UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fouling in steady and unsteady state electrodialysis Tremblay, André-Yves 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A7 T74.pdf [ 8.93MB ]
Metadata
JSON: 831-1.0058913.json
JSON-LD: 831-1.0058913-ld.json
RDF/XML (Pretty): 831-1.0058913-rdf.xml
RDF/JSON: 831-1.0058913-rdf.json
Turtle: 831-1.0058913-turtle.txt
N-Triples: 831-1.0058913-rdf-ntriples.txt
Original Record: 831-1.0058913-source.json
Full Text
831-1.0058913-fulltext.txt
Citation
831-1.0058913.ris

Full Text

FOULING  IN  STEADY  AND  UNSTEADY  STATE  ELECTRODIALYSIS  by  Andre-Yves B.Sc.A.,  A  THESIS THE  Tremblay  Universite  SUBMITTED  IN  REQUIREMENTS MASTER  OF  d'Ottawa,  PARTIAL FOR  THE  APPLIED  1978  FULFILMENT DEGREE  OF  SCIENCE  in THE  FACULTY  (Chemical  We  accept to  THE  OF  Engineering,  this  the  GRADUATE  thesis  required  UNIVERSITY  OF  May  Andre-Yves  as  STUDIES Dept.)  conforming-  standard  BRITISH  COLUMBIA  1981  Tremblay,  1981  OF  In  presenting  requirements of  B r i t i s h  it  freely  agree for  this for  an  available  that  I  understood  that  financial  by  his  or  at  of  3  f^JL  7  reference  and  study.  I  extensive be  her or  s h a l l  copying  granted  by  /  P g  publication  not  be  allowed  & Columbia  /  the  of  of  this  It  this  without  make  further  head  representatives.  CH/?t?f£-HL  .  University s h a l l  The U n i v e r s i t y of B r i t i s h 2075 Wesbrook Place Vancouver, Canada V 6 T 1W5  Date  the  Library  permission.  Department  the  of  the  may  copying  gain  degree  fulfilment  that  for  purposes  or  p a r t i a l  agree  for  permission  scholarly  in  advanced  Columbia,  department  for  thesis  thesis  of  my  is thesis my  written  i i  ABSTRACT  The state  effects  conditions  and  5  A  on  of  c m / s e c ) , and  iron  The  processes bench  (II)  the  were  scale,  (20  and  steady studied.  under  30  and  the  volts),  unsteady  Both  processes  same  fluid  operating  velocity  concentration  in their  feed  m g . / l . sodium c h l o r i d e  solution  containing  run.  The  both  was  circulated  amount of  d e t e r m i n e d and  for  on  (1.25  streams  (0,  ppm). 2000  hours.  a  fouling  voltage  ferrous chloride  the  iron  electrodialysis  were compared  1,  of  through  deposition  compared  to  the  and  a  change  power c o n s u m p t i o n  processes  on  per  found  test in  litre to  be  Fe??  as  for  20  membranes  was  the  process  pair  of  separation per a  factor  cell'was  function  over  determined  of  dialysate  the  limiting  concentration. Due current  to  I lim  deposition in on  limitations  of  could iron  not  was  in be  membranes, w h i l e  relatively  unchanged.  membrane m o d e l " .  the This  power  u s e d as  measured  both processes decreased the  the  a  fouling  instead.  with  the  polarized  supply,  The  p a r a m e t e r , and separation  amount of cell  iron  the  factor  accumulated  resistance  remained  i s i n agreement w i t h t h e  "sandwich  iii TABLE  OF  CONTENTS  Page ABSTRACT  ii  LIST  OF T A B L E S  vi  LIST  OF F I G U R E S . .  X  ACKNOWLEDGEMENTS  •  Xi i i  Chapter I  INTRODUCTION  1  II  LITERATURE  SURVEY  3  III  OBJECTIVES  AND THEORY  9  A)  Objectives  B)  Theory  C) IV  10  1)  General  2)  Polarization  3)  Iron  The  Considerations...  (II)  Unsteady  APPARATUS A)  9.  and  Water-splitting  Fouling State  Process  AND E X P E R I M E N T A L  Steady  13 ...17 18 20  Apparatus 1)  10  20 State  O p e r a t i o n . . . . . . . . .  a)  Electrodialysis  b)  Electrodes  c)  Electrical  d)  Flow  System  Stack  20 20 24  System  27 27  iv  Page 2)  B)  V  Unsteady  B)  Electrodialysis  b)  Electrodes  c)  E l e c t r i c a l  d)  Flow  28  Stack  28 30  System  30  System  31  Experimental 1)  Steady  2)  Unsteady  32  State  Process  State  RESULTS  Determination  of  Limiting  2)  A . C . Resistance  3)  Direct  3)  AND D I S C U S S I O N  38  Fouling  Parameter  of  the  39  Measurements of  Iron  Steady  Deposits  41 State 41  Drop Per C e l l P a i r as a Solution Resistance  Plot  of  as  Function  the  4)  Pressure  5)  Power  6)  Decreases  7)  Mass  8)  Visual  Summary  39  and Unsteady  C a l c u l a t i o n of S e p a r a t i o n Ionic Selectivities  a  39  Current..  Performance Processes  2)  34  Measurement  Voltage of B u l k  32  Process  a  1)  1)  C)  Process  a)  EXPERIMENTAL A)  State  Actual of  C e l l  Stack  Function 41  Factors  and 42  Pair  Resistance  Voltage  43  Drops  50  Requirements in  Balances  for  Separation  Separation on  Iron  Examination  of  due  to  Fouling  50 56  and Sodium  60  Fouling  63  Deposits...  70  V  Page CONCLUSIONS  74 o  RECOMENDATIONS  75  REFERENCES  77  TABLES  II  to  APPENDIX  A  APPENDIX  B  IL  79 ,  112 113  1)  Current  Measurments  113  2)  Current  Density  113  3)  Separation  4)  Power  5)  Calculation  6)  Iron  APPENDIX  C  Factor  Requirements of  (Ra+Rc+Rp)  Accumulation  114 115 115 115 ..116  vi  LIST  OF  TABLES  Table I  II  III  IV  V  VI  VII  VIII  IX  X  XI  XII  Page Cycle time velocities  used  at  different  fluid 35  Steady state ,voltage-current c h a r a c t e r i s t i c s of both s t a g e s  (A  and  (B)  Steady state, voltage drop per c e l l pair and v o l t a g e drop in bulk s o l u t i o n (A) f o r t h e f i r s t s t a g e a t 2 a n d 20 h o u r s Steady s t a t e , voltage per c e l l pair and v o l t a g e drop in bulk s o l u t i o n ( A ) t h e s e c o n d s t a g e a t 2 a n d 20 h o u r s Steady state, s t a c k v o l t a g e s - (A) and r e s i s t a n c e s (Ra+Rc+Rp) (B) f o r first effect a t 2 a n d 20 h o u r s  79 (B) 80  (B) for 81 combined 82  S t e a d y s t a t e , s t a c k v o l t a g e s (A) and c o m b i n e d r e s i s t a n c e s (Ra+Rc+Rp) (B) f o r second effect a t 2 a n d 20 h o u r s  83  Steady state, drop at 2 and  dialysate 20 h o u r s  pressure 84  Steady state, drop at 2 and  dialysate 20 h o u r s  pressure 85  Pressure drop across c h a n n e l (A) a t 2 a n d  the dialysate 20 h o u r s ( u n s t e a d y  state  runs)..86  Pressure drop across c h a n n e l (A) a t 2 and  the brine 20 h o u r s ( u n s t e a d y  state  runs)..86  Steady state, separation factor requirements/litre of d i a l y s a t e (Joules/1 per c e l l ) a t 2 a n d 20 S e p a r a t i o n f a c t o r Ns (A) and t h e (joules/litre per c e l l ) at 2 and (unsteady state runs)  (A) a n d power produced per cell(B) hours  87  power consumption 20 h o u r s 88  vi i  Table XIII  XIV  XV  XVI  XVII  XVIII  XIX  XX  XXI  XXII  XXIII  Page Steady and unsteady s t a t e , d i a l y s a t e concentrations (mg./l.) (A) and t h e power requirements per l i t r e of d i a l y s a t e produced per c e l l ( j o u l e s / 1 p e r c e l l ) (B) a t 2 a n d 20 h o u r s (1,25 cm/sec only)  89  Amount of i r o n a c c u m u l a t e d on t h e (mg.) (A) and t h e p e r c e n t d r o p i n factor Ns, (steady state runs)  90  test pair separation  A v e r a g e i r o n a c c u m u l a t i o n on t h e t e s t membranes (mg.) (A) and t h e p e r c e n t d r o p i n s e p a r a t i o n factor Ns (B) d u r i n g a run ( u n s t e a d y s t a t e r u n s )  91  The t o t a l ( b a s e d on amount of (steady st  91  amount of i r o n accumulation membranes) (mg.) (A) a n d t h e total iron lost i n f e e d s t r e a m (mg.) (B) ate runs)  T o t a l i r o n a c c u m u l a t i o n b a s e d on (mg.) (A) and t h e amount of i r o n d u r i n g a run (mg.) (B) (unsteady pH of t h e d i a l y s a t e s t r e a m s a t 2 a n d 20 pH at  the membranes lost in the feed state runs)  (A) a n d b r i n e hours (steady  of t h e d i a l y s a t e (A) and a a n d 20 h o u r s ( u n s t e a d y  brine state  (B) state  runs)  93  (B) streams runs)  The p e r c e n t s e p a r a t i o n b a s e d on i r o n i n dialysate (A) and b r i n e (B) streams a t 2 a n d 20 h o u r s ( s t e a d y s t a t e r u n s )  92  94  the 94  Unsteady state, percent separation i n t h e d i a l y s a t e (A) and b r i n e (B) a t 2 a n d 20 h o u r s  b a s e d on streams  iron  I o n i c s e l e c t i v i t y b a s e d on i r o n i n •(A) a n d b r i n e (B) s t r e a m s a t 2 and (steady state runs)  the dialysate 20 h o u r s  95  Ionic s e l e c t i v i t y b a s e d on i r o n i n the dialysate (A) and b r i n e (B) s t r e a m s at 20 h o u r s ( u n s t e a d y s t a t e r u n s )  95  2  and 96  vi i i  Table XXIV  XXV  XXVI  XXVII  XXVIII  XXIX  XXX  Page Average current e f f i c i e n c y (A) a t 2 a n d 20 h o u r s a n d t h e p e r c e n t d r o p i n c u r r e n t o v e r 18 h o u r s ( s t e a d y s t a t e r u n s )  efficiency 97  Unsteady state, average current efficiency (A) a t 2 a n d 20 h o u r s a n d t h e p e r c e n t drop i n c u r r e n t e f f i c i e n c y o v e r 18 h o u r s ( B ) . The p e r c e n t s e p a r a t i o n for the d i a l y s a t e (A) 20 h o u r s ( s t e a d y s t a t e  b a s e d on s o d i u m and b r i n e streams runs)  98  at  2  and 99  U n s t e a d y s t a t e , p e r c e n t s e p a r a t i o n b a s e d on s o d i u m i n t h e d i a l y s a t e (A) and b r i n e (B) s t r e a m s a t 2 a n d 20 h o u r s  100  Ionic s e l e c t i v i t y based d i a l y s a t e (A) and b r i n e (steady state runs)  101  on s o d i u m i n (B) a t 2 and  the 20 h o u r s ,  I o n i c s e l e c t i v i t y b a s e d on s o d i u m i n the dialysate (A) a n d b r i n e (B) s t r e a m s a t 2 20 h o u r s ( u n s t e a d y s t a t e r u n s )  and 102  A b s o l u t e e r r o r s i n t h e ammount of i r o n accumulated on t h e membranes (A) and t h e p e r c e n t d r o p in s e p a r a t i o n f a c t o r Ns (B) (steady state runs)  103  XXXI  Absolute error in the a c c u m u l a t i o n of iron on t h e t e s t membranes (mg.) (A) a n d t h e percent drop in separation factor (B) (unsteady state runs).104  XXXII  A b s o l u t e e r r o r s in the v a l u e s of (Ra+Rc+Rp) f o r t h e f i r s t s t a g e (A) a n d s e c o n d s t a g e (B) a t 2 a n d 20 h o u r s ( s t e a d y s t a t e r u n s )  105  XXXIII  Absolute error i n the t o t a l amount of iron a c c u m u l a t e d on t h e membranes (A) a n d t h e amount of i r o n l o s t in the feed stream (steady s t a t e runs).106  XXXIV  Absolute error i n the t o t a l amount of iron a c c u m u l a t e d on t h e membranes (mg.) (A) a n d amount of i r o n l o s t in the f e e d (mg.) (B) (unsteady state runs)  XXXV  A b s o l u t e e r r o r s in the v a l u e s of ionic s e l e c t i v i t i e s b a s e d on i r o n i n t h e d i a l y s a t e and b r i n e ( B ) s t r e a m s a t 2 a n d 20 h o u r s (steady state r u n s ) . . . .  the 106  (A) 107  ix  Table XXXVI  XXXVII  XXXVIII  XXXIX  XL  Page Absolute error in the iron s e l e c t i v i t y based on t h e d i a l y s a t e (A) a n d b r i n e (B) s t r e a m s a t 20 h o u r s ( u n s t e a d y s t a t e r u n s ) . .  2  and 107  Absolute at 2 and  error in 20 h o u r s  the current efficiencies (steady state runs)  108  Percent at 2 and  error in 20 h o u r s  current efficiency (unsteady state r u n s ) . . .  109  A b s o l u t e e r r o r s i n the v a l u e s of ionic s e l e c t i v i t i e s b a s e d on s o d i u m i n t h e d i a l y s a t e and b r i n e (B) s t r e a m s a t 2 a n d 20 h o u r s (steady state runs) Absolute error in the sodium s e l e c t i v i t y based on t h e d i a l y s a t e (A) and b r i n e (B) c h a n n e l s at 2 a n d 20 h o u r s ( u n s t e a d y s t a t e r u n s )  (A) 110  111  X  LIST  OF  FIGURES  Figure 1  Page Water production cost v s . s a l i n i t y desalination processes (schematic)  2  Transport  3  Steady state e l e c t r o d i a l y s i s stack A - anion selective membrane B - c a t i o n s e l e c t i v e membrane  4  numbers  Polarization interfaces  in  layers  an  at  anionic  the  for  various 4  membrane  solution  (A)  , -  .10  1.1 membrane 14  5  Configuration  6  Flow  7  Steady  8  A - Polyethylene spacer used in the steady state process, B - polyethylene spacer used in the unsteady state process  23  Steady  25  9 10  diagram state  state  Face  view  used  in  11  Flow  diagram  12  Flow used Plot volta both  13  •14  15  of  the  connec in the of the ge vs. stages  of of  "sandwich the  stack  c e l l the  18  state  21  apparatus  assembly  22  press Plexiglass  steady of  steady  membranes"  the  state  end  block  process  unsteady  state  26 apparatus  t i o n s and v a l v e t i m i n g sequence unsteady state operation steady state stack the current consumption for  P l o t of the f i r s t s t a g e v o l t a g e drop per c e l l pair vs. the bulk s o l u t i o n voltage drop per c h a n n e l , for a l l 2 hour steady s t a t e readings ( S e k o ' s w o r k i s r e p r e s e n t e d by t h e s o l i d l i n e )  29  36  40  44  P l o t of the s e c o n d s t a g e v o l t a g e drop per c e l l p a i r v s . the bulk s o l u t i o n voltage drop per c h a n n e l , for a l l 2 hour steady s t a t e readings ( S e k o ' s w o r k i s r e p r e s e n t e d by t h e s o l i d l i n e ) . . . . . . . 45  xi  Figure 16  17  18  19  20  21  22  23  24  25  26  Page P l o t of (Ra+Rc+Rp) v s . t h e f o r the f i r s t s t a g e of the a l l runs without fouling  stack voltage, steady state process,  P l o t of (Ra+Rc+Rp) v s . f o r the f i r s t stage of a l l runs with fouling  stack voltage, steady state process,  the the  46  47  P l o t of (Ra+Rc+Rp) v s . t h e s t a c k voltage, f o r the second s t a g e of the s t e a d y s t a t e p r o c e s s , runs without fouling  48  P l o t of (Ra+Rc+Rp) v s . t h e s t a c k voltage, f o r the second s t a g e of the s t e a d y s t a t e p r o c e s s , a l l runs with fouling  49  P l o t of the d i a l y s a t e and b r i n e c h a n n e l drops vs. fluid velocity for a l l steady without fouling  pressure state runs 51  P l o t of the d i a l y s a t e and b r i n e channel drops vs. fluid velocity for a l l steady with fouling  pressure state runs 52  P l o t of the d i a l y s a t e and b r i n e channel pressure drops vs. f l u i d v e l o c i t y for a l l unsteady state runs  53  P l o t of the power requirements p e r l i t r e of d i a l y s a t e p r o d u c e d factor Ns, for a l l steady state  54  v s . the runs  P l o t of the power requirements p e r l i t r e of d i a l y s a t e p r o d u c e d v s . the f a c t o r Ns, for a l l unsteady state runs P l o t of the power requirements per l i t r e of d i a l y s a t e p r o d u c e d dialysate concentration,for a l l and unsteady s t a t e runs Plot over iron run,  separation  separation 55  vs. the steady  of the p e r c e n t drop in s e p a r a t i o n factor a n 18 h o u r p e r i o d v s . t h e a m o u n t of a c c u m u l a t e d on t h e t e s t p a i r o v e r t h e 20 for a l l steady state runs with fouling  57  hour 58  xi i  Figure 27  28  29  Page Plot over iron run,  of the per c e n t d r o p i n s e p a r a t i o n factor a n 18 h o u r p e r i o d v s . t h e a m o u n t of a c c u m u l a t e d o n t h e t e s t p a i r o v e r t h e 20 h o u r for a l l unsteady state runs with fouling  P l o t of the amount of i r o n l o s t in the feed v s . t h e t o t a l amount of i r o n a c c u m u l a t e d on m e m b r a n e s d u r i n g t h e 20 h o u r run, for a l l steady state runs P l o t of the amount of i r o n l o s t in the feed v s . t h e t o t a l amount of i r o n a c c u m u l a t e d on m e m b r a n e s d u r i n g t h e 20 h o u r run, for a l l unsteady state runs  .59  the 61  the 62  30  I r o n o x i d e f i l m on unsteady state proc 0 ppm i r o n i n f e e d 1 ppm i r o n i n f e e d  a t e s t membrane p a i r i n the e s s a t 20 v o l t s , 1,25 cm/sec, ( A ) , a n d a t 30 v o l t s , 5,0 cm/sec, (B). (1 d i v i s i o n = 1mm.) 66  31  I r o n o x i d e f i l m on unsteady state proc 5 ppm i r o n i n f e e d 5 ppm i r o n i n f e e d  a t e s t membrane p a i r in the e s s a t 20 v o l t s , 1,25 cm/sec, ( A ) , a n d a t 30 v o l t s , 1,25 cm/sec, (B). (1 d i v i s i o n = 1mm.) 67  32  Iron oxide deposits s e l e c t i v e membrane,  33  on a c a t i o n and a n i o n steady state process  Comparison between the f i l m s formed in the steady s t a t e and unsteady s t a t e p r o c e s s e s  68  69  xiii  ACKNOWLEDGEMENT  I  wish  assistance I the  to  thank  throughout  also  wish  preparation I  am  Dr.  of  indebted  to the to  the  for  financial  support.  parents  and  teachers.  course  the  S c i e n c e and  would  Thompson, of  this  for  his  guidance  and  work.  Arlene-Marion  Yas  for  her  help  with  Columbia,  and  manuscript.  Natural  I  W.  thank  the  Finally,  D.  University Engineering  like  to  of  B r i t i s h  Research Council  acknowledge  the  past  help  of  Canada  from  my  1  I  Membrane  transport  u l t r a f i l t r a t i o n affected fouling on  a  by  deposits some  scale  cases,  Reversal" was  L i t t l e  of  Reversal  be  in  the  or  scale  of  applied  control  controlling  as  fouling  their  and/or  f i r s t  replacements  known to  scale  to  deposits,  use such  and,  as  large  in  the  of  deposits  to  the  such  plants.  electrode without  feed  efficiency  deposits  "Polarity  scale  reversal  polyphosphates  however,  adversely  plants.  intermittent to  osmosis,  electrodialysis,  feature  and  been  since  membrane  shutdown  reverse  have  conventional  costly  used  known,  as  surfaces  operating  acids  was  to  that  could  addition  In  introduced  believed  of  membrane  basis.  an  was  polarity  the  complete  1970,  such  electrodialysis,  led  the  processes,  accumulation  on  have  By  It  the  films,  large  and  INTRODUCTION  as  the  stream.  of  Polarity  iron  oxide  films. In  the  unsteady the  state  in  reversal stream  of  order  process.  This and  into  of  cyclic  University  studied a  course  Columbia  determine  operation parametric  brine  work,  the  electrodialysis  British  to  this  if  pumping  and.dialysate  process,  by  Dr  fouling  combines  the in  performance  D.W. would  developed Thompson occur  principles  order-to  streams.  The  of  ,  in  of  separate unsteady  an at was such  polarity a  feed state  2  process  was  compared  with  a  conventional  steady  e l e c t r o d i a l y s i s p r o c e s s , both p r o c e s s e s h a v i n g t h e same concentration  state iron  i n t h e i r feed streams, and both o p e r a t e d under  the same v o l t a g e s and f l u i d v e l o c i t i e s .  3  II  Large  quantities  electrodialysis world  having  steady three et  1965, et  al  Goldstein  more  the  Matz  1977,  cost  levels  al  However,  water  (1977)  1965,  than over a  6,000  recent  sea  et  al  water  used  industry.  or  recycling  by  1979,  1979), 1978)  include recovery (Asahi  in  many  has  been  potable  Govidan  1978,  I.Seto  suggested  that  al  for  areas  the  of  the  1965).  used  water  1976,  of  copper and  the of  have  and  dairy  et  for  The over  . (Klyachco al  et  1976, al  El  1978,  Chem.Ind.).  batch at  see  wise a  or  Several  from  d i s t i l l a t i o n F i g .  1  operation  cost  been  electrodialysis  of  (L.T.Fan has  uses  implemented  and  of  the  these  metal  are  et  produced  $1.32/cu.  other  at  meter  of  the  are  now  treatment  refining  industries  Chem.Ind.),  petrochemical  industries  zinc  industries  plating  industries  desalination nitric  mg./litre  Examples  wastes  Asahi  osmosis  1977).  being  al  of  suitable  (Gilliland  process  reverse  process  (EPA  water  Millet et  electrodialysis  (S.Itoi  fresh  production  from  (Seto  the  available  comparisons  salinity  potable  of  Arnold  expensive  1968).  are  water  1979).  Early was  process  for  SURVEY  brackish  electrodialysis  decades  Hares  of  shortages  state  al  LITERATURE  acid  of  (J.Millet  treated  used  in  1976).  municipal  acrylic  (Korngold Other  sewage  fiber  and  et uses the  manufacturing  4  10  1  1  1  electrodiolysis \ a  0 9  1  1  1  1  reverse  m  osmosis  j  1  1  l.  m  1  i  1  r-  1  superior  riiOiiintion  superior  0 8 to  o o  8  07  0  6  O  \  0 3  0 4  o  o  0.3  02  0 1  -1  2000  I  6000  u  I  10000  14000  salinity  Figure  In were  1.  Japan,  evaporation  work by  with  a l l  totally  basic  text  to  written  dedicated (1962,  1972 by  (Asahi  to  1966),  principles  Chem.  salt  30000  a combined Ind,  (1960)  (1966)  offer  processes  electrodialysis  Y.Tsunoda  electrodialysis. Sporn  various  manufacturing  by W i l s o n  but  L_  26000  . PPM  conventional  prior  process  early  Speigler  1  22000  Water production cost v s . S a l i n i t y f o r desalination processes (schematic).  replaced  An  1  -1  18000  1965).  