t e r l i n e of the pipe.  Since  the  If  p o s i t i o n of the i n t e r f a c e i s a f f e c t e d by p h y s i c a l p r o p e r t i e s such as v i s c o s i t y , and by i n p u t r a t i o and flow r a t e s , the apparatus  had to be t i l t e d from the h o r i z o n t a l t o m a i n t a i n  the i n t e r f a c e at the c e n t e r l i n e o f the pipe as f l o w r a t e s were v a r i e d .  Grover  and Khudsen (9) and P o r t e r (26) have  s t u d i e d heat t r a n s f e r between immiscible l i q u i d s i n t u r b u l e n t p i p e l i n e flow.  They were a b l e t o c o r r e l a t e the v o l u m e t r i c  heat t r a n s f e r c a p a c i t y c o e f f i c i e n t w i t h t o t a l mass v e l o c i t y and t o t a l l i n e a r v e l o c i t y r e s p e c t i v e l y .  An a n a l y t i c a l  t i o n t o the mass t r a n s f e r problem f o r laminar  solu-  stratified  flow i n c i r c u l a r ducts has not yet been o b t a i n e d .  P o t t e r (8),  u s i n g approximate boundary l a y e r a n a l y s i s , h a s obtained a s o l u t i o n f o r mass t r a n s f e r i n s t r a t i f i e d f l o w between parallel plates.  His s o l u t i o n i s f o r uniform v e l o c i t y at  the i n l e t , and assumes the i n t e r f a c e i s p l a n a r . In the present work i n d i v i d u a l  (phase) mass  t r a n s f e r c a p a c i t y c o e f f i c i e n t s or h e i g h t s o f t r a n s f e r units  ( HTU)  proposed  were to be determined  by C b l b u r n and Welsh (10).  d i r e c t l y u s i n g a method Two  p a r t i a l l y misclble  pure components are c o n t a c t e d , and by determining the r a t e s o f t r a n s f e r i n t o each phase a measure of both f i l m r e s i s t a n c e s i s obtained s i m u l t a n e o u s l y .  I f e q u i l i b r i u m a t the I n t e r f a c e  i s assumed, then the i n t e r f a c e composition o f each phase i s f i x e d at the s o l u b i l i t y composition.  T h e r e f o r e the  i n t e r f a c e composition i s known (at a g i v e n temperature) and  5  i s constant  a l l along the c o n t a c t o r .  (11)  Ruby and E l g i n  have suggested t h a t to measure a t r u e f i l m r e s i s t a n c e , one  phase should  be p r e s a t u r a t e d w i t h the other  c o n t a c t so t h a t t r a n s f e r i n one  d i r e c t i o n o n l y can  f o r example, s a t u r a t e the o r g a n i c c o n t a c t the s a t u r a t e d o r g a n i c  before occur,  phase with water and  then  phase with pure water so t h a t  mass t r a n s f e r of the o r g a n i c molecules o n l y can occur.  They  suggest t h a t mass t r a n s f e r i n both d i r e c t i o n s s i m u l t a n e o u s l y may. a f f e c t the f i l m r e s i s t a n c e .  Smith and  (13)  Beckman  found no measurable e f f e c t of p r e s a t u r a t i o n , t h a t i s , the phase c o e f f i c i e n t s were the same whether they were determined under u n i d i r e c t i o n a l t r a n s f e r c o n d i t i o n s or whether two  pure components were c o n t a c t e d  i n both d i r e c t i o n s . covered  and  t r a n s f e r occurred  With the type of flow c o n d i t i o n s  i n the present  study  one  might expect an e f f e c t  p r e s a t u r a t i o n on the phase c o e f f i c i e n t s due  of  to changes i n  p h y s i c a l p r o p e r t i e s which might a f f e c t the energy requirements f o r d i s p e r s i o n and  breakup.  However pure components only were  used as feed throughout the present work, the o r g a n i c being n-butanol and  feed  the aqueous feed being d i s t i l l e d water.  C o r r e l a t i o n of mass t r a n s f e r r a t e s using c a p a c i t y c o e f f i c i e n t s or HTTJ's, although provides  little  u s e f u l f o r design  purposes,  enlightenment as to the mechanism o f the  t r a n s f e r process,  s i n c e v a r i a b l e s t h a t a f f e c t the mass  t r a n s f e r c o e f f i c i e n t may a f f e c t a l s o the s u r f a c e area a v a i l a b l e  6  for transfer  (lh).  For the s t r a t i f i e d flow regime where  the i n t e r f a c e i s a plane, t h a t i s , i n the absence o f r i p p l i n g , the area can be r  measured and the e f f e c t s o f v a r i a b l e s on the  mass t r a n s f e r c o e f f i c i e n t determined  (7,23).  of r i p p l i n g the area can not•be -determined  A f t e r the onset  accurately.  h i g h l y t u r b u l e n t flows- where one phase i s completely  In.  dis-  persed i n the other, the average drop s i z e can be estimated by a p p l y i n g t u r b u l e n c e theory  Sleicher  (15) has sug-  gested that t h i s approach.is  v a l i d only where there are no  i n t e r a c t i o n s between drops.  Thus; the a p p l i c a t i o n of  tjciis  method i s r e s t r i c t e d to cases' where the r a t i o o f d i s p e r s e d phase to continuous  phase flow r a t e i s very low.  present  at the h i g h e r flow r a t e s , -the turbulence  study,,even  In t h i s  l e v e l was much too low to permit a p p l i c a t i o n o f t h i s  theory.  In f a c t under many of the flow c o n d i t i o n s s t u d i e d some l i n g occurred along  sett-  the'contactor.  A major problem i n mass t r a n s f e r s t u d i e s of the present type i s s e p a r a t i n g the end e f f e c t s from t h e t r a n s f e r t h a t occurs i n the c o n t a c t o r proper.  In t h i s case the end  e f f e c t s c o n s i s t of the abnormal t r a n s f e r r a t e s i n the i n i t i a l c o n t a c t o f the two phases, and i n the s e t t l i n g o f the two phases a f t e r they have passed  through  the c o n t a c t o r . Because  of the nature o f the flow i t would be extremely  d i f f i c u l t to  take i n s i t u samples before s e t t l i n g , and i t would be imposs i b l e to c a l c u l a t e the end e f f e c t s from- t h e o r e t i c a l  principles.  7  An estimate  o f the magnitude o f the end e f f e c t s was made  by f e e d i n g the two streams d i r e c t l y i n t o the s e t t l e r , measuring the amount o f t r a n s f e r t h a t occurred  with  v i r t u a l l y no c o n t a c t o r present, and s u b t r a c t i n g the number of t r a n s f e r u n i t s as an end e f f e c t . timate  end e f f e c t s , i n c l u d i n g e x t r a p o l a t i o n t o zero  l e n g t h have been used by oth e r s studies. it  S i m i l a r approaches to e s contactor  (16) f o r gas a b s o r p t i o n  T h i s type o f approximation has s e v e r a l drawbacks:  combines both end e f f e c t s i n t o a s i n g l e v a l u e , i t i s an  i n d i r e c t r a t h e r than a d i r e c t measure of end e f f e c t s , and it  provides no c l u e s as t o the mechanism o f mass t r a n s f e r . It was a n t i c i p a t e d t h a t t h i s e x p l o r a t o r y  on c o c u r r e n t  l i q u i d - l i q u i d c o n t a c t i n g would provide  study some  i n f o r m a t i o n as t o how the amount o f mass t r a n s f e r , the pressure  drop and the holdup r a t i o were a f f e c t e d by the  input flow r a t i o and the t o t a l flow r a t e , which  together  presumably govern the f l u i d mechanics f o r a g i v e n p a i r o f fluids.  Pressure  drop data would be used to estimate the  energy, requirements f o r mass t r a n s f e r i n the p i p e l i n e c o n t a c t o r , whereas the holdup r a t i o data would a i d i n i n t e r p r e t i n g the mass t r a n s f e r r e s u l t s .  By v a r y i n g the c o n t a c t o r  l e n g t h the c o n t a c t time r e q u i r e d f o r mass t r a n s f e r c o u l d be determined and an estimate c o u l d be made.  o f the magnitude o f the end e f f e c t s  8  APPARATUS The  apparatus used f o r the mass t r a n s f e r s t u d i e s  i s shown s c h e m a t i c a l l y i n F i g u r e 1.  Pure n-butanol and  d i s t i l l e d water were pumped from t e n g a l l o n p o l y e t h y l e n e tanks through rotameters t o the feed n o z z l e .  feed  A f t e r contact  i n the g l a s s pipe c o n t a c t o r the phases were c o n t i n u o u s l y separated  i n a g r a v i t y s e t t l e r and c o l l e c t e d i n r e c e i v e r s . The  feed n o z z l e was designed  t o permit i n t r o d u c t i o n  o f the two streams i n t o the c o n t a c t o r with a minimum o f entrance  disturbance.  ( Figure 2 ) . end  The n o z z l e was c o n s t r u c t e d as f o l l o w s  Two holes were d r i l l e d at a 11*2° angle  i n one  o f a 6£ i n c h long s t a i n l e s s s t e e l rod" l i inches i n  diameter.  A one q u a r t e r  from the o p p o s i t e the f i r s t  i n c h diameter hole was d r i l l e d  end along the a x i s o f the rod t o i n t e r s e c t  two holes about l£ inches f r o n the f i r s t end.  The  r o d was then c u t i n t o two pieces along the c e n t r a l a x i s  and  a 1/32  faces.  i n c h t h i c k T e f l o n sheet  placed between the f l a t  The two s e m i c y l i n d r i c a l s e c t i o n s o f the r o d then  were b o l t e d t o g e t h e r .  T h i s n o z z l e d e s i g n gave s e m i c i r c u l a r  flow c r o s s s e c t i o n s f o r each phase so t h a t the f l u i d s came together  i n the c o n t a c t o r i n a s t r a t i f i e d  l e s s dense organic The  manner w i t h the  phase on t o p .  glass contactor consisted  of a section  o f one-  q u a r t e r i n c h (nominal) Pyrex Brand 77*+0 f l a n g e d g l a s s p i p e , s u p p l i e d by S e n t i n a l Glass Co. ( F i g u r e 3 ) .  The i n s i d e  diameter as measured by c a l i p e r was 0.31 * i n c h e s . 1  A  FEED  •  CONTACTOR  NOZZLE  ROTAMETERS FROM WATER FEED TANK  FLOW CONTROL VALVES  FROM n-BUTANOL FEED TANK  XX PUMPS  TO AQUEOUS PHASE RECEIVER  F E E D S A M P L E POINTS  Figure!  Schematic Diagram of Mass T r a n s f e r  Apparatus  TO ORGANIC PHASE RECEIVER  10 0125  MATERIAL- STAINLESS DIMENSIONS - INCHES  DRILL a T A P  6 HOLES  FEED NOZZLE  STEEL  Figure 2  SCALED Feed  Nozzle  GLASS CONTACTOR  DIMENSIONS - I N C H E S  SCALE: Figure 3  Glass  Pipe  Contactor  FULL  3/4  11  c o n t r a c t i o n i n the i n s i d e diameter e x i s t e d a t the f l a n g e d ends, where the i n s i d e diameter dropped to 0.25  inches.  Pipe s e c t i o n s o f v a r i o u s lengths were a v a i l a b l e .  The pipe  was connected to the feed n o z z l e and s e t t l e r by o u t s i d e flanges. provided  T e f l o n gaskets with •£ inch i n s i d e diameter holes the s e a l s . S e v e r a l s e t t l e r designs were c o n s i d e r e d .  a t i o n and s e l e c t i o n o f the s e t t l e r i s d i s c u s s e d The  design  s e l e c t e d i s shown i n F i g u r e h.  Evalu-  i n Appendix G.  The s e t t l e r  c o n s i s t s of a s t a i n l e s s s t e e l c o n i c a l d i v e r g i n g s e c t i o n with a t o t a l angle  of 9.9  degrees.  diameter s e c t i o n (0.31*+ inches  A one inch long  constant  i n s i d e diameter) i s present  at the small diameter (upstream) end o f the d i v e r g i n g s e c t i o n . The  s t a i n l e s s s t e e l cone i s attached  by o u t s i d e f l a n g e s t o  nominal 1 inch by 3 i n c h ( i n s i d e diameter) Pyrex "Double Tough" g l a s s reducer.  Between the reducer  and the s t a i n l e s s  s t e e l end p l a t e i s a 3 i n c h long Pyrex spacer. are used to provide the s e t t l e r .  T e f l o n gaskets  s e a l s between the f o u r pieces making up  The volume o f the s e t t l e r , determined by f i l l i n g  i t with water, i s about 0.75 * 0.005 l i t e r s . Two E a s t e r n D - l l e x p l o s i o n proof c e n t r i f u g a l pumps (Type 100/RST) Ch.E.22 +8 and Ch.E.2250, were used to pump the 1  fluids.  These pumps were of the mechanical r o t a r y s e a l type  with g r a p h i t e s e a l s and T e f l o n gaskets.  A l l wetted p a r t s were  e i t h e r s t a i n l e s s s t e e l , T e f l o n or g r a p h i t e . were ^in.ODx-^±n .Walli p o l y e t h y l e n e u  Saran tube f i t t i n g s .  The flow  tubing equipped  The f l u i d s were  lines  with  STEEL END PLATEA PYREX PYREX I" x 3 " STAINLESS  0188  SPACER  REDUCER I- D  STEEL  REDUCER  0-625  PARTS SEPARATED BY T E F L O N G A S K E T S  SETTLER SCALE'Figure h  Settler  3/4  13  were metered by two  Brooks rotameters  s i z e 8 and model 1110.  ( ChE  and ChE  A l l wetted p a r t s of the  were g l a s s , s t a i n l e s s s t e e l or T e f l o n . g i v e n i n Appendix A.  2291  rotameters  Calibrations  S t a i n l e s s s t e e l one  2292):  are  quarter inch  needle v a l v e s w i t h T e f l o n packing were used. The  feed n o z z l e , c o n t a c t o r and s e t t l e r were  mounted on top of a s t e e l frame.  The apparatus  m o d i f i c a t i o n of an e a r l i e r d e s i g n by MacDonald F i g u r e 5 shows the apparatus pressure drop measurements. polyethylene cut  Pressure taps c o n s t r u c t e d o f  s e c t i o n s of g l a s s p i p e .  upstream pressure tap. 3.87  were l e f t bellows  A calming  left  fitted  T h i s instrument  some t h i r t y pipe  diameters  A Honeywell ( Model  used to r e c o r d the pressure  drop.  has a l l wetted p a r t s s t a i n l e s s s t e e l , a  d i f f e r e n t i a l pressure range o f 0 to 20 inches of water, was  equipped  procedure  the  measured over a  type d i f f e r e n t i a l pressure instrument 22U-1) was  thirty-  between the feed n o z z l e and  downstream before the s e t t l e r .  292D15, ChE  between  s e c t i o n of  Pressure drop was  f o o t t e s t s e c t i o n and  (2^).  as m o d i f i e d f o r  ( F i g u r e 6 ) were compression  three pipe diameters was  ia a  w i t h a 0 to 100  linear scale.  and curve i s g i v e n i n Appendix E.  The The  and  calibration lines  connecting the pressure taps to the meter were c o n s t r u c t e d of  7mm;0Dx! 1mm;wall' g l a s s t u b i n g i n order to provide v i s u a l  i n d i c a t i o n that water o n l y was  present i n the l i n e s .  p e r i a l Nylon tube f i t t i n g s were used to connect  Im-  the g l a s s  FEED NOZZLE  3-87  0-88-  ft-  •0-79-  TO SETTLER  B 7mm G L A S S TUBING EQUALIZING VALVE n-BUTANOL AND WATER FEED A , B - P R E S S U R E TAPS C-DIFFERENTIAL PRESSURE METER D  Figure  5  X  Schematic Diagram of Pressure  FROM WATER F E E D LINE  Drop Apparatus  0 - 4 8 0 DRILL 20  |^0-88—  0-314 DRILL —| [ - 0 - 0 6 7 5 0-5" MATERIAL DIMENSIONS  PRESSURE  POLYETHYLENE INCHES Figure 6  FULL  D e t a i l of Pressure  BALL VALVE  It  NPT  I  III  I 1  •o ft — J FEED NOZZLE  1 I  •I 11 I I  III  SIZE  Taps  TEFLON GASKET  SARAN FITTING  3  It  D  - 3 0 ft CALIBRATED TEST SECTION  SETTLER  HOLDUP EXPLODED  VIEW  RATIO  APPARATUS SCALE'-  Figure 7  TAP  Holdup R a t i o Apparatus  NONE  15  l i n e s . The with two One  d i f f e r e n t i a l pressure meter was  upstream and  set of taps  two  downstream pressure  (Figure 5 ) was  tap l i n e s  s e c t i o n (38  the mass t r a n s f e r apparatus  to measure holdup r a t i o s . pipe d i a m e t e r s ) was  s e c t i o n of g l a s s pipe was  pipe. and  foot  calming  A three f o o t  c a l i b r a t e d f o r volume ( Appendix b a l l valves  by f l a n g e s to each end  of the  B a l l v a l v e s were used to minimize excess mixing  t h e r e f o r e mass t r a n s f e r during the holdup r a t i o mea-  surements. was  effects.  ) and one-quarter i n c h Hoke "Floraite"  (Type 30201) were attached  A one  placed downstream from  the feed n o z z l e to a v o i d entrance  F  the  easily.  F i g u r e 7 shows how modified  phase d i d get i n t o  from the c o n t a c t o r , i t c o u l d be washed  back through the c o n t a c t o r  was  taps.  connected to the water  feed l i n e so t h a t i f any o r g a n i c pressure  equipped  0.25  The  inches  c y l i n d r i c a l opening i n each b a l l v a l v e i n diameter.  16  EXPERIMENTAL METHODS  a) Mass T r a n s f e r Runs The procedure f o r mass t r a n s f e r runs was follows.  ( R e f e r t o F i g u r e 1)  The water r o t a m e t e r  s e t a t the d e s i r e d r e a d i n g and, when i t was n - b u t a n o l r o t a m e t e r was  set.  as was  s t e a d y , the  The v a l v e on the s e t t l e r  o u t l e t l i n e was m a n i p u l a t e d t o a d j u s t the l e v e l o f the i n t e r f a c e i n the s e t t l e r so t h a t a minimum o f m i x i n g  was  apparent i n t h e s e t t l e r .  always  The  i n t e r f a c e p o s i t i o n was  w i t h i n one-quarter inch of the c e n t e r l i n e .  There was  no  v i s i b l e e f f e c t i n the c o n t a c t o r as the i n t e r f a c e l e v e l varied s l i g h t l y .  When no f u r t h e r changes i n the  f a c e l e v e l were o b s e r v e d , a stopwatch was  started  was  interand  s u f f i c i e n t time a l l o w e d f o r t h e o u t l e t c o m p o s i t i o n s t o r e a c h steady v a l u e s .  Then samples o f the two o u t l e t streams were  c o l l e c t e d over a p e r i o d o f t i m e .  These b u l k samples were  u s u a l l y one t o two pounds o f f l u i d . was measured by stopwatch.  The time o f  collection  The samples were t h e n weighed  t o the n e a r e s t gram on an O'Haus s i n g l e pan balance (ChE  171)  and the b u l k temperatures measured w i t h a m e r c u r y - i n - g l a s s thermometer.  Ten t o f i f t e e n m i l l i l i t e r a l i q u o t s o f each  sample were p l a c e d i n s t o p p e r e d serum b o t t l e s and l e f t i n a water bath c o n t r o l l e d a t 25.5°C f o r a t l e a s t two h o u r s . The r e f r a c t i v e i n d e x was measured i n d u p l i c a t e Bausch and Lomb r e f r a c t o m e t e r (ChE 1608).  using a  I f the two  17  v a l u e s f o r r e f r a c t i v e index of a sample d i f f e r e d by more than 0.0001 a t h i r d r e a d i n g was runs samples  taken.  During each  day's  of both feed streams were taken f o r r e f r a c t i v e  *  index measurements. T e c h n i c a l grade n-butanol manufactured Chemcell(1963) L t d . ( s u p p l i e d by H a r r i s o n and Company) and d i s t i l l e d  Crossfield  water from the department  were used throughout the experiments.  by  still  Specifications  and  p h y s i c a l p r o p e r t i e s of the n-butanol are g i v e n i n Appendix n-Butanol from f o u r d i f f e r e n t drums was  used and  individual  c a l i b r a t i o n s of r e f r a c t i v e index and composition were done for  each drum (Appendix B). A set o f experiments was  run to determine the  time r e q u i r e d f o r the o u t l e t compositions to reach steady values.  The procedure used was  as d e s c r i b e d except that  once the i n t e r f a c e l e v e l became constant a s e r i e s of twenty-five m i l l i l i t e r  samples  of the stream with the lower  v o l u m e t r i c flow r a t e were taken over a p e r i o d of time. T h i s procedure was  repeated f o r f i v e d i f f e r e n t flow con-  d i t i o n s thought t o be r e p r e s e n t a t i v e of the range of c o n d i t i o n s covered.  P l o t s were prepared of r e f r a c t i v e  index of the o u t l e t stream of lower v o l u m e t r i c flow r a t e versus the volume of the stream that had passed through the  settler  (Figure 8).  The d o t t e d l i n e s r e p r e s e n t the  r e f r a c t i v e index of the bulk sample c o l l e c t e d a f t e r the s e r i e s of t w e n t y - f i v e ml. samples.  In a l l cases the  G.  18  Figure £  Approach  to Steady State  19  o u t l e t compositions were constant by the time 750 c c s . o f f l u i d o f lower flow r a t e had passed through the s e t t l e r . With the i n t e r f a c e a t the c e n t e r l i n e o f the s e t t l e r ,  this  volume i s s u f f i c i e n t t o empty the p o r t i o n o f the s e t t l e r occupied by the minor  stream a t l e a s t t w i c e .  F o r the  experimental runs c o l l e c t i o n o f the bulk samples was s t a r t e d a f t e r about 850 c c s . o f o r g a n i c phase had passed through the s e t t l e r f o r input volume r a t i o s of n-butanol t o water  less  than one, and a f t e r about 9 0 0 c c s . o f aqueous phase had passed through the s e t t l e r when the input volume r a t i o was  equal t o or g r e a t e r than u n i t y .  b) Pressure Drop Measurements The apparatus used f o r the pressure drop mea-, surements  i s shown i n F i g u r e 5«  A c a r p e n t e r ^ l e v e l was  used t o check that the pipe was h o r i z o n t a l .  