UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Oxygen transfer in a fermenter Liu, Ming-Shen 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A1 L59.pdf [ 13.58MB ]
Metadata
JSON: 831-1.0058864.json
JSON-LD: 831-1.0058864-ld.json
RDF/XML (Pretty): 831-1.0058864-rdf.xml
RDF/JSON: 831-1.0058864-rdf.json
Turtle: 831-1.0058864-turtle.txt
N-Triples: 831-1.0058864-rdf-ntriples.txt
Original Record: 831-1.0058864-source.json
Full Text
831-1.0058864-fulltext.txt
Citation
831-1.0058864.ris

Full Text

OXYGEN TRANSFER IN A FERMENTER  by Mlng-Shen L i u  Dipl. B.A.Sc. M.A.Sc.  T a i p e i I n s t i t u t e o f T e c h n o l o g y , Taiwan, 1963 S h i z u o k a U n i v e r s i t y , J a p a n , 1966 U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1969  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n t h e Department o f Chemical Engineering  a c c e p t t h i s t h e s i s as c o n f o r m i n g tio t h e r e q u i r e d s t a n d a r d  The U n i v e r s i t y o f B r i t i s h Columbia December, 1973  In  presenting  this  an a d v a n c e d  degree  the  shall  I  Library  further  for  scholarly  by h i s of  agree  this  thesis  in  at  University  the  make  it  freely  that permission  p u r p o s e s may  representatives. thesis  partial  for  financial  of  Columbia,  British for  for extensive by  gain  Department Columbia  shall  the  requirements  reference copying of  I  agree  and  not  copying or  be a l l o w e d  for  that  study.  this  thesis  t h e Head o f my D e p a r t m e n t  is understood that  written permission.  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, C a n a d a  of  available  be g r a n t e d  It  fulfilment  or  publication  without  my  ABSTRACT The e f f e c t s o f i n i t i a l pH and t h e presence  of s o l i d  particles  on the growth r a t e o f T h i o b a c i l l u s f e r r o o x i d a n s were s t u d i e d i n shake-flask apparatus.  I n a d d i t i o n , the e f f e c t of the f e r r o u s i r o n  s u b s t r a t e c o n c e n t r a t i o n on t h e s p e c i f i c growth r a t e o f the b a c t e r i a was  s t u d i e d u s i n g b o t h b a t c h and c o n t i n u o u s  culture  techniques.  The e f f e c t s o f oxygen t e n s i o n on the oxygen uptake r a t e o f the b a c t e r i a were a l s o examined. s a t u r a t i o n c o n s t a n t were found  The c r i t i c a l oxygen t e n s i o n and the  to be 6.5 and 4.5 mmHg r e s p e c t i v e l y .  When the oxygen t e n s i o n was below 4.5 rniriHg the b a c t e r i a ceased metabolic a c t i v i t y .  The e q u a t i o n t h a t b e s t d e s c r i b e d t h e oxygen  uptake a c t i v i t y o f T_. f e r r o o x i d a n s was  P-P P  =  y  * K  s p  +  found  t o be,  00  (P - P J  A method  f o r d e t e r m i n i n g the s a t u r a t i o n oxygen  in  the c u l t u r e medium i s proposed.  to  be 6.68 m i l l i g r a m s p e r l i t e r  35C).  their  solubility  T h i s v a l u e i n 9K medium was  found  ( i n e q u i l i b r i u m w i t h the humid a i r at  The e f f e c t of t o t a l i r o n c o n c e n t r a t i o n on t h i s v a l u e was  also  examined. A statistical Kj^a  for calculating  v a l u e s from a d i s s o l v e d oxygen c o n c e n t r a t i o n - t i m e t r a c e i s proposed.  S i n c e the proposed time to  curve r e c t i f i c a t i o n method  method u t i l i z e s d a t a d i r e c t l y from oxygen t e n s i o n -  t r a c e s r a t h e r than from m o d i f i e d or l i m i t e d d a t a , i t i s b e l i e v e d  be more r e l i a b l e than o t h e r t e c h n i q u e s i n use. The e f f e c t s o f s o l i d p u l p d e n s i t i e s o f up t o 20% on Kj_a i n  -iian a g i t a t e d tank were s t u d i e d . was  found  to decrease  An i n c r e a s e i n s o l i d p u l p d e n s i t y  s l i g h t l y the K^a  v a l u e of the system.  The  e q u a t i o n b e s t c o r r e l a t i n g Kj_a v a l u e s under v a r i o u s o p e r a t i o n a l c o n d i t i o n s  is,  Ka L  The  =  1.78  x 10" (p)" ' 6  2  8 t t  (N) 2  6 5  (V ) 0  5 7  s  a d d i t i o n of the s o l i d p a r t i c l e s , a l t h o u g h i t d i d not a f f e c t v a l u e , was  found t o reduce  r e d u c i n g the v a l u e of Kj^a.  the  the i n t e r f a c i a l a r e a of the system, thus  -iiiTABLE OF CONTENTS CHAPTER 1  INTRODUCTION  1  CHAPTER 2  THEORY  4  A.  BASIC EQUATIONS  4  B.  BOUNDARY CONDITIONS  5  C.  PHYSICAL ABSORPTION  6  1.  F i l m Model  6  2.  P e n e t r a t i o n Model  7  3.  S u r f a c e Renewal Model  8  D.  SIMULTANEOUS DIFFUSION AND REACTION  9  1.  9  2.  3.  General  Solution Regime  11  a.  Slow R e a c t i o n  K i n e t i c Regime  11  b.  D i f f u s i o n a l Regime  13  F a s t R e a c t i o n Regime  14  E.  RATE OF BIOLOGICAL REACTION  16  F.  BATCH AND CONTINUOUS CULTURE  19  1.  Batch Culture  19  2.  Continuous C u l t u r e  21  CHAPTER 3  THE BACTERIUM  22  A.  MORPHOLOGY  22  B.  GROWTH MEDIA  C.  BIOLOGICAL REACTIONS  23  D.  FACTORS AFFECTING BACTERIAL GROWTH  27  1.  D i s s o l v e d Gas C o n c e n t r a t i o n s  27  2.  Temperature  28  3.  pH V a l u e  28  4.  Other F a c t o r s  .  23  2  ^  _iv_  TABLE OF CONTENTS (CONT'D) CHAPTER 4  OXYGEN TRANSFER  30  A.  OXYGEN TRANSFER COEFFICIENT  30  B.  K a DETERMINATION  30  1.  S u l f i t e Oxidation Method  30  2.  Gassing-Out Method  33  3.  Dynamic Gassing-Out Method  35  4.  Oxygen Balance Method  37  L  C.  SATURATION OXYGEN SOLUBILITY  38  D. '  INTERFACIAL AREA  40  E.  MASS TRANSFER COEFFICIENT ( K )  41  F.  OTHER FACTORS AFFECTING K a  42  1.  Impeller  42  2.  Spargers  43  3.  Baffles  43  4.  L i q u i d Height  43  5.  Power Input  44  6.  Solid Particles  45  L  L  CHAPTER 5 APPARATUS A.  GYRATORY SHAKER APPARATUS  B. , CONTINUOUS CULTURE APPARATUS  47 47 47  1.  Reactor  47  2.  Mercury Seal  49  3.  Agitator  49  4.  Water Bath  50  -v-  TABLE OF CONTENTS (CONT'D)  C.  5.  A i r Supply  50  6.  Medium Supply  50  TANK REACTOR .  51  1.  Reactor  51  2.  Agitator  3.  Torquometer  52  4.  Drive  52  5.  Oxygen Analyzer  53  6.  Erlenmeyer F l a s k  53  7.  Respirometer  54  8.  Temperature C o n t r o l l e r  54  CHAPTER 6 A.  .  PROCEDURES  51  57  ANALYTICAL METHODS  57  1.  T o t a l Iron  57  2.  F e r r i c Iron  57  3.  Ferrous Iron  57  4.  Inorganic and Organic Carbon  57  B.  MAINTENANCE OF CULTURE  58  C.  PREPARATION OF MEDIUM  58  D.  SHAKE-FLASK TECHNIQUE  59  E.  CONTINUOUS CULTURE TECHNIQUE  60  F.  TANK CULTURE TECHNIQUE  61  1.  Saturation Oxygen S o l u b i l i t i e s  61  2.  E f f e c t of S o l i d Pulp D e n s i t i e s on K  3.  K a i n the Sparged Tank L  L  63 64  _vi_ TABLE OF CONTENTS G.  (CONT'D)  RECTIFICATION METHOD FOR CALCULATION OF K a L  CHAPTER 7  RESULTS AND DISCUSSIONS  65 74  A.  EFFECT OF INITIAL pH ON THE SPECIFIC GROWTH RATE  B.  EFFECT OF SOLIDS PULP DENSITY ON GROWTH IN  74  SHAKE FLASKS  79  C.  EFFECT OF NUTRIENTS ON GROWTH IN SHAKE FLASKS  81  D.  EFFECT OF FERROUS IRON CONCENTRATION  81  E.  OXYGEN UPTAKE RATE AND CARBON FIXATION  87  F.  SATURATION OXYGEN SOLUBILITIES  92  G.  CRITICAL OXYGEN TENSION  H.  EFFECT OF SOLID PULP DENSITIES ON K  100 L  104  1.  The K i n e t i c Regime  105  2.  The D i f f u s i o n a l Regime  108  3.  The P h y s i c a l A b s o r p t i o n Regime  I l l  I.  EFFECT OF SOLID PULP DENSITY ON K a IN TANK FERMENTOR .. H I  J.  THE POWER CONSUMPTION  122  K.  RECTIFICATION METHOD  124  1.  About r X  124  2.  About t h e Constancy o f K  L.  L  e  =  Constant L  ADVANTAGES OF THE PROPOSED RECTIFICATION METHOD  CHAPTER 8  CONCLUSIONS  125 126 132  LITERATURE  136  NOMENCLATURE  146  -vii-  TABLE OF CONTENTS (CONT'D) APPENDICES I  149 The E f f e c t o f I n i t i a l pH on t h e S p e c i f i c Growth Rate o f T_. f e r r o o x i d a n s  II  149  E f f e c t o f S o l i d P u l p D e n s i t i e s ' on t h e Growth R a t e o f T_. f e r r o o x i d a n s i n S h a k e - F l a s k E x p e r i m e n t s  III  The E f f e c t o f B a s a l S a l t s , and T o t a l I r o n Concentration  IV  150  on t h e Growth o f T_. f e r r o o x i d a n s  The Dependency o f Growth Rate on t h e F e r r o u s  Iron  Concentrations V  151  154  The Dependency o f Growth R a t e on t h e F e r r o u s  Iron  Concentration Obtained w i t h the Continuous C u l t u r e A p p a r a t u s Operated a t 35 C VI  157  The R e l a t i o n s h i p between F e r r i c I r o n P r o d u c t i o n , B a c t e r i a l Carbon P r o d u c t i o n and Oxygen Uptake Rate i n the Aerated  VII VIII  Determination K p and K g  g c  Tank R e a c t o r  a t 35 C, pH = 1.80 ..  o f S a t u r a t i o n Oxygen S o l u b i l i t i e s  X XI  161  V a l u e s a t V a r i o u s Oxygen Uptake R a t e s  i n 9K Medium IX  160  The E f f e c t o f S o l i d P u l p D e n s i t i e s on K  164 L  Computer Program f o r R e c t i f i c a t i o n Method  166 168  Kj_a and Oxygen C o n c e n t r a t i o n - T i m e T r a c e a t V a r i o u s Operational Conditions  171  -viii-  L I S T OF TABLES Table  1  The C o m p o s i t i o n Thiobacillus  Table  2  o f V a r i o u s Growth M e d i a f o r  ferrooxidans  24  The Maximum S p e c i f i c Growth Rate o f T h i o b a c i l l u s f e r r o o x i d a n s as a F u n c t i o n o f I n i t i a l and E q u i l i b r i u m pH  Table  3  76  E f f e c t o f B a s a l S a l t s and T o t a l I r o n  Concentrations  on t h e Maximum S p e c i f i c Growth Rate o f T_. f e r r o o x i d a n s i n H o u r , i n a CO2 E n r i c h e d Atmosphere, a t 35 C and - 1  pH = 1.80 Table  4  .  Maximum S p e c i f i c Growth R a t e and K  g  82  o f T_. f e r r o o x i d a n s  D e t e r m i n e d by B a t c h and C o n t i n u o u s C u l t u r e Techniques  86 99  Table  5  S o l u b i l i t y o f Oxygen i n E l e c t r o l y t e s  Table  6  K^a V a l u e s a t V a r i o u s O p e r a t i o n a l C o n d i t i o n s ; S o l i d P u l p D e n s i t y = 0% and Oxygen Uptake Rate = 0  Table  7  113  Kj-a V a l u e s a t V a r i o u s O p e r a t i o n a l C o n d i t i o n s ; S o l i d P u l p D e n s i t y = 0% and Oxygen Uptake Rate = 0 <v< 207 mg/l/hr  Table  8  Kj^a V a l u e s  114 at Various Operational Conditions; S o l i d  P u l p D e n s i t y = 20%, P a r t i c l e D i a m e t e r = 63 u, and Oxygen Uptake Rate = 0 mg/l/hr Table  9  115  B^a V a l u e s a t V a r i o u s O p e r a t i o n a l C o n d i t i o n s ; S o l i d P u l p D e n s i t y = 20%, P a r t i c l e D i a m e t e r = 105 y, and Oxygen Uptake Rate = 0 mg/l/hr  116  -ixLIST OF TABLES Table  10  K^a V a l u e s  (CONT'D)  at V a r i o u s O p e r a t i o n a l C o n d i t i o n s ;  Solid  Pulp D e n s i t y = 5%, P a r t i c l e Diameter = 63u, and Oxygen Uptake Rate = 0 ^ 140 mg/l/hr T a b l e 11  Kj-a V a l u e s  at Various Operational Conditions;  117 Solid  Pulp D e n s i t y = 10%, P a r t i c l e Diameter = 63u, and Oxygen Uptake r a t e = 0 ^ 212 mg/l/hr T a b l e 12  K^a V a l u e s  at Various Operational Conditions;  118 Solid  Pulp D e n s i t y = 15%, P a r t i c l e Diameter = 63p, and Oxygen Uptake Rate = 15 ^ 202 mg/l/hr T a b l e 13  The Comparison of C a l c u l a t e d and E x p e r i m e n t a l of Oxygen Uptake Rate  119 Values 130  -x-  LIST OF FIGURES Figure  1  T y p i c a l P l o t of Equation (68)  36  Figure  2  Flowsheet of Continuous Culture Apparatus  48  Figure  3  Schematic Diagram of the Modified Erlenmeyer F l a s k  Figure  4  A T y p i c a l R e l a t i o n s h i p between R-square and a Values  Figure  5  6  7  75  S o l u b i l i t y of F e r r i c Iron i n 9K Medium at Various F i n a l pH Values  Figure  71  The E f f e c t of I n i t i a l pH on the S p e c i f i c Growth Rate of T_. ferrooxidans at 35C  Figure  55  77  E f f e c t of S o l i d s Pulp Density on the Growth Rate of T_. ferrooxidans i n Shake-Flask Experiments at 35C, pH = 1.80  Figure  8  The Lineweaver and Burk P l o t f o r Shake-Flask Studies  Figure  9  84  The Lineweaver and Burk P l o t f o r Continuous Culture Apparatus  Figure 10  80  85  The R e l a t i o n s h i p between F e r r i c Iron Production, B a c t e r i a l Carbon and the Oxygen Uptake Rate i n Aerated Tank Reactor at 35C, pH = 1.80  Figure 11  The Rates of Oxygen Tension Change Measured i n the Erlenmeyer F l a s k  Figure 12  89 .-  93  Oxygen Uptake Rates Measured i n the G i l s b n Respirometer  94  -xi-  LIST OF FIGURES (CONT'D) Figure 13  The Determination of C* i n Medium 9K  95  Figure 14  The Determination of C* i n Medium 4.5K  96  Figure 15  The D e t e r a i n a t i o n of C* i n Medium 13.5K  97  Figure 16  The Determination of C* i n Medium 18K  98  Figure 17  Determination  Figure 18  The Lineweaver and Burk P l o t  Figure 19  The K i n e t i c , D i f f u s i o n a l and P h y s i c a l  of K p Values  101  S  103  Absorption Regime (35 C and 500 RPM) Figure 20  106  The K i n e t i c Regime f o r Zero Order Reaction (35 C and 500 RPM) ,  Figure 21  107  E f f e c t of A g i t a t i o n Speed on K a (35 C, Without L  Solids)  109  Figure 22  E f f e c t of S o l i d Pulp Density on K a  Figure 23  The Power Consumption w i t h and without  Figure 24  110  L  Glass  Beads  123  A T y p i c a l Oxygen Concentration-Time Trace  127  -xii-  ACKNOWLEDGEMENTS I w i s h t o e x p r e s s my s i n c e r e g r a t i t u d e t o Dr. D. W. Duncan o f t h e D i v i s i o n o f A p p l i e d B i o l o g y o f B. C. R e s e a r c h , and Dr. R. M. R. B r a n i o n o f t h e Department o f C h e m i c a l E n g i n e e r i n g o f t h e U n i v e r s i t y of B r i t i s h Columbia  f o r t h e i r continued, guidance and encouragment  throughout t h e c o u r s e o f t h i s s t u d y . A l s o , I w i s h t o thank B. C. R e s e a r c h f o r p r o v i d i n g t h e w o r k i n g f a c i l i t i e s and equipment,  and t h e Department o f t h e Environment,  Government o f Canada, f o r p r o v i d i n g f i n a n c i a l s u p p o r t t h r o u g h t h e Water Resources Research Support Program. A s p e c i a l g r a t i t u d e i s t o my w i f e , Jane, t o whose e n d l e s s p a t i e n c e , u n d e r s t a n d i n g and encouragement I am i n d e b t e d .  CHAPTER 1  INTRODUCTION  There a r e two major o b j e c t i v e s i n v o l v e d i n the study of oxygen t r a n s f e r t o an a e r o b i c f e r m e n t a t i o n - d e t e r m i n a t i o n o f the oxygen demand o f t h e b i o l o g i c a l system and d e t e r m i n a t i o n o r p r e d i c t i o n of t h e a b i l i t y o f the equipment to s u p p l y t h i s demand.  The oxygen  demand o f the b i o l o g i c a l system depends oh many f a c t o r s ; such a s , temperature, p r e s s u r e , s u b s t r a t e c o n c e n t r a t i o n s , and d i s s o l v e d oxygen c o n c e n t r a t i o n i n the system.  Among these the e f f e c t o f the  d i s s o l v e d oxygen c o n c e n t r a t i o n , a l t h o u g h one o f the most f a c t o r s i n the f i e l d , i s s t i l l  not c o m p l e t e l y  important  understood.  Dissolved  oxygen c o n c e n t r a t i o n e x e r t s i t s e f f e c t on b a c t e r i a l c e l l s i n many ways. When i t f a l l s below a c e r t a i n metabolic  c r i t i c a l l e v e l i t w i l l a f f e c t the  a c t i v i t y o f the c e l l s .  However, too h i g h a c o n c e n t r a t i o n  i n many cases i s n o t o n l y w a s t e f u l but sometimes a l s o h a r m f u l .  Thus  knowledge c o n c e r n i n g t h e e f f e c t s o f d i s s o l v e d oxygen c o n c e n t r a t i o n on the m i c r o b i a l c e l l s  i s e s s e n t i a l to a s u c c e s s f u l f e r m e n t a t i o n  operation. On the o t h e r hand, a q u a n t i t a t i v e e v a l u a t i o n o f the a b i l i t y o f a l a b o r a t o r y s c a l e fermenter  t o s u p p l y oxygen i s u s u a l l y n e c e s s a r y  before a f u l l s c a l e i n d u s t r i a l p r o d u c t i o n unit i s designed.  In the  p a s t , t h i s was o f t e n done by means o f the w e l l known, s u l f i t e - o x i d a t i o n technique.  However, g r e a t d i f f e r e n c e s between the p h y s i c a l and  p r o p e r t i e s o f the s u l f i t e  chemical  s o l u t i o n s and f e r m e n t a t i o n b r o t h s l e d t o  much c o n f u s i o n ; the r e s u l t s from the t e c h n i q u e were o f t e n v a r i e d and c o n t r a d i c t o r y , and r a i s e d more q u e s t i o n s  than answers.  The study o f  oxygen t r a n s f e r i n an a c t u a l f e r m e n t a t i o n system a l t h o u g h  i t e l i m i n a t e d the  -2above mentioned d i s a d v a n t a g e s , was difficulties simple  and  d i s c o u r a g e d due  t o many t e c h n i c a l  c o m p l i c a t e d r e a c t i o n mechanisms even i n  seemingly  fermentations. I n t h i s t h e s i s study of oxygen t r a n s f e r i n t o t y p i c a l media  f o r the c u l t u r e of T h i o b a c i l l u s f e r r o o x i d a n s i s attempted. system was  This  chosen not o n l y because i t s r e a c t i o n mechanisms a r e  r e l a t i v e l y s i m p l e and r a t h e r w e l l known, b u t because i t has importance  i n the l e a c h i n g o f m e t a l l i c o r e s and  f e r r o u s i r o n b e a r i n g waste w a t e r s .  The  commercial  i n the treatment  s t e r i l i z a t i o n problems which  o f t e n cause t e c h n i c a l d i f f i c u l t i e s i n o t h e r systems, a r e not significance Furthermore, i t was  of  w i t h t h i s system because o f i t s extreme a c i d i t y the oxygen demand of t h i s organism  was  (^pH  2).  h i g h enough t h a t  b e l i e v e d t h a t d u r i n g the c o u r s e of a b a t c h f e r m e n t a t i o n  s e v e r a l d i f f e r e n t regimes of mass t r a n s f e r w i t h c h e m i c a l r e a c t i o n b e h a v i o u r would be The 1947.  of  (biological)  encompassed.  a c t i v i t i e s of J_. f e r r o o x i d a n s have been s t u d i e d s i n c e  T h i s b a c t e r i u m can o x i d i z e f e r r o u s i r o n and  compounds, u t i l i z i n g the energy  reduced  so d e r i v e d f o r i t s l i f e  sulfur  processes.  When m e t a l l i c s u l f i d e s a r e o x i d i z e d , the concommitant r e l e a s e of a s s o c i a t e d metals value.  i n t o s o l u t i o n may  be of c o n s i d e r a b l e economic  The b a c t e r i u m i s c u r r e n t l y used  from low-grade o r e s and i n d i r e c t l y , containing ores.  commercially  to r e c o v e r  t o s o l u b i l i z e uranium from  copper pyrite-  I t s use f o r t r e a t i n g a c i d i c mine waters has a l s o been  studied. The  o b j e c t of t h i s work i s thus c e n t e r e d on  quantitative  s t u d i e s o f the e f f e c t s o f d i s s o l v e d oxygen c o n c e n t r a t i o n on the growth  -3o f t h e b a c t e r i a i n an a e r a t e d f e r m e n t e r .  A t the same time, the e f f e c t  o f t h e p r e s e n c e o f s o l i d s i n the medium on the r a t e o f oxygen t r a n s f e r i s examined so t h a t leaching  t h e t r a n s f e r mechanism i n an a c t u a l  system might  be b e t t e r  understood.  microbiological  -4CHAPTER 2 A.  THEORY  BASIC EQUATIONS The d i f f u s i o n o f d i s s o l v e d gas m o l e c u l e s through a l i q u i d  r e s u l t s from random m o l e c u l a r motion under the i n f l u e n c e o f a concentration  gradient.  The b a s i c e q u a t i o n d e s c r i b i n g the r a t e o f  d i f f u s i o n o f a s o l u t e gas from a r e g i o n o f h i g h e r one o f lower c o n c e n t r a t i o n  i s Fick's f i r s t  law.  concentration to Thus t h e f l u x F a  or n e t r a t e o f t r a n s f e r o f t h e s o l u t e gas a c r o s s plane,  F  a  •  perpendicular  to the x-axis  -41 Generally  a u n i t area of a  a t a g i v e n moment i s ,  a> concentration  v a r i e s w i t h time as w e l l as w i t h  space and when t h i s i s so d i f f u s i o n i s governed by F i c k ' s second law.  at  D  a?  Equation  r  ( 2 )  (2) i s f o r u n i - d i r e c t i o n a l d i f f u s i o n and can be d e r i v e d v i a  a d i f f e r e n t i a l material balance.  When a r e a c t i o n i s t a k i n g p l a c e i n  a l i q u i d volume, t h e d i f f e r e n c e between t h e i n p u t and o u t p u t r a t e i n such a m a t e r i a l b a l a n c e i s e q u a l t o the sum of the r a t e o f a c c u m u l a t i o n and  the rate of reaction.  The d i f f e r e n t i a l e q u a t i o n f o r s i m u l t a n e o u s  d i f f u s i o n and r e a c t i o n then i s ,  (3)  -5Equation  (2) i s a s p e c i a l case o f e q u a t i o n  equation  (2) and  ( 3 ) , w i t h r ( C ) = 0.  Both  (3) can be s o l v e d s u b j e c t t o known boundary  conditions.  B.  BOUNDARY CONDITIONS  The  boundary c o n d i t i o n s w h i c h s p e c i f y the c i r c u m s t a n c e s  a system o f s i m u l t a n e o u s 1.  The  in  d i f f u s i o n and r e a c t i o n a r e g i v e n below:  s o l u t e gas i n i t i a l l y has a u n i f o r m c o n c e n t r a t i o n  C, Q  t h r o u g h o u t the l i q u i d , i . e . ,  at t  =  0, x > 0,  2.  C  =  C  (4)  Q  As soon as t h e gas i s brought i n t o c o n t a c t w i t h the  liquid,  the c o n c e n t r a t i o n a t the g a s - l i q u i d i n t e r f a c e i s changed t o i t s s a t u r a t i o n v a l u e C* and s u b s e q u e n t l y  at x  =  0, t > 0,  3.  C  =  maintained  at t h i s value, i . e . ,  (5)  C*  At distances s u f f i c i e n t l y  f a r from the i n t e r f a c e , the  c o n c e n t r a t i o n remains unchanged, i . e . ,  as x  0  CO  4. volatile  The and  r e a c t a n t , w i t h t h e i n i t i a l c o n c e n t r a t i o n o f B,O' t h u s does not c r o s s the i n t e r f a c e , i . e  (6)  i s non-  -6at x  The  =  =  only exception  0  (7)  to t h i s a r i s e s i f the r e a c t a n t i s e v a p o r a t i n g  can r e a c t i n s t a n t a n e o u s l y on r e a c h i n g  C.  the  or  surface.  PHYSICAL ABSORPTION When t h e r e i s no  the d i s s o l v e d gas  and  r e a c t i o n o f any k i n d t a k i n g p l a c e between  the l i q u i d , e q u a t i o n  (2) h o l d s .  Some models  t o i l l u s t r a t e t h i s a r e as f o l l o w s :  1.  F i l m Model Lewis and Whitman ( L l ) p o p u l a r i z e d t h i s concept i n d e s c r i b i n g  the a b s o r p t i o n of gases.  They p o s t u l a t e d t h a t t h e r e i s a  f i l m of t h i c k n e s s 6 through which a steady takes p l a c e . be  The  o v e r a l l concentration driving  e n t i r e l y used up by  r a t e of a s o l u t e gas  a  The  R  -  =  D  € >  x  =  0  =  process  f o r c e i s assumed to  the d i f f u s i o n i n the f i l m .  Hence, the t r a n s f e r  through the f i l m i n the l i q u i d phase can  d e s c r i b e d by e q u a t i o n  F  state diffusion  stagnant  be  (1),  !< *- o> C  (8)  C  transfer coefficient  which i s d e f i n e d  £ "  fe  i s thus p r o p o r t i o n a l to ~r  o  as,  »>  -7I t i s now r e a l i z e d t h a t we r a r e l y have hydrodynamic c o n d i t i o n s e q u i v a l e n t t o stagnant work has s u p p o r t e d D.  t h e expected  f i l m s and p r a c t i c a l l y no  experimental  d i r e c t p r o p o r t i o n a l i t y between K £ and  N e v e r t h e l e s s , t h e f i l m t h e o r y c a n be used as a r e a s o n a b l e  guess i n most a b s o r p t i o n  2.  first  processes.  P e n e t r a t i o n Model In  1935 H i g b i e  (Hi) proposed that the g a s - l i q u i d i n t e r f a c e  i s made up o f a v a r i e t y o f s m a l l l i q u i d elements w h i c h a r e c o n t i n u o u s l y brought up t o t h e s u r f a c e f r o m t h e b u l k o f l i q u i d and c a r r i e d away f r o m i t by t h e eddy m o t i o n o f t h e l i q u i d phase i t s e l f .  Each element,  as l o n g as i t s t a y s on t h e s u r f a c e may be c o n s i d e r e d s t a g n a n t ; and the c o n c e n t r a t i o n o f t h e s o l u t e gas i n t h e element may be c o n s i d e r e d to be everywhere e q u a l t o t h e b u l k - l i q u i d c o n c e n t r a t i o n when t h e element i s brought t o t h e s u r f a c e .  The mass t r a n s f e r t o t h e elements  can 'then be c o n s i d e r e d t o be governed by a t r a n s i e n t d i f f u s i o n W i t h boundary c o n d i t i o n s ( 4 ) , (5) and ( 6 ) , e q u a t i o n  process.  (2) c a n t h e n be  integrated to give,  C  The  =  (C* - C ) e r f c [ | 0  vTJt] + C  D  t o t a l absorption f l u x i s then,  =  2(C* - C ) 0  /-£  x=o  The  (10)  r a t e o f a b s o r p t i o n f o r an element d e c r e a s e s  (11)  w i t h time assuming  -8t h a t the l e n g t h o f t i m e t h a t each element remains i n c o n t a c t  with  the gas i s c o n s t a n t .  3.  S u r f a c e Renewal Model Danckwerts ( D l ) i n t r o d u c e d a m o d i f i e d p e n e t r a t i o n  theory  —st w h i c h d e f i n e s se  d t as the a r e a of s u r f a c e elements whose ages -  a r e between t and t + d t .  The mass f l u x , F , a t t h e l i q u i d 3.  i n t e r f a c e mentioned p r e v i o u s l y i s m u l t i p l i e d by s e  - s t  dt  t h e r a t e o f mass t r a n s f e r i n t o t h e s e t u r b u l e n t e l e m e n t s . r a t e o f mass t r a n s f e r t h e n becomes, -st = 2(C* — dt = /t  r  (C* - C ) Q  gas  to obtain The  total  Ss  (12)  thus,  K£=yfis"  Equation  (13)  (13) i n d i c a t e s t h a t the v a l u e of t h e K£ changes i n  h  p r o p o r t i o n t o s , an i n c r e a s e o f the v a l u e o f s i m p l y i n g an  increase  i n t u r b u l e n t m o t i o n and v i c e v e r s a . The mass t r a n s f e r c o e f f i c i e n t has been p r e d i c t e d t o depend on the m o l e c u l a r  d i f f u s i v i t y t o the f i r s t power f o r the f i l m  theory,  and t o the o n e - h a l f power f o r t h e p e n e t r a t i o n and s u r f a c e r e n e w a l theories.  However, e x p e r i m e n t a l  from h t o 4/5  d a t a have shown t h i s dependency t o be  power o f the d i f f u s i v i t y  ( C l , F l , F2, H2).  The  -9-  v a l i d i t y o f the boundary c o n d i t i o n has  a l s o been c r i t i c i z e d  (C2)  however, the p r o p o s e d models a r e u s e f u l f o r a q u i c k e s t i m a t i o n o f  the  c o e f f i c i e n t i f an e x p e r i m e n t a l v a l u e i s not a v a i l a b l e .  D.  SIMULTANEOUS DIFFUSION AND The  *  n  v  "  r ( c )  r a t e o f r e a c t i o n of a component can be w r i t t e n  as,  -dC dT  In general, one  REACTION  (14)  the r a t e i s a f u n c t i o n o f the c o n c e n t r a t i o n s  of more than  component as w e l l as of the t e m p e r a t u r e and/or the p r e s s u r e of  the system. expressed  =  r(c)  At c o n s t a n t t e m p e r a t u r e the r a t e of r e a c t i o n can  be  as,  kCi  C  2  I f the c o n c e n t r a t i o n  C  (15)  ±  of one  o f the components i s so much l e s s t h a n  the o t h e r s t h a t the c o n c e n t r a t i o n s  of the l a t t e r a r e  effectively  unchanged d u r i n g r e a c t i o n , t h e n e q u a t i o n (15) can be s i m p l i f i e d  rfc)  =  1.  k  n  C  as,  (16)  General Solution The  mass t r a n s f e r r a t e of t h e component i n q u e s t i o n  case of s i m u l t a n e o u s d i f f u s i o n and  r e a c t i o n can be e v a l u a t e d  s u b s t i t u t i n g e q u a t i o n (16) i n t o d i f f e r e n t i a l e q u a t i o n  (3),  i n the by  -10D  | ! c  .  |£  No  +  c  k  8t  3x^  (17)  n  g e n e r a l a n a l y t i c a l s o l u t i o n s o f t h i s problem a r e known.  been s o l v e d f o r the cases where n=o approximate g e n e r a l s o l u t i o n was  and n=l  (D2).  I t has  However, an  to e q u a t i o n (17) based on the f i l m model,  p r e s e n t e d by H i k i t a e t a l . (H3).  They d e f i n e d - a d i m e n s i o n l e s s  quantity M as,  M  =  £ 2  k  n  C  .  n  t  The square r o o t o f M was which was  (18)  t h e n used t o a s s e s s an "enhancement  d e f i n e d as t h e q u a n t i t y by which the r e a c t i o n  factor"  increases  the amount absorbed i n a g i v e n t i m e , as compared t o a b s o r p t i o n w i t h o u t reaction.  However the enhancement f a c t o r r e l a t e s t o VM~ i n such a  c o m p l i c a t e d manner t h a t the f o r m u l a i s o n l y of academic  interest.  There a r e two s p e c i a l c a s e s where the s o l u t i o n of d i f f e r e n t i a l equation  (17) can be o b t a i n e d i n a much s i m p l e r form.  Case 1 e x i s t s  when the r a t e o f r e a c t i o n i s e x t r e m e l y slow so t h a t the term k C i n n e q u a t i o n (17) can be dropped i n comparison w i t h the r e s t o f the terms. n  J  T h i s i s c a l l e d t h e regime o f slow r e a c t i o n . Case 2 e x i s t s when t h e r a t e of r e a c t i o n i s r e l a t i v e l y  high  9C so t h a t t h e term -r— i n e q u a t i o n (17) can be i g n o r e d r e l a t i v e t o t h e ot  r e m a i n i n g terms. Two  T h i s i s c a l l e d the regime o f f a s t  reaction.  p a r a m e t e r s , d i f f u s i o n time and r e a c t i o n time a r e used  f o r j u d g i n g the r e a c t i o n regime o f the system.  A c c o r d i n g t o the  p e n e t r a t i o n t h e o r y , the d i f f u s i o n time, t , i s d e f i n e d as the average n  -11life  o f the s u r f a c e  elements,  D  t.D  (19)  The r e a c t i o n time, t r ' on the o t h e r hand, i s d e f i n e d  t  r  =  as,  C* - C'  r(C*  -  2.  (20)  C )  Slow R e a c t i o n Regime I f the d i f f u s i o n time i s much l e s s than the r e a c t i o n time t h e n ,  i n e f f e c t , the r e a c t i o n does not p l a y rate process. reaction. i s small  The  any r o l e i n the mass t r a n s f e r  r e a c t i o n time t , i s the time r e q u i r e d r  I f the d i f f u s i o n time i s s m a l l then d u r i n g  f o r the  and the r e a c t i o n r a t e , r ( C ) ,  the d i f f u s i o n time p e r i o d  there  i s not  sufficient  time a v a i l a b l e f o r the r e a c t i o n to have any s i g n i f i c a n t e f f e c t on the concentration  o f the d i f f u s i n g s p e c i e s .  The r e a c t i o n i s s a i d t o be  i n the slow r e a c t i o n regime i f ,  t  r  »  t  (21)  D  The slow r e a c t i o n regime  can be d i v i d e d i n t o two  sub-regimes;  a  k i n e t i c and a d i f f u s i o n a l regime.  a.  K i n e t i c Regime  In the slow r e a c t i o n regime, i f the f o l l o w i n g c o n d i t i o n i s fulfilled,  the r e a c t i o n i s s a i d to be i n the k i n e t i c regime,  -12-  K^A  (C* - C )  »  Vr(C* - C )  (22)  Perhaps i t s h o u l d be mentioned here t h a t condition  (22) does not n e c e s s a r i l y c o n t r a d i c t the f u l f i l l m e n t  of c o n d i t i o n equation  *D «  the f u l f i l l m e n t o f  (21).  Comparison of the two e q u a t i o n s r e s u l t s i n  (23),  C* - C' r(C* - C )  ,„v  V "  ^  <  2  3  )  V The v a l u e o f •- can be so a r r a n g e d i n the system t h a t c o n d i t i o n is  fulfilled,  thus f u l f i l l i n g  condition  (23)  (22).  Thus the r a t e of r e a c t i o n becomes the r a t e - l i m i t i n g step o f the p r o c e s s and the a b s o r p t i o n  r a t e w i l l be e q u a l to the r a t e o f  reaction,  Fa =AT r ( C *  -  C)  The t o t a l a b s o r p t i o n  F  T  = V r ( C * - C*)  (24)  r a t e then becomes, '  (25)  The o v e r a l l d r i v i n g f o r c e i s almost used up by the r e a c t i o n , c  _ c' »  (26)  C* - C  Thus, the l i q u i d phase i s almost s a t u r a t e d  everywhere w i t h t h e  absorbed gas so,  C * C*  (27)  -13-  The  t o t a l absorption  r a t e i n the k i n e t i c regime i s i n d e p e n d e n t o f  i n t e r f a c i a l a r e a and mass t r a n s f e r c o e f f i c i e n t , but i s p r o p o r t i o n a l t o the l i q u i d h o l d up and t o t a l absorption  the r a t e of r e a c t i o n .  The  dependency of  r a t e on the l i q u i d h o l d up i s u n i q u e and  can not  the be  found i n o t h e r regimes o f r e a c t i o n , thus making i t easy t o i d e n t i f y the k i n e t i c regime.  b.  D i f f u s i o n a l Regime.  I f the f o l l o w i n g c o n d i t i o n i s f u l f i l l e d the r e a c t i o n i s s a i d t o be i n the d i f f u s i o n a l r e g i m e ,  V r(C* - C)  »  K^A  (C* - C )  (28)  I n t h i s c a s e , the r e a c t i o n i s s l o w enough so as n o t t o a f f e c t the concentration  g r a d i e n t i n the l i q u i d , y e t i t i s h i g h enough t o keep  the d i s s o l v e d gas c o n c e n t r a t i o n  p r a c t i c a l l y e q u a l t o C',  because  d i f f u s i o n i s the r a t e c o n t r o l l i n g s t e p i n the whole p r o c e s s . term r ( C ) i n d i f f e r e n t i a l e q u a t i o n 8C w i t h the t e r m - r — , ot  (2)  i n comparison  thus,  E q u a t i o n (29) c o i n c i d e s w i t h e q u a t i o n boundary c o n d i t i o n s  can be n e g l e c t e d  The  (2).  W i t h the knowledge of  (4) t o ( 6 ) , i n t e g r a t i o n of e q u a t i o n  (29)  produces,  -14-  (30)  I t can be  c o n c l u d e d t h a t whatever the k i n e t i c s of the  absorption  coefficient  c o e f f i c i e n t K£. r a t e Is no h o l d up,  absorption  Y  c o e f f i c i e n t and  o v e r a l l concentration  t  absorption the  liquid  physical  driving force,  thus,  (31)  - C)  F a s t R e a c t i o n Regime When the r a t e o f r e a c t i o n i n c r e a s e s ,  is  total  r a t e of r e a c t i o n and  i s dependent upon the i n t e r f a c i a l a r e a ,  = K£ A(C*  3.  dependent upon the  the  absorption  C o n t r a r y to the k i n e t i c regime, the  longer  but  i s e q u a l to the p h y s i c a l  reaction,  the  following  condition  fulfilled,  D  »  t  (32)  r  The  term r ( C ) w i l l be much l a r g e r than the  The  e q u a t i o n then becomes,  9C term — i n e q u a t i o n (3), ot  D'0-rCC)  With the knowledge of the boundary c o n d i t i o n s (33) can be  integrated,  (33)  (4) to  ( 7 ) , equation  -15-  dC _ dx  The  fl /D  C*  L'C o  r ( ) dC  (34)  C  i n s t a n t a n e o u s as w e l l as the average a b s o r p t i o n  c o i n c i d e i n the s t e a d y - s t a t e  F a  --  x=o  - A /  J* C  C  p r o c e s s , can thus be  r( ) C  r a t e , which obtained,  dC  (35)  I t i s o b v i o u s t h a t i f r ( C ) i s known as a f u n c t i o n o f C, the  absorption  r a t e can be d i r e c t l y c a l c u l a t e d a c c o r d i n g  However,  without a great  l o s s of g e n e r a l i t y , e q u a t i o n (16) can be  i n t o e q u a t i o n (35) and  F  a  -  /nik  D k  n  < * C  substituted  integrated,  "  S i n c e the t o t a l a b s o r p t i o n r a t e and  t o e q u a t i o n (35).  ( 3 6 )  r a t e i s the p r o d u c t of the  t o t a l i n t e r f a c i a l a r e a , the t o t a l a b s o r p t i o n  absorption rate i s ,  1.  P r o p o r t i o n a l t o the i n t e r f a c i a l a r e a  2.  P r o p o r t i o n a l t o the s q u a r e r o o t of  3.  P r o p o r t i o n a l to the o v e r a l l d r i v i n g f o r c e r a i s e d t o  . exponent 4.  (n + —^—  k^  1) •  Independent of l i q u i d h o l d up and  K£.  E x c e p t i n the case of f i r s t o r d e r r e a c t i o n , the a b s o r p t i o n no l o n g e r (C* - C ) . Q  d i r e c t l y p r o p o r t i o n a l t o the c o n c e n t r a t i o n The  the a b s o r p t i o n  the  absorption  rate i s  driving force  c o e f f i c i e n t w h i c h i s c a l c u l a t e d by d i v i d i n g  r a t e by the c o n c e n t r a t i o n  d r i v i n g f o r c e i s now  dependent  -16upon the c o n c e n t r a t i o n .  The d i s s o l v e d gas c o n c e n t r a t i o n  i n the l i q u i d  is  level  diffusional  close to i t s c r i t i c a l  regime o f slow r e a c t i o n . absorption  In the f a s t  i n the case o f  r e a c t i o n regime, however, the  r a t e does not depend upon the d i f f u s i o n  on the hydrodynamic c o n d i t i o n s important c o n c l u s i o n interfacial  E.  as i t was  areas  time t ^ ; namely,  o f the l i q u i d phase.  i s the b a s i s o f a method  This  very  f o r the measurement  of  ( D l , Wl).  RATE OF BIOLOGICAL REACTION In a m i c r o b i o l o g i c a l o x i d a t i o n r e a c t i o n where m moles o f  substrate  r e a c t w i t h oxygen t o y i e l d  n moles o f p r o d u c t  according  to the f o r m u l a ,  mS +  0  2  +  nP  < ) 37  r  the r a t e o f oxygen consumption i s d i r e c t l y . p r o p o r t i o n a l t o the r a t e of substrate  consumption, the r a t e of c e l l p r o d u c t i o n  product production,  ( \ r  t  Q  thus,  dC _ 1 dX _ l r ~ " dt Y dt ndt d  I f the c e l l production  and the r a t e of  P  =  IdS " mdt  < > 38  growth i s i n the l o g a r i t h m i c phase, the r a t e o f i s p r o p o r t i o n a l t o the number o f c e l l s p r e s e n t  cell  i n the  system at t h a t moment,  dX ^  =  ^  X  (39)  -17The p r o p o r t i o n a l i t y c o n s t a n t , and r e p r e s e n t s  u, i s c a l l e d t h e s p e c i f i c growth r a t e  the a b i l i t y of the c e l l t o r e p r o d u c e .  t o the i n f l u e n c e of s u b s t r a t e ,  oxygen, and p r o d u c t  I t i s a l s o a f f e c t e d by t e m p e r a t u r e and pH, The  s  concentrations.  among o t h e r f a c t o r s .  e f f e c t of substrate c o n c e n t r a t i o n  on t h e  growth r a t e of b a c t e r i a i s o f t e n d e s c r i b e d by the  m K  I t i s subject  specific  equation,  (40)  + S  An e q u a t i o n  o f t h i s form was  d e r i v e d by M i c h a e l i s and Menten (Ml)  t h e i r s t u d i e s on enzyme k i n e t i c s , by assuming t h a t the enzyme s u b s t r a t e r e a c t t o form an e n z y m e - s u b s t r a t e complex and  then  during  and convert  to a s i n g l e product,  E  + S ^ - E - S  + E + P  (41)  r  I t was  a l s o assumed t h a t the c o n c e n t r a t i o n  higher  t h a n t h a t of enzyme and  the r a t e of c o n v e r s i o n  s u b s t r a t e complex t o the p r o d u c t was the whole r e a c t i o n . (M2)  of s u b s t r a t e was  of enzyme-  the r a t e l i m i t i n g f a c t o r of  S u b s e q u e n t l y , t h i s e q u a t i o n was  a p p l i e d by Monod  t o c u l t u r e s where the s o l e l i m i t i n g s u b s t r a t e was  some s i m i l a r s o u r c e of c a r b o n . shown t h a t e q u a t i o n  much  g l u c o s e or  C o n t i n u o u s c u l t u r e e x p e r i m e n t s have  (40) a l s o a p p l i e d t o such e s s e n t i a l s u b s t r a t e s  as amino a c i d s , i n o r g a n i c n i t r o g e n , p h o s p h a t e , s u l f a t e (NI) oxygen ( L 2 ) .  