Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Magneto-catalytic effects in the hydrogenation of ethylene reaction Morgan, John Paul 1966

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1966_A7 M67.pdf [ 10.99MB ]
Metadata
JSON: 831-1.0059051.json
JSON-LD: 831-1.0059051-ld.json
RDF/XML (Pretty): 831-1.0059051-rdf.xml
RDF/JSON: 831-1.0059051-rdf.json
Turtle: 831-1.0059051-turtle.txt
N-Triples: 831-1.0059051-rdf-ntriples.txt
Original Record: 831-1.0059051-source.json
Full Text
831-1.0059051-fulltext.txt
Citation
831-1.0059051.ris

Full Text

MAGNETO-CATALYTIC EFFECTS IN THE HYJDROGENATION OF ETHYLENE REACTION by John P. Morgan B.A.Sc., University of B r i t i s h Columbia, 1964  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n the department of CHEMICAL ENGINEERING  We accept t h i s thesis as conforming to the required standard  Members of the Department of Chemical Engineering  THE UNIVERSITY OF BRITISH COLUMBIA  vii  Abstract The hydrogenation of ethylene reaction was studied " over small catalyst beds of powdered n i c k e l , n i c k e l spheres, alumina supported nickel,.powdered copper, and platinum wire. The reactor was positioned between the pole faces of an electromagnet, 4 10  . so that a magnetic f i e l d of strengths up to  gauss could be applied across the catalyst bed. The reaction  was studied at conditions of constant flow over the temperature range of 25° C to 550°C. The reaction rate was measured by means of a gas, chromatograph,  which had the sampling port i n s t a l l e d  i n the system. Two magneto-catalytic effects were studied i n t h i s work: ( l ) the change i n c a t a l y t i c a c t i v i t y of a ferromagnetic catalyst as i t i s heated through i t s Curie temperature  i  (internal magneto-catalytic e f f e c t ) ; ( i i ) the change i n c a t a l y t i c a c t i v i t y of either a ferromagnetic or nonferromagnetic c a t a l y s t , due to the presence of an external magnetic f i e l d  (external magneto-catalytic e f f e c t ) . A c l e a r l y  observable i n t e r n a l magneto-catalytic effect was found f o r the runs done on the ferromagnetic catalyst, n i c k e l , which has an approximate Curie temperature of 360°C. In order to confirm t h i s e f f e c t , runs" were done over the temperature range of 300°C to o  500 C on the non-ferromagnetic catalysts, copper and platinum. o  No change,in reaction rate was found near 360 C, as was found using a n i c k e l c a t a l y s t . No external magneto-catalytic effect was observed at any  temperature.  V1X1  The rapidly  hydrogenation  self-poisoning  Published literature temperatures, catalyst  indicates  effluent  was f o u n d t o  temperatures  that  at  ethylene  causes the  decrease  in reaction rate.  mole f r a c t i o n  gas,  at  of  temperatures  above  decrease  temperature's  rapid  was b e l i e v e d  to  100°C.  complexes  off In  methane was d e t e c t e d  catalyst  The  a  high  reacting  was o b s e r v e d  high  above  moderately  accompanying carbon deposit surface.  be  of  work a s i g n i f i c a n t reactor  ethylene  reaction at  desorption  surface  of  in  to  300 ° C , a n d form  catalytic  be due t o  this  on  the this  in  the  an  the  activity carbon  at  deposit.  Table of Contents  Acknowledgment  .....  Abstract Nomenclature Theoretical Discussion A.  Some E l e c t r o n i c Properties of Nickel .......  B.  Internal Magneto-Catalytic E f f e c t s .........  _..C.. External Magneto-Catalytic E f f e c t s ......... D.  The Hydrogenation of Ethylene Reaction ....  Apparatus A.  General  -B-.  Detailed 1.  Tubing  2.  Gases  3.  Flow Controllers  4.  Manometer Tubes  5.  Reactor  6.  Vacuum Gauge  7.  Mixing Chambers .....  -..  :  8. " Chromatograph .9. Temperature Controller ;  10.  Magnet  11.  Catalysts a. Nickel Powder .......................... b. Nickel Spheres  p. Alumina Supported Nickel  29  ;  d. Powdered Copper  30  e. Platinum Wire  30  Experimental Procedure  31  Experimental Results  ]  A.  General „  B.  External Magneto-Catalytic E f f e c t s  37  C.  Lower Temperature Results  37  D.  Results Over a Wide Temperature Range ...  ^5  E.  Internal Magneto-Catalytic E f f e c t s ......  51 .  F.  K i n e t i c s of the Hydrogenation of  G.  ••  33 33  Ethylene Reaction at High Temperatures ..  57  E f f e c t s of Mass Transfer  59  Conclusions  61  Recommendations f o r Further Study  62  .A. B.  External Magneto-Catalytic E f f e c t s K i n e t i c s at High Temperatures  .  :  ......  L i t e r a t u r e Cited Appendix I - Sample Calculation to Estimate the E f f e c t of Mass Transfer Appendix I I • A.  B.  62 65 6 6  1  -  1  2-1  Computer Program to Calculate Values of the S p e c i f i c Reaction Rate Constant, k, and Corresponding Values of the Reciprocal Temperature, l / T °K"'  2-2  Results  2-4  Appendix I I I - O r i g i n a l Data  3-1 .  iii  Tables Page  1. Summary of Results 2. A c t i v a t i o n Energies f o r the Hydrogenation Ethylene Reaction 3. S p e c i f i c Reaction Rate Constants f o r High Temperatures  36 of  -  40 .  . x  60 .  L i s t of I l l u s t r a t i o n s  Figure - 1.  Outer Electron D i s t r i b u t i o n i n M e t a l l i c Nickel  2.  Hedvall E f f e c t s I and II  3.  Decomposition of Oarbon Monoxide over Nickel Catalyst  4.  Decomposition of Nitrous Oxide over Nickel ' Catalyst ,  5.  C a t a l y t i c A c t i v i t y , of La Sr^MnCL, near Curie Point  .6.  C a t a l y t i c A c t i v i t y of Nickel Oxide near Magnetic Transition Temperature  ...  7. , C a t a l y t i c A c t i v i t y of NaNb0 and KNb0 at F e r r o e l e c t r i c Transition Temperatures 3  8.  Reaction Rate Curve f o r O l e f i n i c Hydrogenation ...  9.  Diagram of Apparatus  3  * ..  10.  Pictures of the Apparatus  11.  Schematic Drawing of Manometer Flow Indicator.  12.  The Reactor  13.  Schematic Drawings of Mercury Vacuum Gauge ...  14.  Schematic Drawing of Mixing Chambers  15.  Schematic I l l u s t r a t i o n of Chromatograph Peaks ••«••  16.  Schematic Drawing of Sampling Valves  17.  Modified Temperature Control System  18.. Reaction Rate over Powdered Nickel Catalyst .. 19.  Reaction Rate i n the Presence of a Magnetic Field  20.  Arrhenius Plots f o r Runs 1,2,3,4,5,6  2 1 . Chromatograph Results f o r Runs 2 and 3  •  2 2 . Hydrogenation of Ethylene over NonPretreated Surface 2 3 . Hydrogenation of Ethylene over a Wide Temperature Range 24. Chromatograph Results f o r Run 9 2 5 . Hydrogenation of Ethylene over the Curie Temperature Interval of Cu-Ni Alloy (Increasing and Decreasing Temperatures) ...... 26. Hydrogenation of Ethylene over Increasing and Decreasing Temperatures • 2 7 . Arrhenius Plots f o r the Temperature Range of 2 5 0 °C to 400 °C 28. Hydrogenation of Ethylene over Powdered Copper Catalyst (300°C to 520°C ) 2 9 . Hydrogenation of Ethylene Through Curie Temperature Interval 30. Chromatograph Results f o r Runs 14 and 2 0 3 1 . Hydrogenation of Ethylene Through Curie Temperature Interval 3 2 . Diagram of Apparatus Used'by Miyahara (44) ....  Acknowledgement  I wish to thank Professor J . Lielmezs of the Department of Chemical Engineering of the University of B r i t i s h Columbia f o r h i s guidance and time i n helping to carry out t h i s project. I.wish also to thank Professor J.S. Forsyth, Head of the Department of Chemical Engineering of the University of B r i t i s h Columbia, and Dr. B. Davis of Cyanamid, Canada Limited, f o r t h e i r h e l p f u l suggestions i n the construction of the apparatus. I wish also to thank the National Research Council of Canada f o r f i n a n c i a l assistance received, and the Department of Chemical Engineering of the University of B r i t i s h Columbia f o r a d d i t i o n a l support.  Nomenclature  Equation (1) K  mm  S^olea SeC  -  A  -  b  -  n  s p e c i f i c r e a c t i o n rate constant  x  y  I*.  -  -  a  .  r e a  eat.  number of. vacancies i n the d-band per atom at T°K number of surface atoms number of atoms In the bulk of the c a t a l y s t groups of holes i n the d-band surface area of the c a t a l y s t a constant i o n i z a t i o n p o t e n t i a l of c a t a l y s t atom, electron v o l t s thermodynamic p o t e n t i a l per metal electron , e.v.  k  -  Boltzman factor,  T  -  Absolute temperature "of the c a t a l y s t , T K  g  _  m  o  f  e  o  K  a  Equation (7) E  x  NI. H  -  Exchange energy between neighbouring atoms,  - intrinsic -  g^mole  magnet moment of electron, Vi^ — ° ' gauss magnetic; f i e l d constant of n i c k e l , gauss 3  external magnetic f i e l d , gauss  Equation (15) k  ' f"^°^  - s p e c i f i c reaction rate constant, a  F.  -  -  flow rate of gas to reactor,  -^"" f^ m  e  C  e 3  ©Co*.  e a  weight of c a t a l y s t , g mole f r a c t i o n of hydrogen entering reactor mole f r a c t i o n of hydrogen leaving reactor  —  4-. Equation ( 1 9 ) k A E  t  R T  -  s p e c i f i c r e a c t i o n rate constant,  ^"^° ^ 1  owC  frequency-factor  a  gca*.  constant  a c t i v a t i o n energy, ^ ^Q^e' universal gas constant,  gImole°K  absolute temperature ,°K  Equations ( 2 4 ) , ( 2 5 ) , ( 2 6 ) , ( 2 7 ) , ( 2 8 ) , ( 2 9 ) , (30)  y-  -  mole f r a c t i o n of hydrogen i n reactor  y  b  -  mole f r a c t i o n of ethylene i n reactor  y  t  F W d  yy  t  a. n  -  -  flow rate of gas to reactor, .  g-moles sec  weight of c a t a l y s t , g differential  operator  mole f r a c t i o n of ethane l n reactor average mole f r a c t i o n of hydrogen i n reactor average mole f r a c t i o n of ethylene i n reactor mole f r a c t i o n of ethane leaving reactor mole f r a c t i o n of'methane leaving reactor exponent of y^  m  exponent of y  K  s p e c i f i c reaction rate constant based on p a r t i a l pressure of hydrogen and of ethylene i n reactor, g-moles sec g«.t.  -  b  s p e c i f i c reaction rate constant based on p a r t i a l pressure of hydrogen i n reactor, g-moles sec  gcat.  s p e c i f i c reaction rate constant based on p a r t i a l Pressure of hydrogen i n reactor, g-moles sec ScA. s p e c i f i c reaction rate constant based on p a r t i a l pressure of hydrogen l n reactor, g-moles SeC  Seat.  s p e c i f i c reaction rate constant based on p a r t i a l pressure of hydrogen and of ethylene i n reactor, g-moles sec g t. cet  s p e c i f i c reaction rate constant based on p a r t i a l pressure of hydrogen and ethylene i n reactor, g-moles sec  gcat.  1  THEORETICAL DISCUSSION A.  Some Electronic Properties of Nickel  The a c t i v i t y of catalysts depends l a r g e l y on t h e i r atomic structure. In metallic s o l i d s the energy required to hold outer electrons i n d i s c r e t e o r b l t a l s i s so small that the o r b i t a l s are replaced by energy bands. The'distribution of these electrons does not increase smoothly with temperature but, rather, i n a quantized manner from band to band. Figure 1 shows schematically the d i s t r i b u t i o n , o f outer electrons l n metallic n i c k e l .  Energy, E Figure 1.  *-  Outer Electron D i s t r i b u t i o n l n M e t a l l i c N i c k e l .  i  i  As electrons are added to b u i l d up the atomic structure of n i c k e l they f i r s t enter the 4s and then the 3d-band. The vacancy l n the 3d-band creates an e l e c t r o s t a t i c potential f o r other electrons i n order that a complete o r b i t a l be obtained, by electron p a i r i n g . When a gas phase molecule s t r i k e s the n i c k e l surface i t s electrons are attracted by t h i s vacanoy, and i f energy requirements are met there i s energy and mass transfer v i a electrons, r e s u l t i n g i n the formation  of a chemical bond.  N i c k e l and i t a congeners a r e p a r t i c u l a r l y good c a t a l y s t s f o r o l e f i n l c h y d r o g e n a t i o n and dehydrogenatlon r e a c t i o n s because  they form s t r o n g d s p - h y b r l d bonds w i t h t h e s-  o r b i t a l s of adsorbed hydrogen and p - o r b i t a l a o f adsorbed olefinic  complexes. I n f a c t , Dowden (1) has shown t h a t the r a t e  of such r e a c t i o n s I s p r o p o r t i o n a l t o t h e number o f v a c a n c i e s l n the d-band. He g i v e s the r e l a t i o n  The 3d-band vacancy  of n i c k e l i m p l i e s t h a t  electron  s p i n s l n t h i s energy l e v e l are not balanced, p r o d u c i n g a net atomic magnetic  moment. The f e r r o m a g n e t i c s t a t e of n i c k e l l a  caused by alignment o f these atomic magnetic moments. T h i s alignment i s brought about by a l a r g e e l e c t r o s t a t i c exchange energy between n e i g h b o u r i n g atoms, which r e s u l t s from overl a p p i n g of e l e c t r o n c l o u d s . (Due t o o v e r l a p , e l e c t r o n s s i m u l t a n e o u s l y belong t o more than one n u c l e u s ) . Furthermore, i t i s observed t h a t a t a d e f i n i t e temperature, c a l l e d the C u r i e temperature, n i c k e l changes from t h e f e r r o m a g n e t i c t o the paramagnetic  s t a t e . At the C u r i e temperature the exchange energy  between n e i g h b o u r i n g atoms i s balanced by thermal energy, and above t h i s temperature thermal a g i t a t i o n i s so g r e a t t h a t the magnetic moments no l o n g e r a l i g n .  B. I n t e r n a l M a g n e t o - C a t a l y t i c E f f e c t s . An I n t e r n a l m a g n e t o - c a t a l y t i c e f f e c t i s t h e change l n c a t a l y t i c a c t i v i t y o f a f e r r o m a g n e t i c c a t a l y s t as I t l a heated through the C u r i e temperature. Concerning t h i s e f f e c t , H e d v a l l  (2) s t a t e d , " The  t r a n s i t i o n from the ferromagnetic  to  paramagnetic s t a t e i n v o l v e s a change i n s t a t e of those e l e c t r o n s which, a p p a r e n t l y , e s s e n t i a l l y determine the c a t a l y t i c of  the substance;...  Since t r a n s i t i o n s i n  activity  ferromagnetic  m a t e r i a l s do not i n v o l v e g e o m e t r i c a l changes, the change of c a t a l y t i c a c t i v i t y can be caused only by the changes i n the e l e c t r o n i c s t a t e i n v o l v e d . " Two magneto-catalytic and  d i f f e r e n t types of  e f f e c t s have been observed  internal  by r e s e a r c h e r s ,  s i n c e H e d v a l l d i d p i o n e e r work i n t h i s f i e l d , these  effects  are known as H e d v a l l E f f e c t I and H e d v a l l E f f e c t I I . The  former-  i s a d i s c o n t i n u i t y i n the c a t a l y t i c a c t i v i t y and the l a t t e r i s c  a change i n the temperature c o e f f i c i e n t of the  catalytic  a c t i v i t y , both at the C u r i e temperature,.( f i g u r e 2 ).  In his.  Effect II  Effect I Reaction rate  T F i g u r e 2.  H e d v a l l E f f e c t s I and I I ,  experiments H e d v a l l passed gases over n i c k e l c a t a l y s t s ,  raising  the temperature from v a l u e s below the C u r i e p o i n t t o v a l u e s above. ( S e v e r a l d i f f e r e n t measurements (3) i n d i c a t e t h a t the C u r i e p o i n t of n i c k e l l i e s  between 360°C and 380°C ). F i g u r e 3  shows h i s r e s u l t s f o r the decomposition f i g u r e 4 f o r the decomposition  of carbon monoxide, and  of n i t r o u s oxide  ( 4 ) . Each  r e a c t i o n shows a c l e a r H e d v a l l E f f e c t I I . Paravano (5)  studied  Figure 4.  Decomposition of Nitrous Oxide over Nickel Catalyst.  Figure 3.  Decomposition of Carbon Monoxide over Nickel Catalyst.  the oxidation of carbon monoxide on a lanthanum-strontium c a t a l y s t , La^ Sr^ Mn0 , which has a Curie temperature of 373°K. s  3  His r e s u l t s ( figure 5 ) show a marked decrease i n y i e l d near the Curie point, an example of a Hedvall E f f e c t I .  2-1  '  . '  23  «  47  29  3t  ;  loVr  Figure 5. C a t a l y t i c A c t i v i t y of La Sr Mn0 ss  55  3  near Curie Point.  Cimino et a l . (6) have studied the oxidation of carbon monoxide on a n i c k e l oxide c a t a l y s t , w h i c h Is antiferromagnetl with a t r a n s i t i o n temperature of 250°C. Their r e s u l t s Bhow a Hedvall E f f e c t I ( f i g u r e 6).  Figure,6.  C a t a l y t i c A c t i v i t y of Nickel Oxide near Magnetic Transition Temperature.  In order to strengthen the assumption that the course of a c a t a l y t i c reaction i s primarily governed by electronic properties of the c a t a l y s t , researchers have measured other physical quantities that r e f l e c t these properties. Reinacker et a l . (7) found that the t r a n s i t i o n from the random to the ordered atomic d i s t r i b u t i o n caused a marked decrease i n a c t i v a t i o n energy f o r the decomposition of formic acid over the a l l o y s , Cu Au, Cu^Pd, and CuPd. Hedvall and Wlkdall. (8) 3  showed that  and ^> quartz possess d i f f e r e n t c a t a l y t i c action  for the oxidation of sulfur dioxide, and that the a c t i v i t y of the quartz increases considerably during the course of the t r a n s i t i o n . Paravano (9) studied the oxidation of carbon monoxide over the f e r r o e l e c t r i c c a t a l y s t s , sodium and potassium niobates, NaNb0 and KNb0 . ( F e r r o e l e c t r i c 3  3  6  - materials show severe changes i n d i e l e c t r i c constant,£, and conductivity, 07, at t r a n s i t i o n temperatures, .just as f e r r o magnetic materials show severe changes i n magnetic behavior at the Curie point ). Potassium niobate has two t r a n s i t i o n . temperatures,  224°C and 434°C; sodium niobate has three  t r a n s i t i o n temperatures,  -80°C, 370°C, and 474°C. A severe  Jump i n c a t a l y t i c a c t i v i t y i s observed at each of these temperatures  ( figure 7 ). Paravano concluded that the  Figure 7.  C a t a l y t i c A c t i v i t y of NaNb0 and KNb0 at F e r r o e l e c t r i c T r a n s i t i o n Temperatures. 3  3  electronic rearrangement of the catalyst at the t r a n s i t i o n points a f f e c t s the electron transfer during the c a t a l y t i c process, supporting evidence, he says, f o r an electronic mechanism being the rate determining step. In l i g h t of the previous discussion of d-band vacancies and ferromagnetic phenomena, the Hedvall E f f e c t may, i n part, be t h e o r e t i c a l l y explained. I t i s r e c a l l e d that exchange forces between neighbouring n i c k e l atoms cause alignment  of atomic magnetic moments, or, i n other words,  alignment of the electron spins i n the 3d-band. ( Electron spins exist l n only one of two possible ways, designated  as  t or I , since the spin quantum number i s s = i ^ ) . Hence, electrons of only one kind of spin can be added to the  3d-  band vacancy, v i a the adsorbed molecule. Rising temperature uncouples a small portion of the spins but at the Curie temperature they are suddenly a l l uncoupled. Therefore, spins of both kind ( either t or jr ) can pair with the electron spins of the adsorbed molecule, doubling  the  electronic contribution to the entropy of a c t i v a t i o n . This, i n turn, implies a lowering of the energy required f o r formation of the activated complex. As the a c t i v a t i o n energy decreases over the Curie temperature range, the c a t a l y t i c a c t i v i t y correspondingly  C.  increases.  