UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Oxygen transfer in a fermenter Liu, Ming-Shen 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1974_A1 L59.pdf [ 13.58MB ]
Metadata
JSON: 831-1.0058864.json
JSON-LD: 831-1.0058864-ld.json
RDF/XML (Pretty): 831-1.0058864-rdf.xml
RDF/JSON: 831-1.0058864-rdf.json
Turtle: 831-1.0058864-turtle.txt
N-Triples: 831-1.0058864-rdf-ntriples.txt
Original Record: 831-1.0058864-source.json
Full Text
831-1.0058864-fulltext.txt
Citation
831-1.0058864.ris

Full Text

OXYGEN TRANSFER IN A FERMENTER by Mlng-Shen L i u D i p l . T a i p e i I n s t i t u t e of Technology, Taiwan, 1963 B.A.Sc. Shizuoka U n i v e r s i t y , Japan, 1966 M.A.Sc. U n i v e r s i t y of B r i t i s h Columbia, 1969 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of Chemical Engineering accept t h i s t h e s i s as conforming tio the r e q u i r e d standard The U n i v e r s i t y of B r i t i s h Columbia December, 1973 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r equ i r emen t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y pu rposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . It i s u n d e r s t o o d tha t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l owed w i thou t my w r i t t e n p e r m i s s i o n . Department The U n i v e r s i t y o f B r i t i s h Co lumbia Vancouver 8, Canada ABSTRACT The e f f e c t s of i n i t i a l pH and the presence of s o l i d p a r t i c l e s on the growth rate of T h i o b a c i l l u s ferrooxidans were studied i n shake-flask apparatus. In a d d i t i o n , the e f f e c t of the ferrous i r o n substrate concentration on the s p e c i f i c growth rate of the b a c t e r i a was studied using both batch and continuous culture techniques. The e f f e c t s of oxygen tension on the oxygen uptake rate of the b a c t e r i a were also examined. The c r i t i c a l oxygen tension and the sa t u r a t i o n constant were found to be 6.5 and 4.5 mmHg r e s p e c t i v e l y . When the oxygen tension was below 4.5 rniriHg the b a c t e r i a ceased t h e i r metabolic a c t i v i t y . The equation that best described the oxygen uptake a c t i v i t y of T_. ferrooxidans was found to be, P - P 0 0 P = y * K s p + (P - P J A method f o r determining the saturation oxygen s o l u b i l i t y i n the cu l t u r e medium i s proposed. This value i n 9K medium was found to be 6.68 milligrams per l i t e r (in e q u i l i b r i u m with the humid a i r at 35C). The e f f e c t of t o t a l i r o n concentration on t h i s value was also examined. A s t a t i s t i c a l curve r e c t i f i c a t i o n method f o r c a l c u l a t i n g Kj^a values from a dissolved oxygen concentration-time trace i s proposed. Since the proposed method u t i l i z e s data d i r e c t l y from oxygen tension-time traces rather than from modified or l i m i t e d data, i t i s believed to be more r e l i a b l e than other techniques i n use. The e f f e c t s of s o l i d pulp d e n s i t i e s of up to 20% on Kj_a i n - i i -an agitated tank were studied. An increase i n s o l i d pulp density was found to decrease s l i g h t l y the K^a value of the system. The equation best c o r r e l a t i n g Kj_a values under various operational conditions i s , K La = 1.78 x 1 0 " 6 ( p ) " 2 ' 8 t t ( N ) 2 - 6 5 ( V s ) 0 - 5 7 The addition of the s o l i d p a r t i c l e s , although i t d i d not a f f e c t the value, was found to reduce the i n t e r f a c i a l area of the system, thus reducing the value of Kj^a. - i i i -TABLE OF CONTENTS CHAPTER 1 INTRODUCTION 1 CHAPTER 2 THEORY 4 A. BASIC EQUATIONS 4 B. BOUNDARY CONDITIONS 5 C. PHYSICAL ABSORPTION 6 1. F i l m Model 6 2. Penetration Model 7 3. Surface Renewal Model 8 D. SIMULTANEOUS DIFFUSION AND REACTION 9 1. General Solution 9 2. Slow Reaction Regime 11 a. K i n e t i c Regime 11 b. D i f f u s i o n a l Regime 13 3. Fast Reaction Regime 14 E. RATE OF BIOLOGICAL REACTION 16 F. BATCH AND CONTINUOUS CULTURE 19 1. Batch Culture 19 2. Continuous Culture 21 CHAPTER 3 THE BACTERIUM 22 A. MORPHOLOGY 22 B. GROWTH MEDIA . 23 C. BIOLOGICAL REACTIONS 23 D. FACTORS AFFECTING BACTERIAL GROWTH 27 1. Dissolved Gas Concentrations 27 2. Temperature 28 3. pH Value 28 4. Other Factors 2 ^ _ i v _ TABLE OF CONTENTS (CONT'D) CHAPTER 4 OXYGEN TRANSFER 30 A. OXYGEN TRANSFER COEFFICIENT 30 B. K La DETERMINATION 30 1. S u l f i t e Oxidation Method 30 2. Gassing-Out Method 33 3. Dynamic Gassing-Out Method 35 4. Oxygen Balance Method 37 C. SATURATION OXYGEN SOLUBILITY 38 D. ' INTERFACIAL AREA 40 E. MASS TRANSFER COEFFICIENT (K L) 41 F. OTHER FACTORS AFFECTING K La 42 1. Impeller 42 2. Spargers 43 3. Baffles 43 4. Liquid Height 43 5. Power Input 44 6. S o l i d P a r t i c l e s 45 CHAPTER 5 APPARATUS 47 A. GYRATORY SHAKER APPARATUS 47 B. , CONTINUOUS CULTURE APPARATUS 47 1. Reactor 47 2. Mercury Seal 49 3. Agitator 49 4. Water Bath 50 -v-TABLE OF CONTENTS (CONT'D) 5. A i r Supply 50 6. Medium Supply 50 C. TANK REACTOR . 51 1. Reactor 51 2. Agitator . 51 3. Torquometer 52 4. Drive 52 5. Oxygen Analyzer 53 6. Erlenmeyer Flask 53 7. Respirometer 54 8. Temperature Controller 54 CHAPTER 6 PROCEDURES 57 A. ANALYTICAL METHODS 57 1. Total Iron 57 2. F e r r i c Iron 57 3. Ferrous Iron 57 4. Inorganic and Organic Carbon 57 B. MAINTENANCE OF CULTURE 58 C. PREPARATION OF MEDIUM 58 D. SHAKE-FLASK TECHNIQUE 59 E. CONTINUOUS CULTURE TECHNIQUE 60 F. TANK CULTURE TECHNIQUE 61 1. Saturation Oxygen S o l u b i l i t i e s 61 2. Effect of Solid Pulp Densities on K L 63 3. K La i n the Sparged Tank 64 _ v i _ TABLE OF CONTENTS (CONT'D) G. RECTIFICATION METHOD FOR CALCULATION OF K La 65 CHAPTER 7 RESULTS AND DISCUSSIONS 74 A. EFFECT OF INITIAL pH ON THE SPECIFIC GROWTH RATE 74 B. EFFECT OF SOLIDS PULP DENSITY ON GROWTH IN SHAKE FLASKS 79 C. EFFECT OF NUTRIENTS ON GROWTH IN SHAKE FLASKS 81 D. EFFECT OF FERROUS IRON CONCENTRATION 81 E. OXYGEN UPTAKE RATE AND CARBON FIXATION 87 F. SATURATION OXYGEN SOLUBILITIES 92 G. CRITICAL OXYGEN TENSION 100 H. EFFECT OF SOLID PULP DENSITIES ON K L 104 1. The K i n e t i c Regime 105 2. The D i f f u s i o n a l Regime 108 3. The P h y s i c a l Absorption Regime I l l I. EFFECT OF SOLID PULP DENSITY ON K La IN TANK FERMENTOR .. H I J . THE POWER CONSUMPTION 122 K. RECTIFICATION METHOD 124 1. About rX = Constant 124 2. About the Constancy of K L 125 L. e ADVANTAGES OF THE PROPOSED RECTIFICATION METHOD 126 CHAPTER 8 CONCLUSIONS 132 LITERATURE 136 NOMENCLATURE 146 - v i i -TABLE OF CONTENTS (CONT'D) APPENDICES 149 I The E f f e c t of I n i t i a l pH on the S p e c i f i c Growth Rate of T_. f e r r o o x i d a n s 149 I I E f f e c t of S o l i d Pulp D e n s i t i e s ' on the Growth Rate of T_. fe r r o o x i d a n s i n Shake-Flask Experiments 150 I I I The E f f e c t of Bas a l S a l t s , and T o t a l I r o n Concentration on the Growth of T_. fe r r o o x i d a n s 151 IV The Dependency of Growth Rate on the Ferrous I r o n Concentrations 154 V The Dependency of Growth Rate on the Ferrous I r o n C o n c e n t r a t i o n Obtained w i t h the Continuous C u l t u r e Apparatus Operated at 35 C 157 VI The R e l a t i o n s h i p between F e r r i c I r o n P r o d u c t i o n , B a c t e r i a l Carbon P r o d u c t i o n and Oxygen Uptake Rate i n the Aerated Tank Reactor at 35 C, pH = 1.80 .. 160 V I I Determination of S a t u r a t i o n Oxygen S o l u b i l i t i e s 161 V I I I K gp and K g c Values at Various Oxygen Uptake Rates i n 9K Medium 164 IX The E f f e c t of S o l i d Pulp D e n s i t i e s on K L 166 X Computer Program f o r R e c t i f i c a t i o n Method 168 XI Kj_a and Oxygen Concentration-Time Trace at Various O p e r a t i o n a l C o n d i t i o n s 171 - v i i i -LIST OF TABLES Table 1 The Composition of Various Growth Media f o r T h i o b a c i l l u s f e r r o o x i d a n s 24 Table 2 The Maximum S p e c i f i c Growth Rate of T h i o b a c i l l u s ferrooxidans as a Fu n c t i o n of I n i t i a l and E q u i l i b r i u m pH 76 Table 3 E f f e c t of Ba s a l S a l t s and T o t a l I r o n Concentrations on the Maximum S p e c i f i c Growth Rate of T_. f e r r o o x i d a n s i n H o u r - 1 , i n a CO2 Enriched Atmosphere, at 35 C and pH = 1.80 . 82 Table 4 Maximum S p e c i f i c Growth Rate and K g of T_. fe r r o o x i d a n s Determined by Batch and Continuous C u l t u r e Techniques 86 Table 5 S o l u b i l i t y of Oxygen i n E l e c t r o l y t e s 99 Table 6 K^a Values at Various O p e r a t i o n a l C o n d i t i o n s ; S o l i d Pulp Density = 0% and Oxygen Uptake Rate = 0 113 Table 7 Kj-a Values a t Various O p e r a t i o n a l C o n d i t i o n s ; S o l i d Pulp Density = 0% and Oxygen Uptake Rate = 0 <v< 207 mg/l/hr 114 Table 8 Kj^a Values at Various O p e r a t i o n a l C o n d i t i o n s ; S o l i d Pulp Density = 20%, P a r t i c l e Diameter = 63 u, and Oxygen Uptake Rate = 0 mg/l/hr 115 Table 9 B^a Values a t Various O p e r a t i o n a l C o n d i t i o n s ; S o l i d Pulp Density = 20%, P a r t i c l e Diameter = 105 y, and Oxygen Uptake Rate = 0 mg/l/hr 116 - i x -LIST OF TABLES (CONT'D) Table 10 K^a Values at Various Operational Conditions; S o l i d Pulp Density = 5%, P a r t i c l e Diameter = 63u, and Oxygen Uptake Rate = 0 ^ 140 mg/l/hr 117 Table 11 Kj-a Values at Various Operational Conditions; S o l i d Pulp Density = 10%, P a r t i c l e Diameter = 63u, and Oxygen Uptake rate = 0 ^ 212 mg/l/hr 118 Table 12 K^a Values at Various Operational Conditions; S o l i d Pulp Density = 15%, P a r t i c l e Diameter = 63p, and Oxygen Uptake Rate = 15 ^ 202 mg/l/hr 119 Table 13 The Comparison of Calculated and Experimental Values of Oxygen Uptake Rate 130 -x-LIST OF FIGURES Figure 1 Typical Plot of Equation (68) 36 Figure 2 Flowsheet of Continuous Culture Apparatus 48 Figure 3 Schematic Diagram of the Modified Erlenmeyer Flask 55 Figure 4 A Typical Relationship between R-square and a Values 71 Figure 5 The Effect of I n i t i a l pH on the Specific Growth Rate of T_. ferrooxidans at 35C 75 Figure 6 S o l u b i l i t y of F e r r i c Iron i n 9K Medium at Various F i n a l pH Values 77 Figure 7 Effect of Solids Pulp Density on the Growth Rate of T_. ferrooxidans i n Shake-Flask Experiments at 35C, pH = 1.80 80 Figure 8 The Lineweaver and Burk Plot for Shake-Flask Studies 84 Figure 9 The Lineweaver and Burk Plot for Continuous Culture Apparatus 85 Figure 10 The Relationship between F e r r i c Iron Production, B a c t e r i a l Carbon and the Oxygen Uptake Rate i n Aerated Tank Reactor at 35C, pH = 1.80 89 .-Figure 11 The Rates of Oxygen Tension Change Measured i n the Erlenmeyer Flask 93 Figure 12 Oxygen Uptake Rates Measured i n the Gilsbn Respirometer 94 - x i -LIST OF FIGURES (CONT'D) Figure 13 The Determination of C* i n Medium 9K 95 Figure 14 The Determination of C* i n Medium 4.5K 96 Figure 15 The Deteraination of C* i n Medium 13.5K 97 Figure 16 The Determination of C* i n Medium 18K 98 Figure 17 Determination of K Sp Values 101 Figure 18 The Lineweaver and Burk Plot 103 Figure 19 The K i n e t i c , D i f f u s i o n a l and Physical Absorption Regime (35 C and 500 RPM) 106 Figure 20 The K i n e t i c Regime for Zero Order Reaction (35 C and 500 RPM) , 107 Figure 21 Effect of Agitation Speed on K La (35 C, Without Solids) 109 Figure 22 Effect of Solid Pulp Density on K La 110 Figure 23 The Power Consumption with and without Glass Beads 123 Figure 24 A Typical Oxygen Concentration-Time Trace 127 - x i i -ACKNOWLEDGEMENTS I wish to express my sincere gratitude to Dr. D. W. Duncan of the D i v i s i o n of Applied Biology of B. C. Research, and Dr. R. M. R. Branion of the Department of Chemical Engineering of the U n i v e r s i t y of B r i t i s h Columbia f o r t h e i r continued, guidance and encouragment throughout the course of t h i s study. Al s o , I wish to thank B. C. Research f o r providing the working f a c i l i t i e s and equipment, and the Department of the Environment, Government of Canada, f o r providing f i n a n c i a l support through the Water Resources Research Support Program. A s p e c i a l gratitude i s to my wife, Jane, to whose endless patience, understanding and encouragement I am indebted. CHAPTER 1 INTRODUCTION There are two major objectives involved i n the study of oxygen tr a n s f e r to an aerobic fermentation - determination of the oxygen demand of the b i o l o g i c a l system and determination or p r e d i c t i o n of the a b i l i t y of the equipment to supply t h i s demand. The oxygen demand of the b i o l o g i c a l system depends oh many f a c t o r s ; such as, temperature, pressure, substrate concentrations, and d i s s o l v e d oxygen concentration i n the system. Among these the e f f e c t of the dissolv e d oxygen concentration, although one of the most important f a c t o r s i n the f i e l d , i s s t i l l not completely understood. Dissolved oxygen concentration exerts i t s e f f e c t on b a c t e r i a l c e l l s i n many ways. When i t f a l l s below a c e r t a i n c r i t i c a l l e v e l i t w i l l a f f e c t the metabolic a c t i v i t y of the c e l l s . However, too high a concentration i n many cases i s not only wasteful but sometimes also harmful. Thus knowledge concerning the e f f e c t s of disso l v e d oxygen concentration on the m i c r o b i a l c e l l s i s e s s e n t i a l to a suc c e s s f u l fermentation operation. On the other hand, a q u a n t i t a t i v e evaluation of the a b i l i t y of a laboratory s c a l e fermenter to supply oxygen i s u s u a l l y necessary before a f u l l scale i n d u s t r i a l production unit i s designed. In the past, t h i s was often done by means of the w e l l known, s u l f i t e - o x i d a t i o n technique. However, great d i f f e r e n c e s between the p h y s i c a l and chemical p r o p e r t i e s of the s u l f i t e s o lutions and fermentation broths l e d to much confusion; the r e s u l t s from the technique were often v a r i e d and contradictory, and r a i s e d more questions than answers. The study of oxygen transf e r i n an a c t u a l fermentation system although i t eliminated the - 2 -above mentioned disadvantages, was discouraged due to many t e c h n i c a l d i f f i c u l t i e s and complicated r e a c t i o n mechanisms even i n seemingly simple fermentations. In t h i s thesis study of oxygen tr a n s f e r i n t o t y p i c a l media fo r the c u l t u r e of T h i o b a c i l l u s ferrooxidans i s attempted. This system was chosen not only because i t s r e a c t i o n mechanisms are r e l a t i v e l y simple and rather w e l l known, but because i t has commercial importance i n the leaching of m e t a l l i c ores and i n the treatment of ferrous i r o n bearing waste waters. The s t e r i l i z a t i o n problems which often cause t e c h n i c a l d i f f i c u l t i e s i n other systems, are not of s i g n i f i c a n c e with t h i s system because of i t s extreme a c i d i t y (^pH 2 ) . Furthermore, the oxygen demand of t h i s organism was high enough that i t was b e l i e v e d that during the course of a batch fermentation sev e r a l d i f f e r e n t regimes of mass t r a n s f e r with chemical ( b i o l o g i c a l ) r e a c t i o n behaviour would be encompassed. The a c t i v i t i e s of J_. ferrooxidans have been studied since 1947. This bacterium can oxidize ferrous i r o n and reduced s u l f u r compounds, u t i l i z i n g the energy so derived f o r i t s l i f e processes. When m e t a l l i c s u l f i d e s are oxidized, the concommitant release of associated metals i n t o s o l u t i o n may be of considerable economic value. The bacterium i s cu r r e n t l y used commercially to recover copper from low-grade ores and i n d i r e c t l y , to s o l u b i l i z e uranium from p y r i t e -containing ores. I t s use f o r t r e a t i n g a c i d i c mine waters has also been studied. The object of t h i s work i s thus centered on q u a n t i t a t i v e studies of the e f f e c t s of dissolved oxygen concentration on the growth -3-of the b a c t e r i a i n an aerated fermenter. At the same time, the e f f e c t of the presence of s o l i d s i n the medium on the rate of oxygen tr a n s f e r i s examined so that the t r a n s f e r mechanism i n an ac t u a l m i c r o b i o l o g i c a l leaching system might be better understood. -4-CHAPTER 2 THEORY A. BASIC EQUATIONS The d i f f u s i o n of dissol v e d gas molecules through a l i q u i d r e s u l t s from random molecular motion under the influence of a concentration gradient. The basic equation describing the rate of d i f f u s i o n of a solute gas from a region of higher concentration to one of lower concentration i s Fick's f i r s t law. Thus the f l u x F a or net rate of t r a n s f e r of the solute gas across a unit area of a plane, perpendicular to the x-axis at a given moment i s , F a • -41 a> Generally concentration v a r i e s with time as w e l l as with space and when t h i s i s so d i f f u s i o n i s governed by Fi c k ' s second law. at D a ? r ( 2 ) Equation (2) i s f o r u n i - d i r e c t i o n a l d i f f u s i o n and can be derived v i a a d i f f e r e n t i a l material balance. When a re a c t i o n i s taking place i n a l i q u i d volume, the d i f f e r e n c e between the input and output rate i n such a material balance i s equal to the sum of the rate of accumulation and the rate of re a c t i o n . The d i f f e r e n t i a l equation f o r simultaneous d i f f u s i o n and reaction then i s , (3) -5-Equation (2) i s a s p e c i a l case of equation ( 3 ) , w i t h r(C) = 0. Both equation (2) and (3) can be s o l v e d subject to known boundary c o n d i t i o n s . B. BOUNDARY CONDITIONS The boundary c o n d i t i o n s which s p e c i f y the circumstances i n a system of simultaneous d i f f u s i o n and r e a c t i o n are given below: 1. The s o l u t e gas i n i t i a l l y has a uniform c o n c e n t r a t i o n C Q, throughout the l i q u i d , i . e . , at t = 0, x > 0, C = C Q (4) 2. As soon as t h e gas i s brought i n t o contact w i t h the l i q u i d , the c o n c e n t r a t i o n at the g a s - l i q u i d i n t e r f a c e i s changed to i t s s a t u r a t i o n value C* and subsequently maintained at t h i s v a l u e , i . e . , at x = 0, t > 0, C = C* (5) 3. At d i s t a n c e s s u f f i c i e n t l y f a r from the i n t e r f a c e , the c o n c e n t r a t i o n remains unchanged, i . e . , as x CO 0 (6) 4. The r e a c t a n t , w i t h the i n i t i a l c o n c e n t r a t i o n of B, O' i s non-v o l a t i l e and thus does not cross the i n t e r f a c e , i . e at x = = 0 -6-(7) The only exception to t h i s a r i s e s i f the reactant i s evaporating or can react instantaneously on reaching the surface. C. PHYSICAL ABSORPTION When there i s no reaction of any kind taking place between the d i s s o l v e d gas and the l i q u i d , equation (2) holds. Some models to i l l u s t r a t e t h i s are as follows: 1. F i l m Model Lewis and Whitman (Ll) popularized t h i s concept i n describing the absorption of gases. They postulated that there i s a stagnant f i l m of thickness 6 through which a steady state d i f f u s i o n process takes place. The o v e r a l l concentration d r i v i n g force i s assumed to be e n t i r e l y used up by the d i f f u s i o n i n the f i l m . Hence, the t r a n s f e r rate of a solute gas through the f i l m i n the l i q u i d phase can be described by equation (1), F a = - D € > x = 0 = ! < C * - C o > (8) The t r a n s f e r c o e f f i c i e n t which i s defined as, R£ " fe »> i s thus proportional to ~r o - 7 -I t i s now r e a l i z e d t h a t we r a r e l y have hydrodynamic c o n d i t i o n s e q u i v a l e n t to stagnant f i l m s and p r a c t i c a l l y no experimental work has supported the expected d i r e c t p r o p o r t i o n a l i t y between K£ and D. Nev e r t h e l e s s , the f i l m theory can be used as a reasonable f i r s t guess i n most a b s o r p t i o n processes. i s made up of a v a r i e t y of s m a l l l i q u i d elements which are continuously brought up to the surface from the bulk of l i q u i d and c a r r i e d away from i t by the eddy motion of the l i q u i d phase i t s e l f . Each element, as long as i t stays on the s u r f a c e may be considered stagnant; and the c o n c e n t r a t i o n of the s o l u t e gas i n the element may be considered to be everywhere equal to the b u l k - l i q u i d c o n c e n t r a t i o n when the element i s brought to the su r f a c e . The mass t r a n s f e r to the elements can 'then be considered to be governed by a t r a n s i e n t d i f f u s i o n process. With boundary c o n d i t i o n s ( 4 ) , (5) and ( 6 ) , equation (2) can then be i n t e g r a t e d to g i v e , 2. P e n e t r a t i o n Model In 1935 Higbie (Hi) proposed that the g a s - l i q u i d i n t e r f a c e C = (C* - C 0) e r f c [| vTJt] + C D (10) The t o t a l a b s o r p t i o n f l u x i s then, x=o = 2(C* - C 0) / - £ (11) The r a t e of a b s o r p t i o n f o r an element decreases w i t h time assuming -8-that the l e n g t h of time t h a t each element remains i n contact w i t h the gas i s constant. 3. Surface Renewal Model Danckwerts (Dl) i n t r o d u c e d a m o d i f i e d p e n e t r a t i o n theory — s t which d e f i n e s se dt as the area of - s u r f a c e elements whose ages are between t and t + d t . The mass f l u x , F , a t the l i q u i d gas 3. i n t e r f a c e mentioned p r e v i o u s l y i s m u l t i p l i e d by s e - s t d t to o b t a i n the r a t e of mass t r a n s f e r i n t o these t u r b u l e n t elements. The t o t a l r a t e of mass t r a n s f e r then becomes, = 2(C* - r — dt = (C* - C Q) Ss / t - s t (12) thus, K£=yfis" (13) Equation (13) i n d i c a t e s that the value of the K£ changes i n h p r o p o r t i o n to s , an i n c r e a s e of the value of s i m p l y i n g an i n c r e a s e i n t u r b u l e n t motion and v i c e v e r s a . The mass t r a n s f e r c o e f f i c i e n t has been p r e d i c t e d to depend on the molecular d i f f u s i v i t y to the f i r s t power f o r the f i l m theory, and to the one-half power f o r the p e n e t r a t i o n and s u r f a c e renewal t h e o r i e s . However, experimental data have shown t h i s dependency to be from h to 4/5 power of the d i f f u s i v i t y ( C l , F l , F2, H2). The - 9 -v a l i d i t y of the boundary c o n d i t i o n has a l s o been c r i t i c i z e d (C2) however, the proposed models are u s e f u l f o r a quick e s t i m a t i o n of the c o e f f i c i e n t i f an experimental value i s not a v a i l a b l e . D. SIMULTANEOUS DIFFUSION AND REACTION The r a t e of r e a c t i o n of a component can be w r i t t e n as, In g e n e r a l , the r a t e i s a f u n c t i o n of the c o n c e n t r a t i o n s of more than one component as w e l l as of the temperature and/or the pressure of the system. At constant temperature the r a t e of r e a c t i o n can be expressed as, * n v -dC r ( c ) " dT (14) r(c) = k C i C 2 C± (15) I f the c o n c e n t r a t i o n of one of the components i s so much l e s s than the others t h a t the concentrations of the l a t t e r are e f f e c t i v e l y unchanged d u r i n g r e a c t i o n , then equation (15) can be s i m p l i f i e d as, r f c ) = k C n (16) 1. General S o l u t i o n The mass t r a n s f e r r a t e of the component i n question i n the case of simultaneous d i f f u s i o n and r e a c t i o n can be evaluated by s u b s t i t u t i n g equation (16) i n t o d i f f e r e n t i a l equation ( 3 ) , D | ! c . | £ + k c 3x^ 8t n No general a n a l y t i c a l s o l u t i o n s of t h i s problem are known. I t has been solved f or the cases where n=o and n=l (D2). However, an approximate general s o l u t i o n to equation (17) based on the f i l m model, was presented by H i k i t a et a l . (H3). They defined-a dimensionless quantity M as, M = £ k C n . t (18) 2 n The square root of M was then used to assess an "enhancement f a c t o r " which was defined as the quantity by which the reaction increases the amount absorbed i n a given time, as compared to absorption without reactio n . However the enhancement f a c t o r r e l a t e s to VM~ i n such a complicated manner that the formula i s only of academic i n t e r e s t . There are two s p e c i a l cases where the s o l u t i o n of d i f f e r e n t i a l equation (17) can be obtained i n a much simpler form. Case 1 e x i s t s when the rate of r e a c t i o n i s extremely slow so that the term k C n i n J n equation (17) can be dropped i n comparison with the rest of the terms. This i s c a l l e d the regime of slow r e a c t i o n . Case 2 e x i s t s when the rate of reaction i s r e l a t i v e l y high 9C so that the term -r— i n equation (17) can be ignored r e l a t i v e to the o t remaining terms. This i s c a l l e d the regime of f a s t r e a c t i o n . Two parameters, d i f f u s i o n time and reaction time are used f o r judging the r e a c t i o n regime of the system. According to the penetration theory, the d i f f u s i o n time, t n , i s defined as the average -10-(17) -11-l i f e of the surface elements, t. D (19) D The re a c t i o n time, t r ' on the other hand, i s defined as, t = r C* - C' r ( C * - C ) (20) 2. Slow Reaction Regime If the d i f f u s i o n time i s much les s than the r e a c t i o n time then, i n e f f e c t , the re a c t i o n does not play any r o l e i n the mass t r a n s f e r rate process. The re a c t i o n time t r , i s the time required f or the reaction. I f the d i f f u s i o n time i s small and the r e a c t i o n rate, r ( C ) , i s small then during the d i f f u s i o n time period there i s not s u f f i c i e n t time a v a i l a b l e f or the re a c t i o n to have any s i g n i f i c a n t e f f e c t on the concentration of the d i f f u s i n g species. The r e a c t i o n i s s a i d to be i n the slow reaction regime i f , The slow reaction regime can be divided i n t o two sub-regimes; a k i n e t i c and a d i f f u s i o n a l regime. t » t r D (21) a. K i n e t i c Regime In the slow re a c t i o n regime, i f the following condition i s f u l f i l l e d , the r e a c t i o n i s said to be i n the k i n e t i c regime, -12-K^A (C* - C ) » Vr(C* - C ) (22) Perhaps i t should be mentioned here that the f u l f i l l m e n t of condition (22) does not n e c e s s a r i l y contradict the f u l f i l l m e n t of condition (21). Comparison of the two equations r e s u l t s i n equation (23), C* - C' V , „ v *D « r ( C * - C ) " ^ < 2 3 ) V The value of •- can be so arranged i n the system that condition (23) i s f u l f i l l e d , thus f u l f i l l i n g condition (22). Thus the rate of reaction becomes the r a t e - l i m i t i n g step of the process and the absorption rate w i l l be equal to the rate of re a c t i o n , F = T r ( C * - C ) (24) a A The t o t a l absorption rate then becomes, FT = V r ( C * - C*) ' (25) The o v e r a l l d r i v i n g force i s almost used up by the r e a c t i o n , c _ c' » C* - C (26) Thus, the l i q u i d phase i s almost saturated everywhere with the absorbed gas so, C * C* (27) - 1 3 -The t o t a l a b s o r p t i o n r a t e i n the k i n e t i c regime i s independent of i n t e r f a c i a l area and mass t r a n s f e r c o e f f i c i e n t , but i s p r o p o r t i o n a l to the l i q u i d h o l d up and the r a t e of r e a c t i o n . The dependency of the t o t a l a b s o r p t i o n r a t e on the l i q u i d h o l d up i s unique and can not be found i n other regimes of r e a c t i o n , thus making i t easy to i d e n t i f y the k i n e t i c regime. b. D i f f u s i o n a l Regime. I f the f o l l o w i n g c o n d i t i o n i s f u l f i l l e d the r e a c t i o n i s s a i d t o be i n the d i f f u s i o n a l regime, V r ( C * - C) » K^A (C* - C) (28) In t h i s case, the r e a c t i o n i s slow enough so as not to a f f e c t the c o n c e n t r a t i o n gradient i n the l i q u i d , y et i t i s h i g h enough to keep the d i s s o l v e d gas c o n c e n t r a t i o n p r a c t i c a l l y equal to C', because d i f f u s i o n i s the r a t e c o n t r o l l i n g step i n the whole process. The term r(C) i n d i f f e r e n t i a l equation (2) can be neglected i n comparison 8C w i t h the term - r — , thus, ot Equation (29) c o i n c i d e s w i t h equation (2). With the knowledge of boundary c o n d i t i o n s (4) to ( 6 ) , i n t e g r a t i o n of equation (29) produces, -14-(30) I t can be concluded that whatever the k i n e t i c s of the r e a c t i o n , the absorption c o e f f i c i e n t i s equal to the p h y s i c a l absorption c o e f f i c i e n t K£. Contrary to the k i n e t i c regime, the t o t a l absorption rate Is no longer dependent upon the rate of r e a c t i o n and the l i q u i d hold up, but i s dependent upon the i n t e r f a c i a l area, p h y s i c a l absorption c o e f f i c i e n t and o v e r a l l concentration d r i v i n g force, thus, Y = K£ A(C* - C ) (31) 3. Fast Reaction Regime When the rate of r e a c t i o n increases, the following condition i s f u l f i l l e d , t D » t r (32) 9C The term r(C) w i l l be much l a r g e r than the term — i n equation (3), o t The equation then becomes, D ' 0 - r C C ) (33) With the knowledge of the boundary conditions (4) to ( 7 ) , equation (33) can be integrated, -15-dC _ fl dx /D C* L r ( C ) dC (34) 'C o The instantaneous as w e l l as the average a b s o r p t i o n r a t e , which c o i n c i d e i n the s t e a d y - s t a t e p r o cess, can thus be obtained, F a - - - A JC* r(C) dC (35) x=o / C I t i s obvious that i f r(C) i s known as a f u n c t i o n of C, the a b s o r p t i o n r a t e can be d i r e c t l y c a l c u l a t e d according to equation (35). However, without a great l o s s of g e n e r a l i t y , equation (16) can be s u b s t i t u t e d i n t o equation (35) and i n t e g r a t e d , F a - /nik D k n < C * " ( 3 6 ) Since the t o t a l a b s o r p t i o n r a t e i s the product of the a b s o r p t i o n r a t e and t o t a l i n t e r f a c i a l a r e a , the t o t a l a b s o r p t i o n r a t e i s , 1. P r o p o r t i o n a l to the i n t e r f a c i a l area 2. P r o p o r t i o n a l to the square root of k^ 3. P r o p o r t i o n a l to the o v e r a l l d r i v i n g f o r c e r a i s e d t o the . (n + 1) exponent — ^ — • 4. Independent of l i q u i d hold up and K£. Except i n the case of f i r s t order r e a c t i o n , the a b s o r p t i o n r a t e i s no longer d i r e c t l y p r o p o r t i o n a l to the c o n c e n t r a t i o n d r i v i n g f o r c e (C* - C Q ) . The a b s o r p t i o n c o e f f i c i e n t which i s c a l c u l a t e d by d i v i d i n g the a b s o r p t i o n r a t e by the c o n c e n t r a t i o n d r i v i n g f o r c e i s now dependent -16-upon the concentration. The dissolved gas concentration i n the l i q u i d i s close to i t s c r i t i c a l l e v e l as i t was i n the case of d i f f u s i o n a l regime of slow r e a c t i o n . In the f a s t r eaction regime, however, the absorption rate does not depend upon the d i f f u s i o n time t ^ ; namely, on the hydrodynamic conditions of the l i q u i d phase. This very important conclusion i s the basis of a method f o r the measurement of i n t e r f a c i a l areas (Dl, Wl). E. RATE OF BIOLOGICAL REACTION In a m i c r o b i o l o g i c a l oxidation r e a c t i o n where m moles of substrate react with oxygen to y i e l d n moles of product according to the formula, mS + 02 + n P r < 3 7) the rate of oxygen consumption i s d i r e c t l y .proportional to the rate of substrate consumption, the rate of c e l l production and the rate of product production, thus, ( \ dC _ 1 dX _ l d P r = IdS r t Q ~ " dt Y dt ndt " mdt <38> If the c e l l growth i s i n the logarithmic phase, the rate of c e l l production i s pro p o r t i o n a l to the number of c e l l s present i n the system at that moment, dX ^ = ^ X (39) -17-The p r o p o r t i o n a l i t y constant, u, i s c a l l e d the s p e c i f i c growth r a t e and represents the a b i l i t y of the c e l l to reproduce. I t i s s u b j e c t t o the i n f l u e n c e of s u b s t r a t e , oxygen, and product c o n c e n t r a t i o n s . I t i s a l s o a f f e c t e d by temperature and pH, among other f a c t o r s . The e f f e c t of s u b s t r a t e c o n c e n t r a t i o n on the s p e c i f i c growth r a t e of b a c t e r i a i s o f t e n d e s c r i b e d by the equation, (40) m K + S s An equation of t h i s form was d e r i v e d by M i c h a e l i s and Menten (Ml) during t h e i r s t u d i e s on enzyme k i n e t i c s , by assuming that the enzyme and s u b s t r a t e r e a c t to form an enzyme-substrate complex and then convert to a s i n g l e product, E + S ^ - E - S + E + P r (41) I t was a l s o assumed that the c o n c e n t r a t i o n of s u b s t r a t e was much higher than that of enzyme and the r a t e of conversion of enzyme-s u b s t r a t e complex to the product was the r a t e l i m i t i n g f a c t o r of the whole r e a c t i o n . Subsequently, t h i s equation was a p p l i e d by Monod (M2) to c u l t u r e s where the s o l e l i m i t i n g s u b s t r a t e was glucose or some s i m i l a r source of carbon. Continuous c u l t u r e experiments have shown that equation (40) a l s o a p p l i e d to such e s s e n t i a l s u b s t r a t e s as amino a c i d s , i n o r g a n i c n i t r o g e n , phosphate, s u l f a t e (NI) and oxygen (L2). In the case of oxygen, S i n equation (40) can be r e p l a c e d by d i s s o l v e d oxygen c o n c e n t r a t i o n or d i s s o l v e d oxygen t e n s i o n . -18-y = y m K + C sc or (42) u = y r- (43) m K + P sp The value of Kgp i s equal to the oxygen tension when the reaction proceeds at one-half the maximum rate. There are many methods of determining KSp. One of the most commonly used, which was suggested by Lineweaver and Burk (L3) , depends on the re-arrangement of equation (43) to give the following form, 3, . J L " + fffi_ (44) v % V A plot of versus ^. gives a straight line. The intercept of the l 1 ^sp line on the ^  axis i s ±— and the slope i s Thus, K can be V u Urn SP calculated from the slope and the intercept. Since the oxygen tension i s directly proportional to the dissolved oxygen concentration, K g c can easily be obtained by dividing by the Henry's Law constant. Now the relationship between the rate of biological reaction and dissolved oxygen concentration can be obtained by substituting equation (39) and (42) into equation (38). r ( c ) - - r ( F - ^ > * < « ) sc I f the d i s s o l v e d oxygen c o n c e n t r a t i o n i s so high that the term K + C SO can be regarded as equal to C, then equation (45) s i m p l i f i e s t o , r(C). « —2 - (46) The r a t e of r e a c t i o n i n t h i s case i s s a i d to be zero-order w i t h respect to C, that i s to say, at high oxygen concentrations the r a t e of b i o l o g i c a l r e a c t i o n remains constant at i t s maximum r e g a r d l e s s of the oxygen c o n c e n t r a t i o n . The r a t e of r e a c t i o n c o i n c i d e s w i t h the zero-order r e a c t i o n r a t e constant and i s d i r e c t l y p r o p o r t i o n a l to X. As the r e a c t i o n proceeds, the number of b a c t e r i a i n c r e a s e s and so does the r a t e of r e a c t i o n . On the other hand, i f C i s much l e s s than K so tha t sc K + C - K , equation (45) can again be s i m p l i f i e d , , , X m (47) sc The r a t e of b i o l o g i c a l r e a c t i o n thus becomes f i r s t order w i t h respect to C. F. BATCH AND CONTINUOUS CULTURE The