I n the case of oxygen,  S  i n equation  r e p l a c e d by d i s s o l v e d oxygen c o n c e n t r a t i o n  (40) can  and be  o r d i s s o l v e d oxygen t e n s i o n .  -18-  y = ym  K  (42)  +C  sc  or  u = y  -  r  (43)  m K + P sp  The value of K p i s equal to the oxygen tension when the reaction g  proceeds at one-half the maximum rate. There are many methods of determining K p.  One of the most  S  commonly used, which was suggested by Lineweaver and Burk (L3) , depends on the re-arrangement of equation (43) to give the following form,  3, . JL" + fffi_ % V  (44)  v  A plot of  versus ^. gives a straight l i n e .  l 1 l i n e on the ^ axis i s ±— V u  The intercept of the  ^sp  and the slope i s Urn  calculated from the slope and the intercept.  Thus, K S  can be  P  Since the oxygen tension  i s d i r e c t l y proportional to the dissolved oxygen concentration, K  g c  can e a s i l y be obtained by d i v i d i n g  by the Henry's Law constant.  Now the relationship between the rate of b i o l o g i c a l reaction and dissolved oxygen concentration can be obtained by s u b s t i t u t i n g equation (39) and (42) into equation (38). r(c)  - -r  (  F - ^ >  sc  *  <«)  I f t h e d i s s o l v e d oxygen c o n c e n t r a t i o n  i s so h i g h t h a t t h e term K  + C  SO  can be r e g a r d e d as e q u a l t o C, then e q u a t i o n  (45) s i m p l i f i e s t o ,  r(C). « — 2 -  (46)  The r a t e o f r e a c t i o n i n t h i s case i s s a i d t o be z e r o - o r d e r respect  t o C, t h a t i s t o s a y , a t h i g h oxygen c o n c e n t r a t i o n s  o f b i o l o g i c a l r e a c t i o n remains c o n s t a n t the oxygen c o n c e n t r a t i o n . zero-order X.  with the rate  a t i t s maximum r e g a r d l e s s o f  The r a t e o f r e a c t i o n c o i n c i d e s w i t h t h e  r e a c t i o n rate constant  and i s d i r e c t l y p r o p o r t i o n a l t o  As t h e r e a c t i o n p r o c e e d s , t h e number o f b a c t e r i a i n c r e a s e s and  so does t h e r a t e o f r e a c t i o n . On t h e o t h e r hand, i f C i s much l e s s t h a n K  so t h a t sc  K  + C - K  , ,  X  , equation  (45) c a n a g a i n be s i m p l i f i e d ,  (47)  m  sc The r a t e o f b i o l o g i c a l r e a c t i o n t h u s becomes f i r s t o r d e r w i t h  respect  t o C.  F.  BATCH AND CONTINUOUS CULTURE  The k i n e t i c s  o f a b i o l o g i c a l r e a c t i o n can be s t u d i e d by  e i t h e r batch c u l t u r e o r continuous c u l t u r e  1.  Batch  techniques;  Culture  Under b a t c h c u l t u r e c o n d i t i o n s , t h e c o n c e n t r a t i o n s  of nutrients  -20and  d i s s o l v e d oxygen a r e c h a n g i n g w i t h t i m e .  of t h e l i m i t i n g s u b s t r a t e  I f the  concentration  i s h i g h enough, t h e n u = u , a  constant.  m  Then i f t h e y i e l d o f b a c t e r i a i s assumed t o be c o n s t a n t ,  the i n t e g r a t i o n  o f e q u a t i o n (38) and (39) becomes p o s s i b l e ,  ln X  =  ln X  Q  + u t  (48)  m  or  l n [- ( P - P r  r o  ) + ^ ]  =  In ^  + u t  (  m  ^r — ^ro P l o t s o f l n X v e r s u s t and I n (  4 9 )  ^o 1- — )  versus t are both l i n e a r .  However, i f the s i z e o f i n o c u l u m i s s m a l l , i . e . X  c  and P  r o  are both s m a l l ,  then the p l o t of l n ( P ) versus t a l s o gives a s t r a i g h t l i n e w i t h i t s r  s l o p e e q u a l t o t h e s p e c i f i c growth r a t e . Under c o n d i t i o n s o f l i m i t i n g n u t r i e n t , p i s a f u n c t i o n of the concentration constant,  o f t h i s l i m i t i n g n u t r i e n t and hence i s n o t  e q u a t i o n (39) can no l o n g e r be i n t e g r a t e d .  However,  s u b s t i t u t i n g e q u a t i o n (38) i n t o (39) g i v e s , dP dt  Y  Again, i f X  Q  i s s m a l l , e q u a t i o n (50) can be s i m p l i f i e d t o ,  -21-  The s p e c i f i c growth r a t e can be c a l c u l a t e d a t e v e r y known s u b s t r a t e c o n c e n t r a t i o n , thus the f u n c t i o n of u = f ( S )  can be d e t e r m i n e d .  Continuous C u l t u r e If  the n u t r i e n t s a r e pumped i n t o a s i n g l e - s t a g e , c o n t i n u o u s  f l o w , p e r f e c t l y mixed tank r e a c t o r , and i f the i n l e t s t r e a m i s  free  o f c e l l s , a mass b a l a n c e on X , and S can be e x p r e s s e d as f o l l o w s ;  | f - (y - •) X  (52)  f  (53)  - ( S - S)* - B± G  where <t> i s d i l u t i o n r a t e .  At s t e a d y - s t a t e , equations  (52)  and  (53) reduce t o ,  u = <> f  (54)  Y = ^ L _ o  (55)  Hence, under s t e a d y - s t a t e c o n d i t i o n s , the s p e c i f i c growth r a t e , u i s e q u a l t o the d i l u t i o n r a t e <{>, o r t h e r e c i p r o c a l o f the mean holding time.  The f u n c t i o n u = f ( S )  can e a s i l y be d e t e r m i n e d by  m o n i t o r i n g the f l o w r a t e o f the medium and the s u b s t r a t e i n the  reactor.  concentration  -22CHAPTER 3 A.  THE  BACTERIUM  MORPHOLOGY In  1947, Colmer e_t a l . (C3) i s o l a t e d t h e o r g a n i s m  T h i o b a c i l l u s f e r r o o x i d a n s from a c i d i c mine w a t e r and showed t h a t i t was r e s p o n s i b l e f o r the o x i d a t i o n o f s u l f u r compounds c o n t a i n e d i n c o a l t o form s u l f u r i c a c i d . et  al.  (L4) , S i l v e r m a n et_ a l .  on t h e morphology  S u b s e q u e n t l y Colmer e t a l .  (C4) , L e a t h e n  ( S I ) and Lundgren e t a l . (L5) r e p o r t e d  o f T_. f e r r o o x i d a n s .  I t i s a m o t i l e , non s p o r e -  f o r m i n g , g r a m - n e g a t i v e , rod-shaped o r g a n i s m w h i c h o c c u r s s i n g l y o r occasionally i n pairs.  I n n a t u r a l mine w a t e r i t ranges i n s i z e f r o m  0.4 u by 0.8 t o 1.0 u , but i n N a S 0 3 b r o t h i t appears t o be 2  The b a c t e r i u m was  2  found t o be an o b l i g a t e chemoautotroph  oxidizing ferrous iron.  larger.  c a p a b l e of  I t s c a p a b i l i t y f o r o x i d i z i n g elemental s u l f u r  (Ul,  L 6 , M3,  S2) and v a r i o u s s u l f u r compounds such as  thiosulfate  (Ul,  S 2 ) , t e t r a t h i o n a t e (S2, L 6 , S 3 ) , s u l f i d e , s u l f i t e and  dithionite  (S2) was a l s o c o n f i r m e d . A n a l y s i s of d r y b a c t e r i a l c e l l s showed t h a t t h e y c o n t a i n e d about 44% p r o t e i n , 26% l i p i d , 15% c a r b o h y d r a t e and 10% ash ( L 5 ) .  The  e l e m e n t a l a n a l y s i s o f t h e d r i e d organisms showed them t o c o n t a i n (W/V)  : 47.50% c a r b o n , 14.88% n i t r o g e n , and 7.59% hydrogen, and 4 x  10  organisms were e q u i v a l e n t t o one gram d r y w e i g h t ( T l ) . A c e l l n i t r o g e n l e v e l of 0.191 et_ a l .  m i l l i g r a m s per 1 0  1 0  c e l l s was r e p o r t e d by S i l v e r m a n  ( S I ) , whereas a v a l u e o f o n l y 0.033 mg c e l l N / 1 0  1 0  cells  r e p o r t e d by Beck e t a l . ( B I ) . However a y i e l d v a l u e o f 3.9 x organism/g F e was  2 +  was  r e p o r t e d by T u o v i n e n e t a l .  (Tl),  1 0  3.7 x 1 0 / g  r e p o r t e d by MacDonald e t a l . (M6), and 5.0 x 1 0 / g F e 1 0  10  was  1 0  2 +  was  Fe  2 +  1 2  -23r e p o r t e d e a r l i e r by T u o v i n e n et_ a l . (T2) .  B.  GROWTH MEDIA I n 1956,  L e a t h e n e t a l . ( L 4 , L5) d e v e l o p e d b o t h l i q u i d  s o l i d media f o r the growth o f T_. f e r r o o x i d a n s .  and  They r e p o r t e d t h a t a  l i q u i d medium c o n t a i n i n g ammonium, p o t a s s i u m , magnesium, c a l c i u m , phosphate and up t o 200 m i l l i g r a m s of f e r r o u s i r o n p e r l i t e r would support  the growth o f up t o 7 x 1 0  liter.  S u b s e q u e n t l y , B r y n e r e t a l . (B2) c l a i m e d  6  c e l l s o f J_. f e r r o o x i d a n s per  t h a t the a d d i t i o n of  some aluminum and manganese i o n s were a l s o n e c e s s a r y . was  T h e i r medium  a b l e t o o x i d i z e up t o 4000 m i l l i g r a m s o f f e r r o u s i o n p e r  The medium was  l a t e r m o d i f i e d by S i l v e r m a n et_ a l . ( S I ) .  medium c o n t a i n e d r e a d i l y support  the growth o f between 2 and 4 x 1 0  s o l e energy s o u r c e a l l the i r o n was  They c o n f i r m e d  8  t h a t f e r r o u s i r o n was  medium f a i l e d t o i n c r e a s e the f i n a l c e l l number, and  T, the  t h a t once  They a l s o r e p o r t e d  p r o g r e s s i v e i n c r e a s e s i n the i n i t i a l f e r r o u s i r o n c o n t e n t  9K  would  c e l l s of  i n the medium f o r b a c t e r i a l g r o w t h , and  o x i d i z e d growth c e a s e d .  liter.  Their  9000. m i l l i g r a m s f e r r o u s i o n p e r l i t e r and  ferrooxidans per l i t e r .  milli-  that  i n their  9K  that increasing  the c o n c e n t r a t i o n of p o t a s s i u m , n i t r a t e , ammonium or magnesium o v e r the l e v e l s p r e s e n t  i n the b a s a l s a l t s of 9K medium had no e f f e c t  the b a c t e r i a l growth. Silverman's  C.  The  compositions  of Leathen's, Bryner's  on and  media a r e l i s t e d i n T a b l e 1.  BIOLOGICAL REACTIONS Ferrous  s u l f a t e can be o x i d i z e d by T_. f e r r o o x i d a n s t o f e r r i c  -24TABLE 1 THE COMPOSITION OF VARIOUS GROWTH MEDIA FOR THIOBACILLUS FERROOXIDANS  Leathen et al.(L4) ( i n grams)  Bryner et al.(B2) ( i n grams)  0.05  1.0  3.0  -  4.0  -  0.05  0.05  0.1  -  0.05  -  0.05  0.1  0.5  MgS0^7H 0  0.50  3.0  0.5  Ca(N0 )  0.01  0.1  0.01  D i s t i l l e d Water  t o 1000 m l  t o 1000 m l  lON^SO^  t o pH = 3.5  t o pH = 2.65  t o 200 mg/1 Fe+  t o 4000 mg/1 Fe+  Components  (NH ) S0 lt  2  tt  Al (SO^) •I8H2O 2  3  KC1  MnS0 «H 0 k  2  K2HPOU  2  3  2  FeSO «7H 0 k  2  2  2  Silverman et a i . (SI) ( i n grams)  t o 700 m l  1.0 m l 300 ml o f 14.74% W/V solution  -25s u l f a t e i n the p r e s e n c e of s u l f u r i c a c i d and  4 FeS0  The  + 2 H S0  4  2  4  + 0  2  ->- 2 F e  (S0 )  2  4  + 2  3  a i r according  (56)  - 10  5  i s e x o t h e r m i c ; i t s f r e e energy change i s pH  times f a s t e r  6  than the r a t e of c h e m i c a l o x i d a t i o n at low pH v a l u e s  (L7).  Fe  The  t o the  (S0 )  2  4  (L8).  2 Fe  2  (0H)  3  (57)  - 3 6  (H4), which makes  above 2.5.  However,  of the p r e c i p i t a t e from an a c t u a l b i o l o g i c a l  of f e r r o u s s u l f a t e i s not hydroxide  (L8).  I t has  q u i t e the  same as  t h a t of pure  been shown t h a t i n a b i o l o g i c a l  s u l f a t e or j a r o s i t e , which does not adjustment  3 Fe  The  (S0 ) 4  3  oxidation  ferric oxidation,  most of the i r o n would appear t o be p r e c i p i t a t e d as b a s i c  pH  hydrolyzes  2  s u l f a t e p r a c t i c a l l y i n s o l u b l e at pH's  the c h a r a c t e r  and  + 3 H S0  s o l u b i l i t y p r o d u c t of f e r r i c h y d r o x i d e i s 1 0  ferric  reaction  equation,  + 6 H0  3  The  dependent, amounting to  F e r r i c s u l f a t e i s i n s o l u b l e at h i g h pH v a l u e s according  equation,  H^O  b a c t e r i a c a t a l y z e the o x i d a t i o n a t r a t e s 1 0  a p p r o x i m a t e l y 7 K c a l p e r mole at pH = 2.0  to  ferric  r e d i s s o l v e i n response to  simple  (B3).  + 14 H 0 2  -*• 2  (H 0)Fe 3  3  (SO^  (0H)  fi  + 5 H S0 2  4  u s u a l j a r o s i t e p r e c i p i t a t e i s a yellow-brown c o l o u r as  t o the r u s t - r e d f e r r i c h y d r o x i d e p r e c i p i t a t e .  However, the  (58)  opposed colour  v a r i e s i n response to the c a t i o n s that are present. o f K , Na  , NHL,, and H3O  The j a r o s i t e  salts  i o n s , a l l o f w h i c h a r e p r e s e n t i n 9K  medium, form r e a d i l y r e g a r d l e s s of t h e pH v a l u e o f the system. P o t a s s i u m j a r o s i t e forms f i r s t , f o l l o w e d by n a t r i o and ammonio j a r o s i t e , i n that order ( P I ) . Thus, the b i o l o g i c a l o x i d a t i o n o f f e r r o u s s u l f a t e t o r e a c t i o n (56) consumes s u l f u r i c a c i d w h i c h w i l l pH v a l u e as f e r r i c s u l f a t e i s produced.  the whole system.  20 FeSO^ + 18 H 0 2  g r a d u a l l y r a i s e the  On t h e o t h e r hand, t h e  p r e c i p i t a t i o n of b a s i c f e r r i c s u l f a t e a c c o r d i n g i n the production  according  t o r e a c t i o n (58) r e s u l t s  o f s u l f u r i c a c i d , thus s t a b i l i z i n g t h e pH v a l u e s  of  The o v e r a l l r e a c t i o n can be w r i t t e n a s ,  + 5 0^ •+ A F e ( S 0 ) 2  4  3  + 4 (H 0)Fe (S0 ) (OH) 3  3  4  2  The b i o l o g i c a l o x i d a t i o n o f f e r r o u s s u l f a t e was f o l l o w a M i c h a e l i s and Menten t y p e r a t e e q u a t i o n  < 9) 5  6  found t o  (L9, M4).  The  r a t e o f i r o n o x i d a t i o n and i n c r e a s e i n c e l l numbers, t h e r a t e of oxygen uptake (L9) and t h e r a t e o f C 0 - f i x a t i o n ( S I , B4) by growing c e l l s were 2  a l l p r o p o r t i o n a l t o one a n o t h e r and so t h e f e r r o u s i r o n o x i d a t i o n r a t e c o u l d be used as an i n d i r e c t measure of b a c t e r i a l growth k i n e t i c s . The g e n e r a t i o n  time of T_. f e r r o o x i d a n s  from 3.5 t o 15 hours (B4, M5,  has been r e p o r t e d  t o range  S4, L7); the s a t u r a t i o n c o n s t a n t  f e r r o u s i r o n c o n c e n t r a t i o n has been found t o range from 0.4 grams p e r l i t e r  ( L 7 , M6).  2.0  The y i e l d o f b a c t e r i a c a l c u l a t e d from the  v a r i o u s r e p o r t s ranged f r o m 0.2 ferrous i r o n oxidized  to  for  t o 0.3 grams d r y w e i g h t p e r mole o f  (S4, B4, M7, Y l ) .  -27D.  FACTORS AFFECTING BACTERIAL GROWTH The r a t e o f growth o f T_. f e r r o o x i d a n s , l i k e o t h e r b a c t e r i a ,  depends s t r o n g l y on t e m p e r a t u r e and pH. concentrations  However, d i s s o l v e d gas  s u c h as oxygen and c a r b o n d i o x i d e , and t h e p r e s e n c e  o f s u b s t a n c e s o t h e r than t h e e s s e n t i a l n u t r i e n t s a l s o have a marked i n f l u e n c e on i t s growth.  1.  D i s s o l v e d Gas  Concentration  Few q u a n t i t a t i v e s t u d i e s c o n c e r n i n g  the e f f e c t of dissolved  oxygen and c a r b o n d i o x i d e on t h e growth o f T_. f e r r o o x i d a n s  have been  reported, i n s p i t e o f the f a c t that such information i s important f o r the design of l a r g e s c a l e l e a c h i n g operations. r a t e s o f between 2027 and 22,500 y l 02/hr/mg been r e p o r t e d  (KI, L 6 , S4) .  Oxygen u p t a k e  c e l l nitrogen  have  During c h a l c o p y r i t e l e a c h i n g experiments  c a r r i e d o u t by B. C. R e s e a r c h i t was shown t h a t maximum l e a c h i n g rates occurred  a t 50 t o 52% oxygen ( v / v ) i n t h e gas phase.  Above  t h i s l e v e l oxygen became t o x i c and when i t r e a c h e d 65% no l e a c h i n g occurred (B3). Beck e t a l . ( B l ) showed t h a t a maximum CO2 f i x a t i o n o f 1.8 y moles p e r 100 y moles oxygen consumed, occurred  f o r non-growing T_. f e r r o o x i d a n s ,  a t CO2 gas phase l e v e l s above 2.4% ( v / v ) , below t h a t t h e  e f f i c i e n c y was m a r k e d l y r e d u c e d . Temple et_ a l . (T3) and S i l v e r m a n  C o n v e r s i o n o f t h e r e s u l t s from e_t a l . ( S I ) showed CO2 f i x a t i o n  e f f i c i e n c i e s o f 1.24 and 7.76 y moles p e r 100 y moles oxygen r e s p e c t i v e l y . MacDonald ejt a l . (M6) showed t h a t CO2 c o n c e n t r a t i o n s  i n t h e range o f  0.01 t o 10% (v/v) d i d n o t a f f e c t t h e s p e c i f i c growth r a t e o f t h e  -28b a c t e r i a , w h i l e below 0.01% (v/v)  the c e l l y i e l d d e c r e a s e d .  More  r e c e n t s t u d i e s c a r r i e d out by Torma e t al_. ( T 4 , T5) showed t h a t a CO2 l e v e l o f 0.23% (v/v)  i n a i r i s s u f f i c i e n t to ensure a maximum  l e a c h i n g r a t e of z i n c s u l f i d e  concentrate.  Perhaps i t s h o u l d be mentioned t h a t the p e r c e n t a g e s oxygen and c a r b o n d i o x i d e i n the gas phase a r e n o t  of  necessarily  p r o p o r t i o n a l t o the amounts of d i s s o l v e d gases i n the medium. l a t t e r a r e more i m p o r t a n t as f a r as b a c t e r i a l growth i s  The  concerned.  T h u s , the r e p o r t e d p e r c e n t a g e o f the gases i n the a i r i s n o t a p e r f e c t parameter t o i n d i c a t e the s u f f i c i e n c y of the d i s s o l v e d  gases  i n the s y s t e m .  2.  Temperature The optimum temperature f o r the b i o l o g i c a l o x i d a t i o n o f  f e r r o u s s u l f a t e was found t o be i n the range of 20 t o 40°C ( K l , M6, L 4 , T4, L 6 , S4).  Complete i n h i b i t i o n of growth was r e p o r t e d  temperatures above 40 'v 50°C o r below 0°C  3.  at  (D3, M8) .  pH V a l u e The optimum pH was r e p o r t e d t o be i n the range of 1.75  4 . 5 ( K l , L 6 , M6, S 4 ) . lower.  On each s i d e o f t h i s pH range t h e r a t e  The b a c t e r i a were s t i l l a c t i v e even a t pH = 0 . 8 ,  complete i n h i b i t i o n o f a c t i v i t y was r e p o r t e d a t pH = 6.0  4.  to  is  whereas, (M8).  Other F a c t o r s Other f a c t o r s such as s u r f a c e a c t i v e agents  (D4),  sunlight  -29(M8),  and many o r g a n i c m a t e r i a l s  (S5, T6) have been r e p o r t e d t o  a f f e c t the growth o f T_. f e r r o o x i d a n s . have n o t been  confirmed.  However many o f these  observations  -30CHAPTER 4 A.  OXYGEN TRANSFER  OXYGEN TRANSFER COEFFICIENT The  depletion  r a t e of d i s s o l u t i o n o f oxygen i s p r o p o r t i o n a l  o f d i s s o l v e d oxygen i n the l i q u i d .  proportional  t o the i n t e r f a c i a l a r e a ,  f o r a u n i t volume o f c u l t u r e  rate of absorption,  The  product of  F  v  = k^a ( C  =  and t h e r e f o r e ,  ±  one may  write  - C ) = Y^a (C* - C ) Q  and a can be found i n d i r e c t l y Q  V  rate i s also  fluid,  of C* (by Henry's l a w ) , and C absorption  This  t o the  (60)  q  through a knowledge  (by measurement) and the r a t e o f  (by measurement) thus,  c^c-  ( 6 1 )  o K^a p r o v i d e s an o v e r a l l measure of the gas a b s o r b i n g c a p a c i t y  of any  fermentor.  a DETERMINATION The  most commonly  used methods f o r d e t e r m i n i n g K^a a r e the  s u l f i t e o x i d a t i o n method, the u n s t e a d y - s t a t e g a s s i n g - i n dynamic g a s s i n g - i n  1.  method, the  method, and the oxygen b a l a n c e method.  S u l f i t e O x i d a t i o n Method I n 1944, Cooper e t  (C5) p r o p o s e d a s u l f i t e o x i d a t i o n  method f o r e v a l u a t i n g t h e p e r f o r m a n c e o f an a g i t a t e d t a n k r e a c t o r .  -31Basically,  t h i s method i s s i m i l a r t o the one which was p r e s e n t e d by  Miyamoto e t a l . (M9, M10,  M i l , M12)  depends on the o x i d a t i o n  of s u l f i t e  presence of c u p r i c or cobalt  as e a r l y as 1922.  The method  t o s u l f a t e by oxygen i n the  i o n as a c a t a l y s t .  A c c o r d i n g t o the  equation,  S0 ~ + h 0 3  s  2  q  -  (62)  The amount o f oxygen g o i n g i n t o s o l u t i o n d u r i n g can  be c a l c u l a t e d , i f the amount o f s u l f i t e  a known time i n t e r v a l  converted to s u l f a t e i s  determined. On the o t h e r hand, the amount o f u n r e a c t e d , oxygen i n the s o l u t i o n can be assumed  t o be z e r o ,  dissolved  because the c h e m i c a l  r e a c t i o n r a t e i s much f a s t e r than the r a f e of oxygen t r a n s f e r . T h e r e f o r e , K^a e q u a l s the r a t e of oxygen t r a n s f e r d i v i d e d by the saturation  oxygen c o n c e n t r a t i o n  o f the s o l u t i o n ,  V s f  <63)  The method i s f r e q u e n t l y are  used because o f i t s s i m p l i c i t y ; the c h e m i c a l s  e a s i l y a v a i l a b l e and cheap; the a n a l y t i c a l method i s s i m p l e and  sufficiently  a c c u r a t e ; and the c h o i c e of a p r o p e r c o n c e n t r a t i o n  c a t a l y s t and pH v a l u e o f t h e s o l u t i o n make i t p o s s i b l e r a t e c o n s t a n t o f the r e a c t i o n over q u i t e i s necessary i n using  s u l f i t e oxidation  purposes o f s c a l i n g up f e r m e n t o r s .  a wide range.  of a  t o change the However,  caution  v a l u e s f o r K^a f o r the  The k i n e t i c d a t a of which t h e r e  -32i s a great  d e a l p r e s e n t e d i n the l i t e r a t u r e i s v a r i a b l e and even  contradictory. F u l l e r e_t al_. (F3) made a v e r y c a r e f u l study o f t h e s u l f i t e oxygen r e a c t i o n .  The u n c a t a l y z e d  order with respect  to s u l f i t e .  r e a c t i o n r a t e was found t o be f i r s t  W e s t e r t e r p e t a l . (Wl), Cooper e t a l .  (C5), and L i u e t a l . (L10) , found t h a t the c o p p e r - c a t a l y z e d was  zero o r d e r w i t h r e s p e c t  (M13)  to s u l f i t e  concentration.  reaction  Murphy e_t a l .  found t h a t t h e r e a c t i o n r a t e o f c o p p e r - c a t a l y z e d  sulfite  s o l u t i o n s was s t r o n g l y dependent on the t o t a l amount o f s u l f i t e and  s u l f a t e p r e s e n t , and n o t on t h e c o n c e n t r a t i o n As  f o r the e f f e c t o f d i f f e r e n t  oxygen r e a c t i o n , c u p r i c i o n was g e n e r a l l y catalyze  the r e a c t i o n .  copper-catalyzed reaction.  extensively  alone.  c a t a l y s t s on the s u l f i t e found t o be s u i t a b l e t o  But Robinson e t a l . (RI) found t h a t the  r e a c t i o n r a t e was even s l o w e r than the n o n - c a t a l y z e d  They recommended the use o f a c o b a l t The  of s u l f i t e  catalyst  instead.  k i n e t i c s and mechanism of the r e a c t i o n have been  s t u d i e d and mechanisms have been proposed by s e v e r a l  investigators.  N e v e r t h e l e s s , many q u e s t i o n s c o n c e r n i n g t h i s  remain unanswered.  The s u l f i t e s o l u t i o n s a l s o g e n e r a l l y  reaction  differ  g r e a t l y from the f e r m e n t a t i o n b r o t h s i n p h y s i c a l as w e l l as c h e m i c a l properties. tension,  Physical properties,  if  surface  and v i s c o s i t y , may a f f e c t v a l u e s o f K^, a and sometimes even  the v a l u e o f C*. and  such as i o n i c s t r e n g t h ,  Chemical p r o p e r t i e s , such as r e a c t i o n r a t e  o r d e r o f the r e a c t i o n , may a f f e c t the r a t e o f r e a c t i o n i s g r e a t .  the v a l u e o f  Furthermore, t h e r e  constant,  greatly,  specially  a r e a l s o some  d i f f e r e n c e s between the d i f f u s i o n a l p r o c e s s e s i n v o l v e d .  In s u l f i t e  -33s o l u t i o n oxygen p a s s e s liquid  film.  from the gas t h r o u g h t h e i n t e r f a c e i n t o  Oxygen r e a c t s w i t h s u l f i t e i n t h i s f i l m .  of microorganisms,  suspension  the s i t e of oxygen u t i l i z a t i o n i s i n t i m a t e l y  associated with discrete  c e l l u n i t s which are p h y s i c a l l y  and r e l a t i v e l y remote from the  2.  In a  the  Gassing-Out  localized  interface.  Method  In t h i s method a n o n - o x i d i z a b l e s o l u t i o n which has  been  p r e v i o u s l y s t r i p p e d o f d i s s o l v e d oxygen (DO), e i t h e r w i t h n i t r o g e n o r by some o t h e r means, i s a e r a t e d . time i n t e r v a l s are r e c o r d e d .  The DO  concentrations at various  Under t h i s u n s t e a d y - s t a t e c o n d i t i o n ,  the a b s o r p t i o n e q u a t i o n can be w r i t t e n a s ,  With f o u r  assumptions;  a.  the b u l k c o n c e n t r a t i o n of DO  b.  the e f f e c t of d e s o r p t i o n of o t h e r d i s s o l v e d gases i s n e g l i g i b l e ,  c.  Kj^a i s a c o n s t a n t ,  d.  C* i s c o n s t a n t ,  equation  i s u n i f o r m throughout  the  liquid,  (64) can be i n t e g r a t e d t o g i v e ,  1  ,  , * ' C  \  The p l o t of In (C* - C) v e r s u s time s h o u l d r e s u l t i n a s t r a i g h t w i t h the s l o p e e q u a l to  K^a.  (65)  line  -34T h i s method was  first  used by Bartholemew e t a l . (B5),  a p p l i e d by Wise (W2)  t o the measurement of K^a  fermentation broth.  T h i s method was  Lll)  i n an u n i n o c u l a t e d  a l s o a p p l i e d by t h i s a u t h o r  t o c o r r e l a t e K^a w i t h v a r i o u s o p e r a t i o n a l v a r i a b l e s o f a  such as pH,  temperature,  then  (L10,  fermentor,  gas s u p e r f i c i a l v e l o c i t y and power consumption.  The method i s even s i m p l e r than the  sulfite-oxidation  method; because o n l y one measuring d e v i c e , a DO  e l e c t r o d e , i s needed.  U n l i k e the s u l f i t e - o x i d a t i o n method, the g a s s i n g - o u t method i s l e s s s e n s i t i v e t o i m p u r i t i e s , pH and  temperature,  and  thus more r e l i a b l e .  Water r e q u i r e s o n l y a s m a l l q u a n t i t y of oxygen t o become s a t u r a t e d ; hence the t o t a l amount of oxygen absorbed  by water i n t h i s method i s  r e l a t i v e l y s m a l l compared w i t h the t o t a l oxygen p r e s e n t i n the  gas  phase under normal o p e r a t i o n a l c o n d i t i o n s .  pressure  The  oxygen p a r t i a l  i n the gas phase can then be regarded as a c o n s t a n t throughout  the  whole r e a c t o r , hence the C* v a l u e can be r e g a r d e d as a c o n s t a n t Direct  c a l c u l a t i o n of K^a  from the DO  thus s i m p l i f y i n g the c a l c u l a t i o n  concentrate-time  trace i s possible,  procedure.  However, the s o l u t i o n s used  i n t h i s method a g a i n d i f f e r  the f e r m e n t a t i o n b r o t h i n both p h y s i c a l and The  too.  from  chemical p r o p e r t i e s .  d i f f e r e n c e i n p h y s i c a l p r o p e r t i e s , however, can be m i n i m i z e d  s t u d y i n g the a e r a t i o n of spent b r o t h s which have been s t e r i l i z e d .  by The  d i f f e r e n c e i n c h e m i c a l p r o p e r t i e s ( i . e . the s o l u t i o n i s n o n - r e a c t i v e w i t h oxygen) l i m i t s  the a p p l i c a t i o n o f the method to e v a l u a t i n g o n l y  the r a t e o f pure p h y s i c a l a b s o r p t i o n o f a system.  -353.  Dynamic Gassing-Out Method T a g u c h i e t a l . (T7) and Bandyopodhyay  e t a l . (B6) have  proposed a t e c h n i q u e f o r measuring Kj^a i n a fermentor w i t h an a c t i v e l y r e s p i r i n g mash.  When a e r a t i o n i s s t o p p e d , t h e d e c r e a s e i n d i s s o l v e d  oxygen due t o r e s p i r a t i o n i s measured t o o b t a i n t h e r a t e o f oxygen uptake by t h e t o t a l m i c r o b i a l p o p u l a t i o n . oxygen c o n c e n t r a t i o n i n DO i s r e c o r d e d  Then, b e f o r e  the c r i t i c a l  i s r e a c h e d , a e r a t i o n i s resumed and t h e i n c r e a s e  with respect  t o time.  DO, T ^ - , i s measured from t h i s t r a c e .  The r a t e o f a c c u m u l a t i o n o f  The a b s o r p t i o n  equation f o r  oxygen can be w r i t t e n a s ,  ^  (66)  = K j a (C* - C) - r X  When a e r a t i o n i s s t o p p e d , t h e term K a (C* - C) L  hence  =  -  R  X  (  =  6  7  )  aeration  Upon, t h e resumption o f a e r a t i o n , e q u a t i o n  c  0, e q u a t i o n (66)  becomes.  4F> no  =  - & ILa  +  dt  r X  >  +  c  *  From a p l o t o f C v e r s u s straight line  (66) c a n be r e - a r r a n g e d ,  (  (—- + r X ) , on a r i t h m e t i c dt  r e s u l t s (Figure 1).  the r e c i p r o c a l o f t h e s l o p e  co-ordinates,  6  8  )  a  K^a and C* can be determined as  and t h e i n t e r c e p t r e s p e c t i v e l y .  The method has been s u c c e s s f u l l y a p p l i e d t o y e a s t  fermentations.  -36-  F i g u r e TYPICAL  o  PLOT  OF  1 EQUATION  (68)  -37The main advantage o f t h i s method l i e s i n i t s s i m p l i c i t y ; l i k e gassing-out  method, i t r e q u i r e s o n l y a s i n g l e oxygen probe.  the  To  determine Kj^a, o n l y C and r X need be known, C* i s o n l y needed i f one wants to get a f e e l f o r the mean oxygen c o n c e n t r a t i o n i n the mash.  The method i s a d i r e c t one,  f e r m e n t a t i o n system  p o i n t e d out by Bandyopodhyay et_ al_.  a d i s c r e p a n c y i n b o t h oxygen uptake and K a L  between the oxygen b a l a n c e v a l u e s measured by low.  The  ( i . e . i t i s based on u t i l i z i n g  reason  the  itself).  However, i t was t h a t t h e r e was  respiring  and  the dynamic g a s s i n g - o u t  the dynamic g a s s i n g - o u t  f o r the lower v a l u e s was  (B6),  values  method.  method appear  The  abnormally  a t t r i b u t e d to a i r bubbles  remaining  i n the mash throughout  stopped.  Another l i m i t a t i o n t o the a p p l i c a b i l i t y o f the method i s  the q u e s t i o n of the constancy found  caused  some temporary damage i n the enzymes system of y e a s t .  Oxygen Balance  was  of r a f t e r 'the a e r a t i o n i s resumed.  I t was  4.  that dropping  the p e r i o d i n which a e r a t i o n  the DO  to near the c r i t i c a l oxygen  level  Method dC  In a s t e a d y - s t a t e c o n d i t i o n , the term — i s n e g l i g i b l e i n the time i n t e r v a l of measurement.  i n equation The  equation  (66) can  hence be w r i t t e n a s ,  r X = K^a  The  (C* - C ) Q  oxygen uptake o f the b a c t e r i a e q u a l s  (  6 9  >  the amount of oxygen t r a n s f e r r e d  from a i r to the l i q u i d medium, which i s e q u i v a l e n t to the d i f f e r e n c e  -38between the amount of i n c o m i n g and  outgoing  oxygen.  the d i r e c t measurement of oxygen c o n c e n t r a t i o n l i q u i d medium.  U s u a l l y evolved  one  S6,  f o r e v a l u a t i n g K^a  or l e s s o f f s e t by and  ... e t c .  percent  T8)  have suggested t h a t  f o r fermentors because  of the t o t a l oxygen s u p p l y .  measurement i n a c c u r a c y  C.  no  i s needed,  F u r t h e r m o r e , the amount of  i n most fermentors u s u a l l y amounts to l e s s than  and  this  surface-  the f a c t t h a t much more i n s t r u m e n t a t i o n  d i f f e r e n c e between the i n l e t  and  However, t h e s e advantages are more  the p r o c e d u r e i s time consuming.  oxygen u t i l i z e d  requires  i n the exhaust gas  assumptions need to be made about the e f f e c t s of c e l l s , a c t i v e agents, v i s c o s i t y ,  method  C O 2 i s a l s o measured.  Many i n v e s t i g a t o r s (F4, GI, method i s the b e s t  The  Thus the oxygen p a r t i a l  o u t l e t gas  w i l l introduce  pressure  stream i s s m a l l .  a l a r g e e r r o r i n the  one  A  small  result.  SATURATION OXYGEN SOLUBILITY Knowledge of the s a t u r a t i o n s o l u b i l i t y o f oxygen i n a  fermentation coefficients.  b r o t h i s n e c e s s a r y i n c a l c u l a t i n g mass t r a n s f e r c a p a c i t y Many workers use  d i s s o l v e d i n w a t e r , but  i n fact  the s a t u r a t i o n v a l u e the f e r m e n t a t i o n  but water p l u s a v a r i e t y o f n u t r i e n t s and  f o r oxygen  medium i s not  metabolic  products.  water, For  example; the s o l u b i l i t y of oxygen i n s u l f u r i c a c i d i s c l o s e to t h a t i n water, but sharply.  i n most of the o r g a n i c  solvents i t s s o l u b i l i t y  In s o l u t i o n s c o n t a i n i n g v a r i o u s e l e c t r o l y t e s or  m a t t e r oxygen s o l u b i l i t y behaves i n a c o m p l i c a t e d  increases  organic  manner not  following  Henry's law ( I I ) . The  most f r e q u e n t l y used t e c h n i q u e s  for determining  oxygen  -39c o n c e n t r a t i o n i n s o l u t i o n a r e c h e m i c a l a n a l y s i s v i a the W i n k l e r method (W3) , and the use of gas chromatography.  However, t h e W i n k l e r  method i s n o t s u i t a b l e f o r s o l u t i o n s h a v i n g low pH v a l u e s , as our media do. chemicals  Furthermore,  the p r e s e n c e  o f o x i d i z i n g and  reducing  ( o f the k i n d found i n our media) c o m p l i c a t e s the A gas c h r o m a t o g r a p h i c  procedure.  technique' f o r d e t e r m i n i n g t h e s o l u b -  i l i t y o f gases i n n o n - b i o l o g i c a l s o l u t i o n s has been d e s c r i b e d by Gubbins e t a l . (G2).  The  sample t o be a n a l y z e d , u s u a l l y 5 m l ,  was  i n j e c t e d i n t o a g l a s s s t r i p p i n g column o u t s i d e the chromatograph. C a r r i e r gas d i s p e r s e d i n t o the s t r i p p i n g column r a p i d l y removed d i s s o l v e d gases and c a r r i e d them t h r o u g h d r y i n g tubes c o n t a i n i n g D r i e r i t e , then t h r o u g h a s t a i n l e s s s t e e l c o i l immersed i n a w a t e r b a t h i n t o the chromatograph column.  S i n c e the s o l u b i l i t y o f most  common gases i n w a t e r i s a c c u r a t e l y known, a w a t e r sample s e r v e d as a standard f o r c a l i b r a t i o n purposes.  The method i s s i m i l a r i n  p r i n c i p l e t o one d e s c r i b e d by S w i n n e r t o n e t a l . ( S 7 ) , w h i c h i s c a p a b l e o f d e t e r m i n i n g d i s s o l v e d gas c o n c e n t r a t i o n s as low as ppm  i n 1 t o 2 ml o f s o l u t i o n .  Our a t t e m p t s  t o adapt t h i s  0.3  technique  t o a b i o l o g i c a l system were u n s u c c e s s f u l because the r a t e of oxygen d e p l e t i o n was  too r a p i d and t h e s t r i p p i n g r a t e of the d i s s o l v e d  gases i n the s t r i p p i n g column too slow. A c a l c u l a t i o n t e c h n i q u e has been proposed  by van  Krevelen  and H o f t i j z e r ( V I ) f o r the p r e d i c t i o n of t h e s o l u b i l i t y o f v a r i o u s gases i n v a r i o u s s o l u t i o n s . the e q u a t i o n  i  T h i s p r e d i c t i o n t e c h n i q u e i s based upon  -40-  , l  0  g  He H T — 2°  =  h  (70)  I  H  L i n e k and T v r d i k (L12) have n o t e d t h a t when t h i s t e c h n i q u e was u s e d t o p r e d i c t v a l u e s f o r t h e s o l u b i l i t y o f oxygen i n sodium s u l f a t e s o l u t i o n s , d i f f e r e n c e s between c a l c u l a t e d and e x p e r i m e n t a l  values  ranged from - 8 % t o +12%.  D.  INTEPvFACIAL  A R E A  The maximum d i a m e t e r o f a d r o p l e t w h i c h c o u l d s u r v i v e i n t u r b u l e n t c o n t i n u o u s phase was c o r r e l a t e d w i t h s u r f a c e t e n s i o n , d e n s i t y and power i n p u t by B a t c h e l o r ( B 7 ) .  0.6  Y  D  = m  max  '  P 0  C  2  CJI\  (Pg/v) ' 0  W-L^  4  The v a l i d i t y of equation  (71) was  confirmed by Hinze (H5), Vermeulen  et a l . (V2) and Endoh et a l . ( E l ) . This equation was  subsequently  used with modification to correlate the i n t e r f a c i a l area with various factors i n an agitated aerator. Extensive studies were.carried out by Calderbank (C6). proposed equation aeration of pure  a =  1.44  He  (72) for c a l c u l a t i n g the i n t e r f a c i a l area i n the liquids,  (Pg/v)°Y  4  p 076  0 c  -  2  1  V 0.5 (—)  (72)  V  He also reported that due to the greater ease of bubble coalescence,  -41the i n t e r f a c i a l a r e a s produced d u r i n g t h e a e r a t i o n o f p u r e l i q u i d s were much s m a l l e r than when s o l u t i o n s o f e l e c t r o l y t e s o r o t h e r h y d r o p h i l i c s o l u t e s were a e r a t e d .  E.  MASS TRANSFER COEFFICIENT ( K ) L  C a l d e r b a n k (C6) was a b l e t o d e t e r m i n e K a and " a " s e p a r a t e l y L  i n an a g i t a t e d sparged c o e f f i c i e n t K^.  tank and then t o c a l c u l a t e t h e mass t r a n s f e r  He c o n c l u d e d  that f o r g a s - l i q u i d t r a n s f e r from  bubbles o f t h e s i z e t y p i c a l l y encountered i n fermentors,  o /o  = 0.31 ( N  S c  )~  2 / 3  AP u g , ,~ ( ^ — ) 1  Pc  /  (73)  3  2  T h i s e q u a t i o n a l s o g i v e s t h e o v e r a l l v a l u e o f K^ f o r t r a n s f e r o f 0  2  f r o m a i r t o t h e organisms i f t h e organisms grow as s i n g l e c e l l s as opposed t o clumps o f c e l l s , and a r e w e l l suspended. A s i m i l a r e q u a t i o n was a l s o o b t a i n e d by F r i e d l a n d e r ( F l ) by s o l v i n g t h e l i n e a r i z e d N a v i e r - S t o k e s  equations  f o r t h e case where  d i f f u s i o n o c c u r r e d i n a f l u i d s u r r o u n d i n g a s p h e r e moving i n t h e Stokes  regime. I t i s e v i d e n t t h a t t h e K L v a l u e i s i n f l u e n c e d o n l y by t h e  properties of l i q u i d .  The a g i t a t i o n speed, power i n p u t , and s u p e r f i c i a l  a i r v e l o c i t y a r e u s e f u l i n d i s p e r s i o n t o produce a h i g h e r  interfacial  area. When t h e b a c t e r i a a r e g r o w i n g on t h e s u r f a c e o f l a r g e s o l i d p a r t i c l e s o r a s clumps, e q u a t i o n  (73) w h i c h i s v a l i d o n l y f o r s m a l l  -42p a r t i c l e s , no l o n g e r d e s c r i b e s t h e mass t r a n s f e r from l i q u i d t o t h e solid bacterial particles.  Such a c a s e , however, can be t r e a t e d as  b e i n g s i m i l a r t o t h e case o f mass and h e a t t r a n s f e r t o o r from suspended s o l i d s i n an a g i t a t e d t a n k . rate of p a r t i c l e s , Harriott  I n measuring t h e d i s s o l u t i o n  (H2) found t h a t t h e  v a l u e was p r o p o r -  t i o n a l t o 0.17 power o f power i n p u t , 0.6 ^ 0.8 power o f d i f f u s i v i t y , and -0.37 power o f v i s c o s i t y o f t h e l i q u i d .  The c o r r e l a t i o n o f  v a r i o u s e x p e r i m e n t a l d a t a b y C a l d e r b a n k e_t a l (C7) r e s u l t e d i n  14,-0.13  ^y'lfsZ^^y'* ^  where  Pc  (74) '  2  i s independent o f t h e p a r t i c l e s i z e and any d i f f e r e n c e i n  d e n s i t y between t h e s o l i d and l i q u i d . Tsao (T9, T10, T i l ) d e v e l o p e d a d i f f e r e n t i a l e q u a t i o n and c o n c l u d e d t h a t when b a c t e r i a w i t h r a p i d uptake o f a s o l u t e a r e a s u r f a c e - a c t i v e t y p e w h i c h would c o n c e n t r a t e themselves a t a g a s - l i q u i d i n t e r f a c e , t h e n t h e r e s u l t would be t o i n c r e a s e t h e value.  