Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Magneto-catalytic effects in the hydrogenation of ethylene reaction Morgan, John Paul 1966

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1966_A7 M67.pdf [ 10.99MB ]
Metadata
JSON: 831-1.0059051.json
JSON-LD: 831-1.0059051-ld.json
RDF/XML (Pretty): 831-1.0059051-rdf.xml
RDF/JSON: 831-1.0059051-rdf.json
Turtle: 831-1.0059051-turtle.txt
N-Triples: 831-1.0059051-rdf-ntriples.txt
Original Record: 831-1.0059051-source.json
Full Text
831-1.0059051-fulltext.txt
Citation
831-1.0059051.ris

Full Text

MAGNETO-CATALYTIC EFFECTS IN THE HYJDROGENATION OF ETHYLENE REACTION by John P. Morgan B.A.Sc., University of British Columbia, 1964 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in the department of CHEMICAL ENGINEERING We accept this thesis as conforming to the required standard Members of the Department of Chemical Engineering THE UNIVERSITY OF BRITISH COLUMBIA v i i Abstract The hydrogenation of ethylene reaction was studied " over small catalyst beds of powdered nickel, nickel spheres, alumina supported nickel,.powdered copper, and platinum wire. The reactor was positioned between the pole faces of an electromagnet, . so that a magnetic f i e l d of strengths up to 4 10 gauss could be applied across the catalyst bed. The reaction was studied at conditions of constant flow over the temperature range of 25° C to 550°C. The reaction rate was measured by means of a gas, chromatograph, which had the sampling port installed in the system. Two magneto-catalytic effects were studied in this work: (l) the change i n catalytic activity of a ferromagnetic catalyst as i t i s heated through i t s Curie temperature i (internal magneto-catalytic effect); ( i i ) the change in catalytic activity of either a ferromagnetic or non-ferromagnetic catalyst, due to the presence of an external magnetic f i e l d (external magneto-catalytic effect). A clearly observable internal magneto-catalytic effect was found for the runs done on the ferromagnetic catalyst, nickel, which has an approximate Curie temperature of 360°C. In order to confirm this effect, runs" were done over the temperature range of 300°C to o 500 C on the non-ferromagnetic catalysts, copper and platinum. o No change,in reaction rate was found near 360 C, as was found using a nickel catalyst. No external magneto-catalytic effect was observed at any temperature. V1X1 The h y d r o g e n a t i o n o f e t h y l e n e was f o u n d t o b e a r a p i d l y s e l f - p o i s o n i n g r e a c t i o n a t t e m p e r a t u r e s a b o v e 100°C. P u b l i s h e d l i t e r a t u r e i n d i c a t e s t h a t a t m o d e r a t e l y h i g h t e m p e r a t u r e s , d e s o r p t i o n o f r e a c t i n g e t h y l e n e c o m p l e x e s o f f t h e c a t a l y s t s u r f a c e c a u s e s t h e d e c r e a s e i n r e a c t i o n r a t e . I n t h i s w o r k a s i g n i f i c a n t m o l e f r a c t i o n o f m e t h a n e w a s d e t e c t e d i n t h e r e a c t o r e f f l u e n t g a s , a t t e m p e r a t u r e s a b o v e 300 ° C , a n d a n a c c o m p a n y i n g c a r b o n d e p o s i t w a s o b s e r v e d t o f o r m o n t h e c a t a l y s t s u r f a c e . T h e r a p i d d e c r e a s e i n c a t a l y t i c a c t i v i t y a t h i g h t e m p e r a t u r e ' s was b e l i e v e d t o b e d u e t o t h i s c a r b o n d e p o s i t . Table of Contents Acknowledgment ..... Abstract Nomenclature Theoretical Discussion A. Some Electronic Properties of Nickel ....... B. Internal Magneto-Catalytic Effects ......... _..C.. External Magneto-Catalytic Effects ......... D. The Hydrogenation of Ethylene Reaction .... Apparatus A. General -.. -B-. Detailed 1. Tubing 2. Gases 3. Flow Controllers 4. Manometer Tubes : 5. Reactor 6. Vacuum Gauge 7. Mixing Chambers ..... 8. " Chromatograph .9. ;Temperature Controller 10. Magnet 11. Catalysts a. Nickel Powder .......................... b. Nickel Spheres p. Alumina Supported Nickel ; 29 d. Powdered Copper 3 0 e. Platinum Wire 30 Experimental Procedure 31 Experimental Results ] 3 3 A. General „ •• 33 B. External Magneto-Catalytic Effects 37 C. Lower Temperature Results 37 D. Results Over a Wide Temperature Range ... ^5 E. Internal Magneto-Catalytic Effects ...... 51 . F. Kinetics of the Hydrogenation of Ethylene Reaction at High Temperatures .. 57 G. Effects of Mass Transfer 59 Conclusions 61 Recommendations for Further Study 62 .A. External Magneto-Catalytic Effects :. 62 B. Kinetics at High Temperatures ...... 65 Literature Cited 6 6 Appendix I - Sample Calculation to Estimate the Effect of Mass Transfer 1 - 1 Appendix II • 2-1 A. Computer Program to Calculate Values of the Specific Reaction Rate Constant, k, and Corresponding Values of the Reciprocal Temperature, l/T °K"' 2-2 B. Results 2-4 Appendix III - Original Data 3-1 . i i i Tables Page 1. Summary of Results 36 -2. Activation Energies for the Hydrogenation of Ethylene Reaction 40 3. Specific Reaction Rate Constants for High Temperatures . 60 . . x List of Illustrations Figure - 1. Outer Electron Distribution in Metallic Nickel 2. Hedvall Effects I and II 3. Decomposition of Oarbon Monoxide over Nickel Catalyst 4. Decomposition of Nitrous Oxide over Nickel ' Catalyst , 5. Catalytic Activity, of La Sr^ MnCL, near Curie Point .6. Catalytic Activity of Nickel Oxide near Magnetic Transition Temperature ... 7. , Catalytic Activity of NaNb03 and KNb03 at Ferroelectric Transition Temperatures 8. Reaction Rate Curve for Olefinic Hydrogenation ... * 9. Diagram of Apparatus .. 10. Pictures of the Apparatus 11. Schematic Drawing of Manometer Flow Indicator. 12. The Reactor 13. Schematic Drawings of Mercury Vacuum Gauge ... 14. Schematic Drawing of Mixing Chambers 15. Schematic Illustration of Chromatograph Peaks ••«•• 16. Schematic Drawing of Sampling Valves 17. Modified Temperature Control System 18.. Reaction Rate over Powdered Nickel Catalyst .. 19. Reaction Rate i n the Presence of a Magnetic Field 20. Arrhenius Plots for Runs 1,2,3,4,5,6 2 1 . Chromatograph Results for Runs 2 and 3 • 2 2 . Hydrogenation of Ethylene over Non-Pretreated Surface 2 3 . Hydrogenation of Ethylene over a Wide Temperature Range 24. Chromatograph Results for Run 9 2 5 . Hydrogenation of Ethylene over the Curie Temperature Interval of Cu-Ni Alloy (Increasing and Decreasing Temperatures) ...... 26. Hydrogenation of Ethylene over Increasing and Decreasing Temperatures • 2 7 . Arrhenius Plots for the Temperature Range of 2 5 0 °C to 400 °C 28. Hydrogenation of Ethylene over Powdered Copper Catalyst (300°C to 520°C ) 2 9 . Hydrogenation of Ethylene Through Curie Temperature Interval 30. Chromatograph Results for Runs 14 and 2 0 3 1 . Hydrogenation of Ethylene Through Curie Temperature Interval 3 2 . Diagram of Apparatus Used'by Miyahara (44) .... Acknowledgement I wish to thank Professor J. Lielmezs of the Department of Chemical Engineering of the University of British Columbia for his guidance and time i n helping to carry out this project. I.wish also to thank Professor J.S. Forsyth, Head of the Department of Chemical Engineering of the University of British Columbia, and Dr. B. Davis of Cyanamid, Canada Limited, for their helpful suggestions i n the construction of the apparatus. I wish also to thank the National Research Council of Canada for financial assistance received, and the Department of Chemical Engineering of the University of Brit i s h Columbia for additional support. Nomenclature Equation (1) K mm specific reaction rate constant S ^ o l e a SeC a . r e a e a t . - number of. vacancies in the d-band per atom at T°K - number of surface atoms n x - number of atoms In the bulk of the catalyst y - groups of holes i n the d-band A - surface area of the catalyst b - a constant I*. - ionization potential of catalyst atom, electron volts - thermodynamic potential per metal electron , e.v. k - Boltzman factor, g _ m o f e o K T - Absolute temperature "of the catalyst, TaK Equation (7) E x - Exchange energy between neighbouring atoms, g^mole NI. - i n t r i n s i c magnet moment of electron, Vi^3— ° ' gauss magnetic; f i e l d constant of nickel, gauss H - external magnetic f i e l d , gauss Equation (15) ' k - specific reaction rate constant, f " ^ ° ^ e 3 — a e C © C o * . F. - flow rate of gas to reactor, - ^ " " m f ^ e a - weight of catalyst, g - mole fraction of hydrogen entering reactor - mole fraction of hydrogen leaving reactor 4- . Equation ( 1 9 ) k - specific reaction rate constant, ^ " ^ ° 1 ^ a o w C g c a * . A - frequency-factor constant E t - activation energy, ^ ^Q^e' R - universal gas constant, gImole°K T - absolute temperature ,°K Equations ( 2 4 ) , ( 2 5 ) , ( 2 6 ) , ( 2 7 ) , ( 2 8 ) , ( 2 9 ) , (30) F - flow rate of gas to reactor, g-moles . sec W - weight of catalyst, g d - differential operator y- - mole fraction of hydrogen in reactor y b - mole fraction of ethylene i n reactor y t - mole fraction of ethane ln reactor y- average mole fraction of hydrogen i n reactor yt - average mole fraction of ethylene i n reactor - mole fraction of ethane leaving reactor a. - mole fraction of'methane leaving reactor n - exponent of y^ m exponent of yb K specific reaction rate constant based on partial pressure of hydrogen and of ethylene i n reactor, g-moles sec g«.t. - specific reaction rate constant based on partial pressure of hydrogen i n reactor, g-moles sec g c a t . specific reaction rate constant based on partial Pressure of hydrogen i n reactor, g-moles sec ScA. specific reaction rate constant based on partial pressure of hydrogen ln reactor, g-moles SeC Seat. specific reaction rate constant based on partial pressure of hydrogen and of ethylene i n reactor, g-moles sec gcett. specific reaction rate constant based on partial pressure of hydrogen and ethylene i n reactor, g-moles sec g c a t . 1 THEORETICAL DISCUSSION A. Some Electronic Properties of Nickel The activity of catalysts depends largely on their atomic structure. In metallic solids the energy required to hold outer electrons i n discrete orbltals i s so small that the orbitals are replaced by energy bands. The'distribution of these electrons does not increase smoothly with temperature but, rather, i n a quantized manner from band to band. Figure 1 shows schematically the distribution,of outer electrons l n metallic nickel. Energy, E *-Figure 1. Outer Electron Distribution l n Metallic Nickel. i i As electrons are added to build up the atomic structure of nickel they f i r s t enter the 4s and then the 3d-band. The vacancy ln the 3d-band creates an electrostatic potential for other electrons i n order that a complete orbital be obtained, by electron pairing. When a gas phase molecule strikes the nickel surface i t s electrons are attracted by this vacanoy, and i f energy requirements are met there is energy and mass transfer via electrons, resulting in the formation of a chemical bond. Nickel and i t a congeners are p a r t i c u l a r l y good catalys t s f o r o l e f i n l c hydrogenation and dehydrogenatlon reactions because they form strong dsp-hybrld bonds with the s-o r b i t a l s of adsorbed hydrogen and p-o r b i t a l a of adsorbed o l e f i n i c complexes. In f a c t , Dowden (1) has shown that the rate of such reactions Is proportional to the number of vacancies l n the d-band. He gives the r e l a t i o n The 3d-band vacancy of n i c k e l implies that electron spins l n t h i s energy l e v e l are not balanced, producing a net atomic magnetic moment. The ferromagnetic state of n i c k e l l a caused by alignment of these atomic magnetic moments. This alignment i s brought about by a large e l e c t r o s t a t i c exchange energy between neighbouring atoms, which r e s u l t s from over-lapping of electron clouds. (Due to overlap, electrons simultaneously belong to more than one nucleus). Furthermore, i t i s observed that at a d e f i n i t e temperature, c a l l e d the Curie temperature, n i c k e l changes from the ferromagnetic to the paramagnetic state. At the Curie temperature the exchange energy between neighbouring atoms i s balanced by thermal energy, and above t h i s temperature thermal a g i t a t i o n i s so great that the magnetic moments no longer a l i g n . B. Internal Magneto-Catalytic E f f e c t s . An Internal magneto-catalytic ef f e c t i s the change l n c a t a l y t i c a c t i v i t y of a ferromagnetic catalyst as It l a heated through the Curie temperature. Concerning t h i s e f f e c t , Hedvall (2) stated, " The t r a n s i t i o n from the ferromagnetic to paramagnetic state involves a change i n state of those electrons which, apparently, e s s e n t i a l l y determine the c a t a l y t i c a c t i v i t y of the substance;... Since t r a n s i t i o n s i n ferromagnetic materials do not involve geometrical changes, the change of c a t a l y t i c a c t i v i t y can be caused only by the changes i n the electronic state involved." Two d i f f e r e n t types of i n t e r n a l magneto-catalytic e f f e c t s have been observed by researchers, and since Hedvall did pioneer work i n t h i s f i e l d , these e f f e c t s are known as Hedvall E f f e c t I and Hedvall E f f e c t I I . The former-i s a d i s c o n t i n u i t y i n the c a t a l y t i c a c t i v i t y and the l a t t e r i s c a change i n the temperature c o e f f i c i e n t of the c a t a l y t i c a c t i v i t y , both at the Curie temperature,.( figure 2 ). In his. Reaction rate E f f e c t I E f f e c t II T Figure 2. Hedvall E f f e c t s I and II, experiments Hedvall passed gases over n i c k e l c a t a l y s t s , r a i s i n g the temperature from values below the Curie point to values above. ( Several d i f f e r e n t measurements (3) indicate that the Curie point of n i c k e l l i e s between 360°C and 380°C ). Figure 3 shows his r e s u l t s f o r the decomposition of carbon monoxide, and figure 4 f o r the decomposition of nitrous oxide (4). Each reaction shows a c l e a r Hedvall E f f e c t I I . Paravano (5) studied Figure 3. Decomposition of Carbon Monoxide over Nickel Catalyst. Figure 4. Decomposition of Nitrous Oxide over Nickel Catalyst. the oxidation of carbon monoxide on a lanthanum-strontium catalyst, La^ Sr s^Mn03 , which has a Curie temperature of 373°K. His results ( figure 5 ) show a marked decrease i n yield near the Curie point, an example of a Hedvall Effect I. 2-1 23 « 47 29 3t ; ' . ' loVr Figure 5. Catalytic Activity of LassSr55Mn03 near Curie Point. Cimino et a l . (6) have studied the oxidation of carbon monoxide on a nickel oxide catalyst, w h i c h Is antiferromagnetl with a transition temperature of 250°C. Their results Bhow a Hedvall Effect I ( f i g u r e 6). Figure,6. Catalytic Activity of Nickel Oxide near Magnetic Transition Temperature. In order to strengthen the assumption that the course of a catalytic reaction i s primarily governed by electronic properties of the catalyst, researchers have measured other physical quantities that reflect these properties. Reinacker et a l . (7) found that the transition from the random to the ordered atomic distribution caused a marked decrease in activation energy for the decomposition of formic acid over the alloys, Cu3Au, Cu^Pd, and CuPd. Hedvall and Wlkdall. (8) showed that and ^> quartz possess different catalytic action for the oxidation of sulfur dioxide, and that the activity of the quartz increases considerably during the course of the transition. Paravano (9) studied the oxidation of carbon monoxide over the ferroelectric catalysts, sodium and potassium niobates, NaNb03 and KNb03. ( Ferroelectric 6 - materials show severe changes i n dielectric constant,£, and conductivity, 07, at transition temperatures, .just as ferro-magnetic materials show severe changes i n magnetic behavior at the Curie point ). Potassium niobate has two transition . temperatures, 224°C and 434°C; sodium niobate has three transition temperatures, -80°C, 370°C, and 474°C. A severe Jump i n catalytic activity i s observed at each of these temperatures ( figure 7 ). Paravano concluded that the Figure 7. Catalytic Activity of NaNb03 and KNb03 at Ferroelectric Transition Temperatures. electronic rearrangement of the catalyst at the transition points affects the electron transfer during the catalytic process, supporting evidence, he says, for an electronic mechanism being the rate determining step. In light of the previous discussion of d-band vacancies and ferromagnetic phenomena, the Hedvall Effect may, in part, be theoretically explained. It is recalled that exchange forces between neighbouring nickel atoms cause alignment of atomic magnetic moments, or, i n other words, alignment of the electron spins i n the 3d-band. ( Electron spins exist l n only one of two possible ways, designated as t or I , since the spin quantum number i s s = i ^ ) . Hence, electrons of only one kind of spin can be added to the 3d-band vacancy, via the adsorbed molecule. Rising temperature uncouples a small portion of the spins but at the Curie temperature they are suddenly a l l uncoupled. Therefore, spins of both kind ( either t or jr ) can pair with the electron spins of the adsorbed molecule, doubling the electronic contribution to the entropy of activation. This, i n turn, implies a lowering of the energy required for formation of the activated complex. As the activation energy decreases over the Curie temperature range, the catalytic activity correspondingly increases. C. External Magneto-Catalytic Effects An external magneto-catalytic effect i s the change i n catalytic activity due to the presence of an external magnetic f i e l d . Only three papers were found concerning this effect, and none of these dealt with