k i n e t i c s of a b i o l o g i c a l r e a c t i o n can be st u d i e d by e i t h e r batch c u l t u r e or continuous c u l t u r e techniques; 1. Batch C u l t u r e Under batch c u l t u r e c o n d i t i o n s , the conce n t r a t i o n s of n u t r i e n t s -20-and d i s s o l v e d oxygen are changing w i t h time. I f the c o n c e n t r a t i o n of the l i m i t i n g s u b s t r a t e i s high enough, then u = u m , a constant. Then i f the y i e l d of b a c t e r i a i s assumed t o be constant, the i n t e g r a t i o n of equation (38) and (39) becomes p o s s i b l e , l n X = l n X Q + u m t (48) or l n [- ( P r - P r o ) + ^ ] = In ^  + u m t ( 4 9 ) ^ r — ^ r o ^o P l o t s of l n X versus t and I n ( 1- — ) versus t are both l i n e a r . However, i f the s i z e of inoculum i s s m a l l , i . e . X c and P r o are both s m a l l , then the p l o t of l n (P r) versus t a l s o gives a s t r a i g h t l i n e w i t h i t s slope equal to the s p e c i f i c growth r a t e . Under c o n d i t i o n s of l i m i t i n g n u t r i e n t , p i s a f u n c t i o n of the c o n c e n t r a t i o n of t h i s l i m i t i n g n u t r i e n t and hence i s not constant, equation (39) can no longer be i n t e g r a t e d . However, s u b s t i t u t i n g equation (38) i n t o (39) g i v e s , dP dt Y Again, i f X Q i s s m a l l , equation (50) can be s i m p l i f i e d t o , -21-The s p e c i f i c growth r a t e can be c a l c u l a t e d at every known s u b s t r a t e c o n c e n t r a t i o n , thus the f u n c t i o n of u = f ( S ) can be determined. Cont inuous C u l t u r e I f the n u t r i e n t s are pumped i n t o a s i n g l e - s t a g e , cont inuous f l o w , p e r f e c t l y mixed tank r e a c t o r , and i f the i n l e t s t ream i s f r e e of c e l l s , a mass ba lance on X , and S can be expressed as f o l l o w s ; | f - (y - •) X (52) f - (S G - S)* - B± (53) where <t> i s d i l u t i o n r a t e . At s t e a d y - s t a t e , equat ions (52) and (53) reduce t o , u = <f> (54) Y = ^ L _ (55) o Hence, under s t eady-s ta te c o n d i t i o n s , the s p e c i f i c growth r a t e , u i s equa l t o the d i l u t i o n r a t e <{>, o r the r e c i p r o c a l of the mean h o l d i n g t ime . The f u n c t i o n u = f ( S ) can e a s i l y be determined by m o n i t o r i n g the f l ow r a t e of the medium and the subs t r a t e concen t r a t i on i n the r e a c t o r . -22-CHAPTER 3 THE BACTERIUM A. MORPHOLOGY In 1947, Colmer e_t a l . (C3) i s o l a t e d the organism T h i o b a c i l l u s f e r r o o x i d a n s from a c i d i c mine water and showed that i t was r e s p o n s i b l e f o r the o x i d a t i o n of s u l f u r compounds contained i n c o a l to form s u l f u r i c a c i d . Subsequently Colmer et a l . (C4) , Leathen et a l . (L4) , Silverman et_ a l . (SI) and Lundgren et a l . (L5) report e d on the morphology of T_. f e r r o o x i d a n s . I t i s a m o t i l e , non spore-forming, gram-negative, rod-shaped organism which occurs s i n g l y or o c c a s i o n a l l y i n p a i r s . In n a t u r a l mine water i t ranges i n s i z e from 0.4 u by 0.8 t o 1.0 u, but i n Na 2S 203 b r o t h i t appears t o be l a r g e r . The bacterium was found to be an o b l i g a t e chemoautotroph capable of o x i d i z i n g f e r r o u s i r o n . I t s c a p a b i l i t y f o r o x i d i z i n g elemental s u l f u r ( U l , L6, M3, S2) and v a r i o u s s u l f u r compounds such as t h i o s u l f a t e ( U l , S2), t e t r a t h i o n a t e (S2, L6, S3), s u l f i d e , s u l f i t e and d i t h i o n i t e (S2) was a l s o confirmed. A n a l y s i s of dry b a c t e r i a l c e l l s showed that they contained about 44% p r o t e i n , 26% l i p i d , 15% carbohydrate and 10% ash (L5). The elemental a n a l y s i s of the d r i e d organisms showed them to c o n t a i n (W/V) : 47.50% carbon, 14.88% n i t r o g e n , and 7.59% hydrogen, and 4 x 1 0 1 2 organisms were e q u i v a l e n t to one gram dry weight ( T l ) . A c e l l n i t r o g e n l e v e l of 0.191 m i l l i g r a m s per 1 0 1 0 c e l l s was repor t e d by Silverman et_ a l . ( S I ) , whereas a value of only 0.033 mg c e l l N/10 1 0 c e l l s was reported by Beck et a l . ( B I ) . However a y i e l d value of 3.9 x 1 0 1 0 organism/g F e 2 + was report e d by Tuovinen et a l . ( T l ) , 3.7 x 1 0 1 0 / g F e 2 + was reported by MacDonald et a l . (M6), and 5.0 x 1 0 1 0 / g F e 2 + was -23-reported e a r l i e r by Tuovinen et_ a l . (T2) . B. GROWTH MEDIA In 1956, Leathen et a l . (L4, L5) developed both l i q u i d and s o l i d media f o r the growth of T_. f e r r o o x i d a n s . They reported t h a t a l i q u i d medium c o n t a i n i n g ammonium, potassium, magnesium, c a l c i u m , phosphate and up to 200 m i l l i g r a m s of f e r r o u s i r o n per l i t e r would support the growth of up to 7 x 10 6 c e l l s of J_. f e r r o o x i d a n s per m i l l i -l i t e r . Subsequently, Bryner et a l . (B2) claimed that the a d d i t i o n of some aluminum and manganese ions were a l s o necessary. T h e i r medium was able to o x i d i z e up t o 4000 m i l l i g r a m s of f e r r o u s i o n per l i t e r . The medium was l a t e r m o d i f i e d by Silverman et_ a l . ( S I ) . T h e i r 9K medium contained 9000. m i l l i g r a m s f e r r o u s i o n per l i t e r and would r e a d i l y support the growth of between 2 and 4 x 10 8 c e l l s of T, f e r r o o x i d a n s per l i t e r . They confirmed that f e r r o u s i r o n was the s o l e energy source i n the medium f o r b a c t e r i a l growth, and that once a l l the i r o n was o x i d i z e d growth ceased. They a l s o reported that p r o g r e s s i v e i n c r e a s e s i n the i n i t i a l f e r r o u s i r o n content i n t h e i r 9K medium f a i l e d to i n c r e a s e the f i n a l c e l l number, and that i n c r e a s i n g the c o n c e n t r a t i o n of potassium, n i t r a t e , ammonium or magnesium over the l e v e l s present i n the b a s a l s a l t s of 9K medium had no e f f e c t on the b a c t e r i a l growth. The compositions of Leathen's, Bryner's and Silverman's media are l i s t e d i n Table 1. C. BIOLOGICAL REACTIONS Ferrous s u l f a t e can be o x i d i z e d by T_. f e r r o o x i d a n s to f e r r i c -24-TABLE 1 THE COMPOSITION OF VARIOUS GROWTH MEDIA FOR THIOBACILLUS FERROOXIDANS Components Leathen et a l . ( L 4 ) ( i n grams) Bryner et al.(B2) ( i n grams) Silverman et a i . (SI) ( i n grams) (NH l t) 2S0 t t 0.05 1.0 3.0 Al 2(SO^) 3•I8H2O - 4.0 -KC1 0.05 0.05 0.1 MnS0 k«H 20 - 0.05 -K2HPOU 0.05 0.1 0.5 MgS0^7H 20 0.50 3.0 0.5 Ca(N0 3) 2 0.01 0.1 0.01 D i s t i l l e d Water to 1000 ml to 1000 ml to 700 ml lON^SO^ to pH = 3.5 to pH = 2.65 1.0 ml FeSO k«7H 20 to 200 mg/1 Fe+ 2 to 4000 mg/1 Fe+ 2 300 ml of 14.74% W/V s o l u t i o n -25-s u l f a t e i n the presence of s u l f u r i c a c i d and a i r according to equation, 4 FeS0 4 + 2 H 2S0 4 + 0 2 ->- 2 F e 2 ( S 0 4 ) 3 + 2 H^O (56) The b a c t e r i a catalyze the oxidation at rates 10 5 - 10 6 times f a s t e r than the rate of chemical oxidation at low pH values (L7). The r e a c t i o n i s exothermic; i t s free energy change i s pH dependent, amounting to approximately 7 Kcal per mole at pH = 2.0 (L8). F e r r i c s u l f a t e i s i n s o l u b l e at high pH values and hydrolyzes according to the equation, The s o l u b i l i t y product of f e r r i c hydroxide i s 1 0 - 3 6 (H4), which makes f e r r i c s u l f a t e p r a c t i c a l l y i n s o l u b l e at pH's above 2.5. However, the character of the p r e c i p i t a t e from an a c t u a l b i o l o g i c a l oxidation of ferrous s u l f a t e i s not quite the same as that of pure f e r r i c hydroxide (L8). I t has been shown that i n a b i o l o g i c a l oxidation, most of the i r o n would appear to be p r e c i p i t a t e d as basic f e r r i c s u l f a t e or j a r o s i t e , which does not r e d i s s o l v e i n response to simple pH adjustment (B3). F e 2 ( S 0 4 ) 3 + 6 H 20 2 Fe (0H) 3 + 3 H 2S0 (57) 3 Fe ( S 0 4 ) 3 + 14 H 20 -*• 2 (H 30)Fe 3 ( S O ^ (0H) f i + 5 H 2S0 4 (58) The usual j a r o s i t e p r e c i p i t a t e i s a yellow-brown colour as opposed to the rust-red f e r r i c hydroxide p r e c i p i t a t e . However, the colour v a r i e s i n response to the c a t i o n s that are present. The j a r o s i t e s a l t s of K , Na , NHL,, and H3O i o n s , a l l of which are present i n 9K medium, form r e a d i l y r e g a r d l e s s of the pH value of the system. Potassium j a r o s i t e forms f i r s t , f o l l o w e d by n a t r i o and ammonio j a r o s i t e , i n t hat order ( P I ) . Thus, the b i o l o g i c a l o x i d a t i o n of f e r r o u s s u l f a t e according to r e a c t i o n (56) consumes s u l f u r i c a c i d which w i l l g r a d u a l l y r a i s e the pH value as f e r r i c s u l f a t e i s produced. On the other hand, the p r e c i p i t a t i o n of b a s i c f e r r i c s u l f a t e according to r e a c t i o n (58) r e s u l t s i n the pr o d u c t i o n of s u l f u r i c a c i d , thus s t a b i l i z i n g the pH values of the whole system. The o v e r a l l r e a c t i o n can be w r i t t e n as, 20 FeSO^ + 18 H 20 + 5 0^ •+ A F e 2 ( S 0 4 ) 3 + 4 ( H 3 0 ) F e 3 ( S 0 4 ) 2 ( O H ) 6 <59) The b i o l o g i c a l o x i d a t i o n of f e r r o u s s u l f a t e was found to f o l l o w a M i c h a e l i s and Menten type r a t e equation (L9, M4). The r a t e of i r o n o x i d a t i o n and i n c r e a s e i n c e l l numbers, the r a t e of oxygen uptake (L9) and the r a t e of C 0 2 - f i x a t i o n ( S I , B4) by growing c e l l s were a l l p r o p o r t i o n a l to one another and so the f e r r o u s i r o n o x i d a t i o n r a t e could be used as an i n d i r e c t measure of b a c t e r i a l growth k i n e t i c s . The generation time of T_. f e r r o o x i d a n s has been reported to range from 3.5 to 15 hours (B4, M5, S4, L7); the s a t u r a t i o n constant f o r f e r r o u s i r o n c o n c e n t r a t i o n has been found to range from 0.4 to 2.0 grams per l i t e r (L7, M6). The y i e l d of b a c t e r i a c a l c u l a t e d from the v a r i o u s r e p o r t s ranged from 0.2 to 0.3 grams dry weight per mole of f e r r o u s i r o n o x i d i z e d (S4, B4, M7, Y l ) . -27-D. FACTORS AFFECTING BACTERIAL GROWTH The r a t e of growth of T_. f e r r o o x i d a n s , l i k e other b a c t e r i a , depends s t r o n g l y on temperature and pH. However, d i s s o l v e d gas concentrations such as oxygen and carbon d i o x i d e , and the presence of substances other than the e s s e n t i a l n u t r i e n t s a l s o have a marked i n f l u e n c e on i t s growth. 1. D i s s o l v e d Gas Concentration Few q u a n t i t a t i v e s t u d i e s concerning the e f f e c t of d i s s o l v e d oxygen and carbon d i o x i d e on the growth of T_. ferr o o x i d a n s have been re p o r t e d , i n s p i t e of the f a c t that such i n f o r m a t i o n i s important f o r the design of l a r g e s c a l e l e a c h i n g o p e r a t i o n s . Oxygen uptake r a t e s of between 2027 and 22,500 y l 02/hr/mg c e l l n i t r o g e n have been reported (KI, L6, S4) . During c h a l c o p y r i t e l e a c h i n g experiments c a r r i e d out by B. C. Research i t was shown that maximum l e a c h i n g r a t e s occurred at 50 to 52% oxygen (v/v) i n the gas phase. Above t h i s l e v e l oxygen became t o x i c and when i t reached 65% no l e a c h i n g occurred (B3). Beck et a l . ( B l ) showed that a maximum CO2 f i x a t i o n of 1.8 y moles per 100 y moles oxygen consumed, f o r non-growing T_. f e r r o o x i d a n s , occurred at CO2 gas phase l e v e l s above 2.4% ( v / v ) , below that the e f f i c i e n c y was markedly reduced. Conversion of the r e s u l t s from Temple et_ a l . (T3) and Silverman e_t a l . (SI) showed CO2 f i x a t i o n e f f i c i e n c i e s of 1.24 and 7.76 y moles per 100 y moles oxygen r e s p e c t i v e l y . MacDonald ejt a l . (M6) showed that CO2 concentrations i n the range of 0.01 to 10% (v/v) d i d not a f f e c t the s p e c i f i c growth rat e of the -28-b a c t e r i a , w h i l e below 0.01% (v/v) the c e l l y i e l d decreased . More recent s t u d i e s c a r r i e d out by Torma e t al_. ( T 4 , T5) showed tha t a CO2 l e v e l of 0.23% (v/v) i n a i r i s s u f f i c i e n t to ensure a maximum l e a c h i n g r a t e of z i n c s u l f i d e concen t r a t e . Perhaps i t shou ld be mentioned tha t the percentages of oxygen and carbon d i o x i d e i n the gas phase are not n e c e s s a r i l y p r o p o r t i o n a l to the amounts of d i s s o l v e d gases i n the medium. The l a t t e r are more impor tant as f a r as b a c t e r i a l growth i s concerned. Thus, the r epo r t ed percentage of the gases i n the a i r i s not a p e r f e c t parameter to i n d i c a t e the s u f f i c i e n c y of the d i s s o l v e d gases i n the system. 2. Temperature The optimum temperature f o r the b i o l o g i c a l o x i d a t i o n o f f e r r ous s u l f a t e was found to be i n the range of 20 to 40°C ( K l , M6, L 4 , T4, L 6 , S4 ) . Complete i n h i b i t i o n of growth was r epor ted at temperatures above 40 'v 50°C or below 0°C (D3, M8) . 3. pH Value The optimum pH was r epor ted to be i n the range of 1.75 to 4.5 ( K l , L 6 , M6, S4 ) . On each s i d e of t h i s pH range the r a t e i s lower . The b a c t e r i a were s t i l l a c t i v e even at pH = 0 . 8 , whereas, complete i n h i b i t i o n of a c t i v i t y was r epor ted at pH = 6.0 (M8). 4. Other Factors Other f a c t o r s such as surface a c t i v e agents (D4), sunlight -29-(M8), and many organic materials (S5, T6) have been reported to a f f e c t the growth of T_. ferrooxidans. However many of these observations have not been confirmed. -30-CHAPTER 4 OXYGEN TRANSFER A. OXYGEN TRANSFER COEFFICIENT The rate of d i s s o l u t i o n of oxygen i s pro p o r t i o n a l to the depletion of dissol v e d oxygen i n the l i q u i d . This rate i s also p r o p o r t i o n a l to the i n t e r f a c i a l area, and therefore, one may write f o r a u n i t volume of culture f l u i d , rate of absorption, F v = k^a ( C ± - C Q) = Y^a (C* - C q) (60) The product of and a can be found i n d i r e c t l y through a knowledge of C* (by Henry's law), and CQ (by measurement) and the r a t e of absorption (by measurement) thus, V = c ^ c - ( 6 1 ) o K^a provides an o v e r a l l measure of the gas absorbing capacity of any fermentor. a DETERMINATION The most commonly used methods f o r determining K^a are the s u l f i t e oxidation method, the unsteady-state gassing-in method, the dynamic gassing-in method, and the oxygen balance method. 1. S u l f i t e O x i d a t i o n Method In 1944, Cooper et (C5) proposed a s u l f i t e o x i d a t i o n method f o r e v a l u a t i n g the performance of an a g i t a t e d tank r e a c t o r . -31-B a s i c a l l y , t h i s method i s s i m i l a r to the one which was presented by Miyamoto et a l . (M9, M10, M i l , M12) as e a r l y as 1922. The method depends on the oxidation of s u l f i t e to s u l f a t e by oxygen i n the presence of cupric or cobalt ion as a c a t a l y s t . According to the equation, S0 3 ~ + h 0 2 s q - (62) The amount of oxygen going i n t o s o l u t i o n during a known time i n t e r v a l can be c a l c u l a t e d , i f the amount of s u l f i t e converted to s u l f a t e i s determined. On the other hand, the amount of unreacted, disso l v e d oxygen i n the s o l u t i o n can be assumed to be zero, because the chemical reaction rate i s much f a s t e r than the rafe of oxygen t r a n s f e r . Therefore, K^a equals the rate of oxygen t r a n s f e r divided by the saturation oxygen concentration of the s o l u t i o n , V s f < 6 3 ) The method i s frequently used because of i t s s i m p l i c i t y ; the chemicals are e a s i l y a v a i l a b l e and cheap; the a n a l y t i c a l method i s simple and s u f f i c i e n t l y accurate; and the choice of a proper concentration of a c a t a l y s t and pH value of the s o l u t i o n make i t p o s s i b l e to change the rate constant of the reaction over quite a wide range. However, caution i s necessary i n using s u l f i t e oxidation values f or K^a f o r the purposes of s c a l i n g up fermentors. The k i n e t i c data of which there -32-i s a great deal presented i n the l i t e r a t u r e i s v a r i a b l e and even contradictory. F u l l e r e_t al_. (F3) made a very c a r e f u l study of the s u l f i t e -oxygen reaction. The uncatalyzed r e a c t i o n rate was found to be f i r s t order with respect to s u l f i t e . Westerterp et a l . (Wl), Cooper et a l . (C5), and L i u et a l . (L10) , found that the copper-catalyzed r e a c t i o n was zero order with respect to s u l f i t e concentration. Murphy e_t a l . (M13) found that the reaction rate of copper-catalyzed s u l f i t e s o lutions was strongly dependent on the t o t a l amount of s u l f i t e and s u l f a t e present, and not on the concentration of s u l f i t e alone. As f o r the e f f e c t of d i f f e r e n t c a t a l y s t s on the s u l f i t e -oxygen r e a c t i o n , cupric ion was generally found to be su i t a b l e to catalyze the reaction . But Robinson et a l . (RI) found that the copper-catalyzed r e a c t i o n rate was even slower than the non-catalyzed reacti o n . They recommended the use of a cobalt c a t a l y s t instead. The k i n e t i c s and mechanism of the reac t i o n have been extensively studied and mechanisms have been proposed by seve r a l i n v e s t i g a t o r s . Nevertheless, many questions concerning t h i s reaction remain unanswered. The s u l f i t e solutions also generally d i f f e r greatly from the fermentation broths i n p h y s i c a l as w e l l as chemical prop e r t i e s . P h y s i c a l p r o p e r t i e s , such as i o n i c strength, surface tension, and v i s c o s i t y , may a f f e c t values of K^, a and sometimes even the value of C*. Chemical p r o p e r t i e s , such as rea c t i o n rate constant, and order of the rea c t i o n , may a f f e c t the value of great l y , s p e c i a l l y i f the rate of reaction i s great. Furthermore, there are also some differences between the d i f f u s i o n a l processes involved. In s u l f i t e -33-s o l u t i o n oxygen passes from the gas through the i n t e r f a c e i n t o the l i q u i d f i l m . Oxygen reacts with s u l f i t e i n t h i s f i l m . In a suspension of microorganisms, the s i t e of oxygen u t i l i z a t i o n i s intimately associated with d i s c r e t e c e l l units which are p h y s i c a l l y l o c a l i z e d and r e l a t i v e l y remote from the i n t e r f a c e . 2. Gassing-Out Method In t h i s method a non-oxidizable s o l u t i o n which has been previously st r i p p e d of dissolved oxygen (DO), e i t h e r with nitrogen or by some other means, i s aerated. The DO concentrations at various time i n t e r v a l s are recorded. Under t h i s unsteady-state c o n d i t i o n , the absorption equation can be written as, With four assumptions; a. the bulk concentration of DO i s uniform throughout the l i q u i d , b. the e f f e c t of desorption of other d i s s o l v e d gases i s n e g l i g i b l e , c. Kj^a i s a constant, d. C* i s constant, equation (64) can be integrated to give, 1 , , C * ' \ (65) The p l o t of In (C* - C) versus time should r e s u l t i n a s t r a i g h t l i n e with the slope equal to K^a. - 3 4 -This method was f i r s t used by Bartholemew et a l . (B5), then applied by Wise (W2) to the measurement of K^a i n an uninoculated fermentation broth. This method was also applied by t h i s author (L10, L l l ) to c o r r e l a t e K^a with various operational v a r i a b l e s of a fermentor, such as pH, temperature, gas s u p e r f i c i a l v e l o c i t y and power consumption. The method i s even simpler than the s u l f i t e - o x i d a t i o n method; because only one measuring device, a DO electrode, i s needed. Unlike the s u l f i t e - o x i d a t i o n method, the gassing-out method i s le s s s e n s i t i v e to i m p u r i t i e s , pH and temperature, and thus more r e l i a b l e . Water requires only a small quantity of oxygen to become saturated; hence the t o t a l amount of oxygen absorbed by water i n t h i s method i s r e l a t i v e l y small compared with the t o t a l oxygen present i n the gas phase under normal operational conditions. The oxygen p a r t i a l pressure i n the gas phase can then be regarded as a constant throughout the whole re a c t o r , hence the C* value can be regarded as a constant too. D i r e c t c a l c u l a t i o n of K^a from the DO concentrate-time trace i s p o s s i b l e , thus s i m p l i f y i n g the c a l c u l a t i o n procedure. However, the solutions used i n t h i s method again d i f f e r from the fermentation broth i n both p h y s i c a l and chemical p r o p e r t i e s . The d i f f e r e n c e i n p h y s i c a l p r o p e r t i e s , however, can be minimized by studying the aeration of spent broths which have been s t e r i l i z e d . The d i f f e r e n c e i n chemical properties ( i . e . the s o l u t i o n i s non-reactive with oxygen) l i m i t s the a p p l i c a t i o n of the method to evaluating only the rate of pure p h y s i c a l absorption of a system. -35-3. Dynamic Gassing-Out Method Taguchi et a l . (T7) and Bandyopodhyay et a l . (B6) have proposed a technique f o r measuring Kj^a i n a fermentor with an a c t i v e l y r e s p i r i n g mash. When aeration i s stopped, the decrease i n dissolv e d oxygen due to r e s p i r a t i o n i s measured to obtain the rate of oxygen uptake by the t o t a l m i c r o b i a l population. Then, before the c r i t i c a l oxygen concentration i s reached, aeration i s resumed and the increase i n DO i s recorded with respect to time. The rate of accumulation of DO, T^-, i s measured from t h i s trace. The absorption equation f o r oxygen can be wri t t e n as, ^ = Kja (C* - C) - rX (66) When aeration i s stopped, the term K La (C* - C) = 0, equation (66) hence becomes. 4F> = - R X ( 6 7 ) no aeration Upon, the resumption of aeration, equation (66) can be re-arranged, c = - & + r X> + c * ( 6 8 ) ILa dt From a p l o t of C versus (—- + rX), on arithmetic co-ordinates, a dt s t r a i g h t l i n e r e s u l t s (Figure 1). K^a and C* can be determined as the r e c i p r o c a l of the slope and the inter c e p t r e s p e c t i v e l y . The method has been s u c c e s s f u l l y applied to yeast fermentations. -36-F i g u r e 1 T Y P I C A L P L O T O F E Q U A T I O N ( 6 8 ) o -37-The main advantage of t h i s method l i e s i n i t s s i m p l i c i t y ; l i k e the gassing-out method, i t requires only a s i n g l e oxygen probe. To determine Kj^a, only C and rX need be known, C* i s only needed i f one wants to get a f e e l f o r the mean oxygen concentration i n the r e s p i r i n g mash. The method i s a d i r e c t one, ( i . e . i t i s based on u t i l i z i n g the fermentation system i t s e l f ) . However, i t was pointed out by Bandyopodhyay et_ al_. (B6), that there was a discrepancy i n both oxygen uptake and K La values between the oxygen balance and the dynamic gassing-out method. The values measured by the dynamic gassing-out method appear abnormally low. The reason f o r the lower values was a t t r i b u t e d to a i r bubbles remaining i n the mash throughout the period i n which aeration was stopped. Another l i m i t a t i o n to the a p p l i c a b i l i t y of the method i s the question of the constancy of r a f t e r 'the aeration i s resumed. I t was found that dropping the DO to near the c r i t i c a l oxygen l e v e l caused some temporary damage i n the enzymes system of yeast. 4. Oxygen Balance Method dC In a steady-state condition, the term — i n equation (66) i s n e g l i g i b l e i n the time i n t e r v a l of measurement. The equation can hence be w r i t t e n as, rX = K^a (C* - C Q ) ( 6 9 > The oxygen uptake of the b a c t e r i a equals the amount of oxygen t r a n s f e r r e d from a i r to the l i q u i d medium, which i s equivalent to the d i f f e r e n c e -38-between the amount of incoming and outgoing oxygen. The method requires the d i r e c t measurement of oxygen concentration i n the exhaust gas and l i q u i d medium. Usually evolved CO2 i s also measured. Many i n v e s t i g a t o r s (F4, GI, S6, T8) have suggested that t h i s method i s the best one for evaluating K^a for fermentors because no assumptions need to be made about the e f f e c t s of c e l l s , surface-a c t i v e agents, v i s c o s i t y , ... etc. However, these advantages are more or l e s s o f f s e t by the f a c t that much more instrumentation i s needed, and the procedure i s time consuming. Furthermore, the amount of oxygen u t i l i z e d i n most fermentors usually amounts to less than one percent of the t o t a l oxygen supply. Thus the oxygen p a r t i a l pressure d i f f e r e n c e between the i n l e t and o u t l e t gas stream i s small. A small measurement inaccuracy w i l l introduce a large e r r o r i n the r e s u l t . C. SATURATION OXYGEN SOLUBILITY Knowledge of the s a t u r a t i o n s o l u b i l i t y of oxygen i n a fermentation broth i s necessary i n c a l c u l a t i n g mass tr a n s f e r capacity c o e f f i c i e n t s . Many workers use the s a t u r a t i o n value for oxygen dissolved i n water, but i n f a c t the fermentation medium i s not water, but water plus a v a r i e t y of n u t r i e n t s and metabolic products. For example; the s o l u b i l i t y of oxygen i n s u l f u r i c acid i s close to that i n water, but i n most of the organic solvents i t s s o l u b i l i t y increases sharply. In solutions containing various e l e c t r o l y t e s or organic matter oxygen s o l u b i l i t y behaves i n a complicated manner not following Henry's law ( I I ) . The most frequently used techniques for determining oxygen -39-c o n c e n t r a t i o n i n s o l u t i o n are chemical a n a l y s i s v i a the Winkler method (W3) , and the use of gas chromatography. However, the Winkler method i s not s u i t a b l e f o r s o l u t i o n s having low pH v a l u e s , as our media do. Furthermore, the presence of o x i d i z i n g and reducing chemicals (of the k i n d found i n our media) complicates the procedure. A gas chromatographic technique' f o r determining the s o l u b -i l i t y of gases i n n o n - b i o l o g i c a l s o l u t i o n s has been d e s c r i b e d by Gubbins et a l . (G2). The sample to be analyzed, u s u a l l y 5 ml, was i n j e c t e d i n t o a g l a s s s t r i p p i n g column o u t s i d e the chromatograph. C a r r i e r gas d i s p e r s e d i n t o the s t r i p p i n g column r a p i d l y removed d i s s o l v e d gases and c a r r i e d them through d r y i n g tubes c o n t a i n i n g D r i e r i t e , then through a s t a i n l e s s s t e e l c o i l immersed i n a water bath i n t o the chromatograph column. Since the s o l u b i l i t y of most common gases i n water i s a c c u r a t e l y known, a water sample served as a standard f o r c a l i b r a t i o n purposes. The method i s s i m i l a r i n p r i n c i p l e to one described by Swinnerton et a l . (S7), which i s capable of determining d i s s o l v e d gas c o n c e n t r a t i o n s as low as 0.3 ppm i n 1 to 2 ml of s o l u t i o n . Our attempts to adapt t h i s technique to a b i o l o g i c a l system were u n s u c c e s s f u l because the r a t e of oxygen d e p l e t i o n was too r a p i d and the s t r i p p i n g r a t e of the d i s s o l v e d gases i n the s t r i p p i n g column too slow. A c a l c u l a t i o n technique has been proposed by van Krevelen and H o f t i j z e r (VI) f o r the p r e d i c t i o n of the s o l u b i l i t y of v a r i o u s gases i n v a r i o u s s o l u t i o n s . This p r e d i c t i o n technique i s based upon the e q u a t i o n i -40-, He l 0 g H T — = h I (70) H 2 ° Linek and T v r d i k (L12) have noted t h a t when t h i s technique was used to p r e d i c t values f o r the s o l u b i l i t y of oxygen i n sodium s u l f a t e s o l u t i o n s , d i f f e r e n c e s between c a l c u l a t e d and experimental values ranged from -8% to +12%. D. I N T E P v F A C I A L A R E A The maximum diameter of a d r o p l e t which could s u r v i v e i n t u r b u l e n t continuous phase was c o r r e l a t e d w i t h surface t e n s i o n , d e n s i t y and power i n p u t by Batchelor (B7). Y 0.6 D = m ' CJI\ max W-L^  P C 0 - 2 (Pg / v ) 0 ' 4 The validity of equation (71) was confirmed by Hinze (H5), Vermeulen et a l . (V2) and Endoh et a l . (El). This equation was subsequently used with modification to correlate the i n t e r f a c i a l area with various factors in an agitated aerator. Extensive studies were.carried out by Calderbank (C6). He proposed equation (72) for calculating the i n t e r f a c i a l area i n the aeration of pure liquids, a = 1.44 (Pg/v) °- 4 p c 0 - 2 1 076 Y V 0.5 (72) (—) V He also reported that due to the greater ease of bubble coalescence, -41-the i n t e r f a c i a l areas produced d u r i n g the a e r a t i o n of pure l i q u i d s were much s m a l l e r than when s o l u t i o n s of e l e c t r o l y t e s or other h y d r o p h i l i c s o l u t e s were aerated. E. MASS TRANSFER COEFFICIENT ( K L ) Calderbank (C6) was able to determine K L a and "a" se p a r a t e l y i n an a g i t a t e d sparged tank and then to c a l c u l a t e the mass t r a n s f e r c o e f f i c i e n t K^. He concluded that f o r g a s - l i q u i d t r a n s f e r from bubbles of the s i z e t y p i c a l l y encountered i n fermentors, o / o AP u g , ,~ = 0.31 ( N S c ) ~ 2 / 3 ( ^ — ) 1 / 3 (73) P c 2 This equation a l s o gives the o v e r a l l value of K^ f o r t r a n s f e r of 0 2 from a i r to the organisms i f the organisms grow as s i n g l e c e l l s as opposed to clumps of c e l l s , and are w e l l suspended. A s i m i l a r equation was a l s o obtained by F r i e d l a n d e r ( F l ) by s o l v i n g the l i n e a r i z e d Navier-Stokes equations f o r the case where d i f f u s i o n occurred i n a f l u i d surrounding a sphere moving i n the Stokes regime. I t i s evident that the KL value i s i n f l u e n c e d only by the p r o p e r t i e s of l i q u i d . The a g i t a t i o n speed, power i n p u t , and s u p e r f i c i a l a i r v e l o c i t y are u s e f u l i n d i s p e r s i o n to produce a higher i n t e r f a c i a l area. When the b a c t e r i a are growing on the surface of l a r g e s o l i d p a r t i c l e s o r as clumps, equation (73) which i s v a l i d only f o r s m a l l -42-p a r t i c l e s , no longer describes the mass t r a n s f e r from l i q u i d to the s o l i d b a c t e r i a l p a r t i c l e s . Such a case, however, can be t r e a t e d as being s i m i l a r to the case of mass and heat t r a n s f e r to or from suspended s o l i d s i n an a g i t a t e d tank. In measuring the d i s s o l u t i o n r a t e of p a r t i c l e s , H a r r i o t t (H2) found t h a t the v a l u e was propor-t i o n a l to 0.17 power of power i n p u t , 0.6 ^ 0.8 power of d i f f u s i v i t y , and -0.37 power of v i s c o s i t y of the l i q u i d . The c o r r e l a t i o n of va r i o u s experimental data by Calderbank e_t a l (C7) r e s u l t e d i n 14,-0.13 ^y'lfsZ^^y'* (74) ^ P c 2 ' where i s independent of the p a r t i c l e s i z e and any d i f f e r e n c e i n den s i t y between the s o l i d and l i q u i d . Tsao (T9, T10, T i l ) developed a d i f f e r e n t i a l equation and concluded that when b a c t e r i a w i t h r a p i d uptake of a s o l u t e are a s u r f a c e - a c t i v e type which would concentrate themselves at a g a s - l i q u i d i n t e r f a c e , then the r e s u l t would be to i n c r e a s e the value. However, i t i s d i f f i c u l t t o assess the degree of su r f a c e a c t i v i t y i n a p r a c t i c a l case. F. OTHER FACTORS AFFECTING I^a 1. Impellers The l i t e r a t u r e does not c l e a r l y demonstrate the i n f l u e n c e of i m p e l l e r dimensions on and a. However, a s m a l l e r i m p e l l e r was s a i d to give b e t t e r bubble break-up f o r the same power i n p u t -43-than a l a r g e r one (V3). I t a l s o appeared t h a t at a given s u p e r f i c i a l a i r r a t e and power i n p u t , a t u r b i n e type i m p e l l e r was more s u i t a b l e than a p r o p e l l e r type (Y2). An i m p e l l e r p o s i t i o n e d between 0.2 to 0.5 times the l i q u i d height from the bottom of the tank had l i t t l e i n f l u e n c e on the a e r a t i o n r e s u l t s (V3). 2. Spargers The i n j e c t i o n of a i r by open p i p e s , p i p e r i n g s , s i n t e r e d g l a s s or metal d i s c s made l i t t l e d i f f e r e n c e provided the a i r was fed i n t o the eye of the i m p e l l e r (V3). 3. B a f f l e s B a f f l e s prevent the formation of v o r t i c e s and are e s s e n t i a l to good l i q u i d mixing. But they promote "bubble coalescence and sometimes c r e a t e more turbulence than the system r e q u i r e s , thus wasting energy (V3). 4. L i q u i d Height The e f f e c t of the r a t i o of l i q u i d depth to tank diameter on K^a was n e g l i g i b l e f o r r a t i o s l e s s than u n i t y , but i t becomes appr e c i a b l e f o r values above u n i t y (Y2). I f the r a t i o exceeds 2.0, coalescence takes p l a c e i n the quiescent upper zone and a decreases (V3). -44-5. Power Input The power input of a g i t a t o r s operating at various speeds i n l i q u i d s can be predicted from published power number versus Reynold's number p l o t s (R2, R3). Si m i l a r p l o t s are not a v a i l a b l e f o r aerated systems. .At constant a g i t a t i o n speed, the power input decreases when a i r i s passed through. This decrease can be a t t r i b u t e d to the decrease i n density of the a i r - l i q u i d mixture around the impeller. Various i n v e s t i g a t o r s ( L l l , M14, 01) have cor r e l a t e d the power input w i t h a dimensionless aeration number which i s defined as the r a t i o of s u p e r f i c i a l a i r v e l o c i t y to the t i p v e l o c i t y of the impeller. P ~ ^ 3 ; The r e s u l t i n g curve i s independent of p h y s i c a l properties of l i q u i d s , but depends on the type of impeller and the various geometrical r a t i o s of the tank. However, a good c o r r e l a t i o n was reported by L i u et a l ( L l l ) f o r an air-water aerator with a paddle type impeller to be, |*-m ( N ) 3 ' 0 (V r ° - 3 <76> P s o I t i s evident that increases i n a g i t a t i o n speed w i l l increase the turbulence of the l i q u i d thus i n c r e a s i n g K^a through a, i f equation -45-(72) holds. The a g i t a t i o n speed and s u p e r f i c i a l a i r v e l o c i t y are both independent v a r i a b l e s and are c l o s e l y r e l a t e d to the power input. I t i s sometimes more convenient to c o r r e l a t e K^a i n the form, Kja = m(N) nl ( V g ) n 2 (77) A wide spread i n values of the exponents ni and n 2 has been reported ( A l , C5, E2, F5, H6, J l , M15, S9). However, the majority reported that n j , was i n the range between 1.8 to 3.0. The exponent n£ was found to be less than one. This i n d i c a t e s the i n c r e a s i n g p r o b a b i l i t y of bubble coalescence with in c r e a s i n g s u p e r f i c i a l a i r v e l o c i t y at constant a g i t a t i o n speed. 