UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fluidized bed claus reactor studies Bonsu, Alexander Karikari 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A1 B66.pdf [ 12.08MB ]
Metadata
JSON: 831-1.0058805.json
JSON-LD: 831-1.0058805-ld.json
RDF/XML (Pretty): 831-1.0058805-rdf.xml
RDF/JSON: 831-1.0058805-rdf.json
Turtle: 831-1.0058805-turtle.txt
N-Triples: 831-1.0058805-rdf-ntriples.txt
Original Record: 831-1.0058805-source.json
Full Text
831-1.0058805-fulltext.txt
Citation
831-1.0058805.ris

Full Text

FLUIDIZED BED CLAUS REACTOR STUDIES ALEXANDER KARIKARI/BONSU B.Sc. (hons) U.S.T. o f Kumasi, Ghana 1972 D.E.A. I.G.C. o f T o u l o u s e , F r a n c e , 1974 M. Eng. M c G i l l U n i v e r s i t y o f M o n t r e a l , Canada 1976 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF THE FACULTY OF GRADUATE STUDIES Department o f Chemical E n g i n e e r i n g We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA F e b r u a r y , 1981 (c) A l e x a n d e r K a r i k a r i Bonsu by DOCTOR OF PHILOSOPHY i n I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 W e s b r o o k P l a c e V a n c o u v e r , C a n a d a V6T 1W5 nF-fi 17/7Q^ A B S T R A C T F l u i d i z e d bed r e a c t o r s t u d i e s were performed on the C l a u s r e a c t i o n , i e . 2H 2S + S 0 2 ;5=^3/n S n + 2H 20. The b a s i c o b j e c t i v e was t o d e t e r m i n e whether the performance o f the C l a u s p r o c e s s c o u l d be improved by r e p l a c i n g c o n v e n t i o n a l f i x e d bed r e a c t o r s w i t h f l u i d i z e d bed r e a c t o r s . A c o m p u t a t i o n a l p r o c e d u r e was d e v e l o p e d w h ich, u n l i k e p r e v i o u s methods, does not r e q u i r e the u s e r t o s p e c i f y the i n i t i a l v a l u e s f o r the i t e r a t i v e s o l u t i o n o f the e q u i l i b r i u m e q u a t i o n s . I t i s t h e r e f o r e p o s s i b l e t o a c h i e v e , c o n s i s t e n t l y , s i g n i f i c a n t r e d u c t i o n s i n computer time and c o s t . The computer programme was used t o s i m u l a t e v a r i o u s i d e a l i z e d C l a u s p l a n t s . The r e s u l t s o f the e q u i l i b r i u m c a l c u l a t i o n s i n d i c a t e d t h a t , f o r f e e d gases c o n s i s t i n g o f pure H 2S, s u l p h u r c o n v e r s i o n s i n e x c e s s o f 99% a r e a t t a i n a b l e by u s i n g a C l a u s f u r n a c e and two f l u i d i z e d bed r e a c t o r s i n s e r i e s . To s u b s t a n t i a t e the t h e o r e t i c a l p r e d i c t i o n s , e x p e r i m e n t a l s t u d i e s were performed u s i n g a s i n g l e f l u i d i z e d bed r e a c t o r (0.1 m ID). The e f f e c t s o f temperature (150 - 3 0 0 ° C ) , f l o w r a t e s (15 - 30 1/min), f e e d c o m p o s i t i o n (0.06<H 2S<18%, 0.03<S0 2<9%, 73<N 2<99.91%) and bed h e i g h t (0.12, 0.25 m) on the s u l p h u r c o n v e r s i o n were examined. The e x p e r i m e n t a l r e s u l t s showed the same g e n e r a l t r e n d s as the t h e o r e t i c a l p r e d i c t i o n s . However, the measured i i s u l p h u r c o n v e r s i o n s exceed the t h e o r e t i c a l v a l u e s by up t o 8%. Reasons f o r t h e s e d i s c r e p a n c i e s a r e d i s c u s s e d . Based on the t h e o r e t i c a l and e x p e r i m e n t a l s t u d i e s , f l u i d i z e d bed r e a c t o r s appear t o be t e c h n i c a l l y s u p e r i o r to the c o n v e n t i o n a l f i x e d bed d e v i c e s . However, a p r o p e r commercial e v a l u a t i o n has t o a w a i t l o n g e r term s t u d i e s w i t h l a r g e r f l u i d i z e d beds. i i i To my h i g h s c h o o l mathematics t e a c h e r , Mr. J.W.K. W e l l i n g t o n , a man who l a i d the f o u n d a t i o n o f my s c i e n t i f i c c a r e e r and t o my mother, Madame Afua Nyame, a woman whose t o i l s , g u i d ance and p r a y e r s have made me what I am. i v TABLE OF CONTENTS Page ABSTRACT i i LIST OF TABLES v i i i LIST OF FIGURES i x ACKNOWLEDGEMENTS Cha p t e r 1 INTRODUCTION 1 2 LITERATURE REVIEW 7 2.1 CLAUS REACTION 7 2.1.1 T h e o r e t i c a l S t u d i e s 7 2.1.2 E x p e r i m e n t a l S t u d i e s 11 2.1.3 I n d u s t r i a l C l a u s P r o c e s s 14 2.2 FLUIDIZED BED 18 2.2.1 F l u i d i z a t i o n 18 2.2.2 B a s i c Design F a c t o r s 20 3 SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS 28 3.1 INTRODUCTION 28 3.2 ASSUMPTIONS 30 3.3 EQUILIBRIUM EQUATIONS 31 3.4 SOLUTION TO THE EQUILIBRIUM EQUATIONS 34 4 EXPERIMENTAL APPARATUS 38 4.1 REACTION EQUIPMENT 38 v Page 4.1.1 F l u i d i z e d Bed R e a c t o r 38 4.1.2 N i t r o g e n R e g e n e r a t i o n System 54 4.1.3 Gas A n a l y s i s System 58 4.1.4 S a f e t y D e v i c e s 63 4.2 MATERIALS USED 67 4.3 SOLID CIRCULATION 69 5 EXPERIMENTAL PROCEDURE 76 5.1 REACTION PROCEDURE 76 5.1.1 Equipment S t a r t - u p 76 5.1.2 R e a c t i o n P r o c e s s 78 5.1.3 C a t a l y s t R e g e n e r a t i o n 84 5.1.4 Equipment Shut-down 85 5.1.5 S c r u b b e r Clean-up 86 5.2 CALIBRATION OF INSTRUMENTS 88 5.2.1 C a l i b r a t i o n o f Rotameters 88 5.2.2 C a l i b r a t i o n o f A n a l y t i c a l Instruments 89 6 RESULTS AND DISCUSSION 99 6.1 SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS 99 6.2 EXPERIMENTAL RESULTS 103 6.2.1 Minimum F l u i d i z a t i o n V e l o c i t y 103 6.2.2 S u l p h u r C o n v e r s i o n s 106 6.3 PRACTICAL IMPLICATIONS 116 v i Page 6.4 ERROR ANALYSIS 119 7 CONCLUSIONS 123 7.1 SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS 123 7.2 EQUIPMENT PERFORMANCE 124 7.3 EXPERIMENTAL RESULTS 124 8 RECOMMENDATIONS 127 NOMENCLATURE 129 REFERENCES 132 APPENDICES A COMPUTER PROGRAMME FOR THE SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS 139 B COMPUTER PROGRAMME FOR THE ROTAMETERS CALIBRATION TABLE 165 C COMPUTER PROGRAMME FOR THE DATA ANALYSIS 190 D PURGING-TIME OF REACTOR SYSTEM 209 v i i LIST OF TABLES T a b l e Page 3.1 Components o f the streams shown i n F i g . 3.1 28 4.1 S p e c i f i c a t i o n s o f the r o t a m e t e r s 46 4.2 F e a t u r e s o f the d a t a l o g g e r 61 4.3 P r o p e r t i e s o f c a t a l y s t ( a c t i v a t e d a l u m i n a , K a i s e r S-501). 68 5.1 S e l e c t f l o w r a t e s o f r e a c t a n t s ( H c S / S 0 9 r a t i o s a r e 2/1) S d 80 5.2 O p e r a t i n g v a r i a b l e s and t h e i r ranges 83 6.1 E s t i m a t e s o f s u l p h u r c o n v e r s i o n s i n m o d i f i e d C l a u s p r o c e s s i n c o r p o r a t i n g two f l u i d i z e d bed r e a c t o r s (Temperature i n second r e a c t o r i s s e t a t 383.2°K; the f u r n a c e y i e l d i s assumed to be 70%) 100 6.2 P a r t i a l p r e s s u r e s (atm) and dew p o i n t s (°C) o f s u l p h u r 102 6.3 E r r o r a n a l y s i s 120 6.4 S e n s i t i v i t y t e s t "122 v i i i LIST OF FIGURES F i g u r e Page 2.1 C l a u s r e a c t i o n e q u i l i b r i u m c o n v e r s i o n v e r s u s temperature 9 2.2 I n d u s t r i a l C l a u s p r o c e s s e s 15 2.3 Gas bubble i n a f l u i d i z e d bed 26 3.1 Flow diagrams o f m o d i f i e d C l a u s p r o c e s s e s ( F o r components o f stream see T a b l e 3.1) 29 3.2 Schematic p l o t o f the e q u i l i b r i u m e q u a t i o n 35 4.1 Flow diagram o f the equipment ( A l l d i m e n s i o n s i n mm) 39 4.2 General view o f the a p p a r a t u s 40 4.3 R e a c t o r , s c r u b b e r and d r i e r s 41 4.4 F l u i d i z e d bed r e a c t o r 42 4.5 F r o n t o f c o n t r o l panel 44 4.6 Back o f c o n t r o l panel 45 4.7 D i s a s s e m b l e d s i g h t g l a s s 49 4.8 Mounted s i g h t g l a s s 50 4.9 S i g h t g l a s s 51 4.10 Continuous c a t a l y s t f e e d system 53 4.11 S c r u b b e r and r e s e r v o i r 55 4.12 D r i e r s 57 4.13 Sample c o n d i t i o n i n g system ( A l l d i m e n s i o n s i n mm) 59 4.14 E n c l o s e d gas c y l i n d e r s and s o l e n o i d v a l v e s 64 4.15 P r e s s u r e s w i t c h 65 4.16 E l e c t r i c a l c i r c u i t o f the equipment 66 i x F i g u r e Page 4.17 Schematic diagram o f s o l i d c i r c u l a t i o n system ( A l l d i m e n s i o n s i n mm) 70 4.18 R o t a r y v a l v e 71 4.19 S h u t t e r d e v i c e 72 4.20 Rot o r o f the s h u t t e r d e v i c e 73 4.21 L e a f o f the s h u t t e r d e v i c e 74 5.1 F l o w s h e e t f o r c a l i b r a t i o n o f a n a l y t i c a l i n s t r u m e n t s 90 5.2 E s t i m a t i o n o f e x t i n c t i o n c o e f f i c i e n t due t o H 2S 92 5.3 C a l i b r a t i 5.4 C a l i b r a t i 5.5 C a l i b r a t 5.6 C a l i b r a t on c u r v e f o r SO2 a n a l y s e r on c u r v e f o r SO2 a n a l y s e r on c u r v e f o r H 2S a n a l y s e r on c u r v e f o r H 2S a n a l y s e r 6.3 S u l p h u r c o n v e r s i o n s as a f u n c t i o n o f r e a c t o r temperature ( O p e r a t i n g c o n d i t i o n s : FLS - 0.5%, S 0 2 - 0.25%, N 2 - 99.25%, p r e s s u r e - 1 atm) 6.4 S u l p h u r c o n v e r s i o n as a f u n c t i o n o f H 2S c o n c e n t r a t i o n i n f e e d ( O p e r a t i n g C o n d i t i o n s : bed h e i g h t - 0.25 m, H 2 S / S 0 2 - 2/1, p r e s s u r e - 1 atm) 6.5 S u l p h u r c o n v e r s i o n as a f u n c t i o n o f H 2S c o n c e n t r a t i o n i n the f e e d ( o p e r a t i n g c o n d i t i o n s : H 2S/S0 2 r a t i o - 2/1) 6.6 S u l p h u r c o n v e r s i o n as a f u n c t i o n o f U/U 94 95 97 98 6.1 E q u i l i b r i u m p a r t i a l p r e s s u r e s o f s u l p h u r polymers 104 6.2 P r e s s u r e drop v e r s u s a i r v e l o c i t y f o r a bed o f a c t i v a t e d a l u m i n a ( K a i s e r S-501) 1 ° 5 107 108 110 ( O p e r a t i n g c o n d i t i o n s : bed h e i g h t - 0.25 m, H 2S - 0.85%, S 0 2 - 0.425%, N 2 - 98.725%, p r e s s u r e - 1 atm, temperature - 150°C) ''2 x S u l p h u r c o n v e r s i o n as a f u n c t i o n o f h^S c o n c e n t r a t i o n i n f e e d ( O p e r a t i n g c o n d i t i o n s bed h e i g h t - 0.25 m, H 2 S / S 0 2 r a t i o - 2/1, p r e s s u r e - 1 atm, temperature - 300°C, ij/umf - 0.84) S u l p h u r c o n v e r s i o n as a f u n c t i o n o f b^S c o n c e n t r a t i o n i n the f e e d ( O p e r a t i n g c o n d i t i o n s : bed h e i g h t - 0.25 m, H2S/SO2 r a t i o - 2/1, p r e s s u r e - 1 atm, temperature 280°C) M o d i f i e d C l a u s p r o c e s s based on f l u i d i z e d bed t e c h n o l o g y ( R e a c t o r 1 a c t s a l s o as g e n e r a t o r ) M o d i f i e d C l a u s p r o c e s s based on f l u i d i z e d bed t e c h n o l o g y (A s e p a r a t e c a t a l y s t r e g e n e r a t o r i s p r o v i d e d ) x i ACKNOWLEDGEMENTS Anyone who b u i l d s an equipment, performs an experiment and w r i t e s a t h e s i s i n c u r s debts t o many pe o p l e and one can h a r d l y thank them a l l . However, w i t h g r e a t p l e a s u r e , the a u t h o r would l i k e t o e x p r e s s h i s s i n c e r e g r a t i t u d e and a p p r e c i a t i o n t o Dr. Axel Meisen f o r h i s e x c e p t i o n a l s u p e r v i s i o n and gu i d a n c e . He was always ready t o h e l p . The a u t h o r would a l s o l i k e t o thank s i n c e r e l y , the people a t the Chemical E n g i n e e r i n g Department workshop f o r t h e i r r emarkable a s s i s t a n c e i n c o n s t r u c t i n g the equipment, Monica G u t i e r r e z f o r h e r e x c e l l e n t d r a f t i n g , and C e l i n e Gunawardene f o r her superb t y p i n g . The a u t h o r i s a l s o g r a t e f u l t o the N a t i o n a l Research C o u n c i l o f Canada f o r f i n a n c i a l s u p p o r t . L a s t l y , but not the l e a s t , the a u t h o r would l i k e t o thank a l l t h o s e who, i n d i v e r s e ways, c o n t r i b u t e d t o t h i s t h e s i s . 