External Magneto-Catalytic E f f e c t s  An external magneto-catalytic  e f f e c t i s the change  i n c a t a l y t i c a c t i v i t y due to the presence of an external magnetic f i e l d . Only three papers were found concerning  this  e f f e c t , and none of these dealt with t h e o r e t i c a l considerations. J u s t i and Vieth (10) studied the following reactions on powdered n i c k e l catalysts and i n the presence of a magnetic f i e l d of 0 to 5000 gauss: 'p-Hj,  >• o-H  NjO  -  NH  -^iN^+iH*  3  H^+C^  N^O*  CA  H +C^H 0H x  J i i  —  t  5  C^+H^O  (2) (3) (A) (5) (6)  With the exception of reaction (2)" they did not observe any change i n c a t a l y t i c a c t i v i t y that could be attributed to the presence of an external, f i e l d . In t h i s reaction, however, they' observed, f o r an applied f i e l d of 10 gauss an increase i n y i e l d from 67.2$ to 71.4$, and f o r an applied f i e l d of 4500 gauss an increase i n y i e l d from 67.2$ to 76.0$. Concerning t h e i r r e s u l t s , they state, " The t h e o r e t i c a l treatment of the r e s u l t s cannot yet give a d e f i n i t e explanation; before t h i s can be given the experiments must be extended to ordinary chemical reactions."  Krause (11) has observed that with cupric  ions acting as r e i n f o r c i n g agents i n an amorphous i r o n c a t a l y s t , the peroxide oxidation of formic acid at 37°C i s influenced by placing the reaction i n a magnetic f i e l d of 260 gauss. Schwab (12) has studied the decomposition of formic a c i d , the reduction of nitrous oxide by hydrogen, and orthopara hydrogen conversion i n the presence of a magnetic f i e l d of 3000 gauss, but he d i d not observe any external magnetocatalytic effects. It does not seem reasonable that an external magnetic f i e l d would a l t e r the course of a chemical reaction by d i r e c t l y perturbing the energy transfer between the adsorbed molecule and surface atoms, because energies .. associated with bond formation are approximately 20 to 100 K-cal/g-mole, whereas the energies associated with even large 4 - 6  ,  magnetic f i e l d s - o f 10 to 10 gauss are less than 10 cal/g-mole. Nevertheless, observed i n t e r n a l magneto-catalytic e f f e c t s show that c a t a l y t i c a c t i v i t y i s sensitive to changes i n the e l e c t r o n i c state of the c a t a l y s t . An external f i e l d 'a'ffects-l  9  the electronic state of ferromagnetic metals by orienting enough of the atomic magnetic moments to cause domain alignment, hence creating a net magnetic force on the metal. ( In ferromagnetic metals, domains are regions approximately 10 A So  to 10 A thick, i n which a l l the magnetic moments of the atoms are aligned homogeneously. The metal has no net force In zero magnetic f i e l d s because the domains are randomly oriented,, but the magnetic energy difference between domains i s very small, and they a l i g n even i n moderate magnetic f i e l d s of 10 gauss to 100 gauss, creating a net magnetic force on the metal.). Nevertheless, i t i s not l i k e l y that the c a t a l y t i c a c t i v i t y of ferromagnetic catalysts w i l l s i g n i f i c a n t l y change i n the presence of a strong magnetic f i e l d because ', although the 1  magnetic f i e l d aligns the domains, i t hardly disturbs the magnetic exchange forces between .neighbouring atoms, which are thousands of times stronger than,-the magnetic forces of domains. Since the i n t e r n a l magneto-catalytic effect r e s u l t s from the fact that at the Curie temperature thermal energy destroys the magnetic exchange forces between neighbouring atoms, consequently increasing the e l e c t r o s t a t i c p o t e n t i a l energy of the surface atoms, i t seems worthwhile to estimate the influence of a strong magnetic f i e l d on the exchange force between neighbouring catalyst atoms. Pawel and Stansbury (13) have calculated the s p e c i f i c heat of n i c k e l from recently  . .  determined experimental data, and subtracted the t h e o r e t i c a l s p e c i f i c heat, based on no.magnetic e f f e c t s . The r e s u l t i n g number, .285 K-cal/g-mole, i s an estimation of the exchange . energy f o r n i c k e l . Quantum mechanical considerations show that the exchange energy can also be estimated by the simple  10  relation E = y u ( NI +H ) x  (7)  0  Since, f o r n i c k e l , NI has the approximate value of 0  3.6xl0  6  gauss (3), a magnetic f i e l d , H, of 1 0  enhance the exchange energy less than 1 %  4  gauss would  (approximately  '3 cal/g-mole)..It seems doubtful that such a small perturbation l n the exchange energy between the surface atoms would s i g n i f i c a n t l y change the c a t a l y t i c a c t i v i t y . I t i s conceivable, nevertheless, that at the instant of energy t r a n s f e r only very small forces are necessary path of a chemical reaction, and, furthermore,  to a l t e r the at t h i s  instant, the adsorbed molecule becomes an unstable complex that has an unpaired e l e c t r o n . Because of t h i s unpaired ^  . ^  xr  V'  4  electron the complex i s , no doubt,, oriented i n a strong magnetic f i e l d . It i s very d i f f i c u l t to predict whether or not small perturbations of the exchange forces between catalyst atoms, and o r i e n t a t i o n of the adsorbed complex, due to the presence of a strong magnetic f i e l d , w i l l  significantly  change the rate determing step of energy t r a n s f e r on the catalyst surface. It seems to be consistent with other advances i n c a t a l y s i s to do experimental  work f i r s t and then  attempt to j u s t i f y any observed external magneto-catalytic effect.  11  D.  The Hydrogenation of Ethylene Reaction  The reaction studied was the h/drogenatlon of ethylene over a powdered c a t a l y s t ; C H^+ H 2  z  *• C H Z  (8)  6  The k i n e t i c s and reaction mechanisms have been studied by several investigators ( r e f . 14- to 40) f o r temperatures l e s s than 150°C. However, the purpose of t h i s work was to study the hydrogenation of ethylene r e a c t i o n through the Curie temperature of the n i c k e l c a t a l y s t , as well as to study the influence of an external magnetic f i e l d on the reaction r a t e . Unfortunately, no l i t e r a t u r e was found that dealt s p e c i f i c a l l y with the k i n e t i c s of t h i s reaction at high temperatures. Despite the extensive i n v e s t i g a t i o n of the reaction at moderate temperatures, no one p a r t i c u l a r reaction mechanism i s e n t i r e l y accepted, and the hydrogenation of ethylene s t i l l remains a controversial subject. Beeck (14) proposed that ethylene dissociates into an acetylene complex and two hydrogen atoms;  / H  C= C  4-  \  4Ni  /  C=C  Ni  H  +  \  Ni  2H  (9)  I  Ni  The adsorbed hydrogen then reacts with gaseous ethylene; 2H ' Ni  +  C U^ Z  •-*•>  C H 2  6  4 - 2Ni  (10)  12  The adsorbed hydrogen also reacts with the acetylene  4H - h N i  The  C = C  '. Ni  »-  C H Z  6Ni  -+-  6  complex;  (11)  -Ni  chemisorption work of Selwood (15) indicates that at  temperatures above 100 C ethylene dissociates as follows; H 0,114.+  6Ni  2H  -h  C  / \  I  Ni  C  v  Ni  / Ni Ni  .(12)  V Ni  H o r i u t i (36) suggests that the double.bond of ethylene Is ruptured  /  H  G \  and the_complex held by two n i c k e l atoms;  C  •+-  s\  Ni  NI  *• C H , +  2H  2  I  H  4N1  (13)'  6  Ni  References 14 to 40 discuss other p o s s i b i l i t i e s , and, most probably, the simultaneous occurence of several d i f f e r e n t mechanisms constitutes the hydrogenation of ethylene r e a c t i o n . The flow system k i n e t i c equations have been developed by Wynkoop and Wilhelm (28). Their r e s u l t s show that the rate of surface reaction i s best written as  =  ky.  (14)  Equation (14) suggests that the main r e a c t i o n i s between gas phase hydrogen and an adsorbed ethylene complex, a conclusion that receives wide support (14,24,27,30,35,39,40).  13  By performing a mass balance around the reactor one can express equation (14) e n t i r e l y i n terms of the v a r i a b l e , y^. The r e s u l t i n g expression can be integrated (28) to give the . exact solution  The v a l i d i t y of equation (15) i s l i m i t e d by the temperature dependence of the a c t i v a t i o n energy, a general phenomenon i n o l e f i n hydrogenation reactions (37). Above 100°C the a c t i v a t i o n energy decreases, becoming negative between 100°C and 150°C. Figure 8 i l l u s t r a t e s a t y p i c a l plot of r e a c t i o n rate versus temperature. A  rate  Figure 8.  Reaction Rate Curve for O l e f i n i c  Hydrogenation^  For the hydrogenation of ethylene reaction, Twigg (26) and Beeck (14) suggest that desorption of ethylene complexes o f f the catalyst surface at high temperatures causes the decrease i n reaction r a t e . Sabatler (41) and Jenkins (21) show that a carbonization reaction at elevated temperatures  also contributes to the decrease i n c a t a l y t i c a c t i v i t y ;  C,H + 4N1 A  Z  4  ^ c = C +2H /  \  Ni  — -  I  Ni NI  C  C + 4H  / \  / \  (16)  I  Ni Ni Ni' Ni Ni  The variables i n equation ( 1 5 ) , y i  a  n  a  d  7  M  » were  determined from the chromatograph r e s u l t s by the following mass balance around the reactor; l e t r, = r a t i o of ethane to ethylene peak areas from the chromatograph recorder _  mole3 ethane leaving reactor moles ethylene leaving reactor  —  l e t r = r a t i o of hydrogen flow rate entering reactor t o ethylene flow rate entering reactor x  _  moles hydrogen entering reactor moles ethylene entering reactor  —  moles hydrogen entering reactor, per mole ethylene = ( 1+r, )r  leaving  z  moles hydrogen leaving reactor, per mole ethylene = ( 1+r, ) r - r ,  leaving  z  'therefore, mole f r a c t i o n of hydrogen leaving reactor (1+r, )+(l+r, ) r - r , z  a n d  '  y  -TTr7  (l+r/jr.+l  _  v  ao  vl7; ( 1 8 )  Appendix II l i s t s a computer program that calculates values of the s p e c i f i c reaction rate constant, k, from equation (15)» and the corresponding values of the r e c i p r o c a l temperatures, 1/TV.  :  .  15  APPARATUS  A.  General  The apparatus (figures 9 and 10) consisted of cylinder gases of ethylene and hydrogen, glass tubing and stopcocks, flow c o n t r o l l e r s , capillary-manometer flow i n d i c a t o r s , two tubes packed with activated alumina to remove water traces from the gases, a tube packed with micropore f i l t e r paper to remove dust p a r t i c l e s from the gases,- two gas mixing chambers, reactor, magnet with accompanying power supply and current regulator, soap bubble meter to measure gas flows, vacuum pump, vacuum gauge, gas  chromatograph,  temperature c o n t r o l l e r , and potentiometer. B. 1. Tubing  Detailed The tubing consisted of 7mm. lengths, with several 0.5 mm.  pyrex glass capillary  sections to smooth the gas flow. Two tygon pelces, one inch i n length, were used to connect the glass tubing to the copper tubing from the flow c o n t r o l l e r s . O r i g i n a l l y a l l the tubing was copper, which proved unsatisfactory due to sporadic gas J  leakage at the f i t t i n g s . These leaks were d i f f i c u l t to detect, but a f t e r glass tubing was used they were e a s i l y detected by passing a high frequency leak detector over the evacuated system.  „>lll//  C H ?  POTENT IAL  4  a oo  NULL DETECTOR AMPLIFIER  TEMPERATURE CONTROLLER  H  2  (CARRIER  GAS)  SOLID STATE CURRENT REGULATOR  VACUUM I/PUMP  H SOAP  BUBBLE  METER  FIGURE  9 .  *  DIAGRAM  OF  APPARATUS  SOLID  STATE FILTERED POWER SUPPLY  CAPILLARY TUBING ELECTRICAL WIRING H — THERMOCOUPLES GAS FLOW  17  18  2. Gases  Matheson^hydrogen and ethylene C P .  cylinder  gases were used without further p u r i f i c a t i o n . Oxygen traces were removed from the hydrogen by means of a deoxo u n i t . 3. Flow Controllers  Moore D i f f e r e n t i a l Flow Controllers, model 63 BU, were used to control  the flow of hydrogen and ethylene. These controllers are s p e c i f i e d to maintain control to 1.cm^min., although i n t h i s work i t was found that they did not maintain control at flows less than lOcm^mln., approximately. These c o n t r o l l e r s operate according to the following p r i n c i p l e : The constant upstream .tank pressure serves as a reference on the top of the c o n t r o l l e r diaphram, and a loading spring below the diaphram exerts a constant pressure of 3 p . s . l . g . less than the reference pressure,across an external needle valve. Therefore, any fluctuations i n downstream pressure cause the spring-loaded diaphram to self-adjust so that a constant pressure drop of 3 p . s . i . g . i s maintained. Since the pressure drop i s constant across the external needle valve and the valve setting f i x e d , the flow remains constant. 4. Manometer Tubes  ^  The manometer tubes, used f o r flow i n d i c a t o r s , are shown schematically i n  figure 11. The f i n a l design, obtained after several t r i a l s , s a t i s f a c t o r i l y prevented any manometer l i q u i d from entering the system. The valves, V, and  , on top of the l i q u i d traps,  T, and T^, were needed to i s o l a t e the manometer tubes from the system when i t was put under vacuum. The manometer l i q u i d  was  19  20  red gage o i l , which has an approximate s p e c i f i c gravity of 1.0. 5. Reactor  The design of a properly functioning reactor was d i f f i c u l t and time consuming. Figure 12 Is  a schematic drawing of the f i n a l working model, which was positioned symmetrically magnet pole faces.  between the one inch gap of the  ( This narrow gap was necessary i n order to  maintain a high, uniform magnetic f i e l d across the catalyst bed  ). The reactor required the following features:  (i) a  means to prevent the reacting gases from contacting the heating wirej ( i i ) a thermocouple well small enough to f i t inside the 6 mm. glass tube surrounding  the catalyst bed,, and  large enough to contain two sets of e l e c t r i c a l l y insulated thermocouples^  ( i i i ) a means to keep the pole faces of the  magnet near room temperaturej (iv) a catalyst bed that could be replaced e a s i l y . A 10 mm. glass tube sealed to the inner 6 mm. glass tube protected•almost  a l l of the heating wire from  exposure to the reacting gases. The a i r gap between the reactor.top and the pole faces provided s u f f i c i e n t i n s u l a t i o n to keep them near room temperature. The catalyst bed was replaced by removing the reactor top, f i l i n g and breaking the . 6 mm., tube and-pulling I t upwards, thereby carrying the bed . along. A new catalyst bed would be prepared, placed i n p o s i t i o n and sealed to the 6 mm. tube. Using an e a r l i e r reactor design, a thermocouple well was made to extend the length of the heating wire, and by moving the thermocouples along the well a temperature v a r i a t i o n of approximately 15°C i n 400°C was found. Since the catalyst bed extended about 1/3 the length of the  •Jmm  GLASS  (CATALYST  6 mm  GLASS  TUBE  2 4 mm  GLASS  (REACTOR  10 mm  . GLASS  ( HEATING  TUBE  TOP)  TUBE  WIRE  SEAL)  CHR0MEL 3 mm GLASS THERMOCOUPLE  WELL  MAGNET GAUGE  (36  GAUGE)-  THERM0C0UPLES*  24/40 GLASS  20  TUBE  CHAMBER)  POLE  ' COPPER•  GROUND JOINT  FACES LEAD  WIRE  RUBBER  SERUM  TO  GAS  FLOW  GAS  FLOW  CAP  CONTROLLER  IN OUT  SCALE FI6URE 12. . , . THE  REACTOR  SCALE  FACTOR = I-.2-  FACTOR  -  1.1  22  heating wire, at 400°C a temperature v a r i a t i o n of 5°C along the bed was expected. The catalyst bed was once replaced by a bed of 42 micron glass beads and the effluent gas sampled several times over a wide temperature range, i n  ordep  to ascertain  the extent of reaction over the exposed section of the heating wire and copper leads. No ethane or methane formation was detected. 6. Vacuum Gauge  A  mercury vacuum gauge (figure 13) was  used to Indicate the rate of gas leakage from the system. Under perfect vacuum the two mercury l e v e l s  under vacuum  to system Figure 13.  no vacuum  to system  Schematic Drawings of Mercury Vacuum Gauge,  would be exactly equal i n height. The vacuum achieved i n t h i s sydtem caused a 2 mm. d i f f e r e n t i a l i n the height of the mercury l e v e l s . Although no leaks were detected with the high frequency leak tester, the mercury column on the l e f t nevertheless would r i s e , about 6 in./hr., when the system  23  was  under vacuum, Indicating slow leaks. Leakage was  probably-  greatest at the f i t t i n g s of the flow c o n t r o l l e r s and at the stopcocks. The measured leakage rate was the rate of gas  l e s s than 1/100  of  flow.  7 . Mixing Chambers.  Two  mixing chambers were i n s t a l l e d i n  series (figure 14) to decrease the fluctuations i n the concentration of ethylene and hydrogen entering the reactor. A f t e r i n s t a l l a t i o n , the concentration . f l u c t u a t i o n was  reduced from approximately 10 % to 2 %,  capillary tubing  Figure 14.  8. Chromatograph  Schematic Drawing of Mixing Chambers,  A Beckman G.C.-l chromatograph was  used  to measure the reaction r a t e . A sample of the reactor effluent gas would be c o l l e c t e d , the components separated  i n the column, and the mole f r a c t i o n of each  24  determined from the areas of the eluted peaks, as measured on the recorder. Although the gas chromatography  technique  eventually worked very well, several problems were encountered i n modifying the equipment f o r t h i s work, and are 'worth . mentioning as a guide f o r future use of the technique l n k i n e t i c studies. F i r s t l y , the presence of methane formation at high temperatures was not detected u n t i l well Into the experimental work, f o r the following reason; Hydrogen has a strong,negative thermal conductivity r e l a t i v e to helium, which was  originally  used as the c a r r i e r gas. Consequently, as the hydrogen i n the sample passed through the thermal conductivity c e l l , a large, negative peak appeared on the recorder. Furthermore, helium and hydrogen Interact to produce a large shoulder on the hydrogen peak which h i d the eluted methane peak (figure 1 5 ) •  Time Figure 1 5 .  Schematic I l l u s t r a t i o n of Chromatograph Peaks.  