Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Development of techniques for the supercritical fluid extraction of oils Campbell, Hamish D 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1983_A7 C35.pdf [ 8.29MB ]
Metadata
JSON: 831-1.0058908.json
JSON-LD: 831-1.0058908-ld.json
RDF/XML (Pretty): 831-1.0058908-rdf.xml
RDF/JSON: 831-1.0058908-rdf.json
Turtle: 831-1.0058908-turtle.txt
N-Triples: 831-1.0058908-rdf-ntriples.txt
Original Record: 831-1.0058908-source.json
Full Text
831-1.0058908-fulltext.txt
Citation
831-1.0058908.ris

Full Text

DEVELOPMENT OF TECHNIQUES FOR THE SUPERCRITICAL FLUID EXTRACTION OF OILS by H a m i s h D. C a m p b e l l B . S c . ( H o n s . ) , U n i v e r s i t y o f S u r r e y , G u i l d f o r d , B r i t a i n ( 1 9 7 9 ) A T H E S I S SUBMITTED I N P A R T I A L F U L F I L L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF A P P L I E D S C I E N C E i n THE FACULTY OF OF GRADUATE STUDIES D e p a r t m e n t o f C h e m i c a l E n g i n e e r i n g We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE U N I V E R S I T Y OF J u n e , © H a m i s h D. B R I T I S H COLUMBIA 1983 C a m p b e l l , 1983 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department o The University of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 DE-6 (3/81) ABSTRACT E x p e r i m e n t a l e q u i p m e n t , p r o c e d u r e s a n d an a n a l y s i s m e t h o d h a v e b e e n d e v e l o p e d t o p r o v i d e e q u i l i b r i u m d a t a f o r s u p e r c r i t i c a l f l u i d s o l v e n t s C 0 2 , C2^k> ^ 2 ^ 6 ' a n c * C3H3 * n t n e p r e s e n c e o f a m u l t i c o m p o n e n t s e p a r a t o r o i l . T h e e q u i l i b r i u m c e l l was d e v e l o p e d a r o u n d a 1 dm h i g h p r e s s u r e a u t o c l a v e . The maximum p r e s s u r e and t e m p e r a t u r e r a t i n g s o f t h e d e v e l o p e d c e l l w e r e 3 4 . 5 MPa a n d 200 ° C r e s p e c t i v e l y . A c i r c u l a t i n g s y s t e m was u s e d i n t h e d e s i g n o f t h e c e l l t o a l l o w t h e s a m p l i n g o f two f l u i d p h a s e s a t i s o b a r i c e q u i l i b r i u m c o n d i t i o n s . T h e h i g h p r e s s u r e s a m p l e s w e r e e x p a n d e d t o a m b i e n t c o n d i t i o n s f o r m i n g a l i q u i d and g a s p h a s e . The l i q u i d p h a s e r e p r e s e n t s t h e o i l f r a c t i o n and t h e g a s p h a s e t h e s o l v e n t f r a c t i o n . The o i l a n a l y s i s was b a s e d on a g a s c h r o m a t o g r a p h i c d i s t i l l a t i o n . The c h r o m a t o g r a p h i c a n a l y s e s p r o v i d e d a q u a l i t a t i v e a n d q u a n t i t a t i v e d e s c r i p t i o n o f compounds w i t h m o l e c u l a r w e i g h t s up t o n - ^ g H g g . No g a s a n a l y s i s was p e r f o r m e d a n d t h e r e f o r e t h e p r o c e d u r e s w e r e u n s u i t a b l e f o r h y d r o c a r b o n s more v o l a t i l e t h a n d e c a n e (n —C^QH22)» The r e l i a b i l i t y o f t h e p r e s e n t e q u i p m e n t a n d p r o c e d u r e s w e r e c h e c k e d by c o m p a r i n g e q u i l i b r i u m d a t a f o r t h e C 0 2 / n - C i o ^ 2 2 s y s t e m , o b t a i n e d a t a p r e s s u r e o f 1 0 . 3 4 MPa a n d a t e m p e r a t u r e o f 1 3 7 . 8 ° C , w i t h p r e v i o u s l y p u b l i s h e d d a t a . R e p e a t a b i l i t y t e s t s w e r e a l s o p e r f o r m e d u s i n g s u p e r c r i t i c a l CO2 a n d a m u l t i c o m p o n e n t o i l s o l u t e a t p r e s s u r e s o f 1 3 . 5 MPa a n d 2 0 . 2 MPa a t a t e m p e r a t u r e o f 6 5 . 5 ° C . - i i i -TABLE OF CONTENTS P a g e ABSTRACT i i TABLE OF CONTENTS i i i L I S T OF TABLES v L I S T OF FIGURES vi ACKNOWLEDGEMENTS v i i i 1. INTRODUCTION 1 1.1 The Supercritical Fluid State 1 1.2 Supercritical Fluid Extraction 1 1.3 Alternative Terms for Supercritical Fluid Extraction 6 1.4 Miscible Displacement. 7 1.5 Objectives 9 2. LITERATURE REVIEW 10 2.1 Supercritical Fluid Extractions 10 2.2 Miscible Displacements 17 3. DEVELOPMENT OF THE ANALYTICAL PROCEDURES 29 3.1 Gas Chromatographic Simulated Distillation 31 3.2 Samples which Contain High Boiling Point Compounds... 33 3.3 Response Factors 38 3.4 Evaluation and Subtraction of Baseline Areas 38 3.4.1 Initial Method 40 3.4.2 Modified Method 42 3.5 Molar Analysis 48 3.5.1 Qualitative Analysis 48 3.5.2 Quantitative Analysis 48 4 . DEVELOPMENT OF EXPERIMENTAL PROCEDURES AND EQUIPMENT 52 4.1 Equilibrium Cell 52 4.1.1 Autoclave Modifications 54 4.2 Sampling 55 4.2.1 Initial Sampling Method 55 4.2.2 Modified Sampling Method 58 4.3 Sample Preparation •• 62 4.3.1 Sample Volume 67 4.3.2 Initial Sample Expansion Results 70 4.4 Summary of Developed Experimental Apparatus 72 4.5 Operating Procedures 74 - i v -P a g e 5. RESULTS AND DISCUSSION 76 5 . 1 P e r f o r m a n c e o f t h e A n a l y t i c a l P r o c e d u r e s 76 5 . 1 . 1 I n i t i a l A n a l y s i s R e s u l t s 78 5 . 1 . 2 C o m p a r i s o n t o t h e A . S . T . M . D-87 D i s t i l l a t i o n . . 81 5 . 2 P e r f o r m a n c e o f t h e Pumps 8 4 5 . 3 P e r f o r m a n c e o f t h e E x p e r i m e n t a l P r o c e d u r e s 84 5 . 4 R e s u l t s U s i n g a S t r i p p e d S e p a r a t o r O i l 90 5 . 4 . 1 M a s s B a l a n c e o f O i l C o m p o n e n t s 99 5 . 4 . 2 C a l c u l a t e d E q u i l i b r i u m V a l u e s 102 6. CONCLUSIONS 105 7 . RECOMMENDATIONS 107 8 . NOMENCLATURE 110 9. REFERENCES 112 APPENDIX A . M u l t i p l e C o n t a c t M i s c i b i l i t y 119 B . A n a l y s i s R e s u l t s 125 C . Summary o f C a l c u l a t i o n s 140 D. S o u r c e s o f E q u i p m e n t and C h e m i c a l s 144 E . S o f t w a r e 147 v -L I S T OF TABLES T a b l e P a g e 1 . 1 P o t e n t i a l S u p e r c r i t i c a l S o l v e n t s 5 2 . 1 S u p e r c r i t i c a l F l u i d E x t r a c t i o n s : Summary o f L i t e r a t u r e R e v i e w 11 A . E x t r a c t i o n o f N a t u r a l P r o d u c t s 11 B . E x t r a c t i o n o f M i n e r a l O i l s 14 C . E x t r a c t i o n o f C o a l O i l s 15 D. T r i g l y c e r i d e F r a c t i o n a t i o n 15 E . P e t r o l e u m F r a c t i o n a t i o n 16 2 . 2 M i s c i b l e D i s p l a c e m e n t s : Summary o f L i t e r a t u r e R e v i e w . . . . 18 2 . 3 T y p i c a l P h a s e C o m p o s i t i o n s , W e i g h t F r a c t i o n s , a n d D e n s i t i e s , t h a t O c c u r when C r u d e O i l i s C o n t a c t e d w i t h C 0 2 25 2 . 4 A n a l y s e s D a t a o f O i l s i n M i s c i b l e D i s p l a c e m e n t S t u d i e s . . . 26 3 . 1 Summary o f S i m u l a t e d D i s t i l l a t i o n C h r o m a t o g r a p h i c M e t h o d s 32 3 . 2 C h r o m a t o g r a p h i c H a r d w a r e a n d C o n d i t i o n s 34 3 . 3 R e l a t i v e R e s p o n s e F a c t o r s ( R . R . F . ) f o r V a r i o u s O r g a n i c Compounds 39 3 . 4 E f f e c t o f B a s e L i n e D r i f t on S i m u l a t e d D i s t i l l a t i o n R e p o r t 43 3 . 5 E f f e c t o f S u b t r a c t i n g B a s e C h r o m a t o g r a m s on S i m u l a t e d D i s t i l l a t i o n R e p o r t 46 4 . 1 I n i t i a l S a m p l i n g R e s u l t s 57 4 . 2 D e t a i l s o f t h e I n i t i a l Pump D e s i g n 61 4 . 3 D e t a i l s o f t h e M o d i f i e d Pump D e s i g n 64 4 . 4 I n i t i a l S a m p l e E x p a n s i o n R e s u l t s 71 4 . 5 E v a p o r a t i o n L o s s o f H i g h e r M o l e c u l a r W e i g h t H y d r o c a r b o n s f r o m a D I e t h y l e t h e r M i x t u r e 71 5 . 1 P e r f o r m a n c e o f C h r o m a t o g r a p h i c A n a l y s i s P r o c e d u r e s 77 5 . 2 I n i t i a l A n a l y s i s R e s u l t s 79 5 . 3 C h r o m a t o g r a p h i c a n d A . S . T . M . D-87 D i s t i l l a t i o n R e s u l t s . . . 82 5 . 4 P e r f o r m a n c e o f t h e Pumps i n V a r i o u s T e s t s 85 5 . 5 T e s t s U s i n g t h e B i n a r y D e c a n e / C 0 2 S y s t e m 88 5 . 6 S t r i p p e d S e p a r a t o r O i l / C 0 2 R e s u l t s : M e a s u r e d V a l u e s 93 5 . 7 S t r i p p e d S e p a r a t o r O i l / C 0 2 R e s u l t s : C a l c u l a t e d V a l u e s . . . 94 5 . 8 S t r i p p e d S e p a r a t o r O i l / C 0 2 R e s u l t s : N o r m a l i z e d C o n c e n t r a t i o n s o f O i l C o m p o n e n t s 95 5 . 9 M a s s B a l a n c e R e s u l t s o f Run 1 100 5 . 1 0 M a s s B a l a n c e R e s u l t s o f R u n 2 101 5 . 1 1 C a l c u l a t e d E q u i l i b r i u m V a l u e s 103 B . l D . l A n a l y s i s R e s u l t s S o u r c e s o f E q u i p m e n t a n d C h e m i c a l s 131 144 - v i -L I S T OF FIGURES F i g u r e P a g e 1 . 1 P h a s e R e g i o n s o f a P u r e Compound 2 1 . 2 P r e s s u r e - D e n s i t y I s o t h e r m s o f a P u r e Compound 2 2 . 1 T y p i c a l P - Z ™ p l o t f o r R e s e r v o i r O i l s a t T e m p e r a t u r e s B e l o w 5 0 ° C 23 2 . 2 T y p i c a l P - Z c o P l o t f o r R e s e r v o i r O i l s a t T e m p e r a t u r e s A b o v e 5 0 ° C 23 4 . 5 I n i t i a l Pump D e s i g n . 4 . 6 M o d i f i e d Pump D e s i g n 4 . 7 A s s e m b l e d Pump 4 . 8 S t i r r e r / P u m p / L i d A s s e m b l y . 4 . 9 R a f f i n a t e P h a s e E x p a n s i o n C h a m b e r . 4 . 1 0 5 . 1 D i s t i l l a t i o n C u r v e s U s i n g t h e C h r o m a t o g r a p h i c a n d A . S . T . M . D-87 D i s t i l l a t i o n M e t h o d s 5 . 2 P e r f o r m a n c e o f t h e E x t r a c t P h a s e Pump 5 . 3 5 . 4 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e O r i g i n a l a n d 5 . 5 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e E x t r a c t e d O i l 5 . 6 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e E x t r a c t e d O i l 5 . 7 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e R a f f i n a t e O i l 5 . 6 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e R a f f i n a t e O i l 35 37 41 44 3 . 1 B o i l i n g P o i n t - R e t e n t i o n T i m e R e l a t i o n s h i p f o r n - a l k a n e s 3 . 2 A r e a F r a c t i o n s U s e d t o E v a l u a t e t h e F r a c t i o n o f E l u t e d O i l 3 . 3 B a s e L i n e O p t i o n s w i t h O r i g i n a l S o f t w a r e 3 . 4 E f f e c t o f a P o s i t i v e and N e g a t i v e B a s e L i n e D r i f t o n t h e S i m u l a t e d D i s t i l l a t i o n C u r v e . . . . 3 . 5 E f f e c t o f S u b t r a c t i n g B a s e C h r o m a t o g r a t a s on t h e S i m u l a t e d D i s t i l l a t i o n C u r v e 47 3 . 6 O p t i o n s A v a i l a b l e f o r C h r o m a t o g r a m Window A n a l y s i s . . . 49 3 . 7 Q u a n t i t a t i v e A n a l y s i s M e t h o d . . . 51 4 . 1 A u t o c l a v e D i m e n s i o n s and S p e c i f i c a t i o n s 53 4 . 2 H o t A i r B a t h 56 56 4 . 3 E x p e r i m e n t R i g 4 . 4 F l o w s h e e t o f t h e I n i t i a l S a m p l i n g M e t h o d 57 60 63 65 65 68 F l o w s h e e t f o r t h e D e v e l o p e d P r o c e d u r e s 73 83 86 86 91 96 96 97 97 - v i i -F i g u r e P a g e A l P s u e d o T e r n a r y P h a s e D i a g r a m I l l u s t r a t i n g E n r i c h e d o r C o n d e n s i n g Gas D r i v e 120 A2 P s u e d o T e r n a r y P h a s e D i a g r a m I l l u s t r a t i n g V a p o r i s i n g o r H i g h P r e s s u r e Gas D r i v e 120 A3 P s u e d o T e r n a r y P h a s e D i a g r a m I l l u s t r a t i n g M i n i m u m M i s c i b i l i t y P r e s s u r e ( M . M . P . ) 122 A4 M . M . P . - T e m p e r a t u r e R e l a t i o n s h i p s 124 B l T y i c a l C h r o m a t o g r a m o f n - A l k a n e C a l i b r a t i o n M i x t u r e 125 B2 C h r o m a t o g r a m o f t h e O r i g i n a l S e p a r a t o r O i l 126 B3 C h r o m a t o g r a m o f t h e S t r i p p e d S e p a r a t o r O i l 126 B4 C h r o m a t o g r a m o f t h e E x t r a c t O i l o f Run 1 . . 127 B5 C h r o m a t o g r a m o f t h e E x t r a c t O i l o f Run 3 127 B6 C h r o m a t o g r a m o f t h e E x t r a c t O i l o f Run 2 128 B7 C h r o m a t o g r a m o f t h e E x t r a c t O i l o f Run 4 128 B8 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 1 129 B9 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 3 129 BIO C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 2 130 B l l C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 4 130 - v i i i -ACKNOWLEDGEMENTS I w o u l d l i k e t o t h a n k my s u p e r v i s o r , D r . A x e l M e i s e n f o r h i s s u p e r v i s i o n t h r o u g h o u t t h e c o u r s e o f t h i s w o r k , and t o M i c h a e l F a t t o r i f o r h i s u s e f u l s u g g e s t i o n s i n t h e d e s i g n a n d a n a l y s i s . T h a n k s a r e a l s o due t o t h e p e r s o n n e l i n t h e D e p a r t m e n t o f C h e m i c a l E n g i n e e r i n g w o r k s h o p f o r t h e i r a s s i s t a n c e w i t h t h e d e s i g n a n d c o n s t r u c t i o n o f t h e v a r i o u s p i e c e s o f e q u i p m e n t . F i n a l l y , I w o u l d l i k e t o t h a n k my s u p e r v i s o r f o r s e c u r i n g t h e f i n a n c i a l a s s i s t a n c e g e n e r o u s l y p r o v i d e d by I m p e r i a l O i l L t d . , and t h e N a t i o n a l S c i e n c e a n d E n g i n e e r i n g R e s e a r c h C o u n c i l . i 1 1. INTRODUCTION 1.1 The Supercrit ical Fluid State The p h a s e r e g i o n s o f a p u r e compound c a n be c o n s i d e r e d a s s o l i d , l i q u i d , g a s a n d s u p e r c r i t i c a l f l u i d . T h e s e f o u r r e g i o n s a r e i n d i c a t e d i n F i g u r e 1 . 1 . The s u p e r c r i t i c a l f l u i d r e g i o n i s n o t s e p a r a t e d f r o m t h e l i q u i d o r g a s r e g i o n s by s a t u r a t e d p h a s e b o u n d a r i e s ; i t s i m p l y r e p r e s e n t s t h e f l u i d r e g i o n a t c o n d i t i o n s a b o v e b o t h t h e c r i t i c a l p r e s s u r e ( P c ) and c r i t i c a l t e m p e r a t u r e ( T c ) . The c r i t i c a l p r e s s u r e a n d t e m p e r a t u r e l o c a t e t h e c r i t i c a l p o i n t ( C P . ) w h i c h i s t h e c o n d i t i o n a t w h i c h t h e g a s and l i q u i d p h a s e p r o p e r t i e s a r e i d e n t i c a l . The s u p e r c r i t i c a l f l u i d r e g i o n i s s i m p l y an u n i n t e r r u p t e d c o n t i n u a t i o n o f t h e p r o p e r t i e s o f b o t h t h e l i q u i d a n d g a s p h a s e s . The c o n t i n u a t i o n o f t h e f l u i d p r o p e r t y d e n s i t y ( p ) i s i l l u s t r a t e d i n F i g u r e 1 . 2 . 1 F o r p u r p o s e s o f g e n e r a l i z a t i o n F i g u r e 1 . 2 i s p l o t t e d on r e d u c e d c o - o r d i n a t e s ; i . e . P r = P / P c , T r = T / T c and p r = p / p c . S u p e r c r i t i c a l f l u i d s h a v e r e c e n t l y a t t r a c t e d c o n s i d e r a b l e i n t e r e s t a s : - S o l v e n t s i n a p r o c e s s commonly t e r m e d " S u p e r c r i t i c a l F l u i d E x t r a c t i o n " . - F l o o d i n g f l u i d s f o r t h e m i s c i b l e d i s p l a c e m e n t and e n h a n c e d r e c o v e r y o f p e t r o l e u m f r o m u n d e r g r o u n d r e s e r v o i r s . 1.2 Supercrit ical Fluid Extraction T h e p r i n c i p a l a d v a n t a g e s o f s u p e r c r i t i c a l f l u i d s a s e x t r a c t i o n m e d i a a r e : a w i d e r a n g e o f s o l v e n t p o w e r f o r a g i v e n s o l v e n t , a s o l v e n t 2 • T E M P E R A T U R E F i g u r e 1 . 1 P h a s e R e g i o n s o f a P u r e Compound 0 10 fr F i g u r e 1 . 2 P r e s s u r e - D e n s i t y I s o t h e r m s o f a P u r e Compound 3 p o w e r c o m p a r a b l e t o l i q u i d s , and t h e a b i l i t y t o u s e p r e s s u r e t o c o n t r o l t h e s o l v e n t p o w e r . I t h a s b e e n o b s e r v e d t h a t , f o r a g i v e n s o l v e n t , t h e s o l v e n t p o w e r may i n c r e a s e w i t h an i n c r e a s e i n s o l v e n t d e n s i t y . As a r e s u l t , e x t r a c t i o n g e n e r a l l y o c c u r s a t p r e s s u r e s and t e m p e r a t u r e s t h a t p r o d u c e d e n s e o r l i q u i d s o l v e n t s ; w h i l e r e g e n e r a t i o n , o r s o l v e n t - s o l u t e s e p a r a t i o n , g e n e r a l l y , a t t e m p e r a t u r e s a n d / o r p r e s s u r e s t h a t p r o d u c e l o w - d e n s i t y s o l v e n t s . T h e s u p e r c r i t i c a l f l u i d s t a t e h a s a w i d e d e n s i t y r a n g e a n d t h e r e f o r e s o l v e n t p o w e r r a n g e . A p a r t f r o m t h e c h o i c e o f s o l v e n t , t h e s o l v e n t d e n s i t y c a n be u s e d f o r t h e s e l e c t i v e f r a c t i o n a t i o n o f s o l u t e s . As d e n s e f l u i d s a r e n o t l i m i t e d t o l i q u i d s , t h e s u p e r c r i t i c a l f l u i d s t a t e may be a s e f f e c t i v e a s t h e l i q u i d s t a t e o f a s o l v e n t . T h e r e f o r e , i f t h e e x t r a c t i o n t e m p e r a t u r e i s a b o v e t h e c r i t i c a l t e m p e r a t u r e o f a p o t e n t i a l s o l v e n t , t h e s o l v e n t may s t i l l be u s e d p r o v i d e d t h e p r e s s u r e c o n d i t i o n s p r o d u c e a d e n s e s u p e r c r i t i c a l f l u i d s o l v e n t . S i n c e p r e s s u r e may be u s e d t o c o n t r o l t h e s o l v e n t d e n s i t y a n d t h e r e f o r e s o l v e n t p o w e r , i t i s p o s s i b l e t o e x t r a c t and f r a c t i o n a t e t e m p e r a t u r e s e n s i t i v e a n d n o n - v o l t a t i l e compounds a t l o w t e m p e r a t u r e s by m e r e l y c h o o s i n g s o l v e n t s w i t h l o w c r i t i c a l t e m p e r a t u r e s . H o w e v e r , s o l u b i l i t y i s n o t s o l e l y d e p e n d e n t o n t h e s o l v e n t ' s c h e m i c a l n a t u r e and d e n s i t y . F o r e x a m p l e , a t e m p e r a t u r e i n c r e a s e h a s b e e n o b s e r v e d t o i n c r e a s e a s o l u t e ' s s o l u b i l i t y i n n o n p o l a r l i q u i d 2 3 s o l v e n t s , » a n d a s i m i l a r e f f e c t i s a p p a r e n t i n a n o n - p o l a r s u p e r c r i t i c a l f l u i d s o l v e n t p r o v i d e d t h e s o l v e n t d e n s i t y i s n o t 4 n o t i c e a b l y r e d u c e d by t h e t e m p e r a t u r e i n c r e a s e . A d d i t i o n a l l y , a t a g i v e n t e m p e r a t u r e , t h e r e i s a maximum s o l u b i l i t y a t a c e r t a i n p r e s s u r e o r d e n s i t y , 1 * a n d i n c r e a s i n g t h e p r e s s u r e and h e n c e d e n s i t y a b o v e t h i s p o i n t d o e s n o t i n c r e a s e t h e s o l u t e ' s s o l u b i l i t y i n t h e s o l v e n t . T a b l e 1 . 1 s u m m a r i z e s t h e c r i t i c a l p r o p e r t i e s o f compounds w h i c h h a v e b e e n r e p o r t e d a s b e i n g r e s p o n s i b l e o r s u i t a b l e s o l v e n t s f o r s u p e r c r i t i c a l f l u i d e x t r a c t i o n ( S . F . E . ) . I t i s c l e a r t h a t S . F . E . i s a h i g h p r e s s u r e p r o c e s s . E x t r a c t i o n t e m p e r a t u r e s b e t w e e n T r o f 1 . 0 and 1 . 2 h a v e t h e r e f o r e b e e n s u g g e s t e d t o m i n i m i z e t h e p r e s s u r e s r e q u i r e d f o r 1 8 d e n s e f l u i d s t a t e s . » The p r e f e r r e d s u p e r c r i t i c a l f l u i d s t a t e o f t h e 1 8 s o l v e n t i s i n d i c a t e d by t h e s h a d e d a r e a o f F i g u r e 1 . 2 . » I n t h i s r e g i o n t h e d e n s i t y o f t h e s o l v e n t i s s t r o n g l y a f f e c t e d by s m a l l c h a n g e s i n p r e s s u r e a n d t e m p e r a t u r e . The s o l v e n t may t h e r e f o r e be e a s i l y r e g e n e r a t e d . The p r i n c i p l e s a b o v e h a v e b e e n o u t l i n e d i n g r e a t e r d e t a i l p r e v i o u s l y . 1 » 2 » * * » 5 ' 8 To s u m m a r i z e , t h e a d v a n t a g e s o f a S . F . E . i n c l u d e t h e a b i l i t y t o b o t h e x t r a c t a n d f r a c t i o n a t e c o m p o u n d s , l o w e x t r a c t i o n a n d s o l v e n t r e g e n e r a t i o n t e m p e r a t u r e s , a s w e l l a s t h e p o s s i b i l i t y o f u s i n g u n c o n v e n t i o n a l , n o n - t o x i c , n o n - f l a m m a b l e , I n e x p e n s i v e a n d a b u n d a n t s o l v e n t s a s s u g g e s t e d by T a b l e 1 . 1 . The p r i n c i p a l d i s a d v a n t a g e s a r e t h e h i g h p r e s s u r e a n d c o n s e q u e n t l y h i g h c a p i t a l c o s t s . A d d i t i o n a l l y , t h e h i g h p r e s s u r e s a r e uncommon i n many e x t r a c t i o n i n d u s t r i e s a n d t h e r e f o r e m e c h a n i c a l d e s i g n a n d o p e r a t i n g 9 p r i n c i p l e s h a v e n o t b e e n f u l l y d e v e l o p e d . T a b l e 1 . 1 P o t e n t i a l S u p e r c r i t i c a l S o l v e n t s Normal B o l J C r i t i c a l C r i t i c a l C r i t i c a l Compound Methane 1.5 E t h y l e n e 1 , 5 , 6 T r l f l u o r m e t h a n e C h l o r o t r l f l u o r o r a e t h a n e Carbon D i o x i d e ' * 5 , 6 Ethane ' N i t r o u s O x i d e 6 S u l p h u r H e x a f l u o r l d e " ' 1.5 P r o p y l e n e 1.5 1 ,5,6 Propane Ammonia 1.5 D l e t h y l e t h e r 1.5 n-Petane D l e t h y l a m l n e I . 5 1.5 1.5 Acetone M e t h a n o l 1,5 T e t r a h y d r o f u r a n Benzene''^ n-Octane"* 3 N l t r o m e t h a n e 1,5 Toluene P y r i d i n e W a t e r 1 , 5 1.5 P o i n t s Temperatures P r e s s u r e s D e n s i t Formula T N B Tc Pc pc C K ) (°K) (MI'a) (K R/m CHt, 1 1 1 . 7 5 1 9 1 4 . 6 0 1 6 2 C 2H„ 1 6 9 . 4 5 2 8 3 5 . 0 0 2 0 0 CHF 3 1 9 0 . 9 5 2 9 9 4 . 6 9 5 1 8 C 1 C F 3 1 9 1 . 6 8 3 0 2 3 . 9 0 5 8 0 CO 2 1 9 5 . 1 5 A 3 0 4 7 . 3 9 4 6 8 C 2 H 6 1 8 4 . 5 5 3 0 5 4 . 8 8 2 0 3 N 2 0 1 8 4 . 1 5 3 1 0 7 . 1 0 4 5 7 S F 6 2 0 9 . 3 5A 3 1 9 3 . 7 6 7 3 4 C 3 H 6 2 2 5 . 1 5 3 6 5 4 . 6 2 2 3 3 C 3 H 8 2 3 0 . 9 5 3 7 0 4 . 2 4 2 1 7 NT! 3 2 3 9 . 7 5 4 0 6 1 1 . 3 0 2 3 5 ( C H 3 C H 2 ) 2 0 3 0 7 . 7 5 4 6 7 3 . 6 4 2 6 5 C5H12 3 0 9 . 4 5 4 7 0 3 . 3 7 2 3 7 ( C 2 H 5 ) N H 3 2 8 . 6 5 4 9 7 3 . 7 1 2 4 3 CH3COCH3 3 2 9 . 6 5 5 0 8 4 . 7 0 2 7 8 CH 3 O H 3 3 7 . 8 5 5 1 3 8 . 0 9 2 7 2 - C H 2 ( C H 2 ) 2 C H 2 0 2 0 8 . 1 5 5 4 0 5 . 1 9 3 2 2 C 6 H 6 3 5 3 . 2 5 5 6 2 4 . 8 9 3 0 2 C 8 H 1 8 3 9 8 . 8 5 5 6 9 2 . 4 8 2 3 2 Q I 3 N O 2 3 7 3 . 9 5 5 8 8 6 . 3 1 3 5 2 C 6 H 5 C H 3 3 8 3 . 9 5 5 9 2 4 . 1 1 2 9 2 CH < ( C H C H 2 ) 2 > N 3 8 9 . 1 5 6 2 0 5 . 6 3 3 1 2 H 2 0 3 7 3 . 1 5 6 4 7 2 2 . 0 0 3 2 2 (a) Sublimes 6 As s u p e r c r i t i c a l f l u i d s h o l d c o n s i d e r a b l e p o t e n t i a l f o r t h e l o w t e m p e r a t u r e f r a c t i o n a t i o n and e x t r a c t i o n o f h i g h m o l e c u l a r w e i g h t o i l s , i t i s n o t s u r p r i s i n g t h a t c o m m e r c i a l and p i l o t o p e r a t i o n s a l r e a d y e x i s t i n t h e p e t r o l e u m , f o o d a n d p h a r m a c e u t i c a l i n d u s t r i e s . 1 0 ' 1 1 S u p e r c r i t i c a l f l u i d s h a v e a l s o b e e n d e v e l o p e d f o r t h e c h r o m a t o g r a p h i c a n a l y s i s o f c e r t a i n n o n - v o l a t i l e c o m p o u n d s . 4 > 1 2 - 1 4 1.3 Alternative Terms for Supercrit ical Fluid Extraction A l t h o u g h t h e t e r m " S u p e r c r i t i c a l F l u i d E x t r a c t i o n " i s g a i n i n g w i d e a c c e p t a n c e and i s u s e d e x c l u s i v e l y h e r e i n , o t h e r t e r m s a r e s o m e t i m e s e m p l o y e d , e . g . : i . " D e n s e P h a s e E x t r a c t i o n " 1 ' 5 o r " D e n s e Gas E x t r a c t i o n " . 1 * i i . " S u p e r c r i t i c a l Gas E x t r a c t i o n " 1 ' 1 5 o r "Gas E x t r a c t i o n " . 5 ' 9 i i i . " D e s t r a c t i o n " . 1 6 The f i r s t t e r m i s u s e d t o i n d i c a t e t h a t e x t r a c t i o n o c c u r s a t a d e n s e f l u i d s t a t e . The w o r d " g a s " a p p e a r s i n s e v e r a l t e r m s s i n c e t h e f l u i d r e g i o n a b o v e t h e c r i t i c a l t e m p e r a t u r e i s s o m e t i m e s t e r m e d a " g a s " , a s o p p o s e d t o a v a p o u r b e l o w t h e c r i t i c a l t e m p e r a t u r e . The t h i r d t e r m h a s b e e n d e r i v e d f r o m t h e L a t i n w o r d s " d i s t a l l e r e " and " e x t r a h e r e " t o i n d i c a t e t h a t b o t h d i s t i l l a t i v e a n d e x t r a c t i o n e f f e c t s a r e o p e r a t i v e . D e s t r a c t i o n , a s o r i g i n a l l y d e f i n e d , 1 6 i s h o w e v e r l i m i t e d t o a n e x t r a c t p h a s e w h i c h p r o d u c e s c o n d e n s a t i o n o f l i q u i d s o l u t e s d u r i n g a p r e s s u r e d e c r e a s e . The t e r m " s u p e r c r i t i c a l f l u i d " c l e a r l y i n d i c a t e s t h e f l u i d r e g i o n w i t h o u t u s i n g t h e t e r m " g a s " . I t d o e s n o t make t h e a s s u m p t i o n t h a t a 7 d e n s e s t a t e i s r e q u i r e d , s i n c e t h e e q u a l l y i m p o r t a n t f r a c t i o n a t i o n a s p e c t i s d e p e n d e n t o n a w i d e d e n s i t y r a n g e . F u r t h e r m o r e , t h e t e r m i s n o t l i m i t e d t o p a r t i c u l a r p h a s e b e h a v i o u r w h i c h c a n be d e t e c t e d v i s u a l l y . 1.4 Mlsclble Displacements S i n c e p r i m a r y and s e c o n d a r y o i l r e c o v e r y m e t h o d s t y p i c a l l y l e a v e 55 t o 70% o f t h e p e t r o l e u m i n t h e r e s e r v o i r , c o n s i d e r a b l e w o r k i s u n d e r w a y t o d e v e l o p " e n h a n c e d o i l r e c o v e r y t e c h n i q u e s " . The t e c h n i q u e s h a v e b e e n 17 25 o u t l i n e d by H e r b e c k e t a l . ~ Of t h e s e t e c h n i q u e s t h e o n l y m e t h o d s w h i c h h a v e t h e p o t e n t i a l t o r e c o v e r a l l t h e o i l i n t h e c o n t a c t e d r e s e r v o i r v o l u m e , a r e t h e m e t h o d s w h i c h u t i l i z e I n j e c t i o n f l u i d s t h a t a r e m i s c i b l e o r become m i s c i b l e w i t h t h e o r i g i n a l r e s e r v o i r o i l . M i s c i b i l i t y b e t w e e n t h e o i l a n d d i s p l a c i n g f l u i d may o c c u r d i r e c t l y a n d i s known a s " F i r s t C o n t a c t M i s c i b i l i t y " ( F . C . M . ) . A l t e r n a t i v e l y , m i s c i b i l i t y may o c c u r by a s e r i e s o f c o n t a c t s b e t w e e n t h e o i l a n d d i s p l a c i n g f l u i d w h i c h i s known a s " M u l t i p l e C o n t a c t M i s c i b i l i t y " ( M . C . M . ) . T h e r e a r e two d i s t i n c t m e t h o d s b y w h i c h M . C . M . may be a c h i e v e d and t h e s e a r e b r i e f l y o u t l i n e d b e l o w w i t h f u l l e r d e t a i l s g i v e n i n A p p e n d i x A . T h e " C o n d e n s i n g G a s D r i v e " o r " E n r i c h e d Gas D r i v e " r e l i e s on t h e c o n t i n u a l t r a n s f e r o f l i g h t h y d r o c a r b o n s (C2 t o C&) f r o m t h e d i s p l a c i n g f l u i d ( C H 4 + C 2 t o C 6 ) t o t h e r e s e r v o i r o i l . The t r a n s f e r o f l i g h t h y d r o c a r b o n s c a n , i n t h e l i m i t , p r o d u c e a r e s e r v o i r o i l c o m p o s i t i o n w h i c h i s m i s i c i b l e w i t h t h e d i s p l a c i n g f l u i d . 8 The "Vaporising Gas Drive" or "High Pressure Gas Drive" achieves m i s c i b i l i t y by continually extracting or vaporizing intermediate and l i g h t hydrocarbons from the reservoir o i l . The di s p l a c i n g f l u i d ( t y p i c a l l y CHi* or CO2) w i l l , under the appropriate conditions, become so enriched i n intermediate hydrocarbons that m i s c i b i l i t y with fresh reservoir o i l i s achieved. Carbon dioxide i s the most promising miscible displacement 26 27 f l u i d » as l i g h t hydrocarbons are now f a i r l y expensive. Carbon 2 8 21 dioxide also has superior density, mobility and extraction c h a r a c t e r i s t i c s » and requires lower pressures > > than methane or natural gas miscible displacements. P o t e n t i a l l y large sources of CO2 include natural CO2 reservoirs, coal g a s i f i c a t i o n and 29—30 32 33 ammonia plants. ' Petzet discusses C 0 2 transportation aspects for the o i l f i e l d s of Texas, New Mexico and Louisiana where many f i e l d t r i a l s are being implemented. The re s u l t s of these t r i a l s are published i n the l i t e r a t u r e p e r i o d i c a l l y . 3 4 ' 3 5 Although there are both e c o n o m i c 3 6 - 3 9 and technical 1 8 _ 2 5 , 3 7 r e s t r a i n t s , the E.O.R. techniques are projected to recover an ad d i t i o n a l 3 to 1 5 % 4 0 of the o r i g i n a l r e s e r v o i r o i l . I t has been estimated that the miscible displacement technique t y p i c a l l y accounts for up to 25 to 40% of the E.O.R. p o t e n t i a l . 2 7 ' 4 0 Since the reservoir temperatures are often above the c r i t i c a l temperature of CO2, the high pressures required to achieve M.C.M. produce a s u p e r c r i t i c a l f l u i d C 0 2 state. Consequently the vaporising gas drive r e l i e s on the extraction behaviour of s u p e r c r i t i c a l CO2. 9 1.4 Objectives A l t h o u g h t h e q u a l i t a t i v e a s p e c t s o f s u p e r c r i t i c a l f l u i d e x t r a c t i o n h a v e b e e n q u i t e e x t e n s i v e l y i n v e s t i g a t e d , p r e c i s e q u a n t i t a t i v e d a t a a r e s c a r c e . As a r e s u l t , e x p e r i m e n t a l i n v e s t i g a t i o n s a r e r e q u i r e d t o e s t a b l i s h t h e f e a s i b i l i t y o f s u p e r c r i t i c a l f l u i d s f o r t h e e x t r a c t i o n a n d f r a c t i o n a t i o n o f s o l u t e s . A l t h o u g h some t h e r m o d y n a m i c e q u a t i o n s o f s t a t e h a v e b e e n p u b l i s h e d f o r s u p e r c r i t i c a l f l u i d s , t h e y p r i n c i p a l l y a p p l y t o b i n a r y s y s t e m s i n w h i c h t h e p u r e s o l u t e e x i s t s i n a l i q u i d o r s o l i d s t a t e . 1 4 2 - 4 6 E q u i l i b r i u m d a t a f o r a m u l t i c o m p o n e n t l i q u i d I n t h e p r e s e n c e o f a s u p e r c r i t i c a l f l u i d a r e s c a r c e . S i n c e c r u d e o i l i s a m u l t i c o m p o n e n t m i x t u r e a m e n a b l e t o b o t h s u p e r c r i t i c a l f l u i d e x t r a c t i o n a s w e l l as m i s c i b l e d i s p l a c e m e n t p r o c e s s e s , t h e f o l l o w i n g b a s i c o b j e c t i v e was a d o p t e d f o r t h i s t h e s i s : * T o d e v e l o p e q u i p m e n t and a s s o c i a t e d t e c h n i q u e s f o r o b t a i n i n g a c c u r a t e e q u i l i b r i u m d a t a f o r s u p e r c r i t i c a l f l u i d s (CO2, C2H4, C2H6, C3H6 a n d C3H3) i n t h e p r e s e n c e o f a c r u d e o i l . The w o r k r e q u i r e d t h e d e v e l o p m e n t o f a h i g h p r e s s u r e e q u i l i b r i u m c e l l w i t h a p p r o p r i a t e c o n t r o l a n d s a m p l i n g e q u i p m e n t . I n a d d i t i o n , a s a m p l e a n a l y s i s t e c h n i q u e h a d t o be d e v i s e d . Due t o l i m i t e d r e s o u r c e s a n d t i m e , e x p e r i m e n t s w e r e o n l y c o n d u c t e d w i t h CO2. H o w e v e r , t h e e q u i p m e n t i s a l s o , i n g e n e r a l , a p p l i c a b l e t o t h e o t h e r s u p e r c r i t i c a l f l u i d s m e n t i o n e d a b o v e . 10 2. LITERATURE REVIEW 2.1 Supercrit ical Fluid Extractions A r t i c l e s r e v i e w e d a n d r e l a t e d t o S u p e r c r i t i c a l F l u i d E x t r a c t i o n are s u m m a r i z e d , f o r t h e s a k e o f c o n c i s e n e s s , i n T a b l e 2 . 1 ( A ) t o 2 . 1 ( E ) . An e x t e n s i v e l i t e r a t u r e s e a r c h h a s b e e n g i v e n by R a n d a l 4 f o r S u p e r c r i t i c a l F l u i d E x t r a c t i o n and S u p e r c r i t i c a l F l u i d C h r o m a t o g r a p h y . T a b l e 2 . 