1 C h a p t e r 1 1 INTRODUCTION The f r e q u e n t d r a m a t i c p r i c e i n c r e a s e s o f l i g h t c r u d e o i l , c aused by e x c e s s i v e w o r l d demand f o r e n e r g y , has a f f e c t e d the economic growth r a t e o f both r i c h and poor n a t i o n s . Canada, a t t e m p t i n g t o s o l v e her energy problems, has a c c e l e r a t e d the development o f her huge r e s e r v e s o f heavy o i l and n a t u r a l gas. However, t h e s e r e s o u r c e s do not produce " c l e a n " energy. They c o n t a i n s i g n i f i c a n t amounts o f s u l p h u r compounds which a r e u s u a l l y removed i n the form o f hydrogen s u l p h i d e , an e x t r e m e l y p o i s o n o u s gas. Hydrogen s u l p h i d e may be o x i d i z e d w i t h a i r t o e l e m e n t a l s u l p h u r by the C l a u s p r o c e s s . U s i n g t h i s p r o c e s s , Canada produced a p p r o x i m a t e l y 6 m i l l i o n tons o f s u l p h u r i n 1978 making he r the second l a r g e s t p r o d u c e r i n the w o r l d [ 1 ] , The C l a u s p r o c e s s was o r i g i n a l l y d e v e l o p e d c o m m e r c i a l l y by C.F. C l a u s i n 1883 when he o x i d i z e d H^S w i t h s t o i c h i o m e t r i c amounts o f a i r o v e r r e d hot i r o n o x i d e [2] : 3H 2S + 3/2 0 2 ^ = ^ 3 H 2 0 + 3/n S n 1.1 (n v a r i e s from 2 t o 8 depending on the r e a c t i o n t e m p e r a t u r e ) . The r e a c t i o n i s e x o t h e r m i c (AH-j -j = - 145 t o - 173 k c a l ) and, a t h i g h t e m p e r a t u r e s , the c o n v e r s i o n e f f i c i e n c y o f s u l p h u r i s low. To improve the e f f i c i e n c y o f the o r i g i n a l C l a u s p r o c e s s , 1.6. F o r b e n i n d u s t r i e d e v e l o p e d the two-stage " s p l i t - s t r e a m " 2 p r o c e s s [ 3 ] . In the f i r s t s t a g e o f the p r o c e s s , o n e - t h i r d o f therms i s o x i d i z e d w i t h a i r t o S 0 2 i n a f r e e flame combustion f u r n a c e : H 2S + 3/2 0 2 2=pH20 + S 0 2 1.2 (AH-J 2 = - 124 k c a l , T = 250°C, P = 1 atm) In the second s t a g e , the S 0 2 i s reduced w i t h the r e m a i n i n g t w o - t h i r d s H 2S a t 250°C o v e r b a u x i t e : 2H 2S + S 0 2 ^ = ^ 2H 20 + 3/n S n 1.3 ( A H ] 3 = 21 K c a l , T = 250°C, P = 1 atm) The improvement o f t h i s p r o c e s s o v e r the o r i g i n a l C l a u s p r o c e s s i s the heat d i s t r i b u t i o n . Over 80% o f the t o t a l heat o f r e a c t i o n i s l i b e r a t e d b e f o r e c a t a l y t i c c o n v e r s i o n . I.G. F a r b e n i n d u s t r i e [3] f u r t h e r improved the C l a u s p r o c e s s by d e v e l o p i n g the " s t r a i g h t - t h r o u g h " p r o c e s s . T h i s i s the famous m o d i f i e d C l a u s p r o c e s s used i n most, modern i n d u s t r i a l p l a n t s . In t h i s p r o c e s s , a l l the H 2S i s f i r s t o x i d i z e d w i t h s t o i c h i o m e t r i c amounts o f a i r i n a f r e e flame combustion f u r n a c e a t about 1100°C t o produce a m i x t u r e o f s u l p h u r d i o x i d e , e l e m e n t a l s u l p h u r , water vapour, hydrogen s u l p h i d e and n i t r o g e n : 2H 2S + 2 0 2 = 5 = £ 2 H 2 0 + S 0 2 + 1/n S n 1.4 S u b s e q u e n t l y the f u r n a c e o f f - g a s e s are passed through a s u l p h u r condenser and one o r more c a t a l y t i c c o n v e r t e r s where R e a c t i o n 1.3 o c c u r s . A f t e r each c o n v e r t e r s u l p h u r i s removed by c o n d e n s a t i o n t o s h i f t t he e q u i l i b r i u m t o the p r o d u c t s i d e . 3 There a r e two major advantages o f t h i s p r o c e s s o v e r the s p l i t stream p r o c e s s . In the f u r n a c e , between 90 t o 95% o f the t o t a l h e at o f r e a c t i o n i s l i b e r a t e d and o v e r 70% o f the t o t a l s u l p h u r c o n v e r s i o n may be a c h i e v e d . A f u r n a c e p l u s t h r e e c a t a l y t i c r e a c t o r s can a c h i e v e a t o t a l s u l p h u r c o n v e r s i o n e f f i c i e n c y o f about 95%. The r e m a i n i n g s u l p h u r compounds a r e i n c i n e r a t e d t o SO2 and d i s c h a r g e d i n t o the atmosphere. I t has, however, been o b s e r v e d t h a t both a n i m a l s and p l a n t s a r e a f f e c t e d by even low l e v e l s o f SO2. For example, one hour exposure t o 0.5 ppmv SO2 can l e a d t o l u n g damage. F o r e s t , f i b e r and c e r e a l c r o p s have a l s o been damaged by one hour exposure t o 0^ .8 ppmv SO2. Furth e r m o r e , e x c e s s i v e SO2 e m i s s i o n s have c o n t r i b u t e d t o the f o r m a t i o n o f haze and smog which r e d u c e s v i s i b i l i t y o v e r l o n g d i s t a n c e s [ 4 ] . Co n s e q u e n t l y most i n d u s t r i a l i z e d n a t i o n s [5] have passed s t r i n g e n t a n t i p o l l u t i o n laws r e q u i r i n g l e s s than 500 ppmv SO2 i n the s t a c k gases o f C l a u s u n i t s . To meet such s e v e r e e m i s s i o n s t a n d a r d s , s u l p h u r c o n v e r s i o n e f f i c i e n c i e s g r e a t e r than 99% must be a c h i e v e d . T h i s has l e d t o the i n t r o d u c t i o n o f t a i l gas p r o c e s s e s . However, t h e s e p r o c e s s e s a r e e x p e n s i v e and o f t e n d i f f i c u l t t o o p e r a t e . As an a l t e r n a t e t o t a i l gas t r e a t m e n t , the performance o f the C l a u s p r o c e s s i t s e l f c o u l d be improved. T r a d i t i o n a l l y , f i x e d beds a r e employed as the c a t a l y t i c r e a c t o r s . S i n c e the C l a u s r e a c t i o n s a r e ex o t h e r m i c and f i x e d bed c a t a l y t i c r e a c t o r s do not 4 p e r m i t e f f i c i e n t h eat r e m o v a l , the p r o c e s s c o n v e r s i o n i s i n e v i t a b l y l i m i t e d . F u r t h e r m o r e , f i x e d bed r e a c t o r s cannot be o p e r a t e d a t low temperatures where thermodynamic y i e l d s a r e h i g h s i n c e s u l p h u r may condense t h e r e b y f o u l i n g the c a t a l y s t . To overcome t h e s e p r o b l e m s , the use o f f l u i d i z e d bed r e a c t o r s i s p r o p o s e d . Such r e a c t o r s not o n l y a l l o w e f f i c i e n t h eat removal but a l s o p e r m i t c o n t i n u o u s c a t a l y s t r e g e n e r a t i o n s h o u l d f o u l i n g o c c u r [22]. A f l u i d i z e d bed c o n s i s t s o f f i n e p a r t i c l e s s u p p o r t e d by an upward moving gas m i x t u r e . N o r m a l l y t h e b u l k o f the gas m i x t u r e f l o w s t h r o u g h the bed i n the form o f b u b b l e s . These bubbles c a r r y few p a r t i c l e s i n t h e i r s u r r o u n d i n g c l o u d s and t r a i l i n g wakes. T h i s p a r t o f the bed i s r e f e r r e d t o as bubble o r l e a n phase. The r e m a i n i n g gas p e r c o l a t e s t h r o u g h t h e c a t a l y s t i n a manner s i m i l a r t o the f l o w through a f i x e d bed. The p o r o s i t y o f t h i s s e c t i o n o f the bed, r e f e r r e d t o as c o n t i n u o u s o r dense phase, i s c l o s e t o t h a t o f a f i x e d bed. The main advantages o f f l u i d i z e d beds o v e r the f i x e d beds f o r the C l a u s r e a c t i o n a r e : ( i ) The bed temperature i s u n i f o r m due t o the i n t e n s e a g i t a t i o n o f the c a t a l y s t p a r t i c l e s by the r a p i d l y r i s i n g b u b b l e s . ( i i ) O p e r a t i o n a t t e m p e r a t u r e s below the s u l p h u r dew p o i n t (where thermodynamic y i e l d s a r e h i g h ) i s p o s s i b l e . O p e r a t i o n even below the m e l t i n g p o i n t o f s u l p h u r i s f e a s i b l e . C a t a l y s t d e a c t i v a t i o n caused by condensed s u l p h u r can be p r e v e n t e d by c o n t i n o u s l y c i r c u l a t i n g 5 the c a t a l y s t between t h e r e a c t o r and a r e g e n e r a t o r . The c o n g e a l i n g o f the bed by the condensed s u l p h u r s h o u l d be p r e v e n t e d by the i n t e n s e a g i t a t i o n o f the bed. ( i i i ) C a t a l y s t d e a c t i v a t i o n from s u l p h a t i o n and c a r b o n d e p o s i t i o n can a l s o be c o n t r o l l e d by c i r c u l a t i n g the c a t a l y s t between the r e a c t o r and a r e g e n e r a t o r . ( i v ) The c a t a l y s t a c t i v i t y i s enhanced by the l a r g e s p e c i f i c s u r f a c e a r e a o f the f i n e c a t a l y s t p a r t i c l e s . (v) The p r e s s u r e drop i s moderate i n f l u i d i z e d beds. ( v i ) P e l l e t i s i n g , which i s an i m p o r t a n t c o s t item i n the p r o d u c t i o n o f c a t a l y s t s , i s not r e q u i r e d f o r f l u i d i z e d bed c a t a l y s t s . On the o t h e r hand, the major d i s a d v a n t a g e s o f f l u i d i z e d bed c a t a l y t i c r e a c t o r s a r e [22]: ( i ) Lowering o f c o n v e r s i o n e f f i c i e n c y due t o the f a c t t h a t the gas by-passes the c a t a l y s t i n the form o f b u b b l e s . ( i i ) R e d u c t i o n o f c o n v e r s i o n e f f i c i e n c y by b a c k m i x i n g . ( i i i ) A t t r i t i o n o f the c a t a l y s t p a r t i c l e s and e r o s i o n o f the r e a c t o r w a l l s by the i n t e n s e bed a g i t a t i o n . However, the C l a u s c a t a l y s t s , which a r e u s u a l l y a c t i v a t e d a l u m i n a , have h i g h r e s i s t a n c e t o a b r a s i o n and c r u s h i n g [73]. ( i v ) E l u t r i a t i o n o f v e r y f i n e p a r t i c l e s from the bed. To determine the s u i t a b i l i t y o f the f l u i d i z e d bed, a mathematical model s i m u l a t i n g a C l a u s f u r n a c e p l u s two f l u i d i z e d 6 bed r e a c t o r s i n s e r i e s was f i r s t d e v e l o p e d ( c h a p t e r 3 ) . The r e s u l t s o f t h e s e s t u d i e s were v e r y p r o m i s i n g , i n d i c a t i n g t o t a l c o n v e r s i o n s i n e x c e s s o f 99% as compared w i t h 90% c o n v e r s i o n s f o r f i x e d bed p r o c e s s e s . To s u b s t a n t i a t e the t h e o r e t i c a l p r e d i c t i o n s , e x p e r i m e n t a l s t u d i e s u s i n g a s i n g l e f l u i d i z e d bed r e a c t o r were u n d e r t a k e n . A two r e a c t o r system would, u n d o u b t e d l y , have p r o v i d e d more i n f o r m a t i o n but v e r y h i g h c o n s t r u c t i o n c o s t s and p o s s i b l e o p e r a t i n g problems w i t h s o l i d c i r c u l a t i o n were a n t i c i p a t e d . . C o n s e q u e n t l y , a s i n g l e r e a c t o r was chosen. The d e s i g n and o p e r a t i o n o f the l a b o r a t o r y - s c a l e f l u i d i z e d bed C l a u s r e a c t o r were performed t o examine the f e a s i b i l i t y o f r e p l a c i n g t h e . f i r s t and / o r second f i x e d bed r e a c t o r i n a s t a n d a r d C l a u s p r o c e s s . The f e e d t o the f l u i d i z e d bed r e a c t o r was t h e r e f o r e p r e p a r e d t o r e p r e s e n t the p r o d u c t streams from the f u r n a c e or f i r s t f i x e d bed r e a c t o r . However, p a r t l y f o r e x p e r i m e n t a l c o n v e n i e n c e , the f e e d streams were f r e e o f s u l p h u r and water vapour thus p r e s u p p o s i n g the e x i s t e n c e o f t o t a l s u l p h u r and water c o n d e n s e r s . The i m p l i c a t i o n o f water removal i s c o n s i d e r e d i n S e c t i o n 6.1. 