UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fouling of heated stainless steel tubes with ferric oxide from flowing water suspensions 1973

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1973_A1 H66_5.pdf [ 21.08MB ]
Metadata
JSON: 1.0059022.json
JSON-LD: 1.0059022+ld.json
RDF/XML (Pretty): 1.0059022.xml
RDF/JSON: 1.0059022+rdf.json
Turtle: 1.0059022+rdf-turtle.txt
N-Triples: 1.0059022+rdf-ntriples.txt
Citation
1.0059022.ris

Full Text

n/9f cl FOULING OF HEATED STAINLESS STEEL TUBES WITH FERRIC OXIDE FROM FLOWING WATER SUSPENSIONS by ROBERT MONTGOMERY HOPKINS B . E . , D a l h o u s i e U n i v e r s i t y , Nova S c o t i a T e c h n i c a l C o l l e g e , 1 9 5 6 M . S . , U n i v e r s i t y o f M a i n e , 1 9 5 7 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n t h e D e p a r t m e n t o f CHEMICAL ENGINEERING We a c c e p t t h i s t h e s i s as c o n f o r m i n g to t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA July, 1973 In presenting this thesis i n p a r t i a l fulfilment of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t freely available for reference and study. I further agree that permission for extensive copying of th i s thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It i s understood that copying or publication of this thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of C^~/4<?sr7SC & / X?f &ss7 <T<r s^/s? The University of B r i t i s h Columbia Vancouver 8, Canada Date J/ s^&so, 73 ABSTRACT The fouling behaviour of ferric oxide (hematite) particles suspended in water flowing through 0.343 inch i.d. type 304 stainless steel tubes was experimentally investigated. Independent variables studied, using micron and submicron size particles, were ferric oxide concentration (15 - 3750 ppm), tube Reynolds No. (10090 - 37590) and heat flux (0 - 92460 BTU/ft 2 -hr). For selected runs, fouled tubes were sectioned and the fouling deposit subjected to "in situ" chemical analysis by means of an electron microprobe. During the fouling process, measurements were made of local and average thermal resistance as a function of time. The resulting fouling curves f e l l into three distinct categories, depending on the particle concentration and the mode of operation: ( I ) A t f e r r i c o x i d e c o n c e n t r a t i o n s below 100 ppm, no thermal f o u l i n g could be detected over experimental periods of up t o 14 days. Microprobe examination of such tubes showed spotty d e p o s i t s . i i (2) At ferric oxide concentrations of. 750 ppm and higher, using mixed size particles, measurable thermal fouling occurred at a steadily decreasing rate, similar to the asymptotic type behaviour reported previously in other fouling systems. In the present study, the asymptotic condition was achieved after about four hours of operation. Prolonged operation resulted in a sudden decrease in fouling resistance at localized positions on the test section, followed by refouling of the whole test section. (3) If the suspension was circulated through the test section at zero heat flux for approximately eight hours and then heating started, the tube commenced fouling thermally at a constant rate considerably greater than the previous decreasing rates. Microprobe results showed the deposits to contain, in addition to iron and oxygen, s i g n i f i c a n t amounts of nickel and chromium. Chemical composition p r o f i l e s t y p i c a l l y showed nickel and chromium concentration gradients from the wall inwards, concentrations varying from the highest values at the wall to zero at the d e p o s i t - f l u i d i n t e r f a c e . A test section used for a series of fouling t r i a l s , when examined under an electron microscope, was found to contain small but distinct pits. A hypothesis is presented according to which the fouling behaviour of water suspended ferric oxide on stain- less steel is controlled by the rate at which crevice corrosion of the stainless steel occurs. The corrosion products precipitate within the i n i t i a l l y loose deposit structure and thus serve to stabilize this structure. The corrosion rate is in turn controlled by the oxygen reduction rate at unfouled areas on the tube wall. Experiments specifically designed to test this hypothesis, such as increasing the unfouled area in an attempt to accelerate the corrosion rate, and removing oxygen with a scavenger in order to decrease the rate, gave results entirely consistent with the hypothesis. Mathe- matical models based on the hypothesis are explored. i v TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES ix LIST OF FIGURES x i i ACKNOWLEDGEMENTS x v i i i Chapter 1 INTRODUCTION 1 1.1 The Fouling Problem 1 1.2 Pertinent Prior Work 3 1.3 Problem Area Selected and Objectives of the Research 13 2 APPARATUS AND MATERIALS 17 2.1 Heat Transfer Loop 17 2.2 Electron Microprobe 28 2.3 Properties of Ferric Oxide Fouling Materials 32 3 EXPERIMENTAL PROCEDURES 36 3.1 Test Section Preparation Procedure 36 3.2 Fouling Run Procedure 39 v Chapter Page 3.2.1 Cleaning of system. 40 3.2.2 Tank f i l l i n g 40 3.2.3 Start-up 41 3.2.4 Elimination of thermal transients. 41 3.2.5 Addition of ferric oxide 43 3.2.6 Operating procedure during t r i a l s . . 43 3.2.7 Shut down procedure . . . . . . . . . 44 3.2.8 Fouling deposit sample preparation. . 44 4 COMPUTATIONAL PROCEDURES 46 5 EXPERIMENTAL ERROR STUDY 59 5.1 Influence of Thermal Transients. . . . . . . in Determining Thermal Resistance 60 5.2 Errors Due to Variation in Line Voltage. . . 63 5.3 Errors Due to Flow Rate Variations 66 5.4 Errors Due to Inlet Temperature Variations . 68 5.5 Errors Caused by Wet Insulation 68 5.6 Miscellaneous Errors 70 5.7 Reproducibility and Validity of Thermal Fouling Data 70 6. RESULTS AND DISCUSSION. 77 6.1 Summary of Fouling Trials 77 6.2 Thermal Fouling versus Time Behaviour. . . . 82 6.2.1 Types of Thermal Fouling Curves Obtained 82 vi Chapter Page 6.2.2 Effect of Reynolds number and heat flux on fouling curves 86 6.2.3 Effect of fer r i c oxide concen- tration on fouling curves 94 6.2.4 Effect of residual tube wall deposits on fouling curves 100 6.2.5 Effect of extended operating time on fouling curves . 104 6.2.6 Fouling behaviour using a pre- fouled tube 113 6.2.7 Effect of an oxygen scavenger (Na2S03) on fouling behaviour. . . . 117 6.2.8 Effect of ferric oxide particle size on fouling behaviour 121 6.2.9 Influence of local wall tempera- ture on fouling behaviour 131 6.3 Pressure Drop Versus Time Fouling Behaviour 135 6.4 Fouling Deposit Examination Results . . . . 138 6.4.1 Type of information obtained . . . . 138 6.4.2 Results of light and electron microscopic examination of deposits 140 6.4.3 Electron microprobe results 141 6.4.3.1 Qualitative nature of fouling deposits 141 6.4.3.2 Quantitative analysis of fouling deposits - transverse sections . . . . 149 v i i Chapter Page 6.4.3.3 Qualitative and quan- t i t a t i v e analysis of deposits - core samples 154 6.4.4 Examination for p i t t i n g of tube used in fouling runs 32-70. 1 61 6.4.5 Deposit crystal structure 164 7 CORROSION CONTROLLED FOULING - A PROPOSED HYPOTHESIS 165 7.1 Outline of Working Hypothesis 165 7.2 Fundamentals of Crevice Corrosion 167 7.3 Proposed Mechanism for Fe r r i c Oxide Fouling of 304 Stainless Steel 171 7.4 Mathematical Models 175 7.4.1 Model 1 175 7.4.2 Model II 186 7.4.3 Linear fouling 189 7.4.4 Compatibility of fouling model equations with experimental data 190 8 CONCLUSIONS AND RECOMMENDATIONS. 195 REFERENCES 199 NOMENCLATURE 203 APPENDICES I ELECTRICAL CONNECTIONS AND PRESSURE TAPS . . . . 209 II COMPUTER PROGRAMS 210 III COMPUTATION OF THERMOPHORETIC VELOCITY FOR RUN 63 221 IV EXPERIMENTAL DATA 226 v i i i LIST OF TABLES Tabl e Page I Equipment Component L i s t 19 II Thermocouple Locations on Test Sections 24 I I I Data Logging System Components 27 IV P r o p e r t i e s of F e r r i c Oxide Powder A l l i e d Chemical Batch D344 33 V P r o p e r t i e s and Pre p a r a t i o n I n s t r u c t i o n s f o r Eccocoat 582 Epoxy Resin 37 VI Variance from Target Conditions Tolerated f o r Run 39 42 VII T y p i c a l Log Sheet Showing Run O b j e c t i v e and Target C o n d i t i o n s 47 VIII Output from Program PAR 49 IX Output from Datalogger 50 X Data Used f o r Fouling Curve Determination. . . . 52 XI Output from Program STOMV - Input to Program FOUL 54 XII Output from Program FOUL 58 i x Tab! e Page XIII Variation in E l e c t r i c a l Power Supplied to the Test Section - Run 13 64 XIV Data from Run 15 to Determine Effect of Honing Tube Wall on Thermal Resistance 71 XV Reproducibility of Fouling Curve Parameters Obtained by F i t t i n g Data to the Equation R f  = R f * ( l - e~ b t) 74 XVI Summary of Fouling T r i a l s Run at Low Fe r r i c Oxide Concentrations 79 XVII Summary of Fe r r i c Oxide T r i a l s Using Mixed-Size P a r t i c l e s 80 XVIII Effect of Heat Flux and Reynolds Number on Fouling Behaviour for Mixed-Size F e r r i c Oxide 2130 ppm 88 XIX Influence of F e r r i c Oxide Concentration on Parameters b and R-* and I n i t i a l Fouling Rate Obtained by Least Squares F i t of Fouling Data to the Equation R f  = R**(l - e-bt). Heat Flux 90,000 BTU/fr-hr (Approx.) Re 26,500 (Approx.) . . . . 96 XX Influence of F e r r i c Oxide Concentration on Parameters b and Rf* and I n i t i a l Fouling Rate Obtained by Least Squares F i t of Fouling Data to the Equation R f  = R f *(l - e " b t ) . Heat Flux 44,360 BTU/ft^-hr Re 19,550 97 XXI Parameters b and Rf* and I n i t i a l Fouling Rate Obtained by Least Squares F i t of Fouling Data to the Equation Rf = R f * ( l - e " b t ) for Runs 39, 40 and 41. Heat Flux 44,870 BTU/ft 2 -hr Re 25,390, mixed size F e r r i c Oxide Cone. 2130 ppm 107 x Table Page XXII Effect of P a r t i c l e Size on Fouling Behaviour. F e r r i c Oxide Cone. 15 ppm Re 25,000 (Approx.) 123 XXIII Deposition Coef f i c i e n t s for F e r r i c Oxide as a Function of P a r t i c l e Size as Computed from Beal's Equation. Tube Reynolds Number 25,360, Bulk Velocity 3.28 f t / s e c , Fluid Temperature 212°F 127 XXIV Local Fouling Resistances After One Hour as a Function of Tube Wall Position (and Hence Wall Temperature). Heat Flux 90,000 BTU/ft 2 -hr, Re 26,500 Mixed- Size F e r r i c Oxide Cone. 2130 ppm 132 XXV Local Fouling Resistances After One Hour as a Function of Tube Wall Position (and Hence Wall Temperature). Heat Flux 44,360 BTU/ft 2 -hr, Re 19,550, Mixed-Size F e r r i c Oxide Cone. 2130 ppm 133 x i LIST OF FIGURES Figure Page 1 Heat Transfer Loop Schematic 18 2 Test Section 23 3 Heat Transfer Loop E l e c t r i c a l and Data Logging System Schematic 26 4 The Jeol Electron Microprobe 29 5 I l l u s t r a t i o n Demonstrating Fundamental Pr i n c i p l e s of Electron Microprobe Analysis 30 6 P a r t i c l e Size of Mixed Size Fer r i c Oxide in Feedstock and in Fouling Deposit 34 7 Apparent Thermal Resistance Versus Time for Run 1 on Tap Water 62 8 Thermal Resistance Versus Fluid Temperature Rise Run 4 (Tap Water) 67 9 Thermal Resistance Versus Inlet Temperature for Run 5 on Tap Water 69 10 Fouling Curve Reproducibility as Shown by Superimposing Data for Replicate Runs 34, 35, 38, 59 72 11 Fouling Curve I l l u s t r a t i n g Asymptotic Type Behaviour 83 x i i Figure Page 12 Effect of Prolonged Operation on Fouling Behaviour 84 13 Linear Fouling Behaviour , 85 14 Influence of Reynolds Number on Fouling Curves at Heat Fluxes Near 90,000 BTU/ft 2 -hr. Mixed Size F e r r i c Oxide Cone. 2130 ppm 89 15 Effect of Heat Flux and Reynolds Number on Fouling Behaviour. Mixed Size F e r r i c Oxide Cone. 2130 ppm 90 16 Effect of Heat Flux and Reynolds Number on Fouling Curves at Heat Fluxes < 44,360 BTU/ft 2 -hr. Mixed Size Fer r i c Oxide Cone. 2130 ppm 91 17 Effect of Mixed Size F e r r i c Oxide Concentration on Fouling Behaviour. Heat Flux 90,000 BTU/ft 2 -hr (Approx.) Re 26,500 (Approx.) 98 18 Effect of Mixed Size F e r r i c Oxide Concentration on Fouling Behaviour Heat Flux 44,360 BTU/ft 5 -hr Re 19,550 99 19 Comparison of Fouling Behaviour for a Clean Honed Tube (No Residual Deposit) with a Prefouled Tube Subjected to High Velocity Cooling. Heat Flux 44,870 BTU/ft 2 -hr, Re 25,400, Mixed Size F e r r i c Oxide Cone. 2130 ppm 103 20 Fouling Behaviour over an Extended Time Period for Run 34. Heat Flux 44,360 BTU/ft 2 -hr, Re 19,500, Mixed Size F e r r i c Oxide Cone. 2130 ppm 105 xi i i Figure Page 21 Lower Portion of Test Section Fouling Behaviour Following Honing of Upper Portion at 2.5 Hours and High Velocity Cooling at 5.5 Hours. Heat Flux 44,870 BTU/ft 2 -hr, Re 25,390, Mixed Size Fer r i c Oxide Cone. 2130 ppm 108 22 Upper Portion of Test Section Fouling Behaviour Following Honing at 2.5 Hours and High Velocity Cooling at 5.5 Hours Heat Flux 44,870 BTU/ft 2 -hr, Re 25,390, Mixed Size F e r r i c Oxide Cone. 2130 ppm 109 23 Effect of Tube Condition at Time Zero on Fouling Behaviour. Mixed Size F e r r i c Oxide Cone. 2130 ppm Heat Flux 91400 BTU/ft 2 -hr, Re 26,580 1 1 5 24 Comparison of Fouling Rates for a Clean Honed Tube (Curve 1), a Prefouled Tube with an Oxygen Scavenger in the System (Curve 3), a Prefouled Tube with no Oxygen Scavenger (Curve 2). Mixed Size F e r r i c Oxide 2130 ppm, Heat Flux 89,670 BTU/ft 2 -hr, Re 26,580 1 19 25 Local Fouling Resistance After One Hour Versus Local Wall Temperature at Time Zero. Mixed Size F e r r i c Oxide Cone. 2130 ppm 134 26 Pressure Drop Increase as a Function of Time for an Asymptotic Type Fouling Run (Run 63) and a Linear Fouling Run (Run 64) Heat Flux 91,400 BTU/ft 2 -hr Re 26,580, Mixed Size Fer r i c Oxide Cone. 2130 ppm 137 27 Scanning Electron Photomicrograph Showing the Nature of the Deposit Resulting from the Fouling of Aqueous F e r r i c Oxide Suspensions on 304 Stainless Steel (The Photomicrographs are a Stereo Pair) 142 xiv Figure Page 28 Image of a Core Sample Obtained with the Electron Microprobe 143 29 Electron Microprobe Photomicrograph of a Typical Deposit Showing the Back Scattered Electron Image or Topography (Above) and the Absorbed Electron Image or Physical Composition (Below). . . . 144 30 Electron Microprobe X-Ray Intensity Photomicrograph of a Typical Deposit Showing the D i s t r i b u t i o n of Iron (Above) and Nickel (Below) 146 31 Electron Microprobe X-Ray Intensity Photomicrograph of a Typical Deposit Showing the D i s t r i b u t i o n of Chromium 147 32 Electron Microprobe Photomicrograph Showing for a Typical Deposit the Absorbed Electron Image (Above) and the Corresponding X-Ray Intensity Photomicrograph Depicting Oxygen Concentration (Below) 148 33 Electron Microprobe Photomicrograph of a Clean Tube Showing the Back-Scattered Electron Image (Above) and the Corresponding X-Ray Intensity Photomicrograph Depicting Iron Concentration (Below) 150 34 Concentration P r o f i l e s for Iron Nickel and Chromium for Run 70 - A Run Which Showed Linear Fouling 152 35 Chromium Concentration P r o f i l e s for Deposits from Run 15 - No Thermal Fouling Detected, Run 31 - Asymptotic Fouling, and Run 30 - Linear Type Fouling (Distance Scale is Arbitrary) 153 36 Physical Appearance of Core Sample (Upper Photomicrograph) and Relative D i s t r i b u t i o n of Chromium (Lower Photomicrograph) 155 xv Figure Page 37 Physical Appearance of Core Sample (Upper Photomicrograph) and Relative Distribution of Nickel (Lower Photomicrograph) 156 38 Physical Appearance of Core Sample (Upper Photomicrograph) and Relative Distribution of Iron (Lower Photo- micrograph) 157 39 Physical Appearance of Core Sample (Upper Photomicrograph) and Relative Distribution of Oxygen (Lower Photomicrograph) 158 40 Relative Intensities of Iron and Chromium, and Nickel and Chromium, for a Scan Over a Core Sample (From Linear Fouling Run 70) . . . . . . . . 160 41 Scanning Electron Photomicrographs Showing the Appearance of the Tube Wall of a Tube Used in 38 Fouling Runs (The Above Photo- micrographs are a Stereo Pair) n . . . . 162 42 Scanning Electron Photomicrographs Showing the Appearance of a Clean Tube Never Used in Fouling Experiments (The Above Photo- micrographs are a Stereo Pair) 163 43 Mechanism of Crevice Corrosion According to Fontana and Greene (37) . 170 44 Idealized Fouling Curve Illustrating the Nature of the Fouling Deposit at Various Time Intervals According to the Crevice Corrosion Hypothesis 172 45 Dependence of Initial Fouling Rate on Mass Flow Rate for. Runs 54, 55, 39, and 61. Mixed Size Ferric Oxide Cone. 2130 ppm. Wall Temperature at Time Zero 148°F ± 4 . . . . 192 xv i Figure Page 46 Dependence of Asymptotic Fouling Resistance on Mass Flow Rate for Runs 54, 55, 39 and 61. Mixed-Size Ferric Oxide Cone. 2130 ppm. Wall Temperature at Time Zero 148°F ± 4 193 xvi i ACKNOWLEDGEMENTS Thanks are due to the following people for the i r co-operation and assistance throughout the course of this study. Dr. Norman Epstein, under whose d i r e c t i o n this investigation was conducted, for his guidance and support. Mr. John Baranowski and the Chemical Engineering Workshop s t a f f for the i r help with the experimental apparatus. Mr. Arvid Lacis of the Department of Metallurgy U.B.C. for his aid in operating the electron microprobe and his assistance in interpreting the r e s u l t s . Mr. Orestes Mayo and Dr. Paul Watkinson without whose prior work and help the results obtained here would not have been poss i b l e . I am indebted to the Department of Metallurgy U.B.C. for the use of the electron microprobe and the scanning electron microscope. I would l i k e to thank the National Research Council and the University of B r i t i s h Columbia for fi n a n c i a l assistance. xv i i i I am also indebted to my wife Barbara and my children Susan, Patricia, Michael and Rob for their con- tinual support throughout this work. x i x Chapter 1 INTRODUCTION 1 .1 The Fouling Problem F o u l i n g , the accumulation of undesired deposits on heat t r a n s f e r s u r f a c e s , i s a major i n d u s t r i a l problem. For example, i n o i l r e f i n e r i e s coke-type deposits form on heat exchanger surfaces and impede the flow of heat. This r e s u l t s i n higher c a p i t a l c o s t s , and can also r e s u l t i n c o s t l y plant shut-downs f o r c l e a n i n g . In nuclear r e a c t o r s , f o u l i n g deposits can become r a d i o a c t i v e , causing d i f f i c u l t and p o t e n t i a l l y hazardous maintenance problems. In pulp m i l l s , chemical d i g e s t e r heat exchangers are prone to f o u l i n g , which r e s u l t s i n increased steam c o s t s . Processes with l a r g e c o o l i n g requirements, such as s u l p h u r i c a c i d p r o d u c t i o n , also experience f o u l i n g problems, which g e n e r a l l y manifest themselves by i n c r e a s i n g process water requi rements. Although f o u l i n g problems are of economic impor- tance i n a large number of i n d u s t r i e s , no systematic 1 2 treatment of the subject is available in the l i t e r a t u r e . As pointed out by Taborek et al. (1) in their review paper, "Fouling: The Major Unresolved Problem in Heat Transfer," there is not, at the present time, a single reference book covering the subject of f o u l i n g , and heat transfer texts do l i t t l e more than acknowledge the existence of fouling problems. As a consequence, designers of heat transfer equipment must resort to empirical methods in computing heat exchange surface areas for processes where fouling is experienced. These methods usually involve the assumption of a fouling resistance, which is added to the other heat transfer resistances to arr i v e at the total thermal resistance used as the basis for design. Such an approach frequently causes inaccurate design, not only because of the u n r e l i a b i l i t y of the fouling resistance estimation, but also because i t f a i l s to take into account the unsteady state nature of the fouling process. In summary, fouling is a major problem in many process industries re s u l t i n g in increased capital costs and process maintenance d i f f i c u l t i e s . At the same time, there is l i t t l e information available which enables the engineer to design adequately for heat exchange where fouling is a problem. Because of current public concern regarding energy resources, process industries w i l l face 3 growing pressures to conserve and r e c l a i m process heat . To meet such an o b j e c t i v e w i l l r e q u i r e an inc reased under- s tanding of f o u l i n g and how to c o n t r o l or e l i m i n a t e i t . 1.2 P e r t i n e n t P r i o r Work One of the e a r l i e s t s tud ie s of f o u l i n g was made i n 1924 by McCabe and Robinson ( 2 ) . This study concerned the s c a l i n g of evapora to r s , and r e s u l t e d i n one of the f i r s t p r e d i c t i v e equat ions fo r f o u l i n g r e s i s t a n c e as a f u n c t i o n of ope ra t ing t ime . McCabe and Robinson cons idered the ra te of change of f o u l i n g r e s i s t a n c e w i th time to be p r o p o r t i o n a l to the amount of l i q u i d evapora ted ; tha t i s , where Rf = f o u l i n g r e s i s t a n c e Since Q v a r i e s as the heat t r a n s f e r r a t e q , equat ion (1 .1) can be w r i t t e n as t = time Q = ra te of evapora t ion a q (1 .2) 4 For q the basic heat transfer rate equation is invoked q' = q/A = UAT = R Q A J r (1.3) f where R0 = clean wall resistance AT = appropriate temperature difference across the total heat transfer resistance U = overall heat transfer coefficient A = heat transfer area Substitution of equation (1.3) into equation (1.2) yields dR* A T f - ( 1 > 4 ) dt R0 + R f For a constant heat flow, equation (1.2) predicts a linear increase of fouling resistance with time. In the more common evaporator situations, the overall temperature difference AT is constant and equation (1.4) predicts an increase in R̂  with time at an ever decreasing rate. R̂ does not, however, reach a f i n i t e l i m i t . Hasson (3,4) has studied scale deposition on sensible heat exchanger surfaces using both calcium car- bonate and calcium sulphate from water solutions as 5 f o u l a n t s . He found that dur ing the i n i t i a l s t ages , l i t t l e change i n thermal r e s i s t a n c e o c c u r r e d . This Hasson r e - f e r r ed , to as a n u c l e a t i o n p e r i o d , dur ing which i t was cons idered that s c a l i n g n u c l e i form on the heat t r a n s f e r s u r f a c e s . F o l l o w i n g t h i s p e r i o d , s c a l i n g and thermal f o u l i n g were found to proceed at a non-uniform r a t e , being h ighes t at the downstream end of a heated t e s t s e c t i o n , due presumably to the inve r se s o l u b i l i t y e f f e c t . The ex i s t ence of a n u c l e a t i o n (or i n d u c t i o n ) pe r iod i s not i n c l u d e d i n the McCabe-Robinson approach. Kern (5) and Kern and Seaton (6) have s t ud i ed the inc rease i n f o u l i n g r e s i s t a n c e as a f u n c t i o n of time fo r o i l r e f i n e r y heat exchangers . In t h e i r approach, f o u l i n g i s cons idered to be a dynamic process i n v o l v i n g both d e p o s i t i o n on , and r e l ease from, the heat t r a n s f e r s u r f a c e . When the r e l ea se ra te equals the d e p o s i t i o n r a t e , a f i n i t e asymptot ic f o u l i n g r e s i s t a n c e i s a ch i eved . The b a s i c d i f f e r e n t i a l equat ion of Kern and Seaton was = KjCW - K 2 x x ( 1 . 5 ) where x Ki = fou l an t depos i t t h i cknes s = p r o p o r t i o n a l i t y constant 6 K 2 = p r o p o r t i o n a l i t y constant W = mass f low ra te x = shear s t r e s s at the tube w a l l t = time C = concen t r a t i on of f o u l a n t i n the f l u i d I f i t i s assumed that a l l v a r i a b l e s on the r i g h t - h a n d s ide of equat ion (1.5) are constant wi th the excep t ion of x , i n t e g r a t i o n from the i n i t i a l c o n d i t i o n , x = 0, at t = 0, y i e l d s x = KiCH K 2 T 1 - e K 2 T t (1 .6) Assuming t h a t , per u n i t area of heat t r a n s f e r s u r f a c e , R f = x ^ ' < d ' w n e r e 1 5 t n e thermal c o n d u c t i v i t y of the d e p o s i t , then KXCW K 2 k . T 1 - e K 2 x t (1 .7) Kern found tha t the dependence of on t g iven by equa- t i o n (1 .7) not on ly desc r ibed o i l r e f i n e r y f o u l i n g da t a , but a l so tha t of seve ra l u n s p e c i f i e d aqueous f o u l i n g systems 7 Watkinson (7) s tud ied p a r t i c u l a t e f o u l i n g i n a l a b o r a t o r y heat t r a n s f e r loop using an i n d u s t r i a l sour g a s - o i l d i s t i l l a t e and a sand-water m i x t u r e . In h i s attempt to f i t h i s data to a Kern-Seaton type equat ion (such as equat ion ( 1 . 7 ) , he obta ined a good f i t fo r the sand-water m i x t u r e , but a seemingly poor f i t f o r the g a s - o i l d i s t i l l a t e except under c o n d i t i o n s of low heat f l u x . F u r t h e r , the fdR t=0 i n i t i a l f o u l i n g ra te was found to vary d i r e c t l y dt wi th the f low ra te f o r the lower v e l o c i t y sand-water runs , i n l i n e wi th equat ion ( 1 . 7 ) , but to vary i n v e r s e l y w i th the f low ra te fo r the g a s - o i l runs . Through a study of the e f f e c t of mass f low ra te on asymptot ic f o u l i n g r e s i s - tance R f = l lC]i of equat ion (1 .7) t = oo  K 2 T k d , Watkinson found t h i s r e s i s t a n c e fo r the g a s - o i l runs to be i n v e r s e l y pro- p o r t i o n a l to the square of the flow r a t e . Equat ion (1 .7) p r e d i c t s tha t the asymptot ic f o u l i n g r e s i s t a n c e should be i n v e r s e l y p r o p o r t i o n a l to the f low ra te r a i s e d to the f i r s t power. The l a t t e r r e s u l t was found fo r the sand- water runs . Other i n v e s t i g a t o r s , no tab ly Pa rk ins ( 8 ) , N i j s i n g ( 9 ) , Hatcher (10) and Char leswor th (11,12) have s tud i ed f o u l i n g a s s o c i a t e d wi th heat t r a n s f e r surfaces i n nuc lea r r e a c t o r s . Pa rk ins in t roduced the concept of f o u l i n g as 8 an i n t e r p l a y of the mass f l u x of p a r t i c l e s to the heat t r a n s f e r surface and the p r o b a b i l i t y that a p a r t i c l e w i l l s t i c k to the s u r f a c e . His bas i c equat ion i s dR, \ c i N i u i s i where d R f _ dt = f o u l i n g f i l m format ion ra te N . = concen t r a t i on of type i p a r t i c l e s U. = v e l o c i t y of a p a r t i c l e toward the sur face i n c lo se p r o x i m i t y to the sur face S. = s t i c k i n g p r o b a b i l i t y C.. = p r o p o r t i o n a l i t y cons tant I f subsequent removal i s a f a c t o r , a removal term presumably should be i n c l u d e d . N i j s i n g d i scusses the r o l e of Brownian movement and the e f f e c t of such f a c t o r s as v e l o c i t y p r o f i l e s on the d e p o s i t i o n p rocess . Char leswor th has de r ived an equat ion fo r f o u l i n g i n nuc lea r r eac to r s under b o i l i n g c o n d i t i o n s by c o r r o s i o n products of i r o n . His equat ion resembles tha t of Kern and Seaton. In order to r e c o n c i l e t h e i r data fo r g a s - o i l and sand-water f o u l i n g w i th both the Kern-Seaton equat ion and the concepts of Pa rk ins and N i j s i n g , Watkinson and Eps t e in (13) developed an equat ion i n c o r p o r a t i n g : 9 (1) the deposition-release concept of Kern and Seaton, (2) the sticking probability approach of Parkins, and (3) implicitly, the influence of Brownian movement, as suggested by Nijsing. The bas i c d i f f e r e n t i a l equat ion i n t h i s model i s ^ | = aiJS - a 2 x x (1 .9) ai and a 2 are constants J = the mass f l u x of p a r t i c l e s normal to the heated sur face S = the s t i c k i n g p r o b a b i l i t y x = the depos i t t h i cknes s J i s represented by a mass t r a n s f e r ra te equat ion 0 = k c ( C b - C w ) (1.10) the mass t r a n s f e r c o e f f i c i e n t fo r r a d i a l t r an spo r t of the p a r t i c l e s the p a r t i c l e c o n c e n t r a t i o n d i f f e r e n c e between the bulk of the f l u i d and the tube w a l l . The mass t r a n s f e r c o e f f i c i e n t k i s r e l a t e d to f l u i d v e l o c i t y by a momentum-mass t r a n s f e r analogy a f t e r Metzner and F r i end (14 ) . where In tu rn where k = c < C b- C w> • 10 u /m which a p p l i e s fo r high S £ (low d i f f u s i v i t y ) . The s t i c k i n g p r o b a b i l i t y S i s assumed to be re- l a t e d to the surface temperature T s by an A r r h e n i u s - t y p e r e l a t i o n s h i p , and i n v e r s e l y p r o p o r t i o n a l to the hydro- dynamic forces on a p a r t i c l e at the i n s t a n t the p a r t i c l e con tac t s the w a l l . Consequently -E/R T S = ^ (1.12) U b 2 f Since f , the Fanning f r i c t i o n f a c t o r , i s r e l a t e d to the shear s t r e s s by the equat ion T = f P U b 2 / 2 (1.13) combinat ion of equat ions ( 1 . 9 , 1.10, 1 .11, 1.12 and 1.13) leads to -E/R T . A x C. - C ) e 9 s j f • b W A 2 f U . 2 x (1.14) d t U b / f b 11 I f i t i s assumed that ( f o u l i n g f i l m thermal c o n d u c t i v i t y ) does not vary w i th x , and that f i s not a f u n c t i o n of ( f u l l y rough f l o w ) , then the i n i t i a l f o u l i n g ra te i s - E / R T„ d R f I F A i ( C . Cw> t=0 (1.15) i n keeping wi th the g a s - o i l da t a . •k The asymptot ic f o u l i n g r e s i s t a n c e R f (def ined as R f ) i s found from equat ion (1.14) to be p r o p o r t i o n a l t = oo f r 3 to Ujj/f . E x p e r i m e n t a l l y the r e s u l t s f o r the sour g a s - o i l f o u l i n g showed R f * to be p r o p o r t i o n a l to b For the p a r t i c u l a r case where S = 1 and the re - fore C w = 0, the combinat ion of equat ions ( 1 . 9 , 1.10 and 1.11) leads to the e q u i v a l e n t of the Kern-Seaton e q u a t i o n , which f i t t e d the r e s u l t s fo r the lower v e l o c i t y sand-water runs . Taborek and A s s o c i a t e s (1,15) have approached f o u l i n g through an i n d u s t r i a l exper imental program supp le - mented w i t h l a b o r a t o r y t e s t i n g . For c o o l i n g water systems, they have found tha t c i t y water depos i t s u s u a l l y c o n s i s t mainly of ca l c ium carbonate , and tha t the f o u l i n g behaviour of such systems i s desc r ibed by the p r e d i c t i v e equat ion 12 dR f _ dt C 0 ( C r ) exp Vs. (i where C 0 = a c o e f f i c i e n t i n v e r s e l y p r o p o r t i o n a l to v e l o c i t y C = f u n c t i o n of f o u l i n g concen t r a t i on r 3 r = exponent E = a c t i v a t i o n energy R„ = gas constant T g = heat t r a n s f e r surface temperature dR f = f o u l i n g ra te T = shear s t r e s s at the heat t r a n s f e r sur face R. = bonding r e s i s t a n c e of the f o u l i n g depos i t to shear Taborek et al. , us ing equat ion (1.16) as a s t a r t i n g p o i n t , were able to p r e d i c t the f o u l i n g behaviour of c o o l i n g water systems wi th an accuracy of ±40% for the asymptot ic f o u l i n g r e s i s t a n c e and ±35% fo r the i n i t i a l f o u l i n g r a t e . Both of these f i g u r e s are based upon one s tandard d e v i a t i o n . Some i n v e s t i g a t o r s have s t ud i ed f o u l i n g from a f l u i d d y n a m i c - p a r t i c l e t r a n s p o r t po in t of v iew. Beal (16,17), f o r example, has de r ived a mathematical model 13 designed to p r e d i c t f o u l i n g ra tes as a f u n c t i o n of p a r t i c l e s i z e and f l u i d dynamic parameters . (Sec t i on 6.28 con ta ins a review of t h i s work . ) Others , no tab ly Gaspa r in i et al. (18) , have concerned themselves wi th the e f f e c t of sur face forces on the adherence of fou l an t s to va r ious heat t r a n s f e r sur face m a t e r i a l s . Yet another approach has been taken by Kabele and B a r t l e t t ( 1 9 ) , who cons ide r contaminant c o a g u l a t i o n to be a major f a c t o r i n f o u l i n g . I t i s c l e a r from the l i t e r a t u r e on f o u l i n g tha t the sub jec t i s indeed a broad and expanding one. A con- sequence of t h i s i s tha t researchers i n the area must be content to work toward narrow and we l l def ined o b j e c t i v e s i f progress i s to be made toward f i n d i n g b e t t e r means of d e a l i n g wi th f o u l i n g problems. 1.3 Problem Area Se l ec t ed and Ob jec t ive s of the Research Upon comple t ion of h i s i n v e s t i g a t i o n of the two f o u l i n g systems, g a s - o i l and sand-water , Watkinson (7) s t a ted that f u r t h e r work was r equ i r ed to t e s t the v a l i d i t y of the va r ious f o u l i n g models he had developed. In par- t i c u l a r , the type and magnitude of forces i n v o l v e d i n adhesion had not been i d e n t i f i e d and the p a r t i c l e concen- t r a t i o n had not been v a r i e d , a l though i t had been 14 inco rpo ra t ed i n the models as a parameter. A l s o , the removal mechanism used as a hypothes is to e x p l a i n asymptot ic f o u l i n g behaviour had not been d i r e c t l y demonstrated to e x i s t . Char leswor th (24 ) , who i s s tudy ing how i r o n c o r r o s i o n products fou l heat t r a n s f e r surfaces i n nuc lea r r e ac to r s ( 1 1 , 1 2 ) , cons ide r s the f o l l o w i n g ques t ions to be open: (1) What are the r e l a t i v e importance of dissolved and part i c u l a t e matter? (2) What are the driving forces for contaminant deposition and release? (3) Does a l l the oxide layer on the fouling surface p a r t i c i p a t e in the foul i ng process? (4) What type of bonding is involved? (5) What eff e c t does heat transfer surface material and f i n i s h have? (6) Are there s y n e r g i s t i c e f f e c t s between fouling species? N i j s i n g (9) concludes h i s paper on the p a r t i c l e dynamics of f o u l i n g by s t a t i n g that " . . . bas i c e x p e r i - mental research on f o u l i n g r equ i r e s the use of methods which enable the coo lan t i m p u r i t y to be c h a r a c t e r i z e d . " Taborek (1) b e l i e v e s tha t progress i n f o u l i n g research r e q u i r e s the sys temat ic c o l l e c t i o n of data on a wide v a r i e t y of f o u l i n g systems and the s u b j e c t i o n of 15 such data to the various predictive fouling models in the literature. From the above, i t appears that the main problem area in the f i e l d of fouling is that of determining what causes the frequently observed induction period, what type of deposit bonding occurs and what factors influence deposit removal. Solutions to such problems require finding or, i f necessary, developing means of characterizing fouling impurities and examining the manner in which they are deposited. In an attempt to answer some of these questions, the decision was made to investigate the fouling behaviour of a system consisting of a ferric oxide suspension in water circulating through a 304 stainless steel tube. The reasons for making this decision were as follows: (1) Ferric oxide has frequently been identified in fouling deposits in many systems such as boilers and coolers (20,21,22). Consequently the results of such a study could have practical application. (2) ^^2^3 w a s apparently available in pure form in a range of particle sizes, thus opening the possibility of studying the effect of particle size on fouling. 16 (3) Ferric oxide is practically insoluble in water and therefore the study was limited to particulate fouling uninfluenced by fouling from solution. The decision was also made to use the heat transfer loop constructed by Watkinson (7) and modified by Mayo (23) for his study, since this would give a degree of data continuity useful in the assessment of results. Specifically, the objectives of the proposed research were as follows: (1) To determine the effects of ferric oxide concentration, particle size, heat flux and. fluid velocity on the fouling characteristics of a ferric oxide-water- 304 stainless steel system. (2) To determine how well the fouling results from such a system f i t fouling models such as those pro- posed by Kern and Seaton (6) and by BeaI (16,17). (3) To study, through use of the electron micro- probe, the manner in which deposits are laid down in order to gain some insight into possible mechanisms for deposi- tion and re I ease. Chapter 2 APPARATUS AND MATERIALS 2.1 Heat Trans fe r Loop A l l f o u l i n g runs were made i n a heat t r a n s f e r loop o r i g i n a l l y cons t ruc ted by Watkinson (7) and modi f ied by Mayo (23) and the present author to i n c l u d e automatic l ogg ing of da t a . Mayo (23) has g iven a d e t a i l e d d e s c r i p - t i o n of the exper imental s e t -up , a summary of which f o l l o w s . F igure 1 shows a schematic of the t e s t loop and Table I l i s t s the components along wi th d e t a i l s concerning s i z e , s p e c i f i c a t i o n s and m a t e r i a l s of c o n s t r u c t i o n . The e s s e n t i a l fea tures of the heat t r a n s f e r loop are g iven below. A steam c o i l j a c k e t t e d s torage tank i n s u l a t e d w i t h f i b r e g l a s s wool held the 200 kg of f l u i d used fo r each run . The s torage tank was equipped wi th a f l u i d r e c i r c u l a t i o n pipe and a compressed a i r l i n e which extended to the bottom of the tank. Both of these fea tures helped to minimize s e t t l i n g of the f e r r i c oxide suspension and 1 7 MIXING C H A M B E R EXIT THERMOCOUPLE T E S T SECTION- T E S T SECTION T H E R M O C O U P L E S I N L E T THERMOCOUPLE P R E S S U R E GAUGE COOLER D I F F E R E N T I A L PRESSURE C E L L PRESSURE G A U G E CONTROL V A L V E •=ixi P R E S S U R E r— CONTROL r ORIFICE P L A T E S A M P L I N G V A L V E DRAINING V A L V E 1 TO SEWER — R O T A M E T E R 5L' WATER V E N T COMPRESSED AIR 5 psig CO Figure 1. Heat Transfer Loop Schematic. 19 Table I Equipment Component L i s t Component D e s c r i p t i o n Storage Tank 45 ga l lon -316 s t a i n l e s s s t e e l drum Pump Sieman and Hinsch Type CAD Model 3102 two-stage s e l f - p r i m i n g c e n t r i - fugal pump, s t a i n l e s s s t e e l Motor 3 HP Flow Meter S t a i n l e s s s t e e l sharp-edged o r i f i c e (3 = 0.301 , 3 = 0.602) Di f f e r e n t i a l Pressure C e l l s Honeywell DP meter Y227X2-L2 Pump Pressure Gauge Marsh Bourdon tube , 0-200 ps i Test S e c t i o n 3/8 inch O.D. x 0.016 inch w a l l t h i cknes s type 304 s t a i n l e s s s t e e l seamless tubing Pressure Taps S t a i n l e s s s t e e l , spaced 19-1/4 inches and 45-7/16 inches from lower end of tube (see Appendix I f o r drawings) E l e c t r i ca l Termi nals B r a s s , so lde red 20-3/4 inches and 44-1/32 inches from lower end of tube (see Appendix I fo r drawings) E l e c t r i c a l Cable In su l a t ed copper cab le s i z e 000 (Cont i nued) 20 Table I (Continued) Component Description Test Section Thermocouples 30 gauge copper-constantan heat fused thermocouples shielded with 11/64 inch diameter tinned copper brai di ng Fluid Thermocouples Copper-constantan 'Ceramocouples , 1 Thermoelectric Part No. Ce 50418-T with 304 stainless steel sheaths and shielded leads Globe Valves Power 1/2 inch stainless steel By-Pass Valve Farris No. 1870 spring loaded valve (100 psig rating) Pressure Transducer Viatran, model 209, 0-15 psi pressure transducer Pressure Switch Honeywell Pressure t r o l l Model L404C Variacs Superior Electrical type 1156D mounted on a common shaft Primary Transformer General Electric Cat. No. 10M36 rated at 10KUA 220/110 volts Secondary Transformer Bartholomew and Montgomery 17 KVA 220/40 volts Ammeter Weston model 155, 0-2-1/2, 0-5 amp AC dual range meter Ammeter Transformer Instrument Service Laboratories 500/5 amps (Continued) Table I (Continued) 21 Component Desc r i p t i on Vol tmeter F u j i Denki 0-15 , 0-30 v o l t AC dual range meter Cooler Double pipe c o o l e r . O v e r a l l l eng th 6 f e e t . Ins ide pipe 3/8 i nch O.D. x 0.035 inch w a l l th i ckness stai nl ess s t e e l t u b i n g . Outs ide pipe 1/2 inch g a l v a n i z e d i r o n Coo le r Rotameter Brooks Type 12-1110 Test S e c t i o n I n s u l a t i o n Ins ide - Asbestos powder Outs ide - 1 inch t h i c k Capos i t e Pipe and Tank I n s u l a t i o n 1 inch f i b r e g l a s s Gasket and Seal M a t e r i a l Te f lon 22 insured that the test fluid remained saturated with oxygen during the course of a run. A typical heat transfer fouling surface test section used for the t r i a l s is shown in Figure 2. It consisted of a 51-J-|- inch long 304 stainless steel seamless tube having an outside diameter of 3/8 inch and a wall thickness of 0.016 inch. Attached to the test section were two stainless steel pressure taps and two brass electrical contacts. Size and spacings for these compo- nents are given in Table I. The test section can be sub- divided into three parts, an entrance length of 194 inches (51 diameters I.D.) to establish the velocity p r o f i l e , a 6i inch exit section, and a 23yj inch middle section used as the heated portion of the tube. Twelve copper-con- stantan thermocouples constructed from 30 gauge wire were attached to the heated section at two-inch intervals. Precise locations are given in Table II. Thermocouples were bonded to the tube wall using "Eccocoat" epoxy resin according to a procedure given in Section 3.1. Insulation for the test section consisted of a 0.3 inch layer of asbestos powder adjacent to the tube held in place by a one-inch thick layer of "Caposite" pipe insulation. Caposite is a mineral wool-Amosite fibre bound with asbestos cement. To 1 x i FPT 8 2 Tube fitting Pressure tops Electrical Cobll Size OOO Terminal Bar soldered to tube Tube type 304 stainless $"o-t> x 0016" wall Current Transformer 9 2 3 32 To J x-^ MPT Tube fitting 24 16 4" 19-L 23 Figure 2. Test Section. Watkinson (7) Mayo (23) and for a l l • foul Watkinson (7) l ng (Test Section design by and used by Watkinson (7) the present investigator runs. Drawing from 24 Table II Thermocouple Loca t ions on Test S e c t i o n Thermocouple Number Test S e c t i o n P o s i t i o n Des i gna t i on L o c a t i o n : Dis tance From Lower, Tube End, Inches 1 T215 21 .5 2 T235 23.5 3 T255 25.5 4 T275 27.5 5 T295 29.5 6 T315 31 .5 7 T335 33.5 8 T355 35.5 9 T375 37.5 10 T395 39.5 11 T415 41 .5 12 T428 42.8 25 The middle p o r t i o n of the t e s t s e c t i o n was heated e l e c t r i c a l l y us ing a power c i r c u i t shown i n F igure 3. The e l e c t r i c a l system c o n s i s t e d of a 220 v o l t s i n g l e phase power source wi red to two v a r i a c s mounted in p a r a l l e l on a common s h a f t . The output from the v a r i a c s was stepped down to a maximum of 20 v o l t s using two t ransformers i n s e r i e s . The f i r s t reduced vo l t age from 220 v o l t s to 110 v o l t s and the second reduced the vo l t age to 20 v o l t s . D e t a i l s concerning the e l e c t r i c a l equipment, the w i r i n g and the cur ren t and vo l t age measuring ins t ruments are g iven i n Table I . A l l thermal and pressure drop data were recorded a u t o m a t i c a l l y us ing a S o l a r t r o n data logg ing system model LY1471. Mayo (23) g ives a d e t a i l e d d e s c r i p t i o n of t h i s system. S p e c i f i c a t i o n s of i t s main components are g iven i n Table I I I . B r i e f l y , i t c o n s i s t s of a d i g i t a l v o l t m e t e r , a d i g i t a l c l o c k , a scanner , a system program p inboa rd , a thermocouple compensating u n i t and a so l eno id -ope ra t ed t y p e w r i t e r . The output from the heat t r a n s f e r loop thermo- couples and the pressure t ransducer were fed i n t o the d i g i t a l vo l tmete r through the pinboard assembly, accord ing to a program e s t a b l i s h e d by the scanner . At a p rede te r - mined i n t e r v a l , u s u a l l y one minute , each input channel was monitored and the data t r a n s m i t t e d through the system COPPER- CONSTANTAN T E R M I N A L BLOCK TYPEWRITER DATA LOGGER THERMOCOUPLE COMPENSATING UNIT TEST SECTION TRANSFORMER 110/20 VOLTS 17 KVA 0 CURRENT TRANSFORMER 500 /5 AMP. L < A ) J VARIACS IN TANDEM 2 2 0 V. A C r\ i) S I N G L E w y PHASE TRANSFORMER 220/110 VOLTS 10 KVA THERMOCOUPLES ro cn Figure 3. Heat Transfer Loop Electrical and Data Logging System Schematic. (Arrangement designed by Watkinson (7) and modified by Mayo (23) and Hopkins to include data logging. Drawing from Mayo (23).) 27 Table I I I Data Logging System Components Component Model Number Thermocouple Compensati ng U n i t S o l a r t r o n LU 1468 Scanner S o l a r t r o n LU 1461 System Program Pi nboard S o l a r t r o n LX 1689 D i g i t a l Clock S o l a r t r o n LU 1463 D i g i t a l V o l t - meter S o l a r t r o n LM 1426 Typewri t e r Dr ive S o l a r t r o n LU 1469 Typewri t e r IBM LX 1653 28 and p r i n t e d . Recorded wi th each s e r i e s of data was the time at which the moni to r ing sequence commenced. Recorded wi th the heated s e c t i o n thermocouple data were a l so the outputs of thermocouples l oca t ed at the entrance to and e x i t from the t e s t s e c t i o n , as w e l l as a thermocouple i n d i c a t i n g room temperature . Another fea ture of the heat t r a n s f e r loop was a 6 foot double pipe heat exchanger i n s t a l l e d a f t e r the t e s t s e c t i o n on the r e tu rn l i n e to the tank . Table I g ives d e t a i l s p e r t a i n i n g to t h i s u n i t . System p i p i n g fo r the heat t r a n s f e r loop con- s i s t e d of i inch 316 s t a i n l e s s s t e e l schedule 40 p i p e , w i th the excep t ion of the i n l e t pipe to the pump, which was 1 inch 316 s t a i n l e s s s t e e l p i p e . A l l s e a l s , g a s k e t s , packing and the l i k e were made of T e f l o n . 2.2 E l e c t r o n Microprobe Deposits from s e l e c t e d f e r r i c oxide f o u l i n g t r i a l s , and from a v a r i e t y of o ther sou rces , were analyzed i n a Japanese E l e c t r o n O p t i c a l L i m i t e d (JEOL) e l e c t r o n mic ro - probe loca t ed i n the M e t a l l u r g y Department of the U n i v e r s i t y of B r i t i s h Columbia . F igure 4 shows a schematic diagram of the probe and F igure 5 i l l u s t r a t e s i t s p r i n c i p l e of o p e r a t i o n . Figure 4. The J EOL Electron Mi croprobe 30 INCIDENT ELECTRONS ABSORBED ELECTRONS Figure 5. I l l u s t r a t i o n Demonstrating Fundamental P r i n c i p l e s of E l e c t r o n Microprobe A n a l y s i s . 31 Briefl y , the principle upon which the microprobe operates is as follows. Electrons, from an electron gun, are focused through a condensor lens into a i micron beam, accelerated through a potential, typically 25 KV, and directed upon the sample being analyzed. There, the bombarding electrons can: (1) collide with the nucleus of an atom and rebound, or (2) collide with and displace a planetary electron of an atom in the sample. If the electron rebounds, i t can be picked up in a detector and used to form an optical image of the surface of the material being examined. If the bombarding electron displaces a planetary electron of an atom, that atom becomes excited and emits X-rays having a frequency characteristic of the element. Determination of this frequency, using a crystal system, gives positive identi- fication of the element. Measurement of the intensity of these X-rays gives a quantitative estimate of the amount of that element present in the sample. For a detailed description of the microprobe, its principle of operation and fundamental theory, refer- ence should be made to the work of Brown (25), Birks (26), ,van Olphen and Parrish (27) arid Castaing (28). 32 2.3 P r o p e r t i e s of F e r r i c Oxide F o u l i n g M a t e r i a l s The f e r r i c oxide used i n t h i s study was obta ined from two sources : (1) Bulk, mixed-size analytical grade ferric oxide supplied by Allied Chemical Co. Ltd. Table IV gives the physical and chemical properties of this material. (2) Presized, analytical grade ferric oxide obtained in two 10 gram batches from Particle Information Service. Batch No. I had a particle size range of 0.3-0.8 micron, and Batch No. 2 a range of 0.3 to 3.7 microns. The size of these particles was determined by the supplier using electron microscope examination techniques. The p a r t i c l e s i z e of the bulk f e r r i c oxide was determined by two methods. In method I , a water s l u r r y of p a r t i c l e s was prepared and s i z e d by s t r a i n i n g through a s e r i e s of m i l l i p o r e f i l t e r s . R e s u l t s , which are shown i n Table IV , are not cons idered a r e l i a b l e measure of p a r t i c l e s i z e because of the tendency of f e r r i c oxide to c o a g u l a t e . In method I I , an ethanol d i s p e r s i o n of p a r t i c l e s was placed on a g la s s s l i d e , the ethanol evaporated and the p a r t i c l e s examined i n a scanning e l e c t r o n microscope . F igure 6 shows photomicrographs at m a g n i f i c a t i o n s of 14,400 and 60,000. The i n d i v i d u a l p a r t i c l e s i z e of t h i s f e r r i c oxide 33 Table IV Properties of Ferri c Oxide Powder A l l i e d Chemical Batch D344 Fe 2 0 3  Molecular Weight 159.69 Assay (Fe 2 0 3 ) min. 99% Sp e c i f i c Gravity 5.12 S o l u b i l i t y Product 1.1 x 10~ 3 6 Fe(0H) 3  F e + + +  + 30H~ Maximum Limit of Impurities Insoluble in HCl 0.2% Sulphate (SOi, ) 0.2% Copper (Cu) 0.005% Zinc (Zn) 0.005% Substances not precipitated by NH„0H (as Sulphates) 0.1% Manganese (Mn) 0.05% Phosphates 0.02% P a r t i c l e Size Determination Retained on 10-15 micron m i l l i p o r e f i l t e r 99.0% Passed 10-15 micron m i l l i p o r e f i l t e r ) 1.0% retained on 4-5 micron m i l l i p o r e f i l t e r ] " Passed 4-5 micron m i l l i p o r e f i l t e r 0% 6A 14400X 6B 14400X 6C 60000X Figure 6. Particle Size of Mixed-Size Ferric Oxide in Feedstock and in Fouling Deposit. ( F e r r i c o x i d e p a r t i c l e s added to t h e s y s t e m have a minimum s i z e o f a p p r o x i m a t e l y 0.2 m i c r o n s . Such p a r t i c l e s however do not a p p e a r to d e p o s i t as s i n g l e e n t i t i e s but r a t h e r as a g g l o m e r a t e s . F i g u r e 6a shows the p a r t i c l e s i z e i n the d e p o s i t w h i l e F i g u r e s 6b and 6c show t h a t o f f e e d f e r r i c o x i d e . ) -e» 35 is estimated by this method to be in the range of 0 . 2 y . However, the 0 . 2 micron particles were almost never found to exist as distinct entities but rather as larger agglom- erates. Consequently 0 . 2 micron represents a lower limit size estimate only, the effective upper limit being in the range of several microns. Chapter 3 EXPERIMENTAL PROCEDURES 3 .1 Test S e c t i o n P repa ra t i on Procedure As s t a t ed i n Sec t i on 2 . 