The procedure f o r  the pressure drop d e t e r m i n a t i o n s was as f o l l o w s . The rotameters were s e t a t the d e s i r e d v a l u e s and the i n t e r f a c e i n the s e t t l e r was s e t as d e s c r i b e d i n part  (a).  When  s u f f i c i e n t time had e l a p s e d f o r the s e t t l e r t o be c l e a r e d twice by the phase o f lower v o l u m e t r i c flow r a t e , the o u t l e t temperatures o f both phases were noted.  The e q u a l i z i n g  v a l v e was shut a l l o w i n g a d i f f e r e n t i a l pressure t o be i n d i c a t e d on the meter.  When the needle on the meter  became steady a t i t s f i n a l v a l u e the r e a d i n g was noted and the e q u a l i z i n g v a l v e opened.  A f t e r the needle f e l l  to at  20  l e a s t one was  shut a g a i n and  taken. to  h a l f o f i t s o r i g i n a l v a l u e , the e q u a l i z i n g v a l v e  The  a second d i f f e r e n t i a l pressure  average value of the two  c a l c u l a t e the pressure drop.  the n-butanol rotameter  was  reading  readings was  I f there was  used  evidence  e n t e r i n g the pressure tap l i n e s ,  c o n t r o l v a l v e s were shut and water was  that  the  flushed  back through i n t o the c o n t a c t o r by opening v a l v e s D and The  pressure drop measurement then was  difficulty  repeated.  occurred only d u r i n g runs at n-butanol  water mass r a t i o of  E.  This to  2.0.  c ) Holdup R a t i o Measurements A three f o o t s e c t i o n of g l a s s c o n t a c t o r c a l i b r a t e d as d e s c r i b e d i n Appendix F. complete with b a l l v a l v e s was as shown i n F i g u r e 7.  The  was  The s e c t i o n  i n s e r t e d Into the apparatus  flow r a t e s were set and,  once  the i n t e r f a c e i n the s e t t l e r came to the d e s i r e d p o s i t i o n , the pumps were turned o f f and simultaneously, The  the b a l l v a l v e s were shut  i s o l a t i n g the f l u i d  i n the c a l i b r a t e d s e c t i o n .  pipe s e c t i o n i n c l u d i n g v a l v e s was  the frame and  then removed from  s l o w l y t i l t e d to the v e r t i c a l .  Initial  trials  e s t a b l i s h e d t h a t upon t i l t i n g the t e s t s e c t i o n back and f o r t h s u f f i c i e n t mass t r a n s f e r occurred to cause a change i n volume, l e a v i n g a vapour space at the top of the Hence the organic phase i n s i t u volume c o u l d not determined by d i f f e r e n c e .  The  [^h  tube.  be  f o l l o w i n g procedure t h e r e f o r e  ml.)  21  was  adopted.  the  frame and t i l t e d  v a l v e was was  A f t e r the t e s t s e c t i o n was slowly  removed from  to the v e r t i c a l ,  the top  opened and the volume of the aqueous  phase  determined from the p o s i t i o n o f the aqueous-organic  interface.  The bottom v a l v e was  aqueous phase had drained i n t e r f a c e was  visible  opened u n t i l  out so that the a i r - o r g a n i c  i n the c a l i b r a t e d tube.  of the o r g a n i c phase was  sufficient  The volume  determined from the s c a l e  readings at the a i r - o r g a n i c  and aqueous-organic i n t e r f a c e s .  22  DESIGN OF EXPERIMENTS  a ) Mass T r a n s f e r Experiments The v a r i a b l e s s t u d i e d were i n p u t mass r a t i o , f l o w r a t e and c o n t a c t o r l e n g t h . (Throughout t h i s work, i n p u t r a t i o r e f e r s t o i n p u t o r g a n i c t o aqueous f l o w r a t e s , that i s , n-butanol  t o water r a t i o . )  Mass t r a n s f e r i n t h e  a p p a r a t u s was i n v e s t i g a t e d a t s i x i n p u t mass r a t i o s 0.125, 0.250,  0 . 3 7 5 , 0 . 5 0 0 , 1.00 and 2 . 0 0 .  (B/W),  At each v a l u e  o f B/W seven t o t e n mass f l o w r a t e s were s t u d i e d .  Mass  f l o w r a t e s were v a r i e d from t h e lowest v a l u e s t h a t c o u l d be metered e a s i l y on t h e r o t a m e t e r s , t o r a t e s t h a t c o u l d be s e t t l e d .  the highest  Three c o n t a c t o r  one f o o t , t h r e e f e e t , and f i v e f e e t were used.  flow  lengths, As w e l l  runs were made w i t h t h e f e e d n o z z l e connected d i r e c t l y t o the s e t t l e r , i . e . w i t h no g l a s s c o n t a c t o r p r e s e n t . runs a r e ' . r e f e r r e d t o as "zero l e n g t h " , o r " s e t t l e r runs.)  ( These only"  The u s u a l procedure i n c a r r y i n g o u t t h e e x p e r i m e n t s  was t o s e t t h e l e n g t h , t h e n t h e mass i n p u t r a t i o , and v a r y the f l o w r a t e s i n a random o r d e r .  b) Flow C h a r a c t e r i s t i c s P r e s s u r e drops were measured f o r each f l o w c o n d i t i o n s t u d i e d i n t h e mass t r a n s f e r e x p e r i m e n t s .  A  s e r i e s o f runs a l s o was made w i t h pure w a t e r f o r comparison w i t h accepted  values.  Holdup r a t i o measurements were  23  obtained f o r each flow c o n d i t i o n covered i n the mass t r a n s f e r experiments.  A few mass t r a n s f e r  experiments  were made d u r i n g the p r e s s u r e drop experiments to check with p r e v i o u s mass t r a n s f e r r e s u l t s .  Otherwise the mass  t r a n s f e r , p r e s s u r e drop, and holdup r a t i o were each done s e p a r a t e l y .  experiments  2h  i  OBSERVATIONS  The  appearance o f t h e f l o w was I n many r e s p e c t s  s i m i l a r t o t h a t r e p o r t e d by R u s s e l l e t a l . (*+).  Although  the f l o w was s t r a t i f i e d i n many c a s e s , t h e i n t e r f a c e was never c o m p l e t e l y  f r e e from r i p p l e s .  Except f o r t h e p o s i t i o n  of the i n t e r f a c e r e l a t i v e to the c e n t e r l i n e of the pipe, the appearance o f t h e f l o w s a t B/W o f 0.375 and 0 . 5 0 was s i m i l a r and showed s i m i l a r response t o i n c r e a s i n g f l o w rates.  Sketches o f t y p i c a l f l o w p a t t e r n s w i t h i n c r e a s i n g  f l o w r a t e s a r e shown i n F i g u r e 9, p a r t s A t o F f o r B/W = 0.375* As t h e t o t a l mass v e l o c i t y was i n c r e a s e d , t h e i n t e r f a c e changed from b e i n g r e l a t i v e l y f l a t ,  to s l i g h t  f o l l o w e d by t h e development o f severe waves.  rippling Further  i n c r e a s e s i n mass v e l o c i t y caused a hazy d i s p e r s i o n o f t i n y o r g a n i c d r o p l e t s t o form i n t h e aqueous phase a l o n g t h e interface.  The p o s i t i o n o f t h e i n t e r f a c e became p o o r l y  d e f i n e d , the flow appearing Cengel ( 5 ) .  t h r e e - l a y e r e d as d e s c r i b e d by  As t h e mass v e l o c i t y was i n c r e a s e d  still  f u r t h e r t h e hazy a r e a expanded upwards and downwards, i n some cases e v e n t u a l l y f i l l i n g  t h e whole tube.  At B/W o f 1 . 0  and 2 . 0 t h e f l o w p a t t e r n s were s i m i l a r t o p a r t s A t o F i n F i g u r e 9 e x c e p t t h a t t h e h a z i n e s s appeared f i r s t  i n the  o r g a n i c phase, because water was t h e d i s p e r s e d phase. I n some cases i t was d i f f i c u l t  t o t e l l which phase  was being d i s p e r s e d by l o o k i n g a t t h e p i p e , but i t was  Figure 9  Appearance  of Flow w i t h  Increasing  W,  26  \  clearly visible  i n t h e s e t t l e r t h a t f o r B/W i o . 5 0 ,  the ^ .  phase, was d i s p e r s e d a n d f o r B/W o f 1.0 a n d 2 . 0  organic  t h e a q u e o u s phase was d i s p e r s e d . P a r t s G t o I o f F i g u r e 9 show t h e e f f e c t s o f i n c r e a s i n g mass v e l o c i t y a t B/W was t y p i c a l a l s o o f B/W o f 0 . 2 5 0 . a wavy i n t e r f a c e was p r e s e n t along  o f 0.125. At lowest  mass v e l o c i t i e s formed  I n c r e a s i n g mass  r e s u l t e d i n a swarm o f d r o p l e t s b e i n g  T h e s e d r o p l e t s moved a l o n g  behaviour  and a few l a r g e drops  the i n t e r f a c e a t the pipe w a l l .  velocities  This  t h e t o p o f the pipe  formed.  and became  d i s p e r s e d t h r o u g h o u t t h e w h o l e p i p e a s mass v e l o c i t i e s increased.  The d r o p s i z e a p p e a r e d t o d e c r e a s e w i t h i n c r e a s i n g  mass v e l o c i t y u n t i l ual  t h e d i s p e r s i o n appeared hazy and i n d i v i d -  d r o p s c o u l d n o t be d i s t i n q u i s h e d . I n s e v e r a l i n s t a n c e s s e t t l i n g was o b s e r v e d  the  were  pipe.y  t h e " f l o w -being  similar  n e a r t h e f e e d n o z z l e and" s i m i l a r entrance  t o the s e t t l e r .  inches  t o s k e t c h D,. f o r e x a m p l e , t o sketch C a t the  T h i s e f f e c t was most m a r k e d , o f  course' , w i t h t h e f i v e ' f o o t An e n t r a n c e  contactor.  e f f e c t was v i s i b l e  i n t h e f i r s t few  o f contactor a t a l l but thevery lowest  For s t r a t i f e d over the f i r s t  flows a s l i g h t d i p occurred few inches.  a t i o n o f drops took contactor.  flow rates.  i nthe interface  F o r d i s p e r s e d flows t h e form-  p l a c e i n about t h e f i r s t  At higher flow r a t e s f o r every  t h e r e was c o n s i d e r a b l e  along  inch of  input  ratio  a g i t a t i o n i n t h e s e t t l e r . flnls* was-*  27  u s u a l l y c o n f i n e d t o t h e s e c t i o n s ' where t h e i n s i d e d i a m e t e r was one i n c h o r l e s s . 2.0.  T h i s e f f e c t was w o r s t a t B/W o f  Water appeared t o s e t t l e much more s l o w l y from t h e  o r g a n i c phase t h a n d i d o r g a n i c phase when d i s p e r s e d i n the aqueous phase.  At t h e h i g h e s t t o t a l f l o w r a t e s c o v e r e d  f o r i n p u t r a t i o o f 2.0 a l i q u i d - l i q u i d foam s t r u c t u r e appeared i n t h e s e t t l e r and some e n t r a i n e d w a t e r d r o p l e t s were c a r r i e d out i n t o phase.  the r e c e i v e r with the organic  28  RESULTS AND  a ) Mass T r a n s f e r  DISCUSSION  Results  The a p p r o p r i a t e  d e f i n i t i o n f o r t h e number o f  t r a n s f e r u n i t s f o r t r a n s f e r i n t o the organic  p h a s e i s (30).  y,  J  NTU,  ( i - y)(y  -  1  y)  When two p a r t i a l l y m i s c i b l e p u r e p h a s e s a r e c o n t a c t e d assumption of e q u i l i b r i u m at the i n t e r f a c e i m p l i e s each phase i s s a t u r a t e d a d j a c e n t  the  solubility  respect Equation  of the other  to contactor  component  1.0 -  y  k a o  pipe stage  temperature.  =  G_ B  y, -  y  ±  NTU  - 1.0  2  The mass t r a n s f e r c a p a c i t y c o e f f i c i e n t  where  i s fixed at  1 c a n be i n t e g r a t e d i n c l o s e d f o r m  In  Thus  and i s c o n s t a n t  length at a fixed  NTU,  that  t o the i n t e r f a c e .  f o r a g i v e n phase t h e i n t e r f a c e c o m p o s i t i o n  the  1.0  with Therefore  (30). y  1  -  V2 -  i s given  v  y^ i  by  o  t h e l e n g t h , Z, r e f e r s t o t h e l e n g t h o f t h e g l a s s and d o e s n o t i n c l u d e t h e s e t t l e r  length.  Also the  e f f i c i e n c y o r percentage approach t o s a t u r a t i o n of  the organic  phase i s d e f i n e d Y  E  o =  1  0  0  2  |y.  "  Y  SAT "  Y  1  l  29  Similarly  for transfer  into  t h e aqueous x In  NTU  1.0 g  E. A  - x  NTU  w  X  Equations  - 1.0  5  x ^ - 1.0  xi -  x.  x  x^  -  2  A  •x  100.  =  L  phase  -  2  SAT "  x X  l  l  2 t o 7 were used t o c h a r a c t e r i z e the  1 mass t r a n s f e r  process.  Since  w a t e r were c o n t a c t e d X-p above e q u a t i o n s content  x^,  simplify.  of the n-butanol  finite  y^  feed  i s given i n Appendix e f f i c i e n c i e s were  f o r a l l runs  d a t a and  sample c a l c u l a t i o n s  calculated  those  used.  t o 15  are p l o t s of stage  d e f i n e d by E q u a t i o n s  h and  7 versus  r a t i o s covered  phases.  and  where  These  data  other  are g i v e n i n Appendix  F i g u r e s 10  v e l o c i t y of both  D.  Capacity coeff-  except  l e n g t h o f g l a s s c o n t a c t o r was  the  water  together w i t h the flow r a t e s , m a t e r i a l balances, primary  pure  a r e z e r o and  experimental runs.  i c i e n t s were c a l c u l a t e d no  and  and  A d i s c u s s i o n of the  Numbers o f t r a n s f e r u n i t s and f o r a l l mass t r a n s f e r  pure n - b u t a n o l  t h e sum  C.  efficiency  o f t h e mass  C u r v e s a r e shown f o r a l l i n p u t  f o r the three c o n t a c t o r lengths s t u d i e d  as w e l l as f o r t h e s e t t l e r a l o n e . The c u r v e s f o r t h e 1 C a p a c i t y c o e f f i c i e n t s c o r r e c t e d to account f o r p o s s i b l e d r i f t o f t h e p h a s e s r e l a t i v e t o t h e i n t e r f a c e showed trends s i m i l a r to those of uncorrected c o e f f i c i e n t s with changing flow r a t e s .  30  F i g u r e 10  W  T  W  T  x  I0"  x  10"  LB/HR-FT  5  5  LB/HR-FT  Phase E f f i c i e n c y v e r s u s W  T  2  2  (B/W=0.125)  31  1-0  1-5  20 W  T  W  F i g u r e 11  T  x  I0"  x  I0"  2-5 LB/HR-FT  5  9  3-0 2  LB/HR-FT  Phase E f f i c i e n c y versus W  T  2  (B/\i -  0.25)  32  80-h B/W  0-375  60  40  20  1-0  CONTACTOR LENGTH V 50 FEET e 30 FEET A 1-0 F E E T O SETTLER ONLY I I 30 2*5  1-5 W  x  T  20 10-5 L B / H R - F T  3  80 B/W  0-375  60  40  CONTACTOR LENGTH V 5-0 FEET © 3-0 FEET A 1-0 FEET O SETTLER ONLY ' l 2-5 3-0  20  •0 W F i g u r e 12  T  x  20 I0'  5  LB/HR-FT  Phase E f f i c i e n c y versus W«j  2  (B/VJ = 0.375)  33  W  x  T  LB/HR-FT  5  1  T  W  F i g u r e 13  I0"  T  i  x  I0"  8  2  r  LB/HR-FT  Phase E f f i c i e n c y v e r s u s W  T  2  (B/W  =  0.50)  3>+  F i g u r e lk  Phase E f f i c i e n c y versus W  (B/W = 1.00)  35 100 20  B/W  80  60-  <  UJ  40 CONTACTOR LENGTH V 50 FEET G 30 FEET A 10 FEET O SETTLER ONLY  20  I 3-0 LB/HR- FT'  80-  60-  o  uJ 4  0CONTACTOR LENGTH V 50 FEET ©• 3-0 FEET A 1.0 FEET O S E T T L E R ONLY  20-  1-0  2-0 I0" 5  F i g u r e 15  2-5 LB/HR-FT  Phase E f f i c i e n c y versus W  T  3-0 :  (B/W  =  2.00)  36  s e t t l e r o n l y ( f e e d n o z z l e connected d i r e c t l y t o the are assumed t o r e p r e s e n t end e f f e c t s . designed  The  settler  was  w i t h a c o n s t a n t d i a m e t e r s e c t i o n upstream o f the  d i v e r g i n g c o n i c a l s e c t i o n ( F i g u r e h)  so t h a t d i s p e r s i o n  would o c c u r f o r the end e f f e c t s measurement b e f o r e phases were s e p a r a t e d ,  curves  the  thus s i m u l a t i n g c o n d i t i o n s a t the  s e t t l e r e n t r a n c e when the g l a s s c o n t a c t o r was The  settler)  f o r the s e t t l e r o n l y ( F i g u r e s 10  present.  t o 15)  are  g e n e r a l l y o f the same shape as those f o r f i n i t e l e n g t h s contactor.  The  Approximately  of  end e f f e c t s , however, are v e r y l a r g e .  30 t o 75% o f the mass t r a n s f e r t h a t  occurred  i n the f i v e f o o t c o n t a c t o r a p p a r e n t l y t a k e s p l a c e i n d i s p e r s i o n and  settling.  Values of e f f i c i e n c i e s a t the  ent l e n g t h s are i n some cases v e r y c l o s e . i n e f f i c i e n c i e s a t zero and one  The d i f f e r e n c e s  foot of contactor  are o f t e n w i t h i n the l i m i t s o f the e s t i m a t e o f ibility.  One  differ-  length  reproduc-  would expect the end e f f e c t s i n such a d e v i c e  t o be l a r g e because o f the l a r g e shear s t r e s s e s developed due  t o v e l o c i t y d i f f e r e n c e s as the phases f i r s t come i n t o  contact.  As w e l l the c o n c e n t r a t i o n g r a d i e n t s are a t t h e i r  maximum v a l u e s .  In s e t t l i n g a h i g h l y dispersed flow a  c o n s i d e r a b l e amount o f mass t r a n s f e r a l s o would be e x p e c t e d as the swarms o f t i n y d r o p l e t s s e t t l e out a t the i n t e r f a c e . For B/W  of 2.0,  where water was  d i s p e r s e d i n the  organic  phase, v i s u a l o b s e r v a t i o n of the slow s e t t l i n g r a t e of the aqueous d r o p l e t s from the o r g a n i c phase i n d i c a t e d t h a t  37  the end e f f e c t s would be most severe.  T h i s i s seen  ( F i g u r e 15) t o be the case. Most o f the e f f i c i e n c y versus mass v e l o c i t y curves appear t o f o l l o w s i m i l a r t r e n d s .  A p e r i o d o f low  r a t e o f r i s e o f e f f i c i e n c y w i t h i n c r e a s i n g mass v e l o c i t y i s followed  by a p e r i o d o f r a p i d r i s e .  get very h i g h ,  As mass v e l o c i t i e s  the curves tend to l e v e l o u t . E f f i c i e n c y  at maximum mass v e l o c i t i e s covered ranges from 65 t o e s s e n t i a l l y 100%. The  magnitude o f the end e f f e c t s a s s o c i a t e d with  t h i s p a r t i c u l a r design the u s e f u l n e s s  o f apparatus c e r t a i n l y d e t r a c t s  f o r the study o f the fundamentals o f l i q u i d -  l i q u i d e x t r a c t i o n i n p i p e l i n e flow. modifications  i n design w i l l  d i f f e r e n t s e t t l i n g devices.  cyclone  that  l a r g e end e f f e c t s w i t h  Simkin and Olney (17) s t u d i e d  and mass t r a n s f e r between two l i q u i d s i n a  settler.  then contacted settler.  It i s possible  improve the s i t u a t i o n , although  other workers have a l s o r e p o r t e d  separation  from  The l i q u i d s were mixed a t a " t e e " and  along  a short  p i p e l i n e l e a d i n g t o the cyclone  End e f f e c t s were estimated by measuring the amount  of mass t r a n s f e r that o c c u r r e d fed separately  when the two streams were  s t r a i g h t i n t o the s e t t l e r .  They r e p o r t  t h a t 81 t o 83$ o f the mass t r a n s f e r that they observed i n t h e i r system was o c c u r r i n g Figures versus c o n t a c t o r  i n the s e t t l e r .  16 t o 18 a r e t y p i c a l p l o t s o f phase NTU length.  S i m i l a r p l o t s f o r other flow  rates  38 1 G-r  LB M O L E S / H R - F T  CONTACTOR F i g u r e 16  2  LENGTH  Phase NTU versus Contactor (B/W = 0 . 1 2 ? )  FTLength  39  F i g u r e 17  Phase NTU  versus Contactor (B/v; = 0.375) ,  Length  ho  CONTACTOR  3-0 LENGTH  5 0 FT-  Ok To  V © A O  LB MOLES/HR-FT' 13 0 7 0 !0 0 0 0 8 460 6 920  0  oi  00  10 CONTACTOR  F i g u r e 18  Phase NTU  _L 30 LENGTH  50 FT-  versus Contactor Length (B/W = 1.00)  hi  can  be  prepared  are  i n most c a s e s n o n - l i n e a r , and  workers  (3D  from the data  have r e p o r t e d  length curves  back t o z e r o  are evident.  In the  and  these  data  w o r k no  f o r the  are  dispensed  at the  partially  settled  Observations).  before  log  the  one is NTU  f o o t and  s e t t l e r was  and  20  are  the  plots  reached  was  and (  see  settler  only  order  o f l o g NTU  versus  i n p u t mass r a t i o  lengths  s e t t l e r alone. the  Similar  of three  Since  the  as  feet,  parameter  l o g a r i t h m of the  phase  l o g a r i t h m of the water molar v e l o c i t y , or  t o t a l m o l a r v e l o c i t y does n o t  change the  but  only their r e l a t i v e position.  and  t o t a l molar v e l o c i t y  together  finite  length of f i v e feet.  i n p u t mass r a t i o , p l o t t i n g versus  settler  effects.  for contactor  f o r the  for  a good f i r s t  molar v e l o c i t y , w i t h the  were o b t a i n e d  effects.  of the c o n t a c t o r  t o be  a parameter f o r a c o n t a c t o r plots  end  t o t h e t r u e end  n-butanol  measured,  b o t h end  However t h e p o i n t s f o r t h e  19  effects,  f l o w p a t t e r n s at the  feed nozzle  Figures  end  t h e r e were c a s e s where the f l o w  experiments, are considered approximation  versus  s e t t l e r o n l y was  t r u l y r e p r e s e n t a t i v e of those  l e n g t h s , as  some  extrapolation i s  a r e assumed t o r e p r e s e n t  contactor  curves  the d i f f i c u l t i e s  length to estimate  T h e r e i s some d o u b t t h a t t h e entrance  The  i n e x t r a p o l a t i n g NTU  present  n e e d e d as mass t r a n s f e r  i n A p p e n d i x C.  more c l o s e l y  are  slopes  of the  When w a t e r m o l a r  plotted  than i n Figures  the 19  l i n e s are and  20  but  the  lines,  velocity grouped the  effect  F i g u r e 20  NTU  p  versus G  B  (2 = 5.0 f e e t )  of the parameter i s s t i l l  noticeable.  