remains  the  only  in  books  Chapters  and Popkin  l i t t l e  -  (1968)  deal  information  on  fouling. The into  first  operation  fouling,  large over  and poisoning  scale three of  electrodialysis decades  membranes  ago. have  plants Scale  plagued  were  put  deposits, the  process  5  causing down  increased  times,  shutdowns  stack  costly  under  magnesium  hydroxide  membrane  dialysate membrane has  to  cathode  side  attributed product  of  The colloidal phenols. of  of  to  most  These  (1969)  report  colloids  are  when al  al  deposits  have  been  have  been  having  of  the  membranes that  structure as  this  have  had  type  is  of  thin  These to  the  stacks are  they  are  Barium  and  form  on  the  scales  were  the  solubility  films  of  on  organic polyhydric  the  Kresman ppm  surface and  replace  fouling  Tye  organic  membranes.  completely of  to  0.03  exchange to  due  polymeric  1965).  concentrations  plants  1965).  close  fouling  anion  because  to  the  scaling  scales  pH.  at  1960).  (B.A.Cooke  to  within  Sulphate  reported  membranes.  precipitate  inside  times,  with  and  increases  Sulphate  solubility  (Wilson  type  at  scales  conditions  sulphate  pH  electrodialysis  carbonate in  to  1965).  1977).  permeable  harmfull  electrodialysis  et  scales  acids  exchange  membranes  changes  common  acids  plant  Calcium carbonate  and,  R.Matz  et  operating  barium  large  total  precipitated  several  than  cation  to  ion  (G.S.Solt  in  eliminate  sulphate  costs, and  attributed  salts  1962,  H.E.Hares  susceptible  strontium  were  compartments,  (M.Seko  1965,  scale  operation.  These  observed  (Y.Tsunoda  less  scales  brine  itself  power  replacements  inorganic plant  surfaces.  been  harder  of  normal  and  and  1965).  types  observed  the  membrane  (G.S.Solt  Different  resistances  Many their  occurred  6  Fouling reaction:  due  a  the  (Grosman  at  the  membrane  interface.  depletion  of  Fouling in  many  in  of  salt  of  acid  due  to  electrodialysis  eventually  treating  well  1968).  Fouling  greater  detail  Most poison  sodium  later  in  within  by  ions  dodecylsulphate  film  is  a  to  the is  a  interface,  to  a  larger  serious  problem  et  electrodialysis al  present with  of  1965).  .04  at  the  w i l l  well  iron be  an  membrane  ferrous  ions  oxide.  observed ppm  As  through  ferric  been  deposits  in  to The  stacks  (D.H.Furukawa discused  in  work.  membranes  was  -  passed  films  occupying  Poisoning  layer  configuration  major  combine  multivalent  the  1970).  the  hydroxyl  this  membrane"  solution  leading  films  is  has  membrane  surfaces.  ions  iron  detergents,  (P.J.VanDuin  as  containing  to  exchange  is  selective  membrane  (V.A.Klyachko  deposits  due  membranes  micelles  viewed  colloidal  water  this  iron  watersplitting,  such  of  and  acid  "sandwich  bulk  membrane  ferrous  yield of  the  autocatalytic  humic  anion  the  effect  U.S.S.R.  of  an  cation  from  colloidal  stack,  to  formation  The  the  is  an  is  composite  at  on  and  the  due  The  of  watersplitting,  containing  surfaces  a  anions  ions  countries  problem water  flow  more  accumulation  of 1973).  the  layer  surface  Sonin  decreases  colloids  selective  formation  and  creating  organic  cation  precipitated causing  to  of  ions,  and  exchange  sites  as  case  in  anion  studied  the  selective by  humic or of  acids forming  detergents  membranes  Kobus  and  by  Urtjes  7  (1972); were  the  effects  studied  were  not  cation  showed in  membranes,  Anion  presence  and  of  and  partial  the other  feed  of  the  30  to  in  presence ions  anion  of  in  feed  and  electrical efficiency.  unaffected in  at  exchange  in  coulomb  ions  a  into  waters  cation  relatively  multivalent  selective  detergents.  increases in  membranes  transformed  poisoned  decreases  detergents,  resistance  ultimately  has  remain  both  however,  large  membranes  Cooke  deal  with  humic  has  process  the  by  feed  over  hundred  current  of  (1965)  reports  anion  type"  selective  show  less  membranes,  unaffected  by  to  in  the  of  and of  the  waters  hours  the  most  streams  harmless  levels.  resistances  (Kresman  and  Tye  leading  to  the  (G.S.Solt  exchange tendency  presence  major  feed  membranes  while  the  is  stack  efficiency  replacement that  one  pretreatment  increases  one  is  today  concentrations  caused  in  acid  total  remain  waters.  since  lower  percent  "homogeneous anion  by  electrodialysis  decreases  or  membranes  be the  ppm  membranes  contamination  1969),  selective  ferric  0.02  economically  to  Cation  increase  to in  of  positive  to  up  OT,  1960).  in  d i f f i c u l t  Areosol  detergents;  substantial  Poisoning problems  1970.  membranes  leading  (J.R.Wilson  1965).  by  and  substantial  of  exchange  cannot  Durin  presence  resistance  HDPC  permselectivity  concentrations  of  a  selective  The  Such  Van  affected  membranes decrease  by  of  al  membranes to  poison  cation of  et  humic  of than  exchange acid  in  8  The  unsteady  developed  by  Columbia,  has  1972  and  state  cyclic  Dr.D.W.Thompson been  behaviour  of  conditions  were  the  at  the  in  the  Ph.D.  1976.  No  described  M.E.Abu-Goukh  unsteady  available.  electrodialysis  state  University Thesis  previous process  process of  British  of  D.Bass  studies under  on  the  fouling  9  III  OBJECTIVES  A)  The  main  behaviour fouling  of  objective  the  conditions  electrodialysis  and  as  to  listed  ]_)  operating  voltage  2)  fluid  3>) as  iron concentration ferrous chloride)  velocity  this  state  (20  and  5)  spacer  thickness  and  6)  cation  and  selective  7)  electrode  cm/sec the  fluid  steady  state  caused  wearing  of  the  during  a  run.  membrane  process  had  and  13  excessive peristaltic  of  c e l l  pairs  process  under  steady  state  had  identical  and  5 ppm  was )  iron  II  used  to  size membranes  assemblies  was  compared where  a  pressure pump  former  area  a  the  Volts)  ( 0 , 1  process  process  The  to  d i s t i l l e d water other contaminants mesh  velocities,  cm/sec  total  state  it  processes  30  feed  water (i.e.: the e f f e c t s ' of  unsteady  determine  electrodialysis  Both  4) f e e d eliminate  The  to  cm/sec)  in  materials  was  below:  (1,25  anion  work  compare  process.  characteristics  THEORY  OBJECTIVES  of  unsteady  AND  with  to  cm a  2  0,5  drop  had  56  while  total  area  1,25 1,25  and  led  to  would c e l l  5,0  cm/sec  velocity  and  which  at  and  higher  tubes  process  7.041,4  operated  in  of  5,0  premature  then pairs  the  steady  of  1.634,7  burst with  a  state cm . 2  10  B) THEORY  1) G e n e r a l The  Considerations basic  electrodialysis anion  membrane  in  steady  state  by t h e f o l l o w i n g e x a m p l e  A,  having  the  cation  :  an  and a n i o n  numbers T'^0 and T «r1 , r e s p e c t i v e l y , i s s u b j e c t e d r  a normal c u r r e n t (Fig.  involved  is illustrated  exchange  transport  principle  and p l a c e d  in  a  sodium  chloride  to  solution  2).  A T  =0,6  Figure an  On  the  right  T=1  at  a  rate  =0,6  2. T r a n s p o r t numbers i n a n i o n i c membrane (A)  side  t o w a r d s t h e membrane a t membrane  T  of a  A,  rate  chloride of  T" i / F  ions  are carried  and  across  o f T" i / F , where i is' t h e l o c a l  the  current  11  concentra te out A  c  C  dialysate C out  [ A  CI  CI  CI  CI  Na  Na  Na  Na  Feed in  Figure  3. A C  Steady state e l e c t r o d i a l y s i s - anion selective membrane - c a t i o n s e l e c t i v e membrane  stack  1  density  in  Amps,  constant time,  units  sodium  towards ionic of  in  ions  the  diffusion, to  chloride  of  right  at  appearance  left  side  of  and  +  preserved. right left  membrane  ions  (T"+T =1)  side side.  of  the  of  in  +  result  membrane  Analogous  the  is  and  arguments  If  the  of of  bulk  not  same of  A  replaced  by  the  effects  T~-T"=0,4  from  moles  of  hand  side  of  A,  sodium  ions  on  the  can  solution;  that  the  electricity  right of  Faraday's At  ignore  reasoning  us  is  interface  are  we  moles  above  assures  but  removal  +  present  the  Faraday  on  F  equivalent.  T*i/F  T -T ='0,4 +  and  from  one  in  The  the  per  membrane.  A.  net  of  solution  (T/+T =1)  The of  rate the  the  the  other  a  results  and  to  coulomb  passage  from  centimeter  transferred  across the  ions  square  are  right  transport  left  per  2  be  extended  the  relation  electroneutrality  is  a  decrease  in  salinity  on  the  an  increase  in  salinity  on  the  hold  for  the  cation  selective  membrane. If  these  alternating a  stack,  salt  anion  under  solution  separated (dialysate)  principles  into  and  the  cation  influence  flowing both  streams.  are  selective of  a  parallel brine  applied  a  membranes  normal to  to  assembled  current,  the  (concentrate)  series  (Fig.3),  membranes and  can  of in a be  product  13  2)  Polarization  In  (Fig.  left  the  the  the  membrane  the  solution.  the  Na  and  interface  is  diffuse  in  reduced.  This model:  under  layer  limits  C1  hand  ,  layer side  (  of  1  on  the  the  net  Similarly,  layer be  the  meet  be  is  right NaCl  across  hand ,  side  between  right  to CI"  transport  Na .transport +  be  preserved,  the  membrane at  of  The  the  NaCl  ions  the  the  membrane.  by  ' the a  of  the  C2  ,  C2  membrane  following  diffusion  formed  or  between  anion 1  on  at  must  at  operation is  of  of  ion  concentration  solution  6,  side  concentration  represented  left  to of  of  state  from  the  increased.  transported  right  sodium  is  thickness  the  the  membrane.  requirements  to  at  thickness  f ig.4)  Performing  and  can  of  while  the  flowing  electroneutrality  steady  polarization  a  to  the  exchange  on  ions  insufficient  the  behaviour  C1  meet  interface  order  solution  membrane, is  anion  chloride  to  equal,  through  interface  and  of  Since  membrane  an  bulk  deficiencies  are  interface left  CI"  for  the  flux  across  in  the  at  insufficient  transport  +  T~>T"  looking 2),  is  across  Water-splitting  practice,  Therefore, A  and  the  membrane, the  right  .  a  mass  balance  on  a  unit  cross  section,  we  obtain: +(T -T )i/F +  +  =  -(T"-T")i/F  (1)  14  A  /  C1  / C2  F i g u r e 4. P o l a r i z a t i o n l a y e r s at s o l u t i o n membrane interfaces  From  Fick's  law  equation  (1)  equal  side,  -  the  (C2  is  C2 )D/  of  Si  1  diffusion, to  (C1  where  1  D  is  the  left  C 1 ) D / 6,, the  the  hand  and  the  diffusion  side right  coefficient  of hand of  electrolyte. In  general,  the  following  holds  for  both  types  of  membranes:  (T  where in  the  £  depends  corregated to  magnitude velocity  &  of  the  A good  channels  spacers  membrane  T)i/F  on  compartment.  electrodialysis  due  -  and  increases  in  ±  (C  C ) 1  S  D /  (2)  conditions  estimate  S  where  However,  decrease the  -  hydrodynamic  variation  warping. w i l l  =  flow  due  of  does  turbulence in  channel  is  not  exist  in  created  by  thickness  it  can  be  to  the  effects  channel.  prevailing  expected of  occurs that  the  mixing  as  15  If  C <<C, 1  current  and  C  i  will  density  I  Under  these  passing (OH") is  usually  in  a  plot  taken of  i  stacks  are as  power  membrane  for  to  further  a  such  as  the  dilute  iron  coefficient  of  pH  function  In  optimum  a  defined  occur  In as  order  onto  to  the  membranes  et  current  of  electric  al  (1965),  conditions. in  membrane  observe  to  the  ratio  See Klyachko  the  inflection  electrodialysis  the  precipitation on  of  and  current  optimum  the  1  3  leads  the  C <<C  (H 0*)  pair.  lim  operating  greater  would  and  by  current  limiting  practice,  feed  the  point  c e l l  with  costs.  of  The  i  the  (3)  carried  substances  lim, the  lim  the  per  operation,  stream. is  of  material  hence, (II)  i  at  above  losses.  below  on  or  soluble  power  i  voltage  to,  normal  compartments,  be  value  details  Under  must  velocity,  value:  part  the  operated  density  significant  the  given  S  splitting.  any  a  limiting  water  v,  expensive  a  membranes  close of  a  at  from  as  vs.  to  zero  = C F D / ( T - T )  the  arising  precipitation to  tend  conditions,  Operation  and  lim  through  ions  approches  1  of  diluting substances  surfaces  this,  a  facing  selectivity  follows:  Fd=(DESd/DESTOTd)/(FEED/FEEDTOT)  4(a)  Fb=(DESb/DESTOTb)/(FEED/FEEDTOT)  4(b)  16  where  :  F b , d = the i o n i c s e l e c t i v i t y of i r o n and d i a l y s a t e streams, respectively. DESb,d = the rate or from streams b  at which and d.  ferrous  DESTOTb,d = the rate at which bulk s o l u t i o n are t r a n s f e r r e d to FEED  =  concentration  FEEDTOT or d.  =  The comparing In  ions This  case  the  in  could  separation  of  said be  desalted  of to  due  the  Similarly, membranes is  is  expected  in  the if  Fd  the  larger  the  altered, to  ions  in  the  effects  occur,  of  brine  transfered  very and  feed  streams  desalted  per  Fb  (the  dialysate amounts  Fb in  of  by  stream.  stream  is  ferrous  and  water  the  next  -  cation  any,iron  should the  seen  compartments.  polarization  if  b  percent  of  dialysate  l i t t l e ,  the d.  stream.  be  >  to  in or  also  selectivity  membranes,described  the  enter  can  -if  in  are  the  ions  in  brine),  accumulate to  ion  (II),  in  a l l ions present or from streams b  accumulation  iron  ions  that  sandwich  formed.  percent  ions  a l l  difference  be  exchange  which  the  than  splitting.  at  in  the  can  rate  ferrous  difference  difference greater  the  of  (II),  decrease  (II) as  section,are  17  3)  Iron  (II)  Iron  Fouling  (II)  ion,  {  Fe  basic  medium,  exists  (H 0) 2  }  6  the  in  aqueous  (Cotton  2 +  following  Fe  2  +  +  solution F.A.  and  reactions  2 OH"  -->  + OH-  2  ===  1/2  occur  Fe(OH)  (  hexaquoiron  Wilkinson  a  basic  interface, 3H 0)  a  linked  2  diffusion positively  to  the  Waals  forces  of  membranes.  the  seen  in  F i g .  Under membranes exchange  white  3  +  e"  this  point  conditions,  is  finite goes  greatly current  to  zero  any film  matrix  w i l l  create  a  on  (6)  membrane of  by  form  (Fe 0 2  Van  the  sandwich  ions  in  charged  give  rise  can  current.  at  selectivity  while  the  Sonin  of  3  der  surface  membrane  anion  selectivity As  the  as  reached  the  Z plane  shown  occurs,  due  to  Hence,  a  a  and  .  relatively Grosman  exchange of  cation  current  is  layer  to  the  reduced.  saturation  current-carrying  limiting  1969)  the  unaffected,  current  film  Tye  volts  5.  membranes  concentration  and  at  colloidal  polymer  a  ppt.)  )  2  present  charged  Such•deposits  remains  a  is  membrane's  (Kresman  such  increases,  layer  In  (5)  E°=+0.56  If  G.).  :  Fe 0 -3H 0 2  (II)  2  (unstable,  Fe(OH)  as  where  the in  large (1973)  density cation  F i g . the  5.  At  lack  of  very reduction found  thin in that  18  didlysa te channel + 1  Z F i g . 5 . C o n f i g u r a t i o n o f " s a n d w i c h membranes" ( s i g n s r e f e r t o f i x e d c h a r g e d g r o u p s p r e s e n t i n t h e membranes and charged if  f i l m s of f e r r i c  films)  oxide  had low OHMIC r e s i s t a n c e s ,  the f i x e d charge c o n c e n t r a t i o n  films  could  without  cause  a  marked  i n t h e f i l m was l a r g e , s u c h  decrease  c o n t r i b u t i n g measurably t o  resistance  and  the  in limiting OHMIC  current  (unpolarized)  of the system as a whole. C THE UNSTEADY STATE PROCESS  All and  previously  fouling  process. Chapter solution  In  m e n t i o n e d membrane t r a n s p o r t  characteristics this  process  apply  the  i o n s t o and  from  state  a  plug  of  b a c k and f o r t h between two b a t t e r i e s o f  membranes h a v i n g  different  inputs,  removal, electrode p o l a r i t y ,  product  unsteady  a membrane a s s e m b l y , d e s c r i b e d i n  4, s t o r e s and r e l e a s e s circulated  to  properties  polarities.  The p a u s e t i m e s ,  feed  and c i r c u l a t i o n  19  times  are  shown  in  controlled  F i g .  During in  the  ions,  top and  Fifty  the  the  and  an  recovered. bottom  in  in  c e l l s  the  cycle  Such  a  are  of  seconds)  the  operating  then  c e l l s  cycle  then  and  The  reversed  store  ions.  Both  50  release  polarity to  into the  ml.  until  causing  solutions  and are  ions.  the  top  procedure of  brine  the  top  electrode  ions,  store  release  removed,  circulated  positions.  to  introduced  c e l l s are  ,the  assemblies  dialysate  to  and  polarity  the  membrane  those  in  the  recirculated  repeated. cycle  to  the  produces which  desired  this  study,  neither  iron,  nor  effect  been  demonstrated.  fouling  (45  bottom  c e l l s  solution  the  the  top  travelling produce  time  bottom  is  to  membrane  feed  exchange  set  ).  solutions  the to  4  in  amount  batteries  assemblies bottom  of  the  Both  clock  the  assemblies  equal  a  pause  causes  solutions  both  and  i n i t i a l  c e l l s  repeated  in  (Chapter  m i l l i l i t r e s  cells is  12  by  itself  electrodialysis  can  a be  dialysate the  polarity  It  had  process.  tapped and  location  of  actually  concentration  did  not  of  at  brine  the  fouling  occur  on  confirmed in  the  in  right  products.  reversal been  wave  the  moment Prior  deposits  due  fouling, whether unsteady  or  to to had not  state  20  IV.  APPARATUS  AND  EXPERIMENTAL  (. A)  1)  The  as  2000  sodium  ppm.  passed and  returned a  water,  is  returned  two  to  a  alternately polyethylene of  a  76  1,  or  5 ppm  containing  ferrous  tank.  chloride  electrode  is  a  containing ion,  7 membrane  holding  the  process  solution  sodium  c e l l s  Four  spacer  were  membranes 3148).  (Fig.  mm.  perforations  polyethylene  each  ppm.  anionic  spacers  manifolds.  0,  polyethylene  MA  placing  225  feed  state  pairs,  The in  is  rinse  d i s t i l l e d  compartments  and  tank.  Stack  cationic  by  steady  A  and  5000  electrodialysis  (IONAC  the  6.  through  Electrodialysis  membranes  four  of  separate  7  OPERATION  polyethylene  pumped  to  F i g .  c e l l s ,  a  containing  with  in  STATE  in  chloride  solution  Both  out  used  shown  through  stream,  a)  STEADY  apparatus  simple, one  APPARATUS  sheet  in 13  The  stack  cationic Four  of  4 mm.  polyethylene  mm.  (1/2 8)  was  I.D.  inch) are  a  and  6  anionic  holes,  separators,  f i l l e d  by  between  in  a  by  two  14  punched  material,  holes  stack  assembled  membranes  membrane  the  (Fig.  with  ( I O N A C MC 3 1 4 2 )  and 7).  equipped  aligned form 1,6  the mm.  types  of  M  F i g u r e 6. F l o w d i a g r a m o f t h e s t e a d y s t a t e a p p a r a t u s M=manometer , P = p e r i s t a l t i c pump , T = f e e d t a n k T i = i n t e r m e d i a t e sampling tank  polyethylene spacer  rinse s o l n . in  concentrate in  dial y s a te in Figure  7  Steady  state  assembly.  24  insets,  13  One, while 0,4  mm.  of  O.D.  plain  another, mm.  of  to  a  1,6  drilled  stack,  excellent  sealing  between  held  press,  44.  block  electrode  X  8 mm.  hard-soft  in  F i g .  of  solution,  three  permits  insets  compartments.  shown  flow  having  side,  the  the  (Fig.  10).  supplied  company,  is  polyethylene second (IONAC from  The by  placed mesh,  a  polyethylene MA  3475)  the  stack.  Two  flow  upward  compartments  depression  graphite,  any  any  to  the  are  flow  of.  alternately  combination The  four  entire  provides c e l l  is  9.  Electrodes The  X  as  blocks  its  When  the  b)  in  manifold.  in  a  thick.  polycarbonate  arranged  in  mm.  polyethylene, harder  holes  solution  X  flow  gasses  of  the  by  machining  225  X  24  mm.  a  155  "Richmond  inside  this  cationic mesh  cut  in  during  a  37  steel  X  recycling"  past  the  an  165  slab  MC  electrode,  by  3142),  anionic  block  of  refining  covered  electrode  plexiglass the  and  a  plexiglass  6 mm.  (IONAC  finally  the  run.  X  X  membrane  and  solution  76  depression  separates  channels  formed  a  formed  electrode,  which  rinse  in  are  a a  membrane  compartment  permit  an  removing  25  F i g u r e 9. S t e a d y s t a t e  c e l l press.  