Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Development of techniques for the supercritical fluid extraction of oils Campbell, Hamish D 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1983_A7 C35.pdf [ 8.29MB ]
Metadata
JSON: 831-1.0058908.json
JSON-LD: 831-1.0058908-ld.json
RDF/XML (Pretty): 831-1.0058908-rdf.xml
RDF/JSON: 831-1.0058908-rdf.json
Turtle: 831-1.0058908-turtle.txt
N-Triples: 831-1.0058908-rdf-ntriples.txt
Original Record: 831-1.0058908-source.json
Full Text
831-1.0058908-fulltext.txt
Citation
831-1.0058908.ris

Full Text

DEVELOPMENT OF TECHNIQUES FOR T H E S U P E R C R I T I C A L  FLUID  E X T R A C T I O N OF O I L S  by H a m i s h D. B.Sc.  (Hons.),  University  Campbell  of Surrey,  Guildford,  A T H E S I S SUBMITTED I N P A R T I A L OF THE REQUIREMENTS  FULFILLMENT  FOR THE DEGREE OF  MASTER OF A P P L I E D  SCIENCE  in  THE FACULTY OF OF GRADUATE Department  of Chemical  We a c c e p t t h i s to  THE U N I V E R S I T Y  STUDIES  Engineering  t h e s i s as c o n f o r m i n g  the r e q u i r e d  standard  OF B R I T I S H COLUMBIA  June,  Britain  1983  © H a m i s h D. C a m p b e l l , 1983  (1979)  DE-6  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of  requirements f o r an advanced degree a t the  the  University  o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make it  f r e e l y a v a i l a b l e f o r reference  and  study.  I further  agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may department or by h i s or her  be  granted by the head o f  representatives.  my  It is  understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain  s h a l l not be  allowed without my  permission.  Department o The U n i v e r s i t y of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3  (3/81)  written  ABSTRACT Experimental developed C0 ,  to  C2^k>  2  separator  equipment,  provide  e q u i l i b r i u m data  ^2^6'  a n c  equilibrium cell  autoclave. developed  The cell  phases  forming fraction The The  were  and  gas  d e s i g n of  a  have  been  solvents  multicomponent  the  gas  of  the  samples were  cell  phase  the  analyses  compounds  at  ratings  the  expanded  provided  of  s a m p l i n g of  two  chromatographic  a qualitative  more v o l a t i l e  than  equipment for  Repeatability  a temperature  conditions the  oil  fraction.  the  of  distillation.  and  up t o the  decane  quantitative  n-^gHgg. procedures  C02/n-Cio^22  were  of  were  system,  137.8°C,  also  o i l solute  65.5°C.  were  (n — C^QH22)»  and p r o c e d u r e s  tests  s u p e r c r i t i c a l CO2 a n d a m u l t i c o m p o n e n t MPa and 2 0 . 2 MPa a t  the  represents  1 0 . 3 4 MPa and a t e m p e r a t u r e  published data.  of  ambient  and t h e r e f o r e  e q u i l i b r i u m data  a pressure  to  l i q u i d phase  solvent  present  pressure  A circulating  a l l o w the  with molecular weights  hydrocarbons  comparing  to  high  conditions.  The  a n a l y s i s was p e r f o r m e d for  a 1 dm  temperature  isobaric equilibrium  r e l i a b i l i t y of  previously using  of  around  o i l a n a l y s i s was b a s e d on a gas  c h e c k e d by obtained  supercritical fluid  presence  t n e  was d e v e l o p e d  a l i q u i d and gas p h a s e .  unsuitable The  for  3 4 . 5 MPa and 2 0 0 ° C r e s p e c t i v e l y .  high pressure  description  13.5  at  chromatographic  No  n  maximum p r e s s u r e and  s y s t e m was u s e d i n t h e  The  * C3H3 *  and an a n a l y s i s m e t h o d  oil.  The  fluid  procedures  at  with  performed pressures  of  - i i iT A B L E OF  CONTENTS  Page ABSTRACT  i i  T A B L E OF CONTENTS LIST  OF T A B L E S  LIST  OF  i i i v  FIGURES  vi  viii  ACKNOWLEDGEMENTS 1.  INTRODUCTION  1  1.1 1.2 1.3  1 1  1.4 1.5 2.  3.  LITERATURE  6 7 9  REVIEW  10  2.1  Supercritical Fluid Extractions  10  2.2  Miscible Displacements  17  DEVELOPMENT OF THE ANALYTICAL  3.1 3.2 3.3 3.4 3.5 4.  The Supercritical Fluid State Supercritical Fluid Extraction Alternative Terms for Supercritical Fluid Extraction Miscible Displacement. Objectives  PROCEDURES  Gas Chromatographic Simulated Distillation Samples which Contain High Boiling Point Compounds... Response Factors Evaluation and Subtraction of Baseline Areas 3.4.1 Initial Method 3.4.2 Modified Method Molar Analysis 3.5.1 Qualitative Analysis 3.5.2 Quantitative Analysis  DEVELOPMENT OF EXPERIMENTAL PROCEDURES AND  4.1 4.2 4.3 4.4 4.5  29  EQUIPMENT  Equilibrium Cell 4.1.1 Autoclave Modifications Sampling 4.2.1 I n i t i a l Sampling Method 4.2.2 Modified Sampling Method Sample Preparation 4.3.1 Sample Volume 4.3.2 Initial Sample Expansion Results Summary of Developed Experimental Apparatus Operating Procedures  31 33 38 38 40 42 48 48 48 52  ••  52 54 55 55 58 62 67 70 72 74  -  iv  -  Page 5.  R E S U L T S AND  5.1  5.2 5.3 5.4  DISCUSSION  Performance of the A n a l y t i c a l P r o c e d u r e s 5.1.1 I n i t i a l Analysis Results 5.1.2 C o m p a r i s o n t o t h e A . S . T . M . D-87 D i s t i l l a t i o n . . P e r f o r m a n c e o f t h e Pumps Performance of the E x p e r i m e n t a l P r o c e d u r e s Results Using a Stripped Separator O i l 5.4.1 Mass B a l a n c e of O i l Components 5.4.2 Calculated E q u i l i b r i u m Values  76  76 78 81 84 84 90 99 102  6.  CONCLUSIONS  105  7.  RECOMMENDATIONS  107  8.  NOMENCLATURE  110  9.  REFERENCES  112  APPENDIX  A. B. C. D. E.  M u l t i p l e Contact M i s c i b i l i t y Analysis Results Summary o f C a l c u l a t i o n s S o u r c e s o f E q u i p m e n t and C h e m i c a l s Software  119 125 140 144 147  v  L I S T OF  -  TABLES  Table 1.1 2.1  2.2 2.3  2.4 3.1 3.2 3.3 3.4 3.5  4.1 4.2 4.3 4.4 4.5  5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8  Page Potential  S u p e r c r i t i c a l Solvents  Supercritical Fluid Extractions: Summary o f L i t e r a t u r e Review A. E x t r a c t i o n of N a t u r a l P r o d u c t s B. E x t r a c t i o n of M i n e r a l O i l s C. E x t r a c t i o n of C o a l O i l s D. Triglyceride Fractionation E. Petroleum Fractionation M i s c i b l e Displacements: Summary o f L i t e r a t u r e R e v i e w . . . . T y p i c a l Phase C o m p o s i t i o n s , Weight F r a c t i o n s , and D e n s i t i e s , t h a t O c c u r when C r u d e O i l i s C o n t a c t e d with C02 A n a l y s e s Data of O i l s i n M i s c i b l e D i s p l a c e m e n t S t u d i e s . . . Summary o f S i m u l a t e d D i s t i l l a t i o n C h r o m a t o g r a p h i c Methods C h r o m a t o g r a p h i c H a r d w a r e and C o n d i t i o n s R e l a t i v e Response F a c t o r s ( R . R . F . ) f o r V a r i o u s O r g a n i c Compounds E f f e c t o f B a s e L i n e D r i f t on S i m u l a t e d D i s t i l l a t i o n Report E f f e c t o f S u b t r a c t i n g B a s e C h r o m a t o g r a m s on S i m u l a t e d D i s t i l l a t i o n Report I n i t i a l Sampling R e s u l t s D e t a i l s o f t h e I n i t i a l Pump D e s i g n D e t a i l s o f t h e M o d i f i e d Pump D e s i g n I n i t i a l Sample E x p a n s i o n R e s u l t s E v a p o r a t i o n Loss of H i g h e r M o l e c u l a r Weight Hydrocarbons from a D I e t h y l e t h e r M i x t u r e  5  11 11 14 15 15 16 18  25 26  32 34 39 43 46 57 61 64 71 71  5.9 5.10 5.11  Performance of Chromatographic A n a l y s i s P r o c e d u r e s I n i t i a l Analysis Results C h r o m a t o g r a p h i c and A . S . T . M . D-87 D i s t i l l a t i o n R e s u l t s . . . P e r f o r m a n c e o f t h e Pumps i n V a r i o u s T e s t s T e s t s U s i n g the B i n a r y Decane/C02 System Stripped Separator O i l / C 0 2 R e s u l t s : Measured Values Stripped Separator Oil/C02 R e s u l t s : Calculated Values... Stripped Separator O i l / C 0 2 Results: Normalized C o n c e n t r a t i o n s of O i l Components M a s s B a l a n c e R e s u l t s o f Run 1 M a s s B a l a n c e R e s u l t s o f Run 2 Calculated Equilibrium Values  77 79 82 85 88 93 94 95 100 101 103  B.l D.l  Analysis Results S o u r c e s o f E q u i p m e n t and C h e m i c a l s  131 144  -  vi  L I S T OF  -  FIGURES  Figure  Page  1.1  P h a s e R e g i o n s o f a P u r e Compound  2  1.2  P r e s s u r e - D e n s i t y Isotherms of  2  2.1  p Typical P - Z ™ l o t for Reservoir Oils Temperatures Below 50°C Typical P-Zco Plot for Reservoir Oils T e m p e r a t u r e s Above 5 0 ° C  2.2  3.1  a P u r e Compound at  23 at 23  3.6 3.7  B o i l i n g P o i n t - R e t e n t i o n Time R e l a t i o n s h i p f o r n-alkanes A r e a F r a c t i o n s Used t o E v a l u a t e the F r a c t i o n of Eluted O i l Base L i n e Options w i t h O r i g i n a l Software E f f e c t o f a P o s i t i v e and N e g a t i v e B a s e L i n e D r i f t on t h e S i m u l a t e d D i s t i l l a t i o n C u r v e . . . . E f f e c t o f S u b t r a c t i n g B a s e C h r o m a t o g r a t a s on t h e S i m u l a t e d D i s t i l l a t i o n Curve O p t i o n s A v a i l a b l e f o r C h r o m a t o g r a m Window A n a l y s i s . . . Quantitative Analysis Method...  4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10  A u t o c l a v e D i m e n s i o n s and S p e c i f i c a t i o n s Hot A i r B a t h Experiment Rig F l o w s h e e t of the I n i t i a l S a m p l i n g Method I n i t i a l Pump D e s i g n . M o d i f i e d Pump D e s i g n A s s e m b l e d Pump Stirrer/Pump/Lid Assembly. R a f f i n a t e Phase E x p a n s i o n Chamber. Flowsheet f o r the Developed P r o c e d u r e s  5.1  D i s t i l l a t i o n C u r v e s U s i n g t h e C h r o m a t o g r a p h i c and A . S . T . M . D-87 D i s t i l l a t i o n M e t h o d s P e r f o r m a n c e o f t h e E x t r a c t P h a s e Pump  3.2 3.3 3.4 3.5  35 37 41 44 47 49 51 53 56 56 57 60 63 65 65 68 73  5.2 5.3 5.4  Normalized  Concentrations for  the O r i g i n a l  5.5  Normalized  Concentrations for  the E x t r a c t e d  Oil  5.6  Normalized  Concentrations for  the E x t r a c t e d  Oil  5.7  Normalized  Concentrations for  the R a f f i n a t e  Oil  5.6  Normalized  Concentrations for  the R a f f i n a t e  Oil  and  83 86 86 91 96 96 97 97  -  vii  -  Figure Al A2 A3 A4 Bl B2 B3 B4 B5 B6 B7 B8 B9 BIO Bll  Page Psuedo Ternary Phase Diagram I l l u s t r a t i n g E n r i c h e d o r C o n d e n s i n g Gas D r i v e Psuedo Ternary Phase Diagram I l l u s t r a t i n g V a p o r i s i n g o r H i g h P r e s s u r e Gas D r i v e Psuedo Ternary Phase Diagram I l l u s t r a t i n g Minimum M i s c i b i l i t y P r e s s u r e ( M . M . P . ) M.M.P. - Temperature R e l a t i o n s h i p s  122 124  T y i c a l Chromatogram Mixture Chromatogram of the Chromatogram of the Chromatogram of the Chromatogram of the Chromatogram of the Chromatogram of the Chromatogram of the Chromatogram of the Chromatogram of the Chromatogram of the  125 126 126 127 127 128 128 129 129 130 130  120 120  of n-Alkane C a l i b r a t i o n O r i g i n a l Separator O i l Stripped Separator O i l E x t r a c t O i l o f Run 1 . . E x t r a c t O i l o f Run 3 E x t r a c t O i l o f Run 2 E x t r a c t O i l o f Run 4 R a f f i n a t e O i l o f Run 1 R a f f i n a t e O i l o f Run 3 R a f f i n a t e O i l o f Run 2 R a f f i n a t e O i l o f Run 4  -  viii  -  ACKNOWLEDGEMENTS  I  would  l i k e t o t h a n k my s u p e r v i s o r ,  supervision for  through  his useful  Dr.  Axel  out the course of t h i s work,  suggestions  Meisen f o r h i s  and t o M i c h a e l  i n the d e s i g n and a n a l y s i s .  T h a n k s a r e a l s o due t o t h e p e r s o n n e l i n t h e D e p a r t m e n t Engineering  workshop  construction Finally, financial National  for their  of the v a r i o u s I would  like  assistance with  p i e c e s of  S c i e n c e and E n g i n e e r i n g  of  Chemical  t h e d e s i g n and  equipment.  t o t h a n k my s u p e r v i s o r  assistance generously  i  Fattori  provided Research  f o r s e c u r i n g the  by I m p e r i a l Council.  O i l L t d . , and t h e  1  1. 1.1  The S u p e r c r i t i c a l F l u i d State The p h a s e  liquid, in  INTRODUCTION  of a pure  compound  gas and s u p e r c r i t i c a l f l u i d .  Figure  liquid  regions  1.1.  represents pressure  These four  The s u p e r c r i t i c a l f l u i d  o r gas r e g i o n s  by s a t u r a t e d  region  phase  the f l u i d r e g i o n at c o n d i t i o n s  ( P c ) and c r i t i c a l  temperature  locate  temperature  the c r i t i c a l  point  region  continuation  of  the p r o p e r t i e s  continuation  of  the f l u i d  1.2.1  For  purposes  co-ordinates;  property  are  it  solid,  indicated from  the  simply  the  critical  The c r i t i c a l  p r e s s u r e and  which i s the c o n d i t i o n  at  are i d e n t i c a l .  i s simply  an  uninterrupted  t h e l i q u i d and gas p h a s e s .  density  of g e n e r a l i z a t i o n  as  i s not separated  above b o t h  (CP.)  of both  regions  boundaries;  (Tc).  w h i c h t h e g a s and l i q u i d p h a s e p r o p e r t i e s The s u p e r c r i t i c a l f l u i d  c a n be c o n s i d e r e d  (p)  Figure  is illustrated in  1.2  i s plotted  The Figure  on r e d u c e d  i . e . P r = P / P c , T r = T / T c and p r = p / p c .  Supercritical  f l u i d s have r e c e n t l y  attracted  considerable  interest  as: -  Solvents  i n a process  commonly  termed  "Supercritical  Fluid  Extraction". -  1.2  Flooding  fluids  f o r the m i s c i b l e displacement  recovery  of p e t r o l e u m  from underground  and  enhanced  reservoirs.  S u p e r c r i t i c a l F l u i d Extraction The p r i n c i p a l a d v a n t a g e s  media a r e :  a wide  range  of  supercritical fluids  of s o l v e n t  power  f o r a given  as  extraction  solvent,  a  solvent  2  • TEMPERATURE Figure 1.1  0  Phase Regions of a Pure Compound  10  fr  Figure 1.2  Pressure-Density Isotherms o f a P u r e Compound  3  power the  comparable  solvent It  to  liquids,  may i n c r e a s e w i t h  dense or  generally  generally,  low-density  solvents.  density  As d e n s e state if  solvent  the  temperatures  solvent,  Apart the  as t h e  or  and/or  to  liquids,  c o n t r o l the  i s p o s s i b l e to  non-voltatile  compounds  low c r i t i c a l However,  l i q u i d state  may s t i l l  solvent  at  to  that  that  of  solvent, of  a solvent.  Therefore,  solvent.  temperature by m e r e l y  the  supercritical  of  a  pressure  Since  pressure  solvent  sensitive choosing  power, and  solvents  temperatures.  and d e n s i t y .  s o l e l y dependent  For  example,  increase a solute's  on t h e  a temperature  solvent's increase  s o l u b i l i t y i n non p o l a r  and a s i m i l a r e f f e c t f l u i d solvent  i s apparent  provided  the  in a  solvent  non-polar  density  is  has  liquid  2 3  »  the  solutes.  temperature  and t h e r e f o r e  low t e m p e r a t u r e s  and  supercritical fluid  critical  density  produce  produce  range  be u s e d p r o v i d e d  and f r a c t i o n a t e  s o l u b i l i t y i s not  chemical nature been o b s e r v e d  extract  result,  c h o i c e of  the  power  solvent-solute  density  produce a dense s u p e r c r i t i c a l f l u i d  may be u s e d t o  solvents,  control  solvent  As a  pressures  from the  i s above the  solvent  the  selective fractionation  l i m i t e d to  temperature the  density.  s t a t e has a wide  range.  are not  extraction  conditions  with  power  may be as e f f e c t i v e  potential  it  at  solvent,  regeneration,  c a n be u s e d f o r  fluids  a given  p r e s s u r e s and t e m p e r a t u r e s  while  supercritical fluid  therefore  for  occurs at  separation,  solvent  that,  an i n c r e a s e i n s o l v e n t  liquid solvents;  The  to use p r e s s u r e  power.  has been o b s e r v e d  extraction  and t h e a b i l i t y  not  4  noticeably  r e d u c e d by t h e t e m p e r a t u r e  given temperature, or d e n s i t y , 1 * point  there  Additionally,  and i n c r e a s i n g t h e p r e s s u r e and hence d e n s i t y  1.1  summarizes  have been r e p o r t e d supercritical  1 . 2 have t h e r e f o r e  properties  (S.F.E.).  Extraction  It  o f compounds  i s clear that  temperatures  been s u g g e s t e d  this  s o l u b i l i t y i n the solvent.  the c r i t i c a l  fluid extraction  pressure  above  as b e i n g r e s p o n s i b l e o r s u i t a b l e s o l v e n t s  high pressure process.  at a  i s a maximum s o l u b i l i t y a t a c e r t a i n  does n o t i n c r e a s e t h e s o l u t e ' s Table  increase.  to minimize  which  for  S.F.E.  is a  between T r of 1 . 0 and  the pressures required f o r  1 8  dense  fluid  states.  »  The p r e f e r r e d  supercritical fluid  state  of the  1 8  solvent  i s i n d i c a t e d by t h e s h a d e d a r e a o f F i g u r e  region the density in  pressure  of the s o l v e n t  and t e m p e r a t u r e .  i s strongly  The s o l v e n t  1.2.  affected  may t h e r e f o r e  »  In  this  by s m a l l changes be e a s i l y  regenerated. The  p r i n c i p l e s above have been o u t l i n e d i n g r e a t e r  p r e v i o u s l y . 1 » 2 »**»5 ' include  the a b i l i t y  extraction  To s u m m a r i z e ,  8  to both e x t r a c t  and s o l v e n t  regeneration  possibility  of using u n c o n v e n t i o n a l ,  Inexpensive  and abundant  principal capital  disadvantages  costs.  solvents  the advantages  of a S . F . E .  and f r a c t i o n a t e temperatures, non-toxic,  as suggested  detail  compounds,  as w e l l as the non-flammable,  by T a b l e  1.1.  a r e t h e h i g h p r e s s u r e and c o n s e q u e n t l y  Additionally,  t h e h i g h p r e s s u r e s a r e uncommon  extraction  i n d u s t r i e s and t h e r e f o r e  principles  have n o t been f u l l y  low  The high i n many  m e c h a n i c a l d e s i g n and o p e r a t i n g 9  developed.  Table 1.1  Compound  Potential Supercritical Normal BolJ Points T  Formula  NB  CK) M e t h a n e 1.5 1,5,6  Ethylene  Chlorotrlfluororaethane Carbon  Dioxide'*  Ethane  '  1 ,5,6  Oxide  Dlethylether n-Petane Dlethylamlne  (K /m R  4.60  162  C H„  169.45  283  5.00  200  CHF  190.95  299  4.69  518  191.68  302  3.90  580 468  3  3  195.15  304  7.39  C H  184.55  305  4.88  203  N 0  184.15  310  7.10  457  SF  209.35  319  3.76  734  2 2 5 . 15  365  4.62  233  230.95  370  4.24  217  239.75  406  11.30  235  (CH CH ) 0  307.75  467  3.64  265  C5H12  309.45  470  3.37  237  6  2  6  C H 3  6  C H 3  8  NT! 3  1.5  2  3  1.5  (MI'a)  CO 2  5 , 6  Sulphur Hexafluorlde"' Propylene P r o p a n e 1.5 1.5 Ammonia  (°K)  Critical Densit pc  191  C1CF  6  1.5  Critical Pressures Pc  111.75  2  Nitrous  Critical Temperatures Tc  CHt, 2  Trlfluormethane  Solvents  1.5  2  A  A  (C H )NH  328.65  497  3.71  243  Acetone I . 1,5 Methanol  CH3COCH3  329.65  508  4.70  278  CH 3 O H  337.85  513  8.09  272  Tetrahydrofuran  -CH (CH ) CH 0  208. 15  540  5.19  322  Benzene''^  C H  353.25  562  4.89  302  2  5  2  6  n-Octane"*  C  3  5  8  H  2  18  QI NO 3  2  Nltromethane T o l u e n e 1,5 1.5 Pyridine  C H CH  Water  H 0  (a)  1 , 5  Sublimes  6  2  2  6  5  3  CH < ( C H C H ) 2  2  2  > N  398.85  569  2.48  232  373.95  588  6.31  352  383.95  592  4.11  292  389. 15  620  5.63  312  373.15  647  22.00  322  6  As  s u p e r c r i t i c a l f l u i d s hold considerable potential  temperature  fractionation  it  i s not s u r p r i s i n g that  in  the petroleum,  Supercritical analysis  1.3  of  and e x t r a c t i o n  of h i g h m o l e c u l a r weight  c o m m e r c i a l and p i l o t  food and p h a r m a c e u t i c a l  f l u i d s have  operations  industries.  a l s o been d e v e l o p e d  certain non-volatile  f o r the low  f o r the  1 0  '  oils,  already  exist  1 1  chromatographic  compounds.4>12-14  Alternative Terms for S u p e r c r i t i c a l F l u i d Extraction Although  the term  "Supercritical Fluid Extraction"  a c c e p t a n c e and i s u s e d e x c l u s i v e l y h e r e i n , employed, i.  terms  wide  a r e sometimes  e.g.: "Dense  ii.  other  i s gaining  Phase E x t r a c t i o n " 1 ' 5  o r "Dense  " S u p e r c r i t i c a l Gas E x t r a c t i o n " 1 ' 1 5  iii.  Gas  Extraction".1*  o r "Gas  Extraction".5'9  "Destraction".16  The f i r s t  term i s used to i n d i c a t e  dense  fluid state.  fluid  r e g i o n above  as opposed  that  Destraction,  from  both  "gas" appears  the c r i t i c a l  to a vapour  has been d e r i v e d indicate  The w o r d  that  the L a t i n  words  i s sometimes  temperature.  phase which produces  c o n d e n s a t i o n of  s i n c e the  termed a The t h i r d  " d i s t a l l e r e " and " e x t r a h e r e "  d i s t i l l a t i v e and e x t r a c t i o n  as o r i g i n a l l y d e f i n e d , 1 6  occurs at a  i n s e v e r a l terms  temperature  below the c r i t i c a l  extraction  effects  i s however  are  "gas", term to  operative.  l i m i t e d to an  extract  l i q u i d solutes during a pressure  decrease. The t e r m without  " s u p e r c r i t i c a l f l u i d " c l e a r l y i n d i c a t e s the f l u i d  u s i n g the term " g a s " .  It  d o e s n o t make t h e a s s u m p t i o n  region that  a  7  dense s t a t e aspect not  is required,  i s dependent  s i n c e the e q u a l l y  on a w i d e d e n s i t y  important  range.  fractionation  Furthermore,  the term i s  l i m i t e d t o p a r t i c u l a r p h a s e b e h a v i o u r w h i c h c a n be d e t e c t e d  visually.  1.4  Mlsclble Displacements Since  primary  and s e c o n d a r y o i l r e c o v e r y  to  70% o f t h e p e t r o l e u m i n t h e r e s e r v o i r ,  to  develop  "enhanced o i l recovery  methods  t y p i c a l l y l e a v e 55  c o n s i d e r a b l e work  techniques".  is  underway  The t e c h n i q u e s have  been  17 25 outlined  by H e r b e c k  w h i c h have reservoir  et a l .  the p o t e n t i a l volume,  ~  Of  to recover  between  and i s known a s " F i r s t miscibility  techniques the only  Injection  Contact M i s c i b i l i t y "  (F.C.M.).  f l u i d w h i c h i s known a s " M u l t i p l e C o n t a c t  (M.C.M.).  T h e r e a r e two d i s t i n c t m e t h o d s  a c h i e v e d and t h e s e a r e b r i e f l y  Alternatively,  transfer  Miscibility"  by w h i c h M . C . M .  may be  o u t l i n e d below w i t h f u l l e r d e t a i l s  or "Enriched  of l i g h t hydrocarbons  (CH4 + C 2 to C 6 )  hydrocarbons  t h e o i l and  given  A.  The " C o n d e n s i n g Gas D r i v e "  fluid  that  t h e o i l a n d d i s p l a c i n g f l u i d may o c c u r d i r e c t l y  displacing  continual  fluids  the o r i g i n a l r e s e r v o i r o i l .  may o c c u r by a s e r i e s o f c o n t a c t s b e t w e e n  i n Appendix  methods  a l l the o i l i n the c o n t a c t e d  a r e the methods w h i c h u t i l i z e  a r e m i s c i b l e o r become m i s c i b l e w i t h Miscibility  these  relies  on t h e  (C2 t o C&) f r o m t h e d i s p l a c i n g  to the r e s e r v o i r o i l .  c a n , i n the l i m i t ,  Gas D r i v e "  The t r a n s f e r  of  light  produce a r e s e r v o i r o i l composition  which i s m i s i c i b l e w i t h the d i s p l a c i n g  fluid.  8  The  "Vaporising  miscibility  Gas D r i v e "  or "High P r e s s u r e Gas D r i v e "  by c o n t i n u a l l y e x t r a c t i n g o r v a p o r i z i n g i n t e r m e d i a t e and  l i g h t hydrocarbons from the r e s e r v o i r o i l . The d i s p l a c i n g CHi* or CO2) w i l l ,  (typically enriched  i n intermediate  reservoir  fluid  under the a p p r o p r i a t e  fluid  c o n d i t i o n s , become so  hydrocarbons that m i s c i b i l i t y w i t h f r e s h  o i l i s achieved.  Carbon d i o x i d e  i s the most p r o m i s i n g m i s c i b l e  26 27 » as l i g h t  hydrocarbons are now f a i r l y 28  dioxide  achieves  a l s o has s u p e r i o r d e n s i t y ,  characteristics  »  expensive.  Carbon  21 mobility  and r e q u i r e s  displacement  and e x t r a c t i o n  lower p r e s s u r e s  methane or n a t u r a l gas m i s c i b l e d i s p l a c e m e n t s .  >>  than  P o t e n t i a l l y large  sources of CO2 i n c l u d e n a t u r a l CO2 r e s e r v o i r s , c o a l g a s i f i c a t i o n and 29—30 32 33 ammonia p l a n t s . ' Petzet discusses C 0 transportation 2  aspects field  f o r the o i l f i e l d s of Texas, New Mexico and L o u i s i a n a  trials  published  a r e being  implemented.  The r e s u l t s of these t r i a l s a r e  i n the l i t e r a t u r e p e r i o d i c a l l y .  both e c o n o m i c  3 6 - 3 9  and t e c h n i c a l  techniques are p r o j e c t e d  1  8  t o recover  _  where many  2  5  ,  3  7  3 4  '  3 5  Although there are  r e s t r a i n t s , the E.O.R.  an a d d i t i o n a l 3 to 1 5 % 4 0 of the  o r i g i n a l r e s e r v o i r o i l . I t has been e s t i m a t e d t h a t the m i s c i b l e d i s p l a c e m e n t technique t y p i c a l l y E.O.R. p o t e n t i a l . Since  2 7  '  accounts f o r up to 25 t o 40% of the  4 0  the r e s e r v o i r temperatures are o f t e n above the c r i t i c a l  temperature of C O 2 , the h i g h p r e s s u r e s produce a s u p e r c r i t i c a l f l u i d gas  drive r e l i e s  C0  2  r e q u i r e d t o achieve M.C.M.  state.  Consequently the v a p o r i s i n g  on the e x t r a c t i o n behaviour of s u p e r c r i t i c a l CO2.  9  1.4  Objectives Although  the q u a l i t a t i v e  have been q u i t e scarce.  As  establish  extensively  a result,  the  of  experimental  solutes.  have been p u b l i s h e d f o r  apply  to binary  solid  state.142-46  supercritical fluids  for  the  supercritical fluids,  Equilibrium  was a d o p t e d *To  data  amenable  develop  C2H6,  for  this  equipment  C3H6 and  The w o r k r e q u i r e d with  appropriate  C3H3)  the  w i t h CO2. other  to  extraction  exists  of  in a liquid l i q u i d In  S i n c e crude  the  and  they p r i n c i p a l l y  oil is  supercritical fluid  processes,  to  equations  a multicomponent  scarce.  following  and a s s o c i a t e d t e c h n i q u e s  in  for  the  or the  a  extraction  basic  development  of  of  a  crude  a high pressure  c o n t r o l and s a m p l i n g e q u i p m e n t . be  the equipment  In  obtaining (CO2,  C2H4,  oil.  equilibrium addition,  a  devised. experiments  is also,  s u p e r c r i t i c a l f l u i d s mentioned  for  supercritical fluids  presence  l i m i t e d r e s o u r c e s and t i m e , However,  solute  are  thesis:  sample a n a l y s i s t e c h n i q u e had t o Due  for  to both  accurate e q u i l i b r i u m data  cell  some t h e r m o d y n a m i c  systems i n which the pure  mixture  data  required  a s w e l l as m i s c i b l e d i s p l a c e m e n t objective  precise quantitative are  a s u p e r c r i t i c a l f l u i d are  multicomponent  extraction  investigations  Although  state  p r e s e n c e of  supercritical fluid  investigated,  f e a s i b i l i t y of  fractionation  a s p e c t s of  above.  were  in general,  only  conducted  a p p l i c a b l e to  the  10  2. 2.1  S u p e r c r i t i c a l F l u i d Extractions Articles  summarized, extensive  r e v i e w e d a n d r e l a t e d t o S u p e r c r i t i c a l F l u i d E x t r a c t i o n are  f o r t h e sake of c o n c i s e n e s s , i n T a b l e  literature  Fluid Extraction indicates  the e x t r a c t i o n related  type  of s t u d y ,  therefore  2.1  as w e l l as the p r i n c i p a l f i n d i n g s .  low m o l e c u l a r weight  hydrocarbons  and f r a c t i o n a t i o n o f h e a v y  solvents heavier  have  mineral o i l s .  s o l v e n t s have  than methane.  relatively  been used i n The w o r k  high molecular  Low m o l e c u l a r  low c r i t i c a l  p o s s i b l e at low temperatures.  