6. S o l i d P a r t i c l e s Limited studies have been undertaken on the e f f e c t of s o l i d p a r t i c l e s on the rate of b i o l o g i c a l reactions which are associated with oxygen t r a n s f e r . B r i e r l e y ejt al_. (B8) measured oxygen t r a n s f e r c o e f f i c i e n t s by the "gassing out" procedure. They found that the rate of s o l u t i o n of oxygen was reduced markedly by a d d i t i o n of f i l a -mentous mycelium and paper pulp, but not by the addition of sago p e l l e t s . They concluded that the morphology of the s o l i d phase l a r g e l y determined i t s p h y s i c a l e f f e c t upon the oxygen tr a n s f e r r a t e . Rogers et a l . (R4) have reported on the e f f e c t s of i n e r t , b i o l o g i c a l l y a c t i v e , and chemically a c t i v e , suspended s o l i d s on the rate of oxygen tr a n s f e r i n an aeration column. They found that diatomaceous earth i n concentrations up to 9000 mg/1 had no e f f e c t - 4 6 -on the rate of oxygen t r a n s f e r . A c t i v a t e d sludge retarded oxygen tra n s f e r rate with an increase i n s o l i d concentration up to 2500 mg/1 but with higher concentrations the e f f e c t became l e s s marked. Metal hydroxide suspensions increased the oxygen tr a n s f e r r a t e , with inc r e a s i n g s o l i d s concentrations up to 2500 mg/1. Van der Kroon (V4) found that suspended s o l i d p a r t i c l e s had a great e f f e c t on the oxygen t r a n s f e r rate. The i n t r o d u c t i o n of the s o l i d p a r t i c l e s greatly decreased the rea c t i o n rate of the s u l f i t e - o x i d a t i o n r e a c t i o n . A l l of the above workers drew conclusions about the e f f e c t of suspended s o l i d s on oxygen tr a n s f e r rate but as yet, no s a t i s f a c -tory explanation of the mechanism involved has been made. -47-CHAPTER 5 APPARATUS A. GYRATORY SHAKER APPARATUS A gyratory shaker apparatus was used to carry out some of the batch-wise experiments. The unit was manufactured by New Brunswick S c i e n t i f i c Company (New Brunswick, N.J.). I t was able to accommodate 67, 250 ml shake f l a s k s . This apparatus was kept i n an incubating room of approxim-ately 10 x 10 x 8 f t i n s i z e . The temperature of the room was maintained at 35°C by a regulated flow of e l e c t r i c a l l y heated hot a i r . A constant flow of carbon dioxide was also added so that i t would not be a rate l i m i t i n g factor for the b a c t e r i a l growth. The CO2 concentration was approximately 1% by volume. B. CONTINUOUS CULTURE APPARATUS The design and construction of the continuous culture apparatus was based on the p r i n c i p l e that at constant temperature and constant gas volume any changes i n the amount of gas could be measured by changes i n i t s pressure. 1. Reactor A schematic drawing of the reactor i s shown i n Figure 2. The main body of the reactor was made of a c y l i n d r i c a l pyrex glass tube, 5 inches I.D. and 10 inches long, closed at both top and bottom by two s t a i n l e s s s t e e l plates. Two synthetic rubber 0 rings were used to seal the plates to the glass body. The bottom plate F i g u r e 2 FLOW S H E E T OF CONTINUOUS CULTURE APPARATUS CQ Reactor ©Seal (3) Agitator ® Water bath (5) Air ©Medium ©Motor (8) RPM counter (9) Manometer @Pump © C O 2 $» Humidifier @ Flowmeter ® Overflow ©Air outlet ® Sampling hole © Pipette tube do) © 1 1 00 1 -49-permitted the f i t t i n g of a t e f l o n overflow pipe, a T e f l o n f e e d - i n pipe and a sampling hole. T e f l o n prevented the organisms from growing i n s i d e the p i p e l i n e and thus eliminated blockage. The sampling hole was simply a hole sealed with s i l i c o n rubber so that a syringe needle could be in s e r t e d and inoculum introduced or samples withdrawn. The top p l a t e contained a mercury s e a l around the a g i t a t o r shaft and two small tubes f o r the i n t r o d u c t i o n and removal of a i r and another to the gas manometer plus a thermometer w e l l . 2. Mercury Seal A mercury s e a l was constructed to prevent a i r from escaping around the a g i t a t o r shaft. The volume of the reactor was maintained constant by withdrawing or adding mercury from a r e s e r v o i r to the mercury bath to keep the column of mercury i n the r o t a t i n g tube at a given mark. 3. A g i t a t o r A s t a i n l e s s s t e e l paddle type impeller 2h inches i n diameter and having s i x , s t r a i g h t f l a t blades was used to s t i r the medium i n the reactor. The clearance between the bottom of the impeller and the reactor bottom was one inch. A 2% inch, marine type impeller, located 8 inches from the bottom, was also i n s t a l l e d to assure good mixing of the gas phase. The impellers were driven by a Fish e r Stedi-Speed Motor with F i s h e r Speed Adjust Unit. The u n i t incorporated c i r c u i t r y that monitored the v i s c o s i t y -50-of the l i q u i d being s t i r r e d and automatically supplied more or less power as the load increased or decreased, thus keeping the shaft speed constant. The shaft speed was measured by a set up c o n s i s t i n g of a photo r e f l e c t i v e pickup and a d i g i t a l frequency meter (see C-2). 4. Water Bath The reactor was immersed i n a constant temperature water bath made of methyl methacrylate polymer, 8" x 8" x 12" i n dimension. The temperature was maintained by supplying a regulated amount of hot water to the system using the temperature c o n t r o l l e r described i n Section C-8 of t h i s chapter. 5. A i r Supply A i r was supplied from a constant pressure source at a pressure of 15 psig.. The a i r passed through a pressure regulator to reduce i t s pressure and through a needle valve thus enabling a f i n e degree of c o n t r o l . A f t e r the a i r flow rate was measured by a rotameter, the a i r passed through a saturator and was then i n t r o -duced i n t o the reactor. The saturator was a 1 inch O.D. two foot long glass tube, f i l l e d with some p l a s t i c packing and water. P r o v i s i o n was made to add carbon dioxide to the a i r . 6. Medium Supply The growth medium was prepared and stored i n a 25 l i t e r p l a s t i c b o t t l e . I t was then pumped i n t o the reactor by a micro-flow -51-tubing pump (Cole-Parmer Instrument Co., Chicago, 111.). A 5 ml pipet was i n s t a l l e d i n a tee located between the pump and the reactor so that the flow rate could be measured from time to time by measur-ing the time required f o r the medium to f i l l the pipet . C. TANK REACTOR The apparatus consisted of a reactor, an impeller driven through a torquemeter by a hydraulic motor, an oxygen analyzer, a modified Erlenmeyer f l a s k , a respirometer and a temperature c o n t r o l l e r . The Erlenmeyer f l a s k and respirometer were used to evaluate oxygen uptake rates i n samples taken from the tank reactor. 1. Reactor The reactor was a c y l i n d r i c a l tank made of methyl metha-c r y l a t e , 11% inches I .Dv and 18 inches high with an open top. Four b a f f l e s , each one-tenth of the tank diameter and extending to the f u l l depth of the tank, were symmetrically attached to the i n t e r n a l w a l l . A r u l e r was attached to the inner tank w a l l to measure l i q u i d height. There were two pipes entering through the bottom of the tank: one served as an a i r i n l e t , the other one for discharging the medium. The reactor was surrounded by a 15%" x 15%" x 18", methyl methacrylate jacket for temperature c o n t r o l purposes. 2. A g i t a t o r The impeller was a 4 inch diameter fan type turbine with 6 blades set at 45°. I t was located one h a l f an impeller diameter -52-above the bottom of the tank. The impeller was fastened to a 1/2 inch diameter s t a i n l e s s s t e e l s h a f t . A b a l l - b e a r i n g type p i l l o w block, seated on a secure support, was attached at h a l f way point of the shaft to prevent v i b r a t i o n at high a g i t a t i o n speeds. The a g i t a t i o n speed measuring u n i t consisted of a Photo R e f l e c t i v e Pickup Model 812, with i t s power supply unit (Model C-850, both produced by Power Instrument, Inc., Skokie, 111.) and a D i g i t a l Frequency Meter (Model 460, Darcy Industries, Santa Monica, C a l i f o r n i a ) . One s e c t i o n of the a g i t a t i o n shaft was whitened around i t s circumference except f o r a blackened s t r i p . The pickup was positioned perpendicular to the prepared shaft s e c t i o n so that an abrupt change i n r e f l e c t e d l i g h t density would occur once per revo-l u t i o n . This l i g h t density change was then converted i n t o an e l e c -t r i c a l pulse and the frequency of these pulses was measured on the frequency meter. 3. Torquemeter The shaft was j o i n e d by a f l e x i b l e coupling to a Torquemeter (Model 784, Power Instruments Inc., Skokie, 111.). I t would i n d i c a t e a d i r e c t readout of torque by sensing the phase displacement of a c a l i b r a t e d spring element, with a p r e c i s i o n d i f f e r e n t i a l gear system. 4. Drive The shaft was driven by a hydraulic motor which was driven by a flow of c i r c u l a t i n g motor o i l constantly supplied by a hydraulic pump, i n turn driven by a 1 HP e l e c t r i c motor. (Both the motor and -53-the pump were the products o f V i c k e r s I n c o r p o r a t e d , Sperry Rand Corp., U.S.A.) This u n i t p e r m i t t e d v a r i a t i o n i n a g i t a t o r speed. 5. Oxygen Analyzer A Beckman Model 777 Laboratory Oxygen Analy z e r w i t h a Beckman 39065 p o l a r o g r a p h i c oxygen e l e c t r o d e was used to monitor the d i s s o l v e d oxygen t e n s i o n i n the medium. The e l e c t r o d e c o n s i s t e d of a gold cathode and a t u b u l a r s i l v e r anode. The cathode and anode were separated by an epoxy c a s t i n g , but were e l e c t r i c a l l y connected by a l a y e r of potassium c h l o r i d e g e l . The e n t i r e assembly was then separated from the medium by an oxygen permeable, T e f l o n membrane which f i t t e d a g a i n s t the cathode s u r f a c e . When oxygen d i f f u s e d through the membrane i t was reduced at the cathode by an a p p l i e d v o l t a g e . This caused a current to flow between the anode and cathode which was p r o p o r t i o n a l to the oxygen t e n s i o n i n the medium. 6. Erlenmeyer F l a s k A o n e - l i t e r Erlenmeyer f l a s k was modif i e d so that the oxygen uptake r a t e i n terms of mmHg per hour of the medium c o n t a i n i n g b a c t e r i a c o u l d be monitored c o n t i n u o u s l y . A hole was opened on the s i d e of the f l a s k to accommodate a Beckman Oxygen E l e c t r o d e w i t h i t s rubber mount. The e l e c t r o d e was plac e d at an angle of about 15 degrees to the h o r i z o n t a l i n order to prevent any entrapped a i r bubbles from c o l l e c t i n g at i t s sensing t i p . A two inches long magnetic s t i r r e r rod was placed i n s i d e the f l a s k . A thermometer and a f i n e g l a s s tube which was to maintain the pressure i n s i d e the f l a s k d u r i n g i n s e r t i o n of the stopper were i n s e r t e d through the rubber stopper. The f l a s k was then kept i n a p l a s t i c water bath maintained at the d e s i r e d temperature. The schematic diagram of the m o d i f i e d Erlenmeyer f l a s k i s shown i n F i g u r e 3. 7. Respirometer The Respirometer (Model G20, G i l s o n M e d i c a l E l e c t r o n i c s , M i d d l e t o n , Wisconsin) c o n s i s t e d of s e v e r a l r e a c t i o n v e s s e l s , d i f f e r -e n t i a l manometers, d i g i t a l readout volumeters, an a g i t a t o r and a s t a i n l e s s s t e e l water bath w i t h a thermoregulator. The d i g i t a l volumeters were s t a t i o n a r y , each was connected by means of a f l e x i b l e , c a p i l l a r y , p l a s t i c tube to the r e a c t i o n v e s s e l s . A c a l i b r a t e d micrometer could r e t u r n the manometer f l u i d to i t s constant p o s i t i o n by i n s e r t i n g an accurate p i s t o n a c e r t a i n d i s t a n c e i n t o the enclosed volume i n order to r e p l a c e the volume of oxygen consumed i n the r e a c t i o n v e s s e l . Temperature c o n t r o l i n the water bath was provided by an e l e c t r o n i c r e l a y actuated by a h e r m e t i c a l l y s e a l e d thermoregulator. Accuracy of c o n t r o l was ±0.02 C. 8. Temperature C o n t r o l l e r The temperature i n the tank r e a c t o r was sensed by means of a t h e r m i s t e r probe which t r i g g e r e d a Temperature C o n t r o l l e r (YSI Thermistemp Model 63, Yellow Springs Instrument Co., Ohio). The c o n t r o l l e r then switched on a s o l e n o i d v a l v e (K27 Kompact, General -55-F i g u r e 3 SCHEMATIC DIAGRAM OF THE MODIFIED ERLENMEYER FLASK Robber Stopper-^ Gloss Tube 1 liter Erlenmeyer F lask Magnetic S t i r rer Collar cut from SOO mm Plastic Funnel Recorder \ o o o OO Oxygen Analyser Oxygen Electrode -56-Controls Co. Canada Limited) allowing a flow of hot water i n accordance with the demands of the system. -57-CHAPTER 6 PROCEDURES A. ANALYTICAL METHODS 1. Total Iron The t o t a l i r o n concentration was measured with an atomic absorption spectrophotometer (Model 303, Perkin-Elmer, Norwalk, Connecticut) equipped with a D i g i t a l Concentration Readout (Model DCR 1, Perkin-Elmer, Norwalk, Connecticut). 2. F e r r i c Iron The f e r r i c i r o n concentration was measured with thiocyanate according to the method described by Sandell (S10). The colour was read at 464 mp on a Zeiss PMQ I I Spectrophotometer. 3. Ferrous Iron The ferrous i r o n concentration of the sample was determined volumetrically with standard potassium dichromate solution according to the method described by Kolthoff et^ a l . (K2). 4. Inorganic and Organic Carbon The organic and inorganic carbon contents of the sample were determined by means of a Total Carbon Analyzer (Model 915, Beckman Instruments Inc., C a l i f o r n i a ) . -58-B. MAINTENANCE OF CULTURE The organism was a pure s t r a i n of T_. f e r r o o x i d a n s N.C.I.B. No. 9490. I t was o r i g i n a l l y i s o l a t e d from mine water from B r i t a n n i a Beach, B.C. by R a z z e l l and T r u s s e l l (R5). The organisms to be used as a stock c u l t u r e were maintained on 9K medium on a gyrat o r y shaker, at 35° C and i n a carbon d i o x i d e enriched atmosphere. The c u l t u r e was t r a n s f e r r e d to a new medium every two to four weeks. Approximately one week before the experiment was scheduled, 5 m i l l i l i t e r s of stock c u l t u r e were i n o c u l a t e d i n t o two 250 m i l l i l i t e r , b affled-Erlenmeyer f l a s k s , each c o n t a i n i n g 100 m i l l i l i t e r s of medium i d e n t i c a l t o t h a t to be used l a t e r i n the experiment. These f l a s k s were maintained on the gyrat o r y shaker. As i n c u b a t i o n proceeded, the c o l o u r of the medium changed g r a d u a l l y from green to brownish y e l l o w . A one m i l l i l i t e r sample was p i p e t t e d out and the f e r r o u s i r o n c o n c e n t r a t i o n determined from time t o time. When the f e r r o u s i r o n content became approximately one quarter of i t s i n i t i a l v a l u e , 5 m i l l i l i t e r s were t r a n s f e r r e d i n t o f r e s h medium and incubated again. The procedure was repeated twice before the medium was f i n a l l y used as inoculum f o r the experiment. C. PREPARATION OF MEDIUM The medium used i n the continuous c u l t u r e was prepared i n a 25 l i t e r p l a s t i c c o n t a i n e r . The c o n t a i n e r was f i r s t s t e r i l i z e d w i t h 10% h y d r o c h l o r i c a c i d s o l u t i o n and then, r e p e a t e d l y r i n s e d and washed w i t h 30% e t h y l a l c o h o l . I t was f i n a l l y r i n s e d w i t h d i s t i l l e d water - 5 9 -u n t i l no a l c o h o l r e s i d u a l was present. Approximately 25 m i l l i l i t e r s of concentrated s u l f u r i c a c i d were added to 20 l i t e r s of d i s t i l l e d water s t o r e d i n the c o n t a i n e r . Ammonium s u l f a t e , potassium c h l o r i d e , d i b a s i c potassium phosphate, magnesium s u l f a t e and calcium n i t r a t e were added a c c o r d i n g t o the weight f r a c t i o n s p r e s c r i b e d i n Table 1. The l i q u i d was s t i r r e d s l o w l y u n t i l a l l the b a s a l s a l t s were d i s s o l v e d , then a known amount of f e r r o u s s u l f a t e c r y s t a l s were added. A d d i t i o n a l d i s t i l l e d water was added to the 2 5 - l i t e r mark. More s u l f u r i c a c i d was then added to ad j u s t the pH to the d e s i r e d v a l u e . This procedure r e s u l t e d i n a c l e a r , green medium. The t o t a l i r o n and f e r r o u s i r o n c oncentrations of the medium were determined from time to time d u r i n g the experiment. The media f o r the s h a k e - f l a s k experiments were prepared i n the same manner as mentioned above, but i n s m a l l e r q u a n t i t i e s However, f o r the tank r e a c t o r , tap water was used i n s t e a d of d i s t i l l e d water. D. SHAKE-FLASK TECHNIQUE The e f f e c t s of i n i t i a l pH, n u t r i e n t c o n c e n t r a t i o n s , and the weight f r a c t i o n of s o l i d p a r t i c l e s on the s p e c i f i c growth r a t e of T_. f e r r o o x i d a n s were examined i n s h a k e - f l a s k experiments on the gyratory shaker. 9K media w i t h i n i t i a l pHs of 1.5, 1.7, 1.8, 1.9 and 2.1 were prepared. Approximately 5% inoculum was added and s t i r r e d w e l l . Then 100 m i l l i l i t e r s of medium were t r a n s f e r r e d i n t o each of 20 to 60, -60-250 m i l l i l i t e r , b a f f l e d , Erlenmeyer f l a s k s . The weight of each f l a s k w i t h medium was measured. These were kept on the g y r a t o r y shaker pl a c e d i n an i n c u b a t i n g room. D i s t i l l e d water was added every day to make up any l o s s due to evaporation. From time to time one f l a s k was taken out and i t s f e r r o u s i r o n c o n c e n t r a t i o n , carbon content, and pH determined. The f e r r i c i r o n c o n c e n t r a t i o n was determined by s u b s t r a c t i n g the f e r r o u s from the t o t a l i r o n concentra-t i o n . The f e r r i c i r o n c o n c e n t r a t i o n was p l o t t e d a g a i n s t i t s c o r r e s -ponding time on s e m i l o g a r i t h m i c paper. The s p e c i f i c growth r a t e of the T_. f e r r o o x i d a n s was then determined by measuring the slope of the r e s u l t i n g s e m i l o g a r i t h m i c p l o t . E. CONTINUOUS CULTURE TECHNIQUE A known amount of d i s t i l l e d water, v a r y i n g from 5 to 10 m i l l i l i t e r s was i n j e c t e d through the sampling hole i n t o the r e a c t o r which was operated as a c l o s e d system. The pressure change i n the r e a c t o r was recorded and the volume of the a i r i n the r e a c t o r could then be c a l c u l a t e d according t o Boyle's law. The e f f e c t of f e r r o u s s u l f a t e c o n c e n t r a t i o n on the s p e c i f i c growth r a t e of the b a c t e r i a was s t u d i e d i n the continuous c u l t u r e apparatus. The r e a c t o r was f i r s t f i l l e d w i t h prepared medium, then a g i t a t i o n was s t a r t e d and the a g i t a t o r speed was set at 300 RPM. Next h u m i d i f i e d a i r c o n t a i n i n g 1% of carbon d i o x i d e was i n t r o d u c e d i n t o the r e a c t o r . As soon as the medium reached a temperature of 35°C, 25 m i l l i l i t e r s of inoculum were i n j e c t e d i n t o the r e a c t o r through the sampling hole. The r e a c t i o n was allowed to proceed - 6 1 -batch-wise u n t i l approximately three-quarters of the fe r r o u s i r o n i n the medium was o x i d i z e d . Then medium was pumped con t i n u o u s l y through the r e a c t o r . The flow r a t e , f e r r i c and t o t a l i r o n c oncentrations were determined a t v a r i o u s i n t e r v a l s of from 4 t o 24 hours. When stea d y - s t a t e c o n d i t i o n s were achieved, the data were c o l l e c t e d and analyzed. Since the s p e c i f i c growth r a t e of the b a c t e r i a should be e x a c t l y equal to the d i l u t i o n r a t e i n t h i s continuous c u l t u r e system, as was shown i n equation (54), the dependency of the growth r a t e on the s u b s t r a t e c o n c e n t r a t i o n could be e a s i l y evaluated. F . TANK CULTURE TECHNIQUE Nineteen l i t e r s of medium w i t h the d e s i r e d c o n c e n t r a t i o n of f e r r o u s i r o n were prepared i n the r e a c t o r . A f t e r the medium reached 35°C, one l i t e r of inoculum was added. The a g i t a t o r was then turned on and the fermentation begun. The e f f e c t s of v a r i o u s e l e c t r o l y t e s on the s a t u r a t i o n oxygen s o l u b i l i t y and the e f f e c t s of s o l i d p a r t i c l e c o n c e n t r a t i o n s on the oxygen t r a n s f e r c o e f f i c i e n t were s t u d i e d . 1 . S a t u r a t i o n Oxygen S o l u b i l i t i e s An approximately, one l i t e r sample was p e r i o d i c a l l y withdrawn from the tank r e a c t o r and used to f i l l the modified Erlenmeyer f l a s k d e s c r i b e d i n Chapter 4:C:6. The s m a l l entrapped a i r bubbles i n the medium were allowed to su r f a c e . Some of them, however, were attached to the w a l l of the f l a s k , but minor a g i t a t i o n w i t h a gl a s s rod was able to f r e e them. The rubber stopper was then i n s e r t e d and the magnetic s t i r r e r turned on. The oxygen p a r t i a l -62-pressure was measured and recorded on a s t r i p chart recorder. The rate of oxygen p a r t i a l pressure change was cal c u l a t e d from the slope of the oxygen p a r t i a l pressure - time trace. Occasionally the rate of oxygen depletion was so high that the oxygen p a r t i a l pressure dropped to nearly zero by the time the sample was tran s f e r r e d i n t o the f l a s k . In such cases, a few drops of d i l u t e d hydrogen perioxide were added, bringing the oxygen tension to approximately 200 mmHg, and then the rate change determined. Preliminary experiments showed that the a d d i t i o n of hydrogen peroxide did not a f f e c t the b a c t e r i a l a c t i v i t i e s . At the same time as the one l i t e r sample was taken from the tank f o r the Erlenmeyer f l a s k experiment, two to f i v e samples of 2 - 4 m i l l i l i t e r s of medium each were placed i n the G i l s o n Respiro-meter at 35°C. The oxygen uptake rate was measured i n m i c r o l i t e r s of oxygen per hour and was then converted i n t o milligrams of oxygen per l i t e r per hour. Based on the f a c t that normal a i r contains 21% oxygen, and c o r r e c t i n g t h i s f o r the added amount of C0 2 and f o r the water vapour content, the p a r t i a l pressure of oxygen i n the a i r was 150 mmHg. According to Henry's law, P = He C* . (78) C* i s the s a t u r a t i o n s o l u b i l i t y i n e q u i l i b r i u m with a i r so, -63-(79) D i f f e r e n t i a t i n g equation (78) and s u b s t i t u t i n g f o r He from (79) we have, C* = 150 (|§)/<a£) (80) C* was then c a l c u l a t e d according to equation (80) by knowing the oxygen uptake r a t e and the r a t e of oxygen t e n s i o n change. The s a t u r a t i o n s o l u b i l i t i e s at 35°C of 0 2 i n media c o n t a i n i n g A.5, 9.0, 13.5, and 18.0 grams per l i t e r of i r o n were thus determined. 2. E f f e c t of S o l i d Pulp D e n s i t i e s on 1^ The e f f e c t of s o l i d f r a c t i o n on was evaluated by assuming t h a t the a d d i t i o n of s o l i d p a r t i c l e s had no e f f e c t on the magnitude of the a i r - l i q u i d i n t e r f a c i a l area i n the tank. Note that i n t h i s case the i n t e r f a c i a l area r e f e r r e d to i s the surface at the top of the l i q u i d . In these experiments no a i r was sparged i n t o the tank below the l i q u i d s u r f a c e and hence there were no bubbles present. This i n t e r f a c i a l area was assumed to be constant at constant a g i t a t o r speed. The a g i t a t i o n speeds ranged from 300 to 600 RPM and s o l i d s pulp d e n s i t y of up to 15 (w/v) percent were s t u d i e d . A i r w i t h 2% C 0 2 was passed through the top of the r e a c t o r , a l l o w i n g the oxygen to be t r a n s f e r r e d only by means of f r e e , as opposed to submerged, surface a e r a t i o n . D i s s o l v e d oxygen, f e r r o u s -64-and t o t a l i r o n concentrations were measured constantly. The oxygen uptake rate was also determined. As the fermentation proceeded, the di s s o l v e d oxygen concentration decreased r a p i d l y as the rate of r e a c t i o n increased exponentially. The dissolved oxygen concentration f i n a l l y reached a minimum l e v e l and remained constant. The concentration d r i v i n g force thus became constant. The rate of r e a c t i o n which was then c o n t r o l l e d by the rate of oxygen d i f f u s i o n also remained constant. The rate of r e a c t i o n expressed i n milligrams of oxygen per l i t e r per hour was c a l c u l a t e d by m u l t i p l y i n g the constant rate of f e r r i c production, expressed i n grams per l i t e r per hour by a f a c t o r of 16,000/111.7 or 143.24, according to the s t o i c h i o m e t r i c r a t i o of equation (59). The K^a value which was d i r e c t l y p r o p o r t i o n a l to the value of was thus c a l c u l a t e d by d i v i d i n g the rate of r e a c t i o n by the oxygen concentration d r i v i n g f o r c e . 3. K^a i n the Sparged Tank K^a values were determined i n the sparged tank. The b a c t e r i a l numbers were such that oxygen uptake rates ranging up to 200 mg of O2 per l i t e r were observed. The a g i t a t i o n speeds ranged from 300 to 700 RPM, the s u p e r f i c i a l a i r v e l o c i t i e s ranged from 1.94 to 17.15 f e e t per hour, and the s o l i d p a r t i c l e concentrations ranged from 0 to 20%. 9K medium was used throughout these experiments. The a i r supplied was enriched with 1 to 9% CO2. -65-P r i o r to each run, the d i s s o l v e d oxygen tension was reduced to approximately 10 mmHg by the desorptive e f f e c t of r i s i n g nitrogen bubbles. The a g i t a t i o n was then stopped to allow any entrapped bubbles i n the medium to escape. Then a g i t a t i o n was again provided and aeration s t a r t e d . The i n c r e a s i n g oxygen tension was recorded on a s t r i p chart recorder. K^a was then c a l c u l a t e d from the r e s u l t i n g oxygen tension time p l o t s according to a proposed r e c t i f i c a t i o n method which w i l l be described i n the next s e c t i o n . From time to time, 10 to 25 m i l l i l i t e r s samples were withdrawn from the tank, and ferrous and t o t a l i r o n concentrations determined. Occasionally, the oxygen uptake rate was measured both i n the Erlenmeyer f l a s k u n i t and i n the tank. In the l a t t e r case, the measurement was made by measuring the depletion rate of oxygen tension while aeration was interrupted. Large q u a n t i t i e s of nitrogen gas were passed over the open top of the tank so that the e f f e c t of f r e e surface aeration would be minimized. G. RECTIFICATION METHOD FOR CALCULATION OF K^a The oxygen balance of the system with simultaneous d i f f u s i o n and b i o l o g i c a l r e a c t i o n can be expressed by, = K ^ i (C* - C) - rX <81> However, i n the logarithmic phase of the b a c t e r i a l growth, the oxygen uptake rate i s d i r e c t l y p r o p o r t i o n a l to the t o t a l b a c t e r i a l population. -66-Thus, rX « X = X Q Exp (ut) (82) Although the b a c t e r i a l p o p u l a t i o n i n c r e a s e s e x p o n e n t i a l l y w i t h time, t , i f the time i n t e r v a l of an experiment i s s m a l l then the change i n p o p u l a t i o n can be neglected. A l s o i f Kj_a i s constant ( i . e . i n the slow r e a c t i o n regime) equation. (.81), can be rearranged and i n t e -grated to g i v e , C * " C " + ( C * " " Co> Exp(-K La t ) (83) Lt LI Equation (83) d e s c r i b e s the oxygen balance f o r the case of s i m u l t a -neous d i f f u s i o n and slow b i o l o g i c a l r e a c t i o n . Two s p e c i a l cases e x i s t ; (1) w i t h the r e a c t i o n ( i . e . rX = 0) equation (83) becomes, C* - G = (C* - C D) Exp(-K La t ) (84) which i s i d e n t i c a l to equation (65) f o r the case of p h y s i c a l absorp-t i o n . (2) when t -> », equation (83) becomes, rX = K L a (C* - C Q) (85) r e v e a l i n g that at the s t e a d y - s t a t e , the oxygen uptake r a t e i s equal to the r a t e of t r a n s f e r . -67-However, Equation (83) can be w r i t t e n i n general semi-logarithmic form as» j = a + m* Exp n't ( 8 6 ) where y. = C* - C 1 a = rX/Kja I ( 8 7 ) m' = C* - r X / l ^ a - C Q n' - - V Equation (86) can be rearranged to the form, In (y - a) = m + n' t ( g8) where m = In m1 Davis (D3) has presented a c u r v e - r e c t i f i c a t i o n procedure f o r s o l v i n g f o r the constants,m', n', and a. The procedure i s as follows: y i i s p l o t t e d against t on arithmetic co-ordinate paper. Points ( t i , y i ) a n d ( t 2 , yz) a r e chosen near the extremities of a smooth curve c a r e f u l l y drawn to represent the data. Then read the value of y3 where, -68-A l l three p o i n t s should be on the curve represented by equation (88), so, I n (y1 - a) = m + n' t± '\ (90) In ( y 2 - a) = m + n 1 t 2 I n (y^ - a ) = m + n' t ^ S u b s t i t u t e equation (89) i n t o equation (90) and s o l v e f o r a, y l y 2 " y 3 -^4 (91) y l + y 2 " 2 y 3 Once a i s c a l c u l a t e d , the p l o t of In (y - a) versus t w i l l y i e l d a s t r a i g h t l i n e w i t h i t s slope equal to h 1, and i t s i n t e r c e p t equal to m. This procedure was a p p l i e d by Issacs et_ a l . (12) i n a study of the atmospheric oxygenation of water i n a simulated r e c e i v i n g stream as a t o o l f o r e v a l u a t i o n of K^a and C* v a l u e s . The drawback of t h i s procedure i s t h a t the a value as c a l c u l a t e d i s based only on three p o i n t s , thus i s s e n s i t i v e to the accuracy and l o c a t i o n of the p o i n t s chosen. To overcome t h i s problem a procedure f o r e s t i m a t i n g a,m' and n' based on a l l the a v a i l a b l e data was developed. I f the data are to f o l l o w equation (88), then, f o r each a value a s t r a i g h t l i n e can be drawn to f i t y and i t s corresponding t v a l u e . The sum of square of d e v i a t i o n s from the drawn l i n e i s , -69-= I e 2 = j f[ln (y. - a) - m - n ' t ] 2 SS llln y n ' t j ^ (92) i = l i We s h a l l choose as estimates f o r m, n' and a the values which w i l l produce the least possible value of SS, hence the f i r s t derivatives with respect to m, n' and a s h a l l be equal to zero, thus, i§i = 2l l n ( y ± - a) - m - n't (-1) = 0 9m i S i = 2 l l n ( y i - a) - m - n't (-t) = 0 <93> 3n' 3SS . / —1 \ _ r\ 3T" - 2l l n ( y i - a) - m - n't <-J^>-  0 Although there are three normal equations with three unknowns, a unique solution for m, n'and a cannot be obtained, because of the si n g u l a r i t y of the c o e f f i c i e n t matrix of the equation (93). Thus a further condition i s needed. For various a values a straight l i n e can be forced to best f i t the data using a least-square method, but the degree of goodness of f i t provided by this estimated l i n e w i l l depend on how close the chosen value of a i s to the true value. The goodness of f i t of the l i n e can be judged by the r a t i o R 2 which i s equal to the r a t i o of the sum of squares due to the regression to the sum of squares about the mean, SSxy 2 r 2 = s s SS < 9 4 > b b x x b b y y where -70-S S x v - ItY 'xy n ,2 SS xx - n - y t2 - <M (95) s s y v = jv2 (7Y)2  Jyy ^ " n Y = In (y - a) The R 2 value i s the parameter used to assess the goodness of f i t of a r e g r e s s i o n l i n e . The higher the R 2 v a l u e , the more a c c u r a t e l y the r e g r e s s i o n l i n e represents a l l the data. The greater the d e v i a t i o n of a from the true a v a l u e , the more the R 2 value w i l l d e v i a t e from u n i t y . A t y p i c a l r e l a t i o n s h i p between R 2 and a i s shown i n Figure 4. I t i s our ob j e c t to choose an ap p r o p r i a t e a value which w i l l y i e l d a maximum R 2, i . e . one that i s not too f a r from u n i t y . The f i r s t d e r i v a t i v e of equation (95) s h a l l thus be zero. „ !