26  rinse out  rubber plug n i c hi r o m e w i re Pt wire  Figure  10. F a c e v i e w o f P l e x i g l a s s e l e c t r o d e h o u s i n g used i n the steady s t a t e p r o c e s s .  27  The  back  of  platinum and  wires  silver  supply  c)  by  passing  12  power  by A l l  Keithley  179  by  system  tapping drop  across  inserted  in  nichrome the  d)  Flow  A pump  40  up  volt,  diameter  wire  low  the  stack,  in  parallel  10  amp.  are  linked  0,025  mm.  rubber  plug,  to  power  the  resistances.  f i r s t silver  and  102 last  welded  to  total  the  wire,  a  drawn  monitored  by  potential  platinum  Pt.  using  current  wires  polyethylene the  fed  (DCR 4 0 - 1 OA)  was  measure  mm.  was  directly  c e l l s  To  power  Sorensen  The  individual  two  and  measured  multimeter.  the  very  were  spacers. linked  it  A to  System-  Palmer  was  c e l l s ;  used  tank the  peristaltic  circulated  electrodialysis  leaving  two  multimeter.  head,  holding  a  and  wire,  Cole  tubing  7 mm.  with  wire.  hooked  digital  the  digital  a  contact  nichrome  voltages  TRMS  three  a  copper  were  c e l l s  the  in  System  c e l l s  supply.  are  through  to  gauge  E l e c t r i c a l  the  electrodes  welded  a  Both to  the  the  was top  pumped as  two  feed  6,35  throughout  pump,  the to  mm.  having  separate  7015  solution (1/4  circuit. the  a  through  inch) Feed  bottom  of  streams,  Masterflex both  polyethylene  solution c e l l the  A  from  (Fig.  a 6);  solutions  28  entered left  the  as  flowed  base  the  into  could  of  c e l l  final  a  0,5  be  B  in  brine  l i t r e  their  and  respective  dialysate  intermediate  sampled  and  streams.  holding  their  manifolds,  tank  and  These  both  where  flowrates  they  determined  volumetrically.  The  rinse  solution  magnetic  drive  centrifugal  pump  was  split  into  the  81,8  l i t r e  into  individual holding  c e l l s  the in  respect  series  four  state  predetermined  cycle,  set  cells  brine  Electrodialysis  A l l membrane (IONAC  eight  membrane  and  (IONAC  and  MDX-3  leaving  which  compartments  STATE  out  of  feed by  the  were  assemblies, a  Cole-Palmer  were  the  then  returned  fed  to  an  PROCESS  an  two  batteries  phase  flow  by  (Fig.  14.channel  other  180  of  four  degrees  11).  with  During  timer,  one  set  a of  dialysate.  Stack  c e l l s  MC 3 1 4 2 ) ,  a  solution  streams  process,  operate and  a)  The  equal  UNSTEADY  polarity  produced  pump.  by  tank.  unsteady  to  circulated  electrode  2)  In  was  consisting  Watmwan  3148).  equipped  no.  These  with of  1 f i l t e r  pairs  were  seven one  165  X  44  cationic  paper  and  sandwiched  an  mm.  membrane anionic  with  eight  dia lysate out  V3  M  feed in  -rx— V2  to  V5 - X — i  feed CD  C  in  V4  8  -XI-  c oncen trate out  •CX-  V1  M  Figure 11. Flow diagram of the unsteady state M=manometer , P = p e r i s t a l t i c pump , V = s o l e n o i d  apparatus. valve  30  polyethylene blocks A)  held  were  by  made  into  a  four  holes  b)  spacers four  by  in  clamps.  inserting  the  a  2 2 5 X 7 6 X 2 4 mm.  The  165X44  sheet  proper  two  of  spacers mm.  shown  in  F i g .  polyethylene  polyethylene  manifold  plexiglass  and  8  mesh  punching  out  locations.  Electrodes  were  same  used,  end  with  separate  employed  by  c)  c e l l s  were  batteries  each  other.  volt  using  a  monitored  flow  (1976)  had  their was  Sorensen power copper digital  measuring  the  Autograph  7101  a  channels.  hooked  Power  for  that  were  in  the  plug The  previous  was  not  graphite  section  present  to  electrodes  used.  System  lower  amp.  described  exception  Abu-Goukh  E l e c t r i c a l  A l l  plates  the  create  600  metal  2 2 5 X 7 6 X 1 , 6 mm.  The  10  between  up  A l l  sets drop  B single  to  supply,  multimeter.  voltage  p a r a l l e l ,  polarities fed  wires.  both  in  pen  the  via  a  across strip  were  current  c e l l s a  upper  with  respect  process network  voltages The  of  reversed  the  and  by of  40  gauge  directly  consumption total  resistor  using  recorder.  to  volt,  12  measured  the  chart  a  and  process a  was by  Mosley  31  d)  Flow  System  6 A 7017 an  Cole  Palmer  Masterflex 81.8  where  pump  l i t r e  produced  in  they  the  volumetrically.  to  process  were  be  sampled  One q u a r t e r apparatus.  in  the  accumulation  of  during  A Masterflex  by  a  forth  a  run.  Century in  the  The  direction gasses  variable  pump  rinse  with  electrode  compartments  eliminate  any  set  to  to  with  the  an  inch  polyethylene  of  c e l l s  input  7017  in  to  the  or  up  from  streams tank  was  used  from  top  eliminate  solution  peristaltic  pump  circulated  a  determined  tubing  hooked  feed  7015  brine  flowrates  were  3  intermediate  their  A l l  a  process  and  and  81,81 shown  solution  of  tubes l i t r e  in  F i g .  sequence,  14  channel  throughout  the  process.  7018  c e l l s . had  electrical  polyethylene  valves,  returned  present  dual  one  separate  feed  dialysate  speed motor,  supplying  mm.  The  fitted  any  or  formed  head,  driven  liquid  back  and  system.  electrode  peristaltic  pump  supplied  tank.  the  bottom  head  holding  could  throughout  peristaltic  pumped  Masterflex The  leakage.  holding  the  timer,  pump  intake Sixteen  regulated  a  Cole  Palmer  heads, and  each  negative  manifolds  solution  Five by  a  individual  rinse  tank.  operated  by  positive  separate  returned  12,  was  Valcor custom  the  flow  to 6,35  to  a  solenoid built of  8  liquid  32  B  The  feed  used  of  NaCl  to  grams 2.0  gram/litre  ferrous grams this ml.  of  potassium  run  by  cm.),  was  ion  on  of  manometers,  shown  stream, tested  0,5  81,8  actual  1,25  and  F i g .  c e l l s .  a with  electrodes.  50  cc  A l l  was  94-11-A methods  for  2  60  and  20  chloride collected sodium  f i l l  brine  beginning  after  sodium  aliquot  Orion  the  a  The of  each  a  in  5  ppm each  volumetric  (7,94 the  square  flask  Two  the  feed  1  this  before  cc  of  and  of  at  mercury  dialysate and  run,  rinse and  a l l  hours. concentration  and  reducing  and  4,3  standard  1 or  respectively.  both  at  the  to  the  sampled  a  acid  amount  cross-section  give  of  N  manually  f i l l  needed  solution  10 m i s .  0,01  make  set  6,  were  determine  c e l l  a  to  to  cm/sec,  across  sampled  were  a  water;  required  litres  forming  sulphuric  with  163,6  approximately  of  ml.  The  adding  A makeup  mis.  one  were  drops  were  250  by  water,  dissolving  required  seconds  in  in  Flowrates  the  12,1  by  solution.  time  made  solution.  titrated  the  was  d i s t i l l e d  with  pressure  streams To  to  the  velocities  four  acidified  solution.  and  streams  chloride  added  30,2  of  chloride  and  PROCESS  processes  litres  permanganate was  STATE  prepared  acid,  Based  stream  both  was  measuring  flask.  in  sodium  phosphoric  ferrous  STEADY  ferrous  solution  solution  1)  81,8  chloride  EXPERIMENTAL  a  100  cc  90-02-00  charge  of  beaker  a and  reference  accumulation  on  33  these  electrode  showed  some  analysis. the  d r i f t In  samples  between  reads  and  Erlenmeyer  can  sample  precision  found  Ohms.)  placed  multimeter, hours  tapping  this  during  stack,  in  their  a  A  a  the  linear  iron  a  time.  iron  were  in  Vogel  pp786-7.  ±0.001  and  a  a  using  701-A  Orion  pH  very  low  with  voltage  drop  By  was  measured the  could  pH  voltage  be  and  of in  the 50  of  cc by  this  of  each  Orion  91-02  c e l l  was  (approx.  0.Q9  an  individual  c e l l s .  in  meter.  resistance  the  measuring  resistances  The  to C),  determined details  units  each  used  balances samples  pH  through  which  sample  collected  indicator;  in  the  m i l l i v o l t s ,  a  mass  thiocyanate  to  in  concentration  1962,  was  of  Separate  streams  do  interpolation  measurements  and  s t i l l  (appendix  concentration  given  to  order  program,  sodium  series  run.  required  a  passing  by  electrodes  calibrations  sample  their  electrode  Current monitored  and  the  this,  and  final  chloride  measured  pH  for  noted  dialysate  using  was  was  yet  minutes  account  and  for  and  be  15  and  sodium  flasks  colorimetry  used,  concentrations.  factors  brine,  method  tested  produces  separation feed,  to  i n i t i a l  the  were  the  calibration  calculates ppm,  were  sodium  the  over  order  the  determine  membranes  Using  a  after  2  drop  determined  digital and  across at  '20 each  2 and  20  hours. To membranes  estimate during  the a  run,  .amount a  pair  of of  iron test  deposited  membranes  were  on  the  removed  34  from  the  by  fresh  a  centre  membrane  of  pair. and  A  c e l l  B after  78,4  X  placed  (80°C.)  hydrochloric  beaker  was  then  was  taken,  by  colorimetry  After washed  run,  -in  Cationic  And  both  electrodes  to  a  were  by  and  were  stack  run  is  wt.)  for  iron  scrubbed  overnight ion  anionic  in  were  hot The  aliquot  determined  (Vogel  1962).  membranes  nylon  a  membranes  of  5 cc  soft  present  compartments  A  their  in  each  minutes.  indicator  a  of  cc  content  with  replaced  out  100  10  temperature. its  and  cut  containing  dismantled,  ferric  four  hour  section  thiocyanate  soaked  any  20  beaker  room  cc,  HC1 a n d  a l l  and  a  mm.  (10%  c e l l s  remove  finally,  25  using  membranes to  acid  to  dilute  solution,  into  cooled  diluted  each  41,5  each  0.1 the  brush. M  EDTA  membranes.  separating replaced  the  by  fresh  ones. 2)  In  this  section  as  described  analysed assembly 11),  and  was both  circular paper,  and  analysed  replaced  by  the  anionic  for a  from  was  one  as  a  out  prepared,  each of  pair.  of  each  in  through cycle, series  the  A  with  sampled  one  mm.  pair.  previous c e l l  2 and each  7,  (Fig.  diameter  The  membranes  and  membrane  3 and  34,9  used  both  after  run c e l l s  cationic  described  in  were  centre  fresh  and  complete  PROCESS  After  the  cut  passing  resisistor  STATE  solutions  above.  section  current  measured,  a l l  removed  separately  The  tapping  UNSTEADY  f i l t e r  were  a l l  section. batteries  20 of  hours, them  was by and  35  recording  the  recorder.  Voltage  0,02  volts  pump,  where  0  the  found  D.C.)  by  a  cycle in  A  45  exit up "to  Input  feed  battery  cm/sec.  was  a  by  used  two  set  at  single 20  or  multimeter. solenoid  valve  at  to  cycle  and  X a  different  pen  30  shown  closed  liquid  (+/-  circulation  valves is  chart  volts  The  were  a l l  in  12,  one.  Fig  A  summary  velocities  at d i f f e r e n t fluid state process)  find  NaCl and  can  be  were  liquid  velocities  Top feed (sec)  Forw. c i rc. (sec)  12,6  45,2  45  38,4  3,2  19,2  45  13,6  the  -  circulation  was  injected  concentration  wires  imbedded  Solumeter  and  to  varied  give  a  to  velocities  of  Rev. circ . (sec)  Pause (sec)  optimum  solution  the  silver  Beckman  times at  a  complete  12,4 to 14,6 3,8 to 4,2  battery  a  and  Bot. Feed (sec)  saturated  at  hooked  used  was  digital  the  open  Pause (sec)  5,0  of  a  time used (unsteady  45  of  c e l l s  on  I.  1 ,25  entrance  per  an  Cycle  tracer  cc  the  clock;  Table  Vely (cm/sec)  the  polarity  times  I  difference  using  indicates  TABLE  one  to  electrode  controlled  of  potential  front in  a  a  12.7  chart  at  the  monitored mm.  tube  recorder.  displacement approx.  times;  1,25  of  50  cc  and  5  36  top cells  bottom cells  time item interV1 val modeX. pause ti X t2 B from bot 0 t3 D from top X c i rc. t4 top—bot. X ts pause X circ. te bot.—top X 0= open valve Figure  12. F l o w used i n  V2 X X 0 X X X  V3  V4  V5  X X X 0 0 X X X X X X X X= c losed valve  0 X X O O 0  Pump Polarity P V  +  V  +  V  +  —  +  V  —  v = pump idle  c o n n e c t i o n s and v a l v e t i m i n g sequence the unsteady state operation.  37  Flowrates  during  calibration  performed  The  actual  flowrates of  1,25  of  and  measured of  each  of then  for run,  dilute washed  entrance  and  c e l l  3,95 5  recirculation on  cross  and  and HCl  feed after  were  with exit  circulating  section  15,78  cm/sec, a l l  the  were  cc/sec  were  circulation  2 and  20  circulated  d i s t i l l e d streams  were  hours. through  water equal.  by  a  direct  pump.  being  respectively. and  set  3,16  square  needed  at  Pressure steps  at  After  a  the  until  velocities drops  the run,  c e l l s , the  cm.,  pH  were  beginning 5 which of  l i t r e s were both  38  V  During I n i t i a l  the  suitable  of  as  accurate  further follows 1)  2)  steady  analysis.  state  improper  process  of  to  the  operating develop  total  of  which  analysis.  process,  for  A  performed.  the  and  fouling.  further  Reasons  cycle  pump  failure  i i i )  c e l l  leakage  Steady  state  leakage need  26  15  Out  of  were  rejection  40  of  a  runs were  81  runs  suitable runs  were  for  a  new  in  i i i )  faulty  stream  p o s s i b i l i t y in  this  faulty  assembly  compartments, spacer  runs  selecting work.  which  led  to  the  design the  connections  analysis of  to  assembling  controlled  comparative  due  between  errors  A l l  timing  process  ii)  advanced  determine  process,  state  were  process  ii)  i)  runs  :  Unsteady i)  the  for  DISCUSSION  121  to  state  this  AND  work  measuring  using  using  this  needed  for  performed  RESULTS  unsteady  method  performed  of  were the  sufficiently  for  course  runs  parameters  were  EXPERIMENTAL  were  between specific  membrane between  stack stages  selected them, runs  prior  to  eliminating to  suit  the  any the  arguments  39  A)  1)  Limiting  The  value the  C  a  —>  once  0, a  steady for  of  i  point  state  of  could  limit  and  (see  Chapter  PARAMETER  c e l l s  vs  is  the  (Fig.  not  provide  this  method  occurs  reached.  applied  13).  3)  can  be  characteristics  inflection  current  c e l l s  supply  lim  current-voltage  limiting  both  OF A F O U L I N G  Current  plotting 1  DETERMINATION  The  The  the  has  available  to  40  current be  of  a  I  current  voltage  sufficient had  in  found c e l l .  vs  been  to  discounted  As  V  drawn  volt  by  plot by  the  plotted  D.C.  Power  reach  this  as  a  fouling  measurement.  2)  A . C . Resistance Measurements  The digital  direct  multimeter  attempted A.C. 20  measurement  for  both  resistance  hour  run.  resistances,  and  of '  a  In  order  due  to  A.C.  measurements  had  to  any  D.C.  iron.  velocities  An  gave  the be  This  average the  signal  c e l l s  also  without  membrane  of  In  the  set  steady  at  measured before  to  eliminate nature  of  three  runs  (clean)  the  did  using  a  Hz.,  was  runs,  the  after  a  polarization c i r c u i t ,  the  the  presence  not  affect  performed c e l l  and  any  without  restriction  400  state  was  performed  following  resistance  generator  processes.  the  potential.  of  at  of  runs  different  resistances:  40  total  l  I  0  cell  I  l current  F i g u r e 13. P l o t v s . the current II.  1 400  200  1  1  600  (mA.)  of the steady state stack voltage c o n s u m p t i o n f o r b o t h s t a g e s , see T a b l e  41  i)  First  Ii)  stage  Second  stage  Interruption losses sharp  of  stack. the  3)  Since  iron  this  iron  decrease  method  Direct  best  measurement  of  state  the  second  hour  run  membranes deposits  pH  Voltage  ±  5% O h m s .  iron  Drop  dialysate  feed  iron  was  substantial  channels  due  pumped  implied  measurement  caused  a  of  the  through  physical  c e l l  to  the  Change  resistance  in by  unsuitable.  of  Iron  Deposits  parameter  a  test was  set and  Cell  and  Pair  as  to  be  membrane at  fresh  analyzed  the  direct  pair.  the  immediately  of  Chapter  Steady  a  located  removed  half  thought  on  pair  a  in  was  deposits  by in  the  per  of  oxide  cut  current  the  fresh  stack  of  direct  from  fouling  described  1)  32.29  the  replaced  Performance  (B)-  loss  process,  B)  5% O h m s .  found  were as  ±  as  film,  stage  and  31.02  oxide  in  was  -  the  Measurement  The  steady  of  the  oxide  (A)  In  the  centre  of  after  each  membranes.  separately  for  20  Both iron  IV.  Unsteady a  State  Function  of  Processes Bulk  Solution  Resistance  It in  the  voltage  has  been  reported  dialysate drop  per  that  channel  c e l l  pair  the  has (Seko  a  bulk net  1962).  solution effect Since  on  resistance the  the  observed specific  42  conductivity the  same  drop  order  per  stages,  of  c e l l  see  the  of  dialysate  magnitude  pair  Figs.  versus  14  and  in  and  brine  our  streams  were  experiment,  id(1/Kd+1/Kb)  was  within  the  voltage  plotted  for  both  15.  where; V / p a i r = o b s e r v e d s t a c k v o l t a g e per number of c e l l pairs(6.5 pairs) i n u n i t s of Volts/pair, •i=current  density  Kd,b=specific solution channels d  In  =  the  taking  this  plotted  and  state  distance  work  is  process,  center  of  separately,  c e l l s as  20  hour  2)  Calculation  In chloride  conductivity of the bulk in the d i a l y s a t e and brine respectively (Ohms.' c m . 1  by  membranes  Seko,  account,  also two  2  between  done  into  (Amps/cm ),  shown  in  membrane 3 and  7  previously  a  (0.159  0,075  cm.  the  value  Figs.  14  assemblies  (Fig.  11)  described  cm.).  was  (iX0,075 15.  each  were  ) ,  1  spacer  of  and  -  In  the  located  removed  (Chapter  /  and  IV)  used; Rd)  was  unsteady at  the  analyzed  after  each  run.  both is  of  Separation  processes,  described  as  Factors  the follows Ns  and  Ionic  separation  Selectivities  factor  for  sodium  :  = Cb/Cd  (7)  43  where  3)  ;  Ns  =  Cb  = NaCl  concentration  in  brine  Cd  = NaCl  concentration  in  dialysate  Plot  Stack  separation  of  the  Actual  solutions, be  the  Cell  NaCl  Pair  the  found,  resistances  combined  stream  (equv./l.)  stream  Resistance as  a  (equv./l.)  Function  of  where  membrane  the  dialysate  and  plus  polarization  +  +  brine  resistance  stack  = Rc  + Ra  Rd  Rb +  Rp  (8)  : R  stack  Rc,a Rd,b Rp  The  =  sum o f  Appendix  A  the  stage,  f i r s t  stage,  of  since: R  i ron.  for  Voltage  Knowing  can  factor  c e l l  and  B  =  total  =  stack  resistanc selective = resistanc channels resistance  e  (Ra  Rp)  + Rc•+  plotted c e l l (Figs.  A  resistance  of the c a t i o n and a n i o n membranes p r o p e r (Ohms) e o f t h e )H1 d i a l y s a t e a n d proper (Ohms) due to p o l a r i z a t i o n (Ohms)  was  against (Figs.  18  (Ohms)  and  calculated V,  16 19),  the  and for  as  stack  17), runs  brine  described  voltage  in  across  and  the  second  with  and  without  r 0  i  0,2  i  0,4  1 0,6  i  0,8  v o l t a g e d r o p in b u l k s o l n .  F i g u r e 14. P l o t of the f i r s t stage c e l l pair v s . the bulk solution channel, for a l l 2 hour steady sta Table III (Seko's work is repres line)  i  ( volts )  1,0  voltage drop voltage drop te readings, e n t e d by t h e s  per per see olid  U1  0,2  0,4  Voltage  0,6  drop  i n bulk  0,8  solution  1,0  1,2  (volts)  F i g u r e 15. P l o t of the second stage voltage c e l l pair v s . the bulk solution voltage channel, for a l l 2 hour steady state read Table IV (Seko's work is represented by line) .  drop drop ings, the s  per per see olid  46  80-1  Stack  voltage  (volts  D.C.)  F i g u r e 16. P l o t of (Ra+Rc+Rp) v s . the stack voltage, for the f i r s t s t a g e of the s t e a d y s t a t e p r o c e s s , a l l runs without f o u l i n g , see Table V .  47  F i g u r e 17. P l o t of (Ra+Rc+Rp) v s . the stack voltage, for the f i r s t s t a g e of the s t e a d y s t a t e p r o c e s s , a l l runs with f o u l i n g , see Table V.  48  I  l  10  2 0  Stack  voltage  (volts  •  0,5  cm/sec  +  1,25  cm / s e c  3 0  D.C.)  F i g u r e 18. P l o t of (Ra+Rc+Rp) v s . the stack voltage, for t h e s e c o n d s t a g e of t h e s t e a d y s t a t e p r o c e s s , r u n s w i t h o u t f o u l i n g , see T a b l e V I .  49  • • /  •  / /  •  /  IS  // •• / ^  +  /  ' 0  =  +  +  r 10  Stack  voltage  • 0,5  cm/sec  + 1,25  cm/sec  r  1 2 0  (volts  30  D.C.)  F i g u r e 19. P l o t o f (Ra+Rc+Rp) v s . the stack voltage, for the second stage of the steady s t a t e p r o c e s s , a l l runs w i t h f o u l i n g , see T a b l e V I .  