weight  and a s p h a l t e n e  content  weight  temperatures, hydrocarbon  solutes  S e l e c t i v e f r a c t i o n a t i o n of  h a s b e e n n o t e d by Z o s e l 1 6  n-C3H8 and n - C 5 H i 2 r e s p e c t i v e l y .  Higher  Table  e x t r a c t and  f r a c t i o n a t i o n of the h i g h m o l e c u l a r weight  mineral o i l s  An  s o l u t e s a r e n o t a s m i s c i b l e o r s o l u b l e i n CO2 a s t h e y a r e  In hydrocarbon hydrocarbon  to 2 . 1 ( E ) .  for Supercritical  Chromatography.  to m i s c i b l e displacement i n d i c a t e d that  hydrocarbons  still  of components,  conditions,  Supercritical  2.1(A)  s e a r c h h a s b e e n g i v e n by R a n d a l 4  and S u p e r c r i t i c a l F l u i d  the type  regeneration  is  LITERATURE REVIEW  and B o t t 1 5  Their  extract  than conventional l i q u i d  using supercritical  oils  had a lower  metal  extracts.  concentrations of extracted m i n e r a l o i l i n s u p e r c r i t i c a l 55  light  h y d r o c a r b o n s was n o t e d by Z h u z e .  Although  p r o c e s s more e c o n o m i c a l b e c a u s e o f a h i g h e r oils,  Zhuze c o n s i d e r e d t h i s  c o n c e n t r a t i o n of  W i l l i a m s 1 i n h i s review a r t i c l e concurred that  favorable  on a c c o u n t of t h e improved  extract  extracted  the process i s  as found by  Zosel.16  Table % \ A.  E x t r a c t i o n of Natural  Ref.  Year  Substrate  Supercritical  F l u i d E x t r a c t i o n s :Summary o f L i t e r a t u r e  Ext r a c t I o n Cond 111 ons Ext r a c t  Solvent P (MPa )  47  1982 S o y a  bean  Vegetable o i l  CO 2  20.7 68.9  Sol vent Regene r a t I o n Conditions Type o f S t u d y  T  Cc) 50, 60  P (MPa)  Comments  T  CO  Ambient  Scml-contlnuous Ra t c h - s u b s t r a t e Continuous-solvent  1. 2.  3. 48  49  1982 C a n o l a 6eed (Rapeseed)  1982 V e g e t a b l e o i l  Review  Products  Vegetable o i l  Vegetable o i l  CO 2  CO 2  30, 35  19.6 * 39.2  40  Ambient  Scml-contlnuous Batch-substrate Centlnuous-solvent  20, 55  1. 2.  1. 2.  50  1982 Hops  Pellets  essential  oils  CO 2  51  1982 Hope  Pellets  Essential  oils  CO 2  Supercritical  Liquid  E x t r a c t i o n e f f i c i e n c y Increases with pressure. A temperature increase only Improves e x t r a c t i o n e f f i c i e n c y at t h e h i g h e r p r e s s u r e s . S i m i l a r e x t r a c t t o hexane extract. E x t r a c t i o n e f f i c i e n c y Increases with pressure. E v a l u a t i o n o f t h e mass t r a n s f e r coefficient. Extraction e f f i c i e n c y increases with pressure. A temperature i n c r e a s e only improves e x t r a c t i o n e f f i c i e n c y at t h e h i g h e r p r e s s u r e s .  Semi-cootlnuous Batch-substrate Continuous-solvent  Commercial  application.  Semi-contlnuous Batch-substrate Continuous-solvent  Commercial  application.  Table  52  53  2.1  1982  1980  Cont.  LI 1 l a c Flower  Essential  oils  Lemon P e e l  Essential  oils  40  Black  Pepperlne Essential  and oils  10 *  Almonds  Essential  Oils  Soya  Vegetable O i l  Pepper  Bean  Sunflower  40  14  5.5  20  Serai-contlnuous Batch-substrate Continuous-solvent  Extraction efficiency with pressure. Unfavourable costs.  Semi-continuous Batch-substrate Continuous-solvent  Extraction e f f i c i e n c y increases with pressure. A temperature increase only i m p r o v e s e x t r a c t i o n a t the higher pressures. Preliminary studies into regeneration conditions.  Increases  60  40  60 CO,  3.5  30  4.5  *  30  20,  40  IA.  011  4.5  «  30  20,  50  IB.  Vegetable O i l  4.5  *  30  20,  50  Seed V e g e t a b l e  Rapeseed  34  20 Aa E x t r a c tion 75 As E x t r a c tion 20  75  5 16  1978  C o f f e e Beans presoaked l n water  Caffeine  CO 2  15.7 19.6  70 *  90  E x t r a c t 1 on Condi t ions Caf f e ine adsorption on c h a r c o a l Caffeine absorpt ion ln water  Seral-conrlnuous Batch-substrate Cont i m i o u s - 8 0 l v e n t  Commercial 1.  Application  S e l e c t i v e c a f f e i n e removal.  Table  54  6  2.1  Cont.  1978  Hops  Essential  Pepper  P e p p e r i ne and Essential Oils  Nutmeg  Essential  Chillies  Capsalclne  1978  Caraway  Oils  CO  Supercritical  2  Options:  Sugges t s :  (a ) T >T e x t r a c t i o n S e r a i - c o n t l n u o u s ( b ) P <P e x t r a c t i o n B a t c h - s u b s t r a t e ( c ) A d s o r p t i o n at Continuous-solvent ext r a c t ion cond11 i o n s .  011p  Fruits Principle Constituents & Essential Oils  7 - 40  Peppermint Leaves Raw  Suggests  Ambient  Semi-continuous Ba t ch-Rubs t r a t e Continuous-solvent  1. 2.  1. 2. 3.  Notes h i g h e x t r a c t i o n of principle constituents Review of I n d u s t r i a l application principles.  E x t r a c t i o n e f f i c i e n c y Increases with a pressure Increase. S e l e c t i v i t y d e c r e a s e s w i t h an Increase l n pressure. Fractionation Is possible In a pressure gradient e x t r a c t i o n .  Coffee  Marihuana Sunflower Seeds Camanlle Flowers Alkaloids (Various)  Alkaloids (Various)  C0  2  N 0 ?  4.  N 0 better for alkaloids polar groups. 2  with  Table B.  2.1  Cont.  E x t r a c t i o n of Mineral  Ref.  Year  Substrate  Oils  Ext r a c t  Solvent P (MPa)  15  1980 T a r  Solvent Regeneration Cond1tions  Ext r a c t I o n Conditions  Sands  1.9 8.3  Type o f S t u d y  T  Cc) 120,  140  P (MPa)  Peat  n-C H 5  1 2  5.6 5.8  161  Cc)  Ambient  A d s o r p t i o n of a s p h a l t e n e s and associated raetallc compounds on a c h a r c o a l bed.  Comments  T  Semi-contlnuous Batch-substrate Con t l n u o u s - s o l v e n t  2.  • 218  Cood n o n - a s p h a l t i c p r o d u c t . H i g h e r r e c o v e r y than l i q u i d pentane e x t r a c t .  Adsorption of a s p h a l t e n e s and associated metallc compounds on a c h a r c o a l bed. 55  1960  O z o c e r i t e Ore  O i o c e r i t e and Cerlsln  HR  +  C ^ ,  9.8 11.8  100  Adsorption of r e s i n o u s compounds on D l a t o m a c e o u s earth.  Extraction e f f i c i e n c y increases with a pressure Increase. F r a c t i o n a t i o n w i t h pressure or temperature v a r i a t i o n s . Good n o n - a s p h a l t l c p r o d u c t .  Ambient  Scml-contInUOUB Batch-substrate Contlnuous-solvent  1. 2.  Favourable economic comparison w i t h l i q u i d benzene e x t r a c t i o n . F r a c t i o n a t i o n by p r e s s u r e variation.  Table C.  2.1  Cont.  E x t r a c t i o n of Coal  Oils  Solvent Regcne r a 11 on Condit ions  Extract ion Cond i t i o n s Ref.  Year  Substrate  Extract  Solvent  Type o f Study P (MPa)  56  1979  Coal  High b o i l i n g point hyd r o c a r b o n s  Toluene  9.8 8.3  T  CO 600  - 440  P (MPa )  Comments  T  CO  Atraospherlc distillation.  Batch-continuous M o v i n g bed r e a c t o r  1. 2.  Thermal d e g r a t l o n of p a r a c r e s o l Not y e t an e c o n o m i c a l c o a l l l q u e f 1 cat ion technique.  Semi-cont inuous Batch-substrate Cont inuous-Bolvent  1.  Improved e i t t r a c t over conventlonal l i q u i d extractions. S t r a i g h t f o r w a r d and e f f i c i e n t s o l v e n t r e c o v e r y a t moderate temperatures.  Overheads - s o l v e n t  Paracresol  57  1975  Coal  High b o i l i n g point hyd r o c a r b o n s  Tolnene  5.6 5.8 441  10.31  Atmospheric distillation Overheads - s o l v e n t  D.  2.  Triglyceride Fractionation  Ref.  Year  Substrate  Extraction Condi tIons Ext r a c t  Solvent P (MPa)  15  1980  Mono-Dl-TrlClycerldes £ Entralner, (Carbon tetrachloride o r Hexane)  Trioleate glycerlde  CO 2  8  58  1978  Mono-Di-TriClycerides & Entralner, (Acetone)  Mono-glycerlde  CO  13  Cod  Clycerldes  16  1978  L i v e r 011  Solvent Regene r a t i o n Conditions  2  * 10  T CC) 95  T y p e o f f*tudy P (MPa)  • 120  Amb e n t  69.6  Proposed 13  Comments  T (C) Semi-continuous Batch-substrate C o n t I n u o u s - s o l vent  1.  E f f e c t i v e separation of T r o l e a t e g l y c e r l d e s at moderate p r e s s u r e s o n l y w i t h an entralner.  Phase e q u i l i b r i a S t u d i e s (STATIC)  1.  Effective mono/dlglycerlde s e p e r a t l o n f a c t o r , at moderate p r e s s u r e s o n l y w i t h an entralner.  1.  Controlled fractionation during e x t r a c t i o n pressure gradient.  110 L.C.  9.8 » 15.7 Hot  Flngi r  27  Reflux 90  Serai-contInuous Batch-subst rate ContInuous-solvent  Table E.  2.1 C o n t .  Petroleum  Ref. Year  Fractionation  Substrate  Extract  Solvent P (HPa)  16  1978  o-Olef Ins C m (Trace) 16. 18. 20  c  Cl6  Solvent Regenerat ion Condit ions  Ext r a c t I o n Conditions  C Hi,  5.9 10.8  2  Type o f S t u d y  T CC)  P (MPa)  45  2.9  85  Semi-contlnuous Batch-substrate Contlnuous-solvent  1) 2.9 2) 0.03  140 95  Continuous plant  Cc)  c  c  55  1960  Top R e s i d u e o f L i g h t e r n o n Petroleum asphaltlc Distillation portion  12.7  Top R e s i d u e o f L i g h t e r no Petroleum asphaltlc Distillation portion  9.8  105, 140  9.8  100  Petroleum  L i g h t e r nonaaphaltlc portion  140,  70  Comments  T  Pressure Increase analogous t o an I n c r e a s e i n t e m p e r a t u r e in a d i s t i l l a t i o n process.  pilot  Comparison to l i q u i d 1. 2. 3.  C H 3  8  + C H 3  6  Ambient  1) 4.4 2) Ambient  100  extraction.  E q u i v a l e n t weight e x t r a c t e d . Lower Vanadium c o n t e n t . Lower C o n r a d s o n number*  Serai-contlnuous Batch-substrate Continuous-solvent  Demonstrates t h e term destraction.  Semi-contlnuous Batch-substrate Contlnuous-solvent  F i r s t proposed commercial a p p l i c a t i o n o f S.F.E. Q u o t e s Improved e c o n o m i c s o f process over c o n v e n t i o n a l l i q u i d techniques  17  The the  supercritical fluid  regions  shaded a r e a i n d i c a t e d i n F i g u r e The  experimental  semi-continuous continuously involving  fashion,  through  solid  and t h e r e f o r e commercial  procedures with  1 6  »  1.2.  were  i.e. 1 < P r <  and subsequent  bed o f s u b s t r a t e . 5 0  semi-continuous  are currently  extract  data  within  5; 1 < T r <  p r i n c i p a l l y conducted  the solvent  a static  substrates  s t u d i e d were p r e d o m i n a n t l y  operated  in a  extract  Commercial  passing  processes  i n this  c a n be r e a d i l y  1.2.  mode  used f o r  design.  Analysis measurements  of the e x t r a c t (i.e.,  oils  ranged  amount o f e x t r a c t  from  simple  o i l ) to quite  quantitative complex  qualitative  59  measurements. analysis the  petroleum  to indicate  extracted  2.2  et a l . ,  f o r example,  of s u p e r c r i t i c a l toluene  extracted  content  Bartle  oils  were  fractionation  extracted confined  provided  an  coal o i l .  extensive  The a n a l y s e s  of  t o m e t a l and a s p h a l t e n e  and a n i m p r o v e d  supercritical  fluid  to m i s c i b l e f l o o d i n g .  The  product.15'16  Miscible Displacements Table 2.2 l i s t s  oils  studied  that  exists  the a r t i c l e s r e l e v a n t  included  separator  i n a l i q u i d state  s o l u t i o n gas to s i m u l a t e mixtures  to simulate  Displacement miscibility. injected  the i n place  t e s t s were  displacement  at ambient  the complex  The t e s t  oil (i.e.,  the r e s e r v o i r  conditions),  reservoir  separator  o i l plus  o i l , and s y n t h e t i c  crudes.  used to e v a l u a t e  the pressure  Is e s s e n t i a l l y a displacement fluid,  o i l fraction  f r o m an o i l - s a t u r a t e d ,  required  o f o i l by a n sand-filled  long  for  Miscible  Ref.  Year  Displacing Fluid  Oil  Displacements:Summary of L i t e r a t u r e  C o n d i t i o n s of Study Type o f S t u d y P (MPa)  60  61  1981  1981  S e p a r a t o r and Separator + S o l u t i o n gas  Synthetic 1. C i , n - C ) 2.  n-C n-C n-C  CO j  CO  2  3 » 24  T  Type o f Equipment  32.2  Static Multiple Contact S t a t i c  Variable-volume windowed c e l l  F i x e d volume windowed c e l l  Displacement  Slim  Summary o f , and a d d i t i o n a l work t o t h e two p r o c e e d i n g p a p e r s . Minimum M i s c i b i l i t y P r e s s u r e (M.M.P) c o r r e l a t i o n a t T < 50*C.  7 * 20  32.2  Static  Variable-volume windowed c e l l  Simulating m u l t i p l e phase behaviour (l^-Lj-V) with a synthetic o i l . E q u i l i b r i u m phase coraposi t l o n 6  Equation to estimate pressure at w h i c h l l q u l d - l l q u l d - v a p o r L j - L j - V ) b e h a v i o u r o c c u r s i n low t e m p e r a t u r e r e s e r v o i r s (T < 5 0 " C ) .  3-24  32.2  Static  Variable-volume windowed c e l l  M u l t i p l e phase behaviour (L)-L2-V-S)  E s t i m a t e s maximum t e m p e r a t u r e a t w h i c h L | - L - V phenomena o c c u r s .  u  CO 2  M u l t i p l e phase behaviour (L]-L -V-S) E q u i l i b r i u m phase: compos 1 1 i o n s , dens 1 1 y , viscosity. I n f l u e n c e o n , and s i m u l a t i o n of displacement tests  tube  6  Separator and; Separator + S o l u t i o n Gas  Comments  2  Serai-contlnuous: Continuous CO2 through batch of oil  1 6  1980  Purpose of Study  CO  1 0  62  Review  2  T a b i c 2.2  63  1980  Cont.  Synthetic n-C ] . . . n-Ci,  CO 2  Synthet l c  CO 2  7.9 * 16.2  35 89  8-7 11.7  49 - 71  •  Displacement  SI1m-tube  M i n i mum Miscibility P r e s s u r e (MMP)  Static  Var1 a b l e - v o l u m e windowed c e l l  Phase  0  64  1979  a. n - C i , , n-C]Q b. C i , n-C,,, n-C J ,1 c. C,... n-C,,.  behaviour  E q u i l i b r i u m phase compositions Displacement  65  1978  Separator + S o l u t i o n Gas  CO 2  66  1977  Separator + S o l u t i o n Gas  C]+ C + C , CO 2 2  3  Slim  tube  A f f e c t on displacement  tests  5.2 41.4  54.4 -> 123.9  Static  Variable-volume windowed c e l l  Pha6e b e h a v i o u r (M-V-S) E q u i l i b r i u m phase: compos 11 i o n , dens 1 t y , v i s c o s 11 y , 6urface tension.  9 » 34.5  34.4 , 40.6  Static Multiple Contact  V a r l b l e volume windowed c e l l  M u l t i p l e phase behaviour (L,-L -V-S) 2  40.6  Displacement  Core  E q u i l i b r i u m phase: composition, density, viscosity  MMP  Correlation.  T a b l e 2.2  28  31  1974  1972  Cont.  Separator, and Separator + s o l u t i o n gas  Separator + S o l u t i o n Cas  CO 2  3.4 * 20.7  (a) C [ , C  2  (b) C [ , C  3  21.8 * 87. 8  Static  Windowed  cell  Displacement  Slim-tube  Minimum m i s c i b i l i t y pressure (MMP ) T r a n s i t i o n zone composition  17.2  86.7  Displacement  Slim-tube  E f f e c t of a c i d g a s e s In hydrocarbon miscible process  N + C, + L.P.G. S l u g . Also Cj + C •» C,  8.3 * 10.8  40.6, 48,9  Static  Variable-volume windowed c e l l  Displacement  Slim  C o m p o s i t i o n a l and minimum p r e s s u r e required l n hydrocarbon miscible floods  10.0 * 20.1  57.2  Static, Multiple Contact S t a t i c  Variable-volume windowed c e l l  Studying the vaporization (extraction) a c t i o n of C O 2 . Density of e x t r a c t phase o i l .  9.0  54.4  Displacement  Core  Recovery o f o i l from c o r e  ( c ) C[ , n-C,, (d) Ci , C 0 ( e ) C, , 67  1970  Separator + S o l u t i o n Gas  Visual o i l behaviour with increasing^ p r e s s u r e by C O 2 injection.  Found t h a t C O 2 c o u l d " v a p o r i z e " h y d r o c a r b o n s up t o C 3 O .  2  68  1963  Separator  CO 2  69  1961  Separator  Water, C 0 Slug 3  be used  2  2  C  V i s u a l behaviour cannot t o d e t e r m i n e t h e MMP.  HS  2  Cj,  MMP c o r r e l a t i o n .  2  slug  tube  P r e l i m i n a r y s t u d y o f C O 2 as a m i s c i b l e agent.  21  slim tube, known  or  rock  core.  The  minimum p r e s s u r e  as t h e M i n i m u m M i s c i b i l i t y P r e s s u r e  w h i c h about  95% o f  required  (M.M.P.),  the o i l i s r e c o v e r e d w i t h  the  is  for  miscibility,  the p r e s s u r e  i n j e c t i o n of  1.2  at  pore  63  volumes  of  displacement  relationships,  three  S i n c e the miscibility  of  fluid.  The  tests  which are  i n d i c a t e d i n Appendix  e q u i l i b r i u m behaviour  displacements  cannot  produce  required  for  be d e t e r m i n e d  empirical A.  multiple  by  static  contact  or  first  28  contact  equilibrium studies,  contact  studies.  data  during  Multiple  the  Multiple  the produced  contact  enrichment  contact  studies  of  displacing fluid  These s t u d i e s  determine  the  Static relevant  multiple  has been w e l l n  j  u^i  fluid  v  cells  ^,  . .  can e x i s t  L2,  at  can a l s o e x i s t  equilibrated  phase  o i l or  displacement  fluid.  oil)  n  added a t  and h a v e n e v e r  of  m  i n two  so  that  removed,  cell to  displacement  been f o u n d  Li,  solvent component  rich  physical  v i s u a l phase  that  '  a solvent  provide  process.  60-62 64-66  CO2  however,  c h a r a c t e r i s t i c s and  at „  16  or C 3 H 8 n  certain pressures.  pure  the  been u s e d  equilibrium studies,  has  r  cell  M.M.P.  the  It  windowed  c a n be t o t a l l y  are e x c l u s i v e l y u s e d ,  liquid,  and a n e a r l y  reservoir  multiple  provide  residual oil)  extraction  critical  c o n s i d e r e d an o i l r i c h  phases  the  attempted  a variable-volume  contact  documented.  above the  phases  liquid,  contact  of  studies  lengthy  used i n m o d e l l i n g  S i n c e windowed  slightly  (or  authors  reservoir  (or  are  and m u l t i p l e  information  properties  the  require  and f r e s h d i s p l a c i n g f l u i d pressure.  several  behaviour  temperatures 66  »  three  These f l u i d phases (displacing fluid)  vapor,  systems  V.  These three  i n w h i c h one  are rich fluid  component  is  22  18  supercritical. phenomena,  '  60 6 2  O r r and c o - w o r k e r s  and p r o v i d e d  ~  the f o l l o w i n g  pressure at which these  three  deal exclusively with  these  r e l a t i o n s h i p f o r estimating the  phases  can c o - e x i s t  f o r CO2 d i s p l a c e m e n t s :  -2015 9 P = 101.325 exp[ + 10.9122] T  for,  283 < T < 3 2 3 ° K .  range  o f + 1750 o r -  The p r e s s u r e  two f l u i d p h a s e s h a v e b e e n o b s e r v e d .  p h a s e s a r e c o n s i d e r e d an o i l - r i c h r i c h vapor,  (P) i s i n k P a and i s w i t h i n t h e  1000 k P a .  Above 3 2 3 ° K ( 5 0 ° C ) o n l y  fluid  (2.1)  V.  At these  l i q u i d L i , and a s o l v e n t  temperatures  retrograde  The  or d i s p l a c i n g  condensation  65  occurs. An a d d i t i o n a l s o l i d oils  at high concentrations  case of CO2, the s o l i d of  C02 (ZC02)  material  Typical saturated  approximately  plots  phases.  6 0  »  6 5  >  6 6  crude  or s o l v e n t .  In the  concentration  The s o l i d  and does n o t a c c o u n t  f o r more  than a  volume.66 are given  i n F i g u r e 2.1 and 2 . 2 .  (V) o r C 0 2 - r i c h l i q u i d  (L2)  Li-L2-V-S  The  c o n d i t i o n s have never  are very  The phases and phase b e h a v i o u r  phase c o m p o s i t i o n s  temperature,  60 % .  as t h e heavy o i l f r a c t i o n s  Li-V, Li-V-S, The  of the d i s p l a c i n g f l u i d  been a n a l y z e d  P-ZC02  p h a s e c a n be e x p e c t e d w i t h  p h a s e e x i s t s when t h e o v e r a l l m o l a r  of the c e l l  vapor  encountered C02-rlch  exceeds  has never  few p e r c e n t  Li,  or tar like  been  i n s o l u b l e even i n d e n s e , expected  are therefore  and L i - L 2 - S . and p r o p e r t i e s  o i l c o m p o s i t i o n and o v e r a l l  d e p e n d on t h e p r e s s u r e ,  c o n c e n t r a t i o n o f CO2.  The  23 4200  3800 h  3400  3000 h  2R00  f«  2200 h  1800  KOO  1000 h  600 '  20  40  MOL PERCENT  F i g u r e 2.1  GO C0  80  %  ?  Typical P-Z^ at  100  P l o t  2  CO. f o r  R e s e r v o i r  T e m p e r a t u r e s b e l o w 50 C  6 6  0 i l s  24  compositions  and p r o p e r t i e s  visual  behaviour.  able  phase  data, In  to  exceeded 5 Pr critical of  However,  i n d i c a t e the  previously of  have not  b e e n s t u d i e d as e x t e n s i v e l y  Table 2.3  expected  values  CO2, which i s the proposed The  investigated  A design which incorporates  fluid extraction  allow  the  study  miscibility  of  the  depth  solvent  reservoir.  Table 2.4  by  The  than  known  to  the  extractions,  contents to  are not  recover  summarizes  oils  extract  above n - C 3 o H s 2 ,  present  the h i g h e s t  critical  molecular weight d i d not  provide  1.2  Tr)  Tr  would  and p r e s s u r e s u s e d  phase a n a l y s i s i s  in  hydrocarbons  60  '  extracted.  r e q u i r e d as t h e u l t i m a t e  the  o i l as i t  exists  in  fully  presented or  d i s p l a c i n g or e q u i l i b r a t e d  with molecular weights  of  of  the  characterized  quantities.  aim  phases,  S i n c e CO2  and  slightly  62  '  and because t h i s the a n a l y s i s f o r  study  provide  i s involved  o r g a n i c compounds  is particularly relevant.  s i m i l a r to  The  that  u s e d by O r r  for  oils  with up t o  system used i n  l a r g e s a m p l e s and t h e r e f o r e  e q u i l i b r i u m data  distributions.  more  the p r i n c i p a l a n a l y t i c a l data  i n the  hydrocarbons  equilibrium behaviour,  technique,  highest  exceeded  temperatures  o r i g i n a l o i l h a s b e e n more  28  study  the  never  a s t h e o r i g i n a l o i l w o u l d be a v a i l a b l e i n l a r g e r is  with  never  t h e n o r m a l maximum s u p e r c r i t i -  or d i s t r i b u t i o n of  m i s c i b i l i t y process i s  analysed  avail-  the p r e s s u r e has  P = 5 P r and T = 1 . 2  t h e n o r m a l maximum  and a s p h a l t e n e  others.  (i.e.,  supercritical fluid  concerned with  the  conditions  the  studies.  Unlike  Metallic  with  from  the  p r e s s u r e s b e l o w 20 M P a .  temperature  C3H3 w h i c h i s t h e p r o p o s e d s o l v e n t  cal  at  published m i s c i b i l i t y studies,  pressure.  temperature.  was p r o d u c e d  as  a gas  this  chromatographic  and c o - w o r k e r s , 6 0 " 6 2  w i t h wide m o l e c u l a r  this  weight  was u s e d  to  Table  2 . 3 . T y p i c a l Phase C o m p o s i t i o n s , that  Phase Behaviour  L  1"L2"V  l*r"L2  Lx-V  Weight  Fractions  and D e n s i t i e s  o c c u r when C r u d e O i l i s C o n t a c t e d w i t h C 0  Phase  L  l  Composition  l  c  »  « 0.7  c  -»• « c  ^1  C  Li  Ci  Lx  C:  V  C i ->• « C 3 0  3 •»• 100  » C30  C + k0  ~  6 e  (g/cm3)  -• 0 . 8  1  1 0  Cil0+  6 h  Density  ->• 10  v  •*  6 1  « 0.85  > « C30  +  °»  30 + 100  C:  l  (%)  6  h0+  c  L2  :  Weight  2  -> 10  30  100 -f 10  - 0.85 » 0.7  •> 0 . 8  »  -> 0 . 8 5  0.7  0.8  Table 2.4  Ref.  Year  60  1981  D l s p l ar.l nj; Fluid  CO  2  Oil  Analyses Studies  Data of O i l s  in Miscible  Displacement  Oil Characterization/Analysis  Type  Component Breakdown Separator, Separator + S o l u t i o n Gas  Mole X Cl l0• l 1+ C  C  Phase O i l A n a l y s i s  Additional I n f orma t i o n  Component Breakdown  Density. Viscosity. Molecular Weight. C Density. C; Molecular Weight.  Weight X  c . C:tv+ 3 6  y +  +  Weight X Cl  61  1981  CO 2  C  3ri<  C  3 7+  Synthetic  Mole X  Mole X  Cl. c .  Cl. c .  5  s  C  10.  C  Cl*, 62  1980  CO 2  Separator, Separator + S o l u t i o n Gas  C16.  Mole X Cl C  c  10.  l 1+  Density. Viscosity. Molecular Weight. C Density. C7 Molecular Weight. 7 +  +  Weight X Cl 36>  C  C37+  10.  Weight X Cl C 6 3  C37+  Additional Information  Table  63  2.4  1980  contd.  CO  2  Synthetic  Mole  X  Density. Mo l e c u l a r  Cl  Weight.  Ci,n. 64  1979  CO 2  Synthetic  Mole  X  Pc.  Mole  X  Tc. Cl.  Density.  Cm-  Viscosity. Moleculer  65  1978  CO  2  Separator Solution  +  Mole  Cl. Weight  X  M o l e 7.  Gas Cl Cl6 C  66  1977  Light  Separator  Hydrocarbon  Solution  CO j  1 7  +  Mole  X  C^ C  +  +  Density.  Mole  X  Viscosity.  Cl  c  CO 2 1974  17+-  Gas  Gas.  28  Cl6 C +  Separator Solution  7 +  Density.  +  .  C7+ Weight  Gas  X  Density  Welght  Viscosity Cl  Cg_i. M o l e c u l a r  c . c +  Weight  6  C,-K:  C i - c , 6  6  C  6 C30 , +  C30+6  C7+C30 3 0+*  phase;  Molecular Weight.  6  +  C  rich  7  C7+  c .  6  C  Oil C  X  Table  2.4  31  1972  contd.  Light Hydrocarbons + A c i d Gases  Separator + S o l u t i o n Gas  Mole Z  c  c  67  1970  Light Hydrocarbons  Separator + S o l u t i o n Gas  12+ Molecular C  l I • 12+ M o l e 7.  C  7 +  C7+ C5+ 68  1963  CO 2  69  1961  C0 , 2  c  3  Separator  Weight  Molecular Weight. Density. Molecular Weight.  Density. Molecular Weight. Density. Viscosity. Canradson number.  29  3. This  chapter  procedures fractions  DEVELOPMENT OF THE ANALYTICAL PROCEDURES deals with  used i n the a n a l y s i s present  compositions  indicated  supercritical  atoms  hydrocarbons difficult  phases.  i n T a b l e 2 . 3 c a n be e x p e c t e d  mixtures  analysis that  contain  i s not as yet p o s s i b l e .  can t h e o r e t i c a l l y  to both  separate  exist  a complete  and d i s t i n g u i s h . ^ 0  of 1dm3, were  not  limited. only  This  analyses.  do  weight  study  at a low weight  from  the  possible.  only  true  o i l and  contain  and t h e r e f o r e  is particularly  present  had a maximum and s e p a r a t e d o i l  of the e x t r a c t  fraction  with  Many p h y s i c a l a n d s o l v e n c y  oil  respect tests  were  applicable.  A gas c h r o m a t o g r a p h i c chromatography  that  of the e q u i l i b r a t e d  t h e s u p e r c r i t i c a l CO2 s o l v e n t .  therefore  The s e p a r a t o r  mixtures  used i n t h i s  the q u a n t i t i e s  which i s generally to  a r e complex  cell  molecular  i n many i s o m e r i c f o r m s w h i c h a r e  o i l a n a l y s i s was n o t c o n s i d e r e d  the e q u i l i b r i u m  only  (G.C.)  requires  Any q u a l i t a t i v e  of  w i t h more t h a n 6 t o  These h i g h e r  w i t h more t h a n 6 t o 10 c a r b o n s  fractions  phase  and q u a n t i t a t i v e )  compounds  hydrocarbons  capacity  o i l was u s e d  f o r the  (qualitative  o i l fractions  As  A separator  the e q u i l i b r a t e d  equilibrated  outset,  analytical  t h e o r i g i n a l o i l and t h e o i l  and t h e r e f o r e  the complete  hydrocarbon  10 c a r b o n  solute  of the  C02 s t u d i e s .  general,  complex  of  i n the e q u i l i b r a t e d  as t h e m u l t i c o m p o n e n t  In  the development  analysis  technique  was c h o s e n .  s m a l l samples and c a n p r o v i d e  a n a l y s i s was l i m i t e d ,  in this  fairly  thesis,  Gas rapid to  30  the of  o i l f r a c t i o n which e l u t e d below a chromatographic oven 350°C.  Temperatures  above 350°C can cause s u b s t a n t i a l  temperature thermal  3  c r a c k i n g o f the h i g h e r m o l e c u l a r weight compounds.  A chromatographic  oven temperature of 350°C could p r o v i d e the e l u t i o n of hydrocarbons w i t h up to a p p r o x i m a t e l y 40 carbon atoms. A h i g h degree of s e p a r a t i o n or r e s o l u t i o n of the o i l components can 71 be o b t a i n e d u s i n g c a p i l l a r y  column G.C. methods.  As a Hewlett Packard  gas chromatograph-mass spectrometer (G.C.-M.S.) w i t h a f u l l y data system was a v a i l a b l e , the c a p i l l a r y  interactive  column s e p a r a t i o n and mass  s p e c t r a I d e n t i f i c a t i o n a n a l y s i s r o u t e was c o n s i d e r e d . Although a t e s t i n j e c t i o n of a s u p e r c r i t i c a l CO2 e x t r a c t o i l p r o v i d e d over 200 peaks, the  data system had had d i f f i c u l t y  i n identifying  the n-C28H58 spectrum  from a simple and w e l l r e s o l v e d c a l i b r a t i o n mixture.  To minimize the  work i n i d e n t i f y i n g and i n data h a n d l i n g t h i s powerful a n a l y t i c a l technique was not pursued. A low r e s o l u t i o n G.C. technique was u l t i m a t e l y chosen to p r o v i d e a simulated d i s t i l l a t i o n  of the o i l sample.  