1 i n d i c a t e s t h e t y p e o f c o m p o n e n t s , t y p e o f s t u d y , e x t r a c t and r e g e n e r a t i o n c o n d i t i o n s , a s w e l l a s t h e p r i n c i p a l f i n d i n g s . S u p e r c r i t i c a l l o w m o l e c u l a r w e i g h t h y d r o c a r b o n s h a v e b e e n u s e d i n t h e e x t r a c t i o n and f r a c t i o n a t i o n o f h e a v y m i n e r a l o i l s . The w o r k r e l a t e d t o m i s c i b l e d i s p l a c e m e n t i n d i c a t e d t h a t h i g h m o l e c u l a r w e i g h t h y d r o c a r b o n s s o l u t e s a r e n o t as m i s c i b l e o r s o l u b l e i n CO2 a s t h e y a r e I n h y d r o c a r b o n s o l v e n t s h e a v i e r t h a n m e t h a n e . Low m o l e c u l a r w e i g h t h y d r o c a r b o n s o l v e n t s h a v e r e l a t i v e l y l o w c r i t i c a l t e m p e r a t u r e s , t h e r e f o r e f r a c t i o n a t i o n o f t h e h i g h m o l e c u l a r w e i g h t h y d r o c a r b o n s o l u t e s i s s t i l l p o s s i b l e a t l o w t e m p e r a t u r e s . S e l e c t i v e f r a c t i o n a t i o n o f m i n e r a l o i l s h a s b e e n n o t e d by Z o s e l 1 6 a n d B o t t 1 5 u s i n g s u p e r c r i t i c a l n - C 3 H 8 a n d n - C 5 H i 2 r e s p e c t i v e l y . T h e i r e x t r a c t o i l s h a d a l o w e r m e t a l a n d a s p h a l t e n e c o n t e n t t h a n c o n v e n t i o n a l l i q u i d e x t r a c t s . H i g h e r c o n c e n t r a t i o n s o f e x t r a c t e d m i n e r a l o i l i n s u p e r c r i t i c a l 5 5 l i g h t h y d r o c a r b o n s was n o t e d by Z h u z e . A l t h o u g h Z h u z e c o n s i d e r e d t h i s p r o c e s s more e c o n o m i c a l b e c a u s e o f a h i g h e r c o n c e n t r a t i o n o f e x t r a c t e d o i l s , W i l l i a m s 1 i n h i s r e v i e w a r t i c l e c o n c u r r e d t h a t t h e p r o c e s s i s f a v o r a b l e o n a c c o u n t o f t h e i m p r o v e d e x t r a c t a s f o u n d b y Z o s e l . 1 6 T a b l e % \ S u p e r c r i t i c a l F l u i d E x t r a c t i o n s :Summary o f L i t e r a t u r e R e v i e w A. E x t r a c t i o n of N a t u r a l P r o d u c t s Ref. Year S u b s t r a t e Ext r a c t S o l v e n t Ext r a c t I o n Cond 111 ons Sol vent Regene r a t I o n C o n d i t i o n s Type of Study Comments P (MPa ) T Cc) P (MPa) T CO 47 1982 Soya bean Vege t a b l e o i l CO 2 20.7 -68.9 50, 60 Ambient S c m l - c o n t l n u o u s Ra t ch-subs t r a t e C o n t i n u o u s - s o l v e n t 1. E x t r a c t i o n e f f i c i e n c y I n c r e a s e s w i t h p r e s s u r e . 2. A temperature i n c r e a s e o n l y Improves e x t r a c t i o n e f f i c i e n c y at the h i g h e r p r e s s u r e s . 3. S i m i l a r e x t r a c t t o hexane e x t r a c t . 48 1982 Canola 6eed (Rapeseed) Vegetable o i l CO 2 30, 35 40 Ambient S c m l - c o n t l n u o u s B a t c h - s u b s t r a t e C e n t l n u o u s - s o l v e n t 1. E x t r a c t i o n e f f i c i e n c y I n c r e a s e s w i t h p r e s s u r e . 2. E v a l u a t i o n of the mass t r a n s f e r c o e f f i c i e n t . 49 1982 Ve g e t a b l e o i l Vegetable o i l CO 2 19.6 * 39.2 20, 55 1. E x t r a c t i o n e f f i c i e n c y i n c r e a s e s w i t h p r e s s u r e . 2. A temperature i n c r e a s e o n l y improves e x t r a c t i o n e f f i c i e n c y at the h i g h e r p r e s s u r e s . 50 1982 Hops P e l l e t s e s s e n t i a l o i l s CO 2 S u p e r c r i t i c a l S e m i - c o o t l n u o u s B a t c h - s u b s t r a t e C o n t i n u o u s - s o l v e n t Commercial a p p l i c a t i o n . 51 1982 Hope P e l l e t s E s s e n t i a l o i l s CO 2 L i q u i d S e m i - c o n t l n u o u s B a t c h - s u b s t r a t e C o n t i n u o u s - s o l v e n t Commercial a p p l i c a t i o n . T a b l e 2.1 Cont. 52 1982 LI 1 l a c Flower Lemon P e e l B l a c k Pepper Almonds E s s e n t i a l o i l s E s s e n t i a l o i l s P epperlne and E s s e n t i a l o i l s E s s e n t i a l O i l s 40 10 * 40 60 34 30 60 40 3.5 5.5 14 20 S e r a i - c o n t l n u o u s B a t c h - s u b s t r a t e C o n t i n u o u s - s o l v e n t E x t r a c t i o n e f f i c i e n c y I n c r e a s e s w i t h p r e s s u r e . U n f a v o u r a b l e c o s t s . 53 1980 Soya Bean S u n f l o w e r Seed Rapeseed Ve g e t a b l e O i l V e g e t a b l e 011 V e g e t a b l e O i l CO, 4.5 * 30 4.5 « 30 4.5 * 30 20, 40 20, 50 20, 50 IA. 20 Aa E x t r a c -t i o n IB. 75 As E x t r a c -t i o n S e m i - c o n t i n u o u s B a t c h - s u b s t r a t e C o n t i n u o u s - s o l v e n t 20 75 5 E x t r a c t i o n e f f i c i e n c y i n c r e a s e s w i t h p r e s s u r e . A t e m p e r a t u r e i n c r e a s e o n l y improves e x t r a c t i o n at the h i g h e r p r e s s u r e s . P r e l i m i n a r y s t u d i e s i n t o r e g e n e r a t i o n c o n d i t i o n s . 16 1978 C o f f e e Beans presoaked l n water C a f f e i n e CO 2 15.7 19.6 70 * 90 Ext r a c t 1 on Condi t i o n s Caf f e i n e a d s o r p t i o n on c h a r c o a l C a f f e i n e a b s o r p t i o n l n water S e r a l - c o n r l n u o u s B a t c h - s u b s t r a t e Cont i m i o u s - 8 0 l v e n t Commercial A p p l i c a t i o n 1. S e l e c t i v e c a f f e i n e removal. Table 2.1 Cont. 54 1978 Hops Pepper Nutmeg C h i l l i e s E s s e n t i a l O i l s Pepperi ne and E s s e n t i a l O i l s E s s e n t i a l 011p C a p s a l c l n e CO 2 S u p e r c r i t i c a l Suggests O p t i o n s : (a ) T >T e x t r a c t i o n (b) P <P e x t r a c t i o n ( c ) A d s o r p t i o n at ext r a c t i o n cond11 i ons. Sugges t s : Serai-contlnuous B a t c h - s u b s t r a t e C o n t i n u o u s - s o l v e n t 1. Notes h i g h e x t r a c t i o n of p r i n c i p l e c o n s t i t u e n t s 2. Review of I n d u s t r i a l a p p l i c a t i o n p r i n c i p l e s . 6 1978 Caraway F r u i t s Peppermint Leaves Raw C o f f e e Marihuana S u n f l o w e r Seeds Camanlle Fl o w e r s A l k a l o i d s ( V a r i o u s ) P r i n c i p l e C o n s t i t u e n t s & E s s e n t i a l O i l s A l k a l o i d s ( V a r i o u s ) C 0 2 N ?0 7 - 40 Ambient S e m i - c o n t i n u o u s Ba t ch-Rubs t r a t e C o n t i n u o u s - s o l v e n t 1. E x t r a c t i o n e f f i c i e n c y I n c r e a s e s w i t h a p r e s s u r e I n c r e a s e . 2. S e l e c t i v i t y d e c r e a s e s w i t h an I n c r e a s e l n p r e s s u r e . 3. F r a c t i o n a t i o n I s p o s s i b l e I n a p r e s s u r e g r a d i e n t e x t r a c t i o n . 4. N 20 b e t t e r f o r a l k a l o i d s w i t h p o l a r g r o u p s . T a b l e 2.1 Cont. B. E x t r a c t i o n of M i n e r a l O i l s Ref. Year 15 1980 55 S u b s t r a t e Tar Sands Ext r a c t S o l v e n t Peat 1960 O z o c e r i t e Ore O i o c e r i t e and C e r l s l n n - C 5 H 1 2 Ext r a c t I o n C o n d i t i o n s P (MPa) 1.9 -8.3 T Cc) 120, 140 H R + C ^ , A d s o r p t i o n of a s p h a l t e n e s and a s s o c i a t e d raetallc compounds on a c h a r c o a l bed. 5.6 5.8 161 • 218 A d s o r p t i o n of a s p h a l t e n e s and a s s o c i a t e d m e t a l l c compounds on a c h a r c o a l bed. 9.8 -11.8 100 A d s o r p t i o n of r e s i n o u s compounds on Dlatomaceous e a r t h . S o l v e n t R e g e n e r a t i o n C ond1tions P (MPa) T Cc) Ambient Ambient Type of Study S e m i - c o n t l n u o u s B a t c h - s u b s t r a t e Con t l n u o u s - s o l v e n t Scml-contInUOUB B a t c h - s u b s t r a t e C o n t l n u o u s - s o l v e n t 2. Comments E x t r a c t i o n e f f i c i e n c y i n c r e a s e s w i t h a p r e s s u r e I n c r e a s e . F r a c t i o n a t i o n w i t h p r e s s u r e or temperature v a r i a t i o n s . Good n o n - a s p h a l t l c p r o d u c t . Cood n o n - a s p h a l t i c p r o d u c t . H i g h e r r e c o v e r y than l i q u i d pentane e x t r a c t . 1. F a v o u r a b l e economic comparison w i t h l i q u i d benzene e x t r a c t i o n . 2. F r a c t i o n a t i o n by p r e s s u r e v a r i a t i o n . Table 2.1 Cont. C. E x t r a c t i o n of Coal O i l s Ref. Year S u b s t r a t e E x t r a c t S o l v e n t E x t r a c t i o n Cond i t i o n s S o l v e n t Regcne ra 11 on Co n d i t i o n s Type of Study Comments P (MPa) T CO P (MPa ) T CO 56 1979 C o a l High b o i l i n g p o i n t hyd roca rbons Toluene P a r a c r e s o l 9.8 -8.3 5.6 -5.8 600 - 440 Atraospherlc d i s t i l l a t i o n . Overheads - s o l v e n t B a t c h - c o n t i n u o u s Moving bed r e a c t o r 1. Thermal d e g r a t l o n of p a r a c r e s o l 2. Not yet an e c o n o m i c a l c o a l l l q u e f 1 cat i o n t e c h n i q u e . 57 1975 C o a l High b o i l i n g p o i n t hyd rocarbons Tolnene 10.31 441 Atmospheric d i s t i l l a t i o n Overheads - s o l v e n t Semi-cont inuous B a t c h - s u b s t r a t e Cont i n u o u s - B o l v e n t 1. Improved e i t t r a c t over c o n v e n t l o n a l l i q u i d e x t r a c t i o n s . 2. S t r a i g h t f o r w a r d and e f f i c i e n t s o l v e n t r e c o v e r y at moderate t e m p e r a t u r e s . D. T r i g l y c e r i d e F r a c t i o n a t i o n Ref. Year S u b s t r a t e Ext r a c t S o l v e n t E x t r a c t i o n Condi t I o n s S o l v e n t Regene r a t i o n C o n d i t i o n s Type of f*tudy Comments P (MPa) T C C ) P (MPa) T (C) 15 1980 M o n o - D l - T r l -C l y c e r l d e s £ E n t r a l n e r , (Carbon t e t r a c h l o r i d e or Hexane) T r i o l e a t e g l y c e r l d e CO 2 8 * 10 95 • 120 Amb ent S e m i - c o n t i n u o u s B a t c h - s u b s t r a t e C o n t I n u o u s - s o l vent 1. E f f e c t i v e s e p a r a t i o n of T r o l e a t e g l y c e r l d e s at moderate p r e s s u r e s o n l y w i t h an e n t r a l n e r . 58 1978 M o n o - D i - T r i -C l y c e r i d e s & E n t r a l n e r , ( A cetone) M o n o - g l y c e r l d e CO 2 13 69.6 Proposed 13 110 Phase e q u i l i b r i a S t u d i e s (STATIC) L.C. 1. E f f e c t i v e m o n o / d l g l y c e r l d e s e p e r a t l o n f a c t o r , at moderate p r e s s u r e s o n l y w i t h an e n t r a l n e r . 16 1978 Cod L i v e r 011 C l y c e r l d e s 9.8 » 15.7 Hot F l n g i 27 r R e f l u x 90 Serai-contInuous B a t c h - s u b s t r a t e C o n t I n u o u s - s o l v e n t 1. C o n t r o l l e d f r a c t i o n a t i o n d u r i n g e x t r a c t i o n p r e s s u r e g r a d i e n t . T a b l e 2.1 Cont. E. P e t r o l e u m F r a c t i o n a t i o n Ref. Year 16 1978 55 1960 S u b s t r a t e o-Olef Ins C m (Tr a c e ) c 1 6 . c 1 8 . c 2 0 Top Residue of Pet r o l e u m D i s t i l l a t i o n Top Residue of Pe t r o l e u m D i s t i l l a t i o n E x t r a c t P e t r o l e u m Cl6 L i g h t e r non-a s p h a l t l c p o r t i o n L i g h t e r no a s p h a l t l c p o r t i o n L i g h t e r non-a a p h a l t l c p o r t i o n S o l v e n t C2Hi, C 3 H 8 + C 3 H 6 Ext r a c t I o n C o n d i t i o n s P (HPa) 5.9 10.8 12.7 9.8 9.8 T C C ) 45 140, 70 105, 140 S o l v e n t Regenerat i o n C o n d i t i o n s P (MPa) T Cc) 100 2.9 1) 2.9 2) 0.03 85 140 95 Ambient 1) 4.4 100 2) Ambient Type of Study S e m i - c o n t l n u o u s B a t c h - s u b s t r a t e C o n t l n u o u s - s o l v e n t C o n t i n u o u s p i l o t p l a n t Serai-contlnuous B a t c h - s u b s t r a t e C o n t i n u o u s - s o l v e n t S e m i - c o n t l n u o u s B a t c h - s u b s t r a t e C o n t l n u o u s - s o l v e n t Comments P r e s s u r e I n c r e a s e analogous to an I n c r e a s e i n temperature i n a d i s t i l l a t i o n p r o c e s s . Comparison to l i q u i d e x t r a c t i o n . 1. E q u i v a l e n t weight e x t r a c t e d . 2. Lower Vanadium c o n t e n t . 3. Lower Conradson number* Demonstrates the term d e s t r a c t i o n . F i r s t proposed commercial a p p l i c a t i o n of S.F.E. Quotes Improved economics of pro c e s s over c o n v e n t i o n a l l i q u i d t e c h n i q u e s 17 The s u p e r c r i t i c a l f l u i d r e g i o n s s t u d i e d w e r e p r e d o m i n a n t l y w i t h i n t h e s h a d e d a r e a i n d i c a t e d i n F i g u r e 1 . 2 . i . e . 1 < P r < 5 ; 1 < T r < 1 . 2 . The e x p e r i m e n t a l p r o c e d u r e s w e r e p r i n c i p a l l y c o n d u c t e d i n a s e m i - c o n t i n u o u s f a s h i o n , w i t h t h e s o l v e n t and s u b s e q u e n t e x t r a c t p a s s i n g c o n t i n u o u s l y t h r o u g h a s t a t i c bed o f s u b s t r a t e . C o m m e r c i a l p r o c e s s e s i n v o l v i n g s o l i d s u b s t r a t e s 1 6 » 5 0 a r e c u r r e n t l y o p e r a t e d i n t h i s mode a n d t h e r e f o r e s e m i - c o n t i n u o u s e x t r a c t d a t a c a n be r e a d i l y u s e d f o r c o m m e r c i a l d e s i g n . A n a l y s i s o f t h e e x t r a c t o i l s r a n g e d f r o m s i m p l e q u a n t i t a t i v e m e a s u r e m e n t s ( i . e . , amount o f e x t r a c t o i l ) t o q u i t e c o m p l e x q u a l i t a t i v e 59 m e a s u r e m e n t s . B a r t l e e t a l . , f o r e x a m p l e , p r o v i d e d an e x t e n s i v e a n a l y s i s o f s u p e r c r i t i c a l t o l u e n e e x t r a c t e d c o a l o i l . The a n a l y s e s o f t h e e x t r a c t e d p e t r o l e u m o i l s w e r e c o n f i n e d t o m e t a l and a s p h a l t e n e c o n t e n t t o i n d i c a t e f r a c t i o n a t i o n and an i m p r o v e d s u p e r c r i t i c a l f l u i d e x t r a c t e d p r o d u c t . 1 5 ' 1 6 2.2 Miscible Displacements T a b l e 2 . 2 l i s t s t h e a r t i c l e s r e l e v a n t t o m i s c i b l e f l o o d i n g . The o i l s s t u d i e d i n c l u d e d s e p a r a t o r o i l ( i . e . , t h e r e s e r v o i r o i l f r a c t i o n t h a t e x i s t s i n a l i q u i d s t a t e a t a m b i e n t c o n d i t i o n s ) , s e p a r a t o r o i l p l u s s o l u t i o n g a s t o s i m u l a t e t h e i n p l a c e r e s e r v o i r o i l , and s y n t h e t i c m i x t u r e s t o s i m u l a t e t h e c o m p l e x c r u d e s . D i s p l a c e m e n t t e s t s w e r e u s e d t o e v a l u a t e t h e p r e s s u r e r e q u i r e d f o r m i s c i b i l i t y . The t e s t I s e s s e n t i a l l y a d i s p l a c e m e n t o f o i l by an i n j e c t e d d i s p l a c e m e n t f l u i d , f r o m an o i l - s a t u r a t e d , s a n d - f i l l e d l o n g M i s c i b l e D i s p l a c e m e n t s : S u m m a r y o f L i t e r a t u r e R e v i e w Ref. Year O i l D i s p l a c i n g F l u i d C o n d i t i o n s of Study Type of Study Type of Equipment Purpose of Study P (MPa) T CO Comments 60 1981 Se p a r a t o r and Se p a r a t o r + S o l u t i o n gas CO j 3 » 24 32.2 S t a t i c M u l t i p l e Contact S t a t i c S erai-contlnuous: Continuous C O 2 through batch of o i l D isplacement V a r i a b l e - v o l u m e windowed c e l l F i x e d volume windowed c e l l S l i m tube M u l t i p l e phase b e h a v i o u r ( L ] - L 2 - V - S ) E q u i l i b r i u m phase: compos 1 1 i o n s , dens 11y, v i s c o s i t y . I n f l u e n c e on, and s i m u l a t i o n of d i s p l a c e m e n t t e s t s Summary o f , and a d d i t i o n a l work t o the two p r o c e e d i n g papers. Minimum M i s c i b i l i t y P r e s s u r e (M.M.P) c o r r e l a t i o n at T < 50*C. 61 1981 S y n t h e t i c 1. C i , n - C ) 6 2. n - C u n - C 1 0 n-C 1 6 CO 2 7 * 20 32.2 S t a t i c V a r i a b l e - v o l u m e windowed c e l l S i m u l a t i n g m u l t i p l e phase b e h a v i o u r ( l ^ - L j - V ) w i t h a s y n t h e t i c o i l . E q u i l i b r i u m phase coraposi t l o n 6 E q u a t i o n t o e s t i m a t e p r e s s u r e at w h i c h l l q u l d - l l q u l d - v a p o r L j - L j - V ) b e h a v i o u r o c c u r s i n low temperature r e s e r v o i r s (T < 50"C). 62 1980 S e p a r a t o r and; S e p a r a t o r + S o l u t i o n Gas CO 2 3 - 2 4 32.2 S t a t i c V a r i a b l e - v o l u m e windowed c e l l M u l t i p l e phase b e h a v i o u r ( L ) - L 2 - V - S ) E s t i m a t e s maximum temperature at which L|-L 2-V phenomena o c c u r s . T a b i c 2.2 Cont. 63 1980 S y n t h e t i c n-C ] . . . n - C i , 0 CO 2 7.9 * 16.2 35 • 89 Displacement SI1m-tube M i n i mum M i s c i b i l i t y P r e s s u r e (MMP) MMP C o r r e l a t i o n . 64 1979 Synthet l c a. n -C i ,, n-C]Q b. C i , n-C,,, n-C J ,1 c. C,... n-C,,. CO 2 8-7 -11.7 49 - 71 S t a t i c D isplacement Var1 able-volume windowed c e l l S l i m tube Phase b e h a v i o u r E q u i l i b r i u m phase c o m p o s i t i o n s A f f e c t on d i s p l a c e m e n t t e s t s 65 1978 S e p a r a t o r + S o l u t i o n Gas CO 2 5.2 -41.4 54.4 -> 123.9 S t a t i c V a r i a b l e - v o l u m e windowed c e l l Pha6e be h a v i o u r ( M-V-S) E q u i l i b r i u m phase: compos 11 i o n , dens 1 t y , v i scos 11 y , 6 u r f a c e t e n s i o n . 66 1977 S e p a r a t o r + S o l u t i o n Gas C]+ C 2+ C 3, CO 2 9 » 34.5 34.4 , 40.6 40.6 S t a t i c M u l t i p l e C o n t a c t Displacement V a r l b l e volume windowed c e l l Core M u l t i p l e phase b e h a v i o u r ( L , - L 2 - V - S ) E q u i l i b r i u m phase: c o m p o s i t i o n , d e n s i t y , v i s c o s i t y Table 2.2 Cont. 28 1974 S e p a r a t o r , and S e p a r a t o r + s o l u t i o n gas CO 2 3.4 * 20.7 21.8 * 87. 8 S t a t i c Displacement Windowed c e l l S l i m - t u b e V i s u a l o i l behaviour w i t h i n c r e a s i n g ^ p r e s s u r e by C O 2 i n j e c t i o n . Minimum m i s c i b i -l i t y p r e s s u r e (MMP ) T r a n s i t i o n zone c o m p o s i t i o n MMP c o r r e l a t i o n . V i s u a l behaviour cannot be used to determine the MMP. Found that C O 2 c o u l d " v a p o r i z e " hydrocarbons up to C 3 O . 31 1972 S e p a r a t o r + S o l u t i o n Cas (a) C [ , C 2 (b) C [ , C 3 ( c ) C[ , n-C,, (d) Ci , C 0 2 (e) C, , H 2S 17.2 86.7 Displacement S l i m - t u b e E f f e c t of a c i d gases In hydrocarbon m i s c i b l e p r o c e s s 67 1970 S e p a r a t o r + S o l u t i o n Gas N 2 + C, + L.P.G. S l u g . A l s o Cj + C 2 •» C, 8.3 * 10.8 40.6, 48,9 S t a t i c Displacement V a r i a b l e - v o l u m e windowed c e l l S l i m tube C o m p o s i t i o n a l and minimum p r e s s u r e r e q u i r e d l n hydrocarbon m i s c i b l e f l o o d s 68 1963 S e p a r a t o r CO 2 10.0 * 20.1 57.2 S t a t i c , M u l t i p l e Contact S t a t i c V a r i a b l e - v o l u m e windowed c e l l S t u d y i n g the v a p o r i z a t i o n ( e x t r a c t i o n ) a c t i o n of C O 2 . D e n s i t y of e x t r a c t phase o i l . P r e l i m i n a r y study of C O 2 as a m i s c i b l e agent. 69 1961 S e p a r a t o r Water, C0 2 S l u g C j , C 3 s l u g 9.0 54.4 Displacement Core Recovery of o i l from core 21 s l i m t u b e , o r r o c k c o r e . The minimum p r e s s u r e r e q u i r e d f o r m i s c i b i l i t y , known as t h e M i n i m u m M i s c i b i l i t y P r e s s u r e ( M . M . P . ) , i s t h e p r e s s u r e a t w h i c h a b o u t 95% o f t h e o i l i s r e c o v e r e d w i t h t h e i n j e c t i o n o f 1 . 2 p o r e 6 3 v o l u m e s o f d i s p l a c e m e n t f l u i d . The t e s t s p r o d u c e e m p i r i c a l r e l a t i o n s h i p s , t h r e e o f w h i c h a r e i n d i c a t e d i n A p p e n d i x A . S i n c e t h e e q u i l i b r i u m b e h a v i o u r r e q u i r e d f o r m u l t i p l e c o n t a c t m i s c i b i l i t y d i s p l a c e m e n t s c a n n o t be d e t e r m i n e d by s t a t i c o r f i r s t 28 c o n t a c t e q u i l i b r i u m s t u d i e s , s e v e r a l a u t h o r s a t t e m p t e d m u l t i p l e c o n t a c t s t u d i e s . M u l t i p l e c o n t a c t s t u d i e s p r o v i d e e q u i l i b r a t e d p h a s e d a t a d u r i n g t h e e n r i c h m e n t o f t h e r e s e r v o i r o i l o r d i s p l a c e m e n t f l u i d . M u l t i p l e c o n t a c t s t u d i e s r e q u i r e a v a r i a b l e - v o l u m e w i n d o w e d c e l l so t h a t t h e p r o d u c e d d i s p l a c i n g f l u i d ( o r r e s i d u a l o i l ) c a n be t o t a l l y r e m o v e d , a n d f r e s h d i s p l a c i n g f l u i d ( o r r e s e r v o i r o i l ) a d d e d a t t h e c e l l p r e s s u r e . T h e s e s t u d i e s a r e l e n g t h y and h a v e n e v e r b e e n u s e d t o d e t e r m i n e t h e m u l t i p l e c o n t a c t M . M . P . S t a t i c and m u l t i p l e c o n t a c t e q u i l i b r i u m s t u d i e s , h o w e v e r , p r o v i d e r e l e v a n t i n f o r m a t i o n o f t h e e x t r a c t i o n c h a r a c t e r i s t i c s and p h y s i c a l p r o p e r t i e s u s e d i n m o d e l l i n g t h e d i s p l a c e m e n t p r o c e s s . S i n c e w i n d o w e d c e l l s a r e e x c l u s i v e l y u s e d , v i s u a l p h a s e b e h a v i o u r h a s b e e n w e l l d o c u m e n t e d . I t h a s b e e n f o u n d t h a t a t t e m p e r a t u r e s n j u ^ i v ^, . . n r m 60-62 64-66 n „ 16 66 s l i g h t l y a b o v e t h e c r i t i c a l o f CO2 ' o r C 3 H 8 » t h r e e f l u i d p h a s e s c a n e x i s t a t c e r t a i n p r e s s u r e s . T h e s e f l u i d p h a s e s a r e c o n s i d e r e d an o i l r i c h l i q u i d , L i , a s o l v e n t ( d i s p l a c i n g f l u i d ) r i c h l i q u i d , L 2 , a n d a n e a r l y p u r e s o l v e n t r i c h v a p o r , V . T h e s e t h r e e f l u i d p h a s e s c a n a l s o e x i s t i n two c o m p o n e n t s y s t e m s i n w h i c h one c o m p o n e n t i s 2 2 1 8 60 6 2 s u p e r c r i t i c a l . ' O r r and c o - w o r k e r s ~ d e a l e x c l u s i v e l y w i t h t h e s e p h e n o m e n a , a n d p r o v i d e d t h e f o l l o w i n g r e l a t i o n s h i p f o r e s t i m a t i n g t h e p r e s s u r e a t w h i c h t h e s e t h r e e p h a s e s c a n c o - e x i s t f o r CO2 d i s p l a c e m e n t s : - 2 0 1 5 9 P = 1 0 1 . 3 2 5 e x p [ + 1 0 . 9 1 2 2 ] ( 2 . 1 ) T f o r , 283 < T < 3 2 3 ° K . The p r e s s u r e ( P ) i s i n k P a a n d i s w i t h i n t h e r a n g e o f + 1750 o r - 1000 k P a . A b o v e 3 2 3 ° K ( 5 0 ° C ) o n l y two f l u i d p h a s e s h a v e b e e n o b s e r v e d . The p h a s e s a r e c o n s i d e r e d an o i l - r i c h l i q u i d L i , and a s o l v e n t o r d i s p l a c i n g f l u i d r i c h v a p o r , V . A t t h e s e t e m p e r a t u r e s r e t r o g r a d e c o n d e n s a t i o n 65 o c c u r s . An a d d i t i o n a l s o l i d o r t a r l i k e p h a s e c a n be e x p e c t e d w i t h c r u d e o i l s a t h i g h c o n c e n t r a t i o n s o f t h e d i s p l a c i n g f l u i d o r s o l v e n t . I n t h e c a s e o f C O 2 , t h e s o l i d p h a s e e x i s t s when t h e o v e r a l l m o l a r c o n c e n t r a t i o n o f C 0 2 ( Z C 0 2 ) e x c e e d s a p p r o x i m a t e l y 60 % . 6 0 » 6 5 > 6 6 T h e s o l i d m a t e r i a l h a s n e v e r b e e n a n a l y z e d a n d d o e s n o t a c c o u n t f o r more t h a n a f e w p e r c e n t o f t h e c e l l v o l u m e . 6 6 T y p i c a l P - Z C 0 2 p l o t s a r e g i v e n i n F i g u r e 2 . 1 a n d 2 . 2 . T h e s a t u r a t e d v a p o r ( V ) o r C 0 2 - r i c h l i q u i d ( L 2 ) c o n d i t i o n s h a v e n e v e r b e e n e n c o u n t e r e d a s t h e h e a v y o i l f r a c t i o n s a r e v e r y i n s o l u b l e e v e n i n d e n s e , C 0 2 - r l c h p h a s e s . T h e p h a s e s a n d p h a s e b e h a v i o u r e x p e c t e d a r e t h e r e f o r e L i , L i - V , L i - V - S , L i - L 2 - V - S and L i - L 2 - S . The p h a s e c o m p o s i t i o n s a n d p r o p e r t i e s d e p e n d on t h e p r e s s u r e , t e m p e r a t u r e , o i l c o m p o s i t i o n a n d o v e r a l l c o n c e n t r a t i o n o f CO2. The 23 4200 3800 h 3400 3000 h 2R00 f « 2200 h 1800 K O O 1000 h 600 ' 20 40 GO 80 100 % 2 CO. MOL PERCENT C 0 ? F i g u r e 2 . 1 T y p i c a l P - Z ^ P l o t f o r R e s e r v o i r 0 i l s a t T e m p e r a t u r e s b e l o w 50 C 6 6 24 c o m p o s i t i o n s a n d p r o p e r t i e s h a v e n o t b e e n s t u d i e d a s e x t e n s i v e l y a s t h e v i s u a l p h a s e b e h a v i o u r . H o w e v e r , T a b l e 2 . 3 was p r o d u c e d f r o m t h e a v a i l -a b l e d a t a , t o i n d i c a t e t h e e x p e c t e d v a l u e s a t p r e s s u r e s b e l o w 20 M P a . I n p r e v i o u s l y p u b l i s h e d m i s c i b i l i t y s t u d i e s , t h e p r e s s u r e h a s n e v e r e x c e e d e d 5 P r o f C O 2 , w h i c h i s t h e p r o p o s e d s o l v e n t w i t h t h e h i g h e s t c r i t i c a l p r e s s u r e . T h e i n v e s t i g a t e d t e m p e r a t u r e n e v e r e x c e e d e d 1 . 2 T r o f C3H3 w h i c h i s t h e p r o p o s e d s o l v e n t w i t h t h e h i g h e s t c r i t i c a l t e m p e r a t u r e . A d e s i g n w h i c h i n c o r p o r a t e s t h e n o r m a l maximum s u p e r c r i t i -c a l f l u i d e x t r a c t i o n c o n d i t i o n s ( i . e . , P = 5 P r and T = 1 . 2 T r ) w o u l d a l l o w t h e s t u d y o f t h e n o r m a l maximum t e m p e r a t u r e s and p r e s s u r e s u s e d i n m i s c i b i l i t y s t u d i e s . U n l i k e s u p e r c r i t i c a l f l u i d e x t r a c t i o n s , p h a s e a n a l y s i s i s more c o n c e r n e d w i t h t h e d e p t h o r d i s t r i b u t i o n o f h y d r o c a r b o n s e x t r a c t e d . M e t a l l i c and a s p h a l t e n e c o n t e n t s a r e n o t r e q u i r e d a s t h e u l t i m a t e a i m o f t h e m i s c i b i l i t y p r o c e s s i s t o r e c o v e r t h e o i l a s i t e x i s t s i n t h e r e s e r v o i r . T a b l e 2 . 4 s u m m a r i z e s t h e p r i n c i p a l a n a l y t i c a l d a t a p r e s e n t e d by o t h e r s . The o r i g i n a l o i l h a s b e e n more f u l l y c h a r a c t e r i z e d o r a n a l y s e d t h a n t h e o i l s p r e s e n t i n t h e d i s p l a c i n g o r e q u i l i b r a t e d p h a s e s , a s t h e o r i g i n a l o i l w o u l d be a v a i l a b l e i n l a r g e r q u a n t i t i e s . S i n c e CO2 i s k n o w n t o e x t r a c t h y d r o c a r b o n s w i t h m o l e c u l a r w e i g h t s o f a n d s l i g h t l y 28 60 62 a b o v e n - C 3 o H s 2 , ' ' a n d b e c a u s e t h i s s t u d y i s i n v o l v e d w i t h e q u i l i b r i u m b e h a v i o u r , t h e a n a l y s i s f o r o r g a n i c compounds up t o t h i s m o l e c u l a r w e i g h t i s p a r t i c u l a r l y r e l e v a n t . The s y s t e m u s e d i n t h i s s t u d y d i d n o t p r o v i d e l a r g e s a m p l e s a n d t h e r e f o r e a g a s c h r o m a t o g r a p h i c t e c h n i q u e , s i m i l a r t o t h a t u s e d by O r r and c o - w o r k e r s , 6 0 " 6 2 was u s e d t o p r o v i d e e q u i l i b r i u m d a t a f o r o i l s w i t h w i d e m o l e c u l a r w e i g h t d i s t r i b u t i o n s . T a b l e 2 . 3 . T y p i c a l P h a s e C o m p o s i t i o n s , W e i g h t F r a c t i o n s and D e n s i t i e s t h a t o c c u r when C r u d e O i l i s C o n t a c t e d w i t h C 0 2 6 ° » 6 1 » 6 h ~ 6 e P h a s e B e h a v i o u r P h a s e C o m p o s i t i o n W e i g h t (%) D e n s i t y ( g / c m 3 ) L 1 " L 2 " V L l c l ch0+ 30 + 100 « 0 . 8 5 L 2 C : > « C 3 0 ->• 10 « 0 . 7 -• 0 . 8 v c : -»• « c 1 0 1 l * r " L 2 ^1 Cl + C i l 0 + 3 •»• 100 - 0 . 8 5 L i C i » C 3 0 -> 10 » 0 . 7 •> 0 . 8 L x - V L x C : •* Ck0+ 30 100 » 0 . 7 -> 0 . 8 5 V C i ->• « C 3 0 -f 10 0 . 8 T a b l e 2 . 4 A n a l y s e s D a t a o f O i l s i n M i s c i b l e D i s p l a c e m e n t S t u d i e s Ref. Year D l s p l ar.l nj; F l u i d O i l Type O i l C h a r a c t e r i z a t i o n / A n a l y s i s Phase O i l A n a l y s i s Component Breakdown A d d i t i o n a l I n f orma t i o n Component Breakdown A d d i t i o n a l I n f o r m a t i o n 60 1981 CO 2 S e p a r a t o r , S e p a r a t o r + S o l u t i o n Gas Mole X C l C l 0 • C l 1 + Weight X C l C 3ri< C 3 7+ D e n s i t y . V i s c o s i t y . M o l e c u l a r Weight. C y + D e n s i t y . C; + M o l e c u l a r Weight. Weight X c 3 6 . C:tv+ 61 1981 CO 2 S y n t h e t i c Mole X C l . c 5 . C 1 0 . C l * , Mole X C l . c s . C 1 0 . C 1 6 . 62 1980 CO 2 S e p a r a t o r , S e p a r a t o r + S o l u t i o n Gas Mole X C l C 1 0 . c l 1+ Weight X C l C36> C37+ D e n s i t y . V i s c o s i t y . M o l e c u l a r Weight. C 7 + D e n s i t y . C 7 + M o l e c u l a r Weight. Weight X C l C 3 6 C37+ T a b l e 2.4 c o n t d . 63 1980 CO 2 S y n t h e t i c Mole X C l C i , n . D e n s i t y . Mo l e c u l a r W eight. 64 1979 CO 2 S y n t h e t i c Mole X C l . Cm-Pc. T c . D e n s i t y . V i s c o s i t y . M o l e c u l e r Weight Mole X C l . 65 1978 CO 2 S e p a r a t o r + S o l u t i o n Gas Mole X C l 6 C17+-Mole 7. C l C l 6 C 1 7 + 66 1977 L i g h t H y d r o c a r b o n Gas. CO 2 S e p a r a t o r + S o l u t i o n Gas Mole X C l c 6 C 7 + . C ^ + D e n s i t y . C + V i s c o s i t y . Mole X c 6 . C7+ O i l r i c h phase; C 7 + D e n s i t y . C7+ M o l e c u l a r Weight. 28 1974 CO j S e p a r a t o r + S o l u t i o n Gas Weight X C l c 6 . c 6 + C , - K : 6 C7+C30 C 3 0+* D e n s i t y V i s c o s i t y Cg_i. M o l e c u l a r Weight Welght X C i - c 6 , C 6 + C 3 0 , C30+-T a b l e 2.4 c o n t d . 31 1972 L i g h t Hydrocarbons + A c i d Gases S e p a r a t o r + S o l u t i o n Gas Mole Z c l I • c 1 2 + C 1 2 + M o l e c u l a r Weight 67 1970 L i g h t Hydrocarbons S e p a r a t o r + S o l u t i o n Gas Mole 7. C 7 + M o l e c u l a r W eight. C7+ D e n s i t y . C5+ M o l e c u l a r Weight. 68 1963 CO 2 S e p a r a t o r D e n s i t y . M o l e c u l a r W eight. 69 1961 C 0 2 , c 3 D e n s i t y . V i s c o s i t y . Canradson number. 29 3. DEVELOPMENT OF THE ANALYTICAL PROCEDURES T h i s c h a p t e r d e a l s w i t h t h e d e v e l o p m e n t o f t h e a n a l y t i c a l p r o c e d u r e s u s e d i n t h e a n a l y s i s o f t h e o r i g i n a l o i l and t h e o i l f r a c t i o n s p r e s e n t i n t h e e q u i l i b r a t e d p h a s e s . A s e p a r a t o r o i l was u s e d a s t h e m u l t i c o m p o n e n t s o l u t e a n d t h e r e f o r e t h e e q u i l i b r a t e d p h a s e c o m p o s i t i o n s i n d i c a t e d i n T a b l e 2 . 3 c a n be e x p e c t e d f o r t h e s u p e r c r i t i c a l C02 s t u d i e s . I n g e n e r a l , t h e c o m p l e t e a n a l y s i s ( q u a l i t a t i v e a n d q u a n t i t a t i v e ) o f c o m p l e x h y d r o c a r b o n m i x t u r e s t h a t c o n t a i n compounds w i t h more t h a n 6 t o 10 c a r b o n atoms i s n o t a s y e t p o s s i b l e . T h e s e h i g h e r m o l e c u l a r w e i g h t h y d r o c a r b o n s c a n t h e o r e t i c a l l y e x i s t i n many i s o m e r i c f o r m s w h i c h a r e d i f f i c u l t t o b o t h s e p a r a t e and d i s t i n g u i s h . ^ 0 The s e p a r a t o r o i l a n d e q u i l i b r a t e d o i l f r a c t i o n s a r e c o m p l e x m i x t u r e s t h a t do c o n t a i n h y d r o c a r b o n s w i t h more t h a n 6 t o 10 c a r b o n s and t h e r e f o r e f r o m t h e o u t s e t , a c o m p l e t e o i l a n a l y s i s was n o t c o n s i d e r e d p o s s i b l e . As t h e e q u i l i b r i u m c e l l u s e d i n t h i s s t u d y o n l y had a maximum c a p a c i t y o f 1 d m 3 , t h e q u a n t i t i e s o f t h e e q u i l i b r a t e d a n d s e p a r a t e d o i l f r a c t i o n s w e r e l i m i t e d . T h i s i s p a r t i c u l a r l y t r u e o f t h e e x t r a c t o i l w h i c h i s g e n e r a l l y o n l y p r e s e n t a t a l o w w e i g h t f r a c t i o n w i t h r e s p e c t t o t h e s u p e r c r i t i c a l CO2 s o l v e n t . Many p h y s i c a l a n d s o l v e n c y t e s t s w e r e t h e r e f o r e n o t a p p l i c a b l e . A g a s c h r o m a t o g r a p h i c ( G . C . ) a n a l y s i s t e c h n i q u e was c h o s e n . Gas c h r o m a t o g r a p h y o n l y r e q u i r e s s m a l l s a m p l e s a n d c a n p r o v i d e f a i r l y r a p i d a n a l y s e s . A n y q u a l i t a t i v e a n a l y s i s was l i m i t e d , i n t h i s t h e s i s , t o 30 the o i l f r a c t i o n which eluted below a chromatographic oven temperature of 350°C. Temperatures above 350°C can cause substantial thermal 3 cracking of the higher molecular weight compounds. A chromatographic oven temperature of 350°C could provide the elu t i o n of hydrocarbons with up to approximately 40 carbon atoms. A high degree of separation or reso l u t i o n of the o i l components can 71 be obtained using c a p i l l a r y column G.C. methods. As a Hewlett Packard gas chromatograph-mass spectrometer (G.C.