50  4)  Pressure  The the  log  The  log of  hour  the  runs  gave for  These  (1962)  velocity  a  of  runs the  are  the  20  plotted  in  greater  in  the  as  in  Tables  seen  could  5)  be  Power  The  the  both  obtained  state  process  processes  /  is  the  ,  while  unsteady  for  of  a  in  steady  2 and slope  obtained  by  20 of  Seko  steady  state  (1962),  has  obtained  from  a  increase  slight  Que  to  increase  was  the  no  the  22).  a  steady  iron  in  oxide  considerably  state  significant  state  fouled  process, difference  runs'.  Separation  l i t r e (Figs  of  20  reported).  drops  This  to  Seko,  noticeable  channel  factor,  required the  is  (Figs  gave  that  velocity,  channels.  for  in  pressure  against  combined  regimes  1,51  fluid  the  with  plot  plotted  readings  while  of  3  was  1,526,  The  drop  2 and  (joules  from  :  against  separation  2 hour  flow  hour  Requirements  power  the  slope  the  both  consistant  dialysate  noticed  required for  a  pressure  accumulation  processes  of  are  (note  but  overall  for  turbulent  1,40,  When  drop  unsteady  values  for  pressure  from  slope  the  electrodialysis. slope  total  obtained  runs  1,578.  of  fluid  plot  state  Drops  Ns,  per  cell)  23,24).  and  combined  was  the 2 and  No  plotted to  perform  direct  hour  the  relation  separation 20  against  factor  runs.  the  power  separation between could  be  51  F i g u r e 20. P l o t of the d i a l y s a t e and b r i n e channel p r e s s u r e drops v s . f l u i d v e l o c i t y f o r a l l steady s t a t e runs w i t h o u t f o u l i n g , see T a b l e s V I I and V I I I .  52  Fluid velocity  (cm/sec)  F i g u r e 21. P l o t of the dialysate and brine channel pressure drops vs. f l u i d v e l o c i t y for a l l steady state runs with f o u l i n g , see Tables VII and V I I I .  53  F i g u r e 22. Plot pressure drops state runs, see  of the dialysate and brine vs. fluid -velocity for a l l T a b l e s IX and X .  channel unsteady  54  Separation  Figure 23. dialysate a l l steady  4  5  factor  Ns  (-)  P l o t of the power r e q u i r e m e n t s per l i t r e produced v s . the separation factor Ns, state runs, see Table X I .  of for  30000.  o X  rH  o U  0)  a,  <D  u  -P  1(TJ  m  QJ rH  o 5000.  en  in  •P  c  (IJ g  0) iH •H  QJ  2000-1  4 o  CM  10 10  20  50  1 00  S e p a r a t i o n f a c t o r Ns (-)  F i g u r e 2 4 . P l o t of the power r e q u i r e m e n t s p e r l i t r e dialysate produced v s . the separation factor Ns, a l l unsteady state runs, see Table X I I .  of for  2 00  56  However  a  plot  required 1,25  runs  consumption dialysate between =  as  the  dialysate  (Joules  cm./sec.  Cd  of  in  at  2,000  steady  ppm a s  (Fig.  the  given  K  C  6)  =  1  =  solution  Decreases  hour  =  k  concentration  in  Separation  percent  drop  period  was  accumulated the  cm.  -  1  curve  data,  is  tends  towards  to )  a  on  drawn  asymptotic  zero  of  power  dependent  smooth  tends - 1  the  at  infinity  since  solution  the  at  low  (9)  1/C  1  constant  The 18  and  a l l  by: 1/K  k  0,  (Ohms  A  state  concentration  conductivity is  -->  that  clearly  25).  unsteady  power  is  power  for  showed  processes  and  versus  per-cell),  2 hours,  both  dialysate  dilution  l i t r e  concentration the  specific  /  concentration  steady  on  the  in  (equiv./litre)  due  the  Fouling  separation  plotted  against  membranes  state  to  over  (Fig.26)  and  factor,  the  the  total  duration  unsteady  Ns,  over  amount of  a  state  an  of  iron  run  for  processes  (Fig.27). Figure at  1 and  caused lower The  26  5 ppm  (steady iron  "channeling velocity  uneven  which  state  due  to  in  the  are  distribution  process),  the  has  warping  compartments  prone of  to  foul  deposits  two  separate  lines  of  membranes.  This  and  created  before does  other not  zones  of  zones.  reduce  the  Power r e q u i r e m e n t s  (joules/litre  per c e l l )  F i g u r e 25. P l o t o f t h e d i a l y s a t e c o n c e n t r a t i o n v s . t h e power r e q u i r e m e n t s p e r l i t r e o f d i a l y s a t e , f o r a l l u n s t e a d y s t a t e r u n s a t 1,25 cm./sec. f l u i d v e l o c i t y , see T a b l e X I I I .  58  x  I  T  1.0  •  1 ppm  iron  x  5 ppm  iron  2.0  Amount o f i r o n a c c u m u l a t e d o n t h e t e s t p a i r  F i g u r e 26. P l o t of the per factor over an 18 h o u r p e r a c c u m u l a t e d on t h e t e s t p a i r all steady state runs with f o  3,0  (mg.)  cent drop in separation i o d v s . the amount of iron o v e r t h e 20 h o u r r u n , for u l i n g , see Table XIV.  59  Amount  of  (average  iron from  accumulated cells  3 and  on 7)  the  test  pairs  (mg.)  F i g u r e 2 7 . P l o t of the per c e n t d r o p i n s e p a r a t i o n f a c t o r over an 18 hour p e r i o d v s . t h e amount of i r o n accumulated on t h e t e s t p a i r over t h e 2 0 hour run , f o r a l l unsteady s t a t e runs w i t h f o u l i n g , see T a b l e XV.  60  current values  efficiency of  iron  Most l i n e ,  as  to  in  in  number  showed  a  based  on  expected methods the  of  sodium after  acid  7)  Mass  the  of  hour  as  high  the  discrepancies  were  seen  a in  and  the  different  state  Figure  the  not in  run  would  be  from  four  Since  separate  completely runs  34  both  clean  and  44  can  in  the  feed  stream  of  iron  accumulated  amount for  both  could  (-)  be  and  over  processes grouped  (Figs  under  intercept  of  one 31.8  28. state  high  process,  (except  lost  total  4.49  preparation  state  iron  unsteady  for  was  and  section.  from  a  Sodium  results  of  showed  than  next  one  errors.  obtained  slope  the  the  stack  34  period,  Ns  calculated  experimental  steady  in  under  accumulated  the  the  membranes  show  grouped  hour  in  the  Iron  be  18  and  versus  explanation  a l l  does  number  iron  is  period  The  steady  Ns  of  However  the  total  amount  The  the  decrease  the  having  (mg.),  to  over  described  in  rinse,  membranes  28,29). line  run  the  B a l a n c e s on  Plots  on  However,  smaller  drop  attributed  20  27.  calculation  be  a  could  determinations the  but  runs  separation  percent  extent  state  F i g .  decrease 44  great  accumulation.  unsteady seen  a  the  data  degree  of  methods  both test  stacks pair)  was  fairly  scattering  used were  before  scattered. exists  each  run.  disassembled  replaced  by- a  set  in In and  which  61  Iron  accumulation  based  on membranes  (mg.)  F i g u r e 28. P l o t of the amount of i r o n l o s t in the feed v s . the total amount of iron accumulated on the m e m b r a n e s d u r i n g t h e 20 h o u r r u n , f o r a l l s t e a d y state runs, see Table X V I .  Amount  Cb <  C cn •  i-f  H-  3  hrj H-  iQ  C rt i-S  rt  to  3" rt VD CD O •  rt to cu O  M H  tr 0) O 3 C 0 C i-i rt 3  0 rt 0  Hi  3  CD rt h- DJ M O O O Ml 1  PJ  3  O  cn to O rt rt 3 CU  rt rt  (0  3" CD  i-i  H3  rt  C 3 n> 3  fD  cn 3  i-h  i-i  fD Cb  tr fu  rt  O  tr  fu cn CD  Di  o 3  rt l-i  It H O  •<  d  — I• OJ  3  o n o c  CD CD PJ rt  CU O O  CD  i-i  c c cn c  3  H-  Hi H3  O  rt CU  O  H I-!  3* CD  3  CD  3  tr  ri CU 3 CD  cn  3  03  0  3 CD  cn  39  of  iron  lost  in  the  feed  (mg.)  63  had  been  treated,  scrubbed were  with  done  wash  2  with  on  runs  6 N HC1,  since  the  8)  Examination  membranes in  their  at  5  in  ppm  them  than  for  four  in  the  of  levels those  It  had  at  Upper  center,  Upper  right,  f i l t e r  paper  left,  inside  face  Center, Center  a  clean  right,  an  acid  This  is  accumulation the  of  56 why  on  20  hour  on  the  the  run.  indentified state be  more  This  whose A l l  runs  seen iron  has test  figures  having  that  iron  a l l  runs  accumulation  been  on  illustrated  membranes were  test  have  divided  been  into  9  follows:  left,  a  runs  only  manipulation  over  readily  levels.  The  Deposits  considerably  Upper  Center  f i l t e r  stream  unsteady  30,31).  as  iron  were  and  state  (Figures  sections  feed  was  impractical.  more  could  1 ppm  unsteady  been  Fouling  steady  stream.  photographed separate  have  deposits  a l l  feed  have  were  membranes  solution.  of  than  Reddish-brown  M EDTA  process  to  lost  0,1  selective  state  would  appear  a  cation  membranes  unsteady  membranes  Visual  in  the  anionic  the  litres  assemblies  the  HC1 w h i l e  overnight  preparation  most  follows:  dilute  soaked  membrane  as  paper  clean  cation  outside  facing  f i l t e r  the  the  the  membrane  anion  selective  membrane  cation  selective face  selective  paper,  facing  of  cation  of  the  selective  membrane,  membrane, cation  selective  membrane,  64  Lower  l e f t ,  Lower  center,  Lower  right,  From was  a  the  test  the  face  clean  inside  pair,  inside  31A  be  30  to  marked  effect  and  selective  membrane,  the  selective  anion  membrane.  easily  parameter  in  the  accumulation  iron  did  deposit  some  also  on  test it  iron  the  assembly.  verified  the  the  on  membrane,  can  Although  31,  selective  we  membrane  seen  anion  31B,  the  concentrations. Figures  of  that  was  a  anion  and  paper  could  of  face  important  f i l t e r  iron  a  Figures  very  paper  outside  The  by  that  on  not  accumulation  in  of  iron  iron  on  analysis.  No  iron  feed  evident  the  feed  iron  on  f i l t e r  of  0 ppm  clearly  concentration  of  presence  at  voltage  the  colometric  membranes is  see  on  from  had the  a  test  membranes. In  the  velocity l i t t l e  was  fairly  effect  membranes  In  of  the  was  uneven  are  seen  lowest  1,25  (Figs.  to  state small  have  have  runs,  (0,5  the  amount  to  the  and  5,0  steady  (Fig to  .on  compared  velocities  seems  steady  off  at at  variation  1,25  iron  33A)  where  opposite certain  cm/sec),  accumulated state  had  process,  32B a n d  ie.  flaked  of  cm/sec  accumulated  32A),  and  unsteady  state  32A,  the  a  greater  the as  runs  had  very  on  the  test  where  the  effect.  entry points  of  iron  of  iron  velocity  was  amounts  fluid ports, (Fig.  fluid  and  distribution  larger  the  in  and  the  32A).  film  65  The Fig.  33A.  separate of  difference  a  In  steady  state  The  this  unsteady  steady  between  state  presence  seen  runs  process was  F i g .  33B.  account  in  determining  the  actual  from  unsteady-state  run  at  30  be  in  membranes  compared  the  seen  uneven  from  with film  those in  the  noticeable.  shadows  can  can  test  were  (right),  easily  current in  two  (left)  spacer  an  be  of  processes  photograph,  state  process  both  Such c e l l V.  originating shadows area  1,25  were  from  the  taken  into  (anionic  cm/sec  5 ppm  membrane F e * ) . 2  66  201250 (A) I I I I I I I I I  Figure 30. I r o n oxide f i l m on a t e s t membrane p a i r i n t h e u n s t e a d y s t a t e p r o c e s s a t 20 v o l t s , 1,25 c m / s e c , 0 ppm iron in f e e d ( A ) , and a t 30 v o l t s , 5,0 c m / s e c , 1 ppm i r o n i n f e e d ( B ) . (1 d i v i s i o n = 1mm.)  F i g u r e 3 1 . I r o n o x i d e f i l m on a t e s t membrane p a i r i n the unsteady state p r o c e s s a t 20 v o l t s , 1,25 c m / s e c , 5 ppm i r o n i n f e e d ( A ) , and a t 30 v o l t s , 1,25 c m / s e c , 5 ppm i r o n i n f e e d ( B ) . (1 d i v i s i o n = 1mm.)  A  B  F i g u r e 32. I r o n o x i d e d e p o s i t s on a c a t i o n s e l e c t i v e membrane (A) (20 v o l t s , 0 , 5 cm/sec,5 ppm i r o n i n f e e d ) , and an an-ion s e l e c t i v e membrane (B) (30 v o l t s , 0 , 5 cm/sec,1 ppm i r o n i n feed) (steady s t a t e p r o c e s s ) .  69  (B)  F i g u r e 3 3 . I r o n a c c u m u l a t i o n i n t h e s t e a d y s t a t e p r o c e s s , two membranes on t h e l e f t s i d e o f ( A ) , a n d t h e u n s t e a d y state process two membranes on t h e r i g h t s i d e o f ( A ) . C l o s e u p o f a f o u l e d a n i o n i c membrane(B) ( 1 d i v i s i o n = 1mm)  70  C  As  expected,  increasing The  voltage,  effects  state the  runs  of  was  this  prominent  also  at  greater  seen  by  for  The streams  of  runs  f i r s t  without  the  manifold  flowrate  to  the  Inverting  than  this  the was  of  of  This  for  the  a l l  pH of  stage. brine  due  to  the  a  to  steady bulk  while of  an  the the  attributed  provide  be  given  and  that  solved  having  can  the  time,  was  was  a  second  than  adjacent  runs  which  i n i t i a l  with  not  polarity  at  splitting  lower  did  compartments  case  iron,  lower  This  dialysate  behaviour  which  the  some  increase  was  at  Polarization  water For  drop,  polarization  of  the  steady  to  equal  electrodes.  this  problem  number  greater  75). These  the  stream  electrode the  those  the  greater  (Ra+Rc+Rp)  between  substantial  c e l l  of  with  presence  design_  voltage  concentrations.  values  stream.  solution  to  with  velocity.  in  velocities.  pH  increased  observed  was  XVIII,XIX).  dialysate  improper  given  pair  presence  the a  a  Ns,  increasing  also  dialysate  in  factor,  attributed  stage  (Tables  showed  was  the  the  For  fluid  lower  indicates  were  c e l l  lower  the  concentrated  (n.b.  15).  difference  solution pH  decreased with  effect  at  polarization state  and  per  comparing  velocity  separation  14,  drop  velocities;  the  polarization  (Figs.  voltage  SUMMARY  value  results of  Rp  is  stem  from  the  only  the  fact  factor  that that  in  a  can  clean  system  change  the  71  resistance voltage where the  of  on  an  the  polarization  increase  parameter  increases  c e l l  in  in  pair  can  also  voltage  (Ra+Rc+Rp)  voltage,  concentration  and  cause  as  a  be  seen  caused a at  a  whole. in  in  increased  effects  Figures  substantial  given  decreases  The  16  to  19,  increase  velocity.  velocity  of  and  polarization  in  Hence, dialysate  and  water-  splitting. For to  be  most  runs,  higher  agreement  than  with  membrane  the that  the  layers,  the  of  lack  hydronium  Na  £>  ,  and  +  ions  the  of  the  discussed  become  CI"  in  the  ions  in  causing  in  found  This  IV;  layer,  in  of  in the  stream,  the  Due  hydroxyl  the  the  is  at  concentration.  part  pH  was  stream.  Chapter  this  some  stream  dialysate  diluted  carry  occurs,  dialysate  concentrate  opposite  must  water-splitting  of  model  interfaces  boundary  pH  charge,  two  to and  hence  streams  to  differ. In to  most  increase  pressure of  the  the  drop  time  in  concentrate  were  plug  of  and  bottom  not  with  streams  drops  steady  the  liquid  when  due  The  causing  pressure  occurred,  stream  to  the  and  X).  the  constantly  stacks.  recirculated,  in  the  fouling  VIII,IX  observed was  runs,  dialysate  stream  (Tables  not  state  These  unsteady  in  substantial  found  increase  larger  than  in that  between  different  pressure  state  the  was  difference  recirculated  solution  the  being pH  drop  process  between boundary  losses  of  where the  layers  iron  in  a top  was the  72  concentrate The  stream. power  velocity  and  dialysate  approximately The on  steady  state  the  quantitative 2  in  +  feed  is  due  during the A  2  over  showed  B, The  and  coefficient accumulating The the  unsteady negative  a  33  20  hour  This  drop  be  the  too  on  the  in  of  iron  separation  to  the  to  make  any  a  1  severe  contained runs  separation  (see  ppm  limiting  the  the  accumulations factor  of  in  that  on  be  Ns  reach  fact  drop  deposition higher  to  solution  The  to  containing  due  the  given  effects  large  runs  probably of  the  factor  found  period.  gave  in  to  were  content  uneven  in at  factor  membranes  of  iron  Figures  for 26,32  A). separated  both in  the  state values  stream, that  dialysate results of  the  separated  a  rate  in  this  However,  per  indicate  iron  process.  separation  was  effect  percent higher  calculating  However,  which iron  runs.  iron  in  stream  less  the  same p e r c e n t  and  25).  found  tank  these  (Fig.  processes  were  the  to  both  process  iron  a  found  in  of  at  were  drop  feed  separation  concentration  involved  in  +  in  for  percent  their  reduction  5ppm F e  same  conclusions.  accumulation  the  the  errors  fouling  Fe  requirements  in  and  iron  stream  somewhat  brine  stream  process  as  absolute  that  was  value,  XX to  harder  to  selectivity  iron  opposed  selectivity preferentially  (Tables  are  indicate  the  is  to the  XXIII).  interpret, and  the  accumulating  the  at  steady  state  dialysate  stream  73  s t i l l XXI,  indicated and  XXIII).  percent  greater  In  the  accumulation  indicated cationic such  a  a  membrane;  behaviour  iron  in  was  pronounced  at  (Tables  a  negative  concentrate  the  stream  selectivity  accumulating low  iron  process,  the  in  iron  of  state  reduction  since  was  steady  of  certain  accumulation  in  of  the  velocities  the  stream,  and  high  voltages. In  the  steady  somewhat  below  effects  of  water  decrease  in  current  (Tables  through-put no  fluid  1,0  XXIV,XXV).  efficiencies  was  the  polarization resistance be  seen  battery  due by  of  were  efficiency  was  In  the  quite system,  through  which and to  during  the  drop  to  of  time  the  45  pause  the  pause  and  resistance The  in  fouling  attributed a  low  current  second pause  runs current  the  could  passing time.  low  where  dialysate  creating  incease time  the  overall  was  c e l l s  a  An  process,  c e l l  presence-of  observing  c e l l s  the  increase  small. in  were  present  state  presence  water-splitting. the  although quite  this  the  efficiencies  noticed  unsteady low;  current  that  splitting  flowing  concentrations  process,  indicating  were of  state  in  more c e l l  actually through  a  74  CONCLUSIONS  Although efficiency high,  of  it  hour  did  run,  in  consistently a  The  the  a l l  factor  the  with  runs  in  the  films  membrane"  been model  over  iron  the  by  end  formed,  it  can  be  of  verified  runs  the  as  not  were  power change  the  factor  membrane '  Since  of  was runs  that  the  during the  c e l l  accumulating  the  experimentally  membranes  whole  decreased  the  a  period.  on  iron  stated  a  separation  hour  of  over  The  resistance  since  the  state  examination.  the  and  quite  change. did  in  was  system  efficiencies  while  drop  efficiency  the  20  visual  at  combinations  steady  films  stream  been  of  but  oxide  current  has  fouling  process  runs,  constant,  concentrate  with  separation  state  drop  fouling  relatively  had  such  and  percent  substantial  fouling  confirmed  separation  in  the  the  resistance  any  of  runs  that  drop  the  considerable  was  state  unsteady  presence  surfaces  remained  some  that  in  calculating  concluded  experience  consumption  show  be  and  in  steady  exhibited  not  did  error  the  can  generally 20  the  present  when  the  "sandwich and,  that  in  both  processes. The  acid  ineffective membranes EDTA  in  with  solution  remove  the  wash  used  in  removing a  was  nylon found  deposits.  the the  brush to  be  unsteady iron  and the  oxide  soaking most  state  process  was  film.  Scrubbing  the  them  overnight  effective  in  method  an to  75  Finally, formation we  can  of  due iron  conclude  process  was  to oxide  that  the  relative  i r r e v e r s i b i l i t y  from  a  hydroxide  polarity  ineffective  in  ferrous reversal  in  controlling  the  iron  in  the  precipitate,  unsteady  oxide  state  fouling.  RECOMMENDATIONS  1)  Develop  sodium  a method  concentrations  2)  Use  all  membranes  3)  offering  fewer  Use a  membranes before  smaller  membrane  to  least  per  each  surface  warping,  at  greater  precision  stack  so  that  is  possible.  area  or  a  to  determining  ±0,1%.  run  and  in  the  thinner  reduce  replacement  spacer  the  cost  to of  of  prevent membrane  replacement. 4)  Develop  using, 5)  for  chloride  with  d i s t i l l e d  use  recommended  a  Cole since  variations  Take  that  eliminate of  some  hours.  samples fouling  of  measuring  flowrates,  by  rotameters. tank  (the  6)  method  feed  would  slight  versatile  the  This  not  more  example,  Increase  sodium  2  a  in at  the  size  or  blend  water  depletion  Palmer a l l  occurred  of  makes  of  iron  tubing  over  a  beginning before  the  make-up  form  P e r i s t a l t i c  flowrates the  to  a  20 of  the  in  the  pump  for  were hour  a  run;  f i r s t  solution feed  of  stream.  