log  k a resulted i n similar  The  l i n e s f o r B/W>  A  w i t h i n experimental  0.25  lines  Q  but w i t h i n c r e a s e d  i n F i g u r e 19  a p p e a r t o be  e r r o r , whereas those  a p p e a r t o have* a d i s c o n t i n u i t y . on  P l o t s o f l o g k a and  f o r B/W  f o r B/W  < 0.25  straight 0.25  <  This feature i s v i s i b l e  p l o t s a t o t h e r c o n t a c t o r l e n g t h s as w e l l .  t h a t the cases  slope.  represent  I t i s thought  a different  flow  r e g i m e s i n c e a t h i g h f l o w r a t e s c o m p l e t e d i s p e r s i o n was observed. B/W  = 2.0  There i s a s u g g e s t i o n i n F i g u r e 20.  dispersed at high  The c h a n g e i n s l o p e o b s e r v e d  o f 0 . 1 2 5 , 0 . 2 5 0 a n d 2.00  behaviour f o r  I n t h i s c a s e t h e aqueous phase  a p p e a r e d t o be a l m o s t c o m p l e t e l y rates.  of similar  a t mass i n p u t  i s a t t r i b u t e d , then,  flow ratios  t o a change  i n mass t r a n s f e r . c h a r a c t e r i s t i c s when d i s p e r s i o n o f one phase i n t h e o t h e r  i s e s s e n t i a l l y complete.  discussed further later It and  along  i n the t h e s i s .  i s a l s o of i n t e r e s t t o note that i n Figures  20 t h e l i n e f o r B/W  l i n e f o r B/W  = 1.0.  =2.0  appears t o the l e f t  I f t o t a l molar v e l o c i t y  the a b s c i s s a instead of n-butanol  l i n e s f o r B/W  This point i s  = 1.0  fall  to the l e f t  19  of the  i s plotted  molar v e l o c i t y , the  o f those  f o r B/W  =  0.50.  T h i s f e a t u r e i s shown more c l e a r l y i n F i g u r e s 21 a n d 2 2 , which a r e d e r i v e d from c r o s s It  plots of Figures  19 a n d 2 0 .  i s t h o u g h t t h a t t h e m i n i m a o f F i g u r e s 21 a n d 22  a r e c a u s e d p r i m a r i l y by c h a n g e s i n i n t e r f a c i a l  area.  While  c a r r y i n g o u t t h e e x p e r i m e n t s one o b s e r v e s t h a t , a s i n p u t  T  i  1  1 TOTAL  1  INPUT FLOW FT /HR 3  I 01 F i g u r e 21  I  I  0-2 INPUT  0-5 MASS  1 10 RATIO  NTTJ versus Input Mass R a t i o A  L_  2-0 B/W (Z = 5.0 f t . )  k6  INPUT F i g u r e 22-  NTUq v e r s u s  MASS  RATIO  I n p u t Mass R a t i o  B/W (Z. = 5.0 f t . )  h7  ratios  i n c r e a s e , a t about t h e same f l o w r a t e s f o r each i n p u t  r a t i o i t becomes more d i f f i c u l t t o d i s p e r s e t h e o r g a n i c phase i n t h e aqueous phase u n t i l some p o i n t near i n p u t mass r a t i o of unity.  As t h e i n p u t mass r a t i o i s i n c r e a s e d  further,  the aqueous phase i s d i s p e r s e d i n t h e o r g a n i c phase and the i n t e r f a c i a l a r e a appears t o i n c r e a s e a g a i n . visual  Thus from  o b s e r v a t i o n one would expect t h a t t h e i n t e r f a c i a l  a r e a a v a i l a b l e f o r mass t r a n s f e r would go through a minimum. A l s o , as t h e i n p u t mass r a t i o i n c r e a s e s from 0.125  t o 2.0  the o r g a n i c phase NTU goes from being a d i s p e r s e d phase NTU t o a c o n t i n u o u s  phase NTU, and v i c e v e r s a f o r t h e  aqueous phase NTU. I n F i g u r e s 23 and 2*+ t h e NTU f o r t h e s e t t l e r  only  has been s u b t r a c t e d from the NTU f o r a c o n t a c t o r l e n g t h o f f i v e f e e t , t o g i v e a " c o r r e c t e d NTU".  Although  has  still  increased c o n s i d e r a b l y , the curves  g e n e r a l t r e n d s o f F i g u r e s 19 and 2 0 . were c o m p l e t e l y  show t h e same  The d a t a f o r B/W = 2 . 0  e r r a t i c , due t o t h e severe end e f f e c t  noted p r e v i o u s l y ( Figure 15). on t h e s e  the s c a t t e r  These data were n o t p l o t t e d  Figures. The  bulk v e l o c i t y  o f each phase was  estimated  from t h e f l o w a r e a o f each phase, d e t e r m i n e d from t h e i n s i t u volume r a t i o d a t a , and the.average o f t h e i n p u t and o u t p u t v o l u m e t r i c f l o w s o f t h e phase. are p l o t s o f phase NTU v e r s u s log-log scale.  F i g u r e s 25 and 26  b u l k phase v e l o c i t y  These p l o t s appear t o have more  on a constant  1*8  30h  10  or or o o < ZD  0-  B/W  0 V e A  ©  0-125 0-250 0-375 0-50 1 -00  1500  3000  0-01 •  150  300  750 LB  Figure  23  NTU  A  i  MOLES/HR-FT'  C o r r e c t e d f o r End E f f e c t s v e r s u s (2 = 5.0 f e e t )  G  if 9  100  cr cr o o •0  o l-  0-  JL  150  300  750 LB  F i g u r e 2h  NTU  n  1500  3000  MOLES/HR-FT  C o r r e c t e d f o r End E f f e c t s versus (Z = 5.0 f e e t )  }  B  50  U F i g u r e 25  A  FT/SEC  -NTU. versus Aqueous Phase V e l o c i t y  (2 = 5 . 0 f t . )  F i g u r e 26  NTU  n  versus Organic  Phase V e l o c i t y  (Z = 5.0 f t . )  52  s l o p e s than do F i g u r e s 19 and  20 as B/W  changes.  p l o t s were made f o r c o n t a c t o r l e n g t h s o f 1.0  Similar 3«0  f e e t and  f e e t , u s i n g the same flow areas f o r each phase as were used f o r the f i v e f o o t l e n g t h . The  presence  o f the minima shown i n F i g u r e s  21 and 22 p r e c l u d e d a simple data.  The  versus  log  s l o p e s o f the l i n e s on the p l o t s o f l o g NTU values 0.25  between B/W  by l e a s t squares finite  r e g r e s s i o n a n a l y s i s o f the  techniques  (25)  t o be 3.5+  1.0  were  0.3  +0*h  the  p l o t s were found  f o r the same o p e r a t i n g c o n d i t i o n s *  It  determined by a n a l y s i s of c o v a r i a n c e techniques  to was  that  the above mentioned data c o u l d be s a t i s f a c t o r i l y sented  found  over a l l  l e n g t h s o f c o n t a c t o r , whereas the s l o p e s o f  l i n e s on the l o g NTU^versus l o g Uo be 2.h  and  A  repre-  by  NTU  a  cc  tr!*  5  2.h and There was of  NTU  0  CC  U  Q  i n s u f f i c i e n t data t o determine the f u n c t i o n a l form  the dependance of NTU S t u d i e s of heat  on i n p u t  ratio.  t r a n s f e r between i m m i s c i b l e  l i q u i d s i n c o c u r r e n t pipe f l o w have been made by Grover and Knudsen (9) and was  P o r t e r (26).  r e s t r i c t e d t o the f u l l y t u r b u l e n t regime.  Knudsen covered mass i n p u t r a t i o s to  In both cases  2.0.  direct  the  study  Grover  ( o i l t o water) of  and  0.2  They were a b l e to c o r r e l a t e a l l t h e i r data f o r i n j e c t i o n of the two  f l u i d s i n t o the pipe  by  53  Equation 8 =  where  °-  0 0 5 0 6  V '  6  5  8  i s the o v e r a l l v o l u m e t r i c heat t r a n s f e r c a p a c i t y  c o e f f i c i e n t and W«j i s the t o t a l mass v e l o c i t y .  P o r t e r (26),  found i t necessary t o i n c l u d e a f u n c t i o n o f the i n p u t volume f r a c t i o n s of the f l u i d s .  where ^UAj  His e q u a t i o n i s  has the same meaning as i n E q u a t i o n 8, f ^ i s a  f u n c t i o n of the i n p u t volume f r a c t i o n , D i s the pipe diameter,  i s the t o t a l l i n e a r v e l o c i t y , and O" i s the  i n t e r f a c i a l tension. I t Is of i n t e r e s t t h a t the dependence of the mass'transfer r a t e s on v e l o c i t y i n the present work i s much s t r o n g e r than the dependence of the heat  transfer  r a t e s on v e l o c i t y as found by both P o r t e r and Grover Knudsen.  The major p o r t i o n o f the present work  was  c a r r i e d out i n flow regimes where d i s p e r s i o n of one i n the o t h e r was  incomplete.  I t appears  from the  f a c t o r data t h a t i n most cases the severe mixing was  and  phase  friction observed  the r e s u l t of impingements o f the l i q u i d s n e i t h e r of  which was  i n f u l l y developed  t u r b u l e n t f l o w ( F i g u r e 28).  It i s p o s t u l a t e d t h a t , i n the type of filxed flow covered i n the present work, where d i s p e r s i o n of one other i s incomplete,  phase In the  the s u r f a c e area a v a i l a b l e f o r mass  5>+  transfer  i s a stronger function  once d i s p e r s i o n  i s complete.  of v e l o c i t y than i t i s  Thus, t h e r e l a t i v e l y h i g h  exponent on the v e l o c i t y f o r the p r e s e n t work i s thought t o be due p r i m a r i l y t o an i n t e r f a c i a l a r e a e f f e c t . P o r t e r ' s work (26) where d i s p e r s i o n  was i m p l i e d  In  t o be  complete because o f the h i g h v e l o c i t i e s i n t h e t e s t  section  (6 t o 20 f e e t / s e c o n d compared w i t h 0 . 5 t o 1.8 f e e t / s e c o n d i n t h e p r e s e n t w o r k ) , t h e dependence o f the heat  transfer  c a p a c i t y c o e f f i c i e n t on v e l o c i t y i s s m a l l e r t h a n i n the p r e s e n t mass t r a n s f e r  study.  As w e l l , i n t h e p r e s e n t work  B/W o f 0.125 a t h i g h e r v e l o c i t i e s where e s s e n t i a l l y complete d i s p e r s i o n discontinuity  was o b s e r v e d , t h e r e i s a d e f i n i t e  i n t h e p l o t o f l o g NTU^ v e r s u s l o g U  ( F i g u r e 25) and t h e s l o p e f a l l s o f f markedly.  A  Total*bulk  v e l o c i t i e s based on i n p u t v o l u m e t r i c f l o w r a t e s were calculated  f o r the p o i n t s above t h e d i s c o n t i n u i t y  mass t r a n s f e r C.  and t h e  c a p a c i t y c o e f f i c i e n t s were t a k e n from Appendix  The s l o p e on t h e l o g - l o g  p l o t o f k^a v e r s u s Vrp was  2 . 2 , which i s c l o s e t o the exponent on V^, i n P o r t e r ' s equation.  F u r t h e r i n d i r e c t e v i d e n c e t h a t an i n t e r f a c i a l a r e a  e f f e c t may be t h e cause o f t h e v a r i a b l e transfer  dependence o f t h e  c o e f f i c i e n t s on v e l o c i t y comes from Grover and  Knudsen's work ( 9 ) .  They found t h a t when t h e phase t o  be d i s p e r s e d was f e d t h r o u g h a p e r f o r a t e d i n j e c t o r creating  large  I n t e r f a c i a l a r e a s by m e c h a n i c a l  , thus  dispersion  r a t h e r t h a n by l i q u i d - l i q u i d i n t e r a c t i o n , t h e exponent  55  on Equation 8 decreased  1.53*  to a value of  K i l k s o n (7) measured mass t r a n s f e r r a t e s i n a t o l u e n e - a c e t i c : a c i d - w a t e r system f o r s t r a t i f i e d  flow i n  a c i r c u l a r pipe w i t h the i n t e r f a c e f i x e d along the  centerline.  F i g u r e 27(a) i s a graph from h i s work showing the v a r i a t i o n o f the o v e r a l l toluene mass t r a n s f e r c o e f f i c i e n t as a f u n c t i o n of toluene mass v e l o c i t y at s e v e r a l water mass velocities.  F i g u r e 27(b) shows some r e s u l t s from  lower flow r a t e s of the present study. area a v a i l a b l e f o r mass t r a n s f e r was  The  the  interfacial  estimated from  r a t i o measurements by assuming t h a t the i n t e r f a c e was plane.  holdup a  The c a l c u l a t e d v a l u e s of the i n t e r f a c i a l area w i l l  be i n c r e a s i n g l y too low as flow r a t e s i n c r e a s e , because of t h i s assumption. appears  Although  the data are scanty there  to be agreement i n form with K i l k s o n s data. 1  20 MASS F i g u r e 27b  60 VELOCITY  P l o t of k.  100 WATER  140 X IO"*  180 LB/HR-FT'  versus Water Mass V e l o c i t y (Z = 5*0 f t . )  57  b) R e p r o d u c i b i l i t y  o f Mass T r a n s f e r R e s u l t s  Three r e p l i c a t i o n s  a t each o f three  different  flow c o n d i t i o n s were made i n order t o t e s t the r e p r o d u c i b i l i t y of the mass t r a n s f e r  results.  The flow c o n d i t i o n s were  chosen t o y i e l d a range o f e f f i c i e n c i e s . a single are  n-Butanol from  drum was used f o r a l l these t e s t s .  The r e s u l t s  g i v e n i n Table I. As n-butanol from f o u r drums was used over the  course o f the experiments, a s t a t i s t i c a l experiment was set up t o determine whether the n-butanol from the d i f f e r e n t drums caused s i g n i f i c a n t d i f f e r e n c e s mass t r a n s f e r  results.  i n the  A randomized block d e s i g n  was u t i l i z e d , u s i n g f o u r flow c o n d i t i o n s each o f the f o u r drums.  (treatments) f o r  No r e p l i c a t i o n s were made w i t h i n  drums, and the r e s u l t s were analysed assuming that was no i n t e r a c t i o n l i s t s the r e s u l t s .  between drums and treatments. S t a t i s t i c a l analysis  data (Appendix H) i n d i c a t e d  that  there Table I I  o f the e f f i c i e n c y  the source( drum) o f the  n-butanol had no e f f e c t on the mass t r a n s f e r the  90% l e v e l o f s i g n i f i c a n c e .  the  runs at the same flow r a t e s with the f o u r  r e s u l t s at  Because o f t h i s f a c t ,  drums were c o n s i d e r e d t o be e q u i v a l e n t t o f o u r at 'the same flow r a t e  (25)  from a s i n g l e drum.  different replications  The r e s u l t s  o f ' t h e s t a t i s t i c a l experiment were combined with the other reproducibility tests reproducibility  to g i v e an o v e r a l l estimate o f  (Table I I I ) .  I t appeared from a v i s u a l  58  examination of  of Table I I I t h a t there might be an e f f e c t  the s i z e of the mean v a l u e on the v a r i a n c e and so the  r e s u l t s can not, s t r i c t l y  speaking, be pooled.  standard d e v i a t i o n s were c a l c u l a t e d f o r the nevertheless.  The  2.9952 and f o r E  A  efficiencies,  pooled standard d e v i a t i o n f o r E  was  Q  was 2.57%*  There are many f a c t o r s t h a t a f f e c t of  Pooled  the mass t r a n s f e r r e s u l t s .  reproducibility  Because the flow r a t e s  covered were lower than o r i g i n a l l y a n t i c i p a t e d , the  rota-  meters were o f t e n used at l e s s than h a l f t h e i r r a t e d capacity.  I t was  accurately.  difficult,  U n c e r t a i n t y i n the r e f r a c t i v e index  composition c a l i b r a t i o n s was Difficulties  t h e r f o r e , to meter the  fluids  versus  another major source of e r r o r .  i n c o n t r o l l i n g the l e v e l of the  interface  p o s i t i o n from run to run would a l s o c o n t r i b u t e to e r r o r s . S e v e r a l other f a c t o r s c o n t r i b u t e to e r r o r . average  temperature  of the two  o u t l e t phases was  estimate of the i n t e r f a c i a l temperature The  used as the  along the c o n t a c t o r .  c a l c u l a t i o n s of e f f i c i e n c i e s and NTU's were based  the mutual s o l u b i l i t i e s at t h i s temperature. may  The  Use  of i t  have i n t r o d u c e d an e r r o r because h e a t i n g of the  f l o w i n g at the lower flow r a t e by the pumps caused  on  fluid the  average  r  temperature average  along the c o n t a c t o r t o be h i g h e r than the  o u t l e t temperature.  T h i s d i s c r e p a n c y c o u l d have  been c o r r e c t e d e a s i l y by i n s e r t i n g thermometers i n the  59  TABLE I BUTANOL RATE  WATER RATE  lb  min  E  REPRODUCIBILITY RUNS NTU  0  0  NTU  A  %  %  min  0.600  1.600  H-3.CI  H2.37  U-2.62  0.880 1.011 0.975  0.528 0.529 0.533  h0.2h  H-2.26  0.725  1.^5  29.25 28.9h 28.63  28.26 26.66 29.78,  0.582 0.575 0.567  0.317 0.296 0.337  1.30  1.30  he.72 53.83 52. OH-  69.08 69.75 70.16  1.083 1.3^2 1.27 *  l.lH-2 1.16H1.178  1  Length = 5.0 Feet TABLE  BUTANOL RATE lb min  II  WATER RATE _U2min  DIFFERENCES  BUTANOL DRUM NO.  AMONG  E %  0  n-BUTANOL  A % E  DRUMS  NTU  Q  NTU  A  0.175  1.H-0  1 2 3 i+  71.13 75.05 67.09 67.96  32.60 32.13 32.6*+ 32.30  2.221 2.W91 1.981 2.028  0.50  2.00  1 2 3 i+  69.H-3  5*+. 59 5^.27 56.52 55.2M-  2.113 2.185 1.951 2.195  0.762 0.755 0.806 0.777  70.68 66.59 70.67  JOi377 0.370 0.378 0.373  0.725  1.^5  1 2 3 k  11.18 17A1 11. OU18.22  15.51 19.29 22.09 16.18  OU95 0.317 0.193 0.335  0.160 0.203 0.238 0.168  1.70  1.70  1 2 3 if  66.77 59.3>+ 6>f.l3 6H-.07  77.36 73.70 86.23 79-73  1.95H1.57H-  iMh 1.303 1.95^ 1.565  Length = 1.0 Foot  1.818 1.812  TABLE I I I REPRODUCIBILITY OF MASS TRANSFER RESULTS  a-BUTANOL CONTACTOF LENGTH DRUM feet  B lb mln  W lb mln  E  n* MEAN  E  A  VARIANCE MEAN  ihi VARIANCE  NTU  NTU. MEAN  VARIANCE xlO  MEAN  2  VARIANCE xl02  2  5.0  0.60  1.60  3 *+2.73  5.01  h2,h2  0.03^  0.955^  0.h%  0.5291  0.0086  2  5.0  1.30  1.30  3 50.86  13.67  69.66  0.297  1.2327  1.808  1.161**  0.0318  2  5,0  0.725 1.^5  3 28.9h  0.10  28.23  2.^3  0.57^5  0.005  0.3165  0.0^38  1.0  0.175  l.ho  h 70.31  13.01  32.^2  0.060  2.1802  5.38  0.37^5  O.OOl *  1,2,3A  1.0  0.50  2.0  h 69.3>+  3.71  55.23  0.837  2.1109  1.26  0.77'+9  0.0506  1,2,3,*+  1.0  0.725 1 A 5  h lh.he  15.09  18.27  9.26  0.2600  0.582  Oi1921  0.128  1,2,3A  1.0  1.70  h 63.58  9.57  79.26  27.75  1.7895  2A9  1.5689  7.7h  1.70  Pooled v a r i a n c e  8.?h  6.62  Pooled standard d e v i a t i o n  2.99  2.57  n* r e f e r s to the NUMBER OF REPLICATIONS  1  61  i n l e t l i n e s had t h i s temperature earlier.  e f f e c t been r e a l i z e d  Some experiments were run to estimate the  magnitude of the e r r o r i n t r o d u c e d . e r r o r i n the s o l u b i l i t y was two hundred hundred  The l a r g e s t  possible  estimated to be one part i n  f o r the o r g a n i c phase, and f i v e p a r t s i n one  i n the aqueous phase.  D e v i a t i o n s of t h i s  size  o n l y become important f o r the c a l c u l a t i o n of e f f i c i e n c i e s and NTU's when the terms (y^ - y) and s m a l l , i . e . when y approaches  (x^ - x) become  y^ and x approaches  However f o r y to approach y^ and x to approach x^,  x^. con-  s i d e r a b l e mass t r a n s f e r and hence heat t r a n s f e r must occur, and under these circumstances the a c t u a l i n temperature  i s smallest.  the apparatus i t i s suggested on both i n l e t  error  I f f u r t h e r work i s done on that thermometers be mounted  streams.  The o v e r a l l m a t e r i a l balance (see Appendix  C)  checked out w i t h i n + h% i n some 90% of the experimental runs.  I n d i v i d u a l component balances were c o r r e c t w i t h i n  + 10% some 9k% of the time.  E r r o r s i n the o v e r a l l  are probably due mainly to d i f f i c u l t i e s  i n setting  p o s i t i o n of the rotameter f l o a t at the d e s i r e d E r r o r s i n the component  balance the  point.  balances were probably p r i m a r i l y  due to i n t e r f a c i a l l e v e l changes i n the s e t t l e r d u r i n g c o l l e c t i o n of the o u t l e t  samples.  62  c) Pressure  Drop  The  Results  pressure  d r o p m e a s u r e m e n t s w e r e made  i n order  to estimate  transfer  i n the c o n t a c t o r .  drop data data.  t h e e n e r g y r e q u i r e m e n t s f o r mass  A friction  f a c t o r f o r two  In Equation  12  given  water  pressure  12  s u p e r f i c i a l water v e l o c i t y ,  28  of the  The  of  the  plot,for  two  to the  friction  f a c t o r being  do  i n most r e s p e c t s  not  complications  phase f l o w .  correspond arise  t a k i n g place, changing volumetric  This  based  to those  on of  b e c a u s e mass t r a n s f e r  f l o w r a t e s and  physical  phases.  Because of the e x t r e m e l y o f w a t e r ) and  t h a t the f r i c t i o n  the  because  flow  Further  although  Data f o r  t r a n s i t i o n from laminar  the  is felt  V .  The  that i n r e a l i t y  to 5 inches  total  that  n o t w e l l d e f i n e d on  p r o p e r t i e s of the  the  to  by R u s s e l l  flow.  for clarity  graph i s s i m i l a r  i s p e r h a p s due  that  pipe.  i s a p l o t of f ^ versus  properties  it  by  c  = 0.250 h a v e been o m i t t e d  overlap.  is  the  f l o w r a t e o f w a t e r d i v i d e d by  s e c t i o n a l area Figure  fact  phase f l o w d e f i n e d  used to express  D g  i s the  the v o l u m e t r i c  cross  is  pressure  results. AP  B/W  t h a t the  b a s e d on w a t e r p r o p e r t i e s and  s u p e r f i c i a l v e l o c i t y was  is  felt  a l s o m i g h t a i d i n i n t e r p r e t i n g t h e mass t r a n s f e r  R u s s e l l a t a l . C+)  drop  I t was  p r e c i s i o n (Table  low  pressure  drops  t h e mass t r a n s f e r c o m p l i c a t i o n s f a c t o r data IV)  are not  appeared  too  reliable,  63a  0-50  OlOf-  oo&f-  WATER ONLY  001  0005  A e  O  01  0-5  0-2 Vw  F i g u r e 28a  F r i c t i o n Factor v e r s u s  B/W 200 l-OO 0-50 0-375 0-125  1  1-0 FT/SEC  Superficial  2-0  Water  Velocity  63 b  T A  M A R T I N E L L I  (AP/AL)  (AP/AL) f (AP/AL)  C U R V E  (GAS-LIQUID  _, (AP/AL). •TP 0 H A P / A D0 X*.  