1 , a l l t e s t s e c t i o n s were f a b r i c a t e d from 304 s t a i n l e s s s t e e l seamless tub ing by s o l d e r i n g pressure taps and e l e c t r i c a l connect ions to the tubes as shown i n F igure 2, and a t t a c h i n g copper-cons tantan thermocouples . In order to e l i m i n a t e AC leakage from the e l e c t r i c a l l y heated t e s t s e c t i o n to the S o l a r t r o n data logg ing system, a f a u l t which causes the data l ogg ing system to g ive erroneous r e s u l t s , thermocouples were a t tached to the tube w a l l us ing a high e l e c t r i c a l r e s i s - t i v i t y epoxy r e s i n . This r e s i n , which has the t rade name "Eccocoa t , " a l so has a compara t ive ly high thermal con- d u c t i v i t y . P r o p e r t i e s are shown i n Table V. I t was found tha t r e s i n p r epa ra t i on and a t t a c h - ment of thermocouples were the most c r i t i c a l ope ra t ions i n t e s t s e c t i o n p r e p a r a t i o n . A f t e r severa l f a i l u r e s i n - v o l v i n g poor bonds or thermocouples i n e l e c t r i c a l con tac t 36 37 Table V Properties and Preparation Instructions for Eccocoat 582 Epoxy Resin PROPERTIES Thermal Conductivity (BTU/ft-hr-°F) Dielectric Strength (volts/mil) Thermal Expansion Coefficient ( f t / f t - ° F ) 19.0 x IO" 6 0.9 420 Volume Resistivity (ohm-cm) Dielectric Constant at 1 kHz Dissipation Factor at 1 kHz Service Temperature, max °F 10 15 6.5 0.02 325 PREPARATION INSTRUCTIONS 1. Clean surface to be bonded with trich1oroethylene or toluene. 2. Mix contents of Eccocoat 582 Part A and use 100 parts by weight of Part A with 7 parts by weight of the catalyst (Part B) 3. Coat thermocouples and tube with resin and allow to harden overnight at room temperature. 38 with the tube wall, the following procedure was adopted: (1) All dirt and grease were removed from the outside of the tube by lightly sanding with fine emergy paper followed by scrubbing with an acetone-soaked cloth. Dirt and grease cause a poor bond between thermocouple and tube wall. (2) Epoxy resin was prepared exactly according to specifications given in Table V. (3) At each thermocoupIe location, a small amount of resin was dabbed on the tube and the thermocouple coated with sufficient resin to completely cover all bare metal. The thermocouples were then laid on the tube at the appropriate locations. (4) After 15 minutes, each thermocouple was lifted and allowed to settle back on the test section. This precaution reduced the risk of having electrical contact between tube wall and thermocouple t i p . (5) The test section was then allowed to s i t overnight at room temperature. This was sufficient time for the epoxy resin to harden. (6) Following hardening of the resin, the test section was fitted with electrical and piping connections, and i nsuIated. 39 (7) Prior to installation in the heat transfer loop, the test section was honed using a-38 calibre bronze pistol brush attached to a one-quarter inch d r i l l , and then degreased using an acetone-soaked 'pull through' r i f l e k i t . In order to insure that use of epoxy resin did not cause temperature drops of sufficient magnitude to cause inaccurate results, a special test section was pre- pared which contained 12 silver-soldered thermocouples and 12 epoxy-coated thermocouples. Wall temperature values were found to be the same by both methods. The epoxy-coated thermocouples did tend to lag behind the silver-soldered ones when step changes were made in wall temperature. This lag was however small, in the range of four minutes. 3. 2 Fouling Run Procedure In t o t a l , 70 experimental t r i a l runs were made during the course of this study. Although there were some variations in procedure to accommodate t r i a l s with unique objectives, most t r i a l s were performed using the procedure outlined below. 40 3.2.1 Cleaning of system. To clean the system, the test section was re- placed by a plastic tube, the tank was f i l l e d with tap water and the circulation pump was started. Following one-half hour of circulation, the system contents were dumped. This operation was repeated until no trace of residual ferric oxide could be detected visually. It should be noted that 20 ppm ferric oxide is a b r i l l i a n t red suspension, and that approximately 1 ppm gave water a red t i n t . The above refers to the procedure followed when the preceding run had been made with ferric oxide. Prior to the i n i t i a l run, the system was cleaned with a 50% hydrochloric acid solution followed by a water rinse, a 10% sodium hydroxide cleaning followed by a water rinse, and by another 50% hydrochloric acid cleaning with a water rinse. The last water rinse was repeated until the pH of the discharged water equalled that of the input water, namely pH *\» 6.4. According to the Greater Vancouver Regional District analysis, this water contained only 18 ppm total residue, including 0.5 ppm chloride and 4.0 ppm total hardness as CaC03. 3.2.2 Tank f i l l i n g . Twenty-four hours prior to start-up, the cleaned tank was f i l l e d with 200 kg of tap water and the steam heating jacket turned on. At this point, the test section was installed in the heat transfer loop. 41 3 .2 .3 S t a r t - u p . At s t a r t - u p , the mixing a i r to the tank was turned on, the c i r c u l a t i o n pump s t a r t e d , the v a r i a c s turned up to g ive the de s i r ed t e s t s e c t i o n h e a t i n g , and the c o o l i n g water turned on. At t h i s p o i n t , the S o l a r t r o n data logg ing system was a l so swi tched on. Adjustments were then made to the f low ra te and c o o l i n g water va lves to b r i ng the f l u i d to t a rge t i n l e t and o u t l e t temperatures over the t e s t s e c t i o n . 3 .2 .4 E l i m i n a t i o n of thermal t r a n s i e n t s . In order to warm up the data logg ing system e l e c t r o n i c s , and to e l i m i n a t e thermal t r a n s i e n t s a s s o c i a t e d wi th b r i n g i n g the t e s t s e c t i o n i n s u l a t i o n to steady s t a t e , the heat t r a n s f e r loop was operated f o r a minimum of three hours on tap water . During most of the runs , p a r t i c u l a r l y those i n which the i n f l u e n c e of heat f l u x , Reynolds number and f e r r i c oxide c o n c e n t r a t i o n was s t u d i e d , t h i s time was inc reased to 24 hours . F o l l o w i n g t h i s s t ep , the system was adjusted so tha t flow r a t e , i n l e t temperature , o u t l e t temperature and t e s t s e c t i o n power consumption were p r e c i s e l y at t a rge t l e v e l s . Table VI shows the va r iance from t a rge t c o n d i t i o n s 42 Table VI Variance From Target Conditions Tolerated for Run 39 Variable Target Value Maximum Value Minimum Value Inlet Fluid MV x 200 420 (127.0°F) 421 (127.2°F) 419 (126.8°F) Outlet Fluid MV x 200 470 (138.3°F) 471 (138.5°F) 470 (138.3°F) Test Section Volts 9.35 9.37 9.34 Test Section Amps 253 256 253 43 t o l e r a t e d fo r a t y p i c a l run . A f t e r o n e - h a l f hour, the s e r i e s of t e s t s e c t i o n w a l l temperature readings obta ined were cons idered to correspond to the c l ean w a l l c o n d i t i o n and to be f ree from e r ro r s caused by thermal t r a n s i e n t s . 3 .2 .5 A d d i t i o n of f e r r i c o x i d e . F o l l o w i n g de te rmina t ion of c lean w a l l tempera- t u r e s , the d e s i r e d weighed amount of f e r r i c oxide was s l u r r i e d i n a 5 l i t r e sample of system tap water and added to the heat loop tank as a s lug dose. The time of a d d i t i o n was cons idered to be time zero fo r the f o u l i n g r u n . 3 .2 .6 Opera t ing procedure dur ing t r i a l s . During the run , the c o o l i n g water r a te was v a r i e d to hold the i n l e t temperature to the t e s t s e c t i o n at the t a rge t v a l u e . With power inpu t and i n l e t temperature at t h e i r r e s p e c t i v e t a rge t v a l u e s , f low ra te v a r i a t i o n s mani- fes ted themselves as v a r i a t i o n s i n o u t l e t temperature . Consequent ly , the f low could be p r e c i s e l y c o n t r o l l e d by ad ju s t i ng the f low c o n t r o l value to hold the o u t l e t tem- pera ture cons t an t . U s u a l l y , runs r equ i r ed very few ad jus t - ments to hold the system at the t a rge t c o n d i t i o n s . 44 3.2.7 Shut-down procedure. At the end of the t r i a l , the circulating pump and the test section heating were stopped simultaneously, and a series of wall temperatures taken to insure that there were no defective thermocouples. (At zero heat flux, all thermocouples should read approximately the same.) The test section was then removed from the heat transfer loop and rinsed with tap water from a squeeze bottle to remove residual ferric oxide suspension from the fouling deposit on the tube wall. The rinsed test section was set on an incline and allowed to dry. 3.2.8 Fouling deposit sample preparation. For tubes destined for electron microprobe analysis, the insulation and thermocouples were removed and the tube f i l l e d with 'Clear-Cast' liquid polyester resin. Following 24 hours for curing, the tube was cut with tube cutters at locations corresponding to the posi- tions of the thermocouples. These sections were then recut into one-half inch samples, piaced in moulds and more polyester resin added. The resulting specimen, which was three-quarter inch in diameter and one-half inch thick, was then ground and polished by standard metallurgical 45 techniques, thereby exposing the fouling deposit and the tube wall to which i t adhered. Such samples showed the structure of the deposit perpendicular to the direction of flow of the f l u i d . An alternate method of specimen preparation was to turn the polyester-filled tubes in a lathe to remove the burred edges caused by the tube cutters, and to press the polyester core out of the tube. The fouling deposit, which always adhered to the polyester core, then needed no polishing or grinding prior to examination. These samples were analyzed for chemical composition in the Electron Microprobe of the UBC Metallurgy Department. Chapter 4 DATA COLLECTION AND COMPUTATIONAL PROCEDURES The data-logging system made possible the collec- tion of a large number of thermal measurements. Typically, in a three hour t r i a l , over 3000 thermocouple readings would be logged. In addition, flow and electrical measure- ments were recorded manually. To illustrate the proce- dures followed in gathering and processing data, Run 63 has been selected as a typical run. The steps followed and main computational procedures adopted are outlined beiow. 4.1 Establishing Objectives of Trial and Setting Trial Conditions The f i r s t step in making a run was to record the objective of the t r i a l and set the conditions under which i t was to be run. Table VII is a reproduction of this for Run 63 which had as its objective the determination of a fouling curve at a mixed-size ferric oxide concentration 46 47 Table VII Typical Log Sheet Showing Run Objective and Target Conditions Run No. 63 Date: 13 Sept. 1972 OBJECTIVE To determine the fouling curve for a ferric oxide concentra- tion of 2130 ppm at a heat flux of 93,000 BTU/ft 2 -hr and a Reynolds number of 26000. TARGET CONDITIONS Flow Rate 86.0 (gauge units) Inlet Fluid MV x 200 420 Outlet Fluid MV x 200 526 Variac Setting 70 (gauge units) Test Section Volts 13.50 Test Section Amps 355 Steam Jacket Pressure 22 (lbs/in 2 ) Fluid pH 6.2 Cooling Water Setting 30 (gauge units) NaCl added 0 (gms) Ferric Oxide added 426 (gms) Air On Inlet Fluid Pressure 62 (lbs/in 2 ) 48 of 2130 ppm, a heat f l u x of 93,000 B T U / f t 2 - h r and a Reynolds number of 26,000. F o l l o w i n g the s e l e c t i o n of t r i a l con- d i t i o n s , computer program PAR (see Appendix I I ) was run to e s t a b l i s h tha t the parameters s e l e c t e d d id indeed correspond to the d e s i r e d t r i a l c o n d i t i o n s . For Run 63, the bas i c input data to PAR was 063 x 13.50 x 355 02130 2.10 x 2.63 x 86.0 where the numbers shown have the f o l l o w i n g s i g n i f i c a n c e : Run N o . = 0.63 T e s t S e c t i o n V o l t s = 1 3 . 5 0 T e s t S e c t i o n A m p e r e s = 355 F e r r i c O x i d e C o n c e n t r a t i o n = 2130 ppm T h e r m o c o u p l e R e a d i n g I n l e t F l u i d (MV) = 2 . 1 0 T h e r m o c o u p l e R e a d i n g E x i t F l u i d (MV) = 2 . 6 3 O r i f i c e M e t e r DP C e l l R e a d i n g ( g a u g e u n i t s ) = 8 6 . 0 B l a n k s p a c e s = x Stored i n PAR are data cover ing o r i f i c e meter and thermocouple c a l i b r a t i o n s , t e s t loop dimensions and thermal c o n d u c t i v i t y , and the p r o p e r t i e s of the t e s t f l u i d . The output from PAR (see Table V I I I ) , i n a d d i t i o n to showing Table VIII Output from Program PAR i\jQ63. * * * * * * * FERRIC OXIDE CONC (PPM) 2 1 3 0 . VCLTS:13.50 AMPS: 3 5 5 . HEAT FLOW SUPPLIED 16356.8 BTU/HR HEAT FLUX SUPPLIED 9 3 8 9 7 . BTU/SQFT-HR BETA0.301 TCR=TINLET127.0 DEG F DENSITY:0.986 GRAM/CC T OUTLET 150.3 DEG F FLOW RATE 0.1888 LBS.M/SEC AVG TEMP: 138.6 DEG F KINEMATIC VISC0SITY:0.479 SQ.CM/SEC FLUID VELOCITY 4.790 FT/SEC REYNOLDS NO 26534.0 PRANDTL NO 3.02 HEAT SUPP 16356.8 BTU/HR HEAT TRANS 15921.4 BTU/HR HEAT LOST 435.4 BTU/HR PERCENT HEAT LOST 2.66 HEAT FLUX TRANS. BTU/SQFT-HR 9 1 3 9 7 . NUSSELT NO 121.5 RFILM 0.623 RWALL 0.143 RTOTAL 0.765 SOFT-HR-DEG F/BTU 5 0 T a b i c IX O u t p u t From D a t a l o g g e r S y s t e m S t a r t e d up a t 9:30 on Tap W a t e r F o l l o w i n g H o n i n g o f Tub e 1140 Dili 0476 0461 0452 0466 0462 0461 0447 0133 0198 0203 0444 0402 0456 046} 0360 0198 00.00 000. I l e a l F l u x T u r n e d B a c k o n F o l l o w i n g T h e r m o c o u p l e C h e c k 1)10 0447 0331 0684 0682 0724 0724 0732 0707 0123 0210 0207 0708 0611 0749 0779 0287 0210 13.50 355. 1410 0421 0521 0612 0672 0709 0711 0719 0696 0110 0218 0206 0696 0603 0736 076} 029? 0218 13.30 155. 1420 0421 OS26 0668 0668 0707 0707 0716 0693 0131 0219 0207 0695 0601 0735 0763 0246 0219 1430 0416 0325 0667 0667 0706 0706 0712 0691 0130 0220 0209 0692 0600 0733 0760 0248 0219 1432 0421 0522 065S 0656 0697 06 9 9 0703 0677 0130 0220 0207 06 8 0 0573 0719 0753 . 0253 0220 1433 0421 0322 0661 0660 0599 0698 0705 06 8 0 0131 0001 0206 0683 0580 0721 0753 0252 0220 1434 0421 0523 0665 0663 0705 0704 0709 0684 0132 0001 0206 0685 0584 0723 0757 0294 0220 1435 0421 0524 0664 0661 0702 0102 07 OK 0685 0132 0001 0207 0687 0566 0726 0736 0295 0220 1436 0421 0524 0665 0664 0702 0704 0708 0685 0133 0001 0207 0687 0588 0724 0755 0296 0220 143? 0421 0523 0662 0661 06 9 8 06 9 9 0706 0682 0134 0001 0206 0685 0587 0724 0733 0294 0220 1438 0421 0523 0663 0661 0701 0700 0706 0683 0132 0001 0207 06E5 0588 0723 0754 0293 0220 143$ 0420 0523 0662 0661 0700 06 9 9 0707 0683 0132 0220 0208 0685 0568 0724 0753 0294 0220 13.50 355. 1440 0 0420 0523 0665 0661 0698 0697 0705 0683 0132 0001 0209 0685 0589 0724 0751 0289 0221 1441 0420 0522 0361 0662 06 9 9 0698 0706 0683 0130 0221 0210 0685 0589 0724 0751 0298 0221 1442 0420 0523 0664 0661 06 9 9 0699 0705 0683 0131 0001 0210 0686' 0589 0725 0733 0295 0221 4 2 6 Grams o f F e r r i c O x i d e ! A d d e d t o S y s t e m 1443 0421 0525 0665 0663 0705 0704 0709 0684 0132 0001 0206 0085 0564 0725 075? 0294 0221 13.50 355. 1444 0420 0522 0662 0661 0702 0701 0708 0685 0132 0001 0210 06 88 0591 0728 0755 0293 0221 1445 0421 0525 0667 056? 0704 0701 0708 0687 0131 0001 0210 0688 0592 0727 0758 0294 0221 1444 0421 0526 0668 0666 0703 0705 0711 0689 0131 0001 0210 0599 0596 0737 0765 0291 0221 1447 0421 0530 0673 0673 0705 0703 0712 0691 0131 oooi 0210 0591 0596 0731 0761 0294 0221 1446 0421 0525 0667 0666 0703 0703 0712 0689 0131 0221 0212 0692 0596 0733 0763 0293 0221 D . 5 0 353. 1449 0422 0525 0668 0666 0702 0704 0712 0689 0130 0221 0212 0697 0597 073S 0768 02 S5 0221 1430 0421 052} 0667 066? 0705 0706 0715 0692 0131 0221 0212 0695 0597 0734 0763 0295 0221 13.50 355. 1433 0421 0523 0670 0668 0705 0707 0714 0692 0129 0222 0211 0695 0598 0733 076] 0300 0221 13.50 355. 1457 0421 0325 0670 0670 070B 0709 0716 0693 0131 0222 0205 0695 0598 0735 0763 0294 0222 13.50 355. 1300 0420 0527 0673 0679 0715 0716 0723 07 OO 0131 0222 0209 0703 0602 0741 0769 0295 0222 1503 0420 0528 0679 0676 0715 0717 0724 0701 0130 0222 0211 0703 0603 0740 0771 0295 0222 1508 0420 0525 0671 0670 0712 0709 0717 0695 0132 0001 0209 06 9 7 0601 0735 0766 0295 0222 13.30 355. 1510 0420 0524 0674 0573 0711 0711 0718 0695 0133 0001 0209 0696 0601 0733 076] 0297 0223 1515 0420 0524 0673 06 7 0 0711 0708 0717 0593 0133 0001 0209 0696 0600 0732 0762 0295 0223 1520 0420 0525 0673 0673 0709 0111 0716 0694 0131 0001 0211 0696 0601 0734 0762 0296 0223 1525 0421 0525 0675 0674 0711 0712 0718 0695 0131 OOOI 0212 0697 0601 0733 0763 0296 0223 13.50 355. 1530 0420 0329 0684 0684 0720 0720 0727 0704 012? 0001 0210 0705 0607 0744 0773 0296 0223 1534 0421 0525 0675 0674 0710 0710 0716 0693 0125 0224 0211 0695 0600 0732 0762 0296 0224 13.30 353. 1540 0421 0525 0S74 0672 0709 070? 0713 0692 0125 0224 0212 0694 0600 0731 0758 0296 0224 1544 0421 032} 0674 0673 0712 0711 0718 0694 0121 0224 0210 0696 0600 0733 0762 0296 0224 13.30 355. 1530 0422 052} 0675 0674 0712 0 1 " 0717 0694 0121 0224 0211 0696 0601 0734 0761 0296 0224 1600 0422 0527 0678 0677 0715 071] 0720 0697 0113 0224 0212 06 9 9 0603 0737 0765 0298 0224 1411 0421 0523 0676 0676 0712 0712 0718 0695 0103 0225 0213 06 97 06 02 0735 0762 0298 0225 13.30 353. 1620 0420 0523 0674 0671 0708 0708 0714 06 91 0101 0225 0212 0693 0599 0731 0758 0297 0225 1629 0420 052} 0679 0676 0714 0713 0719 0696 0096 0225 0212 0697 0601 0714 0761 0299 0226 13.30 355. 1 7 1 5 H o u r s T r i a l S t o p p e d 51 Reynolds number and heat f l u x , a l so computes a heat balance over the t e s t s e c t i o n and p r e d i c t s from the S i e d e r - Tate equat ion the f i l m r e s i s t a n c e . Since these computations are s t r a i g h t f o r w a r d , no sample c a l c u l a t i o n s are i nc luded here . 4.2 Data Gather ing and Data P rocess ing The method used to gather data was as f o l l o w s : The equipment and data l ogg ing system were warmed up on tap water f o r a pe r iod of at l e a s t three hours and u s u a l l y 12 hours . When the system was at steady s t a t e and at t a r g e t c o n d i t i o n s , as fo r example at time 1442 fo r Run 63 (see Table I X ) , the d e s i r e d amount of f e r r i c oxide was added to the system and the run commenced. As the run p rogressed , " l i n e s of data" were s e l e c t e d at r e g u l a r i n t e r v a l s and recorded on a separate log shee t , sub jec t to the p r o v i s i o n tha t v o l t a g e , c u r r e n t , f low r a t e , i n l e t thermocouple m i l l i v o l t reading and o u t l e t thermocouple m i l l i v o l t reading were at or very near t a rge t c o n d i t i o n s . The study of exper imenta l e r r o r s summarized i n S e c t i o n 5 had shown that a l l of these v a r i a b l e s have a bear ing on the accuracy of the da t a . Table X shows t h i s log shee t . The thermal and pressure drop data shown i n Table X are i n u n i t s of m i l l i v o l t s times 200. The program Table X Data Used for Fouling Curve Determi nation 1443 0421 0525 0665 0663 0705 0704 0709 0684 02C6 0685 0584 0725 0757 0294 1448 0421 0525 0667 0666 0703 0703 0 71? 0689 0212 0692 0596 0733 0763 0293 1450 0421 0525 06 67 0667 0 705 C706 0715 0692 C212 0695 0597 0734 0763 0295 1455 0421 05 25 0670 0668 0705 0707 0714 0692 C21 1 0695 0598 0735 0763 0296 1457 0421 0525 0670 06 70 0709 0709 0716 0693 0209 0695 0598 0735 0765 0294 1508 0420 0525 0671 0670 0712 0709 0717 0695 C2C9 0697 C601 0735 0766 0295 1524 0421 0525 0675 0674 0711 0712 0718 0695 C?12 0697 0601 0735 0763 0296 1534 0421 0525 0675 0674 0710 0710 C716 0693 0211 0695 0600 0732 0762 0296 1544 0421 0525 0674 0673 0712 0711 C718 0694 C21C C696 0600 0733 0762 0296 1604 0421 0525 0677 0675 0711 07 12 0719 0695 C212 0698 0603 073 5 0763 0298 1611 0421 0525 0676 0676 0712 0712 0718 0695 0213 0697 0602 0735 0762 0293 1629 0420 0525 0679 0676 0714 C713 0719 0696 C212 0697 0601 0734 0761 0299 1638 0420 0524 0677 0677 0712 0714 07L8 0695 0212 0697 0602 0735 0763 0299 53 STOMV (see Appendix II) was used to convert the time from real time to fouling run time, to transform the mi l l i v o l t readings times 200 to m i l l i v o l t s , and to place the data in a standard format compatible with a l l subsequent pro- grams. Table XI is the output from this program. Two methods were used to compute fouling resis- tances from the thermal data. The f i r s t of these was the method developed by Watkinson (7) and used also by Mayo (23). It computes the fluid film resistance plus fouling resistance for the whole tube at any specified time. Since the program based on this method was availabl to this investigator, i t was routinely run. However, since this method does not compute fouling resistances at localized positions on the tube, only limited use was made of the data thus generated. The second method used to compute fouling resis- tance overcomes this d i f f i c u l t y and enables local fouling resistance to be found. This method is based upon the following considerations: At time zero, the total resis- tance to heat transfer is given by where Table XI Output From Program STOMV Input to Program FOUL REAL RUN HV MV MILLIVOLT READINGS OF THERMOCOUPLES CN WALL CF TEST SECTION COOL INSL AMB DELT TIME TIME IN OUT T215 T235 T255 T275 T295 T315.T335 14.43 0.0 2.10 2.62 0.0 3.32 3.31 3.52 3.52 3;54 3.42 14.48 0.08 2.10 2.62 0.0 3.33 3.33 3.51 3.51 3.56 3.44 14.50 0.12 2.10 2.62 0.0 3.33 3.33 3.52 3.53 3.57 3.46 14.55 0.20 2.10 2.62 0.0 3.35 3.34 3.52 3.53 3.57 3.46 14.57 0.23 2.10 2.62 0.0 3.35 3.35 3.54 3.54 3.58 3.46 15.08 0.42 2.10 2.62 0.0 3.35 3.35 3.56 3.54 3.58 3.47 15.24 0.68 2.10 2.62 0.0 3.37 3.37 3.55 3.56 3;59 3.47 15.34 0.85 2.10 2.62 0.0 3.37 3.37 3.55 3.55 3.58 3.46 15.44 1.02 2.10 2.62 0.0 3.37 3.36 3.56 3.55 3.59 3.47 16.04 1.35 2.10 2.62 0.0 3.38 3.37 3.55 3.56 3.59 3.47 16.11 1.47 2.10 2.62 0.0 3.38 3.38 3.56 3.56 3.59 3.47 16.29 1.77 2.10 2.62 0.0 3.39 3.38 3.57 3.56 3.59 3.48 16.38 1.92 2.10 2.62 0.0 3.38 3.38 3.56 3.57 3.59 3.47 T355 T375 T395 T415 T428 KV MV MV MV 3.42 2.92 3.62 3.78 0.0 0.0 0.0 1 .03 1.47 3.46 2.98 3.66 3.81 0.0 0.0 0.0 1 .06 1.46 3.47 2.98 3.67 3.81 0.0 0.0 0.0 1 .06 1.47 3.47 2.99 3.67 3.81 0.0 0.0 0.0 1 .05 1.46 3.47 2.99 3.67 3.82 0.0 0.0 0.0 1 .04 1.47 3.48 3.CO 3.67 3.83 0.0 0.0 0.0 1 .04 1.47 3.48 3.00 3.67 3.81 0.0 0.0 0.0 1 . 06 1.48 3.47 3.CO 3.66 3.81 0.0 0.0 0.0 1 .05 1.48 3.48 3.CO 3.66 3.81 0.0 0.0 0.0 1 .05 1.48 3.49 3.01 3.67 3.81 0.0 0.0 0.0 1 .06 1.49 3.4 8 3.01 3.67 3.81 0.0 0.0 0.0 1 .06 1.4 9 3.48 3.00 3.67 3.80 0.0 0.0 0.0 1 .06 1.49 3.48 3.01 3.67 3.81 0.0 0.0 0. c 1 .06 1.49 55 R0 = total resistance at time zero T w q = outer wall temperature at time zero T = fluid temperature at time zero q 1  = heat flux transferred to the fluid = heat flux supplied minus heat losses As the tube fouls, a fouling resistance R̂  is formed on the inside of the tube. If the heat flux is maintained constant, and the bulk temperature remains constant, the wall temperature must rise in response to the increase in thermal resistance to a new value, say T Equation ( 4 . 1 ) then becomes R o + R =  T w t  "  T b 0  (4, f  q' Eliminating R0 between equations ( 4 . 1 ) and ( 4 . 2 ) gives R =  T wt -  T wo ( 4 f  q' that i s , the fouling resistance is simply the outer wall temperature rise divided by the heat flux. An assumption implicit in this method of calculation is that the heat losses are negligible and/or do not increase significantly as the wall temperature increases, an assumption validated 56 by the fact that the difference between inlet and outlet temperatures remained constant throughout the course of a run. Another implicit assumption is that R0 is representative of the wall plus fl u i d film resistance throughout the course of a run. Since wall temperatures typically increased by about 2 F° , this latter assumption is believed to be valid. However, where large increases in wall temperatures were obtained, a correction might be required to account for possible blockage effects and for the effect of changing surface roughness on deposit-to-fluid heat transfer. For Run 63, time 1.92 hours, station T235, the fouling resistance is therefore T - T D _ wt wo q' 1 77.0 - 1 74.6 _ „ c . . ^ o , 91397 = 2.6 x 10- 5 ft 2 -hr-°F/BTU Table XII shows the output from program FOUL which computes these fouling resistances. The stations showing a resis- tance of 0.0 after time zero are blanked stations not included in the calculations. Blanked stations are those containing defective thermocouples. 57 Included in Table XII, for the sake of complete- ness, are the following data: WaI I Temperatu res I n l e t F l u i d Temperature (TIN) O u t l e t F l u i d Temperature (TOUT) Mean Wall Temperature (TM) F l u i d Temperature Rise (DELTA) Film plus F o u l i n g Heat T r a n s f e r C o e f f i c i e n t ( H ) Film plus F o u l i n g Thermal R e s i s t a n c e (R) T i me Units used throughout are BTU, DEGREE F, HOUR, FOOT. Table XII also includes a print-out of the local fouling resistance at each thermocouple station and the mean of these resistances (RFM). The mean fouling resistance is fitted by the least squares method to the equation The print-out from this subroutine, as shown in Table XII, contains the calculated value of mean fouling resistance and the fitted value as predicted from equation (4.4). (4.4) 58 Table XII Output from Program FOUL •«««»(*RUN N06).•»<•«•« FERRIC OXIDE CONC 1PPM1 2130. VCLTS:13.50 AKPS: 355. HEAT 1LCN SUPPLIED 16356.8 HEAT FLUX SUPPLIED 93897. BTU/HR BTU7SCFT-HR 0ETA0.301 I0R=T1NLE1127.0 DEC F DENSIIY:0.986 GRAP/CC 1 OUUET150.3 DEC F FLOW RATE 0.1888 LBS.H/SEC AVG TEPP:138.6 DCC F KINEMA1IC VISC0SI1Y:C479 SC.CM/SEC FLU1C VELOCITY 4.790 FT/SEC REYNOLDS KO 26534.0 PRANOTL NO 3.02 HEAT SUPP 16356.8 B1U/HR HEAT TRAMS 15921.4 BTU/HR HEAT LOST 435.4 BTU / H R PERCENT HEAT LDS1 2.66 HEA1 HUX TRANS> 81U/S0F1-HR 91397. KUSSELI NO 121.5 RFHP 0.623 RWALl 0.143 ItlOIAl 0.765 5QFT-HR-0EG F/BTU EST 1 MAI£S Of RCO! WEAN SCUARE STATISTICAL ERROR IN THE PAR ACE T ER .18660 .7B614 ES1IMATES CF ROCI PEAK SCUARE I01AL ERROR IN THE PARAMETERS .25054E-01 .1C544 ES11KA1E CF R0.R1NF.ANC G IN RF-R INF( ( 1 .-EXP l-8«T IKE 1 TIME HOURS 0.0 0.08 0.12 0.20 0.23 0.42 0.60 0.85 1.02 1.35 1.47 1.77 1.92 2.C669 5.7124 CALC. RESISTANCE FITTED VALUE I (SCFI-IIR-CECF/BTU 1X100,000 I C O -0.0 0.77 1.15 1.29 1.5B 1.82 2.01 1.77 1.92 2.11 2.16 2.25 2.20 0. 76 1. C3 1.41 1.51 1.88 2.02 2.05 2.06 2. C1 2.07 2.02 2.07 10CALI2E0 WALL 1215 1235 TEMPERATURES DEC.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 OEO.F 174.6 175.C 175.0 175.8 175.8 175.8 176.6 176.6 176.6 177.0 177.C 177.4 177.0 1255 OtC.F 174.2 175.0 175.0 175.4 175.8 175.B 176.6 176.6 176.2 176.6 177.0 177.0 177.0 T275 DEC.F 182.5 182. I 162.5 182.5 163. 3 184. I 18J.7 183.7 184. I 183.7 1K.I 184.5 184. 1 ICEG.FI 1295 OEG.F 182.5 162. 1 182.9 182.9 18 3. 3 183.3 1 84 .1 183. 7 183.7 184.1 184. I 184. I 184.5 T315 OEG.F 183.3 1 £4. I 184.5 184.5 184. 9 184.9 135.3 114. 9 105. 3 165.3 185. I 185.3 185.3 T3)5 OEG.F 178.6 179.4 ISO. 2 130.2 180.2 1 6 C 6 190.6 IRC.2 lec. t 160.6 l a c . 6 i e c . 9 ISO.6 T355 T3 75 T395 T415 T428 -TIN TOUT TM DELTA H R TI ME OEG.F OEG.F DEG.F DEG.F OEG.F OEG.F OEG.F OEG.F OEG.F X1C00 HOURS 1 78.6 0.0 186.5 192. 7 O.C 127.0 149.9 18 1.5 23.0 1676.2 0.5966 0.0 150.2 0.0 168.0 193.9 0.0 127.0 149.9 182.2 23.0 1648.0 C.6C68 C 06 inc.6 C O 166 .4 193.9 O.C 127.0 149.9 182.6 23.0 1632.5 0.6125 0 . 12 1BC6 0.0 188 .4 193.9 0.0 127.0 149.9 182.7 23.0 1630.0 0.6135 C.20 ISO.6 0.0 186 .4 194.3 0.0 127.0 149.9 183.0 23.0 1620.6 0.6170 0.23 I8C. 9 C O 188 .4 19*.7 0.0 127.0 149.9 IBI.2 23.0 1612.1 0.6203 0.42 1BC.9 C O 188.4 19 1 . 4 O.C 127.0 149.9 181.3 23.0 1607.3 0.6222 0.6a 1B0.6 0.0 186.0 191.9 0.0 127.0 .49.9 183. 1 23.0 1616.9 0.6165 I . 65 I8C.9 C O lea.o 141.9 0.0 127.0 1--9.9 16J.1 23.0 1( 0 . 4 0.6210 1.C2 181.3 C O 166 .4 193.9 O.C 127.0 149.9 183 .4 23.0 1604.7 0.6232 1. 15 180.9 C O 188 .4 193.9 0.0 127.0 149.9 181.5 21.0 1604. 1 0.6234 1.47 Inc. 9 C O 188 .4 19 1.5 0.0 127.0 149.9 181.6 23.0 1601 .4 0.6244 1. 17 180.9 0.0 188.4 191.9 0.0 127.0 149.9 183.5 23.0 1602 .4 0.6241 1-92 LOCALIZED FOULING RESISTANCE CSOFI-HR-OEGF/DTUIX100,COO 1215 T235 1255 1275 T295 1315 1335 1355 1375 1345 1415 T428 TIN TCUI RFH OELTA H RIOT TIME OEG.F OEG.F DEG.F 11000 HOUKS 0.0 0.0 0.0 0.0 0.0 C O 0.0 0.0 0.0 0.0 0.0 0.0 127.0 149.9 0.0 23.0 1676.2 0.5966 0. ti 0.0 0.43 0.87 0.0 0.0 C .St o.et 1. 71 C O 1.72 1.28 0.0 127.0 149.9 0.7? 23.0 1648.0 0.6068 O.CR 0.0 C.43 0.87 0.0 0.43 1.29 1.7) 2.16 C O 2.15 1.28 0.0 127.0 149.9 1.15 23.0 1632.5 0.6125 0. 12 0.0 1.30 1.10 0.0 0.4) 1.29 1.73 2.16 0.0 2.15 1 .28 0.0 127.0 149.9 1.29 2 J.O I63C.0 0.6135 O./O 0.0 1.30 1.73 0.8b 0.B6 1.72 1.73 2.16 C O 2.15 1.71 0.0 127.0 149.9 1 .58 2).0 1020.6 0.6170 0.2) 0.0 1.30 1.73 1.72 0.66 1 . 72 2.16 2.59 0.0 2.15 2.14 0.0 127.0 149. 9 1.12 21.0 1612.1 0.620) 0. 42 0.0 2.1? 2.60 1.29 1. 12 2. 15 2.16 2.59 u.o 2.15 1.28 0.0 127.C 149.9 2.01 21.0 1607.3 C6//2 U. 'iM 0.0 2.1? 2.60 1.29 1.29 1. 72 1.7) 2.16 C O 1.72 1 .28 0.0 127.0 149.9 1.77 21.0 16 1 ft.9 0.61*15 0. 85 0.0 2. 17 2.1 7 1. 12 1.29 2.15 2.16 2.59 0.0 1.72 1.2B 0.0 127.G 149.9 1.92 21.0 I'. 10.4 0.6/10 1.11/ o.o 2.60 2.60 1.29 i . iz 2. 15 2.1'. 1.C7 0.0 2.15 1.78 0.0 127.0 149.9 2. 1 1 /).n IUJ4. ; 0.6/1/ 1. r. 0.0 2.1,0 3.03 1.72 1. 72 2. 15 2. 16 2.59 C O 2.15 1.28 C O 127.0 149.9 2.l>. 21.0 1 <//'.. 1 0.6/14 1.47 0.0 3.0) 3.0) 2.15 1. 72 2.15 ' - 2.59 2.59 u.o 2.15 0.85 U.O 127.0 .149.9 2.25 21.0 1'iUl .4 (1.6244 1. l l o.o 2.60 3.03 1. 72 2. 15 2. 15 2.16 2.59 0.0 2.15 1.2H 0.0 127.0 • 149.9 2.20 23.0 1602.4 0.6241 1.9/ 59 Chapter 5 EXPERIMENTAL ERROR STUDY In order to establish the precision with which thermal resistances could be determined, a series of water t r i a l s were made with the following objectives in view: (1) To isolate variables which, if inadequately controlled, would bear upon the accuracy of results. (2) To determine the extent to which changes in wall temperature and therefore changes in operating variables produce apparent or real changes in measured thermal resistance. Variables considered to be of prime importance were flow rate, heat flux, and inlet temperature to the test section. From experience in operating the heat transfer loop, i t became evident that the values of the above vari- ables were affected by fluctuations of the following type: ( I ) Variations in line voltage to the test section due to variations in input power supplied to the 60 b u i l d i n g . T h i s e f f e c t manifests i t s e l f as a v a r i a t i o n in heat f l u x . • (2) V a r i a t i o n s in flow rate caused by the t e n - dency of the flow c o n t r o l valve to c l o s e during the f i r s t few hours of a run. (3) V a r i a t i o n s in c o o l i n g water temperature which cause c y c l i c f l u c t u a t i o n s in the i n l e t temperature to the t e s t s e c t i o n . In addition, a transient type behaviour was noted in which the apparent thermal resistance was found to rise at a decreasing rate from start-up to an elapsed time approaching three hours. Since this transient type behaviour was found to be the largest source of error in determining fouling resistances, i t will be discussed f i r s t . 5.1 Influence of Thermal Transients in Determining Thermal Resistance From t r i a l s made in co-operation with Mayo (23) using a solution of aluminium oxide in aqueous caustic soda, i t was noted that, i f for any reason the equipment was stopped, then upon restarting, the test section wall temperatures did not return to their pre-shutdown values. Rather, the wall temperatures remained depressed for periods 61 ranging from a few minutes to an hour or more, depending upon the length of the shutdown. Such behaviour indicated either adefouling process, or a thermal transient situa- tion which caused the wall temperatures to be depressed. In order to determine the cause of this behaviour, a "fouling" run was made using tap water. The procedure followed was to by-pass the test section and heat the fluid to target inlet conditions. The fluid was then directed into the test section and a t r i a l made in which, at time zero minus, the test section was at room tempera- ture, and at time zero plus, the flow rate and heat flux were at their target values. Figure 7 shows the results of this t r i a l plotted as apparent thermal resistance versus time. The die-away behaviour typical of electrical and thermal transients is clearly evident. Note that over a period of two hours, apparent thermal resistances range from 0.684 x 10~ 3  to 0.808 x l O - 3  ft 2 -hr-°F/BTU — a difference of 0.124 x 10 - 3 . This latter figure is of the same order of magnitude as the fouling resistances found for most ferric oxide t r i a l s studied here. Trials using tap water were made in which the test section was brought to thermal steady state, shut down and then honed to remove any possible fouling deposit. 62 Figure 7. Apparent Thermal Resistance Versus Time for Run 1 on Tap Water. 63 Results clearly showed that no fouling deposit was present, and that the transient behaviour discussed above is asso- ciated with heat absorption by the insulation until thermal equilibrium is achieved. Although thermal transients were found to result in the largest source of inaccuracy in determining fouling resistance versus time curves, their elimination was easily effected. All fouling t r i a l s were made byeither: (1) bring- ing the system to steady state by operating on tap water for over three hours and then adding the fer r i c oxide contaminant, or (2) i f ferric oxide was already in the system, operating for a minimum of three hours and then removing any deposit by honing the hot tube. Either method gives the same fouling curve (see Section 6). 5.2 Errors Due to Variation in Line Voltage The next largest source of potential error in determining thermal resistance was caused by uncontrolled variations in input supply voltage to the test section. Table XIII shows values for test section voltage recorded for Run 13 at random intervals. Note that the range of power drawn, expressed as a heat flow, is from 1 5,687 BTU/hr to 16,283 BTU/hr. This difference of approximately 600 64 Table XIII Variation in Electrical Power Supplied to the Test Section - Run 13 Date Time H r s : M i n Volts Amps Power BTU/hr 24 March '71 16:00 13.52 344 1 5873 19:52 13.68 347 1 6201 20:43 13.70 348 1 6271 22:30 13.60 346 1 6060 25 March '71 10:17 13.44 342 1 5687 13:31 13.68 347 1 6201 14:33 13.71 348 1 6283 15:00 13.60 346 1 6060 18:00 13.44 342 15687 26 March '71 12:00 13.69 348 1 6259 15:00 13.52 344 1 5873 27 March '71 15:10 13.62 346 16083 65 BTU/hr , i f not taken i n t o account , w i l l cause an e r r o r i n measured thermal r e s i s t a n c e of approximate ly 2 x 10~ 5 f t 2 - h r - ° F / B T U . Since 2 x 1 0 " 5 f t 2 - h r - ° F / B T U i s the t o t a l f o u l i n g r e s i s t a n c e found i n some runs , l i n e vo l t age v a r i a - t i o n e r ro r s had to be e l i m i n a t e d . To prevent e r r o r s due to l i n e vo l tage v a r i a t i o n s , the f o l l o w i n g procedure was adopted; When the o b j e c t i v e of a t r i a l r e q u i r e d p r e c i s e d a t a , the equipment was never l e f t unattended. If the v o l t a g e v a r i e d by more than ±0. 1 5 v o l t s over the t e s t s e c t i o n , the v a r i a c s were adjusted to r e t u r n the power input to t a r g e t c o n d i t i o n s . As an added p r e c a u t i o n , no data were used f o r thermal r e s i s t a n c e computation i f the t e s t s e c t i o n v o l t a g e d e v i a t e d by more than 0.02 v o l t s from the t a r g e t v a l u e . This procedure reduced the e r r o r from t h i s source to approximately ±0 . 1 x I0~ 5  f t 2 - h r - ° F / B T U , which is less than 5% of the lowest f o u l i n g r e s i s t a n c e measured in the f e r r i c oxide t r i a l s . Although l i n e vo l t age e r r o r s could be thus sub- s t a n t i a l l y reduced by manual c o n t r o l , t h i s procedure was t e d i o u s . I t i s recommended that a vo l t age r e g u l a t o r be added to the heat t r a n s f e r loop p r i o r to beginning any new i n v e s t i g a t i o n of the type presented here . 66 5.3 Errors Due to Flow Rate Variations Variations in flow rate cause variations in thermal resistance, which in turn cause errors in the measurement of fouling resistances. In the study made here, flow rate variations were usually the result of ferr i c oxide deposition on the flow control valve. Since elec- tr i c a l power to the test section was held more or less constant, flow rate changes tended to produce variations in outlet temperature from the test section. In fact, the outlet temperature minus the inlet temperature was a more precise means of measuring flow rate than the orifice meter on the heat transfer loop. Figure 8 shows the relationship between thermal resistance and temperature rise for a tap water run (Run 4), with no attempt made to control flow rate. The variation in observed thermal resistance associated with the total change in flow rate was 5 x 10" 5  ft 2 -hr-°F/BTU. This vari- ation could be explained by the known relationship between film coefficient of heat transfer and fluid velocity. By making flow adjustments, and only using for computation data in which the temperature rise was at its target value, this source of error was effectively eliminated. Figure 8. Thermal Resistance Versus Fluid Temperature Rise, Run 4 (Tap Water). 68 5.4 Errors Due to Inlet Temperature Variations The inlet temperature to the test section could vary in response to cooling water temperature changes. Usually, such variations were small. Figure 9 shows the relationship between thermal resistance and inlet temperature. The drop in thermal resistance with temperature level can be explained by the corresponding changes in fluid pro- perties, especially viscosity. Total variation during an uncontrolled run was 2 x 10 -5  ft 2 -hr-°F/BTU. By holding inlet temperature at target values, this source of error too was effectively eliminated. 5.5 Errors Caused by Wet Insulation In one run, Run 16, a large amount of A.C. current was detected on some thermocouples. Thermocouple readings were obviously incorrect, even for those in which no A.C. leakage was detected. When the test section was dis- mantled, i t was found that the insulation was wet due to a leak in the top f i t t i n g of the tube. Consequently, current leaked from the test section to the thermocouple leads except for those liberally coated with Eccocoat epoxy resin. These tended to give steady but low values. To avoid errors of this type, a l l fittings were carefully inspected prior to test section i n s t a l l a t i o n . •°- 0.72 139.5 140.0 I N L E T FLUID T E M P E R A T U R E ( °F ) Figure 9. Thermal Resistance Versus Inlet Temperature for Run 5 on Tap Water. CM 70 As a further precaution, thermocouple leads near the tube wall were coated with Eccocoat as outlined in Section 3. 5.6 Miscellaneous Errors In order to insure that the use of tap water and the test section honing procedure had no hidden p i t - f a l l s , a t r i a l was made on tap water for a period of 24 hours. The system was then stopped, the test section honed, and the t r i a l restarted. Table XIV shows a series of thermal resistances before and after honing. There is no evidence from these data that tap water produces fouling deposits or that honing changes the tube. The possibility that deposits were formed which were not removed by honing is discounted, since even very hard scales were shown to be removable by this method. 5.7 Reproducibility and Validity of Thermal Fouling Data The reproducibility of ferric oxide fouling resistance versus time curves obtained in this study was established by analysis of four t r i a l s made over the course of the investigation. These t r i a l s , numbered 34, 35, 38 and 59, were replicates made using 2130 ppm of ferric oxide at a Reynolds number of 19550 and a heat flux of 44,360 71 Table XIV Data From Run 15 to Determine Effect of Honing Tube Wall on Thermal Resistance Inlet Temp Out!et Temp °F Mean Temp °F Fluid Temp. Rise o p Thermal Resist, x 10* 3 ft 2 -hr-°F/BTU Time hrs:mi n 157.7 1 57.3 157.7 157.7 157.3 157.7 157.7 157.7 157.3 157.7 188.5 188.5 188.5 188.5 188.5 188.2 187.8 188.5 189.3 188.2 225.1 224.7 224.9 224.6 224.6 224.1 222.9 224.8 224.4 224. 2 30.9 31 .3 30.9 30.9 31 .3 30.5 30.1 30.9 32.1 30.5 0.7313 0.7294 0.7298 0.7252 0.7274 0.7201 0.7059 0.7283 0.7200 0.7220 11 11 11 11 11 11 11 11 11 11 11 13 1 5 17 19 21 23 25 27 27 1 57.6 188.5 224.4 30.9 0.7239 - 156.8 1 56.8 1 57.3 157.3 157.3 157.3 157.3 156.8 156.8 156.8 188.5 188. 2 189.3 188.2 187.8 188.2 188.2 187.8 187.4 187.8 224.3 223. 5 225. 5 223.7 222.3 223.4 222.9 222.7 222.3 223.0 31 .7 31 .3 32.1 30.9 30. 5 30.9 30.9 30.9 30.6 30.9 0.7256 0.7172 0.7329 0.7167 0.7004 0.7131 0.7064 0.7074 0.7059 0.7133 13:42 1 3: 50 14:00 14:10 14:20 14:30 14:40 14:50 1 5:00 15:10 157.1 188.1 223.4 31 .1 0.7140 - S-o •l— i S- i— Q_ ra CO +•> cr ra c +-> T - CO c o -o (O O <U 4-> +-> co s- QJ +-> <+- r— <C I — ro CD 3 -M ro CX +-> C CO T- £ Z o •o IC ro d) 4-> co 72 B T U / f t 2 - h r . F igure 10 shows a composite p l o t of data from a l l four t r i a l s , and Table XV gives the parameters R.p* and b fo r the l e a s t squares f i t of the data to the equat ion (4.4) As can be seen, the curves are f a i r l y r e p r o d u c i b l e , w i th the parameter R.^* having a c o e f f i c i e n t of v a r i a t i o n of 11% and b a c o e f f i c i e n t of v a r i a t i o n of 29%. As w i l l be d i scussed i n S e c t i o n 6, e a r l y f e r r i c oxide f o u l i n g t r i a l s r e s u l t e d i n no de t ec t ab l e thermal f o u l i n g . These t r i a l s were made at f e r r i c oxide concen- t r a t i o n s of approximate ly 15 ppm. When w a l l temperature inc reases were de tec ted i n Run No. 31 at a c o n c e n t r a t i o n of 2130 ppm, the ques t ion arose as to whether these i n - creases r e f l e c t e d a f o u l i n g process or were caused by f l u i d proper ty changes r e s u l t i n g from f e r r i c oxide a d d i t i o n . From an a n a l y s i s of the data from many t r i a l s , i t i s con- cluded that the f o u l i n g curves ob ta ined a c c u r a t e l y r e f l e c t the b u i l d - u p of f o u l i n g d e p o s i t s . The reasons fo r t h i s view are as f o l l o w s : ( I ) Sectioning of the test section following Run 31 showed a uniform deposit measured as about 100 microns TIME (hours) Figure 10. Fouling Curve Reproducibility as Shown by Superimposing Data for Replicate Runs 34,35,38,59. Ferric Oxide Cone. = 2130 ppm, q' = 44,360 BTU/ft 2 -hr, Re = 19,550. 74 Table XV Reproducibility of Fouling Curve Parameters Obtained by Fitting Data to the Equation R̂  = R̂  (1 - e ). Ferric Oxide Cone. = 2130 ppm, Re = 19550, Heat Flux = 44,360 BTU/ft 2 -hr Run No. (ft 2 -hr-°F/BTU x 10 s ) b (hr- 1 ) 34 3.9 1.3 35 3.1 1 .8. 38 3.5. 0.9 59 2.9- 1 .6 Avg 3.3 1 .4 Std. Dev. 0.4 0.4 Coeff. of Var. 11% 29% 75 t h i c k over the whole tube. If 10 B T U / h r - f t -° F is taken as a reasonable thermal conductivity f o r the d e p o s i t , wall temperatures would have to r i s e by 1.3 F° to maintain the energy b a l a n c e . The actual measured wall temperature r i s e was 1.8 F° , indicating that k d ^ 7-2 BTU/hr-ft-°F. (2) The time f o r the wall temperature to reach i t s asymptotic value f o l l o w i n g f e r r i c oxide a d d i t i o n in Run 31 was nearly four hours. If the same wall tempera- t u r e increase of l . 8 ° F i s obtained by a s l i g h t i n crease in heat f l u x , a new asymptote is reached in approximately 10 minutes. This i n d i c a t e s t h a t the wall temperature versus time curve obtained i s not a thermal t r a n s i e n t set up by a sudden change in f l u i d p r o p e r t i e s and hence f l u i d r e s i s t a n c e causedby the sudden a d d i t i o n of f e r r i c o x i d e . (3) If a t r i a l is stopped and the t e s t s e c t i o n honed, wall temperatures r e t u r n to the c l e a n wall c o n d i t i o n s e x i s t i n g p r i o r to f e r r i c oxide a d d i t i o n . (4) If the f l u i d p r o p e r t i e s change because of f e r r i c oxide a d d i t i o n , the property most l i k e l y to be of importance with r e s p e c t to heat t r a n s f e r i s the v i s c o s i t y . Using E i n s t e i n ' s equation f o r the v i s c o s i t y of d i l u t e suspens i o n s , I u = u o ( I + 2 . 5<J>) (5 .1 ) where \i0 is the viscosity with no solids, and <j> is the volume fraction of suspended solids, the percentage chan in viscosity caused by the addition of 2 130 ppm ferric oxide is computed to be 0.01? - a negligible change. Chapter 6 RESULTS AND DISCUSSION 6.1 Summary of Fouling Trials During the course of this investigation, 70 t r i a l runs were made. These can be divided into five main categories: (1) T r i a l s on tap water in order to identify and eliminate sources of error in measuring heat transfer c o e f f i c i e n t s . (The results of these t r i a l s have been pre- sented and discussed in Section 5.) (2) T r i a l s designed to determine the influence of f e r r i c oxide concentration, heat flux and Reynolds number on the shape of fouling resistance versus time curves. (3) T r i a l s to determine the ef f e c t of f e r r i c oxide p a r t i c l e size on f o u l i n g . 77 78 (4) S p e c i a l t y t r i a l s designed to t e s t the v a l i d i t y of v a r i o u s hypotheses concerning f o u l i n g behaviour which were formed during the course of the i n v e s t i g a t i o n . (5) M i s c e l l a n e o u s t r i a l s using as f o u l a n t s such m a t e r i a l s as p o l y s t y r e n e and s i l i c o n d i o x i d e . These are not d i s c u s s e d here, but the data are on f i l e in data book No. 5 at UBC Chemical E n g i n e e r i n g . Tables XVI and XVII show the operating conditions for each fer r i c oxide t r i a l , give a short statement as to the purpose for making the t r i a l and where appropriate state the outcome. For each t r i a l which exhibited thermal fouling, the fouling curve obtained has been fitted to the Kern-Seaton type equation Rf = Rf*JT - e" b ^| (4.4) where R̂  = fouling resistance t = time Rf* = fitted constant = asymptotic fouling resistance b = fitted constant dR Included in Table XVII is the i n i t i a l fouling rate f dt t = 0 Table XVI Summary of Fouling T r i a l s Run at Low F e r r i c Oxide Concentrations Run Number Heat Flux (BTU/ft 2 -hr) ReynoIds Number F e r r i c Oxide Cone. (ppm) F e r r i c Oxide P a r t i c l e Si ze (Mi crons) Maximum Approximate Deposit Thickness (Mi crons) T r i a l Ouration (hrs) Comments 1 91660 24700 15 Mixed 1 70 48 I n i t i a l f o u l i n g run. No thermal f o u l i n g . 4 91660 25510 15 Mixed 70 24 Repeat of Run 1 with c l o s e c o n t r o l . No thermal f o u l i n g . 13 91250 25600 15 Mixed 70 72 Repeat of Run 1 with extended operating time. No thermal f o u l i n g . 15 92460 26470 375 Mixed 100 30 Repeat Run 1 - increased f e r r i c oxide cone. No thermal f o u l i n g . 16 92310 25070 15 Mi xed 60 168 Repeat Run 1 - operating time one week. No thermal f o u l i n g . 17 92310 25070 15 Mixed 120 25 Repeat Run 1 with 3000 ppm NaCl . No thermal f o u l i n g . 19 9231 0 25070 15 0.3-0.8 0 48 Repeat Run 1 with presized p a r t i c l e s . No deposit d e t e c t e d . No thermal f o u l i ng. 20 0 25000 approx 15 0.3-0.8 70 72 Repeat.Run 19 at 0 heat f l u x . Deposit detected. 21 92310 25070 15 0.3-3.7 0 24 Repeat Run 19 with l a r g e r presized p a r t i c l e s . No d e p o s i t . No thermal f o u l i ng. 22 92310 25070 15 0.3-3.7 0 168 Repeat Run 21 with extended operating time. No d e p o s i t . No thermal f o u l i n g . 23 0 25000 approx 15 0.3-3.7 70 96 Repeat Run 22 at 0 heat f l u x . Deposit d e t e c t e d . Agglomerates of approximately 0.2u p a r t i c l e s . Table XVII Summary of F e r r i c Oxide Tri'als Using Mixed-Size P a r t i c l e s Run Number Heat Flux (BTU/ft 2 -hr) Reynolds Number Mi xed-s i ze F e r r i c Oxide Cone. (ppm) R f *X 10 5 ( f t 2 - h r° F / B T U ) b ( h r " 1 ) I n i t i a l F6u1i ng Rate c bRf* x 1CV (ft 2 - f c F/BTU) Comments 33 44360 19550 2130 8.5 0.3 2.6 E f f e c t of high cone. Rf* and b inaccurate due to voltage f1uctuations 34 44350 19550 2130 5.7 1.3 7.4 Repeat of Run 33. R-* and b inaccurate because of l i m i t e d data 35 44360 19550 2130 3.3 0.6 2.0 Repeat of Run 33. Oata not accu r a t e . Tube not honed at time zero minus 38 44360 19550 2130 3.7 0.9 3.3 Repeat of Run 33. Tube honed at time zero. A i r l i n e in tank. F i r s t t r i a l with accurate data 39 44870 25390 2130 4.4 2.3 10.1 Repeat Run 38 at higher Reynolds number 40 44870 25390 2130 7.0 1.6 11.2 E f f e c t of Honing Portion of Deposit from a prefouled tube (Run 39) at time zero minus 41 44870 25390 2130 8.9 1 .2 10.7 E f f e c t of high v e l o c i t y c o o l - ing on prefouled tube (Run 40) 42 89750 26490 2130 - - - E f f e c t of i n c r e a s i n g heat f l u x . Rf* and b inaccurate due to i n s u f f i c i e n t data 43 . 44360 19550 2130 - - - Repeat of Run 33. Loss of deposit i n d i c a t e d in upper region of tube. Rf* and b i naccurate (Continued) T a b l e X V I I ( C o n t i n u e d ) Run Number Heat F l u x ( B T U / f t 2 - h r ) R e y n o l d s Number M i x e d - s i z e F e r r i c O x i d e Cone. (ppm) R f * X 1 0 5 (ft 2-hr°F/BTU) b ( h r " 1 ) I n i t i a l F o u l i n g ' R a t e . c b R f* X 1 C K ( f t - F/BTU) Comments 44 • 89890 37590 2130 2.2 2.9 6.4 . E f f e c t o f h i g h h e a t f l u x and h i g h R e y n o l d s number 45 89750 26490 250 0.5 2.2 1 .1 E f f e c t o f Cone, o f 250 ppm 46 89750 26490 750 0.6 0.5 0.3 E f f e c t o f Cone; o f 750 ppm 47 89750 26490 1000 1.0 3.6 3.6 E f f e c t o f Cone, o f 1000 ppm 48 89750 26490 1750 0.4 3.4 1 .4 E f f e c t o f Cone, o f 1750 ppm 49 89750 . 