feed  tank  blending  found  to  is  give  period). it  is  sampling  possible time  of  76  7)  Use  a  limiting 8)  Use  an  larger  current  as  accurate ion  D.C. a  power  fouling  flow-through  selective  conductivity  electrode  The  use  error  the  separation  separation  during  9)  The  of  contamination,  caused  feed  both  iron  system  oxide  a  of  in  order  to  use  the  instead  of  parameter.  concentrations. in  supply  such  a  meters  to  determine  meter  factor  and  would the  sodium  reduce  percent  the  drop  in  run. should  be  stainless films  in  free steel  some  of  iron  bolts  bench  or  in  scale  a  any feed  other tank  apparatus.  source have  77  REFERENCES  A b u - G o u k h Mohamed E . A C y c l i c E l e c t r o d i a l y s i s P r o c e s s I n v e s t i g a t i o n of Open Systems , P h . D . T h e s i s , University of B r i t i s h C o l u m b i a , November 1976. Asahi Chemical Industry Co. its Application 1975.  Ltd.  Ion  Exchange  Membrane  and  Bass D. A C y c l i c E l e c t r o d i a l y s i s P r o c e s s - I n v e s t i g a t i o n Closed Systems , Ph.D. T h e s i s , U n i v e r s i t y of British Columbia, 1972.  of  C o o k e B . A . Some P h e n o m e n a A s s o c i a t e d w i t h Concentration Polarization in E l e c t r o d i a l y s i s F i r s t I n t e r n a t i o n a l Symp. On W a t e r D e s a l i n a t i o n , W a s h i n g t o n D . C . V 2 O c t o b e r 1965. Cotton F . A . And Interscience El  Wilkinson G. Advanced P u b l i s h e r s , New Y o r k ,  Inorganic 1967.  Chemistry,  H a r e s H . And Aswed M. P r a c t i c a l B e h a v i o u r of E l e c t r o d i a l y s i s and Reverse Osmosis P l a n t s in Desalination, 22 , p p 2 9 1 - 2 9 8 , 1977.  Libya,  E . P . A . T o t a l Recycle Systems for Petrochemical Waste Brines Containig Refractory Contaminants, EPA 600 2 7 9 - 0 2 1 , January, 1979 (PB 2 9 3 1 5 8 ) . Furukawa D. H. I n v e s t i g a t i o n of Membrane S t a c k R e s i s t a n c e Increase With a Natural Brackish Water, United States D e p a r t e m e n t o f t h e I n t e r i o r , R. And D. P r o g r e s s R e p o r t 285, January 1968. Urukawa D. H . S p e c i f i c P r o b l e m s i n E l e c t r o d i a l y s i s of B r a c k i s h Water, U n i t e d S t a t e s Departement of I n t e r i o r , Denver, Colorado 1967.  No.  Desalting the  G i l l i l a n d E d w i n R. The C u r r e n t E c o n o m i c s of E l e c t r o d i a l y s i s First I n t e r n a t i o n a l Symposium on Water Desalination, Washington D.C. October 1965. G o l d s t e i n A r t h u r L . E l e c t r o d i a l y s i s on , Desalination, 30 , p p 4 9 ~ 5 8 , 1979.  tha  American  ,  Continent  G o v i d a n K. P . And N a r a y a n a n P . K. D e m i n e r a l i z a t i o n by Electrodialysis , D e s a l i n a t i o n , j_9 , p p 2 2 9 - 2 3 9 , 1976. Grossman G e r s h o n and S o n i n A i n A . Membrane F o u l i n g in E l e c t r o d i a l y s i s ; A Model and Experiments , Desalination, pp 107-125, 1973.  78  Grossman Gershon and Sonin A i n A . Experimental Study of t h e E f f e c t s o f H y d r o d y n a m i c s a n d Membrane F o u l i n g i n Electrodialysis , Desalination , p p 1 5 7 - 1 8 0 , 1971. Gunning H . E . And Gordon A . R . The Conductance and Ionic Mobilities f o r Aqueous S o l u t i o n s of Potassium and Sodium Chloride a t Temperatures f r o m 15° t o 45°C , J o u r n a l o f C h e m i c a l P h y s i c s , V o l . 10, F e b r u a r y 1942. I t o i Shigeru E l e c t r o d i a l y s i s of Effluents from Treatment M e t a l i c S u r f a c e s D e s a l i n a t i o n , 28 , p p 1 9 3 - 2 0 5 , 1979. Kobus E . J . M . a n d Heertjes P . M . The P o i s o n i n g of S e l e c t i v e Membranes by SodiumDodecylsulphate D e s a l i n a t i o n , p p 383-401, D e c e m b e r , 1971.  of  Anion,  Korngold E . E l e c t r o d i a l y s i s Process Using Ion Exchange Resins B e t w e e n M e m b r a n e s D e s a l i n a t i o n , J_6 , p p 2 2 5 - 2 3 3 , 1975. K o r n g o l d E . , Kock Advanced Waste  129-139,  K. und Srathmann H. E l e c t r o d i a l y s i s in W a t e r T r e a t m e n t , D e s a l i n a t i o n , 2_4 , p p  1978.  Kresman T . R . E . a n d Tye F . L . PH Changes a t Anion Membranes under R e a l i s t i c Flow C o n d i t i o n s , J.Electrochem.Soc.; Electrochemical Science, January 1969.  Selective p p 25-31,  Matz R. E l e c t r o d i a l y s i s - P i l o t P l a n t and General Development , F i r s t I n t e r n a t i o n a l S y m p . On W a t e r Desalination, Washington D . C ,U . S .Departement of the I n t e r i o r , Vol.3,  1 965. Michaels Alan S. U l t r a f i l t r a t i o n : Chemtech, January 1981.  an adolescent  technology  Millet J . Electrodialyse introduction , Societe des Electriciens, des Electroniciens et des Radioelectriciens ( R G E ) , T o m e 8 6 , N ° 5, M a i 1977. S e k o Maomi L a r g e S c a l e B r a c k i s h W a t e r ConversionE l e c t r o d i a l y s i s Demonstration Plant at Webster, South D a k o t a , U . S . A . D e c h e m a M o n o g r a p h i e n , B a n d 47, N R . 805-834, V o l . 2, 1962. S o l t G . S . I n f l u e n c e o f Membrane Phenomena on E l e c t r o d i a l y s i s O p e r a t i o n F i r s t I n t e r n a t i o n a l S y m p . On W a t e r Desalination, D e p a r t e m e n t o f t h e I n t e r i o r , W a s h i n g t o n D . C , V o l . 2, October 1965. Van  Duin P . J . Poisoning of I n t e r n a t i o n a l Symposium  3,  p p 253-259,  1973.  E l e c t r o d i a l y s i s M e m b r a n e s , 4@Th on F r e s h Water From t h e S e a , V o l .  79  T a b l e II ( F i g . 13) S t e a d y s t a t e ,voltage-current c h a r a c t e r i s t i c s of b o t h s t a g e s (A) and (B) TOTAL  CELL  First effect ( C e l l A) Current (mA. D . C . ) 56, 1 1 49 315 422 521 557  -  Second ef f e c t ( C e l l B)  Voltage (Volts) 4,99 9,97 19,94 29,93 39,89 43,79  55,4 149 268 378 462 490 STACK  First effect ( C e l l A) Current (mA. D . C . ) 56, 1 1 49 315 422 521 557  Current (mA. D.C.)  Voltage (Volts) 1 ,86 5,30 12,71 19,73 27,47 30, 1 8  Voltage (Volts) 4,99 9,97 19,94 29,93 39,89 43,79  ONLY Second e f f e c t ( C e l l B) Current (mA. D.C.) 55,4 1 49 268 377 462 490  Voltage (Volts) 2,1 1 5,70 12,34 18,66 26,86 29,38  8 0  T a b l e III (FIG. 1 4 ) Steady state, voltage drop per c e l l pair (B) and v o l t a g e d r o p i n b u l k s o l u t i o n (A) for the f i r s t stage at 2 and 2 0 hours. RUN NUM  VOLT  VELY cm/sec  PPM IRON  2 hours  2 0  hours B  6 7  2 0  0 , 5 0  0 , 0  0 , 5 4 3  2 , 2 0  0 , 5 3 4  91  2 0  0 , 5 0  0 , 0  N.A.  2 , 2 6  N.A.  71  2 0  0 , 5 0  0 , 0  0 , 5 3 2  2 , 2 2  0 , 5 4 6  2 , 1 5 - 0  , 0 0  2 , 1 8  7 9  2 0  0 , 5 0  0 , 9 2  0 , 5 0 3  2 , 2 3  0 , 5 1 5  2 , 2 2  81  2 0  0 , 5 0  1 , 1 1  0 , 6 3 1  2 , 2 2  0 , 6 0 8  2  8 8  2 0  0 , 5 0  5 , 2 4  0 ,  5 4 2  2  , 4 5  0 , 5 1 1  2 , 2 2  5 0 5  2  r  18  9 0  2 0  0 , 5 0  5 , 5 0  0 ,  , 2 9  0 ,  2  , 2 9  6 5  2 0  1  , 2 5  0 , 0  0 , 5 5 4  2  , 1 2  0 , 5 4 2  2  r 1 1  7 5  2 0  1  , 2 5  0 , 0  0 , 5 9 2  2  r 1 5  0 , 6 4 5  2  , 1 1  7 3  2 0  1  , 2 5  0 , 0  0 , 7 7 7  2  1 3  0 , 7 4 4  2  r 0 9  7 7  2 0  1  , 2 5  1  0 , 7 3 1  2  1 0  0 , 7 0 4  2  r 1 1  8 2  2 0  1  , 2 5  1 , 0 1  0 , 6 1 9  2  1 4  0 , 6 2 4  2  , 1 0  8 5  2 0  1  , 2 5  5 , 6 6  0 , 6 2 1  2  1 0  0 , 6 3 5  2  , 0 7  6 6  3 0  0 , 5 0  0 , 0  0 , 6 8 2  3  5 6  0 , 6 6 8  3  5 7  7 0  3 0  0 , 5 0  0 , 0  0 , 6 9 0  3  5 3  0 ,  3  , 5 4  , 0 9  5 2 8  7 2 0  9 2  3 0  0 , 5 0  0 , 0  N.A.  3  5 9  N.A.  8 0  3 0  0 , 5 0  1  0 , 7 7 0  3  4 7  0 , 7 6 9  3  51  8 9  3 0  0 ,  5 , 3 1  0 , 7 9 6  3 ,  6 8  0 , 7 8 6  3  6 5  9 4  3 0  0 , 5 0  5 , 3 1  0 , 6 6 4  3 ,  5 7  0 , 6 6 8  3  5 9  6 8  3 0  1  , 2 5  0 , 0  0 , 8 2 7  3 ,  2 7  0 , 8 1 4  3 ,  3 2  7 4  3 0  1  , 2 5  0 , 0  1  3 ,  1 9  1  3 ,  0 8  0 , 8 1 8  3 ,  2 6  0 , 8 6 5  3 ,  0 8  1  3 ,  2 3  0 , 9 8 9  3 ,  1 5  0 , 9 9 1  3 ,  4 4  0 , 9 1 0  3 ,  4 5  5 0  , 0 4  , 0 9 6  , 0 4 5  -o  0 0  7 6  3 0  1  , 2 5  0 , 0  8 3  3 0  1  , 2 5  1 ,  8 4  3 0  1  , 2 5  1  8 6  3 0  1  , 2 5  5 , 0 0  0 , 8 3 6  3 ,  3 8  0 , 8 3 6  3 ,  41  8 7  3 0  1  , 2 5  5 , 6 4  0 , 9 0 5  3 ,  2 2  0 , 8 6 2  3 ,  3 4  0 2 , 0 7  , 0 7 6  81  T a b l e I V ( F i g . 15) S t e a d y s t a t e , v o l t a g e p e r c e l l pair (B) and v o l t a g e d r o p i n b u l k s o l u t i o n (A) for t h e s e c o n d s t a g e a t 2 a n d 20 h o u r s . RUN NUM  VOLT  67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  VELY cm/sec 0,50 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25  PPM IRON 0,0 0,0 0,0 0,92 1,11 5,24 5,50 0,0 0,0 0,0 1 ,09 1,01 5,66 0,0 0,0 0,0 1 ,04 5,31 5,31 0,0 0,0 0,0 1 ,02 1 ,07 5,00 5,64  2 A 0,538 N.A. 0,473 0,505 0,617 0,626 0,476 0,530 0,602 0,765 0,719 0,563 0,538 0,702 0,625 N.A. 0,805 0,876 0,615 0,773 1 , 1 04 0,795 1 ,069 0,857 0,858 0,819  hours B 2,22 2,47 2,36 2,35 2,39 2,22 2,44 2,19 2,26 2,28 2,31 2,31 2,37 3,66 3,82 3,92 3,84 3,85 3,93 3,55 3,57 3,65 3,40 3,59 3,54 3,84  20 A 0,527 N.A. 0,475 0,561 0,615 0,654 0,505 0,531 0,653 0,731 0,680 0,550 0,543 0,679 0,593 N.A. 0,776 0,844 0,727 0,734 1 ,058 0,790 1 ,080 0,784 0,899 0,732  hours B 2,22 •0,00 2,36 2,35 2,33 2,38 2,39 2,17 2,24 2, 21 2, 20 2, 30 2, 33 3 , 68 3,85 -0,00 3,83 3,87 3 81 3 57 3 52 3 50 3,42 3,67 3,65 3,84  8 2  Table and  RUN NUM  V (Figs. 1 6 , 1 7 ) Steady state, stack c o m b i n e d r e s i s t a n c e s (Ra+Rc+Rp) (B) e f f e c t at 2 and 2 0 hours. VOLT  VELY cm/sec  PPM IRON  2 A  voltages (A) for f i r s t  hours B  2 0 A  hours B  6 7  2 0  0 , 5 0  0 , 0  1 4  3 0  3 9 , 6 9  91  2 0  0 , 5 0  0 , 0  1 4  6 7  N . A.  71  2 0  0 , 5 0  0 , 0  1 4  4 0  4 0  , 4 3  14 , 1 9  3 8 , 5 6  7 9  2 0  0 , 5 0  0 , 9 2  1 4  5 2  41  , 1 8  1 4 , 4 5  4 0 , 5 8  81  2 0  0 , 5 0  1 , 1 1  1 4  4 3  3 4  , 8 6  1 4 , 1 8  3 5 , 0 5  8 8  2 0  0 , 5 0  5 , 2 4  1 5  91  4 9  , 0 7  1 4 , 4 0  4 5 , 4 8  9 0  2 0  0 , 5 0  5 , 5 0  1 4  8 8  4 2  , 4 8  14 , 8 9  41  6 5  2 0  1  , 2 5  0 , 0  1 3  8 0  3 7  , 9 4  1 3 , 7 0  3 7 , 9 3  1  4 , 0 0  N.A.  3 9 , 5 1  N.A.  , 9 2  7 5  2 0  1  , 2 5  0 , 0  1 4  0 0  3 3  , 2 5  1 3 , 7 0  2 9 , 5 8  7 3  2 0  1  , 2 5  0 , 0  1 3  8 6  2 8  ,  1 3 , 5 6  2 8 , 0 3  7 7  2 0  1  , 2 5  1  , 0 9  1 3  6 6  3 0  , 0 6  1 3 , 7 2  3 0 , 4 1  8 2  2 0  1  , 2 5  1  , 0 1  1 3  9 3  3 0  , 5 9  1 3 , 6 8  3 0 , 5 7  8 5  2 0  1  , 2 5  5 , 6 6  1 3  6 6  3 2 ,  6 6  3 0  0 , 5 0  0 , 0  2 3  14  5 4  , 0 2  7 0  3 0  0 , 5 0  0 , 0  2 2  9 5  4 6  , 8 4  9 2  3 0  0 , 5 0  0 , 0  2 3  3 3  N.A.  N.J  1 5  1 1  1 3 , 4 5  31  2 3  , 2 1  5 5 , 0 3  2 3  , 0 4  , 2 0  4 6 , 9 3  N.A.  8 0  3 0  0 , 5 0  1  2 2  5 3  4 9  , 6 4  2 2  , 8 4  8 9  3 0  0 , 5 0  5 , 3 1  2 3  91  5 9  , 1 6  2 3  , 7 5  5 3 , 5 4  9 4  3 0  0 , 5 0  5 , 3 1  2 3  2 0  5 2 , 9 4  2 3  , 3 5  5 4 ,  6 8  3 0  1  , 2 5  0 , 0  21  2 8  3 7  , 5 9  21  , 6 1  3 9 , 3 8  7 4  3 0  1  , 2 5  0 , 0  2 0  7 2  2 9  , 1 8  2 0  , 0 1  2 8 , 7 1  7 6  3 0  1  , 2 5  0 , 0  21  2 2  3 7  , 2 9  2 0  , 0 3  3 2 , 3 9  8 3  3 0  1  , 2 5  1  , 0 2  21  0 0  2 9  , 7 1  2 0  r 4 7  3 0 , 0 2  8 4  3 0  1  , 2 5  1  , 0 7  2 2  3 4  3 4  , 5 1  2 2  , 4 5  3 8 , 0 2  8 6  3 0  1  , 2 5  5 , 0 0  21  9 9  3 8  , 0 5  2 2  r 1 7  4 0 , 7 4  8 7  3 0  1  , 2 5  5 , 6 4  2 0  9 4  3 9  , 0 3  21  , 7 2  4 0 , 3 6  , 0 4  4 9 , 5 0  1 5  83  Table and  RUN NUM 67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  VI ( F i g s . 18,19) Steady s t a t e , stack voltages (A) c o m b i n e d r e s i s t a n c e s (Ra+Rc+Rp) (B) f o r second e f f e c t a t 2 a n d 20 h o u r s . VOLT  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  VELY cm/sec 0,50 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25  PPM IRON 0,0 0,0 0,0 0,92 1,11 5,24 5,50 0,0 0,0 0,0 1 ,09 1 ,01 5,66 0,0 0,0 0,0 1 ,04 5,31 5,31 0,0 0,0 0,0 1 ,02 1 ,075,00 5,64  2 A 14, 16, 15, 15, 15, 14, 15, 14, 14, 14, 15, 15, 15, 23, 24, 25, 24, 25, 25, 23, 23, 23, 22, 23, 23, 24,  40 05 31 30 53 45 83 23 69 80 04 00 41 80 80 46 94 00 52 09 22 70 10 35 00 95  hours B 42,80 N.A. 5 6 , 30 52,63 48,97 43,05 56,80 4 2 , 67 35,57 33,22 36,55 39,31 46,48 59,05 70,88 N.A. 7 3 , 12 77,58 80,69 45,80 37,56 4 7 , 16 3 5 , 74 47,46 41 , 3 7 58,85  20 A  hours  14,42 N.A. 15,31 15,28 15,14 15,49 15,55 14,11 14,59 14,37 14,27 14,98 15,16 23,93 25,05 N.A. 24,90 25, 1 3 24,75 23,20 22,88 22,72 22,21 23,83 23,72 24,94  B 44,79 N.A. 5 6 , 19 47,77 46,33 42,78 53,86 40,69 32,67 32,36 34,92 41,81 4 6 , 18 61 , 3 6 77,59 N.A. 71 , 0 4 70,67 6 6 , 12 49,19 3 7 , 16 45,40 32,63 52,21 42,24 61 , 0 6  8 4  Table VII (Figs. 2 0 , 2 1 ) Steady channel pressure drop at 2 RUN NUM  VOLT  VELY cm/sec  PPM IRON  state, and 2 0 Press Drop cm Hg  2  hours  6 7  2 0  0 , 5 0  0 , 0  1 , 6 5  91  2 0  0 , 5 0  0 , 0  1 , 5 0  71  2 0  0 , 5 0  0 , 0  1 , 6 0  dialysate hours Press Drop cm Hg  2 0  hours  1 , 6 5 - 0  , 0 0  1 , 6 0  7 9  2 0  0 , 5 0  0 , 9 2  1 , 7 0  1 , 8 0  81  2 0  0 , 5 0  1 , 1 1  2 , 0 5  2 , 4 5  8 8  2 0  0 , 5 0  5 , 2 4  2 , 2 0  2 r 9 0  9 0  2 0  0 , 5 0  5 , 5 0  1 , 3 5  1 , 9 5  6 5  2 0  1  0 , 0  7 r 1 5  7 , 1 5 7  , 2 5  7 5  2 0  1  , 2 5  0 , 0  7  r  7 3  2 0  1  , 2 5  0 , 0  6  r  3 5  6  4 0  7 7  2 0  1  , 2 5  1  8  , 7 0  9  , 4 0  8 2  2 0  1  , 2 5  1 , 0 1  9  5 0  1 1  4 0  8 5  2 0  1  , 2 5  5 , 6 6  9  8 0  1 3  5 0  6 6  3 0  0 , 5 0  0 , 0  2  0 6  2  1 6  7 0  3 0  0 , 5 0  0 , 0  1  3 0  1  7 0  , 0 9  10  , 3 0  9 2  3 0  0 , 5 0  0 , 0  1  5 0  - 0  0 0  8 0  3 0  0 , 5 0  1  2  2 0  2  6 0  8 9  3 0  0 , 5 0  5 , 3 1  1  7 0  2  5 0  9 4  3 0  0 , 5 0  5 , 3 1  1  7 0  2  4 0  6 8  3 0  1  , 2 5  0 , 0  7 ,  7 0  7 ,  8 0  7 4  3 0  1  , 2 5  0 , 0  6 ,  7 0  6 ,  9 0  7 6  3 0  1  , 2 5  0 , 0  7 ,  0 0  7 ,  5 0  8 3  3 0  1  , 2 5  1  1 0 ,  0 5  1 3 ,  4 0  8 4  3 0  1  , 2 5  1 ,  1 1 , 10  1 3 ,  3 0  8 6  3 0  1  , 2 5  5 , 0 0  1 2 ,  9 0  1 5 ,  2 0  8 7  3 0  1  , 2 5 '  5 , 6 4  7  , 1 0  8 ,  2 0  , 0 4  , 0 2 0 7  85  Table VIII ( F i g s . 20,21) Steady s t a t e , brine c h a n n e l p r e s s u r e d r o p a t 2 a n d 20 hours RUN NUM  VOLT  VELY cm/sec  PPM IRON  Press Drop cm H g 2  67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  0 50 0 ,50 0 ,50 0 50 0 50 0 50 0 50 1 25 1 25 1 25 1 25 1 25 1 25 0 50 0 50 0 50 0 50 0 50 0 50 1 25 1 25 1 25 1 25 1 25 1 25 1 25 r  r  0 0 0 0 0 0 0 92 1 1 1 5 24 5 50 0 0 0 0 0 0 1 09 1 01 5 66 0 0 0 0 0 0 1 , 04 5 , 31 5 , 31 o, 0 o, 0 o, 0 1 , 02 1 , 07 5 , 00 5 , 64  hours  1 ,65 2 70 1 70 2 05 1 80 1 60 1 40 7 72 8 70 8 70 10 70 9 40 1 4 00 2 01 3 15 3 00 1 75 1 65 3 15 8 00 9 05 8 80 9 85 1 6 , 90 1 0 , 00 8 ; 50  Press Drop cm Hg 20  hours  1 ,75 - 0 ,00 1 ,80 2 ,35 2 ,00 1 ,60 1 ,50 7 72 9 00 8 ,70 1 3 45 10 70 1 5 20 2 08 3 60 - 0 00 1 ,85 1 70 3 20 8 30 9 20 9 90 10 50 17 70 1 0 50 9 25  86  TABLE IX channel RUN NUM  41 30 38 39 32 34 35 43' 40 31 42 33 36 37 44  ( F I G . 22) P r e s s u r e d r o p a c r o s s the dialysate (A) a t 2 a n d 20 h o u r s ( u n s t e a d y s t a t e runs). VOLT  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  TABLE X (FIG. c h a n n e l (A) a t RUN NUM  41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  VOLT  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  VELY cm/sec  PPM IRON  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  (A) 2 hours 3,56 0,0 3,68 3,51 3,30 24,51 26,29 30,99 3,56 3,51 3,94 3,56 31 , 0 9 26,67 26,92  20 hours 3,56 0,0 3,81 3,71 3,81 26,42 27,43 38,00 3,76 0,0 3,68 3,71 34,04 27,69 28,70  22) P r e s s u r e d r o p a c r o s s 2 a n d 20 h o u r s ( u n s t e a d y VELY cm/sec  PPM IRON  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  the brine state runs).  (A) 2 hours 3,35 0,0 4,1 1 4,27 3,00 34,92 37,34 29,46 3,56 3,17 3,61 3,43 44,70 37,08 24,89  20 hours 3,15 0,0 4,32 4,52 3,17 37,85 3 9 , 12 35,05 3,66 0,0 3,56 3,10 48,51 37,08 26,42  87  T a b l e XI ( F i g . 23) S t e a d y s t a t e , separation factor (A) a n d power r e q u i r e m e n t s / l i t r e of dialysate produced per c e l l (B) ( J o u l e s / 1 per c e l l ) at 2 and 20 h o u r s . RUN NUM  VOLT  67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  VELY cm/sec 0,50 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25  PPM IRON 0,0 0,0 0,0 0,92 1,11 5,24 5,50 0,0 0,0 0,0 1 ,09 1 ,01 5,66 0,0 0,0 0,0 1 ,04 5,31 5,31 0,0 0,0 0,0 1 ,02 1 ,07 5,00 5,64  2 A 1 893 3 , 1 44 2 ,410 3 ,255 3 ,551 3 ,214 2 ,777 1 246 1 ,527 1 789 1 652 1 590 1 480 2 251 3 425 4 700 4 600 4 732 3 493 1 337 2 366 1 870 2, 336 2, 040 1 , 949 1 , 909 r  hours B 1 357, 1235, 1 258, 1 292, 1 379, 1 276, 1 279, 540, 630, 639, 606, 634, 576, 2584, 2645, 2398, 2402, 2184, 2397 , 1 266, 1 401 , 1269, 1 403, 1 292, 1 325, 1115,  20 A 1 ,872 N.A. 2,442 3,444 3, 448 3,055 2,747 1 ,293 1 ,587 1 ,690 1 ,671 1 ,573 1 ,445 2,247 3 , 144 N.A. 4,009 4,419 3,623 1 ,294 2,235 1 ,881 2,252 1 ,836 1 ,797 1 , 782  hours B 1321, N.A. 1 274, 1335, 1380, 1310, 1290, 549, 665, 637, 609, 610, 571 , 2539, 2553, N.A. 2469, 2418, 2517, 1221 , 1395, 1286, 1 457, 1 229, 1 291 , 1 1 29,  88  Table XII ( F I G . 24) S e p a r a t i o n f a c t o r Ns (A) and the power consumption ( j o u l e s / l i t r e p e r cell) a t 2 a n d 20 h o u r s ( u n s t e a d y s t a t e r u n s ) . RUN NUM 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  VOLT  VELY CM/SEC  PPM IRON  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  2 1rIOURS (A) (B) 41 , 6 7 48,25 1 6,56 45,42 40,90 9,82 11,35 1 0,32 104,85 7 2 , 18 32,83 27,99 29,61 20,99 1 3,60  68549, o, 64217, 64371, o, 44052, 48163, 51642, 107283, 118101, 119356, 119382, 94365, 95478, 102573,  20 (A) 26 33 13 24 21 10, 3, 5, 92, 67, 29, 16, 19, 4, 12,  04 93 56 32 67 65 74 79 70 39 47 72 90 99 81  HOURS (B) 70223, 0, 66400, 67662, 0, 45869, 46940, 47872, 118989, 116609, 128256, 1 18691 , 91049, 96798, 107185,  89  Table XIII ( F i g . 25) S t e a d y and u n s t e a d y s t a t e , dialysate concentrations (mg./l.) (A) a n d t h e power requirements per l i t r e of d i a l y s a t e produced per c e l l (joules/1 per c e l l ) (B) a t 2 a n d 20 h o u r s (1,25 cm/sec only). RUN NUM  VOLT  65 75 73 77 82 85 68 74 76 83 84 86 87  20 20 20 20 20 20 30 30 30 30 30 30 30  1 1 1 1 1 1 1 1 1 1 1 1 1  ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25  0,0 0,0 0,0 1 ,09 1,01 5,66 0,0 0,0 0,0 1 ,02 1 ,07 5,00 5,64  1913, 1700, 1 1 77, 1304, 1569, 1 638, 1863, 983, 1 521 , 1042, 1180, 1 387, 1 169,  41 30 38 39 32 40 31 42 33  20 20 20 20 20 30 30 30 30  1 1 1 1 1 1 1 1 1  ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25 ,25  0,0 0,85 0,97 0,68 4,78 0,0 1 ,03 0,92 4,73  1 03, 366, 293, 91 , 99, 39, 58, 1 37, 1 73,  VELY cm/sec  PPM IRON  2 A  hours B  20 A  540, 630, 639, 606, 634, 576, 1 266, 1 401 , 1 269, 1 403, 1292, 1 325, 1115,  1828, 1531, 1246, 1298, 1549, 1 566, 1809, 1039, 1410, 1 102, 1 274, 1 387, 1271 ,  68549, o, 64217, 64371 , o, 107283, 118101, 119356, 119382,  1 60, 303, 332, 169, 158, 47, 58, 147, 263,  hours B 549 665 637 609 610 571 1221 1395 1286 1457 1229 1291 1 1 29 702.23 0 66400 67662 0 118989 116609 1 28256 118691  90  T a b l e X I V ( F i g . 26) Amount of i r o n test pair (mg.) (A) and t h e p e r c e n t factor Ns. (steady state RUN NUM  VOLT  VELY cm/sec  67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  0,50 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25  PPM • IRON 0,0 0,0 0,0 0,92 1,11 5,24 5,50 0,0 0,0 0,0 1 ,09 1 ,01 5,66 0,0 0,0 0,0 1 ,04 5,31 5,31 0,0 0,0 0,0 1 ,02 1 ,07 5,00 5,64  a c c u m u l a t e d on the drop in separation runs).  (A) Mg. N.A. N.A. N.A. 0,24 0,36 1 ,86 1 ,25 N.A. N.A. N.A. 0,92 0,43 1 ,25 N.A. N.A. N.A. 0,51 2,24 1,16 N.A. N.A. N.A. 0,49 0,54 2,58 2,91  (B)  1,12 N.A. -1 , 3 4 -5,81 2,90 4,96 1 ,05 -3,70 -3,92 5,53 -1,15 1 ,05 2,40 0,19 8,22 N.A. 12,85 6,62 -3,73 3,22 5,54 -0,59 3 , 62 9,97 7,77 6,66  91  T a b l e X V ( F i g . 27) A v e r a g e i r o n a c c u m u l a t i o n on the t e s t membranes (mg.) (A) a n d t h e p e r c e n t d r o p in s e p a r a t i o n f a c t o r Ns (B) d u r i n g a run ( u n s t e a d y s t a t e runs). RUN NUM 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  VOLT  VELY cm/sec  PPM IRON  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  T a b l e XVI accumulation t o t a l amount  RUN  79 81 88 90 77 82 85 80 89 94 83 84 86 87  (A)  0,34 0,45 1 ,47 1 ,32 2,00 1 ,02 2,42 2,59 0,78 0 , 22 • 0,31 4,07 1,51 3,20 3,05  (B)  37,50 29,68 18,14 46,46 47,03 -8,45 67,02 43,90 1 1 ,59 6,63 10,24 40,25 32,79 76,23 5,86  ( F i g . 28) The t o t a l amount of iron ( b a s e d on membranes), (mg.) (A) and the of i r o n l o s t i n f e e d s t r e a m (mg.) (B) (steady state runs).  