However, i t i s d i f f i c u l t t o a s s e s s t h e degree o f s u r f a c e  a c t i v i t y i n a p r a c t i c a l case.  F.  OTHER FACTORS AFFECTING I ^ a 1.  Impellers The l i t e r a t u r e does n o t c l e a r l y demonstrate t h e i n f l u e n c e  o f i m p e l l e r d i m e n s i o n s on  and a.  However, a s m a l l e r i m p e l l e r  was s a i d t o g i v e b e t t e r b u b b l e break-up f o r t h e same power i n p u t  -43than a l a r g e r one ( V 3 ) . I t a l s o appeared  that at a given s u p e r f i c i a l  a i r r a t e and power i n p u t , a t u r b i n e t y p e i m p e l l e r was more s u i t a b l e than a p r o p e l l e r t y p e ( Y 2 ) .  An i m p e l l e r p o s i t i o n e d between 0.2 t o  0.5 t i m e s t h e l i q u i d h e i g h t from t h e bottom o f t h e tank had l i t t l e i n f l u e n c e on t h e a e r a t i o n r e s u l t s ( V 3 ) .  2.  Spargers The i n j e c t i o n o f a i r by open p i p e s , p i p e r i n g s , s i n t e r e d  g l a s s o r m e t a l d i s c s made l i t t l e d i f f e r e n c e p r o v i d e d t h e a i r was fed  i n t o t h e eye o f t h e i m p e l l e r ( V 3 ) .  3.  Baffles B a f f l e s p r e v e n t t h e f o r m a t i o n o f v o r t i c e s and a r e e s s e n t i a l  t o good l i q u i d m i x i n g .  But they promote "bubble c o a l e s c e n c e and  sometimes c r e a t e more t u r b u l e n c e t h a n t h e system r e q u i r e s , thus w a s t i n g energy ( V 3 ) .  4.  L i q u i d Height The e f f e c t of t h e r a t i o o f l i q u i d d e p t h t o t a n k d i a m e t e r on  K^a was n e g l i g i b l e f o r r a t i o s l e s s t h a n u n i t y , b u t i t becomes a p p r e c i a b l e f o r v a l u e s above u n i t y  (Y2).  I f t h e r a t i o exceeds 2.0,  c o a l e s c e n c e t a k e s p l a c e i n t h e q u i e s c e n t upper zone and a d e c r e a s e s (V3).  -445.  Power Input The  power i n p u t o f a g i t a t o r s o p e r a t i n g a t v a r i o u s  i n l i q u i d s can be p r e d i c t e d from p u b l i s h e d power number Reynold's number p l o t s (R2, R3). f o r aerated  speeds  versus  S i m i l a r p l o t s are not a v a i l a b l e  systems.  .At c o n s t a n t  a g i t a t i o n speed, t h e power i n p u t  when a i r i s p a s s e d t h r o u g h .  decreases  T h i s d e c r e a s e can be a t t r i b u t e d t o t h e  d e c r e a s e i n d e n s i t y o f t h e a i r - l i q u i d m i x t u r e around the i m p e l l e r . Various  i n v e s t i g a t o r s ( L l l , M14, 01) have c o r r e l a t e d t h e power  input w i t h a dimensionless  a e r a t i o n number which i s d e f i n e d as the  r a t i o o f s u p e r f i c i a l a i r v e l o c i t y to the t i p v e l o c i t y o f the impeller.  P  3  ~ ^  The  ;  r e s u l t i n g curve  i s independent o f p h y s i c a l p r o p e r t i e s o f l i q u i d s ,  but depends on the type o f i m p e l l e r and t h e v a r i o u s r a t i o s o f t h e tank.  geometrical  However, a good c o r r e l a t i o n was r e p o r t e d by  L i u e t a l ( L l l ) f o r an a i r - w a t e r a e r a t o r w i t h a p a d d l e type  impeller  t o be,  |*-m P  (N) ' 3  o  I t i s evident turbulence  0  (V r s  °-  3  <> 76  t h a t i n c r e a s e s i n a g i t a t i o n speed w i l l i n c r e a s e t h e  o f the l i q u i d  thus i n c r e a s i n g K^a through a, i f e q u a t i o n  -45(72)  holds.  The  a g i t a t i o n speed and  b o t h independent v a r i a b l e s input.  and  are  superficial air velocity  c l o s e l y r e l a t e d t o the power  I t i s sometimes more c o n v e n i e n t to c o r r e l a t e K^a  Kja = m(N) l  n j , was to be  form,  (77)  n  g  A wide s p r e a d i n v a l u e s of the exponents ni E2,  i n the  (V ) 2  n  ( A l , C5,  are  F5,  i n the  H6,  J l , M15,  S9).  range between 1.8  l e s s than one.  This  n  has  2  been r e p o r t e d  However, the m a j o r i t y r e p o r t e d  to 3.0.  indicates  bubble c o a l e s c e n c e w i t h i n c r e a s i n g  and  The  the  exponent n£ was  increasing  found  probability  superficial air velocity  that  of  at  c o n s t a n t a g i t a t i o n speed.  6.  Solid Particles Limited  p a r t i c l e s on  the  studies  r a t e of b i o l o g i c a l r e a c t i o n s  w i t h oxygen t r a n s f e r . c o e f f i c i e n t s by  have been undertaken on  the  B r i e r l e y ejt al_. (B8)  mentous mycelium and pellets.  They c o n c l u d e d t h a t  which are  not  by  the  addition  addition  the morphology of the  transfer  of  solid  the  of  b i o l o g i c a l l y a c t i v e , and  phase  the  aeration  i n c o n c e n t r a t i o n s up  column.  rate.  e f f e c t s of i n e r t ,  c h e m i c a l l y a c t i v e , suspended s o l i d s on  r a t e of oxygen t r a n s f e r i n an diatomaceous e a r t h  have r e p o r t e d on  fila-  sago  l a r g e l y determined i t s p h y s i c a l e f f e c t upon the oxygen t r a n s f e r Rogers et a l . (R4)  solid  associated  They found t h a t  reduced markedly by  paper p u l p , but  e f f e c t of  measured oxygen  "gassing out" procedure.  r a t e of s o l u t i o n of oxygen was  the  They found  t o 9000 mg/1  had  no  the  that effect  -46-  on t h e r a t e of oxygen t r a n s f e r . t r a n s f e r r a t e w i t h an i n c r e a s e but  Activated i n solid  concentration  oxygen  up t o 2500  w i t h h i g h e r c o n c e n t r a t i o n s the e f f e c t became l e s s marked.  hydroxide suspensions increased increasing  s o l i d s c o n c e n t r a t i o n s up t o 2500  a great  mg/1  Metal  t h e oxygen t r a n s f e r r a t e , w i t h  Van der Kroon (V4) found t h a t had  sludge retarded  mg/1.  suspended s o l i d p a r t i c l e s  e f f e c t on the oxygen t r a n s f e r r a t e .  The i n t r o d u c t i o n o f  the s o l i d p a r t i c l e s g r e a t l y d e c r e a s e d the r e a c t i o n r a t e o f the sulfite-oxidation  reaction.  A l l o f t h e above workers drew c o n c l u s i o n s  about t h e e f f e c t  of suspended s o l i d s on oxygen t r a n s f e r r a t e but as y e t , no s a t i s f a c tory explanation  o f the mechanism i n v o l v e d  has been made.  -47CHAPTER 5 APPARATUS A.  GYRATORY SHAKER APPARATUS A gyratory shaker apparatus was used to carry out some of  the batch-wise experiments.  The u n i t was manufactured by New  Brunswick S c i e n t i f i c Company (New Brunswick, N.J.).  I t was able t o  accommodate 67, 250 ml shake f l a s k s . This apparatus was kept i n an i n c u b a t i n g room of approxima t e l y 10 x 10 x 8 f t i n s i z e .  The temperature of the room was  maintained at 35°C by a regulated flow of e l e c t r i c a l l y heated hot air.  A constant flow of carbon dioxide was a l s o added so that i t  would not be a rate l i m i t i n g f a c t o r f o r the b a c t e r i a l growth.  The  CO2 concentration was approximately 1% by volume.  B.  CONTINUOUS CULTURE APPARATUS The design and c o n s t r u c t i o n of the continuous c u l t u r e  apparatus was based on the p r i n c i p l e that a t constant temperature and constant gas volume any changes i n the amount of gas could be measured by changes i n i t s pressure.  1.  Reactor A schematic drawing of the reactor i s shown i n Figure 2.  The main body of the reactor was made of a c y l i n d r i c a l pyrex glass tube, 5 inches I.D. and 10 inches long, closed a t both top and bottom by two s t a i n l e s s s t e e l p l a t e s .  Two s y n t h e t i c rubber 0 r i n g s were  used t o s e a l the p l a t e s t o the glass body.  The bottom p l a t e  F i g u r e FLOW SHEET  2  OF CONTINUOUS CULTURE  CQ Reactor ©Seal (3) Agitator ® Water bath (5) Air ©Medium ©Motor (8) RPM counter (9) Manometer @Pump  APPARATUS  1  © C O 2  $» Humidifier @ Flowmeter ® Overflow ©Air outlet ® Sampling hole © Pipette tube  ©  do) 1 00 1  -49p e r m i t t e d the f i t t i n g  of a t e f l o n overflow pipe, a Teflon  p i p e and a sampling h o l e .  feed-in  T e f l o n p r e v e n t e d t h e organisms from  growing i n s i d e t h e p i p e l i n e and thus e l i m i n a t e d  blockage.  The  s a m p l i n g h o l e was s i m p l y a h o l e s e a l e d w i t h s i l i c o n r u b b e r so t h a t a syringe  n e e d l e c o u l d be i n s e r t e d and inoculum i n t r o d u c e d  withdrawn.  The top p l a t e c o n t a i n e d  s h a f t and two s m a l l and  a mercury s e a l around the a g i t a t o r  tubes f o r the i n t r o d u c t i o n and removal o f a i r  another t o the gas manometer p l u s  2.  Mercury  o r samples  a thermometer w e l l .  Seal  A mercury s e a l was c o n s t r u c t e d around t h e a g i t a t o r s h a f t .  t o p r e v e n t a i r from e s c a p i n g  The volume o f t h e r e a c t o r was m a i n t a i n e d  c o n s t a n t by w i t h d r a w i n g o r a d d i n g mercury from a r e s e r v o i r t o t h e mercury b a t h t o keep t h e column o f mercury i n the r o t a t i n g tube a t a given  mark.  3.  Agitator A s t a i n l e s s s t e e l p a d d l e type i m p e l l e r  2h i n c h e s i n  diameter and h a v i n g s i x , s t r a i g h t f l a t b l a d e s was used t o s t i r the medium i n t h e r e a c t o r . impeller  The c l e a r a n c e  between the bottom o f t h e  and the r e a c t o r bottom was one i n c h .  A  2% i n c h ,  marine type i m p e l l e r , l o c a t e d 8 i n c h e s from t h e bottom, was i n s t a l l e d t o a s s u r e good m i x i n g o f the gas phase.  The  impellers  were d r i v e n by a F i s h e r S t e d i - S p e e d Motor w i t h F i s h e r Speed Unit.  The u n i t i n c o r p o r a t e d  circuitry  also  Adjust  that monitored the v i s c o s i t y  -50of  the l i q u i d b e i n g s t i r r e d and a u t o m a t i c a l l y s u p p l i e d more o r  l e s s power as the l o a d i n c r e a s e d o r d e c r e a s e d , thus k e e p i n g t h e s h a f t speed c o n s t a n t . of  a photo  4.  The s h a f t speed was measured by a s e t up c o n s i s t i n g  r e f l e c t i v e p i c k u p and a d i g i t a l f r e q u e n c y meter (see C-2).  Water B a t h The r e a c t o r was immersed i n a c o n s t a n t temperature  b a t h made o f methyl m e t h a c r y l a t e polymer, The  8" x 8" x 12" i n dimension.  temperature was m a i n t a i n e d by s u p p l y i n g a r e g u l a t e d amount o f  hot water t o the system u s i n g the temperature in  controller described  S e c t i o n C-8 o f t h i s c h a p t e r .  5.  A i r Supply Air  was s u p p l i e d from a c o n s t a n t p r e s s u r e s o u r c e a t a  p r e s s u r e o f 15 psig.. to  water  The a i r passed through a p r e s s u r e r e g u l a t o r  reduce i t s p r e s s u r e and through a n e e d l e v a l v e thus e n a b l i n g a  f i n e degree o f c o n t r o l .  A f t e r t h e a i r f l o w r a t e was measured by  a r o t a m e t e r , t h e a i r p a s s e d through a s a t u r a t o r and was t h e n i n t r o duced i n t o t h e r e a c t o r .  The s a t u r a t o r was a 1 i n c h O.D.  two f o o t  l o n g g l a s s tube, f i l l e d w i t h some p l a s t i c p a c k i n g and water. P r o v i s i o n was made t o add carbon d i o x i d e t o the a i r .  6.  Medium Supply The growth medium was p r e p a r e d and s t o r e d i n a 25  plastic bottle.  liter  I t was then pumped i n t o the r e a c t o r by a m i c r o - f l o w  -51t u b i n g pump  (Cole-Parmer Instrument Co., C h i c a g o , 111.).  p i p e t was i n s t a l l e d  A 5 ml  i n a t e e l o c a t e d between t h e pump and the r e a c t o r  so t h a t t h e f l o w r a t e c o u l d be measured from time t o time by measuri n g the time r e q u i r e d f o r t h e medium t o f i l l  C.  the p i p e t .  TANK REACTOR The a p p a r a t u s c o n s i s t e d o f a r e a c t o r , an i m p e l l e r  driven  through a torquemeter by a h y d r a u l i c motor, an oxygen a n a l y z e r , a m o d i f i e d Erlenmeyer f l a s k , a r e s p i r o m e t e r and a temperature  controller.  The Erlenmeyer f l a s k and r e s p i r o m e t e r were used t o e v a l u a t e oxygen uptake r a t e s i n samples taken from the tank  1.  reactor.  Reactor The r e a c t o r was a c y l i n d r i c a l tank made o f m e t h y l metha-  c r y l a t e , 11% i n c h e s I . D v and 18 i n c h e s h i g h w i t h an open top.  Four  b a f f l e s , each o n e - t e n t h o f t h e tank d i a m e t e r and e x t e n d i n g t o t h e f u l l depth o f the tank, were s y m m e t r i c a l l y a t t a c h e d t o the i n t e r n a l wall. height.  A r u l e r was a t t a c h e d t o the i n n e r tank w a l l t o measure  liquid  There were two p i p e s e n t e r i n g through the bottom o f the tank:  one s e r v e d as an a i r i n l e t ,  t h e o t h e r one f o r d i s c h a r g i n g the medium.  The r e a c t o r was surrounded by a 15%" x 15%" x 18", m e t h y l m e t h a c r y l a t e jacket  2.  f o r temperature c o n t r o l p u r p o s e s .  Agitator The i m p e l l e r was a 4 i n c h d i a m e t e r f a n type t u r b i n e w i t h  6 blades s e t a t 45°.  I t was l o c a t e d one h a l f an i m p e l l e r  diameter  -52above the bottom o f the tank.  The i m p e l l e r was  i n c h diameter s t a i n l e s s s t e e l s h a f t .  fastened to a  A b a l l - b e a r i n g type p i l l o w  b l o c k , s e a t e d on a s e c u r e s u p p o r t , was  a t t a c h e d a t h a l f way  of the s h a f t t o p r e v e n t v i b r a t i o n a t h i g h a g i t a t i o n The  a g i t a t i o n speed measuring  unit  Frequency  by Power Instrument,  Meter  California).  (Model 460, Darcy  One  point  speeds.  c o n s i s t e d o f a Photo  R e f l e c t i v e P i c k u p Model 812, w i t h i t s power s u p p l y u n i t b o t h produced  1/2  I n c . , S k o k i e , 111.)  (Model C-850, and  a Digital  I n d u s t r i e s , Santa Monica,  s e c t i o n o f the a g i t a t i o n s h a f t was  i t s circumference except f o r a blackened s t r i p .  whitened  The p i c k u p  around was  p o s i t i o n e d p e r p e n d i c u l a r t o the p r e p a r e d s h a f t s e c t i o n so t h a t  an  abrupt change i n r e f l e c t e d l i g h t d e n s i t y would o c c u r once p e r r e v o lution.  T h i s l i g h t d e n s i t y change was  t h e n c o n v e r t e d i n t o an  t r i c a l p u l s e and the f r e q u e n c y o f these p u l s e s was  elec-  measured on  the  frequency meter.  3.  Torquemeter The  (Model  s h a f t was  j o i n e d by a f l e x i b l e c o u p l i n g to a Torquemeter  784, Power Instruments  Inc., Skokie, 111.).  I t would  indicate  a d i r e c t readout o f t o r q u e by s e n s i n g the phase d i s p l a c e m e n t of a c a l i b r a t e d s p r i n g element,  4.  w i t h a p r e c i s i o n d i f f e r e n t i a l gear  system.  Drive The  s h a f t was  d r i v e n by a h y d r a u l i c motor w h i c h was  driven  by a f l o w o f c i r c u l a t i n g motor o i l c o n s t a n t l y s u p p l i e d by a h y d r a u l i c pump, i n t u r n d r i v e n by a 1 HP  e l e c t r i c motor.  (Both the motor and  -53the pump were t h e p r o d u c t s C o r p . , U.S.A.)  5.  o f V i c k e r s I n c o r p o r a t e d , S p e r r y Rand  T h i s u n i t p e r m i t t e d v a r i a t i o n i n a g i t a t o r speed.  Oxygen A n a l y z e r A Beckman M o d e l 777 L a b o r a t o r y  Oxygen A n a l y z e r w i t h a  Beckman 39065 p o l a r o g r a p h i c oxygen e l e c t r o d e was used t o m o n i t o r the d i s s o l v e d oxygen t e n s i o n i n t h e medium.  The e l e c t r o d e c o n s i s t e d  of a g o l d cathode and a t u b u l a r s i l v e r anode. were s e p a r a t e d  by an epoxy c a s t i n g , b u t were e l e c t r i c a l l y  by a l a y e r o f p o t a s s i u m c h l o r i d e g e l . separated  The cathode and anode connected  The e n t i r e assembly was t h e n  f r o m t h e medium by an oxygen p e r m e a b l e , T e f l o n membrane  w h i c h f i t t e d a g a i n s t t h e cathode s u r f a c e .  When oxygen d i f f u s e d  t h r o u g h t h e membrane i t was r e d u c e d a t t h e c a t h o d e by an a p p l i e d voltage.  T h i s caused a c u r r e n t t o f l o w between t h e anode and cathode  w h i c h was p r o p o r t i o n a l t o t h e oxygen t e n s i o n i n t h e medium.  6.  Erlenmeyer F l a s k A o n e - l i t e r E r l e n m e y e r f l a s k was m o d i f i e d so t h a t t h e  oxygen u p t a k e r a t e i n terms o f mmHg p e r hour o f t h e medium c o n t a i n i n g b a c t e r i a c o u l d be m o n i t o r e d c o n t i n u o u s l y .  A h o l e was opened on t h e  s i d e o f t h e f l a s k t o accommodate a Beckman Oxygen E l e c t r o d e w i t h i t s r u b b e r mount.  The e l e c t r o d e was p l a c e d a t an a n g l e o f about 15  degrees t o t h e h o r i z o n t a l i n o r d e r t o p r e v e n t  any e n t r a p p e d a i r  b u b b l e s f r o m c o l l e c t i n g a t i t s s e n s i n g t i p . A two i n c h e s m a g n e t i c s t i r r e r r o d was p l a c e d i n s i d e t h e f l a s k .  long  A thermometer and  a f i n e g l a s s tube w h i c h was  to m a i n t a i n the pressure i n s i d e the  f l a s k d u r i n g i n s e r t i o n of t h e s t o p p e r were i n s e r t e d t h r o u g h t h e rubber s t o p p e r .  The f l a s k was  then k e p t i n a p l a s t i c w a t e r b a t h  m a i n t a i n e d a t the d e s i r e d t e m p e r a t u r e .  The s c h e m a t i c d i a g r a m o f  t h e m o d i f i e d E r l e n m e y e r f l a s k i s shown i n F i g u r e 3.  7.  Respirometer The R e s p i r o m e t e r  (Model G20, G i l s o n M e d i c a l E l e c t r o n i c s ,  M i d d l e t o n , W i s c o n s i n ) c o n s i s t e d of s e v e r a l r e a c t i o n v e s s e l s , e n t i a l manometers, d i g i t a l r e a d o u t v o l u m e t e r s , an a g i t a t o r a s t a i n l e s s s t e e l water bath w i t h a thermoregulator. v o l u m e t e r s were s t a t i o n a r y , each was  The  and digital  c o n n e c t e d by means o f a  f l e x i b l e , c a p i l l a r y , p l a s t i c tube t o t h e r e a c t i o n v e s s e l s . c a l i b r a t e d micrometer  differ-  A  c o u l d r e t u r n t h e manometer f l u i d t o i t s  c o n s t a n t p o s i t i o n by i n s e r t i n g an a c c u r a t e p i s t o n a c e r t a i n d i s t a n c e i n t o the e n c l o s e d volume i n o r d e r t o r e p l a c e the volume o f oxygen consumed i n t h e r e a c t i o n v e s s e l .  Temperature c o n t r o l i n the w a t e r  b a t h was p r o v i d e d by an e l e c t r o n i c r e l a y a c t u a t e d by a h e r m e t i c a l l y sealed thermoregulator.  8.  A c c u r a c y o f c o n t r o l was  ±0.02 C.  Temperature C o n t r o l l e r The t e m p e r a t u r e i n the t a n k r e a c t o r was  sensed by means o f  a t h e r m i s t e r probe w h i c h t r i g g e r e d a Temperature C o n t r o l l e r  (YSI  Thermistemp M o d e l 63, Y e l l o w S p r i n g s I n s t r u m e n t Co., O h i o ) .  The  c o n t r o l l e r then s w i t c h e d on a s o l e n o i d v a l v e (K27 Kompact, G e n e r a l  Figure 3 SCHEMATIC DIAGRAM OF THE MODIFIED ERLENMEYER FLASK -55-  Gloss Tube Robber Stopper-^  Collar cut from SOO mm Plastic Funnel Recorder  \  1 liter Erlenmeyer Flask  o o o  OO  Oxygen Analyser  Magnetic Stirrer  Oxygen Electrode  -56C o n t r o l s Co. Canada L i m i t e d ) a l l o w i n g a f l o w o f hot water i n accordance w i t h the demands o f the system.  -57-  CHAPTER 6  A.  PROCEDURES  ANALYTICAL METHODS 1.  T o t a l Iron The t o t a l i r o n concentration was measured w i t h an atomic  absorption spectrophotometer (Model 303, Perkin-Elmer, Norwalk, Connecticut) equipped w i t h a D i g i t a l Concentration Readout (Model DCR 1, Perkin-Elmer, Norwalk, Connecticut).  2.  F e r r i c Iron The f e r r i c i r o n concentration was measured w i t h thiocyanate  according to the method described by Sandell (S10).  The colour was  read a t 464 mp on a Z e i s s PMQ I I Spectrophotometer.  3.  Ferrous Iron The ferrous i r o n concentration of the sample was determined  v o l u m e t r i c a l l y w i t h standard potassium dichromate s o l u t i o n according to the method described by K o l t h o f f et^ a l . (K2).  4.  Inorganic and Organic Carbon The organic and i n o r g a n i c carbon contents of the sample  were determined by means of a T o t a l Carbon Analyzer (Model 915, Beckman Instruments Inc., C a l i f o r n i a ) .  -58B.  MAINTENANCE OF CULTURE The o r g a n i s m was a p u r e s t r a i n o f T_. f e r r o o x i d a n s N.C.I.B.  No. 9490.  I t was o r i g i n a l l y i s o l a t e d from mine w a t e r from  Beach, B.C. by R a z z e l l and T r u s s e l l (R5). The organisms  Britannia  t o be used  as a s t o c k c u l t u r e were m a i n t a i n e d on 9K medium on a g y r a t o r y s h a k e r , at  35° C and i n a carbon d i o x i d e e n r i c h e d atmosphere.  The c u l t u r e  was t r a n s f e r r e d t o a new medium e v e r y two t o f o u r weeks. A p p r o x i m a t e l y one week b e f o r e t h e e x p e r i m e n t was s c h e d u l e d , 5 m i l l i l i t e r s o f s t o c k c u l t u r e were i n o c u l a t e d i n t o two 250 m i l l i l i t e r , b a f f l e d - E r l e n m e y e r f l a s k s , each c o n t a i n i n g 100 m i l l i l i t e r s o f medium i d e n t i c a l t o t h a t t o be used l a t e r i n t h e e x p e r i m e n t .  These f l a s k s  were m a i n t a i n e d on t h e g y r a t o r y s h a k e r . As i n c u b a t i o n p r o c e e d e d ,  t h e c o l o u r o f t h e medium changed  g r a d u a l l y from green t o b r o w n i s h y e l l o w .  A one m i l l i l i t e r sample  was p i p e t t e d out and t h e f e r r o u s i r o n c o n c e n t r a t i o n d e t e r m i n e d time t o time.  from  When t h e f e r r o u s i r o n c o n t e n t became a p p r o x i m a t e l y  one q u a r t e r o f i t s i n i t i a l v a l u e , 5 m i l l i l i t e r s were t r a n s f e r r e d i n t o f r e s h medium and i n c u b a t e d a g a i n . t w i c e b e f o r e t h e medium was f i n a l l y  C.  The p r o c e d u r e was r e p e a t e d  used as i n o c u l u m f o r t h e e x p e r i m e n t .  PREPARATION OF MEDIUM The medium used i n t h e c o n t i n u o u s c u l t u r e was p r e p a r e d i n a  25 l i t e r p l a s t i c c o n t a i n e r .  The c o n t a i n e r was f i r s t s t e r i l i z e d w i t h  10% h y d r o c h l o r i c a c i d s o l u t i o n and t h e n , r e p e a t e d l y r i n s e d and washed w i t h 30% e t h y l a l c o h o l .  I t was f i n a l l y  rinsed with d i s t i l l e d  water  -59-  u n t i l no a l c o h o l r e s i d u a l was p r e s e n t . of  A p p r o x i m a t e l y 25 m i l l i l i t e r s  c o n c e n t r a t e d s u l f u r i c a c i d were added t o 20 l i t e r s o f  water s t o r e d i n the c o n t a i n e r .  distilled  Ammonium s u l f a t e , p o t a s s i u m c h l o r i d e ,  d i b a s i c p o t a s s i u m p h o s p h a t e , magnesium s u l f a t e and c a l c i u m n i t r a t e were added a c c o r d i n g t o t h e w e i g h t f r a c t i o n s p r e s c r i b e d i n T a b l e 1. The l i q u i d was s t i r r e d s l o w l y u n t i l a l l the b a s a l s a l t s were d i s s o l v e d , t h e n a known amount of f e r r o u s s u l f a t e c r y s t a l s were added. d i s t i l l e d w a t e r was added t o t h e 2 5 - l i t e r mark. was  More s u l f u r i c  t h e n added t o a d j u s t t h e pH t o t h e d e s i r e d v a l u e .  r e s u l t e d i n a c l e a r , green medium.  Additional acid  This procedure  The t o t a l i r o n and f e r r o u s  iron  c o n c e n t r a t i o n s o f t h e medium were d e t e r m i n e d from t i m e t o t i m e d u r i n g the  experiment. The media f o r t h e s h a k e - f l a s k e x p e r i m e n t s were p r e p a r e d  i n t h e same manner as mentioned above, but i n s m a l l e r q u a n t i t i e s However, f o r t h e t a n k r e a c t o r , tap w a t e r was used i n s t e a d of  distilled  water.  D.  SHAKE-FLASK TECHNIQUE The e f f e c t s o f i n i t i a l pH, n u t r i e n t c o n c e n t r a t i o n s , and the  w e i g h t f r a c t i o n o f s o l i d p a r t i c l e s on t h e s p e c i f i c growth r a t e o f T_. f e r r o o x i d a n s were examined i n s h a k e - f l a s k e x p e r i m e n t s on t h e gyratory shaker. 9K media w i t h i n i t i a l pHs o f 1.5, 1.7, prepared.  1.8,  1.9 and 2.1 were  A p p r o x i m a t e l y 5% i n o c u l u m was added and s t i r r e d  well.  Then 100 m i l l i l i t e r s o f medium were t r a n s f e r r e d i n t o each o f 20 t o 60,  -60250 m i l l i l i t e r , b a f f l e d , Erlenmeyer f l a s k s . f l a s k w i t h medium was  measured.  These were k e p t on the  s h a k e r p l a c e d i n an i n c u b a t i n g room. e v e r y day one  t o make up any l o s s due  f l a s k was  The w e i g h t o f each gyratory  D i s t i l l e d w a t e r was  to evaporation.  added  From t i m e t o t i m e  t a k e n out and i t s f e r r o u s i r o n c o n c e n t r a t i o n , c a r b o n  c o n t e n t , and pH d e t e r m i n e d .  The  f e r r i c i r o n concentration  was  d e t e r m i n e d by s u b s t r a c t i n g t h e f e r r o u s f r o m t h e t o t a l i r o n tion.  The  f e r r i c i r o n c o n c e n t r a t i o n was  p o n d i n g t i m e on s e m i l o g a r i t h m i c p a p e r . t h e T_. f e r r o o x i d a n s was  p l o t t e d against i t s corresThe  s p e c i f i c growth r a t e of  t h e n d e t e r m i n e d by m e a s u r i n g t h e s l o p e of  the r e s u l t i n g s e m i l o g a r i t h m i c  E.  concentra-  plot.  CONTINUOUS CULTURE TECHNIQUE A known amount of d i s t i l l e d w a t e r , v a r y i n g f r o m 5 t o  m i l l i l i t e r s was w h i c h was  i n j e c t e d t h r o u g h the s a m p l i n g  operated  r e a c t o r was  as a c l o s e d system.  recorded  The  a g i t a t i o n was  The p r e s s u r e change i n the  law.  e f f e c t o f f e r r o u s s u l f a t e c o n c e n t r a t i o n on t h e  growth r a t e o f the b a c t e r i a was apparatus.  hole i n t o the r e a c t o r  and t h e volume o f the a i r i n the r e a c t o r c o u l d  t h e n be c a l c u l a t e d a c c o r d i n g t o B o y l e ' s The  r e a c t o r was  s t u d i e d i n the c o n t i n u o u s  f i r s t f i l l e d w i t h prepared  s t a r t e d and the a g i t a t o r speed was  specific  culture  medium, t h e n  s e t a t 300  Next h u m i d i f i e d a i r c o n t a i n i n g 1% o f c a r b o n d i o x i d e was i n t o the r e a c t o r .  10  RPM.  introduced  As soon as the medium r e a c h e d a t e m p e r a t u r e o f  35°C, 25 m i l l i l i t e r s o f i n o c u l u m were i n j e c t e d i n t o the r e a c t o r t h r o u g h the s a m p l i n g  hole.  The  r e a c t i o n was  allowed to proceed  -61-  batch-wise u n t i l approximately the medium was o x i d i z e d . the r e a c t o r .  three-quarters of the ferrous i r o n i n  Then medium was pumped c o n t i n u o u s l y  The f l o w r a t e , f e r r i c and t o t a l i r o n  concentrations  were d e t e r m i n e d a t v a r i o u s i n t e r v a l s o f from 4 t o 24 h o u r s . s t e a d y - s t a t e c o n d i t i o n s were a c h i e v e d , analyzed.  When  t h e d a t a were c o l l e c t e d and  S i n c e t h e s p e c i f i c growth r a t e o f t h e b a c t e r i a s h o u l d be  e x a c t l y equal t o t h e d i l u t i o n r a t e i n t h i s continuous as was shown i n e q u a t i o n  c u l t u r e system,  ( 5 4 ) , t h e dependency o f t h e growth r a t e on  the s u b s t r a t e c o n c e n t r a t i o n c o u l d be e a s i l y  F.  through  evaluated.  TANK CULTURE TECHNIQUE  Nineteen  l i t e r s o f medium w i t h t h e d e s i r e d c o n c e n t r a t i o n  o f f e r r o u s i r o n were p r e p a r e d  i n the reactor.  A f t e r t h e medium  r e a c h e d 35°C, one l i t e r o f i n o c u l u m was added. t h e n t u r n e d on and t h e f e r m e n t a t i o n begun.  The a g i t a t o r was  The e f f e c t s o f v a r i o u s  e l e c t r o l y t e s on t h e s a t u r a t i o n oxygen s o l u b i l i t y and t h e e f f e c t s o f s o l i d p a r t i c l e c o n c e n t r a t i o n s on t h e oxygen t r a n s f e r c o e f f i c i e n t were studied. 1.  S a t u r a t i o n Oxygen S o l u b i l i t i e s An a p p r o x i m a t e l y ,  one l i t e r sample was p e r i o d i c a l l y  w i t h d r a w n from t h e tank r e a c t o r and used t o f i l l E r l e n m e y e r f l a s k d e s c r i b e d i n Chapter 4:C:6. air  the modified  The s m a l l e n t r a p p e d  b u b b l e s i n t h e medium were a l l o w e d t o s u r f a c e .  however, were a t t a c h e d  Some o f them,  t o t h e w a l l o f t h e f l a s k , but minor a g i t a t i o n  w i t h a g l a s s r o d was a b l e t o f r e e them.  The r u b b e r s t o p p e r was  t h e n i n s e r t e d and t h e magnetic s t i r r e r t u r n e d on. The oxygen p a r t i a l  -62p r e s s u r e was measured and r e c o r d e d on a s t r i p c h a r t r e c o r d e r .  The  r a t e o f oxygen p a r t i a l p r e s s u r e change was c a l c u l a t e d from t h e s l o p e of the oxygen p a r t i a l p r e s s u r e - time t r a c e . O c c a s i o n a l l y the r a t e o f oxygen d e p l e t i o n was so h i g h  that  the oxygen p a r t i a l p r e s s u r e dropped t o n e a r l y z e r o by t h e time the sample was t r a n s f e r r e d i n t o the f l a s k .  I n such c a s e s , a few drops  o f d i l u t e d hydrogen p e r i o x i d e were added, b r i n g i n g the oxygen  tension  t o a p p r o x i m a t e l y 200 mmHg, and then the r a t e change d e t e r m i n e d . P r e l i m i n a r y experiments showed t h a t the a d d i t i o n o f hydrogen p e r o x i d e d i d not a f f e c t the b a c t e r i a l  activities.  A t t h e same time as t h e one l i t e r  sample was taken from  the tank f o r the Erlenmeyer f l a s k e x p e r i m e n t , two t o f i v e samples o f 2-4  m i l l i l i t e r s o f medium e a c h were p l a c e d i n t h e G i l s o n R e s p i r o -  meter a t 35°C.  The oxygen uptake r a t e was measured i n m i c r o l i t e r s  of oxygen p e r hour and was then c o n v e r t e d i n t o m i l l i g r a m s o f oxygen p e r l i t e r p e r hour. Based on the f a c t t h a t normal a i r c o n t a i n s 21% oxygen, and c o r r e c t i n g t h i s f o r the added amount o f C 0 and f o r the water 2  vapour c o n t e n t , the p a r t i a l p r e s s u r e o f oxygen i n the a i r was 150 mmHg.  A c c o r d i n g t o Henry's law,  P = He C*  .  C* i s the s a t u r a t i o n s o l u b i l i t y i n e q u i l i b r i u m w i t h a i r s o ,  (78)  -63(79)  D i f f e r e n t i a t i n g e q u a t i o n (78) and s u b s t i t u t i n g f o r He from (79) we have,  C* = 150 (|§)/<a£)  (80)  C* was then c a l c u l a t e d a c c o r d i n g t o e q u a t i o n (80) by knowing t h e oxygen u p t a k e r a t e and t h e r a t e o f oxygen t e n s i o n change. s a t u r a t i o n s o l u b i l i t i e s a t 35°C o f 0  2  i n media c o n t a i n i n g A.5,  9.0, 13.5, and 18.0 grams p e r l i t e r o f i r o n were t h u s  2.  The  determined.  E f f e c t o f S o l i d P u l p D e n s i t i e s on 1^ The e f f e c t o f s o l i d f r a c t i o n on  was e v a l u a t e d by  assuming t h a t t h e a d d i t i o n o f s o l i d p a r t i c l e s had no e f f e c t on t h e magnitude o f t h e a i r - l i q u i d i n t e r f a c i a l a r e a i n t h e tank.  Note t h a t  i n t h i s case t h e i n t e r f a c i a l a r e a r e f e r r e d t o i s t h e s u r f a c e a t t h e top o f t h e l i q u i d .  I n t h e s e e x p e r i m e n t s no a i r was sparged i n t o t h e  tank below t h e l i q u i d s u r f a c e and hence t h e r e were no b u b b l e s p r e s e n t . T h i s i n t e r f a c i a l a r e a was assumed t o be c o n s t a n t a t c o n s t a n t a g i t a t o r speed.  The a g i t a t i o n speeds ranged from 300 t o 600 RPM and s o l i d s  p u l p d e n s i t y o f up t o 15 (w/v) p e r c e n t were s t u d i e d . A i r w i t h 2% C 0 was p a s s e d t h r o u g h t h e t o p o f t h e r e a c t o r , 2  a l l o w i n g t h e oxygen t o be t r a n s f e r r e d o n l y by means o f f r e e , as opposed t o submerged, s u r f a c e a e r a t i o n .  D i s s o l v e d oxygen, f e r r o u s  -64and  t o t a l i r o n concentrations  uptake r a t e was  were measured c o n s t a n t l y .  a l s o determined.  As  the  The  fermentation proceeded,  the d i s s o l v e d oxygen c o n c e n t r a t i o n  d e c r e a s e d r a p i d l y as  reaction increased  The  exponentially.  f i n a l l y r e a c h e d a minimum l e v e l and concentration which was  remained c o n s t a n t . o f oxygen p e r  The  the  e x p r e s s e d i n grams p e r  t o the v a l u e of r e a c t i o n by  3.  was  The  K^a  the oxygen c o n c e n t r a t i o n  300  to 700  t o 17.15  K^a  v a l u e s were determined i n the  directly  proportional of  sparged tank.  The  to  a g i t a t i o n speeds ranged from  the s u p e r f i c i a l a i r v e l o c i t i e s ranged from the  The  oxygen uptake r a t e s r a n g i n g up  l i t e r were o b s e r v e d .  solid particle  1.94  concentrations  20%.  9K medium was s u p p l i e d was  by  Sparged Tank  f e e t p e r h o u r , and  ranged from 0 t o  hour  driving force.  i n the  RPM,  constant  stoichiometric  d i v i d i n g the r a t e  K^a  o f O2 p e r  mg  reaction  milligrams  l i t e r per  to the  v a l u e which was  thus c a l c u l a t e d by  b a c t e r i a l numbers were such t h a t 200  rate of  c a l c u l a t e d by m u l t i p l y i n g the  a f a c t o r of 16,000/111.7 or 143.24, a c c o r d i n g (59).  The  r a t e o f oxygen d i f f u s i o n a l s o  l i t e r per hour was  r a t i o of equation  The  of  concentration  remained c o n s t a n t .  r a t e of r e a c t i o n expressed i n  r a t e of f e r r i c p r o d u c t i o n ,  the r a t e  d i s s o l v e d oxygen  d r i v i n g f o r c e thus became c o n s t a n t .  then c o n t r o l l e d by  oxygen  enriched  used throughout these experiments.  w i t h 1 t o 9%  CO2.  The  air  -65P r i o r t o each r u n , the d i s s o l v e d oxygen t e n s i o n reduced t o a p p r o x i m a t e l y 10 mmHg by t h e d e s o r p t i v e nitrogen bubbles.  The a g i t a t i o n was  provided  and a e r a t i o n s t a r t e d .  r e c o r d e d on a s t r i p  Then a g i t a t i o n was  K^a was  time p l o t s a c c o r d i n g  t o a proposed  samples  withdrawn from the tank, and f e r r o u s and t o t a l i r o n  i n the Erlenmeyer  the oxygen uptake r a t e was  f l a s k u n i t and i n the tank.  the measurement was  made by measuring  t e n s i o n w h i l e a e r a t i o n was  was  i n the next s e c t i o n .  From time t o t i m e , 10 t o 25 m i l l i l i t e r s  Occasionally,  again  then c a l c u l a t e d from  r e c t i f i c a t i o n method w h i c h w i l l be d e s c r i b e d  determined.  any  The i n c r e a s i n g oxygen t e n s i o n  chart recorder.  the r e s u l t i n g oxygen t e n s i o n  e f f e c t of r i s i n g  then stopped t o a l l o w  e n t r a p p e d bubbles i n the medium t o e s c a p e .  was  were  concentrations measured b o t h  In the l a t t e r  case,  the d e p l e t i o n r a t e of oxygen  interrupted.  Large q u a n t i t i e s of  nitrogen  gas were p a s s e d o v e r the open top o f the tank so t h a t the e f f e c t o f f r e e s u r f a c e a e r a t i o n would be  G.  RECTIFICATION METHOD FOR  minimized.  CALCULATION OF  K^a  The oxygen b a l a n c e o f t h e system w i t h s i m u l t a n e o u s d i f f u s i o n and b i o l o g i c a l r e a c t i o n can be e x p r e s s e d  by,  = K ^ i (C* - C) - r X  However, i n t h e l o g a r i t h m i c phase of t h e b a c t e r i a l growth,  < > 81  t h e oxygen  uptake r a t e i s d i r e c t l y p r o p o r t i o n a l t o the t o t a l b a c t e r i a l p o p u l a t i o n .  -66Thus,  rX « X = X  Although  Q  Exp  (ut)  (82)  the b a c t e r i a l p o p u l a t i o n i n c r e a s e s e x p o n e n t i a l l y w i t h  time,  t , i f the time i n t e r v a l o f an e x p e r i m e n t i s s m a l l then the change i n p o p u l a t i o n can be n e g l e c t e d .  A l s o i f Kj_a i s c o n s t a n t  (i.e.in  the s l o w r e a c t i o n regime) equation. (.81), can be r e a r r a n g e d and  inte-  grated to g i v e ,  C  *  "  "  C  +  ( C  *  "  Lt  Equation  " o> C  Exp(-K a t)  (83) d e s c r i b e s the oxygen b a l a n c e  f o r the case of s i m u l t a -  neous d i f f u s i o n and slow b i o l o g i c a l r e a c t i o n . (1) w i t h the r e a c t i o n ( i . e . rX = 0) e q u a t i o n  C* - G  =  (83)  L  LI  (C* - C ) D  Exp(-K a t) L  which i s i d e n t i c a l to equation  Two  s p e c i a l cases  exist;  (83) becomes,  (84)  (65) f o r the case o f p h y s i c a l a b s o r p -  tion. (2) when t -> », e q u a t i o n  rX  =  K a L  (C* - C ) Q  (83) becomes,  (85)  r e v e a l i n g t h a t a t the s t e a d y - s t a t e , the oxygen uptake r a t e i s e q u a l to the r a t e o f  transfer.  -67However, E q u a t i o n  (83) can be w r i t t e n i n g e n e r a l s e m i -  l o g a r i t h m i c form as»  j  = a + m* Exp n ' t  (  8  6  )  where  y. = C* - C 1 a  I  = rX/Kja  m' = C* - r X / l ^ a - C n  ( ) 8 7  Q  ' -- V  Equation  In  (y  where  Davis  (86) can be r e a r r a n g e d  - a) = m + n' t  ( 8) g  m = In m  1  (D3) has p r e s e n t e d  a c u r v e - r e c t i f i c a t i o n procedure  f o r the constants,m', n', and a. yi Points  t o the form,  The p r o c e d u r e  for solving  i s as f o l l o w s :  i s p l o t t e d a g a i n s t t on a r i t h m e t i c c o - o r d i n a t e paper.  ( t i , y i ) a n d ( t , yz) 2  a  r  e  chosen near the e x t r e m i t i e s o f a  smooth curve c a r e f u l l y drawn to r e p r e s e n t the d a t a . v a l u e o f y3 where,  Then r e a d the  -68A l l t h r e e p o i n t s s h o u l d be on t h e c u r v e r e p r e s e n t e d by e q u a t i o n ( 8 8 ) , so,  I n (y  - a) = m + n' t  In ( y  - a) = m + n  1  2  In (y^ - a )  1  '\  ±  t  (90)  2  = m + n' t ^  S u b s t i t u t e e q u a t i o n (89) i n t o e q u a t i o n (90) and s o l v e f o r a,  y  l 2 "  y  y  l  "  y  -^4 +  y  2  3 2 y  (91)  3  Once a i s c a l c u l a t e d , t h e p l o t o f I n (y - a) v e r s u s t w i l l y i e l d  a  s t r a i g h t l i n e w i t h i t s s l o p e e q u a l t o h , and i t s i n t e r c e p t e q u a l 1  t o m.  