7 C h a p t e r 2 2 LITERATURE REVIEW The l i t e r a t u r e r e v i e w i s d i v i d e d i n t o two major s e c t i o n s , v i z . C l a u s r e a c t i o n and f l u i d i z e d beds. 2.1. CLAUS REACTION 2.1.1. T h e o r e t i c a l S t u d i e s A knowledge o f the thermodynamic y i e l d i s e s s e n t i a l i n d e t e r m i n i n g the f e a s i b i l i t y o f a chemical r e a c t i o n under v a r i o u s c o n d i t i o n s o f temperature and p r e s s u r e . A l t h o u g h a h i g h thermodynamic y i e l d does not always imply a h i g h y i e l d i n p r a c t i c e , a v e r y low thermodynamic y i e l d u s u a l l y i n d i c a t e s the i m p r a c t i c a b i l i t y o f the p r o c e s s . The f i r s t d e t a i l e d thermodynamic s t u d y o f the C l a u s r e a c t i o n was p u b l i s h e d by Gamson and E l k i n s [ 3 ] . U s i n g the e q u i l i b r i u m c o n s t a n t method, they e s t i m a t e d the e q u i l i b r i u m c o m p o s i t i o n and the thermodynamic y i e l d o f s u l p h u r f o r a m i x t u r e o f r^S and s t o i c h i o m e t r i c amounts o f a i r . They c o n s i d e r e d temperatures r a n g i n g from 400 f o r 1600°K and p r e s s u r e s o f 1/2, 1 and 2 atm. The e q u i l i b r i u m y i e l d o f s u l p h u r e x h i b i t e d a minimum a t about 850°K ( F i g . 2.1). Gamson and E l k i n s a t t r i b u t e d t h i s phenomenon! t o the s h i f t i n t h e predominant s u l p h u r s p e c i e s w i t h t e m p e r a t u r e . At low temperatures (below 850°K) the predominant polymers a r e S g , and Sg, and the o v e r a l l r e a c t i o n i s h i g h l y e x o t h e r m i c . Hence, a c c o r d i n g t o Le C h a t e l i e r ' s p r i n c i p l e , the s u l p h u r y i e l d must d e c r e a s e w i t h i n c r e a s i n g temperature. At t e m p e r a t u r e s above 850°K, the l a r g e s u l p h u r polymers d i s s o c i a t e e n d o t h e r m i c a l l y ( m o s t l y t o S 2 ) and the 8 o v e r a l l r e a c t i o n becomes p r o g r e s s i v e l y l e s s e x o t h e r m i c l e a d i n g t o i n c r e a s i n g s u l p h u r y i e l d s [ 6 ] . D e s p i t e t h e s h o r t c o m i n g s o f t h e work o f Gamson and E l k i n s such as u s i n g thermodynamic d a t a p u b l i s h e d i n 1937 [ 7 ] , t h e i r r e s u l t s agree q u i t e w e l l w i t h f i n d i n g s p u b l i s h e d r e c e n t l y , (see F i g . 2.1). U s i n g t h e f r e e e n e r g y m i n i m i z a t i o n t e c h n i q u e d e v e l o p e d by White zX. al. [ 8 ] , McGregor [9] a l s o d e t e r m i n e d the e q u i l i b r i u m c o m p o s i t i o n and s u l p h u r y i e l d f o r a s t o i c h i o m e t r i c m i x t u r e o f H 2S and a i r . He c o n s i d e r e d the temperature range o f 400 t o 1750°K and a p r e s s u r e o f 1 atm; f r e e energy d a t a c o m p i l e d by McBride zt al. were u t i l i z e d [ 1 0 ] . In a d d i t i o n t o the s u b s t a n c e s c o n s i d e r e d by Gamson and E l k i n s [ 3 ] , McGregor a l s o i n c l u d e d S and H 2 i n h i s c a l -c u l a t i o n s . F i g u r e 2.1 shows good agreement between t h e r e s u l t s o f McGregor, and Gamson and E l k i n s . The s l i g h t l y h i g h e r v a l u e s o f the s u l p h u r y i e l d s o f McGregor, can be a t t r i b u t e d t o the d i f f e r e n t f r e e energy d a t a . Maadah and Maddox [11] a l s o employed the f r e e energy m i n i m i z a t i o n t e c h n i q u e t o e s t i m a t e the e q u i l i b r i u m c o m p o s i t i o n and s u l p h u r y i e l d o f the C l a u s R e a c t i o n . They used the f r e e energy d a t a c o m p i l e d by K e l l o g g [12] and a c c o u n t e d f o r a l a r g e number o f r e a c t i o n s and i m p u r i t i e s (eg. h y d r o c a r b o n s , carbon d i o x i d e , water and ammonia). Maadah and Maddox c o n c l u d e d from t h e i r r e s u l t s t h a t 9 F i g u r e 2 . 1 : C l a u s r e a c t i o n e q u i l i b r i u m c o n v e r s i o n v e r s u s temperature 10 s m a l l amounts o f i m p u r i t i e s do not seem t o have a major e f f e c t on s u l f u r c o n v e r s i o n s . They a t t r i b u t e d the s m a l l d e c r e a s e s i n s u l p h u r y i e l d s i n the p r e s e n c e o f i m p u r i t i e s t o the d e c r e a s e d c o n c e n t r a t i o n o f i n the a c i d gas f e e d . They a l s o o b s e r v e d t h a t the e q u i l i b r i u m s u l p h u r y i e l d and c o m p o s i t i o n were not s i g n i f i c a n t l y a f f e c t e d by c o n s i d e r i n g a l l 7 s u l p h u r s p e c i e s o r j u s t S 2 , Sg and Sg. However, the t a i l gas c o m p o s i t i o n showed n o t a b l e d i f f e r e n c e s . When a l l s u l p h u r s p e c i e s a r e c o n s i d e r e d , the combined c o n c e n t r a t i o n o f H 2S and S 0 2 i s lower by about 12% f o r t y p i c a l a c i d gases c o n t a i n i n g i m p u r i t i e s (H 2S = 89.72, C 0 2 = 4.98, CH 4 = 0.8, H 20 = 4.5%) and by about 15% f o r pure H 2S. Bragg [13] has d e v e l o p e d a computer program t o p r e d i c t the performance o f a C l a u s p l a n t under both e q u i l i b r i u m and n o n - e q u i l i b r i u m c o n d i t i o n s . A f r e e energy m i n i m i z a t i o n t e c h n i q u e was used t o d e t e r m i n e the c h e m i c a l r e a c t i o n e q u i l i b r i a . The p r e d i c t e d and measured p l a n t performance agreed q u i t e w e l l . K e l l o g [12] has shown t h a t , a t t e m p e r a t u r e s above 600°K, s u l p h u r vapour c o n t a i n s s i g n i f i c a n t amounts o f a l l polymers r a n g i n g from S 2 t o Sg. Based on t h e s e f i n d i n g s , B e n n e t t and Meisen [14] s t u d i e d the C l a u s r e a c t i o n e x t e n s i v e l y u t i l i z i n g the key component method d e v e l o p e d by K e l l o g g [ 1 2 ] . They used m a i n l y the f r e e energy d a t a c o m p i l e d by McBride oX al. [ 1 0 ] . They a c c o u n t e d f o r a l l s u l p h u r polymers as w e l l as a l a r g e number o f n i t r o g e n and s u l p h u r compounds, and f r e e r a d i c a l s . T h e i r r e s u l t s agreed w i t h the f i n d i n g s o f K e l l o g g , 11 but not a l l the compounds and f r e e r a d i c a l s were p r e s e n t i n s i g n i f i c a n t q u a n t i t i e s . The e q u i l i b r i u m s u l p h u r y i e l d s (see F i g . 2.1) c o r r e s p o n d c l o s e l y t o t h o s e o f Gamson and E l k i n s , and McGregor. A g a i n , minor d i f f e r e n c e s a t tem p e r a t u r e s below 1500°K a r e a t t r i b u t a b l e t o d i f f e r e n t f r e e e n e r g y d a t a . The n o t a b l e d e v i a t i o n above 1500°K r e s u l t s m a i n l y from d i s s o c i a t i o n r e a c t i o n s i n c l u d i n g the f o r m a t i o n o f monotomic s u l p h u r . 2.1.2. E x p e r i m e n t a l S t u d i e s A l t h o u g h f l u i d i z e d bed C l a u s r e a c t o r s have not been r e p o r t e d i n the l i t e r a t u r e , e x t e n s i v e s t u d i e s on f i x e d beds a r e a v a i l a b l e . A b i l i t y o f s o l i d s u b s t a n c e s t o c a t a l y s e the r e a c t i o n between F^S and S 0 2 was e s t a b l i s h e d when, i n 1927, T a y l o r and Wesley [56] o b s e r v e d t h a t the r e a c t i o n r a t e was p r o p o r t i o n a l t o the s u r f a c e a r e a o f t h e i r Pyrex g l a s s r e a c t o r o p e r a t e d between 370 and 730°C. They a l s o e s t i m a t e d the r e a c t i o n o r d e r s f o r H 2S and S 0 2 to be 1.5 and 1.0, r e s p e c t i v e l y . S t u d y i n g the a b i l i t y o f m e t a l l i c s u l p h i d e s t o c a t a l y s e the r e a c t i o n between H 2S and S 0 2 , Murthy and Rao [57] found c o b a l t t h i o m o l y b d a t e t o be the b e s t c a t a l y s t . They o b s e r v e d t h a t no r e a c t i o n would o c c u r a t 25°C w i t h o u t water. They used h y d r a t e d and anhydrous s a l t t o c o n t r o l the m o i s t u r e c o n t e n t o f the r e a c t o r . In the p r e s e n c e o f water, they o b t a i n e d an o v e r a l l r e a c t i o n o r d e r o f 2.0. 12 U s i n g commercial b a u x i t e i n a r e c y c l e r e a c t o r , McGregor [9] s t u d i e d the k i n e t i c s o f the C l a u s r e a c t i o n . He d e v e l o p e d the f o l l o w i n g e x p r e s s i o n f o r the r e a c t i o n r a t e : a b r = k Q exp (-E/RT) P H ^ S P g m o l e / h r - g - c a t a l y s t 2.1 where k Q = 2.198 ± 0.564 h r " 1 E = 7589 ± 451 c a l s . R = 1.98 c a l / g mole °K a = 0.963 ± 0.0448 b = 0.359 ± 0.135 and T denotes the temperature i n °K. P u c and P denote the p a r t i a l SO£ p r e s s u r e s ( i n mm Hg) o f H^S and SOg, r e s p e c t i v e l y . T h i s e x p r e s s i o n a l s o a g r e e d w i t h p r e v i o u s r a t e measurements [ 5 9 ] . McGregor recommended a p r o c e s s c o n s i s t i n g o f t h r e e c o n v e r t e r s i n s e r i e s , t o improve s u l p h u r r e c o v e r y . The s i g n i f i c a n t a s p e c t o f t h i s scheme i s the c o n d e n s a t i o n o f water between the l a s t two c o n v e r -t e r s t o s h i f t the r e a c t i o n e q u i l i b r i u m t o the p r o d u c t s i d e . T h i s recommendation was based on h i s f i n d i n g s t h a t , w h i l e low p a r t i a l p r e s s u r e s o f water vapour had an a u t o c a t a l y t i c e f f e c t on the r e a c t i o n , h i g h p a r t i a l p r e s s u r e s caused marked r e t a r d a t i o n . He a l s o o b s e r v e d t h a t the C l a u s r e a c t i o n o c c u r s p r e d o m i n a n t l y on the e x t e r n a l s u r f a c e o f the c a t a l y s t . Dal l a Lana eX. al. [58] have proposed t h e f o l l o w i n g r a t e e x p r e s s i o n f o r the C l a u s r e a c t i o n : 13 1.0 0.5 K p H ? S P s o 2  r = ( 1 + 0.00423PH o } 6 X P ( - 7 4 0 ° / R T ) 2 - 2 A l t h o u g h t h i s e x p r e s s i o n i n d i c a t e s t h a t water vapour a c t s as an i n h i b i t o r , they o b s e r v e d t h a t condensed water and molten s u l f u r c a t a l y z e the r e a c t i o n . U s i n g the d a t a o b t a i n e d under w i d e l y v a r y i n g c o n d i t i o n s Grancher [60] o b t a i n e d s i m i l a r r a t e e x p r e s s i o n s f o r the C l a u s r e a c t i o n . Based on h i s f i n d i n g s , the r e a c t i o n i s l i m i t e d by the i n t e r n a l d i f f u s i o n t h r o u g h the macropores. C o n s e q u e n t l y , he recommended the use o f small c a t a l y s t p a r t i c l e s w i t h l a r g e p o r e s . The c o n t r o l o f the C l a u s r e a c t i o n by pore d i f f u s i o n has a l s o been r e p o r t e d by Landau e£ al. [62] and George [61] . Landau e£ al. based t h e i r c o n c l u s i o n on the f a c t t h a t the a c t i v i t y o f t h e i r b a u x i t e c a t a l y s t i n c r e a s e d w i t h d e c r e a s i n g p a r t i c l e s i z e . George, however, reached the same c o n c l u s i o n based on the low a c t i v a t i o n energy o f 5.5 k c a l / m o l e . He a l s o o b t a i n e d 1.0 and 0 as the k i n e t i c o r d e r s f o r H 2S and S 0 2 , r e s p e c t i v e l y . In a d d i t i o n , he found water vapour t o be i n h i b i t i n g . U s i n g a f i x e d - b e d , i n t e g r a l f l o w r e a c t o r , George [63] s t u d i e d the c a t a l y t i c a c t i v i t i e s o f a c i d s and bases f o r the C l a u s r e a c t i o n . The a c i d s and bases were s u p p o r t e d on Chromosorb - A. He found t h a t , w h i l e a c i d i t y d i d not have any e f f e c t , b a s i c i t y c o n s i d e r a b l y 14 improved the c a t a l y t i c a c t i v i t y f o r the C l a u s r e a c t i o n . Pearson [64] a l s o examined the a c t i v i t y o f v a r i o u s C l a u s c a t a l y s t s such a s : (1) K a i s e r S-201 a c t i v a t e d a l u m i n a , (2) K a i s e r S-501 a c t i v a t e d a l u m i n a , (3) a c t i v a t e d b a u x i t e and (4) cobalt-molybdenum. He o b s e r v e d t h a t a l l o f t h e s e c a t a l y s t s have good i n i t i a l a c t i v i t y , but t h a t the K a i s e r S-501 and cobalt-molydenum c a t a l y s t s have the h i g h e s t r e s i s t a n c e t o c a t a l y s t p o i s o n i n g . 