theoretical considerations. Justi and Vieth (10) studied the following reactions on powdered nickel catalysts and i n the presence of a magnetic f i e l d of 0 to 5000 gauss: 'p-Hj, >• o-Ht (2) NjO - J i i — N^O* (3) NH3 - ^ i N ^ + i H * (A) H ^ + C ^ C A (5) Hx+C^H50H C^+H^O (6) With the exception of reaction (2)" they did not observe any change i n catalytic activity that could be attributed to the presence of an external, f i e l d . In this reaction, however, they' observed, for an applied f i e l d of 10 gauss an increase in yield from 67.2$ to 71.4$, and for an applied f i e l d of 4500 gauss an increase i n yield from 67.2$ to 76.0$. Concerning their results, they state, " The theoretical treatment of the results cannot yet give a definite explanation; before this can be given the experiments must be extended to ordinary chemical reactions." Krause (11) has observed that with cupric ions acting as reinforcing agents i n an amorphous iron catalyst, the peroxide oxidation of formic acid at 37°C i s influenced by placing the reaction i n a magnetic f i e l d of 260 gauss. Schwab (12) has studied the decomposition of formic acid, the reduction of nitrous oxide by hydrogen, and ortho-para hydrogen conversion in the presence of a magnetic f i e l d of 3000 gauss, but he did not observe any external magneto-catalytic effects. It does not seem reasonable that an external magnetic f i e l d would alter the course of a chemical reaction by directly perturbing the energy transfer between the adsorbed molecule and surface atoms, because energies .. associated with bond formation are approximately 20 to 100 K-cal/g-mole, whereas the energies associated with even large 4 - 6 , magnetic fields-of 10 to 10 gauss are less than 10 cal/g-mole. Nevertheless, observed internal magneto-catalytic effects show that catalytic activity i s sensitive to changes i n the electronic state of the catalyst. An external f i e l d 'a'ffects-l 9 the electronic state of ferromagnetic metals by orienting enough of the atomic magnetic moments to cause domain alignment, hence creating a net magnetic force on the metal. ( In ferromagnetic metals, domains are regions approximately 10 A So to 10 A thick, i n which a l l the magnetic moments of the atoms are aligned homogeneously. The metal has no net force In zero magnetic fields because the domains are randomly oriented,, but the magnetic energy difference between domains i s very small, and they align even i n moderate magnetic fields of 10 gauss to 100 gauss, creating a net magnetic force on the metal.). Nevertheless, i t i s not l i k e l y that the catalytic activity of ferromagnetic catalysts w i l l significantly change i n the presence of a strong magnetic f i e l d because1', although the magnetic f i e l d aligns the domains, i t hardly disturbs the magnetic exchange forces between .neighbouring atoms, which are thousands of times stronger than,-the magnetic forces of domains. Since the internal magneto-catalytic effect results from the fact that at the Curie temperature thermal energy destroys the magnetic exchange forces between neighbouring atoms, consequently increasing the electrostatic potential energy of the surface atoms, i t seems worthwhile to estimate the influence of a strong magnetic f i e l d on the exchange force between neighbouring catalyst atoms. Pawel and Stansbury (13) have calculated the specific heat of nickel from recently . . determined experimental data, and subtracted the theoretical specific heat, based on no.magnetic effects. The resulting number, .285 K-cal/g-mole, i s an estimation of the exchange . energy for nickel. Quantum mechanical considerations show that the exchange energy can also be estimated by the simple 10 relation E x = y u ( NI0+H ) (7) Since, for nickel, NI0has the approximate value of 3.6xl06 gauss (3), a magnetic f i e l d , H, of 10 4 gauss would enhance the exchange energy less than 1 % (approximately '3 cal/g-mole)..It seems doubtful that such a small perturbation l n the exchange energy between the surface atoms would significantly change the catalytic a c t i v i t y . It i s conceivable, nevertheless, that at the instant of energy transfer only very small forces are necessary to alter the path of a chemical reaction, and, furthermore, at this instant, the adsorbed molecule becomes an unstable complex x r . ^  that has an unpaired electron. Because of this unpaired ^ V'4 electron the complex i s , no doubt,, oriented i n a strong magnetic f i e l d . It is very d i f f i c u l t to predict whether or not small perturbations of the exchange forces between catalyst atoms, and orientation of the adsorbed complex, due to the presence of a strong magnetic f i e l d , w i l l significantly change the rate determing step of energy transfer on the catalyst surface. It seems to be consistent with other advances i n catalysis to do experimental work f i r s t and then attempt to justify any observed external magneto-catalytic effect. 11 D. The Hydrogenation of Ethylene Reaction The reaction studied was the h/drogenatlon of ethylene over a powdered catalyst; C2H^+ H z *• C ZH 6 (8) The kinetics and reaction mechanisms have been studied by several investigators (ref. 14- to 40) for temperatures less than 150°C. However, the purpose of this work was to study the hydrogenation of ethylene reaction through the Curie temperature of the nickel catalyst, as well as to study the influence of an external magnetic f i e l d on the reaction rate. Unfortunately, no literature was found that dealt specifically with the kinetics of this reaction at high temperatures. Despite the extensive investigation of the reaction at moderate temperatures, no one particular reaction mechanism i s entirely accepted, and the hydrogenation of ethylene s t i l l remains a controversial subject. Beeck (14) proposed that ethylene dissociates into an acetylene complex and two hydrogen atoms; C = C 4- 4Ni C = C + 2H ( 9 ) / \ / \ I H H Ni Ni Ni The adsorbed hydrogen then reacts with gaseous ethylene; 2H + CZU^ •-*•> C 2H 6 4 - 2Ni (10) ' Ni 12 The adsorbed hydrogen also reacts with the acetylene complex; 4H - h C = C »- C Z H 6 -+- 6 N i (11) N i '. Ni -Ni The chemisorption work of Selwood (15) indicates that at temperatures above 100 C ethylene dissociates as follows; H 0,114.+ 6Ni 2H -h Cv C .(12) I / \ / V Ni Ni Ni Ni Ni Horiuti (36) suggests that the double.bond of ethylene Is ruptured and the_complex held by two nickel atoms; G C •+- 2H *• C 2 H , + 4N1 (13)' / \ s \ I 6 H Ni NI H Ni References 14 to 40 discuss other p o s s i b i l i t i e s , and, most probably, the simultaneous occurence of several different mechanisms constitutes the hydrogenation of ethylene reaction. The flow system kinetic equations have been developed by Wynkoop and Wilhelm (28). Their results show that the rate of surface reaction i s best written as = k y . (14) Equation (14) suggests that the main reaction i s between gas phase hydrogen and an adsorbed ethylene complex, a conclusion that receives wide support (14,24,27,30,35,39,40). 13 By performing a mass balance around the reactor one can express equation (14) entirely i n terms of the variable, y^. The resulting expression can be integrated (28) to give the . exact solution The validity of equation (15) i s limited by the temperature dependence of the activation energy, a general phenomenon i n olefin hydrogenation reactions (37). Above 100°C the activation energy decreases, becoming negative between 100°C and 150°C. Figure 8 illustrates a typical plot of reaction rate versus temperature. A rate Figure 8. Reaction Rate Curve for Olefinic Hydrogenation^ For the hydrogenation of ethylene reaction, Twigg (26) and Beeck (14) suggest that desorption of ethylene complexes off the catalyst surface at high temperatures causes the decrease in reaction rate. Sabatler (41) and Jenkins (21) show that a carbonization reaction at elevated temperatures also contributes to the decrease in catalytic activity; C,HA+ 4N1 ^ c = C +2H — - C C + 4H (16) Z 4 / \ I / \ / \ I Ni Ni NI Ni Ni Ni' Ni Ni The variables i n equation (15), yai a n d 7M » were determined from the chromatograph results by the following mass balance around the reactor; let r, = ratio of ethane to ethylene peak areas from the chromatograph recorder _ mole3 ethane leaving reactor — moles ethylene leaving reactor let r x = ratio of hydrogen flow rate entering reactor to ethylene flow rate entering reactor _ moles hydrogen entering reactor — moles ethylene entering reactor moles hydrogen entering reactor, per mole ethylene leaving = ( 1+r, )rz moles hydrogen leaving reactor, per mole ethylene leaving = ( 1+r, )r z-r, 'therefore, mole fraction of hydrogen leaving reactor (1+r, )+(l+r, )r z-r, (l+r/jr.+l _ v a o vl7; a n d ' y - T T r 7 ( 1 8 ) Appendix II l i s t s a computer program that calculates values of the specific reaction rate constant, k, from equation (15)» and the corresponding values of the reciprocal temperatures, 1 / T V . : . 15 APPARATUS A. General The apparatus (figures 9 and 10) consisted of cylinder gases of ethylene and hydrogen, glass tubing and stopcocks, flow controllers, capillary-manometer flow indicators, two tubes packed with activated alumina to remove water traces from the gases, a tube packed with micropore f i l t e r paper to remove dust particles from the gases,- two gas mixing chambers, reactor, magnet with accompanying power supply and current regulator, soap bubble meter to measure gas flows, vacuum pump, vacuum gauge, gas chromatograph, temperature controller, and potentiometer. B. Detailed 1. Tubing The tubing consisted of 7mm. pyrex glass lengths, with several 0.5 mm. capillary sections to smooth the gas flow. Two tygon pelces, one inch i n length, were used to connect the glass tubing to the copper tubing from the flow controllers. Originally a l l the tubing was copper, which proved unsatisfactory due to sporadic gas J leakage at the f i t t i n g s . These leaks were d i f f i c u l t to detect, but after glass tubing was used they were easily detected by passing a high frequency leak detector over the evacuated system. C ? H 4 „ > l l l / / a o o POTENT IAL NULL DETECTOR -AMPLIFIER TEMPERATURE CONTROLLER H 2 (CARRIER GAS) VACUUM I/PUMP SOAP BUBBLE METER SOLID STATE SOLID STATE FILTERED CURRENT REGULATOR POWER SUPPLY H CAPILLARY TUBING ELECTRICAL WIRING * H — THERMOCOUPLES GAS FLOW  F I G U R E 9 . DIAGRAM OF A P P A R A T U S 17 18 2. Gases Matheson^hydrogen and ethylene CP. cylinder gases were used without further purification. Oxygen traces were removed from the hydrogen by means of a deoxo unit. 3. Flow Controllers Moore Differential Flow Controllers, model 63 BU, were used to control the flow of hydrogen and ethylene. These controllers are specified to maintain control to 1.cm^min., although i n this work i t was found that they did not maintain control at flows less than lOcm^mln., approximately. These controllers operate according to the following principle: The constant upstream .tank pressure serves as a reference on the top of the controller diaphram, and a loading spring below the diaphram exerts a constant pressure of 3 p.s.l.g. less than the reference pressure,across an external needle valve. Therefore, any fluctuations in downstream pressure cause the spring-loaded diaphram to self-adjust so that a constant pressure drop of 3 p.s.i.g. i s maintained. Since the pressure drop i s constant across the external needle valve and the valve setting fixed, the flow remains constant. 4. Manometer Tubes ^ The manometer tubes, used for flow indicators, are shown schematically i n figure 11. The f i n a l design, obtained after several t r i a l s , satisfactorily prevented any manometer liquid from entering the system. The valves, V, and , on top of the li q u i d traps, T, and T^, were needed to isolate the manometer tubes from the system when i t was put under vacuum. The manometer liquid was 19 20 red gage o i l , which has an approximate specific gravity of 1.0. 5. Reactor The design of a properly functioning reactor was d i f f i c u l t and time consuming. Figure 12 Is a schematic drawing of the f i n a l working model, which was positioned symmetrically between the one inch gap of the magnet pole faces. ( This narrow gap was necessary i n order to maintain a high, uniform magnetic f i e l d across the catalyst bed ). The reactor required the following features: (i) a means to prevent the reacting gases from contacting the heating wirej ( i i ) a thermocouple well small enough to f i t inside the 6 mm. glass tube surrounding the catalyst bed,, and large enough to contain two sets of elec t r i c a l l y insulated thermocouples^ ( i i i ) a means to keep the pole faces of the magnet near room temperaturej (iv) a catalyst bed that could be replaced easily. A 10 mm. glass tube sealed to the inner 6 mm. glass tube protected•almost a l l of the heating wire from exposure to the reacting gases. The air gap between the reactor.top and the pole faces provided sufficient insulation to keep them near room temperature. The catalyst bed was replaced by removing the reactor top, f i l i n g and breaking the . 6 mm., tube and-pulling It upwards, thereby carrying the bed . along. A new catalyst bed would be prepared, placed i n position and sealed to the 6 mm. tube. Using an earlier reactor design, a thermocouple well was made to extend the length of the heating wire, and by moving the thermocouples along the well a temperature variation of approximately 15°C i n 400°C was found. Since the catalyst bed extended about 1/3 the length of the 6 mm G L A S S T U B E 10 mm . G L A S S T U B E ( H E A T I N G WIRE SEAL) 3 m m G L A S S T H E R M O C O U P L E W E L L •Jmm G L A S S T U B E ( C A T A L Y S T C H A M B E R ) 2 4 mm G L A S S T U B E ( R E A C T O R T O P ) C H R 0 M E L ( 3 6 G A U G E ) -T H E R M 0 C 0 U P L E S * M A G N E T P O L E F A C E S 2 0 G A U G E ' C O P P E R • L E A D WIRE 2 4 / 4 0 G R O U N D G L A S S J O I N T R U B B E R S E R U M C A P G A S F L O W IN G A S F L O W O U T T O C O N T R O L L E R SCALE FACTOR = I-.2-FI6URE 12. . , . THE REACTOR S C A L E F A C T O R - 1.1 22 heating wire, at 400°C a temperature variation of 5°C along the bed was expected. The catalyst bed was once replaced by a bed of 42 micron glass beads and the effluent gas sampled several times over a wide temperature range, i n ordep to ascertain the extent of reaction over the exposed section of the heating wire and copper leads. No ethane or methane formation was detected. 6. Vacuum Gauge A mercury vacuum gauge (figure 13) was used to Indicate the rate of gas leakage from the system. Under perfect vacuum the two mercury levels under vacuum to system no vacuum to system Figure 13. Schematic Drawings of Mercury Vacuum Gauge, would be exactly equal i n height. The vacuum achieved i n this sydtem caused a 2 mm. differential in the height of the mercury levels. Although no leaks were detected with the high frequency leak tester, the mercury column on the l e f t nevertheless would rise, about 6 in./hr., when the system 23 was under vacuum, Indicating slow leaks. Leakage was probably-greatest at the f i t t i n g s of the flow controllers and at the stopcocks. The measured leakage rate was less than 1/100 of the rate of gas flow. 7 . Mixing Chambers. Two mixing chambers were installed i n series (figure 14) to decrease the fluctuations i n the concentration of ethylene and hydrogen entering the reactor. After installation, the concentration . fluctuation was reduced from approximately 10 % to 2 %, capillary tubing Figure 14. Schematic Drawing of Mixing Chambers, 8. Chromatograph A Beckman G.C.-l chromatograph was used to measure the reaction rate. A sample of the reactor effluent gas would be collected, the components separated in the column, and the mole fraction of each 24 determined from the areas of the eluted peaks, as measured on the recorder. Although the gas chromatography technique eventually worked very well, several problems were encountered in modifying the equipment for this work, and are 'worth . mentioning as a guide for future use of the technique l n kinetic studies. F i r s t l y , the presence of methane formation at high temperatures was not detected until well Into the experimental work, for the following reason; Hydrogen has a strong,negative thermal conductivity relative to helium, which was originally used as the carrier gas. Consequently, as the hydrogen in the sample passed through the thermal conductivity c e l l , a large, negative peak appeared on the recorder. Furthermore, helium and hydrogen Interact to produce a large shoulder on the hydrogen peak which hid the eluted methane peak (figure 1 5 ) • Time Figure 1 5 . Schematic Illustration of Chromatograph Peaks. At higher reactor temperatures this "shoulder" became larger, indicating methane formation. In order to detect the amount of 25 methane, the carrier gas was changed to hydrogen. Thus the hydrogen from the sample blended in with the carrier gas, exposing the methane peak. A small splitting tendency was detected in the methane peak, suggesting the presence of air , which was not unexpected since the exhaust immediately followed the sample port. The air-methane separation was d i f f i c u l t to achieve. A long, 20 f t . s i l i c a gel-packed column gave satisfactory separation, but the elution time of the ethylene was approximately 40 minutes, which was Impractical since twenty to thirty samples were taken i n one day. Eventually, an 8 f t . , 1/4 i n . copper column, packed with 60-80 mesh s i l i c a gel, especially prepared for chromatograph adsorption, was found to satisfactorily separate the air , methane, ethane, and ethylene peaks.in approximately twelve minutes. The column was activated by passing dry air at 300 °F through i t for ten hours, and hydrogen for five hours. The gas sampling was f i r s t done by means of a syringe and serum cap technique, which proved to be a poor one because continual sampling created substantial leaks in the serum caps. Furthermore, a large amount of air was introduced into the column when injecting the sample. A further disadvantage was Inconsistency in the sizes of the gas samples. A sampling valve was Installed ln the system but i t never worked properly due to sporadic leakage and poorly designed sampling chambers. The chambers created a capacitance effect resulting In peaks that slowly tailed exponentially off. Eventually, two, four-way stopcocks were installed as 26 the sampling means (figure 16), and these .worked excellently, Their main advantages were simplicity of operation and sharp peaks. a. from chromatograph b. to exhaust of system-c. from reactor. d. to chromatograph 1. collect sample 2. trap sample 3. sample carried to chromat ograph Figure 16. Schematic Drawing of Sampling Valves, Since the Beckman G.C.