26490 2130 2.1 5.3 11.1 E f f e c t o f Cone, o f 2130 ppm 50 89750 26490 2130 3.1 3.7 11.5 Repeat o f Run 49 52 89750 26490 3750 3.3 0.9 3.0 E f f e c t o f Cone, o f 3750 ppm 53 44360 1 9550 3750 5.9 2.7 15.9 E f f e c t o f r e d u c e d h e a t f l u x and Re a t 3750 ppm 54 1 6540 1 0090 2130 8.8 0.9 7.9 F i r s t t r i a l i n a s e r i e s a t low h e a t f l u x and Re 55 25800 1 5740 21 30 5.4 1 .7 9.2 E f f e c t o f R a i s i n g heat f l u x 56 89860 20850 2130 2.3 4.1 9.4 E f f e c t o f r a i s i n g h e a t f l u x and R e y n o l d s number 58 88090 26440 2130 1 .6 8.4 9.7 E f f e c t o f R a i s i n g Re. R f* and b i n a c c u r a t e ( l i m i t e d d a t a ) 59 44360 19550 2130 3.1 1.6 5.0 Re p e a t o f Run 38 61 41970 33700 2130 2.2 6.2 13.5 E f f e c t o f he a t f l u x and R e y n o l d s number 62 44360 1 9550 2130 - - - A t t e m p t t o r e p e a t Run 59. Tube went i n t o l i n e a r f o u l i n g ( C o n t i n u e d ) Table XVII (Continued) Run Number Heat Flux (BTU/ft 2 -hr) Reynolds Number Mixed-si ze F e r r i c Oxide Cone. (ppm) Rf*X I O 5 ( f t 2 - h r°F/ B T U ) b ( h r " 1 ) I n i t i a l Fouling Rate  c b Rf *x 1CV ( f t ^ F / B T U Comments 63 91400 26500 2130 2.1 5.7 . 12.0 Repeat of Run 49 64 89860 20850 . 2130 - - - Successful attempt to induce l i n e a r f o u l i n g 70A 89670 26580 2130 - - - Linear f o u l i n g with oxygen in system 70B 89670 26580 2130 - - - Linear f o u l i n g with no oxygen 81 e q u i v a l e n t to bR^ for those runs which could be f i t t e d by Equat ion (4.4). For those t r i a l s which showed a l i n e a r dependence of f o u l i n g r e s i s t a n c e on t ime , the constant R f * i s meaningless s ince such curves do not approach an asymptote, and only the constant f o u l i n g ra te i s t he r e - fore r e p o r t e d . F o l l o w i n g s e l e c t e d t r i a l s , the t e s t s e c t i o n was removed, s e c t i o n e d , and the depos i t analyzed both q u a n t i - t a t i v e l y and q u a l i t a t i v e l y i n an e l e c t r o n mic roprobe . These r e s u l t s are presented i n d e t a i l i n Sec t i on 6.4. They point strongly to the conclusion that ferric oxide fouling of 304 stainless steel is intimately associated with corrosion of the stainless steel under the ferric oxide deposit. Consequent ly , many of the t r i a l runs were made f o r purposes of de te rmin ing how va r ious changes i n t r i a l c o n d i t i o n s , which should p r e d i c t a b l y a l t e r the c o r r o s i o n behaviour of s t a i n l e s s s t e e l , would change the f o u l i n g r e s i s t a n c e versus time c u r v e s . Such t r i a l s i n - cluded va ry ing the Reynolds number and the heat f l u x , i n c r e a s i n g the f e r r i c oxide c o n c e n t r a t i o n , us ing an oxygen scavenger , and i n i t i a t i n g f o u l i n g runs using a p re fou led r a the r than a c l ean tube. 82 6.2 Thermal Fouling Versus Time Behaviour 6.2.1 Typesof thermal fouling curves obtained. Three distinct types of fouling curves were obtained for ferric oxide-tap water suspensions on 304 stainless steel. These are illustrated in Figures 11, 12 and 13, and each type is discussed below. The curve shown in Figure 11 was the most frequent type of fouling curve obtained. It illustrates classical fouling behaviour as described by Kern and Seaton (6). This curve is characterized by asymptotic type behaviour and can be fitted by the equation (4.4) For the ferric oxide-tap water-304 stainless steel system studied here this curve could be readily reproduced and, as will be described later, its shape was a function of heat flux, Reynolds number and ferric oxide concentration. Figure 12 shows the type of fouling curve obtained when an attempt is made to operate an asymptotically fouled tube for an indefinite period of time. Under such condi- tions, fouling becomes an unsteady state process character- ized by a sudden decrease in fouling resistance followed TIME (hours) Figure 11. Fouling Curve Illustrating Asymptotic Type Behaviour (Run 63, Heat Flux 91,400 BTU/ft 2 -hr, Re 26,500, Mixed-Size Ferric Oxide Cone. 2130 ppm). in O Z> f-OQ RUN 63 RUN 49 FIRST 4 STATIONS RELEASED DEPOSIT o 00 TIME (hours) Figure 12. Effect of Prolonged Operation on Fouling Behaviour Re 26,500, Mixed-Size Ferric Oxide Cone, 2130 ppm) (Heat Flux 89,750 BTU/ft 2 -hr T I M E (hours) Tigure 13. Linear Fouling Behaviour (Run 64, Heat Flux = 89,850 BTU/ft 2 -hr, Re = 20,850, Mixed-Size Ferric Oxide Cone. = 2130 ppm). 00 86 by r e f o u l i n g . Taborek et al. (1) a l so show curves of t h i s t ype . F igure 13 i l l u s t r a t e s a t h i r d type of f o u l i n g curve obta ined in a f e r r i c ox ide - t ap water-204 s t a i n l e s s s t e e l system. This curve was obta ined at low heat f l u x e s , or by f o u l i n g the tube at zero heat f l u x fo r per iods longer than about e igh t hours and then h e a t i n g . I t i s c h a r a c t e r - i z e d by a near l i n e a r dependence of f o u l i n g r e s i s t a n c e wi th t ime . I t should be s t r e s sed that a l l three types of f o u l i n g curves can be obta ined w h i l s t ope ra t ing under i d e n t i c a l c o n d i t i o n s of heat f l u x , i n l e t temperature , f low ra te and f e r r i c oxide c o n c e n t r a t i o n . The curves d i f f e r because that shown i n F igure 12 r e s u l t s from ope ra t i ng fo r extended time p e r i o d s , and that shown i n F igure 13 i s the consequence of s t a r t i n g the run wi th a p re fou led tube . 6 .2 .2 E f f e c t of Reynolds number and heat f l u x on f o u l i n g cu rves . In order to determine the e f f e c t of Reynolds number and heat f l u x on the shape of f o u l i n g c u r v e s , a s e r i e s of t r i a l s were made using m i x e d - s i z e f e r r i c oxide at a c o n c e n t r a t i o n of 2130 ppm. Resu l t s are shown i n 87 Table XVIII and plotted in Figure 14-16. An examination of these data shows the following: At high heat flux, in the range of 90,000 BTU/ f t 2 - h r , fouling curves depict asymptotic type behaviour. The curves obtained (see Figure 14) can be readily fitted to the equation The asymptotic fouling resistance does not appear to be a function of Reynolds number, but the i n i t i a l fouling rate may be lowered slightly by an increase in Reynolds number. As either the Reynolds number or the heat flux is decreased (see Figure 15), the data can s t i l l be fitted by equation (4.4); the asymptotic resistance R̂  then increases and the i n i t i a l fouling rate yields no consistent pattern. A danger in f i t t i n g data to equation (4.4) is that a reasonably good f i t can be achieved for virtually any curve which extrapolates to a positive value of R̂ at t = 0, provided dR̂ ./dt is not negative. If the view is taken that the use of equation (4.4) to f i t the present data (which meet the above criteria) is not j u s t i f i e d , the results can be replotted as shown in 4 runs in Figure 16, ignoring the zero point. The assumption now being made Table XVIII E f f e c t of Heat Flux and Reynolds Number,on Fouling Behaviour f o r Mixed-Size F e r r i c Oxide 2130 ppm Cone. Run No. Heat Flux (BTU/ft 2 -hr) Reynolds Number Run Duration (hrs) Wal 1 Temc Clean( F°) AT Wall ( F ° ) W LB m/sec R f * f t 2 - h r -° F / B T U b 1/Hour 3Rf TT t = 0 54 16540 10090 3 42 145. 7 1 .1 0 .076 8.8 0 9 7 9 55 25800 1 5740 2 00 148. 0 1 .3 0 .118 5.4 1 7 ' 9 2 38 44360 1 9550 2 10 159. 1 1 .8 0 .144 3.7 0 9 3 3 59 44360 19550 . 2 90 159. 1 1 .6 0 .144 3.1 1 6 5 0 55 89860 20850 1 20 195. 0 2 .4 0 .144 2.3 4 1 9 4 39 44870 25390 2 25 152. 0 1 .7 0 .190 4.4 2 3 10 1 49 89750 26490 3 87 181 . 5 2 .8 0 .188 2.1 5 3 11 1 50 89750 26490 1 72 182. 6 2 .7 0 .188 3.1 3 7 11 5 63 91400 26530 1 92 181 . 5 2 .0 0 .188 2.1 5 7 12 0 61 41970 33700 2 48 144. 0 1 .1 0 .256 2.2 6 2 1 3 5 44 89900 37590 2 08 167. 5 2 .0 0 .275 2.2 2 9 6 4 CO co Figure 14. Influence of Reynolds Number on Fouling Curves at Heat Fluxes Near 90,000 BTU/ft 2 -hr, Mixed-Size Ferric Oxide Cone. 2130 ppm. CO 1X5 o T I M E (hours) Figure 15. Effect of Heat Flux and Reynolds Number on Fouling Behaviour. Mixed-Size Ferric Oxide Cone. 2130 ppm. RUN 54 RUN HEAT FLUX RE SYMBOL NO. BTU/f t 2 - hr 54 1 6,540 10,090 O 55 25,800 15,740 9 59 44,360 19,550 A 61 I 41,970 I 33 ,700 A i 1 2 3 T I M E (hours ) o Figure 16. Effect of Heat Flux and Reynolds Number on Fouling Curves at Heat Fluxes < 44,360 BTU/ft 2 -hr, Mixed-Size Ferric Oxide Cone. 2130 ppm. 92 i s tha t the f i r s t few minutes of a run show a f o u l i n g at a r a p i d l y d e c l i n i n g r a t e , f o l l o w i n g which the ra te becomes cons t an t . Under such an assumpt ion, the data show tha t as e i t h e r the heat f l u x or Reynolds number i s decreased , the cons tant f o u l i n g ra te i n c r e a s e s . I t i s b e l i e v e d that the reason for t h i s behaviour i s as f o l l o w s : At time z e r o , when the tube wa l l i s c l e a n , f e r r i c oxide p a r t i c l e s adhere wi th d i f f i c u l t y . Inc reas ing the Reynolds number inc reases the shear s t r e s s and hence the scour ing a c t i o n at the w a l l ; consequen t ly , the f o u l i n g r a te decreases . The f ac t that i n c r e a s i n g the heat f l u x s i m i l a r l y r e s u l t s i n lower f o u l i n g ra tes i s not as r e a d i l y e x p l a i n e d . At f i r s t i t was thought that high heat f l uxes r e s u l t e d i n a thermophoretic fo rce on the p a r t i c l e s which impeded t h e i r t r an spo r t to the tube w a l l . However, as w i l l be exp l a ined i n S e c t i o n 6 . 2 . 6 , i f the tube i s pre- fou led at low heat f l u x p r i o r to time zero and then high heat f l uxes used, f o u l i n g occurs at a very r a p i d r a t e . Such behaviour would not be expected i f thermophoresis were the so l e reason fo r the inve r se dependence of f o u l i n g ra te on heat f l u x . A more probable e x p l a n a t i o n i s tha t high heat f l uxes are a s s o c i a t e d w i th high wa l l temperatures . Consequent ly , when ope ra t ing wi th high heat f l u x , oxygen s o l u b i l i t y i s reduced near the tube w a l l . S i n c e , as w i l l 93 be shown i n Sec t ions 6 .2 .9 and 6 . 2 . 7 , the f o u l i n g ra te decreases wi th i n c r e a s i n g temperature , and use of an oxygen scavenger a l so reduces the f o u l i n g r a t e , the above exp lana- t i o n fo r the inve r se dependence of f o u l i n g ra te on heat f l u x appears to be reasonab le . With respect to the shape of the c u r v e s , i t i s b e l i e v e d tha t n e i t h e r of the methods used here to f i t the data i s e n t i r e l y sound. Use of the asymptot ic type equat ion (4.4) i s d i f f i c u l t to j u s t i f y as a g e n e r a l i z a t i o n , s i nce as out - l i n e d i n S e c t i o n 6 . 2 . 1 , attempts to operate i n d e f i n i t e l y at the asymptot ic c o n d i t i o n r e s u l t e d i n sharp drops i n thermal r e s i s t a n c e fo l lowed by r e f o u l i n g . Use of the method whereby the f i r s t few minutes of data are ignored and a l i n e a r equat ion a p p l i e d f o r the remainder can be c r i t i z e d on the grounds tha t i t s imply does not f i t a l l the da t a , though i t does g ive a f a i r approximat ion of the f o u l i n g ra te over much of the range covered . This aspect of f o u l i n g behaviour i s d i scussed more f u l l y i n S e c t i o n 7 . 0 . 94 6.2.3 Effect of f e r r i c oxide concentration on fouling curves. The concentrations of mixed-size f e r r i c oxide used in this study ranged from 15 ppm by weight to 3750 ppm, with 2130 ppm being the concentration most frequently tested. Pre-sized f e r r i c oxide was used only at concen- I trations of 15 ppm because of the high cost of this material ($10 per gram). Consequently, the results presented here pertain to mixed-size f e r r i c oxide only. Below 100 ppm, thermal fouling could not be de- tected on a consistent b a s i s , although sectioning of the tubes c l e a r l y showed the presence of spotty fouling de- p o s i t s . In most t r i a l s , wall temperatures remained con- stant during the entire course of the run, some of which lasted as long as 7 days. During two runs (Runs 1 and 4 ) , behaviour i n d i c a t i v e of fouling took place at l o c a l i z e d positions on the tube w a l l , but such results could not be reproduced. For f e r r i c oxide concentrations of approximately 750 ppm, thermal fouling could be detected but again, fouling curves were not reproducible and did not become so un t i l a concentration in excess of 1750 ppm f e r r i c oxide was used. At concentrations of 2130 ppm and higher, thermal fouling was readily detected and the res u l t i n g curves are 95 reproducible within the limits shown by Table XIX (compare Runs 49 and 63). Tables XIX and XX show the results of two series of fouling runs made at varying ferric oxide concentrations. The fouling curves themselves are shown in Figure 17 and 18. Again, as was the case with the dependence of fouling on heat flux and Reynolds number, the use of an asymptotic type relationship to f i t these data is perhaps not entirely valid. However, the data clearly show that as the concen- tration of fer r i c oxide is increased, the extent of fouling increases, the effect being much more pronounced for the lower heat flux and lower Reynolds number (Figure 18), where the fouling rate is consistently higher for the higher concentration. That the fouling rate should be a direct function of fe r r i c oxide concentration was not unexpected. However, the fact that thermal fouling could not be detected at low concentrations (15 ppm) when operating times were extended for periods of up to two weeks (except occasionally at localized points) implies that the influence of concentra- tion on fouling is not a simple relationship. If the reason for the inability to detect fouling at low concen- trations was simply low mass transfer rate of fer r i c oxide towards the wall when the concentration driving force is 96 Table XIX Inf luence of F e r r i c Oxide Concen t ra t ion on Parameters b and R^* and I n i t i a l F o u l i n g Rate , Obtained by Leas t Squares F i t of F o u l i n g Data to the Equat ion R f = R f * ( l - e ' b t ) . Heat Flux 90,000 B T U / f t 2 - h r (Approx . ) Re 26500 (Approx . ) Run No. F e r r i c Oxide Cone. (ppm) ( h r " 1 ) Asymptot i c F o u l i n g Res i s t ance R f * ( f t 2 ) ( h r ) ( ° F ) BTU I n i t i a l F o u l i n g Rate dR v = bR, dt t = 0 ( f t 2 ) ( ° F ) BTU 45 46 47 48 49 63 52 250 750 1500 1750 2130 2130 3750 0.5 0.5 3.6 3.4 5.3 5.7 0.9 0.5 0.6 1.0 0.4 2.1 2.1 3.3 1 .1 0.3 3.6 1 .4 11.1 12.0 3.0 97 Table XX Influence of Ferric Oxide Concentration on Parameters b and Rf* and Initial Fouling Rate, Obtained by Least Squares Fit of Fouling Data to the Equation Rf = R f*(l - e " b t ) . Heat Flux 44,360 BTU/ft 2 -hr (Approx.) Re 19,550 Run No. Ferric Oxide Cone. (ppm) b (hr- 1 ) Asymptoti c Fouli ng Res i stance R f * ( f t 2 ) ( h r ) ( ° F ) BTU In i t i a l Fouling Rate dR. f  - bR * d t t-o f ( f t 2 ) ( ° F ) BTU 38 53 2130 3750 0.9 2.7 3.7 5.9 3.3 15.9 Figure 17. Effect of Mixed-Size Ferric Oxide Concentration on Fouling Behaviour, Heat Flux 90,000 BTU/ft 2 -hr (Approx.), Re 26,500 (Approx.). 99 TIME (hours) Figure 18. Effect of Mixed-Size Ferric Oxide Concentration on Fouling Behaviour, Heat Flux 44,360 BTU/ft 2 -hr, Re = 19,550. 100 low, then one would not expect to find fouling in localized positions, and i t should be possible to detect fouling thermally simply by extending operating times for the t r i a l s . Such was not the case. A possible explanation is that at low concentrations deposits build to some asymptotic level which cannot be detected thermally. Another possibility is that the fouling process requires a relatively large accumulation of particles on the tube wall to trigger a bonding reaction between particles and tube wall and at low concentrations such an accumulation never occurs. The results of microprobe examination of deposits coupled with fouling experiments using prefouled tubes indicate that the latter explanation is probably correct. Further discussion of this point is contained in Section 7.0. 6.2.4 Effect of residual tube wall deposits on fouling curves. In some early t r i a l runs, the assumption was made that i f the wall temperature readings indicated no tempera- ture rise over the clean wall condition, as established with a clean honed tube on solids-free water, there were no deposits on the tube wall and i t was unnecessary to hone 101 the tube p r i o r to f e r r i c oxide a d d i t i o n . When f o u l i n g data from Runs 31-38 were examined, however, i t was found that r e p r o d u c i b i l i t y was be t t e r fo r those t r i a l s i n which the tube was honed p r i o r to time z e r o . To t e s t whether depos i t s were present on the tube w a l l even though thermal data gave no i n d i c a t i o n of t h e i r presence, a fou led tube from a previous run was placed i n the heat t r a n s f e r loop and a " f o u l i n g " t r i a l made using tap water . Thermal data gave no i n d i c a t i o n tha t the tube was i n o ther than the c l ean w a l l c o n d i t i o n . When the t r i a l was s topped, the tube was honed and r i n s e d . Deposi t was c o l l e c t e d , which showed c o n c l u s i v e l y that thermal readings i n d i c a t i n g c lean w a l l temperatures d id not n e c e s s a r i l y s i g n i f y the complete absence of d e p o s i t s . I t was the re fo re concluded tha t any tube used i n a f o u l i n g run would always con ta in r e s i d u a l depos i t s unless the tube was honed p r i o r to commencing a t r i a l . In order to determine the e f f e c t of r e s i d u a l depos i t s on thermal f o u l i n g versus time c u r v e s , f o l l o w i n g Run 40 the heat f l u x was shut o f f and the f low ra te r a i s e d to the maximum p o s s i b l e ( c o n t r o l va lve f u l l y open) fo r a pe r iod of three minutes . O r i g i n a l s e t t i n g s of heat f l u x and f low ra te were then r e s t o r e d . When t r i a l t a rge t c o n d i t i o n s were r e - e s t a b l i s h e d , and s u f f i c i e n t time had e lapsed to remove thermal t r a n s i e n t s , thermocouple data showed the tube 102 to be at the clean wall thermal condition. The t r i a l run was then continued and the thermal fouling versus time curve generated. Figure 19 shows this curve for the above t r i a l (Run 41), as compared to a curve generated under identical conditions except that the tube was honed prior to time zero (Run 39). These curves clearly demonstrate that residual deposit, which has previously been shown to be present on the unhoned tube wall, promotes fouling. (Because of this behaviour, only t r i a l s in which the tube was honed prior to time zero were used to establish the effect of Reynolds number, heat flux and ferric oxide con- centration on thermal fouling.) It is believed that the return of the tube wall temperatures to the clean wall condition when the heat flux is shut off and the velocity increased is the result of deposit removal. It is postulated that the cooling of the tube cracks the deposit and the increased velocity tends to augment shearing and removal. The fact that the tap water t r i a l on a fouled tube showed some deposit s t i l l to be present indicates that there is not 100% deposit removal by this procedure. Since such tubes foul at a higher i n i t i a l rate than clean tubes, i t appears that the fouling rate is a function of some process which is en- hanced by the presence of spotty residual deposits on the 8 TIME (hours) Figure 19. Comparison of F o u l i n g Behaviour f o r a Clean Honed Tube (No Res idua l Depos i t ) w i t h a P re fou led Tube Subjected to High V e l o c i t y C o o l i n g . Heat F lux 44870 B T U / f t 2 - h r , Re 25400, M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm. 104 tube wall. As will be outlined in more detail later, i t is believed that this process is crevice corrosion, and that the rate of this crevice corrosion is governed by the rate at which oxygen is reduced on the unfouled metal. 6.2.5 Effect of extended operating time on fouling curves. It was stated in Section 6.2.1 that extension of fouling runs beyond approximately 3-4 hours resulted in an unsteady state fouling process. Typically, thermal data would indicate the tube to be either fouling or in an asymptotically fouled state, when suddenly wall temperatures at localized points would decrease and then gradually increase again. To study this behaviour in d e t a i l , Run 34 was made in which the operating time was extended over a period of 45 hours. Figure 20 shows a plot of the fouling resistance as a function of time for this run. Comments on this plot follow: During the f i r s t three hours of the t r i a l , the tube fouled at a rapid rate. At 3 hours and 10 minutes following time zero, the wall temperature in the upper half of the test section decreased almost to the clean wall level. The fouling resistance then began to rise again and after 24 hours had risen to the same level as after 3 hours. It was then decided to hone the deposit from the to. c -i fD r o o CO T I - H O r+ 3 rcAO. I rr co -S fD - 3 " Eu TO < (D -•• O —> £= V O -S en o c n < 0 fD " ~i 2 OJ - • • 3 X fD m C L X 1 <-+ OO fD i - " • 3 1 N Q . fD fD Zp* C L — ^ « ^ m fD —I "* 3 =r - i . fD — ' o O o n ) ! ; * l o o C L O fD C L O -+, O O 3 - S O TO C r o 3 oo c o o -P» T J T3 3 =c fD EU r t X FOULING RESISTANCE ( f t 2 -hr - °F/BTU ) x I05__ O ro & oo o o ai ro o Q - Q T - — o-o T "0 m o o > o co -< CO —I \ DEPOSIT HONED FROM _r> TEST SECTION o m H O m X 00 o > 2 J oo O t SOL 106 test section and repeat the t r i a l . Rapid fouling again occurred but did not reach its original levels. After 2 hours wall temperatures again dropped suddenly and then rose again s l i g h t l y . The results of t r i a l 34 suggested that sudden wall temperature drops were indicative of a loss of fouling deposit from the tube wall, and that once this happened refouling would occur. However, the results of this t r i a l were not sufficiently precise to enable refouling rates to be accurately measured, because during much of the run the equipment was unattended and operating variables were not well controlled. It was therefore decided to study deposit release and refouling in a more direct manner by fouling a tube under carefully controlled conditions, honing the deposit from one-half of the tube only, and then continuing the fouling run. Since the series of t r i a l s involving this run was perhaps the most important series made, the procedure and results are presented here in d e t a i l , with data given in Table XXI and plotted in Figure 21 and 22. The f i r s t run of this series, Run No. 39, was a carefully controlled t r i a l made at a ferric oxide concen- tration of 2130 ppm, a heat flux of 44,870 BTU/ft 2 -hr and a Reynolds number of 25,390. After 2.25 hours, the run Table XXI Parameters b and R^* and I n i t i a l Fou l ing Rate Obtained by Least Squares F i t of Fou l ing Data to the Equation R f = R f * ( l - e " b t ) fo r Runs 39, 40 and 4 1 . Heat Flux 44870 B T U / f t 2 - h r , Re 25390, Mixed -S ize F e r r i c Oxide Cone. 2130 ppm Run No. b ( h r " 1 ) Asymptoti c F o u l i ng Res i stance R f * ( f t 2 - h r - ° F / B T U ) x 10 s I n i t i a l F o u l i n g Rate 3R f 9t t = 0 ( f t 2 - ° F / B T U ) x 1 0 s Tube Surface C o n d i t i o n at Zero Time 39 Upper P o r t i o n 2.6 4.2 10.9 Honed of a l l Deposi t 39 Lower P o r t i o n 2.1 4.4 9.2 Honed of a l l Deposi t 40 Upper P o r t i on 2.4 4.8 11.5 Honed of a l l Deposi t 40 Lower P o r t i o n 1.4 8.8 12.3 Contains Residual Deposi t from Run 39 41 Upper P o r t i on 1 - 7 7.3 12.4 Contains Res idual Deposi t from Run 40 Only 41 Lower P o r t i o n 0.9 10.6 9.5 Conta ins Res idua l Deposi t from Runs 39 and 40 FOULING RESISTANCE ( f t 2 -hr -°F/BTU) x IO 5 CO C -s fD c~> rc O fD 3 CD O rt ro — i -TJ ~a — ' C O O CO X "5 -$ O c+ c+ -£» -•• -•• X5 -P» O O "O >• 3 3 3 CO • s j o j O O r+ - h co r o —I —I • co to c+ oo fD O rt- cr cn -h r c r+ O N> C I -s 3 - to -s <* co 73 3 rt> Gi- ro r c cn -"• v tQ CO 3 - CD O < » n> 3 O -•• o X fD c+ Q . I CO o _ i . O N O ft) —' o m 5 o c co —\ fD CO 3 " v > CD < 33 33 IV c c c -P̂  -J> OJ — O CD -n 3 fD tQ -s o CL fD O tu _ i . C+ 3 IQ cn • re cn o 3 rc -•• O 3 C CQ -5 to O HEAT FLUX SHUT OFF AND VELOCITY RAISED TO MAXIMUM FOR 3 MINUTES 80L to c s n> ro ro 70 rc cz ro o -a cz -o ro -s ft> on co -s co -a vo cu o 0 3 -s " CL c+ 2 X O _ i . _ i . 3 X CQ fD 3" O CL -h 1 < CO fD —I -•• — 1  fD N O CO fD O rt- FOULING RESISTANCE (ft 2-hr~°F/BTU) x IO 5 o ro 4̂  o) oo O t l r t CO fD C< CD 1 O -$ O c+ _ i . O ->. O O O i —« 3 I o — x 3 -n <r - c o o r^; fD OJ — 1 O 3 13" o cncQ o o cn ca —^ fD (/) ro o cu —' cr < -s -'• CO O e C O o X J rc n fD o OJ —• C 3 X CQ -p» rc o » 3 CO -•• >»J 3 O l d CO CU ro -h • r+ cn to I UPPER PORTION HONED 30 ZD 33 e c c -J> OJ — O CO HEAT FLUX SHUT OFF AND VELOCITY RAISED TO MAXIMUM FOR 3 MINUTES 60L n o was stopped and the depos i t honed from the upper p o r t i o n of the t e s t s e c t i o n o n l y . D i s m a n t l i n g , honing and reassembly of the equipment took 3 minutes . Run 40 then commenced under i d e n t i c a l ope ra t ing c o n d i t i o n s to Run 39. Three minutes a f t e r s t a r t - u p , the pe r iod found by exper ience on tap water to be s u f f i c i e n t l y long to remove the thermal t r a n s i e n t caused by shut-down, time zero was e s t a b l i s h e d . At t h i s p o i n t i t was noted that a l l thermocouples , those for the honed as w e l l as fo r the unhoned po r t i ons of the t e s t s e c t i o n , were at the c l ean w a l l c o n d i t i o n . As the run p rogressed , the honed upper s e c t i o n r e t r aced the pre- vious f o u l i n g curve of Run 39. The unhoned lower s e c t i o n , dur ing the same time pe r iod fou l ed to a h igher l e v e l . At the end of Run 40, the t e s t s e c t i o n was coo led by s h u t t i n g o f f the heat f l u x f o r a pe r iod of 3 minutes w h i l e a l l o w i n g the f l u i d to c i r c u l a t e at maximum v e l o c i t y . When heat ing was r e s t a r t e d , o r i g i n a l f low c o n d i t i o n s r e - s t o r e d , and the thermal t r a n s i e n t removed, the complete t e s t s e c t i o n was found to be at the c lean w a l l thermal c o n d i t i o n . Run 41 was then made under i d e n t i c a l c o n d i t i o n s to Runs 39 and 40. During t h i s run both upper and lower po r t i ons of the t e s t s e c t i o n f o u l e d to s t i l l h igher l e v e l s . Th i s s e r i e s of t r i a l s showed t h a t : I l l (1) Unhoned s e c t i o n s of the tube wall a p p a r e n t l y do c o n t a i n d e p o s i t which causes f o u l i n g to proceed to higher l e v e l s than f o r the honed tube w a l l . (2) The presence of a honed s e c t i o n of the tube adjacent to an unhoned s e c t i o n apparently r e s u l t s in f o u l i n g to l e v e l s on the unhoned s e c t i o n which are at l e a s t as high i f not higher than when the unhoned s e c t i o n i s adjacent to another unhoned s e c t i o n which has been subjected to c o o l i n g at high v e l o c i t y . (Compare Run 40-lower p o r t i o n with Run 41-lower p o r t i o n and Run 41-upper p o r t i o n . ) (3) High v e l o c i t y c o o l i n g of the tube wall removes some, but not a l l , of the f o u l i n g d e p o s i t . At t h i s stage i n the i n v e s t i g a t i o n the idea developed that the ra te of f o u l i n g of 304 s t a i n l e s s s t e e l tubes w i th f e r r i c oxide was not being c o n t r o l l e d by f l u i d dynamic f a c t o r s a f f e c t i n g the ra te at which p a r t i c l e s were being depos i ted and re leased from the tube w a l l , but r a the r by some other f a c t o r . S ince microprobe r e s u l t s had c l e a r l y shown that c r e v i c e c o r r o s i o n was o c c u r r i n g beneath the d e p o s i t , i t was specula ted tha t the f o u l i n g ra te was being c o n t r o l l e d by the ra te at which c o r r o s i o n product immobi- l i z e d any p o t e n t i a l depos i t at the w a l l , r a the r than by the t r a n s p o r t ra te of f e r r i c oxide p a r t i c l e s . S ince c r e v i c e 112 c o r r o s i o n theory (see Sec t i on 7.2) p r e d i c t s no c o r r o s i o n when the tube w a l l i s c l e a n , and no c o r r o s i o n when the tube w a l l i s comple te ly covered , such a mechanism would r e a d i l y e x p l a i n the r e s u l t s obta ined up to tha t stage i n the i n v e s t i g a t i o n . For example, the high shear s t r e s s at the w a l l a s s o c i a t e d wi th high Reynolds number would i n h i b i t the i n i t i a l d e p o s i t i o n and hence make i t d i f f i c u l t to ob ta in a c r e v i c e . High heat f l uxes would tend to reduce oxygen s o l u b i l i t y near the tube w a l l , which should p r e d i c t a b l y tend to reduce the ra te of c r e v i c e c o r r o s i o n . With t h i s h y p o t h e s i s , the exper imental r e s u l t s presented i n t h i s s e c t i o n are a l s o r e a d i l y e x p l a i n a b l e , s ince the h a l f of the tube unhoned would have c r e v i c e s at time z e r o , and the h a l f of the tube which was honed would serve as a s i t e f o r oxygen r e d u c t i o n , thereby enhancing the ra te of c r e v i c e c o r r o s i o n . To t e s t the v a l i d i t y of t h i s h y p o t h e s i s , i t was decided to attempt c o n t r o l of the c r e v i c e c o r r o s i o n ra te by conduct ing a s e r i e s of experiments us ing a p re fou led tube at time z e r o , and another experiment us ing sodium s u l f i t e as an oxygen scavenger . The r e s u l t s of these experiments are g iven i n Sec t ions 6 .2 .6 and 6 . 2 . 7 . 113 6 .2 .6 F o u l i n g behaviour us ing a p re fou led tube. In the previous s e c t i o n , i t was repor ted tha t i f r e s i d u a l depos i t s were l e f t on the tube w a l l , f o u l i n g occurred at a h igher ra te than when the f o u l i n g run was s t a r t e d wi th a c l ean tube. However, as the f o u l i n g run p rogressed , the f o u l i n g ra te d e c l i n e d and i n many cases the f o u l i n g r e s i s t a n c e approached an asymptot ic v a l u e . Most i n v e s t i g a t o r s who have obta ined f o u l i n g curves of t h i s type have i n t e r p r e t e d the asymptot ic c o n d i t i o n as being due to a balance of d e p o s i t i o n and re lease r a t e s , the l a t t e r taken as p r o p o r t i o n a l to depos i t t h i c k n e s s . Kern and Seaton ( 6 ) , f o r example, use t h i s approach, as does Watkinson ( 7 ) . In the f e r r i c o x i d e - s t a i n l e s s s t e e l system s tud i ed here , i t was reasoned tha t i f asymptot ic f o u l i n g curves were the r e s u l t of a balance between d e p o s i t i o n and r e l ease r a t e s , then at e q u i l i b r i u m some w a l l temperatures would f a l l as m a t e r i a l was l o c a l l y r e l ea sed w h i l e o thers would r i s e as m a t e r i a l was l o c a l l y d e p o s i t e d . Al though the l a t t e r s i t u a t i o n has been found, fo r example i n Run 34 (see Appendix I V ) , i t no longer corresponds to an asymptot ic c o n d i t i o n . In s t ead , f o r t h i s s i t u a t i o n the tube r e f o u l s , as repor ted i n S e c t i o n 6 . 2 . 5 . I t was t h e r e - fore pos tu l a t ed tha t asymptot ic f o u l i n g behaviour i s the r e s u l t of a suppress ion of f o u l i n g r a t h e r than a balance 114 between d e p o s i t i o n and removal r a t e s , and that t h i s suppres- s i o n i s the r e s u l t of a d i m i n u t i o n of c r e v i c e c o r r o s i o n as the tube f o u l s . A c lue to the nature of the suppress ion mechanism was d i scove red a c c i d e n t l y when i t was found tha t i f the wa l l temperature of an a s y m p t o t i c a l l y fou led tube was i n - creased suddenly , the tube would commence f o u l i n g at a nea r ly constant r a t e . S ince dur ing the e a r l i e r exper imental runs every attempt was made to hold c o n d i t i o n s s teady , sudden inc reases i n w a l l temperatures were seldom encountered. In Run 64, a decrease i n the c o o l i n g water i n l e t temperature to the system r e s u l t e d i n a drop i n wal1, tempera- ture which went undetected fo r about 6 hours . When c o n d i - t i o n s were re turned to normal , i t was found that f o u l i n g occurred and p e r s i s t e d at a very r a p i d r a t e . Th i s i m p l i e d tha t the mechanism which caused f o u l i n g ra tes to decrease wi th time as f o u l i n g progressed was no longer o p e r a t i v e . To study t h i s phenomenon i n a more c o n t r o l l e d manner, Run 70 was made i n which the f o u l i n g suspension was a l lowed to c i r c u l a t e through the t e s t s e c t i o n fo r 6 hours at zero heat f l u x and then heat ing s t a r t e d . R e s u l t s , which are p l o t t e d i n F igure 23 , show tha t f o u l i n g under t h i s c o n d i t i o n proceeds at a cons tant r a t e . For comparat ive purposes , the r e s u l t s of Run 63 are i n c l u d e d . Run 63 was 1 15 60 in O ZD m LL: OJ LU O CO 00 LU or o o LL. 50 4 0 30 20 o RUN 70 © RUN 63 0 o 10 -@—© 0 Figure 23 TIME (hours) Ef fec t of Behaviour ppm, Heat Tube C o n d i t i o n at Time Zero on Fou l ing Mixed S i z e F e r r i c Oxide Cone. 2130 Flux 89,670 B T U / f t 2 - h r , Re = 26,580. 116 made under i d e n t i c a l c o n d i t i o n s to Run 70 except that the ^ tube w a l l was i n i t i a l l y honed and there fore c lean at zero t i m e . The f o l l o w i n g i s o f fe red to e x p l a i n why p r e f o u l i n g a tube at zero heat f l u x and then heat ing leads to r ap id l i n e a r f o u l i n g : When d e p o s i t i o n occurs from the f l u i d to the honed c lean w a l 1 , c r e v i c e s are produced which r e s u l t i n c r e v i c e c o r r o s i o n and the p roduc t ion of i r o n , n i c k e l and chromium c o r r o s i o n p roduc t s . These c o r r o s i o n products d i f f u s e through the d e p o s i t , p r e c i p i t a t e , and serve to s t rengthen the bond between the f e r r i c oxide p a r t i c l e s . (Accord ing to Char leswor th (11) , i t i s we l l known that the i n c o r p o r a t i o n of n i c k e l i n an i r o n oxide depos i t r e s u l t s i n a hard , t i g h t l y bonded s t r u c t u r e . ) As f o u l i n g proceeds , the c lean wa l l area becomes p r o g r e s s i v e l y reduced and c r e v i c e c o r r o s i o n ceases due to suppress ion of the cathode r e a c t i on 0 2 + 2H 20 + 4 e -> 40H" at the c lean w a l l . (For the fundamentals of c r e v i c e c o r r o s i o n , see Sec t i on 7 . 2 . ) With a c o l d p re fou led tube, the s i t u a t i o n i s qu i t e d i f f e r e n t . When the heat f l u x i s turned on , the tube and 117 depos i t expand, the depos i t to a sma l l e r degree than the metal tube . I t i s pos tu l a t ed that t h i s r e s u l t s in a cracked depos i t w i th exposed c lean w a l l a reas . I t i s furthermore suggested tha t these cracks are s u f f i c i e n t l y small that they cannot be penetra ted by the f e r r i c oxide p a r t i c l e s to b lock the c lean w a l l s i t e s , but r e a d i l y a l l o w the t r a n - spor t of oxygen to the surface of the me ta l . Consequent ly , oxygen r educ t ion at the c lean wa l l does not f a l l o f f as the tube f o u l s and f o u l i n g occurs at a constant r a t e . A c o n c l u s i o n which l o g i c a l l y f o l l o w s from the above hypothes is i s tha t use of an oxygen scavenger should s i g n i f i c a n t l y change the f o u l i n g ra te when the system i s p laced i n the l i n e a r f o u l i n g c o n d i t i o n , s i n c e t h i s would b lock the cathode r e a c t i o n 0 2 + 2H 20 + 4 e + 40H" . The r e s u l t s of an experiment to t e s t t h i s c o r o l l a r y are g iven i n the next s e c t i o n . 6 .2 .7 E f f e c t of an oxygen scavenger ( N a 2 S 0 3 ) on f o u l i n g behav iour . To t e s t the e f f e c t of oxygen c o n c e n t r a t i o n on f o u l i n g behav iour , the t e s t s e c t i o n was made to fou l at a 118 constant ra te by methods desc r ibed i n Sec t ion 6 . 2 . 6 . A f t e r 3.28 hours , the a i r l i n e to the suspension s to rage , which had the dual purpose of p r o v i d i n g mixing and i n s u r i n g that at a l l times the suspension was sa tu ra ted wi th oxygen, was switched to a n i t rogen c y l i n d e r . F o r t y - f i v e minutes l a t e r 300 grams of sodium s u l f i t e were added to the tank. A f t e r another 30 minutes , i t was found tha t the system was s t i l l i n a s t a t e of l i n e a r f o u l i n g , but tha t the ra te had changed to l e s s than o n e - h a l f tha t of the previous r a t e . The r e s u l t s of t h i s experiment are p l o t t e d i n F igure 24. Included are curves made under i d e n t i c a l c o n d i - t i o n s of heat f l u x , p a r t i c l e concen t r a t i on and Reynolds number, but d i f f e r i n g i n tha t curve 1 i n v o l v e d s t a r t i n g wi th a honed c lean tube, curve 2 was fo r a p re fou led tube placed i n a s i t u a t i o n conducive to l i n e a r f o u l i n g w i th the system sa tu ra ted wi th oxygen, and curve 3 was f o r the same s i t u a t i o n but wi th the system scavenged of oxygen.. I t i s concluded from these r e s u l t s tha t the f o u l i n g of 304 s t a i n l e s s s t e e l w i th f e r r i c oxide under the usual c o n d i - t i o n s i n v e s t i g a t e d here i s a s s o c i a t e d wi th the presence of oxygen i n the suspens ion . Fur thermore, the hypothes is tha t the ra te of f o u l i n g i s c o n t r o l l e d by the ra te at which c r e v i c e c o r r o s i o n proceeds , which i s i n tu rn con- t r o l l e d by oxygen t r an spo r t to the tube w a l l , i s s t rengthened by the above r e s u l t s . LO O X TU ) 40 OQ Lb ° i ^_ -C CM 30 M— UJ CJ 20 < H C/) 00 LU rr 10 CD ino 0 Li_ Figure 24. Comparison of Fou l ing Rates w i th an Oxygen Scavenger in Oxygen Scavenger (Curve 2) B T U / f t 2 - h r , Re 26,580. TIME (hours) for a Clean Honed Tube (Curve 1 ) , the System (Curve 3 ) , a P re fou led M i x e d - S i z e F e r r i c Oxide 2130 ppm LO a Pre fou led Tube Tube wi th no , Heat Flux 89,670 120 Mahato (36) , i n h i s study of the c o r r o s i o n of i r o n pipes i n c i t y water , concluded that the ra te of co r - r o s i o n was a func t i on of the ra te at which oxygen could be t r anspor t ed through the rus t l a y e r to the metal s u r f a c e . In Mahato's case , as the rus t l a y e r became t h i c k e r the d i f f u s i o n of oxygen was co r r e spond ing ly reduced wi th the r e s u l t tha t the c o r r o s i o n ra te decreased. Al though the exp lana t ion of Mahato can be used to account f o r the asymptot ic type of f o u l i n g behaviour found here , i t does not e x p l a i n the l i n e a r f o u l i n g s i t u a - t i o n . For the l a t t e r s i t u a t i o n , i t i s b e l i e v e d that oxygen t r a n s p o r t i s not s i g n i f i c a n t l y impeded as the f o u l i n g depos i t grows because of cracks i n the depos i t induced by thermal expansion when heat i s a p p l i e d to a p re fou led tube — a p r e r e q u i s i t e fo r o b t a i n i n g l i n e a r f o u l i n g . A l s o , the l i n e a r f o u l i n g s i t u a t i o n would reasonably crea te new cracks i n the depos i t as a r e s u l t of inc reases i n w a l l temperature as the tube f o u l s . Consequently the mechanism proposed here , inasmuch as i t depends upon oxygen d e l i v e r y to the tube w a l l , i s cons idered to be reasonab le . The f a c t tha t the l i n e a r f o u l i n g ra te d id not f a l l to zero i n the absence of oxygen i s probably due to the occurrence of the a l t e r n a t i v e cathode r e a c t i o n (37) 2H + + 2e •* H 2 t . 121 6.2 .8 E f f e c t of f e r r i c oxide p a r t i c l e s i z e on f o u l i n g behav iour . The f i r s t t r i a l c a r r i e d out i n t h i s study was made using mixed s i z e f e r r i c oxide at a c o n c e n t r a t i o n of 16 ppm, a heat f l u x of 91,66:0 B T U / f t 2 - h r and a Reynolds number of 24,700. No evidence of thermal f o u l i n g was found, a l though s e c t i o n i n g of the tube a f t e r the t r i a l showed i t to con ta in a spo t ty depos i t having a maximum th i ckness of approximate ly 100 mic rons . H inds igh t suggests tha t the c o n d i t i o n s f o r t h i s t r i a l were perhaps the worst tha t could have been s e l e c t e d , s ince l a t e r work showed tha t such a low f e r r i c oxide concen t r a t i on and high heat f l u x would r e s u l t i n minimal f o u l i n g . However, t h i s was not known at tha t time and i t was assumed tha t the f o u l i n g process was l i m i t e d by t r an spo r t to the w a l l of f e r r i c oxide p a r t i c l e s , which were presumed too l a rge to r e s u l t i n the minimum d e p o s i t i o n ra tes necessary to cause thermal f o u l i n g . There were two reasons f o r t h i s b e l i e f : ( I ) A c u r s o r y examination of the mixed s i z e f e r r i c oxide suggested i t s t y p i c a l s i z e to be in the range of 10 microns. P a r t i c l e s of t h i s s i z e are i n s i g n i f i c a n t l y s u bjected to Brown ian motion, a f a c t o r which was c o n s i d e r e d e s s e n t i a l to o b t a i n i n g a high f l u x of p a r t i c l e s through the laminar s u b l a y e r to the tube w a l l . 1 22 (2) P a r t i c l e s of t h i s s i z e are prone to g r a v i t y s e t t l i n g , and i t was f e l t t h a t i f such a p a r t i c l e did approach the w a l l , i t would tend to s e t t l e r a t h e r than become attached to the v e r t i c a l tube w a l l . To t e s t the hypothes is tha t the f o u l i n g process was p a r t i c l e t r anspo r t l i m i t e d , p r e s i z e d f e r r i c oxide was purchased i n two ba tches , one w i th a s p e c i f i e d p a r t i c l e s i z e range of 0 .3 -0 .8u and the other wi th a s p e c i f i e d range of 0 . 3 - 3 . 7 u . F o u l i n g t r i a l s were made as summarized i n Table X X I I , w i th r e s u l t s as f o l l o w s : Run 19 was made using p r e s i z e d p a r t i c l e s of 0 .3 -0 .8u at a c o n c e n t r a t i o n of 15 ppm. F o l l o w i n g a t r i a l of 48 hours , dur ing which time no thermal f o u l i n g was d e t e c t e d , the tube was s e c t i o n e d . No depos i t could be found i n the heated s e c t i o n of the tube al though a spo t ty depos i t was found i n the unheated e x i t s e c t i o n . Repeating Run 19 wi th zero heat f l u x (Run 20) r e s u l t e d i n a tube having spo t ty depos i t s w i th th i cknesses of about 70 mic rons . Runs 21 , 22 and 23 were then made using the l a r g e r p a r t i c l e s i z e ( 0 . 3 - 3 . 7 m i c r o n s ) , w i th s i m i l a r r e s u l t s . That i s , at high heat f l u x no depos i t could be detected when the tube was s e c t i o n e d , w h i l e at zero heat f l u x a spo t ty depos i t was found. 123 Table XXII E f f e c t of P a r t i c l e S i z e on F o u l i n g Behaviour . F e r r i c Oxide Cone. 15 ppm Re 25,000 (Approx . ) Run T r i a l Heat Flux P a r t i c l e Deposi t Thickness Dura t ion Si ze No. (hrs ) ( B T U / f t 2 - h r ) (mi crons) (microns) 19 48 92,310 0 .3 -0 .8 0* 20 72 0 0 .3 -0 .8 70 ( spo t ty ) 21 24 90,000 0 .3 -3 .7 0 22 168 90,000 0 .3 -3 .7 0 23 96 0 0 . 3 - 3 . 7 70 ( spo t ty ) A depos i t was found i n the e x i t s e c t i o n of the tube , but none i n the heated s e c t i o n . 124 In an attempt to f i n d a r a t i o n a l e fo r these o b s e r v a t i o n s , a review was made of s e l e c t e d papers con- cern ing the d e p o s i t i o n of small p a r t i c l e s from tu rbu len t s t reams, concen t r a t i ng p r i m a r i l y on the work of Beal ( 1 6 , 2 9 ) . B e a l ' s work was of p a r t i c u l a r i n t e r e s t s ince i t suggested tha t p a r t i c l e s d i f f e r i n g only s l i g h t l y i n s i z e could have g r e a t l y d i f f e r e n t ra tes of d e p o s i t i o n . to a tube w a l l by i n t e g r a t i n g F i c k ' s equat ion fo r t u r b u l e n t f l o w . That i s Beal developed an equat ion f o r p a r t i c l e f l u x (6 .1) where N f l u x of p a r t i c l e s D di f f us i v i ty e eddy d i f f u s i v i t y dC dy p a r t i c l e c o n c e n t r a t i o n g rad ien t By using the c o r r e l a t i o n of L i n et al. (30) fo r eddy d i f f u s i v i t y : e = <i>(y+) (6 ,2) Reynolds analogy: 125 dC N dy" " 7 P du Idy. (6 .3) and the L i n u n i v e r s a l v e l o c i t y p r o f i l e , he was able to i n t e g r a t e equat ion (6 .1) to f i n d an express ion fo r p a r t i c l e f l u x to the tube w a l l . He expressed h i s f i n a l r e s u l t i n terms of a d e p o s i t i o n c o e f f i c i e n t , Nw = Kpv C K + pv avg r (6 .4) where K = U. • ^ ( f , Sc , S + , h + ) 'b N w = f l u x of p a r t i c l e s to the w a l l C avg = a v e r a 9 e p a r t i c l e concen t r a t i on f = Fanning f r i c t i o n f a c t o r Sc = Schmidt number S + = d imens ion less Stokes s topping d i s t a n c e h + = d imens ion less pipe spacing = hU^/FTT/v p = s t i c k i n g p r o b a b i l i t y v = r a d i a l v e l o c i t y of a p a r t i c l e Beal then evalua ted v by assuming that the p a r t i c l e v e l o c i t y i s the sum of two components, one due to Brownian motion and one due to f l u i d mot ion . These were computed based upon the work of Jeans (31) and Laufer (32 ) , 126 r e s p e c t i v e l y . The Schmidt numberjSc, was based upon the Brownian d i f f u s i o n c o e f f i c i e n t , D. A computer program was w r i t t e n i n c o r p o r a t i n g B e a l ' s equat ion fo r the d e p o s i t i o n c o e f f i c i e n t , i n c l u d i n g h is s i m p l i f y i n g assumption that p = 1 (see Appendix I I ) . An attempt was made to regenerate h i s F igure 3, to insure tha t the computer program conta ined no e r r o r s . For a bulk v e l o c i t y of 100 cm/sec, the computed curve f i t t e d B e a l ' s curve fo r 30 cm/sec. However, Beal does not s t a t e the dens i t y of his p a r t i c l e s or the pipe d iameter , both of which bear upon the r e s u l t s . Consequent ly , the f i t ob ta ined was not cons idered unreasonable , and the program was assumed to be c o r r e c t . Table XXII I shows the computed data f o r f e r r i c oxide p a r t i c l e s i n water fo r c o n d i t i o n s approximat ing those used i n Runs 19-23. Comments are as f o l l o w s : (I) In the range of 0.1-4 microns, the d e p o s i - t i o n c o e f f i c i e n t as computed from Beal's equation l i e s between 0.16 x IO" 3  and 1.0 x IO - 3  cm/sec. Hence in the range of i n t e r e s t , the d e p o s i t i o n r a t e as c a l c u l a t e d by Beal's method is not o v e r l y s e n s i t i v e to p a r t i c l e s i z e changes s i n c e a 4 0 - f o l d change in p a r t i c l e s i z e r e s u l t s in only a 6 - f o l d change in d e p o s i t i o n c o e f f i c i e n t . Con- s e q u e n t l y , the p a r t i c l e s i z e - p a r t i c l e t r a n s p o r t dependence, Table XXII I D e p o s i t i o n C o e f f i c i e n t s fo r F e r r i c Oxide as a Funct ion of P a r t i c l e S i ze as Computed From B e a l ' s Equa t ion . Tube Reynolds Number 25,360, Bulk V e l o c i t y 3.28 f t / s e c , F l u i d temp 212°F P a r t i c l e S i z e (microns) Schmidt No. Stokes Stopping Di stance (mi crons) Browni an D i f f u s i o n C o e f f i c i ent cm 2 / sec D e p o s i t i o n C o e f f i c i e n t cm/sec 0.001 151 0.0005 0.19 X io-* 0.11 X 1 0" 1 0.01 1512 0.005 0.19 X 1 0 " 5 0.23 X io- 2 0.10 15,120 0.050 0.19 X I O " 6 0.48 X 10~ 3 1.0 151,200 0.55 0.19 X io- 7 0.16 X I O " 3 2.0 302,300 1 .20 0.97 X I O " 8 0.24 X 10~ 3 3.0 453,500 1 .96 0.64 X I O " 8 0.53 X 10" 3 4.0 604,700 2.82 0.48 X 1 0" 8 0.10 X I O " 2 5.0 755,900 3.77 0.38 X I O " 8 0.18 X io- 2 6.0 907,000 4.83 0.32 X io- 8 0.30 X I O " 2 7.0 1,058,000 6.00 0.27 X io- 8 0.47 X io- 2 8.0 1,209,000 7.26 0.24 X io- 8 0.70 X I O " 2 9.0 1,361,000 8.63 0.21 X io- 8 0.99 X io- 2 10.0 1,512,000 10.09 0X1 9 0 . 1 \ X io- 8 0.13 X I O " 1 100.0 15,120,000 559.3 X \ io- 9 0.99 X 10"° ro 128 as p o s t u l a t e d by Bea I , does not e x p l a i n why at high heat f l u x the mixed s i z e f e r r i c oxide r e s u l t e d in a d e p o s i t , a l b e i t s p o t t y , while the 0.3-0.8y and 0.3-3.7u p a r t i c l e s gave no d e p o s i t whatsoever. (2) Beal's approach, which does not c o n t a i n heat f l u x as a parameter, sheds no l i g h t on why high heat f l u x e s gave minimal or no d e p o s i t s , while a spotty d e p o s i t could always be found at zero heat f l u x . In the experiments run here, the higher the heat f l u x the higher is the average bulk f l u i d temperature. R a i s i n g the heat f l u x should t h e r e f o r e reduce v i s c o s i t y and r a i s e the Stokes stopping d i s t a n c e . A l s o , higher temperatures would r a i s e the Brownian d i f f u s i o n c o e f f i c i e n t . Consequently, the d e p o s i t i o n c o e f - f i c i e n t should be higher at higher temperatures, which is in d i r e c t c o n f l i c t with the experimental r e s u l t s . It is t h e r e f o r e concluded t h a t the f e r r i c oxide d e p o s i t i o n process s t u d i e d here i s not c o n t r o l l e d by the t r a n s p o r t mechanism proposed by BeaI . An a l t e r n a t e p o s s i b l e e x p l a n a t i o n as to why high heat f l u x e s r e s u l t i n minimal or no f o u l i n g f o r the pre- s i z e d p a r t i c l e s f o l l o w s from the work of McNab (33 ) . McNab was able to demonstrate e x p e r i m e n t a l l y tha t thermo- phores i s can e x i s t i n l i q u i d s , and that m i c r o n - s i z e ^ 129 p a r t i c l e s , when exposed to a thermal g rad ien t migrate away from the hot surface at a v e l o c i t y g iven by thermophoret ic v e l o c i t y f l u i d thermal c o n d u c t i v i t y p a r t i c l e thermal c o n d u c t i v i t y f l u i d v i s c o s i t y f l u i d d e n s i t y abso lu te temperature temperature g rad i en t An order of magnitude c a l c u l a t i o n based on equat ion (6 . 