2.1.3. I n d u s t r i a l C l a u s P r o c e s s S i n c e 1883 when C P . C l a u s f i r s t d e v e l o p e d the c o m m e r c i a l -s c a l e p r o c e s s f o r c o n v e r t i n g H 2S t o e l e m e n t a l s u l p h u r , t h i s p r o c e s s has undergone c o n s i d e r a b l e m o d i f i c a t i o n s . The t h r e e m o d i f i c a t i o n s used i n modern i n d u s t r i a l C l a u s p l a n t s are s t r a i g h t t h r o u g h , s p l i t s tream and d i r e c t o x i d a t i o n [ 9 ] . The c o r r e s p o n d i n g f l o w s h e e t s a r e shown i n F i g . 2.2. The c h o i c e o f p r o c e s s depends p r i m a r i l y on the c o n c e n t r a t i o n s o f H 2S and hydrocarbons i n the f e e d gas. The amounts o f heavy and u n s a t u r a t e d hydrocarbons c a n , however, be s u b s t a n t i a l l y reduced by f i r s t p a s s i n g the a c i d gas through c h a r c o a l a d s o r p t i o n beds [70]. The r e a s o n i s t h a t they p o i s o n the c a t a l y s t i n the r e a c t o r s by d e p o s i t i n g l a y e r s o f carbon [ 6 8 ] . 15 STRAIGHT SPLIT DIRECT THROUGH FLOW OXIDATION H 2 S 5 0 - 1 0 0 % 1 5 - 5 0 % 2 - 1 5 % HYDROCARBON < 2 % < 5 % >5% H 2 S AIR H 2 S AIR i i FURNACE CONDENSER PREHEATER REACTOR Q CONDENSER PREHEATER REACTOR Q CONDENSER TO STACK (or additional reactor ) F i g . 2.2 I n d u > t r i a l C l a u s P r o c e s s e s [9] 16 In the s t r a i g h t - throug h p r o c e s s , the e n t i r e a c i d gas p l u s the s t o i c h i o m e t r i c amount o f a i r a r e i n t r o d u c e d i n t o the f u r n a c e which o p e r a t e s a t about 1100°C. The f o l l o w i n g p r i m a r y r e a c t i o n s o c c u r : H 2S + 1/2 0 2 5 = t l / n S n + H 20 2.3 H 2S + 3/2 0 2 -s=5r S 0 2 + H 20 2.4 The s u b s c r i p t n denotes the number o f s u l p h u r atoms per m o l e c u l e ; a t 1100°C, n = 2. The o x i d a t i o n o f H 2S i s i n c o m p l e t e and the f u r n a c e o f f - g a s c o n t a i n s m a i n l y s u l p h u r vapour, S 0 2 , H 2S, H 20 and N 2. T h i s gas m i x t u r e i s passed through a s e r i e s o f two o r more r e a c t o r s , c o n t a i n i n g a c t i v a t e d a l u m i n a c a t a l y s t , t o c o n v e r t H 2S and S 0 2 t o s u l p h u r a c c o r d i n g to the r e a c t i o n , 2H 2S + S 0 2 ^ = t 2 H 2 0 + 3/n S n . 2.5 The s u l p h u r i s condensed and the gas m i x t u r e i s p r e h e a t e d t o the o p t i m a l temperature b e f o r e each r e a c t o r . The o p t i m a l t e m p e r a t u r e s f o r two r e a c t o r s i n s e r i e s a r e u s u a l l y about 280 and 230°C, r e s p e c t i v e l y [ 7 1 ] . In the s p l i t - s t r e a m p r o c e s s , o n e - t h i r d o f the a c i d gas i s o x i d i z e d i n the f u r n a c e a c c o r d i n g to r e a c t i o n 2.4. The r e m a i n i n g t w o - t h i r d s o f the a c i d gas i s mixed w i t h the f u r n a c e p r o d u c t s and passed through a s e r i e s o f two o r more r e a c t o r s where R e a c t i o n 2.5 o c c u r s . In t h i s p r o c e s s , p r i m a r i l y S 0 2 and H 20 ar e produced i n the f u r n a c e . The s u l p h u r r e c o v e r y i s a c h i e v e d i n the c a t a l y t i c r e a c t o r s . 17 In t h e d i r e c t o x i d a t i o n p r o c e s s , a c i d gases c o n t a i n i n g low c o n t r a t i o n s o f h^S a r e mixed w i t h s t o i c h i o m e t r i c amounts o f a i r and f e d d i r e c t l y t o the r e a c t o r s . The most e f f i c i e n t o f the t h r e e p r o c e s s e s i s the s t r a i g h t through p r o c e s s where s u l p h u r c o n v e r s i o n e f f i c i e n c i e s o f 93 t o 97% can be o b t a i n e d by a f u r n a c e p l u s two r e a c t o r s i n s e r i e s [ 7 1 ] . In t h e d i r e c t o x i d a t i o n p r o c e s s , c o n v e r s i o n e f f i c i e n c i e s o f 80 t o 85% a r e common [7 0 ] . The c o n v e r s i o n e f f i c i e n c y o f the s p l i t s tream p r o c e s s i s about 87 t o 93%. In a l l t h r e e p r o c e s s e s , t h e e f f l u e n t from t he l a s t r e a c t o r may be f u r t h e r t r e a t e d i n t a i l gas u n i t s t o s a t i s f y a i r - p o l l u t i o n s t a n d a r d s . The main t a i l gas p r o c e s s e s i n v o l v e l i q u i d o x i d a t i o n and d r y bed a d s o r p t i o n [65, 66, 67, 9 3 ] . In the l i q u i d o x i d a t i o n p r o c e s s e s , t he t a i l gases c o n t a i n i n g about 1.5% h^S, 0.75 SO2, 8.25% CO2 and 89.5% N 2 a r e t r e a t e d w i t h s o l u t i o n s c o n t a i n i n g an a l k a l i n e compound and an o x i d i z i n g agent. In the d r y bed a d s o r p t i o n p r o c e s s e s , the t a i l gas i s c o n t a c t e d w i t h h y d r a t e d f e r r i c o x i d e which r e a c t s t o form f e r r i c s u l p h i d e . The l a t t e r i s s u b s e q u e n t l y o x i d i z e d t o s u l p h u r and f e r r i c o x i d e when exposed t o oxygen. S u l f r e e n u n i t s have a l s o been used t o t r e a t t a i l g a s e s . In t h e s u l f r e e n p r o c e s s , t h e t a i l gas i s c o n t a c t e d w i t h a c t i v a t e d alumina m a i n t a i n e d below the s u l p h u r dew p o i n t . The s u l p h u r formed d e p o s i t s on the c a t a l y s t which i s r e g e n e r a t e d p e r i o d i c a l l y when t h e c o n v e r s i o n e f f i c i e n c y d r ops s u b s t a n t i a l l y below a s p e c i f i e d v a l u e [ 7 1]. 18 2.2. FLUIDIZED BED 2.2.1. F l u i d i z a t i o n When a f l u i d f l o w s upward thro u g h a bed o f small p a r t i c l e s s u p p o r t e d i n a v e r t i c a l c o n t a i n e r by a g r i d , the p r e s s u r e drop a c r o s s t he bed i n c r e a s e s w i t h t he f l u i d v e l o c i t y u n t i l the bed b e g i n s t o expand. A f t e r t h i s p o i n t , t he p r e s s u r e drop remains c o n s t a n t and the p a r t i c l e s l o s e permanent c o n t a c t w i t h each o t h e r ( F i g . 6.2). The p a r t i c l e s move f r e e l y and the bed i s s a i d t o be f l u i d i z e d . The appearance o f the bed i s s i m i l a r t o t h a t o f a b o i l i n g l i q u i d . The v e l o c i t y a t which t he bed b e g i n s t o expand i s c a l l e d the minimum o r the i n c i p i e n t f l u i d i z a t i o n v e l o c i t y . U s u a l l y the p r e s s u r e drop decreases s i i g h t l y from maximum v a l u e t o a c o n s t a n t v a l u e . T h i s b e h a v i o u r i s due t o the r e s e t t l i n g o f the p a r t i c l e s i n the l o o s e s t arrangement [ 1 9 ] . The d i f f e r e n c e between the two p r e s s u r e drops has been a t t r i b u t e d t o the f r i c t i o n between the i n d i v i d u a l p a r t i c l e s j u s t b e f o r e they move f r e e l y [ 4 9 ] . When the f l u i d v e l o c i t y i s g r a d u a l l y d e c r e a s e d and f l u i d i z a t i o n c e a s e s the p r e s s u r e drop o f the f i x e d bed may be l e s s than f o r the i n i t i a l f i x e d bed. T h i s phenomenom i s due t o the f a c t t h a t the p a r t i c l e s a r e more l o o s e l y packed than t h e y were b e f o r e f l u i d i z a t i o n . The bed h e i g h t i s always g r e a t e r a f t e r d e f l u i d i z a t i o n . When the f l u i d v e l o c i t y i s i n c r e a s e d beyond the minimum f l u i d i z a t i o n v e l o c i t y , the bed becomes l e s s dense and, a t a v e l o c i t y c a l l e d a t e r m i n a l o r f r e e f a l l i n g v e l o c i t y , the p a r t i c l e s a r e blown out o f the bed. 19 Depending on t h e n a t u r e o f the f l u i d , v e l o c i t y o f the f l u i d , p a r t i c l e s i z e and d e n s i t y , and bed d i a m e t e r and h e i g h t , a f l u i d i z e d bed can assume any o f thes e regimes: PaAtlcalate. VZiU.cU.zatA.on - T h i s regime i s sometimes c a l l e d -smooth {hii.dJizati.0Yi because the bed expands smoothly. There i s no bubble f o r m a t i o n and no bed s u r f a c e f l u c t u a t i o n . T h i s i s t y p i c a l o f l i q u i d f l u i d i z a t i o n . F o r gas f l u i d i z a t i o n , t h i s regime o c c u r s j u s t above the minimum f l u i d i z a t i o n v e l o c i t y . A c c o r d i n g to K u n i i and L e v e n s p i e l [ 2 2 ] , p a r t i c u l a t e f l u i d i z a t i o n o c c u r s when where Q F < 100 2.6 Q F = < F rmf) < R emf) ( p _ ^ } i m f , 2 ' 7 p d b U 2 _ umf ' 2.8 Fr, and mf d g P U - d n 2.9 R e = m f P mf u Babbling hluldi.zati.on - T h i s regime i s a l s o c a l l e d , aggsie.gati.vz {lvu.di.zati.on because v o i d s , bubbles o r f l u i d p o c k e t s r i s e through the bed and break a t the s u r f a c e . The bubbles a r e sm a l l near the d i s t r i b u t o r and they grow m o s t l y by c o a l e s c e n c e as th e y r i s e through the bed. The r i s i n g bubbles a g i t a t e the bed and t h i s g e n e r a t e s 20 n e a r - p e r f e c t m i x i n g . T h i s regime u s u a l l y o c c u r s when the f l u i d i s a gas and the v e l o c i t y i s h i g h . N o r m a l l y , when Q F > 100 2.10 b u b b l i n g f l u i d i z a t i o n w i l l o c c u r [22]. Slugging FliUdLLzatLon - S l u g g i n g o c c u r s when the gas bubbles occupy the e n t i r e column c r o s s - s e c t i o n . T h i s u s u a l l y a r i s e s when the gas v e l o c i t y and the r a t i o between t he bed h e i g h t and d i a m e t e r a r e h i g h . A l t h o u g h s l u g g i n g p r o v i d e s f a i r l y good g a s - s o l i d c o n t a c t i n g , i t i s u n d e s i r a b l e because o f s e v e r e m e c h a n i c a l s t r e s s on the app a r a t u s and e r r a t i c p r e s s u r e drop a c r o s s the bed [ 5 4 ] . A l s o , the bed s u r f a c e moves up and down a t a r e g u l a r f r e q u e n c y . For o t h e r modes o f f l u i d i z a t i o n see Grace zX al. [50]. 