-l chromatograph that was used in this work was also needed for teaching purposes once a week, i t was decided to have the workshop construct one that could be Installed directly into the system* Theoretically this was a good idea and eventually carried out. However, the fi t t i n g s on the housing of the thermal conductivity c e l l were not leak tested and o i l from a surrounding temperature bath leaked Inside the c e l l , carbonizing the filaments. This chromatograph column was abandoned i n favour of the G.C.-l, which was installed directly into the system during the summer months, since i t was not then needed for teaching. 27 9. Temperature Controller The reactor temperature was effectively controlled by means of a Wheelco off-on controller. Two chromel-alumel 36-20 gauge thermocouples were, positioned inside the thermocouple well, one for temperature control, the other for temperature measurement by a potentiometer. The two thermocouples (four wires i n a l l ) positioned in a 3 mm. well provided.a continuous problem because even though the wires were oxidized i n a flame to el e c t r i c a l l y insulate them, they nevertheless often shorted out, causing delays and inconveniences i n arriving at the desired reactor temperature. In order to obtain fine control the control system was modified ('figure 17). wall-switch slide wire resistor V O l t - -2^.1 meter controller auto-transformer re&c/tor heajer amplifier potential/divider - L ^ L I H ^ -H—H—«— thermocouple wire potentiometer L-W Figure 17.. ^ Mod-ifled^Temperature Control System.) The signal from the. thermocouple was balanced by a potential divider u n t i l a zero .was obtained on a null detector-amplifier. Any resulting small difference i n voltage between the potential divider and thermocouple was amplified one-28 hundred times, and Bince t h i s was a large s i g n a l , the c o n t r o l l e r quickly "homed i n " on the control point. Furthermore, a 5 ohm s l i d e wire r e s i s t o r was connected i n p a r a l l e l to the reactor heater. The s l i d e was set such that the r e s i s t o r c a r r i e d approximately 75 % of the amperage from the autotransformer, decreasing the r e l a t i v e change i n current, to the reactor heater by t h i s amount. Using the modified control system, the magnitude of c y c l i n g of the reactor temperature was l e s s than 4°C i n 400 °C. 4 10. Magnet . Variable magnetic f i e l d s of up to 10 gauss were obtained using a research, aluminum f o i l electromagnet, manufactured by Atomic Laboratories Inc. (cat. no, 79637), The magnet was equipped with a s o l i d state f i l t e r e d power supply and current regulator which c o n t r o l l e d fluctuations i n the magnetic f i e l d as small as 10~S gauss. I t could only be run i n t e r m i t t e n t l y at f i e l d strengths l a r g e r than 9000 gauss since at such high magnetic f i e l d s heating of the c o i l s was a serious problem.(The magnet was a i r - c o o l e d ) , 11. Catalysts Five d i f f e r e n t types of c a t a l y s t s were used: a. Nickel Powder Fine, 99,9 % pure n i c k e l powder, with mean p a r t i c l e diameter of 11,5 microns, obtained from the S h e r r i t t Gordon Mines Limited, Research D i v i s i o n (41), was used as a c a t a l y s t . The p a r t i c l e s have a very low average density of 3.85 g/cm3 (nickel mass has a density of 8,9 g/cm3 ) and probably have, therefore, a high surface area, i n the neighbourhood of 100 m^g. This c a t a l y s t gave high conversions but had two disadvantages for this work: (i) at temperatures above 4-00°C the particles sintered together, severely.restricting the gas flow through the bed; ( i i ) i t promoted more methane formation than the other catalysts and poisoned quicker,presumably due to carbon deposit. b. Nickel Spheres Nickel spheres, 99.9 % pure and with an average particle diameter of .05 mm., obtained from the Sherritt Gordon Mines Limited (41), were uaed as a' catalyst. No estimation of the surface area of this nickel can be given, but i t i s thought to be quite low. c. Alumina Supported Nickel This nickel catalyst was prepared by a standard method (35) that is described below. Activated alumina particles, 60-80 mesh, were placed in a vacuum glass which was then evacuated for two hours. CP. nlckelous nitrate, obtained from the J.T. Baker Company, was dissolved in water (48 g/l) and poured over the activated alumina,, s t i l l under vacuum. The particles were agitated for one hour, the excess solution poured off and the particles dried for two hours at 250°F. They then were heated to 500°G; in a furnace for fifteen hours,, in order to oxidize the nlckelous nitrate to nickel oxide. They then were placed i n the reactor and hydrogenated at 350°0 for fifteen hours, to reduce the : .. nickel oxide to active nickel. The approximate surface area of the alumina supported nickel i s 150 mz/g (35)• 30 d. Powdered Copper CP . powdered cupric oxide, obtained from the A l l i e d Chemical Company, was screened and the 120 + mesh particles placed in the reactor. Hydrogen was passed over the catalyst bed at 350°C for fifteen hours- to reduce the cupric oxide to active copper. e. Platinum Platinum wire, 28 gauge,, of unknown purity was cut into fine pieces, placed i n the reactor, and reduced to active platinum by passing hydrogen over the bed at 350°C for fifteen hours. . EXPERIMENTAL PROCEDURE Once the system (figure 9) had been checked for leaks, It was kept under vacuum for approximately one hour, and during this time i t was observed that traces of water vapour, which had collected inside the tubes at a few places, would disappear. Hydrogen was introduced with the vacuum pump s t i l l running, the system sealed and the pump shut off, so that the hydrogen pressure increased slightly above' atmospheric. Then the exhaust valve was opened, and, with the hydrogen passing through the system, the catalyst bed heated to approximately 350°C. Hydrogen was passed over the hot bed for approximately fifteen hours. This procedure was repeated before every run to assure that the catalyst was activated. The hydrogen flow was measured with the soap bubble meter. Ethylene was introduced into the system, and after two hours to allow for stabilizing and for dead spaces to reach equilibrium concentration, the total flow rate measured, and the ethylene flow calculated by difference. Barometric pressure and room temperature were recorded.. Effluent gas samples were taken and analyzed on the chromatograph. Immediate plots of temperature versus per cent conversion were made, l n order to see the reaction path. After doing a few runs to determine the shape of the reaction rate curve, Vhe magnet was turned on to see whether the curves showed a break or change of slope that could be attributed 32 to the presence of a magnetic f i e l d . When the results showed that the magnetic f i e l d had no effect on the reaction rate that could he measured i n this work, runs wer.e done through the Curie temperature of the nickel catalyst (360 °C) i n order to attempt to observe the presence of a Hedvall Effect. To determine the weight of the catalyst, the 3 mm. catalyst chamber was weighed, f i l l e d with the catalyst and 'V<=!cp:iL '^rewleighed, before being installed i n the reactor. Since the catalyst was found to poison quickly at high temperatures due to carbon deposit, a fresh catalyst was used.for every run. It was attempted to reactivate the catalyst by passing hydrogen through the bed at 350°C for ten hours, but this had l i t t l e , i f any, effect. The black carbon deposit s t i l l remained after treatment with hydrogen. For simplicityXruns were done at constant flow rate. The flow rate was checked every hour or so, and, after installation of the capillary tubing,, i t was found to..fluctuate not by more than a few per cent. Flow rates were varied from 8 cm3/min. to 90 cm3/min., and feed gas composition was kept at approximately 70 % to 85 %,hydrogen. The exhaust gases were burned to carbon dioxide and water vapour. 33 EXPERIMENTAL RESULTS' A. General Unexpected design modifications were caused by the unusually low flow rates required, the rapid surface poisoning of the catalyst, and the sintering of the powdered nickel catalyst at high temperatures. One of the problems of this work, therefore, was to refine the apparatus u n t i l meaningful results were obtained. Consequently, several runs were performed in order to help "debug" the apparatus, and the results of these runs were unavoidably poor. The original data of a l l of the runs i s tabulated i n Appendix III. The results of runs A to V are, not considered to be particularly useful except to ill u s t r a t e that the magnetic f i e l d had no apparent effect on the reaction rate. Figure 18 shows, for example, the results of runs N and P, i n which the reaction rate was measured over the tempe'rature range of 300°C to 400°C. The poor correlation of the data obscures the presence of any Hedvall Effect. The areas of the ethylene peaks on the chromatograph recorder were seen to fluctuate appreciably during these and other runs, indicating that either the hydrogen or ethylene flows were fluctuating, or that these two gases were not mixing evenly before entering the reactor. Cycling of the liquid levels of the manometer tubes indicated that the former situation was, in fact, responsible for the variation of the ethylene peak area. Consequently, 0.5 mm. •" . i 'i PERCENT ETHANE FORMED : *-5 10 15 20 25 30 _l I , l I I 1_ / capillary tubing was installed directly after each of the two flow controllers. However, the fluctuations In the ethylene peak areas s t i l l persisted, although not to such a great extent. After the installation of the two mixing chambers, the fluctuations were satisfactorily damped. The results of runs 1 to 23 are though to be indicative of the kinetics of reaction (8), and a summary of the results is given in table 1, Run Catalyst Type Temperature •Range °C H2/C'j, H4 in feed Flow Rate cm/min. Activation Energy / K-cal/mole \ / -External Field Effect ? •Hedvall Effect I '-' ?• ' ^NTc^ke^powdey-^ 3-r08— i i ^ 5 ~ >. / ' / 1.0'# \ 2 powdered nickel 30—78 2.24 24.8 15-,7 f\ "no 3 powdered nickel 27—92 5.17 50.0 • 15 i-l k \ 4 powdered nickel 31—78 3.63 36.8 10.8 4 \ 5 , nickel spheres 26—122, 1.20 15.5 11.5 j \ powdered nickel 24—69 4.40 90.5-'-4-. 3 «*\ \ powdered nickel 30—405 .276 36.8 yes . 8 nickel spheres 26—497 1.20 15.5 no yes 9 a l . supp. nickel 27—515 3.67 21.2 / -2.(9- \ yes 10 powdered nickel 67—199 .276 36.8 no - 11 powdered nickel 266—400 3,22 78.6 yes 12 nickel spheres ' 294—471 4.05 10.7 no . yes 13 powdered nickel 304—388 2.70 8.88 .14 powdered copper 299—468 2.78 31.6 15 powdered copper 295—513 3.43 29.5 no 16 a l . supp. nickel 301—411 5.38 22.2 no yes 17 a l . supp. nickel 290—428 4.92 22.4 yes 18 a l . 3 u p p . nickel 284—515 6.70 25.0 yes 19 a l . supp. nickel 295-537 4.16 25.4 yes 20 a l . supp. nickel 297—554 5.35 14.1 yes 21 platinum wire 295—535 4.95 39.4 no 22 powdered copper 23 —526 4.38 29.1 -23 a l . supp. nickel 279—509 8.09 29.6 yes Table 1. Summary of Results th'gge~-v-alues—w^re~paX 37 B. External Magneto-Catalytic Effects The reaction rate was measured at intervals of increasing temperature, and curves of per cent ethane formed versus temperature were plotted. Once the shape of the curve over a particular temperature regime was established, the magnetic f i e l d was turned on at various temperatures. No change i n slope or discontinuity l n 'these curves was observed at the point where the magnetic f i e l d was applied. Since the influence of the magnetic f i e l d would be f e l t immediately by the catalyst atoms, any detectable effect on the reaction rate would certainly be an immediate one.. In other words, i t i s highly unlikely that, the prolonged influence of the magnetic f i e l d would alter the reaction rate. Figure 19 shows the results of runs i n which the magnetic f i e l d was applied. Had an effect on reaction rate been observed,, a systematic technique, similiar to the one proposed by Booth (42), would have been carried out i n order to determine the magnitude of the effect. C. Lower Temperature Results Figure 20 shows Arrhenius plots for the temperature range of 20°C to 130°C. Activation energies for reaction (8) were calculated from the slopes of these lines, assuming the following equation to be valid. l n k = l n A 4 E /RT. (19) Table 2 i s a comparison of values of the activation energy T magnetic field of 5000 gauss applied |. magnetic field of 10000 gauss applied \ / t RUN 2 • RUN 8 V RUN 10 • RUN 12 0 RUN 15 / RUN 16 X RUN 20 ft RUN 21 « RUN D e RUN J & RUN S o RUN U $ RUN E t i 50 FIGURE 19, 100 150 200 250 I 300 i 350 400 450 500 REACTION RATE IN THE PRESENCE OF MAGNETIC FIELD CO 39 (l/T °K)IO FIGURE 20. . .ARRHENIUS PLOTS FOR RUNS 1,2,3,4,5,6 Author Toyama ( 2 3 ) Twigg . (27) Jenkins (21) Beeck ( 3 2 ) Pauls ( 3 5 ) M4y^ tea3?a-444-) Wynkoop (28) Catalyst Type air—s^pp^jnAcke 1 nickel mass nickel wire nickel film nickel film a l . supp. nickel nl.akal_f.ilm>,. powdered copper Temper-ature Range °C 3 ' 0 ^ & 0 -78 — 0 60-—150 2 0 — 1 0 0 -80—150 0 — 1 0 0 X)-^ -13< 9—79 Activ-ation Energy K-cal mole -a*r6-6.1 14.0 10.2 10.7 11.6 0—f • ~^rv€k 13.2 Run , 5 r 6 Catalyst Type aat-ie-kol pow4e-g^ nickel powder/ nickel powder V nickel powder/ nickel sphere' nl-cke-l--powder--.. •^eppe;r_==po.wd-e&--=i Temper-ature Range °C Actlv* at ion Energy K-cal mole 30— 90 27—90 31— 89 26—123 . 24.r*70 6&:^ *4L-61-15.7 15.7 10.8 11.5 -197? -* surf-a6e^ot^T^etr^atacV-wtt-h^-hydrogen -at -350-C Table 2. Activation Energies for the Hydrogenation of Ethylene Reaction 41 obtained i n this work with some existing literature values. The values of the specific reaction rate constants and reciprocal absolute temperatures, needed for figure 2 0 , were obtained from Appendix II. With.the exception of run 1 , the catalysts were pretreated with hydrogen at 3 5 0 C, and a different catalyst sample used for each run. The effect of pretreatment was remarkablei increasing the catalytic activity by more than ten-fold. Figures 2 2 and 23 i l l u s t r a t e quite clearly the difference between the run done over a non-preated surface and pretreated surfaces. The temperature coefficient of the reaction'rate i s very low i n figure 2 2 , whereas i t i s very high i n figure 2 3 , for the approximate temperature Interval of 20°C to 100°C. The discrepancy i n literature values of. the activation energy (table 2 ) . i s probably best attributed to the different specific natures of the catalysts, but, nevertheless, i t il l u s t r a t e s the d i f f i c u l t y i n measuring reproducible results. It was not the purpose of this work to study the kinetics of equation (8), since this would involve a large number of runs and a wide range of such variables as flow rate, catalyst surface, pressure, feed compos'tion, which, as mentioned earlier, would be impossible to attain with the existing system because of the severe limitations placed on the reactor size. It was desirable,, however, to measure some values of the activation energy over the temperature interval of 20°C to 130°C, i n order to compare, them with existing literature values (table 2 ) . The fact that the values obtained i n this work are higher than^literature values, i n general, F I G U R E 21. C H R O M A T O G R A P H R E S U L T S F O R RUNS 2 ft 3 PERCENT ETHYLENE REACTED POWDERED NICKEL CATALYST FIGURE Z 3 . HYDROGENATION OF ETHYLENE OVER A WIDE TEMPERATURE RANGE N*'^RUN 7 , 4 o A \f MAGNETIC FIELD (5000 GAUSS) 0 X -APPLIED FOR REMAINDER O \ » \ OF RUN CURIE TEMPERATURE INTERVAL 4 5 indicates that the catalysts were active. In order to i l l u s t r a t e the application of the .chromatograph to this work, some of the recorder results of runs 2 and 3 are shown i n figure 21. The peak areas and ethane to ethylene ratios are tabulated with each measurement. The attenuation.value of each peak i s also given. For example, an attenuation value of 5 means that the peak area i s actually five times as large as shown on the recorder paper. The l e f t -. hand peak i s ethane, and the right-hand peak i s ethylene. Only slight traces of methane are detected, indicating that the reaction kinetics should obey equation (15) quite well. Run 3 of figure 21 shows the large positive temperature . dependence of the reaction rate over this temperature range. It i s observed that the ratio of the ethane to ethylene peak areas changes from 0.01365 at 27°C to 30.22 at 92°C. D. Results Over a Wide Temperature Range Figure \23 shows the reaction rate curve for the hydrogenation of ethylene over a wide temperature range of 20°C to 500°C. A maximum i n the reaction rate i s observed at 80°C using a powdered nickel catalyst, at 125°C using a spherical nickel catalyst, and at 215°C using an':alumina•. supported nickel catalyst. Although the- maximum of 2l5°C i n the l a t t e r case appears high, Schwab (45) reported a maximum at 197°C for this reaction over a s i l i c a supported nickel catalyst. Figure 23 shows an increase i n reaction rate around the Curie temperature of nickel, indicating the presence of a 46 Hedvall Effect II,.which can be detected readily by observing the increase i n height of the ethane peak past the Curie temperature (figure 24). The hydrogenation of ethylene reaction i s irreversible; because the catalyst surface poisons, especially at high temperatures. Schwab (46) studied the reaction over decreasing and increasing temperatures through the Curie point of a copper-nickel alloy-catalyst.