At higher reactor temperatures t h i s "shoulder" became larger, indicating methane formation. In order to detect the amount of  25  methane, the c a r r i e r gas was changed to hydrogen. Thus the hydrogen from the sample blended i n with the c a r r i e r gas, exposing the methane peak. A small s p l i t t i n g tendency was detected i n the methane peak, suggesting the presence of a i r , which was not unexpected since the exhaust immediately followed the sample port. The air-methane separation was d i f f i c u l t  to achieve. A  long, 20 f t . s i l i c a gel-packed column gave s a t i s f a c t o r y separation, but the e l u t i o n time of the ethylene was approximately 40 minutes, which was Impractical since twenty to t h i r t y samples were taken i n one day. Eventually, an 8 f t . , 1/4 i n . copper column, packed with 60-80 mesh s i l i c a g e l , especially prepared f o r chromatograph adsorption, was found to s a t i s f a c t o r i l y separate the a i r , methane, ethane, and ethylene peaks.in approximately twelve minutes. The column was activated by passing dry a i r at 300 °F through i t f o r ten hours, and hydrogen f o r f i v e hours. The gas sampling was f i r s t done by means of a syringe and serum cap technique, which proved to be a poor one because continual sampling created substantial leaks i n the serum caps. Furthermore, a large amount of a i r was introduced into the column when i n j e c t i n g the sample. A further disadvantage was Inconsistency i n the sizes of the gas samples. A sampling valve was I n s t a l l e d l n the system but i t never worked properly due to sporadic leakage and poorly designed sampling chambers. The chambers created a capacitance effect r e s u l t i n g In peaks that slowly t a i l e d exponentially o f f . Eventually, two, four-way stopcocks were i n s t a l l e d as  26  the  sampling means (figure 16), and these .worked excellently,  Their main advantages were s i m p l i c i t y of operation and sharp peaks.  a. from chromatograph b. to exhaust of systemc. from reactor. d. to chromatograph Figure 16.  1. c o l l e c t sample 2. trap sample 3. sample c a r r i e d to chromat ograph  Schematic Drawing of Sampling Valves,  Since the Beckman G.C.-l chromatograph that was used i n t h i s work was also needed f o r teaching purposes once a week, i t was decided to have the workshop construct one that could be I n s t a l l e d d i r e c t l y into the system* Theoretically t h i s was a good idea and eventually carried out. However, the f i t t i n g s on the housing of the thermal conductivity c e l l were not  leak tested and o i l from a surrounding temperature bath  leaked Inside the c e l l , carbonizing the filaments. This chromatograph column was abandoned i n favour of the G.C.-l, which was i n s t a l l e d d i r e c t l y into the system during the summer months, since i t was not then needed f o r teaching.  27  9. Temperature Controller  The reactor temperature was e f f e c t i v e l y controlled by means  of a Wheelco off-on c o n t r o l l e r . Two chromel-alumel 36-20 gauge thermocouples were, positioned inside the thermocouple well, one f o r temperature control, the other f o r temperature measurement by a potentiometer. The two thermocouples (four wires i n a l l ) positioned i n a 3 mm. well provided.a continuous problem because even though the wires were oxidized i n a flame to e l e c t r i c a l l y insulate them, they nevertheless often shorted out, causing delays and inconveniences i n a r r i v i n g at the desired reactor temperature. In order to obtain f i n e control the control system was modified ('figure 17). wall-  switch  autotransformer  s l i d e wire resistor V O l t - -2^.1 meter  re&c/tor heajer  controller amplifier potential/divider -H—H—«—  - L ^ L I H ^  thermocouple wire  potentiometer L-W  Figure 17.. ^Mod-ifled^Temperature Control System.)  The signal from the. thermocouple was balanced by a p o t e n t i a l d i v i d e r u n t i l a zero .was obtained on a n u l l detectora m p l i f i e r . Any r e s u l t i n g small difference i n voltage between the p o t e n t i a l d i v i d e r and thermocouple was amplified one-  28  hundred times,  and  Bince t h i s was  a large signal,  the  c o n t r o l l e r q u i c k l y "homed i n " on the c o n t r o l p o i n t . Furthermore, a 5 ohm  s l i d e wire r e s i s t o r was  p a r a l l e l t o the r e a c t o r h e a t e r .  The  connected i n  s l i d e was  set such t h a t  the r e s i s t o r c a r r i e d approximately 75 % of the amperage from the autotransformer,  decreasing  the r e l a t i v e change i n current,  t o the r e a c t o r h e a t e r by t h i s amount. Using  the  modified  c o n t r o l system, the magnitude of c y c l i n g of the r e a c t o r temperature was  l e s s than 4°C  i n 400 °C. 4  10. Magnet  . V a r i a b l e magnetic f i e l d s of up t o 10 gauss were obtained u s i n g a r e s e a r c h , aluminum  electromagnet, manufactured by Atomic L a b o r a t o r i e s (cat.  no, 79637), The magnet was  f i l t e r e d power supply  and  state  c u r r e n t r e g u l a t o r which c o n t r o l l e d as s m a l l as 10~ gauss. I t S  c o u l d only be run i n t e r m i t t e n t l y a t f i e l d  strengths l a r g e r  than 9000 gauss s i n c e a t such h i g h magnetic f i e l d s a s e r i o u s problem.(The magnet was  11. C a t a l y s t s  Inc.  equipped w i t h a s o l i d  f l u c t u a t i o n s i n the magnetic f i e l d  of the c o i l s was  foil  heating air-cooled),  F i v e d i f f e r e n t types of c a t a l y s t s were used:  a. N i c k e l Powder  Fine, 99,9  % pure n i c k e l powder, w i t h  mean p a r t i c l e diameter of 11,5  microns,  obtained  from the S h e r r i t t Gordon Mines L i m i t e d , Research  Division  (41), was  very  used as a c a t a l y s t . The  low average d e n s i t y of 3.85  d e n s i t y of 8,9  g/cm  g/cm ) and probably 3  3  p a r t i c l e s have a  ( n i c k e l mass has  a  have, t h e r e f o r e , a h i g h  s u r f a c e a r e a , i n the neighbourhood of 100 m^g.  This c a t a l y s t  gave high conversions but had two disadvantages f o r t h i s work: ( i ) at temperatures above 4-00°C the p a r t i c l e s sintered together, s e v e r e l y . r e s t r i c t i n g the gas flow through the bed; ( i i ) i t promoted more methane formation than the other catalysts and poisoned quicker,presumably due to carbon deposit. b. Nickel Spheres  Nickel spheres, 99.9 % pure and with an average p a r t i c l e diameter of  .05 mm.,  obtained from the S h e r r i t t Gordon Mines Limited  (41), were uaed as a' c a t a l y s t . No estimation of the surface area of t h i s n i c k e l can be given, but i t i s thought to be quite low. c. Alumina Supported Nickel  This n i c k e l catalyst  was  prepared by a standard method (35)  that i s described below. Activated alumina  p a r t i c l e s , 60-80 mesh, were placed i n a vacuum glass which was then evacuated f o r two hours. C P . nlckelous n i t r a t e , obtained from the J.T. Baker Company, was dissolved i n water (48 g/l) and poured over the activated alumina,, s t i l l under vacuum. The p a r t i c l e s were agitated f o r one hour, the excess solution poured o f f and the p a r t i c l e s dried f o r two hours at 250°F. They then were heated to 500°G; i n a furnace f o r f i f t e e n hours,, i n order to oxidize the nlckelous n i t r a t e to n i c k e l oxide. They then were placed i n the reactor and hydrogenated at 350°0 f o r f i f t e e n hours, to reduce the : .. n i c k e l oxide to active n i c k e l . The approximate surface area of the alumina supported n i c k e l i s 150 m /g z  (35)•  30  d. Powdered Copper  CP.  powdered cupric oxide, obtained  from the A l l i e d Chemical Company, was screened and the 120 + mesh p a r t i c l e s placed i n the reactor. Hydrogen was passed over the catalyst bed at 350°C f o r f i f t e e n hours- to reduce the cupric oxide to active copper. e. Platinum  Platinum wire, 28 gauge,, of unknown purity was cut into fine pieces, placed i n the  reactor, and reduced to active platinum by passing hydrogen over the bed at 350°C f o r f i f t e e n hours. .  EXPERIMENTAL PROCEDURE Once the system (figure 9) had been checked f o r leaks, I t was kept under vacuum f o r approximately one hour, and during t h i s time i t was observed that traces of water vapour, which had c o l l e c t e d inside the tubes at a few places, would disappear. Hydrogen was introduced with the vacuum pump s t i l l running, the system sealed and the pump shut o f f , so that the hydrogen pressure increased s l i g h t l y above' atmospheric. Then the exhaust valve was opened, and, with the hydrogen passing through the system, the catalyst bed heated to approximately 350°C. Hydrogen was passed over the hot bed for approximately f i f t e e n hours. This procedure was repeated before every run to assure that the catalyst was activated. The hydrogen flow was measured with the soap bubble meter. Ethylene was introduced into the system, and after two hours to allow f o r s t a b i l i z i n g and f o r dead spaces to reach equilibrium concentration, the t o t a l flow rate measured, and the ethylene flow calculated by difference. Barometric pressure and room temperature  were recorded.. Effluent gas  samples were taken and analyzed on the chromatograph. Immediate plots of temperature  versus per cent conversion  were made, l n order to see the reaction path. After doing a few runs to determine the shape of the reaction rate curve, Vhe magnet was turned on to see whether the curves showed a break or change of slope that could be attributed  32  to the presence of a magnetic f i e l d . When the r e s u l t s showed that the magnetic f i e l d had no e f f e c t on the reaction rate that could he measured i n this work, runs wer.e done through the  Curie temperature of the n i c k e l catalyst (360 °C)  i n order  to attempt to observe the presence of a Hedvall E f f e c t . To determine the weight of the c a t a l y s t , the 3 mm. catalyst chamber was weighed, f i l l e d with the catalyst and 'V<=cpiL !  '^rewleighed, before being i n s t a l l e d i n the reactor. Since the catalyst was found to poison quickly at high temperatures due to carbon deposit, a fresh catalyst was used.for every run. It was attempted to reactivate the catalyst by passing hydrogen through the bed at 350°C f o r ten hours, but t h i s had l i t t l e , i f any, e f f e c t . The black carbon deposit  still  remained a f t e r treatment with hydrogen. For  s i m p l i c i t y X r u n s were done at constant flow r a t e .  The flow rate was checked every hour or so, and, a f t e r i n s t a l l a t i o n of the c a p i l l a r y tubing,, i t was found to..fluctuate not  by more than a few per cent. Flow rates were varied from  8 cm /min. to 90 cm /min., and feed gas composition was kept 3  3  at approximately 70 % to 85 %,hydrogen. The exhaust gases were burned to carbon dioxide and water vapour.  :  33  EXPERIMENTAL RESULTS'  A.  General  Unexpected design modifications were caused by the unusually low flow rates required, the rapid surface poisoning of the c a t a l y s t , and the s i n t e r i n g of the powdered n i c k e l catalyst at high temperatures. One of the problems of t h i s work, therefore, was t o refine the apparatus u n t i l meaningful results were obtained. Consequently, several runs were performed i n order to help "debug" the apparatus, and the r e s u l t s of these runs were unavoidably poor. The o r i g i n a l data of a l l of the runs i s tabulated i n Appendix I I I . The r e s u l t s of runs A to V are, not considered to be p a r t i c u l a r l y useful except to i l l u s t r a t e that the magnetic f i e l d had no apparent e f f e c t on the reaction r a t e . Figure 18 shows, f o r example, the r e s u l t s of runs N and P, i n which the reaction rate was measured over the tempe'rature range of 300°C to 400°C. The poor c o r r e l a t i o n of the data obscures the presence of any Hedvall E f f e c t . The areas of the ethylene peaks on the chromatograph recorder were seen to fluctuate appreciably during these and other runs, indicating that either the hydrogen or ethylene flows were f l u c t u a t i n g , or that these two gases were not mixing evenly before entering the reactor. Cycling of the l i q u i d l e v e l s of the manometer tubes indicated that the former s i t u a t i o n was, i n f a c t , responsible f o r the v a r i a t i o n of the ethylene peak area. Consequently, 0.5  •"  .  mm.  i 'i  PERCENT 5 _l  10 I  ,  ETHANE 15 l  /  FORMED 20 I  : 25 I  *30 1_  c a p i l l a r y tubing was  i n s t a l l e d d i r e c t l y a f t e r each of the two  flow c o n t r o l l e r s . However, the fluctuations In the ethylene peak areas s t i l l persisted, although not to such a great extent. After the i n s t a l l a t i o n of the two mixing chambers, the fluctuations were s a t i s f a c t o r i l y damped. The r e s u l t s of runs 1 to 23 are though to be i n d i c a t i v e of the k i n e t i c s of reaction (8), and a summary of the r e s u l t s i s given i n table  1,  Run  Catalyst  Type  Temperature •Range °C  H/C'j, H 2  4  i n feed  Flow Rate  Activation Energy / cm/min. K-cal/mole \  ^NTc^ke^powdey-^ powdered nickel 30—78 powdered nickel 27—92 3 powdered nickel 31—78 4 n i c k e l spheres 26—122, 5, powdered nickel 24—69 powdered nickel 30—405 n i c k e l spheres 8 26—497 a l . supp. nickel 9 27—515 10 powdered n i c k e l 67—199 powdered nickel 266—400 - 11 n i c k e l spheres ' 294—471 12 powdered nickel 304—388 13 .14 powdered copper 299—468 powdered copper 295—513 15 a l . supp. nickel 301—411 16 a l . supp. n i c k e l 290—428 17 a l . 3 u p p . nickel 284—515 18 a l . supp. nickel 295-537 19 a l . supp. nickel 297—554 20 platinum wire 21 295—535 powdered copper 23 —526 22 a l . supp. nickel 279—509 23 \ 2  Table 1. th'gge~-v-alues—w^re~paX  3-r08— 2.24 5.17 3.63 1.20 4.40 .276 1.20 3.67 .276 3,22 4.05 2.70 2.78 3.43 5.38 4.92 6.70 4.16 5.35 4.95 4.38 8.09  ii^5~ 24.8 50.0 36.8 15.5 90.536.8 15.5 21.2 36.8 78.6 10.7 8.88 31.6 29.5 22.2 22.4 25.0 25.4 14.1 39.4 29.1 29.6  >. / '/  / -  1.0'# 15-,7 f\ • 15 i-l k \ 10.8 4 \ 11.5 j \ '-4-. 3 «*\ \ / -2.(9\  Summary of Results  External Field Effect ?  •Hedvall Effect I '-'  ?•  '  "no  no no no . no no  no  yes . yes yes yes yes  yes yes yes yes yes -  yes  37  B.  External Magneto-Catalytic E f f e c t s  The reaction rate was measured at i n t e r v a l s of increasing temperature, and curves of per cent ethane formed versus temperature were p l o t t e d . Once the shape of the  curve over a p a r t i c u l a r temperature regime was  established, the magnetic f i e l d was turned on at various temperatures. No change i n slope or discontinuity l n 'these curves was observed at the point where the magnetic was applied. Since the influence of the magnetic  field  field  would be f e l t immediately by the catalyst atoms, any detectable e f f e c t on the reaction rate would c e r t a i n l y be an immediate one.. In other words, i t i s highly u n l i k e l y that, the  prolonged influence of the magnetic f i e l d would a l t e r  the  reaction r a t e . Figure 19 shows the r e s u l t s of runs i n  which the magnetic f i e l d was applied. Had an e f f e c t on r e a c t i o n rate been observed,, a systematic technique, s i m i l i a r to the one proposed by Booth (42), would have been c a r r i e d out  i n order to determine the magnitude of the e f f e c t . C.  Lower Temperature Results  Figure 20 shows Arrhenius plots f o r the temperature range of 20°C to 130°C. A c t i v a t i o n energies f o r r e a c t i o n (8) were calculated from the slopes of these l i n e s , assuming the following equation to be v a l i d . l n k = l n A 4 E /RT.  (19)  Table 2 i s a comparison of values of the a c t i v a t i o n energy  t  T  magnetic  field of 5000  gauss applied  |.  magnetic  field of 10000  gauss  • V •  applied  0  / X ft  « e & o $  \  RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN  2 8 10 12 15 16 20 21 D J S U E  / t i 50 FIGURE  100 19,  150  REACTION  200 RATE  IN  I  250 THE  i  300  350  PRESENCE  OF  400  500  450  MAGNETIC  FIELD CO  39  (l/T °K)IO FIGURE 20. . .ARRHENIUS  PLOTS FOR RUNS  1,2,3,4,5,6  Author  Catalyst Type  air—s^pp^jnAcke 1 Toyama ( 2 3 ) nickel mass Twigg . ( 2 7 ) nickel wire Jenkins (21) nickel film Beeck ( 3 2 ) nickel f i l m Pauls ( 3 5 ) a l . supp. nickel M4y^tea3?a-444-) nl.akal_f.ilm>,. Wynkoop (28) powdered copper  Temperature Range °C  3'0^&0  -78 — 0 60-—150  20—100 -80—150 0—100 X)-^-13<0—f  9—79  Activation Energy  Run  Actlv* Temper- at ion Energy ature Range °C K-cal mole  Catalyst Type  K-cal mole  -a*r66.1 14.0 10.2 10.7 11.6 •  ~^rv€k  13.2  aat-ie-kol pow4e-g^ n i c k e l powder/ 3 0 — 90 15.7 n i c k e l powder V 27—90 15.7 n i c k e l powder/ 10.8 3 1 — 89 26—123 , 5 n i c k e l sphere' 11.5 nl-cke-l--powder--.. . 24.r*70 r 6 -197? ^•eppe;r_==po.wd-e&--= 6&:^*4L-61i  -* surf-a6e^ot^T^etr^atacV-wtt-h^-hydrogen -at -350-C  Table 2.  Activation Energies f o r the Hydrogenation of Ethylene Reaction  41  obtained i n t h i s work with some e x i s t i n g l i t e r a t u r e values. The values of the s p e c i f i c r e a c t i o n rate constants and r e c i p r o c a l absolute temperatures,  needed f o r figure 2 0 , were  obtained from Appendix I I . With.the exception of run 1 ,  the  catalysts were pretreated with hydrogen at 3 5 0 C, and a d i f f e r e n t catalyst sample used f o r each run. The effect of pretreatment was remarkablei increasing the c a t a l y t i c a c t i v i t y by more than t e n - f o l d . Figures 2 2 and 23 i l l u s t r a t e quite c l e a r l y the difference between the run done over a nonpreated surface and pretreated surfaces. The temperature c o e f f i c i e n t of the reaction'rate i s very low i n f i g u r e 2 2 , whereas i t i s very high i n figure 2 3 , f o r the approximate temperature Interval of 20°C to 100°C. The discrepancy i n l i t e r a t u r e values of. the a c t i v a t i o n energy (table 2 ) . i s probably best a t t r i b u t e d to the d i f f e r e n t s p e c i f i c natures of the c a t a l y s t s , but, nevertheless, i t i l l u s t r a t e s the d i f f i c u l t y i n measuring reproducible r e s u l t s . It was not the purpose of t h i s work to study the k i n e t i c s of equation (8), since t h i s would involve a large number of runs and a wide range of such v a r i a b l e s as flow rate, catalyst surface, pressure, feed compos'tion, which, as mentioned e a r l i e r , would be impossible to a t t a i n with the e x i s t i n g system because of the severe l i m i t a t i o n s placed on the reactor s i z e . It was desirable,, however, to measure some values of the a c t i v a t i o n energy over the temperature i n t e r v a l of 20°C to 130°C, i n order to compare, them with e x i s t i n g l i t e r a t u r e values (table 2 ) . The fact that the values obtained i n t h i s work are higher than^literature values, i n general,  FIGURE  21.  