2.2.2. B a s i c Design F a c t o r s The most i m p o r t a n t f a c t o r s which must be c o n s i d e r e d when d e s i g n i n g a f l u i d i z e d bed c a t a l y t i c r e a c t o r a r e : i ) C a t a l y s t p a r t i c l e s s i z e (dp) and d e n s i t y ( p p ) i i ) Minimum f l u i d i z a t i o n v e l o c i t y , U ^ i i i ) T e r m i n a l v e l o c i t y , U t i v ) L/D R a t i o (bed h e i g h t / b e d d i a m e t e r ) v) D i s t r i b u t o r v i ) Bubbles d i a m e t e r , v e l o c i t y and f r e q u e n c y 21 These f a c t o r s a re f u r t h e r d i s c u s s e d below i ) Catalyst paAtlclu t>i.ze, and dtmiXy - The c a t a l y s t used i n f l u i d i z e d bed r e a c t o r s i s u s u a l l y s u b j e c t e d t o s i z e r e d u c t i o n o p e r a t i o n such as c r u s h i n g w i t h a g y r a t o r y b r e a k e r . T h i s o p e r a t i o n c r e a t e s s i z e d i s t r i b u t i o n and the average p a r t i c l e s i z e , dp, i s determined by s i e v e a n a l y s i s : d D = l / E U , - / d ) 2.11 1 i where denotes the f r a c t i o n o f m a t e r i a l i n s i z e i n t e r v a l i and dp. denotes the a r i t h m e t i c mean o f the mesh dimen s i o n s o f the two s i e v e s t h a t d e f i n e the f r a c t i o n i . For a m i x t u r e o f p a r t i c l e s o f d i f f e r e n t s i z e and shape the s p h e r i c i t y , <(> , must a l s o be c o n s i d e r e d [ 2 2 ] . I f t he p a r t i c l e s a r e f i n e and non-porous, the p a r t i c l e d e n s i t y can be determined by the volume d i s p l a c e m e n t method. i i ) Minimum {liUdizaton v e l o c i t y ' - At t h i s v e l o c i t y the bed o f f i n e c a t a l y s t p a r t i c l e s b e g i n s t o expand when gas i s passed upward through i t . T h i s v e l o c i t y can be e s t i m a t e d e x p e r i m e n t a l l y by p l o t t i n g the bed p r e s s u r e drop as a f u n c t i o n o f gas v e l o c i t y . (See F i g . 6.2) The minimum f l u i d i z a t i o n v e l o c i t y can a l s o be p r e d i c t e d from a number o f c o r r e l a t i o n s [22, 49, 51, 52, 5 3 ] . A good s e t o f c o r r e l a t i o n s f o r e s t i m a t i n g a r e : 22 For Ar < 10 , Jmf 0.00075 g d „ ( P _ - P ) / V 2.12 For Ar > 10 U 0.202 [g d p ( P - P ) / p ] ' 2.13 For 1 0 3 < Ar < 1 0 7 , U f - j^- [(739.84 + 0.0408 Ar)^-27.2] gd p (p. - P ) Where Ar = — £ J 2.14 2.15 I t has been o b s e r v e d t h a t t h e r e i s c h a n n e l l i n g i f the d i f f e r e n c e between t h e e x p e r i m e n t a l and p r e d i c t e d v a l u e i s g r e a t e r than 20%. i i i ) T&vmlnal {/oJLocuXy - The upper l i m i t o f the gas f l o w r a t e t h r o u g h the f l u i d i z e d bed i s g i v e n by the t e r m i n a l v e l o c i t y i f c y c l o n e s are not p r o v i d e d . A t t h i s v e l o c i t y , the g r a v i t a t i o n a l f o r c e i s equal to the f l u i d drag a c t i n g on the p a r t i c l e s and hence [22] 49 - d p ( p p - p ) 3 P C 2.16 where D | i f o r R e p < 0 . 4 2.17 23 2.18 2.19 2.20 From Eqs. 2.12, 2.13 and 2.16, 74 f o r s m a l l p a r t i c l e s 2.21 8.6 f o r l a r g e p a r t i c l e s 2.22 While average p a r t i c l e s i z e based on s i e v e a n a l y s i s i s used t o determine U ^ , the s m a l l e s t s i z e o f s o l i d s , which are p r e s e n t i n a p p r e c i a b l e amounts, i s recommended f o r e s t i m a t i n g [ 2 2 ] . i v ) L/V RcuLLo - The d i a m e t e r o f the bed, D, i s u s u a l l y f i x e d by the gas f l o w r a t e and f l u i d i z a t i o n v e l o c i t y which must l i e between the minimum f l u i d i z a t i o n and the t e r m i n a l v e l o c i t y . The bed h e i g h t , L, i s d e t e r m i n e d by the g a s - s o l i d c o n t a c t i n g time and the heat t r a n s f e r a r e a between the w a l l and the bed. R a i s i n g the bed h e i g h t enhances both parameters. However, f o r a s l e n d e r bed, h i g h L may l e a d t o s l u g g i n g . S u r p r i s i n g l y , J o r d a n [54] recommends t h a t f o r s m a l l beds ( l e s s than 150 mm i n d i a m e t e r ) , 1 < L/D < 10 2.23 10 V -r f o r 0.4 < Re„ < 500 C d = 0.4 f o r 500 < Re p < 200,000 and Re = p U t d p y Jmf A N D IT- = mf 24 and f o r l a r g e beds, 1 < L/D < 5, 2.24 even though temperature g r a d i e n t may o c c u r i f , L/D > 5 v) VAjstAAjotitoh. - The c h o i c e o f d i s t r i b u t o r depends both on the d e s i r e d q u a l i t y o f f l u i d i z a t i o n and the p r e s s u r e drop. A l t h o u g h h i g h p r e s s u r e drops may l e a d t o good f l u i d i z a t i o n the power consumption o f the blower may become e x c e s s i v e [ 1 6 ] . High p r e s s u r e drops can a l s o h i n d e r the c i r c u l a t i o n o f s o l i d s between s t a g e s [ 2 2 ] . A c c o r d i n g t o K u n i i and L e v e n s p i e l [ 2 2 ] , the d i s t r i b u t o r p r e s s u r e drop, A P n , must s a t i s f y the f o l l o w i n g c o n d i t i o n s t o a c h i e v e good f l u i d i z a t i o n : A PD > 0.10 A P B A PQ > 100 A P £ A PQ * 35 cm o f H 20 where APg and AP^ denote the bed p r e s s u r e drop and the e x p a n s i o n l o s s a t the i n l e t c o n n e c t i o n t o the v e s s e l , r e s p e c t i v e l y . When th e s e c o n d i t i o n s a r e n o t met, b a f f l e s s h o u l d be used t o improve the q u a l i t y o f f l u i d i z a t i o n . For a l i s t o f s u c c e s s f u l i n d u s t r i a l d i s t r i b u t o r s and the d e s i g n o f o r i f i c e p l a t e d i s t r i b u t o r s see r e f e r e n c e 16 o r 22. 25 v i ) Buhb.l<Li, - Bubbles a r e i m p o r t a n t c h a r a c t e r i s t i c s o f gas f l u i d i z e d beds. They a re r e s p o n s i b l e f o r most o f the f e a t u r e s which d i f f e r e n t i a t e a packed bed from a f l u i d i z e d bed. They modify the gas f l o w through the system and cause p a r t i c l e movement which g e n e r a l l y r e s u l t s i n r a p i d and e x t e n s i v e p a r t i c l e m i x i n g and, c o n s e q u e n t l y , v e r y h i g h heat t r a n s f e r c o e f f i c i e n t s between the bed and immersed s u r f a c e s ( i n c l u d i n g the c o n t a i n i n g w a l l ) [ 5 5 ] . Bubbles b e g i n t o form, near t he d i s t r i b u t o r , when the f l u i d i z a t i o n v e l o c i t y exceeds t he minimum f l u i d i z a t i o n v e l o c i t y . The bubble s i z e does n o t o n l y i n c r e a s e w i t h h e i g h t above the d i s t r i b u t o r , but i t a l s o i n c r e a s e s w i t h t h e gas v e l o c i t y . The former i s due t o c o a l e s c e n c e , e x p a n s i o n and mass t r a n s f e r from t he dense phase. The bubbles a l s o s p l i t o r a t t a i n a s t a b l e s i z e . As a r e s u l t , t h e r e may be a broad d i s t r i b u t i o n o f bubble s i z e s a t any h o r i z o n t a l l e v e l [ 2 0 ] . The bubble's shape v a r i e s from a s h a l l o w s p h e r i a l cap t o an a l m o s t complete s p h e r e . The shape can be g r o s s l y d i s t o r t e d by w a l l s , submerged s u r f a c e s o r o b s t r u c t i o n s and s p l i t t i n g o r c o a l e s c e n c e [ 5 5]. A s s o c i a t e d w i t h the bubble a re a c l o u d and wake ( F i g . 2 . 3 ) . The c l o u d i s the r e g i o n s u r r o u n d i n g the top p a r t o f the bub b l e . I t i s formed when gas f l o w i n g upwards through the bubble r o o f i s dragged down by the p a r t i c l e s s l i d i n g down the bubble s u r f a c e . Most o f the mass t r a n s f e r between the bubble and the dense phase o c c u r s i n 26 BUBBLE F i g . 2.3: Gas bubble i n a f l u i d i z e d bed 27 the c l o u d . ( F o r c o r r e l a t i o n s p r e d i c t i n g mass t r a n s f e r c o e f f i c i e n t see r e f e r e n c e 41 o r 19). T a i l i n g t he bubble i s the wake which appears to complete the s p h e r i c a l shape o f the b u b b l e . I t o c c u p i e s 1/4 t o 1/3 o f the bubble volume. The s o l i d m i x i n g caused by the b u b b l e s t a k e s p l a c e through the wakes. The p a r t i c l e s a r e c a r r i e d upwards i n the wakes and downwards everywhere e l s e [ 3 7 ] . 28 C h a p t e r 3 3 SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS 3.1. INTRODUCTION A thermodynamic e q u i l i b r i u m model was d e v e l o p e d t o s i m u l a t e the performance o f a C l a u s f u r n a c e and two f l u i d i z e d bed C l a u s r e a c t o r s i n s e r i e s . The f o u r c a s e s shown i n F i g . 3.1 were c o n s i d e r e d . In Cases 1 and 2, a t o t a l water condenser i s p r e s e n t upstream o f the f i r s t r e a c t o r . In a d d i t i o n , the s u l p h u r formed i n the second r e a c t o r , which i s m a i n t a i n e d below the s u l p h u r m e l t i n g p o i n t , i s removed from the c a t a l y s t i n a r e g e n e r a t o r i n Case 1. F o r Case 2, the s u l p h u r - l a d e n c a t a l y s t i s r e c y c l e d t o the f i r s t r e a c t o r . Cases 3 and 4 a r e s i m i l a r t o Cases 1 and 2, e x c e p t t h a t the water c o n d e n s e r s a r e a b s e n t . T a b l e 3.1: Components o f the streams shown i n F i g u r e 3.1 Stream No. Components 1 A i r ( N 2 , 0 2 ) 1A H 2S 2, 5 S 2 , S^, Sg, Sg, H 2S, S 0 2 , H 20, N 2 3, 6, 7 H 2S, S 0 2 , H 20, N 2 4 H 2S, S 0 2 , N 2 8 S u l p h u r l a d e n c a t a l y s t 9 C a t a l y s t 10, 11 S 0 2 , H 20, N 2 12 E l e m e n t a l S u l p h u r 13 H 20 14 R e g e n e r a t o r o f f gas c o n t a i n i n g e l e m e n t a l s u l p h u r 13 WATER CONDENSER 12 FIRST REACTOR SULPHUR CONDENSER 13 SULPHUR CONDENSER AND BOILER 1A i 2 REGENERATOR 14 8 SECOND REACTOR FURNACE 11 STACK 10 BURNER CASE 1: NO CATALYST RECYLE, WATER CONDENSED 12 SULPHUR CONDENSER 8 REBOILER 1 1A FIRST REACTOR SULPHUR CONDENSER 42 FURNACE REGENERATOR 8 SECOND REACTOR "14 11 STACK 10 BURNER 12 13 12 WATER CONDENSER 12 FIRST REACTOR 43 SULPHUR CONDENSER AND BOILER 1A SULPHUR CONDENSER 8 SECOND RE ACT OF, FURNACE 11 STACK 10 17 BURNER CASE 2: CATALYST RECYCLED, WATER CONDENSED 12 SULPHUR CONDENSER 8 REBOILER 1A FIRST REACTOR FURNACE SULPHUR CONDENSER 8 SECOND REACTOR 11 STACK 10 •7 BURNER CASE 3: NO CATALYST RECYCLE, NO WATER CONDENSED CASE 4: CATALYST RECYCLED, NO WATER CONDENSED F i g . 3.1 : Flaw diagrams o f m o d i f i e d C l a u s p r o c e s s e s ( f o r components o f streams see Table 3.1) 30 In o r d e r t o e s t a b l i s h the v a l i d i t y o f the c o m p u t a t i o n a l p r o c e d u r e , a f i f t h c a s e i n v o l v i n g o n l y t h e f u r n a c e was c o n s i d e r e d . The r e s u l t s from t h i s case were compared w i t h t h o s e o f Gamson and E l k i n s [ 3 ] , McGregor [ 9 ] , and Benne t t and Meisen [ 1 4]. The c o m p u t a t i o n a l p r o c e d u r e f o r Case 1 i s d e s c r i b e d below. The p r o c e d u r e f o r the o t h e r cases a r e l o g i c a l e x t e n s i o n s and a r e not p r e s e n t e d i n d e t a i l h e r e . 