UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fouling of heated stainless steel tubes with ferric oxide from flowing water suspensions Hopkins, Robert Montgomery 1973-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1973_A1 H66_5.pdf [ 21.08MB ]
Metadata
JSON: 1.0059022.json
JSON-LD: 1.0059022+ld.json
RDF/XML (Pretty): 1.0059022.xml
RDF/JSON: 1.0059022+rdf.json
Turtle: 1.0059022+rdf-turtle.txt
N-Triples: 1.0059022+rdf-ntriples.txt
Original Record: 1.0059022 +original-record.json
Full Text
1.0059022.txt
Citation
1.0059022.ris

Full Text

n/9f  cl  FOULING OF HEATED STAINLESS STEEL TUBES WITH FERRIC OXIDE FROM FLOWING WATER SUSPENSIONS  by ROBERT MONTGOMERY HOPKINS B.E.,  Dalhousie University, Nova S c o t i a T e c h n i c a l M.S., University of Maine, 1 9 5 7  College, 1 9 5 6  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in  the Department of  CHEMICAL  We a c c e p t required  this  ENGINEERING  thesis  as c o n f o r m i n g  to the  standard  THE UNIVERSITY OF BRITISH COLUMBIA J u l y , 1973  In presenting  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r  an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y a v a i l a b l e f o r reference  and study.  I further agree that permission f o r extensive copying of t h i s thesis for s c h o l a r l y purposes may be granted by the Head of my Department or by h i s representatives.  I t i s understood that copying or p u b l i c a t i o n  of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission.  Department of C^~/4<?sr7SC & /  X?f  The U n i v e r s i t y of B r i t i s h Columbia Vancouver 8, Canada  Date  J/  s^&so,  73  &ss7  <T<r s^/s?  ABSTRACT  The fouling behaviour of f e r r i c oxide (hematite) p a r t i c l e s suspended  in water flowing through 0.343 inch  i . d . type 304 stainless steel tubes was experimentally investigated.  Independent variables studied, using micron  and submicron size p a r t i c l e s , were f e r r i c oxide concentration (15 - 3750 ppm), tube Reynolds No. (10090 - 37590) and heat flux (0 - 92460 BTU/ft 2 -hr). For selected runs, fouled tubes were sectioned and the fouling deposit subjected to " i n s i t u " chemical analysis by means of an electron microprobe. During the fouling process, measurements were made of local and average thermal resistance as a function of time.  The resulting fouling curves f e l l  into three  d i s t i n c t categories, depending on the p a r t i c l e concentration and the mode of operation: (I)  At ferric  ppm, no t h e r m a l periods tubes  fouling  oxide could  o f up t o 14 d a y s .  showed  spotty  concentrations be d e t e c t e d o v e r  Microprobe  deposits.  i i  below 100 experimental  examination  o f such  (2)  At f e r r i c oxide concentrations of. 750 ppm  and higher, using  mixed size p a r t i c l e s ,  measurable thermal fouling occurred at a steadily  decreasing  rate, similar to the asymptotic type behaviour reported previously in other fouling systems. the asymptotic condition was hours of operation.  In the present  study,  achieved after about four  Prolonged operation resulted in a  sudden decrease in fouling resistance at localized positions on the test s e c t i o n , followed by refouling of the whole test s e c t i o n . (3)  If the suspension  was  circulated through  the test section at zero heat flux for approximately eight hours and then heating s t a r t e d , the tube commenced fouling thermally at a constant  rate considerably greater than  the previous decreasing rates. Microprobe r e s u l t s showed the d e p o s i t s to c o n t a i n , in a d d i t i o n to i r o n and nickel  and  chromium.  showed n i c k e l the wall values  and  oxygen, s i g n i f i c a n t amounts of  Chemical composition  chromium c o n c e n t r a t i o n g r a d i e n t s  inwards, c o n c e n t r a t i o n s  at the wall  profiles  v a r y i n g from the  to zero at the d e p o s i t - f l u i d  A t e s t s e c t i o n used f o r a s e r i e s of f o u l i n g  typically from  highest  interface.  t r i a l s , when  examined under an electron microscope, was  found to contain  small but d i s t i n c t p i t s . A hypothesis is presented according to which the fouling behaviour of water suspended f e r r i c oxide on  stain-  less steel is controlled by the rate at which crevice corrosion of the stainless steel occurs.  The  corrosion  products p r e c i p i t a t e within the i n i t i a l l y loose structure and  deposit  thus serve to s t a b i l i z e this s t r u c t u r e .  corrosion rate is in turn controlled by the oxygen  The  reduction  rate at unfouled areas on the tube w a l l . Experiments s p e c i f i c a l l y designed to test this hypothesis, such as increasing the unfouled area in an attempt to accelerate the corrosion r a t e , and  removing  oxygen with a scavenger in order to decrease the r a t e , gave results e n t i r e l y consistent with the hypothesis. matical  Mathe-  models based on the hypothesis are explored.  iv  TABLE OF CONTENTS  Page ABSTRACT  ii  LIST OF TABLES  ix  LIST OF FIGURES  xii  ACKNOWLEDGEMENTS  xviii  Chapter 1  INTRODUCTION  1  1.1  The Fouling Problem  1  1.2  Pertinent Prior Work  3  1.3  Problem Area Selected and Objectives of the Research  2  APPARATUS AND MATERIALS  17  2.1  Heat Transfer Loop  17  2.2  Electron Microprobe  28  2.3  Properties of Ferric Oxide Fouling Materials  3  13  32  EXPERIMENTAL PROCEDURES  36  3.1 3.2  36 39  Test Section Preparation Procedure Fouling Run Procedure  v  Chapter  Page 3.2.1  Cleaning of system.  40  3.2.2  Tank f i l l i n g  40  3.2.3  Start-up  41  3.2.4  Elimination of thermal transients.  41  3.2.5  Addition of f e r r i c oxide  43  3.2.6  Operating procedure during t r i a l s  3.2.7  Shut down procedure . . . . . . . . .  44  3.2.8  Fouling deposit sample preparation.  44  . .  .  43  4  COMPUTATIONAL PROCEDURES  46  5  EXPERIMENTAL ERROR STUDY  59  5.1  Influence  of Thermal Transients.  . . . . . .  in Determining Thermal Resistance  60  5.2  Errors Due  to Variation in Line Voltage. . .  63  5.3  Errors Due  to Flow Rate Variations  66  5.4  Errors Due  to Inlet Temperature Variations  5.5  Errors Caused by Wet  5.6  Miscellaneous Errors  5.7  Reproducibility and V a l i d i t y of  .  Insulation  Thermal Fouling Data 6.  RESULTS AND  68 68 70  70  DISCUSSION.  77  6.1  Summary of Fouling T r i a l s  77  6.2  Thermal Fouling versus Time Behaviour. . . .  82  6.2.1  Types of Thermal Fouling Curves Obtained vi  82  Chapter  Page 6.2.2  Effect of Reynolds number and heat flux on fouling curves  86  6.2.3  Effect of f e r r i c oxide concentration on fouling curves  94  6.2.4  Effect of residual tube wall deposits on fouling curves  100  Effect of extended operating time on fouling curves .  104  Fouling behaviour using a prefouled tube  113  Effect of an oxygen scavenger (Na 2 S0 3 ) on fouling behaviour. . . .  117  Effect of f e r r i c oxide p a r t i c l e size on fouling behaviour  121  Influence of local wall temperature on fouling behaviour  131  6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.3  6.4  Pressure Drop Versus Time Fouling Behaviour  135  Fouling Deposit Examination Results . . . .  138  6.4.1 6.4.2  138  6.4.3  Type of information obtained . . . . Results of l i g h t and electron microscopic examination of deposits  140  Electron  microprobe results  141  6.4.3.1  Qualitative nature of fouling deposits  141  6.4.3.2  Quantitative analysis of fouling deposits transverse sections . . . .  149  vii  Chapter  Page 6.4.3.3  6.4.4  6.4.5 7  Q u a l i t a t i v e and quant i t a t i v e a n a l y s i s of d e p o s i t s - core samples  154  Examination f o r p i t t i n g of tube used in f o u l i n g runs 32-70.  1 61  Deposit c r y s t a l s t r u c t u r e  164  CORROSION CONTROLLED FOULING - A PROPOSED HYPOTHESIS  165  7.1  Outline  165  7.2  Fundamentals  7.3  Proposed Mechanism f o r F e r r i c Oxide Fouling  7.4  8  of Working Hypothesis of C r e v i c e  Corrosion  of 304 S t a i n l e s s S t e e l  167  171  Mathematical Models  175  7.4.1  Model  175  7.4.2  Model II  186  7.4.3 7.4.4  Linear fouling C o m p a t i b i l i t y of f o u l i n g model equations with experimental data  189  1  CONCLUSIONS AND RECOMMENDATIONS.  190 195  REFERENCES  199  NOMENCLATURE  203  APPENDICES I II III IV  ELECTRICAL CONNECTIONS AND PRESSURE TAPS . . . .  209  COMPUTER PROGRAMS  210  COMPUTATION OF THERMOPHORETIC VELOCITY FOR RUN 63 EXPERIMENTAL DATA  221 226  vi ii  LIST OF TABLES  Tabl e I II III IV  V  VI  VII  VIII IX X XI XII  Page Equipment Component L i s t  19  Thermocouple L o c a t i o n s on T e s t S e c t i o n s  24  Data Logging System Components  27  P r o p e r t i e s o f F e r r i c Oxide Powder A l l i e d Chemical Batch D344  33  P r o p e r t i e s and P r e p a r a t i o n I n s t r u c t i o n s f o r E c c o c o a t 582 Epoxy R e s i n  37  V a r i a n c e from T a r g e t C o n d i t i o n s T o l e r a t e d f o r Run 39  42  T y p i c a l Log Sheet Showing  Run  O b j e c t i v e and T a r g e t C o n d i t i o n s  47  Output from Program PAR  49  Output from D a t a l o g g e r  50  Data Used f o r F o u l i n g Curve D e t e r m i n a t i o n . . . .  52  Output from Program STOMV Input to Program FOUL Output from Program FOUL  54 58  ix  Tab! e XIII  XIV  XV  XVI  XVII  XVIII  XIX  XX  XXI  Page V a r i a t i o n i n E l e c t r i c a l Power S u p p l i e d to the Test S e c t i o n - Run 13  64  Data from Run 15 to Determine E f f e c t of Honing Tube Wall on Thermal Resistance  71  R e p r o d u c i b i l i t y of F o u l i n g Curve Parameters Obtained by F i t t i n g Data b to the Equation Rf = R f * ( l - e ~ t )  74  Summary of F o u l i n g T r i a l s Run at Low F e r r i c Oxide C o n c e n t r a t i o n s  79  Summary of F e r r i c Oxide T r i a l s Using Mixed-Size P a r t i c l e s  80  E f f e c t of Heat Flux and Reynolds Number on F o u l i n g Behaviour f o r Mixed-Size F e r r i c Oxide 2130 ppm  88  I n f l u e n c e of F e r r i c Oxide C o n c e n t r a t i o n on Parameters b and R-* and I n i t i a l F o u l i n g Rate Obtained by Least Squares F i t of F o u l i n g Data to the Equation Rf = R**(l - e - b t ) . Heat Flux 90,000 B T U / f r - h r (Approx.) Re 26,500 (Approx.) . . . . 96 I n f l u e n c e of F e r r i c Oxide C o n c e n t r a t i o n on Parameters b and Rf* and I n i t i a l F o u l i n g Rate Obtained by Least Squares F i t of F o u l i n g Data to the Equation b t Rf = R f * ( l - e " ) . Heat Flux 44,360 BTU/ft^-hr Re 19,550 Parameters b and Rf* and I n i t i a l F o u l i n g Rate Obtained by Least Squares F i t of bt F o u l i n g Data to the Equation Rf = R f * ( l - e " ) f o r Runs 39, 40 and 41. Heat Flux 44,870 2 B T U / f t - h r Re 25,390, mixed s i z e F e r r i c Oxide Cone. 2130 ppm  x  97  107  Table XXII  XXIII  XXIV  XXV  Page E f f e c t of P a r t i c l e S i z e on F o u l i n g Behaviour. F e r r i c Oxide Cone. 15 ppm Re 25,000 (Approx.)  123  Deposition Coefficients f o r Ferric Oxide as a Function of P a r t i c l e S i z e as Computed from Beal's E q u a t i o n . Tube Reynolds Number 25,360, Bulk V e l o c i t y 3.28 f t / s e c , F l u i d Temperature 212°F  127  Local F o u l i n g R e s i s t a n c e s A f t e r One Hour as a F u n c t i o n of Tube Wall P o s i t i o n (and Hence Wall Temperature). Heat Flux 90,000 BTU/ft 2 -hr, Re 26,500 MixedS i z e F e r r i c Oxide Cone. 2130 ppm  132  Local F o u l i n g R e s i s t a n c e s A f t e r One Hour as a F u n c t i o n of Tube Wall P o s i t i o n (and Hence Wall Temperature). Heat Flux 44,360 B T U / f t 2 - h r , Re 19,550, Mixed-Size F e r r i c Oxide Cone. 2130 ppm  133  xi  LIST OF FIGURES  Figure  Page  1  Heat T r a n s f e r Loop Schematic  18  2  Test Section  23  3  Heat T r a n s f e r Loop E l e c t r i c a l Logging System Schematic  and  Data 26  4  The J e o l  E l e c t r o n Microprobe  29  5  I l l u s t r a t i o n Demonstrating Fundamental P r i n c i p l e s of E l e c t r o n Microprobe Analysis  30  P a r t i c l e S i z e of Mixed S i z e F e r r i c Oxide i n Feedstock and i n F o u l i n g Deposit  34  Apparent Thermal R e s i s t a n c e Versus Time f o r Run 1 on Tap Water  62  Thermal R e s i s t a n c e Versus F l u i d Temperature Rise Run 4 (Tap Water)  67  Thermal R e s i s t a n c e Versus I n l e t Temperature f o r Run 5 on Tap Water  69  F o u l i n g Curve R e p r o d u c i b i l i t y as Shown by Superimposing Data f o r R e p l i c a t e Runs 34, 35, 38, 59  72  F o u l i n g Curve I l l u s t r a t i n g Type Behaviour  83  6  7  8  9  10  11  xii  Asymptotic  Figure 12  Page E f f e c t of Prolonged Operation F o u l i n g Behaviour  on 84  13  L i n e a r F o u l i n g Behaviour  14  I n f l u e n c e of Reynolds Number on F o u l i n g Curves 2 at Heat Fluxes Near 90,000 BTU/ft -hr. Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  89  E f f e c t of Heat Flux and Reynolds Number on F o u l i n g B e h a v i o u r . Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  90  E f f e c t of Heat Flux and Reynolds Number on F o u l2 i n g Curves at Heat Fluxes < 44,360 B T U / f t - h r . Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  91  E f f e c t of Mixed S i z e F e r r i c Oxide C o n c e n t r a t i o n on F o u l i n g2 Behaviour. Heat Flux 90,000 B T U / f t - h r (Approx.) Re 26,500 (Approx.)  98  E f f e c t of Mixed S i z e F e r r i c Oxide C o n c e n t r a t i o n on F o u l i n g5 Behaviour Heat Flux 44,360 B T U / f t - h r Re 19,550  99  15  16  17  18  19  20  ,  85  Comparison of F o u l i n g Behaviour f o r a Clean Honed Tube (No Residual Deposit) with a P r e f o u l e d Tube Subjected to High V e l o c i t2 y C o o l i n g . Heat Flux 44,870 B T U / f t - h r , Re 25,400, Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  103  F o u l i n g Behaviour over an Extended Time P e r i o d 2 f o r Run 34. Heat Flux 44,360 B T U / f t - h r , Re 19,500, Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  105  xi i i  Figure 21  22  23  24  25  26  27  Page Lower P o r t i o n of Test S e c t i o n F o u l i n g Behaviour F o l l o w i n g Honing of Upper P o r t i o n at 2.5 Hours and High V e l o c i t y Cooling at 5.5 Hours. Heat Flux 44,870 B T U / f t 2 - h r , Re 25,390, Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  108  Upper P o r t i o n of Test S e c t i o n F o u l i n g Behaviour F o l l o w i n g Honing at 2.5 Hours and High V e l o c i t y C o o l i n g at 5.5 Hours Heat Flux 44,870 B T U / f t 2 - h r , Re 25,390, Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  109  E f f e c t of Tube C o n d i t i o n at Time Zero on F o u l i n g Behaviour. Mixed S i z e F e r r i c Oxide Cone. 2130 ppm Heat Flux 91400 B T U / f t 2 - h r , Re 26,580  115  Comparison of F o u l i n g Rates f o r a Clean Honed Tube (Curve 1 ) , a P r e f o u l e d Tube with an Oxygen Scavenger i n the System (Curve 3 ) , a P r e f o u l e d Tube with no Oxygen Scavenger (Curve 2 ) . Mixed S i z e F e r r i c Oxide 2130 ppm, Heat Flux 89,670 B T U / f t 2 - h r , Re 26,580  1 19  Local F o u l i n g R e s i s t a n c e A f t e r One Hour Versus Local Wall Temperature at Time Z e r o . Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  134  Pressure Drop Increase as a Function of Time f o r an Asymptotic Type F o u l i n g Run (Run 63) and a L i n e a r F o u l i n g Run (Run 64) Heat Flux 91,400 B T U / f t 2 - h r Re 26,580, Mixed S i z e F e r r i c Oxide Cone. 2130 ppm  137  Scanning E l e c t r o n Photomicrograph Showing the Nature of the Deposit R e s u l t i n g from the F o u l i n g of Aqueous F e r r i c Oxide Suspensions on 304 S t a i n l e s s S t e e l (The Photomicrographs are a Stereo P a i r )  142  xiv  Figure 28  29  30  31  32  33  34  35  36  Page Image of a Core Sample Obtained with the E l e c t r o n Microprobe  143  E l e c t r o n Microprobe Photomicrograph of a T y p i c a l Deposit Showing the Back S c a t t e r e d E l e c t r o n Image or Topography (Above) and the Absorbed E l e c t r o n Image or P h y s i c a l Composition (Below). . . .  144  E l e c t r o n Microprobe X-Ray I n t e n s i t y Photomicrograph of a T y p i c a l Deposit Showing the D i s t r i b u t i o n of Iron (Above) and Nickel (Below)  146  E l e c t r o n Microprobe X-Ray I n t e n s i t y Photomicrograph of a T y p i c a l Deposit Showing the D i s t r i b u t i o n of Chromium  147  E l e c t r o n Microprobe Photomicrograph f o r a T y p i c a l Deposit the Absorbed Image (Above) and the Corresponding I n t e n s i t y Photomicrograph D e p i c t i n g C o n c e n t r a t i o n (Below)  148  Showing Electron X-Ray Oxygen  E l e c t r o n Microprobe Photomicrograph of a Clean Tube Showing the B a c k - S c a t t e r e d E l e c t r o n Image (Above) and the Corresponding X-Ray I n t e n s i t y Photomicrograph D e p i c t i n g Iron C o n c e n t r a t i o n (Below)  150  C o n c e n t r a t i o n P r o f i l e s f o r Iron Nickel and Chromium f o r Run 70 - A Run Which Showed Linear Fouling  152  Chromium C o n c e n t r a t i o n P r o f i l e s f o r Deposits from Run 15 - No Thermal F o u l i n g D e t e c t e d , Run 31 - Asymptotic F o u l i n g , and Run 30 L i n e a r Type F o u l i n g ( D i s t a n c e Scale i s Arbitrary)  153  P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of Chromium (Lower Photomicrograph)  155  xv  Figure 37  38  39  40  41  42  43  44  45  Page Physical Appearance of Core Sample (Upper Photomicrograph) and Relative D i s t r i b u t i o n of Nickel (Lower Photomicrograph)  156  Physical Appearance of Core Sample (Upper Photomicrograph) and Relative D i s t r i b u t i o n of Iron (Lower Photomicrograph)  157  Physical Appearance of Core Sample (Upper Photomicrograph) and Relative Distribution of Oxygen (Lower Photomicrograph)  158  Relative Intensities of Iron and Chromium, and Nickel and Chromium, for a Scan Over a Core Sample (From Linear Fouling Run 70) . . . . . . . .  160  Scanning Electron Photomicrographs Showing the Appearance of the Tube Wall of a Tube Used in 38 Fouling Runs (The Above Photomicrographs are a Stereo Pair) n . . . .  162  Scanning Electron Photomicrographs Showing the Appearance of a Clean Tube Never Used in Fouling Experiments (The Above Photomicrographs are a Stereo Pair) Mechanism of Crevice Corrosion According to Fontana and Greene (37)  163  .  170  Idealized Fouling Curve I l l u s t r a t i n g the Nature of the Fouling Deposit at Various Time Intervals According to the Crevice Corrosion Hypothesis  172  Dependence of I n i t i a l Fouling Rate on Mass Flow Rate for. Runs 54, 55, 39, and 61. Mixed Size Ferric Oxide Cone. 2130 ppm. Wall Temperature at Time Zero 148°F ± 4 . . . .  192  xv i  Figure 46  Page Dependence of Asymptotic Fouling Resistance on Mass Flow Rate for Runs 54, 55, 39 and 61. Mixed-Size Ferric Oxide Cone. 2130 ppm. Wall Temperature at Time Zero 148°F ± 4  xvi i  193  ACKNOWLEDGEMENTS  Thanks are due to the f o l l o w i n g c o - o p e r a t i o n and a s s i s t a n c e throughout  people f o r t h e i r  the course of t h i s  study. Dr. Norman E p s t e i n , under whose d i r e c t i o n i n v e s t i g a t i o n was conducted, f o r h i s guidance Mr. John Baranowski and the Chemical  this  and s u p p o r t . Engineering  Workshop s t a f f f o r t h e i r help with the experimental apparatus. Mr. A r v i d L a c i s of the Department of M e t a l l u r g y U.B.C. f o r h i s a i d i n o p e r a t i n g the e l e c t r o n and  his assistance in interpreting  microprobe  the r e s u l t s .  Mr. Orestes Mayo and Dr. Paul Watkinson  without  whose p r i o r work and help the r e s u l t s obtained here would not have been I  possible.  am indebted to the Department of M e t a l l u r g y  U.B.C. f o r the use of the e l e c t r o n microprobe scanning  electron I  Council  microscope.  would l i k e  to thank the National  and the U n i v e r s i t y of B r i t i s h  financial  and the  assistance.  xv i i i  Research  Columbia f o r  I am also indebted to my wife Barbara and my children  Susan, P a t r i c i a , Michael and Rob for their con-  tinual support throughout this work.  xix  Chapter 1  INTRODUCTION  1 .1  The F o u l i n g  Problem  F o u l i n g , the a c c u m u l a t i o n o f u n d e s i r e d d e p o s i t s on heat t r a n s f e r s u r f a c e s , i s a major i n d u s t r i a l  problem.  For example, i n o i l r e f i n e r i e s coke-type d e p o s i t s form on heat exchanger s u r f a c e s and impede the f l o w o f h e a t . r e s u l t s i n higher c a p i t a l  This  c o s t s , and can a l s o r e s u l t i n  c o s t l y p l a n t shut-downs f o r c l e a n i n g .  In n u c l e a r  reactors,  f o u l i n g d e p o s i t s can become r a d i o a c t i v e , c a u s i n g  difficult  and p o t e n t i a l l y hazardous maintenance  In pulp  problems.  m i l l s , c h e m i c a l d i g e s t e r heat exchangers a r e prone t o f o u l i n g , which r e s u l t s i n i n c r e a s e d steam c o s t s .  Processes  w i t h l a r g e c o o l i n g r e q u i r e m e n t s , such as s u l p h u r i c  acid  p r o d u c t i o n , a l s o e x p e r i e n c e f o u l i n g p r o b l e m s , which g e n e r a l l y m a n i f e s t themselves by i n c r e a s i n g p r o c e s s water requi rements. A l t h o u g h f o u l i n g problems a r e o f economic tance i n a l a r g e number o f i n d u s t r i e s , no s y s t e m a t i c 1  impor-  2  treatment of the s u b j e c t i s a v a i l a b l e i n the l i t e r a t u r e . As pointed out by Taborek et al. ( 1 ) i n t h e i r review paper, "Fouling:  The Major Unresolved Problem i n Heat T r a n s f e r , "  there i s n o t , at the present t i m e , a s i n g l e  reference  book c o v e r i n g the s u b j e c t of f o u l i n g , and heat t r a n s f e r t e x t s do l i t t l e fouling  more than acknowledge  problems.  the e x i s t e n c e of  As a consequence, d e s i g n e r s of heat  t r a n s f e r equipment must r e s o r t to e m p i r i c a l computing heat exchange fouling  i s experienced.  assumption of a f o u l i n g  methods i n  s u r f a c e areas f o r processes where These methods u s u a l l y i n v o l v e the r e s i s t a n c e , which i s added  to the  other heat t r a n s f e r r e s i s t a n c e s to a r r i v e at the t o t a l thermal  r e s i s t a n c e used as the b a s i s f o r d e s i g n .  Such an  approach f r e q u e n t l y causes i n a c c u r a t e d e s i g n , not only because of the u n r e l i a b i l i t y of the f o u l i n g e s t i m a t i o n , but a l s o because i t f a i l s the  to take i n t o account  unsteady s t a t e nature of the f o u l i n g In  summary, f o u l i n g  process i n d u s t r i e s  resulting  process.  i s a major problem i n many in increased c a p i t a l  and process maintenance d i f f i c u l t i e s . there i s l i t t l e  resistance  costs  At the same t i m e ,  i n f o r m a t i o n a v a i l a b l e which enables the  engineer to design adequately f o r heat exchange where fouling  i s a problem.  Because of c u r r e n t p u b l i c concern  r e g a r d i n g energy r e s o u r c e s , process i n d u s t r i e s w i l l  face  3  growing p r e s s u r e s  to conserve and r e c l a i m process  To meet such an o b j e c t i v e w i l l  r e q u i r e an i n c r e a s e d  s t a n d i n g o f f o u l i n g and how to c o n t r o l  1.2  under-  or e l i m i n a t e  it.  P e r t i n e n t P r i o r Work One o f the e a r l i e s t  studies  i n 1924 by McCabe and Robinson the s c a l i n g of e v a p o r a t o r s , first  heat.  p r e d i c t i v e equations  function  of o p e r a t i n g t i m e .  (2).  o f f o u l i n g was made T h i s study concerned  and r e s u l t e d  i n one o f  for fouling resistance  w i t h time to be  proportional  to the amount of l i q u i d e v a p o r a t e d ;  where  = fouling  t  f  as a  McCabe and Robinson c o n s i d e r e d  the r a t e o f change o f f o u l i n g r e s i s t a n c e  R  the  that  is,  resistance  = time  Q = rate of evaporation S i n c e Q v a r i e s as the heat t r a n s f e r  rate q, equation  (1.1)  can be w r i t t e n as  a q  (1.2)  4  For q the basic heat transfer rate equation i s invoked  q' = q/A = UAT =  A  R Q  where  R0 = clean wall  (1.3)  Jr  f  resistance  AT = appropriate temperature difference across the total heat transfer resistance U  = overall heat transfer c o e f f i c i e n t  A  = heat transfer area  Substitution of equation (1.3) into equation (1.2)  yields  dR* A T dt R0 + R f  ( 1 > 4  f  For a constant heat flow, equation (1.2) predicts a linear increase of fouling resistance with time.  In the more  common evaporator s i t u a t i o n s , the overall temperature difference AT i s constant and equation (1.4) predicts an increase  in R^ with time at an ever decreasing r a t e .  does not, however, reach a f i n i t e  limit.  Hasson (3,4) has studied sensible heat exchanger surfaces  R^  scale deposition on  using both calcium car-  bonate and calcium sulphate from water solutions as  )  5  foulants.  He found t h a t d u r i n g the  change i n thermal  initial  resistance occurred.  f e r r e d , to as a n u c l e a t i o n  surfaces.  Following this  existence  to the  transfer  thermal  at a n o n - u n i f o r m r a t e ,  end o f a heated t e s t  inverse  of a n u c l e a t i o n  heat  p e r i o d , s c a l i n g and  f o u l i n g were found to proceed  due presumably  re-  p e r i o d , d u r i n g which i t was  t h a t s c a l i n g n u c l e i form on the  at the downstream  little  T h i s Hasson  considered  highest  stages,  section,  s o l u b i l i t y effect.  (or i n d u c t i o n )  being  The  period is  not  i n c l u d e d i n the McCabe-Robinson a p p r o a c h . Kern (5) and Kern and Seaton the  increase  for  o i l refinery  fouling  (6) have  i n f o u l i n g r e s i s t a n c e as a f u n c t i o n heat e x c h a n g e r s .  i s considered  In t h e i r  surface.  When the r e l e a s e r a t e e q u a l s the  r a t e , a f i n i t e asymptotic The b a s i c d i f f e r e n t i a l  2  where  heat  x  = foulant  deposit  Ki  = proportionality  transfer  deposition achieved.  o f Kern and Seaton  = KjCW - K x x  thickness constant  time  involving  fouling resistance is  equation  of  approach,  to be a dynamic p r o c e s s  both d e p o s i t i o n o n , and r e l e a s e from, the  studied  was  (1.5)  6  K  = proportionality  2  W = mass flow  If  constant  rate  x  = shear s t r e s s at the tube w a l l  t  = time  C  = concentration  of f o u l a n t  i n the  fluid  i t i s assumed t h a t a l l v a r i a b l e s on the r i g h t - h a n d  of e q u a t i o n  (1.5)  are c o n s t a n t  i n t e g r a t i o n from the i n i t i a l  side  w i t h the e x c e p t i o n of x ,  c o n d i t i o n , x = 0, at t = 0,  yields  x = KiCH 1 - e K  K Tt  (1.6)  2  T  2  Assuming t h a t , per u n i t area o f heat t r a n s f e r R  f  =  x  ^' d' <  deposit,  w  n  e  r  e  1 5  t  n  thermal  e  surface,  c o n d u c t i v i t y of  the  then  K CW K k .T 1 - e X  K xt  (1.7)  2  2  Kern found t h a t the dependence tion  (1.7)  of  on t g i v e n by equa-  not o n l y d e s c r i b e d o i l r e f i n e r y f o u l i n g  but a l s o t h a t of s e v e r a l  u n s p e c i f i e d aqueous f o u l i n g  data, systems  7  Watkinson (7) s t u d i e d p a r t i c u l a t e l a b o r a t o r y heat t r a n s f e r gas-oil  fouling  loop u s i n g an i n d u s t r i a l  d i s t i l l a t e and a sand-water  mixture.  in a  sour  In h i s attempt  to f i t h i s data  to a Kern-Seaton type e q u a t i o n  (such  equation  he o b t a i n e d a good f i t f o r the  sand-water  (1.7),  m i x t u r e , but a seemingly poor f i t f o r the g a s - o i l except under c o n d i t i o n s of low heat f l u x . initial  fouling  r a t e fdR dt  distillate  Further,  the  was found to vary d i r e c t l y t=0  w i t h the flow r a t e f o r the lower v e l o c i t y sand-water in l i n e with equation  (1.7),  tance this  R  f  lC]  t  = oo  K  resistance  portional predicts  Through a study of  o f mass flow r a t e on a s y m p t o t i c f o u l i n g = l i 2  T  k  d  runs,  but to vary i n v e r s e l y w i t h  the flow r a t e f o r the g a s - o i l r u n s . the e f f e c t  of e q u a t i o n  resis-  (1 .7) , Watkinson found  f o r the g a s - o i l runs to be i n v e r s e l y p r o -  to the square o f the flow r a t e . t h a t the a s y m p t o t i c f o u l i n g  Equation  resistance  power.  water  runs.  The l a t t e r  r e s u l t was found f o r the  Other i n v e s t i g a t o r s ,  f o u l i n g a s s o c i a t e d w i t h heat t r a n s f e r reactors.  have  surfaces  the  sand-  notably Parkins (8),  ( 9 ) , Hatcher (10) and C h a r l e s w o r t h ( 1 1 , 1 2 )  (1.7)  should  be i n v e r s e l y p r o p o r t i o n a l to the flow r a t e r a i s e d to first  as  Nijsing  studied in nuclear  P a r k i n s i n t r o d u c e d the concept o f f o u l i n g  as  8  an i n t e r p l a y of the mass f l u x of p a r t i c l e s transfer  surface  to the  heat  and the p r o b a b i l i t y t h a t a p a r t i c l e  s t i c k to the s u r f a c e .  His b a s i c e q u a t i o n  will  is  dR, \  where  If  d  f _ = fouling dt  c  i i i i N  u  s  R  f i l m formation  rate  N.  = concentration  of type i  U.  = v e l o c i t y o f a p a r t i c l e toward s u r f a c e i n c l o s e p r o x i m i t y to surface  S.  = sticking probability  C..  = proportionality  Nijsing  movement and the e f f e c t  equation for f o u l i n g  a removal term  discusses  as v e l o c i t y p r o f i l e s  C h a r l e s w o r t h has d e r i v e d an  in nuclear reactors  c o n d i t i o n s by c o r r o s i o n p r o d u c t s o f i r o n . resembles  presumably  the r o l e of Brownian  o f such f a c t o r s  on the d e p o s i t i o n p r o c e s s .  the the  constant  subsequent removal i s a f a c t o r ,  s h o u l d be i n c l u d e d .  particles  under  boiling  His e q u a t i o n  t h a t o f Kern and S e a t o n . In o r d e r to r e c o n c i l e t h e i r data f o r g a s - o i l and  sand-water  f o u l i n g w i t h both the K e r n - S e a t o n e q u a t i o n and  the concepts  o f P a r k i n s and N i j s i n g ,  (13) developed an e q u a t i o n  Watkinson and E p s t e i n  incorporating:  9  (1)  the deposition-release concept of Kern and Seaton,  (2)  the sticking probability approach of Parkins, and  (3)  i m p l i c i t l y , the influence of Brownian movement, as suggested by N i j s i n g .  The b a s i c d i f f e r e n t i a l e q u a t i o n i n t h i s model i s  ^ | = aiJS - a x x  (1.9)  2  where ai and a  2  are  constants  J = the mass f l u x o f p a r t i c l e s normal to the heated s u r f a c e S = the s t i c k i n g p r o b a b i l i t y x = the d e p o s i t In t u r n  J i s r e p r e s e n t e d by a mass rate equation  0 = k  where  thickness  k  c  c  (C  b  transfer  - C )  (1.10)  w  = the mass t r a n s f e r c o e f f i c i e n t f o r r a d i a l t r a n s p o r t of the p a r t i c l e s  <Cb-Cw> • the p a r t i c l e c o n c e n t r a t i o n d i f f e r e n c e between the b u l k of the f l u i d and the tube w a l l . The mass t r a n s f e r  coefficient k  by a momentum-mass t r a n s f e r Friend  (14).  i s r e l a t e d to f l u i d  analogy a f t e r  Metzner and  velocity  10  /m  u  which a p p l i e s  f o r high S  (low d i f f u s i v i t y ) .  £  The s t i c k i n g p r o b a b i l i t y S i s assumed lated  to the s u r f a c e  relationship,  temperature T  s  by an A r r h e n i u s - t y p e  and i n v e r s e l y p r o p o r t i o n a l  dynamic f o r c e s  on a p a r t i c l e  c o n t a c t s the w a l l .  at the  to be re-  to the  i n s t a n t the  hydroparticle  Consequently  T  -E/R  S = ^  (1.12) U  Since f, to the  the  b  Fanning f r i c t i o n f a c t o r ,  shear s t r e s s by the  P  combination of equations  is  related  equation  T = f U  leads  f  2  (1.9,  2 b  /2  (1.13)  1.10,  1.11,  1.12  and  1.13)  to  -E/R  . jf d  t  A •  x  C. - C ) e b  W  T  9 s  A fU. x 2  2  U /f b  b  (1.14)  11  If  i t i s assumed t h a t  (fouling film  thermal  conductivity)  does not vary w i t h x , and t h a t f i s not a f u n c t i o n of (fully  rough f l o w ) ,  then the i n i t i a l  fouling  I F  Ai(C.  f  is  T„  -E/R  dR  rate  w>  C  (1.15)  t=0  i n keeping w i t h the g a s - o i l  data. •k  The a s y m p t o t i c f o u l i n g as R  f  ) i s found from e q u a t i o n r  Ujj/f  gas-oil fore C 1.11)  (1.14)  R  (defined  f  to be p r o p o r t i o n a l  t = oo  f  to  resistance  3  .  E x p e r i m e n t a l l y the r e s u l t s  f o r the  sour b f o u l i n g showed R * to be p r o p o r t i o n a l to For the p a r t i c u l a r case where S = 1 and t h e r e f  w  = 0, the c o m b i n a t i o n o f e q u a t i o n s  leads  ( 1 . 9 , 1.10  and  to the e q u i v a l e n t o f the K e r n - S e a t o n e q u a t i o n ,  which f i t t e d the r e s u l t s  f o r the lower v e l o c i t y  sand-water  runs. Taborek and A s s o c i a t e s ( 1 , 1 5 ) fouling  through an i n d u s t r i a l e x p e r i m e n t a l  mented w i t h l a b o r a t o r y t e s t i n g .  mainly of calcium carbonate, such systems  approached  program  For c o o l i n g water  they have found t h a t c i t y water d e p o s i t s  of  have  supplesystems,  usually consist  and t h a t the f o u l i n g  i s d e s c r i b e d by the p r e d i c t i v e  behaviour  equation  12  dR f _ C (C ) dt 0  where  C C  0  r  exp  r  (i  Vs.  = a coefficient inversely proportional to v e l o c i t y = f u n c t i o n of f o u l i n g  concentration  3  r = exponent E = activation R„ = gas T  g  dR  f  energy  constant  = heat t r a n s f e r = fouling  surface  temperature  rate  T = shear s t r e s s at the heat surface R. = bonding r e s i s t a n c e d e p o s i t to shear Taborek et al. , u s i n g e q u a t i o n  of the  transfer fouling  (1.16) as a s t a r t i n g  were a b l e to p r e d i c t the f o u l i n g  b e h a v i o u r of c o o l i n g  water systems w i t h an a c c u r a c y of ±40% f o r the fouling  resistance  and ±35% f o r the  Both of these f i g u r e s  point,  initial  are based upon one  asymptotic  fouling  rate.  standard  deviation. Some i n v e s t i g a t o r s fluid  have s t u d i e d f o u l i n g  dynamic-particle transport  point of view.  from a Beal  (16,17), f o r example, has d e r i v e d a mathematical model  13  designed to p r e d i c t f o u l i n g s i z e and f l u i d  r a t e s as a f u n c t i o n o f  dynamic p a r a m e t e r s .  a review of t h i s work.)  Others,  ( 1 8 ) , have concerned themselves forces  on the adherence  surface  materials.  of foulants  It the s u b j e c t  if  literature  on f o u l i n g  that  A con-  i s t h a t r e s e a r c h e r s i n the area must be defined  i s to be made toward f i n d i n g  dealing with f o u l i n g  1.3  taken  fouling.  to work toward narrow and w e l l  progress  transfer  contaminant  i s indeed a broad and expanding one.  sequence o f t h i s content  in  surface  to v a r i o u s heat  ( 1 9 ) , who c o n s i d e r  i s c l e a r from the  of  approach has been  c o a g u l a t i o n to be a major f a c t o r  contains  n o t a b l y G a s p a r i n i et al. w i t h the e f f e c t  Yet another  by Kabele and B a r t l e t t  ( S e c t i o n 6.28  particle  objectives  b e t t e r means o f  problems.  Problem Area S e l e c t e d and O b j e c t i v e s of the  Research  Upon c o m p l e t i o n of h i s i n v e s t i g a t i o n o f the two fouling  systems,  g a s - o i l and s a n d - w a t e r ,  stated that further  Watkinson (7)  work was r e q u i r e d to t e s t the  of the v a r i o u s f o u l i n g models he had d e v e l o p e d . ticular,  the type and magnitude o f f o r c e s  validity In  par-  involved in  adhesion had not been i d e n t i f i e d and the p a r t i c l e c o n c e n t r a t i o n had not been v a r i e d , a l t h o u g h i t had been  14  i n c o r p o r a t e d i n the models as a p a r a m e t e r .  A l s o , the  removal mechanism used as a h y p o t h e s i s to e x p l a i n a s y m p t o t i c fouling  b e h a v i o u r had not been d i r e c t l y demonstrated  to  exist. Charlesworth c o r r o s i o n products foul reactors  ( 2 4 ) , who i s s t u d y i n g how i r o n heat t r a n s f e r  surfaces  i n nuclear  ( 1 1 , 1 2 ) , c o n s i d e r s the f o l l o w i n g q u e s t i o n s  t o be  open: (1)  What are the r e l a t i v e importance of d i s s o l v e d and p a r t i c u l a t e matter?  (2)  What are the d r i v i n g f o r c e s f o r contaminant d e p o s i t i o n and r e l e a s e ?  (3)  Does a l l the oxide layer on the f o u l i n g s u r f a c e p a r t i c i p a t e in the foul i ng process?  (4)  What type of bonding  (5)  What e f f e c t does heat t r a n s f e r s u r f a c e m a t e r i a l and f i n i s h have?  (6)  Are there s y n e r g i s t i c e f f e c t s between f o u l i n g s p e c i e s ?  Nijsing  (9) c o n c l u d e s h i s paper on the p a r t i c l e  dynamics o f f o u l i n g mental  i s involved?  by s t a t i n g  r e s e a r c h on f o u l i n g  that " . . . basic e x p e r i -  requires  the use o f methods  which enable the c o o l a n t i m p u r i t y t o be c h a r a c t e r i z e d . " Taborek (1) b e l i e v e s t h a t p r o g r e s s research  requires  in fouling  the s y s t e m a t i c c o l l e c t i o n o f data on a  wide v a r i e t y o f f o u l i n g  systems and the s u b j e c t i o n o f  15  such data to the various predictive fouling models in the l i t e r a t u r e . From the above, i t appears that the main problem area in the f i e l d of fouling i s that of determining what causes the frequently observed induction period, what type of deposit bonding occurs and what factors influence deposit removal.  Solutions to such problems require finding  or, i f necessary, developing means of characterizing fouling impurities and examining the manner in which they are deposited. In an attempt to answer some of these questions, the decision was made to investigate the fouling behaviour of a system consisting of a ferric oxide suspension in water c i r c u l a t i n g through a 304 stainless steel tube.  The reasons  for making this decision were as follows: (1)  Ferric oxide has frequently been i d e n t i f i e d  in fouling deposits in many systems such as boilers and coolers (20,21,22).  Consequently the results of such a  study could have practical (2)  ^^2^3  w a s  application.  apparently  available in pure  form in a range of p a r t i c l e s i z e s , thus opening the possibility of studying  the effect of p a r t i c l e size on f o u l i n g .  16  (3)  F e r r i c oxide is p r a c t i c a l l y insoluble in  water and therefore the study was limited to particulate fouling uninfluenced by fouling from s o l u t i o n . The  decision was also made to use the heat transfer  loop constructed by Watkinson (7) and modified by Mayo (23)  f o r his study, since this would give a degree of  data continuity  useful  in the assessment of r e s u l t s .  S p e c i f i c a l l y , the objectives of the proposed research were as follows: (1)  To determine the effects of f e r r i c oxide  concentration, p a r t i c l e s i z e , heat flux and. f l u i d  velocity  on the fouling c h a r a c t e r i s t i c s of a f e r r i c oxide-water304  s t a i n l e s s steel system. (2)  To determine how well the fouling  results  from such a system f i t fouling models such as those proposed by Kern and Seaton (6) and by BeaI (16,17). (3)  To study, through use of the electron  micro-  probe, the manner in which deposits are laid down in order to gain some insight tion and re I ease.  into possible  mechanisms for deposi-  Chapter 2  APPARATUS AND MATERIALS  2.1  Heat T r a n s f e r All  Loop  fouling  runs were made i n a heat  loop o r i g i n a l l y c o n s t r u c t e d  by Watkinson (7) and m o d i f i e d  by Mayo (23) and the p r e s e n t author logging of data.  transfer  to i n c l u d e  automatic  Mayo (23) has g i v e n a d e t a i l e d  t i o n o f the e x p e r i m e n t a l  set-up,  descrip-  a summary of which  follows.  F i g u r e 1 shows a schematic of the t e s t loop and T a b l e I l i s t s the components size,  along w i t h d e t a i l s  s p e c i f i c a t i o n s and m a t e r i a l s  essential  concerning  of c o n s t r u c t i o n .  f e a t u r e s o f the heat t r a n s f e r  The  l o o p are g i v e n  below. A steam c o i l w i t h f i b r e g l a s s wool each r u n .  jacketted  s t o r a g e tank  held the 200 kg  insulated  of f l u i d  used  The s t o r a g e tank was equipped w i t h a  fluid  for  r e c i r c u l a t i o n p i p e and a compressed a i r l i n e which  extended  to the bottom o f the t a n k .  helped  Both of these f e a t u r e s  to m i n i m i z e s e t t l i n g of the f e r r i c o x i d e s u s p e n s i o n  17  and  MIXING CHAMBER EXIT THERMOCOUPLE TEST  PRESSURE  GAUGE  1  TO  COOLER  SECTION-  DIFFERENTIAL PRESSURE C E L L  T E S T SECTION THERMOCOUPLES  —  SEWER  ROTAMETER  5L'  WATER  PRESSURE GAUGE  PRESSURE CONTROL  VENT  COMPRESSED  AIR  5 psig  r— r  CONTROL VALVE  •=ixi INLET THERMOCOUPLE  ORIFICE PLATE  SAMPLING VALVE  DRAINING VALVE  Figure 1.  CO  Heat Transfer Loop Schematic.  19  Table I Equipment Component  Component  List  Description  S t o r a g e Tank  45 g a l l o n - 3 1 6 s t a i n l e s s  Pump  Sieman and Hinsch Type CAD Model 3102 two-stage s e l f - p r i m i n g c e n t r i f u g a l pump, s t a i n l e s s s t e e l  Motor  3 HP  Flow Meter  S t a i n l e s s s t e e l sharp-edged (3 = 0.301 , 3 = 0.602)  Di f f e r e n t i a l Pressure C e l l s  Honeywell DP meter  Pump P r e s s u r e Gauge  Marsh Bourdon t u b e ,  Test Section  3/8 i n c h O . D . x 0.016 i n c h w a l l t h i c k n e s s type 304 s t a i n l e s s s t e e l seamless t u b i n g  Pressure  S t a i n l e s s s t e e l , spaced 1 9 - 1 / 4 i n c h e s and 4 5 - 7 / 1 6 i n c h e s from lower end o f tube (see Appendix I f o r drawings)  Taps  E l e c t r i cal Termi n a l s  Electrical  steel  drum  orifice  Y227X2-L2 0-200 p s i  B r a s s , s o l d e r e d 20-3/4 i n c h e s and 4 4 - 1 / 3 2 i n c h e s from lower end o f tube (see Appendix I f o r d r a w i n g s ) Cable  Insulated  copper c a b l e s i z e 000 ( C o n t i nued)  20 Table I (Continued)  Component  Description  Test Section Thermocouples  30 gauge copper-constantan heat fused thermocouples shielded with 11/64 inch diameter tinned copper brai di ng  Fluid Thermocouples  Copper-constantan 'Ceramocouples , 1 Thermoelectric Part No. Ce 50418-T with 304 stainless steel sheaths and shielded leads  Globe Valves  Power 1/2 inch stainless steel  By-Pass Valve  Farris No. 1870 spring loaded valve (100 psig rating)  Pressure Transducer  V i a t r a n , model 209, 0-15 psi pressure transducer  Pressure Switch  Honeywell Pressure t r o l l Model L404C  Variacs  Superior E l e c t r i c a l type 1156D mounted on a common shaft  Primary Transformer  General E l e c t r i c Cat. No. 10M36 rated at 10KUA 220/110 volts  Secondary Transformer  Bartholomew and Montgomery 17 KVA 220/40 volts  Ammeter  Weston model 155, 0-2-1/2, 0-5 amp AC dual range meter  Ammeter Transformer  Instrument Service Laboratories 500/5 amps (Continued)  21 Table I  Component  (Continued)  D e s c r i p t i on  Voltmeter  F u j i Denki 0 - 1 5 , 0-30 v o l t AC dual range meter  Cooler  Double p i p e c o o l e r . Overall length 6 feet. I n s i d e pipe 3/8 i n c h O . D . x 0.035 i n c h w a l l th i ckness stai nl ess steel tubing. O u t s i d e pipe 1/2 inch galvanized iron  Cooler Rotameter  Brooks Type 12-1110  Test Section Insulation  I n s i d e - A s b e s t o s powder Outside - 1 inch t h i c k Caposite  P i p e and Tank Insulation  1 inch  Gasket and Seal M a t e r i a l  Teflon  fibreglass  22  insured that the test f l u i d remained saturated with oxygen during the course of a run. A typical heat transfer fouling surface test section used for the t r i a l s is shown in Figure 2.  It  consisted of a 51-J-|- inch long 304 stainless steel seamless tube having an outside diameter of 3/8 thickness of 0.016  inch.  Attached  inch and a wall  to the test section  were two stainless steel pressure taps and two electrical  contacts.  brass  Size and spacings for these compo-  nents are given in Table I.  The test section can be sub-  divided into three p a r t s , an entrance length of 194 (51 diameters I.D.)  inches  to establish the v e l o c i t y p r o f i l e , a  6i inch exit s e c t i o n , and a 23yj inch middle section used as the heated portion of the tube.  Twelve copper-con-  stantan thermocouples constructed from 30 gauge wire were attached to the heated section at two-inch i n t e r v a l s . Precise locations are given in Table I I .  Thermocouples  were bonded to the tube wall using "Eccocoat" according to a procedure given in Section 3.1. for  the test section consisted of a 0.3  epoxy resin Insulation  inch layer of  asbestos powder adjacent to the tube held in place by a one-inch  thick layer of "Caposite" pipe i n s u l a t i o n .  Caposite is a mineral wool-Amosite f i b r e bound with asbestos cement.  23 To  1 xi  FPT 8 2 Tube fitting  Pressure tops  Electrical Cobll Size OOO  Terminal Bar soldered to tube  Tube type 304 stainless  $"o-t>  x 0016" wall  2  3  9 32  24  16  4"  Current Transformer  19-L To J x-^ MPT Tube fitting  Figure  2.  Test Section. (Test Section design by Watkinson (7) and used by Watkinson (7) Mayo (23) and the present investigator for a l l • foull ng runs. Drawing from Watkinson (7)  24  Table Thermocouple  II  L o c a t i o n s on T e s t  Section  Test Section P o s i t i o n Des i g n a t i on  Location: Distance From Lower, Tube End, Inches  1  T215  21 .5  2  T235  23.5  3  T255  25.5  4  T275  27.5  5  T295  29.5  6  T315  31 .5  7  T335  33.5  8  T355  35.5  9  T375  37.5  10  T395  39.5  11  T415  41 .5  12  T428  42.8  Thermocouple Number  25  The m i d d l e p o r t i o n of the t e s t s e c t i o n was  heated  e l e c t r i c a l l y u s i n g a power c i r c u i t shown i n F i g u r e 3. The e l e c t r i c a l system c o n s i s t e d o f a 220 v o l t s i n g l e phase power source w i r e d to two v a r i a c s mounted i n p a r a l l e l on a common s h a f t .  The output  from the v a r i a c s was  stepped  down to a maximum of 20 v o l t s u s i n g two t r a n s f o r m e r s series.  The f i r s t  in  reduced v o l t a g e from 220 v o l t s to 110  v o l t s and the second reduced the v o l t a g e to 20 v o l t s . D e t a i l s c o n c e r n i n g the e l e c t r i c a l equipment, and the c u r r e n t given i n Table All  the  wiring  and v o l t a g e measuring i n s t r u m e n t s  are  I. thermal  and p r e s s u r e drop data were  a u t o m a t i c a l l y u s i n g a S o l a r t r o n data  recorded  l o g g i n g system model  LY1471.  Mayo (23) g i v e s a d e t a i l e d d e s c r i p t i o n of  system.  S p e c i f i c a t i o n s o f i t s main components  in Table I I I . a digital  Briefly,  i t consists  c l o c k , a scanner,  thermocouple compensating typewriter.  The o u t p u t  are g i v e n  of a d i g i t a l  u n i t and a  solenoid-operated  from the heat t r a n s f e r  l o o p thermo-  were fed i n t o  v o l t m e t e r through the p i n b o a r d a s s e m b l y ,  to a program e s t a b l i s h e d  voltmeter,  a system program p i n b o a r d , a  c o u p l e s and the p r e s s u r e t r a n s d u c e r digital  this  by the s c a n n e r .  the according  At a p r e d e t e r -  mined i n t e r v a l , u s u a l l y one m i n u t e , each i n p u t channel was m o n i t o r e d and the data  transmitted  through the  system  COPPER- CONSTANTAN T E R M I N A L BLOCK TEST  SECTION  TYPEWRITER  TRANSFORMER 110/20 VOLTS 17 KVA  0  DATA LOGGER  r\  i) w  CURRENT TRANSFORMER 5 0 0 / 5 AMP.  THERMOCOUPLE COMPENSATING UNIT  V A R I A C S IN TANDEM  y  2 2 0 V. A C SINGLE PHASE  TRANSFORMER 220/110 VOLTS 10 K V A  L<A)J THERMOCOUPLES ro cn  Figure 3.  Heat Transfer Loop E l e c t r i c a l and Data Logging System Schematic. (Arrangement designed by Watkinson (7) and modified by Mayo (23) and Hopkins to include data logging. Drawing from Mayo (23).)  27  Table  III  Data Logging System  Component  Components  Model  Number  Thermocouple Compensati ng Unit  Solartron  Scanner  S o l a r t r o n LU 1461  System Program Pi nboard  S o l a r t r o n LX 1689  Digital  Clock  S o l a r t r o n LU 1463  Digital meter  Volt-  Solartron  LU 1468  LM 1426  Typewri t e r Drive  S o l a r t r o n LU 1469  Typewri t e r  IBM LX 1653  28 and p r i n t e d .  Recorded w i t h each s e r i e s o f data was the  time at which the m o n i t o r i n g sequence commenced. w i t h the heated outputs  s e c t i o n thermocouple data were a l s o  o f thermocouples l o c a t e d at the e n t r a n c e  e x i t from the t e s t s e c t i o n , as w e l l indicating  room  Recorded the  to and  as a thermocouple  temperature.  Another f e a t u r e  of the heat t r a n s f e r  loop was  a 6 f o o t double pipe heat exchanger i n s t a l l e d a f t e r t e s t s e c t i o n on the r e t u r n l i n e to the t a n k . g i v e s d e t a i l s p e r t a i n i n g to t h i s  Table I  unit.  System p i p i n g f o r the heat t r a n s f e r s i s t e d of i i n c h 316 s t a i n l e s s  the  steel  loop c o n -  s c h e d u l e 40 p i p e ,  w i t h the e x c e p t i o n of the i n l e t p i p e to the pump, which was 1 i n c h 316 s t a i n l e s s  steel  pipe.  p a c k i n g and the l i k e were made o f  2.2  Electron  A l l seals,  gaskets,  Teflon.  Microprobe  Deposits from s e l e c t e d f e r r i c o x i d e f o u l i n g  trials,  and from a v a r i e t y of o t h e r s o u r c e s , were a n a l y z e d i n a Japanese E l e c t r o n O p t i c a l  Limited  (JEOL) e l e c t r o n m i c r o -  probe l o c a t e d i n the M e t a l l u r g y Department of the of B r i t i s h C o l u m b i a .  University  F i g u r e 4 shows a s c h e m a t i c diagram  of the probe and F i g u r e 5 i l l u s t r a t e s i t s p r i n c i p l e of operation.  Figure 4.  The J EOL Electron Mi croprobe  30  INCIDENT ELECTRONS  ABSORBED ELECTRONS  Figure  5.  I l l u s t r a t i o n Demonstrating Fundamental P r i n c i p l e s of E l e c t r o n M i c r o p r o b e Analysis.  31  B r i e f l y , the p r i n c i p l e upon which the microprobe operates i s as follows. are focused  Electrons, from an electron gun,  through a condensor lens into a i micron  beam, accelerated through a p o t e n t i a l , t y p i c a l l y 25 KV, and directed upon the sample being analyzed. bombarding electrons can:  There, the  (1) c o l l i d e with the nucleus  of an atom and rebound, or (2) c o l l i d e with and displace a planetary electron of an atom in the sample. If the electron rebounds, i t can be picked up in a detector and used to form an optical image of the surface of the material being examined.  If the bombarding  electron displaces a planetary electron of an atom, that atom becomes excited and emits X-rays having a frequency c h a r a c t e r i s t i c of the element.  