The s i m u l a t e d d i s t i l l a t i o n  technique has been s t a n d a r d i z e d by the American Materials,  S o c i e t y f o r T e s t i n g and  ( t h e A.S.T.M. D-2887-73 method), f o r o i l samples which  boil  72 below 538°C  and which are t o t a l l y e l u t e d from the G.C. column.  simulated d i s t i l l a t i o n  technique has a l s o been suggested t o the  A.S.T.M. Committee i n a m o d i f i e d form f o r the d i s t i l l a t i o n oil  samples which c o n t a i n a n o n - e l u t e d f r a c t i o n .  were o b t a i n e d by assuming m o l e c u l a r weight.  The  7 0  of crudes and  E q u i l i b r i u m data  that a b o i l i n g range has a p a r t i c u l a r  averaged  31  The  d e t a i l s and development  remainder indicate  of  chapter.  this  procedure  Some i n i t i a l  are o u t l i n e d i n the  r e s u l t s are a l s o provided  the d i r e c t i o n of the development  simulated  3.1  this  of  to  and t h e p r i n c i p l e s b e h i n d  the  d i s t i l l a t i o n procedures.  Gas Chromatographic Simulated D i s t i l l a t i o n The  object  conventional method.  i s t o c r e a t e a chromatogram  b e n c h s c a l e d i s t i l l a t i o n , s u c h as t h e A . S . T . M .  The c h r o m a t o g r a p h i c that  points,  and a r e a i n t e g r a t o r s  eluted.  detectors  Experience  non-polar  elute  h a s shown  hydrocarbons  D-86  simulated d i s t i l l a t i o n therefore  c o l u m n s and c o n d i t i o n s with  which simulates a  compounds  that  this  i n order  to q u a n t i f y  separation  using a non-polar,  of  requires  their the  boiling  amounts  c a n be a c h i e v e d  silicone stationary  for  liquid  73 p h a s e and t e m p e r a t u r e Ionization  programmed  Detectors  (F.I.D.)  The  samples,  consequently,  lists  chromatogram  be e m p l o y e d  time  injected n-alkane  Detectors  (T.C.D.)  the c o n d i t i o n s ,  columns,  do n o t a i m t o  workers.  completely  t y p i c a l l y present  in oil  a r e a s a r e n o t s t o r e d a s peak  areas  The c r e a t i o n o f t i m e - s l i c e s a n d t h e  console.  The s o f t w a r e  relationship with  calibration mixture,  t i m e - s l i c e areas  report.  Flame  of the t i m e - s l i c e d areas r e q u i r e s a d d i t i o n a l software  by t h e d a t a  point-retention  Conventional  u s e d by p r e v i o u s  t h e 200 p l u s compounds  as t i m e - s l i c e a r e a s .  interpretation  point  Table 3.1  simulated d i s t i l l a t i o n techniques or i d e n t i f y  normalized  Conductivity  c a r r i e r gases and sample s i z e s  separate  but  conditions.  or Thermal  c a n be u s e d f o r t h e d e t e c t i o n . detectors,  oven  to create  data  to  creates a b o i l i n g  obtained  from a  previously  and uses t h e c u m u l a t i v e and the percent d i s t i l l e d - b o i l i n g  Table 3.1  Ref 73  Carrier Detector Gas  Flow Rate (t»l/mln)  Summary o f S i m u l a t e d D i s t i l l a t i o n C h r o m a t o g r a p h i c M e t h o d s Sample Size Ml . _  F.I.D. T.C.D. T.C.D. T.C.D. T.C.D. F.I.D. F.I.D. T.C.D. F.I.D. F.I.O.  N He  30 14  -  -  F.I.D. T.C.D. T.C.D. T.C.D.  N2 He He He  20 30  _  -  -  -  -  T.C.D. F.I.D. F.I.O. T.C.D.  He He  70 75  -  "  74  -"  72  60  Initial Temp.  CO  Initial Hold (mln)  Temp. Rate CC/raln)  Final Hold (mln)  Final Temp  CO  Sample Boiling Range  CO _  -50 0 -20 -30 +50 -30 -30 -40 -40 -20 -30 50 0 25  0 0 0 0 1 0 0 0 0 0 0 1 0 2  10 8 10 10 10 11 8 10 10 8 10 20 15 6  8 0 0 0 0 0 0 0 0 0 0 0 0 0  350 325 250 250 200 380 350 360 360 300 230 350 250 2 50  -  50 -20  0 0  8 8  0 0  340 250  38*150 18*315  30  -  -20  0  8  0  340  -18*365+  2 He  40 30 60 60  4 0.3 1 5  -20 -40 50 50  0 0 0 0  10 6.5 8 7.5  0 0 0 0  360 350 350 390  F.I.D.  N  50  0.5  -30  0  10  0  F.I.D.  He  -  -  -30  0  8  0  -  -  _  F.I.D. +  2  lie N2 He He N He 2  N  2  --  -  --  --  -  1  -65  ( a ) - D l a t o p o r t - S., s l l a n e t r e a t e d , 60/80 mesh ( b ) - C h r o m a s o r b G(AW-DMS), 60/80 mesh  1  15  5  -  --  --  --  Stationary Liquid Phase  Liquid Loading (*)  UCW-98 OV-101 UCW-98 UCW-98 UCW-98 UCW-98 OV-1 UCW-98 UCW-98 SE-30 UCW-98 UCW-98 0V-1 SE-30  3 t o 10  "  Crushed f i r e brick or dlatomaceous earth  -  **  -•*  SP-2100 OV-101 UCW-98 OV-l SF-30  10  *538  OV-l SE-30 UCW-98 SE-30  380  -538+  UCW-98  350  -  OV-l  370  -  OV-101  ( c ) - C h r o m a s o r b P(AW), 60/80 mesh ( d ) - C h r o m a s o r b W ( 1 I P ) , 60/80 mesh  Solid Support  -  Column Dimensions L ( f t ) X D(lns) 1.7 10 4 1.5 2 1.5 2.5 1.5 1.7 2.5 1.5 2 7 8  X X X X X X X X X X X X X X  6 6  X X  1/8 1/8 1/2 1/4 1/4 1/4 1/8 1/4 1/8 1/8 1/4 1/8 1/8 1/8  -  1.5 X  3 5 10 10  (a) (b) (b) (c)  4 5 2 2  10  (c)  1.5 X 1/4  -  -  2.5 X 1/8  10  (d)  10  X X X X  1/4 1/8 1/4 1/4  X 1/8  33  Short eluted  '  7 0  columns have been s u g g e s t e d f o r and t h e r e f o r e  7 5  conditions liquid  two  i n d i c a t e d i n Table  phase  c o u l d not  liquid  n-alkane  UCW-98 c o l u m n , contained  minutes.  the  the  518  time  3.1.  OV-101  r e s o l u t i o n set  relationship  The  e l u t i o n of  relationship  of  the  is  set  the  at  to  520°C.  sample,  end o f  ^  a n  the  e l u t i o n of  the  the  n-Ci+oHs2.  the  for  the  c a l i b r a t i o n mixture to  provide  at  0.01  chromatogram  37th minute.  The t  the  chromatographic with  molecular  nH^cjHgn.  Samples Which Contain High B o i l i n g Point Fractions  chromatographic respect  to  required The only  the  to  column and t h e r e f o r e fraction eluted.  account  raffinate of  are not  the  for  samples t h a t  order  of  eluted  from  areas are only  A quantitative  the n o n - e l u t e d  the  normalized  a n a l y s i s method  with is  fraction.  contain high b o i l i n g point  a f e w grams w i t h  is  As n-CsgHgrj and n-Ci oHg2 h a v e  d e t e c t i n g hydrocarbons  compounds  only  simulated  ethane  the  a n d 525°C r e s p e c t i v e l y ,  c o n s i d e r e d capable of  b o i l i n g point  by  c o l u m n c o n t a i n i n g t h e UCW-98  from n - C t o  automatically  the  totally  used.  end b o i l i n g p o i n t  Up tO  High  were  before  boiling points  Weights  t h e minimum n - a l k a n e  simulated b o i l i n g point  extending  m e t h o d was  3.2  data  t e s t e d under  column c o n t a i n i n g the  boiling point-retention  software  The  extrapolated normal  The  s e l e c t normal alkanes  distillation  by  3.2.  i s indicated i n Figure  a b o i l i n g point  found  columns were  therefore  p h a s e was e x c l u s i v e l y  The  short  provide  t h e ASTM D - 2 8 8 7 - 7 3 m e t h o d ,  samples w h i c h are not  the  developed  fractions  sampling  34  Table  3.2  Chromatographic Hardware  and C o n d i t i o n s  HARDWARE Chromatograph:  P e r k i n - E l m e r Sigma 2 , d u a l column temperature programmable gas c h r o m a t o g r a p h , with C02 cryogenic option.  Detectors:  Flame  Data  P e r k i n - E l m e r S i g m a 10 d a t a c o n s o l e , w i t h " B a s i c " programming and m a g n e t i c tape storage options.  Handling:  Column  (a):  Ionization  Detectors.  10% UCW-98 o n c h r o m a s o r b P ( A W ) , mesh. 18 i n ( 4 5 . 7 2 cm) x 0 . 2 5 i n ( 0 . 6 3 5 s t e e l column.  Column  (b):  Carrier  Volume:  Gas  Injection Detector Initial Final  (Nitrogen):  Port Port  Oven  Oven  Temperature  cm)  O.D.  10% O V - 1 0 1 o n c h r o m a s o r b W ( H P ) , 8 0 - 1 0 0 mesh. 18 i n ( 4 5 . 7 2 cm) x 0 . 2 5 i n ( 0 . 6 3 5 cm) O . D . s t e e l column.  CONDITIONS Injection  80-100  Temperature: Temperature: Temperature:  Temperature: Rate:  0.5  -  1.0 u l  50 m l / r a i n 350°C 350°C -30°C 340°C For For  column column  (a) (b)  10°C/min 8°C/min  SIMULATED  END T E M P E R A T U R E  (520 C)  500 "32, 28.  400 "24 .  20, "18  300  U  2  C  V  200  O Z  O ,oo  H  /  l/c, -100* '5  20  25  30  35  RETENTION TIME (MIN ) :  Figure  3.1  Boiling Point-Retention for n-alkanes  Time  Relationship  40  36  procedure, flash  off  and t h e r e f o r e the  elutable  internal  eluted  of  been s u g g e s t e d The  first  the  for  was n o t  fraction  chromatographic fraction  it  considered possible  for  standard  sample.  analysis.  two  accurately  As a r e s u l t ,  m e t h o d was u s e d t o  The  to  options  a  calculate  the  d e s c r i b e d below  have  use i n s i m u l a t e d d i s t i l l a t i o n a n a l y s e s .  method  requires a blank  t i m e window  at  the b e g i n n i n g  of  76 the  chromatogram  quantified eluted  i n w h i c h an i n t e r n a l  independently  fraction,  e,  e = (Weight °f Weight  of  the  oils  is calculated  standard  present  in  may be e l u t e d the  sample.  and  The  by:  i n t e r n a l standard^ of sample  ^Area Area  x  f r a c t i o n of f r a c t i o n of  the sample \ the i n t e r n a l  standard (3.1) The of  the  second m e t h o d 7 0 » 7 5 > 7 6 i s i n d i c a t e d i n F i g u r e 3 . 2 .  internal  chromatogram  standard,  without  the  a|g,  with  internal  respect  standard,  a' a  The  fraction  eluted,  e =  The  internal  e,  W e  is  =  is  calculated  b  +  to  the  areas  is calculated  (  )  the  by:  (-)  a  3 2  by:  l g h t ° f i n t e r n a l standard Weight of sample  standard used i n t h i s  of  area  a'  2 bj-Tbf ~ 2 x  The  study,  1 a! is  (3  and t h a t was s u g g e s t e d  70 the A . S . T . M . 11--C17H36.  Committee,  contained n - C ^ l ^ o ,  n-C^r^,  n - C 16^31+ a n d  *  3)  to  37  38  Although more  the  generally  s e c o n d method  applicable  the  chromatogram.  3.3  Response Factors This  samples.  only  detector  It for  a mixture response  factors  assumption accuracy  of  of  Measured Table 3 . 3 . and  the  factors  for  a l l the  relative  relative  therefore  to  task  response  taken  be i n d i c a t i v e  200  compounds,  factors  were  was w i t h i n  for  a few  no o b s e r v a b l e fairly  only  responds  to the  the  the  the n o r m a l i z e d  the q u a n t i t y  chromatogram  eluting  sample  Impurities  in  stationary  l i q u i d phase b l e e d .  The  the  of  area not  in  apparent  Response area  fractions  eluted.  eluting material that  time-slice.  gases,  are given  t r e n d was  weight  f r a c t i o n but  c a r r i e r and d e t e c t o r  similar  overall  and n o r m a l i z e d  Evaluation and Subtraction of Base Line Areas  during  that  equivalent.  3.4  being detected  response  Taber60  fairly  the  oil  therefore  and  compounds  taken  indicate  assumed  i n the  and  Orr  They found  were  T i m e - s l i c e d areas  in  is  technique.  as e q u i v a l e n t of  window  individual  and c o n c l u d e d  factors  tested,  present  to determine  over  distillation  factors  a blank  it  component  every  have b e e n r e p o r t e d .  response  response  require  runs,  for  n-alkanes,  the n-alkanes  chromatographic  d i s t i l l a t i o n analyses  n - C s H i 2 t o n-Cu,o.H82«  simulated  For  were  factors  equivalent  the  does n o t  which contains  the n - a l k a n e s  response  response  two  simulated  w o u l d be a m o n u m e n t a l  n-alkane  tested  since i t  a n a l y s i s and r e v i e w e d  an e q u i v a l e n t  factors  requires  The  also,  detector for  not  example,  a s w e l l as t h e associated with  is  to  columns the  eluting  Table  3.3  Relative  Response F a c t o r s  (R.R.F.)  (Response F a c t o r = weight%/Area R . R . F . of n - C 1 0 H 2 2 = 1  for Various  Organic  %, f o r a n o r m a l i z e d  report)  n-Cii,+ Cl7  Compound  n-C5  n-C6  n~Cs  n-Cio  n-Ci2  W e i g h t 7. Area % R.R.F.  17.11 16.54 1.005  19.49 19.76 0.959  18.96 19.54 0.943  22.78 22.14 1.00  21.65 22.02 0.956  -  Weight % Area % R.R.F.  17.11 17.24 0.952  19.49 19.49 0.959  18.96 19.42 0.936  22.78 21.85 1.00  21.65 21.86 1.010  -  27.36 28.04 0.995  46.20 45.00 1.047  Weight % Area % R.R.F.  -  -  -  26.44 26.96 1.00  Weight % Area % R.R.F.  -  -  -  -  1.09 99.57 1.00  -  -  72.51 93.28 1.00  -  Weight % Area % R.R.F.  -  -  Compounds  n -  -  CS2  CCL4  00  98.91 0.43 21.72  27.49 6.72 4.730  40  sample  i s known as t h e  base l i n e a r e a .  i n c r e a s e i n temperature during  the  therefore line  simulated exhibit  areas  eluting  3.4.1  of  the  The simulated  estimating slices  the  software  software  of  area  areas  would  chromatogram. sample  to  increase  base l i n e  As  base  chromatogram  be d i s t i n g u i s h e d  required  sample's  slice  The  both  from  estimate  raw c h r o m a t o g r a m  the  and  prior  to  the  reports.  s u p p l i e d by P e r k i n - E l m e r ,  line slice  the  base  had  areas.74  three  Assuming  sample,  base l i n e a r e a .  allowed  line  an  Method  software  the  of  cannot  is  from the  may c o n t a i n no e l u t i n g  indicative  portion  distillation analysis,  base  base  on a p l o t t e d  l i n e areas  normalized  Initial  drift  a sizeable  and b a s e  base l i n e areas  calculation  the  a positive  areas,  the  bleed increases with  d i s t i l l a t i o n chromatogram.  sample a r e a s ,  subtract  and t h e r e f o r e  can r e p r e s e n t  time-slice  Column  these  On t h i s  l i n e areas  to  i n conjunction  options that  slice  the  available  for  first  last  a r e a s may  assumption,  be e s t i m a t e d  the  in  with  and be  supplied  the  three  o manners  indicated i n Figure  software  allowed  Figure 3 . 3 ,  for  a maximum o f  i s u s e d when t h e  sample  raffinate  o i l samples and t h e r e f o r e  employed.  By  Two  s a m p l e a n a l y s i s and t h e subtracting  the  contains  detector  This only  base l i n e ,  i d e n t i c a l columns other  a s i m p l i f i e d d i a g r a m as  time-slices.  chromatogram.  obtain a horizontal  is  254  slice  the  the  This  last-time  To  of  3.3.  Option  material  eluting  occurs with  option  the  " c " was  a dual-column  response  of  the  reference  In  the  original  operation  a reference  in  and  considered.  are used i n p a r a l l e l w i t h providing  "c",  the  one  column  was providing bleed.  column from  the  41  TIMEBASE LINE OPTIONS: (a) - A l i n e a r s l o p e f r o m s l i c e (s) .  the  first  to  the  last  (b) - A h o r i z o n t a l l i n e f r o m t h e f i r s t s l i c e (s) t o a t i m e , T * , ( s p e c i f i e d by t h e u s e r ) , t h e n a l i n e a r s l o p e to the l a s t s l i c e ( s ) . ( c ) - A h o r i z o n t a l l i n e f r o m t h e f i r s t s l i c e (s) through, out the e n t i r e chromatogram. Figure  3.3  Base L i n e  Options  Using the O r i g i n a l  Software  42  analyser  column,  successful bleeding  a flat  operation  base l i n e c a n t h e o r e t i c a l l y  of dual-column  and a b a l a n c e d d e t e c t o r  An e q u i v a l e n t  column b l e e d  b l e d more  and p r o d u c e d a n e g a t i v e  The r e s u l t s horizontal  indicate  Consequently,  line  option,  base l i n e  the spare drift,  and n e g a t i v e  base  which d i f f e r  temperatures  occur at the h i g h chromatographic  These h i g h s i m u l a t e d  column b l e e d and base l i n e d r i f t  areas  either  l e s s and  line  drift,  using the  The r e s u l t s  simulated  distillation oven  temperatures  where  i s substantial.  Method  The m e t h o d s baseline  column  or bled  s i g n i f i c a n t l y at the h i g h  temperature.  Modified  after  i n T a b l e 3 . 4 and F i g u r e 3 . 4 .  distillation  3.4.2  even  a n d a n 0 . 5 LLI i n j e c t i o n o f a s u p e r c r i t i c a l  o i l , are indicated  values  column  drift.  of a p o s i t i v e  base  CO2 e x t r a c t  base l i n e  equivalent  c o u l d n o t be o b t a i n e d  column c o n d i t i o n i n g .  a positive  requires  The  response.  extensive  produced  analysis  be o b t a i n e d .  of H e w l e t t - P a c k a r d  o f an i n j e c t e d  sample  and V a r i a n  chromatogram  estimate  the  by m e a s u r i n g 77 78  time-slice software base  areas  allows  o f an i n i t i a l the storage  chromatogram  sample  chromatogram.  flexibility stored  from  blank  and s u b t r a c t i o n  the equivalent The P e r k i n - E l m e r  and t h e r e f o r e  o r base chromatogram.  software71*  i n d i v i d u a l t i m e - s l i c e base a r e a s .  c a p a c i t y was l i m i t e d , i n Appendix  E,  two p r o g r a m m e s ,  were w r i t t e n .  of t i m e - s l i c e areas  t i m e - s l i c e areas  i t was m o d i f i e d  »  Their of a  o f an i n j e c t e d  d i d not have  this  to allow the s u b t r a c t i o n As t h e d a t a  "TSLICE",  T h e programme  c o n s o l e memory  and " A - D - 2 8 8 7 " ,  TSLICE  of  simply  listed  creates  time-  43  Table 3.4  Effect  Weight Distilled U)  0.5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 99.5  of  Base L i n e D r i f t  A:  on S i m u l a t e d D i s t i l l a t i o n  Negative D r i f t Distillation (°C)  72 106 125 135 146 154 161 171 179 190 199 209 220 227 240 247 258 274 296 369 485  B:  Positive  Temperature (°C)  81 112 131 140 150 158 164 171 181 188 198 206 216 222 232 241 250 260 274 293 367  Drift  Report  44  BOILING Figure 3.4  POINT  CC)  E f f e c t o f a P o s i t i v e and N e g a t i v e Base L i n e D r i f t on S i m u l a t e d D i s t i l l a t i o n Curve  45  sliced  a r e a s and t r a n s f e r s  A-D-2887  retrieves  corrects  the  The  Injected  areas),  a simulated  3.5  r u n s were p e r f o r m e d .  The  0.5  first  ul.  oil  Four  and l a s t w e r e b l a n k ,  or  chromatograms.  that  repeatability  of  the  r e q u i r e d by t h e A . S . T . M .  chromatogram  i s used.  significantly  injection  procedure  The  distillation  but  D-2887-73 method,  same  the  rather  the  not  to  a b i l i t y to  where  error  appears  estimation  of  be a c c u r a t e l y  d i f f e r e n c e s are only temperatures  large  chromatographic  subtract  time  method  sliced as o n l y  areas  reports,  the  c a l c u l a t e d by s u b t r a c t i n g  using a positive  by  not  differ  be  the  the base l i n e  area.  f r o m one r u n  the h i g h oven  base  base to  to  simulated  temperatures  less  than  and n e g a t i v e  the  i s an i m p r o v e m e n t  one c o l u m n i s  Additionally,  differ  the  repeated  towards  column b l e e d b a l a n c i n g i s needed.  areas,  if  to  are  substantial.  o r i g i n a l Perkin-Elmer  slice  only  r e s u l t s using both  s o u r c e of  appear  h i g h and column b l e e d The  is close  simulated d i s t i l l a t i o n reports  The m a j o r  base l i n e areas  another.  The  simulated d i s t i l l a t i o n report  when one c o m p a r e s  chromatograms.  the  base l i n e  s a m p l e was a s u p e r c r i t i c a l CO2 e x t r a c t  i n j e c t e d s a m p l e s i z e was a p p r o x i m a t e l y  The  The  the  programme  r e s u l t s using t h i s modified approach are i n d i c a t e d i n Table  chromatographic base  (storing  The  report.  and F i g u r e 3 . 5 . and t h e  t i m e - s l i c e areas  tape.  s a m p l e s raw t i m e - s l i c e a r e a s a n d g e n e r a t e s  distillation The  the  the data onto magnetic  first  r e q u i r e d a n d no  the d i s t i l l a t i o n  and l a s t  base  d i s t i l l a t i o n reports  base l i n e  drift.  over  chromatogram calculated  T a b l e 3.5  A:  E f f e c t of S u b s t r a c t i n g Base Chromatograms D i s t i l l a t i o n Report.  F i r s t Sample F i r s t Base  Weight Distilled ( ) %  0.5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 99.5  B:  Second Sample F i r s t Base  C:  on S i m u l a t e d  F i r s t Sample L a s t Base  D:  Second Sample L a s t Base  DISTILLATION TEMPERATURE (°C) 88 122 141 152 162 170 177 ' 187 196 204 216 226 236 242 251 257 269 280 296 317 381  (°C)  87 121 141 151 162 170 177 187 196 204 216 227 236 242 251 257 269 280 295 316 375  (°C)  89 123 142 153 163 172 179 189 197 208 218 229 236 246 253 263 273 273 304 346 478  (°C)  90 123 142 152 163 172 179 189 197 208 218 229 236 246 253 263 273 273 303 341 443  47  I  TOO  80  I  A — F i r s t s a m p l e ; f i r s t base B—Second s a m p l e ; f i r s t base C — F i r s t s a m p l e ; l a s t base D—Second s a m p l e ; l a s t base  II II  // 60  / /  / 40  /  / 20  /  /  L_  100  Figure  3.5  200  300  BOILING  POINT  400.  500  CC)  E f f e c t of S u b t r a c t i n g Base Chromatograms S i m u l a t e d D i s t i l l a t i o n Curve  on  the  48  However, that  the column b l e e d appears  the m o d i f i e d  approach,  (based  t o be r a t h e r  i r r e p r o d u c a b l e so  on t h e s i m u l a t e d d i s t i l l a t i o n m e t h o d s  7 7 78  of  Hewlett-Packard  at  t h e end o f  and V a r i a n )  the chromatogram.  was u s e d f o r t h e q u a n t i t a t i v e Section  produces  As a r e s u l t ,  analysis.  This  questionable  an a v e r a g e d method  data  base l i n e  i s outlined  area  in  3.5.2.  3.5.1  window  Qualitative  Analysis  Equilibrium  data  or b o i l i n g point  simplicity  i s obtained  range  options  window  u s e d by O r r and T a b e r 6 0  this  arbitrary,  would  Although  and e q u i v a l e n t  and a f t e r  fraction.  For  of n o r m a l a l k a n e s were u s e d .  Two  are i l l u s t r a t e d i n Figure  thesis.  the adopted  by a s s i g n i n g a p a r t i c u l a r  to a molecular weight  the molecular weights  window  the  still  Molar Analysis  3.5  in  »  and C a s e  the c h o i c e of  3.6. (b)  case  t h e window  the used  somewhat elute  before  ( b ) was c h o s e n b e c a u s e t h e window that  were  predominant  studied.  .3.5.2  Quantitative Programme  evaluate  is  represents  compounds w i l l  c o n t a i n the complete normal a l k a n e peaks  oils  (a)  represents  t h e window  molecular weight  window,  Case  time  the areas  Analysis  "BC-AREA",  listed  i n Appendix  of each m o l e c u l a r w e i g h t  programme  BC-AREA u s e s t h e t i m e - s l i c e d d a t a  generates  normalized  percentage  window  of the t o t a l  areas,  i s used  chromatogram window. stored  and r e p o r t s  sample chromatogram  F,  on m a g n e t i c  the r e s u l t s as a  area.  to The tape,  in  49  n 2n+2  n+1  n-1  . .Elution tine of n-alkane peak  Time window f o r C H . n 2n+2 fract ion  m o l e c u l a r weight (a) (b)  Figure  3.6  Options for  ( f + t ,)/2 t o ( t + t )/2 n n-1 n n+i  C h r o m a t o g r a m Window A n a l y s i s  50  The before  programme  and a f t e r  calculates result details  to  the  the  the  sample  difference  averaged  areas  chromatograms.  of  base  The  chromatograms  programme  between  the  two  base a r e a v a l u e s ,  indicate +/-area values  for  the  evaluated  are  evaluated  uses  given  in Figure 3.7.  areas would  h a v e been i f  been used i n d e p e n d e n t l y  to  correct  The + / - a r e a v a l u e s either the  the  first  sample's  run  also and u s e s  sample a r e a s .  The  i n d i c a t e what or  last  base  raw c h r o m a t o g r a m  the  the  had areas.  RAM CHROMATOGRAM AREA.  SAMPIJ- AREA. a a j - a r S j - a b j  F I R S T BASE CHROMATOGRAM AREA, a b l  ablj-abj+ae^  2 aCj=ablj-ab2j  AVERAGE BASF. AREA.  LAST BASE CHROMATOGRAM AREA. ab2  ab^-Cabl +ab2 )/2  ab2j-abj-aej  WINDOW " j " The sample a r e a , a s ^ , l a t a k e n a s : a s ^ - a s ^ +/- a e ^  The s o f t w a r e s u p p l i e s t h e sample a r e a a s a p e r c e n t a g e o f t h e t o t a l « t » J a r S j - TJabj The sample a r e a I s t a k e n a s : Where: a ' S j - ( n s ^ / a t ) x l 0 0 ; a " e ^ - ( a e ^ / a t ) x I 0 0 The  Figure  t o t a l area  3.7  I s taken a s :  at-at  Quantitative Analysis  +/-  ( I aej/at)x!0O  Method  area.at.  J  J  52  4.  DEVELOPMENT OF EXPERIMENTAL PROCEDURES AND EQUIPMENT  This  chapter  procedures.  deals with  As t h e  a n a l y s i s were d e v e l o p e d  the  l i m i t a t i o n s of  cell  autoclave. cell,  through  was d e v e l o p e d  The  and i s The  it  equipment  and  preparation  was p o s s i b l e t o  p r o c e d u r e s and  autoclave  identify  apparatus.  s t i r r e r l i d assembly.  mm) I . D .  stainless steel tubing, ports  Heat around  have t h e s e  i s s u p p l i e d to  the  lower  contents  temperature  rated  the a u t o c l a v e The  for  the n e a r e s t  three  ports  windowless  of  which  have h i g h  pressure (2.77  p r e s s u r e s up t o  177.9  MPa.  outside.  temperature  itself  to prevent  (0.56°C).  are  inch  had a  the mantle  temperature  is  situated  controlled  maximum or  autoclave  is digitally  The m a n t l e ' s  and d i s p l a y a r e i n d i c a t e d on a d i a l  (5.56°C).  pressure  by 0 . 1 0 9  autoclave  The a u t o c l a v e °F  b l i n d or  by a c y l i n d r i c a l m a n t l e  The m a n t l e  controller,  from o v e r h e a t i n g .  and d i s p l a y e d t o  These t h r e e  c o n n e c t i o n s on t h e  controller.  set point  ports,  i n c h ( 6 . 3 5 mm) O . D .  body s e c t i o n .  by a p r o p o r t i o n i n g temperature  0.25  high  4.1.  has seven i n l e t / o u t l e t  connections for  the  stirred,  represents a fixed-volume,  i l l u s t r a t e d in Figure  autoclave the  around a m a g n e t i c a l l y  internal  10°F  the  s a m p l i n g and s a m p l e s  independently,  the e x p e r i m e n t a l  of  Equilibrium C e l l The  All  development  equilibrium c e l l ,  for  4.1  the  set  scale with  point increments  Both c o n t r o l l e r s have c h r o m e l - a l u m e l thermocouples  an e l e c t r o n i c r e f e r e n c e temperature.  The  a s e a l e d h i g h p r e s s u r e tube  into  extending  autoclave the  thermowell  autoclave  set  is  cavity.  of  and simply  53  MAX.PRESS. MAX.TEMP. VOLUME MATERIAL  MAGNETIC  103.4 MPa 616.5 K I L A-286 S t e e l  COUPLING  METAL TO METAL SEAL AUTOCLAVE SUPPORT  THERMOWELL AUTOCLAVE CAVITY  MANTLE STIRRER AUTOCLAVE BODY SECTION  Figure 4.1  A u t o c l a v e D i m e n s i o n s and S p e c i f i c a t i o n s  54  The a  pressure  Is  r a i s e d by i n t r o d u c i n g  10,000 p s i a  ( 6 8 . 9 MPa)  explosion-proof  motor.  The bourdon  cell  20,000  in  intervals  was  psia  later  diaphragm  guage.  This  ( 3 1 7 . a MPa)  of  200 p s i a  improved  The  35.5  and t h e p r e s s u r e I s  (1.38  MPa).  The  by u s i n g a p r e s s u r e  coupling i s belt  standard  a variable-speed 4.1.1  controller  Autoclave  oil  bath,  400 p s i a  (2.76  steel MPa)  d i s p l a y e d on a d i a l  transducer.  The  1 atmosphere  driven  (0.1  MPa)  scale  accuracy  pressure  by an e x t e r n a l  t o a maximum o f  is  to a  maximum  motor. 2500  1/4  The  H.P.  speed i s  set  rpm.  Modifications constant  temperature  i s o t h e r m a l c o n d i t i o n s at  was u s e d a s i t  of  via an  stainless  p r e s s u r e measurement  integral explosion-proof  A separate maintain  solvent  MPa.  magnetic  ( 1 8 6 . 2 5 W)  feed  c o m p r e s s o r d r i v e n by  guage h a s a r a n g e  d i s p l a y e d d i g i t a l l y i n i n c r e m e n t s of p r e s s u r e of  gaseous  p r e s s u r e was o r i g i n a l l y i n d i c a t e d by a 316  pressure  to  double-end  the  the  sampling point.  was more e a s i l y a d a p t e d  and c a n be u s e d f o r  b a t h was r e q u i r e d  to  a wider  the  above  temperature  A hot  to air  equipment  range  bath  than  an  than a  79  given  oil. Heat  perforated using a 7  is  s u p p l i e d by f i v e  aluminium block. i n c h ( 1 7 . 7 8 cm)  explosion-proof proportional displayed (5.56°C).  motor.  controller.  on a d i a l  100 W c a r t r i d g e h e a t e r s The  air  is  circulated within  fan blade attached  The  bath  The  temperature  set point  s c a l e up t o 5 0 0 ° F  mounted  in a  the a i r  to  an  is  c o n t r o l l e d by a  bath  air-driven  and m e a s u r e d  temperature  (260°C) i n increments  of  time are 10°F  by  55  The of  hot  air  bath  f i b e r g l a s s board.  