VOLT  VELY cm/sem  20 20 20 20 20 20 20 30 30 30 30 30 30 30  0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 1 ,25 1 ,25 •1 , 2 5 1 ,25  PPM IRON 0,92 1,11 5,24 5,50 1 ,09 1,01 5,66 1 ,04 5,31 5,31 1 ,02 1 ,07 5,00 5,64  (A) Mg.  (B) Mg.  3,17 4,73 2 4 , 12 16,20 1 1 ,90 5,58 16,22 6 , 65 29,09 1 5 , 04 6,35 6,98 3 3 , 51 37,82  46,8 41 , 4 127,5 179,6 75,2 31 , 6 99,5 42,2 178,9 153, 1 51 , 4 55,0 148,8 189,6  92  Table XVII ( F i g . 29) T o t a l i r o n the membranes (mg.) (A) and t h e the f e e d d u r i n g a run (mg.) (B) RUN NUM 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  VOLT  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  VELY CM/SEC 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  PPM IRON 0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  a c c u m u l a t i o n b a s e d on amount of i r o n l o s t in (unsteady state runs). (A)  19,3 25,3 82, 1 73,7 112,2 57,3 135,3 1 44,9 43,9 12,2 17,3 228,2 84,6 179,4 170,8  (B)  0,0 16,4 12,3 3,2 113,2 27,4 141,4 1 46,3 0,0 13,9 29,5 101,7 7,8 156,0 142,5  93  T a b l e X V I I I pH o f t h e s t r e a m s a t 2 a n d 20 run num 67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  volt  20 20 20 20 20 20 20 20 20 . 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  vely cm/sec 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1  50 50 50 ,50 ,50 50 50 25 ,25 25 ,25 ,25 ,25 ,50 50 ,50 ,50 ,50 ,50 ,25 ,25 ,25 ,25 ,25 ,25 ,25 r  r  r  r  d i a l y s a t e (A) hours (steady  ppm iron 0. 0 0 0 1 5, 5 0 0 0 1 1, 5, 0 0 0 1, 5 5, 0 0 0 1 1 5 5,  0 0 0 92 11 24 50 0 0 0 09 01 66 0 0 0 04 31 31 0 0 0 02 07 00 64  2 5 4 6 6 6 6 5 6 6 6 4 5 4 4 3 3 9 10 9 4 4 9 4 3 4 4  231 471 1 95 1 38 194 093 043 342 01 1 086 581 1 27 204 1 68 524 476 873 071 933 640 431 521 522 824 739 583  and b r i n e (B) state runs).  (A) 20  hrs.  6 4 9 8 9 6 6 9 6 8 9 4 4 7 4 9 10 9 10 9 4 5 5 9 4 6  442 709 069 963 165 169 207 579 543 761 1 06 256 285 578 081 688 324 961 007 069 284 131 042 360 700 1 18  2 6, 4, 9, 8, 9, 6, 6, 9, 6, 8, 9, 4, 4, 7, 4, 9, 10, 9, 10, 9, 4, 5, 5 9, 4, 6,  442 709 069 963 1 65 169 207 579 543 761 1 06 256 285 578 081 688 324 961 007 069 284 131 042 360 700 118  (B) 20  hrs  9,475 N.A. 10,415 3,447 3,217 2,916 2,999 10,668 6,856 9,574 8,736 2,992 2,996 10,669 7,528 N.A. 2,820 2,797 2,819 9,709 6,447 10,484 2,884 2,902 2,765 2,722  94  Table  X I X pH o f t h e a t a a n d 20  run num  volt  41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  based  RUN  on  VOLT  vely cm/sec 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  dialysate (A) and b r i n e (B) hours (unsteady state runs) ppm i ron  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  (A) 2 4,07 3,92 4,53 5,82 3,96 3,68 3,74 4,40 4,1 1 3,67 3,79 4,02 3,88 4,52 6,05  PPM IRON  20 20 20 20 20 20 20 30 30 30 30 30 30 30  hrs.  4,02 3,98 6 , 12 6,58 4,68 3,93 6,29 9,18 3,78 3,96 4,10 5,11 4,36 9,38 9,90  2  20  2,99 2,48 2,88 2,77 2,62 3,30 2,90 3,10 2,80 2,30 2,84 2,62 2,76 2,85 2,84  (A)  2 79 81 88 90 77 82 85 80 89 94 83 84 86 87  (B) 20  T a b l e XX The p e r c e n t separation iron in the d i a l y s a t e (A) and b r i n e (B) a t 2 a n d 20 h o u r s ( s t e a d y s t a t e runs) VELY cm/sec  0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 . 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25  0,92 1,11 5,24 5,50 1 ,09 1,01 5,66 1 ,04 5,31 5,31 1 ,02 1 ,07 5,00 5,64  52,0 53,2 32,6 39,2 22,8 12,7 16,8 60, 1 32,9 47,4 35,6 30,2 17,1 0,9  streams  hrs.  2,98 2,74 3,06 2,95 2,95 3,43 3,07 3,14 2,37 2,50 2,94 2,76 2,92 2,90 2,77  streams  (B)  hours 94,4 59,4 27,7 38,3 0,0 14,9 3,5 67,7 28, 1 44,9 23,7 33, 1 8,1 11,9  20 2,2 4,2 8,2 11,8 23,2 9,7 7,7 4,3 1,3 2,6 15,7 10,7 18,4 6,8  hours "4,8 -13,0 6,3 2,2 21,5 5,3 5,0 -14,5 -5,4 -18,9 -11,1 -20,9 0,5 -3,7  95  based  RUN NUM  41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  Table  T a b l e XXI Unsteady s t a t e , p e r c e n t separation on i r o n i n the d i a l y s a t e (A) and b r i n e (B) streams a t 2 a n d 20 h o u r s . VOLT  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  VELY cm/sec  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  PPM IRON  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  (A)  (B)  2 hours  20 hours  N.A. 99,9 97,4 58,0 97,2 96,5 94,3 92,5 N.A. 99, 1 99,9 98,6 85,3 99,7 85,3  N.A. 90,9 93,9 56,8 96,0 97,0 85,8 83,4 N.A. 99,9 99,8 91 , 8 90,6 98,3 85,3  X X I I I o n i c s e l e c t i v i t y b a s e d on i r o n (A) and b r i n e (B) s t r e a m s a t 2 a n d (steady state runs).  run num  volt  79 81 88 90 77 82 85 80 89 94 83 84 86 87  20 20 20 20 20 20 20 30 30 30 30 30 30 30  vely cm/sec 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1,25 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25  ppm i ron 0,92 1,11 5,24 5,50 1 ,09 1,01 5,66 1 ,04 5,31 5,31 1 ,02 1 ,07 5,00 5,64  2 hours N.A. -37,2 67,6 -39,9 -74,9 -60,7 -66,5 -39,5 N.A. -20,6 -47,7 -18,2 95,5 -66,3 -31,9  in 20  1 ,025 0,990 0,645 0,854 0,948 0,571 0,852 0,945 0,503 0,859 0,890 0,899 0,548 0 , 031  20  hrs.  1 ,800 1 , 109 0 , 571 0,837 0,0 0,686 0 , 183 1 , 1 38 0,458 0,794 0,619 1 , 1 49 0,296 0,463  N.A. 24,7 22, 1 33, 1 59,0 36,8 30,6 44,3 N.A. -51 ,8 -75, 1 -65,0 -2,5 -51 ,7 -50,0 -  the dialysate hours,  (A) 2  20 hours  2 0,036 0,066 0,141 0,236 0,911 0,409 0,411 0,063 0,021 0,047 0,391 0,303 0,546 0,207  (B) • 20  hrs  -0,074 -0,216 0,111 0,044 0,817 0,227 0,298 -0,232 -0,077 -0,330 -0,285 -0,681 0,018 -0,114  96  Table XXIII Ionic s e l e c t i v i t y b a s e d on i r o n i n the dialysate (A) a n d b r i n e (B) s t r e a m s a t 2 a n d 20 h o u r s ( u n s t e a d y s t a t e runs) run num 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  volt  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  vely cm/sec 1 ,25 1,25 ' 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  ppm iron 0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  2 0 1 1 0 1 1 1 1 1 1 1 0 1 0  0 098 1 15 608 030 1 84 1 48 1 34 0 022 068 069 916 1 03 990  (A) 20 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0  hrs.  ,977 ,100 ,618 ,076 ,169 ,560 198 ,0 032 ,073 ,038 005 489 993  2 0,0 -0,111 0,615 -0,380 -0,584 -0,748 -0,647 -0,439 0,0 - 0 , 169 -0,425 -0,153 0,902 -0,657 -0,366  (B) 20  hrs.  0,0 -0,181 -0,226 -0,342 -0,440 -0,454 -0,447 -0,585 0,0 -0,441 -0,720 -0,694 -0,026 -0,745 -0,623  9 7  Table XXIV Average current e f f i c i e n c y (A) a t 2 and 2 0 hours and the percent drop in current efficiency over 1 8 hours (steady state runs). RUN NUM  VOLT  VELY cm/sec  PPM IRON  (A) 2 hours  (B) 2 0 hours  6 7  2 0  0 , 5 0  0  r0  0  , 6 1 2  91  2 0  0 , 5 0  0  , 0  0  9 7 0  N .A.  71  2 0  0  , 5 0  0  r0  0  9 3 5  0  7 9  2 0  0  5 0  0  1  2 4 5  1 , 1 7 3  81  2 0  0  , 5 0  1 , 1 1  0  9 7 0  0  , 9 7 7  8 8  2 0  0  , 5 0  5  , 2 4  0  9 5 7  0  9 2 3  9 0  2 0  0  , 5 0  5  , 5 0  1  0 3 3  0  9 6 0  6 5  2 0  1  2 5  0  0  0  5 8 5  0  , 6 5 2  7 5  2 0  2 5  0  0  0  9 0 0  0  9 0 3  - 0  , 3 6  7 3  2 0  2 5  0  0  0  9 7 3  0  9 0 4  7  , 1 0  7 7  2 0  1  2 5  1  0 9  0  9 3 9  0  9 5 6  8 2  2 0  1  2 5  1  01  0  9 7 7  0  9 7 5  0  8 5  2 0  1  2 5  5  6 6  0  9 1 6  0  8 1 8  10  7 5  6 6  3 0  0  5 0  0  0  0  6 1 6  0  6 1 6  0  , 0 5  7 0  3 0  0  5 0  0  0  0  8 9 5  0  8 7 2  9 2  3 0  0  5 0  0  0  0  9 6 0  N A.  8 0  3 0  0  5 0  1  0 4  0  9 7 1  0  8 9  3 0  0  5 0  5  31  0  8 8 8  9 4  3 0  0  5 0  5  31  6 8  3 0  2 5  0  7 4  3 0  2 5  1 1  1 1  9 2  7 , 0 7 -1  1 , 3 4  -1  , 8 0 , 2 4  , 0 4  8 8 1  0  8 5  o, 9 5 1  0  8 7 6  7  8 7  0  0  0  4 3 8  0  0  o, 9 1  0  9 2 5  0  1,  0  9 7 4  0  9 5 5  0  2 5  1 , 0 2  1,  2 5  1 , 0 7  1,  , 6 6  3 , 5 0  0  2 5  1,  , 7 7  , 0 0  1  3 0  5  -o  8  1,  8 7  , 0 0  2 , 5 1  8 9 3  3 0  3 0  , 9 1 2  , 5 5  3 0  3 0  0 , 6 5 1 0 0  2  7 6  8 4  , 6 0 8  1 0 0  8 3  8 6  0  2 5  5 ,  0 0  2 5  5 ,  6 4  4 9 9  1  0 4 5  o, 9 6 4 o, 9 5 5  1  - 1  2 2 25 5  6  7 8  0  8 8  0  8 7 2  8  6 7  0 0 3  0  8 6 0  1 4  21  o, 9 5 8  0  8 8 6  1,  7  5 7  98  T a b l e XXV Unsteady s t a t e , a v e r a g e current efficiency (A) a t 2 a n d 20 h o u r s a n d t h e p e r c e n t in current e f f i c i e n c y o v e r 18 h o u r s (B). run num  volt  vely cm/sec  ppm iron  (A) 2 hours  41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1,03 0,92 4,73 0,87 4,61 4,68  0,018 N.A. 0,021 0,018 N.A. 0,023 0,025 0,024 0,016 0,015 0,016 0,017 0,019 0,019 0,017  (B) 20 hours 0,017 N.A. 0,019 0,017 N.A. 0,024 0,019 0,022 0,016 0,015 0,016 0,016 0,019 0,014 0,017  7,48 0,0 9,58 5,69 0,0 -5,32 26,01 6,81 1,91 4,29 1,91 9,80 0,66 25,45 0,74  drop  99  T a b l e XXVI The p e r c e n t s e p a r a t i o n b a s e d on s o d i u m for the d i a l y s a t e (A) and b r i n e s t r e a m s a t 2 a n d 20 h o u r s ( s t e a d y s t a t e runs). cUN  VOLT  VELY cm/sec  PPM IRON  (A)  2 67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  0,50 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25  0,0 0,0 0,0 0,92 1,11 5,24 5,50 0,0 0,0' 0,0 1 ,09 1,01 5,66 0,0 0,0 0,0 1 ,04 5,31 5,31 0,0 0,0 0,0 1,02 1 , 07 5,00 5,64  30 , 3 50 , 1 40 , 6 50 , 7 53 , 8 50 , 6 45 , 9 13,8 21 , 0 2 8 ,2 24 , 1 22 , 2 19 , 7 37 , 6 53 , 1 63 , 3 63 , 6 65 , 6 55 ,2 1 3 ,7 39 , 6 30 , 6 40 , 0 33 , 6 31 , 3 30 , 4  (B)  hours 32,8 N.A. 40,2 52,4 53,6 48,6 45,8 12,4 22,7 24,7 24,4 21,7 19,2 38,0 49,0 N.A. 59,4 61 , 6 56,5 11,5 36,9 30,3 38,3 28,8 27,4 25,8  20 31 56 43 60 64 58 50 7 20 28 25 23 18 40 60 72 67 62 56 15 42 29 40 35 33 32  ,9 ,9 ,0 ,4 , 1 ,7 ,3 ,5 ,6 ,5 ,4 ,6 ,8 ,4 ,6 , 4 ,4 ,7 ,5 ,4 ,9 ,9 ,3 ,5 ,8 ,8  hours 25,9 N.A. 45,9 63,9 60, 1 56,9 48,9 13,3 22,6 27,3 26,4 23,2 16,8 39,3 60,2 N.A. 62,6 69,9 57,5 14,5 41,1 31,1 39,0 30,7 30,4 32,2  100  Table XXVII Unsteady state, percent separation b a s e d on s o d i u m i n the d i a l y s a t e (A) a n d b r i n e (B) streams a t 2 a n d 20 h o u r s . RUN NUM  41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  VOLT  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  VELY cm/sec  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  PPM IRON  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  (A)  (B)  2 hours  20 hours  95, 1 91 , 0 87,3 95,5 94,4 81,5 82, 1 81 , 6 98,0 96,9 93,5 92, 1 93,0 90,4 86,2  92,4 93,0 85,4 91 , 9 89,2 83,0 54,9 69,6 97,7 96,8 93, 1 88,4 90, 1 66,0 85,9  2 hours 106,0 336,3 110,0 105,0 129,3 81,3 103,5 90,5 107,2 121 , 8 112,3 119,9 105,8 101,6 87,8  20 hours 98,2 1 36,7 97,8 96,9 1 34,9 81,2 68,7 76, 1 114,1 117,7 1 04,5 94,3 96,5 69,8 80,7  101  in  run num 67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  T a b l e X X V I I I I o n i c s e l e c t i v i t y b a s e d on s o d i u m t h e d i a l y s a t e (A) a n d b r i n e (B) a t 2 a n d 20 h o u r s . (steady state runs) volt  •20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  vely cm/sec  ppm iron  0,50 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 0,50 0 , 50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25  0,0 0,0 0,0 0,92 1,11 5,24 5,50 0,0 0,0 0,0 •1 , 0 9 1,01 5,66 0,0 0,0 0,0 1 ,04 5,31 5,31 0,0 0,0 0,0 1 ,02 1 ,07 5,00 5 , 64  (A) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  ,000 ,000 ,000 ,000 ,000 ,002 ,001 ,000 ,000 ,000 ,000 ,000 ,001 ,000 ,000 ,000 ,000 ,003 ,001 ,000 ,000 ,000 ,000 ,000 ,002 ,006  (B) 20  hrs.  1 ,000 N.A. 1 ,000 1 ,000 1 ,000 1 ,002 1 ,001 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,004 1 ,000 1 ,000 N.A. 1 ,000 1 ,002 1 ,001 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,002 1 ,002  2 1 ,000 1 ,000 1 ,000 1 ,001 1 ,001 1 ,005 1 ,004 1 ,000 1 ,000 1 ,000 1 ,000 1 ,001 1 ,003 1 ,000 1 ,000 1 ,000 1 ,001 1 ,006 1 ,005 1 ,000 1 ,000 1 ,000 1 ,001 1 ,001' 1 ,002 1 ,005  20  hrs.  1 ,000 N.A. 1 ,000 1 ,000 1 ,001 1 ,004 1 ,003 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,003 1 ,000 1 ,000 N.A. 1 ,001 1 ,004 1 ,005 1 ,000 1 ,000 1 ,000 1 ,001 1 ,001 1 ,003 1 ,004  Table XXIX Ionic selectivity b a s e d on s o d i u m dialysate (A) a n d b r i n e (B) s t r e a m s a t 2 20 h o u r s ( u n s t e a d y s t a t e runs) run num 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  volt  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  vely cm/sec  ppm i ron  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  (A) 2 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1  000 000 000 ,000 ,000 ,000 ,999 ,999 ,000 ,000 ,000 ,000 ,000 ,000 000 r  r  r  20  hrs.  1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 0,999 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 1 ,000 0,999 1 ,000  2 1,000 1,000 1,000 1,001 1,009 1,002 1,007 1,006 1,000 1,001 1,001 1,005 1,000 1,007 1,006  in the and  (B) 20 h r s . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  ,000 ,000 ,001 ,001 ,007 ,001 ,004 ,004 ,000 ,001 ,001 ,005 ,001 ,004 ,005  103  T a b l e X X X A b s o l u t e e r r o r s i n t h e ammount o f iron a c c u m u l a t e d on t h e membranes (A) a n d t h e p e r c e n t drop s e p a r a t i o n f a c t o r Ns (B) ( s t e a d y s t a t e runs). run num  volt  vely cm/sec  ppm iron  67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  0 ,50 0 50 0 ,50 0 50 0 50 0 50 0 50 1 25 1 25 1 25 1 25 1 25 1 25 0 50 0 50 0 50 0 50 0 50 0 50 1 25 1 25 1 25 1 25 1 25 1 25 1, 25  0 0 0 ,0 0 0 0 92 1 1 1 5 24 5 50 0 0 0 0 0 0 1 09 1 01 5 66 0 0 0 0 0 0 1 04 5 31 5 31 0 0 0 0 0 0 1 02 1 07 5 00 5, 64  (A)  - 0 ,000 - 0 ,000 - 0 000 0 003 0 005 0 023 0 015 - 0 000 - 0 000 - 0 000 0 01 1 0 005 0 015 - 0 000 - 0 000 - 0 000 0 006 0 028 0 0*1 4 - 0 000 - o 000 - 0 000 0 006 0 007 0 032 0 036  (B)  3 2 4 4 3 3 3 4 4 3 4 3 3 3 3 2 3 3 4 3 3 4 3 3 3 3  ,978 ,000 ,027 ,116 942 ,901 979 ,074 078 ,889 023 979 952 996 836 000 743 868 075 936 889 012 928 801 845 867  1 04  Table on  XXXI A b s o l u t e e r r o r in the a c c u m u l a t i o n of iron the t e s t membranes (mg.) (A) and t h e percent drop in separation factor (B) (unsteady state runs) run num 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  volt  vely cm/sec  ppm iron  (A)  (B)  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  0,004 0,006 0,018 0,016 0,025 0,013 0,030 0,032 0,010 0,003 0,004 0,051 0,019 0,040 0,038  3,250 3,406 3,637 3,071 3,059 4 , 1 69 2,660 3 , 122 3,768 3,867 3,795 3 , 1 95 3,344 2,475 3,883  105  Table XXXII Absolute e r r o r s in the f o r t h e f i r s t s t a g e (A) a n d s e c o n d hours (steady state run num  volt  vely cm/sec  ppm iron  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  0,50 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 . 1 ,25 1 ,25  0,0 0,0 0,0 0,92 1,11 5,24 5,50 0,0 0,0 0,0 1 ,09 1,01 5,66 0,0 0,0 0,0 1 ,04 5,31 5,31 0,0 0,0 0,0 1 ,02 1 ,07 5,00 5,64  (Ra+Rc+Rp) a t 2 a n d 20  (A) 2  67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  v a l u e s of s t a g e (B) runs).  0,81 N.A. 0,80 0,76 0,85 0,88 0,-7 6 0,83 0,78 0,96 0,96 0,76 0,82 0,83 0,73 N.A. 0,90 1 , 04 0,79 0,79 0,92 0,78 0,89 0,86 0,78 0,94  (B) 20  hrs.  0,81 N.A. 0,80 0,77 0,83 0,86 0,79 0,82 0,79 0,93 0,92 0,79 0,84 0,82 0,77 N.A. 0,88 0,93 0,80 0,80 0,89 0,78 0,83 0,84 0,83 0,87  2 0,86 N.A. 0,91 0,92 1 ,06 1 ,04 0,89 0,85 0,80 1,01 1 ,00 0,79 0,86 0,91 0,92 N.A. 1 ,24 1 ,45 1 ,00 0,81 1 ,02 0,84 0,99 0,93 0,83 1 ,02  20  hrs.  0,88 N.A. 0,91 0,94 1 ,03 1 ,00 0,92 0,82 0,82 0,96 0,95 0,82 0,88 0,90 0,94 N.A. 1,16 1 ,25 1,01 0,82 0,97 0,84 0,91 0,90 0,86 0,93  106  Table XXXIII a c c u m u l a t e d on the  Absolute error i n the t o t a l amount of iron t h e membranes (A) a n d t h e amount of i r o n lost feed stream (steady' state runs)  run num  volt  vely cm/sec  ppm iron  (A)  (B)  79 81 88 90 77 82 85 80 89 94 83 84 86 87  20 20 20 20 20 20 20 30 30 30 30 30 30 30  0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25  0,92 1,11 5,24 5,50 1 ,09 1,01 5,66 1 ,04 5,31 5,31 1 ,02 1 ,07 5,00 5,64  0,039 0,059 0,299 0,201 0 , 1 48 0,069 0,201 0,082 0,361 0 , 186 0,079 0,087 0,416 0,469  1 ,034 1 ,404 7,291 7 , 195 1 ,029 1 ,341 8,259 1 ,283 6,895 7 , 152 1,151 1 , 197 6,689 7,324  Table XXXIV Absolute error in the t o t a l amount of iron a c c u m u l a t e d on t h e membranes (mg.) (A) a n d t h e amount of i r o n l o s t in the f e e d (mg.) (B) (unsteady state runs) run num 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  volt  vely cm/sec  ppm iron  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  -1,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  (A)  0,2 0,3 1,0 0,9 1 ,4 0,7 1,7 1,8 0,5 0,2 0,2 2,8 1,0 2,2 2,1  (B)  N.A. 1,2 1 ,5 1,1 6,7 1,3 6,2 6,2 N.A. 1 ,6 1,2 6,7 1,4 6,0 6,2  1 07  T a b l e XXXV A b s o l u t e e r r o r s i n t h e v a l u e s of ionic s e l e c t i v i t i e s based on i r o n i n t h e d i a l y s a t e (A) and brine ( B ) s t r e a m s a t 2 a n d 20 h o u r s (steady state runs) run num  79 81 88 90 77 82 85 80 89 94 83 84 86 87  Table on  run num  41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  volt  20 20 20 20 20 20 20 30 30 30 30 30 30 30  vely cm/sec  ppm iron  2  0,50 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 0,50 0,50 0,50 1 ,25 1 ,25 1 ,25 1 ,25  0,92 1,11 5,24 5,50 1 ,09 1,01 5,66 1 ,04 5,31 5,31 1 ,02 1 ,07 5,00 5,64  0,080 0,074 0,065 0,081 0, 162 0,141 0 , 188 0,061 0,046 0,067 0,095 0,113 0,099 0,068  (A)  (B)  20 h r s . 0, 1 07 0,079 0,065 0,080 0,0 0, 1 55 0, 124 0,072 0,047 0,064 0,085 0, 149 0,095 0,114  2  20 h r s .  0,036 0,026 0,036 0,017 0,045 0,044 0,059 0,045 0, 187 0, 170 0, 1 36 0,115 0, 1 67 0, 167 0,034 0,015 0,034 0,023 0,039 0,010 0,085 0,025 0,085 -0,006 0,113 0,068 0,082 0,051  XXXVI A b s o l u t e e r r o r in the iron s e l e c t i v i t y based the dialysate (A) a n d b r i n e (B) streams a t 2 a n d 20 h o u r s ( u n s t e a d y s t a t e runs) volt  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  vely cm/sec  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  ppm iron  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 . 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  (A)  (B)  20 h r s .  2  20 h r s .  N.A.  N.A.  N.A.  N.A.  0,046 0,048 0,034 0,043 0,054 0,052 0,052  0,043 0,049 0,035 0,047 0,052 0,093 0,063  0,001 0,054 -0,003 -0,017 -0,024 -0,019 -0,005  0,005 0,007 -0,000 -0,009 -0,005 -0,002 -0,012  N.A.  N.A.  N.A.  N.A.  0,042 0,044 0,045 0,041 0,047 0,046  0,042 0,045 0,046 0,044 0,075 0,046  0,007 -0,007 0,008 0,072 -0,019 -0,000  -0,008 -0,023 -0,021 0,019 -0,022 -0,016  108  Table XXXVII Absolute error in the e f f i c i e n c i e s a t 2 a n d 20 h o u r s ( s t e a d y run num  67 91 71 79 81 88 90 65 75 73 77 82 85 66 70 92 80 89 94 68 74 76 83 84 86 87  volt  vely cm/sec  20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30  0 50 0 ,50 0 ,50 0 ,50 0 50 0 50 0 50 1 25 1 25 1 25 1 25 1 25 1 25 0 50 0 50 0 50 0 50 0 50 0 50 1 25 1 25 1 25 1 25 1 25 1 25 1, 25 r  ppm iron  0 0 0 0 0 ,0 0 92 1, 1 1 5 24 5 50 0 0 0 0 0 0 1 09 1 01 5 66 0 0 0 0 0 0 1 04 5 31 5 31 0 0 0 0 0 0 1 02 1 07 5 00 5 , 64  current state runs).  (A)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o, o, o, o, o, o, o, o, o,  023 025 028 031 023 024 028 057 049 040 044 049 053 020 022 021 021 019 023 038 028 041 030 034 037 036  (B)  0,024 N.A.  0,027 0,028 0,024 0,024 0,026 0,055 0,045 0,041 0,044 0,050 0,050 0,020 0,022 N.A.  0,020 0,019 0,021 0,037 0,030 0,038 0,031 0,035 0,035 0,037  109  Table  XXXVIII at 2 and run num 41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  Percent error in current 20 h o u r s ( u n s t e a d y s t a t e  efficiency runs).  