(figure 25). His results show the 1.7 LS 1.9 j>.0 2.1 2.1 «.» ^<M<0* Figure 25. Hydrogenation of Ethylene over the Curie Temperature Interval of Cu-Nl Alloy (Increasing and Decreasing Temperatures). . K f i presence of a weak Hedvall Effect, as well as the ;. i r r e v e r s i b i l i t y of the reaction. Figure 26 shows some results of this work that confirm the latter phenomenon. The reaction rate was f i r s t measured over Increasing and then decreasing temperatures, and l n each of these runs the ethane mole fraction was lower at the same temperature for the run done over the decreasing temperatures, whereas the methane FIGURE 2 4 . CHROMATOGRAPH R E S U L T S FOR RUN 9 <t> -0-RUN I2~ MAGNET ON (5000 G A U ^ ^ ^ 8 ^ * * © ^ ® ® ^ POWDERED NICKEL CATALYST SPHERrCAL NICKEL CATALYST 280 300 320 I 340 I 360 380 I 400 420 440 _ J l_ <1 T ° C >-MAGNET ON (5000 GAUSS) ,k-^~cr&—.—» RUN in f A ^ A ^ ^ A - - ^ ^ / "A r"^AT—A-»-^ A-POWDERED NICKEL CATALYST i o 1 ^ IT-" -I— 80 T 1 1 r 100 120 140 -i 1 1 r 160 180 T °C FJGURE 26. HYDROGENATION OF ETHYLENE OVER INCREASING AND DECREASING TEMPERATURES 4 9 mole fraction was higher. This ia direct evidence for carbon \ deposit being responsible for poisoning of the catalyst surface, since methane formation proceeds by reaction mechanisms slmlliar to the following one. i'*A,; • H ' Ni Ni H 2Ni + ~PC - NI-C-Ni + CH4 (20) Ni The decomposition of ethane to methane i s highly unlikely because the heat of adsorption of ethane on nickel powder i s 0 K-cal/g-mole, whereas that of ethylene i s approximately 60 K-cal/g-mole (37). Furthermore, the chromatograph results of this work showed that the mole fraction of ethane did not decrease unexpectedly at temperatures where methane formation became substantial. The methane formation was noticeably low i n a few runs, even at temperatures near 400°C, and, therefore, Arrhenius plots were prepared for this temperature regime (figure 27), assuming equation 15 to be valid. Figure 27 indicates that the activation energy i s approximately -3 K-cal/g-mole over the temperature range of 250°C to 400^0, and that i t does not vary significantly for the three types of nickel catalyst. This value may be somewhat i n error, however, because equation 15 i s based on the assumption that gas phase hydrogen reacts with adsorbed ethylene complexes. Such a reaction mechanism may not predominate at high temperatures. "i~55 ! "lL60 165 IjO 3 Ij5~ So I ( l / T ° K ) 10 ^ FIGURE 27. ARRHENIUS PLOTS FOR THE TEMPERATURE RANGE O F 2 5 0 X TO 4 51 •E. Internal Magneto-Catalytic Effects In order to confirm the presence of an internal magneto-catalytic effect (Hedvall Effect II), eight runs were'' jj^JlJ-done over the temperature range of 300°C to 550°C; .five on the^ ferromagnetic catalyst, nickel, two on powdered copper, and one on platinum wire. The latter two catalysts are non-ferromagnetic. A marked increase i n reaction rate was observed for each of the five runs on the nickel catalyst, Just past the Curie temperature, whereas a smooth decrease i n reaction rate was observed past this point for the runs done on the copper and platinum catalysts (figures 28 .'and 29). Figure 30 contains some chromatograph results of runs 20 and 14. A nickel catalyst was used i n run 20, and a copper catalyst i n run 14. In the former case the area of the ethane peak i s seen to increase past the Curie point, whereas in the latter i t keeps decreasing past this temperature. In general, the presence of more than one reaction i s not desirable, i n studying the Hedvall and related effects, since the.effects may be obscured. However, In this work the use ofi the chromatograph '"enabled the rate of f.ormation of the methane and ethane to be measured simultaneously. The following reactions probably occur above 300°C; C 2H 4 + H 2 >- C 2H 6 (8) C 2H 4 + 2H Z *- 2LCH4 . (21) C 2H 4 — Cz+ZEl (22) T°C FIGURE 29. HYDROGENATION OF ETHYLENE THROUGH CURIE TEMPERATURE INTERVAL 297.1 *C R U N 2 0 A L U M I N A S U P P O R T E D N I C K E L XI 2 9 8 . 9 *C X 2 R U N 14 P O W D E R E D C O P P E R 3 8 6 . 7 » C M r * , X I O ft 3 2 9 . 5 ' C Y 4—' III D! i. L' FIGURE 3 0 . CHROMATOGRAPH R E S U L T S FOR RUNS 14 8 2 0 55 The chromatograph results show that on a nickel catalyst reaction (8) i s enhanced as the catalyst i s heated through the Curie temperature, whereas reaction (21) merely increases smoothly from 300°C to 500°C. On copper and platinum catalysts O o reaction (8) decreases smoothly from 300 C to 500 C, and reaction (21) increases smoothly,(figure 31). These results provide direct proof that the hydrogenation of ethylene reaction on a nickel catalyst is enhanced by the change from the ferromagnetic to the paramagnetic state of nickel. Reaction (21) probably proceeds by the simultaneous occurrence, of several reaction mechanisms, Just as reaction (8) does. The following mechanisms no doubt occur, but several others are probable; Hs K Nl 2H 4- SC C( * Ni—C-Ni + CH. 4- 2N1 (22). I / \ / \ l 4 Ni Ni Ni Ni Ni Ni H Ni )CS -+-. Hj_ CH 4+Ni-C-Ni (23) Ni Ni Ni Ni ' Ni H H Nl 2N1 + -p^ = CH 4 + ,Ni-'C-Ni (20) H Ni Ni H Ni W C 1 The absence of a Hedvall Effect II i n reaction (21) suggests that the electrons of the C—C bond of the adsorbed complex are independent of the electronic state of the 3d-•electrons of nickel. In other words, the C-C bond i s probably very localized and does not exist in resonance with the C—Ni 57 bond of the adsorbed complex. Since the electrons of the G—C bond do not enter into exchange with the electrons of the nickel, the spli t t i n g of this bond w i l l be independent of the magnetic state of nickel, and w i l l dependent only upon thermal energy and heat of adsorption. F. Kinetics of the Hydrogenation of Ethylene Reaction at High Temperatures The presence of at least three simultaneous reactions, (8),- ( 2 1 ) , and (22), and the rapid surface poisoning phenomenon, indicate complicated kinetics at high temperatures. It was not the purpose of this work to study extensively the kinetics at high temperatures, and, furthermore, the flow rate, feed composition, and catalyst area could not be varied enough with the present system to allow a wide range of data to be collected. Nevertheless, i t was thought worthwhile, even with the limited data that was obtained, to check whether or not the kinetics of reaction (8) might be better described by equation (24), rather than equation (14). F d v c = k.y^y. (24) . Equation (24) differs from equation (14) by the factor y b. The reason for including y t i s based on suggestions (26, 47, 48, 49, 50, 51) that desorption of ethylene complexes off the catalyst surface i s at least partly responsible for the decrease i n catalytic activity. This implies that at high 58 temperatures the gas phase concentration of ethylene, as well as that of hydrogen, i s significant. Based on the lengthy integration of equation (14) by Wynkoop and Wilhelm (28), i t appears as though an exact integration of equation (24) would be d i f f i c u l t and lengthy. • However, the computer program results (Appendix II) show that at temperatures above 1J50°C, approximately, the mole fraction of hydrogen does not change by more than 1 %t indicating that difference approximations to equations (14) and (24) should be v a l i d . I T ^ . y a . ••• • (25) Fyc = <y a y t (26) where y « . = 1/2( y^+ y i o ) and y w = 1/2( y + yfco ) The variables y c o , y k o , and y a o are easily obtained from the chromatograph results and a mass balance around the reactor. Since the chromatograph results also give the rate of methane formation, i t was decided to see whether or not either of the two following difference equations might describe reaction (21). F V d o — = k z y a • (27) 59 -5 s 5"- y, (28) Table 3 gives some calculated values of k,, k', k^, and k£ for runs 15, 17, 19, and 20, ln which the reaction was studied on an alumina supported nickel catalyst and over the approximate temperature range of 300°C to 500°C. Runs 16 and 18 were not used because the specific reaction rate constant was nearly a factor of 10 lower than those calculated for runs 15, 17, 19, and 20, indicating an excessively poisoned catalyst surface. The specific reaction rate constant, k,, calculated by the difference equation (25), la seen to agree well with that calculated by the exact solution (15), indicating that differential conditions apply for this temperature range. Furthermore, the values of k^, appear to correlate slightly better than the values of k,, indicating that equation (26) describes the high temperature kinetics better than equation (25)• The inconsistency i n the values of k 2 and k^ suggests that neither equation (27) nor (28) describes the kinetics of reaction (21). However, no definite conclusions can be made due to the lack of experimental data, G. Effects of Mass Transfer It seemed worthwhile to check the assumption that the chemical reaction at the catalyst surface i s rate controlling, or, i n other words, that mass transfer effects are negligible. Appendix I gives the detailed calculation, and since i t was found that the specific reaction rate constant i s not 1/10 of the coefficient of mass transfer, the assumption i s very good. 60 Run Meas" urement k, g-moles k g-moles g-moles K g-moles < g-moles T °C sec. g. xlO"6 ' sec. g. - G xlO equation (15) sec. g. . x i d 5 sec. g. .xid 7 sec. g. xlO 17 1 3.61 3.53 2.61 1.328 .961 290 19 1 3.68 3.66 1.94 5.66 2.99 295 9 16 3.11 3.08 1.49 1.76 .841 294 17 9 2.26 2.17 1.612 3.14 2.25 334 19 3 2.50 2.56 1.390 22.3 12.4 339 20 5 * 2.26 2.35 1.531 • 14.06 9.54 335 9 19 • 2.92 2.91 1.395 4.83 2.31 333 20 9 1.616 1.76 1.059 23.5 15.4 367 19 9 1.920 2.02 1.039 37.2 20.1 368 17 15 ' 1.46 1.46 1.038 "3.07 , 2.18 368 9 26 . 2.40 2.39! 1.178 3.16 1.55- 369 9 30 2.68 2.67 1.275 4.38 2.08 392 17 19 1.22 1.23 .866 4.44 3.16 392 20 12 1.82 2.04 1.310 29.6 21.3 393 19 12 2.14 2.26 1.176 41.9 23.0 393 20 16 2.33 2.65 1.659 3.55 25.3 434 19 17 3.33 3.69 , •" 1.850 - 5.11 27.6 436 17 40 1.585 1.57 1.119 1.58 11.55 428 9 34 4.00 .4.02 1.95 1.90 9.15 432 9 36 3.48 3.73 1.75 3.23 16.28 455 19 18 3.63 4.01 2.04 '5.78 31.7 459 20 18 . 2.83 3.29 2.04 4.68 33.5 459 Table 3. Specific Reaction Rate Constants for High Temperature 61 CONCLUSIONS On a nickel catalyst, the hydrogenation of ethylene reaction i s considerably enhanced as the catalyst is heated through i t s Curie temperature, confirming the existence of a Hedvall Effect II. No Hedvall Effect I was observed. The Hedvall Effect II i s pronounced enough to change the temperature coefficient of the reaction rate from negative to positive as the catalyst changes from the ferromagnetic to the paramagnetic state. The reaction rate continues to increase with temperature up to 450 C, approximately, and then starts to decrease again.- On the non-ferromagnetic catalysts, copper and platinum, the reaction rate smoothly decreases over the temperature range of 300°C to 550°C. The observed dependence of the reaction rate on the magnetic state change of nickel i s direct support for the theory that electron transfer between the catalyst and adsorbed complex i s enhanced as thermal energy frees the 3d-electrons from magnetic coupling effects. 4 An external magnetic f i e l d , of strengths up to 10 gauss, does not influence the hydrogenation of ethylene reaction to an extent detectable by ordinary meansi ^ ^h® kinetics of this reaction appear to be complex ii PJ^] at high temperatures, chiefly due to the simultaneous formation ^ A 1 °^ ethane and methane, and carbon deposit on the catalyst. r*vv^ip The chromatograph technique to measure the reaction rate appears to be excellent, especially for reactions that involve the formation of more than one product. 62 RECOMMENDATIONS FOR FURTHER STUDY Av External Magneto-Catalytic Effects The results of this work.indicate that strong magnetic fields w i l l not significantly.Influence more complicated hydrocarbon reactions, although such a generalization has l i t t l e v alidity without more experimental proof. Since Justi and Vieth (10) showed limited success with the ortho-para hydrogen conversion reaction, i t is recommended that a similiar very simple reaction be chosen for further external magneto-catalytic studies. Furthermore, the reaction should be studied under conditions conducive to excellent reproduction of results. The most reproducible data seem to be obtained from thin film microcatalytic techniques. For example, Miyahara (44) has studied the hydrogenation of ethylene reaction on evaporated nickel films, with particular attention paid.to conditions of evaporation and purity of the hydrogen and ethylene. He found that the reaction was rendered reproducible by use of high purity hydrogen and ethylene, mass spectrometrically free from oxygen and nitrogen, and nickel films freshly coated for every run, with nickel evaporated i n - 6 a vacuum of 10 mm. of mercury. Figure 32 shows the reactor and system used by Miyahara, and a similiar apparatus, adapted to studies under the influence of a magnetic f i e l d , i s recommended. ethylene hydrogen mercury manometers to measure reaction rate pump ionization gauge fit dry 'ice trap reactor sampling vessel to pump — * -liquid nitrogen trap nickel wire glass seal-mica shield u u u Reaction Vessel Figure 32. Diagram of Apparatus Used by Miyahara (44). 64 External magneto-catalytic studies on very thin i o o ferromagnetic films, 20 A to 100 A thick, may prove f r u i t f u l , because the magnetic properties of such films are quite different from the magnetic properties of bulk materials.(52). The main difference i s that thin films possess extremely coherent long range spin rotation. Magnetic domains are very large in thin films, and, i n fact, under proper conditions thin films can be deposited as a single domain. Furthermore, thin films provide an extremely homogeneous surface, an order of magnitude smoother than surfaces obtained by electro-polishing. In a strong magnetic f i e l d a l l of the atomic ' magnetic moments would instantaneously, align in a uniform direction-. Therefore, the surface atoms that form bonds with the adsorbed gas phase molecule would reflect the reaction of the thin film to an external magnetic f i e l d . It seems reasonable that any substantial effect on catalytic activity, due to homogeneous aligning of the atomic magnetic moments, would be detected much more easily using thin films, rather than, powdered metals.. The surfaces of powdered metals are so irregular and contain so many centres of high energy that they scarcely reflect the properties of the bulk of the metal. Justi and Vieth (10) point out that i n powdered metals the — 4-particles approximately 10 mm. in diameter and smaller, possess high permanent magnetism, which probably obscures' completely the effect of an external magnetic f i e l d on catalytic activity. 65 B. Kinetics at High Temperatures It might prove worthwhile to study the hydrogenation of ethylene reaction at temperatures above 200°C, since there appears to be l i t t l e , i f any, published data for high •temperatures. One proposal i s to study the reaction with widely varying conditions, so that data may be obtained to test the following difference equation; - i'rl y? ( 2 9 ) The coefficients, n and m, are obtained by the method of least squares, from the linear equation In Fy«> = In k*+- n l n y, + m In y^ (30) Furthermore, one could perform a mass balance around the reactor from the chromatograph results, in order to estimate the rate of carbon deposit on the catalyst surface. By weighing the catalyst surface before and after each run, one could check this estimation. 66 Literature Cited 1. Dowden, D. A. J. Chem. Soc 242 (1950). 2. Hedvall, J.'A. and Cohn, G. : Phys. Rev., 841 (1942). 3. Bozorth, R. M. : " Ferromagnetism " New York, Van Nostrand, 1951. -4. Hedvall, J. A., Hedin. R., and Persson, Z. : Z. physik.' Chem., B27_, 196 (1934). 5. Paravano, G. : J. Chem. Phys., 20, 342 (1952). 6. Cimino, A., Molinari. E., and Romeo, G. : Z. physik. Chem., 16, 101 (1958). 7. Relnacker, G., Wessing, G., and Trautmann, G. : Z. anorg. Chem., 236, 252 (1938). 8. Hedvall, J. A..and Wikdahl, L. : Z. Elektrochem., 46, 455 (1940). ' 9. Paravano, G. : J. Amer. Chem. Soc, 7_5_, 1497 (1953). 10. Justi, V. A. and Vieth, G. : Z. Nat., 8a, 538 (1953). 11. Krause, V. A. : Z. anorg. a l l g . Chem., 306, 237 (I960). 12. Schwab, G. M. and Kaiser, A. : Z. Physik. Chem., 22, ^ 220 (1959). 13. Pawel,. R. E. and Stansbury, E. E. : J. Phys. Chem. Solids, "/ '26, 757 (1965). >"~±4. Beeck, 0.. : Disc. Far. Soc, 8, 118 (1950). 