Determination of this  frequency, using a crystal system, gives positive f i c a t i o n of the element.  identi-  Measurement of the intensity of  these X-rays gives a quantitative estimate of the amount of that element present in the sample. For a detailed description of the microprobe, i t s p r i n c i p l e of operation and fundamental theory, r e f e r ence should be made to the work of Brown (25), Birks (26), ,van Olphen and Parrish (27) arid Castaing (28).  32  2.3  Properties  of F e r r i c Oxide F o u l i n g M a t e r i a l s  The f e r r i c o x i d e used i n t h i s  study was o b t a i n e d  from two s o u r c e s : (1)  Bulk, mixed-size analytical grade f e r r i c  oxide supplied by A l l i e d Chemical Co. Ltd.  Table  IV gives  the physical and chemical properties of this m a t e r i a l . (2) obtained  Presized, analytical grade f e r r i c oxide  in two 10 gram batches from P a r t i c l e  Service.  Information  Batch No. I had a p a r t i c l e size range of 0.3-0.8  micron, and Batch No. 2 a range of 0.3 to 3.7 microns. The size of these p a r t i c l e s was determined by the supplier using electron microscope examination The p a r t i c l e determined particles  s i z e o f the b u l k f e r r i c  by two methods. was prepared  techniques.  In method  I , a water  and s i z e d by s t r a i n i n g  series of m i l l i p o r e f i l t e r s .  o x i d e was s l u r r y of  through a  R e s u l t s , which are shown i n  T a b l e I V , are not c o n s i d e r e d  a r e l i a b l e measure o f p a r t i c l e  s i z e because o f the tendency  o f f e r r i c o x i d e to  In method  I I , an ethanol  on a g l a s s  dispersion of p a r t i c l e s  s l i d e , the e t h a n o l  evaporated  electron microscope.  shows photomicrographs  at magnifications  The i n d i v i d u a l p a r t i c l e  was p l a c e d  and the p a r t i c l e s  examined i n a s c a n n i n g  60,000.  coagulate.  Figure 6  o f 14,400 and  s i z e of t h i s  ferric  oxide  33  Table IV P r o p e r t i e s of F e r r i c Oxide Allied  Chemical  Powder  Batch D344  F e 2 0 3 M o l e c u l a r Weight Assay ( F e 2 0 3 ) min. S p e c i f i c Gravity S o l u b i l i t y Product + + + Fe(0H) 3 Fe + 30H~  Maximum L i m i t  159.69 99% 5.12 36 1.1 x 1 0 ~  of I m p u r i t i e s  I n s o l u b l e i n HCl Sulphate (SOi, ) Copper (Cu) Zinc (Zn) Substances not p r e c i p i t a t e d by N H „ 0 H (as S u l p h a t e s ) Manganese (Mn) Phosphates  0.2% 0.2% 0.005% 0.005% 0.1% 0.05% 0.02%  P a r t i c l e Size Determination Retained on 10-15 micron m i l l i p o r e f i l t e r Passed 10-15 micron m i l l i p o r e f i l t e r ) r e t a i n e d on 4-5 micron m i l l i p o r e f i l t e r ] " Passed 4-5 micron m i l l i p o r e f i l t e r  99.0% 1.0% 0%  6A Figure 6.  14400X  6B  14400X  6C  P a r t i c l e Size of Mixed-Size Ferric Oxide in Feedstock and in Fouling  60000X Deposit.  ( F e r r i c o x i d e p a r t i c l e s a d d e d t o t h e s y s t e m h a v e a minimum s i z e o f a p p r o x i m a t e l y 0.2 microns. S u c h p a r t i c l e s h o w e v e r do n o t a p p e a r t o d e p o s i t a s s i n g l e e n t i t i e s b u t r a t h e r a s a g g l o m e r a t e s . F i g u r e 6a s h o w s t h e p a r t i c l e s i z e i n t h e d e p o s i t w h i l e F i g u r e s 6b a n d 6c show t h a t o f f e e d ferricoxide.) -e»  35  is estimated by this method to be in the range of 0 . 2 y . However, the 0 . 2 micron p a r t i c l e s were almost never found to exist as d i s t i n c t e n t i t i e s but rather as larger agglomerates.  Consequently 0 . 2 micron represents a lower l i m i t  size estimate only, the e f f e c t i v e upper l i m i t being in the range of several microns.  Chapter 3  EXPERIMENTAL PROCEDURES  3 .1  Test Section Preparation As s t a t e d  fabricated  in Section 2.1, a l l test sections  from 304 s t a i n l e s s  s o l d e r i n g pressure  Procedure  steel  seamless  thermocouples.  system to g i v e erroneous to the tube w a l l  epoxy r e s i n .  from  t e s t s e c t i o n to the S o l a r t r o n data  l o g g i n g s y s t e m , a f a u l t which causes  tivity  results,  the data l o g g i n g  thermocouples  were  using a high e l e c t r i c a l  resis-  T h i s r e s i n , which has the t r a d e name  " E c c o c o a t , " a l s o has a c o m p a r a t i v e l y high thermal ductivity.  the  copper-constantan  In o r d e r to e l i m i n a t e AC leakage  the e l e c t r i c a l l y heated  attached  t u b i n g by  taps and e l e c t r i c a l c o n n e c t i o n s to  tubes as shown i n F i g u r e 2 , and a t t a c h i n g  were  con-  P r o p e r t i e s are shown i n T a b l e V . I t was found t h a t r e s i n p r e p a r a t i o n  ment o f thermocouples were the most c r i t i c a l in test section preparation.  After  v o l v i n g poor bonds or thermocouples  36  several  and  attach-  operations failures in-  in e l e c t r i c a l  contact  37  Table V Properties and Preparation Instructions for Eccocoat 582 Epoxy Resin  PROPERTIES Thermal Conductivity ( B T U / f t - h r - ° F ) D i e l e c t r i c Strength (volts/mil) Thermal Expansion C o e f f i c i e n t ( f t / f t - ° F ) Volume R e s i s t i v i t y (ohm-cm) D i e l e c t r i c Constant at 1 kHz Dissipation Factor at 1 kHz Service Temperature, max °F  0.9 420 19.0 x IO"6 10 1 5 6.5 0.02 325  PREPARATION INSTRUCTIONS 1.  Clean surface to be bonded with trich1oroethylene or toluene.  2.  Mix contents of Eccocoat 582 Part A and use 100 parts by weight of Part A with 7 parts by weight of the catalyst (Part B)  3.  Coat thermocouples and tube with resin and allow to harden overnight at room temperature.  38  with the tube w a l l , the following procedure was adopted: (1)  A l l d i r t and grease were removed from the  outside of the tube by l i g h t l y sanding with fine emergy paper followed by scrubbing with an acetone-soaked c l o t h . Dirt and grease cause a poor bond between thermocouple and tube w a l l . (2)  Epoxy resin was prepared exactly according  to s p e c i f i c a t i o n s given in Table V. (3)  At each thermocoupIe location, a small amount  of resin was dabbed on the tube and the thermocouple coated with s u f f i c i e n t resin to completely cover a l l bare metal. The thermocouples were then laid on the tube at the appropriate  locations.  (4)  After 15 minutes, each thermocouple  was  l i f t e d and allowed to s e t t l e back on the test s e c t i o n . This precaution reduced the risk of having e l e c t r i c a l contact between tube wall and thermocouple t i p . (5)  The test section was then allowed to s i t  overnight at room temperature.  This was s u f f i c i e n t time  for the epoxy resin to harden. (6)  Following hardening of the r e s i n , the test  section was f i t t e d with e l e c t r i c a l and i nsuIated.  and piping connections,  39  (7)  Prior to i n s t a l l a t i o n  in the heat transfer  loop, the test section was honed using a-38 c a l i b r e bronze pistol  brush attached to a one-quarter inch d r i l l , and  then degreased using an acetone-soaked 'pull through' rifle kit. In order to insure that use of epoxy resin did not cause temperature drops of s u f f i c i e n t magnitude to cause inaccurate r e s u l t s , a special test section was  pre-  pared which contained 12 silver-soldered thermocouples and 12 epoxy-coated thermocouples.  Wall temperature values  were found to be the same by both methods.  The epoxy-coated  thermocouples did tend to lag behind the silver-soldered ones when step changes were made in wall temperature. This lag was  3. 2  however small, in the range of four minutes.  Fouling Run Procedure In t o t a l , 70 experimental t r i a l  during the course of this study.  runs were made  Although there were some  variations in procedure to accommodate t r i a l s with unique objectives, most t r i a l s were performed using the procedure outlined below.  40  3.2.1  Cleaning of system. To clean the system, the test section was r e -  placed by a p l a s t i c tube, the tank was f i l l e d with tap water and the c i r c u l a t i o n pump was s t a r t e d .  Following  one-half hour of c i r c u l a t i o n , the system contents were dumped.  This operation was repeated until no trace of  residual f e r r i c oxide could be detected v i s u a l l y .  It  should be noted that 20 ppm f e r r i c oxide i s a b r i l l i a n t red suspension, and that approximately red t i n t .  1 ppm gave water a  The above refers to the procedure followed  when the preceding run had been made with f e r r i c oxide. Prior to the i n i t i a l  run, the system was cleaned with a  50% hydrochloric acid solution followed by a water r i n s e , a 10% sodium hydroxide  cleaning followed by a water r i n s e ,  and by another 50% hydrochloric acid cleaning with a water rinse. of  The last water rinse was repeated until the pH  the discharged water equalled that of the input water,  namely pH *\» 6.4.  According to the Greater Vancouver Regional District  analysis, this water contained only 18 ppm total residue, including 0.5 ppm chloride and 4.0 ppm total hardness as CaC03. 3.2.2 Tank f i l l i n g . Twenty-four hours prior to start-up, the cleaned tank was f i l l e d with 200 kg of tap water and the steam heating jacket turned on. At this point, the test section was i n s t a l l e d in the heat transfer loop.  41  3.2.3  Start-up. At s t a r t - u p ,  the m i x i n g a i r to the tank was  turned o n , the c i r c u l a t i o n pump s t a r t e d ,  the  variacs  t u r n e d up to g i v e the d e s i r e d t e s t s e c t i o n h e a t i n g , and the c o o l i n g water t u r n e d o n . data  At t h i s p o i n t , the S o l a r t r o n  l o g g i n g system was a l s o s w i t c h e d o n .  Adjustments  were then made to the flow r a t e and c o o l i n g water to b r i n g the f l u i d over the t e s t  3.2.4  to t a r g e t i n l e t and o u t l e t  temperatures  section.  E l i m i n a t i o n of thermal  transients.  In o r d e r to warm up the data electronics,  valves  and to e l i m i n a t e thermal  l o g g i n g system transients  associated  w i t h b r i n g i n g the t e s t s e c t i o n i n s u l a t i o n to steady the heat t r a n s f e r  loop was o p e r a t e d  hours on tap w a t e r . those  i n which the  state,  f o r a minimum o f t h r e e  During most of the r u n s , p a r t i c u l a r l y i n f l u e n c e o f heat f l u x ,  Reynolds number  and f e r r i c o x i d e c o n c e n t r a t i o n was s t u d i e d , t h i s  time was  i n c r e a s e d to 24 h o u r s . Following this step, t h a t flow r a t e ,  the system was a d j u s t e d  i n l e t temperature,  outlet  temperature  and t e s t s e c t i o n power consumption were p r e c i s e l y at levels.  so  target  T a b l e VI shows the v a r i a n c e from t a r g e t c o n d i t i o n s  42  Table VI Variance From Target Conditions Tolerated for Run 39  Variable  Target Value  Maximum Value  Minimum Value  Inlet Fluid MV x 200  420 (127.0°F)  421 (127.2°F)  419 (126.8°F)  Outlet Fluid MV x 200  470 (138.3°F)  471 (138.5°F)  470 (138.3°F)  Test Section Volts  9.35  9.37  9.34  Test Section Amps  253  256  253  43  tolerated series  for a t y p i c a l  run.  of t e s t s e c t i o n w a l l  After  o n e - h a l f hour,  temperature readings  were c o n s i d e r e d to c o r r e s p o n d to the c l e a n w a l l and to be f r e e  3.2.5  from e r r o r s  caused by thermal  condition  transients.  of c l e a n w a l l  tempera-  the d e s i r e d weighed amount of f e r r i c o x i d e was  slurried  i n a 5 l i t r e sample of system tap water and added  to the heat loop tank as a s l u g d o s e .  The time o f a d d i t i o n  was c o n s i d e r e d to be time zero f o r the f o u l i n g  3.2.6  obtained  A d d i t i o n of f e r r i c o x i d e . Following determination  tures,  the  O p e r a t i n g procedure  during  run.  trials.  During the r u n , the c o o l i n g water r a t e was v a r i e d to h o l d the  i n l e t t e m p e r a t u r e to the t e s t s e c t i o n at  target value.  With power i n p u t and i n l e t temperature  their respective fested  the at  t a r g e t v a l u e s , flow r a t e v a r i a t i o n s m a n i -  themselves  as v a r i a t i o n s  in outlet  temperature.  C o n s e q u e n t l y , the flow c o u l d be p r e c i s e l y c o n t r o l l e d by adjusting  the flow c o n t r o l v a l u e to hold the o u t l e t  perature constant.  Usually,  ments to h o l d the system at  runs r e q u i r e d very few the t a r g e t c o n d i t i o n s .  temadjust-  44  3.2.7  Shut-down procedure. At the end of the t r i a l , the c i r c u l a t i n g pump  and the test section heating were stopped simultaneously, and a series of wall temperatures taken to insure that there were no defective thermocouples.  (At zero heat f l u x ,  a l l thermocouples should read approximately the same.) The test section was then removed from the heat transfer loop and rinsed with tap water from a squeeze bottle to remove residual f e r r i c oxide suspension from the fouling deposit on the tube w a l l .  The rinsed test section was set  on an i n c l i n e and allowed to dry.  3.2.8  Fouling deposit sample preparation. For  tubes destined for electron microprobe  a n a l y s i s , the insulation and thermocouples were removed and the tube f i l l e d resin.  with 'Clear-Cast' l i q u i d polyester  Following 24 hours for curing, the tube was cut  with tube cutters at locations corresponding to the positions of the thermocouples.  These sections were then  recut into one-half inch samples, piaced in moulds and more polyester resin added.  The resulting specimen, which was  three-quarter inch in diameter and one-half inch t h i c k , was then ground and polished by standard metallurgical  45  techniques, thereby exposing the fouling deposit and tube wall to which i t adhered.  the  Such samples showed the  structure of the deposit perpendicular to the direction of flow of the f l u i d . An alternate method of specimen preparation  was  to turn the p o l y e s t e r - f i l l e d tubes in a lathe to remove the burred edges caused by the tube c u t t e r s , and to press the polyester core out of the tube.  The fouling deposit,  which always adhered to the polyester core, then needed no polishing or grinding prior to examination. samples were analyzed  for chemical composition  Electron Microprobe of the UBC  These in the  Metallurgy Department.  Chapter 4  DATA COLLECTION AND COMPUTATIONAL PROCEDURES  The data-logging system made possible the c o l l e c tion of a large number of thermal measurements.  Typically,  in a three hour t r i a l , over 3000 thermocouple readings would be logged.  In a d d i t i o n , flow and e l e c t r i c a l  ments were recorded manually.  To i l l u s t r a t e  measure-  the proce-  dures followed in gathering and processing data, Run has been selected as a typical run. and main computational  63  The steps followed  procedures adopted are outlined  beiow.  4.1  Establishing Objectives of T r i a l Trial  Conditions The f i r s t  step in making a run was  objective of the t r i a l i t was  and Setting  to be run.  to record the  and set the conditions under which  Table VII is a reproduction of this  for Run 63 which had as i t s objective the of a fouling curve at a mixed-size  46  determination  f e r r i c oxide concentration  47  Table VII Typical Log Sheet Showing Run Objective and Target Conditions  Run No. 63  Date:  13 Sept. 1972  OBJECTIVE To determine the fouling curve for a f e r r i c oxide concentration of 2130 ppm at a heat flux of 93,000 BTU/ft 2 -hr and a Reynolds number of 26000.  TARGET CONDITIONS Flow Rate Inlet Fluid MV x 200 Outlet Fluid MV x 200 Variac Setting Test Section Volts Test Section Amps Steam Jacket Pressure Fluid pH Cooling Water Setting NaCl added Ferric Oxide added Air Inlet Fluid Pressure  86.0 420 526 70 13.50 355 22 6.2 30 0 426 On 62  (gauge units) (gauge units) (lbs/in2) (gauge units) (gms) (gms) (lbs/in2)  48  of 2130 ppm, a heat f l u x of 93,000 B T U / f t - h r  and a Reynolds  2  number o f 2 6 , 0 0 0 . ditions,  computer  to e s t a b l i s h correspond the  basic  F o l l o w i n g the  selection  program PAR (see  t h a t the  Appendix I I )  parameters s e l e c t e d  to the d e s i r e d  trial  of t r i a l  did  conditions.  con-  was run indeed  For Run 6 3 ,  i n p u t data to PAR was 063 x 13.50 x 355 02130 2.10 x 2.63 x 86.0  where the  numbers shown have the Run  No.  Section  Volts  Test  Section  Amperes  Oxide  =  13.50 =  355  Concentration  =  Thermocouple  Reading  Inlet  Fluid  Thermocouple  Reading  Exit  Orifice = 86.0 Blank  Stored and thermocouple  significance:  0.63  Test  Ferric  thermal  =  following  Meter  spaces  DP C e l l  =  2130  Fluid  Reading  ppm (MV)  (MV)  (gauge  = =  2.10 2.63  units)  x  i n PAR are data c o v e r i n g o r i f i c e meter calibrations,  c o n d u c t i v i t y , and the  t e s t loop dimensions p r o p e r t i e s of the  test  The o u t p u t from PAR (see T a b l e V I I I ) , i n a d d i t i o n to  and fluid. showing  Table VIII Output from Program PAR  i\jQ63. * * * * * * * FERRIC  OXIDE  CONC  VCLTS:13.50 HEAT HEAT  FLOW FLUX  FLOW  RATE  AMPS:  SUPPLIED SUPPLIED  BETA0.301 DENSITY:0.986  (PPM)  2130. 355.  16356.8 93897.  BTU/HR BTU/SQFT-HR  TCR=TINLET127.0 GRAM/CC T O U T L E T 150.3  0.1888  AVG T E M P : 1 3 8 . 6 KINEMATIC VISC0SITY:0.479  DEG  F  DEG  F  LBS.M/SEC DEG  F  SQ.CM/SEC  FLUID VELOCITY 4.790 REYNOLDS NO 26534.0 PRANDTL NO 3.02  FT/SEC  HEAT SUPP 16356.8 BTU/HR HEAT TRANS 15921.4 BTU/HR HEAT LOST 435.4 BTU/HR P E R C E N T HEAT L O S T 2.66 HEAT FLUX T R A N S . B T U / S Q F T - H R 91397. N U S S E L T NO 121.5 RFILM 0.623 RWALL 0.143 RTOTAL 0.765 SOFT-HR-DEG F/BTU  50  T a b i c IX O u t p u t From D a t a l o g g e r S y s t e m S t a r t e d up a t 9 : 3 0 o n T a p W a t e r F o l l o w i n g Honing o f Tube 0461 0452 0462 0476 0466  0461  0447  0133  0198  0203  0444  0402  1140  Dili  1)10  0447  0331  0684  0682  0724  0724  0732  0707  0123  0210  0207  0708  0611  1410  0421  0521  0612  0672  0709  0711  0719  0696  0110  0218  0206  0696  0603  000.  046}  0360  0198  0749  0779  0287  0210  13.50  355.  0736  076}  029?  0218  13.30  155.  13.50  355.  13.50  355.  D.50  353.  0456  00.00  Ileal F l u x T u r n e d Back on F o l l o w i n g T h e r m o c o u p l e Check  1420  0421  OS26  0668  0668  0707  0707  0716  0693  0131  0219  0207  0695  0601  0735  0763  0246  0219  1430  0416  0325  0667  0667  0706  0706  0712  0691  0130  0220  0209  0692  0600  0733  0760  0248  0219  1432  0421  0522  065S  0656  0697  06 9 9  0703  0677  0130  0220  0207  06 8 0  0573  0719  0753 .  0253  0220  1433  0421  0322  0661  0660  0599  0698  0705  06 8 0  0131  0001  0206  0683  0580  0721  0753  0252  0220  1434  0421  0523  0665  0663  0705  0704  0709  0684  0132  0001  0206  0685  0584  0723  0757  0294  0220  1435  0421  0524  0664  0661  0702  0102  07 OK  0685  0132  0001  0207  0687  0566  0726  0736  0295  0220  1436  0421  0524  0665  0664  0702  0704  0708  0685  0133  0001  0207  0687  0588  0724  0755  0296  0220  0706  0682  0134  0001  0206  0685  0587  0724  0733  0294  0220  0706  0683  0132  0001  0207  06E5  0588  0723  0754  0293  0220  143?  0421  0523  0662  0661  06 9 8  06 9 9  1438  0421  0523  0663  0661  0701  0700  143$  0420  0523  0662  0661  0700  06 9 9  0707  0683  0132  0220  0208  0685  0568  0724  0753  0294  0220  1440 0 0420  0523  0665  0661  0698  0697  0705  0683  0132  0001  0209  0685  0589  0724  0751  0289  0221  1441  0420  0522  0361  0662  06 9 9  0698  0706  0683  0130  0221  0210  0685  0589  0724  0751  0298  0221  1442  0420  0523  0664  0661  06 9 9  0699  0705  0683  0131  0001  0210  0686'  0589  0725  0733  0295  0221  426 Grams of  Ferric  O x i d e! A d d e d t o  System  1443  0421  0525  0665  0663  0705  0704  0709  0684  0132  0001  0206  0085  0564  0725  075?  0294  0221  1444  0420  0522  0662  0661  0702  0701  0708  0685  0132  0001  0210  06 88  0591  0728  0755  0293  0221  1445  0421  0525  0667  056?  0704  0701  0708  0687  0131  0001  0210  0688  0592  0727  0758  0294  0221  1444  0421  0526  0668  0666  0703  0705  0711  0689  0131  0001  0210  0599  0596  0737  0765  0291  0221  1447  0421  0530  0673  0673  0705  0703  0712  0691  0131  oooi  0210  0591  0596  0731  0761  0294  0221  1446  0421  0525  0667  0666  0703  0703  0712  0689  0131  0221  0212  0692  0596  0733  0763  0293  0221  1449  0422  0525  0668  0666  0702  0704  0712  0689  0130  0221  0212  0697  0597  073S  0768  02 S5  0221  1430  0421  052}  0667  066?  0705  0706  0715  0692  0131  0221  0212  0695  0597  0734  0763  0295  0221  13.50  355.  1433  0421  0523  0670  0668  0705  0707  0714  0692  0129  0222  0211  0695  0598  0733  076]  0300  0221  13.50  355.  1457  0421  0325  0670  0670  070B  0709  0716  0693  0131  0222  0205  0695  0598  0735  0763  0294  0222  13.50  355.  1300  0420  0527  0673  0679  0715  0716  0723  07 OO  0131  0222  0209  0703  0602  0741  0769  0295  0222 0222 13.30  355.  13.50  355.  13.30  353.  13.30  355.  13.30  353.  13.30  355.  1503  0420  0528  0679  0676  0715  0717  0724  0701  0130  0222  0211  0703  0603  0740  0771  0295  1508  0420  0525  0671  0670  0712  0709  0717  0695  0132  0001  0209  06 9 7  0601  0735  0766  0295  0222  1510  0420  0524  0674  0573  0711  0711  0718  0695  0133  0001  0209  0696  0601  0733  076]  0297  0223  1515  0420  0524  0673  06 7 0  0711  0708  0717  0593  0133  0001  0209  0696  0600  0732  0762  0295  0223  1520  0420  0525  0673  0673  0709  0111  0716  0694  0131  0001  0211  0696  0601  0734  0762  0296  0223  1525  0421  0525  0675  0674  0711  0712  0718  0695  0131  OOOI  0212  0697  0601  0733  0763  0296  0223  1530  0420  0329  0684  0684  0720  0720  0727  0704  012?  0001  0210  0705  0607  0744  0773  0296  0223  1534  0421  0525  0675  0674  0710  0710  0716  0693  0125  0224  0211  0695  0600  0732  0762  0296  0224  1540  0421  0525  0S74  0672  0709  070?  0713  0692  0125  0224  0212  0694  0600  0731  0758  0296  0224  1544  0421  032}  0674  0673  0712  0711  0718  0694  0121  0224  0210  0696  0600  0733  0762  0296  0224  1530  0422  052}  0675  0674  0712  01"  0717  0694  0121  0224  0211  0696  0601  0734  0761  0296  1600  0422  0527  0678  0677  0715  071]  0720  0697  0113  0224  0212  06 9 9  0603  0737  0765  0298  0224  1411  0421  0523  0676  0676  0712  0712  0718  0695  0103  0225  0213  06 97  06 02  0735  0762  0298  0225  1620  0420  0523  0674  0671  0708  0708  0714  06 91  0101  0225  0212  0693  0599  0731  0758  0297  0225  1629  0420  052}  0679  0676  0714  0713  0719  0696  0096  0225  0212  0697  0601  0714  0761  0299  0226  1715 Hours T r i a l  Stopped  0224  51  Reynolds number and heat f l u x ,  a l s o computes a heat  b a l a n c e over the t e s t s e c t i o n and p r e d i c t s Tate e q u a t i o n the f i l m  resistance.  from the  S i n c e these  Sieder-  computations  are s t r a i g h t f o r w a r d , no sample c a l c u l a t i o n s are i n c l u d e d here.  4.2  Data G a t h e r i n g and Data P r o c e s s i n g The method used to g a t h e r  data was as  follows:  The equipment and data l o g g i n g system were warmed up on tap water f o r a p e r i o d of at l e a s t 12 h o u r s .  t h r e e hours and u s u a l l y  When the system was at steady  s t a t e and at  t a r g e t c o n d i t i o n s , as f o r example at time 1442 f o r Run 63 (see T a b l e I X ) , the d e s i r e d amount o f f e r r i c o x i d e was added to the system and the run commenced. progressed,  As the  " l i n e s o f d a t a " were s e l e c t e d at  regular  i n t e r v a l s and r e c o r d e d on a s e p a r a t e l o g s h e e t , to the p r o v i s i o n t h a t v o l t a g e , c u r r e n t , thermocouple m i l l i v o l t millivolt  subject  flow r a t e ,  r e a d i n g and o u t l e t  run  inlet  thermocouple  r e a d i n g were at or very near t a r g e t c o n d i t i o n s .  The study o f e x p e r i m e n t a l e r r o r s  summarized i n S e c t i o n 5  had shown t h a t a l l o f these v a r i a b l e s have a b e a r i n g on the a c c u r a c y o f the d a t a .  T a b l e X shows t h i s  The thermal and p r e s s u r e  log sheet.  drop data shown i n  T a b l e X are i n u n i t s of m i l l i v o l t s times 200.  The program  Table X Data Used for Fouling Curve Determi nation  1443 1448 1450 1455 1457 1508 1524 1534 1544 1604 1611 1629 1638  0421 0421 0421 0421 0421 0420 0421 0421 0421 0421 0421 0420 0420  0525 0525 0525 05 25 0525 0525 0525 0525 0525 0525 0525 0525 0524  0665 0667 06 67 0670 0670 0671 0675 0675 0674 0677 0676 0679 0677  0663 0666 0667 0668 06 70 0670 0674 0674 0673 0675 0676 0676 0677  0705 0703 0 705 0705 0709 0712 0711 0710 0712 0711 0712 0714 0712  0704 0703 C706 0707 0709 0709 0712 0710 0711 07 12 0712 C713 0714  0709 0 71? 0715 0714 0716 0717 0718 C716 C718 0719 0718 0719 07L8  0684 0689 0692 0692 0693 0695 0695 0693 0694 0695 0695 0696 0695  02C6 0212 C212 C21 1 0209 C2C9 C?12 0211 C21C C212 0213 C212 0212  0685 0692 0695 0695 0695 0697 0697 0695 C696 0698 0697 0697 0697  0584 0596 0597 0598 0598 C601 0601 0600 0600 0603 0602 0601 0602  0725 0733 0734 0735 0735 0735 0735 0732 0733 073 5 0735 0734 0735  0757 0763 0763 0763 0765 0766 0763 0762 0762 0763 0762 0761 0763  0294 0293 0295 0296 0294 0295 0296 0296 0296 0298 0293 0299 0299  53  STOMV (see Appendix II) was used to convert the time from real time to fouling run time, to transform the m i l l i v o l t readings times 200 to m i l l i v o l t s , and to place the data in a standard format compatible with a l l subsequent programs.  Table XI i s the output from this program. Two methods were used to compute fouling r e s i s -  tances from the thermal data.  The f i r s t of these was  the method developed by Watkinson (7) and used also by Mayo (23).  It computes the f l u i d f i l m resistance  fouling resistance time.  plus  for the whole tube at any specified  Since the program based on this method was availabl  to this i n v e s t i g a t o r , i t was routinely run. However, since this method does not compute fouling resistances at l o c a l i z e d positions  on the tube, only limited use was  made of the data thus generated. The second method used to compute fouling r e s i s tance overcomes this d i f f i c u l t y and enables local fouling resistance following  to be found. considerations:  tance to heat transfer  where  This method i s based upon the At time zero, the total r e s i s -  is given by  T a b l e XI Output  REAL TIME 14.43 14.48 14.50 14.55 14.57 15.08 15.24 15.34 15.44 16.04 16.11 16.29 16.38  RUN TIME 0.0 0.08 0.12 0.20 0.23 0.42 0.68 0.85 1.02 1.35 1.47 1.77 1.92  HV IN 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10  MV OUT 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62  MILLIVOLT T215 T235 0.0 3.32 0.0 3.33 0.0 3.33 0.0 3.35 0.0 3.35 0.0 3.35 0.0 3.37 0.0 3.37 0.0 3.37 0.0 3.38 0.0 3.38 0.0 3.39 0.0 3.38  From Program  STOMV Input to Program  FOUL  READINGS OF THERMOCOUPLES CN WALL CF TEST SECTION T255 T275 T295 T315.T335 T355 T375 T395 T415 T428 3.31 3.52 3.52 3;54 3.42 3.42 2.92 3.62 3.78 0.0 3.33 3.51 3.51 3.56 3.44 3.46 2.98 3.66 3.81 0.0 3.33 3.52 3.53 3.57 3.46 3.47 2.98 3.67 3.81 0.0 3.34 3.52 3.53 3.57 3.46 3.47 2.99 3.67 3.81 0.0 3.35 3.54 3.54 3.58 3.46 3.47 2.99 3.67 3.82 0.0 3.35 3.56 3.54 3.58 3.47 3.48 3.CO 3.67 3.83 0.0 3.37 3.55 3.56 3;59 3.47 3.48 3.00 3.67 3.81 0.0 3.37 3.55 3.55 3.58 3.46 3.47 3.CO 3.66 3.81 0.0 3.36 3.56 3.55 3.59 3.47 3.48 3.CO 3.66 3.81 0.0 3.37 3.55 3.56 3.59 3.47 3.49 3.01 3.67 3.81 0.0 3.38 3.56 3.56 3.59 3.47 3.4 8 3.01 3.67 3.81 0.0 3.38 3.57 3.56 3.59 3.48 3.48 3.00 3.67 3.80 0.0 3.38 3.56 3.57 3.59 3.47 3.48 3.01 3.67 3.81 0.0  COOL INSL AMB KV  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  MV  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. c  MV  1 .03 1 .06 1 .06 1 .05 1 .04 1 .04 1 . 06 1 .05 1 .05 1 .06 1 .06 1 .06 1 .06  DELT MV  1.47 1.46 1.47 1.46 1.47 1.47 1.48 1.48 1.48 1.49 1.4 9 1.49 1.49  55  R0  = total resistance at time zero  Twq  = outer wall temperature at time zero  T  = f l u i d temperature at time zero  q1  = heat flux transferred to the f l u i d = heat flux supplied minus heat losses  As the tube f o u l s , a fouling resistance R^ i s formed on the inside of the tube.  If the heat flux i s  maintained constant, and the bulk temperature remains constant, the wall temperature must rise in response to the  increase in thermal resistance to a new value, say T  Equation ( 4 . 1 ) then becomes  +  R o  =T  R f  w t  "T b q'  0  (4,  Eliminating R0 between equations ( 4 . 1 ) and ( 4 . 2 ) gives  T R  = f  wt - Two  ( 4  q'  that i s , the fouling resistance i s simply the outer wall temperature rise divided by the heat f l u x .  An assumption  i m p l i c i t in this method of calculation i s that the heat losses are negligible and/or do not increase s i g n i f i c a n t l y as the wall temperature increases, an assumption validated  56  by the fact that the difference between i n l e t and outlet temperatures remained constant throughout the course of a run.  Another i m p l i c i t assumption is that R0  is representative  of the wall plus f l u i d f i l m resistance throughout the course of a run.  Since wall temperatures t y p i c a l l y increased  by  about 2 F ° , this l a t t e r assumption i s believed to be v a l i d . However, where large increases  in wall temperatures were  obtained, a correction might be required to account for possible blockage effects and for the effect of changing surface roughness on d e p o s i t - t o - f l u i d heat t r a n s f e r . For Run 63, time 1.92  hours, station T235, the  fouling resistance is therefore  D  _  T wt  - T wo q'  1 77.0 - 1 74.6 _ „ . . ^ o, = 2.6 x 1 0 - 5 f t 2 - h r - ° F / B T U 91397 c  Table XII shows the output from program FOUL which computes these fouling resistances.  The stations showing a r e s i s -  tance of 0.0 after time zero are blanked stations not included  in the c a l c u l a t i o n s .  containing  Blanked stations are those  defective thermocouples.  57  Included in Table XII, for the sake of completeness, are the following data: WaI I T e m p e r a t u r e s Inlet  Fluid  Outlet  Fluid  Mean Wall Fluid  Temperature (TIN) Temperature  Temperature  Temperature  (TOUT)  (TM)  Rise  (DELTA) Transfer  Film  plus  Fouling  Heat  Film  plus  Fouling  Thermal  Coefficient  Resistance  ( H )  (R)  T i me  Units used throughout are BTU, DEGREE F, HOUR, FOOT. Table XII also includes a print-out of the local fouling resistance at each thermocouple station and the mean of these resistances  (RFM).  The mean fouling resistance i s f i t t e d by the least squares method to the equation  (4.4)  The print-out from this subroutine, as shown in Table X I I , contains  the calculated value of mean fouling resistance  and the f i t t e d value as predicted from equation  (4.4).  58  Table XII Output from Program FOUL  •«««»(*RUN N06).•»<•«•« EST 1 MAI£S Of RCO! EAN SCUARE STATISTICAL ERROR IN THE PAR ACE T ER .18660 .7B614 ES1IMATES CF ROCI PEAK SCUARE I01AL ERROR IN THE PARAMETERS .25054E-01 .1C544 ES11KA1E CF R0.R1NF.ANC G IN RF-R INF( ( 1 .-EXP l-8«T IKE 1 2.C669 5.7124 TIME CALC. RESISTANCE FITTED VALUE HOURS I (SCFI-IIR-CECF/BTU 1 X 1 0 0 , 0 0 0 I 0.0 CO -0.0 0.08 0.77 0. 76 0.12 1.15 1. C3 0.20 1.29 1.41 0.23 1.5B 1.51 0.42 1.82 1.88 0.60 2.01 2.02 0.85 1.77 2.05 1.02 1.92 2.06 1.35 2.11 2. C1 1.47 2.16 2.07 1.77 2.25 2.02 1.92 2.20 2.07 W  FERRIC OXIDE CONC 1PPM1 VCLTS:13.50  2130.  AKPS: 355.  HEAT 1LCN SUPPLIED 16356.8 HEAT FLUX SUPPLIED 93897.  BTU/HR BTU7SCFT-HR  0ETA0.301 I0R=T1NLE1127.0 DENSIIY:0.986 GRAP/CC 1 OUUET150.3 FLOW RATE 0.1888  LBS.H/SEC  AVG TEPP:138.6 KINEMA1IC VISC0SI1Y:C479  SC.CM/SEC  DEC F DEC F  DCC F  FLU1C VELOCITY 4.790 REYNOLDS KO 26534.0 PRANOTL NO 3.02  FT/SEC  HEAT SUPP 16356.8 B1U/HR HEAT TRAMS 15921.4 BTU/HR HEAT LOST 435.4 BTU/HR PERCENT HEAT LDS1 2.66 HEA1 H U X TRANS> 81U/S0F1-HR 91397. KUSSELI NO 121.5 RFHP 0.623 RWALl 0.143 ItlOIAl 0.765 5QFT-HR-0EG F/BTU  10CALI2E0 WALL TEMPERATURES 1255 1215 1235 T275 DEC.F OEO.F OtC.F DEC.F 0.0 174.6 174.2 182.5 0.0 175.C 175.0 182. I 0.0 175.0 175.0 162.5 0.0 175.8 175.4 182.5 0.0 175.8 175.8 163. 3 175.B 0.0 175.8 184. I 0.0 176.6 176.6 18J.7 176.6 176.6 0.0 176.6 183.7 0.0 177.0 176.2 184. I 0.0 177.C 176.6 183.7 1K.I 0.0 177.0 177.0 0.0 177.4 184.5 184. 1 0.0 177.0 177.0  ICEG.FI 1295 T315 OEG.F OEG.F 182.5 183.3 1 £4. I 162. 1 184.5 182.9 182.9 184.5 18 3. 3 184. 9 184.9 183.3 1 84 .1 135.3 114. 9 183. 7 105. 3 183.7 165.3 184.1 185. I 184. I 185.3 184. I 185.3 184.5  T3)5 OEG.F 178.6  179.4 ISO. 2 130.2 180.2 16C6 190.6  IRC.2 lec. t 160.6  lac.6 iec.9 ISO.6  T355 OEG.F 1 78.6 150.2 inc.6 1BC6 ISO.6 I8C. 9 1BC.9 1B0.6 I8C.9 181.3 180.9 Inc. 9 180.9  T3 75 OEG.F 0.0 0.0 CO 0.0 0.0 CO CO 0.0 CO CO CO CO 0.0  LOCALIZED FOULING RESISTANCE CSOFI-HR-OEGF/DTUIX100,COO 1215 T235 1255 T295 1315 1335 1275 1355 1375  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o .o0 0. 0.0 o.o  0.0  0.0 0.87  C.43 1.30 1.30 1.30 2.1? 2.1? 2. 17 2.60 2.1,0 3.0) 2.60  0.87 1.10 1.73 1.73 2.60 2.60 2.1 7 2.60 3.03 3.0) 3.03  0.43  0.0  0.0 0.0 0.0 0.8b 1.72 1.29 1.29 1. 12 1.29 1.72 2.15 1. 72  0.0  0.0 0.43 0.4)  0.B6  0.66 1. 12 1.29 1.29 i . iz 1. 72 1. 72 2. 15  CO C.St 1.29 1.29 1.72 1 . 72 2. 15 1. 72 2.15 2. 15 2. 15 2.15 '2. 15  0.0 o.et 1.7) 1.73 1.73 2.16 2.16 1.7) 2.16 2.1'. 2. 16 2.59 2.16  0.0  1. 71 2.16 2.16 2.16 2.59 2.59 2.16 2.59 1.C7 2.59 2.59 2.59  0.0  CO CO 0.0 CO 0.0 u.o CO 0.0 0.0 CO u.o 0.0  T395 DEG.F 186.5 168.0 166.4 188.4 186.4 188.4 188.4 186.0 lea.o 166.4 188.4 188.4 188.4  T415 DEG.F 192. 7 193.9 193.9 193.9 194.3 19*.7 19 1 . 4 191.9 141.9 193.9 193.9 19 1.5 191.9  T428 OEG.F O.C 0.0 O.C 0.0 0.0 0.0 O.C  1345  1415  T428  0.0  1.72 2.15 2.15 2.15 2.15 2.15 1.72 1.72 2.15 2.15 2.15 2.15  0.0  1.28 1.28 1 .28 1.71 2.14 1.28 1 .28 1.2B 1.78 1.28 0.85 1.2H  0.0  0.0 O.C 0.0 0.0 0.0  0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO U.O 0.0  -TIN OEG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0  TOUT OEG.F 149.9 149.9 149.9 149.9 149.9 149.9 149.9 .49.9 1--9.9 149.9 149.9 149.9 149.9  TM OEG.F 18 1.5 182.2 182.6 182.7 183.0 IBI.2 181.3 183. 1 16J.1 183.4 181.5 181.6 183.5  TIN OEG.F 127.0 127.0 127.0 127.0 127.0  TCUI OEG.F 149.9 149.9 149.9 149.9 149.9 149. 9 149.9 149.9 149.9 149.9 149.9 .149.9 • 149.9  RFH  127.0  127.C 127.0 127.G 127.0 127.0 127.0 127.0  DELTA H OEG.F 23.0 1676.2 23.0 1648.0 23.0 1632.5 23.0 1630.0 23.0 1620.6 23.0 1612.1 23.0 1607.3 23.0 1616.9 23.0 1( 0 . 4 23.0 1604.7 21.0 1604. 1 23.0 1 6 0 1 . 4 23.0 1 6 0 2 . 4  R X1C00 0.5966 C.6C68 0.6125 0.6135 0.6170 0.6203 0.6222 0.6165 0.6210 0.6232 0.6234 0.6244 0.6241  OELTA H RIOT DEG.F 11000 23.0 1676.2 0.5966 0.0 0.7? 23.0 1648.0 0.6068 1.15 23.0 1632.5 0.6125 1.29 2 J.O I63C.0 0.6135 1 .58 2).0 1020.6 0.6170 1.12 21.0 1612.1 0.620) 2.01 21.0 1607.3 C 6 / / 2 1.77 21.0 16 1 ft.90.61*15 1.92 21.0 I'. 10.4 0.6/10 2. 1 1 / ) . n IUJ4. ; 0 . 6 / 1 / 1 <//'.. 10.6/14 2.l>. 21.0 2.25 21.0 1'iUl .4 (1.6244 2.20 23.0 1602.4 0.6241  TI ME HOURS 0.0 C 06 0 . 12 C.20 0.23 0.42 0.6a  I . 65  1.C2 1. 15 1.47  1. 17 1-92  TIME HOUKS 0. ti O.CR 0. 12 O./O 0.2) 0. 42 U. 'iM 0. 85 1.11/ 1. r . 1.47 1. l l 1.9/  59  Chapter 5  EXPERIMENTAL ERROR STUDY  In order to establish the precision with which thermal resistances could be determined, a series of water t r i a l s were made with the following objectives (1)  To  in view:  isolate variables which, if inadequately  c o n t r o l l e d , would bear upon the accuracy of r e s u l t s . (2)  To determine the extent to which changes  in wall temperature and  therefore  changes in operating  variables produce apparent or real changes in measured thermal  resistance. Variables  considered to be of prime importance  were flow r a t e , heat f l u x , and test s e c t i o n .  i n l e t temperature to the  From experience in operating the heat transfer  loop, i t became evident that the values of the above v a r i ables were affected by fluctuations of the following (I) section due  Variations  type:  in line voltage to the test  to variations in input power supplied  to the  60  building. heat  This  (2)  dency o f t h e hours  which to  manifests  itself  as  a variation  in  flux. •  few  effect  Variations flow c o n t r o l  of a  run.  (3)  Variations  cause  cyclic  the t e s t  in flow valve  rate  to close  in c o o l i n g  fluctuations  caused  d u r i n g the  water  in t h e  by t h e  tenfirst  temperature  inlet  temperature  section.  In a d d i t i o n , a transient type behaviour was  noted  in which the apparent thermal resistance was found to rise at a decreasing rate from start-up to an elapsed time approaching three hours.  Since this transient type behaviour was  found to be the largest source of error in determining fouling resistances, i t w i l l be discussed f i r s t .  5.1  Influence of Thermal Transients in Determining Thermal Resistance From t r i a l s made in co-operation with Mayo (23)  using a solution of aluminium oxide in aqueous caustic soda, i t was noted that, i f for any reason the equipment was  stopped, then upon r e s t a r t i n g , the test section wall  temperatures did not return to their pre-shutdown values. Rather, the wall temperatures remained depressed for periods  61  ranging from a few minutes to an hour or more, depending upon the length of the shutdown.  Such behaviour indicated  either a d e f o u l i n g process, or a thermal transient s i t u a tion which caused the wall temperatures to be depressed. In order to determine the cause of this behaviour, a "fouling" run was made using tap water.  The procedure  followed was to by-pass the test section and heat the f l u i d to target i n l e t conditions.  The f l u i d was then  directed into the test section and a t r i a l made in which, at  time zero minus, the test section was at room tempera-  t u r e , and at time zero plus, the flow rate and heat flux were at t h e i r target values. Figure 7 shows the results of this t r i a l as apparent thermal resistance versus time.  plotted  The die-away  behaviour typical of e l e c t r i c a l and thermal transients is c l e a r l y evident.  Note that over a period of two hours,  apparent thermal resistances range from 0.684 x 10~3 to 0.808 x l O - 3 f t 2 - h r - ° F / B T U — a difference of 0.124 x 1 0 - 3 . This l a t t e r figure  i s of the same order of magnitude  as the fouling resistances found for most f e r r i c oxide t r i a l s studied here. T r i a l s using tap water were made in which the test section was brought to thermal steady s t a t e , shut down and then honed to remove any possible fouling deposit.  62  Figure 7.  Apparent Thermal Resistance Versus Time f o r Run 1 on Tap Water.  63  Results c l e a r l y showed that no fouling deposit was present, and that the transient behaviour discussed above i s associated with heat absorption by the insulation until  thermal  equilibrium i s achieved. Although  thermal  transients were found to result  in the largest source of inaccuracy in determining  fouling  resistance versus time curves, their elimination was easily effected. ing  A l l fouling t r i a l s were made byeither:  (1) bring-  the system to steady state by operating on tap water  for over three hours and then adding the f e r r i c oxide contaminant, or (2) i f f e r r i c oxide was already in the system, operating f o r a minimum of three hours and then removing any deposit by honing the hot tube.  Either method  gives the same fouling curve (see Section 6 ) .  5.2  Errors Due to Variation in Line Voltage The next largest source of potential error in  determining thermal  resistance was caused by uncontrolled  variations in input supply voltage to the test s e c t i o n . Table XIII shows values f o r test section voltage recorded for Run 13 at random i n t e r v a l s .  Note that the range of  power drawn, expressed as a heat flow, is from 1 5,687 BTU/hr to 16,283 BTU/hr.  This difference of approximately 600  64  Table XIII Variation in E l e c t r i c a l Power Supplied to the Test Section - Run 13  Date 24 March '71  25 March '71  26 March '71  27 March '71  Time Hrs : Mi n  Volts  Amps  Power BTU/hr  16:00  13.52  344  1 5873  19:52  13.68  347  1 6201  20:43  13.70  348  1 6271  22:30  13.60  346  1 6060  10:17  13.44  342  1 5687  13:31  13.68  347  1 6201  14:33  13.71  348  1 6283  15:00  13.60  346  1 6060  18:00  13.44  342  15687  12:00  13.69  348  1 6259  15:00  13.52  344  1 5873  15:10  13.62  346  16083  65  B T U / h r , i f not taken i n t o a c c o u n t , w i l l measured thermal ft -hr-°F/BTU.  resistance  tion errors  of a p p r o x i m a t e l y 2 x 1 0 ~  Since 2 x 10"  2  fouling  resistance  d a t a , the  the  objective  by  variacs  more t h a n  test  section  from  the  from  this  which  used  source  never  left  ±0.15 volts  As  This  5% of  ferric  to  an  by  the  oxide  lowest  unattended. over  the  test  power  computation 0.02  reduced x  If  p r e c a u t i o n , no  more t h a n  ±0.1  required  r e t u r n the  added  procedure  to approximately  than  in the  a trial  resistance  deviated  target value.  is less  measured  f o r thermal  voltage  of  were a d j u s t e d  input to t a r g e t c o n d i t i o n s . were  l i n e voltage v a r i a -  adopted;  e q u i p m e n t was  voltage varied  data  total  due to l i n e v o l t a g e v a r i a t i o n s ,  procedure was When t h e  section,  i s the  2  5  had to be e l i m i n a t e d .  the f o l l o w i n g  the  ft -hr-°F/BTU  5  found i n some r u n s ,  To p r e v e n t e r r o r s  precise  cause an e r r o r i n  I0~5  fouling  i f the  volts the  error  ft2-hr-°F/BTU,  resistance  trials.  Although l i n e voltage e r r o r s  c o u l d be thus sub-  s t a n t i a l l y reduced by manual c o n t r o l , t h i s procedure was tedious.  It  i s recommended t h a t a v o l t a g e r e g u l a t o r  added to the heat t r a n s f e r  be  loop p r i o r to b e g i n n i n g any new  i n v e s t i g a t i o n of the type p r e s e n t e d  here.  66  5.3  Errors Due to Flow Rate Variations Variations in flow rate cause variations in  thermal resistance, which in turn cause errors in the measurement of fouling resistances.  In the study made  here, flow rate variations were usually the result of f e r r i c oxide deposition on the flow control valve. trical  Since e l e c -  power to the test section was held more or less  constant, flow rate changes tended to produce variations in outlet temperature from the test section.  In f a c t ,  the outlet temperature minus the i n l e t temperature was a more precise means of measuring flow rate than the o r i f i c e meter on the heat transfer  loop.  Figure 8 shows the relationship between thermal resistance and temperature rise for a tap water run (Run 4 ) , with no attempt made to control flow r a t e .  The variation  in observed thermal resistance associated with the total change in flow rate was 5 x 10"5 f t 2 - h r - ° F / B T U .  This  vari-  ation could be explained by the known relationship between film c o e f f i c i e n t of heat transfer and f l u i d v e l o c i t y . By making flow adjustments, and only using for computation data in which the temperature rise was at i t s target value, this source of error was effectively eliminated.  Figure 8.  Thermal Resistance Versus Fluid Temperature Rise, Run 4 (Tap Water).  68  5.4  Errors Due to Inlet Temperature  Variations  The i n l e t temperature to the test section could vary in response to cooling water temperature Usually, such variations were small.  changes.  Figure 9 shows the  relationship between thermal resistance and i n l e t temperature. The drop in thermal resistance with temperature level can be explained by the corresponding changes in f l u i d prop e r t i e s , especially v i s c o s i t y .  Total variation during an  uncontrolled run was 2 x 10 - 5 f t 2 - h r - ° F / B T U .  By holding  i n l e t temperature at target values, this source of error too was effectively eliminated.  5.5  Errors Caused by Wet Insulation In one run, Run 16, a large amount of A.C. current  was detected on some thermocouples.  Thermocouple readings  were obviously i n c o r r e c t , even f o r those in which no A.C. leakage was detected.  When the test section was d i s -  mantled, i t was found that the insulation was wet due to a leak in the top f i t t i n g of the tube.  Consequently,  current leaked from the test section to the thermocouple leads except for those l i b e r a l l y coated with Eccocoat epoxy r e s i n .  These tended to give steady but low values.  To avoid errors of this type, a l l f i t t i n g s were c a r e f u l l y inspected prior to test section  installation.  •°-  0.72  139.5  INLET Figure 9.  FLUID  140.0  TEMPERATURE (°F)  Thermal Resistance Versus Inlet Temperature f o r Run 5 on Tap Water.  CM  70  As a further precaution, thermocouple  leads near the tube  wall were coated with Eccocoat as outlined in Section 3.  5.6  Miscellaneous Errors In order to insure that the use of tap water  and the test section honing procedure had no hidden p i t f a l l s , a t r i a l was made on tap water for a period of 24 hours.  The system was then stopped, the test section  honed, and the t r i a l of  restarted.  Table XIV shows a series  thermal resistances before and after honing.  There i s  no evidence from these data that tap water produces deposits or that honing changes the tube.  fouling  The p o s s i b i l i t y  that deposits were formed which were not removed by honing is discounted, since even very hard scales were shown to be removable by this method.  5.7  Reproducibility and V a l i d i t y of Thermal Fouling Data The r e p r o d u c i b i l i t y of f e r r i c oxide fouling  resistance versus time curves obtained in this study was established by analysis of four t r i a l s made over the course of  the i n v e s t i g a t i o n .  These t r i a l s , numbered 34, 35, 38  and 59, were replicates made using 2130 ppm of f e r r i c oxide at a Reynolds number of 19550 and a heat flux of 44,360  71  Table XIV Data From Run 15 to Determine Effect of Honing Tube Wall on Thermal Resistance  Inlet Temp S-  o  157.7 1 57.3 Q_ ra CO 157.7 +•> c r 157.7 ra c +-> T 157.3 CO c o 157.7 157.7 -o (< O O 157.7 U 4 > + > 157.3 co 157.7 •l— i S- i—  Out!et Temp °F  Mean Temp °F  Fluid Temp. Rise  188.5 188.5 188.5 188.5 188.5 188.2 187.8 188.5 189.3 188.2  225.1 224.7 224.9 224.6 224.6 224.1 222.9 224.8 224.4 224. 2  30.9 31 .3 30.9 30.9 31 .3 30.5 30.1 30.9 32.1 30.5  156.8 1 56.8 <+- r— 1 57.3 <C ro 157.3 CD 3 157.3 -M ro CX 157.3 +-> C CO T- 157.3 o 156.8 •o IC 156.8 ro d) 156.8 QJ  +->  I —  £Z  4> -  co  157.1  0.7313 0.7294 0.7298 0.7252 0.7274 0.7201 0.7059 0.7283 0.7200 0.7220  11 11 11 11 11 11 11 11 11 11  11 13 1 5 17 19 21 23 25 27 27  224.4 30.9  0.7239  -  188.5 188. 2 189.3 188.2 187.8 188.2 188.2 187.8 187.4 187.8  224.3 223. 5 225. 5 223.7 222.3 223.4 222.9 222.7 222.3 223.0  31 .7 31 .3 32.1 30.9 30. 5 30.9 30.9 30.9 30.6 30.9  0.7256 0.7172 0.7329 0.7167 0.7004 0.7131 0.7064 0.7074 0.7059 0.7133  13:42 1 3: 50 14:00 14:10 14:20 14:30 14:40 14:50 1 5:00 15:10  188.1  223.4 31 .1  0.7140  -  1 57.6 188.5 s-  op  Thermal Resist, x 10*3 Time 2 f t - h r - ° F / B T U hrs:mi n  72  BTU/ft -hr. 2  from a l l f o u r  F i g u r e 10 shows a composite trials,  R.p* and b f o r the  p l o t of data  and T a b l e XV g i v e s the  parameters  l e a s t squares f i t o f the data to  the  equation  (4.4)  As can be s e e n , the curves the  are f a i r l y  reproducible,  parameter R.^* having a c o e f f i c i e n t  11% and b a c o e f f i c i e n t As w i l l  fouling.  o f v a r i a t i o n of  of v a r i a t i o n of 29%.  be d i s c u s s e d  oxide f o u l i n g t r i a l s  resulted  i n S e c t i o n 6, e a r l y i n no d e t e c t a b l e  t r a t i o n s of a p p r o x i m a t e l y  15 ppm.  When w a l l  i n c r e a s e s were d e t e c t e d i n Run No. 31 at a of 2130 ppm, the q u e s t i o n  property  From an a n a l y s i s c l u d e d t h a t the  concen-  temperature concentration  a r o s e as to whether t h e s e i n -  a f o u l i n g p r o c e s s or were caused  changes r e s u l t i n g  ferric  thermal  These t r i a l s were made a t f e r r i c o x i d e  creases r e f l e c t e d  with  from f e r r i c o x i d e  the b u i l d - u p of f o u l i n g d e p o s i t s .  fluid  addition.  of the data from many t r i a l s , f o u l i n g curves o b t a i n e d  by  it  accurately  i s conreflect  The reasons f o r t h i s  view  are as f o l l o w s : (I) Run  Sectioning of the test section following  31 showed a uniform  deposit measured as about 100 microns  Figure 10.  TIME (hours)  Fouling Curve Reproducibility as Shown by Superimposing Data for Replicate Runs 34,35,38,59. Ferric Oxide Cone. = 2130 ppm, q' = 44,360 BTU/ft 2 -hr, Re = 19,550.  74  Table XV Reproducibility of Fouling Curve Parameters Obtained by F i t t i n g Data to the Equation R^ = R^ (1 - e  ).  Ferric Oxide Cone. = 2130 ppm, Re = 19550, Heat Flux = 44,360 BTU/ft 2 -hr  b Run No.  ( f t 2 - h r - ° F / B T U x 10 s )  (hr- 1 )  34  3.9  1.3  35  3.1  1 .8.  38  3.5.  0.9  59  2.9-  1 .6  Avg  3.3  1 .4  Std. Dev.  0.4  0.4  Coeff. of Var.  11%  29%  75  thick  over  t h e whole t u b e .  as a r e a s o n a b l e t h e r m a l temperatures energy  was  would  balance.  (2) asymptotic  Run  31  was  heat  four  by  f o r the 1.3  measured  asymptote indicates  change causedby  honed, wall  deposit,  wall  F° t o m a i n t a i n  wall  the  temperature  the  (4)  to f e r r i c If t h e  rise  with  Einstein's  that  by  a slight  of  and  increase  transient hence  set  up  fluid  ferric  the t e s t  to the c l e a n  wall  oxide. section conditions  addition.  properties  change b e c a u s e o f  p r o p e r t y most  r e s p e c t to heat  tempera-  temperature  and  addition  in  in a p p r o x i m a t e l y  the wall  properties  oxide  reach  oxide addition  is reached  return  fluid  to  If t h e same w a l l  is stopped  oxide a d d i t i o n , the  importance  ferric  sudden  If a t r i a l  temperature  i s not a t h e r m a l  in f l u i d  temperatures  prior  wall  is obtained  curve obtained  (3)  existing  f o r the  hours.  l.8°F  This  time  resistance  Using  time  f l u x , a new  a sudden  ferric  actual  value following  nearly  10 m i n u t e s .  by  The  i n c r e a s e of  versus  have t o r i s e  The  its  in  conductivity  is taken  F° , indicating that k d ^ 7-2 BTU/hr-ft-°F.  1.8  ture  If 10 B T U / h r - f t - ° F  transfer  e q u a t i o n f o r the  likely  t o be of  i s the  viscosity.  viscosity  of  dilute  suspens i o n s , I  u = u o ( I + 2 . 5<J>)  (5.1 )  where \i0 is the v i s c o s i t y with no s o l i d s , and <j> is the volume fraction of suspended s o l i d s , the percentage chan in v i s c o s i t y caused by the addition of 2 130 ppm oxide is computed to be 0.01? - a negligible  ferric  change.  Chapter 6  RESULTS AND DISCUSSION  6.1  Summary of Fouling  Trials  During the course of this i n v e s t i g a t i o n , 70 t r i a l runs were made.  