CHROMATOGRAPH  RESULTS  FOR  RUNS  2 ft 3  PERCENT ETHYLENE REACTED  POWDERED CATALYST  N  *'^RUN 7 , 4  A  O  0  FIGURE Z 3 . HYDROGENATION OF ETHYLENE OVER A WIDE TEMPERATURE RANGE  NICKEL  o  \f MAGNETIC FIELD (5000 GAUSS) X -APPLIED FOR REMAINDER \ » \ OF RUN  CURIE TEMPERATURE INTERVAL  4  5  indicates that the catalysts were a c t i v e . In order to i l l u s t r a t e the a p p l i c a t i o n of the .chromatograph to t h i s work, some of the recorder r e s u l t s of runs 2 and 3 are shown i n figure 21. The peak areas and ethane to ethylene r a t i o s are tabulated with each measurement. The attenuation.value of each peak i s also given. For example, an attenuation value of 5 means that the peak area i s actually f i v e times as large as shown on the recorder paper. The l e f t . hand peak i s ethane, and the right-hand peak i s ethylene. Only s l i g h t traces of methane are detected, i n d i c a t i n g that the  r e a c t i o n k i n e t i c s should obey equation (15) quite w e l l .  Run 3 of figure 21 shows the large p o s i t i v e temperature . dependence of the r e a c t i o n rate over t h i s temperature range. I t i s observed that the r a t i o of the ethane to ethylene peak areas changes from 0.01365 at 27°C to 30.22 at 92°C.  D.  Results Over a Wide Temperature Range  Figure \23  shows the reaction rate curve f o r the  hydrogenation of ethylene over a wide temperature range of 20°C to 500°C. A maximum i n the reaction rate i s observed at 80°C using a powdered n i c k e l catalyst, at 125°C using a spherical n i c k e l c a t a l y s t , and at 215°C using an':alumina•. supported n i c k e l c a t a l y s t . Although the- maximum of 2l5°C i n the  l a t t e r case appears high, Schwab (45) reported a maximum  at 197°C f o r t h i s r e a c t i o n over a s i l i c a supported n i c k e l c a t a l y s t . Figure 23 shows an increase i n reaction rate around the  Curie temperature of n i c k e l , i n d i c a t i n g the presence of a  46 Hedvall Effect II,.which can be detected r e a d i l y by observing the  increase i n height of the ethane peak past the Curie  temperature  (figure 24).  The hydrogenation of ethylene reaction i s i r r e v e r s i b l e ; because the catalyst surface poisons, especially at high temperatures. Schwab (46) studied the reaction over decreasing and increasing temperatures through the Curie point of a copper-nickel a l l o y - c a t a l y s t . ( f i g u r e 25). His r e s u l t s show the  1.7  Figure 25.  LS  1.9  j>.0 2.1 2.1 ^<M<0*  «.»  Hydrogenation of Ethylene over the Curie Temperature Interval of Cu-Nl A l l o y (Increasing and Decreasing Temperatures). . K  f  i  presence of a weak Hedvall E f f e c t , as well as the ;. i r r e v e r s i b i l i t y of the reaction. Figure 26 shows some r e s u l t s of t h i s work that confirm the l a t t e r phenomenon. The reaction rate was f i r s t measured over Increasing and then decreasing temperatures, and l n each of these runs the ethane mole f r a c t i o n was lower at the same temperature f o r the run done over the decreasing temperatures, whereas the methane  FIGURE 24.  CHROMATOGRAPH  RESULTS  FOR  RUN  9  <t>  -0POWDERED  RUN I2~  NICKEL  SPHERrCAL MAGNET  ON  280  (5000  300  CATALYST  NICKEL  CATALYST  GAU^^^ ^**©^®®^ 8  320  360  340 I  I  380  400  I  T °C  l_  ON  (5000  GAUSS)  f  in  RUN  440  >MAGNET  ,k-^~cr&—.—»  420 _J  A ^ A ^ ^ A - - ^ ^ /  <1 POWDERED  i o  1  ^  IT-"  -I— 80  T T  FJGURE 26.  r"^AT—A-»-^  "A  HYDROGENATION  OF  ETHYLENE  1  100  1  NICKEL  r  120  140  A-  CATALYST  -i  1  160  1  r  180  °C OVER  INCREASING  AND  DECREASING  TEMPERATURES  49  mole f r a c t i o n was higher. This i a d i r e c t evidence f o r carbon \  deposit being responsible f o r poisoning of the catalyst surface, since methane formation proceeds by reaction mechanisms s l m l l i a r to the following one. i'*A,; 2Ni +  ~PC • H ' Ni Ni  - NI-C-Ni H  + CH  4  (20)  Ni  The decomposition of ethane to methane i s highly u n l i k e l y because the heat of adsorption of ethane on n i c k e l powder i s 0 K-cal/g-mole, whereas that of ethylene i s approximately 60 K-cal/g-mole (37). Furthermore, the chromatograph r e s u l t s of t h i s work showed that the mole f r a c t i o n of ethane d i d not decrease unexpectedly at temperatures where methane formation became s u b s t a n t i a l . The methane formation was noticeably low i n a few runs, even at temperatures near 400°C, and, therefore, Arrhenius plots were prepared f o r t h i s temperature regime (figure 27), assuming equation 15 to be v a l i d . Figure 27 indicates that the a c t i v a t i o n energy i s approximately -3 K-cal/g-mole over the temperature range of 250°C to 400^0, and that i t does not vary s i g n i f i c a n t l y f o r the three types of n i c k e l c a t a l y s t . This value may be somewhat i n error, however, because equation 15 i s based on the assumption that gas phase hydrogen reacts with adsorbed ethylene complexes. Such a reaction mechanism may not predominate at high temperatures.  "i~55  !  "lL60  165  IjO  3  ( l / T ° K ) 10 FIGURE  27. ARRHENIUS  PLOTS  FOR THE  TEMPERATURE  So  Ij5~  I  ^ RANGE  OF  250X  TO  4  51  •E. Internal Magneto-Catalytic E f f e c t s In order to confirm the presence of an i n t e r n a l  magneto-catalytic e f f e c t (Hedvall E f f e c t I I ) , eight runs were'' jj^JlJ done over the temperature range of 300°C to 550°C; .five on the^ ferromagnetic c a t a l y s t , n i c k e l , two on powdered copper, and one on platinum wire. The l a t t e r two catalysts are nonferromagnetic. A marked increase i n reaction rate was observed for each of the f i v e runs on the n i c k e l c a t a l y s t , Just past the Curie temperature, whereas a smooth decrease i n reaction rate was observed past t h i s point f o r the runs done on the copper and platinum catalysts (figures 28 .'and 29). Figure 30 contains some chromatograph r e s u l t s of runs 20 and 14. A n i c k e l catalyst was used i n run 20, and a copper catalyst i n run 14. In the former case the area of the ethane peak i s seen to increase past the Curie point, whereas i n the l a t t e r i t keeps decreasing past t h i s temperature. In general, the presence of more than one reaction i s not desirable, i n studying the Hedvall and related e f f e c t s , since the.effects may be obscured. However, In t h i s work the use ofi the chromatograph '"enabled the rate of f.ormation of the methane and ethane to be measured simultaneously. The following reactions probably occur above 300°C; C H + 2  4  H  2  >- C H  C H  4  + 2H  Z  *- 2LCH  2  C H 2  4  2  (8)  6  . (21)  4  —  C +ZE z  l  (22)  T°C FIGURE 2 9 .  HYDROGENATION  OF  ETHYLENE  THROUGH  CURIE  TEMPERATURE  INTERVAL  297.1 * C  RUN  2 0  386.7 »C  XI  ALUMINA SUPPORTED N I C K E L  M r * , 2 9 8 . 9 *C  R U N  32 9.5'C  X2  14  POWDERED COPPER  XIO  ft  4—'  Y  III FIGURE  30.  CHROMATOGRAPH  RESULTS  FOR  RUNS  14 8 2 0  D  ! i.  L'  55  The chromatograph r e s u l t s show that on a n i c k e l catalyst reaction (8) i s enhanced as the catalyst i s heated through the Curie temperature, whereas reaction (21) merely increases smoothly from 300°C to 500°C. On copper and platinum catalysts o  O  r e a c t i o n (8) decreases smoothly from 300 C to 500 C, and r e a c t i o n (21) increases smoothly,(figure 31). These r e s u l t s provide direct proof that the hydrogenation of ethylene reaction on a n i c k e l catalyst i s enhanced by the change from the ferromagnetic to the paramagnetic state of n i c k e l . Reaction (21) probably proceeds by the simultaneous occurrence, of several r e a c t i o n mechanisms, Just as r e a c t i o n (8) does. The following mechanisms no doubt occur, but several others are probable; 2H I Ni  H K 4- C C( /\ /\ Ni Ni Ni Ni s  S  )C Ni Ni S  Nl * N i — C - N i + CH. 4- 2 N 1 l Ni Ni H -+-. Hj_ CH +Ni-C-Ni Ni Ni ' Ni H  + H  (22).  (23)  4  H 2N1  4  Ni  -p^ Ni H  =  Nl CH + ,Ni-'C-Ni Ni  (20)  4  W  C1  The absence of a Hedvall E f f e c t II i n reaction (21) suggests that the electrons of the C—C bond of the adsorbed complex are independent of the electronic state of the 3d•electrons of n i c k e l . In other words, the C-C bond i s probably very l o c a l i z e d and does not exist i n resonance with the C — N i  57  bond of the adsorbed complex. Since the electrons of the  G—C  bond do not enter into exchange with the electrons of the n i c k e l , the s p l i t t i n g of t h i s bond w i l l be independent  of the  magnetic state of n i c k e l , and w i l l dependent only upon thermal energy and heat of adsorption. F.  K i n e t i c s of the Hydrogenation of Ethylene Reaction at High Temperatures  The presence of at least three  simultaneous  reactions, (8),- ( 2 1 ) , and (22), and the rapid surface poisoning phenomenon, indicate complicated k i n e t i c s at high temperatures. I t was not the purpose of t h i s work to study extensively the k i n e t i c s at high temperatures,  and,  furthermore, the flow rate, feed composition, and catalyst area could not be varied enough with the present system to allow a wide range of data to be c o l l e c t e d . Nevertheless, i t was thought worthwhile, even with the l i m i t e d data that was obtained, to check whether or not the k i n e t i c s of r e a c t i o n (8) might be better described by equation (24), rather than equation (14). F  d  v  c  = k.y^y.  (24) .  Equation (24) d i f f e r s from equation (14) by the f a c t o r y . b  The reason f o r including y i s based on suggestions (26, 47, t  48, 49, 5 0 , 5 1 ) that desorption of ethylene complexes o f f the catalyst surface i s at least partly responsible f o r the decrease i n c a t a l y t i c a c t i v i t y . This implies that at high  58  temperatures the gas phase concentration of ethylene, as well as that of hydrogen, i s s i g n i f i c a n t . Based on the lengthy integration of equation (14) by Wynkoop and Wilhelm (28), i t appears as though an exact integration of equation (24) would be d i f f i c u l t and lengthy. • However, the computer program r e s u l t s (Appendix II) show that at temperatures above 1J50°C, approximately, the mole f r a c t i o n of hydrogen does not change by more than 1 %  t  i n d i c a t i n g that  difference approximations to equations (14) and (24) should be valid.  I T ^ . y a .  Fy  ••• •  (25)  c  <y  =  a  y  (26)  t  where and  y«.  =  1/2( y^+ y  io  )  y  =  1/2( y + y  fco  )  w  The variables y  co  , y  k o  , and y  ao  are e a s i l y obtained from the  chromatograph r e s u l t s and a mass balance around the reactor. Since the chromatograph r e s u l t s also give the rate of methane formation, i t was decided to see whether or not either of the two following difference equations might describe reaction (21).  F V  —  do  = zya k  •  (27)  59  -5 "s5  y,  (28)  Table 3 gives some calculated values of k,, k', k^, and k £ f o r runs 15, 17, 19, and 20, l n which the reaction was studied on an alumina supported n i c k e l c a t a l y s t and over the approximate temperature range of 300°C t o 500°C. Runs 16 and 18 were not used because the s p e c i f i c reaction rate constant was nearly a factor of 10 lower than those calculated f o r runs 15, 17, 19, and 20, i n d i c a t i n g an excessively poisoned catalyst surface. The s p e c i f i c reaction rate constant, k,, calculated by the difference equation (25), l a seen to agree well with that calculated by the exact solution (15), i n d i c a t i n g that d i f f e r e n t i a l  conditions  apply f o r t h i s temperature range. Furthermore, the values of k^, appear to correlate s l i g h t l y better than the values of k,, i n d i c a t i n g that equation (26) describes the high temperature k i n e t i c s better than equation (25)• The inconsistency i n the values of k  2  and k^ suggests that neither equation (27) nor (28)  describes the k i n e t i c s of reaction (21). However, no d e f i n i t e conclusions can be made due to the lack of experimental data, G.  E f f e c t s of Mass Transfer  It seemed worthwhile to check the assumption that the chemical reaction at the c a t a l y s t surface i s rate c o n t r o l l i n g , or, i n other words, that mass transfer e f f e c t s are n e g l i g i b l e . Appendix I gives the d e t a i l e d c a l c u l a t i o n , and since i t was found that the s p e c i f i c reaction rate constant i s not 1/10  of the c o e f f i c i e n t of mass transfer, the assumption i s  very good.  60  Run  k,  Meas" urement g-moles sec. g.  1 1 16  - G  . xid  K  g-moles sec. g. .xid  7  <  g-moles sec. g.  T °C  xlO  xlO" '  xlO equation (15)  3.61 3.68 3.11  3.53 3.66 3.08  2.61 1.94 1.49  2.26 2.50 * 2.26 2.92 •  2.17 2.56 2.35 2.91  1.612 1.390 1.531 1.395  3.14 22.3 • 14.06 4.83  2.25 12.4 9.54 2.31  334 339 335 333  1.616 1.920 1.46 . 2.40  1.76 2.02 1.46 2.39!  1.059 1.039 1.038 1.178  23.5 37.2 "3.07 3.16  15.4 20.1 , 2.18 1.55-  367 368 368 369  6  17 19 9  k g-moles g-moles sec. g. sec. g. 5  1.328 5.66 1.76  .961 2.99 .841  290 295 294  17 19 20 9  9 3 5 19  20 19 17 9  9 9 15 ' 26  9 17 20 19  30 19 12 12  2.68 1.22 1.82 2.14  2.67 1.23 2.04 2.26  1.275 .866 1.310 1.176  4.38 4.44 29.6 41.9  2.08 3.16 21.3 23.0  392 392 393 393  20 19 17 9  16 17 40 34  2.33 3.33 1.585 4.00  1.659 2.65 3.69 , •" 1.850 1.57 1.119 .4.02 1.95  3.55 - 5.11 1.58 1.90  25.3 27.6 11.55 9.15  434 436 428 432  9 19 20  36 18 18  3.23 '5.78 4.68  16.28 31.7 33.5  455 459 459  Table 3.  3.48 3.63 . 2.83  3.73 4.01 3.29  1.75 2.04 2.04  Specific Reaction Rate Constants f o r High Temperature  61  CONCLUSIONS On a n i c k e l c a t a l y s t , the hydrogenation of ethylene reaction i s considerably enhanced as the catalyst i s heated through i t s Curie temperature, confirming the existence of a Hedvall Effect I I . No Hedvall Effect I was observed. The Hedvall Effect II i s pronounced  enough to change the temperature  c o e f f i c i e n t of the reaction rate from negative to positive as the catalyst changes from the ferromagnetic to the paramagnetic state. The reaction rate continues to increase with temperature up to 450 C, approximately, and then starts to decrease again.- On the non-ferromagnetic catalysts, copper and platinum, the reaction rate smoothly decreases over the temperature range of 300°C to 550°C. The observed dependence of the reaction rate on the magnetic state change of n i c k e l i s d i r e c t support f o r the theory that electron transfer between the catalyst and adsorbed complex i s enhanced as thermal energy frees the 3d-electrons from magnetic coupling e f f e c t s . 4  An external magnetic f i e l d , of strengths up to 10 gauss, does not influence the hydrogenation of ethylene reaction to an extent detectable by ordinary meansi ^ ii PJ^] ^  A  1  ^h® k i n e t i c s of t h i s reaction appear to be complex at high temperatures, c h i e f l y due to the simultaneous formation  °^ ethane and methane, and carbon deposit on the c a t a l y s t .  r*vv^ip  The chromatograph technique to measure the reaction rate appears to be excellent, especially f o r reactions that involve the formation of more than one product.  62  RECOMMENDATIONS FOR FURTHER STUDY Av  External Magneto-Catalytic E f f e c t s  The r e s u l t s of t h i s work.indicate that strong magnetic f i e l d s w i l l not s i g n i f i c a n t l y . I n f l u e n c e more complicated hydrocarbon reactions, although such a generalization has l i t t l e v a l i d i t y without more experimental proof. Since J u s t i and V i e t h (10) showed l i m i t e d success with the ortho-para hydrogen conversion reaction, i t i s recommended that a s i m i l i a r very simple reaction be chosen f o r further external magneto-catalytic studies. Furthermore,  the reaction  should be studied under conditions conducive to excellent reproduction of r e s u l t s . The most reproducible data seem to be obtained from t h i n f i l m microcatalytic techniques. For example, Miyahara  (44) has studied the hydrogenation of ethylene  reaction on evaporated n i c k e l f i l m s , with p a r t i c u l a r attention paid.to conditions of evaporation and purity of the hydrogen and ethylene. He found that the reaction was rendered reproducible by use of high purity hydrogen and ethylene, mass spectrometrically free from oxygen and nitrogen, and n i c k e l films freshly coated f o r every run, with n i c k e l evaporated i n - 6  a vacuum of 10  mm. of mercury. Figure 32 shows the reactor  and system used by Miyahara, and a s i m i l i a r apparatus, to studies under the influence of a magnetic f i e l d , i s recommended.  adapted  ethylene  hydrogen  mercury manometers to measure reaction rate ionization gauge to pump —*-  pump  sampling vessel fit dry 'ice trap l i q u i d nitrogen reactor trap n i c k e l wire glass sealmica shield Reaction Vessel  u u u  Figure 32. Diagram of Apparatus Used by Miyahara (44).  64  External magneto-catalytic i  ferromagnetic  studies on very t h i n  o  o  f i l m s , 20 A to 100 A thick, may  prove f r u i t f u l ,  because the magnetic properties of such films are quite d i f f e r e n t from the magnetic properties of bulk materials.(52). The main difference i s that t h i n films possess extremely coherent long range spin r o t a t i o n . Magnetic domains are very large i n t h i n f i l m s , and, i n f a c t , under proper conditions t h i n films can be deposited as a single domain. Furthermore, t h i n films provide an extremely homogeneous surface, an  order  of magnitude smoother than surfaces obtained by e l e c t r o p o l i s h i n g . In a strong magnetic f i e l d a l l of the atomic ' magnetic moments would instantaneously, a l i g n i n a uniform direction-. Therefore,  the surface atoms that form bonds with  the adsorbed gas phase molecule would r e f l e c t the reaction of the t h i n f i l m to an external magnetic f i e l d . I t seems reasonable that any substantial e f f e c t on c a t a l y t i c a c t i v i t y , due to homogeneous a l i g n i n g of the atomic magnetic moments, would be detected much more e a s i l y using t h i n f i l m s , rather than, powdered metals.. The surfaces of powdered metals are so i r r e g u l a r and contain so many centres of high energy that they scarcely r e f l e c t the properties of the bulk of the metal. J u s t i and Vieth (10) point out that i n powdered metals the — 4-  p a r t i c l e s approximately 10  mm.  i n diameter and  smaller,  possess high permanent magnetism, which probably obscures' completely the e f f e c t of an external magnetic f i e l d catalytic activity.  on  65  B.  Kinetics at High Temperatures  It might prove worthwhile of ethylene reaction at temperatures  to study the hydrogenation above 200°C, since there  appears to be l i t t l e , i f any, published data f o r high •temperatures.  One proposal i s to study the reaction with  widely varying conditions, so that data may  be obtained to  test the following difference equation;  -  i'rl  y?  (29)  The c o e f f i c i e n t s , n and m, are obtained by the method of least squares, from the l i n e a r equation In y«> = In k*+- n l n y, + m In y^ F  Furthermore,  (30)  one could perform a mass balance around the  reactor from the chromatograph r e s u l t s , i n order to estimate the rate of carbon deposit on the catalyst surface. By weighing the catalyst surface before and a f t e r each run, one could check t h i s estimation.  