_ ( S S * y ) 2 - o (96) 3a 8a S S X X S S y y u S u b s t i t u t e equation (95) i n t o (96) and rearrange F(a) = 3R2 3a - I <^T> t M t - M Y ] + l^> C ( I ^ ) 2 - n£ Y 2 ] + K~;) CnltY - MYI - 0 (97) -71-F i g u r e 4 A T Y P I C A L RELATIONSHIP B E T W E E N R 2 AND < V A L U E S l 4 i % CVJ a: R 2 * 1,0 t f i l e s t estimate of °C < - V A L U E Equation (97) can be solved either through t r i a l and error or by the Newton-Raphson method (N2). In the latter case a further deri-vative of equation (97) is needed. F'(a) = ^ da +y tYit-^—^2 + 1 y t Y ( y - ^ - ) 2 + ^ T Y L — L L(y - a) n L ^Ly - a n L L(.y - a 2 (98) _ y Y2y t „ _ y i y ? I t _ 1 y t y yy 1 ^ ^(y - a ) 2 (y - a) (y - a) n n ^ (y - a)^ ^  (y - a) - I T Y I ( y - r ^ ) 2 - £ M Y £ ( ^ - ^ ) 2 - ^  M ( 7 ^ ) 2 An arbitrary a value i s f i r s t given and a new a value i s calculated according to the equation, a. ... = a . _ Z i H l (QQ\ v. i+l i F ' ( a ) ^ } If the i n i t i a l l y estimated a value i s sufficiently close to the true a , that i s , i f F(a) does not become excessively large and i f F 1 ( a ) i s not too close to zero, an iteration method can be applied to converge equation (99). Once a i s determined, the constants n and m can then be calculated easily from the following, -73-n = S S X Y / S S X X (100) m = lY/n - n'£t/n J This procedure can be used i n c a l c u l a t i n g a K^a value i n a batch (unsteady state) fermention by measuring, d i s s o l v e d oxygen concentration of a previously s t r i p p e d medium during the period of aeration. -74-CHAPTER 7 RESULTS AND DISCUSSIONS A. EFFECT OF INITIAL pH ON THE SPECIFIC GROWTH RATE The e f f e c t of i n i t i a l pH on the s p e c i f i c growth r a t e of J_. f e r r o o x i d a n s at 35 C i s presented i n F i g u r e 5 where the f e r r i c i r o n c o n c e n t r a t i o n i s p l o t t e d a g a i n s t time on s e m i l o g a r i t h m i c paper based on the data which are t a b u l a t e d i n Appendix I . The f i g u r e shows that an i n i t i a l pH of between 1.80 and 2.10 had no s i g n i f i c a n t e f f e c t on the maximum s p e c i f i c growth r a t e , but lowering the i n i t i a l pH, however s l i g h t l y , prolonged the l a g phase of the b a c t e r i a l growth. In a d d i t i o n , the growth at pH = 1.50 was s i g n i f i c a n t l y slower than that at higher pH v a l u e s . I n a l l cases, the pH value of the medium i n c r e a s e d at the beginning of the fermentation. At t h i s e a r l y stage, the c o l o u r of the medium changed from green to brown and no p r e c i p i t a t i o n was observed. However, as the fermentation neared completion, y e l l o w i s h p r e c i p i t a t i o n s were observed around the w a l l s of the f l a s k and the pH of the medium g e n e r a l l y s t a b i l i z e d at between 2.10 to 2.20. The same obs e r v a t i o n was made by Macdonald (M3) and Lau et a l . (L9). The s t a b i l i z a t i o n of pH i n d i c a t e d an e q u i l i b r i u m between the pro-d u c t i o n and consumption of s u l f u r i c a c i d . Three weeks a f t e r the end of the f e r m e n t a t i o n , the medium was f i l t e r e d and the t o t a l d i s s o l v e d i r o n i n the f i l t r a t e was measured. The pH value at t h i s moment i s c a l l e d the e q u i l i b r i u m pH. The r e s u l t s are t a b u l a t e d i n Table 2. The s o l u b l e i r o n c o n c e n t r a t i o n s at v a r i o u s f i n a l pH v a l u e s are compared w i t h the s o l u b i l i t y of f e r r i c hydroxide i n F i g ure 6. The lower i r o n s o l u b i l i t y i n 9K medium as compared -75-F i g u r e 5 THE EFFECT OF INITIAL pH ON THE SPECIFIC GROWTH RATE OF T. f e r r o o x i d a n s AT 3 5 ° C pH 1,80; D' py°/^PH ''70 15 20 TIME, hr. -76-TABLE 2 THE MAXIMUM SPECIFIC GROWTH RATE OF THIOBACILLUS FERROOXIDANS AS A FUNCTION OF INITIAL AND EQUILIBRIUM pH I n i t i a l pH F i n a l PH ( h o u r ) - 1 F i n a l Soluble Fe+++(g/l) Equilibrium pH ( a f t e r 3 weeks) 2.10 2.20 0.116 3.24 2.20 1.90 2.20 0.116 5.20 2.15 1.80 2.15 0.114 7.12 2.20 1.70 2.15 0.109 6.75 2.10 1.50 1.65 0.096 8.44 2.05 F i g u r e 6 SOLUBILITY OF FERRIC IRON IN 9K MEDIUM AT VARIOUS EQUILIBRIUM pH VALUES 3.0 r-2,5 UJ < 2.0 1.5 1.0 Fe(0H)3 . Fe + + ++ 30H o*°* 9k medium I I I 1 i i i 1 5 10 20 FERRIC IRON CONCENTRATION, g/l J J 50 -78 -with the f e r r i c hydroxide s o l u b i l i t y product i n d i c a t e d that the e l e c t r o l y t e s contained i n the medium promote the p r e c i p i t a t i o n of f e r r i c ions i n some other form. Since i t was confirmed that i n the b i o l o g i c a l oxidation of 9K medium most of the i r o n would appear to be p r e c i p i t a t e d i n the j a r o s i t e form (B3), and since the s t a b i l i z a t i o n of pH which occurred during the fermentation was an i n d i c a t i o n that an e q u i l i b r i u m between the production and consumption of s u l f u r i c a c i d , i t i s reasonable to assume the o v e r - a l l r e a c t i o n to be according to equation (59), 20 FeSOit + 18H 20 + 50 2 4Fe2(S0i+)3 + 4(H30)Fe 3 (S0i t ) 2 (0H) 6 (59) According to t h i s equation, eight out of twenty f e r r i c i r o n molecules (or 40%) should be soluble i n the f i n a l medium as f e r r i c s u l f a t e and the remaining s i x t y percent of f e r r i c i r o n should p r e c i p i t a t e as j a r o s i t e . The r e s u l t presented i n Table 2 show that, at pH = 2 .10, there are 3.24 grams f e r r i c i r o n per l i t e r , out of a p o s s i b l e t o t a l of 9.0 grams f e r r i c i r o n i n 9K medium, i n the dissolv e d form. This i s 3.24/9 .0 or 36 percent i r o n i n s o l u t i o n which i s reasonably close to close to 40 percent as predicted according to equation (59). In order to evaluate the e f f e c t s of s o l i d s concentration on the rate of oxygen t r a n s f e r at high oxygen uptake r a t e s , i t i s desira b l e to choose a system with a high value of s p e c i f i c growth -79 rate and a low degree of precipitation. For this reason the i n i t i a l pH of the system was set at 1.80 i n subsequent experiments. B. EFFECT OF SOLIDS PtTLP DENSITY ON GROWTH IN SHAKE FLASKS Figure 7 shows the effect of various solids concentrations of washed glass beads of 63 microns in size, on the growth rate of T_. ferrooxidans i n shake-flasks. The temperature was 35°C and the i n i t i a l pH was set at 1.80. Solids concentrations of up to 0.5 weight percent had no affect on the maximum growth rate. They did slightly prolong the lag time of the bacteria. Slower growth rate, however, was observed at 1% solids. It was found that the bacteria fai l e d to grow at a solids concentration of more than 5%. However, significant bacterial growth was observed in the flask, containing 9K medium and 5% glass beads, which was standing s t i l l i n the incubating room without gyratory action. It was hence concluded that the grinding action between the beads and flask was damaging the bacterial c e l l . It i s worth mentioning that in the microbiological leaching of zinc sulfide performed by Torma et a l . (T3) , i t was reported that although the extraction rate was directly proportional to the pulp density below 13%, the rate decreased significantly at the pulp densities over 16%. The reason for this decreasing rate was not explained by the author, but a possible explanation is that the bacterial cells were damaged by the grinding action. The pulp density which would damage the bacterial cells appears to be 16% for zinc sulfide concentrate and 5% for glass -80-F i g u r e 7 EFFECT OF SOLIDS PULP DENSITY ON THE GROWTH RATE OF T ferrooxidans IN SHAKE-FLASK EXPERIMENTS AT 35°C, pH=l.80 IOI O o Without particles +Q2&*?j\mmLmL X 0,25% of 63 >i g lass beads ' > V •** A 0,50% / / / < • | i 0 ° % // / y • 5,00% / / / / /// / /// / V / 9 J 1 1 1 0 5 10 15 20 25 30 35 TIME, hr. The higher v a l u e f o r z i n c s u l f i d e may be due t o d i f f e r e n c e s i n p a r t i c l e shape, hardness and packing. However, there i s no a v a i l a b l e evidence to support such s p e c u l a t i o n s . C. EFFECT OF NUTRIENTS ON GROWTH IN SHAKE FLASKS The e f f e c t of b a s a l s a l t s and t o t a l i r o n c o n c e n t r a t i o n on the maximum s p e c i f i c growth r a t e were a l s o s t u d i e d i n the s h a k e - f l a s k apparatus. The experiments were c a r r i e d out over a range encompassing 0.1 to 3.0 times the amount of b a s a l s a l t s , and 0.5 to 3.0 times the amount of t o t a l i r o n contained i n 9K medium. The i n i t i a l pH of a l l the media was set at 1.80. The data are presented i n Appendices I I - l to I I - 4 and the r e s u l t s summarized i n Table 3. This study was c a r r i e d out i n an attempt to f i n d out the hig h e s t p o s s i b l e oxygen uptake r a t e of T_. f e r r o o x i d a n s i n v a r i o u s media so that the study could be extended i n t o the f a s t - r e a c t i o n regime. However, the a d d i t i o n of more b a s a l s a l t s and i r o n f a i l e d to i n c r e a s e the growth r a t e of the b a c t e r i a . G e n e r a l l y they were i n h i b i t o r y . D. EFFECT OF FERROUS IRON CONCENTRATION The dependency of the s p e c i f i c growth r a t e on f e r r o u s i r o n c o ncentrations at v a r i o u s t o t a l i r o n c o n c e n t r a t i o n s was s t u d i e d i n both the s h a k e - f l a s k apparatus and the continuous c u l t u r e apparatus, at 35°C and i n i t i a l pH of 1.80. -82-TABLE 3 EFFECT OF BASAL SALTS AND TOTAL IRON CONCENTRATIONS ON THE MAXIMUM SPECIFIC GROWTH RATE OF T. FERROOXIDANS, IN HOUR"1, IN A C0 2 ENRICHED ATMOSPHERE, AT 35°C AND pH = 1.80 Ir o n B.S?*\^^ 4.5 g/1 9.0 g/1 18.0 g/1 27.0 g/1 1/10 INSIG** INSIG INSIG INSIG 1/2 0.116 0.116 0.060 0.049 1.0 0.116 0.116 0.060 0.053 2.0 0.092 0.106 0.060 0.059 3.0 0.095 0.097 0.060 0.052 Basal s a l t s c o n c e n t r a t i o n expressed as f r a c t i o n of b a s a l s a l t s contained i n Silverman's 9K medium I n s i g n i f i c a n t growth -83-I n the s h a k e - f l a s k experiments, growth r a t e s at t o t a l i r o n c o n c e n t r a t i o n s of 0.899, 1.190, 4.201 and 10.599 grams per l i t e r were s t u d i e d . The r e s u l t s are t a b u l a t e d i n Appendices IV-1 to IV-4. Lineweaver-Burk p l o t s of the r e s u l t s are shown i n Fi g u r e 8 where the r e c i p r o c a l of the s p e c i f i c growth r a t e , 1/y, i s p l o t t e d a g a i n s t the r e c i p r o c a l of f e r r o u s i r o n c o n c e n t r a t i o n , 1/S. From the i n t e r c e p t and the slope of the r e s u l t a n t s t r a i g h t l i n e , the maximum s p e c i f i c growth r a t e , u and the s a t u r a t i o n constant, K were c a l c u l a t e d . m s • . The r e s u l t s o f the experiments conducted i n the continuous c u l t u r e apparatus at t o t a l i r o n concentrations of 0.524, 1.214, and 3.295 grams per l i t e r are given i n Appendices V - l to V-3. The Lineweaver-Burk p l o t s of the r e s u l t s are shown i n F i g u r e 9. The values of u and K were a l s o c a l c u l a t e d from the i n t e r c e p t and m s slope of the p l o t . The maximum s p e c i f i c growth r a t e s and the s a t u r a t i o n constants obtained from both the batch and continuous c u l t u r e techniques at v a r i o u s i r o n c o n c e n t r a t i o n s are shown i n Table 4. The r e s u l t s are not as s t r a i g h t forward as those reported by MacDonald (M4) and Lacey et a l . (L7). MacDonald gave = 0.161 hour 1 and K g = 0.215 grams per l i t e r i n continuous c u l t u r e as compared w i t h y m = 0.145 and K = 0.402 i n batch c u l t u r e . Lacey et a l . (L7) reported s u = 0.20 hour 1 a t 31°C and K v a r y i n g randomly between 1 and 2 grams/ m s l i t e r u s i n g a batch c u l t u r e technique. Our r e s u l t s showed that y m values i n continuous c u l t u r e and i n batch c u l t u r e were 0.134 and 0.116 hour 1 r e s p e c t i v e l y . The s a t u r a t i o n constant was found to be - 8 4 -F i g u r e 8 THE LINEWEAVER AND BURK PLOT FOR SHAKE-FLASK STUDIES 0 5 10 15 20 25 ' / e (g Fe++/l )"' -85-F i g u r e 9 THE LINEWEAVER AND BURK PLOT FOR THE CONTINUOUS CULTURE APPARATUS 4 0 - - x TABLE 4 MAXIMUM SPECIFIC GROWTH RATE AND K OF THIOBACILLUS FERROOXIDANS DETERMINED BY BATCH AND CONTINUOUS CULTURE TECHNIQUES Batch Culture Technique Continuous Culture Technic [ue Total Iron (g/D (hour) - 1 (g/D Total Iron (g/D (hour) 1 (g/D 0.899 0.116 ' 0.119 0.524 0.134 0.122 1.190 0.116 0.230 1.214 0.134 0.181 3.921 0.116 0.633 3.295 0.134 0.253 10.599 0.116 1.218 -87-not only dependent on the l e v e l of t o t a l i r o n , but also s i g n i f i c a n t l y a f f e c t e d by the c u l t u r e technique employed. Perhaps i t should be mentioned that both MacDonald (M4) and t h i s author employed Lineweaver-Burk p l o t s to obtain K g values. Lacey et a l . (L7), however, developed a new method which r e l i e d h e a v i l y on the ferrous i r o n concentrations during the f i n a l stage of the fermen-t a t i o n . The a p p l i c a t i o n of Lacey et^ a l . ' s method by t h i s author f a i l e d to produce r e l i a b l e r e s u l t s . This might be due to the f a c t that because Lacey's method u t i l i z e s only data taken near the end of the fermentation and because a l i n e through t h i s data must be e x t r a -polated to time zero the accuracy required i n the analysis of Fe content was not s u f f i c i e n t l y great to give an accurate value f o r K g. I t i s believed that the r e s u l t s obtained from the continuous culture technique are more r e l i a b l e than those from the batch c u l t u r e technique. This i s because the growth rate i n the batch c u l t u r e changes s i g n i f i c a n t l y only i n the l a s t few hours of the experiment, thus an accurate determination of the s p e c i f i c growth rate i s d i f f i -c u l t . On the other hand, i n continuous c u l t u r e , the s p e c i f i c growth rate i s exactly equal to the d i l u t i o n rate which can be c a l c u l a t e d from the accurately monitored flow rate of the medium. E. OXYGEN UPTAKE RATE AND CARBON FIXATION The b a c t e r i a l carbon content, f e r r i c i r o n concentration and oxygen uptake rate of T_. ferrooxidans i n media with various n u t r i e n t l e v e l s were measured i n the sparged tank reactor. The basal J -88-s a l t s and t o t a l i r o n c o n c e n t r a t i o n were two, and three times respec-t i v e l y those of the n u t r i e n t l e v e l s of 9K medium. A i r c o n t a i n i n g 1% carbon d i o x i d e was intr o d u c e d i n t o the r e a c t o r a t a s u p e r f i c i a l v e l o c i t y of 12.6 f e e t per hour. The a g i t a t i o n speed was s e t at 500 RPM. When f e r r i c i r o n c o n c e n t r a t i o n , b a c t e r i a l carbon content and oxygen uptake r a t e were p l o t t e d a g a i n s t time on s e m i l o g a r i t h m i c paper, a s e r i e s of s t r a i g h t l i n e s w i t h an i d e n t i c a l slope were obtained as i t i s shown i n Fi g u r e 10. The p l o t i s based on data presented i n Appendix VI. Each s t r a i g h t l i n e i n F i g u r e 10 could be represented by the equation of the form, P r = m Exp(yt) (101) For f e r r i c i r o n i n grams per l i t e r , the equation i s , Fe = 1.57 Exp(0.059 t ) (102) For oxygen uptake r a t e ( m i l l i g r a m s per l i t e r per hour) obtained from the G i l s o n Respirometer, ^ r e s p = 1 2 , 6 0 E x P ( 0 - 0 5 9 c> (103) For b a c t e r i a l carbon, i n m i l l i g r a m s per l i t e r , the equation i s , F i g u r e 10 THE RELATIONSHIP BETWEEN FERRIC IRON PRODUCTION, BACTERIAL CARBON AND T H E OXYGEN UPTAKE RATE IN AERATED TANK REACTOR AT 35°C, pH = 1,80 0 10 20 30 40 50 60 TIME , hr X c = 3.86 Exp(0.059 t) (104) According to equation (56), 143.2 milligrams of oxygen are consumed for each gram of f e r r i c iron produced, hence the calculated oxygen uptake rate based on the rate of f e r r i c iron production becomes, 4|)pe = 1 4 3 ' 2 <fjr> = 1 3 - 2 6 Exp(0.059 t) (105) Comparison of equations (103) and (105) shows a difference of (13.26 - 12.60)/12.60 or 5.2% between the calculated and experimental values. This discrepancy might be due to one or both of the following reasons: (1) the effect of chemical oxidation reaction between ferrous ions and dissolved oxygen resulting i n the overestimation of fe r r i c ions produced, and (2) the a v a i l a b i l i t y of free oxygen mole-cules i n the nutrient, such as release of oxygen molecules from carbon dioxide fixation. Unfortunately, the exact cause of the discrepancy i s not known, but as long as the difference did exist, the experimental value rather than the calculated value should be used as rate of oxygen transfer i n estimating K^a value of the system. The rate of bacterial carbon production was calculated by taking the f i r s t derivative of equation (104). dX = 0.23 Exp(0.059 t) (106) Dividing equation (106) by (103), illustrated that the bacteria -91-produced 0.23/12.60 or 0.02 milligrams of carbon per each m i l l i g r a m 32 of oxygen consumed. I t was equivalent to 0.02 (j^-) or 0.053 mole of carbon produced per each mole of oxygen consumed. Since the only carbon source f o r the b a c t e r i a l growth was CO2 i n the a i r and oxygen requirement f o r the oxidative r e a c t i o n was also from the a i r , thus tr a n s f e r of more than 0.053 x 0.21 or 0.011 mole CO2 for each mole of a i r was necessary. However, the s o l u b i l i t y of CO2 was approxim-a t e l y 24 times (molar r a t i o ) higher than that of oxygen ( I I ) , and thus represented the higher concentration d r i v i n g force f o r the tran s f e r of C 0 2 than f o r that of oxygen. In other words, the presence of more than 0.011/24 or 0.0005 mole C02/mole a i r or 0.05 volume percent of CO2 i n the a i r was e s s e n t i a l so that CO2 t r a n s f e r would not be the rate l i m i t i n g f a c t o r of the e n t i r e operation. This of course assumes that the i n t e r f a c i a l area i s the same i n the t r a n s f e r of 0 2 and C O 2 . There seems to be no reason to doubt t h i s , and that the l i q u i d side mass tr a n s f e r c o e f f i c i e n t i s more or l e s s the same for the tr a n s f e r of e i t h e r of these two gases. The comparison of equation (104) and (102) showed that 2.5 milligrams of b a c t e r i a l carbon were f i x e d per gram of i r o n oxidized. This was equivalent to the f i x a t i o n of 11.6 m i l l i m o l e s of C02 per mole of ferrous i r o n oxidized by the growing T_. ferrooxidans. This value was much higher than 4.5 millimoles C02/mole ferrous i r o n obtained by Beck et a l . (BI), 2.0 millimoles CX^/mole ferrous i r o n obtained by Silverman et a l . (Si) or 0.85 millimoles C02/mole ferrous i r o n obtained by Temple et_ a l . (Tl) a l l of which were obtained under non-growing conditions. -92-F. SATURATION OXYGEN SOLUBILITIES T y p i c a l r e s u l t s obtained i n the Erlenmeyer f l a s k w i t h the oxygen e l e c t r o d e are presented i n F i g u r e 11 where oxygen t e n s i o n i s p l o t t e d against time. For a l l cases the l i n e s are s t r a i g h t f o r oxygen t e n s i o n s of g r e a t e r than approximately 10 mmHg, r e g a r d l e s s of the oxygen uptake r a t e of the medium. This i s an i n d i c a t i o n t h a t the c r i t i c a l oxygen t e n s i o n i s around t h i s v a l u e . The slope of the s t r a i g h t p o r t i o n of each l i n e i s the r a t e of oxygen t e n s i o n change. Corresponding to the oxygen t e n s i o n d e t e r m i n a t i o n , oxygen uptake r a t e s were measured at the same time i n the G i l s o n Respirometer. T y p i c a l r e s u l t s are shown i n F i g u r e 12 where the reading from the respirometer, i n m i c r o l i t e r s oxygen i s converted i n t o m i l l i g r a m s per l i t e r and p l o t t e d against time. The slope of the v a r i o u s p l o t s i s the oxygen uptake r a t e . Figure 13 p l o t s oxygen uptake r a t e s measured i n the respirometer against the r a t e of change of oxygen t e n s i o n as measured by the oxygen e l e c t r o d e f o r media c o n t a i n i n g 9.0 g / l i t e r of t o t a l i r o n . S i m i l a r curves were obtained f o r other i r o n l e v e l s and are presented i n Figures 14 to 16. From equation (80) we see t h a t the slope of these l i n e s m u l t i p l i e d by the p a r t i a l pressure of oxygen i n the a i r gives the value of s a t u r a t i o n s o l u b i l i t y of oxygen. The r e s u l t s are presented i n Table 5 f o r media c o n t a i n i n g 4.5, 9.0, 13.5 and 18.0 g / l i t e r of t o t a l i r o n . The o r i g i n a l data are presented i n Appendices V I I I - 1 to V I I I - 4 . F i g u r e 11 THE RATES OF OXYGEN TENSION CHANGE MEASURED IN THE ERLENMEYER FLASK TIME, minutes OXYGEN UPTAKEt mg Oxygen / 1 Sornple 04 CO -v6-F i g u r e 13 THE DETERMINATION OF C* IN MEDIUM 9K 2000 RATE OF OXYGEN TENSION CHANGE, mm Hg/hr F i g u r e 14 THE DETERMINATION OF C* IN MEDIUM 4 . 5 K 80r E 60 £ 40 a. 2 20 X o 14 po o o 1 o Slope = 0,04596 C * = 6,92 500 1000 RATE OF OXYGEN PARTIAL PRESSURE CHANGE, mm Hg / hr 1500 i VO I F i g u r e 15 THE DETERMINATION OF C* IN MEDIUM 13,5K 150 r 100 h a. o X o Slope =0.04423 C*=6.66 .1000 2 0 0 0 3 0 0 0 RATE OF OXYGEW PARTIAL PRESSURE OTAMGE,. mm H g / h r i I F i g u r e 16 THE DETERMINATION OF C* IN MEDIUM I8K 0 IOOO 2000 3000 RATE OF OXYGEN PARTIAL PRESSURE CHANGE, mm Hg /hr J -99-TABLE 5 S o l u b i l i t y of Oxygen i n E l e c t r o l y t e s (35 C)* E l e c t r o l y t e s Calculated Values (mg/liter) Determined Values (mg/liter) % Difference between Determined and Calculated % Difference between Determined and,. H20 H20 4.5 K** 9 K 13.5 K 18 K 7.0 6.69 6.46 6.23 6.02 6.92 6.68 6.66 7.06 + 3.0 + 3.3 + 6.5 +14.7 -1.1 -4.6 -4.9 +0.9 * Published by L i u et a l (L 13) ** Medium of Silverman and Lundgren (Si) with 4.5 g/1 ferrous i r o n -100-Also presented i n Table 5 are the saturation s o l u b i l -i t i e s of oxygen i n these media c a l c u l a t e d by the method of van Krevelen and H o f t i j z e r (VI). These c a l c u l a t i o n s were made by assuming that a l l i r o n was present as ferrous i r o n because the appropriate h f a c t o r of equation (70) was not a v a i l a b l e for f e r r i c i r o n . The table shows that the cal c u l a t e d values were always lower than the experimental values and that, at l e a s t f o r t h i s type of medium, the use of the saturation s o l u b i l i t y of oxygen i n water i s not an unreasonable approximation. The experimental procedure described here i s probably more r e l i a b l e than the c a l c u l a t i o n method because i t takes i n t o account a l l the components i n the fermentation medium i n c l u d i n g the organic metabolites produced by the b a c t e r i a involved. G. CRITICAL OXYGEN TENSION Figure 17 i s a p l o t of the oxygen tension-time trace which i s an enlargement of the low oxygen tension regime of Figure 11. The f i n a l oxygen tension, P , below which the oxygen uptake OO a c t i v i t y of the b a c t e r i a ceased completely i s 4.5 +0.5 mmHg, rather than zero as was predicted i n Monod's. I t i s thus assumed that the equation that best describes the oxygen uptake a c t i v i t y of J_. ferrooxidans i n 9K medium w i l l require the s u b s t i t u t i o n of e f f e c t i v e oxygen tension f o r oxygen tension i n equation (43), F i g u r e 17 DETERMINATION OF KSp VALUE -101-LsJ ££ £L <5 2 UJ O X 0 3 180 360. mm Hg/ hr mm Hgv = P - P CO CO 1 1 1 0 0,2 0.4 0.6 0.8 TIME, min 1.0 1.2 V = V -102-P - Poo m K s p + (P - P J (107) When the above equation i s combined w i t h equations (38) , (39) and (78), the equation of the f o l l o w i n g form can be obtained, v - d p H e x Vm r P - P=o r X " dt - Y L K s p + (P - P c o ) J (107-a) The r e c i p r o c a l of t h i s equation g i v e s , 1_ = _J_ = Y r K s p rX • dp Xp mHe L(P - Poo) J (107-b) dt This equation i s s i m i l a r i n form to the Lineweaver and Burk equation (44). The p l o t of ^  or — — - versus / r ) 1 „ N should y i e l d a K (——) ~~ 0 0 ' dt s t r a i g h t l i n e w i t h i t s slope equal to ——Tf- and i t s i n t e r c e p t equals Y — — — . A t y p i c a l p l o t of the dependency of the oxygen uptake r a t e on the e f f e c t i v e oxygen t e n s i o n i s i l l u s t r a t e d i n Figure 18. The K gp value thus could e i t h e r be obtained by d i v i d i n g the i n t e r c e p t by the slope of the r e s u l t i n g s t r a i g h t l i n e or be obtained by determining the e f f e c t i v e oxygen t e n s i o n at which the oxygen uptake r a t e of the b a c t e r i a was only h a l f of i t s maximum r a t e . K was found P. to be 1.0 ±0.2 mmHg, and w i t h the knowledge that C* = 6.68 mg/1 i n 9K medium, F i gure 18 A TYPICAL LINEWEAVER AND BURK PLOT -104-K g c was then found to be 0.045 mg/1, which i s e q u i v a l e n t to 1.4 x 1 0 - 6 molar oxygen. This value i s much greater than that f o r other organisms of the same s i z e rep o r t e d by Longmuir (L2). When the b a c t e r i a l a c t i v i t y f o l l o w s equation (43), that i s b a c t e r i a l a c t i v i t y ceases completely at oxygen t e n s i o n equal to zero, then the c r i t i c a l oxygen t e n s i o n above which the oxygen uptake r a t e would not be a f f e c t e d too much by the oxygen t e n s i o n would be twice the value of K o r i. However, i n the case of t>p T_. fer r o o x i d a n s i n 9K medium, b a c t e r i a l a c t i v i t y ceased at Pro = 4.5 mmHg r a t h e r than zero , the c r i t i c a l oxygen t e n s i o n thus equals the sum of the f i n a l oxygen t e n s i o n and 2 K„_.. Since K Sp and POT values were found to be 1.0 and 4.5 mmHg r e s p e c t i v e l y , the c r i t i c a l oxygen t e n s i o n i s thus c a l c u l a t e d to be 6.5 mmHg (or 0.29 mg o x y g e n / l i t e r at 35C). Maintenance of oxygen te n s i o n higher than 6.5 mmHg i s thus necessary to ensure that the oxygen t e n s i o n w i l l not be a r a t e - l i m i t i n g f a c t o r i n the growth of T_. f e r r o o x i d a n s . H. EFFECT OF SOLID PULP DENSITIES ON K L Although the a d d i t i o n of more than 0.5% (wt/v) glass beads i n t o a shake f l a s k would g r e a t l y reduce the growth r a t e of T_. f e r r o o x i d a n s , the a d d i t i o n of up to 15% (wt/v) g l a s s beads i n t o the tank fermentor had no e f f e c t on the growth of the b a c t e r i a . This -105-can p o s s i b l y be a t t r i b u t e d to a more intense grinding i n the shaker f l a s k than i n a s t i r r e d tank. Oxygen transf e r mechanisms were studied i n the tank reactor where oxygen was only allowed to t r a n s f e r by means of surface aeration ( i . e . no bubbles). The e f f e c t s of the glass beads (63 microns i n diameter) over a s o l i d s content range of 0 to 15 weight percent on the value of K^ were also studied. The r e s u l t s are presented i n Appendices IX-1 and IX-2. Figure 19 provides a t y p i c a l p l o t of dissolved oxygen concentration versus time and f e r r i c i r o n concentration versus time during an e n t i r e fermentation. The system was operating at f i r s t i n the k i n e t i c regime, then i n the d i f f u s i o n a l regime, and f i n a l l y i n the p h y s i c a l absorption regime. 1. The K i n e t i c Regime I n the e a r l i e s t period of fermentation, the b a c t e r i a l populations were small, thus the oxygen uptake rate, which was p r o p o r t i o n a l to the rate of i r o n production, was low. The oxygen transfe r a b i l i t y of the reactor f a r exceeded the oxygen uptake rate of the b a c t e r i a l population, thus the dissolved oxygen concentration i n the system was always higher than i t s c r i t i c a l l e v e l . The dissolved oxygen concentrations of the systems containing 0, 5, 10, and 15 (wt/v) percent glass beads, are p l o t t e d against the oxygen uptake rates as shown i n Figure 20. A s e r i e s of s t r a i g h t l i n e s with i d e n t i c a l slopes resulted. The p l o t s are exactly the same shape as expected i n the case of zero-order reaction i n the F i g u r e 19 THE KINETIC, DIFFUSIONAL AND PHYSICAL ABSORPTION REGIME (35°C AND 5 0 0 R P M ) 3 0 4 0 TIME-, hr -107 F i g u r e 20 THE KINETIC REGIME FOR ZERO ORDER REACTION (35°C AND 500 RPM ) 7r-0% solid 10% solid -108-k i n e t i c regime. Since the slope of the r e s u l t i n g l i n e i s -1/K^a, and s i n c e i t i s reasonable to assume that the a d d i t i o n of the g l a s s beads does not a f f e c t the i n t e r f a c i a l area of the system, i t i s thus concluded that the a d d i t i o n of the s o l i d p a r t i c l e s does not a f f e c t the v a l u e of i n t h i s regime. 2. The D i f f u s i o n a l Regime When the oxygen consumption r a t e f i n a l l y exceeded the r a t e of t r a n s f e r , the d i s s o l v e d oxygen c o n c e n t r a t i o n stayed constant at i t s c r i t i c a l l e v e l . The oxygen uptake r a t e as w e l l as the r a t e of i r o n p r o d u c t i o n was c o n t r o l l e d by the r a t e of t r a n s f e r and both became constant as i t was i n d i c a t e d i n F i g u r e 19. The system was o p e r a t i n g at the d i f f u s i o n a l regime. The K^a values at v a r i o u s a g i t a t i o n speeds were s t u d i e d during t h i s regime. T y p i c a l r e s u l t s are shown i n F i g u r e 21 where the oxygen uptakes c a l c u l a t e d , based on the i r o n c o n c e n t r a t i o n , are p l o t t e d a g a i n s t time at a g i t a t i o n speeds ranging from 300 to 600 RPM. The r a t e of oxygen t r a n s f e r was c a l c u l a t e d from the slope of the p l o t , and thus K^a was c a l c u l a t e d by d i v i d i n g the r a t e of t r a n s f e r by the c o n c e n t r a t i o n d r i v i n g f o r c e . The e f f e c t of s o l i d pulp d e n s i t i e s on K^a was a l s o s t u d i e d by performing the k i n d of experiment whose r e s u l t s appear i n F i g u r e 21 (without s o l i d s ) w i t h v a r i o u s l e v e l s of s o l i d s content. The r e s u l t s are shown i n F i g u r e 22 where K^a values are p l o t t e d a g a i n s t a g i t a t i o n speed when the system contained 0, 5, 10, and 15 weight percent glass beads. The K^a value was found to be p r o p o r t i o n a l F i g u r e 21 EFFECT OF AGITATION SPEED ON KLa / (35°C, WITHOUT SOLIDS) / o I 600 rpm / O.I55g Fe/l / hr / 22.20 mg02/l/hr^o i P 500 rpm / 0.0976 g Fe/l/hr </ 13.98 mg 0 2 / l / h r ^ / 400 rpm / 0.0457g Fe/L/hr j f 6.55 mg 02/l/hr^ ^ - 300 rpm o' 0.0227g Fe/l/hr o" 3.25 mg 02/l /hr-v O^'' I I I l l l l 20 40 60 80 100 120 140 160 TIME, hr F i g u r e 22 EFFECT OF SOLID PULP DENSITY O N M A S S T R A N S F E R C O E F F I C I E N T o 0% (RPM) 2 , 7 6 x I0"6 - i n -to the 2.76 power of the a g i t a t i o n speed f o r s o l i d s f r a c t i o n s (by weight) of up to 15%. Since the s o l i d s c o n c e n t r a t i o n d i d not seem to a f f e c t the value of "a" at constant a g i t a t i o n speed, i t i s thus concluded that the s o l i d s do not a f f e c t the value of f o r t h i s system because i t i s obvious from F i g u r e 22 that K^a i s not markedly a f f e c t e d by the s o l i d s content. 3. The P h y s i c a l A b s o r p t i o n Regime Near the end of the fermen t a t i o n , the oxygen uptake r a t e was g r e a t l y reduced due to the l i m i t e d a v a i l a b i l i t y of the f e r r o u s s u b s t r a t e f o r b a c t e r i a l growth. The r a t e of oxygen t r a n s f e r again exceeded the uptake r a t e . The d i s s o l v e d oxygen c o n c e n t r a t i o n then i n c r e a s e d s h a r p l y as the r e s u l t of the accumulation term i n equation (3) as can be seen i n F i g u r e 19. The l ^ a of the system during t h i s p e r i o d can be c a l c u l a t e d according to equation (65) by the gassing-out method, however a s m a l l r e s i d u a l of uno x i d i z e d f e r r o u s i r o n i n the medium would r e s u l t i n underestimation of K^a. Any meaningful e s t i m a t i o n of the K^a value i s thus d i f f i c u l t . I. EFFECTS OF SOLIDS PULP DENSITY ON K L a IN TANK FERMENTOR Values of K^a i n the sparged tank c o n t a i n i n g up to 20% (wt/v) of g l a s s beads, were c a l c u l a t e d from the oxygen tension-time t r a c e s , according to the r e c t i f i c a t i o n method proposed i n S e c t i o n G of Chapter 5. The values of K^a under v a r i o u s o p e r a t i o n a l c o n d i t i o n s are presented along w i t h oxygen-tension t r a c e s , oxygen uptake r a t e s , and R-square values i n Appendix XI. The results are summarized i n Tables 6-12. Table 6 presents K^a values of each experiment carried out in solids-free 9K medium i n the absence of bacteria (i.e. zero biological oxygen uptake rate), whereas, Table 7 presents the corresponding K^a values obtained during various stages of fermen-tation (oxygen uptake rate ranged from 0 to 207 mg oxygen/liter/ hour) in the aerated tank. An analysis of variance of the results from Tables 6 and 7 showed that F-values of 0.00 with 1 and 49 degrees of freedom was significantly smaller than the 95% value (F( l , 49, 0.95) = 4.04) found in the F-distribution table. Therefore there i s no reason to say that the values of Table 6 and 7 are from different populations i n a s t a t i s t i c a l sense. Thus there was no evidence that the oxygen uptake rate of up to 207 mg/l/hr had any effect on K^a values of the system. Two different sizes of glass beads, 105 micron (-120 +170 mesh) and 63 micron (-200 +270 mesh) were used to test the effect of particle size on K^a value. The pulp density was set at 20 percent. The results are tabulated i n Tables 8 and 9. Analysis of variance of the results showed that the F-value of 0.08 with 1 and 49 degrees of freedom was smaller than the corresponding value of 4.04 i n the distribution table. There was no evidence that the particle diameter had any significant effect on K^a value i n the system. The 63 micron particles were subsequently used i n studying the effect of solid pulp density on Y^a. TABLE 6 K L a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS SOLID PULP DENSITY = 0% AND OXYGEN UPTAKE RATE = 0 RPM Vs ( f t / h r ) 300 400 500 600 700 1.94 8.09 18.30 34.91 52.38 88.60 (-5.47)* (32.20) (0.13) (-0.41) (-0.43) 5.26 10.70 37.77 . 62.31 104.39 150.96 (-7.26) (12.52) (10.00) (17.59) (0.56) 8.81 18.98 47.44 90.18 111.34 .•195.28 (1.42) (3.25) (-1.40) (-2.15) (5.60) 12.63 24.60 54.93 100.52 186.08 227.45 (15.87) (14.57) (3.74) (28.06) (3.80) 17.15 40.64 67.01 119.03 195.28 295.15 (15.29) (6.30) (9.32) (18.13) (-7.92) C a l c u l a t e d oxygen uptake r a t e (mg oxygen/l/hr) TABLE 7 K L a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS SOLID PULP DENSITY = 0% AND OXYGEN UPTAKE RATE = 0 ^ 207 MG/L/HR RPM Vs ( f t / h r ) 300 400 500 600 700 1.94 9.01 (-4.42)* 19.82 (26.82) 33.96 (61.48) 58.55 (104.64) 90.89 (105.64) 5.26 14.90 (22.67) 35.17 (33.83) 63.09 (45.68) 105.36 (89.47) 146.52 (114.05) 8.81 20.47 (30.13) 46.54 (28.58) 86.37 (51.51) 124.60 (77.37) 195.17 (148.52) 12.63 24.19 (25.23) 55.88 (23.90) 94.65 (47.81) 161.44 (115.60) 245.26 (197.88) 17.15 40.64 (15.97) 66.32 (36.98) 128.83 (48.93) 201.31 (113.00) 285.58 (206.07) C a l c u l a t e d oxygen uptake r a t e (mg oxygen/l/hr) TABLE 8 K La VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS SOLID PULP DENSITY = 20%, PARTICLE DIAMETER = 63 u AND OXYGEN UPTAKE RATE = 0 MG/L/HR RPM Vs (ft/hr) 300 400 500 600 700 1.94 7.38 15.53 23.85 38.65 58.81 (31.05)* (4.55) (0.79) (-2.69) (-2.42) 5.26 10.47 26.16 41.63 67.84 106.03 (12.01) (13.08) (-2.33) (-5.35) (-1.84) .8.81 14.23 36.09 61.51 83.90 130.76 (10.51) (-2.75) (13.68) (3.01) (6.36) 12.63 16.27 46.74 76.67 107.70 168.78 (12.93) (-1.69). (1.06) (-13.36) (20.31) 17.15 22.13 63.34 100.52 118.77 197.11 (14.62) (0.77) (6.18) (-2.71) (33.83) Calculated oxygen uptake rate (mg oxygen/l/hr) TABLE 9 K L a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS SOLID PULP DENSITY = 20%, PARTICLE DIAMETER = 105 y AND OXYGEN UPTAKE RATE = 0 MG/L/HR RPM Vs ( f t / h r ) 300 400 500 600 700 1.94 5.52 15.68 25.27 42.08 55.48 (12.84)* (8.96) (-4.68) (-1.15) (3.08) 5.26 10.19 26.14 42.31 80.43 99.46 (16.20) (7.37) (0.54) (2.30) (7.51) 8.81 10.39 48.90 61.74 80.63 127.65 (4.43) (4.78) (12.02) (-3.05) (-1.87) 12.63 16.39 47.23 85.43 116.31 174.15 (-8.06) (0.70) (14.82) (-6.29) (4.89) 17.15 19.32 53.75 98.57 128.13 205.02 (9.78) (4.54) (-3.71) (-16.27) (2.98) * C a l c u l a t e d oxygen uptake r a t e (mg oxygen/l/hr) TABLE 10 K L a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS SOLID PULP DENSITY = 5%, PARTICLE DIAMETER = 63 y AND OXYGEN UPTAKE RATE = 0 * 140 MG/L/HR RPM Vs ( f t / h r ) 300 400 500 600 700 1.94 7.95 (12.31)* 22.57 (104.48) 34.50 (49.42) 43.59 (11.64) 82.33 (8.27) 5.26 10.26 (15.26) 34.46 (90.43) 55.70 (39.32) 84.84 (18.60) 117.54 (-3.23) 8.81 17.25 (20.16) 44.35 (102.91) 76.28 (38.05) 111.07 (21.12) 158.59 (13.35) 12.63 20.72 (23.72) 50.39 (139.48) 91.58 (57.01) 152.77 (41.16) 192.55 (28.01) 17.15 29.49 (20.51) 62.51 (117.51) 108.36 (69.73) 177.60 (21.22) 216.68 (9.93) * C a l c u l a t e d oxygen uptake r a t e (mg oxygen/l/hr) TABLE 11 K L a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS SOLID PULP DENSITY = 10%, PARTICLE DIAMETER = 63 y AND OXYGEN UPTAKE RATE - 0 * 212 MG/L/HR RPM Vs ( f t / h r ) 300 400 500 600 700 1.94 7.02 18.61 27.77 43.68 68.50 (1.42)* (3.33) (19.69) (84.65) (98.54) 5.26 12.53 30.46 59.99 83.68 117.77 (0.84) (4.55) (10.34) (101.16) (136.96) 8.81 15.02 44.42 73.13 89.15 147.86 (4.91) (2.42) (9.36) (109.04) (203.38) 12.63 17.86 51.34 91.75 137.68 197.86 (6.30) (14.55) (14.53) (111.16) (212.06) 17.15 27.42 57.98 107.41 146.79 208.19 ' (13.25) (4.17) (25.52) (92.06) (197.20) C a l c u l a t e d oxygen uptake r a t e (mg oxygen/l/hr) TABLE 12 K L a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS SOLID PULP DENSITY = 15%, PARTICLE DIAMETER = 63 y AND OXYGEN UPTAKE RATE = 15 ^ 202 MG/L/HR RPM Vs ( f t / h r ) 300 400 500 600 700 1.94 6.48 16.18 25.67 38.67 63.32 (20.72)* (65.24) (89.02) (113.00) (173.96) 5.26 11.70 28.84 59.58 82.41 106.47 (15.82) (69.20) (125.61) (141.78) (137.09) 8.81 11.95 49.22 69.69 88.58 143.06 (38.20) (81.75) (120.48) (110.84) (148.28) 12.63 16.82 50.21 83.79 121.19 186.42 (55.11) (96.71) (116.73) (121.61) (201.62) 17.15 24.04 53.13 110.26 136.64 198.99 (60.07) (79.06) (119.12) (134.22) (183.62) C a l c u l a t e d oxygen uptake r a t e (mg oxygen/l/hr) -120-Since there was no evidence that the oxygen uptake r a t e had any e f f e c t on Y^a v a l u e , the K L a valu e used f o r s o l i d s - f r e e medium was an a r i t h m e t i c average of the comparable r e s u l t s i n Tables 6 and 7. These average values were compared w i t h the K^a values i n the system c o n t a i n i n g 5, 10, 15 and 20 percent s o l i d p a r t i c l e s which are presented i n Tables 10, 11, 12 and 8. Three way a n a l y s i s of v a r i a n c e showed that the F values f o r the e f f e c t of pulp d e n s i t y , of a g i t a t i o n speed and of gas s u p e r f i c i a l v e l o c i t y were 6.62, 166 and 58 r e s p e c t i v e l y . A l l three F-values were c o n s i d e r a b l y l a r g e r than F ( 4 , 124, 0.95) = 2.45 i n the F - d i s t r i b u t i o n t a b l e . I t was thus concluded that the pulp d e n s i t y , the a g i t a t i o n speed and the gas s u p e r f i c i a l v e l o c i t y were the important f a c t o r s a f f e c t i n g the K^a value i n the system. The best f i t equation r e s u l t i n g from the multiple, r e g r e s s i o n a n a l y s i s was, \a = 1.78 x 10-6(p)-2-3^0.t6( N )2.65±0.06 ( V g )0.57i0. 