T  FROM  FLOW)  BURNINGHAM  n  A  100  50  •0r-  0-5  0-2  0-5  10  20  A  *  O  <D  A  n  50  X  F i g u r e 28b  Lockhart-Martinelli  P l o t o f P r e s s u r e Drop Data  6h  acceptable.  The f l o w p r o p e r t i e s which determine t h e  p r e s s u r e drop depend on t h e c o m p o s i t i o n o f t h e phases, and t h e c o m p o s i t i o n depends on t h e f l o w r a t e s , on how much o f t h e end e f f e c t o c c u r s a t t h e f e e d n o z z l e , and on t h e l e n g t h o f c a l m i n g s e c t i o n b e f o r e t h e p r e s s u r e taps.  r e p l i c a t i o n s of a s i n g l e two phase f l o w  Four  c o n d i t i o n (Table IV) gave a range o f measured v a l u e s of about  o f t h emean v a l u e .  TABLE IV REPRODUCIBILITY OF PRESSURE DROP MEASUREMENTS RUN NO.  n-BUTANOL RATE lb min  WATER RATE lb min  SCALE READING  Ap  f  W  inches of H 0 2  P-13  0.60  1.20  6.8  1.39  0.0357  P-58  0.60  1.20  6.65  1.35  0.03'+7  P-63  0.60  1.20  6.85  l.WO  0.0359  P-65  0.60  1.20  6.75  1.38  0.035*+  4 D. Burnlnghara Martinelli  (12) has'applied t h e L o c k h a r t and  c o r r e l a t i o n (33) f o r g a s - l i q u i d  to l i q u i d - l i q u i d data o f s e v e r a l w o r k e r s . a p l o t of the M a r t i n e l l i  parameters  p r e s s u r e drop F i g u r e 28b i s  f o r t h e p r e s e n t work.  The r e s u l t s from t h e p r e s e n t work agree f a i r l y w e l l w i t h those o f Burningham, and a r e , as e x p e c t e d , c o n s i d e r a b l y lower than v a l u e s p r e d i c t e d by t h e g a s - l i q u i d  correlation.  65  d ) Holdup R a t i o R e s u l t s The holdup r a t i o , H , as r e d e f i n e d by R u s s e l l e t R  al.t *) i s 1  H  rt  =  —  Input Volume R a t i o In s i t u Volume R a t i o  13  In the present work volume r a t i o always r e f e r s t o the r a t i o of n-butanol  to water.  I n s t r a t i f i e d l a m i n a r f l o w the  holdup r a t i o i s independent o f f l u i d v e l o c i t y a f u n c t i o n o f the v i s c o s i t y  ( 2 2 ) , being  r a t i o o f the two f l u i d s .  F i g u r e 29 i s a p l o t  a f t e r R u s s e l l (*+) showing  holdup r a t i o as a f u n c t i o n o f i n p u t volume r a t i o a t v a r i o u s s u p e r f i c i a l water v e l o c i t i e s .  T h i s p l o t was  from curves o f holdup r a t i o v e r s u s velocity  constructed  superficial  water  w i t h i n p u t volume r a t i o as a parameter.  s o l v e d f o r the v e l o c i t y f l o w by n u m e r i c a l interface.  distribution  Gemmell(22)  i n laminar  stratified  methods f o r v a r i o u s p o s i t i o n s o f the  A l l h i s work was done f o r the case o f c o m p l e t e l y  i m m i s c i b l e l i q u i d s and i n the absence o f mass t r a n s f e r . presented  a p l o t o f holdup r a t i o v e r s u s v i s c o s i t y  the i n p u t volume r a t i o as a parameter.  r a t i o with  The d o t t e d l i n e i n  F i g u r e 29 has been d e r i v e d from Gemmell's p l o t . lowest v e l o c i t i e s solution  i s good.  He  At the  o f t h i s s t u d y the agreement w i t h Gemmell's As t h e v e l o c i t i e s  increase, deviations  from Gemmell's p r e d i c t e d curve a r e i n c r e a s i n g l y Gemmell r e p o r t e d s i m i l a r compared h i s r e s u l t s  positive  positive.  d e v i a t i o n s when he  with R u s s e l l ' s experimental  The f a l l i n holdup r a t i o n o t i c e d f o r v a l u e s  V  w  d a t a (*+). =  0.80  66  i  1  1  1  1  r  •oo  r< cr  Q_ 0 - 7 5 Z> Q _J O X  050  /  /  SYMBOL O  w  0-25 FT/SEC  e  o-5o  CD  0  025  OO  FROM G E M M E L L  1  1  1-0  0-5  INPUT F i g u r e 29  VOLUME  1  1-5  1  20  2-5  RATIO  Holdup R a t i o v e r s u s Input Volume R a t i o  67  and V ' = 0 . 6 5 below i n p u t volume r a t i o s o f 0 . 3 i s thought w  t o be t h e r e s u l t  o f a mass t r a n s f e r  effect.  At h i g h  v e l o c i t i e s and low Input r a t i o s a good d e a l o f mass transfer  occurs  and t h e v o l u m e t r i c f l o w o f n - b u t a n o l  d e c r e a s e s c o n s i d e r a b l y , and t h e i n s i t u volume r a t i o becomes beoomoc v e r y s m a l l .  T a b l e V shows t h e r e p r o d u c -  i b i l i t y o f t h e h o l d u p r a t i o measurements as e s t i m a t e d by f o u r r e p l i c a t i o n s  of a single  experimental  flow condition.  The range i n holdup r a t i o i s about 13#-of t h e mean v a l u e .  TABLE V RUN NO.  REPRODUCIBILITY OF HOLDUP MEASUREMENTS VOLUME OF PHASE  B  W  -Ik. min  min  INPUT VOLUME RATIO  IN SITU VOLUME RATIO  HOLDUP RATIO  H-28  0.60  1.20  0.615  23.2  20.7  0.892  0.690  H-U-5  0.60  1.20  0.615  2H-.6  19.6  0.797  0.729  H-H-6  0.60  1.20  0.615  2^.7  19.3  0.781  0.775  H-U-7  0.60  1.20  0.615  2H-.H-  20.6  0.8H-5  0.788  (ml)  AQUEOUS  ORGANIC  68  COMPARISON OF THE  PIPELINE CONTACTOR WITH OTHER TYPES  OF EXTRACTION EQUIPMENT  C a p i t a l c o s t s and o p e r a t i n g c o s t s are two the major c o n s i d e r a t i o n s i n e v a l u a t i n g e x t r a c t i o n equipment. an i m p o r t a n t  The  of  liquid-liquid  energy r e q u i r e m e n t s ,  w h i c h are  p a r t of the o p e r a t i n g c o s t s can be  estimated  from p r e s s u r e drop d a t a . (A sample c a l c u l a t i o n i s shown i n Appendix E ) .  Table VI g i v e s t y p i c a l v a l u e s o f energy  r e q u i r e m e n t s f o r v a r i o u s i n p u t r a t i o s a t comparable v a l u e s of t o t a l volumetric flow.  These energy r e q u i r e m e n t s are  -5 i n the range 2 t o 5 x 10 t o t a l input flow.  h p / ( s t a g e ) ( l i t e r / m i n u t e ) of  For c o m p a r i s o n w i t h o t h e r  contactors  i t must be n o t e d t h a t the p i p e l i n e c o n t a c t o r can y i e l d a t best one  t h e o r e t i c a l s t a g e , and the energy r e q u i r e m e n t s  l i s t e d are f o r one m i x e r - s e t t l e r u n i t o n l y .  As w e l l t h e r e  are o t h e r energy l o s s e s b e s i d e s the p r e s s u r e drop i n the contactor i t s e l f .  A c o n s e r v a t i v e e s t i m a t e o f energy  r e q u i r e m e n t s f o r the p i p e l i n e c o n t a c t o r o p e r a t i n g w i t h a n - b u t a n o l - w a t e r system i s 10 2i  hp/(stage)(liter/minute),  times the l a r g e s t v a l u e d e t e r m i n e d (Table V I ) from the  p r e s s u r e drop measurements a t about 7.5 t o t a l flow.  x 10  f t . /second  For a s t r i c t comparison w i t h o t h e r  devices,  measurements s h o u l d be made on i d e n t i c a l c h e m i c a l  systems,  s i n c e the mass t r a n s f e r r a t e s and power expended depend on the p h y s i c a l p r o p e r t i e s o f the system. magnitude comparison o f energy r e q u i r e m e n t s  An o r d e r  of  can be made,  69  nevertheless.  Table V I I l i s t s published values f o r  some o t h e r c o n t a c t i n g d e v i c e s .  The p i p e l i n e c o n t a c t o r  appears t o have energy r e q u i r e m e n t s i n t h e same range as t h e o t h e r  devices.  "Contactor has  e f f e c t i v e n e s s " d e f i n e d by C o p l a n (18),  been used as a method o f comparing c a p i t a l c o s t s o f l i q u i d -  l i q u i d e x t r a c t i o n devices.  I t i s a measure o f compactness  f o r a g i v e n e x t r a c t i o n d u t y , and i s d e f i n e d as f o l l o w s : E. f  =  N F v  where N i s t h e number o f t h e o r e t i c a l s t a g e s , F i s t h e t o t a l v o l u m e t r i c f l o w r a t e o f t h e two phases i n c u b i c f e e t per hour, and v i s t h e t o t a l volume o f t h e c o n t a c t o r i n c l u d i n g the s e t t l e r . desireable.  O b v i o u s l y , a h i g h v a l u e o f E^ i s  A sample c a l c u l a t i o n f o r t h e p i p e l i n e c o n t a c t o r  i s g i v e n i n Appendix E f o r Run 168.  Based on f i v e f e e t  of g l a s s c o n t a c t o r p l u s t h e s e t t l e r , and t h e sum o f t h e average v o l u m e t r i c f l o w s o f each phase, E f = 56 h r ~ ^ . Mathers and W i n t e r (19) have compared v a r i o u s e x t r a c t i o n d e v i c e s f o r c o n t a c t o r e f f e c t i v e n e s s : Table V I I I i n c l u d e s some v a l u e s r e p o r t e d by them.  Again the chemical  system  used i n t h e p r e s e n t work was d i f f e r e n t from t h a t used i n t h e o t h e r c o n t a c t o r s and t h e comparison may n o t be s t r i c t l y v a l i d , but i t i s seen t h a t t h e p i p e l i n e c o n t a c t o r compares favourably with other devices.  Although  the s e t t l e r  volume has n o t been s t u d i e s ^ i n t h i s work, i t i s q u i t e p o s s i b l e t h a t c o n s i d e r a b l e advantage might e x i s t f o r  TABLE V I  MASS TRANSFER RUN NO.  n-BUTANOL RATE lb min  WATER RATE lb min  E  A  TYPICAL ENERGY REQUIREMENTS  E  f t x id* sec  PRESSURE DROP RUN NO.  Q^>  0  3  ENERGY RISQUIREMENTS hp/stage x 10 inches l i t e r / m i ilute of water ORGANIC AQUEOUS Ap  5  166  0.30  2.HO  80.11  98.  h7  7.393  P-hO  2.53  2.272  l.QhQ '  19H-  0.55  2.20  8H-.93  96.60  7.681  P-2W  3.U-3  2.90h  2.55h  175  0.70  1.87  59.61  80.06  7.283  P-50  2.63  3.173  2.363  182  0.85  1.70  ho.76  36.30  7.333  P-lh  2A5  h.2>2h  H.855  190  1.30  1.30  52. Oh  70.16  7.7^5  P-29  2.66  .3.676  2.727  20h  1.70  0.85  100.  78.75  7.858  P-5^  2.97  2.136  2.712  Z = 5.0 f e e t  L = 3.87 f e e t  71  t h e p i p e l i n e c o n t a c t o r i f t h e s e t t l e r d e s i g n were optimized.  Effectiveness  based on t h e c o n t a c t o r volume  a l o n e ( n o t i n c l u d i n g t h e s e t t l e r ) i s o f t h e o r d e r o f &00. TABLE V I I COMPARISON OF ENERGY REQUIREMENTS OF VARIOUS CONTACTORS LIQUID-LIQUID ENERGY REQUIREMENTS REFERENCE CHEMICAL SYSTEM EXTRACTION hD/staee NUMBER DEVICES liter/minute h x 10  Spouted M i x e r -Settler Air  Lift  Stirred Tank  1.5  xio"  3  Pipeline Contactor  21  Toluene-Benzoic Acid-Water  19  H 0 - HAc- MIBK  20  H 0-  1  2  2  Present Work  n-ButylamineKerosene  n - B u t a n o l -Water  1 Component w r i t t e n i n c e n t r e i s s o l u t e . 2 HAc r e f e r s t o A c e t i c A c i d ; MIBK r e f e r s t o methyl i s o b u t y l k e t o n e . TABLE V I I I COMPARISON OF CONTACTOR EFFECTIVENESS OF VARIOUS CONTACTORS LIQUID-LIQUID EXTRACTION DEVICE  E (hr)-  1  f  REFERENCE NUMBER  CHEMICAL SYSTEM  Spouted'Mixer - Settler  35  21  Toluene-Benzoic - Water  Air  39  19  H 0-HAc- MIBK  27  H 0 - HAc- MIBK  27  H 0 - HAc- MIBK  18  H <Q- HAc- MIBK  lift  Packed Column  11.7  P u l s e d Packed Column  33  Pump-Mix C o n t a c t o r  27  Pipeline Contactor  56  2  2  2  Present Work  1  2  2  2  n - B u t a n o l - Water  1 Component w r i t t e n i n c e n t r e i s t h e s o l u t e . HAc r e f e r s t o A c e t i c A c i d , MIBK t o M e t h y l i s o b u t y l ketone. 2 Values r e p o r t e d i n R e f e r e n c e Allowing  Acid  19.  f o r mass t r a n s f e r end e f f e c t s i n t h e s e t t l e r .  72  CONCLUSIONS  (1)  For t o t a l mass v e l o c i t i e s o f about c 2 3 . 5 x 10 l b . / h r . f t . t h e p i p e l i n e c o n t a c t o r was  found  t o have mass t r a n s f e r e f f i c i e n c i e s from 70$ t o e s s e n t i a l l y 100$. (2)  End e f f e c t s , as d e t e r m i n e d from  measurements  o f mass t r a n s f e r w i t h the f e e d n o z z l e a t t a c h e d  directly  t o the s e t t l e r were found t o be l a r g e , i n most cases amounting t o between t h i r t y and s e v e n t y - f i v e  percent  o f the t o t a l mass t r a n s f e r o b t a i n e d w i t h the f e e d n o z z l e , the f i v e f o o t l e n g t h o f p i p e l i n e , and the s e t t l e r . (3)  F o r each phase, t h e phase number o f t r a n s f e r u n i t s ,  uncorrected  f o r end e f f e c t s , was found t o be a s t r o n g  f u n c t i o n o f phase v e l o c i t y , and a l s o t o depend on the i n p u t r a t i o o f the two f l u i d s .  F o r the t h r e e  finite  c o n t a c t o r l e n g t h s s t u d i e d and f o r Input mass r a t i o s o f 0.125  to 1.00,  t h e aqueous phase NTU was p r o p o r t i o n a l t o  the v e l o c i t y o f the aqueous phase t o the power 3«5 •  0.3,  whereas the o r g a n i c phase NTU was p r o p o r t i o n a l t o the o r g a n i c phase v e l o c i t y t o the power 2.k + O.h.  Each  phase NTU was found t o go through a minimum as the i n p u t volume r a t i o was i n c r e a s e d a t c o n s t a n t  total  volumetric  flow input. (k)  To a f i r s t a p p r o x i m a t i o n  the p i p e l i n e c o n t a c t o r  was found t o be b e t t e r than some o t h e r  experimental  73  l i q u i d - l i q u i d e x t r a c t i o n d e v i c e s i n terms o f c o n t a c t o r e f f e c t i v e n e s s , and comparable i n terms o f  energy  requirements. (5)  In the l i m i t o f low v e l o c i t i e s , holdup r a t i o  measurements agreed w i t h i n e x p e r i m e n t a l e r r o r w i t h v a l u e s predicted  by Geramell (22) from a n u m e r i c a l s o l u t i o n o f  the v e l o c i t y d i s t r i b u t i o n f o r l a m i n a r s t r a t i f i e d f l o w . (6)  A L o c k h a r t - M a r t i n e l l i c o r r e l a t i o n of the p r e s s u r e  drop data showed good agreement w i t h the data c o r r e l a t e d Burningham (12) f o r v a r i o u s l i q u i d  pairs.  by  7h  RECOMMENDATIONS FOR FURTHER WORK  The for basic  e x i s t i n g apparatus i s not very  studies  suitable  of l i q u i d - l i q u i d extraction  i n cocurrent  p i p e f l o w because o f t h e l a r g e end e f f e c t s .  Further  work s h o u l d be d i r e c t e d  the r e l a t i v e  towards e s t a b l i s h i n g  magnitude o f t h e end e f f e c t s a t t h e f e e d n o z z l e and i n the  s e t t l e r , and r e d u c i n g t h e s e end e f f e c t s by improved  design of these  parts.  By u t i l i z i n g t h e p r e s e n t equipment and l i q u i d system more data c o u l d be t a k e n a t v a r i o u s i n p u t r a t i o s t o determine t h e form o f t h e f u n c t i o n a l r e l a t i o n s h i p phase NTU and i n p u t r a t i o .  Such a s t u d y would  between  require  more d e t a i l e d coverage o f i n p u t r a t i o s on both s i d e s o f the minima o f F i g u r e s 21 and 2 2 , and c o u l d a l s o y i e l d a more d e f i n i t i v e c o r r e l a t i o n between phase NTU and phase velocity. A s t u d y o f mass t r a n s f e r a t i n p u t r a t i o s  further  removed from u n i t y would be i n t e r e s t i n g as t h e r e s u l t s of S l e i c h e r  (15)  and o t h e r s (1>+,32) on t h e e f f e c t s o f  t u r b u l e n c e l e v e l on d r o p s i z e p o s s i b l y c o u l d be employed t o s e p a r a t e t h e i n t e r f a c i a l a r e a e f f e c t s out o f t h e capacity  c o e f f i c i e n t s and so determine t h e v a r i a t i o n o f  the mass t r a n s f e r c o e f f i c i e n t I t s e l f .  As v e i l , t h e  n a t u r e o f t h e f l o w a t v e r y low i n s i t u volume r a t i o s i s better  understood than f o r the flow c o n d i t i o n s  covered  75  i n t h e p r e s e n t work, s i n c e t h e f l o w b e h a v i o u r t h a t o f a s i n g l e phase Newtonian f l u i d  approaches  ( 5 ) , and t h e r e f o r e  there i s a greater p o s s i b i l i t y f o r successful matheoatical treatment.  76  REFERENCES 1  Hayduk, W.  Ph.D. T h e s i s University of British  (196*0  Columbia  2  Laraont, J .  P a p e r p r e s e n t e d a t 15th C a n . Chem. E n g . C o n f e r e n c e , Quebec, O c t o b e r 1965.  3  T r e y b a l , R.E., " L i q u i d E x t r a c t i o n 2nd-Edition M c G r a w - H i l l , New Y o r k , 1963-  h  R u s s e l l , T.W.F., Hodgson,G.W. a n d G o v i e r , C a n . J . Chem. E n g . , » 9 (1959)  5  C e n g e l , J . A . , F a r u q u i , A.A., F i n n i g a n , J.W., W r i g h t , C . H . and K n u d s e n , J . G . , A . I . C h . E. J . , 8 , 335 ( 1 9 6 2 ) .  6  B i r d , R.B., S t e w a r t , W.E., and L i g h t f o o t , E.N. " T r a n s p o r t Phenomena", W i l e y I960.  7  K i l k s o n , H.  1 1  G.W.  P h . D. T h e s i s Cornell University,  8  Potter,  0. E.,  9  Grover,  S.S., a n d K n u d s e n , J.G.  1957-  Chem. E n g . S c i . , 6 , 170  (1957).  Chem. E n g . P r o g . Sym. Sem. j>l , No. 16, 17 01955). 10 C o l b u r n , A . P . a n d Welsh,D.G., T r a n s . A. I . Ch.E., 38 , 179 (19^2). 11 Ruby, C.L. a n d E l g i n , J . C . , Chem. E n g , P r o g . Sym. Sem., £1 No. 16,17 (1955) . 1  12 B u r n i n g h a m , D.W.  B.A.Sc. T h e s i s University of British  Columbia  (1961).  13 S m i t h , G.C. a n d Beckman, R.B., A . I . C h . E . J . , h , 180 (195b).  lh  H i n z e , J.O.,  A . I . C h . E . J . , 1,  1 5 - S l e i c h e r , C.A. ( J r . ) , 16 J o h n s o n , Can.  289  (1955).  A.I.Ch.E. J . , 8 ,  A . I . , a n d Bowman,  J . Chem. Eng., j[6 ,  W71  (1962).  C.W. 253  (1958).  17 S i m k i n , D . J . , a n d O l n e y , R.B.. A . I . C h E . J . , 2 , 5*+5 (1956). 18 C o p l a n , B.V., Davi<4son, J . K . a n d Z e b r o s k i , E . L . , Chem. E n g . P r o g . , $0 , H-03 (195'+). 19 M a t h e r s , W.G. a n d W i n t e r , E.E., Can., J . Chem. E n g . 2LL > 99 (1959).  77  20  O v e r c a s h i e r , R.H., K i n g s l e y , H.A. J r . and Olney, R.B., A. I . Ch. E . J . , 2, 529 (1956).  21  Johnston, T.R., Robinson, C.W. and E p s t e i n , N., Can. J . Chem.Eng., ^ 2 , 1 (1961).  22  Gemmell, A.R.,  M.A.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia  23  C h o i , T., D i s s e r t a t i o n A b s t r a c t s ,  2h  MacDonald, D.G., B.A.Sc. T h e s i s i n Chem. Eng., U n i v e r s i t y o f B r i t i s h Columbia (196M-). Bennett, C.A. and F r a n k l i n , N.L., " S t a t i s t i c a l A n a l y s i s i n C h e m i s t r y and t h e Chemical I n d u s t r y " , W i l e y , 195^.  25  22 , 1536  (196*+). (1961).  26  P o r t e r , I.W., Ph.D. T h e s i s Summary, Chem. Eng. Dept., U n i v e r s i t y o f C a l i f o r n i a (196M-).  27  C h a n t r y , W.A., Von B e r g , R.C. and Wiegandt, Ind. Eng. Chem., hZ , 1153 (1955).  28  M e l l e n , "Sourcebook o f I n d u s t r i a l S o l v e n t s " , V o l . I l l Monohydric A l c o h o l s , R e i n h o l d P u b l i s h i n g C o r p . , New York, 1959.  29  P e r r y , J.H. (Ed. ), Chem. Eng. Handbook, 3 r d E d i t i o n , McGraw- H i l l Book Company, New York, 1955. -  30  Badger, W.L. and Banchero, J.T., " I n t r o d u c t i o n t o Chemical E n g i n e e r i n g ", M c G r a w - H i l l , New York, 1955.  31  L i c h t , W. J r . and P a n s i n g , W.F., Ind. Eng. Chem., j+J> »' 1885 ( 1 9 5 3 ) .  32  L e v i c h , V.G., " P h y s i c o c h e m i c a l Hydrodynamics", Prentice-Hall, 1962.  33 L o c k h a r t , R.W. and M a r t i n e l l i , R.C, Chem. Eng. P r o g . , h$ , 39 (19^9).  A - 1  APPENDIX A C a l i b r a t i o n o f Rotameters The method used f o r c a l i b r a t i o n o f both r o t a m e t e r s was as f o l l o w s .  The pumps were s t a r t e d and t h e r o t a m e t e r  f l o a t set at the desired reading.  The f l u i d t h e n was  c o l l e c t e d over a, p e r i o d o f time i n a t a r e d t w o - g a l l o n polythene c o n t a i n e r .  The e l a p s e d time was measured by a  stopwatch and was v a r i e d so as t o p r o v i d e a t l e a s t one gallon of f l u i d .  F o r r e a d i n g s below 20 on t h e 250 mm.  graduated r o t a m e t e r s c a l e about one l i t e r o f t h e f l u i d was collected i n a glass florence flask. of  The temperature  the f l u i d was n o t e d . The r e s u l t s a r e g i v e n i n T a b l e s A - 1 and  A - 2, and a r e p l o t t e d i n F i g u r e A - 1.  Since the  c u r v e s d e v i a t e d s i g n i f i c a n t l y from l i n e a r i t y , at  especially  low f l o w r a t e s , a smooth c u r v e was drawn through  the p o i n t s i n t h e r e g i o n below 50 on the r o t a m e t e r scale.  Above f i f t y a l i n e a r l e a s t squares f i t o f data  was made.  