T h i s p r o c e d u r e was  of the atmospheric  a p p l i e d by I s s a c s et_ a l .  (12) i n a s t u d y  oxygenation of water i n a simulated r e c e i v i n g  s t r e a m as a t o o l f o r e v a l u a t i o n of K^a and C* v a l u e s . The  drawback of t h i s p r o c e d u r e  i s t h a t t h e a v a l u e as  c a l c u l a t e d i s based o n l y on t h r e e p o i n t s , thus i s s e n s i t i v e t o t h e a c c u r a c y and l o c a t i o n o f the p o i n t s chosen. a procedure d a t a was  f o r e s t i m a t i n g a,m'  To overcome t h i s  problem  and n' based on a l l t h e a v a i l a b l e  developed. I f t h e d a t a a r e t o f o l l o w e q u a t i o n ( 8 8 ) , t h e n , f o r each a  v a l u e a s t r a i g h t l i n e can be drawn t o f i t y and i t s c o r r e s p o n d i n g t value.  The sum o f square o f d e v i a t i o n s f r o m t h e drawn l i n e i s ,  -69-  = =  SS  I i=l  =  e i 2  jf[ln (y (y. -- a) a) -- mm -- nn''ttj ]^ llln  2  (92)  We s h a l l choose as estimates f o r m, n' and a the values which w i l l produce the l e a s t p o s s i b l e value of SS, hence the f i r s t d e r i v a t i v e s w i t h respect to m, n' and a s h a l l be equal to zero, thus,  i§i = 9m  2l l n ( y  i3n' Si  =  2l  -  2l l n (  ln(  ±  - a) - m - n't  (-1) =  0  y i  - a) - m - n't  (-t) =  0  y i  - a) - m - n't  3SS  .  3T"  / —1 \ _  <-J^>-  < > 93  r\ 0  Although there are three normal equations w i t h three unknowns, a unique s o l u t i o n f o r m, n'and a cannot be obtained, because of the s i n g u l a r i t y of the c o e f f i c i e n t matrix of the equation ( 9 3 ) . Thus a f u r t h e r c o n d i t i o n i s needed.  For various a values a s t r a i g h t  l i n e can be forced to best f i t the data using a least-square method, but the degree of goodness of f i t provided by t h i s estimated l i n e w i l l depend on how c l o s e the chosen value of a i s t o the true value. The goodness of f i t of the l i n e can be judged by the r a t i o R  2  which  i s equal t o the r a t i o of the sum of squares due t o the r e g r e s s i o n to the sum of squares about the mean, SSxy r  2  =  where  sb s b  2  x x SSy y b b  < > 94  -70S S  xv 'xy  I  -  -  SS  y 2 t  xx ss J  Y  =  y v  yy =  The R  n  tY  jv  2  ^  "  ,2  <M  (95)  n  (7Y) n  2  I n (y - a) v a l u e i s t h e parameter used t o a s s e s s t h e goodness o f f i t o f  2  a regression l i n e .  The h i g h e r t h e R  2  v a l u e , t h e more a c c u r a t e l y t h e  regression l i n e represents a l l the data.  The g r e a t e r t h e d e v i a t i o n  o f a f r o m t h e t r u e a v a l u e , t h e more t h e R unity.  A t y p i c a l r e l a t i o n s h i p between R  2  2  v a l u e w i l l d e v i a t e from  and a i s shown i n F i g u r e 4.  I t i s o u r o b j e c t t o choose an a p p r o p r i a t e a v a l u e w h i c h w i l l y i e l d a maximum R , i . e . one t h a t i s n o t t o o f a r f r o m u n i t y . 2  f i r s t d e r i v a t i v e of equation  „  !_ 8a  3a  *y SS SS ( S S  X X  Substitute equation  F(a)  3R 3a  =  -I +  -  ) 2  The  (95) s h a l l thus be z e r o .  o  (96)  u y y  (95) i n t o (96) and r e a r r a n g e  2  <^T>  l^>  + K~;)  t M tC(I^)  M  Y  ]  (97) 2  - n£ Y ]  CnltY - MYI  2  -  0  -71-  Figure A TYPICAL BETWEEN  R * 2  R  4  RELATIONSHIP 2  AND <  VALUES  1,0  l4i  % a:  CVJ  estimate of - VALUE tfilest  <  °C  Equation (97) can be solved either through t r i a l and error or by the Newton-Raphson method (N2). In the l a t t e r case a further d e r i vative of equation (97) i s needed.  F'(a)  =  ^  da  +y it-^—^2  +  tY  L  L  - a)  (y  t  _ y 2y Y  L  - I  T  Y  I  (  y  - r ^ ) 2  2  i  y  + ^ T Y L — n (.y - a L  L  „ _ y  ^(y - a )  ^  ytY(y-^-) n ^y - a 1  It  ?  _ 1 y  (y - a) (y - a) n  2  - £ M Y £  (  ^ - ^  )  2  (98)  2  L  - ^  t  y y y  1  n ^ (y - a ) ^ ^ (y - a) M ( 7 ^ ) 2  An a r b i t r a r y a value i s f i r s t given and a new a value i s calculated according to the equation,  a. ... v.  i+l  = a.  i  (QQ\  _ ZiHl  F'(a)  If the i n i t i a l l y  ^  }  estimated a value i s s u f f i c i e n t l y close  to the true a , that i s , i f F(a) does not become excessively large and i f F ( a ) i s not too close to zero, an i t e r a t i o n method can be 1  applied to converge equation (99). Once a i s determined, n and m can then be calculated e a s i l y from the following,  the constants  -73n  =  S S  XY  / S S  XX  (100) m  =  lY/n  - n'£t/n  J  T h i s p r o c e d u r e can be used i n c a l c u l a t i n g a K^a v a l u e i n a batch  (unsteady s t a t e ) f e r m e n t i o n  concentration aeration.  by measuring, d i s s o l v e d oxygen  o f a p r e v i o u s l y s t r i p p e d medium d u r i n g t h e p e r i o d o f  -74CHAPTER 7 A.  EFFECT OF I N I T I A L pH ON THE The  J_.  RESULTS AND  DISCUSSIONS  SPECIFIC GROWTH RATE  e f f e c t o f i n i t i a l pH on the s p e c i f i c growth r a t e o f  f e r r o o x i d a n s a t 35 C i s p r e s e n t e d i n F i g u r e 5 where the  i r o n c o n c e n t r a t i o n i s p l o t t e d a g a i n s t time on  ferric  semilogarithmic  p a p e r based on the d a t a w h i c h a r e t a b u l a t e d i n A p p e n d i x I . f i g u r e shows t h a t an i n i t i a l pH o f between 1.80  and 2.10  The  had  no  s i g n i f i c a n t e f f e c t on the maximum s p e c i f i c growth r a t e , b u t t h e i n i t i a l pH, however s l i g h t l y , p r o l o n g e d b a c t e r i a l growth.  In  the l a g phase o f  I n a d d i t i o n , the growth a t pH = 1.50  s i g n i f i c a n t l y s l o w e r t h a n t h a t a t h i g h e r pH  lowering  was  values.  a l l c a s e s , the pH v a l u e o f the medium i n c r e a s e d a t the  b e g i n n i n g o f the f e r m e n t a t i o n .  A t t h i s e a r l y s t a g e , the c o l o u r o f  the medium changed f r o m green t o brown and no p r e c i p i t a t i o n observed.  was  However, as the f e r m e n t a t i o n n e a r e d c o m p l e t i o n , y e l l o w i s h  p r e c i p i t a t i o n s were o b s e r v e d  around the w a l l s of the f l a s k and  pH o f the medium g e n e r a l l y s t a b i l i z e d a t between 2.10 same o b s e r v a t i o n was The  the  made by Macdonald (M3)  the  t o 2.20.  The  and Lau e t a l . ( L 9 ) .  s t a b i l i z a t i o n o f pH i n d i c a t e d an e q u i l i b r i u m between the p r o -  d u c t i o n and c o n s u m p t i o n o f s u l f u r i c  acid.  T h r e e weeks a f t e r the end o f the f e r m e n t a t i o n , the medium was  f i l t e r e d and the t o t a l d i s s o l v e d i r o n i n the f i l t r a t e was  The pH v a l u e a t t h i s moment i s c a l l e d the e q u i l i b r i u m pH. a r e t a b u l a t e d i n T a b l e 2.  The  The  results  s o l u b l e i r o n concentrations at various  f i n a l pH v a l u e s a r e compared w i t h the s o l u b i l i t y o f f e r r i c i n F i g u r e 6.  The  measured.  hydroxide  l o w e r i r o n s o l u b i l i t y i n 9K medium as compared  -75-  Figure 5 THE EFFECT OF INITIAL pH ON THE SPECIFIC GROWTH RATE OF T. f e r r o o x i d a n s AT 3 5 ° C  pH 1,80;  D' py°/^PH  15 20 TIME, hr.  ''70  -76TABLE 2 THE MAXIMUM SPECIFIC GROWTH RATE OF THIOBACILLUS FERROOXIDANS AS A FUNCTION OF INITIAL AND EQUILIBRIUM pH  Final Soluble Fe+++(g/l)  Equilibrium pH (after 3 weeks)  Initial pH  Final PH  (hour)  2.10  2.20  0.116  3.24  2.20  1.90  2.20  0.116  5.20  2.15  1.80  2.15  0.114  7.12  2.20  1.70  2.15  0.109  6.75  2.10  1.50  1.65  0.096  8.44  2.05  - 1  Figure  6  SOLUBILITY OF FERRIC IRON IN 9K MEDIUM AT VARIOUS EQUILIBRIUM pH VALUES  3.0 rFe(0H) . F e 3  2,5 UJ  +++  + 30H  o*°*  < 2.0  9k medium  1.5 1.0  I I  I  1 i i i  1  5 10 20 FERRIC IRON CONCENTRATION, g/l  J  J  50  -78w i t h the f e r r i c h y d r o x i d e  s o l u b i l i t y product  i n d i c a t e d that the  e l e c t r o l y t e s c o n t a i n e d i n t h e medium promote the p r e c i p i t a t i o n o f f e r r i c i o n s i n some o t h e r form. S i n c e i t was confirmed  that i n the b i o l o g i c a l o x i d a t i o n  of 9K medium most o f t h e i r o n would appear t o be p r e c i p i t a t e d i n t h e j a r o s i t e form  (B3), and s i n c e t h e s t a b i l i z a t i o n o f pH which o c c u r r e d  d u r i n g t h e f e r m e n t a t i o n was an i n d i c a t i o n t h a t an e q u i l i b r i u m between t h e p r o d u c t i o n and consumption o f s u l f u r i c a c i d , i t i s reasonable  t o assume t h e o v e r - a l l r e a c t i o n t o be a c c o r d i n g t o e q u a t i o n  (59),  20 FeSOit + 18H 0 + 5 0 2  According  2  4Fe (S0i+)3 + 4 ( H 3 0 ) F e ( S 0 i t ) ( 0 H ) 2  3  2  t o t h i s e q u a t i o n , e i g h t out o f twenty f e r r i c i r o n m o l e c u l e s  (or 40%) s h o u l d be s o l u b l e i n t h e f i n a l medium as f e r r i c and  the remaining  jarosite.  (59)  6  s i x t y percent  sulfate  o f f e r r i c i r o n s h o u l d p r e c i p i t a t e as  The r e s u l t p r e s e n t e d i n T a b l e 2 show t h a t , a t pH =  t h e r e a r e 3.24  grams f e r r i c i r o n p e r l i t e r ,  2.10,  out of a p o s s i b l e t o t a l of  9 . 0 grams f e r r i c i r o n i n 9K medium, i n t h e d i s s o l v e d form.  This i s  3 . 2 4 / 9 . 0 o r 36 p e r c e n t i r o n i n s o l u t i o n which i s r e a s o n a b l y  c l o s e to  c l o s e t o 40 p e r c e n t  as p r e d i c t e d a c c o r d i n g to e q u a t i o n ( 5 9 ) .  I n o r d e r t o e v a l u a t e t h e e f f e c t s o f s o l i d s c o n c e n t r a t i o n on the r a t e o f oxygen t r a n s f e r a t h i g h oxygen uptake r a t e s , i t i s d e s i r a b l e t o choose a system w i t h a h i g h v a l u e o f s p e c i f i c  growth  -79 rate and a low degree of p r e c i p i t a t i o n . pH of the system was  B.  set at 1.80  EFFECT OF SOLIDS  For t h i s reason the  initial  i n subsequent experiments.  PtTLP DENSITY ON GROWTH IN SHAKE FLASKS  Figure 7 shows the e f f e c t of various s o l i d s  concentrations  of washed glass beads of 63 microns i n s i z e , on the growth rate of T_. ferrooxidans i n shake-flasks. i n i t i a l pH was  set at 1.80.  The temperature was  Solids concentrations  35°C and  of up to  weight percent had no a f f e c t on the maximum growth rate. s l i g h t l y prolong the l a g time of the b a c t e r i a . however, was  observed at 1% s o l i d s .  I t was  the  0.5  They did  Slower growth r a t e ,  found that the b a c t e r i a  f a i l e d to grow at a s o l i d s concentration of more than 5%. However, s i g n i f i c a n t b a c t e r i a l growth was  observed i n  the f l a s k , containing 9K medium and 5% glass beads, which  was  standing s t i l l i n the incubating room without gyratory action. was  It  hence concluded that the grinding action between the beads and  flask was  damaging the b a c t e r i a l c e l l .  I t i s worth mentioning that  i n the m i c r o b i o l o g i c a l leaching of zinc s u l f i d e performed by Torma et a l . (T3) , i t was  reported that although the extraction rate  was  d i r e c t l y proportional to the pulp density below 13%, the rate decreased s i g n i f i c a n t l y at the pulp densities over 16%. for  this decreasing  rate was  The  reason  not explained by the author, but a  possible explanation i s that the b a c t e r i a l c e l l s were damaged by grinding action.  the  The pulp density which would damage the b a c t e r i a l  c e l l s appears to be 16% for zinc s u l f i d e concentrate  and 5% for glass  -80-  Figure 7 EFFECT OF SOLIDS PULP DENSITY ON THE GROWTH RATE OF T ferrooxidans IN SHAKE-FLASK EXPERIMENTS AT 35°C, pH=l.80 IOI  o Without particles +Q2&*?j\ X 0,25% of 63 >i g lass beads '> V •** A 0,50% / / / < mmLmL  •  |  i  0  °  //  %  • 5,00%  O  /  y  ///  /// /// / V /  /  /  9  0  5  10  J  15 20 TIME, hr.  1  25  1  30  1  35  The h i g h e r v a l u e f o r z i n c s u l f i d e may be due t o d i f f e r e n c e s i n p a r t i c l e shape, hardness and p a c k i n g . to  support  However, t h e r e i s no a v a i l a b l e e v i d e n c e  such s p e c u l a t i o n s .  C. EFFECT OF NUTRIENTS ON GROWTH IN SHAKE FLASKS The e f f e c t o f b a s a l s a l t s and t o t a l i r o n c o n c e n t r a t i o n on the maximum s p e c i f i c growth r a t e were a l s o s t u d i e d i n t h e s h a k e - f l a s k apparatus.  The e x p e r i m e n t s were c a r r i e d out o v e r a range encompassing  0.1 t o 3.0 times t h e amount o f b a s a l s a l t s , and 0.5 t o 3.0 times t h e amount o f t o t a l i r o n c o n t a i n e d i n 9K medium. the media was s e t a t 1.80. to  The i n i t i a l pH o f a l l  The d a t a a r e p r e s e n t e d  i n Appendices I I - l  I I - 4 and t h e r e s u l t s summarized i n T a b l e 3. T h i s s t u d y was c a r r i e d out i n an attempt t o f i n d out t h e  h i g h e s t p o s s i b l e oxygen u p t a k e r a t e o f T_. f e r r o o x i d a n s i n v a r i o u s media so t h a t t h e s t u d y c o u l d be e x t e n d e d i n t o t h e f a s t - r e a c t i o n regime. to  However, t h e a d d i t i o n o f more b a s a l s a l t s and i r o n  i n c r e a s e t h e growth r a t e o f t h e b a c t e r i a .  failed  G e n e r a l l y they were  inhibitory.  D.  EFFECT OF FERROUS IRON CONCENTRATION The dependency o f t h e s p e c i f i c growth r a t e on f e r r o u s i r o n  c o n c e n t r a t i o n s a t v a r i o u s t o t a l i r o n c o n c e n t r a t i o n s was s t u d i e d i n b o t h t h e s h a k e - f l a s k a p p a r a t u s and t h e c o n t i n u o u s a t 35°C and i n i t i a l pH o f 1.80.  culture  apparatus,  -82TABLE 3 EFFECT OF BASAL SALTS AND TOTAL IRON CONCENTRATIONS ON THE MAXIMUM SPECIFIC GROWTH RATE OF T. FERROOXIDANS, IN HOUR" , 1  IN A C 0 ENRICHED ATMOSPHERE, AT 35°C AND pH = 1.80 2  Iron B.S?*\^^  4.5 g/1  9.0 g/1  INSIG**  INSIG  INSIG  INSIG  1/2  0.116  0.116  0.060  0.049  1.0  0.116  0.116  0.060  0.053  2.0  0.092  0.106  0.060  0.059  3.0  0.095  0.097  0.060  0.052  1/10  18.0 g/1  27.0 g/1  Basal s a l t s c o n c e n t r a t i o n expressed as f r a c t i o n o f b a s a l s a l t s c o n t a i n e d i n S i l v e r m a n ' s 9K medium Insignificant  growth  -83In the shake-flask  e x p e r i m e n t s , growth r a t e s a t t o t a l i r o n  concentrations  o f 0.899, 1.190, 4.201 and 10.599 grams p e r l i t e r  were s t u d i e d .  The r e s u l t s a r e t a b u l a t e d  i n Appendices IV-1 t o IV-4.  L i n e w e a v e r - B u r k p l o t s o f t h e r e s u l t s a r e shown i n F i g u r e  8 where  the r e c i p r o c a l o f t h e s p e c i f i c growth r a t e , 1/y, i s p l o t t e d the r e c i p r o c a l o f f e r r o u s i r o n c o n c e n t r a t i o n , and  1/S.  against  From t h e i n t e r c e p t  t h e s l o p e o f t h e r e s u l t a n t s t r a i g h t l i n e , t h e maximum s p e c i f i c  growth r a t e , u m  and t h e s a t u r a t i o n c o n s t a n t , K •  s  were c a l c u l a t e d . .  The r e s u l t s o f t h e e x p e r i m e n t s c o n d u c t e d i n t h e c o n t i n u o u s c u l t u r e apparatus a t t o t a l i r o n concentrations and  o f 0.524, 1.214,  3.295 grams p e r l i t e r a r e g i v e n i n A p p e n d i c e s V - l t o V-3.  The  L i n e w e a v e r - B u r k p l o t s o f t h e r e s u l t s a r e shown i n F i g u r e 9. The v a l u e s o f u and K were a l s o c a l c u l a t e d f r o m t h e i n t e r c e p t and m s slope of the p l o t . The maximum s p e c i f i c growth r a t e s and t h e s a t u r a t i o n  constants  o b t a i n e d f r o m b o t h t h e b a t c h and c o n t i n u o u s c u l t u r e t e c h n i q u e s a t various  i r o n concentrations  a r e shown i n T a b l e 4.  not as s t r a i g h t f o r w a r d as t h o s e r e p o r t e d e t a l . ( L 7 ) . MacDonald gave  by MacDonald (M4) and L a c e y  = 0.161 hour  1  and K  p e r l i t e r i n c o n t i n u o u s c u l t u r e as compared w i t h y K u  s m  = 0.402 i n b a t c h c u l t u r e . = 0.20 h o u r  1  a t 31°C and K  The r e s u l t s a r e  m  g  = 0.215 grams = 0.145 and  Lacey e t a l . (L7) r e p o r t e d s  varying  l i t e r using a batch culture technique.  randomly between 1 and 2 grams/ Our r e s u l t s showed t h a t  y  m  v a l u e s i n c o n t i n u o u s c u l t u r e and i n b a t c h c u l t u r e were 0.134 and 0.116 h o u r  1  respectively.  The s a t u r a t i o n c o n s t a n t was found t o be  -84-  Figure  8  THE LINEWEAVER AND BURK PLOT FOR SHAKE-FLASK STUDIES  0  5  10 15 ' / e (g Fe /l )"' ++  20  25  -85-  Figure 9 THE LINEWEAVER AND BURK PLOT FOR THE CONTINUOUS CULTURE APPARATUS 40-  -  x  TABLE 4 MAXIMUM SPECIFIC GROWTH RATE AND K  OF THIOBACILLUS FERROOXIDANS  DETERMINED BY BATCH AND CONTINUOUS CULTURE TECHNIQUES  Batch Culture T o t a l Iron (g/D  Technique  (hour)  -1  Continuous Culture Technic [ue (g/D  T o t a l Iron (g/D  (hour)  1  (g/D  0.899  0.116 '  0.119  0.524  0.134  0.122  1.190  0.116  0.230  1.214  0.134  0.181  3.921  0.116  0.633  3.295  0.134  0.253  10.599  0.116  1.218  -87not o n l y dependent on the l e v e l o f t o t a l i r o n , but a l s o a f f e c t e d by  the c u l t u r e t e c h n i q u e  significantly  employed.  Perhaps i t s h o u l d be mentioned t h a t b o t h MacDonald t h i s author employed Lineweaver-Burk p l o t s t o o b t a i n K et a l . ( L 7 ) , however, developed  a new  (M4)  values.  g  and Lacey  method which r e l i e d h e a v i l y on  the f e r r o u s i r o n c o n c e n t r a t i o n s d u r i n g the f i n a l s t a g e of the fermentation. failed  The  a p p l i c a t i o n of Lacey  et^ a l . ' s method by t h i s  t o produce r e l i a b l e r e s u l t s .  T h i s might be due  author  to the  t h a t because Lacey's method u t i l i z e s o n l y d a t a t a k e n near the f e r m e n t a t i o n and because a l i n e through  the end  not s u f f i c i e n t l y  Fe  g r e a t t o g i v e an a c c u r a t e v a l u e f o r  I t i s b e l i e v e d t h a t the r e s u l t s o b t a i n e d from the  T h i s i s because the growth r a t e i n the b a t c h  changes s i g n i f i c a n t l y o n l y i n the l a s t  few hours o f the  K. g  continuous  c u l t u r e t e c h n i q u e are more r e l i a b l e than those from the b a t c h technique.  of  t h i s d a t a must be e x t r a -  p o l a t e d t o time zero the a c c u r a c y r e q u i r e d i n the a n a l y s i s of c o n t e n t was  fact  culture  culture experiment,  thus an a c c u r a t e d e t e r m i n a t i o n of the s p e c i f i c growth r a t e i s d i f f i cult.  On  the o t h e r hand, i n c o n t i n u o u s  c u l t u r e , the s p e c i f i c  r a t e i s e x a c t l y e q u a l t o the d i l u t i o n r a t e w h i c h can be from the a c c u r a t e l y monitored  E.  OXYGEN UPTAKE RATE AND  growth  calculated  f l o w r a t e o f the medium.  CARBON FIXATION  The b a c t e r i a l carbon  content, f e r r i c i r o n concentration  and oxygen uptake r a t e of T_. f e r r o o x i d a n s i n media w i t h v a r i o u s n u t r i e n t l e v e l s were measured i n the sparged  tank r e a c t o r .  The b a s a l  J  -88s a l t s and t o t a l i r o n c o n c e n t r a t i o n were two, and t h r e e times t i v e l y t h o s e o f t h e n u t r i e n t l e v e l s o f 9K medium.  respec-  A i r containing  1% c a r b o n d i o x i d e was i n t r o d u c e d i n t o t h e r e a c t o r a t a s u p e r f i c i a l v e l o c i t y o f 12.6 f e e t p e r h o u r .  The a g i t a t i o n speed was s e t a t  500 RPM. When f e r r i c i r o n c o n c e n t r a t i o n , b a c t e r i a l c a r b o n c o n t e n t and oxygen u p t a k e r a t e were p l o t t e d a g a i n s t t i m e on s e m i l o g a r i t h m i c p a p e r , a s e r i e s o f s t r a i g h t l i n e s w i t h an i d e n t i c a l s l o p e were o b t a i n e d as i t i s shown i n F i g u r e 10. data presented  i n Appendix V I .  c o u l d be r e p r e s e n t e d  P  r  =  The p l o t i s based on  Each s t r a i g h t l i n e i n F i g u r e 10  by t h e e q u a t i o n o f t h e f o r m ,  m Exp(yt)  (101)  F o r f e r r i c i r o n i n grams p e r l i t e r , t h e e q u a t i o n i s ,  Fe  =  1.57 Exp(0.059 t )  (102)  For oxygen u p t a k e r a t e ( m i l l i g r a m s p e r l i t e r p e r h o u r ) o b t a i n e d from t h e G i l s o n  ^ r e s p  =  1  2  ,  6  Respirometer,  0  E x  P  ( 0  -  0 5 9  c  >  (103)  For b a c t e r i a l carbon, i n m i l l i g r a m s p e r l i t e r , the equation i s ,  F i g u r e 10 THE RELATIONSHIP BETWEEN FERRIC IRON PRODUCTION, BACTERIAL CARBON AND T H E OXYGEN UPTAKE RATE IN AERATED TANK REACTOR AT 35°C, pH = 1,80  0  10  20  30 40 TIME , hr  50  60  X  =  c  3.86 Exp(0.059 t )  (104)  According to equation (56), 143.2 milligrams of oxygen are consumed for each gram of f e r r i c i r o n produced, hence the calculated oxygen uptake rate based on the rate of f e r r i c i r o n production becomes,  4|)  =  pe  1  4  3  '  2  <fjr>  Comparison of equations  =  1 3  -  2 6  Exp(0.059 t)  (105)  (103) and (105) shows a difference of  (13.26 - 12.60)/12.60 or 5.2% between the calculated and experimental values. reasons:  This discrepancy might be due to one or both of the following (1) the e f f e c t of chemical oxidation reaction between  ferrous ions and dissolved oxygen r e s u l t i n g i n the overestimation of f e r r i c ions produced, and (2) the a v a i l a b i l i t y of free oxygen molecules i n the n u t r i e n t , such as release of oxygen molecules from carbon dioxide f i x a t i o n .  Unfortunately, the exact cause of the  discrepancy i s not known, but as long as the d i f f e r e n c e did e x i s t , the experimental value rather than the calculated value should be used as rate of oxygen transfer i n estimating K^a value of the system. The rate of b a c t e r i a l carbon production was calculated by taking the f i r s t derivative of equation (104).  dX =  0.23 Exp(0.059 t)  Dividing equation (106) by (103), i l l u s t r a t e d that the b a c t e r i a  (106)  -91produced  0.23/12.60 o r 0.02 m i l l i g r a m s o f carbon p e r each m i l l i g r a m 32  o f oxygen consumed.  I t was e q u i v a l e n t  to  0.02 (j^-) o r 0.053 mole  of carbon produced p e r each mole o f oxygen consumed.  Since  the  only  carbon s o u r c e f o r the b a c t e r i a l growth was C O 2 i n the a i r and oxygen r e q u i r e m e n t f o r t h e o x i d a t i v e r e a c t i o n was a l s o from the a i r , thus t r a n s f e r o f more than  0.053 x 0.21 o r 0.011 mole  (molar r a t i o ) h i g h e r  thus r e p r e s e n t e d transfer of C 0  2  the h i g h e r  0.05  than t h a t o f oxygen  concentration  than f o r t h a t o f oxygen.  p r e s e n c e o f more than volume p e r c e n t  f o r each mole  However, t h e s o l u b i l i t y o f C O 2 was approxim-  of a i r was n e c e s s a r y . a t e l y 24 times  CO2  ( I I ) , and  d r i v i n g force f o r the I n o t h e r words, t h e  0.011/24 o r 0.0005 mole C 0 2 / m o l e a i r o r o f C O 2 i n the  a i r was e s s e n t i a l so t h a t C O 2  t r a n s f e r would not be the r a t e l i m i t i n g f a c t o r o f the e n t i r e T h i s o f c o u r s e assumes t h a t transfer of 0  same i n the  to doubt t h i s , and t h a t  2  and C O 2 .  the l i q u i d  the i n t e r f a c i a l area  operation. i s the  There seems t o be no r e a s o n side  mass t r a n s f e r c o e f f i c i e n t i s  more o r l e s s the same f o r t h e t r a n s f e r o f e i t h e r o f t h e s e two gases. The 2.5  milligrams  oxidized. C0  2  comparison o f e q u a t i o n  (104)  and (102)  o f b a c t e r i a l carbon were f i x e d per  T h i s was e q u i v a l e n t  showed  gram o f i r o n  t o t h e f i x a t i o n o f 11.6  p e r mole o f f e r r o u s i r o n o x i d i z e d by t h e growing T_.  T h i s v a l u e was much h i g h e r  than 4.5  by Beck e t a l . ( B I ) , 2.0  obtained  by S i l v e r m a n e t a l . ( S i ) o r 0.85  non-growing  m i l l i m o l e s of ferrooxidans.  m i l l i m o l e s C02/mole f e r r o u s  obtained  i r o n obtained  that  millimoles  CX^/mole f e r r o u s  m i l l i m o l e s C02/mole  by Temple et_ a l . ( T l ) a l l o f which were o b t a i n e d conditions.  iron  iron ferrous under  -92F.  SATURATION OXYGEN SOLUBILITIES T y p i c a l r e s u l t s obtained i n the Erlenmeyer f l a s k w i t h the  oxygen e l e c t r o d e a r e p r e s e n t e d i s p l o t t e d against time.  i n F i g u r e 11 where oxygen t e n s i o n  For a l l cases the l i n e s are s t r a i g h t f o r  oxygen t e n s i o n s o f g r e a t e r t h a n a p p r o x i m a t e l y 10 mmHg, r e g a r d l e s s o f t h e oxygen u p t a k e r a t e o f t h e medium.  T h i s i s an i n d i c a t i o n t h a t t h e  c r i t i c a l oxygen t e n s i o n i s around t h i s v a l u e .  The s l o p e o f t h e  s t r a i g h t p o r t i o n o f each l i n e i s t h e r a t e o f oxygen t e n s i o n change. Corresponding  t o t h e oxygen t e n s i o n d e t e r m i n a t i o n , oxygen  uptake r a t e s were measured a t t h e same time i n t h e G i l s o n  Respirometer.  T y p i c a l r e s u l t s a r e shown i n F i g u r e 12 where the r e a d i n g f r o m t h e r e s p i r o m e t e r , i n m i c r o l i t e r s oxygen i s c o n v e r t e d i n t o m i l l i g r a m s p e r l i t e r and p l o t t e d a g a i n s t t i m e .  The s l o p e o f t h e v a r i o u s p l o t s i s  the oxygen u p t a k e r a t e . F i g u r e 13 p l o t s oxygen uptake r a t e s measured i n t h e r e s p i r o m e t e r a g a i n s t t h e r a t e o f change o f oxygen t e n s i o n as measured by t h e oxygen e l e c t r o d e f o r media c o n t a i n i n g 9.0 g / l i t e r o f t o t a l iron.  S i m i l a r c u r v e s were o b t a i n e d f o r o t h e r i r o n l e v e l s and a r e  presented  i n F i g u r e s 14 t o 16.  From e q u a t i o n  (80) we see t h a t  the s l o p e o f t h e s e l i n e s m u l t i p l i e d by t h e p a r t i a l p r e s s u r e o f oxygen i n t h e a i r g i v e s the v a l u e o f s a t u r a t i o n s o l u b i l i t y o f oxygen. The r e s u l t s a r e p r e s e n t e d  i n Table  5 f o r media c o n t a i n i n g 4.5,  13.5 and 18.0 g / l i t e r o f t o t a l i r o n . i n Appendices V I I I - 1 to V I I I - 4 .  9.0,  The o r i g i n a l d a t a a r e p r e s e n t e d  F i g u r e 11 THE RATES OF OXYGEN TENSION CHANGE MEASURED IN THE ERLENMEYER FLASK  TIME, minutes  OXYGEN UPTAKE mg Oxygen / 1 Sornple t  04 CO  -v6-  F i g u r e 13 THE DETERMINATION OF C* IN MEDIUM 9K  RATE OF OXYGEN TENSION CHANGE, mm Hg/hr  2000  F i g u r e 14 THE DETERMINATION OF C* IN MEDIUM 4 . 5 K 80r E 60  £ a. 40 o  2 20  C*=  o o  X  0,04596 6,92  Slope =  o 14  po  1  500  1000  RATE OF OXYGEN PARTIAL P R E S S U R E CHANGE,  mm Hg / hr  1500  i VO I  F i g u r e 15 THE DETERMINATION OF C* IN MEDIUM 13,5K 150 r  100 h a.  Slope =0.04423 C*=6.66  o  o  X  .1000  2 0 0 0  3 0 0 0  R A T E OF OXYGEW PARTIAL P R E S S U R E OTAMGE,.  mm H g / h r  i I  F i g u r e 16 THE DETERMINATION OF C* IN MEDIUM I8K  0  IOOO  2000  3000  RATE OF OXYGEN PARTIAL P R E S S U R E CHANGE,  mm Hg /hr  J  -99-  TABLE 5 S o l u b i l i t y o f Oxygen i n E l e c t r o l y t e s  Electrolytes  Determined Values (mg/liter)  %  Difference between Determined and C a l c u l a t e d  %  Difference between Determined and,. H20  H0  7.0  4.5 K**  6.69  6.92  + 3.0  -1.1  9K  6.46  6.68  + 3.3  -4.6  13.5 K  6.23  6.66  + 6.5  -4.9  18 K  6.02  7.06  +14.7  +0.9  2  *  Calculated Values (mg/liter)  (35 C ) *  Published  by L i u e t a l (L 13)  ** Medium of S i l v e r m a n and Lundgren ( S i ) w i t h 4.5  g/1  ferrous  iron  -100A l s o p r e s e n t e d i n T a b l e 5 a r e the s a t u r a t i o n s o l u b i l i t i e s o f oxygen i n these media c a l c u l a t e d by t h e method o f v a n K r e v e l e n and H o f t i j z e r  (VI).  These c a l c u l a t i o n s were made by  assuming t h a t a l l i r o n was p r e s e n t as f e r r o u s i r o n because the appropriate h f a c t o r of equation iron.  (70) was n o t a v a i l a b l e f o r f e r r i c  The t a b l e shows t h a t t h e c a l c u l a t e d v a l u e s were always  than the e x p e r i m e n t a l v a l u e s and t h a t , a t l e a s t  lower  f o r t h i s type o f  medium, the use of the s a t u r a t i o n s o l u b i l i t y o f oxygen i n water i s not an unreasonable The  approximation.  e x p e r i m e n t a l procedure  d e s c r i b e d here i s probably  more r e l i a b l e than the c a l c u l a t i o n method because i t takes account  a l l the components i n the f e r m e n t a t i o n medium i n c l u d i n g t h e  o r g a n i c m e t a b o l i t e s produced  G.  into  by the b a c t e r i a i n v o l v e d .  CRITICAL OXYGEN TENSION F i g u r e 17 i s a p l o t o f the oxygen t e n s i o n - t i m e t r a c e  which i s an enlargement o f the low oxygen t e n s i o n regime of F i g u r e 11.  The f i n a l oxygen t e n s i o n , P , below which the oxygen uptake OO  a c t i v i t y o f the b a c t e r i a ceased  completely  than zero as was p r e d i c t e d i n Monod's.  i s 4.5 +0.5 mmHg, r a t h e r  I t i s thus assumed t h a t the  e q u a t i o n t h a t b e s t d e s c r i b e s the oxygen uptake a c t i v i t y  o f J_.  f e r r o o x i d a n s i n 9K medium w i l l r e q u i r e the s u b s t i t u t i o n o f e f f e c t i v e oxygen t e n s i o n f o r oxygen t e n s i o n i n e q u a t i o n ( 4 3 ) ,  -101-  F i g u r e 17 DETERMINATION OF K p VALUE S  180  LsJ  ££ £L  360.  mm H g / hr mm Hgv  <5  = P - P CO  2 UJ O X  03 CO  0  0,2  1  0.4  1  0.6  T I M E , min  1  0.8  1.0  1.2  -102-  P - Poo  V  = V  K  m  + (P - P J  s p  (107)  When t h e above e q u a t i o n i s combined w i t h e q u a t i o n s  (38) , (39) and  ( 7 8 ) , t h e e q u a t i o n o f t h e f o l l o w i n g form c a n be o b t a i n e d ,  v -  d  "  r X  The  1_  p  H  dt  -  e  x  Vm  P - P=o  r  Y  L  K  s p  + (P -  P c o  )J  (107-a)  r e c i p r o c a l of t h i s equation gives,  =  rX  _J_ • dp dt  =  Y Xp He m  r  K ( P - Poo) s p  L  (107-b)  J  T h i s e q u a t i o n i s s i m i l a r i n form t o t h e L i n e w e a v e r and Burk e q u a t i o n (44).  The p l o t o f ^  or — — -  K  (——)  versus  1 / r )  „ ~~  should y i e l d a  N 00  '  dt s t r a i g h t l i n e w i t h i t s s l o p e e q u a l t o ——Tf-  and i t s i n t e r c e p t  equals  Y ———  .  A t y p i c a l p l o t o f t h e dependency o f t h e oxygen uptake  r a t e on t h e e f f e c t i v e oxygen t e n s i o n i s i l l u s t r a t e d i n F i g u r e 18.  The  K p v a l u e thus c o u l d e i t h e r be o b t a i n e d by d i v i d i n g t h e i n t e r c e p t g  by t h e s l o p e o f t h e r e s u l t i n g s t r a i g h t l i n e o r be o b t a i n e d by d e t e r m i n i n g t h e e f f e c t i v e oxygen t e n s i o n a t w h i c h t h e oxygen u p t a k e r a t e o f t h e b a c t e r i a was o n l y h a l f o f i t s maximum r a t e .  K  was found P.  t o be 1.0 ±0.2 mmHg, and w i t h t h e knowledge t h a t C* = 6.68 mg/1 i n 9K medium,  F i g u r e 18 A TYPICAL LINEWEAVER AND BURK PLOT  -104K  g c  was t h e n found t o be 0.045 mg/1, w h i c h i s e q u i v a l e n t t o  1.4 x 1 0 for  - 6  m o l a r oxygen.  T h i s v a l u e i s much g r e a t e r t h a n t h a t  o t h e r organisms o f t h e same s i z e r e p o r t e d by Longmuir ( L 2 ) . When t h e b a c t e r i a l a c t i v i t y f o l l o w s e q u a t i o n  t h a t i s b a c t e r i a l a c t i v i t y ceases c o m p l e t e l y  (43),  a t oxygen t e n s i o n  e q u a l t o z e r o , t h e n t h e c r i t i c a l oxygen t e n s i o n above w h i c h t h e oxygen uptake r a t e would n o t be a f f e c t e d t o o much by t h e oxygen t e n s i o n would be t w i c e t h e v a l u e o f K  ori  .  However, i n t h e case o f  t>p  T_. f e r r o o x i d a n s i n 9K medium, b a c t e r i a l a c t i v i t y ceased a t P  ro  = 4.5  mmHg r a t h e r than z e r o , t h e c r i t i c a l oxygen t e n s i o n thus e q u a l s t h e sum  o f t h e f i n a l oxygen t e n s i o n and 2 K„_.. S i n c e K p and P S  OT  v a l u e s were found t o be 1.0 and 4.5 mmHg  r e s p e c t i v e l y , t h e c r i t i c a l oxygen t e n s i o n i s t h u s c a l c u l a t e d t o be 6.5 mmHg (or 0.29 mg o x y g e n / l i t e r a t 35C).  M a i n t e n a n c e o f oxygen  t e n s i o n h i g h e r t h a n 6.5 mmHg i s t h u s n e c e s s a r y t o ensure t h a t t h e oxygen t e n s i o n w i l l n o t be a r a t e - l i m i t i n g f a c t o r i n t h e growth of T_. f e r r o o x i d a n s .  H.  EFFECT OF SOLID PULP DENSITIES ON K  L  A l t h o u g h t h e a d d i t i o n o f more than 0.5% (wt/v) g l a s s beads i n t o a shake f l a s k would g r e a t l y reduce t h e growth r a t e o f T_. f e r r o o x i d a n s , t h e a d d i t i o n o f up t o 15% (wt/v) g l a s s beads i n t o the tank f e r m e n t o r had no e f f e c t on t h e growth o f t h e b a c t e r i a .  This  -105can p o s s i b l y be a t t r i b u t e d to a more i n t e n s e g r i n d i n g i n the f l a s k than i n a s t i r r e d in  tank.  Oxygen t r a n s f e r mechanisms were s t u d i e d  the tank r e a c t o r where oxygen was  means of s u r f a c e a e r a t i o n  only allowed  ( i . e . no b u b b l e s ) .  to t r a n s f e r by  The  e f f e c t s of  g l a s s beads (63 m i c r o n s i n d i a m e t e r ) over a s o l i d s c o n t e n t 0 to 15 weight p e r c e n t r e s u l t s are presented  i n Appendices IX-1 and  time and  the p h y s i c a l a b s o r p t i o n  In  f e r r i c i r o n concentration versus The  system was  finally  in  in  regime.  K i n e t i c Regime the e a r l i e s t p e r i o d of f e r m e n t a t i o n ,  p r o p o r t i o n a l to the r a t e of i r o n p r o d u c t i o n , was transfer a b i l i t y  the  bacterial  low.  i n the system was  was  The  oxygen  of the r e a c t o r f a r exceeded the oxygen uptake r a t e  of the b a c t e r i a l p o p u l a t i o n , thus the d i s s o l v e d oxygen always h i g h e r  d i s s o l v e d oxygen c o n c e n t r a t i o n s 15  time  operating at f i r s t  p o p u l a t i o n s were s m a l l , thus the oxygen uptake r a t e , which  and  The  IX-2.  the k i n e t i c regime, then i n the d i f f u s i o n a l regime, and  The  range o f  a t y p i c a l p l o t of d i s s o l v e d oxygen  d u r i n g an e n t i r e f e r m e n t a t i o n .  1.  the  on the v a l u e of K^ were a l s o s t u d i e d .  F i g u r e 19 p r o v i d e s concentration versus  shaker  (wt/v) p e r c e n t  concentration  than i t s c r i t i c a l l e v e l .  The  o f the systems c o n t a i n i n g 0, 5,  10,  g l a s s beads, a r e p l o t t e d a g a i n s t the oxygen  uptake r a t e s as shown i n F i g u r e with i d e n t i c a l slopes resulted.  20. The  A s e r i e s of s t r a i g h t  lines  p l o t s a r e e x a c t l y the same  shape as expected i n the case of z e r o - o r d e r  reaction i n  the  F i g u r e 19 THE KINETIC, DIFFUSIONAL AND PHYSICAL ABSORPTION REGIME (35°C AND 5 0 0 R P M )  30  40  TIME-, hr  -107  7r-  F i g u r e 20 THE KINETIC REGIME FOR ZERO ORDER REACTION (35°C AND 500 RPM )  0% solid 10% solid  -108k i n e t i c regime. and  S i n c e the s l o p e of the r e s u l t i n g l i n e i s -1/K^a,  s i n c e i t i s r e a s o n a b l e t o assume t h a t the a d d i t i o n of the  glass  beads does n o t a f f e c t the i n t e r f a c i a l a r e a of the system, i t i s thus c o n c l u d e d t h a t the a d d i t i o n of the s o l i d p a r t i c l e s does not a f f e c t the v a l u e of  2.  The  i n t h i s regime.  D i f f u s i o n a l Regime  When the oxygen consumption r a t e f i n a l l y exceeded the of t r a n s f e r , the d i s s o l v e d oxygen c o n c e n t r a t i o n its c r i t i c a l level. i r o n p r o d u c t i o n was became c o n s t a n t  The  stayed  rate  constant  at  oxygen u p t a k e r a t e as w e l l as the r a t e of  c o n t r o l l e d by the r a t e of t r a n s f e r and  as i t was  i n d i c a t e d i n F i g u r e 19.  o p e r a t i n g at the d i f f u s i o n a l regime.  The  K^a  The  values  a g i t a t i o n speeds were s t u d i e d d u r i n g t h i s regime.  both  system  at  was  various  Typical results  are shown i n F i g u r e 21 where the oxygen u p t a k e s c a l c u l a t e d , based on t h e i r o n c o n c e n t r a t i o n , a r e p l o t t e d a g a i n s t t i m e a t a g i t a t i o n speeds r a n g i n g  f r o m 300  t o 600 RPM.  The  r a t e of oxygen t r a n s f e r  c a l c u l a t e d from the s l o p e of the p l o t , and  t h u s K^a was  by d i v i d i n g the r a t e o f t r a n s f e r by the c o n c e n t r a t i o n The  was  calculated  driving force.  e f f e c t of s o l i d p u l p d e n s i t i e s on K^a was  also  studied  by p e r f o r m i n g the k i n d of e x p e r i m e n t whose r e s u l t s appear i n F i g u r e 21 The  (without  s o l i d s ) w i t h v a r i o u s l e v e l s of s o l i d s  r e s u l t s a r e shown i n F i g u r e 22 where K^a  values  a g a i n s t a g i t a t i o n speed when the system c o n t a i n e d w e i g h t p e r c e n t g l a s s beads.  The  K^a  v a l u e was  content.  are p l o t t e d  0, 5, 10, and  found t o be  15  proportional  F i g u r e 21 EFFECT OF AGITATION SPEED ON K a  /  L  (35°C, WITHOUT SOLIDS)  / o I  600 rpm / O.I55g Fe/l / hr / 22.20 mg02/l/hr^o P  i  500 rpm / 0.0976 g Fe/l/hr </ 13.98 mg 0 / l / h r ^ / 400 rpm / 0.0457g Fe/L/hr j f 2  6.55 mg 02/l/hr^  - 300 rpm 0.0227g Fe/l/hr  o"  ^  o'  3.25 mg 0 2 / l / h r - v ^ ' ' O  20  I  40  I  60  I  l  80 100 TIME, hr  l  120  l  140  l  160  F i g u r e 22 EFFECT OF SOLID PULP DENSITY  ON M A S S T R A N S F E R  COEFFICIENT  o 0%  (RPM)  2,76  x I0"  6  - i n -  t o t h e 2.76 power o f t h e a g i t a t i o n speed f o r s o l i d s f r a c t i o n s (by w e i g h t ) o f up t o 15%. S i n c e t h e s o l i d s c o n c e n t r a t i o n d i d n o t seem t o a f f e c t t h e v a l u e o f " a " a t c o n s t a n t a g i t a t i o n s p e e d , i t i s thus c o n c l u d e d t h a t t h e s o l i d s do n o t a f f e c t t h e v a l u e o f  for this  system because i t i s o b v i o u s from F i g u r e 22 t h a t K^a i s n o t markedly a f f e c t e d by t h e s o l i d s c o n t e n t .  3.  