volt  vely cm/sec  ppm iron  (A)  (B)  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  2,599 N.A. 2,679 2,595 N.A. 2,777 2,743 2,765 2,569 2,578 2,613 2,624 2,620 2,650 2,709  2,630 N.A. 2,709 2,636 N.A. 2,757 3,279 2,967 2,572 2,580 2,620 2,677 2,656 3,051 2,719  1 1 0  T a b l e XXXIX A b s o l u t e e r r o r s in the v a l u e s of ionic s e l e c t i v i t i e s b a s e d on s o d i u m i n t h e d i a l y s a t e (A) and b r i n e (B) s t r e a m s a t 2 and 2 0 h o u r s (steady state runs) run num  volt  vely cm/sec  ppm iron  (A) 2  2 0 hrs.  6 7  2 0  0  5 0  0  r0  0  1  91  2 0  0 , 5 0  0  r0  0  0 8 0  71  2 0  0  , 5 0  0  r0  0  0 9 8  7 9  2 0  0  , 5 0  0  , 9 2  0  0 7 9  81  2 0  0  , 5 0  8 8  2 0  0  5 0  9 0  2 0  0  6 5  2 0  1  7 5  2 0  1  7 3  2 0  7 7  2 0  1  8 2  2 0  1  2 5  1  01  8 5  2 0  1  2 5  5  6 6  6 6  3 0  0  5 0  0  0  7 0  3 0  0  5 0  0  0  9 2  3 0  0  5 0  0  0  r  3 2  (B) 2 0  2  hrs.  0 , 1 2 2  0  1 6 5  N.A.  0  1 1 0  0 , 0 9 9  0  1  0 ,  1 2 7  0 , 0 7 6  0  1 0 6  0 ,  1 0 3  0 ,  1 0 7  3 3  -  0 ,  1 9 5  N.A.  1 r 1 1  0  0 7 4  0 , 0 7 5  0  1  5  r 2 4  0  0 7 9  0 , 0 8 2  0  1 0 9  0 , 1 1 1  , 5 0  5  , 5 0  0  0 8 7  0 , 0 8 7  0  1  0 ,  2 5  0  , 0  0  2 9 1  0 , 3 2 3  0  5 7 5  0 , 3 4 2  2 5  0  rO  0  191  0 , 1 7 6  0  2 3 4  0 , 2 1 7  1 , 2 5  0  0  1  4 2  0 ,  1 6 2  0  1 8 0  0 ,  1 8 7  1  0 9  1  6 6  0 ,  1 6 4  0  1  0 ,  1 9 2  1 8 5  2 5  8 0  3 0  0  5 0  1  0 4  8 9  3 0  0  5 0  5  31  9 4  3 0  0  5 0  5  31  6 8  3 0  1  2 5  0  0  7 4  3 0  1  2 5  0  0  7 6  3 0  1  2 5  0  0  8 3  3 0  1  2 5  1  0 2  8 4  3 0  1,  2 5  1  0 7  8 6  3 0  1,  2 5  5 ,  0 0  8 7  3 0  1,  2 5  5 ,  6 4  o o, o, o, o, o, o, o, o, o, o, o, o, o, o, o, o, (  0 3  2 0  9 7  1 2 2  1 8 0  0 ,  0  2 0 9  0 , 2 1 3  2 0 3  0 , 2 1 0  0  2 5 3  0 , 2 7 9  1  0 ,  o,  1 3 9  0 ,  1 4 2  0 ,  1 0 6  0 6  1 0 5  0 7 5  0 , 0 8 2  0  1 0 6  0 6 3  N.A.  0  0 9 5  0 6 3  0 , 0 6 7  0  0 9 9  0 ,  0 6 1  0 , 0 6 5  0  1  0 5  0 , 0 9 8  0 7 3  0 , 0 7 1  2 9 2  0 , 3 4 7  101  0 ,  1 0 8  131  0 ,  1 3 2  1 0 0  0 ,  1 0 5  o, o, o, o, o, o, o, o,  1  19  0 , 1 3 9  1  2 8  0 ,  1 4 6  1  3 3  0 ,  1 5 5  N.A. 1 0 4  1 1 1  0 , 1 1 0  2 9 9  0 , 3 1 6  1  0 ,  3 3  1 3 7  1 7 4  0 ,  1 6 9  1  3 9  0 ,  1 4 3  1  5 3  0 , 1 7 1  1 5 9  0 ,  1 7 2  1  0 ,  1 6 5  6 3  111  Table  XL Absolute e r r o r in the sodium s e l e c t i v i t y based on t h e d i a l y s a t e (A) a n d b r i n e (B) c h a n n e l s a t 2 a n d 20 h o u r s ( u n s t e a d y s t a t e runs)  run num  volt  41 30 38 39 32 34 35 43 40 31 42 33 36 37 44  20 20 20 20 20 20 20 20 30 30 30 30 30 30 30  vely cm/sec 1 ,25 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 5,00 1 ,25 1 ,25 1 ,25 1 ,25 5,00 5,00 • 5,00  ppm i ron  2  0,0 0,85 0,97 0,68 4,78 0,99 4,68 4,66 0,0 1 ,03 0,92 4,73 0,87 4,61 4,68  0,042 0,044 0,046 0,042 0,042 0,049 0,049 0,049 0,041 0,041 0,043 0,043 0,043 0 ,044 0,046  (A) 20  1  hrs.  0,043 0,043 0,047 0,044 0,045 0,048 0,073 0,057 0,041 0,041 0,043 0,045 0,044 0,061 0,047  2 0,078 0,052 0,076 0,078 0,072 0,089 0,079 0,085 0,077 0,073 0,076 0,074 0,078 0,080 0,086  (B) 20  hrs.  0,081 0,069 0,081 0,081 0,070 0,089 0,099 0,093 0,075 0,074 0,078 0,083 0,082 0,098 0,090  112  APPENDIX  Calculation  A  Ra + Rc  fractional  calculate for  of  both  the the  +  A  Rp  demineralisation  second dilute  stage and  (cell  brine  formula  B)  was  entrance  used  to  concentration  streams.  (1-Ft)  =  (1-Fs)'  )  where; Ft  =  total  Fs  =  fractional  n The and  =  number  log-mean outlet  the 1942)  to  streams,  of  sodium  was  extended  fractional  demineralisation,  demineralisation  per  stages, chloride  calculated  concentration  for  both  streams  Onsager-Shedlovsky equation  calculate  stage,  the  equivalent  between and  the  inlet  inserted  into  (Gunning  and  conductivity  of  Gordon both  since: Rd, b  =  (1/Kd,b)•d/A  where; A  =  u s e f u l or e f f e c t i v e a r e a for ionic transfer b a s e d on one c e l l . i e . t o t a l area is 62,87 cm , mesh a r e a 2 4 , 6 9 cm and A = 38.18 c m . 2  2  and  2  : Kd,b  = j\a,b  Cd,b  /1000  / \ = equivalent c a l c u l a t e d by t h e  conductivity (in Ohms" cm equiv extended Onsager-Shedlovsky equation.  Cd,b = equiv.  dialysate,  log-mean per l i t r e .  1  brine  2  concentration  -  1  )  in  1 13  APPENDIX  data  The  errors  were  as  involved  in  measurements  Sodium  concentrations  Temperature  determination  of  ±0.05% ±1.0% ±1.0% ±0.5%  state  ±1.0%  measurements  ±0.2%  Pressure  ±0.05  drop  were  resistances  measured  Multimeter. measurement  unsteady  state, plots  recorder of  ±0.0025  2)  Current  The  cm.  Measurements  three  Keithly  to In  the  was  the  produced  used  within  read  on  a  cm.  (1  thou.)  the mOhms  state  the  errors Mosely  Textronics  in  added  the  using error  However,  digitizing  Autograph  d i g i t i z e r ,  resolution  (±0,053%)  process  (0,05+0,053).  combined by  in  ±0,05  steady  ±0,1%  the  to  a  in the  time-  strip  having up  in  a  chart  resolution  ±0.5%.  Density  actual  area to  the  for  obtained  due  channels.  It  was  noticed  that  the  mesh 'had  fouling  the  ±0.1%  A l l  current  of  pH m e a s u r e m e n t s  Current  current  measurement  state  :Unsteady  current  direct  concentrations  Flowrates:Steady  1)  the  follows:  Voltage  Iron  B  current  accumulation in a  both shadow  transfer of  fouling  processes effect  on  could  not  be  in  the  deposits for the  runs current  with flow  114  (see  Fig  33  5,40  cm.  long  membrane's 24,69  cm , 2  transfer  B)).  surface; and  area  since used  measurement  ±2.02  cm .  the  was  of  to  38,18  extended  cm .  in  was  0,0635  was  give  cm ,  the  to  the  2  a  O.D.,  with  found  relative  to  cm.  contact  62,87  The  2  ,  be  actual  errors,  total  in  error  of  of  the  the  error  calculated  in  by  Errors  combining in  resulting  3)  Factor  was  error  involved  ±2,0%  separation  ±5,4%  i  (0,1+5,3)  and  obtained  from  and  XXXI.  of  approx.  the  were  The  ±1,0% and total  error  was  d,  an  calculating  programmed  error  in and  separation  of  the  was  ions  and  ±7,7% were  desalted, in  current  ±1,6%.  separation  the can  1942),  efficiency  error  the  deviation  Gordon  in  ±0,1%  in  Errors  and  current  a  percent  ±2,0%  the  a ,±0,02%  iXdX(1/Kd+1/Kb)  in  (1,0+1.0).  factor  in  had  (Gunning  the  flowrates,  measurements, Separation  of  iXdX(1/Kd+1/Kb),  equation  measurements  calculating  error  of  equivalent-conductivity  (5,4+1,25+1,02).  The  error  Onsager-Shedlovsky  experimental  ±0,5%  an  value  (0,002/0,159).  from  error  72  area  area  combined  the  have  ±1,25%  values  XXX  shadow  total  were  had  strands  the  determining  calculated  Ns  spacer  2  In  The  typical  polyethylene  each  error  A  be  based  percent found on  in  sodium  factor drop  in.  Tables had  an  115  4)  Power  In power  requirements  the  steady  state  requirements  per  (0,05+0,1),  and  total  ±0,65%.  being In  current  the was  the  l i t r e  flowrate  unsteady approx. was  a  built  error  of  error  dialysate  the  Since  (1,0+0,05) into  the  measurement  state  ±1,0%.  determination ±0,5%  process  the  ±1,05%.  determining  produced error  error  P=IV  in  in  was  was  the  ±0,15%  ±0,5%,  time  average  the  error  in  This  error  combined  recorder  giving  a  this  total  the  power with  error  of  ±2,05%. 5)  Calculation  The  total  (0,05+0,1), error  of  Iron  that  for  the  percent  (Tables  bulk  ±6,34%.  readings  based the  sample  error  of  the  And  see  had  solution the  an  resistances  total  computer  error  error  program  in  of each  this  and  ±0,15%  Table  had  term  an was  XXXII.  Accumulation  measuring  the  resistance  accordingly  ±1,0%  ±1,24%  stack  approx.  For were  (Ra+Rc+Rp)  while  calculated 6)  of  can  XXXIII,  iron  the  iron  be  of  the  the  test  expected  in  based  iron  lost  XXXIV).  membranes  errors  determinations,  section  separation  the  on  in  on  the  these was  feed  and  involved ±0.24%  membrane. values. taken as  a  The  Hence  a  error  in  as . ±2,0%  maximum  in  of  and ±2,0%  1 16  APPENDIX Input values handling the data processes.  for both from the  M  =  the  number  of  sample  N  =  the  number  of  sodium  RUNNUM PPMF  = Parts  NVOLTS VELY  = The  actual per  = voltage  = bulk  run  FORTRAN p r o g r a m s steady s t a t e and  (#1 a n d 2 ) unsteady state  times determinations number  found  million  sodium  accross  the  stream  C  per  in  run,  the  chloride  laboratory  in  feed  velocity  PPMCA = C a l i b r a t i o n membranes (mg.)  CAL  the  determination  at  a  = Sodium c a l i b r a t i o n s  at  100,  = The  sodium  TIME  = The  time  AMV  for  transmittance  NORD  = The  at  sampling which  m i l l i v o l t  current  VSTACK = The (volts)  stack  T60CC = The t o t a l amount Volumeric flask (sec) pH  = The  value  of  pH  of  iron  1000  sample of  consumption  voltage  of  in  the  iron  in  the  concentration  and  5000  ppmNaCl.  order  the  reading  given  the  PRESSDF = The p r e s s u r e d i f f e r e n c e d i a l y s a t e streams (inch Hg.) CUR = T h e (mA.)  stream  c e l l ,  V , S I G M A , L A M B O , B C O N D a n d DCOND = a r e p a r a m e t e r s extended Onsager-Shedlovsky equation  TRCAL = The (PPMCAL)  books  as  of  was  sodium across  both  measured  time  taken electrode the  stages  by  required  the  to  brine  and  Pt.  f i l l  (mv.) and  the  total  Probes  a  60  cc.  1 17  FETR  = The  measured  iron  transmittance  SOLCAL a n d SOLTR = The c o n c e n t r a t i o n the d e t e r m i n a t i o n s of i r o n c o n t a i n e d %transmittance respectively) TEMPER  = The  solution  percent transmittace membrane  TRBANI = The the c a t i o n i c  percent transmittance membrane.  computer  programs  RUNNUM  = The  NVOLTS  = Voltage  VELY  fluid  PPM  = =  Iron  VSOLP Vsp  actual  = The  VSTACK  drop  total  = The  in  in  per  stack  = The  =  the  DELNS  =  Percent  TMFE over  amount  of  drop  of  dissolved  the  iron  dissolved  output  in  volts  in  feed  ppm.  the  bulk  solution  c e l l  pair  (volts)  (Ra+Rc+Rp)  (volts  across  factor  iron in  the  following  the  iron  from  from  values;  D.  C.  (volts)  (Ohms).  D.C.) brine  or  dialysate  l i t r e  accumulated  separation  of  dialysate  (mg.)  factor  (%)  = The t o t a l amount of i r o n a c c u m u l a t e d the d u r a t i o n of the run (mg.)  AMLOST = The amont of i r o n d u r a t i o n of a run (mg.)  stream  (-)  PLITRE = The power r e q u r e m e n t s per produced ( j o u l e s / l i t r e per cell) TOTAL  and t r a n s m i t t a n c e for in a stream (PPM. And  cm/sec  voltage  separation  of  c e l l  resistances  PRESDF = P r e s s u r e d r o p (cm. Hg.) SEPF  the  a c c r o s s the  drop  sample  number  concentration  = Voltage  RACP  had  run  velocity  = Voltage  a  temperatures  TRBCAT = The the c a t i o n i c  Both  of  lost  in  the  feed  on  the  stream  membranes  over  the  118  FE  =  The  percent  iron  separated  NA  = The  percent  sodium  CE  =  The  current  CE  = The  current  per  separated  stream  per  (%)  stream  (%)  efficiency efficiency  at  2 and  20  hours  ERRACP  = The  absolute  error  in  the  value  of  (Ra+Rc+Rp)  ERRTFE  = The  absolute  error  in  the  value  of  TOTAL  ERRDLN  = The  absolute  error  in  the  value  of  SEPF  (-)  ERRTMF  = The  absolute  error  in  the  value  of  TMFE  (mg.)  ERRAML  = The  absolute  error  in  the  value  of  AMLOST  SELNA  = The  sodium  selectivity  (-)  SELNA  = The  sodium  selectivity  per  SELFE  =  iron  ESENA  = The  absolute  error  in  the  value  of  SELNA  (-)  ESEFE  =  absolute  error  in  the  value  of  SELFE  (-)  PH = The hours.  pH  of  selectivity  the  dialysate  the  per  value  of  stream  stream  and  CE the  (mg.)  absolute  The  in  (mg.)  ERRCE = The efficiency  The  error  brine  (Ohms)  current  (-) (-)  streams  at  2 and  20  P r o g r a m number 3 r e a d the d i g i t i z e d v a l u e s of the potential d r o p a c c r o s s a r e s i t o r as a f u n c t i o n of time and gave the power consumption per c y c l e for the top b a t t e r y , the bottom b a t t e r y , and a l l the ' c e l l s combined. These results w e r e t h e n i n s e r t e d i n t o t h e d a t a f i l e o f p r o g r a m #2. The input and output v a l u e s are as follows; RUNNUM = T h e VOLTS PPM  actual  = Voltage  = The  sodium  VELY = L i n e a r (cm/sec.)  run  accross  number the  electrodes  concentration  fluid  velocity  in  in  the  the  in feed  c e l l  volts  D.C.  (ppm.) compartment  119  ITEM = The the top or N = The a n d N=3  s e c t i o n of the a p p a r a t u s drawing the c u r r e n t , bottom c e l l s , and the t o t a l apparatus.  i t e m n u m b e r f o r ; N=1 - Total apparatus.  WHEN = T i m e TIME1,2  =  at  Time  which  the  elapsed  CMV1,2 = P o t e n t i a l cells (mv. D.C.).  drop  data  during  Top  was a  accross  PTOT  = The  total  power  P(J) at;  = The  power  consumption  J=1 J=2 J=3 J=4  -  c e l l s ,  taken  cycle a  N=2  at  for  during  a  Bottom  2 and  20  hours.  a  in  series  given  segment  item of  the  I n i t i a l pause time Feed times and r e c y c l e Second pause time Second r e c y c l e .  ATOTTI  =  Total  cycle  FEEDCR  =  Current  time  in  consumption  'seconds. at  feed  c e l l s ,  (seconds).  resistor  consumption  -  ie.  time  (D.C.  Amp.)  with  the  (Watts). cycle  C C C  PROGRAM 1 PROGRAM TO TREAT DATA FROM THE STEADY  STATE  PROCESS  DIMENSION V ( 3 ) ,PPMCAL(3),CAL(3,3),NORD(4,3),TIME(3),AMV(4,3),PRESDF(26,2,3),CUR(3,3),VSTACK(26,2,3), T60CC(2,3),SOLCAL(3),S0LTR(3) DIMENSION D I A L ( 2 6 , 3 j , T E M P E R ( 3 ) , P H ( 2 6 , 2 , 3 ) , V E L O C ( 2 6 ) , F L O W ( 2 , 3 ) , X ( 3 ) , E R R A C P ( 2 6 , 2 , 3 ) , E R R A M L ( 2 6 ) . E R R C E ( 2 6 , 3 ) DIMENSION S I G M A ( 3 ) , B C 0 N D ( 3 ) , D C O N D ( 3 ) , T R C A L ( 3 ) , N V O L T S ( 2 6 ) , F E T R ( 3 , 3 ) , P P M F E ( 3 , 3 ) , P P M ( 2 6 ) , S E P F ( 2 6 , 3 ) , A C C N A ( 2 6 , 3 ) , CE(26,3),PERCE(26) ,FE(26,2,3) DIMENSION V E L Y ( 2 6 ) , A L M D ( 2 , 3 ) , A L M B ( 2 , 3 ) , S P D I A L ( 3 , 3 ) , S P B R I N ( 3 , 3 ) , C U R D E N ( 3 ) , R A C P ( 2 6 , 2 , 3 ) , V S L O P ( 2 6 , 2 , 3 ) . T O T A L ( 2 6 ) , AML0ST(26) DIMENSION E L E C T R ( 2 6 , 3 ) , V S P ( 3 ) , P L I T R E ( 2 6 , 3 ) , V S O L P ( 2 6 , 2 , 3 ) , S E L N A ( 2 6 , 2 , 3 ) , S E L F E ( 2 6 , 2 , 3 ) , E S E F E ( 2 6 , 2 , 3 ) , E S E N A ( 2 6 , 2 . 3 ) INTEGER RUNNUM(26),PPMF REAL I N T E R , N A C L ( 3 , 3 ) , L A M B O ( 3 ) , N A ( 2 6 , 2 , 3) NUM=0 AAA=0.0 C 9 10 11 12 14 16 18 19 20  FORMAT ( 6 F 8 . 4 ) FORMAT ( F 8 . 4 . 6 F 5 . 1 ) FORMAT ( 3 F 5 . 1) FORMAT ( 2 1 5 , 1 3 , 1 4 , 1 2 , F 6 . 4 ) FORMAT (412) FORMAT ( F 8 . 4 , 4 F 5 . 1 , 3 F 6 . 1 , 2 F 6 . 2 , 2 F 5 . 1 ) FORMAT ( 2 F 6 . 2 . 4 F 6 . 3 . 3 F 5 . 1 ) FORMAT ( 3 F 6 . 2 ) FORMAT ( 2 F 5 . 1 )  C DO 25 1=1,3 R E A D ( 5 , 9 ) V(I ) ,SIGMA(I),LAMB0(I),BCOND(I),DCOND(I ) 25 CONTINUE READ(5,9) (PPMCAL(K),K=1,3),(TRCAL(K),K=1,3) 30 NUM=NUM+1 I F ( N U M . E Q . 2 7 ) GOT0800 R E A D ( 5 , 1 2 ) M.N.RUNNUM(NUM),PPMF,NVOLTS(NUM),VELY(NUM) C 35  SUMX=0.0 SUMY=0.0 SUMXY=0.0 SUMX2=0.0 IF(LSF.EO-1)GOT0700  C DO 40 d= 1 , 2 READ(5,11) (CAL(K,J),K=1,3) 40 CONTINUE C DO 45 J = 1 , M READ(-5,14) (NORD(K.d),K=1 ,4) 45 CONTINUE  C R E A D ( 5 , 10) T I M E ( 1 ) , ( AMV(K, 1 ) , K = 1 , 4 ) , ( P R E S D F ( N U M , K , 1 ) , K = 1 , 2 ) DO 70 d = 2 , M READ(5,16) TIME(J),(AMV(K,J),K=1,4),(CUR(K,J),K=1,3),(VSTACK(NUM,K,d),K=1,2),(PRESDF(NUM,K,d),K=1,2) 70 CONTINUE DO 74 d=1 ,M R E A D ( 5 , 18) ( T 6 0 C C ( K , d ) .K=1 , 2 ) , ( P H ( N U M . K . d ) , K = 1 , 4 ) , ( F ETR (K , d ) , K = 1 , 3 ) 74 CONTINUE IF(RUNNUM(NUM) . L T . 7 7 . O R . R U N N U M ( N U M ) . E O . 9 1 . OR . RUNNUM(NUM).EQ.92)G0T078  ro °  78 81  READ(5,9) (SOLCAL(K),K=1,3),(SOLTR(K),K=1 READ(5.19) (TEMPER(d),d=1,3) IF (RUNNUM(NUM)-77) 8 2 , 8 1 , 8 1 R E A D ( 5 , 2 0 ) TRBCAT,TRBANI  ,3)  C 82  85 86 C C C  DO 86 K= 1 ,2 DO 85 d=1,3 PRESDF(NUM,K,J)=PRESDF(NUM,K,J)*0.1 CONTINUE CONTINUE  NA CONCENTRATION WITH DRIFT  ELECTRODE CORRECTIONS  DO 148 L=1 , 3 DO 146 d=1 ,M DO 130 K = 1 , 3 X ( K ) = ( ( C A L ( K , 2 ) - C A L ( K , 1 ) ) * ( N O R D ( L , J ) * 1 . 0 ) / ( N * 1 . 0 ) ) + C A L ( K , 1) 130 CONTINUE IF (AMV(L,d)-X(2))131,132,132 131 B B B = ( ( 3 . * X ( 1 ) ) - ( 2 . * X ( 2 ) ) ) / ( X ( 1 ) - X ( 2 ) ) SL0PE=(3.0-BBB)/X(2) AAA=(SLOPE*AMV(L,d))+BBB GO TO 144 132 B B B = ( ( 3 . 6 9 8 9 7 * X ( 2 ) ) - ( 3 . * X ( 3 ) ) ) / ( X ( 2 ) - X ( 3 ) ) SL0PE=(3,0-BBB)/X(2) AAA=(SLOPE*AMV(L,d))+BBB 144 NACL(L,J)=(10**AAA)/58440.0 146 CONTINUE 148 CONTINUE  ro  C  160 170  DO 170 d= 1 , 3 DO 160 K=1,2 FLOW(K,d)=0.06/T60CC(K,d) CONTINUE CONTINUE  180  I F ( RUNNUM(NUM).LT.77.OR.RUNNUM(NUM).EO.91.OR.RUNNUM(NUM).EO.92)GOTO DO 180 K= 1 , 3 SUMX=SOLCAL(K)+SUMX SUMY = A L O G 1 0 ( S O L T R ( K ) ) + 5UMY SUMXY=(AL0G10(S0LTR(K))*SOLCAL(K))+SUMXY SUMX2=(S0LCAL(K)**2.)+SUMX2 CONTINUE  C  C  185 190 195  SLOPE=((SUMY*SUMX)-(3.*SUMXY))/((SUMX**2 . )-(3.*SUMX2)) INTER=(SUMY-(SLOPE*SUMX))/3. DO 190 1=1,3 DO 185 d=1,3 I F ( F E T R ( I , d ) . E Q . 0 0 . 0 ) G O T O 185 PPMFE(I,d)=(AL0G10(FETR(I,d))-INTER)/SLOPE IF(PPMFE(I,d).GT.0.0)GOTO185 PPMFE(I,d)=0.001 CONTINUE CONTINUE GOTO 198 DO 197 1=1,3  195  DO 196 J = 1 , 3 PPMFE(I,J)=0.O 196 CONTINUE 197 CONTINUE 198 P P M ( N U M ) = P P M F E ( 2 , 1 ) C A L C U L A T I O N OF NA MATERIAL BALANCE AND SEPARATION FACTOR DO 200  d = 2,M  Z = N A C L ( 2 , d ) * ( F L O W ( 1 , J ) + FLOW( 2 , J ) ) * 6 0 . O U=((NACL( 1 , d ) * F L O W ( 1 , d ) ) + (NACL(3,d)*FLOW( 2 , d ) ) ) * 6 0 . 0 SEPF(NUM,d)=NACL(3,d)/NACL(1,d) ACCNA(NUM,d)=(Z-U) CURRENT  E F F I C I E N C Y BASED ON NACL AND IRON  TOTNA = ( N A C L ( 3 , d ) - N A C L ( 1 , d ) ) / 2 . CE(NUM,d)=T0TNA*FL0W(2,d)*96487.* 1000./(6.5*CUR(3,d)) ERRCE(NUM,d)=CE(NUM,d)*((((NACL(3,d )+NACL(1,d))*0.01)/(NACL(3,d)-NACL(1,d)))+0.006) 2 0 0 CONTINUE PERCE(NUM)=(CE(NUM,2)-CE(NUM,3))*100./CE(NUM,2) 400 CONTINUE A F E = ( P P M F E ( 2 , 1 ) - P P M F E ( 2 , 3 ) ) * 8 1 .81 T 0 T F E = P P M F E ( 2 , 1 ) *8 1 .81 C A L C U L A T I O N OF SODIUM AND IRON S E L E C T I V I T I E S DO 610  501  d=2,M  I F ( P P M F E ( 2 , d ) . E Q . O . O ) GOTO 501 FE(NUM, 1,d) = ( P P M F E ( 2 , d ) - P P M F E ( 1 , d ) ) * 1 0 0 . / P P M F E ( 2 , d ) F E ( N U M , 2 , d ) = ( P P M F E ( 3 , d ) - P P M F E ( 2 , d ) ) * 100.O/PPMFE ( 2 , d ) NA(NUM, 1 , d ) = ( N A C L ( 2 , d ) - N A C L ( 1 , d ) ) * 1 0 0 . 0 / N A C L ( 2 , d) N A ( N U M , 2 , d ) = ( N A C L ( 3 , d ) - N A C L ( 2 , d ) ) * 1 0 0 . O / N A C L ( 2 , d) C A L C U L A T I O N OF SODIUM AND IRON S E L E C T I V I T I E S  DESFE=(PPMFE(2,d)-PPMFE(1,d))*2./55847.0 I F ( P P M F E ( 2 , d ) . E O . O . O . O R . P P M F E ( 2 , d ) . E Q . P P M F E ( 1 , d ) ) GOTO 510 EFE=(PPMFE(2,d)+PPMFE(1,d))*0.01/(PPMFE(2,d)-PPMFE(1,d)) GOTO 515 510 E F E = 0 . 0 515 DESNA = N A C L ( 2 , d ) - N A C L ( 1 , d ) E N A = ( N A C L ( 2 , d ) + N A C L ( 1 , d ) ) * 0 . 0 1 / ( N A C L ( 2 , d ) - N A C L ( 1,d)) DESTOT=DESNA+DESFE ETOT=((EFE*DESFE)+(ENA*DESNA))/DESTOT FEEDFE=PPMFE(2,d)*2./55847.0 T0TC0N=NACL(2,d)+FEEDFE SELNA(NUM, 1 , d) = ( D E S N A / D E S T 0 T ) / ( N A C L ( 2 , d ) / T O T C O N ) ESENA(NUM,1,d)=(ENA+ET0T+0.01+0.01)*SELNA(NUM,1,d) I F ( P P M F E ( 2 , d ) . E Q . O . O ) GOTO 520 S E L F E ( N U M , 1 , d ) = ( D E S F E / D E S T O T ) / ( F E EDFE/TOTCON) E S E F E ( N U M , 1 , d ) = ( E F E + E T O T + 0 . 0 1 + 0 . 0 1 ) * S E L F E ( N U M , 1 , d) GOTO 525 520 S E L F E ( N U M , 1 , d ) = 0 . 0 SELECTIVITY  BASED ON CONC STREAM  525  530 535  607 610  DESFE=(PPMFE(3,d)-PPMFE(2,d))*2./55847.0 I F ( P P M F E ( 2 , d ) . E Q . O . O ) GOTO 530 EFE = ( P P M F E ( 3 . d ) + P P M F E ( 2 , J ) ) * 0 . 0 1 / ( P P M F E ( 3 , d ) - P P M F E ( 2 GOTO 535 EFE=0.0 DESNA=NACL(3,d)-NACL(2,d) ENA=(NACL(3,d)+NACL(2,d))*0.01/(NACL(3,J)-NACL(2,d)) DESTOT=DESNA+DESFE ETOT=( ( E F E * D E S F E ) + ' ( E N A * D E S N A ) ) / D E S T O T SELNA(NUM,2,J ) = (DESNA/DESTOT)/(NACL(2,J)/TOTCON) E S E N A ( N U M , 2 , J ) = ( E N A + E T O T + 0 . 0 1 + 0 . 0 1 ) * S E L N A ( N U M , 2 , <J) I F ( P P M F E ( 2 , J ) . E Q . O . O ) GOTO 607 SELFE(NUM,2, d)=(DESFE/DESTOT)/(FEEDFE/TOTCON) ESEFE(NUM,2,d)=(EFE+ET0T+O.01+0.01)*SELFE(NUM,2,d) GOTO 610 SELFE(NUM,2,d)=0.0 CONTINUE  . d))  CALCULATION OF LOG MEAN CONCENTRATIONS IN BOTH STAGES  611  DO 61 1 d = 2 , 3 AAAA=1.-SQRT( 1 . - ( ( N A C L ( 2 , J ) - N A C L ( 1 , d ) ) / N A C L ( 2 , d ) ) ) I F ( A A A A . E Q . 1 . ) G O T O 611 F = N A C L ( 1 , d ) / ( 1 . -AAAA) ALMD ( 2 , d ) = ( F - NACL ( 1 , ij ) ) / A LOG ( F / N A C L ( 1 , d) ) ALMD(1,d)=(NACL(2.d)-F)/AL0G(NACL(2,d)/F) AAAA= 1 . - S Q R T ( 1 . - ( ( N A C L ( 3 , d ) - N A C L ( 2 , d ) ) / N A C L ( 2 , d))) F = NACL(3,d)/(1 .-AAAA) ALMB(1,d)=(NACL(2,d)-F)/ALDG(NACL(2,d)/F) ALMB(2,d) = ( F - N A C L ( 3 , d ) ) / A L O G ( F / N A C L ( 3 , d)) CONTINUE C A L C U L A T I O N OF DIALYSATE CONDUCTIVITY IN MOHS BY THE EXTENTED ONSAGER-SHEDLOVSKY EQUATION  DO 619 d=2,3 IF(TEMPER(d)-25.0) 614,614,615 614 L=1 T= 15 . 0 GOTO 616 615 L=2 T = 25 . 0 616 DIFTEM=(TEMPER(d)-T)/10.0 V I N T = ( D I F T E M * ( V ( L + 1 ) - V ( L ) ) ) + V ( L) SIGINT=(DIFTEM*(SIGMA(L+1)-SIGMA(L)))+SIGMA(L) LAMINT=(DIFTEM*(LAMBO(L+1)-LAMBO(L)))+LAMBO(L) BC0INT=(DIFTEM*(BC0ND(L+1)-BCOND(L)))+BCOND(L) DCOINT=(DIFTEM*(DC0ND(L+1)-DCOND(L)))+DCOND(L) DO 617 K=1,2 A=LAMINT+(BCOINT*ALMD(K,d))+(DCOINT*ALMD(K,d)*ALOG10(ALMD(K,d))) EQCOND=(A*(1.-(VINT*SQRT(ALMD(K,d)))))-(2.*SIGINT*SQRT(ALMD(K,d))) SPDIAL(K,d)=EQCOND*ALMD(K,d)/1000.0 A=LAMINT+(BCOINT*ALMD(K,d))+(DCOINT*ALMD(K,d)*ALOG10(ALMD(K,d))) E Q C O N D = ( A * ( 1 . - ( V I N T * S Q R T ( A L M D ( K , d ) ) ) ) ) - ( 2 . * S I G I N T * S Q R T ( A L M D ( K , d))) SPBRIN(K.d)=EQCOND*ALMB(K,d)/1000.0  617 CONTINUE 619 CONTINUE PLOT OF VOLTS PER CELL  PAIR VERSUS CURRENT DENSITY/CONDUCTIVITY  DO 630 K = 1 , 2 DO 620 J = 2 , 3 C U R D E N ( d ) = C U R ( 3 , J ) * . 0 0 1 / ( ( 3 . 8 1 * 3 3 . 0 ) - 3 7 . 88 ) IF(RUNNUM(NUM).E0.91.OR.RUNNUM(NUM).EO.92)GOT0620 RB=.9525/(SPBRIN(K,d)*38.18) RD= . 