5) shows that fo r a heat f l u x of 91 ,400 and a Reynolds , number of 26,490, a p a r t i c l e i n the v i c i n i t y of the tube w a l l would migrate away from the w a l l a d i s t ance of 3.7 microns i n one second (see Appendix I I I ) . A one-micron f e r r i c oxide p a r t i c l e i n water at 70°F would migrate an average d i s t ance of 0.7 microns due to Brownian motion where u = VT = 130 and approximate ly 1.5 microns due to g r a v i t a t i o n a l s e t t l i n g dur ing the same time p e r i o d . See Perry (35) . Consequent ly , thermophoresis could w e l l be a s i g n i f i c a n t f a c t o r i n the f o u l i n g process s t ud i ed here , r e t a r d i n g f o u l i n g when the tube i s ho t t e r than the f l u i d and enhancing f o u l i n g f o r the reverse s i t u a t i o n . The work done here w i th respec t to p a r t i c l e s i z e and f o u l i n g was beset wi th many d i f f i c u l t i e s not foreseen when the i n v e s t i g a t i o n was o r i g i n a l l y p lanned. F i r s t l y , grea t d i f f i c u l t y was encountered i n de termining the s i z e of p a r t i c l e s used i n the s tudy . S i z i n g w i th m i l l i p o r e f i l t e r s i n d i c a t e d the mean p a r t i c l e s i z e of the mixed s i z e f e r r i c oxide to l i e i n the range of 10-100i_t. The m i c r o - probe photographs at a m a g n i f i c a t i o n of 500 i n d i c a t e d a p a r t i c l e s i z e of about 5 mic rons , w h i l e the scanning e l e c t r o n microscope showed the p a r t i c l e s to c o n s i s t of agglomerates wi th a b a s i c p a r t i c l e s i z e of about 0.2 microns and an agglomerate s i z e of approximate ly 3 mic rons . Consequent ly , no p r e c i s e es t imate of p a r t i c l e s i z e was obta ined f o r the m i x e d - s i z e p a r t i c l e s . Secondly , even i f a p r e c i s e es t imate of p a r t i c l e s i z e could be made, i t would not be c o r r e c t to ass ign t h i s s i z e to the d e p o s i t i n g p a r t i c l e because of the tendency of f e r r i c oxide to agglomerate . As po in ted out by Adamson (34 ) , c o l l o i d a l f e r r i c oxide p a r t i c l e s sense the presence of each o ther at great d i s t ances and 131 tend to s e t t l e out i n p l a t e l e t s . A l s o , the high d i p o l e moment of f e r r i c oxide would tend to r e s u l t i n an agglom- era te which would be r e l a t i v e l y s t a b l e . To es t imate the s i z e of such an agglomerate would be a d i f f i c u l t t a s k . For reasons o u t l i n e d above, the work done i n t h i s i n v e s t i g a t i o n w i th respect to the i n f l u e n c e of p a r t i c l e s i z e on f o u l i n g i s q u i t e i n c o n c l u s i v e . M i x e d - s i z e p a r t i c l e s gave spo t ty depos i t s at high heat f l u x e s , whereas p r e s i z e d p a r t i c l e s of 0.3-0.8u and 0 . 3 - 3 . 7 u d id no t . No adequate e x p l a n a t i o n could be o f fe red f o r these r e s u l t s . 6 .29 . In f luence of l o c a l w a l l temperature on f o u l i n g behav iour . When heat t r a n s f e r i s e f f ec t ed at cons tant heat f l u x , the c o n d i t i o n used f o r a l l runs i n t h i s i n v e s t i g a - t i o n , the w a l l temperature inc reases i n the d i r e c t i o n of f l u i d f l o w . Consequent ly , by p l o t t i n g the l o c a l f o u l i n g r e s i s t a n c e at s e l e c t e d po in t s along the tube w a l l aga ins t l o c a l w a l l temperature i t i s p o s s i b l e to determine the i n f l u e n c e of l o c a l w a l l temperature on f o u l i n g behav iour . Resu l t s f o r two d i s t i n c t l y d i f f e r e n t ope ra t ing c o n d i t i o n s are shown i n Tables XXIV and XXV, and p l o t t e d i n F igure 25. The i n t e r e s t i n g aspect of these data i s tha t fo r the lower Reynolds number, lower heat f l u x c o n d i t i o n , where 132 Table XXIV Loca l F o u l i n g Res i s tances A f t e r One Hour as a Funct ion of Tube Wall P o s i t i o n (and Hence Wall Temperature) . Heat F lux 90,000 B T U / f t 2 - h r , Re 26500. M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm Local Fou l ing Res i s tances ( f t 2 - h r - ° F / B T U ) x 1 0 s Run No. Pos i t i o n 49 50 63 R f avg Local Wall Temperature at t = 0 °F T235 2.6 3.9 2.2 2.9 174 T255 2.2 3.1 2.2 2.5 174 T275 0.4 3.1 1 .7 1 .7 182 T295 0.4 2.6 1.3 1.4 182 T315 1 .7 3.1 2.1 2.3 183 T335 2.6 3.1 2.2 2.6 178 T355 2.6 3.1 2.6 2.7 178 T375 - - - - T395 2.2 2.2 1.7 2.0 186 T415 1.7 2.2 1.3 1.7 192 133 Table XXV Loca l F o u l i n g Res is tances A f t e r One Hour as a Func t ion of Tube Wall P o s i t i o n (and Hence Wall Temperature) . Heat F lux 44,360 B T U / f t 2 - h r , Re 19,550, M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm Local F o u l i n g Res i s tances ( f t 2 - h r - ° F / B T U ) x 1 0 s Run No. P o s i t i o n 36 38 59 R f avg Loca l Wall Temperature at t = 0 °F T235 4.5 4.5 5.4 4.8 154 T255 3.6 3.6 4.5 3.9 154 T275 2.7 3.6 3.6 3.3 159 T295 1.8 2.7 2.7 2.4 159 T315 0.9 2.7 0.9 1.5 160 T335 0.9 1.8 0 0.9 157 T355 1.8 1.8 2.7 2.1 156 T375 - - - » - T395 0 1.8 2.7 1.5 162 T415 0 1.8 0 0.6 167 'I 1 1 1 y A I 1 I I I 150 160 175 185 195 LOCAL W A L L TEMPERATURE AT TIME ZERO (°F) Figure 25. Local Fou l ing Res is tance A f t e r One Hour Versus Local Wall Temperature at Time Zero . Mixed -S i ze F e r r i c Oxide Cone. 2130 ppm. -P» 135 l o c a l w a l l temperatures ranged between 154 and 1 6 7 ° F , there i s a sharp decrease i n f o u l i n g r e s i s t a n c e as a f u n c t i o n of l o c a l w a l l temperature . For the h igher heat f l u x , h igher Reynolds number s i t u a t i o n , where l o c a l w a l l tempera- tures ranged from 174 to 1 9 2 ° F , t h i s e f f e c t i s not as pronounced. The reason fo r the inve r se dependence of f o u l i n g ra te on w a l l temperature i s b e l i e v e d to be a s s o c i a t e d wi th the r educ t i on i n the s o l u b i l i t y of oxygen at the tube w a l l as the temperature r i s e s . This would tend to reduce the c o r r o s i o n ra te and thereby reduce the f o u l i n g r a t e . S ince the ra te of decrease of oxygen s o l u b i l i t y wi th temperature between 174-192°F i s on ly about o n e - t h i r d the ra te of decrease i n oxygen s o l u b i l i t y between 154-167°F [see Per ry ( 3 5 ) ] , t h i s would e x p l a i n the d i f f e r e n c e i n s lope between the two c o n d i t i o n s . These r e s u l t s f u r t h e r s t rengthen the b e l i e f tha t the f o u l i n g of 304 s t a i n l e s s s t e e l wi th f e r r i c oxide i s c o n t r o l l e d by the ra te at which oxygen can be s u p p l i e d to the tube w a l l . 6.3 Pressure Drop v s . Time F o u l i n g Behaviour During e a r l y runs , an attempt was made to use the pressure drop across the t e s t s e c t i o n as an index of f o u l i n g . U s u a l l y , t h i s r e s u l t e d i n f a i l u r e s i n c e fo r most runs i n 136 which thermal f o u l i n g o c c u r r e d , no s i g n i f i c a n t pressure drop change could be noted. However, fo r the l i n e a r f o u l - ing s i t u a t i o n encountered i n Run 64, l a r g e and s i g n i f i c a n t pressure drop changes o c c u r r e d . Resu l t s are p l o t t e d i n F igure 26, wi th r e s u l t s from Run 63 i nc luded fo r compara- t i v e purposes . The f o l l o w i n g comments apply to F igure 26. For Run 63, i n which t y p i c a l asymptot ic type f o u l i n g was d i s - p l a y e d , the change i n pressure drop i s of the same order of magnitude as the manufac turer ' s s t a t ed e r r o r of the pressure t r ansduce r . Consequent ly , the s l i g h t upward t rend may or may not be s i g n i f i c a n t . For Run 64, i n which the tube fou l ed t h e r ma l ly at a l i n e a r r a t e , the pressure drop change i s l a rge but i s not l i n e a r wi th t ime . I t i s impor- tan t to note tha t dur ing the 24 hour pe r iod between Runs 63 and 64, when f l u i d was c i r c u l a t e d at zero heat f l u x , no pressure drop change o c c u r r e d . Since thermal f o u l i n g , by the procedure used i n t h i s s tudy , i s c a l c u l a t e d from heat f l u x and w a l l temperature r e a d i n g s , there i s no record of f o u l i n g behaviour dur ing the 24 hour c i r c u l a t i n g pe r iod at zero heat f l u x . The f a c t that the pressure drop d id not change u n t i l a f t e r the heat f l u x was turned on i s evidence that l i n e a r thermal f o u l i n g i s a s s o c i a t e d wi th the heat ing of the tube, and tha t the thermal r e s u l t s obta ined to. -s CD ro cr> c 3 JO fD -s CD to to cr -s CD ro O 00 co -s vn -—o O X J 3 i—i 2 D- X fD D_ I co r. N fD I -  QJ 1 — i . to ' to m -n -n eu .—. fD O -y -s c -n -s — e — i . — i . 3 L— ° 3 ° 73 o ->•*"— X ?3 O - J . c 3 D_ 3 ro o -b O 73 O S= —I 3 3 -'• O 3 • cn fD ro h —• • o co -s o zc a> ro 3 co 00 -n<< —' 3 C TJ X c+ O 00 c+ vo -;• >• o CD •ON—I -a —I cr: -n \ o r+ — 1 -a T3 3 PRESSURE DROP (arbitrary units) O ro h 00 o ro o ro UJ f- ^ H E A T FLUX STOPPED >24 HR. CIRCULATION-NO HEAT FLUX HEAT FLUX RESTARTED • O c a z : CD CD Oi I 3 to LZ L 138 are not a t r a n s i e n t response to a p o s s i b l e f o u l i n g b u i l d - u p dur ing the 24 hour per iod at zero heat f l u x . In f a c t , the non-change i n the pressure drop readings taken immediately before and immediately a f t e r the 24 hour pe r iod i n d i c a t e s tha t any a d d i t i o n a l f o u l i n g which may have occur red dur ing t h i s pe r iod of zero heat f l u x was small compared wi th the subsequent l i n e a r f o u l i n g . 6.4 F o u l i n g Depos i t Examinat ion Resu l t s 6.4.1 Type of i n fo rma t ion o b t a i n e d . F o u l i n g depos i t s from s e l e c t e d t r i a l runs were examined ' i n s i t u , ' as w e l l as on p o l y e s t e r cores pressed from fou led tubes , us ing (1) a Zeiss light microscope, (2) a scanning electron microscope, and (3) an electron microprobe. Procedures cove r ing the p r epa ra t i on and examinat ion of samples have a l ready been g iven i n S e c t i o n 3. From the l i g h t mic roscope , the p h y s i c a l nature of the depos i t could r e a d i l y be observed . However, because of the g ranu la r nature of the d e p o s i t s , problems wi th depth of f i e l d were encountered and no attempt was made to o b t a i n photographs. 139 For a permanent r e c o r d , photomicrographs of depos i t s were obta ined wi th the scanning e l e c t r o n microscope . While t h i s inst rument g ives no problem wi th depth of f i e l d , the photo- micrographs are ' b l a c k and w h i t e . ' S ince the depos i t s themselves cou ld be h i g h l y c o l o u r e d , these photomicrographs are not e n t i r e l y s a t i s f a c t o r y . The e l e c t r o n microprobe gave three separate sources of i n f o r m a t i o n . These were: (1) An electron photomicrograph showing the physical appearance of the deposit. This is referred to as the absorbed electron image (AEI). (2) An electron photomicrograph showing the topography of the deposit. This is referred to as the back-scattered electron image (BEI). (3) X-ray intensity photomicrographs which show, in a qualitative way, the concentration of an element at any point in the deposit. In addition, through measure- ment of X-ray intensities, a quantitative analysis of the deposit was obtained. 140 6 .4 .2 Resu l t s of l i g h t and e l e c t r o n m i c r o s c o p i c examinat ion of d e p o s i t s . When f e r r i c oxide from an aqueous suspension f o u l s a 304 s t a i n l e s s s t e e l tube, l i g h t and e l e c t r o n m i c r o s c o p i c examinat ion of the d e p o s i t s , when viewed i n c r o s s - s e c t i o n , y i e l d e d the f o l l o w i n g r e s u l t s : (1) For fouling runs in which no thermal foul- ing was detected, deposits invariably were spotty, that i s , they did not cover the entire circumference or the entire length of the tube. They could, however, be quite thick at localized points, with measured thicknesses of up to 70 microns. In all cases, these deposits were black- in colour, in marked contrast to the fe r r i c oxide (hematite) feed material, which showed as a b r i l l i a n t red. (2) For fouling runs which yielded asymptotic type fouling curves, deposits were more uniformly d i s t r i - buted around the circumference and length of the tube. Thicknesses were in the range of 100 microns. These deposits consisted of a black layer adjacent to the tube wall followed by a red layer at the fluid-deposit interface. (3) For fouling runs which gave constant foul- ing rates, deposits were quite thick, 100 microns and upward, and were predominantly red in appearance. 141 Al though the c o l o u r of the depos i t s v a r i e d acco rd - ing to the type of f o u l i n g curve o b t a i n e d , the p h y s i c a l nature of the depos i t d id not v a r y . Deposi ts tended to be g ranu la r i n appearance, as shown i n F igu re 27. The pressed core samples, when viewed i n both the l i g h t microscope and the e l e c t r o n microprobe , g ive a much d i f f e r e n t appearance i n comparison to the c r o s s - s e c t i o n a l samples. F igure 28 shows a t y p i c a l photomicrograph. These samples are c h a r a c t e r i z e d by b lack ' i s l a n d s ' i n a red m a t r i x . Cores from runs which y i e l d e d no thermal f o u l i n g , asymptot ic type f o u l i n g and l i n e a r f o u l i n g a l l had the same general appearance, except that the red ma t r ix i n the l i n e a r f o u l i n g case was t h i c k e r and the re fo re more i n t e n s e . 6 .4 .3 E l e c t r o n microprobe r e s u l t s . 6 .4 .3 .1 Q u a l i t a t i v e nature of f o u l i n g d e p o s i t s . F o l l o w i n g s e l e c t e d exper imental runs , the fou led tube was removed from the heat t r a n s f e r l o o p , sec t ioned accord ing to the procedures g iven e a r l i e r and examined i n the J . E . O . L . e l e c t r o n microprobe . This r e s u l t e d i n the f o l l o w i n g in fo rma t ion concerning the d e p o s i t s : 400X Figure 27. Scanning E l e c t r o n Photomicrograph Showing the Nature of the Deposi t Re- s u l t i n g from the F o u l i n g of Aqueous F e r r i c Oxide Suspensions on 304 S t a i n - l e s s S t e e l . (The above photomicrographs are a s tereo p a i r . ) ro 143 630X Figure 28. Image of a Core Sample Obtained w i th the E l e c t r o n Mic roprobe . (Dark areas are b lack under l i g h t microscopy , grey areas are r e d . ) 144 Figure 29. E l e c t r o n Microprobe Photomicrographs of a T y p i c a l Deposi t Showing the Back S c a t t e r e d E l e c t r o n Image or Topography (Above) and the Absorbed E l e c t r o n Image or P h y s i c a l Composi- t i o n (Be low) . 145 (I.) Photographs showing the " i n s i t u " appearance of the d e p o s i t . See Fi g u r e 29. These photographs, which are e s s e n t i a l l y e l e c t r o n photomicrographs, are in the case of the upper photograph in F i g u r e 29, the topography of the d e p o s i t and in the case of the lower photograph, the p h y s i c a l appearance of the d e p o s i t . The e s s e n t i a l f e a t u r e s to note here are t h a t the f o u l i n g d e p o s i t i s rough and g r a n u l a r in nature and t h a t there i s a s e p a r a - t i o n between the tube wall and the d e p o s i t . T h i s s e p a r a - t i o n , which was present in v i r t u a l l y a l l samples examined, is b e l i e v e d to be due to the d i f f e r e n c e in the thermal expansion c h a r a c t e r i s t i c s of s t a i n l e s s s t e e l and those of the d e p o s i t . (2) X-ray i n t e n s i t y photomicrographs showing the c o n c e n t r a t i o n of a p a r t i c u l a r element at any p o s i t i o n in the sample r e l a t i v e to i t s c o n c e n t r a t i o n at any other p o s i t i o n . F i g u r e s 30-32 show t y p i c a l X-ray i n t e n s i t y photomicrographs f o r i r o n , n i c k e l , chromium and oxygen. These photomicrographs cover the same area as the e l e c t r o n photomicrographs of Fi g u r e 29. Not s u r p r i s i n g l y , the X-ray photomicrographs show the d e p o s i t to c o n t a i n the c o n s t i t u e n t s of f e r r i c o x i d e , i r o n and oxygen. However, the d e p o s i t s were a l s o found, in a l l c a s e s , to c o n t a i n n i c k e l and chromium, as t y p i f i e d by Fi g u r e 30 (lower • • • ry • J / j ^ W f l S z S P v S ^ '.i Figure 30. E l e c t r o n Microprobe X-Ray I n t e n s i t y Photo- micrographs of a T y p i c a l Deposi t Showing the D i s t r i b u t i o n of Iron (Above) and N i c k e l (Below). 147 Figure 31. E l e c t r o n Microprobe X-Ray I n t e n s i t y Photo- micrograph of a T y p i c a l Deposi t Showing the D i s t r i b u t i o n of Chromium. Figure 32. E l e c t r o n Microprobe Photomicrographs Showing fo r a T y p i c a l Deposi t the Absorbed E l e c t r o n Image (Above) and the Corresponding X-Ray I n t e n s i t y Photomicrograph D e p i c t i n g Oxygen Concen t ra t ion (Be low) . 149 photograph) and F i g u r e 31. In examining these photomicro- graphs, i t should be noted that chromium c o n c e n t r a t i o n is g r e a t e s t near the tube w a l l , and l e a s t at the edge of the d e p o s i t . The l a t t e r corresponds to the s u r f a c e in c o n t a c t with the c i r c u l a t i n g f l u i d . Nickel shows a s i m i l a r p a t t e r n to chromium, but the c o n c e n t r a t i o n d i f f e r e n c e s are not as pronounced. Iron and oxygen do not show such c o n c e n t r a - t i o n g rad i e n t s . For comparative purposes , a photomicrograph of an unfouled tube i s i n c l u d e d (F igure 33) . This was done as a p recau t ion to insure that the n i c k e l and chromium found i n the depos i t was not the r e s u l t of the specimen p r e p a r a t i o n procedure , which i n v o l v e d g r i n d i n g the tube, depos i t and p o l y e s t e r r e s i n s i m u l t a n e o u s l y . The absence of tube m a t e r i a l i n the p o l y e s t e r mat r ix (F igure 33, lower photograph, shows only background i n t e n s i t y i n the m a t r i x ) i s an i n d i c a t i o n that the specimen p repa ra t i on procedure d id not i n v a l i d a t e the r e s u l t s . 6 . 4 . 3 . 2 Q u a n t i t a t i v e a n a l y s i s of f o u l i n g depos i t s - t r ansve r se s e c t i o n s . By measuring X- ray i n t e n s i t y as a f u n c t i o n of p o s i t i o n , i t i s p o s s i b l e to ob ta in c o n c e n t r a t i o n p r o f i l e s Tube Figure 33. E l e c t r o n Microprobe Photomicrographs of a Clean Tube Showing the Back-Sca t t e red E l e c t r o n Image (Above) and the Corresponding X-Ray I n t e n s i t y Photomicrograph D e p i c t i n g Iron Concen t ra t ion (Be low) . 151 fo r the va r ious elements conta ined i n a f o u l i n g d e p o s i t . Examples of such p r o f i l e s are conta ined i n F igure 34, which shows the r e s u l t s of scans on a specimen from a t r i a l run i n which asymptot ic f o u l i n g was observed. P r o f i l s i m i l a r to these were obta ined f o r the f o l l o w i n g : (1) Run 15, in which no t h e r m a l l y d e t e c t a b l e fo u l i ng resuI ted . (2) Run 31, which r e s u l t e d in asymptotic type f o u l i n g . (3) Run 70, in which l i n e a r f o u l i n g o c c u r r e d . U n f o r t u n a t e l y , c o n c e n t r a t i o n p r o f i l e s f o r i r o n are not p a r t i c u l a r l y i n fo rma t ive s ince any i r o n r e l eased from the tube w a l l and p r e c i p i t a t e d i n the depos i t i s i n d i s t i n g u i s h a b l e from the i r o n i n the f e r r i c oxide de- p o s i t i n g from suspens ion . This problem does not e x i s t wi th n i c k e l and chromium. To f a c i l i t a t e compar ison, chromium p r o f i l e s alone have been r e p l o t t e d fo r each type of run i n F igure 35. F igure 35 shows t ha t fo r spo t ty depos i t s (no thermal f o u l i n g de t ec t ab l e ) chromium concen- t r a t i o n at the tube w a l l i s q u i t e h i g h , about 8% by we igh t , and shows a s l i g h t c o n c e n t r a t i o n g rad i en t throughout the d e p o s i t . The chromium p r o f i l e fo r the asymptot ic type Approximate C o n c e n t r a t i o n as I n d i c a t e d by X-Ray I n t e n s i t y ( C o u n t s / 1 0 seconds) o -4- o o o o o -4- o o o -+- > 7> O X cn O o to > o m 73 o — cn o O i o m -o o CO -H ro o' — o > o ro m cn, o o ya o z CO CO ^ o O Z9L DISTANCE F L U I D - D E P O S I T INTERFACE TO D E P O S I T - T U B E INTERFACE + Figure 35. Chromium Concent ra t ion P r o f i l e s Thermal Fou l ing Detec ted , Run 31 Run 70 - L i n e a r Type Fou l ing (Di f o r Depos i t s from Run 1 5 - No _, - Asymptot ic F o u l i n g , and stance Sca le i s A r b i t r a r y ) . 0 0 1 54 f o u l i n g depos i t i s much more pronounced than f o r the spo t ty d e p o s i t . At the tube w a l l , the two p r o f i l e s approach each o t h e r . At the d e p o s i t - f l u i d i n t e r f a c e , however, the chromium c o n c e n t r a t i o n of the asymptot ic type depos i t approaches z e r o , w h i l e the spo t ty depos i t i s i n excess of 4%. The l i n e a r f o u l i n g type of depos i t i s c h a r a c t e r i z e d by r e l a t i v e l y low concen t r a t i ons of chromium, below 1%, and a g r a d i e n t from the tube w a l l to the d e p o s i t - f l u i d i n t e r f a c e which i s not p a r t i c u l a r l y pronounced. The n i c k e l c o n c e n t r a t i o n p r o f i l e s were found to behave s i m i l a r l y , but c o n c e n t r a t i o n l e v e l s were lower than f o r chromium and g rad ien t s were not as d i s t i n c t . 6 . 4 . 3 . 3 Q u a l i t a t i v e and q u a n t i t a t i v e a n a l y s i s of depos i t s - core samples. For purposes of a n a l y z i n g the sur face of depos i t s i n contac t w i th the tube w a l l , core samples c o n t a i n i n g the f o u l i n g depos i t s were examined i n the e l e c t r o n m i c r o - probe. To i l l u s t r a t e the nature of the depos i t when viewed i n t h i s manner, s e c t i o n s from Run 70, a l i n e a r f o u l i n g run , have been s e l e c t e d as an example. F igures 36-39 are a s e r i e s of photomicrographs showing the p h y s i c a l appearance of the core samples (upper photomicrograph) , and the r e l a - t i v e concen t r a t ions of i r o n , chromium, n i c k e l and oxygen Figure 36. P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of Chromium (Lower Photomicrograph) . Figure 37. P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of N i c k e l (Lower Photomicrograph) . Figure 38. Physical Appearance of Core Sample (Upper Photomicrograph) and Relative D i s t r i b u t i o n of Iron (Lower Photomicrograph). 1 58 Figure 39. P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of Oxygen (Lower Photomicrograph) . 159 conta ined i n the depos i t ( lower photomicrograph) . As mentioned i n Sec t ion 6 . 4 . 2 . , the b lack areas of F igure 36, when viewed i n the l i g h t microscope , appear b l a c k , and the grey areas have the c h a r a c t e r i s t i c red appearance of f e r r i c o x i d e . From F igure 36-39 i t may be seen tha t the b lack i s l a n d s , though p r i m a r i l y i r o n , are r i c h i n chromium and con t a in s i g n i f i c a n t , but smal 1, concen t r a t i ons of n i c k e l . There i s some evidence tha t po r t i ons of these b lack areas are d e f i c i e n t i n oxygen. However, oxygen p r o f i l e s cove r ing these a reas , gave c o n f l i c t i n g r e s u l t s . S ince oxygen, because of i t s low atomic number, i s not determined a c c u r a t e l y w i t h the microprobe , the above evidence i s cons ide red i n c o n c l u s i v e . In order to p lace the i n fo rma t ion conta ined i n F igures 36-39 on a q u a n t i t a t i v e b a s i s , scans were made across core samples from Run 70. R e s u l t s , which appear as F igure 40, show the f o l l o w i n g : (1) N i c k e l - r i c h a r e a s o n l y e x i s t i n a r e a s h a v i n g b o t h a h i g h c h r o m i u m and a h i g h i r o n c o n t e n t . (2) C h r o m i u m - r i c h a r e a s e x i s t o n l y i n c o n j u n c t i o n w i t h i r o n - r i c h a r e a s . (3) a b l e c h r o m i um I r o n - r i c h a r e a s c a n o r n i eke I p r e s e n t . e x i s t w i t h o u t any d e t e c t - ...g — | » I I 100 200 300 400 500 100 2fJ0 300 4~fr5 56o APPROXIMATE DISTANCE ACROSS SAMPLE (MICRONS) Figure 40. R e l a t i v e I n t e n s i t i e s of Iron and Chromium, and N i c k e l and Chromium for a Scan over a Core Sample from L i n e a r Fou l ing Run 70 (Numbers i n d i c a t e corresponding l o c a t i o n s ) . 161 These r e s u l t s add f u r t h e r suppor t ing evidence to the view tha t the f o u l i n g of 304 s t a i n l e s s s t e e l by f e r r i c oxide i s a s s o c i a t e d wi th c o r r o s i o n i n c r e v i c e s formed between the depos i t and the tube w a l l . Regular t r ansver se s t r i a t i o n s were observed on core samples and these were sugges t ive of depos i t c r a c k i n g due to thermal s t r e s s . 6 .4 .4 Examinat ion f o r p i t t i n g of tube used i n f o u l i n g runs 32-70. Because the presence of n i c k e l and chromium i n f o u l i n g depos i t s suggests c o r r o s i o n , a p o r t i o n of the t e s t s e c t i o n used i n Runs 32-70 was examined f o r evidence of p i t t i n g . The procedure used was as f o l l o w s : A s e c t i o n of the fou led tube was honed wi th a bronze brush to remove the d e p o s i t , and then s p l i t l o n g i t u d i n a l l y to expose the inne r s u r f a c e . L i k e w i s e , a s e c t i o n of unused tube was honed and s p l i t to serve as a s t andard . A f t e r c l ean ing them wi th a l c o h o l i n a son ic ba th , both specimens were examined i n a scanning e l e c t r o n microscope and s te reo photomicrographs o b t a i n e d . These are shown i n F igure 41 and 42 r e s p e c t i v e l y . Resu l t s c l e a r l y show s l i g h t but unmistakable p i t t i n g i n the sample used f o r the f o u l i n g runs . The m a t e r i a l i n the p i t s i s f o u l i n g depos i t ( i n c l u d i n g c o r r o s i o n products ) immobi l i zed by p o l y e s t e r r e s i n . Probe examinat ion 162 200X Figure 41. Scanning E l e c t r o n Photomicrographs Showing the Appearance of the Tube Wall of a Tube Used i n 38 F o u l i n g Runs. (The above photomicrographs are a s t e reo p a i r . ) 163 Figure 42, Scanning Electron Photomicrographs Showing the Appearance of a Clean Tube Never Used in Fouling Experiments. (The above photomicrographs are a stereo pair.) 164 showed i t to be r i c h i n chromium and n i c k e l . The unused standard specimen shows an i r r e g u l a r s u r f a c e , but no evidence o f p i t s . 6 .4 .5 Depos i t c r y s t a l s t r u c t u r e . In order to determine i f the b lack m a t e r i a l observed i n core samples could be magneti te or some other s p i n e l , sc rap ings were analyzed using X- ray d i f f r a c t i o n t echn iques . Resu l t s f a i l e d to i n d i c a t e the presence of a m a t e r i a l having a s p i n e l s t r u c t u r e . In a d d i t i o n , a sample of depos i t honed from a tube was t e s t ed fo r magnetic p ro- p e r t i e s us ing a 30 k i l ogaus s magnet. No response was obta ined i n d i c a t i n g the absence of magnet i te . I t i s t he re - fore b e l i e v e d that b lack m a t e r i a l observed i n the samples, r a the r than being magnet i te , r e s u l t s from the i n c o r p o r a t i o n of chromium i n t o the depos i t probably as an oxide or hydroxi de. Chapter 7 CORROSION CONTROLLED FOULING - A PROPOSED HYPOTHESIS 7.1 O u t l i n e of Working Hypothesis The presence of n i c k e l and chromium i n the f o u l i n g d e p o s i t s , the presence of p i t s i n the tube w a l l , and the f a c t tha t use of an oxygen scavenger reduces the f o u l i n g r a t e , a l l po in t to f e r r i c oxide f o u l i n g of 304 s t a i n l e s s s t e e l as being i n t i m a t e l y a s s o c i a t e d wi th s t a i n l e s s s t e e l c o r r o s i o n . In order to e x p l a i n the f o u l i n g r e s u l t s obta ined i n t h i s i n v e s t i g a t i o n , a hypothes is based upon c r e v i c e c o r r o s i o n theory has been developed. This hypothes is i s presented i n a general form below, expanded upon i n Sec t ions 7.2 and 7 . 3 , and used as the bas i s f o r two mathematical models i n S e c t i o n 7 .4 . The hypothes is e x p l a i n i n g f o u l i n g of 304 s t a i n - l e s s s t e e l wi th f e r r i c oxide i s as f o l l o w s : ( I ) The i n i t i a l process involves the physical adhesion of ferric oxide particles to the stainless steel. The transport of ferric oxide particles to the tube wall 165 166 i s b e l i e v e d to be c o n t r o l l e d by such v a r i a b l e s as p a r t i c l e c o n c e n t r a t i o n , flow rate and heat f l u x . The r e l e a s e of p a r t i c l e s from the tube wall is b e l i e v e d to be a f u n c t i o n of the shear s t r e s s and the energy of adhesion between the d e p o s i t i n g p a r t i c l e and the s u b s t r a t e . Watkinson and E p s t e i n ( 1 3 ) , and Kern and Seaton ( 6 ) , use t h i s approach to develop t h e i r f o u l i n g models. (2) Because spotty d e p o s i t s have been found on the tube w a l l , p a r t i c u l a r l y at low f e r r i c oxide concen- t r a t i o n s , i t is b e l i e v e d t h a t the f o u l i n g process is not one of uniform growth in d e p o s i t t h i c k n e s s . Rather, as is the case f o r c r y s t a l l i z a t i o n , l o c a l i z e d d e p o s i t s are f i r s t formed and these serve as n u c l e a t i o n s i t e s f o r f u r t h e r f o u l i n g . These s i t e s then grow in area and t h i c k n e s s , e v e n t u a l l y forming a d e p o s i t which completely covers the heat t r a n s f e r s u r f a c e . Consequently, during much of the f o u l i n g process there can be a r e l a t i v e l y t h i c k f o u l i n g d e p o s i t in one area which i s in c l o s e p r o x i m i t y to another area having no f o u l i n g d e p o s i t . T h i s r e s u l t s in d i f f e r e n - t i a l oxygen c o n c e n t r a t i o n c e l l s on the tube wall with f o u l e d tube s u r f a c e s being less a c c e s s i b l e to d i s s o l v e d oxygen than unfouled s u r f a c e s . T h i s s e t s up c r e v i c e c o r r o s i o n in which the f o u l e d areas undergo an anodic r e a c t i o n r e s u l t i n g in tube wall c o r r o s i o n , and the unfouled 167 areas undergo the cathodic reaction of oxygen reduction. The corrosion products generated under the fouling deposit diffuse through the deposit and become incorporated into i t chemically, thereby serving to immobilize i t . (3) Provided the cathodic reaction of oxygen reduction can be maintained, the fouling deposit will continue to grow. If, however, the unfouled area becomes reduced in s i z e , the cathodic reaction rate f a l l s . This causes a drop in corrosion rate which in turn reduces the rate at which the deposit becomes immobilized. The f o u l - ing rate then declines as the deposition and release of p a r t i c l e s to and from the fouling deposit come into ba I ance. 7 .2 Fundamentals of C r e v i c e C o r r o s i o n Accord ing to Fontana and Greene (37) , s t a i n l e s s s t e e l s are p a r t i c u l a r l y prone to c r e v i c e c o r r o s i o n i n aqueous media provided the f o l l o w i n g c o n d i t i o n s p r e v a i l : (1) There i s , on the surface of the metal, a deposit which can create a stagnant area. (2) There exists in the f l u i d an aggressive ion such as the chloride ion. Trace amounts are s u f f i c i e n t . 168 (3) A relatively large cathodic area is ava i l - able to consume electrons generated at the anode. A l l of these c o n d i t i o n s are met i n the f e r r i c o x i d e - s t a i n - l e s s s t e e l system s tud ied here . The spot ty f o u l i n g depos i t s pos tu l a t ed and f r equen t ly observed create stagnant a reas , w i th the unfouled areas a v a i l a b l e as a cathode. Since tap water was used fo r the exper iments , there i s a source o f c h l o r i d e i o n . Under the above c o n d i t i o n s , s t a i n l e s s s t e e l corrodes accord ing to the f o l l o w i n g two e l e c t r o d e r e a c t i o n s : anode M -»- M n + + ne ••- (M = Fe, Ni , Cr) cathode 0 2 + 2H 20 + 4e * 40H" o v e r a l l M + 0 2 + 2H 20 - M n + + nOH" O r d i n a r i l y , these r e a c t i o n s go on a l l over the s t a i n l e s s s t e e l s u r f a c e , and exposed metal i s q u i c k l y a t tacked to form a metal i o n . This metal ion then forms an i n s o l u b l e oxide on the s t a i n l e s s s t e e l surface which p ro tec t s the metal from the co r rod ing environment: M n + nOH" •> M(0H) n 169 In the stagnant area under a d e p o s i t , however, the oxygen soon becomes deple ted (see F igure 43 ) . Conse- q u e n t l y , the metal ions produced do not form o x i d e s , but remain i n the stagnant area as positive ions, which are n e u t r a l i z e d by the m i g r a t i o n of the mobile c h l o r i d e ions i n t o the c r e v i c e . The c h l o r i d e ion then a t t acks the p r o t e c t i v e oxide f i l m exposing f resh metal su r face .^ There i s then w i t h i n the c r e v i c e an anodic a rea , connected through the metal wi th a l a rge ca thod ic area over the tube sur face which has no d e p o s i t . C r e v i c e c o r r o s i o n the re fore proceeds wi th a b u i l d - u p of metal c h l o r i d e w i t h i n the c r e v i c e . This metal s a l t then hydro lzes i n water accord ing to the r e a c t i o n : M + C l " + H 2 0 -»- MOH + + H + C l " The net r e s u l t i s tha t the metal ion i s removed from s o l u t i o n w i t h i n the c r e v i c e and the hydrogen and c h l o r i d e ions remain and promote fu r the r a t t a c k . ^The reason fo r a c c e l e r a t e d c o r r o s i o n of s t a i n l e s s s t e e l i n the presence of c h l o r i d e ion has long been a subjec t of concern to c o r r o s i o n s c i e n t i s t s . A cu r ren t t heo ry , accord ing to V i j h (38 ) , i s that the c h l o r i d e ion penetrates the l a t t i c e to form a ch loro-complex of i r o n or chromium which i s s u s c e p t i b l e to d i s s o c i a t i o n i n s o l u t i o n . The c h l o r i d e ion i s thus regenerated and t r ace amounts are the re fo re capable of " p o r t e r i n g " s u b s t a n t i a l amounts of m e t a l l i c ions from the metal s u r f a c e . 170 C r e v i c e C o r r o s i o n - L a t e r Stage F igure 43. Mechanism of C r e v i c e C o r r o s i o n Fontana and Greene (37) . Accord ing to 171 7.3 Proposed Mechanism fo r F e r r i c Oxide Fou l ing of 304 S t a i n l e s s S tee l In order to e x p l a i n how the working hypothes is o u t l i n e d i n S e c t i o n 7.1 leads to the type of f o u l i n g versus time behaviour obta ined in t h i s i n v e s t i g a t i o n , F igure 44 has been cons t ruc ted showing a t y p i c a l f o u l i n g c u r v e . Superimposed on t h i s f i g u r e are sketches of the f o u l i n g depos i t as p r e d i c t e d by the hypothes is f o r va r ious stages of the f o u l i n g p rocess . The f i g u r e , which i s not to s c a l e , i s d i v i d e d i n t o three regions as f o l l o w s : (1) An i n d u c t i o n region (2) A f o u l i n g reg i on (3) An asymptotic r e g i o n . During the i n d u c t i o n p e r i o d , i t i s cons idered tha t f e r r i c oxide p h y s i c a l l y adheres to the tube w a l l , forming c r e v i c e c o r r o s i o n s i t e s . During t h i s p e r i o d , there i s too much unfouled w a l l present fo r the f o u l i n g depos i t to cause de t ec t ab l e changes i n f o u l i n g r e s i s t a n c e . Since no app rec i ab l e i n d u c t i o n per iod was a c t u a l l y observed dur ing t h i s i n v e s t i g a t i o n f o r runs e x h i b i t i n g thermal f o u l i n g , i t i s concluded tha t t h i s pe r iod was of shor t du ra t i on i n the present exper iments . The reason f o r pos tu- l a t i n g i t s e x i s t e n c e i s tha t c r e v i c e c o r r o s i o n cannot occur u n t i l a c r e v i c e s i t e has been formed. INDUCTION REGION Fe 2?3 UNFOULED WALL [TUBE WALL T H E R M A L FOULING REGION B A R E W A L L C r A N D N i , R I C H 3LACK D E P O S T O F F e , C r A N D N i O X I D E S O R H Y D R O X I D E S A S Y M P T O T I C REGION F e 2 0 3 TUBE WALL B L A C K D E P O S I T . ( N O U N F O U L E D T U B E W A L L P R E S E N T ) Figure 44. Idealized Fouling Curve Various Times According T I M E *~ Illustrating the Nature of the Fouling to the Crevice Corrosion Hypothesis. Deposit at 173 In the f o u l i n g r e g i o n , c r e v i c e c o r r o s i o n occurs as o u t l i n e d i n Sec t ion 7 . 2 , wi th the c o r r o s i o n product becoming inco rpo ra t ed i n t o the d e p o s i t . During t h i s p e r i o d , f o u l i n g can be detected the rma l ly and proceeds at a de- c l i n i n g ra te as the depos i t grows, thereby reducing the unfouled w a l l area and p r o g r e s s i v e l y b l o c k i n g the r educ t i on o f oxygen to hydroxl i o n s . In the asymptot ic r e g i o n , the tube w a l l has fou led to such an extent tha t oxygen r educ t i on i s e l i m i n a t e d No f u r t h e r c o r r o s i o n occurs and the d e p o s i t i o n and r e l ease of p h y s i c a l l y held f e r r i c oxide come i n t o ba lance . There i s a great deal of evidence to support the proposed f o u l i n g mechanism: (1) F e r r i c oxide r e a d i l y adheres to s t a i n l e s s s t e e l , as can be observed by p r e p a r i n g a s l u r r y of f e r r i c oxide in a s t a i n l e s s s t e e l beaker. A l s o , s i n c e the s u r f a c e of s t a i n l e s s s t e e l s c o n s i s t s of i r o n , n i c k e l and chromium oxides which have large d i p o l e moments, the large d i p o l e moment of f e r r i c oxide would p r e d i c t a b l y r e s u l t in a strong p h y s i c a l bond. Hence a b r i e f i n d u c t i o n period i n v o l v i n g p h y s i c a l adhesion of f e r r i c oxide to the s u r f a c e i s not an unreasonable assumption. (2) The c o e x i s t e n c e of r e l a t i v e l y t h i c k d e p o s i t s and c l e a n wall areas s i d e by s i d e is a l s o a reasonable 174 a s s u m p t i o n . Tubes i n w h i c h no t h e r m a l f o u l i n g was d e t e c t e d showed s p o t t y d e p o s i t s w i t h t h i c k n e s s e s up t o 70 m i c r o n s . A l s o , i n t i m e l a p s e f i l m s o f c a l c a r e o u s f o u l i n g o f w a t e r - c o o l e d h e a t e x c h a n g e r s , T a b o r e k ( 1 5 ) shows c o n c l u s i v e l y t h a t u n f o u l e d a r e a s do c o e x i s t w i t h r e l a t i v e l y t h i c k d e - p o s i t s . T h i s p o i n t i s e s s e n t i a l t o t h e h y p o t h e s i s p r o p o s e d h e r e , s i n c e u n i f o r m d e p o s i t i o n w o u l d i m p l y t h a t t h e d e p o s i t c o u l d n o t grow beyond a s i n g l e l a y e r , t h u s l e a v i n g no c l e a n w a l l a r e a t o p r o m o t e o x y g e n r e d u c t i o n . ( 3 ) The e x i s t e n c e o f an a s y m p t o t i c r e g i o n i n w h i c h c r e v i c e c o r r o s i o n i s e s s e n t i a l l y b l o c k e d i s a l s o r e a s o n a b l e , s i n c e i t has been shown e x p e r i m e n t a l l y t h a t t h e f o u l i n g r a t e c a n be r e d u c e d w i t h an o x y g e n s c a v e n g e r and i n c r e a s e d by h o n i n g a p o r t i o n o f t h e t u b e , t h e r e b y i n c r e a s i n g t h e c l e a n w a l l a r e a . I t s h o u l d be p o i n t e d o u t h e r e t h a t t h e d e p o s i t i t s e l f c a n n o t s e r v e as a s i t e f o r t h e c a t h o d e r e a c t i o n s i n c e t h e f e r r i c o x i d e , when t e s t e d , was f o u n d t o be e x t r e m e l y n o n - c o n d u c t i n g e l e c t r i c a l l y . ( 4 ) The e x i s t e n c e o f l i n e a r f o u l i n g l e n d s s u p p o r t t o t h e h y p o t h e s i s s i n c e a p r e r e q u i s t e f o r l i n e a r f o u l i n g i s t h a t an i n i t i a l l y f o u l e d t u b e be s u b j e c t e d t o z e r o h e a t f l u x and t h e n h e a t e d i n o r d e r t o o b t a i n t h e l i n e a r f o u l i n g c o n d i t i o n . Such a p r o c e d u r e i s b e l i e v e d t o p r o d u c e c r a c k s 175 in the d e p o s i t due to thermal s t r e s s , thereby making the tube wall a c c e s s i b l e to d i s s o l v e d oxygen from the f l u i d . Since under l i n e a r f o u l i n g the wall temperature i n c r e a s e is large ( f o r Run 64, I IF° in one h o u r ) , i t i s reasonable to assume tha t c r a c k i n g of the d e p o s i t w i l l c o n t i n u e , and t h a t d i s s o l v e d oxygen w i l l continue to be t r a n s p o r t e d to the tube wall and the c o r r o s i o n r e a c t i o n thereby ma i nta i ned. 7.4 Mathematical Models 7.4.1 Model I . Let N R = the number of f e r r i c oxide p a r t i c l e s i n the depos i t held by p h y s i c a l fo rces per u n i t area of tube s u r f a c e . and Let Ng = the number of f e r r i c oxide p a r t i c l e s i n the depos i t held by chemical fo rces due to the p r e c i p i t a t i o n of c o r r o s i o n product on and around the p a r t i c l e s per u n i t area of tube s u r f a c e . I f i t i s assumed that only p a r t i c l e s of the N R type are o r i g i n a l l y depos i ted and subjec t to r e l e a s e , and tha t p a r t i c l e s of the N g type are a l l formed from N R type par- t i c l e s a l ready i n the depos i t and tha t when formed, Ng type p a r t i c l e s are not sub jec t to r e l e a s e , the f o l l o w i n g d i f f e r e n t i a l equat ion can be w r i t t e n : 176 dN R dN B where (|>D = ra te of d e p o s i t i o n of type N R p a r t i c l e s per u n i t area <j>R = ra te of r e l ea se of type N R p a r t i c l e s per u n i t area dN B —j-r- = r a te of convers ion of type N R p a r t i c l e s to type Ng p a r t i c l e s per u n i t area I f N T represents the t o t a l number of p a r t i c l e s making up the depos i t per u n i t a r ea , then N T = N R + N B (7 .2) Equat ion (7 .1) then becomes dNj tha t i s , the ra te of accumulat ion of a l l p a r t i c l e s i n the depos i t i s the d i f f e r e n c e between the d e p o s i t i o n and r e l ease ra tes of type N R p a r t i c l e s o n l y . Equat ion (7 .3) has been used by many i n v e s t i g a t o r s , no tab ly Kern and Seaton ( 6 ) , 177 Watkinson and Eps t e in (13) , Taborek et al. (1) and Char!esworth (11) , as the s t a r t i n g po in t fo r t h e i r models. In the Kern-Seaton model, fo r example, N T i s i n t e r p r e t e d as being p r o p o r t i o n a l to the mean depos i t t h i c k n e s s , x , rj>D = KiCW and <j)R = K 2 T X , where K x and K 2 are constants C = p a r t i c u l a t e concen t r a t i on W = mass flow ra te x = shear s t r e s s Then ^ = KXCW - K 2 x x (7 .4) or x = J ^ j j _ e - . K * T t ] (1 .6) In the Kern-Seaton approach, the assumption i s made that the f o u l i n g th i ckness i s uniform and that the d e p o s i t i o n ra te i s not a f u n c t i o n of f o u l i n g depos i t t h i c k - ness but tha t the r e l ease ra te i s . In the mathematical models developed here , the assumption that the d e p o s i t i o n r a t e , <f>n, i s independent 178 of the number of p a r t i c l e s in the d e p o s i t , i s r e t a i n e d . The r e l ea se term however i s not assumed to be p r o p o r t i o n a l to the t o t a l number of p a r t i c l e s i n the d e p o s i t , N T , but to the number of p a r t i c l e s i n the depos i t held by p h y s i c a l (as opposed to chemica l ) f o r c e s , N R . The form of the r e l ease term i s r e t a i n e d , and i t i s assumed tha t (f>R = K 2 T N r . The d i f f e r e n t i a l equat ion d e s c r i b i n g c o r r o s i o n c o n t r o l l e d f o u l i n g then becomes dN T sr = * D - K * T N R < 7 ' 5 > Equat ion (7 .5) can r e a d i l y be so lved provided a f u n c t i o n a l r e l a t i o n s h i p between Ny and N R can be found. To f i n d t h i s r e l a t i o n s h i p , equat ion (7 .5) i s d i f f e r e n t i a t e d to y i e l d d 2 N T dN R "TET = " K 2 T"dF ( 7 - 6 ) Since N y = N R + N g (7 .2) dN R dN T dN g " d F = - f J T _ I T T ( 7 * 7 ) 1 79 S u b s t i t u t i n g t h i s r e s u l t i n t o equat ion (7 .6) g ives d 2 N T K 2T ~dF dN B dt (7 .8) Accord ing to the hypothes is concerning c o r r o s i o n c o n t r o l l e d f o u l i n g presented i n Sec t i on 7 . 1 , the ra te of format ion of immobi l i zed p a r t i c l e s N g i s c o n t r o l l e d by the amount of unfouled w a l l area a v a i l a b l e to serve as a cathode fo r oxygen r e d u c t i o n . The assumption i s the re fore made tha t 0^ = OS dt So So (7 .9) where h = ra te constant U m = number of unfouled s i t e s per u n i t area S 0 = t o t a l number of s i t e s per u n i t a r ea . S u b s t i t u t i o n of equat ion (7 .9) i n t o equat ion (7 .8) g ives 180 d 2 N dN T hU ID d t 2 = - K 2 T dt So (7.10) The problem i s thereby reduced to f i n d i n g a r e l a t i o n s h i p between the f r a c t i o n of unfouled area of the tube, U m / S 0 , and the t o t a l number of p a r t i c l e s forming the d e p o s i t , N T . p r o b a b i l i t y method s i m i l a r to tha t employed by Langmuir (39) i n h is adso rp t ion s tud ie s i s adopted. In t h i s method, a u n i t area of the metal surface i s d i v i d e d i n t o an a r b i t r a r y number of adhesion s i t e s , S 0 . I t i s then assumed tha t the p r o b a b i l i t y that any s p e c i f i e d s i t e w i l l be occupied by a d e p o s i t i n g p a r t i c l e i s p r o p o r t i o n a l to the i n t e r a c t i o n energy (the energy of adhesion) between the p a r t i c l e and the surface of the s i t e . I f U m / S 0 i s the f r a c t i o n of unfouled s i t e s on the tube, the p r o b a b i l i t y of a d e p o s i t i n g p a r t i c l e occupying an unfouled s i t e i s To f i n d an express ion r e l a t i n g U m / S 0 to N a P pm = A E pm S (7.11) where 181 pm p r o b a b i l i t y of a d e p o s i t i n g p a r t i c l e occupying any s i t e A = p r o p o r t i o n a l i t y constant E = energy of adhesion between a p a r t i c l e pm and the tube w a l 1 . S i m i l a r l y , the p r o b a b i l i t y of a d e p o s i t i n g p a r t i c l e occupying a s i t e on the f o u l i n g depos i t i s P p d = A E pd U ' So (7.12) Since a p a r t i c l e which depos i t s must occupy e i t h e r a s i t e on the depos i t or a s i t e on the unfouled tube w a l l P . + P = 1 pd pm (7.13) Hence A E pd U 1 DL ' So H E J = l pm So (7.14) E l i m i n a t i n g A between equat ions (7.14) and (7.11) g ives 182 , _ m pm pm U m E n m + [So - U m ] E , r m pm L m J pd (7.15) I f at any time there are N-j. p a r t i c l e s i n the d e p o s i t , and U"m unfouled s i t e s , then an a l t e r n a t e way of express ing the p r o b a b i l i t y that a d e p o s i t i n g p a r t i c l e w i l l s e t t l e on the unfouled metal i s g iven by the d i f f e r e n t i a l equat ion dU. m = P „ m (7 .16) dN T pm Equat ing t h i s express ion fo r Pp m w i th tha t g iven by equat ion (7.15) y i e l d s dU U E m = m pm ( 1 , 7 % d N T Ll E n m + (S 0 - U J E . T m pm m pd I n t e g r a t i n g equat ion (7.17) us ing the i n i t i a l c o n d i t i o n tha t at N T = 0, U m = 0, y i e l d s 1 • E m So - 1 • Um " • So ^ In " u m " So pm • pmj pm (7.18) 183 I f i t i s assumed that and Ep^ are very nea r ly e q u a l , then 1 . 1 E So - 1 - I P mJ P m . m (7.19) Equation (7.18) then becomes N_ E - _ I . _££ s E A U m = S 0 e p d m (7.20) g ives S u b s t i t u t i o n of t h i s r e s u l t i n t o equat ion (7 .10) d 2 N T dN T + K 2T- 1 d t 2 dt - K 2 T h e So pd = = 0 (7.21) This d i f f e r e n t i a l equat ion i s n o n - l i n e a r and cannot be so lved i n terms of f a m i l i a r f u n c t i o n s . An approximate s o l u t i o n can be obta ined by express ing the exponen t ia l term as a s e r i e s and t r u n c a t i n g a f t e r two terms i n the s e r i e s , tha t i s , 184 N_ E - J L . _EH1 K 2 x he p d = K2 t h 1 - N T E , S ° E pd 2 1 E ~ 2 T pm _ • • • So Epd] K 2 xh N T E ~ 1 _ _ I . _p_m S 0 E pdj (7.22) S u b s t i t u t i n g t h i s approximat ion i n t o equat ion (7.21) g ives d 2 N T  d N T  E n m  N T K 2 T _ ^ + K 2 T h _ M . _ I = K 2 T h (7.23) The s o l u t i o n to t h i s d i f f e r e n t i a l equat ion i s of the form (x + /x*-4y)t . (x - /x z-4y)t , r ' _ + < + L 3 N T = C x e z + C 2 e 2 (7.24) where x = K 2 x , y = K 2 xh • • -1 E pd  S ° 185 For the i n i t i a l c o n d i t i o n s Ny = 0 at t = 0 and dN T d t t = 0 the constants in equat ion can be r e a d i l y e v a l u a t e d . A major disadvantage of the a n a l y t i c a l s o l u t i o n to equat ion (7.23) o f fe red by equat ion ( 7 . 2 4 ) , however, i s tha t the approximat ion upon which equat ion (7.23) i s based, namely N_ E So E , N T E n P d ~ i _ L . Pm S ° E pd N T E i s on ly v a l i d i f * T T 2 ^ « 1 S ° E pd As f o u l i n g proceeds and Ny i n c r e a s e s , the above i n e q u a l i t y becomes p r o g r e s s i v e l y more i n v a l i d . Consequent ly , i n g e n e r a l , equat ion (7.24) cannot be r e l i e d upon to h o l d , and the re fo re i t o f f e r s no advantage over a numerical s o l u t i o n of equat ion ( 7 . 2 1 ) . 186 7 .4 .2 Model I I . I f i t i s assumed tha t c r e v i c e s must f i r s t be formed before thermal f o u l i n g can be detected, or a l t e r n a t e l y tha t f e r r i c oxide d e p o s i t i o n and r e l ease ra tes are very much h igher than the ra te at which f e r r i c oxide p a r t i c l e s become immobi l i zed to form a permanent s t r u c t u r e , then an i n d u c t i o n pe r iod fo l l owed by a time dependent f o u l i n g pe r iod can be assumed. I f , dur ing the i n d u c t i o n p e r i o d , no i m m o b i l i z a t i o n of f e r r i c oxide i s cons idered to o c c u r , equat ion (7 .1) can be w r i t t e n as I n t e g r a t i n g , using the i n i t i a l c o n d i t i o n tha t N R = 0 at 9 = 0 , g ives T e = *D ~ K * T N R (7 .25) where 6 = time of i n d u c t i o n (7.26) I f K 2 x0 i s assumed to be l a r g e , the number of mobi le f e r r i c oxide p a r t i c l e s i n the depos i t w i l l be a cons tan t g iven by 187 N R = K £ < 7 - 2 7 > Assuming, as i n Model I , tha t the uncovered metal f r a c t i o n can be expressed as N _ E _ _ L . _p_m = E S ° E P D (7 .20) and that the ra te of p a r t i c l e i m m o b i l i z a t i o n i s g iven by d N D h U , _§l = 7.9 dt So where t = time of thermal f o u l i n g ( f o l l o w i n g i n d u c t i o n per iod) then combining equations (7.20) and (7 .9) r e s u l t s i n N _ E I . pm dN R S ° E „ H -HT = h e  ( 7 ' 2 8 ) Since N T = N B + N R (7 .2) 188 combining equat ions ( 7 . 2 8 ) , (7 .2) and (7.27) y i e l d s D . J _ . pm B # pm dN R " K 2 T S 0 E " S 0 ' E , P- = h e P d • e P d (7.29) dt I n t e g r a t i n g equat ion ( 7 . 