i s insulated with Aluminium  sheet  i n s u l a t i n g m a t e r i a l to p r o t e c t Special operation  custom v a l v e  of  the  valves  transducer magnetic  situated  outside  The mounted the  4.2  bath  equilibrium c e l l ,  t o be moved  the  air  to  5 0 . 8 mm)  the m a j o r i t y  o i l s p i l l a g e or  bath.  to allow t h e i r  use at  the  leakage.  to a l l o w The  of  the  pressure are  guage,  also  elevated  4.2.  c o m p r e s s o r and s o l v e n t  on a c u s t o m made t r o l l e y ,  gas c y l i n d e r a r e  as shown i n F i g u r e  i n and o u t  of  a stand-up  4.3.  fume  This  all  allowed  cupboard.  Sampling Since  the  phases were the  phase b e h a v i o u r  sampled.  autoclave  phases  and t h e s e  d e s i g n of  samples were  be o b s e r v e d  taken  samples r e p r e s e n t e d  the a u t o c l a v e  i n d i v i d u a l phases,  autoclave collecting  to  the  the  equilibrated 4.2.1  a maximum o f  from the top the  extract  two  and b o t t o m  and  of  raffinate  d i d not  and t h e r e f o r e  sampling valve  sample.  This  the  had t o  ensured  allow for tubing  be f i r s t  that  the  direct  that  sampling  connects  displaced  of  the  before  s a m p l e was a c t u a l l y  the  phase. I n i t i a l Sampling The  used.  The  c o u l d not  respectively.  The the  f r o m damage,  (25.4  c o u p l i n g and a i r - d r i v e n m o t o r  as shown i n F i g u r e  equipment  i s placed over  from o u t s i d e  the a i r  2 inches  stem e x t e n s i o n s were b u i l t  pressure  temperatures,  it  1 to  Tubes  respectively.  A'  Method  sampling design i l l u s t r a t e d i n Figure and B ' The  had  tubes  A'  l a r g e r volumes and B '  than  4.4  was  initially  t u b e s A and B  c o u l d be e v a c u a t e d  through  valves  3  Hot  A i r Bath  F i g u r e 4.3  Experimental Rig  57  Figure 4.4  Table 4.1 Volume Displaced (cm )  Flowsheet of the S a m p l i n g Method  Initial F r a c t i o n of T o t a l Volume  3  Sampling  Initial  Results  Initial Pressure (MPa)  Final Pressure (MPa)  Temperature ("K)  Iso-Octane/COj B  Sample  1  A  1  B  1  0.373  0.0373  17.93  17.58  311  0.896  0.0896  16.55  15.86  311  0. 373  0.0373  17.2A  16.58  311  colls:  Rafflnate  Separator  oll/C0  2  0.8  12.67  12.16  333  Rafflnate  0.8  18.64  17.33  338  Extract  0.8  5.98  5.88  294  Rafflnate  0.8  12.46  11.96  333  Extract  0.8  5.98  5.88  294  Table  Volume Displaced (cmd)  4.1  I n i t i a l Sampling  F r a c t i o n of T o t a l Volume (%)  Results  Initial Pressure (MPa)  Final " Pressure (MPa)  Temperature (°K)  Iso-0ctane/C02  Sample  B1  0.373  0.0373  17.93  17.58  311  A1  0.896  0.0896  16.55  15.86  311  B1  0.373  0.0373  17.24  16.58  311  coils:  Separator  oil/C02  Raffinate  « 8  0.8  12.67  12.16  333  Raffinate  « 8  0.8  18.64  17.33  338  Extract  « 8  0.8  5.98  Raffinate  « 8  0.8  12.46  Extract  * 8  0.8  5.98  5.88 11.96 5.88  294 333 294  <  58  and 4 .  By a l l o w i n g t h e  tubes A'  and B '  respectively,  representative  of  Table 4.1 is  clear that  occurs can  by  the  quite  the  of  the  t u b e s A and B t o be d i s p l a c e d  c o l l e c t e d samples would  equilibrated  i n d i c a t e s the  addition  of  results obtained with  tubes A'  affect  the  M o d i f i e d Sampling Two  alternative  and B '  cell  into The  inject the as  the  first  mercury  a variable  primarily mercury  cell.  »  phase 6 1  »  s e c o n d method  through  relies  sample c o i l s .  sampling  coils,  have b e e n d e v e l o p e d  changing the  effect  arrangement readily  toxicity on pumps Two  types  the  for  a displacement  simultaneously, In  6 2  This  potential  It  which  cell  thereby  total  was n o t  of  the  volume.  i d e n t i c a l b a r r e l displacement  b e c a u s e t h e pumps w e r e n o t  introduces  The phases  volume  6 0  volume,  and a l s o t h e  s a m p l i n g methods  the  equilibrium p r e s s u r e .  procedure.  Method  u s e s two  and remove  be  pressure.  sample c o i l / v o l u m e w i t h o u t method  this  cell  h i g h p r e s s u r e e q u i l i b r i u m s t u d i e s and b o t h p r o v i d e phase  into  phases.  even a v e r y s m a l l i n c r e a s e i n the  noticeably  4.2.2  contents  pumps  which  preserving  system  acts  chosen  available,  and t h e u s e  of  hazards. that of  continuously  circulate  c i r c u l a t i n g pumps h a v e  the been  80 previously  cited.  They a r e a m a g n e t i c a l l y  micrometering pump.60 fail  with  pumps  T h e s e pumps i n c o r p o r a t e  to  the  extract  was d e c i d e d t o a d o p t  that  check v a l v e s  streams which c o n t a i n resinous m a t e r i a l .  u s e was c o n f i n e d It  d r i v e n p i s t o n pump  are g e n e r a l l y  the  and a  that  can  As a r e s u l t ,  their  phase.60'80 c i r c u l a t i n g method,  c a p a b l e of  but  to use  gear  c i r c u l a t i n g viscous material,  and  59  whose to  operation  i s not  p l a c e t h e pumps  be u s e d t o d r i v e  dependent  i n s i d e the  the g e a r s .  autoclave Internal  high pressure  seals  temperature.  P r i m i n g problems  pumps a r e pumps  are,  to  be d r i v e n by  be c u s t o m The  design i s  tube  were  hours  assembly.  are  cell  r e d u c e d when  being i n v e s t i g a t e d ,  stirrer  autoclave.  The  indicated in Figure  the  the  shaft  pumps  that  can  and a l s o  therefore  had  to  by  the  the  4.2  The  and t h e o n l y m o d i f i c a t i o n was  that  same l e n g t h .  thermowell  to  the  As  t h e pumps were  every  time  spare i n t e r n a l  the  4.5  and T a b l e  The  pumps  fit to  were  and an a d d i t i o n a l inlet/outlet  attached  l i d was r e m o v e d .  design f a i l e d within a r e l a t i v e l y of  continued use, p h a s e and t h e  p h a s e pump.  e x c e s s i v e l y worn. stirrer  the  for  to  the  This  high  port  of  stirrer allowed  the shaft,  easy  c l e a n i n g and i n s p e c t i o n .  the e x t r a c t extract  attached  removed  for  This  e l i m i n a t e s the need  pump i s a t  mm) d i a m e t e r  spur gears  from r o t a t i n g  stirrer/lid  12  (9.53  were p r e c i s i o n ground  access  oils  could  lubricated.  mm) d i a m e t e r  conventional  restrained  they  As  stirrer  no c o m m e r c i a l l y a v a i l a b l e g e a r pumps e x i s t  (76.2  initial  pressure  the  decided  built.  g e a r s were they  was a l s o  are a l s o s u b s t a n t i a l l y  self  the 0 . 3 7 5 i n .  the 3 i n .  It  s i n c e the magnetic  mounting  that  cell.  an e x t e n t ,  Unfortunately  into  and e n s u r e s  s i t u a t e d i n the  on c h e c k v a l v e s .  shaft,  The This  the  extract  raffinate o-ring  period  of  p h a s e pump no l o n g e r  p h a s e had l e a k e d t h r o u g h  seals  and pump body h a d b o t h  was a t t r i b u t e d  which a l s o caused the  short  to  gears  the poor  alignment  to jam r e g u l a r l y .  time.  After  circulated to  the  been of  the  The  60  -3.00"  SECTION  C-C  Table 4.2 Item  D e t a i l s of  Quantity  t h e I n i t i a l Pump D e s i g n  Title  Material  Top p l a t e E x t r a c t pump: R e a r h o u s i n g Middle plate R a f f l n a t e pump: gear housing Bottom p l a t e  Drive  gear  Aircraft  Duralium  Stlrrer/drive  8  shaft  As s h o w n / m a c h i n e d f r o m 3" D r o d  16 p i t c h ; 1 4 - 1 / 2 " p r e s s u r e a n g l e ; •) 12 t e e t h ; 0 . 7 5 0 " p i t c h d i a m e t e r ; 0.375" D h o l e ; 0.375" L  Steel  7  DcKcrtptlon/Dimension  316 S t . S t e e l  0.375" D  Drive p i n  Tool  0 . 0 6 2 5 " D; 0 . 5 0 0 " L  9  Idle  gear  Steel  As 11 em 6  10  Idle  gear  spacer  St.  Steel  0 . 3 7 5 " O.D.;  11  Idle  gear  shaft  St.  Steel  0. 125" D; 0 . 5 0 0 " L  12  Positioning  13  Bolts  St.  Steel  14  Nuts  St.  Steel  15  Compression  16  0-rings  17  *Not  collar  springs  Inlet/outlet  Indicated;  0.001"  Teflon  elbows  gasket  sheeting  Steel  Aircraft  Duralium  0 . 8 1 2 5 " O.D.;  0.375" I.D.; 0 . 3 7 5 " L  5/32" t h r e a d e d , 3" L  Steel  0.25"  Vlton  0.375"  316 S t . S t e e l  0.125" I.D.; 0 . 3 7 5 " L  O.D. O.D.  0.25" I.D.  " S w a g e l o c k " male e l b o w (SS-200-2-1) , 0 . 1 2 5 " O.D. t u b e f i t t i n g ; m o d i f i e d J l / 4 " O.D. m a l e p i p e t h r e a d t o s t r a i g h t ( t h r e a d e d 1/4" N.F. m a l e end  b e t w e e n g e a r h o u s i n g and p l a t e s  (4 o f ) *  62  jamming can be observed by the s l i p p i n g of the magnetic A new pump d e s i g n was used. T a b l e 4.3 and F i g u r e 4.6. assembled  pumps.  aligns  The d e s i g n d e t a i l s a r e i n d i c a t e d i n  F i g u r e s 4.7 and 4.8 a r e photographs of the  The use of a u n i v e r s a l c o u p l i n g removes the  n o n - a l i g n e d motion of the s t i r r e r d r i v e the g e a r s .  coupling.  shaft  from the short s h a f t s used to  The o - r i n g s e a l d e s i g n and use of a b e a r i n g  the short independent gear d r i v e s h a f t s .  further  The s e p a r a t i o n of the  pumps p r e v e n t s leakage of the phases between the gear pumps. L i k e the p r e v i o u s d e s i g n , the thermowell and a d d i t i o n a l  high  p r e s s u r e tube are used t o prevent the pumps from r o t a t i n g , and the pumps are a t t a c h e d to the l i d assembly. As both phases r e t u r n to the c e l l v i a the i n l e t / o u t l e t  p o r t s on the  a u t o c l a v e body s e c t i o n , the phases both r e t u r n to the top of the c e l l . The  r e t u r n i n g r a f f i n a t e phase  t h e r e f o r e flows through the e x t r a c t  p r o v i d i n g i n t i m a t e mixing f o r more r a p i d  4.3  phase  equilibration.  Sample Preparation The o i l a n a l y s i s i s performed at atmospheric p r e s s u r e and t h e r e f o r e  some form of sample expansion was r e q u i r e d . h i g h p r e s s u r e samples w i l l condensed  form two phases  l i q u i d and expanded  predominantly the v o l a t i l e  gas.  At ambient that  The expanded  c o n d i t i o n s the  can be c o n s i d e r e d a gas w i l l be  s o l v e n t and the condensed  liquid  the o i l  fraction. Ideally  the t o t a l expanded  chromatographic column  sample  should be i n j e c t e d onto the  t o minimize the e r r o r s a s s o c i a t e d w i t h combining  the a n a l y s e s of two phases.  The two methods that have been  mentioned  SECTION B-B  Table 4.3 Item  Quantity  Details  of  t h e M o d i f i e d Pump  Title  1 2 3 4 5 6  E x t r a c t pump: t o p p l a t e E x t r a c t pump: R e a r h o u s i n g E x t r a c t pump: b o t t o m p l a t e R a f f l n a t e pump: t o p p l a t e R a f f l n a t e pump: g e a r h o u s i n g R a f f l n a t e pump: b o t t o m p l a t e  7 8  I d l e gear D r i v e gear  Design  Material  Aircraft  Duralium  Steel Steel  Description/Dimension  As s h o w n / m a c h i n e d f r o m 3" D r o d  16 p i t c h , 14-1/2° p r e s s u r e a n g l e ; 12 t e c c h ; 0 . 7 5 0 " p i t c h d i a m e t e r ; |0.375" D h o l e ; 0 . 3 7 5 " L  9 10 11 12 13 14  2 2 2 3 3 1  I d l e gear spacers I d l e gear s h a f t s Drive pins 0-rlng enclosures Shaft o-rlngs Rea r i n g  St. S t e e l St. S t e e l Tool Steel A i r c r a f t Duralium Viton Steel  15 16  4 8  Plate 0-rlngs 0 - r l n g groves  Viton  17  2  I n l e t elbow  316 S t . S t e e l  18  2  O u t l e t elbow  316 S t . S t e e l  19 20 21 22 23 24 25 26 27 28 29  1 1 2 2 1 2 16 1 2 2 4  E x t r a c t phase: i n l e t tube R a f f l n a t e p h a s e : I n l e t tube O u t l e t tubes Female-female reducing union S t l r r e r / l l d assembly Pump c o n n e c t o r s / s u p p o r t s Securing nuts S t i r r e r shaft Universal joints Gear d r i v e s h a f t s Connecting pins  316 S t . 316 S t . Teflon 316 S t . 287 S t . Steel Steel 316 S t . Steel Steel Steel  Steel Steel Steel Steel  0 . 3 7 5 " O.D.; 0 . 1 2 5 " I.D.; 0 . 3 7 5 " L 0. 125" D; 0 . 5 0 0 " 1. 0 . 0 6 2 5 " D; 0 . 5 0 0 " L As shown 0 . 5 6 2 5 " 0.0.; 0 3 7 5 " I.D. E n c l o s e d : 0 . 3 7 5 " O.D.; 0 . 1 2 5 " I.D.; 0.125" L 1.625" O.D.; 1.500" I . D . As shown "Swagelock male e l b o w (SS-200-2-1) , 0.125" O.D. t u b e f i t t i n g ; m o d i f i e d - j l / 4 " m a l e p i p e t h r e a d t o s t r a i g h t 1/4" N.F. m a l e end 0. 125" O.D. 0.125" O.D. 0.125" O.D. "Swagelock" (SS-400-6-2) 0 . 3 7 5 " O.D.  Steel  0 . 2 5 " I.D.; 5.25" I  0.375" D 0.375" 0 0.125" D; 0 . 6 2 5 " L  -p-  dimensions  in  inches)  66  for  this  purpose,  are  either  fractions, totally  unsuitable 8 0  '  8 2  or  the  involatile extract  for  the  raffinate  are unsuitable  because the C 0 detector. content,  the  and t h e r e f o r e it  was  the  cannot  thought  that  the  Therefore,  content,  sample's o i l weight  completely  trapping  even  of  if  the  change  some o i l b u t  i n carbon weight  Additionally,  chromatographic  The  required for  but  expanded  solution be  an e x a c t  does not  a liquid  a microemulsion  by a d s o r p t i o n that  measurement  directly  separated  a l l o w the  the  Therefore,  2  CO2  for  CO2  determined.  was f o u n d  a l s o some C 0 .  the  each sample.  c o u l d be t i t r a t e d  components it  of  gas w i t h  that  study  ionization  the measurement  appeared  c o u l d not  these  lend i t s e l f  activated  activated the  of  on  carbon  measured  the  oil  weight.  toquantitative  analysis.  A c o l d t r a p was hydrocarbon  It  the  oil  was n o t  t h i s method  both  used i n t h i s  s o l u t i o n d i d not  2  separate.  c a r b o n was a l s o i n v e s t i g a t e d , traps  for  oil  not  CO2 c o u l d be s e l e c t i v e l y  Ba(0H)  was f o r m e d .  only  chromatograph  by r e a c t i n g t h e  to  not  generally,  a two p h a s e a n a l y s i s i s  solution,  Selective  More  required  hydrocarbons  the  gas  raffinate  be d e t e r m i n e d w i t h a f l a m e  is  liquid o i l fractions alkali  2  content  2  for  and  samples which are  column.60  A s e p a r a t e method  Although  Ba(0H)  »  8 1  for  e l u t e d from the G.C.  techniques  from  i n conjunction with high pressure equilibrium studies,  chosen as the method  l i q u i d solutes  from the  to  expanded  s e l e c t i v e l y separate and g a s e o u s C 0  CO2  content  was m e a s u r e d by s i m p l y r e c o r d i n g t h e  passing  through  a wet  test  gas m e t e r .  The  volume  the  solvent.  2  of  gas meter measured  gas gas  3  volumes  i n increments  measurements  for  the  of  5 cm .  purpose  of  This this  provided study.  sufficiently  accurate  67  To m i n i m i z e high-pressure At  this  the e f f e c t s  sample c o i l  temperature,  p r e s s u r e w i t h i n the valves  on t h e  evolved  the C 0 2 w i t h i n coil  that  allowed to  come t o a m b i e n t  controlled  evolution  The separate  of  that  they  had  to  sample c o i l  i n the  was removed  temperatures.  C02.  This  coil.  from the  This  still  the  This  the  The  C02 i n  c o l d bath provided  in  fact  and a  The  the  sufficient  4 . 9 was u s e d  d u r i n g the  expanded  the gas m e t e r .  by  coil.  Since the flow the  the  t o be r e c o r d e d  of  to  venting  gas t o  of  the  t h e gas  g a s f l o w had t o  i s a c c o m p l i s h e d by p i n c h i n g t h e t u b i n g t h a t  e x p a n s i o n chamber t o  d u r i n g the  hydrocarbons  b e l o w 500 cm / m i n . ,  and  On o p e n i n g  s o l u t e s were p r e s e n t  t o bubble out  sample.  bath.  method was f o u n d u n s u i t a b l e f o r  raffinate  t h e C 0 2 g a s and l i q u i d  be k e p t  freezes,  atmospheric.  e x p a n s i o n chamber i l l u s t r a t e d i n F i g u r e  throttled. the  coil  tended  high pressure raffinate  phase  the C02 s l o w l y sublimes off  phase because the  quantities  the  becomes c l o s e t o  the  extract  p l a c e d i n a - 7 8 ° C C02~acetone  l e a v i n g the hydrocarbons  so s l o w l y  raffinate  f l a s h i n g , the  was f i r s t  sample c o i l ,  t h e gas m e t e r ,  of  ballon simply  t h r o t t l i n g and k e e p s t h e p r e s s u r e l o w i n s i d e t h e  meter  be  connects  expands expansion  chamber. The reduce  e x p a n s i o n chamber i s a l s o p l a c e d i n a C O 2 / a c e t o n e  the v o l a t i l i t y  4.3.1  Sample The  quantities  of  of  the  liquid  bath  to  hydrocarbons.  Volume  sample volume  i s required to  contain  h y d r o c a r b o n t o a l l o w an a c c u r a t e w e i g h t  balance used provided weight  measurements  In  sufficient measurement.  Increments  of  0.0001  The g up  68  CAS METER (tygon  BALLON  tube)  P.23"  3  tube  0.50"  tube 10.00"  SAMPLE COIL VALVE  1 .50" (Head:Steel)  6.00" (Body:Aluminium)  o-rlng  1 .25" (Foot:Aluminium)  Figure 4.9  Raffinate Expansion  Phase Chamber  69  to  a maximum o f  of  trapped  200 g .  o i l i s needed.  chromatographic As  This weight  for a  the  o i l c o n c e n t r a t i o n i s a t y p i c a l low  sample.  The minimum d e n s i t y  of  the sample w i l l  temperature  and minimum p r e s s u r e o f  temperature  of  occur at the  the i n v e s t i g a t i o n .  maximum A  maximum  1 7 6 ° C was c h o s e n t o a l l o w i n v e s t i g a t i o n s o f  Tr of the s o l v e n t s  ( C 0 2 , C Ki<,  C2H6,  2  minimum p r e s s u r e a r e c h o s e n as 3 . 4 5 M P a . subcritical  than adequate  g  t h e s a m p l e v o l u m e was d e s i g n e d t o c o n t a i n a t l e a s t 0 . 2 g  the h i g h p r e s s u r e  up t o 1 . 2  i s more  phase i s l i k e l y to c o n t a i n low c o n c e n t r a t i o n s of  o i l , and a 1% w t .  concentration,  5% a c c u r a c y a minimum o f 0 . 0 0 2  injection.  the e x t r a c t  extracted  of  To o b t a i n a + / -  temperatures  C 3 H 6 and C 3 H 8 ) .  Experimental  studies  The at  p r e s s u r e s a r e n o t uncommon i n m i s c i b i l i t y s t u d i e s .  At  these  3 83  conditions that  t h e CO2 d e n s i t y  normally  Table  1.1).  encountered Assuming that  i s 0.042 in S.F.E.  g/cm  and t h e r e f o r e  (See F i g u r e  the sample d e n s i t y  CO2, t h e minimum s a m p l e v o l u m e  i s 4.76  3  cm .  1.2  lower  than  i n conjunction  i s c l o s e to that A volume  of  with pure  of a p p r o x i m a t e l y  3  cm  was u s e d t o a l l o w f o r e x p e r i m e n t a l e r r o r .  calculated  by m e a s u r i n g t h e q u a n t i t y  known p r e s s u r e and t e m p e r a t u r e .  Sample volumes  o f CO2 e x p a n d e d  The CO2 d e n s i t y  were  from the loop at a  at v a r i o u s  pressures  83 8U  and temperatures  c a n be f o u n d i n s u i t a b l e c h a r t s .  T h e e x p a n s i o n chamber was k e p t oil  trapped  light  »  and t h e r e f o r e  the  i n t h e e x p a n s i o n chamber c o u l d be w e i g h e d w i t h  balance mentioned  earlier.  However,  the e x t r a c t  raffinate the a c c u r a t e  o i l i s retained i n the  8  70  sample  coil.  As  weight  of  balance,  weight  measurements.  the  the v a l v e s  on t h e  the The  coil  exceed  sample v a l v e s dead volumes  t h e maximum  had t o  of  the  allowable  be removed  valves  prior  are small  to  in  3  comparison to maintains  a h i g h degree  u s e d as t h e g.  t h e 8 cm  coil's  Therefore,  sample volume  and t h e r e f o r e  the  of  High  tubing  weight  0.25  in.  accuracy.  a l o n e would exceed the  (0.635  cm) O . D .  stainless  steel  t u b i n g was u s e d .  pressures  up t o  3 4 . 5 MPa,  pressures  of  solvents  around  (C02,  pressure  This  by 0 . 1 8 tubing  and t h e r e f o r e  5 times  C2Hu., C 2 H 6 ,  the  it  critical  C 3 H 6 and  sufficient  internal  quantities  standard.  The  t h e 3 4 . 5 MPa r a t e d , 4.3.2  but  hydrocarbons of  the  (due  C02 weight.  to  The  of  better  fraction  of  hydrocarbon.  would  t h a n +/-5%  accuracy i s only  for  the  to  proposed  to  the a c c u r a t e a d d i t i o n of  an  the  raffinate  l o o p was a l s o c o n s t r u c t e d  results  loss  for  obtained  by  from  expanding  are u n s u i t a b l e of  n-C10H22  the C 0 2 gas p h a s e ) ,  represent  results also indicate,  the weight  c o u l d be u s e d  I.D.  Results  The  s t r i p p i n g by This  cm)  phase  procedures  n-C10H22.  accuracy  The  phase  i n d i c a t e s the  for  (0.457  200  tubing.  hydrocarbons.  adequate  in.  be  C3H8).  I n i t i a l Sample E x p a n s i o n  test  quite  in.  b a l a n c e ' s maximum  p r e s s u r e s of  o i l for  rafflnate  0.25  Table 4.4 various  of  c o u l d not  allowed investigations  An 8 c m 3 s a m p l e v o l u m e was a l s o u s e d f o r provide  procedure  for  and is  n-C5Hi2  heavier  less  than  a measured hydrocarbon  a s a m p l e w h i c h c o n t a i n s a 1%  weight wt.  by t h e m e a s u r e d g a i n i n one t e s t ,  about  +/-0.001  g.  Therefore,  the  0.05%  that  +/-5%  71  Table 4.4 Initial Weight o f Hydrocarbon Added ( g )  Hydrocarbon  Pressure  I n i t i a l Sample E x p a n s i o n Volume o f Expanded C0 (dm ) 3  2  (MPa)  Weight o f CO (8) 2  Results  Trapped Hydrocarbon Weight (g)  Hydrocarbon (g)  Weight  Los6  (Z)  Extract n-C H  1 2  n-C H  1 2  n-C H J  2  0.0341  34.5  3.855  7.6213  0.0022  0.0319  93.5  0.0256  34.5  3.650  7.2161  0.0067  0.0189  73.8  0.0596  34.5  3.410  6.7416  0.0255  0.0341  57.2  n-C 10H22  0.0404  34.5  3.105  6.1386  0.0377  0.0027  6.7  n-C ) o H 2  0.0596  34.5  3.440  6.8009  0.0237  0.0020  7.8  4.0960  34.5  1.075  2.1468  4. 1003  0.0043  0.1  3.8518  34.5  1.330  2.6560  3.8530  -0.0012  -0.3  5  5  5  2  Raffinate n-C 10H22 1 0 22 ° n-C H n _ c  H  1 7  c  3 6  Table  Hydrocarbon  E v a p o r a t i o n Loss of Higher M o l e c u l a r Weight Hydrocarbons from a D i - e t h y l e t h e r Based Mixture Weight A f t e r 24 h r s . (g)  Weight Lost  (t)  n-CioH 2  0.0060  0.0054  90.0  n-C H 2 2  0.0461  0.0425  92.2  26  0.0662  0.0617  93.2  2  1 0  n - c  12  H  n-C H22 + ) 0  n-C  H  1 2  2 6  +  (n-Cii,H3o t o n-C, H ) 7  1 0  n-C  1 2  2  H  Chromatographic Initial (X)  2 6  +  (n-Cj^Hjg t o -Cl7"36>  areas  After  24 h r s . (*)  37. 1  36.7  46.4  37.3  16.5  16.0  37. 1  35.8  46.4  47. 3  16.5  16.9  3 6  n-C H 2 +  n  Weight Added (g)  4.5  72  accuracy  quoted  content thesis  earlier will  i s greater the q u a n t i t y  than 0 . 0 2 g . of  trapped 3  this  only  be r e p r e s e n t a t i v e For  the c o n d i t i o n s  extract  s a m p l e v o l u m e was u s e d .  In  the e x t r a c t  to c o l l e c t  o i l , trapped  di-ethylether  was u s e d t o f l u s h o u t t h e c o i l ' s  di-ethylether  i s subsequently  volatile  di-ethylether  separated  to evaporate  the trapped o i l  tested  and r a f f l n a t e  v a l u e when an 8 cm order  if  in  this  o i l always  exceeded  i n t h e sample  content.  coil,  The  f r o m t h e s o l u t e s by a l l o w i n g t h e  d u r i n g a 24 h o u r  p e r i o d at  ambient  temperatures. Initial loss  of  r e s u l t s of  t h i s procedure  the higher molecular weight  as was t h e f r a c t i o n a t i o n , chromatographic effectively In  are i n d i c a t e d i n Table 4 . 5 .  hydrocarbons  associated with  summary,  during  t h e 24 h o u r  the expansion procedure  weight  measurements  +/-0.001  4.4  s t r i p p e d by t h e e x p a n d i n g i n d i c a t e that  loss.  The  t h e d i - e t h y l e t h e r was  period. i s considered unsuitable  samples which c o n t a i n low m o l e c u l a r weight substantially  t o be s m a l l  the e v a p o r a t i n g  analyses also i n d i c a t e d that  evaporated  appears  The  hydrocarbons  as t h e y a r e  and s u b l i m i n g C 0 2 g a s .  the weight  can only  for  The  be d e t e r m i n e d  to  g.  Summary of Developed Experimental Apparatus Figure 4.10  sample  loops  represents  are not f a b r i c a t e d u s i n g the h i g h - p r e s s u r e  maximum o p e r a t i n g  p r e s s u r e i s 3 4 . 5 MPa.  and t h e p r e s s u r e t r a n s d u c e r 3 4 . 5 MPa.  the f i n a l design flowsheet.  The v a l v e s  Since the tubing,  the  on t h e s a m p l e  a r e a l s o l i m i t e d t o maximum p r e s s u r e s  The c o m p r e s s o r r e l i e f  valves  were  therefore  coil of  set to release a  73  •4) regulator P.t.  extractjT)  (^RAFFINATE LOOP  D  k1  filter  (ELBOW)  ?  AIR BATH VENT PUMPS  I VENT  AUTOCLAVE  OJ  c  E i  0 5  % MAX. MAX.  COMPRESSOR  PRESSURE =34.5 MPa TEMPERATURE =200 C  AUTOCLAVE VOLUME LOOP VOLUMES ELBOW VOLUMES  a 950 cm  3  r N H  ~  8 cm" 3 *0.75 cm  Figure  4.10  Flowsheet Apparatus  f o r the Developed  »' CD  74  MPa.  34.5 in  the  The  temperature  pump d e s i g n ,  Subambient  and t e m p e r a t u r e s  conditions  A maximum  of  was l i m i t e d by  c o u l d not  2 phase  cell  be u s e d f o r  lubrication  the  study  of  The  is  teflon  200°C c o u l d be  c a n be s a m p l e d . It  the  this  therefore  studied.  cell  sampling  design.  system r e l i e s  not  f l u i d s w h i c h do n o t  tubing  recommended  exhibit  on that  some  characteristics.  Operating Procedures  4.5  From e x p e r i e n c e , cell  be f i r s t  addition has  up t o  be s t u d i e d w i t h  a n o n l u b r i c a t e d m e c h a n i c a l pumps. the  the use of  to  of  pressure  the  o i l solute.  testing  Once t h e via  the  carefully system  spare  c a n be k e p t  in  port  on t h e The  has  connecting  temperature  via  Once t h i s  the  period,  the  the  a purge  of  of  the  air entering  to  would the  air.  c a n be  l i d assembly.  enters  port  cell  The  o i l solute  the  that  internal  before  required.  stirrer  port,  air  r a i s e d to  temperature  the  the  the  desired  i s reached,  compressed s o l v e n t  t h e p r e s s u r e and t e m p e r a t u r e  equilibrlation  the  this  Any  are  also provide  of  assembled  i s d i s c o v e r e d and t h e  been p u r g e d , port  the  By  the  probably external  assembly.  i s then  r a i s e d by i n t r o d u c i n g While  venting  o i l solute  stirrer/Iid  leak  no c l e a n i n g p r o c e d u r e s  cell  that  compressed C 0 2  a major  t o a minimum.  the passage  temperature.  If  inlet/outlet  the  recommended  u s i n g the  and s u b s e q u e n t  assembled  adding  stay  i s strongly  tested  be d i s a s s e m b l e d ,  pressure  added  it  phases  are  the  equilibrium cell  pressure  is  gas.  a r e b e i n g r a i s e d , and d u r i n g  circulated.  the  75  Assuming coils  have b e e n a c h i e v e d ,  c a n be i s o l a t e d by c l o s i n g v a l v e s  removed total the  equilibrium conditions  for  their  sample  contents  removed,  the  to  the  It  sample e x p a n s i o n  temperature therefore  recommended  as t h e  cell  suggested  isothermal  pressure.  simply  adding a d d i t i o n a l  At vented  the  end o f  through  solvent cylinder The  to  that  the the  that  sample  conditions  d u r i n g a run  compressed or  join  cell  the  coils  pressure  can  will  coils.  be c h a n g e d by an i n c r e a s e  (i.e.,  34.5 MPa.  a given  solute  first  pressure  the  subsequent  in  It  is  charge), be  the  studies  by  solvent.  several pressure  Valve  the  4 i s used to  conditions,  vent  c o m p r e s s o r and t u b i n g  the h i g h  between  the  the  cell  is  pressure solvent  cell.  cell,  associated tubing  kerosone mixture particularly  6.  i s i n the  and  The  p r e s s u r e c a n be r a i s e d f o r  a run,  valve  in Section 4.3), cell.  c o n d i t i o n s be s t u d i e d and t h a t  lowest  and  c a l c u l a t i o n concerning  p r e s s u r e may e x c e e d t h e maximum  that  The  (see F i g u r e 4.10)  c o n n e c t i n g elbows which  (detailed  s l i g h t l y on r e p r e s s u r i z i n g i s not  1,  sample  cell.  be p u r g e d w i t h C 0 2 and r e a t t a c h e d decrease  Any  s h o u l d i n c l u d e the  i s o l a t e d sample c o i l After  expansion.  