The P h y s i c a l A b s o r p t i o n Regime Near t h e end o f t h e f e r m e n t a t i o n , t h e oxygen uptake r a t e  was  g r e a t l y reduced due t o t h e l i m i t e d a v a i l a b i l i t y o f t h e f e r r o u s  s u b s t r a t e f o r b a c t e r i a l growth. exceeded t h e u p t a k e r a t e .  The r a t e o f oxygen t r a n s f e r a g a i n  The d i s s o l v e d oxygen c o n c e n t r a t i o n t h e n  i n c r e a s e d s h a r p l y as t h e r e s u l t o f t h e a c c u m u l a t i o n term i n e q u a t i o n (3) as can be seen i n F i g u r e 19. The l ^ a o f t h e system d u r i n g t h i s p e r i o d can be c a l c u l a t e d a c c o r d i n g t o e q u a t i o n (65) by t h e g a s s i n g - o u t method, however a s m a l l r e s i d u a l o f u n o x i d i z e d f e r r o u s i r o n i n t h e medium w o u l d r e s u l t i n u n d e r e s t i m a t i o n o f K^a. Any m e a n i n g f u l e s t i m a t i o n o f t h e K^a v a l u e i s thus  I.  difficult.  EFFECTS OF SOLIDS PULP DENSITY ON K a IN TANK FERMENTOR L  V a l u e s o f K^a i n t h e sparged tank c o n t a i n i n g up t o 20% (wt/v) of g l a s s b e a d s , were c a l c u l a t e d from t h e oxygen t e n s i o n - t i m e t r a c e s , a c c o r d i n g t o t h e r e c t i f i c a t i o n method p r o p o s e d Chapter 5.  i n Section G of  The v a l u e s o f K^a under v a r i o u s o p e r a t i o n a l c o n d i t i o n s a r e  presented along w i t h oxygen-tension  t r a c e s , oxygen uptake  r a t e s , and  R-square values i n Appendix XI.  The r e s u l t s are summarized i n  Tables 6 - 1 2 . Table 6 presents K^a values of each experiment  carried  out i n s o l i d s - f r e e 9K medium i n the absence of bacteria ( i . e . zero b i o l o g i c a l oxygen uptake r a t e ) , whereas, Table 7 presents the corresponding K^a values obtained during various stages of ferment a t i o n (oxygen uptake rate ranged from 0 to 207 mg oxygen/liter/ hour) i n the aerated tank.  An analysis of variance of the r e s u l t s  from Tables 6 and 7 showed that F-values of 0.00 with 1 and 49 degrees of freedom was s i g n i f i c a n t l y smaller than the 95% value ( F ( l , 49, 0.95)  =  4.04) found i n the F - d i s t r i b u t i o n table.  Therefore there i s no reason to say that the values of Table 6 and 7 are from d i f f e r e n t populations i n a s t a t i s t i c a l sense.  Thus  there was no evidence that the oxygen uptake rate of up to 207 mg/l/hr had any e f f e c t on K^a values of the system. Two d i f f e r e n t sizes of glass beads, 105 micron (-120 +170 mesh) and 63 micron  (-200 +270 mesh) were used to test the  e f f e c t of p a r t i c l e size on K^a value. at 20 percent.  The pulp density was set  The r e s u l t s are tabulated i n Tables 8 and 9.  Analysis of variance of the r e s u l t s showed that the F-value of 0.08 with 1 and 49 degrees of freedom was smaller than the corresponding value of 4.04 i n the d i s t r i b u t i o n table.  There was no evidence that  the p a r t i c l e diameter had any s i g n i f i c a n t e f f e c t on K^a value i n the system.  The 63 micron p a r t i c l e s were subsequently used i n  studying the e f f e c t of s o l i d pulp density on Y^a.  TABLE 6 K a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS L  SOLID PULP DENSITY = 0% AND OXYGEN UPTAKE RATE = 0  RPM Vs ( f t / h r )  300  400  500  600  700  1.94  8.09  18.30  34.91  52.38  88.60  (-5.47)*  (32.20)  (-0.41)  (-0.43)  104.39  150.96  5.26  8.81  12.63  17.15  (0.13)  10.70  37.77  (-7.26)  (12.52)  (10.00)  18.98  47.44  90.18  (1.42)  (3.25)  (-1.40)  (-2.15)  24.60  54.93  100.52  186.08  (15.87)  (14.57)  40.64  67.01  (15.29)  (6.30)  C a l c u l a t e d oxygen uptake r a t e  . 62.31  (3.74) 119.03 (9.32)  (mg o x y g e n / l / h r )  (17.59) 111.34  (28.06)  (0.56) .•195.28  (5.60) 227.45 (3.80)  195.28  295.15  (18.13)  (-7.92)  TABLE 7 K a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS L  SOLID PULP DENSITY = 0% AND OXYGEN UPTAKE RATE = 0 ^ 207 MG/L/HR  RPM Vs  (ft/hr) 1.94  5.26  8.81  12.63  17.15  300  400  500  600  700  9.01  19.82  33.96  58.55  90.89  (-4.42)*  (26.82)  (61.48)  (104.64)  (105.64)  14.90  35.17  63.09  105.36  146.52  (22.67)  (33.83)  (45.68)  20.47  46.54  86.37  (30.13)  (28.58)  (51.51)  24.19  55.88  94.65  161.44  245.26  (25.23)  (23.90)  (47.81)  (115.60)  (197.88)  40.64  66.32  201.31  285.58  (15.97)  (36.98)  (113.00)  (206.07)  128.83 (48.93)  C a l c u l a t e d oxygen u p t a k e r a t e (mg o x y g e n / l / h r )  (89.47) 124.60 (77.37)  (114.05) 195.17 (148.52)  TABLE 8 K a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS L  SOLID PULP DENSITY = 20%, PARTICLE DIAMETER = 63 u AND OXYGEN UPTAKE RATE = 0 MG/L/HR  RPM Vs (ft/hr) 1.94  300  400  500  600  700  7.38  15.53  23.85  38.65  58.81  (4.55)  (0.79)  (-2.69)  (-2.42)  10.47  26.16  41.63  67.84  (12.01)  (13.08)  (-2.33)  (-5.35)  14.23  36.09  61.51  83.90  (10.51)  (-2.75)  (13.68)  16.27  46.74  76.67  (12.93)  (-1.69).  22.13  63.34  (31.05)* 5.26  .8.81  12.63  17.15  (14.62)  (0.77)  (1.06) 100.52 (6.18)  Calculated oxygen uptake rate (mg oxygen/l/hr)  (3.01) 107.70 (-13.36)  106.03 (-1.84) 130.76 (6.36) 168.78 (20.31)  118.77  197.11  (-2.71)  (33.83)  TABLE 9 K a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS L  SOLID PULP DENSITY = 20%, PARTICLE DIAMETER = 105 y AND OXYGEN UPTAKE RATE = 0 MG/L/HR  RPM Vs  (ft/hr) 1.94  300  400  500  600  700  5.52  15.68  25.27  42.08  55.48  (-4.68)  (-1.15)  26.14  42.31  80.43  99.46  (7.37)  (0.54)  (2.30)  (7.51)  10.39  48.90  61.74  80.63  (4.43)  (4.78)  (12.02)  (-3.05)  (-1.87)  16.39  47.23  116.31  174.15  (12.84)* 5.26  10.19 (16.20)  8.81  12.63  (-8.06) 17.15  *  (8.96)  (0.70)  19.32  53.75  (9.78)  (4.54)  C a l c u l a t e d oxygen uptake r a t e  85.43 (14.82)  (-6.29)  98.57  128.13  (-3.71)  (-16.27)  (mg o x y g e n / l / h r )  (3.08)  127.65  (4.89) 205.02 (2.98)  TABLE 10 K a VALUES (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS L  SOLID PULP DENSITY = 5%, PARTICLE DIAMETER = 63 y AND OXYGEN UPTAKE RATE = 0 * 140 MG/L/HR  RPM Vs  (ft/hr) 1.94  5.26  8.81  12.63  17.15  *  300  400  500  600  700  7.95  22.57  34.50  43.59  82.33  (12.31)*  (104.48)  (49.42)  (11.64)  10.26  34.46  55.70  84.84  (15.26)  (90.43)  (39.32)  (18.60)  (-3.23)  17.25  44.35  76.28  111.07  158.59  (20.16)  (102.91)  (38.05)  (21.12)  (13.35)  20.72  50.39  91.58  152.77  192.55  (23.72)  (139.48)  (57.01)  (41.16)  (28.01)  29.49  62.51  108.36  177.60  216.68  (20.51)  (117.51)  (69.73)  (21.22)  C a l c u l a t e d oxygen u p t a k e r a t e (mg o x y g e n / l / h r )  (8.27) 117.54  (9.93)  TABLE 11 K a VALUES L  (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS  SOLID PULP DENSITY = 10%, PARTICLE DIAMETER = 63 y AND OXYGEN UPTAKE RATE - 0 * 212 MG/L/HR  RPM Vs  (ft/hr) 1.94  5.26  8.81  12.63  300  400  500  600  700  7.02  18.61  27.77  43.68  68.50  (19.69)  (84.65)  (98.54)  59.99  83.68  117.77  (10.34)  (101.16)  (136.96)  89.15  147.86  (109.04)  (203.38)  (1.42)*  (3.33)  12.53  30.46  (0.84)  (4.55)  15.02  44.42  73.13  (4.91)  (2.42)  (9.36)  17.86  51.34  91.75  137.68  197.86  (14.55)  (14.53)  (111.16)  (212.06) 208.19 '  (6.30) 17.15  27.42 (13.25)  57.98  107.41  146.79  (4.17)  (25.52)  (92.06)  C a l c u l a t e d oxygen u p t a k e r a t e (mg o x y g e n / l / h r )  (197.20)  TABLE 12 K a VALUES L  (FT/HR) AT VARIOUS OPERATIONAL CONDITIONS  SOLID PULP DENSITY = 15%, PARTICLE DIAMETER = 63 y AND OXYGEN UPTAKE RATE = 15 ^ 202 MG/L/HR  RPM Vs  (ft/hr) 1.94  5.26  8.81  12.63  17.15  300  400  500  600  700  6.48  16.18  25.67  38.67  63.32  (20.72)*  (65.24)  (89.02)  (113.00)  (173.96)  11.70  28.84  59.58  82.41  106.47  (15.82)  (69.20)  (125.61)  (141.78)  (137.09)  11.95  49.22  69.69  88.58  143.06  (38.20)  (81.75)  (120.48)  (110.84)  (148.28)  16.82  50.21  83.79  121.19  186.42  (55.11)  (96.71)  (116.73)  (121.61)  (201.62)  24.04  53.13  110.26  136.64  198.99  (60.07)  (79.06)  (119.12)  (134.22)  (183.62)  C a l c u l a t e d oxygen uptake r a t e (mg o x y g e n / l / h r )  -120S i n c e t h e r e was no e v i d e n c e t h a t t h e oxygen uptake r a t e had any e f f e c t on Y^a v a l u e , t h e K a v a l u e used f o r s o l i d s - f r e e medium L  was an a r i t h m e t i c average o f t h e comparable r e s u l t s i n T a b l e s 6 and 7.  These average v a l u e s were compared w i t h t h e K^a v a l u e s i n  t h e system c o n t a i n i n g 5, 1 0 , 15 and 20 p e r c e n t s o l i d w h i c h a r e p r e s e n t e d i n T a b l e s 10, 1 1 , 12 and 8.  particles  Three way a n a l y s i s  of v a r i a n c e showed t h a t t h e F v a l u e s f o r t h e e f f e c t o f p u l p d e n s i t y , of a g i t a t i o n speed and o f gas s u p e r f i c i a l v e l o c i t y were 6.62, 166 and 58 r e s p e c t i v e l y .  A l l t h r e e F - v a l u e s were c o n s i d e r a b l y l a r g e r  than F ( 4 , 124, 0.95)  =  2.45 i n t h e F - d i s t r i b u t i o n t a b l e .  I t was  thus c o n c l u d e d t h a t t h e p u l p d e n s i t y , t h e a g i t a t i o n speed and t h e gas s u p e r f i c i a l v e l o c i t y were t h e i m p o r t a n t f a c t o r s a f f e c t i n g t h e K^a v a l u e i n t h e system. The b e s t f i t e q u a t i o n r e s u l t i n g from t h e m u l t i p l e , r e g r e s s i o n a n a l y s i s was,  \a  =  1.78 x 1 0 - 6 ( p ) - 2 - 3 ^ 0 . t 6 ( 2 . 6 5 ± 0 . 0 6 N )  ( V g )  0 . 5 7 i 0 . 03  (  1  0  The m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t f o r t h e e q u a t i o n was 0.9913 w i t h 3 and 146 d e g r e e s o f freedom.  The c o n f i d e n c e i n t e r v a l s on t h e  exponents i n t h e e q u a t i o n and i n a l l subsequent e q u a t i o n s a r e a t 95% l e v e l .  The exponents on t h e a g i t a t i o n speed and on t h e s u p e r -  f i c i a l v e l o c i t y a r e 2.65 and 0.57 r e s p e c t i v e l y . l e s s t h a n one i n V  The exponent o f  i n d i c a t e d that the increase i n V  s frequency of coalescense.  increased the s  8  )  -121When the d a t a were a n a l y z e d s e p a r a t e l y f o r each p u l p d e n s i t y the f o l l o w i n g e q u a t i o n s were  obtained.  F o r 0% p u l p d e n s i t y K a L  =  1.43xl0-  ( )2.6V±0.09  =  2.04 x l O "  6  =  2.07 x l O "  6  =  1.37 x 1 0 "  =  1.40 X 1 0 "  6  N  (Vg)  0-59±0.03  (109)  F o r 5% K a L  (N) ' 2  6 1 ± 0  '  1 6  (V )°'  5 l + ± 0  s  -  (110)  0 6  F o r 10% (111) K a L  ( ) •59±0.15 2  N  ( V g )  0.56±0.06  F o r 15% K a L  6  (N)2.6U±0.20  (Vs)  0.58±0.08  ( )2.62±0.13  ( V g )  0.57+0.05  (112)  F o r 20% K a L  In  6  N  (113)  the m i c r o b i o l o g i c a l l e a c h i n g o f m i n e r a l o r e s , i t i s  d e s i r a b l e to i n c r e a s e the s o l i d pulp d e n s i t y ( i . e . the s u b s t r a t e c o n c e n t r a t i o n ) so t h a t i t would n o t be a r a t e l i m i t i n g whole l e a c h i n g p r o c e s s .  However,  s o l i d pulp d e n s i t y d e c r e a s e s to  equation  at  20% s o l i d ) .  f a c t o r i n the  i t i s e v i d e n t t h a t i n c r e a s i n g the  the K a v a l u e of the system, L  (108) the K^a v a l u e a t 0% s o l i d Under such c i r c u m s t a n c e s  (e.g. a c c o r d i n g  i s 28% h i g h e r than the v a l u e  oxygen t r a n s f e r from the a i r t o  the l i q u i d medium c o u l d become a r a t e l i m i t i n g  factor.  Therefore,  -122t h e r e s h o u l d be an optimum s o l i d p u l p d e n s i t y i n a m i c r o b i o l o g i c a l l e a c h i n g system which w i l l e n s u r e the maximum p o s s i b l e r a t e o f leaching.  J.  THE POWER CONSUMPTION The a g i t a t o r power consumption f o r the a g i t a t i o n o f 9K  medium c o n t a i n i n g 20% 63 m i c r o n g l a s s beads was compared to the same system w i t h o u t beads.  The r e s u l t s a r e shown i n F i g u r e 23, where  the power consumptions e x p r e s s e d as h o r s e powers p e r 1000 g a l l o n s o f 9K medium a r e p l o t t e d a g a i n s t the a g i t a t i o n speeds r a n g i n g from to 1,200  RPM on f u l l - l o g a r i t h m i c p a p e r .  The r e s u l t s i n d i c a t e  the power consumption i s d i r e c t l y p r o p o r t i o n a l t o 2.67 a g i t a t i o n speed.  230  that  power o f t h e  However, t h e power consumption w i t h and w i t h o u t  the s o l i d s c o i n c i d e d a t a g i t a t i o n speeds below 360 RPM.  T h i s i s due  to t h e f a c t t h a t most o f t h e s o l i d s s e t t l e d on t h e bottom o f t h e tank a t such low a g i t a t i o n speeds.  A t a g i t a t i o n speeds o f o v e r  500 RPM on the o t h e r hand, the power consumption f o r the medium the s o l i d s was 22% h i g h e r t h a n t h a t w i t h o u t s o l i d s .  with  The h i g h e r  power consumption i s a t t r i b u t e d t o the i n c r e a s e o f the apparent d e n s i t y o f the medium.  In between 360 and 500 RPM,  e x i s t e d where the s o l i d s were p a r t i a l l y  transition  regime  suspended.  Excepted i n the t r a n s i t i o n regime, the power consumption was p r o p o r t i o n a l t o 2.67  power o f t h e a g i t a t i o n speed, which was  s l i g h t l y lower than 3.0 r e p o r t e d by Rushton e t a l .  (R3).  -123-  Figure THE WITH  POWER  23  CONSUMPTION  AND WITHOUT  GLASS  BEADS  50!  20% solids cr  9K medium  2 0  O O  2 io  O  L  a.  L A  x/  P  0.61 100  1  200  i  i  i  i i i i  500 RPM  1000  J  2000  -124K.  RECTIFICATION METHOD Some assumptions were made i n t h e development o f t h e  r e c t i f i c a t i o n method. discussed  1.  The v a l i d i t y o f t h e s e assumptions w i l l be  here;  About rX = c o n s t a n t In a c l o s e d system, as i n t h e Erlenmeyer  f l a s k , where  no oxygen i s a l l o w e d t o t r a n s f e r i n o r out of t h e system, t h e oxygen uptake r a t e i s e q u a l t o t h e r a t e o f oxygen d e p l e t i o n i n t h e system, as d e s c r i b e d i n e q u a t i o n  f  -  (67).  -rx  (67  I f rX i s a c o n s t a n t , a p l o t o f C v e r s u s t w i l l r e s u l t l i n e w i t h i t s s l o p e e q u a l -rX.  i n a straight  The r e s u l t s shovm i n F i g u r e 11 dC  i n S e c t i o n G o f t h i s c h a p t e r , c o n f i r m t h a t -j-j was i n d e e d a c o n s t a n t as l o n g as the oxygen t e n s i o n was m a i n t a i n e d The m a j o r i t y o f t h e experiments minutes o r 0.1 hour.  above 11 mmHg.  were performed  within s i x  The change o f t h e b a c t e r i a l p o p u l a t i o n over  t h i s e x p e r i m e n t a l p e r i o d c o u l d be e s t i m a t e d by a r e a r r a n g e d equation  form o f  ( 8 2 ) , hence,  X Exp ( t ) u  - 1.0  (114)  -125Substituting u  1^-1° A  o  =  =  u  =  m  0.116  ( i n 9K medium), and t  =  0.1  hour,  0.012  (115)  Even a t i t s maximum r a t e o f g r o w t h , t h e b a c t e r i a l p o p u l a t i o n i n c r e a s e d o n l y 1.2% i n s i x m i n u t e s .  Thus the b a c t e r i a l p o p u l a t i o n w i t h i n the  p e r i o d o f the e x p e r i m e n t remained f a i r l y c o n s t a n t .  So i t i s c o n c l u d e d  t h a t b o t h t h e s p e c i f i c oxygen u p t a k e r a t e , r , and t h e b a c t e r i a l p o p u l a t i o n , X, remained c o n s t a n t i n each r u n o f t h e e x p e r i m e n t .  2.  About the Constancy o f I t was p r o v e d i n S e c t i o n J o f t h i s c h a p t e r t h a t t h e K^a  v a l u e was n o t a f f e c t e d by the oxygen uptake r a t e ( r e a c t i o n r a t e ) up t o 207 mg/l/hr.  I n o t h e r words, K^a w i t h r e a c t i o n was  that without reaction. regime.  The r e a c t i o n was  thus i n the slow r e a c t i o n  T h i s c o n c l u s i o n can be p r o v e d i n a n o t h e r A c c o r d i n g t o equat i o n s (20) and  t h e same as  way.  ( 4 7 ) , the r e a c t i o n time f o r  the f i r s t order r e a c t i o n i s ,  The maximum ^  and t h e minimum C v a l u e s i n the e x p e r i m e n t s were  200 m g / l / h r , and 0.2 mg/1 10  - 3  h r o r 3.6 s e c .  was 2.0 h r  - 1  o r 5.84  respectively.  The minimum t  thus was  On the o t h e r hand, K^a d e s c r i b e d i n S e c t i o n H x 10~  h  sec  - 1  a t 300 RPM.  I f the c r o s s s e c t i o n a l  -126a r e a o f t h e tank was t o be used as t h e t o t a l i n t e r f a c i a l a r e a , t h e n ,  with H  =  12 i n . o r 30.6 cm,  0.2 cm/sec.  t h u s was c a l c u l a t e d t o be around  A c c o r d i n g t o e q u a t i o n (19) t h e d i f f u s i o n a l t i m e w o u l d  be  •t_  =  5 x 10~  ~ r =  where D  =  h  sec  (19)  2 x 1 0 " cm/sec. 5  The r e a c t i o n t i m e o f 3.6 s e c i s s e v e r a l thousand  times  g r e a t e r t h a n t h e d i f f u s i o n a l t i m e , thus t h e r e q u i r e m e n t s o f e q u a t i o n (21) a r e f u l f i l l e d .  The system i s t h u s p r o v e d t o be i n t h e regime  of slow r e a c t i o n .  L.  ADVANTAGES OF THE PROPOSED RECTIFICATION METHOD A t y p i c a l oxygen c o n c e n t r a t i o n - t i m e t r a c e o b t a i n e d from  an a e r a t i o n e x p e r i m e n t i s shown i n F i g u r e 24.  The c o n c e n t r a t i o n  d r i v i n g f o r c e , y^, was c a l c u l a t e d a c c o r d i n g t o ,  y  ±  =  6.68 - C  ±  where 6.68 i s t h e s a t u r a t i o n s o l u b i l i t y o f oxygen i n 9K medium a t 35°C.  (118)  F i g u r e 2 4 A TYPICAL OXYGEN CONCENTRATION-TIME  TRACE  7ns  I  6^ Y  E 5  4  1  Y  3,46  Y  Y  = 1.74  5  =2.89 =2.40 3  2  =5,28  UJ  §2 4 x o  m  5  I  4  i —I  1  I  1  TIME,  1  min  2  J  I  3  -128A c c o r d i n g t o D a v i s ' method (D5) d e s c r i b e d i n S e c t i o n G o f Chapter points.  5, an a v a l u e can be c a l c u l a t e d based on t h r e e d a t a  F o r example, i f y  2  a  =  llll Yi + y  On  _  IL_ ~  2  1 }  y , 2  and y  3  are  selected,  (119)  o.30  2y,  the o t h e r hand, the a v a l u e based on the p o i n t s y , 3  y , 4  and  y  5  gave,  ^ 5  y  h  " + y  = -0.60 5  - 2y  The a v a l u e was proposed  ( 1 2 0  vi^o;  3  s e n s i t i v e t o t h e d a t a chosen.  A c c o r d i n g t o the  r e c t i f i c a t i o n method, when an a v a l u e was  based on a l l seven d a t a p o i n t s , a v a l u e o f 0.70 A c c o r d i n g t o t h e same method, n' f e d back i n t o e q u a t i o n s  y  ±  =  0.70  +  (C* - C  Q  (83) and  - 0.70)  Exp  = T-0.4915.  was  calculated obtained.  These r e s u l t s were  (117), r e s u l t i n g i n ,  (-0.4915 t )  (121)  The p l o t o f t h i s e q u a t i o n i s a l s o shown i n F i g u r e 24. T h i s example c l e a r l y i n d i c a t e s t h a t D a v i s ' method w h i c h u t i l i z e d o n l y t h r e e p o i n t s of t h e a v a i l a b l e d a t a f o r c a l c u l a t i o n was  extremely s e n s i t i v e to the accuracy of the d a t a chosen.  proposed  x  The  r e c t i f i c a t i o n method on t h e o t h e r hand, u t i l i z e d a l l the  -129d a t a a v a i l a b l e i n e s t i m a t i n g the a v a l u e and was  t h u s more r e l i a b l e .  However, the p r o p o s e d method i n v o l v e d more c a l c u l a t i o n s , but  with  t h e a i d o f a modern computer, i t c o u l d be p e r f o r m e d w i t h o u t t o o much effort. The  p r o p o s e d r e c t i f i c a t i o n method was  also superior  to  the dynamic g a s s i n g - o u t method because n e i t h e r t h e knowledge of oxygen uptake r a t e n o r t r a c e was  necessary.  uptake r a t e was and  i t was  the d i f f e r e n t i a t i o n o f the  concentration-time  I n the dynamic g a s s i n g - o u t method, the oxygen  measured d u r i n g the p e r i o d of n o n - g a s s i n g c o n d i t i o n s ,  p o i n t e d out t h a t even w i t h g r e a t c a r e , the oxygen u p t a k e  r a t e appeared a b n o r m a l l y l o w e r t h a n i t s h o u l d have been (B6).  The  r e s u l t s o f our s t u d i e s a l s o s u p p o r t t h i s e v i d e n c e . Oxygen uptake r a t e of a medium c o u l d be c a l c u l a t e d t o the p r o p o s e d r e c t i f i c a t i o n method, -from a known oxygen t r a c e and modified  s a t u r a t i o n oxygen s o l u b i l i t y . E r l e n m e y e r f l a s k as was  according  tension-time  I t c o u l d be measured i n the  described  i n S e c t i o n C-6,  F u r t h e r m o r e t h e oxygen uptake r a t e c o u l d a l s o be o b t a i n e d  Chapter  4.  experimen-  t a l l y by m e a s u r i n g the r a t e of oxygen d e p l e t i o n i n the tank under n o n - g a s s i n g c o n d i t i o n s as d e s c r i b e d by Bankyopadhyay Humphrey (B6).  T y p i c a l oxygen u p t a k e r a t e s o b t a i n e d  from the E r l e n m e y e r f l a s k and t a b u l a t e d i n T a b l e 13. by c a l c u l a t i o n and of 0.04  was  and by  calculation,  from non-gassing c o n d i t i o n s  A n a l y s i s of v a r i a n c e  are  of the r e s u l t s  obtained  from the E r l e n m e y e r f l a s k showed t h a t the F - v a l u e  s i g n i f i c a n t l y s m a l l e r t h a n F ( l , 19, 0.95)  i n the d i s t r i b u t i o n t a b l e .  = 4.41  found  T h e r e f o r e t h e r e i s no r e a s o n t o b e l i e v e  -130-  TABLE 13 THE COMPARISON OF CALCULATED AND EXPERIMENTAL VALUES OF OXYGEN UPTAKE RATE (MG 0 /L/HR) 2  Calculated  Erlenmeyer Flask  I n 9K medium  17.9  19.0  14.0  I n 9K medium  30.0  30.5  22.0  I n 9K medium  51.1  67.0  43.0  I n 9K medium  99.9  94.0  74.0  I n 9K medium  154.5  143.0  94.0  9K medium w i t h 5% s o l i d  11.2  9K medium w i t h 5% s o l i d  22.8  24.0  50.7  62.0  9K medium w i t h 5% s o l i d  •  9.4  Non G a s s i n g Conditions  8.6 15.7 4.40  9K medium w i t h 5% s o l i d  111.0  107.0  72.0  9K medium w i t h 5% s o l i d  18.0  16.4  12.4  -131t h a t t h e v a l u e s from t h e c a l c u l a t i o n and t h a t from t h e E r l e n m e y e r f l a s k a r e n o t i n good agreement. However, t h e a n a l y s i s o f v a r i a n c e o f t h e r e s u l t s from t h e n o n - g a s s i n g c o n d i t i o n s and t h a t from t h e Erlenmeyer f l a s k showed t h a t t h e F - v a l u e o f 12.6 was s i g n i f i c a n t l y h i g h e r t h a n F ( l , 19, 0.95) =  4.41.  T h e r e f o r e t h e r e i s a s i g n i f i c a n t d i f f e r e n c e between t h e  two v a l u e s .  The l o w e r v a l u e s from t h e n o n - g a s s i n g e x p e r i m e n t s  suggested the p o s s i b i l i t y o f the presence of f i n e a i r bubbles i n t h e medium w h i c h s t a r t e d t o t r a n s f e r oxygen t o t h e medium as t h e oxygen i n t h e medium was b e i n g d e p l e t e d by t h e b a c t e r i a .  -132-  CHAPTER 8 CONCLUSIONS Experiments c a r r i e d out i n shake-flasks i n d i c a t e d that v a r i a t i o n s i n pH value over the range 1.8 ^ 2.1 d i d not a f f e c t the s p e c i f i c growth rate of T_. ferrooxidans; lowering the pH r e s u l t e d i n an increase i n l a g time.  At the end of a fermentation the pH of  the medium g e n e r a l l y s t a b i l i z e d at between 2.10 of i t s i n i t i a l pH.  to 2.20  regardless  The evidence showed that the o v e r a l l r e a c t i o n f o r  the b i o l o g i c a l o x i d a t i o n of ferrous s u l f a t e to f o l l o w the equation,  20FeSOit  + 18H 0 + 5 0 2  2  -»• 4Fe (SOi+h + 4 ( H 0 ) F e ( S O i ^ 2  3  3  (OH)  (59)  6  The dependency of the s p e c i f i c growth rate of the b a c t e r i a on ferrous i r o n concentration was studied using both batch and c u l t u r e techniques.  The r e s u l t s followed Michaelis-Menten  continuous  kinetics,  but the s a t u r a t i o n constant was found to be dependent on the t o t a l i r o n concentration.  There was a l s o a discrepancy between the r e s u l t s  from the two techniques.  The r e s u l t s from the continuous c u l t u r e  technique seemed to be more r e l i a b l e . The oxygen uptake rate of the fermentation medium was  found  to be p r o p o r t i o n a l to the rate of i r o n o x i d a t i o n and to the r a t e of b a c t e r i a l carbon production.  However, the c a l c u l a t e d oxygen uptake  rate based on the r a t e of i r o n o x i d a t i o n was 5.2% higher than the rate obtained experimentally from the respirometer.  The experimental value  rather than c a l c u l a t e d value was thus then used i n c a l c u l a t i n g t o t a l rate of oxygen consumption. A method f o r determining the s a t u r a t i o n oxygen s o l u b i l i t y  -133i n the c u l t u r e medium has been p r o p o s e d .  The C* v a l u e i n 9K medium  at 35C was found t o be 6.68 mg/1 ( i n e q u i l i b r i u m w i t h t h e humid air),  and i n c r e a s i n g the t o t a l i r o n c o n c e n t r a t i o n i n the medium  reduced the C* v a l u e  slightly.  The C* v a l u e  at various  total  iron  c o n c e n t r a t i o n s were compared w i t h t h e c a l c u l a t e d v a l u e s based on van K r e v e l e n  and H o f t i j z e r ' s method.  were o b s e r v e d . and  Since  s i n c e i t enabled  D i f f e r e n c e s o f up t o 14%  the proposed method needed few assumptions, one t o determine the C* v a l u e  of a l l the components  i n the f e r m e n t a t i o n  i n the p r e s e n c e  medium, i t was deemed  to be more r e l i a b l e than the c a l c u l a t i o n a l  technique.  The e f f e c t o f oxygen t e n s i o n on the b a c t e r i a l was  also studied.  activity  When the oxygen t e n s i o n was above 6.5 mmHg,  the oxygen uptake by T_. f e r r o o x i d a n s was a t i t s maximum r a t e , and was independent o f the oxygen t e n s i o n l e v e l .  However, when the  oxygen t e n s i o n was below 6.5 mmHg, the oxygen uptake r a t e became d i r e c t l y p r o p o r t i o n a l t o the e f f e c t i v e oxygen t e n s i o n , P - 4.5; where 4.5 mmHg was the oxygen t e n s i o n below which b a c t e r i a l ceased.  The e q u a t i o n  ferrooxidans  y  =  P  m  that best  i n 9K medium then  d e s c r i b e s the a c t i v i t y o f T_. becomes,  K +(P-1.5)  A method  activity  f o r c a l c u l a t i n g K^a i n an a e r a t e d  the s t a t i s t i c a l r e c t i f i c a t i o n o f the d i s s o l v e d oxygen  ( 1 0 7 )  tank based on concentration-time  -134t r a c e was proposed.  With a known C* v a l u e , the oxygen uptake r a t e  was a l s o c a l c u l a t e d .  S i n c e the e x p e r i m e n t a l  i n t h i s method f o r e s t i m a t i n g K^a, w i t h o u t raw d a t a as i n o t h e r methods, more a c c u r a c y The  bubble  directly  the m o d i f i c a t i o n o f the resulted.  e f f e c t s o f s o l i d p u l p d e n s i t i e s on the v a l u e s o f  K^a were s t u d i e d . not a f f e c t  d a t a were used  Although  and  i n c r e a s i n g the s o l i d pulp d e n s i t y d i d  t h e v a l u e o f K^, i t reduced  the v a l u e o f K]_a s l i g h t l y .  c o a l e s c e n c e a t h i g h pulp d e n s i t y may be t h e cause.  of K-^a a t s o l i d pulp d e n s i t i e s of up t o 20% was found  More  The v a l u e  t o f o l l o w the  equation,  K a L  =  1.78 x 1 0  _ 6  (p)~  2 , 8 1 t  (N) 2  6 5  (V ) 0  (108)  5 7  s  The power consumption o f the a g i t a t o r i n a non-aerated  tank was  found  to be p r o p o r t i o n a l t o 2.67 power o f the a g i t a t i o n speed, w i t h o r w i t h o u t the s o l i d b e i n g p r e s e n t .  The a d d i t i o n o f 20% g l a s s p a r t i c l e s o f 63  microns  i n s i z e however, i n c r e a s e d the power consumption by 22%. A t r a t e s o f up t o 200 mg/l/hr, simultaneous b i o l o g i c a l r e a c t i o n i n an a g i t a t e d tank was found r e a c t i o n regime.  diffusion  t o be i n the slow  The maximum d i f f u s i o n a l time was  approximately  5 x 10~^ second, which was much l e s s than the minimum r e a c t i o n of 3.6  with  time  seconds. In t h e m i c r o b i o l o g i c a l l e a c h i n g o f ores i n an a e r a t e d  tank,  a s u f f i c i e n t l y h i g h d i s s o l v e d oxygen c o n c e n t r a t i o n i s d e s i r e d so t h a t the system w i l l be o p e r a t i n g i n the k i n e t i c regime.  A t the same time,  -135a s u f f i c i e n t amount o f ore p a r t i c l e s have to be substrates  contained  i n the o r e s w i l l not be  i n the whole o p e r a t i o n . the  system not  only  reduces the  l i q u i d h o l d up,  i n c r e a s i n g the s o l i d p u l p d e n s i t y the  a rate l i m i t i n g  the factor  However, the a d d i t i o n of p a r t i c l e s t o  reduces the r a t e of oxygen t r a n s f e r i n the  thus r e d u c i n g  added so t h a t  system.  also  significantly  Furthermore,  c o u l d damage the b a c t e r i a l c e l l s ,  r a t e of o x i d a t i o n  an optimum s o l i d p u l p d e n s i t y  but  reaction.  A careful evaluation  i n the m i c r o b i o l o g i c a l  of  leaching  p r o c e s s i s thus i m p o r t a n t .  c  LITERATURE  A u g e n s t e i n , D.C. and Wang, D.I.C. P r e s e n t e d a t 1 7 t h C a n a d i a n Chem. Eng. Conf., N i a g a r a F a l l s Ont.,  (1967).  Beck, J.V. and S h a f i a , F.M. J . B a c t e r i o l , 88:850 (1964). B r y n e r , L.C. and A n d e r s o n , R. Ind.  Eng. Chem., 49.: 1721 (1957).  Duncan, D.W.,  P e r s o n a l Communication.  Beck, J.V. J . B a c t e r i o l , 79_:502 (1960). Bartholemew, Ind.  W.H.  Eng. Chem., j42:1801 (1958).  Bankyopadhyay, B., and Humphrey, A.E. B i o t e c h n o l . B i o e n g . ,• 9_:533 (1967). B a t c h e l o r , G.K. Cited  i n P. 20 " M i x i n g I I " Ed. by U h l , V.W. and Gray, J.B.  Academic P r e s s , N.Y. (1967). B r i e r l e y , M.R. and S t e e l , R. Appl. M i c r o b i o l . ,  7_:57 (1959).  C a l d e r b a n k , P.H. and Moo-Young,M.B. Chem. Eng. S c i . , 16:39 (1961). C h i a n g , S.H. and T o o r , H.L. A . I . C h . E . J . , 5:165 (1959).  LITERATURE (CONTINUED)  Colmer, A.R. and Hinkle, M.E. S c i . 106:253 (1947). Colmer, A.R., Temple, K.L. and Hinkle, M.E. J . B a c t e r i o l , 59_:317 (1950). Cooper, CM., Fernstron, G.A. and M i l l e r , S.A. Ind. Eng. Chem., 36:504 (1944). Calderbank, P.H.  Trans. Inst. Chem. Engrs. (London) 36^443 (1958).  Danckwerts, P.V. Ind. Eng. Chem., 43:1460 (1951). Danckwerts, P.V. "Gas-Liquid Reactions" McGraw-Hill, N.Y. (1970). Duncan, D.M. and T r u s s e l l , P.C. Can. Met. Quarterly, 3(1):43 Davis,  (1964).  D.W.  P. 5, "Empirical Equations and Nomography" 1st Ed., McGraw-Hill, N.Y. (1943). Endoh, K. and Oyama, Y. Inst. Phys. Chem. Research S c i . (Japan) 52_:131 (1958). Elsworth, R., Williams, V. and Harris-Smith, R.J. Appl. Chem., 7_:261 (1957).  Friedlander, S.K. A.I.Ch.E.J., 2:43 (1957).  -138LITERATURE (CONTINUED)  F-  2.  F r o e r s l i n g , N. C i t e d i n P. 64 " M i x i n g I I " e d i t e d by U h l , V.W. and G r a y , J.B., Academic P r e s s , N.Y. (1967).  F-  3.  F u l l e r , E.C. and C h r i s t , R.H. J . Am. Chem. S o c , 6 3 : 1 6 4 4  F-  4.  (1941).  F i n n , R.K. Biochem. B i o l . Eng. S c i . , 1_:84 (1967).  F-  5.  " Friedman, A.M. and L i g h t f o o t , E.N. Ind. Eng. Chem., 49.:1227 (1957).  G-  1.  Gaden, E.L. S c i . Rept. Super S a n i t a , 1_:161 (1961).  G-  2.  Gubbins, K.E., Garden, S.N. and W a l k e r , J . o f G.C. Page 98, March  H-  1.  R.D.  (1965).  H i g b i e , R. T r a n s . Am. I n s t . Chem. E n g r s . , 31_:365 (1935).  H-  2.  H a r r i o t t , P. A.I.Ch.E.J.,  H-  3.  8:93 (1962).  H i k i t a , H. and A s i a , S . I n t . Chem. Eng., 4_:332 (1964).  H-  4.  Hodgman, C D . , Weast, R.C. and S e l b y , S.H.  (Ed).  "Handbook o f C h e m i s t r y and P h y s i c s . " 4 1 s t Ed. Chem. Rubber Pub. Co., Ohio  (1959).  LITERATURE  (CONTINUED)  H i n z e , J.O. A . I . C h . E . J . 5_:289  (1955).  Hyman, D. and Van Den Bogaerde, I.M. I n d . Eng. Chem, 52:751 (1960)••.  I n t e r n a t i o n a l C r i t i c a l Tables V o l . I l l , E d i t e d b y Washburn, E.W., M c G r a w - H i l l Co., N.Y. ( 1 9 2 6 ) . I s a a c s , W.P. and Gaudy, A.F. B i o t e c h n o l . B i o e n g . 10:69 (1968).  J o h n s o n , D.L., S a i t o , H., P o l e j e s , J.D. and Hougen, O.A A . I . C h . E . J . , 3.: 411 (1957).  K i n s e l , N.A. and U m b r e i t ,  W.W.  J . B a c t e r i o l . 87^:1243 (1964). K o l t h o f f , I.M. Meehan, E . J . and B r u c k e n s t e i n , S. P. 839 " Q u a n t i t a t i v e C h e m i c a l  Analysis"  4 t h Ed. M c G r a w - H i l l , N.Y. (1969).  L e w i s , W.K.,  and Whitman,  W.G.  I n d . Eng. Chem., 16:1215 (1932). Longmuir, I.S. Biochem. J . _5J7_:81 (1954). Lineweaver  and Burk.  C i t e d i n P. 223, " P r i n c i p l e s o f B i o c h e m i s t r y " 3 r d Ed. by W h i t e , A., H a n d l e r , P. and S m i t h , E.L., M c G r a w - H i l l N.Y. (1964).  -140LITERATURE (CONTINUED)  Leathen, W.W. , K i n s e l , N.A. , and Braley, S.A. J . B a c t e r i o l . 72:700 (1956). Lundgren, D.G. Amdersen, K.J. Remsen, C C . and Mahoney, R.P. Dev. Ind. M i c r o b i o l . , 6, 250 (1964). Landesman, J . , Duncan, D.W. and Walden, C C . Can. J . M i c r o b i o l . 12:25 (1966). Lacey, D.T. and Lawson, F. Biotechnol. Bioeng. 12:29 (1970). Lees, H., Kwok, S.C and Suzuki, I. Can. J . M i c r o b i o l . 15:43 (1969). Lau, CM. Shumate, K.S. and Smith, E.E. Presented before 3rd Sym. on Coal Mine Drainage Research i n Pittsburg, Penn. May 19 (1970). L i u , M.S., Branion, R.M.R. and Duncan, D.W. J.W.P.CF. , 44(1) :34 (1972). L i u , M.S. M.A. Sc. Thesis, Dept. of Chem. Eng., U.B.C (1969). Linek, V. and Tvrdik, J . Biotechnol.  Bioeng., 13:353 (1971).  L i u , M.S. Branion, R.M.R. and Duncan, D.W. Biotechnol. Bioeng. 15_:213 (1973).  Michaelis and Menten. Cited i n P. 221, " P r i n c i p l e s of Biochemistry" 3rd Ed. by White, A., Handler, P., and Smith, E.L., McGraw-Hill N.Y. (1964).  -141LITERATURE  M-  2.  (CONTINUED)  Monod, J . ,  Ann Rev. M i c r o b i o l . 3_:371 (1949). M-  3.  M a r g a l i t h , P., S i l v e r , J . and Lundgren, D.G. J. Bacteriol.,  M-  4.  92_:1706 (1966).  MacDonald, D.G. Ph. D. T h e s i s , Dept. o f Chem. Eng., Queens U n i v . Ont.  M-  5.  McGoran, C.J.M. , Duncan, D.W. and Walden, C C .  Can. J . M i c r o b i o l . 15:135 (1969). M-  6.  MacDonald, D.G. and C l a r k , R.H.  Can. J . Chem. Eng. 48:669 (1970). M-  7.  Maclag, W.J. and Lundgren, D.G. Biochem. B i o p h y s i c ,  M-  8.  9.  17:603 (1964).  Malouf, E.E. and P r a t e r , J.D. J . Metals,  M-  Res. Commun.,  13:353 (1961).  Miyamoto, S.  B u l l Chem. Soc. Japan 2^748 (1927). M-  10.  Miyamoto, S. and Kaya, T.  I b i d . , 5_:123, 229, 321 (1930). M-  11.  Miyamoto, S. Kaya, T. and Nakata, A.  I b i d . , 6/.264 (1931). M-  12.  Miyamoto, S.  I b i d . , 7^:8 (1932). M-  13.  Murphy, D. , C l a r k , D.S. and L e n t z , C P .  Can. J . Chem. Eng. 3J7_:157 (1959). M-  14.  M i c h e l , B . J . and M i l l e r , S.A. A.I.Ch. E . J . ,  8:262 (1962).  (1968)  -142LITERATURE (CONTINUED)  Maxon, W.D.  and Johnson, M.J.  I n d . Eng. Chem., 45:2554 (1953).  N o v i c k , A. C i t e d i n P. 190, " B i o c h e m i c a l and B i o l o g i c a l E n g i n e e r i n g S c i e n c e " V o l . I . by B l a k e b r o u g h , N., Academic P r e s s , N.Y.  (1967).  Newton Raphson Method C i t e d i n P. 133, " N u m e r i c a l Methods and F o r t r a n Programming" by McCracken, D.D. and D o r n , W.S., John W i l y I n c . , N.Y.  Oyama, Y. and Endoh, K. Kagaku Kogaku ( J a p a n ) , 19_: ( 2 ) , 1 (1955).  P i c k e r i n g , R.W.  and H a i g h , C . J .  Canadian P a t e n t 787853, June 18, (1968).  Robingson,  R.G. and E n g e l , A . J .  B i o . Eng. Food P r o c , Chem. Eng. P r o g . Symp. S e r i e s 69:(62):129  (1966).  Rushton, J.H. Chem. Eng. P r o g r e s s , 47:485 (1951). Rushton, J.H., C o s t i c h , E.W. and E v e r e t t , H.J. I b i d . , 46:467 (1950). Rogers, J . L . and Vernimmen, A.P. Water P o l l u t i o n A b s t r a c t s , 39_:203 (1966).  (1964).  -143LITERATURE  S-  1.  S i l v e r m a n , M.P.  (CONTINUED)  and Lundgren,  D.G.  J . B a c t e r i o l . 77:642 (1959). S-  2.  S i l v e r m a n , M. Can. J . M i c r o b i o l . , 16:845 (1970).  S-  3.  S i l v e r m a n , M.P.  and E h r l i c h ,  H.L.  Advances A p p l . M i c r o b i o l . 6^:153 (1964). S-  4.  S i l v e r m a n , M.P.  and Lundgren,  D.G.  J . B a c t e r i o l . , 78:326 (1959). S-  5.  S h a f i a , F. and W i l k i n s o n , R.F. J . B a c t e r i o l . , 97^:256 (1969).  S-  6.  Siegell,  S.D.  Biotechnol. S-  7.  B i o e n g . , 4^:345 (1962).  S w i n n e r t o n , J.W.,  Linnenbom, V . J . and Cheek, C.H.  A n a l . Chem. 34:483 (1962). S-  8.  S h i n n a r , A. and Church,  J.M.  Ind. Eng. Chem., 5_2:2'53 (1960). S-  9.  S n i j d e r , R . J . , H a g e r t y , P.F. and M o l s t a d , Ind. Eng. Chem. 49:689  S-  10.  Sandell,  M.C.  (1957).  E.G.  C i t e d i n P. 524 " C o l o r i m e t r i c D e t e r m i n a t i o n o f T r a c e s o f M e t a l s " 3 r d Ed.  T-  1.  Tuouinen,  O.H.  I n t e r s c i e n c e N.T.  and K e l l y ,  (1959).  D.P.  A r c h . M i k r o b i o l . 88/.285 (1973). T-  2.  Touoinen, O.H.,  N i e m e l a , S . I . and G y l l e n b e r g , H.G.  B i o t e c h n o l o . B i o e n g . , 13:517  (1971).  -144LITERATURE (CONTINUED)  T-  3.  Temple, K.L.  and Colmer,  A.R.  J. B a c t e r i d . 62:605 (1951). T-  4.  Torma, Ph.D.  T-  5.  A.E. T h e s i s , Dept. of Chem. Eng.,  Torma, A.E.,  Walden, C C .  B i o t e c h n o l . Bioeng., T-  6.  T e r a i , T. and  U.B.C.  (1970).  and B r a n i o n , R.M.R.  12:501 (1970).  Iwasaki,  T.  J. Ferment. T e c h n o l . , 49_:53 (1971). T-  7.  T a g u c h i , H.  and Humphrey,  Kagaku, Kogaku (Japan) T-  8.  Tuffile,  9.  Tsao,  10.  Tsao,  11.  Tsao,  Bioeng.,  1.  Unz,  R.F.  Soil,  V-  1.  10:765 (1968).  11:1071 (1969).  G.T.  B i o t e c h n o l . Bioeng.,  U-  JL2:849 (1970)  G.T.  Biotechnol. T-  F.  G.T.  B i o t e c h n o l . Bioeng., T-  30/. 869 (1966).  CM. , and Pinho,  B i o t e c h n o l . Bioeng., T-  A.E.  1_2:51 (1970).  and Lundgren,  Sci.,  92/302 (1961).  Van K r e v e l e n , D.W., C i t e d i n P. 19, McGraw-Hill,  D.C  and H o f t i j z e r ,  P.J.  " G a s - L i q u i d R e a c t i o n s " by Danckwerts,  N.Y.  (1970).  P.V.  -145-  LITERATURE  V-  2.  (CONTINUED)  Vermeulen, T. , W i l l i a m s , G.M. and L a n g l o i s , G.E. Chem. Eng. P r o g r . , 51j85  V-  3.  (1955).  V a l e n t i n , F.H.H. . " A b s o r p t i o n i n G a s - L i q u i d D i s p e r s i o n s " E. and F.N. Spon L i m i t e d . , London (1967).  V-  4.  Van Der Kroon, G.T.M. Water R e s e a r c h , .2:26 (1968).  W-  1.  W e s t e r t e r p , K.R., Van D i e r e n d o n c k , Chem. Eng. S c i . , 18:157  W-  2.  (1963).  