2 9 ) , using as the i n i t i a l c o n d i t i o n that N g = 0 at t = 0, leads to the r e s u l t N R = S o - ^ - In B Epm <- E P d - Soir^- * c Pd ^ 0 £ pm h e K 2 x p m x t + 1 (7.30) S ince N T = N R + Ng, and N R K 2 T i f f o l l o w s tha t S o ^ - ln\ pm pm - So h e E K 2 T pm x t + 1 (7.31) 189 I t should be noted that when t = 0, K 2 T = N R (7 . which i s c o n s i s t e n t wi th the i n i t i a l c o n d i t i o n , Ng = 0 at t = 0. 7 .4 .3 L i n e a r f o u l i n g . As s t a t ed i n Sec t i on 6 . 2 . 6 , l i n e a r f o u l i n g i s b e l i e v e d to be a r e s u l t of expanding the tube to c rea te uncovered metal s i t e s which are p ro tec ted from mobi le f e r r i c oxide by the d e p o s i t , but can s t i l l serve as s i t e s fo r the cathode r e a c t i o n Under such a h y p o t h e s i s , U ^ S o , the f r a c t i o n of uncovered s i t e s i s constant wi th t ime . Thus 0 2 + 2H 20 + 4 e -> 4(0H") dN B h U m (7 dt So i n t e g r a t e d d i r e c t l y to ob t a in 190 h IJ N B = * + C L ( 7 1 o When t = 0, N g = 0, and hence C x = 0. The t o t a l number of p a r t i c l e s on the s u r f a c e , Ny, then becomes Here, c o n s i s t e n t w i th r e s u l t s , thermal f o u l i n g shows a l i n e a r dependence wi th respec t to t ime . A g a i n , by use of an oxygen scavenger , h should be reduced by a constant amount due to an abrupt change i n the cathode r e a c t i o n , g i v i n g a lower constant ra te of f o u l i n g . This p r e d i c t i o n i s a l so c o n s i s t e n t w i th the exper imenta l d a t a . 7 .4 .4 C o m p a t i 1 i b i t y of f o u l i n g model equat ions w i th exper imental d a t a . S ince the Kern-Seaton type of e q u a t i o n , * - h t Rf = Rf (1 - e" ) , was r o u t i n e l y f i t t e d to the f o u l i n g data f o r each r u n , i t was decided to t e s t t h i s equat ion f i r s t aga ins t the exper imenta l data to see whether the Kern-Seaton model would c o r r e c t l y p r e d i c t the dependence of Rf* and b on mass f low r a t e . In the Kern-Seaton model , 191 = K!CW/K 2T and b = K 2 x , where Ki and K 2 are c o n s t a n t s , C i s the c o n c e n t r a t i o n , W i s the mass f low ra te and T i s the shear s t r e s s . Assuming the B l a s i u s express ion fo r f r i c t i o n f a c t o r to h o l d , then T = P U 2f b 2 0.79 ., 2 — 2 ~ - p U b ( D U b P - 0 . 25 y (7.35) or Hence, the Kern-Seaton model p r e d i c t s the asymptot ic f o u l - ing r e s i s t a n c e , R, , to vary as W ' IJ and the i n i t i a l f o u l i n g ra te (bR,*) to vary d i r e c t l y w i th W. In an attempt to determine whether the data bear out t h i s p r e d i c t e d dependence, l o g - l o g p l o t s of i n i t i a l f o u l i n g ra te and asymptot ic f o u l i n g r e s i s t a n c e were made aga ins t mass f low ra te fo r four Runs (Runs 54, 55, 39, 61) us ing a m i x e d - s i z e f e r r i c oxide at a c o n c e n t r a t i o n of 2130 ppm (see F igure 45 and 46 ) . The reason f o r l i m i t i n g the a n a l y s i s to these runs i s tha t they showed a t h r e e - f o l d range in mass f low r a t e , wi th the c lean w a l l temperature at time zero being r e l a t i v e l y constant (148 ± 4 ° F ) . S i n c e , 192 LU I- O CD „ <<M» 0.05 0.10 0.20 0.30 MASS FLOW RATE (lbs m/sec) Figure 45. Dependence of I n i t i a l F o u l i n g Rate on Mass Flow Rate For Runs 54,55,39 and 61 . Mixed- S i z e F e r r i c Oxide Cone. 2130 ppm. Wall Temperature at Time z e r o , 148°F ± 4 . 193 10 8 UJ o 6 00 00 or o 4 CD * • => O CQ u- \ pcvj 1 r— -•-CL ^ >- CO < 2 h SLOPE =-0.9 J I I I I 1 0.05 0.10 0.20 0.30 MASS FLOW RATE (lbsm/sec) Figure 46. Dependence of Asymptot ic F o u l i n g Res i s t ance on Mass Flow Rate fo r Runs 54,55,39 and 61 . M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm. Wall Temperature at Time Zero , 148°F ± 4. 194 as has a l ready been shown, f o u l i n g behaviour appears to be temperature dependent, a proper t e s t of the i n f l u e n c e of mass f low ra te on i n i t i a l f o u l i n g ra te and asymptot ic f o u l i n g r e s i s t a n c e r equ i r e s that the w a l l temperature be cons tan t . From Figure 45 , i t can be seen tha t the i n i t i a l f o u l i n g ra te inc reases wi th mass f low ra te to the 0.3 power. The Kern-Seaton model p r e d i c t s 1.0. I t thus appears tha t the Kern-Seaton model does not c o r r e c t l y p r e d i c t the dependence of i n i t i a l f o u l i n g ra te on mass v e l o c i t y . The r e s u l t s of the l o g - l o g p l o t of asymptot ic f o u l i n g r e s i s t a n c e versus mass f low ra te are more suppor t ive of the Kern-Seaton model. The data show a dependence index on W of -0 .9 w h i l e the Kern- Seaton model p r e d i c t s -0 .75 (or -1 fo r f u l l y rough f l o w ) . However, because of the l i m i t e d amount of data upon which t h i s a n a l y s i s i s based, f i r m conc lus ions are not war ran ted . Tests of models I and II as p r e d i c t i v e methods fo r f o u l i n g behaviour have not been made because such t e s t s , i n order to be meaningfu l , would r e q u i r e a l a rge amount of d a t a , four constants being i n v o l v e d ( K i , K 2 , h and E p m / E p f j ) ' S i n c e , as a l ready i n d i c a t e d , there are i n s u f f i c i e n t c o n t r o l l e d data to t e s t even the s imp le r Kern-Seaton model, i t i s f e l t tha t no q u a n t i t a t i v e t e s t of models I and II can be meaning- f u l l y made wi th the present da ta . Never the less these models cou ld serve as s t a r t i n g po in t s towards the development of p r e d i c t i v e equat ions fo r c o r r o s i o n c o n t r o l l e d f o u l i n g . Chapter 8 CONCLUSIONS AND RECOMMENDATIONS An i n v e s t i g a t i o n was made of the f o u l i n g behaviour of aqueous suspensions of f e r r i c oxide i n 0.343 inch i . d . 304 type s t a i n l e s s s t e e l tubes . V a r i a b l e s s t u d i e d , us ing submicron to micron s i z e p a r t i c l e s , were f e r r i c oxide con- c e n t r a t i o n (15 - 3750 ppm), Reynolds number (10,090 - 37,590) and heat f l u x (0 - 92,460 B T U / f t 2 - h r ) . F o l l o w i n g s e l e c t e d runs , fou led tubes were sec t ioned and the chemical compos i t ion of the f o u l i n g depos i t determined " i n s i t u " i n an e l e c t r o n microprobe . Microprobe r e s u l t s showed the depos i t to c o n t a i n , i n a d d i t i o n to i r o n and oxygen, s i g n i f i c a n t amounts of n i c k e l and chromium. Chemical c o m p o s i t i o n - d e p o s i t d i s t ance p r o f i l e s showed n i c k e l and chromium c o n c e n t r a t i o n g r a d i e n t s , w i th l e v e l s h ighes t at the tube w a l l , f a l l i n g to zero at the d e p o s i t - f l u i d i n t e r f a c e . A t e s t s e c t i o n used fo r a s e r i e s of f o u l i n g t r i a l s was found, when examined wi th an e l e c t r o n microscope , to have s m a l l , but d i s t i n c t , p i t s . 195 196 During the f o u l i n g p rocess , measurements were made of thermal r e s i s t a n c e as a f u n c t i o n of t ime . The r e s u l t i n g f o u l i n g curves f e l l i n t o three d i s t i n c t c a t e g o r i e s , depending upon the p a r t i c l e c o n c e n t r a t i o n and the mode of o p e r a t i on: (1) At f e r r i c oxide c o n c e n t r a t i o n s below 100 ppm, no thermal f o u l i n g could be detected over experimental p e r i o d s of up to 14 days. Microprobe examination of such tubes showed spotty d e p o s i t s . (2) At f e r r i c oxide c o n c e n t r a t i o n s of 750 ppm and h i g h e r , using mixed s i z e p a r t i c l e s , asymptotic type f o u l i n g behaviour o c c u r r e d , s i m i l a r to t h a t reported by Kern and Seaton, and by Watkinson, f o r d i f f e r e n t f o u l i n g systems. T h i s type of f o u l i n g occurs at a s t e a d i l y de- c r e a s i n g r a t e . In the f e r r i c oxide system s t u d i e d here, the asymptotic c o n d i t i o n o c curred a f t e r approximately f o u r hours of o p e r a t i o n . Prolonged o p e r a t i o n r e s u l t e d in a sudden decrease in f o u l i n g r e s i s t a n c e at l o c a l i z e d p o s i t i o n s on the t e s t s e c t i o n , f ollowed by r e f o u l i n g of the whole t e s t s e c t i o n . The sudden decrease in thermal f o u l i n g r e s i s t a n c e was taken to be i n d i c a t i v e of r e l e a s e of m a t e r i a l f rom the tube w a l l . (3) If the suspension was c i r c u l a t e d through the t e s t s e c t i o n at zero heat f l u x f o r approximately e i g h t 197 hours and then heating started, the tube commenced fouling at a constant rate considerably greater than the previous decreasing rates. To e x p l a i n the r e s u l t s , a hypothes is was developed which s ta tes tha t the f o u l i n g behaviour of water suspended f e r r i c oxide on s t a i n l e s s s t e e l i s c o n t r o l l e d by the ra te at which c r e v i c e c o r r o s i o n of the s t a i n l e s s s t e e l o c c u r s . The c o r r o s i o n products produced serve to bind f e r r i c oxide from the f l u i d to the w a l l or to the previous f o u l i n g d e p o s i t . In t u r n , the c o r r o s i o n ra te i s c o n t r o l l e d by the cathode r e a c t i o n 0 2 + 2H 20 + 4 e -y 4(0H") which occurs on unfouled areas of the tube w a l l . Experiments designed to t e s t t h i s h y p o t h e s i s , such as i n c r e a s i n g the unfouled cathode area i n an attempt to a c c e l e r a t e the c o r r o s i o n r a t e , and removing oxygen wi th a scavenger i n order to decrease the r a t e , gave r e s u l t s c o n s i s t e n t w i th the h y p o t h e s i s . Two mathematical models of the f o u l i n g process have been developed i n l i n e wi th the c o r r o s i o n h y p o t h e s i s . A r i go rous t e s t of these models would r e q u i r e more con- t r o l l e d exper iments . 198 The r e s u l t s of t h i s study i n d i c a t e tha t c r e v i c e c o r r o s i o n plays an important r o l e i n the f o u l i n g of 304 s t a i n l e s s s t e e l w i th f e r r i c o x i d e . Fur ther work wi th f e r r i c oxide f o u l i n g should i n c l u d e a more d e t a i l e d study of the l i n e a r f o u l i n g s i t u a t i o n to determine how best to i n h i b i t the f o u l i n g p rocess . The r e s u l t s from such a study might w e l l have p r a c t i c a l bene f i t s fo r f o u l i n g s i t u a - t i o n s i n v o l v i n g c o r r o s i o n products of i r o n . The techniques developed fo r examining f o u l i n g depos i t s ' i n s i t u 1 should a l so be extended, s ince the p o s s i b i l i t y e x i s t s tha t many f o u l i n g s i t u a t i o n s could be e l i m i n a t e d or c o n t r o l l e d by a j u d i c i o u s s e l e c t i o n of m a t e r i a l s of c o n s t r u c t i o n combined wi th s e l e c t i v e removal of a troublesome f o u l a n t . A wider v a r i a t i o n , and more d e l i b e r a t e c o n t r o l , o f w a l l temperature should be under taken, as w e l l as a more s a t i s f a c t o r y study of p a r t i c l e s i z e e f f e c t s . In a d d i t i o n , the c o r r o s i o n hypothesis should be f u r t h e r t e s t e d , f o r example by va ry ing the pH of the c i r c u l a t i n g suspens ion . REFERENCES Taborek, J . , T. Knudsen, T. A o k i , and J . Pakn. F o u l - ing - The Major Unsolved Problem i n Heat T r a n s f e r . Chem. Eng. P rog re s s , 68, F e b . , J u l y (1 972) . McCabe, W.L. and G . S . Robinson. Ind . Eng. Chem, 16, p. 478 (1924). Hasson, D. et al. Mechanism of Calcium Carbonate Sca le Depos i t i on on Heat Trans fe r Su r f aces . Ind . Eng. Chem. Fundamentals, 17, No. 1, pp. 59-65, Feb. (1968) . Hasson, D. and J . Z a h a v i . Mechanism of Calc ium Sulphate Sca le Depos i t i on on Heat Trans fe r Su r f aces . Ind . Eng. Chem. Fundamentals, 9̂ , No. 1 (1 970) . Kern , D.Q. Heat Exchanger Design f o r F o u l i n g S e r v i c e . Chem. Eng. P r o g r e s s , ^ 2 , No. 7, pp. 51-56, J u l y (1966). Kern , D.Q. and R . E . Seaton . A T h e o r e t i c a l A n a l y s i s of Thermal Surface F o u l i n g . B r i t i s h Chemical E n g i n e e r i n g , 4, pp. 258-262, May (1959). Watkinson, A . P . P a r t i c u l a t e F o u l i n g of S e n s i b l e Heat Exchangers . Ph .D. Thes is - U n i v . of B r i t i s h Columbia (1968) . P a r k i n s , W.E. Surface F i l m Formation i n Reactor Systems. Proceedings of the T r i p a r t i t e Conference on Transpor t of M a t e r i a l s i n P ressu r i zed-Wate r Nuclear Systems. AECL - 1265, pp. 115-189, June 1961 . 199 200 9. N i j s i n g , R. D i f f u s i o n a l and K i n e t i c Phenomena A s s o c i a t e d wi th F o u l i n g . Euratom Report No. EUR 543e (1964). 10. Hatcher , S . R . , B . A . F i n d l a y and J . L . Smee. Heat T r a n s f e r , I m p u r i t i e s and Fou l ing i n Organic C o o l a n t s . AECL - 2642, May 1966. 11. Cha r l e swor th , D .H . The Depos i t i on of Co r ro s ion Products i n B o i l i n g Water Systems. Paper pre- sented at the 65th Na t iona l AICHE Meeting on Chemical Engineer ing Aspects of Reactor Coolant Systems, C l e v e l a n d , Ohio , 5 May 1969. 12. C h a r l e s w o r t h , D . H . Fou l ing i n Organ ic -Cooled Systems, Atomic Energy of Canada L t d . , Report AECL - 1761 , A p r i l 1 963. 13. Watkinson, A . P . and N. E p s t e i n . P a r t i c u l a t e Fou l ing of S e n s i b l e Heat Exchangers. Paper presented at 4th I n t e r n a t i o n a l Heat Trans fe r Conference, P a r i s - V e r s a i l l e s , Sept . 1970. 14. Metzner , A . B . and W.L. F r i e n d . T h e o r e t i c a l Ana log ies Between Heat, Mass and Momentum Trans fe r and M o d i f i c a t i o n s for F l u i d s of High Prand t l or Schmidt Numbers. The Canadian Journa l of Chemical E n g i n e e r i n g , pp. 235-240, December 1 958. 15. Taborek, J . and R . B . R i t t e r . Review of F o u l i n g S tudies by HTRI. Paper presented at the AICHE 65th Annual Mee t ing , Nov. (1972). 16. Beal , S . K . Transpor t of P a r t i c l e s i n Turbulent Flow to Channel or Pipe W a l l s . B e t t i s Atomic Power L a b o r a t o r y , P i t t s b u r g , Pa. Westinghouse E l e c t r i c Corpora t ion Report WAPD-TM-765 (1968). 17. B e a l , S . K . P r e d i c t i o n of Heat Exchanger Fou l ing Rates - A Fundamental Approach. Paper presented at the AICHE 65th Annual Mee t ing , Nov. (1972). 201 18. G a s p a r i n i , R . , C. D e l l a Rocca and E. l o a n n i l l i . A New Approach to the Study and Preven t ion of Deposi t s i n Modern Power S t a t i o n s . Combustion, 4 1 , No. 5, pp. 12-18, Nov. (1969) . 19. Kabe le , T . J . and J .W. B a r t l e t t . D e p o s i t i o n of Iron C o r r o s i o n Products from an Aqueous Stream. Paper presented at the 65th Na t iona l Meeting AICHE, C l e v e l a n d , Oh io , 4-7 May, 1969. 20. Mankina, N . N . I n v e s t i g a t i o n of Cond i t i ons of Forma- t i o n of I ron Oxide D e p o s i t s . Tep loene rge t i ka , 9 , No. 1 1 (1962) . 21. Margulova , 0. and 0 . 1 . Martynova. Behaviour of Iron Oxides in the Power P l an t Steam-Water Cyc le and Methods of Removing them from the C y c l e . Thermal E n g i n e e r i n g , Vo. 14, No. 10, pp. 38-43, 1967. 22. Margulova , T. Kh. and A . A . Be lyaev . The Causes of I ron Oxide Deposi ts i n T . P . 80 B o i l e r s and Measures f o r P reven t ing them. Thermal E n g i n e e r i n g , Vol . 11, No. 9, pp. 55-62, 1 964. 23. Mayo Abad, 0. Thermal F o u l i n g S t u d i e s : Computations on Roughness E f f e c t s , M o d i f i c a t i o n s of a Test Loop and Tests on a Process L i q u o r . MASc Thes is - U n i v e r s i t y of B r i t i s h Columbia , Nov. (1971) . 24. C h a r l e s w o r t h , D .H . Personal Communication, 10 A p r i l , 1 970. 25. Brown, L . C . and H. Thresh . Tools and Techniques i n P h y s i c a l M e t a l l u r g y , ed i t ed by F . Weinberg. Marcel Dekker Inc . (1970). 26. B i r k s , L . S . E l e c t r o n Probe M i c r o a n a l y s i s . I n t e r Science P u b l i s h e r s , second e d i t i o n (1971) . 27. van Olphen, H. and W. P a r r i s h . X- ray and E l e c t r o n Methods of A n a l y s i s . Progress i n A n a l y t i c a l Chemis t ry , V o l . I , Plenum Press (1968) . 202 28. C a s t a i n g , R . , P. Deschamps and J . P h i l i b e r t . X- ray Opt ics and M i c r o a n a l y s i s . Hermann ( P a r i s ) , 1 966. 29. B e a l , S . K . Agglomerat ion of P a r t i c l e s i n Turbulen t Flow. Westinghouse Atomic Power D i v i s i o n Repor t , WAPD-TM-904, September 1969. 30. L i n , C . S . , Rl'W. Moulton and G . L . Putnam. I n d u s t r i a l Eng. Chem, V o l . 45, p. 636 (1953). 31. Jeans , J . An I n t r o d u c t i o n to the K i n e t i c Theory of Gases, Cambridge U n i v e r s i t y Press (1940) . 32. L a u f e r , J . The S t r u c t u r e of Turbulence i n F u l l y Developed Pipe Flow. NACA Report 1174 (1954) . 33. McNab, G . S . Thermophoresis i n L i q u i d s . MACs Thesis - U n i v e r s i t y of B r i t i s h Columbia (1972). 34. Adamson, A.W. P h y s i c a l Chemistry of Su r f aces . I n t e r - sc ience P u b l i s h e r s , 2nd e d i t i o n (1967). 35. P e r r y , R . H . ed. Chemical Engineers Handbook. McGraw- H i l l Book C o . , 3rd Ed. (1 950) , p. 1020 and p. 67 5. 36. Mahato, B . K . Mass Trans fe r A n a l y s i s of Iron Cor ros ion P rocess . Ph .D. Thes is - U n i v e r s i t y of New Brunswick , March (1967). 37. Fontana, M.G. and W.D. Greene. C o r r o s i o n E n g i n e e r i n g , McGraw-Hi l l Book Co. (1967). 38. V i j h , A . K . A P o s s i b l e I n t e r p r e t a t i o n of the Inf luence of C h l o r i d e Ions on the Anodic Behaviour of Some M e t a l s . C o r r o s i o n S c i e n c e , V o l . 11 , pp. 161-167 (1971). 39. Langmuir , J . Journa l American Chem. S o c , V o l . 40, p. 1361 (1918). 40. Keng, E . Y . H and C. O r r . J . C o l l o i d S c i e n c e , 17, 768 (1962) . NOMENCLATURE T y p i c a l Un i t s A , A x , A i ' , A 2 constants heat t r a n s f e r area f t 2 parameter of equat ion (4 .4) h r " 2 f e r r i c oxide concen t r a t i on ppm constant constant c o e f f i c i e n t i n v e r s e l y p r o p o r t i o n f . , _ i to v e l o c i t y t t / s e c p a r t i c l e c o n c e n t r a t i o n c l o s e to w a l l PP m func t i on of f o u l i n g c o n c e n t r a t i o n ppm p a r t i c l e c o n c e n t r a t i o n i n bulk f l u i d PP"1 p a r t i c l e concen t r a t i on at w a l l ppm tube diameter f t Brownian d i f f u s i o n c o e f f i c i e n t f t 2 / s e c p a r t i c l e diameter f t 203 204 energy of adhesion p a r t i c l e to metal energy of adhesion p a r t i c l e to depos i t base of na tu ra l logar i thms a c t i v a t i o n Energy fanning f r i c t i o n f a c t o r ra te constant pipe diameter d imens ionless pipe diameter heat t r a n s f e r c o e f f i c i e n t mass f l u x of p a r t i c l e s thermal c o n d u c t i v i t y depos i t thermal c o n d u c t i v i t y p a r t i c l e thermal c o n d u c t i v i t y f l u i d constants d e p o s i t i o n c o e f f i c i e n t Boltzman constant 1.38 x 1 0 ' 1 mass t r a n s f e r c o e f f i c i e n t T y p i c a l Un i t s l b s - f t " 1 l b s - f f 1 dimens ionless BTU/lb-mole d imens ionless h r " 1 f t d imens ionless BTU f t - 2 h r " 1 °F~ lbs f t " 2 h r " 1 BTU f t " 2 h r " 1 °F" f t 2 s e c " 1 gm/cm 2 /molecule- ° K - s e c 2 f t s e c " 1 205 T y p i c a l Un i t s N p a r t i c l e mass f l u x lb f t " 2 h r " 1 N 0 p a r t i c l e mass f l u x i n w a l l r eg ion " N p a r t i c l e mass f l u x d e p o s i t i n g „ on w a l l N . c o n c e n t r a t i o n of type i p a r t i c l e s ppm Nj t o t a l number of depos i ted p a r t i c l e s f t - 2 per u n i t area N„ number of depos i ted p a r t i c l e s „ per u n i t area held by p h y s i c a l forces Ng number of depos i ted p a r t i c l e s per „ u n i t area held by chemical forces p s t i c k i n g p r o b a b i l i t y d imens ion less P p r o b a b i l i t y of p a r t i c l e d e p o s i - „ p t i o n on unfouled tube P n d p r o b a b i l i t y of p a r t i c l e d e p o s i - „ p t i o n on previous depos i t q ' heat f l u x BTU f t . - 2 h r - 1 q heat f low BTU h r " 1 Q l i q u i d evaporated l b s - h r " 1 R t o t a l thermal r e s i s t a n c e f t 2 hr °F BTU" 1 Ro t o t a l thermal r e s i s t a n c e at „ time zero 2 0 6 f o u l i n g r e s i s t a n c e asymptot ic f o u l i n g r e s i s t a n c e exponent u n i v e r s a l gas constant bonding r e s i s t a n c e of f o u l i n g deposi t s t i c k i n g p r o b a b i l i t y s t i c k i n g p r o b a b i l i t y of type i p a r t i c l e t o t a l number of p o t e n t i a l f o u l - ing s i t e s per u n i t area s topping d i s t ance dimension!ess s topping d i s t a n c e time w a l l temperature f l u i d bulk temperature abso lu te temperature temperature temperature d i f f e r e n c e f l u i d temperature at time zero T y p i c a l Un i t s f t 2 hr °F BTU" 1 II dimensi on!ess B T U ( l b - m o l e - ° R ) - Ibs f t " 2 dimensi onless II f t " 2 f t hours °F °F °R °F °F °F 207 T outer w a l l temperature at time zero T g heat t r a n s f e r surface temperature U o v e r a l l heat t r a n s f e r c o e f f i c i e n t U. v e l o c i t y of a p a r t i c l e toward the sur face i n c lose p r o x i m i t y to the sur face U number of unfouled s i t e s on tube surface Uuj bulk v e l o c i t y U + d imens ion less v e l o c i t y = u /U^/ f/2 u l o c a l f l u i d v e l o c i t y thermophoret ic v e l o c i t y W mass f low ra te x depos i t t h i cknes s x d i s t ance c o - o r d i n a t e y d i s t ance c o - o r d i n a t e y + y Ub/f72/v DIMENSIONLESS GROUPS Nu Nusse l t number Pr P rand t l number T y p i c a l Uni t s °F B T U - f f 2 - ° F " 1 - h r - 1 f t " 2 f t - s e c ~ 1 f t - s e c - 1 f t / s e c I b m - h r - 1 f t f t f t d imens ionless hd/k Cpy/k 208 T y p i c a l Uni t s Re Reynolds number d U^p/y Sc Schmidt number v/D GREEK LETTERS e eddy d i f f u s i v i t y of momentum f t 2 s e c - 1 A d i f f e r e n c e <J>D d e p o s i t i o n ra te f t 2 - ° F B T U - 1 <f)D r e l ease ra te " p dens i t y lb f t - 3 0 time of i n d u c t i o n hrs v k inemat ic v i s c o s i t y f t 2 h r - 1 u v i s c o s i t y lb f t - 1 h r " 1 T shear s t r e s s l b f t - 1 h r - 2 APPENDIX I E L E C T R I C A L C O N N E C T I O N S A N D P R E S S U R E T A P S ( D R A W I N G F R O M W A T K I N S O N (7)) 209 PRESSURE TAPS Stainless steel Dimensions - inches Two required TERMINAL BARS Brass Dimensions - inches Two required APPENDIX II COMPUTER PROGRAMS PROGRAM PAR 210 C PROGRAM 'PAR* TO CALCULATE THE PARAMETERS OF A RUN C AND THE HE A T BALANCE DATA BETA/.602/,D2/.3 7 5 / , C l / . 8 0 5 6 / , C 2 / . 9 7 i 8 2 I , C P / 1 . 0 0 2 / 1 READ(5, 1 0 l , E N D = l l l ) R , V , A 101 FORMAT(F3.0,IX,F5.1,IX,F5.1 ) WRITE(6,103)R WRITE!6,104)V,A 103 FORMAT!IHl,T7,7(•*'),'RUN NO*,T3.0,7!'*')) 104 FORMAT( 1H0,T7,•VOLTS:•,F5.2,T25,'AMPS :'F5.0) READ(5,102)ZIN,Z0UT,DP0R DPOHG = -0.0761768 + 0.074429*DPOR + 0.000467069*DPGR*DPOR 102 F0RMAT(F4.2,IX,F4.2,1X,F5.2) TIN=26.8988+(51.3 55-1.76738*71N)*ZIN TOUT=24.7309+15 3.2881-2.103*ZUUT)*Z0UT TBULK=(TIN + TOUT)/2.0 TQR= T IN Q=3.413*V*A QF=Q/.1742 WRITE(6,105)0,QF 105 FORMAT(IHO,T7,'HEAT FLOW*, F 8.1,T?7,•BTU/HR'/ 1T7,'HEAT FLUX',F9.0,T2 7,•BTU/SOFT-HR') CALL PROP(RHO,VISK,THK tTOR) ALPHA=1.0-BETA**4 R E 0 R C = D 2 / 1 2 / V I S K * R H 0 / 6 . 7 1 9 7 / 1 £ - 4 * 5 Q R T ! 6 4 . 3 4 8 * 7 0 . 7 2 7 * 162.43*DP0HG*RH0/ALPHA) RE0RC=C1*RE0RC**C2 W=D2*RE0RC*3.1416*VISK*6.7197/(12E4*RH0*4) WRITE(6,106)BETA,TOR,RHO,TOUT 106 FORMAT(IHO,T7,'BETA•,F5.3,T25,*TUK=TINLET•,F5.I,T43, I'DEG F',/T7,'DENSITY:•,F5.3,T21,'GRAM/CC'/ 2 T 2 5 , « T OUTLET',F5.1,T43,'DEG F•) WRITE(6,107 )W 107 FORMAT!IHO,T7,'FLOW RATE',F7.4,T25,* LBS.M/SEC *) CALL PROP(RHO,VISK»TKK,TBULK) UBULK=W/(RH0*62.43*6.425E-4) RE=UBULK*0.343*3600./{12.*VISK*0.03875) PR=2.42*CP*VISK*RHO/THK WRITE(6,108)TBULK,VISK 108 FORMAT!IHO,T7,'AVG TEMP:•,F5.1,T25,•OEG F ' , 1/T7, 'KINEMATIC ,/T 7, • VI SCOSI TY: ' , F5 . 3 , T25 , • SG .C M/SEC ' ) WRITE(6,109)UBULK,RE,PR 109 FORMAT! IHO,T7,'FLUID V E L O C I T Y ' , F 6 . 3 , T 3 0 , ' F T / S E C , 1/T7,'REYNOLDS NO•,F9.1,/T7,•PRANDTL NO',F7.2) HTTR=W*3600.*(T0UT-TIN)*CP HLOSS=Q-HTTR PERL=HL0SS/Q*100. WRITE(6,110)Q,HTTR,HLOSS,PERL 110 FORMAT(IHO,T7,'HEAT SUPP F10.1,T30,•BTU/HR',/ IT7,'HEAT TRANS',F10.1,T30,'BTU/HR*,/ 2T7,'HEAT LOST •,F10.1,T30,•BTU/HR•,/ 3T7,•PERCENT HEAT L0ST',F8.2) C PREDICTED CLEAN WALL RESISTANCES FROM THE C SIEDER-TATE EQUATION XNU=0.023*!RE**0.8)*!PR**0.33) CALL PROP(RHO,VISK,THK,TBULK) 211 XH=XNU*THK*12.0/0.343 TWALL=QFLUX/XH+TBULK A=VISK C=THK CALL PR0P(RH0,VlSK,THK,TWALL) B=VISK XNU=XNU*l{A/B)**0. 14) RF I LM=1000.0/(XNU*C*l2.0/0.34 3) RWALL=(0.016/12.0/(8.45+0.00455*TWALL))*1000. RTDTAL=RFILM+RWALL XHTOT=1000.0/RTOTAL WRlTE(6,120JXNU 120 F0RMAT(//T7,'NUSSELT N 0 ' , F 9 . l ) WRIf E(61121)KFILM|RWALL»RTOTAL 121 FORMAT(T7,•RFILM',F9.3,/T7,•RW4LL•,F9.3,/T7,»RTOTAL•» 1F9. 3,T27, • SQ-FT-DEG F/BTU' ) GO TO 1 111 STOP END SUBROUTINE PROP(RHO,V ISK,FHK,T) R H 0 = 0 . 9 8 d - ( ( ( T - 3 2 . ) / 1 . 8 ) - 5 0 . ) * 0 . 0 0 0 6 T = ( T - 3 2 . ) / 1 . 8 V I S C = 1 0 . * * ( { 1 . 3 2 7 2 * ( 2 0 . - T ) - 0 . 0 0 1 0 5 3 * ( T - 2 0 . ) * * 2 ) 1/(T+105)) VISK=VISC/RHO T=T*1.8+32.0 THK=0. 296938+0.834355c-3*T-0.180265E-5*T*T RETURN END PROGRAM STOMV 212 C THE FOLLOWING PROGRAM CONVERTS SOLARTRON READINGS TO C MILLIVOLTS,CHECKS FOR KEYPUNCHING ERRORS AND PLACES C INTO A STANDARD FORMAT FOR PROCESSING C CODED BY RMH 19 JAN 1971 LL = 0 IUL=110OOO 3 RUNLAS=0.0 TZERG=0.0 2 K=0 DIMENSION I R E A D ( 2 0 ) , Z S T O R E I 2 0 ) , Z ( 2 0 ) , X ( 2 0 ) NL INE = 0 1 R E A D ( 5 , 1 0 1 , E N D = 1 1 1 ) T I M E » ( I READ<I ),I = 1,14) IF LAG = 0 Y=TI ME MY = Y YY = MY TIME=YY+(Y-YY)*100.0/60.0 IF(K.EQ.0)TZER0=TIME IF(TIME.GT.99.98)G0 TO 3 I F ( T I ME.LT.TZERO.AND.K.NE.OJTI ME = TIME + 24.00 RUNTIM=TI ME-TZERO IF(RUNTIM.LT.RUNLAS.AND.K.NE.0)RUNTIM=RUNTlM+24.00 J=0 RLTIME=TIME IF(RLTIME.GT.24.00)RLTIME=RLTIME-24.00 RUNLAS=RUNTIM K = K + 1 NLINE=NLINE + 1 00 6231=1,14 IF( IREADI I ) .GE.LL.AND. IREAD( I ) . L T - I U D G O TC 632 J = J+1 IFLAG=I GO TO 623 632 ZSTORE(I ) = IREAD(I) 623 CONTINUE DO 6251=1,20 625 Z( I) = ZSTORE 11 )/2000. C THE FOLLOWING STATEMENTS PLACE DATA IN STD. FORMAT C CHECK NEXT 20 LINES BEFORE EACH NEW DATA SET X( 1) = Y X(2)=RUNTIM X ( 3 ) = Z ( 1 ) X( 4 )=Z(2) X(5)=0.0 X ( 6 ) = Z ( 3 ) X( 7) = Z ( 4 ) X ( 8 ) = Z ( 5 ) X ( 9 ) = Z ( 6 ) X ( 1 0 ) = Z ( 7 ) X ( 1 1 ) = Z ( 8 ) X ( 1 2 ) = Z ( 1 0 ) X( 13)=Z(11) X ( 1 4 ) = Z ( 1 2 ) X ( 1 5 ) = Z ( 1 3 ) XI 16)=0.0 X(17)=0.0 X(18J=0.0 X!19)=Z!9) X ( 2 0 ) = Z ( 1 4 ) IF(NLINE.E0.57)NLINE=1  2 1 3 IF(NLINE.N6-1)GD TO 150 WRITE(6, 103) WRITE!6,104) 150 WRITE(6,102)X,J,IFLAG WR ITE ( 7 , 1 0 2 ) X , J , IFLAG 101 FGRMAT!F5.3,14I5) 102 FORMAT!2X,F5.2,F6.2,3X,18F5.2,13,2X,I 3) 103 FORMAT! • 1 S T 3, ' R E A L S T i l , 'RUM', T19, 'MV » T 2 4» *MV , T28, l'MILLIVOLT READINGS OF THERMOCOUPLES ON WALL OF TEST SECTION 2',T88,'COOL',T93,'INSL' ,T98,»ANH*,T103,•DELT»,T109,•FLAGS•) 104 FORMAT(T3,•TIME',T11, « T I ME•,T1h,•IN•,T23,'OUT•,T28, 2'T21t>' ,T3 3, « T 2 3 5 » ,T38, » T 2 5 5 ' , T 4 3 , • T275' ,T48, « T 2 9 5 • , 3 T 5 3 , , T 3 1 5 , « T 5 8 , ' T 3 3 5 ' , T 6 3 , ' T 3 5 5 * , T 6 0 , • T 3 7 5 • , T 7 3 , » T 3 9 5 • , 4 1 7 8 , ^ 4 1 5 * ^ 8 3, •T428 1  t T89, • M V , T94, » M V , T99, • M V , T104, ,MV , 5T108,'NO',T11 3,'LINE*,/) GO TO 1 111 STOP ENO PROGRAM FOUL 214 C HEAT TRANSFER. FOULING C COOED BY 0. MAYO 23-10-1970 C UPDATED BY R.M. HOPKINS SEPT 1971 DIMENS I ON Z( 16),I R E A D ( l 6 ) , M ! l 6 ) , r ! l 2 ) , T C ! l 2 ) , X ! 1 2 ) , Y ( 1 2 ) , T 8 ( 1 2 ) , * 10T(700),TIM(700),TCON(12),COR(12),W(700>,FCUL!700) DIMENSION T Z E R O ( 1 2 ) » D T ( 1 2 ) , R F ( 12) C PROGRAM 'PAR* TO CALCULATE THE PARAMETERS OF A RUN C AND THE HEAT BALANCE DATA BETA/.301/,D2/.1875/,Cl/.8056/,C2/.97182/,CP/1.002/ 1 READ(5,101,END=10C)R,V,A READ(5,417)CONC 417 FORMAT(F6.0) 101 F0RMATIF3.0,IX,F5.1,IX,F5.1) WHITE!6,103)R WRITE(6,418 JCONC 418 FORMAT!1H0,T7,"FERRIC OXIDE CONC ! P P M ) » , F 8 . 0 ) WRITE!6,104)V,A 103 FORMAT( 1HI,T7,7( •*•),'RUN NO',F3.0,7(* * • ) ) 104 FORMAT(1H0,T7,'VOLTS:•,F5.2,T2 5,»AMPS:•F5.0) READ(5,102)ZIN,ZOUT,DPOR DPOHG= 0.076 1768+0.074429*DPQR+ 0.000467069*DPOR* DPOR 102 FQRMAT(F4.2,1X,F4.2,IX,F 5.2) TIN=26.8988+(51.355-1.76738*ZIN)*ZIN T0UT=24. 7309+1 53.2881-2. 103*ZC)UT) *ZOUT TBULK=(TIN+T0UT)/2.0 TOR=TIN Q=3.413*V*A QF=Q/.1742 WRITEI6,105)0,OF 105 FORMAT!1H0,T7,'HEAT FLOW SUPPLIED»,F8.1,T37,'BTU/HR» / 1T7,'HEAT FLUX SUPPLIED'»F9.0,T37,•BTU/SQFT-HR') CALL PROP(RHO,VISK,THK,TOR) ALPHA=1.0-BETA**4 RE0RC=02/12/VISK*RH0/6.7197/lE-4*SyRT(64. 348*70. 72 7* 162.43*DP0HG*RH0/ALPHA) RE0RC=C1*RE0RC**C2 WW=D2*RE0RC*3.1416*VISK*6.7197/(12E4*RH0*4) WRITE(6,106)BETA,T0R,RH0,T0Ur 106 FORMAT!IH0,T7,•BETA'»F5.3»T25»* TOR=TINLET',F5.1,T43, 1 * DEG F',/T7,'UENSITY: •,F5.3,T21,'GRAM/CC/ 2T25,'T OUTLET',F'5.I,T43,'DEG F') WRITE!6,107)WW 107 F0RMAT!1H0,T7,'FLOW RATE•,F7.4,T25,•LBS.M/SEC') CALL PROP(RHO,VISK,THK,TbULK) UBULK=WW/(RH0*62.43*6.425E-4) RE=UBULK*0.343*3600./!12.*VISK*0.03875) PR=CP*VISK*RH0/THK*2.42 WRITE(6,108)T8ULK,VISK 108 FORMAT(1H0,T7,'AVG TEMP:• ,F5.I,T25,•DEG F• , 1/T7,•KINEMATIC',/T7,'VISCOSITY:',F5.3,T25,•SO.CM/SEC•) WRITE(6,109)UBULK,RE,PR 109 FORMAT !IH0,T7,'FLUID VELOCITY•,F6.3,T30,•FT/SEC•, 1/T7,'REYNOLDS NO•,F9.I,/T7,•PRANDTL NO f ,F7.2) HTTR=WW*3600.*!TOUT-TIN)*CP HLOSS=Q-HTTR PERL=HL0SS/Q*100. QF T = H TTR /.. 1742 WR ITE(6,110)Q,HTTR,HLOSS,PERL,QFT 110 FORMAT(1H0,T7,"HEAT SUPP ',F 10.1,T30,•BTU/HR',/ 1T7,'HEAT TRANS',F10.1,T30,'BTU/HR',/ 2T7, 'HEAT LOST ' , F10.1,T30 ,'BTU/HR',/ 3T7,'PERCENT HEAT L0ST',F8.2,/ 4 T 7 , 'HEAT FLUX TRANS. BTU/SQF T - l IR' , F9 .0 ) C PREDICTED CLEAN WALL RESISTANCES FRO" THE C SIEDER-TAT E EwUATION XNU=0.02 3*(RE * * 0 . 8 ) * ( P R * * 0 . 3 3 ) CALL PROP(RHO,VISK,THK,TBULK) XH=XNU*THK*12.0/0.343 TWALL=QFT/XH+TBULK A=VISK C = THK CALL PROP(RHO,VISK,THK,TWALL) B=VISK XNU=XNU*(IA/B)**0.14) RF I LM= 1000.0/(XNU*C*12.0/0.343) RWALL=(0.016/12.0/(8.45+0.004 55*1WALL))*1000. RTQTAL=RFILM+RWALL XHT0T=1000.0/RT0TAL WRITE(6,120)XNU 120 FORMAT l//T7,'NUSSELT N 0 ' , F 9 . i ) WRITE(6,121 )RFILM,RWALL,RTOTAL 121 FORMAT(T7,'RFILM',F9.3,/T7,'RWALL',F9.3,/T7,'RTOTAL', 1F9.3,T27,* SQFT-HR-DEG F/ETU*) WRITE(6,150) WRITE(7,151) DO 830 1=1,12 DT( I ) = 0.0 RF(I )=0.0 T Z E R O l I ) = 0 . 0 830 CONTINUE C DATA TRANSFORMATION AND LINES ELIMINATION NLINE=0 READ(5,171)M JP=0 ZERO=0.0 2 R E A D ( 4 , U 2 , E N U = 1 0 ) R L T I M , ( Z ( I ) , 1 = 1 , 1 6 ) JP=JP+1 TIME=Z(1) 112 F0RMAT(2X,F5.2,F6.2,3X,15F5.2) NLINE=NLINE+1 C TEMPERATURE EVALUATIONS TIN=26.8988+(51.355-1.767 3 8 * Z ( 2 ) ) * Z ( 2 ) T UUT=24.7309+(53.2881-2.103*Z(3))*Z(3) CALL TEMP(Z,T) DELTA=TOUT-TIN C CORRECTION FOR OROP THROUGH TU8E WALL DO 5 1=1,12 TCON( I ) = 8.45+0.00455*T(I) COR(I)=QDIS*0.0411755/{2.*3.1416*I.9488*TC0N(I)) T C ( I ) = T ( I J - C O R l I ) I F ( M ( 1 + 3 ) . N E . O ) T C ( I ) = 0 . I F ( J P . E Q . 1 ) T Z E R 0 ( I ) = T ( I ) DT( I ) = T ( I ) - T Z E R 0 ( I ) I F ( M ( 1 + 3 ) . N E . O ) D T ( I ) = 0 . 0 I F ( D T ( I ) . L E . 0 . 0 ) G 0 TO 87 R F U )=L)T( I )/OFT* 100000. GO TO 5 RF( I )=0.0 CONTINUE M1 = 0 X0= 1.27 00 6 1=1,10 X0=X0+5.08 X ( I ) = XO T B U ) = DELTA/57.7 8 5 * X ( I ) + T I N M1=M1+M(1+4) Y( I ) = TC(1 + 1 ) - T B ( I ) 6 CONTINUE TM=0 SY = 0. SX1=0. SX2=0. SX1Y=0. SX2Y=0. SXIX2=0. SSX1=0. SSX2=0. DO 7 1=1,10 IF(M( I+4J.NE.0) GO TO 7 TM=TM+ TC ( I + l ) SY=SY+Y(I) SX1=SX1+X(I) SSX1=SSX1+X(I)*X(I) SSX2= SSX2 + X ( I ) * * 4 SX1X2=SX1X2+X(I)**3 S X 1 Y = S X I Y + X ( I ) * Y ( I ) S X 2 Y = S X 2 Y + X ( I ) * X ( I ) * Y ( I ) 7 CONTINUE FN=10-M1 TM=TM/FN IF(JP.EQ.1)ZER0=TM F0UL(NLINE)={TM-ZER0)/QFT*100000. F0UX = F 0 U H N L 1 N E ) SX2=SSX1 B=SSXl-{(SX1**2 )/FN) C=SX1X2-SX1*SX2/FN D=SX1Y-SXI*SY/FN F=SSX2-(SX2**2)/FN G=SX2Y-SX2*SY/FN 82=(D*C-G*B)/(C*C-F*6) Bl=(D-B2*C)/B B0=(SY-B1*SX1-B2*SX2)/FN A A = B 2 BB=B 1 CC = BO VV1=2*AA*52.07+BB VV2=2*AA*6.35+BB DISC=BB**2-4.*AA*CC IF{DISC.GT.O) GO TO 8 RMDIS=SQRT(-1.*DISC) AREA1=2./RMDIS*(ATAN(VV1/RMDIS)) AREA2=2./RMDIS*(ATAN(VV2/RMDIS)) GO TO 9 8 CONTINUE RDIS=SQRTIDISC) EXTERNAL AUX CALL DPLQFt X, Y , YF , W, E1 , E2 , P,0 .0, N, M , N I , ND, tP, AUX ) 217 WRITE!6,100) WRITE(6,20) 20 FORMAT(• ESTIMATES OF ROOT MCAN SQUARE STATISTICAL ERROR IN THE 1RAMETER • ) WRITE(6,103){E1(I),I=1,M) WRITE(6,30) 30 FORMAT!• ESTIMATES OF ROOT MEAN SwUARE TOTAL ERROR IN THE PARAME IRS * ) WRITE(6,103)!E?(I),I=1,M) A=EXP(Pl1))*1000 B=EXP!P(2))*1000 C=EXP(P(3)) WRITE!6,60) 60 FORMAT{ • ESTIMATES UF PARAMETERS RO , RINF AND B' ) WRITEl6,103)A,B,C WRITE(6,40) 40 FORMAT(T6,'TIME»,T20,'CALC. RESISTANCE*,T4G,'FITTED VALUE•,/T6,•I 1URS',T25,'((SQFT-HR-OEGF/BTU)X1000)',/) DO 50 1=1,N Y(I)=Y(I)*1000 YF(I)=YF(I)*1000 50 WRITE!6,102)X(I),Y(I),YF(I) WRITE(6,100) 100 FORMAT(1H1) 102 FORMAT!F10.2,2!10X,F10.4)) 103 FORMAT(3(F10.5,10X)) RETURN END FUNCTION AUX(P,D,X,L) DIMENSION P(3),D(3) D(1)=EXP(P(1)) D(2)=-EXP(P!2))*EXP!-EXP!P(3))*X) D(3)=D!2)*(-EXP(PI3)) )*X AUX=D(l)+0!2) RETURN END SUBROUTINE TEMP(Z,T) DIMENSION Z(16),T(12) DO 6201=1,12 T(I)=-0.59362*Z(l+3)*Z<I+3)+43.551*Z(I+3)+36.5808 620 CONTINUE RETURN END SUBROUTINE PFIT(Y,X,N) C PROGRAM TO FINO THE BEST FIT OF AN EXPONENTIAL CURVE FOR THE C FOULING TOTAL RESISTANCE VS. TIME DATA C N=NUMBER OF POINTS,NI=NUMBER OF ITERATIONS,EP=ERROR PERM ITED C THE EXPONENTIAL EQ. IS Y= B( 1- EXP( -C*X )) C AB£C ARE SUBSTITUTED BY B=EXP(P(l)), C=EXP(P(2)) DIMENS ION X( 700),Y(700),YF(700),W1700),El(2),E2(2 ) ,P(2) OATA M,NI,EP/2,20,0.001/ P(1)=1.79 P(2)=0.0 EXTERNAL PAUX CALL DPLQF(X,Y,YF,W,E1,E2,P,0.0,N,M,NI,ND,EP,PAUX) WRITE(6,100) WRITE(6,20) 20 FORMAT(• ESTIMATES CF ROOT MEAN SOUARE STATISTICAL ERROR IN THE P 1RAMETER') 218 W R I T E ( 6 , 1 0 3 M E i ( I ) , I = l,M) WRITE(6,30) 30 FORMA T( • ESTIMATES OF ROOT MEAN SQUARE TOTAL ERROR IN THE PARAME1 IRS' ) WRITE(6,103)(E2(I),1=1,M) A = 0. 0 B = E X P ( P ( D ) C = E X P ( P ( 2 ) ) WRITE(6,60) 60 FORMAT ( 'ESTIMATE OF RO,RINF,A.\D B IN RF=R INF ( ( I . - EX P (-B*T I ME ) • ) WRITE16,103 )A,B,C WRITE(6,40) 40 F0RMAT(T6,'TIME',T20,'CALC. RE SI STANCE• , T 4 C , » F I T T E D VALUE',/T6,M 1URS',T22,'((SdFT-HR-DEGF/BTU)X100,000)•,/) DO 50 1=1,N 50 W R I T E ( 6 , 1 0 2 ) X ( I ) , Y ( I ) , Y F ( I ) WRITE(6,100) 100 FORMAT(IH1) 102 FORMAT(F10.2,2(10X,F10.2)) 103 FORMAT(2X,3(G10.5,10X)) RETURN END FUNCTION PAUX(P,D,X,L) DIMENSION P ( 2 ) , D ( 2 ) D ( 1 ) = E X P ( P ( 1 ) ) * ( 1 . 0 - E X P ( - ( E X P ( P ( 2 ) ) * X ) ) ) D ( 2 ) = E X P { P ( l ) ) * E X P ( P { 2 ) ) * X * E X P ( - E X P ( P ( 2 ) ) * X ) PAUX=D(1) RETURN END VV3=AHSHVV1-RDIS)/(VV1+RDIS)) VV4=ABS{(VV2-RDIS)/(VV2 + KDIS)) AREA1=1/RDIS*AL0G<VV3) 219 AR EA 2=1/RDIS*ALOG!VV4) 9 AREA=AREAL-AREA2 QW=QFT*45.72/57.785 D T M = 5 7 . 7 8 5 / A R E A * ( T B ( l O J - T B ( L ) ) / ( D E L T A ) H=QW/DTM R=1000/H TI M( NLINE)=TIME IFINLINE.EQ.l)W(NL INE)=1 IF(NLINE.GT.l)W(NL.INE) = ( T I M ( N L I N E ) - T I M ( N L I N E - l ) ) / . 6 W R I T E ! 6 , 1 1 3 ) ( T C ( I ) ,1 = 1 ,12 ) , T I N,TOUT,TM,DELTA,H,R,TIME W R I T E ( 7 , 1 1 4 ) ( R F ( I ) , 1 = 1 , 1 2 ) , T I N , TOUT,FOUX,DELTA,H,R,TIME RT0T(NLINE)=1/H GO TO 2 10 WRITE(6,73) 73 FORMAT('1 * ) CALL PFITIFOUL,TIM,NLINE) CALL BFITIRTOT,TIM,NLINE) GO TO 100 150 FORMAT! •1«,T3,•LOCALIZED WALL TEMPERATURES (DEG . F ) • 1,/T3,'T215',T10,'T2 35',T17,'T2 5 5 » , T 2 4 , ' T 2 7 5 ' , 2 T 3 1 , » T 2 9 5 « , T 3 8 , ' T 3 1 5 ' , T 4 5 , ' T 3 3 5 ' , T 5 2 , ' T 3 5 5 ' , T 5 9 , • T 3 7 5 * , T 6 6 , 3 ' T 3 9 5 « ,T73, • T415' , T 8 0 , • T42 8' , T88, 'TIN*,T94 »' TOUT • ,T102, 2T88,'TIN',T94,'TOUT',T102,'TM•,TI00,•DELTA',TII6,'H», 3 T12 3, ' R 1 ,T12 8,*TIME , ,/16(2X,* DEG.F *),T121,•X 1000',T128,'HOURS• 151 FORMAT!•1«,T3,•LOCALIZED FOULING RESISTANCE (SQFT-HR-OFGF/BTU) U T 5 0 , 'X100, 000' , / T 3 , • T215' ,T10,» T235' , T17 , • T255 • , T24 , • T275* , 2T31,'T295',T38,'T315',T45,*T335',T52,'T355',T59,'T375' ,T66, 3 ' T 3 9 5 « , T 7 3 , ' T 4 1 5 ' , T 8 0 , • T 4 2 8 ' , T 8 8 , » T I N ' , T 9 4 , ' T O U T • , T 1 0 2 , 4'RFM » , T 1 0 8 , ' D E L T A ' , T 1 1 6 , « H ' , T 1 2 0 , ' R T 0 T » ,T128,•TIME' ,/T85, 5 ( 2 X , 'DEG.F *,2X,'DEG.F',9X,'DEG.F•),T120,•X1000•,T128,•HOURS',/ 171 FORMAT(1211) 113 FORMAT(15F7.1,F6.1,F7.1,F7.4,F7.2) 114 FORMAT(12F7.2,2F7.1,F7.2,F6.1,F7.1,F7.4,F7.2) 100 STOP C END SUBROUTINE PROP(RHO,V ISK,THK,T) R H 0 = 0 . 9 8 8 - ( ( { T - 3 2 . ) / 1 . 8 ) - 5 0 . ) * 0 . 0 0 0 6 T = ( T - 3 2 . ) / 1 . 0 V1SC=10.**((1.32 7 2 * ( 2 0 . - T ) - 0 . 0 C 1 0 5 3 * ( T - 2 0 . ) * * 2 ) l / I T + 1 0 5 ) ) VISK=VISC/RH0 T = T*1.8 + 32.0 THK=0.296938+0.834355E-3*T-0.180265E-5*T*T RETURN END SUBROUTINE BFIT(Y,X,N) C PROGRAM TO FIND THE BEST F I T OF AN EXPONENTIAL CURVE FOR THE C FOULING TOTAL RESISTANCE VS. TIME DATA C N=NUMBER OF POI NTS,NI = NUMBER OF ITERATIONS,EP = ERROR PERM I TED C THE EXPONENTIAL EQ. IS Y= A + B( 1- EXPt -C*X )) C AB&C ARE SUBSTITUTED BY A = E X P ( P ( D ) , B = E X P ( P ( 2 ) J , C = E X P ( P ( 3 ) J DIMENS I ON X( 7 0 0 ) , Y ( 7 0 0 ) , Y F ( 7 0 0 ) , W ( 7 0 0 ) , E 1 ( 3 ) , E 2 ( 3 ) , P ( 3 ) DATA M,NI,EP/3,20,0.001/ P ( I ) = A L O G ( Y ( I ) ) P(2)=0.0 P ( 3 ) = 0 PROGRAM MODEL 220 C RUNGE KUTTA METHOD FOR FITTING FOULING EQUATIONS REAL K2T,KH,Kl COMMON K2T,KH » Kl,NT DIMENSION XHNT(240) ,Y( 3) »F ( 3) ,0(3) , XNT ( 2 4 0 ) , T(240) , XK-SNT ( 24 0 ) DIMENSION XENT(240) I R E A D ( 5 , 1 0 1 , E N U = l l l ) PHID,K2T,KH,KI PHlD=PHID/60. K2T=K2T/60.0 XKSNT(1)=0.0 XHNTl 1 )=PHID/K2T DO 801 J=2,240 XHNT{J)=ALOG(K1*KH*(J-l)*60 . + E X P ( K l * P H I 0 / K 2 T ) ) / K l 801 X K S N T ( J ) = ( l . - E X P ( - K 2 T * ( J - l ) ) ) * P H I D / K 2 T J = 0 00 802 J = l , 2 4 0 802 T( J ) = ( J - D / 6 0 . 101 FORMAT(F20.5) H=l. M=l N=3 DO 11 NT=1,2 Y(1)=0.0 Y ( 2 ) = 0 . 0 Y(3)=PHI0 J=0 DO 10 1=1,240 CALL RK(Y»F,Q,H,N,M) J=J + 1 I F ( N T . E Q . 1 ) X N T ( J ) = Y ( 2 ) I F ( N T . E Q . 2 ) X E N T ( J ) = Y ( 2 ) 10 CONTINUE I I CONTINUE DO 623 J = l , 2 4 0 , 1 0 623 W R I T E ( 6 , 1 0 3 ) T ( J ) , X K S N T ( J ) , X N T ( J ) , X E N T ( J ) , X H N T ( J ) 103 F0RMAT(G13.3,4X,4G13.4) GO TO 1 I I I STOP . END SUBROUTINE AUXRK(Y,F) REAL K2T,KH,K1 COMMON K2T,KH,K1,NT DIMENSION Y ( 3 ) , F ( 3 ) F ( 2 ) = Y ( 3 ) I F ( N T . E 0 . 2 ) F ( 3 ) = K 2 T * K H * E X P ( - Y ( 2 ) * K l ) - K 2 T * Y ( 3 ) IF(NT.EQ.1)F(3)=K2T*KH-K2T*Y(3)-K2T*KH*K1*Y(2) -RETURN END APPENDIX I I I C O M P U T A T I O N O F T H E R M O P H O R E T I C V E L O C I T Y F O R R U N 6 3 Accord ing to McNab (33 ) , the thermophoret ic v e l o c i t y of a p a r t i c l e i n a thermal g rad ien t i s indepen- dent of p a r t i c l e diameter and g iven by V^. = -0 .26 o r — T - E - • -4- VT (6 .5) th — 2kf + k p pT K where V^ = thermophoret ic v e l o c i t y kf = thermal c o n d u c t i v i t y of the f l u i d kp = thermal c o n d u c t i v i t y of the p a r t i c l e u = f l u i d v i s c o s i t y p = f l u i d dens i t y T K = abso lu te temperature VT = = temperature g rad i en t 221 222 Assuming that the reg ion of prime i n t e r e s t w i th respec t to f o u l i n g i s the v i scous sublayer adjacent to the heat t r a n s f e r s u r f a c e , the temperature g rad ien t can be found by not ing that '<•' ' h ( Tw - V • k f f wa 1 1 ( I I I . D where q ' = heat f l u x Hence h = heat t r a n s f e r c o e f f i c i e n t T w = w a l l temperature T b = bulk temperature dT dy 11 = V T w - T > } wa I 1 T ( I I I .2) S u b s t i t u t i n g equat ion ( I I I .2) i n t o equat ion (111.1 ) g ives th 2kf + k n pT ^— • -rr- (T - T J K k v w b ' ( I I I . 3 ) 223 Equat ion ( I I I . 3 ) can be made dimension!ess by m u l t i p l y i n g through by D/DU, , which y i e l d s th = +0.26 2 k f + k P u fhD] [DUbpJ (Tw - V ( I I I . 4 ) where U b = bulk v e l o c i t y D = tube diameter In terms of d imension!ess g roup ings , equat ion ( I I I . 4 ) becomes v + h r k f 1 f N „ W T , , T h l b v f • p-1 v eJ v K ; For Run 63, the heat f l u x used was 91,400 B T U / f t 2 - h r and the maximum temperature r i s e was 2 . 6 F ° . I f the depos i t t h i cknes s i s taken to be 100 mic rons , a t y p i c a l f i g u r e based upon mic roscop i c measurements, the thermal c o n d u c t i v i t y of the depos i t k^ can be computed from the r e l a t i o n s h i p 224 " • - - " < „ & ( I I I - 6 ) where ^ = thermal g rad ien t across the depos i t Therefore k . = %T = 9-s 9 1 , 4 ° ° = 11.5 B T U / h r - f t - ° F ~ k ' £ T W X 1 0 *  x 2 ' 5 4 x 1 2 = P which somewhat exceeds the estimate of 7.2 on page 75. From program PAR, the remaining v a r i a b l e s i n .equation ( I I I . ) are as f o i l o w s : k f = 0.388 B T U / h r - f t - ° F N u - 121 R f t = 26490 e T , = 181 °F w T f a = 138 °F T K = 640 °R U b = 4.79 f t / s e c S u b s t i t u t i n g these values i n t o equat ion ( I I I .5) g ives 225 v - 0-26 x 0.388 x 121 x (181 - 138) v t h ' (2 x 0.388 + 1 1.5) x 26,490 x 640 = 2.58 x 10" 6 The thermophoret ic v e l o c i t y i s the re fo re V t h = 2.58 x 10~ 6 x U b = 2.58 x 10~ 6 x 4.79 x 1 2 x 2 .54 .x 10" = 3.7 microns /second That i s , under the ope ra t ing c o n d i t i o n s of Run 63, a p a r t i c l e i n c l o s e p r o x i m i t y to the w a l l w i l l tend to migrate away from the w a l l at a v e l o c i t y of 3.7 mic rons / second. I t has been poin ted out by Keng and Orr (40) tha t use of an equat ion such as (6 .6) to compute thermophore t ic v e l o c i t i e s leads to low r e s u l t s when the thermal conduc- t i v i t y of the p a r t i c l e i s more than ten times the thermal c o n d u c t i v i t y of the f l u i d . For the example used here , t h i s r a t i o i s approximate ly t h i r t y . The es t imate o f thermo- p h o r e t i c v e l o c i t y computed for Run 63 i s the re fo re con- s ide red to be c o n s e r v a t i v e . •" "r APPENDIX IV EXPERIMENTAL DATA 226 t »*»*t*RUN N033.••••»*• FERRIC OXIDE CCINC I PP11 ?130. VOLIS: 9.33 HHPS: 254. HEAT flDU SUPPLIED fOUB.? HtAI 7LUX SUPPLIED 43430. BTU/HR B I U / S w F T - H R E S M K A I E S o r ROOT . 4 I 6 H 2 E - U 1 E S T I H A I E S t i r KOC'I .14264 E S I 1 M A 1 E (IF R O . R I ' .0 H I E HULKS >ICAN SO'JARE SIATISUCAl ERROR IN HIE PARAMETER . 19634 •<EA'J SUU41E 13IAL EIWOR IH THE PA4AKTICRS .6711.1 ,F,A\l> B IH R f ' R l r i r It l.-CXP(-ll«riH£l 8.5010 .2642? CALC. RESISTANCE F1TTE0 VALUE. I(SyFI-HK-UEGF/BIU)XIOn tOCOI BEIA0.301 TCS.ll>iLETl?7.u DEG F 0.0 0.0 -0.0 OENSI IV.0.986 GRAN/CC 2.53 5.52 4.14 I UUILEM41.8 ' OEG F 4.92 5.72 6.18 5.08 5.82 6.28 FlOW RATE 0.1442 LBS.1/SEC 6.96 6.7? 7. 16 23.08 10.72 8.48 AVG Tt»tP:134.4 DEG F 27.50 11.02 8.50 KINCMAIIC 32.50 11.72 8.50 VISCUSII»:0.496 SU.CM/SEC 35.08 9.62 8.50 47.08 10.72 8.50 FIU10 VELOCITY 3.655 FT/SEC 47.75 11.02 8.50 RtYNOLDS VO. 19550.0 24.33 2.51 8.49 PRANUH ND 3.15 46.75 1.00 8.50 HEAT S'JPP 8088.2 BIU/HR HE AI 1 RAMS 7727.9 BIU/HR HtAI LOSI 360.3 BIU/HR PERCEM HEAT LOST 4.45 HEAT UUX 1 R A N S . BTU/SJFI-HR 44362. NUSSELI NO 94.6 RFILH 0.S03 RWAll 0.144 RIOIAL U.947 SOFI-HR-DEG f/OTU LOCALIZED WALL TEMPERATURES IUEG.FI 1215 1235 1255 1275 1295 1315 1135 DEG.F OEG. F DEG.F DEG.F UEG.F DEG.F DEG.F 0.0 154.3 153.9 159. 1 159.1 160. 7 157.5 0.0 157.1 156.3 161.9 161.5 163.1 159. 5 0.0 156.7 156.3 161.5 161.5 163.1 159.9 0.0 157.5 156. 3 162. 3 161.5 163. 3 159.9 0.0 157.1 156.3 162. 3 162.3 163.9 160. 3 0.0 158. 7 157.5 163.5 164.3 165. 1 161.9 0.0 159.1 15f.. 3 164. 3 164.3 165. 1 162. 7 0.0 160.7 159.5 163. 1 1&4. 3 165.5 162. 3 0.0 159.9 158. 7 163.9 163. 1 163.9 160. 7 0.0 159.9 158.7 163.5 164.3 165. 1 162.3 0.0 159.5 158.7 163.9 163.5 1 66. 3 161.5 0.0 157.1 154.7 15V.9 159.5 161.1 159. 7 0.0 154.3 153.9 159.5 159.1 l o i . 1 158. 3 1355 1375 T395 T415 1428 TIN TOUT TH DELTA H R TIKE DEG.F DEG.F DEG.F DEG.F UEG.F DEG.F DEG.F OEG.F OEG.F X1000 HOURS 156.3 0.0 16Z.1 165.9 0.0 127.0 141.8 158.8 14.9 1434.5 0.6971 0.0 158.7 0.0 164.3 168.7 0.0 127.4 142.2 161.2 14.8 1328.1 0.7530 2.53 158.7 0.0 164.7 169.5 0.0 126.5 141.8 161.3 15.3 1290.5 0.7749 4.92 157.1 0.0 165.1 169.1 0.0 127.0 142.2 161.4 15.3 1313.9 0.7611 5.08 159.1 0.0 165.1 169.5 0.0 127.0 142.2 161.8 15.3 1288.4 0.7762 6.98 161.1 0.0 166.7 171.1 0.0 127.0 142.2 163.5 15.3 1211.2 0.6256 23.08 161.5 0.0 167.1 170.7 0.0 126.5 141.4 163.7 14.9 1176.7 0.8493 27.50 161.5 0.0 167.9 171.1 0.0 127.8 142.7 164.0 14.8 1223.4 0.8174 32.50 159.9 0.0 166.7 170.7 0.0 126.5 141.8 163.0 15.3 1221.7 0.8135 35.08 161.1 0.0 167.1 169.9 0.0 127.4 142.2 163.5 14.8 1221.0 0.8190 47.08 161.9 0.0 165.9 171.9 0.0 127.4 142.2 163.7 14.8 1215.1 0.8230 47.75 157.9 0.0 163.1 167.1 0.0 126.5 141.8 159.9 15.3 1367 4 0.7313 24.33 157.5 0.0 162.7 166.7 0.0 127.0 141.8 159.2 14.9 1405.1 0.7117 46.75 LOCALIZED FOULING RESISTANCE ISOFT-HR-OfGF/BTUIX1U0.0OO 1215 1*35 1255 1275 1295 1315 T315 1 355 T375 1395 T4I5 1428 TIN OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 127.0 0.0 6.34 5.44 6.3? 5.41 5.41 4.52 5.43 0.0 4.50 6.28 0.0 127.4 0.0 5.43 5.44 5.41 5.41 5.41 5.4? 5.43 0.0 5.40 a.ce 0.0 126. 5 0.0 7.24 5.44 7.22 5.41 6.11 5.42 1.81 0.0 6.30 7. 18 0.0 127.0 0.0 6.34 5.44 7.22 7.?2 7-21 6. J2 6.33 0.0 6.30 8.08 0.0 127. 0 0.0 9.96 12.67 9.92 11.7? 9.91 9.9 1 10.84 0.0 9.90 1 1.64 0.0 127.0 0.0 10. B6 9.96 11.72 11.72 9.91 11.7) 11. 74 0.0 10. 79 10.7? 0.0 126.5 0.0 14.47 12.67 9.02 11.7? 10. 81 10. 9 1 11.74 0.0 12.59 11 .66 0.0 127.8 0.0 12.66 10. b6 10. H ? 9.02 7.21 7.23 8. 14 0.0 3.90 10. 77 0.0 176.5 0.0 12.66 10. lib 9.9? 11.7? 9.91 10.83 10.84 0.0 10. 79 8.97 0.0 127.4 0.0 11.76 10.86 10.«2 9.92 12.60 9.0 1 12.65 0.0 a. 10 13.45 0.0 127.4 O.D 6.34 1.81 1.81 0.90 0.90 2. 71 1.6? >;. o 1.80 2. 70 0.0 126.5 0.0 0.0 0.0 0.90 0.0 0.90 1.81 2.71 0.0 0.90 1 .80 0.0 127.0 TOUT DEG.F 141.8 142.2 141.8 142.2 142.2 142.2 141.4 14?. 7 141.8 142.2 142.2 141.8 141.B RFH 0 . 0 5.52 5.72 5.62 6.72 10.72 11.0? 11.72 9 . 6 ? 10. 7? 11.0? ?.51 1.00 OELTA DEG.F 14.9 14.8 15. 3 15.3 15. 3 15.3 14.9 14.8 15. 3 14.8 14.8 15. 1 14.9 1434.5 13?8. 1 1290.5 1313.9 1288.4 1211.2 1176.7 1223.4 1221.7 1221.0 1215.I 1167.4 1405.1 RIOT XI000 0.6971 0.7530 0.7749 0.7611 0.7762 0.3256 0.8493 0.8114 0.8185 0.8190 0.8230 0.7313 0.7117 TIKE HOURS 0.0 2.5] 4.92 S.Ofl 6.98 2 3.08 27.30 32.50 15.08 4 7.08 4 7. 75 24. 13 46. 75 227 ««»i«».KUN fj034. ••»•«•» FCRR1C UxlUE CONC (PPMI 2130. VOLTS: 9.35 AMPS: 253. HEAI UOrf SUPPLIED 807).6 8 R J / I M H E * I i L U X surJ'Lito 46347. n i u / s c r i - H R BETA0.30) 7llk=I INLE1 127.0 OEGF 0ENSIIr:0.986 GRAf'/CC I OUILtTMl.8 DEC F FLDll R A U 0.1442 LBS.I/SEC AVC Tt vP:l)4.4 DEC F X. 1NEKAT IC VISC0Sllir:0.496 SO.C.1/SEC FLUID VELDCIlr 3.655 FI/SEC REYNOLDS TO 19550.U PRANOTL N U 3.15 HEAT SUPP 8073.6 31U/HR HEA1 IRASS 7721.9 CTU/HR HEAT LOST 345.7 BTU/HR PERCEM HEA1 LOST 4.28 MEAI FLUX TRANS. P.TU/SOFI-ltR 4 4 ) 6 2 . NUSSCLT 94.6 RF1LH 0.603 RWALL O.ltt RI01AL 0.947 SOFT-HR-OEC F/BTU ESTIMATES liF K j m KCAH SCUIVRE STATISTICAL ERROR .20350 ,4t.3J7 EST 1 MAI [S ur RUJI "CAN SOUA-U mUL ERROR IN T r IC P .1)583 .3092 1 E ST I HA I E LIE RO (R1 ' ; F , . V 4 0 ft I1* «r - k 1 NM I 1 . - E K P I - V » T 1 .0 5.1,77', 1 .2677 IN ll!C P A R A M E T E R 11 ME CALC. RESISTANCE. FITTED V.UUO HOURS 1< SUFI-HR-.JLGF/3TUIX10C.0001 0.0 0.0 -0.0 o.na 1.30 0.55 0.13 0. 30 0.66 0.17 I .20 1. 10 0.2S 0.70 I.JO 0.38 1.60 2. 1 J 0.52 2.91 2. J4 0.58 4.21 2.96 1.30 3.91 4.58 1.45 5.11 4. JJ 1.67 5.21 4.91 2.10 5.11 5.28 Only data for f i r s t 2.1 hours are processed here. LOCALUEO KALI TEH.PERATURE5 1OEG.F) 1215 1235 1255 1275 T295 T315 OEG.F DEG.F DEG. F OEG.F DEC.F DEG.F 0.0 154.7 154.3 159.9 159.9 161.1 0.0 155. 1 155.1 160.3 160.3 161.9 0.0 155.1 154.7 159.) 159.9 161 .5 0.0 155.5 155.1 160. 3 160.3 161.9 0.0 155. 1 154.7 160. 1 159.9 161.5 0.0 155.5 155.1 160. 7 160. 3 161.9 0.0 155.9 155.5 161.1 161.1 1*2. 7 0.0 156.7 156.3 161.9 161.9 lo3. 1 0.0 156.3 155.9 161.5 161.5 163.1 0.0 156.7 156.7 162.3 161.9 163.5 0.0 157.1 156.7 162.3 162. 3 163.9 0.0 156.7 157.1 162.3 162.3 163.9 T3J5 1355 1375 T395 T415 1428 TIN OEG.F OEG.F OEG.F OEG.F OEG.F OEG.F OEG.F 15P.7 157.9 0.0 162.7 166. 7 0.0 126.5 159. 1 157.9 0.0 161.5 167.9 0.0 126.5 15B.7 157.5 0.0 162.7 167.1 0.0 126.5 159. 1 157.9 0.0 163. 5 167. 1 0.0 126.5 158.7 157.9 0.0 161.5 167.1 0.0 126.5 15 1. 1 158.1 C O 163.5 167.9 0.0 126.5 159.9 158. 7 0.0 163.9 168.7 0.0 127.0 160. 3 159.1 0.0 164.3 169. 1 0.0 127.0 160. 1 159.1 0.0 164.7 169. 1 0.0 127.0 160. 7 159.9 0.0 165.1 169.5 0.0 127.0 160. 7 159.5 0.0 165.1 169. 1 0.0 126.5 160. 7 159.5 0.0 164.7 169.1 0.0 127.0 TOUT IM DELTA H R TIRE DEG .F OEG.F OEG.F X1000 HOURS 141 .8 159.5 15.3 1376.4 0. 7266 0.0 141 .8 160.1 15.3 1347.0 0.7424 O.Ofi 141 .4 159.7 14.9 1359.8 0.7354 0.13 141 .4 160.1 14.9 1138.6 0.7471 0. 17 141 .4 159.8 14.9 1349.6 0.7410 0.2! 141 . 4 160.2 14.9 1329.6 0.7521 0. 11 141 . 4 160.8 14.4 1310.2 0.7612 0.52 141 .9 161.4 14.9 1 . 14.7 0. 7724 0.51 141 .8 161.3 14.9 1299.3 0. 7696 1.30 141 .a 161.8 14.9 1274.2 0.7848 1.45 141 .8 161.8 15.3 1263.2 0.7917 1.67 141 .8 161.8 14.9 1274.4 0.7847 2.10 LOCALIZED FOULING RESISTANCE ISOFI-IM-CEGFInIUIX I GO.000 J215 1235 1255 1275 1295 1315 1335 (155 T375 1)95 J415 1426 TIN TOUT RFM DELTA M RTOT TIHE OEG.F OEG.F OEG.F 11000 HOURS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 126.5 141 . 8 0.0 15.3 1)76.4 0.7266 0.0 0.0 0.91 1 .Cl 0.90 0.90 1.60 0.90 o.n n.o 1.80 2.69 0.0 176.5 141 . 8 1. 30 15.1 1)47.0 0.7474 0.06 0.0 0.91 0.91 O.O 0.0 0.90 0.0 0.0 0.0 0.0 0.90 0.0 126.5 141. 4 0.30 14.9 1)59.8 0.7354 0. 1 i 0.0 1.81 1.81 0.90 0.90 l.hO 0.90 0.0 o.n 1.80 0.90 0.0 126.5 141. 4 1 .70 14.9 1)38.6 0.7471 0. 1 7 0.0 0.91 0.91 0.90 o.n 0.90 0.0 0.0 0.0 1 .80 0.90 0.0 126.5 141. 4 0. 70 14.9 1)49.6 0.7410 0.2E 0.0 1.81 1.61 1.10 0.90 1.60 0.90 0.90 0.0 1.80 2.69 0.0 126.5 14 1. 4 1 .60 14.9 1)29.6 0.7521 0. »* 0.0 2-/2 2.72 2. 11 2.71 1.61 2. 71 1 .81 0.0 2.10 4.49 0.0 177.0 141. 4 7.91 14.4 1310.2 u.7632 0. 52 0.0 4.53 4.53 4.51 4.51 4.51 . 1.61 7. 71 u.o 3.60 5. IB 0.0 127.0 141 . 8 4.21 14.9 1294.7 0.7(24 0.5* 0.0 3.62 1.62 3.61 1.1,1 4.51 3.61 2.11 0.0 4.50 5.38 0.0 177.0 14|. 8 1. VI 14.9 1299.1 0.7696 1. >0 0.0 4.53 5.43 5.41 4.51 5.41 4.51 4.52 0.0 ' 5.40 6.71 0.0 127.0 141. 8 5. 11 14.9 1274.2 0. 7648 1.45 0.0 5.43 5.43 5.41 5.41 6.11 4.51 3.61 0.0 5.40 5.38 0.0 176.5 14| . 8 5.21 15.) 126).2 0. 7917 1.67 o.o 4.5) 6. J4 5.41 5.41 6.11 4.51 J.6I 0.0 4.50 5.38 0.0 127.0 141. 8 5. 11 14.9 12 74.4 0. 164 7 2. 10 228 •••••••RUN N034.•*•«••• FERRIC 0X°I0E CONC (PPNI 2130. VOLTS: 9.35 A.IRS! 253. HEAT FLOW SUPPLIED 8073.6 HEAT ILUX SUPPLIED 46347. BTU/HR OTU/SCfT-HR HCIA0.301 I0R»IINLCTI27.0 OEG F 0ENS11Y:0.936 GRAH/CC T UUTLEI141.8 OEG F FLOW RATE 0.1442 LBS.M/SEC AVG TEHPM34.4 DEG F KINEMATIC V1SC0SITT:0.496 SO.CM/SEC FLUID VELOCITY 3.655 FT/SEC REYNOLDS NO 1955U.0 PRAflOIl NO 3.15 HEAT SUPP 8073.6 BTU/HR HEAT TRANS 7727.9 BIU/HR HEAT LOST 345.7 BTU/HR PERCENT HEAT LOST 4.28 HCA1 FLUX TRA.'iS. B7U/S0FI-IIR 44162. NUSSELT m 94.6 RFILH O.BOI RWALL 0.144 R10IAL 0.947 SOFT-HR-DEG F/BIU EST1MA1ES OF RUOI .66787C-01 tSIIHATCS OF R-J01 .77697E-0I ESIIMAIE UF R0.R1 .0 I IME HOURS 0.0 0.08 0.13 0.17 0.28 0.38 0.5? 