2 and  the  and pumps a r e  and t h e n a v o l a t i l e  solvent.  suitable  for  this  use,  but  s h o u l d be done w i t h i n  the  fume  cupboard.  due  to  first Carbon its  cleaned with  a  tetrachloride  t o x i c nature  is  cleaning  76  RESULTS AND DISCUSSION  5. 5.1  Performance of A n a l y t i c a l Procedures Table  mixture the  5.1  lists  f r o m two  retention  t e s t s performed  times of  performed.  injected  into  chromatogram. the  values  The  i n Table  first  fraction  n-alkane  evaluated.  The  times never  varied greatly  and F i g u r e  Bl although over  As a r e s u l t ,  were used f o r  times  Separator  oils  of  every  the m o l e c u l a r  weight  analysis.  of  this  small quantities  oil  below t h a t  of  C5H12 a n d  were  of therefore  o i l f r a c t i o n c o u l d be c o n s i d e r e d a s t h a t  of  lighter  no m a t e r i a l a c t u a l l y e l u t e d i n  23 a l s o e n c o m p a s s e d more t h a n one n - a l k a n e This  this  time s l i c e  molecular  a l l o w e d more t i m e - s l i c e s t o be u s e d f o r  t h e window a r e a .  used f o r  time-slices  50  ' 15 t o  e v a l u a t i o n of  from  n-C^H^Q and l i g h t e r h y d r o c a r b o n s  contain only  s t r i p p e d and t h e r e f o r e  fraction.  The  indicates a typical  s e p a r t o r o i l u s e d i n t h i s t h e s i s had had t h e  Windows  therefore  was p e r i o d i c a l l y  retention 5.1  period  experimental  B,  window.  weight  and  that  i n Appendix  with molecular weights  hydrocarbons first  During  Bl,  retention  the m o l e c u l a r weight C5H12.  were p e r f e c t e d ,  calibration  window e n c o m p a s s e d t h e CHi+ t o C5H12 m o l e c u l a r w e i g h t  as the  hydrocarbons  5.1  apart.  c a l i b r a t i o n mixture  runs were p e r f o r m e d .  listed  The  and F i g u r e  i n d i c a t e d i n Table  chromatographic windows  The n - a l k a n e  the G . C .  the n - a l k a n e  s e v e n months  a n a l y t i c a l t e c h n i q u e and s o f t w a r e  analyses  not  the  these  An a v e r a g e d m o l e c u l a r w e i g h t  the  is  windows.  w i d t h was  set at  twelve  seconds and t h e r e f o r e  w e r e c r e a t e d d u r i n g t h e 37 m i n u t e  chromatogram.  185  77  Table 5.1  Performance of  Calibration Mixture Retention Time ( m i n ) Normal Alkane  Initial 27/9/82  Final 21/4/83  -  -  S e t by s o f t w a r e ; 0 . 1  c  Normal Alkane Boiling Point  CO  Ci,  Molecular Weight Analysis Window (3)  Window S t a r t Time ( m i n )  Analysis  Window End Time ( m i n )  Procedures  Boiling Point a t t h e window End Time  CO  Chromatographic Oven T e m p e r a t u r e a t t h e Window End Time  cc)  - "S  \  -89  1)  -42  3  Chromatographic  0  0  3.545  52  5.5  C;  2.45  2.22  36  C6  4. 64  4.59  69  2  3.545  5.710  81  27.1  c? c c  6.78  6.53  98  3  5.710  7.775  110  47.8  8.77  8.51  126  4  7.775  9.675  137  66.8  10.58  10. 34  151  5  9.675  11.420  162  84.2  C;c  12. 26  12.03  174  6  11.420  13.020  184  100.2  Cn  13.84  13.59  196  7  13.020  14.550  204  115.5  c  15.26  15. 13  216  8  14.550  15.830  224  128.3  Cn  -  -  235  9  15.830  17.195  242  142.0  C).  17.99  17.72  253  10  17.195  18.595  265  156.0  C;5  19.20  18.19  271  11  18.595  19.780  280  167.8  Ci6  20.36  20.08  287  12  19.780  20.895  297  179.0  17  21.43  21.54  302  13  20.895  21.945  309  189. 5  Cl6  22.46  22. 18  317  14  21.945  22.880  322  198.8  Cl9  -  -  331  15  22.880  23.840  336  20.8.4  C20  24.38  24.10  16  23.840  25.640  363  226.4  25.64  27.325  384  243.3  e  s  C  i2  2  C22  ~  2 3  C i* 2  C 5  27.75  C 7  :  C2B  30.64  2  C26 2  27.48  c  3  33  391 "\  422 30.57  _  _  33.18  32.92  3  C 2  408  258.8  J  19  28.875  30.320  426  273.2  20  30.320  31.520  444  285.2  21  31.520  32.520  462  295.2  22  22.520  34.090  480  310.9  23  34.090  37.000  520  340.0  "V  459  J  468 S 476  J  "N  433 491  C 6  35.44  35.17  498  V  505  C  37  C  36  -  -  512  39  -  - •  518  37.00  520  Time  28.875  450  -  c  27.325  J  -  3  18  432 "\  -  37.00  -  J  441  C35  3  17  J  412  30  c c-  380  402  C2S  C 1  J  369 _  C  344 -v 356  C 1  '  J  78  5.1.1  I n i t i a l Analysis Initial  the m o l e c u l a r w e i g h t  by  5.2.  samples are a s u p e r c r i t i c a l C 0 2 e x t r a c t e d  injection The  procedures  of  obtained The  the  results  Results  volume  i s approximately  results  chromatograms  outlined  i n Table 5.2  chromatograms.  Since  in Section 3 . 5 . 2 ,  0.5  10%  the a r e a s  of  the  base chromatograms  +/-  the  value  that would  if  values  which are  window  j  (see  windows.  The  a r e h i g h and The window base +/-  a'ej  Figure  values  the  the  areas  of  i s within  substantial  sample are  base  the  The  a'ej  base a r e a s  differences  o c c u r when c h r o m a t o g r a p h i c  base  approximately  individual  between  the  the  had b e e n u s e d .  difference  oven  i n the  in later  temperatures  substantial. also  values),  t o be u s e d t o  that  would  between  those  if  estimate  the  be c a l c u l a t e d i f  had b e e n u s e d r a t h e r  are only meaningful  falls  Table  than the  the  possible  the  averaged.  b a s e - l i n e of  of  the  two b a s e  for  the  second sample  the  individual The sample  chromatograms  (see  3.7).  The  last  (a'sj  were  the averaged)  indicate  l a t e r windows  chromatograms  chromatogram  of  Figure 3.7),  values  be o b t a i n e d  of  column b l e e d  a'ej  areas  a measure  in  sample  of  two  at,  to  areas  the  c o r r e c t e d sample a r e a ,  opposed  total  total  total  (as  o i l and the  the  the  chromatograms  are given  of  similar, 1.6%  analyses,  ul.  indicate that  are approximately  window  a r e a of  four  base  the  last  chromatograms)  chromatograms  c o u l d be due  slice  to  the  does not  (i.e.,  elution  of  the  l i e between first  previously  that  and f o u r t h retained  (i.e., of  the  the  third  first  and  chromatogram). o i l compounds  This or  an  Table C h r o m a t o g ram  It  1 First  Base  First Slice Last Slice Total  3.369 x 3.031 x 6.754 x  10 10 10  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  (J)  Last  Base  8  ( a t ) - 5 983 X 1 0  a'  8 j  Area  (Z)  0.03 0.29 2.24 6.22 10.73 14.11 11.20 9.06 11.04 10.61 7.45 5.23 4.30 2.01 1.31 1.66 1.01 1.21 0.34 0.17 0.11 0.00 -0.22  9  1st  Sample  3.607 x 1 0 2.621 x 1 0 6.555 x 1 0  5  7  8  Analysis  Areas 5  7  9  - a'  Total  C j  -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.06 0.06 0.07 0.11 0.12 0.16 0.21 0.64  (Z)  Window 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  (J)  4  1 First  First Slice Last S l i c e Total  +/-1 .73*  +/  Results  C h r o m a t o g r a m If  2  3. 542 X 1 0 2. 449 X 1 0 4. 681 X 1 0  5  7  Evaluated Window  Initial  4  Area6  T o t a l Area  5.2  3 .369 3 .031 6 .754 Area  Last  Base x 10 x 10 x 10  (at)  5  7  8  E v a l u a t e d Area a' (Z) 0.04 0.30 2.25 6.24 10.74 14.13 11.21 9.05 11.09 10.65 7.52 5.28 4.08 2.02 1.31 1.67 1.01 1.26 0.33 0.15 0.08 -0.05 -0.48  Base  3. 542 X 1 0 2. 449 X 1 0 4. 681 X 1 0  - 6 690  S j  3  X 10  9  2nd 5  7  8  Sample  4.023 x 1 0 2.441 x 1 0 7.262 x 1 0  +/-1 .54Z  +/ - a '  e j  -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.02 0.02 0.03 0.02 0.03 6.03 0.02 0.02 0.05 0.06 0.08 0.10 0.11 0.14 0.18 0.57  (Z)  5  7  9  80  irregular  column b l e e d w h i c h might  chromatogram The  was  of  previously  base chromatograms.  increase  a'ej  temporary  increased a'ej  the  first  values  blank  retained material the  last  greater  than  observed  that  of  a'ej  the  base  the  the  value.  10.  last  base The  be l e s s  For  This  the a  c o u l d be a  result  previously  may h a v e o c c u r r e d  in  base  is  chromatogram. the  first  chromatogram,  the  base l i n e does not the or  temporary  indicate  This  in  example,  run having  window.  l i n e a r e a of  and t h e r e f o r e  could simply  10th  f i n a l base  base  was o b s e r v e d  second sample,  i n window  i n the  analyses.  pattern  chromatogram  last  i n d i c a t e d by a  or base c h r o m a t o g r a p h i c  total  in later  predictable  value  eluting  the  for  compounds  also  absolute  listed  t i m e - s l i c e of  Although  uneluted  They a r e  or decrease i n the  evaluated  of  the  recorded.  elution  plotted  h a v e o c c u r r e d when  base  reverse appear  l i n e a r e a of  greater  than  chromatogram  that  a  has  to  been  follow  a  sample  of  the  base  chromatograms. As and not  a result, evaluate  Although a'sj  the  two  (i.e.  the  samples  window  values  results fairly  only  23). for  given  differ  the  be u s e d t o  areas  values).  (a'sj  i n Table 5.2  by more  large with suggest  results.  The  for  the  analyses  data,  the  evaluated last  l a t e windows  i n t h e window  estimate  respect  that  than 0.05% i n the  values  difference Window  should only  c a n be f a i r l y  repeatable  The + / - a ' e j  i n j e c t e d samples.  values  p o s s i b l e window  a'ej  provides  overcompensate two  the  the  values,  procedure  the + / - a ' e j  areas  the  analysis areas  of  window, appear  obtained  s i m i l a r to  to  that  to  from  given  the in  81  Table a'ej  5.2,  is  given i n Appendix  values  never  5.1.2  Comparison to A  exceeded  and the  are  given  i n Table  the  o r i g i n a l separator its  lighter  totally  5.3  it  The  The  methods  with  stripped  the  with are  to  poor  the  use of  fraction.  fraction  is  stripped  the  not  As  the  stripped  (n-C6Hll+)  as  well  methods  d e t a i l s being given i n Appendix  i n Figure  5.1  that  o r i g i n a l separator  so c o m p a r a b l e  the  o i l agrees  d i s t i l l a t i o n curves to  t h e D-87  distillation.  well of  the  distillation  i n t e r n a l standard.  t h e D-87  C.  B.  indicate  chromatographic  data of  using  internal  b a s e d on t h e  given i n Appendix  o i l are not  results  (n-Cii+H3o, T1-C15H32, n-Ci6*-3»t  s i n g l e or multicomponent the  o i l w h i c h had been  eluted  fuller  The  The  c o m p a r i s o n was made  single i n t e r n a l standard  d i s t i l l a t i o n of  separator  due  the  eluted  d i s t i l l a t i o n curves  when u s i n g t h e probably  the  simulated d i s t i l l a t i o n  distillation.  test  compared.  procedure.  absolute  c h o o s i n g an o i l s a m p l e w h i c h was  c o u l d be  a n a l y s i s data  t h e D-87  the  The  standard  i n Section 3.2,  chromatographic  5.1.  internal  c a l c u l a t i o n of  window  In  c a l c u l a t i o n of  the multicomponent  The  Distillation  bench s c a l e  was a l s o p o s s i b l e t o  o i l was t e s t e d ,  outlined  D-87  o i l and a s e p a r a t o r  separator  The  D-87  and F i g u r e  i n the  and n - C ^ I ^ g )  the A . S . T . M .  hydrocarbons.  eluted  analyses.  0.78%.  A.S.T.M.  standards  as  subsequent  c o m p a r i s o n was made b e t w e e n  procedure  of  B for  The  This  is  D-87 85  distillation Since internal  i s not  the  s t r i c t l y for  high b o i l i n g point  simulated d i s t i l l a t i o n curves  s t a n d a r d more  c l o s e l y matched  samples.  u s i n g the  t h e D-87  multicomponent  d i s t i l l a t i o n curve,  the  Table 5.3  C h r o m a t o g r a p h i c and  Simulated Original  Crude  Cm t o C 1 7 Internal 8 t d .  A.S.T.M.  Distillation  Distillation Stripped  Cm t o C i 7 Internal std.  D-87 Distillation Crude  C-6  Internal std.  Window (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Non  Eluted  i 0.0337 0.0467 0.0725 0.0647 0.0552 0.0464 0.0359 0.0339 0.0358 0.0351 0.0305 0.0264 0.0264 0.0214 0.0199 0.0345 0.0293 0.0246 0.0216 0.0168 0.0155 0.0134 0.0228 0.2370  Ew* 0.0337 0.0804 0.1529 0.2176 0.2729 0.3192 0.3551 0.3890 0.4248 0.4599 0.4904 0.5168 0.5432 0.5646 0.5845 0.6190 0.6483 0.6729 0.6945 0.7113 0.7268 0.7402 0.7630 1.0000  J 0.0000 0.0000 0.0007 0.0067 0.0741 0.0378 0.0384 0.0406 0.0455 0.0464 0.0409 0.0367 0.0381 0.0313 0.0297 0.0525 0.0458 0.0392 0.0345 0.0267 0.0247 0.0216 0.0314 0.3069  Ew*^ 0.0000 0.0000 0.0007 0.0074 0.0315 0.0693 0.1077 0.1483 0.1938 0.2402 0.2811 0.3178 0.3559 0.3872 0.4169 0.4694 0.5152 0.5544 0.5887 0.6154 0.6401 0.6617 0.6939 1.0000  Results  J 0.0000 0.0000 0.0018 0.0083 0.0289 0.0456 0.0467 0.0489 0.0552 0.0559 0.0495 0.0428 0.0428 0.0338 0.0305 0.0495 0.0385 0.0300 0.0251 0.0193 0.0184 0.0172 0.0366 0.2747  Ew* 0.0000 0.0000 0.0018 0.0101 0.0390 0.0846 0.1313 0.1802 0.2354 0.2913 0.3408 0.3836 0.4264 0.4602 0.4907 0.5402 0.5787 0.6087 0.6338 0.6531 0.6715 0.6887 0.7253 1.0000  Fraction Distilled Original 0.0434 0. 1005 0.1631 0. 1465 0.3021 0.3619 0.4161 0.4738 Stripped 0.0005 0.0089 0.1333 0. 1780 0. 2222. 0.2400  Temperature („ ) C  Crude 65.6 93.3 121.1 151.1 176.7 204.0 232.2 260.0 Crude 160.0 206.7 225.6 240.0 257.2 260.0  w*.j » W e i g h t f r a c t i o n d i s t i l l e d In window j  CO  83  100  Figure  5.1  200  300  BOILING  POINT  Distillation and A . S . T . M .  400  CC)  Curves u s i n g the Chromatographic D-87 D i s t i l l a t i o n M e t h o d s  84  multicomponent non-eluted  5.2  i n t e r n a l s t a n d a r d was e x c l u s i v e l y u s e d t o d e t e r m i n e  fraction.  Performance of the Pumps Periodic  circulate Figures  c h e c k s w e r e made on t h e pumps t o t e s t  fluids.  The r e s u l t s o f t h e s e  pumps managed  to provide  course of the e x p e r i m e n t s . setting  The  The g e a r s d i d n o t t u r n b e l o w a t a c h o m e t e r c o u p l i n g would j a m above a  trial  (Test  1)  produced a low f l o w  pump due t o a p i n c h i n g o f t h e t e f l o n  pump o u t l e t The  the  s e t t i n g o f 8 (397 r p m ) .  initial  raffinate  to the a u t o c l a v e ' s  performance  continued use.  tube  internal inlet/outlet  of the e x t r a c t  rate with the that  connects the  port.  p h a s e pump c h a n g e d c o n s i d e r a b l y  with  As m e t a l l i c f i n e s c o u l d be o b s e r v e d I n t h e s a m p l e d  t h e p r o b l e m s of e x c e s s i v e wear were n o t t o t a l l y  overcome.  Performance of the Experimental Procedures The p e r f o r m a n c e  Chapter  4,  were  binary mixture  of the experimental procedures,  of n-C^oH22  a n (  * C 0 2 was t e s t e d .  compositions of p r e v i o u s l y  systems.  A binary  4.  in  published ternary  A  s y s t e m was  c e l l makes i t d i f f i c u l t t o e x a c t l y and h i g h e r  S i n c e no c h r o m a t o g r a p h i c a n a l y s i s was r e q u i r e d ,  reproducibility i n Chapter  developed  t e s t e d by d e t e r m i n i n g t h e a b i l i t y t o r e p r o d u c e d a t a .  chosen because the f i x e d - v o l u m e the  to  t e s t s a r e g i v e n i n T a b l e 5 . 4 and  phase c i r c u l a t i o n throughout  of 2 (38 r p m ) , and t h e m a g n e t i c  tachometer  phases,  their ability  5 . 2 and 5 . 3 .  The  5.3  the  match  order  the  of data i s s o l e l y a r e s u l t of the procedures  developed  Table 5 . 4  Tachometer Setting  r.p.m.  Test 1 Initial Air Flow R a t e  Performance of the Pumps i n V a r i o u s T e s t s  Test 2 I n i t i a l Crude O i l Flow Rate  Test 3 Crude O i l Flow R a t e A f t e r 12 h o u r s  Teat 4 A i r Flow Rate A f t e r 50 h o u r s  Test 5 A i r Flow Rate A f t e r Completing Experimental Studies  KXTRACT PHASE PTJHP 3  38  5.7  3.0  1.8  1.9  1.6  4  86  11.8  5.3  5.2  4.8  3.7  5  155  6  221  7  291  8  397  7.2 17.5  10.7  11.0  9.1  6.1  11.8 22.0  16.9  16.8  13.7  10.1  RAFVINATK PHASE PUMP 3  38  2.2  1.8  2.0  1.8  1.9  4  86  5.0  5.4  6.5  4.8  4.7  5  155  6  221  7  291  8  397  7.6 6.7  12.7  14.3  9.8  9.3  13.3 7.8  15.6  22.6  18.7  19.0  CO  25  o  g  o  I  «  0  ICO  1—.  -200  1— 300  0  I  1  0  100,  R.P.M. Figure  5.2  Performance of the E x t r a c t P h a s e Pump  :  «  1  1  200  300  400  R.P.M. Figure  5.3  Performance of the R a f f i n a t e P h a s e Pump  87  The  d a t a o f Reamer a n d S a g e B 6 w e r e u s e d f o r c o m p a r i s o n p u r p o s e s .  p r e s s u r e o f 10.34 MPa a n d a t e m p e r a t u r e this  p r o v i d e d an e x t r a c t  o f 137.8°C w e r e s e l e c t e d s i n c e  p h a s e w h i c h c o n t a i n e d 5.3 w t . % o f  w h i c h was t y p i c a l o f p u b l i s h e d m i s c i b i l i t y The  r e s u l t s of these t e s t s  A  hydrocarbon,  studies.  are given i n Table  The  5.5.  initial  86  results  d i d n o t a g r e e w e l l w i t h t h o s e o f Reamer  modifications attempt  and S a g e .  Minor  i n b o t h t h e p r o c e d u r e s a n d a p p a r a t u s w e r e made i n a n  t o o b t a i n more c o m p a r a b l e d a t a .  These  are discussed below.  The  o p e r a t i n g p r e s s u r e and t e m p e r a t u r e were a l s o d i f f i c u l t t o r e p r o d u c e . The of  values  i n the square b r a c k e t s represent  the p r e v i o u s l y p u b l i s h e d d a t a ,  temperatures  data  that  a r e w i t h i n +/-  when t h e a c t u a l p r e s s u r e s a n d  are taken i n t o account.  Runs  (n-C H  sample c o i l  l e a k e d o r t h e r e was a c c i d e n t a l s p i l l a g e of t h e  valves  22  r i c h phase)  1,2 a n d 9 do n o t g i v e t h e  complete r a f f i n a t e  10  10%  r e s u l t s , because e i t h e r the  n-Ci H . 0  2 2  Although  the e q u i l i b r i u m data f o r the e x t r a c t  were c o n s i s t e n t w i t h p u b l i s h e d d a t a , n-C10H22 c o n t e n t .  the r a f f i n a t e  S t e e l w o o l was t h e r e f o r e  s a m p l e ' s e x p a n s i o n chamber t o a c t a s a m i s t The  subsequent  the e x t r a c t  phase.  raffinate  added t o t h e  raffinate  trap.  As t h e r a f f i n a t e  phase i s r e t u r n e d  phase f l o w .  to the top of the  c l o s e t o t h e pump i n l e t o f t h e e x t r a c t  p h a s e was c i r c u l a t e d i n d e p e n d e n t l y  sample loop v a l v e .  phase had a l o w  r u n ( r u n 4) g a v e a h i g h n-CirjH22 c o n c e n t r a t i o n i n  a u t o c l a v e and i s t h e r e f o r e the e x t r a c t  phase of runs 2 and 3  The l a t t e r was p r e v e n t e d  I n a l l subsequent  and a f t e r  phase,  stopping the  by s i m p l y c l o s i n g a  runs the r a f f i n a t e  p h a s e was-  Table 5.5  Tests u s i n g the  B i n a r y Decane/CO  System Published Data  9  Run  EXTRACT PHASE CO 2 (dm 3) C0 (g)  0 1 0 1  2  n-CloH22 ( R ) T o t a l (g) y  co  715 A 136 1166 5302  0 1 0 1  0.745 1.4729 0.0804 1.5333  0 9750  750 4828 0835 5663 "0 9824"  0 0250  0 0176  2  y  0 760 1 5025 0 1734 1 6759  0 700 1 3839 0 0905 1 4744  0 800 1 5816 0 2372  1 8188  0.755 1 .4926 0.0881 1.5807  0.750 1.4848 0.0727 1.5555  0.9829  0.935 1.8485 0.19R1 2.0466 0.9670  0 9646  0 9796  0 9544  0.9816"  "0.9846"  0.9831  0.0171  0.0330  0 0354  0 0204  0 0456  0.0184  0.0154,  0.0169  0.700 1.3839 3.9506 5.334 5 0.5239  0. 700 1. 3839 4. 1788 5. 5627 "0. 5099  0.655 1.2949 4.0991 5.3940 0.4980  0.4878  0.4761  0. 4901  0.5020  0.5122  RAFFINATE PHASE CO  Expanded C 0 CO  (dtr^) (g)  2  2  3.2971  n-CioH22 ( g ) T o t a l (g) X  C0  0.645 1.2752 2.4324 3.7076 0.6222  0.5190  3.8723 5.1771 0.5142  0.3778  0.4810  0.4858  0.675 1.3345 3.8842 5.2187  0.660 1.304 8  00  2  *n-C  1 0  H  2 2  —  *  E Q U I L I B R I U M CONDITIONS Autoclave  Pressure  (MPa) 10.23  A u t o c l a v e Temp. ("C) Air  10.65  141.7  10.65  137.8  11.05  136.7  11.25  138.9  10.85  136.7  b a t h Temp (°C)  Equlllbriatlon Tachometer  time  setting  (hrs)  1 4.5  1 3  1 3  1 4  1 5  10.34  10.34  138.3  137.8  137.8  135.6  149.4  137.8  143.9  141.1  1 5  10. 19-  1 5  1 5  1 5  10.34 137.8  89  circulated obtained,  on i t s the  circulated. ensure  After  raffinate The  that  own.  extract  p h a s e was  arepresentative  still  indicated  too  that  rich the  low.  reduction  i n temperature  Therefore,  the n - C i o 2 2  the  H  l o o p was k e p t  additional  the  autoclave  was i m p r o v e d , For phase.  the  but  the  provide  of  run  In  temperature  temperature  condensing i n the  temperature.  bath  In  was made o f  temperature The  raffinate  controller  10.34  MPa,  coil  the  air  and v a l v e s This  bath  an  to  provide  11°C higher  the e x t r a c t  s a m p l e was no l o n g e r  than  phase  reproducible.  was u s e d f o r  "Swagelock"  runs,  as  control.  e q u i l i b r i u m d a t a of  coil's  The  subsequent  a  power.  sample loop  was m a i n t a i n e d  a new s a m p l e c o i l  a high pressure s e a l .  run 7 the  raffinate  unlike  a i r bath  extract  fittings  the  extract  and v a l v e s  c o u l d no l o n g e r  be  had  connected  p r o b l e m a l s o o c c u r r e d at  the  end  9.  For The  the  r e a d i n g and s u b s e q u e n t  on t h e  been e x c e s s i v e l y worn. to  probably  w a s  8 and 9 ,  threads  the  to  coil.  l e a d s t o a r e d u c t i o n i n t h e CO2 s o l v e n t  temperature.  runs 7, The  air  sample  ten minutes  s y s t e m and a p r e s s u r e o f  measurement  temperature  run 6,  this  a lower  temperature  an a c c u r a t e For  at  b e i n g d i s p l a y e d by For  about  been  phase  r u n 5 p r o d u c e d an  A check of  2  extract  circulated for  s a m p l e was i n t h e  i n n-CirjH 2.  when e q u i l i b r i u m h a d  and t h e  revised procedure,  value  was a few d e g r e e s  one h o u r ,  f l o w was s t o p p e d  E v e n by u s i n g t h i s phase  about  the  and a i r  bath  sample once a g a i n p r o v i d e d  extract  run 8,  autoclave  the  temperature  to  the  same.  reproducible equilibrium  p h a s e w h i c h had a h i g h n - C i 0 r l 2 2 a i r b a t h was s e t  were  only  concentration.  6.2°C higher  than  the  data  90  autoclave  temperature.  The  raffinate  phase were w i t h i n  Run 9 was a r e p e a t loop  l e a k e d and t h e r e f o r e  equilibrium the  of  r e s u l t s of  published It  10% o f  the  run 8.  extract  the  data are not phase a r e ,  the  extract  and  data.  Unfortunately  raffinate  the  published  both  raffinate  available.  however,  sample  The  consistent  with  data.  appears  137.8°C,  e q u i l i b r i u m r e s u l t s of  the  that  present  for  t h e n-Cj_0H22/CO2 s y s t e m a t  procedures  only  provide  10.34  comparable  MPa  and  data  to  those  of  85  Reamer the  and S a g e ,  autoclave  5.4  lighter The  using a multicomponent  is  l i g h t e r hydrocarbons p r o c e d u r e s were and more v o l a t i l e  5.8  and F i g u r e  chromatograms  s l i g h t l y higher  t h e Cs f r a c t i o n . to  f r a c t i o n at  The  4),  than  separator  oil  be u n s u i t a b l e  for  solutes. o i l compositions are  i n Appendix  B.  The  stripped  indicated  off  a reflux  102°C.  temperature  of  two p r e s s u r e s  in a  the  less  than  similar  lighter  (approximately  (approximately  and  separator  with molecular weights  o i l had b e e n p r e p a r e d  a n d one t e m p e r a t u r e  runs  developed  to  p r o c e d u r e by d i s t i l l i n g  at  4  chromatographic a n a l y s i s data  no h y d r o c a r b o n s  t e s t s were p e r f o r m e d  and 2 0 . 2 0 MPa)  The  s t r i p p e d because the  hydrocarbon  separator  t h e ASTM D-87  hydrocarbon Two  The  5.4.  oil.  shown ( s e e C h a p t e r  are given  contained v i r t u a l l y  manner  separator  o r i g i n a l and s t r i p p e d s e p a r a t o r  Table  plotted oil  temperature  b o t h t h e a n a l y t i c a l and e x p e r i m e n t a l p r o c e d u r e s ,  performed  experimental  in  a i r bath  temperature.  test  h a d had t h e  the  the  Results Using A Stripped Separator O i l To  were  if  65.5°C).  13.34 This  MPa  15  1  T~I  |  I  »  l  l  |  "  i—i—i—J—I—i—i—l  •  |  i  i ' i — I — | — i — r — i — i — | — i — i — i — i — | — i — i  i f  • S T R I P P E D SEPARATOR OIL,  • — •  O R I G I N A L SEPARATOR  OIL  10  II  (3 HI  \  o UJ N _l <  \  5 5 fX  \  3. 37%»_  O  »  •  *  »  *  •  I » i 10  i i I i •••L 15  20  25  30  35  40  NUMBER OF CARBON ATOMS F i g u r e 5.4  Normalized  Concentrations  f o r the  O r i g i n a l and S t r i p p e d  Oil  92  temperature  was c h o s e n s i n c e i t  would  prevent  multiple  (L^-I^-V)  phase  behaviour.61 The  r e s u l t s of  compositions, The  raised  to  CO2 i n t o  are  i n Table 5 . 8 ,  given  i n Tables  are p l o t t e d  5.6  to  5.8.  i n Figures  a n a l y s i s d a t a and p l o t t e d  5.5  chromatograms  The  to  oil  5.8.  are given  in  B.  Fresh  runs  listed  chromatographic  Appendix  these t e s t s  o i l c h a r g e s were the h i g h e r  the  p r e s s u r e of  autoclave.  1 and 3 ,  used f o r  and r u n s  As  the  runs  1 and 3 ,  r u n s 2 and 4 by i n t r o d u c i n g c o n d i t i o n s were  2 and 4 ,  and the p r e s s u r e  the  almost  repeatability  of  additional  identical  data  was  for  could  be  tested. The the  air  bath  autoclave,  time of  experimental  was k e p t  and i n d e p e n d e n t  equilibration  identifying  temperature  phase  a few d e g r e e s  do n o t  provide  equilibrium conditions,  than  c i r c u l a t i o n was e m p l o y e d .  4 h o u r s was u s e d f o r  procedures  higher  every  run.  that An  Although  the  s u f f i c i e n t l y accurate data  a time  of  4 hours  should  of  for  provide 87  sufficient The  time  a c h i e v i n g e q u i l i b r a t e d phases  measured v a l u e s ,  repeatability measured  for  compositions,  1 and 3 ,  given i n the  and 2 and 4 ) .  Section 5.1.2, chromatographic compositions  i n Table 5 . 6 ,  c o n s i s t e n t w i t h the binary  substantial difference runs  given  indicated that  only  i n Table 5.8  given i n Appendix  oils  initial  are B,  system.  i n d i c a t e a degree  do i n d i c a t e of  the  analyses  small errors  analysis procedures,  listed  chromatograms,  The  this  n-CioH22/,(X)2 r e s u l t s .  i n Table 5 . 8 , extract  for  results,  also indicate different  is (i.e.,  discussed i n the  the d i f f e r e n t  representative.  The  there  i d e n t i c a l runs  occur with  and t h e r e f o r e fairly  that  of  The  oil plotted  extract  oil  93  Table 5.6  Stripped Measured  T o t a l volume o f c e l l , V E x t r a c t sample volume, v  Separator Values  Oil/C02  Results: ' - 952 c m • 7.8 cm  ?  r  ± 10 c m t 0.3 cm 3 1 0.3 cm  3  3  6  Total  volume  Raffinate  removed  6ample  during extract  volume, v  sampling  v ^ ^  - 11.2 • 8.2 cm  D  i 0.3 cm 3  Total  volume  removed  during  raffinate  sampling, v  R  S  » 11.6 cm  T  3  ± 0.3 cm  Run Total  O i l Weight, W T  248  0 I L  _  Volume o f C 0 d e g a s s e d (dm ) W e i g h t o f COj d e g a s s e d ( g ) 2  -  Extract Extract  s a m p l e e x p a n d e d C O 2 (dm ) w sanple weight of C 0 ,  Extract  sample w e i g h t of o i l ,  Total  U  Extract  E  (  0  L  p  the e x t r a c t  phase, phase,  0. 5299  6.1755  6. 0655  0.598  0.559  0.792  0. 778  "E(C02)  )  0.578  0.539  0.726  0. 710  (g/cm )  0.020  0.020  0.066  0.068  0.035  0.037  0.090  0..096  1.040 2.0561  1.005 1.9869  1.255 2.4811  1.,215 2., 4021  4.1488  4.5582  4.2044  4.. 2965  6.2049  6.5415  6.6855  6,. 6986  0.748  0. 788  0.805  0..807  0.248  0.239  0.299  0,.289  0.500  0. 549  0.507  0,.510  2.018  2. 294  1.694  1,. 789  (g/cm 3  "E(0IL)  2  Raffinate Raffinate  sample expanded C O 2 ( d m ) sample w e i g h t of C 0  Raffinate  sample w e i g h t of  Total  0.5114  4.3575  3  of o i l i n the e x t r a c t  C0  0.1564  4.6671  (g/cm )  £  of C O 2 - i n  / G  0.1595  ) (g)  Concentration  DlL  2. 800 5. 5356  w  Concentration  E  2.865 5.6641  sample w e i g h t , £ ^ r ) ( g )  phase d e n s i t y ,  244 286. 