W i s e , S.W. J . Gen. M i c r o b i o l . , 5_: 167  W-  3.  L.L. and D e k r a a , J.A.  (1951).  W i n k l e r method. C i t e d i n P. 309, S t d . Methods f o r t h e Exam, o f Water and Waste-water, 1 1 t h Ed. APHA-AWWA-WPCF, (1960).  Y-  1.  Y a t e s , M.G. and Nason, A. J . B i o l . C h e m i s t r y , 241:4861 (1966).  Y-  2.  Y o s h i d a , F., I k e d a , A., Imakawa, S. and M i u r a , Y. I n d . Eng. Chem., 52:435  (1960).  -146NOMENCLATURE A  t o t a l i n t e r f a c i a l area, L  a  i n t e r f a c i a l a r e a p e r volume, L  b, c, d, ... m, n  constants  2  B  reactant concentration,  B o  initial  C  d i s s o l v e d gas c o n c e n t r a t i o n ,  Ci,  C 2 , •••  ML  - 1  - 3  reactant concentration, ML ' ML  - 3  - 3  d i s s o l v e d gas c o n c e n t r a t i o n a t v a r i o u s intervals,  ML  time  - 3  C  d i s s o l v e d gas c o n c e n t r a t i o n a t i n t e r f a c e , M L  C^  initial  C*  s a t u r a t i o n gas s o l u b i l i t y ,  AC  concentration driving force, ML  C  c r i t i c a l d i s s o l v e d gas c o n c e n t r a t i o n ,  D  diffusivity, L T  d i s s o l v e d gas c o n c e n t r a t i o n ,  2  ML  i m p e l l e r diameter, L maximum b u b b l e d i a m e t e r , L  E  enzyme c o n c e n t r a t i o n ,  E-S  enzyme-substrate complex,  F  Q  absorption rate, ML~ T  F  T  t o t a l a b s o r p t i o n r a t e , MT""  ML  2  - 3  ML  - 3  - 1  1  absorption rate, ML~ T 3  _ 1  g  gravitational acceleration, L T  H  height of reactor, L  H  Henry's law c o n s t a n t ,  mmHg L M 3  - 3  - 3  _ 1  D max  ML  - 2  - 1  - 3  ML  - 3  - 3  -147Henry's law c o n s t a n t f o r water, atm L M 3  solubility contribution ionic  - 1  factor  strength  o v e r a l l mass t r a n s f e r c o e f f i c i e n t w i t h r e a c t i o n LT~ o v e r a l l mass t r a n s f e r c o e f f i c i e n t w i t h o u t LT  reaction  - 1  r e a c t i o n rate constant, M L  - 3  T  r a t e constant f o r n-th order Michaelis  - 1  (ML  )  n  reaction  and Menten c o n s t a n t , M L  s a t u r a t i o n constant, M L  - 3  - 3  - 3  s a t u r a t i o n c o n s t a n t , mmHg enhancement f a c t o r a g i t a t i o n speed, rpm oxygen t e n s i o n , mmHg product concentration, initial  ML  - 3  product concentration,  ML  - 3  a g i t a t o r power consumption w i t h o u t a e r a t i o n , L M T a g i t a t o r power consumption w i t h a e r a t i o n , L M T f i n a l oxygen t e n s i o n , mmHg volumetric  gas f l o w r a t e , L T 3  -  1  square o f the c o r r e l a t i o n c o e f f i c i e n t rate of reaction,  ML  _ 3  T  - 1  oxygen uptake r a t e , M L ~ T 3  f r a c t i o n a l rate o f surface  - 1  renewal, T  - 1  - 1  - 1  -148S  substrate concentration,  5 o  initial  SS  sum square o f d e v i a t i o n  t  time, T t2...  fc  - 3  substrate concentration,  d i f f u s i o n a l time, T  r  r e a c t i o n time, T '  V  l i q u i d volume, L  V  s u p e r f i c i a l gas v e l o c i t y , L T "  V  terminal v e l o c i t y , LT"  x  distance, L  X  c  X X  3  1  1  b a c t e r i a l carbon, M bacterial  Q  inoculum  population population  V  yield  y^  concentration driving force, ML  6  film  y  specific  V  c  ML  time i n t e r v a l s , T  D  t  ML  - 3  thickness, L growth r a t e , T  viscosity,  ML  _ 1  T  _ 1  - 1  p^  maximum s p e c i f i c growth r a t e , T~*  <J>  dilution rate, T  a  density,  y  surface tension,  p  specific gravity  ML  - 1  - 3  MT  -2  - 3  APPENDIX I THE EFFECT OF I N I T I A L pH ON THE SPECIFIC GROWTH RATE OF T. FERROOXIDANS (35°C, AND CO2 ENRICHED ATMOSPHERE)  Time (Hour) 0.0 5.0 10.0 12.0 14.0 16.0 18.0 20.0 21.5 • 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0  PH  Fe+++  Fe-H-  (g/D  1.50 1.50 1.50 1.50 1.55  0.697 0.753 0.922 1.096 1.352  1.60  1.921  1.65 1.65 1.65 1.65 1.65 o.65 1.65 1.65  2.674 3.422 4.128 5.134 6.213 7.392 8.427 8.976 9.149  ym  0.096  ym  Fe-H-f  8.440  Fe-H-t-  1.62  -  -  (g/D  pH  1.80 1.85 1.92 1.95 2.05 2.05 2.15 2.12 2.15 2.15 2.15 2.15  0. 723 1. 042 1. 873 2. 341 .2.973 3. 514 4. 576 6.002 6.971 8. 542 9.214 9.356  1.90 1.95 2.10 2.20 2.20 2.20 2.15 2.20 2.20 2.20 2.20 2.20  ym  0.114  ym  Fe-t-H-  7.120  Fe++  P H  1.70 1.80 1.78 1.78 1.78 1.80 1.90 2.00 2.05 2.10 2.10 2.15 2.15  0. 708 0. 942 1. 648 2.012 2. 524 3.192 3. 843 4. 714 5. 608 7. 336 8. 614 9.194 9.202  0.109 6.750  Fe+++  (g/D  PH  0.741 1.154 2.087 2.642 3.307 4.124 5.183 6.547 7.711 9.136 9.314 9.443  2.10 2.12 2.12 2.14 2.15 2.14 2.15 2.15 2.15 2.15 2.20  0.116 5.200  ym Fe++  Fe+++  (g/D  0.752 1.204 2.172 2.706 3.428 4.312 5.443 6.792 8.024 9.352 9.412  0.116 3.240  -150APPENDIX I I EFFECT OF SOLID PULP DENSITIES ON THE GROWTH RATE OF T. FERROOXIDANS IN SHAKE-FLASK EXPERIMENTS AT 35°C  Time (Hour) 0 3.0 6.0 9.0 12.5 15.0 17.0 19.0 21.0 23.0 25.0 27.0 29.0 31.0 32.0  0% Fe+++ (g/1) 0.674 0.854 1.196 1.682 2.488 3.373 4.164 5.447 6.576 7.874 8.543 8.914 9.046  pH = 1.80 AND TOTAL IRON  0.25% Fe+++ (g/1) 0.674 0.778 1.082 1.510 2.220 2.957 3.692 4T567 5.721 7.141 8.174 8.714 9.023  0.50% Fe+++ (g/1) 0.674 0.752 0.868 1.231 1.852 2.454 3.032 .3.861 4.833 6.011 7.212 7.932 8.262 8.710 8.742  =  9.270 g/1  1.00% Fe+++ (g/1) 0.674 0.712 0.765 0.927 1.287 1.661 1.972 1.498 3.004 3.562 4.304 5.272 6.287 7.313 7.696  -151APPENDIX I I I THE EFFECT OF BASAL SALTS, AND TOTAL IRON CONCENTRATION ON THE GROWTH OF T. FERROOXIDANS AT 35°C (1)  4.5 g/1 t o t a l  iron  B.S. Time (hr)  \ 0.0 5.0 10.0 13.0 16.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0  Total  iron  1/2 ^  #1  1. 0 #2  #1  0.254 0.411 0.744 1.056 1.500 1.866 2.360 2.646 2.977 3.314 3.510 3.796 3.924 3.997 4.106  0.276  3.204 3.412 3.597 3.682 3.702  0.214 0.422 0.740 1.064 1.517 1.922 2.430 2.765 2.982 3.330 3.515 3.818 3.953 4.072 4.131  4.214  3.914  4.201  0.743 1.037 1.421 2.198 2.684  2 0 #2 0.202 0.595 0.854 1.207 1.934 2.454 3.087 3.333 3.521 3.578 3.604  3.921  //l 0.258 0.377 0.602 0.793 1.047 1.276 1.523 1.667 1.833 2.014 2.211 2.423 2.644 2.909 3.192 3.494 3.783 3.988 4.084 4.123  4.284  3. 0 #2 0.284  #1  n  2.347 2.583 2.834 •3.113 3.407 3.712 3.977 4.142 4.242 4.278  2.443 3.774 5.912 7.804 1.030 1.233 1.474 1.620 1.760 2.017 2.221 2.427 2.553 2.784 3.030 3.337 3.651 3.892 4.097 4.122  2.272 2.504 2.721 2.983 3.267 3.564 3.911 4.124 4.147 4.207  4.421  4.523  4.412  0.633 0.838 1.102 1.604 1.943  2.814 6.422 8.394 1.102 1.597 1.900  -152APPENDIX I I I  (2)  9 g/1 t o t a l  iron  B.S. T-l  ma  1 xine (hr)  ^\  0.0 5.0 10.0 12.0 14.0 16.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0  (3)  1/2  ill  #2  0.768 1.334 2.384 3.062 3.784 4.783 5.613 6.031 6.303 6.489 6.607 6.721 6.822 6.879 6.903 6.927 6.948 6.962 6.971 9.421  0.922 1.578 2.783  18 g/1 t o t a l  \.  0.0 5.0 10.0 15.0 20.0 22.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0  4.354 5.227 6.067 6.644 6.989 7.123  2. 0 #2  #1 0.912 1.497 2.663 3.404 4.213 5.362 6.731 7.404 8.096 8.754 9.214 9.623 9.988 10.204  #1  #2  0.842 1.364 2.304 2.742 3.512 4.187 5.388 5.979 6.627 7.401 8.104 8.723 9.121 9.432 9.683 9.944  0.664 1.048 1.798  10.599. 10.042  .9.692  0.854 1.614 2.957 3.712 4.622 5.834 7.363 7.960 8.617 9.243 9.739 9.985 10.286 10.437  7.224  9,612  10.388  3.0  2.707 4.121 5.098 6.302 7.796 8.792 9.234 9.443 9.628  #2  #1 0.886 1.432 2.454 3.062 3.767 4.682 5.792 6.422 7.184 7.989 8.624 9.124 9.423 9.688 9.879 10.004  0.684 1.032 1.758  10.128  9.721  2.688 4.112 5.104 6.286 7.780 8.762 9.263 9.424 9.604  iron  B.S. ixme (hr)  1. 0  1/2 #1  1. 0 #2  #1  2. 0 #2  •- #1  3. 0 #2  #1  #2  3.521 4.814 6.523 8.842 11.894 13.144 14.683 15.721 16.234 16.872 17.341 18.214 18.254  4.328 5.428 7.217 9.824 13.144 14.786 16.521 17.124 17.873 18.625 19.147 19.254  3.522 4.488 6.076 8.245 10.982 12.724 13.987 14.693 15.724 17.023 18.421 18.334 18.248  3.542 4.821 6.618 8.897 11.932 13.214 15.123 15.182 16.932 18.214 18.422 19.284  3.426 4.635 6.423 8.542 11.274 12.928 14.274 . 14.823 16.421 17.234 18.017 18.218 18.621  4.022 5.348 7.116 9.387 12.833 14.214 16.321 16.892 16.942 17.933 19.216 19.824 19.987  3.242 4.421 6.003 8.014 10.921 12.042 13.124 13.982 14.294 15.683 16.277 17.121 17.823  4.223 5.427 7.218 9.824 13.114 14.721 16.234 16.928 17.821 18.214 19.423 19.974 20.011  19.821  21.584  19.212  20.823  19.824  21.829  19.214  21.818  -153APPENDIX I I I  (4)  27.0 g/1 t o t a l  B.S. T i m e ^ \ (hr) \ ^ 0 2.5 5.0 6.0 9.0 12.5 15.0 20.5 23.0 24.0 29.0 32.0 36.0 40.0 42.0 44.0 45.0 46.0 48.0  iron 1/2  #1 1.721 1.952 2.232 2.321 2.652 3.314 3.615 4.921 5.513 5.900 7.487 8.668 10.524 13.082 14.724 16.824 17.122 17.928 18.284 28.824  1 0 #2 2.124 2.656 3.421 4.442 6.302 9.242  12.524 16.824 20.834 22.821 23.683 29.314  #1 1.735 1.814 2.101 2.443 2.634 3.227 3.968 5.210 5.900 6.037 8.596 10.012 13.007 17.091 19.651 22.917 24.007 25.205  28.799  2. 0 #2 1.702  #1  19.921 22.021  1.623 1.812 2.800 2.243 2.521 3.122 3.522 4.821 5.602 5.723 7.382 8.725 10.924 13.212 15.022 16.537 17.214 18.223 20.425  29.214  28.727  2.123 2.623 3.624 5.524 8.013 10.929 14.212 17.523  3 0 #2 1.923  #1  22.347 23.122  2.018 2.254 2.514 2.688 3.142 3.804 4.321 5.828 6.542 6.923 9.082 10.521 12.872 15.128 17.214 20.293 21.424 21.984 23.217  29.223  28.128  2.521 3.112 4.123 6.334 9.027 12.214 15.624 19.218  #2 2.524 3.012 3.608 4.926 7.526 10.286 16.273 19.011 22.132 24.002 25.212 29.112  -154APPENDIX IV THE DEPENDENCY OF GROWTH RATE ON THE FERROUS IRON CONCENTRATIONS  (1)  Total iron  t (hour) 0 1 2 3 4 5 6 7 8 9 10 11 12 (2)  Fe-f-H(g/D 0.278 0.311 0.350 0.401 0.443 0.498 0.560 0.628 0.681 0.759 0.819 0.856 0.874  Total iron  t (hour) 0 3 6 8 10 12 14 15 16 17 18 19 20 21 22 23  =  =  Fe-H-f  (g/D 0.131 0.196 0.275 0.344 0.427 0.533 0.650 0.738 0.788 0.844 0.914 0.977 1.055 1.091 1.129 1.145  0.899 g/1 Fe++ (g/D 0.621 '• 0.588 0.549 0.498 0.456 0.401 0.339 0.271 0.218 0.140 0.080 0.045 0.025  V (hr)-l - 0.116 0.116 0.116 0.116 0.116 0.116 0.100 0.095 0.077 0.063 0.048 . 0.030 0.021  1/S (g/1)-  1  1.61 1.70 1.82 2.01 2.19 2.49 2.95 3.69 4.59 7.14 12.56 22.20 40.00  l/y (hour) 8.62 8.62 8.62 8.62 8.62 8.62 10.00 10.53 12.99 15.87 20.83 33.33 47.76  1.190 g/1 Fe++  (g/D  (hr)-l  1.059 0.994 0.915 0.846 0.763 0.657 0.540 0.460 0.402 0.346 0.276 0.213 0.135 0.099 0.061 0.045  0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.099 0.076 0.063 0.055 0.041 0.034 0.026 0.020  l/s (g/D 0.94 1.01 1.09 1.18 1.31 1.52 1.85 2.16 2.49 2.89 3.62 4.69 7.41 10.10 16.39 22.22  i - 1  l/y (hour) 9.26 9.26 9.26 9.26 9.26 9.26 9.26 9.26 10.10 13.16 15.87 18.18 24.39 29.41 38.20 50.00  -155APPENDIX IV (3)  Total iron  Run  1  {  2  =  3.921  and 4.20  g/1  1/S (g/D-1  l/v  Time (hour)  Fe+++  (g/D  (g/D  (hr)-l  0 5 10 13 16 18 20 21 22 23 24 25 26 27 28  0.214 0.422 0.740 1.064 1.517 1.922 2.430 2.765 2.982 3.330 3.515 3.818 3.953 4.072 4.131  3.987 3.779 3.561 3.137 2.684 2.279 1.771 1.436 1.219 0.871 0.686 0.383 0.248 0.129 0.042  0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.091 0.063 0.046 0.032 0.020 0.011  0.25 0.26 0.28 0.32 0.37 0.56 0.56 0.69 0.82 1.15 1.46 2.61 4.03 7.75 23.81  8.62 8.62 8.62 8.62 8.62 8.62 8.62 8.62 8.62 10.99 15.87 21.74 31.25 50.00 90.91  0.0 10.0 13.0 16.0 20.0 22.0 24.0 25.0 26.0 27.0 28.0  0.202 0.595 0.854 1.207 1.934 2.454 3.087 3.333 3.521 3.772 3.801  3.719 3.326 3.067 2.714 1.987 1.467 0.834 0.588 0.400 0.343 0.120  0.116 0.116 0.116 0.116 0.116 0.116 0.095 0.065 0.045 0.024 0.014  0.27 0.30 0.33 0.37 0.51 0.68 1.20 1.70 2.50 4.12 8.33  8.62 8.62 8.62 8.62 8.62 8.62 10.53 15.38 22.22 41.67 71.40  Fe-H-  (hour)  -156-  APPENDIX IV (4)  Total iron Time (hour)  Run 1  2  =  10.388 and 10.599 Fe+++ (g/D  g/1  Fe-H(g/D  u (hr)-l  1/S (g/1)"  1  l/v (hour)  0 5 10 12 14 16 18 19 20 21 22 23 24 25  0.854 1.614 2.957 8.712 4.622 5.834 7.363 7.960 8.617 9.243 9.739 9.985 10.286 10.437  9.845 8.985 7.642 6.887 5.977 4.765 3.236 2.639 1.982 1.356 0.860 0.614 0.313 0.162  0.116 0.116 0.116 0.116 0.116 0.116 0.102 0.089 0.074 0.061 0.038 0.027 0.022 0.014  0.10 0.11 0.13 0.15 0.17 0.21 0.31 0.38 0.50 0.74 1.16 1.63 3.19 6.17  8.62 8.62 8.62 8.62 8.62 8.62 9.80 11.24 13.51 16.39 26.32 37.04 45.45 71.43  0 5.0 10.0 12.0 14.0 16.0 18.0 19.0 20.0 21.0'' 22.0 23.0 24.0 25.0  0.912 1.497 2.663 3.704 4.213 5.362 6.731 7.404 8.098 8^754 9.214 9.623 9.988 10.204  9.476 8.891 7.725 6.684 6.175 5.026 3.657 2.984 2.292 1.634 1.174 0.765 0.400 0,184  0.116 0.116 0.116 •0.116 0.116 .0.116 0.116 0.092 0.083 0.060 0.047 0.040 0.029 0.016  0.11 0.11 0.13 0.15 0.16 0.20 0.27 0.34 0.44 0.62 0.85 1.31 2.50 5.43  8.62 8.62 8.62 8.62 8.62 8.62 8.62 10.87 12.05 16.70 21.28 25.0 34.48 62.50  -  -157APPENDIX V THE DEPENDENCY OF GROWTH RATE ON THE FERROUS IRON CONCENTRATION OBTAINED WITH THE CONTINUOUS CULTURE APPARATUS OPERATED AT 35°C (1)  Total iron  =  0.524 g/1  — .  (1)  So = 0.524 pH = 1.8 Agitation = 300 rpm Volume = 1150 ml C0  2  = 2% v / v  F (ml/hr)  107.0 102.7 101.8 100.0 100.0 98.3 98.3 88.7 88.7 82.7 82.7 66.5 66.5 55.0 55.0 50.7 50.7 42.8 42.8 39.8 39.8 32.9 32.9  S  (g/D 0.399 0.255 0.220 0.237 0.262 0.222 0.201 0.159 0.159 0.133 0.136 0.099 0.102 0.070 0.067 0.057 0.062 0.045 0.041 0.047 0.038 0.035 0.036  1/u (br)  10.8 11.2 11.3 11.5 11.5 11.7 11.7 13.4 13.4 13.9 13.9 17.3 17.3 20.9 20.9 22.7 22.7 26.9 26.9 28.9 28.9 35.0 35.0  i/s  (g/1)"  4.00 3.92 4.55 4.22 3.82 4.50 4.98 6.29 6.29 7.52 7.35 10.01 9.80 14.29 14.93 17.54 16.13 22.22 24.39 21.28 26.32 28.57 27.70  1  APPENDIX V  (2)  Total iron  (2)  So = 1.214 pH = 1.80 Agitation = 300 rpm Volume = 1150 m l C02 = 2% v / v  =  1.214 g/1 F  (ml/hr) 118.6 117.3 115.0 113.9 109.5 100.0 90.6 86.5 75.2 75.2 68.0 68.0 60.2 60.2 55.0 55.0 49.8 49.8 43.9 40.2 36.3 36.3 30.4 23.0  l/y (hr)  s  (g/D 0.658 0.549 0.485 0.417 0.366 0.293 0.244 0.212 0.170 0.156 0.128 0.123 0.099 0.094 0.087 0.085 0.076 0.084 0.063 0.055 0.050 0.042 0.038 0.027  •  9.7 9.8 10.0 10.1. 10.5 11.5 12.7 13.3 15.3 15.3 16.9 16.9 19.1 19.1 20.9 20.9 23.1 23.1 26.2 28.6 31.7 31.7 37.8 50.0  1/S  (g/1)" 1.52 1.82 2.06 2.40 2.73 3.41 4.09 4.72 5.87 6.41 7.80 8.10 10.10 10.64 11.49 11.76 13.16 11.90 15.87 17.86 20.00 23.81 26.32 37.04  1  1  -159APPENDIX . V  (3)  Total iron  (3)  So = 3.295 g/1 pH = 1.80 Agitation = 300 rpm Volume = 1150 ml C02 = 2% v / v  =  3.295 g/1  F (ml/hr)  S (g/D  112.7 109.5 105.5 104.5 100.0 89.8 81.6 73.2 64.6 60.5 51.3 43.6 41.1 38.3 36.3 32.1 28.7 . 25.0 22.6  0.990 0.819 0.746 0.588 0.500 0.413 0.296 0.226 0.209 0.159 0.122 0.113 0.100 0.088 0.076 0.065 0.057 0.050 0.040  l/y (hr) 10.2 10.5 10.9 11.0 11.5 12.8 14.1 15.7 17.8 19.0 22.4 26.4 28.0 30.0 31.7 35.8 40.1 46.0 50.9  1/S (g/l)" 1.01 1.22 1.34 1.70 2.00 2.42 3.38 4.43 4.78 6.30 8.18 8.84 10.00 11.36 13.16 15.38 17.54 20.00 25.00  1  -160APPENDIX V I THE RELATIONSHIP BETWEEN FERRIC IRON PRODUCTION, BACTERIAL CARBON PRODUCTION AND OXYGEN UPTAKE RATE IN THE AERATED TANK REACTOR AT 35°C, pH = 1.80.  Time (hr)  0.0 2.5 5.0 6.0 9.0 12.5 15.0 18.8 20.5 21.5 23.0 24.0 29.0 32.0 36.0 40.0 42.0 44.0 45.0 46.0 47.5  CARBON (mg/1) Total  Inorganic  Net  23.0  19.0  4.0  24.0  19.0  5.0  27.0  19.0.  8.0  34.0 39.0 46.5 51.0 62.0 70.0 76.5 82.0 85.5 89.0  19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0  15.0 20.0 27.5 32.0 43.0 51.0 57.5 63.0 66.5 70.0  Fe++ (g/D 27.064 26.985 26.698 26.356 26.165 25.572 24.831 24.173 23.589 23.245 22.899 22.762 20.203 18.787 15.792 11.708 9.148 5.882 4.792 3.594 2.069  Fe+++ (g/D 1.735 1.814 2.101 2.443 2.634 3.227 3.968 4.626 5.210 5.554 5.900 6.037 8.596 10.012 13.007 17.091 19.651 22.917 24.007 25.205 26.730  Uptake (mg/l/hr) 12.7 14.2 16.2 17.7 20.4 27.5 30.0 39.5 45.0 46.0 47.9 53.4 70.0 96.2 105.1 167.6 185.0 203.0 208.0 192.0 142.0  -161APPENDIX V I I DETERMINATION OF SATURATION OXYGEN SOLUBILITIES (1)  Run  1  2  Total iron  Time (hr)  =  4.5  g/1  Fe++  Fe+++  (g/D  (g/D  0.0 2.0 4.0 6.0 8.0 10.0 12.0 15.0 16.0  4.008  0.491  2.276  2.223  2.034  0.0 4.0 11.0 16.25 19.5 22.5 25.0 28.0  4.444 4.247 4.051 3.681 3.246 2.657 2,071 1.112 c*  =  Uptake (mg/l/hr)  Rate Change (mm Hg/hr)  2.465  8.5 10.0 13.3 18.0 23.5 29.5 35.7 44.1 46.2  170 225 317 410 520 670 799 929 991  0.156 0.353 0.549 0.819 1.354 1.943 2.529 3.488  3.6 3.4 7.4 16.2 20.0 27.4 33.5 39.6  64 87 191 342 420 634 720 915  6.92 mg/1  -162APPENDIX  Total iron  =  VII  9.0 g/1  Time (hr)  (8/D  (8/D  1  0 24 32.0 33.0 35.5  9.167 6.970 3.986 1.917 0.675  0.120 2.819 5.803 7.872 9.114  3.5 35.6 72.2 80.8 53.8  79 834 1622 1840 1174  2  0.0 10.0 13.0 15.0 20.0 23.0 24.5 26.0 27.0 28.0  8.741 8.196 7.679  0.208 0.750 1.270  6.072 4.874 3.975  2.857 4.075 4.974  7.7 15.1 18.7 27.5 -.1.41.8 54.2 63.0 69.3 75.0 75.3  128 330 360 600 977 1184 1400 1554 1574 1680  Run  Fe-H-  FeH-H-  C*  Total iron  Run  =  =  Uptake (mg/r/hr)  Rate Change (mm Hg/hr)  6.68  13.5 g/1  Time (hr)  (8/D  (8/D  Uptake (mg/l/hr)  0 8.0 17.0 19.0 21.5 24.0 26.0 28.0  12.779 12.053 10.528 9.729 8.749 7.515 6.208 4.937  1.154 1.880 3.405 4.204 5.184 6.418 7.725 8.996  10.0 16.6 35.3 45.6 60.5 73.9 90.0 111.0  Fe-H-  Fe+++  C*  -  6.66  Rate Change (mm Hg/hr) 210 350 823 1080 1344 1680 2050 2450  ^163APPENDIX V I I Total iron  =  18 g/1  Fe-H-H  Time (hr)  Fe++ (g/D  1  0.0 14.0 26.0 33.5 41.5 43.5 45.0 47.25  17.07 16.12 14.70 12.63 7.95 6.21 4.90 2.61  0.45 1.40 2.82 4.89 9.57 11.31 12.63 14.91  8.3 12.4 25.4 56.7 115.0 145.0 147.0 132.0  152 258 604 1350 2640 3216 3000 2634  2  0.0 13.0 17.0 26.0 36.0 40.0 42.0 44.0 46.0  18.26 17.64 17.28 16.08 14.05 12.63 11.69 10.53 9.33  0.34 0.96 1.32 2.52 4.55 5.97 6.91 8.07 9.27  5.0 9.8 9.7 17.8 . 46.3 68.5 74.0 83.9 122.0  180 200 260 430 950 1560 1572 1542 1650  3  0.0 13.0 29.0 38.0 48.0 51.0 53.0  17.93 17.10 15.76 14.01 9.88  1.33 2.17 3.51 5.25 9,39 11.43 12.95  6.7 15.7 24.2 36.5 90.0 114.0 115.0  142 180 500 800 1880 2664 2400  Run  (g/D  C*  =  7.06  Uptake (mg/l/hr)  Rate Change (mm Hg/hr)  APPENDIX VIII AND K  sc  VALUES AT VARIOUS OXYGEN UPTAKE RATES IN 9K MEDIUM C*  =  6.68 a t P0  2  =  150.67 mm Hg  OXYGEN TENSION X J- LUC  (minutes)  0 1.0 2.0 3.0 4.0 5.0 6.0 Uptake r a t e (mm Hg/hr)  #1 100.0  #2  #3  #4  92 .0  88.6 65 .2 42 .2 19 .0  96 .6 69 .0 40 .4 12 .6  87.2  72.4  75 .4  42 .0  64 .0  32 .0  360  (mm Hg)  600  1400  1680  #2  #3  #4  8.8 "  12 0  7 .6  10 2  6 4  14 .0 11 .6 9.2 7.0 5 .2 4 .6 4 .2 4.0 4 0 4.0 4 .0  12 .6 9 .8 7.2 4..8 4 .2 4.0 4 .0 4.0 4 .0 4.0 4 0  D e t £i i 1 s Time (minutes)  K  sp  K  sc  #1  0 0.1 0.2 0 3 0.4 0.5 0 6 0 7 0.8 0.9 1.0  5.4 5 2 4 9 4 8 4 8  8.2 6 2 5 6 5.2 5.2 5.2 5.2  Po  4.8  5.0  4 0  4 0  (mm Hg)  0.8  1.2  1.0  1.0  (mg/1)  0.036  0.052  0.045  0.045  APPENDIX V I I I  X Run N.  P (mm Hg)  P-Pbo (mm Hg)  R (mm Hg/hr)  1  5.5 5.3 5.2 5.1 4.95 4.90  0.70 0.50 0.40 0.30 0.15 0.10  300 250 200 150 100 50  2  5.9 5.6 5.4 5.3 5.15 5.10  0.90 0.60 0.40 0.30 0.15 0.10  400 250 200 150 100 50  3  5.2 4.9 4.6 4.4 4.3 4.25 4.1  1.20 0.90 0.60 0.40 0.30 0.25 0.10  600 400 300 250 150 100 50  4  5.0 4.6 4.4 4.25 4.15 4.10  1.00 0.60 0.40 0.25 0.15 0.10  500 300 250 150 100 50  -166APPENDIX I X THE EFFECT OF SOLID PULP DENSITIES ON K  L  (35°C, 500 rpm and pH = 1.80) (1)  0 and 5% s o l i d 0%  Time (hour)  Fe+++ (g/D  0 10 18 22 . 26 28 30 32 34 36 38 40 42 44 46 50 50 52 54 56 58 60 62  0.024 0.041 0.086 0.127 0.184 0.224 0.270 0.326 0.392 0.473 0.568 0.690 0.832 0.987 1.202 1.394 1.590 11786 1.960 2.164 2.244 2.298 3.016  (2)  5%  Uptake r a t e (mg/l/hr) 0.26 0.52 1.15 1.65 2.42 2.90 3.52 4.27 5.15 6.17 7.48 8.90 10.62 12.89 13.94 13.94 13.94 13.94 13.94  D.O. (mg/1) 6.25 6.00 5.75 5.52 5.13 4.85 4.60 4.18 3.72 3.22 2.57 1.91 1.03 0.25 0.20 0.20 0.20 0.20 0.20 0.25 1.42 3.28 5.06  Time (hour) 0 5 10 15 20 24 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60  Fe-H-f(g/D 0.034 0.041 0.062 0.096 0.148 0.209 0.346 0.410 0.482 0.572 0.681 0.804 0.952 1.124 1.307 1.499 1.691 1.868 1.934 1.998 2.024 2.036  0.30 0.49 0.76 1.14 1.73 2.48 4.17 4.90 5.80 6.88 8.23 9.64 11.30 13.60 13.60 13.60 13.60 13.60  D.O. (mg/1) 5.82 5.55 5.40 5.20 4.82 4.53 3.64 3.27 2.92 2.34 1.67 1.06 0.32 0.20 0.20 0.20 0.2 0.25 0.09 3.89 6.24 6.72  10 a n d 15 % s o l i d 10%  Time (hour) 0 5 10 15 20 25 30 32 34 36 38  Uptake R a t e (mg/l/hr)  Fe-H-f(g/D 0.042 0.051 0.077 0.115 0.174 0.263 0.395 0.462 0.547 0.644 0.752  15%  Uptake R a t e (mg/l/hr) 0.32 0.60 0.91 1.49 2.06 3.12 4.62 5.56 6.51 7.74 9.02  D.O. (mg/D 6.02 5.75 5.50 5.17 4.92 4.44 3.63 3.14 2.65 2.16 1.56  Time (hour) 0 5 10 14 18 22 24 26 28 3.0 32  Fe+++ (g/D 0.045 0.068 0.102 0.141 0.198 0.274 0.324 0.379 0.448 0.527 0.610  Uptake Rate (mg/l/hr) 0.50 0.78 1.19 1.63 2.30 3.18 3.76 4.40 5.21 6.13 7.18  D.O. (mg/1) 5.30 5.11 4.84 4.58 4.22 3.81 3.55 3.15 2.74 2.28 1.86  '  -167APPENDIX IX  Continuation of (2)  10 and 15% solid 10%  I Time (hour)  FeH (g/D  40 42 44 46 48 50 52 54 56  0.886 1.021 1.212 1.402 1.594 1.811 2.006 2.081 2.122  15%  Uptake Rate (mg/l/hr)  10.60 12.71 14.20 14.20 14.20 14.20  D.O.  (mg/1)  0.68 0.22 0.20 0.20 0.20 0.20 0.27 1.92 4.21  Time (hour)  34 36 38 40 42 44 46 48 50  Fe+++ (8/D 0.730 0.858 1.008 1.184 1.370 1.572 1.748 1.807 1.824  Uptake Rate (mg/l/hr)  8.47 10.01 11.60 13.74 13.74 13.74 13.74  -168APPENDIX X  __  0001 C002 C003 C004 C005 0006 C007 0008 C009 CC10 CC11 C012 0013  COMPUTER PROGRAM FOR RECTIFICATION METHOD : 666 1 10 21 C  CO 14 C015 C016  C 0 0 = 0 . 1 2 0 4 * ( 2 73.+TEMP)/295.5 CT={GAS-CCO)/GAS*CSTAR C00=CC0/GAS*1C0.  CO17 0018  0019 CC20 CC21 C022  „ C023 C024 C025 C026 C027 C028 0029 C030 0031 0032 C033 C034 0035 0036 C037 0038 0039 C040 C041 C042  REAL INTRPT,IRON,IOY,I0Y2 DIMENSION TINE(99),PP(99),DO(99),OT(99),AB(99) DOUBLE P R E C I S I O N A , AB WRITE(6,666) F0RMAT(*2«) R E A D < 5 , 1 0 ) PCENT,RPM,GAS I F ( P C E N T . L T . O ) GO TO 1 2 3 4 FORMAT{3F 1 0 . 0 ) CSTAR=6.68 _ R E A D ( 5 , 2 1 ) ID FORMAT(12) IR0N=9.0 TEMP=35.  AREA=(11.5/12.)**2*3.1416/4.0 C C C C 40 C C C  100 C C 400  SUPVEL=GAS/AREA  DO 4 0 1 = 1 , ID READ(5,10)TIME(I),PP(I )  .  .  D0( I ) = P P ( I ) /1 5 0 . 6 7 * C STAR DTI I ) = C T - D O l I )  X=0. X2=0. DO ICO 1 = 1 , I D X=X+TINE(I) X2 = X 2 + T I H E U ) * T I M E ( I ) AA=FLOAT(ID) XQNr.X/AA JJ=0 ALPHA=DT( n - O . i Y=0. Y2 = 0XY=0. X0Y=O. IOY=0. Y0Y=O. X0Y2=0. IOY2=0. Y0Y2=0. DO 2 0 0 1 = 1 , ID AB(I)=DT(I)-ALPHA  __  _  .__  _  -  __  .  .  .  -169-  C043 CO*.*. C045 _C&A6_  C047 00^8 COM 0C50 C051 _C052_ 0053 0054  200  YY = A D ( I ) * A B ( ( ) I F { A n t I ) . L C . O . O ) GO TO 1000 A=0L0G(AB111) _Y_=.Y + A Y2=Y2+A<M XY=XY+ T I V E ( I ) * A XOY=XOY+ T I M E t I ) / A B ( I ) IOY=!OY+I.0/A3(I ) YOY=YOY•A/AB I I ) _ XQ Y2-? XG Y2>.11 M.E IJL) /.YY_ IQY2= I 0 Y 2 + 1 . 0 / Y Y Y0Y2=Y0Y2+A/YY  JC.  C C  IES.L1MY2.-Y _Y/AA) * ( - X O Y * X C N * 10Y) "~TEST2=UY-X*Y/AA)*(-Y0Y + Y*If)Y/AA)  J10_.5_ C056 C057 0058  \ _3 0059 OC60 0061 0062 C063  C075 0076  0077 0078 CC79_  Q f t  I F ( A f i S ( D ) . L T . 0 . 0 0 0 1 ) GO TO ALPHA=ALPHA-0 . _. I F ( J J . G T . 1 C 0 ) GO TO 1000 JJ=JJ*l  __.Q_>/i-  0065 C066. C067 0068 _CC.69_ C070 0071 _0072 C073 0074  ^{aYMCY/AA-XY*Y*IQY2/AA*Y*iaY*X0Y/AA +jfj *LQyAtQY^flU*YJLLdmi2±lC12J  C  _Gn_m_4.Q 0  _  300  —  SXX=X2-X*X/AA „.SXY*XY-X*Y/AA . SYY=Y2-Y*Y/AA SLOPE=SXY/SXX _ _ J N T RP.T3.Y / AA-S LQ£E * X J 3 N _ _ • RSQ=SXY/SXX*SXY/SYY SL0PE=-SL0PE*60.0 .._ALPHA=ALPHA*SLOPE . .. _ _ .. WRITE(6» fiOO)PCENT»RPM,SUPVEL?CT, C O O , A L P H A . S L O P E , R S Q i 1 0 FORMAT!IH2,//////25HPERCENT S O L I D (WT.)= ,F8.2, 8C0 1 /25H AG I TA T I ON SPLEU IRPS<)= ,t"rt . ? , 2 /25H S U P E R F I C I A L VEL I F T / H R ) = ,F3.2, 3 /25H SAr.OXY.CONC. (PPM)= , F 8 . 2 , ,FC.2i _A /25H % CARBON OIOXIDE ,F8.2, 5 /25H OXY. UPTAKE (MG/L/HR)= ,FB.2, 6 /25H MASS TRANS COEFF ( l / H R ) = _.F.8»„_i 7 /25H R SQUARE • 8 /30H NUMBER OF DATA WRITE(6,900) C I S OXY, TIMC.10H P.PRESS.IOH 9C0 ... FORMAT ( 1 C H 1 10H UETA C.10H TRUE DC, / 2 10H (MIN).IOH (MMHG), tOH (PPM), _3.__10H I PPM.) , 10H (RPM ) , / J DO 7 7 7 1=1,10 777 WRITE ( 6 , 9 0 1 ) T I M E ( I ) . P P ( I ) , C 0 ( I ) , 0 T ( I ) , A B ( I ) F0RMAT(1X,F9.2,1X,F9.2,1X,F9.2,1X,F9.2,1X.F9.2) _90L  300  --L/U-  c c c  0080 C081 — C082 C083 C081  C.085_  _c  GO TO I MH I TE (6t POO) PCENT, RPM, SUPVEL.CT, COO, ALPHA .SLOPE , RSQ, ID WRITE ( 6 , 9 00) _ DO 190 1=1,ID 198 WRITE!6,199)TIME(I),PP(I),CDII),0T(I) -L9_9_ ..E_iUlAIi__J_LQ.__)  1C00  0086 0087  1005  0088 0089  1234  _ooao„  WRITE(6,1005)BBB F0RMAT(//25H(Y-ALPHA) EQUALS NEGATIVE 25JHUNABLE._G_J_DJ_EED FURTHFR GO TO 1 STOP END  TOTAL MEMORY REQUIREMENTS 0014C4 BYTES COMPILE TIME =  3.7  SECCNOS  ,/ L_  APPENDIX X I ic^a AND OXYGEN CONCENTRATION-TIME  TRACE AT VARIOUS OPERATIONAL  CONDITIONS  PERCENT SOLIO (WT.)= 0.0 AGITATION SPEEO (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 _0XY..__UP.TAXE_ (.MG/L/HR) = -4 ._42_ MASS TRANS COEFF (1/HR)= 9.01 R SGUARE = 0.99988 NUMBER OF DATA =. 10 _XIME(M IN )  J____P.RES-S(MMHG)  _D1S-0XY_ (PPM)  __0.0.... 1.00 2.00 3..JQ.Q4 . CO 5.00 6.00 7.00 8.CO _9_.-G.Q_  2 1 • 00. 38.00 54.00 67_._00_ 78.00 88.00  0.93 1.68 2.39 _2..9_7_ 3.46 3.90 4.26 4.61 4.88  .  96.GO  104.00 110.00 __.115_._a.0_  -DETA^C. (PPM)  _5_._L0_  5. 15 4.40 3.69 \- 1 1 2-62 2. 18 1.82 1.47 1.20 _C_..9_8..  _TRUE__EC_ (PPM) 5.64 4.89 4.18 3.60_ 3.11 2.67 2.31 1.96 1.69  l._47_  0.0 PERCENT SOLIO (WT.)= 300.00 AGITAT I ON SPEED (RPM)= 5.26 SUPERFICIAL VEL .{ FT/HR) = 6.46 SAT.OXY.CONC. (PPM)= 3.31 % CARBON DIOXIOE 22.67 .0XY. ..UP.TAKE ( KG/L/HR)=_ 14.90 MASS TRANS COEFF (1/HR)= 0.99999 R SGUARE 8. NUMBER CF DATA .=.  __X_____L { M IN )  . 0 . 0 ._ 1.00 2.00  _a__o.a_  4.00 5.00 . 7.00 9.00  JP. PRESS 1MMHG) 24.00. 43.00 58.00 7J)__J0LO_  79.00 86.00 96.00. 102.00  DIS .OXY„ (PPM) 1.06. 1.91 2.57 _3..10_ 3.50 3.81 4.26 4-52  ..DETA.C (PPM) 5,39 4.55 3.89 3.36_ 2.96 2.65 2.20 1-94  TRUE-DC. ( PPM) 3-87 3.03 2.37  1.83  1.43 1-12 0.68 0-42  i  r  Y  PERCENT SOLID (UT.)= 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL {FT/HR)= 8.81. SAT.CXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE 1 . 97 __30...13_ .OX Y U P.T.A KE (M G/L/H R ) =.. 20.47 MASS TRANS COEFF (1/HR)= = 0.99976 R SQUARE 7_ NUMBER OF DATA _XL_..E  P_.J_.R.E.S.S  DIS OXY  DETJUC  _T.RUE_D.C_  0.0 1.00 2.00 _3..00 4.00 6.CO - 8.00  32.00 55.00 72.00 8A.J0.O 93.00 104.00 109.00  1.42 2.44 3.19 3.J2 4.12 4.61 4.83.  5.13 4.11 3.36 2.82 2.42 1.94 1.72  3.66 2.64 1.88 1.15 0.95 0-47 0.24  (MIN)  {NMHG)  (PPM)  (PPM)  _  (PPM)  PERCENT SOLIO (WT.)= 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL V E L . ( F T / H R ) = ... . 12.63. SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY UPTAKE (MG/L/HR) = 25.23 24.19 MASS TRANS COEFF (1/HR)= = 0.99998 R SQUARE . NUMBER .OF_DATA =. 7 TIME (MIN)  ..  0.0 0.50 l.CO 1 .50 2.0 0 3.CO 4.00  P..PRESS (MMHG)  .  24.00 43.00 58.00 70.00 80.00 95.00 105.00  0.1 S OXY (PPM) 1.06 1.91 2.57 3.10 3.55 4.21 4.66  . DETA_C. (PPM)  JRUE_PC_ (PPM)  5.52 4 . 68 4.02 3.48 3.04 2.38 1.93  4.48 3.64 2.97 _2..A4_ 2.00 1.33 .0.89  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 300.00 S U P E R F I C I A L VEL (FT/HR) = 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON D I O X I D E = 1.01 _0.X Y___UPXA.KE ( M G / L / H R ).= 15.97 MASS T R A N S C O E F F (1/HR)= 40.64 R SQUARE = 0.99986 NUMBER OF. DATA =._ 7  _.T_I.M£ (MIN) .0.0.-. 0. 50 1 . CO _1..J5.0_ 2.00 2.50 3 . 0 0.  E_..P_RES.S (MMHG)  DXS__OXY (PPM) .1.77. 3.01 3.95 A._S.1_ 5.05 5.41 5.63  40.00.. 68.00 89.CO _10 4_._G.0_ 114.00 122.00 127.00.  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= S U P E R F I C I A L V E L _ ( F T / H R )= SAT.OXY.CONC. (PPM)= % CARBON D I O X I D E = OXYUPTAKE (MG/L/HR)= (1/HR)= MASS TRANS C O E F F = R SGUARE = NUMBER.OF. DATA  \ Z o  J  _  £E_TA_C (PPM)  I.RUE_D.C_ (PPM)  4.84 3-60 2.67 _2.0C_ 1.56 1.20 0.98  4.45 3.20 2. 27  J3.E.T.A C (PPM)  T R U F DC (PPM)  L.AJL  1.17 0.81 0.59  0.0 400.00 .1.94 6.08 8.98 26.82 19.82 0-99996 7  TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  0.0 1.00 2.00 3.00 4.CO 5.00 _ 7.00  30.CO 51.00 67.00 78.00 86.00 92.00 99.CO  1.33 2.26 2.97 3.46 3.81 4-08 4.39  4.75 3.82 3 . 11 _2._6_2 2.27 2.00 __ 1 . 6 9 _  _... 3 . 4 0 2.47 1.76 1.27 0.91 0.65 0.34  _  . _ ....  „.  ._  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL V EL ( FT/HR )= ._ 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.3L 0XY. UP.T.AKE ( MG/JL/.HR.) = 33.. 83 MASS TRANS COEFF <1/HR)= 35.17 R SQUARE = 0.-59997 NUMBER OF DATA_._ = _ —7.. _T_I.MJE_ (MIN)  P.. PRESS (MMHG)  .CIS OXY. (PPM)  0.0 0.50 1.00 __1..50_ 2.00 3.CO ..4..00..  31.00 54.00 72.00 85.00 95.00 108.00 115.00  .1.37 2.39 3. 19 3.77. 4.21 4.79 5.10  DETA C (PPM)  _T.RUE_JQ.C_ ( PPM)  5.08 4.06 3.27 ..2._69_ 2.25 1.67 1. 36  4 . 12 3.10 2.30 1 .73 1-29 0.71 0.40  DETA. C (PPM)  TRUE.DC ( PPM)  0.0 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= 400.00 SUPERFICIAL V E L .( FT/HR ) = .... 8.81 SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE 1.97 OXY U P TAKE (MG/L/HR) = 2.8.5.8 46.54 MASS TRANS COEFF (1/HR)= 0.99981 R SQUARE 7 .NUMBER. CF DATA =.. __T..L.MJE_  (MIN)  .0.0 _ . 0.50 1.00 _l.-5_0__ 2.00 3.00 4.50  P.. PR ESS (MMHG) . 42.00. 71.00 91.00 104.00 114.00 125.00 131.00  D I S. OXY ( PPM) .1.86 3.15 4.03 4.61. 5.05 5.54 .5.81.  4.69 3.40 2.51 _1..:9.4_ 1.49 1.01 .0.74.  4.07 2.79 1.90 _1.-12_ 0.88 0.39 .0.13  -1/3-  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)= .12.63. SAT.OXY.CONC. (PPM)6.59 % CARBON DIOXIDE = 1.38 0XY. UP.TAKE (MG/L/HR.)23.90 MASS TRANS COEFF (1/HR)= 55.88 R SCUARE = 0.99986 NUMBER OF DATA ...= _ _ _ _ 7 __XIM.E_ (MIN)  „P..P.RES_S_ (MMHG)  0.0 0.40 0.80 .1.-2.0. 1.60 2.00 2.80  44.00 74.00 94.00 108.CO. 118.00 124.00 132.00  DIS OXY (PPM)  DETA C. (PPM)  TRUE DC. (PPM)  4.64 3.31 2.42 _1...8.0_ 1. 36 1.09 0.74  4.21 2.88 1.99 1.37. 0.93 0.66 .0.31  _JD„LTA_C_  TRUE DC  1.95 3.28 4.17 _.4..7_9_ 5.23 5.50 5.85  PERCENT SOLID (VJT.)= 0.0 AGITATION SPEEO (RPM)= 400.00 SUPERFICIAL VEL ( F T / H R ) 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY. UPTAKE (AG/_L/_HR)_= 3.6.. 9 8_ MASS TRANS COEFF (1/HR)= 66.32 R SQUARE = 0.99997 NUMBER .OF.. OAT A = 6. _T_I.M.E_ (MIN) 0.0.... 0.40 0.80 _1...20_ 2.00 3. 20  P. PRESS (MMHG) .. 4 9 . 0 0 80.00 100.00 J.X3_._0_X. 127.00 134.CO  JXI.S_.OXY. (PPM) 2.17. 3.55 4.43 5..0.1 5.63 5.94  (PPM ) 4.44 3.07 2. 18 _L,_6.Q_ 0.98 0.67  (PPM)  3.88 2.51 1.62 1.04 0.42 0.11  (  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 5C0.00 SUPERFICIAL VEL ( FT/HR ) = 1.94. SAT.OXY.CONC. <PPM)= 6.08 % CARBON DIOXIDE = 8.98 0 X.Y. UPTAK E IM G /L/HR)= 61.48 MASS TRANS COEFF (1/HR)= 33.96 R SQUARE = 0.99965 NUMBER OF DATA = 7 TIME  (MIN)  0.0 0.50 1.00 _JL..5_0_ 2.00 3.CO . 4.00  _P_.PRE.SS(MMHG) 25.00 43.00 56.00  _6:6_JQLCL 74.00 83.00 89.00  D.IS OXY. (PPM)  _D.ETA_C_ (PPM)  1.11 1.91 2.48 _2..9.3_ 3.28 3.68 3.95  4.97 4 . 17 3.60 3.__1.5_ 2.80 2.40 . 2 . 13  TRUE OC { PPM) 3.16 2.36 1.79 1.34 0.99 0.59 0.32.  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL V E L . ( FT/HR ) = ..._ 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 ..OXY UPTAKE (MG/L/HR ).= 45.68. MASS TRANS COEFF (1/HR)= 63.09 R SQUARE = 0.99985 NU MBE R 0 F. DA TA = 6... TIME (MIN) 0.0... . 0.40 0.80 1.20 2.CO 2.80  P.PRESS (MMHG) 45.00__ 75.00 94.00 106.00 119.00 125.00  DIS OXY ( PPM) 2.00 .._ 3.33 4 . 17 4.70 5.28 5.54  DETA C (PPM)  _ TR'UF nc (PPM)  4.46 3. 13 2.29 1.76 1. 18 0.92  3.74 2.41 1.57 1.04 0.46  0 . 19  r  (WT. ) = PERCENT SOLIO 0.0 (RPM)= AGITATION SPEED 500.00 SUPERFICIAL VEL (FT/HR)= 8.81 (PPM) = SAT.OXY.CONC. 6.55 % CARBON DIOXIDE 1.97 _0X.Y,__UP-JAKE ( MG/L/HR.) :=_ _5.1._.5.1_ MASS TRANS COEFF (1/HR)= 86.37 R SGUARE = 0.99991 NUMBER OF DATA .=. . 5  TIME (MIN)  P.PRESS (MMHG)  .0.0 0.40 0.80 JL...2.0  59.00. 92.00 110.00 12L_„0.0  2.00  130.00  -D.I.S_OX.Y_ ( PPM)  JD.ET.A_.C_ (PPM)  _r.RUE_D.C_ (PPM)  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED <RPM)= 500.00 SUPERFICIAL VEL ( FT/HR ) =. 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 J_.X_Y_._U P T A_K E (_M.G./_L /.H R.)_= 4.7_...8 J. MASS TRANS COEFF (1/HR)= 94.65 R SGUARE = 0.99789 .. NUMBER 0F_ OATA = ;8 ___T_LME (MIN)  P. PRESS (MMHG)  ... 0.0 0.20 0.40 ___0_.A0 0.80 1.00 _ 1.40 1.60  40.00 69.00 88.00 L0.2...0.0 111.00 118.00 126.CO 130.00  D.I.S __OX_Y (PPM) 1.77 3.06 3.90 A..52 4.92 5.23 5.59 5.76  D.ETA_C (PPM) 4.81 3.53 2.69 2._Q_7 1.67 1.36 1.00 0.82  .TRUE _ D C _ (PPM) 4.31 .. 3.02 2.18 1..3_6__ 1.16 0.85 0.50 0.32  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= .17.15. SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY. UPTAKF (MG/1/HR) = 48.93 MASS TRANS COEFF (1/HR)= 128.83 R SQUARE = 0,99990 NUMBER OF DATA.. .. _ __= _ _ 7  .  TIME (MIN) .  ...  0.0 0.20 0.40 O.AO 0.80 l.CO 1.40  P. PRESS (MMHG)  OXY (FPM)  DETA C (PPM)  TRUE DC ( PPM)  2.17 3.59 4.48 5.10 5.50 5.76 .6.03  4.44 3.02 2.13 1.51 1. 11 0.85 _ ._. Q.58.  4.06 2.64 1.75 . 1.13 0.73 0.47 _ .... .. 0 . 2 0  DIS  4 9 . 0 0 .__ 81.00 101.00 115.00 124.00 130.00 136.00  -  •  _  — ~-  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR ) = . 1.94. SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/L/HR)= 104.08 MASS TRANS COEFF (1/HR)= 58.55 R SQUARE = 0.99903 NUM8ER„0F.. DATA ~L_ _7_. TIME (MIN) _  ... .  _  0.0 _ 0.40 0.80 1 .PO 2.00 2.80 .3.60  P..PRESS (MMHG)  DIS  31.00 _ 52.00 66.00 7fS.Q0 87.00 93.00 9 5 . 0 0 .... .  OXY (PPM) 1.37 . 2.31 2.93 3.37 3.86 4.12 4.21  , i  : DETA.C (PPM)  _ TRUE DC (PPM)  . _ . 4.71 3.77 3. 15 7.71 2.22 1.96 1.87  2.93 2.00 1.38 0.93 0.45 0.18 .0.09  :..  ,.: i  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 JO X Y_.._JJ P_J. A K.E (. M GAL/H R ) ..= 8.9 . 4 7 MASS TRANS COEFF (1/HR)= 105.36 R SQUARE = 0.99988 NUMBER CF. DATA = 7. P. PRESS (MMHG)  __T.1ME_ (MIN)  _.38.00_ 64.00 83.00 __9.6.«J0.GL 105.00 111.00 119.00  0.0... 0.20 0.40 .0.60.. 0.80 1.00 1.40  DIS OXY ( PPM )  .D.E.T.A_C_ ( PPM)  .TRUE DC. ( PPM)  1.68 2.84 3.68 -4.26. 4.66 4.92 5.28  4.77 3.62 2.78 2 ._20_ 1.80 1.54 .... 1.18  3.92„ 2.77 1.93 1.35 0.95 0.69 0.33  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 .SUP ERF IC I AL VEL ( FT/HR ) = _ 8.81. SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. ...UPTAKE (_MG./_L_..HR_)= 77.37 MASS TRANS COEFF (1/HR)= 124.60 R SQUARE = 0.99982 NUMBER.OF. DATA _= 7... TIME (MIN)  P.PRESS (MMHG)  DLS JDXX . . (PPM)  . .0.0. 0.20 0.40 0.60 0.80 1.00 1.40  47.00.__ 77.00 97.00 109.00 117.00 123.00 ._. _ _ 1 2 9 . 0 . 0 „  2.08 3.41 4.30 4.83 5.19 5.45 5.72  .  DETA. .C. . TRUE DC ( PPM) (PPM) 4.46 . 3. 13 2.25 1.72 1.36 1.09 0.8 3  3.84 2.51 1.63 1.09 0.74 0.47 0.21  .  ..  -10U-  r y  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR )= . 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY . UP T A.K E ( MG/L /HR ) = 115.60 MASS TRANS COEFF (1/HR)= 161.44 R SGUARE = 0.99998 NUMBER OF DATA . ..= 7 _TJ_ME_ (MIN)  P. PRESS. (MMHG)  0.0 0. 10 0.20  31.00 55.00 73.00 _8_7_.J3.0_ 98.00 106.00 117.00  _a._3.o_ 0.40 0.50 0.70  DIS OXY. ( PPM) 1-37 2.44 3- 24 _3.-_3.6_ 4. 34 4- 70 5.19  _D.E_TA__C_ (PPM)  TRUE DC. ( PPM)  5.21 4. 15 3.35 _2._73_ 2. 24 1-89 1.. 40.  4.50 3.43 2-64 2 .01 1.53 1.17 0.68  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL.(FT/HR)=. 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE 1.01 0XY... UPTAKE ( MG/.L/HR) = 1.13..00 MASS TRANS COEFF <1/HR)= 201.31 = 0.99974 R SGUARE 9 NUMBER.OF DATA _JLI.I_.E_  _e.„P_R„E.S.S_ (MMHG)  .D_I.S_0.X_Y_. (PPM)  DETA. C. (PPM)  JTRUE. DC  0.0 _ 0. 10 0.20 .0..„3.0_ 0.40 0.50 0.60 0.80 1.00  .39.00. 66.00 86.CO J.-0_Q_._0_0_ 111.00 118.00 123.00 130.00 133.00  .1.73 2.93 3.81 .A.A3_ 4.92 5.23 5.45 5.76 5.90  4.88 3.69 2.80 _2._1.8_ 1.69 1.38 1- 16 0-85 0-72  4.32 3.12 2.24 1.62 I. 13 0.82 0.60 0.29 0.15  (MIN )  ( PPM)  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 .OXY UPJ.AKE LMG/L/HR1= 105 . 6 4 MASS TRANS COEFF (1/HR)= 90.89 R SGUARE = 0.99997 NUMBER OF . DATA ... = 5  _T_I M E  P_..P_RESS  _.0..0. 0.40 0.80 ... 1. 20 2.00  50.00 78.00 93.00 101.00 108.00  (MIN)  (MMHG)  D.LS_0X.Y  (PPM)  2.22 3.46 4.12 4.48 4.79  DET.A_C  (PPM)  LXRUE_DC.  (PPM)  3.86 2.62 1.96 1.60 1.29  2.70 1.46 0.79 0,44 0.13  DETA C (PPM)  TRUE DC (PPM)  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL .(FT/HR)= 5.26. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 ..0 X-Y___U.PJ.A.KE (M.G /.L/H R lj4._J)_5_ MASS TRANS COEFF (1/HR)= 146.52 R SCUARE = 0.99983 NUMBER. 0F_. DATA = 7. XI.M.E (MIN)  P...P.RE.S.S (MMHG)  ...0.0 0.10 0.20 _a..3.0 0.40 0.50 ...0. 7.0  28.00 50.00 67.00 8.0..C.0 90.00 99.00 110.00  DIS OXY (PPM) 1.24 2.22 2.97 3 . 55__ 3.99 4.39 4.88  5.22 4.24 3.49 _2..__91 2.47 2.07 1. 58 _  4.44 3.46 2.71 _2_._l 3_ 1.69 1.29 0 . 80_  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR ) = 8.81. SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE 1-97 0 X Y. UP TAK E .(.MG /L/HR) = _1A8.._52_ 195.17 MASS TRANS COEFF (1/HR)= 0 . 99986 R SQUARE _ 7 NUMBER OF DATA =. _T_I.M.E  _P_..P..RE.S.S.  DJ.S_.O.XY  0.0 0.10 0.20 JD..3Q 0.40 0.50 .0.70  37.00 63.00 82.00 96_._Q0 105.00 112.00 121.00.  1.64 2.79 3.64 4_..2.6 4.66 4.97 5.36  (MIN)  (MMHG)  (PPM)  DETA C (PPM)  TRUE DC (PPM)  4.91 3.75 2.91 2... .29. 1.89 1.58 1.18  _ 4.15 2-99 2.15 JL_.J5j.3__ 1.13 0.82 0.42  PERCENT SOLID (WT.)= 0.0 AGITATION SPEEO (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.__UPT_AK£ ( MG/L./_hB±= 197.99. MASS TRANS COEFF (1/HR)= 245.26 R SQUARE = 0-99980 NUMBER OF. DAT A „ = .7. TIME  (MIN)  0.0 0.10 0.20 .._0...3_0_ 0.40 0.60 0.80  V___  P.. PR ESS..  DJ.S_OX.Y  DEI A. _C  .1BJJ E DC_  43.00 72.00 91.00 _1.0A._Q_0 113.00 123.00 127.00  1.91 3.19 4.03 4.._6J. 5.01 5.45 5.63  4.68 3.40 2.55 1.. 98 1.58 1.13 0.96  3.87 2.59 1-75 1. 17_ 0.77 0.33 0 . 15  (MMHG)  (P.PM)  (PPM)  (PPM)  r  PERCENT SOLID (WT.)= AGITATION SPEED «RPM)= S U P E R F I C I A L VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE = _0 X.Y___U P-T-A K E LMG.ZL / H R. ) = MASS TRANS C O E F F ( 1 / H R ) = R SGUARE NUMBER OF DATA _ =  TIME (MIN) 0.0 0.10 0.20 0.10 0.40 0.50 0.70  .P.PRESS (MMHG) ..  . ...  0.0 700.00 .17.15 6.61 1-01 2.0 6 ._0_7_ 285.58 0.99950 7  _Q1S__0X.Y (PPM)  . DEJA. C (PPM)  2.26 3.64 4.52 5.05 5.36 5.54 5.76  4.35 2.98 2.09 1.56 1.25 1.07 0.85  51.00 82.CO 102.00 114.00 121.00 125.00 130.00 ,  (WT.)= PERCENT SOLID (RPM)= AGITATION SPEED SUPERFICIAL V E L ( F T / H R )= (PPM)= SAT.OXY.CONC. % CARBON DIOXIDE OXY. UPTAKE (_M_G.ZL /Ji RJ_ MASS T R A N S C O E F F ( 1 / H R ) = R SQUARE = N U M B E R O F D A T A .. =.  TRI IF nr. (PPM) 3.63 2.26 1.37 0.84 0.53 0.35 0.13 .  0.0 300.00 1.94, 6.08 8.98 _-5_.A7_ 8.09 0.99997 8.  T LME  P_._P.R.E.S.S  D_LS_ O X Y  D E T_A _ C  TR U E_ D C  .0.0 1.00 2.00 _3.._0_0 4.00 5.00 .7.00 9.00  20.00 37.00 51.00 6.4.. 0.0 75.00 85.00 .101.00 113.00  0.89 1.64 2.26 2-84 3.33 3.77 4.48 5.01  5.19 4.44 3.82 3.24 2.76 2.31 1.60 1.07  5.87 5.12 4.50 3._.92 3.43 2.99 2.28 1.75  (MIN)  (MMHG)  (PPM)  (PPM)  (PPM)  r  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY...UP TAKE (MG/L/HR.)= -1.2b MASS TRANS COEFF (1/HR)= 10.70 R SQUARE = 0.99994 NUMBER OF DATA = 8 _I.I.I_E_ (MIN) 0.0 1.00 2.00 3.CO 4.00 5.00 7.00 9.00  P. PRESS (MMHG) 26.CO 48.00 67.00 8.2.00. 