0.58 1.30 1.45 1.67 2.10 2.40 2.6? J.43 3.52 1.60 4.20 4.67 6.50 23.68 MEAN SOJARE STATISTICAL ERKOK IN HIE PARA* .?9f*?0 P.EAN SCJARE lOIAL EK«OR IN THE I'Aft AME IE RS .34691 IF.ANL- Q IN RF = RINF-I I I ,-EXPI-H»l I »:E I 4.6395 1.8926 CALC . RESISTANCE FITTED VALUE I(SUFI-hR-UEGF/BTUIX100.000l 0.0 -O.C 1.30 0.30 1.20 0. 70 1.60 2.91 4.21 3.91 5.11 5.21 5.11 6.11 6.41 3.41 3.51 2.91 4.51 . 3.91 .2.71 6.71 0.65 1.01 1 .20 1.91 2.38 2.91 3.09 4.24 4.34 4.44 4.55 4.59 4.61 4.63 4.63 4.63 4.64 4.64 4.64 4.64 LOCALIZED WALL TEMPERATURES t?15 1235 1255 1275 DEG.F DEG.F DEG.F DE3.F 0.0 154.7 154.3 1 59.9 0.0 155.1 155.1 160.3 0.0 155.1 154.7 159.9 0.0 155.5 155. 1 160.3 0.0 155.1 154.7 160. 3 0.0 155.5 155.1 160. 7 0.0 155.9 155.5 161.1 0.0 156.7 156.3 161.9 0.0 156.3 155.9 161.5 0.0 156.7 156. 7 162.3 0.0 147.1 156.7 162 .3 0.0 156.7 157.1 162.3 0.0 157.1 157. 1 163. 1 0.0 157.1 157. 1 163.1 0.0 157.1 156.7 161.9 0.0 157.1 156.7 161.9 0.0 157.1 157. 1 161.9 0.0 157.5 157.5 162. 7 0.0 157.1 156. 7 162. 3 0.0 157. 1 156. 3 161.1 0.0 157.1 156.7 163.1 IUEG.F1 1295 DEG.F |}9.9 160.3 159.9 160. 3 159.9 160. 3 161. 1 161.9 161.5 161.9 16?.3 16?. 3 16?.7 163.1 161.5 161.5 161.5 162. 3 161.9 160.7 162. 7 7)15 OEG.F 161.1 161.9 161. 5 161.9 161.5 161.9 162. 7 l o i . 1 163.1 163.5 163.9 161.9 164. 3 164.3 162. 7 162.7 162.1 163.1 161.1 162. 3 164.7 1335 DEG.I 1 58. 7 159. I 158. I 159. 1 158.7 159.1 159.9 160.3 160. 3 160. 7 160. I 160.7 161.1 161.5 159.9 159.9 159.5 159. 9 159.9 159. 5 161.9 1355 T375 T395 7415 T42B TIN TOUT TM DELTA H OEG.F OEG.F DEG.F OEG.F DEG.F DEG.F DEG .F OEG.F DEG.F XI 157.9 0.0 162.7 166.7 0.0 126.5 141 .8 154.5 15. 3 1376.4 0. 1 1 57.9 C O 163.5 167.9 0.0 126.5 141 .8 160. 1 15.3 1347.0 0. 7 157.5 0.0 162.7 167.1 0.0 126.5 141 .4 159.7 14.9 1359.8 0. 7 157.9 0.0 163.5 167.1 0.0 126.5 141 .4 160.1 14.9 1336.6 0. 7 157.9 0.0 163.5 167. 1 0.0 1?6.5 141 .4 159.8 14.9 1349.6 0.7 158.3 0.0 163.5 167.9 0.0 126.5 141 .4 160.2 14.9 1329.6 0. 7 158.7 0.0 163.9 168.7 0.0 127.0 141 .4 I6C.6 14.4 1310.2 0. 7 159.1 0.0 164.1 169. 1 0.0 1?7.0 141 .8 161.4 14.9 1294.7 0. 7 159.1 0.0 164.7 169. 1 0.0 127.0 141 .8 161.3 14.9 1299.3 0.7 159.9 0.0 165.1 169.5 0.0 12 7.0 141 .8 161.a 14.9 1274.2 0.7: 159.4 0.0 165.1 169.1 0.0 126.5 141 .8 161.6 15. 3 1263.' 0.7' 159.5 0.0 164. 7 169.1 0.0 127.0 141 .8 161.8 14.9 12 74. . 0. 71 159.9 0.0 165.5 169.5 0.0 126.5 141 .8 162.2 15.3 1244.2 o. ec 159.9 0.0 165.5 169.9 0.0 127.0 141 .6 162.4 14.9 1247.0 O.Br 15 8.7 0.0 163.5 1 67.5 0.0 127.0 141 .8 161.0 14.9 1315.6 0. 71 158.7 0.0 163. 5 167.9 0.0 127.0 141 .8 161. 1 14.9 1311.6 0.76 157.9 0.0 163.1 157.1 0.0 127.0 141 .8 160.8 14.4 1330.3 0. 75 156. 7 0.0 1 63.9 168. 3 0.0 126.5 141 .8 161.5 15.3 1284.1 0.77, 1 58. 7 0.0 163.9 167.9 0.0 127.0 141 .6 161. 3 14.9 1104.0 0. 76<, 158.1 0.0 161.5 167.9 0.0 127.0 141 .8 160.7 14.9 1 112.9 0. 75C 160. 7 0.0 165.9 169.9 0.0 127.0 141 .6 162.5 14.9 1236.7 0.807 229 •••••••RUN N035.**•*••• FERRIC OX10E CONC (PP*I 2130, VOLTS: 9.35 AHPS: 254. HEAT FLOW SUPPLIED 8105.5 HEAT FLUX SUPPLIED 465J0. BIU/HR 8TU/S0FT-HR BE1A0.10] TOR=TINLET127.0 DEG F DCNSIIr:0.9S6 GRAM/CC 1 0UUEI141.8 DEG F flOW RAJE 0.1442 LBS.M/SEC AVG IEMP:134.4 DEC F KINEKAIIC VISC0SITY:0.496 SQ.CH/SEC FLUID VELOCITY 3.655 FI/SEC REVNDLDS NO 19550.0 PRANOIL NO 3.15 HEAT SUPP 8105.5 BTU/HR HEAT TRANS 7727.9 BIU/HR HEAT IUST 377.6 BIU/HR PERCEM HEAT LOST 4.66 HE AT HUX 1 R A \ S . B1U/S3FT-HR 44362. NUSSElT NU 94.6 RFIIM 0.80) RHAll 0 . 1 4 4 R10TAI 0.947 SCFI-HR-DEC F/BIU ESTISAUS OF R-JJI MEAN SCUARE STATISTICAL ERRUR IN THE PARAMETER -20)31 .68319 ESTIMATES Or ROUT MEAN SUU44E TOTAL EKRCR IN THL PARAMETERS •1'012 .41024 ESTIMATE OF RO.RINF.ANO 0 IN R F =R INF I I 1 .-E XP <-D« IIME I I INE HOURS 0.0 0.18 0.48 0.70 0.7B 1.37 1.58 1.65 2.33 3.65 4.05 4.12 4.28 3.7942 .6105J CALC. RESISTANCE F11 TED VALUE I I SOFI-H«-L>EGF/BIU)XICO,OOOI -0.0 -0.20 0.90 -0.20 0.70 2.41 2.21 3.01 2.71 2.81 3.11 2.51 3.11 0.34 0.84 1.15 1.25 1.82 2.04 2.09 2.50 2.94 3.02 3.03 3.05 LOCALIZED k A l l TEMPERATURES IDEG.F1 T215 12 35 T255 T275 1295 T315 T335 1355 T375 DEG.F DEG.F DEG.F DEG.F OEG.F OEG.F DEG.F UEG.F OEC-F 0.0 154.3 15).9 159.5 159.5 160.7 157.9 156.7 0.0 0.0 154.3 15).9 159.1 159. 1 160. 3 157.9 156. 7 0.0 0.0 154.7 154.3 159.9 159.9 161. 1 158. ) 157.1 C O 0.0 154.3 15).9 159.5 159. 1 160. 3 157.9 156.7 0.0 0.0 154.7 154. ) 159.9 159.5 160. 7 158. 3 157.1 0.0 0.0 155.5 155.1 160.7 160. 3 161.5 158. 7 157.9 0.0 0.0 155.5 155.1 160. 7 160.3 161.5 158. 7 157.5 0.0 0.0 155.5 155.5 161. 1 160.7 161.9 159.1 157.9 0.0 0.0 155.5 155. 1 160. 7 160.7 161.9 159. 1 157.9 0.0 0.0 155.5 155.1 160. 7 160.7 161.9 159. 5 157.9 0.0 0.0 155.5 155. 1 161.1 161. 1 161.9 159. 5 158.3 0.0 0.0 155.5 155. 1 160. 7 160. 7 161.9 159. 1 157.9 0.0 0.0 155.5 155.1 161.5 161.1 161.9 159. 5 157.9 0.0 LOCALIZED FOULING RESISTANCE ISUFI-HR-OEGF/BTUIX100,000 1215 1235 1255 1275 T295 T315 1335 1)55 1375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.91 0.90 0.90 0.90 0.90 0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.91 0.90 U.O 0.0 0.90 0.90 0.0 0.0 2.72 2.72 2.71 1.81 1.80 I . M 2.71 0.0 0.0 2.72 2.72 2.71 I.B1 1.80 1 .HI I.ni 0.0 0.0 2. 72 3.62 3.61 2.71 2. 71 2. 71 7. II 0.0 0.0 2.72 2.72 2.71 2.71 2. 71 2. 71 2. 71 0.0 o.o 2.72 2. 72 2.71 2. II 2.11 3.61 7.71 0.0 0.0 2. 72 2.72 3.61 1.61 2. 71 ).61 1.62 0.0 o.o 2.72 2. 72 2.71 2. 11 2. 71 2.71 7. 71 0.0 0.0 2.72 2.72 4.51 3.61 2.71 ).6I 2. 11 0.0 T395 1415 T428 TIN 10UT IN DELTA H R TINE DEG.F OEG.F OEG.F DEG.F DEG F DEG.F OEG.F X1000 HOURS 162.3 167.5 0.0 127.0 141 8 159.1 14.9 1413.6 0.7074 0.0 162.7 167.S 0.0 126.5 141 8 159.0 15. ) 1407.4 0.7105 0.18 162.7 167.9 0.0 127.0 141 3 159.5 14.9 1391.1 0.7188 0.48 162.3 167.5 0.0 127.0 141 e 159.0 14.9 1419.7 0.7044 0. 70 162.7 167.9 0.0 127.0 141. 8 159.4 14. 9 1397.1 0.7158 0. 78 163.5 168.7 0.0 127.0 142. 2 160.2 15. 3 1368.7 0. 7)06 1.32 163.5 168.) 0.0 127.0 141. 8 160. 1 14.9 1362.0 0.7342 1.58 163.9 168.7 0.0 127.0 142 2 16U.5 15. ) 1 353.5 0.7)»8 1.65 161.5 168.7 0.0 127.0 142. 2 160.3 15. ) 1359.9 0.7)53 2.3) 163.5 168.7 0.0 126.5 141 . 6 160.4 15. 1 1334.4 0.7494 ).65 163.5 168.7 0.0 126.5 141. 4 160.5 14.9 1315.7 0.7600 4.05 161.1 168. ) 0.0 126.5 141. 8 160.2 15. ) 1341.8 0.7453 4.12 163.5 168.7 0.0 126.5 141 .8 160.5 15.) 1)27.5 0.753) 4.28 1)95 T415 1426 U N TOUT RFH OELTA H RIOT TIKE OEG.F OEG. F OEG.F KIOOO MOU<S 0.0 0.0 0.0 127.0 141. A 0.0 14.9 1413.6 0.7074 0.0 0.90 0.0 0.0 126.5 141. 8 -0.20 15. 3 1407.4 0. 7105 0. 1 5 0.90 0.90 0.0 127. 0 141. 8 0.90 14.9 1391.1 o.'iaa 0.48 0.0 0.0 0.0 127.0 141. 8 -0.20 14.9 1419.7 0.7044 0. 70 0.90 0.90 0.0 • 77.0 141. 8 0.10 14.9 1197.1 0.7158 0. 78 2. TO 2.69 0.0 127.0 142. 7 2.41 15. ) I 368.7 0. 7 306 1. 37 2. 70 1.79 0.0 127.0 I4|. 8 2.21 14.9 1)67.0 0.7)42 1 .58 ).60 2.69 0.0 121.0 142. 2 3.01 15. 3 1)51.5 0. 7 J<18 1.65 2. 10 2.69 0.0 121.0 142. 2 2.71 15. 3 1)59.9 0. 7 J4 3 2.)) 7.70 7.69 0.0 126.5 141. 8 2.81 15. 3 13)4.4 0.7494 1...5 2.70 2.69 0.0 126.5 141. 4 3.11 14.9 t 115.7 0.1600 4.05 1 .80 1.79 0.0 176.5 I4|. 8 2.51 15. 3 1)41.8 0.7453 4.12 7.70 2.69 0.0 126.5 141. 8 3.11 15.3 1)2 1.5 0.7533 4.28 230 • ••••••RUN 11036. •»•»••• FERRIC OXI0E CONC (PPMI 2130. VOUS! 9.35 AMPS! 25*. MEAT IIOK SUPPLIED 8105.5 BIU/HR HEAT ILUX SUPPLIEO 465)0. BTU/SCFI-HR BEIA0.301 T0R.TINLEU27.0 OCC F DCNSIlv:0.936 GRAK/CC I 0UILEH41.8 OEC F FLO* R*1E 0.1442 LBS.M/StC AVG UHP:I)4.4 DEG F KINEMATIC YISCUSIIY:0.496 SU.CM/SEC FLUID VELOCITY 3.655 FT/SEC REYNOLDS NU 19550.0 PRAHUTL NO 3.15 HEAT SUPP 8105.5 BTU/HR HEAT 1RANS 7121.1 blU/HR HEAT LOSI 377.6 OTU/HR PERCENT HEAT LOST 4.66 HEAT FLUX TRANS. BTU/SOFT-HR 44362. NUSSELT NO 94.6 RF 1LM 0.603 RWALl 0.144 RIOTAl 0.947 SOFT-HR-DEG F/8TU ESiiMAirs ur ROOT M E A N . 4 0 0 5 3 E - 0 I .1 E S T I M A I C S OF ROOT M E A N .47fltl!:-()l .1 E S 1 I N A I L 01 R O . R I N F . A N D 7. TIKE HOURS 0.0 0.10 0.35 0.63 0.06 1.03 1.6T 1.75 2.17 2.45 22.07 22.25 22.75 25.92 26.25 27.42 28.92 29.92 45.98 46.22 24.25 25.72 CALC. IIS SUUARC SIATISTICAL ERROR IN THE PARAMETER B652 SCUARE I01AL ERROR IM THE PARAHEItRS 9936 IN Rf.R INFII 1.-EXC(-B»1INEI 7243 .33106 RESISTANCE FITTED VALUE FI-IIR-UECF/BTUIX100.000I 0.0 1.41 0.81 1.41 3.31 1.71 3.91 3.41 3.01 3.01 5.61 5.9i 5.51 7.42 7.12 7.22 6.12 6.92 9.42 9.12 7.62 6.B2 -0.0 0.24 0. 79 1.36 1.83 2.09 3.07 3. 16 3.70 4.01 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22 LOCAL I ZED WALL 1215 T235 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TEMPERATURES T255 T275 DEG.F 154.7 155.5 156.3 156.7 157.9 156.7 157.1 156. 3 156.7 157.1 157.5 157.5 157.5 158.7 158.3 157.9 159.1 158.7 159.9 159.5 159.1 157.5 DEG.F 154.7 155.5 155.9 155.9 156. 7 156.3 156.7 156. 3 155.9 156. 3 157. 1 157.1 157.1 157.9 158.3 157.9 158.3 158. 3 159. 1 158.7 15S. 3 157.5 DEG.F 160.3 161.1 161.1 161.1 161.9 161.5 161.9 161.5 161.9 161.5 162.7 162.3 162.3 163. 5 161.1 163. I 163.9 163. 1 164. 7 164. 7 163.9 163.9 (OEG.F) 1 295 CEG.F 159.9 160. 7 160. 7 160.7 161.5 160.7 161.5 161.5 161.5 l u i . I 162. 3 161.9 162.) 162.7 163.1 163.5 163.5 163.5 163.9 163.9 163.5 163.5 T315 T335 T355 DEG.F DEG.F UEG.T 161.1 157.9 156.7 161.5 158. 7 157.5 161.1 158. 3 156.7 161.5 158.7 157.1 162.3 159. 1 157.9 161.5 158. 3 157.5 162. 7 159.9 158.7 162. 7 159.9 158.7 162.) 159.5 15B.) 162.3 159.5 158.) 161.5 160. 7 159.5 163.9 161.1 159.9 163.5 160. 7 159.5 164.3 161.5 160. 3 164. 3 161.5 159.9 164.3 161. 1 160.3 164. 3 161.9 160.3 163.5 161.1 159.9 164.7 162.7 161.5 165. 1 162. 3 161.1 164.7 161.5 160.3 164.3 161. 1 160. 3 T375 DEG.F 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 C O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T395 OEG.F 162.7 163. 1 162.) 162.7 163.5 162. 7 164. ) 16).9 16).5 163.5 165.1 165.5 165.1 166.) 165.5 165.9 166.3 165.5 166.3 166. 3 165.1 165.1 T4I5 OEG.F 167.5 167.5 166.3 166.7 167.9 167.1 168.3 168.3 167.9 167.9 169.5 169.9 169.5 169.9 169.9 1 70. 3 170.3 169.5 170.3 1 70. 3 169.5 169.5 T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TIN DEG.F 126.5 126.5 126.5 126.5 127.0 126.5 127.0 127.0 126.5 127.0 127.0 127.0 127.0 127.0 126 .5 127.0 127.0 127.0 127.0 127.0 127.0 126.5 TOUT OEG.F 141.8 141.8 141.4 141.4 142.2 141.8 141.8 141.8 141.4 141.8 141.8 141.8 141.4 141.8 141.8 141.8 141.8 141.8 141 .8 141.8 141.8 141.4 TM OELTA H ft TIME DEG.F DEG.F X1000 HOURS 159.5 15.3 1)8).9 0.7226 0.0 I6C.I 15 3 1)50.9 0.7402 0. 10 159.8 14.9 1)59.6 0.7355 0.35 160.1 14 9 1)45.0 0.7435 0.63 161.0 15. 3 1)38.1 0.7473 0.86 160.2 15.3 1)51.0 0.7402 1.03 161.2 14 9 1)06.8 0.7652 1.67 161.0 14 9 1314.5 0.7606 1.75 160.8 14 9 1304.5 0.7666 2.17 160.8 14 9 1 328.3 0.7529 2.45 162.0 14 9 1269.4 0.7S7Q 22.07 162.1 14 9 1261.9 0.7924 22.25 161.9 14 4 1261.2 0.7929 22. 75 162.8 14 9 1234.8 0.8099 25.92 162.6 15 ) 12)1.4 0.8121 26.23 162.7 14 9 1236.7 0.E086 27.42 163.1 14 9 1222.4 0.B191 28.72 162.6 14.9 124 .8 0.6G20 29.92 163.7 14 9 1 198.3 0.8345 45. JS 163.5 14 9 1202.8 0.8314 46.22 162.9 14.9 1232.2 0.6116 24.25 162.5 14. 9 1223.9 0.8171 25. 72 LOCALIZED FOJLING RESISTANCE ISOFT-HR-DEGF/BTUIXI00.000 1275 1215 1235 1255 0.0 0.0 0.0 0.0 1.81 1.61 0.0 3.62 2.72 0.0 4.53 2.72 0.0 7.24 4.53 0.0 4.53 3.62 0.0 5.43 4.53 0.0 3.62 3.62 0.0 4.53 2.72 0.0 5.43 3.62 0.0 6.34 5.43 0.0 6.34 5.4) 0.0 6.34 5.43 0.0 9.05 7.24 0.0 8.15 8.15 n.o 7.24 7.74 0.0 9.95 8.15 0.0 9.05 8.15 0.0 11.16 9. 15 0.0 IU.P.6 9.05 0.0 9.95 8. 15 0.0 6,)4 6. 34 3.6 2.7 ) . 6 2.7 5.4 H. I 8.1 1295 T315 1335 1)55 1375 T395 T415 1426 TIN TOUT RFM OELTA H RIOT TIME OEG.F OEG.F DEG.F X100O HOURS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 176.5 141 .8 0.0 15. 3 1)8).9 0.7226 0.0 I.BO 0.90 I.BI 1 .81 0.0 0.90 0.0 0.0 126.5 141 .8 1 .41 15.3 1)50.9 0.7402 0.10 I. 80 0.0 0.90 0.0 0.0 0.0 0.0 0.0 126.5 141 .4 0.81 14.9 1359.6 0.7355 0.35 1.80 0.90 I.R1 0.90 o.o 0.0 0.0 0.0 126.6 141 .4 1.41 14.9 1)45.0 0.74)5 U.63 ).6I 2. 70 2. 71 2. 71 0.0 1 .80 0.90 0.0 127.0 147 .2 3.31 1 5. 3 13)8.1 0.7471 0.88 l.RO 0.90 0.90 1.81 0.0 0.0 0.0 0.0 126.5 14 1 .8 1 . '1 15. 1 1)51.0 0.7402 l.u) 3.61 3.61 4.52 4.52 0.0 3.60 1.79 0.0 127.0 141 .8 3.91 14.9 1)06.8 0.'642 1.67 3.61 ).6I 4.52 4.52 0.0 7. 10 1 .79 0.0 127.0 14) .8 3.41 14.9 1)14.5 0.7605 1. 75 ).61 2.70 3.61 ).67 0.0 1.80 0.90 0.0 126.5 141 .4 3.01 14.9 1104.5 0.7666 2.17 2. 71 2. 70 3.61 ).62 0.0 I.BO 0.90 0.0 127.0 141 .8 1.01 14.9 1 128. ) 0.767 1 2.45 5.41 5.41 6. 32 6. 1 3 0.0 5.40 4 .49 0.0 12 1.0 I4| .8 5.61 14.9 1269.4 0.7H76 72.0 7 4.61 6. 31 7.2/ 7.2) 0.0 6.30 5. 3B 0.0 177.0 141 .8 5.91 14.9 1261.9 0. 1974. 77.25 5.41 5.41 6. 32 6.33 0.0 5.40 4.49 0.0 127.0 141 .4 5.51 14.4 126 1.2 0.7979 22. r. 6. 31 7.21 8. 1 1 6.1) 0.0 8.10 5 .311 0.0 177.0 141 .8 7.42 14.9 12 14.6 0.«C99 75.97 7.21 /.21 II. 1 ) 1.7) 0.0 6. 30 5. 3 8 0.0 176.5 I4| . 8 7.17 1 5. > 1/ 11 .4 0.81/1 76.75 rf. 1 1 7.21 7.7/ 8. 11 0.0 7.70 6.78 n.o 127.0 14 1 .8 7. 77 14.9 1/14.7 O.ROI'6 7 7.4/ 6.1 1 /.2l 9.0 1 8.11 u.o 8.10 6.7B 0.0 177.0 I4| .8 8. 1? 14.9 1/22.4 0.81*1 7'l. 97 II. 1 1 5.41 l.tt 7.7 1 0.0 6. 30 4.49 0.0 177.0 14 1 . 8 6.97 14.9 1/46.6 O.HO/0 79.97 I.ni 8.11 in.II i l n. 04 0.0 B.l'l 6.78 0.0 177.0 141 .8 9.42 14.9 1111,1 ll.H 145 45. NM 1.01 9.01 9.9 1 9.94 0.0 H. 10 6.7H 0.0 177.0 14 1 . A 9. 17 14.9 170/.8 n. H 11 4 46.7/ B. 1 | H.H H. 1 1 8.11 u.o 5.40 4 .49 D.ll 1/7.0 141 . 8 7.67 14.9 1/ 1/./ 0 . " 1 1 6 / 4 . / '» 8. 11 1.21 1./7 8 . 1 > u.o 5.40 4.49 0.0 176.4 141 .4 6.67 14.1 I//1.9 0. II 1 1 1 75.7/ co CM * J > O V j a i r > N l A l O O - N r < l / « 3 M .< O • • • ( * * • • * — O I b N Q • *( 0- u. O U J . i - O AC f 3T — X O <C (S * « K C - CO Vi | >•> LL* — OOO- C7 ~ T 3 I - - krt 1% •'> — Ul O sr a: u. i/l r"OO«*i'«inr-NP"U>03N*i X 3 — 300000 — — — ""*'"*"N''*>-#'»r X O — 0> CT ̂o-iO Oi/i - O K J O ID M . t • • 4 . . OOOOOOOOOOOOOO d)ij\î M̂'MOOff' o "*- — r"» _• o O O — — — — — — — — — — — — « — K u o - c r o o i y o o o o — 0 0 0 © O. — — —————— — — — — — _ ikcoonainatoNoicocDiOiDa) U.oOOOOOOOOOw->Ou*iO 2 • Q — — — — — — — — — — — — — — U.0OOOOOOCOOOO0O ( S J O O O O O O O O O O O O O O O 1- Q l - e — — — — — — — — — — — — — — U. »» — f>- — — — vAU"Vi/>l/"iU"( — u"*""' » - o — — — — — —— — — — — — — — — u.00000000000000 lA • t > » I » **> r ^ o o o o o o o u o o o u o c j o f*\ Lil t— c U> > • • • * • • » • » I - O — — — — - — — — - - - — — — U.jmrtr«.r- — — — — ̂TitT-iA — iAt/\ rttj03'O"0'EO©>47*>0* c* er T> ry »_ O. — — — — — — — — — — . — — It — — W>ifliftO,l>«'%0,IJ,C**1 VA . . » » • • * • • — O O — — — — — — — IM rN — _ — N I _ Q — — — — — — — — - « — — — — — u. 1 u.»"Cr 1"* o> rt r» — r- ̂  — r— — i/> O u-> • lufj-oo-fftMrooo-o-i-o--- a M w ^ J> / • J - V O - O - C - O O O O J - O J J Cl LU a.i/N̂ i7'̂ iAi~- — iTi — I A I - V — t>>7« « in <••*<•• < » _ a — — — — — — — — — — — — — — a. ti.e>»»i**\P"r- — (M> *• " i»i I M ? £>A U J 1/1 o m < * ^ « - i r i i n ^ i r < ' d d i * < i A 4 < u. c> rt r- — — — ff.^rt-^rt'^-^rt i ^ O m V M - l A ^ ^ W N O J « « « 4> o 0>N<ujiritAkAini/si/\u%tf>i/\u-iiîi-4tf\i/t - J u.00000000000000 «t Lit t t . • • . • • t • • * • t • O — O O O O O O Q O O O O O O O O O N LU t/) •"CO>f*--«"-fV'--*,-C-Nirt u.Y 3 N-*'J">**»0'*»»"-. — -".a — rt.1*. X 3 • — f - J O O O S O — — — X - ^ - ^ r t * * 1- z >  fltwoooooosoocoooa Jj«-*0> - r r t ^ i ^ r t r t - c r t o - - . JO Jl J> *rt-v ,0O?0>*-- — **- »» <C U . >— •i>r*i>i>»i>yrte-i>--«(>rt--- J O tMU>J*0*Jr<J/*rjr<rL-4*,->JN<J-,l->.# DO — — — — — — — — — — — — — — £ o n ; * D - * * ?•''> — O » «*- J"- — 1— 0( OOO — — — Mrtrtrtrt-4.rtrt OiLi-r*-«'<r*<j'**r<<->*>-*4>.r* t - o — — — — — — — — — — — — — — U . O O O O O O O O O O ^ O J - ' O z O — — — — — — — — — — — — — — CD OOOOOOOOOOCOOO •r OOOOOOOOOCOOOO K o o o o o e . y e e ' o o c e - ' tft 0»C»ff'l?0>o:o(i) J JJEO <r 0 — OOOO — >N — > N N O — I N o o o o o o o o o c o o rt OOOOOO — — — — — O — irt OOOOOOOOOOOOOO >A OOOOOOOOOOSOCO o o o o C — - - — — - - - — - Ort O O C O — — — >N N — — — I N o w — 00—————————— £rt 0000 — — — — rsirt̂, — rv<N u UJ ©OSOO — — — — — — — — acrt O O O — — — r» N v N , » . rt I r— o o o — — — — — — — — — — , . » « I* — iM OOOO— NiNrt-̂ iArtNrt* U r 00— ————————— «-l <N O O C - O " . " * " * V rt i/> j-. 0C — -• — — f ^ ^ r t r t J - j f i M r t v -tf*. 0?>«'0i»0̂ ^̂ 'f0̂ j; o - n Z o o O — — -4j rt •+ * rf> rt * .A O — — • V - M - M r t - * - * * * - - - * - ^ O <̂  00-'«N»(l»«KS»3lfllAi-.A * I A O O O O O O O O O O O O O O o — • • • » • • • • • » • • • . O N O O O O O O O O O O O O O O 232 •••••••RUN N039.•»•••.. FERRIC OX IOE CONC IPP1I 21)0. VOUS: 9.35 AMPS: 253. HEAT FLOW SUPPLIED 8073.6 FLUID VELOCITY 4.817 FI/SEC REYNOLOS NO 25394.5 PRANDIL NO 3.20 HEAT SUPP 8073.6 PTU/HR HEAT IP7NS 7817.1 BTU/HR HEAT LOST 256.5 BIU/HR PERCENT HEAT LOST 3.18 HEAT FLUX TRANS. BIU/SOFT-HR 44674. NUSSFLT NO 116.5 RFILK 0.653 ft*! A l l 0.14* RTOTAL 0.798 SOFI-HR-OCG F/BTU EST 1 SAT ES OF ROOT ME AN SCUARE STATISTICAL ERROR IN THE PARAMETER .1)462 .49466 ESTIMATES OF ROOT MEAN SQUARE TOTAL ERROR IN THE PARAMETERS .57654E-0I ESTIMATE UT .0 .21184 Ar:0 Fi IN 4.2464 - E X P l - l l * 1 I MC I 2.6190 HEAT TLUX SUPPLIED 46)4/. B1U/SIFT-HR TIME CALC. RESISTANCE F IITEO VALUE HOURS 1 IS0H-HR-UEGF/BTUIX1O0, 00U1 PE! AO. 301 TOR-TINIETI27.0 DEC f 0.0 0.0 -0.0 DENSJTY:0.936 CRAM/CC 0.25 1.79 2.05 T OUTLET138.3 DEC F 0.42 2.91 2.84 0.62 3.5" 3.42 FLOW RATE 0.1902 LBS.M/SEC 0.S2 4.03 3. 76 1.12 3.59 4.03 AVG IEMPM32.6 DEG F 1.58 1 4.26 4.18 KINEMAIIC 2.08 4.9) 4.23 VISCOSITV:0.504 SO.CM/SEC 2.25 3.59 4.24 Data processed for top half of tube only. 10CA117F0 WALL 1EMPCRMURES lUEG.Ft T215 1235 1255 T275 1295 1315 T3)5 T)55 T375 1395 1415, 1428 TIN TOUI IM OELTA H R TIKE DEG.r OEG.F OEG.F DFG.F OEG.F OEG.F DEC.F DEG.F OEC.F OEG.F OEG.F OEG.F DEG.F OEG.F DEG.F DEG.F XI000 HOURS 0.0 0.0 0.0 0.0 0.0 0.0 150.6 149. B 0.0 154. 7 158.) 0.0 127.0 1)8.3 153.4 11.4 1677.4 0.5962 0.0 0.0 0.0 0.0 0.0 0.0 0.0 151.5 150.6 0.0 155.1 159.5 0.0 127.0 138.) 154.2 11.4 1576.1 0.6345 0.25 0.0 C O 0.0 0.0 0.0 0.0 151.9 151.1 0.0 155.9 159.9 0.0 127.0 138.3 154.7 11.4 1561. 4 0.6404 0.42 0.0 0.0 0.0 0.0 0.0 0.0 152.3 151.5 O.O 156.) 159.9 0.0 127.0 138.3 155.0 11.4 15 " . 1 0.6447 0.62 0.0 C O 0.0 0.0 0.0 0.0 152.7 151.5 0.0 156.) 160. ) 0.0 127.0 138.3 155.2 11.4 14S9.2 0.6670 0.82 0.0 0.0 0.0 0.0 O.n 0.0 152.3 151.5 0.0 156.) 159.9 0.0 127.0 138.3 155.0 11.4 155 1.1 0.644 7 1. 12 o.o 0.0 0.0 0.0 0.0 0.0 152.7 151.9 0.0 156.) 160.) 0.0 127.0 138.3 155.3 11.4 1506.0 0.6640 1.56 0.0 0.0 0.0 0.0 0.0 0.0 152. 1 151.9 0.0 157.1 160. 7 0.0 127.0 138.) 155.6 11.4 1521.6 0.6572 2. 08 o.o 0.0 0.0 0.0 0.0 0.0 152.) 151.5 C O 156.) 159.9 0.0 126.5 138.3 155.0 11.8 1538.3 0.6501 2.25 IDCA112ED FOULING RESISTANCE ISOFT-HR-DEGF/DTUIX100.000 1215 1235 1255 1275 1295 1315 T335 1355 1)75 1395 1415 T428 TIN TOUT REM OELTA M RTOI TIME OEG.F OEG.F OEG.F X1000 HOURS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 127.0 138.3 0.0 11.4 1677.4 0.5962 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.80 1. 30 0.0 0.90 2.68 0.0 127.0 1 38.3 1.79 11.4 1576.1 0.6345 0.25 0.0 0.0 0.0 0.0 0.0 0.0 2.69 2. 70 0.0 2.69 3.57 0.0 127.0 1 31.3 2.91 11.4 1561.4 0.6404 0.42 0.0 0.0 0.0 0.0 0.0 0.0 3.59 3.59 0.0 3.68 3.57 0.0 127.0 138.3 3.59 11.4 1551.1 0.644 7 0.62 0.0 0.0 0.0 0.0 0.0 0.0 4. 49 3.59 0.0 3.5R 4.46 0.0 127.0 13a.) 4.0) 11.4 1499.2 0.66 70 0.6 2 o.o 0.0 0.0 0.0 0.0 0.0 3.59 1.59 0.0 ).5» 3.57 0.0 127.0 l)a.3 ).59 11.4 1551.1 0.6447 1.12 O.O 0.0 0.0 0.0 0.0 0.0 4.49 4.49 0.0 3.5B 4.46 0.0 127.0 138. 3 4.26 11.4 1506.0 0.6640 1.5* 0 0 0.0 0.0 0.0 0.0 0.0 4 . 49 4.49 0.0 5. )7 5.36 0.0 127.0 1 3B.3 4.93 11.4 1521.6 0.6572 2.08 0.0 0.0 0.0 0.0 0.0 0.0 3.59 3.59 0.0 3.56 3.57 0.0 126.5 1)6.3 3.59 11.8 15)8. ) 0.6501 2.25 / o o o e o o o e o M O O O O O O O O O O SA> to PC N I / W V W U - I - O O OOOCOCOOO OOCOOOGOO OOOOOOOOO toe * -OOOOOOOOO v> <• c e o o e o o o o o e w OOOOOOOOO \1\ OOOOOOOOO Ku • ••*•*••• ,0 OOOOOOOOO t/i OOOOOOOOO * OOOOOOOOO * • ••*>*••* fS> 000000000 a> 'si»s/"v'>jlxr̂\j»ûs>T-< z J-OOOOOOOO"" — — — a - * #̂WW«.V-M<-0 JO J cr J J J .O »- O X — — — o o * • » o »- OO-ftyOO-J-̂OB 4»»-J'*'*'*-OwO ~ o a o o o A cn i o o o o o o o o o x n ffl — i « -£ -O O v/* *-J O ~rw — — OOOOOC — C X o -«r» o o o o o o o o o o — r > • < ' • « m > OOOOOOOOO** f OOOOOOtf-eraOw • * U<E N 1 ^'y'vr«\i/-00 ,'Ti > r-— >-»*.-»-»-»'0~> r -f /•*̂ j«*<>mN̂ — c — i> W JO — — — o -> — ui V> o u;. Vi i/i JI <#• vr rt. C v C i — - "n » o -« OOOOOOOOO < • • • • • • • • • o OOOOOOOOO-" C -H m w OOOOOOOOOÔ  OOOOOOOOO*** C -i OOOOOOOOOO-J OOOOOOOOOtl o -« OOOOOOOOOÔ  OOOOOOOOOTI o -< m * OOOOOOOOOO-' • • * • • v/l o o o o o o o o o - n o -» m OOOOOOOOOOM OOOOOOOOOti — _ — — _ o 0̂ -«-«-«J-<-w-»J-̂ CI — z WIOOOOOOOOTI CDOBccaooiaicsuecvoC «4.-̂ .»J-J-*.0̂O""* • * • • • < > • • Cl r- OOOOOO-̂-̂CO •̂•->/-r-/-owo »uc J O O O /* « X OOOOOOOOO X OÔOOOtrv/itni— OMOOCO(B-JVJ'0?9 «OOOOOCD*-̂ >0 X Mg-"-000000" C X rv o »~ CD O IM o * rn inrrcONiMrjriĵ  I/I 234 • A t . . * .KUN .\'039.«•*»»*• FERRIC OXIOE CONC IPPM 2130. VOLTS: 9.35 AMPS: 253. MEAT FLOW SUPPLI ED 8073.6 HEAT FLUX SUPPLIEU 46347. 8TU/HR ETU/SCFI-HR BETA0.301 IDR»IINLET127.0 DEG F DENSIIr:0.9B6 GRAK/CC T OUTLET138.3 OEG F FLOW RATE 0.1902 LBS.M/SEC AVG TEMP:132.6 DEG F KINEMATIC VISCOSIIY:0.504 SO.CM/SEC FLUID VELOCITY A.817 FT/SEC RLYNOLDS ND 25394.5 PRANDU NO 3.20 HEAT SUPP 8073.6 BIU/HR HEAT TRANS 7817.1 8TU/IIR HEAT LOST 256.5 8IU/HR PERCENT MEAT LOST 3.IR HEAT FLUX TRANS. BIU/SOFI-HR 44874. NUSSELI NO 116.5 RFILH 0.653 RWALl 0.145 RI01AL 0.798 SOFI-HR-DEG T/BIU ESI1KA1CS Ul ROOt MEAN SOUARt" STATISTICAL ERROR IN IHE PARAfEIEK .14226 .48191 ESTIMATES Cf RCOI MEAN S 3 U 1 R E 131AL ER-lUR IN IME PAKAMEIERS .59295E-0I .20016 ESTIMATE OF RO.RI^ . AND 6 IN Rf=RINFUI.-EXPl-H»1 IKCI •0 4.3522 2.2862 TIME CALC. RESISTANCE FITIEO VALUC-HOURS 11SQFl-HR-OEGF/aTUlX100.0001 0.0 0.0 -0.0 0.25 1.49 1.90 0.42 2.49 2.69 0.62 3.79 3.30 0.82 3.99 3.69 1.12 3.79 4.0? 1.58 4.09 4.24 2.08 4.88 4.31 2.25 3.79 4.33 Data processed for whole tube. LOCALIZED WALL TEMPERATURES (DEG.F1 T?15 T235 T255 T275 1295 T3I5 T335 1355 T375 OEG.F OEG.F DEG.F DEG.F OEG.F DEG.F DEG.F OEG.F OEG.F 0.0 148.6 147.8 152. 7 152.7 153.1 150.6 149.8 0.0 0.0 149.0 148.2 153.5 153.1 153.9 151.5 150.6 C O 0.0 149.4 148.6 153.9 153.5 1 54. 3 151.9 151.1 0.0 0.0 150.2 149.4 154.7 154. 3 155. 1 152. 1 151.5 C. 0 0.0 150.? 149.4 154.7 154.3 155. 1 152. 7 151.5 C O 0.0 150.? 149.4 154. 7 154.3 155 .1 152.3 151.5 0.0 0.0 150.2 149. 4 154. 7 154. 3 155.1 152.7 141.9 0.0 0.0 150.6 149.8 155. 1 154. 7 153.5 152. 7 151.9 0.0 0.0 150.2 149.8 154.7 153.9 155.1 152.3 151.5 0.0 LOCALIZED FOULING RESISTANCE (SUFI -H*-DEGF/BTUIXIOO,000 1215 T235 T255 1275 1295 1315 1 335 1355 T3 75 0.0 0.0 0.0 o.n 0.0 0.0 0.0 0.0 0.0 0.0 0.90 0.90 1.79 0.90 1.79 l.HO 1 .80 0.0 0.0 1.80 1.80 2.69 1. 79 ?.69 7.69 2. 7(1 0.0 0.0 3.60 i.60 4.44 1.59 4.46 3.59 1.59 0.0 0.0 3.60 1.60 4.4H 1.59 4.46 4.49 3.59 0.0 0.0 3.60 3.60 4 . 4 8 1.59 4.48 3.39 1.49 0.0 0.3 3.60 3.60 4.48 >. 59 4.48 4.49 4.49 0.0 0.0 4.50 4.50 5. 1« 4.4A 5.36 4. 49 4.49 0.0 0.0 3.60 4.50 4.4a 2.69 4.48 3.59 3.59 0.0 1395 1415 T428 TIN TOUT TM DELTA H R TIME OEG.F OEG.F DEG.F DEG.F OEG.F DEG.F DEG.F XI000 HOURS 154. 7 156. 1 0.0 127.0 138. 3 152.0 1 1.4 1829.4 0.5466 0.0 155.1 159.5 0.0 127.0 138. 3 152.7 11.4 1766.2 0.5662 0.25 155.9 159.9 0.0 127.0 138. 3 153.2 11.4 1727.5 0.5789 0.42 156.3 159.9 0.0 127.0 138.3 151.7 11.4 '681 .2 0.5948 0.62 156.3 160.3 0.0 127.0 138.3 153.8 11.4 1671.5 0.5975 0. 6? 156. 3 159.9 0.0 127.0 1 18. 3 153.7 11.4 1631.2 0.5943 1.12 156.3 160. 3 0.0 127.0 116.3 153.9 11.4 1669.0 0.5992 1.38 157.1 160.7 0.0 127.0 138.3 154.2 11.4 1643.3 0.6085 2.08 156.3 159.9 0.0 126.5 118.3 153.7 11.8 1666.0 0.600? 2.25 1395 1415 T428 TIN TOUT RFM 0EL7A H RIOT TIME OEG.F OEG.F OEG.F X1000 MU'JR S 0.0 0.0 0.6 127.0 131.3 0.0 11.4 1629.4 0.5466 U.O 0.90 2.68 0.0 12 7.0 118.3 1.49 11.4 1766.? 0. 5662 U.23 2.69 1.57 0.0 127.0 116.1 2.49 11.4 1127.5 0.5769 U.4? 3.58 1.57 0.0 127.0 138.1 3. 79 11.4 1681.? 0.5946 0.6? 1.58 4.46 0.0 127.0 118.1 3.99 11.4 1673.5 0.5973 0.62 3.58 3.57 0.0 127.0 1 19. t 3. 79 11.4 1611.2 0.5943 1.12 3.58 4.46 0.0 127.0 11". 1 4 .09 11.4 1669.0 0.5992 1.38 5.37 5. 16 0.0 127.0 1 18.1 4.68 11.4 1641.3 0.6063 2.08 3.58 3.57 0.0 126.5 118. 1 3.79 11.8 1666.0 0.6002 2.25 «»* r* O O O O O O O O O O O O O MS • • • * • * * * * • • • • o o o o o o o O O O O O O O u>> f m »v O 00000000000000--0 • »••* • • • • Ul J» o o o o o o o o o o o o o - n i — a ̂  a * ft • • i II "M o o o «« — JC-^tt-«-«iU'-v--00 IM - « * V V> «C u •̂-.-••."i"«i-̂U'N-»00 OC003OC300C00 COQOOCOOOOCOO o o o o o a o c c o o t : o o o o o o O O O O O U * • • • • u O o o Q "n o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o < o o o c o o o a o o O O O O C7> L O © O O TI o o o o a c Q o o c o o s w O C O O O O O O O O O O O vi o o o o o o o c © o o c a o o o o o o o o o o -* • . • t vj 0 0 0 0"" COOOOOOOOCOOO w OOOOOOOOOOOOO Ui O O o o o o o c o o o c GOO o o o O O O O O J O O O O fx OOOOOOOOOOOOO OOOOOOOOOOOOO O O o o o © O C O o o < O O O O O o o o o O Cl - O O O O Tl OOOOOOOOOOOOO o e o o o o o c o o o o o o o o o a o o c o o o c o o o o o o o o o o o » C O O O Ti N «g Ni \ fg , - WCOOOUtOOOOOOO" 4-4 1 - 1 ^ - 1 - 4 o 3 O O O UlOOOOOOOTl » 33 Cl C 3 v CO M 13 - -- ~ o o ' * 4f • -t J" V. Pv — U C C u f w ^ K ' ^ w O o o o o o o o o o o o o o x - o i?> ̂  t> e* ? c- ̂  1,1 ui >/. o o v" ^ C — -u » * f w >J4" J i O -vivjru — — — o o o o o o o o — * • • • C Jl a * c » * «• ̂ , nj c- *• iv — c M m Ul Cr U* U1 ̂«iv>iWl̂i>̂*J o o o o o o o o o o o o o • ••••<•*•>••<>< (ro*C,t*O"i>cj,0̂>,u*uiuiw»-« J> .T »- O- * »J r'v-.>C-gw'lOS rv">>'u'0--wj>̂ '0<ouij>>--o T -* iN,rV>Vi------>OOOOOOOC]>--' • • c * t»#'Off*'---JJ>i<0'J>-*j--OJCr-fi U'-*f»UI«J,WU*"»i\>U'. CO 00 lyi 236 ....•••HUN N040.**••*•• FERRIC OX IOC CONC IPPKI 2li0'. VOUS: 9.)5 AMPS: 253. HE*I FIOJ SUPPLIED aOM.6 HEAT FLUX SUPPLIED ".(,347. STU/HR OIU/SUFI-HR RETA0.30I T0R=TINLET127.0 OEG F DENSITV:0.9S6 GRAK/CC I OUILCII38.) DEC F FLOW RATE 0.1902 L8S.K/SEC AVC TCMP:132.6 DEG F K1NERAI IC V1SC0S1TY:0.504 SQ.CM/SEC FIUIO VELOCITY 4.617 FT/SEC REYNOLDS 90 25394.5 PRANOll HO 3.20 HEAT SUPP 8073.6 BTU/HR HEAT TRANS 7817.1 8IU/ICR HEAT 10ST 256.5 BTU/HR PERCENT HEAT 10ST 1.18 HEAT FLUX TRANS. bTU/SCFT-HR 44674. NUSSCII NO 116.5 RFILH 0.653 RWALl 0.145 RIOIAl 0.798 SOFT-HR-DEG F/BTU ESTIHA1ES TE ROOT ME.AN SuU\RE STATISTICAL ERROR IN THE PARAMETER .97/871-01 .366)9 ESTIMATES or RO'.II MEAN SSUAl'.l li)TAl ERROR 111 THE PARAMETERS .423A0E-O1 .158/5 ESIII'.ME 0: ROiKlNF.ANO [1 l-l Rr-RINFI I l . - f XP|-P«I l«EI .0 4.8267 2. .1710 ' . 11 ME CALC. RLSISIA'.Cf U I i f 0 VALUt HOURS II SUF l-hR-UCOh'/HTUl X I 0 0 , 0 0 0 1 0.0 0.0 -0.0 0.18 1.57 1.68 0.26 2.24 2.34 0.45 3.14 3.17 0.62 4.03 3. 77 0.88 4.48 4.23 0.95 4.48 4.32 1.13 4.26 4.50 1.47 4.26 4.68 . 1.65 4.03 4.73 2.08 4.93 4.79 2.47 4.48 4.81 2.85 5.82 4.62 Data processed for top half of tube only. LOCALIZED WALL TEKPERAIURES IDCG.FI 1215 1235 1255 1215 1295 1315 7335 1355 T375 13 95 DEG.F OEG.F OEG.F CEG.F OEG.F DLG.F DEG.F DEG.F OEG.F DEC.F 0.0 0.0 0.0 0.0 0.0 0.0 150.6 149.4 C O 154. 7 0.0 0.0 0.0 0.0 0.0 0.0 151.5 150.2 0.0 t55.5 0.0 0.0 0.0 0.0 0.0 0.0 151.9 150.6 0.0 155.5 C O 0.0 0.0 0.0 0.0 0.0 152. 3 151.1 C O 155.9 0.0 C O 0.0 0.0 0.0 0.0 157. 7 151.5 0.0 155.9 0.0 0.0 0.0 0.0 0.0 0.0 152.7 151.5 0.0 156.3 0.0 0.0 0.0 0.0 0.0 0.0 152.7 151.5 0.0 156.) 0.0 0.0 0.0 0.0 O.C 0.0 152.7 151.5 0.0 156. ) 0.0 0.0 0.0 0.0 0.0 0.0 152. 7 151.5 0.0 156.) 0.0 0.0 0.0 0.0 0.0 0.0 152.7 151.5 0.0 156.) 0.0 C O 0.0 0.0 0.0 0.0 15). 1 151.9 0.0 156.7 0.0 0.0 0.0 0. 0 0.0 0.0 153. 1 15 1.9 0.0 156.) 0.0 0.0 0.0 0.0 0.0 0.0 153.5 152.) o.o 157.1 LOCALIZED FOULING RESISTANCE ISOFT-HR-OSGF/B101X100,000 1215 1235 1255 1775 1295 1315 1335 1355 1375 7)95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 .BO 1.80 0.0 1 . 19 0.0 0.0 0.0 0.0 0.0 0.0 2.69 2.70 0.0 1. 79 o.o 0.0 0.0 0.0 O.O 0.0 3.59 ).60 0.0 2.69 0.0 0.0 0.0 0.0 0.0 0.0 4.49 4.49 0.0 2.69 o.o 0.0 0.0 0.0 0.0 0.0 4.49 4.49 0.0 3.58 0.0 0.0 0.0 n.o 0.0 0.0 4.49 4.4 9 n.o 1.48 0.0 0.0 0.0 6.0 0.0 0.0 4. 49 4.49 0.0 ).58 0.0 o.n 0.0 0.0 0.0 0.0 4.49 4.49 0.0 ).5B 0.0 0.0 0.0 0.0 o.n 0.0 4.49 4.49 0.0 ).5B 0.0 0.0 0.0 0.0 o.o U.O 5. 39 5. )9 0.0 4.48 0.0 0.0 o.n 0.0 0.0 u.o 5. 19 5.)9 o.o ).58 0.0 0.0 0.0 0.0 0.0 u.o 6./B 6.29 0.0 5.)7 7415 T42S TIN TOUT IH DELTA H R TIME DEG.F DEG.F OEG.F DEG. F OEG.F OEG.F XIOOO HOURS 158.7 0.0 127.0 13B. 3 153.4 11.4 1649.5 0.6062 0.0 159. 1 0.0 I2T.0 1)8. 3 154.1 1 1.4 1603.1 0.6238 0. 13 159.5 0.0 127.0 1 38. 3 154.4 11.4 1556.9 0.6423 0.28 159.9 0.0 127.0 1 31. ) 154.8 11.4 1527.5 0.6547 0.45 160. 7 0.0 127.0 1)8. 3 155.7 11.' 14 72.0 0.6 79 3 0.62 161.1 0.0 127.0 138. 3 155.4 11.4 1468.9 0.6808 0. 81 161.1 0.0 127.0 1 38. 3 155.4 11.4 1468.9 0.6608 0.95 160. 7 0.0 126.5 1)8. ) 155. 3 11.8 1471.9 0.6794 1. 1) 160.7 0.0 127.0 13). 3 155. 1 1 1.4 1463.6 0.6741 1.47 160. ) O.C 127.0 13B. ) 155.2 11.4 1499.2 0.6670 1.65 160.7 0.0 127.0 1 38. ) 155.6 11.4 1472.1 0.6793 2.UB 160.) 0.0 127.0 1)8. 3 155.4 11.4 1474.5 0.6782 2.47 161.1 0.0 126.5 138. ) 156.0 11.8 1434.9 0.6969 2.85 1415 1426 TIN TOUT RFM DELIA H RTOT 1 IKE OEG.F ore. F OEG.F XIOOO HOURS 0.0 0.0 177.0 I3R. ) 0.0 11.4 1649.5 0.6062 0.0 0.B9 0.0 177.0 1 3B. ) 1.57 11.4 1603.I 0.6731 0.11 1. 79 0.0 127.0 1 38. ) 2.24 11.4 1556.9 0.642) 0.21 2.68 0.0 127.0 1 38. ) 3.14 11.4 1527.5 0.6547 0. 45 4.46 0.0 127.0 1)8. ) 4 . 0 ) 11.4 1477.0 0.679) 0.67 5. 35 0.0 177.0 1 38. 3 4.48 11.4 1461.9 0.6808 0.81 5. 35 0.0 127.0 1)8. ) 4.4H 11.4 146ft.9 0.6108 0.96 4.46 0.0 1/6.5 1 38.) 4.26 11.8 1471.9 0.6794 l . l ) 4.46 0.0 177.0 1 )B. 3 4.76 11.4 1411.6 0.6741 1.47 3.67 0.0 177.0 1 JR. 3 4.0) 11.4 14 19.2 0.667U 1.65 4.46 0.0 177.0 1 31. 3 4.9 3 11.4 1 4 77. 1 0.6 III 7 . 0 " 3.67 0.0 177.0 1 i n . ) 4.46 11.4 1474.5 0.6 IB7 2.47 5.35 0.0 176.6 138. 3 5.82 11.8 1434.9 0.6969 2.85 237 • • • • • • • R U N N040.•«**»•• FERRIC OXIOE CONC IPPMI 7130. VOLIS! 9.3S AMPS: ?53. MEAT I LOM SUPPLIED b073.b MEAT FLUX SUPPLIEU 46147. BETAO.301 TOR=IINLEIl?7.0 DSN$IIY:0.986 GRAM/CC I OuriEI138.3 FLOW RATE 0.1902 L8S.M/SEC AVG TEMP:132.6 DEG F KINEMATIC VISC0SITY:0.504 SO.CVSEC FLUIO VELOCITY A.817 FT/SEC REYNOLDS ND 25399.5 PRANOTL NO 3.20 DEG F OEG f EST1MAHS OF ROOT MEAN SOUARE STATISTICAL ERROR IN THE PARAMEIER .869451-01 .76154 ES1IHAIIS OF ROOI MEAN SGUARE TOTAL ERROR IN I ME P AR AM FIFR 5 . 4/.on».c _n i .14218 RU.RINF.ANO 8 IN RI >R 1 ;IF I I 1 .-E XP I - .46906E-0I ESIIMAIF OF .0 --IIME I TIME 7.0171 1.6332 CALC. RESISTANCE FITTED VALU MUURS 11SQFI-HR-uEGF/CUU1X100.0001 0.0 0.0 -0.0 0.18 1.40 1. 79 0.26 1.89 2.58 0.45 2.99 3.65 0.62 4.70 4.47 0.68 5.98 5. 35 0.95 5.98 5.53 1.13 6.58 5.91 1.4 7 6. 38 6.38 1.65 5.88 6.54 2.08 6.68 6.78 2.47 6.28 6.89 2.85 7.37 6.95 HEAT SUPP 8073.6 8TU/HR HEAT IRANS 7817.L 9IU/HR HEAT LOST 256.5 BIU/HR PERCENT HEAT I OS I 3.IB HEAT FLUX IRANS. BIU/SOFT-HR 44874. T1USSELT NO 116.5 RFILM 0.653 RWAll 0.145 RTOTAL 0.798 SCFT-MR-OEG F/BTU Data processed for whole tube. LOCAL I ZED WALL T21S 1235 OEG.F 0.0 0.0 0.0 0.0 OEG.F 148.2 149.0 149.0 149.4 150.6 161.5 151.5 152.3 152.1 151.9 151.9 151.9 152.1 TEMPERATURES T255 T275 DEG.F 147.4 143.2 148.2 149.0 149.8 150.6 150.6 151.5 151.5 151.1 151.5 151.5 151.9 OEG.F 153.1 151.5 153.5 154.3 155.5 156.3 156. 1 156. 7 156. 7 156. 3 156.7 156. 3 157. I IDEG.FI T295 OEG.F 152. 7 153.1 153.5 153.9 155. I 155.9 135.9 156. 3 155.9 135.5 156. 3 155.9 155.9 T3I5 DEG.F 133.5 153.9 134.3 154.7 135.9 156.7 156. 7 137.1 154.7 136. 7 136. 7 156.7 157. I T135 DEG.F 150.6 151.5 151.9 152. 3 157. 7 15?. 7 15?.? 152.7 152. 7 152.7 153. I 153.1 153.5 T355 DEG.F 149.4 150.2 150.6 151.1 151.5 151.5 151.5 151.5 151.5 151.5 151.9 151.9 152.3 T375 DEG.F C O 0.0 0.0 C O C O C O 0.0 0.0 0.0 0.0 0. J 0.0 0.0 LOCALIZED FOULING RESISTANCE ISOFT-MR-OEGF/BTU)XIOO,000 1215 1235 1255 1275 1295 TJ1S 1315 1155 1)75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 1.80 1. no ?.70 5.40 7.19 7.19 8.49 0.0 1.60 1.60 1.60 5.40 7.20 7./0 6.09 8.10 8.09 8.99 0.0 0.90 0.90 ?.G9 5. 18 7.1 7 7.11 6.06 6.06 7.17 0.0 0.90 1.79 2.69 5. 16 7. I 7 7.17 6.06 7.17 I. I 7 0.0 0.90 1.79 2.69 5.38 7.17 1.17 6. 7. 1 7 7.17 2.69 1.59 0.0 1 .80 2 . 70 1.60 4 . 4 9 4 . 4 9 4.49 4 . 4 9 4.49 4.49 5. 19 4 . 19 6.29 0.0 U.O C O 0.0 0.0 0.0 o.u 0.0 0.0 0.0 0.0 o.o 0.0 T395 DEG.F 154.7 155.5 155.5 155.9 155.9 156. 1 156.3 156.3 156. 1 156.3 156.7 156.1 157.1 0.0 1.79 2.69 2.69 T415 T428 TIN TOUT TH DELTA H R TIME DEG.F OEG.F OEG.F DEG.F OEG.F OEG.F X1000 HOURS 158.7 0.0 127.0 1 33. 3 152.0 11 4 1826.6 0.5475 0.0 159. I 0.0 127.0 119. 1 152.7 11 4 1770.4 0.5648 0. 13 159.5 0.0 127.0 138. 3 152.9 11. 4 1 747.6 0.5722 0.28 159.9 0.0 127.0 133. 1 153.4 11 4 1707.4 0.5657 0.45 160.7 0.0 127.0 113. 3 154.2 11. 4 •64 7.1 0.6071 0.6? 161.1 0.0 127.0 138. 3 154.7 11. 4 .611.1 0.6207 0.66 161.1 0.0 127.0 1)8. 3 154. 7 11. 4 1611.1 0.6207 U.95 160.7 0.0 126.5 na. 3 155.0 11. 8 1531.9 0.6)21 1.1) 160. 7 0.0 127.0 1)8. 3 154.9 11. 4 1604.4 0.62)1 1.47 160. 3 0.0 127.0 113. 3 154.7 11. 4 1617.) 0.6 16) 1.65 160. 7 0.0 127.0 1)3. 1 155.0 11 . 4 1569.7 0.6291 ?.03 160.3 0.0 127.0 1)8. 3 154.8 11. 4 1602.6 0.62)9 2.47 161.1 0.0 126.5 133. 3 155.3 11. 8 1554.2 0.6434 ?.85 7415 T428 U N TOUT RFM DELTA H RIOT TIME CEG.F DEG.F DEG.F X 1000 HOURS 0.0 0.0 127.0 1)3. 3 0.0 11. 4 1826.6 0.54 74 O.U 0.89 0.0 127.0 l i d . 3 1.40 11. 4 1 7 70.4 0.6643 o. in 1.79 0.0 127.0 133. 3 I.HI 11. 4 1 74 7.6 0.5772 0.28 7.68 0.0 127.0 1)3. 3 2.99 11 . 4 1707.4 0.5857 0.45 4.46 0.0 127.0 1 13. 1 4.78 11. 4 1647.1 0.6071 0.62 5. 15 0.0 127.0 111. 3 5.96 11. 4 1611.1 U. 4/0 7 0.6" 5. 35 0.0 177.0 1 13. 1 5 . 'II 1 1 . 4 1611.1 0.670 7 0. #5 4.46 0.0 126.5 1)8. 1 6.48 11. 8 1481.9 0.6 121 1.1) 4.46 o.u 127.0 1 18. 1 6 . J8 I I . 4 1604.4 0.6/3) 1.47 3.47 0.0 127.0 1 18. 1 5.68 1 1 . 4 1617.) 0.616) 1.65 4.46 0.0 12 7.0 I 18. 1 6.66 11 . 4 1589.7 0.679 1 2.06 1.47 0.0 127.0 1 13. 1 6.28 11. 4 1607.8 0.6717 7.47 5. 15 0.0 126.5 1 18. 3 7.)7 11. 8 1554.2 0.6414 ?.65 O O O O O O O WO O O O O O O O V J*- m M O 0000©©00*-><"" t « • • • • • • • vi > OOOOOOOtl r-OOOOOOO "VO • **>••* w OOOOOOO V* "»* rt Ni O OOOOOOO I'w • V* JC OOOOOOO*" I* COOOOOO "lh * • 1 • 1 • * V OOOOOOO v OOOOOOOOO r-• » * • » * > t V I J C OOOOOOO"** -o OOOOOOO ruf QCOOOOO V * OOOOOOO IV — • * Out OOOOOOO v o — X OOOCOOO U * OOOOOOO wo * w »- O w a * o o o o o o w • -J 7 O O C O O O Vi C/i'J'wiOO w « N J> W ̂  t>* 4 O W C * w O O *• "V W V J* V 9 O VI 4* V O* -«J J O O O O O O O * O O O O O O O 03 ~ — — — — — o ^rsj»N«i\irvr\>*v"*Ti"* • • z V O O O O V O T l » o» <** *• w o » o ** ** ̂  — o 3: PV V <C 00 o> rsi ^. _ .- — r- O O . . . . . , « o «- »*•*-•** - • T> t» J- * *• * V V 1 0» O O O -a «J v> *• -J *• to I- 31 IV I O O C O O O O K 7 > - • • ^ ^ o ^ ^ o o a — ^-O-v-AOO-* O — -C -.---zO W <0 9- W N / I — — — O O O O O O — C X fxj a> SJ *• — O » -JO " IV OOOOOOOO-̂ C • • VI W OOOOOOOTi m U" O — — o o o o o o o o - o m V o OOOOOOO"" ̂  o -* OOOOOOOO"-VI OOOOOOOTi — — — — — o - t .1 gl wl V" / Hi v" "> W J>- W M — — O W « VI N*,n.to — — .0*--l , - , . _ » . . - » - . - o -« vviv̂ v̂ ômto ylWuiNI*OOg«l • t VI V>V>w"*W-flO*\)TI O -i IT U> OOOOOOOO-J • •••<<**Vi OOOOOOO*!* — — — vvivivviviuiniui to V* .O •— * Vi Tl — ~ — O -t . — — — O-O-flO.— t*t*****Vi 0 — r-i > OOOOOOOON* t ••>»••* n OOOOOOOTI — >- — "- — "-"-(D •JfU"OI\iW*JrJrTi^ t r ^ - j - g - * o - - N i n — z VOOOOViOT H-HMr-i-i-OH saouiDiiaciC .-.- — . - o vi ui vn ui ̂ w v1 ra ̂ O-J-OOOlAOT* — ~ — ~ o o i— *— M ^ i- « rn in o «- •n > O O o x * J VI > ^ /• w J> ni N X " OOOOOOO Fc-S-uli-OOTJ o*-'v*-''-»o 1 -t — — OOOOOO — C T* •4"\<CBv/iJ>*-~OArn IX) OJ CO 239 .......RUN N041.•»»«*»• (E«K1C OXIOE COHC IPPM) 2130. VOLTS: 9.35 AMPS: 233. HEAT HOW SUPPLIED 80/3.6 8 KINEMATIC V1SC0SI1«:0.504 ESTIMATES OF ROOT MEAN SCUAKE STATISTICAL ERROR IN I HE PARAMETER .2244) . A A b19 ESTIMATES OF ROOI MEAN SCUA3E [DIAL ERROR IN THE PARAMETERS .12887 .25621 ESTIMATE OF RO.RINF.ANO 8 IN RF = RINF I I I,-EXPI-8*11 ME 1 8.9096 1. 1 9'. I HEAT FLUX SUPPLIED 46)47. 5TU/ SFT-HR TIME CALC. RESISTANCE FITTED VALUE HOURS I1SCFT-Hk-oEoP/HlulX100. 0001 BETAO.301 TOR«It.Nlf.H27.0 DEC F 0.0 0.0 -0.0 DENSI1Y:0.986 CRAM/CC 0.18 1.30 1.72 T 0UILEU38.3 DEC F 0.42 3.09 3.51 0.57 A. 08 A.AO FLOW RATE 0.1902 LBS.M/SEC 0.87 6.77 5.76 1.20 6.87 6.78 AVC TEMP:132.6 DEC F 1.77 7.47 7.83 FLUIO VELOCIIT 4.817 REYNOLDS NO 25394.5 PSAND1L NO 3.20 Data processed for whole tube. HEAT SUPP 8073.6 BIU/HR HEAT IRANS 7817.1 BIU/HR HEAI LUSI 256.5 BTU/HR PERCENT HEAT LOSI 1.18 HEAI FLUX TRANS. OTU/SOFI-HR 44874. NUSSELT NO 116.5 R f l l H 0.653 RWALL 0.145 BIOTAl 0.798 SOFT-HR-DEG F/BTU LOCALIZED WALL TEMPERATURES (0EG.F1 1215 1235 1255 T275 T295 T315 T135 1355 T375 T395 T415 1428 TIN TOUT TM DELTA H R TIME DEG.F OEG.F DEG.F OEG.F OEG.r DEG.F OEG.F UEG.F DEG.F DEG.F OEG.F DEG.F OEG.F OCG. F DEG.F DEG.F X100O HOURS 0.0 148.6 148.2 153.5 153.1 153.5 151.1 150.2 0.0 155.5 159.1 0.0 127.0 118. 3 152.5 11.4 1782.3 0.5611 0.0 0.0 149.4 148.6 154.1 153.5 154.3 151.9 150.6 0.0 155.9 159.5 0.0 126.5 138. 3 153. 1 11.8 1714.1 0.5e34 0. 1 8 0.0 149.8 149.4 154.3 154.3 155.1 152.7 151.9 0.0 157.1 160.7 0.0 177.0 1 38. 3 153.9 11.4 1663.7 0.6011 0.42 0.0 150.2 149.8 155. 1 154.7 155.S 151.1 152.1 0.0 157.5 161.1 0.0 127.0 138. 3 154.4 11.4 1629.6 0.6136 0.57 0.0 151.9 151. 1 156.7 155.9 157.1 154.3 143.5 0.0 157.9 161.9 0.0 127.0 133. 1 155.6 11.4 1544.9 C6473 0.87 0.0 152.3 151.9 156.7 156. 3 156. 7 154. 1 151.5 C O 157.5 161.5 0.0 127.0 133. 3 155.6 11.4 154'.6 0.6470 1.20 0.0 152.7 151.9 157.1 136.1 157.1 154. 3 153.5 0.0 158.3 161.9 0.0 126.5 138. 3 155.9 11.a 1515. 1 0.6600 1.77 LOCALIZED FOULING RESISTANCE ISOFl-MR-OEGF/OTUIXI CO,000 7215 1235 1255 1275 1295 T3I5 1315 1155 T375 T395 T41S 1428 TIN TOUT RFM DELTA H RIOT TIME OEG.F DEG.F DEG.F X1000 HOURS 0.0 0.0 0.0 0.0 0.0 . C O 0.0 0.0 0.0 0.0 0.0 0.0 127.0 1 IS. 3 0.0 11.4 1762.3 0.5611 0.0 0.0 1.80 O.90 1.79 0.90 1.79 1.60 0.90 0.0 0.90 0.89 0.0 176.5 133.1 1.10 11.8 1114. 1 0.46)4 0.18 0.0 2.70 2.70 1. 79 2.69 3.58 3.59 1.59 0.0 3.56 3.57 0.0 12 7.0 1 ) 3 . 1 3.09 11.4 1661.7 0.6011 0.42 0.0 3.60 3.60 3.58 1.59 4.48 4. 49 4.49 0.0 4 .47 4.46 0.0 171.0 133.3 4.08 11.4 1629.6 C6116 0.57 0.0 7.19 6.29 7.17 6.27 6.06 7. 16 7.16 C O 5.37 6.74 0.0 127.0 1 1 3 . ) 6.17 1 1.4 1544.9 0.647) 0.87 0.0 8.09 8.09 7.17 7. 1 7 7.17 7.18 7.16 0.0 4.47 5.35 0.0 12 7.0 113.1 6.87 11.4 1545.6 0.6470 1.20 0.0 8.99 6.09 8.06 7.17 6.06 7. 16 7.13 0.0 6.26 6.24 0.0 126.5 1)6.) 7.47 11.8 1515.1 0.6600 1.77 o o o o o o o s>a • • * * • • « t - r i O O O O O O O » -J w o *»J c n 69 o u \ o o N z O -sl Cf> ./• w •— O \f JO • . . . . « . l - l O — O *• V — O V c * c* a 0) j " i m fs» O O O O O O O O O — O * • • • • • I • VI )T* o o o o o o o * * * . <— W V i * ! " * V> A n r\, c N' ,M » O < i£ » r< to V" TC ^ M !» M > tl P-— g- — C -I WVi*** *> •— - " ^ j a t t O v i i t i » V'vflV'Vvntf'vi'TiiV-' wi a. totou»-- m v \r <j i , 1 tf, v' n \ 3 0- [*• \V» Jh to u# Ci o n • • • • • • • • V< O toto^-WtolXi— Tl • Tl wf.»/« vf. ii, u> ui m w -sj t> « yi LB /• u. C -* « * Ul O O O O O O O to I >••<••< u» o c c o o o c V C OOOOOOoOto V o o o o o c o - n OOOOOOO wo • ••»••« u, • OCOOOOO o OOOOOOOOd O O O O O O O T I OOOOOOO to OOOOOOO v*. o o o o o o o o ->>>*>**>u OOOOOOOTi OOOOOOO to * o OOOOOOO 0*1 o -* m to O O O O O O O C M S S/l OOOOOOOTi OOOOOOO *• OOOOOOO S" O o o o o o o o — * • . V OOOOOOOTI OOOOOOO > OOOOOOO » OOOOOOOTi 2 l"*0000\/»OTt _ _ o totos.toWtou.rWO c o t t c o a i C D i c D O C - N N W M f O "° Tl o N"* o o > o rc o -C r — — ^ - - - i - O O . O r- t> ui ty <J* ~* •o » O O J i w » N 44-ISUi JO X Hg O CO — <0 •— -0 O O O O O O O X J O O i> r/. i n > ui ui o a V>N»t>0~-g)'VO-*: OQ— O O ISi IS* JJ 43 ttf -4 e*> I -» • - — o o o o o a — e x XNi{ilv, >̂ O X rn V*OOOOJiOTi 0<BV — 00*-TI n > v" *• I" C P> -J >l •» O O <" to J- M ^ OB ->J -0 *- •« O O O O O O O - — O C O O O C c g M Oi I" * - O ) 241 •««****RUN N042.•*•**•• FERRIC OXIDE CONC IPPMI 2130. VOIIS:13.50 ANPS: 355. HEAT FLCW SUPPLIED 16356.6 BTU/HH HEAT FLUX SUPPLIED 9)697. BIU/SOFT-HR BETAO.301 TCR=TINLET127.0 CEC F DENSITY:!).986 CRAK/CC 1 0UILEU49.9 CEG F FLOW RATE 0.1888 LBS.K/SEC AVG TEMPU38.4 CEC F K II.EKAI IC VISC051IY:0.4B0 SO.CM/SEC FLUIC VELOCITY 4.790 FT/SEC REYNOLDS NO 26466.8 PRANOIl NO 3.03 HEAT SUPP 16356.8 BTU/HR HEAI TRANS 15633.8 BTU/HR HEAT LOST 723.0 BTU/HR PERCENT FEAT LOSI 4.42 HEAT FLUX TRANS. BIU/SOFT-HR B9746. NUSSELI NO 121.3 RFILH 0.624 RUALL 0.143 RTOTAL 0.766 SOFT-HR-DEG F/BTU ESTIMATES CF ROOT MEAN SCUARI- 2.6492 3.4941 ESTIMATES CF ROOT MEAN SCUARE 1.2636 1.5747 ES1IKAIE Cr RO,RINF,A,\C 8 19 RF - R INF I 11 .-EX P I-C • I I PE I STATISTICAL ERROR IN THE PARAMETER I01AL ERROR IN THE PARAMETERS TIME HOURS 0.0 0.18 0.35 0.55 0.70 0.83 1.06 1.30 1.47 .4646 .35411 CALC. RESISTANCE FIITEO VALUE IISCFI-IIR-DEGF/BTUIXICO.OOOI .0 1.17 1.41 1.27 1.07 1.46 2.68 2.67 3.02 -0.0 0.46 0.87 1.32 1.64 1.90 2.37 2.76 3.03 LOCALI2FD WALL TEMPERATURES IDEG.FI 1215 T235 1255 1275 1295 1315 T335 T355 T375 DEG.F OEG.F OEG.F CEG.F OEG.F DEG.F OEG.F DEG.F OEG.F 0.0 175.0 174.6 182. 1 187.5 104.1 130.6 179.8 C O 0.0 175.8 175.8 183.7 183. 7 185. 3 181.3 180.9 0.0 0.0 176.2 176.2 183. 7 163.3 185. 3 181.7 131.3 C O 0.0 176.2 175.8 183. 7 163.7 135.3 181.3 180.9 0.0 0.0 176.6 175.8 U J . 3 183.7 184.9 181.7 180.6 C O 0.0 177.0 176.6 183.7 163.7 165. 3 181.7 181.3 c c 0.0 177.8 177.4 ie4.9 186.3 166.5 182.9 182. 1 C O 0.0 171.8 177.8 1E5.7 184.9 166.5 162.9 162.1 C O 0.0 176.2 177.8 166. 1 185.3 let . 6 183.3 182.1 C O T395 1415 T428 TIN TOUT TM DELTA H R TIME DEG.F OEG.F DEG.F CEG. F IEG.F DEG.F OEG.F X1C00 HOURS 167.6 143.5 0.0 127.0 149.9 182.2 23.0 1616.3 0.618? 0.0 168.4 194.3 0.0 127.0 149.9 1B3. 3 23.0 1578.1 0.6337 0. 18 188.8 194.7 o . c 127.0 1 0.3 183.5 23.4 1576.6 0.63)4 0. 35 i t e . e 194.3 0.0 121.C 1 0.3 183. 3 23.4 1563.5 0.6315 0.55 133.0 193.9 0.0 127.0 1< • .9 183.2 73.0 1583.2 0.6316 0. 70 I8R.4 193.9 0.0 127.0 149.9 183.5 23.0 1571.4 0.6364 0.83 169.2 195.5 o . c 127.0 149.9 164.6 23.0 15)3.5 0.6521 1.06 190.0 195.5 0.0 127.0 149.9 184.8 23.0 1526.3 0.6543 1. 30 189.6 195.1 0.0 127.0 150.3 184.9 23.4 1531.1 0.6531 1.47 LOCALI2E0 FOULING RESISTANCE ISOFT-HR-OEGF/BTUIXI 00,COO 1215 1235 1255 1775 1295 T315 T335 1355 1375 0.0 0.0 0.0 C O 0.0 0.0 c o 0.0 0.0 0.0 0.88 1.32 1.75 1.32 1.31 0.68 1.3? C O 0.0 1.32 1.76 1. 75 0.68 1.31 1.32 1.76 0.0 0.0 1.32 1.32 1.75 1. 32 1.31 c e s 1. 17 0.0 0.0 1.76 1.32 1.32 1.3? 0.86 1.32 0.88 C O 0.0 2.20 7.71 1.75 1.3? 1.31 1.3? 1 . 76 0.0 0.0 3.09 3.C9 3.C7 3.C7 2.61 7.61 7.64 0.0 0.0 3.09 3.53 3.94 2.63 2.63 2.63 7.64 C O 0.0 3.53 3.53 4. 38 3.07 3.06 J.OT 2.64 0.0 T395 T415 1426 TIN I0U7 RFM 0ELT1 H RTOT TIME OEG.F OF.G.F DEG.F XICOO HOURS 0.0 0.0 0.0 127.0 149.9 0.0 73.0 1616.3 0.6167 C O 0.87 0.87 0.0 l?7.0 149.9 1.17 ?3.0 1578.1 0.633? 0. 16 1.31 1.30 C O 127.0 150.3 1.41 23.4 1573.8 0.61)4 0. 15 1.31 0.67 0.0 127.0 150.3 1.77 23.4 I5S1.5 C.63I5 0. 55 0.44 0.43 0.0 177.0 149.9 1 .07 73.0 1533.2 0.6)16 0. 70 0.67 0.43 0.0 127.0 149.9 1.46 21.0 1571.4 0.6364 0.6 ) 1.75 7.1 7 0.0 127.0 149.9 7.68 23.0 151).5 0.6571 1.08 7.6? 7.17 0.0 127.0 149.9 7.B7 71.0 1573.3 0.654) 1. )0 2.18 1.74 0.0 127.0 150.3 3.02 23.4 15)1.1 0.6511 1.47 242 « * * * * * » R U N N 0 4 3 . » * • • « * • FERRIC OXIDE CONC I CPS I 2130. VOLIS: 9.35 IMPS: 253. HEAT HOW SUPPLIFl. E073.6 HtAl F L U X SUPPLIEU 46347. C I U / H R BTU/SCfT-HR BETAO.301 10R=riNlCII27.0 OENSIIY:D .9S6 GRAH/CC I 0UILEU41.8 FLOW RATE 0.1442 LBS.M/SEC AVG T E M P I I 3 4 . 4 DEG F KINEMA1IC VISC0SIIY:0.496 SO.CM/SEC FlUID VELOCITY 3.655 FT/SEC REYNOLOS NO 1955C.0 PRANOTl NO 3.15 OEG F DEG F ESTIMATES OF ROOT MEAN SOUARE STATISIICAL ERROR IN I HE PARAMETER .70252E-OI .2R279 ESTIMATES CF R001 MEAN SOUARE IOIAL ERROR IN THE PARAMETERS .13059 .52568 ESTIMATE OF RO, R 1 'IF , AND 3 IN RF =-R 1NF I I 1 . - E XPI-h • 11 *E I TIME HOURS 0.0 0.07 0.12 0.1? 0.27 0.45 0.83 1.17 1.27 1.45 1.58 1.78 5.9149 4.8757 CALC. RESISTANCE FIIICO VALUE I ISOFI-HR-OEGF/RTUIXIOO.OOOI 0.0 1.40 2.41 2.81 4.61 6.92 4.32 3.21 3.91 5.7? 6.92 10.02 -0.0 I.71 2.62 3.33 4.33 5.26 5.81 5.90 5.90 5.91 5.91 5.91 HEAT SUPP 8073.6 BTU/HR HEAT TRANS 7727.9 BIU/HR HEAT LOSI 345.7 BTU/HR PERCENT HEAT LOST 4.28 HEAT FLUX TRANS. BIU/SOFT-HK 44362. NUSSELT NO 94.6 RF ILK 0.803 RUALL 0.144 RTOTAL 0.947 SOFT-HR-DEG F/BIU LOCALIZED WALL TEMPERATURES IUEG.FI 1215 T235 T 2 55 1275 1295 1315 1335 1355 T375 DEG.F DEG.F DEG.F DEG.F OEG.F DEG F OEG.F DEG.F DEG.F 0.0 154.7 153.9 159.9 159. 5 160 7 157. 1 156.3 0.0 0.0 154.7 154.3 160.3 159.9 161 1 157.9 157. 1 C O 0.0 155.5 165. 1 160.7 160.3 161 5 158. 3 1 57.5 0.0 0.0 155.9 155. 1 161. 1 160.7 16 1 9 158. 7 157.5 0.0 0.0 156.3 155.5 161.9 161.5 162 7 159. 5 154.7 c c 0.0 157. 1 156. 7 163. 1 16?. 7 16) 9 160. 3 149.5 0.0 0.0 156.7 156. 7 161.9 161. 1 161 9 156.7 157.9 0.0 0.0 157.1 155.5 161.5 161. 1 161. 5 153.7 157.9 0.0 0.0 157.1 155.9 161.9 161. 1 161. 9 159. 1 158. 3 0.0 0.0 157.5 156.7 162.7 161.9 162 7 149.9 159.1 0.0 0.0 157.9 157. 1 162. 7 162. 7 161.5 160. 1 149.5 o.c 0.0 159.1 158.3 164.7 163.9 165. 1 161.5 160. 7 0.0 T395 T415 T42B TIN TOUT TM DELTA H R TIKE DEG.F OEG.F DEG.F OEG.F DEG ,F OEG.F DEG.F X1000 HOURS 161.9 167.1 D.O 127.0 141 .8 159.0 14.9 1425.1 0.7017 0.0 163.1 168.3 0.0 127.0 141 . 4 159.6 14.4 1)75.4 0.7271 0.07 161.5 168.3 0.0 127.0 14 1 .8 160. 1 14.9 365. 1 0.7)26 0.12 163.5 167.9 0.0 126.5 141 .8 160.2 15. ) 1)44.2 0.74 3 9 0.17 164.) 169.1 0.0 12? .0 141 .6 161.0 14.9 1312.2 0.7621 0.27 165.5 1 69.9 0.0 127.0 141 .e 16?. 1 14.9 1263.6 0.7914 0.45 163.5 167.9 ' 0.0 127.0 141 .8 160.9 14.9 13)3.6 0.7493 0.8 t 163.1 167.5 0.0 126.5 141 .4 160.4 14.9 1323.4 C.7526 1.17 163.5 167.9 0.0 127.0 141 .4 160.7 1 4.4 1)22.2 0. 756) 1.27 164. 3 169. 1 0.0 124.5 141 .4 161.5 14.9 12 72.6 0.7C56 1.45 165.1 169.9 0.0 12 7.0 141 . 4 162. 1 14.4 1257.1 0.7955 l.'56 166. 7 171.1 0.0 • ??.o 141 .6 163.4 14.9 1206.7 0.3287 1.78 lOCALIZED FOULING RE i t 5 1 A.NC E C SOF T - H K - D E G F / f l Til] XI 0 0 . 0 0 0 1215 1235 1255 1275 1 29 6 1315 133S 1 )55 1)75 1395 1415 1426 TIN TOUT RFM DELTA H RIOT TIME DEG.F OEG.F DEG.F X1000 IIUURS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 177.0 141.8 0.0 14.9 1475.1 0.701 7 0.0 0.0 0.0 0.91 0.90 0.90 0. 90 1.81 1.61 0.0 2.70 2.69 0.0 127.0 141.4 1 .40 14.4 1)75.4 0.7271 U.U7 0.0 1.81 2.7? 1 .60 1.61 1 . 60 7. 71 7. 71 0.0 3.60 2.69 0.0 127.0 141 .8 2.41 14.9 1165.1 0. 7)26 0.12 0.0 2.7? ?./? 2. 71 t. 71 t. 71 3.6? 7.71 0.0 3.60 1.60 0.0 176.5 141.8 7.6 1 15. 1 1144.7 0. 74 19 0.17 0.0 3.6? 3.67 4.51 4.51 4. 41 5.42 6.4 1 0.0 5.40 4.49 0.0 127.0 141.8 4.61 14.9 1112.7 0.7621 0.2 7 0.0 5.43 6.34 7.71 7. 27 7. 21 7.23 7.71 O.U 6.10 6.78 0.0 171.0 141.8 6.9? 14.4 1261.6 0.7914 0.44 0.0 9.05 6. 14 4.51 1. 61 7. 7 1 1.67 1.42 0.0 1.60 l. f U 0.0 177.0 14 1.6 4. 1? 14.9 1 1)1.6 0.7496 0.3) 0.0 5.4) ).6? J . o l 1.61 1. 80 1.6? 1.62 9.0 2. 10 0.90 0,0 174.5 141.4 1.7 1 14.9 1)73.4 0.7423 1.17 0.0 5.43 4.6) 4.41 ).6I 7. 71 4.42 4.57 0.0 1.60 1.60 0.0 177.0 141.4 1.91 14.4 1)/?.? 0. 756 1 1.77 0.0 6.34 6. )4 6.31 3.41 4. 31 6. 11 6.31 0,0 4.40 4.49 0.0 176.5 141.4 5. 7? 14.9 1 2 77.6 0.7646 1.44 0.0 7.24 7.74 6. 11 7. 77 6. ) l 7.7) 7.71 0.0 7.7 0 6.23 0.0 177.0 141.4 6.97 14.4 1 74 7. 1 0.7943 1.5 8 0.0 9 . 9 3 9.96 10.61 9.92 9. 91 9.9 1 9.94 0.0 10.80 8.97 0.0 177.0 141.8 10.02 14.9 1206.7 0.8267 1 . 76 C D fc-OOOOOOOQ — — — ro. *- z Oi"^ — ̂  — ̂ C0»Q> — l * — rsl O O — -\ «>»- — — — rvj » < • « • * • * • * • * * O O O O O O O O O O O O N > O * /-• I— .•'.'•». #»> — — o o c ,̂ 0000 •* u. I— i N N r V N N N N i s j ' i j i s i N O Q - — - - — k If O il> 0" f rA N lA irt ll*> >• [u 4 4 A 4 4 < K 0 < « O Q— — — — — — — — — — — DiJ'si'NjiV.^^rvi'si'Nirursifsi O u» •* -r <r -J •* j- v * a" vT r-O — — — — — Z - 0 * - 4 4 i 4 4 0 4 4 4 4 4 O — — — — — — — — — — — U . O O O O O O O O O O O < [ } . > • . • • • t . . . t • v O O O O O O O O O O O O *-\ . . . . . . . « O w > 4 4 l * - r ^ r - r » l - . » » l > . » » • _ C « — -. — « — — ~ — — — I L i r ' i r e ' 4 4 4 ' O O O O O «•"• * » » 1-0 — — — — — — — — — — — u - O O O O O O O O O O O IA r - O O O O O O U O O O O O 1-1 u n- o I L l f t S T i K N - - — J", — rf* •*>UJ4 4 0 4 4 0 0 4 4 0 4 <—C — — — — — — I f i t . — Oa^J••C••aOOO0.-»3-* ^ L U 0 4 0 ^ - l « • ' • • ' ' . l • * » . • s . r • . k-Q — — — — — — —— — — — • u.O""* — —vA\^^t? > » O n*» • • • • u . o - O ' - w c f y t r o ' l j ' j f O O M J - 3 O O 4 /> 4 O 4 4 O I — t/1 oe m • • • • • « D M 3 " ' D O > C " » 1 > 0 0 0 < J * P - n t a i 4 4 4 4 4 0 0 - > ' * » ' » 4 1/1 f**N|-^a»-»>fv,0'»«I« x = — 0 3 0 0 0 0 0 0 — — — -M <- I fc- O O — *-V»K*X&yVQ' O O j ' j > j , - * - < r < 7 ' v g 4* O C M O O O O O O O G C - O O I T » M n O ' V * O V — / 4 4 i ^ - » » » - 4 v - r - * — -><-i — — O O O 0 C 3 0 O 0 rVi-»«v.r\l'\,r»r>f->,»s,rv<'s. j o • • • * »» w u . m j j « « 4 0 4 4 « 4 4 O O — — — — — — — — — — — C*D£iMF- — rN,w3 — O — X C J" O A 1,1 ? - ft. — "V « 0 0 - « - - - 1 \ N " » DO^^isi*aft.*s'^*v*>,rvj'-* » _ 0 — — — — — — — — — — — Z • • • — O f» 4 4 4 o < 4 4 4 4 4 Q — — — — — — — — — — — 09 O O O O O O O O O O O rx -r O O O O O O O O O O O - r e 4 ' N 4 4 C C O # vA O s T * C l - *»**.«"--srs-\"- * OOO-— — — *V*N*N — ir. o o v — ^ f s * * - * . " - * - - -t> • * • • > . • • « . • •**• OOO—• — <M — — — -' kT> O O O O O O O O O O O ** 0 0 0 0 0 0 3 C 0 0 9 o O J J * C « r «—-.' H p v— 1« OW> O * = •"**"*•"-•***•'•* — >m t * * * * ( t * l l > > o * i 0 o o — — — — -»». —*v o — X 3 J*> o.re-"-*»-'- IN-v-v.-v. ar"* o o c — • — — — *\ -s. -J »*. N. — V. o O, if* 0Tr">"~"- 's ,<-Si .>.r, -\ .0 y "\ o 3 "• - «• N N \ rj N • 1- N M \ C ~ « o — f>» O O — -• — — — \ « ut O a : f * i , * " - i * . » - C 4 4 ' N «*» M 00*"*-'N-"NMN"N a. I t t T - - — •ft»ne>OtT'l~'l>0> — < - V i u 4 « 4 4 4 4 4 4 4 0 4 ; .x o — — — — '̂'N'N'N'M'N . — 0 1  f* (•*• r* *> 0 0 > - < - * M I M N M « I M •J U . 0 0 0 0 0 0 0 0 0 0 0 <nt • • • * • » u> — O O O O O O O O O O O O O f** iu •4 n**. O O O O O O O O O O O kj — • • • • • • • • * > • a A, 0 0 0 0 0 0 0 0 0 0 0 ????????? s ° ????????? SI ff??????? ~s C.;j JJ.OOO 5 fffffff?? 5"; f f f f f f f f f 5? fffffff?? £2 2 fffffff?? =? ? ? ? . = ? ? ? ? ? 3 0 0 3 0 0 0 0 0 0 V> 000-00000 3 eoc»-»vva*'-»jj'0 S f f f f f f f f f * ffff f f f f f £ o c o a c o o a o a> SSssspSsssf f f f f f f f f f ; IlllllfII X ? ? ? ? ? ? ? ? f r. 2 o = i : ?????????? O O O O O O O O Or- }}}}}} } }jf<l lillllllll* ???ff????f; PPPPP?PP??i s* r * ! » r - r " f z !• r ? r* r r r ?f f.° f f: f f X § s l s ! § l l § l " r-rrrrrrf ?§? IllPIsst HI IP 1 I BJIi ! ! ! l i l l ! l !sp j riff I 1 PI I I I I . 5 . 3 2 2 i I I C ? £ S ff f f ? ? ?? ? 7£;-i-£;s r § * = M l f •?????????gSSi = I * * l — -0 2 245 • • • • • • I R U N N U 4 6 . F F R R I C O X I D E C O N C <PPM| 1 5 0 . V O L I S - . l l . S O A M P S : 1 5 5 . H E A I l l t h ' S U P P L I E D 1 6 1 5 6 . 