03 ( 1 0 8 ) The m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t f o r the equation was 0.9913 w i t h 3 and 146 degrees of freedom. The confidence i n t e r v a l s on the exponents i n the equation and i n a l l subsequent equations are at 95% l e v e l . The exponents on the a g i t a t i o n speed and on the super-f i c i a l v e l o c i t y are 2.65 and 0.57 r e s p e c t i v e l y . The exponent of l e s s than one i n V i n d i c a t e d that the i n c r e a s e i n V i n c r e a s e d the s s frequency of coalescense. -121-When the data were analyzed separately f o r each pulp density the following equations were obtained. For 0% pulp density K La = 1 . 4 3 x l 0 - 6 ( N)2.6V±0.09 ( V g )0-59±0.03 For 5% K La = 2.04 x l O " 6 ( N ) 2 ' 6 1 ± 0 ' 1 6 ( V s ) ° ' 5 l + ± 0 - 0 6 For 10% K La = 2.07 x l O " 6 ( N) 2•59±0.15 ( V g )0.56±0.06 For 15% K La = 1.37 x 10" 6 (N)2.6U±0.20 ( V s )0.58±0.08 For 20% K La = 1.40 X 10" 6 ( N)2.62±0.13 ( V g )0.57+0.05 In the m i c r o b i o l o g i c a l leaching of mineral ores, i t i s desi r a b l e to increase the s o l i d pulp density ( i . e . the substrate concentration) so that i t would not be a rate l i m i t i n g f a c t o r i n the whole leaching process. However, i t i s evident that i n c r e a s i n g the s o l i d pulp density decreases the K La value of the system, (e.g. according to equation (108) the K^a value at 0% s o l i d i s 28% higher than the value at 20% s o l i d ) . Under such circumstances oxygen t r a n s f e r from the a i r to the l i q u i d medium could become a rate l i m i t i n g f a c t o r . Therefore, (109) (110) (111) (112) (113) -122-there should be an optimum s o l i d pulp density i n a m i c r o b i o l o g i c a l leaching system which w i l l ensure the maximum p o s s i b l e rate of leaching. J. THE POWER CONSUMPTION The a g i t a t o r power consumption f or the a g i t a t i o n of 9K medium containing 20% 63 micron glass beads was compared to the same system without beads. The r e s u l t s are shown i n Figure 23, where the power consumptions expressed as horse powers per 1000 gallons of 9K medium are p l o t t e d against the a g i t a t i o n speeds ranging from 230 to 1,200 RPM on f u l l - l o g a r i t h m i c paper. The r e s u l t s i n d i c a t e that the power consumption i s d i r e c t l y p r o p o r t i o n a l to 2.67 power of the a g i t a t i o n speed. However, the power consumption with and without the s o l i d s coincided at a g i t a t i o n speeds below 360 RPM. This i s due to the f a c t that most of the s o l i d s s e t t l e d on the bottom of the tank at such low a g i t a t i o n speeds. At a g i t a t i o n speeds of over 500 RPM on the other hand, the power consumption f or the medium with the s o l i d s was 22% higher than that without s o l i d s . The higher power consumption i s a t t r i b u t e d to the increase of the apparent density of the medium. In between 360 and 500 RPM, t r a n s i t i o n regime ex i s t e d where the s o l i d s were p a r t i a l l y suspended. Excepted i n the t r a n s i t i o n regime, the power consumption was proportional to 2.67 power of the a g i t a t i o n speed, which was s l i g h t l y lower than 3.0 reported by Rushton et a l . (R3). -123-F i g u r e 23 T H E P O W E R C O N S U M P T I O N W I T H A N D W I T H O U T G L A S S B E A D S 5 0 ! c r 2 0 O O 2 io O L a. L 0.61 20% solids A x/ 1 P 9K medium i i i i i i i J 100 200 500 RPM 1000 2000 -124-K. RECTIFICATION METHOD Some assumptions were made i n the development of the r e c t i f i c a t i o n method. The v a l i d i t y of these assumptions w i l l be discussed here; no oxygen i s allowed to tr a n s f e r i n or out of the system, the oxygen uptake rate i s equal to the rate of oxygen depletion i n the system, as described i n equation (67). f - -rx (67 I f rX i s a constant, a p l o t of C versus t w i l l r e s u l t i n a s t r a i g h t l i n e with i t s slope equal -rX. The r e s u l t s shovm i n Figure 11 dC i n Section G of t h i s chapter, confirm that -j-j was indeed a constant as long as the oxygen tension was maintained above 11 mmHg. The majority of the experiments were performed within s i x minutes or 0.1 hour. The change of the b a c t e r i a l population over t h i s experimental period could be estimated by a rearranged form of equation (82), hence, 1. About rX = constant In a closed system, as i n the Erlenmeyer f l a s k , where X -Exp ( u t ) - 1.0 (114) -125-S u b s t i t u t i n g u = u m = 0.116 ( i n 9K medium), and t = 0.1 hour, 1^-1° = 0.012 (115) A o Even at i t s maximum r a t e of growth, the b a c t e r i a l p o p u l a t i o n i n c r e a s e d only 1.2% i n s i x minutes. Thus the b a c t e r i a l p o p u l a t i o n w i t h i n the p e r i o d of the experiment remained f a i r l y constant. So i t i s concluded t h a t both the s p e c i f i c oxygen uptake r a t e , r , and the b a c t e r i a l p o p u l a t i o n , X, remained constant i n each run of the experiment. 2. About the Constancy of I t was proved i n S e c t i o n J of t h i s chapter t h a t the K^a value was not a f f e c t e d by the oxygen uptake r a t e ( r e a c t i o n r a t e ) up to 207 mg/l/hr. In other words, K^a w i t h r e a c t i o n was the same as th a t without r e a c t i o n . The r e a c t i o n was thus i n the slow r e a c t i o n regime. This c o n c l u s i o n can be proved i n another way. According to equat ions (20) and (47), the r e a c t i o n time f o r the f i r s t order r e a c t i o n i s , The maximum ^ and the minimum C values i n the experiments were 200 mg/l/hr, and 0.2 mg/1 r e s p e c t i v e l y . The minimum t thus was 1 0 - 3 hr or 3.6 sec. On the other hand, K^a described i n S e c t i o n H was 2.0 h r - 1 or 5.84 x 10~h s e c - 1 at 300 RPM. I f the cross s e c t i o n a l -126-area of the tank was to be used as the t o t a l i n t e r f a c i a l a r e a , then, w i t h H = 12 i n . or 30.6 cm, thus was c a l c u l a t e d t o be around 0.2 cm/sec. According to equation (19) the d i f f u s i o n a l time would be •t_ = ~ r = 5 x 10~h sec (19) where D = 2 x 10" 5 cm/sec. The r e a c t i o n time of 3.6 sec i s s e v e r a l thousand times gre a t e r than the d i f f u s i o n a l time, thus the requirements of equation (21) are f u l f i l l e d . The system i s thus proved to be i n the regime of slow r e a c t i o n . L. ADVANTAGES OF THE PROPOSED RECTIFICATION METHOD A t y p i c a l oxygen concentration-time t r a c e obtained from an a e r a t i o n experiment i s shown i n F i g u r e 24. The c o n c e n t r a t i o n d r i v i n g f o r c e , y^, was c a l c u l a t e d according t o , y ± = 6.68 - C± (118) where 6.68 i s the s a t u r a t i o n s o l u b i l i t y of oxygen i n 9K medium at 35°C. F i g u r e 2 4 A T Y P I C A L O X Y G E N C O N C E N T R A T I O N - T I M E T R A C E 7ns 6^ E 5 UJ §2 4 x o m 5 I 4 =5,28 I Y 4 3,46 1 Y 3 =2.89 Y 5 =2.40 Y 2 = 1.74 1 1 1 I 2 T I M E , min J 3 i —I I -128-According to Davis' method (D5) described i n S e c t i o n G of Chapter 5, an a value can be c a l c u l a t e d based on three data p o i n t s . For example, i f y 1 } y 2 , and y 3 are s e l e c t e d , 2 (119) a = llll IL_ _ o.30 Yi + y 2 ~ 2y, On the other hand, the a v a l u e based on the p o i n t s y 3 , y 4 , and y 5 gave, ^ 5 " = -0.60 ( 1 2 0 x yh + y 5 - 2 y 3 v i^o; The a v a l u e was s e n s i t i v e to the data chosen. According to the proposed r e c t i f i c a t i o n method, when an a value was c a l c u l a t e d based on a l l seven data p o i n t s , a value of 0.70 was obtained. According to the same method, n' = T-0.4915. These r e s u l t s were fed back i n t o equations (83) and (117), r e s u l t i n g i n , y ± = 0.70 + (C* - C Q - 0.70) Exp (-0.4915 t ) (121) The p l o t of t h i s equation i s a l s o shown i n F i g u r e 24. This example c l e a r l y i n d i c a t e s that Davis' method which u t i l i z e d only three p o i n t s of the a v a i l a b l e data f o r c a l c u l a t i o n was extremely s e n s i t i v e to the accuracy of the data chosen. The proposed r e c t i f i c a t i o n method on the other hand, u t i l i z e d a l l the -129-data a v a i l a b l e i n e s t i m a t i n g the a v a l u e and was thus more r e l i a b l e . However, the proposed method i n v o l v e d more c a l c u l a t i o n s , but w i t h the a i d of a modern computer, i t could be performed without too much e f f o r t . The proposed r e c t i f i c a t i o n method was a l s o s u p e r i o r to the dynamic gassing-out method because n e i t h e r the knowledge of oxygen uptake r a t e nor the d i f f e r e n t i a t i o n of the c o n c e n t r a t i o n - t i m e t r a c e was necessary. I n the dynamic gassing-out method, the oxygen uptake r a t e was measured during the p e r i o d of non-gassing c o n d i t i o n s , and i t was p o i n t e d out that even w i t h great c a r e , the oxygen uptake r a t e appeared abnormally lower than i t should have been (B6). The r e s u l t s of our s t u d i e s a l s o support t h i s evidence. Oxygen uptake r a t e of a medium could be c a l c u l a t e d according to the proposed r e c t i f i c a t i o n method, -from a known oxygen tension-time t r a c e and s a t u r a t i o n oxygen s o l u b i l i t y . I t could be measured i n the modified Erlenmeyer f l a s k as was d e s c r i b e d i n S e c t i o n C-6, Chapter 4. Furthermore the oxygen uptake r a t e could a l s o be obtained experimen-t a l l y by measuring the r a t e of oxygen d e p l e t i o n i n the tank under non-gassing c o n d i t i o n s as described by Bankyopadhyay and Humphrey (B6). T y p i c a l oxygen uptake r a t e s obtained by c a l c u l a t i o n , from the Erlenmeyer f l a s k and from non-gassing c o n d i t i o n s are t a b u l a t e d i n Table 13. A n a l y s i s of v a r i a n c e of the r e s u l t s obtained by c a l c u l a t i o n and from the Erlenmeyer f l a s k showed that the F-value of 0.04 was s i g n i f i c a n t l y s m a l l e r than F ( l , 19, 0.95) = 4.41 found i n the d i s t r i b u t i o n t a b l e . Therefore there i s no reason t o b e l i e v e -130-TABLE 13 THE COMPARISON OF CALCULATED AND EXPERIMENTAL VALUES OF OXYGEN UPTAKE RATE (MG 0 2/L/HR) C a l c u l a t e d Erlenmeyer F l a s k Non Gassing C o n d i t i o n s In 9K medium 17.9 19.0 14.0 In 9K medium 30.0 30.5 22.0 In 9K medium 51.1 67.0 43.0 In 9K medium 99.9 94.0 74.0 In 9K medium 154.5 143.0 94.0 9K medium w i t h 5% s o l i d 11.2 9.4 8.6 9K medium w i t h 5% s o l i d 22.8 24.0 15.7 9K medium w i t h 5% s o l i d • 50.7 62.0 4.40 9K medium w i t h 5% s o l i d 111.0 107.0 72.0 9K medium w i t h 5% s o l i d 18.0 16.4 12.4 -131-th a t the values from the c a l c u l a t i o n and th a t from the Erlenmeyer f l a s k are not i n good agreement. However, the a n a l y s i s of v a r i a n c e of the r e s u l t s from the non-gassing c o n d i t i o n s and that from the Erlenmeyer f l a s k showed that the F-value of 12.6 was s i g n i f i c a n t l y higher than F ( l , 19, 0.95) = 4.41. Therefore there i s a s i g n i f i c a n t d i f f e r e n c e between the two v a l u e s . The lower values from the non-gassing experiments suggested the p o s s i b i l i t y of the presence of f i n e a i r bubbles i n the medium which s t a r t e d to t r a n s f e r oxygen to the medium as the oxygen i n the medium was being depleted by the b a c t e r i a . -132-CHAPTER 8 CONCLUSIONS Experiments carried out i n shake-flasks indicated that variations i n pH value over the range 1.8 ^ 2.1 did not affect the s p e c i f i c growth rate of T_. ferrooxidans; lowering the pH resulted i n an increase i n lag time. At the end of a fermentation the pH of the medium generally s t a b i l i z e d at between 2.10 to 2.20 regardless of i t s i n i t i a l pH. The evidence showed that the o v e r a l l reaction for the b i o l o g i c a l oxidation of ferrous sulfate to follow the equation, 20FeSOit + 18H20 + 50 2 -»• 4Fe 2 (SOi+h + 4 (H 30)Fe 3 ( S O i ^ (OH) 6 (59) The dependency of the s p e c i f i c growth rate of the bacteria on ferrous i r o n concentration was studied using both batch and continuous culture techniques. The results followed Michaelis-Menten k i n e t i c s , but the saturation constant was found to be dependent on the t o t a l i r o n concentration. There was also a discrepancy between the results from the two techniques. The results from the continuous culture technique seemed to be more r e l i a b l e . The oxygen uptake rate of the fermentation medium was found to be proportional to the rate of iron oxidation and to the rate of b a c t e r i a l carbon production. However, the calculated oxygen uptake rate based on the rate of iron oxidation was 5.2% higher than the rate obtained experimentally from the respirometer. The experimental value rather than calculated value was thus then used i n ca l c u l a t i n g t o t a l rate of oxygen consumption. A method for determining the saturation oxygen s o l u b i l i t y -133-i n the culture medium has been proposed. The C* value i n 9K medium at 35C was found to be 6.68 mg/1 (in e q u i l i b r i u m with the humid a i r ) , and incr e a s i n g the t o t a l i r o n concentration i n the medium reduced the C* value s l i g h t l y . The C* value at various t o t a l i r o n concentrations were compared with the calculated values based on van Krevelen and H o f t i j z e r ' s method. Differences of up to 14% were observed. Since the proposed method needed few assumptions, and since i t enabled one to determine the C* value i n the presence of a l l the components i n the fermentation medium, i t was deemed to be more r e l i a b l e than the c a l c u l a t i o n a l technique. The e f f e c t of oxygen tension on the b a c t e r i a l a c t i v i t y was also studied. When the oxygen tension was above 6.5 mmHg, the oxygen uptake by T_. ferrooxidans was at i t s maximum r a t e , and was independent of the oxygen tension l e v e l . However, when the oxygen tension was below 6.5 mmHg, the oxygen uptake rate became d i r e c t l y p r o p o r t i o n a l to the e f f e c t i v e oxygen tension, P - 4.5; where 4.5 mmHg was the oxygen tension below which b a c t e r i a l a c t i v i t y ceased. The equation that best describes the a c t i v i t y of T_. ferrooxidans i n 9K medium then becomes, y = P m K +(P-1.5) ( 1 0 7 ) A method f o r c a l c u l a t i n g K^a i n an aerated tank based on the s t a t i s t i c a l r e c t i f i c a t i o n of the dissolved oxygen concentration-time -134-trace was proposed. With a known C* value, the oxygen uptake rate was also c a l c u l a t e d . Since the experimental data were used d i r e c t l y i n t h i s method f o r estimating K^a, without the modification of the raw data as i n other methods, more accuracy resulted. The e f f e c t s of s o l i d pulp d e n s i t i e s on the values of and K^a were studied. Although i n c r e a s i n g the s o l i d pulp density d i d not a f f e c t the value of K^, i t reduced the value of K]_a s l i g h t l y . More bubble coalescence at high pulp density may be the cause. The value of K-^ a at s o l i d pulp d e n s i t i e s of up to 20% was found to follow the equation, K La = 1.78 x 1 0 _ 6 ( p ) ~ 2 , 8 1 t ( N ) 2 - 6 5 ( V s ) 0 - 5 7 (108) The power consumption of the a g i t a t o r i n a non-aerated tank was found to be pro p o r t i o n a l to 2.67 power of the a g i t a t i o n speed, with or without the s o l i d being present. The ad d i t i o n of 20% glass p a r t i c l e s of 63 microns i n s i z e however, increased the power consumption by 22%. At rates of up to 200 mg/l/hr, simultaneous d i f f u s i o n with b i o l o g i c a l reaction i n an agitated tank was found to be i n the slow rea c t i o n regime. The maximum d i f f u s i o n a l time was approximately 5 x 10~^ second, which was much less than the minimum r e a c t i o n time of 3.6 seconds. In the m i c r o b i o l o g i c a l leaching of ores i n an aerated tank, a s u f f i c i e n t l y high dissolved oxygen concentration i s desired so that the system w i l l be operating i n the k i n e t i c regime. At the same time, -135-a s u f f i c i e n t amount of ore p a r t i c l e s have to be added so that the substrates contained i n the ores w i l l not be a rate l i m i t i n g f a c t o r i n the whole operation. However, the a d d i t i o n of p a r t i c l e s to the system not only reduces the l i q u i d hold up, but also s i g n i f i c a n t l y reduces the rate of oxygen t r a n s f e r i n the system. Furthermore, in c r e a s i n g the s o l i d pulp density could damage the b a c t e r i a l c e l l s , thus reducing the rate of oxidation r e a c t i o n . A c a r e f u l evaluation of an optimum s o l i d pulp density i n the m i c r o b i o l o g i c a l leaching process i s thus important. c LITERATURE Augenstein, D.C. and Wang, D.I.C. Presented at 17th Canadian Chem. Eng. Conf., Niagara F a l l s Ont., (1967). Beck, J.V. and S h a f i a , F.M. J . B a c t e r i o l , 88:850 (1964). Bryner, L.C. and Anderson, R. Ind. Eng. Chem., 49.: 1721 (1957). Duncan, D.W., Pers o n a l Communication. Beck, J.V. J . B a c t e r i o l , 79_:502 (1960). Bartholemew, W.H. Ind. Eng. Chem., j42:1801 (1958). Bankyopadhyay, B., and Humphrey, A.E. B i o t e c h n o l . Bioeng. ,• 9_:533 (1967). B a t c h e l o r , G.K. C i t e d i n P. 20 "Mixing I I " Ed. by U h l , V.W. and Gray, J.B. Academic P r e s s , N.Y. (1967). B r i e r l e y , M.R. and S t e e l , R. Appl. M i c r o b i o l . , 7_:57 (1959). Calderbank, P.H. and Moo-Young,M.B. Chem. Eng. S c i . , 16:39 (1961). Chiang, S.H. and Toor, H.L. A.I.Ch.E.J., 5:165 (1959). LITERATURE (CONTINUED) Colmer, A.R. and Hinkle, M.E. Sci. 106:253 (1947). Colmer, A.R., Temple, K.L. and Hinkle, M.E. J. Bacteriol, 59_:317 (1950). Cooper, CM., Fernstron, G.A. and Miller, S.A. Ind. Eng. Chem., 36:504 (1944). Calderbank, P.H. Trans. Inst. Chem. Engrs. (London) 36^443 (1958). Danckwerts, P.V. Ind. Eng. Chem., 43:1460 (1951). Danckwerts, P.V. "Gas-Liquid Reactions" McGraw-Hill, N.Y. (1970). Duncan, D.M. and Trussell, P.C. Can. Met. Quarterly, 3(1):43 (1964). Davis, D.W. P. 5, "Empirical Equations and Nomography" 1st Ed., McGraw-Hill, N.Y. (1943). Endoh, K. and Oyama, Y. Inst. Phys. Chem. Research Sci. (Japan) 52_:131 (1958). Elsworth, R., Williams, V. and Harris-Smith, R.J. Appl. Chem., 7_:261 (1957). Friedlander, S.K. A.I.Ch.E.J., 2:43 (1957). LITERATURE (CONTINUED) -138-F- 2. F r o e r s l i n g , N. C i t e d i n P. 64 "Mixing I I " e d i t e d by U h l , V.W. and Gray, J.B., Academic Press, N.Y. (1967). F- 3. F u l l e r , E.C. and C h r i s t , R.H. J . Am. Chem. Soc,63:1644 (1941). F- 4. F i n n , R.K. Biochem. B i o l . Eng. S c i . , 1_:84 (1967). F- 5. " Friedman, A.M. and L i g h t f o o t , E.N. Ind. Eng. Chem., 49.:1227 (1957). G- 1. Gaden, E.L. S c i . Rept. Super S a n i t a , 1_:161 (1961). G- 2. Gubbins, K.E., Garden, S.N. and Walker, R.D. J . of G.C. Page 98, March (1965). H- 1. H i g b i e , R. Trans. Am. I n s t . Chem. Engrs., 31_:365 (1935). H- 2. H a r r i o t t , P. A.I.Ch.E.J., 8:93 (1962). H- 3. H i k i t a , H. and Asi a , S . I n t . Chem. Eng., 4_:332 (1964). H- 4. Hodgman, CD., Weast, R.C. and Selby, S.H. (Ed). "Handbook of Chemistry and P h y s i c s . " 41st Ed. Chem. Rubber Pub. Co., Ohio (1959). LITERATURE (CONTINUED) Hinze, J.O. A.I.Ch.E.J. 5_:289 (1955). Hyman, D. and Van Den Bogaerde, I.M. Ind. Eng. Chem, 52:751 (1960)••. I n t e r n a t i o n a l C r i t i c a l Tables V o l . I l l , E d i t e d by Washburn, E.W., McGraw-Hill Co., N.Y. (1926). I s a a c s , W.P. and Gaudy, A.F. B i o t e c h n o l . Bioeng. 10:69 (1968). Johnson, D.L., S a i t o , H., P o l e j e s , J.D. and Hougen, O.A A.I.Ch.E.J., 3.: 411 (1957). K i n s e l , N.A. and Umbreit, W.W. J . B a c t e r i o l . 87^:1243 (1964). K o l t h o f f , I.M. Meehan, E.J. and Br u c k e n s t e i n , S. P. 839 " Q u a n t i t a t i v e Chemical A n a l y s i s " 4th Ed. McGraw-Hill, N.Y. (1969). Lewis, W.K., and Whitman, W.G. Ind. Eng. Chem., 16:1215 (1932). Longmuir, I.S. Biochem. J . _5J7_:81 (1954). Lineweaver and Burk. C i t e d i n P. 223, " P r i n c i p l e s of Biochemistry" 3rd Ed. by White, A., Handler, P. and Smith, E.L., McGraw-Hill N.Y. (1964). LITERATURE (CONTINUED) -140-Leathen, W.W. , Kinsel, N.A. , and Braley, S.A. J. Bacteriol. 72:700 (1956). Lundgren, D.G. Amdersen, K.J. Remsen, CC. and Mahoney, R.P. Dev. Ind. Microbiol., 6, 250 (1964). Landesman, J. , Duncan, D.W. and Walden, CC. Can. J. Microbiol. 12:25 (1966). Lacey, D.T. and Lawson, F. Biotechnol. Bioeng. 12:29 (1970). Lees, H., Kwok, S.C and Suzuki, I. Can. J . Microbiol. 15:43 (1969). Lau, CM. Shumate, K.S. and Smith, E.E. Presented before 3rd Sym. on Coal Mine Drainage Research in Pittsburg, Penn. May 19 (1970). Liu, M.S., Branion, R.M.R. and Duncan, D.W. J.W.P.CF. , 44(1) :34 (1972). Liu, M.S. M.A. Sc. Thesis, Dept. of Chem. Eng., U.B.C (1969). Linek, V. and Tvrdik, J. Biotechnol. Bioeng., 13:353 (1971). Liu, M.S. Branion, R.M.R. and Duncan, D.W. Biotechnol. Bioeng. 15_:213 (1973). Michaelis and Menten. Cited in P. 221, "Principles of Biochemistry" 3rd Ed. by White, A., Handler, P., and Smith, E.L., McGraw-Hill N.Y. (1964). -141-LITERATURE (CONTINUED) M- 2. Monod, J . , Ann Rev. M i c r o b i o l . 3_:371 (1949). M- 3. Margalith, P., S i l v e r , J . and Lundgren, D.G. J. B a c t e r i o l . , 92_:1706 (1966). M- 4. MacDonald, D.G. Ph. D. Thesis, Dept. of Chem. Eng., Queens Univ. Ont. (1968) M- 5. McGoran, C.J.M. , Duncan, D.W. and Walden, C C . Can. J . M i c r o b i o l . 15:135 (1969). M- 6. MacDonald, D.G. and Clark, R.H. Can. J . Chem. Eng. 48:669 (1970). M- 7. Maclag, W.J. and Lundgren, D.G. Biochem. Biophysic, Res. Commun., 17:603 (1964). M- 8. Malouf, E.E. and Prater, J.D. J . Metals, 13:353 (1961). M- 9. Miyamoto, S. B u l l Chem. Soc. Japan 2^ 748 (1927). M- 10. Miyamoto, S. and Kaya, T. I b i d . , 5_:123, 229, 321 (1930). M- 11. Miyamoto, S. Kaya, T. and Nakata, A. I b i d . , 6/.264 (1931). M- 12. Miyamoto, S. I b i d . , 7^ :8 (1932). M- 13. Murphy, D. , Clark, D.S. and Lentz, C P . Can. J . Chem. Eng. 3J7_:157 (1959). M- 14. Michel, B.J. and M i l l e r , S.A. A.I.Ch. E.J., 8:262 (1962). LITERATURE (CONTINUED) -142-Maxon, W.D. and Johnson, M.J. Ind. Eng. Chem., 45:2554 (1953). Novick, A. C i t e d i n P. 190, "Biochemical and B i o l o g i c a l Engineering Science" V o l . I . by Blakebrough, N., Academic P r e s s , N.Y. (1967). Newton Raphson Method C i t e d i n P. 133, "Numerical Methods and F o r t r a n Programming" by McCracken, D.D. and Dorn, W.S., John Wily Inc., N.Y. (1964). Oyama, Y. and Endoh, K. Kagaku Kogaku (Japan), 19_: ( 2 ) , 1 (1955). P i c k e r i n g , R.W. and Haigh, C.J. Canadian Patent 787853, June 18, (1968). Robingson, R.G. and Engel, A.J. B i o . Eng. Food P r o c , Chem. Eng. Prog. Symp. S e r i e s 69:(62):129 (1966). Rushton, J.H. Chem. Eng. Progress, 47:485 (1951). Rushton, J.H., C o s t i c h , E.W. and E v e r e t t , H.J. I b i d . , 46:467 (1950). Rogers, J.L. and Vernimmen, A.P. Water P o l l u t i o n A b s t r a c t s , 39_:203 (1966). LITERATURE (CONTINUED) -143-S- 1. Silverman, M.P. and Lundgren, D.G. J . B a c t e r i o l . 77:642 (1959). S- 2. Silverman, M. Can. J . M i c r o b i o l . , 16:845 (1970). S- 3. Silverman, M.P. and E h r l i c h , H.L. Advances Appl. M i c r o b i o l . 6^ :153 (1964). S- 4. Silverman, M.P. and Lundgren, D.G. J . B a c t e r i o l . , 78:326 (1959). S- 5. S h a f i a , F. and W i l k i n s o n , R.F. J . B a c t e r i o l . , 97^:256 (1969). S- 6. S i e g e l l , S.D. B i o t e c h n o l . Bioeng., 4^:345 (1962). S- 7. Swinnerton, J.W., Linnenbom, V.J. and Cheek, C.H. Anal. Chem. 34:483 (1962). S- 8. Shinnar, A. and Church, J.M. Ind. Eng. Chem., 5_2:2'53 (1960). S- 9. S n i j d e r , R.J., Hagerty, P.F. and Molstad, M.C. Ind. Eng. Chem. 49:689 (1957). S- 10. S a n d e l l , E.G. C i t e d i n P. 524 " C o l o r i m e t r i c Determination of Traces of M e t a l s " 3rd Ed. I n t e r s c i e n c e N.T. (1959). T- 1. Tuouinen, O.H. and K e l l y , D.P. Arch. M i k r o b i o l . 88/.285 (1973). T- 2. Touoinen, O.H., Niemela, S.I. and G y l l e n b e r g , H.G. Bi o t e c h n o l o . Bioeng., 13:517 (1971). -144-LITERATURE (CONTINUED) T- 3. Temple, K.L. and Colmer, A.R. J. B a c t e r i d . 62:605 (1951). T- 4. Torma, A.E. Ph.D. Thesis, Dept. of Chem. Eng., U.B.C. (1970). T- 5. Torma, A.E., Walden, C C . and Branion, R.M.R. Biotechnol. Bioeng., 12:501 (1970). T- 6. T e r a i , T. and Iwasaki, T. J. Ferment. Technol., 49_:53 (1971). T- 7. Taguchi, H. and Humphrey, A.E. Kagaku, Kogaku (Japan) 30/. 869 (1966). T- 8. T u f f i l e , CM. , and Pinho, F. Biotechnol. Bioeng., JL2:849 (1970) T- 9. Tsao, G.T. Biotechnol. Bioeng., 10:765 (1968). T- 10. Tsao, G.T. Biotechnol. Bioeng., 11:1071 (1969). T- 11. Tsao, G.T. Biotechnol. Bioeng., 1_2:51 (1970). U- 1. Unz, R.F. and Lundgren, D.C S o i l , S c i . , 92/302 (1961). V- 1. Van Krevelen, D.W., and H o f t i j z e r , P.J. Cited i n P. 19, "Gas-Liquid Reactions" by Danckwerts, P.V. McGraw-Hill, N.Y. (1970). LITERATURE (CONTINUED) -145-V- 2. Vermeulen, T. , W i l l i a m s , G.M. and L a n g l o i s , G.E. Chem. Eng. Progr., 51j85 (1955). V- 3. V a l e n t i n , F.H.H. . "Absorption i n Gas-Liquid D i s p e r s i o n s " E. and F.N. Spon L i m i t e d . , London (1967). V- 4. Van Der Kroon, G.T.M. Water Research, .2:26 (1968). W- 1. Westerterp, K.R., Van Dierendonck, L.L. and Dekraa, J.A. Chem. Eng. S c i . , 18:157 (1963). W- 2. Wise, S.W. J . Gen. M i c r o b i o l . , 5_: 167 (1951). W- 3. Winkler method. C i t e d i n P. 309, Std. Methods f o r the Exam, of Water and Waste-water, 11th Ed. APHA-AWWA-WPCF, (1960). Y- 1. Yates, M.G. and Nason, A. J. B i o l . Chemistry, 241:4861 (1966). Y- 2. Yoshida, F., Ikeda, A., Imakawa, S. and Miura, Y. Ind. Eng. Chem., 52:435 (1960). -146-NOMENCLATURE A t o t a l i n t e r f a c i a l area, L 2 a i n t e r f a c i a l area per volume, L - 1 b, c, d, ... m, n constants B reactant concentration, ML - 3 B i n i t i a l reactant concentration, ML - 3 o ' C d i s s o l v e d gas concentration, ML - 3 C i , C2, ••• dissolved gas concentration at various time i n t e r v a l s , ML - 3 C dissolved gas concentration at i n t e r f a c e , ML - 3 C^ i n i t i a l dissolved gas concentration, ML - 3 C* s a t u r a t i o n gas s o l u b i l i t y , ML - 3 AC concentration d r i v i n g force, ML - 3 C c r i t i c a l dissolved gas concentration, ML - 3 D d i f f u s i v i t y , L 2 T _ 1 impeller diameter, L D maximum bubble diameter, L max E enzyme concentration, ML - 3 E-S enzyme-substrate complex, ML - 3 F Q absorption rate, ML~ 2T - 1 F T t o t a l absorption rate, MT""1 absorption r a t e , ML~ 3T _ 1 g g r a v i t a t i o n a l a c c e l e r a t i o n , L T - 2 H height of reactor, L H Henry's law constant, mmHg L 3 M - 1 -147-Henry's law constant f o r water, atm L 3M - 1 s o l u b i l i t y c o n t r i b u t i o n f a c t o r i o n i c strength o v e r a l l mass transf e r c o e f f i c i e n t with r e a c t i o n LT~ o v e r a l l mass tr a n s f e r c o e f f i c i e n t without r e a c t i o n L T - 1 r e a c t i o n rate constant, M L - 3 T - 1 ( M L - 3 ) n r a t e constant f o r n-th order r e a c t i o n Michaelis and Menten constant, ML - 3 s a t u r a t i o n constant, ML - 3 s a t u r a t i o n constant, mmHg enhancement f a c t o r a g i t a t i o n speed, rpm oxygen tension, mmHg product concentration, ML - 3 i n i t i a l product concentration, ML - 3 a g i t a t o r power consumption without aeration, LMT - 1 a g i t a t o r power consumption with aeration, LMT - 1 f i n a l oxygen tension, mmHg volumetric gas flow r a t e , L 3 T - 1 square of the c o r r e l a t i o n c o e f f i c i e n t r a t e of re a c t i o n , M L _ 3 T - 1 oxygen uptake r a t e , ML~ 3T - 1 f r a c t i o n a l r a t e of surface renewal, T - 1 -148-S substrate concentration, ML - 3 5 i n i t i a l substrate concentration, ML - 3 o SS sum square of d e v i a t i o n t time, T t2... time i n t e r v a l s , T fcD d i f f u s i o n a l time, T t r e a c t i o n time, T r ' V l i q u i d volume, L 3 V s u p e r f i c i a l gas v e l o c i t y , LT" 1 V terminal v e l o c i t y , LT" 1 x distance, L X b a c t e r i a l carbon, M c X b a c t e r i a l population X Q inoculum population V y i e l d y^ concentration d r i v i n g f orce, ML - 3 6 f i l m thickness, L y s p e c i f i c growth r a t e , T _ 1 V c v i s c o s i t y , M L _ 1 T - 1 p^ maximum s p e c i f i c growth r a t e , T~* <J> d i l u t i o n r a t e , T - 1 a density, ML - 3 y surface tension, MT - 2 p s p e c i f i c gravity APPENDIX I THE EFFECT OF INITIAL pH ON THE SPECIFIC GROWTH RATE OF T. FERROOXIDANS (35°C, AND CO2 ENRICHED ATMOSPHERE) Time PH Fe+++ (Hour) (g/D 0.0 1.50 0.697 5.0 1.50 0.753 10.0 1.50 0.922 12.0 1.50 1.096 14.0 1.55 1.352 16.0 - -18.0 1.60 1.921 20.0 - -21.5 • 1.62 2.674 24.0 1.65 3.422 26.0 1.65 4.128 28.0 1.65 5.134 30.0 1.65 6.213 32.0 1.65 7.392 34.0 o.65 8.427 36.0 1.65 8.976 38.0 1.65 9.149 ym 0.096 Fe-H-f 8.440 1.70 0. 708 1.80 0. 942 1.78 1. 648 1.78 2. 012 1.78 2. 524 1.80 3. 192 1.90 3. 843 2.00 4. 714 2.05 5. 608 2.10 7. 336 2.10 8. 614 2.15 9. 194 2.15 9. 202 ym 0.109 Fe-H-t- 6.750 Fe-H-P H (g/D 1.80 0. 723 1.85 1. 042 1.92 1. 873 1.95 2. 341 2.05 .2. 973 2.05 3. 514 2.15 4. 576 2.12 6. 002 2.15 6. 971 2.15 8. 542 2.15 9. 214 2.15 9. 356 ym 0.114 Fe-t-H- 7.120 pH Fe+++ (g/D 1.90 0.741 1.95 1.154 2.10 2.087 2.20 2.642 2.20 3.307 2.20 4.124 2.15 5.183 2.20 6.547 2.20 7.711 2.20 9.136 2.20 9.314 2.20 9.443 ym 0.116 Fe++ 5.200 PH Fe+++ (g/D 2.10 0.752 2.12 1.204 2.12 2.172 2.14 2.706 2.15 3.428 2.14 4.312 2.15 5.443 2.15 6.792 2.15 8.024 2.15 9.352 2.20 9.412 ym 0.116 Fe++ 3.240 -150-APPENDIX I I EFFECT OF SOLID PULP DENSITIES ON THE GROWTH RATE OF T. FERROOXIDANS IN SHAKE-FLASK EXPERIMENTS AT 35°C pH = 1.80 AND TOTAL IRON = 9.270 g/1 Time 0% 0.25% 0.50% 1.00% (Hour) Fe+++ (g/1) Fe+++ (g/1) Fe+++ (g/1) Fe+++ (g/1) 0 0.674 0.674 0.674 0.674 3.0 0.854 0.778 0.752 0.712 6.0 1.196 1.082 0.868 0.765 9.0 1.682 1.510 1.231 0.927 12.5 2.488 2.220 1.852 1.287 15.0 3.373 2.957 2.454 1.661 17.0 4.164 3.692 3.032 1.972 19.0 5.447 4T567 .3.861 1.498 21.0 6.576 5.721 4.833 3.004 23.0 7.874 7.141 6.011 3.562 25.0 8.543 8.174 7.212 4.304 27.0 8.914 8.714 7.932 5.272 29.0 9.046 9.023 8.262 6.287 31.0 8.710 7.313 32.0 8.742 7.696 -151-APPENDIX I I I THE EFFECT OF BASAL SALTS, AND TOTAL IRON CONCENTRATION ON THE GROWTH OF T. FERROOXIDANS AT 35°C (1) 4.5 g/1 t o t a l i r o n B.S. 1/2 1. 0 2 0 3. 0 Time (hr) \ ^ #1 #2 #1 #2 / / l #2 #1 n 0.0 0.254 0.276 0.214 0.202 0.258 0.284 2.443 2.814 5.0 0.411 0.422 0.377 3.774 10.0 0.744 0.743 0.740 0.595 0.602 0.633 5.912 6.422 13.0 1.056 1.037 1.064 0.854 0.793 0.838 7.804 8.394 16.0 1.500 1.421 1.517 1.207 1.047 1.102 1.030 1.102 18.0 1.866 1.922 1.276 1.233 20.0 2.360 2.198 2.430 1.934 1.523 1.604 1.474 1.597 21.0 2.646 2.765 1.667 1.620 22.0 2.977 2.684 2.982 2.454 1.833 1.943 1.760 1.900 23.0 3.314 3.330 2.014 2.017 24.0 3.510 3.204 3.515 3.087 2.211 2.347 2.221 2.272 25.0 3.796 3.412 3.818 3.333 2.423 2.583 2.427 2.504 26.0 3.924 3.597 3.953 3.521 2.644 2.834 2.553 2.721 27.0 3.997 3.682 4.072 3.578 2.909 •3.113 2.784 2.983 28.0 4.106 3.702 4.131 3.604 3.192 3.407 3.030 3.267 29.0 3.494 3.712 3.337 3.564 30.0 3.783 3.977 3.651 3.911 31.0 3.988 4.142 3.892 4.124 32.0 4.084 4.242 4.097 4.147 33.0 4.123 4.278 4.122 4.207 T o t a l i r o n 4.214 3.914 4.201 3.921 4.284 4.421 4.523 4.412 -152-APPENDIX I I I (2) 9 g/1 t o t a l i r o n B.S. 1/2 1. 0 2. 0 3. 0 T-l ma 1 xine ^\ (hr) ill #2 #1 #2 #1 #2 #1 #2 0.0 0.768 0.922 0.912 0.854 0.842 0.664 0.886 0.684 5.0 1.334 1.578 1.497 1.614 1.364 1.048 1.432 1.032 10.0 2.384 2.783 2.663 2.957 2.304 1.798 2.454 1.758 12.0 3.062 3.404 3.712 2.742 3.062 14.0 3.784 4.354 4.213 4.622 3.512 2.707 3.767 2.688 16.0 4.783 5.227 5.362 5.834 4.187 4.682 18.0 5.613 6.067 6.731 7.363 5.388 4.121 5.792 4.112 19.0 6.031 7.404 7.960 5.979 6.422 20.0 6.303 6.644 8.096 8.617 6.627 5.098 7.184 5.104 21.0 6.489 8.754 9.243 7.401 7.989 22.0 6.607 6.989 9.214 9.739 8.104 6.302 8.624 6.286 23.0 6.721 9.623 9.985 8.723 9.124 24.0 6.822 7.123 9.988 10.286 9.121 7.796 9.423 7.780 25.0 6.879 10.204 10.437 9.432 9.688 26.0 6.903 7.224 9.683 8.792 9.879 8.762 27.0 6.927 9.944 9.234 10.004 9.263 28.0 6.948 9.443 9.424 29.0 6.962 9.628 9.604 30.0 6.971 9.421 9,612 10.388 10.599. 10.042 .9.692 10.128 9.721 (3) 18 g/1 t o t a l i r o n B.S. 1/2 1. 0 2. 0 3. 0 ixme \. (hr) #1 #2 #1 #2 •- #1 #2 #1 #2 0.0 3.521 4.328 3.522 3.542 3.426 4.022 3.242 4.223 5.0 4.814 5.428 4.488 4.821 4.635 5.348 4.421 5.427 10.0 6.523 7.217 6.076 6.618 6.423 7.116 6.003 7.218 15.0 8.842 9.824 8.245 8.897 8.542 9.387 8.014 9.824 20.0 11.894 13.144 10.982 11.932 11.274 12.833 10.921 13.114 22.0 13.144 14.786 12.724 13.214 12.928 14.214 12.042 14.721 24.0 14.683 16.521 13.987 15.123 14.274 . 16.321 13.124 16.234 25.0 15.721 17.124 14.693 15.182 14.823 16.892 13.982 16.928 26.0 16.234 17.873 15.724 16.932 16.421 16.942 14.294 17.821 27.0 16.872 18.625 17.023 18.214 17.234 17.933 15.683 18.214 28.0 17.341 19.147 18.421 18.422 18.017 19.216 16.277 19.423 29.0 18.214 19.254 18.334 19.284 18.218 19.824 17.121 19.974 30.0 18.254 18.248 18.621 19.987 17.823 20.011 19.821 21.584 19.212 20.823 19.824 21.829 19.214 21.818 -153-APPENDIX I I I (4) 27.0 g/1 t o t a l i r o n B.S. 1/2 1 0 2. 0 3 0 T i m e ^ \ (hr) \ ^ #1 #2 #1 #2 #1 #2 #1 #2 0 1.721 2.124 1.735 1.702 1.623 1.923 2.018 2.524 2.5 1.952 1.814 1.812 2.254 5.0 2.232 2.656 2.101 2.123 2.800 2.521 2.514 3.012 6.0 2.321 2.443 2.243 2.688 9.0 2.652 3.421 2.634 2.623 2.521 3.112 3.142 3.608 12.5 3.314 3.227 3.122 3.804 15.0 3.615 4.442 3.968 3.624 3.522 4.123 4.321 4.926 20.5 4.921 5.210 4.821 5.828 23.0 5.513 6.302 5.900 5.524 5.602 6.334 6.542 7.526 24.0 5.900 6.037 5.723 6.923 29.0 7.487 9.242 8.596 8.013 7.382 9.027 9.082 10.286 32.0 8.668 10.012 8.725 10.521 36.0 10.524 12.524 13.007 10.929 10.924 12.214 12.872 16.273 40.0 13.082 16.824 17.091 14.212 13.212 15.624 15.128 19.011 42.0 14.724 19.651 15.022 17.214 44.0 16.824 20.834 22.917 17.523 16.537 19.218 20.293 22.132 45.0 17.122 24.007 17.214 21.424 46.0 17.928 22.821 25.205 19.921 18.223 22.347 21.984 24.002 48.0 18.284 23.683 22.021 20.425 23.122 23.217 25.212 28.824 29.314 28.799 29.214 28.727 29.223 28.128 29.112 -154-APPENDIX IV THE DEPENDENCY OF GROWTH RATE ON THE FERROUS IRON CONCENTRATIONS (1) T o t a l i r o n = 0.899 g/1 t Fe-f-H- Fe++ V 1/S l / y (hour) (g / D (g / D ( h r ) - l ( g / 1 ) - 1 (hour) 0 0.278 0.621 - 0.116 1.61 8.62 1 0.311 '• 0.588 0.116 1.70 8.62 2 0.350 0.549 0.116 1.82 8.62 3 0.401 0.498 0.116 2.01 8.62 4 0.443 0.456 0.116 2.19 8.62 5 0.498 0.401 0.116 2.49 8.62 6 0.560 0.339 0.100 2.95 10.00 7 0.628 0.271 0.095 3.69 10.53 8 0.681 0.218 0.077 4.59 12.99 9 0.759 0.140 0.063 7.14 15.87 10 0.819 0.080 0.048 . 