3.2 ASSUMPTIONS The p r i n c i p a l assumptions made i n the development o f the e q u i l i b r i u m model are as f o l l o w s : * The f u r n a c e f e e d c o n s i s t s o f pure H 2S and s t o i c h i o m e t r i c amounts o f a i r . * 70% s u l p h u r c o n v e r s i o n i s a c h i e v e d i n the f u r n a c e . One-t h i r d o f t h e H 2S u n c o n v e r t e d t o s u l p h u r i s o x i d i z e d t o S 0 2 . * The t o t a l p r e s s u r e i n s i d e the r e a c t o r s i s m a i n t a i n e d a t 0.5, 1.0 o r 2.0 atm. * The temperature o f the f i r s t r e a c t o r ranges from 400 t o 850°K w h i l e t h a t o f the second r e a c t o r i s kept a t 383.2°K, i . e . j u s t below the s u l p h u r m e l t i n g p o i n t . For sake o f s i m p l i c i t y , i m p u r i t i e s such as ammonia and hydr o c a r b o n s were n o t c o n s i d e r e d i n t h i s work. A l s o , i n p r a c t i c e , a ttempts a r e made t o remove them as much as p o s s i b l e because they reduce the performance o f the f u r n a c e and d e a c t i v a t e the c a t a l y s t i n t he r e a c t o r s . [74, 75] The s u l p h u r c o n v e r s i o n o f 70% i n the f u r n a c e was chosen because t h i s v a l u e i s t y p i c a l f o r i n d u s t r i a l C l a u s p l a n t s [ 7 1 ] . In Case 5, t h e second assumption i s not made s i n c e the f u r n a c e i t s e l f i s b e i n g m o d e l l e d . The t e m p e r a t u r e and p r e s s u r e ranges s t a t e d above c o v e r t h e o p e r a t i n g c o n d i t i o n s o f C l a u s p l a n t s [ 1 ] . 3.3 EQUILIBRIUM EQUATIONS The e q u i l i b r i u m r e a c t i o n s assumed t o o c c u r i n the f i r s t r e a c t o r a r e : 2H 2S + S 0 2 " ' » 2H 20 + 3/8 Sg c •<•: 3.1 1/4 S 8 ^ = ^ S 2 3- 2 1/2 S 8 » S 4 3- 3 3/4 S 8 ^ = 4 = ; , S 6 3- 4 I t i s easy t o show t h a t , = [ H 2 0 ] 2 Y 3 / 8 / ( [ H 2 S ] 2 [ S 0 2 ] ) 3.5 [ S 2 ] - K 2 Y 1 ' 4 3 - 6 [ S 4 ] - K 3 y " * [S6] - \ Y 3 ' « 32 where [ i ] denotes t h e p a r t i a l p r e s s u r e o f component i and Y = [ S 8 ] . The e q u l i b r i u m c o n s t a n t s K-j, K 2, Kg and K 4 were e v a l u a t e d u s i n g the f r e e energy d a t a c o m p i l e d by McBride nt a i . . [ 1 0 ] . By making e l e m e n t a l b a l a n c e s f o r H, 0 , S and N, i t can be shown t h a t [ S 0 2 ] = B ^ - B 2 Y 1 / 4 - B 3 Y 1 / 2 - B 4 Y 3 / 4 - B 5 Y 3 . 9 [H 20] = C-,P + C 2 Y 1 / 4 + C 3 Y 1 / 2 + C 4 Y 3 / 4 + C 5 Y 3 . 1 0 where, B-j = : 6a/n B 2 = = K 2 3 ( a + 2 3 + y ) / n B 3 = = K 3 3 ( a .+ 43 + 2 Y ) / n B 4 = = K 4 3 ( a + 6 3 + 3 Y ) / n B 5 B = 3 ( a + 8 3 + 4 Y ) / T I C l s = ( 3 3 - 2 a ) / n C 2 = = K 2 3 ( 2 a + 3 3 + 2 Y ) / n C 3 = = K 3 3 ( 2 a + 9 3 + 4 y ) / n C 4 s = K 4 3 ( 2 a + 1 5 3 + 6y)/ C 5 8 3 ( 2 a + 2 1 3 + 8 y ) / and = • 1 - 4 , = 2 a /3 = a ( Y + 3 3 ) + ( 3 3 - 2 a ) ( 3 + y/2) 3 . 1 3 3 . 1 4 3 . 1 5 33 <(» denotes t h e f r a c t i o n a l y i e l d o f s u l p h u r a c h i e v e d by the f u r n a c e ( t a k e n as 0.7) f o r Cases 1 to 4, y i s the r a t i o between N 2 and 0 2 i n a i r and P i s the t o t a l p r e s s u r e i n the r e a c t o r . S u b s t i t u t i n g Eqs. 3.9 and 3.10 i n t o Eq. 3.5 g i v e s , ( C 1 P + C 2 Y 1 / 4 + C 3 Y 1 / 2 + C 4 Y 3 / 4 + C 5 Y ) 2 Y 3 / 8  1 4 ( 8 ^ - B 2 Y 1 / 4 - B 3 Y 1 / 2 - B 4 Y 3 / 4 - B g Y ) 3 E q u a t i o n 3.16 has o n l y one unknown (Y) and i s r e g a r d e d as the e q u i l i b r i u m e q u a t i o n f o r the f i r s t r e a c t o r . I f the t o t a l number o f moles o f gas l e a v i n g the f i r s t r e a c t o r p er u n i t time i s denoted by <S, then i t f o l l o w s from an oxygen b a l a n c e t h a t , 6 = BP/ (2 [ S 0 2 ] + [ H 2 0 ] ) 3.17 Hence, t h e m o l a r f l o w r a t e s o f S 0 2 and H 20 l e a v i n g t he f i r s t r e a c t o r a r e r e s p e c t i v e l y g i v e n by, 8 1 = 6 [ S 0 2 ] 3.18 e 2 = 6 [H 20] 3.19 These e q u a t i o n s a r e based on the f a c t t h a t 1 mole o f H 2S, 0.5 mole o f 0 2 and 1.881 moles o f N 2 a r e f e d t o the f u r n a c e p e r u n i t t i m e . 34 Second ReactoA The second r e a c t o r i s assumed t o o p e r a t e below the s u l p h u r m e l t i n g p o i n t . The p r i m a r y r e a c t i o n i s t h e r e f o r e , K 5 2H 2S + S 0 2 ^ = * : 2 H 2 0 + 3 S M 3.20 where denotes m o n o c l i n i c s u l p h u r . Hence, K 5 = [ H 2 0 ] 2 / ( [ H 2 S ] 2 [ S 0 2 ] ) o r {((26-, + e ? ) (P-3x) - Y x ) / e } 2 H = ^ 3.21 4 x J where x = [ S 0 2 ] 3.22 and e = 2 8 ^ 0 2 + Y/2 3.23 E q u a t i o n 3.21 i s the b a s i c e q u i l i b r i u m e q u a t i o n f o r the second r e a c t o r . 3.4 SOLUTION OF THE EQUILIBRIUM EQUATIONS ^  The e q u i l i b r i u m e q u a t i o n f o r the f i r s t r e a c t o r (Eq. 3-16) i s a f u n c t i o n w i t h a d i s c o n t i n u i t y a t B-,P - B 2 Y 1 / 4 - B 3 Y 1 / 2 - B 4 Y 3 / 4 - B^Y = 0 3.24 T h i s i s i l l u s t r a t e d i n F i g . 3.2 where M Y } , g i v e n by ( ^ P + C 2 Y 1 / 4 + C 3 Y 1 / 2 + C 4 Y 3 / 4 + C 5 Y ) 2 Y 3 / 8 M Y > = K l " ( B l P - B.Y 1/ 4 - B ^ 1 / 2 - B 4 Y 3 / 4 - B 5 Y ) 3 i s p l o t t e d as a f u n c t i o n o f Y. 3.25 F i g . 3.2 : S c hematic p l o t o f the e q u i l i b r i u m e q u a t i o n CO cn 36 The p o i n t o f d i s c o n t i n u i t y i s denoted by Y . As seen from F i g . 3.2, the s o l u t i o n o f Eq. 3.16, Y Q, l i e s i n t he r e g i o n 0 < Y < Y c 3.26 o s Hence, to o b t a i n Y , Y g i s f i r s t d e t e r m i n e d by s o l v i n g Eq. 3.24. The l a t t e r i s a c o n t i n u o u s , w e l l behaved f u n c t i o n and can be e a s i l y s o l v e d i t e r a t i v e l y . Two v a l u e s o f Y ( i . e . Y-j and Y 2 ) a r e then s e l e c t e d such t h a t , < 0 < M Y 2 } 3.27 I n i t i a l l y the v a l u e o f Y-| i s chosen a s , Y ] = Y s - e 1 3.28 where e.-j can be any a r b i t r a r y p o s i t i v e v a l u e such as 0.1. The v a l u e o f e-| i s then reduced o r i n c r e a s e d a number o f times by a f a c t o r o f 2 u n t i l C o n d i t i o n 3.27 i s s a t i s f i e d . The v a l u e o f Y 2 i s d e t e r m i n e d s i m i l a r l y . A f t e r the e s t i m a t i o n o f Y-| and Y 2, t h e s e v a l u e s a r e f e d by the main computer programme (see Appendix A) t o a subprogramme c a l l e d ZEROIN. T h i s subprogramme uses the s e c a n t and b i s e c t i o n methods t o converge i t e r a t i v e l y t o the e x a c t s o l u t i o n , Y Q [ 7 6 ] . Knowing Y , the e q u i l i b r i u m p a r t i a l p r e s s u r e o f S Q , the o 0 p a r t i a l p r e s s u r e s o f the o t h e r components and the e q u i l i b r i u m c o m p o s i t i o n and c o n v e r s i o n can be c a l c u l a t e d from Eqs. 3.6 t o 3.10 37 and the m a t e r i a l b a l a n c e s . The e q u i l i b r i u m e q u a t i o n f o r the second r e a c t o r , Eq. 3.21, i s a c u b i c f u n c t i o n i n terms o f x and i t can be s o l v e d a n a l y t i c a l l y . The c o r r e c t s o l u t i o n i s the r o o t which i s r e a l , p o s i t i v e and a l s o l e a d s t o a molar f l o w r a t e o f S 0 2 l e s s o r equal t o the i n i t i a l ^value F o r more d e t a i l s see Appendix A and R e f e r e n c e 86. 38 Chapter 4 4 EXPERIMENTAL APPARATUS 4.1. REACTION EQUIPMENT The e x p e r i m e n t a l a p p a r a t u s which was used t o c a r r y o u t the C l a u s r e a c t i o n i n a f l u i d i z e d i s shown s c h e m a t i c a l l y i n F i g . 4.1 and p i c t o r i a l l y i n F i g . 4.2. I t c o n s i s t e d o f f o u r major components, i . e . the f l u i d i z e d bed r e a c t o r , n i t r o g e n r e g e n e r a t i o n system, gas a n a l y s i s system and s a f e t y d e v i c e s . 4.1.1. F l u i d i z e d Bed R e a c t o r The f l u i d i z e d bed r e a c t o r (0.1 m ID x 0.86 m h i g h w i t h a f r e e b o a r d s e c t i o n 0.2 m ID x 0.3 m h i g h ) i s shown i n F i g s . 4.3 and 4.4. I t was c o n s t r u c t e d from 316 s s t u b i n g 6 mm t h i c k . Two l a y e r s o f a w i r e mesh (Dynapore, t y p e 401420, made from 316 ss by M i c h i g a n Dynamics, I n c . , Garden C i t y , N.J.) were used as the d i s t r i b u t o r . A s i m i l a r mesh was i n s t a l l e d a t the top o f the r e a c t o r t o p r e v e n t c a t a l y s t e l u t r i a t i o n . A l o n g t he r e a c t o r , two 1/2" NPT ( N a t i o n a l p i p e t a p e r t h r e a d ) p o r t s were p r o v i d e d f o r c o n t i n u o u s c a t a l y s t c i r c u l a t i o n . In a d d i t i o n the r e a c t o r was c o n s t r u c t e d i n s i x s e c t i o n s t o p e r m i t bed h e i g h t s o f 0.25, 0.37, and 0.50 m. The r e a c t o r was heated e l e c t r i c a l l y w i t h s t a i n l e s s - s t e e l -s h i e l d e d nichrome w i r e s ( t y p e D/R19S2, made by P y r o t e n a x , I n c . , T o r o n t o , O n t a r i o ) wound on t h e o u t s i d e o f the r e a c t o r . The t o t a l V E N T PURGE-F i g . 4.1: Flow d i a g r a m o f the equipment ( A l l dimensions i n mm) 40 F i g . 4.2: General view o f the apparatus F i g . 4 . 3 : R e a c t o r , s c r u b b e r and d r i e r s 1/2" NPT 8 CLEARANCE HOLES FOR 5/16" BOLTS,45°APART, 10" PCD 1/4" NPT 12 CLEARANCE HOLES FOR 1/4" BOLT , 3 0 ° APART, 41/2 " PCD 1/4" NPT 1/4" NPT 2 DIAMETRICALLY OPPOSITE l" NPT 1/2 NPT 1/2 NPT 1/4" NPT 1/4" NPT 1/2" NPT 51 /2" F i g . 4.4: F l u i d i z e d bed r e a c t o r 43 power s u p p l i e d by the h e a t e r was 2 Kw. To c o o l the r e a c t o r i n . c a s e o f o v e r h e a t i n g , water c o o l i n g c o i l s were a l s o wound on the o u t s i d e o f the r e a c t o r . Thermal i n s u l a t i o n was p r o v i d e d by a 25 mm t h i c k C e r a b l a n k e t (made by Carborundum, I n c . , N i a g a r a F a l l s , N.Y.). To m o n i t o r the temperature i n s i d e the r e a c t o r , f o u r I r o n - C o n s t a n t a n thermocouples were l o c a t e d a t 30 mm below and 75, 650 and 1000 mm above the d i s t r i b u t o r . The second and f o u r t h thermocouples p r o v i d e d the i n p u t t o two p r o p o r t i o n a l temperature c o n t r o l l e r s (model 49, made by Omega E n g i n e e r i n g , I n c . , S t a m f o r d , Conn.) t o m a i n t a i n the d e s i r e d r e a c t o r temperature. The p r e s s u r e i n s i d e the r e a c t o r was m o n i t o r e d by 2 n i t r o g e n - p u r g e d , m e r c u r y - i n - g l a s s manometers. To p r e v e n t s u l p h u r from c l o g g i n g the tubes c o n n e c t i n g the r e a c t o r and the manometers, about 100 ml/min o f n i t r o g e n was a d m i t t e d through each p r e s s u r e p o r t . A s p r i n g l o a d e d r e l i e f v a l v e p r e v e n t e d e x c e s s i v e p r e s s u r e b u i l d - u p i n s i d e t he r e a c t o r . The r e l i e f v a l v e c r a c k e d opened a t 7.5 p s i g and opened f u l l y a t 10 p s i g . The f l o w r a t e o f the gases f e d t o the r e a c t o r ( i . e . H 2S, S 0 2 and N 2) were measured w i t h r o t a m e t e r s . P i c t o r i a l views o f the f r o n t and back o f the c o n t r o l p a n e l , showing the r o t a m e t e r s and the c o n n e c t i n g t u b i n g a r e p r e s e n t e d i n F i g s . 4.5 and 4.6, r e s p e c t i v e l y . The s p e c i f i c a t i o n s and the f u n c t i o n s o f the v a r i o u s r o t a m e t e r s a r e l i s t e d i n T a b l e 4.1. F i g . 4 . 5 : F r o n t o f c o n t r o l panel 45 F i g . 4.6: Back o f c o n t r o l panel T a b l e 4.1 : S p e c i f i c a t i o n s o f the r o t a m e t e r s PROGRAM CODE MANU-FACTURER TUBE NO FLOAT AIR FLOW RANGE (ml/min) GAS MEASURED REGRESSION COEFFICIENTS* (a; b; c) STANDARD DEVIATION ABOUT THE LINE L963 Roger Gilmont F1100 G l a s s 5 - 260 N 2 -5.9051; 1.2439; 0.02129 7.48 E l 402 Roger Gi lmont F1500 G l a s s 5,000-75,000 N ? 