A - 2  TABLE A - 1 CALIBRATION OF ROTAMETER Ch.E. 2291 FOR WATER Tube No. R-8M-25-2 F l o a t No. 8 RV-3 ROTAMETER READING 10 20 1+0 60 80 100 120 160 200 2h0  WEIGHT OF WATER COLLECTED ( l b )  TIME OF COLLECTION (sec. ) 5^-0.0 1501.8 718.3 533.0 511.0 1+01.8 336.3 3^0.0 226.2 192.7  2.615 12.125 10.625 10.969 13.031 12.H-37 12.250 16.188 13.H-69 13-781  FLOW RATE lb min  '  0.261*+ 0.W+ 0.8875 1.23"+8 1.5307 1.8571 2.1855 2.856*+ 3-5727 H-.2909  RUN NO. 10 9  k 8 1 6 2 7 3 5  A v e r a g e t e m p e r a t u r e 23° C  TABLE A - 2 CALIBRATION OF ROTAMETER Ch.E.2292 FOR n-BUTANOL Tube No. R-8M-25-2 F l o a t No. 8 RV-3 ROTAMETER READING  WEIGHT OF n-BUTANOL COLLECTED ( l b )  TIME OF COLLECTION (sec)  FLOW RATE lb min  5 8 10 20 30 60 90 120 150 180 210 2>+0  0.8966 I.H-003 1.57M-5 1.9*+55 10.0312 10.1562 11.6875 11.0312 13-9687 12.6875 12.H-688 13.5310  608.5 711.0 616.0 377.5 119H-.3 610.1 H-75.1 3 +8.8 362.7 272.5 231.2 220.8  0.0883 0.1181 0.1533 0.3092 0.5039 0.9988 1A760 1.8976 2.3108 2.7936 3.2358 3.6800  l  A v e r a g e t e m p e r a t u r e 20° C  RUN NO.  11 10 12 9 1+ 1 7 2 6 8 5 3  A-3  I 0  I 20  I I 40 60 ROTAMETER Figure A - l  I I 80 100 READING  Rotameter C a l i b r a t i o n  I 120  I 140  B - 1  APPENDIX B Refractive  Index - C o m p o s i t i o n  Calibration  For r e l a t i n g r e f r a c t i v e index t o c o m p o s i t i o n the method used i n a l l cases was as f o l l o w s .  Thoroughly  c l e a n e d and d r i e d w e i g h i n g b o t t l e s o r serum b o t t l e s were weighed empty on an a n a l y t i c a l b a l a n c e .  Approximately  t e n ml. o f the r i c h component o f t h e s o l u t i o n then was pipetted  i n t o the b o t t l e , c a r e b e i n g t a k e n t h a t no f l u i d  wetted t h e o u t s i d e o f the b o t t l e .  The b o t t l e p l u s the  r i c h component was then reweighed.  The l e a n component  was then added i n the d e s i r e d q u a n t i t y u s i n g a one ml. or a two ml. d r o p p i n g p i p e t t e , and the b o t t l e and c o n t e n t s weighed a g a i n .  The m i x t u r e was then g e n t l y s w i r l e d  a s i n g l e phase remained,  and the b o t t l e numbered.  until The  s o l u t i o n was then p l a c e d i n a water bath m a i n t a i n e d a t 25.5  +0.1°  C f o r a t l e a s t two hours b e f o r e t h e r e f r a c t i v e  index was r e a d .  The r e f r a c t i v e index o f each  was read i n d u p l i c a t e .  solution  The prisms o f t h e r e f r a c t o m e t e r  were c l e a n e d t h o r o u g h l y w i t h benzene and petroleum e t h e r between r e a d i n g s . The c a l i b r a t i o n was r e p e a t e d f o r each drum o f n-butanol.  Checks were made o f t h e r e f r a c t i v e index o f  the f e e d s o l u t i o n s  each day t h a t mass t r a n s f e r  experiments  were done. Data f o r t h e c a l i b r a t i o n s a r e g i v e n i n Tables B - 1 t o B - h.  F i g u r e B - 1 shows the c a l i b r a t i o n  B - 2  c u r v e f o r Drum 3 o f n - b u t a n o l .  S i m i l a r p l o t s were made  f o r the o t h e r drums and the c o m p o s i t i o n o f the o u t l e t was  determined  through the  streams  d i r e c t l y from the smooth c u r v e s drawn  points.  An u n e x p l a i n e d s h i f t i n the r e f r a c t i v e index r e a d i n g s o c c u r r e d d u r i n g the l a s t few runs of drum 3 of n - b u t a n o l . Checks on the r e f r a c t i v e i n d e x of "standard", samples indicated  t h a t the i n s t r u m e n t r e a d i n g had s h i f t e d .  Except  f o r t h i s one s h i f t the v a l u e s f o r r e f r a c t i v e index o f n - b u t a n o l were e s s e n t i a l l y c o n s t a n t w i t h i n a g i v e n drum, and the r e f r a c t i v e index o f water was  also  constant.  I t i s f e l t t h a t the d i f f i c u l t i e s n o r m a l l y encountered d r i f t i n the i n s t r u m e n t r e a d i n g s w i t h i n attributable  t o temperature  i n a c o n s t a n t temperature  effects.  a g i v e n day  Placing  with are  the samples  bath f o r two hours b e f o r e making  the r e f r a c t i v e i n d e x r e a d i n g s s o l v e d t h i s  problem.  B - 3  TABLE B - 1  CALIBRATION OF DRUM 1 OF n-BUTANOL  A.Water R i c h  Solutions  WEIGHT WATER g 9.89355 9.90937 9.91713 9.91217 9.91036 9.89886 9.8868*+ 9.91882 9.88888 9.90135  WEIGHT n-BUTANOL g  WEIGHT .FRACTION n-BUTANOL  0.07238 0.11*+*+6 0.16753 0.23221 0.39159 0.*+8032 0.5*+677 0.61918 0.69809 0.79020  B.Butanol Rich  0.007263 0.011M8 0.016612 0.022890 0.038011" 0.0*+6277 0.052*+0*+ 0.058756 0.065938 0.073908  REFRACTIVE INDEX l.33*+05 1.33*+*+ 1.3350 1.3358 1.3372 1.3381 1.3386 1.339*+ 1.3 K)l l.3*+09 L  RUN  l.33*+05 1.33*+5 1.3350 1.33575 1.33725 1.33815 1.3385 l.339 +5 l.3*+00 1.3*+09 l  9 7 3 5 6 2 10 1 8  Solutions  WEIGHT WATER g  WEIGHT FRACTION WATER  REFRACTIVE INDEX  7.97671 7.98l*+5 7.98702 7.98260 7.97997 7-97*+*+9 7.99056  0.10886 0.20227 0.2980*+ 0.*+251*+ 0.79226 0.59627 0.99877  0.013*+63 0.02V719 0.03597 0.050565 0.09031*+ 0.06957 0.11110  7.98116 7.97053 7.977*+8 7.9671*+ 7.98322  1.22805 1.39528 1.61083 1.76516 1.90879  0.13335 0.l*+8975 0.167999 0.18137 0.19296  1.3979 1.3978 1.3975 1.397*+5 1.3971 1.3970 1.3966 1.3867 1.3950 1.39*+9 1.3960 1.3960 1.3938 1.3939 1.39*+0 1.3930 1.3930 1.392*+ 1.392*+ 1.3915 1.391*+ 1.3908 1.3909 1.3900 1.3901  WEIGHT n-BUTANOL g  k  P u r e W a t e r 1.3332  1.3333  P u r e n - B u t a n o l 1.39825  1.3982  RUN  8 2 12 10  h 6 1  7 5 9 3 11  B - k  TABLE B - 2  CALIBRATION OF DRUM 2 OF n-BUTANOL  A.Water Rich  Solutions  WEIGHT WATER  gm. 9.92162 9.9118H-  9.93577 9.90993 9.90262 9.91850 H-.267H-6  9.913*1 9.90810 9.91691  WEIGHT n-BUTANOL  gm. 0.08H+0 0.17^27 0.25969 0.3282H0.38052 0.+733+ 0.23738 0.61865 0.70320 0.77*59 1  B.Butanol Rich '  1  WEIGHT WATER  gm.  gm.  7.960H-9  7.97855 7.98585 7.90^32 7.9708U 7.95886  0.138^9 0.16816 0.30056  O.H-6227  0.59319 0.76392 0.91902  1. OH-783  7.98120 7.99626  1.20908 1.36383 1.51*56  7.98753 7.998h-8 7.95817 7.98170  1.65705 1.8073* 1.93333 2.15598  8. OOH-30  0.008137 0.01727 0.025*71 0.03206 0.03700 0.0*555 0.05269 0.058739 0.066268 0.072^9  REFRACTIVE INDEX  1.33385 1.33^75 1.3358 1.33625 1.3369 1.3378 1.33855 1.3392 1.3399 1.3*05  1.3339 1.33*7 1.3359 1.3363 1.3369 1.3378 1.3385 1.3391 1.33995 1.3*0*+  RUN  7 9 1 5 6 3 10 2 8 k  Solutions  WEIGHT n-BUTANOL  8.02300 7.999*3  WEIGHT FRACTION n-BUTANOL  WEIGHT FRACTION WATER  0.01697 0.020588 0.03638 0.05*76 0.0691* 0.08812 0.10337 0.116339 0.13123 0.1M-59M-  0.l592*+5 0.171811 0.184-31  0.195*5 0.21267  REFRACTIVE INDEX  RUN  1.3978 11 1.3977 h 1.39755 1.3975 1.3966 8 1.3967 1.3962 6 1.3963 12 1.3955 1.39575. 1.3957 1.3950 1 1.3950 1.39*25 1.39*25 5 1.3935 1.39355 15 1.3930 1.3930 3 1.39225 1.39225 13 1.3920 1.39175 7 1.39175 1.3910 . 10 1.3911 2 1.3905 1.3905 1.3898 lh 1.3897 1.3896 1.38955 9  Pure Water  1.33325  1.3332  Pure n - B u t a n o l  1.39825  1.39825  B - 5  TABLE B - 3  CALIBRATION  OF DRUM 3 OF n-BUTANOL  A.Water Rich S o l u t i o n s WEIGHT WATER gm.  WEIGHT n-BUTANOL gm.  WEIGHT FRACTION n-BUTANOL  9.92717 9.9^377 9.92682  0.10775 0.20302 0.2792!+  0.010737 0.020008 0.027360  9.91030 9.93267  0.3818 * 0. +7567  0.037100 0.0^+5700  9.92^82 9.91356 9.88199 9.92789  0.57015 0.66525  0.05*+326 0.062885 0.0712206 0.008687  1  1  0*75777 0.8*+791  B.Butanol Rich WEIGHT n-BUTANOL gm.  1.33375 1.33375 1.33*+95 1.33 +9 1.3355 1.3352 1.33535 1.3367 1.3366 1.33775 1.3376 1.3376 1.33815 1.33825 1.33895 1.3390 1.3399 1.3*+00 1.3*+02 1.3 +025  3 7 1  REFRACTIVE INDEX  RUN  1.3970 1.39705 1.39715 1.39655 1.39665 1.3959 1.39595 1.39505 1.39505 1.39*+0 1.39*+1 1.3932 1.3931 1.39275 1.3927 1.3918 1.39175 1.3912 1.3913 1.3906 1.3905 1.38965 1.38975 1.3895 1.3895  6  l  1  9 5 6 2  k8  Solutions  WEIGHT WATER gm.  WEIGHT FRACTION WATER  7.97632  0.17152  0.02105  8.01^+61 7.98077 8.01097 8.01*+62 7.9*+l*+0 7.9922*+ 7.98583 7.98161 7.97965 7.97507 7.989*+5  0.33251 o.5*+323 0.69136 0.88139 1.06263 1.20627 1.38939 1.5 +895 1.71338 1.91123 2.07891  0.039835 0.06373 0.079 + +5 0.099077 0.118017 0.13118 0.1*+8l98 0.16252*+  L  RUN  REFRACTIVE INDEX  l  L  0.17676  0.19332 0.2061+7  Pure Water  1.33275  1.33275  Pure n-Butanol  1.3980  1.3980  2 k 10 8 5 9 1 12 7 11 3  fi - 6  TABLE B - k  CALIBRATIONS OF DRUM k OF n-BUTANOL  A.Water Rich S o l u t i o n s WEIGHT n-BUTANOL gm.  WEIGHT FRACTION n-BUTANOL  9.915*+*+ 9.91020 . . 9.926*+2 9.925*+*+  0.096*+0 0.16608 0.2^105 0.3329*+ • 0.39385  0.0096*+*+  9.922*+2 9.91301 9.92833  0.*+7*+06 0.55223 0.631065  0.0^559 0.052768 0.059726  9.90206 9.92390  0.70*+9*+ 0.78235  0.066*+59 0.07307*+  WEIGHT WATER gm.  9.89893  1  1  0.016*+73 0.0236*+7 0.032^5 0.038166  REFRACTIVE INDEX  1.33375 1.3365 l.33*+*+5 1.33*+*+5 1.3352 1.33515 1.33595 1.3360 1.33675 1.3367 1.3366 l.337*+5 1.337*+ 1.3381 1.3380 1.3389 1.33875 1.33875 1.3391 1.33905 1.3*+00 1.3*+00  RUN  3 6 8 1 5 10 2 9  k 7  B.Butanol Rich S o l u t i o n s WEIGHT n-BUTANOL gm.  7.99978  7.98918  7.97938 8.0102*+ 8.00751 7.997*+*+ 8.007*+2 7.988*+7 7.989*+2 7.98989 7.9935*+ 8.00127 7.98870  WEIGHT WATER gm.  0.0*+935 0.1308*+ 0.19856 0.291*+9 0.*+7132  0.69755 0.89165 1.12159 1.27702 l.*+3211 1.67687 1.87*+00 2.06875  WEIGHT FRACTION WATER  0.006131 0.016113 0.02*+279 0.035111 0.055587 0.080229 0.10019 0.12311 0.137811 0.15199 o.l73*+0 0.18976 0.20569  Pure Water  1.33275  Pure n-Butanol  1.39795  REFRACTIVE INDEX  1.39775 1.39775 1.3976 1.3975 1.3971 1.3971 1.3969 1.3969 1.39605 1.39605 1.3950 1.3950 1.39*+1 1.39*+1 1.39325 1.39325 1.3925 1.392555 1.3917 1.3917 1.3907 1.3908 1.3898 1.3899 1.389*+ 1.3895 1.3893  RUN  12 6 13 1 9 7 2 10  k  8 5 3 11  B - 7  R E F R A C T I V,E  REFRACTIVE  Figure B - l  INDEX  INDEX  Composition - R e f r a c t i v e Index C a l i b r a t i o n (Drum 3 o f n-Butanol)  C -  1  APPENDIX C Mass T r a n s f e r Data Table C - 1 l i s t s data. per  the e x p e r i m e n t a l mass t r a n s f e r  The flow r a t e of each/Component i s l i s t e d  minute.  TT fo. U H - \  2  In pounds  The c r o s s s e c t i o n a l area of the pipe i s  = 5.38H x 1 0  _ L +  ft. . 2  Mass and molar v e l o c i t i e s  1 2 /  are  e a s i l y d e r i v e d from the weight r a t e s l i s t e d  M o l e c u l a r weights are given i n Appendix  i n the t a b l e .  D.  R e f r a c t i v e i n d i c e s are the average of two readings.  Weight f r a c t i o n s o f the components were determined  from c a l i b r a t i o n curves of the s o r t shown i n Appendix fl. The numbers o f t r a n s f e r u n i t s and c a p a c i t y  coefficients  were c a l c u l a t e d from Equations 2 to 7 i n the " D i s c u s s i o n " section. M a t e r i a l balance d e v i a t i o n s are g i v e n i n Table C - 1.  The m a t e r i a l balance d e v i a t i o n s are d e f i n e d as  follows: B a s i s : One Minute Overall [ Weight of Organic + D e v i a t i o n = 1 0 0 J Aqueous Phase Output  Weight o f Organic +" Aqueous Phase Input  Weight o f Organic + Aqueous Phase Input n-Butanol |Wt. n-Butanol Output i n D e v i a t i o n * 100.1 Organlc+Aqueous Phases  _  Weight of 1 n-Butanol Input  Weight o f n-Butanol Input Water [Weight o f Water Output i n D e v i a t i o n = 1 0 0 . Organic+Aqueous Phases  Weight o f ] Water Input  Weight of Water Input A l l c a l c u l a t i o n s were done on the IBM  70*0  computer.  C - 2  Sample C a l c u l a t i o n of Mass T r a n s f e r Run  Results  237  Contactor length ( s e t t l e r o n l y ) 0.0 n-Butanol Rotameter(Ch.E. 2292)reading Water rotameter (Ch.E. 2291) reading From F i g u r e A - 1 i n Appendix A, n- Butanol input mass r a t e = Water input mass r a t e =  feet *+8.2 117.5 0 . 8 0 lb./minute 2.133 lb./minute  R e f r a c t i v e Index o f organic phase = 1.39*3 R e f r a c t i v e Index o f aqueous phase = 1.33625 From F i g u r e B - 1 i n Appendix B,  Y = 0.0955 X^ = 0.0336 2  Bulk o u t l e t temperature 2 1 . 3 ° C. I n t e r p o l a t i n g between temperature of 2 1 . 2 ° C and 21.*+° C i n Table D - 2 i n Appendix D,  *SAT = 0.20175 = 0.07599 *SAT S u b s t i t u t i n g these values i n Equations *+ and 7 r e s p e c t i v e l y and assuming = = 0.00  E  Q  = 100.  E. = 100. A  - 0.0 |Y  S A T  - O.Oj - 0.01  ^SAT  = 100.  = 100.  0.0955 _ 0.20175.  = *7.337$  0.0336 =  hk.216%  0.07599  "  For a two component system, Y y  =  +  x  =  C - 1 J  (1 - X)  X —  (1 - Y) _ M B  +  Mi'W  I n s e r t i n g M o l e c u l a r weights i n t o equations C - 1 and C - 2, 7*.12 Y y = 18.016 + 56.10*+ Y  C - 2  C - 3  C - 3  18.016 X x  —  '  .  7*. 1 2 -  '  I n s e r t i n g the values o f Y , Y above equations 2  g A T  , X , X  H-  b  1  A  i  7.078!+6  L  18.016 + 56.10 * ( 0 . 2 0 1 7 5 )  i n t o the  p  (0.0955)(7 +.12) 2  C -  56.10M-X  18.016 + 5-35793  7.078W6 =  0.302835  23.37393 (0.2017*+) (7*+. 12) 18.016 * 56.10W(0.20175) 1*.95371  1*+.95371 18.016 * I I . 3 1 8 9 8  ' = 0.5097*5  29.33*98  x  = 2  (0.0336 )(18.016) 7*.12  - 56.10H(0.0336)  0.6053376 7*.12  - 1.88509  0.6053376 =  0.0083801  73.325 x. = 1  (0.07599 )(18.016) 7*.12  - 56.10W ( 0 . 0 7 5 9 9 )  1.36903 69.857  =  1.3690358W 7*.12  - W.2633*  0.019597 1  y ^ y ^ - 1.00) By Equation 2 with y - 0 . 0 , NTU = In — ± Z 1 - yi ( y - yj.) 1 0.5097*5(0.6971659) then, NTU = In 1 - 0.5097*5 0.206910 ±  2  u  = 2.03975 I n (1.7175WW) = 2 . 0 3 9 7 5 ( 0 . 5 5 0 8 8 ) = 1.103265 (Computer program answer 1.103)  c - k  By E q u a t i o n 5 NTU = A  NTU  1.0 - x,  'x*  In  (x  <x  2  0  - 1.0"  -  X i  )  0.0195976 (-0.9916199)  In  = A  = 0.0,  with  0.980^023  -0.0112175  = 1.019989*+ I n (1.732*+ll8) = 1.019989*+ (0.5*+926) =0.560239 (Computer program answer 0.5605) The c a p a c i t y c o e f f i c i e n t s are c a l c u l a t e d from equations 3 and6 Mass r a t e o f n-butanol = 0.80 l b x 60 mln min far 2 Cross s e c t i o n a l area o f pipe = 5.38*+ x 10 0.80 x 60 Mass v e l o c i t y o f n-butanol = —5. .3—8* —+ x 10"^ Molar v e l o c i t y o f n-butanol =  lb , -+ h r n r  0  x  10  2  x 7*+. 12  lbs l b mole  60  5.38+ x> 10"  B  lb/hj? f t  0.80 x 60 5.381+  0.80  ft  l  k  x 7*+. 12  Since the c o n t a c t o r l e n g t h i s zero f e e t , the c a p a c i t y c o e f f i c i e n t has no meaning. For a f i n i t e l e n g t h , °B  M  I  U  n  The aqueous phase c a p a c i t y c o e f f i c i e n t i s c a l c u l a t e d i n the same manner. The water content o f each o f the f o u r n-butanol drums i s g i v e n i n Appendix D.  Where the e r r o r i n v o l v e d i n the  c a l c u l a t i o n o f E , assuming Y-^- 0.0, was g r e a t e r thanr«1.5# Q  the u n s i m p l i f i e d equations h and g , were used to c a l c u l a t e E  Q  and NTU  Q  c -  M a t e r i a l Balance Sample Run  5  Calculation  105  C o n t a c t o r Length = 1.0 f e e t n-Butanol rotameter reading 5W.1 Water rotameter reading 4-0.9 Using F i g u r e A - 1, n-Butanol mass r a t e i s 0.90 lb/minute Water mass r a t e i s 0.90 lb/minute. Weight o f Aqueous phase c o l l e c t e d = 765. grams Time of c o l l e c t i o n of aqueous phase = 113.8 seconds R e f r a c t i v e Index of aqueous phase = 1.33*3 Weight f r a c t i o n n-butanol i n aqueous phase = 0 . 0 1 5 * (from c a l i b r a t i o n curve f o r drum 3 ) Weight of o r g a n i c phase c o l l e c t e d = 703.5 grams Time of c o l l e c t i o n of organic phase = 100. seconds R e f r a c t i v e index of organic phase = 1.39702 Weight f r a c t i o n water i n o r g a n i c phase = 0 . 0 2 3 2 <from c a l i b r a t i o n curve f o r Drum 3) O v e r a l l M a t e r i a l Balance T o t a l input = 0.90 l b n-butanol + 0.90 l b water minute Weight Aqueous Time Aqueous Aqueous  =  minute  1.80 l b minute  phase out = 7 6 5 . 0 gm/ W53.6 gm/lb = 1.6865 l b .  phase out = 113.8  s e c / 60 sec/min = 1.8966 minutes  phase flow r a t e = 1.6865/1.8966 = 0.88919 lb/minute  Weight o r g a n i c phase out = 7 0 3 . 5 gramsA53.6gm/lb = 1.55093 l b . Time o r g a n i c phase out = 1 0 0 . s e c / 60 sec/min = 1.666 Flow r a t e organic phase = 1.55093/ 1.666  minutes  = 0.93059 lb/minute  T o t a l out = 0.88918 + 0.93059 = 1.81978 lb/minute $ E r r o r = (1.81978 - 1 . 8 0 0 ) x 100 = 1.099$ (Computer 1 . 0 9 7 $ ) 1.800 n-Butanol M a t e r i a l Balance h-Butanol -input = 0.90  lb/min  C - 6  n-Butanol output i n aqueous phase / minute = aqueous phase r a t e x weight f r a c t i o n n-butanol  = 0.88919  x  - 0.0137  0.015k  lb/minute.  n-Butanol output i n organic phase / minute = organic phase r a t e  x (1  = 0.93059(1.0 - 0.0232)  - weight f r a c t i o n water)  = 0.909  lb/minute..  T o t a l n-butanol output / minute  = 0.909 + 0.0137 % Error =  (  = 0.9227  lb/minute.  0.9227 - 0.900 ) x  100 = 2.52$  (  2.52%  by computer)  0.900 Water M a t e r i a l Balance Water output i n aqueous phase / minute = aqueous phase r a t e x ( 1 - weight f r a c t i o n n-butanol)  = 0.88919  x  (1- 0.015*0  =  0.8755 lb/minute.  Water output i n organic phase / minute = organic phase r a t e x weight f r a c t i o n water  = 0.93059  x  0.0232  = 0.02159  lb/minute.  T o t a l Water output/minute  = 0.8755 + 0.02159 % Error  =(0.89709 -  = 0.89709  0.900) x 0.900  100  = -0.3239$ 40.323$  by computer)  A l l c a l c u l a t i o n s were done on the IBM 70*+0 computer. Values from the computer c a l c u l a t i o n are g i v e n i n brackets a f t e r the % e r r o r s i n the sample c a l c u l a t i o n .  C - 7  TABLE C - 1 Contactor RUN NO. 213 215 250 217 212 21*+ 218 211  216 24-424-2 24-6 24-0 2*+5  24-1  2*+3  247  23*+ 236 238 239 233 235 237 222 219 22*+ 225 220 223 221 228 231  229 227  226  232  230  258 2*+9 256 25*+ 255  257  Length: Zero (Feed n o z z l e connected  w B lb/min lb/min 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275  0.80 1.00 1.20 1.4-0  0.20 0.25 0.30 0.35  0.80  o.*+5 o.5o 0.55 0.20 0.30 0.4-0 0.50  1.80 2.00 2.20  0.30  o.*+o  0.60 0.70  1.60  1.80 2.00 2.20 2.4-0  1.00 1.20  1.4-0 1.60  0.533 0.800 1.067 1.333  1.60 1.866  2.133  0.80 0.35 0.*+75 0.60 0.725 0.85 0.975 1.10 0.50  0.70 0.95 1.20 l.*+5 1.70 1.95 2.20 0.50  1.10 1.30 1.50  1.10 1.30 1.50  0.70 0.90  1.70  0.^5  0.70  0.95 1.20 l.*+5  1.70  MASS TRANSFER DATA  T °C 21.3 21.6 25.1 22.9 2*+.9 2*+.9 21.6 2*+. 2 21.6 22.6 22.0 23.2 21.9 22.2 21.7 21.6 21.9 22.0 21.8  1.33325 1.33372 1.33*+0 1.33*+7 1.3351 1.33557 1.33602 1.3360 1.3365  21.5 2*+.2 22.0  l.33*+07  24-.0  21.3 20.3 20.1  26.2  23.0 23.0 22.6  20.3  0.70 0.90  22.2 23.9 2*+.8  1.70  20.9 21.6 21.8  0.225 0.35 0.*+75  0.60  0.725 0.85  R.I.  26.*+  26.0  23.5 2*+.0 2*+.0 2*+.*+ 23.9  1.3332  1.3335 l.33*+0 1.33455 1.3355 1.3360 1.33655  1.33695 1.3329 1.3330 1.33355  1.33*+57 1.3357  1.33625  1.33315 1.33325 1.33355 1.33*+*+2 1.33*+95 1.335*+  1.3365  1.333*+ 1.33375 1.33*+0 1.335*+5 1.3369  1.3376 1.3383  1.333*+ 1.33*+35 1.3378 1.33867 1.33937 1.3399  AQUEOUS X  PHASE A E  6.71 12.93  0.0051 0.0098 0.0120 0.0188 0.02265 0.0272 0.031*+ 0.0312 0.0360  0.004-5 0.0077 0.0120 0.0176 0.0265 0.0312 0.0365 0.0*+02 0.0017  0.0026  0.0080 0.0127 0.0176 0.028*+  0.0336 0.00*+l 0.0051 0.0076  0.016*+ 0.0213 0.0256  0.036 0.0066  to settler)  16.38 25.62  ;  30.8*+ 37.03 *+l.*+2 4-2.22 *+7.*+9 6.00 10.20  16.09  23.30  35.19  *+1.22 *+8.l5 53.10  2.25  3.*+*+  10.81 16.09 23.82  37.62  4-1+.22 5.3*+ 6.63 10.*+8 21.9*+ 28.*+9 3*+.11  *+6.91 8.76 13.50  0.0100 0.0120 0.0262 0.0398 0.0*+76 0.055*+  62.80 73.28  0.0157 0.0*+95  21.12 66.89  0.0718  89.*+9 96.9*+  0.0061 0.586 0.066  16.33  36.20  52.16  8.1+0  79.19  NTU  R.I.  A  0.0656 0.1312 0.1700 0.2757 0.3525 0.*+*+33 0.5130 0.5268 0.6197 0.0585 0.1018 0.1665 0.252*+ 0.*+l*+9 0.5095 0.6320 0.7305 0.0215 0.0330  1.39702 1.39552 1.3951 1.393*+ 1.3930 1.39275 1.39257 1.3922  1.39202  1.39725 1.39695 ,1.3963 1.395*+5 1.39*+0 1.393*+5 1.3929 !  1.3926  ,1.397b 1.39762 0.1084- 1.39735 0.1665 1.39672 0.2592 1.39605 0.*+5l8 ,1.39525 0.5605 ll.39*+32 0.0518 1.39797 0.0*+8 1.39782 0.1051 1.3975 0.2357 1.39705 0.3200 1.3966 0.3990 1.3959 0.6085 1.39505 0.086$ 1.3980 0.1376 1.3977 0.169*+ 1.3973 0.*+309 1.396*+5 0.7107 1.395*+7 0.9587 1.39*+2 1.2879 1.39347 0.0831 1.39762 0.2257 1.397*+5 1.0751 1.3962 1.5386 1.39*+97 2.2270 1.39375 3-*+770 1.3929  ORGANIC PHASE Y o E  0.0225 0.0705  11.15 3*+.92  0.1185 0.1280 0.1287 0.1325 0.1*+12 0.1*+*+  58.4-9  0.0775  0.0168 0.0260 0.0*+85 0.0720 0.100*+ 0.1132 0.1255  0.1360 0.0037 0.0072 0.01*+1 0.0355 o.o5*+5 0.0756  0.0955 0.000 0.0032  0.014-7 0.0225  0.0*+07  0.0581 0.0792 0.000 0.0055 0.0210  o.o*+5i  0.0715 0.0970  0.1127 0.0105 0.0117 0.0507 0.0807 0.110  0.1302  5o.oo  62.82 63.16  65.63 69.*+*+  71.32  8.30 12.86 23.92  35.62 *+9.68 56.05  62.16 67.3*+ 1.83 3.56 6.9*+  17.16 26.80  37.*+l  4-7.3*+  0.00 1.59 7.19 11.10 20.08  28.70  39.36 0.00 2.71 10.31 21.97 35.*+8 *+8.0*+  55.79  5.1*+ 5.77 2*+.95 39171 5*+. 