These can be divided  into f i v e main  categories: (1) and  T r i a l s on tap water in order to i d e n t i f y  e l i m i n a t e sources of e r r o r  coefficients.  in measuring heat t r a n s f e r  (The r e s u l t s of these t r i a l s  have been p r e -  sented and d i s c u s s e d in S e c t i o n 5.) (2)  Trials  designed  to determine  the i n f l u e n c e  of f e r r i c oxide c o n c e n t r a t i o n , heat f l u x and Reynolds number on the shape of f o u l i n g  r e s i s t a n c e versus  time  curves. (3)  T r i a l s t o determine  oxide p a r t i c l e s i z e on f o u l i n g .  77  the e f f e c t of f e r r i c  78  (4) of  various  hypotheses  were formed  during  (5) such are  Specialty  discussed  book No.  5 a t UBC  designed  concerning  the  course  Miscellaneous  m a t e r i a l s as not  trials  fouling  of  the  trials  p o l y s t y r e n e and here,  but  Chemical  the  to t e s t  the  behaviour  validity  which  investigation.  using  silicon  data  are  as f o u l a n t s dioxide. on  file  These  in data  Engineering.  Tables XVI and XVII show the operating conditions for each f e r r i c oxide t r i a l , give to the purpose for making the t r i a l state  the outcome.  a short statement as and where appropriate  For each t r i a l which exhibited  thermal  f o u l i n g , the fouling curve obtained has been f i t t e d to the Kern-Seaton type equation  Rf = Rf*JT - e"b^| where  R^ t Rf* b  (4.4)  = fouling resistance = time = f i t t e d constant = asymptotic resistance = fitted  fouling  constant dR  Included in Table XVII is the i n i t i a l  fouling rate  f dt  t=  0  T a b l e XVI Summary o f F o u l i n g T r i a l s Run a t Low F e r r i c  Run Number  Heat Flux (BTU/ft2-hr)  ReynoIds Number  Ferric Oxide Cone. (ppm)  Ferric Oxide Particle Si ze (Mi c r o n s )  Maximum Approximate Deposit Thickness (Mi c r o n s )  Oxide  Concentrations  Trial Ouration (hrs)  Comments  1  91660  24700  15  Mixed1  70  48  Initial fouling fouling.  4  91660  25510  15  Mixed  70  24  Repeat o f Run 1 w i t h No thermal fouling.  13  91250  25600  15  Mixed  70  72  Repeat o f Run 1 w i t h extended operating time. No thermal f o u l i n g .  15  92460  26470  375  Mixed  100  30  Repeat Run 1 - i n c r e a s e d f e r r i c cone. No thermal fouling.  16  92310  25070  15  Mi xed  60  168  17  92310  25070  15  Mixed  120  25  19  9231 0  25070  15  0.3-0.8  0  48  20  0  25000 approx  15  0.3-0.8  70  72  21  92310  25070  15  0.3-3.7  0  24  22  92310  25070  15  0.3-3.7  0  168  23  0  25000 approx  15  0.3-3.7  70  96  Agglomerates of approximately  0.2u p a r t i c l e s .  run.  No  thermal  close  control.  oxide  Repeat Run 1 - o p e r a t i n g time one week. No thermal fouling. Repeat Run 1 w i t h 3000 ppm NaCl . No thermal fouling. Repeat Run 1 w i t h p r e s i z e d p a r t i c l e s . No d e p o s i t d e t e c t e d . No thermal f o u l i ng. Repeat.Run 19 a t 0 heat Deposit detected.  flux.  Repeat Run 19 w i t h l a r g e r p r e s i z e d particles. No d e p o s i t . No thermal f o u l i ng. Repeat Run 21 w i t h e x t e n d e d o p e r a t i n g time. No d e p o s i t . No thermal fouling. Repeat Run 22 a t 0 heat Deposit detected.  flux.  Table  XVII  Summary o f F e r r i c O x i d e T r i ' a l s U s i n g  Run Number  Heat  Flux  Reynolds Number  2  (BTU/ft -hr)  Mi xed-s i ze Ferric Oxide Cone. (ppm)  R *X f  2  10  (ft -hr°F/BTU)  5  Mixed-Size  b 1  (hr" )  Particles  Initial F6u1i ng Rate c b R f * x 1CV 2 fc (ft - F/BTU)  Comments  33  44360  19550  2130  8.5  0.3  2.6  E f f e c t o f high c o n e . Rf* and b i n a c c u r a t e due to v o l t a g e f1uctuations  34  44350  19550  2130  5.7  1.3  7.4  Repeat o f Run 3 3 . R-* and b i n a c c u r a t e because o f l i m i t e d data  35  44360  19550  2130  3.3  0.6  2.0  Repeat of Run 33. Oata not accurate. Tube not honed a t time z e r o minus Repeat of Run 3 3 . Tube honed at time z e r o . A i r line in tank. F i r s t t r i a l with a c c u r a t e data  38  44360  19550  2130  3.7  0.9  3.3  39  44870  25390  2130  4.4  2.3  10.1  Repeat Run 38 a t h i g h e r R e y n o l d s number  40  44870  25390  2130  7.0  1.6  11.2  E f f e c t o f Honing P o r t i o n o f D e p o s i t from a p r e f o u l e d tube (Run 39) a t time zero minus  41  44870  25390  2130  8.9  1 .2  10.7  E f f e c t o f high v e l o c i t y c o o l ing on p r e f o u l e d tube (Run 40)  42  89750  26490  2130  -  -  -  E f f e c t o f i n c r e a s i n g heat f l u x . Rf* and b i n a c c u r a t e due to i n s u f f i c i e n t data  43  . 44360  19550  2130  -  -  -  Repeat o f Run 3 3 . Loss o f d e p o s i t i n d i c a t e d i n upper region of tube. Rf* and b i naccurate (Continued)  Table  Run Number  Heat  Flux  89890  Initial Fouling ' Rate . c b R * X 1CK ( f t - F/BTU)  (ft -hr°F/BTU)  37590  2130  2.2  2.9  6.4  .Effect o f high heat f l u x and h i g h R e y n o l d s n u m b e r  Reynolds Number  2  •  (Continued)  Mixed-size Ferric Oxide Cone. (ppm)  (BTU/ft -hr) 44  XVII  R *X f  10  5  b  Comments  f  2  (hr" ) 1  45  89750  26490  250  0.5  2.2  1 .1  Effect  o f C o n e , o f 2 5 0 ppm  46  89750  26490  750  0.6  0.5  0.3  Effect  o f C o n e ; o f 750 ppm  47  89750  26490  1000  1.0  3.6  3.6  Effect  o f C o n e , o f 1 0 0 0 ppm  48  89750  26490  1750  0.4  3.4  1 .4  Effect  o f C o n e , o f 1 7 5 0 ppm  49  89750  26490  2130  2.1  5.3  11.1  Effect  o f C o n e , o f 2 1 3 0 ppm  50  89750  26490  2130  3.1  3.7  11.5  Repeat  o f Run 49  52  89750  26490  3750  3.3  0.9  3.0  Effect  o f C o n e , o f 3 7 5 0 ppm  53  44360  1 9550  3750  5.9  2.7  15.9  54  1 6540  1 0090  2130  8.8  0.9  7.9  F i r s t t r i a l i n a series at l o w h e a t f l u x a n d Re  55  25800  1 5740  21 30  5.4  1 .7  9.2  Effect  heat  flux  56  89860  20850  2130  2.3  4.1  9.4  E f f e c t of r a i s i n g heat a n d R e y n o l d s number  flux  58  88090  26440  2130  1 .6  8.4  9.7  E f f e c t o f R a i s i n g Re. R * and b i n a c c u r a t e ( l i m i t e d d a t a )  59  44360  19550  2130  3.1  1.6  5.0  R e p e a t o f Run 38  61  41970  33700  2130  2.2  6.2  13.5  62  44360  1 9550  2130  -  -  .  -  E f f e c t o f reduced heat a n d Re a t 3 7 5 0 ppm  of Raising  flux  f  E f f e c t o f heat f l u x and R e y n o l d s number A t t e m p t t o r e p e a t Run 5 9 . Tube went i n t o l i n e a r f o u l i n g (Continued)  T a b l e XVII ( C o n t i n u e d )  Run Number  Heat  Flux  Reynolds Number  2  (BTU/ft -hr) 63  91400  26500  64  89860  20850  70A  89670  70B  89670  M i x e d - s i ze Ferri c Oxide Cone. (ppm)  R *X I O f  2  (ft -hr°F/BTU)  5  b 1  (hr" )  Initial Fouling Rate c b Rf *x 1CV (ft^F/BTU  Comments  2130  2.1  5.7  . 12.0  2130  -  -  -  S u c c e s s f u l a t t e m p t to i n d u c e linear fouling  26580  2130  -  -  -  Linear fouling i n system  with  26580  2130  -  -  -  Linear oxygen  w i t h no  .  Repeat  o f Run 49  fouling  oxygen  81  equivalent  to bR^  by E q u a t i o n ( 4 . 4 ) .  f o r those runs which c o u l d be  For those t r i a l s which showed a l i n e a r  dependence o f f o u l i n g r e s i s t a n c e R* f  i s meaningless  asymptote, fore  on t i m e , the  and o n l y the c o n s t a n t f o u l i n g r a t e i s  trials,  These r e s u l t s point  fouling  and the d e p o s i t  a n a l y z e d both  are p r e s e n t e d i n d e t a i l  strongly  to the conclusion  of 304 stainless corrosion deposit.  steel  of the stainless  steel  in Section that  under  resistance  versus  the  ferric  runs were  how v a r i o u s changes i n  steel,  time c u r v e s .  the  would change Such t r i a l s  c l u d e d v a r y i n g the Reynolds number and the heat i n c r e a s i n g the f e r r i c o x i d e c o n c e n t r a t i o n , scavenger,  oxide associated  c o n d i t i o n s , which s h o u l d p r e d i c t a b l y a l t e r  fouling  6.4.  ferric  C o n s e q u e n t l y , many of the t r i a l  c o r r o s i o n behaviour of s t a i n l e s s  quanti-  microprobe.  is intimately  made f o r purposes o f d e t e r m i n i n g trial  there-  the t e s t s e c t i o n was  t a t i v e l y and q u a l i t a t i v e l y i n an e l e c t r o n  oxide  an  reported.  removed, s e c t i o n e d ,  with  constant  s i n c e such curves do not approach  Following selected  They  fitted  the in-  flux,  u s i n g an oxygen  and i n i t i a t i n g f o u l i n g runs u s i n g a p r e f o u l e d  r a t h e r than a c l e a n  tube.  82  6.2  Thermal Fouling Versus Time Behaviour  6.2.1  Typesof thermal fouling curves obtained. Three d i s t i n c t types of fouling curves were obtained  for f e r r i c oxide-tap water suspensions on 304 steel.  stainless  These are i l l u s t r a t e d in Figures 11, 12 and  13,  and each type is discussed below. The curve shown in Figure 11 was type of fouling curve obtained.  the most frequent  It i l l u s t r a t e s c l a s s i c a l  fouling behaviour as described by Kern and Seaton (6). This curve is characterized by asymptotic type behaviour and can be f i t t e d by the equation  (4.4)  For the f e r r i c oxide-tap water-304 stainless steel system studied here this curve could be readily reproduced as w i l l be described l a t e r , i t s shape was heat f l u x , Reynolds  and,  a function of  number and f e r r i c oxide concentration.  Figure 12 shows the type of fouling curve obtained when an attempt i s made to operate an asymptotically fouled tube for an i n d e f i n i t e period of time.  Under such condi-  t i o n s , fouling becomes an unsteady state process characterized by a sudden decrease in fouling resistance followed  Figure 11.  TIME (hours)  Fouling Curve I l l u s t r a t i n g Asymptotic Type Behaviour (Run 63, Heat Flux 91,400 BTU/ft 2 -hr, Re 26,500, Mixed-Size Ferric Oxide Cone. 2130 ppm).  in  O  Z> fOQ  RUN 63 RUN 49 FIRST 4 STATIONS RELEASED DEPOSIT  o  00  TIME Figure 12.  (hours)  Effect of Prolonged Operation on Fouling Behaviour Re 26,500, Mixed-Size Ferric Oxide Cone, 2130 ppm)  (Heat Flux 89,750  BTU/ft 2 -hr  TIME  Tigure 13.  (hours)  Linear Fouling Behaviour (Run 64, Heat Flux = 89,850 BTU/ft 2 -hr, Re = 20,850, Mixed-Size Ferric Oxide Cone. = 2130 ppm). 00  86  by r e f o u l i n g .  Taborek et al. (1) a l s o show curves o f  this  type. F i g u r e 13 i l l u s t r a t e s  a t h i r d type of  curve o b t a i n e d  i n a f e r r i c o x i d e - t a p water-204  steel  T h i s curve was o b t a i n e d at  system.  or by f o u l i n g  the tube at zero heat f l u x  stainless  low heat f l u x e s , for periods  than about e i g h t hours and then h e a t i n g . i z e d by a near l i n e a r dependence  fouling  It  of f o u l i n g  is  longer  character-  resistance  with  time. It fouling  s h o u l d be s t r e s s e d  t h a t a l l t h r e e types o f  curves can be o b t a i n e d w h i l s t o p e r a t i n g  identical  c o n d i t i o n s of heat f l u x ,  inlet  temperature,  flow r a t e and f e r r i c o x i d e c o n c e n t r a t i o n . because t h a t shown i n F i g u r e 12 r e s u l t s f o r extended  The curves  from o p e r a t i n g  of s t a r t i n g  the run w i t h a p r e f o u l e d  tube.  E f f e c t o f Reynolds number and heat f l u x on fouling  curves.  In o r d e r to determine  the e f f e c t  of Reynolds  number and heat f l u x on the shape of f o u l i n g series  differ  time p e r i o d s , and t h a t shown i n F i g u r e 13 i s  the consequence  6.2.2  under  curves, a  of t r i a l s were made u s i n g m i x e d - s i z e f e r r i c o x i d e  at a c o n c e n t r a t i o n  o f 2130 ppm.  R e s u l t s are shown i n  87  Table XVIII and plotted in Figure 14-16.  An  examination  of these data shows the following: At high heat f l u x , in the range of 90,000 BTU/ f t 2 - h r , fouling curves depict asymptotic type behaviour. The curves obtained (see Figure 14) can be readily f i t t e d to the equation  The asymptotic fouling resistance does not appear to be a function of Reynolds number, but the i n i t i a l may  fouling rate  be lowered s l i g h t l y by an increase in Reynolds number.  As either the Reynolds number or the heat flux is decreased (see Figure 15), the data can s t i l l  be f i t t e d by equation  (4.4); the asymptotic resistance R^  then increases and  the i n i t i a l  fouling rate yields no consistent pattern.  A danger in f i t t i n g data to equation (4.4) i s that a reasonably good f i t can be achieved for v i r t u a l l y any curve which extrapolates to a positive value of R^ at t = 0, provided dR^./dt is not negative.  If the view is  taken that the use of equation (4.4) to f i t the present data (which meet the above c r i t e r i a ) is not j u s t i f i e d , the results can be replotted as shown in 4 runs in Figure 16, ignoring the zero point.  The assumption now  being made  Table Effect  Run No.  Heat  XVIII  o f Heat Flux and Reynolds Number,on F o u l i n g B e h a v i o u r f o r M i x e d - S i z e F e r r i c  Flux  (BTU/ft2-hr)  Reynolds Number  Run Duration (hrs)  Wal 1 Temc Clean( F°)  AT Wall (F°)  W LBm/sec  R  Oxide  f*  ft2-hr-°F/BTU  2130 ppm  b 1/Hour  Cone.  3R f  TT  t=0  54  16540  10090  3 42  145. 7  1 .1  0 .076  8.8  0 9  7  55  25800  1 5740  2 00  148. 0  1 .3  0 .118  5.4  1 7'  9 2  38  44360  1 9550  2 10  159. 1  1 .8  0 .144  3.7  0 9  3 3  59  44360  19550 .  2 90  159. 1  1 .6  0 .144  3.1  1 6  5 0  55  89860  20850  1 20  195. 0  2 .4  0 .144  2.3  4 1  9 4  39  44870  25390  2 25  152. 0  1 .7  0 .190  4.4  2 3  10 1  49  89750  26490  3 87  181 . 5  2 .8  0 .188  2.1  5 3  11 1  50  89750  26490  1 72  182. 6  2 .7  0 .188  3.1  3 7  11 5  63  91400  26530  1 92  181 .5  2 .0  0 .188  2.1  5 7  12 0  61  41970  33700  2 48  144. 0  1 .1  0 .256  2.2  6 2  1 3 5  44  89900  37590  2 08  167. 5  2 .0  0 .275  2.2  2 9  6 4  9  CO  co  Figure 14.  Influence of Reynolds Number on Fouling Curves at Heat Fluxes Near 90,000 BTU/ft 2 -hr, Mixed-Size Ferric Oxide Cone. 2130 ppm. CO  1X5  o TIME  Figure 15.  (hours)  Effect of Heat Flux and Reynolds Number on Fouling Behaviour. Mixed-Size Ferric Oxide Cone. 2130 ppm.  RUN 54  RUN NO. 54 55 59 61  o  HEAT FLUX B T U / f t - hr 1 6,540 25,800 44,360 41,970  I  I 2  1 TIME  Figure 16.  RE  SYMBOL  10,090 15,740 19,550 33 ,700  O  2  9  A  A i 3  (hours)  Effect of Heat Flux and Reynolds Number on Fouling Curves at Heat Fluxes < 44,360 BTU/ft 2 -hr, Mixed-Size Ferric Oxide Cone. 2130 ppm.  92  is  t h a t the f i r s t  few minutes of a run show a f o u l i n g  a r a p i d l y d e c l i n i n g r a t e , f o l l o w i n g which the r a t e constant.  Under such an a s s u m p t i o n ,  as e i t h e r  the heat f l u x or Reynolds number i s  the c o n s t a n t It is  fouling  rate  for t h i s  rate decreases.  The f a c t  similarly results  i n a thermophoretic  will  f o r c e on the p a r t i c l e s  be e x p l a i n e d i n S e c t i o n 6 . 2 . 6 ,  f o u l e d at low heat f l u x  fouling flux readily fluxes which  However, as  i f the tube i s  o c c u r s at a very r a p i d  Such b e h a v i o u r would not be expected  pre-  rate.  i f thermophoresis  the s o l e reason f o r the i n v e r s e dependence  of  with high wall  that  temperatures.  C o n s e q u e n t l y , when o p e r a t i n g w i t h h i g h heat f l u x , i s reduced near the tube w a l l .  were  fouling  A more p r o b a b l e e x p l a n a t i o n i s  high heat f l u x e s are a s s o c i a t e d  solubility  hence  p r i o r to time zero and then high  heat f l u x e s u s e d , f o u l i n g  r a t e on heat f l u x .  the  t h a t h i g h heat  to the tube w a l l .  clean,  Increasing  r a t e s i s not as  i t was thought  impeded t h e i r t r a n s p o r t  is  t h a t i n c r e a s i n g the heat  i n lower f o u l i n g  At f i r s t  behaviour  the shear s t r e s s and  the s c o u r i n g a c t i o n at the w a l l ; c o n s e q u e n t l y ,  resulted  decreased,  adhere w i t h d i f f i c u l t y .  the Reynolds number i n c r e a s e s  explained.  show t h a t  At time z e r o , when the tube w a l l  oxide p a r t i c l e s  becomes  increases.  i s b e l i e v e d t h a t the reason  as f o l l o w s :  ferric  the data  at  oxygen  S i n c e , as  will  93  be shown i n S e c t i o n s 6 . 2 . 9  and 6 . 2 . 7 ,  decreases w i t h i n c r e a s i n g t e m p e r a t u r e , scavenger  a l s o reduces  tion  f o r the  flux  appears to be  the f o u l i n g  i n v e r s e dependence  rate  and use of an oxygen  rate,  the above  of f o u l i n g  explana-  r a t e on heat  reasonable.  With r e s p e c t believed that neither data  the f o u l i n g  to the shape of the c u r v e s , i t o f the methods  i s e n t i r e l y sound.  is  used here to f i t  Use o f the a s y m p t o t i c type  the  equation  (4.4)  is d i f f i c u l t lined  to j u s t i f y as a g e n e r a l i z a t i o n , s i n c e as  out-  i n S e c t i o n 6 . 2 . 1 , attempts to o p e r a t e i n d e f i n i t e l y  at the a s y m p t o t i c c o n d i t i o n r e s u l t e d thermal  resistance  i n sharp drops  f o l l o w e d by r e f o u l i n g .  in  Use o f the method  whereby the f i r s t few minutes of data are i g n o r e d and a l i n e a r e q u a t i o n a p p l i e d f o r the remainder can be on the grounds  critized  t h a t i t s i m p l y does not f i t a l l the  though i t does g i v e a f a i r  a p p r o x i m a t i o n of the  r a t e over much of the range c o v e r e d . b e h a v i o u r i s d i s c u s s e d more f u l l y  data,  fouling  This aspect of  in Section 7.0.  fouling  94  6.2.3  E f f e c t of f e r r i c  oxide c o n c e n t r a t i o n on f o u l i n g  curves. The used  c o n c e n t r a t i o n s of mixed-size f e r r i c  i n t h i s study ranged  oxide  from 15 ppm by weight to 3750  ppm,  with 2130 ppm being the c o n c e n t r a t i o n most f r e q u e n t l y tested.  Pre-sized f e r r i c  trations  of 15 ppm because of the high c o s t of t h i s m a t e r i a l  ($10 per gram).  oxide was used only at concen-  I  Consequently, the r e s u l t s  presented  here  p e r t a i n to mixed-size f e r r i c oxide o n l y . Below 100 ppm, thermal  fouling  could not be de-  t e c t e d on a c o n s i s t e n t b a s i s , although s e c t i o n i n g of the tubes c l e a r l y showed the presence of s p o t t y f o u l i n g deposits.  In most t r i a l s , wall temperatures  s t a n t during the e n t i r e lasted  as long as  remained  con-  course of the r u n , some of which  7 days.  During  behaviour i n d i c a t i v e of f o u l i n g  two runs  (Runs 1 and 4 ) ,  took p l a c e at l o c a l i z e d  p o s i t i o n s on the tube w a l l , but such r e s u l t s  c o u l d not be  reproduced. For f e r r i c 750 ppm, thermal fouling until  oxide c o n c e n t r a t i o n s of approximately  fouling  could be detected but a g a i n ,  curves were not r e p r o d u c i b l e and d i d not become so  a c o n c e n t r a t i o n i n excess of 1750 ppm f e r r i c  was used. fouling  oxide  At c o n c e n t r a t i o n s of 2130 ppm and h i g h e r , thermal  was r e a d i l y d e t e c t e d and the r e s u l t i n g  curves are  95  reproducible within the l i m i t s shown by Table XIX (compare Runs 49 and 63). Tables XIX and XX show the results of two series of fouling runs made at varying f e r r i c oxide concentrations. The fouling curves themselves are shown in Figure 17 and 18.  Again, as was the case with the dependence of fouling  on heat flux and Reynolds number, the use of an asymptotic type relationship to f i t these data i s perhaps not e n t i r e l y valid.  However, the data c l e a r l y show that as the concen-  t r a t i o n of f e r r i c oxide is increased, the extent of fouling increases, the effect being much more pronounced f o r the lower heat flux and lower Reynolds number (Figure 18), where the fouling rate i s consistently higher f o r the higher concentration. That the fouling rate should be a direct function of f e r r i c oxide concentration was not unexpected. the fact that thermal  However,  fouling could not be detected at low  concentrations (15 ppm) when operating times were extended for periods of up to two weeks (except occasionally at l o c a l i z e d points) implies that the influence of concentration on fouling i s not a simple r e l a t i o n s h i p .  If the  reason for the i n a b i l i t y to detect fouling at low concentrations was simply low mass transfer rate of f e r r i c oxide towards the wall when the concentration driving force i s  96  Table XIX I n f l u e n c e of F e r r i c Oxide C o n c e n t r a t i o n and R^* and I n i t i a l  Fouling Rate,  on Parameters b  Obtained  Squares F i t of F o u l i n g Data to the R  f  = R *(l f  - e'  b t  ).  Run  (Approx.)  Re 26500  (Approx.)  No.  Asymptoti c Fouling Resistance  F e r r i c Oxide  Least  Equation  Heat F l u x 90,000  BTU/ft -hr 2  by  Cone.  R  f*  Initial F o u l i n g Rate dR  v  dt  t=0  = bR,  (ppm)  (hr" )  (ft )(hr)(°F) BTU  (ft )(°F) BTU  45  250  0.5  0.5  1 .1  46  750  0.5  0.6  0.3  47  1500  3.6  1.0  3.6  48  1750  3.4  0.4  1 .4  49  2130  5.3  2.1  11.1  63  2130  5.7  2.1  12.0  52  3750  0.9  3.3  3.0  1  2  2  97  Table XX Influence of Ferric Oxide Concentration on Parameters b and Rf*  and I n i t i a l  Fouling Rate, Obtained by Least  Squares F i t of Fouling Data to the Equation Rf  = Rf*(l - e " b t ) .  Heat Flux 44,360  BTU/ft 2 -hr (Approx.) Re 19,550  Run  Ferric Oxide  No.  Cone.  Asymptoti c Fouli ng Res i stance b  R  f*  Initial Fouling Rate dR. f - bR * f t-o d  (ppm)  t  (hr- 1 )  (ft2)(hr)(°F) BTU  (ft2)(°F) BTU  38  2130  0.9  3.7  3.3  53  3750  2.7  5.9  15.9  Figure 17.  Effect of Mixed-Size Ferric Oxide Concentration on Fouling Behaviour, Heat Flux 90,000 BTU/ft 2 -hr (Approx.), Re 26,500 (Approx.).  99  TIME Figure 18.  (hours)  Effect of Mixed-Size Ferric Oxide Concentration on Fouling Behaviour, Heat Flux 44,360 BTU/ft 2 -hr, Re = 19,550.  100  low, then one would not expect to find fouling in l o c a l i z e d p o s i t i o n s , and i t should be possible to detect fouling thermally simply by extending trials.  operating times f o r the  Such was not the case.  A possible explanation  is that at low concentrations deposits build to some asymptotic  level which cannot be detected thermally.  Another p o s s i b i l i t y i s that the fouling process requires a r e l a t i v e l y large accumulation  of p a r t i c l e s on the tube  wall to trigger a bonding reaction between p a r t i c l e s and tube wall and at low concentrations such an accumulation never occurs.  The results of microprobe examination of  deposits coupled with fouling experiments using prefouled tubes indicate that the l a t t e r explanation i s probably correct.  Further discussion of this point i s contained  in Section 7.0.  6.2.4  Effect of residual tube wall deposits on fouling  curves.  In some early t r i a l  runs, the assumption was made  that i f the wall temperature readings indicated no temperature rise over the clean wall c o n d i t i o n , as established with a clean honed tube on s o l i d s - f r e e water, there were no deposits on the tube wall and i t was unnecessary to hone  101  the tube p r i o r to f e r r i c o x i d e a d d i t i o n .  When f o u l i n g  data  from Runs 31-38 were examined, however, i t was found  that  r e p r o d u c i b i l i t y was b e t t e r f o r those  the  tube was honed p r i o r to time z e r o . were p r e s e n t  on the tube w a l l  trials  i n which  To t e s t whether  even though thermal  gave no i n d i c a t i o n o f t h e i r p r e s e n c e ,  trial  made u s i n g tap w a t e r .  i n d i c a t i o n t h a t the tube was i n o t h e r condition.  When the t r i a l  data  a f o u l e d tube from  a p r e v i o u s run was p l a c e d i n the heat t r a n s f e r "fouling"  deposits  loop and a  Thermal data gave no than the c l e a n w a l l  was s t o p p e d , the tube was honed  and r i n s e d .  D e p o s i t was c o l l e c t e d , which showed c o n c l u s i v e l y  t h a t thermal  readings  i n d i c a t i n g clean wall  d i d not n e c e s s a r i l y s i g n i f y I t was t h e r e f o r e  temperatures  the complete absence o f  c o n c l u d e d t h a t any tube used i n a f o u l i n g  run would always c o n t a i n r e s i d u a l d e p o s i t s was honed p r i o r to commencing a  d e p o s i t s on thermal f o u l i n g  unless  the  of r e s i d u a l  v e r s u s time c u r v e s ,  following  Run 40 the heat f l u x was shut o f f and the f l o w r a t e to the maximum p o s s i b l e ( c o n t r o l v a l v e f u l l y period of three minutes.  Original  and flow r a t e were then r e s t o r e d . were r e - e s t a b l i s h e d ,  settings  o f heat  When t r i a l  thermocouple data  raised  open) f o r a flux  target conditions  and s u f f i c i e n t time had e l a p s e d  transients,  tube  trial.  In o r d e r to determine the e f f e c t  remove thermal  deposits.  to  showed the  tube  102  to be at the clean wall thermal condition.  The t r i a l run  was then continued and the thermal fouling versus time curve generated. Figure 19 shows this curve for the above t r i a l (Run 41), as compared to a curve generated under identical conditions except that the tube was honed prior to time zero (Run 39).  These curves c l e a r l y demonstrate  that  residual deposit, which has previously been shown to be present on the unhoned tube w a l l , promotes f o u l i n g . (Because of this behaviour, only t r i a l s in which the tube was honed prior to time zero were used to establish the effect of Reynolds number, heat flux and f e r r i c oxide concentration on thermal fouling.) It is believed that the return of the tube wall temperatures to the clean wall condition when the heat flux is shut o f f and the velocity increased i s the result of deposit removal. the  It i s postulated that the cooling of  tube cracks the deposit and the increased velocity  tends to augment shearing and removal. tap  water t r i a l  The fact that the  on a fouled tube showed some deposit s t i l l  to be present indicates that there i s not 100% deposit removal by this procedure. higher i n i t i a l  Since such tubes foul at a  rate than clean tubes, i t appears that the  fouling rate i s a function of some process which i s enhanced by the presence of spotty residual deposits on the  8  F i g u r e 19.  TIME (hours)  Comparison of F o u l i n g B e h a v i o u r f o r a C l e a n Honed Tube (No R e s i d u a l D e p o s i t ) w i t h a P r e f o u l e d Tube S u b j e c t e d to High V e l o c i t y C o o l i n g . Heat F l u x 44870 B T U / f t - h r , Re 25400, M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm. 2  104  tube w a l l .  As w i l l be outlined in more detail l a t e r , i t  is believed that this process i s crevice corrosion, and that the rate of this crevice corrosion i s governed by the rate at which oxygen i s reduced on the unfouled metal.  6.2.5  Effect of extended operating time on fouling curves. It was stated in Section 6.2.1 that extension of  fouling runs beyond approximately 3-4 hours resulted in an unsteady state fouling process.  T y p i c a l l y , thermal data  would indicate the tube to be either fouling or in an asymptotically fouled s t a t e , when suddenly wall temperatures at l o c a l i z e d points would decrease and then gradually increase again.  To study this behaviour in d e t a i l , Run  34 was made in which the operating time was extended over a period of 45 hours.  Figure 20 shows a plot of the fouling  resistance as a function of time for this run.  Comments  on this plot follow: During the f i r s t three hours of the t r i a l , the tube fouled at a rapid rate.  At 3 hours and 10 minutes  following time zero, the wall temperature in the upper half of the test section decreased almost to the clean wall level.  The fouling resistance then began to rise again  and after 24 hours had risen to the same level as after 3 hours.  It was then decided to hone the deposit from the  to.  c  FOULING RESISTANCE  -i fD  O  ro o  ( f t - h r - ° F / B T U ) x I0 __  ro  2  5  oo  &  CO T I  - H O  Q - Q T - —  o-o  r+ 3 rcAO. I  T  rr co  -S fD 3"  co -<  Eu  TO <  (D - • • O £= VO -S  —>  o  en o cn < 0 fD " ~i 2 OJ -•• 3 X fD m CL X 1 <-+ OO fD -"•3  N  ^  fD  —I  O  1  m  "* =r 3  -i.  X  ro  00  o  \  fD — '  O  o  H  ai  fD Zp* CL — ^  «  DEPOSIT HONED FROM TEST SECTION  o n ) ! ;  l o o  CL O fD C L O -+, O O 3 -S O TO C ro 3 oo c o o -P» TJ T3 3  m o o  > CO o —I o m  i  Q.  fD  *  "0  =c fD  EU rt  X  oo O  SOL  t  _r>  m o  >  2  J  o  106  test section and  repeat the t r i a l .  Rapid fouling again  occurred but did not reach i t s o r i g i n a l l e v e l s .  After 2  hours wall temperatures again dropped suddenly and  then  rose again s l i g h t l y . The  results of t r i a l  34 suggested that sudden  wall temperature drops were i n d i c a t i v e of a loss of fouling deposit from the tube w a l l , and refouling would occur.  that once this happened  However, the results of this t r i a l  were not s u f f i c i e n t l y precise to enable refouling rates be accurately measured, because during much of the the equipment was  unattended and  not well c o n t r o l l e d . deposit release  and  It was  to  run  operating variables were  therefore decided to study  refouling in a more direct manner by  fouling a tube under c a r e f u l l y controlled  conditions,  honing the deposit from one-half of the tube only, and continuing the fouling run. involving this run was made, the procedure and  Since the series of  The  trials  perhaps the most important series results are presented here in  d e t a i l , with data given in Table XXI Figure 21 and  then  and  plotted in  22. first  run of this s e r i e s , Run  No.  39, was  c a r e f u l l y controlled  trial  tration of 2130  a heat flux of 44,870 BTU/ft 2 -hr  ppm,  a  made at a f e r r i c oxide concen-  a Reynolds number of 25,390.  After 2.25  hours, the  and  run  Table XXI Parameters b and R^* and I n i t i a l Data to the  Equation R  BTU/ft -hr, 2  f  F o u l i n g Rate Obtained  = R *(l f  - e" ) b t  f o r Runs 39, 40 and 4 1 .  Run b  R * f  (hr" ) 1  Heat F l u x 44870  Re 25390, M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm Asymptoti c F o u l i ng Res i stance  No.  by L e a s t Squares F i t of F o u l i n g  (ft -hr-°F/BTU) x 10 2  s  Initial F o u l i n g Rate 3R  Tube S u r f a c e Condition  f  9t t=0 (ft -°F/BTU) x 10  Zero  at  Time  2  s  39 Upper Portion  2.6  4.2  10.9  Honed of a l l Deposi t  39 Lower Portion  2.1  4.4  9.2  Honed of a l l Deposi t  40 Upper P o r t i on  2.4  4.8  11.5  Honed of a l l Deposi t  40 Lower Portion  1.4  8.8  12.3  Contains Residual D e p o s i t from Run 39  7.3  12.4  Contains Residual D e p o s i t from Run 40 Only  10.6  9.5  Contains Residual D e p o s i t from Runs 39 and 40  41 Upper P o r t i on 41 Lower Portion  1  -  0.9  7  FOULING  RESISTANCE ( f t - h r - ° F / B T U ) x IO 2  CO C  -s fD  c~> r c O 3 O  fD CD  rt  r o — i -TJ ~a — ' C O O CO X "5 -$ O c+ c+ -£» -•• -•• X5 -P» O O "O >• 3 3 3 CO • sjoj O O r+ - h  co r o —I  —I • co c r cn -h r c  to c+  oo  r+ O N> C fD O rtI 3 - to  -s -s < * co  m  73 3 o rt> Giro r c cn -"•  v  CO CD O  » 3  -••  X  o tQ 5 c  3-  < c o —\ fD CO n> 3 " v > O CD o <  fD c+ Q. I CO _i. O N O ft) — ' 3 O fD t Q  o  C+  o  -P^  -J> OJ — O CD  HEAT FLUX SHUT OFF AND VELOCITY RAISED TO MAXIMUM FOR 3 MINUTES  -n  -s tu  33 33 IV c c c  _i. 3 IQ  cn • re cn o  3 CL r c -•• 3 fD O C CQ -5 to O  80L  5  FOULING R E S I S T A N C E (ft -hr~°F/BTU) 2  to  c  s  n>  o  ro ro  ro  4^  o)  x IO  oo  70 rc cz ro o -a  cz -o  r o -s ft> on co -s  co -a vo cu o  0 "  3 -s CL c+  2 X O _i. _i. 3 X CQ fD 3" O CL -h 1  CO -•• N fD  <  fD —I —1 fD O CO O rt-  UPPER PORTION HONED  t l r t CO fD C< CD 1 O -$ O c+ _i. O ->. O O O —« 3  o  x 3 -co  i  I  — -n <r o r^;  fD OJ —1 O  3  o  cncQ  13" o  o  cn ca —^ fD (/) r o o cu  30 ZD 33 e c c  —' cr < CO  o  -s -'• CO O  e  XJ  -J> — O  OJ CO  rc n o  fD OJ  —•  C 3 X CQ  -p» rc o  » 3 CO -•• >»J 3 Old CO CU  ro -h • r+ cn to I  60L  HEAT FLUX SHUT OFF AND VELOCITY RAISED TO MAXIMUM FOR 3 MINUTES  5  O  n o  was stopped and the d e p o s i t honed from the upper p o r t i o n of the t e s t s e c t i o n o n l y .  D i s m a n t l i n g , honing and  of the equipment took 3 m i n u t e s .  Run 40 then commenced  under i d e n t i c a l o p e r a t i n g c o n d i t i o n s to Run 39. minutes a f t e r  start-up,  Three  the p e r i o d found by e x p e r i e n c e on  tap water to be s u f f i c i e n t l y transient  long to remove the  caused by shut-down, time zero was  thermal  established.  At t h i s p o i n t i t was noted t h a t a l l t h e r m o c o u p l e s , f o r the honed as w e l l  vious f o u l i n g  those  as f o r the unhoned p o r t i o n s o f  t e s t s e c t i o n , were at the c l e a n w a l l run p r o g r e s s e d ,  reassembly  condition.  As the  the honed upper s e c t i o n r e t r a c e d  c u r v e o f Run 39.  the  the  pre-  The unhoned lower s e c t i o n ,  d u r i n g the same time p e r i o d f o u l e d to a h i g h e r  level.  At the end of Run 4 0 , the t e s t s e c t i o n was c o o l e d by s h u t t i n g o f f the heat f l u x f o r a p e r i o d of 3 minutes w h i l e a l l o w i n g the f l u i d  to c i r c u l a t e at maximum v e l o c i t y .  When h e a t i n g was r e s t a r t e d , stored,  and the thermal  original  transient  flow c o n d i t i o n s  removed, the  t e s t s e c t i o n was found to be at the c l e a n w a l l condition.  re-  complete thermal  Run 41 was then made under i d e n t i c a l c o n d i t i o n s  to Runs 39 and 4 0 .  During t h i s run both upper and l o w e r  p o r t i o n s o f the t e s t s e c t i o n f o u l e d to s t i l l This series  o f t r i a l s showed t h a t :  higher l e v e l s .  Ill  (1) do  contain  higher  Unhoned  deposit  levels  adjacent to  to  with  than  unhoned  at high  when  results  velocity  in f o u l i n g  a r e a t l e a s t as section  has been  to  portion  portion.)  c o o l i n g of the tube  of the f o u l i n g  i s adjacent  subjected  (Compare Run 4 0 - l o w e r  removes some, but n o t a l l ,  developed  s e c t i o n of the tube  p o r t i o n and Run 4 1 - u p p e r  High  At t h i s  wall.  t h e unhoned  s e c t i o n which  velocity.  Run 4 1 - l o w e r  (3)  s e c t i o n which  apparently  to proceed t o  section apparently  on t h e unhoned  another  fouling  The p r e s e n c e o f a honed  i f not h i g h e r  cooling  causes  f o r t h e honed t u b e  t o an unhoned  levels  high  which  than  (2)  s e c t i o n s of the tube wall  wall  deposit.  s t a g e i n the i n v e s t i g a t i o n  the i d e a  t h a t the r a t e o f f o u l i n g o f 304 s t a i n l e s s  steel  tubes w i t h f e r r i c o x i d e was not being c o n t r o l l e d by f l u i d dynamic f a c t o r s  affecting  being d e p o s i t e d  and r e l e a s e d  by some o t h e r f a c t o r .  the r a t e a t which p a r t i c l e s from the tube w a l l ,  were  but r a t h e r  S i n c e m i c r o p r o b e r e s u l t s had c l e a r l y  shown t h a t c r e v i c e c o r r o s i o n was o c c u r r i n g beneath the deposit,  i t was s p e c u l a t e d  t h a t the f o u l i n g r a t e was being  c o n t r o l l e d by the r a t e a t which c o r r o s i o n product immobil i z e d any p o t e n t i a l  deposit  a t the w a l l ,  r a t h e r than by  the t r a n s p o r t r a t e o f f e r r i c o x i d e p a r t i c l e s .  Since crevice  112  c o r r o s i o n theory  (see  when the tube w a l l tube w a l l  S e c t i o n 7.2)  predicts  no c o r r o s i o n  i s c l e a n , and no c o r r o s i o n when  is completely covered,  the  such a mechanism would  r e a d i l y e x p l a i n the  r e s u l t s obtained  up to t h a t stage i n  the  For example,  high shear s t r e s s  investigation.  the w a l l the  associated  initial  a crevice.  the  at  w i t h h i g h Reynolds number would i n h i b i t  deposition  and hence make i t d i f f i c u l t  to  obtain  High heat f l u x e s would tend to reduce oxygen  s o l u b i l i t y near the tend to reduce the hypothesis,  tube w a l l , which s h o u l d  predictably  rate of c r e v i c e c o r r o s i o n .  the e x p e r i m e n t a l  With  r e s u l t s presented i n  s e c t i o n are a l s o r e a d i l y e x p l a i n a b l e , the tube unhoned would have c r e v i c e s  this  this  s i n c e the h a l f o f at time z e r o ,  and  the h a l f o f the tube which was honed would s e r v e as a f o r oxygen r e d u c t i o n ,  t h e r e b y enhancing  the  rate of  site  crevice  corrosion. To t e s t the v a l i d i t y o f t h i s  hypothesis,  d e c i d e d to attempt c o n t r o l o f the c r e v i c e c o r r o s i o n by c o n d u c t i n g a s e r i e s o f experiments  using a  tube at time z e r o , and a n o t h e r experiment sulfite  as an oxygen s c a v e n g e r .  experiments  are g i v e n i n S e c t i o n s  i t was rate  prefouled  u s i n g sodium  The r e s u l t s o f these 6.2.6  and  6.2.7.  113  6.2.6  Fouling behaviour using a prefouled  tube.  In the p r e v i o u s s e c t i o n , i t was r e p o r t e d residual  d e p o s i t s were l e f t on the tube w a l l ,  fouling  o c c u r r e d at a h i g h e r r a t e than when the f o u l i n g started  with a clean tube.  progressed,  the f o u l i n g  the f o u l i n g  resistance  run  r a t e d e c l i n e d and i n many cases approached an a s y m p t o t i c v a l u e . curves o f  rates,  the  taken as p r o p o r t i o n a l to d e p o s i t t h i c k n e s s .  Kern  and Seaton ( 6 ) , f o r example, use t h i s a p p r o a c h , as Watkinson ( 7 ) . studied here,  this  the a s y m p t o t i c c o n d i t i o n as b e i n g  due to a b a l a n c e of d e p o s i t i o n and r e l e a s e latter  run was  However, as the f o u l i n g  Most i n v e s t i g a t o r s who have o b t a i n e d f o u l i n g type have i n t e r p r e t e d  that i f  does  In the f e r r i c o x i d e - s t a i n l e s s s t e e l i t was reasoned  that i f asymptotic  system  fouling  c u r v e s were the r e s u l t o f a b a l a n c e between d e p o s i t i o n and release  r a t e s , then at e q u i l i b r i u m some w a l l  would f a l l  temperatures  as m a t e r i a l was l o c a l l y r e l e a s e d w h i l e  would r i s e as m a t e r i a l was l o c a l l y d e p o s i t e d . the l a t t e r  others  Although  s i t u a t i o n has been f o u n d , f o r example i n Run  34 (see Appendix I V ) , i t no l o n g e r c o r r e s p o n d s asymptotic c o n d i t i o n .  Instead,  tube r e f o u l s , as r e p o r t e d fore postulated  to an  for this situation  in Section 6.2.5.  that asymptotic f o u l i n g  r e s u l t o f a s u p p r e s s i o n of f o u l i n g  the  I t was  behaviour i s  rather  therethe  than a b a l a n c e  114  between d e p o s i t i o n and removal r a t e s , and t h a t t h i s  suppres-  s i o n i s the r e s u l t of a d i m i n u t i o n o f c r e v i c e c o r r o s i o n as the tube f o u l s . A c l u e to the n a t u r e o f the s u p p r e s s i o n mechanism was d i s c o v e r e d a c c i d e n t l y when i t was found t h a t i f wall  temperature  the  o f an a s y m p t o t i c a l l y f o u l e d tube was i n -  c r e a s e d s u d d e n l y , the tube would commence f o u l i n g at a nearly constant  rate.  S i n c e d u r i n g the e a r l i e r e x p e r i m e n t a l  runs every attempt was made to h o l d c o n d i t i o n s sudden i n c r e a s e s  in wall  temperatures  In Run 64, a decrease temperature  t i o n s were r e t u r n e d  were seldom  inlet  i n a drop i n wal1, tempera-  f o r about 6 h o u r s .  When c o n d i -  to n o r m a l , i t was found t h a t  o c c u r r e d and p e r s i s t e d at a very r a p i d r a t e . t h a t the mechanism which caused f o u l i n g w i t h time as f o u l i n g  encountered.  i n the c o o l i n g water  to the system r e s u l t e d  t u r e which went undetected  steady,  This  r a t e s to  p r o g r e s s e d was no l o n g e r  fouling implied  decrease  operative.  To study t h i s phenomenon i n a more c o n t r o l l e d manner, Run 70 was made i n which the f o u l i n g  suspension  was a l l o w e d to c i r c u l a t e through the t e s t s e c t i o n f o r 6 hours at zero heat f l u x and then h e a t i n g s t a r t e d . which are p l o t t e d i n F i g u r e 2 3 , show t h a t f o u l i n g t h i s c o n d i t i o n proceeds purposes,  the r e s u l t s  at a c o n s t a n t  rate.  o f Run 63 are i n c l u d e d .  Results, under  For c o m p a r a t i v e Run 63 was  1 15  60 in O  o RUN 70 © RUN 63  50  ZD m LL:  40  OJ  LU O  CO 00 LU  30  20  or o  10  0  o  o LL.  -@—©  0 TIME (hours) Figure  23  E f f e c t of Tube C o n d i t i o n at Time Zero on F o u l i n g Behaviour Mixed S i z e F e r r i c Oxide Cone. 2130 ppm, Heat F l u x 89,670 B T U / f t - h r , Re = 2 6 , 5 8 0 . 2  116  made under i d e n t i c a l  c o n d i t i o n s to Run 70 except  tube w a l l was i n i t i a l l y  t h a t the  honed and t h e r e f o r e c l e a n at  ^  zero  time. The f o l l o w i n g  is offered  to e x p l a i n why p r e f o u l i n g  a tube at zero heat f l u x and then h e a t i n g linear fouling: the  i n c r e v i c e c o r r o s i o n and the  are  the d e p o s i t ,  the  incorporation  (11),  of n i c k e l  it  is well  products to  particles. known t h a t  i n an i r o n o x i d e d e p o s i t  i n a h a r d , t i g h t l y bonded s t r u c t u r e . ) the c l e a n w a l l  nickel  and s e r v e  the f e r r i c o x i d e  As f o u l i n g  area becomes p r o g r e s s i v e l y  reduced  c r e v i c e c o r r o s i o n ceases due to s u p p r e s s i o n  to  result  These c o r r o s i o n  precipitate,  s t r e n g t h e n the bond between ( A c c o r d i n g to C h a r l e s w o r t h  produced which  p r o d u c t i o n of i r o n ,  and chromium c o r r o s i o n p r o d u c t s . through  rapid  When d e p o s i t i o n o c c u r s from the f l u i d  honed c l e a n w a l 1 , c r e v i c e s  diffuse  l e a d s to  results  proceeds, and  of the  cathode  r e a c t i on  0  2  at the c l e a n w a l l . corrosion,  + 2H 0 + 4 e -> 40H" 2  (For the fundamentals  see S e c t i o n  When the  crevice  7.2.)  With a c o l d p r e f o u l e d different.  of  heat f l u x  t u b e , the s i t u a t i o n i s turned  is  quite  o n , the tube and  117  d e p o s i t expand, the d e p o s i t to a s m a l l e r degree  than  metal t u b e .  in a cracked  It  is postulated  that t h i s r e s u l t s  d e p o s i t w i t h exposed c l e a n w a l l suggested  areas.  It  is  t h a t these c r a c k s are s u f f i c i e n t l y  they cannot be p e n e t r a t e d to b l o c k the c l e a n w a l l  the  furthermore small  that  by the f e r r i c o x i d e p a r t i c l e s  sites,  s p o r t of oxygen to the s u r f a c e  but r e a d i l y a l l o w the of the m e t a l .  oxygen r e d u c t i o n at the c l e a n w a l l the tube f o u l s and f o u l i n g  tran-  Consequently,  does not f a l l  o c c u r s at a c o n s t a n t  o f f as rate.  A c o n c l u s i o n which l o g i c a l l y f o l l o w s from  the  above h y p o t h e s i s i s t h a t use of an oxygen scavenger s h o u l d significantly  change the f o u l i n g  p l a c e d i n the l i n e a r f o u l i n g b l o c k the cathode  Effect fouling  2  + 2H 0 + 4 e + 40H"  .  2  section.  o f an oxygen scavenger  ( N a S 0 ) on 2  3  behaviour.  To t e s t the e f f e c t fouling  would  of an experiment to t e s t t h i s c o r o l l a r y are  g i v e n i n the next  6.2.7  condition, since this  reaction  0  The r e s u l t s  r a t e when the system i s  o f oxygen c o n c e n t r a t i o n on  b e h a v i o u r , the t e s t s e c t i o n was made to f o u l  at a  118  constant  r a t e by methods d e s c r i b e d i n S e c t i o n 6 . 2 . 6 .  3.28 h o u r s , the a i r l i n e to the s u s p e n s i o n s t o r a g e ,  After  which  had the dual purpose o f p r o v i d i n g m i x i n g and i n s u r i n g t h a t at a l l times the s u s p e n s i o n was s a t u r a t e d s w i t c h e d to a n i t r o g e n c y l i n d e r .  w i t h o x y g e n , was  F o r t y - f i v e minutes  later  300 grams o f sodium s u l f i t e were added to the t a n k .  After  another  still  30 m i n u t e s , i t was found t h a t the system was  i n a s t a t e of l i n e a r f o u l i n g ,  but t h a t the r a t e had changed  to l e s s than o n e - h a l f t h a t of the p r e v i o u s The r e s u l t s F i g u r e 24.  rate.  of t h i s experiment are p l o t t e d i n  I n c l u d e d are curves made under i d e n t i c a l c o n d i -  t i o n s o f heat f l u x ,  p a r t i c l e c o n c e n t r a t i o n and Reynolds  number, but d i f f e r i n g  i n that curve 1 i n v o l v e d  w i t h a honed c l e a n t u b e ,  starting  curve 2 was f o r a p r e f o u l e d tube  p l a c e d i n a s i t u a t i o n c o n d u c i v e to l i n e a r f o u l i n g the system s a t u r a t e d  with  w i t h o x y g e n , and curve 3 was f o r  the  same s i t u a t i o n but w i t h the system scavenged o f oxygen.. It  i s c o n c l u d e d from these r e s u l t s  stainless  steel  t h a t the f o u l i n g o f 304  w i t h f e r r i c o x i d e under the usual  condi-  t i o n s i n v e s t i g a t e d here i s a s s o c i a t e d w i t h the presence o f oxygen i n the s u s p e n s i o n . t h a t the r a t e of f o u l i n g  F u r t h e r m o r e , the  hypothesis  i s c o n t r o l l e d by the r a t e  at  which c r e v i c e c o r r o s i o n p r o c e e d s , which i s i n t u r n c o n t r o l l e d by oxygen t r a n s p o r t by the above  results.  to the tube w a l l ,  is  strengthened  LO O  TU)  X  OQ  40  Lb °i ^_  -C CM  30  M—  UJ CJ  < H  20  C/)  00 LU  rr  10  CD  ino Li_  0  F i g u r e 24.  TIME (hours)  LO  Comparison of F o u l i n g Rates f o r a Clean Honed Tube (Curve 1 ) , a P r e f o u l e d Tube w i t h an Oxygen Scavenger i n the System (Curve 3 ) , a P r e f o u l e d Tube w i t h no Oxygen Scavenger (Curve 2) M i x e d - S i z e F e r r i c Oxide 2130 ppm , Heat F l u x 89,670 B T U / f t - h r , Re 2 6 , 5 8 0 . 2  120  Mahato ( 3 6 ) , i r o n pipes  i n h i s study of the c o r r o s i o n of  in c i t y water,  concluded t h a t the r a t e o f c o r -  r o s i o n was a f u n c t i o n of the  r a t e at which oxygen c o u l d be  transported  l a y e r to the metal  through the r u s t  In M a h a t o ' s c a s e , diffusion result  as the r u s t  surface.  l a y e r became t h i c k e r  the  o f oxygen was c o r r e s p o n d i n g l y reduced w i t h  t h a t the c o r r o s i o n r a t e  the  decreased.  A l t h o u g h the e x p l a n a t i o n o f Mahato can be used to account f o r the a s y m p t o t i c type of f o u l i n g found h e r e , tion.  i t does not e x p l a i n the l i n e a r f o u l i n g  For the l a t t e r  transport  behaviour  situation, it  i s b e l i e v e d t h a t oxygen  i s not s i g n i f i c a n t l y impeded as the  d e p o s i t grows because of c r a c k s i n the d e p o s i t thermal  fouling induced by  expansion when heat i s a p p l i e d to a p r e f o u l e d  tube — a p r e r e q u i s i t e Also,  situa-  the l i n e a r  for obtaining l i n e a r  fouling  s i t u a t i o n would r e a s o n a b l y  new c r a c k s i n the d e p o s i t  as a r e s u l t  temperature as the tube f o u l s . proposed h e r e ,  fouling.  of i n c r e a s e s  create  in wall  C o n s e q u e n t l y the mechanism  inasmuch as i t depends upon oxygen d e l i v e r y  to the tube w a l l ,  i s c o n s i d e r e d to be r e a s o n a b l e .  t h a t the l i n e a r f o u l i n g  r a t e d i d not f a l l  The f a c t  to z e r o i n the  absence of oxygen i s p r o b a b l y due to the o c c u r r e n c e of the a l t e r n a t i v e  cathode  reaction  2H  +  (37)  + 2e •* H t . 2  121  6.2.8  E f f e c t o f f e r r i c o x i d e p a r t i c l e s i z e on fouling  behaviour.  The f i r s t  trial  c a r r i e d out i n t h i s  study was  made u s i n g mixed s i z e f e r r i c o x i d e at a c o n c e n t r a t i o n of 16 ppm, a heat f l u x o f 91,66:0 B T U / f t - h r  and a Reynolds  2  number of 2 4 , 7 0 0 .  No evidence of thermal  f o u l i n g was  f o u n d , a l t h o u g h s e c t i o n i n g of the tube a f t e r  the  trial  showed i t to c o n t a i n a s p o t t y d e p o s i t having a maximum t h i c k n e s s o f a p p r o x i m a t e l y 100 m i c r o n s . t h a t the c o n d i t i o n s f o r t h i s t r i a l t h a t c o u l d have been s e l e c t e d ,  H i n d s i g h t suggests  were perhaps the  s i n c e l a t e r work showed  t h a t such a low f e r r i c o x i d e c o n c e n t r a t i o n f l u x would r e s u l t  i n minimal  worst  fouling.  and h i g h heat  However, t h i s was  not known at t h a t time and i t was assumed t h a t the process was l i m i t e d by t r a n s p o r t  to the w a l l  of  fouling  ferric  o x i d e p a r t i c l e s , which were presumed too l a r g e to  result  i n the minimum d e p o s i t i o n r a t e s n e c e s s a r y  to cause thermal  fouling.  belief:  There were two reasons f o r t h i s (I)  ferric of  oxide  A cursory suggested  10 m i c r o n s .  examination  its typical  Particles  of  of size  this  size  subjected  t o Brown i a n m o t i o n , a f a c t o r  essential  to o b t a i n i n g a high  the  laminar  sublayer  to the  flux  tube  of  wall.  the to are  mixed be  size  in the  range  insignificantly  which  was  particles  considered through  1 22  (2) settling, approach  Particles  and the  i t was wall,  become a t t a c h e d  of  felt  that  i t would  to the  this  purchased  tend  vertical  limited,  i n two b a t c h e s ,  are  i f such  To t e s t the h y p o t h e s i s was p a r t i c l e t r a n s p o r t  size  to  to  a particle  settle  tube  prone  rather  gravity did than  wall.  t h a t the f o u l i n g  process  p r e s i z e d f e r r i c o x i d e was  one w i t h a s p e c i f i e d p a r t i c l e  size  range o f 0 . 3 - 0 . 8 u and the o t h e r w i t h a s p e c i f i e d range o f 0.3-3.7u.  F o u l i n g t r i a l s were made as summarized i n  Table X X I I , with r e s u l t s Run  as  follows:  19 was made u s i n g p r e s i z e d p a r t i c l e s of 0 . 3 - 0 . 8 u  a concentration  of 15 ppm.  Following a t r i a l  d u r i n g which time no thermal tube was s e c t i o n e d . heated  o f 48 h o u r s ,  f o u l i n g was d e t e c t e d ,  No d e p o s i t c o u l d be found i n  the the  s e c t i o n o f the tube a l t h o u g h a s p o t t y d e p o s i t was  found i n the unheated zero heat f l u x deposits  exit section.  (Run 20) r e s u l t e d  with thicknesses  R e p e a t i n g Run 19 w i t h  i n a tube having  of about  70 m i c r o n s .  (0.3-3.7 microns), with s i m i l a r r e s u l t s . heat f l u x no d e p o s i t c o u l d be d e t e c t e d s e c t i o n e d , w h i l e at zero heat f l u x  spotty  Runs 2 1 ,  22 and 23 were then made u s i n g the l a r g e r p a r t i c l e  found.  