181.04; 269.86; 0.087756 315.0 R7M251 Brooks R-7M-25-1 SS 4000-46,000 h -132.57; 219.87; -0.15072 423.0 RSS604 Matheson 604 SS 1000-16,900 • H 2S -288.09; 126.52; -0.041227 37.67 J J RG604 Matheson 604 G l a s s 400-9,000 H 2S -405.18; 68.15; -0.0064719 35.71 j LSS604 Matheson 604 SS 1000-16,900 s o 2 -441.68; 134.21; -0.070844 267.77 j LG604 Matheson 604 G l a s s 400-9,000 s o 2 -364.0; 65.289; 0.022695 112.65 RSS602 Matheson 602 SS 40-859 H ?S -27.481; 3.0538; 0.029168 17.62 RG602 Matheson 602 G l a s s 20-386 H 2S -6.6041; 0.80274; 0.01361 11.37 j LSS602 Matheson 602 SS 40-859 S 0 2 -15.776; 4.6763; 0.019225 13.04 j * Flow r a t e , V = a + bx + cx ml/min, where x i s the s c a l e r e a d i n g on the r o t a m e t e r i n mm, e x c e p t R-8m-25-2 f o r which x i s the i n d e x on the tube (maximum = 1 ) Contd. T a b l e 4.1 : S p e c i f i c a t i o n s o f the rotameters PROGRAM CODE MANU-FACTURER TUBE NO FLOAT AIR FLOW RANGE (ml/min) GAS MEASURED REGRESSION COEFFICIENTS* ( a ; b ; c) STANDARD DEVIATION! ABOUT THE LINE J LG602 Matheson 602 G l a s s 20-386 s o 2 -5 .808; 1.3618; 0.010939 13.33 j L1SS603 Matheson 603 SS 200-4820 S 0 2 / N 2 -12 .197; 43.642; -0.069732 34.26 J LI G603 Matheson 603 G l a s s 100-2440 S 0 2 / N 2 - 6 1 . 4 ; 22.480; -0.0357 19.97 L2SS603 Matheson 603 SS 200-4820 N 2 -27 .493; 44.859; -0.087808 20.40 L2G603 Matheson 603 G l a s s 100-2440 N 2 -47.952; 22.026; -0.038328 19.27 L3SS603 Matheson 603 SS 200-4820 N 2 45.013; 45.482; -Q.090123 33.23 L3G603 Matheson 603 G l a s s 100-2440 N ? 27.767; 20.717; -0.027647 31.18 L4SS603 Matheson 603 SS 200-4820 Sample 45.013; 45.4,82; -0.090123 33.23 J L4G603 Matheson 603 G l a s s 100-2440 Sample 27.767; 20.717; -0.027647 31.18 IR-8M-252 Brooks R-8M-25-2 SS 8-RS-8 100,000-90,000 A i r 6685.5; 142040; -56597 1562.6 j * Flow r a t e , V = a + bx + cx ml/min. where x i s the s c a l e r e a d i n g on the rotameter i n mm, e x c e p t R-8M-25-2 f o r which x i s the i n d e x on the tube (maximum = 1 ) 48 The n i t r o g e n and s u l p h u r d i o x i d e streams were p r e h e a t e d e l e c t r i c a l l y upstream o f the r e a c t o r w i t h nichrome w i r e s which were h e a v i l y i n s u l a t e d w i t h f i b e r g l a s . : To a v o i d s u l p h u r c o n d e n s a t i o n , the l i n e between t h e r e a c t o r and s c r u b b e r was s i m i l a r l y h e a t e d . The power s u p p l i e d by the p r e h e a t e r and the exhaust h e a t e r were 1.2 and 0.4. Kw, r e s p e c t i v e l y . Two I r o n - C o n s t a n t a n thermocouples and two p r o p o r t i o n a l temperature c o n t r o l l e r s were a l s o p r o v i d e d t o m a i n t a i n the d e s i r e d temperatures i n the heated l i n e s . To o b s e r v e the q u a l i t y , o f f l u i d i z a t i o n , two i d e n t i c a l s i g h t g l a s s e s were i n s t a l l e d 340 mm above the d i s t r i b u t o r . The s i g h t g l a s s e s were l o c a t e d d i a m e t r i c a l l y o p p o s i t e each o t h e r w i t h one beh i n d and the o t h e r i n f r o n t o f the r e a c t o r . The o n e - i n c h NPT p o r t s f o r a c c e p t i n g the s i g h t g l a s s e s were i n c l i n e d a t 60° t o the r e a c t o r . One o f the s i g h t g l a s s e s i s shown i n F i g s . 4.7 t o 4.9. A machinable g l a s s s p a c e r was sandwiched between two Pyrex g l a s s e s . To p r e v e n t f o g g i n g o f the i n n e r Pyrex g l a s s by condensed s u l p h u r , the space between the Pyrex g l a s s e s was heated w i t h a nichrome w i r e . The r e s i s t a n c e o f the nichrome w i r e was 40 ohms and the maximum v o l t a g e which i t c o u l d t o l e r a t e w i t h o u t g l o w i n g was about 25 v o l t s . The nichrome w i r e was h e l d i n p l a c e by e i g h t p i n s mounted i n the r e c e s s o f t he machi n a b l e g l a s s s p a c e r . To p r o v i d e i l l u m i n a t i o n , l i g h t from a 60 w l i g h t b u l b was shone through the s i g h t g l a s s l o c a t e d b e h i n d the r e a c t o r . With t h i s arrangement, the s u r f a c e o f the f l u i d i z e d bed was always o b s e r v a b l e . 49 F i g . 4.7: D i s a s s e m b l e d s i g h t g l a s s F i g . 4.8: Mounted s i g h t g l a s s 51 F i g . 4.9 : S i g h t g l a s s 52 A system f o r c o n t i n u o u s l y f e e d i n g f r e s h c a t a l y s t t o the r e a c t o r and c o l l e c t i n g the s p e n t c a t a l y s t was a l s o p r o v i d e d (see F i g . 4.10). The f e e d tank c o n s i s t e d o f a 9" I.D. QVF g l a s s column and a 9" t o 2" r e d u c e r . The f l o w r a t e o f the c a t a l y s t was c o n t r o l l e d by a s h u t t e r v a l v e s i m i l a r to the one shown i n f i g s . 4.19 t o 4.21. The s h u t t e r opening was a d j u s t a b l e from about 1/2 t o 1/16 i n . To p r e v e n t the passage o f the hot gas m i x t u r e from the r e a c t o r t o the f e e d t a n k , a s m a l l f l o w o f n i t r o g e n (20 t o 200 ml/min) was p r o v i d e d t o purge the f e e d l i n e . The purge l i n e was a l s o c o n n e c t e d t o t h e top o f the f e e d tank t o e q u a l i z e the p r e s s u r e o f the l a t t e r w i t h t h a t o f the f e e d l i n e . A r e l i e f v a l v e was i n s t a l l e d a t the top o f the f e e d tank t o p r e v e n t e x c e s s i v e p r e s s u r e b u i l d up i n c a s e t he f e e d l i n e became plugged by condensed s u l p h u r . A g a i n t h i s r e l i e f v a l v e c r a c k e d open a t 7.5 p s i g and i t opened f u l l y a t 10 p s i g . The c a t a l y s t d i s c h a r g e tank i s a l s o a 9" I.D. QVF g l a s s column. To i s o l a t e t h e d i s c h a r g e t a n k , a b a l l v a l v e was i n s t a l l e d i n the d i s c h a r g e l i n e . The i s o l a t i o n o f the d i s c h a r g e tank was n e c e s s a r y s i n c e t he l a t t e r s h o u l d be r e p l a c e d when f u l l y l o a d e d w i t h o u t s t o p p i n g t h e ex p e r i m e n t . Four r o l l e r c a s t o r s were p l a c e d a t the bottom o f the tank t o ease t r a n s p o r t a t i o n . I" NPT PLUG RELIEF \ VALVE ^ 12" 12" - D -CATALYST FEED TANK 10" A PRODUCT GAS CHECK VALVE SHUTTER VALVE FEED GAS FLUIDIZEO BED REACTOR 8-9" QVF GLASS COLUMNS _ 9"/2" QVF GLASS PIPE REDUCER 1/2" BALL VALVE 1/2" 9"QVF GLASS COLUMN ROLLER _ CASTORS CATALYST DISCHARGE TANK S 0 5 F i g . 4.10 : Continuous c a t a l y s t f e e d s ystem 54 4.1.2. N i t r o g e n R e g e n e r a t i o n System Over 90% o f the n i t r o g e n f e d t o the r e a c t o r was r e c y c l e d t o min i m i z e n i t r o g e n usage. In a d d i t i o n t o N 2 , the e f f l u e n t from the r e a c t o r u s u a l l y c o n t a i n e d H 2S, S 0 2 , H 20 and e l e m e n t a l s u l p h u r . The purpose o f t h e r e g e n e r a t i o n system was t h e r e f o r e t o remove t h e s e components from t he r e c y c l e n i t r o g e n stream. The u n d e s i r a b l e components were s e p a r a t e d from the n i t r o g e n by p a s s i n g the r e a c t o r e f f l u e n t through an aqueous NaOH s c r u b b e r as w e l l as g l a s s columns packed w i t h KOH and CaSO^ p e l l e t s . The NaOH s c r u b b e r c o n s i s t e d o f a QVF column packed w i t h V Ceramic B e r l S a d d l e s (see F i g s . 4.1, 4.3 and 4.11). A s o l u t i o n c o n t a i n i n g a p p r o x i m a t e l y 50 wt % NaOH was pumped c o n t i n u o u s l y and c o n c u r r e n t l y w i t h the r e a c t o r gas through the s c r u b b e r . The f l o w r a t e o f the s o l u t i o n was about 2 1/min. C o - c u r r e n t o p e r a t i o n was chosen t o a v o i d p o s s i b l e f l o o d i n g o f the s c r u b b e r . (A 50 wt % NaOH s o l u t i o n i s ver y v i s c o u s and hence a c o u n t e r - c u r r e n t f l o w i s most l i k e l y t o cause f l o o d i n g . ) In a d d i t i o n to p a s s i n g through the s c r u b b e r , the gas was bubbled t h r o u g h the s o l u t i o n i n the r e s e r v o i r w i t h a s p a r g e r t o ensure almost complete removal o f H^S and S 0 2 . A c o o l i n g c o i l l o c a t e d i n the r e s e r v o i r removed the heat o f a b s o r p t i o n . The temperature i n the r e s e r v o i r was m a i n t a i n e d a t about 15°C. To p r e v e n t e n t r a i n m e n t o f s p r a y and m i s t , the gas was passed through g l a s s wool f i l t e r l o c a t e d a t the bottom o f the s c r u b b e r , b e f o r e i t was s e n t t o the d r i e r s . 55 1/2" N P T S S . P L A T E 1/2" N P T 6 H O L E S FOR 3 / 8 " B O L T S , 6 0 * A P A R T , 10" P C D 6 " Q V F G L A S S C O L U M N 6 " P I P E 3 " P I P E O - R I N G l / 8 " *3 3 /4"0 .D. 6 H O L E S FOR 1/4" B O L T , 6 0 ° A P A R T , 4 1 / 2 " P C D S S . P L A T E 18"* 18"* 1/2" THICK 1/4" C O O L I N G COIL 2 " T U B E 12" Q V F G L A S S C O L U M N F i g . 4.11 : Scru b b e r and r e s e r v o i r The d r i e r s c o n s i s t e d o f two g l a s s columns f i l l e d w i t h KOH and C a S 0 4 p e l l e t s (see F i g . 4.1, 4.3 and 4.12). The scr u b b e d gas was passed through t h e KOH column b e f o r e the C a S 0 4 u n i t , because KOH has a h i g h c a p a c i t y w h i l e C a S 0 4 has a h i g h e f f i c i e n c y f o r m o i s t u r e removal [77]. A l i q u i d disengagement p o r t s i t u a t e d between the two columns ens u r e d t h a t any d i s s o l v e d KOH d i d n o t f l o w i n t o t he CaSO^ column. Potas s i u m h y d r o x i d e i s d e l i q u e s c e n t ; t h e r e f o r e , a s a t u r a t e d s o l u t i o n was formed a f t e r a b s o r b i n g the m o i s t u r e . T h i s s o l u t i o n f l o w e d through the w i r e mesh a t the bottom and i t was c o l l e c t e d i n the s t a i n l e s s s t e e l s e c t i o n which had a s o l i d base. A p o r t a t the c e n t r e o f t he base, w h i l e a l l o w i n g t he gas t o f l o w t o the bottom g l a s s column, p r e v e n t e d t h e s o l u t i o n from p a s s i n g t o the column. A v a l v e a t the s i d e o f the s t a i n l e s s s t e e l s e c t i o n p e r m i t t e d the d r a i n a g e o f the s o l u t i o n . To r e c y c l e t he r e g e n e r a t e d n i t r o g e n , a b e l l o w pump (model MB-302, manufactured by Metal B e l l o w s Corp., Sharon, Mass.) was p r o v i d e d . The pump had a maximum c a p a c i t y o f 85 1/min a t 1 atm. A r e g u l a t i n g v a l v e and a r o t a m e t e r were used t o c o n t r o l and measure the f l o w r a t e o f the n i t r o g e n , r e s p e c t i v e l y . When a sample o f the r e g e n e r a t e d n i t r o g e n was t e s t e d , the H 2S and S 0 2 c o n c e n t r a t i o n s were below d e t e c t a b l e l i m i t s o f 2 and 1 ppm, r e s p e c t i v e l y . T h e r e f o r e t he r e g e n e r a t i o n system was more than 99.99% e f f i c i e n t . 57 24" 24" 5 1 6"-• I 5 X3 1/2" NPT 3 8 HOLES FOR 3/8" BOLT, 4 5 * APART , 9 1/2" PCD -6" KIMAX GLASS COLUMN S.S. WIRE MESH ,6 S.S. PIPE -LIQUID DISENGAGEMENT PORT -1/4" NPT -6" QVF GLASS COLUMN -6 HOLES FOR 3/8" BOLT 60° APART , 10" PCD -S.S. WIRE MESH 1/2" NPT F i g . 4.12 : D r i e r s 58 4.1.3 Gas A n a l y s i s System Most H 2S and S 0 2 a n a l y s e r s cannot handle gas m i x t u r e s c o n t a i n i n g m o i s t u r e and s u l p h u r ( e s p e c i a l l y i n the form o f p a r t i c u l a t e s ) . Hence, samples from t he r e a c t o r had t o be c o n d i t i o n e d f i r s t by removing t h e s e components. In c o n d i t i o n i n g the sample, i t was e s s e n t i a l t o p r e v e n t the f o r m a t i o n o f l i q u i d s u l p h u r and water s i n c e t h e y c o u l d cause f u r t h e r r e a c t i o n between H 2S and S 0 2 . To m a i n t a i n d r y s u r f a c e s i n the c o n d i t i o n i n g system i t was n e c e s s a r y to use the m u l t i s t a g e system shown i n F i g . 