-M.S.) with a f u l l y i n t e r a c t i v e data system was ava i l a b l e , the c a p i l l a r y column separation and mass spectra I d e n t i f i c a t i o n analysis route was considered. Although a test i n j e c t i o n of a s u p e r c r i t i c a l CO2 extract o i l provided over 200 peaks, the data system had had d i f f i c u l t y i n i d e n t i f y i n g the n-C28H58 spectrum from a simple and well resolved c a l i b r a t i o n mixture. To minimize the work i n i d e n t i f y i n g and i n data handling t h i s powerful a n a l y t i c a l technique was not pursued. A low resolution G.C. technique was ultimately chosen to provide a simulated d i s t i l l a t i o n of the o i l sample. The simulated d i s t i l l a t i o n technique has been standardized by the American Society for Testing and Materials, (the A.S.T.M. D-2887-73 method), for o i l samples which b o i l 72 below 538°C and which are t o t a l l y eluted from the G.C. column. The simulated d i s t i l l a t i o n technique has also been suggested to the A.S.T.M. Committee i n a modified form for the d i s t i l l a t i o n of crudes and o i l samples which contain a non-eluted f r a c t i o n . 7 0 Equilibrium data were obtained by assuming that a b o i l i n g range has a p a r t i c u l a r averaged molecular weight. 31 T h e d e t a i l s a n d d e v e l o p m e n t o f t h i s p r o c e d u r e a r e o u t l i n e d i n t h e r e m a i n d e r o f t h i s c h a p t e r . Some i n i t i a l r e s u l t s a r e a l s o p r o v i d e d t o i n d i c a t e t h e d i r e c t i o n o f t h e d e v e l o p m e n t a n d t h e p r i n c i p l e s b e h i n d t h e s i m u l a t e d d i s t i l l a t i o n p r o c e d u r e s . 3.1 Gas Chromatographic Simulated D i s t i l l a t i o n T h e o b j e c t i s t o c r e a t e a c h r o m a t o g r a m w h i c h s i m u l a t e s a c o n v e n t i o n a l b e n c h s c a l e d i s t i l l a t i o n , s u c h as t h e A . S . T . M . D - 8 6 m e t h o d . The c h r o m a t o g r a p h i c s i m u l a t e d d i s t i l l a t i o n t h e r e f o r e r e q u i r e s c o l u m n s and c o n d i t i o n s t h a t e l u t e compounds i n o r d e r o f t h e i r b o i l i n g p o i n t s , w i t h d e t e c t o r s and a r e a i n t e g r a t o r s t o q u a n t i f y t h e a m o u n t s e l u t e d . E x p e r i e n c e h a s shown t h a t t h i s s e p a r a t i o n c a n be a c h i e v e d f o r n o n - p o l a r h y d r o c a r b o n s u s i n g a n o n - p o l a r , s i l i c o n e s t a t i o n a r y l i q u i d 7 3 p h a s e and t e m p e r a t u r e programmed o v e n c o n d i t i o n s . C o n v e n t i o n a l F l a m e I o n i z a t i o n D e t e c t o r s ( F . I . D . ) o r T h e r m a l C o n d u c t i v i t y D e t e c t o r s ( T . C . D . ) c a n be u s e d f o r t h e d e t e c t i o n . T a b l e 3 . 1 l i s t s t h e c o n d i t i o n s , c o l u m n s , d e t e c t o r s , c a r r i e r g a s e s a n d s a m p l e s i z e s u s e d by p r e v i o u s w o r k e r s . The s i m u l a t e d d i s t i l l a t i o n t e c h n i q u e s do n o t a i m t o c o m p l e t e l y s e p a r a t e o r i d e n t i f y t h e 200 p l u s compounds t y p i c a l l y p r e s e n t i n o i l s a m p l e s , c o n s e q u e n t l y , c h r o m a t o g r a m a r e a s a r e n o t s t o r e d a s p e a k a r e a s b u t a s t i m e - s l i c e a r e a s . The c r e a t i o n o f t i m e - s l i c e s a n d t h e i n t e r p r e t a t i o n o f t h e t i m e - s l i c e d a r e a s r e q u i r e s a d d i t i o n a l s o f t w a r e t o b e e m p l o y e d by t h e d a t a c o n s o l e . The s o f t w a r e c r e a t e s a b o i l i n g p o i n t - r e t e n t i o n t i m e r e l a t i o n s h i p w i t h d a t a o b t a i n e d f r o m a p r e v i o u s l y i n j e c t e d n - a l k a n e c a l i b r a t i o n m i x t u r e , a n d u s e s t h e c u m u l a t i v e a n d n o r m a l i z e d t i m e - s l i c e a r e a s t o c r e a t e t h e p e r c e n t d i s t i l l e d - b o i l i n g p o i n t r e p o r t . T a b l e 3 . 1 Summary o f S i m u l a t e d D i s t i l l a t i o n C h r o m a t o g r a p h i c M e t h o d s Flow Sample I n i t i a l I n i t i a l Temp. F i n a l F i n a l Sample S t a t i o n a r y L i q u i d Column C a r r i e r Rate S i z e Temp. Hold Rate Hold Temp B o i l i n g L i q u i d L o a d i n g S o l i d Dimensions Ref D e t e c t o r Gas (t»l/mln) Ml . CO (mln) C C / r a l n ) (mln) CO Range CO Phase (*) Support L ( f t ) X D ( l n s ) 73 F.I.D. N 2 30 _ -50 0 10 8 350 _ UCW-98 3 t o 10 Crushed 1.7 X 1/8 T.C.D. He 14 - 0 0 8 0 325 - OV-101 f i r e b r i c k 10 X 1/8 T.C.D. - - - -20 0 10 0 250 - UCW-98 or 4 X 1/2 - T.C.D. - - - -30 0 10 0 250 - UCW-98 dlatomaceous 1.5 X 1/4 T.C.D. lie - - +50 1 10 0 200 - UCW-98 e a r t h 2 X 1/4 - F.I.D. N2 - - -30 0 11 0 380 - UCW-98 1.5 X 1/4 F.I.D. He - - -30 0 8 0 350 - OV-1 " - 2.5 X 1/8 " T.C.D. He - - -40 0 10 0 360 - UCW-98 ** 1.5 X 1/4 F.I.D. N 2 - - -40 0 10 0 360 - UCW-98 - 1.7 X 1/8 F.I.O. He - - -20 0 8 0 300 - SE-30 2.5 X 1/8 F.I.D. N2 - - -30 0 10 0 230 - UCW-98 - 1.5 X 1/4 T.C.D. He - - 50 1 20 0 350 - UCW-98 •* 2 X 1/8 T.C.D. He - 0 0 15 0 250 - 0V-1 7 X 1/8 T.C.D. He - - 25 2 6 0 2 50 - SE-30 8 X 1/8 74 _ - 20 _ 50 0 8 0 340 38*150 SP-2100 10 6 X - - - 30 - -20 0 8 0 250 18*315 OV-101 - 6 X " UCW-98 OV-l - - 30 - -20 0 8 0 340 -18*365+ SF-30 - 1.5 X 72 T.C.D. He 40 4 -20 0 10 0 360 *538 OV-l 3 (a) 4 X 1/4 F.I.D. He 30 0.3 -40 0 6.5 0 350 SE-30 5 (b) 5 X 1/8 F.I.O. N 2 60 1 50 0 8 0 350 UCW-98 10 (b) 2 X 1/4 T.C.D. He 60 5 50 0 7.5 0 390 SE-30 10 ( c ) 2 X 1/4 70 F.I.D. N 2 50 0.5 -30 0 10 0 380 -538+ UCW-98 10 ( c ) 1.5 X 1/4 75 F.I.D. He - - -30 0 8 0 350 - OV-l - - 2.5 X 1/8 60 F.I.D. + - - 1 -65 1 15 5 370 - OV-101 10 (d) 10 X 1/8 (a) - D l a t o p o r t - S., s l l a n e t r e a t e d , 60/80 mesh (b) - Chromasorb G(AW-DMS), 60/80 mesh ( c ) - Chromasorb P(AW), 60/80 mesh (d) - Chromasorb W (1 IP) , 60/80 mesh 33 S h o r t c o l u m n s h a v e b e e n s u g g e s t e d f o r s a m p l e s w h i c h a r e n o t t o t a l l y e l u t e d 7 0 ' 7 5 a n d t h e r e f o r e two s h o r t c o l u m n s w e r e t e s t e d u n d e r t h e c o n d i t i o n s i n d i c a t e d i n T a b l e 3 . 2 . The c o l u m n c o n t a i n i n g t h e OV-101 l i q u i d p h a s e c o u l d n o t p r o v i d e t h e minimum n - a l k a n e r e s o l u t i o n s e t b y t h e ASTM D - 2 8 8 7 - 7 3 m e t h o d , t h e r e f o r e t h e c o l u m n c o n t a i n i n g t h e UCW-98 l i q u i d p h a s e was e x c l u s i v e l y u s e d . The n - a l k a n e b o i l i n g p o i n t - r e t e n t i o n t i m e r e l a t i o n s h i p f o r t h e UCW-98 c o l u m n , i s i n d i c a t e d i n F i g u r e 3 . 1 . The c a l i b r a t i o n m i x t u r e o n l y c o n t a i n e d s e l e c t n o r m a l a l k a n e s f r o m n - C t o n - C i + o H s 2 . a n ^ t o p r o v i d e a b o i l i n g p o i n t d a t a b e f o r e t h e e l u t i o n o f t h e s a m p l e , t h e s i m u l a t e d d i s t i l l a t i o n s o f t w a r e a u t o m a t i c a l l y s e t t h e e l u t i o n o f e t h a n e a t 0 . 0 1 m i n u t e s . The s i m u l a t e d b o i l i n g p o i n t a t t h e end o f t h e c h r o m a t o g r a m i s f o u n d by e x t e n d i n g t h e r e l a t i o n s h i p t o t h e 3 7 t h m i n u t e . The e x t r a p o l a t e d end b o i l i n g p o i n t i s 5 2 0 °C. As n-CsgHgrj and n-Ci toHg2 h a v e n o r m a l b o i l i n g p o i n t s o f 518 a n d 525°C r e s p e c t i v e l y , t h e c h r o m a t o g r a p h i c m e t h o d was c o n s i d e r e d c a p a b l e o f d e t e c t i n g h y d r o c a r b o n s w i t h m o l e c u l a r W e i g h t s Up tO n H ^ c j H g n . 3.2 Samples Which Contain High Boil ing Point Fractions H i g h b o i l i n g p o i n t compounds a r e n o t e l u t e d f r o m t h e c h r o m a t o g r a p h i c c o l u m n a n d t h e r e f o r e a r e a s a r e o n l y n o r m a l i z e d w i t h r e s p e c t t o t h e f r a c t i o n e l u t e d . A q u a n t i t a t i v e a n a l y s i s m e t h o d i s r e q u i r e d t o a c c o u n t f o r t h e n o n - e l u t e d f r a c t i o n . The r a f f i n a t e s a m p l e s t h a t c o n t a i n h i g h b o i l i n g p o i n t f r a c t i o n s w e r e o n l y o f t h e o r d e r o f a f e w g r a m s w i t h t h e d e v e l o p e d s a m p l i n g 34 T a b l e 3 . 2 C h r o m a t o g r a p h i c H a r d w a r e a n d C o n d i t i o n s HARDWARE C h r o m a t o g r a p h : D e t e c t o r s : D a t a H a n d l i n g : C o l u m n ( a ) : C o l u m n ( b ) : P e r k i n - E l m e r S i g m a 2 , d u a l c o l u m n t e m p e r a t u r e p r o g r a m m a b l e g a s c h r o m a t o g r a p h , w i t h C 0 2 c r y o g e n i c o p t i o n . F l a m e I o n i z a t i o n D e t e c t o r s . P e r k i n - E l m e r S i g m a 10 d a t a c o n s o l e , w i t h " B a s i c " p r o g r a m m i n g a n d m a g n e t i c t a p e s t o r a g e o p t i o n s . 10% UCW-98 o n c h r o m a s o r b P ( A W ) , 8 0 - 1 0 0 m e s h . 18 i n ( 4 5 . 7 2 cm) x 0 . 2 5 i n ( 0 . 6 3 5 cm) O . D . s t e e l c o l u m n . 10% O V - 1 0 1 o n c h r o m a s o r b W ( H P ) , 8 0 - 1 0 0 m e s h . 18 i n ( 4 5 . 7 2 cm) x 0 . 2 5 i n ( 0 . 6 3 5 cm) O . D . s t e e l c o l u m n . CONDITIONS I n j e c t i o n V o l u m e : C a r r i e r G a s ( N i t r o g e n ) : I n j e c t i o n P o r t T e m p e r a t u r e : D e t e c t o r P o r t T e m p e r a t u r e : I n i t i a l O v e n T e m p e r a t u r e : F i n a l O v e n T e m p e r a t u r e : T e m p e r a t u r e R a t e : 0 . 5 - 1 . 0 u l 5 0 m l / r a i n 3 5 0 ° C 3 5 0 ° C - 3 0 ° C 3 4 0 ° C F o r c o l u m n ( a ) 1 0 ° C / m i n F o r c o l u m n ( b ) 8 ° C / m i n 500 SIMULATED END TEMPERATURE (520 C) 400 300 U 2 200 O Z O ,oo " 3 2 , 28. "24 . 20, "18 C V H / l/c, -100* 30 35 F i g u r e 3 . 1 '5 20 25 RETENTION TIME (MIN:) B o i l i n g P o i n t - R e t e n t i o n Time R e l a t i o n s h i p f o r n - a l k a n e s 40 36 p r o c e d u r e , a n d t h e r e f o r e i t was n o t c o n s i d e r e d p o s s i b l e t o a c c u r a t e l y f l a s h o f f t h e e l u t a b l e f r a c t i o n f o r a n a l y s i s . As a r e s u l t , a c h r o m a t o g r a p h i c i n t e r n a l s t a n d a r d m e t h o d was u s e d t o c a l c u l a t e t h e e l u t e d f r a c t i o n o f t h e s a m p l e . The two o p t i o n s d e s c r i b e d b e l o w h a v e b e e n s u g g e s t e d f o r u s e i n s i m u l a t e d d i s t i l l a t i o n a n a l y s e s . T h e f i r s t m e t h o d r e q u i r e s a b l a n k t i m e w i n d o w a t t h e b e g i n n i n g o f 7 6 t h e c h r o m a t o g r a m i n w h i c h an i n t e r n a l s t a n d a r d may be e l u t e d a n d q u a n t i f i e d i n d e p e n d e n t l y o f t h e o i l s p r e s e n t i n t h e s a m p l e . The e l u t e d f r a c t i o n , e , i s c a l c u l a t e d b y : e = ( W e i g h t ° f i n t e r n a l s t a n d a r d ^ x ^ A r e a f r a c t i o n o f t h e s a m p l e \ W e i g h t o f s a m p l e A r e a f r a c t i o n o f t h e i n t e r n a l s t a n d a r d ( 3 . 1 ) T h e s e c o n d m e t h o d 7 0 » 7 5 > 7 6 i s i n d i c a t e d i n F i g u r e 3 . 2 . The a r e a o f t h e i n t e r n a l s t a n d a r d , a | g , w i t h r e s p e c t t o t h e a r e a s o f t h e c h r o m a t o g r a m w i t h o u t t h e i n t e r n a l s t a n d a r d , i s c a l c u l a t e d b y : a ' + a ' a i s = b 2 x (bj-Tbf ) ~ a2 (3-2) T h e f r a c t i o n e l u t e d , e , i s c a l c u l a t e d b y : e = W e l g h t ° f i n t e r n a l s t a n d a r d 1 ( 3 3 ) W e i g h t o f s a m p l e a ! * i s T h e i n t e r n a l s t a n d a r d u s e d i n t h i s s t u d y , a n d t h a t was s u g g e s t e d t o 7 0 t h e A . S . T . M . C o m m i t t e e , c o n t a i n e d n - C ^ l ^ o , n - C ^ r ^ , n - C 16^31+ a n d 11--C17H36. 37 3 8 A l t h o u g h t h e s e c o n d m e t h o d r e q u i r e s two c h r o m a t o g r a p h i c r u n s , i t i s more g e n e r a l l y a p p l i c a b l e s i n c e i t d o e s n o t r e q u i r e a b l a n k w i n d o w i n t h e c h r o m a t o g r a m . 3 . 3 Response Factors T h i s a n a l y s i s a n d r e v i e w e d s i m u l a t e d d i s t i l l a t i o n a n a l y s e s a s s u m e d an e q u i v a l e n t d e t e c t o r r e s p o n s e f o r e v e r y c o m p o n e n t p r e s e n t i n t h e o i l s a m p l e s . I t w o u l d be a m o n u m e n t a l t a s k t o d e t e r m i n e i n d i v i d u a l r e s p o n s e f a c t o r s f o r a m i x t u r e w h i c h c o n t a i n s o v e r 200 c o m p o u n d s , and t h e r e f o r e o n l y n - a l k a n e r e s p o n s e f a c t o r s h a v e b e e n r e p o r t e d . O r r and T a b e r 6 0 t e s t e d t h e n - a l k a n e s n - C s H i 2 t o n - C u , o . H 8 2 « T h e y f o u n d f a i r l y s i m i l a r r e s p o n s e f a c t o r s f o r a l l t h e n - a l k a n e s , a n d c o n c l u d e d t h a t t h e a s s u m p t i o n o f e q u i v a l e n t r e s p o n s e f a c t o r s was w i t h i n t h e o v e r a l l a c c u r a c y o f t h e s i m u l a t e d d i s t i l l a t i o n t e c h n i q u e . M e a s u r e d r e l a t i v e r e s p o n s e f a c t o r s f o r a f e w compounds a r e g i v e n i n T a b l e 3 . 3 . F o r t h e n - a l k a n e s t e s t e d , no o b s e r v a b l e t r e n d was a p p a r e n t and t h e r e l a t i v e r e s p o n s e f a c t o r s w e r e f a i r l y e q u i v a l e n t . R e s p o n s e f a c t o r s w e r e t h e r e f o r e t a k e n a s e q u i v a l e n t a n d n o r m a l i z e d a r e a f r a c t i o n s w e r e t a k e n t o be i n d i c a t i v e o f t h e n o r m a l i z e d w e i g h t e l u t e d . 3 . 4 Evaluation and Subtraction of Base Line Areas T i m e - s l i c e d a r e a s i n d i c a t e t h e q u a n t i t y o f e l u t i n g m a t e r i a l t h a t i s b e i n g d e t e c t e d d u r i n g t h e c h r o m a t o g r a m t i m e - s l i c e . The d e t e c t o r n o t o n l y r e s p o n d s t o t h e e l u t i n g s a m p l e f r a c t i o n b u t a l s o , f o r e x a m p l e , t o I m p u r i t i e s i n t h e c a r r i e r and d e t e c t o r g a s e s , a s w e l l a s t h e c o l u m n s s t a t i o n a r y l i q u i d p h a s e b l e e d . T h e a r e a n o t a s s o c i a t e d w i t h t h e e l u t i n g T a b l e 3 . 3 R e l a t i v e R e s p o n s e F a c t o r s ( R . R . F . ) f o r V a r i o u s O r g a n i c Compounds ( R e s p o n s e F a c t o r = w e i g h t % / A r e a % , f o r a n o r m a l i z e d r e p o r t ) R . R . F . o f n - C 1 0 H 2 2 = 1 n-Cii ,+ Compound n - C 5 n - C 6 n ~ C s n - C i o n - C i 2 n - C l 7 C S 2 CCL4 W e i g h t 7. 1 7 . 1 1 1 9 . 4 9 1 8 . 9 6 2 2 . 7 8 2 1 . 6 5 -A r e a % 1 6 . 5 4 1 9 . 7 6 1 9 . 5 4 2 2 . 1 4 2 2 . 0 2 -R . R . F . 1 . 0 0 5 0 . 9 5 9 0 . 9 4 3 1 . 0 0 0 . 9 5 6 -W e i g h t % 1 7 . 1 1 1 9 . 4 9 1 8 . 9 6 2 2 . 7 8 2 1 . 6 5 -A r e a % 1 7 . 2 4 1 9 . 4 9 1 9 . 4 2 2 1 . 8 5 2 1 . 8 6 -R . R . F . 0 . 9 5 2 0 . 9 5 9 0 . 9 3 6 1 . 0 0 1 . 0 1 0 -W e i g h t % - - - 2 6 . 4 4 2 7 . 3 6 4 6 . 2 0 A r e a % - - - 2 6 . 9 6 2 8 . 0 4 4 5 . 0 0 R . R . F . - 1 . 0 0 0 . 9 9 5 1 . 0 4 7 W e i g h t % - - - 1 . 0 9 - - 9 8 . 9 1 A r e a % 9 9 . 5 7 - - 0 . 4 3 R . R . F . - 1 . 0 0 - - 2 1 . 7 2 W e i g h t % 7 2 . 5 1 - 2 7 . 4 9 A r e a % - 9 3 . 2 8 - 6 . 7 2 R . R . F . - - - 1 . 0 0 - 4 . 7 3 0 00 40 s a m p l e i s known a s t h e b a s e l i n e a r e a . C o l u m n b l e e d i n c r e a s e s w i t h a n i n c r e a s e i n t e m p e r a t u r e a n d t h e r e f o r e t h e b a s e l i n e s l i c e a r e a s i n c r e a s e d u r i n g t h e s i m u l a t e d d i s t i l l a t i o n c h r o m a t o g r a m . The b a s e l i n e w o u l d t h e r e f o r e e x h i b i t a p o s i t i v e d r i f t on a p l o t t e d c h r o m a t o g r a m . As b a s e l i n e a r e a s c a n r e p r e s e n t a s i z e a b l e p o r t i o n o f s a m p l e c h r o m a t o g r a m t i m e - s l i c e a r e a s , and b a s e l i n e a r e a s c a n n o t be d i s t i n g u i s h e d f r o m t h e e l u t i n g s a m p l e a r e a s , t h e s o f t w a r e i s r e q u i r e d t o b o t h e s t i m a t e and s u b t r a c t b a s e l i n e a r e a s f r o m t h e s a m p l e ' s r a w c h r o m a t o g r a m p r i o r t o t h e c a l c u l a t i o n o f t h e n o r m a l i z e d a r e a r e p o r t s . 3 . 4 . 1 I n i t i a l M e t h o d T h e s o f t w a r e s u p p l i e d by P e r k i n - E l m e r , i n c o n j u n c t i o n w i t h t h e s i m u l a t e d d i s t i l l a t i o n a n a l y s i s , had t h r e e o p t i o n s a v a i l a b l e f o r e s t i m a t i n g b a s e l i n e s l i c e a r e a s . 7 4 A s s u m i n g t h a t t h e f i r s t a n d l a s t s l i c e s may c o n t a i n no e l u t i n g s a m p l e , t h e s e s l i c e a r e a s may be i n d i c a t i v e o f t h e b a s e l i n e a r e a . On t h i s a s s u m p t i o n , t h e s u p p l i e d s o f t w a r e a l l o w e d t h e b a s e l i n e a r e a s t o be e s t i m a t e d i n t h e t h r e e o m a n n e r s i n d i c a t e d i n F i g u r e 3 . 3 . T h i s i s a s i m p l i f i e d d i a g r a m a s t h e s o f t w a r e a l l o w e d f o r a maximum o f 254 t i m e - s l i c e s . O p t i o n " c " , i n F i g u r e 3 . 3 , i s u s e d when t h e s a m p l e c o n t a i n s m a t e r i a l e l u t i n g I n t h e l a s t - t i m e s l i c e o f t h e c h r o m a t o g r a m . T h i s o c c u r s w i t h t h e o r i g i n a l a n d r a f f i n a t e o i l s a m p l e s a n d t h e r e f o r e o n l y o p t i o n " c " was c o n s i d e r e d . To o b t a i n a h o r i z o n t a l b a s e l i n e , a d u a l - c o l u m n o p e r a t i o n was e m p l o y e d . Two i d e n t i c a l c o l u m n s a r e u s e d i n p a r a l l e l w i t h one p r o v i d i n g t h e s a m p l e a n a l y s i s a n d t h e o t h e r p r o v i d i n g a r e f e r e n c e c o l u m n b l e e d . By s u b t r a c t i n g t h e d e t e c t o r r e s p o n s e o f t h e r e f e r e n c e c o l u m n f r o m t h e 41 T I M E -BASE LINE OPTIONS: F i g u r e 3 . 3 (a) - A l i n e a r s l o p e f r o m t h e f i r s t t o t h e l a s t s l i c e ( s ) . (b) - A h o r i z o n t a l l i n e f r o m t h e f i r s t s l i c e ( s ) t o a t i m e , T * , ( s p e c i f i e d by t h e u s e r ) , t h e n a l i n e a r s l o p e t o t h e l a s t s l i c e ( s ) . ( c ) - A h o r i z o n t a l l i n e f r o m t h e f i r s t s l i c e ( s ) t h r o u g h , o u t t h e e n t i r e c h r o m a t o g r a m . B a s e L i n e O p t i o n s U s i n g t h e O r i g i n a l S o f t w a r e 42 a n a l y s e r c o l u m n , a f l a t b a s e l i n e c a n t h e o r e t i c a l l y be o b t a i n e d . T h e s u c c e s s f u l o p e r a t i o n o f d u a l - c o l u m n a n a l y s i s r e q u i r e s e q u i v a l e n t c o l u m n b l e e d i n g a n d a b a l a n c e d d e t e c t o r r e s p o n s e . An e q u i v a l e n t c o l u m n b l e e d c o u l d n o t be o b t a i n e d e v e n a f t e r e x t e n s i v e c o l u m n c o n d i t i o n i n g . C o n s e q u e n t l y , t h e s p a r e c o l u m n e i t h e r b l e d more and p r o d u c e d a n e g a t i v e b a s e l i n e d r i f t , o r b l e d l e s s and p r o d u c e d a p o s i t i v e b a s e l i n e d r i f t . The r e s u l t s o f a p o s i t i v e and n e g a t i v e b a s e l i n e d r i f t , u s i n g t h e h o r i z o n t a l b a s e l i n e o p t i o n , a n d an 0 . 5 LLI i n j e c t i o n o f a s u p e r c r i t i c a l CO2 e x t r a c t o i l , a r e i n d i c a t e d i n T a b l e 3 . 4 a n d F i g u r e 3 . 4 . The r e s u l t s i n d i c a t e v a l u e s w h i c h d i f f e r s i g n i f i c a n t l y a t t h e h i g h s i m u l a t e d d i s t i l l a t i o n t e m p e r a t u r e . T h e s e h i g h s i m u l a t e d d i s t i l l a t i o n t e m p e r a t u r e s o c c u r a t t h e h i g h c h r o m a t o g r a p h i c o v e n t e m p e r a t u r e s w h e r e c o l u m n b l e e d and b a s e l i n e d r i f t i s s u b s t a n t i a l . 3 . 4 . 2 M o d i f i e d M e t h o d The m e t h o d s o f H e w l e t t - P a c k a r d and V a r i a n e s t i m a t e t h e b a s e l i n e a r e a s o f an i n j e c t e d s a m p l e c h r o m a t o g r a m by m e a s u r i n g 77 78 t i m e - s l i c e a r e a s o f an i n i t i a l b l a n k o r b a s e c h r o m a t o g r a m . » T h e i r s o f t w a r e a l l o w s t h e s t o r a g e a n d s u b t r a c t i o n o f t i m e - s l i c e a r e a s o f a b a s e c h r o m a t o g r a m f r o m t h e e q u i v a l e n t t i m e - s l i c e a r e a s o f an i n j e c t e d s a m p l e c h r o m a t o g r a m . The P e r k i n - E l m e r s o f t w a r e 7 1 * d i d n o t h a v e t h i s f l e x i b i l i t y a n d t h e r e f o r e i t was m o d i f i e d t o a l l o w t h e s u b t r a c t i o n o f s t o r e d i n d i v i d u a l t i m e - s l i c e b a s e a r e a s . As t h e d a t a c o n s o l e memory c a p a c i t y was l i m i t e d , two p r o g r a m m e s , " T S L I C E " , and " A - D - 2 8 8 7 " , l i s t e d i n A p p e n d i x E , w e r e w r i t t e n . T h e programme T S L I C E s i m p l y c r e a t e s t i m e -43 T a b l e 3 . 4 E f f e c t o f B a s e L i n e D r i f t on S i m u l a t e d D i s t i l l a t i o n R e p o r t A : N e g a t i v e D r i f t B : P o s i t i v e D r i f t W e i g h t D i s t i l l e d D i s t i l l a t i o n T e m p e r a t u r e U ) ( ° C ) ( ° C ) 0 . 5 72 81 5 106 112 10 125 131 15 135 140 20 146 150 25 154 158 30 161 164 35 171 171 40 179 181 45 190 188 50 199 198 55 209 206 60 220 216 65 227 222 70 240 232 75 247 241 80 258 250 85 274 260 90 296 274 95 369 293 9 9 . 5 4 8 5 367 44 BOILING POINT CC) F i g u r e 3 . 4 E f f e c t o f a P o s i t i v e a n d N e g a t i v e B a s e L i n e D r i f t o n S i m u l a t e d D i s t i l l a t i o n C u r v e 45 s l i c e d a r e a s a n d t r a n s f e r s t h e d a t a o n t o m a g n e t i c t a p e . The p r o g r a m m e A - D - 2 8 8 7 r e t r i e v e s t h e t i m e - s l i c e a r e a s ( s t o r i n g t h e b a s e l i n e a r e a s ) , c o r r e c t s t h e s a m p l e s r a w t i m e - s l i c e a r e a s a n d g e n e r a t e s a s i m u l a t e d d i s t i l l a t i o n r e p o r t . T h e r e s u l t s u s i n g t h i s m o d i f i e d a p p r o a c h a r e i n d i c a t e d i n T a b l e 3 . 5 a n d F i g u r e 3 . 5 . The I n j e c t e d s a m p l e was a s u p e r c r i t i c a l CO2 e x t r a c t o i l a n d t h e i n j e c t e d s a m p l e s i z e was a p p r o x i m a t e l y 0 . 5 u l . F o u r c h r o m a t o g r a p h i c r u n s w e r e p e r f o r m e d . The f i r s t and l a s t w e r e b l a n k , o r b a s e c h r o m a t o g r a m s . T h e r e p e a t a b i l i t y o f t h e s i m u l a t e d d i s t i l l a t i o n r e p o r t i s c l o s e t o t h a t r e q u i r e d by t h e A . S . T . M . D - 2 8 8 7 - 7 3 m e t h o d , o n l y i f t h e same b a s e c h r o m a t o g r a m i s u s e d . The s i m u l a t e d d i s t i l l a t i o n r e p o r t s d i f f e r s i g n i f i c a n t l y when one c o m p a r e s t h e r e s u l t s u s i n g b o t h b a s e c h r o m a t o g r a m s . The m a j o r s o u r c e o f e r r o r a p p e a r s n o t t o be t h e i n j e c t i o n p r o c e d u r e b u t r a t h e r t h e e s t i m a t i o n o f t h e b a s e l i n e a r e a . T h e b a s e l i n e a r e a s a p p e a r n o t t o be a c c u r a t e l y r e p e a t e d f r o m one r u n t o a n o t h e r . T h e d i f f e r e n c e s a r e o n l y l a r g e t o w a r d s t h e h i g h s i m u l a t e d d i s t i l l a t i o n t e m p e r a t u r e s w h e r e c h r o m a t o g r a p h i c o v e n t e m p e r a t u r e s a r e h i g h a n d c o l u m n b l e e d s u b s t a n t i a l . T h e a b i l i t y t o s u b t r a c t t i m e s l i c e d a r e a s i s an i m p r o v e m e n t o v e r t h e o r i g i n a l P e r k i n - E l m e r m e t h o d a s o n l y one c o l u m n i s r e q u i r e d a n d no c o l u m n b l e e d b a l a n c i n g i s n e e d e d . A d d i t i o n a l l y , t h e d i s t i l l a t i o n r e p o r t s , c a l c u l a t e d by s u b t r a c t i n g t h e f i r s t a n d l a s t b a s e c h r o m a t o g r a m s l i c e a r e a s , d i f f e r by l e s s t h a n t h e d i s t i l l a t i o n r e p o r t s c a l c u l a t e d u s i n g a p o s i t i v e a n d n e g a t i v e b a s e l i n e d r i f t . Table 3.5 E f f e c t of S u b s t r a c t i n g Base Chromatograms on Simulated D i s t i l l a t i o n Report. A: F i r s t Sample B: Second Sample C: F i r s t Sample D: Second Sample F i r s t Base F i r s t Base Last Base Last Base Weight DISTILLATION TEMPERATURE D i s t i l l e d ( %) (°C) (°C) (°C) (°C) 0.5 88 87 89 90 5 122 121 123 123 10 141 141 142 142 15 152 151 153 152 20 162 162 163 163 25 170 170 172 172 30 177 177 179 179 35 ' 187 187 189 189 40 196 196 197 197 45 204 204 208 208 50 216 216 218 218 55 226 227 229 229 60 236 236 236 236 65 242 242 246 246 70 251 251 253 253 75 257 257 263 263 80 269 269 273 273 85 280 280 273 273 90 296 295 304 303 95 317 316 346 341 99.5 381 375 478 443 47 TOO I I 80 A — F i r s t s a m p l e ; f i r s t b a s e B — S e c o n d s a m p l e ; f i r s t b a s e C — F i r s t s a m p l e ; l a s t b a s e D — S e c o n d s a m p l e ; l a s t b a s e II II 60 // / / / 40 / / 20 / / L _ 300 100 200 BOILING 400. 500 POINT CC) F i g u r e 3.5 E f f e c t o f S u b t r a c t i n g B a s e C h r o m a t o g r a m s o n t h e S i m u l a t e d D i s t i l l a t i o n C u r v e 48 H o w e v e r , t h e c o l u m n b l e e d a p p e a r s t o be r a t h e r i r r e p r o d u c a b l e so t h a t t h e m o d i f i e d a p p r o a c h , ( b a s e d on t h e s i m u l a t e d d i s t i l l a t i o n m e t h o d s 7 7 78 o f H e w l e t t - P a c k a r d and V a r i a n ) » s t i l l p r o d u c e s q u e s t i o n a b l e d a t a a t t h e end o f t h e c h r o m a t o g r a m . As a r e s u l t , an a v e r a g e d b a s e l i n e a r e a was u s e d f o r t h e q u a n t i t a t i v e a n a l y s i s . T h i s m e t h o d i s o u t l i n e d i n S e c t i o n 3 . 5 . 2 . 3.5 Molar Analysis 3 . 5 . 1 Q u a l i t a t i v e A n a l y s i s E q u i l i b r i u m d a t a i s o b t a i n e d b y a s s i g n i n g a p a r t i c u l a r t i m e w i n d o w o r b o i l i n g p o i n t r a n g e t o a m o l e c u l a r w e i g h t f r a c t i o n . F o r s i m p l i c i t y t h e m o l e c u l a r w e i g h t s o f n o r m a l a l k a n e s w e r e u s e d . Two w i n d o w o p t i o n s a r e i l l u s t r a t e d i n F i g u r e 3 . 6 . C a s e ( a ) r e p r e s e n t s t h e w i n d o w u s e d by O r r and T a b e r 6 0 and C a s e ( b ) r e p r e s e n t s t h e w i n d o w u s e d i n t h i s t h e s i s . A l t h o u g h t h e c h o i c e o f t h e w i n d o w i s somewhat a r b i t r a r y , and e q u i v a l e n t m o l e c u l a r w e i g h t compounds w i l l e l u t e b e f o r e a n d a f t e r t h e a d o p t e d w i n d o w , c a s e ( b ) was c h o s e n b e c a u s e t h e w i n d o w w o u l d c o n t a i n t h e c o m p l e t e n o r m a l a l k a n e p e a k s t h a t w e r e p r e d o m i n a n t i n t h e o i l s s t u d i e d . . 3 . 5 . 2 Q u a n t i t a t i v e A n a l y s i s Programme " B C - A R E A " , l i s t e d i n A p p e n d i x F , i s u s e d t o e v a l u a t e t h e a r e a s o f e a c h m o l e c u l a r w e i g h t c h r o m a t o g r a m w i n d o w . The p r o g r a m m e BC-AREA u s e s t h e t i m e - s l i c e d d a t a s t o r e d on m a g n e t i c t a p e , g e n e r a t e s n o r m a l i z e d w i n d o w a r e a s , a n d r e p o r t s t h e r e s u l t s a s a p e r c e n t a g e o f t h e t o t a l s a m p l e c h r o m a t o g r a m a r e a . 49 n 2n+2 n-1 n+1 . . E l u t i o n t i n e of n -alkane peak Time window f o r C H . n 2n+2 m o l e c u l a r weight f r a c t i o n (a) (b) ( f + t ,)/2 t o ( t + t )/2 n n-1 n n+i F i g u r e 3 . 6 O p t i o n s f o r C h r o m a t o g r a m Window A n a l y s i s 50 The programme u s e s t h e a v e r a g e d a r e a s o f b a s e c h r o m a t o g r a m s r u n b e f o r e and a f t e r t h e s a m p l e c h r o m a t o g r a m s . The programme a l s o c a l c u l a t e s t h e d i f f e r e n c e b e t w e e n t h e two b a s e a r e a v a l u e s , a n d u s e s t h e r e s u l t t o i n d i c a t e + / - a r e a v a l u e s f o r t h e e v a l u a t e d s a m p l e a r e a s . The d e t a i l s a r e g i v e n i n F i g u r e 3 . 7 . The + / - a r e a v a l u e s i n d i c a t e what t h e e v a l u a t e d a r e a s w o u l d h a v e b e e n i f e i t h e r t h e f i r s t o r l a s t b a s e had b e e n u s e d i n d e p e n d e n t l y t o c o r r e c t t h e s a m p l e ' s raw c h r o m a t o g r a m a r e a s . RAM CHROMATOGRAM AREA. FIRST BASE CHROMATOGRAM AREA, a b l 2 a C j = a b l j - a b 2 j LAST BASE CHROMATOGRAM AREA. ab2 SAMPIJ- AREA. a a j - a r S j - a b j a b l j - a b j + a e ^ AVERAGE BASF. AREA. ab^-Cabl J + a b 2 J ) / 2 a b 2 j - a b j - a e j WINDOW " j " The sample a r e a , a s ^ , l a taken a s : a s ^ - a s ^ +/- ae^ The s o f t w a r e s u p p l i e s the sample area as a perc e n t a g e of the t o t a l a r e a . a t . The sample a r e a I s taken a s : Where: a 'Sj-(ns^/at)xl 0 0;a"e^-(ae^/at ) x I 0 0 The t o t a l a rea I s taken a s : « t » J a r S j - TJabj a t - a t +/- ( I a e j / a t ) x ! 0 O F i g u r e 3 . 7 Q u a n t i t a t i v e A n a l y s i s M e t h o d 52 4. DEVELOPMENT OF EXPERIMENTAL PROCEDURES AND EQUIPMENT T h i s c h a p t e r d e a l s w i t h t h e d e v e l o p m e n t o f t h e e q u i p m e n t a n d p r o c e d u r e s . As t h e e q u i l i b r i u m c e l l , s a m p l i n g and s a m p l e s p r e p a r a t i o n f o r a n a l y s i s w e r e d e v e l o p e d i n d e p e n d e n t l y , i t was p o s s i b l e t o i d e n t i f y t h e l i m i t a t i o n s o f t h e e x p e r i m e n t a l p r o c e d u r e s a n d a p p a r a t u s . 4.1 Equilibrium C e l l The c e l l was d e v e l o p e d a r o u n d a m a g n e t i c a l l y s t i r r e d , h i g h p r e s s u r e a u t o c l a v e . The a u t o c l a v e r e p r e s e n t s a f i x e d - v o l u m e , b l i n d o r w i n d o w l e s s c e l l , a n d i s i l l u s t r a t e d i n F i g u r e 4 . 1 . The a u t o c l a v e h a s s e v e n i n l e t / o u t l e t p o r t s , t h r e e o f w h i c h a r e t h r o u g h t h e s t i r r e r l i d a s s e m b l y . T h e s e t h r e e p o r t s h a v e h i g h p r e s s u r e i n t e r n a l c o n n e c t i o n s f o r 0 . 2 5 i n c h ( 6 . 3 5 mm) O . D . by 0 . 1 0 9 i n c h ( 2 . 7 7 mm) I . D . s t a i n l e s s s t e e l t u b i n g , r a t e d f o r p r e s s u r e s up t o 1 7 7 . 9 M P a . A l l t h e p o r t s h a v e t h e s e c o n n e c t i o n s on t h e o u t s i d e . H e a t i s s u p p l i e d t o t h e a u t o c l a v e by a c y l i n d r i c a l m a n t l e s i t u a t e d a r o u n d t h e l o w e r body s e c t i o n . The a u t o c l a v e t e m p e r a t u r e i s c o n t r o l l e d b y a p r o p o r t i o n i n g c o n t r o l l e r . The m a n t l e i t s e l f h a d a maximum t e m p e r a t u r e s e t p o i n t c o n t r o l l e r , t o p r e v e n t t h e m a n t l e o r a u t o c l a v e c o n t e n t s f r o m o v e r h e a t i n g . The a u t o c l a v e t e m p e r a t u r e i s d i g i t a l l y s e t and d i s p l a y e d t o t h e n e a r e s t ° F ( 0 . 5 6 ° C ) . The m a n t l e ' s s e t p o i n t t e m p e r a t u r e a n d d i s p l a y a r e i n d i c a t e d on a d i a l s c a l e w i t h i n c r e m e n t s o f 1 0 ° F ( 5 . 5 6 ° C ) . B o t h c o n t r o l l e r s h a v e c h r o m e l - a l u m e l t h e r m o c o u p l e s a n d a n e l e c t r o n i c r e f e r e n c e t e m p e r a t u r e . T h e a u t o c l a v e t h e r m o w e l l i s s i m p l y a s e a l e d h i g h p r e s s u r e t u b e e x t e n d i n g i n t o t h e a u t o c l a v e c a v i t y . 53 MAGNETIC COUPLING MAX.PRESS. 103.4 MPa MAX.TEMP. 616.5 K VOLUME I L MATERIAL A-286 Steel METAL TO METAL SEAL AUTOCLAVE SUPPORT THERMOWELL AUTOCLAVE CAVITY MANTLE STIRRER AUTOCLAVE BODY SECTION F i g u r e 4 . 