at  size  That i s , at h i g h  when the tube was  a s p o t t y d e p o s i t was  123  Table Effect  XXII  of P a r t i c l e S i z e on F o u l i n g  Behaviour.  F e r r i c Oxide Cone. 15 ppm  Run  Re 25,000  (Approx.)  Flux  Parti cle Si ze (mi c r o n s )  No.  Trial Duration (hrs)  19  48  92,310  0.3-0.8  20  72  0  0.3-0.8  21  24  90,000  0.3-3.7  0  22  168  90,000  0.3-3.7  0  23  96  0  0.3-3.7  Heat  (BTU/ft -hr) 2  A d e p o s i t was found i n the e x i t s e c t i o n but none i n the heated s e c t i o n .  Deposit  Thickness  (microns) 0* 70  (spotty)  70  (spotty)  of the  tube,  124  In an attempt to f i n d observations,  a rationale for  a r e v i e w was made of s e l e c t e d  c e r n i n g the d e p o s i t i o n of s m a l l p a r t i c l e s streams,  concentrating  these  papers c o n -  from  turbulent  p r i m a r i l y on the work of Beal  B e a l ' s work was of p a r t i c u l a r i n t e r e s t  since i t  suggested  that p a r t i c l e s d i f f e r i n g only s l i g h t l y in s i z e could greatly different  flow.  That  have  rates of d e p o s i t i o n .  Beal developed an e q u a t i o n f o r p a r t i c l e to a tube w a l l  (16,29).  by i n t e g r a t i n g  F i c k ' s equation for  flux turbulent  is  (6.1)  where  N  f l u x of  D  di f f us i v i t y  e  eddy  dC dy  particles  diffusivity  p a r t i c l e concentration  gradient  By u s i n g the c o r r e l a t i o n of L i n et al. (30) f o r eddy diffusivity:  e = <i>(y ) +  Reynolds  analogy:  (6,2)  125  dC N du dy" " 7 Idy.  (6.3)  P  and the L i n u n i v e r s a l v e l o c i t y p r o f i l e , i n t e g r a t e equation  (6.1)  f l u x to the tube w a l l . terms of a d e p o s i t i o n  to f i n d  K = U. • ^ ( f , 'b  C  w  avg  w  a v e r a  9e  particle  result  in  Kpv K + pv  =  (6.4)  r  Sc, S , +  = f l u x of p a r t i c l e s =  his f i n a l  to  coefficient,  Cavg  N  an e x p r e s s i o n f o r  He e x p r e s s e d  N  where  he was a b l e  particle  f = Fanning f r i c t i o n  h ) +  to the  wall  concentration factor  Sc = Schmidt number S  +  = d i m e n s i o n l e s s Stokes distance  stopping  h  +  = dimensionless pipe spacing = hU^/FTT/v  p = sticking probability v = r a d i a l v e l o c i t y of a p a r t i c l e Beal  then e v a l u a t e d  v by assuming t h a t the  v e l o c i t y i s the sum of two components, motion and one due to f l u i d based upon the work o f Jeans  motion.  particle  one due to Brownian  These were computed  (31) and L a u f e r  (32),  126  respectively.  The Schmidt numberjSc, was based upon  Brownian d i f f u s i o n  the  c o e f f i c i e n t , D.  A computer program was w r i t t e n  incorporating  B e a l ' s e q u a t i o n f o r the d e p o s i t i o n c o e f f i c i e n t , i n c l u d i n g his s i m p l i f y i n g  assumption t h a t p = 1 (see Appendix I I ) .  An attempt was made to r e g e n e r a t e h i s F i g u r e 3, to t h a t the computer program c o n t a i n e d no e r r o r s .  For a bulk  v e l o c i t y o f 100 c m / s e c , the computed curve f i t t e d curve f o r 30 c m / s e c .  However, Beal  d e n s i t y of h i s p a r t i c l e s bear  upon the r e s u l t s .  Beal's  does not s t a t e  or the p i p e d i a m e t e r ,  both of which  and the program was assumed  correct. T a b l e X X I I I shows the computed data f o r  oxide p a r t i c l e s  (I)  0.16  r a n g e of Beal's  Comments are as  In t h e  coefficient  between  x  as  range of  computed  IO" 3  interest,  method  and the  i s not  1.0  0.1-4  from x  IO-3  follows: microns,  Beal's  equation  cm/sec.  d e p o s i t i o n r a t e as  overly sensitive  to  the  Hence  particle  change  in o n l y  a 6-fold  in d e p o s i t i o n c o e f f i c i e n t .  particle  in p a r t i c l e  size-particle  in  calculated  since a 40-fold change  deposilies  changes  s e q u e n t l y , the  ferric  i n water f o r c o n d i t i o n s a p p r o x i m a t i n g those  used i n Runs 1 9 - 2 3 .  tion  the  C o n s e q u e n t l y , the f i t o b t a i n e d was  not c o n s i d e r e d u n r e a s o n a b l e , to be  insure  size  transport  the by  size  results Con-  dependence,  Table X X I I I D e p o s i t i o n C o e f f i c i e n t s f o r F e r r i c Oxide as a F u n c t i o n o f P a r t i c l e S i z e as Computed From Beal's Equation. Parti cl e Size  Tube Reynolds Number 2 5 , 3 6 0 , Bulk V e l o c i t y 3.28 f t / s e c ,  Fluid  Schmidt No.  Deposition Coefficient  (microns)  Stokes Stopping Di stance (mi c r o n s )  0.001 0.01  151 1512  0.10  15,120  Browni an Diffusion C o e f f i c i ent cm /sec 2  temp 212°F  cm/sec  0.0005  0.19  X  io-*  0.11  X  1 0"  0.005  0.19 0.19  X  10"  5  0.23  X  io-  2  X  IO"  6  0.48  X  3  0.16  X  10~ IO"  0.050  1  1.0 2.0  151,200 302,300  0.55 1 .20  0.19  X  io-  7  0.97  X  IO"  8  0.24  X  10~  3  3.0  453,500  1 .96  0.64  X  IO"  8  0.53  X  10"  3  4.0  604,700  2.82  0.48  X  1 0"  8  X  IO"  2  5.0  755,900  3.77  0.38  X  IO"  8  0.10 0.18  X  io-  2  6.0  907,000  4.83  0.32  X  0.30  X  IO"  2  7.0  1,058,000  6.00  0.27  X  0.47  X  io-  2  8.0  1,209,000  7.26  X  0.70  X  IO"  2  9.0  1,361,000  8.63  0.24 0.21  0.99  X  io-  2  10.0  1,512,000  10.09  019  X  0.13  X  IO"  1  100.0  15,120,000  0.99  X  10"°  559.3  X  X  0.1\  \  X  8  io8 io8 io8 io8 io9 io-  3  ro  128  as  p o s t u l a t e d by  flux  the  albeit gave  mixed  size  deposit  (2) flux  fluxes could run  as  diffusion ficient in  be  direct  therefore studied proposed  or  found  higher  reduce  high  heat  in a d e p o s i t , particles  does  contain  be  i s not  light  zero  heat  flux.  the  heat  flux  the  R a i s i n g the  with  and  raise  the  higher  the  by  In t h e  oxide  the  heat  deposit  experiments  i s the  flux  average  should  Stokes  stopping  raise  the  Brownian  deposition coef-  temperatures,  ferric  controlled  high  a spotty  would  experimental  t h a t the  why  higher  the  Consequently, at  not  on  heat  temperatures  higher  concluded  no  d e p o s i t s , while  viscosity  conflict  by  at  0.3-3.7u  at  coefficient.  here  0.3-0.8y and  no  A l s o , higher  should  resulted  a p p r o a c h , which  temperature.  distance.  e x p l a i n why  oxide  a p a r a m e t e r , sheds  always  therefore  not  whatsoever.  gave m i n i m a l  fluid  the  Beal's  here, the  bulk  ferric  s p o t t y , while  no  heat  Bea I , does  which  results.  is  It i s  deposition  process  t r a n s p o r t mechanism  BeaI .  An a l t e r n a t e heat f l u x e s r e s u l t  p o s s i b l e e x p l a n a t i o n as to why h i g h  i n minimal or no f o u l i n g  f o r the  pre-  s i z e d p a r t i c l e s f o l l o w s from the work o f McNab ( 3 3 ) . McNab was a b l e to demonstrate p h o r e s i s can e x i s t i n l i q u i d s ,  experimentally that  thermo-  and t h a t m i c r o n - s i z e  ^  129  p a r t i c l e s , when exposed to a thermal from the hot s u r f a c e  at a v e l o c i t y g i v e n by  thermophoretic  where  fluid  g r a d i e n t m i g r a t e away  velocity  thermal c o n d u c t i v i t y  p a r t i c l e thermal c o n d u c t i v i t y u = fluid fluid  viscosity density  absolute  temperature  VT = temperature  gradient  An o r d e r of magnitude c a l c u l a t i o n based on e q u a t i o n ( 6 . 5 ) shows t h a t f o r a heat f l u x o f 9 1 , 4 0 0 and a R e y n o l d s , number of 2 6 , 4 9 0 , a p a r t i c l e i n the v i c i n i t y of the  tube  wall  3.7  would m i g r a t e away from the w a l l  a distance of  microns i n one second (see Appendix I I I ) . ferric  o x i d e p a r t i c l e i n water at  A one-micron  70°F would  migrate  an average d i s t a n c e of 0.7 m i c r o n s due to Brownian motion  130  and a p p r o x i m a t e l y d u r i n g the  same time p e r i o d .  thermophoresis fouling  1.5 microns due to g r a v i t a t i o n a l  could well  process studied  tube i s h o t t e r than the r e v e r s e  See P e r r y  be a s i g n i f i c a n t  here, retarding  the  (35).  fluid  settling  Consequently,  factor  in  the  f o u l i n g when  the  and enhancing  fouling  for  situation.  The work done here w i t h r e s p e c t to p a r t i c l e and f o u l i n g was b e s e t w i t h many d i f f i c u l t i e s not when the  of p a r t i c l e s filters ferric  foreseen  i n v e s t i g a t i o n was o r i g i n a l l y p l a n n e d .  great d i f f i c u l t y  was encountered  used i n the  probe photographs at particle  the  size  Sizing with m i l l i p o r e  i n d i c a t e d the mean p a r t i c l e o x i d e to l i e i n the  Firstly,  in determining  study.  size  s i z e of the mixed s i z e  range o f 10-100i_t.  The m i c r o -  a m a g n i f i c a t i o n o f 500 i n d i c a t e d a  s i z e of about 5 m i c r o n s , w h i l e the to c o n s i s t  scanning  electron  m i c r o s c o p e showed the  particles  with a basic p a r t i c l e  s i z e of about 0.2 microns and an  agglomerate s i z e of a p p r o x i m a t e l y no p r e c i s e  e s t i m a t e of p a r t i c l e  mixed-size p a r t i c l e s . of p a r t i c l e to a s s i g n the  3 microns.  Consequently,  s i z e was o b t a i n e d  s i z e to the  depositing  particle  of f e r r i c o x i d e to a g g l o m e r a t e .  out by Adamson ( 3 4 ) ,  for  S e c o n d l y , even i f a p r e c i s e  s i z e c o u l d be made, i t would not be  this  tendency  of agglomerates  colloidal  f e r r i c oxide  the  estimate  correct because o f  As p o i n t e d particles  sense the presence o f each o t h e r at g r e a t d i s t a n c e s  and  131 tend to s e t t l e out i n p l a t e l e t s .  Also,  the h i g h d i p o l e  moment o f f e r r i c o x i d e would tend to r e s u l t e r a t e which would be r e l a t i v e l y s t a b l e .  i n an agglom-  To e s t i m a t e  s i z e of such an agglomerate would be a d i f f i c u l t For reasons o u t l i n e d above, i n v e s t i g a t i o n w i t h r e s p e c t to the s i z e on f o u l i n g i s q u i t e gave s p o t t y particles  i n f l u e n c e of  of l o c a l  Mixed-size particles  did not.  f o r these  wall  this  particle  at high heat f l u x e s , whereas  c o u l d be o f f e r e d  Influence  task.  the work done i n  inconclusive.  of 0.3-0.8u and 0 . 3 - 3 . 7 u  explanation  6.29.  deposits  the  presized  No adequate  results.  t e m p e r a t u r e on f o u l i n g  behaviour. When heat t r a n s f e r  is effected  at c o n s t a n t heat  flux,  the c o n d i t i o n used f o r a l l runs i n t h i s  tion,  the w a l l  fluid  flow.  local  wall  temperature i n c r e a s e s i n the d i r e c t i o n of  Consequently,  r e s i s t a n c e at  selected  wall  by p l o t t i n g the  points  temperature i t  i n f l u e n c e of l o c a l  local  is possible  to determine  t e m p e r a t u r e on f o u l i n g operating  are shown i n T a b l e s XXIV and XXV, and p l o t t e d The i n t e r e s t i n g lower Reynolds number,  fouling  along the tube w a l l  R e s u l t s f o r two d i s t i n c t l y d i f f e r e n t  the  investiga-  against the  behaviour. conditions i n Figure 25.  a s p e c t o f these data i s t h a t lower heat f l u x  condition,  for where  132  T a b l e XXIV Local  F o u l i n g R e s i s t a n c e s A f t e r One Hour as a F u n c t i o n of  Tube Wall P o s i t i o n (and Hence Wall  Temperature).  Heat F l u x 90,000 B T U / f t - h r ,  Re 26500.  2  M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm Local Fouling Resistances (ft -hr-°F/BTU) x 10 2  s  49  50  63  R avg  L o c a l Wall Temperature at t = 0 °F  T235  2.6  3.9  2.2  2.9  174  T255  2.2  3.1  2.2  2.5  174  T275  0.4  3.1  1 .7  1 .7  182  T295  0.4  2.6  1.3  1.4  182  T315  1 .7  3.1  2.1  2.3  183  T335  2.6  3.1  2.2  2.6  178  T355  2.6  3.1  2.6  2.7  178  -  -  -  -  Run No.  f  Posi t i o n  T375 T395  2.2  2.2  1.7  2.0  186  T415  1.7  2.2  1.3  1.7  192  133  T a b l e XXV Local  F o u l i n g R e s i s t a n c e s A f t e r One Hour as a F u n c t i o n o f  Tube Wall P o s i t i o n (and Hence Wall  Temperature).  Heat F l u x 44,360 B T U / f t - h r ,  Re 1 9 , 5 5 0 ,  2  M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm  Local Fouling Resistances (ft -hr-°F/BTU) x 10 2  Run No.  s  L o c a l Wall Temperature at t = 0 °F  36  38  59  R avg  T235  4.5  4.5  5.4  4.8  154  T255  3.6  3.6  4.5  3.9  154  T275  2.7  3.6  3.6  3.3  159  T295  1.8  2.7  2.7  2.4  159  T315  0.9  2.7  0.9  1.5  160  T335  0.9  1.8  0  0.9  157  T355  1.8  1.8  2.7  2.1  156  T375  -  -  -  T395  0  1.8  2.7  1.5  162  T415  0  1.8  0  0.6  167  Position  f  »  -  'I  150  1  1  160  1  yA  I  175  1  I  185  I  I  195  LOCAL W A L L TEMPERATURE A T TIME ZERO (°F) F i g u r e 25.  L o c a l F o u l i n g R e s i s t a n c e A f t e r One Hour Versus L o c a l Wall at Time Z e r o . M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm.  Temperature -P»  135  local  wall  temperatures  i s a sharp decrease of l o c a l  wall  ranged between 154 and 1 6 7 ° F ,  in fouling  temperature.  r e s i s t a n c e as a f u n c t i o n  For the h i g h e r heat  h i g h e r Reynolds number s i t u a t i o n , where l o c a l tures  there  ranged from 174 to 1 9 2 ° F , t h i s e f f e c t  flux,  wall  tempera-  i s not as  pronounced. The reason f o r the i n v e r s e dependence of r a t e on w a l l  temperature  fouling  i s b e l i e v e d to be a s s o c i a t e d w i t h  the r e d u c t i o n i n the s o l u b i l i t y of oxygen at the tube w a l l as the temperature  rises.  T h i s would tend to reduce  c o r r o s i o n r a t e and t h e r e b y reduce the f o u l i n g  rate.  the r a t e o f decrease of oxygen s o l u b i l i t y w i t h  the Since  temperature  between 1 7 4 - 1 9 2 ° F i s o n l y about o n e - t h i r d the r a t e o f decrease  i n oxygen s o l u b i l i t y  between 1 5 4 - 1 6 7 ° F  [see  P e r r y ( 3 5 ) ] , t h i s would e x p l a i n the d i f f e r e n c e i n s l o p e between the two c o n d i t i o n s . the b e l i e f ferric  t h a t the f o u l i n g o f 304 s t a i n l e s s s t e e l  strengthen with  o x i d e i s c o n t r o l l e d by the r a t e at which oxygen  can be s u p p l i e d to the tube  6.3  These r e s u l t s f u r t h e r  wall.  P r e s s u r e Drop v s . Time F o u l i n g  Behaviour  During e a r l y r u n s , an attempt was made to use p r e s s u r e drop a c r o s s the t e s t s e c t i o n as an index o f Usually,  this resulted in failure  the  fouling.  s i n c e f o r most runs i n  136  which thermal  fouling  o c c u r r e d , no s i g n i f i c a n t  drop change c o u l d be n o t e d . i n g s i t u a t i o n encountered pressure  tive  However, f o r the l i n e a r  foul-  i n Run 6 4 , l a r g e and s i g n i f i c a n t  drop changes o c c u r r e d .  F i g u r e 26, w i t h r e s u l t s  pressure  R e s u l t s are p l o t t e d i n  from Run 63 i n c l u d e d f o r compara-  purposes. The f o l l o w i n g  comments a p p l y to F i g u r e 26.  Run 6 3 , i n which t y p i c a l  a s y m p t o t i c type f o u l i n g was d i s -  p l a y e d , the change i n p r e s s u r e  drop i s of the same o r d e r  of magnitude as the m a n u f a c t u r e r ' s pressure  transducer.  For  stated  e r r o r of  the  C o n s e q u e n t l y , the s l i g h t upward t r e n d  may or may not be s i g n i f i c a n t .  For Run 64, i n which  tube f o u l e d t h e r m a l l y a t a l i n e a r r a t e , the p r e s s u r e change i s l a r g e but i s not l i n e a r w i t h t i m e .  It  the drop  i s impor-  t a n t to note t h a t d u r i n g the 24 hour p e r i o d between Runs 63 and 64, when f l u i d pressure  was c i r c u l a t e d at zero heat f l u x ,  drop change o c c u r r e d .  by the procedure used i n t h i s heat f l u x and w a l l of f o u l i n g  S i n c e thermal study,  temperature  no  fouling,  i s c a l c u l a t e d from  readings,  t h e r e i s no r e c o r d  b e h a v i o u r d u r i n g the 24 hour c i r c u l a t i n g p e r i o d  at zero heat f l u x . not change u n t i l  The f a c t  after  t h a t the p r e s s u r e  drop d i d  the heat f l u x was t u r n e d on i s  e v i d e n c e t h a t l i n e a r thermal f o u l i n g the h e a t i n g o f the t u b e ,  is associated  and t h a t the thermal  with  results  obtained  PRESSURE DROP (arbitrary units) to.  00  -s CD  o  ro  O  ro cr>  c -s 3  CD  to to  JO fD  cr -s  ro  CD  O 00 co -s vn -—o O  XJ  2  3 i—i D-  ro h  X fD D_  I - QJ I —i. to co  1  '  ^ H E A T FLUX STOPPED >24 HR. CIRCULATION-NO HEAT FLUX HEAT FLUX RESTARTED  r.  N fD  to  -n -n  eu  m .—.  -y  fD O  o  -s c -n -s — e —i. —i. 3  °  L—  ° 73  3  o  ->•*"—  X ?3 -J. c D_ 3  ro  O 3  o  -b  O 73 O S= —I 3 3 -'• O 3 • c n fD  ro h —• • o co -s o zc a> -a ro 3 T3  3  ro  •O  co  00  -n<< —' 3 C X  TJ  c+  UJ f-  O 00 c+  vo -;•  a  CD CD Oi  >• o CD  •ON—I  -a —I  cr: -n \ o r+ —1 I  c z:  3  to  LZ L  138  are not a t r a n s i e n t  response  to a p o s s i b l e f o u l i n g  d u r i n g the 24 hour p e r i o d at zero heat f l u x . the non-change i n the p r e s s u r e b e f o r e and i m m e d i a t e l y a f t e r  In  build-up fact,  drop r e a d i n g s taken i m m e d i a t e l y  the 24 hour p e r i o d i n d i c a t e s  t h a t any a d d i t i o n a l f o u l i n g which may have o c c u r r e d d u r i n g t h i s p e r i o d of zero heat f l u x was small compared w i t h subsequent  6.4 6.4.1  linear  the  fouling.  Fouling Deposit Examination Results Type o f i n f o r m a t i o n o b t a i n e d . F o u l i n g d e p o s i t s from s e l e c t e d t r i a l  examined  'in situ,'  from f o u l e d t u b e s ,  as w e l l  runs were  as on p o l y e s t e r cores  pressed  using  (1)  a Zeiss  (2)  a scanning e l e c t r o n microscope,  (3)  an e l e c t r o n  light  microscope, and  microprobe.  Procedures c o v e r i n g the p r e p a r a t i o n and e x a m i n a t i o n o f samples have a l r e a d y been g i v e n i n S e c t i o n 3. l i g h t m i c r o s c o p e , the p h y s i c a l r e a d i l y be o b s e r v e d .  From the  nature o f the d e p o s i t  However, because of the  granular  nature o f the d e p o s i t s , problems w i t h depth o f f i e l d encountered and no attempt was made to o b t a i n  could  were  photographs.  139  For a permanent r e c o r d , obtained  photomicrographs  of deposits  w i t h the s c a n n i n g e l e c t r o n m i c r o s c o p e .  instrument  g i v e s no problem w i t h depth o f f i e l d ,  micrographs themselves  a r e ' b l a c k and w h i t e . '  this  the photo-  photomicrographs  satisfactory.  The e l e c t r o n sources o f i n f o r m a t i o n . (1)  While  S i n c e the d e p o s i t s  c o u l d be h i g h l y c o l o u r e d , these  are not e n t i r e l y  were  microprobe gave t h r e e These  separate  were:  An electron photomicrograph showing the  physical appearance of the deposit.  This is referred to  as the absorbed electron image (AEI). (2)  An electron photomicrograph showing the  topography of the deposit. back-scattered (3)  This is referred to as the  electron image (BEI). X-ray intensity photomicrographs which  show, in a q u a l i t a t i v e way, the concentration of an element at any point in the deposit.  In a d d i t i o n , through measure-  ment of X-ray i n t e n s i t i e s , a quantitative analysis of the deposit was obtained.  140  6.4.2  R e s u l t s o f l i g h t and e l e c t r o n e x a m i n a t i o n of  microscopic  deposits.  When f e r r i c o x i d e from an aqueous s u s p e n s i o n a 304 s t a i n l e s s  steel  t u b e , l i g h t and e l e c t r o n  e x a m i n a t i o n o f the d e p o s i t s , y i e l d e d the f o l l o w i n g (1) ing was  when viewed i n  fouls  microscopic  cross-section,  results:  For fouling runs in which no thermal  foul-  detected, deposits invariably were spotty, that  i s , they did not cover the entire circumference entire length of the tube.  or the  They could, however, be quite  thick at localized points, with measured thicknesses of up to 70 microns.  In a l l cases, these deposits were black-  in colour, in marked contrast to the f e r r i c oxide  (hematite)  feed m a t e r i a l , which showed as a b r i l l i a n t red. (2)  For fouling runs which yielded asymptotic  type fouling curves, deposits were more uniformly buted around the circumference Thicknesses  and  distri-  length of the tube.  were in the range of 100 microns.  These  deposits consisted of a black layer adjacent to the tube wall followed by a red layer at the fluid-deposit (3)  interface.  For fouling runs which gave constant  foul-  ing rates, deposits were quite t h i c k , 100 microns and upward, and were predominantly red in appearance.  141  A l t h o u g h the c o l o u r o f the d e p o s i t s i n g to the type of f o u l i n g curve o b t a i n e d , n a t u r e of the d e p o s i t be g r a n u l a r  D e p o s i t s tended  to  core s a m p l e s , when viewed i n both  l i g h t m i c r o s c o p e and the e l e c t r o n m i c r o p r o b e , g i v e a  much d i f f e r e n t samples. samples  appearance i n comparison to the  cross-sectional  F i g u r e 28 shows a t y p i c a l p h o t o m i c r o g r a p h . are c h a r a c t e r i z e d  matrix.  by b l a c k  'islands'  fouling,  type f o u l i n g and l i n e a r f o u l i n g a l l had  same g e n e r a l  a p p e a r a n c e , except t h a t  the  These  i n a red  Cores from runs which y i e l d e d no thermal  asymptotic  the  the p h y s i c a l  i n appearance, as shown i n F i g u r e 27.  The pressed the  d i d not v a r y .  varied accord-  the  red m a t r i x i n  l i n e a r f o u l i n g case was t h i c k e r and t h e r e f o r e  more  intense.  6.4.3  E l e c t r o n microprobe  6.4.3.1  results.  Q u a l i t a t i v e nature of f o u l i n g Following selected  experimental  tube was removed from the heat t r a n s f e r a c c o r d i n g to the procedures the J . E . O . L . following  deposits. runs,  loop,  the  fouled  sectioned  g i v e n e a r l i e r and examined i n  electron microprobe.  This resulted  i n f o r m a t i o n c o n c e r n i n g the  deposits:  in  the  400X F i g u r e 27.  Scanning E l e c t r o n Photomicrograph Showing the Nature of the D e p o s i t Res u l t i n g from the F o u l i n g of Aqueous F e r r i c Oxide Suspensions on 304 S t a i n less Steel. (The above photomicrographs are a s t e r e o p a i r . ) ro  143  630X  F i g u r e 28.  Image of a Core Sample Obtained w i t h the Electron Microprobe. (Dark areas are b l a c k under l i g h t m i c r o s c o p y , grey areas are r e d . )  144  F i g u r e 29.  E l e c t r o n M i c r o p r o b e Photomicrographs of a T y p i c a l D e p o s i t Showing the Back S c a t t e r e d E l e c t r o n Image or Topography (Above) and the Absorbed E l e c t r o n Image o r P h y s i c a l Composition (Below).  145 (I.) of  Photographs  the d e p o s i t .  are  See  essentially  the d e p o s i t  the  physical  features rough tion  is  and  which  in  was  present  t o be due  position.  X-ray  and  that  topography  photograph,  The  essential  deposit  there  is a  the d e p o s i t .  is separa-  This  a l l samples  separaexamined,  to the d i f f e r e n c e in the thermal of s t a i n l e s s  intensity  steel  and  Figures  30-32 show t y p i c a l  for iron,  p h o t o m i c r o g r a p h s of  Figure  photomicrographs  constituents  of  the  were a l s o  and  element  those  ferric  X-ray  n i c k e l , chromium t h e same a r e a  29.  Not  iron  by  a t any  and  and  oxygen.  as t h e e l e c t r o n  oxygen.  Figure  other  intensity  to contain  found, in a l l c a s e s ,  c h r o m i u m , as t y p i f i e d  position  surprisingly,  show t h e d e p o s i t oxide,  showing  a t any  i t s concentration  photomicrographs cover  deposits  photomicrographs  of a p a r t i c u l a r  r e l a t i v e to  photomicrographs  nickel  lower  in the  deposit.  t h e sample  X-ray  29, the  the f o u l i n g  in v i r t u a l l y  characteristics  concentration  These  in F i g u r e  i n n a t u r e and  appearance  p h o t o g r a p h s , which  of the d e p o s i t .  the tube wall  (2) the  These  in the case of the  granular  believed  the  photograph  appearance  between  expansion of  29.  t o note here are t h a t  and  tion,  Figure  the " i n s i t u "  e l e c t r o n photomicrographs, are  c a s e o f t h e upper of  showing  to 30  the the  However, contain (lower  • • • ry • J / j ^ W f l S z S P v S ^ '.i  F i g u r e 30.  E l e c t r o n M i c r o p r o b e X-Ray I n t e n s i t y P h o t o micrographs of a T y p i c a l D e p o s i t Showing the D i s t r i b u t i o n of Iron (Above) and N i c k e l (Below).  147  Figure 31.  E l e c t r o n M i c r o p r o b e X-Ray I n t e n s i t y P h o t o micrograph of a T y p i c a l D e p o s i t Showing the D i s t r i b u t i o n of Chromium.  F i g u r e 32.  E l e c t r o n M i c r o p r o b e Photomicrographs Showing f o r a T y p i c a l D e p o s i t the Absorbed E l e c t r o n Image (Above) and the C o r r e s p o n d i n g X-Ray I n t e n s i t y Photomicrograph D e p i c t i n g Oxygen Concentration (Below).  149  p h o t o g r a p h ) and graphs,  i t should  greatest deposit. with to  the  near t h e The  be  In e x a m i n i n g  noted  t h a t chromium and  corresponds  circulating  pronounced.  31.  tube w a l l ,  latter  c h r o m i u m , but  tion  Figure  fluid.  the  least to the  Nickel  these  concentration is  at the  edge of  surface  oxygen  do  not  show such  the  in c o n t a c t  shows a s i m i l a r  concentration differences  Iron and  photomicro-  are  pattern not  as  concentra-  g rad i e n t s .  For c o m p a r a t i v e p u r p o s e s ,  a photomicrograph of  an u n f o u l e d tube i s i n c l u d e d ( F i g u r e 3 3 ) . as a p r e c a u t i o n to i n s u r e t h a t the n i c k e l  T h i s was done and chromium  found i n the d e p o s i t was not the r e s u l t o f the specimen p r e p a r a t i o n p r o c e d u r e , which i n v o l v e d g r i n d i n g the d e p o s i t and p o l y e s t e r r e s i n s i m u l t a n e o u s l y . of tube m a t e r i a l  The  tube,  absence  i n the p o l y e s t e r m a t r i x ( F i g u r e 3 3 , lower  p h o t o g r a p h , shows o n l y background i n t e n s i t y i n the m a t r i x ) i s an i n d i c a t i o n t h a t the specimen p r e p a r a t i o n d i d not i n v a l i d a t e the  6.4.3.2  results.  Q u a n t i t a t i v e a n a l y s i s of f o u l i n g transverse  procedure  deposits  -  sections.  By measuring X - r a y i n t e n s i t y as a f u n c t i o n of position,  i t i s p o s s i b l e to o b t a i n c o n c e n t r a t i o n  profiles  Tube  F i g u r e 33.  E l e c t r o n M i c r o p r o b e Photomicrographs o f a Clean Tube Showing the B a c k - S c a t t e r e d E l e c t r o n Image (Above) and the C o r r e s p o n d i n g X-Ray I n t e n s i t y Photomicrograph D e p i c t i n g I r o n Concentration (Below).  151  for  the v a r i o u s elements  contained in a fouling  deposit.  Examples o f such p r o f i l e s are c o n t a i n e d i n F i g u r e 34, which shows the r e s u l t s trial  o f scans on a specimen from a  run i n which a s y m p t o t i c f o u l i n g was o b s e r v e d .  s i m i l a r to these were o b t a i n e d f o r the (1) f o u l i ng  Run  15,  i n which  no  Profil  following:  thermally  detectable  resuI ted .  (2)  Run  31,  which  resulted  (3)  Run  70,  i n which  in asymptotic  type  fouling.  Unfortunately,  linear  concentration  fouling  occurred.  profiles for  are not p a r t i c u l a r l y i n f o r m a t i v e s i n c e any i r o n from the tube w a l l  and p r e c i p i t a t e d  iron  released  i n the d e p o s i t  is  i n d i s t i n g u i s h a b l e from the i r o n i n the f e r r i c o x i d e dep o s i t i n g from s u s p e n s i o n .  T h i s problem does not  with nickel  To f a c i l i t a t e  and chromium.  comparison,  chromium p r o f i l e s a l o n e have been r e p l o t t e d o f run i n F i g u r e 35. deposits  (no thermal  t r a t i o n at the tube w a l l  detectable)  type  spotty  chromium c o n c e n -  i s q u i t e h i g h , about 8% by w e i g h t ,  and shows a s l i g h t c o n c e n t r a t i o n deposit.  f o r each  F i g u r e 35 shows t h a t f o r fouling  exist  gradient  throughout  The chromium p r o f i l e f o r the a s y m p t o t i c  the  type  A p p r o x i m a t e C o n c e n t r a t i o n as I n d i c a t e d I n t e n s i t y ( C o u n t s / 1 0 seconds)  o  -4> 7>  O X  cn O o to  > o m 73  o  — cn o O  i  o m -o o CO  -H ro  o' — o  >  o ro m cn,  o  o  ya  o z  CO CO  ^  Z9L  o  O  o o  o o o  -4-  by X - R a y  o o o  -+-  DISTANCE  Figure  35.  FLUID-DEPOSIT  INTERFACE  TO  DEPOSIT-TUBE  INTERFACE  +  Chromium C o n c e n t r a t i o n P r o f i l e s f o r D e p o s i t s from Run 1 5 - No Thermal F o u l i n g D e t e c t e d , Run 31 - A s y m p t o t i c F o u l i n g , and Run 70 - L i n e a r Type F o u l i n g (Di s t a n c e S c a l e i s A r b i t r a r y ) .  _, 0 0  1 54  fouling  d e p o s i t i s much more pronounced than f o r the  deposit.  A t the tube w a l l ,  each o t h e r .  the two p r o f i l e s approach  At the d e p o s i t - f l u i d i n t e r f a c e ,  however,  chromium c o n c e n t r a t i o n o f the a s y m p t o t i c type approaches 4%.  spotty  the  deposit  z e r o , w h i l e the s p o t t y d e p o s i t i s i n excess o f  The l i n e a r f o u l i n g  type of d e p o s i t i s c h a r a c t e r i z e d  by r e l a t i v e l y low c o n c e n t r a t i o n s o f chromium, below 1%, and a g r a d i e n t from the tube w a l l  to the d e p o s i t - f l u i d  i n t e r f a c e which i s not p a r t i c u l a r l y pronounced. c o n c e n t r a t i o n p r o f i l e s were found to behave  The n i c k e l  similarly,  but c o n c e n t r a t i o n l e v e l s were lower than f o r chromium and g r a d i e n t s were not as d i s t i n c t .  6.4.3.3  Q u a l i t a t i v e and q u a n t i t a t i v e a n a l y s i s o f deposits  - core s a m p l e s .  For purposes o f a n a l y z i n g the s u r f a c e o f i n c o n t a c t w i t h the tube w a l l , the f o u l i n g probe.  deposits  core samples c o n t a i n i n g  d e p o s i t s were examined i n the e l e c t r o n m i c r o -  To i l l u s t r a t e the n a t u r e of the d e p o s i t when viewed  i n t h i s manner, s e c t i o n s from Run 70, a l i n e a r r u n , have been s e l e c t e d as an example.  fouling  F i g u r e s 36-39 are  a s e r i e s of photomicrographs showing the p h y s i c a l of the c o r e samples  appearance  (upper p h o t o m i c r o g r a p h ) , and the  t i v e c o n c e n t r a t i o n s of i r o n , chromium, n i c k e l  rela-  and oxygen  F i g u r e 36.  P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of Chromium (Lower P h o t o m i c r o g r a p h ) .  F i g u r e 37.  P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of N i c k e l (Lower P h o t o m i c r o g r a p h ) .  Figure  38.  P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of Iron (Lower P h o t o m i c r o g r a p h ) .  1 58  F i g u r e 39.  P h y s i c a l Appearance of Core Sample (Upper Photomicrograph) and R e l a t i v e D i s t r i b u t i o n of Oxygen (Lower P h o t o m i c r o g r a p h ) .  159  contained  i n the d e p o s i t  mentioned  in Section 6 . 4 . 2 . ,  when viewed i n the  (lower photomicrograph).  the b l a c k areas of F i g u r e 36,  l i g h t microscope,  appear b l a c k ,  the grey areas have the c h a r a c t e r i s t i c ferric  oxide.  red appearance o f  though p r i m a r i l y i r o n , are  and c o n t a i n s i g n i f i c a n t , There i s some e v i d e n c e are d e f i c i e n t  that portions  i n oxygen.  because of i t s accurately  w i t h the m i c r o p r o b e ,  considered  inconclusive.  (1) a high  o f these b l a c k areas  (2) with  (3) able  determined is  basis,  in  scans were made  R e s u l t s , which appear  following:  Nickel-rich and  a  areas high  only iron  Chromium-rich areas  iron-rich  covering  Since oxygen,  i s not  from Run 70.  chromium  nickel.  information contained  F i g u r e s 36-39 on a q u a n t i t a t i v e  as F i g u r e 4 0 , show the  of  the above e v i d e n c e  o r d e r to p l a c e the  the  i n chromium  However, oxygen p r o f i l e s  low atomic number,  a c r o s s core samples  rich  but smal 1, c o n c e n t r a t i o n s  these a r e a s , gave c o n f l i c t i n g r e s u l t s .  both  and  From F i g u r e 36-39 i t may be seen t h a t  black i s l a n d s ,  In  As  exist  in areas  having  content.  exist  only  in conjunction  areas.  Iron-rich  c h r o m i um o r  n i eke I  areas  can e x i s t  present.  without  any  detect-  ...g  100  100  —  |  »  I  I  200  300  400  500  2fJ0  300  4~fr5  56o  APPROXIMATE DISTANCE ACROSS SAMPLE (MICRONS) Figure 40.  R e l a t i v e I n t e n s i t i e s o f I r o n and Chromium, and N i c k e l and Chromium f o r a Scan over a Core Sample from L i n e a r F o u l i n g Run 70 (Numbers i n d i c a t e c o r r e s p o n d i n g l o c a t i o n s ) .  161  These r e s u l t s  add f u r t h e r  supporting evidence  the view t h a t the f o u l i n g o f 304 s t a i n l e s s  steel  to  by f e r r i c  o x i d e i s a s s o c i a t e d w i t h c o r r o s i o n i n c r e v i c e s formed between the d e p o s i t and the tube w a l l . Regular transverse  s t r i a t i o n s were observed on  core samples and t h e s e were s u g g e s t i v e of d e p o s i t c r a c k i n g due to thermal  6.4.4  stress.  E x a m i n a t i o n f o r p i t t i n g of tube used i n runs  32-70.  Because the presence fouling  fouling  deposits  of n i c k e l  and chromium i n  suggests c o r r o s i o n , a p o r t i o n o f the  test  s e c t i o n used i n Runs 32-70 was examined f o r e v i d e n c e of pitting.  The procedure used was as f o l l o w s :  A section  of the f o u l e d tube was honed w i t h a bronze brush to remove the d e p o s i t ,  and then s p l i t l o n g i t u d i n a l l y to expose  inner surface.  the  L i k e w i s e , a s e c t i o n of unused tube was  honed and s p l i t to s e r v e as a s t a n d a r d . them w i t h a l c o h o l  After  cleaning  i n a s o n i c b a t h , both specimens were  examined i n a s c a n n i n g e l e c t r o n m i c r o s c o p e and s t e r e o photomicrographs o b t a i n e d .  These are shown i n F i g u r e  41 and 42 r e s p e c t i v e l y . R e s u l t s c l e a r l y show s l i g h t but pitting  i n the sample used f o r the f o u l i n g  material products)  i n the p i t s  is fouling  deposit  unmistakable runs.  The  (including corrosion  i m m o b i l i z e d by p o l y e s t e r r e s i n .  Probe e x a m i n a t i o n  162  200X  F i g u r e 41.  Scanning E l e c t r o n P h o t o m i c r o g r a p h s Showing the Appearance of the Tube Wall o f a Tube Used i n 38 F o u l i n g Runs. (The above photomicrographs are a s t e r e o p a i r . )  163  Figure 42,  Scanning Electron Photomicrographs Showing the Appearance of a Clean Tube Never Used in Fouling Experiments. (The above photomicrographs are a stereo pair.)  164  showed i t to be r i c h i n chromium and n i c k e l .  The unused  standard  but no e v i d e n c e  specimen shows an i r r e g u l a r s u r f a c e ,  of pi t s.  6.4.5  Deposit c r y s t a l  structure.  In o r d e r to determine i f the b l a c k m a t e r i a l observed i n core samples c o u l d be m a g n e t i t e or some o t h e r spinel,  s c r a p i n g s were a n a l y z e d u s i n g X - r a y  techniques. material  Results f a i l e d  having a s p i n e l  to i n d i c a t e the presence o f a  structure.  In a d d i t i o n , a sample  of d e p o s i t honed from a tube was t e s t e d perties  diffraction  u s i n g a 30 k i l o g a u s s magnet.  f o r magnetic p r o -  No response was  o b t a i n e d i n d i c a t i n g the absence of m a g n e t i t e .  It  f o r e b e l i e v e d t h a t b l a c k m a t e r i a l observed i n the rather  than b e i n g m a g n e t i t e ,  results  is  samples,  from the i n c o r p o r a t i o n  of chromium i n t o the d e p o s i t p r o b a b l y as an o x i d e or h y d r o x i de.  there-  Chapter 7  CORROSION CONTROLLED FOULING - A PROPOSED HYPOTHESIS  7.1  O u t l i n e of Working H y p o t h e s i s The presence of n i c k e l  and chromium i n the  fouling  d e p o s i t s , the presence o f p i t s i n the tube w a l l ,  and the  fact  fouling  t h a t use o f an oxygen scavenger reduces  r a t e , a l l p o i n t to f e r r i c o x i d e f o u l i n g steel  the  of 304 s t a i n l e s s  as b e i n g i n t i m a t e l y a s s o c i a t e d w i t h s t a i n l e s s  corrosion. in this  In o r d e r to e x p l a i n the f o u l i n g  results  steel obtained  i n v e s t i g a t i o n , a h y p o t h e s i s based upon c r e v i c e  c o r r o s i o n t h e o r y has been d e v e l o p e d . presented  This hypothesis  is  i n a g e n e r a l form b e l o w , expanded upon i n S e c t i o n s  7.2 and 7 . 3 , and used as the b a s i s f o r two mathematical models i n S e c t i o n 7 . 4 . The h y p o t h e s i s e x p l a i n i n g f o u l i n g o f 304 s t a i n l e s s s t e e l w i t h f e r r i c o x i d e i s as (I)  The  initial  follows:  process involves the physical  adhesion of f e r r i c oxide p a r t i c l e s to the stainless s t e e l . The transport of f e r r i c oxide p a r t i c l e s to the tube wall  165  166  is  believed  to  be  c o n t r o l l e d by  concentration,  flow  particles  the  of  the  from  shear  depositing  and  Epstein develop  ( 1 3 ) , and  (2) on  the  energy  and  the  fouling  Because  one  of  the  case  growth  and  spotty  fouling.  these These  eventually  sites  forming  that  fouling  process  deposit  i n one  as then  there area  which  area  having  no  tial  oxygen  concentration  grow  be  function  between  this  been  ferric  fouling  approach  process  deposit.  for  and  cells less  than  unfouled  surfaces. fouled  on  areas  in tube wall  much of  the  thick  fouling to  in  tube wall  up  is  first  the  results  sets  are  covers  a c c e s s i b l e to This  not  further  proximity  the  is  thickness,  completely  This  concen-  R a t h e r , as  deposits  sites  in area  found  oxide  thickness.  i s in c l o s e  oxygen  resulting  of  Watkinson  have  a relatively  being  reaction  low  which  surfaces  the  a  ( 6 ) , use  localized  tube  i n which  at the  fouled  corrosion  be  Consequently, during can  fouling  release  adhesion  Seaton  nucleation  a deposit  heat t r a n s f e r s u r f a c e .  to  substrate.  in d e p o s i t  serve  of  deposits  for c r y s t a l l i z a t i o n ,  and  The  particle  models.  i t is believed  uniform  flux.  the  Kern  v a r i a b l e s as  is believed  tube w a l l , p a r t i c u l a r l y  trations,  formed  particle  their  heat  tube wall  s t r e s s and  the  to  r a t e and  such  another  differenwith  dissolved crevice  u n d e r g o an  c o r r o s i o n , and  anodic the  unfouled  167  areas undergo the c a t h o d i c The  c o r r o s i o n products  r e a c t i o n of oxygen  generated under the  d i f f u s e through the d e p o s i t and  r e d u c t i o n can continue reduced  Provided  causes a drop  deposit  unfouled  area  becomes  ing rate then d e c l i n e s as the d e p o s i t i o n and fouling  This  in turn reduces  rate at which the d e p o s i t becomes immobilized.  from the  will  r e a c t i o n rate f a l l s .  in c o r r o s i o n rate which  p a r t i c l e s to and  into  r e a c t i o n of oxygen  fouling  I f , however, the  in s i z e , the c a t h o d i c  deposit  immobilize i t .  the c a t h o d i c  be m a i n t a i n e d , the  to grow.  fouling  become incorporated  i t c h e m i c a l l y , thereby s e r v i n g to (3)  reduction.  The  the  foul-  r e l e a s e of  d e p o s i t come into  ba I ance.  7 .2  Fundamentals o f According  steels  are  Crevice to  particularly  aqueous media p r o v i d e d (1)  There  d e p o s i t which can (2)  Corrosion  Fontana and prone to the  Greene  crevice  following  (37),  stainless  corrosion  conditions  in  prevail:  i s , on the s u r f a c e of the m e t a l , a  c r e a t e a stagnant  There e x i s t s  such as the c h l o r i d e i o n .  in the  area. fluid  an a g g r e s s i v e  Trace amounts are  ion  sufficient.  168  (3)  A relatively  large cathodic area is a v a i l -  able to consume electrons generated at the anode. All  of these c o n d i t i o n s are met i n the f e r r i c o x i d e - s t a i n -  less steel  system s t u d i e d h e r e .  The s p o t t y f o u l i n g  deposits  p o s t u l a t e d and f r e q u e n t l y observed c r e a t e s t a g n a n t w i t h the u n f o u l e d areas a v a i l a b l e as a c a t h o d e .  areas,  Since  tap water was used f o r the e x p e r i m e n t s , t h e r e i s a source ofchlorideion. Under the above c o n d i t i o n s , s t a i n l e s s c o r r o d e s a c c o r d i n g to the f o l l o w i n g  anode  M -»- M  cathode  0  overall  M+ 0  Ordinarily, steel  2  + 2H 0 2  2  two e l e c t r o d e  + ne ••-  n +  reactions:  (M = F e , Ni , C r )  + 4e * 40H"  + 2H 0 - M  n +  2  + nOH"  these r e a c t i o n s go on a l l over the  surface,  steel  stainless  and exposed metal i s q u i c k l y a t t a c k e d  form a metal i o n .  to  T h i s metal i o n then forms an i n s o l u b l e  o x i d e on the s t a i n l e s s  steel  s u r f a c e which p r o t e c t s  metal from the c o r r o d i n g e n v i r o n m e n t :  M  n  + nOH" •> M ( 0 H )  n  the  169  In the s t a g n a n t area under a d e p o s i t , the oxygen soon becomes d e p l e t e d quently,  the metal  (see  Figure 43).  Conse-  ions produced do not form o x i d e s ,  remain i n the s t a g n a n t area as which  however,  are  positive  but  ions,  n e u t r a l i z e d by the m i g r a t i o n  of the m o b i l e c h l o r i d e ions i n t o the c r e v i c e .  The c h l o r i d e  i o n then a t t a c k s  the p r o t e c t i v e o x i d e f i l m  metal s u r f a c e . ^  There i s then w i t h i n the c r e v i c e an anodic  area,  exposing  connected through the metal w i t h a l a r g e  cathodic  area over the tube s u r f a c e which has no d e p o s i t . corrosion therefore  i n water a c c o r d i n g to the  The net r e s u l t  +  Crevice  proceeds w i t h a b u i l d - u p of metal  c h l o r i d e w i t h i n the c r e v i c e .  M  fresh  T h i s metal  salt  then  hydrolzes  reaction:  C l " + H 0 -»- MOH + + H C l " +  2  i s t h a t the metal  i o n i s removed from s o l u t i o n  w i t h i n the c r e v i c e and the hydrogen and c h l o r i d e i o n s remain and promote f u r t h e r  attack.  ^The reason f o r a c c e l e r a t e d c o r r o s i o n of s t a i n l e s s s t e e l i n the presence of c h l o r i d e i o n has long been a s u b j e c t of concern to c o r r o s i o n s c i e n t i s t s . A current theory, a c c o r d i n g to V i j h ( 3 8 ) , i s t h a t the c h l o r i d e i o n p e n e t r a t e s the l a t t i c e to form a c h l o r o - c o m p l e x of i r o n or chromium which i s s u s c e p t i b l e to d i s s o c i a t i o n i n s o l u t i o n . The c h l o r i d e i o n i s thus r e g e n e r a t e d and t r a c e amounts are t h e r e f o r e capable o f " p o r t e r i n g " s u b s t a n t i a l amounts of m e t a l l i c i o n s from the metal s u r f a c e .  170  Crevice Corrosion Figure 43.  - Later  Stage  Mechanism of C r e v i c e C o r r o s i o n A c c o r d i n g Fontana and Greene ( 3 7 ) .  to  171  7.3  Proposed Mechanism f o r F e r r i c Oxide F o u l i n g of 304 Stainless  Steel  In o r d e r outlined  to e x p l a i n how the working  i n S e c t i o n 7.1  time b e h a v i o u r  obtained  l e a d s to the in this  hypothesis  type o f f o u l i n g  investigation,  F i g u r e 44  has been c o n s t r u c t e d  showing a t y p i c a l f o u l i n g  Superimposed  on t h i s  figure  are  as p r e d i c t e d  by the  hypothesis  deposit of the  fouling process.  is d i v i d e d into three regions (1)  An  (2)  A  (3)  An  induction fouling  that f e r r i c  for various  stages  which i s not to  reg i on region.  it  is  o x i d e p h y s i c a l l y adheres to the  forming c r e v i c e c o r r o s i o n s i t e s .  considered tube w a l l ,  During t h i s  p r e s e n t f o r the  period,  fouling  i n d u c t i o n p e r i o d was a c t u a l l y  during t h i s  investigation  fouling,  it  i s concluded that t h i s  duration  i n the  lating until  its  f o r runs e x h i b i t i n g  Since  observed thermal  p e r i o d was o f s h o r t  present experiments.  existence  The reason f o r  i s t h a t c r e v i c e c o r r o s i o n cannot  a c r e v i c e s i t e has been  there  deposit  to cause d e t e c t a b l e changes i n f o u l i n g r e s i s t a n c e . no a p p r e c i a b l e  scale,  region  induction period,  i s too much u n f o u l e d w a l l  fouling  as f o l l o w s :  asymptotic  During the  curve.  s k e t c h e s of the  The f i g u r e ,  versus  formed.  postuoccur  INDUCTION REGION  Fe  2?3  T H E R M A L FOULING  REGION  BARE WALL  UNFOULED  ASYMPTOTIC  Fe 0 2  REGION  3  WALL  [TUBE WALL  TUBE  Cr  AND N i ,  RICH  3LACK  DEPOST Cr OR  Figure 44.  OF Fe,  BLACK  DEPOSIT. (NO  UNFOULED WALL  WALL  TUBE  PRESENT)  A N D N i OXIDES HYDROXIDES  TIME *~ Idealized Fouling Curve I l l u s t r a t i n g the Nature of the Fouling Deposit at Various Times According to the Crevice Corrosion Hypothesis.  173  In the f o u l i n g r e g i o n , c r e v i c e c o r r o s i o n as o u t l i n e d i n S e c t i o n 7 . 2 , w i t h the c o r r o s i o n becoming i n c o r p o r a t e d  i n t o the  deposit.  occurs  product  During t h i s  period,  fouling  can be d e t e c t e d t h e r m a l l y and proceeds at a de-  clining  r a t e as the d e p o s i t  unfouled wall  grows, t h e r e b y r e d u c i n g  area and p r o g r e s s i v e l y  o f oxygen to h y d r o x l  b l o c k i n g the  r e g i o n , the  tube w a l l  f o u l e d to such an e x t e n t t h a t oxygen r e d u c t i o n c o r r o s i o n occurs  There i s a g r e a t deal fouling (1) steel, oxide of  as  oxides  be  which  moment o f  steels have  ferric bond.  physical  adhesion  and  unreasonable  clean  eliminated release  balance.  of evidence  readily  by  steel  to support  adheres to  preparing  beaker.  c o n s i s t s of  the  Hence a of  would  of  iron,  nickel  induction  oxide  ferric  A l s o , s i n c e the  to the  surface  and  chromium  large  dipole  predictably result  brief  ferric  stainless  a slurry  l a r g e d i p o l e moments, the oxide  physical  an  oxide  observed  in a s t a i n l e s s  stainless  is  mechanism:  Ferric  can  has  and the d e p o s i t i o n and  of p h y s i c a l l y h e l d f e r r i c o x i d e come i n t o  proposed  reduction  ions.  In the a s y m p t o t i c  No f u r t h e r  the  period  in a  strong  involving  surface  is  not  assumption.  (2)  The  coexistence  wall  areas  side  by  of  side  relatively  thick  deposits  is also a  reasonable  174  assumption. showed Also,  spotty  heat  lapse  This  here,  since  could  not  wall  promote  The  crevice  the  fouling  rate  and  increased  the  cathode  was  found  to  the  is  that  flux  deposit  The  and  condition.  heated  Such  a  an  a  of  water-  thick  that  thus  de-  proposed  the  leaving  asymptotic  shown  deposit no  the  blocked  an  of  oxygen  the  tube,  It should  cannot  serve  ferric  linear  prerequiste  fouled  tube  in order  procedure  to  be  be as  clean  is  also  scavenger thereby  site  out  for  tested,  electrically.  for  lends  linear  subjected  is believed  that  when  fouling  obtain  in  pointed a  oxide,  non-conducting  of  region  experimentally  with  area.  existence  initially  then  of  itself  since  microns.  hypothesis  imply  layer,  portion  since  fouling  the  would  reduced  wall  70  relatively  to  detected  reduction.  been  a  to  was  shows c o n c l u s i v e l y  is essentially  extremely  hypothesis an  be  honing  clean  be  (4)  oxygen  i t has  reaction  to  (15) with  single  existence  can  by  the the  a  corrosion  since  that  coexist  deposition  beyond  up  calcareous  is essential  reasonable,  here  of  point  uniform  to  increasing  films  fouling  thicknesses  do  (3) which  with  thermal  areas  grow  area  no  exchangers, Taborek  unfouled  posits.  in which  deposits  in time  cooled that  Tubes  the to  to  support  fouling zero  linear produce  heat  fouling cracks  175 in  the  deposit  tube wall Since  under  linear  large  to  assume t h a t  to  that the  to  accessible  is  and  due  ( f o r Run  thermal  fouling 64,  I IF°  d i s s o l v e d oxygen and  thereby  t o d i s s o l v e d oxygen  c r a c k i n g of  tube wall  stress,  the  the  wall  i n one the will  making  from  the  temperature  hour),  continue  to  fluid.  increase  i t is  deposit will  the  reasonable  continue, be  corrosion reaction  transported  thereby  ma i n t a i n e d .  7.4  M a t h e m a t i c a l Models  7.4.1  Model  I.  Let  N  Let  Ng = the number of f e r r i c o x i d e p a r t i c l e s i n the d e p o s i t h e l d by c h e m i c a l f o r c e s due to the p r e c i p i t a t i o n of c o r r o s i o n p r o d u c t on and around the p a r t i c l e s per u n i t area o f tube s u r f a c e .  R  = the number of f e r r i c o x i d e p a r t i c l e s i n the d e p o s i t h e l d by p h y s i c a l f o r c e s per u n i t area o f tube s u r f a c e .  and  If  it  i s assumed t h a t o n l y p a r t i c l e s of the N  o r i g i n a l l y d e p o s i t e d and s u b j e c t p a r t i c l e s o f the N ticles  g  to r e l e a s e ,  type  R  are  and t h a t  type are a l l formed from N  R  type  par-  a l r e a d y i n the d e p o s i t and t h a t when formed, Ng  type p a r t i c l e s are not s u b j e c t differential  to r e l e a s e ,  e q u a t i o n can be w r i t t e n :  the  following  176  dN  where  dN  R  B  (|> = r a t e o f d e p o s i t i o n o f type N per u n i t area D  <j>  R  = rate of release per u n i t area  of type N  R  R  particles  dN —j-r- = r a t e of c o n v e r s i o n of type N to type Ng p a r t i c l e s per u n i t B  If N  r e p r e s e n t s the t o t a l  T  making up the d e p o s i t per u n i t a r e a ,  N  Equation  (7.1)  then  T  = N  R  + N  particles  R  particles area  number of  particles  then  (7.2)  B  becomes  dNj  t h a t i s , the r a t e o f a c c u m u l a t i o n o f a l l p a r t i c l e s deposit  i s the d i f f e r e n c e  r a t e s of type N  R  in  between the d e p o s i t i o n and  particles only.  used by many i n v e s t i g a t o r s ,  Equation (7.3)  has  n o t a b l y Kern and Seaton  the release been  (6),  177  Watkinson and E p s t e i n ( 1 3 ) , Taborek et al. (1) and C h a r ! e s w o r t h ( 1 1 ) , as the s t a r t i n g  point for t h e i r  In the K e r n - S e a t o n m o d e l , f o r example, N as being p r o p o r t i o n a l to the mean d e p o s i t rj>D  = KiCW and <j)R =  where  K  x  K  and K  2  2  is  interpreted  thickness,  x,  T X ,  are  constants  C = particulate W = mass flow x = shear  T  models.  