05 6*+. 09  NTU 0.19*+8 0.727*+ 0.8162  1.5*+03 1.7*+97 1.7671 1.8891  2.1181 2.2317  0.1*+25 0.227*+ 0.4-576 0.7*+67 1.1863 l.*+330  1.7095 1.9859  0  DRUM MASS BALANCE DEVIATION % NO. OVERALL n-BUTANOL WATER 3 3 43 43 3 3 3 3 3 43  3 3 3 ^  0.0302 0.0593 0.1183 0.3128 0.524-7  3 3 3 3 43  0.000  3 3 43 3 43 3 3 4-  0.7962 1.1033 0.0261  0.1230 0.19*+2 0.3736 0.5691 0.8505 0.000 0.04-4^9 0.1797 0.4-165 0.7*+19 1.1280 1.4-222  0.0868 0.0903 0.4-815  0.864-6 1.3561 1.8126  4-  3 3 3 k 3 k 44-  i+  -2.9 -2.5 -0.5 -0.5  -3.2 -3.2 -3.9 -2.5  -6.4  0.7 -2.5  1.5  -4^.0 -0.8 -2.9 -l.k -0.8 -0.1 *+.5 0.8 0.8  1.0 1.1  -0.7 0.9  0.1 -1.0  .11.3 1.3 0.4-0.4-4.2 4.2 3.1 5.7 ^.Q 2.0 4.4 9.*+ 0.7 7.7 4.8  5.2  -0.8 8.5 6.9  12.6  4-.0 2.0  1.0 4.6 6.1  2.2 -2.5 -3.7 -1.2  11.0 6.0 *+.9 2.*+ 5.2 6.9 *+.7 *+.3 5.2 -3.1 -0.6  2.1 1.9 -1.1  3.0 6.0 *+.7 1.5  -1.8  -1.8  -1.9 0.6 0.7  1.1  -l.W 1.4-  0.5  1.5  4.1  5.2 5.7  -*+.7 -2.9 0.5 -0.5 4-.1 -4-.1 -4-.8 -2.5 -7.? 0.*+ -4.2 -0.5 -5.7 -2.8 -4-.8 -3.0 - l . l 0.2 3.0 -1.5 -3.6 -3.5 0.*+ -l.*+ -0.5 -3.0 -7.3  -5.7  -5.1 -*+.l  -3.6  5.5 3.2 0.1 -10.2 -*+.3 -1.8 -7.0 -6.2 -5.7 -3.6 -6.3 -8.7  -6.8 .  C - 8 TABLE C - 1 C o n t a c t o r Length: 1.0 f e e t w B RUN NO. lb/min lb/min 75 73 69 71  76  7*  70 77 72 8*+  78  81 85 80 79 83 82 86 92 89 91 87 93 88  90 94 loo  0.10 0.125 0.15 0.175 0.20 0.225 0.25 0.275  0.30  0.15 • 0.20 0.25 0.30 0.35  0.40  0.60 0.70  106  107 111 117 11*+  116  112 115 113  0.60  22.4  2.40 0.60 0.80  22.5 21.0 22.5 22.6 21.7 21.7 22.5 22.5 22.5 23.2 23.2 23.2 23.2 22.6 23.2 23.2 23-3 21.0 20.2 22.9 22.6  1.00 1.20  1.40 1.60 1.80  1.333  0.725 0.85 0.975 1.10 0.30 o.5o  109 105 108 10*+  1.80 2.00 2.20  23.2 23.0 22.3 23.2  22.4  l.i+o 1.60  0.50  99  102 96 101 97 103 110  23.0 22.5 22.2  2.00 2.20 0.267 0.533 0.800  0.80 0.225 0.35 0.475  95  0.80 1.00 1.20  0.45 o.5o 0.55 0.10 0.20 0.30  0.40  T.  1.067  1.600  1.866 2.133 0.45  0.70  0.95 1.20 1.45 1.70 1.95 2.20 0.30 o.5o  20.421.0  20.4  22.2 22.2 22.0 22.2 23.7 22.5 22.0 22.0 22.0 23.5 25.2 2*+. 5  R.I. 1.33372 1.33*52 1.33522 1.3358 1.3362 1.3366 1.3370 1.33747 1.33775 1.33335 1.3335 1.33*2 1.33*2 1.33472 1.33622 1.33695 1.3375 1.33805 1.333*7 1.3335 1.3336 1.33*0 1.33*05 1.3355 1.33635 1.33725 1.33357 1.3335 1.33327 1.33375 1.33*6 1.3355 1.33655  1.33692  AQUEOUS X 0.0050 0.01220 0.0189 0.02*+5 0.0281 0.03225 0.03613  PHASE E% k  6.70 16.29 25.10  32.60 37.67 1+3.I*  1+8.08 0.0406 5 * . * 2 0.0*+337 57.66  0.0008  0.00222 0.00850 0.0139 0.0193 0.02850 0.03563 0.0*10 0.0*+625 0.002 0.0022 0.0032 0.0071  0.0126  0.0215 0.0303 0.03855 0.003* 0.0025 0.00*+8 0.010 0.0119  1.07 2.91  11.32 18.52 25.50 37.95 1+7.** 5*. 59  61.58  2.68 2.95 *+.29 9.52  16.79  28.95 1+0.62  51.7*  W.l+6  2.93 5.37 13.32 15.51 0.0216 28.35 0.03175 *+1.50 0.0*00 53.12 3.32 0.0025 o.oo*+i 5.*3 8.63 0.0065 0.015* 20.75 0.0289 38.»+8 0.03825 50.66 0.0511 67.68  NTU  A  0.0656  0.1688 0.2753 0.3770 0.*529 0.5*23 0.6308 0.7589 0.8312 0.0101 0.0279 0.1138 0.19*6 0.2803  0.1+572  0.6190 0.762*+ 0.9273 0.0257 0.0283  0.0*+l*+ 0.09*7  0.17*5 0.3263 0.5000 0.7028 0.0431 0.0280 0.0521 0.1356 0.1598 0.3177 0.51*1 0.7310 0.0319 0.0528 0.085* 0.2213 o.*+655  k a  *  A  1.397*+5 lC+i+.O 1.39*+*2 2043.3 1.39315 32*+.1+  3265.2  1.39255  4482.3 1.39225 6038.2 1.39185 7804.2 1.3915 10327. 1.39119 12339. 1.39105 1.39805 37.5 1.3976 138.0 703.8 1.3970 141+4.4 1.3962 2427.3 1.39*85 4524.5 1.39395 6891.9 1.3931 9*+32.1 1.3927  12619.  *+2.*+ 93.2 205.0 629.1 l*+38.7 3229.2 5771.2  9273.*+ 119.9 121.3 306.0  1.3921 1.3982 1.39807 1.39797 1.3978 1.3968 1.396*+5 1.3955 1.39*+25 1.39827 1.39817 1.397*+7  1006.3 1.39732 1*33.2 1.3975 33*1.2 1.39672 6200.9 1.39595 99*7.3 1.3938 1.39805 59.2 1.39802 163.2 369.8 1.39785 1231.8 1.39702  1.33352 1.3337 0.70 0.70 1.33395 1.33*32 0.90 0.90 1.10 1.10 3167.5 1.33575 1.33722 0.6007 5*+7*+.0 1.30 1.30 i.5o 1.50 1.0985 10192. 1.33855 1\*535 15285. 1.3393 1.70 1.70 0.0583 77.36 0.1920 267.2 0.01360 18.29 0.45 0.225 1.33** 0.70 0.2760 598.0 1.33^65 0.018*+ 25.1* 0.35 0.0362 *+9.08 0.650* 1911.1 1.3365 0.475 0.95 1.20 0.60 24.0 1.33872 0.0593 8 0 . 1 * 1.5853 5883.7 i.»+5 0.0695 91. *7 2.1+375 10931. 0.725 21.3 1.3397 1.70 0.85 23.2 1.3*075 0.0751 ioo.o l b - m o l e s / h r _ f t - u n i t mole f r a c t i o n d i f f e r e n c e 2  R. I.  1.39625 1.39552  1.39**5  1.39295 1.3^8o7  1.397*5 1.39632 1.39*5 1.393*5 1.19305  ORGANIC PE[ASE NTU Eo$ Y  0.02!+  0.1025 0.1307  0.1*+39 0.1503  0.1592 0.166*+ 0.17*2 0.1770 0.0065 0.0190 0.0372 0.0509  11.50 50.60 64.6W 71.13 7*+.11 78.5* 82.25 85.90 87.*+6 2.87  9.11  18.09  25.1* 0.083 1+1.15 0.113*+ 56.0*+ 0.1320 65.23 0.1*+05 69.*+3 0.1536 75.90 0.000 00.00 0.0057 2.*+7 0.0087 3.95 6.09 0.013 16.79 0.03* 0.0565 27.86 0.0800 0.108 0.000 0.0025 0.0015 0.015 0.0225  o.o*+5o 0.0700  0.1056 0.0065 0.0087 0.0122  0.0232 0.0533  0.0795 0.1025 0.1350  0.0060 0.0162 0.0*+78 0.0920 0.1172 0.1*60  39.*+5  53.23 0.00 0.90  0  0.2025  1.2212 1.837*+  2.2213 2.1+321+  2.7939 3.1611 3.6172 3.8W59 0.0477  0  30.*?  229.5  1+IW.1+  584.5  731.5  9*5.2 1188.2 1W95.6  173*.7 _ 10.80 0.1570 1+7.2 0.3320 12W.7 0.4-852 218.9 0.9050 *+76.3 1.1+436 862.2 1.8696 1265.0 2.1126 1588.2 2.5675 2123.2 0.000 0.0 0.0*+10 12.3 29.8 0.0609 62.0 0.1031 229.*+ 0.3051 *+95.5 0.5*93 0.8561 901.0 1.3221 1590.2 0.0000 0.0 7.7 0.011+7 0.0122 8.7 11*+. 1 0.1265 206.5 0.189* 0.1+211 538.2  0.7*+ 7.*+l 10.87 22.32 3*.77 0.7221+ 52.23 1.2809 2.27 0.0478 3.97 0.0661+ 5.71 0.0961+ H.i+3 0.200*+ 26.3* 0.5128 39.3* 0.6515 50.72 1.221+1 66.77 1.95*0 2.96 0.0491 7.9* 0.1365 23.*+8 0.i+*86 1+5.28 1.0376 58. 09 1.5197 72.1+0 2.3035 (  k a*  1059.0  2118.5 21.5 *+9.9 101.5 271.2 8*+8.1 166*+.*+ 2760.1 1+99*+.*+ 33.2 l*+3.6 6*+0.8 1872.*+ 3313.*  5887.7  DRUM MASS BA LANCE DEVIATION^ NO. OVERALL n-BUTANOL WATER  1 1 1 1 1 1 1 1 1 1 1 1  *+  3 1 1 1 1 1 1 1 1 *+  1 1 1 1 1  1+  3 1 1 1 3 1 1  l 3 3 1 1 1  2  1+ 1+ 1+ 1+  2  1.6 2.1+  0.0  -2.4 2.1+  0.1+  3.0  1+.6  1.0 0.7 -0.9 2.7 -2.1 -3.7 -2.1+  0.5 -0.7 5.1 8.7 -0.3 1.2 2.7 0.3  ' 3.8 -0.9 1.1 -1.7  0.9 -1.6 1.0 0.5 *+.9 1.2 -1.8 2.4 3.2 3.3 1.1 -1.0 *+.5 1.3 1.1 8.6 -0.*+ -1.*+ -1.0 0.3 11.1+  16.8 i+.l -6.3 -2.2 7.3 *+.7 1.9 7.2 *+.5 -13.1 -7.* 5-1  7.3 3.6 5.7 1.1+  1.7 23.0 1.5 -0.5 7.2 6.3 6.2 7.0 1.2 -2.9 0.1 *.5 5.3 8.7 -0.1+  0.6 7.1 8.1 2.7 1.7 2.5 -1.6 5.6 -3.6 -1.9 7.3 1.1 2.0 1.2 1.3  13.0  -0.3 2.2 0.8 -2.5 1.8 -0.2 3.1 *.3 0.2 -0.3 2.3 -1.6 -3.9 -6.5 -3.9 -0.8 -1.2 5.?  3-3 -1.0 1.8 1.0 -1.9 2.9 -3.8 1.0 -1.2 1.3 -0.2 -1.2 -3.0 7.6 1.5 -6.3 -3.3 3.6 5.0 -0.3 -0.1+  *.3 1.0 *.l 11.1  -3.5 -i5.*+  -5.6 -1.*+ 8.3  TABLE C - 1 Contactor Length: RUN W B NO. lb/min lb/min 122 253 118 120 119 251 12W 123 121 127 126 129 125 130 132 252 128 m 139 13W 137 138 133 135 116_ 1*3 lWo 1W1 1W5 1W2 lhk 1W6 151 1W7 150 1W8  153 15W  IW9 152 157  159 155  160 156 158  3«0 f e e t T °C  AQUEOUS R.I. X  0.10 0.125 0.15 0.175 0.20 0.225 0.25 0.275 0.10  PHASE E% A  NTU,  l ; 33WO 0.0090 11.95 0.1206 0. 80 22.2 1. 33W55 0.0218 23.66 0.2573 1.00 2 5 . 0 1. 3355W e.0270 36.81 1.20 25.0 o.wi+oo 1. 33692 0.037W W9.W7 0.6573 1. Wo 21.8 1. 33732 0.0W06 53. *9 0.7385 1.60 21.5 1. 337W O.oWi+8 59.88 0.88WW 1.80 22.9 1. 0.0W78 6 3 . W8 0.9773 2.00 22.2 1. 33805 0.0516 6 8 . 5 3 I.12W9 2.20 22.2 1. 338W2 0.05W9 1.27W2 2. WO 22.2 33875 0.0051 0.60 23.2 1. 33365 0.0668 0.15 1. 33395 0.0085 11.37 0.11WW 0. 80 23.0 0.20 25.2 1. 3337 0.0091 12.WW 0.1260 1.00 0.25 1.20 1. 33W75 0.019W 26.39 0.292W 2W.8 0.30 1. W0 2 3 . 0 1. 336W 0.0326 W3.6I 0.550W 0.35 1.66 O.WO 1. 33735 O.OWlO 55.13 0.77W7 23.5 1.80 0.W5 1. 33752 0.0W66 62.13 2W.9 0.9503 2.00 25.w 1. 33822 0.0539 73.79 1.3080 0.50 2.20 0.55 1. 0.0608 81.78 1.6717 23^1 1. 333935 0.20 l ** 5 0.0028 T77T- 0.0358 33 0.533 22.2 3.67 0.30 0.800 21.0 1. 333W5 0.0028 0.0353 O.WO 1. 33WO 0.0091 12.08 0.1220 1.067 22.1 0.50 1. 33W85 0.0187 2W.83 0.2719 1.333 22.2 0.60 1. 3 3 5 1 5 0.023W 31.82 0C3662 1.60 25.0 0.70 1. 3 3 7 0 2 0.03825 50.60 0.679W 1.866 21.8 0.80 1. 338W5 0.0519 6 8 . 8 3 1.13W6 2,133 22.1 0.0271 2.83 0.35 0. 70 2378^ 1. 333 ? 0.0021 1. 0.0039 5.19 22.5 0.050W 3 3 3 5 5 0. 95 O.W75 12.1W 1. 0.0091 1.20 0.1226 33WO 22.7 0.60 1. 0.0197 1. W5 0.2938 33W95 26.51 23.6 0.725 1. 3 3 6 0 0.0290 38.75 O.W699 1.70 22.9 0.85 1. 3 3 7 0 0.0380 51.20 0.6919 1.95 0.975 23.7 1. 33825 O.0W98 66.98 1.0776 2.20 1.10 0.30 0.30 23.3 1. 33357 0.0042 "iT6V 0.05W9 0.50 0.50 23.0 1. 33WO 0.0091 12.17 0.1230 0.70 0.70 23.1 1. 33W2 0.0113 15.13 0.1557 0.90 0.90 23.0 1. 33505 0.0197 26.35 0.2916 1.10 1.10 25.2 1. 3360 0.031W W2.91 0. 5387 1.30 1.30 26.9 1. 33765 O.OW76 66.11 1.0528 1.50 1.50 23.1 1. 3390 0.057W 76.87 1. W326 1.70 1. 33995 0.067W 90.W7 2.3256 1^20 .2 0.45 0.225 3 ,33W7 0.0172 23.27 0.252W 0.70 •33W57 0.0177 2W.36 0.2663 0.15 2W.1 ,33722 O.0W3W 59.05 O.86W7 0.W75 2W.8 0 . 95 ,339W 0.0663 89.Wl 2.219W 23.8 0.60 1.20 ,3W01 0.0685 92.63 2.5861 2W.1 0.725 1. W5 ,1WQ4 0.076 D.00.00 21.9 0.85 1,70 Ib-moles/hr-ft - u n i t mole f r a c t i o n d i f f e r e n c e f  1  k a A  198.9 530.W 1088.6 1897.1 2W36.5 3282.5 W030.1 5102.5 6105.5 82.7 188.7 259.8 723.5 1588.7 2555:7 W136.0 539W.O 7581.0  R. I. 1.3965  1.39*0 1.391* 1.39077 1.39065 1.39017 1.390*7 1.390W7 1.190W 1.39815 1.3975 1.3966 1.39605 1.39*0 1.39215 1.3920 1.3906 1.39055  1.3980 1.39762 58.3 265.5 1.3975 7W7.2 1.39695 1208.2 1.39577 2613.8 1.39*85 W989.8 i1.39305 1.39792 il.39775 98.7 1.397*2 303. w 878.W 16W7.1 2781.9 W688.3  1.3970  1.39612 1.39*95 i1.39377 11.3981 1.39765  33.9 126.8 22W.8 1.39752 1.39*95 5W1.2 1221.9 11.3960 2822.0 1.39*92 WW30.7 1.3938 1.3926 8151.6 1.39772 117.1 1.39752 192.2 8W6.9 11.39627 1.39** 27W5.6 1.393*5 3865.8 1.1920  Y  ORGANIC PHASE NTU E%  0.0*87 0.1178 0.1599 0.1790 0.1820 0.18WO 0.1853 0.1853 0.1872 0.0035 0.0235 0.0*1* 0.05*8 0.1085 0.1W90 0.1615 0.17W1 O.I8W0 0.0080 0.0170 0.0235 0.037* 0.0612 0.0910 0.129* 0.011 0.0162 0.0255 0.0360 0.0585 0.0887 0.1135 0.0050 0.0195 0.0225 0.03*8 0.0557 0.0815 0.1128 0.1390 0.0162 0.0135 0.0*90 0.09*5 0.1205 0.1*79  0  0  2W.09 O.W609 51.12 1.2W37 78. WW 2.7928 88.61 W.0329 90.19 W.3265 89.32 W.20W0 91.6W W.6513 91.6W W.6513 92.58 W.8901 1.73 0.0285 11.60 0.2035 20.30 0.3792 26.90 0.5275 53.5W 1.3332 73. W2 2.3825 30.75 '2.9802 85.S1 3.5W82 90.66 W.W387 3.96 0.0661 8.W3 O.lWi+7 11.62 0.2038 18.50 0.3399 30.02 0.603W W5.05 1.0275 6W.01 I.80WI 5.42 0.091* 8.01 0.1371 0.222W 12.59 17.73 0.32W7 28.87 0.5736 W3.68 0.9858 55.93 I.W308 2.56 0.0408 9.62 0.1667 11.10 0.19W2 17.17 0.3130 27.31 0.5375 •39.6W 0.8669 55.6W 1.W18W 68.52 2.0597 7.97 0.1367 6.60 0.1126 2W.05 O.W616 W6.53 1.0791 59.28 1.578W 72.80 2.1198  k a' 0  23.1 77.9 210.0 353.7 W33.7 W7W.I 582.8 6W1.1 715.2 2.1 20.W W7.5 79.3 233.9 W77.6 675.0 889.1 1223.5 6.6  21.7 Wo. 9 85.2 181.W 360.5 723.W 16.0 32.6 66.9 118.0 2W4.W W81.7 788.8 6.1 Wl.8 68.1 1W1.2 296.3 56 W. 8 1066.3 175W.9'. 30.8 39.5 219.8 6W9.O HW7.0 1993.6  DRUM MASS BAI,ANCE DEVIATION^ NO. OVERALL n-BUTANOL WATER 2 h W 2 2 3 2 2 2 2 2 W W 2 2 W W 2 2 2 2 2 k 2 2 2 2 2 2 2 2 2 2 2 2 2 W 3 2 2 2 h W W 2 W  2.W -3.2 0.3 -3.0 -3.5 -2.5 -5.0 -0.3 1.7 -0.6 1.7 -0.2 -2.2 0.6 -W.I+ 2.W -0.6 W.5 -1.6 2.6 1.3 -0.3 -2.0 -0.5 1.7 1.0 0.7 1.0 0.0 0.9 1.8 3.9 «? 2.W 2.9 2.8 -0.1 1.1 0.1 -o.w 8.3 3.W 2.6 -1.0 0.3 2.5 3  23.w 8.1 19.0 -1.8 -3.0 W.2 -l.W 3.7 8.1 4.1 -o.w 9.2 10.w 10.w 8.0 8.3 8.8 8.5 0.9 1.0 12.3 8.W 9.0 -2.0 1.7 -2,9 5.3 w.o 8.3 W.O 7.W -10.8 9.6 6.7 3.5 7.8 7.0 10.W 5.5 2.6 8.3 7.1 5.W 1.1 1.6 W.2  0.2 -W.6 -1.9 -3.1 -3.6 -3.3 -5.W -0.8 0.9 -1.7 2.0 -2.6 -5.W -1.9 -7.5 0.9 -3.0 3.5 2.6 3.1 -2.8 -3.5 -6.2 Q.l 1.7 3.0 1.6 -0.6 -W.2 -0.7 -1.1 11.3 -2.5 -1.9 2.W -2.1 -7.3 -8.1 -5.3 -3.1 10.3 -W.O -2.9 -5.3 -2.3 -1.1  G - 10  TABLE C - 1 5*0 f e e t  C o n t a c t o r Length: RUN NO.  B lb/min  w lb/min  T °C  163 165 169 167 162 164168 207 166  0.10  0.80 1.00 1.20 1.4-0  0.60  23.1 22.3 24-. 0 23.9 23.0 23.1 23.8 23.9 23.8 22.5  1.4-0 1.60  22.1 24-. 2 22.6  195 193 197  198 191 196 199 192  19W  172 176 173  170 17*+ 175 Z 180 1  1  183  210  177  I82 209  181 187  185 18»+  I89  190 186 188  202 205 200 203  201  20*+  *k a A  0.125 0.150  0.175  0.20 0.225 0.25 0.275  0.30  0.15 0.20 0.25  0.30 0.35  0.4-0 0.50  0.55 0.20 0.30  o.t+o 0.50  0.60 0.70 0.80 0.35  0.4-75 0.60 0.725  0.85 0.975 1.10  0.50 0.70 0.90 1.10 1.30 1.50  1.70 0.4-5  0.70  0.95 1.20 1.45  1,70  1.60 1.80  2.00  2.20 2.4-0  0.60 1.00 1.20  20.5 23.0  22.2  1.80 2.00 2.20  0.533 0.800 1.067 1.333 1.600 1.866 2.133  21.7 20.9 24.2 24.3 24.2 25.5 2.1.9  R.I.  1.33385  1.3350  1.33665 1.33762 1.3380 1.33822 1.33872 1.3382 1.33915 1.33327 1.33355 1.33392  1.3355  1.3364-2  1.33797 1.3386 1.33925  1.33975 1.33365  l.33*+0  1.3339 1.33505  AQUEOUS X  PHASE E%  0.007*+ 0.0201 0.0377 0.04-340.0473 0.04-95 0.054-6  9.91 26.72  A  50.95 58.59 63.28  66.29 73.63 0.0580 73.30 0.0594- 80.11 0.0008 1.07 0.0039 5.09 0.0117 15.65 0.024-5 32.49 0.0358 4-8.4-4 0.04-70 62.62 0.053*+ 70.92 0.0599 79.13 0.064-8 84.93 0.00^+5 6.09 0.0090 12.19 0.0111C 15.02 0.0206 28.23  1.33635 0.0322 24.1 0.04-4-3 59.91 1.3377 24.2 1.3387 0.054-4- 73.61 24.5 0.70 0.0034k.62 1.3335 1.3338 0.0068 9.30 0.95 25.3 24.3 1.20 1.334-02 0.0126 17.07 21.2 1.4-5 1.33515 0.0215 28.26 25.0 1.70 1.3361 0.0299 4-0.76 24.3 0.04-58 62.03 1.95 1.3375 2.20 2W.8 1.33847 0.0520 70.75 0.0080 10.55 0.50 21.5 1.3339 0.70 21.0 0.0090 11.81 1.334-0 0.90 1.33585 0.0277 37.89 25.3 0.04^+3 58.4o 1.10 21.5 1.3377 1.30 22.1 1.33855 0.0539 70.16 1.50 . 21.1 1.3395 0.0628 82.48 21.5 1.70 1.24-032 0.0705 92.95 0.225 21.6 i.33*+35 0.0157 20.71 24.5 0.35 l.33*+77 0.0196 26.61 0.475 21. 4- 1.33735 0.04-4-2 58.23 0.60 0.0716 98.12 22.9 1.3399 0.725 21.41.34-055 0.0770 100.0 0.85 21.6 1. 34-04-5 0.076 I100.0 h2.62  1  lb-moles/hr-ft -unit 2  mole f r a c t i o n d i f f e r e n c e  NTU  A  0.0988 0.2963 0.6869 0.8536 0.9720 1.0570  1.3018 1.4-969 1.5839  0.0101  0.04-93 0.1616 0.375*+ 0.6382 0.95*+5 1.2055 1.5350  1.8620 0.059*+ 0.1233 0.15*+1 0.3168 0.5331 0.8855  k a A  R.I.  97.8 1.396*+ 366.6 1.39*+0 1019.8 1.39065 l*+78.5 1.3899 1924-.1 1.38975 2353.8 1.38975 3221.1 1.38975 4-074-.6 1.3895 4-702.7 1.38975 7.5 : 1.39782 4-8.8 1.3972 1.39625 199.9 557.*+ 1.39*+97 1105.3 1.39285 1889.3 1.39102 2679.9 1.39007 3797.9 1.38995 5067.7 1.3900 39.2 1.39762 122.0 1.39727 204-.0 1.39695 522.5 1.39627 1055.3  204-4-.1 1.3011 3*+13.*+ 0.04-4-7 38.7 108.8 0.0925 0.1778 264-.0 0.3166 567.9 0.5028 1057.4 0.9395 2266.41.1985 126.0 0.1055 65.3 O.II9O 103.0 0.4567 585.5 0.84-85 115*+.6 1.1778 189*+. 3 1.7105 317*+.3 2.6300 5531.2 61.h 0.2206 127.8 0.2951 0.84-4-4- 4-96.43.9756 2951.0  1.3950  1.39337 1.39152 1.3978 1.3976 1.39665 1.39617 1.39555  1.3938 1.3931 1.39785 1.397*+ 1.396*+5 1.39557 1.39*+15 1.39355 1.3926 1.39777 1.3975 1.3962 1.39*+0  1.3932  1.39147  ORGANIC PHASE NTU Y E # 0  0.0512  0.1085 0.1732 0.1975 0.200 0.200 0.200  25.26 53.65  Q  0.4-881 1.3362  85.2*+ 3.5303 97.22 6.8888 98.69 8.4-152 98.66 8.36*+5 98.47 8.1105 0.201 98.9*+ 8.859*+ 0.200 98.47 8.1105 6.4-2 0.1090 0.0130 0.0312 15.50 0.2785 0.053*+ 26.35 0.513*+ 0.0885 *+3.78 0.9869 0.1313 6*+. 57 1.8386 0.1737 85.80 3.6002 0.1932 95.55 5.9185 6.64-92 0.1957 96.91 0.19*+7 96.60 6.4^24^ 0.0200 9.82 0.1708 0.0292 l*+.35 0.2570 0.0325 15-98 0.2893 o.o5*+5 26.70 0.5231 0.0877 *+3.*+l 0.974-9 0.1223 60.17 1.6192 0.1628 80.06 2.9*+l*+ 0.014# 7.27 0.1243 0.1768 0.0207 10.15 0.3*+97 0.0385 18.93 0.0590 29.25 0.5817 0.074-0 36.30 0.7682 1.272k 0.1056 51.91 0*1282 62.9*+ 1.7555 0.0132 6.54- 0.1109 0.0260 12.90 0.2278 0.0500 2*+. 51 0.4-722 0.0735 36.*+l 0.7681 0.1052 52.04- 1.2738 0.1184- 58.7*+ 1.5*+80 0.1391 68.91 2.078*+ 0.0035 1.73 0.0285 7.12 0.1216 0.0145 0.0550 27.25 0.5338 0.10^2 51.04- 1.2417 0.1298 64-.32 1.8189 0.14-90 78.75 2.8076  k a" 0  14-.7 50.2 159.2 362.5 5©6.1 565.9 609.7 732.6 731.7*+.9 16.7 38.6 89.0 193.5 *+33.0  800.9 999.7 1067.2 10.3 23.2 3*+.8  78.7 175.9 3*+0.8 707.6 13.1 25.4  63.1 126.8 196.4 373.1 580.7 16.7 *+8.0 127.8  25*+. 1  4-97.9 698.2 1062.5 3.9 25.6 152.5  4-»+8.1 793.1 l»+35.2  DRUM MASS BALANCE DEVIATION^ NO. OVERALL n-BUT AN 01 WATER  2 2 42 2 2 2 3 2 2 2 3  0.8 1.1 0.0 3.5 -0.4-0.1 -0.41.1 1.2 1.0 -1.9 2.7  42 2 2 2 2 2 4 2  -3.1 0.6  2  -0.3  -1.5  0.6 3.6 0.1 2.1 -2.8 0.9 -1,7  cl  •~i  CL  2 • 2  3 2 2 3 2 2 2  2 2 3 2 2 3 43 43 4-  i. . ,'  •j.o 0.9  -0.*+ -3.5  2.5 1.0 0.3 0.4-,.. 0.1 -0.9 0.0 -1.*+ 7.0 0.3  2.5 1.3 -1.*+ 2.8  12.4 6.1 11.7 3.9 1.9  3.8 12.0 5.6 15.4 2.8 -6.4 10.5  6.1 3-2 3.8 2.5 0.3 3.t+ 0.0  6.1 8.4 16.5 7.5 *+.5 0.2  3.2 13.8 6.5 3.7 7.0 2.3 1.*+ 3.8 -2.6 7.3 -1.0 -0.2 4-.1  V)  6.6 3.5 3.0  5.0 -1.3 5.3  -0.7 -2.0 -1.4 -4-.4 -0.7 -0.6 -2.0 0.5 9.5 0.6 -0.8 0.8 -1.9 -*+.7 -0.3 -2.5 0.7 -5.3 0.1 0.5 -6.9  -*+.9 -5.1 3.6 1.6 2.4 -4.7 1.3 -0.5  -4.1  -6.5  3.1 -1.7 3.1 -6.6 1.1 -1.6 -4.1  -12.1 7.8 -5.9 1.7 -6.1 -1.6 -2.3  1  D -  APPENDIX D P r o p e r t i e s o f n - B u t a n o l and n - B u t a n o l - W a t e r T e c h n i c a l grade n - b u t a n o l Chemcell(1963) l t d . , Company was  31-  the e x p e r i m e n t a l work.  "Chemcell  2, November 1958".  TABLE D - 1  are  Specifications T h i s was  p r o v i d e d by  PROPERTIES OF n-BUTANOL  PROPERTY  VALUE  S P E C I F I C GRAVITY 20/20 °C WATER CONTENT % BY WEIGHT MAXIMUM A C I D I T Y % BY WEIGHT AS ACETIC ACID D I S T I L L A T I O N RANGE ( INCLUDING 117.7°C) + BOILING POINT AT 760mm. Hg., °C + VISCOSITY AT 20 °C? CENT IPO I S E + MOLECULAR WEIGHT + r e f e r s t o pure  erossfield  some p r o p e r t i e s o f n - b u t a n o l t h a t  o f i n t e r e s t , as q u o t e d f r o m B u l l e t i n CA-  manufactured'by  and s u p p l i e d by H a r r i s o n and  used throughout  Table D - 1 l i s t s  Systems  0.810  - 0.812 0.1 0.005 1.5° C 117.7 2.9>+8 7^.12  n-butanol  Table D - 2 g i v e s mutual  s o l u b i l i t y data f o r  w a t e r and  p u r e n - b u t a n o l as f u n c t i o n s o f t e m p e r a t u r e .  This  t a b l e was  c o n s t r u c t e d from smooth c u r v e s drawn t h r o u g h  the  s o l u b i l i t y d a t a o f r e f e r e n c e 28 t e m p e r a t u r e s w e r e r e a d t o 0.1°  ( Figure D -i 1).  Sincea.  C, v a l u e s f o r t e m p e r a t u r e s  b e t w e e n l i s t e d v a l u e s were d e t e r m i n e d  by t a k i n g t h e mean  of the l i s t e d v a l u e s . D e n s i t i e s used  i n t h e phase v e l o c i t y  calculation  were c a l c u l a t e d from the f o l l o w i n g e q u a t i o n s ( 2 9 ) , v a l i d  D - 2  at 20 /C. dl = d d  2  =  d  w  a  t  e  r  - 0.001651 Ps + 0.OOOO285 P s  n-butanol  +  gm/cc  2  0.002103 Pw - 0.0000113 Pw  2  D - 1  gm/cc D - 2  where d^ i s the d e n s i t y of s o l u t i o n s o f n-butanol i n water. Ps i s the weight  percent of n-butanol i n water.  d^ i s the d e n s i t y o f s o l u t i o n s of water i n n-butanol, Pw i s the weight  percent of water i n n-butanol.  The water content o f a sample o f n-butanol each drum was determined Chemists  from  by Coast E l d r i d g e Engineers and  u s i n g gas chromatography. DRUM NO.  1 2 3  h  WATER CONTENT % 0.07  <0.01 <0.01 0.05  The water content of the n-butanol was ignored i n a l l c a l c u l a t i o n s except as s t a t e d i n Appendix G, page C - h.  i  D - 3  TABLE D - 2  TE  MUTUAL SOLUBILTY OF n-BUTANOL AND WATER  M P WEIGHT °C FRACTION SAT L  20.0 20.2 20.420.6 20.8 21.0 21.2 21.421.6 ' 21.8 22.0 22.2 22.422.6 22.8 23.0 23.2  0.0770 0.0768 0.0767 0.0765 0.07640.0762 0.07608 0.0759 0.0758 0.0756 0.0755 0.0753 0.07515 0.07505 0.07^9 0.074-75 0.074-6  1 Reference 28  WEIGHT FRACTION X  TEMP °C  SAT  SAT  0.2010 0.2012 0.20125 0.20135 0.2015 0.2016 0.2017 0.2018 0.2019 0.2020 0.2021 0.2022 0.2023 0.2024-5 0.20255 0.20265 0.2028  WEIGHT FRACTION  23.4 23.6 23.8 24-.0 24-. 2 2h.± 2k. 6 24-. 8 25.0 25.2 25.425.6 25.8 26.0 26.2 26.4-  0.074-40.07^3 0.OT4-15 0.074^0 0.0739 0.07375 0.0736 0.0735 0.07335 0.07318 0.07305 0.0729 0.07275 0.07265 0.0725 0.07238  WEIGHT FRACTION SAT 0.2029 0.2030 0.2031 0.2032 0.20335 0.2035 0.2036 0.2037 0.20385 0.20395 0.204-08 0.204-2 0.2043 0.20^4-5 0.204-55 0.2053  1  E - 1  APPENDIX E Pressure ...Drop Measurements  >  a) C a l i b r a t i o n of Honeywell bellows type pressure meter The meter was S e c t i o n 195-F  i n F i g u r e E - 1.  The apparatus  used i s shown s c h e m a t i c a l l y  A l i n e a r 0 to 100  .  The  procedure  temperature  was  a d j u s t e d to 20°  Ah  used  c a l i b r a t e d as recommended i n  of the Honeywell i n s t r u c t i o n book r e c e i v e d  w i t h the meter.  