66  L i t e r a t u r e Cited  1.  Dowden, D. A.  J . Chem. Soc  242 (1950).  2.  Hedvall, J.'A. and Cohn, G. : Phys. Rev., 841 (1942).  3.  Bozorth, R. M. : " Ferromagnetism Nostrand, 1951. -  4.  Hedvall, J . A., Hedin. R., and Persson, Z. : Z. physik.' Chem., B27_, 196 (1934).  5.  Paravano, G. : J . Chem. Phys., 20, 342 (1952).  6.  Cimino, A., M o l i n a r i . E., and Romeo, G. : Z. physik. Chem., 16, 101 (1958).  7.  Relnacker, G., Wessing, G., and Trautmann, G. : Z. anorg. Chem., 236, 2 5 2 (1938).  8.  Hedvall, J . A..and Wikdahl, L. : Z. Elektrochem., 46, 455 (1940). '  9.  Paravano, G. : J . Amer. Chem. S o c , 7_5_, 1497 (1953).  " New York, Van  10.  J u s t i , V. A. and Vieth, G. : Z. Nat., 8a, 538 (1953).  11.  Krause, V. A. : Z. anorg. a l l g . Chem., 306, 237 (I960).  12.  Schwab, G. M. and Kaiser, A. : Z. Physik. Chem., 22, 220 (1959).  13. >"~±4.  ^  Pawel,. R. E. and Stansbury, E. E. : J . Phys. Chem. Solids, " '26, 757 (1965). Beeck, 0.. : Disc. Far. S o c , 8, 118 (1950).  15.  Selwood, P. ¥. :: J . Am. Chem. S o c , 3346 (1956).  16.  Beeck, 0., Smith, A. E., and Wheeler, A. : Proc. Roy. Soc  (London),/Tl77, 62 (1940).  17.  Eley, D. D. : " Catalysis " I I I , P. H. Emmett, New York (1955).  18.  Farkas, A., Farkas, L., Rideal, E.K. : Proc. Roy. Soc. (London) A146, 630 (1934).  19.  Herbo, C. : J . chim. phys., 47, 454 (1950). Hougen, 0. A. and Watson, K. M. : " Chemical Process P r i n c i p l e s " I I I , John Wiley, New York (1949).  /  6 7  21.  Jenkins. G. I . and Rideal, E. K. : J . Chem. Soc. (London) 2 W (1955).  22.. K e i i , T. : J , Chem. Phys., 22, 144 (1954).. 23.  Toyama, 0. : Rev. Phys. Chem.. Japan, 11, 53, (1937).  24.  Toyama, 0. : Rev. Phys. Chem. Japan, 12, 115 (1938).  25.  Tucholski, T. and Rideal, E. K. : Chem. Soc. (London), 1701 (1935).  26.  Twigg, G. H. : Disc. Far. S o c , 8, 152 (1950). 2_ 6, If ~ . 1.( Twigg, G. H. and Rideal, E. K. : Proc. Roy. Soc. (London),. A171, 55 (1939).  27.  28. Wynkoop, R. and Wllhelm, R. H. : Chem. Eng. Prog., 46, . . 300 (1950). 29.  Yang, K. H. and Hougen, 0. A. :. Chem. Eng. Prog., 46, 146 (1950).  30.  Strassen, Z; H. : Z. physik. chem., A169, 81 (1934).  . 31. Eley, D. D. : Disc. Far. S o c , 8 , 99 (1950). 32.  Beeck, 0. : Rev. Mod. Phys., 17, 61 :(1945).  33.  Fulton, J . W. and Crosser, 0. K. : A.I.Ch.E. J . , 11, 513 (1965).  34-.  H a l l , K. W. and Hassell, J . A. : J . phys.. Chem., 67. 636 (1962).  J>3^ Pauls. A.' C , Comings, E. W., and Smith, J . M. : A.I.Ch.E.J. / 5_, 4"53 (1959). 36.  H o r i u t i , J . and Polanyi, M. : Trans. Far. S o c , 3_0, . 1164 (1934).  37.  Bond,, G. C. : " Catalysis by Metals," Acad. Press., London and New-York (1958).  . 38. Emmett, P. H. : " C a t a l y s i s , " I I I , Reinhold, New York (1955). 39.  Schuster, C. : Trans. Far.. S o c , 28, 406 (1932).  ,/ 40. Rideal, E. K. : J . Chem. Soc. .(London), 121, 309 (1922). 41..  S h e r r i t t Gordon Mines Limited, Research and Development D i v i s i o n : issue #4, January, 1961. >  68  42.  Booth, R : Magnetic F i e l d s i n C a t a l y t i c Reactions, (unpublished t h e s i s ) , Department of Chemical Engineering, University of British'Columbia, Vancouver 8, Canada.  43.  Wanniger, L. A. and. Smith, J.M. 273 (I960).  44.  Miyahara, K. : J . Research Inst. Cat., 11, 1 (1963).  45.  Schwab, G. M.  46.  Schwab, G. M.. : Z. physik. chem., 4, 148 ( 1 9 5 5 ) .  47.  Schwab, G. M.  48.  Maxted, E. B. and Moon, C. H. : ' J . Chem. S o c , (1935).  49.  Palmer, D. M* and Palmer, ¥. G. : Proc. Roy. S o c , A 9 9 , . 402 (1921).  50.  Pease, R. N. : J . Amer. Chem. S o c , 4J5, 1196  (1923).  51.  Zur Strasseh, H : Z. physik. chem (Leipzig), 81 (1934).  A169,  52.  Prutton, M. : " Thin Ferromagnetic Films," London, Butterworths, 1964.  53.  Perry, R. H., Chilton, C. H., and K i r k p a t r i c k , S. D . : "Chemical Engineers' Handbook',' New York, London, Toronto, McGraw-Hill, 1963. " .  54.  Smith, J . M. : "Chemical Engineering K i n e t i c s , " New London, Toronto, McGraw-Hill, 1956. - .  55.  Reid, R. C. and Sherwood, T. K. : "The Properties of Liquids and Gases," New York, London, Toronto, McGraw-Hill, 1958.-  •  : Chem. Weekblad, 5_6,  : Z. physik. chem., B32, 169  (1936). —""""  : Z. physik. chem., A171, 421 (1934). ' 1190  York, 'i  1-1  1  APPENDIX  I  SAMPLE CALCULATION TO- ESTIMATE THE EFFECT OF MASS TRANSFER  1-2  Run 20, measurement  1.  Flow r a t e = 9 . 6 3 7 8 x 1 0 ^ — S z 5 0 l e s _ sec Feed gas c o m p o s i t i o n : 15.71  :  H  z  297°C  Reactor temperature Catalyst  , 84.3 %  alumina supported n i c k e l ; s p e c i f i c surface, area, a , approximately =• 100 m / g ^ ; p a r t i c l e d i a m e t e r , d , approximately = 6.8x10"^ t . s  p  area o f c a t a l y s t chamber, A A=TTdl-r X | l  l.424xl0 ft* 3  =  f l o w r a t e , G^_ 9 . 6 3 7 8 x l u & ^ g g l e s  =  >53.6. K g ^ ) ( l . 4 2 4 x l 0 f ^ ) 3  viscosity  M  H  yLW  =.157(11.96x10  '  V  M . m;x  =  5.26  lb-mole  l h r n  1  (54) = ^ f e  mix  -3  = 5  .83x10"  m o l e c u l a r volume of f e e d gas, v, •mi-*; •2.  W  ^  4  9  S  ) + .843(9.26x10 ) = 9.63x10  R e y n o l d s Number of feed gas, Re  )  lb-moles e  C  f  t  X  a e c  M ^ = . 157(28.03) •+.843(1.01)  5  s 0  11, s e c  m o l e c u l a r weight of feed gas,  5  -  m  ( 5 3 ) = 9.20x10"' }l  i  ;  l93cl  of f e e d gas,^ -.>:  (53) = 11.96x10*  ' IAT •&.  ;  1  '  4  6 ^ f cm e e  v j 5 4 ) = 14.3g^SfeeH  ^=.157(49.4)^- .843(14.3) =  l9.65 _ gi s  m  e  „ f ^  * "  s  e  n  C  1-3 3 CTD  molecular volume of C Hg(55) = 4 2 _ l e z  g  m o  d i f f u s i v i t y of ethane into feed gas, D (54) t  D c = . 0 0 6 9  ^ ^ , a . ^ ^  (  3.47  =  - g -  density of feed gas, ^. _ |X  ^  359?T/492)  7.01xl0 -^-  =  3  Schmidt Number, S =  /-W  c  2.A2  =  mass transfer c o e f f i c i e n t , k (54) g  ,, _ 1/82 G _ ^ * Re" Sc * 0  k  V  2  >  9  v 6  ;  1 x  l  6  °  lb-moles f i sec t  from Appendix I, run 20, measurement 1 •  k = 1.846x10"* 6 - ° l sec g t. m  e a  £a  m* assuming s p e c i f i c area of catalyst, a ,= 100-g-^ s  * k =  clearly,  S«*. ^.305m  —  ;  1 * f c gc*. ^ i . 846x10* ^bxiu Hec m 0  k ^> k ?  e g  •  Z 3.36x10  IZ  lb-moles  APPENDIX I I A.  COMPUTER PROGRAM TO CALCULATE VALUES OF THE SPECIFIC REACTION RATE CONSTANT, k, AND CORRESPONDING VALUES ' OF THE RECIPROCAL TEMPERATURE, l / T K"' 0  B.  RESULTS  2^2 FORTRAN  MORGAN ISN  SOURCE 0  .1 2 3 4 5 6 7 10 11 12 13 15 16 17 20 21 26 27 30 31 33 34 35 42 43 44 45 46 47 50 51 52 54 55 56 63 64 65 66 73 74 75 77 100 101 106 107 110 111 112  * SIBFTC C * * * * 13 * 1 * * * * * 2 * ' * 3 *  * * * * * * * * * * * *  6 7 8 18 9 C C  10 12 * * * * * * * * * * * * * * * *  11 20  15 16 17 19  SOURCE  LIST  STATEMENT  ZQAA 598 THESIS DIMENSION R ( 2 0 0 ) , F H L ( 2 0 0 ) , A ( 2 Q O ) , S R R ( 2 0 0 ) , T(2QO) DIMENSION T K ( 2 0 0 ) , T K K 2 0 0 ) , G A R ( 2 0 0 ) , 8 ( 2 0 0 ) KK = 0 READ 1,. B P R E S S , RTEMP, U E T H F R , UHFR FORMAT ( 4 F 1 0 . 6 ) ETHFR = (UETHFR*BPRESS»273.2)/(RTEMP«22416.6»760.) HFR = E T H F R » U H F R / U E T H F R F = ETHFR + HFR P R I N T 2 , E T H F R , HFR FORMAT ( 5 X , 7H E T H F R = E 1 5 . 4 , 5H H F R = E 1 5 . 4 ) READ 3 , N FORMAT ( 1 2 ) FHE = H F R / F P R I N T 4, F H E , F FORMAT ( 5 X , 5H F H E = E 1 5 . 4 , 3H F = E 1 5 . 4 / ) READ 5 , ( R ( J ) , J = 1 , N ) FORMAT ( 7 F 1 0 . 5 ) C A L C U L A T I O N OF MOLE F R A C T I O N OF HYDROGEN L E A V I N G DO 6 J = 1,N GAR(J) = ((l.+R(J))*HFR/ETHFR)-R(J) FHLU3 = GAR(J)/(l.+R(J)+GAR(J)) PRINT 7 FORMAT ( 3 X , 2 4 H MOLE F R A C T I O N H L E A V I N G / ) P R I N T 8, ( F H L ( J ) , J = 1 , N ) FORMAT ( I X , 6 F 1 0 . 4 ) WRITE ( 6 , 1 8 ) FORMAT{IX,//) READ 9, WT FORMAT ( F 1 0 . 6 ) C A L C U L A T I O N OF S P E C I F I C R E A C T I O N RATE CONSTANT GM C A T A L Y S T DO 10 J = 1,N A(J) = (FHE-FHL(J))/((l.-FHL(J))»(1.-FHE)) B(J) = ALOG(((l.-FHL(J))*FHE)/((1.—FHE)*FHL(J))) SRR(J) = ( A ( J ) + B ( J ) ) * ( l . - F H E ) * F / W T P R I N T 12 FORMAT ( 4 X , 36H S P E C I F I C R E A C T I O N R A T E CONSTANT ( K ) / ) PRINT 1 1 , ( S R R ( J ) , J=1,N) FORMAT ( 3 X , 4E 1 6 . 4 ) WRITE(6,20) FORMAT(IX,//) READ 5, ( T ( J ) , J = 1 , N ) DO 15 J = 1 , N TK(J)=T(JJ+273.16 TKI(J)=1./TK<J) P R I N T 16 FORMAT(3X, 21H INVERSE TEMPERATURES/ PRINT 17, ( T K I ( J ) , J=1,N) FORMAT ( 3 X , 4E 1 6 . 4 ) WRITE(6,19) FORMAT(IX,///) KK = KK+1 I F ( K K - 2 8 ) 1 3 , 1 4 , 14  I  2-3 J.P.. MORGAN ISN 1 1 3 * 14 114 *  FORTRAN SOURCE  STATEMENT  STOP END  NO MESSAGES FOR ABOVE A S S E M B L Y IE 13HRS 39MIN 33.5SEC TI.  ,1  SOURCE L I S T  ZQA/  ETHFR= FHE=  0 . 1 9 2 7 E - 0 4 HFR= 0 . 2 1 7 0 E 00 F=  MOLE F R A C T I O N  H  SPECIFIC  0.1297 0.0202 0.0508 0.0683 0. 1 0 2 8 0.1233 0.1331 0.1418 0.1394 0.1337 0.1377  REACTION  0.1023 0.0175 0.0622 0.0771 0.1102 0.1239 0.1360 0.1394 0.1377 0.1331 0.1570  RATE CONSTANT  0.4773E-05 0.1789E-04 0.3583E-04 0.2389E-04 0.1912E-04 0. 1 9 2 4 E - 0 4 0.1372E-04 0. 1 1 3 8 E - 0 4 0. 1 0 2 2 E - 0 4 0.9321E-05 0.8525E-05 0.7891E-05 0.8031E-05 0.8312E-05 0.8884E-05 0.9174E-05 0.4894E-05  INVERSE  RUNS 4 &  7  LEAVING  0.1505 0.0128 0.0513 0.0688 0.1000 0.1193 0.1313 0.1331 0.1406 0.1319 0. 1 3 1 9  0.1693 0.0448 0.0491 0.0716 0.0989 0.1164 0.1302 0.1308 0.1406 0.1319 0.1313  0.5338E-05 0.2460E-04  0.0749 0.0212 0.0688 0.0843 0.1147 0.1273 0.1365 0.1400 0. 1 3 8 3 0.1331 0.1682  0.0595 0.0207 0.0732 0.0966 0. 1 1 5 3 0.1285 0.1342 0.1400 0.1354 0.1342  (K)  0.6861E-05 0.2121E-04 0.3766E-04 0.2329E-04 0. 1 8 2 2 E - 0 4 0.1747E-04 0.1354E-04 0.1130E-04 0.1014E-04 0.9174E-05 0.8812E-05 0.8171E-05 0.8031E-05 0.8668E-05 0.8956E-05 0.9102E-05  0.9380E-05 0.2516E-04 0.3516E-04 0.2344E-04 0.1855E-04 0.1614E-04 0. 1 3 1 1 E - 0 4 0.1114E-04 0.9690E-05 0.8956E-05 0.9248E-05 0.8101E-05 0.8171E-05 0.9102E-05 0.8956E-05 0.8383E-05  0.1320E-04 0.4176E-04 0.3549E-04 0.2057E-04 0.1912E-04 0.1407E-04 0.1202E-04 0.1075E-04 0.9542E-05 0.8597E-05 0.8956E-05 0.8101E-05 0.8383E-05 0.9102E-05 0.8812E-05 0.6127E-05  0.3163E-02 0.2942E-02 0.2763E-02 0.2596E-02 0.2424E-02 0.22826-02 0.2166E-02 0.20416-02 0.19416-02 0. 1 8 2 5 6 - 0 2 0.17456-02 0.1673E-02 0.1612E-02 0. 1 5 9 1 E - 0 2 0.15676-02 0.15316-02  0.3108E-02 0.2896E-02 0.2716E-02 0.2558E-02 0.2385E-02 0.22516-02 0.21406-02 0.2013E-02 0.19116-02 0.1806E-02 0.17266-02 0.16556-02 0.1605E-02 0.1583E-02 0.15576-02 0.1506E-02  0.3052E-02 0.2845E-02 0.2673E-02 0.2519E-02 0.2347E-02 0.22206-02 0.21086-02 0. 1 9 9 0 6 - 0 2 0.18676-02 0.17796-02 0.17116-02 0.1635E-02 0. 1 6 0 0 E - 0 2 0.1578E-02 0.15526-02 0.1494E-02  TEMPERATURES  0.3285E-02 0.3C00E-02 0.2800E-02 0.2637E-02 0.2476E-02 0.2313E-02 0.2198E-02 0.2076E-02 0.1965E-02 0. 1 8 5 4 E - 0 2 0. 1 7 6 8 E - 0 2 0.16886-02 0.16126-02 0.15976-02 0.1571E-02 0. 1 5 4 2 E - 0 2  2-5 0.1474E-02 • -  RUN ETHFR= FHE=  0 . 1 4 3 1 E - 0 5 HFR = 0 . 8 0 1 7 E 0 0 F=  MOLE F R A C T I O N 0.7973 0.7998 0.8003 0.7993 0.7988  H  REACTION  0.2201E-06 0.1109E-06 0.8654E-07 0.7338E-07 0.7678E-07 0.1333E-06 0.1472E-06  INVERSE  0.5783E-05 0.7213E-05  LEAVING  0.7976 0.7999 0.8003 0.7990 0.7993  SPECIFIC  12  0.7984 0.8000 0.8003 0.7991  0.7991 0.8000 0.8001 0.7988  RATE CONSTANT  0.7995 0.8002 0.8002 0.7989  0.7996 0.8002 0.7995 0.7988  (K)  0.2055E-06 0.1047E-06 0.8411E-07 0.7224E-07 0.1094E-06 0.1448E-06 . 0.1196E-06  0.1672E-06 0.9806E-07 0.7489E-07 0.7224E-07 0.1200E-06 0.1432E-06  0.1333E-06 0.9008E-07 0.7659E-07 0.8073E-07 0.1361E-06 0.1490E-06  0.1703E-02 0.1647E-02 0.1604E-02 0.1545E-02 0.1460E-02 0.1423E-02  0.1684E-02 0.1644E-02 0.1595E-02 0.1527E-02 0.1451E-02 0.1409E-02  TEMPERATURES  0.1723E-02 0.1657E-02 0.1625E-02 0.1574E-02 0.1508E-02 0.1433E-02 0.1353E-02  0.1712E-02 0.1655E-02 0.1609E-02 0.1564E-02 0.1489E-02 0.1425E-02 0.1344E-02  RUN ETHFR= FHE=  MOLE F R A C T I O N  •  0.7967 0.7973 0.7991 0.7995  SPECIFIC  12  0 . 1 4 3 1 E - 0 5 HFR= 0.5783E-05 0 . 8 0 1 7 E 0 0 F= . 0.7213E-05 H  LEAVING  0.7969 0.7975 0.7994 0.7993  REACTION  0.2536E-06 0.2362E-06  0.7969 0.7978 0.7997 0.7988  0.7971 0.7980 0.7998 0.7988  RATE CONSTANT 0.2435E-06 0.2269E-06  0.7970 0.7985 0.8001 0.7990  0.7972 0.7988 0.7998  {K) 0.2440E-06 0.2209E-06  " 0.2338E-06 0.2127E-06  0. 1 9 5 5 E - 0 6 0.1331E-06 0.8111E-07 0. 1 4 7 4 E - 0 6  INVERSE  0.18686-06 0.1154E-06 0.9787E-07 0.1481E-06  0.1629E-06 0.10346-06 0. U 3 1 E - 0 6 0.13656-06  0.14676-06 0.9436E-07 0.1212E-06  0.17416-02 0.1636E-02 0.1582E-02 0.1547E-02 0.1474E-02 0.13906-02  0.1714E-02 0.1620E-02 0. 1 5 7 2 E - 0 2 0.1537E-02 0.1456E-02 0.13676-02  0.16846-02 0.1605E-02 0.1568E-02 0.15276-02 0.14396-02  TEMPERATURES  0.1763E-02 0.1665E-02 0. 1 5 9 1 E - 0 2 0.15626-02 0.15076-02 0.14106-02  RUN 8 ETHFR= FHE=  0 . 4 7 7 4 6 - 0 5 HFR= 0.58046-05 0 . 5 4 8 7 6 0 0 F= .0.1058E-04  MOLE F R A C T I O N 0.5487 0.5268 0.5186 0.5265 0.5361 0.5407  H  LEAVING  0.5481 0.5163 0.5207 .0. 5 2 7 4 0.5383 0.5433  SPECIFIC  REACTION  0.5444 0.5143 0.5219 0.5288 0.5392  RAT6 CONSTANT  0.00006-38 0.6112E-06 0 . 1 5 6 2 6-05 0.1374E-05 0. 1 1 5 2 6 - 0 5 0.91806-06 0.58776-06 0.4821E-06  INVERSE  0.5361 0.5145 0.5231 0.5301 0.5392  0.5356 0.5157 0.5236 0.5316 0.5384  0.5316 0.5159 0.5258 0.5330 0.5378  (K)  0.2714E-07 0.79246-06 0. 1 5 5 5 E - 0 5 0. 1 2 7 9 6 - 0 5 0.10526-05 0.86016-06 0.48666-06 0.50876-06  0.2038E-06 0.10086-05 0. 1 5 0 1 6 - 0 5 0.12276-05 0. 1 0 2 1 E - 0 5 0.79156-06 0.4465E-06 0.3737E-06  0.58776-06 0.1472E-05 0.1491E-05 0.1174E-05 0.9834E-06 0.7298E-06 0.4456E-06 0.25396-06  0.32726-02 0.27776-02 0.24986-02 0.21516-02 0.18356-02 0.16826-02 0.1527E-02 0.1416E-02  0.3114E-02 0.27086-02 0.2474E-02 0.2053E-02 0.17896-02 0.1638E-02 0.14766-02 0.13456-02  0.29566-02 0.25956-02 0.23166-02 0.1971E-02 0.17556-02 0.15986-02 0.14666-02 0.1298E-02  T6MP6RATUR6S  0.33436-02 0.29226-02 0.2527E-02 0.22526-02 0. 1 9 1 1 E - 0 2 0. 1 7 1 3 6 - 0 2 0. 1 5 5 5 6 - 0 2 0.14326-02  ETHFR= FHE=  0 . 3 2 0 1 E - 0 5 HFR= 0 . 7 8 3 6 E 0 0 F=  MOLE F R A C T I O N H 0.7836 0.7802 0.7787 0.7802 0.7808 0.7803 0.7792  0.7811 0.7799 0.7795 0.7804 0.7809 0.7799 0.7800  0.7808 0.7798 0.7800 0.7804 0.7809 0.7788  R E A C T I O N R A T E CONSTANT  0.0000E-38 0.2595E-05 0.3113E-05 0.4105E-05 0.2868E-05 0.2712E-05 0.2376E-05 0.2275E-05 0.3134E-05 0.3749E-05  INVERSE  0.7805 0.7791 0.7802 0.7805 0.7809 0.7788  0.7804 0.7788. 0.7802 0.7807 0.7804 0.7792  {K)  0.1407E-05 0.2716E-05 0.3217E-05 0.3899E-05 0.2836E-05 0.2734E-05 0.2394E-05 0.2666E-05 0.4022E-05 0.3610E-05  0.2082E-05 0.2836E-05 0.3762E-05 0.3474E-05 0.2907E-05 0.2624E-05 0.2315E-05 0.2822E-05 0.4065E-05 0.3050E-05  0.2351E-05 0.3061E-05 0.4052E-05 0.3078E-05 0.2822E-05 0.2452E-05 0.2300E-05 0.2730E-05 0.3725E-05  0.3121E-02 0.2678E-02 0.2226E-02 0.1931E-02 0.1689E-02 0.1601E-02 0.1557E-02 0.1503E-02 0.1418E-02 0.1299E-02  0.3061E-02 0.2613E-02 0.2131E-02 0.1834E-02 0. 1 6 5 0 E - 0 2 0.1595E-02 0.1552E-02 0.1491E-02 0.1393E-02 0. 1 2 6 9 E - 0 2  0.2925E-02 0.2485E-02 0.2081E-02 0.1763E-02 0.1633E-02 0.1578E-02 0.1542E-02 0.1497E-02 0.1373E-02  TEMPERATURES  0.3334E-02 0.2800E-02 0.2353E-02 0.2015E-02 0.1716E-02 0.1610E-02 0.1570E-02 0.1530E-02 0.1460E-02 0.1335E-02  RUN ETHFR= FHE=  17  0 . 2 5 7 1 E - 0 5 HFR= 0.1522E-04 0.1779E-04 0 . 8 5 5 5 E 0 0 F=  MOLE F R A C T I O N H 0.8530 0.8537 0.8543 0.8546  9  LEAVING  0.7819 0.7800 0.7790 0.7803 0.7808 0.7804 0.7793  SPECIFIC  RUN  0.1159E-04 0.1479E-04  LEAVING  0.8531 0.8538 0.8544 0.8546  0.8532 0.8540 0.8545 0.8545  0.8534 0.8541 0.8546 0.8545  0.8535 0.8541 0.8547 0.8544  0.8536 0.8542 0.8547 0.8544  2-t3 SPECIFIC  REACTION  RATE CONSTANT  0.3533E-05 0.2836E-05 0.21746-05 0.1642E-05 0.11346-05 0.1381E-05  INVERSE  0.3365E-05 0.26746-05 O.20O86-O5 0.1530E-05 0.11456-05 0.1465E-05  (K) 0.3220E-05 0.2514E-05 0.19416-05 0.1462E-05 0.1228E-05 0.1516E-05  •  *  0.3009E-05 0.24116-05 0.1865E-05 0.1351E-05 0.13296-05 0.1532E-05  TEMPERATURES  0-1773E-02 0.17096-02 0.1648E-02 0.1589E-02 0.1540E-02 0.1484E-02  0.1751E-02 0.1695E-02 0.1638E-02 0.15806-02 0.1523E-02 0.14686-02  0.1735E-02 0.L682E-02 0.1619E-02 0.1560E-02 0.15056-02 0.1455E-02  0.1725E-02 0.16696-02 0.1607E-02 0.1545E-02 0.1493E-02 0.1440E-02  RUN ETHFR= FHE=  0 . 2 5 7 1 6 - 0 5 HFR= 0 . 8 5 5 5 E 0 0 F=  M0L6 FRACTION 0.8542 0.8547 0.8546  H  REACTION  0.8543 0.8548 . 0.8542  0.8544 0.8547 0.8544  RATE CONSTANT  0.1862E-05 0.14496-05 0.10436-05 0.13516-05  INVERS6  0.1522E-04 0.1779E-04  LEAVING  0.8542 0.8548 0.8542  SPECIFIC  0.8545 0.8546  0.8547 0.8546  (K)  0.1812E-05 0.11906-05 0.11626-05 0.1872E-05  0.1767E-05 0.11346-05 0.12206-05 0.1812E-05  0.1641E-02 0.1574E-02 0.1521E-02 0.1459E-02  0.1621E-02 0.15646-02 0.1507E-02 0.1448E-02  .  0.16166-05 0.10716-05 0.12696-05 0.1573E-05  .  TEMPERATURES  0.1655E-02 0.15916-02 0.1534E-02 0.1489E-02  0.1605E-02 0.15506-02 0.1498E-02 0.14266-02  RUN 6THFR= FHE=  0 . 2 3 4 1 6 - 0 5 HFR= 0 . 8 4 3 2 E 0 0 F=  MOLE F R A C T I O N 0.8412  17  H  16  0.1259E-04 0.14946-04  LEAVING  0.8412  0.8412  0.8414  *  0.8415  0.8417  t  2-9  0.8417 0.8422 0.8421 0.8422  0.8418 0.8422 0.8421 0.8423  SPECIFIC  0.8420 0.8423 0.8420 0.8423  R E A C T I O N RATE CONSTANT  0.2263E-05 0.1959E-05 0. 1 4 7 3 E - 0 5 0. 1 1 5 3 E - 0 5 0.1051E-05 0.1473E-05 0. 1 1 1 5 E - 0 5 0.1208E-05  INVERSE  0.8419 0.8423 0.8419 0.8423  0.8421 0.8423 0.8421 0.8422  0.8422 0.8422 0.8422 0.8419  (K)  0.2263E-05 0.1757E-05 0. 1 3 7 9 E - 0 5 0.1120E-05 0.1178E-05 0.1349E-05 0.1007E-05 0.1476E-05  0.2212E-05 0. 1 6 6 2 E - 0 5 0. 1 2 4 6 E - 0 5 0.1030E-05 0.1281E-05 0.1304E-05 0. 1 0 2 5 E - 0 5  0. 1 9 9 2 E - 0 5 0.1572E-05 0.1218E-05 0.1051E-05 0.1326E-05 0.1218E-05 0.1033E-05  0.1717E-02 0.1673E-02 0.1619E-02 0.1581E-02 0.1516E-02 0.1498E-02 0.1606E-02 0.1742E-02  0.1709E-02 0.1655E-02 0.1608E-02 0. 1 5 6 3 E - 0 2 0.1500E-02 0. 1 5 1 7 E - 0 2 0.1630E-02  0.1695E-02 0.1649E-02 0.1599E-02 0.1548E-02 0.1488E-02 0.1545E-02 0.1651E-02  TEMPERATURES  0. 1 7 1 7 E - 0 2 0.1686E-02 0. 1 6 3 4 E - 0 2 0. 1 5 8 8 E - 0 2 0.1537E-02 0. 1 4 6 3 E - 0 2 0.1579E-02 0.1688E-02  RUN 1 ETHFR= FHE=  0.1888E-705 HFR= 0 . 7 5 5 2 E 0 0 F=  MOLE F R A C T I O N H 0.7537 0.7535  LEAVING  0.7537 0.7534  SPECIFIC  0.7537 0.7532  0.7537 0.7530  R E A C T I O N RATE CONSTANT  0.4189E-07 0.4393E-07 0.5499E-07  INVERSE  O.5823E-05 0.7711E-05  0.7536 0.7529  0.7535  {K)  0.4063E-07 0.4597E-07 0.6055E-07  0.4268E-07 0.4659E-07 0.6300E-07  0.4236E-07 0.4909E-07  0.3038E-02 0.2624E-02 0.2341E-02  0.2940E-02 0.2570E-02 0.2267E-02  0.2856E-02 0.2493E-02  TEMPERATURES  0.3133E-02 0.2754E-02 0.2420E-02  2-10  RUN £THFR=, FHE=  0 . 5 2 0 7 E - 0 5 HFR= 0 . 6 9 0 8 E 00 F=  MOLE F R A C T I O N 0.6895  H  2  0.1163E-04 0.1684E-04  LEAVING  0.6866  0.6844  0.6743  0.6661  0.6618 •  SPECIFIC  REACTION  RATE CONSTANT  0.6554E-07 0.1174E-05 .  INVERSE  (K)  0.2094E-06 0.1367E-05  0.3187E-06  0.8015E-06  0.3114E-02 0.2848E-02  0.3075E-02  0.2948E-02  TEMPERATURES  0.3299E-02 0.2897E-02  RUN 3 ETHFR= FHE=  0 . 2 9 5 2 E - 0 5 HFR= 0 . 6 7 3 7 E 0 0 F=  MOLE F R A C T I O N 0.6722  H  LEAVING  0.6472  SPECIFIC  REACTION  0.6056  0.5346  RATE CONSTANT  0.3841E-07 0.3073E-05  INVERSE  0.6095E-05 0.9047E-05  0.5230  {K)  0.6670E-06  0.1582E-05  0.2883E-05  0.2984E-02  0.2897E-02  0.2824E-02  TEMPERATURES  0.3332E-02 0.2739E-02  RUN 6 £THFR= FHE=  0 . 