concentration  rate  stress  Then ^  = K CW - K x x X  (7.4)  2  or  x  In  = J ^ j j  _ -. * ] K  the K e r n - S e a t o n a p p r o a c h ,  made t h a t the f o u l i n g  (1.6)  T t  e  thickness  the assumption  i s uniform and t h a t  d e p o s i t i o n r a t e i s not a f u n c t i o n of f o u l i n g d e p o s i t ness but t h a t the r e l e a s e  rate  In the mathematical  is  the thick-  is. models developed h e r e ,  assumption t h a t the d e p o s i t i o n r a t e , <f>, i s n  the  independent  178  of the number of p a r t i c l e s  i n the d e p o s i t ,  is  retained.  The r e l e a s e term however i s not assumed to be p r o p o r t i o n a l to the t o t a l  number of p a r t i c l e s  to the number o f p a r t i c l e s  i n the d e p o s i t ,  i n the d e p o s i t  N , T  h e l d by p h y s i c a l  (as opposed to c h e m i c a l ) f o r c e s ,  N .  r e l e a s e term i s r e t a i n e d ,  i s assumed t h a t (f> =  K  2  T N  r  .  controlled fouling  functional  to  R  becomes  T  sr  Equation  the  equation d e s c r i b i n g c o r r o s i o n  then  dN  To f i n d  and i t  The d i f f e r e n t i a l  The form o f  R  but  *D  =  (7.5)  -  K  *  T  R  N  <  '  7  5  >  can r e a d i l y be s o l v e d p r o v i d e d a  r e l a t i o n s h i p between Ny and N  t h i s r e l a t i o n s h i p , equation  (7.5)  R  can be f o u n d . is  differentiated  yield  dN  dN  2  T  "TET Since  N  dN  "  = N  y  K2T  =  -fJT  R  "dF  + N  R  dN  R  "dF  =  -  ( 7  6 )  (7.2)  g  dN g  T _  I T T  (  7  *  7  )  1 79  Substituting  this  result  d N  into equation  dN  2  T  K T 2  ~dF  dt  A c c o r d i n g to the h y p o t h e s i s controlled fouling  (7.6)  B  (7.8)  concerning  presented in Section  f o r m a t i o n of i m m o b i l i z e d p a r t i c l e s amount o f unfouled w a l l f o r oxygen r e d u c t i o n .  N  gives  g  corrosion  7 . 1 , the  rate of  i s c o n t r o l l e d by  the  area a v a i l a b l e to serve as a cathode The assumption  i s t h e r e f o r e made  that  dt  where  h  = rate  0  ^So = SoOS  constant  U  m  = number of u n f o u l e d  S  0  = total  Substitution  (7.9)  s i t e s per u n i t  number o f s i t e s per u n i t  of equation  (7.9)  into equation  area  area.  (7.8)  gives  180  dN  dN  2  dt  The  =  2  - K  2  T  hU  T  dt  ID  (7.10)  So  problem i s t h e r e b y reduced to f i n d i n g a  r e l a t i o n s h i p between the f r a c t i o n of u n f o u l e d area o f the tube,  U /S , m  0  and the t o t a l  number o f p a r t i c l e s  forming  the d e p o s i t , N . T  To f i n d  an e x p r e s s i o n r e l a t i n g U / S m  0  to N  a  p r o b a b i l i t y method s i m i l a r to t h a t employed by Langmuir (39) i n h i s a d s o r p t i o n s t u d i e s  i s adopted.  a u n i t area of the metal s u r f a c e number o f adhesion s i t e s ,  S .  is divided  In t h i s method, i n t o an a r b i t r a r y  I t i s then assumed  0  the p r o b a b i l i t y t h a t any s p e c i f i e d  site will  that  be o c c u p i e d  by a d e p o s i t i n g p a r t i c l e i s p r o p o r t i o n a l to the i n t e r a c t i o n energy  (the energy of a d h e s i o n ) between the p a r t i c l e and  the s u r f a c e of the s i t e . unfouled s i t e s  If U /S m  on the t u b e ,  0  the p r o b a b i l i t y o f a d e p o s i t i n g  p a r t i c l e o c c u p y i n g an u n f o u l e d s i t e  P  where  pm  i s the f r a c t i o n o f  = AE  pm S  is  (7.11)  181  pm A E  p r o b a b i l i t y of a d e p o s i t i n g p a r t i c l e o c c u p y i n g any s i t e = p r o p o r t i o n a l i t y constant  pm  = energy o f adhesion between a p a r t i c l e and the tube w a l 1 .  Similarly,  the p r o b a b i l i t y of a d e p o s i t i n g p a r t i c l e  o c c u p y i n g a s i t e on the f o u l i n g  deposit  is  U P  pd =  A  E  pd  '  (7.12)  So  S i n c e a p a r t i c l e which d e p o s i t s must occupy e i t h e r a s i t e on the d e p o s i t or a s i t e on the u n f o u l e d tube w a l l  P  . + P = 1 pd pm  (7.13)  Hence  A E pd 1 '  U DL So  H E  E l i m i n a t i n g A between e q u a t i o n s  J = l pm So  ( 7 . 1 4 ) and ( 7 . 1 1 )  (7.14)  gives  182  ,  _  pm r  m pm U E + [So - U ] E , m pm m pd m  L  n m  (7.15)  mJ  I f at any time t h e r e are N-j. p a r t i c l e s deposit,  and U" u n f o u l e d s i t e s ,  i n the  then an a l t e r n a t e way o f  m  e x p r e s s i n g the p r o b a b i l i t y t h a t a d e p o s i t i n g p a r t i c l e s e t t l e on the u n f o u l e d metal  i s g i v e n by the  will  differential  equation dU. m = P„ dN pm  (7.16)  m  T  Equating t h i s equation  expression for Pp  (7.15)  d  t h a t at N  T  N  m  T  T  =  = 0, U  E  U E m pm Llm Epm + (S 0 - UmJ n m  equation  1 •  w i t h t h a t g i v e n by  yields  dU  Integrating  m  m  (7.17)  u s i n g the i n i t i a l  (  1  , % 7  condition  = 0, y i e l d s  1 •  So m  pm  Epd.  •  pmj  In  • So ^  m "  U  pm  "  u m  "  So  (7.18)  183  If  i t i s assumed t h a t  and Ep^ are very n e a r l y e q u a l ,  then  1 .  I  Equation  E P J  1  1 -  So -  P . m  m  ( 7 . 1 8 ) then  (7.19)  m  becomes N_  E  s  E  - _ I . _££  Um = S e m  p  Ad  (7.20)  0  S u b s t i t u t i o n of t h i s r e s u l t i n t o equation  (7.10)  gives  d N  dN  2  T  dt2  +  K T2  1  dt  T  -  K T 2  he  So  pd  (7.21)  = 0  =  T h i s d i f f e r e n t i a l e q u a t i o n i s n o n - l i n e a r and cannot be s o l v e d i n terms of f a m i l i a r  functions.  An  approximate s o l u t i o n can be o b t a i n e d by e x p r e s s i n g exponential  term as a s e r i e s  terms i n the s e r i e s ,  that  is,  and t r u n c a t i n g a f t e r  the two  184  N_  E  - J L . _EH1  K 2 x he  = K th 1 -  p d  N  E  T  ,  T So  2  S  °  E  pd  2 1  E ~ 2 pm E  _  •• •  pd]  N E ~ 1 _ _ I . _p_m S E pdj T  K xh 2  (7.22)  0  Substituting  d  2  N  t h i s approximation into equation  d  T  K  The of the  2  T  N  E  T  _ ^  +  K  2 T h  N  n m  _M  where  =  (7.23)  K 2 T h  is  form  . (x - / x - 4 y ) t z  _ T  T  . _ I  s o l u t i o n to t h i s d i f f e r e n t i a l e q u a t i o n  (x + / x * - 4 y )t  N  (7.21) gives  = C e  <  +  + C e  z  x  2  2  x = K x , 2  y = K xh 2  •  • -1 E  pd  S  °  , +  r  '  L3  (7.24)  185  For the i n i t i a l  c o n d i t i o n s Ny = 0 at t = 0  and dN  T dt t = 0  the c o n s t a n t s i n e q u a t i o n can be r e a d i l y A major d i s a d v a n t a g e to e q u a t i o n  (7.23)  evaluated.  of the a n a l y t i c a l s o l u t i o n  o f f e r e d by e q u a t i o n  (7.24),  i s t h a t the a p p r o x i m a t i o n upon which e q u a t i o n based,  however, (7.23)  is  namely  N_ So  E E , P ~ i d  N E _ L . Pm ° pd T  n  S  N is only v a l i d  if  E * TT ^ « pd 2  S  As f o u l i n g  T  °  proceeds  1  E  and Ny i n c r e a s e s ,  becomes p r o g r e s s i v e l y more i n v a l i d . general,  equation  and t h e r e f o r e  (7.24)  i t offers  s o l u t i o n of e q u a t i o n  E  the above i n e q u a l i t y Consequently, in  cannot be r e l i e d  upon to  hold,  no advantage over a n u m e r i c a l  (7.21).  186  7.4.2  Model If  II. i t i s assumed t h a t c r e v i c e s  formed b e f o r e thermal  must f i r s t  f o u l i n g can be d e t e c t e d , or  that f e r r i c  oxide deposition  much h i g h e r  than the  alternately  and r e l e a s e r a t e s are  r a t e at which f e r r i c  be  oxide  very  particles  become i m m o b i l i z e d to form a permanent s t r u c t u r e ,  then  an i n d u c t i o n p e r i o d f o l l o w e d by a time dependent f o u l i n g p e r i o d can be assumed.  If,  no i m m o b i l i z a t i o n o f f e r r i c equation  (7.1)  6 = time of  Integrating, 9=0,  u s i n g the  =  induction  period,  oxide i s considered  can be w r i t t e n  Te  where  d u r i n g the  to  occur,  as  *D ~ * K  T  N  (7.25)  R  induction initial  condition that N  R  = 0 at  gives  (7.26)  If  K x 0 i s assumed to be l a r g e , 2  mobile f e r r i c oxide p a r t i c l e s c o n s t a n t g i v e n by  i n the  the number of  deposit  will  be a  187  N  R  = K £  Assuming, as i n Model metal  < 7  2 7  >  I , t h a t the uncovered  f r a c t i o n can be expressed  as  E  N_  _ _ L . _p_m  =  S E  °  E  P  (7.20)  D  and t h a t the r a t e o f p a r t i c l e i m m o b i l i z a t i o n i s g i v e n by  dN h U _§l = dt So  ,  D  where  7.9  t = time of thermal f o u l i n g induction period)  then combining e q u a t i o n s  ( 7 . 2 0 ) and ( 7 . 9 ) r e s u l t s  N_  I  dN  (following  R  S  .  °  in  E  pm  E  „ H ( 7  -HT = h e  '28)  Since N  T  = N + N B  R  (7.2)  188  combining e q u a t i o n s  (7.28),  D dN " P= h e dt R  g  . J _ . pm B pm S E " S ' E , P • e P #  K T  0  2  0  d  Integrating condition that N  ( 7 . 2 ) and ( 7 . 2 7 ) y i e l d s  equation  ( 7 . 2 9 ) , u s i n g as the  = 0 at t = 0, l e a d s to the  <-  N  Since  if  = S o - ^ - In pm  R B  N  E  T  follows  d  c ^  E  P  R  d 2  p m  R  K  2  initial  result  Pd h e- Soir^- * K x 0£ x t + 1 pm  = N + Ng, and N  (7.29)  (7.30)  T  that  S o ^ - ln\ pm  pm  - So E pm h e  K T 2  x t + 1  (7.31)  189  I t s h o u l d be noted t h a t when t = 0,  K T 2  which i s c o n s i s t e n t  w i t h the  (7.  = NR  initial  c o n d i t i o n , Ng = 0  at t = 0.  7.4.3  Linear  fouling.  As s t a t e d i n S e c t i o n 6 . 2 . 6 , b e l i e v e d to be a r e s u l t uncovered metal ferric  o f expanding the  but can s t i l l  is  create  from m o b i l e s e r v e as  sites  reaction  0  2  + 2H 0 + 4 e -> 4(0H") 2  Under such a h y p o t h e s i s ,  U ^ S o , the f r a c t i o n o f  s i t e s i s constant with time.  dN  B dt  integrated  tube to  s i t e s which are p r o t e c t e d  o x i d e by the d e p o s i t ,  f o r the cathode  linear fouling  d i r e c t l y to  obtain  uncovered  Thus  h U So  m  (7  190  h IJ N  When  t = 0, N  g  B  =  1  o  *  = 0 , and hence C  +  x  C  L  = 0.  (  The t o t a l  7  number  of p a r t i c l e s on the s u r f a c e , Ny, then becomes  H e r e , c o n s i s t e n t w i t h r e s u l t s , thermal f o u l i n g l i n e a r dependence w i t h r e s p e c t  shows a  to t i m e .  A g a i n , by use of an oxygen s c a v e n g e r , h s h o u l d be reduced by a c o n s t a n t amount due to an abrupt  change  i n the cathode r e a c t i o n , g i v i n g a lower c o n s t a n t r a t e of fouling.  This p r e d i c t i o n i s also c o n s i s t e n t with  experimental  7.4.4  the  data.  C o m p a t i 1 i b i t y of f o u l i n g model e q u a t i o n s experimental  with  data.  S i n c e the K e r n - S e a t o n type of e q u a t i o n , *  -ht  Rf = Rf (1 - e"  ) , was r o u t i n e l y f i t t e d  to the  fouling  data f o r each r u n , i t was d e c i d e d to t e s t t h i s e q u a t i o n first  a g a i n s t the e x p e r i m e n t a l d a t a to see whether  K e r n - S e a t o n model would c o r r e c t l y p r e d i c t the of R * and b on mass f l o w r a t e . f  the  dependence  In the K e r n - S e a t o n m o d e l ,  191  =  and b = K 2 x , where K i and K are  K!CW/K T  2  2  constants,  C i s the c o n c e n t r a t i o n , W i s the mass f l o w r a t e and T i s the shear s t r e s s . friction  Assuming the B l a s i u s e x p r e s s i o n f o r  f a c t o r to h o l d ,  T  = U P  2f  b 2  then  0.79 ., 2 ( D U —2~- b y  - 0 . 25 b P  (7.35)  p U  or  Hence, the K e r n - S e a t o n model p r e d i c t s the a s y m p t o t i c ing r e s i s t a n c e , fouling  R , , to vary as W  and the  initial  r a t e ( b R , * ) to v a r y d i r e c t l y w i t h W. In an attempt  to determine whether the data  out t h i s p r e d i c t e d dependence, fouling  ' IJ  foul-  l o g - l o g p l o t s of  r a t e and a s y m p t o t i c f o u l i n g  bear  initial  r e s i s t a n c e were made  a g a i n s t mass flow r a t e f o r f o u r Runs (Runs 54, 55, 39, 61) u s i n g a m i x e d - s i z e f e r r i c o x i d e at a c o n c e n t r a t i o n o f 2130 ppm (see F i g u r e 45 and 4 6 ) .  The reason f o r l i m i t i n g  the  a n a l y s i s to these runs i s t h a t they showed a t h r e e - f o l d range i n mass flow r a t e ,  w i t h the c l e a n w a l l  at time zero being r e l a t i v e l y c o n s t a n t  temperature  (148 ± 4 ° F ) .  Since,  192  LU ICD  O „  <<M»  0.05  0.10 MASS  F i g u r e 45.  0.20  0.30  FLOW RATE (lbs m/sec)  Dependence of I n i t i a l F o u l i n g Rate on Mass Flow Rate For Runs 5 4 , 5 5 , 3 9 and 6 1 . MixedS i z e F e r r i c Oxide Cone. 2130 ppm. Wall Temperature at Time z e r o , 148°F ± 4 .  193  10 8 UJ  SLOPE  o  =-0.9  6  00 00  or o  4  CD * •  =>  O u-CQ\ pcvj r— -•CL ^ 1  2  h  >CO  <  J  0.05  I  I  I  I  1  0.10  0.20  MASS  Figure  46.  FLOW RATE  0.30  (lbsm/sec)  Dependence of A s y m p t o t i c F o u l i n g R e s i s t a n c e on Mass Flow Rate f o r Runs 5 4 , 5 5 , 3 9 and 6 1 . M i x e d - S i z e F e r r i c Oxide Cone. 2130 ppm. Wall Temperature at Time Z e r o , 148°F ± 4.  194  as has a l r e a d y been shown, f o u l i n g temperature  dependent,  a proper t e s t of the i n f l u e n c e of  mass flow r a t e on i n i t i a l resistance  requires  b e h a v i o u r appears to be  fouling  t h a t the w a l l  r a t e and a s y m p t o t i c temperature  be  From F i g u r e 4 5 , i t can be seen t h a t the i n i t i a l  fouling  constant. fouling  r a t e i n c r e a s e s w i t h mass flow r a t e to the 0.3 power.  The  K e r n - S e a t o n model p r e d i c t s  the  1.0.  I t thus appears t h a t  Kern-Seaton model does not c o r r e c t l y p r e d i c t the of i n i t i a l  fouling  r a t e on mass v e l o c i t y .  the l o g - l o g p l o t o f a s y m p t o t i c f o u l i n g  dependence  The r e s u l t s o f  resistance  versus  mass flow r a t e are more s u p p o r t i v e of the K e r n - S e a t o n model. The data show a dependence Seaton model p r e d i c t s  index on W of - 0 . 9 w h i l e the  - 0 . 7 5 (or -1 f o r f u l l y  rough  Kern-  flow).  However, because o f the l i m i t e d amount o f data upon which t h i s a n a l y s i s i s b a s e d , f i r m c o n c l u s i o n s are not  warranted.  T e s t s o f models I and II as p r e d i c t i v e methods for fouling  b e h a v i o u r have not been made because  such  tests,  i n o r d e r to be m e a n i n g f u l , would r e q u i r e a l a r g e amount of data,  four constants  being i n v o l v e d  ( K i , K , h and 2  Ep / pfj)' E  m  S i n c e , as a l r e a d y i n d i c a t e d , t h e r e are i n s u f f i c i e n t c o n t r o l l e d data  to t e s t even the s i m p l e r K e r n - S e a t o n m o d e l , i t i s  t h a t no q u a n t i t a t i v e fully  t e s t o f models I and II can be meaning-  made w i t h the p r e s e n t  c o u l d serve as s t a r t i n g p r e d i c t i v e equations  felt  data.  N e v e r t h e l e s s these models  p o i n t s towards the development of  for corrosion c o n t r o l l e d  fouling.  Chapter 8  CONCLUSIONS AND RECOMMENDATIONS  An i n v e s t i g a t i o n was made of the f o u l i n g of aqueous s u s p e n s i o n s 304 type s t a i n l e s s  behaviour  of f e r r i c o x i d e i n 0.343 i n c h i . d .  steel  tubes.  Variables studied,  using  submicron to micron s i z e p a r t i c l e s , were f e r r i c o x i d e c o n centration 37,590)  (15 - 3750 ppm), Reynolds number  and heat f l u x  selected  runs,  (0 - 92,460 B T U / f t - h r ) .  f o u l e d tubes were s e c t i o n e d  -  Following  2  c o m p o s i t i o n o f the f o u l i n g d e p o s i t i n an e l e c t r o n  (10,090  and the chemical  determined  "in situ"  microprobe.  Microprobe r e s u l t s  showed the d e p o s i t  to  contain,  i n a d d i t i o n to i r o n and oxygen, s i g n i f i c a n t amounts o f nickel  and chromium.  profiles  showed n i c k e l  with l e v e l s highest  Chemical c o m p o s i t i o n - d e p o s i t  distance  and chromium c o n c e n t r a t i o n  gradients,  at the tube w a l l ,  the d e p o s i t - f l u i d i n t e r f a c e . series  falling  to zero  at  A t e s t s e c t i o n used f o r a  of f o u l i n g t r i a l s was f o u n d , when examined w i t h an  e l e c t r o n m i c r o s c o p e , to have s m a l l , but d i s t i n c t ,  195  pits.  196  During the f o u l i n g  p r o c e s s , measurements  were  made of thermal r e s i s t a n c e as a f u n c t i o n  of t i m e .  resulting fouling  d i s t i n c t categories,  curves f e l l  i n t o three  The  depending upon the p a r t i c l e c o n c e n t r a t i o n and the mode of o p e r a t i on: (1) ppm,  no  thermal  periods tubes  At  of  up  showed  fouling  to  14  At  could  ferric  Kern  behaviour  and  Seaton,  systems. creasing  hours  of o p e r a t i o n . decrease  on  test  the  resistance f rom  the  tube  (3) test  The  was  section  size  by  100  experimental  examination  c o n c e n t r a t i o n s of  of  such  particles,  fouling ferric  Prolonged  oxide  be  at a s t e a d i l y  system  after  resistance  at  studied  of  dehere,  of  the  four  in a  localized  in thermal  indicative  by  approximately  refouling  decrease  type  fouling  operation resulted  f o l l o w e d by  to  asymptotic  ppm  to t h a t reported  occurs  occurred  sudden  taken  750  Watkinson, f o r d i f f e r e n t  in f o u l i n g  section,  section.  detected over  Microprobe  oxide  condition  sudden  test  and  In t h e  the a s y m p t o t i c  be  occurred, similar  T h i s t y p e of rate.  c o n c e n t r a t i o n s below  deposits.  h i g h e r , u s i n g mixed  fouling  oxide  days.  spotty  (2) and  ferric  positions whole  fouling  release  of  material  wall.  If t h e at zero  suspension heat  flux  was  circulated  for approximately  through eight  the  197  hours and then heating s t a r t e d , the tube commenced fouling at a constant rate considerably greater than the previous decreasing  rates. To e x p l a i n the r e s u l t s ,  which s t a t e s t h a t the f o u l i n g ferric  o x i d e on s t a i n l e s s  a h y p o t h e s i s was developed  b e h a v i o u r of water  steel  i s c o n t r o l l e d by the  at which c r e v i c e c o r r o s i o n of the s t a i n l e s s The c o r r o s i o n p r o d u c t s from the f l u i d deposit.  the cathode  steel  rate  occurs.  produced s e r v e to b i n d f e r r i c o x i d e  to the w a l l  In t u r n ,  suspended  or to the p r e v i o u s  fouling  the c o r r o s i o n r a t e i s c o n t r o l l e d by  reaction  0  2  + 2H 0 + 4 e -y 4(0H") 2  which o c c u r s on u n f o u l e d areas of the tube w a l l . Experiments designed to t e s t t h i s such as i n c r e a s i n g the u n f o u l e d cathode to a c c e l e r a t e a scavenger consistent  hypothesis,  area  i n an attempt  the c o r r o s i o n r a t e , and removing oxygen w i t h  i n o r d e r to d e c r e a s e the r a t e , gave w i t h the  results  hypothesis.  Two mathematical models of the f o u l i n g been developed i n l i n e w i t h the c o r r o s i o n  process  hypothesis.  A r i g o r o u s t e s t of these models would r e q u i r e more c o n trolled  experiments.  have  198  The r e s u l t s  of t h i s  c o r r o s i o n p l a y s an i m p o r t a n t stainless ferric  steel  r o l e i n the f o u l i n g  with f e r r i c oxide.  oxide f o u l i n g  i n h i b i t the f o u l i n g s t u d y might w e l l  process.  The r e s u l t s  have p r a c t i c a l b e n e f i t s  The t e c h n i q u e s 'in situ  F u r t h e r work w i t h  s i t u a t i o n to determine  i n v o l v i n g c o r r o s i o n products  deposits  1  possibility exists  of 304  s h o u l d i n c l u d e a more d e t a i l e d  of the l i n e a r f o u l i n g  tions  study i n d i c a t e t h a t c r e v i c e  of  how b e s t  to  from such a for fouling  situa-  iron.  developed f o r examining  s h o u l d a l s o be e x t e n d e d , t h a t many f o u l i n g  study  fouling  since  situations  the  c o u l d be  e l i m i n a t e d or c o n t r o l l e d by a j u d i c i o u s s e l e c t i o n of materials  of c o n s t r u c t i o n combined w i t h s e l e c t i v e removal  of a troublesome  foulant.  A w i d e r v a r i a t i o n , and more d e l i b e r a t e of wall  temperature s h o u l d be u n d e r t a k e n ,  more s a t i s f a c t o r y  as w e l l  study of p a r t i c l e s i z e e f f e c t s .  a d d i t i o n , the c o r r o s i o n h y p o t h e s i s  s h o u l d be  control, as a In  further  t e s t e d , f o r example by v a r y i n g the pH of the c i r c u l a t i n g suspension.  REFERENCES  T a b o r e k , J . , T. Knudsen, T. A o k i , and J . Pakn. Fouling - The Major Unsolved Problem i n Heat T r a n s f e r . Chem. Eng. P r o g r e s s , 68, F e b . , J u l y (1 9 7 2 ) . McCabe, W . L . and G . S . R o b i n s o n . p. 478 ( 1 9 2 4 ) .  I n d . Eng. Chem, 16,  Hasson, D. et al. Mechanism o f C a l c i u m Carbonate S c a l e D e p o s i t i o n on Heat T r a n s f e r S u r f a c e s . I n d . Eng. Chem. Fundamentals, 17, No. 1, pp. 5 9 - 6 5 , Feb. ( 1 9 6 8 ) . Hasson, D. and J . Z a h a v i . Mechanism o f C a l c i u m S u l p h a t e S c a l e D e p o s i t i o n on Heat T r a n s f e r S u r f a c e s . I n d . Eng. Chem. Fundamentals, 9^, No. 1 (1 9 7 0 ) . K e r n , D . Q . Heat Exchanger Design f o r F o u l i n g S e r v i c e . Chem. Eng. P r o g r e s s , ^ 2 , No. 7, pp. 5 1 - 5 6 , J u l y (1966). K e r n , D.Q. and R . E . S e a t o n . A Theoretical Analysis of Thermal S u r f a c e F o u l i n g . B r i t i s h Chemical E n g i n e e r i n g , 4 , pp. 258-262, May ( 1 9 5 9 ) . W a t k i n s o n , A . P . P a r t i c u l a t e F o u l i n g of S e n s i b l e Heat Exchangers. P h . D . T h e s i s - U n i v . of B r i t i s h Columbia ( 1 9 6 8 ) . P a r k i n s , W.E. S u r f a c e F i l m Formation i n R e a c t o r Systems. P r o c e e d i n g s o f the T r i p a r t i t e Conference on T r a n s p o r t o f M a t e r i a l s i n P r e s s u r i z e d - W a t e r N u c l e a r Systems. AECL - 1265, pp. 115-189, June 1961 .  199  200  9.  N i j s i n g , R. D i f f u s i o n a l and K i n e t i c Phenomena Associated with F o u l i n g . Euratom Report No. EUR 543e ( 1 9 6 4 ) .  10.  H a t c h e r , S . R . , B . A . F i n d l a y and J . L . Smee. Heat T r a n s f e r , I m p u r i t i e s and F o u l i n g i n O r g a n i c Coolants. AECL - 2642, May 1966.  11.  Charlesworth, Products sented at Chemical Systems,  12.  C h a r l e s w o r t h , D . H . F o u l i n g i n O r g a n i c - C o o l e d Systems, Atomic Energy of Canada L t d . , Report AECL 1761 , A p r i l 1 963.  13.  W a t k i n s o n , A . P . and N . E p s t e i n . P a r t i c u l a t e F o u l i n g of S e n s i b l e Heat E x c h a n g e r s . Paper p r e s e n t e d at 4th I n t e r n a t i o n a l Heat T r a n s f e r C o n f e r e n c e , P a r i s - V e r s a i l l e s , S e p t . 1970.  14.  M e t z n e r , A . B . and W . L . F r i e n d . T h e o r e t i c a l A n a l o g i e s Between Heat, Mass and Momentum T r a n s f e r and M o d i f i c a t i o n s f o r F l u i d s of High P r a n d t l or Schmidt Numbers. The Canadian J o u r n a l of Chemical E n g i n e e r i n g , pp. 235-240, December 1 958.  15.  T a b o r e k , J . and R . B . R i t t e r . Review o f F o u l i n g S t u d i e s by HTRI. Paper p r e s e n t e d at the AICHE 65th Annual M e e t i n g , Nov. ( 1 9 7 2 ) .  16.  Beal , S . K . T r a n s p o r t of P a r t i c l e s i n T u r b u l e n t Flow to Channel or P i p e W a l l s . B e t t i s Atomic Power L a b o r a t o r y , P i t t s b u r g , P a . Westinghouse E l e c t r i c C o r p o r a t i o n Report WAPD-TM-765 ( 1 9 6 8 ) .  17.  B e a l , S . K . P r e d i c t i o n o f Heat Exchanger F o u l i n g Rates - A Fundamental A p p r o a c h . Paper p r e s e n t e d at the AICHE 65th Annual M e e t i n g , Nov. ( 1 9 7 2 ) .  D . H . The D e p o s i t i o n of C o r r o s i o n i n B o i l i n g Water Systems. Paper p r e the 65th N a t i o n a l AICHE Meeting on E n g i n e e r i n g A s p e c t s of Reactor C o o l a n t C l e v e l a n d , O h i o , 5 May 1969.  201  18.  G a s p a r i n i , R . , C. D e l l a Rocca and E . l o a n n i l l i . A New Approach to the Study and P r e v e n t i o n of D e p o s i t s i n Modern Power S t a t i o n s . Combustion, 4 1 , No. 5, pp. 1 2 - 1 8 , Nov. ( 1 9 6 9 ) .  19.  K a b e l e , T . J . and J . W . B a r t l e t t . D e p o s i t i o n o f Iron C o r r o s i o n Products from an Aqueous Stream. Paper p r e s e n t e d at the 65th N a t i o n a l Meeting AICHE, C l e v e l a n d , O h i o , 4-7 May, 1969.  20.  M a n k i n a , N . N . I n v e s t i g a t i o n of C o n d i t i o n s of Format i o n of I r o n Oxide D e p o s i t s . Teploenergetika , 9 , No. 1 1 (1962) .  21.  M a r g u l o v a , 0. and 0 . 1 . M a r t y n o v a . B e h a v i o u r of Iron Oxides i n the Power P l a n t Steam-Water C y c l e and Methods of Removing them from the C y c l e . Thermal E n g i n e e r i n g , Vo. 14, No. 10, pp. 3 8 - 4 3 , 1967.  22.  M a r g u l o v a , T. Kh. and A . A . B e l y a e v . The Causes of I r o n Oxide D e p o s i t s i n T . P . 80 B o i l e r s and Measures f o r P r e v e n t i n g them. Thermal E n g i n e e r i n g , Vol . 1 1 , No. 9, pp. 5 5 - 6 2 , 1 964.  23.  Mayo Abad, 0. Thermal F o u l i n g S t u d i e s : Computations on Roughness E f f e c t s , M o d i f i c a t i o n s of a Test Loop and T e s t s on a P r o c e s s L i q u o r . MASc T h e s i s U n i v e r s i t y of B r i t i s h C o l u m b i a , Nov. ( 1 9 7 1 ) .  24.  Charlesworth, 1 970.  25.  Brown, L . C . and H. T h r e s h . T o o l s and Techniques i n P h y s i c a l M e t a l l u r g y , e d i t e d by F . Weinberg. Marcel Dekker I n c . ( 1 9 7 0 ) .  26.  Birks, L.S. Science  27.  van O l p h e n , H. and W. P a r r i s h . X - r a y and E l e c t r o n Methods of A n a l y s i s . P r o g r e s s i n A n a l y t i c a l C h e m i s t r y , V o l . I , Plenum Press ( 1 9 6 8 ) .  D.H.  Personal  Communication,  10 A p r i l ,  E l e c t r o n Probe M i c r o a n a l y s i s . Inter P u b l i s h e r s , second e d i t i o n ( 1 9 7 1 ) .  202  28.  C a s t a i n g , R . , P. Deschamps and J . P h i l i b e r t . X-ray O p t i c s and M i c r o a n a l y s i s . Hermann ( P a r i s ) , 1 966.  29.  B e a l , S . K . A g g l o m e r a t i o n of P a r t i c l e s i n T u r b u l e n t Flow. Westinghouse Atomic Power D i v i s i o n R e p o r t , WAPD-TM-904, September 1969.  30.  L i n , C . S . , Rl'W. Moulton and G . L . Putnam. Eng. Chem, V o l . 4 5 , p. 636 ( 1 9 5 3 ) .  31.  J e a n s , J . An I n t r o d u c t i o n to the K i n e t i c Theory o f Gases, Cambridge U n i v e r s i t y Press ( 1 9 4 0 ) .  32.  L a u f e r , J . The S t r u c t u r e of T u r b u l e n c e i n F u l l y Developed P i p e F l o w . NACA Report 1174 ( 1 9 5 4 ) .  33.  McNab, G . S . Thermophoresis i n L i q u i d s . MACs T h e s i s U n i v e r s i t y o f B r i t i s h Columbia ( 1 9 7 2 ) .  34.  Adamson, A.W. P h y s i c a l C h e m i s t r y o f S u r f a c e s . s c i e n c e P u b l i s h e r s , 2nd e d i t i o n ( 1 9 6 7 ) .  35.  P e r r y , R . H . ed. Chemical E n g i n e e r s Handbook. McGrawH i l l Book C o . , 3rd E d . (1 950) , p. 1020 and p . 67 5.  36.  Mahato, B . K . Mass T r a n s f e r A n a l y s i s of Iron C o r r o s i o n Process. P h . D . T h e s i s - U n i v e r s i t y of New B r u n s w i c k , March ( 1 9 6 7 ) .  37.  F o n t a n a , M . G . and W.D. Greene. Corrosion Engineering, M c G r a w - H i l l Book Co. ( 1 9 6 7 ) .  38.  Vijh,  39.  Langmuir, J . p. 1361  40.  Keng, E . Y . H and C. O r r . 768 ( 1 9 6 2 ) .  Industrial  Inter-  A . K . A P o s s i b l e I n t e r p r e t a t i o n of the I n f l u e n c e of C h l o r i d e Ions on the Anodic B e h a v i o u r of Some M e t a l s . C o r r o s i o n S c i e n c e , V o l . 1 1 , pp. 161-167 ( 1 9 7 1 ) . J o u r n a l American Chem. S o c , V o l . 4 0 , (1918). J . C o l l o i d S c i e n c e , 17,  NOMENCLATURE  Typical A, Ax, A i ' , A heat t r a n s f e r parameter ferric  2  Units  constants area  of equation  (4.4)  oxide concentration  ft  2  hr"  2  ppm  constant constant coefficient inversely proportion to v e l o c i t y p a r t i c l e concentration  ., _i tt/sec  close  to w a l l function  f  PP of f o u l i n g  concentration  p a r t i c l e concentration  ppm  i n bulk  fluid  PP"  p a r t i c l e concentration  at w a l l  tube d i a m e t e r p article d Brownian d ii af m f uestieorn  m  1  ppm ft  coefficient  203  f t f /t s e c 2  204 Typical energy o f adhesion to metal  particle  energy of adhesion to d e p o s i t  particle  base of n a t u r a l activation  logarithms  lbs-ft"  1  lbs-ff  1  dimensionless  Energy  fanning f r i c t i o n  Units  BTU/lb-mole factor  dimensionless  rate  constant  hr"  pipe  diameter  ft  dimensionless  pipe  heat t r a n s f e r  coefficient  mass f l u x o f  diameter  1  dimensionless BTU f t  particles  - 2  hr"  lbs f t "  thermal  conductivity  deposit  thermal  conductivity  particle  thermal  conductivity  fluid  BTU f t "  2  ft  2  hr"  2  hr"  °F~  1  1  °F"  1  constants deposition  coefficient  Boltzman c o n s t a n t 1.38  x 10'  1  sec"  gm/cm /molecule°K-sec 2  2  mass t r a n s f e r  coefficient  1  ft  sec"  1  205  N  p a r t i c l e mass f l u x  N  0  p a r t i c l e mass f l u x  in wall  Typical  Units  lb f t "  hr"  region  2  "  N  p a r t i c l e mass f l u x d e p o s i t i n g on w a l l  N.  c o n c e n t r a t i o n o f type i p a r t i c l e s  ppm  Nj  t o t a l number o f d e p o s i t e d per u n i t area  ft-  N„  number o f d e p o s i t e d p a r t i c l e s per u n i t area h e l d by p h y s i c a l  Ng  number o f d e p o s i t e d p a r t i c l e s per u n i t area h e l d by c h e m i c a l f o r c e s  p  sticking probability  P p  P  nd p  1  „  particles  2  „  forces  „ dimensionless  p r o b a b i l i t y of p a r t i c l e d e p o s i t i o n on u n f o u l e d tube  „  p r o b a b i l i t y of p a r t i c l e d e p o s i t i o n on p r e v i o u s d e p o s i t  „  q'  heat f l u x  BTU f t . -  q  heat flow  BTU h r "  1  Q  liquid  lbs-hr"  1  R  total  thermal  resistance  Ro  t o t a l thermal time zero  resistance  evaporated ft at  2  2  hr-  1  hr °F B T U " „  1  206  Typical fouling  resistance  asymptotic f o u l i n g  ft  II  dimensi on!ess  universal  gas  constant  bonding r e s i s t a n c e o f deposi t  BTU(lb-mole-°R)fouling  probability  t o t a l number o f p o t e n t i a l ing s i t e s per u n i t area  Ibs  ft"  foul-  distance  II  ft"  2  ft  dimension!ess stopping distance time wall fluid  hours temperature bulk  absolute  °F  temperature  temperature  temperature temperature fluid  °F °R °F  difference  temperature  2  dimensi o n l e s s  s t i c k i n g p r o b a b i l i t y o f type i particle  stopping  hr °F B T U "  resistance  exponent  sticking  2  Units  at time zero  °F °F  1  207  Typical T  T  outer wall time zero g  temperature  heat t r a n s f e r  at  surface  temperature  heat t r a n s f e r  coefficient  U  overall  U.  v e l o c i t y of a p a r t i c l e toward the s u r f a c e i n c l o s e p r o x i m i t y to the s u r f a c e  U  number o f u n f o u l e d s i t e s on tube s u r f a c e  Uuj  bulk  U  dimensionless v e l o c i t y  +  u  velocity  local  fluid  thermophoretic  °F  BTU-ff  2  -°F" -hr-  ft"  2  velocity velocity  ft-sec  - 1  ft/sec  rate  Ibm-hr  x  deposit  thickness  ft  x  distance  co-ordinate  ft  y  distance  co-ordinate  ft  y U /f72/v b  1  = u/U^/f/2  mass flow  +  1  ft-sec~  W  y  Units  - 1  dimensionless  DIMENSIONLESS GROUPS Nu  N u s s e l t number  hd/k  Pr  P r a n d t l number  Cpy/k  1  208  Typical Re  Reynolds number  Sc  Schmidt number  Units  d U^p/y v/D  GREEK LETTERS e  eddy d i f f u s i v i t y of momentum  ft  sec  2  - 1  difference  A <J>  deposition  <f)  release rate  p  density  0  time o f i n d u c t i o n  v  kinematic v i s c o s i t y  u  viscosity  lb f t  - 1  T  shear s t r e s s  lb f t  - 1  D  D  rate  ft -°F BTU 2  - 1  " lb  ft  - 3  hrs ft  hr  2  - 1  hr" hr  1  - 2  APPENDIX I  ELECTRICAL  CONNECTIONS  (DRAWING  FROM  AND  PRESSURE  WATKINSON  (7))  TAPS  209  PRESSURE  TAPS  Stainless steel Dimensions - inches Two required  TERMINAL BARS Brass Dimensions - inches Two required  APPENDIX I I  COMPUTER PROGRAMS  PROGRAM PAR 210 C C 1 101  103 104  102  105  106  107  108  109  110  C C  PROGRAM 'PAR* TO C A L C U L A T E THE P A R A M E T E R S OF A RUN AND THE HE A T B A L A N C E DATA B E T A / . 6 0 2 / , D 2 / . 3 7 5 / , C l / . 8 0 5 6 / , C 2 / . 9 7 i 8 2 I , C P / 1 . 0 0 2 / READ(5, 10l,END=lll)R,V,A FORMAT(F3.0,IX,F5.1,IX,F5.1 ) WRITE(6,103)R WRITE!6,104)V,A FORMAT!IHl,T7,7(•*'),'RUN NO*,T3.0,7!'*')) FORMAT( 1 H 0 , T 7 , • V O L T S : • , F 5 . 2 , T 2 5 , ' A M P S : ' F 5 . 0 ) READ(5,102)ZIN,Z0UT,DP0R DPOHG = - 0 . 0 7 6 1 7 6 8 + 0 . 0 7 4 4 2 9 * D P O R + 0 . 0 0 0 4 6 7 0 6 9 * D P G R * D P O R F0RMAT(F4.2,IX,F4.2,1X,F5.2) TIN=26.8988+(51.3 55-1.76738*71N)*ZIN TOUT=24.7309+15 3.2881-2.103*ZUUT)*Z0UT TBULK=(TIN + TOUT)/2.0 TQR= T IN Q=3.413*V*A QF=Q/.1742 WRITE(6,105)0,QF FORMAT(IHO,T7,'HEAT FLOW*, F 8 . 1 , T ? 7 , • B T U / H R ' / 1T7,'HEAT FLUX',F9.0,T2 7,•BTU/SOFT-HR') CALL PROP(RHO,VISK,THKtTOR) ALPHA=1.0-BETA**4 RE0RC=D2/12/VISK*RH0/6.7197/1£-4*5QRT!64.348*70.727* 162.43*DP0HG*RH0/ALPHA) RE0RC=C1*RE0RC**C2 W=D2*RE0RC*3.1416*VISK*6.7197/(12E4*RH0*4) WRITE(6,106)BETA,TOR,RHO,TOUT FORMAT(IHO,T7,'BETA•,F5.3,T25,*TUK=TINLET•,F5.I,T43, I'DEG F',/T7,'DENSITY:•,F5.3,T21,'GRAM/CC'/ 2 T 2 5 , « T OUTLET',F5.1,T43,'DEG F•) W R I T E ( 6 , 1 0 7 )W F O R M A T ! I H O , T 7 , ' F L O W R A T E ' , F 7 . 4 , T 2 5 , * L B S . M / S E C *) CALL PROP(RHO,VISK»TKK,TBULK) UBULK=W/(RH0*62.43*6.425E-4) RE=UBULK*0.343*3600./{12.*VISK*0.03875) PR=2.42*CP*VISK*RHO/THK WRITE(6,108)TBULK,VISK FORMAT!IHO,T7,'AVG TEMP:•,F5.1,T25,•OEG F ' , 1 / T 7 , ' K I N E M A T I C ,/T 7, • VI S C O S I T Y : ' , F5 . 3 , T25 , • SG .C M/SEC ' ) WRITE(6,109)UBULK,RE,PR FORMAT! I H O , T 7 , ' F L U I D V E L O C I T Y ' , F 6 . 3 , T 3 0 , ' F T / S E C , 1/T7,'REYNOLDS NO•,F9.1,/T7,•PRANDTL NO',F7.2) HTTR=W*3600.*(T0UT-TIN)*CP HLOSS=Q-HTTR PERL=HL0SS/Q*100. WRITE(6,110)Q,HTTR,HLOSS,PERL FORMAT(IHO,T7,'HEAT SUPP F10.1,T30,•BTU/HR',/ IT7,'HEAT TRANS',F10.1,T30,'BTU/HR*,/ 2T7,'HEAT LOST •,F10.1,T30,•BTU/HR•,/ 3 T 7 , • P E R C E N T HEAT L 0 S T ' , F 8 . 2 ) P R E D I C T E D C L E A N WALL R E S I S T A N C E S FROM T H E S I E D E R - T A T E EQUATION XNU=0.023*!RE**0.8)*!PR**0.33) CALL PROP(RHO,VISK,THK,TBULK)  211  120 121  111  XH=XNU*THK*12.0/0.343 TWALL=QFLUX/XH+TBULK A=VISK C=THK CALL PR0P(RH0,VlSK,THK,TWALL) B=VISK X N U = X N U * l { A / B ) * * 0 . 14) RF I L M = 1 0 0 0 . 0 / ( X N U * C * l 2 . 0 / 0 . 3 4 3) RWALL=(0.016/12.0/(8.45+0.00455*TWALL))*1000. RTDTAL=RFILM+RWALL XHTOT=1000.0/RTOTAL WRlTE(6,120JXNU F0RMAT(//T7,'NUSSELT N 0 ' , F 9 . l ) WRIf E ( 6 1 1 2 1 ) K F I L M | R W A L L » R T O T A L FORMAT(T7,•RFILM',F9.3,/T7,•RW4LL•,F9.3,/T7,»RTOTAL•» 1 F 9 . 3 , T 2 7 , • SQ-FT-DEG F / B T U ' ) GO TO 1 STOP END SUBROUTINE PROP(RHO,V I S K , F H K , T ) RH0=0.98d-(((T-32.)/1.8)-50.)*0.0006 T=(T-32.)/1.8 V ISC=10.**({1.3272*(20.-T)-0.001053*(T-20.)**2) 1/(T+105)) VISK=VISC/RHO T=T*1.8+32.0 THK=0. 2 9 6 9 3 8 + 0 . 8 3 4 3 5 5 c - 3 * T - 0 . 1 8 0 2 6 5 E - 5 * T * T RETURN END  PROGRAM STOMV C C C C  3 2  1  632 623 625 C C  212  THE FOLLOWING PROGRAM C O N V E R T S SOLARTRON READINGS TO M I L L I V O L T S , C H E C K S FOR KEYPUNCHING ERRORS AND P L A C E S INTO A STANDARD FORMAT FOR P R O C E S S I N G CODED BY RMH 19 J A N 1 9 7 1 LL = 0 IUL=110OOO RUNLAS=0.0 TZERG=0.0 K=0 DIMENSION I R E A D ( 2 0 ) , Z S T O R E I 2 0 ) , Z ( 2 0 ) , X ( 2 0 ) NL INE = 0 R E A D ( 5 , 1 0 1 , E N D = 1 1 1 ) T I M E » ( I READ<I ) , I = 1,14) IF LAG = 0 Y=TI ME MY = Y YY = MY TIME=YY+(Y-YY)*100.0/60.0 IF(K.EQ.0)TZER0=TIME I F ( T I M E . G T . 9 9 . 9 8 ) G 0 TO 3 I F ( T I M E . L T . T Z E R O . A N D . K . N E . O J T I ME = T I M E + 2 4 . 0 0 RUNTIM=TI ME-TZERO IF(RUNTIM.LT.RUNLAS.AND.K.NE.0)RUNTIM=RUNTlM+24.00 J=0 RLTIME=TIME IF(RLTIME.GT.24.00)RLTIME=RLTIME-24.00 RUNLAS=RUNTIM K= K + 1 NLINE=NLINE + 1 00 6231=1,14 I F ( I R E A D I I ) . G E . L L . A N D . I R E A D ( I ) . L T - I U D G O TC 6 3 2 J = J+1 IFLAG=I GO TO 6 2 3 ZSTORE(I ) = IREAD(I) CONTINUE DO 6 2 5 1 = 1 , 2 0 Z( I ) = Z S T O R E 11 ) / 2 0 0 0 . THE FOLLOWING S T A T E M E N T S P L A C E DATA I N S T D . FORMAT CHECK NEXT 2 0 L I N E S B E F O R E EACH NEW DATA SET X( 1) = Y X(2)=RUNTIM X(3)=Z(1) X( 4 ) = Z ( 2 ) X(5)=0.0 X(6)=Z(3) X( 7) = Z ( 4 ) X(8)=Z(5) X(9)=Z(6) X(10)=Z(7) X(11)=Z(8) X(12)=Z(10) X( 1 3 ) = Z ( 1 1 ) X(14)=Z(12) X(15)=Z(13) XI 1 6 ) = 0 . 0  X(17)=0.0 X(18J=0.0 X!19)=Z!9) X(20)=Z(14)  150 101 102 103  104  111  2 1 3 IF(NLINE.E0.57)NLINE=1 I F ( N L I N E . N 6 - 1 ) G D TO 1 5 0 W R I T E ( 6 , 103) WRITE!6,104) WRITE(6,102)X,J,IFLAG WR I T E ( 7 , 1 0 2 ) X , J , I F L A G FGRMAT!F5.3,14I5) F O R M A T ! 2 X , F 5 . 2 , F 6 . 2 , 3 X , 1 8 F 5 . 2 , 1 3 , 2 X , I 3) FORMAT! • 1 S T 3, ' R E A L S T i l , 'RUM', T 1 9 , 'MV » T 2 4» *MV , T 2 8 , l ' M I L L I V O L T R E A D I N G S OF T H E R M O C O U P L E S ON WALL OF T E S T SECTION 2',T88,'COOL',T93,'INSL' ,T98,»ANH*,T103,•DELT»,T109,•FLAGS•) FORMAT(T3,•TIME',T11, «TI ME•,T1h,•IN•,T23,'OUT•,T28, 2'T21t>' ,T3 3, « T 2 3 5 » , T 3 8 , » T 2 5 5 ' , T 4 3 , • T 2 7 5 ' , T 4 8 , « T 2 9 5 • , 3T53,,T315,«T58,'T335',T63,'T355*,T60,•T375•,T73,»T395• , 4 1 7 8 , ^ 4 1 5 * ^ 8 3, • T 4 2 8 1 t T 8 9 , • M V , T 9 4 , » M V , T 9 9 , • M V , T 1 0 4 , , M V , 5T108,'NO',T11 3,'LINE*,/) GO TO 1 STOP ENO  PROGRAM FOUL C C C  C C 1 417 101  418 103 104  102  105  106  107  108  109  214  HEAT T R A N S F E R . F O U L I N G COOED BY 0 . MAYO 2 3 - 1 0 - 1 9 7 0 U P D A T E D BY R.M. H O P K I N S S E P T 1971 DIMENS I ON Z ( 1 6 ) , I R E A D ( l 6 ) , M ! l 6 ) , r ! l 2 ) , T C ! l 2 ) , X ! 1 2 ) , Y ( 1 2 ) , T 8 ( 1 2 ) , * 10T(700),TIM(700),TCON(12),COR(12),W(700>,FCUL!700) DIMENSION T Z E R O ( 1 2 ) » D T ( 1 2 ) , R F ( 12) PROGRAM 'PAR* TO C A L C U L A T E THE P A R A M E T E R S OF A RUN AND THE H E A T B A L A N C E DATA B E T A / . 3 0 1 / , D 2 / . 1 8 7 5 / , C l / . 8 0 5 6 / , C 2 / . 9 7 1 8 2 / , C P / 1 . 0 0 2 / READ(5,101,END=10C)R,V,A READ(5,417)CONC FORMAT(F6.0) F0RMATIF3.0,IX,F5.1,IX,F5.1) WHITE!6,103)R W R I T E ( 6 , 4 1 8 JCONC F O R M A T ! 1 H 0 , T 7 , " F E R R I C O X I D E CONC ! P P M ) » , F 8 . 0 ) WRITE!6,104)V,A FORMAT( 1 H I , T 7 , 7 ( • * • ) , ' R U N N O ' , F 3 . 0 , 7 ( * * • ) ) FORMAT(1H0,T7,'VOLTS:•,F5.2,T2 5,»AMPS:•F5.0) READ(5,102)ZIN,ZOUT,DPOR DPOHG= 0 . 0 7 6 1 7 6 8 + 0 . 0 7 4 4 2 9 * D P Q R + 0 . 0 0 0 4 6 7 0 6 9 * D P O R * DPOR F Q R M A T ( F 4 . 2 , 1 X , F 4 . 2 , I X , F 5.2) TIN=26.8988+(51.355-1.76738*ZIN)*ZIN T 0 U T = 2 4 . 7309+1 5 3 . 2 8 8 1 - 2 . 103*ZC)UT) *ZOUT TBULK=(TIN+T0UT)/2.0 TOR=TIN Q=3.413*V*A QF=Q/.1742 WRITEI6,105)0,OF F O R M A T ! 1 H 0 , T 7 , ' H E A T FLOW S U P P L I E D » , F 8 . 1 , T 3 7 , ' B T U / H R » / 1T7,'HEAT FLUX S U P P L I E D ' » F 9 . 0 , T 3 7 , • B T U / S Q F T - H R ' ) CALL PROP(RHO,VISK,THK,TOR) ALPHA=1.0-BETA**4 R E 0 R C = 0 2 / 1 2 / V I S K * R H 0 / 6 . 7 1 9 7 / l E - 4 * S y R T ( 6 4 . 3 4 8 * 7 0 . 72 7* 162.43*DP0HG*RH0/ALPHA) RE0RC=C1*RE0RC**C2 WW=D2*RE0RC*3.1416*VISK*6.7197/(12E4*RH0*4) WRITE(6,106)BETA,T0R,RH0,T0Ur FORMAT!IH0,T7,•BETA'»F5.3»T25»* TOR=TINLET',F5.1,T43, 1 * DEG F ' , / T 7 , ' U E N S I T Y : • , F 5 . 3 , T 2 1 , ' G R A M / C C / 2T25,'T OUTLET',F'5.I,T43,'DEG F') WRITE!6,107)WW F0RMAT!1H0,T7,'FLOW R A T E • , F 7 . 4 , T 2 5 , • L B S . M / S E C ' ) CALL PROP(RHO,VISK,THK,TbULK) UBULK=WW/(RH0*62.43*6.425E-4) RE=UBULK*0.343*3600./!12.*VISK*0.03875) PR=CP*VISK*RH0/THK*2.42 WRITE(6,108)T8ULK,VISK F O R M A T ( 1 H 0 , T 7 , ' A V G TEMP:• , F 5 . I , T 2 5 , • D E G F • , 1/T7,•KINEMATIC',/T7,'VISCOSITY:',F5.3,T25,•SO.CM/SEC•) WRITE(6,109)UBULK,RE,PR FORMAT ! I H 0 , T 7 , ' F L U I D V E L O C I T Y • , F 6 . 3 , T 3 0 , • F T / S E C • , 1/T7,'REYNOLDS N O • , F 9 . I , / T 7 , • P R A N D T L N O f , F 7 . 2 ) HTTR=WW*3600.*!TOUT-TIN)*CP HLOSS=Q-HTTR  110  C C  PERL=HL0SS/Q*100. QF T = H TTR /.. 1 7 4 2 WR I T E ( 6 , 1 1 0 ) Q , H T T R , H L O S S , P E R L , Q F T F O R M A T ( 1 H 0 , T 7 , " H E A T SUPP ' , F 1 0 . 1 , T 3 0 , • B T U / H R ' , / 1T7,'HEAT TRANS',F10.1,T30,'BTU/HR',/ 2 T 7 , 'HEAT L O S T ' , F 1 0 . 1 , T 3 0 ,'BTU/HR',/ 3 T 7 , ' P E R C E N T HEAT L 0 S T ' , F 8 . 2 , / 4 T 7 , 'HEAT F L U X T R A N S . B T U / S Q F T - l IR' , F 9 .0 ) P R E D I C T E D C L E A N WALL R E S I S T A N C E S F R O " THE  S I E D E R - T A T E EwUATION XNU=0.02 3 * ( R E * * 0 . 8 ) * ( P R * * 0 . 3 3 ) CALL PROP(RHO,VISK,THK,TBULK) XH=XNU*THK*12.0/0.343 TWALL=QFT/XH+TBULK A=VISK C = THK CALL PROP(RHO,VISK,THK,TWALL) B=VISK XNU=XNU*(IA/B)**0.14) RF I LM= 1 0 0 0 . 0 / ( X N U * C * 1 2 . 0 / 0 . 3 4 3 ) RWALL=(0.016/12.0/(8.45+0.004 5 5 * 1 W A L L ) ) * 1 0 0 0 . RTQTAL=RFILM+RWALL XHT0T=1000.0/RT0TAL WRITE(6,120)XNU 120 FORMAT l / / T 7 , ' N U S S E L T N 0 ' , F 9 . i ) WRITE(6,121 )RFILM,RWALL,RTOTAL 121 FORMAT(T7,'RFILM',F9.3,/T7,'RWALL',F9.3,/T7,'RTOTAL', 1 F 9 . 3 , T 2 7 , * SQFT-HR-DEG F / E T U * ) WRITE(6,150) WRITE(7,151) DO 8 3 0 1=1,12 DT( I ) = 0.0 R F ( I )=0.0 TZEROlI)=0.0 830 CONTINUE C DATA T R A N S F O R M A T I O N AND L I N E S E L I M I N A T I O N NLINE=0 READ(5,171)M JP=0 ZERO=0.0 2 READ(4,U2,ENU=10)RLTIM,(Z(I),1=1,16) JP=JP+1 TIME=Z(1) 112 F0RMAT(2X,F5.2,F6.2,3X,15F5.2) NLINE=NLINE+1 C TEMPERATURE EVALUATIONS TIN=26.8988+(51.355-1.767 3 8 * Z ( 2 ) ) * Z ( 2 ) TUUT=24.7309+(53.2881-2.103*Z(3))*Z(3) CALL TEMP(Z,T) DELTA=TOUT-TIN C C O R R E C T I O N FOR OROP THROUGH T U 8 E WALL DO 5 1=1,12 TCON( I ) = 8 . 4 5 + 0 . 0 0 4 5 5 * T ( I ) COR(I)=QDIS*0.0411755/{2.*3.1416*I.9488*TC0N(I)) TC(I)=T(IJ-CORlI) IF(M(1+3).NE.O)TC(I)=0. IF(JP.EQ.1)TZER0(I)=T(I) DT( I ) = T ( I ) - T Z E R 0 ( I ) IF(M(1+3).NE.O)DT(I)=0.0 I F ( D T ( I ) . L E . 0 . 0 ) G 0 TO 87  R F U )=L)T( I ) / O F T * 1 0 0 0 0 0 . GO TO 5 R F ( I )=0.0 CONTINUE M1 = 0 X0= 1.27 00 6 1=1,10 X0=X0+5.08 X ( I ) = XO T B U ) = DELTA/57.7 8 5 * X ( I ) + T I N M1=M1+M(1+4) Y( I ) = T C ( 1 + 1 ) - T B ( I ) 6 CONTINUE TM=0 SY = 0 . SX1=0. SX2=0. SX1Y=0. SX2Y=0. SXIX2=0. SSX1=0. SSX2=0. DO 7 1=1,10 I F ( M ( I + 4 J . N E . 0 ) GO TO 7 TM=TM+ TC ( I + l ) SY=SY+Y(I) SX1=SX1+X(I) SSX1=SSX1+X(I)*X(I) SSX2= S S X 2 + X ( I ) * * 4 SX1X2=SX1X2+X(I)**3 SX1Y=SXIY+X(I)*Y(I) SX2Y=SX2Y+X(I)*X(I)*Y(I) 7 CONTINUE FN=10-M1 TM=TM/FN IF(JP.EQ.1)ZER0=TM F0UL(NLINE)={TM-ZER0)/QFT*100000. F0UX = F 0 U H N L 1 N E ) SX2=SSX1 B = S S X l - { ( S X 1 * * 2 )/FN) C=SX1X2-SX1*SX2/FN D=SX1Y-SXI*SY/FN F=SSX2-(SX2**2)/FN G=SX2Y-SX2*SY/FN 82=(D*C-G*B)/(C*C-F*6) Bl=(D-B2*C)/B B0=(SY-B1*SX1-B2*SX2)/FN A A=B 2 BB=B 1 CC = BO VV1=2*AA*52.07+BB VV2=2*AA*6.35+BB DISC=BB**2-4.*AA*CC I F { D I S C . G T . O ) GO TO 8 RMDIS=SQRT(-1.*DISC) AREA1=2./RMDIS*(ATAN(VV1/RMDIS)) AREA2=2./RMDIS*(ATAN(VV2/RMDIS)) GO TO 9 8  CONTINUE RDIS=SQRTIDISC)  EXTERNAL AUX CALL DPLQFt X, Y , YF , W, E1 , E2 , P,0 .0, N, M , N I , ND, t P , AUX ) 217 WRITE!6,100) WRITE(6,20) 20 FORMAT(• ESTIMATES OF ROOT MCAN SQUARE STATISTICAL ERROR IN THE 1RAMETER • ) WRITE(6,103){E1(I),I=1,M) WRITE(6,30) 30 FORMAT!• ESTIMATES OF ROOT MEAN SwUARE TOTAL ERROR IN THE PARAME IRS * ) WRITE(6,103)!E?(I),I=1,M) A=EXP(Pl1))*1000 B=EXP!P(2))*1000 C=EXP(P(3)) WRITE!6,60) 60 FORMAT{ • ESTIMATES UF PARAMETERS RO , RINF AND B' ) WRITEl6,103)A,B,C WRITE(6,40) 40 FORMAT(T6,'TIME»,T20,'CALC. RESISTANCE*,T4G,'FITTED VALUE•,/T6,•I 1URS',T25,'((SQFT-HR-OEGF/BTU)X1000)',/) DO 50 1=1,N Y(I)=Y(I)*1000 YF(I)=YF(I)*1000 50 WRITE!6,102)X(I),Y(I),YF(I) WRITE(6,100) 100 FORMAT(1H1) 102 FORMAT!F10.2,2!10X,F10.4)) 103 FORMAT(3(F10.5,10X)) RETURN END FUNCTION AUX(P,D,X,L) DIMENSION P(3),D(3) D(1)=EXP(P(1)) D(2)=-EXP(P!2))*EXP!-EXP!P(3))*X) D(3)=D!2)*(-EXP(PI3)) )*X AUX=D(l)+0!2) RETURN END SUBROUTINE TEMP(Z,T) DIMENSION Z(16),T(12) DO 6201=1,12 T(I)=-0.59362*Z(l+3)*Z<I+3)+43.551*Z(I+3)+36.5808 620 CONTINUE RETURN END SUBROUTINE PFIT(Y,X,N) C PROGRAM TO FINO THE BEST FIT OF AN EXPONENTIAL CURVE FOR THE C FOULING TOTAL RESISTANCE VS. TIME DATA C N=NUMBER OF POINTS,NI=NUMBER OF ITERATIONS,EP=ERROR PERM ITED C THE EXPONENTIAL EQ. IS Y= B( 1- EXP( -C*X )) C A B £ C ARE SUBSTITUTED BY B = E X P ( P ( l ) ) , C=EXP(P(2)) DIMENS ION X( 700),Y(700),YF(700),W1700),El(2),E2(2 ) ,P(2) OATA M,NI,EP/2,20,0.001/ P(1)=1.79 P(2)=0.0 EXTERNAL PAUX CALL DPLQF(X,Y,YF,W,E1,E2,P,0.0,N,M,NI,ND,EP,PAUX) WRITE(6,100) WRITE(6,20) 20 FORMAT(• ESTIMATES CF ROOT MEAN SOUARE STATISTICAL ERROR IN THE P  1RAMETER') 218 W R I T E ( 6 , 1 0 3 M E i ( I ) , I = l,M) WRITE(6,30) 30 FORMA T( • E S T I M A T E S OF ROOT MEAN SQUARE T O T A L ERROR IN T H E PARAME1 IRS' ) WRITE(6,103)(E2(I),1=1,M) A = 0. 0 B= EXP(P(D) C=EXP(P(2)) WRITE(6,60) 60 FORMAT ( ' E S T I M A T E OF RO,RINF,A.\D B IN RF=R INF ( ( I . - EX P (-B*T I ME ) • WRITE16,103 )A,B,C WRITE(6,40) 40 F 0 R M A T ( T 6 , ' T I M E ' , T 2 0 , ' C A L C . RE SI S T A N C E • , T 4 C , » F I T T E D V A L U E ' , / T 6 , M 1URS',T22,'((SdFT-HR-DEGF/BTU)X100,000)•,/) DO 50 1=1,N 50 W R I T E ( 6 , 1 0 2 ) X ( I ) , Y ( I ) , Y F ( I ) WRITE(6,100) 100 F O R M A T ( I H 1 ) 102 F O R M A T ( F 1 0 . 2 , 2 ( 1 0 X , F 1 0 . 2 ) ) 103 F O R M A T ( 2 X , 3 ( G 1 0 . 5 , 1 0 X ) ) RETURN END FUNCTION PAUX(P,D,X,L) DIMENSION P ( 2 ) , D ( 2 ) D(1)=EXP(P(1))*(1.0-EXP(-(EXP(P(2))*X))) D(2)=EXP{P(l))*EXP(P{2))*X*EXP(-EXP(P(2))*X) PAUX=D(1) RETURN END  VV3=AHSHVV1-RDIS)/(VV1+RDIS)) VV4=ABS{(VV2-RDIS)/(VV2 + KDIS)) AREA1=1/RDIS*AL0G<VV3) 219 AR EA 2 = 1 / R D I S * A L O G ! V V 4 ) 9 AREA=AREAL-AREA2 QW=QFT*45.72/57.785 DTM=57.785/AREA*(TB(lOJ-TB(L))/(DELTA) H=QW/DTM R=1000/H TI M( N L I N E ) = T I M E I F I N L I N E . E Q . l ) W ( N L INE)=1 IF(NLINE.GT.l)W(NL.INE) = ( T I M ( N L I N E ) - T I M ( N L I N E - l ) ) / . 6 W R I T E ! 6 , 1 1 3 ) ( T C ( I ) ,1 = 1 , 1 2 ) , T I N , T O U T , T M , D E L T A , H , R , T I M E W R I T E ( 7 , 1 1 4 ) ( R F ( I ) , 1 = 1 , 1 2 ) , T I N , TOUT,FOUX,DELTA,H,R,TIME RT0T(NLINE)=1/H GO TO 2 10 WRITE(6,73) 73 FORMAT('1 * ) CALL PFITIFOUL,TIM,NLINE) CALL BFITIRTOT,TIM,NLINE) GO TO 100 150 FORMAT! • 1 « , T 3 , • L O C A L I Z E D WALL T E M P E R A T U R E S (DEG . F ) • 1,/T3,'T215',T10,'T2 35',T17,'T2 5 5 » , T 2 4 , ' T 2 7 5 ' , 2T31,»T295«,T38,'T315',T45,'T335',T52,'T355',T59,•T375*,T66, 3 ' T 3 9 5 « , T 7 3 , • T 4 1 5 ' , T 8 0 , • T42 8 ' , T 8 8 , ' T I N * , T 9 4 » ' TOUT • , T 1 0 2 , 2T88,'TIN',T94,'TOUT',T102,'TM•,TI00,•DELTA',TII6,'H», 3 T 1 2 3 , ' R 1 , T 1 2 8 , * T I M E , , / 1 6 ( 2 X , * DEG.F * ) , T 1 2 1 , • X 1000',T128,'HOURS• 151 FORMAT!•1«,T3,•LOCALIZED FOULING RESISTANCE (SQFT-HR-OFGF/BTU) U T 5 0 , ' X 1 0 0 , 0 0 0 ' , / T 3 , • T 2 1 5 ' , T 1 0 , » T 2 3 5 ' , T 1 7 , • T 2 5 5 • , T24 , • T 2 7 5 * , 2T31,'T295',T38,'T315',T45,*T335',T52,'T355',T59,'T375' ,T66, 3'T395«,T73,'T415',T80,•T42 8',T88,»TIN',T94,'TOUT•,T102, 4'RFM » , T 1 0 8 , ' D E L T A ' , T 1 1 6 , « H ' , T 1 2 0 , ' R T 0 T » , T 1 2 8 , • T I M E ' , / T 8 5 , 5 ( 2 X , 'DEG.F * , 2 X , ' D E G . F ' , 9 X , ' D E G . F • ) , T 1 2 0 , • X 1 0 0 0 • , T 1 2 8 , • H O U R S ' , / 171 F O R M A T ( 1 2 1 1 ) 113 FORMAT(15F7.1,F6.1,F7.1,F7.4,F7.2) 114 FORMAT(12F7.2,2F7.1,F7.2,F6.1,F7.1,F7.4,F7.2) 100 STOP C END S U B R O U T I N E PROP(RHO,V I S K , T H K , T ) RH0=0.988-(({T-32.)/1.8)-50.)*0.0006 T=(T-32.)/1.0 V1SC=10.**((1.32 72*(20.-T)-0.0C1053*(T-20.)**2) l/IT+105)) VISK=VISC/RH0 T = T*1.8 + 32.0 THK=0.296938+0.834355E-3*T-0.180265E-5*T*T RETURN END SUBROUTINE B F I T ( Y , X , N ) C PROGRAM TO F I N D THE B E S T F I T OF AN E X P O N E N T I A L CURVE FOR THE C F O U L I N G T O T A L R E S I S T A N C E V S . TIME DATA C N=NUMBER OF POI N T S , N I = NUMBER OF I T E R A T I O N S , E P = ERROR PERM I TED C THE E X P O N E N T I A L E Q . I S Y= A + B( 1- E X P t -C*X )) C AB&C ARE S U B S T I T U T E D BY A=E X P ( P ( D ) , B=EXP(P(2)J, C= EXP(P(3)J DIMENS I ON X( 7 0 0 ) , Y ( 7 0 0 ) , Y F ( 7 0 0 ) , W ( 7 0 0 ) , E 1 ( 3 ) , E 2 ( 3 ) , P ( 3 ) DATA M,NI,EP/3,20,0.001/ P(I ) = ALOG(Y(I)) P(2)=0.0 P(3)=0  PROGRAM MODEL C  I  801  802 101  RUNGE KUTTA METHOD FOR F I T T I N G F O U L I N G E Q U A T I O N S REAL K 2 T , K H , K l COMMON K 2 T , K H » K l , N T D I M E N S I O N X H N T ( 2 4 0 ) , Y ( 3) »F ( 3) , 0 ( 3 ) , XNT ( 2 4 0 ) , T ( 2 4 0 ) , XK-SNT ( 24 0 ) DIMENSION X E N T ( 2 4 0 ) R E A D ( 5 , 1 0 1 , E N U = l l l ) PHID,K2T,KH,KI PHlD=PHID/60. K2T=K2T/60.0 XKSNT(1)=0.0 XHNTl 1 ) = P H I D / K 2 T DO 8 0 1 J = 2 , 2 4 0 XHNT{J)=ALOG(K1*KH*(J-l)*60 .+ EXP(Kl*PHI0/K2T))/Kl XKSNT(J)=(l.-EXP(-K2T*(J-l)))*PHID/K2T J =0 00 802 J = l , 2 4 0 T( J ) = ( J - D / 6 0 . FORMAT(F20.5)  H=l.  10 II 623 103 III  220  M=l N=3 DO 11 NT=1,2 Y(1)=0.0 Y(2)=0.0 Y(3)=PHI0 J=0 DO 10 1=1,240 CALL RK(Y»F,Q,H,N,M) J=J + 1 IF(NT.EQ.1)XNT(J)=Y(2) IF(NT.EQ.2)XENT(J)=Y(2) CONTINUE CONTINUE DO 6 2 3 J = l , 2 4 0 , 1 0 WRITE(6,103)T(J),XKSNT(J),XNT(J),XENT(J),XHNT(J) F0RMAT(G13.3,4X,4G13.4) GO TO 1 STOP . END SUBROUTINE A U X R K ( Y , F ) REAL K 2 T , K H , K 1 COMMON K 2 T , K H , K 1 , N T DIMENSION Y ( 3 ) , F ( 3 ) F(2)=Y(3) IF(NT.E0.2)F(3)=K2T*KH*EXP(-Y(2)*Kl)-K2T*Y(3) IF(NT.EQ.1)F(3)=K2T*KH-K2T*Y(3)-K2T*KH*K1*Y(2) -RETURN END  APPENDIX  COMPUTATION  III  OF THERMOPHORETIC  A c c o r d i n g to McNab  VELOCITY  ( 3 3 ) , the  FOR  RUN  63  thermophoretic  v e l o c i t y o f a p a r t i c l e i n a thermal g r a d i e n t  is  indepen-  dent of p a r t i c l e diameter and g i v e n by  V^.  th  where  =  -0.26  —  o r — T - E -  2k f  k  +  •  p  VT  -4-  pT  (6.5)  K  V^  = thermophoretic  kf  = thermal c o n d u c t i v i t y o f the  fluid  kp  = thermal c o n d u c t i v i t y of the  particle  u  = fluid  viscosity  p  = fluid  density  T  K  VT  = absolute =  =  velocity  temperature  temperature  221  gradient  222  Assuming t h a t the r e s p e c t to f o u l i n g the  heat t r a n s f e r  i s the  '<•' '  where  viscous sublayer  surface,  be found by n o t i n g  r e g i o n of prime i n t e r e s t  the  adjacent  temperature g r a d i e n t  with to can  that  h(T  w  -  V  •  q'  = heat  h  = heat t r a n s f e r  k  f  f  (III.D  wa 1 1  flux coefficient  T  w  = wall  temperature  T  b  = bulk  temperature  Hence  dT dy wa 11 I 1  Substituting  th  equation  =  V  T  T  w -  T  >  (III.2) }  ( I I I . 2 ) into equation  2k f  + k  ^—  n  pT  K  • -rr- v(T  k  w  (111.1 ) g i v e s  - TJ b'  (III.3)  223  Equation  (III.3)  can be made d i m e n s i o n ! e s s by  m u l t i p l y i n g through by D/DU, , which y i e l d s  th  2 k  where  U  b  D  fhD] ( w T  u  = +0.26  f  +  [DUbpJ  k  V  (III.4)  P  = bulk  velocity  = tube  diameter  In terms o f d i m e n s i o n ! e s s g r o u p i n g s , e q u a t i o n  (III.4)  becomes  v  +h b  r v  k  f •  f  1 p-  1  f „W ,, N  v  For Run 6 3 , the heat f l u x BTU/ft -hr 2  If  T  e  J v  T  K  used was  and the maximum temperature  hl ;  91,400  r i s e was  2.6F°.  