12.56 20.83 11 0.856 0.045 0.030 22.20 33.33 12 0.874 0.025 0.021 40.00 47.76 (2) T o t a l i r o n = 1.190 g/1 t Fe-H-f Fe++ l / s i l / y (hour) (g/D (g/D ( h r ) - l ( g / D - 1 (hour) 0 0.131 1.059 0.108 0.94 9.26 3 0.196 0.994 0.108 1.01 9.26 6 0.275 0.915 0.108 1.09 9.26 8 0.344 0.846 0.108 1.18 9.26 10 0.427 0.763 0.108 1.31 9.26 12 0.533 0.657 0.108 1.52 9.26 14 0.650 0.540 0.108 1.85 9.26 15 0.738 0.460 0.108 2.16 9.26 16 0.788 0.402 0.099 2.49 10.10 17 0.844 0.346 0.076 2.89 13.16 18 0.914 0.276 0.063 3.62 15.87 19 0.977 0.213 0.055 4.69 18.18 20 1.055 0.135 0.041 7.41 24.39 21 1.091 0.099 0.034 10.10 29.41 22 1.129 0.061 0.026 16.39 38.20 23 1.145 0.045 0.020 22.22 50.00 -155-APPENDIX IV (3) T o t a l i r o n = 3.921 and 4.20 g/1 Run Time (hour) Fe+++ (g/D Fe-H-(g/D ( h r ) - l 1/S ( g / D - 1 l / v (hour) 1 0 0.214 3.987 0.116 0.25 8.62 5 0.422 3.779 0.116 0.26 8.62 10 0.740 3.561 0.116 0.28 8.62 13 1.064 3.137 0.116 0.32 8.62 16 1.517 2.684 0.116 0.37 8.62 18 1.922 2.279 0.116 0.56 8.62 20 2.430 1.771 0.116 0.56 8.62 21 2.765 1.436 0.116 0.69 8.62 22 2.982 1.219 0.116 0.82 8.62 23 3.330 0.871 0.091 1.15 10.99 24 3.515 0.686 0.063 1.46 15.87 25 3.818 0.383 0.046 2.61 21.74 26 3.953 0.248 0.032 4.03 31.25 { 27 4.072 0.129 0.020 7.75 50.00 28 4.131 0.042 0.011 23.81 90.91 2 0.0 0.202 3.719 0.116 0.27 8.62 10.0 0.595 3.326 0.116 0.30 8.62 13.0 0.854 3.067 0.116 0.33 8.62 16.0 1.207 2.714 0.116 0.37 8.62 20.0 1.934 1.987 0.116 0.51 8.62 22.0 2.454 1.467 0.116 0.68 8.62 24.0 3.087 0.834 0.095 1.20 10.53 25.0 3.333 0.588 0.065 1.70 15.38 26.0 3.521 0.400 0.045 2.50 22.22 27.0 3.772 0.343 0.024 4.12 41.67 28.0 3.801 0.120 0.014 8.33 71.40 APPENDIX IV -156-(4) T o t a l i r o n = 10.388 and 10.599 g/1 Run Time Fe+++ Fe-H- u 1/S l/v (hour) ( g / D (g/D ( h r ) - l ( g / 1 ) " 1 (hour) 1 0 0.854 9.845 0.116 0.10 8.62 5 1.614 8.985 0.116 0.11 8.62 10 2.957 7.642 0.116 0.13 8.62 12 8.712 6.887 0.116 0.15 8.62 14 4.622 5.977 0.116 0.17 8.62 16 5.834 4.765 0.116 0.21 8.62 -18 7.363 3.236 0.102 0.31 9.80 19 7.960 2.639 0.089 0.38 11.24 20 8.617 1.982 0.074 0.50 13.51 21 9.243 1.356 0.061 0.74 16.39 22 9.739 0.860 0.038 1.16 26.32 23 9.985 0.614 0.027 1.63 37.04 24 10.286 0.313 0.022 3.19 45.45 25 10.437 0.162 0.014 6.17 71.43 2 0 0.912 9.476 0.116 0.11 8.62 5.0 1.497 8.891 0.116 0.11 8.62 10 .0 2.663 7.725 0.116 0.13 8.62 12.0 3.704 6.684 •0.116 0.15 8.62 14.0 4.213 6.175 0.116 0.16 8.62 16.0 5.362 5.026 .0.116 0.20 8.62 18.0 6.731 3.657 0.116 0.27 8.62 19.0 7.404 2.984 0.092 0.34 10.87 20.0 8.098 2.292 0.083 0.44 12.05 21 .0 ' ' 8^754 1.634 0.060 0.62 16.70 22.0 9.214 1.174 0.047 0.85 21.28 23 .0 9.623 0.765 0.040 1.31 25.0 24.0 9.988 0.400 0.029 2.50 34.48 25.0 10.204 0,184 0.016 5.43 62.50 -157-APPENDIX V THE DEPENDENCY OF GROWTH RATE ON THE FERROUS IRON CONCENTRATION OBTAINED WITH THE CONTINUOUS CULTURE APPARATUS OPERATED AT 35°C (1) T o t a l i r o n = 0.524 g/1 — . (1) F S 1/u i / s (ml/hr) (g/D (br) (g/1)" 1 So = 0.524 107.0 0.399 10.8 4.00 pH = 1.8 102.7 0.255 11.2 3.92 101.8 0.220 11.3 4.55 A g i t a t i o n = 100.0 0.237 11.5 4.22 300 rpm 100.0 0.262 11.5 3.82 Volume = 98.3 0.222 11.7 4.50 1150 ml 98.3 0.201 11.7 4.98 88.7 0.159 13.4 6.29 C0 2 = 2% v/v 88.7 0.159 13.4 6.29 82.7 0.133 13.9 7.52 82.7 0.136 13.9 7.35 66.5 0.099 17.3 10.01 66.5 0.102 17.3 9.80 55.0 0.070 20.9 14.29 55.0 0.067 20.9 14.93 50.7 0.057 22.7 17.54 50.7 0.062 22.7 16.13 42.8 0.045 26.9 22.22 42.8 0.041 26.9 24.39 39.8 0.047 28.9 21.28 39.8 0.038 28.9 26.32 32.9 0.035 35.0 28.57 32.9 0.036 35.0 27.70 APPENDIX V (2) T o t a l i r o n = 1.214 g/1 (2) F s l/y 1/S 1 (ml/hr) (g / D (hr) ( g / 1 ) " 1 So = 1.214 118.6 0.658 9.7 1.52 117.3 0.549 9.8 1.82 pH = 1.80 115.0 0.485 10.0 2.06 113.9 0.417 10.1. 2.40 A g i t a t i o n = 109.5 0.366 10.5 2.73 300 rpm 100.0 0.293 11.5 3.41 90.6 0.244 12.7 4.09 Volume = 86.5 0.212 13.3 4.72 1150 ml 75.2 0.170 15.3 5.87 75.2 0.156 15.3 6.41 C02 = 2% v/v 68.0 0.128 16.9 7.80 68.0 0.123 16.9 8.10 60.2 0.099 19.1 10.10 60.2 0.094 19.1 10.64 55.0 0.087 20.9 11.49 55.0 0.085 20.9 11.76 49.8 0.076 23.1 13.16 49.8 0.084 23.1 11.90 43.9 0.063 26.2 15.87 40.2 0.055 28.6 17.86 36.3 0.050 31.7 20.00 36.3 0.042 • 31.7 23.81 30.4 0.038 37.8 26.32 23.0 0.027 50.0 37.04 -159-APPENDIX . V (3) T o t a l i r o n = 3.295 g/1 (3) F (ml/hr) S (g / D l / y (hr) 1/S ( g / l ) " 1 So = 3.295 g/1 112.7 0.990 10.2 1.01 pH = 1.80 109.5 105.5 0.819 0.746 10.5 10.9 1.22 1.34 A g i t a t i o n = 300 rpm 104.5 100.0 0.588 0.500 11.0 11.5 1.70 2.00 89.8 0.413 12.8 2.42 Volume = 1150 ml 81.6 73.2 64.6 0.296 0.226 0.209 14.1 15.7 17.8 3.38 4.43 4.78 C02 = 2% v/v 60.5 51.3 0.159 0.122 19.0 22.4 6.30 8.18 43.6 0.113 26.4 8.84 41.1 0.100 28.0 10.00 38.3 0.088 30.0 11.36 36.3 0.076 31.7 13.16 32.1 0.065 35.8 15.38 28.7 0.057 40.1 17.54 . 25.0 0.050 46.0 20.00 22.6 0.040 50.9 25.00 -160-APPENDIX VI THE RELATIONSHIP BETWEEN FERRIC IRON PRODUCTION, BACTERIAL CARBON PRODUCTION AND OXYGEN UPTAKE RATE IN THE AERATED TANK REACTOR AT 35°C, pH = 1.80. Time CARBON (mg/1) Fe++ Uptake (hr) T o t a l Fe+++ Inorganic Net (g / D (g / D (mg/l/hr) 0.0 23.0 19.0 4.0 27.064 1.735 12.7 2.5 26.985 1.814 14.2 5.0 26.698 2.101 16.2 6.0 24.0 19.0 5.0 26.356 2.443 17.7 9.0 26.165 2.634 20.4 12.5 25.572 3.227 27.5 15.0 27.0 19.0. 8.0 24.831 3.968 30.0 18.8 24.173 4.626 39.5 20.5 23.589 5.210 45.0 21.5 23.245 5.554 46.0 23.0 22.899 5.900 47.9 24.0 34.0 19.0 15.0 22.762 6.037 53.4 29.0 39.0 19.0 20.0 20.203 8.596 70.0 32.0 46.5 19.0 27.5 18.787 10.012 96.2 36.0 51.0 19.0 32.0 15.792 13.007 105.1 40.0 62.0 19.0 43.0 11.708 17.091 167.6 42.0 70.0 19.0 51.0 9.148 19.651 185.0 44.0 76.5 19.0 57.5 5.882 22.917 203.0 45.0 82.0 19.0 63.0 4.792 24.007 208.0 46.0 85.5 19.0 66.5 3.594 25.205 192.0 47.5 89.0 19.0 70.0 2.069 26.730 142.0 -161-APPENDIX VII DETERMINATION OF SATURATION OXYGEN SOLUBILITIES (1) T o t a l i r o n = 4.5 g/1 Run Time Fe++ Fe+++ Uptake Rate Change (hr) (g / D (g / D (mg/l/hr) (mm Hg/hr) 1 0.0 4.008 0.491 8.5 170 2.0 10.0 225 4.0 13.3 317 6.0 18.0 410 8.0 23.5 520 10.0 29.5 670 12.0 2.276 2.223 35.7 799 15.0 44.1 929 16.0 2.034 2.465 46.2 991 2 0.0 4.444 0.156 3.6 64 4.0 4.247 0.353 3.4 87 11.0 4.051 0.549 7.4 191 16.25 3.681 0.819 16.2 342 19.5 3.246 1.354 20.0 420 22.5 2.657 1.943 27.4 634 25.0 2,071 2.529 33.5 720 28.0 1.112 3.488 39.6 915 c* = 6.92 mg/1 -162-A P P E N D I X V I I T o t a l i r o n = 9.0 g/1 Run Time Fe-H- FeH-H- Uptake Rate Change (hr) (8 / D (8 / D (mg/r/hr) (mm Hg/hr) 1 0 9.167 0.120 3.5 79 24 6.970 2.819 35.6 834 32.0 3.986 5.803 72.2 1622 33.0 1.917 7.872 80.8 1840 35.5 0.675 9.114 53.8 1174 2 0.0 8.741 0.208 7.7 128 10.0 8.196 0.750 15.1 330 13.0 7.679 1.270 18.7 360 15.0 27.5 600 20.0 6.072 2.857 -.1.41.8 977 23.0 4.874 4.075 54.2 1184 24.5 3.975 4.974 63.0 1400 26.0 69.3 1554 27.0 75.0 1574 28.0 75.3 1680 C* = 6.68 T o t a l i r o n = 13.5 g/1 Run Time (hr) Fe-H-(8 / D Fe+++ (8 / D Uptake (mg/l/hr) Rate Change (mm Hg/hr) 0 12.779 1.154 10.0 210 8.0 12.053 1.880 16.6 350 17.0 10.528 3.405 35.3 823 19.0 9.729 4.204 45.6 1080 21.5 8.749 5.184 60.5 1344 24.0 7.515 6.418 73.9 1680 26.0 6.208 7.725 90.0 2050 28.0 4.937 8.996 111.0 2450 C* - 6.66 ^163-APPENDIX VII T o t a l i r o n = 18 g/1 Run Time (hr) Fe++ (g / D Fe-H-H (g / D Uptake (mg/l/hr) Rate Change (mm Hg/hr) 1 0.0 17.07 0.45 8.3 152 14.0 16.12 1.40 12.4 258 26.0 14.70 2.82 25.4 604 33.5 12.63 4.89 56.7 1350 41.5 7.95 9.57 115.0 2640 43.5 6.21 11.31 145.0 3216 45.0 4.90 12.63 147.0 3000 47.25 2.61 14.91 132.0 2634 2 0.0 18.26 0.34 5.0 180 13.0 17.64 0.96 9.8 200 17.0 17.28 1.32 9.7 260 26.0 16.08 2.52 17.8 430 36.0 14.05 4.55 . 46.3 950 40.0 12.63 5.97 68.5 1560 42.0 11.69 6.91 74.0 1572 44.0 10.53 8.07 83.9 1542 46.0 9.33 9.27 122.0 1650 3 0.0 17.93 1.33 6.7 142 13.0 17.10 2.17 15.7 180 29.0 15.76 3.51 24.2 500 38.0 14.01 5.25 36.5 800 48.0 9.88 9,39 90.0 1880 51.0 11.43 114.0 2664 53.0 12.95 115.0 2400 C* = 7.06 APPENDIX VIII AND K s c VALUES AT VARIOUS OXYGEN UPTAKE RATES IN 9K MEDIUM C* = 6.68 at P02 = 150.67 mm Hg OXYGEN TENSION (mm Hg) X J- LUC (minutes) #1 #2 #3 #4 0 100.0 92 .0 88.6 96 .6 1 .0 65 .2 69 .0 2 .0 87 .2 72 .4 42 .2 40 .4 3.0 19 .0 12 .6 4.0 75 .4 42 .0 5.0 6.0 64 .0 32 .0 Uptake rate (mm Hg/hr) 360 600 1400 1680 D e t £ i i 1 s Time (minutes) #1 #2 #3 #4 0 8.8 " 12 0 14 .0 12 .6 0.1 11 .6 9 .8 0.2 7 .6 10 2 9.2 7.2 0 3 7.0 4. .8 0.4 6 4 8.2 5 .2 4 .2 0.5 6 2 4 .6 4.0 0 6 5.4 5 6 4 .2 4 .0 0 7 5 2 5.2 4.0 4.0 0. 8 4 9 5.2 4 0 4 .0 0.9 4 8 5. 2 4.0 4.0 1. 0 4 8 5. 2 4 .0 4 0 Po 4. 8 5. 0 4 0 4 0 K s p (mm Hg) 0. 8 1. 2 1. 0 1. 0 K s c (mg/1) 0. 036 0. 052 0. 045 0.045 APPENDIX VIII X P P-Pbo R Run N. (mm Hg) (mm Hg) (mm Hg/hr) 1 5.5 0.70 300 5.3 0.50 250 5.2 0.40 200 5.1 0.30 150 4.95 0.15 100 4.90 0.10 50 2 5.9 0.90 400 5.6 0.60 250 5.4 0.40 200 5.3 0.30 150 5.15 0.15 100 5.10 0.10 50 3 5.2 1.20 600 4.9 0.90 400 4.6 0.60 300 4.4 0.40 250 4.3 0.30 150 4.25 0.25 100 4.1 0.10 50 4 5.0 1.00 500 4.6 0.60 300 4.4 0.40 250 4.25 0.25 150 4.15 0.15 100 4.10 0.10 50 -166-APPENDIX IX THE EFFECT OF SOLID PULP DENSITIES ON K L (35°C, 500 rpm and pH = 1.80) (1) 0 and 5% s o l i d 0% 5% Time Fe+++ Uptake r a t e D.O. Time Fe-H-f- Uptake Rate D.O. (hour) ( g / D (mg/l/hr) (mg/1) (hour) (g / D (mg/l/hr) (mg/1) 0 0.024 0.26 6.25 0 0.034 0.30 5.82 10 0.041 0.52 6.00 5 0.041 0.49 5.55 18 0.086 1.15 5.75 10 0.062 0.76 5.40 22 . 0.127 1.65 5.52 15 0.096 1.14 5.20 26 0.184 2.42 5.13 20 0.148 1.73 4.82 28 0.224 2.90 4.85 24 0.209 2.48 4.53 30 0.270 3.52 4.60 30 0.346 4.17 3.64 32 0.326 4.27 4.18 32 0.410 4.90 3.27 34 0.392 5.15 3.72 34 0.482 5.80 2.92 36 0.473 6.17 3.22 36 0.572 6.88 2.34 38 0.568 7.48 2.57 38 0.681 8.23 1.67 40 0.690 8.90 1.91 40 0.804 9.64 1.06 42 0.832 10.62 1.03 42 0.952 11.30 0.32 44 0.987 12.89 0.25 44 1.124 13.60 0.20 46 1.202 13.94 0.20 46 1.307 13.60 0.20 50 1.394 13.94 0.20 48 1.499 13.60 0.20 ' 50 1.590 13.94 0.20 50 1.691 13.60 0.2 52 11786 13.94 0.20 52 1.868 13.60 0.25 54 1.960 13.94 0.20 54 1.934 0.09 56 2.164 0.25 56 1.998 3.89 58 2.244 1.42 58 2.024 6.24 60 2.298 3.28 60 2.036 6.72 62 3.016 5.06 (2) 10 and 15 % s o l i d 10% 15% Time Fe-H-f- Uptake Rate D.O. Time Fe+++ Uptake Rate D.O. (hour) ( g / D (mg/l/hr) (mg/D (hour) ( g / D (mg/l/hr) (mg/1) 0 0.042 0.32 6.02 0 0.045 0.50 5.30 5 0.051 0.60 5.75 5 0.068 0.78 5.11 10 0.077 0.91 5.50 10 0.102 1.19 4.84 15 0.115 1.49 5.17 14 0.141 1.63 4.58 20 0.174 2.06 4.92 18 0.198 2.30 4.22 25 0.263 3.12 4.44 22 0.274 3.18 3.81 30 0.395 4.62 3.63 24 0.324 3.76 3.55 32 0.462 5.56 3.14 26 0.379 4.40 3.15 34 0.547 6.51 2.65 28 0.448 5.21 2.74 36 0.644 7.74 2.16 3.0 0.527 6.13 2.28 38 0.752 9.02 1.56 32 0.610 7.18 1.86 -167-APPENDIX IX Continuation of (2) 10 and 15% solid 10% 15% I Time (hour) FeH (g/D Uptake Rate (mg/l/hr) D.O. (mg/1) Time (hour) Fe+++ (8/D Uptake Rate (mg/l/hr) 40 42 44 46 48 50 52 54 56 0.886 1.021 1.212 1.402 1.594 1.811 2.006 2.081 2.122 10.60 12.71 14.20 14.20 14.20 14.20 0.68 0.22 0.20 0.20 0.20 0.20 0.27 1.92 4.21 34 36 38 40 42 44 46 48 50 0.730 0.858 1.008 1.184 1.370 1.572 1.748 1.807 1.824 8.47 10.01 11.60 13.74 13.74 13.74 13.74 -168-APPENDIX X COMPUTER PROGRAM FOR RECTIFICATION METHOD 0001 REAL I N T R P T , I R O N , I O Y , I 0 Y 2 C002 DIMENSION T I N E ( 9 9 ) , P P ( 9 9 ) , D O ( 9 9 ) , O T ( 9 9 ) , A B ( 9 9 ) __ C003 : DOUBLE P R E C I S I O N A , AB C004 W R I T E ( 6 , 6 6 6 ) C 0 0 5 666 F0RMAT(*2« ) 0006 1 R E A D < 5 , 1 0 ) PCENT,RPM,GAS C007 I F ( P C E N T . L T . O ) GO TO 1234 0008 10 FORMAT{3F 1 0 . 0 ) C009 C S T A R = 6 . 6 8 _ CC10 R E A D ( 5 , 2 1 ) ID CC11 21 FORMAT (12 ) C012 I R 0 N = 9 . 0 0 0 1 3 TEMP=35 . C CO 14 C 0 0 = 0 . 1 2 0 4 * ( 2 73.+TEMP)/295.5 C015 CT={GAS-CCO)/GAS*CSTAR C016 C 0 0 = C C 0 / G A S * 1 C 0 . CO17 A R E A = ( 1 1 . 5 / 1 2 . ) * * 2 * 3 . 1 4 1 6 / 4 . 0 0018 SUPVEL=GAS/AREA C C 0019 DO 40 1 = 1, ID . . . . . CC20 R E A D ( 5 , 1 0 ) T I M E ( I ) , P P ( I ) C CC21 D0( I ) = PP ( I ) /1 5 0 . 6 7 * C STAR C C022 40 DTI I ) = C T - D O l I ) C C C „ C023 X = 0 . C024 X 2 = 0 . C025 DO ICO 1 = 1 , I D C026 X = X + T I N E ( I ) C027 100 X2 = X2 + T I H E U ) * T I M E ( I ) C028 A A = F L O A T ( I D ) 0029 XQNr.X/AA __ C C C030 J J=0 0031 ALPHA=DT( n - O . i 0032 4 0 0 Y = 0 . C033 Y2 = 0- _ -C034 X Y = 0 . 0 0 3 5 X0Y=O. 0036 I O Y = 0 . C037 Y0Y=O. 0038 X 0 Y 2 = 0 . 0 0 3 9 I O Y 2 = 0 . .__ _ __ C040 Y 0 Y 2 = 0 . C041 DO 200 1 = 1 , ID C042 A B ( I ) = D T ( I ) - A L P H A -169-C043 CO*.*. C045 _C&A6_ C047 00^8 COM 0C50 C051 _C052_ 0053 0054 J10_.5_ C056 C057 0058 0059 OC60 0061 0062 C063 _ _ . Q _ > / i -GO TO 1000 200 JC. C C YY = A D ( I ) * A B ( ( ) IF{An tI).LC.O.O) A=0L0G(AB111) _Y_=.Y + A Y2=Y2+A<M XY=XY+ T I V E ( I ) * A XOY=XOY+ T I M E t I ) / A B ( I ) IOY=!OY+I.0/A3(I ) YOY=YOY•A/AB I I ) _ XQ Y2-? XG Y2>.11 M.E IJL) /.YY_ IQY2= I0Y2+1.0/YY Y0Y2=Y0Y2+A/YY IES.L1MY2.-Y _Y/AA) *(-XOY*XCN* 10Y) "~TEST2=UY-X*Y/AA)*(-Y0Y + Y*If)Y/AA) \ ^ { a Y M C Y / A A - X Y * Y * I Q Y 2 / A A * Y * i a Y * X 0 Y / A A _3 +jfj Q f t*LQyAtQY^flU *Y J L Ldmi2± lC12 J I F ( A f i S ( D ) . L T . 0 . 0 0 0 1 ) GO TO 300 ALPHA=ALPHA-0 . _. I F ( J J . G T . 1 C 0 ) GO TO 1000 J J = J J * l _Gn_m_4.Q 0 _ — 0065 C066. C067 0068 _CC.69_ C070 0071 _0072 C073 0074 C 300 8C0 SXX=X2-X*X/AA „.SXY*XY-X*Y/AA . SYY=Y2-Y*Y/AA SLOPE=SXY/SXX _ _ J N T RP.T3.Y / AA-S LQ£E * XJ3N _ _ • RSQ=SXY/SXX*SXY/SYY SL0PE=-SL0PE*60.0 .._ALPHA=ALPHA*SLOPE . .. _ _ .. WRITE(6» fiOO)PCENT»RPM,SUPVEL?CT, COO,ALPHA.SLOPE,RSQi10 FORMAT!IH2,//////25HPERCENT SOLID (WT.)= ,F8.2, 1 /25H AG I TA T I ON SPLEU IRPS<)= ,t"rt . ? , 2 /25H SUPERFICIAL VEL IFT/HR)= ,F3.2, 3 /25H SAr.OXY.CONC. (PPM)= _A /25H % CARBON OIOXIDE 5 /25H OXY. UPTAKE (MG/L/HR)= 6 /25H MASS TRANS COEFF ( l / H R ) = 7 /25H R SQUARE • ,F8.2, , F C . 2 i ,F8.2, ,FB.2, _.F.8»„_i C075 0076 9C0 CIS OXY, 0077 0078 CC79_ 777 _90L 8 /30H NUMBER OF DATA WRITE(6,900) ... FORMAT (1CH TIMC.10H P.PRESS.IOH 1 10H UETA C.10H TRUE DC, / 2 10H (MIN).IOH (MMHG), tOH (PPM), _3.__10H I PPM.) , 10H (RPM ), / J DO 777 1=1,10 WRITE ( 6 , 9 0 1 ) T I M E ( I ) . P P ( I ) , C 0 ( I ) , 0 T ( I ) , A B ( I ) F0RMAT(1X,F9.2,1X,F9.2,1X,F9.2,1X,F9.2,1X.F9.2) --L/U-0080 C081 — C082 C083 C081 C.085_ 0086 0087 0088 0089 _ooao„ c c c _c 1C00 198 -L9_9_ 1005 GO TO I MH I TE (6t POO) PCENT, RPM, SUPVEL.CT, COO, ALPHA .SLOPE , RSQ, ID WRITE (6, 9 00) _ DO 190 1=1,ID WRITE!6,199)TIME(I),PP(I),CDII),0T(I) ..E_iUlAIi__J_LQ.__) GO TO 1 1234 STOP END WRITE(6,1005)BBB F0RMAT(//25H(Y-ALPHA) EQUALS NEGATIVE ,/ 25JHUNABLE._G_J_DJ_EED FURTHFR L_ TOTAL MEMORY REQUIREMENTS 0014C4 BYTES COMPILE TIME = 3 .7 SECCNOS APPENDIX XI ic^a AND OXYGEN CONCENTRATION-TIME TRACE AT VARIOUS OPERATIONAL CONDITIONS PERCENT SOLIO (WT.)= 0 .0 AGITATION SPEEO (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6 .08 % CARBON DIOXIDE = 8.98 _0XY..__UP.TAXE_ (.MG/L/HR) = -4 ._42_ MASS TRANS COEFF (1/HR)= 9.01 R SGUARE = 0.99988 NUMBER OF DATA =. 10 _XIME-(M IN ) __0.0.... 1.00 2.00 3..JQ.Q-4. CO 5.00 6.00 7.00 8.CO _9_.-G.Q_ J____P.RES-S-(MMHG) 21 • 00. 38.00 54.00 67_._00_ 78 .00 88.00 . 96.GO 104.00 110.00 __.115_._a.0_ _D1S-0XY_ (PPM) 0.93 1.68 2.39 _2..9_7_ 3.46 3.90 4.26 4.61 4.88 _5_._L0_ -DETA^C. (PPM) 5. 15 4 .40 3.69 \- 1 1 2-62 2. 18 1.82 1.47 1.20 _C_..9_8.. _TRUE__EC_ (PPM) 5.64 4 .89 4 .18 3.60_ 3.11 2.67 2.31 1.96 1.69 l._47_ PERCENT SOLIO (WT.)= AGITAT I ON SPEED (RPM)= SUPERFICIAL VEL .{ FT/HR) = SAT.OXY.CONC. (PPM)= % CARBON DIOXIOE .0XY. ..UP.TAKE ( KG/L/HR)=_ MASS TRANS COEFF (1/HR)= R SGUARE NUMBER CF DATA .=. 0 .0 300.00 5.26 6 .46 3.31 22 .67 14.90 0 .99999 8. __X_____L { M IN ) .0 .0 ._ 1.00 2.00 _a__o.a_ 4.00 5.00 . 7.00 9.00 JP. PRESS 1MMHG) 2 4 . 0 0 . 43 .00 58.00 7J)__J0LO_ 79.00 86.00 96.00. 102.00 DIS .OXY„ (PPM) 1.06. 1.91 2.57 _3..10_ 3.50 3.81 4.26 4-52 ..DETA.C (PPM) 5,39 4.55 3.89 3.36_ 2.96 2.65 2.20 1-94 TRUE-DC. ( PPM) 3-87 3.03 2.37 1.83 1.43 1-12 0.68 0-42 i r Y PERCENT SOLID (UT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL {FT/HR)= SAT.CXY.CONC. (PPM)= % CARBON DIOXIDE .OX Y U P.T.A KE (M G/L/H R ) =.. MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA 0.0 300.00 8.81. 6.55 1 . 97 __30...13_ 20.47 = 0.99976 7_ _XL_..E P_.J_.R.E.S.S DIS OXY DETJUC _T.RUE_D.C_ (MIN) {NMHG) (PPM) (PPM) (PPM) 0.0 32.00 1.42 5.13 3.66 1.00 55.00 2.44 4.11 2.64 2.00 72.00 3.19 3.36 1.88 _3..00 8A.J0.O 3.J2 2.82 1.15 4.00 93.00 4.12 2.42 0.95 6.CO 104.00 4.61 1.94 0-47 - 8.00 109.00 4.83. _ 1.72 0.24 PERCENT SOLIO (WT.)= 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL. (FT/HR)= ... . 12.63. SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY UPTAKE (MG/L/HR) = 25.23 MASS TRANS COEFF (1/HR)= R SQUARE . NUMBER .OF_DATA 24.19 = 0.99998 =. 7 TIME P..PRESS 0.1 S OXY . DETA_C. (MIN) (MMHG) (PPM) (PPM) 0.0 24.00 1.06 5.52 0.50 43.00 1.91 4 . 68 l . C O 58.00 2.57 4.02 1 .50 70.00 3.10 3.48 2.0 0 80.00 3.55 3.04 3.CO 95.00 4.21 2.38 .. 4.00 . 105.00 4.66 1.93 JRUE_PC_ (PPM) 4.48 3.64 2.97 _2..A4_ 2.00 1.33 .0 .89 r PERCENT S O L I D (WT.)= 0.0 A G I T A T I O N S P E E D ( R P M ) = 3 0 0 . 0 0 S U P E R F I C I A L V E L ( F T / H R ) = 1 7 . 1 5 S A T . O X Y . C O N C . ( P P M ) = 6.61 % CARBON D I O X I D E = 1 . 0 1 _0.X Y___UPXA.KE ( MG/L/HR ).= 1 5 . 9 7 MASS TRANS C O E F F ( 1 / H R ) = 4 0 . 6 4 R SQUARE = 0 . 9 9 9 8 6 NUMBER OF. DATA =._ 7 _.T_I.M£ E_..P_RES.S DXS__OXY £E_TA_C I.RUE_D.C_ ( M I N ) (MMHG) ( P P M ) ( P P M ) ( P P M ) .0.0.-. 0. 50 1. CO _1..J5.0_ 2 .00 2.50 3.0 0. 40.00.. 6 8 . 0 0 89.CO _10 4_._G.0_ 1 1 4 . 0 0 1 2 2 . 0 0 1 2 7 . 0 0 . .1.77. 3.01 3.95 A._S.1_ 5 . 0 5 5.41 5.63 4.84 3-60 2 . 6 7 _2.0C_ 1.56 1.20 0.98 4 . 4 5 3.20 2. 27 L . A J L 1.17 0 . 8 1 0 . 5 9 P E R C E N T S O L I D (WT.)= 0.0 A G I T A T I O N S P E E D ( R P M ) = 4 0 0 . 0 0 S U P E R F I C I A L VEL _ ( F T / H R )= .1.94 S A T.OXY.CONC. ( P P M ) = 6.08 % CARBON D I O X I D E = 8 . 9 8 OXY- U P T A K E ( M G / L / H R ) = 2 6 . 8 2 MASS TRANS C O E F F ( 1 / H R ) = 1 9 . 8 2 R SGUARE = 0 - 9 9 9 9 6 NUMBER.OF. DATA = 7 T I M E P . P R E S S D I S OXY J3.E.T.A C TRUF DC ( M I N ) (MMHG) ( P P M ) ( P P M ) ( P P M ) 0.0 30.CO 1.33 4 . 7 5 _... 3 . 4 0 _ „. 1.00 5 1 . 0 0 2 . 2 6 3.82 2 . 4 7 2.00 6 7 . 0 0 2.97 3 . 11 1.76 \ 3.00 7 8 . 0 0 3.46 _2._6_2 1.27 Z 4.CO 8 6 . 0 0 3 . 8 1 2 . 2 7 0 . 9 1 o 5.00 9 2 . 0 0 4-08 2 . 0 0 0.65 J _ _ 7.00 99.CO 4.39 __ 1.69 _ 0.34 . _ .... ._ r PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL V EL ( FT/HR )= ._ 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.3L 0XY. UP.T.AKE ( MG/JL/.HR.) = 33.. 83 MASS TRANS COEFF <1/HR)= 35.17 R SQUARE = 0.-59997 NUMBER OF DATA_._ = _ —7.. _T_I.MJE_ (MIN) 0.0 0.50 1.00 __1..50_ 2.00 3.CO ..4..00.. P.. PRESS (MMHG) 31.00 54.00 72.00 85.00 95.00 108.00 115.00 .CIS OXY. (PPM) .1.37 2.39 3. 19 3.77. 4.21 4.79 5.10 DETA C (PPM) 5.08 4.06 3.27 ..2._69_ 2.25 1.67 1. 36 _T.RUE_JQ.C_ ( PPM) 4 . 12 3.10 2.30 1 .73 1-29 0.71 0.40 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL .( FT/HR ) = SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY U P TAKE (MG/L/HR) = MASS TRANS COEFF (1/HR)= R SQUARE .NUMBER. CF DATA =.. 0 .0 400.00 .... 8.81 6.55 1.97 2.8.5.8 46.54 0.99981 7 __T..L.MJE_ (MIN) P.. PR ESS D I S. OXY ( PPM) .0.0 _ . 0.50 1.00 _l.-5_0__ 2.00 3.00 4.50 131.00 (MMHG) . 42.00. 71.00 91.00 104.00 114.00 125.00 .1.86 3.15 4.03 4 .61. 5.05 5.54 .5 .81 . DETA. C (PPM) 4.69 3.40 2.51 _1..:9.4_ 1.49 1.01 .0.74. TRUE.DC ( PPM) 4.07 2.79 1.90 _1.-12_ 0.88 0.39 .0 .13 r -1/3-PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)= . 1 2 . 6 3 . SAT.OXY.CONC. (PPM)- 6.59 % CARBON DIOXIDE = 1.38 0XY. UP.TAKE (MG/L/HR.)- 23.90 MASS TRANS COEFF (1/HR)= 55.88 R SCUARE NUMBER OF DATA = 0.99986 ...= _ __ _ 7 __XIM.E_ (MIN) „P..P.RES_S_ (MMHG) DIS OXY (PPM) DETA C. (PPM) TRUE DC. (PPM) 0.0 0.40 0.80 .1.-2.0. 1.60 2.00 2.80 44.00 74.00 94.00 108.CO. 118.00 124.00 132.00 1.95 3.28 4.17 _.4..7_9_ 5.23 5.50 5.85 4.64 3.31 2.42 _1...8.0_ 1. 36 1.09 0.74 4.21 2.88 1.99 1.37. 0.93 0.66 .0.31 PERCENT SOLID (VJT.)= 0.0 AGITATION SPEEO (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)- 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY. UPTAKE (AG/_L/_HR)_= 3.6.. 9 8_ MASS TRANS COEFF (1/HR)= 66.32 R SQUARE = 0.99997 NUMBER .OF.. OAT A = 6. _T_I.M.E_ (MIN) P. PRESS (MMHG) JXI.S_.OXY. (PPM) _ J D „ L T A _ C _ (PPM ) TRUE DC (PPM) 0.0.... 0.40 0.80 _1...20_ 2.00 3. 20 .. 49.00 80.00 100.00 J.X3_._0_X. 127.00 134.CO 2.17. 3.55 4.43 5..0.1 5.63 5.94 4.44 3.07 2. 18 _L,_6.Q_ 0.98 0.67 3.88 2.51 1.62 1.04 0.42 0.11 ( PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 5C0.00 SUPERFICIAL VEL ( FT/HR ) = 1.94. SAT.OXY.CONC. <PPM)= 6.08 % CARBON DIOXIDE = 8.98 0 X.Y. UPTAK E IM G /L/HR)= 61.48 MASS TRANS COEFF (1/HR)= 33 .96 R SQUARE = 0.99965 NUMBER OF DATA = 7 TIME (MIN) 0.0 0.50 1.00 _JL..5_0_ 2.00 3.CO . 4 .00 _P_.PRE.SS-(MMHG) 25.00 43.00 56.00 _6:6_JQLCL 74.00 83.00 89.00 D.IS OXY. (PPM) 1.11 1.91 2.48 _2..9.3_ 3.28 3.68 3.95 _D.ETA_C_ (PPM) 4.97 4 . 17 3.60 3.__1.5_ 2.80 2.40 . 2 . 13 TRUE OC { PPM) 3.16 2.36 1.79 1.34 0.99 0.59 0.32. PERCENT SOLID (WT.)= 0 .0 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL. ( FT/HR ) = ..._ 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 ..OXY UPTAKE (MG/L/HR ).= 45 .68 . MASS TRANS COEFF (1/HR)= 63 .09 R SQUARE = 0.99985 NU MBE R 0 F. DA TA = 6... TIME P.PRESS DIS OXY DETA C _ TR'UF nc (MIN) (MMHG) ( PPM) (PPM) (PPM) 0.0... . 45 .00__ 2.00 .._ 4.46 3.74 0.40 75.00 3.33 3. 13 2.41 0.80 94.00 4. 17 2.29 1.57 1.20 106.00 4.70 1.76 1.04 2.CO 119.00 5.28 1. 18 0.46 2.80 125.00 5.54 0.92 0. 19 r PERCENT SOLIO AGITATION SPEED SUPERFICIAL VEL SAT.OXY.CONC. ( W T . ) = (RPM)= (FT/HR)= (PPM) = % CARBON DIOXIDE _0X.Y,__UP-JAKE ( MG/L/HR.) :=_ 0 .0 500.00 8.81 6.55 1.97 _5.1._.5.1_ MASS TRANS COEFF (1/HR)= 86.37 R SGUARE = 0.99991 NUMBER OF DATA .=. . 5 TIME (MIN) P.PRESS (MMHG) -D.I.S_OX.Y_ ( PPM) JD.ET.A_.C_ (PPM) _r.RUE_D.C_ (PPM) .0.0 59.00. 0.40 92.00 0.80 110.00 JL...2.0 12L_„0.0 2.00 130.00 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED <RPM)= 500.00 SUPERFICIAL VEL ( FT/HR ) =. 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 J_.X_Y_._U P T A_K E (_M.G./_L /.H R.)_= 4.7_...8 J. MASS TRANS COEFF (1/HR)= 94.65 R SGUARE = 0.99789 .. NUMBER 0F_ OATA = ;8 ___T_LME P. PRESS D.I.S __OX_Y D.ETA_C .TRUE _ D C _ (MIN) (MMHG) (PPM) (PPM) (PPM) ... 0.0 40.00 1.77 4.81 4.31 .. 0.20 69.00 3.06 3.53 3.02 0.40 88.00 3.90 2.69 2.18 ___0_.A0 L0.2...0.0 A..52 2._Q_7 1..3_6__ 0.80 111.00 4.92 1.67 1.16 1.00 118.00 5.23 1.36 0.85 _ 1.40 126.CO 5.59 1.00 0.50 1.60 130.00 5.76 0.82 0.32 r PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 500.00 . SUPERFICIAL VEL (FT/HR)= . 1 7 . 1 5 . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY. UPTAKF (MG/1/HR) = 48.93 MASS TRANS COEFF (1/HR)= 128.83 R SQUARE = 0,99990 NUMBER OF DATA.. .. _ __= _ _ 7 TIME P. PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (FPM) (PPM) ( PPM) . 0.0 49 .00 .__ 2.17 4.44 4.06 _ 0.20 81.00 3.59 3.02 2.64 0.40 101.00 4.48 2.13 1.75 O.AO 115.00 5.10 1.51 . 1.13 0.80 124.00 5.50 1. 11 0.73 l.CO 130.00 5.76 0.85 0.47 ... 1.40 136.00 . 6 . 0 3 _ ._. Q.58. _ .... .. 0.20 • - — ~-PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR ) = . 1.94. , SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/L/HR)= 104.08 MASS TRANS COEFF (1/HR)= 58.55 i R SQUARE = 0.99903 NUM8ER„0F.. DATA ~L_ _7_. : TIME P..PRESS DIS OXY DETA.C _ TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) _ _ 0.0 _ 31.00 _ 1.37 . ._. 4.71 2.93 0.40 52.00 2.31 3.77 2.00 0.80 66.00 2.93 3. 15 1.38 1 .PO 7fS.Q0 3.37 7.71 0.93 2.00 87.00 3.86 2.22 0.45 2.80 93.00 4.12 1.96 0.18 ... . . 3 . 6 0 95.00 .... . 4.21 1.87 .0 .09 :.. , . : i r PERCENT SOLID (WT.)= 0 .0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 JO X Y_.._JJ P_J. A K.E (. M GAL/H R ) ..= 8.9 .47 MASS TRANS COEFF (1/HR)= 105.36 R SQUARE = 0.99988 NUMBER CF. DATA = 7. __T.1ME_ (MIN) P. PRESS (MMHG) DIS OXY ( PPM ) .D.E.T.A_C_ ( PPM) .TRUE DC. ( PPM) 0.0... 0.20 0.40 .0.60.. 0.80 1.00 1.40 _.38.00_ 64.00 83.00 __9.6.«J0.GL 105.00 111.00 119.00 1.68 4 .77 2.84 3.62 3.68 2.78 -4.26. 2 ._20_ 4.66 1.80 4.92 1.54 5.28 .... 1.18 3.92„ 2.77 1.93 1.35 0.95 0.69 0.33 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 .SUP ERF IC I AL VEL ( FT/HR ) = _ 8 .81 . SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. ...UPTAKE (_MG./_L_..HR_)= 77.37 MASS TRANS COEFF (1/HR)= 124.60 R SQUARE = 0.99982 NUMBER.OF. DATA _= 7... TIME P.PRESS DLS JDXX . . DETA. .C. . TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) . . 0 . 0 . . 47.00.__ 2.08 4.46 . 3.84 . 0.20 77.00 3.41 3. 13 2.51 0.40 97.00 4.30 2.25 1.63 0.60 109.00 4.83 1.72 1.09 0.80 117.00 5.19 1.36 0.74 1.00 123.00 5.45 1.09 0.47 1.40 ._ . __129.0 .0„ 5.72 0.8 3 0.21 .. r -10U-y PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR )= . 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY . UP T A.K E ( MG/L /HR ) = 115.60 MASS TRANS COEFF (1/HR)= 161.44 R SGUARE = 0.99998 NUMBER OF DATA . ..= 7 _TJ_ME_ (MIN) P. PRESS. (MMHG) DIS OXY. ( PPM) _D.E_TA__C_ (PPM) TRUE DC. ( PPM) 0.0 0. 10 0.20 _a._3.o_ 0.40 0.50 0.70 31.00 55.00 73.00 _8_7_.J3.0_ 98.00 106.00 117.00 1-37 2.44 3- 24 _3.-_3.6_ 4. 34 4- 70 5.19 5.21 4. 15 3.35 _2._73_ 2. 24 1-89 1.. 40. 4.50 3.43 2-64 2 .01 1.53 1.17 0.68 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL.(FT/HR)=. SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE 0XY... UPTAKE ( MG/.L/HR) = MASS TRANS COEFF <1/HR)= R SGUARE NUMBER.OF DATA 0.0 600.00 17.15 6.61 1.01 1.13..00 201.31 = 0.99974 9 _JLI.I_.E_ (MIN ) _e.„P_R„E.S.S_ (MMHG) .D_I.S_0.X_Y_. (PPM) DETA. C. (PPM) JTRUE. DC ( PPM) 0.0 _ 0. 10 0.20 .0..„3.0_ 0.40 0.50 0.60 0.80 1.00 .39.00. 66.00 86.CO J.-0_Q_._0_0_ 111.00 118.00 123.00 130.00 133.00 .1.73 2.93 3.81 .A.A3_ 4.92 5.23 5.45 5.76 5.90 4.88 3.69 2.80 _2._1.8_ 1.69 1.38 1- 16 0-85 0-72 4.32 3.12 2.24 1.62 I. 13 0.82 0.60 0.29 0.15 r PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 .OXY UPJ.AKE LMG/L/HR1= 105 .64 MASS TRANS COEFF (1/HR)= 90 .89 R SGUARE = 0.99997 NUMBER OF . DATA ... = 5 _T_I ME P_..P_RESS D.LS_0X.Y DET .A_C LXRUE_DC. (MIN) (MMHG) (PPM) (PPM) (PPM) _.0..0. 50.00 2.22 3.86 2.70 0.40 78.00 3.46 2.62 1.46 0.80 93.00 4.12 1.96 0.79 ... 1. 20 101.00 4.48 1.60 0,44 2.00 108.00 4.79 1.29 0.13 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL .(FT/HR)= 5 .26 . SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 ..0 X-Y___U.PJ.A.KE (M.G /.L/H R lj4._J)_5_ MASS TRANS COEFF (1/HR)= 146.52 R SCUARE = 0.99983 NUMBER. 0F_. DATA = 7. XI.M.E P...P.RE.S.S DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) ...0.0 28.00 1.24 5.22 4.44 0.10 50.00 2.22 4.24 3.46 0.20 67 .00 2.97 3.49 2.71 _a..3.0 8.0..C.0 3 . 55__ _2..__91 _2_. _l 3_ 0.40 90.00 3.99 2.47 1.69 0.50 99.00 4.39 2.07 1.29 ...0. 7.0 110.00 4.88 1. 58 _ 0 . 80_ r PERCENT SOLID (WT.)= AGITATION SPEED ( R P M ) = SUPERFICIAL VEL (FT/HR ) = SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE 0 X Y. UP TAK E .(.MG /L/HR) = MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA =. 0.0 700.00 8 .81 . 6.55 1-97 _1A8.._52_ 195.17 0.99986 _ 7 _T_I.M.E _P_..P..RE.S.S. DJ.S_.O.XY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 37.00 1.64 4.91 _ 4.15 0.10 63.00 2.79 3.75 2-99 0.20 82.00 3.64 2.91 2.15 JD..3Q 96_._Q0 4_..2.6 2... .29. JL_.J5j.3__ 0.40 105.00 4.66 1.89 1.13 0.50 112.00 4 .97 1.58 0.82 . 0 . 7 0 121.00. 5.36 1.18 0.42 PERCENT SOLID (WT.)= 0.0 AGITATION SPEEO (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.__UPT_AK£ ( MG/L./_hB±= 197.99. MASS TRANS COEFF (1/HR)= 245.26 R SQUARE = 0-99980 NUMBER OF. DAT A „ = .7. TIME P.. PR ESS.. DJ.S_OX.Y DEI A. _C .1BJJ E DC_ (MIN) (MMHG) (P.PM) (PPM) (PPM) 0.0 43.00 1.91 4.68 3.87 0.10 72.00 3.19 3.40 2.59 0.20 91.00 4.03 2.55 1-75 .._0...3_0_ _1.0A._Q_0 4.._6J. 1.. 98 1. 17_ 0.40 113.00 5.01 1.58 0.77 0.60 123.00 5.45 1.13 0.33 0.80 127.00 5.63 0.96 0 . 15 V___ r P E R C E N T S O L I D ( W T . ) = 0 . 0 A G I T A T I O N S P E E D « R P M ) = 7 0 0 . 0 0 S U P E R F I C I A L V E L ( F T / H R ) = . 1 7 . 1 5 S A T . O X Y . C O N C . ( P P M ) = 6 . 6 1 % C A R B O N D I O X I D E = 1 - 0 1 _0 X.Y___U P-T-A K E LMG.ZL / H R. ) = 2.0 6 ._0_7_ M A S S T R A N S C O E F F ( 1 / H R ) = 2 8 5 . 5 8 R S G U A R E - 0 . 9 9 9 5 0 N U M B E R OF D A T A _ = 7 T I M E . P . P R E S S _Q1S__0X.Y . DE JA . C TRI IF nr. ( M I N ) (MMHG) ( P P M ) ( P P M ) ( P P M ) 0 . 0 .. 5 1 . 0 0 2 . 2 6 4 . 3 5 3 . 6 3 0 . 1 0 8 2 . C O 3 . 6 4 2 . 9 8 2 . 2 6 0 . 2 0 1 0 2 . 0 0 4 . 5 2 2 . 0 9 1 . 3 7 0 . 1 0 1 1 4 . 0 0 5 . 0 5 1 . 5 6 0 . 8 4 0 . 4 0 1 2 1 . 0 0 5 . 3 6 1 . 2 5 0 . 5 3 0 . 5 0 1 2 5 . 0 0 5 . 5 4 1 . 0 7 0 . 3 5 0 . 7 0 . ... 1 3 0 . 0 0 , 5 . 7 6 0 . 8 5 0 . 1 3 . P E R C E N T S O L I D A G I T A T I O N S P E E D S U P E R F I C I A L V E L S A T . O X Y . C O N C . % C A R B O N D I O X I D E O X Y . U P T A K E (_M_G.ZL/JiRJ_ ( W T . ) = 0 . 0 ( R P M ) = 3 0 0 . 0 0 ( F T / H R )= 1 . 9 4 , ( P P M ) = 6 . 0 8 8 . 9 8 _ - 5 _ . A 7 _ MASS T R A N S C O E F F ( 1 / H R ) = 8 . 0 9 R S Q U A R E = 0 . 9 9 9 9 7 NUMBER OF D A T A .. =. 8. T LME P_._P.R.E.S.S D_LS_ OXY D E T_A _ C TR U E_ D C (MIN) (MMHG) (PPM) (PPM) (PPM) . 0 . 0 2 0 . 0 0 0 . 8 9 5 . 1 9 5 . 8 7 1 . 0 0 3 7 . 0 0 1 . 6 4 4 . 4 4 5 . 1 2 2 . 0 0 5 1 . 0 0 2 . 2 6 3 . 8 2 4 . 5 0 _3.._0_0 6.4.. 0.0 2 - 8 4 3 . 2 4 3._.92 4 . 0 0 7 5 . 0 0 3 . 3 3 2 . 7 6 3 . 4 3 5 . 0 0 8 5 . 0 0 3 . 7 7 2 . 3 1 2 . 9 9 . 7 . 0 0 . 1 0 1 . 0 0 4 . 4 8 1 . 6 0 2 . 2 8 9 . 0 0 1 1 3 . 0 0 5 . 0 1 1 . 0 7 1 . 7 5 r PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY...UP TAKE (MG/L/HR.)= -1.2b MASS TRANS COEFF (1/HR)= 10.70 R SQUARE = 0.99994 NUMBER OF DATA = 8 _I.I.I_E_ (MIN) P. PRESS (MMHG) ..D IS.. OXY (PPM) O.ETA C (PPM) TRUE DC. (PPM) 0.0 1.00 2.00 3.CO 4.00 5.00 7.00 9.00 26.CO 48.00 67.00 8.2.00. 95.00 106.00 122.00 134.00 1.15 2.13 2.97 3.6.4_ 4.21 4.70 5.41 5.94 5.31 4.33 3.49 2.82 2.25 1.76 1.05 0.52 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 8.81 SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (.«G/L/HR )= -1.42. MASS TRANS COEFF (1/HR)= 18.98 R SGUARE = 0.99989 .NUMBER CF DATA ..= 6 5.98 5.01 4.17 3.50. 2.93 2.44 I .73 1.20 ...TIME (MIN ) r_-.P_8E.SjS_ (MMHG) .DIS ..OXY. (PPM) _JD_ET.A_.C_ (PPM) J_R.UE„OC_ ( PPM) 0.0 . 1.00 2.00 _3.._C.0_ 4.00 5.00 .41.00 70.00 92.00 .107.00. 119.00 127.00 1.82 3. 10 4.08 4. 74. 5.28 5.63 4.73 3.44 2.47 __L...8.0_ 1.27 0.92 4.81 3.52 2.54 1.88 1-35 0.99 y PERCENT SOLID (WT.)- 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 _0 X Y U P.T.AKE IM G./.L./.H RJ =_ 15...8_7_ MASS TRANS COEFF (1/HR)= R SQUARE NUMBER GF DATA 24.60 = 0.99992 = 7 __T_I.ME-(MIN) 0.0 0. 50 1. CO __1...5-0 2. CO 2.50 3.00 ..._P.PRESS. (MMHG) 25.00. 45.00 61.00 _7.5...0XL 86.00 95.00 102.00 _D.IS_QXY„ (PPM) 1.11 2.00 2.70 3_..33_ 3.81 4.21 4.52 .D.ET.A_C_ (PPM) 5.48 4.59 3.88 3.26_ 2.78 2. 38 2.07 TRUE DC ( PPM) 4.83 3.95 3.24 2.62 2.13 1-73 1.42. PERCENT SOLID (WT.)= 0-0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE. = 1.01 OXY. UPTAKE (MG/L/HR )= 15.29. MASS TRANS COEFF (1/HR)= 40.64 R SQUARE = 0.99983 NUMBER.OF. DATA — 6 — TIME P.PRESS OXS. OXY . QEXA.C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) . . 0 . 0 _ 40.CO 1.77 4.84 4.46 _ ^ 0. 50 69.00 3.06 3.55 3.18 1.00 89.00 3.95 2.67 2.29 1.50 104.00 4.61 2.00 1.63 2.CO 115.00 5. 10 1.51 1.14 2.50 122.00 5.41 1.20 0.83 I r y T I MF P.PRESS DIS OXY DETA C TRUE OC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0. 0 26 . 00 _ _ - . 1 .15 .._ 4. 93 3. 17 1. 00 4 6 . 00 2 ,04 4. 04 2. 28 2. 00 6 0 . 00 2 .66 3. 42 1. 66 3.. .CO 70.. -0 0 3 .1.0 .2. 98 1. 22 4. 00 7 7 . 00 3 .41 2. 67 0. 91 5. CO 8 2 . 00 3 .64 2. 44 0. 69 7. CO-. 8 9 . 00 3 .95 2. 13 0. 37 9. 00 9 3 . 00 4 .12 1. 96 0. 20 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY... .UPTAKE (MGIV/HR) = MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA 0.0 4 0 0 . 0 0 1.94 6.08 8.98 32.2 0 18.30 0.99967 - 8 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM>= 400.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3-31 OXY. UPTAKE ( MG/L/HR )= 12.52 MASS TRANS COEFF (1/HR)= 37.77 R SQUARE = 0.99992 NUMBER .OF -OATA __,_=. 7. _TJ M.E P..-PR.E.S.S DIS OXY _DETA__C TRUE DX. (MIN) (MMHG) (PPM) (PPM) (PPM) .0.0 37.00 1.64 .. 0.50 64.00 2.84 1.00 84.00 3.72 ... 1. 50 99.00 4.3.9 2.00 109.00 4.83 3.CO 123.00 5.45 4.00 130.00 5.76 _ 4.82 ... 4.49 3.62 3.29 2.73 2.40 2..J07.. . 1.7A 1.63 1.29 1.01 0.67 .0.70 .„ . 0.36 r V — J_ \J / — P E R C E N T S O L I D (W T . ) = 0 . 0 A G I T A T I O N S P E E D ( R P M ) = 4 0 0 . 0 0 S U P E R F I C I A L V E L ( F T / H R .= . . __ 8 . 8 1 S A T . O X Y . C O N C . ( P P M ) = 6 . 5 5 % C A R B O N D I O X I D E = 1 . 9 7 O X Y . UP.TAK.E ( .MG/L/HR ).= 3 . 2 5 M A S S T R A N S C O E F F ( 1 / H R ) = 4 7 . 4 4 R S Q U A R E = 0 . 9 9 9 9 9 N U M B E R OF . D A T A . . = .__ 7 _.T_I_M.E_ ( M I N ) _P_.PRE.SS. ( M M H G ) JH.S__OX.Y_ ( PPM ) _D.ETA._C_ ( P P M ) T R U E DC ( P P M ) . 0 . 0 . 0 . 5 0 1 . 0 0 _1._5.0_ 2 . C O 3 . 0 0 4 . C O 4 8 . 0 0 8 0 . C O 1 0 2 . 0 0 1 1 6 . 0 0 1 2 6 . 0 0 1 3 7 . C O . 1 4 2 . 0 0 . 2 . 1 3 3 . 5 5 4 . 5 2 5 .1 .4_ 5 . 5 9 6 . 0 7 .... 6 . 3 0 . 4 . 4 2 3 . 0 0 2 . 0 3 _ 1 . _ 4 1 _ 0 . 9 6 0 . 4 7 0 . 2 5 4 . 3 5 2 . 9 3 1 . 9 6 _1...3_4_ 0 . 8 9 0 . 4 1 0 . 1 8 P E R C E N T S O L I D ( W T . ) = 0 . 0 A G I T A T I O N S P E E D ( R P M ) = 4 0 0 . 0 0 S U P E R F I C I A L V E L . ( F T / H R ) = 1 2 . 6 3 . S A T . O X Y . C O N C . ( P P M ) = 6 . 5 9 % C A R B O N D I O X I D E = 1 . 3 8 O X Y . U P T A K E ( M G / L / H R )= 1 4 . 5 7 MASS T R A N S C O E F F ( 1 / H R ) = 5 4 . 9 3 R S Q U A R E = 0 . 9 9 9 9 7 N U M B E R . OF.. D A T A . = 7.. T I M E P . P R E S S D I S O X Y D E T A . . C T R U E DC ( M I N ) ( M M H G ) ( P P M ) ( P P M ) ( P P M ) 0 . 0 4 4 . 0 0 1 . 9 5 4 . 6 4 _ _„ 4 . 3 7 0 . 4 0 7 5 . 0 0 3 - 3 3 3 . 2 6 3 . 0 0 0 . 8 0 9 6 . 0 0 4 . 2 6 2 . 3 3 2 . 0 7 __L..2_0 1.1„0.._C_0 4_._8 8 l._7_l 1_..45_ 2 . 0 0 1 2 7 . 0 0 5 . 6 3 0 . 9 6 0 - 6 9 2 . 8 0 1 3 5 . 0 0 5 . 9 9 0 . 6 0 0 . 3 4 . 3 . 6 0 _ _ 1 3 9 . 0 0 . . . 6 . 1 6 0 . . 4 3 . 0 . 1 6 _ r i PERCENT SOLIO (WT.)= 0.0 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR ) = 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 .OXY. ..UPTAKE ( MG/L/HR) = 6.30 MASS TRANS COEFF <1/HR)= 67.01 R SGUARE = 0-99990 NUMBER OF DATA __.= 6. ... T I ME (MIN) _P_.P_R.ESS_ (MMHG) _D_I_S__0XY_ (PPM) _DE_LA__.C_ (PPM) jrRU_E__DC (PPM) 0.0 0.40 0.80 _1_.2.0_ 2.00 2.80 54.00 88.00 110.00 _1.2.3...0JQ_ 137.00 143.00 2.39 3.90 4.88 .5,45.. 6.07 6.34 4.22 2.71 1.74 _1. 16. 0. 54 0.27 4.12 2.62 1.64 1.07 0.44 0.18 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED <RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= _ . 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE '= 8.98 OXY.. ..UPTAKE (MG/L/HR)- 0.13 MASS TRANS COEFF (1/HR)= 34.91 R SGUARE = 0.99998 NUMBER OF..._DATA =. __7_ .TIME. (MIN) J__.PR.E_S.S_ (MMHG) .D.1_S__0X-Y_. (PPM) -DEIA__:C_ (PPM) .TRUE DC ( PPM) .__0.0 .._ 0.50 1.00 __.l-._5.0__ 2.CO 3.00 ...4.00. 34.00 60.00 79.00 __9.4_._C0_ 105.00 119.00 127.00. 1.51 2.66 3.50 _4.._17_ 4.66 5-28 .5.63 4.57 3.42 2.58 _1.9l_-1.43 0-80 0.45. 4.57 3.42 2.57 1.9i_ 1.42 0.80 0.45 V -PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)=^  500.00 SUPERFICIAL VEL (FT/HR)= 5.26. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY....UPTAKE ( MG/L/HR)= -.1.0.00. MASS TRANS COEFF (1/HR)= 62.31 R SGUARE = 0.99994 NUMBER OF. DATA .=. 7 T T MF P.PRESS DIS OXY . flFTA r. TRUE DC (MIN ) (MMHG) (PPM) (PPM) ( PPM) _0.0.._ 52.00 2.31 4.15_._ 4.31 0.40 85.00 3.77 2.69 2.85 0.80 107.00 4.74 1.72 1 .88 1.20 1 ??_0G _5..41 1.0.5 1 .71 2.00 137.00 6.07 0.38 0.55 2.80 144.00 6.38 0.07 0.24 3.60. 147.00 6.52 . -0.06 __. 0. 10 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL... { FT/HR)= . 8.81. SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 0XY. . UP.I AKE (MG/L/HR).