15. Selwood, P. ¥. :: J. Am. Chem. Soc, 3346 (1956). 16. Beeck, 0., Smith, A. E., and Wheeler, A. : Proc. Roy. Soc (London),/Tl77, 62 (1940). 17. Eley, D. D. : " Catalysis " III, P. H. Emmett, New York (1955). 18. Farkas, A., Farkas, L., Rideal, E.K. : Proc. Roy. Soc. (London) A146, 630 (1934). 19. Herbo, C. : J. chim. phys., 47, 454 (1950). Hougen, 0. A. and Watson, K. M. : " Chemical Process Principles " III, John Wiley, New York (1949). 6 7 21. Jenkins. G. I. and Rideal, E. K. : J. Chem. Soc. (London) 2 W (1955). 22.. K e i i , T. : J, Chem. Phys., 22, 144 (1954).. 23. Toyama, 0. : Rev. Phys. Chem.. Japan, 11, 53, (1937). 24. Toyama, 0. : Rev. Phys. Chem. Japan, 12, 115 (1938). 25. Tucholski, T. and Rideal, E. K. : Chem. Soc. (London), 1701 (1935). 26. Twigg, G. H. : Disc. Far. Soc, 8, 152 (1950). 2_ 6, If ~ . 1.( 27. Twigg, G. H. and Rideal, E. K. : Proc. Roy. Soc. (London),. A171, 55 (1939). 28. Wynkoop, R. and Wllhelm, R. H. : Chem. Eng. Prog., 46, . . 300 (1950). 29. Yang, K. H. and Hougen, 0. A. :. Chem. Eng. Prog., 46, 146 (1950). 30. Strassen, Z; H. : Z. physik. chem., A169, 81 (1934). . 31. Eley, D. D. : Disc. Far. Soc, 8 , 99 (1950). 32. Beeck, 0. : Rev. Mod. Phys., 17, 61 :(1945). 33. Fulton, J. W. and Crosser, 0. K. : A.I.Ch.E. J., 11, 513 (1965). 34-. Hall, K. W. and Hassell, J. A. : J. phys.. Chem., 67. 636 (1962). J>3^ Pauls. A.' C , Comings, E. W., and Smith, J. M. : A.I.Ch.E.J. / 5_, 4"53 (1959). 36. Horiuti, J. and Polanyi, M. : Trans. Far. Soc, 3_0, . 1164 (1934). 37. Bond,, G. C. : " Catalysis by Metals," Acad. Press., London and New-York (1958). . 38. Emmett, P. H. : " Catalysis," III, Reinhold, New York (1955). -39. Schuster, C. : Trans. Far.. Soc, 28, 406 (1932). ,/ 40. Rideal, E. K. : J. Chem. Soc. .(London), 121, 309 (1922). 41.. Sherritt Gordon Mines Limited, Research and Development Division: issue #4, January, 1961. > 68 42. Booth, R : Magnetic Fields i n Catalytic Reactions, (unpublished thesis), Department of Chemical Engineering, University of British'Columbia, Vancouver 8, Canada. 43. Wanniger, L. A. and. Smith, J.M. : Chem. Weekblad, 5_6, 273 (I960). 44. Miyahara, K. : J. Research Inst. Cat., 11, 1 (1963). 45. Schwab, G. M. : Z. physik. chem., B32, 169 (1936). 46. Schwab, G. M.. : Z. physik. chem., 4, 148 ( 1 9 5 5 ) . — " " " " 47. Schwab, G. M. : Z. physik. chem., A171, 421 (1934). ' 48. Maxted, E. B. and Moon, C. H. :'J. Chem. Soc, 1190 (1935). 49. Palmer, D. M* and Palmer, ¥. G. : Proc. Roy. Soc, A 9 9 , . 402 (1921). 50. Pease, R. N. : J. Amer. Chem. Soc, 4J5, 1196 (1923). 51. Zur Strasseh, H : Z. physik. chem (Leipzig), A169, 81 (1934). 52. Prutton, M. : " Thin Ferromagnetic Films," London, Butterworths, 1964. 5 3 . Perry, R. H., Chilton, C. H., and Kirkpatrick, S. D . : "Chemical Engineers' Handbook',' New York, London, Toronto, McGraw-Hill, 1963. - " . 5 4 . Smith, J. M. : "Chemical Engineering Kinetics," New York, London, Toronto, McGraw-Hill, 1956. - . • 'i 55. Reid, R. C. and Sherwood, T. K. : "The Properties of Liquids and Gases," New York, London, Toronto, McGraw-Hill, 1958.-1-1 1 APPENDIX I SAMPLE CALCULATION TO- ESTIMATE THE EFFECT OF MASS TRANSFER 1-2 Run 20, measurement 1. Flow rate =9.6378x10^—Sz50les_ sec Feed gas composition: 15.71 , 84.3 % H z Reactor temperature 297°C Catalyst : alumina supported n i c k e l ; s p e c i f i c surface, area, a s, approximately =• 100 m /g^; p a r t i c l e diameter,d p, approximately = 6.8x10"^ t . area of c a t a l y s t chamber, A A=TTdl - r X | l = l . 4 2 4 x l 0 3 f t * f l o w rate, G-^_ 9 . 6 3 7 8 x l u & ^ g g l e s = 1 ; l 9 3 c l- 0 s lb-moles >53.6. K g ^ ) ( l . 4 2 4 x l 0 3 f ^ ) ; V S e C f t X v i s c o s i t y of feed gas,^m-.>: (53) = 11.96x10* ' IAT •&. 11, s e c M H i (53)= 9.20x10"' }l a e c y L W =.157(11.96x10 ) + .843(9.26x10 ) = 9.63x10 „ f ^ n ' * " s e C molecular weight of feed gas, Mm;x. M^ = . 157(28.03) •+.843(1.01) = 5.26 l h r n-lb-mole Reynold 1s Number of feed gas, Re mix (54) = ^ f e = 5 . 8 3 x 1 0 " -3 •mi-*; •2. cm molecular volume of feed gas, v, W 5 5 ) ^ 4 9 ' 4 6 ^ f e e v H j 5 4 ) = 14.3g^Sfee-^=.157(49.4)^- .843(14.3) = l 9 . 6 5 s _ m g i e 1-3 3 CTD molecular volume of CzHg(55) = 4 2 g _ m o l e dif f u s i v i t y of ethane into feed gas, Dt(54) D c = . 0 0 6 9 ( ^ ^ , a . ^ ^ = 3 . 4 7 - g -density of feed gas, ^.|X_ ^ 359?T/492) = 7.01xl0 3-^-Schmidt Number, Sc = /-W = 2.A2 mass transfer coefficient, k g(54) ,, _ 1/82 G _ 0 ^ v 1 ; 6 lb-moles  k* Re" ScV* - 2 > 9 6 x l ° f t i sec from Appendix I, run 20, measurement 1 • k = 1.846x10"* 6- m°l e a sec g£at. m* assuming specific area of catalyst, a s,= 100-g-^ * S«*. ^ .305m; — 1 846x10* * f c m 0 ^ e g • k = i . ^ b x i u Hec gc* . 3.36x10 ZIZ lb-moles clearly, k ? ^ > k APPENDIX II A. COMPUTER PROGRAM TO CALCULATE VALUES OF THE SPECIFIC REACTION RATE CONSTANT, k, AND CORRESPONDING VALUES ' OF THE RECIPROCAL TEMPERATURE, l/T 0 K"' B. RESULTS MORGAN ISN 2^ 2 FORTRAN SOURCE L I S T SOURCE STATEMENT 0 * .1 * SIBFTC ZQAA C 598 THESIS DIMENSION R ( 2 0 0 ) , F H L ( 2 0 0 ) , A ( 2 Q O ) , S R R ( 2 0 0 ) , T(2QO) 2 * DIMENSION T K ( 2 0 0 ) , T K K 2 0 0 ) , G A R ( 2 0 0 ) , 8 ( 2 0 0 ) 3 * KK = 0 4 * 13 READ 1,. BPRESS, RTEMP, UETHFR, UHFR 5 * 1 FORMAT ( 4 F 1 0 . 6 ) 6 * ETHFR = (UETHFR*BPRESS»273.2)/(RTEMP«22416.6»760.) 7 * HFR = ETHFR»UHFR/UETHFR  10 * F = ETHFR + HFR 11 * PRINT 2, ETHFR, HFR 12 * 2 FORMAT (5X, 7H ETHFR=E15.4, 5H HFR=E15.4) 13 * ' READ 3, N 15 * 3 FORMAT (12 ) 16 * FHE = HFR/F  17 20 21 26 27 PRINT 4, FHE, F FORMAT ( 5 X , 5H FHE=E15.4, 3H F=E15.4/) READ 5, ( R ( J ) , J=1,N) FORMAT ( 7 F 1 0 . 5 ) CALCULATION OF MOLE FRACTION OF HYDROGEN LEAVING DO 6 J = 1,N  30 * G A R ( J ) = ( ( l . + R ( J ) ) * H F R / E T H F R ) - R ( J ) 31 * 6 F H L U 3 = G A R ( J ) / ( l . + R ( J ) + G A R ( J ) ) 33 * PRINT 7 34 * 7 FORMAT ( 3 X , 24H MOLE FRACTION H LEAVING/) 35 * PRINT 8, ( F H L ( J ) , J=1,N) 42 * 8 FORMAT ( I X , 6F 10.4)  43 * WRITE (6, 1 8 ) 44 * 18 FORMAT{IX,//) 45 * READ 9, WT 46 * 9 FORMAT ( F 1 0 . 6 ) * C CALCULATION OF S P E C I F I C REACTION RATE CONSTANT * C GM CATALYST 47 50 51 52 54 55 10 12 DO 10 J = 1,N A ( J ) = (FHE-FHL(J))/((l.-FHL(J))»(1.-FHE)) B ( J ) = A L O G ( ( ( l . - F H L ( J ) ) * F H E ) / ( ( 1 . — F H E ) * F H L ( J ) ) ) S R R ( J ) = ( A ( J ) + B ( J ) ) * ( l . - F H E ) * F / W T PRINT 12 FORMAT ( 4 X , 36H S P E C I F I C REACTION RATE CONSTANT ( K ) / ) 56 * PRINT 1 1 , ( S R R ( J ) , J=1,N) 63 * 11 FORMAT ( 3 X , 4E 16.4) 64 * WRITE(6,20) 65 * 20 FORMAT(IX,//) 66 * READ 5, ( T ( J ) , J=1,N) 73 * DO 15 J=1,N 74 * T K ( J ) = T ( J J + 2 7 3 . 1 6 75 * 15 T K I ( J ) = 1 . / T K < J ) 77 * PRINT 16 100 * 16 FORMAT(3X, 21H INVERSE TEMPERATURES/ 101 * PRINT 17, ( T K I ( J ) , J=1,N) 106 * 17 FORMAT ( 3 X , 4E 16.4)  107 * WRITE(6,19) 110 * 19 FORMAT(IX,///) 111 * KK = KK+1 112 * IF (KK-28) 13, 14, 14 I 2-3 J.P.. MORGAN FORTRAN SOURCE ISN SOURCE STATEMENT 113 * 14 STOP 114 * END L I S T ZQA/ TI. NO MESSAGES FOR ABOVE ASSEMBLY IE 13HRS 39MIN 33.5SEC ,1 ETHFR= 0.1927E-04 HFR= FHE= 0.2170E 00 F= MOLE FRACTION H LEAVING 0.5338E-05 0.2460E-04 0.1693 0.1505 0.1297 0.1023 0.0749 RUNS 4 & 7 0.0595 0.0448 0.0491 0.0716 0.0989 0.1164 0.1302 0.0128 0.0513 0.0688 0.1000 0.1193 0.1313 0.0202 0.0508 0.0683 0. 1028 0.1233 0.1331 0.0175 0.0622 0.0771 0.1102 0.1239 0.1360 0.0212 0.0688 0.0843 0.1147 0.1273 0.1365 0.0207 0.0732 0.0966 0. 1153 0.1285 0.1342 0.1308 0.1406 0.1319 0.1313 0.1331 0.1406 0.1319 0. 1319 0.1418 0.1394 0.1337 0.1377 0.1394 0.1377 0.1331 0.1570 0.1400 0. 1383 0.1331 0.1682 0.1400 0.1354 0.1342 S P E C I F I C REACTION RATE CONSTANT (K) 0.4773E-05 0.1789E-04 0.3583E-04 0.6861E-05 0.2121E-04 0.3766E-04 0.9380E-05 0.2516E-04 0.3516E-04 0.1320E-04 0.4176E-04 0.3549E-04 0.2389E-04 0.1912E-04 0. 1924E-04 0.1372E-04 0. 1138E-04 0. 1022E-04 0.2329E-04 0. 1822E-04 0.1747E-04 0.1354E-04 0.1130E-04 0.1014E-04 0.2344E-04 0.1855E-04 0.1614E-04 0. 1311E-04 0.1114E-04 0.9690E-05 0.2057E-04 0.1912E-04 0.1407E-04 0.1202E-04 0.1075E-04 0.9542E-05 0.9321E-05 0.8525E-05 0.7891E-05 0.8031E-05 0.8312E-05 0.8884E-05 0.9174E-05 0.8812E-05 0.8171E-05 0.8031E-05 0.8668E-05 0.8956E-05 0.8956E-05 0.9248E-05 0.8101E-05 0.8171E-05 0.9102E-05 0.8956E-05 0.8597E-05 0.8956E-05 0.8101E-05 0.8383E-05 0.9102E-05 0.8812E-05 0.9174E-05 0.4894E-05 INVERSE TEMPERATURES 0.9102E-05 0.8383E-05 0.6127E-05 0.3285E-02 0.3C00E-02 0.2800E-02 0.2637E-02 0.2476E-02 0.3163E-02 0.2942E-02 0.2763E-02 0.2596E-02 0.2424E-02 0.3108E-02 0.2896E-02 0.2716E-02 0.2558E-02 0.2385E-02 0.3052E-02 0.2845E-02 0.2673E-02 0.2519E-02 0.2347E-02 0.2313E-02 0.2198E-02 0.2076E-02 0.1965E-02 0. 1854E-02 0. 1768E-02 0.22826-02 0.2166E-02 0.20416-02 0.19416-02 0. 18256-02 0.17456-02 0.22516-02 0.21406-02 0.2013E-02 0.19116-02 0.1806E-02 0.17266-02 0.22206-02 0.21086-02 0. 19906-02 0.18676-02 0.17796-02 0.17116-02 0.16886-02 0.16126-02 0.15976-02 0.1571E-02 0. 1542E-02 0.1673E-02 0.1612E-02 0. 1591E-02 0.15676-02 0.15316-02 0.16556-02 0.1605E-02 0.1583E-02 0.15576-02 0.1506E-02 0.1635E-02 0. 1600E-02 0.1578E-02 0.15526-02 0.1494E-02 2-5 • -0.1474E-02 RUN 12 ETHFR= 0.1431E-05 HFR = 0.5783E-05 FHE= 0.8017E 00 F= 0.7213E-05 MOLE FRACTION H LEAVING 0.7973 0.7976 0.7984 0.7991 0.7995 0.7996 0.7998 0.7999 0.8000 0.8000 0.8002 0.8002 0.8003 0.8003 0.8003 0.8001 0.8002 0.7995 0.7993 0.7990 0.7991 0.7988 0.7989 0.7988 0.7988 0.7993 S P E C I F I C REACTION RATE CONSTANT (K) 0.2201E-06 0.2055E-06 0.1672E-06 0.1333E-06 0.1109E-06 0.1047E-06 0.9806E-07 0.9008E-07 0.8654E-07 0.8411E-07 0.7489E-07 0.7659E-07 0.7338E-07 0.7224E-07 0.7224E-07 0.8073E-07 0.7678E-07 0.1094E-06 0.1200E-06 0.1361E-06 0.1333E-06 0.1448E-06 0.1432E-06 0.1490E-06 0.1472E-06 . 0.1196E-06 INVERSE TEMPERATURES 0.1723E-02 0.1712E-02 0.1703E-02 0.1684E-02 0.1657E-02 0.1655E-02 0.1647E-02 0.1644E-02 0.1625E-02 0.1609E-02 0.1604E-02 0.1595E-02 0.1574E-02 0.1564E-02 0.1545E-02 0.1527E-02 0.1508E-02 0.1489E-02 0.1460E-02 0.1451E-02 0.1433E-02 0.1425E-02 0.1423E-02 0.1409E-02 0.1353E-02 0.1344E-02 RUN 12 ETHFR= 0.1431E-05 HFR= 0.5783E-05 FHE= 0.8017E 00 F= . 0.7213E-05 MOLE FRACTION H LEAVING • 0.7967 0.7969 0.7969 0.7971 0.7970 0.7972 0.7973 0.7975 0.7978 0.7980 0.7985 0.7988 0.7991 0.7994 0.7997 0.7998 0.8001 0.7998 0.7995 0.7993 0.7988 0.7988 0.7990 S P E C I F I C REACTION RATE CONSTANT {K) 0.2536E-06 0.2435E-06 0.2440E-06 " 0.2338E-06 0.2362E-06 0.2269E-06 0.2209E-06 0.2127E-06 0. 1955E-06 0.1331E-06 0.8111E-07 0. 1474E-06 0.18686-06 0.1154E-06 0.9787E-07 0.1481E-06 0.1629E-06 0.10346-06 0. U 3 1 E - 0 6 0.13656-06 0.14676-06 0.9436E-07 0.1212E-06 INVERSE TEMPERATURES 0.1763E-02 0.17416-02 0.1714E-02 0.16846-02 0.1665E-02 0.1636E-02 0.1620E-02 0.1605E-02 0. 1591E-02 0.1582E-02 0. 1572E-02 0.1568E-02 0.15626-02 0.1547E-02 0.1537E-02 0.15276-02 0.15076-02 0.1474E-02 0.1456E-02 0.14396-02 0.14106-02 0.13906-02 0.13676-02 RUN 8 ETHFR= 0.47746-05 HFR= 0.58046-05 FHE= 0.54876 00 F= .0.1058E-04 MOLE FRACTION H LEAVING 0.5487 0.5268 0.5186 0.5265 0.5361 0.5407 0.5481 0.5163 0.5207 .0. 5274 0.5383 0.5433 0.5444 0.5143 0.5219 0.5288 0.5392 0.5361 0.5145 0.5231 0.5301 0.5392 0.5356 0.5157 0.5236 0.5316 0.5384 0.5316 0.5159 0.5258 0.5330 0.5378 S P E C I F I C REACTION RAT6 CONSTANT (K) 0.00006-38 0.2714E-07 0.2038E-06 0.58776-06 0.6112E-06 0.1562 6-05 0.1374E-05 0. 11526-05 0.91806-06 0.58776-06 0.79246-06 0. 1555E-05 0. 12796-05 0.10526-05 0.86016-06 0.48666-06 0.10086-05 0. 15016-05 0.12276-05 0. 1021E-05 0.79156-06 0.4465E-06 0.1472E-05 0.1491E-05 0.1174E-05 0.9834E-06 0.7298E-06 0.4456E-06 0.4821E-06 INVERSE T6MP6RATUR6S 0.50876-06 0.3737E-06 0.25396-06 0.33436-02 0.29226-02 0.2527E-02 0.22526-02 0. 1911E-02 0. 17136-02 0.32726-02 0.27776-02 0.24986-02 0.21516-02 0.18356-02 0.16826-02 0.3114E-02 0.27086-02 0.2474E-02 0.2053E-02 0.17896-02 0.1638E-02 0.29566-02 0.25956-02 0.23166-02 0.1971E-02 0.17556-02 0.15986-02 0. 15556-02 0.14326-02 0.1527E-02 0.1416E-02 0.14766-02 0.13456-02 0.14666-02 0.1298E-02 ETHFR= 0.3201E-05 HFR= 0.1159E-04 FHE= 0.7836E 00 F= 0.1479E-04 MOLE FRACTION H LEAVING RUN 9 0.7836 0.7802 0.7787 0.7802 0.7808 0.7803 0.7819 0.7800 0.7790 0.7803 0.7808 0.7804 0.7811 0.7799 0.7795 0.7804 0.7809 0.7799 0.7808 0.7798 0.7800 0.7804 0.7809 0.7788 0.7805 0.7791 0.7802 0.7805 0.7809 0.7788 0.7804 0.7788. 0.7802 0.7807 0.7804 0.7792 0.7792 0.7793 0.7800 S P E C I F I C REACTION RATE CONSTANT {K) 0.0000E-38 0.2595E-05 0.3113E-05 0.4105E-05 0.2868E-05 0.2712E-05 0.1407E-05 0.2716E-05 0.3217E-05 0.3899E-05 0.2836E-05 0.2734E-05 0.2082E-05 0.2836E-05 0.3762E-05 0.3474E-05 0.2907E-05 0.2624E-05 0.2351E-05 0.3061E-05 0.4052E-05 0.3078E-05 0.2822E-05 0.2452E-05 0.2376E-05 0.2275E-05 0.3134E-05 0.3749E-05 0.2394E-05 0.2666E-05 0.4022E-05 0.3610E-05 0.2315E-05 0.2822E-05 0.4065E-05 0.3050E-05 0.2300E-05 0.2730E-05 0.3725E-05 INVERSE TEMPERATURES 0.3334E-02 0.2800E-02 0.2353E-02 0.3121E-02 0.2678E-02 0.2226E-02 0.3061E-02 0.2613E-02 0.2131E-02 0.2925E-02 0.2485E-02 0.2081E-02 0.2015E-02 0.1716E-02 0.1610E-02 0.1570E-02 0.1530E-02 0.1460E-02 0.1931E-02 0.1689E-02 0.1601E-02 0.1557E-02 0.1503E-02 0.1418E-02 0.1834E-02 0. 1650E-02 0.1595E-02 0.1552E-02 0.1491E-02 0.1393E-02 0.1763E-02 0.1633E-02 0.1578E-02 0.1542E-02 0.1497E-02 0.1373E-02 0.1335E-02 0.1299E-02 0. 1269E-02 RUN 17 ETHFR= 0.2571E-05 HFR= 0.1522E-04 FHE= 0.8555E 00 F= MOLE FRACTION H LEAVING 0.8530 0.8537 0.8531 0.8538 0.8532 0.8540 0.1779E-04 0.8534 0.8541 0.8535 0.8541 0.8536 0.8542 0.8543 0.8546 0.8544 0.8546 0.8545 0.8545 0.8546 0.8545 0.8547 0.8544 0.8547 0.8544 2-t3 S P E C I F I C REACTION RATE CONSTANT (K) 0.3533E-05 0.3365E-05 0.3220E-05 * 0.3009E-05 0.2836E-05 0.26746-05 0.2514E-05 0.24116-05 0.21746-05 O.20O86-O5 0.19416-05 0.1865E-05 0.1642E-05 0.1530E-05 0.1462E-05 0.1351E-05 0.11346-05 0.11456-05 • 0.1228E-05 0.13296-05 0.1381E-05 0.1465E-05 0.1516E-05 0.1532E-05 INVERSE TEMPERATURES 0-1773E-02 0.1751E-02 0.1735E-02 0.1725E-02 0.17096-02 0.1695E-02 0.L682E-02 0.16696-02 0.1648E-02 0.1638E-02 0.1619E-02 0.1607E-02 0.1589E-02 0.15806-02 0.1560E-02 0.1545E-02 0.1540E-02 0.1523E-02 0.15056-02 0.1493E-02 0.1484E-02 0.14686-02 0.1455E-02 0.1440E-02 RUN 17 ETHFR= 0.25716-05 HFR= 0.1522E-04 FHE= 0.8555E 00 F= 0.1779E-04 M0L6 FRACTION H LEAVING 0.8542 0.8542 0.8543 0.8544 0.8545 0.8547 0.8547 0.8548 0.8548 0.8547 0.8546 0.8546 0.8546 0.8542 . 0.8542 0.8544 S P E C I F I C REACTION RATE CONSTANT (K) 0.1862E-05 0.1812E-05 0.1767E-05 0.16166-05 0.14496-05 0.11906-05 0.11346-05 0.10716-05 0.10436-05 0.11626-05 0.12206-05 . . 0.12696-05 0.13516-05 0.1872E-05 0.1812E-05 0.1573E-05 INVERS6 TEMPERATURES 0.1655E-02 0.1641E-02 0.1621E-02 0.1605E-02 0.15916-02 0.1574E-02 0.15646-02 0.15506-02 0.1534E-02 0.1521E-02 0.1507E-02 0.1498E-02 0.1489E-02 0.1459E-02 0.1448E-02 0.14266-02 RUN 16 6THFR= 0.23416-05 HFR= 0.1259E-04 FHE= 0.8432E 00 F= 0.14946-04 MOLE FRACTION H LEAVING 0.8412 0.8412 0.8412 0.8414 * 0.8415 0.8417 t 0.8417 0.8422 0.8421 0.8422 0.8418 0.8422 0.8421 0.8423 0.8419 0.8423 0.8419 0.8423 0.8420 0.8423 0.8420 0.8423 0.8421 0.8423 0.8421 0.8422 0.8422 0.8422 0.8422 0.8419 2-9 S P E C I F I C REACTION RATE CONSTANT (K) 0.2263E-05 0.1959E-05 0. 1473E-05 0.2263E-05 0.1757E-05 0. 1379E-05 0.2212E-05 0. 1662E-05 0. 1246E-05 0. 1992E-05 0.1572E-05 0.1218E-05 0. 1153E-05 0.1051E-05 0.1473E-05 0. 1115E-05 0.1208E-05 0.1120E-05 0.1178E-05 0.1349E-05 0.1007E-05 0.1476E-05 0.1030E-05 0.1281E-05 0.1304E-05 0. 1025E-05 0.1051E-05 0.1326E-05 0.1218E-05 0.1033E-05 INVERSE TEMPERATURES 0. 1717E-02 0.1686E-02 0.1717E-02 0.1673E-02 0.1709E-02 0.1655E-02 0.1695E-02 0.1649E-02 0. 1634E-02 0. 1588E-02 0.1537E-02 0. 1463E-02 0.1579E-02 0.1688E-02 0.1619E-02 0.1581E-02 0.1516E-02 0.1498E-02 0.1606E-02 0.1742E-02 0.1608E-02 0. 1563E-02 0.1500E-02 0. 1517E-02 0.1630E-02 0.1599E-02 0.1548E-02 0.1488E-02 0.1545E-02 0.1651E-02 RUN 1 ETHFR= 0.1888E-705 HFR= O.5823E-05 FHE= 0.7552E 00 F= 0.7711E-05 MOLE FRACTION H LEAVING 0.7537 0.7535 0.7537 0.7534 0.7537 0.7532 0.7537 0.7530 0.7536 0.7529 0.7535 S P E C I F I C REACTION RATE CONSTANT {K) 0.4189E-07 0.4393E-07 0.4063E-07 0.4597E-07 0.4268E-07 0.4659E-07 0.4236E-07 0.4909E-07 0.5499E-07 INVERSE TEMPERATURES 0.6055E-07 0.6300E-07 0.3133E-02 0.2754E-02 0.2420E-02 0.3038E-02 0.2624E-02 0.2341E-02 0.2940E-02 0.2570E-02 0.2267E-02 0.2856E-02 0.2493E-02 2-10 RUN 2 £THFR=, 0.5207E-05 HFR= 0.1163E-04 FHE= 0.6908E 00 F= 0.1684E-04 MOLE FRACTION H LEAVING 0.6895 0.6866 0.6844 0.6743 0.6661 0.6618 S P E C I F I C REACTION RATE CONSTANT (K) • 0.6554E-07 0.2094E-06 0.3187E-06 0.8015E-06 0.1174E-05 . 0.1367E-05 INVERSE TEMPERATURES 0.3299E-02 0.3114E-02 0.3075E-02 0.2948E-02 0.2897E-02 0.2848E-02 RUN 3 ETHFR= 0.2952E-05 HFR= 0.6095E-05 FHE= 0.6737E 00 F= 0.9047E-05 MOLE FRACTION H LEAVING 0.6722 0.6472 0.6056 0.5346 0.5230 S P E C I F I C REACTION RATE CONSTANT {K) 0.3841E-07 0.6670E-06 0.1582E-05 0.2883E-05 0.3073E-05 INVERSE TEMPERATURES 0.3332E-02 0.2984E-02 0.2897E-02 0.2824E-02 0.2739E-02 RUN 6 £THFR= 0.1102E-04 HFR= 0.5041E-04 FHE= 0.8207E 00 F= 0.6143E-04 MOLE FRACTION H LEAVING 0.8199 0.8193 0.8177 0.8155 0.8120 0.8063 0.7963 0.7845 0.7822 > 2-11 S P E C I F I C REACTION RATE CONSTANT (K) 0.2089E-06 0.3780E-06 0.7927E-06 0.1368E-O5 0.2237E-05 0.3621E-05 0.5885E-05 0.8305E-05 0.8/49E-05 INVERSE TEMPERATURES 0.3365E-02 0.3304E-02 0.3227E-02 0.3181E-02 0.3140E-02 0.3100E-02 0.3039E-02 0.2965E-02 0.2920E-02 RUN I ETHFR= 0.1492E-04 HFR= 0.5928E-04 FHE= 0.7989E OO F= 0.7421E-04 * \ MOLE FRACTION H LEAVING 0.7847 0.7849 0.7857 0.7866 0.7876 0.7901 72 97 39 919 909 130.7920 0.7913 0.7916 S P E C I F I C REACTION RATE CONSTANT {K) 0.4034E-05 0.3973E-05 0.3747E-05 0.3515E-05 0.3250E-05 0.2550E-05 0.3349E-05 0.2657E-05 0.4240E-05 0.2033E-05 0.2322E-05 0.2208E-05 0.2011E-05 0.2225E-05 0.2134E-05 INVERSE TEMPERATURES 0.3173E-02 0.2966E-02 0.2872E-02 0.2769E-02 0.2702E-02 0.2531E-02 0.2432E-02 0.2363E-02 0.2277E-02 0.2217E-02 0.2150E-02 0.2074E-02 0.2007E-02 0.1968E-02 0.1911E-02 RUN J ETHFR= 0.4313E-05 HFR= 0.6288E-05 FHE= 0.5932E 00 F= 0.1060E-04 MOLE FRACTION H LEAVING 0.5711 0.5718 0.5744 0.5730 0.5718 0.5733 0.5729 0.5752 0.5753 0.5761 0.5753 0.5739 0.5767 0.5775 0.5784 0.5791 0.5823 0.5829 0.5838 0.5865 0.5885 0.5891 0.5895 0.5907 0.5920 0.5912 0.5917 0.5917 , 0.5915 0.5909 0.5910 0.5913 0.5918 0.5918 0.5918 0.5919 0.5917 0.5915 S P E C I F I C REACTION RATE CONSTANT (K) 0.6099E-06 0.5893E-06 0.4954E-06 0.4587E-06 0.3038E-06 0. 