1 A u t o c l a v e D i m e n s i o n s a n d S p e c i f i c a t i o n s 54 The p r e s s u r e I s r a i s e d by i n t r o d u c i n g t h e g a s e o u s f e e d s o l v e n t v i a a 1 0 , 0 0 0 p s i a ( 6 8 . 9 MPa) d o u b l e - e n d d i a p h r a g m c o m p r e s s o r d r i v e n by a n e x p l o s i o n - p r o o f m o t o r . T h e c e l l p r e s s u r e was o r i g i n a l l y i n d i c a t e d by a 316 s t a i n l e s s s t e e l b o u r d o n p r e s s u r e g u a g e . T h i s guage h a s a r a n g e o f 400 p s i a ( 2 . 7 6 MPa) t o 2 0 , 0 0 0 p s i a ( 3 1 7 . a MPa) and t h e p r e s s u r e I s d i s p l a y e d on a d i a l s c a l e i n i n t e r v a l s o f 200 p s i a ( 1 . 3 8 M P a ) . The p r e s s u r e m e a s u r e m e n t a c c u r a c y was l a t e r i m p r o v e d by u s i n g a p r e s s u r e t r a n s d u c e r . The p r e s s u r e i s d i s p l a y e d d i g i t a l l y i n i n c r e m e n t s o f 1 a t m o s p h e r e ( 0 . 1 MPa) t o a maximum p r e s s u r e o f 3 5 . 5 M P a . The m a g n e t i c c o u p l i n g i s b e l t d r i v e n by an e x t e r n a l 1/4 H . P . ( 1 8 6 . 2 5 W) s t a n d a r d i n t e g r a l e x p l o s i o n - p r o o f m o t o r . The s p e e d i s s e t by a v a r i a b l e - s p e e d c o n t r o l l e r t o a maximum o f 2500 r p m . 4 . 1 . 1 A u t o c l a v e M o d i f i c a t i o n s A s e p a r a t e c o n s t a n t t e m p e r a t u r e b a t h was r e q u i r e d t o m a i n t a i n i s o t h e r m a l c o n d i t i o n s a t t h e s a m p l i n g p o i n t . A h o t a i r b a t h was u s e d a s i t was more e a s i l y a d a p t e d t o t h e a b o v e e q u i p m e n t t h a n an o i l b a t h , and c a n be u s e d f o r a w i d e r t e m p e r a t u r e r a n g e t h a n a 7 9 g i v e n o i l . H e a t i s s u p p l i e d by f i v e 100 W c a r t r i d g e h e a t e r s m o u n t e d i n a p e r f o r a t e d a l u m i n i u m b l o c k . The a i r i s c i r c u l a t e d w i t h i n t h e a i r b a t h u s i n g a 7 i n c h ( 1 7 . 7 8 cm) f a n b l a d e a t t a c h e d t o an a i r - d r i v e n e x p l o s i o n - p r o o f m o t o r . T h e b a t h t e m p e r a t u r e i s c o n t r o l l e d by a t i m e p r o p o r t i o n a l c o n t r o l l e r . The s e t p o i n t and m e a s u r e d t e m p e r a t u r e a r e d i s p l a y e d on a d i a l s c a l e up t o 5 0 0 ° F ( 2 6 0 ° C ) i n i n c r e m e n t s o f 1 0 ° F ( 5 . 5 6 ° C ) . 55 The h o t a i r b a t h i s i n s u l a t e d w i t h 1 t o 2 i n c h e s ( 2 5 . 4 t o 5 0 . 8 mm) o f f i b e r g l a s s b o a r d . A l u m i n i u m s h e e t i s p l a c e d o v e r t h e m a j o r i t y o f t h e i n s u l a t i n g m a t e r i a l t o p r o t e c t i t f r o m d a m a g e , o i l s p i l l a g e o r l e a k a g e . S p e c i a l c u s t o m v a l v e s t e m e x t e n s i o n s w e r e b u i l t t o a l l o w t h e o p e r a t i o n o f t h e v a l v e s f r o m o u t s i d e t h e a i r b a t h . The p r e s s u r e g u a g e , p r e s s u r e t r a n s d u c e r m a g n e t i c c o u p l i n g and a i r - d r i v e n m o t o r a r e a l s o s i t u a t e d o u t s i d e t h e a i r b a t h t o a l l o w t h e i r u s e a t e l e v a t e d t e m p e r a t u r e s , a s shown i n F i g u r e 4 . 2 . T h e e q u i l i b r i u m c e l l , c o m p r e s s o r a n d s o l v e n t g a s c y l i n d e r a r e a l l m o u n t e d on a c u s t o m made t r o l l e y , a s shown i n F i g u r e 4 . 3 . T h i s a l l o w e d t h e e q u i p m e n t t o be moved i n and o u t o f a s t a n d - u p fume c u p b o a r d . 4.2 Sampling S i n c e t h e p h a s e b e h a v i o u r c o u l d n o t be o b s e r v e d a maximum o f two p h a s e s w e r e s a m p l e d . The s a m p l e s w e r e t a k e n f r o m t h e t o p and b o t t o m o f t h e a u t o c l a v e and t h e s e s a m p l e s r e p r e s e n t e d t h e e x t r a c t and r a f f i n a t e p h a s e s r e s p e c t i v e l y . The d e s i g n o f t h e a u t o c l a v e d i d n o t a l l o w f o r d i r e c t s a m p l i n g o f t h e i n d i v i d u a l p h a s e s , a n d t h e r e f o r e t h e t u b i n g t h a t c o n n e c t s t h e a u t o c l a v e t o t h e s a m p l i n g v a l v e h a d t o be f i r s t d i s p l a c e d b e f o r e c o l l e c t i n g t h e s a m p l e . T h i s e n s u r e d t h a t t h e s a m p l e was a c t u a l l y t h e e q u i l i b r a t e d p h a s e . 4 . 2 . 1 I n i t i a l S a m p l i n g M e t h o d The s a m p l i n g d e s i g n i l l u s t r a t e d i n F i g u r e 4 . 4 was i n i t i a l l y u s e d . T u b e s A ' a n d B ' h a d l a r g e r v o l u m e s t h a n t u b e s A a n d B r e s p e c t i v e l y . T h e t u b e s A ' a n d B ' c o u l d be e v a c u a t e d t h r o u g h v a l v e s 3 Hot A i r B a t h F i g u r e 4.3 E x p e r i m e n t a l R i g 57 F i g u r e 4 . 4 F l o w s h e e t o f t h e I n i t i a l S a m p l i n g M e t h o d T a b l e 4 . 1 I n i t i a l S a m p l i n g R e s u l t s Volume D i s p l a c e d ( cm 3) F r a c t i o n of T o t a l Volume I n i t i a l P r e s s u r e (MPa) F i n a l P r e s s u r e (MPa) Temperature ("K) B 1 A1 B1 Sample c o l l s : R a f f l n a t e R a f f l n a t e E x t r a c t R a f f l n a t e E x t r a c t 0.373 0.896 0. 373 0.0373 0.0896 0.0373 0.8 0.8 0.8 0.8 0.8 Iso-Octane/COj 17.93 16.55 17.2A S e p a r a t o r o l l / C 0 2 12.67 18.64 5.98 12.46 5.98 17.58 15.86 16.58 12.16 17.33 5.88 11.96 5.88 311 311 311 333 338 294 333 294 T a b l e 4 . 1 I n i t i a l S a m p l i n g R e s u l t s V o l u m e F r a c t i o n o f I n i t i a l F i n a l T e m p e r a t u r e D i s p l a c e d T o t a l V o l u m e P r e s s u r e " P r e s s u r e ( c m d ) (%) (MPa) (MPa) ( ° K ) B 1 0 . 3 7 3 0 . 0 3 7 3 A 1 0 . 8 9 6 0 . 0 8 9 6 B 1 0 . 3 7 3 0 . 0 3 7 3 S a m p l e c o i l s : R a f f i n a t e « 8 0 . 8 R a f f i n a t e « 8 0 . 8 E x t r a c t « 8 0 . 8 R a f f i n a t e « 8 0 . 8 E x t r a c t * 8 0 . 8 I s o - 0 c t a n e / C 0 2 1 7 . 9 3 1 7 . 5 8 311 1 6 . 5 5 1 5 . 8 6 311 1 7 . 2 4 1 6 . 5 8 311 S e p a r a t o r o i l / C 0 2 1 2 . 6 7 1 2 . 1 6 333 1 8 . 6 4 1 7 . 3 3 338 5 . 9 8 5 . 8 8 294 1 2 . 4 6 1 1 . 9 6 333 5 . 9 8 5 . 8 8 294 < 58 a n d 4 . By a l l o w i n g t h e c o n t e n t s o f t u b e s A a n d B t o be d i s p l a c e d i n t o t u b e s A ' a n d B ' r e s p e c t i v e l y , t h e c o l l e c t e d s a m p l e s w o u l d be r e p r e s e n t a t i v e o f t h e e q u i l i b r a t e d p h a s e s . T a b l e 4 . 1 i n d i c a t e s t h e r e s u l t s o b t a i n e d w i t h t h i s p r o c e d u r e . I t i s c l e a r t h a t e v e n a v e r y s m a l l i n c r e a s e i n t h e c e l l v o l u m e , w h i c h o c c u r s by t h e a d d i t i o n o f t u b e s A ' and B ' and a l s o t h e s a m p l i n g c o i l s , c a n q u i t e n o t i c e a b l y a f f e c t t h e c e l l p r e s s u r e . 4 . 2 . 2 M o d i f i e d S a m p l i n g M e t h o d Two a l t e r n a t i v e s a m p l i n g m e t h o d s h a v e b e e n d e v e l o p e d f o r h i g h p r e s s u r e e q u i l i b r i u m s t u d i e s and b o t h p r o v i d e a d i s p l a c e m e n t o f t h e p h a s e i n t o t h e s a m p l e c o i l / v o l u m e w i t h o u t c h a n g i n g t h e c e l l v o l u m e . The f i r s t m e t h o d u s e s two i d e n t i c a l b a r r e l d i s p l a c e m e n t pumps w h i c h i n j e c t m e r c u r y and remove t h e p h a s e s i m u l t a n e o u s l y , t h e r e b y p r e s e r v i n g t h e e q u i l i b r i u m p r e s s u r e . 6 0 » 6 1 » 6 2 I n e f f e c t t h e t o t a l s y s t e m a c t s a s a v a r i a b l e v o l u m e c e l l . T h i s a r r a n g e m e n t was n o t c h o s e n p r i m a r i l y b e c a u s e t h e pumps w e r e n o t r e a d i l y a v a i l a b l e , a n d t h e u s e o f m e r c u r y i n t r o d u c e s p o t e n t i a l t o x i c i t y h a z a r d s . The s e c o n d m e t h o d r e l i e s on pumps t h a t c o n t i n u o u s l y c i r c u l a t e t h e p h a s e s t h r o u g h s a m p l e c o i l s . Two t y p e s o f c i r c u l a t i n g pumps h a v e b e e n 8 0 p r e v i o u s l y c i t e d . T h e y a r e a m a g n e t i c a l l y d r i v e n p i s t o n pump and a m i c r o m e t e r i n g p u m p . 6 0 T h e s e pumps i n c o r p o r a t e c h e c k v a l v e s t h a t c a n f a i l w i t h s t r e a m s w h i c h c o n t a i n r e s i n o u s m a t e r i a l . As a r e s u l t , t h e i r u s e was c o n f i n e d t o t h e e x t r a c t p h a s e . 6 0 ' 8 0 I t was d e c i d e d t o a d o p t t h e c i r c u l a t i n g m e t h o d , b u t t o u s e g e a r pumps t h a t a r e g e n e r a l l y c a p a b l e o f c i r c u l a t i n g v i s c o u s m a t e r i a l , a n d 59 w h o s e o p e r a t i o n i s n o t d e p e n d e n t on c h e c k v a l v e s . I t was a l s o d e c i d e d t o p l a c e t h e pumps i n s i d e t h e a u t o c l a v e s i n c e t h e m a g n e t i c s t i r r e r c o u l d be u s e d t o d r i v e t h e g e a r s . I n t e r n a l m o u n t i n g e l i m i n a t e s t h e n e e d f o r h i g h p r e s s u r e s e a l s and e n s u r e s t h a t t h e pump i s a t t h e c e l l t e m p e r a t u r e . P r i m i n g p r o b l e m s a r e a l s o s u b s t a n t i a l l y r e d u c e d when t h e pumps a r e s i t u a t e d i n t h e c e l l . As o i l s a r e b e i n g i n v e s t i g a t e d , t h e pumps a r e , t o an e x t e n t , s e l f l u b r i c a t e d . U n f o r t u n a t e l y no c o m m e r c i a l l y a v a i l a b l e g e a r pumps e x i s t t h a t c a n be d r i v e n by t h e 0 . 3 7 5 i n . ( 9 . 5 3 mm) d i a m e t e r s t i r r e r s h a f t a n d a l s o f i t i n t o t h e 3 i n . ( 7 6 . 2 mm) d i a m e t e r a u t o c l a v e . The pumps t h e r e f o r e h a d t o be c u s t o m b u i l t . The i n i t i a l d e s i g n i s i n d i c a t e d i n F i g u r e 4 . 5 and T a b l e 4 . 2 The g e a r s w e r e c o n v e n t i o n a l s p u r g e a r s and t h e o n l y m o d i f i c a t i o n was t h a t t h e y w e r e p r e c i s i o n g r o u n d t o t h e same l e n g t h . The pumps w e r e r e s t r a i n e d f r o m r o t a t i n g by t h e t h e r m o w e l l a n d an a d d i t i o n a l h i g h p r e s s u r e t u b e a t t a c h e d t o t h e s p a r e i n t e r n a l i n l e t / o u t l e t p o r t o f t h e s t i r r e r / l i d a s s e m b l y . As t h e pumps w e r e a t t a c h e d t o t h e s t i r r e r s h a f t , t h e y w e r e r e m o v e d e v e r y t i m e t h e l i d was r e m o v e d . T h i s a l l o w e d e a s y a c c e s s f o r c l e a n i n g a n d i n s p e c t i o n . T h i s d e s i g n f a i l e d w i t h i n a r e l a t i v e l y s h o r t p e r i o d o f t i m e . A f t e r 12 h o u r s o f c o n t i n u e d u s e , t h e e x t r a c t p h a s e pump no l o n g e r c i r c u l a t e d t h e e x t r a c t p h a s e and t h e r a f f i n a t e p h a s e had l e a k e d t h r o u g h t o t h e e x t r a c t p h a s e pump. The o - r i n g s e a l s a n d pump b o d y h a d b o t h b e e n e x c e s s i v e l y w o r n . T h i s was a t t r i b u t e d t o t h e p o o r a l i g n m e n t o f t h e s t i r r e r s h a f t , w h i c h a l s o c a u s e d t h e g e a r s t o j a m r e g u l a r l y . The 60 -3.00" S E C T I O N C - C T a b l e 4 . 2 D e t a i l s o f t h e I n i t i a l Pump D e s i g n Item Q u a n t i t y 7 8 9 10 11 12 13 14 15 16 17 T i t l e Top p l a t e E x t r a c t pump: Rear h o u s i n g M i d d l e p l a t e R a f f l n a t e pump: gear h o u s i n g Bottom p l a t e D r i v e gear S t l r r e r / d r i v e s h a f t D r i v e p i n I d l e gear I d l e gear s p a c e r I d l e gear s h a f t P o s i t i o n i n g c o l l a r B o l t s Nuts Compression s p r i n g s 0 - r i n g s I n l e t / o u t l e t elbows M a t e r i a l D c K c r t p t l o n / D i m e n s i o n A i r c r a f t D u r a l i u m As shown/machined from 3" D r o d S t e e l 316 S t . S t e e l T o o l S t e e l S t e e l S t . S t e e l S t . S t e e l A i r c r a f t D u r a l i u m S t . S t e e l S t . S t e e l S t e e l V l t o n 316 S t . S t e e l 16 p i t c h ; 14-1/2" p r e s s u r e a n g l e ; •) 12 t e e t h ; 0.750" p i t c h d i a m e t e r ; 0.375" D h o l e ; 0.375" L 0.375" D 0.0625" D; 0.500" L As 11 em 6 0.375" O.D.; 0.125" I.D.; 0.375" L 0. 125" D; 0.500" L 0.8125" O.D.; 0.375" I.D.; 0.375" L 5/32" t h r e a d e d , 3" L 0.25" O.D. 0.375" O.D. 0.25" I.D. "Swagelock" male elbow (SS-200-2-1) , 0.125" O.D. tube f i t t i n g ; m o d i f i e d J l / 4 " O.D. male pipe t h r e a d to s t r a i g h t ( t h r e a d e d 1/4" N.F. male end *Not I n d i c a t e d ; 0.001" T e f l o n gasket s h e e t i n g between gear h o u s i n g and p l a t e s (4 of )* 62 jamming can be observed by the s l i p p i n g of the magnetic coupling. A new pump design was used. The design d e t a i l s are indicated i n Table 4.3 and Figure 4.6. Figures 4.7 and 4.8 are photographs of the assembled pumps. The use of a universal coupling removes the non-aligned motion of the s t i r r e r shaft from the short shafts used to drive the gears. The o-ring seal design and use of a bearing further aligns the short independent gear drive shafts. The separation of the pumps prevents leakage of the phases between the gear pumps. Like the previous design, the thermowell and add i t i o n a l high pressure tube are used to prevent the pumps from rota t i n g , and the pumps are attached to the l i d assembly. As both phases return to the c e l l v i a the i n l e t / o u t l e t ports on the autoclave body section, the phases both return to the top of the c e l l . The returning r a f f i n a t e phase therefore flows through the extract phase providing intimate mixing for more rapid e q u i l i b r a t i o n . 4.3 Sample Preparation The o i l analysis i s performed at atmospheric pressure and therefore some form of sample expansion was required. At ambient conditions the high pressure samples w i l l form two phases that can be considered a condensed l i q u i d and expanded gas. The expanded gas w i l l be predominantly the v o l a t i l e solvent and the condensed l i q u i d the o i l f r a c t i o n . I d e a l l y the t o t a l expanded sample should be injec t e d onto the chromatographic column to minimize the errors associated with combining the analyses of two phases. The two methods that have been mentioned SECTION B-B Item Q u a n t i t y T a b l e 4 . 3 D e t a i l s o f t h e M o d i f i e d Pump D e s i g n T i t l e M a t e r i a l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 2 2 2 3 3 1 4 8 2 2 1 1 2 2 1 2 16 1 2 2 4 D e s c r i p t i o n / D i m e n s i o n E x t r a c t pump: top p l a t e E x t r a c t pump: Rear h o u s i n g E x t r a c t pump: bottom p l a t e R a f f l n a t e pump: top p l a t e R a f f l n a t e pump: gear h o u s i n g R a f f l n a t e pump: bottom p l a t e I d l e gear D r i v e gear I d l e gear s p a c e r s I d l e gear s h a f t s D r i v e p i n s 0 - r l n g e n c l o s u r e s S h a f t o - r l n g s Rea r i n g P l a t e 0 - r l n g s 0 - r l n g groves I n l e t elbow O u t l e t elbow A i r c r a f t D u r a l i u m As shown/machined from 3" D rod S t e e l S t e e l S t . S t e e l S t . S t e e l T o o l S t e e l A i r c r a f t D u r a l i u m V i t o n S t e e l V i t o n 316 S t . S t e e l 316 S t . S t e e l E x t r a c t phase: i n l e t tube 316 S t . R a f f l n a t e phase: I n l e t tube 316 S t . O u t l e t tubes T e f l o n Female-female r e d u c i n g union 316 S t . S t l r r e r / l l d assembly 287 S t . Pump c o n n e c t o r s / s u p p o r t s S t e e l S e c u r i n g nuts S t e e l S t i r r e r s h a f t 316 S t . U n i v e r s a l j o i n t s S t e e l Gear d r i v e s h a f t s S t e e l C o n n e c t i n g p i n s S t e e l S t e e l S t e e l S t e e l S t e e l S t e e l 16 p i t c h , 14-1/2° p r e s s u r e a n g l e ; 12 t e c c h ; 0.750" p i t c h d i a m e t e r ; |0.375" D h o l e ; 0.375" L 0.375" O.D.; 0.125" I.D.; 0.375" L 0. 125" D; 0.500" 1. 0.0625" D; 0.500" L As shown 0.5625" 0.0.; 0375" I.D. E n c l o s e d : 0.375" O.D.; 0.125" I.D.; 0.125" L 1.625" O.D.; 1.500" I.D. As shown "Swagelock male elbow (SS-200-2-1) , 0.125" O.D. tube f i t t i n g ; m o d i f i e d - j l / 4 " male p i p e t h r e a d t o s t r a i g h t 1/4" N.F. male end 0. 125" O.D. 0.125" O.D. 0.125" O.D. "Swagelock" (SS-400-6-2) 0.375" O.D. 0.25" I.D.; 5.25" I 0.375" D 0.375" 0 0.125" D; 0.625" L -p-d i m e n s i o n s i n i n c h e s ) 66 f o r t h i s p u r p o s e , i n c o n j u n c t i o n w i t h h i g h p r e s s u r e e q u i l i b r i u m s t u d i e s , a r e e i t h e r u n s u i t a b l e f o r t h e i n v o l a t i l e e x t r a c t and r a f f i n a t e o i l f r a c t i o n s , 8 0 ' 8 1 » 8 2 o r f o r t h e r a f f i n a t e s a m p l e s w h i c h a r e n o t t o t a l l y e l u t e d f r o m t h e G . C . c o l u m n . 6 0 M o r e g e n e r a l l y , b o t h t h e s e t e c h n i q u e s a r e u n s u i t a b l e f o r t h e gas c h r o m a t o g r a p h u s e d i n t h i s s t u d y b e c a u s e t h e C 0 2 c o n t e n t c a n n o t be d e t e r m i n e d w i t h a f l a m e i o n i z a t i o n d e t e c t o r . A s e p a r a t e m e t h o d i s r e q u i r e d f o r t h e m e a s u r e m e n t o f t h e CO2 c o n t e n t , and t h e r e f o r e a two p h a s e a n a l y s i s i s r e q u i r e d f o r e a c h s a m p l e . A l t h o u g h i t was t h o u g h t t h a t CO2 c o u l d be s e l e c t i v e l y s e p a r a t e d f r o m t h e l i q u i d o i l f r a c t i o n s by r e a c t i n g t h e e x p a n d e d g a s w i t h a B a ( 0 H ) 2 a l k a l i s o l u t i o n , t h e B a ( 0 H ) 2 s o l u t i o n d i d n o t a l l o w t h e l i q u i d h y d r o c a r b o n s t o c o m p l e t e l y s e p a r a t e . I t a p p e a r e d t h a t a m i c r o e m u l s i o n was f o r m e d . T h e r e f o r e , e v e n i f t h e s o l u t i o n c o u l d be t i t r a t e d f o r CO2 c o n t e n t , t h e s a m p l e ' s o i l w e i g h t c o u l d n o t be d e t e r m i n e d . S e l e c t i v e t r a p p i n g o f t h e o i l c o m p o n e n t s by a d s o r p t i o n on a c t i v a t e d c a r b o n was a l s o i n v e s t i g a t e d , b u t i t was f o u n d t h a t t h e a c t i v a t e d c a r b o n n o t o n l y t r a p s some o i l b u t a l s o some C 0 2 . T h e r e f o r e , t h e m e a s u r e d c h a n g e i n c a r b o n w e i g h t was n o t a n e x a c t m e a s u r e m e n t o f t h e o i l w e i g h t . A d d i t i o n a l l y , t h i s m e t h o d d o e s n o t d i r e c t l y l e n d i t s e l f t o q u a n t i t a t i v e c h r o m a t o g r a p h i c a n a l y s i s . A c o l d t r a p was c h o s e n a s t h e m e t h o d t o s e l e c t i v e l y s e p a r a t e t h e h y d r o c a r b o n l i q u i d s o l u t e s f r o m t h e e x p a n d e d a n d g a s e o u s C 0 2 s o l v e n t . T h e C O 2 c o n t e n t was m e a s u r e d by s i m p l y r e c o r d i n g t h e v o l u m e o f g a s p a s s i n g t h r o u g h a wet t e s t g a s m e t e r . T h e g a s m e t e r m e a s u r e d g a s 3 v o l u m e s i n i n c r e m e n t s o f 5 cm . T h i s p r o v i d e d s u f f i c i e n t l y a c c u r a t e m e a s u r e m e n t s f o r t h e p u r p o s e o f t h i s s t u d y . 67 To m i n i m i z e t h e e f f e c t s o f f l a s h i n g , t h e e x t r a c t p h a s e h i g h - p r e s s u r e s a m p l e c o i l was f i r s t p l a c e d i n a - 7 8 ° C C 0 2 ~ a c e t o n e b a t h . A t t h i s t e m p e r a t u r e , t h e C 0 2 w i t h i n t h e s a m p l e c o i l f r e e z e s , a n d t h e p r e s s u r e w i t h i n t h e c o i l b e c o m e s c l o s e t o a t m o s p h e r i c . On o p e n i n g t h e v a l v e s on t h e s a m p l e c o i l , t h e C 0 2 s l o w l y s u b l i m e s o f f t o be r e c o r d e d by t h e g a s m e t e r , l e a v i n g t h e h y d r o c a r b o n s i n t h e c o i l . T h e C 0 2 i n f a c t e v o l v e d s o s l o w l y t h a t t h e c o i l was r e m o v e d f r o m t h e c o l d b a t h and a l l o w e d t o come t o a m b i e n t t e m p e r a t u r e s . T h i s s t i l l p r o v i d e d a c o n t r o l l e d e v o l u t i o n o f C 0 2 . T h i s m e t h o d was f o u n d u n s u i t a b l e f o r t h e r a f f i n a t e p h a s e b e c a u s e t h e r a f f i n a t e s o l u t e s w e r e p r e s e n t i n s u f f i c i e n t q u a n t i t i e s t h a t t h e y t e n d e d t o b u b b l e o u t t h e c o i l . T h e e x p a n s i o n c h a m b e r i l l u s t r a t e d i n F i g u r e 4 . 9 was u s e d t o s e p a r a t e t h e C 0 2 g a s and l i q u i d h y d r o c a r b o n s d u r i n g t h e v e n t i n g o f t h e h i g h p r e s s u r e r a f f i n a t e s a m p l e . S i n c e t h e f l o w o f g a s t o t h e g a s m e t e r h a d t o be k e p t b e l o w 500 cm / m i n . , t h e e x p a n d e d g a s f l o w had t o be t h r o t t l e d . T h i s i s a c c o m p l i s h e d by p i n c h i n g t h e t u b i n g t h a t c o n n e c t s t h e e x p a n s i o n c h a m b e r t o t h e g a s m e t e r . The b a l l o n s i m p l y e x p a n d s d u r i n g t h e t h r o t t l i n g a n d k e e p s t h e p r e s s u r e l o w i n s i d e t h e e x p a n s i o n c h a m b e r . The e x p a n s i o n chamber i s a l s o p l a c e d i n a C O 2 / a c e t o n e b a t h t o r e d u c e t h e v o l a t i l i t y o f t h e l i q u i d h y d r o c a r b o n s . 4 . 3 . 1 S a m p l e V o l u m e The s a m p l e v o l u m e i s r e q u i r e d t o c o n t a i n s u f f i c i e n t q u a n t i t i e s o f h y d r o c a r b o n t o a l l o w a n a c c u r a t e w e i g h t m e a s u r e m e n t . T h e b a l a n c e u s e d p r o v i d e d w e i g h t m e a s u r e m e n t s I n I n c r e m e n t s o f 0 . 0 0 0 1 g up 68 CAS METER ( t y g o n t u b e ) P.23" tube BALLON 0.50" tube 3 10.00" SAMPLE COIL VALVE 1 .50" ( H e a d : S t e e l ) o - r l n g 1 .25" ( F o o t : A l u m i n i u m ) 6.00" (Body:Aluminium) F i g u r e 4 . 9 R a f f i n a t e P h a s e E x p a n s i o n Chamber 69 t o a maximum o f 200 g . To o b t a i n a + / - 5% a c c u r a c y a minimum o f 0 . 0 0 2 g o f t r a p p e d o i l i s n e e d e d . T h i s w e i g h t i s more t h a n a d e q u a t e f o r a c h r o m a t o g r a p h i c i n j e c t i o n . As t h e e x t r a c t p h a s e i s l i k e l y t o c o n t a i n l o w c o n c e n t r a t i o n s o f t h e e x t r a c t e d o i l , and a 1% w t . o i l c o n c e n t r a t i o n i s a t y p i c a l l o w c o n c e n t r a t i o n , t h e s a m p l e v o l u m e was d e s i g n e d t o c o n t a i n a t l e a s t 0 . 2 g o f t h e h i g h p r e s s u r e s a m p l e . The minimum d e n s i t y of t h e s a m p l e w i l l o c c u r a t t h e maximum t e m p e r a t u r e and minimum p r e s s u r e o f t h e i n v e s t i g a t i o n . A maximum t e m p e r a t u r e o f 1 7 6 ° C was c h o s e n t o a l l o w i n v e s t i g a t i o n s o f t e m p e r a t u r e s up t o 1 . 2 T r o f t h e s o l v e n t s ( C 0 2 , C2Ki<, C 2 H 6 , C 3 H 6 a n d C 3 H 8 ) . T h e minimum p r e s s u r e a r e c h o s e n as 3 . 4 5 M P a . E x p e r i m e n t a l s t u d i e s a t s u b c r i t i c a l p r e s s u r e s a r e n o t uncommon i n m i s c i b i l i t y s t u d i e s . A t t h e s e 3 83 c o n d i t i o n s t h e CO2 d e n s i t y i s 0 . 0 4 2 g / c m and t h e r e f o r e l o w e r t h a n t h a t n o r m a l l y e n c o u n t e r e d i n S . F . E . ( S e e F i g u r e 1 . 2 i n c o n j u n c t i o n w i t h T a b l e 1 . 1 ) . A s s u m i n g t h a t t h e s a m p l e d e n s i t y i s c l o s e t o t h a t o f p u r e 3 CO2, t h e minimum s a m p l e v o l u m e i s 4 . 7 6 cm . A v o l u m e o f a p p r o x i m a t e l y 8 3 cm was u s e d t o a l l o w f o r e x p e r i m e n t a l e r r o r . S a m p l e v o l u m e s w e r e c a l c u l a t e d by m e a s u r i n g t h e q u a n t i t y o f CO2 e x p a n d e d f r o m t h e l o o p a t a known p r e s s u r e and t e m p e r a t u r e . The CO2 d e n s i t y a t v a r i o u s p r e s s u r e s 83 8U a n d t e m p e r a t u r e s c a n be f o u n d i n s u i t a b l e c h a r t s . » T h e e x p a n s i o n c h a m b e r was k e p t l i g h t and t h e r e f o r e t h e r a f f i n a t e o i l t r a p p e d i n t h e e x p a n s i o n c h a m b e r c o u l d be w e i g h e d w i t h t h e a c c u r a t e b a l a n c e m e n t i o n e d e a r l i e r . H o w e v e r , t h e e x t r a c t o i l i s r e t a i n e d i n t h e 70 s a m p l e c o i l . As t h e v a l v e s o n t h e c o i l e x c e e d t h e maximum a l l o w a b l e w e i g h t o f t h e b a l a n c e , t h e s a m p l e v a l v e s h a d t o be r e m o v e d p r i o r t o w e i g h t m e a s u r e m e n t s . The d e a d v o l u m e s o f t h e v a l v e s a r e s m a l l i n 3 c o m p a r i s o n t o t h e 8 cm s a m p l e v o l u m e and t h e r e f o r e t h e p r o c e d u r e m a i n t a i n s a h i g h d e g r e e o f a c c u r a c y . H i g h p r e s s u r e t u b i n g c o u l d n o t be u s e d a s t h e c o i l ' s w e i g h t a l o n e w o u l d e x c e e d t h e b a l a n c e ' s maximum 200 g . T h e r e f o r e , 0 . 2 5 i n . ( 0 . 6 3 5 cm) O . D . by 0 . 1 8 i n . ( 0 . 4 5 7 cm) I . D . s t a i n l e s s s t e e l t u b i n g was u s e d . T h i s t u b i n g c o u l d be u s e d f o r p r e s s u r e s up t o 3 4 . 5 M P a , and t h e r e f o r e i t a l l o w e d i n v e s t i g a t i o n s t o p r e s s u r e s o f a r o u n d 5 t i m e s t h e c r i t i c a l p r e s s u r e s o f t h e p r o p o s e d s o l v e n t s ( C 0 2 , C 2 H u . , C 2 H 6 , C 3 H 6 a n d C 3 H 8 ) . An 8 c m 3 s a m p l e v o l u m e was a l s o u s e d f o r t h e r a f f i n a t e p h a s e t o p r o v i d e s u f f i c i e n t q u a n t i t i e s o f o i l f o r t h e a c c u r a t e a d d i t i o n o f an i n t e r n a l s t a n d a r d . The r a f f l n a t e p h a s e l o o p was a l s o c o n s t r u c t e d f r o m t h e 3 4 . 5 MPa r a t e d , 0 . 2 5 i n . t u b i n g . 4 . 3 . 2 I n i t i a l S a m p l e E x p a n s i o n R e s u l t s T a b l e 4 . 4 i n d i c a t e s t h e r e s u l t s o b t a i n e d by e x p a n d i n g v a r i o u s t e s t h y d r o c a r b o n s . The p r o c e d u r e s a r e u n s u i t a b l e f o r n - C 5 H i 2 b u t q u i t e a d e q u a t e f o r n - C 1 0 H 2 2 . The l o s s o f n - C 1 0 H 2 2 a n d h e a v i e r h y d r o c a r b o n s ( d u e t o s t r i p p i n g by t h e C 0 2 g a s p h a s e ) , i s l e s s t h a n 0 . 0 5 % o f t h e C 0 2 w e i g h t . T h i s w o u l d r e p r e s e n t a m e a s u r e d h y d r o c a r b o n w e i g h t a c c u r a c y o f b e t t e r t h a n +/-5% f o r a s a m p l e w h i c h c o n t a i n s a 1% w t . f r a c t i o n o f h y d r o c a r b o n . The r e s u l t s a l s o i n d i c a t e , by t h e m e a s u r e d g a i n i n one t e s t , t h a t t h e w e i g h t a c c u r a c y i s o n l y a b o u t + / - 0 . 0 0 1 g . T h e r e f o r e , t h e +/-5% 71 T a b l e 4 . 4 I n i t i a l S a m p l e E x p a n s i o n R e s u l t s Hydrocarbon I n i t i a l Weight of Hydrocarbon Added (g) E x t r a c t n - C 5 H 1 2 n - C 5 H 1 2 n-C 5H J 2 n-C 10H22 n-C )oH 22 R a f f i n a t e n-C 10H22 n _ c 1 0 H 22 c ° n - C 1 7 H 3 6 0.0341 0.0256 0.0596 0.0404 0.0596 4.0960 3.8518 P r e s s u r e ( M P a ) 34.5 34.5 34.5 34.5 34.5 34.5 34.5 Volume of Expanded C 0 2 (dm 3) 3.855 3.650 3.410 3.105 3.440 1.075 1.330 Weight of CO 2 (8) 7.6213 7.2161 6.7416 6.1386 6.8009 2.1468 2.6560 Trapped H y d r o c a r b o n Weight (g) Hydrocarbon Weight Los6 0.0022 0.0067 0.0255 0.0377 0.0237 4. 1003 3.8530 (g) 0.0319 0.0189 0.0341 0.0027 0.0020 0.0043 -0.0012 (Z) 93.5 73.8 57.2 6.7 7.8 0.1 -0.3 T a b l e 4 . 5 Hydrocarbon n-CioH 22 n-C 1 0H 22 n - c 1 2 H 26 Weight Added (g) 0.0060 0.0461 0.0662 E v a p o r a t i o n L o s s o f H i g h e r M o l e c u l a r W e i g h t H y d r o c a r b o n s f r o m a D i - e t h y l e t h e r B a s e d M i x t u r e Weight A f t e r 24 h r s . (g) 0.0054 0.0425 0.0617 Weight L o s t (t) 90.0 92.2 93.2 Ch r o m a t o g r a p h i c a r e a s I n i t i a l (X) A f t e r 24 h r s . (*) n-C ) 0H22 + n - C 1 2 H 2 6 + (n-Cii,H3o t o n-C, 7H 3 6) 37. 1 46.4 16.5 36.7 37.3 16.0 n-C 1 0H 22 + n - C 1 2 H 2 6 + (n-Cj^Hjg t o n - C l 7 " 3 6 > 37. 1 46.4 16.5 35.8 47. 3 16.9 72 a c c u r a c y q u o t e d e a r l i e r w i l l o n l y be r e p r e s e n t a t i v e i f t h e t r a p p e d o i l c o n t e n t i s g r e a t e r t h a n 0 . 0 2 g . F o r t h e c o n d i t i o n s t e s t e d i n t h i s t h e s i s t h e q u a n t i t y o f t r a p p e d e x t r a c t and r a f f l n a t e o i l a l w a y s e x c e e d e d 3 t h i s v a l u e when an 8 cm s a m p l e v o l u m e was u s e d . I n o r d e r t o c o l l e c t t h e e x t r a c t o i l , t r a p p e d i n t h e s a m p l e c o i l , d i - e t h y l e t h e r was u s e d t o f l u s h o u t t h e c o i l ' s c o n t e n t . The d i - e t h y l e t h e r i s s u b s e q u e n t l y s e p a r a t e d f r o m t h e s o l u t e s by a l l o w i n g t h e v o l a t i l e d i - e t h y l e t h e r t o e v a p o r a t e d u r i n g a 24 h o u r p e r i o d a t a m b i e n t t e m p e r a t u r e s . I n i t i a l r e s u l t s o f t h i s p r o c e d u r e a r e i n d i c a t e d i n T a b l e 4 . 5 . The l o s s o f t h e h i g h e r m o l e c u l a r w e i g h t h y d r o c a r b o n s a p p e a r s t o be s m a l l a s was t h e f r a c t i o n a t i o n , a s s o c i a t e d w i t h t h e e v a p o r a t i n g l o s s . T h e c h r o m a t o g r a p h i c a n a l y s e s a l s o i n d i c a t e d t h a t t h e d i - e t h y l e t h e r was e f f e c t i v e l y e v a p o r a t e d d u r i n g t h e 24 h o u r p e r i o d . I n s u m m a r y , t h e e x p a n s i o n p r o c e d u r e i s c o n s i d e r e d u n s u i t a b l e f o r s a m p l e s w h i c h c o n t a i n l o w m o l e c u l a r w e i g h t h y d r o c a r b o n s as t h e y a r e s u b s t a n t i a l l y s t r i p p e d by t h e e x p a n d i n g a n d s u b l i m i n g C 0 2 g a s . The w e i g h t m e a s u r e m e n t s i n d i c a t e t h a t t h e w e i g h t c a n o n l y be d e t e r m i n e d t o + / - 0 . 0 0 1 g . 4.4 Summary of Developed Experimental Apparatus F i g u r e 4 . 1 0 r e p r e s e n t s t h e f i n a l d e s i g n f l o w s h e e t . S i n c e t h e s a m p l e l o o p s a r e n o t f a b r i c a t e d u s i n g t h e h i g h - p r e s s u r e t u b i n g , t h e maximum o p e r a t i n g p r e s s u r e i s 3 4 . 5 M P a . The v a l v e s on t h e s a m p l e c o i l and t h e p r e s s u r e t r a n s d u c e r a r e a l s o l i m i t e d t o maximum p r e s s u r e s o f 3 4 . 5 M P a . The c o m p r e s s o r r e l i e f v a l v e s w e r e t h e r e f o r e s e t t o r e l e a s e a 73 •4) P.t. extractjT) k 1 AIR BATH I VENT PUMPS (^ RAFFINATE LOOP ? (ELBOW) AUTOCLAVE MAX. PRESSURE =34.5 MPa MAX. TEMPERATURE =200 C AUTOCLAVE VOLUME a 950 cm3 VENT COMPRESSOR LOOP VOLUMES ELBOW VOLUMES ~ 8 cm" *0.75 cm r N H 3 regulator D filter OJ c E 0 5 i % »' CD F i g u r e 4 . 1 0 F l o w s h e e t f o r t h e D e v e l o p e d A p p a r a t u s 74 34.5 M P a . The t e m p e r a t u r e was l i m i t e d by t h e u s e o f t h e t e f l o n t u b i n g i n t h e pump d e s i g n , a n d t e m p e r a t u r e s up t o 200°C c o u l d be s t u d i e d . S u b a m b i e n t c o n d i t i o n s c o u l d n o t be s t u d i e d w i t h t h i s c e l l d e s i g n . A maximum o f 2 p h a s e c a n be s a m p l e d . The s a m p l i n g s y s t e m r e l i e s o n a n o n l u b r i c a t e d m e c h a n i c a l p u m p s . I t i s t h e r e f o r e n o t recommended t h a t t h e c e l l be u s e d f o r t h e s t u d y o f f l u i d s w h i c h do n o t e x h i b i t some l u b r i c a t i o n c h a r a c t e r i s t i c s . 