= -1.40 MASS TRANS COEFF (1/HR)= 90.18 R SGUARE = 0.99926 NUMBER. OF. DATA = 7. _JT_I__J__ (MIN) _P_.P_RE.S_S_ (MMHG) _D_I.S_i_.X_Y_ ( PPM) ._D.ETA._C_ (PPM) TRUE DC ( PPM) .0.0 _ 0.40 0.80 _1.2_0_ 1.60 2.00 _2.40_ .69.00. 106.00 125.00 _136_._0_0_ 141.00 144.00 146.00.. 3.06.. 4.70 5.54 _6_._03_ 6.25 6.38 6.47. 3.49 1.85 1.01 J3.-__.2_ 0.30 0. 16 0.08 3.50 1.86 1.02 J1-5J3L 0.31 0.18 0.09 r >- PERCENT SOLIO (WT.)= AGITATION SPEED tRPM)= SUPERFICIAL VEL (FT/HR) = SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE . 0 XY.....U P.T. A.KE (MG AL AM R).= . MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA 0.0 5C0.00 12.63 6 .59 1.38 3.74. 100.52 = 0.99996 .= 6 TIME (MIN) 0.0 0.20 0.40 0.60 0.80 1.00 _P__.PJ-.ES.S_ (MMHG) 42.00 72 .00 94.00 __1.0S...O.O_ 120.00 128.00 .DI.S_.OXY. (PPM) 1.86 3.19 4.17 4.83. 5.32 5.67 DEI A . C TRUE DC (PPM) (PPM) 4.73 _. . 4 .69 3.40 3.36 2.42 2.38 1.76 1.72 1.27 1.23 0.91 0.88 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC. (PPM)- 6.61 % CARBON DIOXIDE = 1.01 0XY.. UP.TAKE (MG/L/HR)= 9.32 MASS TRANS COEFF (1/HR)= 119.03 R SQUARE = 0.99977 NUMBER OF. DATA =, 6. __T_IJ_E P_. .PR E.S.S DIS__OJX.Y D.E IA _C TRUE DC I MIN) (MMHG) (P.PM) (PPM) (PPM) 0.0 49 .00 2. 17 4.44 4.36 0.20 82.00 3.64 2.98 2.90 0.40 103.00 4.57 2.05 1.97 __0...60 118.00 5.23 1...38 1. 3Q_ 0.80 127.00 5.63 0.98 0.90 1.00 134.00 5.94 0 .67 0.59 S, ( PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL IFT/HR)= _ 1 . 9 4 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 JDXY._i_PJ.AKE (.MG/L/HR )=_ -0.41 MASS TRANS COEFF (1/HR)= 52.38 R SGUARE = 0.99960 NUMBER OF DATA =. ___ 7 TJ ME P_..P_R£S.S DIS_.OX_Y DE.TA._C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 _ 41.00 1.82 4. 26 4.27 0.40 69.00 3.06 3.02 3.03 0.80 89.00 3.95 2.13 2.14 __1.20 104...0.0 .4.61, 1.4 7 1..A8 1.60 114.00 5.05 1.03 1.03 2.00 120.00 5.32 0.76 0.77 2.80 129.CO 5.72 0. 36 0.37. PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR ) = 5.26. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 .OXY. .UPJ.AK.E (MG/L/HR)= 17.59. MASS TRANS COEFF (1/HR)= 104.39 R SGUARE = 0.99993 NUMBER. OF DATA __= 7 T T MF __P ..PRELS.S DIS OXY DETA C TRUE CC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 _.. _ . 4 1 . 0 0 . 1.82. 4 .64 . 4.47 0.20 70.00 3.10 3. 36 3.19 o 0.40 91.00 4.03 2.42 2.26 I O.ftO 1.0.6._0_0 4.70 1.76 1.59 < 0.80 117.00 5.19 1.27 1.10 u 1.00 124.00 5.50 0.96 0.79 a 1.40 133.00 5.90 0.56.. . 0.39 V r P E R C E N T S O L I D ( W T . ) = 0.0 A G I T A T I O N S P E E D (RPM)= 600.00 .. S U P E R F I C I A L V E L ( F T / H R ) = ... 8.81. . j S A T . O X Y . C O N C . ( P P M ) = 6.55 ! % C A R B O N D I O X I D E 1.97 ; O X Y - U P T A K E (MG/1/HR1= . -2.15. M A S S T R A N S C O E F F (1/HR)= 1 11.34 R S Q U A R E 0.99975 N U M B E R OF D A T A _ 7 , T I MF P . P R E S S ms nxY D E T A C T R U E DC ( M I N ) (MMHG) ( P P M ) ( P P M ) ( P P M ) i .. 0.0 . 47.00 2.08 4.46 . 4.48 0.20 79.00 3.50 3.05 3.06 0.40 100.00 4.43 2. 11 2.13 0.60 115.00 5. 10 1.45 1.47 0.80 126.00 5.59 0.96 0.98 1.20 137.00 6.07 0.47 0.49 ._ 1.60 143.00 . 6. 34 .... 0.21 0.23 P E R C E N T S O L I D ( W T . ) = 0.0 A G I T A T I O N S P E E D ( R P M ) = 600.00 S U P E R F I C I A L V E L ( F T / H R ) = 12.63 S A T . O X Y . C O N C . ( P P M ) = 6,59 % C A R B O N D I O X I D E 1.38 O X Y . U P T A K E ( M G / L / H R ) = 28.06 M A S S T R A N S C O E F F (1 / H R ) = 186.08 R S Q U A R E 0.99984 N U M B E R OF D A T A = 7 T T MF P . P R F S S D I S OXY D.ETA-X T R U E DC ( M I N ) ( M M H G ) ( P P M ) ( P P M ) ( P P M ) 0.0 39.00 1.73 ...4.86 4.71 0.10 67.00 2.97 3.62 3.47 0.20 88.00 3.90 2.69 2.54 0.30 103.no 4.57 2.0.2 1.87 0.40 114.00 5.05 1.53 1.38 0.50 123.00 5.45 1.13 0.98 — — _ . 0.70 133.00. . _. 5.90 . 0.69. 0.54 „ ... PERCENT SOLID (WT.)= AGIT AT I ON SPEED (RPM) = SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. <PPM)= % CARBON DIOXIDE -0 XX U PJ.AK £ LM G AL AH R) _ MASS TRANS COEFF ( 1/HR)= R SQUARE NUMBER OF DATA = 0.0 600.00 17.15 6.61 1.01 18._.1.3_ 195.28 0.99992 7 TTMF P ..P.RES S D.I.S. OXY (MIN) (MMHG) (PPM) 0.0 40.00 . _ 1.77 0.10 69.00 3.06 0.20 91.00 4.03 0 . 10 .. 10 6.-00 4_ 70 0.40 118.00 5.23 0.50 126.CO 5.59 .. 0.70 136.00 _ 6.03 DETA C (PPM) TRUE DC { PPM) 4.84 4.75 3.55 3.46 2.58 2.48 1.91 . „ 1 . 8 2 1.38 1.29 1.03 0.93 0.58 0.49 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBCN DIOXIDE OXY. UPTAKE (.M.G. /L/HR) = MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA 0.0 700.00 1.94. 6.08 8.98 _-.0.A3_ 88.60 = 0.99995 _ _ 5 TIME P.PRESS DIS OXY DETA C._ TRUE DC (MIN) (MMHG) (PPM ) (PPM) (PPM) 0.0 _ 60.00 2.66 . 3.42 3.43 | 0.40 94.00 4. 17 1.91 1.92 ! 0.80 113.00 5.01 1.07 i . 08 ; 1.60 130.00 5.76 0.32 0.32 2.40 135.00 5.99 0.10 0.10 r P E R C E N T S O L I D A G I T A T I O N S P E E D S U P E R F I C I A L V E L S A T.OXY.CONC. (WT. ) = (RPM ) = ( F T / H R ) = ( P P M ) = % CARBON D I O X I D E -OXY. U P.TA K E (MG/L/H R) = MASS TRANS C O E F F ( 1 / H R ) = R SQUARE NUMBER OF DATA _=?. 0.0 7 0 0 . 0 0 5 . 2 6 6 . 4 6 3 . 3 1 _0 .5 6_ 1 5 0 . 9 6 0 . 9 9 9 8 9 7 T I M E P. P R E S S D I S OXY DETA C TRUE DC ( M I N ) (MMHG) ( PPM) ( P P M ) ( PPM) 0.0 - 3 3 . 0 0 . 1.46 5.00 4 . 9 9 0.10 5 8 . 0 0 2 . 5 7 3 . 8 9 3 . 8 8 0.20 7 8 . 0 0 3 . 4 6 3.00 3 . 0 0 O...3.0 9 3 . 0 0 4..12. .2. 3.4. 2. 33 0.50 1 1 4 . 0 0 5 . 0 5 1.40 1.40 0.70 126.GO 5 . 5 9 0.87 0.87 0 . 9 0 . . 1 3 4 . 0 0 . 5.94 ... 0 . 5 2 __ . 0 . 5 1 P ERCENT S O L I D (WT.)= 0.0 A G I T A T I O N S P E E D ( R P M ) = 7 0 0 . 0 0 S U P E R F I C I A L V E L ( F T / H R ) = 8 . 8 1 S A T.OXY.CONC. ( P P M ) = 6 . 5 5 % CARBON D I O X I D E = 1.97 .DX_Y_...._UPJ_A.K.E ( M G / L / H R ) = 5_..6_0__ MASS TRANS C O E F F ( 1 / H R ) = 1 9 5 . 2 8 R SQUARE = 0 . 9 9 9 9 2 NUMBER. OF. DATA = 7 T I M E P.. PR E S S D I S OXY DETA C TRUE DC ( M I N ) (MMHG) ( P P M ) ( P P M ) ( PPM) 0.0 _ . 4 0 . 0 0 . . . ... . 1.77 4 . 7 7 4 . 7 5 0.10 6 9 . 0 0 3.06 3 . 4 9 3 . 4 6 0.20 9 1 . 0 0 4 . 0 3 2 . 5 1 2 . 4 8 0...30. 10.6...0.0 4 . 7 0 .1.8.5 1.82 0.40 1 1 8 . 0 0 5 . 2 3 1.32 1.29 0.50 1 2 6 . 0 0 5.59 0 . 9 6 0 . 9 3 . 0 . 7 0 ... 1 3 6 . 0 0 .... 6.03 0.52 .. 0 . 4 9 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR ) = ... 12 . 63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY UP..T.AKE (M.G/.L/HR.).= 3.80 MASS TRANS COEFF (1/HR)= 227.45 R SGUARE ' = 0-99989 NUMBER OF DATA __ = 7 —T.I.M.E P. PRESS DI.S_OXY D ETA_C TRU E_OC (MIN) (MMHG) (PPM) (PPM) (PPM) — 0.0 47.00 2.08 4. 50... 4.49 0.10 78.00 3.46 3.13 \ 3.11 0.20 100.00 4.43 2.15^ \ 2.14 0...3.0 115.0.0 5...10 1.49--.: 1.47 0.40 126.00 5.59 l . O O 7 / 0.99 0.50 133.00 5.90 0 . 6 9 ^ 0.67 0.70. 141,00 6.25 0.34 0.32 PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR ) = 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON OIOXIDE = 1.01 OXY.. UPTAKE ( MG/L/HR ).= -7 . 92. MASS TRANS COEFF (1 /HR)= 295.15 R SGUARE = 0.99998 NUMBER OF DATA = 6 _..TIM.E P.. PR ESS DIS OXY DET A C TRUE. DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 59.00 2-62 4.00 4.02 0.10 94.00 4.17 2-44 2.47 0.20 116.00 5.14 1.47 1.50 _0_.3.0 129.00 5.._72_. Q-.89 Q...92 0.40 137.00 6.07 0.54 0.57 0.50 142.00 6.30 0.32 0.34 r PERCENT SOLIO (WT.)= 5.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= . 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CAR8CN DIOXIDE = 8.98 OXY.....U P.TAKE (MGVL /HR)= 8. 27 MASS TRANS COEFF (1/HR)= 82.33 R SQUARE = 0.99977 NUMBER OF DATA = 6.___ ...TIME. (MIN ) J_..P.R.E.S.S_ (MMHG) DIS. OXY. (PPM) DETA C (PPM) TRUE ..CC (PPM) 0.0 0.20 0.60 _L..0.0. 1.40 1.80 31.00 56.00 89.00 108.00 120.00 126.00 1.37 2.48 3.95 _4._7.9_. 5.32 5.59 4.71 3.60 2. 13 __lo_2_9 0. 76 0.49 4.61 3.50 2.03 1.19 0.66 0.39 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 5.26_ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY UPTAKE ( MG/L/HR)= -3.23 MASS TRANS COEFF (1/HR)= 117.54 R SGUARE = 0.99985 .NUMBER OF. DATA = J . . . TIME __P.PRESS D.TS OXY. DETA_._C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) . ... . 0.0 . . . . 47.00 2.08 . 4.38 . 4.40 0.20 79.00 3.50 2.96 2.98 • 0.40 101.00 4.48 1. 98 2.01 i O.ftO 116.00 5-14 1. 32 1.34 z 0.80 126.00 5.59 0.87 0.90 c IJ l . G O 132.00 5.85 0.61 0.63 ' J .... _ 1.60 _. 142.00..., 6.30 0.16 .. 0.19 .... r V ( PERCENT SOLID (WT.)= 5.CO AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR ) = 8.81.._ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 .OXY UPTAKE (MG/.L/HR.) = 13.35.. . MASS TRANS COEFF (l/HR)= 158.59 R SQUARE = 0.99984 NUMBER OF DATA ... 7... __TJME_ (MIN) _P_..PRESS. (MMHG) _DJ.S__OX_Y_ (PPM) _DET.A_._C_ (PPM) _J.RUE__DCL ( PPM) 0.0 0.10 0.20 __0..3.0_ 0.40 0.50 0.70. 33.00. 59.00 79.00 ___9.5..00_ 106.00 116.00 128.00 1.46 2.62 3.50 _4...21_ 4 . 70 5.14 5.67. 5.09 . 5 . 0 0 ... 3.93 3.85 3.05 2.96 .2..3.4 2.25 1.85 1.76 1.41 1.32 0 .87 . _ . 0.79 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR )= 28.01 MASS TRANS COEFF (1/HR)= 192.55 R SQUARE = 0.99990 NUMBER OF DATA. = _ 7 TIME P. PR ESS DIS OXY D ETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 39.00 1.73 4.86 4.71 0.10 68.00 3.01 3.57 3.43 0.20 89.00 3.95 2.64 2.50 0...3.0 104.CO 4.61 1.98 1 ._8 3 0.40 116.00 5.14 1.45 1.30 0.50 124.00 5.50 1.09 0-94 0..70 134.00 5.94 0.65 _ .0 .50 r PERCENT SOLID (WT.)= 5 .00 AGITATION SPEED (RPM)= 700 . 00 SUPERFICIAL VEL (FT/HR)= . 1 7 . 1 5 . . . SAT.OXY.CONC. <PPM)= 6 . 61 % CARBON DIOXIDE = 1.01 .OXY. U PT A KE (MG/L/H R)=. 9 .93. . . MASS TRANS COEFF (1/HR)= 216 .68 R SQUARE = 0 .99983 NUMBER OF DATA .__= .7 . TIME. (MIN) P. PRESS (MMHG) DIS OXY. (PPM) _DETA_..C_ (PPM) _T„RUE__OC_ (PPM) 0.0 0 .10 0.20 J__.3__ 0 .40 0.50 0 .70 45 . 00 77 .00 99 . 00 .114.00 124.00 131.00 140.00 . 2 .00 3 .41 4 .39 _ 5 . 05 . 5.50 5.81 6 .21 4 .62 3 .20 2.22 1. 56 1. 11 0 . 80 0 .41 4 .57 3 .15 2.18 _1. 51_ 1-07 0 .76 0 .36 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 600 . 00 SUPERFICIAL VEL ( FT/HR ) = 1.94._. SAT.OXY.CONC. (PPM)= 6 .08 % CARBON DIOXIDE = 8 .98 OXY. UPTAKE ( MG/L/HR)= 11..64._ MASS TRANS COEFF (1/HR)= 43 . 59 R SGUARE = 0 .99996 NUMBER CF. DATA = 6 _TJJ_JE_ (MIN ) _P_.PRE.SS_ (MMHG) _0_I.S._OXY_ (PPM) DETA C (PPM) TRUE_DC_ ( PPM) 0 . 0 -0 .50 1.00 _1...5.0_ 2 .00 3 .00 . 4 1 . 0 0 . 69 . 00 88 .00 _1.0.1...00_ 110.00 121 .00 1.82 3.06 3 .90 _.4.._4.8_ 4 .88 5.36 4 .26 3 .02 2. 18 JL.6.Q_ 1.20 0 .72 4 .00 2 .75 1.91 _1...3_4_ 0 .94 0 .45 r PERCENT SOLID (WT.)~-= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE _Q.X_Y._U PI A K E _t.M.G / L./H R..)_=_ MASS TRANS COEFF (1/HR)= R SGUARE NUMBER OF DATA. 5.00 600.00 5.26 6.46 3.31 _L8._.6.0_ 84.84 = 0.99998 - 6 TIME (MIN) P. PRESS (MMHG) J3J.S_QX.Y_ 1PPM) DEJA C I PPM) _IRU.E„_DC_ ( PPM) .0.0. .. 0.20 0.60 _L..0.0_ 1.40 2.20 34 .00 . 61.00 95.00 _115.-0 0_ 126.00 136.00 -.1.51 2.70 . 4.21 5...1Q. 5.59 6.03 4.95 3.75 2.25 _l.-36_ 0.87 0. 43 4.73 3.54 2.03 . l . . l_4_ 0.65 0.21 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)=. 8-81_ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UP J.AKE (MG/.L/HR) = 21 . 1 2 _ MASS TRANS COEFF (1/HR)= 111.07 R SGUARE NUMBER OF.DATA. = 0.99995 ..= 7 -XLME P.PRESS D_I.S_OXY DET_A_C IJ^ UE DC_ (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 26.00 1.15 5.40 5.21 0.10 44.00 1.95 4.60 4.41 0.30 75.00 3.33 3.22 3.03 ...0.50 9 6...0 0 4.26 2... 2 9 2_. 10 0.70 111.00 4.92 1.63 1.44 1.10 128.00 5.67 0.87 0.68 _ 1.50 136.00 6.03 0.52 0.33_ r PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= 12.63.. SAT.OXY.CONC. (PPM)= 6.59 * CARBON DIOXIDE = 1.38 _0 XY. . U PXA KE (MG/L/HR ) = 41. 16_._. MASS TRANS COEFF (1/HR)= 152.77 R SQUARE • = 0.99995 .. NUMBER OF DATA =._.... 6 ... .XI ME P.PRESS DIS OXY DETA C TRUE DC __ (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 . 27.00 1.20 5. 39 5.12 0.10 55.00 2.44 4.15 3.88 0.30 89.00 3.95 2.64 2.37 0.50 110.00 4.88 1. 7 1 1.44 0.90 131.00 5.81 0.78 0.51 1.50 140.00 6.21 0.38 0.11 PERCENT SOLID (V1T.)= 5.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR ) = 17.15.. SAT.OXY.CONC. (P'PM)= 6.61 % CARBON DIOXIDE = 1.01 OXY...UPTAKE ( MG/L/HR )= 21.23 . MASS TRANS COEFF (1/HR)= 177,60 R SGUARE = 0.99989 NUMBER. .OF.. DATA = 7_ TIME (MIN) P.PRESS (MMHG) _fiI.S.._OX.Y_ (PPM) _D.ET.A_C_ (PPM) XRU.E_.QC_ ( PPM) 0.0 0.10 0.20 _0.._3L0 0.40 0.50 0.60 ... 3 8.00. 66.00 86.00 _10.2.._Q0_ 113.00 122.00 128.00 1.68 2.93 3.81 _4.._52_ 5.01 5.41 5.67 4.93 3.69 2.80 2.09. 1.60 1.20 .0.94_ 4.81 3.57 2.68 _1.._.97_ 1.48 1.08 0.82 V 1 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL {FT/HR)= 1.94 SAT.OXY.CONC. <PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/t,/HR) = 49.42 - — MASS TRANS COEFF <1/HR)~ 34 .50 R SQUARE = 0.99998 . NUMBER OF DATA = _ 6 TIMF P.PRFSS nrs OXY DETA C TRUF DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 ......... 27 . 00 . 1. 20 .... ... 4 . 88 ... 3.45 0.50 46.00 2.04 1.00 61.00 2.70 2.CO 80.00 1.55 4.04 3.38 ..2. 53 2.61 1.94 1-10 3.00 91.00 4.03 4.CO 97.00 4.30 2.05 1.78 0.61 0.35 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 500.00 ...SUPERFICIAL VEL.(FT/HR)= . 5 . 2 6 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= 39.3? MASS TRANS COEFF (1/HR)= 55 .70 R SCUARE = 0.99991 NUMBER OF. DATA . ......._= . 5 TT MF P.PRFSS DIS OXY DETA C TRUE CC (MIN) (MMHG) (PPM) (PPM) (PPN) .. 0.0 42.00 1.86 4 .60 3.89 0.40 70.00 3.10 0.80 88.00 3.90 1.70 101.00 4.48 3.36 2.56 L.98 2.65 1.85 1.28 1.60 110.00 4.88 1.58 0.88 i I I 1 j ! PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 500,00 SUPERFICIAL VEL ( FT/HR )= ... 8 .81. SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 0XY_.__UPIA.KE (JMG/.L./.HR ) = 38.05 MASS TRANS COEFF (1/HR)= 76.28 | R SQUARE = 0.99877 ! NUMBER OF DATA = 6 _ TIME P.PRESS DIS OXY DETA C TRUE OC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 30.00 1.33 . 5.22 4.72 0.20 56.00 2.48 4 .07 3.57 0.40 74.00 3.28 3.27 2.77 _Q-..6G a_...0.0__ 3.95 ? .AO. 2 .JO 1.00 106.00 4.70 1.85 1.35 1.40 119.00 5.28 1.27 0.77 5.00 500.00 . 12.63 6 .59 1.38 57.01 91.58 0.99966 6 __T_t._JE P.. PRESS DI.S OXY D_ET_A_C TRUE_ 0 C_ (MIN) (MMHG) (PPM) (PPM) (PPM) ...0.0._ 34.00 1.51 5.08 4.46 0.20 60.00 2.66 3.93 3.31 0.60 94.00 4.17 2.42 1.80 _JL. 0.0 1.1.2..JOJ0L. „...9.7 __1.62 1. 00_ 1.40 123.00 5.45 1.13 0.51 1.80 128.00 5.67 0.91 0.29 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE _OXY_._UPJ.AKE (MG/L/HR ) = MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA =. r PERCENT SOLID (WT.)= 5 . 0 0 AGITATION SPEED (RPM)= 5 0 0 . 0 0 SUPERFICIAL VEL ( FT/HR )= . __ 1 7 . 1 5 — SAT.OXY.CONC. (PPM)= 6 . 6 1 % CARBON DIOXIDE = 1 . 0 1 ..OXY.. UPJ.AKE (MG/L/HR) = 6 9 . 7 3 _ MASS TRANS COEFF (1/HR)= 1 0 8 . 3 6 R SQUARE = 0 - 9 9 9 7 8 NUMBER OF DATA .= . 7 . _.T.I.__E_ (MIN) _P_..P_RESS_ (MMHG) -D.I-S_OX.Y_ (PPM) _DETA._C_ (PPM) JI.RU E_O.C_ ( PPM) 0 . 0 . 0 . 2 0 0 . 4 0 _0 . . . 6 0 . 0 . 8 0 1 . 0 0 1 . 2 0 . _ 4 1 . 0 0 . 7 0 . 0 0 8 9 . 0 0 . 1 0 3 . . 0 0 . 1 1 3 . 0 0 1 1 9 . 0 0 1 2 4 . 0 0 1 . 8 2 . . . 4 . 7 9 3 . 1 0 3 . 9 5 _4.J5.7._ 5 . 0 1 5 . 2 8 5 . 5 0 3 . 5 1 2 . 6 7 . 2 . 0 . 5 . 1 . 6 0 1 . 3 4 1 . 1 1 4 . 1 5 2 . 8 7 2 . 0 2 1 . 4 0 0 . 9 6 0 . 6 9 . 0 . 4 7 . PERCENT SOLID (WT . ) = AGITATION SPEED (RPM)= SUPERFICIAL VEL ( FT/HR ) =. SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE ..OXY. UPTAKE ( MG/L/HR). MASS TRANS COEFF (1/HR)= 5 . 0 0 4 0 0 . 0 0 1 . 9 4 6 . 0 8 8 . 9 8 1 0 4 . 4 8 2 2 . 5 7 R SQUARE NUMBER QF„ DATA. = 0 . 9 9 9 8 8 = 4 —T-I.M £ P...PJ. E.S.S^  -D_I.S_0_X_Y_____D.ETA._C IR U E_.DC. (MIN) (MMHG) (PPM) (PPM) (PPM) 0 . 0 1 6 . 0 0 0 . 7 1 5 . 3 7 _ 0 . 7 4 2 . 0 0 2 5 . 0 0 1 . 1 1 4 . 9 7 0 . 3 4 4 . 0 0 2 9 . 0 0 1 . 2 9 4 . 7 9 0 . 1 7 -J6L_-_1 3 J L ..0.0 1 . 3 7 4 . 7 1 0 ._08_ r PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 4C0.0O SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 -0 X_Y. U.PJ1A.K E IMC 7_L /_H R l _ 3 0 ,_4 3__ MASS TRANS COEFF (1/HR)= 34.46 R SGUARE = 0.99999 NUMBER OF DATA =.... 5 __.T_I__.E_ (MIN) _P_,PRESS_ (MMHG) _D_LS_.O.X.Y_ (PPM) _DE.T.A_C. (PPM) -I.RUE._DC_ ( PPM) 0.0 1.00 2.00 _3.0-0_ 4.00 22.00 50.00 66.00 ___..0.0_ 80.00 0.98 2.22 2.93 _3.3 3_ 3.55 5.48 4.24 3.53 3..1.3. 2.91 2 1. 86 62 0.91 _0..5_1_ 0.29 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ..(FT/HR)*... 8 . 8 1 _ SAT.OXY.CONC. (PPM)= 6 .55 % CARBON DIOXIDE = 1.97 0 X Y_.__ U P T A K E (_MG./ L/HR )= 102.. 9.1_ MASS TRANS COEFF (1/HR)= 44.35 R SQUARE = 0.99958 NUMBER. CF DATA r. 7_ __T_LM£ P.PRESS _D.I.S_OX.Y D.ETA _C I_RUE_ DC. (MIN) (MMHG) (PPM) (PPM) (PPM) . 0.0 30.00 1.33 5.22 \. ... 2.90 0. 50 50.00 2.22 4.33 2.01 1. GO 64-00 2.84 3.71 N 1.39 --X.-50 7-4...0.0 3.28 3.27 0 ,_9 5 2. CO 81.00 3-59 2 . 9 6 — ; 0-64 3.00 88.00 3.90 2.65 /' 0.33 -4 .00 92.0 0 4.08.. 2.4 7 _ _ . i . _ . . 0.15 PERCENT SOLID AGITATION SPEED SUPERFICIAL VEL SAT.OXY.CONC. {WT . ) = (RPM)= (FT/HR) = (PPM)= % CARBON DIOXIDE OX Y—U PI A K E { MG/L/H R) =.. MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA _ ... =. 5.00 400.00 12.63 -6.59 1.38 139.48 50 . 39 0.99977 7 JL1M._L (MIN) P.PRESS (MMHG) _D.LS_OX.Y_. (PPM) J1EJ._Y_.C_ (PPM) _IRUE_D_C._ ( PPM) .0.0 .. 0.40 0.80 JL._2.Q_ 1.60 2.00 2.40 25.00_ 43.00 55.00 .64.00 70.00 75.00 .78.00 1.11 1.91 2.44 _2._8.4_ 3. 10 3.33 3.46 .5.48 4.68 4. 15 3._75_ 3.48 3.26 3.13 2.71 1,91 1.38 .0.98 0. 72 0.49 0.36_ PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)=. 17.15. . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 0 X Y. U P_T A KE (MG/L/HR )= 117 .51 . MASS TRANS COEFF (1/HR)= 62.50 R SGUARE = 0.99993 NUMBER. OF. DATA = :6._ _T_1 ME £..P-RE.S.S D_I.S_0.X_Y DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) C O _ ___ 37.00.._ _.. 1.64 4 . 9 7 . . 3.09 0.40 61.00 2.70 3.91 2.03 0.80 77.00 3.41 3.20 1.32 _1...2.0 8_7_»_G_0 3_._8.6. 2..X6 0_,_8_7 2.00 98.00 4.34 2.27 0.39 2.80 103.00 4.57 2.05 0.17 PERCENT SOLID (WT.) AGITATION SPEED (RPM) .SUPERFICIAL VEL (FT/HR) SAT.OXY.CONC. (PPM) % CARBON DIOXIDE OXY. UPTAK E ( MG /_ L/.H R ) MASS TRANS COEFF (1/HR) R SGUARE .... NUMBER OF DATA . TIME. P.PRESS DXS_OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0.0 ... 13.00 0.58 . 5.50 3.96 1.00 24.00 1.06 5.02 3.47 2.00 34.00 1.51 4.57 3.02 3..._0_0- 42.00 1.86 4. 22 2.67 4.00 50.00 2.22 3.86 2.32 5.00 56.00 2.48 3.60 2.05 6.00 62.CO 2.75 3.33 .... 1.78 5.00 = 300.00 = . 1.94 ... 6.08 8.98 = 12.. 3.1 7.95 = 0.99980 = 7 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE ( MG/L/ HR)___ 5.00 300.00 . 5.26 6.46 3.31 15.26 _. MASS TRANS COEFF (1/HR)= 10.80 R SGUARE = 0.99973 NUMBER OF. DATA = 7 TJ.M.E P. PRESS D.IS OXY DFTA r. TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) .0.0 _. 19.00 0.84. . 5.62 4.20 1.00 35.00 1.55 4.91 3.50 2.00 47.00 2.08 4.38 2.96 3.00 59.00 2.67- 3.84 2.43 4.00 68.00 3.01 3.44 2-03 5.00 75.00 3.33 3. 13 1.72 -7.00 87.00 .. 3.86._ 2.60_ 1.19 r P E R C E N T S O L I D ( W T . ) = A G I T A T I O N S P E E D ( R P M ) = S U P E R F I C I A L V E L ( F T / H R ) = S A T . O X Y . C O N C . ( P P M ) = % CARBON D I O X I D E . 0 XY. U P.T A. K E (MG / L / H R) = MASS T R A N S C O E F F ( 1 / H R ) = R SGUARE NUMBER OF DATA 5 . 0 0 3 0 0 . 0 0 8 . 8 1 6 . 5 5 1 . 9 7 .20..16_ 1 7 . 2 5 = 0 . 9 9 9 7 7 .=.... 7 T T MP P . P R E S S D L S OXY n FT A r. TR 1 IF nr. ( M I N ) (MMHG) ( P P M ) ( P P M ) ( P P M ) .. . 0 . 0. _ _ 3 0 . 0 0 1 . 3 3 5 . 2 2 4 . 0 5 1 . 0 0 5 3 . 0 0 2 . 3 5 4 . 2 0 3 . 0 3 2 . 0 0 7 0 . 0 0 3 . 1 0 3 . 4 4 2 . 2 8 3.. .0.0 8.3.. . 0 0 3 _ 6 8 _ _ 8 7 1 . 7 0 4 . 0 0 9 2 . 0 0 4 . 0 8 2 . 4 7 1 . 3 0 5 . CO 1 0 0 . 0 0 4 . 4 3 2 . 1 1 0 . 9 5 . _ 6 . 0 0 _ _ . 1 0 5 . 0 0 _.. 4 . 6 6 _ . 1 . 89.... .. _ 0 . 7 2 P E R C E N T S O L I D ( W T . ) = 5 . 0 0 A G I T A T I O N S P E E D ( R P M ) = 3 0 0 . 0 0 ._ S U P E R F I C I A L V E L ( F T / H R ) = . . 1 2 . 6 3 S A T . O X Y . C O N C - ( P P M ) = 6 . 5 9 % C A R B O N D I O X I D E = 1 . 3 8 OXY. U P T A K E J_MG/_L/_HR)_E 23___72_ MASS T R A N S C O E F F ( 1 / H R ) = 2 0 . 7 2 R S C U A R E = 0 . 9 9 9 9 1 NUMBER OF. DATA r_ ____JL_ T I M E P . P R E S S D_I.S_J3.XY DETA C T R U E DC ( M I N ) (MMHG) ( P P M ) ( P P M ) ( P P M ) 0 . 0 1 9 . 0 0 0 . 8 4 5 . 7 5 4 . 6 0 0 . 5 0 3 6 . 0 0 1 . 6 0 4 . 9 9 3 . 8 5 1 . 0 0 4 9 . 0 0 2 . 1 7 4 . 4 2 3 . 2 7 1...5J0 6.1..JC_0 2..7 0 _ 3 . J38 2_ 2 . 0 0 7 1 . 0 0 3 . 1 5 3 . 4 4 2 . 3 0 2 . 5 0 7 9 . 0 0 3 . 5 0 3 . 0 9 1 . 9 4 3 . 0 0 . 8 6 . 0 0 3 . 8 i 2 . 7 8 1 . 6 3 PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 17. 1.5 _ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 .OXY. U PT A KE (MG/L/H Ft.) = 20.51. . . MASS TRANS COEFF (1/HR)= 29 .49 R SGUARE = 0-99985 NUMBER OF DATA = 7 _T.LM.E-. (MIN) _P__.PRE.S_S_ (MMHG) _D.IS__-OX-Y. (PPM) DETA C (PPM) TRUE DC ( PPM) 0.0 0.50 1.00 _1.._5_0_ 2.00 2. 50 3.00 30.CO 53.00 71.00 8_4_._0.Q_ 95.00 103.00 110.00 1.33. 2.35 3.15 __L._7.-L 4.21 4.57 . 4 . 8 8 5.28 4.26 3.46 2.89. 2.40 2.05 1.74 4.59 3.57 2.77 2. 19 1.70 1.35 1.04 PERCENT SOLID (WT.)= 10 .00 AGITATION SPEED (RPM ) = 300 . 00 SUPERFICIAL VEL . (FT/HR) =. ..... 1. 94 „ SAT.OXY.CONC. (PPM)= 6 . 08 % CARBON DIOXIDE = 8. 98 OXY. UPTAKE (MG/L/HR)= 1 . 42 MASS TRANS COEFF (1/HR)= 7. 02 R SQUARE = 0.99993 NUMBER OF DATA ___T.I.M.E_ (MIN) _P__.PRE.SS.. (MMHG) _D_I_S-_OX.Y_ (PPM) DETA C (PPM) J_RUE__D.C_ ( PPM) . .0 .0 ._ 1.00 2.00 ___3._0.0_ 4.00 6.00 8.CO. 14 .00 . 27.00 39.00 49.00.. 58.00 74.00 .86.00.. 0.62 1.20 1.73 _Z.1_7_ 2.57 3.28 3.81. 5.46 4.88 4.35 .3..._91_ 3.51 2.80 .2-27.. 5.26 4.68 4.15 _3._7L 3-31 2.60 2.06 r PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR) = 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY U.P-TAKE (MG/L/HR.)._= 0...8 4__ MASS TRANS COEFF (1/HR)= 12.53 R SGUARE = 0.99989 NUMBER OF DATA . ._= 7 __T_I__E_ (MIN) _£_.P_RESS_ (MMHG) _DJ.S_JDXy_ (PPM) _D__TA_C_ (PPM) _IRUE__.DC. ( PPM) 0. 0 27.00 1. CO 49.00 2.00 67.00 _3,.00 B_L._0.0_ 4.CO 93.00 6.00 111.00 8.00 ... 122.00 1.20 5.26 5.19 2.17 4.29 4.22 2.97 3.49 3.42 33 2.87 2 . 8.0_ 4.12 2.34 2.27 4.92 1.54 1.47 5.41 1.05 0.98 PERCENT SOLID (WT. ) = 10 .00 AGITATION SPEED (RPM)= 300. 00 SUPERFICIAL VEL. (FT/HR ) = 8. 8 I _ SAT.OXY.CONC. (PPM)= 6. 55 % CARBON DIOXIDE 1. 97 OXY. UPTAKE (MG/L/HR)= 4 . 91 MASS TRANS COEFF (1/HR)= 15. 02 R SGUARE = 0.99996 . .. NUMBER .OF DATA _ 7 _ P.PRESS D_I.S_.0XY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 .. 31.00 ... 1.37 5.17 4.85 l .CO 55.CO 2.44 4. 11 3.78 2.00 74 .00 3.28 3.27 2.94 3._0_0 89. CO 3.95 2.60 2,28 4.00 100.00 4.43 2.11 1.79 5.00 109.00 4.83 1.72 1.39 6.00 _ 116.00 5.14_ 1.41 1.08 PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR )= 12 .63 ._ SAT.OXY.CONC. IPPM)= 6 .59 % CARBON DIOXIDE = 1.38 .0XY_. _.UP_TAKE ( MG/L/HR)= 6_._3.0__ MASS TRANS COEFF <1/HR)= 17.86 R SQUARE = 0.99998 NUMBER OF DATA = _7_._.. _T.I.ME_ (MIN) JL..PRESS. (MMHG) DIS OXY. (PPM) JD.EXA_C_ (PPM) TRUE DC ( PPM) 0.0 1.00 2.00 _3...0.0_ 4.00 6.00 8.00 36.00 63.00 83.00 _9.8.„01)_ 109.00 123.00 .131.00 1.60 4.99 2.79 3.79 3.68 2.91 .4.34 2.24. 4.83 1.76 5.45 1.13 5.81 0.78 4.64 3.44 2.56 1.89 1.40 0.78 0 .43 . PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 1 7 . 1 5 . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY. UP.TAKE ( MG/L/HR)= 13.25 MASS TRANS COEFF (1/HR)= 27.42 R SGUARE NUMBER OF.DATA = 0.99993 = 8 _XI.M_E P_..P_RE.S.S DJ_S_JJX_Y DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 28.00 1.24 5. 37 4 .89 0. 50 50.00 2.22 4.40 3.91 1. CO 68.00 3.01 3.60 3.11 _JL.5_0 83..JQL0 3.68 7-93 2.A5 2.00 94.00 4 .17 2.44 1.96 2.50 103.00 4.57 2.05 1.56 . 3.CO . .110 .00 4.88 1.74 _ 1.25 3.50 116.00 5.14 1.47 0.99 r PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL {FT/HR) = SAT.OXY.CONC- (PPM)= % CARBON DIOXIDE ..OXY ... UPTAKE (.MG/L/HR.) =.. MASS TRANS COEFF ( 1/HR)= R SGUARE NUMBER OF. DATA =.. 10.00 400.00 1.94 . 6.08 8.98 3._J___ 18.61 0.99999 7 _J.LME_ (MIN) _J?_..P_RE-SS_ (MMHG) .D„.S_.OXY_. (PPM) DETA C (PPM) IRU.E__DC_ (PPM) 0.0 . 1.00 2.00 -3.0.0-4.00 6.00 8.00. 36.00 62.00 81.00 _a5._0.Q_ 105.00 118.00 125.00 1.60. 2.75 3.59 _4.21_ 4.66 5.23 5.54. .4.48 3.33 2.49 JL..87_ 1.43 0.85 0.54 4.31. 3. 15 2.31 _1_.69_ 1.25 0.67 0.36 PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL. (FT/HR)= 5.26_. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 _0 X.Y ._-U.PJ.A-K E (MG/.L/H R.)=_ _4-.-5.5___ MASS TRANS COEFF (1/HR)= 30.46 R SGUARE = 0.99981 NUMBER OF.. DATA ...= .7... _IXM£ (MIN) .--L,.P-RE-S_S-(MMHG) DIS OXY (PPM) _D_E_T_A_JC (PPM) TRUE DC ( PPM) 0.0 0.50 1.00 _L.5_0_ 2.00 3.00 .4.00.. 32.00 57.00 77.00 __.9.1.._0_0_ 103.00 118.00 .128.00-1.42 2.53 3.41 -4....03_ 4.57 5.23 5.67_ 5.04 3.93 3.05 -Z.-4.2_ 1.89 1.23 -0..7.8. 4.89 3.78 2.90 2.27. 1.74 1.08 0.63.. r PERCENT SOLID (WT. ) = AGITATION SPEED (RPM)= SUPERFICIAL VEL ( F T / H R ) = SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE _QX Y U PJ.AK E (.M.G /J_ / H Rl=_ MASS TRANS COEFF (1/HR)= R SQUARE NUMBER OF DATA .=.. 1G.0O 400.00 .... 8 . 8 1 . . 6 .55 1.97 2A..2.0_ 44.42 0.99976 6 T I MF P. PRESS DIS OXY DFTA C TRUE DC ( MIN ) (MMHG) (PPM) (PPM) (PPM) 0.0 . . 41.00 1.82 ... ... 4 .73 4 .19 0.50 69.00 3.06 3.49 2.94 1.00 89.00 3.95 2.60 2.06 1 .50 104.0.0 4.61 1. 94 1. 39 2.00 114.00 5.05 1.49 0.95 3.00 125.00 5.54 1.01 0.46 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY...UPTAKE (M_GLI/HR __ MASS TRANS COEFF <1/HR)= 51.34 R SGUARE = 0.99998 NUMBER OF OATA _ ....= 6. X I J V E ^P_...PRE.S.S D I S . OXY D.EXA__C TJ_JJ.E_J3C_ (MIN) (MMHG) (PPM) (PPM) (PPM) . 0 . 0 41.00 1.82 .. 4 .77 _ 4.49 0.40 71.00 3.15 3.44 3.16 0.80 91.00 4.03 2.55 2.27 .__1_.2.0 106.00 4^...7_0 1...89. L.iU. 2.00 124.00 5.50 1.09 0.81 2.80 133.00 5.90 0.69 0.41 r PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ( F T / H R) = 1 7 . 1 5 . . SAT.OXY.CONC. (PPM)= 6.61 * CARBON DIOXIDE = 1.01 .0 X Y .—UPJ.AKE (MG/L/H R ).= 4 ..17__ MASS TRANS COEFF (1/HR)= 57.98 R SGUARE = 0.99979 NUMBER OF DATA =._ 6 __T_LME. (MIN ) __.P_RESS_ (MMHG) -JH.S_OX.Y__ (PPM) -D£ZA_C_ (PPM) _IR.UE_DC_ ( PPM) . 0 . 0 . . 0.40 0.80 _1...20_ 2.00 2.80 48 .00 81.00 103.00 117.00 133.00 141.00 2. 13 4.48 3.59 3.02 4.57 2.05 5.19 1.43. 5.90 0.72 6.25 0.36 4.41 2.95 1.97 -1 . 35__ 0.64 0.29 PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL__( FT/HR)= 1.94 ._ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 0XY._UPJ1AK.E .(AG./.L/.HRJ = 19.69 _ MASS TRANS COEFF (1/HR)= 27.77 R SGUARE = 0.99990 NUMBER OF . DATA . = 6 _ T T MF P.PRESS DIS OXY DETA C (MIN ) (MMHG) (PPM) (PPM) . 0.0 2 5 . 0 0 . 1.11.... 4 .97 0.50 44.00 1.95 4. 13 l .CO 60.00 2.66 3.42 1 . .n 71.00 3. 24 2.84 2.00 83.00 3.68 2.40 3.00 97.00 4.30 1.78 TRUE DC (PPM) . 4 .26. 3.42 2.71 2.13_ 1.69 1.07 ( PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL ( F T / H R ) =. 5 .26-SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 _0 X Y .__U P_T. A K E LM.G7_L.v- H R). = 10.3_4__ MASS TRANS COEFF (1/HR)= 59.99 R SGUARE = 0.99998 NUMBER OF DATA- =. ___ 6 __T- I.M E P.PRESS DI S__OX.Y D E T.A_J_ TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 47.00- 2-08 4.38 4.20 0.40 78 .00 3.46 3.00 2.83 0.80 99.00 4.39 2.07 1.90 __1.20 1-13.00 5 . 01 1.4 5. 1.28. 2.CO 129.00 5.72 0.74 0.57 2.80 136.00 6.03 0.43 0.26 PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR) = . 8 . 8 1 _ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 .OXY. ..UPTAKE ( MG/L/HR)..=. 9.36 MASS TRANS COEFF (1/HR)= 73 .13 R SGUARE = 0.99999 NUMBER GF .DATA = 6 __T-LME_ (MIN) 0 .0 ._ 0.20 0.60 -1..-0.0-1.80 2.60 P.PRESS (MMHG) 30.00 55.00 90.00 111.00 132.00 140.00 S OX.Y DETA X. TRUE DC (PPM) (PPM) (PPM) 1.33 ... 5.22 5.09 2.44 4.11 3.98 3.99 2.56 2.43 4.92 1.63 1.50 5.85 0.70 0.57 6.21 0.34 0.21 r _x_>— PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 12 » 63._ SAT.OXY.CONC. (PPM)^ = 6.59 * CARBON DIOXIDE = 1.38 .OXY...U P-TA K.E (-MG LL ./JH R) = l i t .3 3 _ MASS TRANS COEFF (1/HR)= 91 .75 R SGUARE = 0.99991 NUMBER OF DATA = 6 __T_IJME_ (MIN) J__RRESS_ (MMHG) _D_IS_OXY_ (PPM) _DET_A__.C_ ( PPM) TRUE.DC (PPM) 0.0 . 0.20 0.60 _L.00_ 1.80 2.60 35.00 66.CO 102.00 JL22._0.0_ 138.00 143.00 .1-55. 2.93 4.52 J5..A1_ 6. 12 6.34 .5.04 3.66 2.07 ..l...L8_ 0.47 0. 25 .4.88 3.50 1.91 _L-.0.2. 0.31 0.C9 PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 1 7 . 1 5 _ SAT.OXY.CONC. (PPM)= 6.61 % CAR80N DIOXIDE = 1.01 OXY. UPTAKE (_MG/.L./_HRJ._ 2_L_5J2_ MASS TRANS COEFF (1/HR)= 107.41 R SGUARE = 0.99984 NUMBER _0F_. DATA = 6__ T.LM.E E...P.RES.S DIS OXY D.EXA.JC TRUE__D_C_ (MIN) (MMHG) (PPM) (PPM) (PPM) - 0 . 0 43.00.. _ 1 . 9 1 _ 4.71 4.47 0.20 74.00 3.28 3*33 3.09 0.40 95.00 4.21 2.40 2.16 O..6.0 im«j3jQ 4.8.3 l.._78 1.54 0.80 120.00 5-32 1.29 1.05 1.00 127.00 5.63 0.98 0.74 r T I MF P..P.RESS DIS OXY DETA f. TRUE DC (MIN) (MMHG) ( PPM) (PPM) ( PPM) ... o.o 29.00 . 1.29 4.79 ... . . 2.86 0.50 49.00 2. 17 3.91 1.97 1.00 63.00 2.79 3.29 1.35 1...5.0 72.00 3.19 2. 89 0.95 2.CO 79.00 3.50 2.58 0.64 3.00 86.00 3.81 2.27 0.33 4.00_„_. 90.00 . . 3 .99. . . 2.09 . _ . 0.15 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE .0 X.Y. U P_T A K E (MG LL /.H R L__ MASS TRANS COEFF (1/HR)= R SGUARE NUMBER OF DATA _=_ 10.CO 600.00 . . . 1.94 6.08 8.98 8.4_._65._. 43.68 0.99961 7 PERCENT SOLID (WT. ) = 10.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR )= 5.26... SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 .0 X Y. UPTAKE. (MC/L/HR )_= 101.16... MASS TRANS COEFF (1/HR)= 83.68 R SGUARE = 0.99999 NUMBER. 0F DATA = 6 . T T MF P..P.RESS DIS OXY DETA C TRUE DC (MIN) (MMHG) ( PPM) (PPM) (PPM) 0.0 27.00 1.20. 5.26.. 4.05 0.20 50.00 2.22 4.24 3.03 0.60 79.00 3.50 2.96 1.75 1.00 96.00 4.26 2.20 0.99 1.80 111.00 4.92 1.54 0.33 2.60 116.00 5.14 1.32 0.11 ( PERCENT SOLID (WT.)= 10.00 I AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR )= 8.81.-SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY UPTAKE (MG/L/HR) = 109.. 0 5 _ MASS TRANS COEFF (1/HR)= 89.15 R SGUARE = 0.99998 _ NUMBER OF DATA =_ _ 5_. _LIME P..PRESS DIS OXY DEIA._C IRUE_DC_ (MIN) (MMHG) (PPM) (PPM) (PPM) ...0.0 54.00 2.39 4.15 2.93 0.40 84.00 3.72 2.82 1.60 0.80 100.00 4.43 2.11 0.89 1.20 109. CO 4.83 1.72 0.49. 1.60 114.00 5.05 1.49 0.27 PERCENT SOLID (WT.) AGITATION SPEED (RPM) . SUPERFICIAL VEL _(FT/HR) SAT.OXY.CONC. (PPM) % CARBON OIOXIDE _ 0 X Y. UPT AKE (MG / L/HR) MASS TRANS COEFF (1/HR) R SQUARE NUMBER CF DATA T T MF P.PRESS D.I.S OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) _ -0.0 . 47.00 _ 2.08 4.50 3.70 0.20 77.00 3.41 3. 17 2.37 0.40 97.00 4.30 2.29 1.48 ! 0. AO 109.00 4.83 1.76 0.95 i 0.80 117.00 5.19 1.40 0.59 1.00 122.00 5.41 1.18 0.37 i 1.40 _ 127.00 ___ __5.63 . 0.96..-. . .0 .15 i . i PERCENT SOLIO (WT.)= 10.00 AGITATION SPEED (RPM)= 6 0 0 . 0 0 SUPERFICIAL VEL {FT/HR)= 1 7 . 1 5 . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE - 1.01 OXY. UPTA KE t MG/L/HR ) = 92.06 MASS TRANS COEFF (1/HR)= 146.79 R SGUARE = 0.99992 NUMBER OF DATA.. = 8 TIME P .PRESS _ DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0.0 ..... 30.00 1.33 5.28 4.66 0.10 53.00 2.35 4.26 3.64 0.20 71.00 3.15 3.46 2.84 _Q...3L0 85.0.0 3.77 2.84 2. 22 0.40 96.00 4.26 2.36 1.73 0.60 111.00 4.92 1.69 1.06 0.80 . 120.00 5.32 1-29 0.66 1.00 126.00 5.59 1.03 0.40 PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE * 8.98 OXY. UPTAKE ( MG/L/HR)= 98.54 MASS TRANS COEFF (1/HR)= 68.50 R SGUARE = 0.99998 NUMBE R OF DATA = 6 TIME P .PRESS .. DIS OXY DETA C TRUE DC (MIN ) (MMHG) (PPM) (PPM) (PPM) 0.0 .. 39.00 .... 1.73 4.35 2.91 0.40 63.00 2.79 3.29 1.85 0.80 78.00 3.46 2.62 1.18 1.2.0. 88.00 ..90 2. 18 0.74 2.CO 98.00 4.34 1.74 0.30 2.80 102.00 4.52 1.56 0. 12 r P E R C E N T S O L I D ( W T . ) = A G I T A T I O N S P E E D ( R P M ) = S U P E R F I C I A L V E L ( F T / H R ) = S A T . O X Y . C O N C . ( P P M ) = % C A R B O N D I O X I D E -0 X Y U P T A K E ( tt. G / . L / H R ) = 10.00 700.00 5.26 6.46 3.31 —13.6 -_9 6__ M A S S T R A N S C O E F F ( 1 / H R ) = 111.77 R S G U A R E = 0.99974 N U M B E R O F D A T A = 7 T J M E P . P J R E S S D J S O X Y D E T A C T R U E D C ( M I N ) ( M M H G ) ( P P M ) ( P P M ) ( P P M ) _0.0. 36.00 1.60 4. 86 3.64 0.20 61.00 2.70 3.75 2.53 0.40 79.00 3.50 2. 96 1.73 0.60 91 .00 4.03 ?. 4? 1 - 20 0.80 100.00 4.43 2.03 0.80 l . C O 105.00 4.66 1.80 0.58 1.40 112.00 4.97 1.49 _. 0. 27 P E R C E N T S O L I D ( W T . ) = 10.00 A G I T A T I O N S P E E D ( R P M ) = 700.00 .. S U P E R F I C I A L V E L ( F T / H R ) = 8 . 8 1 _ S A T . O X Y . C O N C . ( P P M ) = 6.55 % C A R B O N D I O X I D E = 1.97 O X Y . U P T A K E ( M G / L / H R ) = 2.0.3_..3.8_ M A S S T R A N S C O E F F ( 1 / H R ) = 147.86 R S G U A R E = 0.99995 _ . . N U M B E R , O F ; D A T A = 8___ TJLME P-Jt_J: J5 JS 0JJ5_JD.X.Y_ D E T A C T R U E _ D C ( M I N ) ( M M H G ) ( P P M ) ( P P M ) ( P P M ) 0.0 26.00 1.15 5.40 __„ 4.02 0.10 46.00 2.04 4.51 3.13 0.20 61.00 2.70 3.84 2.47 Q-.-30 7_4..J3_0 3...2.8_ 3.._27_ _l;-.89. 0.40 83.00 3.68 2.87 1.49 0.60 96.CO 4.26 2-29 0.92 0.80- 104.00 4.6.1 1.94 „ . 0 . 5 6 1.00 109.00 4.83 1.72 0.34 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0.0 .. 34 .00 1.51 . 5.08 4.01 0. 10 59.00 2.62 3.97 2.90 0.20 77.00 3.41 3. 17 2. 10 0...3.0 90-00 3.99 ?_ fcO 1.53 0.40 99.00 4.39 2.20 1. 13 0.60 112.00 4 .97 1.62 0.55 _ . 0 .80_ 118.00 5.23 .. 1.36 .... - 0.28 1.00 121.00 5.36 1.22 0 . 15 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE ( MG/L/HR ) = 10.00 700.00 1 2 . 6 3 -6.59 1.38 -2.12.._0.6_ MASS TRANS COEFF (1/HR)= 197.86 R SQUARE = 0.99972 NUMBER OF DATA __=_ 8._ PERCENT SOLID (V.T.) = AGITATION SPEED (RPM)= SUPERFICIAL VEL .( FT/HR ) = SAT.OXY.CONC. (PPM)= % CARBGN DIOXIDE OXY. UPTAKE _(M.G./_L./m)__. MASS TRANS COEFF (1/HR)= R SGUARE NUMBER OF DATA 10.00 700.00 . 17.15 6.61 1.01 197.20 208.19 = 0.99972 = 8— _T.1J_.E_ (MIN) 0.0 0. 10 0.20 _0..3.0. 0.40 0.60 0.80 1.00 P. PRESS. (MMHG) 38.00 64.00 83.00 96.00. 105.00 117.00 122.00. 125.00 J-1.S_CW.Y_ ( PPM) .. 1.68 2.84 3.68 4..2J5.. 4.66 5.19 .._ 5.41 5.54 DETA C (PPM) 4.93 3.77 2.93 _2..3.6_ 1.96 1.43 .1.20 1.07 TRUE OC. ( PPM) 3.98 2.83 1.99 JL._U_ 1.01 0.48 0.26 0.12 r PERCENT SOLID <WT.)= 15.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR) = .... 1 .94_ SAT.OXY.CONC. (PPM)= 6.08 * CARBON DIOXIDE = 8.98 .OXY. U PT A KE J MG/L /HRJ = 20 . .72_ MASS TRANS COEFF (1/HR)= 6.48 R SGUARE = 0.99974 NUMBER OF DATA = _5_ . TIME (MIN) P.PRESS (MMHG) _D_I_S__OX_Y._ ( PPM) _D.ET.A_.C. (PPM) _T.RU E_DC_ ( PPM) PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR) = 5.26._ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 ..OX.Y.....U.P.TAK E ( M_G IX / HR J = 15_. 8 2 _ MASS TRANS COEFF (1/HR)= 11.70 R SGUARE = 0.99974 NUMBER OF. DATA 7 _ _ TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) ( PPM) (PPM) ( PPM) 0.0 20 .00 . 0.89 ... 5.57 4.22 l . C O 37.00 1.64 4.82 3.47 2.00 50.00 2.22 4.24 2.89 3.GO 62.00 2.75 3.71 2.36 4.00 71.00 3.15 3.31 1.96 6.00 86.00 3.81 2.65 1.29 8.00 9.5.. 00_ .4.21 . 2.25 0.89 r - i n -TIME __P.PRES.S DJS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) ( PPM) ( PPM) 0.0 . 14.00... 0.62 5.93 . .. 2.73 1.0 0 25.00 1.11 5.44 2.24 2.00 34.00 1.51 5.04 1.84 . .00 41 .00 1.82 4 .73 1.53 4.00 6.00 _.. 8.00 48.00 57.00 63 .00 2.13 2.53 2.79 4.42 4.02 3.75 1.22 0.82 0.56 PERCENT SOLID (WT.)= 15-00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR )=. ... 8 . 8 1 _ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 -OXY.__UP.IAKE (.M.G/ L/HR )_= 38 .20__ MASS TRANS COEFF (1/HR)= 11.95 R SGUARE = 0.99976 NUMBER OF DATA = 7_ PERCENT SOLIO (WT.)= 15.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR ) = _ 12.63. . SAT.OXY.CONC. (PPM)= 6 .59 % CARBON DIOXIDE = 1.38 0 X Y. -.UP T A. K.E (_MG./_L./HRA= 5.5_UJL_ MASS TRANS COEFF (1/HR)= 16.82 R SGUARE = 0.99915 .NUMBER-.0F_. DATA„ = .8__ _JJJ_E P-..P.RESS DIS OXY DETA C IBUE._OC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 - 18.00 0.80 5.79 2.51 1.00 31.00 1.37 5.21 1.94 2.00 42.00 1.86 4.73 1.45 3.00 5 0.00 2.2 2. 4 .37 1. 0.9 4.00 56.00 2.48 4.11 0.83 5.00 60.00 2.66 3.93 0.65 7.00_ 67.00 2.97 3.62 - 0.34 9.00 70.00 3.10 3.48 0.21 1 r PERCENT SOLID (WT.)