1324E-Q6 0.5911E-06 0.5497E-06 0.4753E-06 0.4355E-06 0.2868E-06 0. 1153E-06 0.5196E-06 0.5596E-06 0.4969E-06 0.4117E-06 0.2634E-06 0.1034E-06 0.5589E-06 0.4981E-06 0.5339E-06 0.3926E-06 0.1872E-06 0.6900E-07 0.3341E-07 0.4706E-07 0.3826E-07 0.4017E-07 0.5472E-07 0.6526E-07 0.3975E-07 0.4608E-07 0.4255E-07 0.6013E-07 0.3892E-07 0.4017E-07 0.5272E-07 0.3635E-07 INVERSE TEMPERATURES 0.1763E-02 0.1674E-02 0. 1625E-02 0.1747E-02 0.1661E-02 0.1614E-02 0.1697E-02 0.1653E-02 0.1606E-02 0.1683E-02 0.1639E-02 0.1594E-02 0. 1581E-02 0. 1536E-02 0. 1468E-02 0.1440E-02 0. 1398E-02 0. 1339E-02 0.1569E-02 0.1522E-02 0.1461E-02 0.1443E-02 0.1430E-02 0.1327E-02 0.1555E-02 0.1510E-02 0.1472E-02 0.1365E-02 0.1413E-02 0.1317E-02 0.1546E-02 0. 1476E-02 0.1463E-02 0.1371E-02 0.1381E-02 0. 1296E-02 0.1245E-02 0.1185E-02 -RUN N ETHFR= 0.1301E-05 HFR= 0.1265E-04 FHE = 0.9067E 00 F= MOLE FRACTION H LEAVING 0.9053 0.9055 0.9055 0.9055 0.9056 0.9055 0.1395E-04 0.9055 0.9057 0.9056 0.9055 0.9054 0.9058 0.9058 0.9057 0.9058 0.9057 0.9058 0.9059 0.9058 0.9059 0.9053 0.9062 0.9057 S P E C I F I C REACTION RATE CONSTANT (KJ 0.1450E-06 0. 1203E-06 0.1285E-06 0.9868E-07 0.1484E-06 0.1328E-06 0.1333E-06 0.1072E-06 0.9621E-07 0.1036E-06 0.1194E-06 0.1286E-06 0.1308E-06 0.9666E-07 0.1104E-06 0.1240E-06 0.1304E-06 0.9327E-07 0.9868E-07 0.1017E-06 0.8455E-07 0.8416E-07 0.5100E-07 INVERSE TEMPERATURES 2-13 0.1751E-02 0.1735E-02 0.17L7E-02 0.1710E-02 0.1690E-02 0.1684E-02 0.1675E-02 0.1662E-02 0.1651E-02 0.1640E-02 0.1631E-02 0.1614E-02 0.1605E-02 0.1594E-02 0-1577E-02 0.1565E-02 0.1565E-02 0.1554E-02 0.1549E-02 0.1541E-02 0.1533E-02 0.1522E-02 0.1503E-02 RUN P ETHFR= 0.1544E-05 HFR = 0.4340E-05 FHE= 0.7376E 00 F= 0.5884E-05 MOLE FRACTION H LEAVING 0.7199 0.7200 0.7181 0.7220 0.7235 0.7230 0.7240 0.7225 0.7219 0.7201 0.7204 0.7220 0.7226 0.7234 0.7152 0.7227 0.7233 0.7222 0.7205 S P E C I F I C REACTION RATE CONSTANT (K) 0.3308E-06 0.3291E-06 0.3636E-06 0.2941E-06 0.2660E-06 0.2758E-06 0.2569E-06 0.2846E-06 0.2959.E-06 0.3275E-06 0.3226E-06 0.2941E-06 0.2829E-06 0.2678E-06 0.4141E-06 0.2802E-06 0.2696E-06 0.2898E-06 0.3202E-06 INVERSE TEMPERATURES 0.1735E-02 0.1714E-02 0.1697E-02 0.1678E-02 0.1671E-02 0.1660E-02 0.1645E-02 0.1634E-02 0.1631E-02 0.1634E-02 0.1614E-02 0.1596E-02 0.1581E-02 0.1576E-02 0.1565E-02 0.1552E-02 0.1544E-02 0.1527E-02 0.1512E-02 RUN- 10 ETHFR= 0.1957E-04 HFR= 0.5421E-05 FHE= 0.2170E 00 F= 0.2499E-04 MOLE FRACTION H LEAVING 0.2017 0.1969 0.1875 0.1691 0.1614 0.1562 0.1558 0.1563 ^ 0.1584 0.1617 0.1627 0.1633 0.1650 0.1657 0.1659 0.1688 0.1698 0.1727 0.1739 0.1701 0.1729 0.1753 0.1761 0.1751 0.1755 0.1743 0.1751 0.1749 0.1727 0.1694 0.1672 0.1656 0.1654 0.1608 0.1596 0.1603 0.1605 0.1626 0.1676 0.1726 S P E C I F I C REACTION RATE CONSTANT (K) 0.1490E-05 0.5723E-05 0.6055E-05 0.5322E-05 0. 1967E-05 0.6310E-05 0. 5683E-05 0.5237E-05 0.2922E-05 0.6350E-05 0.5571E-05 0.5217E-05 0.4867E-05 0.6296E-05 0.5505E-05 0.4905E-05 0.4796E-05 0.4455E-05 0.4174E-05 0.4481E-0 5 0.5269E-05 0.5816E-05 0.4474E-05 0.4194E-05 0.4308E-05 0.4834E-05 0.5789E-05 0.5584E-05 0.4346E-05 0.411LE-05 0.4219E-05 0.5080E-05 0.5922E-05 0.5035E-05 0.4757E-05 0.4219E-05 0.4238E-05 0.5250E-05 0.5842E-05 0.4487E-05 INVERSE TEMPERATURES 0.3354E-02 0.3256E-02 0.3175E-02 0.3107E-02 0.3057E-02 0.2848E-02 0.2606E-02 0.2377E-02 0.2211E-02 0.2217E-02 0.3028E-02 0.2784E-02 0.2547E-02 0.2328E-02 0.2161E-02 0.2271E-02 0.2975E-02 0.2730E-02 0.2499E-02 0.2288E-02 0.2118E-02 0.2314E-02 0.2932E-02 0.26"69E-02 0.2426E-02 0.2252E-02 0.2187E-02 0.2373E-02 0.2453E-02 0.2676E-02 0.2942E-02 0.2493E-02 0.2761E-02 0.3017E-02 0.2573E-02 0.2796E-02 0.3082E-02 0.2630E-02 0.2865E-02 0.3143E-02 RUN 13 ETHFR-= 0.1620E-05 HFR= 0.5994E-05 FHE= 0.7872E 00 F= 0.7614E-05 MOLE FRACTION H LEAVING 0.7833 0.7845 0.7853 0.7857 0.7854 0.7836 0.7846 0.7854 0.7856 0.7851 0.7837 0.7848 0.7854 0.7858 0.7847 0.7839 0.7849 0.7855 0.7858 0.7840 0.7841 0.7850 0.7855 0.7858 0.7838 0.7844 0.7851 0.7856 0.7857 0.7835 S P E C I F I C REACTION RATE CONSTANT (K) 0. 1136E-06 0.9144E-07 0.1055E-06 0.8250E-07 0.1044E-06 0.8143E-07 0.9841E-07 0.7595E-07 0.7018E-07 0.5800E-07 0.4997E-07 0.4321E-07 0.5369E-07 0. 1005E-06 0.6970E-07 0.5529E-07 0.4872E-07 0.4271E-07 0.6132E-07 0.1092E-06 0.6473E-07 0.5381E-07 0.4610E-07 0.4359E-07 0.7547E-07 0.6180E-07 0.5233E-07 0.4685E-07 0.4560E-07 0.9400E-07 INVERSE TEMPERATURES 0. 1733E-02 0. 16806-02 0.16416-02 0. 1605E-02 0.1571E-02 0. 1534E-02 0. 1720E-02 0.1675E-02 0.16306-02 0.1600E-02 0.15646-02 0. 1526E-02 0. 1703E-02 0.1657E-02 0.1622E-02 0. 1585E-02 0.1555E-02 0. 1513E-02 0.1696E-02 0.1649E-02 0. 1610E-02 0.1581E-02 0. 1545E-02 0.1561E-02 2 - 1 5 0.1604E-02 0.1716E-02 0.1633E-02 0.1745E-02 0. 1662E-02 0.17016-02 RUN 1 1 ETHFR= 0.1258E-04 HFR= FHE= 0.76286 00 F= MOLE FRACTION H LEAVING 0.4046E-04 0.53046-04 0.7423 0.7435 0.7439 0.7448 0.7460 0.7461 0.7475 0.7502 0.7518 0.7529 0.7534 0.7527 0.7479 0.7502 0.7520 0.7531 0.7537 0.7530 0.7487 0.7503 0.7522 0.7527 0.7535 0.7531 0.7487 0.7513 0.7530 0.7534 0.7534 0.7525 0.7496 0.7510 0.7525 0.7536 0.7537 0.7527 0.7497 0.7516* 0.7528 0.7533 0.7534 S P E C I F I C REACTION RAT6 CONSTANT (K) 0.20266-05 0.19176-05 0.1874E-05 0.1794E-05 0.1683E-05 0.1418E-05 0.1279E-05 0.1195E-05 0. 1083E-05 0.1009E-05 0.1670E-05 0.14256-05 0.12796-05 0.11446-05 0.1005E-05 0.9880E-06 0.15396-05 0.13356-05 0. 1271E-05 0.11206-05 0. 1051E-05 0.1030E-O5 0.1498E-05 0.1327E-05 0.11716-05 0.1104E-05 0.1026E-05 0.9584E-06 0.9455E-06 0.9498E-06 0.1034E-05 0.1034E-05 0.9754E-06 0.9584E-06 0.1001E-05 0.9669E-06 0.9326E-06 0.9923E-06 0.93696-06 0.9626E-06 0.1046E-05 INVERSE TEMPERATURES 0.1867E-02 . 0.1779E-02 0.1680E-02 0.1838E-02 0.1757E-02 0.1671E-02 0.1808E-02 0.1715E-02 0.1657E-02 0.1789E-02 0.1702E-02 0. 1646E-02 0.1635E-02 0. 15966-02 0.1559E-02 0.1522E-02 0.1555E-02 0.1692E-02 0.1624E-02 0.1586E-02 0.1546E-02 0.1496E-02 0.15836-02 0.17256-02 0.1614E-02 0.15766-02 0.1539E-02 0.1485E-02 0.1624E-02 0.1752E-02 0.1606E-02 0.1571E-02 0.1530E-02 0.1535E-02 0. 1646E-02 0.1479E-02 0.1472E-02 0.14166-02 0.14636-02 0.14476-02 0.1434E-02 2-16 RUN T1 ETHFR= 0.3681E-05 HFR= 0.5420E-04 U 1 M 1 FHE= 0.9364E 00 F= 0.5788E-04 MOLE FRACTION H LEAVING 0.9348 0.9348 0.9348 0.9349 0.9349 0.9349 0.9349 0.9350 0.9350 . 0.9351 0.9351 0.9352 0.9352 0.9353 0.9354 0.9354 0.9355 0.9355 0.9355 0.9339 0.9345 0.9344 0.9344 0.9344 0.9337 0.9332 S P E C I F I C REACTION RATE CONSTANT IK) 0.1134E-05 0.1123E-05 0.1138E-05 0.1109E-05 0.1101E-05 0.1092E-05 0.1069E-05 0.1025E-05 0.9947E-06 0.9690E-06 0.9084E-06 0.8996E-06 0.8456E-06 0.7903E-06 0.7607E-06 0.7114E-06 0.6580E-06 0.6191E-06 0.6580E-06 0.1767E-05 0.1367E-05 0.1450E-05 0.1450E-05 0.1450E-05 0.1885E-05 0.2264E-05 INVERSE TEMPERATURES 0.1795E-02 0.1776E-02 0.1757E-02 0.1741E-02 0.1729E-02 0.1712E-02 0.1692E-02 0.1681E-02 0.1669E-02 0.1653E-02 0.1633E-02 0.1619E-02 0.1610E-02 0.1590E-02 0.1586E-02 0.1581E-02 0.1568E-02 0.1547E-02 0.1541E-02 0.1526E-02 0.1512E-02 0.1503E-02 0.1499E-02 0.1468E-02 0.14426-02 0.1392E-02 RUN 14 ETHFR= 0.5663E-05 HFR= 0.1577E-04 FHE= 0.7357E 00 F= 0.2143E-04 MOLE FRACTION H LEAVING 0.6724 0.6768 0.6856 0.6977 0.7023 0.7085 0.7137 0.7160 0.7229 0.7248 0.7264 0.7276 0.7290 0.7306 0.7313 0.7325 0.7329 0.7332 0.7336 0.7340 0.7343 0.7346 0.7348 0.7352 S P E C I F I C REACTION RATE CONSTANT (K) ' j 0.1191E-04 0.1120E-04 ' 0.9734E-05 0.7618E-05 0.6793E-05 0.56276-05 0.4606E-05 0.4170E-05 0.2765E-05 0.2359E-05 0.2027E-05 0.1766E-05 0.1480E-05 0.1137E-05 . 0.9776E-06 0.7108E-06 0.6304E-06 0.5550E-06 0.4671E-06 0.3871E-06 0.3214E-06 0.2628E-06 0.2189E-06 0.1189E-06 2-17 INVERSE TEMPERATURES 0.1748E-02 0.1736E-02 0 . I 7 2 1 E - 0 2 0.1708E-02 0.1697E-02 0.1645E-02 0.1569E-02 0.1511E-02 0.1419E-02 0.1678E-02 0.1622E-02 0.1555E-02 0.1494E-02 0.1398E-02 0.1670E-02 0.1610E-02 0.1529E-02 0.1470E-02 0.1384E-02 0. 1659F-02 0.1602E-02 0.1521E-02 0.1444E-02 0.1349E-02 RUN 15 ETHFR= 0.4539E-05 HFR= FHE= 0.7744E 00 F= 0.1558E-04 0.2012E-04 MOLE FRACTION H LEAVING 0.7230 0.7430 0.7588 0.7670 0.7730 0.7242 0.7468 0.7611 0.7688 0.7265 0.7504 0.7629 0.7698 0.7296 0.7522 0.7641 0.7710 0.7343 0.7539 0.7646 0.7716 0.7387 0.7563 0.7659 0.7722 S P E C I F I C REACTION RATE CONSTANT (K) 0.2807E-05 0.2268E-05 0.1429E-05 0.9544E-06 0.6113E-06 0.2942E-06 0.2752E-05 0.2045E-05 0.1334E-05 0.8201E-06 0.5347E-06 0.2157E-06 0.2647E-05 0. 1827E-05 0. 1235E-05 0.7166E-06 0.4690E-06 0. 1775E-06 0.2496E-05 0.1627E-05 0.1103E-05 0.6466E-06 0.3570E-06 0.1411E-06 0.8985E-07 INVERSE TEMPERATURES 0. 1760E-02 0.1672E-02 0. 1626E-02 0.1555E-02 0.1503E-02 0.1391E-02 0.1730E-02 0.1658E-02 0.1603E-02 0.1539E-02 0.1487E-02 0.1376E-02 0.1713E-02 0.1651E-02 0.1585E-02 0.1531E-02 0.1467E-02 0.1363E-02 0.1687E-02 0.1637E-02 0.1577E-02 0.1516E-02 0.1416E-02 0.1349E-02 0. 1272E-02 RUN 21 ETHFR= 0.4055E-05 HFR= 0.1601E-04 FHE= 0.7980E 00 F= MOLE FRACTION H LEAVING . 0.7945 0.7945 0.7947 0.2007E-04 0.7949 0.7952 0.7953 2 - 1 8 0.7954 0.7956 0.7958 0.7961 0.7962 0.7963 0.7964 0.7966 0.7966 0.7967 0.7967 0.7968 0.7968 0.7969 0.7970 0.7970 0.7971 0.7972 0.7974 S P E C I F I C REACTION RATE CONSTANT IK) 0.4237E-06 0.4220E-06 0.3998E-06 0.3756E-06 0.3340E-06 0.3225E-06 0.3127E-06 0.2895E-06 0.2646E-06 0.2303E-06 0.2109E-06 0.1979E-06 0.1923E-06 0.1716E-06 0.1688E-06 0.1570E-06 0.1499E-06 0.1379E-06 0.1370E-06 0.1322E-06 0.1236E-06 0.1139E-06 0.1033E-06 0.8848E-07 0.6322E-07 INVERSE TEMPERATURES 0.1760E-02 0.1742E-02 0.1709E-02 0.1690E-02 0.1660E-02 0.1648E-02 0.1641E-02 0.16266-02 0.1607E-02 0.15826-02 0.15616-02 0.15476-02 0.15356-02 0.15136-02 0.14996-02 0.1476E-02 0.14596-02 0.1442E-02 0.1431E-02 0.1412E-02 0.1384E-02 0.1365E-02 0.1346E-02 0.1291E-02 0.12386-02 ' RUN 2 2 ETHFR= . 0.36986-05 HFR= 0.1619E-04 FHE= 0.8140E 00 F= 0.1989E-04 MOLE FRACTION H LEAVING 0.8134 0.8131 0.8130 0.8128 0.8056 0.7887 0.7816 0.7803 0.7794 0.7793 0.7795 . 0.7802 0.7809 0.7810 0.7823 0.7833 0.7868 0.7929 0.7971 0.7998 0.8022 0.8049 0.8090 S P E C I F I C REACTION RATE CONSTANT (K) 0.3641E-07 0.4961E-07 0.5601E-07 0.6990E-07 0.4426E-06 0.1233E-05 0.1533E-05 0.1585E-05 - -0.1619E-05 0.1623E-05 0.1614E-05 0.1588E-05 0.1560E-05 0.1556E-05 0.1501E-05 0.1459E-05 0.1313E-05 0.1044E-05 0.8525E-06 0.7240E-06 0.6087E-06 0.4784E-06 0.2673E-06 INVERSE TEMPERATURES 0.3377E-02 0.2931E-02 0.2812E-02 0.2723E-02 0.2652E-02 0.2471E-02 0.2304E-02 0.2242E-02 0.2212E-02 0.2147E-02 0.2099E-02 0.1952E-02 0.1877E-02 0.1842E-02 0.1782E-02 0.1715E-02 0.1655E-02 0.1595E-02 0.1542E-02 0.1454E-02 0.1403E-02 0.1319E-02 0.1252E-02 2-19 RUN 18 ETHFR= 0.2227E-05 HFR= FHE= 0.8702E 00 F= MOLE FRACTION H LEAVING  0.1493E-04 0.1715E-04 0.8693 0.8697 0.8696 0.8692 0.8695 0.8694 0.8697 0.8696 0.8690 0.8694 0.8697 0.8695 0.8691 0.8695 0.8697 0.8695 0.8692 0.8695 0.8697 0.8694 0.8693 0.8696 0.8696 0.8693 0.8694 S P E C I F I C REACTION RATE CONSTANT (K) 0.1573E-05 0.1466E-05 0.1358E-05 0.1221E-05 0.1171E-05 0.8664E-06 0.1032E-05 0. 1416E-05 0.1947E-05 0.1311E-05 0.1032E-05 0.9209E-06 0.1123E-05 0.1568E-05 0.1772E-05 0.9752E-06 0.9266E-06 0.1207E-05 0.1740E-05 0.1587E-05 0.9295E-06 0.9809E-06 0.1210E-05 0.2093E-05 0.1347E-05 INVERSE TEMPERATURES 0. 1750E-.02 0. 1718E-02 0.1688E-02 0.1655E-02 0.1642E-02 0.1563E-02 0.1499E-02 0.1438E-02 0.1333E-02 0.1270E-02 0.1624E-02 0.1544E-02 0.1486E-02 0.1416E-02 0.1312E-02 0.1603E-02 0. 1531E-02 0.1467E-02 0.1391E-02 0.1295E-02 0.1583E-02 0.1515E-02 0.1461E-02 0.1349E-02 0.1290E-02 RUN 19 ETHFR= 0.3370E-05 HFR= 0.1406E-04 FHE= 0.8066E 00 F= 0.1743E-04 MOLE FRACTION H LEAVING 0.8043 0.8053 0.8051 0.8044 0.8053 0.8049 0.8046 0.8054 0.8046 0.8048 0.8054 0.8044 0.8050 0.8053 0.8043 0.8052 0.8052 0.8041 0.8041 0.8042 0.8042 0.8043 0.8048 0.8049 S P E C I F I C REACTION RATE CONSTANT {K) 0.3658E-05 0.25646-05 0.2025E-05 0.24406-05 0.36906-05 0.3516E-05 0.2355E-05 0.20256-05 0.2727E-05 0.40086-05 0.33146-05 0.21166-05 0.21166-05 0.3171E-05 0.40356-05 0.2944E-05 0.2082E-05 0.2264E-05 0.3516E-05 0.3831E-05 0.3852E-05 INVERSE TEMPERATURES 0.3674E-05 0.2888E-05 0.2794E-05 0.1760E-02 0.1634E-02 0. 1560E-02 0.1490E-02 0.14106-02 0. 1302E-02 0.1727E-02 0.1607E-02 0.15506-02 0.1466E-02 0.1365E-02 0.1279E-02 0.1708E-02 0.1586E-02 0.1526E-02 0.1452E-02 0.1351E-02 0. 1256E-02 0.1681E-02 0.1574E-02 0.1502E-02 0.1426E-02 0.13266-02 0.1234E-02 RUN 23 ETHFR= 0.24906-05 HFR = 0.1767E-04 FHE= 0.8765E 00 F= 0.2016E-04 MOLE FRACTION H LEAVING 0.8762 0.8764 0.8761 0.8763 0.8764 0.8760 0.8763 0.8764 0.8759 0.8763 0.8763 0.8757 0.8763 0.8763 0.8757. 0.8764 0.8761 0.8756 S P E C I F I C REACTION RAT6 CONSTANT (K) 0.9618E-06 0.78406-06 0.7390E-06 0.6270E-06 0.5489E-06 0.5210E-06 0.1363E-05 0.2562E-05 0.5168E-06 0.58546-06 0. 1736E-05 0.2799E-05 0.4969E-06 0.7072E-06 0.2051E-05 0.5025E-06 0.11616-05 0.2490E-05 INVERSE TEMPERATURES 0.1278E-02 0.1307E-02 0.1320E-02 0.1342E-02 0.1374E-02 0.1401E-02 0.14226-02 0.14466-02 0. 14706-02 0. 15066-02 0.15386-02 0. 1601E-02 0.1621E-02 0.1660E-02 0.1695E-02 0.1741E-02 0.17636-02 0.1811E-02 RUN 20 ETHFR= 0.1517E-05 HFR= 0.8120E-05 FHE= 0.8426E 00 F= 0.9638E-05 M0L6 FRACTION H LEAVING 2-21 0.8397 0.8398 0.8400 0.8401 0.8402 0.84.03 0.8405 . 0.8407 0.8408 0.8407 0.8405 0.8405 0.8403 0.8402 0.8401 0.8399 0.8396 0.8393 0.8391 0.8397 0.8396 0.8400 0.8399 0.8397 S P E C I F I C REACTION RATE CONSTANT (K) 0.2907E-05 0.2787E-05 0.2603E-05 0.2468E-05 0.2354E-05 0.2276E-05 0.2075E-05 0.1875E-05 0.1760E-05 0.1851E-05 0.2063E-05 0.2037E-05 0.2224E-05 0.2358E-05 0.2445E-05 0.2652E-05 0.2994E-05 . 0.3290E-05 0.3457E-05 0.2891E-05 0.2911E-05 . 0.2544E-05 0.2650E-05 0.2907E-05 t INVERSE TEMPERATURES 0.1754E-02 0.1720E-02 0.1672E-02 0.1658E-02 0.1646E-02 ' 0.1636E-02 0.1616E-02 0.1591E-02 0.1562E-02 0.1555E-02 0.1515E-02 0.1502E-02 0.1488E-02 0.1467E-02 0.1455E-02 0.1414E-02 0.1391E-02 0.1366E-02 0.1345E-02 0.1330E-02 0.1292E-02 0.1283E-02 0.1240E-02 0.1210E-02 - - - • TIM E 13HRS 41MIN 55.9SEC • - • • • • " - • • -• • -3-1 APPENDIX III ORIGINAL DATA (' RELATIVE AREAS OF THE METHANE, ETHANE, AND ETHYLENE CHROMATOGRAPH PEAKS; REACTOR . TEMPERATURES ) TO i i , f l o w r a t e = .145 em 3 / ssc C t H«. f l o w r a t © ' = , 0 4 7 cmJ'Gec ^ ® 1 C a t a l y s t : fciekel powder Barom. V e i g b l t 1 , 5135 6 . ^ o x a t p r e s s . - 755.6 e » p . = 2 8 . 5 ° C supposes. 2*o o b s e r v e th© shape o f t h e r e a c t i o n r a t e o v e r a «i&© t e m p e r a t u r e r a n s © ©urv© ©sssnt CH^. a r e a • C^H 6 a r e a e^H .^ a r e a 1 .a • 4 5 6 f S 10 11 12 13 ' 14 15 i s 17 18 19 2® 23 24 25 26 27 28 29 30 «». 85 4 0 • • • 63 SO 60 43 55 4 0 5 0 50 §0 50 go . 50 100 00 84 100 4 4 0 • 990 1760 2400 2700 2855 2875 3 1 0 0 3025 3075 3000 1 5 5 0 ' ' 1548 1545 ' • 1595 1635 1660 1792 1775 1935 2090 2405 2420 2320 2450 2650 2340 2500 2320 24fO 2640 2330 1370 710 4 2 0 270 215 140 110 8 0 70 55500 58000 59860 58600 60600 • 59200 61000 59300 61200 58800 60750 50650 60550 , 57900 60800 57650 57750 56700 59250 5555® 5755© 534G0 57000 5600© §68(50 55650 56000 55000 5600O 54200 3© 4 6 56 67 77 90 im 116 128 140 154 168 168 182 197 212 228 241 252 296 3 1 0 3 2 6 340 351 359 3 7 3 386 403 4 2 2 484 # Th® air and a@than© p&Bte® were apt y e t s e p a r a t e d 3*3 Hj, flow rate = .'286 cm/ sec C2.H4 flow rate = .128 cni/aec Date.i June 26/65 RUN 2 CatalystJ nickel powder Weight - 1.5647 s Barom.. press; =.755.9 ?mm.. Room t emp. = « 24.8 ?G Purposes To try, to observe the effect of a magnetic f i e l d on the reaction rate. Measur-ement 1 2 3 4 5 6 7 8 CH4 area C^H^ area 0 ^ 4 area T °C 325 23650 30 1055 23300 48 1585 22425 52 4160 21200 66 (5000 gauss) , 6250 19825 72 7475 19400 78 7150 21575 84 7275 20250 91 RUN 3 H'2 flow rate = .6989 cm3/sec G%H^. flow rate =.135 cm 3/ s e c Date: July 4/65 Catalyst: nickel powder Weight = 1*5381 g Barom. press.= 758.6 mm< Room temp. = 29 °C Purpose: To study the shape of the reaction rate curve over a wide temperature range. Measur- CH^ area C^ Hfe area C^H^ area rt _ ement T C mm 295 21600 27 2 - 6000 20100 62 3 - 14300 12725 72 4 - 31500 • 2900 81 5 . - 39300 130 92 6 -• 20850 30 301 7 25 30500 265 306 8 35 34000 855 313 9 40 33100 1090 318 10 90 34800 1660 323 11 90 35600 2685 329 12 70 36200 3550 332 13 40 11400 17900 341 14 30 13000 10500 346 15 30 11550 21300 349 16- 60 11100 19600 333 17 100 ! 8450 21200 358 18 170 : 10600 21800 366 19 140 7600 21400 371 20 170 7200 22300 376 '' 370 7600 22800 392 as 92©. 6550 23600 . 396 23 245© 4800 23500 402 .24 4100 2350 1910,0 412 25 4000 1600 20700 422 26 4900 835 22550 432 27 • 4100 375 23450 444 . 28 4600 260 23600 461 29 385© 140 23050 465 30 . 3550 100 23850 . 476 31 3950 60 24130 490 32. 3350 40 25100 509 raras ,49 7 •' H z flow rat© -- .133 em/'sec C zK n flow rate - .480 cm'/sec Dates July 26/65 Catalyst,? nickel powder1 Barom. press. = 753.4 mm Weight 1.1.5362 s Room temp. = 27.8*0 Purpose J To observe th© shape of the resctlosi rate curve over a wid© temperatur© range. M e a s u r e CH^ . area C^HU area C_,H4 area 1 50 3460 43700 31.3 2 50 4875 43900 43.0 3 50 • 5875 40000 48.6 4 50 8250 42300 g4.5 S 50 10000 41000 60.2 6 50 10900 40100 66.7 7 50 11975 40000 72.2 8 50 14600 40700 78.3 9 SO 13850 40250 84.0 10 50 14400 41150 88.0 I t 50 13850 40400 95.0 12- 50 14000 40700 101.0 13 50 11900 40850 106.0 14 50 11800 41050 112.1 15 50 11850 41100 117.3 16 50 11050 41450 • 123.9 17 50 10150 39870 130.7 18 so 10300 41650 139.4 19 50 10300 41250 146.2 20 50 10600 41650 133.0 21 50 10300 4O150 159.2 165.0 22 SO 16050 41850 23 50 . 