890 567  2.125 4.2011  2  I  -  242 308.400 610  2.280 4.5076  £(co ) (s)  2  extract  EXTRACT  251  raffinate  Raffinate  RAFFINATE  3  R(C02)  2  o i l  R(0IL) (g)  s a m p l e w e i g h t , R^T)  phase d e n s i t y ,  w  p  R  (g)  (g)  (g/cm )  Concentration  of CO2 l n the r a f f i n a t e  phase, C ^  Concentration  of o i l l n the r a f f i n a t e  phase,  KOIL^CO,  P A u t o c l a v e (MPa) T A u t o c l a v e (°C) T A i r Bath CO E q u i l i b r i a t i o n Time ( h r s )  R  C  C 0  j (g/cm )  R(01L)  (  g  /  c  E  >  EQUILIBRIUM CONDITIONS 13.73 66.1 67.18 4  13.34 65.5 71.1 4  20.20 65.0 73.3 4  20. 20 65.5 72.2 4  Table  5.7  Stripped Separator Calculated  Oil/C02  Results:  Values  Run  1  3  2  4  CALCULATED VOLUMES Extract V /V E'  volume, V  (cm )  591 0.621  635 0.667  661 0.694  664 0.697  (cm )  361  317  291  288  0.379  0.333  0.306  0.303  (g)  55  64  50  52  (g)  12  13  44  45  (g)  181  174  148  147  T ' r ( o i L ) (g)  248  251  242  244  (g)  342  342  480  471  (g)  90  76  87  83  (g)  432  418  567  554  3  T  R a f f l n a t e Volume,  V  3  R  V T V  C A L C U L A T E D WEIGHTS Weight of r e s i n o u s m a t e r i a l , WT Weight o f o i l In the e x t r a c t  G  phase, W T ^ O T L )  Weight of o i l In the r a f f l n a t e  phase,  w  T (Q R  T o t a l o v e r a l l weight of o i l In the c e l l , W e i g h t o f CO2  In the e x t r a c t  W e i g h t o f CO2  In the r a f f i n a t e  phase,  Total overall  w e i g h t o f CO2  I L  h t E  W  )  ( Q J 2  C  p h a s e , WT .  .  R\ CO  i n the c e l l ,  2  )  WT,.,-,, T  ( CO  . 2  )  Table  5.8  Stripped  Separator  Normalized  Oil/C02  Concentrations  Results: of  Oil  Components  NORMALIZED WEIGHT ( Z ) Extract O i l  Molecular Window (J)  Weight Fraction  1 C1+C5 2 c 3 C7 4 c 5 C9 6 10 7 Cll 8 Ci 9 Cl3 10 Cm 11 CIS 12 Cis 13 Cl7 14 1B 15 Cl9 16 20 > 21 17 2 2 .C23 18 CJI, , C 5 19 2 6 . 27 20 2 8 » 29 21 3 0 .C3I 22 3 2 « 33 23 C3^••C3 e l u t e d from C. column 6  8  c  2  C  C  C  C  2  c  c  c  C  C  C  C  9  Original Oil 3.37 4.67 7.25 6.47 5.52 4.64 3.59 3.39 3.58 3.51 3.05 2.64 2.64 2.14 1.99 3.45 2.93 2.46 2.16 1.68 1.55 1.34 2.38 76.40  Stripped Oil 0.00 0.00 0.07 0.67 2.41 3.78 3.84 4.06 4.55 4.64 4.09 3.67 3.81 3.13 2.97 5.25 4.58 3.92 3.43 2.67 2.47 2.16 3.93 70.10  Run 0.05 0.02 0.02 0.02 4.81 7.04 12.24 14.79 14.76 12.56 8.89 6.54 5.49 3.67 2.88 3.91 2.45 1.59 1.04 0.62 0.45 0.29 0.24 100.00  Run 3 0.11 0.05 0.16 2.24 8.29 13.02 12.41 11.52 10.90 9.27 6.60 4.88 4.19 2.89 2.35 3.38 2.34 1.69 1.23 0.80 0.63 0.44 0.48 100.00  Run 2 0.02 0.01 0.03 0.97 5.23 9.70 10.03 10.20 10.54 9.88 7.68 6.17 5.66 4.11 3.47 5.17 3.62 2.52 1.73 1.07 0.81 0.58 0.71 100.00  Rafflnate O i l  Run 4  Run 1  0.01 0.01 0.02 0.11 2. 10 6.51 8.70 9.85 10.73 10.32 8.26  0.00 0.00 0.03 0.61 2.42 11 40 82 50 92 12  78 43 82 16 6.39 4.56 3.24 2.28 1.46 1.14 0.84 1.16  4.73 4.82 08 92 09 30 51 85 3.74 3.49 3.06 5.17  100.00  89.80  Run 3 0.00 0.01 0.04 0.64 2.62 4.25 4.68 5.05 5.72 6.11 5.25 4.81 4.87 4.11 3.94 7.13 6.34 5.54 4.96 3.92 3.76 3.43 5.86 93.90  Run 2 0.00 0.03 0.04 0.55 2.02 3.25 3.62 4.04 4.72 5.18 4.54 4.26 4.36 3.77 3.69 6.81 6.22 5.60 5.10 4.02 3.82 3.46 6.15 85.40  Run 4 0.00 0.02 0.03 0.46 92 16 61 02 71 18 57 26 37 3.75 3.68 6.78 6.19 5.55 5.03 4.03 3.87 3.56 6.88 85.70  96  IS  ?0  NUMBER  75  OF CARBON  30  33  ATOMS  Normalized Concentrations f o r the O i l o f Runs 1 a n d 3  I  '  1  '  '  I  •  •  •  i  I  i  • i  i  I  i  Extracted  i r  • — • E X T R A C T O I L OF BUN 2 • — • E X T R A C T O I L OF RUN 4  W  5  Figure  5.6  15  ?0  25  30  NUMBER O F CARBON ATOMS Normalized Concentrations f o r the O i l o f Runs 2 a n d 4  35  -<0  Extracted  97 '•  i  •  •  l  •  »  i — ' i  • — i — i — • — i  i  • — i — i  |  i  i  i — i — | — i — i  i  i — p  '  •  •  I  f  i  t  4RAFFINATE OIL OF RUN 1  •  .—.RAFFINATE OIL OF RUN 3  10  i  o  o UJ M _l <  •/V  2 s  EC  O 2  (—• 11.96* .  15  20  NUMBER  Figure  5.7  25  " 15.37%  30  35  40  OF CARBON ATOMS  Normalized Concentrations f o r the Raffinate G i l o f Runs 1 a n d 3  ™!—I—|—I—»—1—»—|—I—I—I—I—|—I—•  I  I | I I I  I  |  I  I I •  |  » » •  I  |  •  I I  RAFFINATE OIL OF RUN 2 - • RAFFINATE OIL OF RUN 4  X  q UJ  5  o  UJ Nl  o .20.75% .21.18%  1  K  •  •  •  •  1  •  15  NUMBER  Figure  5.8  •  •  •  1  20  •—I  •  I  I 25  30  35  OF CARBON ATOMS  Normalized Concentrations f o r the Raffinate O i l o f Runs 2 a n d 4  '0  98  compositions were  of  produced  r u n 1 and 3 ,  from  chromatographic The  of  run  2.  separate  analyses  of  t h e Cs  1 in  As more  injections  data  chromatographic  amounts  and 2 and 4 .  of  run 3 ,  extract  trapped  run 2 (see Table 5 . 6 ) ,  during  sample  for  over  a month,  considerable lighter  the  period  raffinate  1 and 3 ,  of  oils  i n c o r r e c t measurement this  fractions  are  the  raffinate  f r a c t i o n was The less  original there to  be t h e  tends  o i l of  The  i n runs  except  be  the  of  to adhere  to  the  cell  for  analysed  of  for  order  a of  the  period.  analyses  i n runs  results  for  2 and 4 i s  a result Figure  the  of  5.7  very an  seems  hydrocarbon  concentration  higher  occurred  or l o s s  standard.  the p l o t t e d  loss  was o u t  this  d i s t r i b u t i o n of  and a l s o  the  values  indicate  that  the  values  since a  raffinate  t h e CI+Q+, o r n o n - e l u t a b l e  extract  solid  run 3 ,  for  larger  eluted.  contains  have been a s e p a r a t e or  run  evaporation  differences  samples  comparison w i t h  that  consistent  d i s p l a c e d at  o i l analyses  quantitites  resinous  1 than  extract  1 and 3 a r e p r o b a b l y  that  run 3 are  considerable  chromatograph  the added i n t e r n a l  c a l c u l a t e d to  As  the  fairly  2 and 4 .  of  similar,  oil.  must  provided  that  is unlikely  A measurable  c o n c l u s i o n as the  raffinate  relative  Since  time.  differences  to v e r i f y  it  run  c o u l d have o c c u r r e d d u r i n g  and r u n s  s m a l l and t h e  for  the  produced.  run 4 i n  c o l l e c t e d samples were not  hydrocarbons  The runs  expansion.  had b e e n  indicated  and o f  chromatograms  injected after  were m i s s i n g i n the  comparison w i t h  run 4 than the  data  fractions  o i l was  t h a t were  Table 5.8  analysis  t o Cio  These p l o t t e d  a portion  of  phase  observed  surface.65  material  the  and h e a v y o i l p h a s e . by o t h e r s  oils  6 0  than  elutable  This '  was  6 5 - 6 6  contain the  oil  considered  and  which  99  Unlike involving total)  a binary  be c a l c u l a t e d .  The  The  the a u t o c l a v e . this  of  data, (See  are dependent  the C 0 2 content  agrees w i t h i n  10% o f  2 and 4 ( s e e T a b l e s 5.7  the  to C,  5.6  measured  and  5.7).  are p a r t i c u l a r l y repeatable  that  are used i n the a r e more  had  5.7.  i s because the measured c o n c e n t r a t i o n s  C),  (or  i n Appendix  This  Appendix  data  on t h e o v e r a l l  c a l c u l a t i o n are given  i n Table  runs  system the e q u i l i b r i u m  Therefore,  c a l c u l a t e d r e s u l t s i n Table  analysis  c a l c u l a t i o n of comparable  for  volume  and and  for  raffinate phase  runs 2 and 4 t h a n  runs  3. 5.4.1  Mass B a l a n c e of The  quoted  solid  Therefore, measured  Components  This  6 6  content  contents  the  raffinate  (see Appendix  lighter  it  i s suspected that  hydrocarbons  analysis.  between  To u s e t h e  b a l a n c e and e v a l u a t e d of  the e x t r a c t  Table  5.9  C)  were  the e x t r a c t  of  runs  run 3 ,  incorrect.  o i l of  run  t h e e x p a n s i o n and t h e 1 and 2 t o the  values  1,  2 and  (i.e. ,  an  4.  the phase  As a r e s u l t ,  the  balance.  1 had l o s t  some  chromatographic i l l u s t r a t e the  component  r u n 3 was u s e d i n p l a c e o f  list  the  r u n 3 w h i c h had  o i l , and s u b s e q u e n t  equilibrium constants,  and 5 . 1 0  above  u s e d i n i l l u s t r a t i n g a mass  c o n s e c u t i v e runs  o i l of  for  that  the r e s u l t s of  c o n s e c u t i v e r u n s 3 and 4 w e r e n o t However,  true  s u b s t a n t i a l l y above  f r a c t i o n of  and c o n t e n t s  are generally  is particularly  i t was s u s p e c t e d t h a t  eluted  volumes  Oil  calculated solid  previous l y .  evaluated  data  1 solute)  o i l solute  d e t a i l s of  content  2 and 4 .  content  -  c a l c u l a t e d CO2 c o n t e n t  degassed C02  1 and  of  r e s u l t s are g i v e n  The  runs  solvent  the multicomponent  CO2 c o n t e n t  and the  (1  that  t h e mass b a l a n c e r e s u l t s o f  mass  concentration of  the  run oil  1.  T a b l e 5.9  Mass B a l a n c e  Results  o f Run 1  J  Molecular Weight FractIon  Window (J) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 neluted  CJ-K; c  5  6  C  9  c io Ci l  Cl2 Cl3  Cm c Cl6 Cl7 1 5  C 18 C  19  C20.C21 22- 23 C  C  C2M.C25 c ,c C28.C29 2 6  2 7  30- 31 3 2• 3 3 3M'* 39 Ci, + C  C  C  C  C  C  0  WT. E(j) (g) 0.0132 0 .0060 0 .0192 0.2688 0 .9948 1 .5624 I,.4892 1,.3824 1,.3080 1 .1129 0.7920 0,.5856 0,.5028 0,.3468 0,.2820 0,.4056 0,.2808 0,.2028 0,. 1476 0,.0960 0,.7560 0,.0528 0,.0576 0..0000  WT  R(J)  WT  S(j)  WT  Kj)  (g)  (g)  (g)  0.,0000 0.,0000 0..0546 1. 1102 4. 4044  -  0.0132 0.0060 0.0738 1.3798 5-3992 9.0426 9.4972 10.1548 11.3180 11.8868 10.1104 9.1942 9.2752 7.7724 7.4164 13.3094 11.7468 10.2310 8.9746 6.9028 6.4274 5.6260 9.4670 73.5640  7. 4802 8. 0080 8. 7724 10.0100 10.7744 9. 3184 8. 6086 8. 7724 7. 4256 7. 1344 12. 9038 11. 4660 10. 0282 8. 8270 6. 8068 6. 3518 5. 3692 9. 4094 18. 5640  -  55.0000  WT, T(j) (g) 0,.0000 0,.0000 0..1736 1..6616 5..9768 9..3744 9..5232 10.0688 11..2840 11..5072 10., 1432 9.. 1016 9,,4488 7..7624 7.,3656 13..0200 11.,3584 9.,7216 8.,5064 6.,6216 6. 1256 5.,3568 9. 7464 74. 1520  WT  (J)  WT, T(j)  111  WT, T(j)  x 100  (g)  <*)  +0.0132 +0.0060 -0.0998 -0.2826 -0.5776 -0.3318 -0.0260 +0.0860 +0.0340 +0.3796 -0.0328 +0.0926 -0.1736 +0.0100 +0.0508 +0.2894 +0.3884 +0.5094 +0.4680 +0.6868 +0.3018 +0.2692 -0.2794  +•»  -0.5880  +» -17.36 -17.01 -9.66 -3.54 -0.27 +0.85 +0.30 +3.30 -0.29 +1.02 -1.87 +1.90 +0.69 +2.22 +3.42 +5.24 +5.50 +4.25 +4.43 +5.03 -2.86 -0.79  O O  Table 5.10  Mass B a l a n c e  Results  o f Run 2  T(.D  (j) " r.WT . , - WT , , 1(1) T(j)  (g)  (g)  A  Molecular Weight  Window  Fraction  (J) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Noneluted  c c c c  6 7 8 9  C 10 Cl i Cl2  Cm Cl5 Cl6  <M7 C 18 C i 9  C20.C21  22 « 33 C2M,C 5 C  C  2  C  2G' 2/ C  C28.C29 30. 31 C32.C33 C  C  C3..+C39 C  M0+  WT  .  M.1>  .  WT  ,  x  R(.D  (g)  (g)  0. 0088 0. 0044 0.0132 0. 4268 2. 3012 4. 2680 it. 4132 it. 4880 it. 6376 It. 3472 3. 3792 2. 7148 2. 4904 1. 8084 1. 5268 2. 2748 1. 5928 1. 1088 0.7612 0.4708 0. 3564 0. 2552 0. 3124 0. 0000  0.0000 0.0441 0.0588 0.8085 2.9694 4.7775 5.3214 5.9388 6.9384 7.6146 6.6738 6.2622 6.4092 5.5419 5.9243 10.0107 9.1434 8.2320 7.4970 5.9094 5.6154 5.0862 9.0405 21.6080  WT  , , S(j)  (g)  - . -  50.000  rwT . iCJ) (g) 0 .0088  0.0485 0 .0720 1 .2353 5 .2706 9 .0455 9 .7346 10.4268 11 . 5760 11 .9618 10 .0530 8 .9770 8 .8996 7 .2327 6 .9511 12 .2855 10 .7362 9 .3408 8..2582 6 .3802 5,.9718 5,.3414 9,.3529 71,.4620  WT  , .  0.0000 0.0000 0.17 14 1.6207 5.8329 9.1034 9.2366 9.7595 10.9362 11. 1386 9.8276 8.8129 9.1563 7.5163 7.1301 12.5219 10.9833 9.3943 8.2190 6.4003 5.9194 5.1762 9.4419 73.5534  0.0088 0.0485 -0.0994 -0.3854 -0.5623 -0.0579 0.5548 0.6673 0.6398 0.8232 0.2254 0.1641 -0.2567 -0.2836 -0.1790 -0.2364 -0.2471 -0.0535 0.0392 -0.0201 0.0524 0.1652 -0.0890 -1.9454  WT  , . T(j)  (I) +•» +•»  -58.00 -27.78 -9.64 -0.99 +6.01 +6.84 +5.85 +7.39 +2.29 + 1.86 -2.80 -3.77 -2.51 -1.89 -2.25 -0.57 0.48 -0.31 0.89 3.19 -0.94 -2.64  102  components WTs(j)  1 and 2 r e s p e c t i v e l y .  are the t o t a l weights  f o r the extract,  "j", is  f o r runs  t h e summed v a l u e s  weight  raffinate  stripped  f o r the e x t r a c t ,  by  values  The  c a l c u l a t e d f r o m t h e known a n a l y s i s of the o r i g i n a l  of the o i l f r a c t i o n s  appear  o i l from t h e sample  are calculated  sampled i n r u n 1 from t h e  i n the extract  phase as t h e  (EWT^j))  agreed w i t h  The e q u i l i b r i u m r e s u l t s  hydrocarbons  had been l o s t  o i l f r a c t i o n s , the t h e m e a s u r e d mass  (shown b e l o w ) prior  t h a t was u s e d  coil.  f o r t h e C i t o C9 m o l e c u l a r w e i g h t  c a l c u l a t e d mass v a l u e s  lighter  of Table 5 . 7  analyses i d e n t i f i e d residual d i - e t h y l e t h e r  f l u s h the extract  (WT^(j)).  These  5 . 8 . WTx(j) i s t h e t o t a l  F o r r u n 2 , t h e WTx(j) v a l u e s  Ci t o C5 a n d Cg f r a c t i o n s  Except  "j",  EWT^j)  o f t h e o r i g i n a l o i l c h a r g e u s e d i n Run 1 .  chromatographic to  oil.  i n window  and s o l i d phase.  phase c o n c e n t r a t i o n s  a n a l y s i s data of Table  s u b t r a c t i n g the weight  WTT(J)  raffinate  of o i l and t h e chromatographic  separator  elute  and s o l i d phase r e s p e c t i v e l y .  of t h e o i l f r a c t i o n o f window  added w e i g h t  W T ^ Q ^ and  of the o i l f r a c t i o n that  v a l u e s a r e c a l c u l a t e d from the t o t a l and c h r o m a t o g r a p h i c  WTE(J)  values  i n d i c a t e that the  to the chromatographic  analysis. 5.4.2  Calculated Equilibrium Table  The  5 . 1 1 summarizes  average molecular weight  fraction,  Values the c a l c u l a t e d e q u i l i b r i u m  o f t h e CL>O+ f r a c t i o n ,  was t a k e n a s n - C 5 o H i o 2 «  of  the o i l , the choice of the  little  i n f l u e n c e on t h e molar  Citfj-r  o r non e l u t e d  S i n c e t h e CO2 m o l a r  were h i g h and t h e C^Q* f r a c t i o n o n l y  data.  concentrations  represented a small molar  molecular weight  concentrations  fraction  had r e l a t i v e l y  evaluated  f o r t h e CO2 a n d  T a b l e 5.11  Calculated Equilibrium  Values RUN  Holecular  Overall Molar Concentration U)  Weight CO 2 C7  c c,  8  10 Cll C  <M2 Cl3  Cu Cu Cl7 C  18  C19 C  20. 21 C  C22,C 3 24. 25 C26.CJ7 2B. 29 2  C  c  C  C  C3O.C3I C  c  32> 33 C  i<0+  E x t r a c t Phase Molar Concentration (y)  Rafflnate Phase M o l a r Concent r a t ion (x)  Equilibrium Constant (K - y / x )  Overall Molar Concentration  E x t r a c t Phase Molar Concentration  (z>  (y>  P - 13.73 MPa; T - 6 6 . P C  44.01 100.20 114.23 128.25 145.28 156.31 170.33 184.36 198.38 212.41 226.44 240.46 254.49 268.51 284.55 317.60 345.65 347.71 401.76 429.81 457.86 513.97 703.16  0.920199 0.000070 0.001134 0.003956 0.005971 0.005709 0.005602 0.005768 0.005630 0.004473 0.003793 0.003624 0.002870 0.002595 0.004395 0.003476 0.002444 0.002925 0.001614 0.001405 0.001155 0.001731 0.009962  Average m o l e c u l a r weight of o i l Phase D e n s i t y ( g / c m ) Phase d e n s i t y ( g moles/cm ) 3  292.01 0.598 0.013  0.991490 0.000024 0.000301 0.000993 0.001405 0.001220 0.001040 0.000907 0.000722 0.000477 0.000331 0.000267 0.000174 0.000141 0.000183 0.000113 0.000076 0.000054 0.000031 0.000023 0.000015 0.000015 0.000000 80.45 0.748 0.008  Rafflnate Phase M o l a r Concentration (x)  Equlllbrlum Constant (K - y / x )  P - 20.20 MPa; T - 65.0°C  0.743350 0.000145 0.003221 0.012468 0.019109 0.018622 0.018720 0.019738 0.019741  1.3381 0.1655 0.0935 0.0796 0.0735 0.0655 0.0556 0.0456 0.0366  0.015947 0.013820 0.013260 0.010607 0.009658 0.016485 0.013122 0.010577 0.009292 0.006157 0.005372 0.004420 0.006656 0.009593  0.0299 0.0240 0.0201 .0.0164  257.79  2  0.939761 0.000052 0.000787  0.0146 0.0111 0.00B6 0.0072 0.0058 0.0050 0.0043 0.0034  0.002993 0.004533 0.004580 0.004458 0.004572 0.004391 0.003446 0.002886 0.002695 0.002069 0.001885 0.003144 0.002461 0.001967 0.001729 0.001156 0.001011 0.000850  0.0023 0.0000  0.001325 0.007296 292.34 0.792 0.017  0.979789 0.000012 0.000334 0.001608 0.002634 0.002531 0.002362 0.002296 0.001964  0.787738 0.000235 0.002821 0.009225 0.013102 0.013565 0.013895 0.014990 0.015294  0. 1743 0.2010 0.1866 0.1700 0.1531 0.1284  0.0014 26 0.001074  0.012520 0.011018 0.010620 0.008679 0.008049 0.014019 0.011472 0.009492 0.008591 0.005862 0.005204 0.004427 0.007009 0.012168  0.1139 0.0975 0.0875 0.0734 0.0634 0.0511 0.0392 0.0303 0.0228 0.0179 0.0142 0.0113 0.0078 0.0000  0.000929 0.000637 0.000510 0.000716 0.000450 0.000288 0.000196 0.000105 0.000074 0.000050 0.000055 0.000000 195.15 0.805 0.009  275.97  1.244 0.0511 0.1184  O  104  other  oil The  fractions. equilibrium K values  the K value  of  a result  a substantial loss  the  of  the C 1 0  of  expansion  analysis.  stage,  The  molar  or i n the  run 1 (13.3 p r e s s u r e of  of  the  extract  indicates  the  fractionating  molecular weight  the  lighter  hydrocarbons.  in  the  raffinate  phase,  of  the  raffinate  oil.  is a result  resinous weight  than  the  on t h e  i n c r e a s e s to  MPa).  The  of  oils.  The  oil  of  the  that total  of  the  This  However,  due t o  the  loss  of  solubility  molecular of  the  the  weight  raffinate  intermediate  the the  of  1 removed  t h e CL;0+  average  molecular  total o i l .  o i l i s higher  change i n the a v e r a g e  composition.  in  molecular  s u p e r c r i t i c a l CO2.  than the  1% f o r  an i n c r e a s e i n p r e s s u r e .  r e s i n o u s phase does e x i s t , i s less  decrease  approximately  average  increased molecular weight  oils  at  and  than  l e a d s t o an i n c r e a s e d s o l v e n t  o i l i s v e r y s m a l l and t h e r e f o r e  minimal effect  less  v a l u e s may be I n a c c u r a t e  molecular weight  and e l u t a b l e  oil is  and o n l y  run 1 because the sampling d u r i n g run  lighter of  the r a f f i n a t e average  the e x t r a c t  and a l s o a d e c r e a s e i n the q u a n t i t y  As t h e  probably  weight.  an i n c r e a s e d e x t r a c t i o n  fraction,  phase.  of  The  of  expansion  and an i n c r e a s e i n t h e a v e r a g e The  below  fractions  i n d i c a t e the expected  run 2 (20.2  increase i n pressure  hydrocarbon  time p e r i o d between  MPa),  are  o c c u r and was  t h e C7 t o Co. h y d r o c a r b o n s  c a p a b i l i t y of  average  oil  s h o u l d not  o i l increases with  the  The  of  c o n c e n t r a t i o n of  the h i g h e r  weight  This  an i n c r e a s e i n m o l e c u l a r  lower p r e s s u r e of 2% a t  fraction.  remaining hydrocarbons  K values with The  t h e C 7 , C s and C9 f r a c t i o n s  for  a quantity molecular  sampling appears  run 2 of  the  weight  to have  a  105  6. 1.  CONCLUSIONS  ANALYTICAL PROCEDURES a.  are  The  a n a l y t i c a l procedures,  s u f f i c i e n t l y p r e c i s e to  removes  constituents  b.  A  special  w h i c h were  i n d i c a t e that  was w r i t t e n  for  this  study,  s u p e r c r i t i c a l CO2 s e l e c t i v e l y  from a multicomponent  programme  developed  separator  for  the  oil.  interpretation  of  the  chromatogram. c.  The  previously  2.  a c c u r a c y of  the  e q u i l i b r i u m data  i s comparable  to  that  published i n m i s c i b i l i t y studies.  EXPERIMENTAL PROCEDURES a.  The  d e s i g n of  temperatures  up t o  supercritical  the  cell  200°C.  The  allows cell  fluid extraction  for  p r e s s u r e s up t o  therefore  temperatures  3 4 . 5 MPa  a l l o w s normal  (up  to  1.2  Tc  and  maximum  of  the  5 Pc of  the  1 8 solvent  • ) and s u p e r c r i t i c a l f l u i d  solvent1'8) Although  i s only  4.67  Pc f o r  1.2  than  two  Tc  for  to  C3H6 a n d C3H0, s o l v e n t s .  4  i n e x c e s s of  (up  C O 2 , t h e maximum  pressure,  C0 . 2  cannot  f l u i d phases,  be o b t a i n e d  as o n l y  two  for  conditions  regions  of  the  which  autoclave  sampled. c.  The  conditions. increased  pumps p r o v i d e The  use,  a means t o  performance  hours  of  of  the  sample at extract  i n d i c a t i n g s u b s t a n t i a l wear.  phase c i r c u l a t i o n throughout 75  the C 2 H , C 2 H 6 ,  Phase e q u i l i b r i u m data  p r o d u c e more are  be s t u d i e d f o r  200°C i s  34.5 MPa, b.  to  pressures  continued  use.  the experiment,  isobaric equilibrium  p h a s e pump d e c r e a s e d B o t h pumps and t h i s  did  with  maintain  represents  about  106  d.  The  compounds than  existing  or m i x t u r e s  decane.  experimental that  contain  T h e s e compounds  the h i g h p r e s s u r e  sample  is  procedures  are u n s u i t a b l e  for  compounds  w h i c h a r e more  volatile  appear expanded.  t o be s u b s t a n t i a l l y  stripped  when  107  7. RECOMMENDATIONS 1.  ANALYSIS a.  The expanded  content. well  C 0 2 g a s s h o u l d be a n a l y s e d  T h i s would a l l o w the study  as s e p a r a t o r  o i l and s o l u t i o n gas m i x t u r e s .  An i n i t i a l  low Isothermal  temperature  better  separation  conditions c.  given  Although  for analysis  hold and/or  with  less  liquid  d. and v e r y solute  2.  that  This  obtained  a longer of  mixtures  would provide  a  u s i n g the columns and  liquid  p h a s e was n o t u s e d  r e s o l u t i o n c h a r a c t e r i s t i c s , i t was o b s e r v e d  column b l e e d i n g .  Therefore,  to minimize  errors  and e s t i m a t i o n of t h e base l i n e a r e a s ,  phase  G.C.-M.S.  than  t h e c o l u m n c o n t a i n i n g OV-101  the e v a l u a t i o n  OV-101  than pentane.  analyses  (n-CirjH22)«  i n Table 3 . 2 .  because of i t s poor produce  lighter  o i l as  The gas a n a l y s i s  up t o d e c a n e  c o l u m n s h o u l d be c o n s i d e r e d f o r c h r o m a t o g r a p h i c c o n t a i n i n g hydrocarbons  hydrocarbon  of the o r i g i n a l s e p a r a t o r  s h o u l d be c a p a b l e o f a n a l y s i n g h y d r o c a r b o n s b.  for  to  associated  a longer  c o l u m n s h o u l d be c o n s i d e r e d .  techniques  detailed information  should ultimately  be u s e d t o p r o v i d e  on t h e s e p a r a t i o n a n d f r a c t i o n a t i o n  exact of the  compounds.  EXPERIMENTAL APPARATUS a.  constant b.  The a u t o c l a v e temperature A windowed  and s a m p l i n g l o o p s  s h o u l d be c o n t a i n e d  bath.  c e l l w o u l d be a d v a n t a g e o u s  be d i r e c t l y o b s e r v e d ,  in a single  and the a p p r o p r i a t e  as m u l t i p l e phases  samples  taken.  could  108  c.  A variable-volume  autoclave content,  A new g e a r  initial  shaft,  the v a r i a b l e s ,  t o be v a r i e d  d. the  prevents  suitably  gear  autoclave)  tolerances  flow  is  pump d e s i g n .  that  be d a m a g e d .  coupling.  not  the  t h a t were  might  Therefore, rotate.  CO2  Although  gear's  drive  coupled to  r e s t r i c t e d by g e a r  Consequently,  c o m m e r c i a l pumps  be p o s s i b l e ,  the  as t h e  a substantial  outlet.  Alternatively,  r e s t r i c t e d mode,  therefore  as t h e  a pump w h i c h f i t s  If  can p r o d u c e  r e s t r i c t e d at  not  or o v e r a l l  sustained use.  shaft  not  shaft.  pump ( i . e . ,  c i r c u l a t i o n might  high  might  fixed-volume  the  purchase  into  the  3"  Therefore,  torque  the magnetic  A quiescent  to  c o u p l i n g might  with  pump's turn  delivered  zone around  h a v e t o be i n c o r p o r a t e d  the  the  both  pump's  pumps  independent within the  housing  could  the  a  more  h e a d when  by t h e  slip  of  diameter  are b u i l t  pressure  required  be a b o v e t h a t  are used,  pumps  the  pumps  and a new c o u p l i n g s h o u l d be c o n s i d e r e d t o e l i m i n a t e a  complex m o d i f i e d  this  drive  for  shafts  design i s therefore  diameter  compact  temperature  stirrer  d e s i g n used d r i v e  The  as t h e  independently.  t h a t have a 3 / 8 "  phase  pressure,  d e s i g n was b a s e d on t h e  shaft.  a l s o be u s e f u l  pump d e s i g n i s r e q u i r e d  the m o d i f i e d  stirrer  c e l l would  gears,  in  magnetic  and t h e  gears  inlet  would  providing  phase  circulation. e. for  The  "Swagelock"  repeated  ("Autoclave  connections  connections Slim Line")  on t h e  sample c o i l were hot  and d i s c o n n e c t i o n s . c o n n e c t i o n s w e r e more  and t h e r e f o r e  t h e y s h o u l d be u s e d f o r  high pressure  connections  the  and s u b s e q u e n t  The  high  suitable  sample  coil.  high pressure  suitable  pressure for The  this  service,  use of  tubing  would  the  109  allow studies autoclave  3.  t o be c o n d u c t e d up t o  (103.9  MPa).  F u r t h e r work i s r e q u i r e d t o  experimental b.  Displacement  s t a t i c phase c.  Since  fully  access the  developed  procedures. tests  s h o u l d a l s o be c o n d u c t e d  M i n i m u m M i s c i b i l i t y P r e s s u r e and t o  It  the  FURTHER WORK a.  the  t h e maximum p r e s s u r e r a t i n g o f  to determine  a l l o w comparisons  to  be made  c i r c u l a t i o n methods  measurements  displacements, phase  as the  mobility.^  with  studies. are  Incorporated  into  the  i s p o s s i b l e to d i s p l a c e the phases i n t o h i g h p r e s s u r e  VIscocity  the  are p a r t i c u l a r l y flooding  fluids  relevant  cell  design  viscometers.  to m i s c i b l e  sweep e f f i c i e n c y i s  related  to  110  8.  NOMENCLATURE  a,b  Chromatogram a r e a s  (see F i g u r e  3.2)  ab  Averaged  base a r e a (see F i g u r e  3.7)  abl  Area of the f i r s t  ab2  Area of the l a s t  ae  (Difference  ars  A r e a o f t h e raw s a m p l e c h r o m a t o g r a m ( s e e F i g u r e  as  A r e a of the c o r r e c t e d sample chromatogram (see F i g u r e  at  Total  C  Concentration  e  Eluted  u  Sampled volume  V  Volume  w  Sampled weight  WT  Weight  x  Molar c o n c e n t r a t i o n In the R a f f i n a t e  y  Molar c o n c e n t r a t i o n i n the E x t r a c t  z,Z  Total  b l a n k or base chromatogram (see F i g u r e blank or base chromatogram (see F i g u r e  between base chromatograms/2)  (see Figure  3.7) 3.7)  3.7)  3.7) 3.7)  a r e a of the c o r r e c t e d sample chromatogram (see F i g u r e  fraction  phase  phase  molar c o n c e n t r a t i o n  Subscripts 1,2,3  Chromatogram s e c t i o n s  j  C h r o m a t o g r a m m o l e c u l a r w e i g h t window ( s e e T a b l e  E  Extract  R  Raffinate  S  Solid  T  Total  phase phase  phase  (see Figure  3.2) 5.1)  3.7)  Ill  EST,RST  Total  IS  Internal  CO2,  Oil  sampled f o r  the  extract  Standard  C 0 2 and o i l  content  Superscript '  Normalized  values  (areas)  and r a f f i n a t e  phase  respectively  112  9.  REFERENCES  1.  Williams, D.F., S c i . , 36 ( 1 1 ) ,  2.  B r o g l e , H . , "CO2 a s a S o l v e n t : Its Properties Chem. a n d I n d . , 3 8 5 - 3 9 0 ( 1 9 t h J u n e 1 9 8 2 ) .  3.  Speight, J . C . , "The C h e m i s t r y and T e c h n o l o g y D e k k e r I n c . , New Y o r k a n d B a s e l ( 1 9 8 0 ) .  4.  R a n d a l l , L.Q. "The P r e s e n t S t a t u s o f D e n s e ( S u p e r c r i t i c a l ) Gas E x t r a c t i o n and D e n s e Gas C h r o m a t o g r a p h y : I m p e t u s f o r DGS/MS D e v e l o p m e n t , " S e p . S c i . and T e c h . , 17_ ( 1 ) , 1-118 (1982).  5.  Paul, Mills  6.  S t a h l , E . , W i n f r e d , S . , S h u t z , E. a n d W i l l i n g , E . , "A Q u i c k M e t h o d f o r t h e M i c r o a n a l y t i c a l E v a l u a t i o n o f t h e D i s s o v l i n g Power o f S u p e r c r i t i c a l G a s e s , " Angew. Chem. I n t . E d . E n g l . _17_ ( 1 0 ) , 731-738 (Oct. 1978).  7.  P e r r y , R . H . and C h i l t o n , C . H . , "Chemical Engineers E d . , M c G r a w - H i l l Book C o . , New Y o r k ( 1 9 7 3 ) .  8.  S c h n e i d e r , G . M . , " P h y s i o c h e m i c a l P r i n c i p l e s of E x t r a c t i o n w i t h S u p e r c r i t i c a l G a s e s , " Angew. Chem. I n t . E d . E n g l . , 1_7_ ( 1 0 ) , 716-727 (Oct. 1978).  