8 HEAT riux S U P P L 1 L U N I S I / . B I U / H R B I U / S U F I - H R BEIA0.10I TOR= TINLCI 121.0 • OEG F OENSIIY:0.986 GRAH/CC I UUILET149.9 DEG F F LOW RAlE 0.1888 LBS.M/SFC AVG TEMP:1 IB.* DEG F MNEHAIIC VISCUSIIY:0.460 SU.CH/SEC FLUID VFLUCITY 4.790 FT/SEC REYNOLDS NO 26486.6 PRANDIL NU 3.01 HEAT SUPP 16356.B BTU/HR HEAT IRANS 15633.8 BIU/HR HEAT LOST 723.0 PTU/HR PERCENT HEAT LOST 4.47 HEAT FLUX IRANS. BIU/SOFT-HR 89746. NUSSELI NO 121.3 RFILH 0.624 ftWALL 0.143 RTOTAL 0.766 SOFT-HR-DEG F/BTU ESIIKA1ES OF ROOT PE AN SOUARE SIAIISIICAL ERROR IN I HE PARAHEIER 1.6940 1.5I37 ESTIMATES OF ROOT MEAN SI.NIARE IDIAL ERROR IN THE P AK AME I ER 5 .42800 .90/79 ESIIHA1E OF RO.RINF.ANU 6 IN RF•RINF I (1.-CXP(-H•!IMF I T I ME HOURS 0.0 0.05 0.08 0. 18 0.23 0.33 0.52 0.90 1.05 1.38 1.43 1.78 2.17 2.40 2.60 3.27 3.43 4.32 4.73 .67021 .52417 CALC. PES 1 STANCE PITIED VALUE I I SOF T - H R - U C G f /I'.TUIXIOO, 0001 0.0 0.20 -0. 39 -0.05 0.10 0.10 0. 14 0.6 3 0.00 -0. 10 0.19 0.54 0.59 0.44 0. 73 0.98 0.34 0.34 0.64 0.02 0.03 0.06 O.OS 0.11 0.16 0.25 0.28 0.35 0.35 0.41 0.46 0.48 0.50 0.55 0.56 0.60 0.61 LOCALIZED WALL TEMPERATURES 1215 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1235 OEG.F 174.6 175.0 174.6 175.C 1 74.6 174.6 175.0 175.0 1 74.6 174.6 175.0 I 75.0 175.4 175.0 175.4 175.8 175.0 175.C 175.4 1255 OEG.F 174.6 175.0 174.2 174.6 174.6 174.6 175.0 1 75.4 174.6 174.6 174.6 175.4 175.4 175.0 175.4 174.4 175.0 1 75.0 175.4 1215 1235 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . 0 0 . 4 4 0.0 0 . 4 4 0.0 0.0 0 . 4 4 0 . 4 4 0 . 0 . 0.88 I .32 0.44 1 2 5 5 0.0 0.44 0.0 0.0 0.0 0.0 0 . 4 4 0.88 0.0 0.0 0.0 0.88 0.38 0.44 0.38 0.8H 0.44 0.44 0.88 7275 DEG.F 182. 1 182. 5 181.1 182.1 162. 1 182.1 162. 1 182.5 132. 1 162. 1 162.1 162.5 162.5 132.5 i e 2 . 5 162.5 1H2. I 182. 1 182.9 1215 0 . 0 0.44 0.0 0.0 0.0 0.0 0.0 0.44 0.0 0.0 0.0 0.44 0 . 4 4 0.44 U . 4 4 0.44 0.0 0.0 U.86 1UEG.F T295 UEG.F 182.1 102. 1 101.7 162.1 162. 5 132. 1 182. 5 132.9 182. 1 182.5 132.1 162.5 132.9 1 62. 5 i e 2.9 182.9 182. 1 132. 1 182.9 0.0 0. 0 0.0 .38 .0 U. 8H 0 . 6 6 . 0 . 0 1315 T335 1155 T375 OEG.F DEG.F OEG.F OEG.F 183.7 160.2 1 79.4 0.0 164. 1 160.2 179.4 0.0 161.3 179.8 179.4 0.0 183.7 180.2 1 79.4 0.0 i e i . 7 180.2 179.e 0.0 16 1.7 180. 2 179.8 0.0 164. 1 160.6 179.6 C O 184. 1 180.6 180.2 0.0 l u j . 7 180.2 179.6 0.0 162.9 179. B 1 79. 8 0. c 164. 1 1B0.2 1 79.3 0.0 11). 7 180.6 160.2 0.0 164.1 180.9 1 79. 6 0.0 164. 1 180.6 160.? 0.0 If 4.5 180.9 160.2 0.0 164.5 160.9 1 80.6 0.0 164. 1 160.6 180.2 0.0 163. 7 IB0.2 1 30.2 0.0 164. 1 180.9 180.2 0.0 •HR-DEGF/OTUIXIOO.OOO 1315 13)5 1 155 T175 0.0 0.0 0.0 o.o 0.44 0.0 0.0 0.0 0.0 0.0 0.0 C O 0.0 0.0 0.0 0.0 0.0 0.0 0.44 0.0 0.0 0.0 0 . 4 4 0.0 0.44 U.44 0.44 0.0 0.44 0.44 0.63 0.0 0.0 0.0 0.44 0.0 0.0 0.0 0.44 0.0 0.44 0.0 0.44 0.0 U.O 0.4 4 0.83 C O 0.44 0.H3 0.44 0.0 0.44 0.44 0.6 3 u.o 6. 6 6 0. 38 U.63 0.0 0. 8 6 0.63 1 . )? 0.0 0.44 0.44 0.68 u.o 0.0 O.O 0 .3 3 0.0 U.44 0. 6 8 0.86 u.o T395 OEG.F 187.2 186.B 186.8 1B6.5 186.8 1 87.2 187.2 187.6 166.8 187.2 187.2 167.6 107.2 167.2 187.6 188.0 187.2 16 7.6 187.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.44 0.0 0.0 0.0 0.44 0.0 0.0 0.44 0.8 7 0 . 0 U . 4 4 0.0 T4I5 O E G . F 192.7 193.1 192. 3 19?. 7 193.1 193.1 193.1 193.5 192.7 192. 3 193. 1 193.5 193.1 193.1 193.1 193.9 19). 1 191.5 192.7 T395 T4I5 0.0 0.44 0.0 0.0 0.44 0.44 0.44 0.67 0.0 0.0 0.44 0.87 0.44 0.44 0. 44 1. II 0.44 0.81 0.0 T428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TIN TOUT TH OELTA H R TIME DEG.F DEG.F DEC .F OEG.F X1000 HOURS 127.0 149.5 181 .9 22.5 1621.5 0.6167 0.0 127.0 149.9 182 .0 23.0 1624.5 0.6156 0.05 127.0 149.5 181 .5 22.5 16)5.0 0.6116 0.08 127.0 149.9 18 1.8 23.0 1632.5 0.6126 o.ie 127.0 149.9 181 .9 23.0 1626.0 0.6150 0.23 127.0 149.9 161 .9 23.0 1626.1 0.6150 0.33 127.0 149.9 162 .2 23.0 1616.3 0.6179 0.52 127.0 149.9 182 .4 23.0 1606.6 0.6217 0.90 127.0 149. 5 181 .9 22. 5 1621.1 C6169 1.05 127.0 149.5 181 .8 22.5 1625. 1 0.615) 1.33 127.0 149.9 182.0 23.0 1623.4 0.6160 1.43 127.0 149.9 1 82 . 3 23.0 1 ( 2 . 4 0.6202 1. 73 127.0 149.9 182 .4 23.0 1611.0 0.6207 2.1 7 127.0 149.9 182.3 23.0 1614.6 C6193 2.40 127.0 149.9 182 .5 23.0 16U5.2 0.6230 2.^0 127.0 149.9 , 182 .7 23.0 1598.1 0.6257 3.27 l?7.0 149.9 162 .? 23.0 1618.0 0.6180 3.43 127.0 149.9 182. .2 23.0 1619.1 0.6176 4. 12 127.0 149.9 182 .4 23.0 1608.8 0.6216 4. 73 U N OEG.F 127.0 l?7.0 127.0 127.0 I?7 .0 l?7.0 l?7.0 127.0 127.0 127.0 127.0 127.0 127.0 177.0 177.0 177.0 177.0 177.0 127.0 TOUT OEG.F 149.5 149 .9 149.5 149.9 149.9 1*9.9 149.9 149.9 149.5 149.5 1*9.9 149.9 1*9.9 149.9 1*9.9 149.9 1*4.9 149.9 1*9.9 RFH 0.0 0.20 -0. 39 -0.05 0. 10 0.10 0.1* 0.6) 0.00 -0. 10 0.19 0.5* 0.59 0.44 0. /) 0.93 0. )4 0. 14 0.64 DELTA H OEG.F 22.5 1621. 2).0 1624. 22.5 16)5. 2).0 16)2. ' 23.0 1626. 23.0 73.0 23.0 ?7.5 1 6 7 6 , 1 6 I C 1 6 6 3 . 1 6 7 1 , 22.5 1 6 2 4 ? ) . 0 1 6 2 ) . 21.0 1 6 1 7 . 2 ) . 0 1 6 1 1 . 2 ) . 0 1 6 1 4 . ? ) . ( > I 6 U 4 . ? ) . 0 1 5 9 6 . 7 3 . 0 1 6 1 6 . 2 ) . U 1 6 1 4 . 7 3 . 0 1 6 0 8 . RIOT XIOOO 5 0.6167 5 0.6156 0 0.6116 5 0.6176 0 C.6150 1 0.6 150 5 0.6179 6 0.6217 1 0.6169 I 0.615] 4 0.6160 4 0.6/0? 0 0.670? 6 0.619) 7 0.67)0 1 0.674 7 0 U.6I6U 1 0.6176 8 0.6716 TIME HOURS 0.0 0.D5 0.08 0. 18 0 . 2 ) 0. 1) 0.3? 0. 9 0 : o o o o o o o e o o o e o o o o o o e o o o o MO o e o o o o o o o o o o o o o o o o o o o o o o u- >• PM — m > - - ' > i v r » u K i « u \ ' - > - r . . - - 0 0 0 0 0 0 0 0 rvtr • • • • • • • • • • • • w - • • ^ ^ ' ^ < > ^ U ' < » ' S > N > l > - j ^ - r f . * » - « f f l C D . ^ O O O O © s/>*n - * N « ^ - - U * U ' L » U < — — U > ^ ^ ^ ^ P % « < » I » - * - rj O C C < 3 — O O C O O O O O O O C O O O O O O O O f*j ̂ * . . . . . . \*i o * ^ - S r r Q O C O O O O O O O C O ' - O O O v> I. / > S: ̂  J J * » " C C C — — — C O C O O O C C O O O C - O — O O O >*ov I S * C * - C J * * ' # ' O O C J v * ' w a : * * 0 V" > o pi C C C — — — — — — — — C — *.rv*v' — — C O O C O O — • O O". • > . J * - « . » - - « . - ^ W » * - M - « I T - J — — — - * w * * 4 > * - J > 0 I r c c e e e e e c c c e c — — — o o c o e v 5c C S C > f > * J i | > S O i O * V « l . - — W J) "o > ^ o u» o j > ^ » j > * j > ^ x a J> — — — .fl.« — apco*-* r-i <i -rt — *>» N. — I«V*V«\),»»\IPWPM — C O O O O O O O O 7 ^ - • ^ c c c c ; » c r c : s ; v > j \ * . * c o © o a j > j > o u- c M — O S - S C C C 0 C C C C O 3 0 0 C — O S O O O O O . . . . . . . *••••*. yi» C ~ C 3 S ' £ + 3**'AS+C& + K-a,X*-XS*'0 U1 o X X t- 4- 3) f C J ^ V J i - j a / B j i 1 o o c c c c c c e t r c c e e c o e c o o o o n o o o w » • » » • • • • • • » * . . . . * . ^ o c c o c o o s c o o o o o c o o o o o o o o o V C C C O N — — — — — — C — — Ni — i M t S i C O O O O O C • • • • * • • » • » • * * C C * - * . v * I J H » w f a - - • < > « O I > M - « o 3 C O O C O O O O C O O O O O O O O O O O O O O J> * » • • • • » • » • * . . » . . . . , (S| O C C O O O C O O O O O O O O O O O O O O O O O 09 ^ . ^ v ^ ^ l V ^ ^ ^ v ^ ^ ^ l ^ ^ l ^ ^ ^ ^ l ^ ^ l N ^ l ^ l ^ > H O C J > 0 0 3 0 0 * C O o O O ^ f ^ O i j t O O v ^ O O O ' n /• > A s." X- ' J* f ^. r #. \T O * V , 0 , O y l J l J l J ' / T 1 0 «; ~ o ^ ̂  - J O O O J ^ O — — — — c — o o o o o c C © 3 O — — — — — — — O O — — O — — O O O O O O TO . . . • » • • • * . T, * £ \ . ^ « f ^ U ^ % i — r - v ^ o t c — — ( « f u \ ' s U i > > i r > u i O X ^ ^ V ^ > W I M * V ^ « U ^ - V P V I N - I ^ P W I ^ P U ^ V — — — W N . W W W — \tt t- f j- f w i ^ ^ v J i J v j m n • • t o r - C 3 ^ C > O C O . X * * O O J B r v r N * ^ ^ « F v r v C B t t a > * -| — - - _ * • c c * y c * w W v ' w > e * c " f f c » i ? f i > f f f c - P v > c - ^ i > p — w. V — C ̂  w O •— C C — C — /• U» P*-' — w J> w ^ V — *• D C — «* — 3 — J ; .0 ? O *«i a C* M r* — ww-w X V*>N j i N i l / v ' O i M l O J * - C Q Ce •** W — a>s>ff C C C © C C O O C 3 O O O O O O O O 0 C O O O O M M r-rr >r>-^»(r^%ro>>^47 'vT-ro-0'^(7(p(>o>oo — — N •*--v-w-vh.-\.'\j — Pv — C O — — — C — — O O O — C - * - M l U l O - - > N - - l 4 V ' i , ) ; ' V - < » M » l . ' 0 z - # r / w < w v i \ N N * g S M . . - C O O C O C O O O — c x — i * * h . C i O - . » » - * ' V . C ^ * - t o . r f - - ; C J ' - O * m O O O O O O O O O O O O O O O O O 0 O O O O O O T ) # 0 * > * » P ^ 0 r w C 0 e » r \ l * * > * O l T t > r ' J . * ' « . » > ' * a » T l V " r v / w * ^ v l u l v l t » J ' J ' - ' v U V ' W v ' V l l * ' * J>l/lJ> *» O w\ O UiJC * p O C « 0 * * i > ( , f N * O O O O I N M i > O i > f i > _ l "O —„————— — — - — — — — — — — — — — — — — o — > . . . . . . . . . . . . . » . . . U. » ,0 •— u - v - w ^ w O ' t X t f i - ui u> ui — — — u> ui w O U — m N l M N N I N ^ W N I ^ U I ^ r u ^ M U ^ I i l ^ ^ N N I ' v i r v i ' - ' t r*1 • • t • t • y i p U 1  U< — ' f i u H . ' O J v l U v ' w - ' - J - J W - i - — — — H - J - f l . *n — • * — — — — — — — » .—— — — — — — — — . -— — — — Q — a oi <v « cr ,t a or a a a rc cc ct n- o* a .T a ex a c: a» m vi- ^ \ * * " ^ ^ ^ V - 4 » ^ J ^ ^ ^ i ' O U i \ ^ v T r ? ' * / i * ' J " ^ - ^ i * t 7 ) — Ul — ̂  — utu<U t u , u | U'4>0 — ui\*iw\i> — — u .£ w) U1 u> — "n — ,- — — — — — .-. — — — — — — — — — — — — — — — — C,., CD *• J OT ^ J t l L T C X ' C 1 3 T 3 L D C 0 ^ i ) - v J - ^ ^ 4 ^ J - ^ J ^ J - ^ f c W ^ J - » J r t'lv>^ O J 3 Q O O O C O O O O O O O * a ? » - J - « - f f l J 3 C 3 » J 5 c ? i i > ) * * . U 1 0 , « ^ C * J * i 7 i > l * C \ ' t \ ; ^ * f f i w « a i v ; O r f f ' v i T l — — — — — — — — — — — „ — _ — „ _ _ — — — _ — c „ 0 * J 3 W J O O O O O O O O O O O O — O O O C o O O C T » U i • » • • Ul o •* o o o o o o o o o o o o o o o o o o o n o o o o c i - j • • • • • • • » » • . u» O O O O O O O O O O O O O O O O O O O O O O O O T ! — — — — — — — — — — — — — — — _ — — — — . - — — — 3 _ i N ul rg ^ O O o r X ^ O r w ^ o ^ O O O l N l O ^ I V ' O ^ ^ — — — — — — — — — — — — — — — — — — — — — — — — W N M v i l > ' 4 < t f « < w w W v l W v i » f V l v ' i < ' ^ l i i ^ u i N ( l » i— « ( - « — O L - J 3 U I U 1 U 1 J 3 — V > I « ^ W C I > N J I I - 4} U> TI o (Ti * O O O O O O O O O O G o O O O O O O O O O O O O O r u * • • • . . . . • • . . • . • C O O O O O O O O O O O O O O O O O O O O O O O O O Tl — — — — — — — — — — — — — — — — — — — — — — — — o 0 0 * ' 0 O 0 0 o - » ' O O 0 0 O * ' * ' O u i O O U , i o O O T i " ^ »• Y - u * * - / > j > * ' U ' u « * > i « u ' U i u i u ' v n u i u i u < u i u i U " i n o * - 0 * 0 - J O - f c > ^ 4 J 0 0 0 4 ) - O O p ~ — — — O — OQOOC1C — — — — — — — — — — — — — — — — — — — — — — — — o ^ ; » ^ l ^ w M w ^ l ^ l M ^ ) ^ ) ^ ^ l ^ ^ ^ l ^ l ^ l ^ l ^ l ^ • - • ' O X • t C O - ' ^ 0 0 0 0 , < > C i ' v l M W » f f W ^ v ' " J O l \ i r > i e ' > 1 l IMrVN*r\jl\JP*jPyl4JPO^Pvjr\jl»jp^p^ W t f P W L > ' W W i W W P 0 W U < u < U J U J - J > 4 - 4 ' M 4 ' h U W W l l f T l 4>CP'^ffl^UIUI^irC><>ffO k ffffC>'0'l>^C>0^ — WiNi — <0-C-dC — O O — O— J'VttSJ — u<̂ r\,wJ>vi — ̂ A O ^ O — w — Q> — <0<00>0'\JOO(7'NIO> — W M ^ J X U N W ' u i J i U , U , 0 - J N O l * i i l ' - O O C l l A -J w — ai t> t> O O O . O O O O O O O O O O O O O O O O O O O O O . . . . . . x p"iyi>t>l>C>r>C>C>C>C>C>L>C> N' — — p\jPH)r\jiN)r\)ryi\Jr\i — f\l — O O — — — O — — O O O 3 0 » 4 < > > p - O s i i i a u > 0 w i . ' M ) ) a ) u i O N h / i J ' < — w o * I ' W W ^ l - N ' u N N N N - ' - M - O O O O O O O O Q - • . C I < » W * r v C O « ^ u i ^ M O - J / W « l » 0-V-Pw — — o * . m 30 30 » — K Tl O T> — ( / > » » > » ) > u» — r> — — — ^ -<: C S 2- — o o c — — < V » T) C - * -9 • £ a o - c c E X T »-3 ' c c * ^ * « J W v i w i r v . « j r v N T V i u > - O O O O O O O O O — W v J W N M N O O ^ M O M W a ^ O N W - W l i l W V l l O (pi C -v S C> s O O O O — — — — « j J r g C ^ j j O U l O ^ P U . w \n > W ~ ™. — K > . o O i : -n * ̂  & »" t - o o — — o — — o o o o o o — ~ c — : h v , B i - i - v . r i ) r y - i / w » ¥ < 0 : - — — — — — — — — — — — — — * - — ̂  — — o o O O o o o < e • • * o > * 0 0 O 0 0 0 O 0 0 0 0 0 0 C O 0 0 0 ^ X » * " v » 0 — tenaaa)CD»naEeoBCB^<j«j>vi<<iv ,''v tiii C ro cn © o e o o o o o o o o o K.O o o o o o o o o o o o o v*« > e e o e o o o o o o o o <vtr > > J > O O O O J * Q > 0 0 v -I *• J» * *• *• o c C C O O O O C O O O O O *uZ o > o > o o e e o © o o V " #• #• -» V» e o o c o c o o c o o o N V I O C O S O O O O O © * © Vi > m O C O C O > O C O © 0 0 K. — -a i* » » ^ » i s » t o o > o v> o e c c e c c o c o o e e » «- a J- e * *• > m o o o o o o o o o o o o o «»* o J > * - J . ^ ^ C J ' 4 - O C O O V C J» J> 4> » J> — •« — o O O O O O O O O O O O O w C • • * • • « • VI • ->0>»©00© y/i O *• O o C C O C C O O O O O O O to O O O O C C O O O O O O v*i e o o o o c o o o o o o to • " • O O O O O O O O O O O v 0000000000 — o #• " a a o o u o v» O O O O O O O O O O O O #- • > • > ' • * » • » • • rv O O O O O O O O O O O O 0> - — — — — — — — — — — — — O ar © c o o o o v v * e o o o " n — — — — — — — — —— — — 0-« > O 4 4 > ) > . « i 0 4 4 4 4 « T ] I I 000000000000 30 * * • • < • • • * * • • Ti toto*>tov-*7--«to — *^XO X 4^0*,<C4*J>0-*>'* 1 "TITT . I- . . . or O O O O O O J * * - © © © © * - • T* *» C C C — C C O C - V * - - " * o 4 - - c ^ t o v . - t o V M > N » *r M *• — #• J - w "V -« V O J - O O O O O C C f - O S O O X J O t>t>>t>f>t?0 , *yt>L>l7'l**OO ft* *v, *v V *. *V -V -v — *- — •— O -« — — i». — •\,to'MvJV'fV'VC*'0 T -« — — — o e o c c o o o o z — c -x *a — 3- a c.-v — o c c c A r r - . »1V , "S.O~»«"'-.*>**"*'to *•*• m r\» o © o o o o © o o © © o o o * - o O O O O O O O O O O O O " " r~ — — — — — — — — — — —— O-ITI V X > j > J > O C O O * " 0 > O O T i > 1— f y^yr>ij > v"vrJ>'i<ivrv"> .i^ v ci v> f i O * > O i ' C l > O O O 0 ' O O - n -o m » — — — — — — — — — — — — tr — > SiNiNiSIN'>Jfv'v'v' , J'yKiC 1 '-4C » • . • • V » w V wi vi v* *- — v *~ »C v "*i 0 1 ( r o c s r e c i . c i . a i t t f t o J C J r i N O N I ^ I N / > * ^ t > ^ * ^ r » j f w " i i f s j O 4fT> V O — — — — — — — — — — — — o-> Co CO tY Cc cpcottCPCtVteGcrnto ^ ^ - ^ ^ J - t o ^ ^ - w — Jt- to O — • . . . v < ——————___——— 0 _ t G O O O O O O O O - S O C O t o . . V f — — — — — — — — — — — — O-H a a x a ' v i v i s s i ' M ' V N r T i w 0 c 0 0 0 . c 0 0 4 . f i a o o v t c -< O O C O O O O O O O O O C I - J • • • • • • • • • • • • • V I O O O O O O O O O O O O " * — — — — — — — — — — — — o — • • • • » VI — — — — — — — — — — — — tototototototow'vrvto'vciM VI V t V y V " * — <JI vi s M 4 N Tl o O O O O O O O O O O O O C i r V o o o o o o o o o o o o - n — — — — — — — — — — — — o z O O O O O O V V I O O O O T I — — — — — — — — — — — — O-t 4 4 0 < J 4 4 4 4 4 4 ^ 4 0 C 4 0 4 4 0 4 4 4 4 4 4 4 T I — — — — — — — — — — — — o OttCOQIGDjrJCDQa T <J> 03 CO iTI ̂ ^ ^ h j f v ) T v r o i \ j " i ) i v ) i - ^ N f l j O f - O 0 0 0 0 0 4 * > 0 0 © 0 » Tl > OOCTOfrCT-CT-OlT-COO- O O O — O O O O r v t o — M 44V>0^toV>toV-*-><t-rV I •s. — — <• < - - . ^ ^ w V O > O O O O O O O O O O O O • • • x OOtTOOCT-OOOCT'CT'C*' — fVfv.fu^jfyr^fV'vi — — — — O-O — — w — Nito*viwVi*J-Ot>0 g > t \ . 0 O » - O < C u > - t T C - ^ O z — — — — O O O C O C O O O O — C I •A N o a c *-rsj — o o o o ^ r n VtV"VO**J^-.-J^I-*to V SO 79 C > x z : — v> t -o i : - — O J "O * • T» X T > x C Z Z — C Cl o «- o < - —< 1 2 O -< to o — n *> tx n n c C t -3 • » i/"- — o - — - • - — O — rv — J> O > O > —• — "-0000000000 C A 4 •wffai C * N i i - O O O O S i " " i f* 1 v ' v n r v o ' v v < - j - j c o - j t o «/• ^ o o to to o o o o o o o o o o - Tl 1) N tt » £ r" rv - C v< O — ' : to to g> FM to — * v r v O = — -* " < 0 4 * t O < O J ' > O j > « > jc t/i n s i z I C V* — O O O O O O Q O O O O O O < - , I • • • • 0>v*'S tototoOO)*l>*flO'OJ' C ro •^1 248 .......RUN N049.•••*•»• FERRIC OXIUE CONC IPPMI 2130. VOIIS-.13.50 AMPS: 355. HEAT FlErf SUPPLIED 16156.1) HEAT TLUX SUPPLIED 93897. BIU/HR UIU/SCTI-HR BHAO.30I ICR=I1NLET127.0 DEC F 0ENSIIV:0.986 GRAM/CC [ OUILEI149.9 DEC F FLOW RA1E 0.1888 LBS.M/SEC AVG TEMP:138.A DEG F KINEMAIIC VISC0SIIY-.0.460 SQ.CH/SCC FLUID VELOCITY 4.790 Fl/SEC REYNOLDS NO 26486.8 PRAN01L NO 3.03 HEAT SUPP 16356.8 OTU/HR HEAT 1 RAN S 15633.8 OTO/HR HEAT LOST 723.0 BTU/HR PERCINI HEAT LOST 4.4? IICA1 FLUX TRANS. BTU/SOF T-HR 89746. NUSSELI NO 121.3 RFILM 0.624 RWALL 0.143 RTOIAL 0.766 SOFT-HR-DEG F/BTU ESTIMATES OF ROOT MEAN SOUARE STATISTICAL ERROR IN I HE PARAGEIER .12740 .18465 ESTIHATFS CF HUOT MEAN SOUAKC IOTAL ERR CR IN IHC PARAMETERS .64190E-0I .39516 ESTIMATE OF RO.RINF.ANO B IN RE•RINFI I I.-EXPI-e»1 IM£I T INE HOURS 0.0 0.02 0.15 0.20 0.23 0.53 0.63 0.80 0.97 1.25 1.43 1.55 1.75 2.13 2.47 3.00 3.12 3.25 3.38 3.63 3.87 2.0657 5.3409 CALC. RESISTANCE FITIED VALUE IISOFI-MR-OEGF/BIUIX100,OOOl 0.0 -O.O 1.02 1.41 1.46 1.22 1.56 1.51 1.95 1.85 2.20 2.00 1.90 2.34 2.54 2.10 1.61 1.56 1.71 1.51 3.22 3.07 .21 ,14 , 36 1.44 1.94 1.99 2.04 2.05 2.06 2.06 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 LOCALIZED WALL 1215 T235 TEMPERATURES T255 T275 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 OEG.F 174.6 175.4 175.8 175.8 175.8 175.8 176.2 177.0 177.0 177.0 177.4 176.6 177.4 177.4 17 7.8 175.8 175.8 176.2 176.2 1)8.2 178.6 DEG.F 174.2 175.0 175.8 175.8 175.4 175.8 175.8 176.2 176.2 176.6 171.0 176.2 177.0 177.4 116.6 175.8 176.2 175.8 175.8 177.B 177.8 DEG. 182.5 182.5 182.9 182.9 162.5 182.9 182.9 103. 3 1E2. 9 183.7 16).7 1 P ) . ) 183.7 164.5 183. 7 183. 3 182.9 163.7 193.3 184.9 184.9 I DEG. T295 OEG.F 182.5 162.5 182.9 183.3 162.9 132.9 183. 3 1 83.) 182.9 18). 7 18). 7 18).7 184.1 1U4.1 183.7 183. 3 183.3 183.3 183.3 IB4.9 184.5 FI T3I5 OEG.F 163.3 184. 1 164.5 164.5 164. 1 184.5 let. S 184.9 IS4.9 ie4. 9 164.9 164. 9 185. 3 165. 3 1C4.9 184.9 164.5 164.9 184.5 166. 1 186. 1 T335 DEG.F 178.6 180.6 180.6 180.9 180.6 160.9 18C. 9 161.3 180.9 181. 1 U0.9 180.9 181.3 131.7 1B0.9 iao.9 180.9 160.9 IHO.9 182.1 182.1 T)55 T)75 1)95 1415 7428 TIN TOUT DEG.F DEG.F OEG.F OEG.F DEC.F DEG.F OEG.F 178.6 0.0 166.5 192. 7 0.0 127.0 149.9 1B0.2 0.0 188.0 193.5 O.D 127.0 149.9 100.6 C O 166.4 193.5 0.0 126 .5 149.9 180.6 0.0 1B8.0 193.5 0.0 126.5 149.9 180.6 0.0 167.6 193.9 0.0 126. 5 149.9 180.9 0.0 IBB.4 193.9 0.0 126.5 149.9 180.6 C O 188.0 193.5 0.0 126.5 149.9 180.9 0.0 188.4 193.9 0.0 126.5 149.9 180.9 0.0 188.4 194.) 0.0 126.5 149.9 181.3 C O 1BH.4 193.9 0.0 126.5 149.9 180.6 0.0 1B8.0 19).5 0.0 126.5 149.5 180.9 0.0 168.0 194.3 0.0 126.5 149.9 180.9 0.0 IBB.4 194.) 0.0 127.0 149.9 130.9 c o 168.4 194.3 0.0 126.5 149.5 180.9 0.0 168.0 19).9 0.0 127.0 149.9 IB0.6 0.0 188.0 193.9 0.0 127.0 149.9 140.6 C O 188.0 19).9 0.0 127.0 149.9 180.6 0.0 188.4 193.5 0.0 127.0 149.9 130.6 0.0 187.6 19).5 0.0 127.0 149.9 181.7 C O 169.2 194.7 0.0 121.0 149.9 181.7 0.0 188.4 194. 3 0.0 127.0 149.9 TH DEG.F 181.5 182.4 182.8 182.8 162.6 182.9 182.9 183. 3 183.2 183.5 183.3 163.2 183.6 163.6 183.4 18).0 182.9 183.0 182.9 184.4 184. 3 DELTA H OEC.F 23.0 1645. 23.0 1609. 23.4 1589. 23.4 23.4 1587 , 1596. 23.4 1584 23.4 1586 1574. 1576. 1566. 1567. 15 75. 1570. 1550. 1579. 1590. 23.0 1592. 23.0 1587. 23.0 1594. 23.0 154). 23.0 1549. ft X 1000 9 0.60 76 2 0.6214 6 0.6291 5 0.6299 2 0.6265 3 0.6312 9 0.6)02 2 0.6352 1 0.6337 0 0.6366 6 0.6379 4 0.6346 7 0.6367 0 0.6452 6 0.6330 3 C6263 6 0.6279 8 0.6298 6 C6271 7 0.6478 3 0.6454 Tl HE HOURS 0.0 0. 02 0. 15 0.2C 0.23 0.53 0.63 0.80 0. 9 7 1.25 1.43 1.55 1. 75 2.13 2.47 3. CC 3. 17 3.25 3.)» 3.6) 3.67 LOCALIZED FOULING RESISIANCE IS0FT-HR-0EGF/8 TUIXI 00. COO 1215 1235 1255 1275 1295 1315 13)5 1)55 1375 1395 T415 o.o 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.ee 0.68 0.0 0.0 0.88 2.20 1 . 76 0.0 1.75 0.B7 0.0 1.32 1. 76 0.44 0.44 1. 31 2. 2U 2.20 0.0 2.19 0.87 0.0 1.32 1.76 0.44 0.68 1.31 2.64 2.20 0.0 1.75 0.87 0.0 1.32 1 .32 0.0 0.44 0.88 2.20 7.20 0.0 1.31 1.31 0.0 1.32 1. 76 0.44 0.44 1.31 2.64 2.64 0.0 2.19 1.31 0.0 1.76 1.76 0.44 0.88 1.31 2.64 2.70 0.0 1.15 0.67 0.0 2.65 2.21 0.88 0.68 1.75 ).08 2.64 0.0 2.19 1.31 0.0 2.65 2.21 0.44 0.44 1.75 2.64 7.64 0.0 2.19 1. 74 0.0 2.65 2.65 1. 12 1. 12 1. 75 1.62 1.08 0.0 2.19 1 .31 0.0 3.09 3.09 1. 12 1. 32 1. 75 2.64 7.70 0.0 1 .75 0.87 0.0 7.71 2.71 0.88 1. 17 1. 75 2.64 7.64 0.0 1 . 75 1. 74 0.0 3.09 3.09 1. 37 1. '5 t. 19 t. 06 7.64 0.0 2.19 1 . 74 0.0 3.09 1.53 2.19 1. 75 2. 19 ).5/ 7.64 0.0 2.19 1 . 14 0.0 3.5) 7.65 1. 37 1 . 17 1.75 2.64 7.64 n.o 1. 15 1.31 0.0 1.37 1.76 0. 88 U.RB 1. 75 2.64 2.71) o.o I. 75 1 . II o.o 1.32 7.21 0.44 0 .81) 1.11 2.64 /./(> 0.0 1 . /5 1.11 0.0 1.76 1 . 16 1. 1/ l i . 88 1.75 2.64 7.70 n.o , 2.19 0.6 7 0.0 1. 76 1 . 76 0 . 'I M U.RB 1. 11 2.44 /./f) 0.0 1.31 0.8 7 0.0 1.97 1. 17 7.4 1 /. 6 1 1.0/ 1. 95 1.5/ o.n 1 ,»>4 7.11 0.0 4.41 3.9 7 7.6 1 2. 19 1.1)1 1.95 1.5/ 0.0 7.19 1. 74 1*28 TIN TOUT RFH DELTA H RTOT TIME DEC.r DEC.F DEC.F X1000 HOURS 0.0 127.0 149.9 0.0 23.0 1645.4 0.6076 0.0 0.0 127.0 1*9.9 1.02 23.0 1(709.2 0.6214 0.02 0.0 126.5 1*9.9 1.41 2J.4 1509.b 0.6291 0.15 0.0 126.5 149.9 1.46 23.4 15-37.5 C.6299 0.20 0.0 126.5 149.9 1.22 23.* 1596.2 0.6265 0.23 0.0 126.5 149.9 1.56 23.4 15d4.3 0.6112 0.53 0.0 126.5 147.9 1.51 23.4 15W6.9 0.6302 O.bJ 0.0 126.5 149.9 1.95 23.4 1574.2 0.6352 0.«0 0.0 126.5 149.9 1.65 23.4 15 *8. 1 0.6337 O.V<* 0.0 126.5 149.9 2.20 23.4 1566.0 0.63H6 1.25 0.0 176.5 141.5 2.00 23.0 I V / ' . f i 0 . 6 ) ( ' l 1.43 0.0 126.5 149.9 1.90 23.4 1WJ.4 0.634K !.->'/ 0.0 127.0 149.9 2.14 23.0 157C.7 0.6J67 1.75 0.0 126.5 149.5 2.54 23.0 1550.0 0.6*52 2.11 0.0 127.0 .149.9 2. 10 23.0 157 '.« U.6HU 2.47 0.0 127.0 149.9 1.61 23.0 15*0.3 0.6i"lB 3.00 0.0 127.0 I4-J.9 |.56 23.0 1592.6 0.6/ 79 3. 1 2 0.0 127.0 149.'I 1.7| 23.0 1 V l / . B 0.629H 3.25 0.0 12 7.0 149.9 1.51 J 1.11 1 V*4.6 (J. t/ 11 I. VI 0.0 12/ .0 14'*.'/ 1.22 2 !.»» I. I 4, .6<W* 1.6 I 0.0 127.0 149.9 3.U7 23.0 1549.1 U.6 4 54 | . d / 249 ••«a«**KUN N 0 5 0 . * * * * * * * F E R R I C O X I O E CONC I P P M I 2 1 3 0 . V O L T S : 1 1 . 5 0 A M P S : 3 5 5 . H E A T FLOW S U P P L I E D 1 6 ) 4 6 . 6 HEAT F L U X S U P P L I E U 9 ) 6 9 1 . B T U / H R B I U / S O F T - H R B E T A O . 3 0 1 F O R M I N L E T 1 7 7 . 0 D E C F 0 E N S [ 7 Y : 0 . 9 b 6 C R A h / C C T O U T L E T1 A 9 . 9 D E G F FLOW R A T E 0 . 1 8 6 6 L B S . M / S E C AVG I L M P U 3 8 . 4 OEG F K I N E K A T I C V I S C O S I I Y : 0 . 4 6 0 S O . C M / S E C F 1 U I 0 V E L O C I T Y A . 7 9 0 FT / S E C R E Y N O L O S NO 2 6 4 8 6 . 8 P R A N O I l NO 3 . 0 3 HEAT S U P P 1 6 3 5 6 . 8 B T U / H R H E A T T R A N S 1 5 6 3 3 . 8 B T U / H R HEAT I C S ! 7 2 3 . 0 B t U / H R P E R C E N T HEAT L O S T 4 . 4 2 H E A T F L U X T R A N S . BT'J/SCt'T-HK 8 9 7 4 6 . N U S S E L T NO 1 2 1 . 3 RF I LP. 0 . 6 2 4 R W A L l 0 . 1 4 3 R I O T A l 0 . 7 6 6 S O F T - H R - D E G F / 8 T U E S T I M A T E S O r ROOT ME A N S C U A R E S T A T I S T I C A L E R R O R I.N T H E P A R A M E T E R . 1 4 0 3 7 . 6 0 7 0 4 E S T I M A T E S UT- ROOT MEAN S C U A R E I O T A L c R R O R I N 1 HE P A R A M E T E R S . 4 3 2 4 9 E - 0 1 . 1 8 7 0 4 E S T I M A T E OF K O i R I I i r . A N O B I N RF =R I N F 1 I I . - E X P I-»* I I ME I T I M E H O U R S 0 . 0 0 . 0 7 0 . 1 5 0 . 3 0 0 . 4 3 0 . 6 7 0 . 7 3 0 . 9 7 1 . 1 7 " 1 . 2 8 1 . 4 0 1 . 5 7 1 . 7 2 3 . 0 9 1 3 3 . 6 7 0 7 C A L C . R f S I S I A N C C F I 1 T E 0 V A L U E I 1 S 0 F I - H R - U E G F / B T U ) X 1 0 0 , C 0 0 I 0 . 0 . 7 3 1 . 5 1 1 . 5 1 3 . 0 7 2 . 9 2 2 . 3 9 2 . 9 2 3 . 0 2 3 . 2 2 3 . 2 6 3 . 0 2 3 . 0 7 - 0 . 0 0 . 70 1 . 3 1 2 . 0 6 2 . 4 5 2 . 8 3 2 . 8 8 3 . 0 0 3 . 0 5 3 . 0 6 3 . 0 7 3 . 0 8 3 . 0 9 L O C A L I Z E D WALL 1 2 1 5 T 2 3 5 D F G . F D F G . F 1 7 5 . 4 1 7 6 . 6 1 7 7 . 0 1 7 8 . 2 1 7 9 . 0 1 1 9 . 0 1 7 6 . 2 1 7 9 . 0 1 7 9 . 0 1 7 9 . 0 1 7 9 . 0 1 7 9 . 4 1 7 9 . 0 T E M P E R A T U R E S 1 2 5 5 T 2 7 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 DEO. F 1 7 5 . B 1 7 6 . 2 1 7 7 . 0 1 7 7 . e 1 7 9 . 0 1 7 9 . 0 178.6 1 7 * . 6 1 7 6 . 6 1 7 9 . 0 1 7 6 . 6 1 7 6 . 6 17e.6 O E G . F 1 8 3 . 3 1 8 3 . 7 1 B 4 . 5 1 6 4 . 5 l b 5 . 7 1 8 5 . 7 1 6 5 . j 1 6 6 . 1 I 6 6 . 1 1 8 5 . 7 1 6 6 . 1 1 6 5 . 7 1 8 5 . 7 I D E G . F I 7 2 9 5 D E G . F 1 8 2 . 9 l a ) . 3 1 8 4 . 1 1 6 3 . 7 1 6 5 . 3 1 U 5 . 3 I 64 . 9 1 6 5 . 3 1 6 5 . 7 1 6 5 . 7 1 6 5 . 7 I 6 5 . 7 1 6 6 . 1 T 3 1 5 D E G . F l b 4 . 1 1 8 4 . 9 1F.5.7 1 6 5 . 7 1 6 6 . 8 I C O . 5 l o o . 5 1 6 6 . 6 1 8 7 . 2 1 6 7 . 6 1 6 7 . 2 l n o . 8 1 6 7 . 2 T 3 3 5 D E G . F 1 6 0 . 2 1 8 0 . 9 i e i . 7 1 6 1 . 3 1 S 2 . 9 1 8 2 . 9 1 R 2 . 5 1 8 2 . 9 1 6 2 . 9 1 8 3 . 3 I B ) . 1 1 8 2 . > 1 8 2 . 9 1 3 5 5 O E G . F 1 7 9 . 8 I 8 0 . 6 1 8 1 . 3 1 6 1 . 3 1 0 7 . 9 1 8 2 . 5 1 8 2 . 1 1 6 2 . 5 1 8 2 . 5 1 6 2 . 9 1 6 2 . 9 1 8 2 . 9 1 8 2 . 5 T375 O E G . F 0.0 C. 0 0.0 0 . 0 C O 0 . 0 0.0 0 . 0 0.0 0.0 0 . 6 C O T 3 9 5 D E G . F 1 8 6 . 0 1 6 6 . 4 1 6 9 . 2 I B S . 4 1 9 0 . 0 1 9 0 . 0 1 8 9 . 6 1 9 0 . 0 1 9 0 . 0 1 9 0 . 0 1 9 0 . 8 1 9 0 . 0 1 9 0 . 0 7 4 1 5 D E G . F 1 9 3 . 5 1 9 4 . 3 1 9 4 . 7 1 9 4 . 3 1 9 6 . 7 1 9 5 . 8 1 9 4 . 7 1 9 4 . 5 1 9 4 . 5 1 9 5 . 8 1 9 5 . 8 1 9 3 . 5 1 9 5 . 8 T 4 2 8 O E G . F 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 T I N D E G . F 1 2 7 . 4 1 2 7 . 0 1 2 7 . 0 1 2 7 . 0 1 2 6 . 5 1 2 6 . 5 1 2 6 . 5 1 7 6 . 5 1 2 6 . 5 1 2 6 . 5 1 7 7 . 0 1 7 7 . 0 1 2 6 . 5 TOUT DF.G.F 1 4 9 . 9 1 4 9 . 5 1 4 9 . 5 1 4 9 . 5 1 4 9 . 5 1 4 9 . 5 1 4 9 . 5 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 T H D E G . F 1 8 2 . 6 1 8 3 . 2 1 6 3 . 9 1 8 3 . 9 1 3 5 . 3 1 8 5 . 2 1 8 4 . 7 1 3 5 . 2 1 8 5 . 3 1 B 5 . 4 1 8 5 . 5 16 5 . 3 1 8 5 . 3 O E L T A H D E G . F 2 2 . 5 1 6 1 3 2 2 . 5 1 5 7 5 2 2 . 5 1 5 3 0 2 2 . 5 1 5 5 4 2 3.0 1 5 0 0 X 1 0 0 0 0 . 6 1 9 6 0 . 6 3 4 6 0 . 6 4 4 9 0 . 6 4 3 1 .2 0 . 6 6 4 6 1 5 0 5 . 1 5 1 3 . 1 5 1 1 . 1 6 0 7 . 1 6 0 1 2 3 . 0 1 5 0 6 . 2 3 . 0 1 5 1 5 . 2 3 . 4 1 5 0 6 , 0 . 6 6 4 5 0 . 6 5 6 4 0 . 6 6 1 7 0 . 6 6 3 2 0 . 6 6 6 0 0 . 6 6 ) 7 0 . 6 5 9 9 0 . 6 6 3 9 T I M E H O U R S 0 . 0 0 . 0 7 0. 15 0. 30 0 . 4 3 0 . 6 7 0. 7 ) 0. 9 7 1 . 1 7 1.2F. 1 . 4 0 1 . 5 7 1. 7 2 L U C A L I Z E D F O U L I N G R E S I S T A N C E I S C F I - H R - O E G F / B T U I X 1 0 0 , 0 0 0 1 2 1 5 1 2 3 5 1 2 4 5 1 2 7 5 T ? 9 5 1 ) 1 5 T ) 1 5 1 1 5 5 T 1 7 5 0.0 0.0 0.0 0.0 0.0 0 . 0 0.0 0 . 0 0.0 0.0 1 . 3 ? 0 . 4 4 0 . 4 4 0 . 4 4 . 0 . 6 8 0 . 8 3 0 . 6 6 0.0 0.0 1 . 7 6 1 . 3 ? 1 . 11 1 . 3 ? 1 . 7 5 1 . 16 1 . 76 0 . 0 0.0 3.06 2 . 7 0 1.11 0 . 6 8 1. 75 1. ) ? 1 . 76 0.0 0.0 3.96 ) . 5 2 2 . 6 1 2 . 6 1 ) . 0 6 ) . 0 7 1.41 0.0 0.0 3.96 3 . 5 ? 7 . 6 ) 7 . 6 3 7 . 6 ) ) . H 7 1.0 1 0 . 0 0.0 3.06 3 . 0 3 7 . 1 9 2. 1 9 2 . 6 1 7.6 1 7 . 6 4 0.0 o.o 3.96 1 . 0 3 1 . 0 7 2.1.1 J . 0 6 3 . 0 7 1 . 0 1 U.O 0.0 3 . 9 6 ).UR 3 . 0 7 3.0 1 1 . 5 0 1.117 3 . 0 7 0 . 0 0.0 3.46 1.4? 7 . 6 1 1.07 i . 9 4 1.41 1.41 0.0 0.0 1.96 ) . 0 3 1.07 1.07 J . 4 0 1.41 1.4 1 U.O 0.0 4 . 4 0 1.08 2 . 6 1 1.07 1 .06 ).<!( 1.41 O.O 0.0 J . 9 6 3.06 2 . 6 1 3.40 1 . 5 0 1 . 0 / 1 . 0 7 u.o T J 9 5 1 4 1 5 T 4 ? 8 T I N TOUT R F H O E L T A H R I O T T THE O E G . F O E G . F O E G . F X 1 0 0 0 H O U R S 0 . 0 0 . 0 0 . 0 1 7 7 . 4 1 4 9 . 9 0 . 0 2 2 . 5 1 6 1 1 . 9 0 . 6 1 9 6 0 . 0 0 . 4 4 0 . 6 7 0.0 1 7 7 . 0 1 4 9 . 5 0 . 7 1 7 7 . 5 1 4 7 5 . 7 0 . 6 ) 4 6 0 . 0 7 1 . 3 1 1 . 3 0 0 . 0 1 7 7 . 0 1 4 9 . 5 1 . 5 1 2 2 . 6 1 5 5 0 . 5 0. 6 4 4 9 0 . 14 0 . 4 4 0 . 6 7 0 . 0 1 7 7 . 0 1 4 9 . 5 1 . 6 1 2 2 . 5 1 5 5 4 . 9 0 . 6 4 3 1 0. ) 0 7 . 1 8 3 . 0 4 0 . 0 1 7 6 . 5 1 4 9 . 5 3 . 0 7 7 1 . 0 1 6 C 0 . 7 0 . 6 6 6 6 U . 4 1 7 . 1 6 2 . 6 1 0 . 0 1 7 6 . 5 1 4 9 . 5 ? . 9 2 ? ) . 0 I 5 U 4 . 0 0 . 6 6 4 6 0 . 6 7 1 . 7 5 I . ) 0 u . o 1 7 6 . 5 14 4 . 5 ? . ) 9 2 ) . 0 1 5 1 8 . 9 0 . 6 4 3 4 0 . 7 ) 2 . 1 3 2 . 1 7 0 . 0 1 2 6 . 5 1 4 4 . 9 7 . 9 7 7 ) . 4 1 5 1 1 . 7 0 . 6 0 17 0 . 9 7 2 . 1 8 7 . 1 1 0 . 0 1 7 6 . 4 1 4 9 . 9 ) . 0 ? ? ) . 4 1 3 0 7. 8 0 . 6 6 ) 2 1 . 1 7 7 . 1 6 7 . 6 1 0 . 0 1 7 6 . 5 1 4 9 . 1 1 . 7 2 ? ) . 4 1 4 U I . 6 0 . 6 6 6 0 1 . 2 3 ) . 0 5 7 . 6 1 0 . 0 1 7 7 . 0 1 4 9 . 9 1 . 2 6 7 1 . 0 1 4 0 6 . 7 0 . 6 6 1 7 1 . 4 0 7 . 1 6 7.1 1 0 . 0 1 7 1 . 0 1 4 9 . 9 1 . 0 2 7 1 . 0 15 1 4 . ) 0 . 4 5 9 9 1 . 4 1 ? . 18 2 . 6 1 0 . 0 1 2 6 . 5 1 4 9 . 9 3 . 0 7 2 1 . 4 1 4 0 4 . 3 0 . 6 6 3 9 1 . 7 2 250 • ••••••RUN NOM. ••••••• FERRIC OXIOE CONC IPPK) 3750. V0L1S:|3.50 AHPSJ 355. MEAT FLO'.' SUPPLIED 16356.8 BTU/HR HEAT FLUX SUPPLIED 9)897. BIU/SOFT-HR BETAO.301 TOR*TINLET127.0 DEC F OENSHY:0.986 &RAM/CC T 0UTLET149.9 DEC F FLOV.' RATE O.IBBB LBS.K/SFC AVG TEMP:138.4 DEC F KINEMATIC VISCOSITY:0.46O SO.CM/SEC FLUID VELOCITY A.790 FT/SEC REYNOIDS NO 26436.8 PRANOIL NO 3.03 HEAT SUPP 16356.B BTU/HR HEAT TRANS 15633.8 BIU/HR HEAT LOST 723.0 R7U/HR PERCENT HEAT LOST 4.42 HEAT FLUX TRANS. BIU/SOFT-HR B9746. NL'SSELI NO 121.3 RFILH 0.624 RWALL 0.143 RTOTAL 0. 766 SOFI-HR-OEC F/BIU LOCALIZED WALL 1215 1235 TEMPERATURES 1255 T275 OEC.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 OEC.F 179.8 179.4 174.0 179.0 179.0 17B.6 179.0 I 76-6 176.2 177.4 178.2 177.8 OEG.F 1 79.4 178.6 174.6 178.2 176.2 177.B 177.8 177.8 177.4 177.0 177.8 177.0 DEC.F 186.5 186. 1 135.7 185.3 185. 7 185. 3 184.5 184.5 184. I 164.1 184.5 184. 1 IOEG.F 1295 UEG.F 166.1 loS. 7 1J5.7 165.3 1 6 5 . ) 184.9 164. 1 I d4 . 5 U4. 1 163.7 I 34. 5 163.7 T315 Dfc&.F 187.6 187.6 166.8 1 6 6 . 5 186.5 136.5 135.7 16S.7 185. 3 165.3 165.7 185.3 T335 DEG 1 6 4 163. 163 18? 18? 1 3 ? 161 161 181 1 8 1 182 181 1355 UEG.F 184. I 183.3 132.9 132.5 1 82.5 182. 1 181.7 181.7 161.7 181.3 18). 7 181.3 T375 DEG.F O.C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C. 0 0.0 O . 'J 1395 OEG.F 191.2 190.4 190.4 139.6 189.6 133.8 168.8 168.8 138.8 188.8 1 38. 6 188.4 T4I5 DEG.F 197.0 195.8 195.6 I 95. I 195.1 194 . 3 193.9 194. 3 194.3 193.9 19).9 193.5 T428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TIN DEG.F 127.0 126.5 127.0 176.5 126.5 126 .5 177.0 127.0 127.0 127.0 127.0 127.0 TOUT OEG.F 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.5 14 9.9 149.9 TM DEC.F 186.2 185.6 185.4 164.9 164.9 164.5 184.1 184.2 134.0 183.7 184. I 183.6 DELTA H OEG.F 23.0 1485, 1495, 1511, 1519 1519, 1532 I 555, 2).0 1552. 2).0 1559, 22.5 1561, 23.4 23.0 23. 23. 23. 23.0 23.0 1532 :571. X 1 0 0 0 0 0 . 6 7 3 4 6 0 . 6 6 8 6 3 0 . 6 6 1 7 4 0 . 6 5 6 2 9 0 . 6 5 7 9 0 0 . 6 5 2 7 4 0 . 6 4 2 9 9 0 . 6 4 4 0 5 0 . 6 4 1 2 1 0 . 6 4 0 6 8 0 . 6 4 4 0 1 0 . 6 3 6 5 TIME HOURS 0 . 0 0 . 0 3 0 . 1 3 0 . 3 0 0 . 4 5 0 . 5 ? 0 . 6 8 0 . 9 0 1 . 0 7 1 . 2 3 1 . 1 ? 1 . 5 5 LOCALIZED FOULING RESISTANCE ISOFI-HR-OEGF/PTUIXI00,000 1215 1735 1255 1715 1295 1315 1135 1155 1)75 1195 T4I5 T428 TIN TOUT RFM OELTA H RIOT TIME DEG.F DEG.F DEG.F XI000 HOURS * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 177.0 149.9 0.0 21.0 1465.0 0.67 14 0.0 0.0 0.0 0.0 0.0 0.0 u.o 0.0 0.0 0.0 0.0 0.0 0.0 126.5 149.9 -0.63 23.4 1495.6 0.6684 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 7.0 149.9 -0.92 21.0 1511.3 0.661 1 0. 13 0.0 0.0 0.0 0.0 0. 0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 176.5 149.9 -1.41 7).4 1519.4 0.6632 0. 30 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 176.5 149.9 -1.41 71.4 1519.9 0.6579 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1?6.5 149.9 - i . e 5 ?). 4 16)2.0 0.6527 0.57 o.o 0.0 0.0 o.o 0.0 u.o 0.0 0.0 0.0 0.0 0.0 0.0 177.0 149.9 -7.78 71.0 1535.4 0.647 9 0.66 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 u.o 0.0 0.0 177.0 149.9 -7.74 73.0 1557.4 0.6440 0.9G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.n 0.0 0.0 0.0 0.0 177.0 14 9.9 -2.48 ?).0 1559.5 0.6412 1 .07 0.0 0.0 0.0 0.0 . O.U 0.0 0.0 0.0 0.0 0.0 0.0 0.0 177.0 149.5 -7.8? ??.5 1361.1 0.6406 1.2) 0.0 0.0 0.0 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 127.0 149.9 -2.26 2).0 1537.6 0.644U 1.17 0.0 0.0 0.0 o.u U.O 0.0 0.1) 0.0 0.0 0.0 0.0 0.0 177.0 149.9 -2.67 21.0 16 71.1 0.6365 1.35 m , i : o ' M s T i f t ? ' v ^ ji & i\ *r -0 <o & ID -000O0O"-t-HNf<i\mN •— r 0<«.i>J , 'M — — *oO«r — — ~ « 3 Of O — Aj, IM rt «r ,jr j id 1(1 «i « VI 1(1 — O - G O ^ O - O O ^ - O - O - O O O O X . « • 00000000000000 V\t-0-t**,rvOoBrvo*o + + ,r — X ^<N.O , <\it>org-oocO'*' — — * < u. 1- • o o o o - r o o o o o o o o o -I O .....4. Wuj'*' f '''* 1 , * , , *l'* , '* t '* , '''*'"r'l'"'*l OOAiAj.AJAjr\jA,A."NifsirviAiAi'N)rM u. a 00'NP-a20r\ii/\p--LAaj"'"-0 X O A < A J r t r t r t r t t f -T .f -T NT -T a — — — — — — — — — — — — — — i - O — — — — — — — — — — — — — — U - O O O O t A O O O O O O l A O O z • — 0>"-'*'A.I».OP"-P-P»P-.P-P- ,0 O — — — — — — — — — — — — — — U . C O O O O O O O O O O O O O <D • * A J O O O O O O O O O O O O O O O V HI 1- o LVrt.AiAtrrt îwrA — — — — — P » IT> LA • rtiijcC<Oa3crx><»t0:0aJ7'CD<T"4J* l - O — — — — — — — — — — — — — — • V O O O O O O O O O O C O O O h A < . • • • < • • • < • • • • < P » U O U O O O u O O O O O O O O L J . O A J . O L T P - I * - — — IA LA — lA — lA IA • V r t c j e c O O O — — (v%»Nj'\iiM'sirM(M — 3 — — — — — — — — — — — — — — If • 1 • • 1 • 1 1 • < 1 • < • • rt O I- C C — — — <\j *%J ix A* A, <V «M Ai r l u j ' s < c i e 3 e w t B C C ( t a , a j « « j c o — a — — — — — — — — — — — — — — U» — lA t> O rt »». — — •/•> 1Q LA V lA 0 IA • • « — o * .* J J ^ ' A O J O O O « J 3 0 tn J B J; m n O u a) tj o A' 0 *J T> M <-3 — — — — — — — — — — — — — — LL * ^ ( / s O r t r t f - t A — p ik I»I p. s O IA * < * • > • *•> LU u . 5 - i > n f " N - - . - i f i » j ' M H - QCO taMuin3<D«)«a3a;*fflai4jr3c CO <0 tt X lA HJL^OkA^O'OOP-.O'-P-p^i—p-.r-P- — i\jW^r-p-' 1 -p-.p-p^p-»-r«-p-p^r-i»" » _ o — — — — — — — — — — — — — — U vA Ifl Oif> JOr^P^rfcp<.f-p».p»f»-Pkr* O . N W N r » P « N N N M » - N P - p . r . p > P « U J— O — — — — — — — — — — — — — — -J L k O O O O O O O O O O O O O O O — O O O O O O O O O O O O O O O J — o •/> iMC'O — ^ P M % C r t ^ ^ J O .. tuflt-Ô Â̂ -M̂ ja?1 — -a J - T 3 * . . — 3 0 3 0 0 0 — — - — -M>i-L,-s.N • - o o r ' - ' C o t - * ^ — or — o :* ̂  — — .** c e — — - c 00- O-ÔOOtf̂OÔJÔ  ̂  c o * * t O O O O a = , C 2 C O C - ~ C X 0 "A»C*'S>:*C>*N.*CX ^ * — — «r N a C S A O . ^ * - N r- - - \ < A ̂  ̂  ̂  v ." r • - ^ • O O O O ' f C O C C O Z C C C O a i \ / \ P w N ' \ ' v i 1 i ' M N N N N \ X 0̂  — *"ar O i\ r 3 — r*--\. u, < < < * • * * . • • • • • . A O O — — — l V r M I S . P S , ^ f S - N -Jf»? r"i- T* - •» C 111 V /x**- ^ * » - o — — — — — — — —.— — — — — — L k O O C O t A O O O O C O A C O 1— i^r^rsirv^is.rv'Nics.rv'V's.'vv-s, OO O O 0 C 0 O 0 O C O 0 C 3 0 -f O O O O O C O O C O O C O C it\ c PA r"> I- — ••< — O C C C C C «r o — — — <M — PM - i « — - *C LA OVttrtN.". — C J C «C .C J t? • rt 0 O O « - - \ N N « N N N V (A o o o o o o c c o c c o c c rt o o o o c o c o c c o c r . o O O 3 # % \ f P ;* ? ? O I A \ Jii>^f?""r**" • lA » t • O — O — N N * - rtrt^^rt^rt*- c — X — A - i O - r ^ - — — ^ - * v . - - -^ iA Ort — 's,o«ro-',.-*r7*?r,r* X rt O — — ̂ N̂ rtrtrt̂  — rt — — O JI O -r * » " a: rt o o o o - . — — C C J O C O «A>N OOOOO — — — — % * s r t i N - u. VA o o <r » " rt • • . * ON O O O O- 4 A j r v ^ O ' ~ M ' M £ 0 < wA O O O O O O O O O O O O O O o — * • • • • • • • • . * • • * O A* O O O O O O O O O O O O O O 252 ••4*»««RUN N053.«•••*»• FEKtt IC OXIDE CONC (PPMI 1 7 5 0 . V O U S : 9.35 AMPS: 2 5 3 . HE AT ELCH S U P P L I E D 8013.6 IICAT ILUX S U P P L I E D 46)41. BIU/HR B1U/SCFT-HR P E T 4 0 . 3 0 1 T O R . T 1 N L E 1 1 2 7 . 0 DEG F D E N S I I Y : 0 . 9 S 6 GRAH/CC I Our L l 11 M .8 OEG f FLOW RATE 0.1442 LBS.M/SEC AVG TFHP:134.4 OEG F K l N E MAI IC V I S C 0 S I T Y : 0 . 4 9 6 SU.CH/SEC F L U I 0 VELOCITY 3.655 F T / S E C REYNOLDS NO 1 9 5 5 0 . 0 PRANDTL NO 3.15 HEAT S J P P 8 0 7 3 . 6 BTU/HR HE A l TRANS 7 7 2 1 . 9 UTU/HR HEAT LOST 345.7 BTU/HR PERCENT HEAT LOST 4.28 HEAT FLUX TRANS. BTU/SOFT-HR 4 4 3 6 2 . IIUSSELT NO 94.6 R F I L H 0.803 RWALL 0.144 R I O I A L 0.947 SOFT-HR-DEG F / B T U ESTIHAItS OF ROOT .74717E-0I ES1IHATES OF R007 .4016HE-01 ES1IMATF OF RO.RI.' .0 I 1HE HOURS 0.0 0.05 0.12 0.20 0.33 0 . 5 0 0.65 0.82 1.00 1.33 1.43 1 .68 1 .87 2.05 2.25 MEAN SOUARE S T A T I S T I C A L ERROR IN IIIC PARAMETER .76786 MEAN SUUAKE I01AL ERROR IN 1 HE PARAMETERS . I 55110 F . AND 11 IN RF = RINI II l.-EXP(-P » l |HC I 5.0664 2.7244 C A L C . R E S I S T A N C E T I M E D VALUE IISCri-MR-UCGE/blU1X100,0001 0. 0 O. 30 1.61 01 21 41 91 62 92 42 6.62 5. 62 5.62 - 0 . 0 0.75 1.64 2.46 3.48 4.36 4.67 5.24 5.48 5.71 5.75 5.81 5.B3 5.84 5.65 LOCAL IZEO WALL 7215 1 2 ) 5 TEMPERATURES 1255 T275 IOEG.FI T295 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DEG.F 154.3 154.7 1 5 5 . 1 155.5 155.5 156.3 1 5 6 . 7 156.7 167.1 157.9 158.3 158.7 159.5 159.5 159.9 OEG.F 154. 3 154.3 154.7 1 5 5 . 1 155.5 155.9 155.9 156. 3 156.7 157.5 157.9 156.3 156.7 1 5 e . 3 157.9 DEG.F 159.9 159.9 160.3 160.3 160.7 161.5 161.9 161.9 162.3 163. I 163.5 163.5 163.1 162. 3 161.5 OEG.F 159. 5 159. 5 159.9 160.3 160. 7 161.1 161.6 167. ) 167. 3 162. 7 161. I 167.7 161.9 161.5 161. 1 1315 DEG.F 160.) 160.7 161.1 16 1.1 161.9 162. ) 162.7 16). 1 163.1 16).5 163.1 162.) 161.9 161.9 161.5 T ) ) 5 OEG.F 1 5 7 . 5 . 157.5 1 5 1 . ) 1 5 6 . ) 1 5 9 . I 1 5 9 . 5 159.5 159.9 161.1 159.9 159.9 159.5 1 5 3 . 7 1 5 8 . 7 1 5 8 . 7 1 355 OEG.F 156.7 157.1 157.9 157.9 158.7 159.1 159.4 159.9 159.5 159.5 159.5 I5B.7 15 6.7 15B.7 158.3 T375 DEG.F 0.0 C O 0.0 0.0 0. 0 C O 0.0 0.0 C O C O 1395 DEG.F 161.9 161.9 162.7 163. 1 163.9 164.3 164. 3 164.7 164. ) 164. ) 164.) 163.1 16). 5 163.5 16).5 T4I5 DEG.F 166.7 166. 7 167.5 167.5 167.9 166.7 168.7 166.7 163.) 168.) 167.9 167.5 167.5 167.5 167.5 T428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T I N TOUT IM DELTA H R T 1 HE OEG.F DEG.F DEG.F DEG.F XIOOO HOURS 1 2 7 . 0 141.4 1 5 9 . 0 14.4 1410.2 0.7091 0.0 127 .0 141.4 159.1 14.4 1 4 0 2 . 8 0 . 7 1 2 9 0.05 1 2 7 . 0 14 1.4 159.7 14.4 1 ) 6 9 . 8 0 . 7 3 0 0 0.12 1 2 7 . 0 141.6 159.9 14.9 1 ) 7 3 . 6 0 . 7 2 7 9 0.20 17.7 .0 141.8 160.4 14.9 1 ) 4 2 . 2 0.7451 U.33 1 2 7 . 0 141.8 1 6 1 . 0 14.9 1317.0 0 . 7 5 9 ) 0 . 50 1 2 7 . 0 141.8 161.2 14.9 1 ) 0 6 . 0 0.7651 0.65 1 2 7 . 0 141.8 161.5 14.9 1269.1 0 . 7 7 5 7 0 . 62 1 7 7 . 0 141.8 161.6 14.9 1283.5 0.7791 l.OO 1 2 6 . 5 141.8 161.6 15.) 1268.8 C.7861 1.13 1 2 7 . 0 141.8 161.9 14.9 1276.6 0 . 7 6 ) 3 1.43 1 2 6 . 5 141.8 16 1.6 1 5 . ) 1290.2 0.7751 1.66 1 2 7 . 0 141.8 161.5 14.9 1310.3 0.7632 1.87 1 2 7 . 0 141.8 1 6 1 . ) 14.9 1316.1 0.7587 2.05 1 2 7 . 0 141.8 161.1 14.9 1331.5 C 7511 2.25 L O C A L I Z E D FOULING R E S I S T A N C E ISCFT-HR-OECF/CTOIX100,COO 1215 1235 T255 1275 1295 T 3 1 S T336 1356 T 3 7 5 T395 T 4 1 5 T42B 3 IN TOUT RFM D E L I A 1. RIOT l l " E OEG.F OCG.F OEG.F X 1000 HOURS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 2 7 . 0 141 .4 0 . 0 14.4 1410.2 0.7091 0.0 0.0 0.91 0.0 0.0 0.0 0.90 O.O 0.90 0.0 0.0 0.0 0.0 1 2 7 . 0 141 . 4 0 . 10 14.4 1402.8 0.7129 0.05 0.0 1.81 0.91 0.90 0.90 1.80 1.61 2 . 71 0.0 I .60 I.BO 0.0 127 .0 141 .4 1.61 14.4 1 1 6 9 . 8 0 . 7 ) 0 0 0.17 0.0 2.72 1.61 0.90 1.81 1 .60 1.81 7.71 0.0 2. 70 1.20 0.0 1 2 7 . 0 1 4 1 .3 2. 01 14.9 I 3 73.8 0 . 7 2 7 9 0.20 0.0 2.72 2.72 1.80 2. 71 3.61 3.62 4.52 0.0 4.50 2.69 0.0 1 2 7 . 0 141 .3 3. 21 14.9 1 ) 4 7 . 2 0 . 7 4 S I 0 . 13 0.0 4 . 5 ) 3.62 3.61 3.61 4.51 4.52 5.4 7 0.0 5.40 4.49 0.0 1 2 7 . 0 141 .8 4 . 4 1 14.9 1317.0 0 . 159) 0 . 69 0.0 5 . 4 ) 3.62 4.51 4.51 5.41 4.57 6 . 3 ) 0.0 5.40 4.49 0.0 1 2 7 . 0 141 .3 4 . 91 14.9 1306.0 0.165 7 0.65 0.0 5.4) 4.63 4.51 6.31 6.31 5.42 1.2) O.O 6 . 30 4 . 4 9 0.0 1 2 7 . 0 141 .8 5 . 62 14.9 1219.1 0.77>7 0.17 0.0 6.34 5.43 5.41 6 . 31 6 . 31 8 . 1 1 6 . 3 ) C O 5.40 3.59 0.0 1 7 7 . 0 141 .8 5 . 92 14.9 1 7 8 ) . 5 C.7791 1. UO o.o 8.15 7.24 1.21 7.27 7.21 5. 4? 6 . 1) 0.0 5.40 3.69 0.0 1 7 6 . 5 141 .B 6 . 42 1 5 . 1 1268.8 0.76M I 1. 1 1 0.0 9.05 8.15 e . n 3.12 6.31 5.47 6.33 C O 5.40 2.69 0.0 1 7 7 . 0 141 .8 6 . 62 14.9 12 76.6 u. / e n 1.4) 0.0 9.96 9.06 8.11 1.27 4.61 4.67 4.52 U.O 2.10 1 .ilO 0.0 1 2 6 . 5 141 .8 5. 82 15.1 1290.2 0.7 16 1 1.63 0.0 1 1 .16 9.96 7.71 5.41 3.61 2. 71 4.5? 0.0 3.60 1 .60 0.0 1 2 7 . 0 141 .6 5 . 62 14.9 1 U N . 3 0.76 1 7 1.6/ 0.0 11.76 9.05 5.41 4.61 3.61 2. 71 4.57 0.0 3.60 1.80 0.0 1 7 7 . 0 14 1 .8 5. 22 14.9 1113.1 0 . 156 1 2.05 0.0 12.66 6.16 3.61 3.61 2.71 2. 71 3.62 0.0 3.60 I .80 0.0 1 2 7 . 0 141 .8 4 . 72 14.9 1331.3 0.161 1 2.25 253 • « « » * t » R U N N0S4.»••••»• T C K K I C UXIOE CONC I P P H I 2 1 ) 0 . V O L T S ! 5 . 7 5 AMPS: 1 6 2 . H E A T E l O U SOPPlirP 31 7 1 . 2 H E A T f L O X S U l V L U O 1 6 2 5 0 . B I U / H R M U / S U F I - I I R 6 E I A 0 . 3 0 1 T D l L T I N L E T 1 2 7 . 0 O E N S I I Y : 0 . 9 8 6 C R A M / C C I 0 U H E I 1 3 1 . 5 D E C F O E C F F L O K R A 1E 0.0759 L O S . N / S E C OCC F S O . C M / S E C F T / S E C A V C T L H P M 3 2 . 2 K I N C M A I I C V I S C U S I 1 Y : 0 . 5 0 6 F I U 1 0 V E I O C I I Y I . 9 2 1 R E Y N O L D S NO 1 0 0 9 1 . 5 P R A N D 1 L NO 3 . 2 1 HEAT S U P P 3 1 7 9 . 2 B T U / H R HEAT T R A N S 2 8 S 0 . 5 B T U / H R HEAT L O S T 2 9 6 . 6 B I U / H R P E R C E N T HEAT L O S T 9. AO HEAT F L U X T R A N S . riTU/SOFT-HR 1 6 5 3 5 . N U S S E L T NO 5 5 . A R F 1 L H 1 . 3 7 6 R H A L L 0 . 1 4 6 R I O T A L 1 . 5 2 0 S O F T - K R - O C C F / B T U E S T I M A T E S OF ROOT M E A N S U J A R C S T A T I S T I C A L E R R O R I N TIIC P A R A*'E I ER . 6 6 0 1 * 1 - 0 1 . . ' 0 6 0 / E S I I M A H S O f ROOT M I A N S C ' J A U I C I A L E R R O R I N THE P A R A M E T E R S . 7 5 4 7 9 1 - 0 1 . I l i C i . n E S T I M A T E UP R O . R I N F , ANII D I N R F . R I N F I 1 1 . - E X P 1 - P • 1 1 ME I .0 I I ME HOURS 0 . 0 0 . 0 7 0 . 1 3 0 . 2 8 0. 3 8 0 . 5 3 0 . 6 2 0 . 7 2 0 . 9 2 1 . 0 3 1 . 1 0 1 . 2 6 1 . 3 5 1 . 6 5 2 . 0 6 2 . 2 3 2 . 4 2 2 . 5 8 2 . 7 7 2 . 9 2 3 . 4 2 . 7 9 6 1 . 8 9 3 6 5 C A 1 C . R E S I S T A N C E M I I I O V A L U L I I S C F I - H R - D I C F / f i 1 0 1 X I 0 0 . C O C I 0 . 0 - 0 . 0 1 . 9 0 0 . 5 4 2 . 9 9 2 . 9 9 3 . 5 3 3 . 2 6 3 . 5 3 3 . 0 0 5 . 7 1 5 . 1 7 5 . 4 4 5 . 9 8 6 . 5 2 8 . 4 2 8 . 4 2 9 . 5 1 8 . 1 5 8 . 4 2 7 . 6 1 6 . 5 2 0 . 5 3 0 . 9 7 1 . 9 5 7 . 5 1 3 . 3 2 3 . 1 4 4 . 1 8 4 . 9 3 5 . 2 9 5 . 5 1 6 . 0 0 6 . 1 7 6 . 7 6 7 . 4 3 7 . 6 0 7 . 7 9 7 . 9 2 8 . 0 6 6 . 15 8 . 3 8 L O C A L 1 2 1 5 D E C . F 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 I 2 E D WALL 1 2 3 5 D E C . F 1 4 2 . 6 1 4 2 . 6 1 4 2 . 6 1 4 2 . 6 1 4 3 . 0 14 3 . 0 1 4 3 . 0 1 4 3 . 0 1 4 3 . 0 1 4 3 . 4 1 4 3 . 4 1 4 3 . 4 1 4 3 . 4 1 4 3 . 4 1 4 3 . 6 14 3 . 6 1 4 3 . 6 1 4 3 . 6 1 4 3 . 8 1 4 3 . 8 1 4 3 . 4 1 E M P E R A TURE S T 2 5 5 OEG.F 1 4 1 . 7 1 4 2 . 2 1 4 1 . 7 1 4 2 . 6 1 4 2 . 6 1 4 2 . 6 1 4 2 . 2 1 4 2 . 6 1 4 2 . 6 1 4 2 . 6 1 4 2 . 6 1 4 2 . 6 1 4 3 . 0 1 4 3 . 0 1 4 1 . 0 1 4 3 . 0 1 4 3 . 4 1 4 3 . 0 1 4 3 . 0 1 4 3 . 0 1 4 2 . 6 1 2 7 5 O E G . F 1 4 6 . 2 1 4 7 . 0 1 4 7 . 0 1 4 7 . 0 1 4 7 . 0 1 4 7 . 4 1 4 7 . 4 1 4 7 . 4 1 4 7 . 0 1 4 7 . 4 1 4 7 . 4 1 4 7 . 4 1 4 7 . 8 1 4 7 . 8 1 4 7 . 8 1 4 8 . 2 1 4 8 . 2 1 4 6 . 2 1 4 7 . 8 1 4 7 . 4 1 4 7 . 8 I D E G . F I 1 2 9 5 D E G . F 1 4 6 . 2 1 4 6 . 6 1 4 6 . 6 1 4 7 . 0 1 4 6 . 6 14 6.6 1 4 6 . 6 1 4 6 . 6 1 4 6 . 6 1 4 7 . 0 1 4 7 . 0 1 4 7 . 0 1 4 7 . 0 1 4 7 . 4 1 4 7 . 8 1 4 7 . 4 1 4 7 . 8 1 4 7 . 8 1 4 7 . 4 1 4 7 . 4 1 4 7 . 0 1 3 1 5 D E G . F 14 7.0 1 4 7 . 0 1 4 6 . 6 1 4 1 . 4 1 4 7 . 4 1 4 7 . 4 147. 4 1 4 7 . 4 1 4 7 . 4 1 4 7 . 8 14 7.8 1 4 7 . 4 1 4 7 . 8 1 4 7 . 8 1 4 8 . 2 1 4 8 . 2 1 4 6 . 6 1 4 8 . 2 14e.2 1 4 8 . 2 1 4 8 . 2 I 3 3 5 O E C . F 1 4 4 . 2 1 4 4 . 2 1 4 4 . 2 1 4 4 . 6 1 4 4 . 6 1 4 4 . 6 1 4 4 . 6 1 4 4 . 6 1 4 4 . 6 1 4 5 . 0 1 4 5 . 0 1 4 5 . 0 1 4 5 . 0 1 4 5 . 0 1 4 5 . 4 1 4 5 . 4 1 4 5 . 4 1 4 5 . 4 1 4 5 . 4 1 4 5 . 4 1 4 5 . 0 1 3 5 5 T 3 7 5 7 3 9 5 T 4 1 5 T 4 2 8 T I N TOUT O E G . F O E G . F O E G . F D E G . F D E G . F D E G . F D E C . F 1 4 3 . 8 0.0 1 4 6 . 2 1 5 1 . 5 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 2 0.0 1 4 8 . 6 1 5 1 . 9 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 3 . 8 0.0 1 4 8 . 2 1 5 1 . 5 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 2 0.0 1 4 8 . 6 1 5 1 .9 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 2 0 . 0 1 4 8 . 6 1 5 1 . 9 0 . 0 1 2 7 .0 1 3 7 . 5 1 4 4 . 2 0 . 0 1 4 8 . 6 1 5 2 . 3 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 2 0 . 0 1 4 8 . 6 1 5 2 . 3 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 2 0.0 1 4 8 . 6 1 5 2 . 3 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 2 0 . 0 1 4 9 . 0 1 5 2 . 7 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 6 0.0 1 4 9 . 4 1 5 2 . 7 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 6 0 . 0 1 4 9 . 0 1 5 2 . 3 0 . 0 1 2 7 .0 1 3 7 . 5 1 4 4 . 6 0 . 0 1 4 9 . 4 1 5 2 . 7 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 6 0 . 0 1 4 9 . 0 1 5 2 . 7 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 6 0 . 0 1 4 9 . 4 1 5 2 . 7 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 5 . 0 C O 1 4 9 . R 1 5 3 . 1 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 5 . 0 0.0 1 4 9 . 8 1 5 3 . 1 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 5 . 0 0.0 1 4 9 . 8 1 5 3 . 5 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 5 . C 0.0 1 4 9 . 4 1 5 2 . 7 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 5 . 0 C O 1 4 9 . 8 1 5 3 . 5 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 5 . 0 0 . 0 1 4 9 . 4 1 5 3 . 1 0 . 0 1 2 7 . 0 1 3 7 . 5 1 4 4 . 6 0 . 0 1 4 9 . 4 1 5 3 . 1 0 . 0 1 2 7 . 0 1 3 7 . 5 T H O E G . F 1 4 5 . 7 1 4 6 . 0 1 4 5 . 8 1 4 6 . 2 1 4 6 . 2 1 4 6 . 3 1 4 6 . 2 1 4 6 . 3 1 4 6 . 3 1 4 6 . 7 1 4 6 . 6 1 4 6 . 6 1 4 6 . 7 1 4 6 . 8 1 4 7 . 1 1 4 7 . 1 14 7. 3 1 4 7 . 1 1 4 7 . 1 1 4 7 . 0 1 4 6 . 8 D E L T A H R 7 I H E D E G . F X I O O O H O U R S 1 0 . 5 9 6 7 . 8 1 . 0 3 3 2 0 . 0 1 0 . 5 9 4 5 . 8 1 . 0 5 7 3 0. 0 7 1 0 . 5 9 6 2 . 2 1 . 0 3 9 ) 0 . 1 3 1 0 . 5 9 3 2 . 3 1 . 0 7 2 6 0 . 2 B 1 0 . 5 9 3 4 . 7 1 . 0 6 9 6 0 . 3 6 1 0 . 5 9 2 9 . 3 1 . 0 7 6 0 0 . 5 3 1 0 . 5 9 3 1 . 4 1 . 0 7 3 7 0 . 6 2 1 0 . 5 9 2 9 . 3 1 . 0 1 6 0 0. 7 2 1 0 . 5 9 2 6 . 6 1 . 0 7 9 2 0 . 9 2 1 0 . 5 9 0 5 . 0 1. 1 0 5 0 1 . 0 3 1 0 . 5 9 1 0 . 4 1 . C 9 6 4 1 . 1 0 1 0 . 5 9 0 0 . 6 1 . 1 C 0 6 1 . 2 8 1 0 . 5 9 0 3 . 3 1 . 1 0 7 0 1. 3 5 1 0 . 5 8 9 7 . 1 1 . 1 1 4 1 1 . 6 5 1 0 . 5 8 7 7 . 3 1 . 1 3 9 9 2 . 0 8 1 0 . 5 S 7 7 . 8 1 . 1 1 9 3 2 . 2 3 1 0 . 5 8 6 7 . 4 1 . 1 5 2 9 2 . 4 2 1 0 . 5 £ 7 9 . 8 1 . 1 3 6 6 2 . 5 8 1 0 . 5 8 7 6 . 2 1 . 1 3 6 7 2 . 7 7 1 0 . 5 6 8 5 . 7 I . 1 2 9 0 2 . 9 2 1 0 . 5 6 9 6 . 4 1 . 1 1 5 5 3 . 4 2 L O C A L I Z E D F O U L I N G R E S I S T A N C E ISOFT-HR-DEGF/BTOIX100,000 T 2 1 5 1 2 3 5 1 2 5 5 1 2 7 5 1 2 9 5 1 3 1 5 T 3 3 5 1 1 5 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2 . 4 5 4 . 6 9 2 . 4 5 0 . 0 0 . 0 2 . 4 5 0 . 0 0 . 0 0 . 0 4 . 6 9 2 . 4 5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 4 . 9 1 4 . 6 9 4 . 6 9 2 . 4 4 2 . 4 5 2 . 4 5 0 . 0 2 . 4 5 4 . 9 1 4 . 8 9 2 . 4 5 2 . 4 4 2 . 4 5 2 . 4 5 0 . 0 2 . 4 5 4 . 9 1 7 . 1 4 2 . 4 5 2 . 4 4 2 . 4 5 2 . 4 5 0 . 0 2 . 4 5 2 . 4 5 7. 34 2 . 4 5 2 . 4 4 2 . 4 5 2 . 4 5 0 . 0 2 . 4 5 4 . 9 1 7. 34 2. 4 5 2 . 4 4 2 . 4 5 2 . 4 5 0 . 0 2 . 4 5 4 . 9 1 4 . 8 9 / . 4 5 2 . 4 4 2 . 4 5 2 . 4 5 0 . 0 4 . 9 0 4 . 9 1 7. 34 4 . 6 9 4 . 6 9 4 . 9 0 4 . 9 0 0 . 0 4 . 9 0 4 . 9 1 7. 14 4 . 8 9 4. 6 9 4 . 9 0 4 . 9 0 0 . 0 4 . 9 0 4 . 9 1 7. 34 4 . 6 9 2 . 4 4 4 . 9 0 4. 9 0 0 . 0 4 . 9 0 7 . 1 6 9. 78 4 . 8 9 4 . 8 9 4.NO 4 . 9 0 o.o 4 . 9 0 7. 36 9. 78 7.34 4. 6 9 4. 9 0 4 . 9 0 0 . 0 7 . 3 6 7 . 3 6 • 9. 7 8 9. 78 7 . 3 ) 7. 35 7. 3 5 0 . 0 7 . 3 6 7. 36 1 7 . 2 7 7. 14 7 . 3 3 7. 3 5 7 . 3 5 0 . 0 7 . 3 6 9 . 6 1 1 2 . 2 2 9. 18 9.7 7 7. 1 . 7 . 1 6 0 . 0 7 . 3 6 7. 36 1 7 . 7 7 9. 78 7. 13 7. V , 7. I S 0 . 0 7 . 3 6 7 . 3 6 9. 76 1. ) 4 7 . 3 3 7. 15 7 . 3 5 0 . 0 7. 36 7 . 3 6 7. 34 7. 3 4 1 . 3 3 7. 1'. 1. 35 0 . 0 4 . 9 0 4 . 9 1 9 . IH 4 . H 9 7. 1 ) 4 . 9 0 4.NO T 3 7 5 1 3 9 5 T 4 1 S T 4 2 8 T I N TOUT R F H O E G . F D E G . F 0 . 0 0 . 0 0 . 0 0 . 0 1 2 7 . 0 1 3 7 . 5 0 . 0 C O 2 . 4 4 2 . 4 4 0 . 0 1 2 7 . 0 1 3 7 . 5 1 . 9 0 0 . 0 0 . 0 0 . 0 0 . 0 1 2 7 . 0 1 3 7 . 5 0 . 5 4 0.0 - 2 . 4 4 2 . 4 4 0 . 0 1 2 7 . 0 1 3 7 . 5 2 . 9 9 C O 2 . 4 4 2 . 4 4 0 . 0 1 2 7 . 0 1 3 7 . 5 2 . 9 9 0.0 2 . 4 4 4 . 8 7 0 . 0 1 2 7 . 0 1 3 7 . 5 3 . 5 3 0.0 2 . 4 4 4 . 6 7 0 . 0 1 2 7 . 0 1 3 7 . 6 3 . 2 6 0.0 2 . 4 4 4 . 6 7 0 . 0 1 2 7 . 0 1 3 7 . 5 3 . 5 3 0.0 4 . 8 8 7 . 3 1 0 . 0 1 2 7 . 0 1 ) 1 . 5 ) . 6 0 0.0 7 . ) ) 7 . 3 1 0 . 0 1 2 7 . 0 1 3 7 . 5 5 . 7 1 0.0 4 . B 8 4 . 8 7 0 . 0 1 2 7 . 0 1 1 7 . 5 5 . 1 7 0.0 7 . ) ) 7 . ) 1 0 . 0 1 2 7 . 0 1 ) 7 . 5 5 . 4 4 0.0 4 . 6 8 7 . ) 1 0 . 0 1 7 7 . 0 1 ) 7 . 5 5 . 9 8 0.0 7 . ) ) 7 . ) 1 0 . 0 1 7 7 . 0 1 ) 1 . 6 6 . 5 7 C O 9. 17 9. 74 0 . 0 1 7 7 . 0 1 ) 7 . 5 6 . 4 2 0 . 0 9 . 7 7 9 . 7 4 0 . 0 1 7 7 . 0 1 ) 7 . 5 8 . 4 2 0.0 9 . 7 7 1 2 . 1 8 0 . 0 1 2 7 . 0 I V . 3 9 . 6 1 0 . 0 7 . 1 ) 7 . ) 1 0 . 0 1 2 1 . 0 1 1 7 . 5 8 . 1 5 0.0 9 . 7 7 1 2 . 1 8 0 . 0 1 2 1 . 0 1 ) 1 . 5 8 . 4 2 0.0 7 . 1 3 9 . 7 4 0 . 0 1 2 7 . 0 1 1 7 . 5 7 . 6 1 0 . 0 7 . ) ) 9 . 7 4 0 . 0 1 2 7 . 0 1 ) 7 . 5 6 . 5 2 O E L T A H RTOT T I M E D E C . F X I O O O H O U R S 1 0 . 5 9 6 7 . 6 1 . 0 ) 3 2 0 . 0 1 0 . 5 9 4 5 . 8 1 . 0 5 7 3 0 . 0 7 1 0 . 5 9 6 2 . 2 1 . 0 3 9 3 0 . 1 3 1 0 . 5 9 3 2 . 3 1 . 0 7 2 6 0. 2 8 1 0 . 5 9 3 .7 1 . 0 6 9 8 0 . ) R 1 0 . 6 9 2 9 . 3 1 . 0 7 6 0 0 . 5 3 1 0 . 5 9 3 1 . 4 1 . 0 7 1 7 0 . 6 2 1 0 . 5 9 2 9 . 3 1 . 0 7 6 0 0 . 72 1 0 . 5 9 2 6 . 6 1 . 0 1 9 2 0 . 9 ? 1 0 . 6 9 0 5 . 0 1 . 1 0 5 0 1 . 0 ) 1 0 . 5 9 I C 4 1 . C 9 6 4 1. 1 0 1 0 . 5 9 0 8 . 6 1 . 1 0 0 6 1 . 2 6 1 0 . 6 9 0 3 . 3 1 . 1 0 10 I . 35 1 0 . 5 8 9 7 . 1 1 . 1 1 4 7 1 . 6 5 1 0 . 5 8 7 7 . 3 1 . 1 3 9 9 2 . 0 8 1 0 . 5 6 1 7 . 8 1 . 1 3 9 1 2 . 2 3 1 0 . 5 6 6 1 . 6 1 . 1 5 7 9 2 . 4 7 1 0 . 5 8 / 9 . 8 1. 1 1 6 6 7 . 6 6 1 0 . 4 8 / 6 . 7 1 . 1 1 " 1 2 . 77 1 0 . 4 6 8 5 . 7 1 . 12 I U 2 . 9 7 1 0 . 3 8 9 6 . 4 1 . 1 1 6 5 3 . 4 2 254 • • • • « 4 t R U N N D 5 5 . » • « • • • » FCRRIC OXIOE CONC IPPMI 2 1 ) 0 . VOL T S : 7.35 AMI'S: 2 0 3 . HC AT FLOW S U P P L I E D 5012.4 HEAT FLUX S U P P L I E D 2 9 2 3 ) . BTU/HR B I U / S C F I - H R BETA0.301 T O R " ! 1 N L E T 1 2 7 . 0 D E N S I T Y : 0 . 9 8 6 CRAM/CC I O U I L E T 1 3 7 . 5 FLOW RATE 0.1104 LBS.M/SEC AVC TEMP:132.2 DEC F K l N E H A T I C V1SC.OSITY:0.506 SQ.CH/SEC FL U I 0 VELOC I T Y 2.997 F T / S E C REYNOLDS NO 1 5 7 4 4 . 0 PRANDIL NO 3.21 OEG F DEG F E S T I M A T E S OF ROOT MEAN SOUARE S T A T I S T I C A L ERROR IN THE PARAMETER .15197 .41471 E S T I M A T E S CF ROOT MEAN SOU ARE TOTAL ERROR IN THE PARAMETERS . 6 9 5 5 7 E - 0 1 . 18931 E S I I H A I E OF RO.RIHF.ANO 0 IN RF=RINFI I I . - E J P I - 6 » T I MO I T 1 ME HOURS 0.0 0 . 1 3 0 . 2 0 0.48 0.5S 0.70 1.07 1.45 1.87 2 . 0 0 5.4)61. 1.7417 C A L C . R E S I S T A N C E F I T T E D VALUE I I S O F t - H R - D E G F / B T U 1 X 1 0 0 , 0 0 0 1 0.0 - 0 . 0 1.22 1.91 2.96 3.63 3.31 4.70 4.S2 6 . 0 9 4.67 1.10 1.60 3.08 3.46 3 . 6 ) 4 . 5 9 5.00 5.23 5.27 HEAT SUPP 5 0 9 2 . 4 BTU/HR HEAT TRANS 4 4 9 3 . 9 BTU/HR MEAT LOST 5 9 3 . 