= 15.CO AGITATION SPEED {RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 17.15 _ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 JO X Y. U PJ.A.K E ( M G./±J_ H R) = 6.0...0.7_ MASS TRANS COEFF (1/HR)= 24.04 R SQUARE = 0.99992 NUMBER CF DATA. _._ = __ 7 T T MF P.PRFSS DIS OXY _ DETA C . _ T.RU.E DC (MIN) (MMHG) (PPM) (PPM) ( PPM) ._o..o._ 17.00 . 0.75 5.86 3.36 0.50 31.00 1.37 5.24 2.74 1.00 42.00 1.86 4. 75 2.25 1 . .0 51.00 ?.?b 4.35 1.85 2.00 59.00 2.62 4.00 1.50 2.50 65.00 2.88 3.73 1.23 3.CO 70.00 _ . 3. 10 3.51 1.01 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL .(FT/HR)*.. SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (.MG./_L/_HR)_. MASS TRANS COEFF (1/HR)= 16.18 R SGUARE = 0.99954 NUMBER OF DATA = .' 6. _TJJ_E P_. J?_R ESS DJ S_0 X Y PET A C TRUE OC (MIN) (MMHG) (PPM) (PPM) (PPM) C O 11.00 0.49 5.59 1.56 1.00 20.00 0.89 5.19 1.16 2.00 26.00 1.15 4.93 0.90 _3,-0.0 3_L.J0LD L. 31 4.7.1 0.67 5.00 37.00 1.64 4.44 0.41 7.00 41.00 1.82 4.26 0.23 PERCENT SOLID (WT.)= AGITATION SPEED <RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE 0 X Y. U RT A.K.E IRC./. UH R.) = MASS TRANS COEFF (1/HR)= R SCUARE NUMBER OF DATA .=.. 15.00 400.00 5.26.._ 6.46 3.31 _6.9_.2.C_ 28.84 0.99986 6 . T I MF P. PRESS D.LS OXY DETA C TRUE DC (MIN) (MMHG) ( PPM) (PPM) (PPM) 0.0 . . 20.00 0.89 5.57 3.17 0.50 35.00 1.55 4.91 2.51 1.00 47.00 2.08 4.38 1.98 1.50 57.00 2.53 3.93 1.53 2.00 64.00 2.84 3.62 1.22 2.50 70.00 3.10 3.36 0.96 PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ( FT/HR ) = 8.81... SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY... UPTAKE (MG/L/HR ) = 81_.7_5_ MASS TRANS COEFF (1/HR)= 49.22 R SCUARE = 0.99998 . NU M B E R... OF.. DAT A = 6_ ...TIME P.PRESS ai.S_O.X.Y D.ETA_C IR.UE__DC (MIN) (MMHG) (PPM) (PPM) (PPM) ._0..0 _ 37.00 1.64 _ 4.91 3.25 0.50 62.00 2.75 3.80 2.14 1.00 78 .00 3.46 3.09 1.43 . 1 . 5 0 .89.00 3.95 2.60 0.94 2.00 96.00 4.26 2.29 0.63 3.00 104.00 4.61 1.94 0.28 PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ( FT/HR )= 12 .63 . . SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 .0X.Y..__UP_T AKE (JVC /I/.HR)_= 9.6 ._7_1__ MASS TRANS COEFF (1/HR)= 50.21 R SGUARE = 0.99994 NUMBER OF DATA = 6 TIME. (MIN) 0.0 0.40 0.80 .__1..20_ 2.00 2.80 _P_.P_RES.S_ (MMHG) 30 .00 . 52.00 67.00 _7.8 ..0.0_ 91.00 98.00 DIS OXY (PPM) 1.33 2.31 2.97 3._46_ 4.03 4.34 _DET.A...C. (PPM) 5.26 4.28 3.62 _3.13_ 2.55 2.24 TRUE DC (PPM) ....3.33 2.36 1.69 1.20_ 0.63 0.32 PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL...( FT/HR )=_. . 17 .15 . . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY..UP TAKE (MG/L/HR)= 79.06 MASS TRANS COEFF (1/HR)= 53.13 R SGUARE = 0.99988 NUMBER OF DATA .6.. __T.I.M.E_ (MIN) . 0 . 0 _ 0.40 0.80 __1..-2.C_ 1.60 2.00 P.PRESS (MMHG) _ .35 .00. 60.CO 76.00 . 8 8.00 96.00 102.00 DIS OXY (PPM) 1.55. 2.66 3.37 3.90 4.26 4.52 ..D_E.T.A__C_ (PPM) 5.06 3.95 3.24 _2..7_1. 2.36 2.09 TRUE DC.. (PPM) 3.57 2.46 1.75 1.22 0.87 0.60 r -ZZ t t -PERCENT SOLID (WT.)= 15.00 AGITATION SPEED tRPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 .OXY U P_T A KE (MG / L /_HR_)=_ 8.9_..02_ MASS TRANS COEFF (1/HR)= 25.67 R SGUARE = 0.99949 NUMBER OF DATA ... = 6.. TIME P.PR ESS DIS. OXY DETA C TR UE OC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 12.00 0.53 5.55 2.08 0.50 21.00 0.93 5.15 1.68 1.00 29.00 1.29 4 .79 1.33 _1 .-5.0 3 4..0 0 1.5.1 .4 . 57 1.11 2.00 39.00 1.73 4.35 0.88 3.00 46.00 2-04 4.04 0.57 PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= ... . 5.26 SAT.OXY.CONC. (PPM)= 6.46 * CARBON DIOXIDE = 3.31 .OXY. ..UPTAKE (MG/L/HR )= 125....61._. MASS TRANS COEFF (1/HR)= 59.58 R SGUARE = 0.99997 NUMBER. OF DATA _= 6_ ..TIME P.. PR ESS DIS 0 XY DETA.C IB UE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 32.00 1.42 5.04 2.93 0.40 53.00 2.35 4.11 2.00 0.80 68.00 3.01 3.44 1.34 _L.-2-0 7.8-.-0.0 3.46 3.00 0.89 2.00 89.00 3.95 2.51 0.40 2.80 94.00 4.17 2.29 0.18 r T I MF P.PRESS .DIS ..QXY DETA C TRUE DC .MIN) (MMHG) (PPM) (PPM) (PPM) 0.0. .. 40.00 1.77 .... ._ 4. 77 ... 3.05. 0.40 65.00 2.88 3.67 1.94 0.80 81.00 3.59 2.96 1.23 1 _ ?n 9.1...00 4.03 2.51 0.78 1.60 98.00 4.34 2.20 0.47 2. CO 102.00 4.52 2.03 0.30 2.80 106.00 4 .70 . . 1.85. . 0.12 PERCENT SOLID (WT. ) = AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY UP.TAKE ( MG/L/.HR.) =.. MASS TRANS COEFF (l/HR)= R SGUARE NUMBER OF DATA ... =... 15.00 500.00 8.81 ... 6.55 1.97 _120 ..48__ 69 .69 0.99982 ._ _ 7 PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL ( FT/HR ) = .12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 ..OXY....UPTAKE ( MG/jL/HRJ = 116.73 .. MASS TRANS COEFF (1/HR)= 83.79 R SGUARE = 0.99970 NUMBER OF DATA 5 JII.ME. (MIN) ...0.0.._ 0.40 0.80 J_...20 1.60 J__.J_RE.S-S_ (MMHG) 51.00 79 .00 95.00 _L03._0_0. _D_I.S.__OXY_ (PPM) _ 2.26. 3.50 4.21 A..6.6 4.88 _DE_TA___C_ (PPM) _TRU.E__DC. (PPM) 4.33 2.93 3.09 1.69 2.38 0.98 1.93 0.54 r -228-15.00 500.00 17.15 6.61 1.01 119.12 MASS TRANS COEFF (1/HR)= 110.26 R SCUARE = 0.99981 NUM8ER OF DATA =_ —.6 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY...-.UP.1AK.E (MG/L/HR ) = T.JJ1E P.PRESS (MIN) (MMHG) 0.0 . 37.00 0.20 64.00 0.40 82.00 0.. 6.0 95.00 1.00 111.00 1.40 118.00 DIS OXY (PPM) 1.64 2.84 3.64 A . 2 1 . 4.92 5.23 -0.EXA_JC_ (PPM) 4.97 3.77 2.98 _2..ACL 1.69 1. 38 XBUE___DC_ (PPM) 3.89 2.69 1.90 1.3.2_ 0.61 0.30 PERCENT SOLID (WT.) AGITATION SPEED (RPM) SUPERFICIAL VEL (FT/HR) SAT.OXY.CONC. (PPM) % CARBON DIOXIDE ..OXY....UPTAKE (MG/L/HR) MASS TRANS COEFF (1/HR) R SGUARE NUMBER.OF DATA T I ME P. PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0. 0 20.00 0.89 5.19 2.27 0.50 34.00 1.51 4.57 1.65 1.00 44.00 1.95 4.13 1.21 1.50 52. CO 2.31 3.77 0.85 2.00 57.00 2.53 3.55 0.63 2.50 61.00 2.70 3.38 0.45 15.00 = 600.00 = I . 94 6.08 8.98 = 113. 00 38.67 = 0.99979 _?_ . 6 r P E R C E N T S O L I D ( W T . ) = 15.00 A G I T A T I O N S P E E D ( R P M ) = 600.00 S U P E R F I C I A L V E L ( F T / H R ) = .... 5 . 2 6 _ S A T . O X Y . C O N C . ( P P M ) = 6.46 % C A R B O N D I O X I D E = 3.31 JOX.Y . ._UP_T .A K E ( M G / L / H R ) = 14l.._7_8___ M A S S T R A N S C O E F F ( 1 / H R ) = 82.41 R S G U A R E = 0.99977 N U M B E R O F D A T A = ._._. 6 _ X I M E P...P. R E S S D L S _ _ 0X Y D.EXA__C I R U E_JDC_ ( M I N ) ( M M H G ) ( P P M ) ( P P M ) ( P P M ) 0.0 45.00 2 .C O 4.46 2.74 0.40 72.00 3.19 3.27 1.55 0.80 87.00 3.86 2.60 0.88 __X_J20 95...0.G 4,. 21 2,25 0_..53_ 1.60 100.00 4.43 2.03 0.31 2.00 103.00 4.57 1.89 0.17 P E R C E N T S O L I D ( W T . ) = A G I T A T I O N S P E E D ( R P M ) = S U P E R F I C I A L V E L ( F T / H R ) = . S A T . O X Y . C O N C . ( P P M ) = % C A R B O N D I O X I D E _.0 X Y _ . _ U.PJL A K E J J_G/JL /_H_ R . ) _ M A S S T R A N S C O E F F ( 1 / H R ) = R S G U A R E N U M B E R O F . D A T A . 15.00 600.00 8 . 8 1 _ 6.55 1.97 110.84 88.58 = 0.99985 = 6 _ _ J J . M . E _ ( M I N ) .P_._P.RE S.S. ( M M H G ) _D„I.S__0_X_Y_ ( P P M ) _D.E_T_A__C_ ( P P M ) _TRU_E...DC._. ( P P M ) 0.0... 0.20 0.60 _L._Q.Q_ 1.40 2.20 2 8 . 0 0 . 1.24 54.00 2.39 83.00 3.68 _9._9_..0_0_ 4.39. 108.00 116.00 4.79 5.14 5.31 4.15 2.87 _Z._16_ 1.76 1-41 4.06 2.90 1.62 _Q..5JL 0.51 0.15 V_. PERCENT SOLID (WT.)~ 15.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR.= 12.63. . SAT.OXY.CONC. (PPM)= 6.59 % CARBON OIOXIDE = 1.33 .OXY U PTA KE (MG/L/.H R.L= 121 .61 MASS TRANS COEFF (1/HR)= 121.19 R SGUARE = 0.99988 NUMBER OF DATA = _ 7 _T_I.ME P_._P.RESS D_I.S_..OXY D.E.T.A_C TJJ.UJE_.OC_ (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 42.00 1.86 _ 4.73 3.72 0.20 70.00 3.10 3.48 2.48 0.40 89.00 3.95 2.64 1.64 -0 .6 0 10.1.._C_0_ 4.48 2...11 1.11 0.80 109.00 4.83 1.76 0.75 1.00 115.00 5.10 1.49 0.49 1.40 121.00 5.36 1.22 0.22 PERCENT SOLID (WT.)= 15.00 AGITATION SPEEO (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)- 1 7 . 1 5 . SAT.OXY.CONC. (PPM)- 6.61 % CARBON DIOXIDE = 1.01 . 0XY. UPTAKE ( MG/L/H.R.)= 134.22 . MASS TRANS COEFF (1/HR)= 136.64 R SQUARE = 0.99973 NUMBER 0F DATA = 6.. _T_IJ_.E __..P_RE.SS DI.S_.OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 48.00 ._ 2.13 ... . .4.48 3.50 0.20 77 .00 3.41 3.20 2.22 0.40 96.CO 4.26 2.36 1.37 0_._6_0 .10.7 .0.0 4.74 1.87 0.89 0.80 114.00 5.05 1.56 0.58 1.00 119.00 5.28 1.34 0.35 PERCENT SOLID AGITATION SPEED SUPERFICIAL VEL SAT.OXY.CONC. (WT. ) = (RPM)= ( FT/HR) =. (PPM)= % CARBON DIOXIDE _QX.Y_._U P-T. A K E (M G / L / H R.).___ MASS TRANS COEFF (1/HR)= R SGUARE NUMBER OF DATA =. 15.00 700.00 1.94 _ 6.08 8.98 l_7_3.-_.6___ 63.32 0.99972 _ 6 TIME P.PRESS D.I.S-OXY D.ETA_C T.RU.E.JD.C (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 _ 25.00 1.11 4 .97 2.22 0.40 42 .00 1.86 4.22 1.47 0.80 53.00 2.35 3.73 0.98 1...20 6.1.. 0.0 2.7.0 3.3.8 0.63 1.60 66.00 2.93 3.15 0.41 2.00 69.00 3.06 3.02 0.27 PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL._( FT./HR ) = . 5.26. . SAT.OXY.CONC. (PPM)= .6.46 % CARBON DIOXIDE = 3.31 QXY. UPTAKE. ( MG/L/HR).=. 137.09 MASS TRANS COEFF (1/HR)= 106.47 R SGUARE NUMBER OF DATA. = 0.99995 _.= 6 TIME _.P_..£RES_S_.._ _DJS_OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) .0 .0 ... 36.00.._ 1.60. 4.86 3.58 0.20 60.00 2.66 3.80 2.51 0.40 77.00 3.41 3.05 1.76 0 ..6.0 89.00 3.95 2-51 1-23 0.80 97.00 4.30 2.16 0.87 1.00 103.00 4.57 1.89 0.60 I r - _ J _ -PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR)= ... 8.81 SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 .OXY .UPTAKE LMG/L/HR.) = 1.4.8 ..2.8_ MASS TRANS COEFF (1/HR)^ 143.06 R SQUARE = 0.99990 NUMBER OF DATA _=.__ 7 TIME (MIN) P.PRESS (MMHG) _D_LS_OXY_ (PPM) DETA C (PPM) _T.RU.E_D.C_ ( PPM) 0.0 0. 10 0. 20 _0..30_ 0.40 0.60 0.80. 27.00 48.00 65.00 __7_7_..0.0_ 87.00 101.00 110.00 1.20 2.13 2.88 _3...41_ 3.86 4.48 4.88. 5.35 4.42 3.67 _3..13_ 2.69 2.07 1.67 4.31 3.38 2.63 _2__10_ 1.65 1.03 0.63 PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.. UP.T.AKE J.M.G/L/H.R.).= 2_01_._62__ MASS TRANS COEFF (1/HR)= 186.42 R SQUARE = 0.99995 NUMBER OF DAT A =. 6.... TIME P..P.RESS DIS OXY DETA C _ TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 33.00 1.46. . . . . . 5 .12 4 .04 . 0.10 57.00 2.53 4.06 2.98 0.20 75.00 3.33 3.26 2.18 0.30 88.00 3.90 2.69 1.60 0.40 98.00 4.34 2.24 1.16 0.60 110.00 4.88 1.71 0.63 — -. _/ _»— PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (MG/L/HR) = MASS TRANS COEFF (1/HR)= R SGUARE NUMBER OF DATA - _....=._ 15.00 700.00 17.15 ... 6.61 1.01 18 3.62... 198.99 0.99984 . _ 6... T T MF P.PRESS . DIS OXY DETA C (MIN) (MMHG) (PPM) (PPM) . 0 . 0 37.00.. 1.64 4.97 0.10 64.00 2.84 3.77 0.20 82.00 3.64 2.98 .0.3.0 . 95.00 4.71 2.40 0.40 104.00 4.61 2.00 0.60 116.00 5.14 1.47 TRUE DC (PPM) 4.05 2.85 2.05 1.48 PERCENT SOLID (V.T.) = AGITAT I ON SPEED (RPM) = SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (MG/L/HR) = 20.00 300.00 1, 6, 94 08 8.98 12.84 MASS TRANS COEFF (1/HR)= 5.52 R SGUARE = 0.99972 NUM8ER OF DATA = 6. T T MF P ..PRESS DIS OXY .DETA _X TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) ... _ 0.0 14.00 0.62 5.46 3.13 . 1.00 21.CO 0.93 5. 15 2.82 2.00 26.00 1.15 4.93 2.60 4.00 36.00 . . 1..-60 4.48 2.16 6.00 44.00 1.95 4. 13 1-8.0 8.00 51.00 2.26 3.82 1.49 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM}= 6.46 % CARBON DIOXIDE = 3.31 _0 X.Y. U P_T A K E (.M.G / L / H R ).=. 16.. 2.0__ MASS TRANS COEFF (1/HR)= 10.19 R SGUARE * 0.99987 NUMBER OF DATA .=. . 7 —TI ME P_..P_R.E.S.S DJ S...0 X Y D E.T.A„C _TRU E D C (MIN) (MMHG) (PPM) (PPM) (PPM) 0. 0 . 17.00 _ 0.75 5.71 . 4.11 1. CO 31.00 1.37 5.08 3.49 2.00 44.00 1.95 4.51 2.92 -3..0.0 54.00 2. 3.9. 4. 06 2 .47 4.00 63.00 2.79 3.67 2.08 6.00 76.00 3.37 3.09 1.50 -8.00 86 .00 . 3.81 2.65 ... .. 1.06 PERCENT SOLID (WT. ) = 20 -00 AGITATION SPEED (RPM)= 300. 00 SUPERFICIAL VEL. (FT/HR)= 8. 81 _ SAT.OXY.CONC. (PPM)= 6 . 55 % CARBON DIOXIDE = 1. 97 OXY. .UPTAKE.. _ .(.MG/L/HR ) = 4 . .43 MASS TRANS COEFF (1/HR)= 10. 39 R SGUARE 0.99995 NUMBER OF. DATA. _ .. . = . T.IJME .P.. PR ESS D.I.S.OXY DETA C _T_RUE DC_ (MIN) (MMHG) (PPM) (PPM) (PPM) . . .0.0 22.00 0.98 5 .57 . 5.15 l . C O 40.00 1.77 4.77 4.35 2.00 56.00 2.48 4 .07 3.64 .... 3.CO 69.00 3.06 3.49 3.06 4.00 80.00 3.55 3.00 2.57 5.00 89.00 3.95 2.60 2.18 6.00 97.00 4.30 2.25 .1.82 . -2 35-PERCENT SOLID (WT.)= 20.CO AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL .FT/HR.= ... 1 2 . 6 3 . . SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.. UPTAKE t MG/L/HR) = -8_..06._ MASS TRANS COEFF (1/HR)= 16.39 R SGUARE = 0.99999 NUMBER OF DATA = 7 JUJ_E PL.P.RESS _-DJ.S_0 X.Y. D ET A__C___TRU_E_D.C_ (MIN) (MMHG) (PPM) (PPM) (PPM) 0. 0 3 8.00 1.68 4 .90 5.39 1. CO 67.00 2.97 3.62 4.11 2. CO 89.00 3.95 2.64 3.13 _ 3 . 00 106.00 4.70 1.89 2.38 4.00 119.00 5-28 1.31 1.80 6.00 136.00 6.03 0.56 1.05 8.CO 146.00 6.47 0.12 0.61 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR ) = ... 17 . 15._ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 ..OXY. UPTAKE ( MG/L/HR )= 9.78 MASS TRANS COEFF (1/HR)= R SGUARE NUMBER OF DATA _ 19.32 = 0.99984 = . 6 _TJL_E_ (MIN) -.0.0 ... 1.00 2.00 _3.._C.(L 4.00 5.00 P.PRESS (MMHG) „ 38.00 66.CO 86.00 100.0( 110.OO 118.00 S OXY DETA. C ... TRUE DC (PPM) (PPM) (PPM) 1.68. _ 4 .93 4.42 2.93 3.69 3.18 3.81 2.80 2.29 4.. 4.3. 2. 18 1.67 4.88 1.74 1.23 5.23 1.38 0.87 V ! I r PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)= 1.94_ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 .0XY UPTAKE (MG/1./_HR.) = 8 ...9.6__ MASS TRANS COEFF (1/HR)= 15.68 R SQUARE = 0.99990 NUMBER OF DATA = 8 J_I.i_E. ( MIN) 0.0 1.00 2.00 __3„..C.0_ 4.00 5.00 7. CO 9.00 P. PRESS.. (MMHG) 2 8.00 50.00 67.00 8 0.0.0.. 90.00 98.00 109.00 115.00 DIS OXY (PPM) 1.24 2.2 2 2.97 3.55 3.99 4.34 4.83 5.10 .DETA C (PPM) 4. 84 3.86 3.11 .2.5.3. 2.09 1.74 1.25 0.98 TRUE DC (PPM) 4.27 3.29 2.54 _1..96_ 1.52 1. 16 0.68 0.41 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL_(FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. ..UPTAKE ( MG/L/HR)=.. MASS TRANS COEFF (1/HR)= R SQUARE NUMBER CF. DATA = 20.00 400.00 5.26... 6 .46 3.31 _ 7 . 3 7 _ 26 . 14 0.99990 7 T T MF P...P.RES.S. (MIN) (MMHG) ... 0.0 28.CO 0.50 50.00 l . C O 68.00 1 .50 82...0.0 2.00 93.00 3.00 109.00 . . 4.00 . . 120.00 J3J.S_0X.Y_ (PPM) 1.24 2.22 3.01 3.64. 4.12 4.83 .DETA C (PPM) .5.22 4.24 3.44 2..82_ 2.34 1.63 . 1 . 14 _TJ.U_E_D.C_ ( PPM) 4.94 3.96 3.16 _2..5.4_ 2.05 1.34 .0.86. PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)~ 400.00 SUPERFICIAL VEL ( FT/HR ) =• 8 . 8 1 _ SAT.OXY.CONC. (PPM}= 6.55 * CARBON DIOXIDE = 1.97 .0 X.Y.—U P_T_A K E ( « G / L / HR.) _V._7.8_ MASS TRANS COEFF (1/HR)= 48.90 R SGUARE = 0.99987 NUMBER OF DATA . .. =._... __ ... 8 TTMF P.PRF..S DIS OXY (MIN) (MMHG) (PPM) 0.0 .._ .. 49 .00 _ 2.17 0.50 82.00 3.64 1.00 103.00 4.57 1 .50 117.00 5.19 2.00 127.00 5.63 2.50 133.00 5.90 3.0 0 . . 137.00 . . 6.07 3.50 140.00 6.21 _D.E.T.A_.C_ (PPM) 4.38 2.91 1.98 _L._3„6_ 0.92 0.65 0.47 0.34 _T.RUE__D.C_ { PPM) 4.28 2.81 1.88 1.26 0.82 0.55 0.38 0.24 PERCENT SOLID (WT.) AGITATION SPEED (RPM) . SUPERFICIAL VEL (FT/HR) SAT.OXY.CONC. (PPM) % CARBON DIOXIDE ..OXY. UPTA K £ ( MG/L /HR) MASS TRANS COEFF (1/HR) R SGUARE _ NUMBER OF DATA _ TI ME P. PRESS DIS OXY DEI A..C TRUE DC_ (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 49 .00 2.17 4.42 4.40 0.50 81.00 3.59 3.00 2.98 1.00 103.00 4.57 2.02 2.01 -L .50 118.00 5.-2.3 1.36 1,3.4_ 2.CO 128.00 5.67 0.91 0.90 2.50 134.00 5.94 0.65 0.63 3.00 139.00 6.16 0.43 0.41 4.00 144.00 6.38 0.20 0.19 20.00 = 400.00 = 12.63 6 .59 1.38 = 0 . 70 47 .23 = 0.99985 = 8 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE _0X_Y..__UP_.TAKE (MG./_L/_HR ).=.. MASS TRANS COEFF <1/HR)= 53.75 R SGUARE = 0.99986 NUMBER OF DATA = .. 6 20.00 AGO.00 17. 15.._ 6.61 1.01 A . 5 4 . TIME.. (MIN) .P.PRESS (MMHG) _DJ.S_J_.XY.. (PPM) ..DE.TA_C_ (PPM) TRUE DC ( PPM ) 0.0 0.40 0.80 J....2.0. 2.00 2.80 45.00 76.00 98.00 _1.1.3.._0_0_ 130.00 139.00 2.00 3.37 4.34 5.01 5.76 6.16 4.62 3.24 2.27 _1.60_ 0.85 0.45 4.53 3.16 2. 18 1.52 0.76 0.37 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL ( FT/HR )= 1.94 ... SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY... UPTAKE ( MG/L/HR )= -4 .68 MASS TRANS COEFF (1/HR)= 25.27 R SGUARE = 0.99996 NUMBER OF. DATA = 7_ TIME P.PRESS DJS. OX.Y . DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) _ . _ 0.0 . 27.00_. 1.20. _ 4.88 5.07 0.50 48.00 2.13 3.95 4.14 1.00 66.00 2.93 3. 15 3.34 1.50 80.00 3.55 2.53 2.72 2.00 92.00 4.08 2.00 2.19 3.00 109.00 4.83 1.25 1.43 4.00 120.00 . 5.32. _._ 0 .76 . . ... 0.95 PERCENT SOLIO (WT.)= AGI TAT I ON SPEED (RPM)-SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY... U PT AK E (M G / L/H R) = MASS TRANS COEFF (1 /HR)= R SGUARE NUMBER CF. DATA 20.GO 500.00 ._ 5.26 _ 6.46 3.31 0.54. 4 2 . 3 1 = 0.99987 __T.IME_ (MIN) J_J_R.ESS-(MMHG) .DIS__.aX_Y_ (PPM) J_£TA_C_ (PPM) _T.RUE_.DC_ ( PPM) 0.0 .. 43.00... 1.91 4.55 ..... _ . 4 . 5 4 0.50 7 3 . 0 0 3.24 3.22 3.21 1.00 95.00 4.21 2.25 2.23 1 .50 1.10..0.0 4.88 1.58 1 .57 2.00 120.00 5.32 1. 14 1.13 2.50 128.00 5.67 0.78 0.77 3.00 _. 133.00 5.90 0.56 0.55 PERCENT SOLID (WT.) AGITATION SPEED (RPM) SUPERFICIAL VEL (FT/HR) SAT.OXY.CONC. (PPM) % CARBON OIOXIDE 0 XY. ..U PTAKE (MG/L/HR) MASS TRANS COEFF (1/HR) R SGUARE NUMBER OF. DATA TIME JP..P8E.S.S D_I.S_OXY DETA_C. TRUE _DC (MIN) (MMHG) (PPM) (PPM) (PPM) -0.0 48.00 2.13 4.42 .. 4.23 0.40 80.00 3.55 3.00 2.81 0.80 102.00 4.52 2.03 1.83 -1-.-20 116...CJ_ 5--J,4.__ 1,4.1 1 .21 1.60 125.00 5.54 1.01 0.81 2.00 131.00 5.81 0.74 0.55 _2.80 138.00 „ 6.12 :0.43„ . 0.24 20.00 = 5 0 0 . 0 0 = 8.81 6.55 1.97 = L2.._0.2_ 61-74 = 0.99992 = 7 r PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR 1 2 . 6 3 _ SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 _QX_Y. UPTAKE (.MG/_L/.HR.)_. 1A._.8.2_ MASS TRANS COEFF (1/HR)= 85.43 R SQUARE = 0.99981 NUMBER OF DATA = 7 _ T J „ E _ (MIN) _P_.-RRE.SS_ (MMHG) _D_I.S_QXY_ (PPM) _D.ET.A_C_ (PPM) TRUE DC ( PPM) 0.0 . 0.20 0.60 _l-.0_0_ 1.40 1.80 2.60 34.00 63.00 98.00 _1.1.9._00_ 130.00 136.CO 142.00 1.51 2.79 4.34 _5.._2..8_ 5.76 6.03 6.30. 5.08 3.79 2.24 _1_.3_1_ 0. 82 0.56 0. 29 4.91 3.62 2.07 1. 14 0.65 0.38 0.12 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL. ( FT/HR ) = .... 1 7 . 1 5 _ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 _0X Y . U P T A K E (MG/L/HR)= r3_. 7_1 __ MASS TRANS COEFF (1/HR)= 98.57 R SGUARE = 0.99988 NUMBER. 0 F__ D AT A = 6__ ..TIME P.PRESS. DIS OXY CETA.C TRUE .DC (MIN) (MMHG) (PPM) (PPM) (PPM) . 0 . 0 38.00 1.68 4.93 4.97 0.20 71.00 3.15 3.46 3.50 0.60 109.00 4.83 1.78 1.82 . . l .CO 128. 00 5.67 0 .94 0.97 . 1.40 139.00 6.16 0.45 0.49 2.20 147.00 6.52 0.09 0.13 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)- ...1.94_ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.93 0XY.. UPTAKE (MG/L/HR).= -1.15 MASS TRANS COEFF (1/HR)= 42.08 R SGUARE - 0.99999 NUMBER OF DATA = „. 6 ... T T MF £.PRESS__ m s O X Y DETA C TRUE_OC (MIN) (MMHG) (PPM) (PPM) (PPM) . 0.0 . 41.00 1.82 4.26 4.29 0.50 70.00 3. 10 2.98 3.00 l .CO 90.00 3.99 2.09 2. 12 1 . .0 1.04...0.0 . 1 . 47 1 .'.O 2.00 114.00 5.05 1.03 1.05 3.00 126.00 5.59 0.49 0.52 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL V E L . ( F T / H R ) - 5.22_ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.34 ..OXY. UP.TAKE (MG/L/HR. 1= 2.30... MASS TRANS COEFF (1/HR)= 80.43 R SGUARE = 0.99992 N U M 8 E R OF DAT A .= .... 8 TIME _ P.PRESS _ D_I„S ..OX.Y DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0.0 31.00. 1.37 „ 5.08 5.05 0.20 60.00 2.66 3.80 3.77 0.60 95.00 4.21 2.25 2.22 1.00 116.00 5. 14 1.31 1.29 1.40 128.00 5.67 0.78 0.75 1.80 135.00 5.99 0.47 0.44 2.20 139.00. 6.16 0.29 0.27 3.00 143.00 6.34 0. 12 0.09 r PERCENT SOLID (WT.)= 20.00 AGITATION SPEED {RPM)= 600.00 SUPERFICIAL VEL { F T/HR ) = 8.81_ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 _0 X Y_.-_U PX.A K.E IB G /_L /H R l = - 3 . 0 5___ MASS TRANS COEFF (1/HR)= 80.63 R SQUARE = 0.99940 NUMBER OF DATA .=. 8._ TIME P.. PRESS DIS OXY DETA C TRUE OC .MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 34.00 1.51 5.04 5.08 0.20 62.00 2.75 3.80 3.34 0.60 98.00 4.34 2.20 2.24 __1_._C0 U.9...Q.Q 5.2.8 1.27 1. 3 1 1.40 131.00 5.81 0.74 0.78 1.80 138.00 6.12 0.43 0.47 2.20 14 3.00 6.34 0.21 0.25 2.60 145.00 6.43 0.12 0.16 PERCENT SOLID ' (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR ) = . .. 12.63. . SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY....UPTAKE (MG/L/HR)= - 6 . 2 9 MASS TRANS COEFF (1/HR)= 116.31 R SQUARE = 0.59992 NUMBER_ OF. DATA _.= .. _.8... TI MF P..PRE.S.S . DIS OXY DETA c TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0. 0. 48 . 0 0 _ 12. 13 4 . 46.... 4 . .51 _. . 0.20 80. 00 3. 55 3. 04 3. 10 0.40 103. 00 4. 57 2. 02 2. 08 0.60 11.8.. .00 5. 23 1. 36 1. 41 0.80 128. 00 5. 67 0. 91 0. 97 1.00 135. 00 5. 99 0. 60 0. 66 1.20 140. 00 6 . 21 .... 0 . 38 . 0. 44 ... .... 1.40 14 3. 00 6. 34 0. 25 0. 30 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR ) = .17 .15 . _ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 _0XY. .UPTAKE (MG/L/HR) = -16.27.. . MASS TRANS COEFF (1/HR)= 128.13 R SCUARE = 0.99969 NUMBER OF DATA _ .= _ 8 _ -XIME P_._P.R.E.S.S DIS _OX.Y DE.TA__C TRUE_DC__ (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 55.00 2.44 _ 4.17 4.30 0.20 90.00 3.99 2.62 2.75 0.40 112.00 4.97 1.65 1.77 _0.6.0 126 .CO 5 . 5 9__ 1.03 1.15__ 0.80 135.CO 5.99 0.63 0.75 1.00 141.00 6.25 0.36 0.49 1.40 147.00 . 6.52 0.09 0.22 1.80 150.00 6.65 -0 .04 0.09 PERCENT SOLID AGITATION SPEED SUPERFICIAL. VEL. SAT.OXY.CONC. ( W T . ) = 20 .00 (RPM)= 700.00 ( FT /HR ).= .„ 1.94 ... (PPM)= 6.08 % CARBON DIOXIDE OXY.. UPT.AKE ( MG/L/HR ) = 8.98 ... 3.08. MASS TRANS COEFF (1/HR)= 55.48 R SCUARE = 0.99977 NUMBE R._O.F.._D AT A. =__ 7_ _.T_IM.E. ( M I N ) J_..PRE.S..S_ (MMHG) .DJ_S__OXY_ IPPM) .DETA C. (PPM) TRUE DC ( PPM) 0.0 ... 0.40 0.80 _1_._2.0_ 1.60 2.00 .2.80. . . 43 .00 72.00 92.00 _1_0_6_._Q_0_ 115.00 121.00 129.00.. 1.91. 3.19 4.08 _4...7_0_ 5.10 5.36 .5.72 4. 17 2.89 2.00 .1 .38 . 0.98 0.72 .0.36 4.12 2.83 1.95 _1_..3_3_ 0.93 0.66 0.31 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)-.... 5.26... SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 0 XY. U PT A K £ ( MG/L/H R) = 7. 5_L__ MASS TRANS COEFF (1/HR)= 99.46 R SGUARE = 0.99981 NUMBER OF DATA .= 7 —TJJVLEL (MIN) .P.. PRESS (MMHG) _D_I.S_OXY_. (PPM) ..D.ETA_C_ (PPM) TRUE DC. (PPM) 0.0 0.20 0. 40 _0 ..60_ 0.80 1.00 .1.20 41.00 70 .00 91.00 _1.06..0.Q_ 117.00 124.00 130.00 1.82 3.10 4.03 J4.70_ 5.19 5.50 5.76 4.64 3. 36 2.42 1. 76 1.27 0.96 0.70 4.57 3.28 2.35 X.6.8_ 1.20 0.89 0.62 PERCENT SOLID (WT.)- 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)-.. 8 . 8 1 _ SAT.OXY.CONC. {PPM)= 6.55 * CARBON DIOXIDE = 1.97 .OX.Y_.__UPTAKE (MG/L/HR )= __.-j3J__ MASS TRANS COEFF (1/HR)= 127.65 R SQUARE = 0.99972 NU M B E R. .0 F _ D A TA = 8 . TIME P ..P_8.E_S.S DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) _ . 0 ,0 . . 52.00 2.31 _ 4.24 4.26 0.20 86.00 3.81 2.74 2.75 0.40 108.00 4. 79 1.76 1.77 O.ftO 122.00 5-41 1.14 1.15 0.80 1.00 1.40.. . 1.80 131.00 137.00 143.00 . 146.00 5.81 6.07 6.34 6.47 0.74 0.47 0.21 0.08 0.75 0.49 0,22 0.09 I i i i PERCENT SCLID (WT.)= 20.00 j AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL { FT/HR ) = . 12.63 .. _ - „.._ - j SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.._.UPJ AK£ {.MG/L/.HRJ=. 4.. 8.9 i MASS TRANS COEFF (l/HR)= 174.15 R SCUARE = 0.99989 ; NUMBER 0F DATA = 8 - — —J I TIM E P. P R ESS DI S OXY DEI A X TRUE DC {MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 38.00 1.68 4. 90 4.88 0.10 66.CO 2.93 3.66 3.63 0.20 87.00 3.86 2.73 2.70 0 .3.0 .10.2 ..0.0 4 .5.2 2. .07. 2.04 0.40 114.00 5.05 1.53 1.51 0. 60 129.00 5.72 0.87 0.84 0.80 . . . 1 3 7 . 0 0 . . _. 6.07 0.51 0.49 1. CO 142.00 6.30 0.29 0.26 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL {FT/HR )= ... 1 7 . 1 5 . . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY. . UPTAKE (__MG/_L_/HR_)__ 2.98 MASS TRANS COEFF (1/HR)= 205.02 R SCUARE = 0.99988 NUMBER OF DATA _8_ TIME P_..PJ1E.S.S DIS OXY D.ET.A.JC IRU.E...DC. (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 43 .00 . 1.91 4.71 4.69 0.10 74.00 3.28 3.33 3.32 0.20 96.CO 4.26 2.36 2.34 _.Q-..3.0 11.1.0.0 4....92 1. 6.9 1.68 0.40 122.00 5.41 1.20 1.19 0.50 130.00 5.76 0.85 0.83 .0.60 ... . 135.00 5.99 0.63 0.61 0.80 142.00 6.30 0-32 0.30 V STOP 0. PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)- 300.00 SUPERFICIAL VEL. (FT/HR)=. 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/L/HR)- 31.05 MASS TRANS COEFF R SGUARE (1/HR)= 7.38 0.99677 NUMBER OF DATA — 6 TIME P.PRESS DIS OXY DETA C TRUE OC ( MIN ) (MMHG) (PPM ) (PPM) (PPM) 0.0 12.00 0.53 5.55 1.34 l .CO 2.00 3.00 16.00 19.00 21.00 0.71 0.84 0.93 5.37 5.24 5.15 1.16 1 .03 0.94 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. ~~" ( P P M ) = 6 . 4 6 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= 12.01 MASS TRANS COEFF (1/HR)= 10.47 R SGUARE = 0.99984 NUMBER OF DATA = 7 TIME P.PRESS DIS OXY OETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) . 0 . 0 20.00 0.89 5.57 4.43 l .CO 36.00 1.60 4.86 3.72 2.00 50.00 2.22 4.24 3.10 3.00 61 .JOO 2^70 3. 75 2.61 4.00 70.00 3.10 3.36 2.21 5.00 78.00 3.46 3.00 1.85 6 . 0 C 8 5 . 0 0 , _3 .JJ 2 .69 _l_-5_ r i PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (MG/L/HR)= 20 . CO 300.00 8.8 l _ 6.55 1.97 10.51 MASS TRANS COEFF (1/HR)= 14.23 R SGUARE = 0.99992 NUMBER OF DATA = 7 TIME (MIN) P.PRESS DIS OXY DETA C TRUE DC (MMHG) ( P P M ) (PPM) (PPM) 0. 0 1. CO 2. CO 3.00 27.00 49.CO 66.00 80.00 1.20 2.17 2.93 3.55 5.35 4.38 3.62 3.00 4.61 3.64 2.88 2.26 4.CO 5.00 6.00 91.00 99.00 106.CO 4.03 4.39 4.70 2.51 2. 16 1.85 1.78 1.42 1. 11 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)=_ 12.63 _ SAT.OXY.CONC. (PPM)- 6.59~ % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)- 12.93 MASS TRANS COEFF (1/HR)= 16.27 R SGUARE = 0.99990 NUMBER OF DATA = 7 TIME P.PRESS DIS CXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0. 0.__ 31.00 l - 3 7 _ 5 .21___ 4.42 1. CO 54.CO 2.39 ~ 4.19 ~ 3.40 2. CO 73.00 3.24 3. 35 2.56 3.00 8 6.CO 3-81 2.78 1.98 4.00 97.00 4.30 2.29 1.49 5.00 105.00 4.66 1.93 1.14 6. 00 111 . 00 4 . 9 2 1. 67 __ 0> 87 I PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 11 _ _ J J P T A K E IMG/L/HR ) = 14.62 MASS TRANS COEFF (1/HR}= 22.13 R SCUARE = 0.99978 NUMBER OF DAT A ~ _ J TIME P.PRESS DIS OXY DETA C 1RUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0 . 0 . 24.00 1 .06 5.55 4 .89 C 5 0 4 3 . CO 1.91 4.71 4.04 l .CO 58.00 2.57 4.04 3.38 1.50 71.00 3.15 3. 46 2.80 2.CO 82.00 3.64 2.98 2.32 2.50 90.00 3.99 2.62 1.96 3.CO 98.00 4.34 2.27 1.61 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)^ = 400.00 SUPERFICIAL VEL (FT/HR ) = 1,94 SAT.OXY.CONC. ' (PPM)=~ 6.08 % CARBON DIOXIDE 8.98 OXY. UPTAKE (MG/L/HR ) = 4.55 MASS TRANS COEFF (1/HR)= 15.53 R SGUARE 0.99992 NU MB ER OF DATA = 6 _ J i yE P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0. 0 _ 30.00 1.33 1. CO 53.00 2.35 2. CO 71.00 3.15 3.00 8.4^00 3.72 4.00 95.00 4.21 1.87 " 1 . 5 8 5.00 103.00 4.57 1.51 1.22 4.75 3.73 2.93 2. 36 4.46 3 .44 2.64 2.06 r PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE JOJLY ._JJ PJ^^ __(jMG/L/HRJ-_ MASS TRANS COEFF (1/HR)-R SGUARE NUMBER OF DATA 20.00 AGO.00 5 . 2 6 _ 6.46 3.31 26, 16 0.99997 7 TIME P,PRESS (MIN) 0.0 0. 50 1. CO 1.50 (MMHG) 26.CO 4 7.00 64.00 78.00 J P I _ _ _ _ _ (PPM) 1. 15 2.08 2.84 3.46 DETA C TRUE DC (PPM) 5.31 4. 38 3.6 2 3.00 ( PPM) 4.81 3.88 3.12 2.50 2.00 2.50 3.CO 89.00 98.00 105.00 3.95 4.34 4.66 2.51 2. 11 1.80 2.01 1.61 1.30 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)- 400.00 SUPERFICIAL VEL ( FT/HR )= J* . 8 I SAT.OXY.CONC. " (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR)- -2 .75 MASS TRANS COEFF R SGUARE NUMBER OF DATA (1/HR)= 36.09 0.99990 6 TIME P'.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 39.00 1.73 4.82 4.90 0.50 68.00 3.01 3.53 3.61 1.00 89.00 3.95 2.60 2.68 1.50 105.00 4.66 1.89 1.97 2.00 116.00 5. 14 1.41 1.48 2.50 125.00 5.54 1.01 1.08 r PERCENT SOLID (WT.)= 20.00 AGITATION SPEEO (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)= 1 2 . 6 3 _ SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)= - 1 . 6 9 MASS TRANS COEFF (1/HR)~ 46.74 R SGUARE = 0.99999 NUMBER OF DATA = 6 TIME (MIN) 0.0 0. 50 1.00 1. 50 P.PRESS DIS OXY DETA C TRUE DC (MMHG) 48.00 81 .00 103.00 118.00 (PPM) _ 2 . 13 3.59 4.57 5.23 (PPM) 4. 46 3.00 2.02 1.36 (PPM) 4.50 3.03 2.06 1 .39 2.00 2.50 128.00 135.CO 5.67 5 .99 0.91 0.60 0.95 0.64 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= S A T . O X Y . C O N C . ( P P M ) = % CARBON DIOXIDE OXY. UPTAKE (MG/L/HR)-20.00 400.00 17.15 6.61 1.01 0 . 77 MASS TRANS COEFF (1/HR)= 63.34 R SGUARE = 0.99991 NUMBER OF DATA = 6 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 0.40 0.80 1.20 51.00 85.00 107.00 121.00 2.26 3.77 4.74 5.36 4.35 2.84 1.87 1.25 4.34 2.83 1.86 1. 24 1.60 2.00 131.00 137.00 5.81 6.0 7 0, 80 0.54 0. 79 0.53 c y PERCENT SOLID (WT.)- 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FJ/HR)= _ 1 . 94_ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/L/HR)- 0.79 MASS TRANS COEFF (1/HR)= 23.85 R SGUARE = 0.99968 NUMBER OF DATA = 7 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) _ 0.0 0.50 1.00 1.50 (MMHG) . 25.00.. 46 . CO 62.00 76.00 ( PPM) 1.1 I 2.04 2.75 3.37 (PPM ) 4.97 4.04 3.33 2.71 ( PPM) _ 4 . 9 4 4.01 3.30 2.68 2.CO 2.50 3.00 86.CO 95.00 103.00 3.81 4.21 4.57 2. 27 1.87 1.51 2.23 1.84 1.48 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (MG/L/HR)= 20.00 5C0.00 5 . 2 6 _ "~6.46 3.31 -2 .33 MASS TRANS COEFF (1/HR)= 41.63 R SGUARE = 0.99982 NUMBER OF DATA = 6 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) 0.0 _ 0.50 1.00 1.50 (MMHG) 44.00 75.00" 96.00 111.00 (PPM) 1.95 3.33 4.26 4.92 (PPM) 3 . 13 2.20 1.54 (PPM) 4.56 3 . 19 2.26 1.59 2.00 121.00 5.36 1.09 1.15 2.50 129.00 5.72 0.74 0.80 V r PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR ) = 8.81__ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR) = 13.68 MASS TRANS COEFF (1/HR)= 61.51 R SCUARE = 0.99982 NUMBER OF DATA = 5 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 0. 40 0.80 _ _ _ _ _ _ 1 . 60 47.00 79.00 10 0.00 115.00 124.00 2.08 3.50 4.43 _____ 5.50 4.46 3.05 2.11 1* __5_ 1.05 4.24 2.82 1.89 _ _• 23. 6.83 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 1 2 . 6 3 _ SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)= 1.06 MASS TRANS COEFF (1/HR)= 76 .67 R SGUARE = 0.99984 NUMBER OF DATA = 6 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) _0 .0 _ _ . 3 4 . C 0 __1.51 _ 5 . 0 8 5.07 0.20 61.00 2.70 ' 3.88 " 3.87 0. 60 96.00 4.26 2.33 2.32 1. CO 117.0 0 5 . 19 1.40 1 .39 1.40 129.00 5.72 6.87 0.85 1.80 137.00 6.07 0.51 0.50 r PERCENT SOLID ( WT . ) = 20.00 AGITATION SPEED (RPM)- 500.00 SUPERFICIAL VEL (FT/HR)=_ 17_.15.__ SAT.OXY.CONC. (PPM)- 6.61 % CARBON DIOXIDE = 1.01 OXY. UPTAKE (MG/L/HR)= 6.18 MASS TRANS COEFF (1/HR)- 100.52 R SGUARE = 0.99996 NUMBER OF DATA = 6 TIME P.PRESS DIS OXY (MIN) (MMHG) (PPM) DETA C (PPM) TRUE DC (PPM) 0.0 0.20 0.40 0.60 42.00 72.00 94.00 109.00 1.86 3.19 4. 17 4.83 4.75 3.42 2.44 1.78 4.69 3.36 2.38 1.72 PERCENT SOLID (WT.)~ 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= _ _ 1 . 9 4 _ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIOE = 8.98 OXY. UPTAKE (MG/L/HR)= - 2 . 6 9 1.23 0.88 MASS TRANS COEFF (1/HR)= 38.65 R SGUARE = 0.99984 NUMBER OF DATA = 6 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (FPM) (PPM) (PPM) o-o__ 0.50 1.00 1.50 39.00 67.00 87.00 101.00 2.00 2.50 111.00 119.00 1.73 2. 97 3.86 4.48 4.92 5.28 4.35 3. 11 2. 22 1.60 1. 16 0. 80 4.42 3.18 2.29 1.67 1.23 0.87 r PERCENT SOLID (WT.)= 20.00^ AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR )= 5.26. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= -5 .35 MASS TRANS COEFF (l/HR)= 67.84 R SGUARE = 0.99962 NUMBER OF DATA = 6 TIME P.PRESS DIS OXY DETA C TRUE DC 1 i ! (MIN) (MMHG) (PPM) (PPM) ( PPM) i \ 0.0 55.00 2.44 4,02 4.10 i 0.40 89.00 3.95 2.51 2.59 0.80 111.00 4.92 1.54 1.62 1. 20 124.00 5.50 0.96 1.04 1.60 132.00 5.85 0.61 0.69 2.CO 138.00 6.12 0.34 0.42 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR ) = 8._81_ SAT.OXY.CONC. (PPM)= ." 6.55 S CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR)= 3.01 MASS TRANS COEFF (1/HR)= 83.90 R SGUARE =• 0.99981 NUMBER OF DATA = . 5 TIME P.PRESS DIS OXY DETA C TRUE DC | (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 63.00 2.79 3.75 3.72 0.40 99.00 4.39 "2 .16 " ~_.12~ 2 0.80 120.00 5.32 1.23 1.19 I t 1.20 131.CO 5±31 0.74 0.70 | ' 1.60 138.00 6.12 0.43 0.39 e o r y P E R C E N T S O L I D ( W T . ) ~ AGI TAT I ON S P E E D (RPM) = S U P E R F I C I A L VEL ( F T / H R ) = S A T . O XY.CONC. ( P P M ) = % CARBON D I O X I D E OXY. U P T A K E (MG/L/HR ) = 2 0 . 0 0 6 0 0 . 0 0 12.63... 6 . 5 9 I .38 - 1 3 . 3 6 MASS TRANS C O E F F ( 1 / H R ) - 1 0 7 . 7 0 R SGUARE = 0 . 9 9 9 8 2 NUMBER OF DATA = 6 T I M E P . P R E S S D I S OXY DETA C TRUE DC ( M I N ) (MMHG) ( PPM) ( PPM ) ( P P M ) 0.0 0.20 0.40 0.60 4 6 . 0 0 7 8 . 0 0 1 0 0 . 0 0 1 1 6 . 0 0 2.04 3 . 4 6 4 .43 5.14 4 . 5 5 3 . 1 3 2 . 1 5 1. 45 4 . 6 7 '3.25 2.28 1.57 0. 80 1. CO 126.CO 1 3 4 . 0 0 P E R C E N T S O L I D A G I T A T I O N SPEED S U P E R F I C I A L V E L S A T.OXY.CONC. ( WT . ) = ( R P M ) = ( F T / H R ) -(PPM) = % CARBON D I O X I D E OXY. U P T A K E ( M G / L / H R ) = 2 0 . 0 0 6 0 0 . 0 0 1 7 . 1 5 6 . 6 1 ~ 1.01 - 2 . 7 1 MASS TRANS C O E F F ( 1 / H R ) = 1 1 8 . 7 7 R SGUARE = 0 . 9 9 9 9 9 NUMBER OF DATA = . 5 T I M E P . P R E S S D I S OXY DETA C TRUE DC ( M I N ) (MMHG) ( PPM ;) ( P P M ) ( P P M ) 0.0 4 9 . 0 0 2. 17 4 . 4 4 4.46 0.20 8 2 . 0 0 ' 3.64 2.98 3 . 0 0 0.40 1 0 4 . 0 0 4 . 6 1 2 . 0 0 2.02 0.60 1 1 9 . 0 0 5.28 1.34 1.36 0.80 1 29.CO 5.72 0 . 8 9 0.92 r PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( F T / H R ) = „ 1.9 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE {MG/L/HR) - -2 .42 MASS TRANS COEFF (1/HR)= 58.81 R SGUARE = 0.99979 NUMBER CF DATA = 6 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN ) 0.0 0.40 0.80 1.20 (MMHG) 4 5.00 76.00 96.00 109.00 (PPM) 2.00 3.37 4.26 4.83 (PPM) _ 4-09 2.71 1.82 1. 25 (PPM) 4.13 2.75 1.87 1.29 1.6C 2.00 119.00 125.00 5.28 5.54 0. 80 0. 54 0.85 0.58 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT /HR ) = 5..26_ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= -1 .84 MASS TRANS COEFF (1/HR)^ 106.03 R SQUARE = 0.S9972 NUMBER OF DATA = 5 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) ( PPM) 0.0 38.00 1.68 4.77 4.79 0.20 72.00 3.19 3.27 3.28 0.60 108.00 4.79 1.67 1.69 1.00 128.00 5.67 0.78 0.80 1.40 137.00 6.07 0.38 0.40 • r PERCENT SOLIO (WT.)~ 20.00 AGITATION SPEEO (RPM)= 700.00 SUPERFICIAL VEL_(FT/HR) = 8 . 8 I SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR)= 6.36 MASS TRANS COEFF (1/HR)= 130.76 R SGUARE = 0.99998 NUMBER OF DATA = 5 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) 0.0 0.20 0.40 0.60 (MMHG) 52.00 85.00 107.00 121.00 (PPM) 2.31 3.77 4. 74 5.36 (PPM) 4. 24 2.78 1.80 1.18 ( PPM ) _Jt .19 2.73 1.76 1.13 0.80 130.00 5.76 0.78 0.74 PERCENT SOLID (WT.)= 20.00 AGITATION SPEED . (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)- 20.31 MASS TRANS COEFF (l/HR)= 168.78 R SGUARE - 0.99990 NUMBER OF DATA = 6 TIME P.PRESS DIS OXY DETA C TRUE DC (MIN) (MMHG) (PPM) (PPM) (PPM) 0.0 36.00 1.60 4. 99 4.87 0.10 63.00 ~ 2.79 3.79 3.67 0.20 83.00 3.68 2.91 2.79 0. 30 99.00 4.39 2.20 2.08 0.40 110.00 4.88 1.71 1.59 0.50 119.00 5.28 1.31 1. 19 _ _ . _ _ L . _ _ . PERCENT SOLID AGITATION SPEED SUPERFICIAL VEL SAT.OXY.CONC. ( W T . ) = (RPM ) = (FT/HR ) = (PPM)= % CARBON DIOXIDE OXY. _ U P TA K E (MG/L / HR jj MASS TRANS COEFF (1/HR)^ R SGUARE NUMBER OF DATA 20.00 700.00 _ 17.15 6.61 1.01 33.83 197.11 0. 99997 6 TIME (MIN) P.PRESS (MMHG) DIS OXY (PPM) DETA C (PPM) TRUE DC ( PPM ) 0.0 0.10 0.20 0.30 40.00 70.00 91.00 106.00 0.40 0.50 117.00 125.00 1 . 77 3. i d 4.03 4.70 5.19 5.54 4. 84 3.51 2. 58 1.91 1.43 1.07 4.67 3.34" 2.41 1.74 1.25 0.90 STOP 0 EXECUTION TERMINATED $ SIG 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0058864/manifest

Comment

Related Items