1 1 0 2 E - 0 4 HFR= 0 . 8 2 0 7 E 0 0 F=  MOLE F R A C T I O N 0.8199 0.7963  H  0.5041E-04 0.6143E-04  LEAVING  0.8193 0.7845  0.8177 0.7822  0.8155  0.8120  0.8063  >  2-11 SPECIFIC  REACTION  RATE CONSTANT  0.2089E-06 0.2237E-05 0.8/49E-05  INVERSE  (K)  0.3780E-06 0.3621E-05  0.7927E-06 0.5885E-05  0.1368E-O5 0.8305E-05  0.3304E-02 0.3100E-02  0.3227E-02 0.3039E-02  0.3181E-02 0.2965E-02  TEMPERATURES  0.3365E-02 0.3140E-02 0.2920E-02  RUN ETHFR= FHE=  0 . 1 4 9 2 E - 0 4 HFR= 0 . 7 9 8 9 E OO F=  I  0.5928E-04 0.7421E-04  *  \  MOLE F R A C T I O N 77 2 0.784 0.7920  H LEAVING  97 0.784 9 0.7913  SPECIFIC  REACTION  37 9 0.785 0.7916  RATE CONSTANT  0.4034E-05 0.3250E-05 0.4240E-05 0.2011E-05  INVERSE  0.78 96 16 9  0.78 97 06 9  11 3 0.790  {K)  0.3973E-05 0.2550E-05 0.2033E-05 0.2225E-05  0.3747E-05 0.3349E-05 0.2322E-05 0.2134E-05  0.3515E-05 0.2657E-05 0.2208E-05  0.2966E-02 0.2531E-02 0.2217E-02 0.1968E-02  0.2872E-02 0.2432E-02 0.2150E-02 0.1911E-02  0.2769E-02 0.2363E-02 0.2074E-02  TEMPERATURES  0.3173E-02 0.2702E-02 0.2277E-02 0.2007E-02  RUN ETHFR= FHE=  0 . 4 3 1 3 E - 0 5 HFR= 0 . 5 9 3 2 E 0 0 F=  MOLE F R A C T I O N 0.5711 0.5729 0.5767 0.5838 0.5920 0.5910  H  J  0.6288E-05 0.1060E-04  LEAVING  0.5718 0.5752 0.5775 0.5865 0.5912 0.5913  0.5744 0.5753 0.5784 0.5885 0.5917 0.5918  0.5730 0.5761 0.5791 0.5891 0.5917 , 0.5918  0.5718 0.5753 0.5823 0.5895 0.5915 0.5918  0.5733 0.5739 0.5829 0.5907 0.5909 0.5919  0.5917  0.5915  SPECIFIC  R E A C T I O N RATE CONSTANT  0.6099E-06 0.5893E-06 0.4954E-06 0.4587E-06 0.3038E-06 0. 1 3 2 4 E - Q 6 0.3341E-07 0.4706E-07 0.3826E-07 0.4017E-07  INVERSE  (K)  0.5911E-06 0.5497E-06 0.4753E-06 0.4355E-06 0.2868E-06 0. 1 1 5 3 E - 0 6 0.5472E-07 0.6526E-07 0.3975E-07 0.4608E-07  0.5196E-06 0.5596E-06 0.4969E-06 0.4117E-06 0.2634E-06 0.1034E-06 0.4255E-07 0.6013E-07 0.3892E-07  0.5589E-06 0.4981E-06 0.5339E-06 0.3926E-06 0.1872E-06 0.6900E-07 0.4017E-07 0.5272E-07 0.3635E-07  0.1747E-02 0.1661E-02 0.1614E-02 0.1569E-02 0.1522E-02 0.1461E-02 0.1443E-02 0.1430E-02 0.1327E-02 0.1185E-02  0.1697E-02 0.1653E-02 0.1606E-02 0.1555E-02 0.1510E-02 0.1472E-02 0.1365E-02 0.1413E-02 0.1317E-02  0.1683E-02 0.1639E-02 0.1594E-02 0.1546E-02 0. 1 4 7 6 E - 0 2 0.1463E-02 0.1371E-02 0.1381E-02 0. 1 2 9 6 E - 0 2  TEMPERATURES  0.1763E-02 0.1674E-02 0. 1 6 2 5 E - 0 2 0. 1 5 8 1 E - 0 2 0. 1 5 3 6 E - 0 2 0. 1 4 6 8 E - 0 2 0.1440E-02 0. 1 3 9 8 E - 0 2 0. 1 3 3 9 E - 0 2 0.1245E-02  -RUN ETHFR= FHE =  0 . 1 3 0 1 E - 0 5 HFR= 0.1265E-04 0 . 9 0 6 7 E 00 F= 0.1395E-04  MOLE F R A C T I O N 0.9053 0.9055 0.9058 0.9057  H  LEAVING  0.9055 0.9055 0.9058 0.9057  SPECIFIC  REACTION  0.9056 0.9055 0.9058 0.9059  0.9055 0.9057 0.9058 0.9059  0.9056 0.9055 0.9053 0.9062  0.9054 0.9058 0.9057  RATE CONSTANT ( K J  0.1450E-06 0. 1 2 0 3 E - 0 6 0.1285E-06 0.9868E-07 0.1484E-06 0.8455E-07  INVERSE  N  TEMPERATURES  0.1328E-06 0.1333E-06 0.1072E-06 0.9621E-07 0.1036E-06 0.8416E-07  0.1194E-06 0.1286E-06 0.1308E-06 0.9666E-07 0.1104E-06 0.5100E-07  0.1240E-06 0.1304E-06 0.9327E-07 0.9868E-07 0.1017E-06  2-13 0.1751E-02 0.1690E-02 0.1651E-02 0.1605E-02 0.1565E-02 0.1533E-02  0.1735E-02 0.1684E-02 0.1640E-02 0.1594E-02 0.1554E-02 0.1522E-02  0.17L7E-02 0.1675E-02 0.1631E-02 0-1577E-02 0.1549E-02 0.1503E-02  0.1710E-02 0.1662E-02 0.1614E-02 0.1565E-02 0.1541E-02  RUN ETHFR= FHE=  0 . 1 5 4 4 E - 0 5 HFR = 0 . 7 3 7 6 E 00 F=  MOLE F R A C T I O N 0.7199 0.7240 0.7226 0.7205  H  REACTION  0.7181 0.7219 0.7152  0.7220 0.7201 0.7227  RATE CONSTANT  0.3308E-06 0.2660E-06 0.2959.E-06 0.2829E-06 0.2696E-06  INVERSE  0.4340E-05 0.5884E-05  LEAVING  0.7200 0.7225 0.7234  SPECIFIC  P  0.7235 0.7204 0.7233  0.7230 0.7220 0.7222  (K)  0.3291E-06 0.2758E-06 0.3275E-06 0.2678E-06 0.2898E-06  0.3636E-06 0.2569E-06 0.3226E-06 0.4141E-06 0.3202E-06  0.2941E-06 0.2846E-06 0.2941E-06 0.2802E-06  0.1714E-02 0.1660E-02 0.1634E-02 0.1576E-02 0.1527E-02  0.1697E-02 0.1645E-02 0.1614E-02 0.1565E-02 0.1512E-02  0.1678E-02 0.1634E-02 0.1596E-02 0.1552E-02  TEMPERATURES  0.1735E-02 0.1671E-02 0.1631E-02 0.1581E-02 0.1544E-02  RUN- 1 0 ETHFR= FHE=  0 . 1 9 5 7 E - 0 4 HFR= 0 . 2 1 7 0 E 00 F=  MOLE F R A C T I O N 0.2017 0.1558 0.1650 0.1739 0.1755 0.1672 0.1605  H  0.5421E-05 0.2499E-04  LEAVING  0.1969 0.1563 0.1657 0.1701 0.1743 0.1656 0.1626  ^  0.1875 0.1584 0.1659 0.1729 0.1751 0.1654 0.1676  0.1691 0.1617 0.1688 0.1753 0.1749 0.1608 0.1726  0.1614 0.1627 0.1698 0.1761 0.1727 0.1596  0.1562 0.1633 0.1727 0.1751 0.1694 0.1603  SPECIFIC  REACTION  RATE CONSTANT  0.1490E-05 0.5723E-05 0.6055E-05 0.5322E-05 0.4796E-05 0.4455E-05 0.4174E-05 0.4481E-0 5 0.5269E-05 0.5816E-05  INVERSE  (K)  0. 1 9 6 7 E - 0 5 0.6310E-05 0. 5 6 8 3 E - 0 5 0.5237E-05 0.4474E-05 0.4194E-05 0.4308E-05 0.4834E-05 0.5789E-05 0.5584E-05  0.2922E-05 0.6350E-05 0.5571E-05 0.5217E-05 0.4346E-05 0.411LE-05 0.4219E-05 0.5080E-05 0.5922E-05 0.5035E-05  0.4867E-05 0.6296E-05 0.5505E-05 0.4905E-05 0.4757E-05 0.4219E-05 0.4238E-05 0.5250E-05 0.5842E-05 0.4487E-05  0.3256E-02 0.3028E-02 0.2784E-02 0.2547E-02 0.2328E-02 0.2161E-02 0.2271E-02 0.2493E-02 0.2761E-02 0.3017E-02  0.3175E-02 0.2975E-02 0.2730E-02 0.2499E-02 0.2288E-02 0.2118E-02 0.2314E-02 0.2573E-02 0.2796E-02 0.3082E-02  0.3107E-02 0.2932E-02 0.26"69E-02 0.2426E-02 0.2252E-02 0.2187E-02 0.2373E-02 0.2630E-02 0.2865E-02 0.3143E-02  TEMPERATURES  0.3354E-02 0.3057E-02 0.2848E-02 0.2606E-02 0.2377E-02 0.2211E-02 0.2217E-02 0.2453E-02 0.2676E-02 0.2942E-02  RUN ETHFR-= FHE=  0 . 1 6 2 0 E - 0 5 HFR= 0 . 7 8 7 2 E 0 0 F=  MOLE F R A C T I O N 0.7833 0.7845 0.7853 0.7857 0.7854  H  REACTION  0.7837 0.7848 0.7854 0.7858 0.7847  0.7839 0.7849 0.7855 0.7858 0.7840  RATE CONSTANT  0. 1 1 3 6 E - 0 6 0.9144E-07 0.7018E-07 0.5800E-07 0.4997E-07 0.4321E-07 0.5369E-07 0. 1 0 0 5 E - 0 6  INVERSE  0.5994E-05 0.7614E-05  LEAVING  0.7836 0.7846 0.7854 0.7856 0.7851  SPECIFIC  13  TEMPERATURES  0.1055E-06 0.8250E-07 0.6970E-07 0.5529E-07 0.4872E-07 0.4271E-07 0.6132E-07 0.1092E-06  0.7841 0.7850 0.7855 0.7858 0.7838  0.7844 0.7851 0.7856 0.7857 0.7835  (K) 0.1044E-06 0.8143E-07 0.6473E-07 0.5381E-07 0.4610E-07 0.4359E-07 0.7547E-07  0.9841E-07 0.7595E-07 0.6180E-07 0.5233E-07 0.4685E-07 0.4560E-07 0.9400E-07  2-15  0. 1 7 2 0 E - 0 2 0.1675E-02 0.16306-02 0.1600E-02 0.15646-02 0. 1 5 2 6 E - 0 2 0.1633E-02 0.1745E-02  0. 1 7 3 3 E - 0 2 0. 1 6 8 0 6 - 0 2 0.16416-02 0. 1 6 0 5 E - 0 2 0.1571E-02 0. 1 5 3 4 E - 0 2 0.1604E-02 0.1716E-02  0. 1 7 0 3 E - 0 2 0.1657E-02 0.1622E-02 0. 1 5 8 5 E - 0 2 0.1555E-02 0. 1 5 1 3 E - 0 2 0. 1 6 6 2 E - 0 2  0.1696E-02 0.1649E-02 0. 1 6 1 0 E - 0 2 0.1581E-02 0. 1 5 4 5 E - 0 2 0.1561E-02 0.17016-02  RUN 0.4046E-04 0 . 1 2 5 8 E - 0 4 HFR= 0 . 7 6 2 8 6 0 0 F= 0.53046-04  ETHFR= FHE=  MOLE F R A C T I O N  H  LEAVING  0.7435 0.7479 0.7502 0.7520 0.7531 0.7537 0.7530  0.7423 0.7475 0.7502 0.7518 0.7529 0.7534 0.7527  SPECIFIC  0.7439 0.7487 0.7503 0.7522 0.7527 0.7535 0.7531  0.7448 0.7487 0.7513 0.7530 0.7534 0.7534 0.7525  R E A C T I O N RAT6 CONSTANT  0.20266-05 0.1683E-05 0.1418E-05 0.1279E-05 0.1195E-05 0. 1 0 8 3 E - 0 5 0.1009E-05 0.9455E-06 0.9498E-06 0.1034E-05 0.1034E-05  INVERSE  11  0.7460 0.7496 0.7510 0.7525 0.7536 0.7537 0.7527  0.7461 0.7497 0.7516* 0.7528 0.7533 0.7534  (K)  0.19176-05 0.1670E-05 0.14256-05 0.12796-05 0.11446-05 0.1005E-05 0.9880E-06 0.9754E-06 0.9584E-06 0.1001E-05  0.1874E-05 0.15396-05 0.13356-05 0. 1 2 7 1 E - 0 5 0.11206-05 0. 1 0 5 1 E - 0 5 0.1030E-O5 0.9669E-06 0.9326E-06 0.9923E-06  0.1794E-05 0.1498E-05 0.1327E-05 0.11716-05 0.1104E-05 0.1026E-05 0.9584E-06 0.93696-06 0.9626E-06 0.1046E-05  0.1838E-02 0.1757E-02 0.1671E-02 0.1624E-02 0.1586E-02 0.1546E-02 0.1496E-02 0.15836-02 0.17256-02 0.14636-02  0.1808E-02 0.1715E-02 0.1657E-02 0.1614E-02 0.15766-02 0.1539E-02 0.1485E-02 0.1624E-02 0.1752E-02 0.14476-02  0.1789E-02 0.1702E-02 0. 1 6 4 6 E - 0 2 0.1606E-02 0.1571E-02 0.1530E-02 0.1535E-02 0. 1 6 4 6 E - 0 2 0.1479E-02 0.1434E-02  TEMPERATURES  0.1867E-02 . 0.1779E-02 0.1680E-02 0.1635E-02 0. 1 5 9 6 6 - 0 2 0.1559E-02 0.1522E-02 0.1555E-02 0.1692E-02 0.1472E-02 0.14166-02  2-16  RUN T  1  ETHFR= FHE=  0 . 3 6 8 1 E - 0 5 HFR= 0 . 9 3 6 4 E 0 0 F=  MOLE F R A C T I O N 0.9348 0.9349 0.9352 0.9355 0.9337  H  REACTION  0.9348 0.9350 0.9354 0.9345  0.9349 . 0.9351 0.9354 0.9344  RATE CONSTANT  0.1134E-05 0.1101E-05 0.9947E-06 0.8456E-06 0.6580E-06 0.1367E-05 0.1885E-05  INVERSE  1  LEAVING  0.9348 0.9350 0.9353 0.9339 0.9332  SPECIFIC  0.5420E-04 0.5788E-04  U 1 M  0.9349 0.9351 0.9355 0.9344  0.9349 0.9352 0.9355 0.9344  IK)  0.1123E-05 0.1092E-05 0.9690E-06 0.7903E-06 0.6191E-06 0.1450E-05 0.2264E-05  0.1138E-05 0.1069E-05 0.9084E-06 0.7607E-06 0.6580E-06 0.1450E-05  0.1109E-05 0.1025E-05 0.8996E-06 0.7114E-06 0.1767E-05 0.1450E-05  0.1776E-02 0.1712E-02 0.1653E-02 0.1590E-02 0.1547E-02 0.1503E-02 0.1392E-02  0.1757E-02 0.1692E-02 0.1633E-02 0.1586E-02 0.1541E-02 0.1499E-02  0.1741E-02 0.1681E-02 0.1619E-02 0.1581E-02 0.1526E-02 0.1468E-02  TEMPERATURES  0.1795E-02 0.1729E-02 0.1669E-02 0.1610E-02 0.1568E-02 0.1512E-02 0.14426-02  RUN ETHFR= FHE=  0 . 5 6 6 3 E - 0 5 HFR= 0 . 7 3 5 7 E 0 0 F=  MOLE F R A C T I O N 0.6724 0.7137 0.7290 0.7336  SPECIFIC  H  14  0.1577E-04 0.2143E-04  LEAVING  0.6768 0.7160 0.7306 0.7340  REACTION  0.6856 0.7229 0.7313 0.7343  0.6977 0.7248 0.7325 0.7346  RATE CONSTANT  0.7023 0.7264 0.7329 0.7348  0.7085 0.7276 0.7332 0.7352  (K)  'j  0.1191E-04 0.6793E-05 0.2765E-05 0.1480E-05 0.6304E-06 0.3214E-06  0.1120E-04 ' 0.56276-05 0.2359E-05 0.1137E-05 . 0.5550E-06 0.2628E-06  0.9734E-05 0.4606E-05 0.2027E-05 0.9776E-06 0.4671E-06 0.2189E-06  0.7618E-05 0.4170E-05 0.1766E-05 0.7108E-06 0.3871E-06 0.1189E-06  2-17  INVERSE  TEMPERATURES  0.1748E-02 0.1697E-02 0.1645E-02 0.1569E-02 0.1511E-02 0.1419E-02  0.1736E-02 0.1678E-02 0.1622E-02 0.1555E-02 0.1494E-02 0.1398E-02  0.1708E-02 0. 1 6 5 9 F - 0 2 0.1602E-02 0.1521E-02 0.1444E-02 0.1349E-02  0.I721E-02 0.1670E-02 0.1610E-02 0.1529E-02 0.1470E-02 0.1384E-02  RUN 0.1558E-04 0 . 4 5 3 9 E - 0 5 HFR= 0 . 7 7 4 4 E 00 F= 0.2012E-04  ETHFR= FHE=  MOLE F R A C T I O N 0.7230 0.7430 0.7588 0.7670 0.7730  H  LEAVING 0.7265 0.7504 0.7629 0.7698  0.7242 0.7468 0.7611 0.7688  SPECIFIC  REACTION  0.7296 0.7522 0.7641 0.7710  RATE CONSTANT  0.2807E-05 0.2268E-05 0.1429E-05 0.9544E-06 0.6113E-06 0.2942E-06 0.8985E-07  INVERSE  (K)  0.2752E-05 0.2045E-05 0.1334E-05 0.8201E-06 0.5347E-06 0.2157E-06  0.2647E-05 0. 1 8 2 7 E - 0 5 0. 1 2 3 5 E - 0 5 0.7166E-06 0.4690E-06 0. 1 7 7 5 E - 0 6  0.2496E-05 0.1627E-05 0.1103E-05 0.6466E-06 0.3570E-06 0.1411E-06  0.1730E-02 0.1658E-02 0.1603E-02 0.1539E-02 0.1487E-02 0.1376E-02  0.1713E-02 0.1651E-02 0.1585E-02 0.1531E-02 0.1467E-02 0.1363E-02  0.1687E-02 0.1637E-02 0.1577E-02 0.1516E-02 0.1416E-02 0.1349E-02  RUN  21  0.1601E-04 0 . 4 0 5 5 E - 0 5 HFR= 0 . 7 9 8 0 E 00 F= 0.2007E-04  MOLE F R A C T I O N H L E A V I N G 0.7945  0.7387 0.7563 0.7659 0.7722  0.7343 0.7539 0.7646 0.7716  TEMPERATURES  0. 1 7 6 0 E - 0 2 0.1672E-02 0. 1 6 2 6 E - 0 2 0.1555E-02 0.1503E-02 0.1391E-02 0. 1 2 7 2 E - 0 2  ETHFR= FHE=  15  0.7945  .  0.7947  0.7949  0.7952  0.7953  2-18 0.7954 0.7964 0.7968 0.7974  0.7956 0.7966 0.7969  SPECIFIC  REACTION  0.7958 0.7966 0.7970  R A T E CONSTANT  0.4237E-06 0.3340E-06 0.2646E-06 0.1923E-06 0.1499E-06 0.1236E-06 0.6322E-07  INVERSE  0.7961 0.7967 0.7970  0.7962 0.7967 0.7971  0.7963 0.7968 0.7972  IK)  0.4220E-06 0.3225E-06 0.2303E-06 0.1716E-06 0.1379E-06 0.1139E-06  0.3998E-06 0.3127E-06 0.2109E-06 0.1688E-06 0.1370E-06 0.1033E-06  0.3756E-06 0.2895E-06 0.1979E-06 0.1570E-06 0.1322E-06 0.8848E-07  0.1742E-02 0.1648E-02 0.15826-02 0.15136-02 0.1442E-02 0.1365E-02  0.1709E-02 0.1641E-02 0.15616-02 0.14996-02 0.1431E-02 0.1346E-02  0.1690E-02 0.16266-02 0.15476-02 0.1476E-02 0.1412E-02 0.1291E-02  TEMPERATURES  0.1760E-02 0.1660E-02 0.1607E-02 0.15356-02 0.14596-02 0.1384E-02 0.12386-02  ' ETHFR= FHE=  .  0 . 3 6 9 8 6 - 0 5 HFR= 0 . 8 1 4 0 E 0 0 F=  MOLE F R A C T I O N 0.8134 0.7816 0.7809 0.7971  H  0.1619E-04 0.1989E-04  REACTION  0.8130 0.7794 0.7823 0.8022  0.8128 0.7793 0.7833 0.8049  RATE CONSTANT  0.3641E-07 0.4426E-06 0.1619E-05 0.1560E-05 0.1313E-05 0.6087E-06  INVERSE  22  LEAVING  0.8131 0.7803 0.7810 0.7998  SPECIFIC  RUN  0.8056 0.7795 . 0.7868 0.8090  0.7887 0.7802 0.7929  (K)  -  0.4961E-07 0.1233E-05 0.1623E-05 0.1556E-05 0.1044E-05 0.4784E-06  0.5601E-07 0.1533E-05 0.1614E-05 0.1501E-05 0.8525E-06 0.2673E-06  0.6990E-07 0.1585E-05 0.1588E-05 0.1459E-05 0.7240E-06  0.2931E-02 0.2471E-02  0.2812E-02 0.2304E-02  0.2723E-02 0.2242E-02  TEMPERATURES  0.3377E-02 0.2652E-02  -  2-19 0.2212E-02 0.1877E-02 0.1655E-02 0.1403E-02  0.2147E-02 0.1842E-02 0.1595E-02 0.1319E-02  0.2099E-02 0.1782E-02 0.1542E-02 0.1252E-02  0.1952E-02 0.1715E-02 0.1454E-02  RUN ETHFR= FHE=  18  0 . 2 2 2 7 E - 0 5 HFR= 0.1493E-04 0 . 8 7 0 2 E 00 F= 0.1715E-04  MOLE F R A C T I O N H L E A V I N G 0.8693 0.8697 0.8696 0.8692 0.8695  0.8694 0.8697 0.8695 0.8691  0.8694 0.8697 0.8696 0.8690  SPECIFIC  R E A C T I O N R A T E CONSTANT  0.1573E-05 0.1171E-05 0.8664E-06 0.1032E-05 0. 1 4 1 6 E - 0 5 0.1947E-05 0.1311E-05  INVERSE  0.8695 0.8697 0.8695 0.8692  0.8695 0.8697 0.8694 0.8693  0.8696 0.8696 0.8693 0.8694  (K)  0.1466E-05 0.1032E-05 0.9209E-06 0.1123E-05 0.1568E-05 0.1772E-05  0.1358E-05 0.9752E-06 0.9266E-06 0.1207E-05 0.1740E-05 0.1587E-05  0.1221E-05 0.9295E-06 0.9809E-06 0.1210E-05 0.2093E-05 0.1347E-05  0. 1 7 1 8 E - 0 2 0.1624E-02 0.1544E-02 0.1486E-02 0.1416E-02 0.1312E-02  0.1688E-02 0.1603E-02 0. 1 5 3 1 E - 0 2 0.1467E-02 0.1391E-02 0.1295E-02  0.1655E-02 0.1583E-02 0.1515E-02 0.1461E-02 0.1349E-02 0.1290E-02  TEMPERATURES  0. 1750E-.02 0.1642E-02 0.1563E-02 0.1499E-02 0.1438E-02 0.1333E-02 0.1270E-02  RUN ETHFR= FHE=  0 . 3 3 7 0 E - 0 5 HFR= 0 . 8 0 6 6 E 0 0 F=  MOLE F R A C T I O N H 0.8043 0.8053 0.8051 0.8041  SPECIFIC  19  0.1406E-04 0.1743E-04  LEAVING  0.8044 0.8053 0.8049 0.8042  REACTION  0.8046 0.8054 0.8046 0.8042  0.8048 0.8054 0.8044 0.8043  RATE CONSTANT  {K)  0.8050 0.8053 0.8043 0.8048  0.8052 0.8052 0.8041 0.8049  0.3658E-05 0.25646-05 0.2025E-05 0.24406-05 0.36906-05 0.3852E-05  INVERSE  0.3516E-05 0.2355E-05 0.20256-05 0.2727E-05 0.40086-05 0.3674E-05  0.33146-05 0.21166-05 0.21166-05 0.3171E-05 0.40356-05 0.2888E-05  0.2944E-05 0.2082E-05 0.2264E-05 0.3516E-05 0.3831E-05 0.2794E-05  0.1727E-02 0.1607E-02 0.15506-02 0.1466E-02 0.1365E-02 0.1279E-02  0.1708E-02 0.1586E-02 0.1526E-02 0.1452E-02 0.1351E-02 0. 1 2 5 6 E - 0 2  0.1681E-02 0.1574E-02 0.1502E-02 0.1426E-02 0.13266-02 0.1234E-02  TEMPERATURES  0.1760E-02 0.1634E-02 0. 1 5 6 0 E - 0 2 0.1490E-02 0.14106-02 0. 1 3 0 2 E - 0 2  RUN ETHFR= FHE=  0 . 2 4 9 0 6 - 0 5 HFR = 0 . 8 7 6 5 E 0 0 F=  MOLE F R A C T I O N  H  SPECIFIC  0.8763 0.8763 0.8757  0.8763 0.8764 0.8759  R E A C T I O N R A T 6 CONSTANT  0.9618E-06 0.5489E-06 0.5210E-06 0.1363E-05 0.2562E-05  INVERSE  0.1767E-04 0.2016E-04  LEAVING  0.8763 0.8764 0.8760  0.8762 0.8764 0.8761  0.8763 0.8763 0.8757.  0.8764 0.8761 0.8756  (K)  0.78406-06 0.5168E-06 0.58546-06 0. 1 7 3 6 E - 0 5 0.2799E-05  0.7390E-06 0.4969E-06 0.7072E-06 0.2051E-05  0.6270E-06 0.5025E-06 0.11616-05 0.2490E-05  0.1307E-02 0.1401E-02 0. 1 5 0 6 6 - 0 2 0.1660E-02 0.1811E-02  0.1320E-02 0.14226-02 0.15386-02 0.1695E-02  0.1342E-02 0.14466-02 0. 1 6 0 1 E - 0 2 0.1741E-02  TEMPERATURES  0.1278E-02 0.1374E-02 0. 1 4 7 0 6 - 0 2 0.1621E-02 0.17636-02  RUN ETHFR= FHE=  23  0 . 1 5 1 7 E - 0 5 HFR= 0 . 8 4 2 6 E 00 F=  M0L6 FRACTION  H  LEAVING  0.8120E-05 0.9638E-05  20  2-21 0.8397 0.8405 0.8403 0.8391  0.8398 . 0.8407 0.8402 0.8397  SPECIFIC  REACTION  0.2907E-05 0.2354E-05 0.1760E-05 0.2224E-05 0.2994E-05 . 0.2911E-05  INVERSE  t  0.8400 0.8408 0.8401 0.8396  0.8401 0.8407 0.8399 0.8400  RATE CONSTANT  0.8402 0.8405 0.8396 0.8399  0.84.03 0.8405 0.8393 0.8397  (K)  0.2787E-05 0.2276E-05 0.1851E-05 0.2358E-05 0.3290E-05 . 0.2544E-05  0.2603E-05 0.2075E-05 0.2063E-05 0.2445E-05 0.3457E-05 0.2650E-05  0.2468E-05 0.1875E-05 0.2037E-05 0.2652E-05 0.2891E-05 0.2907E-05  0.1672E-02 0.1616E-02 0.1515E-02 0.1455E-02 0.1345E-02 0.1240E-02  0.1658E-02 0.1591E-02 0.1502E-02 0.1414E-02 0.1330E-02 0.1210E-02  TEMPERATURES  0.1754E-02 0.1646E-02 ' 0.1562E-02 0.1488E-02 0.1391E-02 0.1292E-02  0.1720E-02 0.1636E-02 0.1555E-02 0.1467E-02 0.1366E-02 0.1283E-02  -  TIM E 13HRS 41MIN  •  -  --  55.9SEC  •  •  •  •  "  -  •  •  •  •  -  -  •  3-1  APPENDIX III ORIGINAL DATA (' RELATIVE AREAS OF THE METHANE, ETHANE, AND ETHYLENE CHROMATOGRAPH PEAKS; REACTOR . TEMPERATURES )  TO  i i , f l o w r a t e = .145 em3/ssc CtH«. f l o w r a t © ' = , 0 4 7 cmJ'Gec  Catalyst:  fciekel  Veigblt 1,5135 6  ^ ®  Barom. p r e s s . - 755.6  powder  . ^ o x a te » p . =  28.5°C  supposes. 2*o o b s e r v e th© s h a p e o f t h e r e a c t i o n o v e r a «i&© t e m p e r a t u r e r a n s © ©sssnt  CH^. a r e a  1  «». 85 40 63 SO  .a • 4  5 6  • •  40 50  50 §0 50  12  13 ' 14 15  go . 50  100  is  23 24 25  26 27 28 29  30  •  55  10 11  00  84  100  •  440  990  1760 2400 2700 2855 2875 3100 3025 3075  6  area  1550' 1548 1545 1595 1635 1660 1792 1775 1935 2090 2405 2420 2320 2450 2650 2340 2500 2320 24fO 2640 2330 1370 710 420  270  215 140  110 80 70  3000  # Th® a i r and  C^H '  60 43  f S  17 18 19 2®  •  a@than©  1  p&Bte®  e^H^. a r e a  55500  ' •  r a t e ©urv©  58000 59860 58600 60600 • 59200 61000 59300 61200 58800 60750 50650 60550 , 57900 60800 57650 57750 56700 59250  5555® 5755©  534G0 57000 5600© §68(50 55650 56000 55000 5600O 54200  were apt y e t  3© 46  56  67 77 90  im  116 128 140 154 168 168 182 197 212 228 241 252 296 310 326 340  351  359 373 386 403 422 484 separated  3*3 RUN 2  Hj, flow rate = .'286 cm/ sec C2.H4 flow rate = .128 cni/aec  Date.i June 26/65  CatalystJ n i c k e l powder Weight - 1.5647 s  Barom.. press; =.755.9 ?mm.. Room t emp. = « 24.8 ?G  Purposes To try, to observe the e f f e c t of a magnetic f i e l d on the r e a c t i o n r a t e . Measurement  CH  4  area  C^H^ area  1 2  0^4  area  23650 325 23300 1055 22425 1585 4160 21200 (5000 gauss) , 6250 19825 19400 7475 7150 21575 20250 7275  3 4 5 6 7 8  T °C 30 48 52 66 72 78 84 91  RUN 3 H'2 flow rate = .6989 cm /sec G H^. flow r a t e =.135 c m /  Date: July 4/65  Catalyst: n i c k e l powder Weight = 1*5381 g  Barom. press.= 7 5 8 . 6 mm< Room temp. = 29 °C  3  3  sec  %  Purpose: To study the shape of the r e a c t i o n rate curve over a wide temperature range. Measurement  CH^ area mm  2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18  . -•  25 35 40 90 90 70 40 30 30 60 100 170  C^Hfe area 295 6000 14300 31500 • 39300 20850 30500 34000 33100 34800 35600 36200 11400 13000 11550 11100 ! 8450 10600  :  rt _  C^H^ area  T C  21600 20100 12725 2900 130 30 265 855 1090 1660 2685 3550 17900 10500 21300 19600 21200 21800  27 62 72 81 92 301 306 313 318 323 329 332 341 346 349 333 358 366  19  20 as  23 .24  2 5 26 27 •  .  28  29 30 31 32.  