9350 ,41100 171.0 24 50 8900 41350 177.2 25 50 8 4 0 0 4 1 9 0 0 1 8 1 . 9 2 6 50 0 4 5 0 4 2 5 0 0 1 8 3 o 5 2 7 50 7 8 2 5 4 0 2 5 0 ' 1 9 4 „ 1 2 6 5 0 7 2 7 5 4 0 2 5 0 201 • 2 29 5 0 7200 4 1 5 5 0 2 0 3 e 5 30 50 7 2 5 0 4 2 1 0 0 2 1 6 o 8 3 1 50 7 0 0 0 4 1 0 5 0 2 2 3 . 7 3 2 5 0 . 6 9 2 5 . 4 2 0 0 0 2 2 9 . 3 33 50 6 6 2 5 4 2 1 0 0 4 1 9 5 0 2 4 2 o 0 3 * 50 . 6 6 2 5 2 3 5 o 8 3 5 5 0 6 3 5 0 4 2 1 0 0 2 5 0 0 2 2 6 2 * 6 3 6 3 7 50 6 2 2 5 4 1 7 5 0 -50 . 6 1 7 5 4 2 2 0 0 2 6 6 . 2 33 5 0 6 1 7 5 4 2 7 0 0 2 7 4 , 7 39 5 0 6 0 0 0 4 2 3 0 0 280.5 4 0 50 5725 4 2 0 0 0 2 8 9 . 1 4 1 50 1 5 6 0 0 4 1 5 5 0 2 9 2 . 5 4 2 50 5750 4 1 3 0 0 2 9 9 . 9 4 3 - 50 5 9 7 5 4 1 1 5 0 306.2 44 5 0 - . 5 8 2 5 4 1 3 0 0 3 1 1 . 3 45 50 • 5 2 6 0 4 1 7 0 0 3 1 9 . 1 4 6 . 50 5 4 7 5 4 2 1 0 0 3 2 4 , 5 47 50 5 4 5 0 • 4 2 3 0 0 3 3 1 . 0 4 3 . 50 5 4 7 5 4 2 5 0 0 - 333.4 49 6 5 5 4 2 5 4 2 4 0 0 3 4 7 . 1 5 0 ' ' 6 0 5 4 5 0 4 2 6 5 0 3 4 7 . 3 58 65 5 4 7 5 4 2 0 0 0 3 4 9 . 9 52 55 . 5600 4 2 0 0 0 3 5 2 , 0 5 3 6 5 5600 4 2 5 0 0 3 5 3 . 2 5 4 6 0 5 3 2 5 4 2 4 0 0 2 5 5 . 5 55 6 0 6 0 0 0 4 1 9 0 0 3 5 8 . 4 5 6 70 6 0 0 0 4 1 9 0 0 3 6 0 . 7 57 7 0 5 8 7 5 4 1 9 0 0 3 6 3 . 4 5 3 , 8 0 5 9 5 0 4 2 1 0 0 3 6 5 . 0 59 6 0 90 5 7 7 5 4 0 8 5 0 3 6 9 . 0 90 5 5 7 5 4 0 1 0 0 3 7 1 . 1 6 1 1 0 5 ' 5 7 2 5 3 9 9 0 0 3 7 5 . 5 6 2 1 2 5 5600 . 3 9 1 0 0 3 3 0 , 1 6 3 3 0 0 5 1 7 5 3 8 8 5 0 3 9 1 . 5 6 4 3 2 0 3 9 2 5 3 9 2 5 0 39500 3 9 6 . 4 6 5 325 3 2 0 0 4 0 5 . 1 6 7 50 3 7 2 5 4 1 0 0 4 0 4 0 0 1 7 4 . 1 6 8 50 4 0 3 0 0 1 3 0 . 0 3-6 SUM 5 Hz flow rate = ,1431 cmVsec 9 C^K^. flow r a t© = ,1177 om^/sec Date i August 14/65 8 C a t a l y s tJ - n i c k e l spheres Weight f.;.0021. g • Barom. p r e s s , =756.8 mvx» .Room teap.« = 26 °-C Purpose; To t r y t o observe the e f f e c t of a ©agnet t c f i e l d on.'the reaction r a t e . Measur- CK^. a r e a C^K6 a rea Q2B+ area. ement $ G 1 .** 24150 26 .0 2 TO 70 24800 52*5 3 4.80 19500 24350 4.8.0 4 1560 65 .1 5 1680 25200 69". 1 6 2090 23750 86".9 7 *• 2800 24500 . 96U 8 *» 3860 22300 112.2 9 <•» 4250 aasoo'. 122.5 ' 127.2 10 ' - 4200 ' 22650 11 " ••4oas 22650 i n . o 12 «• 4000 22650 i§8;.7 magnet on (10000 gauso) IT. •**»'. 14 3780 23500 170.8 - 3400 22900 191* S 15 3270 23100 213>9 234;. a 16 «• 3200 23700 17 30 3160 23900 250*6 10 100 2660 23900 19 160 2780 2*1000 280.9 20 240 2560 23O00 296.5 21 ' 370 '2360 22900 3 1 0 , 5 ' 22 ' 460 2220 23X00 321.2 25 630. 204© 23200 337*3 352V7 370.0 24 •640 1920 23800 24 GOO 25 160 1540 xm 1300 24700 S83U-9 27 1160 24500 404V8 28 '240 1170 24400 409% 1 425.0 29 440 1260 24200 30 670 %n% 23900 432*9 31 1950 #30 23200 470*1 ' 32 • 1950 630 23400 49?* 2 1 a a f'lm m%@ = 1*131 m^qm o,Bf ttm mt$ = *&5£ e a ' / M * -urn® i BUS 0 Sara* pevm* = TSf*© 8oa@ t#sp* - s4*§ ° S' 3 4 '!S» f B IB 0.5 4$ id t3 3480 SITS a. 1-4680 014© §180 464© TOO 430 405 340 f ° c S4*0 ?*0 89 »S II 4jjjr.ji4 04 $ 1 31S#S MS 0 flow 3P0*e .*0ft my mm Mat ^upiit IS/ii 0&£«%!its al* mspp. u i o l ^ l 6sr«oe*t& press*=?5&*0 tfej&bft = *10OT $ see* - ' S S » S ° f a I si© §40 15150 1S30O 15100 iSSdD 4f*i 3 4 * 0 1.011*1! 3-•8 9 1280 15450 151.9 Id 1290 15050 176.1 11 1540 15150 196.0 12 1610 14550 207.3 1690 15050 223.2 14 «. 1600 . 15100 244.8 15' 1410 . 15100 272.0 16 70 1235 15100 293.9 17 110 1130 14900 309.6 18 150 1110 14800 318.9 19 100 1150 14925 332.8 20 .. 160 1135 15200 339.3 21 170 1090 15250 347.9 22 150 1060 14700 351.5 23 140 1030 14950 353.9 24 130 980 I525O 36.0-.S 25 120 960 15450 363*6 26 125 950 15150 369.2 27 130 925 15300 371.2 28 120 900 15000 375.5 29 140 890 15000 380.5 30 170 1040 14800 392*1 31 210 1100 14750 397.6 394.7 32 220 1070 14050 33 280 1230 14750 412.0 34 740 1540 14050 432.1 35 1040 1560, 14050 444*5 36 1275 1380 \ 13700 455.1 37 1500 1360 \ 134000 475*7 38- .. 1500 1280 . 13150 496*8 39 1400 1080 \ 13300 514.8 RUN 10 flow rate = .133 cm3/ 0 ZH + flow rate =.480 cm sec • • 3/sec Date: July 26/65 Catalyst: powdered nickel : Barom..pess, =753.4 ram* Weight = 1.5362 s Room temp. - 27.8°C Purposes To try to observe,th© effect of a magnetic f i e l d on the reaction rate* and to observe the ir r e v e r s i b i l i t y of the reaction rate vesus temperature curve. Measur-ement CH ^  area C H- area G H, area 1 - 2 . . ,.. 3/ • 4 5 6 7 30 30 30 • 30 30 30 30 1110 1460 .2160 3550 4000 4350 4375 . 44300 •44300 44400 :43450 43250 42900 [ 43000 25.0 34.0 41.8 48.7 54.0 57.1 63.0 \ & 30 4325 42700 67.9 9 30 -.50 4200 ' 430S0 42530 ' 10 3150' • as;o 11 30 3850 •4g#0 $3*2 ia . 30 3740 41900. 101 • 30 7^00 4290© '' 41$50 • 110*5 14 . 30 3570 119.5 16 30 - Mto ' 42350 139..Q wustiet on (seoO'sAtise) •If 33§0 43200 147.5 as 19 50 313.0 42400 $0 » 0 4^400 163.9 so 3.0 3300 43300 170*8 . 30 30 3200 43800 ' ssz 42800 30 . 2940 %500 24 ' 30 2940 4245© 10&*O 25 • 3© • 2930 42530 . X?7*9 26- ' 30 3040 43000 1ST. 2 £7 • 30 2930 42350 15M •as' 30 2940 4228.SO • I40:.g m ' 30 3140 42800 134^5 • '30 30 3300 41850 itfwo n 38' ' 30 3520 • 43600 Xl§*5 30 . 3i30 42600 ' 107*0 3.0 3600 42000 io&s • 34- 30 3675 41500 8S . 0 n. • 30 4000 41900 84.5 36 30 • 4000 42450 75!.9 37 30 3975 42450 .66*8 38 30 2850? 4g<$00 S§*3 3$ 30' 3490 42550 $1*3 40 •• 30 •• 32.&0 42900 4'5!*G l a f low' r ^ t o * 1*00 m • O jHU-flov v&tw = .311 i5/a©c-Attgtiet 3/S5 f l i g h t - 2»76$1 g . Room temp* -25*8 * ^4 0. P a n o s e s f o -study tbe r e a c t i o n through tfc© CtaMe t temperature of nleteelf, and to observe th© i r r e v e r s i b i l i t y o f th© r e a c t i o n r a t e ver sus temperature curve. OH^ a r e a O^a^ a r e a C^H^ ar©& f °o . . 1 ' • -2 3 a* 2130 a420 2370 4230 5870 5270 262.5 "aro.e 279.9 30 S MO itio 193© •19*5 i$s® 1830 1490 1410 mm mm vm mm 1€©5 1000 1360 xm. isoq w o ifto moo 0240 0340 388 »§ 3i#*s 3tt#0 l l l * f 318*3 SMUT >*9#3 3S3»5 3fffUl i »*1 i l l 406*0 4M*$ 416*9 424,0 43%X 3-11 3 RUE 12 . H a flow rate =.1431 cm/sec C^H^ flow rate =.0354 cm 3/sec Dates August 13/65 Catalysts i i l e k e l spheres Baron, press. =756.0 am. Weight: .8775 g Room temp. = 27°G Purposes To observe the Hedvall E f f e c t I I , and to t r y to. observe the e f f e c t of an external magnet f i e l d oh the reaction r a t e . Measur- GH^ area C^H^ area GXH^. area ement T ° 0 1 48© 2070 17200 307.2 2> '- 180 1930 17200 311.0 3" • 130 1535 17200 313>9 4- • 60 640 9150 320,5 5- 110 1060 18400 330.5 magnet oa (5000 gauss) 6 ' 90 990 18250 331.0 7 80 960 18950 333.9 8 110 880 19000 19150 335.0 9 75 ' 850 342.4 10- • 90 825 19150 148.4 11 '•' / 85 745 19500 350.2 12 80 740 18900 3§3>9 13 14 .80 720 19250 362^2 80 710 19300 366.3 15 1 ,80 ' 720 19575 374.1 16 100 790 19100 381.6 17 80 770 19650 389.9 18 140 1050 18500 398„.6 19 190 1170 18700 411.7 20 230 1340 18700 416.0 21 240 1310 18700 424,. 9 22 345 350 1430 18700 428.. 5 23' 24 1380 18250 42SU-8 420 1420 18000 436;4 25 900 1400 18000 466.2 26- • 1040 1170 - 17150 . . 4 f i * 6 magnet o f f 17^00 294.1 27 • 30 2500 28 30 2460 18150 301.1 29 40 245© 18075 310.2 30 50 2360 18225 320.8 31 55 2360 18000 327.5 32 70 2280 18200 . ijBgQQ 338.G 33 .60 2250 344.2 34 70 2140 18350 349.9 35 70 198© 1840 • Ws>-*Z 36 70 -1822'5" •359.1 37 60 1610 18575' 362.8 38 80 1470 18950 364.7 39. 70 1310 18750 ,-367.1 4© 41 4 a 41 45 4^ 47 48 49 70 60 85 85 160 200 280 46© 700 116G 1150 xoso mo BIO 960 1100 '1180 1420 1400 "1285 19150 19050 19150 19500 19000 1S700 18650 XS2@0 17850 17900 377*5 381*9 390*2 405*1-4 X 3 ^ 422*0 4|S#2 4 4 § « 4 4 5 8 * 4 i RUN 13 H z f l o w r a t © = •108 oia /eeo • &zn<L flow r a t e = ,040 emVaee Bate t J u l y 29/65 C a t a l y s t s t i l o k e l powder-Weight * 1,5362 g Bares ." prefcs.= 758.2 mm Room tesnp.= 27 °0 Purpose s To study the r e a c t i o n r a t e through the Curl© temperature of n i e f c e l s and t o observe the i r r e v e r s i b i l i t y ot the r e a c t i o n r a t e v e r s u s . temperature Measur-ement CH 4 area .1 235 2 345 3 4S0 • 4 535 ' 5 e a o 6 ' 750 7 860 8 960 ' 9 1020 10 - 1040 ' • 11 1090 . i n " 1150. 13 . 122$ 14 1250;,: -15 1275-"' 16 1300 17 1325 m 1375 19 . • 1375-20 1350 21 • 1375 • 22 1350 23 1300 24 1300 25 1200 . 26 ' - . . 1100 27 82g 2© 550 29 460 30 300 ezHfe a rea 02.H4 a r e a f °0 1470 1460 •1455 1360 1265 1220 1115 1015 925 : 920 860 305 755 715 700 530 580 §40 585 670 790 995. 1250 1330 1440 15900 17100 17275. 17200 17300 17050 17275 16985 16750 16800 16950 16tf?5 16700 16625 16750 16500 16275c 16700 1630© 16000 • 16525 16400 16050 16625 16075 16500 16700 16600 16425 16275 303 * t 3 o a a 314,2 316-44 322vO 324.0 330.2 333.2 3 3 i * 4 340*3 343 4 9 3 4 f . 0 . 350.O 352-. 0 337*6 359*3 363*3 366.3 374.2 378 .8 382 .2 387*9 367.3 350*1 339.-1 328.4 314 .8 309.5 300*0 3-13 RUN 14 Hi flow rate = .382. em3/sec C^ H^ . flow rate - .155 em3/sec Date: August 24/65 Catalyst: Copper powder Barom. press.» 753.8 ffito.. Weight = .4931 g ROom temp, = 23.5 ° C Purpose? Ho study the reaction orate over the. temperature., range ©f 300° C to 50© °$ on a non-ferromagnetic , cafcalyst. Measur- CH^ area C^ _HU area C KL area * ^ ••• • ement T C 1 165 21500 7860 298.9 2 180 20000 8990 302.8 3 185 16750 11000 307.8 4 195 13250 14600 312.3 5 195 11300 15250 316.1 6 180 9100 16625 322,8 7 170 7275 17775 325.5 8 180 6550' 18300 329.5 . 9 . 160 4175 19625 334.8 10 130 3610 20450 343.3 11 130 3070 20700 348.0 12 130 2640 20850 351.0 13 145 2240 21450 364.1 14 155 1650 21100 369.9 15 185 1455 21500 380.8 16 200 1035 21750 384*1 17 220 925 21975 388.5 18 270 385 570 805 21825 396*0 19 685 22250 407*1 20 •550 21675 419*2 21 760 460 21925 431.5 22 910 375 21900 441,9 23 980 310 21800 449*3 24 1175 165 21550 468.0 M A Hj, t X m rate - « 3 6 1 -e& fio¥mt#=»XXX dnP/ec^ Da&et Aaguct £ 6 / 6 5 0&%nl?§&i p#wa©j* • Mvm* &&&& « 796*6 -«ar* • , = i-*-f?2$ g Room i<wp*~ i3*5°0 'teiJas^'i to tbe reootiea wt© wer th© %m&8*&tw& eatfi&yat*'? o try to m m m ® %h* «ff««t ©f a m##i©ti© tt'ftid* O S V I B U N M I . X •at-i s 7 8 • 9 IO XX 12 1. If IS XT Xi %3 II ' at €3 24' ' 120 130 130 130 xm im im %m 190 ill 2'6§ 290 magnet 355 3TS 4«f0 iors 1100 • 1200 logo • 18600 177S0 16400 14S00 12^00 . 1X100 ' as 7100 . 3^oo . 4S0O ' 4030 - on CSOOO gaus ||oo 1850 • 'IgXO do f & ^ 4 io&*e XlSO f20 HI 401© • 4460 5100 5 9 5 0 7160 8440 9400 10500 1132S. 12X50 12000 -137IS 34900' 8) 15025 w i n 1S4S0 i g& S O 1 S M 0 1 5 5 5 0 sm&A to 10000 i « m 16250 17300 • 16500 *9&o •$oM 3XO*| llf*I 329,8 .33-2>S SI:! W*9 f$X*0 370,1 • $76*9 3 8 0 * 0 3i#k4 9^2;*0 •8ft 438*9 445*9 4i0,4 46S.-0 51SU-9 Ha. f l o w ra t© - .312 ora ? /s©c QAi- f l o w ra t© =-.056 cm V s e c Bate s August 22/65 RUM 16 C a t a l y s t J a l . aupp. n i c k e l K e i g h i - .1007- g-Bar oia. preas.--= 754,7 iam*' Room t e m p „ = 26.6°G furpose • £ 6 observe the H e d v a l l E f f e c t IX» and t o t r y t o o b s e r v e ' t h e e f f e c t of an e x t e r n a l magnetic f i e l d on th© r e a c t i o n r a t e . fe'aaur-eiaehfc 2 3 5 6 7 a 9 10 l i 12 13. 14 15 16 17 18 ii? 20 21-22. 23 24 25 26 27 28 29 30 31 32 33 34 35 36 CH -j a rea 170 165 170 area magnet on 175 .175'-magnet o f f 11© 110 100 120 . ^magnet on 12© 130 140 ISO 160 100 200 200 200 230 250 290 320 420 480 550 800 ' 540 475 385 • 290 2770 2595 2070 1960 jjausa} 1820 1320 1320 1290 1150 (5000 gauss) 1110 C i l a rea 2 _ n 15250 isaso 25250 15250 13250 1525Q 14800 14880 14800 14800 990 940 865 '800 7@0 710 675 640 620 570 560 580 655 715 740 810 750 720 620 §n@tle f i e l d i n c r e a s e d to 225 190 160 130 80 550 560 magnet t u r n e d o f f 14550 14550 14650 14325 14475 14800 15000 14'600 14675 14675 14675 14675 • 14675 14675 14675 14675 14375 14600 14500 14700 14700 10000 -gauss 14500 14500 665 820 145000 14500 1450© T° C 300,0 309'* 5 31"3*6 318'. 0 3#*.§ 3©9>1 309*1 3ii*9 316i7 319v8 324*5 331 • 0 3l3'»;2 338>8 344#5 34$. 8 35&i i 3 S & 4 359*4 36§*7 37^*7 37,7*5 386*4 395*3 398'.8 410-.5 394,5 586*1 374';© 360el 349.5 340*5 332*5 319.1 300.8 RUN if-. Date i. August -16/65 Barom. :,pre's&* = '758"*5 naB,*. Room. 't^ mp^ = 25>l°e; ••Purposeg: • -To,.. observe the4 Heat.all.Effect I I a n d to try. to :" :'. observe the effect of an external^magnetic, : f i e l d on 'the...reaction ratfe..*' , H 2 flow/rate =.3i0 ;,cm3/p©c ;C^ H,, flow rate =,.,063, cm3/sec Gat aiyst'.s-;al,i;- supp.;. .nickel . Measur- CH.^  area C . a r e a 0 T C ement G-H^ - area 1;' 85 2280 17000 290.0 298.; 0 .'2 • 110 2200 17350 " 3 • 125 -.'2-100 • 17400 . 17850V -.303:.(-3 140 ;2000 '3©6:i5' ' ' • 5 • 15b ".1870- ' 17;8'25 .311*9' 6 7 8 9 170 190 200 210 ^1630' ' '1570 1330 i'17650^ 17750 ,179.00 18450 •.316i7-521.5 337*3 10 220 1330 17975 333.B a i - . 225 1270 1200 1070 18250 £44.5 12 :' 13 200 190 18000. ; l 8 3 7 5 3 4 9 ; i 356i3 14 15 .175 200 980 950 18150 lk425 359.9 367*8 16 205 880 •1855©. 373.9 17 190 715. 18100 ,376s 1 18. . '19. 235 730 18300 383^3' .290 • 795 .18550 3'91V5;-' 20 340 370 850 18200 396:*7-21 870 ;i7950 400.5 '722 475 -920 17800 407;v9 • 23 620 955 960 1180 17825' .414^1 421,3 . 24 840 17750 25 150 17750 331*0 • 26 160 1145 17700 336*4 ' ' 27 180 1115 17750 343,9 28 1 magnet, on (5000 gauss) 349.9 200 1020 17875 18250 -29 205 930 355.5 ' -3© 205 220 750 i 8 i o © 362,2 ' . f 3 1 ' . f 20 18250 366^2 32 . 230 670 660 18000 372 .1 • 33 34 280 18200 378>9 310 730 18OO0 364.5 35 370 410 770 .18075 390.5 394.5 36 780 17550 37 450 850 17975 398..5 38 100 1210 18100 412.3 39 110 1140 17650 417.3 40 155 990 17800 428 .0 3-17 HUM 18 H - flow rat© =,362 oia /see 0^1 4 flow"rate=#054 cm ys®c ' Date's August 29/65 Catalyst x ©1. supp. n i c k e l Barora, p r e y s ' * ? 6 i height = #0841 g Hoom • t-emp-f — 23«. 0 °Q • •' Purpose i :T.o • observe the preeence. of th© f$p<$vail E f f e c t 11 Measur- 'CH* area C^H^ area ement C-Ji 4 area ' .l'3t'0. 35200 298.4 2 510 1780 35200 308,9 3 710 1680 35950 319,3 4 970 1445 34600 331.0 5 . 1120 1400 35000 336.0 6 1350 1560 1230 35000 3421'5 7 1180 35700 350*5 8 1740 1920 1100 3^900 358«4 9 1040 35450 366.7 10 2100 1100 35200 • 374*3 11 2100 1120 35700 380.2 12 2250 1165 34950 386*7 13 2225 1250 35600 394.O • 3$9i® 14 2350 1340 35050 15 2450 1465 : - 35150 408.4 16 2375 1420 34300 411.5 . 17 2475 1685 34550 422.4. • i's 2600 1855 34200 433..3 445..f5 19 2700 209G 34500 20 2850 2440 33100 468.0 21 2855 2300 33700 476.9 22 2875 2070 •33500 489VI 23 2925 i860 33800 498.9 24 2775 1565 1570 33800 502.2 25 2750 34900 514.5 - r — H x flow rate = *342 cmVsec C^H4 flow rate = .082 cmVseo Dates RUN 19 August 30/65 Catalyst: a l . supp. n i c k e l Barom. press. = 761.7 mm.*. Weight- .0683 g Room temp. = 24.8°G \ Purpose s To observe the presence of the Hedvall Effect I J Measur-ement GH ^  area C,H, area CjHzy area T 6 C 1 2 . % 4 225 325 430 565 1455 1395 1270 1160 22900 22900 .22200 22950 295.0 306.0 3i2.3 321.9 s 875 975 22300 338*7. 6 ' 1210, 920 23000 349,il. 7 8 1370 • 835 • 23300 357.3 , 140© 800 22700 362,0, . 1510 • 780 22800 • 366*0-. 10 157© ' 780 ••22800 • 372*1-11 1680 825 23050 382*2• 12 176© '895 •23300 22400 . • '392*7 s 13 1820 930 ' 397.9. 14 1925 , 1045 ' 22400 ' • 408.8 -15 1950 1195 21650 415.5. 16 • 2075 137© 22500' 428.1. 1 17 2075 1395 1525 21750 435*9 , •' 18 2225 21800 • . 459*2. 19 20 • 2325 • *;-14^ 5 21200 467.2 2300 %m 2180© 480*9' • 21 2325 1370 20400 494*6 2300 1341 . 21100 " 508*9- • 23 2125 1030 20800 523 VO. 24 2150'' loss 2230© ' 537ii • . HUB 20 H 2 flow rat© = .198 ©m /©ee CJL* flow rat© = .037 cffiV s©c Catalyst j a l . supp. n i c k e l Weight =.0713' g Dates Sept. Barom. press.= 758.8 mm.-'loo® temp. - 23.5°G Purposes To observe th© presence of th© Hedvall Effect' XI Measur-ement CH^ , area area CJi<y area f ° 0 1 I 5 6 7 3 9 10 l i 12 13 14 15 16 17 18 19 385 600 830 1205 magnet 1270 1470 159© 186© 2200 2225 2650 2650 2775 2900 312S 3200 3400 3500 2510 2475 2260 216© on (10000 gauss) 2040 1970 179$ 1620 1510 1§40 1770 1890 1980 2090 2310 2540 2 5 I O 19350 2000© 197©© 19925 19875 19925 20100 20200 20200 19500 19150 18600 18350 i8400 18500 17850 17200 I70OO 15850 297.1 30S/.4 325.0 330io 334.5 338*2 345.5 §55.2 -366.9 370.1 386.7 392V6 399.0 408.4 414.3 435*9 445.5 458.7 470.5 3-19 20 3700 2070 16050 479.0 21 3775 204© 15700 500.8 22 3750 1820 16300 506.2 23 3750 1830 15650 533.1 24 3875 1990 15350 553.5 RUN 21 Hz. flow rate .391 cm / sec CJl^ flow rat© .099 cm /see Dates August 27/65 Catalysts platinum wire Barom. press. = 759.1 mm. Weight: 1.0075 6 Room temp.= 24.0° C Purposei To study the reaction rate over the temperature range of 300 C to 550 C on a non-ferromagnetic c a t a l y s t . To t r y to observe th© ef f e c t of a magnetic f i e l d . Measur- CH^. area C ^ H t area G X H 4 area T °C ement 1 300 2340 25600 295.0 2 . . 400 . , 2280 25000 301.1 3 545 2220 , 25850 311.9 4 690 2055 25600 318.4 5 , 940 1890 2670p 329.3 6 • " ,• . 1040 1780 26100 333.8 7 1050 1720 26100 336.1 , 342.0 8 •; 1180 * 1640 27000 9 1325 1500 27150 349.3 10 1475 1290 27000 358.9 11 1650 1230 28400 367.5 12 1650 1130 27700 373.3 13 1750 1090 27750 378.5 14 1800 990 28150 387.7 •is 1900 960 286*50 394^0 16 1900 890 27750 404.2 17 1850 820 26800 412.4 18 .magnet on (5000 gauss.) 2000 800 28500 420..3 19 1850 790 28300 425.7 20 1850 760 28300 435.3 magnet o f f 21 2000 710 28350 449.3 ' 22 1950 620 26800 459.3 23 2150 . 585 27000 470.0 24 2110 :500 28000 501.4 25 1750 . 350 27600 534.8 3-20 ROM 22 * H 2 flow rat© = .394 cmy se  Gjl^ flow rate = »©90 cfsysee Bate? August 28/65 Catalyst8 powdered copper Barom• press.