95.00 106.00 122.00 134.00  ..D IS.. OXY (PPM) 1.15 2.13 2.97 3.6.4_ 4.21 4.70 5.41 5.94  O.ETA C (PPM)  TRUE DC. (PPM)  5.31 4.33 3.49 2.82 2.25 1.76 1.05 0.52  5.98 5.01 4.17 3.50. 2.93 2.44 I .73 1.20  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 8.81 SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (.«G/L/HR )= -1.42. MASS TRANS COEFF (1/HR)= 18.98 R SGUARE = 0.99989 .NUMBER CF DATA ..= 6 ...TIME (MIN )  r_-.P_8E.SjS_ (MMHG)  .DIS ..OXY. (PPM)  _JD_ET.A_.C_ (PPM)  J_R.UE„OC_ ( PPM)  0.0 . 1.00 2.00 _3.._C.0_ 4.00 5.00  .41.00 70.00 92.00 .107.00. 119.00 127.00  1.82 3. 10 4.08 4. 74. 5.28 5.63  4.73 3.44 2.47 __L...8.0_ 1.27 0.92  4.81 3.52 2.54 1.88 1-35 0.99  y  PERCENT SOLID (WT.)0.0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 _0 X Y U P.T.AKE IM G./.L./.H RJ =_ 15...8_7_ 24.60 MASS TRANS COEFF (1/HR)= = 0.99992 R SQUARE = 7 NUMBER GF DATA __T_I.ME- ..._P.PRESS. (MIN) (MMHG) 0.0 0. 50 1. CO __1...5-0 2. CO 2.50 3.00  25.00. 45.00 61.00 _7.5...0XL 86.00 95.00 102.00  _D.IS_QXY„ (PPM)  .D.ET.A_C_ (PPM)  TRUE DC ( PPM)  1.11 2.00 2.70 3_..33_ 3.81 4.21 4.52  5.48 4.59 3.88 3.26_ 2.78 2. 38 2.07  4.83 3.95 3.24 2.62 2.13 1-73 1.42.  PERCENT SOLID (WT.)= 0-0 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE. = 1.01 OXY. UPTAKE (MG/L/HR )= 15.29. MASS TRANS COEFF (1/HR)= 40.64 = 0.99983 R SQUARE — 6 NUMBER.OF. DATA TIME (MIN) .  I  .0.0 _ 0 . 50 1.00 1.50 2.CO 2.50  P.PRESS (MMHG)  OXS. OXY (PPM)  40.CO 69.00 89.00 104.00 115.00 122.00  1.77 3.06 3.95 4.61 5. 10 5.41  .  — QEXA.C (PPM)  TRUE DC ( PPM)  4.84 3.55 2.67 2.00 1.51 1.20  4.46 3.18 2.29 1.63 1.14 0.83  _  ^  r  y  0.0 PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= 4 0 0 . 0 0 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE 8.98 OXY... .UPTAKE (MG IV /HR) = 32.2 0 18.30 MASS TRANS COEFF (1/HR)= 0.99967 R SQUARE 8 NUMBER OF DATA T I MF (MIN) 0. 0 1. 00 2. 00 3...CO 4. 00 5. CO 7. CO-. 9. 00  P.PRESS (MMHG) 2 6 . 00 _ _ 4 6 . 00 6 0 . 00 70..-0 0 7 7 . 00 8 2 . 00 8 9 . 00 9 3 . 00  DIS OXY (PPM) - . 1.15 .._ 2 ,04 2 .66 3 .1.0 3.41 3 .64 3.95 4 .12  PERCENT SOLID (WT.)= AGITATION SPEED (RPM>= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE = OXY. UPTAKE ( MG/L/HR )= MASS TRANS COEFF (1/HR)= R SQUARE = NUMBER .OF -OATA __,_=. _ T J M.E (MIN)  .0.0 0.50 1.00 ... 1. 50 2.00 3.CO 4.00  P..-PR.E.S.S (MMHG)  37.00 64.00 84.00 99.00 109.00 123.00 130.00  DETA C (PPM)  TRUE OC ( PPM)  4. 9 3 4. 04 3. 4 2 .2. 98 2. 67 2. 44 2. 13 1. 9 6  3. 17 2. 28 1. 66 1. 22 0. 91 0. 6 9 0. 37 0. 2 0  0.0 400.00 5.26 6.46 3-31 12.52 37.77 0.99992 7.  DIS OXY (PPM)  1.64 .. 2.84 3.72 4.3.9 4.83 5.45 5.76 _  _DETA__C (PPM)  TRUE DX.  4 . 8 2 ... 3.62 2.73 2..J07.. . 1.63 1.01 .0.70 . „ .  (PPM)  4.49 3.29 2.40 1.7A 1.29 0.67 0.36  r  —  V  PERCENT SOLID (W T . ) = 0.0 AGITATION SPEED (RPM)= 400.00 S U P E R F I C I A L V E L ( F T / H R .= ..__ 8 . 8 1 SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UP.TAK.E ( . M G / L / H R ).= 3.25 MASS T R A N S C O E F F (1/HR)= 47.44 R SQUARE = 0.99999 NUMBER OF . DATA . . = .__ 7 _.T_I_M.E_ (MIN)  _P_.PRE.SS. (MMHG)  .0.0. 0.50 1.00 _1._5.0_ 2.CO 3.00 4.CO  4 8.00 80.CO 102.00 116.00 126.00 137.CO . 142.00  JH.S__OX.Y_ ( PPM ) . 2 . 1 3 3.55 4.52 5.1.4_ 5.59 6.07 .... 6 . 3 0  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL. (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE = OXY. UPTAKE ( M G / L / H R )= MASS T R A N S C O E F F ( 1 / H R ) = R SQUARE = N U M B E R . OF.. D A T A . =  TIME (MIN) 0.0 0.40 0.80 __L..2_0 2.00 2.80 . 3.60__  P.PRESS (MMHG) 44.00 75.00 96.00 1.1„0.._C_0 127.00 135.00 139.00  _D.ETA._C_ (PPM) .4.42 3.00 2.03 _1._41_ 0.96 0.47 0.25  T R U E DC (PPM) 4.35 2.93 1.96 _1...3_4_ 0.89 0.41 0 . 18  0.0 400.00 12.63. 6 . 5 9 1.38 1 4 . 5 7 54.93 0.99997 7..  D I S OXY (PPM) 1.95 3-33 4 . 2 6 4_._8 8 5.63 5.99 ...6.16  DETA..C (PPM) 4.64 3.26 2.33 l._7_l 0.96 0.60 0..43.  T R U E DC (PPM) _ _„ 4 . 3 7 3.00 2.07 1_..45_ 0-69 0.34 0 . 1 6 _  J_ \J / —  r i  PERCENT SOLIO (WT.)= 0.0 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR ) = 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 .OXY. ..UPTAKE ( MG/L/HR) = 6.30 MASS TRANS COEFF <1/HR)= 67.01 R SGUARE = 0-99990 NUMBER OF DATA __.= 6. ... T I ME (MIN) 0.0 0.40 0.80 _1_.2.0_ 2.00 2.80  _P_.P_R.ESS_ (MMHG)  _D_I_S__0XY_ (PPM)  _DE_LA__.C_ (PPM)  jrRU_E__DC (PPM)  54.00 88.00 110.00 _1.2.3...0JQ_ 137.00 143.00  2.39 3.90 4.88 .5,45.. 6.07  4.22 2.71 1.74 _1. 16. 0 . 54 0.27  4.12 2.62 1.64 1.07 0.44 0.18  6.34  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED <RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= _ . 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE '= 8.98 OXY.. ..UPTAKE (MG/L/HR)0.13 MASS TRANS COEFF (1/HR)= 34.91 R SGUARE = 0.99998 NUMBER OF..._DATA =. __7_ .TIME. (MIN) .__0.0 .._ 0.50 1.00 __.l-._5.0__ 2.CO 3.00 ...4.00.  J__.PR.E_S.S_ (MMHG) 34.00 60.00 79.00 __9.4_._C0_ 105.00 119.00 127.00.  .D.1_S__0X-Y_. (PPM) 1.51 2.66 3.50 _4.._17_ 4.66 5-28 .5.63  -DEIA__:C_ (PPM) 4.57 3.42 2.58 _1.9l_1.43 0-80 0.45.  .TRUE DC ( PPM) 4.57 3.42 2.57 1.9i_ 1.42 0.80 0.45  V-  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)=^ 500.00 SUPERFICIAL VEL (FT/HR)= 5.26. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY....UPTAKE ( MG/L/HR)= -.1.0.00. MASS TRANS COEFF (1/HR)= 62.31 R SGUARE = 0.99994 NUMBER OF. DATA .=. 7 T T MF (MIN )  _0.0.._  0.40 0.80 1.20 2.00 2.80 3.60.  P.PRESS (MMHG) 52.00 85.00 107.00 1 ??_0G 137.00 144.00 147.00  DIS OXY . (PPM) 2.31 3.77 4.74 _5..41 6.07 6.38 6.52  flFTA r.  (PPM)  .  TRUE DC ( PPM)  4.15_._ 2.69 1.72 1.0.5 0.38 0.07 -0.06 __.  4.31 2.85 1 .88  1 .71  0.55 0.24 0. 10  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL... { FT/HR)= . 8.81. SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 0XY. . UP.I AKE (MG/L/HR).= -1.40 MASS TRANS COEFF (1/HR)= 90.18 R SGUARE = 0.99926 NUMBER. OF. DATA = 7. _JT_I__J__ (MIN)  _P_.P_RE.S_S_ (MMHG)  _D_I.S_i_.X_Y_ ( PPM)  ._D.ETA._C_ (PPM)  TRUE DC ( PPM)  .0.0 _ 0.40 0.80 _1.2_0_ 1.60 2.00 _2.40_  .69.00. 106.00 125.00 _136_._0_0_ 141.00 144.00 146.00..  3.06.. 4.70 5.54 _6_._03_ 6.25 6.38 6.47.  3.49 1.85 1.01 J3.-__.2_ 0.30 0. 16 0.08  3.50 1.86 1.02 J1-5J3L  0.31 0.18 0.09  r  >-  0.0 PERCENT SOLIO (WT.)= 5C0.00 AGITATION SPEED tRPM)= 12.63 SUPERFICIAL VEL (FT/HR) = 6.59 SAT.OXY.CONC. (PPM)= 1.38 % CARBON DIOXIDE 3.74. . 0 XY.....U P.T. A.KE (MG AL AM R).= . 1 0 0.52 MASS TRANS COEFF (1/HR)= = 0.99996 R SQUARE .= 6 NUMBER OF DATA TIME (MIN)  _P__.PJ-.ES.S_ (MMHG)  .DI.S_.OXY. (PPM)  0.0 0.20 0.40 0.60 0.80 1.00  42.00 72.00 94.00 __1.0S...O.O_ 120.00 128.00  1.86 3.19 4.17 4.83. 5.32 5.67  DEI A . C (PPM) 4 . 7 3 _. 3.40 2.42 1.76 1.27 0.91  TRUE DC (PPM) . 4.69 3.36 2.38 1.72 1.23 0.88  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC. (PPM)6.61 % CARBON DIOXIDE = 1.01 0XY.. UP.TAKE (MG/L/HR)= 9.32 MASS TRANS COEFF (1/HR)= 119.03 R SQUARE = 0.99977 NUMBER OF. DATA =, 6. __T_IJ_E I MIN)  0.0 0.20 0.40 __0...60 0.80 1.00  P_..PR E.S.S  (MMHG)  49.00 82.00 103.00 118.00 127.00 134.00  DIS__OJX.Y  D.E IA _C  2. 17 3.64 4.57 5.23 5.63 5.94  4.44 2.98 2.05 1...38 0.98 0.67  (P.PM)  (PPM)  TRUE DC (PPM)  4.36 2.90 1.97 1. 3Q_ 0.90 0.59  S,  (  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL IFT/HR)= _1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 JDXY._i_PJ.AKE (.MG/L/HR )=_ -0.41 MASS TRANS COEFF (1/HR)= 52.38 R SGUARE = 0.99960 NUMBER OF DATA =. ___ 7 TJ ME  P_..P_R£S.S  0.0 0.40 0.80 __1.20 1.60 2.00 2.80  _ 41.00 69.00 89.00 104...0.0 114.00 120.00 129.CO  (MIN)  (MMHG)  DIS_.OX_Y (PPM)  1.82 3.06 3.95 .4.61, 5.05 5.32 5.72  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL ( FT/HR ) = SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE = .OXY. .UPJ.AK.E (MG/L/HR)= MASS TRANS COEFF (1/HR)= R SGUARE = NUMBER. OF DATA __= T T MF (MIN)  __P ..PRELS.S (MMHG)  0.0 _.. _ 0.20 0.40 O.ftO 0.80 1.00 1.40  o I <  u a  V  .41.00. 70.00 91.00 1.0.6._0_0 117.00 124.00 133.00  DE.TA._C  TRUE DC  4 . 26 3.02 2.13 1.4 7 1.03 0.76 0 . 36  4.27 3.03 2.14 1..A8 1.03 0.77 0.37.  DETA C (PPM)  TRUE CC (PPM)  (PPM)  (PPM)  0.0 600.00 5.26. 6.46 3.31 17.59. 104.39 0.99993 7  DIS OXY (PPM) 1.82. 3.10 4.03 4.70 5.19 5.50 5.90  4.64 . 3. 36 2.42 1.76 1.27 0.96 0.56...  4.47 3.19 2.26 1.59 1.10 0.79 0.39  r  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= .. S U P E R F I C I A L V E L ( F T / H R ) = SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE  0.0 600.00 ... 8.81. 6.55 1.97 OXY- UPTAKE (MG/1/HR1= . -2.15. M A S S T R A N S C O E F F (1/HR)= 1 11.34 R SQUARE 0.99975 NUMBER OF DATA _ 7 T I MF (MIN)  ....  ._  0.0 0.20 0.40 0.60 0.80 1.20 1.60  P.PRESS (MMHG)  .  ms  47.00 79.00 100.00 115.00 126.00 137.00 143.00  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (MG/L/HR)= MASS TRANS C O E F F (1/HR)= R SQUARE NUMBER OF DATA =  T T MF (MIN)  —  —  _  .  0.0 0.10 0.20 0.30 0.40 0.50 0.70  P.PRFSS (MMHG)  39.00 67.00 88.00 103.no 114.00 123.00 133.00.  .  ! ;  ,  nxY ( PPM)  DETA C (PPM)  2.08 3.50 4.43 5. 10 5.59 6.07 . 6. 34  4.46 . 3.05 2. 11 1.45 0.96 0.47 .... 0.21  T R U E DC (PPM)  4.48 3.06 2.13 1.47 0.98 0.49 0.23  0.0 600.00 12.63 6,59 1.38 28.06 186.08 0.99984 7  D I S OXY (PPM)  1.73 2.97 3.90 4.57 5.05 5.45 . _.5.90  j  D.ETA-X (PPM)  ...4.86 3.62 2.69 2.0.2 1.53 1.13 . 0.69.  T R U E DC (PPM)  4.71 3.47 2.54 1.87 1.38 0.98 0.54 „ ...  i  PERCENT SOLID (WT.)= 0.0 AGIT AT I ON SPEED (RPM) = 600.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC. <PPM)= 6.61 % CARBON DIOXIDE 1.01 -0 XX U PJ.AK £ LM G AL AH R) _ 18._.1.3_ 195.28 MASS TRANS COEFF ( 1/HR)= 0.99992 R SQUARE 7 NUMBER OF DATA = TTMF (MIN)  ..  0.0 0.10 0.20 0 . 10 0.40 0.50 0.70  P ..P.RES S (MMHG)  D.I.S. OXY (PPM)  DETA C (PPM)  TRUE DC { PPM)  40.00 69.00 91.00 .. 10 6.-00 118.00 126.CO 136.00 _  . _ 1.77 3.06 4.03 4_ 70 5.23 5.59 6.03  4.84 3.55 2.58 1.91 1.38 1.03 0.58  4.75 3.46 2.48 „1.82 1.29 0.93 0.49  .  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 1.94. SAT.OXY.CONC. (PPM)= 6.08 % CARBCN DIOXIDE 8.98 OXY. UPTAKE (.M.G. /L/HR) = _ - . 0 . A 3 _ 88.60 MASS TRANS COEFF (1/HR)= = 0.99995 R SQUARE _ _ 5 NUMBER OF DATA TIME (MIN) 0.0 0.40 0.80 1.60 2.40  P.PRESS (MMHG) _  60.00 94.00 113.00 130.00 135.00  DIS OXY (PPM ) 2.66 . 4 . 17 5.01 5.76 5.99  DETA C._ (PPM) 3.42 1.91 1.07 0.32 0.10  TRUE DC (PPM) 3.43 1.92 i.08 0.32 0.10  | ! ;  r  PERCENT SOLID (WT. ) = 0.0 (RPM ) = AGITATION SPEED 700.00 S U P E R F I C I A L VEL (FT/HR)= 5.26 (PPM)= SAT.OXY.CONC. 6.46 3.31 % CARBON DIOXIDE -OXY. U P.TA K E ( M G / L / H R) = _0 . 5 6_ 150.96 MASS TRANS C O E F F (1/HR)= 0.99989 R SQUARE 7 N U M B E R OF D A T A _=?.  TIME (MIN) 0.0 0.10 0.20 O...3.0 0.50 0.70 0.90.  P. P R E S S (MMHG)  DIS OXY ( PPM)  -  33.00. 58.00 78.00 93.00 114.00 126.GO . 134.00.  1.46 2.57 3.46 4..12. 5.05 5.59 5.94  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= S U P E R F I C I A L VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON D I O X I D E = .DX_Y_...._UPJ_A.K.E (MG/L/HR)= MASS TRANS C O E F F ( 1 / H R ) = R SQUARE = N U M B E R . OF. D A T A =  TIME (MIN) 0.0 _ . 0.10 0.20 0...30. 0.40 0.50 . 0 . 7 0 ...  P.. P R E S S (MMHG)  ...  T R U E DC ( PPM)  5.00 3.89 3.00 .2. 3.4. 1.40 0.87 0 . 5 2 __  4.99 3.88 3.00 2. 33 1.40 0.87 .0.51  0.0 700.00 8.81 6.55 1.97 5_..6_0__ 195.28 0.99992 7  DIS OXY (PPM)  4 0 . 0 0 . . . ... 69.00 91.00 10.6...0.0 118.00 126.00 1 3 6 . 0 0 ....  DETA C (PPM)  . 1.77 3.06 4.03 4.70 5.23 5.59 6.03  DETA C (PPM) 4.77 3.49 2.51 .1.8.5 1.32 0.96 0 . 5 2 ..  T R U E DC ( PPM) 4.75 3.46 2.48 1.82 1.29 0.93 0.49  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR ) = ... 12 . 63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY UP..T.AKE (M.G/.L/HR.).= 3.80 MASS TRANS COEFF (1/HR)= 227.45 R SGUARE ' = 0-99989 NUMBER OF DATA __ = 7  —  —T.I.M.E (MIN)  P. PRESS (MMHG)  0.0 0.10 0.20 0...3.0  47.00 78.00 100.00 115.0.0  0.40  126.00  0.50 0.70.  133.00 141,00  DI.S_OXY (PPM)  D ETA_C (PPM)  2.08 3.46 4.43 5...10  TRU E_OC (PPM)  4. 50... 3.13 \ 2.15^ \ 1.49--.:  l.OO /  5.59  7  5.90 6.25  0.69^ 0.34  4.49 3.11 2.14 1.47  0.99  0.67 0.32  PERCENT SOLID (WT.)= 0.0 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR ) = 1 7 . 1 5 SAT.OXY.CONC. (PPM)= 6.61 % CARBON OIOXIDE = 1.01 OXY.. UPTAKE ( MG/L/HR ).= -7 . 9 2 . MASS TRANS COEFF (1/HR)= 295.15 R SGUARE = 0.99998 NUMBER OF DATA = 6 _..TIM.E (MIN)  P.. PR ESS (MMHG)  0.0 0.10 0.20 _0_.3.0 0.40 0.50  59.00 94.00 116.00 129.00 137.00 142.00  DIS OXY (PPM) 2-62 4.17 5.14 5.._72_. 6.07 6.30  DET A C (PPM)  TRUE. DC (PPM)  4.00 2-44 1.47 Q-.89 0.54 0.32  4.02 2.47 1.50 Q...92 0.57 0.34  r  PERCENT SOLIO (WT.)= 5.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= . 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CAR8CN DIOXIDE = 8.98 OXY.....U P.TAKE (MGVL /HR)= 8. 27 MASS TRANS COEFF (1/HR)= 82.33 R SQUARE = 0.99977 NUMBER OF DATA = 6.___ ...TIME. (MIN ) 0.0 0.20 0.60 _L..0.0. 1.40 1.80  J_..P.R.E.S.S_ (MMHG) 31.00 56.00 89.00 108.00 120.00 126.00  DIS. OXY. (PPM)  DETA C (PPM)  TRUE ..CC (PPM)  0. 76 0.49  4.61 3.50 2.03 1.19 0.66 0.39  DETA_._C (PPM)  TRUE DC (PPM)  1.37 2.48 3.95 _4._7.9_. 5.32 5.59  4.71 3.60 2. 13 __lo_2_9  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 5.26_ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY UPTAKE ( MG/L/HR)= -3.23 MASS TRANS COEFF (1/HR)= 117.54 R SGUARE = 0.99985 .NUMBER OF. DATA = J... TIME (MIN) . ... .  0.0 0.20 0.40 O.ftO 0.80  •  i z c  l.GO  IJ 'J  .... _  1.60  __P.PRESS (MMHG) . . . . 47.00 79.00 101.00 116.00 126.00 132.00 _. 142.00...,  D.TS OXY. (PPM) 2.08 . 3.50 4.48 5-14 5.59 5.85 6.30  4.38 . 2.96 1. 98 1. 32 0.87 0.61 0.16 ..  4.40 2.98 2.01 1.34 0.90 0.63 0.19  ....  r V  (  PERCENT SOLID (WT.)= 5.CO AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR ) = 8.81.._ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 .OXY UPTAKE (MG/.L/HR.) = 13.35... MASS TRANS COEFF ( l / H R ) = 158.59 R SQUARE = 0.99984 NUMBER OF DATA ... 7... __TJME_ (MIN)  _P_..PRESS. (MMHG)  _DJ.S__OX_Y_ (PPM)  _DET.A_._C_ (PPM)  0.0 0.10 0.20 __0..3.0_ 0.40 0.50 0.70.  33.00. 59.00 79.00 ___9.5..00_ 106.00 116.00 128.00  1.46 2.62 3.50 _4...21_ 4 . 70 5.14 5.67.  5.09 3.93 3.05 .2..3.4 1.85 1.41 0.87.  _J.RUE__DCL ( PPM)  _.  . 5 . 0 0 ... 3.85 2.96 2.25 1.76 1.32 0.79  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR )= 28.01 MASS TRANS COEFF (1/HR)= 192.55 R SQUARE = 0.99990 NUMBER OF DATA. = _ 7 TIME  (MIN)  0.0 0.10 0.20 0...3.0 0.40 0.50 0..70  P. PR ESS  (MMHG)  39.00 68.00 89.00 104.CO 116.00 124.00 134.00  DIS  OXY  (PPM)  1.73 3.01 3.95 4.61 5.14 5.50 5.94  D ETA C  TRUE DC  (PPM)  4.86 3.57 2.64 1.98 1.45 1.09 0.65  (PPM)  _  4.71 3.43 2.50 1 ._8 3 1.30 0-94 .0.50  r  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 700.00 S U P E R F I C I A L VEL ( F T / H R ) = . 1 7 . 1 5 . . . SAT.OXY.CONC. <PPM)= 6.61 % CARBON DIOXIDE = 1.01 .OXY. U PT A KE (MG/L/H R)=. 9.93... MASS TRANS COEFF (1/HR)= 216.68 R SQUARE = 0.99983 NUMBER OF DATA .__= .7 . TIME. (MIN)  P. PRESS (MMHG)  DIS OXY. (PPM)  0.0 0.10 0.20 J__.3__ 0.40 0.50 0.70  45.00 77.00 99.00 .114.00 124.00 131.00 140.00  . 2.00 3.41 4.39 _5 .05. 5.50 5.81 6.21  _DETA_..C_ (PPM)  _T„RUE__OC_ (PPM)  4.62 3.20 2.22 1. 56 1. 11 0.80 0.41  4.57 3.15 2.18 _1. 51_ 1-07 0.76 0.36  DETA C (PPM)  TRUE_DC_ ( PPM)  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 600.00 S U P E R F I C I A L VEL ( FT/HR ) = 1.94._. SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE ( MG/L/HR)= 11..64._ MASS TRANS COEFF ( 1 / H R ) = 43.59 R SGUARE = 0.99996 NUMBER CF. DATA = 6  _TJJ_JE_  _P_.PRE.SS_ (MMHG)  _0_I.S._OXY_ (PPM)  0.00.50 1.00 _1...5.0_ 2.00 3.00  . 41.00. 69.00 88.00 _1.0.1...00_ 110.00 121.00  1.82 3.06 3.90 _.4.._4.8_ 4.88 5.36  (MIN )  4.26 3.02 2 . 18 JL.6.Q_ 1.20 0.72  4.00 2.75 1.91 _1...3_4_ 0.94 0.45  r  PERCENT SOLID (WT.)~-= 5.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE 3.31 _Q.X_Y._U PI A K E _t.M.G / L./H R..)_=_ _L8._.6.0_ 84.84 MASS TRANS COEFF (1/HR)= = 0.99998 R SGUARE 6 NUMBER OF DATA.  TIME  (MIN)  .0.0. .. 0.20 0.60 _L..0.0_ 1.40 2.20  P. PRESS (MMHG) 34.00. 61.00 95.00 _115.-0 0_ 126.00 136.00  J3J.S_QX.Y_ 1PPM)  DEJA C I PPM)  -.1.51 2.70 . 4.21 5...1Q. 5.59 6.03  4.95 3.75 2.25 _l.-36_ 0.87 0 . 43  _IRU.E„_DC_ ( PPM) 4.73 3.54 2.03 .l..l_4_ 0.65 0.21  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( F T / H R ) = . 8-81_ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UP J.AKE (MG/.L/HR) = 21. 1 2 _ MASS TRANS COEFF (1/HR)= 111.07 R SGUARE = 0.99995 NUMBER OF.DATA. ..= 7 -XLME (MIN)  0.0 0.10 0.30 ...0.50 0.70 1.10 _ 1.50  P.PRESS  (MMHG)  26.00 44.00 75.00 9 6...0 0 111.00 128.00 136.00  D_I.S_OXY (PPM)  1.15 1.95 3.33 4.26 4.92 5.67 6.03  DET_A_C (PPM)  5.40 4.60 3.22 2... 2 9 1.63 0.87 0.52  IJ^UE DC_ (PPM)  5.21 4.41 3.03 2_. 10 1.44 0.68 0.33_  r  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= 12.63.. SAT.OXY.CONC. (PPM)= 6.59 * CARBON DIOXIDE = 1.38 _ 0 XY. . U PXA KE (MG/L/HR ) = 41. 16_._. MASS TRANS COEFF (1/HR)= 152.77 R SQUARE • = 0.99995 .. NUMBER OF DATA =._.... 6 ... .XI ME (MIN) 0.0 . 0.10 0.30 0.50 0.90 1.50  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  27.00 55.00 89.00 110.00 131.00 140.00  1.20 2.44 3.95 4.88 5.81 6.21  5. 39 4.15 2.64 1. 7 1 0.78 0.38  5.12 3.88 2.37 1.44 0.51 0.11  PERCENT SOLID (V1T.)= 5.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR ) = 17.15.. SAT.OXY.CONC. (P'PM)= 6.61 % CARBON DIOXIDE = 1.01 OXY...UPTAKE ( MG/L/HR )= 21.23 . MASS TRANS COEFF (1/HR)= 177,60 R SGUARE = 0.99989 NUMBER. .OF.. DATA = 7_ TIME (MIN) 0.0 0.10 0.20 _0.._3L0 0.40 0.50 0.60 ...  P.PRESS (MMHG) 3 8.00. 66.00 86.00 _10.2.._Q0_ 113.00 122.00 128.00  _fiI.S.._OX.Y_ (PPM) 1.68 2.93 3.81 _4.._52_ 5.01 5.41 5.67  _D.ET.A_C_ (PPM)  4.93 3.69 2.80 2.09. 1.60 1.20 .0.94_  XRU.E_.QC_ ( PPM) 4.81 3.57 2.68 _1.._.97_ 1.48 1.08 0.82  __  V  1  .  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL {FT/HR)= 1.94 SAT.OXY.CONC. <PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/t,/HR) = 49.42 MASS TRANS COEFF <1/HR)~ 34.50 R SQUARE = 0.99998 NUMBER OF DATA = _ 6 TIMF (MIN)  P.PRFSS (MMHG)  0 . 0 ......... 0.50 1.00 2.CO 3.00 4.CO  27 . 00 46.00 61.00 80.00 91.00 97.00  -  nrs  OXY (PPM)  DETA C (PPM)  .  1. 20 2.04 2.70 1.55 4.03 4.30  .... ... 4 . 88 ... 4.04 3.38 ..2. 53 2.05 1.78  —  TRUF DC (PPM) 3.45 2.61 1.94 1-10 0.61 0.35  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 500.00 ...SUPERFICIAL V E L . ( F T / H R ) = .5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= 39.3? MASS TRANS COEFF (1/HR)= 55.70 R SCUARE = 0.99991 NUMBER OF. DATA . ......._= . 5  ..  TT MF (MIN)  P.PRFSS (MMHG)  0.0 0.40 0.80 1.70 1.60  42.00 70.00 88.00 101.00 110.00  DIS  OXY (PPM)  DETA C (PPM)  TRUE CC (PPN)  1.86 3.10 3.90 4.48 4.88  4.60 3.36 2.56 L.98 1.58  3.89 2.65 1.85 1.28 0.88  i I  I 1  j  !  | !  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 500,00 SUPERFICIAL VEL ( FT/HR )= ... 8.81. SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 0XY_.__UPIA.KE (JMG/.L./.HR ) = 38.05 MASS TRANS COEFF (1/HR)= 76.28 R SQUARE = 0.99877 NUMBER OF DATA = 6 _ TIME  P.PRESS  0.0 0.20 0.40  30.00 56.00 74.00  1.00 1.40  106.00 119.00  (MIN)  _Q-..6G  (MMHG)  DIS  OXY  (PPM)  a_...0.0__  DETA C (PPM)  TRUE OC (PPM)  1.33 . 2.48 3.28  5.22 4.07 3.27  4.72 3.57 2.77  4.70 5.28  1.85 1.27  1.35 0.77  3.95  ? .AO.  2 .JO  5.00 PERCENT SOLID (WT.)= 5 0 0 .00 AGITATION SPEED (RPM)= . 1 2 .63 SUPERFICIAL VEL (FT/HR)= 6.59 SAT.OXY.CONC. (PPM)= 1.38 % CARBON DIOXIDE 57.01 _OXY_._UPJ.AKE (MG/L/HR ) = 91.58 MASS TRANS COEFF (1/HR)= 0.99966 R SQUARE 6 NUMBER OF DATA =. __T_t._JE (MIN)  ...0.0._  0.20 0.60 _JL. 0.0 1.40 1.80  P.. PRESS (MMHG)  34.00 60.00 94.00 1.1.2..JOJ0L. 123.00 128.00  DI.S  OXY  D_ET_A_C  TRUE_ 0 C_  1.51 2.66 4.17 „...9.7 5.45 5.67  5.08 3.93 2.42 __1.62 1.13 0.91  4.46 3.31 1.80 1. 00_ 0.51 0.29  (PPM)  (PPM)  (PPM)  r  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL ( FT/HR )= . __ 1 7 . 1 5 — SAT.OXY.CONC. (PPM)= 6 . 6 1 % CARBON DIOXIDE = 1.01 ..OXY.. UPJ.AKE (MG/L/HR) = 69.73 _ MASS TRANS COEFF ( 1 / H R ) = 108.36 R SQUARE = 0-99978 NUMBER OF DATA .= . 7. _.T.I.__E_ (MIN) 0.0 . 0.20 0 . 40 _0...60. 0.80 1.00 1.20.  _P_..P_RESS_ (MMHG) _  41.00. 70.00 89.00 .103..00. 113.00 119.00 124.00  -D.I-S_OX.Y_ (PPM) 1.82... 3.10 3.95 _4.J5.7._ 5.01 5.28 5.50  _DETA._C_ (PPM)  JI.RU E_O.C_  ( PPM)  4 . 7 9  4 . 15 2.87 2.02 1.40 0.96 0.69 .0.47.  3.51 2.67 .2.0.5. 1.60 1.34 1. 11  (WT . ) = 5.00 PERCENT SOLID 400.00 AGITATION SPEED (RPM)= 1.94 SUPERFICIAL VEL ( FT/HR ) =. 6.08 SAT.OXY.CONC. (PPM)= 8.98 % CARBON DIOXIDE 104.4 8 ..OXY. UPTAKE ( MG/L/HR). 2 2 . 5 7 MASS TRANS COEFF (1/HR)= = 0.99988 R SQUARE = 4 NUMBER QF„ DATA.  —T-I.M £  P...PJ. E.S.S^  (MIN)  (MMHG)  -D_I.S_0_X_Y_____D.ETA._C (PPM)  IR U E_.DC.  (PPM)  0.0  1 6 . 0 0  0 . 7 1  2.00  25.00  1.11  4 . 9 7  0 . 3 4  4.00  29.00  1.29  4 . 7 9  0 . 1 7  3 J L ..0.0  1.37  4 . 7 1  0 ._08_  -J6L_-_1  5.37  (PPM) _  0 . 7 4  r  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 4C0.0O SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 -0 X_Y. U.PJ1A.K E IMC 7_L /_H R l _ 3 0 ,_4 3__ MASS TRANS COEFF (1/HR)= 34.46 R SGUARE = 0.99999 NUMBER OF DATA =.... 5 __.T_I__.E_ (MIN)  _P_,PRESS_ (MMHG)  _D_LS_.O.X.Y_ (PPM)  _DE.T.A_C. (PPM)  -I.RUE._DC_ ( PPM)  0.0 1.00 2.00 _3.0-0_ 4.00  22.00 50.00 66.00 ___..0.0_ 80.00  0.98 2.22 2.93 _3.3 3_ 3.55  5.48 4.24 3.53 3..1.3. 2.91  2 86 1. 62 0.91 _0..5_1_ 0.29  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ..(FT/HR)*... 8.81_ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 0 X Y_.__ U P T A K E (_MG./ L/HR )= 102.. 9.1_ MASS TRANS COEFF (1/HR)= 44.35 R SQUARE = 0.99958 NUMBER. CF DATA r. 7_ __T_LM£ (MIN)  . 0.0 0. 50 1. GO --X.-50 2. CO 3.00  -4.00  P.PRESS  (MMHG) 30.00 50.00 64-00 7-4...0.0 81.00 88.00  92.0 0  _D.I.S_OX.Y (PPM)  1.33 2.22 2.84 3.28 3-59 3.90  4.08..  D.ETA _C  I_RUE_ DC.  (PPM)  (PPM)  5.22 \. ... 2 . 9 0 4.33 2.01 3.71 1.39 3.27 0 ,_9 5 2.96—; 0-64 2.65 /' 0.33 N  2.4 7 _ _ . i . _ . . 0 . 1 5  PERCENT SOLID {WT . ) = 5.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR) = 12.63 SAT.OXY.CONC. (PPM)= 6.59 1.38 % CARBON DIOXIDE OX Y—U PI A K E { MG/L/H R) =.. 1 3 9 . 4 8 MASS TRANS COEFF (1/HR)= 5 0 . 39 R SQUARE 0.99977 NUMBER OF DATA _ ... =. 7 JL1M._L  (MIN)  . 0 . 0 .. 0.40 0.80 JL._2.Q_ 1.60 2.00 2.40  P.PRESS (MMHG) 25.00_ 43.00 55.00 .64.00 70.00 75.00 .78.00  _D.LS_OX.Y_. (PPM)  J1EJ._Y_.C_ (PPM)  _IRUE_D_C._ ( PPM)  1.11 1.91 2.44 _2._8.4_ 3. 10 3.33 3.46  .5.48 4.68 4 . 15 3._75_ 3.48 3.26 3.13  2.71 1,91 1.38 .0.98 0 . 72 0.49 0.36_  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ( F T / H R ) = . 17.15.. SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 0 X Y. U P_T A KE (MG/L/HR )= 117.51. MASS TRANS COEFF (1/HR)= 62.50 R SGUARE = 0.99993 NUMBER. OF. DATA = :6._ _T_1 ME (MIN)  C O _ 0.40 0.80 _1...2.0 2.00 2.80  £..P-RE.S.S  (MMHG)  ___ 37.00.._ 61.00 77.00 8_7_»_G_0 98.00 103.00  D_I.S_0.X_Y (PPM)  _.. 1.64 2.70 3.41 3_._8.6. 4.34 4.57  DETA C (PPM)  4.97.. 3.91 3.20 2..X6 2.27 2.05  TRUE DC (PPM)  3.09 2.03 1.32 0_,_8_7 0.39 0.17  PERCENT SOLID (WT.) 5.00 AGITATION SPEED (RPM) = 300.00 . S U P E R F I C I A L VEL (FT/HR) = . 1.94 SAT.OXY.CONC. (PPM) 6.08 % CARBON DIOXIDE 8.98 OXY. UPTAK E ( MG /_ L/.H R =) 12.. 3.1 MASS TRANS COEFF (1/HR) 7.95 R SGUARE = 0.99980 .... NUMBER OF DATA = 7 . TIME. (MIN) 0.0 ... 1.00 2.00 3..._0_04.00 5.00 6.00  P.PRESS (MMHG)  DXS_OXY (PPM)  13.00 24.00 34.00 42.00 50.00 56.00 62.CO  0.58 1.06 1.51 1.86 2.22 2.48 2.75  ...  DETA C (PPM) .  5.50 5.02 4.57 4. 22 3.86 3.60 3.33 ....  TRUE DC ( PPM) 3.96 3.47 3.02 2.67 2.32 2.05 1.78  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= . 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE 3.31 OXY. UPTAKE ( MG/L/ HR)___ 15.26 _. MASS TRANS COEFF (1/HR)= 10.80 R SGUARE = 0.99973 NUMBER OF. DATA = 7 TJ.M.E (MIN)  P. PRESS (MMHG)  .0.0 1.00 2.00 3.00 4.00 5.00 -7.00  _. 19.00 35.00 47.00 59.00 68.00 75.00 87.00 ..  D.IS OXY (PPM) 0.84. . 1.55 2.08 2.673.01 3.33 3.86._  DFTA r. (PPM) 5.62 4.91 4.38 3.84 3.44 3. 13 2.60_  TRUE DC (PPM) 4.20 3.50 2.96 2.43 2-03 1.72 1.19  r  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 8.81 SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE 1.97 . 0 X Y . U P.T A. K E ( M G / L / H R) = .20..16_ 17.25 MASS T R A N S C O E F F (1/HR)= = 0.99977 R SGUARE .=.... 7 N U M B E R OF DATA  T T MP (MIN)  P .PRESS (MMHG)  .. . 0 . 0. _ _ 1. 00 2. 00 3.. .0.0 4. 00 5 . CO ._ 6 . 0 0 _ _ .  ._  3 0 .00 5 3 . 00 7 0 . 00 8.3.. . 0 0 9 2 . 00 100. 00 1 0 5 . 0 0 _..  D L S OXY (PPM) 1. 2. 3. 3_ 4. 4. 4.  33 35 10 68 08 43 66_.  n F T A r. (PPM) 5. 22 4. 20 3. 44 _ _ 8 7 2. 47 2 . 11 1 . 89......  TR 1 IFnr.  ( PPM)  _  4 . 05 3. 03 2 . 28 1 .7 0 1. 30 0 . 95 0 .72  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)=. . 12.63 SAT.OXY.CONC(PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE J_MG/_L/_HR)_E 23___72_ MASS TRANS C O E F F ( 1 / H R ) = 20.72 R SCUARE = 0.99991 N U M B E R OF. D A T A r_ ____JL_  TIME (MIN) 0.0 0.50 1.00 1...5J0 2.00 2.50 3.00  P.PRESS (MMHG)  .  19.00 36.00 49.00 6.1..JC_0 71.00 79.00 86.00  D_I.S_J3.XY (PPM) 0.84 1.60 2.17 2..70_ 3.15 3.50 3.8i  DETA C (PPM)  T R U E DC (PPM)  5.75 4.99 4.42 3.J38 3.44 3.09 2.78  4.60 3.85 3.27 2_ 2.30 1.94 1.63  PERCENT SOLID (WT.)= 5.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 1 7 . 1.5 _ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 .OXY. U PT A KE (MG/L/H Ft.) = 20.51... MASS TRANS COEFF (1/HR)= 29.49 R SGUARE = 0-99985 NUMBER OF DATA = 7 _T.LM.E-. (MIN)  _P__.PRE.S_S_ (MMHG)  0.0 0.50 1.00 _1.._5_0_ 2.00 2. 50 3.00  30.CO 53.00 71.00 8_4_._0.Q_ 95.00 103.00 110.00  _D.IS__-OX-Y. (PPM)  DETA C (PPM)  TRUE DC ( PPM)  1.33.  5.28 4.26 3.46 2.89. 2.40 2.05 1.74  4.59 3.57 2.77 2. 19 1.70 1.35 1.04  2.35 3.15 __L._7.-L 4.21 4.57 .4.88  PERCENT SOLID (WT.)= 10 . 0 0 AGITATION SPEED (RPM ) = 3 0 0 . 00 SUPERFICIAL VEL . (FT/HR) =. ..... 1. 94 „ SAT.OXY.CONC. (PPM)= 6 . 08 = % CARBON DIOXIDE 8. 98 OXY. UPTAKE (MG/L/HR)= 1 . 42 MASS TRANS COEFF (1/HR)= 7 . 02 = R SQUARE 0.99993 NUMBER OF DATA ___T.I.M.E_ (MIN)  _P__.PRE.SS.. (MMHG)  _D_I_S-_OX.Y_ (PPM)  ..0.0._ 1.00 2.00 ___3._0.0_ 4.00 6.00 8.CO.  14.00. 27.00 39.00 49.00.. 58.00 74.00 .86.00..  0.62 1.20 1.73 _Z.1_7_ 2.57 3.28 3.81.  DETA C (PPM) 5.46 4.88 4.35 .3..._91_ 3.51 2.80 .2-27..  J_RUE__D.C_ ( PPM) 5.26 4.68 4.15 _3._7L 3-31 2.60 2.06  r  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR) = 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY U.P-TAKE (MG/L/HR.)._= 0...8 4__ MASS TRANS COEFF (1/HR)= 12.53 R SGUARE = 0.99989 NUMBER OF DATA . ._= 7 __T_I__E_ (MIN) 0. 0 1. CO 2.00 _3,.00 4.CO 6.00 8.00  .  _£_.P_RESS_ (MMHG)  _DJ.S_JDXy_ (PPM)  27.00 49.00 67.00 B_L._0.0_ 93.00 111.00 ... 1 2 2 . 0 0  _D__TA_C_ (PPM)  1.20 2.17 2.97  5.26 4.29 3.49 2.87 2.34 1.54 1.05  33  4.12 4.92 5.41  _IRUE__.DC. ( PPM) 5.19 4.22 3.42 2 . 8.0_ 2.27 1.47 0.98  PERCENT SOLID (WT. ) = 10 . 0 0 AGITATION SPEED (RPM)= 3 0 0 . 00 SUPERFICIAL V E L . (FT/HR ) = 8. 8 I _ SAT.OXY.CONC. (PPM)= 6 . 55 % CARBON DIOXIDE 1. 97 OXY. UPTAKE (MG/L/HR)= 4 . 91 MASS TRANS COEFF (1/HR)= 1 5 . 02 = 0.99996 R SGUARE .. NUMBER .OF DATA _7_ P.PRESS (MIN) 0.0 l.CO 2.00 3._0_0 4.00 5.00 6.00  D_I.S_.0XY  (MMHG) ..  _  31.00 55.CO 74.00 8 9 . CO 100.00 109.00 116.00  (PPM) ...  1.37 2.44 3.28 3.95 4.43 4.83 5.14_  DETA C (PPM) 5.17 4 . 11 3.27 2.60 2.11 1.72 1.41  TRUE DC (PPM) 4.85 3.78 2.94 2,28 1.79 1.39 1.08  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR )= 12.63._ SAT.OXY.CONC. IPPM)= 6.59 % CARBON DIOXIDE = 1.38 .0XY_. _.UP_TAKE ( MG/L/HR)= 6_._3.0__ MASS TRANS COEFF <1/HR)= 17.86 R SQUARE = 0.99998 NUMBER OF DATA = _7_._.. _T.I.ME_ (MIN)  JL..PRESS. (MMHG)  0.0 1.00 2.00 _3...0.0_ 4.00 6.00 8.00  36.00 63.00 83.00 _9.8.„01)_ 109.00 123.00 .131.00  DIS OXY. (PPM)  JD.EXA_C_ (PPM)  TRUE DC ( PPM)  4.99 3.79 2.91 2.24. 1.76 1.13 0.78  4.64 3.44 2.56 1.89 1.40 0.78 0.43.  1.60 2.79 3.68 .4.34 4.83 5.45 5.81  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE = OXY. UP.TAKE ( MG/L/HR)= MASS TRANS COEFF (1/HR)= R SGUARE = NUMBER OF.DATA =  10.00 300.00 17.15. 6.61 1.01 13.25 27.42 0.99993 8  _XI.M_E  P_..P_RE.S.S  DJ_S_JJX_Y  DETA C  TRUE DC  0.0 0 . 50 1. CO _JL.5_0 2.00 2.50 . 3.CO 3.50  28.00 50.00 68.00 83..JQL0 94.00 103.00 .110.00 116.00  1.24 2.22 3.01 3.68 4.17 4.57 4.88 5.14  5. 37 4.40 3.60 7-93 2.44 2.05 1.74 1.47  4.89 3.91 3.11 2.A5 1.96 1.56 1.25 0.99  (MIN)  (MMHG)  .  (PPM)  (PPM)  (PPM)  _  r  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL {FT/HR) = 1.94 . SAT.OXY.CONC(PPM)= 6.08 % CARBON DIOXIDE 8.98 ..OXY ... UPTAKE (.MG/L/HR.) =.. 3._J___ MASS TRANS COEFF ( 1/HR)= 18.61 R SGUARE 0.99999 NUMBER OF. DATA =.. 7 _J.LME_  _J?_..P_RE-SS_ (MMHG)  .D„.S_.OXY_. (PPM)  DETA C (PPM)  IRU.E__DC_ (PPM)  0.0 . 1.00 2.00 -3.0.04.00 6.00 8.00.  36.00 62.00 81.00 _a5._0.Q_ 105.00 118.00 125.00  1.60. 2.75 3.59 _4.21_ 4.66 5.23 5.54.  .4.48 3.33 2.49 JL..87_ 1.43 0.85 0.54  4.31. 3. 15 2.31 _1_.69_ 1.25 0.67 0.36  (MIN)  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL. (FT/HR)= 5.26_. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 _0 X.Y ._-U.PJ.A-K E (MG/.L/H R.)=_ _4-.-5.5___ MASS TRANS COEFF (1/HR)= 30.46 R SGUARE = 0.99981 NUMBER OF.. DATA ...= .7... _IXM£ (MIN) 0.0 0.50 1.00 _L.5_0_ 2.00 3.00 .4.00..  .--L,.P-RE-S_S(MMHG) 32.00 57.00 77.00 __.9.1.._0_0_ 103.00 118.00 .128.00-  DIS OXY (PPM) 1.42 2.53 3.41 -4....03_ 4.57 5.23 5.67_  _D_E_T_A_JC (PPM) 5.04 3.93 3.05 -Z.-4.2_ 1.89 1.23 -0..7.8.  TRUE DC ( PPM) 4.89 3.78 2.90 2.27. 1.74 1.08 0.63..  r  PERCENT SOLID (WT. ) = 1G.0O AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ( F T / H R ) = .... 8.81.. SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE 1.97 _QX Y U PJ.AK E (.M.G /J_ / H Rl=_ 2A..2.0_ MASS TRANS COEFF (1/HR)= 44.42 R SQUARE 0.99976 6 NUMBER OF DATA .=.. T I MF ( MIN ) 0.0 0.50 1.00 1 .50 2.00 3.00  P. PRESS (MMHG) . .  DIS OXY (PPM)  DFTA C (PPM)  TRUE DC (PPM)  1.82 3.06 3.95 4.61 5.05 5.54  ... ... 4 . 7 3 3.49 2.60 1. 94 1.49 1.01  4.19 2.94 2.06 1. 39 0.95 0.46  41.00 69.00 89.00 104.0.0 114.00 125.00  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY...UPTAKE (M_GLI/HR __ MASS TRANS COEFF <1/HR)= 51.34 R SGUARE = 0.99998 NUMBER OF OATA _ ....= 6.  XIJVE  ^P_...PRE.S.S  (MIN)  (MMHG)  .0.0 0.40 0.80 .__1_.2.0 2.00 2.80  41.00 71.00 91.00 106.00 124.00 133.00  DIS.  OXY  (PPM)  1.82 3.15 4.03 ^4...7_0 5.50 5.90  TJ_JJ.E_J3C_ (PPM)  D.EXA__C  (PPM) .. 4 . 7 7 3.44 2.55 1...89. 1.09 0.69  _  4.49 3.16 2.27 L.iU. 0.81 0.41  r  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ( F T / H R) = 17.15.. SAT.OXY.CONC. (PPM)= 6.61 * CARBON DIOXIDE = 1.01 .0 X Y .—UPJ.AKE (MG/L/H R ).= 4 ..17__ MASS TRANS COEFF (1/HR)= 57.98 R SGUARE = 0.99979 NUMBER OF DATA =._ 6 __T_LME. (MIN ) .0.0. . 0.40 0.80 _1...20_ 2.00 2.80  __.P_RESS_ (MMHG) 48.00 81.00 103.00 117.00 133.00 141.00  -JH.S_OX.Y__ (PPM)  -D£ZA_C_ (PPM)  2 . 13 3.59 4.57 5.19 5.90 6.25  _IR.UE_DC_ ( PPM)  4.48 3.02 2.05 1.43. 0.72 0.36  4.41 2.95 1.97 -1 . 35__ 0.64 0.29  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL__( FT/HR)= 1.94 ._ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 0XY._UPJ1AK.E .(AG./.L/.HRJ = 19.69 _ MASS TRANS COEFF (1/HR)= 27.77 R SGUARE = 0.99990 NUMBER OF . DATA . = 6_ T T MF (MIN ) .  0.0 0.50 l.CO 1 . .n 2.00 3.00  P.PRESS (MMHG) 25.00. 44.00 60.00 71.00 83.00 97.00  DIS OXY (PPM) 1.11.... 1.95 2.66 3. 24 3.68 4.30  DETA C (PPM) 4.97 4 . 13 3.42 2.84 2.40 1.78  TRUE DC (PPM) .  4.26. 3.42 2.71 2.13_ 1.69 1.07  (  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL ( F T / H R ) =. 5.26SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 _0 X Y .__U P_T. A K E LM.G7_L.v- H R). = 10.3_4__ MASS TRANS COEFF (1/HR)= 59.99 R SGUARE = 0.99998 NUMBER OF DATA=. ___ 6 __T- I.M E  P.PRESS  (MIN)  (MMHG)  0.0 0.40 0.80 __1.20 2.CO 2.80  47.0078.00 99.00 1-13.00 129.00 136.00  DI S__OX.Y (PPM) 2-08 3.46 4.39 5 . 01 5.72 6.03  D E T.A_J_  TRUE DC  (PPM)  (PPM)  4.38 3.00 2.07 1.4 5. 0.74 0.43  4.20 2.83 1.90 1.28. 0.57 0.26  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR) = .8.81_ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 .OXY. ..UPTAKE ( MG/L/HR)..=. 9.36 MASS TRANS COEFF (1/HR)= 73.13 R SGUARE = 0.99999 NUMBER GF .DATA = 6 __T-LME_ (MIN)  P.PRESS (MMHG)  S OX.Y (PPM)  0.0._ 0.20 0.60 -1..-0.01.80 2.60  30.00 55.00 90.00 111.00 132.00 140.00  1.33 2.44 3.99 4.92 5.85 6.21  ...  DETA X. (PPM)  TRUE DC (PPM)  5.22 4.11 2.56 1.63 0.70 0.34  5.09 3.98 2.43 1.50 0.57 0.21  _x_>—  r  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 12 » 63._ SAT.OXY.CONC. (PPM)^= 6.59 * CARBON DIOXIDE = 1.38 .OXY...U P-TA K.E (-MG LL ./JH R) = lit.3 3 _ MASS TRANS COEFF (1/HR)= 91.75 R SGUARE = 0.99991 NUMBER OF DATA = 6 __T_IJME_ (MIN)  J__RRESS_ (MMHG)  _D_IS_OXY_ (PPM)  _DET_A__.C_ ( PPM)  0.0 . 0.20 0.60 _L.00_ 1.80 2.60  35.00 66.CO 102.00 JL22._0.0_ 138.00 143.00  .1-55. 2.93 4.52 J5..A1_ 6 . 12 6.34  .5.04 3.66 2.07 ..l...L8_ 0.47 0 . 25  TRUE.DC (PPM) .4.88 3.50 1.91 _L-.0.2. 0.31 0.C9  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 17.15_ SAT.OXY.CONC. (PPM)= 6.61 % CAR80N DIOXIDE = 1.01 OXY. UPTAKE (_MG/.L./_HRJ._ 2_L_5J2_ MASS TRANS COEFF (1/HR)= 107.41 R SGUARE = 0.99984 NUMBER _0F_. DATA = 6__ T.LM.E  (MIN)  -0.0 0.20 0.40 O..6.0  0.80 1.00  E...P.RES.S (MMHG)  43.00.. 74.00 95.00 im«j3jQ  120.00 127.00  DIS OXY (PPM)  _  D.EXA.JC  1 . 9 1 _ 3.28 4.21 4.8.3  5-32 5.63  (PPM)  4.71 3*33 2.40 l.._78  1.29 0.98  TRUE__D_C_ (PPM)  4.47 3.09 2.16 1.54  1.05 0.74  r  PERCENT SOLID (WT.)= 10.CO AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= . . . 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE 8.98 .0 X.Y. U P_T A K E (MG LL /.H R L__ 8.4_._65._. MASS TRANS COEFF (1/HR)= 43.68 R SGUARE 0.99961 NUMBER OF DATA _=_ 7 T I MF (MIN) ...  o.o 0.50 1.00 1...5.0 2.CO 3.00 4.00_„_.  P..P.RESS (MMHG)  DIS OXY ( PPM)  29.00 . 49.00 63.00 72.00 79.00 86.00 90.00 . .  1.29 2. 17 2.79 3.19 3.50 3.81 3.99..  DETA f. (PPM)  TRUE DC ( PPM)  4.79 ..... 3.91 3.29 2. 89 2.58 2.27 . 2.09 . _ .  2.86 1.97 1.35 0.95 0.64 0.33 0.15  PERCENT SOLID (WT. ) = 10.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR )= 5.26... SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 .0 X Y. UPTAKE. (MC/L/HR )_= 101.16... MASS TRANS COEFF (1/HR)= 83.68 R SGUARE = 0.99999 NUMBER. 0F DATA = 6. T T MF (MIN) 0.0 0.20 0.60 1.00 1.80 2.60  P..P.RESS (MMHG) 27.00 50.00 79.00 96.00 111.00 116.00  DIS OXY ( PPM) 1.20. 2.22 3.50 4.26 4.92 5.14  DETA C (PPM) 5.26.. 4.24 2.96 2.20 1.54 1.32  TRUE DC (PPM) 4.05 3.03 1.75 0.99 0.33 0.11  ( I  _  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR )= 8.81.SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY UPTAKE (MG/L/HR) = 109.. 0 5 _ MASS TRANS COEFF (1/HR)= 89.15 R SGUARE = 0.99998 NUMBER OF DATA =_ _ 5_. _LIME  P..PRESS  DIS OXY  ...0.0 0.40 0.80 1.20 1.60  54.00 84.00 100.00 1 0 9 . CO 114.00  2.39 3.72 4.43 4.83 5.05  (MIN)  (MMHG)  (PPM)  DEIA._C (PPM)  4.15 2.82 2.11 1.72 1.49  IRUE_DC_ (PPM)  2.93 1.60 0.89 0.49. 0.27  PERCENT SOLID (WT.) AGITATION SPEED (RPM) . SUPERFICIAL VEL _(FT/HR) SAT.OXY.CONC. (PPM) % CARBON OIOXIDE _ 0 X Y. UPT AKE (MG / L/HR) MASS TRANS COEFF (1/HR) R SQUARE NUMBER CF DATA T T MF (MIN) _  -0.0 . 0.20 0.40 0 . AO 0.80 1.00 1.40 _  P.PRESS (MMHG)  D.I.S OXY (PPM)  47.00 _ 2.08 3.41 77.00 97.00 4.30 109.00 4.83 117.00 5.19 122.00 5.41 1 2 7 . 0 0 ___ __5.63 . .  DETA C (PPM) 4.50 3. 17 2.29 1.76 1.40 1.18 0.96..-.  TRUE DC (PPM) 3.70 2.37 1.48 0.95 0.59 0.37 . .0.15  ! i  i i  i  PERCENT SOLIO (WT.)= 10.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL {FT/HR)= 17.15. SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE 1.01 OXY. UPTA KE t MG/L/HR ) = 92.06 MASS TRANS COEFF (1/HR)= 146.79 R SGUARE = 0.99992 NUMBER OF DATA.. = 8 TIME (MIN) 0.0 ..... 0.10 0.20 _Q...3L0 0.40 0.60 0.80 . 1.00  P .PRESS (MMHG)  _ DIS OXY (PPM)  DETA C (PPM)  TRUE DC ( PPM)  30.00 53.00 71.00 85.0.0 96.00 111.00 120.00 126.00  1.33 2.35 3.15 3.77 4.26 4.92 5.32 5.59  5.28 4.26 3.46 2.84 2.36 1.69 1-29 1.03  4.66 3.64 2.84 2. 22 1.73 1.06 0.66 0.40  DETA C (PPM)  TRUE DC (PPM)  4.35 3.29 2.62 2. 18 1.74 1.56  2.91 1.85 1.18 0.74 0.30 0. 12  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE * OXY. UPTAKE ( MG/L/HR)= MASS TRANS COEFF (1/HR)= R SGUARE = NUMBE R OF DATA = TIME (MIN ) 0.0 .. 0.40 0.80 1.2.0. 2.CO 2.80  P .PRESS (MMHG)  10.00 700.00 1.94 6.08 8.98 98.54 68.50 0.99998 6  .. DIS OXY (PPM)  3 9 . 0 0 .... 63.00 78.00 88.00 98.00 102.00  1.73 2.79 3.46 ..90 4.34 4.52  r  10.00 700.00 SUPERFICIAL V E L ( F T / H R ) = 5.26 SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE 3.31 -0 X Y UPTA KE (tt.G / . L / H R ) = —13.6 -_9 6__ PERCENT  SOLID  AGITATION  MASS  R  TRANS  COEFF  TJ ME  P.PJRESS  )  l.CO  PERCENT  SOLID  AGITATION  DJS  UPTAKE  MASS  TRANS  =  (MG/L/HR) = (1/HR)=  SGUARE  = ;  DATA  TJLME (MIN)  0.0 0.10 0.20 Q-.-30 0.40 0.60 0.801.00  P-Jt_J: J5 JS (MMHG)  26.00 46.00 61.00 7_4..J3_0 83.00 96.CO 104.00 109.00  C  (PPM)  1.60 2.70 3.50 4.03 4.43 4.66 4.97  (PPM)=  COEFF  DETA  OXY (PPM)  (RPM)=  DIOXIDE  OXY.  NUMBER, OF  7  V E L ( F T / H R ) =  SAT.OXY.CONC.  _..  =  ( W T . ) =  SPEED  SUPERFICIAL CARBON  0.99974  36.00 61.00 79.00 91 .00 100.00 105.00 112.00  1.40  111.77  =  (MMHG)  _0.0. 0.20 0.40 0.60 0.80  R  (1/HR)=  OF DATA  (MIN  %  (RPM)=  SGUARE  NUMBER  ..  ( W T . ) =  SPEED  4. 86 3.75 2. 96 ?. 4 ? 2.03 1.80 1.49 _.  TRUE  DC  ( PPM)  3.64 2.53 1.73 1 - 20 0.80 0.58 0. 27  10.00 700.00 8.81_ 6.55 1.97 2.0.3_..3.8_ 147.86  0.99995  =  8___  0JJ5_JD.X.Y_  DETA  C  TRUE_DC  ( P P M )  ( P P M )  ( P P M )  1.15 2.04 2.70 3...2.8_ 3.68 4.26 4.6.1 4.83  5.40 4.51 3.84 3.._27_ 2.87 2-29 1.94 1.72  __„ 4 . 0 2 3.13 2.47 _l;-.89. 1.49 0.92 „.0.56 0.34  PERCENT SOLID (WT.)= 10.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE 1.38 OXY. UPTAKE ( MG/L/HR ) = -2.12.._0.6_ MASS TRANS COEFF (1/HR)= 197.86 R SQUARE = 0.99972 NUMBER OF DATA __=_ 8._ TIME (MIN)  _.  0 . 0 .. 0. 10 0.20 0...3.0 0.40 0.60 0.80_ 1.00  P.PRESS (MMHG)  DIS OXY (PPM)  34.00 59.00 77.00 90-00 99.00 112.00 118.00 121.00  DETA C (PPM)  1.51 2.62 3.41 3.99 4.39 4.97 5.23 .. 5.36  . 5.08 3.97 3. 17 ?_ fcO 2.20 1.62 1.36 1.22  TRUE DC ( PPM) 4.01 2.90 2 . 10 1.53 1. 13 0.55 .... - 0 . 2 8 0 . 15  PERCENT SOLID (V.T.) = 10.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL .( FT/HR ) = . 1 7 . 1 5 SAT.OXY.CONC. (PPM)= 6.61 % CARBGN DIOXIDE 1.01 OXY. UPTAKE _(M.G./_L./m)__. 1 9 7 . 2 0 MASS TRANS COEFF (1/HR)= 208.19 R SGUARE = 0.99972 NUMBER OF DATA = 8— _T.1J_.E_ (MIN)  P. PRESS. (MMHG)  0.0 0 . 10 0.20 _0..3.0. 0.40 0.60 0.80 1.00  38.00 64.00 83.00 96.00. 105.00 117.00 122.00. 125.00  J-1.S_CW.Y_ ( PPM) ..  1.68 2.84 3.68  4..2J5.. .._  4.66 5.19 5.41 5.54  DETA C (PPM) 4.93 3.77 2.93 _2..3.6_ 1.96 1.43 .1.20 1.07  TRUE OC. ( PPM) 3.98 2.83 1.99 JL._U_ 1.01 0.48 0.26 0.12  r  PERCENT SOLID <WT.)