4.5 Operating Procedures F r o m e x p e r i e n c e , i t i s s t r o n g l y recommended t h a t t h e a s s e m b l e d c e l l be f i r s t p r e s s u r e t e s t e d u s i n g t h e c o m p r e s s e d C 0 2 b e f o r e t h e a d d i t i o n o f t h e o i l s o l u t e . I f a m a j o r l e a k i s d i s c o v e r e d and t h e c e l l h a s t o be d i s a s s e m b l e d , no c l e a n i n g p r o c e d u r e s a r e r e q u i r e d . The p r e s s u r e t e s t i n g a n d s u b s e q u e n t v e n t i n g a l s o p r o v i d e a p u r g e o f t h e a i r . Once t h e a s s e m b l e d c e l l h a s b e e n p u r g e d , t h e o i l s o l u t e c a n be a d d e d v i a t h e s p a r e i n l e t / o u t l e t p o r t o f t h e s t i r r e r l i d a s s e m b l y . By c a r e f u l l y a d d i n g t h e o i l s o l u t e v i a t h i s p o r t , t h e a i r e n t e r i n g t h e s y s t e m c a n be k e p t t o a m i n i m u m . Any a i r t h a t e n t e r s w o u l d p r o b a b l y s t a y i n t h e p a s s a g e c o n n e c t i n g t h e i n t e r n a l p o r t o f t o t h e e x t e r n a l p o r t on t h e s t i r r e r / I i d a s s e m b l y . T h e t e m p e r a t u r e i s t h e n r a i s e d t o t h e d e s i r e d e q u i l i b r i u m t e m p e r a t u r e . Once t h i s t e m p e r a t u r e i s r e a c h e d , t h e c e l l p r e s s u r e i s r a i s e d by i n t r o d u c i n g t h e c o m p r e s s e d s o l v e n t g a s . W h i l e t h e p r e s s u r e a n d t e m p e r a t u r e a r e b e i n g r a i s e d , a n d d u r i n g t h e e q u i l i b r l a t i o n p e r i o d , t h e p h a s e s a r e c i r c u l a t e d . 75 A s s u m i n g e q u i l i b r i u m c o n d i t i o n s h a v e b e e n a c h i e v e d , t h e s a m p l e c o i l s c a n be i s o l a t e d by c l o s i n g v a l v e s 2 and 1 , ( s e e F i g u r e 4 . 1 0 ) a n d r e m o v e d f o r t h e i r c o n t e n t s e x p a n s i o n . Any c a l c u l a t i o n c o n c e r n i n g t h e t o t a l s a m p l e r e m o v e d , s h o u l d i n c l u d e t h e c o n n e c t i n g e l b o w s w h i c h j o i n t h e i s o l a t e d s a m p l e c o i l t o t h e c e l l . A f t e r t h e s a m p l e e x p a n s i o n ( d e t a i l e d i n S e c t i o n 4 . 3 ) , t h e c o i l s c a n be p u r g e d w i t h C 0 2 and r e a t t a c h e d t o t h e c e l l . The c e l l p r e s s u r e w i l l d e c r e a s e s l i g h t l y on r e p r e s s u r i z i n g t h e s a m p l e c o i l s . I t i s n o t recommended t h a t c o n d i t i o n s be c h a n g e d by an i n c r e a s e i n t e m p e r a t u r e as t h e c e l l p r e s s u r e may e x c e e d t h e maximum 3 4 . 5 M P a . I t i s t h e r e f o r e s u g g e s t e d t h a t d u r i n g a r u n ( i . e . , a g i v e n s o l u t e c h a r g e ) , i s o t h e r m a l c o n d i t i o n s be s t u d i e d and t h a t t h e f i r s t p r e s s u r e be t h e l o w e s t p r e s s u r e . The p r e s s u r e c a n be r a i s e d f o r s u b s e q u e n t s t u d i e s by s i m p l y a d d i n g a d d i t i o n a l c o m p r e s s e d s o l v e n t . A t t h e end o f a r u n , o r s e v e r a l p r e s s u r e c o n d i t i o n s , t h e c e l l i s v e n t e d t h r o u g h v a l v e 6 . V a l v e 4 i s u s e d t o v e n t t h e h i g h p r e s s u r e s o l v e n t t h a t i s i n t h e c o m p r e s s o r a n d t u b i n g b e t w e e n t h e s o l v e n t c y l i n d e r and c e l l . The c e l l , a s s o c i a t e d t u b i n g and pumps a r e f i r s t c l e a n e d w i t h a k e r o s o n e m i x t u r e and t h e n a v o l a t i l e s o l v e n t . C a r b o n t e t r a c h l o r i d e i s p a r t i c u l a r l y s u i t a b l e f o r t h i s u s e , b u t due t o i t s t o x i c n a t u r e c l e a n i n g s h o u l d be done w i t h i n t h e fume c u p b o a r d . 76 5. RESULTS AND DISCUSSION 5.1 Performance of Analyt ical Procedures T a b l e 5 . 1 l i s t s t h e r e t e n t i o n t i m e s o f t h e n - a l k a n e c a l i b r a t i o n m i x t u r e f r o m two t e s t s p e r f o r m e d s e v e n m o n t h s a p a r t . D u r i n g t h a t p e r i o d t h e a n a l y t i c a l t e c h n i q u e a n d s o f t w a r e w e r e p e r f e c t e d , a n d e x p e r i m e n t a l a n a l y s e s p e r f o r m e d . The n - a l k a n e c a l i b r a t i o n m i x t u r e was p e r i o d i c a l l y i n j e c t e d i n t o t h e G . C . a n d F i g u r e B l , i n A p p e n d i x B , i n d i c a t e s a t y p i c a l c h r o m a t o g r a m . The n - a l k a n e r e t e n t i o n t i m e s n e v e r v a r i e d g r e a t l y f r o m t h e v a l u e s i n d i c a t e d i n T a b l e 5 . 1 a n d F i g u r e B l a l t h o u g h o v e r 50 c h r o m a t o g r a p h i c r u n s w e r e p e r f o r m e d . As a r e s u l t , t h e m o l e c u l a r w e i g h t w i n d o w s l i s t e d i n T a b l e 5 . 1 w e r e u s e d f o r e v e r y a n a l y s i s . The f i r s t w i n d o w e n c o m p a s s e d t h e CHi+ t o C5H12 m o l e c u l a r w e i g h t o i l f r a c t i o n a s t h e r e t e n t i o n t i m e s o f n -C^H^Q a n d l i g h t e r h y d r o c a r b o n s w e r e n o t e v a l u a t e d . S e p a r a t o r o i l s c o n t a i n o n l y s m a l l q u a n t i t i e s o f h y d r o c a r b o n s w i t h m o l e c u l a r w e i g h t s b e l o w t h a t o f C5H12 a n d t h e r e f o r e t h e m o l e c u l a r w e i g h t o f t h i s o i l f r a c t i o n c o u l d be c o n s i d e r e d a s t h a t o f C5H12. The s e p a r t o r o i l u s e d i n t h i s t h e s i s h a d h a d t h e l i g h t e r h y d r o c a r b o n s s t r i p p e d a n d t h e r e f o r e no m a t e r i a l a c t u a l l y e l u t e d i n t h i s f i r s t w i n d o w . ' W i n d o w s 15 t o 23 a l s o e n c o m p a s s e d more t h a n one n - a l k a n e m o l e c u l a r w e i g h t f r a c t i o n . T h i s a l l o w e d more t i m e - s l i c e s t o be u s e d f o r t h e e v a l u a t i o n o f t h e w i n d o w a r e a . An a v e r a g e d m o l e c u l a r w e i g h t i s t h e r e f o r e u s e d f o r t h e s e w i n d o w s . T h e t i m e s l i c e w i d t h was s e t a t t w e l v e s e c o n d s a n d t h e r e f o r e 185 t i m e - s l i c e s w e r e c r e a t e d d u r i n g t h e 37 m i n u t e c h r o m a t o g r a m . 77 T a b l e 5 . 1 P e r f o r m a n c e o f C h r o m a t o g r a p h i c A n a l y s i s P r o c e d u r e s Normal Alkane C a l i b r a t i o n M i x t u r e R e t e n t i o n Time (min) I n i t i a l 27/9/82 F i n a l 21/4/83 Normal A l k a n e B o i l i n g P o i n t C O M o l e c u l a r Weight A n a l y s i s Window (3) Window S t a r t Time (min) Window End Time (min) Chromatographic B o i l i n g P o i n t Oven Temperature at the window at the Window End Time End Time CO cc) - - - "S Set by sof t w a r e ; 0 . 1 -89 \ c 3 -42 ) 0 3.545 52 5.5 Ci, 0 1 C; 2.45 2.22 36 ' C6 4. 64 4.59 69 2 3.545 5.710 81 27.1 c? 6.78 6.53 98 3 5.710 7.775 110 47.8 c e 8.77 8.51 126 4 7.775 9.675 137 66.8 c s 10.58 10. 34 151 5 9.675 11.420 162 84.2 C;c 12. 26 12.03 174 6 11.420 13.020 184 100.2 C n 13.84 13.59 196 7 13.020 14.550 204 115.5 c i 2 15.26 15. 13 216 8 14.550 15.830 224 128.3 C n - - 235 9 15.830 17.195 242 142.0 C ) . 17.99 17.72 253 10 17.195 18.595 265 156.0 C;5 19.20 18.19 271 11 18.595 19.780 280 167.8 C i 6 20.36 20.08 287 12 19.780 20.895 297 179.0 C 1 7 21.43 21.54 302 13 20.895 21.945 309 189. 5 C l 6 22.46 22. 18 317 14 21.945 22.880 322 198.8 C l 9 - - 331 15 22.880 23.840 336 20.8.4 C20 C 2 1 24.38 24.10 344 -v 356 J 16 23.840 25.640 363 226.4 C 2 2 C 2 3 ~ _ 369 380 J 17 - 25.64 27.325 384 243.3 C 2 i * C 2 5 27.75 27.48 391 "\ 402 J 18 27.325 28.875 408 258.8 C 2 6 C 27 : 412 422 J 19 28.875 30.320 426 273.2 C 2 B C 2 S 30.64 30.57 432 "\ 441 J 20 30.320 31.520 444 285.2 c 3 0 C 31 _ _ 450 "V 459 J 21 31.520 32.520 462 295.2 C 3 2 c 3 3 33.18 32.92 468 S 476 J 22 22.520 34.090 480 310.9 c3- - - 433 "N C 3 5 - - 491 C 3 6 C 3 7 35.44 35.17 498 505 V 23 34.090 37.000 520 340.0 C 3 6 - - 512 c 3 9 - - • 518 Time 37.00 37.00 520 J 7 8 5 . 1 . 1 I n i t i a l A n a l y s i s R e s u l t s I n i t i a l r e s u l t s o f t h e m o l e c u l a r w e i g h t w i n d o w a n a l y s e s , o b t a i n e d by t h e p r o c e d u r e s o u t l i n e d i n S e c t i o n 3 . 5 . 2 , a r e g i v e n i n T a b l e 5 . 2 . The s a m p l e s a r e a s u p e r c r i t i c a l C 0 2 e x t r a c t e d o i l a n d t h e s a m p l e i n j e c t i o n v o l u m e i s a p p r o x i m a t e l y 0 . 5 u l . The r e s u l t s i n T a b l e 5 . 2 i n d i c a t e t h a t t h e t o t a l a r e a s o f t h e b a s e c h r o m a t o g r a m s a r e a p p r o x i m a t e l y 10% o f t h e t o t a l a r e a s o f t h e s a m p l e c h r o m a t o g r a m s . S i n c e t h e a r e a s o f t h e two b a s e c h r o m a t o g r a m s a r e s i m i l a r , t h e t o t a l c o r r e c t e d s a m p l e a r e a , a t , i s w i t h i n a p p r o x i m a t e l y + / - 1.6% t h e v a l u e t h a t w o u l d be o b t a i n e d i f i n d i v i d u a l b a s e c h r o m a t o g r a m s ( a s o p p o s e d t o t h e a v e r a g e d ) h a d b e e n u s e d . The a ' e j v a l u e s w h i c h a r e a m e a s u r e o f t h e d i f f e r e n c e b e t w e e n t h e b a s e a r e a s i n w i n d o w j ( s e e F i g u r e 3 . 7 ) , i n d i c a t e s u b s t a n t i a l d i f f e r e n c e s i n t h e l a t e r w i n d o w s . The l a t e r w i n d o w s o c c u r when c h r o m a t o g r a p h i c o v e n t e m p e r a t u r e s a r e h i g h and c o l u m n b l e e d s u b s t a n t i a l . The a ' e j v a l u e s w e r e a l s o t o be u s e d t o e s t i m a t e t h e p o s s i b l e w i n d o w a r e a s ( a ' s j v a l u e s ) , t h a t w o u l d be c a l c u l a t e d i f t h e i n d i v i d u a l b a s e c h r o m a t o g r a m s had b e e n u s e d r a t h e r t h a n t h e a v e r a g e d . T h e + / - a ' e j v a l u e s a r e o n l y m e a n i n g f u l i f t h e b a s e - l i n e o f t h e s a m p l e c h r o m a t o g r a m f a l l s b e t w e e n t h o s e o f t h e two b a s e c h r o m a t o g r a m s ( s e e F i g u r e 3 . 7 ) . The a r e a o f t h e l a s t s l i c e f o r t h e s e c o n d s a m p l e ( i . e . , t h e t h i r d o f t h e f o u r c h r o m a t o g r a m s ) d o e s n o t l i e b e t w e e n t h a t o f t h e f i r s t a n d l a s t b a s e c h r o m a t o g r a m s ( i . e . , t h e f i r s t and f o u r t h c h r o m a t o g r a m ) . T h i s c o u l d be due t o t h e e l u t i o n o f p r e v i o u s l y r e t a i n e d o i l compounds o r an T a b l e 5 . 2 I n i t i a l A n a l y s i s R e s u l t s Chromatog ram It 1 4 2 Chromatogram If 1 4 3 Ar e a 6 F i r s t Base L a s t Base 1st Sample Areas F i r s t Base L a s t Base 2nd Sample F i r s t S l i c e 3.369 x 1 0 5 3. 542 X 1 0 5 3.607 x 1 0 5 F i r s t S l i c e 3 .369 x 1 0 5 3. 542 X 1 0 5 4.023 x 1 0 5 L a s t S l i c e 3.031 x 1 0 7 2. 449 X 1 0 7 2.621 x 1 0 7 L a s t S l i c e 3 .031 x 10 7 2. 449 X 10 7 2.441 x 1 0 7 T o t a l 6.754 x 10 8 4. 681 X 1 0 8 6.555 x 10 9 T o t a l 6 .754 x 1 0 8 4. 681 X 1 0 8 7.262 x 1 0 9 T o t a l Area ( a t ) - 5 983 X 1 0 9 +/-1 .73* T o t a l A rea ( a t ) - 6 690 X 1 0 9 +/-1 .54Z E v a l u a t e d Area E v a l u a t e d Area Window ( J ) a' 8 j (Z) +/ - a ' C j (Z) Window ( J ) a ' S j (Z) +/ - a' e j (Z) 1 0.03 -0.01 1 0.04 -0.01 2 0.29 -0.01 2 0.30 -0.01 3 2.24 -0.01 3 2.25 -0.01 4 6.22 -0.01 4 6.24 -0.01 5 10.73 -0.01 5 10.74 -0.01 6 14.11 0.00 6 14.13 0.00 7 11.20 0.01 7 11.21 0.01 8 9.06 0.02 8 9.05 0.02 9 11.04 0.02 9 11.09 0.02 10 10.61 0.03 10 10.65 0.03 11 7.45 0.03 11 7.52 0.02 12 5.23 0.03 12 5.28 0.03 13 4.30 0.03 13 4.08 6.03 14 2.01 0.03 14 2.02 0.02 15 1.31 0.03 15 1.31 0.02 16 1.66 0.06 16 1.67 0.05 17 1.01 0.06 17 1.01 0.06 18 1.21 0.07 18 1.26 0.08 19 0.34 0.11 19 0.33 0.10 20 0.17 0.12 20 0.15 0.11 21 0.11 0.16 21 0.08 0.14 22 0.00 0.21 22 -0.05 0.18 23 -0.22 0.64 23 -0.48 0.57 80 i r r e g u l a r c o l u m n b l e e d w h i c h m i g h t h a v e o c c u r r e d when t h e l a s t b a s e c h r o m a t o g r a m was r e c o r d e d . The e l u t i o n o f p r e v i o u s l y u n e l u t e d compounds was o b s e r v e d i n p l o t t e d b a s e c h r o m a t o g r a m s . T h e y a r e a l s o i n d i c a t e d by a t e m p o r a r y i n c r e a s e o r d e c r e a s e i n t h e a b s o l u t e a ' e j v a l u e . F o r e x a m p l e , t h e e v a l u a t e d a ' e j v a l u e s l i s t e d f o r t h e s e c o n d s a m p l e , i n d i c a t e a t e m p o r a r y i n c r e a s e d a ' e j v a l u e i n w i n d o w 1 0 . T h i s c o u l d be a r e s u l t o f t h e f i r s t b l a n k o r b a s e c h r o m a t o g r a p h i c r u n h a v i n g p r e v i o u s l y r e t a i n e d m a t e r i a l e l u t i n g i n t h e 1 0 t h w i n d o w . T h i s may h a v e o c c u r r e d i n t h e l a s t t i m e - s l i c e o f t h e f i n a l b a s e c h r o m a t o g r a m . A l t h o u g h t h e t o t a l b a s e l i n e a r e a o f t h e f i r s t b a s e c h r o m a t o g r a m i s g r e a t e r t h a n t h a t of t h e l a s t b a s e c h r o m a t o g r a m , t h e r e v e r s e h a s b e e n o b s e r v e d i n l a t e r a n a l y s e s . T h e b a s e l i n e d o e s n o t a p p e a r t o f o l l o w a p r e d i c t a b l e p a t t e r n and t h e r e f o r e t h e b a s e l i n e a r e a o f a s a m p l e c h r o m a t o g r a m c o u l d s i m p l y be l e s s o r g r e a t e r t h a n t h a t o f t h e b a s e c h r o m a t o g r a m s . A s a r e s u l t , t h e + / - a ' e j v a l u e s s h o u l d o n l y be u s e d t o e s t i m a t e a n d n o t e v a l u a t e t h e p o s s i b l e w i n d o w a r e a s ( a ' s j v a l u e s ) . A l t h o u g h t h e a ' e j v a l u e s c a n be f a i r l y l a r g e w i t h r e s p e c t t o t h e a ' s j v a l u e s , t h e r e s u l t s g i v e n i n T a b l e 5 . 2 s u g g e s t t h a t t h e a n a l y s i s p r o c e d u r e p r o v i d e s f a i r l y r e p e a t a b l e r e s u l t s . The e v a l u a t e d a r e a s o f t h e two s a m p l e s o n l y d i f f e r by more t h a n 0 . 0 5 % i n t h e l a s t w i n d o w , ( i . e . w i n d o w 2 3 ) . T h e + / - a ' e j v a l u e s f o r t h e l a t e w i n d o w s a p p e a r t o o v e r c o m p e n s a t e f o r t h e d i f f e r e n c e i n t h e w i n d o w a r e a s o b t a i n e d f r o m t h e two i n j e c t e d s a m p l e s . Window a n a l y s e s d a t a , s i m i l a r t o t h a t g i v e n i n 81 T a b l e 5 . 2 , i s g i v e n i n A p p e n d i x B f o r s u b s e q u e n t a n a l y s e s . The a b s o l u t e a ' e j v a l u e s n e v e r e x c e e d e d 0 . 7 8 % . 5 . 1 . 2 C o m p a r i s o n t o t h e A . S . T . M . D-87 D i s t i l l a t i o n A c o m p a r i s o n was made b e t w e e n t h e s i m u l a t e d d i s t i l l a t i o n p r o c e d u r e a n d t h e A . S . T . M . D-87 b e n c h s c a l e d i s t i l l a t i o n . The r e s u l t s a r e g i v e n i n T a b l e 5 . 3 and F i g u r e 5 . 1 . The c o m p a r i s o n was made u s i n g t h e o r i g i n a l s e p a r a t o r o i l a n d a s e p a r a t o r o i l w h i c h h a d b e e n s t r i p p e d o f i t s l i g h t e r h y d r o c a r b o n s . I n c h o o s i n g an o i l s a m p l e w h i c h was n o t t o t a l l y e l u t e d i t was a l s o p o s s i b l e t o t e s t t h e u s e o f i n t e r n a l s t a n d a r d s i n t h e c a l c u l a t i o n o f t h e e l u t e d f r a c t i o n . A s t h e s t r i p p e d s e p a r a t o r o i l was t e s t e d , t h e s i n g l e i n t e r n a l s t a n d a r d ( n - C 6 H l l + ) a s w e l l a s t h e m u l t i c o m p o n e n t i n t e r n a l s t a n d a r d (n-Cii+H3o, T1-C15H32, n-Ci6*-3»t a n d n - C ^ I ^ g ) m e t h o d s c o u l d be c o m p a r e d . The c a l c u l a t i o n o f t h e e l u t e d f r a c t i o n i s b a s e d on t h e m e t h o d s o u t l i n e d i n S e c t i o n 3 . 2 , w i t h f u l l e r d e t a i l s b e i n g g i v e n i n A p p e n d i x C . The w i n d o w a n a l y s i s d a t a a r e g i v e n i n A p p e n d i x B . The d i s t i l l a t i o n c u r v e s i n F i g u r e 5 . 1 i n d i c a t e t h a t t h e c h r o m a t o g r a p h i c d i s t i l l a t i o n o f t h e o r i g i n a l s e p a r a t o r o i l a g r e e s w e l l w i t h t h e D-87 p r o c e d u r e . T h e c h r o m a t o g r a p h i c d i s t i l l a t i o n c u r v e s o f t h e s t r i p p e d s e p a r a t o r o i l a r e n o t so c o m p a r a b l e t o t h e D-87 d i s t i l l a t i o n when u s i n g t h e s i n g l e o r m u l t i c o m p o n e n t i n t e r n a l s t a n d a r d . T h i s i s p r o b a b l y due t o t h e p o o r d a t a o f t h e D-87 d i s t i l l a t i o n . The D-87 8 5 d i s t i l l a t i o n i s n o t s t r i c t l y f o r h i g h b o i l i n g p o i n t s a m p l e s . S i n c e t h e s i m u l a t e d d i s t i l l a t i o n c u r v e s u s i n g t h e m u l t i c o m p o n e n t i n t e r n a l s t a n d a r d more c l o s e l y m a t c h e d t h e D-87 d i s t i l l a t i o n c u r v e , t h e T a b l e 5 . 3 C h r o m a t o g r a p h i c a n d A . S . T . M . D i s t i l l a t i o n R e s u l t s S i m u l a t e d D i s t i l l a t i o n D-87 D i s t i l l a t i o n O r i g i n a l Crude S t r i p p e d Crude Window ( j ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Non E l u t e d Cm t o C 1 7 I n t e r n a l 8 t d . Cm t o C i 7 I n t e r n a l s t d . C-6 I n t e r n a l s t d . i 0.0337 0.0467 0.0725 0.0647 0.0552 0.0464 0.0359 0.0339 0.0358 0.0351 0.0305 0.0264 0.0264 0.0214 0.0199 0.0345 0.0293 0.0246 0.0216 0.0168 0.0155 0.0134 0.0228 0.2370 Ew* 0.0337 0.0804 0.1529 0.2176 0.2729 0.3192 0.3551 0.3890 0.4248 0.4599 0.4904 0.5168 0.5432 0.5646 0.5845 0.6190 0.6483 0.6729 0.6945 0.7113 0.7268 0.7402 0.7630 1.0000 J 0.0000 0.0000 0.0007 0.0067 0.0741 0.0378 0.0384 0.0406 0.0455 0.0464 0.0409 0.0367 0.0381 0.0313 0.0297 0.0525 0.0458 0.0392 0.0345 0.0267 0.0247 0.0216 0.0314 0.3069 Ew*^ 0.0000 0.0000 0.0007 0.0074 0.0315 0.0693 0.1077 0.1483 0.1938 0.2402 0.2811 0.3178 0.3559 0.3872 0.4169 0.4694 0.5152 0.5544 0.5887 0.6154 0.6401 0.6617 0.6939 1.0000 J 0.0000 0.0000 0.0018 0.0083 0.0289 0.0456 0.0467 0.0489 0.0552 0.0559 0.0495 0.0428 0.0428 0.0338 0.0305 0.0495 0.0385 0.0300 0.0251 0.0193 0.0184 0.0172 0.0366 0.2747 Ew* 0.0000 0.0000 0.0018 0.0101 0.0390 0.0846 0.1313 0.1802 0.2354 0.2913 0.3408 0.3836 0.4264 0.4602 0.4907 0.5402 0.5787 0.6087 0.6338 0.6531 0.6715 0.6887 0.7253 1.0000 F r a c t i o n Temperature D i s t i l l e d („ C) O r i g i n a l Crude 0.0434 65.6 0. 1005 93.3 0.1631 121.1 0. 1465 151.1 0.3021 176.7 0.3619 204.0 0.4161 232.2 0.4738 260.0 S t r i p p e d Crude 0.0005 160.0 0.0089 206.7 0.1333 225.6 0. 1780 240.0 0. 2222. 257.2 0.2400 260.0 w*.j » Weight f r a c t i o n d i s t i l l e d I n window j CO 83 100 F i g u r e 5 . 1 200 300 400 BOILING POINT CC) D i s t i l l a t i o n C u r v e s u s i n g t h e C h r o m a t o g r a p h i c a n d A . S . T . M . D-87 D i s t i l l a t i o n M e t h o d s 84 m u l t i c o m p o n e n t i n t e r n a l s t a n d a r d was e x c l u s i v e l y u s e d t o d e t e r m i n e t h e n o n - e l u t e d f r a c t i o n . 5.2 Performance of the Pumps P e r i o d i c c h e c k s w e r e made on t h e pumps t o t e s t t h e i r a b i l i t y t o c i r c u l a t e f l u i d s . The r e s u l t s o f t h e s e t e s t s a r e g i v e n i n T a b l e 5 . 4 a n d F i g u r e s 5 . 2 a n d 5 . 3 . The pumps managed t o p r o v i d e p h a s e c i r c u l a t i o n t h r o u g h o u t t h e c o u r s e o f t h e e x p e r i m e n t s . The g e a r s d i d n o t t u r n b e l o w a t a c h o m e t e r s e t t i n g o f 2 ( 3 8 r p m ) , and t h e m a g n e t i c c o u p l i n g w o u l d j a m a b o v e a t a c h o m e t e r s e t t i n g o f 8 (397 r p m ) . The i n i t i a l t r i a l ( T e s t 1) p r o d u c e d a l o w f l o w r a t e w i t h t h e r a f f i n a t e pump due t o a p i n c h i n g o f t h e t e f l o n t u b e t h a t c o n n e c t s t h e pump o u t l e t t o t h e a u t o c l a v e ' s i n t e r n a l i n l e t / o u t l e t p o r t . The p e r f o r m a n c e o f t h e e x t r a c t p h a s e pump c h a n g e d c o n s i d e r a b l y w i t h c o n t i n u e d u s e . As m e t a l l i c f i n e s c o u l d be o b s e r v e d I n t h e s a m p l e d p h a s e s , t h e p r o b l e m s o f e x c e s s i v e w e a r w e r e n o t t o t a l l y o v e r c o m e . 5.3 Performance of the Experimental Procedures T h e p e r f o r m a n c e o f t h e e x p e r i m e n t a l p r o c e d u r e s , d e v e l o p e d i n C h a p t e r 4 , w e r e t e s t e d by d e t e r m i n i n g t h e a b i l i t y t o r e p r o d u c e d a t a . A b i n a r y m i x t u r e o f n - C ^ o H 2 2 a n ( * C 0 2 was t e s t e d . A b i n a r y s y s t e m was c h o s e n b e c a u s e t h e f i x e d - v o l u m e c e l l makes i t d i f f i c u l t t o e x a c t l y m a t c h t h e c o m p o s i t i o n s o f p r e v i o u s l y p u b l i s h e d t e r n a r y a n d h i g h e r o r d e r s y s t e m s . S i n c e no c h r o m a t o g r a p h i c a n a l y s i s was r e q u i r e d , t h e r e p r o d u c i b i l i t y o f d a t a i s s o l e l y a r e s u l t o f t h e p r o c e d u r e s d e v e l o p e d i n C h a p t e r 4 . Table 5 . 4 Performance of the Pumps in Various Tests T e s t 5 Tachometer S e t t i n g r.p.m. Te s t 1 I n i t i a l A i r Flow Rate T e s t 2 I n i t i a l Crude O i l Flow Rate T e s t 3 Crude O i l Flow Rate A f t e r 12 hours Teat 4 A i r Flow Rate A f t e r 50 h o u r s A i r Flow R a t e A f t e r C o m p l e t i n g E x p e r i m e n t a l S t u d i e s KXTRACT PHASE PTJHP 3 38 5.7 3.0 1.8 1.9 1.6 4 86 11.8 5.3 5.2 4.8 3.7 5 155 7.2 6 221 17.5 10.7 11.0 9.1 6.1 7 291 11.8 8 397 22.0 16.9 16.8 13.7 10.1 RAFVINATK PHASE PUMP 3 38 2.2 1.8 2.0 1.8 1.9 4 86 5.0 5.4 6.5 4.8 4.7 5 155 7.6 6 221 6.7 12.7 14.3 9.8 9.3 7 291 13.3 8 397 7.8 15.6 22.6 18.7 19.0 CO o g o I « 1 — . 1— 0 ICO -200 300 R.P.M. F i g u r e 5 . 2 P e r f o r m a n c e o f t h e E x t r a c t P h a s e Pump 25 0 I 1 : « 1 1 0 100, 200 300 400 R.P.M. F i g u r e 5 . 3 P e r f o r m a n c e o f t h e R a f f i n a t e P h a s e Pump 87 The d a t a o f Reamer a n d S a g e B 6 w e r e u s e d f o r c o m p a r i s o n p u r p o s e s . A p r e s s u r e o f 10.34 MPa and a t e m p e r a t u r e o f 137.8°C w e r e s e l e c t e d s i n c e t h i s p r o v i d e d a n e x t r a c t p h a s e w h i c h c o n t a i n e d 5.3 w t . % o f h y d r o c a r b o n , w h i c h was t y p i c a l o f p u b l i s h e d m i s c i b i l i t y s t u d i e s . The r e s u l t s o f t h e s e t e s t s a r e g i v e n i n T a b l e 5.5. The i n i t i a l 8 6 r e s u l t s d i d n o t a g r e e w e l l w i t h t h o s e o f Reamer and S a g e . M i n o r m o d i f i c a t i o n s i n b o t h t h e p r o c e d u r e s and a p p a r a t u s w e r e made i n a n a t t e m p t t o o b t a i n more c o m p a r a b l e d a t a . T h e s e a r e d i s c u s s e d b e l o w . The o p e r a t i n g p r e s s u r e and t e m p e r a t u r e w e r e a l s o d i f f i c u l t t o r e p r o d u c e . The v a l u e s i n t h e s q u a r e b r a c k e t s r e p r e s e n t d a t a t h a t a r e w i t h i n + / - 10% o f t h e p r e v i o u s l y p u b l i s h e d d a t a , when t h e a c t u a l p r e s s u r e s a n d t e m p e r a t u r e s a r e t a k e n i n t o a c c o u n t . Runs 1,2 a n d 9 do n o t g i v e t h e c o m p l e t e r a f f i n a t e ( n-C 1 0H 2 2 r i c h p h a s e ) r e s u l t s , b e c a u s e e i t h e r t h e s a m p l e c o i l v a l v e s l e a k e d o r t h e r e w a s a c c i d e n t a l s p i l l a g e o f t h e n-Ci 0H 2 2. A l t h o u g h t h e e q u i l i b r i u m d a t a f o r t h e e x t r a c t p h a s e o f r u n s 2 a n d 3 w e r e c o n s i s t e n t w i t h p u b l i s h e d d a t a , t h e r a f f i n a t e p h a s e had a l o w n-C10H22 c o n t e n t . S t e e l w o o l was t h e r e f o r e a d d e d t o t h e r a f f i n a t e s a m p l e ' s e x p a n s i o n c h a m b e r t o a c t a s a m i s t t r a p . The s u b s e q u e n t r u n ( r u n 4) g a v e a h i g h n-CirjH22 c o n c e n t r a t i o n i n t h e e x t r a c t p h a s e . As t h e r a f f i n a t e p h a s e i s r e t u r n e d t o t h e t o p o f t h e a u t o c l a v e a n d i s t h e r e f o r e c l o s e t o t h e pump i n l e t o f t h e e x t r a c t p h a s e , t h e e x t r a c t p h a s e was c i r c u l a t e d i n d e p e n d e n t l y and a f t e r s t o p p i n g t h e r a f f i n a t e p h a s e f l o w . The l a t t e r was p r e v e n t e d b y s i m p l y c l o s i n g a s a m p l e l o o p v a l v e . I n a l l s u b s e q u e n t r u n s t h e r a f f i n a t e p h a s e was-T a b l e 5 . 5 T e s t s u s i n g t h e B i n a r y D e c a n e / C O S y s t e m Run 9 P u b l i s h e d Data EXTRACT PHASE CO 2 (dm 3) 0 715 0 750 0.745 0.935 0 760 0 700 0 800 0.755 0.750 C 0 2 (g) 1 A 136 1 4828 1.4729 1.8485 1 5025 1 3839 1 5816 1 .4926 1.4848 n-CloH22 (R) 0 1166 0 0835 0.0804 0.19R1 0 1734 0 0905 0 2372 0.0881 0.0727 T o t a l (g) 1 5302 1 5663 1.5333 2.0466 1 6759 1 4744 1 8188 1.5807 1.5555 y c o 2 0 9750 "0 9824" 0.9829 0.9670 0 9646 0 9796 0 9544 0.9816" "0.9846" y 0 0250 0 0176 0.0171 0.0330 0 0354 0 0204 0 0456 0.0184 0.0154, 0 . 9 8 3 1 0 . 0 1 6 9 RAFFINATE PHASE Expanded C 0 2 (dtr^) CO 2 (g) n-CioH22 (g) T o t a l (g) X C 0 2 * n - C 1 0 H 2 2 3.2971 0.645 0.675 0.660 0.700 0. 700 0.655 1.2752 1.3345 1.304 8 1.3839 1. 3839 1.2949 2.4324 3.8842 3.8723 3.9506 4. 1788 4.0991 3.7076 5.2187 5.1771 5.334 5 5. 5627 5.3940 0.6222 0.5190 0.5142 0.5239 "0. 5099 0.4980 0.4878 0.3778 0.4810 0.4858 0.4761 0. 4901 0.5020 0.5122 * — EQUILIBRIUM CONDITIONS A u t o c l a v e P r e s s u r e (MPa) 10.23 10.65 10.65 11.05 11.25 10.85 10.34 10. 19- 10.34 A u t o c l a v e Temp. ("C) 141.7 137.8 136.7 138.9 136.7 138.3 137.8 137.8 135.6 A i r b a t h Temp (°C) 149.4 137.8 143.9 141.1 E q u l l l b r i a t l o n time ( h r s ) 1 1 1 1 1 1 1 1 1 Tachometer s e t t i n g 4.5 3 3 4 5 5 5 5 5 10.34 137.8 CO 00 89 c i r c u l a t e d on i t s own. A f t e r a b o u t one h o u r , when e q u i l i b r i u m h a d b e e n o b t a i n e d , t h e r a f f i n a t e f l o w was s t o p p e d and t h e e x t r a c t p h a s e c i r c u l a t e d . T h e e x t r a c t p h a s e was c i r c u l a t e d f o r a b o u t t e n m i n u t e s t o e n s u r e t h a t a r e p r e s e n t a t i v e s a m p l e was i n t h e s a m p l e c o i l . E v e n by u s i n g t h i s r e v i s e d p r o c e d u r e , r u n 5 p r o d u c e d a n e x t r a c t p h a s e s t i l l t o o r i c h i n n - C i r j H 2 2 . A c h e c k o f t h e a i r b a t h t e m p e r a t u r e i n d i c a t e d t h a t t h e v a l u e b e i n g d i s p l a y e d by t h e t e m p e r a t u r e c o n t r o l l e r was a f e w d e g r e e s l o w . F o r t h i s s y s t e m a n d a p r e s s u r e o f 1 0 . 3 4 M P a , a r e d u c t i o n i n t e m p e r a t u r e l e a d s t o a r e d u c t i o n i n t h e CO2 s o l v e n t p o w e r . T h e r e f o r e , t h e n - C i o H 2 2 w a s p r o b a b l y c o n d e n s i n g i n t h e s a m p l e l o o p a s t h e l o o p was k e p t a t a l o w e r t e m p e r a t u r e . I n s u b s e q u e n t r u n s , an a d d i t i o n a l t e m p e r a t u r e m e a s u r e m e n t was made o f t h e a i r b a t h t o p r o v i d e a n a c c u r a t e t e m p e r a t u r e r e a d i n g and s u b s e q u e n t c o n t r o l . F o r r u n 6 , t h e a i r b a t h t e m p e r a t u r e was m a i n t a i n e d 1 1 ° C h i g h e r t h a n t h e a u t o c l a v e t e m p e r a t u r e . The e q u i l i b r i u m d a t a o f t h e e x t r a c t p h a s e was i m p r o v e d , b u t t h e r a f f i n a t e s a m p l e was no l o n g e r r e p r o d u c i b l e . F o r r u n s 7 , 8 a n d 9 , a new s a m p l e c o i l was u s e d f o r t h e e x t r a c t p h a s e . The t h r e a d s o n t h e c o i l ' s " S w a g e l o c k " f i t t i n g s a n d v a l v e s h a d b e e n e x c e s s i v e l y w o r n . The c o i l a n d v a l v e s c o u l d no l o n g e r be c o n n e c t e d t o p r o v i d e a h i g h p r e s s u r e s e a l . T h i s p r o b l e m a l s o o c c u r r e d a t t h e e n d o f r u n 9 . F o r r u n 7 t h e a u t o c l a v e and a i r b a t h t e m p e r a t u r e w e r e t h e s a m e . T h e r a f f i n a t e s a m p l e o n c e a g a i n p r o v i d e d r e p r o d u c i b l e e q u i l i b r i u m d a t a u n l i k e t h e e x t r a c t p h a s e w h i c h h a d a h i g h n - C i 0 r l 2 2 c o n c e n t r a t i o n . I n r u n 8 , t h e a i r b a t h was s e t t o o n l y 6 . 2 ° C h i g h e r t h a n t h e 90 a u t o c l a v e t e m p e r a t u r e . The e q u i l i b r i u m r e s u l t s o f b o t h t h e e x t r a c t a n d r a f f i n a t e p h a s e w e r e w i t h i n 10% o f t h e p u b l i s h e d d a t a . Run 9 was a r e p e a t o f r u n 8 . U n f o r t u n a t e l y t h e r a f f i n a t e s a m p l e l o o p l e a k e d a n d t h e r e f o r e r a f f i n a t e d a t a a r e n o t a v a i l a b l e . T h e e q u i l i b r i u m r e s u l t s o f t h e e x t r a c t p h a s e a r e , h o w e v e r , c o n s i s t e n t w i t h t h e p u b l i s h e d d a t a . I t a p p e a r s t h a t f o r t h e n-Cj_0H22/CO2 s y s t e m a t 1 0 . 3 4 MPa and 1 3 7 . 8 ° C , t h e p r e s e n t p r o c e d u r e s o n l y p r o v i d e c o m p a r a b l e d a t a t o t h o s e o f 8 5 Reamer a n d S a g e , i f t h e a i r b a t h t e m p e r a t u r e i s s l i g h t l y h i g h e r t h a n t h e a u t o c l a v e t e m p e r a t u r e . 5.4 Results Using A Stripped Separator O i l T o t e s t b o t h t h e a n a l y t i c a l a n d e x p e r i m e n t a l p r o c e d u r e s , 4 r u n s w e r e p e r f o r m e d u s i n g a m u l t i c o m p o n e n t s e p a r a t o r o i l . The s e p a r a t o r o i l h a d h a d t h e l i g h t e r h y d r o c a r b o n s s t r i p p e d b e c a u s e t h e d e v e l o p e d e x p e r i m e n t a l p r o c e d u r e s w e r e shown ( s e e C h a p t e r 4 ) , t o be u n s u i t a b l e f o r t h e l i g h t e r and more v o l a t i l e h y d r o c a r b o n s o l u t e s . The o r i g i n a l and s t r i p p e d s e p a r a t o r o i l c o m p o s i t i o n s a r e i n d i c a t e d i n T a b l e 5 . 8 a n d F i g u r e 5 . 4 . The c h r o m a t o g r a p h i c a n a l y s i s d a t a a n d p l o t t e d c h r o m a t o g r a m s a r e g i v e n i n A p p e n d i x B . The s t r i p p e d s e p a r a t o r o i l c o n t a i n e d v i r t u a l l y no h y d r o c a r b o n s w i t h m o l e c u l a r w e i g h t s l e s s t h a n t h e C s f r a c t i o n . The s e p a r a t o r o i l h a d b e e n p r e p a r e d i n a s i m i l a r m a n n e r t o t h e ASTM D-87 p r o c e d u r e by d i s t i l l i n g o f f t h e l i g h t e r h y d r o c a r b o n f r a c t i o n a t a r e f l u x t e m p e r a t u r e o f 1 0 2 ° C . Two t e s t s w e r e p e r f o r m e d a t two p r e s s u r e s ( a p p r o x i m a t e l y 1 3 . 3 4 MPa a n d 2 0 . 2 0 M P a ) a n d one t e m p e r a t u r e ( a p p r o x i m a t e l y 6 5 . 5 ° C ) . T h i s 15 1 T~I | I » l l | " i — i — i — J — I — i — i — l | i i ' i — I — | — i — r — i — i — | — i — i — i — i — | — i — i i f 10 I-I (3 HI o UJ N _ l < 5 5 fX O • • STRIPPED SEPARATOR OIL, • — • ORIGINAL SEPARATOR OIL \ \ 3 . 3 7 % » _ \ » • * » * • I » i i i I i • • • L 10 35 15 20 25 30 NUMBER OF CARBON ATOMS F i g u r e 5.4 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e O r i g i n a l a n d S t r i p p e d O i l 40 92 t e m p e r a t u r e was c h o s e n s i n c e i t w o u l d p r e v e n t m u l t i p l e ( L ^ - I ^ - V ) p h a s e b e h a v i o u r . 6 1 The r e s u l t s o f t h e s e t e s t s a r e g i v e n i n T a b l e s 5 . 6 t o 5 . 8 . T h e o i l c o m p o s i t i o n s , l i s t e d i n T a b l e 5 . 8 , a r e p l o t t e d i n F i g u r e s 5 . 5 t o 5 . 