5 BTU/HR PERCENT HEAT LOST 11.75 HEAI FLUX TRANS. BTU/SCFT-HR 2 5 7 9 7 . NUSSELI NO 79.2 R F I L M 0.960 RWALL 0.145 R T O I A l 1.106 SOFT-HR-DEG F/BTU L O C A L I Z E D WALL TEMPERAlORES ( 0 E G . F 1 1215 1 2 3 5 1255 1275 1295 1 ) 1 5 T ) ) 5 T ) 5 5 T 375 OEG.F OEG.F DEG.F DEG.F DEG.F DEG.F DEG.F UEG.F DEG.F 0.0 14 5.0 143.6 14 9.0 146.6 149.4 146.2 145.4 0.0 0.0 145.0 144. 2 149.4 148.6 149. 8 146.6 145.6 0.0 0.0 145.4 144.6 149.8 149.0 149.6 146.6 145.8 C O 0.0 145.6 144.6 150.2 149.4 150.2 147.0 14 6.2 0.0 0.0 145.6 145.0 150.2 149. 4 1 50 . 6 147.0 14 6.6 C O 0.0 145.6 145.0 150.2 149.4 I5U.2 147.0 146.6 C O 0.0 146.2 146.6 150.2 1 4 9 . 8 151.1 147.0 146.6 C O 0.0 145.6 14 5 . 4 150.2 149.4 1 SC. 6 147.0 147.0 0.0 0.0 146.2 145.4 150.6 150.2 161.1 147.4 147.4 C O 0.0 146.2 145.4 150.2 149.8 130.6 147.4 1 4 7 . 0 0.0 1395 1 4 1 5 T 4 2 8 T IN TOUT TN D E L T A H R » TIME OEG.F DEG.F DEG.F DEG.F DEG.F DEG. F OEG.F XIOOO HOURS 160.6 154.3 O.C 126.5 1 ) 7 . 5 1 4 8 . 0 11.0 1 2 7 3 . 3 0 . 7 8 5 3 0.0 151.1 154.7 0.0 126.5 1 ) 7 . 5 146.4 1 1.0 1 2 4 7 . 1 C . 8 C I 6 0 . 13 151.1 154.7 0.0 126.5 1 ) 7 . 5 1 43.5 11.0 1 2 3 6 . 4 0 . 8 0 3 8 0 . 2 0 151.1 1 5 4 . 7 0.0 126.5 1 ) 7 . 5 148. 6 11.0 1215.4 O.E22e 0.4E 151.5 155.1 0.0 126.5 1 ) 7 . 5 1 49.0 11.0 1198.6 0 . 8 3 4 3 0 . 53 151.1 154.7 0.0 126.5 137.5 148.9 11.0 1208.9 0 . 6 2 7 2 0 . 7G 151.5 1 5 5 . 1 0.0 126.5 137.5 149.3 11.0 1165.7 0.e434 1.07 151.9 155.5 0.0 126.5 1 ) 7 . 9 149.2 11.4 1 2 0 2 . I C . 8 3 1 9 I . 45 152.3 155.9 0.0 126.5 1 ) 7 . 5 149.6 11.0 U ' 7 . 7 0 . 8 6 3 8 1.87 151.9 155.1 0.0 126.5 137.5 1 4 9 . 3 U . O 11.0.2 0 . 8 4 7 3 2.00 L O C A L I Z E D FOULING R E S I S T A N C E I SQF 1-HR-DEGF/P. TU1 X 1 0 0 , COO 7215 1235 1255 1275 1295 1 ) 1 5 T ) ) 5 1 ) 5 5 1375 1395 1415 1428 T I N TOUT RFM O E L T A H RIOT TIME OEG.F OEG.F DEC.F X 1000 HOURS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 126.5 1 ) 7 . 5 0.0 11.0 1 2 7 3 . 3 0 . 7 6 5 1 0 . 0 0.0 0.0 1.57 1.56 0.0 1.56 1.57 1.57 0.0 1 .56 1.56 0.0 126.5 1 ) 7 . 5 1 .22 11.0 1247.1 0 . 6 0 1 8 0 . 1 ) 0.0 1.57 3.14 3.13 1.57 1.56 1.51 1 .67 C O 1.56 1.56 0.0 126.5 1 ) 7 . 5 1.91 11.0 1216.4 0 . 8 0 8 6 0 . 26 0.0 3.14 3.14 4.69 3. 1 3 3. 13 1. 14 ) . 14 0.0 1 .56 1 .66 0.0 126.5 1 ) 7 . 5 2.96 u.o 1215.4 0 . 8 2 2 8 0.4* 0.0 3.14 4.71 4.6 1 3.13 4.69 3. 14 4.71 0.0 3.1) ) . I 2 0.0 176.5 1 ) 7 . 5 ) . 8 3 1 1 .0 1198.6 0.8 34 1 0.54 0.0 3. 14 4.71 4.69 3.13 3. 1) 3.14 4.71 0.0 1.66 1.66 0.0 126.6 137.5 ) . 31 u.o 1208.9 O.fc/72 o. /': 0.0 4.71 7.65 4.69 4. 69 6.25 1.14 4 . /I 0.0 1.13 3.12 0.0 176.5 1 ) 7 . 5 4 . 70 u.o 1 1 35.7 0.6434 1.07 0.0 3.14 6.28 4.69 3. 1 3 4.69 3. 14 6.77 0.0 4.69 4 .67 0.0 126.6 1 ) 7 . 9 4.62 11.4 1202.1 C. 8 119 1.45 0.0 4.71 6.26 6.26 6.24 6.25 4. 70 7.34 0.0 6.25 6 . 2 ) 0.0 176.5 1 ) 1 . 5 6.09 II .0 1157.7 0 . 8 6 3 8 1.87 0.0 4.71 6.26 4.69 4.69 4.69 4 . 70 6.27 0.0 4.69 3.12 0.0 126.5 1 ) 7 . 5 4.81 u.o 1 1 6 0 . 2 0 . 6 4 1 ) 2.00 255 » t * * * * » R U N N 0 S 6 . « • • • » « « F E R R I C OXIDE CONC ( P P M 2 1 3 0 . V 0 L T S : 1 3 . 5 0 AMPS: 3 4 7 . HEAT FLOW S U P P L I E D 16986.2 HEAT FLUX S U P P L I E D 9 1 7 8 1 . PTU/HR DIU/SUF1-HR BETAO.301 T C R » T I N L E T I 2 7 . 0 DEC F 0 E h S I I Y : 0 . 9 8 f > GRAH/CC T O U T L E T 1 5 7 . 0 DEG F FLOW RATE 0.1442 LBS.M/SEC AvG TEMP:142.0 L'EG F K I N E M A l I C V I S C O S I I V . 0 . 4 6 7 SO.CM/SEC F L U I D V E L O : i l Y 1.664 F T / S E C REYNOLDS NO 2 0 8 S 0 . 6 PRANDTL NO 2.93 HEAT SUPP 15938.2 BTU/HR HEAI TRANS 15653.1 BTU/HR HEAT LOST 335.1 3TU/HR PERCENT HEAT LOST 2.10 HEAT FLUX TRANS. BTU/SOFT-HR 8 9 8 5 7 . NUSSELT NO 100.0 R F I L H 0.75* RWALL 0.1*1 RTOTAL 0.395 SfcFT-hR-DEG F / B T U E S T I M A T E S CF ROOT MEAN SQUARE S T A T I S T I C A L ERROR IN IME PARAMEIER . 2 8 9 7 3 .95107 E S I I K A I E S CF ROOI KE AN SCUARC 101AL ERROR IN T HE PARAMETERS . 6 9 * * 3 E - 0 1 . 2 2 7 ) 5 E S T I M A T E OF R O . K I l i F , AND 0 IN RF = RINF I I 1 . - E X P I - B « 1 1 ME I .0 TIME HOURS 0.0 0 . 0 7 0.13 0.30 0.37 0 . 4 5 0.58 0.77 0.9B 1.20 2.2601 4 . 1 6 0 6 C A L C . R E S I S T A N C E F I I T E O VALUE I I S C F I - H R - O E G F / B I U I X I C O . 0001 0.0 - 0 . 0 0.96 1.01 1.30 1.97 1.88 2.02 1.98 2.17 2.60 0.5S 0 . 9 5 1.63 1.79 1.93 2.08 2 . 1 9 2.24 2.26 L O C A L I Z E D WALL 1215 T 2 3 5 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TEMPERATURES 1255 T275 OEG.F 186.6 187.2 188.0 187.6 168.0 188.0 188.4 186.0 188.0 188.4 OEG.F 186.C 167.6 187.6 166.0 166.0 133.4 168.8 183.4 1 ( 8 . 4 186.8 OEG.F 195.5 196.2 197.0 196.6 197.0 197.4 197.0 197.0 197.0 198.2 ( D E C . F T295 UEC..F 195.5 196.2 196.6 196.6 197.4 147.0 197.0 197.6 197.6 198.2 1315 OEG.F 197.4 1 9 3 . 2 193.2 196.6 199.3 1 9 9 . 1 199.3 I 99.7 1 9 9 . 7 199.3 T 3 3 5 OEG.F 1 12.7 193.9 193.9 1 9 4 . 7 1 9 4 . 7 19 4 . 7 1 4 5 . I 195.1 1 9 5 . 1 195.5 T355 OFG.F 1 9 3 . 1 193 . 9 191.9 1 9 4 . 7 1 9 5 . I 1 9 5 . 1 1 9 5 . 1 195.1 1 9 5 . I 195.5 T 3 7 5 DEG.F C O C O 0.0 T395 DEG.F 2 0 1 . 7 2 0 2 . 8 ? 0 2 . 5 202.8 204.4 201.6 2 0 3 . 6 2 0 3 . 6 204.4 204.8 T 4 1 5 DEG.F 209.4 2 1 0 . 6 2 0 9.4 2 0 9 . 8 2 1 1 . 0 2 1 0 . 6 2 1 1 . 0 2 1 0 . 2 2 1 1 . 0 2 1 1 . 3 1428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T I N OEG.F 126.5 126.5 126 .5 127.0 126.5 126.5 126.5 126.5 126.5 126.3 TOUT DEC.F 157.0 157.0 157.0 157.0 157.0 157.0 157.0 157.0 157.0 151.0 TM DEG.F 195.4 196.3 196.3 I 96.6 197.2 19 7.1 197.1 197.2 197.4 197.8 O E L T A DEG.F 30.5 30.5 30.5 3 0 . 1 30.5 30.5 30.5 30.5 3 0 . 5 30.5 H 1322.8 1300.9 1300.8 1 2 9 7 . 8 1278.3 1760.8 1278.5 1 2 7 7 . 9 1 2 7 4 . 0 1265.7 R T I M E X 1 0 0 0 HOURS 0 . 7 5 6 0 0.0 0 . 7 6 8 7 0.07 0 . 7 6 6 6 0 . 13 0 . 7 7 C 6 0 . 3 0 0 . 7 8 2 3 0.37 0 . 7 6 0 7 0 . 4 5 0 . 7 6 2 2 0 . 5 5 0. 7826 0.77 0.7B50 0.96 0 . 7 9 0 1 1.20 L O C A L I Z E D FOULING R E S I S T A N C E I S U F T - H R - O E G F / B T U IX I 0 0 , 0 0 0 T 2 1 5 T235 1255 12 75 T295 1 ) 1 5 T 3 3 3 ( 1 5 3 1 1 7 5 T 3 9 5 1 4 1 5 1426 T I N TCUI R F H D E L T A H RTOT TIME DEG.F OEG.F OEG.F 1 1 0 0 0 HOUR S 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 126.5 157.0 0.0 30.5 1322.3 0 . 7 5 6 0 0.0 0.0 0.44 0.87 0.67 0.87 0.87 1. 10 0.87 0.0 1.29 1.29 0.0 126.5 15 7.0 0.96 30.5 1 1 0 0 . 9 0 . 763 7 0.0/ 0.0 1.11 0.67 1.7) 1. 10 0.87 I . VI 0.87 0.0 0.66 0.0 0.0 1 2 6 . 5 157.0 1.01 10.5 1 1 0 0 . 8 0 . 7 6 3 3 0 . 1 ) 0.0 0.87 1.31 1.30 1. 30 1.30 2. 1 7 1 . 74 0.0 1 .29 0 . 4 3 0.0 127.0 157.0 1.10 30.1 1297.8 0 . 7706 0 . 10 0.0 1.31 1.31 1.73 7. 1 7 7.16 2. 1 7 7.17 C O 3.02 1.77 0.0 126.5 157.0 1.47 30.5 1216.3 0 . 7 8 ? ) 0 . ) / 0.0 1.31 1. 75 2. 1 7 1.71 2 . 16 2. 1 7 7.17 0.0 2.16 1.79 0.0 126.6 151.0 1 .88 10.5 1 2 8 0 . 8 0 . 7 8 0 7 0.45 0.0 1.75 2. 18 1.71 1.71 2.16 2.61 2.17 0.0 7.16 1.72 0.0 125.5 157.0 2.02 30.5 1278.5 C . 7 6 7 2 0 . 38 0.0 1.11 1. 75 1.73 7.60 2.60 7.61 7.17 0.0 2.14 0 . 66 0.0 126.5 157.0 1.98 30.5 12 7 7.9 0 . 7 8 2 6 U . 77 0.0 1.11 1. 75 1. 71 2.60 2.60 2.61 2.17 0.0 3.02 1.72 0.0 126.5 167.0 2. 1 7 ) 0 . S 1 2 / 4 . 0 0 . 7 6 3 0 0.-13 0.0 1.75 2. 18 3.01 1.03 2.16 3.04 7.61 0.0 1.45 2.14 0.0 126.5 157.0 2.60 30.5 1264.7 U.7401 1.2U 256 « « * « * « « K U N N O W . « « * • • • • F E R R I C OXIDE CONC IPPMI 2 1 3 0 . VDL1S:13.50 AMPS: 3 5 6 . HE AT FLOW S U P P l l f O 16402.9 BTU/HR • HEAT ILUA S U P P U I O 9 4 1 6 1 . 8 T U / S 0 H - H R BETA0.301 TI)R'I INLET 127.0 CE G r P E N S I 1 Y : 0 . 9 8 6 GRAM/CC I 0 U I L E I 1 4 9 . 5 DEC F FLOW RATE 0.1BS8 LBS.M/SEC AVC TIMP!138.2 DEC F KI K E M A I I C V I S C 0 S I T Y : 0 . 4 8 1 SO.CH/StC E S I I K A T I S OF ROOT MEAN SCUARE S T A T I S T I C A L [RRCR IN THE PARA K E I E R . 7 1 2 0 0 2 . 7 S 7 ? E S T I M A T E S CF RUOI MLAN SOUA-tE IOTAL ERROR IN THE PARAMETERS .12661 .48643 E S T I M A T E OF RO i 1 NE i A.'tU ri IN RF = R I NE ( I I . - E X P I - e * T I ME I .0 . 9 9 1 2 9 7.4673 TIME C A L C . R E S I S T A N C E F 1 I T E 0 VALUE HOURS I I S C F T - H K - O E C r / B T U I X l C O . O O O l 0.0 - 0 . 0 0.40 0.40 0.65 0 . 7 3 1.09 0.91 0.94 0.07 0.18 0 . 3 3 0 . 4 0 0.53 0 . 6 3 0.85 1.19 0 . 75 0 . 9 7 0 . 9 S F L J I D VELOCITY 4 . 7 6 9 F T / S E C REYNOLDS NO 2 6 4 3 9 . 5 PRANOTL NO 3.03 HEAT SUPP 164 0 2 . 9 BTU/HR HEA1 TRANS 15345.6 OTU/HR HEAT LOST 1051.0 BIU/HR PERCEII1 HE AT LOST 6.44 HEAT FLUX TRANS. E1U/S2FT-HR 8 8 0 9 3 . NUSSELI NO 121.1 RF I L M 0.625 RWALL 0.143 RIOT AL 0.767 SOFT-HR-DEG F/BTU L O C A L I Z E D WALL TEMPERATORES IDEG.FI 1215 T235 1255 1275 T/95 T 3 I 5 T 3 3 5 1355 T375 T395 T 4 1 5 1426 T I N TOUT TM DELTA H R 11 ME DEC.F OEG.F DEG.r OEG.F U t C . F DE G.F DEG.F OEG.F Ot G.F DCG.f OEG.F DEG.F OEG.F DEG.F DEG. ,F DEG.F XIOOO HOURS 0.0 1 75.4 175.4 1 8 2 . 5 167.5 164 . 1 179.4 1 79.8 0.0 137.2 193.5 0.0 126.5 149.5 1 62. 2 23.0 1574.6 0.6351 0.0 0.0 176.B 175.6 182.9 I a 2 . 9 164.5 1/9.6 130.2 0. 0 137.6 193.5 0.0 126 .6 149.5 182.6 23.0 1562.0 0 . 6 4 0 2 0.07 0.0 176.6 176.2 163.3 U 3 . 3 164.5 180.2 160.2 C O 137.6 193.1 C O 176.5 149.5 1 8 2 . 8 23.0 1 5 5 5 . 9 0 . 6 4 2 7 0 . 1 6 0.0 177.0 176.6 131.7 163.7 184.9 180.6 l » 0 . 6 0.0 108.0 193.5 0.0 176.5 149.5 183. 2 23.0 1542.1 0 . 6 4 6 4 0.13 0.0 177.4 176.6 183. 3 111. 3 184.5 180.6 180.6 0.0 I n / . 6 192.7 0.0 176.5 149.5 1 8 1 . .0 23.0 1551.1 0.644 7 0.40 0.0 177.4 176.6 163.7 1 S3. 7 184.9 180.9 180.6 C. 0 188.0 193.5 0.0 176.5 149.5 1 6 ) . , 1 23.0 1539.6 0.6494 0. 53 0.0 1 71.0 176.2 162.9 163.3 104.9 180.6 180.2 C O 187.6 1 9 3 . 1 0.0 126.5 149.5 i e 2 . .9 23.0 1 5 5 2 . 9 0 . 6 4 4 0 0.63 LOCALI7.E0 FOULING R E S I S T A N C E I SCF T-HK-OEGf/BTU I XI 0 0 , 0 0 0 1215 1235 1255 1275 T295 1 ) 1 5 T135 I 355 T 3 7 5 1395 T 4 1 5 T426 T I N TOUT RF« DELTA H RIOT TIME OEC.F DEG.F DEG.F X 1000 HOURS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 126.5 149.5 0.0 21.0 1 5 7 4 . 6 0 . 6 3 S I 0.0 0.0 0.45 0.45 0.45 0.46 0.45 0.4 5 0.45 0.0 0.45 0.0 0.0 126.5 149.5 0 . 4 0 23.0 1 5 6 2 . 0 0.6402 0.07 0.0 1.35 0.90 0.89 U. 89 0.45 0. 90 0 . 4 5 0.0 0.45 0.0 0.0 176.5 149.5 0.65 21.0 1 5 5 5 . 9 0 . 6 4 7 / 0 . 1 3 0.0 1.80 1.35 1.34 1 . 14 0.89 1. 14 0 . 9 0 0.0 0.89 0 . 0 0.0 176.5 14 1.5 1.09 21.0 1642.1 0.64*4 0 . 13 0.0 2.25 1. 35 0.89 0.E9 0.45 1.34 0 . 9 0 0.0 0.45 0.0 0.0 176.5 149.5 0 . 65 21.0 1651.1 0 . 6 4 4 / 0.4O 0.0 2.25 1.36 1. )4 I . 14 0.89 1. 79 0 . 9 0 0.0 0.89 0.0 0.0 126.5 149.5 1.19 21.0 1639.8 0 . 6 4 9 4 0 . 53 0.0 1.60 0.90 0.45 0.69 0.89 1. 34 0.46 0.0 0.45 0.0 0.0 176.5 149.5 0.74 23.0 1 5 5 2 . 9 0 . 6 4 4 0 0.63 2 5 7 * * * « » * » K U N N 0 5 8 . » * • • » * • FERRIC OXIDE CONC IPPM.l 2 1 ) 0 . V 0 L T S : | 3 . 5 0 AMPS: 3 5 6 . HEAT FlUW SUPPLIED 164C7.9 HEAT I L U X SUPPLIED 9 4 1 6 1 . BTU/HR HTU/SLFT-HR BETA0.301 T O R M I N L E T I 2 7 . 0 O E N S I I V : 0 . 9 a 6 CRAM/CC T 0 U I L E I 1 4 9 . 5 FLOW RATE 0.1888 LBS.M/SEC DEG F SO.CM/SEC FT/SEC AVG T E M P : l 3 8 . 2 KINEMATIC V I S C 0 S 1 T V : 0 . 4 8 1 F L U 1 0 VELOCITY 4 . 7 8 9 REYNOLDS NO 264 19.5 PRAN01L NO 3.03 DEG F OEG F ES 1 I M A T L S OF ROOT MEAN SOUARC S T A T I S T I C A L ERROR IN THE PARAMETER . 34707 1 . 7667 E S T I M A T E S CE ROOT MEAN SuU\RE TOTAL ER<UR IN THE PARAMETERS . 5 1 0 4 6 E - 0 I .75935 EST I M A T E Of RO.RINF.ANO 6 IN R F - R I N F I I 1,-EXPI-B*TIMC I .0 TIME HOORS 0.0 0.02 0.10 0.32 0.43 0.55 0.58 0.72 1.5661 8.4 349 C A L L . R E S I S 1 A N C E F l l l t O VALUE I ( S G H - H R - U E G F / B T U I X I O O . O O O I 0. 0.20 1.04 1.19 1.49 1.54 1.59 1.74 -0.0 0.24 0.69 1.46 1.52 1.55 1.55 1.56 HE AT SUPP 1 6 4 0 2 . 9 BTU/HR HE AT TRANS 1 5 3 4 5 . 8 BTU/HR HEAT LOST 1057.0 BIU/HK PERCENT HEAT LOST 6.44 HEAT FLUX IRANS. BlU/SOTT-HR 8 8 0 9 3 . NUSSELT NO 121.1 RFILM 0.625 RWALL 0.143 STOTAL 0.767 SOFT-HR-DEG F/BTU L O C A L I Z E D WALL TEMPERATURES I O E C . F I T215 T235 T255 T275 T/95 1315 T3 35 1355 T375 DEG.F OEG.F OEG.F DEG.F DEG.F OEG.F OEG.F DEG.F DEG. T 0.0 175.0 174.6 162.5 162.5 16 1 . 7 179.0 179.4 0.0 0.0 175.0 174.6 162.5 182.5 1 6 ) . 7 179.4 1 7 9 . a C. 0 0.0 176.2 1 75.8 162.9 163.3 164.5 180.7 1 P0.2 0.0 0.0 177.0 176.6 163.3 167.9 16 4 . 1 130.2 180.6 0.0 0.0 177.4 176.6 16 3*3 183. 3 164. 5 1 6 0 . 2 160.6 0.0 0.0 177.4 1 76.6 131.7 1 6 3 . 7 U 4 . 5 18C.6 1 30.6 0.0 0.0 177.8 176.6 1 8 ) . 7 1 8 3 . 3 184.5 130.6 160.6 C O 0.0 117.4 176.2 184.1 163.3 185.3 180.6 1 8 0 . 9 C O L 0 C A L 1 Z E D FOULING R E S I S T A N C E I S O f T - H R - D E G F / R T U ) X I 0 0 . C O O 7215 1235 1265 T275 1295 1315 1315 1365 1375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45 0.46 0.0 0.0 1.35 1.15 0.45 0.89 0 . 89 1. 14 0 . 9 0 0.0 0.0 2.25 2.75 0.8 9 0.45 0.46 1. 14 1. 34 C O o.o 2.69 7.75 0 . 8 9 0.89 0.89 1. 14 1 . 14 0.0 0.0 2.69 2.25 1.34 1. 34 0.69 1. 7 1 1 . 14 0.0 0.0 3.14 7.75 1.34 0.69 0.69 1. 79 1 . 34 0.0 0.0 2.69 1.60 1.79 0 . 8 9 1.79 1. 79 1 . 79 0.0 T395 74 15 T426 T I N TOUT TH 0 E L 7 A H R TIME DEG.F OEG.F DEG.F OEG.F DEG.F DEG. F OEG.F XIOOO HOURS 186.8 192.3 0.0 127.0 149.5 181.6 77.5 1 5 9 7 . 0 0 . 6 2 6 2 0.0 166.6 1 9 3 . 1 0.0 127.0 149.5 181.9 22.5 1 5 9 0 . 0 0 . 6 7 8 9 0 . 0 ? 187.6 193.5 0.0 1 7 7 . 0 149.5 162.7 27.5 1 5 6 5 . 0 0 . 6 3 9 0 0 . 10 137.6 193.1 0.0 127.0 1 4 9 . 5 187.6 22.5 1 5 6 3 . 3 0 . 6 3 9 7 0 . 12 188.0 193.9 0.0 127.0 149.5 183.1 72.5 1554.7 0 . 6 4 3 ? 0 . 4 ) 1 3 6 . 0 1 9 ) . 1 0.0 126.5 149.5 183.1 23.0 1 5 4 5 . 0 0 . 6 4 7 3 0.55 1 8 8 . 0 193.5 0.0 126.5 149.5 163.2 23.0 1 5 4 4 . 8 0.647 3 0.58 186.4 191.5 0.0 126.5 149.5 183.3 23.0 1 5 3 7 . 6 0 . 6 5 0 3 0 . 7? T395 1 4 1 5 I42B U N TOUT RF H D E L T A H RT OT I 1 ME DEG.F OEG.F DEG.F X10C0 HOU-tS 0.0 0.0 0.0 177.0 149.4 0.0 22.5 1 5 9 7 . 0 0.676 2 0.0 0.0 0 . 89 0.0 1 7 7 . 0 149.5 0 . 20 22.5 1 5 9 0 . 0 0 . 6 2 6 9 0.07 0.89 1.13 0.0 1 2 7 . 0 149.5 1.04 27.5 1 5 6 5 . 0 0.6 390 0 . 1 0 0.89 0 . 69 0.0 1 2 7 . 0 149.5 1 .19 77.5 1 5 6 1 . 3 0.6 19 7 0 . 1? 1.34 1 .77 0.0 127.0 149.5 1.49 72.5 1 5 5 4 . 7 0 . 6 4 3 2 0.43 1.14 0.89 0.0 176.5 149.5 1.54 2 3.0 1 5 4 5 . 0 0.647 1 0.55 1.34 1.33 0.0 174.5 149.5 1 .59 73.0 1644.8 0.647 3 0.58 1.76 1.33 0.0 176.5 149.5 1.14 23.0 1 5 3 7 . 6 0 . 6 5 0 3 0 . 7? 258 •••••••RUN N059. F E R R I C OXIDE CONC (PPMI 2 1 3 0 . VOLTS: 9.35 AMPS: 2 5 3 . HEAT H B SUPPLIED 8073.6 HEAI I L U X SUPPLIED 4 6 ) 4 7 . MU/HR 9IU/SUFI-IIR 6 £ T A 0 . ) O I 1 C H « I I N L E T 1 ? 7 . 0 D E C F 0ENS11Y:0.966 GRAK/CC I 0 0 1 17114 1.8 CEC F FLOW RATE 0.1442 L B S . " / S E C AVO TEMP:1)4.4 OEG F KINEMAIIC V 1 S C O S I I Y : 0 . 4 9 6 SO.CM/SEC F L U I D VELOCITY 3.655 F T / S E C REYNOLDS NO 19550.0 PRANDIL NO 3.15 HEAT S J P P 8 0 7 3 . 6 BTU/HR HEAT TRANS 7 7 2 7 . 9 CIU/HR HEAT LOSI 3 4 5 . 7 P1U/HR PERCENT HEAT LOST 4.28 HEAT FLUX TRANS. UIU/SOFT-IIR 4 4 3 6 2 . NUSSELI NO 9 4 . 6 R F I L H 0.60) R K A L l 0.144 RTOTAL 0.947 SOFI-hR-OEC F / B1U E S I I M A U S . 1 8 6 ) 8 E S T I M A T E S ET KU'JT .10211 ESTIMATE TIME HOURS 0.0 0.02 0.05 0 . 1 ? 0 . 4 0 0.68 0.73 0.98 1.12 1.33 1.50 1.75 1.9B 2.18 2.47 2.90 Pt'Ul MEAN Sl.UA*E S T A T I S T I C A L I R RDM IN THE PARAVC1EH . 6 1 6 ) 8 MEA.4 S-HIA-lt 101AL ERROR IN THE PARAMETERS .33769 R O i R l N F . A f . i l 6 IN K T - H INF I 1 1 . - E X P l - B * T l " E I 3.0701 1.597? C A L C . R L S I S 1 A N C E r i l T I O V A IUC 1t SulI-HR-VFCI /R7U1X160,0001 0.0 -0.11 0.70 0 . 1 0 1.21 0.24 1.11 0 . 7 3 1.41 1.45 2.41 2 . 0 3 2.11 2.11 2.31 2.43 2.51 2 .56 2.11 2 . 7 0 2.31 2.79 2.71 2.8B 2.11 2.94 3.21 2.98 3.91 3.01 3.52 3.04 LO C A L I Z E D MALL TEMPERATURES I 0 E C . F I 1215 T235 T255 T275 1295 T 3 I 5 T335 1 ) 5 5 T375 DEC.F DEC.F DEC.F UEG.F OEG. F DEG.F OEG. r OEG.F D1G.F 0.0 154.3 153.9 159.5 1 5 9 . 5 1 6 0 . 7 157.9 1 3 6 . 7 0.0 0.0 155.1 154.3 160.3 159.9 16 0 . 7 157. 1 1 5 7 . 5 C. 0 0.0 155.5 154.7 1 6 0 . 1 1 6 0 . ) 161.1 157.5 157.5 C O 0.0 155.5 155. 1 1 6 0 . ) 1 6 0 . ) 161. 1 157.5 157.5 0.0 0.0 155.5 155. 1 1 6 0 . 7 160. 3 160.7 157.5 15 7.9 C O 0.0 156.3 155.5 161.1 160.7 161.1 157.9 157.9 C O 0.0 156.3 155.5 16 0 . 7 1 6 0 . ) 161.5 157.9 1 5 7 . 9 C O o.o 156.7 135.9 161.1 16 0 . 3 161.1 15 7.9 157.9 0.0 0.0 156.7 155.9 1 6 1 . 1 160 . 7 161.1 157.9 157.9 0.0 0.0 1 5 6 . 7 155.5 16 0 . 7 1 6 0 . 3 161.1 157.5 1 5 7 . 9 0.0 0.0 156.7 155.9 161.1 16 0 . 3 161.1 157.9 1 5 7 . 9 0.0 0.0 1 5 7 . 1 155.9 161.5 160.7 161.5 157.9 157.5 C. 0 0.0 156.7 155.5 I 6 C . 7 1 6 0 . ) 161.1 157.5 157.9 C O 0.0 1 5 7 . 1 156.9 161.6 l o i . 1 161.9 15R. 1 158.3 0.0 o.o 157. 1 156. 7 161.9 161 .4 162.3 158. ) 1 5 8 . 3 0. 0 o.o 157.9 157.1 161.5 1 6 1 . 1 161.5 157.9 1 5 3 . 3 C O L 0 C A L 1 2 E 0 FOULING R E S I S T A N C E I SOFT-HR-OEGF/BTUI X I 0 0 . 0 0 0 1215 1235 1255 1215 T295 1 ) 1 5 T ) ) 5 1 ) 5 5 T 375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.81 0.91 1.81 0.90 0.0 0.0 1.81 0.0 0.0 2.72 1.8 1 1.81 l . " l U.90 0.0 1 .81 0.0 0.0 2.7? 2.72 1.81 1.81 0.90 0.0 1.61 0.0 0.0 2.72 2.72 2.71 1.81 U.O o.c 2.71 0.0 0.0 4.53 3.62 ) . 6 I 2. 71 U. 90 o.o 2.71 0.0 0.0 4.53 3.62 2.71 1.81 1.60 0.0 2.71 (1.0 0.0 5.43 4.43 1.61 1.61 0.90 0.0 2.71 0.0 0.0 5.43 4 . 5 ) 1.61 2. 71 0.90 0. 0 7 . 71 U.O 0.0 5.43 3.6? / . 7 I 1.81 U.90 0.0 2 . 71 0.0 0.0 5.4 3 4 . 3 ) ) . 6 I 1.81 0.90 O.u 2.71 0.0 0.0 6.34 4.53 4.51 2. 71 1 . 80 0.0 1.81 0.0 o.o 5.4 ) 3.62 2.71 1.1:1 0. 90 7). 0 2.71 0.0 0.0 6.14 4.33 4.41 1.61 2.71 0 . 90 1.6? 0.0 0.0 6 . )4 6 . 14 5.41 4.51 1.61 0.9U 1.6/ 0.0 0.0 8.15 7.25 4.51 1.61 1.80 0.0 1.6? 0.0 T395 T4 15 T428 T I N TOUT TH DELTA H R TIME OEG.F DEG.F UEG.F DFG.F DE G F OEG.F DEG.F X 1 0 0 0 HOURS 162.3 167.5 0.0 127.0 1 4 1 8 1 5 9 . 1 14.9 1 4 1 3 . 6 0 . 7 0 7 4 0.0 163.1 167.1 0.0 126.5 1 4 1 . 6 159.4 1 5. 3 1 3 3 7 . 3 0 . 7 2 0 8 0.02 163.1 16 7.1 0.0 127.0 1 4 1 . 8 159.7 14.4 1 3 e 7. 2 0 . 7 2 0 9 U.05 161.1 167.1 0.0 127.0 1 4 1 . 3 159.7 14.9 1335.5 0 . 7 2 1 3 0. 17 1 6 ) . 1 167.1 0.0 126.5 1 4 1 . 8 159.8 15. 3 1371.7 0 . 7 ? IC 0 . 4 0 1 6 ) . 5 167.9 0.0 127.0 141 . 3 160.2 14.9 136 1.8 0 . 7 3 4 ) 0.68 1 6 ) . 1 167.5 0.0 127.0 14 1. 3 1 6 0 . 1 14.9 1 3 6 8 . 3 0 . 7 ) 0 8 0 . 7 ) 16).1 167.5 0.0 127 .0 1 4 1 . 8 160.2 14.9 1 3 6 6 . 7 0 . 7 3 1 7 0 . 96 1 6 ) . 5 167.5 0.0 127.0 1 4 1 . 3 160.2 14.9 1361.4 0 . 7 3 4 4 1.1? 1 6 ) . 5 167.5 0.0 1?7.0 1 4 1 . 8 160.1 14.9 1371.1 0. 729 ) 1.3) 1 6 ) . 1 167.5 0.0 127.0 1 4 1 . 8 160.2 14.9 1366.7 0 . 7 ) 1 7 1.50 1 6 ) . 5 167.5 0.0 127.0 1 4 1 . 8 1 6 C . ) 14.9 1 3 5 3 . 5 0.7301 1. 74 1 6 ) . 5 167.5 0.0 127.0 1 4 1 . 6 1 6 0 . 1 14.9 1371.1 0 . 7 7 9 ) 1.96 1 6 ) . 5 167.5 0.0 127.0 1 4 1 . 3 160.6 14.9 1343.7 0 . 7 4 4 2 2. 18 1 6 ) . 9 1 6 7 . 9 0 . 0 127.0 1 4 1 . 8 1 6 0 . 9 14.9 1 3 2 6 . 6 0 . 7 5 7 7 2.47 163.5 167.5 0.0 127.0 1 4 1 . 8 1 6 0 . 7 14.9 1 3 4 3 . 7 0 . 7 4 4 2 2.90 1 ) 9 5 T 4 1 5 T 4 2 » T I N TOUT R F M D E L T A H R TOT TIME DEG.F OEG. F DEG.F X 1 0 0 0 HOURS 0.0 0.0 0.0 127.0 14 1. 8 0.0 14.9 1413.6 0 . 70 74 O.U I .80 0.0 0.0 126.4 1 4 1 . 3 0 . 70 1 5 . 1 1387.3 0.7/C8 0.U2 1.60 0.0 0.0 127.0 1 4 1 . 8 1.21 14.9 1337.2 0 . I7C9 0.05 1.60 0.0 0.0 l ? 7 . 0 141 8 1.31 14.9 1365.5 0.72 16 0 . 1 7 1 .30 0.0 0.0 1?6.5 1 4 1 . 8 1.41 1 5 . 1 1371.7 0.7/wo 0.40 2.70 0.90 O.D 177.0 14 1 6 2.41 14.9 1 ) 6 1 . 8 0 . 7 ) 4 ) 0.68 1.80 0.0 0.0 177.0 141 .3 7. 11 1 4 . 9 1 166.3 0 . 7 3 0 3 0 . 7) 1. "0 0.0 0.0 177.0 1 4 1 . 8 2. )1 14.9 I 1 6 6 . 1 0 . 7 ) 1 7 0.98 2.70 O.U 0 .0 17 7.0 1 4 1 . 8 7.51 14.9 1 ) 6 1 . 4 0 . 1 345 1. 12 2 . 70 0.0 0.0 177.0 141 . 6 2.11 14.9 1171.1 0. 724 3 1 . ) ) I . 60 0.0 0.0 177.0 1 4 1 . H 2.31 14.9 1366.7 0 . 7)1 1 1.30 2.70 0.0 0.0 17 7.0 141 . n 7.71 14.9 1356.5 0 . 7 36 1 1. 14 J. 70 n . o 0.0 177.0 I 4 | . 3 2.11 14.9 1 ) 1 1 . 1 0. 7 79 1 1. '3 2. 70 o.o 0.0 17 7.0 141 . 8 1.71 14.9 I 1 4 ) . 7 0 . 7 4 4 7 2. I* ) , 6 0 U.90 0.0 177.0 1 4 1 . 3 ) . 4 l 14.9 I 326.6 0.737 7 2.47 2 . 70 n.o 0.0 127.0 14 1. 8 1.52 14.9 1341.7 0 . 7 4 4 7 2.90 259 « * * « « * 9 R U N N 0 6 1 . F E R R I C OXIDE CONC (PPH1 ? 1 3 0 . VOLT S : 9.35 AMPS: 2 3 A . HEAI IICW S U P P L I E D 7467.3 HEAI FLUX S U P P L I E D 4 2 0 6 6 . BTU/llA BIU/SOFT-HR BEIAO.301 T C R = T I N L E T 1 ? 7 . 0 OEG F DE.NSIIY:0.485 GRA»/CC I O U I L E I I 3 4 . 9 DEG F FLOW KA1E 0.2563 LBS.M/SEC AVG IEMP:130.9 OEG F KINEMATIC V 1 S C 0 S I I Y : 0 . 5 1 1 SQ.CM/SLC F L U I D VELOCITY 6.487 F T / S E C REYNOLDS NO 3 3 7 C I . 3 PRANDIL NO 3.25 HEAT SUPP 7 4 6 7 . 3 BTU/HR HEAT IRANS 7311.3 DIU/HR HEAT LOSI 156.0 OIU/HK PERCENT HEAI LOST 2.09 HEAI FLUX TRANS. BIU/SOFT-HR 4 1 9 7 1 . NUSSELI NO 145.8 RF I L M 0.522 RWALL 0.146 RIQTAL 0.668 SCFT-BP.-DEG F / 8 T U ESTIMAIES OF RCOT MEAN SOUARE STATISTICAL ERROR IN IHE PARAMETER .16295 .81869 ESTIMATES OF- ROOT MEAN SCUARE IDEAL ERROR IN THE PARAMETERS .52425E-0I .26339 E ST I HA TE OF ROt RINF.AND 3 IN RF«R1NFI 11.-EXPI-R»TI ME I .0 T I HE HOURS 0.0 0.03 0.17 0 . 2 5 0.28 0 . 4 0 0.58 0 . 6 5 0.97 1.15 1.37 1.43 1.65 2.48 2 . 2 ) 8 5 6.1736 C A L C . R E S I S T A N C E F I T T E D VALUE 1 ( S C F I - H R - U E G F / M U t X I C O . O O U I 0.0 - 0.0 0.75 0.38 1.12 1.45 1.61 1.76 1.72 1.64 1.82 2.05 2.14 2 . I S 1.82 2.23 2.04 2.23 2.15 2.74 1.93 2.24 2.36 2.24 2.69 2.24 2.68 2.24 LO C A L I Z E D WALL TEMPERATURES I D E G . F I T 2 I 5 12 35 T255 1275 1795 T 3 I 5 T335 T 3 5 5 T 3 7 5 DEG.F DEG. F DEG.F OEG.F DEC.F DEC.F OEC.F UEG.F OEC.F 0.0 141.7 140.5 145.4 145.0 145.0 141.7 141.3 0.0 0.0 142.2 140.9 145.4 145.0 145.4 147.2 141.7 0.0 0.0 142.6 141.3 145.8 145.4 145.8 142.6 142.2 C O 0.0 147.6 141.3 145. 3 145.4 145.8 142.6 142.2 0.0 0.0 142.6 141.3 145.6 145.4 145.6 147.6 142.6 0.0 0.0 147.6 141.3 146.2 145.4 144.8 142.6 14 2 . 6 C. 0 0.0 142.6 141.3 146.7 145.4 145.8 14 J.C 142.6 0.0 0.0 142.6 141.3 146.2 146.4 145.6 142.6 142.6 0.0 0.0 147.6 141.3 146.2 145.4 145.6 1 4 ) . 0 147.6 C O 0.0 142.6 141.7 146.2 1 46.4 144.3 14).!! 142.6 C O 0.0 142.6 14 1.7 •145.6 145. 3 145.8 14).0 142.6 0.0 0.0 142.6 141.7 146.2 145. 8 146. 2 1 4 ) . 0 142.6 0.0 0.0 143.0 141.7 146.6 145.8 146.2 1 4 ) . 0 143.0 0.0 o.o 143.0 141.7 146.2 145.8 146.2 14 3.0 1 4 3 . 0 0.0 L O C A L I Z E D FOULING R E S I S T A N C E I S U F I -HK-OEf.r/Riuixioo.ooo T215 1235 1265 1215 T 2 9 6 1315 1 ) ) 5 1 355 T 3 7 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.97 0.47 0.0 0.0 0.96 0.47 0 . 9 7 0.0 0.0 1.93 1.9] 0.96 0.96 1.9) 1.9) 1.9) 0.0 0.0 1.93 1.91 0.46 U.96 1.9) 1.91 1 .9) o.o 0.0 1.93 1. 11 0.94 U.46 1.9) 1.4 1 7.90 U.O 0.0 1 .93 1.9 1 1.9) 0. 96 1.9) 1.4 1 2.90 0.0 0.0 1.9) 1 .4 ) 1.9) 0.44 1.9) 2.'10 7 . -10 11.0 0.0 1.91 1 .9) 1.91 0.94 1.9 1 1.9 1 2 .90 0.0 0.0 1 .91 1 .9 ) 1.9 3 0.94 l . 9 | 7. 41! 7.90 O.O 0.0 I . I ) 7.40 1.9 1 0.96 1.91 7.90 7.90 0.0 0.0 1.9) 7.90 0 . 46 1.4 1 1.91 7. 4f 7.90 u.o 0.0 1.9 1 7.40 1.9 1 1.91 / . »l 4 7.411 7.40 0.0 0.0 7.99 7.90 7.69 1.4 1 7.H-I 7.-Ml 1.9 7 0.0 n.n 7.40 7. -10 1.9 1 1.9 1 /."9 7.10 1.6 7 u.o T395 T 4 1 5 T 4 2 8 T I N TOUT TH OELTA H R TIME DEG.F DEG.F OEG.F DFG.F OEG.F OEG.F OEG.F XIOOO HOURS 145.3 149.0 0.0 1 2 7 . 0 134.9 1 4 4 . 0 7.9 2 5 5 6 . 8 0.3911 U.O 146.2 149.4 0.0 127.0 1 ) 4 . 9 144.3 7.9 2497.2 0 . 4 0 0 4 0.U3 1 4 6 . 6 1 4 9 . 3 0.0 1 2 7 . 0 I 34.9 144.7 7.9 2 4 2 3 . 3 0 . 4 1 2 7 0.17 1 4 6 . 6 149.4 0.0 1 2 7 . 0 1 34.9 144.6 7.9 2 4 2 9 . 8 0 . 4 1 1 6 0.25 146.6 149.4 0.0 1 2 7 . 0 134.9 1 4 4 . 7 7.9 2 4 1 9 . 2 0 . 4 1 3 4 0.26 146.6 149.4 0.0 127.0 1 34.9 144.7 7.9 7 4 1 1 . 6 0 . 4 1 4 7 0.40 147.0 149.8 0.0 127.0 134.9 144.9 7.9 2 3 6 6 . 5 0 . 4 1 9 0 0.3d 146.6 149.4 0.0 127.0 1 34.9 1 4 4 . 7 7.9 2 4 1 1 . 6 0 . 4 1 * 7 0.34 1 4 6 . 6 149.8 0.0 127.0 1 ) 4 . 9 144.6 7.9 2 34 .6 0.4 1 7 6 0 . 97 146.6 149.8 0.0 1 2 7 . 0 1 ) 4 . 9 144.9 7.9 2 3 3 9 . 2 0 . 4 1 6 5 1.15 146.2 149.4 0.0 127.0 1 ) 4 . 9 144.3 7.9 2 4 0 2 . 5 0.4162 1.37 146.6 149.8 0.0 127.0 1 ) 4 . 9 144.9 7.9 2 3 7 0 . 5 0 . 4 2 1 9 1.43 14 7.0 1 5 0 . 7 0.0 177.0 1 J 4 . 9 145.2 7.9 2 3 ) 6 . 5 0 . 4 2 8 0 1.65 147.0 149.8 0.0 1 2 7 . 0 1 ) 4 . 9 1 4 5 . 1 7.9 2 3 4 9 . 8 0 . 4 2 5 6 2.46 H95 1415 1426 T I N TOUT RFM DELTA H R TOT TIME DEG.F DEG .F OEG.F XIOOO HOURS 0.0 0.0 0.0 127.0 114.9 0. C 7.9 7656.6 0. 391 1 0.0 0.96 0.96 0.0 127.0 114.9 0. 75 7.9 7447.7 0.4CO4 0.0) 1.91 1.42 0.0 17 1.0 1 14 .9 1. 72 7.9 7473.3 0.417 7 0.17 1.91 0.96 0.0 l?7.0 134.9 1 . 61 7.9 7429.8 0.4116 0.74 1.41 0.46 0.0 177.0 1 34.9 1 . 72 7.9 7414.7 0.41 14 0.2 6 1 .4) 0.94 0.0 177.0 1 34.9 1 . 6? 7.9 741 1.6 1). 4 14 7 U. 4C 7.69 1.9? U.O 177.0 1 14.4 7. 14 7.9 7 36 6.4 0.4 1'10 II.If- 1 .91 0.96 0.0 17 7.0 1 14.9 1. U2 7.9 7411.6 0. 4 14 7 0.65 1.9) 1.4? 0.0 177.0 1 14.9 ?. 04 7.9 7 1'I4.6 0.4 176 U. 4 7 1.9) 1 .92 0.0 177.0 134.9 2. 15 7.9 7)39.2 0.4164 1.14 0.44 0.46 o.u 177.0 1 14.9 1 . 4 1 7.9 7407.5 0.416/ 1.1' 1.9 1 1 .97 0.0 17 7.0 1 )4 .9 7. 36 7.4 7 1 70. 5 0.47CI 1.41 7.64 2.86 U.O 177.0 1 14.9 7. 6-1 7.4 7 1 16.6 II. 4/l'U 1 .64 7.'19 1.4/ II.u 1 7 7 . II 134.9 7. 4 6 7.4 i 144.6 II. 4 246 7.4 3 260 t » * * » * « R U N N 0 0 2 . • « * • • • • F E R R I C OXIDE CONC (PPM1 2 1 ) 0 . V O L T S : 9.35 AMPS: 2 5 4 . HE A T FlOW S U P P I I C O 8 1 0 5 . 5 OTU/IM HEAT f L U X S U P P L I E D 4 6 5 1 0 . 3IU/SWFI-HR BETA0.301 "TOR.I INLET 127.0 DEG F DENS117:0.986 GRAM/CC T U U T L E T 1 4 1 . 8 DEG F FLOW RATE 0 . 1442 L B S . M / S t C AVG IEMP:134.4 DEG F KINEMAIIC V I S C O S I T Y : 0 . 4 9 6 SO.CM/SEC F L U I D V E L U C I I Y ) . 6 5 5 F T / S E C REYNOLDS NO 1 9 5 5 0 . 0 PRANDTL NO 3.15 HEAT SUPP 8 1 0 5 . 5 BTU/HR HE AT TRANS 7 7 2 7 . 9 UIU/HR HEAT LOST ) 7 7 . 6 BTU/HR PERCENT HEAT LOST 4.66 HEAT FLUX TRANS. BTU/SOFT-HR 4 4 3 6 2 . N U S S I H NO 9 4 . 6 RFILM 0.803 RWALL 0.144 RTOTAL 0.947 SOFT-HR-DEG F / B T U L O C A L I Z E D WALL TEMPERA TORES IOEG.FI 1215 T235 1255 T275 1/95 1315 1335 T 3 5 5 1375 T395 DEG.F OEG.F DE G.F DEG.F OEG.F OEG.F OEG.F OEG.F DEG.F OEG.F 0.0 147.8 146.6 154.7 161.1 1 5 5 . 1 149.4 1 5 1 . 9 0.0 160.3 0.0 149.0 150.2 155.5 161.9 156.7 151.5 1 6 3 . 1 C O 161.1 0.0 150.2 151.5 1 5 6 . ) 1 6 2 . I 157.5 153. I 1 5 4 . 7 C O 162.7 0.0 151.1 152.7 1 5 6 . 7 163. 1 156.3 154.7 1 5 3 . 9 0.0 1 6 ) . 5 0.0 151.5 153. 1 156.7 163.1 158.3 155. 1 155.5 0.0 163.5 0.0 160.7 162.3 1 6 6 . 7 1 72.6 166.7 165.9 166.3 C O 175.0 0.0 1 6 0 . 7 162.3 167.5 1 71.0 1 6 9 . 1 1 6 6 . 3 166.7 0.0 1 75.0 0.0 178.6 179.8 166.6 1 9 2 . 3 1 8 6 . 8 185.1 I S 6 . 1 0.0 197.4 LOCAL 17.1:0 FOULING RESISTANCE ISCFT -I'R-DEGF/ETUIXIOO.OOO 1215 1235 1235 12 75 1295 T 3 I 5 I 335 1355 1375 T395 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.73 1.64 1.61 1.60 3.62 4.55 2 . 72 0.0 1.80 0.0 5.46 6 . )7 3.62 1.61 6 . 4 ) 8.16 6.35 C O 5.41 0.0 7.28 9.09 4 . 5 ) 4.41 7.24 1 1 .H O 9.07 0.0 7.21 0.0 8.19 10.00 4 . 5 ) 4.51 7.24 12. 71 8.16 C O 7.21 0.0 29.01 J O . 79 27.07 26.04 30.65 3 7.07 12.52 o.o 3 ) . 2 1 0.0 29.01 3 0 . 79 2 6 . 6 6 26.44 31 .54 17.97 11.42 0.0 3 ) . 2 1 0.0 69.34 70. 19 7 2 . 5 ) 10. 42 76.04 01.66 77.11 0.0 6 3 . 6 5 T 4 1 5 T 4 2 8 T I N TOUT TM O E L T A H R TIME OEG.F OEG.F DEG.F OEG.F CEG.F DEG.F XIOOO HOURS 167.9 0.0 1 2 7 . 0 141.8 155.2 14.9 1684.8 0 . 5 9 3 6 0.0 168.3 0.0 127.0 141.6 156.4 14.9 1591 6 0 . 6 2 8 3 0.02 165.5 0.0 127.0 142.2 1 5 7 . 1 15.3 1545.3 0.6471 0.07 164.7 0.0 127.0 142.2 157.8 1 5 . 3 1495.0 0 . 6 6 6 9 0.16 163.9 0.0 127.0 142.2 157.8 15.3 1496 6 0.6662 0 . 2 5 1 7 5 . S 0.0 127.4 142.2 168.2 14.8 1041 1 0 . 9 6 0 5 4.03 176.2 0.0 1 2 7 . 0 141.8 168.5 14.9 1 0 1 7 . 7 0 . 9 8 2 6 4 . 2 0 199.0 0.0 127 .0 141.8 188.3 14.9 646 9 1.5459 1 3 . 75 1415 T42B T I N TOOT RFH DELTA ». RIOT TIME OEG.F OEG.F OEG.F X1 0 0 0 HOUR 5 0.0 0.0 127.0 141.8 0.0 14.9 1684 . 8 0 . 5 9 3 6 0.0 0 . 9 0 0.0 1 2 7 . 0 141.8 2.62 14.9 1591 .6 0 . 6 2 3 3 0.02 0.0 0.0 127.0 142.2 4 . 34 15.3 1545.3 0.6471 0.07 0.0 0.0 127.0 142.2 5.95 15.1 1494.0 0 . 6 6 3 9 0 . 15 0.0 0.0 127.0 142.2 5.95 15.3 1476 .6 0.66*2 0.25 1 7.89 0.0 127.4 142.2 2 9 . 16 14.8 104 1 . 1 0 . 9 6 0 5 4.U) 18.79 0.0 127.0 141.8 30.06 14.9 1017.7 0.9626 4.2G 70.06 0.0 127.0 141.8 7 4 . 3 6 14.9 646 .9 1.6459 1 3 . 75 261 .......RUN N 0 6 3 . • • • • « . . F E R R I C OXIDE CONC IPPMI 2 1 ) 0 . V C L 1 S U 3 . 5 0 AMPS: 3 5 5 . E S T I M A T E S CF RCOI MEAN SCUARE S T A T I S T I C A L ERROR IN THE PARAMETER . 1 6 6 8 0 .78614 E S T I M A T E S CF ROCT MEAN SCUARE I O I A L ERROR IN T F E PARAMETERS • 7 5 0 5 4 E - 0 1 .1C544 E S T I M A T E CF RO.RINF.AI.C E IN RF = R INF I I 1 .-EXP I - HEAT FLCW S U P P L I E D 1 6 ) 5 6 . 8 HEA1 FLUX S U P P L I E D 9 ) 8 1 7 . BIU/HR BTU'/SCF T—HR e E l A O . 3 0 1 T O R « T I N L E 1 127.0 DEC F 0 E N S 1 I Y . 0 . 9 8 6 CRAH/CC T O U U E I 1 5 0 . 3 OEG F FLOW RATE 0.1868 LBS.M/SEC AVG TEMP:|)8.6 OEG F KINEMATIC V I S C O S I T Y : © . 4 7 9 SC.CM/SEC . F I U 1 C V E L O C I T Y 4.790 F T / S E C REYNOLDS NO 2 6 5 ) 4 . 0 PRANDTL NO 3.02 HEAT SUPP 1 6 3 5 6 . 8 BTU/HR HEAT TRANS 15921.4 BTU/HR HEAT LOST 435.4 BTU/HR P E P C E M HEAT LOST 2.66 HEAT FLUX TRANS. BTU/SOFI-HR 9 1 3 9 7 . K U S S E L I NO 121.5 RFILM 0.623 RWALL 0.143 R 1 0 I A L 0.765 SQFT-HR-DEG F / B T U .0 TIME HOURS 0.0 0.06 0.12 0.20 0.23 0.42 0.6B 0.65 1.02 1.35 1.47 1.77 1.92 2.C669 5.7124 C A L C . RESISTANCE F I T T E D VALUE ( ( S C F T - H R - C E C F / B I U I X I C O , 0 0 0 I C O - 0 . 0 0.77 0.76 1.15 1.C3 1.29 1.41 1.68 1.51 1.82 1.68 2.01 2.02 1.77 2.05 1.92 2.06 2.11 2.01 2.16 2.07 2.25 2.07 2.20 2.07 L O C A L I Z E D WALL 1215 T235 TEMPERATURES T255 T275 OEG. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DEC.F 174.6 1 7 5 . C 175.0 175.8 175.6 175.6 176.6 176.6 1 76.6 17 7.0 177.C 177.4 177.0 OEG.F 174.2 175.0 175.0 175.4 175.8 175.8 176.6 176.6 176.2 1 76.6 177.0 177.0 17 7.0 DEG.F 182.5 182. 1 182.5 182.5 I E ) . 3 1 8 4 . 1 183.7 163.7 1 8 4 . 1 183.7 164 . 1 184.5 164.1 I C E G . F 1295 D t G . F 182.5 1 6 2 . 1 162.9 182.9 1 6 ) . 3 l e ) . ) 184.1 1 8 ) . 7 1 6 ) . 7 184.1 1 6 4 . | 1 6 4 . 1 164.3 T315 OEG.F 183.3 i e 4 . l 164.6 184.5 184. 9 184.9 185.3 I t 4 . 9 18 5.3 165.3 185. 3 165. 3 1 8 5 . 3 7 3 ) 5 OEG.F 176.6 179.4 180.2 160.2 180.2 18C.6 180.6 1 R C 2 18C.6 180.6 160.6 18C.9 180.6 T355 T 3 7 5 T395 T415 7428 T I N OEG.F OEG.F DEG.F OEG.F OEG.F DEG.F 1 18.6 0.0 i e 6 . 5 192.7 0.0 127.0 150.2 0.0 188.0 193.9 0.0 127.0 1 8 C 6 C O 188.4 193.9 O.C 127.0 I 8 C 6 0.0 168.4 191.9 0.0 127.0 160.6 0.0 186.4 194.7 0.0 121.0 I 8 C . 9 C O 188.4 194.7 0.0 127.0 1 8 C 9 C O 166.4 193.9 O.C 127.0 180.6 0.0 188.0 193.9 0.0 127.0 I B C . 9 C O l e e . o 193.9 0.0 127.0 181.3 C O 168.4 193.9 0.0 127.0 180.9 C O 186.4 193.9 0.0 127.0 18C.9 C O 188.4 191.5 C O 127.0 180.9 0.0 188.4 1 9 3 . 9 0.0 127.0 TOUT 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 . 4 9 . 9 I '• 9 .9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 1 4 9 . 9 TM 0 E L 7 A H R T 1 ME OEG.F OEG.F X 1 C 0 0 HOURS 181.5 2 3 . 0 1676.2 0 . 5 9 6 6 0.0 182.2 23.0 1 6 4 8 . 0 C.6G68 C. 06 182.6 23.0 1632.5 0 . 6 1 2 5 0. 12 182.7 2 3 . 0 1630.0 0 . 6 1 3 5 C.20 183.0 2 3 . 0 1620.6 0.6170 0. 23 183.2 2 3 . 0 1612.1 0 . 6 2 C 3 C 4 2 183.3 23.0 1607.3 0 . 6 2 2 2 0.68 1 8 3 . 1 2 3 . 0 1616.9 0 . 6 1 6 5 6.85 183.3 23.0 11 0.4 0 . 6 2 1 0 1.C2 183.4 23.0 1604.7 0 . 6 2 1 2 1. 35 183.5 23.0 1 6 0 4 . 1 0 . 6 2 3 4 1.47 183.6 2 3 . 0 1601.4 0 . 6 2 4 4 1. 17 163.5 2 3 . 0 1602.4 0.6241 1.92 L C C A L I 7 E C FOULING R E S I S T A N C E I S C F T - H R - O E G F / B T U IX 1 0 0 . C O O 1 2 1 3 1235 1255 1275 1295 1 ) 1 5 1 ) 3 5 1 ) 5 5 1 ) 7 5 1 ) 9 5 1 4 1 5 1426 U N 7CUI RFM 0 E L 1 A H RI01 7IME DEG.F OEG.F DEG.F X 1000 HOURS 0.0 0.0 0.0 0.0 0.0 C O 0.0 0.0 0.0 0.0 0.0 0.0 127.0 149.9 0.0 2 1 . 0 1676.2 0.5966 0. 0 0.0 0.4) 0.67 0.0 0.0 C.B6 O.P.I 1. 7) C O 1.72 1.28 0.0 127.0 141.9 0.77 2 1 . 0 1648.0 0.60 6 6 0.06 0.0 C.41 0.67 0.0 0 . 4 ) 1.29 1.7) 2.16 C O 2.15 1.28 0.0 127.G 149.9 1.15 2 3 . 0 1632.5 0 . 6 1 2 5 0 . 12 0.0 1.30 1.10 0.0 0 . 4 ) 1.29 1.7) 2.16 0.0 2.15 1 .28 0.0 127.0 149.9 1.29 2 3 . 0 I 6 3 C O 0 . 6 1 1 5 0 . 7 0 0.0 1.30 1.73 0.66 0.66 1.72 1.11 2 . 16 C O 2. 15 1.71 0.0 127.0 149.9 1 .68 2 3 . 0 1620.6 0 . 6 1 1 0 0.7 3 0.0 1.30 1.73 1.72 0.66 1.72 2.16 2.59 0.0 2.16 2. 14 0.0 127.0 149.9 1.62 2 1 . 0 1612.1 0 . 6 2 0 3 0.47 0.0 2.17 2.60 1.29 1. 72 2.15 2.16 2.59 0.0 2.15 1.28 0.0 121.0 149.9 2.01 21.0 1667.3 C.6222 0. 61 0.0 2.17 2.60 1.29 1.79 1. 72 1.1) 7 . 16 C O 1.72 1.28 0.0 127.0 149.9 1.71 7 3 . 0 1616.9 0 . 6 I H 5 0. 66 0.0 2.17 7.17 1.12 1.79 2.15 2.16 2.59 0.0 1.72 1.26 0.0 127.0 149.9 1.92 7 1.0 1410.4 0 . 6 / 1 0 I.U2 0.0 2.60 2.60 1.29 1. 12 2 . 15 2. 16 1.C7 0.0 2.15 I .78 0.0 127.0 149.9 2.11 / ) . II 161.4. 1 0.6/12 I . 13 0.0 2.60 3.03 1.72 1. 12 2. 16 2. 16 7.69 C O 2.15 1.28 r .o 127.0 14 1.9 2.16 7 1.0 1604.1 0 . 6 / 3 4 1.47 0.0 3.0) ).0) 2.16 1.77 2.15 • 2.69 7.69 U.O 2.15 0.65 0.0 171.0 .14 9.9 2.25 23 .0 1401.4 11.6244 1.77 o.o 2.60 3.03 1.72 2. 15 2. 15 2.16 7.39 0.0 2.15 I.7B 0.0 127.0 149,9 2.20 2 3 . 0 1602 .4 0.6241 1.9/ 262 i • •••(••RUN N 0 6 4 . ••••••• FERRI C OXIOC CONC IPPMI 2 1 3 0 . VOL1S113.50 AMPS: 1 5 3 . MEAT FLOW SUPPLIED 16264.6 HEAI TLUX S U P P L I E D 9 3 3 6 3 . BIU/HR MTU/SOFT-HR BETAO.301 TOR=TINLE1127.0 O E N S l l r : 0 . 9 B 6 GRAM/CC I U U I L E U 5 7 . 0 ( L O U RATE 0.1442 LBS.M/SEC AVC. I EVP: 142.0 OEG F K l NEC AT IC V I S C O S I I Y : 0 . 4 6 T SO.CM/SCC F U 1 D VELOCITY 3.664 F T / S E C REYND1OS NO 2 0 3 5 0 . 6 P R A N J I L NO 2.93 OEG F OEG F E S T I M A T E S OF ROOT MEAN SOIJ.vn S T A T I S T I C A L CR ROM IN THE PARAMETER • • • « • • • • • • *c*t«**ct« E S T J M A I E S .̂T R30T MEAN SO'JMt THTAl tRROR IN THE PARAMETERS E S T I M A T E Of R O . R I N l i A N u 0 IN RF = R INF I I I.-E XP1 - G» 11 ME I TIME HOURS 0. 0 0.02 0.23 0 . 4 5 0 . 6 7 1.15 1.95 2.76 3.43 3.95 4 . 4 5 .2T44HE 14 . I 0 9 7 3E-56 C A L C . R 1 S I S T A N C E F I T T E D VALUC I t S o r l - H R - U E G F / B T U l X l C O . O n O l 0.0 7.18 1 2 . B4 1 8 . 19 2 1 . 4 6 3 0 . 6B 4 7 . 8 6 5 8 . 2 2 7 0 . 1 0 6 4 . 1 1 7 1 . 6 2 - 0 . 0 0 -O.CO - 0 . 0 0 - 0 . 0 0 - 0 . 0 0 - 0 . 0 0 - 0 . 0 0 - 0 . 0 0 -O.CO - 0 . 0 0 - 0 . 0 0 HEAT 5UPP 1 1 2 6 4 . 4 BTU/HR HEAT TRANS 15653.1 BTU/HR HEAI LOSI 6 1 1 . 6 BIU/HR PERCENT HEAI LOST 3.76 HEAI FLUX TRANS. BTU/S3FI-HR 8 9 8 5 7 . NUSSELI NO 10O.0 RF1IM 0.754 RkALL 0.141 R10IAL 0.895 SOFT-HR-UEG F / 8 I U L O C A L I Z E D WALL TEMPERATURES (UEG.F1 T216 12 35 T255 1273 T295 1315 T 3)5 T 3 5 5 T ) 7 5 T395 T 4 1 5 T428 T I N DEG.F DEG.F DEG.F OEG.F OtG.F OEG.F OEG.F OEG.F OEC.F DEG.F OEG.F OEG.F OEG.F 0.0 174.6 1 74.6 162. 1 162.1 163.7 160.2 179.4 0.0 167.2 197.7 0.0 127.0 0.0 1 8 3 . 7 135. 1 164.6 i n ) . 1 J 4 9 . 3 1 6 ) . ) 131.3 0.0 183.8 2 0 0 . 1 0.0 127.0 0.0 190.8 186.0 165.3 169.6 2 0 5 . 9 1 9 7 . ) 166.4 C O 196.2 7 0 4 . 0 0.0 127.4 0.0 194.7 192.7 190.4 191.6 2 1 C. 7 147.4 1 9 ) . 5 0.0 2 0 1 . 7 2 0 9 . 6 0.0 127.4 0.0 197.4 195.8 143.5 145.6 2 1 1 . ) 700.5 1 4 6 . 6 0.0 205.2 2 1 7 . 1 0.0 127.0 0.0 2 0 4 . 4 202.8 200.4 2 0 3 . 2 220.9 7 C 3 . ) 2U5.5 C 0 215.9 222.6 0.0 177.0 0.0 216.7 215.6 215.6 717.5 7 34.9 774.0 7 7 1 . 3 C O 234.6 2 4 1 . 7 0.0 126.3 0.0 2 2 4 . 0 221.2 224.4 227.0 2 4 o . 2 7 ) 2 . 7 2 3 1 . 7 0.0 2 4 4 . 9 25 3.0 0.0 177.4 0.0 2 3 2 . 7 2 3 1 . 1 211.8 7 ) 7 . 6 253.7 242.4 74 1.6 0.0 256.3 2 6 7 . 0 0.0 177.4 0.0 236.7 239.1 240.6 7 4 2 . 9 202.2 244.4 74 7.0 0 . 0 211.3 7 7 8 . 9 0.0 177.0 0.0 247.4 246.6 228.2 2 4 2 . 5 2 72.9 2 5 ) . ) 2 5 5 . 9 0 . 0 227.4 24 1.7 0 . 0 127.4 TOUT OEG.F 149. I 1 0 . 9 1^0. 1 l*.9.9 149.9 1 10. 8 1*9.5 144 . 1 IM O E L T A H R TIME OEG.F OEG.F XIOOO HOURS 18 1.9 22.5 162" 5 0 . 6 1 6 0 0.0 188.3 2 2 . 1 1422.1 0.7C32 0.02 19 1.4 22.5 1798.6 0.7701 0.2 1 196.2 22.9 1 1 4 7 . ) 0 . 5352 0.45 201.1 2 ) . 0 1137.5 0 . E 6 3 0 0 . 6 7 209 .4 2 ) . 0 9 4 9 . 7 1.0C01 1.15 2 2 4 . 9 22.5 8 ) 0 . 2 1.2044 1.95 2 3 4 . 2 7 7 . 1 7 39.9 1.3316 2. 76 2 4 4 . 0 21.7 6 6 ) . 1 1.5C6I 3.41 2 ) 9 . 5 21.7 7 0 2 . 1 1.4244 3.95 2 4 6 . 2 22.1 6 5 7 . 0 1.5220 4.45 L O C U I / t O f CJl IN 6 Pt SI STAFJCf I S O F I - H K - D E G F / R T U l X I CO.000 1215 12 35 T254 T i 75 1295 1 ) 1 5 1335 1 154 1175 1 ) 4 5 1415 1428 T I N TOUT RFM D E L T A H RTOI TIME OEG.F OEG.F OEG.F XIOOO HOURS 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 O.C 0.0 171.0 14 4.5 0 . 0 22.5 1621.5 0 . 6 1 6 0 0.0 0.0 10.10 11.35 6. ) 0 1. M 1 1 4 0 3.51 ? . I 9 0.0 I .75 8.74 0.0 177.0 1 4 9 . | 7 . 16 2 2 . 1 142/.1 0. ?C 12 0.07 0.0 1 7.96 14.41 3.30 6 . 10 74 74 13.54 10.07 C O 10.01 17.45 0.0 177.4 149.9 1? . 64 2 7 . 5 17V6.6 0 . 7 K.I 0 . 2 ) 0.0 27.11 70.14 9. 13 17.66 74 46 14. 14 1 '.. 71 u.n 16.06 19.00 0.0 177.4 1 5 0 . ) 1 6 . 19 2 2.9 11/7.3 0 . 6 ) 3 7 0.44 0.0 25.14 7 ) . 6 1 12.66 1 5 . 26 17 .67 7 7.65 1 9 . 7 0 O.o 19.94 21.41 o.o 177.0 14 1.9 21 . 46 73.0 11 17.5 0 . « 3 1 0 0 . 6 7 0.0 1 3 . 12 31.40 70.39 71.46 4 1 . 4 7 11.76 7 4 . 1 1 0.0 11.94 13.41 0.0 177.0 144.9 3 0 . 68 2 3.0 9 4 4 . 7 1.000 ) 1.15 0.0 4 6 . e 4 45.66 J 7 . 70 34. 14 6 1 14 4 8 . 76 4 6 . 6 ? 0.0 5 ? . 70 44.46 0.0 173. 1 1 '.0.8 4 7 . 66 2 2 . 5 8 ) 0 . 2 1.7043 1.45 0.0 54.97 5 4 . t i l 47,. 44 44.44 44 4U 5 6 . 4M 4 7.67 o.o 46.76 47.04 0.0 177.4 14 1.5 4 3 . ?? 27.1 1 39. 9 1. 1316 2. 73 0.0 6 4 . 6 ) 65.06 4 7.4 4 4 1. 14 6/ . M4 6 4 . 74 71.41 C O 76.86 67.47 o.o 127.4 1 4 9 . | 70 . 30 21.7 6 6 ) . 1 I.408 1 3.4 1 0.0 11.15 71 . 77 63.04 6 7. 40 6 7 13 11.46 74.74 0.0 76.81 4 0 . ?H 0.0 177.0 148.4 4 4 . 1 1 7 1 . 7 707. 1 1.4/44 ) . 4 4 0.0 60.95 6 0 . 12 61.2? 6 7.16 49 . 2 ) 61.4 1 6 4 . 7 0 0.0 4 4 . 6 9 64.46 o.o l ? 7 . 4 149.5 71 . 62 22.1 6 5 1 . 0 1.5220 4.45 263 « « * « » * * R U N N 0 6 5 . * • * * * • • f ERR IC OXIDE CONC (PPHI 2 1 1 0 . VO L I S . 1 3 . 5 0 AMPS: 3 5 4 . H E M now suppiitr I6H0.i H E M I l U X S U P P l l l D 9 3 6 ) 2 . a r u / i m BIU/SOFT-MR BETAO.IO! 10R = T I N L E 1 1 2 7 . 0 DENSI1Y:Q.986 GRAM/cf. 1 O U U E U 5 7 . 0 DEC f DEC r FLOW RATE 0.1442 10S.-VSEC AVG IEHP: 142.0 OCC F KINEMAT IC V I S C 0 S I T Y : 0 . 4 6 7 SO.CM/SEC F I U I O VELOCITY 3.666 F T / S E C REYNOLOS NO 2 C 8 5 0 . 6 P R A N D K NO 2.13 HEAT SUPP 16310.7 BTU/HR HE AI TRANS I S 6 5 3 . I BIU/HR HEAT LOST 63 7.7 BIU/HR PERCENT HEAT LOST 4.03 HEAT F LOX TRANS. C10/SQFI-HR 8 9 B S 7 . N U S S E l l NO 100.0 RF I LH 0.T54 RMA1L 0.141 RTOTAL 0.893 S O F I - h R - D E C F / B I U LOCAL 1215 DEC.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 I2E0 WALL 1235 OEG.F 186.8 187.6 187.2 187.6 186.0 167.6 187.6 186.0 168.8 l f t . 4 189.2 190.0 190.0 190.4 190.4 TEMPERATOKES 1255 1275 CCG.F 18 7.2 168.0 187.6 ISR.O 168.4 193.4 169.4 169.4 189.2 166.4 189.2 190.4 190.0 190. 4 190.6 O E O . r 196.6 196.6 196.6 197.0 196.6 196.2 197,0 196.6 197.4 I 97. 0 197.8 199.0 199.0 199.0 199.0 IDEC.F T2<5 D I G . I 196.6 196.6 196.6 1 ) 7 . 4 19 7.4 196.2 197.0 197.0 197.4 197.4 197.8 199.0 198.6 191.0 199. 7 T 3 I 5 D t G.F 199.6 199.0 I 7 7.0 199.3 1 9 9 . 3 19;.6 19 1.3 1 9 1 . 3 1 9 ^ . 1 1 9 9 . 3 1 9 * . I 2 6 0 . 9 2C0.5 ?un. 9 1 335 OEG.F I 84.5 184.9 1 8 4 . 7 1 05 . > 135. 1 164.1 1 8 5 . 3 185. I 136. 1 1 6 5 . ) 135. 7 1 36. 5 186.5 136.6 186.5 1355 i l E G.F 194. 3 1 9 4 . 7 1 9 4 . ) 1 9 5 . 1 1 9 5 . I 1 1 4 . 3 194.7 1 9 4 . 7 1 9 4 . I 1 9 4 . 7 1 9 5 . 1 196.2 195.8 196.8 196.2 T 3 7 5 OEG.F 0.0 C. 0 0.0 0.0 C O C. 0 0.0 n.o C O C O 0.0 0.0 T ) 9 5 OEG.F 203.2 203.2 2 0 3 . 6 203 .6 2 0 4 . 4 2 0 4 . 0 2 0 4 . 0 2 0 3 . 6 2 0 4 . 0 2 0 4 . 0 204 .4 205.7 204.6 7 0 4 . 3 205.2 T 4 I 5 DEG.F 2 10.2 2 0 9 . 3 710.2 2 1 0 . 6 2 1 1 . 0 2 11.0 2 1 0 . 2 2 10.2 2 1 0 . 6 210.6 210.6 2 1 1 . 7 21 1.0 2 1 1 . 7 212.1 T42B OEG.F 0.0 0.0 0.0 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T I N D E G . F 127 .0 17 1.0 177.0 127.0 127.4 127.4 177.4 177 .0 177.4 127.0 12 I .0 127.0 127.4 177.4 127.0 TOUT DEG . F 157.0 157.0 157.0 157.0 157.0 157.0 157.0 157.0 147.0 151.0 156,6 1S7.0 15 7.0 157.0 161.0 TP CEG.F 195.3 195.5 195.6 196.0 196.7 195.7 195.9 196.0 I 9 6 . 1 1 9 6 . I 196.6 197.6 197.3 197.6 197.9 D E L T A H OEG.F 10.I 1 1 3 5 . 30.1 1 ) 3 7 . 30.1 1 3 ) 0 . 30.1 1 1 1 9 . 29.6 1 3 2 1 . 21.6 13 34. 2 9 . 6 1 326. 30.1 1321 29.6 132C. 30.1 1 3 1 3 . 29.7 1302. 30.1 1 2 d 2 . 29.6 1 2 9 5 . 7 9 . 6 1 2 0 9 . 30.I 12 7 8. X 1000 0 . 7 4 8 6 0.'5Go 0.7515 0 . 7 5 7 9 0 . 1363 0.7492 0 . 7 6 ) 9 0.7567 0 . ' 5 ) 7 0 .7536 0 . 76 ' i 0 . 7 /95 0.7/21 0.7751 0.7820 T I HE HOURS O.U 0 . 1 0 0 . 15 O . l f 0 . 2 3 0 . 33 0 . 37 0 . 4 5 0 . 3 ? L . l ' 1.35 1.4) 1.60 1 . L O C A L I Z E D FOULING R E S I S T A N C E I SOT T-HH-OE G l / R T U I XI o n , 090 1715 1235 1255 1/75 1296 T J I 5 1335 1355 1375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.37 (1.44 0.87 1.31 0.87 0 . 81 1.11 2.18 1. 75 2.6? 1.49 3.41 3.91 3.1) 0.0 0.0 0.0 0. 4 1 0.0 0.0 0. 4 3 0.0 0 . 0.4 ) 7.60 7.60 0.0 0.0 0.87 0.91 U.O 0.41 6.4 ) 0.6/ 0. 67 1. 30 / . 6 » 2. I I 7.61) J.46 0.0 U . 4 I 0.4 1 U . 6 7 0 . 67 0.0 0 . 6 / 0 . H / I . 10 / . 49 0.44 0.44 0.6/ 0.3 1 0. 4 4 n.67 1. II 0. 87 7.19 2. IV n.o 0.67 0.8/ o . n 0.4 1 0.4 1 0.41 0.4 1 11.9 7 7.17 I . /4 I . 74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n.o C . l l n . n o.o o.o 1 ) 1 5 0.0 0.0 0.4) 0 . 4 ) 1.21 0.86 0.P6 0.4 1 0.66 0 . B6 1 .21 2.15 1. /2 I . 72 7.14 U N EG.F 0.0 0 . 4 3 0 . U 6 0. 8 6 0 . 0 0 . 0 0 . 4 1 0.4 I 0 . 4 ) 1.11 0 . 8 6 1. 'I 7.14 0.0 0.0 0.0 0.0 0 . 0 0.0 0 . 0 0.0 0.0 0.0 n.o 0.0 77.0 77.u ^7.4 TOUT OEG.F .47.0 157.0 ; I .o 15'.0 13 '. 0 I 5 /.0 I 6 / . I Ii. n l'.6.6 ',1.11 •. r .0 D E L I A OEG.F 1 0 . I ) 0 . I 1 0 . I 3 0 . 1 0.24 0 . /2 0.97 2 1.6 0.31 7 9.6 0 . 6 6 /1.6 >0. I 79.6 O . M 10.1 1.40 ?')./ 2.3 3 JO.I 7.7? />.4 7.31 / ) . 6 7.60 10,1 0.68 I .1)6 1 3 ) 5 . 8 1 1 J 7 . 2 1 1 ) 0 . 6 1119.5 I 3/1.4 1334.8 I 1/6.4 13/1.5 1 J / 0 . 6 1 1 1 " . ) I 11 ) / . 5 1 /'I/. 9 1/93.| I / 'I /. 9 12/8.1 RIOT XIOOO O.7436 0 . '566 0 . ' 3 1 3 0 . ' 3 ' I 0 . 7368 0 . ' 4 ) 7 0 . /3 19 0 . 736 / 0.'3/7 (J. V,Vh U.ILta I). 7 793 0 . 7/71 II. 7/3) O./b/0 TIME HOURS 0.0 0 . 10 0 . 13 0.18 O./F 0 . 11 U . 3 / 0.43 . 97 264 f C R R I C U X I l l E CONC IPPM| 2 1 ) 0 . V O I T S . 1 3 . 5 0 AMPS: 3 5 6 . H E A 1 ILOW S l ' P P l l i . 0 1 6 ) 5 6 . « H E M f l U X S u r P l l L O 9 1 6 9 1 . B I U / H R P l U / S O f l - t -R BE1A0.301 TL'R.TINLE1I77.4 UFNSI I Y : 0 . 9 B 6 GRAM/CC r 0 U 1 1 E 1 1 5 0 . 1 D E C r OEG f H O W S M C 0.1887 LOS.M/SEC AVG TEMP:I l a . 9 DEG F K I N t K A I IC V I S C 0 S 1 T Y : 0 . 4 7 9 SU.CM/SEC F L U I D V C I O C I I V A . 7 9 0 F I / S E C REYNOLDS NO 2 6 5 7 3 . 5 P R A N U I l NO 3.02 HEAT SUPP 16356.6 BIU/HR HEAT 1RANS 15619.7 BTU/HR HE Al LOSI 737.1 BTU/HR PERCENT HEAT LOST A . 5 1 HEA1 f l U X TRANS. B l U / S C H - H R 8 9 6 6 5 . NUSSELT N3 121.6 RFILM 0.623 RWALL 0.143 R 1 0 I A L 0.765 SOFT-HR-OEG F / B T U L O C A L I Z E D FOULING R E S I S T A N C E I 5 C F T - H R - D E C F / B T O I X I 0 0 , 0 0 0 1215 T 2 3 5 1255 1275 T/95 T315 T335 T355 T 3 7 5 1395 7*15 T42 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.25 10.56 10.56 7.05 9.25 9.25 12.76 13.19 14.51 16.25 19.31 21.92 2 3 . 2 3 24.96 26.70 30.60 31.89 34.46 35.35 37.93 40.06 44.60 49.07 52.06 36.01 59.28 59.70 6 0 . 9 7 6 1 . 6 7 6 2 . 6 6 63.61 6 5 . 1 9 0.0 8.37 9.25 9.25 e.37 9.69 7.93 10.13 11.44 11.68 I 3 . 6 3 18.01 14.88 20.67 19.75 20.62 25.41 27.58 28.68 30.17 32.77 3 5 . 36 38.60 4 3 . 5 3 4 6 . 9 5 52.07 52.60 52.92 3 4 . 2 0 53.48 56.75 3 7 . 17 6 8 . 4 5 0.0 7.88 8. 76 6.32 5.70 6.57 7.45 12.24 11.1 1 14.42 17.74 14. 65 16.72 16. 16 19.31 18 . 76 27.65 24.38 26.54 27.83 30.41 32.56 36.13 43.75 47.06 34.26 15.11 35.56 17. 70 38.96 39.64 41.12 43.75 0.0 6.57 7.01 7.01 5.70 7.45 7.88 8.76 10.94 9. 63 IC.04 16. 16 16. 59 1 7.89 2 0 . 06 2 1 . 79 2 6 . I I 2 6 . 26 10. 4 I 31.70 1 ) . 85 35.56 4 1 . 54 4 6 . 65 50.47 4 4 . 52 4 5 . 38 4 5 . 8 0 4 7.30 4 8 . 35 4 9 . 70 50.47 6 7 . 16 0.0 7.00 7.88 7.88 7.88 10.49 1 0 . 4 9 6.57 9.62 10. 06 16 . 58 14.41 15.71 17.45 19.61 2 4 . 17 2 6 . 5 2 2 5 . 2 3 27.38 29.96 32.97 38 . 53 4 4 . 5 0 4 6 . 32 2 4 . 6 0 2 5 . 6 6 2 6 . 0 9 26.67 30.39 31.25 30.19 32.11 0.0 4 . 4 0 6 . I 5 7.03 3 . 9 6 6 . 5 9 7 . 9 1 1 0 . 9 7 1 4 . 0 3 13. 5 9 1 6 . n 2 0 . 3 5 2 3 . 16 2 4 . 4 6 2 6 . 1 9 2 0 . 35 3 1.60 34 . 8 1 3 7. 3 1 3 8 . 6 7 4 0 . 6 1 4 3 . 8 1 4 e . 9 2 5 4 . 4 4 59.75 4 2 . 5 3 4 2 . 3 3 4 7 . 53 4 3 . 38 4 5 . 0 9 46.61 4 6 . 7 9 0.0 6.59 Z.47 7.03 7.03 10.09 11.41 14.46 1 7.08 1 7.51 17.25 2 3 . 1 6 2 7 . 0 5 2 8 . 78 3 0 . 0 7 3 1 . 3 7 3 1 . 37 34.61 36.96 3 9 . 5 ) 4 2 . 10 43.81 4 9 . 77 5 5 . 2 9 3 9 . 10 59.32 3 ) . 9 5 33.52 34.81 16. 10 3 6 . 9 6 17.62 39.96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C O 0.0 C O C O 0.0 o.o 0.0 0.0 0.0 7.42 7 .86 8.29 4.81 8.73 10.47 15.24 1 7.41 1 7.64 . 3 . 7 0 2 5 . 1 7 2 6 . 4 6 28.19 2 9 . 8 9 3 2 . 4 6 38.86 41.84 4 1.96 46.08 44.62 47.79 55.37 60.4 | 65.01 30.32 3 0 . 37 3 0 . 75 37.03 31.74 34.60 3 5.68 36.01 0.0 6.95 7.39 6 . 3 ? 7.82 12.15 14.74 17.75 16.18 1 0.42 13.01 19.90 24.19 2 6 . 76 2 8 . 6 9 31 .45 2 5 . 4 7 3 0 . 6 0 3 4 . 0 0 36.98 39.52 4 1 .64 50.07 55.52 60.94 46.28 4 7 . I 2 47.54 4 9 . 2 7 5 1 . 3 1 5 1 . 7 5 5 2 . 5 6 54.68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 I N TOUT DEG.F OEG.F 127.0 149.9 127.4 150.3 127.4 150.3 127.4 150.3 127.4 160.3 127.4 150.3 127.4 150.3 127.8 150.6 127.4 1 5 0 . 3 127.4 149.9 127.4 :;9.9 127.4 150.3 127.4 149.9 127.4 149.9 127.4 1 5 0 . 1 127.4 149.9 127.4 149.9 127.0 1 4 9 . 5 127.4 149.9 127.4 149.5 127.4 149.9 127.4 149.5 127.4 149.9 127.6 149.9 127.6 149.9 127.4 150.3 127.4 150.3 127.4 149.9 127.4 149.9 127.4 149.9 127.4 149.9 127.4 149.9 127.4 150.3 RFM 0 . 0 7. 16 6.04 7.99 6.48 9 . 0 0 9.72 1 2 . 10 13.69 13.32 14.67 19.30 2 0 . 9 3 22.42 2 3 . 9 5 25.68 2 8 . 5 2 3 1 . 1 9 3 3.09 34 .86 3 7 . 33 39.28 4 5 . 1 0 5 0 . 29 54.24 4 3 . 5 9 4 1 . 32 4 1 . 6 0 4 3 . 1 7 4 4 . 6 9 4 5 . 39 4 6 . 1 9 4 8 . 0 3 D E L I A OEG.F 23.0 2 2 . 9 22.9 2 2 . 9 22.9 2 2 . 9 2 2 . 9 2 2 . 9 2 2 . 9 22.5 22.5 2 2 . 9 2 2 . 5 22.5 2 2 . 9 22.5 22.5 22.5 27.5 2 2 . 1 2 7 . 5 2 2 . 1 22.5 22.1 2 2 . 1 22.9 2 2 . 9 22.3 22.5 2 7 . 5 2 2 . 5 22.5 2 2 . 9 1644.4 1452.7 1 4 2 9 . 3 1 4 2 9 . 6 1 4 6 6 . 7 1 3 9 9 . 8 1 3 7 9 . 9 1 34 2 . 0 1266.7 1 2 9 2 . 0 1203.9 1180.4 1 1 5 0 . 9 1 1 2 7 . 2 1 1 0 5 . 9 1 0 7 6 . 5 1 0 ) 4 . 1 9 9 2 . 7 9 7 6 . 8 9 5 3 . 0 9 2 9 . 2 9 0 4 . 6 8 3 0 . 3 6 0 6 . 6 7 75.5 881.2 9 1 6 . 3 9 1 1 . 2 8 9 4 . 7 8 79. 9 8 72. ) 6 6 4 . 8 8 4 9 . 6 RTOT X 100. S 0 . 60 1 0.66 35 0.69 .12 0.69 22 C. 68 65 0.T1 to 0.72 . ,37 0. 74 .17 C. 77 ' . 32 0 . 71 - . 4 ) 0. 7' • * G 0 . 8 ' - . 70 0 . 9< 1.92 o . e i • 1.97 0. 9' 2.03 0 . 9 . 2.20 0.9- 2.40 1.0' 2.53 1.0 . 2.67 1.0 2. 17 1.0 2.65 l . l ! 3.03 1.1 3.26 1.7 3.55 1. 21 1. 72 i . i : 3.93 1.0' 4.03 1. 0'. •. 4.12 i . n 4. JO 1.13-.. 4.42 1.14 4.32 1.15 4.66 1.17 4. 38 L O C A L I Z E D W A l l 7715 1235 TEMPERATURES T255 T275 DEC.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 OEG. 174.6 182.9 16 4 . 1 1 6 4 . 1 160.9 162.9 187.9 U 6 . 1 166.5 187.6 169.2 191.9 194.3 195.3 197.0 196.6 202.1 703.2 705.5 206.3 206.6 2 1 0 . 6 214.6 2 1 8 . 6 7 2 1 . 1 2/6.6 2 2 7 . 8 2/6 . 7 2 7 9 . 3 7 1 0 . I 7 ) 0 . 6 7 ) 1 . 6 7 3 J . I OEG. 174.2 191.7 162.5 182. 5 181.7 182.9 161.3 183.3 184.5 184.9 186.5 190.4 191.2 1 9 2 . 7 191.9 112. 7 191.0 199.0 700.1 2 0 1 . 3 20 1.6 206.9 709.0 21 I. I 7 1 6 . 3 220.9 221.1 7 7 1 . 7 277.6 724.0 7 7 6 . I 7/4.3 776.6 OEG . F 162.5 189.6 190.4 190.0 191.6 166.4 189.2 191.5 194. ) 196.5 193.5 196.6 196.6 197.0 199.6 1 9 9 . 3 2 0 2 . H 204.4 2 0 6 . I 207.3 2 0 9 . R 211.1 2 1 6 . I 2 2 1 . ) 224.7 211.1 / I 4 . I I 2 14.4 2 1 4 . I 21 7.5 /1".'/ 719.4 7/1.1 IOEG.FI 1795 DIG.F 162.5 186.4 IB " . 8 IU8.8 167.6 109.2 139.6 190. 4 197.3 191.7 197. 3 197.0 197.4 199.6 7 6 0 . 5 707.1 /05.1 20/.9 709.6 211.0 717.9 714.4 719.6 7/4.4 7 7 7 . fl 7/7.4 723.2 // 1.6 //'.. I 7/s. 9 7/6.'. 7/1.1 7/9.) T315 7 335 7 3 5 5 OEG.F D^G.r DEG.F 163.3 176.6 1 76.6 169.6 182.5 186.5 190.4 194.1 185.3 190.4 134.9 134.9 190.4 1 8 2 . 1 1 3 4 . 9 1 9 2 . 7 1 6 4 . 5 187.6 1 9 ? . 7 1 3 5 . 1 188.6 169.2 138. 4 191.5 191 .9 191.2 1 9 3 . 9 1 9 2 . 3 190.9 1 9 4 . 1 193.9 1 1 1 . 1 1 9 5 . 6 116.2 197.0 1 9 9 . 3 196.2 1 9 9 . 3 2 0 2 . 6 197.4 200.5 204.4 199.0, 2 0 ? . 1 2 0 5 . 5 2 0 9 . 9 204.0 2 0 6 . 7 203.2 207.1 7 0 6 . 7 707.1 2C9.M 7 0 9 . 8 20>.9 217.1 7 1 1 . 1 20 7.9 21 1. 1 7 1 4 . 0 210.2 7 1 3 . 7 7 1 6 . 1 2 1 7 . 9 ? 1 7 . 1 ?1 7.9 21 7.9 222.4 2 7 1 . 2 723.2 2 7 7 . 4 778.2 226.4 7 l o . H 7 ) 1 . 6 7 0 3 . 5 7 1 6 . 1 7 1 1 . 9 7 0 4 . 3 714.1 7D9.0 7 0 6 . 7 7 1 6 . 1 /DR. 6 2 0 9 . 0 717.'. 7 0 9 . 8 / I I I . 6 7 1 9 . 0 7 1 1 . 0 / I 1 . 1 7 11. 4 / I I . / 2 1II. 6 2 7 0 . 3 7 1 7 . 3 / I / . 1 7 / 7 . 1 714.4 T 3 7 5 OEG.F 0.0 0.0 0.0 0.0 0.0 C O 0.0 0.0 C O C O 0.0 0.0 C O 0.0 0.0 0.0 u.o 7 395 OEG.F 166.5 113.1 1.3. 5 113.9 170.8 19 4 . 3 195.9 200.1 2 0 2 . 1 202. 5 203.2 2 0 1 . 0 210.2 2 I I . 7 2 I 3 . 3 2 I 5 . 6 2 2 I . ) 2 7 4 . 0 2 2 5 . 9 22 '.8 2 3 0 . I 22 I. 3 2 I 6 . l 240.6 7 4 4 . 7 7 l I.6 ? l 1.6 7 I 4 . 0 7 I 3 . 7 7 I 6 . 7 71 '.3 / I I I . 6 7 7 0 . 5 7 4 1 5 D E C . F I 9 2 . 7 I 9 9 . 0 1 9 9 . 3 I 9 B . 6 1 9 9 . 7 2 0 3 . 6 2 0 5 . 9 7 0 8 . 6 2 0 9 . 0 2 0 2 . 1 204.4 2 I 0 . 6 2 I 4 . 4 2 I 6 . 7 21 8.6 2 2 0 . 9 7 1 3 . 6 2 2 0 . 2 223.2 2 2 6 . 9 22R.2 230.1 7 3 7 .6 7 4 7 . 5 24 7.4 7 3 4 . 7 2 1 3 . 0 733.4 7 1 6 . 9 7 111.7 7 19.1 7 19.9 7 4 1 . 1 T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 o.o 0.0 0.0 T I N DEG.F 127.0 127.4 127.4 127.4 127.4 127.4 127.4 127.8 127.4 127.4 127.4 127.4 177.4 127.4 177.4 127.4 127.4 177.0 127.4 127.4 127.4 121.4 127.4 177.3 177.6 177.4 177.4 177.4 177.4 1 ? » . 4 177.4 177.4 127.4 TOUT TM DELTA H R T IME OEG.F OEG.F DEG.F X I 0 0 ' (' u-ts 149.9 161.5 23.0 1644.4 0.608 0 150.3 18 7.9 22.9 1 4 3 ? . ? 0 . 6 6 6 ' 05 1 5 0 . 3 I B S . 7 2 2 . 9 1479.3 0.699(. 12 1 5 0 . 3 188.7 22.9 1429.6 0 . 6 9 9 ! 22 150.3 181.3 22.9 1466.7 0 . 6 3 1 ; .5 150.3 189.6 22.9 1399.8 0.7 144 0 1 5 0 . ) 190.2 22.9 1379.9 0.7247 150.8 192.4 22.9 1'42.C 0.7452 1 5 0 . ) 1 9 4 . 0 2 2 . 9 1.66.7 0 . 7 7 7 ? 149.9 193.4 2 2 . 5 1292.0 0 . 7 7 4 9 149.9 194.7 22.5 1261.9 0 . 7 9 1 ? 1 5 0 . ) 198.8 72.9 1 1 8 0 .4 0.e4 72 149.9 2 0 0 . 3 22.5 1 1 3 0 . 9 C 6 6 9 '* 149.9 201.6 22.5 1127.2 0.9672 4 1 3 0 . ) 7 0 1 . 0 22.9 1105.9 0.9042 03 149.9 2 0 4 . 5 22.5 10'6.5 0 . 9 290 • .70 149.9 20 1.1 22.5 1 0 1 4 . 1 0.96 7 I >. 4 0 149.5 2 0 9 . 5 77.5 1 9 7 . 7 1.00' 1 2 . 3) 14 9.9 21 1.2 22.5 9 76. 8 1.021 1 7. 47 141.5 2 1 2 . 8 72.1 9 5 3 . 0 1.041 1 2 . 17 14 9.9 215.1 22.5 9 7 8 . 7 1.0774 7 . 85 14 9.5 2 1 6 . 7 22.1 9 0 4 . 6 I . 1 0 6 3 3. 0 ) 149.9 221.9 2 2 . 5 6 5 0 . 3 1.1'61 S./B 149.9 276.6 2 2 . 1 806.6 1.7393 3. 53 141.9 2 ) 0 . 1 7 7 . 1 7 76.S 1.2694 3. 17 1 3 0 . 3 220.6 2 2 . 9 8 d l . 7 1. 1 148 3. 9 ) 1 5 0.1 716.6 77.9 9 1 6 . 3 I . O ' l l ) 4. 1)3 147.9 7 1 6.6 27.5 9 1 1 . 7 l . 0 9 ' 4 4. 17 1.49.1 7/0.2 77.3 6 9 4 . 7 1 .11)1 4 . 10 I 4 9 . 9 7/1.6 77.6 8 ' 9 . 9 1.1)65 4. 42 I 49.9 2 7 7 . 7 77.5 0 1 7 . 3 1. 1 4 6 ) 4. 5/ I 4 9 . 9 7 7 7 . 9 7 7 . 5 6 6 4.6 1. 1364 4 . 45 1 5 0 . 3 774.6 72.9 849.6 I . I ' M 4. .IN

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
Brazil 57 0
China 17 29
United States 14 0
Egypt 4 0
Canada 4 0
India 2 0
France 1 0
United Kingdom 1 0
Unknown 1 0
Ukraine 1 0
City Views Downloads
Belém 48 0
Unknown 18 1
Beijing 16 0
Mountain View 7 0
Washington 4 0
Calgary 3 0
Hyderabad 2 0
Redmond 1 0
Hangzhou 1 0
Brampton 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items