140 170 '' 370 92©.  7600  21400  7200 7600 6550  245© 4100 4000 4900 4100  4800 2350 1600 835 375  . 3550 3950 3350  100 60 40  4600 385©  371  22300 22800 23600 .  376 392  1910,0 20700 22550 23450  396 402 412 422 432 444  23850 . 24130 25100  476 490 509  23500  260 140  23600 23050  461 465  raras ,4 7 •' 9  H  flow rat© -- .133 em/'sec  z  Dates July 26/65 Barom. press. = 753.4 mm Room temp. = 27.8*0  C K flow rate - .480 cm'/sec Catalyst,? n i c k e l powder Weight 1.1.5362 s z  n  1  Purpose J To observe th© shape of the resctlosi rate curve over a wid© temperatur© range. Measure  CH^. a r e a  1  50  4 S 6  50 50  2 3 7 8  9 10 It 1213 14 15 16 17 18 19 20 21 22 23 24  50 50 • 50 50  50 50 50 50 50 50  SO  50  50 50 so 50 50 50 SO 50 50  U  C_,H area  3460 4875 5875 8250 10000 10900 11975 14600 13850 14400 13850 14000 11900 11800 11850 11050 10150 10300 10300 10600 10300 16050 . 9350 8900  43700 43900 40000 42300 41000 40100 40000 40700 40250 41150 40400 40700 40850 41050 41100 41450 39870 41650 41250 41650 4O150 41850 ,41100 41350  C^H area  4  31.3 43.0 48.6  g4.5  60.2  66.7  72.2 78.3  84.0 88.0 95.0 101.0 106.0 112.1 117.3 • 123.9  130.7 139.4  146.2 133.0 159.2  165.0 171.0 177.2  50 50 50  25 26 27 26  50 50  29  31 32  50 50  3* 35 36 37  50  50  50  33  50 50  39  40 41 42 43  -  44 45 .  53 54  60 61 62 63 64 65 67 68  .  ,  70 80  90 90  105 125 300 320  325 50 50  5975 5825 5260 5475 5450 5475 5425 5450 5475  •  5600 5600  70  56  5600  5750  65 60 60  55  59  1  65 55 .  58 52  53  50-  .  5725  65 60  50 ' '  57  50 50 50 50  50 • . 50 50 50  46  49  7250 7000 . 6925 6625 . 6625 6350 6225 . 6175 6175 6000  50  33  43  7200  50 50  30  47  8400 0450 7825 7275  '  5325 6000 6000 5875 5950 5775 5575 5725  5600  5175 3925 3200 3725 4100  .  41900 42500 40250 ' 40250 41550 42100 41050 42000 42100 41950 42100 4175042200 42700 42300 42000 41550 41300 41150 41300 41700 42100 42300 42500 42400 42650 42000 42000 42500 42400 41900 41900 41900 42100 40850 40100 39900 39100 38850 39250  39500  40400 40300  181.9  183 o5 194 „1  201 • 2 203 5 e  216o8  223.7 229.3 242 0 o  235o8 250 0 2 262*6  266.2 274,7  280.5 289.1  292.5 299.9  306.2  311.3 319.1  324,5 331.0  333.4 347.1  347.3 349.9 352,0 353.2 255.5 358.4 360.7 363.4 365.0 369.0 371.1 375.5 330,1 391.5 396.4 405.1 174.1  130.0  3-6  SUM 5  H flow r a t e = ,1431 c m V s e c C^K^. flow r a t © = ,1177 om^/sec  9  z  CatalystJ-nickel  Weight f.;.0021. g  8  Date i August 1 4 / 6 5  spheres  Barom. p r e s s , =756.8 mvx» .Room teap.« = 26 °-C  •  Purpose; To t r y t o observe t h e e f f e c t o f a © a g n e t t c f i e l d on.'the reaction r a t e . Measurement 1  CK^. a r e a TO  2  4 5  6  7 8  *•  *»  9  12  <•»  "  area  70  15 16 17 10  19 20  21 22 25 24 25 27 28 29 30  670  •  1950  1950  2  area.  24150  1560  3860  22300  1680 2090 2800  4250 4200  ••4oas  4000 magnet on (10000 gauso) 3780 3400 3270 «• 3200 30 3160 100 2660 160 2780 240 2560 '2360 ' 370 ' 460 2220 630. 204© •640 1920 160 1540 xm 1300 '240 440  Q B+  24800 19500 24350 25200 23750  4.80  -  14  31  '-  «•  IT.. •**»'  ' 32  6  .**  3  10 11  C^K  1160  1170 1260 %n% #30  630  24500  aasoo'.  ' 22650 22650 22650 23500 22900 23100 23700 23900 23900  2*1000  23O00 22900 23X00 23200 23800 24 GOO 24700 24500  24400  24200 23900 23200 23400  $ G  26.0  52*5  4.8.0 65.1 69". 1 86".9  . 96U  112.2 122.5 ' 127.2  in.o i§8;.7  170.8  191* S  213>9 234;. 250*6a 280.9  296.5 310,5'  321.2 337*3 352V7  3 70.0 S83U-9 404V8 409% 1  425.0 432*9  470*1 49?* 2  1  a  a  f'lm  m%@ = 1*131  o,B ttm mt$ = *&5£ f  -urn®  BUS 0  m^qm ea'/M*  Sara* pevm* = TSf*© 8oa@ t#sp* - s4*§ ° S'  i  a.  f °c  1-  S4*0 ?*0 89 »S  4680  t3  014© §180 464©  3  4  II  '!S»  f  3480  B  4jjjr.ji4  TOO  04 $ 1  SITS IB  0.5  4$  430 405  id  340  31S#S  MS 0 flow  3P0*e  .*0ft my mm Mat ^upiit IS/ii  0&£«%!its a l * mspp. u i o l ^ l tfej&bft = *10OT $  a  6sr«oe*t& press*=?5&*0 see* - 'SS»S°f  si© §40  I  15150 1S30O 15100 iSSdD  4f*i 34*0  1.011*1!  3-•8 1280 15450 1290 15050 1540 15150 1610 14550 1690 15050 1600 . 15100 1410 . 15100 15100 1235 14900 1130 14800 1110 1150 14925 1135 15200 1090 15250 14700 1060 14950 1030 980 I525O 960 15450 950 15150 15300 925 900 15000 890 15000 14800 1040 1100 14750 1070 14050 14750 1230 1540 14050 1560, 14050 1380 \ 13700 134000 1360 \ 1280 . 13150 13300 1080 \  9 Id 11  12  14  15'  16 17 18 19 20 ... 21 22  23  24 25 26 27 28 29 30 31 32 33 34 35 36 37 38- .. 39  «. 70 110  150  100 160 170 150 140 130 120 125 130 120 140 170 210 220 280 740 1040  1275  1500 1500 1400  151.9 176.1 196.0 207.3 223.2 244.8 272.0 293.9 309.6 318.9 332.8 339.3 347.9 351.5 353.9  36.0-.S  363*6 369.2 371.2 375.5 380.5 392*1 397.6 394.7 412.0 432.1 444*5 455.1 475*7 496*8 514.8  RUN 10 flow rate = .133 cm /sec • • 0 H flow rate =.480 cm /sec 3  Date: July 26/65  3  Z  +  Catalyst: powdered n i c k e l Weight = 1.5362 s  : Barom..pess, =753.4 ram* Room temp. - 27.8°C  Purposes To t r y t o observe,th© effect of a magnetic f i e l d on the reaction rate* and t o observe the i r r e v e r s i b i l i t y of the reaction rate vesus temperature curve. Measurement  CH ^ area  C H- area  1  30 30 30 30 30  1110 1460 .2160 3550 4000 4350 4375  - 2 . . ,.. 3/ • 4 5 6 7  30  30  •  G H, area . 44300 •44300 44400 :43450 43250 42900 [ 43000  \  25.0 34.0 41.8 48.7 54.0 57.1 63.0  & 9  10  -.50  11 ia  30 . 30 • 30 30  14 .  •If  as 19 so  ssz 24 ' 25 26£7 •as'  •  m  • '30 38'  • 34n.  36  37 38 3$ 40 l  ' 430S0  42530 '  •4g#0  41900.  4290© 41$50  3570  . 30 30 30  '  ' 42350  139..Q  43200 42400  147.5  . 2940  42800 %500  2940 • 2930  4245© 42530 .  10&*O  3040  2940 3140 3300 . 3i30 3600  30 30' ••• 30 ••  • I40.g  15M :  134^5  itfwo  Xl§*5 107*0  42000  4000 4000 3975  30  4228.SO 42800  io&s 8S . 0  41500 41900 42450  3675  30 •  X?7*9 1ST. 2  41850 • 43600 42600 '  3520  • 30  170*8  43000  42350  2930  3.0 30  110*5  119.5  163.9  30  30 ' 30 30 30 30  '' •  • as;o $3*2 101  4^400 43300 43800 '  3200  30 • 3© ' 30  67.9  42700  - Mto 30 wustiet on (seoO'sAtise) 33§0 313.0 50 » 0 $0 3300 3.0  16  n  4325 4200 3150' 3850 3740 ^700  30 30  2850?  3490 32.&0  flow' r ^ t o * 1*00 m i /a©c• OjHU-flov v&tw = .311  84.5  75.9 .66*8 !  42450  4g<$00 42550 42900  S§*3  $1*3  4'5*G !  5  a  Attgtiet 3/S5  ^4  f l i g h t - 2»76$1 g .  Room temp* -25*8 * 0.  P a n o s e s f o -study tbe r e a c t i o n through tfc© CtaMe t temperature o f nleteelf, and t o observe th© i r r e v e r s i b i l i t y o f th© r e a c t i o n r a t e v e r s u s temperature curve.  . .1 ' • -2  3  OH^ a r e a  O^a^ a r e a  a*  a420  2130  2370  C^H^ ar©&  f °o  4230 5870 5270  "aro.e  262.5 279.9  388 »§  MO itio 193© •19*5  3i#*s  i$s®  3tt#0  1830 1490 1410 mm mm  vm mm  lll*f  wo ifto moo 0240 0340  318*3 SMUT >*9#3 3S3»5 3fffUl  i  1€©5  »*1  1000 1360 xm.  isoq 30  S  ill  406*0  4M*$ 416*9 424,0 43%X  3-11 RUE 12 .  3  H f l o w r a t e =.1431 c m / s e c C^H^ f l o w r a t e =.0354 cm /sec  Dates August 13/65  C a t a l y s t s i i l e k e l spheres Weight: .8775 g  Baron, p r e s s . =756.0 am. Room temp. = 27°G  a  3  Purposes To observe t h e H e d v a l l E f f e c t I I , and t o t r y to. observe t h e e f f e c t of an e x t e r n a l magnet f i e l d oh the r e a c t i o n r a t e . Measurement 1 2> '-  3"  4-  5-  •  •  6 ' 7 8 9 10- • 11 '•' 12 13 14 15 16 17 18 19 20 21 22  23' 24  25 26- • 27 28 29 30 31 32 33 34 35 36 37 38 39.  GH^ a r e a  1  C^H^ area  48© 2070 180 1930 130 1535 60 640 110 1060 magnet oa (5000 gauss) 90 990 960 80 110 880 ' 850 75 90 825 745 / 85 740 80 720 .80 710 80 720 ,80 ' 790 100 770 80 1050 140 1170 190 1340 230 240 1310 1430 345 1380 350 420 1420 900 1400 1040 1170 magnet o f f 2500 • 30 2460 30 245© 40 2360 50 2360 55 2280 70 .60 2250 2140 70 70 198© 1840 70 1610 60 80 1470 70 1310  G H^. a r e a X  17200 17200 17200 9150 18400 18250 18950 19000 19150 19150 19500 18900 19250 19300 19575 19100 19650 18500 18700 18700 18700 18700 18250 18000 18000 - 17150 . 17^00 18150 18075 18225 18000 18200 . ijBgQQ 18350 -1822'5" 18575' 18950 18750  T °  0  307.2 311.0 313>9 320,5 330.5 331.0 333.9 335.0 342.4 148.4 350.2 3§3>9 362^2 366.3 374.1 381.6 389.9 398„.6 411.7 416.0 424,. 9 428.. 5 42SU-8 436;4 466.2 . 4fi*6 294.1 301.1 310.2 320.8 327.5 338.G 344.2 349.9  • Ws>-*Z •359.1 362.8 364.7 ,-367.1  4© 41 4a  70 60 85 85 160 200 280 46© 700 116G  41 45 4^ 47 48 49  1150  xoso mo  BIO  960 1100 '1180 1420 1400 "1285  z  XS2@0  17850 17900  377*5 381*9 390*2 405*14X3^  422*0 4|S#2 44§«4  458*4  R U N 13  i  H z f l o w r a t © = •108 oia / e e o • & n<L flow r a t e = , 0 4 0 emVaee C a t a l y s t s t i l o k e l powderWeight * 1,5362 g  19150 19050 19150 19500 19000 1S700 18650  Bate t J u l y 29/65 B a r e s . " prefcs.= 7 5 8 . 2 mm Room tesnp.= 27 °0  Purpose s To s t u d y t h e r e a c t i o n r a t e t h r o u g h t h e Curl© t e m p e r a t u r e o f n i e f c e l s and t o observe t h e i r r e v e r s i b i l i t y ot t h e r e a c t i o n r a t e v e r s u s . t e m p e r a t u r e Measurement  CH  .1  235  3 • 4 5 6 7  e a o  8  9  10 11 13 14 15 16 17 m  19 .  20 21 22  23 24  25  26 ' - . 27  2© 29  30  area  345 4S0 535 '  2  in  4  .  ' 750 860 960 ' 1020 1040 ' • 1090 . " 1150.  122$  1250;,: 1275-"' 1300 1325 1375 • 13751350 • 1375 • 1350 1300 1300 1200 . . 1100 82g  550  460  300  e z Hfe a r e a 1470 1460 •1455  1360 1265 1220 1115 1015  925  :  920 860 305 755 715 700 530 580  §40 585 670 790 995. 1250 1330 1440  02.H4 a r e a  15900 17100 17275. 17200 17300 17050 17275 16985  16750 16800 16950  16tf?5  16700 16625 16750 16500 16275c 16700 1630© 16000 • 16525 16400 16050 16625 16075 16500  16700 16600 16425 16275  f  °0  303 * t 3oaa  314,2  316-44  322vO 324.0 330.2 333.2 33i*4 340*3 343 4 9 34f.0. 350.O 352-. 0 337*6 359*3  363*3 366.3  374.2 378.8 382.2 387*9 367.3 350*1 339.-1  328.4 314.8 309.5 300*0  3-13 RUN 14  Hi flow rate = .382. em /sec C^H^. flow rate - .155 em /sec  Date: August 24/65  Catalyst: Copper powder Weight = .4931 g  Barom. press.» 753.8 ffito.. ROom temp, = 23.5 ° C  3  3  Purpose? Ho study the r e a c t i o n r a t e over the. temperature., range ©f 300° C to 50© °$ on a non-ferromagnetic , cafcalyst. o  Measurement 1  2  3 4  5  6 7 8 . 9 . 10 11 12 13 14 15 16 17 18 19 20 21 22  23  24  CH^ area 165 180 185 195 195 180  170  180 160 130 130 130 145 155 185 200 220  270  385 570 760 910  980  1175  C^_H area U  21500 20000 16750 13250  11300  9100  7275  6550' 4175 3610 3070 2640 2240 1650 1455 1035 925 805 685 •550 460 375 310 165  C KL area * 7860 8990 11000 14600 15250 16625 17775 18300 19625 20450 ^  ••• •  20700  20850 21450 21100 21500 21750 21975 21825 22250 21675 21925 21900 21800 21550  T  C  298.9 302.8 307.8 312.3 316.1 322,8 325.5 329.5 334.8 343.3 348.0 351.0 364.1 369.9 380.8 384*1 388.5 396*0 407*1 419*2 431.5 441,9 449*3 468.0  M A  Hj, t X m rate - « 3 6 1 -e& fio¥mt#=»XXX dnP/ec^  Da&et Aaguct  • Mvm* &&&& « 7 9 6 * 6 -«ar* • , Room i<wp*~ i3*5°0  0&%nl?§&i p#wa©j* = i-*-f?2$ g 'teiJas^'i t o  tbe reootiea wt© wer th©  eatfi&yat*'? o t r y t o m m m ® OSVIBUNMI  X  •at-  i  s  7 8 • IO XX 12 9  1.  ' 120 130 130 130 xm im  im  %m 190  ill  .  •  18600  177S0 16400 14S00 12^00 . 1X100  ' as  7100 . ^3oo .  If  IS XT Xi  magnet - on CSOOO gaus8) 355 3TS 4«f0 ||oo  II '  at €3 24'  4S0O '  4030  iors  *9&o  401© • 4460 5100  •$oM  3XO*|  llf*I 329,8  5950  7160 8440 9400 10500 1132S. 12X50 12000  .33-2>S  SI:!  -  137IS 34900'  15025 w i n  1S4S0  ig&SO 1SM0  1100 • 1200 logo  %m&8*&tw&  %h* «ff««t ©f a m##i©ti© tt'ftid*  2'6§ 290  %3  £6/65  1850 15550 • 'IgXO sm&A to 10000 do f & ^ 4 io&*e i«m XlSO f20 16250 17300  HI  • 16500  W*9 f$X*0 370,1 • $76*9 380*0  3i#k4 ^92;*0  •8ft 438*9 445*9  4i0,4 46S.-0  51SU-9  RUM  16  Ha. f l o w r a t © - .312 ora ? /s©c QAi- f l o w r a t © =-.056 cm V s e c  Bate s August 22/65  C a t a l y s t J a l . aupp. n i c k e l K e i g h i - .1007- g-  B a r oia. preas.--= 754,7 iam*' Room t e m p „ = 26.6°G  f u r p o s e • £ 6 o b s e r v e t h e H e d v a l l E f f e c t IX» and t o t r y t o o b s e r v e ' t h e e f f e c t o f an e x t e r n a l magnetic f i e l d on th© r e a c t i o n r a t e . fe'aaureiaehfc 2 3 5 6 7 a  9 10 li 12 13. 14 15 16 17 18 ii?  20 2122. 23 24 25 26 27 28 29  30 31 32 33 34 35 36  CH -j a r e a 170 165 170  area 2770 2595 2070 1960 jjausa} 1820  Cil 2_  area n  15250  isaso 25250 15250 13250 1525Q  magnet on 175 .175'magnet o f f 1320 14800 11© 1320 14880 110 1290 14800 100 1150 14800 120 . ^magnet on (5000 g a u s s ) 14550 1110 12© 14550 130 990 14650 140 940 14325 ISO 865 14475 160 '800 14800 100 7@0 15000 710 200 14'600 675 200 14675 640 200 14675 620 230 14675 570 250 14675 • 560 290 580 14675 320 655 14675 420 715 14675 480 740 14675 550 810 14375 800 ' 750 14600 540 720 14500 475 14700 385 • 620 14700 290 §n@tle f i e l d i n c r e a s e d to 10000 -gauss 550 14500 225 560 14500 190 magnet t u r n e d o f f 160 145000 14500 130 665 1450© 820 80  T° C 300,0  309'* 5  31"3*6  318'. 0 3#*.§ 3©9>1 309*1 3ii*9 316i7 319v8 324*5  331 • 0 3l3'»;2 338>8 344#5 34$. 8  35&ii 3S&4  359*4 36§*7  37^*7 37,7*5 386*4 395*3  398'.8 410-.5 394,5 586*1  374';© 360el  349.5 340*5 332*5 319.1 300.8  H flow/rate =.3i0 ;,cm /p©c ;C^H,, flow rate =,.,063, cm /sec  RUN if-.  3  2  3  Gat aiyst'.s-;al,i - supp.;. .nickel  Date i. August -16/65 Barom.,pre's&* = '758"*5 naB,*. Room. 't^mp^= 25>l°e; :  ;  ••Purposeg • -To,.. observe the Heat.all.Effect I I a n d to try. to :" '. observe the e f f e c t of an external^magnetic, f i e l d on 'the...reaction ratfe..*' , :  4  :  :  . Measurement  CH.^ area  1;' "  .'2 •  3 •  ' '• 5 6 7 8 9 10 ai- . 12 :' 13 14 15 16 17 18. . '19. ' 20 21 '722  • 23 . 24 25  • 26 27  •  85 110 125 140 15b 170 190 200 210 220 225 200 190 .175 200 205 190 235 .290 340 370 475 620 840 150 160 180  G-H^ - area 2280 2200 -.'2-100 ;2000 ".1870^1630' '1570 1330 1330 1270 1200 1070 980 950  880 715. 730 • 795 850 870 -920 955 960 1180 1145 1115  C.area  17000 17350  '  •• 17400 . 17850V ' 17;8'25 i'17650^ 17750 ,179.00 18450 17975 18250 18000. ; l8375 18150  lk425  •1855©. 18100 18300 .18550 18200 ;i7950 17800 17825' 17750 17750 17700 17750  magnet, on (5000 gauss) 200 1020 17875 205 18250 930 205 750 i8io© 220 . f 20 18250 670 230 18000 660 18200 280 310 730 18OO0 370 770 .18075 410 780 17550 450 850 17975 100 1210 18100 110 1140 17650 155 990 17800  T  0  C  290.0 298.; 0 .303:.(-3 '3©6:i5' .311*9' •.316i7521.5 337*3 333.B £44.5 349;i 356i3 359.9 367*8 373.9 ,376s 1  383^3'  3'91V5;396:*7400.5 407;v9 .414^1 421,3 331*0 336*4 ' ' 343,9  1  28 -29 ' -3© '.f31' 32 . • 33 34 35  36 37 38 39 40  349.9 355.5 362,2 366^2 372.1 378>9 364.5 390.5 394.5 398..5 412.3 417.3 428.0  3-17 HUM 18  H - flow rat© =,362 oia /see 0 ^ 1 4 flow"rate=#054 cm ys®c '  Date's August 29/65  C a t a l y s t x ©1. supp. n i c k e l height = #0841 g  Barora, p r e y s ' * ? 6 i Hoom • t-emp-f — 23«. 0 °Q • •'  Purpose i :T.o • observe the preeence. of th© f$p<$vail E f f e c t 11 Measurement  C^H^ area 1780 1680 1445 1400 1230 1180  510 710 970 . 1120 1350 1560 1740 1920 2100 2100 2250  2 4 5 6  7 8 9 10 11 12  17  • i's  19  20 21  22 23 24  1100  1120 1165 1250  1340 1465 : 1420 1685 1855 209G 2440 2300  2070 i860 1565 1570  2750  25  298.4 308,9 319,3 331.0 336.0 3421'5 350*5 358«4  35000 35000  1040  2350 2450 2375 2475 2600 2700 2850 2855 2875 2925 2775  14 15 16  4  35200 35950 34600  1100  2225  13  C-Ji area 35200  ' .l'3t'0.  3  .  'CH* area  -r  35700 3^900 35450 35200 35700 34950 35600 35050 35150 34300  34550 34200 34500  33100 33700 •33500 33800 33800 34900  366.7  •  •  374*3  380.2  386*7 394.O 3$9i®  408.4 411.5  422.4.  433..3 445.. 5 f  468.0 476.9 489VI 498.9 502.2 514.5  —  RUN 19  H flow r a t e = *342 cmVsec C^H flow r a t e = .082 c m V s e o  Dates August 30/65  C a t a l y s t : a l . supp. n i c k e l Weight- .0683 g  Barom. press. = 761.7 mm.*. Room temp. = 24.8°G \  x  4  Purpose s To observe the presence of the Hedvall E f f e c t I J Measurement 1 2 . % 4  GH ^ area 225 325 430 565  C,H, area 1455 1395 1270 1160  CjHzy  area  22900 22900  .22200 22950  T  6  C  295.0 306.0  3i2.3 321.9  s 6 7 8 10 11  12 13 14 15 16 • 17 •' 18 1  19  20 • 21 23  24  875  ' 1210, 1370 140© . 1510 • 157© ' 1680  176© 1820 1925 1950  2075 2075 2225 2325  2300 2325 2300 2125  2150''  1395 1525 • *-14^5 ;  %m 1370  I 5 6 7 3 9 10  li  12 13 14 15 16 17 18 19  23050  366*0-.  • 372*1382*2•  s  21650  22500' 21750 21800 • 21200  1341  loss  2230© '  20800  1030  •  338*7. 349,il. 357.3 , 362,0,  •23300 • '392*7 22400 . ' 397.9. ' 22400 ' • 408.8 -  2180© 20400 . 21100 "  415.5. 428.1.  435*9 , . 459*2. 467.2 480*9' • 494*6 508*9- • 523 VO.  537ii •  . HUB 20 Dates Sept. Barom. press.= 758.8 mm.-  C a t a l y s t j a l . supp. n i c k e l  1  • 23300 22700 22800 ••22800  1195 137©  'loo® temp. - 23.5°G  Weight =.0713' g  Measurement  23000  '895 930 , 1045  H 2 f l o w rat© = .198 ©m /©ee CJL* f l o w rat© = . 0 3 7 cffiV s©c  Purposes  22300  975 920 • 835 800 780 780 825  To observe th© presence o f th© H e d v a l l E f f e c t ' X I CH^, a r e a  area  2510 2475 2260 216© magnet on (10000 gauss) 2040 1270 1970 1470 179$ 159© 1620 186© 1510 2200 1§40 2225 2650 2650 1770 2775 1890 2900 1980 312S 2090 3200 2310 3400 2540 3500 385 600 830 1205  25IO  CJi<y a r e a  f° 0  19350 2000© 197©© 19925  297.1 30S/.4 325.0 330io  19875 19925 20100 20200 20200 19500 19150 18600 18350 i8400 18500 17850 17200 I70OO 15850  334.5 338*2 345.5 §55.2 -366.9 370.1 386.7 392V6 399.0 408.4 414.3 435*9 445.5 458.7 470.5  3-19  20 21 22 23 24  3700 3775 3750 3750 3875  2070 204© 1820 1830 1990  16050 15700 16300 15650 15350  479.0 500.8 506.2 533.1 553.5  RUN 21  Hz. f l o w r a t e .391 cm /sec CJl^ f l o w rat© .099 cm / s e e  Dates August 27/65  C a t a l y s t s platinum Weight: 1.0075 6  Barom. p r e s s . = 759.1 mm. Room temp.= 24.0° C  wire  Purposei To study t h e r e a c t i o n r a t e over the temperature range o f 300 C t o 550 C on a non-ferromagnetic c a t a l y s t . To t r y t o observe th© e f f e c t o f a magnetic f i e l d . Measurement  CH^. area  C^H  1 300 2 . . 400 . , 545 3 4 690 , 940 5 6 • " ,• . 1040 7 1050 8 •; 1180 * 1325 9 10 1475 11 1650 12 1650 1750 13 14 1800 1900 •is 16 1900 1850 17 .magnet on 18 2000 1850 19 20 1850  21  ' 22 23 24 25  2000 1950 2150 2110 1750  t  area  2340 2280 2220  2055  1890 1780 1720 1640 1500 1290 1230 1130 1090 990 960 890 820 (5000 gauss.) 800 790 760 magnet o f f 710 620 . 585 :500 . 350  G H X  4  area  T °C  25600 25000 , 25850 25600 2670p 26100 26100 27000 27150 27000 28400 27700 27750 28150 286*50 27750 26800  295.0 301.1 311.9 318.4 329.3 333.8 336.1 , 342.0 349.3 358.9  28500 28300 28300  420..3 425.7 435.3  28350 26800 27000 28000 27600  449.3 459.3 470.0 501.4 534.8  367.5  373.3 378.5 387.7 394^0 404.2 412.4  3-20  ROM 22 * Bate? August 28/65 Gjl^ flow rate = »©90 cfsysee H flow rat© = .394 cmy see Catalyst8 powdered copper Barom• press.