8 . The c h r o m a t o g r a p h i c a n a l y s i s d a t a and p l o t t e d c h r o m a t o g r a m s a r e g i v e n i n A p p e n d i x B . F r e s h o i l c h a r g e s w e r e u s e d f o r r u n s 1 a n d 3 , a n d t h e p r e s s u r e was r a i s e d t o t h e h i g h e r p r e s s u r e o f r u n s 2 and 4 by i n t r o d u c i n g a d d i t i o n a l CO2 i n t o t h e a u t o c l a v e . As t h e c o n d i t i o n s w e r e a l m o s t i d e n t i c a l f o r r u n s 1 and 3 , and r u n s 2 and 4 , t h e r e p e a t a b i l i t y o f d a t a c o u l d be t e s t e d . The a i r b a t h t e m p e r a t u r e was k e p t a f e w d e g r e e s h i g h e r t h a n t h a t o f t h e a u t o c l a v e , a n d i n d e p e n d e n t p h a s e c i r c u l a t i o n was e m p l o y e d . An e q u i l i b r a t i o n t i m e o f 4 h o u r s was u s e d f o r e v e r y r u n . A l t h o u g h t h e e x p e r i m e n t a l p r o c e d u r e s do n o t p r o v i d e s u f f i c i e n t l y a c c u r a t e d a t a f o r i d e n t i f y i n g e q u i l i b r i u m c o n d i t i o n s , a t i m e o f 4 h o u r s s h o u l d p r o v i d e 8 7 s u f f i c i e n t t i m e f o r a c h i e v i n g e q u i l i b r a t e d p h a s e s f o r t h i s s y s t e m . The m e a s u r e d v a l u e s , g i v e n i n T a b l e 5 . 6 , i n d i c a t e a d e g r e e o f r e p e a t a b i l i t y c o n s i s t e n t w i t h t h e b i n a r y n - C i o H 2 2 / , ( X ) 2 r e s u l t s . T h e m e a s u r e d c o m p o s i t i o n s , g i v e n i n T a b l e 5 . 8 , do i n d i c a t e t h a t t h e r e i s s u b s t a n t i a l d i f f e r e n c e i n t h e e x t r a c t o i l s o f t h e i d e n t i c a l r u n s ( i . e . , r u n s 1 and 3 , and 2 and 4 ) . The i n i t i a l a n a l y s e s r e s u l t s , d i s c u s s e d i n S e c t i o n 5 . 1 . 2 , i n d i c a t e d t h a t o n l y s m a l l e r r o r s o c c u r w i t h t h e c h r o m a t o g r a p h i c a n a l y s i s p r o c e d u r e s , a n d t h e r e f o r e t h e d i f f e r e n t o i l c o m p o s i t i o n s l i s t e d i n T a b l e 5 . 8 a r e f a i r l y r e p r e s e n t a t i v e . The p l o t t e d c h r o m a t o g r a m s , g i v e n i n A p p e n d i x B , a l s o i n d i c a t e d i f f e r e n t e x t r a c t o i l 93 T a b l e 5 . 6 S t r i p p e d S e p a r a t o r O i l / C 0 2 R e s u l t s : M e a s u r e d V a l u e s T o t a l volume of c e l l , V ? ' - 952 cm 3 ± 10 cm 3 E x t r a c t sample volume, v r • 7.8 cm t 0.3 cm 6 3 T o t a l volume removed d u r i n g e x t r a c t s a m p l i n g v ^ ^ - 11.2 1 0.3 cm R a f f i n a t e 6ample volume, v D • 8.2 cm i 0.3 cm 3 3 T o t a l volume removed d u r i n g r a f f i n a t e s a m p l i n g , v R S T » 11.6 cm ± 0.3 cm Run T o t a l O i l Weight, W T 0 I L Volume of C 0 2 degassed (dm ) Weight of COj degassed (g) E x t r a c t sample expanded C O 2 (dm ) E x t r a c t s a n p l e weight of C 0 2 , w£(co2) (s) E x t r a c t sample weight of o i l , U E ( 0 I L ) (g) T o t a l e x t r a c t sample w e i g h t , w£^r) (g) E x t r a c t phase d e n s i t y , p £ (g/cm 3) C o n c e n t r a t i o n of C O 2 - i n the e x t r a c t phase, C o n c e n t r a t i o n of o i l i n the e x t r a c t phase, EXTRACT "E(C02) " E ( 0 I L ) (g/cm ) (g/cm 3) E D l L / G C 0 2 R a f f i n a t e sample expanded C O 2 (dm 3) RAFFINATE R a f f i n a t e sample weight of C 0 2 R a f f i n a t e sample weight of o i l R ( C 0 2 ) (g) ( g ) R ( 0 I L ) T o t a l r a f f i n a t e sample w e i g h t , wR^T) (g) R a f f i n a t e phase d e n s i t y , p R (g/cm ) C o n c e n t r a t i o n of C O 2 l n the r a f f i n a t e phase, C R ^ C 0 j (g/cm ) C o n c e n t r a t i o n of o i l l n the r a f f i n a t e phase, K O I L ^ C O , C R ( 0 1 L ) ( g / c E > EQUILIBRIUM CONDITIONS P A u t o c l a v e (MPa) T A u t o c l a v e (°C) T A i r Bath CO E q u i l i b r i a t i o n Time ( h r s ) 13.73 66.1 67.18 4 248 251 242 244 _ - 308.400 286. 890 - - 610 567 2.280 2.125 2.865 2. 800 4.5076 4.2011 5.6641 5. 5356 0.1595 0.1564 0.5114 0. 5299 4.6671 4.3575 6.1755 6. 0655 0.598 0.559 0.792 0. 778 0.578 0.539 0.726 0. 710 0.020 0.020 0.066 0.068 0.035 0.037 0.090 0. .096 1.040 1.005 1.255 1. ,215 2.0561 1.9869 2.4811 2. , 4021 4.1488 4.5582 4.2044 4. . 2965 6.2049 6.5415 6.6855 6, . 6986 0.748 0. 788 0.805 0. .807 0.248 0.239 0.299 0, .289 0.500 0. 549 0.507 0, .510 2.018 2. 294 1.694 1, . 789 13.34 65.5 71.1 4 20.20 65.0 73.3 4 20. 20 65.5 72.2 4 T a b l e 5 . 7 S t r i p p e d S e p a r a t o r O i l / C 0 2 R e s u l t s : C a l c u l a t e d V a l u e s Run 1 3 2 4 CALCULATED VOLUMES E x t r a c t volume, V (cm 3) 591 635 661 664 V /V E ' T 0.621 0.667 0.694 0.697 R a f f l n a t e Volume, V R ( c m 3 ) 361 317 291 288 V V T 0.379 0.333 0.306 0.303 C A L C U L A T E D WEIGHTS Weight of r e s i n o u s m a t e r i a l , W T G (g) 55 64 50 52 Weight of o i l In the e x t r a c t phase, W T ^ O T L ) (g) 12 13 44 45 Weight of o i l In the r a f f l n a t e phase, w T R ( Q I L ) (g) 181 174 148 147 T o t a l o v e r a l l weight of o i l In the c e l l , W T'r(oiL) (g) 248 251 242 244 Weight of CO2 In the e x t r a c t phase, h t E ( C Q 2 J (g) 342 342 480 471 Weight of CO2 In the r a f f i n a t e phase, WT . . R\ CO 2 ) (g) 90 76 87 83 T o t a l o v e r a l l weight of CO2 i n the c e l l , W T , . , - , , . T ( CO 2 ) (g) 432 418 567 554 T a b l e 5 . 8 M o l e c u l a r Window Weight O r i g i n a l S t r i p p e d ( J ) F r a c t i o n O i l O i l Run 1 C1+C5 3.37 0.00 0.05 2 c 6 4.67 0.00 0.02 3 C7 7.25 0.07 0.02 4 c 8 6.47 0.67 0.02 5 C9 5.52 2.41 4.81 6 c 1 0 4.64 3.78 7.04 7 C l l 3.59 3.84 12.24 8 C i 2 3.39 4.06 14.79 9 C l 3 3.58 4.55 14.76 10 C m 3.51 4.64 12.56 11 CIS 3.05 4.09 8.89 12 C i s 2.64 3.67 6.54 13 Cl7 2.64 3.81 5.49 14 C1B 2.14 3.13 3.67 15 Cl9 1.99 2.97 2.88 16 C20 >C21 3.45 5.25 3.91 17 C 2 2 .C23 2.93 4.58 2.45 18 CJI, , C 25 2.46 3.92 1.59 19 c 2 6 . c27 2.16 3.43 1.04 20 c 2 8 » C29 1.68 2.67 0.62 21 C 3 0 .C3I 1.55 2.47 0.45 22 C 3 2 « C33 1.34 2.16 0.29 23 C3^••C3 9 2.38 3.93 0.24 e l u t e d from C . column 76.40 70.10 100.00 S t r i p p e d S e p a r a t o r O i l / C 0 2 R e s u l t s : N o r m a l i z e d C o n c e n t r a t i o n s o f O i l C o m p o n e n t s NORMALIZED WEIGHT (Z) E x t r a c t O i l Run 3 0.11 0.05 0.16 2.24 8.29 13.02 12.41 11.52 10.90 9.27 6.60 4.88 4.19 2.89 2.35 3.38 2.34 1.69 1.23 0.80 0.63 0.44 0.48 Run 2 0.02 0.01 0.03 0.97 5.23 9.70 10.03 10.20 10.54 9.88 7.68 6.17 5.66 4.11 3.47 5.17 3.62 2.52 1.73 1.07 0.81 0.58 0.71 Run 4 0.01 0.01 0.02 0.11 2. 10 6.51 8.70 9.85 10.73 10.32 8.26 78 43 82 16 6.39 4.56 3.24 2.28 1.46 1.14 0.84 1.16 Run 1 0.00 0.00 0.03 0.61 2.42 11 40 82 50 92 12 4.73 4.82 08 92 09 30 51 85 3.74 3.49 3.06 5.17 R a f f l n a t e O i l Run 3 0.00 0.01 0.04 0.64 2.62 4.25 4.68 5.05 5.72 6.11 5.25 4.81 4.87 4.11 3.94 7.13 6.34 5.54 4.96 3.92 3.76 3.43 5.86 Run 2 0.00 0.03 0.04 0.55 2.02 3.25 3.62 4.04 4.72 5.18 4.54 4.26 4.36 3.77 3.69 6.81 6.22 5.60 5.10 4.02 3.82 3.46 6.15 Run 4 0.00 0.02 0.03 0.46 92 16 61 02 71 18 57 26 37 3.75 3.68 6.78 6.19 5.55 5.03 4.03 3.87 3.56 6.88 100.00 100.00 100.00 89.80 93.90 85.40 85.70 96 IS ?0 75 30 33 NUMBER OF CARBON ATOMS N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e E x t r a c t e d O i l o f R u n s 1 a n d 3 I ' 1 ' ' I • • • i I i • i i I i i r • — • EXTRACT O I L OF BUN 2 • — • EXTRACT O I L OF RUN 4 5 W 15 ?0 25 30 35 -<0 NUMBER OF CARBON ATOMS F i g u r e 5 . 6 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e E x t r a c t e d O i l o f R u n s 2 a n d 4 97 '• i • • l • » i — ' i • — i — i — • — i i • — i — i | i i i — i — | — i — i i i — p ' • • I f i t 10 i o o UJ M _ l < 2 s EC O 2 • 4RAFFINATE OIL OF RUN 1 .—.RAFFINATE OIL OF RUN 3 • / V (—• 11.96* . " 15.37% 15 20 25 30 NUMBER OF CARBON ATOMS 35 40 F i g u r e 5 . 7 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e R a f f i n a t e G i l o f R u n s 1 a n d 3 ™ ! — I — | — I — » — 1 — » — | — I — I — I — I — | — I — • I I | I I I I | I I I • | » » • I | • I I RAFFINATE OIL OF RUN 2 - • RAFFINATE OIL OF RUN 4 X q UJ 5 o UJ Nl o .20.75% .21.18% 1 • • • • 1 • • • • 1 • — I • I I K 15 20 25 30 35 ' 0 NUMBER OF CARBON ATOMS F i g u r e 5 . 8 N o r m a l i z e d C o n c e n t r a t i o n s f o r t h e R a f f i n a t e O i l o f R u n s 2 a n d 4 98 c o m p o s i t i o n s o f r u n 1 a n d 3 , a n d 2 a n d 4 . T h e s e p l o t t e d c h r o m a t o g r a m s w e r e p r o d u c e d f r o m s e p a r a t e i n j e c t i o n s t h a t w e r e i n j e c t e d a f t e r t h e c h r o m a t o g r a p h i c a n a l y s e s d a t a o f T a b l e 5 . 8 h a d b e e n p r o d u c e d . The c h r o m a t o g r a p h i c a n a l y s i s d a t a i n d i c a t e d t h a t c o n s i d e r a b l e a m o u n t s o f t h e Cs t o Cio f r a c t i o n s w e r e m i s s i n g i n t h e e x t r a c t s a m p l e s o f r u n 1 i n c o m p a r i s o n w i t h r u n 3 , and o f r u n 4 i n c o m p a r i s o n w i t h r u n 2 . As more e x t r a c t o i l was t r a p p e d f o r r u n 1 t h a n r u n 3 , a n d a l s o f o r r u n 4 t h a n r u n 2 ( s e e T a b l e 5 . 6 ) , i t i s u n l i k e l y t h a t t h e l o s s o c c u r r e d d u r i n g t h e s a m p l e e x p a n s i o n . S i n c e t h e c h r o m a t o g r a p h was o u t o f o r d e r f o r o v e r a m o n t h , t h e c o l l e c t e d s a m p l e s w e r e n o t a n a l y s e d f o r a c o n s i d e r a b l e p e r i o d o f t i m e . A m e a s u r a b l e e v a p o r a t i o n o r l o s s o f t h e l i g h t e r h y d r o c a r b o n s c o u l d h a v e o c c u r r e d d u r i n g t h i s p e r i o d . T h e r a f f i n a t e o i l s p r o v i d e d f a i r l y c o n s i s t e n t a n a l y s e s r e s u l t s f o r r u n s 1 a n d 3 , and r u n s 2 and 4 . The d i f f e r e n c e s i n r u n s 2 and 4 i s v e r y s m a l l a n d t h e d i f f e r e n c e s i n r u n s 1 a n d 3 a r e p r o b a b l y a r e s u l t o f an i n c o r r e c t m e a s u r e m e n t o f t h e a d d e d i n t e r n a l s t a n d a r d . F i g u r e 5 . 7 s e e m s t o v e r i f y t h i s c o n c l u s i o n a s t h e d i s t r i b u t i o n o f t h e h y d r o c a r b o n f r a c t i o n s a r e s i m i l a r , e x c e p t t h a t t h e p l o t t e d c o n c e n t r a t i o n v a l u e s f o r t h e r a f f i n a t e o i l o f r u n 3 a r e d i s p l a c e d a t h i g h e r v a l u e s s i n c e a l a r g e r f r a c t i o n was c a l c u l a t e d t o be e l u t e d . T h e r a f f i n a t e o i l a n a l y s e s i n d i c a t e t h a t t h e r a f f i n a t e o i l s c o n t a i n l e s s r e l a t i v e q u a n t i t i t e s o f t h e CI+Q+, o r n o n - e l u t a b l e m a t e r i a l t h a n t h e o r i g i n a l o i l . As t h e e x t r a c t c o n t a i n s a p o r t i o n o f t h e e l u t a b l e o i l t h e r e m u s t h a v e b e e n a s e p a r a t e and h e a v y o i l p h a s e . T h i s was c o n s i d e r e d t o be t h e r e s i n o u s o r s o l i d p h a s e o b s e r v e d by o t h e r s 6 0 ' 6 5 - 6 6 a n d w h i c h t e n d s t o a d h e r e t o t h e c e l l s u r f a c e . 6 5 99 U n l i k e a b i n a r y (1 s o l v e n t - 1 s o l u t e ) s y s t e m t h e e q u i l i b r i u m d a t a i n v o l v i n g t h e m u l t i c o m p o n e n t o i l s o l u t e a r e d e p e n d e n t on t h e o v e r a l l ( o r t o t a l ) CO2 c o n t e n t o f t h e a u t o c l a v e . T h e r e f o r e , t h e C 0 2 c o n t e n t h a d t o be c a l c u l a t e d . The d e t a i l s o f t h i s c a l c u l a t i o n a r e g i v e n i n A p p e n d i x C , a n d t h e r e s u l t s a r e g i v e n i n T a b l e 5 . 7 . The c a l c u l a t e d CO2 c o n t e n t a g r e e s w i t h i n 10% o f t h e m e a s u r e d d e g a s s e d C 0 2 c o n t e n t o f r u n s 2 a n d 4 ( s e e T a b l e s 5 . 6 a n d 5 . 7 ) . The c a l c u l a t e d r e s u l t s i n T a b l e 5 . 7 a r e p a r t i c u l a r l y r e p e a t a b l e f o r r u n s 2 a n d 4 . T h i s i s b e c a u s e t h e m e a s u r e d c o n c e n t r a t i o n s a n d r a f f i n a t e a n a l y s i s d a t a , t h a t a r e u s e d i n t h e c a l c u l a t i o n o f v o l u m e and p h a s e c o n t e n t ( S e e A p p e n d i x C ) , a r e more c o m p a r a b l e f o r r u n s 2 a n d 4 t h a n r u n s 1 a n d 3 . 5 . 4 . 1 M a s s B a l a n c e o f O i l C o m p o n e n t s The c a l c u l a t e d s o l i d c o n t e n t s a r e g e n e r a l l y a b o v e t h e v a l u e s q u o t e d p r e v i o u s l y . 6 6 T h i s i s p a r t i c u l a r l y t r u e f o r r u n 3 w h i c h h a d an e v a l u a t e d s o l i d c o n t e n t s u b s t a n t i a l l y a b o v e t h a t o f r u n s 1 , 2 and 4 . T h e r e f o r e , i t was s u s p e c t e d t h a t t h e r e s u l t s o f r u n 3 , ( i . e . , t h e m e a s u r e d e l u t e d f r a c t i o n o f t h e r a f f i n a t e o i l , and s u b s e q u e n t p h a s e v o l u m e s a n d c o n t e n t s ( s e e A p p e n d i x C) w e r e i n c o r r e c t . As a r e s u l t , t h e c o n s e c u t i v e r u n s 3 a n d 4 w e r e n o t u s e d i n i l l u s t r a t i n g a mass b a l a n c e . H o w e v e r , i t i s s u s p e c t e d t h a t t h e e x t r a c t o i l o f r u n 1 h a d l o s t some l i g h t e r h y d r o c a r b o n s b e t w e e n t h e e x p a n s i o n and t h e c h r o m a t o g r a p h i c a n a l y s i s . T o u s e t h e c o n s e c u t i v e r u n s 1 a n d 2 t o i l l u s t r a t e t h e mass b a l a n c e and e v a l u a t e d e q u i l i b r i u m c o n s t a n t s , t h e c o m p o n e n t c o n c e n t r a t i o n d a t a o f t h e e x t r a c t o i l o f r u n 3 was u s e d i n p l a c e o f t h a t o f r u n 1 . T a b l e 5 . 9 a n d 5 . 1 0 l i s t t h e mass b a l a n c e r e s u l t s o f t h e o i l T a b l e 5.9 M a s s B a l a n c e R e s u l t s o f Run 1 Window e l u t e d M o l e c u l a r Weight WT. E ( j ) WT R ( J ) WT S ( j ) WT J ( J ) K j ) WT, T ( j ) WT WT, T ( j ) 111 WT, x 100 T ( j ) ( J ) F r a c t I o n (g) (g) (g) (g) (g) (g) <*) 1 CJ-K; 5 0.0132 0. ,0000 - 0.0132 0, .0000 +0.0132 +•» 2 c 6 0 .0060 0. ,0000 - 0.0060 0, .0000 +0.0060 +» 3 0 .0192 0. .0546 - 0.0738 0. .1736 -0.0998 -17.36 4 0.2688 1. 1102 - 1.3798 1. .6616 -0.2826 -17.01 5 C 9 0 .9948 4. 4044 - 5-3992 5. .9768 -0.5776 -9.66 6 c i o 1 .5624 7. 4802 - 9.0426 9. .3744 -0.3318 -3.54 7 C i l I, .4892 8. 0080 - 9.4972 9. .5232 -0.0260 -0.27 8 Cl2 1, .3824 8. 7724 - 10.1548 10.0688 +0.0860 +0.85 9 C l 3 1, .3080 10.0100 - 11.3180 11. .2840 +0.0340 +0.30 10 Cm 1 .1129 10.7744 - 11.8868 11. .5072 +0.3796 +3.30 11 c 1 5 0.7920 9. 3184 - 10.1104 10. , 1432 -0.0328 -0.29 12 Cl6 0, .5856 8. 6086 - 9.1942 9. . 1016 +0.0926 +1.02 13 Cl7 0, .5028 8. 7724 - 9.2752 9, ,4488 -0.1736 -1.87 14 C 18 0, .3468 7. 4256 - 7.7724 7. .7624 +0.0100 +1.90 15 C19 0, .2820 7. 1344 - 7.4164 7. ,3656 +0.0508 +0.69 16 C20.C21 0, .4056 12. 9038 - 13.3094 13. .0200 +0.2894 +2.22 17 C 2 2 - C 2 3 0, .2808 11. 4660 - 11.7468 11. ,3584 +0.3884 +3.42 18 C2M.C25 0, .2028 10. 0282 - 10.2310 9. ,7216 +0.5094 +5.24 19 c 2 6 , c 2 7 0, . 1476 8. 8270 - 8.9746 8. ,5064 +0.4680 +5.50 20 C28.C29 0, .0960 6. 8068 - 6.9028 6. ,6216 +0.6868 +4.25 21 C 3 0 - C 3 1 0, .7560 6. 3518 - 6.4274 6. 1256 +0.3018 +4.43 22 C 3 2• C 3 3 0, .0528 5. 3692 - 5.6260 5. ,3568 +0.2692 +5.03 23 C3M'* C39 0, .0576 9. 4094 - 9.4670 9. 7464 -0.2794 -2.86 n- Ci, 0+ 0. .0000 18. 5640 55.0000 73.5640 74. 1520 -0.5880 -0.79 O O T a b l e 5 . 1 0 M a s s B a l a n c e R e s u l t s o f Run 2 A ( j ) " WT , . M o l e c u l a r WT . . WT , x WT , , rwT . WT , . r.WT . , - WT , , Window Weight M.1> R(.D S ( j ) i C J ) T(.D 1(1) T ( j ) T ( j ) ( J ) F r a c t i o n (g) (g) (g) (g) (g) (g) (I) 1 0. 0088 0.0000 - 0 .0088 0.0000 0.0088 +•» 2 c6 0. 0044 0.0441 - 0.0485 0.0000 0.0485 +•» 3 c7 0.0132 0.0588 - 0 .0720 0.17 14 -0.0994 -58.00 4 c8 0. 4268 0.8085 - 1 .2353 1.6207 -0.3854 -27.78 5 c9 2. 3012 2.9694 - 5 .2706 5.8329 -0.5623 -9.64 6 C 10 4. 2680 4.7775 - 9 .0455 9.1034 -0.0579 -0.99 7 C l i it. 4132 5.3214 - 9 .7346 9.2366 0.5548 +6.01 8 C l 2 it. 4880 5.9388 - 10.4268 9.7595 0.6673 +6.84 9 it. 6376 6.9384 - 11 . 5760 10.9362 0.6398 +5.85 10 C m It. 3472 7.6146 - . 11 .9618 11. 1386 0.8232 +7.39 11 C l 5 3. 3792 6.6738 - 10 .0530 9.8276 0.2254 +2.29 12 C l 6 2. 7148 6.2622 - 8 .9770 8.8129 0.1641 + 1.86 13 <M7 2. 4904 6.4092 - 8 .8996 9.1563 -0.2567 -2.80 14 C 18 1. 8084 5.5419 - 7 .2327 7.5163 -0.2836 -3.77 15 C i 9 1. 5268 5.9243 - 6 .9511 7.1301 -0.1790 -2.51 16 C 2 0 . C 2 1 2. 2748 10.0107 - 12 .2855 12.5219 -0.2364 -1.89 17 C 22 « C 33 1. 5928 9.1434 - 10 .7362 10.9833 -0.2471 -2.25 18 C 2 M,C 2 5 1. 1088 8.2320 - 9 .3408 9.3943 -0.0535 -0.57 19 C 2 G ' C 2 / 0.7612 7.4970 - 8. .2582 8.2190 0.0392 0.48 20 C28.C29 0.4708 5.9094 - 6 .3802 6.4003 -0.0201 -0.31 21 C 3 0 . C 3 1 0. 3564 5.6154 - 5, .9718 5.9194 0.0524 0.89 22 C32 . C 3 3 0. 2552 5.0862 - 5, .3414 5.1762 0.1652 3.19 23 C3..+C39 0. 3124 9.0405 - 9, .3529 9.4419 -0.0890 -0.94 Non- C M 0 + 0. 0000 21.6080 50.000 71, .4620 73.5534 -1.9454 -2.64 e l u t e d 102 c o m p o n e n t s f o r r u n s 1 a n d 2 r e s p e c t i v e l y . W T E ( J ) W T ^ Q ^ a n d W T s ( j ) a r e t h e t o t a l w e i g h t s o f t h e o i l f r a c t i o n t h a t e l u t e i n w i n d o w " j " , f o r t h e e x t r a c t , r a f f i n a t e a n d s o l i d p h a s e r e s p e c t i v e l y . EWT^j) i s t h e summed v a l u e s f o r t h e e x t r a c t , r a f f i n a t e a n d s o l i d p h a s e . T h e s e v a l u e s a r e c a l c u l a t e d f r o m t h e t o t a l p h a s e c o n c e n t r a t i o n s o f T a b l e 5 . 7 a n d c h r o m a t o g r a p h i c a n a l y s i s d a t a o f T a b l e 5 . 8 . WTx(j) i s t h e t o t a l w e i g h t o f t h e o i l f r a c t i o n o f w i n d o w " j " , c a l c u l a t e d f r o m t h e known a d d e d w e i g h t o f o i l a n d t h e c h r o m a t o g r a p h i c a n a l y s i s o f t h e o r i g i n a l s t r i p p e d s e p a r a t o r o i l . F o r r u n 2 , t h e WTx(j) v a l u e s a r e c a l c u l a t e d b y s u b t r a c t i n g t h e w e i g h t o f t h e o i l f r a c t i o n s s a m p l e d i n r u n 1 f r o m t h e W T T ( J ) v a l u e s o f t h e o r i g i n a l o i l c h a r g e u s e d i n Run 1 . The Ci t o C5 a n d Cg f r a c t i o n s a p p e a r i n t h e e x t r a c t p h a s e as t h e c h r o m a t o g r a p h i c a n a l y s e s i d e n t i f i e d r e s i d u a l d i - e t h y l e t h e r t h a t was u s e d t o f l u s h t h e e x t r a c t o i l f r o m t h e s a m p l e c o i l . E x c e p t f o r t h e C i t o C9 m o l e c u l a r w e i g h t o i l f r a c t i o n s , t h e c a l c u l a t e d mass v a l u e s ( E W T ^ j ) ) a g r e e d w i t h t h e m e a s u r e d mass v a l u e s ( W T ^ ( j ) ) . The e q u i l i b r i u m r e s u l t s ( s h o w n b e l o w ) i n d i c a t e t h a t t h e l i g h t e r h y d r o c a r b o n s had b e e n l o s t p r i o r t o t h e c h r o m a t o g r a p h i c a n a l y s i s . 5 . 4 . 2 C a l c u l a t e d E q u i l i b r i u m V a l u e s T a b l e 5 . 1 1 s u m m a r i z e s t h e c a l c u l a t e d e q u i l i b r i u m d a t a . The a v e r a g e m o l e c u l a r w e i g h t o f t h e CL>O+ f r a c t i o n , o r n o n e l u t e d f r a c t i o n , was t a k e n a s n - C 5 o H i o 2 « S i n c e t h e CO2 m o l a r c o n c e n t r a t i o n s w e r e h i g h a n d t h e C^Q * f r a c t i o n o n l y r e p r e s e n t e d a s m a l l m o l a r f r a c t i o n o f t h e o i l , t h e c h o i c e o f t h e C i t f j - r m o l e c u l a r w e i g h t h a d r e l a t i v e l y l i t t l e i n f l u e n c e o n t h e m o l a r c o n c e n t r a t i o n s e v a l u a t e d f o r t h e CO2 a n d T a b l e 5 . 1 1 C a l c u l a t e d E q u i l i b r i u m V a l u e s RUN 2 CO 2 C 7 c 8 c , C 1 0 C l l <M2 C l 3 C u C u C l 7 C 1 8 C 1 9 C 2 0 . C 2 1 C 2 2 , C 2 3 C 2 4. c25 C26.CJ7 C 2 B . C 2 9 C 3 O . C 3 I C 3 2 > C 3 3 c i<0+ H o l e c u l a r Weight O v e r a l l E x t r a c t Phase R a f f l n a t e E q u i l i b r i u m M o l a r Molar Phase Molar Constant C o n c e n t r a t i o n C o n c e n t r a t i o n Concent rat ion (K - y/x) U ) (y) (x ) 44.01 100.20 114.23 128.25 145.28 156.31 170.33 184.36 198.38 212.41 226.44 240.46 254.49 268.51 284.55 317.60 345.65 347.71 401.76 429.81 457.86 513.97 703.16 P - 13.73 MPa; T - 6 6 . P C O v e r a l l E x t r a c t Phase R a f f l n a t e E q u l l l b r l u m M o l a r Molar Phase Molar Constant C o n c e n t r a t i o n C o n c e n t r a t i o n C o n c e n t r a t i o n (K - y/x) (z> (y> (x) Average m o l e c u l a r weight of o i l Phase D e n s i t y (g/cm 3) Phase d e n s i t y (g moles/cm ) 0.920199 0.000070 0.001134 0.003956 0.005971 0.005709 0.005602 0.005768 0.005630 0.004473 0.003793 0.003624 0.002870 0.002595 0.004395 0.003476 0.002444 0.002925 0.001614 0.001405 0.001155 0.001731 0.009962 292.01 0.598 0.013 0.991490 0.743350 1.3381 0.939761 0.000024 0.000145 0.1655 0.000052 0.000301 0.003221 0.0935 0.000787 0.000993 0.012468 0.0796 0.002993 0.001405 0.019109 0.0735 0.004533 0.001220 0.018622 0.0655 0.004580 0.001040 0.018720 0.0556 0.004458 0.000907 0.019738 0.0456 0.004572 0.000722 0.019741 0.0366 0.004391 0.000477 0.015947 0.0299 0.003446 0.000331 0.013820 0.0240 0.002886 0.000267 0.013260 0.0201 0.002695 0.000174 0.010607 .0.0164 0.002069 0.000141 0.009658 0.0146 0.001885 0.000183 0.016485 0.0111 0.003144 0.000113 0.013122 0.00B6 0.002461 0.000076 0.010577 0.0072 0.001967 0.000054 0.009292 0.0058 0.001729 0.000031 0.006157 0.0050 0.001156 0.000023 0.005372 0.0043 0.001011 0.000015 0.004420 0.0034 0.000850 0.000015 0.006656 0.0023 0.001325 0.000000 0.009593 0.0000 0.007296 80.45 257.79 292.34 0.748 0.792 0.008 0.017 P - 20.20 MPa; T - 65.0°C 0.979789 0.787738 1.244 0.000012 0.000235 0.0511 0.000334 0.002821 0.1184 0.001608 0.009225 0. 1743 0.002634 0.013102 0.2010 0.002531 0.013565 0.1866 0.002362 0.013895 0.1700 0.002296 0.014990 0.1531 0.001964 0.015294 0.1284 0.0014 26 0.012520 0.1139 0.001074 0.011018 0.0975 0.000929 0.010620 0.0875 0.000637 0.008679 0.0734 0.000510 0.008049 0.0634 0.000716 0.014019 0.0511 0.000450 0.011472 0.0392 0.000288 0.009492 0.0303 0.000196 0.008591 0.0228 0.000105 0.005862 0.0179 0.000074 0.005204 0.0142 0.000050 0.004427 0.0113 0.000055 0.007009 0.0078 0.000000 0.012168 0.0000 195.15 0.805 0.009 275.97 O 104 o t h e r o i l f r a c t i o n s . The e q u i l i b r i u m K v a l u e s o f t h e C 7 , C s and C9 f r a c t i o n s a r e b e l o w t h e K v a l u e o f t h e C 1 0 f r a c t i o n . T h i s s h o u l d n o t o c c u r a n d was p r o b a b l y a r e s u l t o f a s u b s t a n t i a l l o s s o f t h e C7 t o Co. h y d r o c a r b o n s f r a c t i o n s a t t h e e x p a n s i o n s t a g e , o r i n t h e t i m e p e r i o d b e t w e e n e x p a n s i o n and a n a l y s i s . The r e m a i n i n g h y d r o c a r b o n s i n d i c a t e t h e e x p e c t e d d e c r e a s e i n K v a l u e s w i t h an i n c r e a s e i n m o l e c u l a r w e i g h t . The m o l a r c o n c e n t r a t i o n o f t h e e x t r a c t o i l i s l e s s t h a n 1% f o r t h e l o w e r p r e s s u r e o f r u n 1 ( 1 3 . 3 M P a ) , a n d o n l y i n c r e a s e s t o a p p r o x i m a t e l y 2% a t t h e h i g h e r p r e s s u r e o f r u n 2 ( 2 0 . 2 M P a ) . The a v e r a g e m o l e c u l a r w e i g h t o f t h e e x t r a c t o i l i n c r e a s e s w i t h a n i n c r e a s e i n p r e s s u r e . T h i s i n d i c a t e s t h e f r a c t i o n a t i n g c a p a b i l i t y o f s u p e r c r i t i c a l CO2. H o w e v e r , t h e a v e r a g e m o l e c u l a r w e i g h t v a l u e s may be I n a c c u r a t e due t o t h e l o s s o f t h e l i g h t e r h y d r o c a r b o n s . The i n c r e a s e i n p r e s s u r e l e a d s t o an i n c r e a s e d s o l v e n t s o l u b i l i t y i n t h e r a f f i n a t e p h a s e , a n d an i n c r e a s e i n t h e a v e r a g e m o l e c u l a r w e i g h t o f t h e r a f f i n a t e o i l . The i n c r e a s e d m o l e c u l a r w e i g h t o f t h e r a f f i n a t e o i l i s a r e s u l t o f an i n c r e a s e d e x t r a c t i o n o f t h e i n t e r m e d i a t e h y d r o c a r b o n f r a c t i o n , a n d a l s o a d e c r e a s e i n t h e q u a n t i t y o f t h e CL;0+ r e s i n o u s p h a s e . As t h e r e s i n o u s p h a s e d o e s e x i s t , t h e a v e r a g e m o l e c u l a r w e i g h t o f t h e r a f f i n a t e o i l s i s l e s s t h a n t h a t o f t h e t o t a l o i l . The a v e r a g e m o l e c u l a r w e i g h t o f t h e t o t a l o i l i s h i g h e r f o r r u n 2 t h a n r u n 1 b e c a u s e t h e s a m p l i n g d u r i n g r u n 1 r e m o v e d a q u a n t i t y o f t h e l i g h t e r a n d e l u t a b l e o i l s . The c h a n g e i n t h e a v e r a g e m o l e c u l a r w e i g h t o f t h e o i l i s v e r y s m a l l a n d t h e r e f o r e t h e s a m p l i n g a p p e a r s t o h a v e a m i n i m a l e f f e c t on t h e o i l c o m p o s i t i o n . 105 6. CONCLUSIONS 1. ANALYTICAL PROCEDURES a . T h e a n a l y t i c a l p r o c e d u r e s , w h i c h w e r e d e v e l o p e d f o r t h i s s t u d y , a r e s u f f i c i e n t l y p r e c i s e t o i n d i c a t e t h a t s u p e r c r i t i c a l CO2 s e l e c t i v e l y r e m o v e s c o n s t i t u e n t s f r o m a m u l t i c o m p o n e n t s e p a r a t o r o i l . b . A s p e c i a l programme was w r i t t e n f o r t h e i n t e r p r e t a t i o n o f t h e c h r o m a t o g r a m . c . The a c c u r a c y o f t h e e q u i l i b r i u m d a t a i s c o m p a r a b l e t o t h a t p r e v i o u s l y p u b l i s h e d i n m i s c i b i l i t y s t u d i e s . 2. EXPERIMENTAL PROCEDURES a . The d e s i g n o f t h e c e l l a l l o w s f o r p r e s s u r e s up t o 3 4 . 5 MPa a n d t e m p e r a t u r e s up t o 2 0 0 ° C . The c e l l t h e r e f o r e a l l o w s n o r m a l maximum s u p e r c r i t i c a l f l u i d e x t r a c t i o n t e m p e r a t u r e s (up t o 1 .2 T c o f t h e 1 8 s o l v e n t • ) a n d s u p e r c r i t i c a l f l u i d p r e s s u r e s (up t o 5 P c o f t h e s o l v e n t 1 ' 8 ) t o be s t u d i e d f o r t h e C 2 H 4 , C 2 H 6 , C3H6 a n d C3H0, s o l v e n t s . A l t h o u g h 200 ° C i s i n e x c e s s o f 1 .2 T c f o r CO2, t h e maximum p r e s s u r e , 3 4 . 5 M P a , i s o n l y 4 . 6 7 P c f o r C 0 2 . b . P h a s e e q u i l i b r i u m d a t a c a n n o t be o b t a i n e d f o r c o n d i t i o n s w h i c h p r o d u c e more t h a n two f l u i d p h a s e s , as o n l y two r e g i o n s o f t h e a u t o c l a v e a r e s a m p l e d . c . T h e pumps p r o v i d e a means t o s a m p l e a t i s o b a r i c e q u i l i b r i u m c o n d i t i o n s . The p e r f o r m a n c e o f t h e e x t r a c t p h a s e pump d e c r e a s e d w i t h i n c r e a s e d u s e , i n d i c a t i n g s u b s t a n t i a l w e a r . B o t h pumps d i d m a i n t a i n p h a s e c i r c u l a t i o n t h r o u g h o u t t h e e x p e r i m e n t , a n d t h i s r e p r e s e n t s a b o u t 75 h o u r s o f c o n t i n u e d u s e . 106 d . The e x i s t i n g e x p e r i m e n t a l p r o c e d u r e s a r e u n s u i t a b l e f o r compounds o r m i x t u r e s t h a t c o n t a i n compounds w h i c h a r e more v o l a t i l e t h a n d e c a n e . T h e s e compounds a p p e a r t o be s u b s t a n t i a l l y s t r i p p e d when t h e h i g h p r e s s u r e s a m p l e i s e x p a n d e d . 107 7. RECOMMENDATIONS 1. ANALYSIS a . The e x p a n d e d C 0 2 g a s s h o u l d be a n a l y s e d f o r h y d r o c a r b o n c o n t e n t . T h i s w o u l d a l l o w t h e s t u d y o f t h e o r i g i n a l s e p a r a t o r o i l a s w e l l as s e p a r a t o r o i l and s o l u t i o n g a s m i x t u r e s . The g a s a n a l y s i s s h o u l d be c a p a b l e o f a n a l y s i n g h y d r o c a r b o n s up t o d e c a n e ( n - C i r j H 2 2 ) « b . An i n i t i a l l o w I s o t h e r m a l t e m p e r a t u r e h o l d a n d / o r a l o n g e r c o l u m n s h o u l d be c o n s i d e r e d f o r c h r o m a t o g r a p h i c a n a l y s e s o f m i x t u r e s c o n t a i n i n g h y d r o c a r b o n s l i g h t e r t h a n p e n t a n e . T h i s w o u l d p r o v i d e a b e t t e r s e p a r a t i o n f o r a n a l y s i s t h a n t h a t o b t a i n e d u s i n g t h e c o l u m n s a n d c o n d i t i o n s g i v e n i n T a b l e 3 . 2 . c . A l t h o u g h t h e c o l u m n c o n t a i n i n g OV-101 l i q u i d p h a s e was n o t u s e d b e c a u s e o f i t s p o o r r e s o l u t i o n c h a r a c t e r i s t i c s , i t was o b s e r v e d t o p r o d u c e l e s s c o l u m n b l e e d i n g . T h e r e f o r e , t o m i n i m i z e e r r o r s a s s o c i a t e d w i t h t h e e v a l u a t i o n and e s t i m a t i o n o f t h e b a s e l i n e a r e a s , a l o n g e r OV-101 l i q u i d p h a s e c o l u m n s h o u l d be c o n s i d e r e d . d . G . C . - M . S . t e c h n i q u e s s h o u l d u l t i m a t e l y be u s e d t o p r o v i d e e x a c t a n d v e r y d e t a i l e d i n f o r m a t i o n on t h e s e p a r a t i o n and f r a c t i o n a t i o n o f t h e s o l u t e c o m p o u n d s . 2. EXPERIMENTAL APPARATUS a . The a u t o c l a v e and s a m p l i n g l o o p s s h o u l d be c o n t a i n e d i n a s i n g l e c o n s t a n t t e m p e r a t u r e b a t h . b . A w i n d o w e d c e l l w o u l d be a d v a n t a g e o u s a s m u l t i p l e p h a s e s c o u l d be d i r e c t l y o b s e r v e d , a n d t h e a p p r o p r i a t e s a m p l e s t a k e n . 108 c . A v a r i a b l e - v o l u m e c e l l w o u l d a l s o be u s e f u l a s t h e f i x e d - v o l u m e a u t o c l a v e p r e v e n t s t h e v a r i a b l e s , p r e s s u r e , t e m p e r a t u r e o r o v e r a l l CO2 c o n t e n t , t o be v a r i e d i n d e p e n d e n t l y . d . A new g e a r pump d e s i g n i s r e q u i r e d f o r s u s t a i n e d u s e . A l t h o u g h t h e i n i t i a l d e s i g n was b a s e d o n t h e s t i r r e r s h a f t a s t h e g e a r ' s d r i v e s h a f t , t h e m o d i f i e d d e s i g n u s e d d r i v e s h a f t s t h a t w e r e c o u p l e d t o t h e s t i r r e r s h a f t . The d e s i g n i s t h e r e f o r e n o t r e s t r i c t e d by g e a r pumps t h a t h a v e a 3 / 8 " d i a m e t e r d r i v e s h a f t . C o n s e q u e n t l y , t h e p u r c h a s e o f a s u i t a b l y c o m p a c t g e a r pump ( i . e . , a pump w h i c h f i t s i n t o t h e 3 " d i a m e t e r a u t o c l a v e ) a n d a new c o u p l i n g s h o u l d be c o n s i d e r e d t o e l i m i n a t e a more c o m p l e x m o d i f i e d pump d e s i g n . I f c o m m e r c i a l pumps a r e u s e d , i n d e p e n d e n t p h a s e c i r c u l a t i o n m i g h t n o t be p o s s i b l e , as t h e pumps a r e b u i l t w i t h i n h i g h t o l e r a n c e s t h a t c a n p r o d u c e a s u b s t a n t i a l p r e s s u r e h e a d when t h e f l o w i s r e s t r i c t e d a t t h e o u t l e t . T h e r e f o r e , t h e p u m p ' s h o u s i n g c o u l d be d a m a g e d . A l t e r n a t i v e l y , t h e t o r q u e r e q u i r e d t o t u r n t h e g e a r s , i n t h i s r e s t r i c t e d m o d e , m i g h t be a b o v e t h a t d e l i v e r e d by t h e m a g n e t i c c o u p l i n g . T h e r e f o r e , t h e m a g n e t i c c o u p l i n g m i g h t s l i p a n d t h e g e a r s m i g h t n o t r o t a t e . A q u i e s c e n t z o n e a r o u n d t h e p u m p ' s i n l e t w o u l d t h e r e f o r e h a v e t o be i n c o r p o r a t e d w i t h b o t h pumps p r o v i d i n g p h a s e c i r c u l a t i o n . e . T h e " S w a g e l o c k " c o n n e c t i o n s o n t h e s a m p l e c o i l w e r e h o t s u i t a b l e f o r r e p e a t e d c o n n e c t i o n s and d i s c o n n e c t i o n s . The h i g h p r e s s u r e ( " A u t o c l a v e S l i m L i n e " ) c o n n e c t i o n s w e r e more s u i t a b l e f o r t h i s s e r v i c e , a n d t h e r e f o r e t h e y s h o u l d be u s e d f o r t h e s a m p l e c o i l . The u s e o f t h e h i g h p r e s s u r e c o n n e c t i o n s a n d s u b s e q u e n t h i g h p r e s s u r e t u b i n g w o u l d 109 a l l o w s t u d i e s t o be c o n d u c t e d up t o t h e maximum p r e s s u r e r a t i n g o f t h e a u t o c l a v e ( 1 0 3 . 9 M P a ) . 