the d e p o s i t t h i c k n e s s i s taken to be 100 m i c r o n s , a  typical  f i g u r e based upon m i c r o s c o p i c measurements,  the  thermal c o n d u c t i v i t y of the d e p o s i t k^ can be computed from the r e l a t i o n s h i p  224  " • - - " < „ &  where  ^  = thermal  gradient  across  (  the  deposit  Therefore  k . = %T = 9-s '  £  TW  9 1  X  1 0  *  , 4  °° 2  x  '  = 11.5 B T U / h r - f t - ° F ~ k 5 4  x  1 2  =  which somewhat exceeds the estimate of 7.2 on page 75. From program PAR, the r e m a i n i n g v a r i a b l e s (III.  ) are as  i n .equation  foilows:  k  f  = 0.388  N  u  - 121  BTU/hr-ft-°F  R = 26490 e ft  T , = 181 °F w T  fa  = 138 °F  T  K  = 640 °R  U  b  = 4.79  Substituting  ft/sec  these v a l u e s  into equation  ( I I I . 5 ) gives  P  I  I  I  -  6  )  225 v - 0-26 x 0.388 x 121 x (181 - 138) t h ' (2 x 0.388 + 1 1.5) x 26,490 x 640 v  = 2.58 x 1 0 "  The t h e r m o p h o r e t i c  V  t h  6  velocity is  = 2.58 x 10~  6  = 2.58 x 10~  6  x U  therefore  b  x 4.79 x 1 2 x 2 . 5 4 . x 10"  = 3.7 m i c r o n s / s e c o n d  That i s , under the o p e r a t i n g  c o n d i t i o n s o f Run  6 3 , a p a r t i c l e i n c l o s e p r o x i m i t y to the w a l l w i l l to m i g r a t e away from the w a l l  tend  at a v e l o c i t y of 3.7 m i c r o n s /  second. It  has been p o i n t e d out by Keng and Orr (40)  use of an e q u a t i o n such as velocities  leads  (6.6)  to low r e s u l t s  to compute  thermophoretic  when the thermal  t i v i t y of the p a r t i c l e i s more than ten times the c o n d u c t i v i t y o f the f l u i d . this  ratio  For the example used  is approximately t h i r t y .  The e s t i m a t e  p h o r e t i c v e l o c i t y computed f o r Run 63 i s t h e r e f o r e s i d e r e d to be c o n s e r v a t i v e .  that  conducthermal here, of  thermo-  con-  •" "r  APPENDIX IV  EXPERIMENTAL DATA  226  t»*»*t*RUN  N033.••••»*•  FERRIC OXIDE CCINC I PP11 VOLIS: 9.33  ESMKAIES o r ROOT .4I6H2E-U1 E S T I H A I E S tir KOC'I  >ICAN SO'JARE S I A T I S U C A l ERROR IN HIE PARAMETER . 19634 •<EA'J SUU41E 13IAL EIWOR IH THE PA4AKTICRS .14264 .6711.1 E S I 1 M A 1 E (IF R O . R I ' ,F,A\l> B IH R f ' R l r i r It l.-CXP(-ll«riH£l .0 8.5010 .2642? HIE CALC. RESISTANCE F1TTE0 VALUE. I(SyFI-HK-UEGF/BIU)XIOn OCOI HULKS 0.0 0.0 -0.0 2.53 5.52 4.14 4.92 5.72 6.18 5.08 5.82 6.28 6.96 6.7? 7. 16 23.08 10.72 8.48 27.50 11.02 8.50 32.50 11.72 8.50 35.08 9.62 8.50 47.08 10.72 8.50 47.75 11.02 8.50 24.33 2.51 8.49 46.75 1.00 8.50  ?130.  HHPS: 254. fOUB.? 43430.  HEAT f l D U SUPPLIED HtAI 7LUX SUPPLIED  BTU/HR BIU/SwFT-HR  t  BEIA0.301 TCS.ll>iLETl?7.u OENSI IV.0.986 GRAN/CC I UUILEM41.8 FlOW RATE 0.1442  LBS.1/SEC  AVG Tt»tP:134.4 KINCMAIIC VISCUSII»:0.496  DEG F  DEG F ' OEG F  SU.CM/SEC  FIU10 VELOCITY 3.655 RtYNOLDS VO. 19550.0 PRANUH ND 3.15  FT/SEC  HEAT S'JPP 8088.2 BIU/HR HE AI 1 RAMS 7727.9 BIU/HR HtAI LOSI 360.3 BIU/HR PERCEM HEAT LOST 4.45 HEAT U U X 1 R A N S . BTU/SJFI-HR 44362. NUSSELI NO 94.6 RFILH 0.S03 RWAll 0.144 RIOIAL U.947 SOFI-HR-DEG f/OTU  LOCALIZED WALL TEMPERATURES 1215 1235 1255 1275 DEG.F OEG. F DEG.F DEG.F 0.0 153.9 154.3 159. 1 0.0 157.1 161.9 156.3 0.0 156.7 156.3 161.5 0.0 157.5 156. 3 162. 3 157.1 0.0 156.3 162. 3 0.0 158. 7 157.5 163.5 0.0 159.1 15f.. 3 164. 3 160.7 0.0 159.5 163. 1 159.9 0.0 158. 7 163.9 159.9 0.0 158.7 163.5 0.0 159.5 158.7 163.9 157.1 154.7 0.0 15V.9 153.9 0.0 154.3 159.5  IUEG.FI 1295 1315 UEG.F DEG.F 159.1 160. 7 161.5 163.1 161.5 163.1 161.5 163. 3 163.9 162.3 164.3 165. 1 165. 1 164.3 1&4. 3 165.5 163.9 163. 1 164.3 165. 1 163.5 1 66. 3 159.5 161.1 159.1 loi.1  1135 DEG.F 157.5 159. 5 159.9 159.9 160. 3 161.9 162. 7 162. 3 160. 7 162.3 161.5 159. 7 158. 3  1355 DEG.F 156.3 158.7 158.7 157.1 159.1 161.1 161.5 161.5 159.9 161.1 161.9 157.9 157.5  1375 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  LOCALIZED FOULING RESISTANCE ISOFT-HR-OfGF/BTUIX1U0.0OO 1215 1*35 1255 1275 1295 1315 T315 1 355 T375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.D 0.0  0.0 6.34 5.43 7.24 6.34 9.96 10. B6 14.47 12.66 12.66 11.76 6.34 0.0  0.0 5.44 5.44 5.44 5.44  12.67 9.96 12.67 10. b6  lib  10. 10.86 1.81 0.0  0.0 6.3? 5.41 7.22 7.22 9.92 11.72 9.02 10. H ? 9.9? 10.«2 1.81 0.90  0.0 5.41 5.41 5.41 7.?2 11.7? 11.72 11.7? 9.02 11.7? 9.92 0.90 0.0  0.0 5.41 5.41 6.11 7-21 9.91 9.91 10. 81 7.21 9.91 12.60 0.90 0.90  0.0 4.52 5.4? 5.42 6. J2 9.9 1 11.7) 10. 9 1 7.23 10.83 9.0 1 2. 71 1.81  0.0 5.43 5.43 1.81 6.33 10.84 11. 74 11.74 8. 14 10.84 12.65 1.6? 2.71  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 >;. o 0.0  T395 DEG.F 16Z.1 164.3 164.7 165.1 165.1 166.7 167.1 167.9 166.7 167.1 165.9 163.1 162.7  T415 DEG.F 165.9 168.7 169.5 169.1 169.5 171.1 170.7 171.1 170.7 169.9 171.9 167.1 166.7  1428 UEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 127.4 126.5 127.0 127.0 127.0 126.5 127.8 126.5 127.4 127.4 126.5 127.0  TOUT DEG.F 141.8 142.2 141.8 142.2 142.2 142.2 141.4 142.7 141.8 142.2 142.2 141.8 141.8  TH OEG.F 158.8 161.2 161.3 161.4 161.8 163.5 163.7 164.0 163.0 163.5 163.7 159.9 159.2  DELTA H OEG.F 14.9 1434.5 14.8 1328.1 15.3 1290.5 15.3 1313.9 15.3 1288.4 15.3 1211.2 14.9 1176.7 14.8 1223.4 15.3 1221.7 14.8 1221.0 14.8 1215.1 15.3 1367 4 14.9 1405.1  R X1000 0.6971 0.7530 0.7749 0.7611 0.7762 0.6256 0.8493 0.8174 0.8135 0.8190 0.8230 0.7313 0.7117  TIKE HOURS 0.0 2.53 4.92 5.08 6.98 23.08 27.50 32.50 35.08 47.08 47.75 24.33 46.75  1395  T4I5  1428  0.0 6.28 a.ce 7. 18 8.08 1 1.64 10.7? 11 .66 10. 77 8.97 13.45 2. 70 1 .80  TIN OEG.F 127.0 127.4 126. 5 127.0 127. 0 127.0 126.5 127.8 176.5 127.4 127.4 126.5 127.0  TOUT DEG.F 141.8 142.2 141.8 142.2 142.2 142.2 141.4 14?. 7 141.8 142.2 142.2 141.8 141.B  RFH  0.0 4.50 5.40 6.30 6.30 9.90 10. 79 12.59 3.90 10. 79 a. 10 1.80 0.90  OELTA DEG.F 14.9 1434.5 1 4 . 8 13?8. 1 15. 3 1290.5 15.3 1313.9 15. 3 1288.4 15.3 1211.2 14.9 1176.7 1 4 . 8 1223.4 15. 3 1221.7 14.8 1221.0 14.8 1215.I 1167.4 15. 1 1405.1 14.9  RIOT XI000 0.6971 0.7530 0.7749 0.7611 0.7762 0.3256 0.8493 0.8114 0.8185 0.8190 0.8230 0.7313 0.7117  TIKE HOURS 0.0 2.5] 4.92 S.Ofl 6.98 2 3.08 27.30 32.50 15.08 4 7.08 4 7. 75 24. 13 46. 75  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0  5.52 5.72 5.62 6.72 10.72 11.0? 11.72 9.6?  10. 7? 11.0? ?.51 1.00  227  ««»i«».KUN fj034. ••»•«•» FCRR1C  UxlUE CONC  VOLTS: 9.35  (PPMI  ESTIMATES liF K j m KCAH SCUIVRE STATISTICAL ERROR IN ll!C .20350 ,4t.3J7 EST 1 MAI [S ur RUJI "CAN SOUA-U mUL ERROR IN T r IC P .1)583 .3092 1 E ST I HA I E LIE RO R1 ' ; F , . V 4 0 ft I * «r - k 1 NM I 1 . - E K P I - V » T 1 .0 5.1,77', 1 .2677 11 ME CALC. RESISTANCE. FITTED V.UUO HOURS 1< SUFI-HR-.JLGF/3TUIX10C.0001 0.0 0.0 -0.0 o.na 1.30 0.55 0.13 0. 30 0.66 0.17 I .20 1. 10 0.2S 0.70 I.JO 0.38 1.60 2. 1 J 0.52 2.91 2. J4 0.58 4.21 2.96 1.30 3.91 4.58 1.45 5.11 4. J J 1.67 5.21 4.91 2.10 5.11 5.28  2130.  AMPS: 253.  PARAMETER  1  HEAI UOrf SUPPLIED H E * I i L U X surJ'Lito  807).6 46347.  BETA0.30) 7llk=I INLE1 127.0 0ENSIIr:0.986 GRAf'/CC I OUILtTMl.8 FLDll R A U 0.1442  LBS.I/SEC  AVC T t P : l ) 4 . 4 X. 1NEKAT IC VISC0Sllir:0.496  DEC F  v  (  8RJ/IM niu/scri-HR OEGF DEC F  SO.C.1/SEC  FLUID V E L D C I l r 3.655 REYNOLDS TO 19550.U PRANOTL N U 3.15  FI/SEC  HEAT SUPP 8073.6 31U/HR HEA1 IRASS 7721.9 CTU/HR HEAT LOST 345.7 BTU/HR PERCEM HEA1 LOST 4.28 MEAI FLUX TRANS. P.TU/SOFI-ltR 44)62. NUSSCLT 94.6 RF1LH 0.603 RWALL O.ltt RI01AL 0.947 SOFT-HR-OEC F/BTU  LOCALUEO KALI TEH.PERATURE5 1215 1235 1255 1275 OEG.F DEG.F DEG. F OEG.F 154.3 0.0 154.7 159.9 155. 1 0.0 155.1 160.3 0.0 155.1 154.7 159.) 0.0 155.5 155.1 160. 3 0.0 155. 1 154.7 160. 1 0.0 155.5 155.1 160. 7 0.0 155.9 155.5 161.1 0.0 156.7 161.9 156.3 156.3 0.0 155.9 161.5 156.7 0.0 156.7 162.3 157.1 0.0 156.7 162.3 156.7 157.1 0.0 162.3  1OEG.F) T295 T315 DEC.F DEG.F 159.9 161.1 161.9 160.3 159.9 161 .5 160.3 161.9 159.9 161.5 160. 3 161.9 161.1 1*2. 7 161.9 lo3. 1 161.5 163.1 161.9 163.5 162. 3 163.9 162.3 163.9  Only data f o r f i r s t 2.1 hours are processed here.  T3J5 OEG.F 15P.7 159. 1 15B.7 159. 1 158.7 15 1. 1 159.9 160. 3 160. 1 160. 7 160. 7 160. 7  1355 OEG.F 157.9 157.9 157.5 157.9 157.9 158.1 158. 7 159.1 159.1 159.9 159.5 159.5  1375 OEG.F 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0  LOCALIZED FOULING RESISTANCE ISOFI-IM-CEGFInIUIX I GO.000 1235 1295 1315 J215 1255 1275 1335 (155 T375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.o  0.0 0.91 0.91 1.81 0.91 1.81 2-/2 4.53 3.62 4.53 5.43 4.5)  0.0 1 .Cl 0.91 1.81 0.91 1.61 2.72 4.53 1.62 5.43 5.43 6. J4  0.0 0.90 O.O 0.90 0.90 1.10 2. 11 4.51 3.61 5.41 5.41 5.41  0.0 0.90 0.0 0.90 o.n 0.90 2.71 4.51 1.1,1 4.51 5.41 5.41  0.0 1.60 0.90 l.hO 0.90 1.60 1.61 4.51 4.51 5.41 6.11 6.11  0.0 0.90 0.0 0.90 0.0 0.90 2. 71 . 1.61 3.61 4.51 4.51 4.51  0.0 o.n 0.0 0.0 0.0 0.90 1 .81 7. 71 2.11 4.52 3.61 J.6I  0.0 n.o 0.0 o.n 0.0 0.0 0.0 u.o 0.0 0.0 0.0 0.0  T395 OEG.F 162.7 161.5 162.7 163. 5 161.5 163.5 163.9 164.3 164.7 165.1 165.1 164.7  T415 OEG.F 166. 7 167.9 167.1 167. 1 167.1 167.9 168.7 169. 1 169. 1 169.5 169. 1 169.1  1428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN OEG.F 126.5 126.5 126.5 126.5 126.5 126.5 127.0 127.0 127.0 127.0 126.5 127.0  TOUT DEG .F 141 .8 141 .8 141 .4 141 .4 141 .4 141 . 4 141 . 4 141 .9 141 .8 141 .a 141 .8 141 .8  1)95  J415  1426  TIN OEG.F 126.5 176.5 126.5 126.5 126.5 126.5 177.0 127.0 177.0 127.0 176.5 127.0  TOUT OEG.F 141 . 8 141 .8 141. 4 141. 4 141. 4 14 1.4 141. 4 141 . 8 14|. 8 141. 8 14| . 8 141. 8  0.0 1.80 0.0 1.80 1 .80 1.80 2.10 3.60 4.50 ' 5.40 5.40 4.50  0.0 2.69 0.90 0.90 0.90 2.69 4.49 5. IB 5.38 6.71 5.38 5.38  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  IM OEG.F 159.5 160.1 159.7 160.1 159.8 160.2 160.8 161.4 161.3 161.8 161.8 161.8  RFM 0.0 1. 30 0.30 1 .70 0. 70 1 .60 7.91 4.21 1 . VI  5. 11 5.21 5. 11  H DELTA R OEG.F X1000 15.3 1376.4 0. 7266 15.3 1347.0 0.7424 14.9 1359.8 0.7354 14.9 1138.6 0.7471 14.9 1349.6 0.7410 14.9 1329.6 0.7521 14.4 1310.2 0.7612 14.9 1 . 14.7 0. 7724 14.9 1299.3 0. 7696 14.9 1274.2 0.7848 15.3 1263.2 0.7917 14.9 1274.4 0.7847  TIRE HOURS 0.0 O.Ofi 0.13 0. 17 0.2! 0. 11 0.52 0.51 1.30 1.45 1.67 2.10  DELTA OEG.F 15.3 15.1 14.9 14.9 14.9 14.9 14.4 14.9 14.9 14.9 15.) 14.9  TIHE HOURS 0.0 0.06  M 1)76.4 1)47.0 1)59.8 1)38.6 1)49.6 1)29.6 1310.2 1294.7 1299.1 1274.2 126).2 12 74.4  RTOT 11000 0.7266 0.7474 0.7354 0.7471 0.7410 0.7521 u.7632 0.7(24 0.7696 0. 7648 0. 7917 0. 164 7  i  0. 0. 1 1 7 0.2E 0. »* 0. 52 0.5* 1. >0 1.45 1.67 2. 10  228  •••••••RUN N 0 3 4 . • * • « • • • FERRIC 0X°I0E CONC (PPNI VOLTS: 9.35  EST1MA1ES OF RUOI MEAN SOJARE STATISTICAL ERKOK IN HIE PARA* .66787C-01 .?9f*?0 tSIIHATCS OF R-J01 P.EAN SCJARE lOIAL EK«OR IN THE I'Aft AME IE RS .77697E-0I .34691 ESIIMAIE UF R0.R1 IF.ANL- Q IN RF = RINF-I I I ,-EXPI-H»l I »:E I .0 4.6395 1.8926 I IME CALC . RESISTANCE FITTED VALUE HOURS I(SUFI-hR-UEGF/BTUIX100.000l 0.0 0.0 -O.C 0.08 1.30 0.65 0.13 0.30 1.01 0.17 1.20 1 .20 0.28 0. 70 1.91 0.38 1.60 2.38 0.5? 2.91 2.91 0.58 4.21 3.09 1.30 3.91 4.24 1.45 5.11 4.34 1.67 5.21 4.44 2.10 5.11 4.55 2.40 6.11 4.59 2.6? 6.41 4.61 J.43 3.41 4.63 3.52 3.51 4.63 1.60 2.91 4.63 4.20 4.51 4.64 4.67 . 3.91 4.64 6.50 .2.71 4.64 23.68 6.71 4.64  2130.  A.IRS! 253.  HEAT FLOW SUPPLIED HEAT ILUX SUPPLIED  8073.6 46347.  BTU/HR OTU/SCfT-HR  HCIA0.301 I0R»IINLCTI27.0 0ENS11Y:0.936 GRAH/CC T UUTLEI141.8 FLOW RATE 0.1442  LBS.M/SEC  AVG TEHPM34.4 KINEMATIC V1SC0SITT:0.496  SO.CM/SEC  OEG F OEG F  DEG F  FLUID VELOCITY 3.655 REYNOLDS NO 1955U.0 PRAflOIl NO 3.15  FT/SEC  HEAT SUPP 8073.6 BTU/HR HEAT TRANS 7727.9 BIU/HR HEAT LOST 345.7 BTU/HR PERCENT HEAT LOST 4.28 HCA1 FLUX TRA.'iS. B7U/S0FI-IIR 44162. NUSSELT m 94.6 RFILH O.BOI RWALL 0.144 R10IAL 0.947 SOFT-HR-DEG F/BIU  LOCALIZED WALL TEMPERATURES 1235 1275 t?15 1255 DE3.F DEG.F DEG.F DEG.F 154.7 1 59.9 0.0 154.3 0.0 155.1 155.1 160.3 154.7 159.9 155.1 0.0 155. 1 160.3 0.0 155.5 160. 3 155.1 154.7 0.0 160. 7 0.0 155.1 155.5 155.9 161.1 155.5 0.0 161.9 156.7 0.0 156.3 155.9 0.0 161.5 156.3 156.7 156. 7 162.3 0.0 156.7 0.0 147.1 162 .3 157.1 0.0 156.7 162.3 157.1 157. 1 163. 1 0.0 157.1 157. 1 163.1 0.0 156.7 161.9 157.1 0.0 161.9 157.1 156.7 0.0 157.1 157. 1 161.9 0.0 157.5 162. 7 0.0 157.5 0.0 157.1 156. 7 162. 3 161.1 157. 1 156. 3 0.0 156.7 157.1 163.1 0.0  IUEG.F1 7)15 1295 OEG.F DEG.F 161.1 |}9.9 161.9 160.3 159.9 161. 5 160. 3 161.9 161.5 159.9 161.9 160. 3 161. 1 162. 7 loi. 1 161.9 163.1 161.5 163.5 161.9 163.9 16?.3 16?. 3 161.9 164. 3 16?.7 164.3 163.1 162. 7 161.5 162.7 161.5 162.1 161.5 162. 3 163.1 161.1 161.9 162. 3 160.7 162. 7 164.7  1335 DEG.I 1 58. 7 159. I 158. 159. 1 158.7 159.1 159.9 160.3 160. 3 160. 7 160. I 160.7 161.1 161.5 159.9 159.9 159.5 159. 9 159.9 159. 5 161.9  I  1355 T375 OEG.F OEG.F 157.9 0.0 1 57.9 CO 157.5 0.0 157.9 0.0 157.9 0.0 158.3 0.0 158.7 0.0 159.1 0.0 159.1 0.0 159.9 0.0 159.4 0.0 159.5 0.0 159.9 0.0 159.9 0.0 15 8.7 0.0 158.7 0.0 157.9 0.0 156. 7 0.0 0.0 1 58. 7 158.1 0.0 160. 7 0.0  T395 DEG.F 162.7 163.5 162.7 163.5 163.5 163.5 163.9 164.1 164.7 165.1 165.1 164. 7 165.5 165.5 163.5 163. 5 163.1 1 63.9 163.9 161.5 165.9  7415 OEG.F 166.7 167.9 167.1 167.1 167. 1 167.9 168.7 169. 1 169. 1 169.5 169.1 169.1 169.5 169.9 1 67.5 167.9 157.1 168. 3 167.9 167.9 169.9  T42B DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 126.5 126.5 126.5 126.5 1?6.5 126.5 127.0 1?7.0 127.0 12 7.0 126.5 127.0 126.5 127.0 127.0 127.0 127.0 126.5 127.0 127.0 127.0  TOUT DEG .F 141 .8 141 .8 141 .4 141 .4 141 .4 141 .4 141 .4 141 .8 141 .8 141 .8 141 .8 141 .8 141 .8 141 .6 141 .8 141 .8 141 .8 141 .8 141 .6 141 .8 141 .6  TM OEG.F 154.5 160. 1 159.7 160.1 159.8 160.2 I6C.6 161.4 161.3  161.a 161.6 161.8 162.2 162.4 161.0 161. 1 160.8 161.5 161. 3 160.7 162.5  DELTA H DEG.F 15. 3 1376.4 15.3 1347.0 14.9 1359.8 14.9 1336.6 14.9 1349.6 14.9 1329.6 14.4 1310.2 14.9 1294.7 14.9 1299.3 14.9 1274.2 15. 3 1263.' 14.9 12 74. . 15.3 1244.2 14.9 1247.0 14.9 1315.6 14.9 1311.6 14.4 1330.3 15.3 1284.1 14.9 1104.0 14.9 1 112.9 14.9 1236.7  XI 0. 1 0. 7 0. 7 0. 7 0.7 0. 7 0. 7 0. 7 0.7 0.7: 0.7' 0. 71 o. ec O.Br 0. 71 0.76 0. 75 0.77, 0. 76<, 0. 75C 0.807  229  •••••••RUN N035.**•*••• FERRIC OX10E CONC (PP*I VOLTS: 9.35  E S T I S A U S OF R-JJI MEAN SCUARE STATISTICAL ERRUR IN THE PARAMETER -20)31 .68319 ESTIMATES Or ROUT MEAN SUU44E TOTAL EKRCR IN THL PARAMETERS •1'012 .41024 ESTIMATE OF RO.RINF.ANO 0 IN R F =R INF I I 1 .-E XP <-D« IIME I 3.7942 .6105J I INE CALC. RESISTANCE F11 TED VALUE HOURS I I SOFI-H«-L>EGF/BIU)XICO,OOOI 0.0 -0.0 0.18 -0.20 0.34 0.48 0.90 0.84 0.70 -0.20 1.15 0.7B 0.70 1.25 1.37 2.41 1.82 1.58 2.21 2.04 1.65 3.01 2.09 2.33 2.71 2.50 3.65 2.81 2.94 4.05 3.11 3.02 4.12 2.51 3.03 4.28 3.11 3.05  2130,  AHPS: 254.  HEAT FLOW SUPPLIED HEAT FLUX SUPPLIED  8105.5 465J0.  BIU/HR 8TU/S0FT-HR  BE1A0.10] TOR=TINLET127.0 DCNSIIr:0.9S6 GRAM/CC 1 0UUEI141.8 flOW RAJE 0.1442  LBS.M/SEC  AVG IEMP:134.4 KINEKAIIC VISC0SITY:0.496  DEC F  DEG F DEG F  SQ.CH/SEC  FLUID VELOCITY 3.655 REVNDLDS NO 19550.0 PRANOIL NO 3.15  FI/SEC  HEAT SUPP 8105.5 BTU/HR HEAT TRANS 7727.9 BIU/HR HEAT IUST 377.6 BIU/HR PERCEM HEAT LOST 4.66 HE AT HUX 1 R A \ S . B1U/S3FT-HR 44362. NUSSElT NU 94.6 RFIIM 0.80) RHAll 0.144 R10TAI 0.947 SCFI-HR-DEC F/BIU  LOCALIZED k A l l TEMPERATURES T215 12 35 T255 T275 DEG.F DEG.F DEG.F DEG.F 0.0 154.3 15).9 159.5 0.0 154.3 15).9 159.1 0.0 154.7 154.3 159.9 0.0 154.3 15).9 159.5 0.0 154.7 154. ) 159.9 0.0 155.5 155.1 160.7 0.0 155.5 155.1 160. 7 0.0 155.5 155.5 161. 1 0.0 155.5 155. 1 160. 7 0.0 155.5 155.1 160. 7 0.0 155.5 155. 1 161.1 0.0 155.5 155. 1 160. 7 0.0 155.5 155.1 161.5  IDEG.F1 1295 T315 T335 OEG.F OEG.F DEG.F 159.5 160.7 157.9 159. 1 160. 3 157.9 159.9 161. 1 158. ) 159. 1 160. 3 157.9 159.5 160. 7 158. 3 160. 3 161.5 158. 7 160.3 161.5 158. 7 160.7 161.9 159.1 160.7 161.9 159. 1 160.7 161.9 159. 5 161. 1 161.9 159. 5 160. 7 161.9 159. 1 161.1 161.9 159. 5  1355 T375 UEG.F OEC-F 156.7 0.0 156. 7 0.0 157.1 CO 156.7 0.0 157.1 0.0 157.9 0.0 0.0 157.5 157.9 0.0 157.9 0.0 157.9 0.0 158.3 0.0 157.9 0.0 157.9 0.0  LOCALIZED FOULING RESISTANCE ISUFI-HR-OEGF/BTUIX100,000 1215 1235 1255 1275 T295 T315 1335 1)55 1375  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.o  0.0 o.o  0.0  0.0 0.0  0.91  0.0  0.91  2.72 2.72 2. 72 2.72 2.72 2. 72 2.72 2.72  0.0  0.0 0.91 0.0 0.91 2.72 2.72 3.62 2.72 2. 72 2.72 2. 72 2.72  0.0  0.0 0.90 0.0 0.90 2.71 2.71 3.61 2.71 2.71 3.61 2.71 4.51  0.0 0.0 0.90 0.0 U.O 1.81 I.B1 2.71 2.71 2. II 1.61 2. 11 3.61  0.0 0.0 0.90 0.0 0.0 1.80 1.80 2. 71 2. 71 2.11 2. 71 2. 71 2.71  0.0 0.0 0.90 0.0 0.90 I.M 1 .HI 2. 71 2. 71 3.61 ).61 2.71 ).6I  0.0 0.0 0.90 0.0 0.90 2.71 I.ni 7. II 2. 71 7.71 1.62 7. 71 2. 11  O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0  T395 DEG.F 162.3 162.7 162.7 162.3 162.7 163.5 163.5 163.9 161.5 163.5 163.5 161.1 163.5  1415 OEG.F 167.5 167.S 167.9 167.5 167.9 168.7 168.) 168.7 168.7 168.7 168.7 168. ) 168.7  T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 126.5 127.0 127.0 127.0 127.0 127.0 127.0 127.0 126.5 126.5 126.5 126.5  10UT DEG F 141 8 141 8 141 3 141 e 141. 8 142. 2 141. 8 142 2 142. 2 141 .6 141. 4 141. 8 141 .8  IN DEG.F 159.1 159.0 159.5 159.0 159.4 160.2 160. 1 16U.5 160.3 160.4 160.5 160.2 160.5  DELTA H OEG.F 14.9 1413.6 15. ) 1407.4 14.9 1391.1 14.9 1419.7 14. 9 1397.1 15. 3 1368.7 14.9 1362.0 15. ) 1 353.5 15. ) 1359.9 15. 1 1334.4 14.9 1315.7 15. ) 1341.8 15.) 1)27.5  R X1000 0.7074 0.7105 0.7188 0.7044 0.7158 0. 7)06 0.7342 0.7)»8 0.7)53 0.7494 0.7600 0.7453 0.753)  1)95  T415  1426  UN OEG.F 127.0 126.5 127. 0 127.0 • 77.0 127.0 127.0 121.0 121.0 126.5 126.5 176.5 126.5  TOUT OEG. F 141. A 141. 8 141. 8 141. 8 141. 8 142. 7 I4|. 8 142. 2 142. 2 141. 8 141. 4 I4|. 8 141. 8  RFH  OELTA H OEG.F 14.9 1413.6 15. 3 1407.4 14.9 1391.1 14.9 1419.7 14.9 1197.1 15. ) I 368.7 14.9 1)67.0 15. 3 1)51.5 15. 3 1)59.9 15. 3 13)4.4 14.9 t 115.7 15. 3 1)41.8 15.3 1)2 1.5  RIOT TIKE KIOOO MOU<S 0.7074 0.0 0. 7105 0. 1 5 0.48 o.'iaa 0.7044 0. 70 0.7158 0. 78 0. 7 306 1. 37 1 .58 0.7)42 0. 7 J<18 1.65 0. 7 J4 3 2 . ) ) 0.7494 1...5 0.1600 4.05 0.7453 4.12 0.7533 4.28  0.0 0.90 0.90 0.0 0.90 2. TO 2. 70 ).60 2. 10 7.70 2.70 1 .80 7.70  0.0 0.0 0.90 0.0 0.90 2.69 1.79 2.69 2.69 7.69 2.69 1.79 2.69  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 -0.20 0.90 -0.20 0.10 2.41 2.21 3.01 2.71 2.81 3.11 2.51 3.11  TINE HOURS 0.0 0.18 0.48 0. 70 0. 78 1.32 1.58 1.65 2.3) ).65 4.05 4.12 4.28  230 • ••••••RUN 11036. •»•»••• FERRIC OXI0E CONC (PPMI V O U S ! 9.35  2130.  ESiiMAirs ur ROOT  M E A N SUUARC SIATISTICAL ERROR IN THE  .40053E-0I E S T I M A I C S OF  .1 B652 M E A N SCUARE  ES1INAIL  8105.5 465)0.  BIU/HR BTU/SCFI-HR  BEIA0.301 T0R.TINLEU27.0 DCNSIlv:0.936 GRAK/CC I 0UILEH41.8 FLO* R*1E 0.1442  LBS.M/StC  AVG U H P : I ) 4 . 4 KINEMATIC YISCUSIIY:0.496  DEG F  OEC F  FT/SEC  7121.1  HEAT SUPP 8105.5 BTU/HR HEAT 1RANS blU/HR HEAT LOSI 377.6 OTU/HR PERCENT HEAT LOST 4.66 HEAT FLUX TRANS. BTU/SOFT-HR 44362. NUSSELT NO 94.6 RF 1LM 0.603 RWALl 0.144 RIOTAl 0.947 SOFT-HR-DEG F/8TU  LOCAL I ZED WALL TEMPERATURES T255 T275 1215 T235 DEG.F DEG.F DEG.F DEG.F 154.7 160.3 0.0 154.7 155.5 161.1 0.0 155.5 155.9 161.1 0.0 156.3 155.9 161.1 0.0 156.7 156. 7 161.9 0.0 157.9 156.3 161.5 0.0 156.7 156.7 161.9 0.0 157.1 156. 3 161.5 0.0 156. 3 155.9 161.9 0.0 156.7 161.5 0.0 157.1 156. 3 162.7 157. 1 157.5 162.3 157.1 157.5 162.3 157.1 157.5 0.0 163. 5 157.9 158.7 0.0 161.1 158.3 158.3 0.0 163. I 157.9 0.0 157.9 163.9 158.3 0.0 159.1 0.0 158. 3 158.7 163. 1 0.0 159. 1 164. 7 159.9 0.0 158.7 164. 7 159.5 0.0 15S. 3 163.9 159.1 0.0 157.5 163.9 157.5 0.0  o.o  (OEG.F) 1 295 T315 CEG.F DEG.F 159.9 161.1 160. 7 161.5 160. 7 161.1 160.7 161.5 162.3 161.5 160.7 161.5 162. 7 161.5 162. 7 161.5 162.) 161.5 lui. I 162.3 162. 3 161.5 161.9 163.9 162.) 163.5 162.7 164.3 163.1 164. 3 163.5 164.3 163.5 164. 3 163.5 163.5 163.9 164.7 165. 1 163.9 164.7 163.5 164.3 163.5  T335 DEG.F 157.9 158. 7 158. 3 158.7 159. 1 158. 3 159.9 159.9 159.5 159.5 160. 7 161.1 160. 7 161.5 161.5 161. 1 161.9 161.1 162.7 162. 3 161.5 161. 1  T355 UEG.T 156.7 157.5 156.7 157.1 157.9 157.5 158.7 158.7 15B.) 158.) 159.5 159.9 159.5 160. 3 159.9 160.3 160.3 159.9 161.5 161.1 160.3 160. 3  T375 DEG.F 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  LOCALIZED FOJLING RESISTANCE ISOFT-HR-DEGF/BTUIXI00.000 1255 1215 1235 1275 1295 T315 1335 1)55 1375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  n.o  0.0 0.0 0.0 0.0 0.0 0.0  0.0 1.81 3.62 4.53 7.24 4.53 5.43 3.62 4.53 5.43 6.34 6.34 6.34 9.05 8.15 7.24 9.95 9.05 11.16 IU.P.6 9.95 6,)4  0.0 1.61 2.72 2.72 4.53 3.62 4.53 3.62 2.72 3.62 5.43 5.4) 5.43 7.24 8.15 7.74 8.15 8.15 9. 15 9.05 8. 15 6. 34  3.6  2.7 ).6  2.7 5.4  H. I 8.1  0.0 I.BO I. 80 1.80 ).6I l.RO 3.61 3.61 ).61 2. 71 5.41 4.61 5.41 6. 31 7.21 rf. 1 1 6.1 1 II. 1 1 I.ni 1.01 B. 1 | 8. 11  0.0 0.90 0.0 0.90 2. 70 0.90 3.61 ).6I 2.70 2. 70 5.41 6. 31 5.41 7.21 /.21 7.21 /.2l 5.41 8.11 9.01 H.H 1.21  0.0 I.BI 0.90 I.R1 2. 71 0.90 4.52 4.52 3.61 3.61 6. 32 7.2/ 6. 32 8. 1 1 II. 1 ) 7.7/ 9.0 1  l.tt  in.II i 9.9 1 H. 1 1 1./7  0.0 1 .81 0.0 0.90 2. 71 1.81 4.52 4.52 ).67 ).62 6. 1 3 7.2) 6.33 6.1) 1.7) 8. 11 8.11 7.7 1 l n. 04 9.94 8.11 8. 1 >  0.0 0.0 0.0  o.o  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  u.o  0.0 0.0 0.0  u.o u.o  IM THE  PARAMETER  PARAHEItRS  RO.RINF.AND  TIKE HOURS 0.0 0.10 0.35 0.63 0.06 1.03 1.6T 1.75 2.17 2.45 22.07 22.25 22.75 25.92 26.25 27.42 28.92 29.92 45.98 46.22 24.25 25.72  OCC F  SU.CM/SEC  FLUID VELOCITY 3.655 REYNOLDS NU 19550.0 PRAHUTL NO 3.15  01  I01AL ERROR  .1 9936 IN Rf.R INFII 1.-EXC(-B»1INEI .33106 7. 7243 CALC. RESISTANCE FITTED VALUE IIS FI-IIR-UECF/BTUIX100.000I 0.0 -0.0 1.41 0.24 0.81 0. 79 1.41 1.36 3.31 1.83 1.71 2.09 3.91 3.07 3.41 3. 16 3.70 3.01 4.01 3.01 7.22 5.61 7.22 5.9i 7.22 5.51 7.22 7.42 7.22 7.12 7.22 7.22 7.22 6.12 7.22 6.92 7.22 9.42 7.22 9.12 7.22 7.62 7.22 6.B2  .47fltl!:-()l  AMPS! 25*.  MEAT IIOK SUPPLIED HEAT ILUX SUPPLIEO  ROOT  ft  T395 OEG.F 162.7 163. 1 162.) 162.7 163.5 162. 7 164. ) 16).9 16).5 163.5 165.1 165.5 165.1 166.) 165.5 165.9 166.3 165.5 166.3 166. 3 165.1 165.1  T4I5 OEG.F 167.5 167.5 166.3 166.7 167.9 167.1 168.3 168.3 167.9 167.9 169.5 169.9 169.5 169.9 169.9 1 70. 3 170.3 169.5 170.3 1 70. 3 169.5 169.5  T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 126.5 126.5 126.5 126.5 127.0 126.5 127.0 127.0 126.5 127.0 127.0 127.0 127.0 127.0 126 .5 127.0 127.0 127.0 127.0 127.0 127.0 126.5  TOUT OEG.F 141.8 141.8 141.4 141.4 142.2 141.8 141.8 141.8 141.4 141.8 141.8 141.8 141.4 141.8 141.8 141.8 141.8 141.8 141 .8 141.8 141.8 141.4  TM DEG.F 159.5 I6C.I 159.8 160.1 161.0 160.2 161.2 161.0 160.8 160.8 162.0 162.1 161.9 162.8 162.6 162.7 163.1 162.6 163.7 163.5 162.9 162.5  OELTA H DEG.F 15.3 1 ) 8 ) . 9 15 3 1)50.9 14.9 1)59.6 14 9 1)45.0 15. 3 1)38.1 15.3 1)51.0 14 9 1)06.8 14 9 1314.5 14 9 1304.5 14 9 1 328.3 14 9 1269.4 14 9 1261.9 14 4 1261.2 14 9 1234.8 15 ) 12)1.4 14 9 1236.7 14 9 1222.4 14.9 124 .8 14 9 1 198.3 14 9 1202.8 14.9 1232.2 14. 9 1223.9  X1000 0.7226 0.7402 0.7355 0.7435 0.7473 0.7402 0.7652 0.7606 0.7666 0.7529 0.7S7Q 0.7924 0.7929 0.8099 0.8121 0.E086 0.B191 0.6G20 0.8345 0.8314 0.6116 0.8171  T395  T415  1426  TIN OEG.F 176.5 126.5 126.5 126.6 127.0 126.5 127.0 127.0 126.5 127.0 12 1.0 177.0 127.0 177.0 176.5 127.0 177.0 177.0 177.0 177.0 1/7.0 176.4  TOUT OEG.F 141 .8 141 .8 141 .4 141 .4 147 .2 14 1.8 141 .8 14) .8 141 .4 141 .8 I4| .8 141 .8 141 .4 141 .8 I4| . 8 14 1.8 I4| .8 14 1. 8 141 .8 14 1. A 141 . 8 141 .4  RFM  OELTA H DEG.F 15. 3 1)8).9 15.3 1)50.9 14.9 1359.6 14.9 1)45.0 1 5. 3 13)8.1 15. 1 1)51.0 14.9 1)06.8 14.9 1)14.5 14.9 1104.5 14.9 1 128. ) 14.9 1269.4 14.9 1261.9 14.4 126 1.2 14.9 12 14.6 1 5. > 1/ 11 .4 14.9 1/14.7 14.9 1/22.4 14.9 1/46.6 14.9 1111,1 14.9 170/.8 14.9 1/ 1/./ 14.1 I//1.9  RIOT TIME X100O HOURS 0.7226 0.0 0.7402 0.10 0.7355 0.35 0.74)5 U.63 0.7471 0.88 0.7402 l.u) 0.'642 1.67 0.7605 1. 75 2.17 0.7666 0.767 1 2.45 72.0 7 0.7H76 0. 1974. 77.25 0.7979 22. 0.«C99 75.97 0.81/1 76.75 O.ROI'6 7 7.4/ 7'l. 97 0.81*1 O.HO/0 79.97 ll.H 145 45. NM n. H 11 4 46.7/ 0 . " 1 1 6 / 4 . / '» 0. II 1 1 1 75.7/  0.0 0.90 0.0 0.0 1 .80 0.0 3.60 7. 10 1.80 I.BO 5.40 6.30 5.40 8.10 6. 30 7.70 8.10 6. 30 B.l'l H. 10 5.40 5.40  0.0 0.0 0.0 0.0 0.90 0.0 1.79 1 .79 0.90 0.90 4 .49 5. 3B 4.49  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  6.78 6.7B 4.49 6.78 6.7H 4 .49 4.49  n.o  5.311 5. 3 8  0.0 0.0 0.0 0.0 D.ll 0.0  0.0 1 .41 0.81 1.41 3.31 1 . '1 3.91 3.41 3.01 1.01 5.61 5.91 5.51 7.42 7.17 7. 77 8. 1? 6.97 9.42 9. 17 7.67 6.67  TIME HOURS 0.0 0. 10 0.35 0.63 0.86 1.03 1.67 1.75 2.17 2.45 22.07 22.25 22. 75 25.92 26.23 27.42 28.72 29.92 45. JS 46.22 24.25 25. 72  r.  irt u .Yt/)3 N•-*" J'"C>O*>*f »* 0'-*-»«»""-f .V'—--* --"C .aN X 3 •— rt. *. ,  i/l r"OO«*i'«inr-N"U>03N*i P  —3 300000 O — 0> CT ^o-iO Oi/i - O J O X  X  K  co CM  M. t • • *  3  M  •  •  •  (  *  *  •  •  1-  *  — O I b N Q • *( 0O  u.  1  X - ^ - ^ r t * *  ID  4.. >  fltwoooooosoocoooa  Jj«-*0>-rrt^i^rtrt-crto--.  JO Jl J> *rt-v,0O?0>*-- — **- »»  d)ij\i^^M'MOOff' o "*- — r " »  UJ . i - O  — — —  z  OOOOOOOOOOOOOO  J>OVjair>NlAlOO-Nr<l/«  .< O  — f - J O O O S O  — — — ""*'"*"N''*>-#'»r  <C U .  > — •i>r*i>i>»i>yrte-i>--«(>rt---  _• o O O — — — — — — — — — — — — « —  J O tMU>J*0*Jr<J/*rjr<rL-4*,->JN<J-, ->.# l  Kuo-crooiyoooo —  O. — — —————— — — — — — _ ikcoonainatoNoicocDiOiDa)  O< C•> (S * « Kf C — VX iO| > OO-  AC 3T - CO LL* — C7 ~ T 3 I krt 1% •'> — Ul O  sr  a:  DO — — — — — — — — — — — — — —  0 0 0 ©  o n ; * D - * *  £  0(  ?•''> — O » «*- J"- — 1—  OOO — — — Mrtrtrtrt-4.rtrt  OiLi-r*-«'<r*<j'**r<<-*>-*4>.r* >  t-o — — — — — — — — — — — — — —  OOOOw->Ou*iO 2U.oOOOOO•  z  u.  U.0OOOOOOCOOOO0O ( S J O O O O O O O O O O O O O O O 1-  U . O O O O O O O O O O ^ O J - ' O  O—————————————— CD OOOOOOOOOOCOOO •r OOOOOOOOOCOOOO K  Q — — — — — — —— — — — — — —  Q  o o o o o e . y e e ' o o c e - '  tft 0»C»ff'l?0o:o(i) J JJEO <r 0 — OOOO — >N >  l-e — — — — — — — — — — — — — —  — > N N O  U. »» — f>- — — — vAU"Vi/>l/"iU"( — u"*""'  o  »-o — — — — — — — — — — — — — — —  —  IN  o o o o o o o o c o o  OOOOOO — — — — — O — lrA^u.00000000000000 • t > » I » **> rt irt OOOOOOOOOOOOOO ft—*\coLil o o o o o o u o o o u o c j o > A OOOOOOOOOOSOCO o  U>  > • • • * •  • » • »  o  o o C — - - — — - - - — -  Ort U.jmrtr«.r- — — — — ^TitT-iA — ioAt/\  I - O  — — — —  -  — — — -  rttj03'O"0'EO©>47*>0* »_ O . — — — —  -  -  — — —  c* er T>  — — — — — —  ry  . —  —  It — — W>ifliftOl>«'0IJC**1 ,  VA . . — O O I_Q  — — — — — —  % ,  ,  » » • • * • • — IM rN — _ — N  — — — — — — — — -« — — — — —  O  iTi•—•*<• —•t>>7« « ina.i/N^i7'^iAi~- — < LU  — — — — — — — — — — — — — —  a £. >Ati.e>»»i**\P"r- — (M> *• " i»i I M ? U J 1/1 o m  <*^«-iriin^ir<'ddi*<iA4  >N N — — —  IN  u  acrt  ©OSOO — — — — — — — — O O O — — — r» N  I r—  o o o  IAI-V  <»_a  —  O — —  — 00—————————— £rt 0000 — — — — rsirt^, — rv<N  1>• rtr» — r- ^ — r— — i/U >J O u >u.»"Cr 1"* o Cl  C  w  u.  lufj-oo-fftMrooo-o-i-o--a M w ^ J> / • J - V O - O - C - O O O O J - O J J  O  v N , ». rt  — — — — — — — — — —  ,. » «  I*  — iM OOOO— NiNrt-^iArtNrt* U  r 00— ————————— 0 C — -• — — f ^ ^ r t r t J - j f i M r t v < u. c>rtr- — — — ff.^rt-^rt'^-^rt tf*. 0?>«'0i»0^^^'f0^j; o-n 0>Ni<^ujOirmitVAkMAi-nil /Asi^/^\uW%tfN>iO/\Ju-«iii«^-i4«tf4\>i/ot Z o o -4jrt•+ * rf> rt * .A O — — •V-M-Mrt-*-***---*-^ - J u.00000000000000 O <^ 00-'«N»( »«KS»3lflAi-.A «t Lit t t . • • . • • t • o•— *• • • •t » ••• • • • » • • • . «-l <N  O  O  C  -  O  — —  O  "  .  "  *  "  *  Vrti/> j-.  l  l  *  O  —  O N LU  O  O  O  O  O  O  Q  O  O  O  O  O  O  O  O  IA  O N  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  O  232  •••••••RUN N039.•»•••.. FERRIC OX IOE  CONC IPP1I  V O U S : 9.35  EST 1 SAT ES OF ROOT ME AN SCUARE STATISTICAL ERROR IN THE PARAMETER .1)462 .49466 ESTIMATES OF ROOT MEAN SQUARE TOTAL ERROR IN THE PARAMETERS .21184 .57654E-0I - E X P l - l l * 1 I MC I Ar:0 Fi IN ESTIMATE UT 2.6190 4.2464 .0 F IITEO VALUE CALC. RESISTANCE TIME 1 IS0H-HR-UEGF/BTUIX1O0,00U1 HOURS -0.0 0.0 0.0 2.05 1.79 0.25 2.84 2.91 0.42 3.42 3.5" 0.62 3. 76 4.03 0.S2 4.03 3.59 1.12 4.18 1.58 4.26 4.23 4.9) 2.08 4.24 3.59 2.25  21)0.  AMPS: 253.  HEAT FLOW SUPPLIED HEAT TLUX SUPPLIED  8073.6 46)4/.  B1U/SIFT-HR  PE! AO. 301 TOR-TINIETI27.0 DENSJTY:0.936 CRAM/CC T OUTLET138.3 FLOW RATE 0.1902  LBS.M/SEC  AVG IEMPM32.6 KINEMAIIC VISCOSITV:0.504  DEG F  DEC f DEC F  1  SO.CM/SEC  FLUID VELOCITY 4.817 REYNOLOS NO 25394.5 PRANDIL NO 3.20  FI/SEC  Data processed for top half of tube only.  HEAT SUPP 8073.6 PTU/HR HEAT IP7NS 7817.1 BTU/HR HEAT LOST 256.5 BIU/HR PERCENT HEAT LOST 3.18 HEAT FLUX TRANS. BIU/SOFT-HR 44674. NUSSFLT NO 116.5 RFILK 0.653 ft*! A l l 0.14* RTOTAL 0.798 SOFI-HR-OCG F/BTU  10CA117F0 WALL 1EMPCRMURES lUEG.Ft 1235 T275 T215 1255 1295 1315 OEG.F OEG.F OEG.F DFG.F OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 O.n 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  DEG.r  o.o o.o  T3)5 DEC.F 150.6 151.5 151.9 152.3 152.7 152.3 152.7 152. 1 152.)  T)55 DEG.F 149. B 150.6 151.1 151.5 151.5 151.5 151.9 151.9 151.5  T375 OEC.F 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 CO  IDCA112ED FOULING RESISTANCE ISOFT-HR-DEGF/DTUIX100.000 1215 1235 1255 1275 1295 T335 1315 1355 1)75 0.0 0.0 0.0 0.0 0.0  o.o O.O  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 1.80 2.69 3.59 4. 49 3.59 4.49 4 . 49 3.59  0.0 1. 30 2. 70 3.59 3.59 1.59 4.49 4.49 3.59  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  1395 OEG.F 154. 7 155.1 155.9 156.) 156.) 156.) 156.) 157.1 156.)  1415, OEG.F 158.) 159.5 159.9 159.9 160. ) 159.9 160.) 160. 7 159.9  1428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 126.5  TOUI OEG.F 1)8.3 138.) 138.3 138.3 138.3 138.3 138.3 138.) 138.3  IM DEG.F 153.4 154.2 154.7 155.0 155.2 155.0 155.3 155.6 155.0  OELTA H DEG.F 11.4 1677.4 11.4 1576.1 11.4 1561. 4 11.4 1 5 " . 1 11.4 14S9.2 11.4 155 1.1 11.4 1506.0 11.4 1521.6 1538.3 11.8  R XI000 0.5962 0.6345 0.6404 0.6447 0.6670 0.644 7 0.6640 0.6572 0.6501  TIKE HOURS 0.0 0.25 0.42 0.62 0.82 1. 12 1.56 2. 08 2.25  1395  1415  T428  TIN OEG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 126.5  TOUT OEG.F 138.3 1 38.3 1 31.3 138.3 13a.) l)a.3 138. 3 1 3B.3 1)6.3  REM  OELTA M OEG.F 11.4 1677.4 11.4 1576.1 11.4 1561.4 11.4 1551.1 11.4 1499.2 11.4 1551.1 11.4 1506.0 11.4 1521.6 11.8 15)8. )  RTOI X1000 0.5962 0.6345 0.6404 0.644 7 0.66 70 0.6447 0.6640 0.6572 0.6501  TIME HOURS 0.0 0.25 0.42 0.62 0.6 2 1.12 1.5* 2.08 2.25  0.0 0.90 2.69 3.68 3.5R ).5» 3.5B 5. )7 3.56  0.0 2.68 3.57 3.57 4.46 3.57 4.46 5.36 3.57  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  /  0.0 1.79 2.91 3.59 4.0) ).59 4.26 4.93 3.59  o o o e o o o e o O  O  O  O  O  O  O  O  M  O  O  SA>  o  -«r»  o o o o o o o o o o — r > • < ' • « m >  OOOOOOOOO** f OOOOOOtf-eraOw  • * U<E N ^'y'vr«\i/-00 'Ti > 1  ,  r-  — >-»*.-»-»-»'0~> r -f /•*^j«*<>mN^ — c — i>  W JO —  N I / W V W U - I - O O  — —  o -> —  ui V > o u;. Vi i/i < # • vr rt. C JI  — - "n  to OOOCOCOOO OOCOOOGOO  vCi »  PC  o  -«  OOOOOOOOO OOOOOOOOO-" CH OOOOOOOOO toe mw OOOOOOOOO v>c< • OOOOOOOOOO^ e OOOOOOOOO*** -i OOOOOOOOO-J OOOOOOOOO \1\ O OOOOOOOOOtl OOOOOOOOO Ku OOOOOOOOOO^ OOOOOOOOOTI • ••*•*••• , 0 OOOOOOOOOO-' OOOOOOOOO t/i OOOOOOOOO * O O* O> O* O• O• O* *f •OO •• > m 000000000 a>S OOOOOOOOOOM OOOOOOOOOti 'si»s/"v'>jl ^r\j»u^s>T-< < • • • • • • • • •  *  o  -  o o e o o o o o e  w  C  o  -«  o -< m *  • • * • • v/l o o o o o o o o o - n  o -»  x  z  J-OOOOOOOO"" — —  — a-*  — _  — —  _  o  0^-«-«-«J-<-w-»J-^CI —  z  WIOOOOOOOOTI CDOBccaooiaicsuecvoC  ^#WW«.V-M<-0 J O J cr J J J . O »- O X «4-.^» .J-J-*.0^O""* —  — —  *  o o  • » o »-  O O -J*-^-O BO 4»O »--fJty'O *' *' Ow  * • • • < > • •  Cl r-  OOOOOO-^-^CO ^ •c•->/owo/* « X »u Or-/-O OOOOOOOOOX OO^OOOtrv/itni— i « -£ O - O v* / *-J O«OOOOOCD*-^>0  ~ o a o o o A  cn  o o o o o o o o o x n ffl —  •  J  O  i  OMOOCO(B-JVJ'0?9  ~rw — — OOO OC — Mg-"-000000" COX CX rin vvrrco ~ rjrijO ON»iM ^ I/I o * rn X  CD  IM  234  •At..*.KUN  .\'039.«•*»»*•  FERRIC OXIOE CONC I P P M VOLTS: 9.35  ESI1KA1CS Ul ROOt MEAN SOUARt" STATISTICAL ERROR IN IHE PARAfEIEK .14226 .48191 ESTIMATES Cf RCOI MEAN S 3 U 1 R E 131AL ER-lUR IN IME PAKAMEIERS .59295E-0I .20016 ESTIMATE OF R O . R I ^ . AND 6 IN R f = R I N F U I . - E X P l - H » 1 IKCI •0 4.3522 2.2862 TIME CALC. RESISTANCE FITIEO VALUCHOURS 11SQFl-HR-OEGF/aTUlX100.0001 0.0 0.0 -0.0 0.25 1.49 1.90 0.42 2.49 2.69 0.62 3.79 3.30 0.82 3.99 3.69 1.12 3.79 4.0? 1.58 4.09 4.24 2.08 4.88 4.31 2.25 3.79 4.33  2130.  AMPS: 253.  MEAT FLOW SUPPLI ED HEAT FLUX SUPPLIEU  8073.6 46347.  8TU/HR ETU/SCFI-HR  BETA0.301 IDR»IINLET127.0 DENSIIr:0.9B6 GRAK/CC T OUTLET138.3 FLOW RATE 0.1902  LBS.M/SEC  AVG TEMP:132.6 KINEMATIC VISCOSIIY:0.504  DEG F  DEG F OEG F  SO.CM/SEC  FLUID VELOCITY A.817 RLYNOLDS ND 25394.5 PRANDU NO 3.20  FT/SEC  Data processed f o r whole tube.  HEAT SUPP 8073.6 BIU/HR HEAT TRANS 7817.1 8TU/IIR HEAT LOST 256.5 8IU/HR PERCENT MEAT LOST 3.IR HEAT FLUX TRANS. BIU/SOFI-HR 44874. NUSSELI NO 116.5 RFILH 0.653 RWALl 0.145 RI01AL 0.798 SOFI-HR-DEG T/BIU  LOCALIZED WALL TEMPERATURES T?15 T235 T255 T275 OEG.F OEG.F DEG.F DEG.F 148.6 147.8 0.0 152. 7 0.0 149.0 148.2 153.5 149.4 153.9 0.0 148.6 0.0 149.4 154.7 150.2 0.0 150.? 149.4 154.7 0.0 150.? 149.4 154. 7 149. 4 0.0 150.2 154. 7 150.6 0.0 155. 1 149.8 0.0 150.2 154.7 149.8  (DEG.F1 1295 T3I5 OEG.F DEG.F 152.7 153.1 153.9 153.1 153.5 1 54. 3 154. 3 155. 1 154.3 155. 1 154.3 155.1 154. 3 155.1 154. 7 153.5 153.9 155.1  T335 DEG.F 150.6 151.5 151.9 152. 1 152. 7 152.3 152.7 152. 7 152.3  1355 OEG.F 149.8 150.6 151.1 151.5 151.5 151.5 141.9 151.9 151.5  LOCALIZED FOULING RESISTANCE (SUFI -H*-DEGF/BTUIXIOO,000 1215 T235 T255 1275 1295 1315 1 335 1355 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0  0.0 0.90 1.80 3.60 3.60 3.60 3.60 4.50 3.60  0.0 0.90 1.80 i.60 1.60 3.60 3.60 4.50 4.50  o.n  1.79 2.69  4.44 4.4H  4.48  4.48 5. 1« 4.4a  0.0 0.90 1. 79 1.59 1.59 1.59 >. 59  4.4A  2.69  0.0 1.79 ?.69  4.46  4.46 4.48 4.48 5.36 4.48  0.0 l.HO 7.69 3.59 4.49 3.39 4.49 4. 49 3.59  0.0 1 .80 2. 7(1 1.59 3.59 1.49 4.49 4.49 3.59  T375 OEG.F 0.0 CO 0.0 C. 0 CO 0.0 0.0 0.0 0.0  1395 OEG.F 154. 7 155.1 155.9 156.3 156.3 156. 3 156.3 157.1 156.3  1415 OEG.F 156. 1 159.5 159.9 159.9 160.3 159.9 160. 3 160.7 159.9  T428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 126.5  TOUT OEG.F 138. 3 138. 3 138. 3 138.3 138.3 1 18. 3 116.3 138.3 118.3  TM DEG.F 152.0 152.7 153.2 151.7 153.8 153.7 153.9 154.2 153.7  DELTA H DEG.F 1 1.4 1829.4 11.4 1766.2 11.4 1727.5 11.4 '681 .2 11.4 1671.5 11.4 1631.2 11.4 1669.0 11.4 1643.3 11.8 1666.0  R XI000 0.5466 0.5662 0.5789 0.5948 0.5975 0.5943 0.5992 0.6085 0.600?  TIME HOURS 0.0 0.25 0.42 0.62 0. 6? 1.12 1.38 2.08 2.25  T3 75  1395  1415  T428  TIN OEG.F 127.0 12 7.0 127.0 127.0 127.0 127.0 127.0 127.0 126.5  TOUT OEG.F 131.3 118.3 116.1 138.1 118.1 1 19. t 11". 1 1 18.1 118. 1  RFM  0EL7A H OEG.F 11.4 1629.4 11.4 1766.? 11.4 1127.5 11.4 1681.? 11.4 1673.5 11.4 1611.2 11.4 1669.0 11.4 1641.3 11.8 1666.0  RIOT X1000 0.5466 0. 5662 0.5769 0.5946 0.5973 0.5943 0.5992 0.6063 0.6002  TIME MU'JR S U.O U.23 U.4? 0.6? 0.62 1.12 1.38 2.08 2.25  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.90 2.69 3.58 1.58 3.58 3.58 5.37 3.58  0.0 2.68 1.57 1.57 4.46 3.57 4.46 5. 16 3.57  0.6  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 1.49 2.49 3. 79 3.99 3. 79 4 .09 4.68 3.79  O O O O O O O O O O O O O • • • * • * * * * • • • • o o o o o o O O O O O O O  a ^ a * ft •• i  II  «»* r*  MS o u>> f  m » v O 00000000000000--0 • »••* • • • • Ul J» o o o o o o o o o o o o o - n i —  "M o o o  «« — JC-^tt-«-«iU'-v--00  IM « * V V> «C u  •^-.-••."i"«i-^U'N-»00 OC003OC300C00  o oo a o c o o oO O O O O U o o c o o t : o o o* • • • • u O o o Q "n  COQOOCOOOOCOO  o o o o o o o o o o o o o  o o o o o < o o o O O O O C7> o o o o o c a o o O © O O TI  o o o o o o o o o o o o o  o o o o a c Q o o c o o s  o o o o o c a o oo o o o o o o© o o c o o o  w  * • . • t vj  O C O O O O O O O O O O O vi COOOOOOOOCOOO  0 0 0 0""  w  O Oo o o c o o o o o c  OOOOOOOOOOOOO Ui  OOOOOOOOOOOOO OOOOOOOOOOOOO  O O O O O J O O O O  ooo  fx  o o a o o c o o oo o o o o » o o o o o c o o oC O O O  Ti  , -  4  4 4  GOO  O O o © O C O O O o o o O Cl o o O o o < O O o O O O O Tl  OOOOOOOOOOOOO o e o o o o o c o o o o o  N «g Ni \ fg  L  1 - 1 ^ - 1 -  o  3 O O O UlOOOOOOOTl  WCOOOUtOOOOOOO"  » 33 Cl C  3vC O M 13 -  ' * 4f • -t J" V. Pv — U C C u f w ^ K ' ^ w O  v"  t> e*  ?  c- ^ 1,1 ui >/. o  ^ C — -u » * f  Ul Cr U* U ^«iv>iWl^i>^*J 1  o o o o o o o o o o o o o  o o o o o o o o o o o o o x - o i?> ^  -- ~ o o  o  w >J4" J i O  • ••••<•*•>••<><  (ro*Ct*O"i>cj,^0u*uiuiw»-« ,  ,>  J> .T »- O- * »J r'v-.>C-gw'lOS rv">'u'0--wj>^'0<ouij>>--o >  -vivjru — — — o o o o o o o o — * • • • C Jl a * c » * «• ^, nj c- *• iv — c M m  T -*  iN,rV>Vi------>OOOOOOOC]>--' • • c * t»#'Off*'---JJ>i<0'J>-*j--OJCr-fi U'-*f»UI«J,WU*"»i\>U'. CO 00 lyi  236  ....•••HUN  N040.**••*••  FERRIC OX IOC CONC IPPKI V O U S : 9.)5  ESTIHA1ES TE ROOT ME.AN SuU\RE STATISTICAL ERROR IN THE PARAMETER .97/871-01 .366)9 ESTIMATES or RO'.II MEAN SSUAl'.l li)TAl ERROR 111 THE PARAMETERS .423A0E-O1 .158/5 ESIII'.ME 0: ROiKlNF.ANO [1 l-l Rr-RINFI I l . - f XP|-P«I l«EI .0 4.8267 2. .1710 ' . 11 ME CALC. RLSISIA'.Cf VALUt U I if HOURS II SUF l-hR-UCOh'/HTUl X I 0 0 , 0 0 0 1 0.0 0.0 -0.0 0.18 1.57 1.68 0.26 2.24 2.34 3.14 3.17 0.45 0.62 4.03 3. 77 0.88 4.48 4.23 4.32 0.95 4.48 4.26 4.50 1.13 1.47 4.26 4.68 . 1.65 4.03 4.73 4.79 2.08 4.93 4.81 4.48 2.47 2.85 4.62 5.82  2li0'.  AMPS: 253.  HE*I FIOJ SUPPLIED HEAT FLUX SUPPLIED  aOM.6 ".(,347.  STU/HR OIU/SUFI-HR  RETA0.30I T0R=TINLET127.0 DENSITV:0.9S6 GRAK/CC I OUILCII38.) FLOW RATE 0.1902  L8S.K/SEC  AVC TCMP:132.6 K1NERAI IC V1SC0S1TY:0.504  DEG F  0  OEG F DEC F  SQ.CM/SEC  FIUIO VELOCITY 4.617 REYNOLDS 90 25394.5 PRANOll HO 3.20  FT/SEC  HEAT SUPP 8073.6 BTU/HR HEAT TRANS 7817.1 8IU/ICR HEAT 10ST 256.5 BTU/HR PERCENT HEAT 10ST 1.18 HEAT FLUX TRANS. bTU/SCFT-HR 44674. NUSSCII NO 116.5 RFILH 0.653 RWALl 0.145 RIOIAl 0.798 SOFT-HR-DEG F/BTU  LOCALIZED WALL TEKPERAIURES 1235 1255 1215 1215 OEG.F CEG.F DEG.F OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  IDCG.FI 1295 1315 OEG.F DLG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  Data processed for top half of tube only.  7335 DEG.F 150.6 151.5 151.9 152. 3 157. 7 152.7 152.7 152.7 152. 7 152.7 15). 1 153. 1 153.5  1355 DEG.F 149.4 150.2 150.6 151.1 151.5 151.5 151.5 151.5 151.5 151.5 151.9 15 1.9 152.)  T375 OEG.F CO 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.o  LOCALIZED FOULING RESISTANCE ISOFT- HR-OSGF/B101X100,000 1335 1295 1315 1355 1375 1235 1255 1775 1215 0.0 0.0 0.0  o.o 0.0  o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.n 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.n 0.0  0.0 0.0 0.0 0.0 0.0 0.0  n.o 6.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0  o.n o.o 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 U.O  u.o u.o  0.0 1 .BO 2.69 3.59 4.49 4.49 4.49 4. 49 4.49 4.49 5. 39 5. 19 6./B  0.0 1.80 2.70 ).60 4.49 4.49 4.4 9 4.49 4.49 4.49 5. )9 5.)9 6.29  0.0 0.0 0.0 0.0 0.0 0.0  n.o 0.0 0.0 0.0 0.0  o.o 0.0  13 95 DEC.F 154. 7 t55.5 155.5 155.9 155.9 156.3 156.) 156. ) 156.) 156.) 156.7 156.) 157.1  7415 DEG.F 158.7 159. 1 159.5 159.9 160. 7 161.1 161.1 160. 7 160.7 160. ) 160.7 160.) 161.1  T42S DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.C 0.0 0.0 0.0  TIN OEG.F 127.0 I2T.0 127.0 127.0 127.0 127.0 127.0 126.5 127.0 127.0 127.0 127.0 126.5  7)95  1415  1426  TIN OEG.F 177.0 177.0 127.0 127.0 127.0 177.0 127.0 1/6.5 177.0 177.0 177.0 177.0 176.6  0.0 1 . 19 1. 79 2.69 2.69 3.58 1.48 ).58 ).5B ).5B 4.48 ).58 5.)7  0.0 0.B9 1. 79 2.68 4.46 5. 35 5. 35 4.46 4.46 3.67 4.46 3.67 5.35  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TOUT DEG. F 13B. 3 1)8. 3 1 38.3 1 31. ) 1)8. 3 138. 3 1 38.3 1)8. ) 13). 3 13B. ) 1 38. ) 1)8. 3 138. )  TOUT  ore.  F I3R. ) 1 3B.) 1 38.) 1 38.) 1)8. ) 1 38. 3 1)8. ) 1 38.) 1 )B. 3 1 JR.3 1 31. 3 1 i n .) 138. 3  IH OEG.F 153.4 154.1 154.4 154.8 155.7 155.4 155.4 155. 3 155. 1 155.2 155.6 155.4 156.0  RFM 0.0 1.57 2.24 3.14 4.0)  4.48 4.4H 4.26 4.76 4.0) 4.9 3 4.46 5.82  DELTA H OEG.F 11.4 1649.5 11.4 1603.1 11.4 1556.9 11.4 1527.5 11.' 14 72.0 11.4 1468.9 11.4 1468.9 11.8 1471.9 11.4 1463.6 11.4 1499.2 11.4 1472.1 11.4 1474.5 11.8 1434.9  DELIA OEG.F 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.8 11.4 11.4 11.4 11.4 11.8  R XIOOO 0.6062 0.6238 0.6423 0.6547 0.6 79 3 0.6808 0.6608 0.6794 0.6741 0.6670 0.6793 0.6782 0.6969  RTOT H XIOOO 1649.5 0.6062 1603.I 0.6731 1556.9 0.642) 1527.5 0.6547 1477.0 0.679) 1461.9 0.6808 146ft.9 0.6108 1471.9 0.6794 1411.6 0.6741 14 19.2 0.667U 1 4 77. 1 0.6 I I I 1474.5 0.6 IB7 1434.9 0.6969  TIME HOURS 0.0 0. 13 0.28 0.45 0.62 0. 81 0.95 1. 1) 1.47 1.65 2.UB 2.47 2.85  1 IKE HOURS 0.0 0.11 0.21 0. 45 0.67 0.81 0.96 l.l) 1.47 1.65 7.0"  2.47 2.85  237  • • • • • • • R U N  N040.•«**»••  FERRIC OXIOE CONC IPPMI VOLIS! 9.3S  . 4/.on».c _n  AMPS: ?53.  MEAT I LOM SUPPLIED MEAT FLUX SUPPLIEU  b073.b 46147.  BETAO.301 TOR=IINLEIl?7.0 DSN$IIY:0.986 GRAM/CC I OuriEI138.3 FLOW RATE 0.1902 AVG TEMP:132.6 KINEMATIC VISC0SITY:0.504  EST1MAHS OF ROOT MEAN SOUARE STATISTICAL ERROR IN THE PARAMEIER .869451-01 .76154 ES1IHAIIS OF ROOI MEAN SGUARE TOTAL ERROR IN I ME P AR AM FIFR 5 .14218 .46906E-0I i ESIIMAIF OF RU.RINF.ANO 8 IN RI >R 1 ;IF I I 1 .-E XP I - --IIME I .0 7.0171 1.6332 TIME CALC. RESISTANCE FITTED VALU MUURS 11SQFI-HR-uEGF/CUU1X100.0001 0.0 0.0 -0.0 0.18 1.40 1. 79 0.26 1.89 2.58 0.45 2.99 3.65 0.62 4.70 4.47 0.68 5.98 5. 35 0.95 5.98 5.53 1.13 6.58 5.91 1.4 7 6. 38 6.38 1.65 5.88 6.54 2.08 6.68 6.78 2.47 6.28 6.89 2.85 7.37 6.95  7130.  DEG F OEG  f  L8S.M/SEC DEG F SO.CVSEC  FLUIO VELOCITY A . 8 1 7 REYNOLDS ND 25399.5 PRANOTL NO 3.20  FT/SEC  HEAT SUPP 8073.6 8TU/HR HEAT IRANS 7817.L 9IU/HR HEAT LOST 256.5 BIU/HR PERCENT HEAT I OS I 3.IB HEAT FLUX IRANS. BIU/SOFT-HR 44874. T1USSELT NO 116.5 RFILM 0.653 RWAll 0.145 RTOTAL 0.798 SCFT-MR-OEG F/BTU  LOCAL I ZED WALL TEMPERATURES T21S 1235 T255 T275 OEG.F DEG.F OEG.F OEG.F 148.2 147.4 153.1 0.0 151.5 149.0 143.2 0.0 153.5 149.0 148.2 154.3 149.4 149.0 155.5 150.6 149.8 156.3 161.5 150.6 156. 1 151.5 150.6 156. 7 0.0 152.3 151.5 156. 7 0.0 152.1 151.5 156. 3 151.9 151.1 156.7 151.9 151.5 151.9 152.1  151.5 151.9  156. 3 157. I  IDEG.FI T295 T3I5 OEG.F DEG.F 152. 7 133.5 153.1 153.9 153.5 134.3 153.9 154.7 135.9 155. I 155.9 156.7 135.9 156. 7 156. 3 137.1 155.9 154.7 135.5 136. 7 156. 3 136. 7 155.9 156.7 155.9 157. I  Data processed for whole tube.  T135 DEG.F 150.6 151.5 151.9 152. 3 157. 7 15?. 7 15?.? 152.7 152. 7 152.7 153. I 153.1 153.5  T355 DEG.F 149.4 150.2 150.6 151.1 151.5 151.5 151.5 151.5 151.5 151.5 151.9 151.9 152.3  T375 DEG.F CO 0.0 0.0 CO CO CO 0.0 0.0 0.0 0.0 0. J 0.0 0.0  T395 DEG.F 154.7 155.5 155.5 155.9 155.9 156. 1 156.3 156.3 156. 1 156.3 156.7 156.1 157.1  LOCALIZED FOULING RESISTANCE ISOFT-MR-OEGF/BTU)XIOO,000 1215 1235 1255 1275 1295 TJ1S 1315 1155 1)75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0. 0 1.80 1. no ?.70 5.40 7.19 7.19 8.49  0.0 1.60 1.60 1.60 5.40 7.20 7./0  6.09  8.10  0.0 0.90 0.90 ?.G9 5. 18  7.1 7 7.11  0.0 0.90 1.79 2.69  5. 16 7. I 7 7.17  6.06 6.06  7.17 6.06  8.09 8.99  7.17  I. I 7  0.0 0.90 1.79 2.69 5.38 7.17 1.17 6. 7. 1 7 7.17  2.69 1.59  0.0 1 .80 2 . 70 1.60 4.49 4.49  4.49 4.49 4.49 4.49 5. 19 4 . 19  6.29  0.0 U.O CO 0.0 0.0 0.0  o.u  0.0 0.0 0.0 0.0  o.o 0.0  0.0 1.79 2.69 2.69  T415 DEG.F 158.7 159. I 159.5 159.9 160.7 161.1 161.1 160.7 160. 7 160. 3 160. 7 160.3 161.1  T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN OEG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 126.5 127.0 127.0 127.0 127.0 126.5  TOUT DEG.F 1 33.3 119. 1 138. 3 133. 1 113. 3 138. 3 1)8. 3 na. 3 1)8. 3 113. 3 1)3. 1 1)8. 3 133. 3  7415  T428  UN CEG.F 127.0 127.0 127.0 127.0 127.0 127.0 177.0 126.5 127.0 127.0 12 7.0 127.0 126.5  TOUT DEG.F 1)3. 3 lid. 3 133. 3 1)3. 3 1 13.1 111. 3 1 13.1 1)8. 1 1 18.1 1 18.1 I 18. 1 1 13. 1 1 18.3  0.0 0.89 1.79 7.68 4.46 5. 15 5. 35 4.46 4.46 3.47 4.46 1.47 5. 15  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.u  0.0 0.0 0.0 0.0  TH OEG.F 152.0 152.7 152.9 153.4 154.2 154.7 154. 7 155.0 154.9 154.7 155.0 154.8 155.3  DELTA H OEG.F 11 4 1826.6 11 4 1770.4 11. 4 1 747.6 11 4 1707.4 11. 4 •64 7.1 11. 4 .611.1 11. 4 1611.1 11. 8 1531.9 11. 4 1604.4 11. 4 1617.) 11 .4 1569.7 11. 4 1602.6 11. 8 1554.2  R X1000 0.5475 0.5648 0.5722 0.5657 0.6071 0.6207 0.6207 0.6)21 0.62)1 0.6 16) 0.6291 0.62)9 0.6434  TIME HOURS 0.0 0. 13 0.28 0.45 0.6? 0.66 U.95 1.1) 1.47 1.65 ?.03 2.47 ?.85  H DELTA RIOT X 1000 DEG.F 11. 4 1826.6 0.54 74 11. 4 1 7 70.4 0.6643 11. 4 1 74 7.6 0.5772 2.99 11 .4 1707.4 0.5857 4.78 11. 4 1647.1 0.6071 5.96 11. 4 1611.1 U. 4/0 7 5 . 'II 1 1 4 . 1611.1 0.670 7 6.48 11. 8 1481.9 0.6 121 6 . J8 I I . 4 1604.4 0.6/3) 5.68 1 14 . 1617.) 0.616) 6.66 11 .4 1589.7 0.679 1 6.28 11. 4 1607.8 0.6717 7.)7 11. 8 1554.2 0.6414  TIME HOURS O.U o. in 0.28 0.45 0.62 0.6" 0. #5 1.1) 1.47 1.65 2.06 7.47 ?.65  RFM  0.0 1.40  I.HI  O O O O O O O  WO  O O O O O O O  V J*-  mMO  0000©©00*-><""t « • • • • • • • vi >  OOOOOOOtl rO "VO OOOOOOrtI'wNi O •O *O *O >O •O •O * •OOOOOO*"V*I J C O O O O O O O V*w"»* O O * C OOOOOO "lh * OO•OO1OO•O 1 v OOOOOOOOOOOOOOOO"** o OOOOOOO ruf QCOOOOO V * OOOOOOOO-^C W OOOOOOO IV — OOOOOOOTi Um " O—— • * Out OOOOOOO v o OOOOOOO"" ^ —X -* OOOCOOO U * OOOOOOOOo "OOOOOOO wo OOOOOOOTiVI * w »- O w a ——O N*,n.to vviv^v^^omto y ltWuiNI*OOgV «l •V> V>w"*W-flO*)\TI I O -i O 7O OC O O O • VO iOOOOOO-J OO•••<<**Vi OOOOO*!* r  • *  V • » * • » * >  •  tVIJC  VI  •  o o o o o o o o - o m V o  — — — — — o-t .1 gl wl V" / Hi v" "> W J>W M W VI  «  — — .0*--l , - , . _ » . . - » - . - o -«  * o o o o o o •  w -J  IT U>  C/i'J'wiOO «w C "V  4*  — —  —  vvivivviviuiniui to V* . O •— * Vi Tl * w O O *• — ~ — O -t .t*t*****Vi — — — O-O-flO.— 0— O OOOOOON*n tO ••>»••* OOOOOOOTI —> - — "- — "-"-(D z  N J> W ^ t>* 4 O  W  W V J* V 9 O V O* -«J J  VI  O O O O O O O  *  O O O O O O O  03  r-i >  ~ — — — — — o ^rsj»N«i\irvr\>*v"*Ti"*  • •  V O O O O V O T l  •JfU"OI\iW*JrJrTi^ tr^-j-g-*o--Nin —  z  »  o  »  o ** ** ^ — o  o» <** *• w  3:  VOOOOViOT H-HMr-i-i-OH  PV V < C o> rsi 00  ^ . _ .- — r. . . . . , « »*•*-•**  O O o «-• T> t»  J- * *• * V O O O -J  *•  V  1  .-.- — . - o 0»  -a «J v> *•  to  I-  31 IV  saouiDiiaciC vi ui vn ui ^ w vra^ O-J-OOOlAOT* i— ^ i- « rn in 1  — ~ — ~  I  o o  *—M  o «-  O O C O O O O K 7 > - • • ^ ^ o ^ ^ o o a — ^-O-v-AOO-* O — -C -.---zO W <0 9- W N /  I —  C  ——O O O O O O —  fxj a>  -JO  SJ  "  X *• — O » IV  •n > O O o x *J ^ /• w J> ni N X " OOOOOOO VI >  Fc-S-uli-OOTJ o*-'v*-''-»o 1  -t— — — OOOOO CAO •4"\<CBv/iJ>*-~O rn T*  IX) OJ CO  239  .......RUN N041.•»»«*»• (E«K1C OXIOE COHC IPPM) VOLTS: 9.35  AMPS: 233.  HEAT HOW SUPPLIED HEAT FLUX SUPPLIED  80/3.6 46)47.  8 5TU/ SFT-HR  BETAO.301 TOR«It.Nlf.H27.0 DENSI1Y:0.986 CRAM/CC T 0UILEU38.3 FLOW RATE  ESTIMATES OF ROOT MEAN SCUAKE STATISTICAL ERROR IN I HE PARAMETER .2244) . A A b19 ESTIMATES OF ROOI MEAN SCUA3E [DIAL ERROR IN THE PARAMETERS .12887 .25621 ESTIMATE OF RO.RINF.ANO 8 IN RF = RINF I I I,-EXPI-8*11 ME 1 8.9096 1. 1 9'. I TIME CALC. RESISTANCE FITTED VALUE HOURS I1SCFT-Hk-oEoP/HlulX100. 0001 0.0 0.0 -0.0 0.18 1.30 1.72 0.42 3.09 3.51 0.57 A. 08 A.AO 0.87 6.77 5.76 1.20 6.87 6.78 1.77 7.47 7.83  2130.  0.1902  AVC TEMP:132.6 KINEMATIC V1SC0SI1«:0.504  DEC F DEC F  LBS.M/SEC DEC F  FLUIO VELOCIIT 4.817 REYNOLDS NO 25394.5 PSAND1L NO 3.20  Data processed for whole tube.  HEAT SUPP 8073.6 BIU/HR HEAT IRANS 7817.1 BIU/HR HEAI LUSI 256.5 BTU/HR PERCENT HEAT LOSI 1.18 HEAI FLUX TRANS. OTU/SOFI-HR 44874. NUSSELT NO 116.5 RfllH 0.653 RWALL 0.145 BIOTAl 0.798 SOFT-HR-DEG F/BTU  LOCALIZED WALL TEMPERATURES (0EG.F1 1235 T295 1215 1255 T275 T315 OEG.F DEG.F OEG.F OEG.r DEG.F DEG.F 148.6 148.2 153.5 153.5 0.0 153.1 149.4 154.1 148.6 153.5 154.3 0.0 149.4 149.8 154.3 155.1 0.0 154.3 154.7 150.2 149.8 155. 1 0.0 155.S 151.9 151. 1 156.7 155.9 157.1 0.0 151.9 156.7 156. 3 156. 7 152.3 0.0 151.9 152.7 157.1 157.1 0.0 136.1  T135 OEG.F 151.1 151.9 152.7 151.1 154.3 154. 1 154. 3  1355 UEG.F 150.2 150.6 151.9 152.1 143.5 151.5 153.5  T375 DEG.F 0.0 0.0 0.0 0.0 0.0 CO 0.0  LOCALIZED FOULING RESISTANCE ISOFl-MR-OEGF/OTUIXI CO,000 1155 7215 1235 1255 1275 1295 T3I5 1315 T375 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 1.80 2.70 3.60 7.19 8.09 8.99  0.0 O.90 2.70 3.60 6.29 8.09 6.09  0.0 1.79 1. 79 3.58 7.17 7.17 8.06  0.0 . 0.90 2.69 1.59 6.27 7. 1 7 7.17  CO 1.79 3.58 4.48 6.06 7.17 6.06  0.0 1.60 3.59 4. 49 7. 16 7.18 7. 16  0.0 0.90 1.59 4.49 7.16 7.16 7.13  0.0 0.0 0.0 0.0 CO 0.0 0.0  T395 DEG.F 155.5 155.9 157.1 157.5 157.9 157.5 158.3  T415 OEG.F 159.1 159.5 160.7 161.1 161.9 161.5 161.9  1428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN OEG.F 127.0 126.5 177.0 127.0 127.0 127.0 126.5  TOUT OCG. F 118. 3 138. 3 1 38. 3 138. 3 133. 1 133. 3 138. 3  TM DEG.F 152.5 153. 1 153.9 154.4 155.6 155.6 155.9  T395  T41S  1428  TIN OEG.F 127.0 176.5 12 7.0 171.0 127.0 12 7.0 126.5  TOUT DEG.F 1 IS. 3 133.1  RFM  0.0 0.90 3.56 4 .47 5.37 4.47 6.26  0.0 0.89 3.57 4.46 6.74 5.35 6.24  0.0 0.0 0.0 0.0 0.0 0.0 0.0  1)3.1  133.3 1 13.) 113.1 1)6.)  0.0 1.10 3.09 4.08 6.17 6.87 7.47  DELTA H DEG.F 11.4 1782.3 11.8 1714.1 11.4 1663.7 11.4 1629.6 11.4 1544.9 11.4 154'.6 11.a 1515. 1  R X100O 0.5611 0.5e34 0.6011 0.6136 C6473 0.6470 0.6600  TIME HOURS 0.0 0. 1 8 0.42 0.57 0.87 1.20 1.77  DELTA DEG.F 11.4 11.8 11.4 11.4 1 1.4 11.4 11.8  RIOT X1000 0.5611 0.46)4 0.6011 C6116 0.647) 0.6470 0.6600  TIME HOURS 0.0 0.18 0.42 0.57 0.87 1.20 1.77  H 1762.3 1114. 1 1661.7 1629.6 1544.9 1545.6 1515.1  •o o• *o *o •o •o«o t s>a -ri  m fs» O  O O O O O O O  » -J  n  69 o u  w  o  O O O O O O O O — O * • • • • • I • VI )T* o o o o o o o * * * . < — W V i * ! " * V> A n r\, c N' ,M » O < i£ » r< to V" TC ^ M !» M > t l P-  *»J c  — g- — * WVi*** > C  N z  \ o o  •— -  "  -I  ^ jattOviiti  » V'vflV'Vvntf'vi'TiiV-'  totou»-- m wi a. v  \r <j  i , tf,v' n \ 3 0- [ *• \V» Jhtou# Ci o n • • • • • • • • V< O 1  toto^-WtolXi— Tl • wf.»/« vf. ii, u> • ui m w \f JO * t>« « yi LB / * UlC O — O *• O c * c* a " i >••<••< u » OOOOOOoOto Tl  -sj  O -sl Cf> ./• w •— O  •  . . . . « .  l - l V —  0) j O O O O O O O  to  o c c o o o c  u.  V  I  V C  OO OOOOO • ••»••« OCOOOOO OOOOOOO OOOOOOO  o o o o o c o - n  V  uw ,o • o OOOOOOOOd to v*. > >O >O *O >O *O* OO T> iu o -* OOOOOOO to m to OOOOOOO 0* OOOOOOOTi  *  O O O O O O O T I  o o o o o o o o -  o  1  O O O O O O O C M S S/l  OOOOOOO *• V OOOOOOO S " * •. OOOOOOOTI OOOOOOO > OOOOOOO » OOOOOOOTi O o o o o o o o —  2 l"*0000\/»OTt  V*OOOOJiOTi  _ _ o totos.toWtou.rWO  cottcoaiCDicDOC  Tl  - N N W M f O  "°  o N"* o  rc  o > o  r — — ^---i-OO o  -C  0<BV — 00*-TI  . O r-  »  t> ui ty <J* ~* •o v" *• C  O O Jiw » N 44-ISUi JO X Hg O CO — <0 •— -0  O O O O O O O X J O O i> r/. i n > ui ui o a V>N»t>0~-g)'VO-*: OQ— O O ISi IS* JJ 43 ttf -4 e*>  I -»  n  I" P> -J •» O O <"toJM ^ OB ->J -0 *- •«  O O O O O O O  • - — o o o o o a — e x  - —  XNi{ilv^> O X rn  g M Oi I" * - O )  ,  O C O O O C  c  >  >ll  241  •««****RUN  N042.•*•**••  FERRIC OXIDE CONC IPPMI VOIIS:13.50  ESTIMATES CF ROOT MEAN SCUARI- STATISTICAL ERROR IN THE PARAMETER 2.6492 3.4941 ESTIMATES CF ROOT MEAN SCUARE I01AL ERROR IN THE PARAMETERS 1.2636 1.5747 ES1IKAIE Cr RO,RINF,A,\C 8 19 RF - R INF I 11 .-EX P I-C • I I PE I  2130.  ANPS: 355.  HEAT FLCW SUPPLIED 16356.6 HEAT FLUX SUPPLIED 9)697.  