9.  K i n g , M . B . and B o t t , T . R . , "Problems A s s o c i a t e d w i t h the D e v e l o p m e n t o f Gas E x t r a c t i o n and S i m i l a r P r o c e s s , " S e p . S c i . T e c h . , J 7 ( l ) , 119-150 ( 1 9 8 2 ) .  10.  .  "Extraction with S u p e r c r i t i c a l Gases," 1769-1788 (Nov. 1981).  P . F . M . and W i s e , W . S . , and Boon L t d . , L o n d o n ,  N a m e l e s s , "The P r o m i s e f o r 33-34 (Jan. 1982).  Chem.  Eng.  and A p p l i c a t i o n , "  of  Petroleum."  "The P r i n c i p l e s o f Gas (1971).  Supercritical Fluids,"  Marcel  Extraction."  Handbook."  5th  and  C h e m i c a l Week,  Kohn, P . M . , Savage, P . R . , and M c Q u e e n , S . , " S u p e r c r i t i c a l F l u i d s t r y f o r C . P . I . A p p l i c a t i o n s , " Chem. E n g . , 86 ( 6 ) , 41 ( 1 2 t h M a r c h 1979). —  12.  Bowman, L . M . , J r . , F l u i d (Dense G a s ) , Programming," Sep.  M y e r s , M . N . and G i d d i n g s , S . C . , " S u p e r c r i t i c a l Chromatography/Extraction with Linear Density S c i . and T e c h . , 1 7 U ) , 271-287 ( 1 9 8 2 ) .  13.  N a m e l e s s , " S u p e r c r i t i c a l F l u i d s c a n be N i c e . " 54_(12), 1294 A - 1 2 9 5 0 A ( O c t . 1982).  14.  Borman, S . A . , Application,"  15.  Bott, (19th  Analytical  Chem.  "Supercritical Fluids: A n a l y t i c a l and I n d u s t r i a l A n a l y t i c a l C h e m . , 53_ ( 1 1 ) , 1201A ( S e p t . 1 9 8 1 ) .  T.R., " S u p e r c r i t i c a l Gas E x t r a c t i o n , " March 1980).  Chem.  and I n d . ,  228-232  113  16.  Z o s e l , K. , " S e p a r a t i o n w i t h S u p e r c r i t i c a l G a s e s : Practical A p p l i c a t i o n s , " Angew. Chem. I n t . E d . E n g l . 1 7 ( 1 0 ) , 7 0 2 - 7 0 8 ( O c t . 1978).  17.  H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , R e c o v e r y , " P e t . E n g . , 33-46 ( J a n . 1976).  18.  H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , Slug P r o c e s s , " P e t . Eng, 58-66 (Feb. 1976).  19.  Herbeck, Miscible  20.  H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , " H i g h P r e s s u r e Gas M i s c i b l e P r o c e s s , " P e t . E n g . , 6 6 - 7 2 ( A p r i l 1 9 7 6 ) .  21.  H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , "Carbon M i s c i b l e P r o c e s s , " P e t . E n g . , 1 1 4 - 1 2 0 (May 1 9 7 6 ) .  22.  H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , F l o o d i n g , " P e t . E n g . , 45-56 (June 1976).  J.R.,  "Misceller  23.  Herbeck, E . F . , H e i n t z , P e t . E n g . , 48-59 ( J u l y  J.R.,  "Polymer  24.  H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , by H o t F l u i d I n j e c t i o n , " P e t . E n g . , 2 4 - 3 4  25.  Herbeck, E . F . , H e i n t z , by I n s i t u C o m b u s t i o n , "  26.  O r r , F . M . , J r . , H e l l e r , J . P . and T a b e r , J . J . , "Carbon D i o x i d e F l o o d i n g f o r Enhanced O i l R e c o v e r y : P r o m i s e and P r o b l e m s , " J . A . O . C . S . , 5 9 ( 1 0 ) , 810A-817A ( O c t . 1 9 8 2 ) .  27.  M c l n t y r e , H . , " P r o s p e c t s B r i g h t f o r Enhanced P r o c . , 6 3 , 27-31 ( 1 4 t h Nov. 1979).  28.  H o l m , L . W . a n d J o s e n d a l , V . A . , " M e c h a n i s m o f O i l D i s p l a c e m e n t by Carbon D i o x i d e , " J . P e t . T e c h . , 2 6 , 1427-1435 ( D e c . 1970).  29.  H o l m , L . W . , " S t a t u s o f CO2 and H y d r o c a r b o n M i s c i b l e O i l R e c o v e r y M e t h o d s , " J . P e t . T e c h . , 2 8 , 76-84 ( J a n . 1976).  30.  S t a l k u p , F . I . , "Carbon D i o x i d e M i s c i b l e F l o o d i n g : Past, and F u t u r e , " J . P e t . T e c h . , 3 0 , 1 1 0 2 - 1 1 1 2 ( A u g . 1 9 7 8 ) .  31.  J a c o b s o n , H . A . , " A c i d Gases and t h e i r C o n t r i b u t i o n t o M i s c i b i l i t y , " J . C a n . P e t . T e c h . , 11_(2), 5 6 - 5 9 ( A p r i l / J u n e 1972).  32.  D o s c h e r , M . and W i s e , A . , "Enhanced O i l Recovery P e t . T e c h . , 2 8 , 5 7 5 - 5 8 5 (May 1 9 7 6 ) .  J.R.,  "Why T e r t i a r y  "L.P.G.  Miscible  E . F . , H e i n t z , R . C . a n d H a s t i n g s , J . R . , " E n r i c h e d Gas P r o c e s s , " P e t . E n g . , 84-88 (March 1976).  R . C . and H a s t i n g s , 1976).  Lean  Dioxide  Solution  Flooding,"  J . R . , "Thermal (Aug. 1976).  Recovery  R . C . and H a s t i n g s , J . R . , "Thermal P e t . E n g . , 46-56 (Sept. 1976).  Recovery  Recovery,"  C a n . Chem.  Present  Potential,"  J.  114  33.  P e t z e t , G . A . , " U . S . I n d u s t r y E y e s B u i l d u p i n O i l O u t p u t v i a CO2 F l o o d s , " O i l a n d Gas J . , 3 9 - 4 2 ( 3 r d J a n . 1 9 8 3 ) .  34.  T h r a s h , J . C . , J r . , "CO2 I n j e c t i o n S u c c e s s f u l l y R e c o v e r s O i l , " World O i l , 9 H 4 ) , 68-70 (Sept. 1980).  35.  K a n e , A . V . , " P e r f o r m a n c e o f a L a r g e S c a l e C02-WAG Enhanced R e c o v e r y P r o j e c t , SACROC U n i t - K e l l y S n y d e r F i e l d , " J . P e t . T e c h . , 3 j _ , 217-231 ( F e b . 1979).  36.  P e r r y , C . W . , "The E c o n o m i c s o f Enhanced O i l R e c o v e r y and i t s P o s i t i o n R e l a t i v e t o S y n f u e l s . " S o c . P e t . E n g . , 2j_, 2 5 - 2 7 ( F e b . 1981).  37.  B r a s h e a r , J . P . and Kuumaar, V . A . , "The P o t e n t i a l and E c o n o m i c s of Enhanced O i l R e c o v e r y , " J . P e t . T e c h . , 3 0 , 1231-1239 ( S e p t . 1978).  38.  G u t h r i e , H . D . , " R o l e of U . S . Government i n P r o m o t i n g Enhanced O i l Recovery T e c h n i q u e s , " J . P e t . T e c h . , 3 0 , 1086-1088 (Aug. 1978).  39.  Simpson, J . J . , " F i n a n c i n g Enhanced R e c o v e r y , " 771-775 ( J u l y 1979).  40.  P r i n c e , J . P . , "Enhanced O i l R e c o v e r y P o t e n t i a l i n Canada - A M e t h o d o l o g i c a l Review," Working Paper #78-5, Canadian Energy Research I n s t i t u t e , (1978).  41.  P r a u s n i t z , J . M . and C h e u h , P . L . , "Computer C a l c u l a t i o n s f o r H i g h P r e s s u r e Vapour L i q u i d E q u i l i b r i a . " P r e n t i c e - H a l l , Englewood C l i f f s , N . J . , (1968).  42.  R o w l i n s o n , J . S . and R i c h a r d s o n , M . J . , "Advances i n C h e m i c a l P h y s i c s , " V o l . I I , Chapt. 3 . I n t e r s c i e n c e P u b l i s h e r s I n c . , New York (1959).  43.  V e t e r e , A . , "A P r e d i c t i v e M e t h o d f o r C a l c u l a t i n g t h e S o l u b i l i t y o f S o l i d s i n S u p e r c r i t i c a l Gases. A p p l i c a t i o n to Apolar M i x t u r e s , " Chem. E n g . S c i . , 3 5 , ( 1 2 ) , 1 3 9 3 - 1 4 0 0 ( D e c . 1 9 7 9 ) .  44.  K u r n i k , R . T . , H o l l a , S . J . and R e i d , R . C . , " S o l u b i l i t y of S o l i d s i n S u p e r c r i t i c a l C a r b o n D i o x o i d e a n d E t h y l e n e " , J . Chem. E n g . D a t a , 26 ( 1 ) , 47-51 ( J a n . 1981).  45.  J o h n s o n , K . P . , Z i g e r , D . H . and E c k e r t , C . A . , " S o l u b i l i t i e s o f Solids i n Supercritical Fluids: The Augmented v a n d e r Waals T r e a t m e n t , " I n d . E n g . Chem. F u n d . , 2 1 ( 3 ) , 1 9 1 - 1 9 7 ( M a r c h 1 9 8 2 ) .  46.  J o h n s t o n , K . P . and E c k e r t , C . A . , "An A n a l y t i c a l C a r n h a m - S t a r l i n g - v a n d e r Waals model f o r S o l u b i l i t y o f S o l i d s i n S u p e r c r i t i c a l F l u i d s , " A . I . C h . E . J . , 27 ( 5 ) , (Sept. 1981).  J.  Tertiary  Pet. Tech.,  31,  Hydrocarbon 773-779  115  47.  Fredrlch, J.R. L i s t , G . R . and H e a k i n , A . J . , " P e t r o l e u m F r e e E x t r a c t i o n o f O i l f r o m S o y a b e a n s w i t h S u p e r c r i t i c a l CO2," J . A . O . C . S . , 59 ( 7 ) , 2 8 8 - 2 9 2 ( O c t . 1 9 8 2 ) .  48.  B u l l e y , N . R . , F a t t o r i , M . , Meisen, A. a n d M o y l s , L . , " S u p e r c r i t i c a l F l u i d E x t r a c t i o n of Vegetable O i l Seeds," Presented at the Annual M e e t i n g o f A . O . C . S . , T o r o n t o , (May 1 9 8 2 ) .  49.  de F i l i p p i , R . P . , " C 0 2 a s a S o l v e n t : A p p l i c a t i o n t o F a t s , O i l s and O t h e r M a t e r i a l s , " Chem. a n d I n d . 3 9 0 - 3 9 4 ( 1 9 t h J u n e 1 9 8 2 ) .  50.  V o l b r e c h t , R . , " E x t r a c t i o n o f Hops w i t h S u p e r c r i t i c a l C 0 2 , " Chem. and I n d . , 397-399 ( 1 9 t h June 1 9 8 2 ) .  51.  G a r d n e r , D . S . , " I n d u s t r i a l S c a l e Hops E x t r a c t i o n Chem. a n d I n d . , 4 0 2 - 4 0 6 ( 1 9 t h J u n e 1 9 8 2 ) .  52.  Calame, J . P . and S t e i n e r , R . , " C 0 2 E x t r a c t i o n i n t h e F l a v o u r and P e r f u m e r y I n d u s t r i e s , " Chem. a n d I n d . , 3 9 9 - 4 0 2 ( 1 9 t h J u n e 1 9 8 2 ) .  53.  S t a h l , E . , S h u t z , E. and M a n g o l d , H . K . , " E x t r a c t i o n o f Seed W i t h L i q u i d and S u p e r c r i t i c a l Carbon D i o x i d e , " A g . and Food 2 8 , 1153-1157 ( 1 9 8 0 ) .  54.  H u b e r t , D. a n d V i t z t h u m , O . G . , " F l u i d E x t r a c t i o n o f H o p s , S p i c e s and T o b a c c o w i t h S u p e r c r i t i c a l G a s e s , " Angew. I n t . E d . E n g l . , 1_J_ (10), 710-715 ( O c t . 1978).  55.  Zhuze, T . P . , "Compressed Hydrocarbons 298-300 (Aug. 1960).  56.  M a d d o c k s , R . R . , G i b s o n , J . and W i l l i a m s , D . F . , " S u p e r c r i t i c a l E x t r a c t i o n o f C o a l , " C . E . P . , 75_(6), 4 9 - 5 5 ( J u n e 1 9 7 9 ) .  57.  W h i t e h e a d , J . C . a n d W i l l i a m s , D . F . , " S o l v e n t E x t r a c t i o n o f C o a l by S u p e r c r i t i c a l G a s e s , " J . o f t h e I n s t , o f F u e l , j48, 182-184 ( D e c . 1975).  58.  P e t e r , S . and B r u n n e r , G . , "The S e p a r a t i o n o f N o n v o l a t i l e S u b s t a n c e s by Means o f C o m p r e s s e d G a s e s i n C o u n t e r c u r r e n t P r o c e s s e s , " A n g e w . Chem. I n t . E d . E n g . , _17_ ( 1 0 ) , 7 4 6 - 7 5 0 ( O c t . 1978).  59.  B a r t l e , K . D . , M a r t i n , T . G . and W i l l i a m s , D . F . , " C h e m i c a l N a t u r e o f a S u p e r c r i t i c a l Gas E x t r a c t o f C o a l a t 3 5 0 ° C , " F u e l , 5 4 , 226-225 (Oct. 1975).  60.  O r r , F . M . and T a b e r , J . J . " D i s p l a c e m e n t o f O i l by C a r b o n D i o x i d e , " F i n a l R e p o r t , P r e p a r e d f o r a n d p u b l i s h e d by t h e D e p a r t m e n t o f Energy under C o n t r a c t # (DF-AC21-78ET12082), ( 1 9 8 1 ) .  with Liquid C 0 2 , "  as a S o l v e n t , "  Oils Chem.,  Petroleum,  116  61.  O r r , F . M . , L e i n , C . L . and P e l l e t i e r , M . T . , " L i q u i d - L i q u i d Phase B e h a v i o u r i n C 0 2 _ H y d r o c a r b o n S y s t e m s , " Symposium on C h e m i s t r y o f Enhanced O i l Recovery, American Chemical S o c i e t y , A t l a n t a , ( M a r c h / A p r i l 1981).  62.  O r r , F . M . , Y u , A . D . and L i e n , C . L . , " P h a s e B e h a v i o u r o f CO2 a n d C r u d e O i l i n Low T e m p e r a t u r e R e s e r v o i r s , " SPE 8 8 1 3 , p r e s e n t e d o f t h e F i r s t J o i n t SPE/DOE Symposium on E n h a n c e d O i l R e c o v e r y , T u l s a , ( A p r i l 1980).  63.  Y e l l i g , W . F . and M e t c a l f e , R . S . , " D e t e r m i n a t i o n and P r e d i c t i o n o f C 0 2 M i n i m u m M i s c i b i l i t y P r e s s u r e , " J . P e t . T e c h . , 31_, 1 6 0 - 1 6 8 (Jan. 1980).  64.  M e t c a l f e , R . S . and Y a r b o r o u g h , L . , "The E f f e c t o f P h a s e E q u i l i b r i a on t h e CO2 D i s p l a c e m e n t M e c h a n i s m , " S o c . P e t . E n g . J . , 1 9 , 2 4 2 - 2 5 2 (Aug. 1979).  65.  Simon, R . , Rosman, A. and Z a n a , E . , "Phase Behaviour P r o p e r t i e s C 0 2 " R e s e r v o i r O i l S y s t e m s , " Soc. P e t . Eng. J . , 18, 20-26 (Feb. 1978).  66.  Shelton, J.L. and Y a r b o r o u g h , L . , " M u l t i p l e Phase Behaviour i n P o r o u s M e d i a D u r i n g CO2 o r R i c h Gas F l o o d i n g , " J . P e t . T e c h . , 2 9 , 1171-1178, (Sept. 1977).  67.  Y a r b o r o u g h , L. and S m i t h , L . R . , " S o l v e n t and D r i v i n g Gas Compositions for M i s c i b l e Slug D i s p l a c e m e n t s , " Soc. P e t . Eng. 10, 298-310 (Sept. 1970).  of  J.,  68.  M e n z i e , D.E. and N i e l s o n , R . F . , "A S t u d y o f t h e V a p o r i z a t i o n o f C r u d e O i l by C a r b o n D i o x i d e R e p r e s s u r i n g , " J . P e t . T e c h . , 1_5, 1247-1252 (Nov. 1963).  69.  Holm, L.W., "A C o m p a r i s o n o f P r o p a n e and C a r b o n D i o x i d e S o l v e n t F l o o d i n g P r o c e s s e s , " A . I . C h . E . J . , ]_(2), 1 7 9 - 1 8 9 ( J u n e 1 9 6 1 ) .  70.  " M a n u a l on H y d r o c a r b o n A n a l y s i s , 3 r d E d . , A m e r i c a n S o c i e t y T e s t i n g and M a t e r i a l s , E a s t o n , M d . , ( 1 9 7 7 ) .  71.  A l t g e l t , K . H . and Gouw, T . H . ( e d s . ) . , " C h r o m a t o g r a p h y i n P e t r o l e u m A n a l y s i s , " Chromatographic S c i e n c e , V. I I , Chapt. 3 , M a r c e l Dekker I n c . , New Y o r k and B a s e l , ( 1 9 7 9 ) .  72.  " A . S . T . M . Standards, Part 2 5 , " "D-2887-73. T e s t f o r B o i l i n g Range D i s t r i b u t i o n o f P e t r o l e u m F r a c t i o n s by Gas C h r o m a t o g r a p h y , " A m e r i c a n S t a n d a r d s f o r T e s t i n g and M a t e r i a l s , P h i l a d e l p h i a , P . A . (1981).  73.  A l t g e l t , K . H . and Gouw, T . H . ( e d s . ) , " C h r o m a t o g r a p h y i n P e t r o l e u m A n a l y s i s , " Chromatographic S c i e n c e , V . I I , Chapt. 4 , M a r c e l Dekker I n c . , New Y o r k and B a s e l , ( 1 9 7 9 ) .  for  117  O f f e n b e r g , W . E . , "D-2887 Sigma B a s i c P r o g r a m f o r S i m u l a t e d D i s t i l l a t i o n , " P e r k i n - E l m e r S o f t w a r e N o t e s , DHSN-1028 ( 1 9 8 0 ) . Hodges, J . Industry,"  (ed.), Chapt.  "Recent A n a l y t i c a l Developments i n the P e t r o l e u m 5 , J o h n W i l e y and S o n s , New Y o r k , ( 1 9 7 9 ) .  Worman, J . C . a n d G r e e n , L . E . , "Simulated D i s t i l l a t i o n of High B o i l i n g P e t r o l e u m F r a c t i o n s , " A n a l . C h e m . , 37^(12), 1 6 2 0 - 1 6 2 1 ( N o v .  C h r i s t , J . M . and H e n s e l m a n , J . H . , "Automated S i m u l a t e d D i s t i l l a t i o n w i t h S P 7 1 0 0 . P a r t I G a s o l i n e , " Advances i n Chromatography and Laboratory Automation, J K 2 ) , (Oct. 1982). " V i s t a Plus Simulated D i s t i l l a t i o n Software ( P r e l i m i n a r y C o p y ) , V a r i a n , P u b l i c a t i o n No.  Applications Manual," 03-013917-00.  L e g e r t , D . , R i c h o n , D. a n d R e n o n , H . , " V a p o r L i q u i d E q u i l i b r i a up t o 100 M P a . A New A p p a r a t u s , " A . I . C h . E . J . , 27_(2) , 2 0 3 - 2 0 6 ( M a r c h 1981). Timmerhaus, K.D. and T e c h n o l o g y , "  and B a r b e r , M . S . ( e d s . ) , " H i g h P r e s s u r e S c i e n c e V . I , P a p e r S - 5 , P l e n u m P r e s s , New Y o r k ( 1 9 7 9 ) .  Y a r b o r o u g h , L . a n d V o g e l , J . L . , "A New S y s t e m f o r O b t a i n i n g V a p o r and L i q u i d S a m p l e s A n a l y s e s t o F a c i l i t a t e t h e S t u d y o f M u l t i c o m p o n e n t M i x t u r e s a t E l e v a t e d P r e s s u r e s , " Chem. E n g . P r o g r e s s Symp. S e r i e s , 6 3 ( 8 2 ) , 1 - 9 ( 1 9 6 7 ) . F r e d e u s l a n d , A c i . , M o l l e r u p , J . and C h r i s t i a n s e n , J . L . , "An Apparatus f o r A c c u r a t e D e t e r m i n a t i o n s of V a p o u r - L i q u i d E q u i l i b r i u m P r o p e r t i e s a n d Gas P . V . T . P r o p e r t i e s , " C r y o g e n i c s , 1 3 , 4 1 4 - 4 1 8 ( J u l y 1973). " E n g i n e e r i n g D a t a B o o k , " 9 t h E d . , Gas P r o c e s s o r s S u p p l i e r s A s s o c i a t i o n , T u l s a , Oklahoma, (1979). D i n , F. ( e d . ) , Buttlerworths,  "Thermodynamic F u n c t i o n s London ( 1 9 5 6 ) .  of G a s e s , " V . 3 ,  121-134,  " A . S . T . M . S t a n d a r d s " , P a r t 2 3 , "D-87-67 ( 1 9 7 2 ) . " D i s t i l l a t i o n of P e t r o l e u m P r o d u c t s , A m e r i c a n S o c i e t y f o r T e s t i n g and M a t e r i a l s , Philadelphia, P.A., (1981). Reamer, H . H . and S a g e , B . H . , Phase E q u i l i b r i a i n H y d r o c a r b o n Solvents. V o l u m e t r i c and Phase B e h a v i o u r of t h e n - D e c a n e - C 0 2 S y s t e m , " J . Ch. Eng. D a t a , 8 ( 4 ) , 508-513 ( O c t . 1963). J a c o b y , R . H . and Y a r b o r o u g h , L . , " P e t r o l e u m R e s e r v o i r and T h e i r U s e s , " I n d . a n d E n g . C h e m . , 59_ ( 1 0 ) , 4 9 - 6 2 ( O c t . 1 9 6 7 ) .  118  88.  H u t c h i n s o n , C . A . , J r . , and B r a u n , P . H . , "Phase R e l a t i o n s h i p s o f M i s c i b l e D i s p l a c e m e n t by C O 2 , " A . I . C h . E . J . , 7 ( 1 ) , 6 5 - 7 2 ( M a r c h 1961).  89.  Wilson, J.F., " M i s c i b l e - D i s p l a c e m e n t - F l o w B e h a v i o u r and P h a s e Relationships f o r a P a r t i a l l y Depleted R e s e r v o i r , " P e t . T r a n s . , A . I . M . E . , V. 2 1 9 , 223-228 ( 1 9 6 0 ) .  90.  Benham, A . L . , Dowden, W . E . and Kunzman, W . J . , " M i s c i b l e F l u i d Displcement - P r e d i c t i o n of M i s c i b i l i t y , " P e t . T r a n s . , A.I.M.E., V. 219, 217-223 (1960).  119  APPENDIX A - MULTIPLE CONTACT MISCIBILITY  Figure A represents plotted  as a p s u e d o  compounds  present  qualitative  ternary  process.  with  the  injected  M^.  This  mixture  8 8  '  is within  fluid.  will  displacing phases  of  fluid,  F*,  the  the  This  not  limiting tie  required  composition  Contact 0*.  the  will  For  -  the  mixture  B',  of  has  injected a mixture  M2  Miscibility  d i s p l a c i n g f l u i d do n o t  plait  fluid  will  point,  locate  A composition  M i s c i b i l i t y (F.C.M.)  of  residual o i l ,  injected displacing fluid  composition F'.  which  phase  since i t  forms the  properties  of  injected  the  r e s i d u a l o i l of  the  axis,  the  the  an i n j e c t e d  e n r i c h the  2 phases  residual o i l  hydrocarbons.  example,  (C2-Cg)  can form a  reservoir  it  a  contacted  injected,  If  occur.  provides  when f i r s t  the  o c c u r between  l i n e , w h i c h i s at  for  i s i n d i c a t e d by  have F i r s t  will  intermediate  further  (displacing fluid)  enrichment  through  is  Miscibility  hydrocarbons is  It  t h e many  and t h e r e f o r e  represents  r e s i d u a l o i l and i n j e c t e d  composition F w i l l  to  A'  loop  and r e s i d u a l o i l A 1 .  line.  Contact  composition F*,  2 phase  for  only  o i l , composition 0 * ,  displacing fluid  A new c o n t a c t  Gas D r i v e .  accounting  therefore  the M u l t i p l e  intermediate  enriched with  occur i f  The  the  move f u r t h e r  on a e q u i l i b r i u m t i e  A'.  the  c o m p o s i t i o n s B and B'  been f u r t h e r only  of  occur.  As more  composition A w i l l mobility.  9 0  avoid It  displacing fluid,  has been e n r i c h e d w i t h  higher  '  A reservoir  c o m p o s i t i o n s A and A '  displacing  8 9  or Condensing  system to  i n an o i l m i x t u r e .  picture  (M.C.M.)  the E n r i c h e d  has will lie  of composition  when  the  extended  minimum  to achieve  richer with  two  M.C.M.  than F "  an o i l  at  will  120  loo» cn  Figure  Al  Psuedo T e r n a r y Phase Diagram I l l u s t r a t i n g E n r i c h e d o r C o n d e n s i n g Gas D r i v e  (*) F o r CH  displacements intermediate  hydrocarbons a r e C  f o r COj d i s p l a c e m e n t s i n t e r m e d i a t e h y d r o c a r b o n s a r e C  2  t o C ,and 6  2  to  to  account f o r greater depth of e x t r a c t i o n .  Figure  A2  Psuedo T e r n a r y Phase Diagram I l l u s t r a t i n g V a p o r i s i n g o r H i g h P r e s s u r e Gas D r i v e  121  F i g u r e A2 r e p r e s e n t s The  intermediate  fraction for  recommended  as C2 t o C n ,  hydrocarbon  range  fluid in  s i n c e CO2 q u i t e  6 0  composition 0 * ,  two p h a s e  region  S i n c e A i s more m o b i l e  the  fluid  than A'  contact  can produce a m i x t u r e M2. occur.  The  can o n l y lie  on t h e e q u i v a l e n t  plait  point  axis,  will  will  right  of  injected  determine  0''  This will  this  displacing  M^.  Since Mi  will  occur.  through  the  composition 0 * ,  enriched.  of  and  will  then  Miscibility  o i l and e n r i c h e d d i s p l a c i n g f l u i d do limiting tie  to  (heavy) -  t h e minimum r e s e r v o i r  line,  l o c a t e d at  (intermediate)  be d i r e c t l y m i s c i b l e on f i r s t  not  the  hydrocarbon  o i l composition required  i s i n d i c a t e d as c o m p o s i t i o n 0 ' .  is  reservoir  enriched displacing f l u i d  has b e e n f u r t h e r  The  i n c r e a s e s are favourable  the 2 phase l o o p a r e a .  lowest  p r e s s u r e , P^,  intermediate  hydrocarbon  in  the  pressure)  intermediate a M.C.M.  the  c o m p o s i t i o n s B and B '  line. the  been  An o i l l y i n g t o  contact with  for the  the  displacing fluid.  Pressure reduces  reservoir tie  The  two p h a s e B,  of  a mixture  move a h e a d  Drive.  extracts  c o m p o s i t i o n s A and A '  it  The  when e x t e n d e d  miscibility.  the  the  A contact  f r e s h r e s e r v o i r o i l , of  displacing fluid,  occur i f  effectively  can produce  as more d i s p l a c i n g f l u i d i s i n j e c t e d . composition A w i l l  P r e s s u r e Gas  t h e CO2 m i s c i b l e p r o c e s s h a s  at m i s c i b i l i t y p r e s s u r e s .  and o i l , o f  the  the V a p o r i s i n g or High  This  process with  the m i s c i b l e p r o c e s s as  i s i l l u s t r a t e d i n Figure A3.  i m m i s c i b i l i t y between fraction occurs.  i m m i s c i b i l i t y between  hydrocarbons  for  no l o n g e r  At  the  the d i s p l a c i n g f l u i d  occurs.  It  At  displacing fluid  p r e s s u r e P2 ( a n  does n o t  and  increase  and  however  a reservoir o i l composition 0* u n t i l  it  the  produce  pressure  122  F  l  s  u  r  e  A 3  ^  &  &  y  %  M  ,  8  r  -  j  1  1  ™  u i s c x D i n t y P r e s s u r e (M.M.P.)  -  123  is  at  This  P3.  (M.M.P.).  p r e s s u r e i s known a s t h e  A further  molecular weight  Pressure.  increase i n pressure simply allows for  hydrocarbon mixtures  A temperature  "Minimum M i s c i b i l i t y  increase w i l l  Pressure"  higher  to achieve a M.C.M.  r a i s e the Minimum M i s c i b i l i t y  Three r e l a t i o n s h i p s are I n d i c a t e d  in Figure  A4.  The  28  relationship  o f H o l m and J o s e n d a l  correlations  o f Benham e t  al.1*0  i s g r a p h i c a l and,  ( w h i c h were  for  like  the  the hydrocarbon  miscible 63  process),  allows for  however,  found that  range of  oil.  o i l composition v a r i a t i o n s . their  Their  c o r r e l a t i o n was more a c c u r a t e f o r  greater The  (kPa)  = 8030 + 7 2 ( T - 3 0 8 )  absolute temperature  than 3 0 8 ° K and l e s s c o r r e l a t i o n of  reservoirs  Orr  M.M.P  The suitable  i n degrees K e l v i n f o r  and T a b e r 6 0  phase phenomena.  (kPa)  = 101.325  t h a n 2 8 3 ° K and l e s s authors note for  that  a p p l i e s to  low  Their  [(~2°  In  1 5 9  temperature the  correlation i s :  ) +  10.9122] +  degrees K e l v i n f o r  1750  (A2)  temperature  than 323°K. these e m p i r i c a l  r e l a t i o n s h i p s are  e s t i m a t i n g t h e p r e s s u r e s , and t h a t  w o u l d p r o v i d e a more a c c u r a t e M . M . P .  only  standard displacement  63 tests  temperatures  than 362°K.  where T i s the a b s o l u t e t e m p e r a t u r e greater  (Al)  and i s b a s e d on a c h i e v i n g a p r e s s u r e a b o v e  liquid-liquid-vapor  a wider  correlation i s : M.M.P.  where T i s the  Y e l l i g and M e t c a l f e ,  measurement.  125  APPENDIX B - ANALYSIS RESULTS  u U  Figure  Bl  l_> O  [_}  T y p i c a l Chromatogram o f an n-alkane Calibration Mixture  126  Attenuation=9 Injection size=l  Chromatogram of Separator O i l  the  Original  Chromatogram of Separator O i l  the  Stripped  127  I  Figure  B4  Attenuation=9  Chromatogram of o f Run 1  the E x t r a c t  Oil  Attenuation=9 Injection size=0.5  F i g u r e B5  Chromatogram of o f Run 3  the Extract  Oil  128  F i g u r e B6  Chromatogram o f o f Run 2  the R a f f i n a t e  Oil  Attenuation=9 I n j e c t i o n size=0.5  F i g u r e B7  Chromatogram of o f Run 4  the R a f f i n a t e  Oil  129  F i g u r e B8  F i g u r e B9  Chromatogram of o f Run 1  Chromatogram of o f Run 3  the R a f f i n a t e  the R a f f i n a t e  Oil  Oil  130  Chromatogram of o f Run 2  the R a f f i n a t e  Oil  Attenuation=9  Chromatogram of o f Run 4  the R a f f i n a t e  Oil  Table Bl  Analysis  Results  Sample: O r i g i n a l Crude ( I n t . S t d . Wt./Oil Wt.): I n j e c t i o n S i z e ( u l ) 0.5 Slice First First Slice Last Slice Total  Window ( j ) 1 2 3 4 5  6 7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Sample: O r i g i n a l Crude + I n t . S t d . ( I n t . S t d . W t . / O l l W t . ) : 0.141 I n j e c t i o n S i z e ( p i ) : 0.5  Area  Base  Data: Last  3.2R5 x 1 0 5.755 x 1 0 1.105 x 1 0  Base  3.468 x 1 0 5.829 x 1 0 1.000 x 1 0  5  7  9  a t - 6.316  10  a's  (Z)  4.41 6.11 9.49 8.47 7.22 6.07 4.70 4.44 4.68 4.60 3.99 3.45 3.46 2.80 2.61 4.52 3.84 3.22 2.83 2.20 2.03 1.75 2.99  Slice  9  Sample 5  7  9  8.356 x 1 0 6.813 x 1 0 7.369 x 1 0  First 5  7  9  +/-  at a'e -0.01 -0.01 0.00 0.05 0.04 0.06 0.05 0.05 0.05 0.04 0.04 0.03 0.07 0.05 0.04 0.02 0.00 0.02 0.07 0.04 0.04 0.03 -0.04  (Z)  Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Base  Data: Last  3.304 x 1 0 5.710 x 1 0 1.358 x 1 0  First Slice Last S l i c e Total  +/- 0.82Z  Area  5  7  9  S j  (Z)  3.95 5.76 8.71 7.75 6.54 5.50 4.32 4.04 4.26 9.14 5.58 7.02 6.92 2.46 2.18 3.61 2.79 2.13 1.71 1.26 1.22 1.1 1.92  Sample  3.462 x 1 0 5.309 x 1 0 8.849 x 1 0  - 5.432 x 10* +/a'  Base 5  7  9  1.345 x 1 0 6.293 x 1 0 6.553 x 10  5  7  <J  4.34Z  +/-a'e ( Z ) -0.01 -0.01 -0.01 -0.01 0.03 0.01 0.01 0.05 0,05 O.lt 0.13 0.2 0.21 0.15 0.2 0.33 0.36 0.36 0.42 0.38 0.31 0.28 0.7  Table  B. 1 c o n t ' d .  Sample: S t r i p p e d Crude ( I n t . S t d . W t . / O i l Wt. ): I n j e c t i o n S i z e ( u l ) : 0.5  Sample: S t r i p p e d Crude + I n t . S t d ( I n t . S t d . W t . / O l l W t . ) : 0.103 Injection Size (|il): 0.5  S l i c e Area First First Slice Last S l i c e Total  Base  3.373 x 1 0 4.915 x 1 0 8.327 x 1 0  Last  7  8  Window ( j )  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Slice  Base  3. 522 x 1 0 5. 272 x 1 0 8.945 x 1 0  5  a t - 6.529  1 2 3 4  Data:  10  9  +/-  Sample 5  3.775 x 1 0 6.997 x 1 0 7.393 x I 0  7  B  5  ;  9  First Slice Last Slice Total  -0.48Z  +/0 0.01 0.10 0.96 3.44 5.39 5.48 5.79 6.49 6.62 5.89 5.24 5.43 4.46 4.24 7.49 6.54 5.59 4.89 3.81 3.53 3.08 5.41  First  0.00 -0.01 -0.01 -0.02 0.00 0.02 0.02 0.07 0.01 0.02 0.01 0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.05 -0.08 -. I -0.34  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Base  Data: Last  3.452 x \0 2.183 x 1 0 6.241 x 1 0 at  Window ( j )  Area  b  7  8  - 6.559 x 10 (Z) 0.00 0.00 0.05 0.83 3.29 5.15 5.38 5.65 6.33 10.25 7.12 7.96 7.61 3.99 3.71 6.36 5.39 4.55 3.95 3.03 2.85 2.46 3.98  Base  Sample  3.565 x 1 0 3.161 x 1 0 7.514 10  3.984 x 1 0 3.970 x 1 0 7.247 x 1 0  5  7  8  x  +/  0.98Z  +/0.00 -0.01 -0.01 -0.01 0.00 0.00 0.02 0.03 0.03 0.01 0.00 -0.02 -0.03 -0.02 -0.01 -0.01 0.01 0.01 0.00 -0.03 -0.09 -0.18 -0.78  5  7  9  Table  B.1 c o n t ' d .  