-739.0 asm. Boom temp. = 23.0"C Weight t 2.4175 s Birpoee; To study th© reaction rate over a wide temperature rang© on a non-ferromagnetic ;©atelyat 2  Measurement 1 • 2 ' • 3 •4'. • . •5 • 6 ' 7 8  . • 10 11 12 13 14 15 16 17 18 19 . 20 21 22  23  'CH^ area ** * m <*» -  mf  #o  *»  m  «. «t»  50 • fjO  95 300 715 1200 1$3© 1900 2000 2000 2100 1800  C^H^ area 720 990 1120 1410 9850 30400 39200 41500 42800 41900 42400 41400 41200 41000 40400 37100 33050 24800 19600 16000 13625 9900  5475  0^B  4  area  36500 36500 36500 • 36500 32150 16650 9800 869© 7900 7600 7980 0880 9400 9500 11150 11550  15000  20400 24025 25925 28750 . 29200 33100  -'? C 23.0 68.0 ' 82.5 94.. 1103.9 131.5 160.8 172.8 179.0 192.7 203.3 239.1 259 i6 269 i 6 287*9 310.O 331.0 353*9 375.5 414.8 . 439i5 485.1 525*6  3-21  H  RUN 23  flow rate =.433 cm /Bed 3  a  flow rate - .061 cm /sec  Date? August 31/65  3  Barom. press. =757.5 mm.  Catalyst? a l . supp. n i c k e l  Weight = .05991 g Purposes Measur'. ement  .  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  Room temp.= 24.4 ° G  $o ohserve the Hedvall Effect" II (decreasing temperatures) CH^ area  4200 4200 3950 3800 3625 3675 3650 3925 3425 3200 2850 2250 2000 1650 1150 750 540 330  C,JH area t  870 680 665 565 490 450 440 445 465 515 625 1030 1235 1580 1890 2260 2360 2520  C J i ^ area  42100 40400 42000 42200 41800 40800 41600 41500 41800 41200 41300 41000 41800 41600 41800 40800 41400 40200  T G  509.5 492.0 484.2 471.9 4§4.7 440.5 430.0 418.5 406.9 390.8 376.9 351.5 343.6 3294 316.9 301.2 294.0 279.1  HUM f l e w r a t © (om /8ee) 3  O^H^ f l o w r a t e ( c a 3 / s e c )  A-  Room tempi = 24 V  2.70  Barom. p r e s s ; - 757.2 mm.  .607  S a t a l y e t j n i c k e l powder  .. Dates May 16/65  Purposes attempt t o o b t a i n g e n e r a l shape o f r e a c t i o n r a t e c u r v e o v e r a wide t e m p e r a t u r e r a n g e .  Hoasur» ©ment  ;  1 2 3 4 % 6  <f  8 9 10 11 12 13 14 15 16 17  GH^ a r e a ®  GjH  f c  75  65  75 70 95 80 60 105 80 90 85  75 6o 55  60  40 60  area  0 H  are©  29650 31500 26500 33700 36000 32500 32700 43100 44800 26700 34400 33600 31500 31850 37750 37200 31350  148 , . 148 217 21? 249 249 ' 249 319 . 319 336 336 359 359 391 391 450 450  * The f o r m a t i o n of methane was not detected a t t h i s p o i n t i n th© runs because helium was used as the c a r r i e r gas.  Bjlov  r a t e =.-ol$9 Qti/mQ  o J l ^ f low m t © = •X44ets 3/m® •O&telyati -ulotael p©M©r #»  Boras* .pr^QSo .-78©«9 m  Weight- 1*513$ Z  Rem  $mvQ&®  «®@at 1 2  1 I  !  9  10 11  12 13 14 15  16  3  19  20  H  g. 26  29 30 31 3S 39 36 3T  s  :  - 2$°8 .  a©© i f roaueofi £l<sw rat© i n c r e a s e d s&srf&o® ar©© of catalyst significantly lriore&aeo o o i w o r s i o n to ©than©* OB^ ©res®  O J L area 315 B90 1165 945 1230 140S 1X70 1080 1100 1175 1235 915  i?ao  1095 1040 1325 1440 1150 1320 1480 1060 mo  mo  OJI^  area  19300 68400 78400 ©600 701OO 74500 64300 73100 53200 91000 83000 95000 61300 §0600 68000 76000 62900 78300 60300  1350 its©  65^*00 76200 67600  UTO §60 9*0 1155 12m 973 » 0  1.900 63100  114s  68fOQ 70800 iiogo 76300  1000 990 1240  38  39  40 41 42 . 43 44  68200 63500 81000 63000 61500 49900 60000 61000 38000 40050  905  880 70S 760 « 600 315 ' 175  45  4© 4?  392  392  424 .  424 454  436 479 479 495 529  « fine formation of methane was not yet detected fhe catalyst was not pretreated with hydrogen at 350 €  mn o  flow rate = « 218 era V s e c C J H U flow rate =..066 cmVsoc  H  2  Dates May 20/65  Catalysts n i c k e l powder** Weight= 1.5135 S  Barom. p r e t a x 756.4 .mm. Room temp.— 24,6 0 C  .Purpose? To see how e a s i l y the methane peafe eould be detected. Measurement' 1 2 3 4 5' 6 7 8 9 10  11  12 13 19 15 16 17 18 19  CH^ area * 1130 . 820 742 770 755 £23*9- 775 670 760 700 750 1580 1360 1140 1130 900 910  900  895 825  C-J4 area &  1130 1735 3090 3520 5630 3310 3510 359© 3840  3930  3760 3740 3725 3650 3780 385© 3800 3775 3750  CL H„ area 82750  87250  162750 ' 170500 174000 145000 161500 166250 162550 170500 144250 144250 145250  136750  139250 144250 142500 144250 143500  26 5^ 61  74  86 99 99  126 145 156 176 194 208 216 228 240  251  264  3*25::-  Mydrogam flow r a t e =• 0944 ©m 3 / a e e 0 J L flew r a t ® - • «0436 m 3 / s e © C a t a l y s t j n i c k e l powdter* W e i g h t - 1.5135 S  B a t © : Jun© 10/65 Barom. pg^ae** = Boos i©rap.-- 27 ° 0  am*  Purpose ? f o t r y t o observe e f f e c t o f a»gn©t4© f i e l d ©n ro&eiien r a t e *  ©©©sat  1 3 4 5  50 •nftgnet  6 .  615  is. - 19  405 345 g40 '  190  2000  . 1900  a©  ,  935  2000 off SJ&SH©t  - 173 200 165 120  *°C  mm$  27 49 61 119 185  26100 25775 • 18900  (5000 got too)' 1100 1350 1335 1205 790  940 1240 1525 •1675 1775 1650 1925  15 16 .• 17  f  ©n  75 75 110 280  7 8 10 11 12  21 |f  280 450 910 810 895  50 50 SO so  2  %J& ^ a r © 0  was  18825 20200. 25230 ' 25950 27900 24600 • 27300 274S0 ' 274^5 27375 • 27325 26850 26875 27000 26S50  248  268  m  316  HI  351 362, '370 376 287 584  4©8 4sa 90 437 48? n o t p r © i r ® a t e d with hydrogen a t 3S0°C  2050 2100 2050  90  27000 27075 25425 ' 26650  824  * 2h© c a t a l y s t « a s « ThQ a i r and methane peaks w r e n o t y e t  separated  RUN E Hi flow rate =.0944 cm Vsec c KL flow rate = .0436 cmVsec  Date«, June 12/65 Barom. pr©se.= 755.0 mm. Room temp.,= 25°C  Catalysts; n i c k e l pox*der* Weight= 1,5135 g.  Purposes To t r y to observe the e f f e c t of magnetic f i e l d on reaction r a t e . Measurement  •  1 2 " 3 • 4 5 6v  CH^ area**  25  25 25 25 , 25 25  C^H^ area  C^H^ area  T °C  19950 21125 14350 21100 21900 21500  25 76 89 102 118 140  21375 20800 21125 21025 . 20925 20900 21000 20650 21050 20750 21060 20825 21000 20725 20700 23800 11250 21000 20700 17700  155 206 237 261 279 321 328 333 336 338 343 349 353 368 386 394 401 409 414 426  875 1050 680 1010 990 1065  magnet, on (5000 gau;3S j a 7 '8 9 10 11 : 12 13 14 15 16 17 18 19 20 21 22 23  24. 25 26  • 25 25 50 80 120  375  390 460 510 540 590 750 780 1100 1375 1350 950 1500 1500 1350  1130 1170 1225 1200 1130 1010 990  950 880 890 835 735 700 670 405 365 180  24o  190 140  » The catalyst was not pretreated with hydrogen at 350*C The a i r and methane peaks were not yet separated  3-27 V  RUN F H f l o w rate-^.100 cm^/aee . C Ji +. f l o w r a t e ~>.0032 em /sec C a t a l y s t : n i c k e l powder*  Dates Jurie 13/65  a  ;  3  ^ ^l  P * © ^ . =752.9  0  Weight ' - i i * 5135 6  R  o  o  m  t  ® P * = m  r  2  6  mm.  c  Purposes To r u n a t v e r y low e t h y l e n e c o n c e n t r a t i o n Measurement 1 2 3 4 :5 6 7 8 9 10 '  C H  CH^ a r e a  r  area  f e  C H . area *~  705  705 710 705  25  710  30.  T G  •  166 175 186 201 214 226 240  5970 6790, 6690 6700 6700 6700 6700 6700 6700 6700  620 695 695 705  6?©©  ^  710  253  267 279  C o n v e r s i o n does not s i g n i f i c a n t l y v a r y w i t h temp3rature,» i n d i c a t i n g a poisoned c a t a l y s t s u r f a c e . Hence de j i d e d t o stop r u n . RUH 0  H i f l o w r a t e = .302 cm /sec CJH^ f l o w r a t e = .094 cm /sec 3  Dates June 28/65  3  Barom. p r e s s . = 757.7 Room temp. - 25.5"C  C a t a l y s t s n i c k e l powder  Weight =1.5647 g  mm.,  Purposes To i n v e s t i g a t e r e a c t i o n r a t e at temp, above 100 C . MeasurCH^. area C H , area C^H^ area T *C ement 1. 2 3 4 6  7 8 9 10  11  12 13 14  4575 4300 3670 3290 3390 3090 3230 12910 ,2870 3070 2980 2800 2350 2700  18350 18725 18725 18700 . 19050 19325 19075 18850 19000 19200 •19050 18700 19450 18550 1  86 91 101 , 107 ... 113 121 129 . 137 144 152 161 168 176 185  HUN II tt flov? r a t e »»1509 O T ? / B O O CjJIf f l o w r a t e - .0731 cm'/oee  BarojB* Press* -758.6 ass ' Room temp. = 29 °C  z  Dates J u l y  c a t a l y s t s n i c k e l powder Weights 1,5301 S  3/63  Purposes t o observe e f f e c t o f p r e t r e a t i n g th© c a t a l y s t hydrogen a t 350°C  Measurement  GH^ a r e a  1 2  3 4  C2.H  T °C  C^j .^ a r e a 1  area  fc  £1600 21650 16075  7075 37000  with  27 42  52  60  100 % c o n v e r s i o n j hence d e c i d e d t o s t o p th© r u n ROW  H i f l e w rate=lo47 os?/BOO C,H f l o w r a t e =<>37 eaVa^o.. . , „ . C a t a l y s t s n i c k e l powder •• . toeignt: 1*5381 6  Dates £uly  4  ,  I  5/65  Barom, p r e s s - 7 5 7 . 5 sm , „ . 8°0  I { € J 0 S  t  f  l  a  p  2  Purposes t o attempt t o nttsdy r e a c t i o n over a wide temperature rang© Moasur* ©sent  CH^ .area  1  •  C »  o  mm  3  —  4  5  6 7  8  9  10 ii 12 13 14  15  16  <• •  tt 4M*  mm mm  O^HG  area  1265  915 935 '  720 745 .  00 ' • 305 260 220 • 365 . 130 335 •' 125 240 285 55  t o o much s c a t t e r i n datag n m  ended  T °C  O2.H4. a r e a 2380 1905 2120 1790  2060  360 " 1155 690  790 690  900 1640  565  1215 120O 260  42  64  75 ' . 88 •  97  111 122 133 ISO 166 178 192 209 223 235 250  f t m t m % ® =*X3d m f®m 3  H  x  ^.  C a t m i n t i a i o M powder  .  Bar«8« JIPM**- f 5 § * 4  SappoaiM f& to t» o t e w ®f#®$$ off sa&gaoii© floXA an «afes*< G R area a  ' 1  mm  m m xm  t  1  Iffo •soro  1 m>  9  300.  X§.  it IIS  nao f#0 SiO 980  • 16*  . ®0 II •  a-  S'  1sool X@8£  •  g&co  27 Si' m  u it  $590  Swo 2030 SO®  u  3000  %  noaso  a$>4»x  . axxeo 90035 83X*0  gig®-  mm  e^ji, era*  1  8150  eaoo 8040  1S90  2830  I! sis ii,. t60 •  tiuseo axos© |04t0 208-00 t§%00 aoxoo ioioo  9*4»9  369*9 J7JU9  hi • 9nso 3X000  aoaoo  4Q$«#  «3o© tBSO gxoso  •*»ax*3  ||4||  8e4# $0*00  S0223  20000  •  X9g TO  MS  lll 299  ii  , .  « a new wito - °3X6 em / s e e H A flow ^at© = -060 OBYseo Ofttal^ott ido3c«l-sQwdjti^- •/ «ll8^< l * i l $ l 8  fill E jfct*. July l©/6§ '••iBeroa*. prm&*^ ?i6«§ «*. 'ftmtemp*.-ST'O  f °o  /©ML, «*e& 40 '  i  i  6500 4125  40  4400  11  .  3875  1665©  4100  18S7S  4020  - . si  16000 18825  Sun 0t.©f>p©a "im&mm of tlm%mttm&  ef  319*3  313*4. 316*4 5S4,3  and O^E^  Ji* flow r a t e - 0156 eoYaeo C2 a H^ f l o w  r*to-  ..©86  era3/BO©  Oat&lyfltt &1O1K»1 powfiair • .tfeigtftt 1 « 5 3 B 1 S  Ita&at J u l y Saroiw parse© • - 7 5 8 * 5 BBB 0'  Boos toiB&,-84~  f©»p©s©i f@ $&so& .fltiotttationg i» sole fraetioii of otitpne 0s4 et^ltttto loAyiti& r @ & « t s « * * •  f°0  m% &r©a  .a '3 •  1®  10 •• i s  5 6  IS  so ao  1 ' Kuo #tTO®a S J U and  <Sfl©0  ns5  am 73^J  5950  nso  10150 #100 10150 96S5 . 12275 •  «184i»3 889.1 2£5*G  . 300«0  300*0 $00*6  SOO*018185 51S5 $00*0 o f fluctuation© in aol© fraction o f 4925  bmtmm  10050 10675  Mfft  •Hz flow *ate».C9BO os /*** OajB^fflew s?&%©*=*©561 eaV©©o  $ulj  3  U  18/65  Barosi. 'proaa. « 7^8»5 an.  Roo© ten$*» 27 °C Catalyst: niekal poofter 'Vaxpotmi  study .*«&atle&  tbroogb Curt©fteqpttp&ttir*of  nickel fisasur*  oia©nt  1 §  '3 4 S 6 T '  a  10 11 3.3 13 • 14  IS 16  • IT w  19 . so aa  2 3 84  as  @0 87 g6 SP  30 31 3a ..  € H 4 area •  «.  m  m>  «. e>  40  45  40 6§  ®0 60  • 4400 4tg0 ' 460©  4 100 4475 4$2S 4075 4325  4200  407©  T5  3660 '3570  iao  3690  95 • 1 50 liS 1 m95 3S0. 345 4 45 $m 660  770 1&3D  1185  im  <*  •  T °0  02.1! & & r e a  3700  3590 3570 3580 3430 350©  3400  3600 3330 3240 3130  3 120 S600 • 2 2 5 0  5835 •6050  $673  £ 3435 83500 ai5So 23#S0 ©90§  34035 •  mm mm®  24150 Masa • 24700 345T0 24600'  24650  S4S$0-  i247S0 *ioo 2 4650 mm 25000  ; 2$!©a 25150^ 24120  202,0 282*0  289 »7 310.0  316,0  3 30,8 325.0  334.0 337.1 340.8  it!:*  0  •"3S0«3 354.3 3fflM ' 360«8 • 364.0  374*0 378.1 388.0 3&a,9 39GVT  400*7  803.0  282.0 282.0  3*32 RUN I  U Flow rate =,'.311 ea^/aee C l flow rate - ."032 osp/sec Catalyst: n i c k e l powder Weight-- 1.5381 g x  Dates J u l j 13/65 Barora. p r e s s . 7 5 8 . 7 nm. Room temp. - 25." C  Purpose: f o study the reaction r a t e through the, Curie temperature of n i c k e l Measurement '' 1 2 • 3  4 5 6 7 8 9  8H^ .ftrea-:«• Mi  •  CJH^ area  aio  -  785 ' 717 765 765  soo  MO  10  11 12 13 14 15 16 17 18 1? 20 21 22 23  25 25 ' 40 50' . 65 75 75 50 . 75 120 180 200 220  740 760 760 640 900 490 710 ' 595 540 575 790 425 620 545 560^ 470 280  C J i ^ area  T °C  4410 4710 4890 4990 5170 4BO0 • 4630 4680' 4760 4940 5530 4420 6000 5180 5540 4860 4180 3410 4620 4450 5630 5160 4840  298.0 303.3 300.1 311.8 318.7 320.7 323.9 328.4 332.4 336.7 340.0 346.3 349.S 354.3 361.0 365.9  366*0  370.5 372.4 375.9 379.0 383 .8 392.0  HUI 0 Purpose: ro estimate how long i t takes gaes flows t o smooth out a f t or ethylene introduced Into ijyetom Measurement 1  2  3 4 5 6  • .  C H• area 295 435 600 715 830 840  c fi 1190 1695 2165 2460 2730 2810  area  Time  T C 0  12 s 00 12:30  292.0 292.0 292.0  1*00  . 1?30 2:00 2s30  298.0  j  292.0 292.0  3m Mil $  H flow rate = «10€8 C%S^ flwr rate * .038 ©m3/©©e Z  Sates Julir 15/65 Barom ..pro  Catalyst J n i c k e l -pokier  « 759.5 'fens.  Hoes t@ap„» 26«5'*5  purpose t To study tHe reaction r a t e tfcreughtthe C u r l s . teapwatur© of niefeel  Keaaureaient  1 2  -I 1 7  i© ii 12  13 14 15 16  3  1ST m 21 24  as  26  S  29  30 31 32 35 36 3 3 fo  41  G H a ar©&  CJi  fe  area  30 '•0  5350 5325  45' 5360 70 10 100 ISO  4700 4150 4275 410© 4215 4400  169  805 210 250 415 360 480. 780 1030 m  to  mn  4050 5000 44§0 4250 3925 6225 4300 4000  4500 4200 712S  5350  60.-  4750  95  5250 7850 5475  73' 130 105 100 80 105  165  4900 5435 4075  4700 672S  145 170'  5675  170 210 230 • 215 ^50 280 310  • 135  C^ji^.  area  16950 xmo  303.3310*3=  17850  336.r  17225 17000 16800•  16025 15850 16350 16350 1642.5 16250 14550  16775  322.8' 329.X 334*8'  340.0 U7  353.3359.5-  361.5  366.0" 371*0;  16330 1#50 13Q0O 15500 16800 16300 16300 16500  32#.7'' 326.7" 331.5:  13875 16100  343.3  330.0-  335.S,  16400  340.8 343.3  15500 14100 16700 15000  345.0 345.0 347.3 351*0. 351.0 358*5,  5525 5675 517S 5i2§  16450 16000 16225  5500  G  316*0'  1630© 15§S0 14800 16000  3775  6  16950 17275  4375  5775  t  X6Q30  16350 15425  3543, 356.8,  358.4.  35®<A 361.0 363.1 3S7»S  42  233  44  45  '  Sop  k$'  10$0  • 4f S  flaw  a  3750  75  rate  16650 16a25 • • 26075 16*700 16525 • 15875  3925 3950 • 3950 4000 4f25  =.4•21 emVooc  371,5 376.0 382.4  387*3  0 \ H 4 F l o w r & i e = .045 6»y-ooe  .fates July  Catalysts n i c k e l p o M e r Weight - 1*5381 8  •Barcis. p r e s s .= 757.2 am.  17/65  mm temp. = 26 °0. Euxpoee: f o SJO&Ctaint reaction r a t iJ o v e r a wi-Se temperet«ro • .rang©* •and a t & low p e r oent of ethylene l a. 'the- • • £i  Measurement  IB  area  C U X  1  ••2. .3  4  5  7 -ft  $-  10 11 12  U  area  area  422$ 4925 4,975 5375 512S  «* 4» w» 0.  •  •*  14  € 3.7 SS*£  3S60  3350  74*3  3860  . 3850 394o  -01.*$  4370  #5.-9 109*5 10t.5  88.7  .4800 4630  44S0 4000 4360 4425  « p  52*0  •$©..3  3305  4325 .3860  «*  '42*0  3640 3100  4A25 >a>  f "0  :  :  .116.0  4496'  116.* 0 124*0  4880  4080  Run 0toppt afi beeaused of f l u c t u a t i o n s i n . mole f r a c t i o n of and 0»H* '•  ft  H flow ret© =- «094 cm Vsoc C j K flow r&t*.-*Q$7 <HBV*I©. CatAl^fttt a l e k e i powder A  Oatei July 27/65  Height - 1 . 5 3 6 2 g  Barom. prees. =760. 2. mm. Eeom temp. = 2 S . 0 °o  ^ i r p e s o i To t r y -to observe affeoi5. of $Magnetic f i e l d  yeoetloa rat©.  ©ment 1. '.'2  3  OH 4 :@r$& 25 ' f | •' m  0  area  19300 10700 18700  C J ! ^ area 18000 12125  0 29.2 35*5 40.0  3-35  4 5 6 7 8 9 10 ii 12 13 14 15 16 17 18 19 20 21 22 23 24  4  25  18500 17750 17150 25 25 16900 magnet on (10000-gausss) 15800 25 25 15500 14850 . 25 12650 ,25 25 13500 13450' •25 13100 25 25 12550 .25  25  25  •• 25 25  12350 13200 13950 14950 15050 15750 16100 17100 17200  >  25 25  25 •  25 25  12350 12300 12625 12975 12750 13225 13650 12150 13825 13950 14125 14175  3  Z  4  Reactor f i l l e d with 42 glasa beads  63.3 69,, 1 75.8 80.5 87.3 87.3 91.8 98.0 92.0 84.0 74.0 64.0 57.5 51.5 47*5 40.8 38.4  13525 13500 13275 12850 12425 12275 12225 12000 11700 RUN S  3  flow rate =.12128 cm /see. C H , f low rate-.0262 cm /sec  .  44.5 48.9 54.1 58.2  Dates August 1/65 Barom., press. = 753.9 'mm. Room temp. = 30*G '•  Purpose: To check whether or not there i s a reaction proceeding on the exposed section of the heating wire and copper leads. Measur- . ement 1 2 3. 4 5 6 7 8 9 10 . 11 12 13 14 15  CH^ area  C, H, area  G H ft.  CSB  vm c »  90000 9000 9000 9000 9350 9450  9300  9850 9925  tea  9725 «e»  ma  as  10200 9250 10150 9950 10000  area 30.0 39.4 . 43.0-  55.-9  63.8 72.2 96.7 108.0 120-.O 222.0 253 * 2 275.0 322.5 387.6 407.3  nm  H f l o w r a t e ~ % k 0 8 5 cm / s e c C j H ^ f l o w rat© » ,215 ess /sec  Date J August 9/65  C a t a l y s t ? n i c k e l powder Weight = 1*3149 g •  ROOBJ  t  3  T  Barom* pre©©, temp*  Purpose s To t r y t o observe' th© e f f e c t of a magnetic f i e l d on t&e r e a c t i o n F&t$.«< Measurement  ' OH4  1 2 3  O^Hfe a r o a  «roa  C^Ej  isaoo i'j4so  1245  895 • • 720  «a «•  835  «u*  **»  2100  5 €  ? e  1 0  *» «•»  12  650  302.5  294.0 300'. 0  -.13050  310.5  13550  •  620 710  *•  2SSU1 289.. 0 3.1!»8  lass©  / 1 4 0 5 0  319*3 326.0  • 140.00  337,5  • 14550 14300  344., 7 349,©  1 4 3 0 0  358.5  taagncit on (5000 g&u ae) 11  •  :i4ioo  ' §45  9.  f fC  15150  •  2050 i860 1540 1205  area  WW  tl  Hz f l o w rat© = 1,325 cmVsec 0 2 . % flow rat© = .090 ea /s®<?  Dates  Catalyst» siieK©! powder Weight-1.3149 g  Bar©©, proas*« 7 S 9 » 1 - B W * Boos t e m p . - 2 4 . 4 °C  3  August 10/65  .Purposes To t r y t o observe t h e e f f e c t o f a magnetic f i e l d on the r e a c t i o n r a t a . Measurement  CK^. a r e a  1 2 3  5 '•6 7 8 ,9 10 11 13  •  •  15 ' 15. SO 20  20 20 50 50  --  .•  30 m-  'Sp • 8 0  60 .  C^tffe a r e a 2010 £ 0 8 0  2190 8090-  C^H^. a r e a  3300 • 5460 .  • 3560 3550  3680 3740 21§0 3740 .. 2080 2880 2020' •3880 1930 3720 1780 raagsuet on. {§000 g aus a} 4130 1 8 0 0 2140  1 7 8 0 1 6 3 0  T Q P  284.0  289*9 296,1  305.1 ' 311.0  318,0  321,8  325.? 331.1  339 •!  4 1 4 0  344,5  • 4140  348.0  2.4 15  69  1560  um  to TO 100' . 140  16  •1? 18 19 SO  '"  aa.  1400  ?400  • 1060  7200  B$0 • f©0-  tats  357.3  ' .3S$*3 373:«X  ^75*9 382.0  $aa.s  StiM 1260  «&©  660 '800  10200  • 355U9  . 4©18@ 4^00" 000'  .130©  7400  r  4480 . 4fi©0..  1270  7400 7100  -£4 •  4280  1300 1050  7400 '  S3  4340  .  3*4.0 40fof  620.  4$0»1 44SoO  470  $50  H, tflow rat© =-»926 em /ooo e^l^ flm • mt© = .352 cm yooc' Gfet&lyet§ s i * supp* nlokel ftoigutt 1.007 ,g  ' Htli' V 'Cat©i mgmk 's3/£$ ' Barom pr#as* = 75^ too® tosp.. - 83.8 °S 0  :  Purpose : To tfry to -ofesarve tho eff^ot  •\$n.itwB ToooilQa fat'©*-  Moaaus**  • 1  a  3 4 5  '  6' 7 S  f 10  u  12  1314  -16' ic. 17 18 19  ao " . si §S .  C^?.^.-;%r^£f.'. •55 S3'"  SS •  1170 • 1140  55 65 1 '(§000 '-nay »'«)- 'ftogsndtoi •7B0 70 00-' ifO 70 4#0 • • 70 580 7o 30080 85  65 65  95  ' 105 110 130 145  ' 340  3©S 2^0  300  MO  '295 . •290 310 • 530 . 345-  ..860  360  193  Hi  X0 %  - SM*5  25350  • 3.0$»O 311*0 •321*3 3at»a  87685  :  .87400-  - -33i;s •  • 273^"  .  877SO -336*0 .27800 • •- ' 346,7 %7MQ • -353*2 '.27500' ,359*1 JHS1*0 . a#T5 • • 3$M argoo • ' .367*1 37000 -  >  .mss  ' 373.5 387 oS .' 399& 397*5  06000 8ffS00  407ol 416.0 440*1  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059051/manifest

Comment

Related Items