BTU/HH BIU/SOFT-HR  BETAO.301 TCR=TINLET127.0 DENSITY:!).986 CRAK/CC 1 0UILEU49.9 FLOW RATE 0.1888  LBS.K/SEC  AVG TEMPU38.4 K II.EKAI IC VISC051IY:0.4B0  SO.CM/SEC  .4646  TIME HOURS 0.0 0.18 0.35 0.55 0.70 0.83 1.06 1.30 1.47  CEC F CEG F  CEC F  FLUIC VELOCITY 4.790 REYNOLDS NO 26466.8 PRANOIl NO 3.03  .35411  CALC. RESISTANCE FIITEO VALUE IISCFI-IIR-DEGF/BTUIXICO.OOOI .0 -0.0 1.17 0.46 1.41 0.87 1.27 1.32 1.07 1.64 1.46 1.90 2.68 2.37 2.67 2.76 3.02 3.03  FT/SEC  HEAT SUPP 16356.8 BTU/HR HEAI TRANS 15633.8 BTU/HR HEAT LOST 723.0 BTU/HR PERCENT FEAT LOSI 4.42 HEAT FLUX TRANS. BIU/SOFT-HR B9746. NUSSELI NO 121.3 RFILH 0.624 RUALL 0.143 RTOTAL 0.766 SOFT-HR-DEG F/BTU  LOCALI2FD WALL TEMPERATURES 1215 1255 T235 1275 OEG.F DEG.F OEG.F CEG.F 0.0 175.0 174.6 182. 1 0 . 0 175.8 175.8 183.7 0 . 0 176.2 176.2 183. 7 0 . 0 176.2 175.8 183. 7 0 . 0 176.6 175.8 U J . 3 0 . 0 177.0 176.6 183.7 0 . 0 177.8 177.4 ie4.9 0 . 0 171.8 177.8 1E5.7 0 . 0 176.2 177.8 166. 1  IDEG.FI 1295 1315 OEG.F DEG.F 104.1 187.5 183. 7 185. 3 163.3 185. 3 163.7 135.3 183.7 184.9 163.7 165. 3 186.3 166.5 184.9 166.5 let.6 185.3  T335 OEG.F 130.6 181.3 181.7 181.3 181.7 181.7 182.9 162.9 183.3  T355 DEG.F 179.8 180.9 131.3 180.9 180.6 181.3 182. 1 162.1 182.1  T375 OEG.F CO 0.0 CO 0.0 CO  c c  CO CO CO  LOCALI2E0 FOULING RESISTANCE ISOFT-HR-OEGF/BTUIXI 00,COO 1215 1235 1255 1775 1295 T315 T335 1355 1375  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.88 1.32 1.32 1.76 2.20 3.09 3.09 3.53  0.0 1.32 1.76 1.32 1.32 7.71 3.C9 3.53 3.53  CO 1.75 1. 75 1.75 1.32 1.75 3.C7 3.94 4. 38  0.0 1.32 0.68 1. 32 1.3? 1.3? 3.C7 2.63 3.07  0.0 1.31 1.31 1.31 0.86 1.31 2.61 2.63 3.06  c o 0.68 1.32  ces  1.32 1.3? 7.61 2.63 J.OT  0.0 1.3? 1.76 1. 17 0.88 1 . 76 7.64 7.64 2.64  0.0 CO 0.0 0.0 CO 0.0 0.0 CO 0.0  T395 DEG.F 167.6 168.4 188.8  T428 DEG.F 0.0 0.0  133.0 I8R.4 169.2 190.0 189.6  1415 OEG.F 143.5 194.3 194.7 194.3 193.9 193.9 195.5 195.5 195.1  T395  T415  1426  ite.e  0.0 0.87 1.31 1.31 0.44 0.67 1.75 7.6? 2.18  0.0 0.87 1.30 0.67 0.43 0.43 7.1 7 7.17 1.74  o.c  0.0 0.0 0.0  o.c  0.0 0.0  0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0  TIN CEG. F 127.0 127.0 127.0 121.C 127.0 127.0 127.0 127.0 127.0  TOUT IEG.F 149.9 149.9 1 0.3 1 0.3 1< • .9 149.9 149.9 149.9 150.3  TIN OEG.F 127.0 l?7.0 127.0 127.0 177.0 127.0 127.0 127.0 127.0  I0U7 OF.G.F 149.9 149.9 150.3 150.3 149.9 149.9 149.9 149.9 150.3  TM DELTA H DEG.F OEG.F 182.2 23.0 1616.3 1B3. 3 23.0 1578.1 183.5 23.4 1576.6 183. 3 23.4 1563.5 183.2 73.0 1583.2 183.5 23.0 1571.4 164.6 23.0 15)3.5 184.8 23.0 1526.3 184.9 23.4 1531.1  RFM 0.0 1.17 1.41 1.77 1 .07 1.46 7.68 7.B7 3.02  0ELT1 H DEG.F 73.0 1616.3 ?3.0 1578.1 23.4 1573.8 23.4 I5S1.5 73.0 1533.2 21.0 1571.4 23.0 151).5 71.0 1573.3 23.4 15)1.1  R X1C00 0.618? 0.6337 0.63)4 0.6315 0.6316 0.6364 0.6521 0.6543 0.6531  TIME HOURS 0.0 0. 18 0. 35 0.55 0. 70 0.83 1.06 1. 30 1.47  RTOT XICOO 0.6167 0.633? 0.61)4 C.63I5 0.6)16 0.6364 0.6571 0.654) 0.6511  TIME HOURS CO 0. 16 0. 15 0. 55 0. 70 0.6 ) 1.08 1. )0 1.47  242  «*****»RUN  N043. »*••«*•  FERRIC OXIDE CONC I CPS I VOLIS: 9.35 HEAT HOW HtAl F L U X  IMPS: 253.  SUPPLIFl. SUPPLIEU  BETAO.301 OENSIIY:D.9S6  E073.6 46347.  CIU/HR  BTU/SCfT-HR  10R=riNlCII27.0 GRAH/CC I 0UILEU41.8  FLOW RATE 0.1442 AVG  ESTIMATES OF ROOT MEAN SOUARE STATISIICAL ERROR IN I HE PARAMETER .70252E-OI .2R279 ESTIMATES CF R001 MEAN SOUARE IOIAL ERROR IN THE PARAMETERS .13059 .52568 ESTIMATE OF RO, R 1 'IF , A N D 3 IN RF =-R 1NF I I 1 . - E XPI-h • 11 *E I 5.9149 4.8757 TIME CALC. RESISTANCE F I I I C O VALUE HOURS I ISOFI-HR-OEGF/RTUIXIOO.OOOI 0.0 0.0 -0.0 0.07 1.40 I.71 0.12 2.41 2.62 0.1? 2.81 3.33 0.27 4.61 4.33 0.45 6.92 5.26 0.83 4.32 5.81 1.17 3.21 5.90 1.27 3.91 5.90 1.45 5.7? 5.91 1.58 6.92 5.91 1.78 10.02 5.91  2130.  TEMPII34.4  KINEMA1IC VISC0SIIY:0.496  OEG F DEG F  LBS.M/SEC DEG  F  SO.CM/SEC  F l U I D VELOCITY 3.655 REYNOLOS NO 1955C.0 PRANOTl NO 3.15  FT/SEC  HEAT SUPP 8073.6 BTU/HR HEAT TRANS 7727.9 BIU/HR HEAT LOSI 345.7 BTU/HR PERCENT HEAT LOST 4.28 HEAT FLUX TRANS. BIU/SOFT-HK 44362. NUSSELT NO 94.6 RF ILK 0.803 RUALL 0.144 RTOTAL 0.947 SOFT-HR-DEG F/BIU  LOCALIZED WALL TEMPERATURES T235 T 2 55 1215 1275 DEG.F DEG.F DEG.F DEG.F 0.0 154.7 153.9 159.9 0.0 154.7 154.3 160.3 0.0 165. 1 160.7 155.5 155. 1 0.0 155.9 161. 1 0.0 155.5 161.9 156.3 0.0 157. 1 156. 7 163. 1 0.0 156. 7 156.7 161.9 157.1 0.0 155.5 161.5 157.1 155.9 0.0 161.9 0.0 156.7 162.7 157.5 157.9 157. 1 0.0 162. 7 159.1 0.0 158.3 164.7  IUEG.FI 1315 1295 OEG.F DEG F 159. 5 160 7 159.9 161 1 160.3 161 5 160.7 16 1 9 161.5 162 7 16?. 7 16) 9 161. 1 161 9 161. 1 161. 5 161. 1 161. 9 161.9 162 7 162. 7 161.5 163.9 165. 1  1335 OEG.F 157. 1 157.9 158. 3 158. 7 159. 5 160. 3 156.7 153.7 159. 1 149.9 160. 1 161.5  1355 DEG.F 156.3 157. 1 1 57.5 157.5 154.7 149.5 157.9 157.9 158. 3 159.1 149.5 160. 7  T375 DEG.F 0.0 CO 0.0 0.0 c c 0.0 0.0 0.0 0.0 0.0  o.c  0.0  lOCALIZED FOULING R E i t 5 1 A.NC E C S O F T - H K - D E G F / f l Til] XI 0 0 . 0 0 0 1255 1275 1315 1215 1235 1 29 6 133S 1 )55 1)75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 1.81 2.7? 3.6? 5.43 9.05 5.4) 5.43 6.34 7.24 9.93  0.0 0.91 2.7?  ?./?  3.67 6.34 6. 14 ).6? 4.6) 6. )4 7.74 9.96  0.0 0.90 1 .60 2. 71 4.51 7.71 4.51  J.ol  4.41 6.31 6. 11 10.61  0.0 0.90 1.61  0.0 0. 90 1 .60 71 4.51 71 4. 41 7.21 7. 27 1. 61 7. 7 1 1.61 1. 80 ).6I 7. 71 3.41 4. 31 7. 77 6. ) l 9.92 9. 91  t. t.  0.0 1.81 7. 71 3.6? 5.42 7.23 1.67 1.6? 4.42 6. 11 7.7) 9.9 1  0.0 1.61 7. 71 7.71 6.4 1 7.71 1.42 1.62 4.57 6.31 7.71 9.94  0.0 0.0 0.0 0.0 0.0 O.U 0.0 9.0 0.0 0,0 0.0 0.0  T395 DEG.F 161.9 163.1 161.5 163.5 164.) 165.5 163.5 163.1 163.5 164. 3 165.1 166. 7  T415 OEG.F 167.1 168.3 168.3 167.9 169.1 1 69.9 167.9 167.5 167.9 169. 1 169.9 171.1  T42B DEG.F D.O 0.0 0.0 0.0 0.0 0.0 ' 0.0 0.0 0.0 0.0 0.0 0.0  TIN OEG.F 127.0 127.0 127.0 126.5 12? .0 127.0 127.0 126.5 127.0 124.5 12 7.0 • ??.o  TOUT DEG ,F 141 .8 141 . 4 14 1.8 141 .8 141 .6 141 .e 141 .8 141 .4 141 .4 141 .4 141 . 4 141 .6  TM OEG.F 159.0 159.6 160. 1 160.2 161.0 16?. 1 160.9 160.4 160.7 161.5 162. 1 163.4  1395  1415  1426  TIN DEG.F 177.0 127.0 127.0 176.5 127.0 171.0 177.0 174.5 177.0 176.5 177.0 177.0  TOUT OEG.F 141.8 141.4 141 .8 141.8 141.8 141.8 14 1.6 141.4 141.4 141.4 141.4 141.8  RFM  0.0 2.70 3.60 3.60 5.40 6.10 1.60 2. 10 1.60 4.40 7.7 0 10.80  0.0 2.69 2.69 1.60 4.49 6.78 l.fU 0.90 1.60 4.49 6.23 8.97  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0  0.0 1 .40 2.41 7.6 1 4.61 6.9? 4. 1? 1.7 1 1.91 5. 7? 6.97 10.02  DELTA H DEG.F 14.9 1425.1 14.4 1)75.4 14.9 365. 1 15. ) 1)44.2 14.9 1312.2 14.9 1263.6 14.9 13)3.6 14.9 1323.4 1 4.4 1)22.2 14.9 12 72.6 14.4 1257.1 14.9 1206.7  DELTA DEG.F 14.9 14.4 14.9 15. 1 14.9 14.4 14.9 14.9 14.4 14.9 14.4 14.9  X1000 0.7017 0.7271 0.7)26 0.74 3 9 0.7621 0.7914 0.7493 C.7526 0. 756) 0.7C56 0.7955 0.3287  TIKE HOURS 0.0 0.07 0.12 0.17 0.27 0.45 0.8 t 1.17 1.27 1.45 l.'56 1.78  H RIOT X1000 1475.1 0.701 7 1)75.4 0.7271 1165.1 0. 7)26 1144.7 0. 74 19 1112.7 0.7621 1261.6 0.7914 1 1)1.6 0.7496 1)73.4 0.7423 1)/?.? 0. 756 1 1 2 77.6 0.7646 1 74 7. 1 0.7943 1206.7 0.8267  TIME IIUURS 0.0 U.U7 0.12 0.17 0.2 7 0.44 0.3) 1.17 1.77 1.44 1.5 8 1 . 76  R  1/1 C D fc-OOOOOOOQ *- z  Oi"^ — ^ — ^C0»Q> — l * — rsl O O — -\ «>»- — — — rvj  O *  O O j ' j j - * - < r < 7 ' v g 4* OCMOOOOOOOGC-OO I T » M n O ' V * O V —/ 4 >  •* u.  j o • • • * »» w u . m j j « « 4 0 4 4 « 4 4 O O — — — — — — — — — — —  I— i N N r V N N N N i s j ' i j i s i N — - - —  k If O il> 0" f rA N lA irt ll*> >• [u 4 4 A 4 4 < K 0 < « O Q— — — — — — — — — — —  -r <r -J  DiJ'si'NjiV.^^rvi'si'Nirursifsi O u» •* •* j- v * r-O — — — — —  a"  C*D£iMF- — rN,w3 — O — C J" O A 1,1 ? -ft.— "V  «  0 0 - « - - - 1 \ N " »  f»  Z • • • — O 4 4 4 < 4 4 4 4 4 Q — — — — — — — — — — —  U . O O O O O O O O O O O <[}.>•. • v O O O O O O O O O O O O  •••t...t  09  o  O O O O O O O O O O O  rx  *-\ . . . . . . .  vA *  -r  O O O O O O O O O O O - r e 4 ' N 4 4 C C O # O s T * C l - *»**.«"--srs-\"OOO-— — — *V*N*N —  ir. t> •**•  o o v — ^fs**-*."-*--• * • • > . • • « . • O O O — • — <M — — — - '  kT>  O O O O O O O O O O O  **  0 0 0 0 0 0 3 C 0 0 9  o O OW> >m o *i o —  J J * C « r « — - . ' H p v — 1« O * = •"**"*•"-•***•'•* — t * * * * ( t * l l > > 0 o o — — — — -»». — * v  «Ow>44l*-r^r-r»l-.»»l>.»» • _ C « — -. — « — — ~ — — — ILir'ire'444'OOOOO * » »  1-0 — — — — — — — — — — — u - O O O O O O O O O O O IA r - O O O O O O U O O O O O 1-1 u n- o I L l f t S T i K N - - — J", — rf*  X  DO^^isi*aft.*s'^*v*>,rvj'-* »_0 — — — — — — — — — — —  vT  Z - 0 * - 4 4 i 4 4 0 4 4 4 4 4 O — — — — — — — — — — —  «•"•  ,  4 i ^ - » » » - 4 v - r - * — -><-i — — O O O 0 C 3 0 O 0 rVi-»«v.r\l'\,r»r>f->,»s ,rv<'s.  /-• I — .•'.'•». #»>  — — o o c ,^0000 O Q -  — — — -M  fc- O O — *-V»K*X&yVQ'  » < • « • * • * • * • * * O O O O O O O O O O O  O N >  f**N|-^a»-»>fv,0'»«I«  x = —0 3 0 0 0 0 0 0 <- I  — — — ro.  X •*>UJ4 4 0 4 4 0 0 4 4 0 4 <—C — — — — — — Ifit. — Oa^J••C••aOOO0.-»3-* ^LU040^-l«•'••''.l•*».•s.r•. k-Q — — — — — — —— — — — • u.O""* — — v A \ ^ ^ t ? > » O n*» • • • • u.o-O'-wcfytro'lj'jfO O M J - 3 O O 4 /> 4 O 4 4 O I — t/1 oe m • • • • • « DM3"' D O > C "»1>000<J* P-ntai4444400->'*»'»4 a.  3 J*>  o.re-"-*»-'- N-v-v.-v.  ar"* N. — V. o  o o c — • — — — *\ -s. -J »*.  O, if*  I  0Tr">"~"-'s,<-Si.>.r,-\.0  y "\ o 3 ~«o — > f»  « ut  "• - «• N N \  • 1- N M \  rj N  C  O O — -• — — — \  Oa:f*i,*"-i*.»-C44'N  « * * » M 00*"*-'N-"NMN"N  I t t T - - — •ft»ne>OtT'l~'l>0>  — < - V i u 4 « 4 4 4 4 4 4 4 0 4 . —  ; .x o — — — — '^'N'N'NM ' 'N  01 f* (•*• r* *> 00>-<-*MIMNM«IM  •J U . 0 0 0 0 0 0 0 0 0 0 0 <nt • • • * • » u> — O O O O O O O O O O O O O f** iu  •4 n**. kj — a A,  O O O O O O O O O O O • • • • • • • • * > • 0 0 0 0 0 0 0 0 0 0 0  ????????? s°  ??????????  O O O O O O O O Or-  IllPIsst HI IP 1 I BJIi  ????????? SI  ff??????? ~s C. JJ.OOO ;j  5  fffffff?? 5";  !!!lill!l!sp }}}}}} } }jf<l  fffffffff 5?  j  riff  PI 1 I I  II I  fffffff?? £ 2 2  fffffff?? =? ? ? ? . = ? ? ? ? ? 0 0 3 0 0 0 0 0 0  3 V>  000-00000 3 eoc»-»vva*'-»jj'0 S  fffffffff *  lillllllll* ???ff????f;  s* r * ! » r - r  "f  z  3  i  fffffffff £ o c o a c o o a o  . 5.  PPPPP?PP??i  2  2  I I  C ? £ S  a>  ff f f ? ? ?? ? 7£;-i-£;s SSssspSsssf  r §* = M l f  fffffffff ; !• r ? r* r  rr  •?????????gSSi **l  IlllllfII X ? ? ? ? ? ? ? ? f r. 2 o=i:  ?f f.° f f:f f  X  §sls!§ll§l" r-rrrrrrf ?§?  —  = I -0  2  245 ••••••IRUN FFRRIC  NU46.  OXIDE  CONC  <PPM|  VOLIS-.ll.SO  ESIIKA1ES OF ROOT PE AN SOUARE SIAIISIICAL ERROR IN I HE PARAHEIER 1.6940 1.5I37 ESTIMATES OF ROOT MEAN SI.NIARE IDIAL ERROR IN THE P AK AME I ER 5 .42800 .90/79 ESIIHA1E OF RO.RINF.ANU 6 IN RF•RINF I (1.-CXP(-H•!IMF I .67021 .52417 T I ME CALC. PES 1 STANCE PITIED VALUE HOURS I I SOF T - H R - U C G f /I'.TUIXIOO, 0001 0.0 0.0 0.05 0.20 0.02 0.08 -0. 39 0.03 0. 18 -0.05 0.06 0.23 0.10 O.OS 0.33 0.10 0.11 0.52 0. 14 0.16 0.90 0.6 3 0.25 1.05 0.00 0.28 1.38 -0. 10 0.35 1.43 0.19 0.35 1.78 0.54 0.41 2.17 0.59 0.46 2.40 0.44 0.48 2.60 0. 73 0.50 3.27 0.98 0.55 3.43 0.34 0.56 4.32 0.34 0.60 4.73 0.64 0.61  150.  AMPS: 1 5 5 .  HEAI  llth' S U P P L I E D  HEAT  riux  16156.8  SUPPL1LU  N I S I / .  BIU/HR BIU/SUFI-HR  BEIA0.10I TOR= TINLCI 121.0 • OEG F OENSIIY:0.986 GRAH/CC I UUILET149.9 DEG F F LOW RAlE 0.1888  LBS.M/SFC  AVG TEMP:1 IB.* MNEHAIIC VISCUSIIY:0.460  DEG F SU.CH/SEC  FLUID VFLUCITY 4.790 REYNOLDS NO 26486.6 PRANDIL NU 3.01  FT/SEC  HEAT SUPP 16356.B BTU/HR HEAT IRANS 15633.8 BIU/HR HEAT LOST 723.0 PTU/HR PERCENT HEAT LOST 4.47 HEAT FLUX IRANS. BIU/SOFT-HR 89746. NUSSELI NO 121.3 RFILH 0.624 ftWALL 0.143 RTOTAL 0.766 SOFT-HR-DEG F/BTU  LOCALIZED WALL TEMPERATURES 1215 1235 1255 7275 DEG.F OEG.F OEG.F DEG.F 0.0 182. 1 174.6 174.6 182. 5 0.0 175.0 175.0 181.1 0.0 174.2 174.6 182.1 0.0 175.C 174.6 162. 1 0.0 1 74.6 174.6 182.1 0.0 174.6 174.6 162. 1 0.0 175.0 175.0 0.0 175.0 1 75.4 182.5 132. 1 0.0 1 74.6 174.6 162. 1 0.0 174.6 174.6 162.1 0.0 175.0 174.6 162.5 0.0 I 75.0 175.4 162.5 0.0 175.4 175.4 132.5 0.0 175.0 175.0 ie2. 5 0.0 175.4 175.4 162.5 0.0 174.4 175.8 1H2. I 0.0 175.0 175.0 182. 1 0.0 175.C 1 75.0 182.9 0.0 175.4 175.4  1215 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  1235 0.0 0.44 0.0 0.44 0.0 0.0 0.44 0.44  0.0.  1255  0.0 0.44 0.0 0.0 0.0 0.0 0.44  0.88 0.0 0.0 0.0 0.88 0.38 0.44  0.88 I .32  0.38 0.8H  0.44  0.44 0.44  0.88  1UEG.F T295 UEG.F 182.1 102. 1 101.7 162.1 162. 5 132. 1 182. 5 132.9 182. 1 182.5 132.1 162.5 132.9 1 62. 5 ie2.9 182.9 182. 1 132. 1 182.9  0.44  0.0 0.0 0.0 0.0 0.0 0.44  0.0 0.0 0.0  0.0 0. 0 0.0  .38 .0  0.0 0.44  0.0 0.0 0.0 0.0  0.44 0.44  0.0 0.0 0.44  0.44  U.O  0.44  0.44 0.44  0.44 U.44  0.44  0.0 0.0 U.86  T335 DEG.F 160.2 160.2 179.8 180.2 180.2 180. 2 160.6 180.6 180.2 179. B 1B0.2 180.6 180.9 180.6 180.9 160.9 160.6 IB0.2 180.9  1155 T375 OEG.F OEG.F 1 79.4 0.0 179.4 0.0 179.4 0.0 1 79.4 0.0 179.e 0.0 179.8 0.0 179.6 CO 180.2 0.0 179.6 0.0 1 79. 8 0. c 1 79.3 0.0 160.2 0.0 1 79. 6 0.0 160.? 0.0 160.2 0.0 1 80.6 0.0 180.2 0.0 1 30.2 0.0 180.2 0.0  •HR-DEGF/OTUIXIOO.OOO 1315 13)5 T175 1 155  1215 0.0  1315 OEG.F 183.7 164. 1 161.3 183.7 iei.7 16 1.7 164. 1 184. 1 luj.7 162.9 164. 1 11). 7 164.1 164. 1 If 4.5 164.5 164. 1 163. 7 164. 1  8H 0.66. 0.0 U.  66 0. 8 6  0.0 0.0 0.0 0.0 0.0 0.0 U.44 0.44  0.0 0.0 0.0 0.4 4 0.H3 0.44  0.0 0.0 0.0 0.0 0.44 0.44 0.44  0.63 0.44 0.44 0.44  0.83 0.44 0.6 3  6.  0. 38 0.63  U.63  0.44  0.44  0.0  O.O 0. 6 8  0.68  U.44  1 . )?  0.3 3 0.86  o.o  0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0  T395 OEG.F 187.2 186.B 186.8 1B6.5 186.8 1 87.2 187.2 187.6 166.8 187.2 187.2 167.6 107.2 167.2 187.6 188.0 187.2 16 7.6 187.2  192.7 193.1 192. 3 19?. 7 193.1 193.1 193.1 193.5 192.7 192. 3 193. 1 193.5 193.1 193.1 193.1 193.9 19). 1 191.5 192.7  T395  T4I5  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.44  0.0 0.0 0.0  0.44  u.o  0.0 0.0  u.o  0.0  0.0 0.0 0.0  u.o  0.44  0.8 7  U.44  0.0  T4I5 OEG.F  0.0 0.44 0.0 0.0 0.44 0.44 0.44 0.67 0.0 0.0 0.44 0.87 0.44 0.44 0. 44 1. II 0.44 0.81 0.0  T428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0  0.0 0.0  TIN DEG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 l?7.0 127.0 127.0  TOUT TH OELTA H DEG.F DEC .F OEG.F 181 .9 149.5 22.5 1621.5 149.9 182 .0 23.0 1624.5 149.5 181 .5 22.5 16)5.0 149.9 18 1.8 23.0 1632.5 149.9 181 .9 23.0 1626.0 149.9 161 .9 23.0 1626.1 149.9 162 .2 23.0 1616.3 149.9 182 .4 23.0 1606.6 149. 5 181 .9 22. 5 1621.1 181 .8 22.5 1625. 1 149.5 149.9 182.0 23.0 1623.4 149.9 1 82. 3 23.0 1 ( 2 . 4 149.9 182 .4 23.0 1611.0 149.9 182.3 23.0 1614.6 182 .5 23.0 16U5.2 149.9 149.9 , 182 .7 23.0 1598.1 149.9 162 .? 23.0 1618.0 149.9 182..2 23.0 1619.1 149.9 182 .4 23.0 1608.8  R X1000 0.6167 0.6156 0.6116 0.6126 0.6150 0.6150 0.6179 0.6217 C6169 0.615) 0.6160 0.6202 0.6207 C6193 0.6230 0.6257 0.6180 0.6176 0.6216  TIME HOURS 0.0 0.05 0.08  UN OEG.F 127.0 l?7.0 127.0 127.0 I?7 .0 l?7.0 l?7.0 127.0 127.0 127.0 127.0 127.0 127.0 177.0 177.0 177.0 177.0 177.0 127.0  TOUT OEG.F 149.5 149 .9 149.5 149.9 149.9 1*9.9 149.9 149.9 149.5 149.5 1*9.9 149.9 1*9.9 149.9 1*9.9 149.9 1*4.9 149.9 1*9.9  RIOT XIOOO 0.6167 0.6156 0.6116 0.6176 C.6150 0.6 150 0.6179 0.6217 0.6169 0.615] 0.6160 0.6/0? 0.670? 0.619) 0.67)0 0.674 7 U.6I6U 0.6176 0.6716  TIME HOURS 0.0 0.D5 0.08 0. 18  RFH  DELTA H OEG.F 22.5 1621. 5 0.0 2).0 1624. 5 0.20 -0. 39 22.5 16)5. 0 2).0 16)2. 5 -0.05 0. 10 ' 23.0 1626.0 0.10 23.0 1 6 7 6 , 1 0.1* 73.0 1 6 I C 5 0.6) 23.0 1 6 6 3 . 6 0.00 ?7.5 1 6 7 1 , 1 -0. 10 22.5 1 6 2 4 I 0.19 ?).0 1 6 2 ) .4 0.5* 21.0 1 6 1 7 . 4 0.59 2 ) . 0 1 6 1 1 .0 0.44 2 ) . 0 1 6 1 4 .6 0. /) ?).(> I6U4.7 0.93 0. )4 ? ) . 0 1 5 9 6 . 1 0. 14 7 3 . 0 1 6 1 6 . 0 2).U 1614.1 0.64 7 3 . 0 1 6 0 8 .8  o.ie  0.23 0.33 0.52 0.90 1.05 1.33 1.43 1. 73 2.1 7 2.40 2.^0 3.27 3.43 4. 12 4. 73  0.2)  0. 1) 0.3? 0. 9 0  : o o o o o o o e o o o e o o o o o o e o o o o  MO  o e o o o o o o o o o o o o o o o o o o o o o o  u- >•  O O O O O O O O O O O O O O O O O 0 O O O O O O T )  30 30 » — K Tl T> — ( / > » » > » ) > u» — r> — — —  —m PM  -*N«^--U*U'L»U< —  —  s/>*n  U>^^^^P%«<»I»-*-  rj  O C C < 3 —O O C O O O O O O O C O O O O O O O O * . . . . . . * ^ - S r r Q O C O O O O O O O C O ' - O O O I. / > S: ^ J J *  f*j ^ \*i o v> »  " C C C  >*ov  — ——C O C O O O C C O O O C - O — O O O v  I S *  C*-CJ**'#'OOCJ *'wa:**0  V" > o pi  C C C  — — — — — — — — C — *.rv*v' — — C O O C O O • •>.J*-«.»--«.-^W»*-M-«IT-J — —— - * w * * 4 > * - J > 0  — O O".  I r c c e e e e e c c c e c  ——  —o o c o e  v 5c  C S C > f > * J i | > S O i O * V « l . - — W J) "o > ^ o j > ^ » j > * j > ^ x a J> — — — .fl.« — a p c o * - *  N. —  u» o r-i <i -rt — *>» 7  I«V*V«\),»»\IPWPM — C O O O O O O O O  ^ - • ^ c c c c ; » c r c : s ; v > j \ * . * c o © o a j > j > o  . . . . . . . *••••*.  S - S C C C 0 C C C C O 3 0 0 C  u- c  M yi» — O  — O S O O O O O  C ~ C 3 S ' £ + 3**'AS+C& + K-a,X*-XS*'0 X X t4- 3) f C J ^ V J i - j a / B j i 1  O  rv tr w  >--'>ivr»uKi«u\'->-r..--00000000 • • • • • • • • • • • • -••^^'^<>^U'<»'S>N>l>-j^-rf.*»-«fflCD.^OOOO©  1  U o o o  c c c c c c e t r c c e e c o e c o o o o n o o o » • » » • • • • • • » * . . . . * . o c c o c o o s c o o o o o c o o o o o o o o o  w ^ V  C C C O N  C  — — — — — — C — — Ni — i M t S i C O O O O O  • •••*••»•»•  *  * p O C « 0 * * i > (  —„—————  ,  f N * O O O O I N M i > O i > f i >  -  -  •<>  « O I > M  -  NlMNNIN^WNI^UI^ru^MU^Iil^^NNI'virvi'-'t t • 1 U U< — ' f i u H . ' O J v l U v ' w - ' - J - J W - i - — — — H - J - f l  • •  3 C O O C O O O O C O O O O O O O O O O O O O O  J>  * » • • • • » • » • * . . » . . . . , O C C O O O C O O O O O O O O O O O O O O O O O  (S| 09  ^ . ^ v ^ ^ l V ^ ^ ^ v ^ ^ ^ l ^ ^ l ^ ^ ^ ^ l ^ ^ l N ^ l ^ l ^ > H OoOO^f^OijtOOv^OOO'n ,  ,  C © 3 O — — — —— — —O O — — O — —O O O O O O . . . • » • • • * . * £ \ . ^ « f ^ U ^ % i —r - v ^ o t c — —( « f u \ ' s U i > > i r > u i O  TO T, X  -c c E X T  »-3  — • * — — — — ———».—— — ———— — —.-— ———Q — a oi <v « cr ,t a or a a arccc ct n- o* a .T a ex a c: a» m vi^\**"^^^V-4»^J^^^i'OUi\^ Tr?'*/i*'J"^-^i*t7) — Ul t , | 1 — ^ — u t u < U u u U ' 4 > 0 — ui\*iw\i> — — u .£ w) U u> — "n  ' c c  v  —  ,- —  —  — —  —  .-. —  — — —  —  —  —  —  —  —  — —  —  — —  —  C,.,  CD *• J OT ^ J t L T C X ' C 1 3 T 3 L D C 0 ^ i ) - v J - ^ ^ 4 ^ J - ^ J ^ J - ^ W ^ J - » J r t ' l v > ^ OJ3QOOOCOOOOOOO*a?»-J-«-fflJ3C3»J5c?ii>) * *.U1 , 0 « ^ C * J * i 7 i > l * C \ ' t \ ; ^ * f f i w « a i v ; O r f f ' v i T l — — — —  l  f c  — — — — — — — „ — _ — „ _ _ — — — _ —c  0 * J 3 W J O O O O O O O O O O O O • » • •  „  — OOOCoOOCT»Ui Ul  o •* o o o o o o o o o o o o o o o o o o o n o o o o c i - j • • • • • • • » » • . u» O O O O O O O O O O O O O O O O O O O O O O O O T ! — — — — — — — —  N  ul rg  — — — — — — — _ — — — — . - — —  —  3  _ i  ^ O O o r X ^ O r w ^ o ^ O O O l N l O ^ I V ' O ^ ^ — —  — OL-J3UIU1U1J3 — V > I « ^ W C I > N J I I -  *^*«JWviwirv.«jrvNTViu>-  — —  4}  U>  O O O O O O O O O  W v J W N M N O O ^ M O M W a ^ O N W - W l i l W V l l O  C -v S C> s  —  (pi  TI  o (Ti * O O O O O O O O O O G o O O O O O O O O O O O O O r u * • • •  . . . . • • . . • . • C O  O O O O O O O O O O O O O O O O O O O O O O O O  Tl  ——————————————————— —————o 00*'0O00o-»'OO00O*'*'OuiOOU  A s." X- ' J* f ^ . r #. \T O*V 0 OylJlJlJ'/T10 o ^ ^ - J O O O J ^ O — — — — c — o o o o o c  /• > «; ~  a o  r*1 y i p . *n  t •  WNMvil>'4<tf«<wwWvlWvi»fVlv'i<'^lii^uiN(l»  « o  • £  . . . . . . . . . . . . . » . . . U. » ,0 •— u - v - w ^ w O ' t X t f i - ui u> ui — — — u> ui w O U — m  i— « ( - «  O C J > 0 0 3 0 0 * C  * -9  O w\ O UiJC l "O  ——-—————————————o —>  — — — — — — — — — — — — — — — — — — — — * C C * - * . v * I J H » w f a  _  — —<  o o c  V » T) C -  >  #0*>*»P^0rwC0e»r\l**>*OlTt>r'J.*'«.» '*a»Tl  V " r v / w * ^ v l u l v l t » J ' J ' - ' v U V ' W v ' V l l * ' * J>l/lJ> *»  -<: C  S^ 2- —  ,  O O O O  »• Y - u * * - / > j > * ' U ' u « * > i « u ' U i u i u ' v n u i u i u < u i u i U " i n o  -n * ^  o  ioOOTi"^ —— —— «  jJrgC^jjOUlO^PU. w \n > W ~ ™. — K > .  - o o h v  ,  —— o — —o o o o o o  B i - i -  v  . r i ) r y - i / w »  ¥  O  —~ c  i : & »" t — :  < 0 : -  *-0*0-JO-fc>^4J0004)-OOp~ ——— O — O Q O O C 1 C  ———————————————————— ————o ^ ; » ^ l ^ w M w ^ l ^ l M ^ ) ^ ) ^ ^ l ^ ^ ^ l ^ l ^ l ^ l ^ l ^ • - • ' O X •tCO-'^0000,<>Ci'vlMW»ffW^v'"JOl\ir>ie'>1l  ^^V^>WIM*V^«U^-VPVIN-I^PWI^PU^  — — — W N . W W W — \tt t- f j- f w i ^ ^ v J i J v j m n • • t o r C 3 ^ C > O C O . X * * O O J B r v r N * ^ ^ « F v r v C B t t a > * -| V  —  -  -  _  *•  c c*yc*wWv'w>e*c"ffc»i?fi>fffc-Pv>c-^i>p — w. V — C ^ w O •— C C — C — /• U» P*-' — w J> w ^ V — *• D C — «* — 3 — J ; .0 ? O *«i a C* M r* — ww-w V*>N j i N i l / v ' O i M l O J * C C C  C Q Ce  X  •** W — a>s>ff  © C C O O C 3 O O O O O O O O 0 C O O O O M M >  <  w  v i \ N N * g S M . . -  C O O C O C O O  — i**h.CiO-.»»-*'V.C^*-to.rf--;CJ'  z O — cx  - O * m  h U W W l l f T l  u<^r\,wJ>vi  4>CP'^ffl^UIUI^irC><>ffOkffffC>'0'l>^C>0^ — WiNi — <0-C-dC — O O — O— J'VttSJ — — ^ A O ^ O — w — Q> — <0<00 0'\JOO(7'NIO> — W M ^ J >  UNW'uiJiU,U,0-JNOl*iil'-OOCllA  r-rr r>-^»(r^%ro>>^47'vT-ro-0'^(7(p(>o>oo — — N •*--v-w-vh.-\.'\j — Pv — C O — — — C — — O O O — C - * - M l U l O - - > N - - l 4 V ' i , ) ; ' V - < » M » l . ' 0  # r / w  IMrVN*r\jl\JP*jPyl4JPO^Pvjr\jl»jp^p^ WtfPWL>'WWiWWP0WU<u<UJUJ-J>4-4'M4'  OOO.  ,  X  -J w — ai t> t >  O O O O O O O O O O O O O O O O O O O O O . . . . . . x  p"iyi>t>l>C>r>C>C>C>C>C>L>C> N' — — p\jPH)r\jiN)r\)ryi\Jr\i — f\l — O O  ——— O — — O O O 3 0  »4<>>p-Osiiiau>0wi.'M))a)uiONh/iJ' < —  — — ——————— — ——— *- — ^ — — o o O O o o o < e • • * o > * 0 0 O 0 0 0 O 0 0 0 0 0 0 C O 0 0 0 ^ X » * " v » 0 — tenaaa)CD»naEeoBCB^<j«j>vi<<iv ''v iii C  w o  * I ' W W ^ l - N ' u N N N N - ' - M - O O O O O O O O Q • . C I < » W * r v C O « ^ u i ^ M O - J / W « l » 0-V-Pw — — o * . m  t  ro cn  © o e o o o o o o o o o  K.O  o o o o o o o o o o o o  v*« >  e e o e o o o o o o o o  <vtr  >>J>OOOOJ*Q>00 *• J» * *• *•  v -I  C  *uZ  m r\» o © o o o o © o o © © o o o * - o O O O O O O O O O O O O " "  C  O  O  O  O  C  O  O  O  O  c  O  o > o > o o e e o © o o #• #•  V" -»  e o o c o c o o c o o o  N V I  o  V»  O C O S O O O O O © * ©  Vi >  OCOCO>OCO©00  K. —  » » ^ » i s » t o o > o  -a i* v> o  m  e c c e c c o c o o e e » «- a  J-  e  * *•  >  m o  o o o o o o o o o o o o  «»* o  J > * - J . ^ ^ C J ' 4 - O C O O J» J> 4> » J>  V  r~  — — — — — — — — — — —— O-ITI  C —  V X > 1— f  >j>J>OCOO*"0>OOTi  SO  C  79x z : >  -o i :  — v> t - — O J  T» T x C Z — Cl o o <  "O * •  X > Z C «-  -< to  o— c  >  y^yr>ij v"vrJ>'i<ivrv"> .i^ v ci v> f i  C  t -3  O*>Oi'Cl>OOO0'OO-n  -o m » — — — — — — — — — — — — tr — > ,  - —< 1 2 O  1  SiNiNiSIN'>Jfv'v'v' J'yKiC '-4C » • . • • V » w V wi vi v* *- — v  0 1  *~ »C v "*i  n *> tx n n  (rocsreci.ci.aittftoJCJriNO N I ^ I N / > * ^ t > ^ * ^ r » j f w " i i f s j O 4fT> VO — — — — — — — — — — — — o-> Co CO tY Cc c p c o t t C P C t V t e G c r n t o ^ ^ - ^ ^ J - t o ^ ^ - w — Jt-toO — • . . . v <  ——————___——— _ t 0  G O O O O O O O O - S O C O t o ..Vf  •«  — o w C VI •  O O O O O O O O O O O O • •*••«•  ->0>»©00© y/i OO *•  — — — — — — — — — — — — O-H aaxa'vivissi'M'VNrTiw 0 c 0 0 0 . c 0 0 4 . f i aoovt  o  C C O C C O O O O O O O  to  O O O O C C O O O O O O  v*i  e o o o o c o o o o o o  to  • " • O O O O O O O O O O O v  " a a o o u o  v»  O O O O O O O O O O O O • > • > ' • * » • » • • O O O O O O O O O O O O — — —  — — — — — — — —  #rv 0> -  ar  © c o o o o v v * e o o o " n  VI  — — — — — — — — — — — —  tototototototow'vrvto'vciM V t V y V " * — <JI vi s M 4 N Tl  — >* ^ X O  X  4^0* <C4*J 0-* '* >  1 "TITT . I . . . or  o O O O O O O O O O O O O C i r V o o o o o o o o o o o o - n  O O O O O O V V I O O O O T I  z  -•  O 0 0 0 0 0 4 * > 0 0 © 0 »  T* *» C C C  — CCOC-V*--"* *r  o4--c^tov.-toVM>N» M *•  —  #• J -  w "V -« V O  J-  O O O O O C C f - O S O O X J O t>t>>t>f>t?0 , *yt>L>l7'l**OO ft* *v, *v V *. *V -V -v — *- — •— O -« — — i». — •\,to'MvJV'fV'VC*'0 T  Tl 1) Ntt» r" rv oo o o o o o o o o o v< O — ' to to totog> FMto— * v r v O = — -* <04*tO<OJ'>Oj>«> jc t/i o  si  £ C : " n  z  — — — — — — — — — — — — o OttCOQIGDjrJCDQa T <J> 03 CO iTI ^ ^^hjfv)Tvroi\j"i)iv)i- ^ N f l j  -  O O O O O O J * * - © © © © *  f*1 ^  4 0 4 4 0 4 4 4 4 4 4 4 T I  I I 000000000000 30 * * • • < • • • * * • • Ti toto*>tov-*7--«to ,  J> O > O > " i  VI  — — — — — — — — —— — — 0-«—4 4— 0—<—J —4 —4 —4 —4 4— 4—^—4—0 OC- t >O44>)>.«i04444«T]  —• — "-0000000000 C A 4 •wffai C * N i i - O O O O S i " v'vnrvo'vv<-j-jco-jto «/•  — — — — — — — — — — — — o  O  • » i/"- — o - — - • — O — rv —  — — — — — — — — — — — — o — • • • • »  0000000000 — o #•  —  c -< O O C O O O O O O O O O C I - J • • • • • • • • • • • • • V I O O O O O O O O O O O O " *  -«  — ——o e o c c o o o o z — c -x *a — 3- a c . - v — o c c c A r r - . »1V , "S.O~»«"'-.*>**"*'to *•*•  OfTl >  OOCTOfrCT-CT-OlT-COOOOO— OOOOrvto — M 44V>0^toV>toV-*-><t-rV  I C V* — O O O O O O Q O O O O O O < - , I • • • • 0>v*'S tototoOO)*l>*flO'OJ' C  I  •s. — — <• < - - . ^ ^ w V O > O O O O O O O O O O O O • • • x OOtTOOCT-OOOCT'CT'C*' — f V f v . f u ^ j f y r ^ f V ' v i — — — — O-O — — w — Nito*viwVi*J-Ot>0 g>t\.0O»-O<Cu>- tTC-^O z — — ——O O O C O C O O O O — C I  •A N o a c *-rsj — o o o o ^ r n VtV"VO**J^-.-J^I-*to V  ro •^1  248 .......RUN N 0 4 9 . • • • * • » • FERRIC OXIUE CONC IPPMI VOIIS-.13.50 HEAT HEAT  ESTIMATES OF ROOT MEAN SOUARE STATISTICAL ERROR IN I HE PARAGEIER .12740 .18465 ESTIHATFS CF HUOT MEAN SOUAKC IOTAL ERR CR IN IHC PARAMETERS .64190E-0I .39516 ESTIMATE OF RO.RINF.ANO B IN RE•RINFI I I.-EXPI-e»1 IM£I 2.0657 5.3409 CALC. RESISTANCE FITIED VALUE T INE HOURS IISOFI-MR-OEGF/BIUIX100,OOOl 0.0 0.0 -O.O 0.02 1.02 .21 0.15 1.41 ,14 0.20 1.46 , 36 0.23 1.44 1.22 0.53 1.94 1.56 0.63 1.99 1.51 0.80 2.04 1.95 0.97 2.05 1.85 1.25 2.06 2.20 1.43 2.06 2.00 1.55 2.07 1.90 1.75 2.07 2.34 2.13 2.07 2.54 2.47 2.07 2.10 3.00 2.07 1.61 3.12 2.07 1.56 3.25 2.07 1.71 3.38 2.07 1.51 3.63 2.07 3.22 3.87 2.07 3.07  2130.  AMPS: 355.  FlErf SUPPLIED 16156.1) TLUX SUPPLIED 93897.  BIU/HR UIU/SCTI-HR  BHAO.30I ICR=I1NLET127.0 0ENSIIV:0.986 GRAM/CC [ OUILEI149.9 FLOW RA1E 0.1888  LBS.M/SEC  AVG TEMP:138.A KINEMAIIC VISC0SIIY-.0.460  DEG F  DEC F DEC F  SQ.CH/SCC  FLUID VELOCITY 4.790 REYNOLDS NO 26486.8 PRAN01L NO 3.03  Fl/SEC  HEAT SUPP 16356.8 OTU/HR HEAT 1 RAN S 15633.8 OTO/HR HEAT LOST 723.0 BTU/HR PERCINI HEAT LOST 4.4? IICA1 FLUX TRANS. BTU/SOF T-HR 89746. NUSSELI NO 121.3 RFILM 0.624 RWALL 0.143 RTOIAL 0.766 SOFT-HR-DEG F/BTU  LOCALIZED WALL TEMPERATURES 1215 T235 T255 T275 OEG.F OEG.F DEG. DEG.F 0.0 174.6 174.2 182.5 0.0 175.4 175.0 182.5 0.0 175.8 175.8 182.9 0.0 175.8 175.8 182.9 0.0 175.8 175.4 162.5 0.0 175.8 175.8 182.9 0.0 176.2 175.8 182.9 0.0 177.0 176.2 103. 3 0.0 177.0 176.2 1E2. 9 0.0 177.0 176.6 183.7 0.0 177.4 171.0 16).7 0.0 176.6 176.2 1 P). ) 0.0 177.4 177.0 183.7 0.0 177.4 177.4 164.5 0.0 17 7.8 116.6 183. 7 0.0 175.8 175.8 183. 3 0.0 175.8 176.2 182.9 0.0 176.2 175.8 163.7 0.0 176.2 175.8 193.3 0.0 1)8.2 177.B 184.9 178.6 177.8 184.9  I DEG.FI T295 T3I5 OEG.F OEG.F 182.5 163.3 162.5 184. 1 182.9 164.5 183.3 164.5 162.9 164. 1 132.9 184.5 183. 3 let. S 1 83.) 184.9 182.9 IS4.9 18). 7 ie4. 9 18). 7 164.9 18).7 164. 9 184.1 185. 3 1U4.1 165. 3 183.7 183. 3 1C4.9 184.9 183.3 164.5 183.3 164.9 183.3 184.5 IB4.9 166. 1 184.5 186. 1  T335 DEG.F 178.6 180.6 180.6 180.9 180.6 160.9 18C. 9 161.3 180.9 181. 1 U0.9 180.9 181.3 131.7 1B0.9 iao.9 180.9 160.9 IHO.9 182.1 182.1  T)55 DEG.F 178.6 1B0.2 100.6 180.6 180.6 180.9 180.6 180.9 180.9 181.3 180.6 180.9 180.9 130.9 180.9 IB0.6 140.6 180.6 130.6 181.7 181.7  T)75 DEG.F 0.0 0.0 CO 0.0 0.0 0.0 CO 0.0 0.0 CO 0.0 0.0 0.0  co  0.0 0.0 CO 0.0 0.0 CO 0.0  LOCALIZED FOULING RESISIANCE IS0FT-HR-0EGF/8 TUIXI 00. COO 1235 1275 1295 13)5 1215 1255 1315 1)55 1375  o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.o  0.0 0.0 0.0 0.0  0.0 o.ee 1.32 1.32 1.32 1.32 1.76 2.65 2.65 2.65 3.09 7.71 3.09 3.09 3.5) 1.37 1.32 1.76 1. 76 1.97 4.41  0.0 0.68 1. 76 1.76 1 .32 1. 76 1.76 2.21 2.21 2.65 3.09 2.71 3.09 1.53 7.65 1.76 7.21 1 . 16 1 . 76 1. 17 3.9 7  O.O 0.0 0.44 0.44 0.0 0.44 0.44 0.88 0.44 1. 12 1. 12 0.88 1. 37 2.19 1. 37 0. 88 0.44 1. 1/ 0 . 'I M 7.4 1 7.6 1  0.0 0.0 0.44 0.68 0.44 0.44 0.88 0.68 0.44  1. 12 1. 32 1. 17 1. '5 1. 75 1 . 17 U.RB 0.81)  l i . 88 U.RB /. 6 1 2. 19  0.0 0.88 1. 31 1.31 0.88 1.31 1.31 1.75 1.75 1. 75 1. 75 1. 75  0.0 2.20 2. 2U 2.64 2.20 2.64 2.64 ).08 2.64 1.62 2.64 2.64  1.75 1. 75 1.11 1.75 1. 11 1.0/  06 ).5/ 2.64 2.64 2.64 2.64 2.44 1. 95 1.95  t.2. 19 19  1.1)1  t.  0.0 1 . 76 2.20 2.20 7.20 2.64 2.70 2.64 7.64 1.08 7.70 7.64 7.64 7.64 7.64 2.71) /./(> 7.70 /./f) 1.5/ 1.5/  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  n.o  o.o 0.0 n.o 0.0 o.n 0.0  1)95 OEG.F 166.5 188.0 166.4 1B8.0 167.6 IBB.4 188.0 188.4 188.4 1BH.4 1B8.0 168.0 IBB.4 168.4 168.0 188.0 188.0 188.4 187.6 169.2 188.4  1415 OEG.F 192. 7 193.5 193.5 193.5 193.9 193.9 193.5 193.9 194.) 193.9 19).5 194.3 194.) 194.3 19).9 193.9 19).9 193.5 19).5 194.7 194. 3  7428 DEC.F 0.0 O.D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 127.0 126 .5 126.5 126. 5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 127.0 126.5 127.0 127.0 127.0 127.0 127.0 121.0 127.0  TOUT OEG.F 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.5 149.9 149.9 149.5 149.9 149.9 149.9 149.9 149.9 149.9 149.9  1395  T415  1*28  TIN DEC.r 127.0 127.0 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 176.5 126.5 127.0 126.5 127.0 127.0 127.0 127.0 12 7.0 12/ .0 127.0  TOUT DEC.F 149.9 1*9.9 1*9.9 149.9 149.9 149.9 147.9 149.9 149.9 149.9 141.5 149.9 149.9 149.5 .149.9 149.9 I4-J.9 149.'I 149.9 14'*.'/ 149.9  0.0 1.75 2.19 1.75 1.31 2.19 1.15 2.19 2.19 2.19 1 .75 1 . 75 2.19 2.19 1. 15 I . 75 1 . /5 , 2.19 1.31 1 ,»>4 7.19  0.0 0.B7 0.87 0.87 1.31 1.31 0.67 1.31 1. 74 1 .31 0.87 1. 74 1 . 74 1 . 14 1.31 1 . II 1.11 0.6 7 0.8 7 7.11 1. 74  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TH DEG.F 181.5 182.4 182.8 182.8 162.6 182.9 182.9 183. 3 183.2 183.5 183.3 163.2 183.6 163.6 183.4 18).0 182.9 183.0 182.9 184.4 184. 3  RFH 0.0 1.02 1.41 1.46 1.22 1.56 1.51 1.95 1.65 2.20 2.00 1.90 2.14 2.54 2. 10 1.61 |.56 1.7| 1.51 1.22 3.U7  DELTA H OEC.F 23.0 1645. 9 23.0 1609. 2 23.4 1589. 6 23.4 1587 , 5 23.4 1596. 2 23.4 1584 3 23.4 1586 9 1574. 2 1576. 1 1566. 0 1567. 6 15 75. 4 1570. 7 1550. 0 1579. 6 1590. 3 23.0 1592. 6 23.0 1587. 8 23.0 1594. 6 23.0 154). 7 23.0 1549. 3  DELTA H DEC.F 23.0 1645.4 23.0 1(709.2 2J.4 23.4 15-37.5 23.* 1596.2 23.4 15d4.3 23.4 15W6.9 23.4 1574.2 23.4 15 *8. 1 23.4 1566.0 23.0 I V / ' . f i 23.4 1WJ.4 23.0 157C.7 23.0 1550.0 23.0 157 '.« 23.0 15*0.3 23.0 1592.6 23.0 1 V l / . B J 1.11 1 V*4.6 2 !.»» I. I 23.0 1549.1  ft X 1000 0.60 76 0.6214 0.6291 0.6299 0.6265 0.6312 0.6)02 0.6352 0.6337 0.6366 0.6379 0.6346 0.6367 0.6452 0.6330 C6263 0.6279 0.6298 C6271 0.6478 0.6454  T l HE HOURS 0.0 0. 02 0. 15 0.2C 0.23 0.53 0.63 0.80 0. 9 7 1.25 1.43 1.55 1. 75 2.13 2.47 3. CC 3. 17 3.25 3.)» 3.6) 3.67  RTOT TIME X1000 HOURS 0.6076 0.0 0.6214 0.02 0.6291 0.15 C.6299 0.20 0.6265 0.23 0.6112 0.53 0.6302 O.bJ 0.6352 0.«0 0.6337 O.V<* 0.63H6 1.25 0.6)('l 1.43 0.634K !.->'/ 0.6J67 1.75 0.6*52 2.11 U.6HU 2.47 0.6i"lB 3.00 0.6/ 79 3. 1 2 0.629H 3.25 (J. t/ 11 I. VI 4, .6<W* 1.6 I U.6 4 54 | . d /  1509.b  249  ••«a«**KUN N 0 5 0 . * * * * * * * F E R R I C OXIOE CONC I P P M I VOLTS:11.50  H E A T FLOW S U P P L I E D 1 6 ) 4 6 . 6 HEAT F L U X S U P P L I E U 9)691. BETAO.301 0ENS[7Y:0.9b6  BTU/HR BIU/SOFT-HR  FORM INLET177.0 CRAh/CC T O U T L E T1 A 9 . 9  FLOW RATE 0 . 1 8 6 6 AVG I L M P U 3 8 . 4 KINEKATIC VISCOSIIY:0.460  E S T I M A T E S O r ROOT ME A N S C U A R E S T A T I S T I C A L E R R O R I.N T H E P A R A M E T E R .14037 .60704 E S T I M A T E S UT- ROOT M E A N S C U A R E I O T A L c R R O R I N 1 HE P A R A M E T E R S .43249E-01 .18704 E S T I M A T E O F K O i R I I i r . A N O B I N R F =R I N F 1 I I . - E X P I - » * I I ME I 3.0913 3.6707 TIME CALC. RfSISIANCC F I 1 T E 0 VALUE HOURS I1S0FI-HR-UEGF/BTU)X100,C00I 0.0 0. -0.0 0.07 0.73 0. 70 0.15 1.51 1.31 0.30 1.51 2.06 0.43 3.07 2.45 0.67 2.92 2.83 0.73 2.39 2.88 0.97 2.92 3.00 1 .17 3.02 3.05 " 1.28 3.22 3.06 1.40 3.26 3.07 1.57 3.02 3.08 1.72 3.07 3.09  2130.  AMPS: 3 5 5 .  DEC F DEG F  LBS.M/SEC OEG F SO.CM/SEC  F1UI0 VELOCITY A.790 R E Y N O L O S NO 2 6 4 8 6 . 8 P R A N O I l NO 3 . 0 3  FT / S E C  HEAT SUPP 16356.8 BTU/HR HEAT TRANS 15633.8 BTU/HR HEAT I C S ! 723.0 BtU/HR PERCENT HEAT LOST 4.42 HEAT F L U X T R A N S . BT'J/SCt'T-HK 89746. N U S S E L T NO 121.3 R F I LP. 0.624 RWALl 0.143 RIOTAl 0.766 SOFT-HR-DEG F/8TU  L O C A L I Z E D WALL T E M P E R A T U R E S 1215 T235 1255 T275 DFG.F D F G . F DEO. F O E G . F 175.4 0.0 175. B 183.3 176.6 0.0 176.2 183.7 177.0 0.0 177.0 1B4.5 178.2 0.0 177.e 164.5 179.0 0.0 179.0 lb5.7 119.0 0.0 179.0 185.7 176.2 0.0 178.6 165. j 179.0 0.0 17*.6 166. 1 179.0 0.0 176.6 I 66. 1 179.0 0.0 179.0 185.7 179.0 O.O 176.6 166.1 1 79.4 176.6 0.0 165.7 179.0 0.0 17e.6 185.7  IDEG.FI 7295 DEG.F 182.9 la).3 184. 1 1 63. 7 165.3 1U5. 3 I .9 165.3 165.7 165.7 165. 7 I 65. 7 166. 1  64  T315 DEG.F lb4. 1 184.9  1F.5.7 165. 7 166.8 ICO.5 loo. 5 166.6 187.2 167.6 167.2 lno.8 167.2  T335 DEG.F 160.2 180.9 iei. 7 161.3 1S2.9 182.9 1R2.5 182.9 162.9 183. 3 IB). 1 182. > 182.9  1355 OEG.F 1 79. 8 I 80.6 181.3 161.3 107.9 182.5 182. 1 162.5 182.5 162.9 162.9 182.9 182.5  T375 OEG.F 0.0 C. 0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.6 CO  LUCALIZED FOULING RESISTANCE ISCFI-HR-OEGF/BTUI X100,000 1215 1235 1275 T?95 T)15 1245 1)15 1 155 T175 0.0 0.0 0.0 0.0 0.0 0.0 0.0  o.o  0.0 0.0 0.0 0.0 0.0  0.0 1.3? 1.76 3.06 3.96 3.96 3.06 3.96 3.96 3.46 1.96 4.40 J.96  0.0 0.44 1.3? 2.70 ).52 3.5? 3.03 1.03 ).UR 1.4? ). 0 3 1.08 3.06  0.0 0.44 1 . 11 1.11 2.61 7.6) 7.19 1.07 3.07 7.61 1.07 2.6 1 2.61  0.0 0.44 1.3? 0.68 2.6 1 7.63 2. 19 2.1.1 3.0 1 1.07 1.07 1.07 3.40  0.0 . 0.68 1.75 1. 7 5 ). 06 7.6) 2.61 J.06 1.50 i . 94 J.40 1.06  1.50  0.0 0. 83 1 . 16 1. ) ? ).07 ).H7 7.6 1 3.0 7 1.117 1.41 1.41 ).<!( 1.0/  0.0 0.66 1 . 76 1 . 76 1.41 1.01 7.64 1.01 3.07 1.41 1.4 1 1.41 1.07  0.0 0.0 0.0 0.0 0.0 0.0 0.0 U.O 0.0 0.0 U.O O.O u.o  T395 DEG.F 186.0 166.4 169.2 IBS.4 190.0 190.0 189.6 1 90.0 190.0 190.0 190.8 190.0 190.0  7415 DEG.F 193.5 194.3 194.7 194.3 196.7 195.8 194.7 194.5 194.5 195.8 195.8 193.5 195.8  T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.4 127.0 127.0 127.0 126.5 126.5 126.5 176.5 126.5 126.5 177.0 177.0 126.5  TOUT DF.G.F 149.9 149.5 149.5 149.5 149.5 149.5 149.5 149.9 149.9 149.9 149.9 149.9 149.9  TH DEG.F 182.6 183.2 163.9 183.9 135.3 185.2 184.7 135.2 185.3 1B5.4 185.5 16 5 . 3 185.3  TJ95  1415  T4?8  TIN OEG.F 177.4 177.0 177.0 177.0 176.5 176.5 176.5 126.5 176.4 176.5 177.0 171.0 126.5  TOUT OEG.F 149.9 149.5 149.5 149.5 149.5 149.5 14 4 . 5 144.9 149.9 149. 1 149.9 149.9 149.9  RFH  0.0 0.44 1.31 0.44 7.18 7.16 1 .75 2.13 2.18 7.16 ).05 7.16 ? . 18  0.0 0.67 1.30 0.67 3.04 2.61 I . )0 2.17 7.11 7.61 7.61 7.1 1 2.61  0.0 0.0 0.0 0.0 0.0 0.0 u.o 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.71 1.51 1.61 3.07 ?.92 ?. ) 9 7.97 ).0? 1.72 1.26 1.02 3.07  OELTA H DEG.F 22.5 1613 22.5 1 5 7 5 22.5 1530 22.5 1 5 5 4 2 3 . 0 1 5 0 0. 2 1505. 1513. 1511. 1607. 1601 23.0 1506. 23.0 1515. 23.4 1506,  X1000 0.6196 0.6346 0.6449 0.6431 0.6646 0.6645 0.6564 0.6617 0.6632 0.6660 0.66)7 0.6599 0.6639  TIME HOURS 0.0 0.07 0 . 15 0. 30 0.43 0.67 0. 7 ) 0. 9 7 1.17 1.2F. 1.40 1.57 1. 7 2  OELTA OEG.F 22.5 77.5 22.6 22. 5 71.0 ?).0 2 ).0 7).4 ?).4 ?).4 71.0 71.0 21.4  RIOT X 1000 0.6196 0.6)46 0. 6 4 4 9 0.6431 0.6666 0.6646 0.6434 0.60 17 0.66)2 0.6660 0.6617 0.4599 0.6639  T THE HOURS 0.0 0.07 0 . 14 0. ) 0 U.41 0.67 0. 7 ) 0.97 1.17 1.23 1.40 1.41 1.72  H 1611.9 1475.7 1550.5 1554.9 16C0.7 I5U4.0 1 518.9 1511.7 1 3 0 7. 8 14UI.6 1406.7 15 1 4 . ) 1404.3  250 • ••••••RUN NOM. ••••••• FERRIC OXIOE CONC IPPK) V0L1S:|3.50  3750.  AHPSJ 355.  MEAT FLO'.' SUPPLIED 16356.8 HEAT FLUX SUPPLIED 9)897.  BTU/HR BIU/SOFT-HR  BETAO.301 TOR*TINLET127.0 OENSHY:0.986 &RAM/CC T 0UTLET149.9 FLOV.' RATE O.IBBB  LBS.K/SFC  AVG TEMP:138.4 KINEMATIC VISCOSITY:0.46O  SO.CM/SEC  DEC F DEC F  DEC F  FLUID VELOCITY A.790 REYNOIDS NO 26436.8 PRANOIL NO 3.03  FT/SEC  HEAT SUPP 16356.B BTU/HR HEAT TRANS 15633.8 BIU/HR HEAT LOST 723.0 R7U/HR PERCENT HEAT LOST 4.42 HEAT FLUX TRANS. BIU/SOFT-HR B9746. NL'SSELI NO 121.3 RFILH 0.624 RWALL 0.143 RTOTAL 0. 766 SOFI-HR-OEC F/BIU  LOCALIZED WALL TEMPERATURES 1215 1235 1255 T275 OEC.F OEG.F DEC.F OEC.F 1 79.4 186.5 0.0 179.8 186. 1 178.6 179.4 0.0 135.7 174.0 174.6 185.3 178.2 179.0 185. 7 176.2 179.0 185. 3 177.B 17B.6 184.5 0.0 177.8 179.0 184.5 0.0 I 76-6 177.8 184. I 0.0 177.4 176.2 164.1 0.0 177.0 177.4 184.5 0.0 177.8 178.2 184. 1 0.0 177.0 177.8  IOEG.F 1295 UEG.F 166.1 loS. 7 1J5.7 165.3  T315 Dfc&.F 187.6 187.6 166.8  184.9 164. 1 I d4 . 5 U4. 1 163.7 I 34. 5 163.7  186.5 136.5 135.7 16S.7 185. 3 165.3 165.7 185.3  165.)  166.5  T335 DEG  164  163. 163 18? 18?  13?  161 161 181  181  182 181  1355 UEG.F 184. I 183.3 132.9 132.5 1 82.5 182. 1 181.7 181.7 161.7 181.3 18). 7 181.3  T375 DEG.F O.C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C. 0 0.0 O.'J  LOCALIZED FOULING RESISTANCE ISOFI-HR-OEGF/PTUIXI00,000 1215 1735 1255 1715 1295 1315 1135 1155 1)75 0.0 0.0 0.0 0.0 o.o  0.0 o.o  0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0  0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 o.u  0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 . O.U  0.0  U.O  0.0 u.o 0.0 0.0 0.0 0.0 u.o 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0. 0 0.0 0.0  0.0 0.1)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.n 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  1395 OEG.F 191.2 190.4 190.4 139.6 189.6 133.8 168.8 168.8 138.8 188.8 1 38. 6 188.4  T4I5 DEG.F 197.0 195.8 195.6 I 95. I 195.1 194 . 3 193.9 194. 3 194.3 193.9 19).9 193.5  T428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 126.5 127.0 176.5 126.5 126 .5 177.0 127.0 127.0 127.0 127.0 127.0  TOUT OEG.F 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.5 14 9.9 149.9  TM DEC.F 186.2 185.6 185.4 164.9 164.9 164.5 184.1 184.2 134.0 183.7 184. I 183.6  1195  T4I5  T428  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 177.0 126.5 12 7.0 176.5 176.5 1?6.5 177.0 177.0 177.0 177.0 127.0 177.0  TOUT DEG.F 149.9 149.9 149.9 149.9 149.9 149.9 149.9 149.9 14 9.9 149.5 149.9 149.9  RFM  0.0 0.0 0.0 0.0 0.0 0.0 0.0 u.o 0.0 0.0 0.0 0.0  0.0 -0.63 -0.92 -1.41 -1.41 -i.e5 -7.78 -7.74 -2.48 -7.8? -2.26 -2.67  DELTA H OEG.F X1000 23.0 1485, 0 0 . 6 7 3 4 23.4 1495, 6 0 . 6 6 8 6 23.0 1511, 3 0 . 6 6 1 7 1519 4 0 . 6 5 6 2 23. 1519, 9 0 . 6 5 7 9 23. 1532 0 0 . 6 5 2 7 23. I 555, 4 0 . 6 4 2 9 2).0 1552. 9 0 . 6 4 4 0 2).0 1559, 5 0 . 6 4 1 2 22.5 1561, 1 0 . 6 4 0 6 23.0 1532 8 0 . 6 4 4 0 23.0 :571. 1 0 . 6 3 6 5  TIME HOURS  OELTA DEG.F 21.0 23.4 21.0 7).4 71.4 ?). 4 71.0 73.0 ?).0 ??.5 2).0 21.0  TIME HOURS *  H 1465.0 1495.6 1511.3 1519.4 1519.9 16)2.0 1535.4 1557.4 1559.5 1361.1 1537.6 16 71.1  RIOT XI000 0.67 14 0.6684 0.661 1 0.6632 0.6579 0.6527 0.647 9 0.6440 0.6412 0.6406 0.644U 0.6365  0.0 0.03 0.13 0.30 0.45 0.5? 0.68 0.90 1.07 1.23 1.1? 1.55  0.0  0.03 0. 13 0. 30 0.45 0.57 0.66 0.9G 1 .07 1.2) 1.17 1.35  ID -000O0O"-t-HNf<i\mN •— r  •/>  m , i : o ' M s T i f t ? ' v ^ ji & i\ *r -0 <o &  iMC'O —  1  T 3 * . . — 3 0 3 0 0 0  *oO«r  0<«.i>J,'M — — — — ~«3 Of O — Aj, IM rt «r ,jr j id 1(1 «i « VI 1(1 — O-GO^O-OO^-O-O-OOOO X . « •  o  * * t O O O O a =  V\t-0-t**,rvOoBrvo*o + + ,r X— ^<N.O , <\it>org-oocO'*' — — *  .....4.  -T  z  —  u,  < < < * • * * . • • • • • . O O — — — lVrMIS.PS,^fS-N-  L k O O C O t A O O O O C O A C O 1 — i^r^rsirv^is.rv'Nics.rv'V's.'vv-s,  O — — — — — — — — — — — — — —  <D  U . C O O O O O O O O O O O O O • *  OO  A J O O O O O O O O O O O O O O O V HI  1- o  IT>  LVrt.AiAtrrt^iwrA — — — — —P»  • V O O O O O O O O O O C O O O hA<. • • • < • • • <••••< P » U O U O O O u O O O O O O O O  c PA r"> I- — ••< —  LJ.OAJ.OLTP-I*- — —  If • 1 • • 1 • 1 1 • < 1 • < • • rt O I- C C — — — <\j *%J ix A* A, <V «M Ai rluj's<cie3ewtBCC(ta,aj««jco — a — — — — — — — — — — — — — —  0  U» — lA t> Ort»». — — •/•> 1Q LA V lA IA • • « — o * .* J J ^ ' A O J O O O « J 3 0 tn J B J; m n O u a) tj o A' 0 *J T> M <-3 — — — — — — — — — — — — — — ^(/sOrtrtf-tA —  p ik I»I p.  O C C C C C  -i « — -  *C  •  0 O O « - - \ N N « N N N V  (A  o o o o o o c c o c c o c c  O•IlAA  IA LA — lA — lA  PM  rt  o o o o c o c o c c o c r .  o O  — 3 — — — — — — — — — — — — — —  IA  it\  rt  IA • V r t c j e c O O O — — (v%»Nj'\iiM'sirM(M  *  O O O O O C O O C O O C O C  LA OVttrtN.". — C J C «C .C J t?  •  rtiijcC<Oa3crx><»t0:0aJ7'CD<T"4J* l-O — — — — — — — — — — — — — —  O  O O 0 C 0 O 0 O C O 0 C 3 0  -f  «r o — — — <M —  LA  LL  Jf»? r"i- T* - •»  •  ,0  \  C 111 V /x**- ^ * » - o — — — — — — — —.— — — — — —  —  U - O O O O t A O O O O O O l A O O 0>"-'*'A.I».OP"-P-P»P-.P-P-  — — «r  - N r- - - \  ^ ^ ^ v ." r  X 0^ — *"ar O i\ r 3 — r*--\.  —  A  i-O — — — — — — — — — — — — —  A  Oai\/\PwN'\'vi1i'MNNNN  .f -T NT -T  a — — — — — — — — — — — — —  C 2 C O C - ~ C  • - ^ • O O O O ' f C O C C O Z C C C  u. a 00'NP-a20r\ii/\p--LAaj"'"-0 XOA<AJrtrtrtrttf  — or — — — - c  0"A»C*'S>:*C>*N.*CX^*  <  Wuj'*'f'''*1,*,,*l'*,'*t'*,'''*'"r'l'"'*l OOAiAj.AJAjr\jA,A."NifsirviAiAi'N)rM  ,  N a C S A O . ^ *  < u. 1• o o o o - r o o o o o o o o o  -I O  — — - — -M>i-L,-s.N  • - o o r ' - ' C o t - * ^ :* ^ — — .** c e  00-O-O^OOtf^OO^JO^ ^ c o  00000000000000 X  ^ P M % C r t ^ ^ J O  .. tuflt-O^^A^-M^ja? — aJ-  ? \ J i i > ^ f ?f "P ";*r?* * "  O 3 # % \  O — O t— N N * • - rtrt^^rt^rt*»  c —  X —  ^ iA  i O - r ^ - — — ,^ - * v . - - OrAt- — 's,o«ro-'.-*r7*?rr* ,  XrtO — — ^N^rtrtrt^ —rt— — O  JI  O -r  a:rto o  o  . — — * » "  C C J O C O  o-  s  * < * • > •  *••>  LU  u.5-i>nf"N--.-ifi»j'MH-  QCO  taMuin3<D«)«a3a;*fflai4jr3c  «A>N  OOOOO — — — —  %*srtiN-  CO <0  tt X lA HJL^OkA^O'OOP-.O'-P-p^i—p-.r-P— i\jW^r-p-'1-p-.p-p^p-»-r«-p-p^r-i»" »_o — — — — — — — — — — — — — — U vA Ifl Oif> JOr^P^rfcp<.f-p».p»f»-Pkr* O.NWNr»P«NNNM»-NP-p.r.p>P« UJ— O — — — — — — — — — — — — — — -J  L k O O O O O O O O O O O O O O  O —  J  —  O O O O O O O O O O O O O O O  o  u.  VA  o o <r » " O O O O-  4Ajrv^O'~M'M£0  rt • • . *  ON  < wA  O O O O O O O O O O O O O O  O A*  O O O O O O O O O O O O O O  o— * • • • • • • • • . * • • *  252  ••4*»««RUN N053.«•••*»• FEKtt IC OXIDE CONC ( P P M I V O U S : 9.35  ESTIHAItS OF ROOT MEAN SOUARE S T A T I S T I C A L ERROR IN IIIC P A R A M E T E R .74717E-0I .76786 ES1IHATES OF R007 MEAN SUUAKE I01AL ERROR I N 1 HE P A R A M E T E R S .4016HE-01 . I 55110 ES1IMATF OF RO.RI.' F . AND 11 I N RF = RINI II l . - E X P ( - P » l |HC I .0 5.0664 2.7244 I 1HE C A L C . RESISTANCE T I M E D VALUE HOURS IISCri-MR-UCGE/blU1X100,0001 0.0 0. 0 -0.0 0.05 O. 30 0.75 0.12 1.61 1.64 0.20 01 2.46 0.33 21 3.48 41 0.50 4.36 91 0.65 4.67 62 0.82 5.24 92 1.00 5.48 42 1.33 5.71 6.62 1.43 5.75 5. 62 1 .68 5.81 5.62 1 .87 5.B3 5.84 2.05 5.65 2.25  1750.  AMPS: 2 5 3 .  HE AT E L C H S U P P L I E D IICAT I L U X S U P P L I E D  8013.6 46)41.  BIU/HR B1U/SCFT-HR  PET40.301 TOR.T1NLE1127.0 D E N S I I Y : 0 . 9 S 6 GRAH/CC I Our L l 11 M .8 FLOW R A T E 0 . 1 4 4 2  LBS.M/SEC  AVG T F H P : 1 3 4 . 4 K l N E MAI IC VISC0SITY:0.496  OEG F  DEG F OEG  f  SU.CH/SEC  F L U I 0 V E L O C I T Y 3.655 R E Y N O L D S NO 1 9 5 5 0 . 0 PRANDTL NO 3.15  FT/SEC  HEAT S J P P 8073.6 BTU/HR HE A l TRANS 7721.9 UTU/HR HEAT LOST 345.7 BTU/HR PERCENT HEAT L O S T 4.28 HEAT FLUX T R A N S . B T U / S O F T - H R 44362. IIUSSELT NO 94.6 RFILH 0.803 RWALL 0.144 RIOIAL 0.947 SOFT-HR-DEG F/BTU  L O C A L I Z E O WALL TEMPERATURES 1255 T275 7215 12)5 DEG.F DEG.F OEG.F DEG.F 154. 3 159.9 0.0 154.3 154.3 159.9 0.0 154.7 160.3 0.0 1 5 5 . 1 154.7 0.0 155.5 155. 1 160.3 160.7 0.0 155.5 155.5 161.5 0.0 156.3 155.9 161.9 0.0 1 5 6 . 7 155.9 0.0 156.7 156. 3 161.9 162.3 0.0 167.1 156.7 163. I 0.0 157.9 157.5 163.5 0.0 158.3 157.9 163.5 0.0 158.7 156.3 163.1 0.0 159.5 156.7 0.0 159.5 15e. 3 162. 3 161.5 159.9 157.9  IOEG.FI T295 OEG.F 159. 5 159. 5 159.9 160.3 160. 7 161.1 161.6 167. ) 167. 3 162. 7 161. I 167.7 161.9 161.5 161. 1  1315 DEG.F 160.) 160.7 161.1 16 1.1 161.9 162. ) 162.7 16). 1 163.1 16).5 163.1 162.) 161.9 161.9 161.5  T))5 OEG.F 157.5. 157.5 151. ) 156.) 159. I 159. 5 159.5 159.9 161.1 159.9 159.9 159.5 153. 7 158. 7 158. 7  1 355 OEG.F 156.7 157.1 157.9 157.9 158.7 159.1 159.4 159.9 159.5 159.5 159.5 I5B.7 15 6.7 15B.7 158.3  T375 1395 DEG.F DEG.F 161.9 0.0 161.9 CO 162.7 0.0 0.0 163. 1 0. 0 163.9 164.3 CO 164. 3 0.0 164.7 164. ) 164. ) 164.) 0.0 163.1 CO 16). 5 CO 163.5 16).5  L O C A L I Z E D FOULING RESISTANCE ISCFT-HR-OECF/CTOIX100,COO 1235 1275 1295 T31S T336 1356 T375 1215 T255 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0  0.0 0.91 1.81 2.72 2.72 4.5) 5.4) 5.4) 6.34 8.15 9.05 9.96 1 1 .16 11.76 12.66  0.0 0.0 0.91 1.61 2.72 3.62 3.62 4.63 5.43 7.24 8.15 9.06 9.96 9.05 6.16  0.0 0.0 0.90 0.90 1.80 3.61 4.51 4.51 5.41 1.21 e.n 8.11 7.71 5.41 3.61  0.0 0.0 0.90 1.81 2 . 71 3.61 4.51 6.31 6 . 31 7.27 3.12 1.27 5.41 4.61 3.61  0.0 0.90 1.80 1 .60 3.61 4.51 5.41 6.31 6 . 31 7.21 6.31 4.61 3.61 3.61 2.71  0.0 O.O 1.61 1.81 3.62 4.52 4.57 5.42 8. 1 1 5. 4 ? 5.47 4.67 2 . 71 2. 71 2 . 71  0.0 0.90 2 . 71 7.71 4.52 5.4 7 6.3) 1.2) 6.3) 6 . 1) 6.33 4.52 4.5? 4.57 3.62  0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O CO 0.0 CO U.O 0.0 0.0 0.0  T395 0.0 0.0 I .60 2 . 70 4.50 5.40 5.40 6 . 30 5.40 5.40 5.40 2.10 3.60 3.60 3.60  T4I5 T428 DEG.F DEG.F 166.7 0.0 0.0 166. 7 0.0 167.5 0.0 167.5 0.0 167.9 0.0 166.7 0.0 168.7 0.0 166.7 0.0 163.) 0.0 168.) 0.0 167.9 0.0 167.5 0.0 167.5 167.5 167.5  TIN OEG.F 127.0 127 .0 127.0 127.0 17.7 .0 127.0 127.0 127.0 177.0 126.5 127.0 126.5 127.0 127.0 127.0  TOUT DEG.F 141.4 141.4 14 1.4 141.6 141.8 141.8 141.8 141.8 141.8 141.8 141.8 141.8 141.8 141.8 141.8  IM DEG.F 159.0 159.1 159.7 159.9 160.4 161.0 161.2 161.5 161.6 161.6 161.9 16 1.6 161.5 161.) 161.1  DELTA DEG.F 14.4 14.4 14.4 14.9 14.9 14.9 14.9 14.9 14.9 15.) 14.9 15. ) 14.9 14.9 14.9  1410.2 1402.8 1)69.8 1)73.6 1)42.2 1317.0 1)06.0 1269.1 1283.5 1268.8 1276.6 1290.2 1310.3 1316.1 1331.5  T415  3 IN OEG.F 127.0 127.0 127 .0 127.0 127.0 127.0 127.0 127.0 177.0 176.5 177.0 126.5 127.0 177.0 127.0  TOUT OCG.F 141 .4 141 . 4 141 .4 1 4 1.3 141 .3 141 .8 141 .3 141 .8 141 .8 141 .B 141 .8 141 .8 141 .6 14 1 .8 141 .8  RFM  DELIA OEG.F 14.4 14.4 14.4 14.9 14.9 14.9 14.9 14.9 14.9 15. 1 14.9 15.1 14.9 14.9 14.9  1410.2 1402.8 1169.8 I 3 73.8 1)47.2 1317.0 1306.0 1219.1 178).5 1268.8 12 76.6 1290.2 1 UN. 3 1113.1 1331.3  0.0 0.0 I.BO 1.20 2.69 4.49 4.49 4.49 3.59 3.69 2.69 1 .ilO 1 .60 1.80 I .80  T42B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0 . 10 1.61 2 . 01 3 . 21 4 .4 1 4 . 91 5 . 62 5 . 92 6 . 42 6 . 62 5 . 82 5 . 62 5 . 22 4 . 72  H  1.  R XIOOO 0.7091 0.7129 0.7300 0.7279 0.7451 0.759) 0.7651 0.7757 0.7791 C.7861 0.76)3 0.7751 0.7632 0.7587 C 7511  T 1 HE HOURS 0.0 0.05 0.12 0.20 U.33 0 . 50 0.65 0 . 62 l.OO 1.13 1.43 1.66 1.87 2.05 2.25  RIOT X 1000 0.7091 0.7129 0.7)00 0.7279 0.74SI 0. 159) 0.165 7 0.77>7 C.7791 0.76M I u. / e n 0.7 16 1 0.7617 0 . 156 1 0.161 1  ll"E HOURS 0.0 0.05 0.17 0.20 0 . 13 0 . 69 0.65 0.17 1. UO 1. 1 1 1.4) 1.63 1.6/ 2.05 2.25  253 •««»*t»RUN  N0S4.»••••»•  TCKKIC  UXIOE  VOLTS!  5.75  CONC  IPPHI AMPS:  H E A T E l O U SOPPlirP HEAT f L O X S U l V L U O 6EIA0.301 OENSIIY:0.986 FLOK  RA1E  162.  31 7 1 . 2 16250.  BIU/HR MU/SUFI-IIR  TDlLT INLET127.0 CRAM/CC I 0UHEI131.5  0.0759  AVC T L H P M 3 2 . 2 KINCMAIIC VISCUSI1Y:0.506  E S T I M A T E S O F ROOT M E A N S U J A R C S T A T I S T I C A L E R R O R I N TIIC P A R A*'E I E R .6601*1-01 ..'060/ E S I I M A H S O f ROOT M I A N S C ' J A U I C I A L E R R O R I N T H E P A R A M E T E R S .754791-01 .IliCi.n E S T I M A T E U P R O . R I N F , ANII D I N R F . R I N F I 1 1 . - E X P 1 - P • 1 1 ME I .796 1 .89 365 .0 CA1C. RESISTANCE M I I I O VALUL I I ME I ISCFI-HR-DICF/fi101XI00.COCI HOURS 0.0 -0.0 0.0 1.90 0.53 0.07 0.54 0.97 0.13 2.99 1.95 0.28 2.99 7.51 0. 3 8 3.53 3.32 0.53 3.26 3.14 0.62 3.53 4.18 0.72 3.00 4.93 0.92 5.71 5.29 1 .03 5.17 5.51 1.10 5.44 6.00 1.26 5.98 6.17 1.35 6.52 6 . 76 1.65 8.42 7.43 2.06 8.42 7.60 2.23 9.51 7.79 2.42 8.15 7.92 2.58 8.42 8.06 2.77 7.61 6 . 15 2.92 6.52 8.38 3.42  21)0.  DEC  F  OEC  F  LOS.N/SEC OCC  F  SO.CM/SEC  FIU10 VEIOCIIYI.921 R E Y N O L D S NO 1 0 0 9 1 . 5 P R A N D 1 L NO 3 . 2 1  FT/SEC  HEAT SUPP 3179.2 BTU/HR HEAT TRANS 28S0.5 BTU/HR HEAT LOST 296.6 BIU/HR P E R C E N T HEAT LOST 9. AO HEAT FLUX TRANS. riTU/SOFT-HR 16535. N U S S E L T NO 55.A RF1LH 1.376 RHALL 0.146 RIOTAL 1.520 SOFT-KR-OCC F/BTU  L O C A L I 2 E D WALL 1EMPERA TURE S T255 1275 1215 1235 DEC.F OEG.F OEG.F 0.0 142.6 141.7 146.2 0.0 142.6 142.2 147.0 0.0 142.6 141.7 147.0 0.0 142.6 142.6 147.0 0.0 143.0 142.6 147.0 0.0 14 3 . 0 1 4 2 . 6 147.4 0.0 143.0 142.2 147.4 0.0 143.0 142.6 147.4 0.0 143.0 142.6 147.0 0.0 143.4 142. 6 147.4 0.0 143.4 142.6 147.4 0.0 143.4 147.4 0.0 143.4 142.6 147.8 0.0 143.4 143.0 1 4 3 . 0 1 47.8 0.0 143.6 147.8 0.0 14 3 . 6 1 4 1 . 0 148.2 0.0 143.6 143.0 143.4 148. 2 0.0 143.6 143.0 146.2 0.0 143.8 1 43.0 147.8 0.0 143.8 147. 4 0.0 143.4 143.0 142.6 147.8  DEC.F  IDEG.FI 1295 DEG.F 146.2 146.6 146.6 147.0 146.6 14 6 . 6 146.6 146.6 146.6 147.0 147.0 147.0 147.0 147.4 147.8 147.4 147.8 147.8 147.4 147.4 147.0  1315 DEG.F 14 7.0 147.0 146.6 141.4 147.4 147.4 147. 4 147.4 147.4 147.8 14 7 . 8 147.4 147.8 147.8 148.2 148.2 146.6 148.2 14e.2 148.2 148.2  I 335 OEC.F 144.2 144.2 144.2 144.6 144.6 144.6 144.6 144.6 144.6 145.0 145.0 145.0 145.0 145.0 145.4 145.4 145.4 145.4 145.4 145.4 145.0  1355 OEG.F 143.8 144.2 143.8 144.2 144. 2 144.2 144.2 144.2 144.2 144.6 144.6 144.6 144.6 144.6 145.0 145.0 145.0 145. C 145.0 145.0 144.6  T375 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 CO 0.0 0.0  L O C A L I Z E D FOULING R E S I S T A N C E ISOFT-HR-DEGF/BTOIX100,000 T215 1235 1255 1275 129 5 1315 T335 1155 T375 0.0  0.0 0.0 0.0 0.0  0.0  0.0  0.0  0.0  0.0 0.0  0.0  0.0  o.o  0.0  0.0 0.0 0.0 0.0  0.0  0.0  0.0  0.0 0.0 0.0  2.45 2.45 2.45 2.45 2.45 4.90 4.90 4.90 4.90 4.90 7.36 7.36 7.36 7.36 7.36 7. 36 4.90  0.0  0.0  2.45 4.69 0.0 4.69 4.91 4.69 4.91 4.89 4.91 7.14 2.45 7. 3 4 4.91 7. 3 4 4.91 4.89 4.91 7. 3 4 4.91 7. 1 4 4.91 7. 3 4 7.16 9. 7 8 7. 3 6 9. 7 8 7.36 • 9.78 7. 36 1 7 . 2 7 9.61 12.22 7. 3 6 1 7 . 7 7 7.36 9. 76 7.36 7. 3 4 4.91 9.  IH  0.0 2.45 2.45 4.69 2.45 2.45 2.45 2. 4 5 /.45 4.69 4.89 4.69 4.89 7.34 9. 78 7. 14 9. 1 8 9. 78  0.0 0.0 0.0 2.44 2.44 2.44 2.44 2.44 2.44 4.69 4. 6 9 2.44 4 .89 4. 6 9 7.3) 7.33 9.7 7 7. 13 1. ) 4 7 . 3 3 7.34 1.33 4.H9 7. 1 )  0.0 0.0 0.0 2.45 2.45 2.45 2.45 2.45 2.45 4.90 4.90 4.90 4.NO 4. 9 0 7. 3 5 7. 3 5 7. 1 . 7. V , 7. 1 5 7. 1'. 4.90  0.0 2.45 0.0 2.45 2.45 2.45 2.45 2.45 2.45 4 .90 4.90 4. 9 0 4.90 4.90 7. 3 5 7.35 7.16 7. I S 7.35  0.0 CO 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 1. 35 0 . 0 4.NO 0.0  7395 OEG.F 146.2 148.6 148.2 148.6 148.6 148.6 148.6 148.6 149.0 149.4 149.0 149.4 149.0 149.4 149.R 149.8 149.8 149.4 149. 8 149.4 149.4  T415 DEG.F 151.5 151.9 151.5 1 5 1 .9 151.9 152.3 152.3 152.3 152.7 152.7 152.3 152.7 152.7 152.7 153. 1 153.1 153.5 152.7 153.5 153.1 153.1  T428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  1 3 9 5 T 4 1 S T428 0.0 0.0 2.44 2.44 0.0 0.0 -2.44 2.44 2.44 2.44 2.44 4.87 2.44 4.67 2.44 4.67 4.88 7.31 7 . ) ) 7.31 4.B8 4.87 7.)) 7.)1 4.68 7.)1 7.)) 7.)1 9 . 17 9 . 