9 5 2 5 / ( S P D I A L ( K , d ) * 3 8 . 18) CURD=CUR(K,d)*0.001/38.18 RTOT=VSTACK(NUM, K , d ) * 1 0 0 0 . / C U R ( K , J ) RACP(NUM,K,d)=RTOT-RB-RD ERRACP(NUM,K,d)=(RTOT*0.0015)+((RB+RD) *0.063) VSOLP(NUM,K,d)=CURD*0.159*((1./SPDIAL(K.d))+(1./SP8RIN(K,d))) 620 CONTINUE 6 3 0 CONTINUE IRON DEPOSIT ON TEST MEMBRANE LEAST  SQUARES F I T  IN  CELL B  ON CALIBRATION  I F ( P P M F E ( 2 . 1 ) . N E . 0 . 0 ) G 0 T 0 650 TOTMGB=0.0 GOTO 730 650 LSF=1 G0T035 700 DO 710 K = 1 , 3 SUMX=PPMCAL(K)+SUMX SUMY=AL0G1O(TRCAL(K))+SUMY SUMXY=(PPMCAL(K)*AL0G1O(TRCAL(K)))+SUMXY SUMX2=(PPMCAL(K)**2.)+SUMX2 710 CONTINUE SLOPE = ( ( S U M Y * S U M X ) - ( 3 . * S U M X Y ) ) / ( ( S U M X * * 2 . ) - ( 3 . * S U M X 2 ) ) FEINT=(SUMY-(SLOPE*SUMX))/3 .  711 712 714 715  PPMCAT=(ALOG10(TRBCAT)-FEINT)/SLOPE PPMANI=(ALOG10(TRBANI)-FEINT)/SLOPE I F ( P P M C A T ) 7 1 1 ,71 1 ,712 PPMCAT=0.0 IF(PPMANI)714,714,715 PPMANI=0.0 TOTAL(NUM) = (PPMCAT+PPMANI)*2 . 1 5 0 * 0 . 1 AML0ST(NUM)=(PPMFE(2,1)-PPMFE(2,3))*81.81 ERRAML(NUM)=AMLOST(NUM)*((PPMFE(2,1)+PPMFE(2,3))*0.01)/(PPMFE(2,1)-PPMFE(2,3)) LSF=0 POWER CALCULATIONS  730  DO 750  d=2,M  TOTPOW=(CUR(1,d)+CUR(2,d))*NVOLTS(NUM)/((FLOW(1,d)+ FLOW(2,d))* 1000.0) STKPOW=((CUR(1,d)*VSTACK(NUM,1,d))+(CUR(2,d)*VSTACK(NUM.2,d)))/((FLOW(1,d)+FLOW(2,d)) E L E C T R ( N U M , d ) = (TOTPOW-STKPOW)* 100.0/TOTPOW PLITRE(NUM,d)=TOTPOW/2.0 750 CONTINUE  762  DO 762 d=1 , 3 DIAL(NUM,0) = N A C L ( 1 , J ) * 5 5 4 4 0 . 0 CONTINUE  C GOT030 C C C  PRINTING OF RESULTS 800  805 810  812 815  820  825  830  835  840  843  845  850  DO 810 NUM=1,26 DO 805 <J = 2 , 3 VSP(J)=VSTACK(NUM,1,d)/6.5 CONTINUE PRINT 1001,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),VSOLP(NUM, 1 , 2 ) , V S P ( 2 ) , V S O L P ( N U M , 1 , 3 ) , V S P ( 3 ) CONTINUE PRINT 1500 DO 815 NUM=1,26 DO 812 d = 2 , 3 VSP(J)=VSTACK(NUM,2.U)/6.5 CONTINUE PRINT 1002,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),VSOLP(NUM , 2 , 2) , VSP ( 2 ) , V S O L P ( N U M , 2 , 3 ) , V S P ( 3 ) CONTINUE PRINT 1500 DO 820 NUM=1,26 PRINT 1003,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM) , VSTACK(NUM, 1 , 2 ) , R A C P ( N U M , 1 , 2 ) , V S T A C K ( N U M , 1 , 3 ) , R A C P ( N U M , 1 , 3 ) CONTINUE PRINT 1500 DO 825 NUM=1,26 PRINT 1004,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),VSTACK(NUM, 2 , 2) , R A C P ( N U M , 2 , 2 ) , V S T A C K ( N U M , 2 , 3 ) , R A C P ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 830 NUM=1,26 PRINT 1005,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),PRESDF (NUM, 1,2) .PRESDF (NUM, 1,3) CONTINUE PRINT1500 DO 835 NUM= 1 ,26 PRINT 1 0 0 6 , R U N N U M ( N U M ) , N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) . P R E S D F ( N U M , 2 , 2 ) , P R E S D F ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 840 NUM=1,26 PRINT 1 0 0 7 , R U N N U M ( N U M ) . N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , S E P F ( N U M , 2 ) , P L I T R E ( N U M , 2 ) , S E P F ( N U M , 3 ) , P L I T R E ( N U M , 3 ) CONTINUE PRINT 1500 DO 843 NUM=1,26 PRINT 1 0 1 5 , R U N N U M ( N U M ) , N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , D I A L ( N U M , 2 ) , PLITRE(NUM,2),DIAL(NUM,3),PLITRE(NUM,3) CONTINUE PRINT 1500 DO 845 NUM=1,26 DELNS=(SEPF(NUM,2)-SEPF(NUM,3))* 100.0/SEPF(NUM,2) PRINT1009,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),TOTAL(NUM),DELNS CONTINUE PRINT 1500 DO 850 NUM=1,26 TMFE = T O T A L ( N U M ) * 13. PRINT 1010,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),TMFE,AMLOST(NUM) CONTINUE PRINT 1500  855  860  865  870  875  880  885  890  895  900  901  902  1000 1001  DO 855 NUM=1,26 PRINT 1 0 1 1 , R U N N U M ( N U M ) . N V O L T S ( N U M ) , V E L Y ( N U M ) . P P M ( N U M ) , F E ( N U M , 1 , 2 ) , FE(NUM, 1 , 3 ) , F E ( N U M , 2 , 2 ) , F E ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 860 NUM=1,26 PRINT 1012,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),NA(NUM, 1 , 2 ) , N A ( N U M , 1 , 3 ) , N A ( N U M , 2 , 2 ) , N A ( N U M , 2 , 3 ) CONTINUE PRINT1500 DO 865 NUM=1,26 PRINT 1 0 1 3 , R U N N U M ( N U M ) , N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , C E ( N U M , 2 ) , C E ( N U M , 3 ) , P E R C E ( N U M ) CONTINUE PRINT 1500 DO 870 NUM=1,26 PRINT 1 0 0 4 , R U N N U M ( N U M ) . N V O L T S ( N U M ) , V E L Y ( N U M ) . P P M ( N U M ) , E R R A C P ( N U M , 1 , 2 ) , E R R A C P ( N U M , 1 , 3 ) , E R R A C P ( N U M , 2 , 2 ) , E R R A C P ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 875 NUM=1,26 DESNS=(SEPF(NUM,2)-SEPF(NUM,3))*100.O/SEPF(NUM,2) ERRDLN=DELNS*(((SEPF(NUM,2)+SEPF(NUM,3))*0.02/(SEPF(NUM;2)-SEPF(NUM,3)))+0.02) ERRDLN=(1,+(SEPF(NUM,3)/SEPF(NUM.2)))*0.02*100.0 ERRTFE=T0TAL(NUM)*0.0124 PRINT 1014,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM) , ERRTFE , ERRDLN CONTINUE PRINT 1500 DO 880 NUM=1,26 ERRTMF=T0TAL(NUM)*13*O.O124 PRINT 1014.RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),ERRTMF , ERRAML(NUM) CONTINUE PRINT 1500 D 0 r 8 8 5 NUM=1,26 PRINT 1014,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),ERRCE (NUM, 2 ) , E R R C E (NUM,3) CONTINUE PRINT 1500 DO' 890 NUM= 1 , 26 PRINT 1014,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),SE LNA (NUM , 1 , 2 ) , S E LNA(NUM, 1 , 3 ) , SELNA ( N U M , 2 , 2 ) , S E L N A ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 895 NUM=1,26 PRINT 1 0 1 4 , R U N N U M ( N U M ) . N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , S E L F E (NUM, 1 , 2 ) , S E L F E ( N U M , 1 , 3 ) , S E L F E (NUM, 2 , 2 ) , S E L F E ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 900 NUM =1,26 PRINT 1 0 1 4 , R U N N U M ( N U M ) . N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , E S E N A ( N U M , 1 , 2 ) , E S E N A ( N U M , 1 , 3 ) . E S E N A ( N U M , 2 , 2 ) , E S E N A ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 901 NUM=1,26 PRINT 1014,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM) , ESEFE(NUM , 1 , 2 ) , E S E F E ( N U M , 1 , 3 ) , E S E F E ( N U M , 2 , 2 ) , E S E F E ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 902 NUM =1,26 PRINT 1014.RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM).PH(NUM,1.2),PH(NUM,1,3),PH(NUM,3,2),PH(NUM,3,3) CONTINUE  FORMAT(' FORMAT('  ' ,2X,215,2F7.2,3X,4F12.4) ',2X,2I5,2F7.2,2(F8.3,F8.2))  1002 1003 1004 1005 1006 1007 1008 1009 1010 101 1 1012 1013 1014 1015 1500  FORMAT( ' ' ', 2X,215,2F7 .2,2(F8 .3,F8. 2 ) ) FORMAT(' ' ,2X,,215,2F7 .2,2(F8 .2,F8. 2 ) ) FORMAT( ' ' ,2X.,215,2F7 .2,2(F8 .2.F8. 2 ) ) FORMAT(' ' , 2X,215,2F7 , 2 , 2 ( F 8 .2)) FORMAT( ' ' , 2X,215,2F7 , 2 , 2 ( F 8 .2)) FORMAT(' ' ,2X,,215,2F7. 2 , 2 ( F 8 .3,F8. 0 ) ) FORMAT( ' ' , 2 X , 2 I 5 , 2 F 7 . 2 , 2 ( F 8 .3,F8. 0 ) ) FORMAT( ' ' . 2X,215,2F7. , 2,2(F8 2 ) ) FORMAT( ' ' , 2X,215,2F7. , 2.F8.2,, F8. 1) FORMAT(' ' ,2X,215,2F7. 2 , 4 ( F 8 ,. D ) FORMAT(' ' , 2 X , 2 I 5 , 2 F 7 . 2 , 4 ( F 8 . O ) FORMAT( ' ' , 2X 215,2F7. , 2 , 2 ( F 8 . 3) , F8.2) FORMAT( ' •' , 2 X , 2 I 5 , 2 F 7 .2 , 4 ( F 8 ..3)) FORMAT(' '' ,2X,215,2F7. 2 , 4 ( F 8 . 0 ) ) FORMAT( ' 1 '') STOP END  PROGRAM TO TREAT DATA  PROGRAM 2 FROM THE UNSTEADY STATE  PROCESS  DIMENSION S0LCAL(3),S0LTR(3),PPMTR(3,3),TESTM3(3),TESTM7(3),TIME(3),CAL(3,2),AMV(4,3),N0RD(4,3),FL0W(2,3), PH(15,4,3),PPMFE(3,3),SEPF(15,3),FEECUR(2,3) DIMENSION E R R C E ( 1 5 , 3 ) , E R R A M L ( 1 5 ) , S E L N A ( 1 5 , 2 , 3 ) , S E L F E ( 1 5 , 2 , 3 ) , E S E N A ( 1 5 , 2 , 3 ) , E S E F E ( 1 5 , 2 , 3 ) , C C ( 2 , 3 ) , P 0 W ( 3 ) , PPMCAL(3),TRCAL(3) ,PTR3(3),PTR7(3 ) ,ACCNA(3),PLITRE(15,3),PRESDF(15,2,3) DIMENSION DIAL(15,3),VELY(15),NVOLTS(15),PPM(15),CE(15,3),PERCE(15),PAP(15),TOTAL(15),FE(15,2,3), AMLOST(15),X(5 ) ,FEEDTI(2) INTEGER RUNNUM(15),PPMF REAL N A C L ( 3 , 3 ) , N A ( 1 5 , 2 , 3) 10 11 12 14 16 18 19 20 21 22  FORMAT ( F 8 . 4 . 4 F 5 . 1 , 4 F 5 . 2 , 3 F 5 . 1) FORMAT ( 3 F 5 . 1) FORMAT ( 2 1 5 , 1 3 , 1 4 , 1 2 , F 6 . 4 ) FORMAT (412) FORMAT ( F 8 . 4 , 4 F 5 . 1 , 3 F 6 . 1 , 2 F 6 . 2 , 2 F 5 . 1) FORMAT(2F5. 1 , 2 F 5 . 2 ) F0RMAT(2F6.3) FORMAT(13G10.5) FORMAT(F7.2) F0RMAT(6F10.6)  ,  R E A D ( 5 , 2 0 ) VCOND.SIG,ALAMB,BCOND.DCOND NUM=0 30 NUM=NUM+1 I F ( N U M . E Q . 1 6 ) GOTO 800 R E A D ( 5 , 1 2 ) M,N,RUNNUM(NUM),PPMF,NVOLTS(NUM),VELY(NUM) 35 SUMX=0.0 SUMY=0.0 SUMXY=0.0 SUMX2=0.0 I F ( L S F . E Q . OG0T0505 DO 40  d=1,2  READ(5,11) (CAL(K,d),K=1,3) 40 CONTINUE DO 45 <J=1 ,M READ(5,14) (NORD(K.d),K=1,4) 45 CONTINUE DO 70 d=1 ,M R E A D ( 5 , 10) TIME(1 ) , ( A M V ( K , d ) , K = 1 , 4 ) , ( P H ( N U M , K , d ) , K = 1 , 4 ) , ( P P M T R ( K . d ) ,K=1 , 3 ) 70 CONTINUE I F(RUNNUM(NUM).EQ.40.0R.RUNNUM(NUM).EQ.41)G0T075 READ(5,22) ( S O L C A L ( K ) , K = 1 , 3 ) , ( S O L T R ( K ) , K = 1 ,3) 75 DO 80 d=2,M R E A D ( 5 , 18) ( C C ( K . d ) ,K=1 , 2 ) , ( P R E S D F ( N U M , K , J ) , K = 1 , 2 ) 80 CONTINUE READ(5,19) (FEEDTI(K),K=1,2) R E A D ( 5 , 2 1 ) P0W(2) R E A D ( 5 , 2 1 ) P0W(3) R E A D ( 5 , 2 2 ) ( F E E C U R ( I , 2 ) , I = 1 , 3 ) , ( F E E C U R ( I , 3 ) , I = 1 , 3) R E A D ( 5 , 2 1 ) CYTIME READ(5,20) (PPMCAL(K),K=1,3).(TRCAL(K),K=1.3),DILUT.(PTR3(K),K=1,3),(PTR7(K),K=1,3)  DO 86 K = 1 , 2 DO 85 d = 2 , M PRESDF(NUM,K,d)=PRESDF(NUM,K,d)*2.54 85 CONTINUE 86 CONTINUE DO 95 K = 1 , 2 DO 9 0 ' d = 1 , M FLOW(K,d)=CC(K,d)/(CYTIME*1000.0) 90 CONTINUE 95 CONTINUE C C C  NA CONCENTRATION WITH DRIFT  130 131  132  144 146 148  ELECTRODE CORRECTION  DO 148 L = 1 , 3 DO 146 d=1,M DO 130 K = 1 , 3 X(K)=((CAL(K,2)-CAL(K, 1))*(NORD(L,d)* 1.0)/(N*1.0))+CAL(K. 1 CONTINUE IF ( A M V ( L , d ) - X ( 2 ) ) 1 3 1 , 1 3 2 , 1 3 2 BBB=((3.*X(1))-(2.*X(2)))/(X(1)-X(2)) SL0PE=(3.0-BBB)/X(2) AAA=(SLOPE*AMV(L,d))+BBB GO TO 144 BBB=((3.69897*X(2))-(3.*X(3)))/(X(2)-X(3)) SL0PE=(3.0-BBB)/X(2) AAA=(SLOPE*AMV(L,d))+BBB NACL(L,d)=(10**AAA)/58440.0 CONTINUE CONTINUE  C IF(RUNNUM(NUM).EQ.40.OR.RUNNUM(NUM).EQ.41)G0T0165 DO 150 K =1,3 SUMX=SOLCAL(K)+SUMX SUMY=AL0G10(S0LTR(K))+SUMY SUMXY=(AL0G1O(S0LTR(K))*SOLCAL(K))+SUMXY SUMX2=(S0LCAL(K)**2.)+SUMX2 150 CONTINUE SLOPE = ( ( S U M X * S U M Y ) - ( 3 . * S U M X Y ) ) / ( ( S U M X * * 2 . ) - ( 3 . *SUMX2)) FEINT=(SUMY-(SLOPE*SUMX))/3. C  155 160 165  170 175 190  DO 160 1=1,3 DO 155 d=1 , 3 IF ( P P M T R ( I , d ) . E Q . 0 . 0 ) G O T O 155 PPMFE(I,d)=(ALOG10(PPMTR(I,d))-FEINT)/SLOPE I F ( P P M F E ( I , d ) . G T . 0 . 0 ) G O T O 155 PPMF E ( I , d ) = 0 . 0 0 1 CONTINUE CONTINUE GOTO 190 DO 175 1=1,3 DO 170 d = 1 , 3 PPMFE(I,d)=0.0 CONTINUE CONTINUE PPM(NUM)=PPMFE(2,1)  vo  C A L C U L A T I O N OF NA MATERIAL BALANCE AND SEPARATION FACTOR  200  DO 200 0=2,M Z=NACL(2,d)*(CC( 1 ,d)+CC(2,J))/1000.0 U=( (NACL(1,d)*CC(1,d))+(NACL(3,d)*CC(2,d)))/1000.0 SEPF(NUM,d)=NACL(3,d)/NACL(1,d) ACCNA(d)=(Z-U) T0TDES=(NACL(2,d)-NACL(1,d))+(2.0*(PPMFE(2,d)-PPMFE(1,d))/55847.0) AVGCUR=POW(d)/(NV0LTS(NUM)*1.0) IF ( C Y T I M E . E Q . O . O . O R . A V G C U R . E Q . O . 0 ) G O T O 2 0 0 T0TDES=(NACL(3,d)-NACL(1,d))/2.0 CE ( N U M , d ) = T O T D E S * C C ( 2 , d ) * 0 . 0 0 1 * 9 6 4 8 7 . 0 / ( C Y T I M E * A V G C U R * 7 . 0 ) ERRCE(NUM,d)=100.0*((((NACL(3,d)+NACL(1,d))*0.01)/(NACL(3,d)-NACL(1.d)))+0.0155) CONTINUE PERCE(NUM) = ( C E ( N U M , 2 ) - C E ( N U M , 3 ) ) * 1 0 0 . O / C E ( N U M , 2 ) C A L C U L A T I O N OF IRON DEPOSIT ON TEST MEMBRANES IN AND 7 (CONCENTRATE STREAM) LEAST  505  510  '  511 512 514 515  520  SQUARES F I T  C E L L S 3 (DILUTE STREAM)  ON CALIBRATION  LSF=1 G0T035 DO 510 K = 1 , 3 SUMX=PPMCAL(K)+SUMX SUMY=AL0G10(TRCAL(K))+SUMY SUMXY=(AL0G1O(TRCAL(K))*PPMCAL(K)J+SUMXY SUMX2=(PPMCAL(K)**2.)+SUMX2 CONTINUE LSF=0 SL = ( ( S U M X * S U M Y ) - ( 3 . * S U M X Y ) ) / ( ( S U M X * * 2 . ) - ( 3 . *SUMX2)) FEINTR=(SUMY-(SL*SUMX))/3. T0TAL3=0. T0TAL7=0. DO 520 K = 1 , 3 PPM3=(AL0G1O(PTR3(K))-FEINTR)/SL PPM7=(AL0G10(PTR7(K))-FEINTR)/SL IF(PPM3)51 1 ,511,512 PPM3=0.0 IF(PPM7)514,514,515 PPM7=0.0 TESTM3(K)=(PPM3*0ILUT*5.987/1OOO.0) TESTM7(K)=(PPM7*DILUT*5.987/1000.0) T0TAL3=T0TAL3+TESTM3(K) T0TAL7=T0TAL7+TESTM7(K) CONTINUE LSF=0 PAP(NUM)=(PAPER3+PAPER7)/3 T0TAL(NUM) = ( T 0 T A L 3 + T 0 T A L 7 ) / 2 . AML0ST(NUM)=(PPMFE(2,1)-PPMFE(2,3))*81.81 I F ( P P M F E ( 2 , 1 ) . E Q . O . O ) GOTO 530 ERRAML(NUM)=AML0ST(NUM)*(((PPMFE(2, 1 ) + P P M F E ( 2 , 3 ) ) * 0 . 0 1 ) / ( P P M F E ( 2 , 1 ) - P P M F E ( C A L C U L A T I O N OF SODIUM AND IRON S E L E C T I V I T I E S '  2,3)))  530  550  DO 610 J = 2 , M I F(PPMF E ( 2 , J ) . E Q . O . O ) G0T0550 FE(NUM, 1 , d ) = ( P P M F E ( 2 , d ) - P P M F E ( 1 , d ) ) * 1 0 0 . / P P M F E ( 2 , d ) FE(NUM,2,d)=(PPMFE(3,d)-PPMFE(2,d))*100.0/PPMFE(2,d) NA(NUM, 1 , d ) = ( N A C L ( 2 , d ) - N A C L ( 1 , d ) ) * 1 0 0 . O / N A C L ( 2 , d) N A ( N U M , 2 , d ) = ( N A C L ( 3 , d ) - N A C L ( 2 , d ) ) * 1 0 0 . O / N A C L ( 2 , d) CALCULATION OF SODIUM AND IRON S E L E C T I V I T I E S  DESFE = ( P P M F E ( 2 , d ) - P P M F E ( 1 , d ) ) * 2 . / 5 5 8 4 7 . 0 I F ( P P M F E ( 2 , d ) . E Q . O . O . O R . P P M F E ( 2 , d ) . E Q . P P M F E ( 1 , d ) ) GOTO 560 EFE=(PPMFE(2,d)+PPMFE(1.d))*0.01/(PPMFE(2,d)-PPMFE(1,d)) GOTO 565 560 E F E = 0 . 0 565 D E S N A = N A C L ( 2 , d ) - N A C L ( 1 , d ) ENA = ( N A C L ( 2 , d ) + N A C L ( 1 , d ) ) * 0 . 0 1 / ( N A C L ( 2 , d ) - N A C L ( 1 , d ) ) DESTOT=DESNA+DESFE ETOT=((EFE*DESFE)+(ENA*DESNA))/DESTOT FEEDFE=PPMFE(2,d)*2./55847.0 T0TC0N=NACL(2,d)+FEEDFE SE LNA(NUM, 1.d ) = ( D E S N A / D E S T O T ) / ( N A C L ( 2 , d ) / T O T C O N ) ESENA(NUM,1,d ) = (ENA+ETOT+0.01+0.01)*SELNA(NUM , 1 ,d) I F ( P P M F E ( 2 , d ) . E Q . O . O ) GOTO 570 SE LF E(NUM, 1 , d ) = ( D E S F E / D E S T O T ) / ( F E E D F E / T O T C O N ) ESEFE(NUM,1,d)=(EFE+ETOT+0.01+0.01)*SELFE(NUM,1,d) GOTO 575 570 S E L F E ( N U M , 1 , d ) = 0 . 0 SELECTIVITY  BASED ON CONC STREAM  575  DESFE=(PPMFE(3,d)-PPMFE(2,d))*2./55847.0 I F ( P P M F E ( 2 , d ) . E Q . O . O . O R . P P M F E ( 3 , d ) . E Q . P P M F E ( 2 , d ) ) GOTO 580 EFE=(PPMFE(3,d)+PPMFE(2,d))*0.01/(PPMFE(3,d)-PPMFE(2,d)) GOTO 585 580 E F E = 0 . 0 585 D E S N A = N A C L ( 3 , d ) - N A C L ( 2 , d ) ENA=(NACL(3,d)+NACL(2,d))*0.01/(NACL(3,d)-NACL(2,d)) DESTOT=DESNA+DESFE ETOT=((EFE*DESFE)+(ENA*DESNA))/DESTOT SELNA(NUM,2,d)=(DESNA/DESTOT)/(NACL(2,d)/TOTCON) E S E N A ( N U M , 2 , d ) = (ENA + E T O T + 0 . 0 1 + 0 . 0 1 ) * S E L N A ( N U M , 2 , d ) I F ( P P M F E ( 2 , d ) . E Q . O . O ) GOTO 607 SELFE(NUM,2,d)=(DESFE/DESTOT)/(FEEDFE/TOTCON) ESEFE(NUM,2,d)=(EFE+ETOT+0.01+0.01)*SELFE(NUM,2,d) GOTO 6 1 0 607 S E L F E ( N U M , 2 , d ) = 0 . 0 6 1 0 CONTINUE ACTUAL POWER E F F I C I E N C Y DO 620 d=2,M PLITRE(NUM,d)=P0W(d)*CYTIME*1000.0/(CC(1,d)*8.0) 6 2 0 CONTINUE DO 625 d=1,M DIAL(NUM,d)=NACL(1,d)*58440.0  625  CONTINUE DMBNA=DMBNA*58440.0 GOTO 30  PRINTING OF RESULTS 800 830  835  840  843  845  850  855  860  865  870  875  DO 8 3 0 NUM=1,15 PRINT1001,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),PRESDF(NUM,1,2),PRESDF(NUM,1,3) CONTINUE PRINT 1500 DO 835 NUM=1 , 15 PRINT1002,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),PRESDF(NUM,2,2),PRESDF(NUM,2,3) CONTINUE PRINT 1500 DO 8 4 0 NUM=1 , 15 PRINT1003,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),SEPF(NUM,2),PL ITRE(NUM,2),SEPF(NUM,3),PLITRE(NUM, 3 ) CONTINUE PRINT 1500 DO 843 NUM=1 , 15 PRINT 1004,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),DIAL(NUM , 2) , P L I T R E ( N U M , 2 ) , D I A L ( N U M , 3 ) , P L I T R E ( N U M , 3 ) CONTINUE PRINT 1500 DO 845 NUM=1, 15 DELNS=(SEPF(NUM,2)-SEPF(NUM,3))* 100.O/SEPF(NUM,2) PRINT 1 0 0 5 , R U N N U M ( N U M ) . N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , T O T A L (NUM) , DELNS CONTINUE PRINT 1500 DO 850 NUM=1,15 TMFE = T O T A L ( N U M ) * 5 6 . P R I N T 1 0 0 6 , R U N N U M ( N U M ) . N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , T M F E , A M L O S T (NUM) CONTINUE / PRINT 1500 DO 855 NUM =1,15 PRINT 1 0 0 7 , R U N N U M ( N U M ) , N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , F E ( N U M , 1 , 2 ) , F E ( N U M , 1 , 3 ) , F E ( N U M , 2 , 2 ) , F E ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 860 NUM=1,15 PRINT 1008,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),NA(NUM, 1 , 2 ) , N A ( N U M , 1 , 3 ) , N A ( N U M , 2 , 2 ) , N A ( N U M , 2 , 3 ) CONTINUE PRINT 1500 DO 865 NUM=1,15 PRINT 1 0 0 9 , R U N N U M ( N U M ) , N V O L T S ( N U M ) , V E L Y ( N U M ) , P P M ( N U M ) , C E ( N U M , 2 ) , C E ( N U M , 3 ) , P E R C E ( N U M ) CONTINUE PRINT 1500 DO 870 NUM=1,15 ERRDLN=( 1 . + ( S E P F ( N U M , 3 ) / S E P F ( N U M , 2 ) ) ) * 0 . 0 2 * 100. 0 ERRTFE=T0TAL(NUM)*O.O124 PRINT1009,RUNNUM(NUM).NVOLTS(NUM),VELY(NUM),PPM(NUM),ERRTFE,ERRDLN CONTINUE PRINT 1500 DO 875 NUM=1,15 ERRTMF=T0TAL(NUM)*56*0.0124 PRI NT 1008,RUNNUM(NUM),NVOLTS(NUM),VELY(NUM),PPM(NUM),ERRTMF,ERRAML(NUM) CONTINUE PRINT 1500 DO 880 NUM=1.15  880  885  890  895  900  905 1000 1001 1002 1003 1004 1005 100G 1007 1008 1009 1010 101 1 1500  PRINT 1010,RUNNUM(NUM) CONTINUE PRINT 1500 DO 885 NUM=1, 15 PRINT 1010,RUNNUM(NUM) CONTINUE PRINT 1500 DO 890 NUM=1,15 PRINT 1010,RUNNUM(NUM) CONTINUE PRINT 1500 DO 895 NUM=1, 15 PRINT 1010,RUNNUM(NUM) CONTINUE PRINT 1500 DO 900 NUM=1 , 15 PRINT 1010,RUNNUM(NUM), CONTINUE PRINT 1500 DO 905 NUM=1,15 PRINT1011,RUNNUM(NUM) , CONTINUE  NVOLTS(NUM),VELY(NUM),PPM(NUM),ERRCE(NUM,2),ERRCE(NUM,3)  NVOLTS(NUM),VELY(NUM),PPM(NUM),SELNA(NUM,1,2),SELNA(NUM, 1 , 3 ) , S E L N A ( N U M , 2 , 2 ) , S E L N A ( N U M , 2 , 3  )  NVOLTS(NUM).VELY(NUM),PPM(NUM).SELFE(NUM,1,2),SELFE(NUM,1,3),SELFE(NUM,2,2),SELFE(NUM,2,3)  NVOLTS(NUM),VELY(NUM),PPM(NUM),ESENA(NUM,1,2),ESENA(NUM,1,3),ESENA(NUM,2,2),ESENA(NUM,2,3)  NVOLTS(NUM),VELY(NUM),PPM(NUM),ESEFE(NUM, 1 , 2 ) , E S E F E ( N U M , 1 , 3 ) , E S E F E ( N U M , 2 , 2 ) , E S E F E ( N U M , 2 , 3 )  NVOLTS(NUM),VELY(NUM),PPM(NUM),PH(NUM,1.2),PH(NUM,1.3),PH(NUM,3,2),PH(NUM,3,3)  FORMAT( ' ,2X,2I5 2F7.2,3X,4F12.4) FORMAT( ' .2X.2I5 2F7.2,2(F8.2)) FORMAT( ,2X,215, 2 F 7 . 2 , 2 ( F 8 . 2 ) ) FORMAT(' ' ,2X,2I5. 2F7.2.2(F8.2,F8.0)) FORMAT(' ' .2X.2I5, 2F7.2,2(F8-.0,F8.0)) FORMAT(' ,2X,2I5, 2F7.2,2(F8.2)) FORMAT(' .2X.2I5, 2F7.2,2(F8 . 1) ) FORMAT(' . 2 X . 2 I 5 , 2F7.2 ,4(F8 . 1 ) ) FORMAT(' ,2X,2I5, 2F7.2,4(F8.1)) FORMAT(' ,2X,2I5, 2F7.2,2(F8.3),F8.2) FORMAT(' .2X.2I5, 2F7.2,4(F8.3)) FORMAT(' .2X.2I5, 2F7.2,4(F8.2)) FORMAT(' 1') STOP END  C C C  C  C C  C  C  PROGRAM P R O G R A M TO C O M P U T E BY I N T E G R A T I N G THE  3  T H E POWER R E Q U I R E M E N T S P E R C Y C L E CURRENT CONSUMPTION OVER A C Y C L E  2)  40 READ(5,6) RUNNUM,VOLTS,PPM , VELY IF(RUNNUM.EQ.99) STOP PRINT600,RUNNUM,VOLT S,VELY,PPM PRINT605 50 READ(5,8) N,M,ITEM,WHEN IF(N.EQ.9) G0TO3OO I F(N.EQ. 1 ) RES = 92.85 IF(N.EQ.2) RES=95.88 IF(N.EQ.3) RES=95.84 DO 60 J=1,4 SA(J)=0.0 60 CONTINUE READ(5, 10) TIME 1,CMV1 TSTART=TIME1 70 READ(5,10) TIME2,CMV2 IF ((TIME2-TSTART) .GT.45.0) GOT080 SA(1)=((TIME2-TIME1)*(CMV1+CMV2)/2.)+SA(1) TIME 1=TIME2 CMV1=CMV2 GOT070 80 SA(1) = ((45.0-TIME1)*(CMV1+CMV2)/2 . )+SA(1)  C  U N S T E A D Y S T A T E P R O C E S S ( R U N S 30 T O 44) R E S U L T S WERE A D D E D TO T H E D A T A F I L E O F ' P R O G R A M  DIMENSION CY(6).SA(4),P(4).T(4) INTEGER RUNNUM,VOLTS,PPM 6 FORMAT(4G7.2) 8 F0RMAT(2I1, 2A4 ) 10 F0RMAT(2G9.3)  C  C  I N THE (THESE  SA(2)=((TIME2-45.)*(CMV1+CMV2)/2.)+SA(2) FEEDMV=CMV2 90 TIME 1=TIME2 CMV1=CMV2 READ(5,10) TIME2,CMV2 IF(CMV2.LT.0.0) G0T01OO SA(2)=((TIME2-TIME1)*(CMV1+CMV2)/2.)+SA(2) G0T09O 100 TS=TIME2 110 TIME1=TIME2 CMV1=CMV2 READ(5,10) TIME2,CMV2 IF((TIME2-TS).GT.45.) GOT0150 SA(3)=SA(3)-((TIME2-TIME1)*(CMV1+CMV2)/2.) G0T01 10 150 SA(3)=SA(3)-((45.+TS-TIME1)*(CMV1+CMV2)/2 . ) SA(4)=SA(4)-((TIME2-45.-TS)*(CMV1+CMV2)/2.) 170 TIME 1=TIME2 CMV1=CMV2  £ -p=>  200  R E A D ( 5 , 1 0 ) TIME2.CMV2 I F ( T I M E 2 . G T . 7 0 0 . ) GOT0200 SA(4)=SA(4)-((TIME2-TIME1)*(CMV1+CMV2)/2.) GOTO 170 T(1)=45 .0 T(2)=TS-45-TSTART T(3)=45.0 T(4)=TIME1-TS-45.0 TOTTI=TIME1-TSTART+TOTTI  •  C  250  300  DO 250 K= 1 , 4 P(K) = (SA(K)/RES.)*VOLTS/T(K) FEEDCR=FEEDMV/RES CONTINUE PTOT = P( 1 ) + P ( 2 ) + P ( 3 ) + P ( 4 ) PRINT610,(P(d),d=1,4),PTOT,ITEM,WHEN PRINT650,FEEDCR G0T05O AT0TTI=T0TTI/6.0 PRINTG20,ATOTTI T0TTI=O.O GOTO 4 0  C GOO 605 610 620 650  FORMAT( ' ' , / / , 30X , ' RUN N U M B E R ' , 1 3 , / , 1 0 X , ' S T A C K VOLTAGE' , 1 8 , 2 X , ' VOLTS ' ,3X , ' V E L O C I T Y ' , F 1 6 . 2 , ' C M / S E C , 3 X , ' I RON CONC. IN FEE F O R M A T ( ' O ' , 14X, 'PAUSE + ' , 2 X , ' C I R C + ' , 2 X , 'PAUSE - ' , 1 X , ' C I R C - ' , 3 X , ' T O T A L ' , 3 X , ' S T R E A M ' , 3 X , ' W H E N STAR = 2 HRS' , / , 15X, ' W A T T S ' , 4 ( FORMAT( ' ' ; 1 1 X , 5 F 8 . 2 , 3 X , A 4 , 1 0 X , A 4 ) F O R M A T ( ' O ' , 2 7 X , 'TOTAL CYCLE T I M E ' , F 1 0 . 1 , 2 X , ' S E C O N D S ' ) FORMAT( ' ' , 2 7 X , ' C U R R E N T AT FEED INPUT' , F 15 . 4) END  CO cn  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0058913/manifest

Comment

Related Items