3. FURTHER WORK a . F u r t h e r w o r k i s r e q u i r e d t o f u l l y a c c e s s t h e d e v e l o p e d e x p e r i m e n t a l p r o c e d u r e s . b . D i s p l a c e m e n t t e s t s s h o u l d a l s o be c o n d u c t e d t o d e t e r m i n e t h e M i n i m u m M i s c i b i l i t y P r e s s u r e and t o a l l o w c o m p a r i s o n s t o be made w i t h t h e s t a t i c p h a s e s t u d i e s . c . S i n c e c i r c u l a t i o n m e t h o d s a r e I n c o r p o r a t e d i n t o t h e c e l l d e s i g n I t i s p o s s i b l e t o d i s p l a c e t h e p h a s e s i n t o h i g h p r e s s u r e v i s c o m e t e r s . V I s c o c i t y m e a s u r e m e n t s a r e p a r t i c u l a r l y r e l e v a n t t o m i s c i b l e d i s p l a c e m e n t s , a s t h e f l o o d i n g f l u i d s sweep e f f i c i e n c y i s r e l a t e d t o p h a s e m o b i l i t y . ^ 110 8. NOMENCLATURE a , b C h r o m a t o g r a m a r e a s ( s e e F i g u r e 3 . 2 ) a b A v e r a g e d b a s e a r e a ( s e e F i g u r e 3 . 7 ) a b l A r e a o f t h e f i r s t b l a n k o r b a s e c h r o m a t o g r a m ( s e e F i g u r e 3 . 7 ) a b 2 A r e a o f t h e l a s t b l a n k o r b a s e c h r o m a t o g r a m ( s e e F i g u r e 3 . 7 ) a e ( D i f f e r e n c e b e t w e e n b a s e c h r o m a t o g r a m s / 2 ) ( s e e F i g u r e 3 . 7 ) a r s A r e a o f t h e raw s a m p l e c h r o m a t o g r a m ( s e e F i g u r e 3 . 7 ) a s A r e a o f t h e c o r r e c t e d s a m p l e c h r o m a t o g r a m ( s e e F i g u r e 3 . 7 ) a t T o t a l a r e a o f t h e c o r r e c t e d s a m p l e c h r o m a t o g r a m ( s e e F i g u r e 3 . 7 ) C C o n c e n t r a t i o n e E l u t e d f r a c t i o n u S a m p l e d v o l u m e V V o l u m e w S a m p l e d w e i g h t WT W e i g h t x M o l a r c o n c e n t r a t i o n I n t h e R a f f i n a t e p h a s e y M o l a r c o n c e n t r a t i o n i n t h e E x t r a c t p h a s e z , Z T o t a l m o l a r c o n c e n t r a t i o n S u b s c r i p t s 1 , 2 , 3 C h r o m a t o g r a m s e c t i o n s ( s e e F i g u r e 3 . 2 ) j C h r o m a t o g r a m m o l e c u l a r w e i g h t w i n d o w ( s e e T a b l e 5 . 1 ) E E x t r a c t p h a s e R R a f f i n a t e p h a s e S S o l i d p h a s e T T o t a l I l l E S T , R S T T o t a l s a m p l e d f o r t h e e x t r a c t and r a f f i n a t e p h a s e r e s p e c t i v e l y I S I n t e r n a l S t a n d a r d C O 2 , O i l C 0 2 a n d o i l c o n t e n t S u p e r s c r i p t ' N o r m a l i z e d v a l u e s ( a r e a s ) 112 9. REFERENCES 1 . W i l l i a m s , D . F . , " E x t r a c t i o n w i t h S u p e r c r i t i c a l G a s e s , " Chem. E n g . S c i . , 36 ( 1 1 ) , 1 7 6 9 - 1 7 8 8 ( N o v . 1 9 8 1 ) . 2 . B r o g l e , H . , "CO2 a s a S o l v e n t : I t s P r o p e r t i e s a n d A p p l i c a t i o n , " Chem. a n d I n d . , 3 8 5 - 3 9 0 ( 1 9 t h J u n e 1 9 8 2 ) . 3 . S p e i g h t , J . C . , "The C h e m i s t r y a n d T e c h n o l o g y o f P e t r o l e u m . " M a r c e l D e k k e r I n c . , New Y o r k a n d B a s e l ( 1 9 8 0 ) . 4 . R a n d a l l , L . Q . "The P r e s e n t S t a t u s o f D e n s e ( S u p e r c r i t i c a l ) Gas E x t r a c t i o n a n d D e n s e Gas C h r o m a t o g r a p h y : I m p e t u s f o r DGS/MS D e v e l o p m e n t , " S e p . S c i . a n d T e c h . , 17_ ( 1 ) , 1 - 1 1 8 ( 1 9 8 2 ) . 5 . P a u l , P . F . M . and W i s e , W . S . , "The P r i n c i p l e s o f G a s E x t r a c t i o n . " M i l l s and B o o n L t d . , L o n d o n , ( 1 9 7 1 ) . 6 . S t a h l , E . , W i n f r e d , S . , S h u t z , E . a n d W i l l i n g , E . , "A Q u i c k M e t h o d f o r t h e M i c r o a n a l y t i c a l E v a l u a t i o n o f t h e D i s s o v l i n g P o w e r o f S u p e r c r i t i c a l G a s e s , " Angew. Chem. I n t . E d . E n g l . _17_ ( 1 0 ) , 7 3 1 - 7 3 8 ( O c t . 1 9 7 8 ) . 7 . P e r r y , R . H . a n d C h i l t o n , C . H . , " C h e m i c a l E n g i n e e r s H a n d b o o k . " 5 t h E d . , M c G r a w - H i l l Book C o . , New Y o r k ( 1 9 7 3 ) . 8 . S c h n e i d e r , G . M . , " P h y s i o c h e m i c a l P r i n c i p l e s o f E x t r a c t i o n w i t h S u p e r c r i t i c a l G a s e s , " Angew. Chem. I n t . E d . E n g l . , 1_7_ ( 1 0 ) , 7 1 6 - 7 2 7 ( O c t . 1 9 7 8 ) . 9 . K i n g , M . B . and B o t t , T . R . , " P r o b l e m s A s s o c i a t e d w i t h t h e D e v e l o p m e n t o f Gas E x t r a c t i o n and S i m i l a r P r o c e s s , " S e p . S c i . a n d T e c h . , J 7 ( l ) , 1 1 9 - 1 5 0 ( 1 9 8 2 ) . 1 0 . N a m e l e s s , "The P r o m i s e f o r S u p e r c r i t i c a l F l u i d s , " C h e m i c a l Week, 3 3 - 3 4 ( J a n . 1 9 8 2 ) . . K o h n , P . M . , S a v a g e , P . R . , a n d M c Q u e e n , S . , " S u p e r c r i t i c a l F l u i d s t r y f o r C . P . I . A p p l i c a t i o n s , " Chem. E n g . , 86 ( 6 ) , 41 ( 1 2 t h M a r c h 1 9 7 9 ) . — 1 2 . Bowman, L . M . , J r . , M y e r s , M . N . a n d G i d d i n g s , S . C . , " S u p e r c r i t i c a l F l u i d ( D e n s e G a s ) , C h r o m a t o g r a p h y / E x t r a c t i o n w i t h L i n e a r D e n s i t y P r o g r a m m i n g , " S e p . S c i . a n d T e c h . , 1 7 U ) , 2 7 1 - 2 8 7 ( 1 9 8 2 ) . 1 3 . N a m e l e s s , " S u p e r c r i t i c a l F l u i d s c a n be N i c e . " A n a l y t i c a l Chem. 54_(12) , 1294 A - 1 2 9 5 0 A ( O c t . 1 9 8 2 ) . 1 4 . B o r m a n , S . A . , " S u p e r c r i t i c a l F l u i d s : A n a l y t i c a l and I n d u s t r i a l A p p l i c a t i o n , " A n a l y t i c a l C h e m . , 53_ ( 1 1 ) , 1201A ( S e p t . 1 9 8 1 ) . 1 5 . B o t t , T . R . , " S u p e r c r i t i c a l Gas E x t r a c t i o n , " Chem. and I n d . , 2 2 8 - 2 3 2 ( 1 9 t h M a r c h 1 9 8 0 ) . 113 1 6 . Z o s e l , K. , " S e p a r a t i o n w i t h S u p e r c r i t i c a l G a s e s : P r a c t i c a l A p p l i c a t i o n s , " A n g e w . Chem. I n t . E d . E n g l . 1 7 ( 1 0 ) , 7 0 2 - 7 0 8 ( O c t . 1 9 7 8 ) . 1 7 . H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , "Why T e r t i a r y R e c o v e r y , " P e t . E n g . , 3 3 - 4 6 ( J a n . 1 9 7 6 ) . 1 8 . H e r b e c k , E . F . , H e i n t z , R . C . a n d H a s t i n g s , J . R . , " L . P . G . M i s c i b l e S l u g P r o c e s s , " P e t . E n g , 5 8 - 6 6 ( F e b . 1 9 7 6 ) . 1 9 . H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , " E n r i c h e d Gas M i s c i b l e P r o c e s s , " P e t . E n g . , 8 4 - 8 8 ( M a r c h 1 9 7 6 ) . 2 0 . H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , " H i g h P r e s s u r e L e a n G a s M i s c i b l e P r o c e s s , " P e t . E n g . , 6 6 - 7 2 ( A p r i l 1 9 7 6 ) . 2 1 . H e r b e c k , E . F . , H e i n t z , R . C . a n d H a s t i n g s , J . R . , " C a r b o n D i o x i d e M i s c i b l e P r o c e s s , " P e t . E n g . , 1 1 4 - 1 2 0 (May 1 9 7 6 ) . 2 2 . H e r b e c k , E . F . , H e i n t z , R . C . a n d H a s t i n g s , J . R . , " M i s c e l l e r S o l u t i o n F l o o d i n g , " P e t . E n g . , 4 5 - 5 6 ( J u n e 1 9 7 6 ) . 2 3 . H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , " P o l y m e r F l o o d i n g , " P e t . E n g . , 4 8 - 5 9 ( J u l y 1 9 7 6 ) . 2 4 . H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , " T h e r m a l R e c o v e r y by H o t F l u i d I n j e c t i o n , " P e t . E n g . , 2 4 - 3 4 ( A u g . 1 9 7 6 ) . 2 5 . H e r b e c k , E . F . , H e i n t z , R . C . and H a s t i n g s , J . R . , " T h e r m a l R e c o v e r y by I n s i t u C o m b u s t i o n , " P e t . E n g . , 4 6 - 5 6 ( S e p t . 1 9 7 6 ) . 2 6 . O r r , F . M . , J r . , H e l l e r , J . P . and T a b e r , J . J . , " C a r b o n D i o x i d e F l o o d i n g f o r E n h a n c e d O i l R e c o v e r y : P r o m i s e a n d P r o b l e m s , " J . A . O . C . S . , 5 9 ( 1 0 ) , 8 1 0 A - 8 1 7 A ( O c t . 1 9 8 2 ) . 2 7 . M c l n t y r e , H . , " P r o s p e c t s B r i g h t f o r E n h a n c e d R e c o v e r y , " C a n . Chem. P r o c . , 6 3 , 2 7 - 3 1 ( 1 4 t h N o v . 1 9 7 9 ) . 2 8 . H o l m , L . W . a n d J o s e n d a l , V . A . , " M e c h a n i s m o f O i l D i s p l a c e m e n t by C a r b o n D i o x i d e , " J . P e t . T e c h . , 2 6 , 1 4 2 7 - 1 4 3 5 ( D e c . 1 9 7 0 ) . 2 9 . H o l m , L . W . , " S t a t u s o f CO2 and H y d r o c a r b o n M i s c i b l e O i l R e c o v e r y M e t h o d s , " J . P e t . T e c h . , 2 8 , 7 6 - 8 4 ( J a n . 1 9 7 6 ) . 3 0 . S t a l k u p , F . I . , " C a r b o n D i o x i d e M i s c i b l e F l o o d i n g : P a s t , P r e s e n t a n d F u t u r e , " J . P e t . T e c h . , 3 0 , 1 1 0 2 - 1 1 1 2 ( A u g . 1 9 7 8 ) . 3 1 . J a c o b s o n , H . A . , " A c i d G a s e s a n d t h e i r C o n t r i b u t i o n t o M i s c i b i l i t y , " J . C a n . P e t . T e c h . , 11_(2), 5 6 - 5 9 ( A p r i l / J u n e 1 9 7 2 ) . 3 2 . D o s c h e r , M . a n d W i s e , A . , " E n h a n c e d O i l R e c o v e r y P o t e n t i a l , " J . P e t . T e c h . , 2 8 , 5 7 5 - 5 8 5 (May 1 9 7 6 ) . 114 3 3 . P e t z e t , G . A . , " U . S . I n d u s t r y E y e s B u i l d u p i n O i l O u t p u t v i a CO2 F l o o d s , " O i l and Gas J . , 3 9 - 4 2 ( 3 r d J a n . 1 9 8 3 ) . 3 4 . T h r a s h , J . C . , J r . , "CO2 I n j e c t i o n S u c c e s s f u l l y R e c o v e r s T e r t i a r y O i l , " W o r l d O i l , 9 H 4 ) , 6 8 - 7 0 ( S e p t . 1 9 8 0 ) . 3 5 . K a n e , A . V . , " P e r f o r m a n c e o f a L a r g e S c a l e C 0 2 - W A G E n h a n c e d R e c o v e r y P r o j e c t , SACROC U n i t - K e l l y S n y d e r F i e l d , " J . P e t . T e c h . , 3j_, 2 1 7 - 2 3 1 ( F e b . 1 9 7 9 ) . 3 6 . P e r r y , C . W . , " T h e E c o n o m i c s o f E n h a n c e d O i l R e c o v e r y a n d i t s P o s i t i o n R e l a t i v e t o S y n f u e l s . " S o c . P e t . E n g . , 2j_, 2 5 - 2 7 ( F e b . 1 9 8 1 ) . 3 7 . B r a s h e a r , J . P . a n d K u u m a a r , V . A . , "The P o t e n t i a l a n d E c o n o m i c s o f E n h a n c e d O i l R e c o v e r y , " J . P e t . T e c h . , 3 0 , 1 2 3 1 - 1 2 3 9 ( S e p t . 1 9 7 8 ) . 3 8 . G u t h r i e , H . D . , " R o l e o f U . S . G o v e r n m e n t i n P r o m o t i n g E n h a n c e d O i l R e c o v e r y T e c h n i q u e s , " J . P e t . T e c h . , 3 0 , 1 0 8 6 - 1 0 8 8 ( A u g . 1 9 7 8 ) . 3 9 . S i m p s o n , J . J . , " F i n a n c i n g E n h a n c e d R e c o v e r y , " J . P e t . T e c h . , 3 1 , 7 7 1 - 7 7 5 ( J u l y 1 9 7 9 ) . 4 0 . P r i n c e , J . P . , " E n h a n c e d O i l R e c o v e r y P o t e n t i a l i n C a n a d a - A  M e t h o d o l o g i c a l R e v i e w , " W o r k i n g P a p e r # 7 8 - 5 , C a n a d i a n E n e r g y R e s e a r c h I n s t i t u t e , ( 1 9 7 8 ) . 4 1 . P r a u s n i t z , J . M . and C h e u h , P . L . , " C o m p u t e r C a l c u l a t i o n s f o r H i g h  P r e s s u r e V a p o u r L i q u i d E q u i l i b r i a . " P r e n t i c e - H a l l , E n g l e w o o d C l i f f s , N . J . , ( 1 9 6 8 ) . 4 2 . R o w l i n s o n , J . S . and R i c h a r d s o n , M . J . , " A d v a n c e s i n C h e m i c a l  P h y s i c s , " V o l . I I , C h a p t . 3 . I n t e r s c i e n c e P u b l i s h e r s I n c . , New Y o r k ( 1 9 5 9 ) . 4 3 . V e t e r e , A . , "A P r e d i c t i v e M e t h o d f o r C a l c u l a t i n g t h e S o l u b i l i t y o f S o l i d s i n S u p e r c r i t i c a l G a s e s . A p p l i c a t i o n t o A p o l a r M i x t u r e s , " Chem. E n g . S c i . , 3 5 , ( 1 2 ) , 1 3 9 3 - 1 4 0 0 ( D e c . 1 9 7 9 ) . 4 4 . K u r n i k , R . T . , H o l l a , S . J . a n d R e i d , R . C . , " S o l u b i l i t y o f S o l i d s i n S u p e r c r i t i c a l C a r b o n D i o x o i d e a n d E t h y l e n e " , J . Chem. E n g . D a t a , 26 ( 1 ) , 4 7 - 5 1 ( J a n . 1 9 8 1 ) . 4 5 . J o h n s o n , K . P . , Z i g e r , D . H . and E c k e r t , C . A . , " S o l u b i l i t i e s o f S o l i d s i n S u p e r c r i t i c a l F l u i d s : T h e A u g m e n t e d v a n d e r W a a l s T r e a t m e n t , " I n d . E n g . Chem. F u n d . , 2 1 ( 3 ) , 1 9 1 - 1 9 7 ( M a r c h 1 9 8 2 ) . 4 6 . J o h n s t o n , K . P . a n d E c k e r t , C . A . , "An A n a l y t i c a l C a r n h a m - S t a r l i n g - v a n d e r W a a l s m o d e l f o r S o l u b i l i t y o f H y d r o c a r b o n S o l i d s i n S u p e r c r i t i c a l F l u i d s , " A . I . C h . E . J . , 27 ( 5 ) , 7 7 3 - 7 7 9 ( S e p t . 1 9 8 1 ) . 115 4 7 . F r e d r l c h , J . R . L i s t , G . R . and H e a k i n , A . J . , " P e t r o l e u m F r e e E x t r a c t i o n o f O i l f r o m S o y a b e a n s w i t h S u p e r c r i t i c a l CO2," J . A . O . C . S . , 59 ( 7 ) , 2 8 8 - 2 9 2 ( O c t . 1 9 8 2 ) . 4 8 . B u l l e y , N . R . , F a t t o r i , M . , M e i s e n , A . a n d M o y l s , L . , " S u p e r c r i t i c a l F l u i d E x t r a c t i o n o f V e g e t a b l e O i l S e e d s , " P r e s e n t e d a t t h e A n n u a l M e e t i n g o f A . O . C . S . , T o r o n t o , (May 1 9 8 2 ) . 4 9 . de F i l i p p i , R . P . , " C 0 2 a s a S o l v e n t : A p p l i c a t i o n t o F a t s , O i l s and O t h e r M a t e r i a l s , " Chem. a n d I n d . 3 9 0 - 3 9 4 ( 1 9 t h J u n e 1 9 8 2 ) . 5 0 . V o l b r e c h t , R . , " E x t r a c t i o n o f H o p s w i t h S u p e r c r i t i c a l C 0 2 , " Chem. a n d I n d . , 3 9 7 - 3 9 9 ( 1 9 t h J u n e 1 9 8 2 ) . 5 1 . G a r d n e r , D . S . , " I n d u s t r i a l S c a l e Hops E x t r a c t i o n w i t h L i q u i d C 0 2 , " Chem. and I n d . , 4 0 2 - 4 0 6 ( 1 9 t h J u n e 1 9 8 2 ) . 5 2 . C a l a m e , J . P . a n d S t e i n e r , R . , " C 0 2 E x t r a c t i o n i n t h e F l a v o u r a n d P e r f u m e r y I n d u s t r i e s , " Chem. a n d I n d . , 3 9 9 - 4 0 2 ( 1 9 t h J u n e 1 9 8 2 ) . 5 3 . S t a h l , E . , S h u t z , E . a n d M a n g o l d , H . K . , " E x t r a c t i o n o f S e e d O i l s W i t h L i q u i d and S u p e r c r i t i c a l C a r b o n D i o x i d e , " A g . a n d F o o d C h e m . , 2 8 , 1 1 5 3 - 1 1 5 7 ( 1 9 8 0 ) . 5 4 . H u b e r t , D. and V i t z t h u m , O . G . , " F l u i d E x t r a c t i o n o f H o p s , S p i c e s and T o b a c c o w i t h S u p e r c r i t i c a l G a s e s , " A n g e w . I n t . E d . E n g l . , 1_J_ ( 1 0 ) , 7 1 0 - 7 1 5 ( O c t . 1 9 7 8 ) . 5 5 . Z h u z e , T . P . , " C o m p r e s s e d H y d r o c a r b o n s a s a S o l v e n t , " P e t r o l e u m , 2 9 8 - 3 0 0 ( A u g . 1 9 6 0 ) . 5 6 . M a d d o c k s , R . R . , G i b s o n , J . and W i l l i a m s , D . F . , " S u p e r c r i t i c a l E x t r a c t i o n o f C o a l , " C . E . P . , 75_(6), 4 9 - 5 5 ( J u n e 1 9 7 9 ) . 5 7 . W h i t e h e a d , J . C . a n d W i l l i a m s , D . F . , " S o l v e n t E x t r a c t i o n o f C o a l by S u p e r c r i t i c a l G a s e s , " J . o f t h e I n s t , o f F u e l , j 4 8 , 1 8 2 - 1 8 4 ( D e c . 1 9 7 5 ) . 5 8 . P e t e r , S . a n d B r u n n e r , G . , "The S e p a r a t i o n o f N o n v o l a t i l e S u b s t a n c e s by M e a n s o f C o m p r e s s e d G a s e s i n C o u n t e r c u r r e n t P r o c e s s e s , " A n g e w . Chem. I n t . E d . E n g . , _17_ ( 1 0 ) , 7 4 6 - 7 5 0 ( O c t . 1 9 7 8 ) . 5 9 . B a r t l e , K . D . , M a r t i n , T . G . a n d W i l l i a m s , D . F . , " C h e m i c a l N a t u r e o f a S u p e r c r i t i c a l G a s E x t r a c t o f C o a l a t 3 5 0 ° C , " F u e l , 5 4 , 2 2 6 - 2 2 5 ( O c t . 1 9 7 5 ) . 6 0 . O r r , F . M . and T a b e r , J . J . " D i s p l a c e m e n t o f O i l by C a r b o n D i o x i d e , " F i n a l R e p o r t , P r e p a r e d f o r a n d p u b l i s h e d by t h e D e p a r t m e n t o f E n e r g y u n d e r C o n t r a c t # ( D F - A C 2 1 - 7 8 E T 1 2 0 8 2 ) , ( 1 9 8 1 ) . 116 6 1 . O r r , F . M . , L e i n , C . L . a n d P e l l e t i e r , M . T . , " L i q u i d - L i q u i d P h a s e B e h a v i o u r i n C 0 2 _ H y d r o c a r b o n S y s t e m s , " S y m p o s i u m on C h e m i s t r y o f E n h a n c e d O i l R e c o v e r y , A m e r i c a n C h e m i c a l S o c i e t y , A t l a n t a , ( M a r c h / A p r i l 1 9 8 1 ) . 6 2 . O r r , F . M . , Y u , A . D . and L i e n , C . L . , " P h a s e B e h a v i o u r o f CO2 a n d C r u d e O i l i n Low T e m p e r a t u r e R e s e r v o i r s , " SPE 8 8 1 3 , p r e s e n t e d o f t h e F i r s t J o i n t SPE/DOE S y m p o s i u m on E n h a n c e d O i l R e c o v e r y , T u l s a , ( A p r i l 1 9 8 0 ) . 6 3 . Y e l l i g , W . F . and M e t c a l f e , R . S . , " D e t e r m i n a t i o n and P r e d i c t i o n o f C 0 2 M i n i m u m M i s c i b i l i t y P r e s s u r e , " J . P e t . T e c h . , 31_, 1 6 0 - 1 6 8 ( J a n . 1 9 8 0 ) . 6 4 . M e t c a l f e , R . S . and Y a r b o r o u g h , L . , "The E f f e c t o f P h a s e E q u i l i b r i a on t h e CO2 D i s p l a c e m e n t M e c h a n i s m , " S o c . P e t . E n g . J . , 1 9 , 2 4 2 - 2 5 2 ( A u g . 1 9 7 9 ) . 6 5 . S i m o n , R . , R o s m a n , A . a n d Z a n a , E . , " P h a s e B e h a v i o u r P r o p e r t i e s o f C 0 2 " R e s e r v o i r O i l S y s t e m s , " S o c . P e t . E n g . J . , 1 8 , 2 0 - 2 6 ( F e b . 1 9 7 8 ) . 6 6 . S h e l t o n , J . L . and Y a r b o r o u g h , L . , " M u l t i p l e P h a s e B e h a v i o u r i n P o r o u s M e d i a D u r i n g CO2 o r R i c h Gas F l o o d i n g , " J . P e t . T e c h . , 2 9 , 1 1 7 1 - 1 1 7 8 , ( S e p t . 1 9 7 7 ) . 6 7 . Y a r b o r o u g h , L . and S m i t h , L . R . , " S o l v e n t and D r i v i n g Gas C o m p o s i t i o n s f o r M i s c i b l e S l u g D i s p l a c e m e n t s , " S o c . P e t . E n g . J . , 1 0 , 2 9 8 - 3 1 0 ( S e p t . 1 9 7 0 ) . 6 8 . M e n z i e , D . E . and N i e l s o n , R . F . , "A S t u d y o f t h e V a p o r i z a t i o n o f C r u d e O i l by C a r b o n D i o x i d e R e p r e s s u r i n g , " J . P e t . T e c h . , 1_5, 1 2 4 7 - 1 2 5 2 ( N o v . 1 9 6 3 ) . 6 9 . H o l m , L . W . , "A C o m p a r i s o n o f P r o p a n e and C a r b o n D i o x i d e S o l v e n t F l o o d i n g P r o c e s s e s , " A . I . C h . E . J . , ]_(2), 1 7 9 - 1 8 9 ( J u n e 1 9 6 1 ) . 7 0 . " M a n u a l o n H y d r o c a r b o n A n a l y s i s , 3 r d E d . , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l s , E a s t o n , M d . , ( 1 9 7 7 ) . 7 1 . A l t g e l t , K . H . and Gouw, T . H . ( e d s . ) . , " C h r o m a t o g r a p h y i n P e t r o l e u m  A n a l y s i s , " C h r o m a t o g r a p h i c S c i e n c e , V . I I , C h a p t . 3 , M a r c e l D e k k e r I n c . , New Y o r k and B a s e l , ( 1 9 7 9 ) . 7 2 . " A . S . T . M . S t a n d a r d s , P a r t 2 5 , " " D - 2 8 8 7 - 7 3 . T e s t f o r B o i l i n g Range D i s t r i b u t i o n o f P e t r o l e u m F r a c t i o n s by G a s C h r o m a t o g r a p h y , " A m e r i c a n S t a n d a r d s f o r T e s t i n g a n d M a t e r i a l s , P h i l a d e l p h i a , P . A . ( 1 9 8 1 ) . 7 3 . A l t g e l t , K . H . a n d Gouw, T . H . ( e d s . ) , " C h r o m a t o g r a p h y i n P e t r o l e u m  A n a l y s i s , " C h r o m a t o g r a p h i c S c i e n c e , V . I I , C h a p t . 4 , M a r c e l D e k k e r I n c . , New Y o r k a n d B a s e l , ( 1 9 7 9 ) . 117 O f f e n b e r g , W . E . , " D - 2 8 8 7 S i g m a B a s i c P r o g r a m f o r S i m u l a t e d D i s t i l l a t i o n , " P e r k i n - E l m e r S o f t w a r e N o t e s , DHSN-1028 ( 1 9 8 0 ) . H o d g e s , J . ( e d . ) , " R e c e n t A n a l y t i c a l D e v e l o p m e n t s i n t h e P e t r o l e u m  I n d u s t r y , " C h a p t . 5 , J o h n W i l e y and S o n s , New Y o r k , ( 1 9 7 9 ) . W o r m a n , J . C . and G r e e n , L . E . , " S i m u l a t e d D i s t i l l a t i o n o f H i g h B o i l i n g P e t r o l e u m F r a c t i o n s , " A n a l . C h e m . , 37^(12), 1 6 2 0 - 1 6 2 1 ( N o v . C h r i s t , J . M . and H e n s e l m a n , J . H . , " A u t o m a t e d S i m u l a t e d D i s t i l l a t i o n w i t h S P 7 1 0 0 . P a r t I G a s o l i n e , " A d v a n c e s i n C h r o m a t o g r a p h y a n d L a b o r a t o r y A u t o m a t i o n , J K 2 ) , ( O c t . 1 9 8 2 ) . " V i s t a P l u s S i m u l a t e d D i s t i l l a t i o n S o f t w a r e A p p l i c a t i o n s M a n u a l , " ( P r e l i m i n a r y C o p y ) , V a r i a n , P u b l i c a t i o n N o . 0 3 - 0 1 3 9 1 7 - 0 0 . L e g e r t , D . , R i c h o n , D. and R e n o n , H . , " V a p o r L i q u i d E q u i l i b r i a up t o 100 M P a . A New A p p a r a t u s , " A . I . C h . E . J . , 27_(2) , 2 0 3 - 2 0 6 ( M a r c h 1 9 8 1 ) . T i m m e r h a u s , K . D . a n d B a r b e r , M . S . ( e d s . ) , " H i g h P r e s s u r e S c i e n c e  a n d T e c h n o l o g y , " V . I , P a p e r S - 5 , P l e n u m P r e s s , New Y o r k ( 1 9 7 9 ) . Y a r b o r o u g h , L . and V o g e l , J . L . , "A New S y s t e m f o r O b t a i n i n g V a p o r and L i q u i d S a m p l e s A n a l y s e s t o F a c i l i t a t e t h e S t u d y o f M u l t i c o m p o n e n t M i x t u r e s a t E l e v a t e d P r e s s u r e s , " C h e m . E n g . P r o g r e s s Symp. S e r i e s , 6 3 ( 8 2 ) , 1 - 9 ( 1 9 6 7 ) . F r e d e u s l a n d , A c i . , M o l l e r u p , J . and C h r i s t i a n s e n , J . L . , "An A p p a r a t u s f o r A c c u r a t e D e t e r m i n a t i o n s o f V a p o u r - L i q u i d E q u i l i b r i u m P r o p e r t i e s and Gas P . V . T . P r o p e r t i e s , " C r y o g e n i c s , 1 3 , 4 1 4 - 4 1 8 ( J u l y 1 9 7 3 ) . " E n g i n e e r i n g D a t a B o o k , " 9 t h E d . , Gas P r o c e s s o r s S u p p l i e r s A s s o c i a t i o n , T u l s a , O k l a h o m a , ( 1 9 7 9 ) . D i n , F . ( e d . ) , " T h e r m o d y n a m i c F u n c t i o n s o f G a s e s , " V . 3 , 1 2 1 - 1 3 4 , B u t t l e r w o r t h s , L o n d o n ( 1 9 5 6 ) . " A . S . T . M . S t a n d a r d s " , P a r t 2 3 , " D - 8 7 - 6 7 ( 1 9 7 2 ) . " D i s t i l l a t i o n o f P e t r o l e u m P r o d u c t s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l s , P h i l a d e l p h i a , P . A . , ( 1 9 8 1 ) . R e a m e r , H . H . and S a g e , B . H . , P h a s e E q u i l i b r i a i n H y d r o c a r b o n S o l v e n t s . V o l u m e t r i c a n d P h a s e B e h a v i o u r o f t h e n - D e c a n e - C 0 2 S y s t e m , " J . C h . E n g . D a t a , 8 ( 4 ) , 5 0 8 - 5 1 3 ( O c t . 1 9 6 3 ) . J a c o b y , R . H . a n d Y a r b o r o u g h , L . , " P e t r o l e u m R e s e r v o i r a n d T h e i r U s e s , " I n d . a n d E n g . C h e m . , 59_ ( 1 0 ) , 4 9 - 6 2 ( O c t . 1 9 6 7 ) . 118 8 8 . H u t c h i n s o n , C . A . , J r . , and B r a u n , P . H . , " P h a s e R e l a t i o n s h i p s o f M i s c i b l e D i s p l a c e m e n t by C O 2 , " A . I . C h . E . J . , 7 ( 1 ) , 6 5 - 7 2 ( M a r c h 1 9 6 1 ) . 8 9 . W i l s o n , J . F . , " M i s c i b l e - D i s p l a c e m e n t - F l o w B e h a v i o u r and P h a s e R e l a t i o n s h i p s f o r a P a r t i a l l y D e p l e t e d R e s e r v o i r , " P e t . T r a n s . , A . I . M . E . , V . 2 1 9 , 2 2 3 - 2 2 8 ( 1 9 6 0 ) . 9 0 . B e n h a m , A . L . , D o w d e n , W . E . and K u n z m a n , W . J . , " M i s c i b l e F l u i d D i s p l c e m e n t - P r e d i c t i o n o f M i s c i b i l i t y , " P e t . T r a n s . , A . I . M . E . , V . 2 1 9 , 2 1 7 - 2 2 3 ( 1 9 6 0 ) . 119 APPENDIX A - MULTIPLE CONTACT MISCIBILITY F i g u r e A r e p r e s e n t s t h e E n r i c h e d o r C o n d e n s i n g Gas D r i v e . I t i s p l o t t e d as a p s u e d o t e r n a r y s y s t e m t o a v o i d a c c o u n t i n g f o r t h e many compounds p r e s e n t i n an o i l m i x t u r e . I t t h e r e f o r e o n l y p r o v i d e s a q u a l i t a t i v e p i c t u r e 8 8 ' 8 9 ' 9 0 o f t h e M u l t i p l e C o n t a c t M i s c i b i l i t y ( M . C . M . ) p r o c e s s . A r e s e r v o i r o i l , c o m p o s i t i o n 0 * , when f i r s t c o n t a c t e d w i t h t h e i n j e c t e d d i s p l a c i n g f l u i d , c o m p o s i t i o n F * , c a n f o r m a m i x t u r e M ^ . T h i s m i x t u r e i s w i t h i n t h e 2 p h a s e l o o p a n d t h e r e f o r e 2 p h a s e s o f c o m p o s i t i o n s A and A ' w i l l o c c u r . A ' r e p r e s e n t s t h e r e s i d u a l o i l w h i c h h a s b e e n e n r i c h e d w i t h t h e i n t e r m e d i a t e h y d r o c a r b o n s o f t h e i n j e c t e d d i s p l a c i n g f l u i d . As more d i s p l a c i n g f l u i d i s i n j e c t e d , t h e p h a s e o f c o m p o s i t i o n A w i l l move f u r t h e r t h r o u g h t h e r e s e r v o i r s i n c e i t h a s h i g h e r m o b i l i t y . A new c o n t a c t w i l l o c c u r b e t w e e n t h e i n j e c t e d d i s p l a c i n g f l u i d , F * , a n d r e s i d u a l o i l A 1 . I f i t f o r m s a m i x t u r e M 2 two p h a s e s o f c o m p o s i t i o n s B and B ' w i l l o c c u r . B ' , t h e r e s i d u a l o i l , h a s b e e n f u r t h e r e n r i c h e d w i t h i n t e r m e d i a t e h y d r o c a r b o n s . M i s c i b i l i t y w i l l o n l y o c c u r i f t h e r e s i d u a l o i l a n d i n j e c t e d d i s p l a c i n g f l u i d do n o t l i e o n a e q u i l i b r i u m t i e l i n e . F o r e x a m p l e , a n i n j e c t e d f l u i d o f c o m p o s i t i o n F w i l l n o t f u r t h e r e n r i c h t h e r e s i d u a l o i l o f c o m p o s i t i o n A ' . T h e l i m i t i n g t i e l i n e , w h i c h i s a t t h e p l a i t p o i n t , when e x t e n d e d t o t h e ( d i s p l a c i n g f l u i d ) - ( C 2 - C g ) a x i s , w i l l l o c a t e t h e minimum e n r i c h m e n t r e q u i r e d f o r t h e i n j e c t e d d i s p l a c i n g f l u i d t o a c h i e v e M . C . M . T h i s i s i n d i c a t e d by c o m p o s i t i o n F ' . A c o m p o s i t i o n r i c h e r t h a n F " w i l l h a v e F i r s t C o n t a c t M i s c i b i l i t y ( F . C . M . ) p r o p e r t i e s w i t h a n o i l a t c o m p o s i t i o n 0 * . 120 loo» cn P s u e d o T e r n a r y P h a s e D i a g r a m I l l u s t r a t i n g E n r i c h e d o r C o n d e n s i n g Gas D r i v e F i g u r e A l (*) For CH d i s p l a c e m e n t s i n t e r m e d i a t e h y d r o c a r b o n s a r e C t o C ,and 2 6 f o r COj d i s p l a c e m e n t s i n t e r m e d i a t e h y d r o c a r b o n s a r e C 2 t o t o acc o u n t f o r g r e a t e r d e p t h of e x t r a c t i o n . F i g u r e A2 P s u e d o T e r n a r y P h a s e D i a g r a m I l l u s t r a t i n g V a p o r i s i n g o r H i g h P r e s s u r e Gas D r i v e 121 F i g u r e A2 r e p r e s e n t s t h e V a p o r i s i n g o r H i g h P r e s s u r e Gas D r i v e . T h e i n t e r m e d i a t e f r a c t i o n f o r t h e CO2 m i s c i b l e p r o c e s s h a s b e e n r e c o m m e n d e d a s C2 t o C n , 6 0 s i n c e CO2 q u i t e e f f e c t i v e l y e x t r a c t s t h i s h y d r o c a r b o n r a n g e a t m i s c i b i l i t y p r e s s u r e s . A c o n t a c t o f t h e d i s p l a c i n g f l u i d a n d o i l , o f c o m p o s i t i o n 0 * , c a n p r o d u c e a m i x t u r e M ^ . S i n c e M i i s i n t h e two p h a s e r e g i o n t h e f l u i d c o m p o s i t i o n s A and A ' w i l l o c c u r . S i n c e A i s more m o b i l e t h a n A ' i t w i l l move a h e a d t h r o u g h t h e r e s e r v o i r a s more d i s p l a c i n g f l u i d i s i n j e c t e d . The e n r i c h e d d i s p l a c i n g f l u i d o f c o m p o s i t i o n A w i l l c o n t a c t f r e s h r e s e r v o i r o i l , o f c o m p o s i t i o n 0 * , a n d c a n p r o d u c e a m i x t u r e M2. The two p h a s e c o m p o s i t i o n s B and B ' w i l l t h e n o c c u r . The d i s p l a c i n g f l u i d , B , h a s b e e n f u r t h e r e n r i c h e d . M i s c i b i l i t y c a n o n l y o c c u r i f t h e r e s e r v o i r o i l and e n r i c h e d d i s p l a c i n g f l u i d do n o t l i e o n t h e e q u i v a l e n t t i e l i n e . T h e l i m i t i n g t i e l i n e , l o c a t e d a t t h e p l a i t p o i n t when e x t e n d e d t o t h e ( h e a v y ) - ( i n t e r m e d i a t e ) h y d r o c a r b o n a x i s , w i l l d e t e r m i n e t h e minimum r e s e r v o i r o i l c o m p o s i t i o n r e q u i r e d f o r m i s c i b i l i t y . T h i s i s i n d i c a t e d as c o m p o s i t i o n 0 ' . An o i l l y i n g t o t h e r i g h t o f 0 ' ' w i l l be d i r e c t l y m i s c i b l e on f i r s t c o n t a c t w i t h t h e i n j e c t e d d i s p l a c i n g f l u i d . P r e s s u r e i n c r e a s e s a r e f a v o u r a b l e f o r t h e m i s c i b l e p r o c e s s a s i t r e d u c e s t h e 2 p h a s e l o o p a r e a . T h i s i s i l l u s t r a t e d i n F i g u r e A 3 . A t t h e l o w e s t p r e s s u r e , P ^ , i m m i s c i b i l i t y b e t w e e n t h e d i s p l a c i n g f l u i d a n d i n t e r m e d i a t e h y d r o c a r b o n f r a c t i o n o c c u r s . A t p r e s s u r e P2 ( a n i n c r e a s e i n p r e s s u r e ) t h e i m m i s c i b i l i t y b e t w e e n t h e d i s p l a c i n g f l u i d a n d i n t e r m e d i a t e h y d r o c a r b o n s no l o n g e r o c c u r s . I t d o e s n o t h o w e v e r p r o d u c e a M . C . M . p r o c e s s w i t h a r e s e r v o i r o i l c o m p o s i t i o n 0 * u n t i l t h e p r e s s u r e 122 F l s u r e A 3 ^ & & y % M , 8 r - j 1 1 ™ -uiscxDinty Pressure (M.M.P.) 123 i s a t P 3 . T h i s p r e s s u r e i s known a s t h e " M i n i m u m M i s c i b i l i t y P r e s s u r e " ( M . M . P . ) . A f u r t h e r i n c r e a s e i n p r e s s u r e s i m p l y a l l o w s f o r h i g h e r m o l e c u l a r w e i g h t h y d r o c a r b o n m i x t u r e s t o a c h i e v e a M . C . M . A t e m p e r a t u r e i n c r e a s e w i l l r a i s e t h e M i n i m u m M i s c i b i l i t y P r e s s u r e . T h r e e r e l a t i o n s h i p s a r e I n d i c a t e d i n F i g u r e A 4 . The 2 8 r e l a t i o n s h i p o f H o l m and J o s e n d a l i s g r a p h i c a l a n d , l i k e t h e c o r r e l a t i o n s o f Benham e t a l . 1 * 0 ( w h i c h w e r e f o r t h e h y d r o c a r b o n m i s c i b l e 6 3 p r o c e s s ) , a l l o w s f o r o i l c o m p o s i t i o n v a r i a t i o n s . Y e l l i g a n d M e t c a l f e , h o w e v e r , f o u n d t h a t t h e i r c o r r e l a t i o n was more a c c u r a t e f o r a w i d e r r a n g e o f o i l . T h e i r c o r r e l a t i o n i s : M . M . P . ( k P a ) = 8 0 3 0 + 7 2 ( T - 3 0 8 ) ( A l ) w h e r e T i s t h e a b s o l u t e t e m p e r a t u r e i n d e g r e e s K e l v i n f o r t e m p e r a t u r e s g r e a t e r t h a n 3 0 8 ° K a n d l e s s t h a n 3 6 2 ° K . The c o r r e l a t i o n o f O r r and T a b e r 6 0 a p p l i e s t o l o w t e m p e r a t u r e r e s e r v o i r s and i s b a s e d on a c h i e v i n g a p r e s s u r e a b o v e t h e l i q u i d - l i q u i d - v a p o r p h a s e p h e n o m e n a . T h e i r c o r r e l a t i o n i s : M . M . P ( k P a ) = 1 0 1 . 3 2 5 [ ( ~ 2 ° 1 5 9 ) + 1 0 . 9 1 2 2 ] + 1750 ( A 2 ) w h e r e T i s t h e a b s o l u t e t e m p e r a t u r e I n d e g r e e s K e l v i n f o r t e m p e r a t u r e g r e a t e r t h a n 2 8 3 ° K a n d l e s s t h a n 3 2 3 ° K . The a u t h o r s n o t e t h a t t h e s e e m p i r i c a l r e l a t i o n s h i p s a r e o n l y s u i t a b l e f o r e s t i m a t i n g t h e p r e s s u r e s , a n d t h a t s t a n d a r d d i s p l a c e m e n t 6 3 t e s t s w o u l d p r o v i d e a more a c c u r a t e M . M . P . m e a s u r e m e n t . 125 APPENDIX B - ANALYSIS RESULTS u U l_> O [_} F i g u r e B l T y p i c a l C h r o m a t o g r a m o f a n n - a l k a n e C a l i b r a t i o n M i x t u r e 126 A t t e n u a t i o n = 9 I n j e c t i o n s i z e = l C h r o m a t o g r a m o f t h e O r i g i n a l S e p a r a t o r O i l C h r o m a t o g r a m o f t h e S t r i p p e d S e p a r a t o r O i l 127 I A t t e n u a t i o n = 9 F i g u r e B4 C h r o m a t o g r a m o f t h e E x t r a c t O i l o f Run 1 A t t e n u a t i o n = 9 I n j e c t i o n s i z e = 0 . 5 F i g u r e B 5 C h r o m a t o g r a m o f t h e E x t r a c t O i l o f Run 3 128 F i g u r e B6 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 2 A t t e n u a t i o n = 9 I n j e c t i o n s i z e = 0 . 