was  differential  (inches of water) was  was  s c a l e on the meter  as f o l l o w s . The  C and a column of water  a p p l i e d to the meter by  v a l v e A w h i l e keeping v a l v e B c l o s e d . c l o s e d and Valve B was  water  opened.  Valve A was  A r e a d i n g was  s c a l e of the Honeywell meter and  opening then  taken of the  the head Ah was  read  the d i f f e r e n c e between.the h e i g h t of the meniscus and end of the tapered tube above Valve D.  from the  Several cycles  of i n c r e a s i n g and d e c r e a s i n g h e i g h t s of water were a p p l i e d to the instrument. Most of the readings were taken at s c a l e readings l e s s then 25 as t h i s was interest.  The  the r e g i o n of  s c a l e r e a d i n g i s shown p l o t t e d a g a i n s t  the pressure head i n inches of water i n F i g u r e E -  2.  b) Treatment of Data When the Instrument as shown i n F i g u r e S, had o c c u r r e d  i t was  was  placed on the  found that a zero  i . e . the s c a l e read 1.0  apparatus shift  f o r zero pressure  drop.  I t was  decided to s u b t r a c t one  from each s c a l e  r e a d i n g as opposed to c o r r e c t i n g the zero s h i f t the zero adjustment on the instrument.  The  by using  s c a l e readings  given i n Table E - 1 are the c o r r e c t e d v a l u e s . Sample c a l c u l a t i o n s of f r i c t i o n f a c t o r energy requirements Pressure The  are  given.  Drop Sample C a l c u l a t i o n  Fanning-type f r i c t i o n f a c t o r was f  =  1 D g L  C o n v e r t i n g Ap(inches = g  d e f i n e d (Equation  Ap* 9 V \w w  2  water) to Ap  (poundals/ f t ) 2  AP*  = ApUnches H 0 x 0.03613 l b / i n at 20° C) Inch H 0 2  f  2  x 4-.633 x 1 0  = 167.39 Ap l b  , or poundals/ f t  m  3  lbft sec " T n^ 2 T  2  E - 1  .ft secf From the geometry of the  = Then f__ w  contactor  D = 0.314- = i n c h e s / i n c h e s / f t = 0.314- f t . I2~~ 12  E - 2  L = 3.87  E - 3  i  Q  4 F  t  3.87 = 0.56589  ft 167-.39Ap \w  w  Ap \ o V 2 \w w  m  A  2  AP  12) IT  2  AP  and  E - 4-  E - 3  V^, the s u p e r f i c i a l water v e l o c i t y i s d e f i n e d 0 = —  1  W lb/min ; l b / f t ^ x 60 sec/min  * p IT \w —q;— s u b s t i t u t i n g f o r D from E q u a t i o n E - 2  E - 5  V = 30.9506 w  E - 6  V  w  A  =  W_  A sample c a l c u l a t i o n i s done f o r run P - 40. For Run P - 40 i n Table E - 1 B = 0.30 lb/min  W = 2.40 lb/min  Aqueous phase o u t l e t temperature At 21.6° C ^ equals 0.99788 gm/ml  = 21.6° C  w  £  = 0.99788 x 62.43 l b / f t  w  3  m  Reading on the Honeywell instrument s c a l e By F i g u r e E - 2 Ap = 2.53 inches of water  E - 7 12.5  By E q u a t i o n E - 6 V„ = 30.9506 x 2.WO 0.99788 x 62.43  =  1.19236 f t / s e c  E - 8  W  S u b s t i t u t i n g Equations E - 7, E - 8 and^=2-.53 i n t o Equation E - 1* 0.56589 ( 2 . 5 3 ) =• _ = 0.0161574 (0.99788 x 6 2 . W - 3 1 9 2 3 6 ) .  f  2  A l l c a l c u l a t i o n s were done on the IBM 70W0 computer. R e s u l t s o f computer c a l c u l a t i o n V = 1.192 f t / s e c w  f Energy  = 0.01617  Requirements f o r Mass..Transfer  For h o r i z o n t a l flow of an i n c o m p r e s s i b l e f l u i d : with no s h a f t work, the mechanical energy^balance reduces to h —— * ~o~ 1 = 0 E - 9 20(g ^ 0  u  A  p  +  c  E - h  where  i s the biilk • v e l o c i t y and l  w  i s the 1-ost work.  For the flow o f two p a r t i a l l y m i s c i b l e f l u i d s the v o l u m e t r i c " f l o w r a t e changes s l i g h t l y along the pipe as mass t r a n s f e r o c c u r s , i Ignoring t h i s minor e f f e c t Equation E - 9 reduces to - 1 = AP w — The energy l o s s due to f r i c t i o n i s then w r i t t e n F = — AP —— The  E - 10  f t l bi / l bm  E r- 11  f  energy requirements  f o r mass t r a n s f e r are  based on the t o t a l input v o l u m e t r i c flow i n order to compare r e s u l t s with those of Mathers ( 19). The  energy requirements  In h  follows  F = 5.0505 x 1 0 ~  r  - hr ft3  7  AP g  The  r a t e o f energy l o s s  can be expressed as  hp-hr  E - 12  f t ? -  c  (power l o s s ) can be w r i t t e n i n  terms o f the t o t a l input v o l u m e t r i c flow Q<p as f o l l o w s Power l o s s = 3600 x Q _ x 5.0505 x 10"? =  1.81818  x  10"  3  AP g  hp  QT&P  I  F  E  -  l  h  where Q ^ h a s u n i t s o f f t / s e c o n d . 3  The number o f mass t r a n s f e r t h e o r e t i c a l stages i s E/100; t h e r e f o r e the r a t e o f energy l o s s per stage i s : Q-j^AP E - 15 gc E x 60 x 28.317  Powers l o s s / s t a g e = 1.81818 x 1 0 " The  t o t a l flow i n l i t e r s per minute i s Q  T  o f o r mass t r a n s f e r are A  T h e r e f o r e the energy requirements  1  E - 5  W A T E R R E S E R V O I R  M E T E R S T I C K  15 rrun G L A S S T U B I N G  Figure E - l  Differential  Pressure Meter C a l i b r a t i o n  Apparatus  E - 6  1  1  DIFFERENTIAL F i g u r e E-2  r  PRESSURE SCALE  C a l i b r a t i o n Curve f o r D.P.  READING  Meter  E - 7  = 1.81818 x 10' _  Q-^AP O f  1 1  //  gK ^ t c  Qr^x 60 x 28.317 = 3.3&608 x 10~  hp/stage/(liter/min)  AP  6  ~E~~  E - 16  It should be r e c a l l e d from the D i s c u s s i o n that the  efficiency  E i s based on weight f r a c t i o n s r a t h e r than mole f r a c t i o n . As order of magnitude comparisons only of energy r e q u i r e ments are being made, the d i f f e r e n c e between the  efficiencies  i n terms of weight f r a c t i o n s i n the present work and mole f r a c t i o n s i n some of the other s t u d i e s i s being ignored. Sample C a l c u l a t i o n s of Energy Requirements As mentioned under "Design of Experiments , 11  the  pressure drop data and the mass t r a n s f e r data were taken separately. run No.  The  166  sample c a l c u l a t i o n i s based on mass t r a n s f e r  and pressure drop run No.  From Table C - 1 f o r Run  P - 4-0.  166  Contactor l e n g t h 5,0 B = 0 . 3 0 lb/minute W = 2.4-0 lb/minute E = 80.11 % E = 98.^7 %  feet  A  0  From Table E - 1 f o r Run Ap  = 2.53  P - 4-0  inches of water  L = 3.87  Using Equation E - 1, the pressure drop i s converted inches of water to p o u h d a l s / f t Ap The  2  or l b  m  / f t sec  energy requirements  = *+23.^967  from  2  = 167.39 Ap = 167.39(2.53) = *+23.^967 f o r t r a n s f e r i n t o the aqueous phase  can be c a l c u l a t e d by iinn s e r t i n g the values E Ap  feet  poundals/^  2  A  = 80.11$ and  E - 8  i n t o Equation E - 16 produces £ A = 3.32608 x 1CT  ( m u l t i p l y i n g by Z/L ) ( *23.*967)  6  BoTTI  A  = 2»'271'6 x 10" 5 hp/stage/ Sample C a l c u l a t i o n o f C o n t a c t o r  5*0  x  JT87*  (liter/minute)  Effectiveness  Run 168 Volume o f s e t t l e r = 0.75  l i t e r s = 2.65  Volume o f c o n t a c t o r  2  = TTD  T o t a l volume = 2.919 x l o "  x 10" f t 2  3  " Z ~= ^TT(^0.31*j 0 . 3 1 " X 5~ = 0.269 " x i ^ "10* - *f- t x 17  2  L A2  f t  c  rt  2  2  3  Number o f t h e o r e t i c a l stages (Table C - 1) E 73.6 =—A= = 0.736 100.0  100  Average( input and o u t p u t ) f l o w o f aqueous  phase (Table  F - 2)  = 0.0005*05 f t / s e cond 3  Average (input and o u t p u t ) flow o f organic  phase  = 0.00007** f t / s e c o n d 3  T o t a l average flow = 0.00061^9 f t / s e c x 3600 sec/hr 3  =2.21 f t / h r 3  C o n t a c t o r E f f e d t i v e n e s s (Equation 1*+) (0.736)(2.21) = NF = — = 55.7 h r ' v (2.919 x 10"^) Sample C a l c u l a t i o n f o r the L o c k h a r t - M a r t i n e l l i  1  Correlation  The M a r t i n e l l i parameters are A  JKP7K7P  Q  V AP/AL.  *b  =  x  V A P / A L .  = A  / ^ S / A P / A L a  For Re >2100, based on s u p e r f i c i a l phase v e l o c i t i e s and pure  E - 9  component p h y s i c a l p r o p e r t i e s , the B l a s i u s formula was used f o r the f r i c t i o n f a c t o r Re< 2 1 0 0  f = '°7 Re* Q  while f o r  9 1  f = _=6_ was used. Re  Again f o r Run 1 6 6 (see Page E - 7 ) Re. = Y A _D_ = V  QA n d  i  A  VQ  Re  D  Q  D  0  9.86  =  =  A  0  A  =  5.38*+  1-069  x lo-^j f  (AP/AL) =  A  (AP/AL)  v  T  X  =  5  l  U =  K  b  m  2.6166  ..  3.87  =  x  10~ L  15.384-  2  109. +306  =  = 1109.^306  A  ,  2  2  =  = (6.45535  2  m  0.4-84-4-  = 2.5^05  16.9519  I T o 9 ^ / 72.236  =  ^  W  =  x lO-V  lb / sec ft  (72.236  =  1  122.56  16.9519  I  10"  1—-f j-4 = 72.216 15» 2.6166 x 1 0 " • 1&84- x l O ' V ft -sec 2 ( 0 . 1 3 0 3 ) ( 5 0 . 5 7 ) / 9 . 8 6 x 1 0 r" ?5 l 2 IIIL^ =16.95lf  = J  %  1.303 x  2  4-23.4-967/  Therefore  0  2  v  D  (AP/AI^p =  16  =  = 2 x  0?0 0 U£L_  =  10*5  x  (1.069xl0~ )(62.72)/9.86xlO" \  D  0  3.89  U  A  A  A  2 f  = 122.56  H  0  A?A  2 F  x  299^.15  0.026166  ie"  V  q  ; i = (299^.15)*  A  10~5  x  =  -  0.0791  f  0.026166  l.oif x io-5  =  V  0  6^.07 x 10"? 5.384 x l o - f  =  r  1  .  2  3  1  5  2  ft^sec  2  2  TABLE E - 1 RUN NO.  B lb/min  w lb/min  T °C  SCALE RDG.  Ap inches H 0 2  0.80 0.80 1.00 1.20  P-62  0.10 0.10 0.125 0.15 0.175 0.20 0.225 0.25 0.275 0.30 0.375  P-23  0.20  0.80 1.00 1.20 1.4-0  P-38 P-57  P-4-2 P-39  P-36  P-4a P-35 P-% P-37 P-4o  P-26 P-22 P-27 9-21 P-25 P-20  P-24P-4-4-  P-4-9  P-^6  P-l+5 P-i+6 P-5o  P-4-7  0.25 0.30 0.35  0.4-0 0.4-5  0.500 0.55 0.20 0.30 0.4-0 o.5o  0.60 0.70 0.80  1.40 1.60  1.80 2.00 2.20 2. WO 3.00  1.60  1.80 2.00 2.20  0.533 0.800  1.067  1.333  1.600  1.866 2.133  22.1 19.2 22.0 22.0 21.8 21.8 21.6 22.1 22.1 21.8 20.5 18.5 21.420.4 20.5 20.3 21.7 20.0 22.2  19.8  21.5 20.7 21.0 21.3 21.1 21.1  2.7 3.85  Jf.4-  6.3 7.25 8.75 8.95 10.75 11.8 12.5 17.75  0.57  0.60 0.91 1.28  1.4-7  PRESSURE DROP DATA  3.28 3.^5 3.35 3.27 2.76  1.77 1.83 2.17 2.38 2.53 3.36  2.5k  3.4-0  15.8 17.05  0.59 0.93 1.17 1.83 2.29 2.83 3.18 3A3  2.05 3.3 4.9 7.35 9.9 13.05  0.^5 0.69 1.02 1.50 2.00 2.63  2.8  k.5  5.7 9.05 11.25  14-.3  16.1  3.28  X  w 2 xlO f  2.08 2.00 1.81  1.62 1.37  3.*+2 2.99  3.4-4-  3.39 3.21 2.93  1.441.4-3  1.62  1.76 1.741.79 1.35 1.29 1.23  1.16 1.4-1 1.641.66 1.92 2.00  1.67 1.61  2.61  1.55  5.83 3.97 3.30  1.52 1.57 1.6*+ 1.78 1.89 1.56 1.55  3.H 2.88 2.78 2.65  2.09  0.69  2.36 2.55 2.53  0.69 0.69 0.69  2.14-  2.60 2.49 2.58 2.57 2.54-  0.67  0.69 0.540.52  Re  1011 9*+9 1259 1517  174-7 2015  2267  0.50 0.C8  0.4-1+  2529 2782 299^ 3689  1.50 1.69 1.73 2.00 2.10 2.19 2.21 2.18  0.940.97  936 1257  0.96 0.96  0.73 0.71  1721 1943 2267 2*+03 2799  1.31 1.33  1.16  637  2.62  0.96  0.76  1.51  1.19 1.18 1.18  1.77  0.92 0.88  1.4-0  1.60 1.70  1.18  14-67  998  1312 1639 1987 23042623  fi  V W ft/sec  kl kl  0.40 o.*+o  61  0.60  51  72 82 92 102 112 122 153  82 102 123 1^3 163 18*+  20422481  123 163  204-  2*+5 286 327  0.50  0.70  0.80 0.89 0.99 1.09 1.19 1.^9  0.40 0.50  0.60  0.70 0.80  0.90 0.99 1.09  0.27  0.4-0  0.53 0.66 0.80 0.93  1.06  TABLE E - 1 RUN NO.  B lb/min  w lb/min  T °C  SCALE RDG.  P inches H 0 ?  P-18 P-15 P-13  PRESSURE DATA X  Re  w  Re  B  ft/sec  xlO  3.55 3.45 3.58 3.53 3.19 3.12 2.95 2.71 2.49  1.62 1.68 1.77 1.76 1.80 1.79 1.85 1.97 1.61 1.56 1.5*  1.21 1.26 1.33 1.32 1.34 1.33 1.39 1.48 1.55 1.57 1.64  1.3* 1.33 1.33 1.3* 1.34 1.35 1.3* 1.33 1.04 0.99 0.94  83* 1124 1W0* 1440 lM+O 1449 1720 1989 2324 2609 3124  19* 245 2W5 245 245 296 3*7 398  0.48 0.82 1.50 2.03 2.66 3.17 3.41 4.41  19.63 12.07 6.82 6.18 5.79 5.19 4.34 4.50  2.15 2.16 2.17 2.29 2.42 2.45 2.37 1.98  1.11 1.12 1.13 1.19 1.25 1.27 1.24 1.33  1.9* 1.93 1.92 1.92 1.93 1.92 1.92 1.49  376 620 1107 1353 1611 18W4 2078 229* ,  123 204 368 449 531 613 695 776  0.15 0.25  0.08 0.95 1.47 2.03 2.63 2.97  5.82 28.55 23.98 20.76 18.42 15.13  1.00 2.75 2.96 3.06 3.19 3.12  0.37 1.01 1.08 1.14 1.78 1.16  2.73 2.70 2.72 2.69 2.71 2.70  278  18*+ 286 388 490 592 69*  0.11 0.17 0.2*+ 0.30 0.36 0.42  P-58 P-63 P-65 P-16 P-lW P-19 P-17 P-61  0.35 0.475 0.60 0.60 0.60 0.60 0.725 0.85 0.975 1.10 1.30  0.70 0.95 1.20 1.20 1.20 1.20 1.45 1.70 1.95 2.20 2.60  19.6 19.3 19.0 20.0 19.9 20.1 19.6 19.0 19.7 19.4 20.0  3.25 4.75 6.8 6.65 6.85 6.75 8.95 12.15 15.1 17.75 22.85  0.67 0.98 1.39 1.35 1.40 1.38 1.82 2.45 3.05 3.56 4.58  P-30 P-33P-28 P-32 P-29 P-3* P-31 P-60  0.30 0.50 0.90 1.10 1.30 1.50 1.70 1.90  0.30 0.50 0.90 1.10 1.30 1.50 1.70 1.90  21.7 21.2 20.8 21.0 20.6 20.9 20.8 20.0  2.25 3.9 7.35 10.0 13.15 15.8 16.95 21.9  P-53 P-55 P-51 P-56 P-52 P-5*  0.45 0.70 0.95 1.20 1.45 1.70  0.225 0.35 0.475 0.60 0.725 0.85  0.25 20.9 20.4 4.6 20.6 7.15 20.2 10.0 20.3 13.0 20.1 14.7  5.03  4.00  h2k  58h  724883 1026  1*3  1+49  531  0.35 0.47 0.60 0.60 0.60 0.60 0.72 0.8*+ 0.97 1.09 1.29  o.*+5 0.55  0.65 0.75 0.8*+ 0.9*  E- 12  TABLE E - 1 RUN NO.  W lb/min  0.8  1.30 1.38  1.62 1.86  19.5  19.8 19.1  2.7  P-5 P-3  1.5*+  P-9  2.13 2.72 2.72  P-8 P-68 P-ll P-66 P-4 Pr67 P-6 P-10 P-l P-12  SCALE RDG.  19.6 19.2 19.2 19.6 20.0 19.0  0.48 0.69 0.88 1.06 .  P-7 P-2 P-69  T °C  PRESSURE DROP DATA*  3.25  3.76 1.86 4.28  * B equals  19.5  19.0 19.0 19.0 19.2 18.8 19.2 zero.  1.15  1.7 1.75  2.15  2.55 2.95  3.55 5.8  8.95  Ap inches 0.17 0.24 0.37 0.36 0.43  0.55  0.56 0.60 0.74 1.16  1.81  12.55  1.84 2.52 3.38 0.70  21.65  W.31  9.05  16.95 3.W5  W  f  ft/sec  xlO  2  0.24 0.34 0.44  2.72 1.86  0.53  1.18 0.9*+ 1.06  0.65 0.69 0.77 0.80 0.92 1.056  1.35  1.35 1.61 1.87 0.92 2.13  1.75  0.85 o.ew  0.79  0.9*  0.90  0.92  0.88 0.88 0.75 0.87  F - 1  APPENDIX F Holdup R a t i o Measurements and Phase V e l o c i t y C a l c u l a t i o n s ( F i g u r e 3 ) was  A three f o o t l e n g t h of g l a s s pipe c a l i b r a t e d as f o l l o w s .  A file  s c r a t c h was made on the s u r f a c e  of the g l a s s pipe every centimeter from the upstream end. shown i n F i g u r e 7.  s t a r t i n g from about 15 cm.  The b a l l v a l v e s were attached as  The pipe s e c t i o n was suspended  from a r i n g stand with  the bottom v a l v e c l o s e d .  water at 20 °C was added from a b u r e t t e .  vertically  Distilled  The cumulative  volume o f water added was noted as the meniscus reached each s c r a t c h mark.  I f too much water was' added, and the meniscus  appeared above a g i v e n s c r a t c h mark, the meniscus p o s i t i o n was estimated  to the nearest  s i d e the pipe. taken every  m i l l i m e t e r by h o l d i n g a r u l e r  A d u p l i c a t e c a l i b r a t i o n was made with  10 cm. along  the pipe l e n g t h .  the h i g h e s t s c r a t c h mark was estimated  along readings  The volume above  by f i l l i n g  past the b a l l v a l v e to the t o p edge of the Saran  the pipe up fitting  ( F i g u r e 7 ) i c l o s i n g the top b a l l v a l v e and pouting  out the  water above the c l o s e d b a l l v a l v e i n t o a 15 ml. c a l i b r a t e d glass c y l i n d e r .  The volume o f water so c o l l e c t e d was sub-  t r a c t e d from the t o t a l volume added to get the volume o f water of the f u l l  test section.  F i g u r e F - 1 i s a p l o t o f volume of f l u i d i n the c o n t a c t o r versus  the number o f the s c r a t c h mark, where the  s c r a t c h marks are numbered from the upstream end o f the pipe.  To a v o i d c l u t t e r p o i n t s are shown a t  approximately  every 10 f i l e  marks along the g l a s s pipe.  I t was  ary to e x t r a p o l a t e t h i s l i n e down to 10 cm. s c r a t c h mark. s e c t i o n was in  found  below the  necess-  first  The volume of each phase i n the c o n t a c t o r  determined  " Experimental  from F i g u r e F - 1 as o u t l i n e d  Methods" and  i n the f o l l o w i n g sample  calculation. The holdup r a t i o was sample c a l c u l a t i o n .  The  c a l c u l a t e d as shown i n the  r e s u l t s are lasted i n Table F - 1  Average phase v e l o c i t i e s were determined  from the c r o s s -  s e c t i o n a l area a v a i l a b l e f o r flow ( c a l u l a t e d from the i n s i t u volume r a t i o measurements^ and from the average of the input, and output v o l u m e t r i c flow r a t e s . were determined  from the data c o l l e c t e d f o r the m a t e r i a l  balances.  A sample c a l c u l a t i o n is g i v e n .  are.  In Table F - 2.  listed  These flow r a t e s  Volumetric flow r a t e s  Phase v e l o c i t i e s were c a l c u l a t e d  by assuming that the c r o s s s e c t i o n a l areas a v a i l a b l e f o r flow as determined  from the i n s i t u volume r a t i o f o r the  three f o o t c o n t a c t o r were a p p l i c a b l e a l s o to c o n t a c t o r lengths of  one  f o o t and f i v e f e e t .  The v o l u m e t r i c flow r a t e s used  were those f o r the p a r t i c u l a r c o n t a c t o r l e n g t h i n q u e s t i o n . Phase v e l o c i t i e s are a l s o g i v e n i n Table F Holdup R a t i o Sample C a l c u l a t i o n Run  H - 20 B = 0.70 lb/min W = 1.866 lb/min D e n s i t y of Water = 0.999 gm/cc D e n s i t y of N-Butanol = 0.812 gm/cc  2.  F  Input Volume r a t i o =  -  If  Vol n-Butanol Vol  H 0 2  (0.70/0.812 x 62.4-3) 1.866/(0.999  x 62.43)  ft /min 3  ft3/min  = 0.4-614I n t e r f a c e p o s i t i o n = 4-6.7 Volume H 0 = 2 9 . 2 c c s . Upper n-Butanol phase i n t e r f a c e 59.3 Lower n-Butanol i n t e r f a c e 25.1 Volume of n-Butanol = 34-.7 - 19.7 = 1 5 . 0 2  In s i t u volume r a t i o =  Holdup r a t i o -  15.0 ccs. 29.2 ccs.  Input volume r a t i o : In s i t u volume r a t i o  = 0.513  -  69(0.5137 By computer)  0.4-614;— 0.51369  = 0 . 8 9 8 5 ( 0 . 8 9 8 2 By computer) Phase V e l o c i t y Sample C a l c u l a t i o n The i n l e t v o l u m e t r i c flows were determined from the d e n s i t i e s of the pure components and the mass flow r a t e s . The o u t l e t v o l u m e t r i c flows were determined from the o u t l e t mass flows and Equations D - 1 and D - 2 r e l a t i n g the d e n s i t y and composition of n-butanol-water s o l u t i o n s at 20° C. The average phase v e l o c i t i e s as c a l c u l a t e d are s u b j e c t to the e r r o r s of the holdup r a t i o measurements and the e r r o r s o f the m a t e r i a l balances.  The average  v o l u m e t r i c flows were used, s i n c e the input and output v o l u m e t r i c flow r a t e s were d i f f e r e n t due t o the l a r g e amount of mass t r a n s f e r t h a t took place i n the c o n t a c t o r and  settler.  F - 5  Mass t r a n s f e r run 135 and the corresponding holdup r u n H - 20 are used f o r the sample c a l c u l a t i o n . Run 135 C o n t a c t o r Length 3.0 f e e t B = 0.70 lb/min W = 1.866 lb/min Weight of o r g a n i c phase c o l l e c t e d = 567. grams Time o f c o l l e c t i o n 111. seconds . Mass r a t e o f o r g a n i c phase outflow = 567 / 111.0 T+?3T6/  60  = 1.25 T7BT  = 0.6757 lb/min Weight f r a c t i o n water i n o r g a n i c phase outflow Y~ = 0.091 * (Table C - l ) The d e n s i t y o f the organic phase i n l b / f t was determined from Equation D - 2: 3  d  2  = d  fi  + 0.002103 Pw - 0.0000113 P  D - 2  2 w  m u l t i p l y i n g E q u a t i o n D - 2 by 62.4-3. t a k i n g the d e n s i t y Of pure n-butanol as 0.81 gm/ml, and with Y = p / 100 = 0.091 gives 2  D e n s i t y of Organic ( lb/ft3)  w  + Y Q 3 . 1 2 9 0 3 ~r- 7.05 +59Y ) * D - 2a = 50.5683 + 0 . 0 9 K 1 3 . 1 2 9 0 3 - 0.64-27)  Phase = 50.5683  l  P  2  = 51.6858 Volumetric outflow of organic phase = mass flow r a t e / d e n s i t y = 0.67567 _ I k / ( 5 1 . 6 8 5 8 l b / f t min  3  x 60 sec/min) = 2.1787 x  lO^ft sec  3  Volumetric i n p u t o f organic phase = 0.701b /(50.56831b., x 60sec) min  ft^  = 2.30797 x 10"  k  f t  Average v o l u m e t r i c flow r a t e o f o r g a n i c phase = (2.1787 + 2.30797 )/2 x 10-* = 2.24-336 x KT * f t 1  3  ft3/sec  / sec  The average value i s entered i n Table F - 2. A s i m i l a r  3  min  / sec  F - 6  calculation  i s :made 'for' the aqueous phase.  Weight of aqueous phase c o l l e c t e d = 106'+. 5. grams Time of c o l l e c t i o n = 7 5 . 0 seconds . 106W.5 / 7 5 . 0 2.34678 Mass r a t e o f aqueous phase outflow = / = 453.6/ 60.-0 1.25= 1.8774 Weight f r a c t i o n n-butanol  lb/min  i n aqueous phase outflow, X  2  = 0.03825  Equation D - 1, f o r the d e n s i t y of aqueous- n-butanol s o l u t i o n s i s r e w r i t t e n i n u n i t s of l b / f t 3 , r e p l a c i n g d ^ x j R by 0 . 9 9 gm/ml and p = X 2 X I O O . and m u l t i p y i n g by 62.43 s  Equation D - 1 becomes D e n s i t y aqueous phase = 6 2 . 3 2 - X ( 1 0 . 3 0 7 - 17.793 2  For X  2  D - la  = 0.03825 Equation D - l a becomes  D e n s i t y aqueous phase = 62.32 - 0 . 0 3 8 2 5 ( 1 0 . 3 0 7 = 61.952  17.793(0.03825))  Volumetric outflow of aqueous phase = 1.87742 lb/min/(61.952 l b / f t 3 x 60 sec/min) = 5.05071 x I0~ f t 3 / s e c h  Volumetric input o f aqueous phase = 1.866/(62.32 x 60) = 4.98331 x 10-4 ft3/sec Average v o l u m e t r i c flow of aqueous phase =(5.05071 + 4 . 