-739.0 asm. Weight t 2.4175 s Boom temp. = 23.0"C Birpoee; To study th© reaction rate over a wide ;©atelyat temperature rang© on a non-ferromagnetic Measur- C^H^ area 0^B 4 area ement 'CH^ area -'? C 1 ** 720 36500 23.0 • 2 * m 990 36500 68.0 ' • 3 <*» - 1120 36500 • ' 82.5 •4'. • . m f 1410 36500 94.. 1-• 5 #o 9850 32150 103.9 • 6 ' - 30400 16650 131.5 7 39200 9800 160.8 8 *» 41500 869© 172.8 m 42800 7900 7600 179.0 . • 10 «. 41900 192.7 11 « t » 42400 7980 203.3 12 50 • 41400 0880 239.1 13 fjO 41200 9400 259 i6 14 95 41000 9500 269 i 6 15 300 40400 11150 287*9 16 715 37100 11550 310.O 17 1200 33050 15000 331.0 18 1$3© 24800 20400 353*9 19 1900 19600 24025 375.5 . 20 2000 16000 25925 414.8 21 2000 13625 28750 . . 439i5 22 2100 9900 29200 485.1 23 1800 5475 33100 525*6 3-21 RUN 23 Ha flow rate =.433 cm3/Bed flow rate - .061 cm3/sec Date? August 31/65 Catalyst? a l . supp. nickel Barom. press. =757.5 mm. Weight = .05991 g Room temp.= 24.4 ° G Purposes $o ohserve the Hedvall Effect" II (decreasing temperatures) Measur- CH^ area C,JHt area CJi^ area '. ement T G 1 4200 870 42100 509.5 2 4200 680 40400 492.0 3 3950 665 42000 484.2 4 3800 565 42200 41800 471.9 5 3625 490 4§4.7 6 3675 3650 450 40800 440.5 .. 7 440 41600 430.0 8 3925 445 41500 418.5 9 3425 465 41800 406.9 10 3200 515 41200 390.8 11 2850 625 41300 376.9 12 2250 1030 41000 351.5 13 2000 1235 41800 343.6 14 1650 1580 41600 3 2 9 4 15 1150 1890 41800 316.9 16 750 2260 40800 301.2 17 540 2360 41400 294.0 18 330 2520 40200 279.1 HUM A -f l e w ra t© (om3/8ee) 2.70 Room tempi = 24 V O^H^ f l o w r a t e (ca 3 / s ec ) .607 Barom. p r e s s ; - 757.2 mm. S a t a l y e t j n i c k e l powder .. Dates May 16/65 Purposes attempt t o o b t a i n g e n e r a l shape o f r e a c t i o n r a t e curve over a wide temperature range . Hoasur» ©ment GH^ area® G j H f c a rea 0 H are© 1 75 29650 148 2 65 31500 , . 148 3 75 26500 217 4 70 33700 21? 249 ; % 95 36000 6 80 32500 249 ' <f 60 32700 249 8 105 43100 319 . 9 80 44800 319 10 90 26700 336 11 85 34400 336 12 75 33600 359 13 6o 31500 359 14 55 31850 391 15 60 40 37750 391 16 37200 450 17 60 31350 450 * The formation of methane was not detected at t h i s point i n th© runs because helium was used as the c a r r i e r gas. Bjlov ra te =.-ol$9 Qti/mQ o Jl^ f low m t © = •X44ets  3/m® •O&telyati -ulotael p©M©r #» Weight- 1*513$ Z Boras* .pr^QSo .-78©«9 m Rem - 2$°8 . $mvQ&® s : a©© i f roaueofi £l<sw rat© increased s&srf&o® ar©© of catalyst significantly lriore&aeo ooiworsion to ©than©* «®@at OB^ ©res® OJL area OJI^ area 1 2 1 I ! 9 10 1 1 12 13 14 1 5 16 3 19 20 H g. 26 29 30 31 3S 39 3 6 3T 315 B90 1165 945 1230 140S 1X70 1080 1100 1175 1235 915 i?ao 1095 1040 1325 1440 1150 1320 1480 1060 mo m o 1350 its© 114s U T O §60 9*0 1155 12m 973 » 0 19300 68400 78400 ©600 701OO 74500 64300 73100 53200 91000 83000 95000 61300 §0600 68000 76000 62900 78300 60300 65^ *00 76200 67600 1.900 63100 68fOQ 70800 i i o g o 76300 38 1000 68200 392 39 990 63500 392 40 1240 81000 424 41 905 63000 4 2 4 42 880 61500 . 4 5 4 . 43 70S 49900 436 44 760 60000 479 45 « 600 61000 479 4© 315 ' 38000 495 4? 175 40050 529 « fine formation of methane was not yet detected fhe catalyst was not pretreated with hydrogen at 350 € H 2 flow rate = « 218 era V s e c mn o C J H U flow rate =..066 cmVsoc Dates May 20/65 Catalysts nickel powder** Weight= 1.5135 S Barom. pretax 756.4 .mm. Room temp.— 24,6C0 .Purpose? To see how easily the methane peafe eould be detected. Measur- CH^ area * C-J4& area CL H„ area ement' 1 1130 . 1130 82750 26 2 820 1735 87250 5^ 3 742 3090 162750 ' 61 4 770 3520 170500 74 5 ' 755 5630 174000 86 6 £23*9- 775 3310 145000 99 7 670 3510 161500 99 8 760 359© 166250 9 700 3840 162550 126 10 750 3930 170500 145 11 1580 3760 144250 156 12 1360 3740 144250 176 13 1140 3725 145250 194 19 1130 3650 136750 208 15 900 3780 139250 216 16 910 385© 144250 228 17 900 3800 142500 240 18 895 3775 144250 251 19 825 3750 143500 264 3*25::-Mydrogam flow r a t e =• 0944 ©m 3 /aee Bat©: Jun© 10/65 0 J L flew r a t ® - • «0436 m 3 / s e© Barom. pg^ae** = a m * C a t a l y s t j n i c k e l powdter* Boos i©rap.-- 27 ° 0 Weight- 1.5135 S Purpose ? f o try to observe e f f e c t o f a»gn©t4© f i e l d ©n r o & e i i e n r a t e * ©©©sat %J& ^ a r © 0 * ° C 1 2 3 4 5 6 . 7 8 10 11 12 15 16 .• 17 is. - 19 a© 21 , |f 50 50 SO so 50 •nftgnet 75 75 110 280 615 940 1240 1525 •1675 1775 1650 1925 2000 . 1900 2000 SJ&SH©t 2050 2100 2050 280 450 910 810 895 ©n (5000 got 935 1100 1350 1335 1205 790 405 345 g40 ' 190 - 173 200 165 o f f 120 90 90 mm$ 26100 25775 • 18900 w a s too)' 18825 20200. 25230 ' 25950 27900 24600 • 27300 274S0 ' 274^ 5 27375 • 27325 26850 26875 27000 26S50 27000 27075 25425 ' 26650 27 49 61 119 185 824 248 268 m 316 HI 351 362, '370 376 287 584 4©8 4sa 437 48? * 2h© c a t a l y s t « a s not pr©ir®ated with hydrogen a t 3S0°C f« ThQ a i r and methane peaks w r e not ye t separated RUN E Hi flow rate =.0944 cm Vsec Date« , June 12/65 c KL flow rate = .0436 cmVsec Barom. pr©se.= 755.0 mm. Catalysts; nickel pox*der* Room temp.,= 25°C Weight= 1,5135 g. Purposes To try to observe the effect of magnetic field on reaction rate. Measur- CH^ area** C^H^ area C^H^ area T ° C ement 1 25 875 19950 25 2 " 25 1050 21125 76 • 3 • 25 680 14350 89 4 25 1010 21100 102 5 , 25 990 21900 118 6v 25 1065 21500 140 magnet , on (5000 gau; 3S j a 7 • 25 1130 21375 155 ' 8 25 - 1170 20800 206 9 50 1225 21125 237 10 80 1200 21025 261 11 120 1130 . 20925 279 : 12 375 1010 20900 321 13 390 990 21000 328 14 460 950 20650 333 15 510 880 21050 336 16 540 890 20750 338 17 590 835 21060 343 18 750 735 20825 349 19 780 700 21000 353 20 1100 670 20725 368 21 1375 405 20700 386 22 1350 365 23800 394 23 950 180 11250 401 24. 1500 24o 21000 409 25 1500 190 20700 414 26 1350 140 17700 426 » The catalyst was not pretreated with hydrogen at 350*C The a i r and methane peaks were not yet separated V 3-27 RUN F H a flow rate-^.100 cm^/aee . Dates Jurie; 13/65 C Ji +. flow rate ~>.0032 em3/sec Catalyst: n i c k e l powder* ^0^l P * © ^ . =752.9 mm. Weight ' - i i * 5135 6 R o o m t® mP r* = 2 6 c Purposes To run at very low ethylene concentration Measure-ment CH^ area C r H f e area C H . area *~ ^ • T G 1 2 3 4 : 5 6 7 8 9 10 25 30. 620 695 695 705 705 705 710 705 6?©© 710 710 5970 6790, 6690 6700 6700 6700 6700 6700 6700 6700 166 175 186 201 214 226 240 253 267 279 ' Conversion does not s i g n i f i c a n t l y vary with temp i n d i c a t i n g a poisoned c a t a l y s t surface. Hence de stop run. 3rature,» jided to RUH 0 H i flow rate = .302 cm 3/sec Dates June 28/65 CJH^ flow rate= .094 cm 3/sec Barom. press. = 757.7 mm., Catalysts n i c k e l powder Room temp. - 25.5"C Weight =1.5647 g Purposes To investigate reaction rate at temp, above 100 C . Measur-ement C H ^ . area C H , area C^ H ^ area T *C 1. 2 3 4 6 7 8 9 10 11 12 13 14 4575 4300 3670 3290 3390 3090 3230 12910 ,2870 3070 2980 2800 2350 2700 18350 18725 18725 18700 . 19050 19325 1 19075 18850 19000 19200 •19050 18700 19450 18550 86 91 101 , 107 .. 113 121 129 . 137 144 152 161 168 176 185 HUN II ttz flov? rate »»1509 O T ? / B O O BarojB* Press* -758.6 ass CjJIf flow rate - .0731 cm'/oee ' Room temp. = 29 °C catalysts n i c k e l powder Weights 1,5301 S Dates July 3/63 Purposes to observe e f f e c t of pretreating th© ca t a l y s t with hydrogen at 350°C Measur-ement GH^ area C2.Hfc a r e a C^j1.^ area T °C 1 2 3 4 7075 37000 £1600 21650 16075 27 42 52 60 100 % conversion j hence decided to stop th© run ROW I H i flew rate=lo47 os?/BOO Dates £uly 5/65 C,H 4 flow rate =<>37 eaVa^o.. . , „ . Barom, press-7 5 7 . 5 sm Catalysts n i c k e l powder •• . , I { € J 0 S , t f l a p „ . 2 8°0 toeignt: 1*5381 6 Purposes to attempt to nttsdy r e a c t i o n over a wide temperature rang© Moasur* ©sent CH^ .area O^HG area O2.H4. area T °C 1 C » 1265 2380 42 o mm 915 1905 64 • 3 — 935 ' 2120 75 4 720 1790 ' . 88 5 745 . 2060 97 6 00 ' • 360 " • 111 7 <• 305 1155 690 122 8 • tt 260 133 9 4M* 220 • 790 ISO 10 mm 365 690 166 i i mm . 130 900 178 12 335 1640 192 13 •' 125 565 209 14 240 1215 120O 223 15 16 285 235 55 260 250 too much scatter i n datag nm ended Hx f t m t m % ® =*X3d m3f®m ^. . C a t m i n t i a i o M powder Bar«8« JIPM**- f5§*4 SappoaiM f& to t» o t e w ®f#®$$ off sa&gaoii© floXA an «afes*< GaRu area e^ji, era* ' 1 t 1 1 9 X§. it I IS • 16* . II ®0 • a- • S' 27 Si' m u it m m xm m> 300. nao f#0 SiO 980 X@8£ 1 solo g&co $590 Swo 2030 SO® m m Iffo •sro  m m % 3000 gig®-1 8150 eaoo 8040 1S90 2830 I! sis X9g i i , . t60 • TO MS lll 299 noaso . axxeo 90035 tiuseo axos© |04t0 208-00 t§%00 aoxoo ioioo 3X000 aoaoo • 9nso «3o© tBSO gxoso | | 4 | | 8e4# $0*00 S0223 20000 • a$>4»x 83X*0 9*4»9 369*9 J7JU9 hi 4Q$«# •*»ax*3 i i , . fill E « a new wito - °3X6 em / s e e H A flow ^ at© = -060 OBYseo jfct*. July l©/6§ '••iBeroa*. prm&*^ ?i6«§ «*. Ofttal^ott ido3c«l-sQwdjti^ - •/ ' ftm temp*.-ST'O «ll8^< l * i l $ l 8 /©ML, «*e& f °o i i 40 ' 4 0 11 - . si 6500 4125 4 4 0 0 3875 4020 4 1 0 0 16000 . 18825 1665© 18S7S 319*3 313*4. 316*4 5S4,3 Sun 0t.©f>p©a "im&mm of tlm%mttm& ef and O^E^ Ji* flow rate - 0156 eoYaeo C2aH^ f l o w r*to- . .©86 era 3/BO© Ita&at J u l y Saroiw parse© • - 7 5 8 * 5 BBB Oat&lyfltt &1O1K»1 powfiair Boos toiB&,-84~ 0' • .tfeigtftt 1 « 5 3 B 1 S f©»p©s©i f@ $&so& .fltiotttationg i» sole fraetioii of otitpne 0s4 et^ltttto loAyiti& r @ & « t s « * * • m% &r©a f ° 0 . a '3 • 5 6 1 1® 10 •• is I S so ao <Sfl©0 ns5 73^ J am 5950 nso 4925 51S5 10050 10675 10150 #100 10150 96S5 . 12275 • 18185 «184i»3 889.1 2£5*G . 3 0 0 « 0 300*0 $00*6 SOO*0-$ 0 0 * 0 ' Kuo #tTO®a bmtmm of fluctuation© in aol© fraction of S J U a n d M f f t U •Hz flow *ate».C9BO os3/*** $ulj 18/65 OajB^fflew s?&%©*=*©561 eaV©©o Barosi. 'proaa. « 7^8»5 an. Roo© ten$*» 27 °C Catalyst: niekal poofter 'Vaxpotmi study .*«&atle& tbroogb Curt© fteqpttp&ttir* of nickel f i sa sur * oia©nt € H 4 a rea • 02.1! & &rea T °0 1 • 4400 § «. 4tg0 £3435 202,0 '3 m ' 460© 83500 282*0 4 m> 4100 ai5So S «. 4475 23#S0 289 »7 6 T ' e> 40 4$2S 4075 ©90§ a 45 4325 34035 • 310.0 40 4200 316,0 10 - 6§ mm 11 ®0 407© mm® 330,8 3.3 60 3660 24150 325 .0 13 • T5 '3570 Masa • 334.0 14 95 • 3700 24700 337.1 IS iao 3690 345T0 340.8 16 150 3590 24600' it!:*0 IT liS 3570 24650 • w 195 3580 •"3S0«3 19 m 3430 S4S$0- 354.3 . so aa 3S0. 345 350© 3400 i*ioo 3fflM ' 360«8 • 3 6 4 . 0 445 3600 247S0 23 $m 3330 84 660 3240 24650 374*0 378.1 as 770 3130 mm @0 1&3D 3120 388.0 87 1185 S600 • 25000 3&a,9 g6 ; 2$!©a 39GVT SP im 2 2 5 0 25150^  400*7 30 <* 5835 24120 803.0 31 •6050 282.0 3a .. • $673 282.0 3*32 RUN I Ux Flow rate =,'.311 ea^/aee C l flow rate - ."032 osp/sec Dates J u l j 13/65 Catalyst: nickel powder Barora. p r e s s . 758.7 nm. Weight-- 1.5381 g Room temp. - 25." C Purpose: fo study the reaction rate through the, Curie temperature of nickel Measur-ement '' 8H^  .ftrea-:- CJH^ area C J i ^ area T °C 1 «• aio - 4410 298.0 2 • Mi 785 ' 4710 303.3 3 • 717 4890 300.1 4 765 4990 311.8 5 765 5170 318.7 6 soo 4BO0 • 320.7 7 740 4630 323.9 8 MO 760 4680' 328.4 9 760 4760 332.4 10 640 4940 336.7 11 25 900 5530 340.0 12 25 490 4420 346.3 13 ' 40 710 6000 349.S 14 50' . ' 595 5180 354.3 15 65 540 5540 361.0 16 75 575 4860 365.9 17 75 790 4180 366*0 18 50 . 425 3410 370.5 1? 75 620 4620 372.4 20 120 545 4450 375.9 21 180 560^ 5630 379.0 22 200 470 5160 383 .8 23 220 280 4840 392.0 HUI 0 Purpose: ro estimate how long i t takes gaes flows to smooth out a f t or ethylene introduced Into ijyetom Measure-ment C H• area c fi area Time T 0 C 1 2 3 • 4 5 6 . 295 435 600 715 830 840 1190 1695 2165 2460 2730 2810 12 s 00 12:30 1*00 . 1?30 2:00 2s30 j 292.0 292.0 292.0 298.0 292.0 292.0 3m H Z flow rate = «10€8 C%S^ flwr rate * .038 ©m3/©©e Sates Julir 15/65 Catalyst J nickel -pokier M i l $ Barom ..pro « 759.5 'fens. Hoes t@ap„» 26«5'*5 purpose t To study tHe reaction rate tfcreughtthe Curls . teapwatur© of niefeel Keaaur-eaient G H a ar©& CJi f e area C^ j i ^ . area t 6 G 1 2 -I 1 7 i© i i 12 13 14 15 16 3 1ST m 21 24 as 26 S 29 30 31 32 35 36 3 3 fo 41 30 '•0 45' 53-60 70 10 100 ISO 169 805 210 250 415 360 480. 780 1030 m t o 60.-73' 95 130 105 100 80 105 165 145 170' • 135 170 210 230 • 215 ^50 280 310 5350 5325 m n 4700 4150 4275 410© 4215 4400 4050 5000 44§0 4250 3925 6225 4300 4000 4500 4200 712S 5350 4750 4900 5250 7850 5475 5435 4075 4700 672S 5675 5775 4375 5525 5675 517S 5 i2§ 3775 5500 16950 xmo 16950 17275 17225 17000 17850 16800• 16025 15850 16350 16350 1642.5 16250 14550 16775 16330 1#50 13Q0O 15500 16800 16300 16300 16500 16400 13875 16100 15500 14100 16700 15000 1630© 15§S0 14800 16000 X6Q30 16450 16000 16225 16350 15425 303.3-310*3= 316*0' 322.8' 329.X 334*8' 336.r 340.0 U 7 353.3-359.5-361.5 366.0" 371*0; 330.0-32#.7'' 326.7" 331.5: 335.S, 340.8 343.3 343.3 345.0 345.0 347.3 351*0. 351.0 358*5, 3543 , 356.8, 358.4. 35®<A 361.0 363.1 3S7»S 42 233 3925 16650 371,5 3950 16a25 376.0 44 • 3950 • • 26075 382.4 45 Sop 4000 16*700 387*3 ' k$' 10$0 3750 16525 • 4f 75 4f25 • 15875 S a flaw r a t e =.4 •21 emVooc 0 \ H 4 F low r & i e = .045 6»y-ooe .fates July 17/65 Catalysts nickel p o M e r •Barcis. press .= 757. 2 am. Weight - 1*5381 8 mm temp. = 26 °0. Euxpoee: f o SJO&C taint reaction r a t i J over a wi-Se temperet«ro • .rang©* •and a t & low per oent of ethylene la . 'the- • • £i I B Measur-ement a rea C XU U area a r e a f "0 1 4A25 3640 '42*0 ••2. >a> 422$ 3100 5 2 * 0 .3 «* 4925 3305 •$©..3 4 4» 4,975 3S60 €3.7 5 w» 5375 3350 SS*£ 0. 512S 3860 74*3 7 . 3850 -01.*$ - f t • 4325 394o 88.7 $- .3860 4370 #5.-9 10 «* .4800 4630 109*5 11 « p 44S0 10t:.:5 12 •* 4000 4496' .116.0 4360 4880 116.* 0 14 4425 4080 124*0 Run 0 toppt afi beeaused of f l u c t u a t i o n s i n . mole f r a c t i o n of and 0»H* '• H A flow ret© =- «094 cm Vsoc C j K flow r&t*.-*Q$7 <HBV*I©. CatAl^fttt alekei powder Height - 1 . 5 3 6 2 g ft Oatei July 27/65 Barom. prees. =760. 2. mm. Eeom temp. = 2S . 0 °o ^ i r p e s o i To t r y -to observe affeoi yeoetloa rat©. 5. of $ Magnetic f i e l d ©ment OH 4 :@r$& 0 area C J ! ^ area 0 1. '.'2 3 25 ' f | •' m 19300 10700 18700 18000 12125 29.2 35*5 4 0 . 0 3-35 4 25 18500 12350 44.5 5 .25 17750 12300 48.9 6 25 17150 12625 54.1 7 25 16900 12975 58.2 8 magnet on (10000-gausss) . 25 15800 12750 63.3 9 25 15500 13225 69,, 1 10 . 25 14850 13650 75.8 i i ,25 12650 12150 80.5 12 25 13500 13825 87.3 13 •25 13450' 13950 87.3 14 15 25 13100 14125 91.8 25 12550 14175 98.0 16 25 12350 13525 92.0 17 25 13200 13500 84.0 18 •• 25 > 13950 13275 74.0 19 25 14950 12850 64.0 20 25 15050 12425 57.5 21 25 15750 12275 51.5 22 25 • 16100 12225 47*5 23 25 17100 12000 40.8 24 4 25 17200 11700 38.4 3 RUN S flow rate =.12128 cm /see. C ZH 4 , f low rate-.0262 cm3/sec Dates August 1/65 Reactor f i l l e d with 42 Barom., press. = 753.9 'mm. glasa beads Room temp. = 30*G ' • Purpose: To check whether or not there i s a reaction proceeding on the exposed section of the heating wire and copper leads. Measur- . ement CH^ area C, H, area G H area ft. 1 2 3. 4 5 6 7 8 9 10 . 11 12 13 14 15 tea ma CSB vm c » «e» as 90000 9000 9000 9000 9350 9450 9300 9850 9925 9725 10200 9250 10150 9950 10000 30.0 39.4 . 43.0-55.-9 63.8 72.2 96.7 108.0 120-.O 222.0 253 * 2 275.0 322.5 387.6 407.3 nm T H t flow rate~%k085 cm /sec CjH^ flow rat© » ,215 ess 3/sec Date J August 9/65 Catalyst? n i c k e l powder Barom* pre©©, Weight = 1*3149 g • ROOBJ temp* Purpose s To t r y to observe' th© e f f e c t of a magnetic f i e l d on t&e reaction F&t$.«< Measur-ement ' OH4 « r o a O^ Hfe aroa C^Ej area f fC 1 2 3 5 € ? e 9 . 1 0 11 12 «a «• «u* **» taagnc *» «•» *• 1 2 4 5 895 • • 720 835 2100 • 2050 i860 1540 1205 ' §45 it on (5000 g&u 650 • 620 710 isaoo i'j4so 15150 lass© -.13050 :i4ioo 13550 / 1 4 0 5 0 • 140.00 ae) • 14550 14300 1 4 3 0 0 • 2SSU1 289.. 0 3.1!»8 302.5 294 .0 300'. 0 3 1 0 . 5 319*3 326.0 337,5 344., 7 349,© 358.5 WW tl Hz flow rat© = 1,325 cmVsec 0 2 . % flow rat© = .090 ea3/s®<? Dates August 10/65 Catalyst» siieK©! powder Bar©©, proas*« 7 S 9 » 1 - B W * W e i g h t - 1 . 3 1 4 9 g Boos temp. -24 .4 °C .Purposes To t r y to observe the e f f e c t of a magnetic f i e l d on the reaction r a t a . Measur-ement CK^. area C^tffe area C^H^. area T PQ 1 2 3 • 5 '•6 7 - -8 ,9 10 11 13 15 ' 15. • SO 20 20 20 50 50 30 . • m-raag 'Sp • 8 0 60 . 2010 £ 0 8 0 2190 8 0 9 0 -2 1 4 0 21§0 2080 2020' 1930 1780 suet on. {§000 g 1 8 0 0 1 7 8 0 1 6 3 0 3300 • 5460 . • 3560 3550 3680 3740 3740 .. 2880 •3880 3720 aus a} 4130 4 1 4 0 • 4140 2 8 4 . 0 289*9 296,1 305.1 ' 3 1 1 . 0 318,0 321,8 325.? 331 .1 339 •! 344,5 3 4 8 . 0 2.4 69 1560 4340 r • 355U9 15 um . 1400 4280 357.3 16 to 4480 ' .3S$*3 •1? TO 1300 . 4fi©0.. 18 100' 1050 . 4©18@ 373:«X 19 . 140 '" ?400 1270 4^ 00" ^75*9 SO .130© 000' 382 .0 7400 • 1060 StiM 1260 $aa.s aa. 7400 ' B$0 • «&© S3 -£4 • 7200 f©0- 3*4.0 4 0 f o f 4$0»1 7400 660 620. ta- 7100 '800 470 ts 10200 $50 44SoO ' Htli' V H, tflow rat© =-»926 em /ooo mgmk 's3/£$ e^l^ flm • mt© = .352 cm yooc' 'Cat©i Gfet&lyet§ si* supp* nlokel ' Barom 0 pr#as:* = 75^ ftoigutt 1.007 ,g too® tosp.. - 83.8 °S Purpose : To tfry to -ofesarve tho eff^ot •\$n.itwB ToooilQa fat'©*-Moaaus** C^ ?.^ .-;%r^ £f.'. X 0 % • 1 •55 1170 - SM*5 a S3'" • 1140 3 ' SS • 25350 • 3.0$»O 4 55 5 65 1 '(§000 '-nay »'«)-•7B0 311*0 - ' ftogsndt oi 6' 70 87685 •321*3 : 7 00-' ifO 3at»a S 70 4#0 • .87400- - -33i;s • f • 70 580 877SO -336*0 10 7o 300- .27800 • • - ' 346,7 u 80 %7MQ • -353*2 12 85 ' 340 3©S '.27500' ,359*1 13- 65 . a#T5 • JHS1*0 14 65 2^ 0 argoo • • 3$M - ic. 95 300 ' .367*1 16' ' 105 '295 . • 273^ " . .mss 17 110 •290 '373.5 18 130 310 37000 - > 387 oS 19 145 • 530 .' 399& ao " . M O . 345- 397*5 s i 193 407ol ..860 360 416.0 06000 §S . H i 8ffS00 440*1 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059051/manifest

Comment

Related Items