74 9.77 9.74 9.77 12.18 7.1) 7.)1 9.77 12.18 7.13 9.74 7 . ) ) 9.74  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 127.0 127.0 127.0 1 2 7 .0 127.0 127.0 127.0 127.0 127.0 1 2 7 .0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0  TOUT DEC.F 137.5 137.5 137.5 137.5 1 37.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5  TIN OEG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 177.0 177.0 177.0 177.0 127.0 121.0 121.0 127.0 127.0  TOUT RFH OELTA H RTOT TIME DEG.F DEC.F XIOOO HOURS 137.5 0.0 10.5 967. 6 1.0)32 0. 0 1 3 7 . 5 1 .90 1 0 . 5 945. 8 1.0573 0.07 137.5 0.54 10.5 962.2 1.0393 0. 1 3 137.5 2 . 9 91 0 . 5 932.3 1.0726 0. 2 8 1 3 7 . 5 2 . 9 9 1 0 . 5 9 3 .7 1 . 0 6 9 8 0. )R 137.5 3 . 5 3 10.6 929.3 1.0760 0.53 1 3 7 . 6 3 . 2 6 10.5 931.4 1.0717 0.62 1 3 7 . 5 3 . 5 3 10.5 929. 3 1.0760 0 . 72 1)1.5 ) . 6 100 . 5 9 2 6 . 6 1 . 0 1 9 2 0.9? 137.5 5 . 7 11 0 . 6 905. 0 1.1050 1.0) 117.5 5 . 1 7 10.5 9 I C 4 1.C964 1. 1 0 1)7.5 5 . 4 41 0 . 5 9 0 8 . 6 1 . 1 0 0 6 1.26 1)7.5 5.98 1 0 . 6 9 0 3 . 3 1 . 1 0 10 I . 35 1)1.6 6 . 5 71 0 . 5 8 9 7 . 1 1.114 7 1.65 1 )7.5 6 . 4 2 10.5 8 7 7 .3 1 . 1 399 2.08 1)7.5 8.42 10.5 617.8 1.1391 2.23 I V . 3 9 . 6 11 0 . 5 661.6 1.1579 2.47 1 1 7 . 5 8 . 1 5 10.5 8 / 9 . 8 1. 1 1 6 6 7.66 1)1.5 8.42 10.4 8/6.7 1.11" 1 2 . 77 1 1 7 . 5 7 . 6 1 1 0 . 4 6 8 5 . 7 1 . 12 I U 2.97 1)7.5 6 . 5 21 0 . 3 896.4 1.1165 3.42  TH  OEG.F 145.7 146.0 145.8 146.2 146.2 146. 3 146.2 146. 3 146.3 146.7 146.6 146.6 146.7 146.8 147.1 147. 1 14 7. 3 147.1 147. 1 147.0 146.8  DELTA DEG.F 10. 5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5  H  R  XIOOO 9 6 7 . 8 1.0332 945.8 1.0573 962.2 1.039) 932.3 1.0726 9 3 4 . 7 1.0696 929. 3 1.0760 931.4 1.0737 929. 3 1.0160 926.6 1.0792 9 0 5 . 0 1. 1 0 5 0 9 1 0 . 4 1.C964 9 0 0 . 6 1.1C06 903. 3 1.1070 897.1 1.1141 877.3 1.1399 S77.8 1.1193 867.4 1.1529 £79.8 1.1366 876.2 1.1367 685. 7 I.1290 696.4 1.1155  7IHE  HOURS 0.0 0. 0 7 0. 1 3 0.2B 0.36 0.53 0.62 0. 7 2 0.92 1.03 1.10 1.28 1. 3 5 1.65 2. 08 2.2 3 2.42 2.58 2.77 2.92 3.42  254  ••••«4tRUN ND55.»•«•••» F C R R I C OXIOE CONC IPPMI VOLTS: 7.35  AMI'S: 2 0 3 .  HC AT FLOW S U P P L I E D HEAT FLUX S U P P L I E D BETA0.301 DENSITY:0.986  E S T I M A T E S OF ROOT MEAN SOUARE S T A T I S T I C A L ERROR I N T H E P A R A M E T E R .15197 .41471 E S T I M A T E S CF ROOT MEAN SOU ARE TOTAL ERROR IN T H E P A R A M E T E R S .69557E-01 . 18931 E S I I H A I E OF R O . R I H F . A N O 0 IN R F = R I N F I I I . - E J P I - 6 » T I MO I 5.4)61. 1.7417 T 1 ME CALC. RESISTANCE F I T T E D VALUE HOURS I ISOFt-HR-DEGF/BTU1X100,0001 0.0 0.0 -0.0 0.13 1.22 1.10 0.20 1.91 1.60 0.48 2.96 3.08 0.5S 3.63 3.46 0.70 3.31 3.6) 1.07 4.70 4.59 1.45 4.S2 5.00 1.87 6.09 5.23 2.00 4.67 5.27  21)0.  5012.4 2923).  BTU/HR BIU/SCFI-HR  TOR"!1NLET127.0 CRAM/CC I OUILET137.5  FLOW RATE 0 . 1 1 0 4 AVC T E M P : 1 3 2 . 2 KlNEHATIC V1SC.OSITY:0.506  OEG F DEG F  LBS.M/SEC DEC F SQ.CH/SEC  FLU I 0 VELOCITY 2.997 REYNOLDS NO 1 5 7 4 4 . 0 P R A N D I L NO 3.21  FT/SEC  HEAT SUPP 5092.4 BTU/HR HEAT TRANS 4493.9 BTU/HR MEAT LOST 593.5 BTU/HR P E R C E N T HEAT L O S T 11.75 HEAI FLUX T R A N S . BTU/SCFT-HR 25797. N U S S E L I NO 79.2 RFILM 0.960 RWALL 0.145 RTOIAl 1.106 SOFT-HR-DEG F/BTU  L O C A L I Z E D WALL T E M P E R A l O R E S 1255 1275 1215 1235 OEG.F OEG.F DEG.F DEG.F 0.0 14 5.0 1 4 3 . 6 14 9.0 0.0 145.0 144. 2 1 4 9 . 4 0.0 145.4 144.6 149.8 0.0 145.6 144.6 150.2 0.0 145.6 145.0 150.2 0.0 145.6 145.0 150.2 0.0 1 4 6 . 2 146.6 150.2 0.0 145.6 145. 4 150.2 0.0 146.2 145.4 150.6 0.0 146.2 145.4 150.2  (0EG.F1 1295 1)15 T))5 DEG.F DEG.F DEG.F 146.6 149.4 146.2 1 4 8 . 6 149. 8 1 4 6 . 6 149.0 149.6 146.6 149.4 150.2 147.0 149. 4 1 5 0 . 6 1 4 7 . 0 149.4 I5U.2 147.0 1 4 9 . 8 151.1 147.0 149.4 1 SC. 6 1 4 7 . 0 150.2 161.1 147.4 149.8 130.6 147.4  » T)55 UEG.F 145.4 145.6 145.8 14 6.2 14 6.6 146.6 146.6 147.0 147.4 147.0  T 375 DEG.F 0.0 0.0 CO 0.0 CO CO CO 0.0 CO 0.0  L O C A L I Z E D F O U L I N G R E S I S T A N C E I SQF 1-HR-DEGF/P. TU1 X 1 0 0 , COO 7215 1235 1255 1275 1295 1)55 1)15 T))5 1375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 1.57 3.14 3.14 3. 14 4.71 3.14 4.71 4.71  0.0 1.57 3.14 3.14 4.71 4.71 7.65 6.28 6.26 6.26  0.0 1.56 3.13 4.69 4.6 1 4.69 4.69 4.69 6.26 4.69  0.0 0.0 1.57 3. 1 3 3.13 3.13 4 . 69 3. 1 3 6.24 4.69  0.0 1.56 1.56 3. 13 4.69 3. 1 ) 6.25 4.69 6.25 4.69  0.0 1.57 1.51 1. 14 3 . 14 3.14 1.14 3. 14 4 . 70 4 . 70  0.0 1.57 1 .67 ) . 14 4.71 4.71 4 . /I 6.77 7.34 6.27  0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0  1395 OEG.F 160.6 151.1 151.1 151.1 151.5 151.1 151.5 151.9 152.3 151.9  1415 DEG.F 154.3 154.7 154.7 154. 7 155.1 154.7 155. 1 155.5 155.9 155.1  T428 DEG.F O.C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  T IN DEG.F 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5  TOUT DEG.F 1)7.5 1)7.5 1)7.5 1)7.5 1)7.5 137.5 137.5 1)7.9 1)7.5 137.5  TN DEG. F 148.0 146.4 143.5 148. 6 149.0 148.9 149.3 149.2 149.6 149. 3  1395  1415  1428  TIN OEG.F 126.5 126.5 126.5 126.5 176.5 126.6 176.5 126.6 176.5 126.5  TOUT OEG.F 1)7.5 1)7.5 1)7.5 1)7.5 1 )7.5 137.5 1)7.5 1)7.9 1)1.5 1)7.5  0.0 1 .22 1.91 2.96 ).83 ) . 31 4 . 70 4.62 6.09 4.81  0.0 1 .56 1.56 1 .56 3.1) 1.66 1.13 4.69 6.25 4.69  0.0 1.56 1.56 1 .66 ).I2 1.66 3.12 4 .67 6.2) 3.12  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  RFM  DELTA OEG.F 11.0 1 1.0 11.0 11.0 11.0 11.0 11.0 11.4 11.0 U.O  H 1273.3 1247. 1 1236.4 1215.4 1198.6 1208.9 1165.7 1202.I U'7.7 11.0.2  OELTA H DEC.F 11.0 1273.3 11.0 1 2 4 7 . 1 11.0 1216.4 u.o 1 2 1 5 . 4 1 1 .0 1 1 9 8 . 6 u.o 11 210385..97 u.o 11.4 1202.1 II .0 1 1 5 7 . 7 u.o 1 1 6 0 . 2  R XIOOO 0.7853 C.8CI6 0.8038 O.E22e 0.8343 0.6272 0.e434 C.8319 0.8638 0.8473  TIME HOURS 0.0 0 . 13 0.20 0.4E 0 . 53 0 . 7G 1.07 I . 45 1.87 2.00  RIOT X 1000 0.7651 0.6018 0.8086 0.8228 0.8 34 1 O.fc/72 0.6434 C . 8 119 0.8638 0.641)  TIME HOURS 0. 0 0.1) 0 . 26 0.4* 0.54  o. /': 1.07  1.45 1.87 2.00  255  »t****»RUN  N0S6.«•••»««  F E R R I C OXIDE CONC ( P P M V0LTS:13.50 HEAT FLOW S U P P L I E D HEAT F L U X S U P P L I E D  E S T I M A T E S CF ROOT MEAN S Q U A R E S T A T I S T I C A L ERROR IN IME P A R A M E I E R .28973 .95107 E S I I K A I E S CF ROOI KE AN S C U A R C 1 0 1 A L ERROR IN T HE P A R A M E T E R S .69**3E-01 .227)5 E S T I M A T E OF R O . K I l i F , AND 0 IN RF = R I N F I I 1 . - E X P I - B « 1 1 ME I 2.2601 4.1606 .0 TIME CALC. RESISTANCE F I I T E O VALUE HOURS I I S C F I - H R - O E G F / B I U I X I C O . 0001 0.0 0.0 -0.0 0.07 0.96 0.5S 0.13 1.01 0.95 0.30 1.30 1.63 0.37 1.97 1.79 0.45 1.88 1.93 0.58 2.02 2.08 0.77 1.98 2.19 0.9B 2.17 2.24 1.20 2.60 2.26  2130.  AMPS: 3 4 7 . 16986.2 91781.  PTU/HR DIU/SUF1-HR  BETAO.301 TCR»TINLETI27.0 0 E h S I I Y : 0 . 9 8 f > GRAH/CC T OUTLET157.0 FLOW R A T E 0 . 1 4 4 2  LBS.M/SEC  AvG TEMP:142.0 KINEMAlIC VISCOSI IV.0.467  L'EG F  DEC F DEG F  SO.CM/SEC  F L U I D V E L O : i l Y 1.664 R E Y N O L D S NO 208S0.6 P R A N D T L NO 2.93  FT/SEC  HEAT SUPP 15938.2 BTU/HR H E A I TRANS 15653.1 BTU/HR HEAT LOST 335.1 3TU/HR P E R C E N T HEAT L O S T 2.10 HEAT FLUX TRANS. BTU/SOFT-HR 89857. N U S S E L T NO 100.0 RFILH 0.75* RWALL 0.1*1 RTOTAL 0.395 SfcFT-hR-DEG F/BTU  L O C A L I Z E D WALL T E M P E R A T U R E S 1215 T235 1255 T275 O E G . F O E G . F OEG.F O E G . F 0.0 186.6 186.C 195.5 0.0 167.6 187.2 196.2 0.0 188.0 187.6 197.0 0.0 166.0 187.6 196.6 0.0 166.0 168.0 197.0 0.0 1 8 8 . 0 133.4 197.4 0.0 168.8 188.4 197.0 0.0 186.0 183.4 197.0 0.0 188.0 1(8.4 197.0 0.0 186.8 188.4 198.2  (DEC.F T295 UEC..F 195.5 196.2 196.6 196.6 197.4 147.0 197.0 197.6 197.6 198.2  1315 OEG.F 197.4 193. 2 193.2 196.6 199.3 199. 1 199.3 I 99.7 199. 7 199.3  T335 OEG.F 1 12.7 193.9 193.9 194. 7 194. 7 194. 7 145. I 195.1 195. 1 195.5  T355 T375 OFG.F DEG.F CO 193. 1 193.9 191.9 194. 7 195. I 195. 1 195. 1 CO 195.1 0.0 195. I 195.5  LOCALIZED FOULING RESISTANCE ISUFT-HR-OEGF/BTUIXI 00,000 T295 T235 1255 12 75 1)15 T333 T215 (153 1175 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.44 1.11 0.87 1.31 1.31 1.75 1.11 1.11 1.75  0.0 0.87 0.67 1.31 1.31 1. 75 2 . 18 1. 75 1. 75 2 . 18  0.0 0.67 1.7) 1.30 1.73 2. 1 7 1.71 1.73 1. 71 3.01  0.0 0.87 1. 10 1. 30 7. 1 7 1.71 1.71 7.60 2.60 1.03  0.0 0.87 0.87 1.30 7.16 2 . 16 2.16 2.60 2.60 2.16  0.0 1. 10 I . VI 2. 1 7 2. 1 7 2. 1 7 2.61 7.61 2.61 3.04  0.0 0.87 0.87 1 . 74 7.17 7.17 2.17 7.17 2.17 7.61  0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0  T395 DEG.F 201.7 202.8 ?02.5 202.8 204.4 201.6 203.6 203.6 204.4 204.8  T415 DEG.F 209.4 210.6 209.4 209.8 211.0 210.6 211.0 210.2 211.0 211.3  1428 DEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN OEG.F 126.5 126.5 126 .5 127.0 126.5 126.5 126.5 126.5 126.5 126.3  TOUT DEC.F 157.0 157.0 157.0 157.0 157.0 157.0 157.0 157.0 157.0 151.0  TM DEG.F 195.4 196.3 196.3 I 96.6 197.2 19 7.1 197.1 197.2 197.4 197.8  T395  1415  1426  TIN DEG.F 126.5 126.5 126. 5 127.0 126.5 126.6 125.5 126.5 126.5 126.5  TCUI OEG.F 157.0 15 7.0 157.0 157.0 157.0 151.0 157.0 157.0 167.0 157.0  RFH  0.0 1.29 0.66 1 .29 3.02 2.16 7.16 2.14 3.02 1.45  0.0 1.29 0.0 0. 4 3 1.77 1.79 1.72 0 . 66 1.72 2.14  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.96 1.01 1.10 1.47 1 .88 2.02 1.98 2. 1 7 2.60  OELTA H DEG.F 30.5 1322.8 30.5 1300.9 30.5 1300.8 30. 1 1297.8 30.5 1278.3 30.5 1760.8 30.5 1278.5 30.5 1277.9 30. 5 1274.0 30.5 1265.7  R X1000 0.7560 0.7687 0.7666 0.77C6 0.7823 0.7607 0.7622 0. 7826 0.7B50 0.7901  TIME HOURS 0.0 0.07 0 . 13 0.30 0.37 0.45 0.55 0.77 0.96 1.20  DELTA OEG.F 30.5 30.5 10.5 30.1 30.5 10.5 30.5 30.5 )0.S 30.5  RTOT 11000 0.7560 0 . 763 7 0.7633 0 . 7706 0.78?) 0.7807 C.7672 0.7826 0.7630 U.7401  TIME HOUR S 0.0 0.0/ 0.1) 0 . 10 0.)/ 0.45 0 . 38 U . 77 0.-13 1.2U  H 1322.3 1100.9 1100.8 1297.8 1216.3 1280.8 1278.5 12 7 7.9 12/4.0 1264.7  256  ««*«*««KUN  NOW.««*••••  F E R R I C OXIDE CONC IPPMI VDL1S:13.50  E S I I K A T I S OF ROOT MEAN SCUARE S T A T I S T I C A L [RRCR IN T H E P A R A K E I E R .71200 2.7S7? E S T I M A T E S CF RUOI MLAN SOUA-tE IOTAL ERROR IN THE P A R A M E T E R S .12661 .48643 E S T I M A T E OF RO i 1 NE i A.'tU ri IN RF = R I NE ( I I . - E X P I - e * T I ME I .0 .99129 7.4673 TIME CALC. RESISTANCE F 1 I T E 0 VALUE HOURS IISCFT-HK-OECr/BTUIXlCO.OOOl 0.0 -0.0 0.07 0.40 0.40 0.18 0.65 0.73 0.33 1.09 0.91 0.40 0.85 0.94 0.53 1.19 0.97 0.63 0 . 75 0.9S  2130.  AMPS: 3 5 6 .  HE AT FLOW S U P P l l f O HEAT I L U A S U P P U I O  16402.9 94161.  BTU/HR • 8TU/S0H-HR  BETA0.301 TI)R'I I N L E T 1 2 7 . 0 P E N S I 1 Y : 0 . 9 8 6 GRAM/CC I 0UILEI149.5 FLOW RATE 0.1BS8 AVC T I M P ! 1 3 8 . 2 KIKEMAIIC VISC0SITY:0.481  CE G r DEC F  LBS.M/SEC DEC F SO.CH/StC  F L J I D VELOCITY 4.769 R E Y N O L D S NO 2 6 4 3 9 . 5 PRANOTL NO 3 . 0 3  FT/SEC  HEAT SUPP 16402.9 BTU/HR HEA1 TRANS 15345.6 OTU/HR HEAT LOST 1051.0 BIU/HR PERCEII1 HE AT LOST 6.44 HEAT F L U X T R A N S . E 1 U / S 2 F T - H R 88093. N U S S E L I NO 121.1 RFILM 0.625 RWALL 0.143 RIOT AL 0.767 SOFT-HR-DEG F/BTU  L O C A L I Z E D WALL T E M P E R A T O R E S 1215 T235 1255 1275 DEC.F OEG.F DEG.r OEG.F 0.0 1 75.4 175.4 1 82. 5 0.0 176.B 175.6 182.9 0.0 176.6 176.2 163.3 0.0 177.0 176.6 131.7 0.0 177.4 176.6 183. 3 0.0 177.4 176.6 163.7 0.0 1 7 1 . 0 176.2 162.9  IDEG.FI T/95 T3I5 UtC.F DE G.F 167.5 164 . 1 Ia2.9 164.5 U3.3 164.5 163.7 184.9 111. 3 184.5 1 S3. 7 184.9 163.3 104.9  T335 DEG.F 179.4 1/9.6 180.2 180.6 180.6 180.9 180.6  1355 OEG.F 1 79.8 130.2 160.2 l»0.6 180.6 180.6 180.2  T375 Ot G.F 0.0  0. 0 CO 0.0 0.0 C. 0 CO  LOCALI7.E0 F O U L I N G R E S I S T A N C E I SCF T - H K - O E G f / B T U I XI 0 0 , 0 0 0 T135 I 355 T375 1235 1255 1275 T295 1)15 1215 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.45 1.35 1.80 2.25 2.25 1.60  0.0 0.45 0.90 1.35 1. 35 1.36 0.90  0.0 0.45 0.89 1.34 0.89 1. )4 0.45  0.0 0.46 U. 89 1 . 14 0.E9 I . 14 0.69  0.0 0.45 0.45 0.89 0.45 0.89 0.89  0.0 0.4 5 0 . 90 1. 14 1.34 1. 79 1. 34  0.0 0.45 0.45 0.90 0.90 0.90 0.46  0.0 0.0 0.0 0.0 0.0 0.0 0.0  T395 DCG.f 137.2 137.6 137.6 108.0 In/.6 188.0 187.6  T415 OEG.F 193.5 193.5 193.1 193.5 192.7 193.5 193. 1  1426 DEG.F 0.0 0.0 CO 0.0 0.0 0.0 0.0  TIN OEG.F 126.5 126 .6 176.5 176.5 176.5 176.5 126.5  TOUT DEG.F 149.5 149.5 149.5 149.5 149.5 149.5 149.5  TM D E G .,F 1 6 2 .2 182.6 1 8 2 ..8 183. 2 1 8 1 ..0 1 6 ) ., 1 i e 2 ..9  1395  T415  T426  0.0 0.0 0.0 0. 0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN OEC.F 126.5 126.5 176.5 176.5 176.5 126.5 176.5  TOUT DEG.F 149.5 149.5 149.5 14 1.5 149.5 149.5 149.5  0.0 0.40 0.65 1.09 0 . 65 1.19 0.74  0.0 0.45 0.45 0.89 0.45 0.89 0.45  RF«  DELTA DEG.F 23.0 23.0 23.0 23.0 23.0 23.0 23.0  1574.6 1562.0 1555.9 1542.1 1551.1 1539.6 1552.9  H  DELTA DEG.F 21.0 23.0 21.0 21.0 21.0 21.0 23.0  1574.6 1562.0 1555.9 1642.1 1651.1 1639.8 1552.9  H  R XIOOO 0.6351 0.6402 0.6427 0.6464 0.644 7 0.6494 0.6440  11 ME HOURS 0.0 0.07 0. 1 6 0.13 0.40 0 . 53 0.63  RIOT X 1000 0.63SI 0.6402 0.647/ 0.64*4 0.644/ 0.6494 0.6440  TIME HOURS 0.0 0.07 0. 1 3 0 . 13 0.4O 0 . 53 0.63  257  ***«»*»KUN  N058.»*••»*•  F E R R I C O X I D E CONC IPPM.l V0LTS:|3.50  E S 1 I M A T L S OF ROOT MEAN SOUARC S T A T I S T I C A L ERROR I N THE P A R A M E T E R . 34707 1 . 7667 E S T I M A T E S CE ROOT MEAN SuU\RE TOTAL ER<UR IN THE P A R A M E T E R S .51046E-0I .75935 E S T I M A T E O f RO.RINF.ANO 6 IN R F - R I N F I I 1 , - E X P I - B * T I M C I 1.5661 8.4 3 4 9 .0 TIME C A L L . RESIS1ANCE F l l l t O VALUE HOORS I (SGH-HR-UEGF/BTUIXIOO.OOOI 0.0 0. -0.0 0.02 0.20 0.24 0.10 1.04 0.69 0.32 1.19 1.46 0.43 1.49 1.52 0.55 1.54 1.55 0.58 1.59 1.55 0.72 1.74 1.56  21)0.  AMPS: 3 5 6 .  HEAT F l U W S U P P L I E D HEAT I L U X S U P P L I E D  164C7.9 94161.  BTU/HR HTU/SLFT-HR  BETA0.301 TORMINLETI27.0 O E N S I I V : 0 . 9 a 6 CRAM/CC T 0UILEI149.5 FLOW R A T E 0 . 1 8 8 8 AVG T E M P : l 3 8 . 2 KINEMATIC VISC0S1TV:0.481  DEG F OEG F  LBS.M/SEC DEG F SO.CM/SEC  FLU10 VELOCITY 4.789 REYNOLDS NO 2 6 4 19.5 PRAN01L NO 3.03  FT/SEC  HE AT SUPP 16402.9 BTU/HR HE AT TRANS 15345.8 BTU/HR HEAT LOST 1057.0 BIU/HK PERCENT HEAT LOST 6.44 HEAT F L U X I R A N S . B l U / S O T T - H R 88093. N U S S E L T NO 121.1 RFILM 0.625 RWALL 0.143 STOTAL 0.767 SOFT-HR-DEG F/BTU  L O C A L I Z E D WALL T E M P E R A T U R E S T275 T215 T255 T235 DEG.F OEG.F OEG.F DEG.F 0.0 175.0 174.6 162.5 0.0 175.0 174.6 162.5 0.0 176.2 1 75.8 1 6 2 . 9 0.0 177.0 176.6 163.3 0.0 177.4 176.6 16 3*3 0.0 177.4 1 76.6 1 3 1 . 7 0.0 177.8 176.6 18). 7 0.0 117.4 176.2 184.1  IOEC.FI T/95 1315 DEG.F OEG.F 162.5 161. 7 182.5 16). 7 163.3 164.5 167.9 164. 1 183. 3 164. 5 163. 7 U 4 . 5 183. 3 184.5 163.3 185.3  T 3 35 OEG.F 179.0 179.4 180.7 130.2 160. 2 18C.6 130.6 180.6  1355 DEG.F 179.4 1 79. a 1 P0.2 180.6 160.6 1 30.6 160.6 180.9  T375 DEG. T 0.0 C. 0 0.0 0.0 0.0 0.0 CO CO  L0CAL1ZED FOULING RESISTANCE ISOfT-HR-DEGF/RTU)XI00.COO 1315 1315 1365 1375 1235 1265 T275 1295 7215 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0  0.0 0.0 1.35 2.25 2.69 2.69 3.14 2.69  0.0 0.0 1.15 2.75 7.75 2.25 7.75 1.60  0.0 0.0 0.45 0.8 9 0.89 1.34 1.34 1.79  0.0 0.0 0.89 0.45 0.89 1. 34 0.69 0.89  0.0 0.0 0 . 89 0.46 0.89 0.69 0.69 1.79  0.0 0.45 1. 14 1. 14 1. 14 1. 7 1 1. 79 1. 79  0.0 0.46 0.90 1. 34 1 . 14 1 . 14 1 . 34 1 . 79  0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0  T395  74 15  T426  TIN  TOUT  DEG.F  OEG.F  DEG.F  OEG.F  DEG.F  186.8 166.6 187.6 137.6 188.0 136.0 186.4  192.3 193. 1 193.5 193.1 193.9 19).1 193.5 191.5  T395  1415  188.0  0.0 0.0 0.89 0.89 1.34 1.14 1.34 1.76  0.0 0 . 89 1.13 0 . 69 1 .77 0.89 1.33 1.33  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  I42B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  127.0 127.0 177.0  127.0 127.0 126.5 126.5 126.5  U N  DEG.F  177.0  177.0 127.0 127.0  127.0 176.5 174.5 176.5  149.5 149.5 149.5 149. 5 149.5 149.5 149.5 149.5  TOUT OEG.F  149.4 149.5 149.5 149.5 149.5 149.5 149.5 149.5  TH DEG. F 181.6 181.9 162.7 187.6 183.1 183.1 163.2 183.3  0EL7A  RF H  DELTA  0.0 0 . 20 1.04 1 .19 1.49 1.54 1 .59 1.14  H  OEG.F  77.5 22.5 27.5 22.5 72.5 23.0 23.0 23.0  DEG.F  22.5 22.5 27.5 77.5 72.5 2 3.0 73.0 23.0  1597.0 1590.0 1565.0 1563.3 1554.7 1545.0 1544.8 1537.6  H  1597.0 1590.0 1565.0 1561.3 1554.7 1545.0 1644.8 1537.6  XIOOO 0.6262 0.6789 0.6390 0.6397 0.643? 0.6473 0.647 3 0.6503  TIME HOURS 0.0 0.0? 0 . 10 0 . 12 0.4) 0.55 0.58 0 . 7?  RT OT X10C0 0.676 2 0.6269 0.6 390 0 . 6 19 7 0.6432 0.647 1 0.647 3 0.6503  I 1 ME HOU-tS 0.0 0.07 0. 1 0 0 . 1? 0.43 0.55 0.58 0 . 7?  R  258  •••••••RUN  N059.  F E R R I C OXIDE CONC (PPMI VOLTS: 9.35  AMPS: 2 5 3 .  HEAT H B S U P P L I E D HEAI I L U X S U P P L I E D 6£TA0.)OI 0ENS11Y:0.966  ESIIMAUS .186)8 ESTIMATES .10211 ESTIMATE  2130.  8073.6 46)47.  MU/HR 9IU/SUFI-IIR  1CH«IINLET1?7.0 GRAK/CC I 0 0 1 1 7 1 1 4 1.8  FLOW RATE 0 . 1 4 4 2  LBS."/SEC  AVO T E M P : 1 ) 4 . 4 KINEMAIIC V1SCOSIIY:0.496  OEG F  TIME HOURS 0.0 0.02 0.05 0.1? 0.40 0.68 0.73 0.98 1.12 1.33 1.50 1.75 1.9B 2.18 2.47 2.90  DECF CEC F  SO.CM/SEC  FLUID VELOCITY 3.655 R E Y N O L D S NO 1 9 5 5 0 . 0 PRANDIL NO 3.15  FT/SEC  HEAT S J P P 8073.6 BTU/HR HEAT TRANS 7727.9 CIU/HR HEAT L O S I 345.7 P1U/HR PERCENT HEAT LOST 4.28 HEAT FLUX T R A N S . U I U / S O F T - I I R 44362. N U S S E L I NO 94.6 RFILH 0.60) RKALl 0.144 RTOTAL 0.947 SOFI-hR-OEC F/B1U  L O C A L I Z E D MALL T235 1215 DEC.F DEC.F 0.0 154.3 0.0 155.1 0.0 155.5 0.0 155.5 0.0 155.5 0.0 156.3 0.0 156.3 o.o 1 5 6 . 7 0.0 156.7 0.0 1 5 6 . 7 0.0 156.7 0.0 157. 1 0.0 156.7 0.0 157. 1 o.o 1 5 7 . 1 o.o 1 5 7 . 9  TEMPERATURES T255 T275 DEC.F UEG.F 153.9 159.5 154.3 160.3 154.7 160. 1 155. 1 1 6 0 . ) 155. 1 1 6 0 . 7 155.5 161.1 155.5 160. 7 135.9 161.1 155.9 161. 1 155.5 160. 7 155.9 161.1 155.9 161.5 155.5 I6C. 7 156.9 161.6 156. 7 1 6 1 . 9 157.1 161.5  I0EC.FI T335 1295 T3I5 O E G . F DEG.F OEG. r 159. 5 1 60. 7 157.9 159.9 1 6 0 . 7 157. 1 1 6 0 . ) 161.1 157.5 160. ) 161. 1 157.5 160. 3 1 6 0 . 7 157.5 160.7 161.1 157.9 160. ) 161.5 157.9 1 6 0 . 3 161.1 15 7.9 160. 7 161.1 157.9 1 6 0 . 3 161.1 157.5 160. 3 161.1 157.9 160.7 161.5 157.9 1 60. ) 161.1 157.5 loi. 1 161.9 15R. 1 161 .4 1 6 2 . 3 158. ) 161. 1 161.5 157.9  1)55 OEG.F 136. 7 157. 5 157.5 157.5 15 7.9 157.9 157.9 157.9 157.9 157.9 157.9 157.5 157.9 158.3 158. 3 153. 3  T375 D1G.F 0.0 C. 0 CO 0.0 CO CO CO 0.0 0.0 0.0 0.0 C. 0 CO 0.0 0. 0 CO  L 0 C A L 1 2 E 0 FOULING RESISTANCE I SOFT-HR-OEGF/BTUI X I 0 0 . 0 0 0 T))5 1)55 1235 T295 T375 1255 1215 1)15 1215 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0  0.0 1.81 2.72 2.7? 2.72 4.53 4.53 5.43 5.43 5.43 5.4 3 6.34 5.4 ) 6.14 6 . )4 8.15  0.0 0.91 1.8 1 2.72 2.72 3.62 3.62 4.43 4.5) 3.6? 4.3) 4.53 3.62 4.33 6 . 14 7.25  0.0 1.81 1.81 1.81 2.71 ).6I 2.71 1.61 1.61 /.7I ).6I 4.51 2.71 4.41 5.41 4.51  0.0 0.90 l."l 1.81 1.81 2. 71 1.81 1.61 2 . 71 1.81 1.81 2. 71 1.1:1 1.61 4.51 1.61  0.0 0.0 U.90 0.90 U.O U . 90 1.60 0.90 0.90 U.90 0.90 1 . 80 0. 90 2.71 1.61 1.80  0.0 0.0 0.0 0.0  o.c o.o  0.0 0.0 0. 0 0.0 O.u 0.0 7). 0 0 . 90 0.9U 0.0  0.0 1.81 1 .81 1.61 2.71 2.71 2.71 2.71 7 . 71 2 . 71 2.71 1.81 2.71 1.6? 1.6/ 1.6?  0.0 0.0 0.0 0.0 0.0 0.0 (1.0  0.0 U.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0  Pt'Ul MEAN Sl.UA*E S T A T I S T I C A L I R RDM I N T H E P A R A V C 1 E H .616)8 ET KU'JT MEA.4 S-HIA-lt 1 0 1 A L ERROR IN THE P A R A M E T E R S .33769 R O i R l N F . A f . i l 6 IN K T - H INF I 1 1 . - E X P l - B * T l " E I 3.0701 1.597? CALC. RLSIS1ANCE r i l T I O VAIUC 1t SulI -HR-VFCI /R7U1X160,0001 0.0 -0.11 0.70 0.10 1.21 0.24 1.11 0.73 1.41 1.45 2.41 2.03 2.11 2.11 2.31 2.43 2.51 2.56 2.11 2.70 2.31 2.79 2.71 2.8B 2.11 2.94 3.21 2.98 3.91 3.01 3.52 3.04  T395 OEG.F 162.3 163.1 163.1 161.1 16). 1 16). 5 16). 1 16).1 16).5 16).5 16). 1 16).5 16). 5 16).5 16).9 163.5  T4 15 DEG.F 167.5 167.1 16 7.1 167.1 167.1 167.9 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.5 167.9 167.5  T428 UEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DFG.F 127.0 126.5 127.0 127.0 126.5 127.0 127.0 127 .0 127.0 1?7.0 127.0 127.0 127.0 127.0 127.0 127.0  TOUT DE G F 1 4 18 141. 6 141. 8 141. 3 141. 8 141 .3 14 1.3 141. 8 141. 3 141. 8 141. 8 141. 8 141. 6 141. 3 141. 8 141. 8  TH OEG.F 159. 1 159.4 159.7 159.7 159.8 160.2 160. 1 160.2 160.2 160.1 160.2 16C.) 160. 1 160.6 160. 9 160. 7  DELTA DEG.F 14.9 1 5. 3 14.4 14.9 15. 3 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9  1413.6 1337.3 1 3 e 7. 1335.5 1371.7 136 1.8 1368.3 1366.7 1361.4 1371.1 1366.7 1353.5 1371.1 1343.7 1326.6 1343.7  1)95  T415  T42»  TIN DEG.F 127.0 126.4 127.0 l?7.0 1?6.5 177.0 177.0 177.0 17 7.0 177.0 177.0 17 7.0 177.0 17 7.0 177.0 127.0  TOUT OEG. F 14 1. 8 141. 3 141. 8 141 8 141. 8 14 1 6 141 .3 141. 8 141. 8 141 .6 141. H 141 .n I4|. 3 141 .8 141. 3 14 1.8  RFM  DELTA DEG.F 14.9 15. 1 14.9 14.9 15. 1 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9  1413.6 1387.3 1337.2 1365.5 1371.7 1)61.8 1 166.3 I 166. 1 1)61.4 1171.1 1366.7 1356.5 1)11.1 I 14). 7 I 326.6 1341.7  0.0 I .80 1.60 1.60 1 .30 2.70 1.80 1. "0 2.70 2 . 70 I . 60 2.70  J. 2 . 70 70 ),60 2 . 70  0.0 0.0 0.0 0.0 0.0 0.90 0.0 0.0 O.U 0.0 0.0 0.0 n.o o.o U.90 n.o  0.0 0.0 0.0 0.0 0.0 O.D 0.0 0.0 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0 . 70 1.21 1.31 1.41 2.41 7 . 11 2. ) 1 7.51 2.11 2.31 7.71 2.11 1.71 ).4l 1.52  H  H  R X1000 0.7074 0.7208 20 . 7 2 0 9 0.7213 0 . 7 ? IC 0.734) 0.7)08 0.7317 0.7344 0. 729 ) 0.7)17 0.7301 0.779) 0.7442 0.7577 0.7442  TIME HOURS 0.0 0.02 U.05 0 . 17 0.40 0.68 0.7) 0 . 96 1.1? 1.3) 1.50 1. 74 1.96 2 . 18 2.47 2.90  R TOT TIME X1000 HOURS 0 . 70 74 O.U 0.7/C8 0.U2 0. I7C9 0.05 0.72 16 0. 1 7 0.7/wo 0.40 0.7)4) 0.68 0.7303 0 . 7) 0.7)17 0.98 0 . 1 345 1. 12 0 . 724 3 1 . )) 0 . 7)1 1 1.30 0 . 7 36 1 1. 14 0 . 7 79 1 1. '3 0.7447 2 . I* 0.737 7 2.47 0.7447 2.90  259  N061.  « * * « « * 9 R U N  F E R R I C OXIDE CONC ( P P H 1 VOLTS: 9.35  ESTIMAIES OF RCOT MEAN SOUARE STATISTICAL ERROR IN IHE PARAMETER .16295 .81869 ESTIMATES OF- ROOT MEAN SCUARE IDEAL ERROR IN THE PARAMETERS .52425E-0I .26339 E ST I HA TE OF ROt RINF.AND 3 IN RF«R1NFI 11.-EXPI-R»TI ME I .0 2.2)85 6.1736 T I HE C A L C . RESISTANCE F I T T E D VALUE HOURS 1 (SCFI-HR-UEGF/MUtXICO.OOUI 0.0 0.0 -0.0 0.03 0.75 0.38 0.17 1.12 1.45 0.25 1.61 1.76 0.28 1.72 1.64 0.40 1.82 2.05 0.58 2.14 2.IS 0.65 1.82 2.23 0.97 2.04 2.23 1.15 2.15 2.74 1.37 1.93 2.24 1.43 2.36 2.24 1.65 2.69 2.24 2.48 2.68 2.24  ?130.  AMPS: 2 3 A .  H E A I IICW S U P P L I E D H E A I FLUX S U P P L I E D  7467.3 42066.  BTU/llA BIU/SOFT-HR  BEIAO.301 TCR=TINLET1?7.0 D E . N S I I Y : 0 . 4 8 5 GRA»/CC I OUILEII34.9 FLOW K A 1 E 0 . 2 5 6 3  LBS.M/SEC  AVG I E M P : 1 3 0 . 9 KINEMATIC V1SC0SIIY:0.511  OEG F  OEG F DEG F  SQ.CM/SLC  FLUID VELOCITY 6.487 R E Y N O L D S NO 3 3 7 C I . 3 P R A N D I L NO 3 . 2 5  FT/SEC  HEAT SUPP 7467.3 BTU/HR HEAT IRANS 7311.3 DIU/HR HEAT LOSI 1 5 6 . 0 OIU/HK PERCENT HEAI LOST 2 . 0 9 HEAI F L U X T R A N S . B I U / S O F T - H R 41971. N U S S E L I NO 1 4 5 . 8 RFILM 0.522 RWALL 0 . 1 4 6 RIQTAL 0.668 SCFT-BP.-DEG F / 8 T U  L O C A L I Z E D WALL T E M P E R A T U R E S T2I5 12 35 T255 1275 DEG.F D E G . F DEG.F OEG.F 0.0 141.7 140.5 145.4 0.0 142.2 140.9 145.4 0.0 142.6 141.3 145.8 0.0 147.6 141.3 145. 3 0.0 142.6 141.3 145.6 0.0 147.6 141.3 146.2 0.0 142.6 141.3 146.7 0.0 142.6 141.3 146.2 0.0 147.6 141.3 146.2 0.0 142.6 141.7 146.2 0.0 1 4 2 . 6 14 1.7 •145.6 0.0 142.6 141.7 146.2 0.0 1 4 3 . 0 141.7 146.6 146.2 o.o 1 4 3 . 0 1 4 1 . 7  IDEG.FI 1795 T3I5 DEC.F D E C . F 145.0 145.0 145.0 145.4 145.4 145.8 145.4 145.8 145.4 145.6 145.4 144.8 145.4 145.8 146.4 145.6 145.4 145.6 1 46.4 144.3 1 4 5 . 3 145.8 145. 8 146. 2 145.8 146.2 145.8 146.2  T335 OEC.F 141.7 147.2 142.6 142.6 147.6 142.6 14 J.C 142.6 14).0 14).!! 14).0 14).0 14).0 14 3.0  T355 UEG.F 141.3 141.7 142.2 142.2 142.6 142. 6 142.6 142.6 147.6 142.6 142.6 142.6 143.0 143.0  T375 OEC.F 0.0 0.0 CO 0.0 0.0 C. 0 0.0 0.0 CO CO 0.0 0.0 0.0 0.0  LOCALIZED FOULING RESISTANCE ISUFI -HK-OEf.r/Riuixioo.ooo T215 1235 1265 1215 T296 1315 1))5 1 355 T375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n.n  0.0 0.97 1.93 1.93 1.93 1 .93 1.9) 1.91 1 .91 I.I) 1.9) 1.9 1 7.99 7.40  0.0 0.0 0.47 0.0 1.9] 0.96 1.91 0.46 1. 11 0.94 1.9 1 1.9) 1 .4 ) 1.9) 1 .9) 1.91 1 .9 ) 1.9 3 7.40 1.9 1 7.90 0 . 46 7.40 1.9 1 7.90 7.69 7 . -10 1.9 1  0.0 0.0 0.96 U.96 U.46 0. 96 0.44 0.94 0.94 0.96 1.4 1 1.91 1.4 1 1.9 1  0.0 0.96 1.9) 1.9) 1.9) 1.9) 1.9) 1.9 1 l.9| 1.91 1.91 / . »l 4  0.0 0.47 1.9) 1.91 1.4 1 1.4 1 2.'10 1.9 1 7. 41! 7.90 7. 4f 7.411  7.H-I  7.-Ml  /."9  7.10  0.0 0.97 1.9) 1 .9) 7.90 2.90 7 . -10 2 .90 7.90 7.90 7.90 7.40 1.9 7 1.6 7  0.0 0.0 0.0  o.o  U.O 0.0  11.0  0.0 O.O 0.0 u.o 0.0 0.0 u.o  T395 DEG.F 145.3 146.2 146. 6 146. 6 146.6 146.6 147.0 146.6 146.6 146.6 146.2 146.6 14 7.0 147.0  T415 DEG.F 149.0 149.4 149. 3 149.4 149.4 149.4 149.8 149.4 149.8 149.8 149.4 149.8 150.7 149.8  T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DFG.F 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 177.0 127.0  H95  1415  1426  TOUT TIN D E G . F DEG .F 127.0 114.9 127.0 114.9 17 1.0 1 14 .9 l?7.0 134.9 177.0 1 34.9 177.0 1 34.9 177.0 1 14.4 17 7.0 1 14.9 177.0 1 14.9 177.0 134.9 177.0 1 14.9 17 7.0 1 )4 .9 177.0 1 14.9 1 7 7 . II134.9  0.0 0.96 1.91 1.91 1.41 1 .4) 7.69 1 .91 1.9) 1.9) 0.44 1.9 1 7.64 7.'19  0.0 0.96 1.42 0.96 0.46 0.94 1.9? 0.96 1.4? 1 .92 0.46 1 .97 2.86 1.4/  0.0 0.0 0.0 0.0 0.0 0.0 U.O 0.0 0.0 0.0 o.u 0.0 U.O II.u  TOUT OEG.F 134.9 1)4.9 I 34.9 1 34.9 134.9 1 34.9 134.9 1 34.9 1)4.9 1 )4.9 1 )4.9 1)4.9 1 J4.9 1)4.9  TH OEG.F 144.0 144.3 144.7 144.6 144. 7 144.7 144.9 144. 7 144.6 144.9 144.3 144.9 145.2 145. 1  RFM 0.C 0.75 1.72 1 61 . 1. 72 1 .6? 7. 14 1.U2 ?.04 2.15 14 .1 7.36 7.6-1 7.4 6  OELTA H OEG.F 7.9 2 5 5 6 . 8 7.9 2 4 9 7 . 2 7.9 2 4 2 3 . 3 7.9 2 4 2 9 . 8 7.9 2 4 1 9 . 2 7.9 7 4 1 1 . 6 7.9 2 3 6 6 . 5 7.9 2 4 1 1 . 6 7.9 2 34 .6 7.9 2 3 3 9 . 2 7.9 2 4 0 2 . 5 7.9 2 3 7 0 . 5 7.9 2 3 ) 6 . 5 7.9 2 3 4 9 . 8  R XIOOO 0.3911 0.4004 0.4127 0.4116 0.4134 0.4147 0.4190 0.41*7 0.4176 0.4165 0.4162 0.4219 0.4280 0.4256  TIME HOURS U.O 0.U3 0.17 0.25 0.26 0.40 0.3d 0.34 0 . 97 1.15 1.37 1.43 1.65 2.46  H R TOT TIME DELTA OEG.F XIOOO HOURS 7.9 7656.6 0. 391 1 0.0 7.9 7447.7 0.4CO4 0.0) 7.9 7473.3 0.417 7 0.17 7.9 7429.8 0.4116 0.74 7.9 7414.7 0.41 14 0.2 6 7.9 741 1.6 1). 4 14 7 U. 4C II.If7.9 7 36 6.4 0.4 1'10 7.9 7411.6 0. 4 14 7 0.65 7.9 7 1'I4.6 0.4 176 U. 4 7 7.9 7)39.2 0.4164 1.14 7.9 7407.5 0.416/ 1.1' 7.4 7 1 70. 50.47CI 1.41 7.4 7 1 16.6 II. 4/l'U 1 .64 7.4 i 144.6 II. 4 246 7.4 3  260  t»**»*«RUN  N002.•«*••••  F E R R I C OXIDE CONC (PPM1 VOLTS: 9.35 HE A T F l O W S U P P I I C O HEAT f L U X S U P P L I E D BETA0.301 DENS117:0.986  21)0.  AMPS: 2 5 4 . 8105.5 46510.  OTU/IM 3IU/SWFI-HR  "TOR.I I N L E T 1 2 7 . 0 GRAM/CC T UUTLET141.8  FLOW RATE 0 . 1442  LBS.M/StC  AVG I E M P : 1 3 4 . 4 KINEMAIIC VISCOSITY:0.496  DEG F  DEG F DEG F  SO.CM/SEC  FLUID VELUCIIY ).655 REYNOLDS NO 19550.0 PRANDTL NO 3.15  FT/SEC  HEAT SUPP 8105.5 BTU/HR HE AT TRANS 7727.9 UIU/HR H E A T LOST )77.6 BTU/HR PERCENT HEAT L O S T 4.66 HEAT FLUX T R A N S . B T U / S O F T - H R 44362. N U S S I H NO 94.6 RFILM 0.803 RWALL 0.144 RTOTAL 0.947 SOFT-HR-DEG F/BTU  L O C A L I Z E D WALL TEMPERA TORES T235 T275 1215 1255 DEG.F OEG.F DE G.F DEG.F 0.0 147.8 146.6 154.7 0.0 149.0 150.2 155.5 0.0 150.2 151.5 156.) 0.0 151.1 152.7 156. 7 0.0 151.5 153. 1 156.7 0.0 160.7 162.3 166. 7 0.0 160. 7 162.3 167.5 178.6 179.8 166.6 0.0  IOEG.FI 1/95 1335 1375 1315 T355 OEG.F O E G . F O E G . F O E G . F DEG.F 161.1 155. 1 149.4 151.9 0.0 161.9 156.7 151.5 163. 1 CO 162. I 157.5 153. I 154. 7 CO 163. 1 156.3 154.7 153.9 0.0 163.1 158.3 155. 1 155.5 0.0 1 72.6 1 6 6 . 7 165.9 166.3 CO 1 71.0 1 6 9 . 1 1 6 6 . 3 1 6 6 . 7 0.0 1 9 2 . 3 1 8 6 . 8 185.1 IS6. 1 0.0  LOCAL 17.1:0 F O U L I N G R E S I S T A N C E I S C F T -I'R-DEGF/ETUIXIOO.OOO 1215 1235 1235 12 75 1295 T3I5 I 335 1355 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 2.73 5.46 7.28 8.19 29.01 29.01 69.34  0.0 1.64 6 . )7 9.09 10.00 J O . 79 3 0 . 79 7 0 . 19  0.0 1.61 3.62 4.5) 4.5) 27.07 26.66 72.5)  0.0 1.60 1.61 4.41 4.51 26.04 26.44 1 0 . 42  0.0 3.62 6.4) 7.24 7.24 30.65 31 .54 76.04  0.0 4.55 8.16  11.HO  1 2 . 71 3 7.07 17.97 01.66  0.0 2 . 72 6.35 9.07 8.16 12.52 11.42 77.11  T395 OEG.F 160.3 161.1 162.7 16).5 163.5 175.0 1 75.0 197.4  T415 OEG.F 167.9 168.3 165.5 164.7 163.9 175. S 176.2 199.0  T428 OEG.F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  TIN DEG.F 127.0 127.0 127.0 127.0 127.0 127.4 127.0 127 .0  TOUT OEG.F 141.8 141.6 142.2 142.2 142.2 142.2 141.8 141.8  TM OELTA H CEG.F DEG.F 155.2 14.9 1684.8 156.4 14.9 1591 6 1 5 7 . 1 15.3 1545.3 157.8 15. 3 1495.0 157.8 15.3 1496 6 1 6 8 . 2 1 4 . 8 1041 1 168.5 14.9 1 0 1 7 . 7 188.3 14.9 646 9  1375  T395  1415  T42B  0.0 0.0 CO 0.0 CO o.o 0.0 0.0  0.0 1.80 5.41 7.21 7.21 3).21 3).21 63.65  0.0 0.90 0.0 0.0 0.0 1 7.89 18.79 70.06  TIN OEG.F 127.0 127.0 127.0 127.0 127.0 127.4 127.0 127.0  TOOT OEG.F 141.8 141.8 142.2 142.2 142.2 142.2 141.8 141.8  0.0 2.62 4 . 34 5.95 5.95 2 9 . 16 30.06 74.36  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  RFH  DELTA OEG.F 14.9 14.9 15.3 15.1 15.3 14.8 14.9 14.9  R XIOOO 0.5936 0.6283 0.6471 0.6669 0.6662 0.9605 0.9826 1.5459  TIME HOURS 0.0 0.02 0.07 0.16 0.25 4.03 4.20 1 3 . 75  RIOT ». X1000 1684 . 8 0.5936 1591 .6 0 . 6 2 3 3 1545.3 0.6471 1494.0 0.6639 1476 .6 0 . 6 6 * 2 104 1 . 1 0 . 9 6 0 5 1017.7 0.9626 646 .9 1.6459  TIME HOUR 5 0.0 0.02 0.07 0 . 15 0.25 4.U) 4.2G 1 3 . 75  261  .......RUN N 0 6 3 . • • • • « . . F E R R I C O X I D E CONC I P P M I VCL1SU3.50  AMPS:  H E A T FLCW S U P P L I E D HEA1 FLUX S U P P L I E D  E S T I M A T E S CF RCOI MEAN SCUARE S T A T I S T I C A L ERROR IN THE P A R A M E T E R .16680 .78614 E S T I M A T E S CF ROCT MEAN SCUARE I O I A L ERROR IN T F E P A R A M E T E R S •75054E-01 .1C544 E S T I M A T E CF RO.RINF.AI.C E IN RF = R INF I I 1 .-EXP I 2.C669 5.7124 .0 C A L C . RESISTANCE F I T T E D VALUE TIME ((SCFT-HR-CECF/BIUIXICO,000 I HOURS CO -0.0 0.0 0.06 0.77 0.76 0.12 1.15 1.C3 0.20 1.29 1.41 0.23 1.68 1.51 0.42 1.82 1.68 0.6B 2.01 2.02 0.65 1.77 2.05 1.02 1.92 2.06 1.35 2.11 2.01 1.47 2.16 2.07 1.77 2.25 2.07 1.92 2.20 2.07  21)0. 355.  16)56.8 9)817.  BIU/HR BTU'/SCF T—HR  eElAO.301 T O R « T I N L E 1 127.0 0ENS1IY.0.986 CRAH/CC T OUUEI150.3 FLOW RATE 0 . 1 8 6 8  LBS.M/SEC  AVG T E M P : | ) 8 . 6 KINEMATIC VISCOSITY:©.479  OEG F  DEC F OEG F  SC.CM/SEC .  FIU1C VELOCITY 4.790 R E Y N O L D S NO 265)4.0 PRANDTL NO 3.02  FT/SEC  HEAT SUPP 16356.8 BTU/HR H E A T TRANS 15921.4 BTU/HR HEAT LOST 435.4 BTU/HR P E P C E M HEAT L O S T 2.66 HEAT F L U X T R A N S . B T U / S O F I - H R 91397. K U S S E L I NO 121.5 RFILM 0.623 RWALL 0.143 R10IAL 0.765 SQFT-HR-DEG F/BTU  L O C A L I Z E D WALL T E M P E R A T U R E S 1215 T235 T255 T275 D E C . F OEG.F DEG.F OEG. 174.6 174.2 182.5 0.0 175. C 175.0 182. 1 0.0 175.0 175.0 182.5 0.0 175.8 175.4 182.5 0.0 175.6 175.8 IE).3 0.0 175.6 175.8 184. 1 0.0 176.6 176.6 183.7 0.0 176.6 176.6 163.7 0.0 1 76.6 1 7 6 . 2 184. 1 0.0 17 7.0 1 7 6 . 6 183.7 0.0 177.C 177.0 164. 1 0.0 177.4 177.0 184.5 0.0 1 7 7 . 0 17 7.0 164.1 0.0  ICEG.F 1295 DtG.F 182.5 162. 1 162.9 182.9 16). 3 le). ) 184.1 18). 7 16). 7 184.1 164.| 164. 1 164.3  T315 OEG.F 183.3 ie4. l 164.6 184.5 184. 9 184.9 185.3 It4.9 18 5.3 165.3 185. 3 165. 3 185. 3  73)5 OEG.F 176.6 179.4 180.2 160.2 180.2 18C.6 180.6 1RC2 18C.6 180.6 160.6 18C.9 180.6  T355 OEG.F 1 18.6 150.2 18C6 I8C6 160.6 I8C. 9 18C9 180.6 IBC.9 181.3 180.9 18C.9 180.9  T375 OEG.F 0.0 0.0 CO 0.0 0.0 CO CO 0.0 CO CO CO CO 0.0  L C C A L I 7 E C FOULING RESISTANCE ISCFT-HR-OEGF/BTUIX100.COO 1295 1)15 1)35 1)75 1235 1255 1275 1)55 1213  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o  0.0 0.4)  C.41 1.30 1.30 1.30 2.17 2.17 2.17 2.60 2.60 3.0) 2.60  0.0  0.67 0.67 1.10 1.73 1.73 2.60 2.60 7.17 2.60 3.03  ).0) 3.03  0.0 0.0  0.0 0.0 0.66 1.72 1.29 1.29 1.12 1.29 1.72 2.16 1.72  0.0 0.0 0.4) 0. 4) 0.66 0.66 1. 72 1.79 1.79 1. 12 1. 12 1.77 2. 15  CO 0.0 C.B6 O.P.I 1.29 1.7) 1.29 1.7) 1.72 1.11 1.72 2.16 2.15 2.16 1. 72 1.1) 2.15 2.16 2 . 15 2. 16 2 . 16 2. 16 2.15 • 2 . 6 9 2.16 2 . 15  0.0  1. 7) 2.16 2.16 2 . 16 2.59 2.59 7 . 16 2.59 1.C7 7.69 7.69 7.39  0.0  CO CO  0.0  CO 0.0 0.0 CO  0.0 0.0 CO U.O  0.0  T395 DEG.F ie6.5 188.0 188.4 168.4 186.4 188.4 166.4 188.0 lee.o 168.4 186.4 188.4 188.4  T415 OEG.F 192.7 193.9 193.9 191.9 194.7 194.7 193.9 193.9 193.9 193.9 193.9 191.5 193.9  7428 OEG.F 0.0 0.0 O.C 0.0 0.0 0.0 O.C 0.0 0.0 0.0 0.0 CO 0.0  TIN DEG.F 127.0 127.0 127.0 127.0 121.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0  1)95  1415  1426  0.0  0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  UN 7CUI DEG.F OEG.F 127.0 149.9 127.0 141.9 127.G 149.9 127.0 149.9 127.0 149.9 127.0 149.9 121.0 149.9 127.0 149.9 127.0 149.9 127.0 149.9 127.0 14 1.9 1 7 1 . 0 .14 9.9 127.0 149,9  1.72 2.15 2.15 2 . 15 2.16 2.15 1.72 1.72 2.15 2.15 2.15 2.15  1.28 1.28 1 .28 1.71 2. 14 1.28 1.28 1.26 I .78 1.28 0.65 I.7B  r.o  0.0 0.0  TOUT 149.9 149.9 149.9 149.9 149.9 149.9 149.9 .49.9 I '• 9 . 9 149.9 149.9 149.9 149.9  TM OEG.F 181.5 182.2 182.6 182.7 183.0 183.2 183.3 183. 1 183.3 183.4 183.5 183.6 163.5  0EL7A OEG.F 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0  RFM  0EL1A DEG.F 21.0 21.0 23.0 23.0 23.0 21.0 21.0 73.0 7 1.0  0.0 0.77 1.15 1.29 1 .68 1.62 2.01 1.71 1.92 2.11 2.16 2.25 2.20  H 1676.2 1648.0 1632.5 1630.0 1620.6 1612.1 1607.3 1616.9 11 0 . 4 1604.7 1604. 1 1601.4 1602.4  H  1676.2 1648.0 1632.5 I63CO 1620.6 1612.1 1667.3 1616.9 1410.4 / ) . II 161.4. 1 7 1.0 1 6 0 4 . 1 23.0 1 4 0 1 . 4 2 3 . 0 1602.4  R X1C00 0.5966 C.6G68 0.6125 0.6135 0.6170 0.62C3 0.6222 0.6165 0.6210 0.6212 0.6234 0.6244 0.6241  T 1 ME HOURS 0.0 C . 06 0 . 12 C.20 0 . 23 C42 0.68 6.85 1.C2 1. 35 1.47 1. 17 1.92  RI01 X 1000 0.5966 0.60 6 6 0.6125 0.6115 0.6110 0.6203 C.6222 0.6IH5 0.6/10 0.6/12 0.6/34 11.6244 0.6241  7IME HOURS 0. 0 0.06 0 . 12 0.70 0.7 3 0.47 0 . 61 0. 66 I.U2 I . 13 1.47 1.77 1.9/  262  i • • • • ( • • R U N N 0 6 4 . ••••••• F E R R I C OXIOC CONC IPPMI VOL1S113.50 MEAT FLOW S U P P L I E D H E A I TLUX S U P P L I E D  E S T I M A T E S OF ROOT MEAN SOIJ.vn S T A T I S T I C A L CR ROM IN THE P A R A M E T E R •••«•••••• *c*t«**ct« E S T J M A I E S ^.T R30T MEAN S O ' J M t T H T A l t R R O R IN THE P A R A M E T E R S  2130.  AMPS: 1 5 3 . 16264.6 93363.  ESTIMATE BIU/HR MTU/SOFT-HR  BETAO.301 TOR=TINLE1127.0 O E N S l l r : 0 . 9 B 6 GRAM/CC I UUILEU57.0 ( L O U RATE 0.1442  LBS.M/SEC  AVC. I E V P : 142.0 K l NEC AT IC VISCOSIIY:0.46T  OEG F  TIME HOURS 0.0 0.02 0.23 0.45 0.67 1.15 1.95 2.76 3.43 3.95 4.45  OEG F OEG F  SO.CM/SCC  F U 1 D V E L O C I T Y 3.664 REYND1OS NO 20350.6 P R A N J I L NO 2.93  FT/SEC  Of R O . R I N l i A N u 0 IN RF = R INF I I I.-E XP1 - G» 11 ME I . 2 T 4 4 H E 14 . I 0 9 7 3E-56 CALC. R1SISTANCE F I T T E D VALUC ItSorl-HR-UEGF/BTUlXlCO.OnOl 0.0 -0.00 7.18 -O.CO 1 2 . B4 -0.00 1 8 . 19 -0.00 21.46 -0.00 3 0 . 6B -0.00 47.86 -0.00 58.22 -0.00 70.10 -O.CO 64.11 -0.00 71.62 -0.00  HEAT 5UPP 11264.4 BTU/HR HEAT TRANS 15653.1 BTU/HR HEAI LOSI 611.6 BIU/HR PERCENT H E A I L O S T 3.76 HEAI FLUX T R A N S . B T U / S 3 F I - H R 89857. N U S S E L I NO 10O.0 RF1IM 0.754 RkALL 0.141 R10IAL 0.895 SOFT-HR-UEG F / 8 I U  L O C A L I Z E D WALL T E M P E R A T U R E S T255 1273 T216 12 35 DEG.F DEG.F DEG.F OEG.F 0.0 1 7 4 . 6 1 74.6 1 6 2 . 1 0.0 1 8 3 . 7 135. 1 164.6 190.8 186.0 165.3 0.0 1 9 4 . 7 192.7 190.4 0.0 197.4 195.8 143.5 0.0 2 0 4 . 4 202.8 200.4 0.0 216.7 215.6 215.6 0.0 2 2 4 . 0 221.2 224.4 0.0 232.7 2 3 1 . 1 211.8 0.0 0.0 2 3 6 . 7 239.1 240.6 247.4 246.6 228.2 0.0  (UEG.F1 T295 1315 O t G . F OEG.F 162.1 163.7 i n ) . 1 J 49. 3 169.6 205.9 191.6 2 1 C. 7 145.6 2 1 1 . ) 203. 2 220.9 717.5 7 34.9 227.0 24o. 2 7 ) 7 . 6 253.7 742.9 202.2 2 4 2 . 5 2 72.9  T 3)5 OEG.F 160.2 16). ) 197. ) 147.4 700.5 7C3. ) 774.0 7)2. 7 242.4 244.4 25).)  T355 OEG.F 179.4 131.3 166.4 19).5 146.6 2U5.5 771.3 231.7 74 1.6 74 7.0 255.9  T)75 OEC.F 0.0 0.0 CO 0.0 0.0 C 0 CO 0.0 0.0 0.0 0.0  L O C U I / t O f CJl IN 6 Pt SI STAFJCf I S O F I - H K - D E G F / R T U l X I C O . 0 0 0 1335 1175 1 154 T254 1295 1)15 12 35 1215 T i 75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 10.10 1 7.96 27.11 25.14 1 3 . 12 46.e4 54.97 64.6) 11.15 60.95  0.0 0.0 11.35 6. )0 14.41 3.30 70.14 9 . 13 7 ) . 6 1 12.66 70.39 31.40 J 7 . 70 45.66 47,. 44 54.til 65.06 4 7.4 4 71 . 77 6 3 . 0 4 6 0 . 12 6 1 . 2 ?  0.0 0 0 1. M 1 1 4 0 6 . 10 74 74 1 7 . 6 6 7 4 46 1 5 . 26 17 .67 71.46 4 1. 47 3 4 . 14 6 1 14 44.44  44 4U 6/ . M4 6 7 13  4 1. 14 6 7. 40 6 7.16 49 . 2 )  0.0 3.51 13.54 1 4 . 14 7 7.65 11.76 4 8 . 76 5 6 . 4M 6 4 . 74 11.46 61.4 1  0.0 ?.I9 10.07 1 '.. 71 19.70 74. 1 1 4 6.6? 4 7.67 71.41 74.74 64.70  0.0 0.0 CO u.n O.o 0.0 0.0 o.o CO 0.0 0.0  T395 DEG.F 167.2 183.8 196.2 201. 7 205.2 215.9 234.6 244.9 256.3 211.3 227.4  T415 T428 OEG.F O E G . F 197.7 0.0 200. 1 0.0 704.0 0.0 209.6 0.0 217.1 0.0 222.6 0.0 241.7 0.0 25 3.0 0.0 267.0 0.0 778.9 0.0 24 1.7 0.0  1)45  1415  0.0 I .75 10.01 16.06 19.94 11.94 5 ? . 70 46.76 76.86 76.81 44.69  O.C 8.74 17.45 19.00 21.41 13.41 44.46 47.04 67.47 4 0 . ?H 64.46  1428 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 o.o 0.0 o.o  TIN OEG.F 127.0 127.0 127.4 127.4 127.0 177.0 126.3 177.4 177.4 177.0 127.4  TOUT OEG.F  TIN OEG.F 171.0 177.0 177.4 177.4 177.0  TOUT OEG.F 14 4.5 149. | 149.9 150. ) 14 1.9 144.9 1 '.0.8 14 1.5 149. | 148.4 149.5  177.0  173. 1 177.4 127.4 177.0 l?7.4  149. I 10.9  1^0.  1  l*.9.9 149.9  1 10. 8 1*9.5 144 . 1  IM OEG.F 18 1.9 188.3 19 1.4 196.2 201.1 2 0 9 .4 224.9 234.2 244.0 2)9.5 246.2  OELTA OEG.F 22.5 22. 1 22.5 22.9 2).0 2).0 22.5 77. 1 21.7 21.7 22.1  RFM  DELTA OEG.F 22.5 22. 1 27. 5 2 2.9 73.0 2 3.0 22.5 27.1 21.7 71.7 22.1  0. 0 7 .16 1? .64 1 6 . 19 21 .46 3 0 . 68 4 7 . 66 4 3 . ?? 70 . 30 44. 1 1 71 . 62  H 162" 5 1422.1 1798.6 1147. ) 1137.5 949. 7 8)0. 2 7 39.9 66). 1 702. 1 657.0  H 1621.5 142/.1 17V6.6 11/7.3 11 17.5 944. 7 8)0.2  1 39. 9 66). 1 707. 1 651.0  R XIOOO 0.6160 0.7C32 0.7701 0. 5352 0. E630 1.0C01 1.2044 1.3316 1.5C6I 1.4244 1.5220  TIME HOURS 0.0 0.02 0.2 1 0.45 0.67 1.15 1.95 2 . 76 3.41 3.95 4.45  RTOI XIOOO 0.6160 0 . ?C 12 0 . 7 K.I 0. 6)37 0. «310  TIME HOURS 0.0 0.07 0.2) 0.44 0.67 1.15 1.45 2 . 73 3.4 1 ).44 4.45  1.000  )  1.7043 1. 1316 I.408 1 1.4/44 1.5220  263  ««*«»**RUN  N065.*•***••  f ERR IC OXIDE CONC ( P P H I VOLIS.13.50 HEM HEM  2110.  AMPS: 3 5 4 .  now suppiitr I6H0.i IlUX SUPPlllD 936)2.  BETAO.IO! DENSI1Y:Q.986  aru/im BIU/SOFT-MR  10R = T I N L E 1 1 2 7 . 0 GRAM/cf. 1 OUUEU57.0  FLOW RATE 0 . 1 4 4 2  10S.-VSEC  AVG I E H P : 142.0 KINEMAT IC VISC0SITY:0.467  OCC F  DEC f DEC  r  SO.CM/SEC  F I U I O V E L O C I T Y 3.666 REYNOLOS NO 2 C 8 5 0 . 6 P R A N D K NO 2 . 1 3  FT/SEC  HEAT SUPP 16310.7 BTU/HR HE AI TRANS IS653.I BIU/HR HEAT LOST 63 7.7 BIU/HR PERCENT HEAT L O S T 4.03 HEAT F LOX T R A N S . C 1 0 / S Q F I - H R 89BS7. N U S S E l l NO 100.0 RF I LH 0.T54 RMA1L 0.141 RTOTAL 0.893 SOFI-hR-DEC F/BIU  LOCAL I 2 E 0 WALL T E M P E R A T O K E S 1255 1275 1215 1235 DEC.F OEG.F CCG.F O E O . r 0.0 186.8 18 7.2 196.6 0.0 187.6 168.0 196.6 0.0 1 8 7 . 2 187.6 196.6 0.0 187.6 ISR.O 197.0 186.0 168.4 196.6 1 6 7 . 6 193.4 196.2 1 8 7 . 6 169.4 197,0 1 8 6 . 0 169.4 196.6 168.8 189.2 197.4 lft.4 166.4 I 97. 0 189.2 189.2 197.8 0.0 1 9 0 . 0 190.4 199.0 0.0 190.0 199.0 0.0 1 9 0 . 0 190. 4 199.0 0.0 190.4 190.6 199.0 0.0 1 9 0 . 4  IDEC.F T3I5 T2<5 I DtG.F 199.6 196.6 199.0 196.6 I 7 7.0 196.6 199.3 1)7.4 19 7.4 1 9 9 . 3 19;.6 196.2 19 1.3 197.0 191. 3 197.0 19^. 1 197.4 199. 3 197.4 19*. I 197.8 2 6 0 . 9 199.0 2C0.5 198.6 ?un. 9 191.0 199. 7  DIG.  1 335 OEG.F  I 84.5 184.9 184. 7 1 05 . > 135. 1 164.1 185. 3 185. I 136. 1 165. ) 135. 7 1 36. 5 186.5 136.6 186.5  1355 T375 ilEG.F OEG.F 0.0 194. 3 C. 0 194. 7 0.0 194. ) 0.0 195. 1 CO 195. I C. 0 114. 3 0.0 194.7 n.o 194. 7 194. I CO 194. 7 CO 0.0 195. 1 0.0 196.2 195.8 196.8 196.2  L O C A L I Z E D F O U L I N G R E S I S T A N C E I SOT T-HH-OE G l / R T U I XI o n , 0 9 0 1715 1235 1255 1/75 1296 T J I 5 1335 1355 1375 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.37  (1.44  0.87 1.31 0.87 0 . 81 1.11 2.18 1. 75 2.6? 1.49 3.41 3.91 3.1)  0.0 0.0 0.0 0. 4 1 0.0 0.0 0. 4 3 0.0 0. 0.4 ) 7.60 7.60  0.0 0.0  0.87 0.91 U.O 0.41 6.4 ) 0.6/ 0 . 67 1. 30 /.6» 2. I I 7.61) J.46  0.0 U.4I 0.4 1 U.67 0 . 67 0.0 0.6/  0.44 0.44 0.6/ 0.3 1 0. 44 n.67 1. II 0 . 87  0. H / I . 10 / . 49 7.19 2. IV  n.o 0.67 0.8/ o.n 0.4 1 0.4 1 0.41 0.4 1 11.9 7 7.17 I . /4 I . 74  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n.o C.ll n. n o.o o.o  T)95 OEG.F 203.2 203.2 203. 6 2 0 3 .6 204. 4 204.0 204.0 203.6 204.0 204.0 204 .4 205.7 204.6 704.3 205.2  T4I5 DEG.F 2 10.2 209. 3 710.2 210.6 211.0 2 11.0 210.2 2 10.2 210.6 210.6 210.6 211.7 21 1.0 211.7 212.1  T42B OEG.F 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0  0.0 0.0 0.0  1)15 0.0 0.0  0.4) 0.4) 1.21 0.86 0.P6 0.4 1 0.66 0 . B6 1 .21 2.15 1. /2 I . 72 7.14  TIN  TOUT  DEG.F  DEG.F  UN EG.F  TOUT OEG.F .47.0  127 .0 17 1.0 177.0 127.0 127.4 127.4 177.4 177 .0 177.4 127.0 12 I .0 127.0 127.4 177.4 127.0  0.0 0.0  0.0 0.0  0.43  0.U6 0. 86 0.0 0.0  0.41 0.4 I 0.4) 1.11 0. 86  1. 'I 7.14  0.0 0.0 0.0 0.0 0.0 0.0 0.0  n.o 0.0  77.0 77.u ^7.4  157.0 157.0 157.0 157.0 157.0 157.0 157.0 157.0 147.0 151.0 156,6 1S7.0 15 7.0 157.0 161.0  TP CEG.F 195.3 195.5 195.6 196.0 196.7 195.7 195.9 196.0 I 96. 1 196. I 196.6 197.6 197.3 197.6 197.9  DELTA H OEG.F 10.I 1135. 30.1 1 ) 3 7 . 30.1 1 3 ) 0 . 30.1 1 1 1 9 . 29.6 1321. 2 1 . 6 13 3 4 . 29.6 1 326. 3 0 . 1 1321 29.6 132C. 30.1 1 3 1 3 . 29.7 1302. 30.1 1 2 d 2 . 29.6 1295. 79.6 1209. 30.I 12 7 8 .  DELIA OEG.F 10. I )0. I 10. I 0.24 0 . /2 3 0 . 1 157.0 0.97 2 1.6 ; I .o 0.31 7 9 . 6 15'.0 0.66 /1.6 13 '. 0 >0. I I 5 /.0 0.68 I 6 /.I I .1)6 7 9 . 6 O.M 10.1 Ii. n 1.40 ? ' ) . / 2.3 3 J O . I l'.6.6 ',1.117 . 7 ? />.4 7.31 / ) . 6 •. r .0 7.60 10,1  X 1000 0.7486 0.'5Go 0.7515 0.7579 0 . 1363 0.7492 0.76)9 0.7567 0.'5)7 0.7536 0 . 76 ' i 0.7/95 0.7/21 0.7751 0.7820  RIOT XIOOO 13)5.8 O.7436 1 1 J 7 . 2 0 . '566 11)0.6 0.'313 1119.5 0 . '3' I I 3/1.4 0 . 7368 1334.8 0 . ' 4 ) 7 I 1/6.4 0 . /3 19 1 3 / 1 . 5 0 . 736 / 1J/0.6 0.'3/7 1 1 1 " . ) ( J . V,Vh I 1 1 ) / . 5 U.ILta 1 /'I/. 9 I). 7 793 1 / 9 3 . | 0 . 7/71 I / 'I /. 9II. 7/3) 12/8.1 O./b/0  T I HE HOURS O.U 0.10 0 . 15 O.lf 0.23 0 . 33 0 . 37 0.45 0.3? L.l' 1.35 1.4) 1.60 1.  TIME HOURS 0.0 0 . 10 0 . 13 0.18 O./F 0 . 11 U. 3 / 0.43 . 97  264  f C R R I C U X I l l E CONC I P P M | 2 1 ) 0 . VOITS.13.50 HEA1 HEM  AMPS: 3 5 6 .  ILOW S l ' P P l l i . 0 flUX  SurPllLO  16)56.« 91691.  BIU/HR  P l U / S O f l-t-R  BE1A0.301 TL'R.TINLE1I77.4 UFNSI I Y : 0 . 9 B 6 GRAM/CC r 0U11E1150.1 HOW  S M C 0.1887  AVG TEMP:I l a . 9 K I N t K A I IC VISC0S1TY:0.479  DEC  r  OEG  f  LOS.M/SEC DEG F SU.CM/SEC  FLUID VCIOCIIV A . 7 9 0 R E Y N O L D S NO 2 6 5 7 3 . 5 P R A N U I l NO 3 . 0 2  FI/SEC  HEAT SUPP 16356.6 BIU/HR HEAT 1RANS 15619.7 BTU/HR HE A l L O S I 7 3 7 . 1 BTU/HR P E R C E N T HEAT L O S T A . 5 1 HEA1 f l U X T R A N S . B l U / S C H - H R 89665. N U S S E L T N3 1 2 1 . 6 RFILM 0.623 RWALL 0.143 R10IAL 0.765 SOFT-HR-OEG F / B T U  L O C A L I Z E D FOULING RESISTANCE I 5 C F T - H R - D E C F / B T O I X I 0 0 , 0 0 0 1215 T235 1 2 5 5 1 2 7 5 T / 9 5 T 3 1 5 T335 T355 T375  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 9.25 10.56 10.56 7.05 9.25 9.25 12.76 13.19 14.51 16.25 19.31 21.92 23.23 24.96 26.70 30.60 31.89 34.46 35.35 37.93 40.06 44.60 49.07 52.06 36.01 59.28 59.70 60.97 61.67 62.66 63.61 65.19  0.0 8.37 9.25 9.25 e.37 9.69 7.93 10.13 11.44 11.68 I 3.63 18.01 14.88 20.67 19.75 20.62 25.41 27.58 28.68 30.17 32.77 3 5 . 36 38.60 43.53 46.95 52.07 52.60 52.92 34.20 53.48 56.75 3 7 . 17 68.45  0.0 7.88 8 . 76 6.32 5.70 6.57 7.45 12.24 11.1 1 14.42 17.74 1 4 . 65 16.72 1 6 . 16 19.31 1 8 . 76 27.65 24.38 26.54 27.83 30.41 32.56 36.13 43.75 47.06 34.26 15.11 35.56 17. 70 38.96 39.64 41.12 43.75  L O C A L I Z E D WAll TEMPERATURES T255 T275 7715 1 2 3 5 OEG.F DEC.F OEG. OEG. 0.0 1 7 4 . 6 1 7 4 . 2 1 6 2 . 5 0.0 1 8 2 . 9 1 9 1 . 7 1 8 9 . 6 0.0 1 6 4 . 1 1 6 2 . 5 1 9 0 . 4 0.0 1 6 4 . 1 1 8 2 . 5 1 9 0 . 0 0.0 160.9 1 8 1 . 7 1 9 1 . 6 0.0 162.9 1 8 2 . 9 166.4 0.0 1 8 7 . 9 1 6 1 . 3 1 8 9 . 2 191.5 0.0 U 6 . 1 183.3 0.0 1 6 6 . 5 1 8 4 . 5 1 9 4 . ) 0.0 1 8 7 . 6 1 8 4 . 9 1 9 6 . 5 0.0 1 6 9 . 2 1 8 6 . 5 1 9 3 . 5 0.0 1 9 1 . 9 1 9 0 . 4 1 9 6 . 6 0.0 1 9 4 . 3 191.2 1 9 6 . 6 0.0 1 9 5 . 3 1 9 2 . 7 1 9 7 . 0 0.0 1 9 7 . 0 1 9 1 . 9 1 9 9 . 6 0.0 1 9 6 . 6 1 1 2 . 7 1 9 9 . 3 0.0 2 0 2 . 1 1 9 1 . 0 2 0 2 . H 0.0 7 0 3 . 2 1 9 9 . 0 2 0 4 . 4 0.0 705.5 7 0 0 . 1 2 0 6 . I 0.0 2 0 6 . 3 2 0 1 . 3 2 0 7 . 3 0.0 206.6 20 1.6 2 0 9 . R 0.0 2 1 0 . 6 2 0 6 . 9 2 1 1 . 1 0.0 2 1 4 . 6 7 0 9 . 0 2 1 6 . I 0.0 2 1 8 . 6 21 I. I 2 2 1 . ) 0.0 7 2 1 . 1 7 1 6 . 3 2 2 4 . 7 0.0 2 / 6 . 6 2 2 0 . 9 2 1 1 . 1 0.0 2 2 7 . 8 2 2 1 . 1 / I 4 . I I 0.0 2 / 6 . 7 7 7 1 . 7 2 14.4 0.0 2 7 9 . 3 2 7 7 . 6 2 1 4 . I 0.0 7 1 0 . I 7 2 4 . 0 21 7.5 0.0 7 ) 0 . 6 7 7 6 . I /1".'/ 0.0 7 ) 1 . 6 7 / 4 . 3 7 1 9 . 4 0.0 7 3 J . I 7 7 6 . 6 7 / 1 . 1  0.0 6.57 7.01 7.01 5.70 7.45 7.88 8.76 10.94 9 . 63 IC.04 1 6 . 16 1 6 . 59 1 7.89  0.0 7.00 7.88 7.88 7.88 10.49 10.49 6.57 9.62 1 0 . 06  1 6 . 58 14.41 15.71 2 0 . 06 1 7 . 4 5 2 1 . 79 1 9 . 6 1 2 6 . I I 2 4 . 17 2 6 . 26 2 6 . 5 2 10. 4 I 2 5 . 2 3 31.70 27.38 1 ) . 85 2 9 . 9 6 35.56 32.97 4 1 . 54 3 8 . 53 4 6 . 65 4 4 . 5 0 5 0 . 4 7 4 6 . 32 4 4 . 52 2 4 . 6 0 4 5 . 38 2 5 . 6 6 45.80 26.09 4 7.30 2 6 . 6 7 4 8 . 35 3 0 . 3 9 4 9 . 70 3 1 . 2 5 30.19 50.47 6 7 . 16 32.11  IOEG.FI 1795 T315 DIG.F OEG.F 162.5 163.3 186.4 169.6 IB".8 190.4 IU8.8 190.4 167.6 190.4 109.2 192. 7 139.6 1 9 ? . 7 190. 4 169.2 197.3 191 .9 191.7 192. 3 197. 3 193.9 197.0 116.2 196.2 197.4 197.4 199.6 760.5 199.0, 209.9 707.1 /05.1 203.2 707.1 20/.9 709.6 20>.9 2 1 1 . 0 20 7.9 717.9 2 1 0 . 2 217.9 714.4 7 1 9 . 6 21 7.9 723.2 7/4.4 7 7 7 . fl 226.4 703.5 7/7.4 723.2 704. 3 // 1.6 7 0 6 . 7 //'.. I 2 0 9 . 0 7/s. 9 / I I I . 6 7/6.'. / I 1 . 1 2 1II. 6  7/1.1 7/9.)  /I/. 1  0.0 4.40  6. I 5 7.03 3.96  6.  59 7.91  10.97 14.03  13. 5 9 16.n 20. 3 5 2 3 . 16 24. 46  26. 1 9 2 0 . 35 31.60  34.81 3 7.  3  1  38.67 40.61  43.81  4e.92 54.44  59.75 42.53 42.33 4 7 . 53 4 3 . 38 45.09  46.61 46. 79  7335 D^G.r 176.6 182.5 194.1 134.9 182. 1 164. 5 135. 1 138. 4 191.2 190.9 111. 1 197.0 199. 3 200.5 20?. 1 204.0 207.1 2C9.M 217.1 21 1. 1 713.7 ?17.1 222.4  277.  4  H  77 1l6o.. 1 714.1 716. 1 717.'. 719.0 7 11. 4 270.3 7/7. 1  0.0 6.59 Z.47 7.03 7.03 10.09 11.41 14.46 1 7.08 1 7.51 17.25 23.16 27.05 2 8 . 78 30.07 31.37 3 1 . 37 34.61 36.96 39.5) 4 2 . 10 43.81 4 9 . 77 55.29 3 9 . 10 59.32 3).95 33.52 34.81 1 6 . 10 36.96 17.62 39.96  7355 DEG.F 1 76.6 186.5 185.3 134.9 134.9 187.6 188.6 191.5 193.9 194. 1 195. 6 199. 3 202.6 204.4 205.5 206. 7 706.7 709. 8 711.1 714.0 716.1 ?1 7.9 271.2 778.2 7)1.6 711.9 7D9.0 /DR. 6 709. 8 711.0 /II./ 717.3 714.4  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO  0.0 CO CO 0.0 o.o  0.0 0.0  1395  7*15  T428  0.0 7.42 7 .86 8.29 4.81 8.73 10.47 15.24 1 7.41 1 7.64  0.0 6.95 7.39 6.3? 7.82 12.15 14.74 17.75 16.18 1 0.42 13.01 19.90 24.19 2 6 . 76 28.69 31 .45 25.47 30.60 34.00 36.98 39.52 4 1 .64 50.07 55.52 60.94 46.28 47. I 2 47.54 49.27 51.31 51.75 52.56 54.68  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  .3.70  25.17 26.46 28.19 29.89 32.46 38.86 41.84 4 1.96 46.08 44.62 47.79 55.37 60.4 | 65.01 30.32 30. 37 3 0 . 75 37.03 31.74 34.60 35.68  36.01  T375 OEG.F  0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 CO CO 0.0 0.0 CO 0.0 0.0  7395 OEG.F 166.5 113.1 1.3. 5 113.9 170.8 194. 3 195.9 200.1 202. 1 202.5 203.2 201.0 210.2 2II.7 2I3.3 2I5.6 22I.) 274.0 225.9 22 '.8 230. I 22 I. 3 2 I6.l 240.6  0.0 u.o  744. 7 7 l I.6 ? l 1.6 7I4.0 7I3.7 7I6.7 71 '.3 /III. 6 770.5  7415 DEC.F  I92.7 I99.0 199.3 I9B.6 199. 7 203.6 205.9 708.6 209.0 202.1 204.4 2I0.6 2I4.4 2I6.7 21 8.6 220.9 713.6 220.2 223.2 226.9 22R.2 230.1 7 3 7 .6 747.5 24 7.4 734.7 213.0 733.4 716.9 7 111.7 7 19.1 7 19.9 741.1  T428 OEG.F 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 o.o 0.0 0.0  7IN DEG.F 127.0 127.4 127.4 127.4 127.4 127.4 127.4 127.8 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.0 127.4 127.4 127.4 127.4 127.4 127.6 127.6 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4  TIN DEG.F 127.0 127.4 127.4 127.4 127.4 127.4 127.4 127.8 127.4 127.4 127.4 127.4 177.4 127.4 177.4 127.4 127.4 177.0 127.4 127.4 127.4 121.4 127.4 177.3 177.6 177.4 177.4 177.4 177.4 1?».4 177.4 177.4 127.4  TOUT OEG.F 149.9 150.3 150.3 150.3 160.3 150.3 150.3 150.6 150. 3 149.9 :;9.9 150.3 149.9 149.9 150. 1 149.9 149.9 149. 5 149.9 149.5 149.9 149.5 149.9 149.9 149.9 150.3 150.3 149.9 149.9 149.9 149.9 149.9 150.3  TOUT OEG.F 149.9 150.3 150. 3 150. 3 150.3 150.3 150.) 150.8 150.) 149.9  RFM 0. 0 7. 16 6.04 7.99 6.48 9.00 9.72 1 2 . 10 13.69 13.32 14.67 19.30 20.93 22.42 23.95 25.68 28.52 31.19 3 3.09 34 .86 3 7 . 33 39.28 45.10 5 0 . 29 54.24 43.59 4 1 . 32 41.60 43.17 44.69 4 5 . 39 46.19 48.03  TM OEG.F 161.5 18 7.9 IBS. 7 188.7 181.3 189.6  190.2 192.4  150.) 149.9  194.0 193.4 194.7 198.8 200.3  149.9  201.6  130.)  701.0 204.5 20 1.1 209.5 21 1.2 212.8  149.9  149.9 149.9  149.5 14 9.9 141.5 14 9 . 9 14 9.5 149.9 149.9 141.9  130. 3 150.1 147.9  1.49.1 I 4 9. 9 I 49.9 I49.9 150. 3  215.1  216.7 221.9 276.6  2)0. 1 220.6 716.6 716.6  7/0.2 7/1.6 277.7 777.9  774.6  DELIA OEG.F 23.0 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.5 22.5 22.9 22.5 22.5 22.9 22.5 22.5 22.5 27.5 22. 1 27.5 22. 1 22.5 22.1 22. 1 22.9 22.9 22.3 22.5 27.5 22.5 22.5 22.9  1644.4 1452.7 1429.3 1429.6 1466.7 1399.8 1379.9 1 342.0 1266.7 1292.0 1203.9 1180.4 1150.9 1127.2 1105.9 1076.5 10)4. 1 992. 7 976.8 953.0 929. 2 904.6 830. 3 606.6 7 75.5 881.2 916.3 911.2 894. 7 8 79. 9 8 72. ) 664. 8 849.6  DELTA H DEG.F 23.0 1644.4 22.9 1 4 3 ? . ? 22.9 1479.3 22.9 1 4 2 9 . 6 22.9 1 4 6 6 . 7 22.9 1 3 9 9 . 8 22.9 1 3 7 9 . 9 22.9 1 ' 4 2 . C 22.9 1.66.7 22.5 1292.0 22.5 1261.9 72.9 1180.4 22.5 1130.9 22.5 1127.2 22.9 1105.9 22.5 10'6.5 22.5 1014. 1 77.5 197. 7 22.5 9 76. 8 72.1 953.0 22.5 978.7 22.1 904.6 22.5 650. 3 2 2 . 1 806.6 7 7 . 1 7 76.S 22.9 8dl.7 77.9 916. 3 27.5 911.7 77.3 694. 7 77.6 8 '9. 9 77.5 017. 3 77.5 664.6 72.9  RTOT X 100. 0 . 60 0.66 0.69 0.69 C. 68 0.T1 0.72 . 0 . 74 C . 77 ' 0 . 71 0 . 7' 0.8'0 . 9< o.ei • 0 . 9' 0. 9 . 0.91.0' 1.0 . 1.0 1.0 l.l! 1.1 1.7 1. 21 i . i: 1.0' 1. 0'. •. i.n 1.13-.. 1.14 1.15 1.17  R  XI00 ' 0.608 0.666' 0.699(. 0.699! 0.631; 0.7 144 0.7247 0.7452 0.777? 0.7749 0.791? 0 . e 4 72 C  S 1  35 .12 22 65  to  ,37 .17 . 32 - .4) •*G . 70 1.92 1.97 2.03 2.20 2.40 2.53 2.67 2 . 17 2.65 3.03 3.26 3.55 1. 72 3.93 4.03 4.12 4. JO 4.42 4.32 4.66 4. 38  T IME (' u - t s 0 05 12 22 .5 0  6 6 9 '*  0.9672 0.9042 0.9290 0.96 7 I 1.00' 1 1.021 1 1.041 1 1.0774 I.1063 1.1'61 1.7393 1.2694 1. 1 148 I.O'll ) l.09'4 1.11)1 1.1)65 1. 1 4 6 ) 1. 1 3 6 4 849.6 I . I ' M  4 03  • .70 >.4 0 2. 3) 7 . 47 2 . 17 7 . 85 3. 0) S./B 3. 53 3. 3. 9 ) 4 . 1)3 4 . 17 4 . 10 4. 42 4 . 5/ 4 . 45 4 . .IN  17  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Country Views Downloads
Brazil 57 0
United States 48 0
China 37 29
Russia 10 0
Ukraine 8 0
France 5 0
Egypt 4 0
Canada 4 0
India 2 0
Latvia 2 0
Germany 1 3
Taiwan 1 0
Mexico 1 0
City Views Downloads
Belém 48 0
Unknown 39 4
Mountain View 19 0
Beijing 17 0
San Francisco 7 0
Penza 7 0
Ashburn 6 0
Shenzhen 5 29
Hangzhou 5 0
Kunming 4 0
Washington 4 0
Annemasse 4 0
Calgary 3 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0059022/manifest

Comment

Related Items