= 15.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR) = .... 1 . 9 4 _ SAT.OXY.CONC. (PPM)= 6.08 * CARBON DIOXIDE = 8.98 .OXY. U PT A KE J MG/L /HRJ = 20 . . 7 2 _ MASS TRANS COEFF (1/HR)= 6.48 R SGUARE = 0.99974 NUMBER OF DATA = _5_. TIME (MIN)  P.PRESS (MMHG)  _D_I_S__OX_Y._ ( PPM)  _D.ET.A_.C. (PPM)  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR) = 5.26._ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 ..OX.Y.....U.P.TAK E ( M_G IX / HRJ = 15_. 8 2 _ MASS TRANS COEFF (1/HR)= 11.70 R SGUARE = 0.99974 7 NUMBER OF. DATA TIME (MIN) 0.0 l.CO 2.00 3.GO 4.00 6.00 8.00  P.PRESS (MMHG) 20.00. 37.00 50.00 62.00 71.00 86.00 9.5.. 00_  _T.RU E_DC_  ( PPM)  _  _  DIS OXY ( PPM)  DETA C (PPM)  TRUE DC ( PPM)  0.89 1.64 2.22 2.75 3.15 3.81 .4.21  ... 5 . 5 7 4.82 4.24 3.71 3.31 2.65 . 2.25  4.22 3.47 2.89 2.36 1.96 1.29 0.89  -in-  r  PERCENT SOLID (WT.)= 15-00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR )=. ... 8.81_ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 -OXY.__UP.IAKE (.M.G/ L/HR )_= 38 .20__ MASS TRANS COEFF (1/HR)= 11.95 R SGUARE = 0.99976 NUMBER OF DATA = 7_ TIME (MIN) 0.0 . 1.0 0 2.00 ..00 4.00 6.00 _.. 8.00  __P.PRES.S (MMHG)  DJS OXY (PPM)  DETA C ( PPM)  TRUE DC ( PPM)  0.62 1.11 1.51 1.82 2.13 2.53 2.79  5.93 5.44 5.04 4.73 4.42 4.02 3.75  . .. 2 . 7 3 2.24 1.84 1.53 1.22 0.82 0.56  DETA C  IBUE._OC  14.00... 25.00 34.00 41.00 48.00 57.00 63.00  PERCENT SOLIO (WT.)= 15.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR ) = _ 1 2 . 6 3 . . SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 0 X Y. -.UP T A. K.E (_MG./_L./HRA= 5.5_UJL_ MASS TRANS COEFF (1/HR)= 16.82 R SGUARE = 0.99915 .NUMBER-.0F_. DATA„ = .8__ _JJJ_E (MIN)  0.0 1.00 2.00 3.00 4.00 5.00 7.00_ 9.00  P-..P.RESS (MMHG)  18.00 31.00 42.00 5 0.00 56.00 60.00 67.00 70.00  DIS  OXY  (PPM)  0.80 1.37 1.86 2.2 2. 2.48 2.66 2.97 3.10  (PPM)  5.79 5.21 4.73 4.37 4.11 3.93 3.62 3.48  (PPM)  2.51 1.94 1.45 1. 0.9 0.83 0.65 - 0.34 0.21 1  r  PERCENT SOLID (WT.)= 15.CO AGITATION SPEED {RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 17.15 _ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 JO X Y. U PJ.A.K E ( M G./±J_ H R) = 6.0...0.7_ MASS TRANS COEFF (1/HR)= 24.04 R SQUARE = 0.99992 NUMBER CF DATA. _._ = __ 7 T T MF (MIN)  ._o..o._  0.50 1.00 1 . .0 2.00 2.50 3.CO  P.PRFSS (MMHG)  DIS OXY _ (PPM)  17.00 . 31.00 42.00 51.00 59.00 65.00 70.00 _ .  0.75 1.37 1.86 ?.?b 2.62 2.88 3. 10  DETA C ._ T.RU.E DC ( PPM) (PPM) 5.86 5.24 4 . 75 4.35 4.00 3.73 3.51  3.36 2.74 2.25 1.85 1.50 1.23 1.01  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL .(FT/HR)*.. SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (.MG./_L/_HR)_. MASS TRANS COEFF (1/HR)= 16.18 R SGUARE = 0.99954 NUMBER OF DATA = .' 6. _TJJ_E (MIN) C O 1.00 2.00 _3,-0.0 5.00 7.00  P_.J?_R ESS  (MMHG) 11.00 20.00 26.00 3_L.J0LD 37.00 41.00  DJ S_0 X Y  PET A C  TRUE OC  0.49 0.89 1.15 L. 31 1.64 1.82  5.59 5.19 4.93 4.7.1 4.44 4.26  1.56 1.16 0.90 0.67 0.41 0.23  (PPM)  (PPM)  (PPM)  PERCENT SOLID (WT.)= AGITATION SPEED <RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE  15.00 400.00 5.26.._ 6.46 3.31 0 X Y. U RT A.K.E IRC./. UH R.) = _6.9_.2.C_ MASS TRANS COEFF (1/HR)= 28.84 R SCUARE 0.99986 NUMBER OF DATA .=.. 6 . T I MF (MIN) 0.0 . 0.50 1.00 1.50 2.00 2.50  P. PRESS (MMHG) .  20.00 35.00 47.00 57.00 64.00 70.00  D.LS OXY ( PPM)  DETA C (PPM)  TRUE DC (PPM)  0.89 1.55 2.08 2.53 2.84 3.10  5.57 4.91 4.38 3.93 3.62 3.36  3.17 2.51 1.98 1.53 1.22 0.96  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL ( FT/HR ) = 8.81... SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY... UPTAKE (MG/L/HR ) = 81_.7_5_ MASS TRANS COEFF (1/HR)= 49.22 R SCUARE = 0.99998 . NU M B E R... OF.. DAT A = 6_  ...TIME (MIN)  ._0..0 _ 0.50 1.00 .1.50 2.00 3.00  P.PRESS  (MMHG)  37.00 62.00 78.00 .89.00 96.00 104.00  ai.S_O.X.Y (PPM) 1.64 2.75 3.46 3.95 4.26 4.61  D.ETA_C  IR.UE__DC  _ 4.91 3.80 3.09 2.60 2.29 1.94  3.25 2.14 1.43 0.94 0.63 0.28  (PPM)  (PPM)  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL ( FT/HR )= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE = .0X.Y..__UP_T AKE (JVC /I/.HR)_= MASS TRANS COEFF (1/HR)= R SGUARE = NUMBER OF DATA = TIME. (MIN)  _P_.P_RES.S_ (MMHG)  0.0 0.40 0.80 .__1..20_ 2.00 2.80  30.00. 52.00 67.00 _7.8 ..0.0_ 91.00 98.00  15.00 400.00 12.63.. 6.59 1.38 9.6 ._7_1__ 50.21 0.99994 6  DIS OXY (PPM)  _DET.A...C. (PPM)  TRUE DC (PPM)  5.26 4.28 3.62 _3.13_ 2.55 2.24  ....3.33 2.36 1.69 1.20_ 0.63 0.32  1.33 2.31 2.97 3._46_ 4.03 4.34  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL...( FT/HR )=_. . 1 7 . 1 5 . . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 O X Y . . U P TAKE (MG/L/HR)= 79.06 MASS TRANS COEFF (1/HR)= 53.13 R SGUARE = 0.99988 NUMBER OF DATA .6.. __T.I.M.E_ (MIN)  P.PRESS (MMHG)  .0.0 _ 0.40 0.80 __1..-2.C_ 1.60 2.00  _ .35.00. 60.CO 76.00 . 8 8.00 96.00 102.00  DIS OXY (PPM)  ..D_E.T.A__C_ (PPM)  1.55. 2.66 3.37 3.90 4.26 4.52  5.06 3.95 3.24 _2..7_1. 2.36 2.09  TRUE DC.. (PPM) 3.57 2.46 1.75 1.22 0.87 0.60  -ZZtt-  r  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED tRPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 .OXY U P_T A KE (MG / L /_HR_)=_ 8.9_..02_ MASS TRANS COEFF (1/HR)= 25.67 R SGUARE = 0.99949 NUMBER OF DATA ... = 6.. TIME  (MIN)  0.0 0.50 1.00 _1 .-5.0 2.00 3.00  P.PR ESS  (MMHG)  DIS. OXY  DETA C  0.53 0.93 1.29 1.5.1 1.73 2-04  5.55 5.15 4.79 .4 . 5 7 4.35 4.04  2.08 1.68 1.33 1.11 0.88 0.57  0 XY  DETA.C  IB UE DC  1.42 2.35 3.01 3.46 3.95 4.17  5.04 4.11 3.44 3.00 2.51 2.29  2.93 2.00 1.34 0.89 0.40 0.18  (PPM)  12.00 21.00 29.00 3 4..0 0 39.00 46.00  (PPM)  TR UE OC (PPM)  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= ... . 5.26 SAT.OXY.CONC. (PPM)= 6.46 * CARBON DIOXIDE = 3.31 .OXY. ..UPTAKE (MG/L/HR )= 125....61._. MASS TRANS COEFF (1/HR)= 59.58 R SGUARE = 0.99997 NUMBER. OF DATA _= 6_ ..TIME (MIN)  0.0 0.40 0.80 _L.-2-0 2.00 2.80  P.. PR ESS  (MMHG) 32.00 53.00 68.00 7.8-.-0.0 89.00 94.00  DIS  (PPM)  (PPM)  (PPM)  r  PERCENT SOLID (WT. ) = 15.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 8.81 ... SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE 1.97 OXY UP.TAKE ( MG/L/.HR.) =.. _ 1 2 0 ..48__ 69.69 MASS TRANS COEFF ( l / H R ) = R SGUARE 0.99982 NUMBER OF DATA ... =... ._ _ 7 T I MF .MIN) 0.0. .. 0.40 0.80 1 _ ?n 1.60 2. CO 2.80  P.PRESS (MMHG)  .DIS ..QXY (PPM)  DETA C (PPM)  1.77 ....._ 2.88 3.59 4.03 4.34 4.52 4.70.  40.00 65.00 81.00 9.1...00 98.00 102.00 106.00  4 . 77 ... 3.67 2.96 2.51 2.20 2.03 . 1.85..  TRUE DC (PPM) 3.05. 1.94 1.23 0.78 0.47 0.30 0.12  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL ( FT/HR ) = .12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 ..OXY....UPTAKE ( MG/jL/HRJ = 1 1 6 . 7 3 .. MASS TRANS COEFF (1/HR)= 83.79 R SGUARE = 0.99970 NUMBER OF DATA 5  JII.ME.  J__.J_RE.S-S_ (MMHG)  ...0.0.._ 0.40 0.80 J_...20 1.60  51.00 79.00 95.00 _L03._0_0.  (MIN)  _D_I.S.__OXY_ (PPM) _  2.26. 3.50 4.21 A..6.6 4.88  _DE_TA___C_ (PPM) 4.33 3.09 2.38 1.93  _TRU.E__DC. (PPM) 2.93 1.69 0.98 0.54  -228-  r  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 17.15 6.61 SAT.OXY.CONC. (PPM)= 1.01 % CARBON DIOXIDE OXY...-.UP.1AK.E (MG/L/HR ) = 1 1 9 . 1 2 MASS TRANS COEFF (1/HR)= 110.26 R SCUARE = 0.99981 NUM8ER OF DATA =_ —.6 T.JJ1E (MIN) 0.0 0.20 0.40 0.. 6.0 1.00 1.40  P.PRESS (MMHG) .  DIS OXY (PPM)  -0.EXA_JC_ (PPM)  XBUE___DC_ (PPM)  1.64 2.84 3.64 A.21. 4.92 5.23  4.97 3.77 2.98 _2..ACL 1.69 1. 38  3.89 2.69 1.90 1.3.2_ 0.61 0.30  37.00 64.00 82.00 95.00 111.00 118.00  PERCENT SOLID (WT.) 15.00 AGITATION SPEED (RPM) = 600.00 SUPERFICIAL VEL (FT/HR) = I . 94 SAT.OXY.CONC. (PPM) 6.08 % CARBON DIOXIDE 8.98 ..OXY....UPTAKE (MG/L/HR) = 113. 00 MASS TRANS COEFF (1/HR) 38.67 = 0.99979 R SGUARE NUMBER.OF DATA _?_ . 6 T I ME  P. PRESS  0. 0 0.50 1.00 1.50 2.00 2.50  20.00 34.00 44.00 5 2 . CO 57.00 61.00  (MIN)  (MMHG)  DIS  OXY  DETA C  TRUE DC  0.89 1.51 1.95 2.31 2.53 2.70  5.19 4.57 4.13 3.77 3.55 3.38  2.27 1.65 1.21 0.85 0.63 0.45  (PPM)  (PPM)  (PPM)  r  PERCENT  SOLID  AGITATION  ( W T . ) =  SPEED  SUPERFICIAL  VEL  SAT.OXY.CONC. %  CARBON  R  (FT/HR )=  DIOXIDE  TRANS OF  _ X I ME  ....  5.26_  COEFF  6.46  =  ( M G / L / H R ) =  3.31  14l.._7_8___  (1/HR)=  82.41  =  0.99977  SGUARE  NUMBER  15.00  600.00  (PPM)=  JOX.Y.._UP_T.A K E MASS  (RPM)=  DATA  =  P...P. R E S S  ._._.  DLS__0XY  (MIN)  (MMHG)  0.0 0.40 0.80 __X_J20 1.60 2.00  45.00 72.00 87.00 95...0.G 100.00 103.00  6  D.EXA__C  (PPM)  (PPM)  2.CO 3.19 3.86 4,. 21 4.43 4.57  4.46 3.27 2.60 2,25 2.03 1.89  I R U E_JDC_ (PPM)  2.74 1.55 0.88 0_..53_ 0.31 0.17  15.00 600.00 SUPERFICIAL VEL ( F T / H R ) = . 8.81_ 6.55 SAT.OXY.CONC. (PPM)= 1.97 % CARBON DIOXIDE _.0 X Y _ . _ U.PJL A K E J J_G/JL /_H_ R . ) _ 1 1 0 . 8 4 88.58 MASS TRANS COEFF (1/HR)= = 0.99985 R SGUARE = 6 _ NUMBER OF .DATA. PERCENT  SOLID  AGITATION  _JJ.M.E_  V_.  ( W T . ) =  SPEED  (RPM)=  .P_._P.RE S . S .  (MIN)  (MMHG)  0.0... 0.20 0.60 _L._Q.Q_ 1.40 2.20  28.00. 54.00 83.00 _9._9_..0_0_ 108.00 116.00  _D„I.S__0_X_Y_ (PPM)  1.24 2.39 3.68 4.39. 4.79 5.14  _D.E_T_A__C_ (PPM)  5.31 4.15 2.87 _Z._16_ 1.76 1-41  _TRU_E...DC._. (PPM)  4.06 2.90 1.62 _Q..5JL 0.51 0.15  PERCENT SOLID (WT.)~ 15.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR.= 12.63.. SAT.OXY.CONC. (PPM)= 6.59 % CARBON OIOXIDE = 1.33 .OXY U PTA KE (MG/L/.H R.L= 121 .61 MASS TRANS COEFF (1/HR)= 121.19 R SGUARE = 0.99988 NUMBER OF DATA = _ 7 _T_I.ME (MIN)  0.0 0.20 0.40 -0 . 6 0 0.80 1.00 1.40  P_._P.RESS (MMHG)  D_I.S_..OXY (PPM)  42.00 70.00 89.00 10.1.._C_0_ 109.00 115.00 121.00  1.86 3.10 3.95 4.48 4.83 5.10 5.36  0.0 0.20 0.40 0_._6_0 0.80 1.00  __..P_RE.SS (MMHG) 4 8 . 0 0 ._ 77.00 96.CO .10.7 .0.0 114.00 119.00  (PPM)  _  TJJ.UJE_.OC_ (PPM)  4.73 3.48 2.64 2...11 1.76 1.49 1.22  3.72 2.48 1.64 1.11 0.75 0.49 0.22  DI.S_.OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  2.13 3.41 4.26 4.74 5.05 5.28  ... . .4.48 3.20 2.36 1.87 1.56 1.34  3.50 2.22 1.37 0.89 0.58 0.35  PERCENT SOLID (WT.)= AGITATION SPEEO (RPM)= SUPERFICIAL VEL (FT/HR)SAT.OXY.CONC. (PPM)% CARBON DIOXIDE = . 0XY. UPTAKE ( MG/L/H.R.)= MASS TRANS COEFF (1/HR)= R SQUARE = NUMBER 0F DATA = _T_IJ_.E (MIN)  D.E.T.A_C  15.00 600.00 17.15. 6.61 1.01 134.22 . 136.64 0.99973 6..  PERCENT SOLID (WT. ) = 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR) =. 1.94 _ SAT.OXY.CONC. (PPM)= 6.08 8.98 % CARBON DIOXIDE __l_7_3.-_.6___ _QX.Y_._U P-T. A K E (M G / L / H R.).__ _ 63.32 MASS TRANS COEFF (1/HR)= 0.99972 R SGUARE 6 NUMBER OF DATA =. _ TIME  P.PRESS  (MIN)  (MMHG)  0.0 _ 0.40 0.80 1...20 1.60 2.00  25.00 42.00 53.00 6.1.. 0.0 66.00 69.00  D.I.S-OXY  D.ETA_C  (PPM)  (PPM)  1.11 1.86 2.35 2.7.0 2.93 3.06  4.97 4.22 3.73 3.3.8 3.15 3.02  T.RU.E.JD.C (PPM) 2.22 1.47 0.98 0.63 0.41 0.27  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL._( FT./HR ) = . 5.26.. SAT.OXY.CONC. (PPM)= .6.46 % CARBON DIOXIDE = 3.31 QXY. UPTAKE. ( MG/L/HR).=. 1 3 7 . 0 9 MASS TRANS COEFF (1/HR)= 106.47 R SGUARE = 0.99995 NUMBER OF DATA. _.= 6 TIME (MIN)  _.P_..£RES_S_..__DJS_OXY (MMHG) (PPM)  . 0 . 0 ... 0.20 0.40 0 ..6.0 0.80 1.00  36.00.._ 60.00 77.00 89.00 97.00 103.00  1.60. 2.66 3.41 3.95 4.30 4.57  DETA C (PPM)  TRUE DC (PPM)  4.86 3.80 3.05 2-51 2.16 1.89  3.58 2.51 1.76 1-23 0.87 0.60  I  -_J_-  r  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT/HR)= ... 8 . 8 1 SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 .OXY .UPTAKE LMG/L/HR.) = 1.4.8 ..2.8_ MASS TRANS COEFF (1/HR)^ 143.06 R SQUARE = 0.99990 NUMBER OF DATA _=.__ 7 TIME (MIN) 0.0 0. 10 0 . 20 _0..30_ 0.40 0.60 0.80.  P.PRESS (MMHG) 27.00 48.00 65.00 __7_7_..0.0_ 87.00 101.00 110.00  _D_LS_OXY_ (PPM)  DETA C (PPM)  1.20 2.13 2.88 _3...41_ 3.86 4.48 4.88.  5.35 4.42 3.67 _3..13_ 2.69 2.07 1.67  _T.RU.E_D.C_ ( PPM) 4.31 3.38 2.63 _2__10_ 1.65 1.03 0.63  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.. UP.T.AKE J.M.G/L/H.R.).= 2_01_._62__ MASS TRANS COEFF (1/HR)= 186.42 R SQUARE = 0.99995 NUMBER OF DAT A =. 6.... TIME  P..P.RESS  0.0 0.10 0.20 0.30 0.40 0.60  33.00 57.00 75.00 88.00 98.00 110.00  (MIN)  (MMHG)  DIS OXY (PPM)  1.46... 2.53 3.33 3.90 4.34 4.88  DETA C _ (PPM)  ...5.12 4.06 3.26 2.69 2.24 1.71  TRUE DC (PPM)  4.04. 2.98 2.18 1.60 1.16 0.63  — -. _/ _»—  PERCENT SOLID (WT.)= 15.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 1 7 . 1 5 ... SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE 1.01 OXY. UPTAKE (MG/L/HR) = 18 3.62... MASS TRANS COEFF (1/HR)= 198.99 R SGUARE 0.99984 NUMBER OF DATA _....=._ . _ 6... T T MF (MIN)  P.PRESS . (MMHG)  .0.0 0.10 0.20 .0.3.0 0.40 0.60  37.00.. 64.00 82.00 . 95.00 104.00 116.00  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  1.64 2.84 3.64 4.71 4.61 5.14  4.97 3.77 2.98 2.40 2.00 1.47  4.05 2.85 2.05 1.48  PERCENT SOLID (V.T.) = 20.00 AGITAT I ON SPEED (RPM) = 300.00 1, 94 SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= 6, 08 % CARBON DIOXIDE 8.98 OXY. UPTAKE (MG/L/HR) = 12.84 MASS TRANS COEFF (1/HR)= 5.52 R SGUARE = 0.99972 NUM8ER OF DATA = 6. T T MF (MIN) ...  _  0.0 1.00 2.00 4.00 6.00 8.00  P ..PRESS (MMHG)  DIS OXY (PPM)  .DETA _X (PPM)  TRUE DC (PPM)  14.00 21.CO 26.00 36.00 44.00 51.00  0.62 0.93 1.15 . 1..-60 1.95 2.26  5.46 5. 15 4.93 4.48 4 . 13 3.82  3.13 2.82 2.60 2.16 1-8.0 1.49  .  .  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. (PPM}= 6.46 % CARBON DIOXIDE = 3.31 _0 X.Y. U P_T A K E (.M.G / L / H R ).=. 16.. 2.0__ MASS TRANS COEFF (1/HR)= 10.19 R SGUARE * 0.99987 NUMBER OF DATA .=. . 7 —TI ME (MIN)  0. 0 . 1. CO 2.00 -3..0.0 4.00 6.00 -8.00  P_..P_R.E.S.S (MMHG)  17.00 _ 31.00 44.00 54.00 63.00 76.00 86.00.  DJ S...0 X Y  D E.T.A„C  (PPM)  _TRU E D C  (PPM)  0.75 1.37 1.95 2 . 3.9. 2.79 3.37 3.81  (PPM)  5.71 5.08 4.51 4 . 06 3.67 3.09 2 . 6 5 ...  . 4.11 3.49 2.92 2 .47 2.08 1.50 .. 1.06  PERCENT SOLID (WT. ) = 20 -00 AGITATION SPEED (RPM)= 3 0 0 . 00 SUPERFICIAL VEL. (FT/HR)= 8. 81 _ SAT.OXY.CONC. (PPM)= 6 . 55 = % CARBON DIOXIDE 1. 97 OXY. .UPTAKE.. _ .(.MG/L/HR ) = 4 . .43 MASS TRANS COEFF (1/HR)= 1 0 . 39 R SGUARE 0.99995 _ .. . = . NUMBER O F . DATA. T.IJME  .P.. PR ESS  ...0.0 l.CO 2.00 .... 3.CO 4.00 5.00 6.00  22.00 40.00 56.00 69.00 80.00 89.00 97.00  (MIN)  (MMHG)  D.I.S.OXY (PPM)  0.98 1.77 2.48 3.06 3.55 3.95 4.30  DETA C (PPM)  5.57. 4.77 4.07 3.49 3.00 2.60 2.25  _T_RUE D C _ (PPM)  5.15 4.35 3.64 3.06 2.57 2.18 .1.82 .  -2 35-  PERCENT SOLID (WT.)= 20.CO AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL .FT/HR.= ... 1 2 . 6 3 . . SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.. UPTAKE t MG/L/HR) = -8_..06._ MASS TRANS COEFF (1/HR)= 16.39 R SGUARE = 0.99999 NUMBER OF DATA = 7 JUJ_E (MIN)  PL.P.RESS (MMHG)  0. 0 1. CO 2. CO _ 3 . 00 4.00 6.00 8.CO  3 8.00 67.00 89.00 106.00 119.00 136.00 146.00  _-DJ.S_0 X.Y. (PPM)  D ET A__C___TRU_E_D.C_ (PPM) (PPM)  1.68 2.97 3.95 4.70 5-28 6.03 6.47  4.90 3.62 2.64 1.89 1.31 0.56 0.12  5.39 4.11 3.13 2.38 1.80 1.05 0.61  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL ( FT/HR ) = ... 17 . 15._ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 ..OXY. UPTAKE ( MG/L/HR )= 9.78 MASS TRANS COEFF (1/HR)= 19.32 = 0.99984 R SGUARE = . 6 NUMBER OF DATA _  V  _TJL_E_ (MIN)  P.PRESS (MMHG)  -.0.0 ... 1.00 2.00 _3.._C.(L 4.00 5.00  „  38.00 66.CO 86.00 100.0( 110.OO 118.00  S OXY (PPM) 1.68. _ 2.93 3.81 4.. 4.3. 4.88 5.23  DETA. C ... TRUE DC (PPM) (PPM) 4.93 3.69 2.80 2. 18 1.74 1.38  4.42 3.18 2.29 1.67 1.23 0.87  !  I  r  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)= 1.94_ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 .0XY UPTAKE (MG/1./_HR.) = 8 ...9.6__ MASS TRANS COEFF (1/HR)= 15.68 R SQUARE = 0.99990 NUMBER OF DATA = 8 J_I.i_E. ( MIN)  P. PRESS.. (MMHG)  DIS OXY (PPM)  0.0 1.00 2.00 __3„..C.0_ 4.00 5.00 7. CO 9.00  2 8.00 50.00 67.00 8 0.0.0.. 90.00 98.00 109.00 115.00  1.24 2.2 2 2.97 3.55 3.99 4.34 4.83 5.10  .DETA C (PPM) 4. 84 3.86 3.11 .2.5.3. 2.09 1.74 1.25 0.98  TRUE DC (PPM) 4.27 3.29 2.54 _1..96_ 1.52 1. 16 0.68 0.41  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL V E L _ ( F T / H R ) = 5.26... SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE 3.31 OXY. ..UPTAKE ( MG/L/HR)=.. _ 7 . 3 7 _ MASS TRANS COEFF (1/HR)= 2 6 . 14 R SQUARE 0.99990 NUMBER CF. DATA = 7 T T MF (MIN) ...  . .  0.0 0.50 l.CO 1 .50 2.00 3.00 4.00 . .  P...P.RES.S. (MMHG)  J3J.S_0X.Y_ (PPM)  28.CO 50.00 68.00 82...0.0 93.00 109.00 120.00  1.24 2.22 3.01 3.64. 4.12 4.83  .DETA C (PPM) .5.22 4.24 3.44 2..82_ 2.34 1.63 . 1 . 14  _TJ.U_E_D.C_ ( PPM) 4.94 3.96 3.16 _2..5.4_ 2.05 1.34 .0.86.  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)~ 400.00 SUPERFICIAL VEL ( FT/HR ) =• 8.81_ SAT.OXY.CONC. (PPM}= 6.55 * CARBON DIOXIDE = 1.97 .0 X.Y.—U P_T_A K E ( « G / L / HR.) _V._7.8_ MASS TRANS COEFF (1/HR)= 48.90 R SGUARE = 0.99987 NUMBER OF DATA . .. =._... __ ... 8 TTMF (MIN)  P.PRF..S (MMHG)  0.0 .._ .. 49.00 0.50 82.00 1.00 103.00 1 .50 117.00 2.00 127.00 2.50 133.00 3.0 0 . . 137.00 140.00 3.50  DIS OXY (PPM) _  2.17 3.64 4.57 5.19 5.63 5.90 6.07 6.21  . .  PERCENT SOLID (WT.) AGITATION SPEED (RPM) = . SUPERFICIAL VEL (FT/HR) = SAT.OXY.CONC. (PPM) % CARBON DIOXIDE ..OXY. UPTA K £ ( MG/L /HR) = MASS TRANS COEFF (1/HR) = R SGUARE = _ NUMBER OF DATA _ TI ME  P. PRESS  0.0 0.50 1.00 -L.50 2.CO 2.50 3.00 4.00  49.00 81.00 103.00 118.00 128.00 134.00 139.00 144.00  (MIN)  (MMHG)  _D.E.T.A_.C_ (PPM) 4.38 2.91 1.98 _L._3„6_ 0.92 0.65 0.47 0.34  _T.RUE__D.C_ { PPM) 4.28 2.81 1.88 1.26 0.82 0.55 0.38 0.24  20.00 400.00 12.63 6.59 1.38 0 . 70 47.23 0.99985 8  DIS  OXY  DEI A..C  2.17 3.59 4.57 5.-2.3 5.67 5.94 6.16 6.38  4.42 3.00 2.02 1.36 0.91 0.65 0.43 0.20  (PPM)  (PPM)  TRUE  DC_  (PPM)  4.40 2.98 2.01 1,3.4_ 0.90 0.63 0.41 0.19  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= AGO.00 SUPERFICIAL VEL (FT/HR)= 1 7 . 15.._ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE 1.01 _0X_Y..__UP_.TAKE (MG./_L/_HR ).=.. A.54. MASS TRANS COEFF <1/HR)= 53.75 R SGUARE = 0.99986 NUMBER OF DATA = .. 6 TIME..  (MIN)  0.0 0.40 0.80 J....2.0. 2.00 2.80  .P.PRESS (MMHG) 45.00 76.00 98.00 _1.1.3.._0_0_ 130.00 139.00  _DJ.S_J_.XY.. (PPM)  ..DE.TA_C_ (PPM)  TRUE DC ( PPM )  4.62 3.24 2.27 _1.60_ 0.85 0.45  4.53 3.16 2 . 18 1.52 0.76 0.37  DETA C (PPM)  TRUE DC ( PPM)  2.00 3.37 4.34 5.01 5.76 6.16  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL ( FT/HR )= 1.94 ... SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY... UPTAKE ( MG/L/HR )= -4.68 MASS TRANS COEFF (1/HR)= 25.27 R SGUARE = 0.99996 NUMBER OF. DATA = 7_ TIME (MIN) _ .  _  0.0 . 0.50 1.00 1.50 2.00 3.00 4.00  P.PRESS (MMHG) 27.00_. 48.00 66.00 80.00 92.00 109.00 120.00 .  DJS. OX.Y (PPM)  .  1.20. _ 2.13 2.93 3.55 4.08 4.83 5.32. _._  4.88 3.95 3. 15 2.53 2.00 1.25 0.76. .  5.07 4.14 3.34 2.72 2.19 1.43 ... 0 . 9 5  PERCENT SOLIO (WT.)= 20.GO AGI TAT I ON SPEED (RPM)500.00 SUPERFICIAL VEL (FT/HR)= ._ 5 . 2 6 _ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE 3.31 OXY... U PT AK E (M G / L/H R) = 0.54. MASS TRANS COEFF (1/HR)= 42.31 R SGUARE = 0.99987 NUMBER CF. DATA __T.IME_ (MIN)  J_J_R.ESS-  (MMHG)  .DIS__.aX_Y_ (PPM)  0.0 .. 43.00... 0.50 73.00 1.00 95.00 1 .50 1.10..0.0 2.00 120.00 2.50 128.00 3.00 _. 1 3 3 . 0 0  1.91 3.24 4.21 4.88 5.32 5.67 5.90  PERCENT SOLID (WT.) AGITATION SPEED (RPM) = SUPERFICIAL VEL (FT/HR) = SAT.OXY.CONC. (PPM) % CARBON OIOXIDE 0 XY. ..U PTAKE (MG/L/HR) = MASS TRANS COEFF (1/HR) R SGUARE = NUMBER OF. DATA = TIME (MIN) -0.0 0.40 0.80 -1-.-20 1.60 2.00 _2.80  JP..P8E.S.S (MMHG) 48.00 80.00 102.00 116...CJ_ 125.00 131.00 138.00  J_£TA_C_  (PPM)  _T.RUE_.DC_ ( PPM)  4 . 5 5 ..... _ . 4 . 5 4 3.22 3.21 2.25 2.23 1.58 1 .57 1.13 1. 1 4 0.78 0.77 0.56 0.55  20.00 500.00 8.81 6.55 1.97 L2.._0.2_ 61-74 0.99992 7  D_I.S_OXY (PPM) 2.13 3.55 4.52 5--J,4.__ 5.54 5.81 „ 6.12  DETA_C. (PPM) 4.42 3.00 2.03 1,4.1 1.01 0.74 :0.43„  TRUE _DC (PPM) .. 4 . 2 3 2.81 1.83 1 .21 0.81 0.55 . 0.24  r  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR 12.63_ SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 _QX_Y. UPTAKE (.MG/_L/.HR.)_. 1A._.8.2_ MASS TRANS COEFF (1/HR)= 85.43 R SQUARE = 0.99981 NUMBER OF DATA = 7 _TJ„E_ (MIN) 0.0 . 0.20 0.60 _l-.0_0_ 1.40 1.80 2.60  _P_.-RRE.SS_ (MMHG)  _D_I.S_QXY_ (PPM)  _D.ET.A_C_ (PPM)  TRUE DC ( PPM)  34.00 63.00 98.00 _1.1.9._00_ 130.00 136.CO 142.00  1.51 2.79 4.34 _5.._2..8_ 5.76 6.03 6.30.  5.08 3.79 2.24 _1_.3_1_ 0 . 82 0.56 0 . 29  4.91 3.62 2.07 1. 14 0.65 0.38 0.12  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL. ( FT/HR ) = .... 1 7 . 1 5 _ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 _0X Y . U P T A K E (MG/L/HR)= r3_. 7_1 __ MASS TRANS COEFF (1/HR)= 98.57 R SGUARE = 0.99988 NUMBER. 0 F__ D AT A = 6__ ..TIME  P.PRESS.  .0.0 0.20 0.60 ..l.CO 1.40 2.20  38.00 71.00 109.00 1 2 8 . 00 139.00 147.00  (MIN)  (MMHG)  DIS  OXY  CETA.C  1.68 3.15 4.83 5.67 6.16 6.52  4.93 3.46 1.78 0 .94 0.45 0.09  (PPM)  (PPM)  TRUE .DC (PPM)  4.97 3.50 1.82 0.97 . 0.49 0.13  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( F T / H R ) ...1.94_ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.93 0XY.. UPTAKE (MG/L/HR).= -1.15 MASS TRANS COEFF (1/HR)= 42.08 R SGUARE - 0.99999 NUMBER OF DATA = „. 6 ... T T MF (MIN) . 0.0 0.50 l.CO 1 . .0 2.00 3.00  .  £.PRESS__ (MMHG)  ms O X Y (PPM)  DETA C (PPM)  41.00 70.00 90.00 1.04...0.0 . 114.00 126.00  1.82 3. 10 3.99  4.26 2.98 2.09 1 . 47 1.03 0.49  5.05 5.59  TRUE_OC (PPM) 4.29 3.00 2. 12 1 .'.O 1.05 0.52  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL V E L . ( F T / H R ) 5.22_ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.34 ..OXY. UP.TAKE (MG/L/HR. 1= 2.30... MASS TRANS COEFF (1/HR)= 80.43 R SGUARE = 0.99992 N U M 8 E R OF DAT A .= .... 8 TIME (MIN) 0.0 0.20 0.60 1.00 1.40 1.80 2.20 3.00  _ P.PRESS _ (MMHG) 31.00. 60.00 95.00 116.00 128.00 135.00 139.00. 143.00  D_I„S ..OX.Y (PPM) 1.37 „ 2.66 4.21 5. 14 5.67 5.99 6.16 6.34  DETA C (PPM)  TRUE DC ( PPM)  5.08 3.80 2.25 1.31 0.78 0.47 0.29 0. 12  5.05 3.77 2.22 1.29 0.75 0.44 0.27 0.09  r  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED {RPM)= 600.00 SUPERFICIAL VEL { F T/HR ) = 8.81_ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 _0 X Y_.-_U PX.A K.E IB G /_L /H R l = - 3 . 0 5___ MASS TRANS COEFF (1/HR)= 80.63 R SQUARE = 0.99940 NUMBER OF DATA .=. 8._ TIME  P.. PRESS  0.0 0.20 0.60 __1_._C0 1.40 1.80 2.20 2.60  34.00 62.00 98.00 U.9...Q.Q 131.00 138.00 14 3.00 145.00  .MIN)  (MMHG)  DIS  OXY  (PPM)  DETA  (PPM)  1.51 2.75 4.34 5.2.8 5.81 6.12 6.34 6.43  C  TRUE OC (PPM)  5.04 3.80 2.20 1.27 0.74 0.43 0.21 0.12  5.08 3.34 2.24 1. 3 1 0.78 0.47 0.25 0.16  DETA c (PPM)  TRUE DC ( PPM)  PERCENT SOLID ' (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR ) = . .. 1 2 . 6 3 . . SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY....UPTAKE (MG/L/HR)= -6.29 MASS TRANS COEFF (1/HR)= 116.31 R SQUARE = 0.59992 NUMBER_ OF. DATA _.= .. _.8... TI MF (MIN) 0 . 0. 0.20 0.40 0.60 0.80 1.00 1.20 1.40  P..PRE.S.S . DIS OXY (PPM) (MMHG) 48. 0 0 _ 8 0 . 00 1 0 3 . 00 11.8...00 1 2 8 . 00 1 3 5 . 00 1 4 0 . 00 14 3. 00  12. 13 3. 55 4 . 57 5. 23 5. 67 5. 99 6 . 21 .... 6 . 34  4. 3. 2. 1. 0. 0. 0. 0.  46.... 04 02 36 91 60 38 . 25  4. 3. 2. 1. 0. 0. 0. 0.  .51 10 08 41 97 66 44 30  _. .  ...  ....  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR ) = .17.15._ SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 _0XY. .UPTAKE (MG/L/HR) = - 1 6 . 2 7 . . . MASS TRANS COEFF (1/HR)= 128.13 R SCUARE = 0.99969 NUMBER OF DATA _ .= _8_ -XIME  P_._P.R.E.S.S  0.0 0.20 0.40 _0.6.0 0.80 1.00 1.40 1.80  55.00 90.00 112.00 126 .CO 135.CO 141.00 147.00 150.00  (MIN)  DIS _OX.Y  (MMHG)  (PPM)  .  2.44 _ 3.99 4.97 5 . 5 9__ 5.99 6.25 6.52 6.65  DE.TA__C (PPM)  4.17 2.62 1.65 1.03 0.63 0.36 0.09 -0.04  TRUE_DC__ (PPM)  4.30 2.75 1.77 1.15__ 0.75 0.49 0.22 0.09  PERCENT SOLID (WT.)= 20.00 (RPM)= 700.00 AGITATION SPEED 1.94 ... SUPERFICIAL. VEL. ( FT /HR ).= .„ (PPM)= 6.08 SAT.OXY.CONC. 8.98 % CARBON DIOXIDE ... 3.08. OXY.. UPT.AKE ( MG/L/HR ) = MASS TRANS COEFF (1/HR)= 55.48 R SCUARE = 0.99977 NUMBE R._O.F.._D AT A. =__ 7_  _.T_IM.E.  (MIN) 0.0  ...  0.40 0.80 _1_._2.0_ 1.60 2.00 .2.80...  J_..PRE.S..S_ (MMHG)  .DJ_S__OXY_ IPPM)  .DETA C. (PPM)  43.00 72.00 92.00 _1_0_6_._Q_0_ 115.00 121.00 129.00..  1.91. 3.19 4.08 _4...7_0_ 5.10 5.36 .5.72  4 . 17 2.89 2.00 .1.38. 0.98 0.72 .0.36  TRUE DC ( PPM) 4.12 2.83 1.95 _1_..3_3_ 0.93 0.66 0.31  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)-.... 5.26... SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 0 XY. U PT A K £ ( MG/L/H R) = 7. 5_L__ MASS TRANS COEFF (1/HR)= 99.46 R SGUARE = 0.99981 NUMBER OF DATA .= 7 —TJJVLEL (MIN) 0.0 0.20 0. 40 _0 ..60_ 0.80 1.00 .1.20  .P.. PRESS (MMHG) 41.00 70.00 91.00 _1.06..0.Q_ 117.00 124.00 130.00  _D_I.S_OXY_. (PPM) 1.82 3.10 4.03 J4.70_ 5.19 5.50 5.76  PERCENT SOLID (WT.)AGITATION SPEED (RPM)= SUPERFICIAL VEL ( F T / H R ) - . . SAT.OXY.CONC. {PPM)= * CARBON DIOXIDE = .OX.Y_.__UPTAKE (MG/L/HR )= MASS TRANS COEFF (1/HR)= R SQUARE = NU M B E R. .0 F _ D A TA TIME (MIN) _  .0,0.. 0.20 0.40 O.ftO 0.80 1.00 1.40.. . 1.80  P ..P_8.E_S.S (MMHG) 52.00 86.00 108.00 122.00 131.00 137.00 143.00 . 146.00  ..D.ETA_C_ (PPM) 4.64 3. 36 2.42 1. 76 1.27 0.96 0.70  TRUE DC. (PPM) 4.57 3.28 2.35 X.6.8_ 1.20 0.89 0.62  20.00 700.00 8.81_ 6.55 1.97 __.-j3J__ 127.65 0.99972 = 8 .  DIS OXY (PPM) 2.31 _ 3.81 4 . 79 5-41 5.81 6.07 6.34 6.47  DETA C (PPM)  TRUE DC ( PPM)  4.24 2.74 1.76 1.14 0.74 0.47 0.21 0.08  4.26 2.75 1.77 1.15 0.75 0.49 0,22 0.09 I  i  i i  PERCENT S C L I D (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL { FT/HR ) = . 1 2 . 6 3 .. _ SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY.._.UPJ AK£ {.MG/L/.HRJ=. 4.. 8.9 MASS TRANS COEFF ( l / H R ) = 174.15 R SCUARE = 0.99989 NUMBER 0F DATA = 8 TIM E  P. P R ESS  0.0 0.10 0.20 0 .3.0 0.40 0 . 60 0.80 1. CO  38.00 66.CO 87.00 .10.2 ..0.0 114.00 129.00 ...137.00.. 142.00  {MIN)  (MMHG)  DI S OXY  -  DEI A X  (PPM)  _.  j  (PPM)  1.68 2.93 3.86 4 .5.2 5.05 5.72 6.07 6.30  4 . 90 3.66 2.73 2. .07. 1.53 0.87 0.51 0.29  „.._  -  i -  —  TRUE DC (PPM)  4.88 3.63 2.70 2.04 1.51 0.84 0.49 0.26  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL {FT/HR )= ... 1 7 . 1 5 . . SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 OXY. . UPTAKE (__MG/_L_/HR_)__ 2.98 MASS TRANS COEFF (1/HR)= 205.02 R SCUARE = 0.99988 NUMBER OF DATA _8_ P_..PJ1E.S.S (MMHG)  TIME (MIN) 0.0 0.10 0.20 _.Q-..3.0 0.40 0.50 . 0 . 6 0 ... . 0.80 V  STOP  0.  43.00 74.00 96.CO 11.1.0.0 122.00 130.00 135.00 142.00  DIS OXY (PPM) .  1.91 3.28 4.26 4....92 5.41 5.76 5.99 6.30  j  D.ET.A.JC (PPM)  IRU.E...DC. (PPM)  4.71 3.33 2.36 1. 6.9 1.20 0.85 0.63 0-32  4.69 3.32 2.34 1.68 1.19 0.83 0.61 0.30  ; —J  I  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)300.00 SUPERFICIAL V E L . ( F T / H R ) = . 1.94 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/L/HR)31.05 MASS TRANS COEFF (1/HR)= 7.38 R SGUARE 0.99677 — NUMBER OF DATA 6 TIME ( MIN )  P.PRESS (MMHG)  DIS OXY (PPM )  DETA C (PPM)  TRUE OC (PPM)  0.0 l.CO 2.00 3.00  12.00 16.00 19.00 21.00  0.53 0.71 0.84 0.93  5.55 5.37 5.24 5.15  1.34 1.16 1.03 0.94  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 5.26 SAT.OXY.CONC. ~~" ( P P M ) = 6 . 4 6 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= 12.01 MASS TRANS COEFF (1/HR)= 10.47 R SGUARE = 0.99984 NUMBER OF DATA = 7 TIME (MIN) .0.0 l.CO 2.00 3.00 4.00 5.00 6.0C  P.PRESS (MMHG) 20.00 36.00 50.00 61 .JOO 70.00 78.00 85.00,  DIS OXY (PPM)  OETA C (PPM)  0.89 1.60 2.22 2^70 3.10 3.46 _3 .JJ  5.57 4.86 4.24 3. 75 3.36 3.00 2 .69  TRUE DC (PPM) 4.43 3.72 3.10 2.61 2.21 1.85 _l_-5_  r i  PERCENT SOLID (WT.)= AGITATION SPEED (RPM)= SUPERFICIAL VEL (FT/HR)= SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE OXY. UPTAKE (MG/L/HR)= MASS TRANS COEFF (1/HR)= R SGUARE = NUMBER OF DATA = TIME (MIN)  P.PRESS (MMHG)  0. 0 1. CO 2. CO 3.00 4.CO 5.00 6.00  27.00 49.CO 66.00 80.00 91.00 99.00 106.CO  2 0 . CO 300.00  8.8 l _  6.55 1.97 10.51 14.23 0.99992 7  DIS  (PPM)  OXY  DETA C (PPM)  TRUE DC (PPM)  1.20 2.17 2.93 3.55 4.03 4.39 4.70  5.35 4.38 3.62 3.00 2.51 2. 16 1.85  4.61 3.64 2.88 2.26 1.78 1.42 1. 11  DETA C (PPM)  TRUE DC (PPM)  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)=_ 12.63 _ SAT.OXY.CONC. (PPM)6.59~ % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)12.93 MASS TRANS COEFF (1/HR)= 16.27 R SGUARE = 0.99990 NUMBER OF DATA = 7 TIME (MIN) 0. 0.__ 1. CO 2. CO 3.00 4.00 5.00 6 . 00  P.PRESS (MMHG) 31.00 54.CO 73.00 8 6.CO 97.00 105.00 111 . 00  DIS CXY (PPM) l - 3 7 _ 2.39 ~ 3.24 3-81 4.30 4.66 4 . 92  5.21___ 4.19 ~ 3. 35 2.78 2.29 1.93 1. 67 __  4.42 3.40 2.56 1.98 1.49 1.14 0> 87  I  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 300.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE = 1.01 11 _ _ J J P T A K E IMG/L/HR ) = 14.62 MASS TRANS COEFF (1/HR}= 22.13 R SCUARE = 0.99978 NUMBER OF DAT A ~_ J TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  1RUE DC ( PPM)  0.0. C50 l.CO 1.50 2.CO 2.50 3.CO  24.00 4 3 . CO 58.00 71.00 82.00 90.00 98.00  1 .06 1.91 2.57 3.15 3.64 3.99 4.34  5.55 4.71 4.04 3. 46 2.98 2.62 2.27  4.89 4.04 3.38 2.80 2.32 1.96 1.61  OXY  DETA C  TRUE DC  1.33 2.35 3.15 3.72 4.21 4.57  4.75 3.73 2.93 2. 36 1.87 1.51  4.46 3 .44 2.64 2.06 "1.58 1.22  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)^= 400.00 SUPERFICIAL VEL (FT/HR ) = 1,94 SAT.OXY.CONC. ' (PPM)=~ 6.08 % CARBON DIOXIDE 8.98 OXY. UPTAKE (MG/L/HR ) = 4.55 MASS TRANS COEFF (1/HR)= 15.53 R SGUARE 0.99992 NU MB ER OF DATA = 6 _JiyE (MIN)  0. 0 _ 1. CO 2. CO 3.00 4.00 5.00  P.PRESS  (MMHG)  30.00 53.00 71.00 8.4^00 95.00 103.00  DIS  (PPM)  (PPM)  (PPM)  r  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= AGO.00 5.26_ SUPERFICIAL VEL (FT/HR)= 6.46 SAT.OXY.CONC. (PPM)= % CARBON DIOXIDE 3.31 JOJLY ._JJ PJ^^ __(jMG/L/HRJ-_ MASS TRANS COEFF (1/HR)2 6 , 16 R SGUARE 0.99997 NUMBER OF DATA 7  TIME (MIN)  P,PRESS (MMHG)  JPI_____  DETA C (PPM)  TRUE DC ( PPM)  0.0 0. 50 1. CO 1.50 2.00 2.50 3.CO  26.CO 4 7.00 64.00 78.00 89.00 98.00 105.00  1. 15 2.08 2.84 3.46 3.95 4.34 4.66  5.31 4 . 38 3.6 2 3.00 2.51 2. 11 1.80  4.81 3.88 3.12 2.50 2.01 1.61 1.30  (PPM)  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)400.00 SUPERFICIAL VEL ( FT/HR )= J* . 8 I SAT.OXY.CONC. " (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR)-2.75 MASS TRANS COEFF (1/HR)= 36.09 R SGUARE 0.99990 NUMBER OF DATA 6 TIME (MIN)  P'.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  0.0 0.50 1.00 1.50 2.00 2.50  39.00 68.00 89.00 105.00 116.00 125.00  1.73 3.01 3.95 4.66 5. 14 5.54  4.82 3.53 2.60 1.89 1.41 1.01  4.90 3.61 2.68 1.97 1.48 1.08  r  PERCENT SOLID (WT.)= 20.00 AGITATION SPEEO (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)= 12.63_ SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)= -1.69 MASS TRANS COEFF (1/HR)~ 46.74 R SGUARE = 0.99999 NUMBER OF DATA = 6 TIME (MIN) 0.0 0 . 50 1.00 1. 50 2.00 2.50  P.PRESS (MMHG) 48.00 81 . 0 0 103.00 118.00 128.00 135.CO  DIS OXY (PPM) _ 2 . 13 3.59 4.57 5.23 5.67 5 .99  DETA C (PPM)  TRUE DC (PPM)  4 . 46 3.00 2.02 1.36 0.91 0.60  4.50 3.03 2.06 1 .39 0.95 0.64  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 400.00 SUPERFICIAL VEL (FT/HR)= 17.15 SAT.OXY.CONC.(PPM) = 6.61 % CARBON DIOXIDE 1.01 OXY. UPTAKE (MG/L/HR)0 . 77 MASS TRANS COEFF (1/HR)= 63.34 R SGUARE = 0.99991 NUMBER OF DATA = 6 TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  0.0 0.40 0.80 1.20 1.60  51.00 85.00 107.00 121.00 131.00  2.26 3.77 4.74 5.36 5.81 6.0 7  4.35 2.84 1.87 1.25 0 , 80 0.54  4.34 2.83 1.86 1. 24 0 . 79 0.53  2.00  137.00  c  y  PERCENT SOLID (WT.)20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FJ/HR)= _ 1.94_ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE (MG/L/HR)0.79 MASS TRANS COEFF (1/HR)= 23.85 R SGUARE = 0.99968 NUMBER OF DATA = 7 TIME (MIN) _ 0.0 0.50 1.00 1.50 2.CO 2.50 3.00  P.PRESS (MMHG) . 25.00.. 4 6 . CO 62.00 76.00 86.CO 95.00 103.00  DIS OXY ( PPM)  DETA C (PPM )  TRUE DC ( PPM)  1.1 I 2.04 2.75 3.37 3.81 4.21 4.57  4.97 4.04 3.33 2.71 2. 27 1.87 1.51  _4.94 4.01 3.30 2.68 2.23 1.84 1.48  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 5C0.00 SUPERFICIAL VEL (FT/HR)= 5.26_ SAT.OXY.CONC. (PPM)= "~6.46 % CARBON DIOXIDE 3.31 OXY. UPTAKE (MG/L/HR)= -2.33 MASS TRANS COEFF (1/HR)= 41.63 R SGUARE = 0.99982 NUMBER OF DATA = 6 TIME (MIN) 0.0 _ 0.50 1.00 1.50 2.00 2.50  V  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  44.00 75.00" 96.00 111.00 121.00 129.00  1.95 3.33 4.26 4.92 5.36 5.72  3 . 13 2.20 1.54 1.09 0.74  4.56 3 . 19 2.26 1.59 1.15 0.80  r  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR ) = 8.81__ SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR) = 13.68 MASS TRANS COEFF (1/HR)= 61.51 R SCUARE = 0.99982 NUMBER OF DATA = 5 TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  0.0 0. 40 0.80  47.00 79.00 10 0 . 0 0 115.00 124.00  2.08 3.50 4.43  4.46 3.05 2.11  ______  1 . 60  _____ 5.50  1*  TRUE DC (PPM)  4.24 2.82 1.89 _ _• 23. 6.83  __ _  1.05  5  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 500.00 SUPERFICIAL VEL (FT/HR)= 12.63_ SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)= 1.06 MASS TRANS COEFF (1/HR)= 76.67 R SGUARE = 0.99984 NUMBER OF DATA = 6 TIME (MIN)  P.PRESS (MMHG)  _0.0 _ _ . 3 4 . C 0 0.20 61.00 0 . 60 96.00 1. CO 117.0 0 1.40 129.00 1.80 137.00  DIS OXY (PPM) __1.51 2.70 4.26 5 . 19 5.72 6.07  DETA C (PPM) '  _5.08 3.88 2.33 1.40 6.87 0.51  TRUE DC (PPM) "  5.07 3.87 2.32 1 .39 0.85 0.50  r  PERCENT SOLID ( WT . ) = 20.00 AGITATION SPEED (RPM)500.00 SUPERFICIAL VEL (FT/HR)=_ 17_.15.__ SAT.OXY.CONC. (PPM)6.61 % CARBON DIOXIDE = 1.01 OXY. UPTAKE (MG/L/HR)= 6.18 MASS TRANS COEFF (1/HR)100.52 R SGUARE = 0.99996 NUMBER OF DATA = 6 TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  0.0 0.20 0.40 0.60  42.00 72.00 94.00 109.00  1.86 3.19 4 . 17 4.83  4.75 3.42 2.44 1.78  4.69 3.36 2.38 1.72 1.23 0.88  PERCENT SOLID (WT.)~ 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR)= _ _ 1 . 9 4 _ SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIOE = 8.98 OXY. UPTAKE (MG/L/HR)= -2.69 MASS TRANS COEFF (1/HR)= 38.65 R SGUARE = 0.99984 NUMBER OF DATA = 6 TIME (MIN)  o-o__  0.50 1.00 1.50 2.00 2.50  P.PRESS (MMHG)  DIS OXY (FPM)  DETA C (PPM)  TRUE DC (PPM)  39.00 67.00 87.00 101.00 111.00 119.00  1.73 2. 97 3.86 4.48 4.92 5.28  4.35 3. 11 2. 22 1.60 1. 16 0 . 80  4.42 3.18 2.29 1.67 1.23 0.87  r  PERCENT SOLID (WT.)= 20.00^ AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL (FT/HR )= 5.26. SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= -5.35 MASS TRANS COEFF ( l / H R ) = 67.84 R SGUARE = 0.99962 NUMBER OF DATA = 6  1 i !  i \i  TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC ( PPM)  0.0 0.40 0.80 1. 20 1.60 2.CO  55.00 89.00 111.00 124.00 132.00 138.00  2.44 3.95 4.92 5.50 5.85 6.12  4,02 2.51 1.54 0.96 0.61 0.34  4.10 2.59 1.62 1.04 0.69 0.42  TRUE DC (PPM)  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 600.00 SUPERFICIAL VEL ( FT/HR ) = 8._81_ SAT.OXY.CONC. (PPM)= . " 6 . 5 5 S CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR)= 3.01 MASS TRANS COEFF (1/HR)= 83.90 R SGUARE =• 0 . 9 9 9 8 1 NUMBER OF DATA = . 5  |  2 I |' t  e o  TIME (MIN) 0.0 0.40 0.80 1.20 1.60  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  63.00 99.00 120.00 131.CO 138.00  2.79 4.39 5.32 5±31 6.12  3.75 "2.16 1.23 0.74 0.43  "  3.72 ~_.12~ 1.19 0.70 0.39  r  y  PERCENT SOLID (WT.)~ 20.00 A G I T A T I ON S P E E D (RPM) = 600.00 S U P E R F I C I A L VEL (FT/HR)= 12.63... SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE I .38 OXY. U P T A K E (MG/L/HR ) = - 1 3 . 3 6 MASS TRANS C O E F F ( 1 / H R ) 107.70 R SGUARE = 0.99982 N U M B E R OF D A T A = 6  TIME (MIN)  P.PRESS (MMHG)  DIS OXY ( PPM)  0.0 0.20 0.40 0.60 0. 80 1. CO  46.00 78.00 100.00 116.00 126.CO 134.00  2.04 3.46 4 .43 5.14  DETA C ( PPM )  T R U E DC (PPM)  4.55 3.13 2.15 1. 4 5  4.67 '3.25 2.28 1.57  D I S OXY ( PPM )  DETA C (PPM)  T R U E DC (PPM)  2 . 17 3.64 4.61 5.28 5.72  4.44 2.98 2.00 1.34 0.89  4.46 3.00 2.02 1.36 0.92  PERCENT SOLID ( WT . ) = 20.00 AGITATION SPEED (RPM)= 600.00 S U P E R F I C I A L VEL ( F T / H R ) 17.15 SAT.OXY.CONC. (PPM) = 6 .61 ~ 1.01 % CARBON DIOXIDE -2.71 OXY. U P T A K E (MG/L/HR)= MASS TRANS C O E F F ( 1 / H R ) = 118.77 R SGUARE = 0.99999 N U M B E R OF D A T A = . 5  TIME (MIN) 0.0 0.20 0.40 0.60 0.80  P.PRESS (MMHG) 49.00 82.00 ' 104.00 119.00 129.CO  ;  r  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( F T / H R ) = „ 1.9 SAT.OXY.CONC. (PPM)= 6.08 % CARBON DIOXIDE = 8.98 OXY. UPTAKE {MG/L/HR) -2.42 MASS TRANS COEFF (1/HR)= 58.81 R SGUARE = 0.99979 NUMBER CF DATA = 6 -  TIME (MIN )  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  0.0 0.40 0.80 1.20 1.6C 2.00  4 5.00 76.00 96.00 109.00 119.00 125.00  2.00 3.37 4.26 4.83 5.28 5.54  _ 4-09 2.71 1.82 1. 25 0. 80 0 . 54  4.13 2.75 1.87 1.29 0.85 0.58  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED (RPM)= 700.00 SUPERFICIAL VEL ( FT /HR ) = 5..26_ SAT.OXY.CONC. (PPM)= 6.46 % CARBON DIOXIDE = 3.31 OXY. UPTAKE (MG/L/HR)= -1.84 MASS TRANS COEFF (1/HR)^ 106.03 R SQUARE = 0.S9972 NUMBER OF DATA = 5 TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC ( PPM)  0.0 0.20 0.60 1.00 1.40  38.00 72.00 108.00 128.00 137.00  1.68 3.19 4.79 5.67 6.07  4.77 3.27 1.67 0.78 0.38  4.79 3.28 1.69 0.80 0.40 •  r  PERCENT SOLIO (WT.)~ 20.00 AGITATION SPEEO (RPM)= 700.00 SUPERFICIAL VEL_(FT/HR) = 8. 8 I SAT.OXY.CONC. (PPM)= 6.55 % CARBON DIOXIDE = 1.97 OXY. UPTAKE (MG/L/HR)= 6.36 MASS TRANS COEFF (1/HR)= 130.76 R SGUARE = 0.99998 NUMBER OF DATA = 5 TIME (MIN)  P.PRESS (MMHG)  DIS OXY (PPM)  DETA C (PPM)  TRUE DC ( PPM )  0.0 0.20 0.40 0.60 0.80  52.00 85.00 107.00 121.00 130.00  2.31 3.77 4. 74 5.36 5.76  4. 24 2.78 1.80 1.18 0.78  _Jt .19  DIS OXY (PPM)  DETA C (PPM)  TRUE DC (PPM)  1.60 2.79 3.68 4.39 4.88 5.28  4. 99 3.79 2.91 2.20 1.71 1.31  4.87 3.67 2.79 2.08 1.59 1. 19  2.73 1.76 1.13 0.74  PERCENT SOLID (WT.)= 20.00 AGITATION SPEED . (RPM)= 700.00 SUPERFICIAL VEL (FT/HR)= 12.63 SAT.OXY.CONC. (PPM)= 6.59 % CARBON DIOXIDE = 1.38 OXY. UPTAKE (MG/L/HR)20.31 MASS TRANS COEFF (l/HR)= 168.78 R SGUARE - 0.99990 NUMBER OF DATA = 6 TIME (MIN) 0.0 0.10 0.20 0. 30 0.40 0.50  P.PRESS (MMHG) 36.00 63.00 ~ 83.00 99.00 110.00 119.00  __.__L.__.  PERCENT SOLID ( W T. ) = 20.00 AGITATION SPEED (RPM ) = 7 0 0 . 0 0 SUPERFICIAL VEL (FT/HR ) = _ 1 7 . 1 5 SAT.OXY.CONC. (PPM)= 6.61 % CARBON DIOXIDE 1.01 OXY. _ U P TA K E (MG/L / HR jj 33.83 MASS TRANS COEFF (1/HR)^ 197.11 R SGUARE 0 . 99997 NUMBER OF DATA 6 TIME (MIN)  P.PRESS (MMHG)  0.0 0.10 0.20 0.30 0.40 0.50  40.00 70.00 91.00 106.00 117.00 125.00  STOP 0 EXECUTION TERMINATED  $ SIG  DIS OXY (PPM)  1 . 77 3. i d 4.03 4.70 5.19 5.54  DETA C (PPM)  TRUE DC ( PPM )  4. 84 3.51 2. 58 1.91 1.43 1.07  4.67 3.34" 2.41 1.74 1.25 0.90  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0058864/manifest

Comment

Related Items