Sample: S t r i p p e d crude + I n t . Std (n-Cg) ( I n t . S t d . W t . / O l l w t . ) : 0.091 I n j e c t i o n S i z e ( u l ) : 0.5 Slice First First Slice Last Slice Total at Jlndow ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Area  Data:  Base  Last  3.373 x 1 0 1.915 x 1 0 8.327 x 1 0  5  7  B  3.522 x 1 0 5.272 x 1 0 8.945 x 1 0  5.777 x 1 0 a'Sj  (2)  0.00 11.18 0.22 1.01 3.54 5.58 5.71 5.99 6.75 6.84 6.05 5.23 5.24 4.13 3.73 6.05 4.71 3.67 3.07 2.36 2.25 2.10 4.48  Base  9  +/-  Sample 5  ;  8  3.689 x 1 0 6.742 x 1 0 6.640 x 10'  -0.542 +/-  a ' e j (2)  0.00 -0.01 -0.01 -0.02 0.00 0.02 0.02 0.07 0.01 0.02 0.01 o.or -0.01 -0.02 -0.02 -0.03 -0.03 -0.02 -0.04 -0.05 -0.09 -0.11 -0.38  5  7  J  Table  B.1 c o n t ' d .  Sample: Run 1 E x t r a c t O i l ( I n t . Std. Wt./Oil Wt.): I n j e c t i o n S i z e ( u l ) : 0.5 Slice First  Base  3.425 x I 0 2.010 x 1 0 4.843 x 1 0  First Slice Last Slice Total  Window ( j )  Data: Last  7  8  - 7.223 x 10* +/  a  ' J S  0.05 0.02 0.02 0.02 0.81 7.04 12.24 14.79 14.26 12.56 8.89 6.54 5.49 3.67 2.88 3.91 2.45 1.59 1.04 0.62 0.45 0.29 0.24  Slice  Base  3.566 x 1 0 2.278 x 1 0 5.266 x 1 0  5  ,  at  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Area  Sample: Run 3 E x t r a c t O i l ( I n t . S t d . Wt./Oll Wt.): Injection Size (pi): 0.5  *  Sample 5  7  8  First  1.500 x 1 0 2.188 x 1 0 ' 7. 728 x 1 0 6  9  First Slice Last S l i c e Total  0.3% +/-  e j  -0.01 -0.01 0.00 0.02 0.00 0.00 -0.03 -0.03 -0.03 -0.02 -0.01 0.00 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.03 -0.04 -0.04 -0.14  (2)  Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Base 5  7  8  - 7.208 x 10 a'Sj  Data: Last  3.425 x 1 0 2.010 x 1 0 4.843 x 1 0 at  a'  Area  (2)  0.11 0.05 0.16 2.24 8.29 13.02 12.41 11.52 10.90 9.27 6.60 4.88 4.19 2.89 2.35 3.38 2.34 1.69 1.23 0.80 0.63 0.44 0.48  Base  3.566 x 1 0 2. 278 x 1 0 5.266 x 1 0 +/-  Sample 5  7  8  4.250 x 1 0 2.318 x 1 0 7.714 x 1 0  -0.32 +/-  a'ej  -0.01 -0.01 0.00 0.02 0.00 0.00 -0.03 -0.03 -0.03 -0.02 -0.01 0.00 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.03 -0.04 -0.04 -0.14  (2)  6  7  9  Table  B.1  cont'd.  Sample: Run 2 E x t r a c t O i l ( I n t . S t d . Wt./Oil Wt.): I n j e c t i o n S i z e ( p i ) : 0.5 Slice First  Area  Base 5  7  B  ii t • 7. 102 x 10 Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  a'  S j  Data: Last  3. 425 x 1 0 2. 010 x 1 0 4. 843 x 1 0  First Slice La6t S l i c e Total  Sample: Run 4 E x t r a c t O i l ( I n t . S t d . Wt./Oll Wt.): I n j e c t i o n S i z e ( p i ) : 0.5  (Z)  0.02 0.01 0.03 0.97 5.23 9.70 10.03 10.20 10.54 9.88 7.68 6.17 5.66 4.11 3.47 5.17 3.61 2.52 1.73 1.07 0.31 0.58 0.71  3.566 2.278 5.266 9  Slice  Base X X X  10 10 10  Sample 5  7  8  8.644 2.368 7.607  X X X  First 10 10 10  s  7  9  First Slice Last S l i c e Total  +/- -0 .3Z +/-  ' J e  -0.01 -0.01 0.00 0.02 0.00 0.00 -0.03 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.03 -0.04 -0.04 -0.14  (X)  Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Base  Data: Last  3 .425 x 1 0 2 .010 x 1 0 ' 4 .843 x 1 0 5  8  at  a  Area  3. 566 2. 278 5. 266  - 7.902 +/a'  S j  (Z)  0.01 0.01 0.02 0. 11 2. 10 6.51 8.70 9.85 10.73 10.32 8.26 6.78 6.43 4.82 4. 16 6.39 4.56 3.24 2.28 1.46 1. 14 0.84 1.16  Base X X X  Sample  10 10 10  5  7  8  7.809 x 1 0 2.602 x 1 0 8.407 x 1 0  -0.27Z +/- • a '  e j  -0.01 -0.01 0.00 0.02 0.00 0.00 -0.03 -0.03 -0.03 -0.02 -0.01 0.00 0.01 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.04 -0.04 -0.13  (Z)  5  7  9  T a b l e B. 1 c o n t ' d .  Sample: Run 1 R a f f i n a t e O i l ( I n t . S t d . W t . / O l l Wt.): Injection Size ( u l ) : 1 Slice First First Slice Last Slice Total  Area  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  (J)  Data:  Base  Last  3.420 x 1 0 5.226 10 1.034 10''  Slice  Base  Sample 4.734 1.016 1.499  5  6.860 x 1.165 x  7  a : - 1.389 x 1 0 Window  Sample: Run 1 R a f f i n a t e (Int. S t d . Wt./Oil Wt.): Injection Size ( u l ) : 1  a'Sj  1 0  (Z)  0.00 0.00 0.03 0.68 2.69 4.58 4.90 5.37 6.13 6.59 5.70 5.27 5.37 4.54 4.37 7.89 7.02 6. 14 5.40 4.16 3.89 3.41 5.76  First  io1 0 in 10 c  First Slice Last S l i c e Total  +/- -0.477. +/-  a a'ej  -0.01 -0.01 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.04 0.03 0.02 0.01 0.01 0.02 0.02 0.00 -0.03 -0.06 -0.09 -0.13 -0.61  (Z)  Window 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  (J)  O i l+ Int. 0.104  Area  Data:  Base  Last  3.420 x 10; 5.226 x 10' 1.034 x 10' .409 a'sj  Std.  Base  Sample  3.570 x 10; 4.603 x 1 0 li 6.860 x 10' 10 1. 165 x I O 1.519 x 10 3  5  x l O " +/- -0.47Z 1  (Z)  0.00 0.00 0.04 0.69 2.51 4.13 4.33 4.73 5.40 9.38 6.50 7.61 7.42 3.95 3.77 6.80 6.03 5.31 4.75 3.76 3.56 3.21 6.00  +/-  a'ej (Z) -0.01 -0.01 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.04 0.03 0.02 0.01 0.01 0.02 0.01 0.00 -0.03 -0.06 -0.09 - 0 . 13 -0.6  137  in  CD - H  O  O  O  V—• CO CO CO o o r-i i n  -cr m  <U CO  1  ON  —  0  C iT, r-i  vC —  m  I  g  I  I  S  I  O 1  X X X r*m  5  +  vO  °  S o c o o § § 8 § g g § § g ° o o o o o o o o o o o o o o o d o d o d d d d d d d d  1  CO  1  N  ^  O C C  O O in vD \£)  m  o•  tr.  1  —  co  t—I 00  —  cc  u-  _J  —'  o  ~  CM C\J  CNJ  c c c  4J  X X X  r-. O - 3 <• CC vD u-(  OJ  csj  — -I irt rs j i C C O  CO  *iT  —  2.  S a m p l e : Run (Int. Std. W Injection SI  •c  5.579 8.416 1.354 in  T\  COO x  O N  x o  x »n  sD  m  co  n  vc «  —  First S l i c e Last Slice Total  ..  Base  4J 3  CC —' —|  First  i ? "  cn  O  X X X  £  1  GJ  S l i c e A nca D a t a  Oil  K  o o o o c o o o o o o o ' d o o d o ' o c ' o d o o  1  + 1  1  + o  at - 1.338 x 10  OJ  !  • M  '—s "—' m Q  (j)  ui  Window  E  cc  Table B. 1 con  —<  o  1  1  —t  'J~l CD  t  -1  —  t-  o o o o  cs, „  s, -=> ^ ^  ^ ^  ^  ^  ^  ^  CM  I  T a b l e B.1 c o n t ' d .  Sample: Run 3 R a f f i n a t e O i l (Int. Std. Wt./Oil Wt.): Injection Size ( u l ) : 1 S l i c e Area First First Slice Last Slice Total at Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Base  3.420 x 1 0 5.226 x 1 0 1.034 x 1 0  S j  Slice  Base  3.570 x 1 0 6.860 x 1 0 1.165 x I 0  7  9  - 1.400 x 1 0  a'  Data: Last  s  Sample: Run 3 R a f f i n a t e O i l + I n t . ( I n t . S t d . W t . / O l l W t . ) : 0.096 Injection Size ( u l ) : 1  1 0  +/  Sample 5  7  9  4.486 x 10J> 1.193 x 1 0 1.510 x 1 0 8  1 0  First Slice Last S l i c e Total  0.47Z  (Z)  0.00 0.01 0.04 0.68 2.79 4.53 4.98 5.38 6.09 6.51 5.59 5.12 5.19 4.38 4.20 7.59 6.75 5.90 5.29 4.17 4.00 3.65 7.05  First  -0.01 -0.01 -0.01 0.00 0.01 0.02 , 0.03 0.04 0.05 0.05 0.04 0.03 0.02 0.01 0.01 0.02 0.02 0.00 -0.03 -0.06 -0.09 -0.13 -0.6  Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Base  3.420 x 1 0 5.226 x 1 0 1.034 x 1 0 at  (X)  Area  5  9  8 j  (X)  0.00 0.01 0.05 ' 0.78 2.85 4.40 4.72 5.05 5.71 9.47 6.56 7.46 7.17 3.89 3.70 6.59 5.77 5.02 4.44 3.51 3.37 3.09 6.25  Base  3.570 x 1 0 6.860 x 1 0 1.165 x 1 0  - 1.347 +/a'  Data:  Last  7  Std.  Sample 5  7  9  4.234 x 1 0 1.133 x 1 0 1.457 x 1 0  5  8  1 0  -0 49Z  +/-  a'  e j  -0.01 -0.01 -0.01 0.00 0.01 0.02 0.04 0.04 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.02 0.02 0.00 -0.03 -0.06 -0.1 -0.13 -0.62  (Z)  00  Table  B.1  cont'd.  Sample: Run 4 R a f f l n a t e ( I n t . S t d . Wt. / O i l Wt. ) : Injection Size (ul) : 1 Slice First  it Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Base  S j  Slice  La s t Ba s e 5  7  9  5.579 X 1 0 8.416 X 1 0 1.354 X I 0  - 1. 365 x 10 10 a'  Sample: Run 4 R a f f i n a t e ( I n t . S t d . Wt. / O i l Wt. ): Injection Size (ul) : 1  -  Area Data  3.570 x 1 0 6.860 x 1 0 1.165 x 1 0  First Slice Last S l i c e Total  Oil  (Z)  0.00 0.02 0.03 0.54 2.24 3.69 4.21 4.69 5.50 6.04 5.33 4.97 5.10 4.38 4.29 7.91 7.22 6.48 5.87 4.70 4.51 4.15 8.03  + /  .  Sample 4.504 x 1 0 1.411 x 1 0 1.491 x 1 0  5  7  9  First 5  8  1 0  First Slice Last S l i c e Total  -0.7Z  +/- •  at a'e  -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 o.oq 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.03 -0.06 -0.11 -0.55  (Z)  Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  Oil + Int. 0.085  Area Data  Base  Last  3.570 x 1 0 6.860 x 1 0 1. 165 x 1 0  9  1 0  (Z)  0.02 0.01 0.04 0.57 2. 13 3.37 3.79 4.21 4.94 8.49 6.06 7.01 6.94 3.95 3.85 7.13 6.50 5.84 5.32 4.24 4.10 3.81 7.57  Base  5.579 x 1 0 8.416 x 1 0 1.354 x 1 0  5  7  - 1.390 x 1 0 a'Sj  Std.  Sample 5  7  9  4.456 x 1.403 x 1.516 x  10 10 10  +/- -0.687 (Z)  +/-0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.03 -0.06 -0.11 -0.54  5  8  1 0  140  APPENDIX C - SUMMARY OF CALCULATIONS  C.l  Calculating the Eluted F r a c t i o n The  for  window  analysis  data  (given  the c a l c u l a t i o n of the e l u t e d  (e) i n Appendix  fraction,  B ) c a n be e a s i l y  used  b a s e d on t h e m e t h o d s  o u t l i n e d i n S e c t i o n 3 . 2 , and F i g u r e 3 . 2 . For  the chromatogram  without  a  For  t h e chromatogram  with  the i n t e r n a l  9 (E a ' s . / l O O ) 3 1  (C.l)  13 (E 10  a's./lOO)  (C.2)  23 (E 14  a's./lOO)  J  the i n t e r n a l  (C.4)  13 b ' = (E a's./lOO) J 2 10  (C.5)  23 b ' = (E 3 14  (C.6)  a's./lOO) J  a' is  (C3)  standard:  9 - (E a ' s . / l O O )  b'  standard:  D  2  x  + a^  V + b^  K  X  ;  (C7)  141  The  eluted  fraction,  e  With fraction  e,  is  therefore:  Weight of I n t e r n a l Standard Weight of Sample  =  t h e one r u n u s i n g t h e n - C 6 H i i » i n t e r n a l  1 a! is  x  standard  the  C  ,  8  )  eluted  i s c a l c u l a t e d by:  .Weight  of I n t e r n a l  Weight  6  Standard.  of Sample  a's  , '  X  K  100 -  C.2  (  2  .  23 ' Z a's. J 3  ,  .  Q  ^ ' *  }  Calulation of Phase Volumes The  c a l c u l a t i o n of the phase volumes  e s t i m a t i o n of balance  of  t h e CO2 c o n t e n t .  the o i l .  If  i s the f i r s t  step i n the  The c a l c u l a t i o n i s b a s e d on a mass  two p h a s e s e x i s t  the f o l l o w i n g  two  equations  may be w r i t t e n :  C£  ( o i l ) x VE  +  C  R ( Q i l )  vE  C represents weight. total  x VR = W T  R,  = C  T ( Q i l )  x VT  + vR = vT  the measured c o n c e n t r a t i o n s ,  The s u b s c r i p t s E ,  T ( o i l )  and T r e f e r  (CIO) (C.ll)  V the volumes  a n d WT t h e  to the e x t r a c t  raffinate  and  values. However,  t h e r e was a t h i r d p h a s e w h i c h was n o t s a m p l e d and w h i c h  was c o n s i d e r e d t o be made up o f o n l y fraction. fraction,  Therefore (i.e. eE(  the n o n - e l u t e d  t h e mass b a l a n c e was p e r f o r m e d  o i l  )  f  e ( R  o i l  )  and e T (  o i l  )).  o r 0^0+ o i l u s i n g the e l u t e d o i l  Equation  CIO,  142  therefore  C  E(oil)  x  becomes:  e  E(oil)  x  V  E  +  C  R(oil)  x  e  R(oil)  x  V  R  =  C  T(oil)  x  e  T(oil)  x  V  T  (C.12)  The v a l u e o f e ] r ( o i l )  w a s  by s o l v i n g e q u a t i o n ( C . l l )  V  ( ( 1  -  ( C  R  1>  a n  ^ t h e phase volumes were  and C.12)  simultaneously.  calculated  Therefore:  -  T(oil)  X  e  T(oil)  / C  E(oil)  ) ) / ( 1  -  ( C  R(oil)  X  e  R(oil)  / C  E(oil)  ) ) )  X  V  T  (C.13)  and  VE  C.3  = VT - VR  (C.14)  Calculation of Phase Contents and Total CO2 Weight  OT  E  W T  (i)  R  w h e r e i w o u l d be CO2 o r o i l .  =  C  (i) =  C  E  (  i  )  R(i)  x VE  (C.15)  R  <C'16>  X  V  143  The s o l i d phase w e i g h t WTg» i s c a l c u l a t e d by:  =  ^TCoil) " R(oil) ~ ^ECoil) m  (  C  ,  1  7  The t o t a l CO2 weight i s c a l c u l a t e d by:  m  TiC0 ) 2  = ^ECCOo)  +  ™KCQ ) 2  ( C  '  1 8 )  )  144  APPENDIX D - Sources of Equipment and Chemicals Table D . l  Item  Sources of Equipment  and C h e m i c a l s  Manufacturer  Part  No.  EQUILIBRIUM CELL Autoclave, Magnetic C o u p l i n g and Heating Mantle  Autoclave Engineers I n c . , Pensylvania, U.S.A.  Erie,  L29-11642-1  Autoclave Engineers I n c . , Pensylvania, U.S.A.  Erie,  SC4081  Autoclave Engineers I n c . , Pensylvania, U.S.A.  Erie,  SC4882  6 ( F i g . 4 . 1 0 and 4.4)  Autoclave Engineers I n c . , Pensylvania, U.S.A.  Erie,  SC4083  [1 & 2] (Fig. 4.4)  Autoclave Engineers I n c . , Pensylvania, U.S.A.  Erie,  SC4075  2  Whitey  Valves 1.3.4 3.4.5 5  ( F i g . 4.10) (Fig. 4.4)  (Fig.  4.10)  ( F i g . 4.10)  Temperature  C o . , Cleveland, Ohio,  U.S.A.  SS-6LRS6  Controllers  Autoclave  B a r b e r - C o l m a n Co. I l l i n o i s , U.S.A.  Rockford,  523B  Heating  Barber-Colman Co. I l l i n o i s , U.S.A.  Rockford,  120  Air  Mantle  Bath  Pressure Bourdon Guage  L . F . E . , Process C o n t r o l l Div. , Wathams, M a s s . , U . S . A .  523  Autoclave Engineers I n c . , Pensylvania, U.S.A.  P487  Indicators Pressure  Pressure Transducer  Data Instrument Ma., U.S.A.  Co.,  Erie,  Lexington  AB-5000  psig  Accessories S t i r r e r Speed Controller  Autoclave Engineers I n c . , Pensylvania, U.S.A.  Erie,  SCL-PO-12-1/4  145  Table  D.1  contd....  Item Stirrer  Motor  Manufacturer Relience E l e c t r i c Co., Ohio, U.S.A.  Cleveland,  Compressor  American Instrument C o . , Spring, Maryland, U.S.A.  Air  Eastern Industries, Conneticut, U.S.A.  Powered Motor  Insulation  Fleck Bros. Canada  C a r t r i d g e Heaters  Canadian Chromalox O n t a r i o , Canada  Part  Silver  Hamden,  B-3620-11  J46-13416  A46  L t d . , Vancouver,  Co.,  No.  B.C.  Toronto,  AW 2 . 5 0  C-205L  EXPERIMENTAL ACCESSORIES Wet T e s t Meter  Gas  Balance  A l e x a n d e r W r i g h t and C o . L t d . , London, U.K. Sartorius-Werke,  (Westminster)  Gottengen,  G.M.B.H.  M-75-INS  2462  ANALYTICAL EQUIPMENT Chromatograph  Perkin-Elmer, U.S.A.  Norwalk,  Conneticut  Sigma 3  Data  Perkin-Elmer, U.S.A.  Norwalk,  Conneticut  Sigma  Console  Columns UCW-98 l i q u i d Phase Column  Suppelco, U.S.A.  OV-101 L i q u i d Phase Column  Chromatographic S p e c i a l t i e s , B r o c k v i l l e , O n t a r i o , Canada  Bellenfonte,  Pensylvania  CHEMICALS CO2 ( I n d u s t r i a l grade)  Medigas P a c i f i c L t d . , B.C., Canada  Decane  Fisher S c i e n t i f i c , Canada  (98% m i n )  Vancouver  Vancouver,  B.C.,  2045  10  146  Table  D.1  contd  Item  Separator  Oil  Manufacturer  No.  Imperial O i l L t d . , Calgary,  Chromatographic  Part  Canada  Chemicals & Gases:  N 2 (zero grade) H2 ( z e r o g r a d e ) A i r (zero grade)  Medigas P a c i f i c L t d . V a n c o u v e r , B . C . , Canada  N-alkane Calibration Mixture  Hewlett-Packard, Avondale, Pensylvania, U.S.A.  5080-8716  I n t e r n a l Standards Hewlett-Packard, Avondale, (n-CiitH3o •* Pensylvania, U.S.A. n-Ci7H36)  5080-8723  147  APPENDIX  Programme  E  -  SOFTWARE  TSLICE:  Creates t i m e - s l i c e d areas during the c h r o m a t o g r a m , a n d t r a n s f e r s t i m e - s l i c e a r e a s o n t o magnet tape.  'BL TSLICE 1 OIH K»<2>.F*<2>.P*<13>.R<2S4>»T<254>,V<18> 2 LET F»=*PP" 3 OPEN F * 4 PRINT ON<F*>-METHOD**; 5 INPUT H 6 LET D=l  7  LET F3=«  B LET R=l 9 LET J=l 18 PRINT ON<F*>"Bf*SE RUN NAME*; 11 INPUT P* 15 IF J=2 G0TO26 16 PRINT ON<F»>*EHO TIHE<HIM>-; 17 INPUT L2 28 PRINT OM<F*>-SLICE MIDTH HIH-*;INT<L2*6»/233>; "SECS"; 21 INPUT W2 24  26 38 58 51 52 188 182 184 186 188 158 151 152 168 165 168 178 172 188 181 183 184 198 191 193 194 28* 282 284 286 288  LET  Ll=«  LET V<R>=R GOTO 190 LET V<R>-W PRINT ON<F*>-RflW DHTB MOflC-*; INPUT P* SETUP P».V<R>.F3.D.H T S L I C E P*,D.M2,L1,L2 RUN P«,V<R> F I L E P*,V<R>»D»F3.F1 SETUP P* READ Z9,S,Z1.Z2.S1,S2»H DfUfl 8 . 8 . 8 . 8 . 8 . 8 . 8 RESTORE LET S = S M GSLICE F1,S.R<S>.T<S> I F n<S>>8 GOTO 168 FID Fl.I.09.0.0»P*»Hl»Hl.lt2,i>4.V.y2.0»0 PKREP P* PUT Fl.H.E IF E=8 G0T019« PRINT OH<F*>-PUT ERR-*iBi••KUIH » ; R ; • • F I L E » - * ; F t GOTO 9999 ERRSE F l . E I F E=8 G0T02M PRINT OH<F»>-ER**S€ ER«-*:E:"/I*UM»--;R;"/TILE»--;FI GOT09999 LET S=S-1 LET Z1»R<1> LET Z2««<S> FOR X=l TO S L E T Z9-Z9+WX)  148  218  NEXT X  259 254 256 258 260 262 263 480 482 494 486 498 419 412 414 429 422 424 426 428 458 451 452  PRINT O N < F » > » • * * * * * • ;p* ;••**—•, -RUH*--;R PRINT 0N<F*>*tOF SLICES-"JS»*yIDTH<S£C>--;W2.-fcHU Ilnfc<n»H>PRINT 0N<F»>-R»»€»*5 1ST--;Z1; */'LST-*;22; ••TOTRL-*;Z9 PRINT ON<F«>».* TRP€ I.D.=-;H PRINT OH<F»>*» « I F R>1 GOTO 4 M L E T H2»M I F J=2 G0T043* PRINT OH<F»>,*HCXT RUH <V'N>-; INPUT K» IF K»»-N- G0T09»»9 FOR H7=l TO 5 PRINT ON<F»> NEXT H7 LET R=R*1 PRINT 0N<F*>,*8«S£ ROH> <V'N>»; INPUT K» IF K*-*N* G0T05* LET J=2 G0T019 FOR H7=l TO 5 PRINT ON(F*> NEXT H7  455 456 458 459 462 464 465 466 470  PRINT 0N<F*>*1ST BflSE THPE#~*;H2»"LST B«S£ T H P € » - » ; N PRINT ON<F»>,»*» OF R M OftTft ROMS""*IH—H2—1 PRINT 0N<F*>"C0MTIHO6 <V/H)*; INPUT K» IF K*='N* GOTO 9999" LET H2=*W LET R=l L E T J=l GOTO 408  9999 ENO OK  149  Programme  A-D-2887:  R e t r i e v e s s l i c e - a r e a s from magnetic tape and g e n e r a t e s a d i s t i l l a t i o n r e p o r t , u s i n g t h e s t o r e d s l i c e - a r e a s of a base chromatogram t o s i m u l a t e t h e base l i n e behaviour of t h e sample chromatogram.  /BL fl-D-288? 1 DIM V<24>.R<58>.B<58>,A<254>,T<254>,T*<2>.6*<2>.B*<5> 2 DIM HS<8>.A*<8>,K*<2>.DS<2>,F*<2>.RS<2>,P*<ie>,C*<18> 28 LET F*=*PP" 25  OPEN F*  48  PRINT ON<F*>"IMPUT CURR CAL FILE*.METHOD*";  45  INPUT F1,M  55 LET P*="CBL RUM" 68 PKREP P*,F1,H 75 PKPRINT 0N<F»>P*,1 88  PRINT OH<F*>  85  PRINT ON<F»>"INOEX","BP-DE6 F","RET TIME*  86  LET B<8)=-128  87  LET R(8)=.81  89  PRINT 0N<F*>-e-»B<8>,R<8>."Cl"  98  FOR J=l TO 29  95 PKNEXT P*,I,A1,A2.A2,A2,B(J>,R2,A* 188  ON I GOTO 159,128.181,95  181  LET R<J)=-9999  182  GOTO 132  128  LET R<J>=A1  132  LET B<J>=B<J>*18«M  151  PRINT ON(F»>J,B<J>,R<J>.RS  152  NEXT J  159  PRINT ON<F«>"MUST HAUE A CAL PT AT DATA EMO TIME"  168  PRINT ON<F*)"MOO CAL LIST-V'N-EXIT««,«,«"  167  PRINT ON(F*)"IMPUT INDEX*,BP,RET TIME";  178 INPUT X.B.R 173  IF R=860T0183  175 LET R<X)=R 178 LET B<X>=6 188  PRINT OH<F*>X,B,R  183 G0T0167 185 187  PRINT ON(F*>"NEW CAL LIST-VH"; INPUT K«  198 IF K*«"N"60T0218 195 PRINT OH<FS>,P* 197 PRINT OH<F*>"INDEX*-."BP-DE6 F","RET  TIME"  288 FOR X=*T0S7 283  IF R(X)=8G0TO218  285 PRINT OM<F*>X,B<X>,R<X> 287 NEXT X 218 PKREP PS 211  ERASE F l . E  212  IF EOBTHEH PRIMT OM<F*>., "CALP-FILE  213  IF E=8 G0TD216  214  G0T09999  R=l  216  LET  217  LET D*--P"  213  LET R*="P"  ERASE ER-**»E; "FILE'JFl  150  "19 ' ET T*=»*H" 228 PRINT O H < F * > " B - R U » T R P € » » * ; 221 INPUT F4 233 PRINT ON<F*>"R-HXJ*TI* T B P € » » ; 234 INPUT F l 237 PRINT ON<F»>"REP TYPE 1-IHTEGU 2-flLL SLICE"; 238 INPUT T8 239 IF T8=2 GOT023* 248 PRINT OM<F*>"REP INTERVAL"; 241 INPUT K 245 PRINT ON<F»>"W»T»» STHWT,END DELTA*; 246 INPUT 01.02 247 PRINT 0N<F9>"EMD PT INHIBIT TIME*; 248 INPUT B8 258 LET F3=8 251 LET D=l 252 LET LI=8 272 SETUP C*.V<R>»F3,D,H 285 CLOSE F* 286 GET F 4 . F 5 . E 287 IF E=8 G0T0291 288 OPEN F* 289 PRINT ON<F*>,."B-SLICE GET ER1*--;E;"TRPE I . 0 . » * ; F 4 298 G0TO9999 291 G0SU8 3M 292 ERASE F 3 , E 293 IF E=0 GOT0328 294 OPEN F* 295 PRINT O N < F » ) . , " B - S L I C E ERASE E R R — - ; E ; " F I L E - " ; F 3 296 G0T09999 388 RE RO Z9,S.Z1.Z2.S1.S2,H,I>9 381 OATH 8 . 8 , 8 . 8 . 8 . 8 . 8 . 8 382 RESTORE  383  LET S=S*1  384 305 307 389 310 311 312 313 314 315 316  GSLICE F5,S.A<S>.T<S> IF R<S>>0 GOTO303 LET S=S-1 LET L2=T<S> LET «2=L2*60^S LET Z l = f » < l > LET 22=«<S> FOR X=l TO S LET 29=Z9-HMX> NEXT X LET X=0  317 318 319 328 321 322 323 324 326 327 328  PKREP C » OPEN F » PRINT O N < F » > " * * *' PRINT OH<F«>*BASe END T I H E - - ; L 2 ; " H I A * PRIHT ON<F*>*BASE SLICE VIDTH--;V21"SECS* PRINT 0M<F«>*«OF SLICES—*;S. "TOTAL BASE A J » * A - * ; Z 9 FID F5. 1 , 0 9 , 0 . 0 , C » . M l . H I .R2.D4. V. M2.0.0 CLOSE F* RETURN CLOSE F » SETUP C »  33B 338 339 340 341  LET V ( R > - « GET F 1 . F 2 . E IF E=0 G0T0343 OPEM F* PRINT O M < F « > . . " R D - S L I C E GET E R » - » ; E ; " T H P € t - ^ ; F l  329  LET R=R+1  151  342 G0T09999 343 READ A 9 , S , A l . A 2 . U 9 . U l , U 2 . H 344 DATA 8,8.8.8,8.8,8,0 345 RESTORE 346 LET S=S-H 347 L E T Z=A<S> 348 GSLICE F 2 . S . f » < S > » T < S ) 349 IF A(S>>8 GOT0373 358 L E T S=S-I 359 L E T L2=T<S> 368 L E T M2=L2**4VS 362 OPEM F * 363 PRIMT 0N<F«>-RA¥-O END TIME-*;L2; *MIM" 364 PRIMT ON<F*>*RA»*-D SLICE MIDTM--;M2;"SECS" 365 PRIMT OM<F»>-# OF SLICES-";S."TOTBL RAW A R E A - » ; i » 366 PRIMT OM<F»"*» — 367 OPEM F * 369 GOTO 386 375 I F S>1 G0T0377 376 L E T U1=A<1) 377 L E T U2-M<S> 378 L E T 09-O9-HI2 379 L E T A<S)=U2-Z 388 I F S>1 GOT0382 381 L E T H1=H<1) 382 L E T A2=A<S> 383 L E T R9-A9*«*2 385 GOTO 346 386 FID F2,I.09,O.O.P*,H1,H1,H2,D4,V,II2,0,0 387 PKREP P* 388 ERASE F 2 . E 389 I F E=8 GOT0391 398 OPEM F* 391 PRIMT OM<FS>*RAW DATA ERASE E R R — * ; E . * F I L £ » » * ; F 2 392 G0T09999 399 IF J=l G0T0883 435 PRIMT OM<F»)-B-I.IME USED-";C».-TAPE»--;F4 436 PRIMT ON<F»>*RUM-;V<R>:-'*;P*.-FILE*;F2.MI;»:*;HI 437 PRIMT OM<F»>. . »M2; " / ' " ; D 4 ; V 438 PRIMT 0M<F»>TAB<5>:***,"B.P.<DE6 F>*»"TIHE <MIM>* 439 I F T802GOT04S8 i43 LET P=8 441 LET H-3 442 L E T X=X*1 443 L E T P=A<X>/A9*>108** 444 L E T T2=T<X> 445 G0T0688 446 PRIMT 0M<F*>TAtK3>;P,B2.T2 447 IF X<S GOT0442 449 GOTO 883 458 FOR X=2 TO S 455 L E T U=<H<X)-A<X-l))/ft9*l»8 457 I F IKD1 G0T044V7 468 LET S1=X 461 L E T U1=S1 465 G0T0498 467 MEXT X 475 PRIMT 0M<F*)'MO START OF DATA FOUM» FOR";V(R> 488 G0T0883 498 L E T Cl=8 491 L E T C5=« 565 FOR X - S l TO S  152  578 LET C1=C1-H*<X> 571 IF T<XKB8G0T0613 575 LET U=ftBS<<A<X>-ft<X-l>>/R9>>19»> 588 IF U>D2GOT06«9 585 LET D9-©9*» 598 LET CS=C3-HKX> 595 IF D9-360T062S 689 G0T0613 685 LET C5=-« 686 LET D9-8 615 NEXT X 629 LET S2-S 621 LET V2=S2 622 G0T0633 625 LET S 2 - X - 5 626 LET U2=S2 638 LET C1=C1-C5 635 LET C 3 = « 648 LET ¥ = . 3 645 FOR X=S1 TO S2 658 LET T3=T<X> 655 LET Tl=TcX-l> 668 LET P1=C3/C1*1M 665 LET P2=<C3-M»<X>>^C1*190 678 IF P2<y GOT07B9 S75 LET T 2 = < T 3 - T l ) v ( P 2 H » l > * < M - P l > + T l 688 FOR J=0TO37 685 IF R<J+1XT2 GOT0739 698 LET B 2 » < B < J * l > - 9 < J ) > > ' < R < J + l > - R < J > > * < T 2 - R < J > > + e < J > 695 LET U6=»B2-IMT<B2> 788 LET B2=?MT<92> 785 IF U6>.5 THEM LET B2-92*! 786 LET T2=T2*199 787 LET U6=T2-INT<T2> 788 LET T2=INT<T2) 789 IF U6>.5THEM LET T2»T2+1 718 LET T2=T2'19* 713 ON H G O T 0 7 9 6 . 8 9 9 , 4 4 « 714 IF U=.5G0T076* 715 IF W=99.5GOT0799 728 PRINT 0N<F*>TRB<3>;U,B2,T2 725 G0T0733 738 NEXT J 735 LET P1=W 748 LET V=U+n 745 IF U=180THEM LET U - 9 9 . 3 758 LET T1=T2 755 G0T067* 768 PRINT 0 N < F * > T M B < 5 > ; ' I B f » - . B 2 » T 2 765 LET U=K 778 LET PI=.5 775 G0T0739 788 LET C3=C3-H*<X> 785 NEXT X 798 PRINT OM<F»>TMf><S> J " E P " # B 2 » T2 791 PRINT OH<F*> 793 LET H=»l 794 LET T2=T<S1-1> 795 G0T0699 796 LET SI=82 797 LET H=2 798 LET T2=T<S2> 799 GOT069*  153  889 LET 52=82 881 PRINT OH<F*>*STR»TxEM» OF D « T « — V I ; V 2 . " M E T RREB—-JCl 882 PRIMT 0M<F*>"5TRRT/EM» D€LT«*;D1 '.'/ \D2 883 PRINT O M < F » .•BMSE". * Rftt»' , * CORRECTED HREHS* 884 PRINT 0 N < F » > - F I R S T - . Z 1 » U 1 . « 1 885 PRIMT 0 N ( F » ) * L R S T - , Z 2 , U 2 . R 2 886 PRIMT O M < F * > " T O T 8 L - » Z 9 . U 9 » B 9 B87 FOR H7-1 TO 18 888 PRINT O H ( F » > 889 NEXT H7 861 PRINT OM<F»>-MEXT RUM V M " ; 862 INPUT K» 863 IF K*=*M- GOT09999 864 PRINT OM<F«>-BMSC CHECH V N * ; 865 INPUT K* 866 IF K*=»"N- GOTO 881 867 LET J=l 874 PRINT ON<F*>*8MSE CHECK T R P E » ~ ; 875 INPUT F l 877 L E T R=I 879 GOTO 238 881 IF J=l G0T0883 882 IF R=18 GOTO 888 883 GOT0898 885 LET F4-F1 888 LET R » l 898 LET J=8 892 G0T0233 m  9999 EMO OK  154  BC-AREA:  Programme  Retrieves and  generates  windows,using run  before  raw  area  area  fractions  an a v e r a g e d  and a f t e r  data  of  slice-areas  from m a g n e t i c  for specified  base a r e a , f r o m  base  chromatograms  t h e sample chromatograms,to  t h e sample  tape,  chromatogram  chromatogram.  •BL B C - f l R E A 1 DIM R < 3 8 ) , B < 3 e > . C < 3 8 > , T < 2 S 4 > , R ( 2 5 4 > . A « < 1 3 > 2 DIM B*<13>.C»<13>.H*<13>.F*<2> 3 Dlfl P*<8> 28 LET F*="PP" 25 OPEN F * 48 PRIHT OH<F*>"IHPUT CUR* CHL F I L E » . H E T H 8 t > * > ; 41 IHPUT Fl.H 55 LET P*="CAL FILE* 68 PKREP P » . F 1 , H 75 PKPRINT OM<F»>P*.l 88 PRIHT OH<F»> 85 PRIHT OH<F*>"IHOEX".*BP DE6 F","RET TIHE* 66 LET B<8> — 1 2 8 87 LET R(8>'.81 88 LET ft*»"C!" 89 PRIHT O H ( F * ) " » * , B ( e ) . R < e > . R * 98 FOR J=1T029 95 PKHEXT P » , I , B 1 . n 2 . A 2 , A 2 , B ( J > , A 2 , A * 188 OH I GOTO 1 3 9 , 1 2 « . 1 8 1 , 9 5 181 LET R(J)=-9999 182 G0T0132 128 LET R < J > « « 1 132 LET B < J ) = 8 < J ) » 1 8 « « 133 PRIHT ON<F*>J,B<J>,R<J>,A* 135 HEXT J 139 LET R=J 148 PRIHT OH<F»>*WOO CAL L I S T - O O EXIT ENTER • . « > " 141 PRIHT 0H<F*>"IHOEX*,RET TIHE"; 142 IHPUT J.R 143 IF R=« GOTO 146 144 LET R<J>=* 145 G0T0141 146 FOR J=l TO 5 147 PRIHT OH<F»> 148 NEXT J 149 PRINT O H < F « ) " I N O E X » - » - B P DE6 F" » " R E T T I « E < H I M > " 158 FOR X=l TO B 151 PRIHT OH<FS>X,B<X>,R<X> 152 HEXT X 153 LET H=X-2 154 PRINT OH<F»>"OK V^H" 155 INPUT A » 156 IF H*-"N"GOTO 83 159 PKREP P* 168 ERASE F 1 , E 161 IF E=8 GOTO 216 162 PRINT ON<F*>."CALIB ERASE E R - * ; E . " F I L E » - - ; F 1 163 GOTO 999*) 216 LET X « 8 217 LET X=X*1 218 LET R=<R<X>-M*<X*1>>'2  c o r r e c t the  155  219 229 221 222 223 224 226 227 228 229 258 251 253 255 256 268 261 265 266 267 268 269 278 271 288 281 282 283 298 291 292 293 294 295 296 297 298 388 381 318 311 312 313 314 328 321 322 323 324 325 326 327 328 358 499 481 482 495 486  LET R<X>-R IF X<<M-3> G0TO217 LET R=*<M> LET R<X+1>-R LET M-M-2 LET R<9>»9 PRIMT 0 H < F » > M M O E X 9 ~ . » S T R R T - , - E M t > FOR X=l TO M PRIMT O N < F * > X » R < X - l > . R < X > MEXT X PRIMT 0 M ( F » ) - 1 S T , L S T BASE TRPE*"*S* INPUT H1,H2 LET H3-H1 LET F1=M1 G0SU8 499 FID F 2 . I . 0 9 . 0 , 0 , B * . 0 » 0 , 0 . 0 » 0 » M 2 » L 1 . L 2 G0SU6 429 LET 81=81 LET B2-R2 LET B9-R9 FOR X=l TO M LET R=«<X> LET B<X>-R MEXT X LET F1-H2 GOSUB 499 FID F 2 , I , 0 9 , 0 , 0 . C * . 0 . 0 . 0 , 0 , 0 . M 4 . L 3 , L 4 GOSUB 429 LET C1=H1 LET C2=«2 LET C9-R9 FOR X=l TO N LET B=<R<X>**<X>>'2 LET C=<B<X>-*»<X)>/2 LET B(X)-8 LET C<X>»C NEXT X LET D9=<C9+99>'2 LET D 8 » C B 9 - C 9 > / 2 LET H3=H3*1 IF H3=H2 GOTO 9999 LET F1=H3 GOSUB 499 FID F 2 . I . 0 9 , 0 , 0 , R * , 0 , 0 , 0 . 0 , 0 , W 6 , L 5 , L 6 GOSUB 429 LET R5-R9-D9 LET re>IMT<D»*>1999«»*«9>'199 FOR X=l TO M LET B=IHT<<W<X>-B<X>)»1D999> nS>/199 LET ft(X)-6 LET C = i H T < C < X ) » 1 9 9 9 « V t W > / - t « 9 LET T<X>-C NEXT X GOTO 599 READ R1,R2.R9,S DRTR 9 . 9 , 9 . 9 RESTORE GET F 1 . F 2 . E IF E=8 G0TO411  UIMOOW-  156  486 489 418 411 428 421 422 425 426  I F E=« G0T0411 PRIHT 0M<F*>."6ET E R R - - ; E » " T R P E « - - * ; F 1 G0T09999 RETURN L E T S»S*1 G S L I C E F2.S.B<S>,T<S> I F A(S>>8 G0T0428 ERASE F2.E I F E=8 GOTO 4 2 9  427 428 429 438 431 432 433 434 448  PRIMT OH<F*>"ERASE ERA--;E. * F I L E * - " ; F 2 , 'FROM T A P C » * ; F I GOT099-J9 L E T S«S-1 L E T B1=*A<1> LET R2»A<S> FOR X=l TO S LET R9-A9*A<X> HEXT X REM) R . B . C X  441  DftTR 8.8,8,8  442 443 444 145 458 451  RESTORE FOR J=l TO <H-1> LET X=X*1 I F T(X)>=R<J) G0T0432 L E T R»A<X>*A GOT0444  452  L E T R»<R<J>-T<X-l>>x<T<X>-T<X-l>>  453 454 455 456 457 458 459 468  LET B>R*A<X> LET R(J>-A*e+C  LET «=-* L E T C=<B^»)»<1-R) HEXT J FOR J=l TO <M-1> LET I M W H J ) NEXT J  465 LET B<H>»4»»-fl 478 588 581 583 584 585 586 587 588 589 518 528 521 522 523 524 525 53? 531 532 548 9999  OK  RETURN PRINT ON<F*> PRINT 0N<F*>*1ST BA5E-";B*; */1-ST BASE--;c*: *'SAMPLE-*;A* PRIHT OH<F»> n i ' . M S T BA5E*.-LST BASE* > "SAMPLE AREAS* PRIHT 0H<F»>*FIRST",B1.C1.A1 PRIHT 0N<F»>"LRST*.B2.C2.R2 PRINT 0M<F»>*T0TAL",B9»C9»A9 PRINT 0M<F»>"1ST S L I C E * , L I . L 3 » L 5 ; * MIN* PRINT OH<F»)*LST S L I C E * . L 2 . L 4 . L 6 ; * MIH* PRINT 0M<F»"WIDTM*.W2.W4,M6;* SECS* PRIHT OH<F»>" : * PRINT OM<F»>,"TOTAL AREA-*;A»;•••-»;05;*X* PRINT ON<F*> PRIHT O M < F » , "WllW>OM" , "AREAK". -+/-X TOTAL AREA" FOR J=l TO H PRIHT O M < F » ) . J . A < J > . T < J ) HEXT J FOR B=-I TO 18 PRIHT OH<F«> NEXT B G0T031S EHO  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0058908/manifest

Comment

Related Items