5 F i g u r e B7 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 4 129 F i g u r e B8 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 1 F i g u r e B9 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 3 1 3 0 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 2 A t t e n u a t i o n = 9 C h r o m a t o g r a m o f t h e R a f f i n a t e O i l o f Run 4 T a b l e B l A n a l y s i s R e s u l t s Sample: O r i g i n a l Crude ( I n t . S t d . W t . / O i l Wt.): I n j e c t i o n S i z e ( u l ) 0.5 Sample: O r i g i n a l Crude + I n t . S t d . ( I n t . S t d . W t . / O l l Wt.): 0.141 I n j e c t i o n S i z e ( p i ) : 0.5 S l i c e Area Data: S l i c e Area Data: F i r s t Base L a s t Base Sample F i r s t S l i c e 3.2R5 x 1 0 5 3.468 x 1 0 5 8.356 x 1 0 5 L a s t S l i c e 5.755 x 1 0 7 5.829 x 1 0 7 6.813 x 1 0 7 T o t a l 1.105 x 10 9 1.000 x 1 0 9 7.369 x 1 0 9 at - 6.316 10 9 +/-F i r s t Base L a s t Base Sample F i r s t S l i c e L a s t S l i c e T o t a l 3.304 5.710 1.358 x 1 0 5 x 1 0 7 x 1 0 9 3.462 x 1 0 5 5.309 x 1 0 7 8.849 x 1 0 9 1.345 x 1 0 5 6.293 x 1 0 7 6.553 x 10 < J 0.82Z at - 5.432 x 10* +/- 4.34Z Window ( j ) a's (Z) +/- a'e (Z) Window ( j ) a ' S j (Z) +/-a'e (Z) 1 4.41 -0.01 1 3.95 -0.01 2 6.11 -0.01 2 5.76 -0.01 3 9.49 0.00 3 8.71 -0.01 4 8.47 0.05 4 7.75 -0.01 5 7.22 0.04 5 6.54 0.03 6 6.07 0.06 6 5.50 0.01 7 4.70 0.05 7 4.32 0.01 8 4.44 0.05 8 4.04 0.05 9 4.68 0.05 9 4.26 0,05 10 4.60 0.04 10 9.14 O . l t 11 3.99 0.04 11 5.58 0.13 12 3.45 0.03 12 7.02 0.2 13 3.46 0.07 13 6.92 0.21 14 2.80 0.05 14 2.46 0.15 15 2.61 0.04 15 2.18 0.2 16 4.52 0.02 16 3.61 0.33 17 3.84 0.00 17 2.79 0.36 18 3.22 0.02 18 2.13 0.36 19 2.83 0.07 19 1.71 0.42 20 2.20 0.04 20 1.26 0.38 21 2.03 0.04 21 1.22 0.31 22 1.75 0.03 22 1.1 0.28 23 2.99 -0.04 23 1.92 0.7 T a b l e B. 1 c o n t ' d . Sample: S t r i p p e d Crude ( I n t . S t d . W t . / O i l Wt. ): I n j e c t i o n S i z e ( u l ) : 0.5 S l i c e Area Data: F i r s t Base L a s t Base Sample F i r s t S l i c e L a s t S l i c e T o t a l 3.373 x 10 5 4.915 x 10 7 8.327 x 10 8 3. 522 x 1 0 5 5. 272 x 1 0 7 8.945 x 1 0 B 3.775 x 1 0 5 6.997 x 1 0 ; 7.393 x I 0 9 at - 6.529 10 9 +/- -0.48Z Window ( j ) +/-1 0 0.00 2 0.01 -0.01 3 0.10 -0.01 4 0.96 -0.02 5 3.44 0.00 6 5.39 0.02 7 5.48 0.02 8 5.79 0.07 9 6.49 0.01 10 6.62 0.02 11 5.89 0.01 12 5.24 0.01 13 5.43 -0.01 14 4.46 -0.02 15 4.24 -0.02 16 7.49 -0.02 17 6.54 -0.02 18 5.59 -0.02 19 4.89 -0.03 20 3.81 -0.05 21 3.53 -0.08 22 3.08 -. I 23 5.41 -0.34 Sample: S t r i p p e d Crude + I n t . Std ( I n t . S t d . W t . / O l l Wt.): 0.103 I n j e c t i o n S i z e ( | i l ) : 0.5 S l i c e Area D a t a : F i r s t Base L a s t Base Sample F i r s t S l i c e L a s t S l i c e T o t a l 3.452 x \0b 2.183 x 1 0 7 6.241 x 1 0 8 3.565 x 1 0 5 3.161 x 1 0 7 7.514 x 1 0 8 3.984 x 1 0 5 3.970 x 1 0 7 7.247 x 1 0 9 at - 6.559 x 10 +/ 0.98Z Window ( j ) (Z) +/-1 0.00 0.00 2 0.00 -0.01 3 0.05 -0.01 4 0.83 -0.01 5 3.29 0.00 6 5.15 0.00 7 5.38 0.02 8 5.65 0.03 9 6.33 0.03 10 10.25 0.01 11 7.12 0.00 12 7.96 -0.02 13 7.61 -0.03 14 3.99 -0.02 15 3.71 -0.01 16 6.36 -0.01 17 5.39 0.01 18 4.55 0.01 19 3.95 0.00 20 3.03 -0.03 21 2.85 -0.09 22 2.46 -0.18 23 3.98 -0.78 T a b l e B.1 c o n t ' d . Sample: S t r i p p e d crude + I n t . Std (n-Cg) ( I n t . S t d . W t . / O l l w t . ) : 0.091 I n j e c t i o n S i z e ( u l ) : 0.5 S l i c e Area D a t a : F i r s t Base L a s t Base Sample F i r s t S l i c e L a s t S l i c e T o t a l 3.373 1.915 8.327 x 1 0 5 x 1 0 7 x 1 0 B 3.522 5.272 8.945 x 1 0 5 x 1 0 ; x 1 0 8 3.689 x 1 0 5 6.742 x 1 0 7 6.640 x 10'J a t 5.777 x 10 9 +/- -0.542 Jlndow ( j ) a'Sj (2) +/- a'ej (2) 1 0.00 0.00 2 11.18 -0.01 3 0.22 -0.01 4 1.01 -0.02 5 3.54 0.00 6 5.58 0.02 7 5.71 0.02 8 5.99 0.07 9 6.75 0.01 10 6.84 0.02 11 6.05 0.01 12 5.23 o.or 13 5.24 -0.01 14 4.13 -0.02 15 3.73 -0.02 16 6.05 -0.03 17 4.71 -0.03 18 3.67 -0.02 19 3.07 -0.04 20 2.36 -0.05 21 2.25 -0.09 22 2.10 -0.11 23 4.48 -0.38 T a b l e B.1 c o n t ' d . Sample: Run 1 E x t r a c t O i l ( I n t . S t d . W t . / O i l Wt.): -I n j e c t i o n S i z e ( u l ) : 0.5 Sample: Run 3 E x t r a c t O i l ( I n t . S t d . W t . / O l l Wt.): -S l i c e Area Data: F i r s t Base L a s t Base Sample F i r s t S l i c e L a s t S l i c e T o t a l 3.425 x I 0 5 2.010 x 10 7 4.843 x 10 8 , 3.566 x 1 0 5 2.278 x 10 7 5.266 x 1 0 8 1.500 x 10 6 2.188 x 10' 7. 728 x 1 0 9 I n j e c t i o n S i z e ( p i ) : 0.5 S l i c e Area Data: F i r s t Base L a s t Base Sample F i r s t S l i c e L a s t S l i c e T o t a l 3.425 x 1 0 5 2.010 x 1 0 7 4.843 x 1 0 8 3.566 x 1 0 5 2. 278 x 1 0 7 5.266 x 1 0 8 4.250 x 10 6 2.318 x 1 0 7 7.714 x 1 0 9 a t - 7.223 x 10* +/ 0.3% at - 7.208 x 10 +/- -0.32 Window ( j ) a ' S J * +/- a ' e j (2) Window ( j ) a'Sj (2) +/- a ' e j (2) 1 0.05 -0.01 1 0.11 -0.01 2 0.02 -0.01 2 0.05 -0.01 3 0.02 0.00 3 0.16 0.00 4 0.02 0.02 4 2.24 0.02 5 0.81 0.00 5 8.29 0.00 6 7.04 0.00 6 13.02 0.00 7 12.24 -0.03 7 12.41 -0.03 8 14.79 -0.03 8 11.52 -0.03 9 14.26 -0.03 9 10.90 -0.03 10 12.56 -0.02 10 9.27 -0.02 11 8.89 -0.01 11 6.60 -0.01 12 6.54 0.00 12 4.88 0.00 13 5.49 0.01 13 4.19 0.01 14 3.67 0.00 14 2.89 0.00 15 2.88 0.00 15 2.35 0.00 16 3.91 -0.01 16 3.38 -0.01 17 2.45 -0.01 17 2.34 -0.01 18 1.59 -0.01 18 1.69 -0.01 19 1.04 -0.01 19 1.23 -0.01 20 0.62 -0.03 20 0.80 -0.03 21 0.45 -0.04 21 0.63 -0.04 22 0.29 -0.04 22 0.44 -0.04 23 0.24 -0.14 23 0.48 -0.14 T a b l e B.1 c o n t ' d . Sample: Run 2 E x t r a c t O i l ( I n t . S t d . W t . / O i l Wt.): -I n j e c t i o n S i z e ( p i ) : 0.5 Sample: Run 4 E x t r a c t O i l ( I n t . S t d . W t . / O l l Wt.): I n j e c t i o n S i z e ( p i ) : 0.5 S l i c e Area Data: S l i c e Area Data: F i r s t Base L a s t Base Sample F i r s t Base L a s t Base Sample F i r s t S l i c e 3. 425 x 1 0 5 3.566 X 1 0 5 8.644 X 1 0 s F i r s t S l i c e 3 .425 x 1 0 5 3. 566 X 1 0 5 7.809 x 1 0 5 L a 6 t S l i c e 2. 010 x 10 7 2.278 X 1 0 7 2.368 X 1 0 7 L a s t S l i c e 2 .010 x 10' 2. 278 X 1 0 7 2.602 x 1 0 7 T o t a l 4. 843 x 10 B 5.266 X 1 0 8 7.607 X 1 0 9 T o t a l 4 .843 x 1 0 8 5. 266 X 1 0 8 8.407 x 1 0 9 i i t • 7. 102 x 10 9 +/- -0 .3Z at - 7.902 +/- -0.27Z Window ( j ) a ' S j (Z) +/-a ' e J (X) Window ( j ) a ' S j (Z) +/-• a ' e j (Z) 1 0.02 -0.01 1 0.01 -0.01 2 0.01 -0.01 2 0.01 -0.01 3 0.03 0.00 3 0.02 0.00 4 0.97 0.02 4 0. 11 0.02 5 5.23 0.00 5 2. 10 0.00 6 9.70 0.00 6 6.51 0.00 7 10.03 -0.03 7 8.70 -0.03 8 10.20 -0.04 8 9.85 -0.03 9 10.54 -0.03 9 10.73 -0.03 10 9.88 -0.02 10 10.32 -0.02 11 7.68 -0.01 11 8.26 -0.01 12 6.17 0.00 12 6.78 0.00 13 5.66 0.01 13 6.43 0.01 14 4.11 0.00 14 4.82 0.00 15 3.47 0.00 15 4. 16 0.00 16 5.17 -0.01 16 6.39 -0.01 17 3.61 -0.01 17 4.56 -0.01 18 2.52 -0.01 18 3.24 -0.01 19 1.73 -0.01 19 2.28 -0.01 20 1.07 -0.03 20 1.46 -0.02 21 0.31 -0.04 21 1. 14 -0.04 22 0.58 -0.04 22 0.84 -0.04 23 0.71 -0.14 23 1.16 -0.13 T a b l e B. 1 c o n t ' d . Sample: Run 1 R a f f i n a t e O i l ( I n t . S t d . W t . / O l l Wt.): -I n j e c t i o n S i z e ( u l ) : 1 S l i c e Area Data: Sample: Run 1 R a f f i n a t e O i l + I n t . S t d . ( I n t . S t d . W t . / O i l Wt.): 0.104 I n j e c t i o n S i z e ( u l ) : 1 S l i c e Area D a t a : F i r s t S l i c e L a s t S l i c e T o t a l F i r s t Base 3.420 x 10 5 1 0 7 10'' 5.226 1.034 L a s t Base 6.860 x 1.165 x Sample 4.734 1.016 1.499 io-10 c 10 in F i r s t S l i c e L a s t S l i c e T o t a l F i r s t Base 3.420 5.226 1.034 x 10; x 10' x 10' L a s t Base 3.570 x 6.860 x 1. 165 x 10; 10' IO 5 Sample 4.603 x 10 3 1.519 x 10 li 10 a : - 1.389 x 1 0 1 0 +/- -0.477. a .409 x l O 1 " +/- -0.47Z Window ( J ) a ' S j (Z) +/- a ' e j (Z) Window ( J ) a ' s j (Z) +/- a'ej (Z) 1 0.00 -0.01 1 0.00 -0.01 2 0.00 -0.01 2 0.00 -0.01 3 0.03 -0.01 3 0.04 -0.01 4 0.68 0.00 4 0.69 0.00 5 2.69 0.01 5 2.51 0.01 6 4.58 0.02 6 4.13 0.02 7 4.90 0.03 7 4.33 0.03 8 5.37 0.04 8 4.73 0.04 9 6.13 0.05 9 5.40 0.05 10 6.59 0.05 10 9.38 0.05 11 5.70 0.04 11 6.50 0.04 12 5.27 0.03 12 7.61 0.03 13 5.37 0.02 13 7.42 0.02 14 4.54 0.01 14 3.95 0.01 15 4.37 0.01 15 3.77 0.01 16 7.89 0.02 16 6.80 0.02 17 7.02 0.02 17 6.03 0.01 18 6. 14 0.00 18 5.31 0.00 19 5.40 -0.03 19 4.75 -0.03 20 4.16 -0.06 20 3.76 -0.06 21 3.89 -0.09 21 3.56 -0.09 22 3.41 -0.13 22 3.21 -0. 13 23 5.76 -0.61 23 6.00 -0.6 137 o • in CD - H O O O CO CO CO -cr o o m r - i i n — ° 0 X X X v C C r*- — i T , m r - i m CO 1 N ^ O C C O O i n vD \£) m c o — V—• <U CO 1 ON v O + O 1 1 S o c o o § § 8 § g g § § g ° o o o 5 g o - S o o o o o o o o o o o d o d o d d d d d d d d I I I I I tr. t—I 00 — cc o u - _J t -— ' — —t —< ~ CM C\J CNJ CM 1 t 1 4J E o 'J~l CD c c c X X X cc ui r-. O -3-<• CC vD u-( cs j *iT — -I OJ CO o o o o c o o o o o o o ' d o o d o ' o c ' o d o o OJ K ! £ irt rs j i C C O • M 1 + X X X O 1 Oil ca Data cn 5.579 8.416 1.354 1 + o '—s 1 •c GJ i ? " -1 4J 3 . . CC —' —| — 2 . Slice An 1 First Base i n T\ C O O x x x O o » n N sD m c o — n vc « - 1.338 x 10 "—' m Q o o o o cs , „ s, -=> ^  ^ ^ ^ ^ ^ ^ ^ Table B. 1 con Sample: Run (Int. Std. W Injection SI First Slice Last Slice Total at Window (j) T a b l e B.1 c o n t ' d . Sample: Run 3 R a f f i n a t e O i l ( I n t . S t d . W t . / O i l Wt.): -I n j e c t i o n S i z e ( u l ) : 1 S l i c e A rea Data: Sample: Run 3 R a f f i n a t e O i l + I n t . S t d . ( I n t . S t d . W t . / O l l Wt.): 0.096 I n j e c t i o n S i z e ( u l ) : 1 S l i c e A rea Data: F i r s t Base L a s t Base Sample F i r s t Base L a s t Base Sample F i r s t S l i c e L a s t S l i c e T o t a l 3.420 x 1 0 s 5.226 x 1 0 7 1.034 x 1 0 9 3.570 x 1 0 5 6.860 x 1 0 7 1.165 x I 0 9 4.486 x 10J> F i r s t S l i c e 1.193 x 1 0 8 L a s t S l i c e 1.510 x 1 0 1 0 T o t a l 3.420 x 1 0 5 5.226 x 1 0 7 1.034 x 1 0 9 3.570 x 1 0 5 6.860 x 1 0 7 1.165 x 1 0 9 4.234 x 1 0 5 1.133 x 1 0 8 1.457 x 1 0 1 0 a t - 1.400 x 1 0 1 0 +/ 0.47Z Window ( j ) a ' S j (Z) (X) 1 0.00 -0.01 2 0.01 -0.01 3 0.04 -0.01 4 0.68 0.00 5 2.79 0.01 6 4.53 0.02 7 4.98 , 0.03 8 5.38 0.04 9 6.09 0.05 10 6.51 0.05 11 5.59 0.04 12 5.12 0.03 13 5.19 0.02 14 4.38 0.01 15 4.20 0.01 16 7.59 0.02 17 6.75 0.02 18 5.90 0.00 19 5.29 -0.03 20 4.17 -0.06 21 4.00 -0.09 22 3.65 -0.13 23 7.05 -0.6 at - 1.347 +/- -0 49Z Window ( j ) a ' 8 j (X) +/- a ' e j (Z) 1 0.00 -0.01 2 0.01 -0.01 3 0.05 ' -0.01 4 0.78 0.00 5 2.85 0.01 6 4.40 0.02 7 - 4.72 0.04 8 5.05 0.04 9 5.71 0.05 10 9.47 0.05 11 6.56 0.04 12 7.46 0.03 13 7.17 0.02 14 3.89 0.02 15 3.70 0.01 16 6.59 0.02 17 5.77 0.02 18 5.02 0.00 19 4.44 -0.03 20 3.51 -0.06 21 3.37 -0.1 22 3.09 -0.13 23 6.25 -0.62 00 T a b l e B.1 c o n t ' d . Sample: Run 4 R a f f l n a t e O i l Sample: Run 4 R a f f i n a t e O i l + I n t . S t d . ( I n t . S t d . Wt. / O i l Wt. ): - ( I n t . S t d . Wt. / O i l Wt. ): 0.085 I n j e c t i o n S i z e ( u l ) : 1 I n j e c t i o n S i z e ( u l ) : 1 S l i c e Area Data S l i c e Area Data F i r s t Base La s t Ba s e Sample F i r s t Base L a s t Base Sample F i r s t S l i c e 3.570 x 10 5 5.579 X 1 0 5 4.504 x 1 0 5 F i r s t S l i c e 3.570 x 1 0 5 5.579 x 1 0 5 4.456 x 1 0 5 L a s t S l i c e 6.860 x 10 7 8.416 X 1 0 7 1.411 x 1 0 8 L a s t S l i c e 6.860 x 1 0 7 8.416 x 1 0 7 1.403 x 1 0 8 T o t a l 1.165 x 10 9 1.354 X I 0 9 1.491 x 1 0 1 0 T o t a l 1. 165 x 1 0 9 1.354 x 1 0 9 1.516 x 1 0 1 0 i t - 1. 365 x 10 10 + / . -0.7Z at - 1.390 x 1 0 1 0 +/- -0.687 Window ( j ) a ' S j (Z) +/- • a'e (Z) Window ( j ) a ' S j (Z) +/- (Z) 1 0.00 -0.01 1 0.02 -0.01 2 0.02 -0.01 2 0.01 -0.01 3 0.03 -0.01 3 0.04 -0.01 4 0.54 -0.01 4 0.57 -0.01 5 2.24 -0.01 5 2. 13 -0.01 6 3.69 0.00 6 3.37 0.00 7 4.21 0.00 7 3.79 0.00 8 4.69 0.00 8 4.21 0.00 9 5.50 0.00 9 4.94 0.00 10 6.04 0.00 10 8.49 0.00 11 5.33 0.00 11 6.06 0.00 12 4.97 o.oq 12 7.01 0.00 13 5.10 0.00 13 6.94 0.00 14 4.38 0.00 14 3.95 0.00 15 4.29 0.00 15 3.85 0.00 16 7.91 0.00 16 7.13 0.00 17 7.22 0.00 17 6.50 0.00 18 6.48 0.00 18 5.84 0.00 19 5.87 -0.01 19 5.32 -0.01 20 4.70 -0.03 20 4.24 -0.03 21 4.51 -0.06 21 4.10 -0.06 22 4.15 -0.11 22 3.81 -0.11 23 8.03 -0.55 23 7.57 -0.54 1 4 0 APPENDIX C - SUMMARY OF CALCULATIONS C . l Calculating the Eluted Fraction (e) The w i n d o w a n a l y s i s d a t a ( g i v e n i n A p p e n d i x B ) c a n be e a s i l y u s e d f o r t h e c a l c u l a t i o n o f t h e e l u t e d f r a c t i o n , b a s e d on t h e m e t h o d s o u t l i n e d i n S e c t i o n 3 . 2 , a n d F i g u r e 3 . 2 . F o r t h e c h r o m a t o g r a m w i t h o u t t h e i n t e r n a l s t a n d a r d : a 9 (E a ' s . / l O O ) 1 3 ( C . l ) 13 (E a ' s . / l O O ) 10 J ( C . 2 ) 23 (E a ' s . / l O O ) 14 ( C 3 ) F o r t h e c h r o m a t o g r a m w i t h t h e i n t e r n a l s t a n d a r d : b ' -9 (E a ' s . / l O O ) ( C . 4 ) b ' = 2 13 (E a ' s . / l O O ) 10 J ( C . 5 ) b ' = 3 23 (E a ' s . / l O O ) 14 J ( C . 6 ) a ' + a ^ i s D 2 x KVX + b ^ ; ( C 7 ) 141 The e l u t e d f r a c t i o n , e , i s t h e r e f o r e : e = W e i g h t o f I n t e r n a l S t a n d a r d 1 W e i g h t o f S a m p l e x a ! ( C , 8 ) i s W i t h t h e one r u n u s i n g t h e n - C 6 H i i » i n t e r n a l s t a n d a r d t h e e l u t e d f r a c t i o n i s c a l c u l a t e d b y : a ' s . W e i g h t o f I n t e r n a l S t a n d a r d . , 2 . , Q . 6 W e i g h t o f S a m p l e ' X K 23 ' ^ ' * } 100 - Z a ' s . 3 J C.2 Calulation of Phase Volumes The c a l c u l a t i o n o f t h e p h a s e v o l u m e s i s t h e f i r s t s t e p i n t h e e s t i m a t i o n o f t h e CO2 c o n t e n t . The c a l c u l a t i o n i s b a s e d on a mass b a l a n c e o f t h e o i l . I f two p h a s e s e x i s t t h e f o l l o w i n g two e q u a t i o n s may be w r i t t e n : C £ ( o i l ) x V E + C R ( Q i l ) x V R = W T T ( o i l ) = C T ( Q i l ) x V T ( C I O ) v E + v R = v T ( C . l l ) C r e p r e s e n t s t h e m e a s u r e d c o n c e n t r a t i o n s , V t h e v o l u m e s a n d WT t h e w e i g h t . The s u b s c r i p t s E , R, a n d T r e f e r t o t h e e x t r a c t r a f f i n a t e a n d t o t a l v a l u e s . H o w e v e r , t h e r e was a t h i r d p h a s e w h i c h was n o t s a m p l e d and w h i c h was c o n s i d e r e d t o be made up o f o n l y t h e n o n - e l u t e d o r 0^0+ o i l f r a c t i o n . T h e r e f o r e t h e mass b a l a n c e was p e r f o r m e d u s i n g t h e e l u t e d o i l f r a c t i o n , ( i . e . e E ( o i l ) f e R ( o i l ) a n d e T ( o i l ) ) . E q u a t i o n C I O , 142 t h e r e f o r e b e c o m e s : C E ( o i l ) x e E ( o i l ) x V E + C R ( o i l ) x e R ( o i l ) x V R = C T ( o i l ) x e T ( o i l ) x V T ( C . 1 2 ) T h e v a l u e o f e ] r ( o i l ) w a s 1> a n ^ t h e p h a s e v o l u m e s w e r e c a l c u l a t e d b y s o l v i n g e q u a t i o n ( C . l l ) a n d C . 1 2 ) s i m u l t a n e o u s l y . T h e r e f o r e : V R -( ( 1 - ( C T ( o i l ) X e T ( o i l ) / C E ( o i l ) ) ) / ( 1 - ( C R ( o i l ) X e R ( o i l ) / C E ( o i l ) ) ) ) X V T ( C . 1 3 ) a n d V E = V T - V R ( C . 1 4 ) C.3 Calculation of Phase Contents and Total CO2 Weight OTE ( i ) = C E ( i ) x V E ( C . 1 5 ) W T R ( i ) = C R ( i ) X V R < C ' 1 6 > w h e r e i w o u l d be CO2 o r o i l . 143 The s o l i d phase weight WTg» i s c a l c u l a t e d by: = ^ T C o i l ) " m R ( o i l ) ~ ^ E C o i l ) ( C , 1 7 ) The t o t a l CO2 weight i s c a l c u l a t e d by: mTiC02) = ^ECCOo) + ™KCQ2) ( C ' 1 8 ) 144 APPENDIX D - Sources of Equipment and Chemicals T a b l e D . l S o u r c e s o f E q u i p m e n t and C h e m i c a l s I t e m M a n u f a c t u r e r P a r t N o . EQUILIBRIUM CELL A u t o c l a v e E n g i n e e r s I n c . , E r i e , P e n s y l v a n i a , U . S . A . A u t o c l a v e , M a g n e t i c C o u p l i n g a n d H e a t i n g M a n t l e V a l v e s 1 . 3 . 4 ( F i g . 4 . 1 0 ) A u t o c l a v e E n g i n e e r s I n c . , E r i e , 3 . 4 . 5 ( F i g . 4 . 4 ) P e n s y l v a n i a , U . S . A . 5 ( F i g . 4 . 1 0 ) 6 ( F i g . 4 . 1 0 a n d 4 . 4 ) [1 & 2] ( F i g . 4 . 4 ) A u t o c l a v e E n g i n e e r s I n c . , E r i e , P e n s y l v a n i a , U . S . A . A u t o c l a v e E n g i n e e r s I n c . , E r i e , P e n s y l v a n i a , U . S . A . A u t o c l a v e E n g i n e e r s I n c . , E r i e , P e n s y l v a n i a , U . S . A . 2 ( F i g . 4 . 1 0 ) W h i t e y C o . , C l e v e l a n d , O h i o , U . S . A . T e m p e r a t u r e C o n t r o l l e r s A u t o c l a v e H e a t i n g M a n t l e A i r B a t h B a r b e r - C o l m a n C o . I l l i n o i s , U . S . A . B a r b e r - C o l m a n C o . I l l i n o i s , U . S . A . R o c k f o r d , R o c k f o r d , L . F . E . , P r o c e s s C o n t r o l l D i v . , W a t h a m s , M a s s . , U . S . A . P r e s s u r e I n d i c a t o r s B o u r d o n P r e s s u r e Guage P r e s s u r e T r a n s d u c e r A c c e s s o r i e s A u t o c l a v e E n g i n e e r s I n c . , E r i e , P e n s y l v a n i a , U . S . A . D a t a I n s t r u m e n t C o . , L e x i n g t o n M a . , U . S . A . L 2 9 - 1 1 6 4 2 - 1 SC4081 SC4882 S C 4 0 8 3 SC4075 S S - 6 L R S 6 523B 120 523 P487 A B - 5 0 0 0 p s i g S t i r r e r S p e e d C o n t r o l l e r A u t o c l a v e E n g i n e e r s I n c . , E r i e , P e n s y l v a n i a , U . S . A . S C L - P O - 1 2 - 1 / 4 145 T a b l e D.1 c o n t d . . . . I t e m M a n u f a c t u r e r P a r t N o . S t i r r e r M o t o r C o m p r e s s o r R e l i e n c e E l e c t r i c C o . , C l e v e l a n d , O h i o , U . S . A . A m e r i c a n I n s t r u m e n t C o . , S i l v e r S p r i n g , M a r y l a n d , U . S . A . A i r P o w e r e d M o t o r E a s t e r n I n d u s t r i e s , Hamden, C o n n e t i c u t , U . S . A . I n s u l a t i o n F l e c k B r o s . L t d . , V a n c o u v e r , B . C . C a n a d a C a r t r i d g e H e a t e r s C a n a d i a n C h r o m a l o x C o . , T o r o n t o , O n t a r i o , C a n a d a B - 3 6 2 0 - 1 1 J 4 6 - 1 3 4 1 6 A46 AW 2 . 5 0 C - 2 0 5 L Wet T e s t Gas M e t e r B a l a n c e EXPERIMENTAL ACCESSORIES A l e x a n d e r W r i g h t and C o . ( W e s t m i n s t e r ) M - 7 5 - I N S L t d . , L o n d o n , U . K . S a r t o r i u s - W e r k e , G o t t e n g e n , G . M . B . H . 2462 C h r o m a t o g r a p h D a t a C o n s o l e ANALYTICAL EQUIPMENT P e r k i n - E l m e r , N o r w a l k , C o n n e t i c u t S i g m a 3 U . S . A . P e r k i n - E l m e r , N o r w a l k , C o n n e t i c u t S i g m a 10 U . S . A . C o l u m n s UCW-98 l i q u i d P h a s e C o l u m n S u p p e l c o , B e l l e n f o n t e , P e n s y l v a n i a U . S . A . OV-101 L i q u i d P h a s e C o l u m n C h r o m a t o g r a p h i c S p e c i a l t i e s , B r o c k v i l l e , O n t a r i o , C a n a d a CO2 ( I n d u s t r i a l g r a d e ) D e c a n e (98% m i n ) CHEMICALS M e d i g a s P a c i f i c L t d . , V a n c o u v e r B . C . , C a n a d a F i s h e r S c i e n t i f i c , V a n c o u v e r , B . C . , C a n a d a 2045 146 T a b l e D.1 c o n t d I t e m M a n u f a c t u r e r P a r t N o . S e p a r a t o r O i l I m p e r i a l O i l L t d . , C a l g a r y , C a n a d a C h r o m a t o g r a p h i c C h e m i c a l s & G a s e s : N 2 ( z e r o g r a d e ) M e d i g a s P a c i f i c L t d . H2 ( z e r o g r a d e ) V a n c o u v e r , B . C . , C a n a d a A i r ( z e r o g r a d e ) N - a l k a n e H e w l e t t - P a c k a r d , A v o n d a l e , 5 0 8 0 - 8 7 1 6 C a l i b r a t i o n P e n s y l v a n i a , U . S . A . M i x t u r e I n t e r n a l S t a n d a r d s H e w l e t t - P a c k a r d , A v o n d a l e , 5 0 8 0 - 8 7 2 3 (n -CiitH3o •* P e n s y l v a n i a , U . S . A . n - C i 7 H 3 6 ) 147 APPENDIX E - SOFTWARE P r o g r a m m e T S L I C E : C r e a t e s t i m e - s l i c e d a r e a s d u r i n g t h e c h r o m a t o g r a m , a n d t r a n s f e r s t i m e - s l i c e a r e a s o n t o m a g n e t t a p e . 'BL TSLICE 1 OIH K»<2>.F*<2>.P*<13>.R<2S4>»T<254>,V<18> 2 LET F»=*PP" 3 OPEN F* 4 PRINT ON<F*>-METHOD**; 5 INPUT H 6 LET D=l 7 LET F3=« B LET R=l 9 LET J=l 18 PRINT ON<F*>"Bf*SE RUN NAME*; 11 INPUT P* 15 IF J=2 G0TO26 16 PRINT ON<F»>*EHO TIHE<HIM>-; 17 INPUT L2 28 PRINT OM<F*>-SLICE MIDTH HIH-*;INT<L2*6»/233>; "SECS"; 21 INPUT W2 24 LET Ll=« 26 LET V<R>=R 38 GOTO 190 58 LET V<R>-W 51 PRINT ON<F*>-RflW DHTB MOflC-*; 52 INPUT P* 188 SETUP P».V<R>.F3.D.H 182 TSLICE P*,D.M2,L1,L2 184 RUN P«,V<R> 186 FILE P*,V<R>»D»F3.F1 188 SETUP P* 158 READ Z9,S ,Z1.Z2.S1,S2»H 151 DfUfl 8 . 8 . 8 . 8 . 8 . 8 . 8 152 RESTORE 168 LET S=SM 165 GSLICE F1,S.R<S>.T<S> 168 IF n<S>>8 GOTO 168 178 FID Fl.I .09 .0.0»P*»Hl »H l . l t2,i>4.V . y2 .0»0 172 PKREP P* 188 PUT Fl.H.E 181 IF E=8 G0T019« 183 PRINT OH<F*>-PUT ERR-*iBi••KUIH »;R;• • F I L E » - * ; F t 184 GOTO 9999 198 ERRSE F l . E 191 IF E=8 G0T02M 193 PRINT OH<F»>-ER**S€ ER«-*:E:"/I*UM»--;R;"/TILE»--;FI 194 GOT09999 28* LET S=S-1 282 LET Z1»R<1> 284 LET Z2««<S> 286 FOR X=l TO S 288 LET Z9-Z9+WX) 148 218 NEXT X 259 PRINT ON<F»>» • * * * * * • ;p* ;••**—•, -RUH*--;R 254 PRINT 0N<F*>*tOF SLICES-"JS»*yIDTH<S£C>--;W2.-fcHU Ilnfc<n»H>-256 PRINT 0N<F»>-R»»€»*5 1ST--;Z1; */'LST-*;22; ••TOTRL-*;Z9 258 PRINT ON<F«>».* TRP€ I.D.=-;H 260 PRINT OH<F»>*» « 262 IF R>1 GOTO 4 M 263 LET H2»M 480 IF J=2 G0T043* 482 PRINT OH<F»>,*HCXT RUH <V'N>-; 494 INPUT K» 486 IF K»»-N- G0T09»»9 498 FOR H7=l TO 5 419 PRINT ON<F»> 412 NEXT H7 414 LET R=R*1 429 PRINT 0N<F*>,*8«S£ ROH> <V'N>»; 422 INPUT K» 424 IF K*-*N* G0T05* 426 LET J=2 428 G0T019 458 FOR H7=l TO 5 451 PRINT ON(F*> 452 NEXT H7 455 PRINT 0N<F*>*1ST BflSE THPE#~*;H2»"LST B«S£ T H P € » - » ; N 456 PRINT ON<F»>,»*» OF R M OftTft ROMS""*IH—H2—1 458 PRINT 0N<F*>"C0MTIHO6 <V/H)*; 459 INPUT K» 462 IF K*='N* GOTO 9999" 464 LET H2=*W 465 LET R=l 466 LET J=l 470 GOTO 408 9999 ENO OK 149 P r o g r a m m e A - D - 2 8 8 7 : R e t r i e v e s s l i c e - a r e a s f r o m m a g n e t i c t a p e a n d g e n e r a t e s a d i s t i l l a t i o n r e p o r t , u s i n g t h e s t o r e d s l i c e - a r e a s o f a b a s e c h r o m a t o g r a m t o s i m u l a t e t h e b a s e l i n e b e h a v i o u r o f t h e s a m p l e c h r o m a t o g r a m . /BL fl-D-288? 1 DIM V<24>.R<58>.B<58>,A<254>,T<254>,T*<2>.6*<2>.B*<5> 2 DIM HS<8>.A*<8>,K*<2>.DS<2>,F*<2>.RS<2>,P*<ie>,C*<18> 28 LET F*=*PP" 25 OPEN F* 48 PRINT ON<F*>"IMPUT CURR CAL FILE*.METHOD*"; 45 INPUT F1,M 55 LET P*="CBL RUM" 68 PKREP P*,F1,H 75 PKPRINT 0N<F»>P*,1 88 PRINT OH<F*> 85 PRINT ON<F»>"INOEX","BP-DE6 F","RET TIME* 86 LET B<8)=-128 87 LET R(8)=.81 89 PRINT 0N<F*>-e-»B<8>,R<8>."Cl" 98 FOR J=l TO 29 95 PKNEXT P*,I,A1,A2.A2,A2,B(J>,R2,A* 188 ON I GOTO 159,128.181,95 181 LET R<J)=-9999 182 GOTO 132 128 LET R<J>=A1 132 LET B<J>=B<J>*18«M 151 PRINT ON(F»>J,B<J>,R<J>.RS 152 NEXT J 159 PRINT ON<F«>"MUST HAUE A CAL PT AT DATA EMO TIME" 168 PRINT ON<F*)"MOO CAL LIST-V'N-EXIT««,«,«" 167 PRINT ON(F*)"IMPUT INDEX*,BP,RET TIME"; 178 INPUT X.B.R 173 IF R=860T0183 175 LET R<X)=R 178 LET B<X>=6 188 PRINT OH<F*>X,B,R 183 G0T0167 185 PRINT ON(F*>"NEW CAL LIST-VH"; 187 INPUT K« 198 IF K*«"N"60T0218 195 PRINT OH<FS>,P* 197 PRINT OH<F*>"INDEX*-."BP-DE6 F","RET TIME" 288 FOR X=*T0S7 283 IF R(X)=8G0TO218 285 PRINT OM<F*>X,B<X>,R<X> 287 NEXT X 218 PKREP PS 211 ERASE Fl.E 212 IF EOBTHEH PRIMT OM<F*>., "CALP-FILE ERASE ER-**»E; "FILE'JFl 213 IF E=8 G0TD216 214 G0T09999 216 LET R=l 217 LET D*--P" 213 LET R*="P" 1 5 0 "19 ' ET T*=»*H" 228 PRINT OH<F*>"B -RU» T R P € » » * ; 221 INPUT F4 233 PRINT ON<F*>"R-HXJ*TI* T B P € » » ; 234 INPUT F l 237 PRINT ON<F»>"REP TYPE 1 -IHTEGU 2-flLL SLICE"; 238 INPUT T8 239 IF T8=2 GOT023* 248 PRINT OM<F*>"REP INTERVAL"; 241 INPUT K 245 PRINT ON<F»>"W»T»» STHWT,END DELTA*; 246 INPUT 01.02 247 PRINT 0N<F9>"EMD PT INHIBIT TIME*; 248 INPUT B8 258 LET F3=8 251 LET D=l 252 LET LI=8 272 SETUP C*.V<R>»F3,D,H 285 CLOSE F* 286 GET F4.F5.E 287 IF E=8 G0T0291 288 OPEN F* 289 PRINT ON<F*>,."B-SLICE GET ER1*--;E;"TRPE I . 0 . » * ; F 4 298 G0TO9999 291 G0SU8 3M 292 ERASE F3,E 293 IF E=0 GOT0328 294 OPEN F* 295 PRINT O N < F » ) . , " B - S L I C E ERASE E R R — - ; E ; " F I L E - " ; F 3 296 G0T09999 388 RE RO Z9,S.Z1.Z2.S1.S2,H,I>9 381 OATH 8 . 8 , 8 . 8 . 8 . 8 . 8 . 8 382 RESTORE 383 LET S=S*1 384 GSLICE F5,S.A<S>.T<S> 305 IF R<S>>0 GOTO303 307 LET S=S-1 389 LET L2=T<S> 310 LET «2=L2*60^S 311 LET Z l= f »< l> 312 LET 22=«<S> 313 FOR X=l TO S 314 LET 29=Z9-HMX> 315 NEXT X 316 LET X=0 317 PKREP C » 318 OPEN F » 319 PRINT ON<F»>"** *' 328 PRINT OH<F«>*BASe END TIHE-- ;L2;"HIA* 321 PRIHT ON<F*>*BASE SLICE VIDTH--;V21"SECS* 322 PRINT 0M<F«>*«OF SLICES—*;S. "TOTAL BASE AJ»*A-* ;Z9 323 FID F5. 1 ,09 ,0 .0 , C » . M l . H I .R2.D4. V. M2.0.0 324 CLOSE F* 326 RETURN 327 CLOSE F » 328 SETUP C » 329 LET R=R+1 33B LET V ( R > - « 338 GET F1.F2.E 339 IF E=0 G0T0343 340 OPEM F* 341 PRINT O M < F « > . . " R D - S L I C E GET E R » - » ; E ; " T H P € t - ^ ; F l 151 342 G0T09999 343 READ A9,S ,Al .A2.U9.Ul ,U2.H 344 DATA 8,8.8.8,8.8,8,0 345 RESTORE 346 LET S=S-H 347 LET Z=A<S> 348 GSLICE F 2 . S . f » < S > » T < S ) 349 IF A(S>>8 GOT0373 358 LET S=S-I 359 LET L2=T<S> 368 LET M2=L2**4VS 362 OPEM F* 363 PRIMT 0N<F«>-RA¥-O END TIME-*;L2; *MIM" 364 PRIMT ON<F*>*RA»*-D SLICE MIDTM--;M2;"SECS" 365 PRIMT OM<F»>-# OF SLICES-";S."TOTBL RAW A R E A - » ; i » 366 PRIMT OM<F»"*» — 367 OPEM F* 369 GOTO 386 375 IF S>1 G0T0377 376 LET U1=A<1) 377 LET U2-M<S> 378 LET 09-O9-HI2 379 LET A<S)=U2-Z 388 IF S>1 GOT0382 381 LET H1=H<1) 382 LET A2=A<S> 383 LET R9-A9*«*2 385 GOTO 346 386 FID F2 , I.09 ,O.O.P*,H1,H1,H2 ,D4,V,II2,0,0 387 PKREP P* 388 ERASE F2.E 389 IF E=8 GOT0391 398 OPEM F* 391 PRIMT OM<FS>*RAW DATA ERASE ERR— * ; E . * F I L £ » » * ; F 2 392 G0T09999 399 IF J=l G0T0883 435 PRIMT OM<F»)-B-I.IME USED-";C».-TAPE»--;F4 436 PRIMT ON<F»>*RUM-;V<R>:-'*;P*.-FILE*;F2.MI;»:*;HI 437 PRIMT OM<F»>. . »M2; "/'" ;D4; V 438 PRIMT 0M<F»>TAB<5>:***,"B.P.<DE6 F>*»"TIHE <MIM>* 439 IF T802GOT04S8 i43 LET P=8 441 LET H-3 442 LET X=X*1 443 LET P=A<X>/A9*>108** 444 LET T2=T<X> 445 G0T0688 446 PRIMT 0M<F*>TAtK3>;P,B2.T2 447 IF X<S GOT0442 449 GOTO 883 458 FOR X=2 TO S 455 LET U=<H<X)-A<X-l))/ft9*l»8 457 IF IKD1 G0T044V7 468 LET S1=X 461 LET U1=S1 465 G0T0498 467 MEXT X 475 PRIMT 0M<F*)'MO START OF DATA FOUM» FOR";V(R> 488 G0T0883 498 LET Cl=8 491 LET C5=« 565 FOR X -S l TO S 152 578 LET C1=C1-H*<X> 571 IF T<XKB8G0T0613 575 LET U=ftBS<<A<X>-ft<X-l>>/R9>>19»> 588 IF U>D2GOT06«9 585 LET D9-©9*» 598 LET CS=C3-HKX> 595 IF D9-360T062S 689 G0T0613 685 LET C5=-« 686 LET D9-8 615 NEXT X 629 LET S2-S 621 LET V2=S2 622 G0T0633 625 LET S2-X-5 626 LET U2=S2 638 LET C1=C1-C5 635 LET C3=« 648 LET ¥=.3 645 FOR X=S1 TO S2 658 LET T3=T<X> 655 LET Tl=TcX-l> 668 LET P1=C3/C1*1M 665 LET P2=<C3-M»<X>>^C1*190 678 IF P2<y GOT07B9 S75 LET T 2 = < T 3 - T l ) v ( P 2 H » l > * < M - P l > + T l 688 FOR J=0TO37 685 IF R<J+1XT2 GOT0739 698 LET B 2 » < B < J * l > - 9 < J ) > > ' < R < J + l > - R < J > > * < T 2 - R < J > > + e < J > 695 LET U6=»B2-IMT<B2> 788 LET B2=?MT<92> 785 IF U6>.5 THEM LET B2-92*! 786 LET T2=T2*199 787 LET U6=T2-INT<T2> 788 LET T2=INT<T2) 789 IF U6>.5THEM LET T2»T2+1 718 LET T2=T2'19* 713 ON H GOT0796.899,44« 714 IF U=.5G0T076* 715 IF W=99.5GOT0799 728 PRINT 0N<F*>TRB<3>;U,B2,T2 725 G0T0733 738 NEXT J 735 LET P1=W 748 LET V=U+n 745 IF U=180THEM LET U -99.3 758 LET T1=T2 755 G0T067* 768 PRINT 0 N < F * > T M B < 5 > ; ' I B f » - . B 2 » T 2 765 LET U=K 778 LET PI=.5 775 G0T0739 788 LET C3=C3-H*<X> 785 NEXT X 798 PRINT OM<F»>TMf><S> J "EP"#B2» T2 791 PRINT OH<F*> 793 LET H=»l 794 LET T2=T<S1-1> 795 G0T0699 796 LET SI=82 797 LET H=2 798 LET T2=T<S2> 799 GOT069* 153 889 LET 52=82 881 PRINT OH<F*>*STR»TxEM» OF D « T « — V I ; V 2 . " M E T RREB—-JCl 882 PRIMT 0M<F*>"5TRRT/EM» D€LT«*;D1 '.'/m\D2 883 PRINT O M < F » .•BMSE". * Rftt»' , * CORRECTED HREHS* 884 PRINT 0N<F»> -F IRST-.Z1 »U1 . «1 885 PRIMT 0 N ( F » ) * L R S T - , Z 2 , U 2 . R 2 886 PRIMT OM<F*>"TOT8L - »Z9 .U9»B9 B87 FOR H7-1 TO 18 888 PRINT O H ( F » > 889 NEXT H7 861 PRINT OM<F»>-MEXT RUM V M " ; 862 INPUT K» 863 IF K*=*M- GOT09999 864 PRINT OM<F«>-BMSC CHECH V N * ; 865 INPUT K* 866 IF K*=»"N- GOTO 881 867 LET J=l 874 PRINT ON<F*>*8MSE CHECK T R P E » ~ ; 875 INPUT F l 8 7 7 LET R=I 879 GOTO 238 881 IF J=l G0T0883 882 IF R=18 GOTO 888 883 GOT0898 885 LET F4-F1 888 LET R » l 898 LET J=8 892 G0T0233 9999 EMO OK 154 Programme B C - A R E A : Retrieves s l i c e - a r e a s from magnetic tape, and generates area f r a c t i o n s f o r s p e c i f i e d chromatogram windows,using an averaged base area,from base chromatograms run before and a f t e r the sample chromatograms,to corre c t the raw area data of the sample chromatogram. •BL BC-flREA 1 DIM R<38) ,B<3e> .C<38> ,T<2S4> ,R (254> .A«<13> 2 DIM B*<13>.C»<13>.H*<13>.F*<2> 3 Dlfl P*<8> 28 LET F*="PP" 25 OPEN F* 48 PRIHT OH<F*>"IHPUT CUR* CHL F ILE » .HETH8t>*> ; 41 IHPUT Fl.H 55 LET P*="CAL FILE* 68 PKREP P » . F 1,H 75 PKPRINT OM<F»>P*.l 88 PRIHT OH<F»> 85 PRIHT OH<F*>"IHOEX".*BP DE6 F","RET TIHE* 66 LET B<8> —128 87 LET R(8>'.81 88 LET ft*»"C!" 89 PRIHT O H(F* ) " » * , B ( e ) . R < e > . R * 98 FOR J=1T029 95 PKHEXT P», I ,B1.n2.A2,A2,B(J>,A2,A* 188 OH I GOTO 1 3 9 , 1 2 « . 1 8 1 , 9 5 181 LET R(J)=-9999 182 G0T0132 128 LET R < J > « « 1 132 LET B < J ) = 8 < J ) » 1 8 « « 133 PRIHT ON<F*>J,B<J>,R<J>,A* 135 HEXT J 139 LET R=J 148 PRIHT OH<F»>*WOO CAL L IST -OO EXIT ENTER • . « > " 141 PRIHT 0H<F*>"IHOEX*,RET TIHE"; 142 IHPUT J.R 143 IF R=« GOTO 146 144 LET R<J>=* 145 G0T0141 146 FOR J=l TO 5 147 PRIHT OH<F»> 148 NEXT J 149 PRINT O H<F « ) " I N O E X » - » - B P DE6 F" » "RET T I « E < H I M > " 158 FOR X=l TO B 151 PRIHT OH<FS>X,B<X>,R<X> 152 HEXT X 153 LET H=X-2 154 PRINT OH<F»>"OK V^H" 155 INPUT A » 156 IF H*-"N"GOTO 83 159 PKREP P* 168 ERASE F1,E 161 IF E=8 GOTO 216 162 PRINT ON<F*>."CALIB ERASE E R - * ; E . " F I L E » - - ; F 1 163 GOTO 999*) 216 LET X «8 217 LET X=X*1 218 LET R=<R<X>-M*<X*1>>'2 1 5 5 219 LET R<X>-R 229 IF X<<M-3> G0TO217 221 LET R=*<M> 222 LET R<X+1>-R 223 LET M-M-2 224 LET R<9>»9 226 PRIMT 0H<F»>MMOEX9~. »STRRT - , - EMt> UIMOOW-227 FOR X=l TO M 228 PRIMT ON<F*>X»R<X- l> .R<X> 229 MEXT X 258 PRIMT 0 M ( F » ) - 1 S T , L S T BASE TRPE*"*S* 251 INPUT H1,H2 253 LET H3-H1 255 LET F1=M1 256 G0SU8 499 268 FID F 2 . I . 0 9 . 0 , 0 , B * . 0 » 0 , 0 . 0 » 0 » M 2 » L 1 . L 2 261 G0SU6 429 265 LET 81=81 266 LET B2-R2 267 LET B9-R9 268 FOR X=l TO M 269 LET R=«<X> 278 LET B<X>-R 271 MEXT X 288 LET F1-H2 281 GOSUB 499 282 FID F 2 , I , 0 9 , 0 , 0 . C * . 0 . 0 . 0 , 0 , 0 . M 4 . L 3 , L 4 283 GOSUB 429 298 LET C1=H1 291 LET C2=«2 292 LET C9-R9 293 FOR X=l TO N 294 LET B=<R<X>**<X>>'2 295 LET C=<B<X>-*»<X)>/2 296 LET B(X)-8 297 LET C<X>»C 298 NEXT X 388 LET D9=<C9+99>'2 381 LET D8»CB9-C9>/2 318 LET H3=H3*1 311 IF H3=H2 GOTO 9999 312 LET F1=H3 313 GOSUB 499 314 FID F 2 . I . 0 9 , 0 , 0 , R * , 0 , 0 , 0 . 0 , 0 , W 6 , L 5 , L 6 328 GOSUB 429 321 LET R5-R9-D9 322 LET re>IMT<D»*>1999«»*«9>'199 323 FOR X=l TO M 324 LET B=IHT<<W<X>-B<X>)»1D999> nS>/199 325 LET ft(X)-6 326 LET C= iHT<C<X) »1999«VtW>/ - t «9 327 LET T<X>-C 328 NEXT X 358 GOTO 599 499 READ R1,R2.R9,S 481 DRTR 9 . 9 , 9 . 9 482 RESTORE 495 GET F1.F2.E 486 IF E=8 G0TO411 156 486 IF E=« G0T0411 489 PRIHT 0M<F*>."6ET ERR--;E»"TRPE « - -*;F1 418 G0T09999 411 RETURN 428 LET S»S*1 421 GSLICE F2.S.B<S>,T<S> 422 IF A(S>>8 G0T0428 425 ERASE F2.E 426 IF E=8 GOTO 429 427 PRIMT OH<F*>"ERASE ERA--;E. * F I L E * - " ; F 2 , 'FROM TAPC»* ;F I 428 GOT099-J9 429 LET S«S-1 438 LET B1=*A<1> 431 LET R2»A<S> 432 FOR X=l TO S 433 LET R9-A9*A<X> 434 HEXT X 448 REM) R.B.CX 441 DftTR 8.8,8,8 442 RESTORE 443 FOR J=l TO <H-1> 444 LET X=X*1 145 IF T(X)>=R<J) G0T0432 458 LET R»A<X>*A 451 GOT0444 452 LET R»<R<J>-T<X-l>>x<T<X>-T<X-l>> 453 LET B>R*A<X> 454 LET R(J>-A*e+C 455 LET «=-* 456 LET C=<B^»)»<1-R) 457 HEXT J 458 FOR J=l TO <M-1> 459 LET I M W H J ) 468 NEXT J 465 LET B<H>»4»»-fl 478 RETURN 588 PRINT ON<F*> 581 PRINT 0N<F*>*1ST BA5E-";B*; */1-ST BASE--;c*: *'SAMPLE-*;A* 583 PRIHT OH<F»> ni'.MST BA5E*.-LST BASE* > "SAMPLE AREAS* 584 PRIHT 0H<F»>*FIRST" ,B1.C1 .A1 585 PRIHT 0N<F»>"LRST*.B2.C2 .R2 586 PRINT 0M<F»>*T0TAL",B9»C9»A9 587 PRINT 0M<F»>"1ST SLICE*, L I . L 3 » L 5 ;* MIN* 588 PRINT OH<F»)*LST SLICE*.L2.L4 . L 6 ; * MIH* 589 PRINT 0M<F»"WIDTM*.W2.W4,M6;* SECS* 518 PRIHT OH<F»>" : * 528 PRINT OM<F»>,"TOTAL AREA-*;A»;•••-» ;05;*X* 521 PRINT ON<F*> 522 PRIHT OM<F» , "WllW>OM" , "AREAK". -+/-X TOTAL AREA" 523 FOR J=l TO H 524 PRIHT OM<F» ) .J .A<J>.T<J) 525 HEXT J 53? FOR B=-I TO 18 531 PRIHT OH<F«> 532 NEXT B 548 G0T031S 9999 EHO OK 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0058908/manifest

Comment

Related Items