9 8 3 3 1 ) / 2 x 10~ = 5.1665 x 10 "4 f t 3 / s e c  h  From the holdup r a t i o sample c a l c u l a t i o n , volume r a t i o i s known.  the In s i t u  In s i t u volume r a t i o = 0.51369 T o t a l C r o s s - s e c t i o n a l Pipe Area Flow area f o r aqueous phase = ( 1.0 * In s i t u V o l . R a t i o ) 5.38W x 10-^ = ft' = 3.557W6 3.55746 x K T f 1.51369 2  44  F - 7  Flow area f o r n-butanol phase =Total flow area of pipe - flow area f o r aqueous phase = 5 . 3 8 * x 10-W - 3.557 x 1 0 - * = 1.827 x 10 + f t 2 _I  Bulk aqueous phase v e l o c i t y = Aq. v o l . flow/ Flow area = 5.01665 x 1 0 ~ V ( 3 . 5 5 7 4 6 x 1 0 Bulk organic phase = 2.24336 x 1 0 - V  _ L f  ) = 1.4-11 f t / s e c  velocity 1.82744 x 10~  h  = 1.227  ft/sec  C a l c u l a t e d values of v o l u m e t r i c flow r a t e s and phase v e l o c i t i e s are given i n Table F - 2.  TABLE P - 1 RUN NO.  INPUT VOLUME RATIO 0.1540.1540.1540.15*+ 0.154o.i5 + 0.154-  B  W  INSITU VOLUME VOLUME INTERFACE SCALE READING VOLUME ORGANIC AQUEOUS AIRAQUEOUS- , AQUEOUSORGANIC ORGANIC ORGANIC(II) PHASE(ml) PHASE(ml) RATIO  lb/min  lb/min  0.10 0.125 0.150 0.175 0.200 0.225 0.25 0.275 0.30  o.ao  1.00 1.20 1.4-0 1.60 1.80 2.00 2.20 2.4-0  56.4 61.0 63.8 67.6 69.0 70.471.6 71.7 73.2  63.0 64.0 67.2 64-.9 65.9 64.7 60.8 50.0 62.6  38.5 4-3.9 4-9.1 50.9 53.3 53.6 51.3 W0.8 54.0  10.7 8.8 8.0 6.1 5.6  51.8 50.1 51.8 52.2 55.0 55.7 57.7 58.5  60.5 70.3 62.9 66.0 61.8 64.0 63.0 57.5  38.8 39.2  63.3 61.3 62.0 61.0 60.0 59.3 66.4-  H-31 H-35 H-29 H-37 H-32 H-30 H-34H-36 H-33  -0.154-  H-2 H-l H-5 H-6 H-4 H-8 H-3 H-7  0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308  0.20 0.25 0.30 0.35 0.4-0 0.45 0.50  0.55  0.80 1.00 1.20 1.4-0 1.60 1.80 2.00 2.20  H-17 H-19 H-16 H-18 H-4-8 H-20 H-21  0.4-61 0.4-61 0.4-61 0.4-61 0.4-61 O.W-61 0.4-61  0.20 0.30 0.4-0 o.5o 0.60 0.70 0.80  0.533 0.800 1.067 1.333 1.600 1.866 2.133  1  HOLDUP RATIO DATA  ho.5  h3.3 h5.0 he.7 4-9.1  HOLDUP RATIO  33.h 35-h  4.2 4.1 3.6  36.6 38.1+ 36.9 39.7 4-0.2 4-0.3 1+0.8  0.32 0.25 0.22 0.16 0.140.12 0.11 0.10 0.09  0.1+8 0.62 0.70 0.97 1.07 1.25 1.4-7 1.51 1.65  31.5 1+0.8 33.3 37.5 35.0 38.2 39.2 3^.8  12.7 11.3 13.0 12.6 11.7 11.4 10.1+ 10.0  31.430.9 31.431.6 32.8 33.1 33.9 3i+.5.  0.4-6 0.37 0.1+1 0.4/0. 0.367 0.31+ 0.31 0.29  0.66  21.3 20.0 21.8 24-.2 24.0 25.1 33.9  18.3 16.3 17.6 16.1 15.8 15.0 14.2  25.7 25.9 26.427.6 28.5 29.2 30.2  0.71 0.71 0.67 0.58  h.9  0.55  0.51 0.47  0.8h 0.7h 0.77 0.86 0.89 1.00 1.06 0.65 0.65 0.69 0.79 0.83 0.90 O.96  TABLE F - 1 RUN NO.  INPUT VOLUME RATIO  B  W  lb/min  lb/min  H-25 H-22 H-28 H-45 H-46 H-47 H-24 H-26 H-23 H-27  0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615 0.615  0.35 0.475 0.60 0.60 0.60 0.60  H-lW H-12 H-9 H-ll H-13 H-10 H-15  1.230 1.230 1.230 1.230  1.230  0.50 0.70 0.90 1.10 1.30 1.50 1.70  H-40 H-38 H-42 H-41 H-43 H-39 H-49  2.461 2.461 2.461 2.461 2.461 2.W61 2.461  0.45 0.70 0.95 1.20 1.45 1.70 0.70  1.230 1.230  0.725  0.85 0.975 1.10  0.70 0.95 1.20 1.20 1.20 1.20 1.45 1.70 1.95 2.20  0.50 0.70 0,90 1.10  1.30 1.50 1.70  0.225  0.35 0.475 0.60  0.725 0.85 0.35  HOLDUP RATIO DATA  INTERJFACE SCALE READING AQUEOUSAQUEOUS- AIRORGANIC ORGANIC ORGANIC ( I I )  32.2  I N S I T U HOLDUP VOLUME VOLUME AQUEOUS • VOLUME RATIO ORGANIC PHASE(ml) PHASE(ml) RATIO  14.2 23.1 16.3 13.3 18.0 16.6 21.9 25.0  21.3 19.7 20.7 19.6 19.3 20.6 18.9 18.0 16.9 16.4  22.8 23.1 23.2 24.6 24.7 24.4 25.2 26.1 27.2 27.7  0.93 0.86 0.89 0.80 0.78 0.85 0.75 0.69 0.62 0.59  0.66 0.72 0.69 0.73 0.78 0.79 0.82 0.89 0.99 LOW  66.6 68.0 62.9 61.9 62.0 66.9 62.1  3.8 6.6 2.9 4.1 4.0 9.5 3.7  27.4 26.9 26.1 25.2 25.2 25.1 25.5  17.1 17.7 18.3 19.5 19.4 19.5 19.0  1.60 1.52 1.43 1.30 1.30 1.29 1.3W  0.77 0.81 0.86 0.95 0.95 0.95 0.92  67.8 70.0 69.2 69.5 69.0 69.6 68.3  -6.2 -6.2 -5.1 -6.4 -8.4 -9.7 -7.7  31.7 32.9 32.1 32.6 33.3 34.1 32.7  12.4 11.3 12.3 11.9 11.2 10.4 11.7  2.56 2.91 2.61 2.7W 2.97 3.28 2.80  0.96 0.85 0.94 0.90 0.83 0.75 0.88  32.7 33.1 36.3 36.6 35.9 37.6 39.7 42.3 43. k  64.6 58.7 61.7 67.5 60.3 58.3 61.3 57.7 60.4 62.5  19.2 20.5 21.9 24.4 24.3 24.5 23.5 8.2 5.6 7.9 7.0 5.5 3.5 6.7  16.0  15.5  /F  TABLE F - 2 B W lb/min lb/min  0.10 0.125 0.15 0.175 0.20 0.225 0.25 0.275 0.30  0.20 0.25 0.30 0.35 0.4-0 0.4-5 0.50 0.55 0.20 0.30  0.4-0  o.5o  0.60 0.70 0.80  0.35 0.4-75 0.600  0.725 0.85  0.975 1.10 0.50  0.80 1.00 1.20 1.4-0  1.60  1.80 2.00 2.20 2.4-0  0.80  1.00 1.20 1.4-0  1.60  1.80 2.00 2.20 0.533 0.80  1.067  1.333 1.60 1.866  2.133 0.70  0.95 1.20 1.1+5 1.70  1.95 2.20 0.50  0.70 0.90  0.70 0.90  1.30  1.30  1.10  1.50  1.70  0.4^5  0.70  0.95 1.20 1.4-5 1.70 Q  1.10  1.50  1.70  0.225 0.35  0.1+75  0.60 0.725 0.85  -  AVERAGE PHASE VELOCITIES ^Al  3.29  l+.ll h.93  5.75 6.58 7.^0 8.22  A  21.36  26.70 32.04-  37.38  4^2.71  >+8.05 53.39 9.04- 58.73 9.86 64-.07 6.58 21.36 8.22 26.70 9.86 32.0411.51 37.38 13.15 4^2.71 l*+.79 1+8.05 16.44 53.39 18.08 58.73 6.58 14-. 23 9.86 21.36 13.15 28.1+9 16.4W 35.59 19.73 4-2.71 23.01 4-9.82 26.30  11.57 15.62 19.73  10  56.9418.69  25.36  A  4-. 077 4-.312 4-18 4-.6>+5  4-.  4-. 706 4-.792  A  0  1.307 1.072  0.966  0.739 0.678 0.592  0.4^8 0.4-59  3.84-9  1.4-4-2 1.577 1.535  3.678 3.9^2 3.807 3.968  4-.004h.120 W.173  3.155 3.230  3.*+oo  3A63 3.556  3.662 2.78k  1.706  1.380  1.264-  1.211 2.239 2.229 2.15*+ 1.98!+ 1.921 1.828  2.903 32.04- 2.9*+5 23.8W 38.71 3.0765 2.307 27.95 W-5.38 3.186 2.198 32.06 52.06 3..321 2.063 58.73 3.382 2.002 36.17 16. hh 13.35 2.068 3.316 23.01 18.69 2.137 3.2>+7 29.59 24-. 03 2.219 3.165 36.17 29.37 2.3^5 3.039 W2.74- 34.71 2.338 3.04-6 4-9.32 hO.Oh 2.351 3.038 55.89 1+5.38 2.299 3.085 lh.79 6.01 1.504- 3.870 23.01 9.3*+ 1.377 4-. 007 31.23 12.68 1.4-92 3.892 39.*+5 16.02 l.*+39 3.94-5 >+7.67 19.36 1.393 4-.029 55.89 22.69 1.258 h.126  f t 3 / s e c x 10  5  U  ft/sec  QA av  75 73 69 71  21.37  85 80 79 83 82 86 69 91 87 93 88  1.416  1.722 2.600 2.4-81 2.1+39  RUN NO.  27.03  32.31  32.95  36.16 4-1.96 1+8.65  21.58 28.70 35.39 1+3.45  31.93 38.19  1*7.25  52.53  103 56.44 106 13.5a 109 19.12  105 23.93 108 29.01  104- 31+.73 107 39.31 111 44.53 117 6.36  111+  9.13 116 11.25 112 li+.i+l 115 17.31 113 19.05 A  O  a v  3.5W 4-. 16 4-.63 5.44 6.1+1+  7.04-  7.51 8.34-  9.05 6.16 7.90  10.23 11.93 13.28 14-. 98  53.»+5 16.12 61.10 17.51 14-. 17 6.63  90. 1+8.95 91+ 57.19 95 18.8499 2»+.69  102 96 101 97  Q  A  37.16 76 W-3.4-6 7h 1+8.51 70 5^.97 77 60.95 72 65.23 7F 21.61 81 26.53  0.509  h.875 k.886 4-.925  1. l  Z = 1.0-fee t V  0.52 0.63 0.73 0.80 0.92 1.01 1.13 1.25  i  U  °  0.27  0.39  JO.48  0.7!+ 0.95  il.19 1.48  1.68 1.97 0.36  1.32  0.59 0.67 , 0 . 5 5  0.87  0.65 0.78 1.06 10.941.20 1.09  0.91+  13.59  1.30 • 1.28 1.4-6 1.4-5 0.4-5 0.30 0.68 I 0 . 4 W 0.89 0.63  20.23 23.71  1.05 1.30  9.81+  16.8426.23  11.51 15.93 20.20  24-.72  27.76 32.03 37.80  16.70 23.27 30.0436.141+1+.39  4-9.26 56.99 iy&  1.04- 1O.85  1.38  1.57 1.52 0.68 10.41+  0.85 0.61+ 1.08 |0.83  1.24- 11.07 1A8 1.26  1.58  1.55  0.89  0.72 0.95 1.19  1.67 ' 1.89 0.66 o.5o 1Q08 1.2h 1.1+9  1.4-6  1.62 I.85  1.67 1.91+  0.4^2  23.22 0.66 32.63 0.75 4-0.80 1.00 W9.76 1.28 1.51 60.21  0.40 10.58 '0.84-  RUN NO.  122 253 118 120 119  251  124-  123 121 126" 129 i25 130 132 252 128 131  139  134-  137 138 133 135  136 1*3 14-0 14-1 li+5 14-2 144 li+6 14-7  150  11+8  153 15414-9 152  157 159 155  ; 1.03 160 ! 1.24- 156 1 1.46 158  f t x 10* 2  1  z = 21.0 A  av  21.39 26.51 32.04-  37.28  1+2.59 4-8.07  52.96 59.85  65.98 21.64-  26.39 32.12 37.19 41.21  4-8.65 53.15  60.60 14-. 06  21.68 28.11 35.09  4-3.12 50.16  57.82  18.96  25.13 31.93 37.99 4-5.3*+ 51.69 62.52 13.16  18.83 23.60 27.98 32.51 37.60 4-2.66 6.28 9.12 12.12 11+.4-6 17.10 19.26  ,  feet  Q Oav  U  3.63 1+.26 4-. 4-6  0.52  0.28  0.73 0.80  0.4-6  5.19 5.80 6.69 7.08 7.79 8.55 6.% 8. h8  9.95 11.91 13.52 l +.93 1  16.50 17.88 6.61  9.95 13.95 17.01  19.86 22.4-3 26.02  11.38 16.09  20.17 2W.76 28.39 33.28 33.61  17.07 23.52 30.92 37.9h  4-5.66 51.92  58.91 15.39 23.90 32.1+44-0.741+9.99 60.23  A  0.61  U  0  0.4-0  0.70  0.66 1.13 1.09 1.39 1.22 1.56 1.86 1.31+ 0.38 0.59 0.67 0.59 0.63 0.81+ 0.78 0.97 1.04- 0.95 1.22 1.08 1.29 1.31 1.4-5 I.1+8 0.30 oM 0.91 1.00  0.69  0.87 1.03 1.25 1.4-1  1.58  0.68 0.87 1.08 1.23 1.4-2 1.55 1.85 0.6h 0.88  1.06 1.19 1.39  1.60  1.86 0.4-1 0.66 0. 81 1.00  1.26 1. ?3  RUN  163 165 169  167 162 164168 207 166  193 197 198 191 196  199  192 194-  Z A  = 5.0 fee t Q av °av  21.32  26.58  32.19 37.10 4-3.38  1+8.88 51+. 05 60.1+7 69.08 21.26 26.31  31.83 36.63  4-2.90 47.76 51+. 26 57.91+ 14^.23  0.65 0.86 1.03 1.23  172 176 21.4-2 173 27.4-9 170 34.71 171+ 4-1.65 175 50.87  0.83 1.07 1.29  183 210 177 182  0.1+5  1.51 oM 0.65  171 180  57.1+9 18.89 21+.73  32.17 38.52 4-4-.32  3.1+7 4-. 09 1+.8I  5.28 5.78 6.50 7.41+  7.61 8.51+  6.4o 8.13 10.05 11.52  13.09 14-. 58  15.65  17.1+9 6.60 10.18  13.71 17,79 20.4-1 23.29 26.12 11.73 16.76  20.4-4-  U  A  0.52  0.62  0.73 0.80 0. 9 2 1.02 1.11  1.241. ^0  0.58 0.68  0.81+  0.95 1.06 1.19 1.32 1-39 0.45 0.68 0.85 1.02 1.20 1.1+3  1.57 0.68 0.85  1.09  0  0.27 0.38 0.50 0.71 0.85  1.10  1.4-6  1.53  1.96  0.38 0.56  0.640.75 0.92 1.06  1.241.1+5.  0.30 0.4-6 0.64 0.90  1.06 1.27  1*52 0.4-5 0.68 0.81+  1.06 1.32 50.241.57 209 1.61 36.1+1 1.76 1.82 1.68 181 59.51 0.51 187 13.21 16.79 0.64- 0.51 0.72 185 18.86 22.86 0.89 0.70 181+ 22.9W 30.96 1.03 0.96 0.98 1.25 I89 29.19 36.27 1.25 1.12 1.50 190 33-09 44.14- 1.4-1 1.4-5 1.71 186 37.89 51.52 1.61 1.70 1.89 188 4-0.26 60.69 1.75 O.i+O 202 6.28 15.26 0.4-2 0.39 0.60 205 9.03 23.4-7 0.66 0.59 0.83 200 12.36 32.11 0.83 0.83 1.06 1.03 203 14-. 13 1+1.75 0.98 1.24- 201 17.10 1+9.3!+ 1.26 1.22 I.1+6 204- 18.66 60.97 I.1+8 I.1+8 21+.37  29.03 32A7  1.25 1.39 1.51  U  G - 1  APPENDIX G Design and S e l e c t i o n of the S e t t l e r The was  " t e e " s e t t l e r designed by MacDonald  (24)  found to be u n s a t i s f a c t o r y even at low flow r a t e s as  there was  not s u f f i c i e n t holdup time i n the s e t t l e r f o r  g r a v i t y s e t t l i n g to occur.  The f i r s t  alternate design  c o n s i d e r e d i n the present work c o n s i s t e d of two  standard  Pyrex reducers (£ i n c h to 1 inch and 1 inch to 3 inches and a Pyrex spacer.  The end was  inch thick s t a i n l e s s s t e e l plate.  I.D.)  c l o s e d with a one q u a r t e r The f o u r p i e c e s were  separated by T e f l o n gaskets and h e l d together with o u t s i d e flanges.  I t was  the upstream  found that severe c i r c u l a t i o n o c c u r r e d i n  reducer ({ to 1 inch i n s i d e d i a m e t e r ) .  It i s  w e l l known , f o r flow i n u n i f o r m l y d i v e r g i n g d u c t s , that as the angle of expansion i n c r e a s e s , the energy l o s s e s , which go i n t o mixing and eddy f o r m a t i o n a l s o i n c r e a s e .  As the  t o t a l expansion angle reaches about 40 degrees, the l o s s e s exceed  those f o r a sudden expansion from a s m a l l e r  to a l a r g e r duct (29). upstream expected.  Since the angle of expansion f o r the  reducer i s about 70° c o n s i d e r a b l e mixing would be Some experiments were run with Nylon tubes  i n the upstream  reducer ( F i g u r e G - 1) i n an attempt  reduce c i r c u l a t i o n .  T r i a l s were made w i t h  diameter tubes.  packed to  The presence of the packing allowed  s e t t l i n g at much h i g h e r flow r a t e s than was packing.  energy  p o s s i b l e without  inch, and 1/8  No e f f e c t of tube diameter was  inch outside found i n a  (  G - 2  small number of experiments.  t  Next a d i v e r g i n g s e c t i o n was c o n s t r u c t e d o f s t a i n l e s s s t e e l w i t h a much s m a l l e r  angle of expansion than  that of the g l a s s reducer ( F i g u r e *+).  I t was hoped that the  f l u i d s would be slowed down more g r a d u a l l y and l e s s mixing would occur.  Mass t r a n s f e r experiments were done over a  wide range of flow c o n d i t i o n s  to compare the designs o f  Figure  G - 1 and F i g u r e 4, the o b j e c t  design  that r e s u l t e d i n the s m a l l e s t amount of mass t r a n s f e r  i.e.  the s m a l l e s t  end e f f e c t .  being  to choose the  In these experiments a number  of runs were made with the f i v e f o o t g l a s s c o n t a c t o r , with one s e t t l e r design,  than with the o t h e r s ,  i n mass t r a n s f e r observed being Three designs were c o n s i d e r e d : with packing of £inch o u t s i d e  first  the d i f f e r e n c e  a t t r i b u t e d to s e t t l e r  design.  the g l a s s reducer assembly diameter tubes (3/16 inch  I.E.),  the s t e e l and g l a s s assembly empty as i n F i g u r e W, and the s t e e l and g l a s s assembly with £ inch o u t s i d e  diameter ( 3/16  inch I.D.) tubes packed i n the one i n c h constant section.  diameter  Table I shows the r e s u l t s of the experiments. (Note  that the l a r g e s t mass t r a n s f e r e f f i c i e n c y i s the poorest i . e . it  has the l a r g e s t end e f f e c t . )  A statistical  the d i f f e r e n c e s i n aqueous phase e f f i c i e n c i e s various  designs i n d i c a t e d that  a n a l y s i s on between the  (1) the use of the g l a s s  assembly with packing r e s u l t e d i n more mass t r a n s f e r than did  the unpacked s t e e l and g l a s s assembly ( i i ) there was no  d i f f e r e n c e a t the 90$ l e v e l o f s i g n i f i c a n c e i n the amount  G - 3  of mass t r a n s f e r between the packed and unpacked s t e e l and g l a s s assemblies.  Because the organic  were so c l o s e to 100$,  the s t a t i s t i c a l  phase e f f i c i e n c i e s a n a l y s i s was r e s t r i c t e d '  to the aqueous phase e f f i c i e n c i e s . On the basis of these r e s u l t s , the unpacked s t e e l and g l a s s assembly ( F i g u r e 4-) was chosen as the s e t t l e r f o r the mass t r a n s f e r study. S t a t i s t i c a l Tests  on S e t t l e r Types  The aqueous phase e f f i c i e n c y data were analysed i n p a i r s and the s t a t i s t i c a l described  25.  i n reference  t e s t s done on the d i f f e r e n c e s as The general  procedure i s to  determine whether the d i s t r i b u t i o n of d i f f e r e n c e s found i s compatible with the hypothesis that d i s zero. I S t e e l Expander versus Packed Glass d _ ( T a b l e G-l) g  d _  s  3.90  - 17.80  Zd  3.08  d =  3.38 0.62 1.63  g  i s the d i f f e r e n c e  s  expander and the empty s t e e l expander.  1.62 W.87  d i s the mean . : of the d i f f e r e n c e s , The sample v a r i a n c e  2 ,Sd2 - (M)2  / n  =  6  n - 1  J  .  m  U  i s c a l c u l a t e d as f o l l o w s  . ^ . 9  6 0 5  T  s  d  2  -  2 2  s  a  n  p  i  e  7  i s c a l c u l a t e d as f o l l o w s  =  =IE  _  =  standard d e v i a t i o n of the d i f f e r e n c e s i s s statistic  between  E. measured f o r the packed g l a s s  2.225  Ed - 67.1934(Ed)2 = 316.84(£d)2/n = 39.605  -1.30  Expander  ? * 2.83 1.985  = 3. . 1 7  d  = 1.985.  The " t "  (n being the number of p a i r s )  G - 4  From r e f e r e n c e (25)»  ^7  90  =  1«89«  Since t>tr;^o,Q  w  e  reject  at the 90$ l e v e l of s i g n i f i c a n c e the n u l l hypotheses t h a t the d i f f e r e n c e i s zero, and t h e r e f o r e conclude  that the s t e e l .  expander produces a s m a l l e r end e f f e c t . II,  S t e e l Expander Packed versus S t e e l Expander Empty d  c-e p  2.92 8.7* W.5* 3.58 -3.10  o 3.376 E d = 127.9520 ( Z d r = 284.93WW ( r d ) 2 / n = 56.98688 d  d  i s the d i f f e r e n c e between P-e E. T o r the packed and f o r  =  2  A  , the empty s t e e l expander. * t d - (Ed) /n The sample v a r i a n c e i s s, = • • n-1 127.9520 - 56.98688 = 4 = 17.741 and the sample standard 2  2  Q  d e v i a t i o n i s s^ = 4-.. 213.  The " t " s t a t i s t i c  above t = dfa = 3.376 x 2.24;' s ^ 4.213 From the r e f e r e n c e ( 25) d  ti  + > >  9Q>t  _  i s c a l c u l a t e d as  1.797 90 = 2.13  .  Since  we accept the n u l l hypothesis that dp_  e  i s zero.  DIMENSIONS  INCHES  Figure G-l  Glass  Settler with  Packing  TABLE G - l RUN NO.  59 51  58 56  5k  61 57 55  n-BUTANOL RATE lb min  o.io  0.10 0.18 0.140.18 0.42 o.5o 0.30  EVALUATION OF SETTLER DESIGNS  DIFFER 0 % -ENCE (2) (3) (1) PACKED GLASS EMPTY STEEL PACKED GLASS EMPTY STEEL ( l ) - ( 2 ) EXPANDER EXPANDER EXPANDER EXPANDER v » 1.243.90 0.41+ 0.00 ^.73 3.90 3.08 24-. 23 0.80 14-. 33 6.65 3.57 12.4-414-. 78 3.38 0.80 9.09 5.71 71.62 0.62 1.12 66.67 3^.39 33.77 96.02 1.44 95.97 57. k7 1.63 55. 8495.12 -1.30 95.27 76.30 77.60 1.865 96.02 1.62 95.77 2.2490.58 88.96 96.32 96.32 4.87 84.42 2.40 79.55 PACKED STEEL EMPTY.STEEL PACKED STEEL EMPTY STEEL d p-e EXPANDER EXPANDER EXPANDER EXPANDER 2.92 6.49 1^:33 21.95 0.8-0 3.57 12. 4-414-. 1 + 5 8.15 ' 0. 80 5.71 8.7*+ 71.6438.31 74.83 k.5k. 33.77 1.12 96.02' 59.k2 3.58 96.27 55.8)+ 1.4-W96,32 96.20 76.45 -3.10 2.40 79.55  WATER RATE lb • min  E  H  1  DIFFER -ENCE (3)-(^ 3.^9 - 9.90 2.}>k -H.97 -0.05 0.15 .-0.25 0.00  Q  51 58 56  5k 55  0.10 0.18 0.140.18 0.30  5  7.62 -4-. 29 3.19 0.25 -0.12  I ON  H - 1  APPENDIX H D i f f e r e n c e s Among Drums o f n - B u t a n o l The  phase e f f i c i e n c y d a t a o f T a b l e  analysed  f o r d i f f e r e n c e s among b a t c h e s  standard  statistical  techniques.  I I , was  o f n-butanol  using  A two way c l a s s i f i c a t i o n was  u s e d a s s u m i n g no i n t e r a c t i o n b e t w e e n f l o w c o n d i t i o n s m e n t s ) and drums o f n - b u t a n o l ( b a t c h e s ) . t i o n of the s t a t i s t i c a l  A:  A n a l y s i s o f Organic 1  BATCH TREATMENT  A detailed descrip-  model and t h e c a l c u l a t i o n s  on pages 376 t o 379 o f r e f e r e n c e  (treat-  is  given  25.  Phase  Efficiencies  2  3  4  TOTAL  1  71.13  75.05  67.09  67.96  281.23  2  69.43  70.68  66.59  70.67  277.37  3  11.18  17.41  11.04  18.22  57.85  4  " 66.77  59.34  64.13  64.07  254.31  TOTAL  218.51  222.48  220.92  807.76  208.65  C o r r e c t i o n F a c t o r = (870.76 ) / 16 = 2  Sum S q u a r e s due t o T r e a t m e n t s = 281.23 + 277.37 + 57.85 = 8,622.2310 2  2  4-7,388.9361 0  + 254.31*  2  Sum S q u a r e s due t o B a t c h e s = 218.51 + 222.482 + 208.85 = 28.0487 T o t a l Sum o f S q u a r e s = 71.13 75.05 + +.64.07 = 8,746.3781  / 4 - Corr.  Factor  0  2  2 +  2  + 220.92 -  Corr.  Sum S q u a r e s due t o E r r o r = SS T o t a l - ( S S T r e a t + SS B a t c h ) = 8,746.3781 - ( 8^622.2310 + 28.0487) = 96.0984  2  A  - Corr.  Factor  Factor  2  ANALYSIS OF VARIANCE TABLE MEAN SQUARE  SOURCE  SUM SQ.  d-f  TREATMENTS  8,622.23  3  2,874.07  BATCHES  28.05  3  9.35  ERROR  96.09  9  10.676  TOTAL  8,7*6.38  15  batches  = 9.15 10.676  Since F, . , batches t h a t - t h e r e i s no e f f e c t  0.88  = <-1.0  we accept  the n u l l  hypothesis  of. drum on the organic phase  B: A n a l y s i s of Aqueous Phase E f f i c i e n c i e s 2 BATCH 1 3 TREATMENT  4  g  A  efficiencies.  TOTAL  1  32.60  32.13  32.64  32.30  129.67  2  54.59"  5^.27  56.62  55.24  220.72  3  15.51  19.29 '  22.09  16.18  73.07  7  77.36  73.70  86.23  79.73  317.02  180.06  179.39  197.58  183.45  740.48  TOTAL  C o r r e c t i o n F a c t o r = ( 7 4 0 . 4 8 ) / 16 = 548,310.6304/16 = 34,269.4144 2  Sum of Squares due to Treatments = =  129.67 + 220.72 8,573.7190 2  + 73.07  2  2  + 317.02  / 4 - C o r r . Factor  2  Sum of Squares due to Batches 180.06 =  2  + 179.39  2  + 197.58  + 183.45  2  2  / 4- - C o r r . F a c t o r  54.1186  T o t a l Sum of Squares = 32.60 + 32.13 = 8,688.0952 2  2  + ...  + 79-73  2  - Corr.  Factor  Sum o f Squares due t o E r r o r = S S T o t a K S S T r e a t . + SSBatches)  H - 3  = 8,688.0952 = 60.2576  ( 8 , 5 7 3 . 7 1 9 0 + 5W.1186)  ANALYSIS OF VARIANCE TABLE SOURCE  SUM SQ.  TREATMENTS  8,573.7190  3  BATCHES  54.1186  3  18.03953  ERROR  60.2576  9  6.6953  TOTAL  8,688.0952 F  Batches  d-f  18.03953 6.6953  =  F  (3, )  .10  F  (3, )  -05 = -  9  9  =  2  3  -  8  8  1  6  2  MEAN SQUARE 2,857.906  = 2.6,9435  9  .  T h e r e f o r e , a t t h e 90$ l e v e l o f c o n f i d e n c e , we a c c e p t t h e hypothesis  t h a t t h e r e i s no e f f e c t o f b a t c h e s  on E . A  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059056/manifest

Comment

Related Items