4.13. The c o n d i t i o n i n g system c o n s i s t e d e s s e n t i a l l y o f a s u l p h u r c o n d e n s e r , d r i e r s and a f i l t e r . The s u l p h u r condenser c o n t a i n e d C a C l 2 and g l a s s wool. The s e p a r a t i o n o f s u l p h u r p a r t i c u l a t e s was a c c o m p l i s h e d by m a i n t a i n i n g the temperature o f the s u l p h u r c o n d e n s e r a t about 105°C. The temperature was c o n t r o l l e d by v a r y i n g the f l o w r a t e o f the gas sample.' The f i r s t d r i e r f o r removing m o i s t u r e a l s o c o n t a i n e d C a C l 2 and g l a s s wool. The temperature was kept a t about 10°C by u s i n g a water c o o l i n g c o i l . F u r t h e r c o n d i t i o n i n g was p r o v i d e d by a second d r i e r and a f i n e f i l t e r which removed p a r t i c u l a t e s l a r g e r than 0.3 pm i n d i a m e t e r . A diaphragm pump ( A i r Cadet, model 7530-40, s u p p l i e d by Cole-Parmer Instrument Co., C h i c a g o , 111.) which has a maximum c a p a c i t y o f 14.748 1/min a t 1 atm was used as the sam p l i n g pump. A f t e r c o n d i t i o n i n g t he sample, i t was d i l u t e d a p p r o x i m a t e l y 10 times w i t h a known amount o f a i r . The a i r d i l u t i o n was performed DRIER SAMPLE (To Analysers) DIAPHRAGM PUMP FILTER F i g . 4.13: Sample c o n d i t i o n i n g system ( A l l dimensions i n mm) 60 t o reduce t h e quenching a c t i o n o f H 2S on the S O 2 a n a l y s e r ( f o r d e t a i l s see S e c t i o n 5.2.2). T h e sample f l o w r a t e was m a i n t a i n e d a t 4.8 ml/min t o keep the temperature o f the s u l p h u r c o n d e n s e r a t the d e s i r e d t e mperature o f 105°C. A f t e r d i l u t i o n , a p o r t i o n o f the sample was i n t r o d u c e d i n t o t h e gas a n a l y s e r s . The l a t t e r i n s t r u m e n t s were a P u l s e d F l u o r e s c e n c e S 0 2 A n a l y s e r (model 40, made by Thermo E l e c t r o n Corp., H o p k i n t o n , Mass.) and a P h o t o i o n i z a t i o n H 2S M o n i t o r (model PI 201, made by HNU Systems, I n c . , Newton, Mass.). These i n s t r u m e n t s were c a l i b r a t e d as d e s c r i b e d i n s e c t i o n 5.2.2. The s i g n a l s from t h e s e i n s t r u m e n t s and t h e thermocouples were r e c o r d e d w i t h a d a t a l o g g e r (model 2240A, made by John F l u k e , Mfg. Co., I n c . , Mountlake T e r r a c e , Washington). The d a t a l o g g e r was c a p a b l e o f a c c e p t i n g 20 i n p u t s o f dc v o l t a g e s from thermocouples and o t h e r s e n s o r s . The d a t a l o g g e r c o u l d be programmed t o g i v e f u l l s c a l e r e a d i n g s o f 100 mv, 1000 mv, l O v a n d 100 v. For temperature measurement, the i n s t r u m e n t was c a p a b l e o f a c c e p t i n g s i g n a l s from J , K, T, and R type t h e r m o c o u p l e s . The r e f e r e n c e j u n c t i o n t e mperature o f the thermocouples was e s t a b l i s h e d i n t e r n a l l y by means o f b l o c k c o n n e c t o r , f o r w a r d b i a s e d d i o d e and a m i c r o p r o c e s s o r . F u r t h e r m o r e , the i n s t r u m e n t has a b u i l t - i n c l o c k g i v i n g t he date and t i m e . O t h e r f e a t u r e s a r e l i s t e d i n T a b l e 4.2. 61 T a b l e 4.2 : F e a t u r e s o f the d a t a l o g g e r S C A N C O N T R O L F U N C T I O N Reset Stops a l l s c a n and o u t p u t f u n c t i o n s . S i n g l e Scans s e q u e n t i a l l y between f i r s t and l a s t c h a n n e l . Stops a u t o m a t i c a l l y on the l a s t channel s e l e c t e d . I n t e r v a l S e q u e n t i a l s c a n n i n g between the f i r s t and the l a s t channel i s r e p e a t e d a t time i n t e r v a l s e t . The i n t e r v a l can be any time from 1 s e c . to 24 h r . Continuous S e q u e n t i a l s c a n n i n g i s r e p e a t e d c o n t i n u o u s l y The time i n t e r v a l depends on the number o f c h a n n e l s . For 15 ch a n n e l s i t i s l e s s than 1 second. Moni t o r Used f o r c o n t i n u o u s l y m o n i t o r i n g a s i n g l e channel which i s s e l e c t e d from the keyboard. Readings can be r e c o r d e d on the p r i n t e r a t t a c h e d to the i n s t r u m e n t . 62 The e n t i r e c o n d i t i o n i n g system f u n c t i o n e d w e l l . There was no d e t e c t a b l e change i n c o n c e n t r a t i o n when a known sample o f H2S, and N 2 was passed through the c o n d i t i o n i n g system. S i n c e a m o i s t u r e g e n e r a t o r was u n a v a i l a b l e , the c o n d i t i o n i n g system c o u l d not be t e s t e d w i t h samples c o n t a i n i n g m o i s t u r e . To c i r c u m v e n t t h i s problem, dry samples o f known c o n c e n t r a t i o n s o f H2S and SO2 i n N 2 were passed o v e r C a C ^ which had been used p r e v i o u s l y i n the c o n d i t i o n i n g system. The C a C ^ would thus c o n t a i n the a p p r o p r i a t e m o i s t u r e t o s i m u l a t e the c o n d i t i o n o f a sample c o n t a i n i n g m o i s t u r e . The t e s t i n d i c a t e d t h a t as l o n g as the s u r f a c e o f the C a C ^ remained dry the sample c o n c e n t r a t i o n s w i t h r e s p e c t to HgS and SOg remained unchanged. However, when wet C a C ^ was t e s t e d , i t r e d u c e d the c o n c e n t r a t i o n s o f H2S and SG^ by about 5 and 10% r e s p e c t i v e l y . In terms o f s u l p h u r c o n v e r s i o n e f f i c i e n c y , t h i s i s e q u i v a l e n t to about 0.5 p e r c e n t a g e p o i n t s and l i e s w i t h i n the o v e r a l l e x p e r i m e n t a l e r r o r ( s e e S e c t i o n 6.4). Throughout the e x p e r i m e n t a l r u n s , g r e a t c a r e was e x e r c i s e d to ensure t h a t the s u r f a c e o f the C a C l 9 remained d r y . 63 4.1.4. S a f e t y Devices S i n c e f ^ S and SC^ a r e e x t r e m e l y t o x i c , s t r i c t p r e c a u t i o n s were taken t o e n s u r e the s a f e o p e r a t i o n o f the equipment. A l l j o i n t s were l e a k - p r o o f e d and the e n t i r e equipment ( i n c l u d i n g the gas c y l i n d e r s ) was e n c l o s e d (see F i g . 4.2 and 4.14). A s m a l l vacuum ( a p p r o x i m a t e l y 30 mm h^O) was c r e a t e d i n the e n c l o s u r e by a f a n l o c a t e d on the r o o f o f the l a b o r a t o r y and connected to the e n c l o s u r e . In case o f a l o s s i n vacuum due t o a fan f a i l u r e o r o t h e r r e a s o n , a p r e s s u r e s w i t c h (see F i g . 4.15) mounted on the c o n t r o l panel would s h u t down the e n t i r e equipment i n c l u d i n g the s o l e n o i d v a l v e s on the HgS and SO2 c y l i n d e r s (see F i g . 4.15). The complete equipment shut-down was a c c o m p l i s h e d by s w i t c h i n g o f f the main power s u p p l y to the equipment (see F i g . 4.16). To e n s u r e the s a f e o p e r a t i o n o f the equipment f u r t h e r , the HgS c o n c e n t r a t i o n i n the s u c t i o n l i n e between the fan and the e n c l o s u r e was f r e q u e n t l y checked w i t h the h^S a n a l y s e r . When the c o n c e n t r a t i o n exceeded a p p r o x i m a t e l y 10 ppm, an a l a r m , which was a b u i l t - i n f e a t u r e o f the h^S a n a l y s e r , would sound. Because a l l j o i n t s were always l e a k - p r o o f e d , t h e r e was no d e t e c t a b l e amount o f H 2S i n the s u c t i o n l i e ( i . e . l e s s than 2 ppm). P e r s o n n e l w o r k i n g i n the v i c i n i t y o f the equipment were a l s o p r o v i d e d w i t h HoS s e n s i t i v e tags (made by M e t r o n i c s , I n c . , Santa C l a r e , C a l i f o r n i a ) . A c o l o u r code on the t a g i n d i c a t e d the F i g . 4.14: E n c l o s e d gass c y l i n d e r s and s o l e n o i d v a l v e s F i g . 4.15: P r e s s u r e s w i t c h DISCONNECTING SVV MAGNETIC SW START <=| STOP<=| AIR PRESSURE I , . SW R - £ J IA * I I—* 3 CONT. I JLL 4 TO ENCLOSURE FROM FAN 3 (ft 208 30 A MAIN CONT. 2 5 VARIAC 5 A 0- 120V OOOW CONT. 3 R2 4 CONT. 4 LI L2 L3 N 4 8 A U U $ ,AS BLOWER SCRUBBER SIGHT GLASS LIGHT 60 W 6 408 W 1 VARIAC 15 A 0- 120 V 1000 W BI6 W 400 W 120 V 87 A TOP HEATER 120 V 4A EXHAUST LINE 120 V 87 A BOTTOM HEATER 120 V 120V 7 A 4 A PREHEATER F i g . 4.16: E l e c t r i c a l c i r c u i t o f the equipment CTv 67 amount o f h^S to which the o p e r a t o r had been exposed. A gas mask w i t h a b s o r b i n g c a n i s t e r (moded 457069, made by Mine S a f e t y A p p l i a n c e s Co. o f Canada L t d . , Downsview, O n t a r i o ) was a l s o p r o v i d e d i n case the o p e r a t o r had to work i n an atmosphere c o n t a i n i n g h i g h l e v e l s o f H 2S. The a l l o w a b l e l i m i t o f 8-hour exposure i s 10 ppm [78]. 4.2 MATERIALS USED The c a t a l y s t used i n the f l u i d i z e d bed was a c t i v a t e d alumina manufactured by K a i s e r Aluminium and Chemical C o r p o r a t i o n i n Baton Rouge, L o u i s i a n a . I t has the commercial d e s i g n a t i o n K a i s e r S - 501. The c a t a l y s t c o n t a i n s m o s t l y aluminium o x i d e promoted w i t h some l i t h i u m o x i d e . I t i s a v a i l a b l e as s m a l l spheres w i t h a s i z e range o f -3 + 6 mesh. To use i t i n the f l u i d i z e d bed i t was ground and s i e v e d to - 35 + 150 mesh. The s o l i d d e n s i t y o f the c a t a l y s t p a r t i c l e s was e s t i m a t e d u s i n g a volume d i s p l a c e m e n t method. To a v o i d the s o l u b i l i t y o f some o f the components i n water, manometer f l u i d was used as the d i s p l a c i n g l i q u i d . F o r d e t a i l e d p r o p e r t i e s o f the c a t a l y s t see T a b l e 4.3 The gases used were s u p p l i e d by Canadian L i q u i d A i r L t d . , Vancouver, B.C. The p u r i t y o f S 0 o and H 2S were 99.98 and 99.9%, r e s p e c t i v e l y . F o r n i t r o g e n the p u r i t y was 99.99%. 68 T a b l e 4.3 P r o p e r t i e s o f c a t a l y s t ( a c t i v a t e d a l u m i n a , K a i s e r S - 5 0 1 ) Chemical knalyhij* -Ln % Vn.y Bobi* [79]. A ^ O g and I n o r g a n i c Promoters Loss on I g n i t i o n Na 20 F e 2 0 3 S i O o S o l i d D e n s i t y Umf ?hy-&i.cal Vn.opeJvtieA> Average Diameter (as de t e r m i n e d by Eq. 2.11) 93.5 6.0 0.45 0.02 0.02 3160 kg/m 3 0.0245 m/s a t STP 0.692 145 pm Size ViA&iibuti.on Diameter range (pm) dp. (pm) Weight f r a c t i o n X i 295 - 250 272.5 0.126 250 - 212 •231.0 0.0273 212 - 208 210.0 0.0118 208 - 275 191.5 0.126 175 - 147 161.0 0.388 147 - 53 100.0 0.320 69 4.3 SOLID CIRCULATION B e f o r e i t was d e c i d e d t o use the s i n g l e r e a c t o r , the c a t a l y s t c i r c u l a t i o n between two f l u i d i z e d beds a t ambient temperature was s t u d i e d . The s c h e m a t i c diagram o f the ap p a r a t u s i s shown i n F i g . 4.17. The two f l u i d i z e d beds, which were c o n s t r u c t e d from p l e x i g l a s s , a r e s i m i l a r i n a l l r e s p e c t s . S i n c e the two f l u i d i z e d beds o p e r a t e d i n s e r i e s w i t h r e s p e c t to the gas f l o w , the p r e s s u r e i n s i d e the f i r s t f l u i d i z e d bed was always m a i n t a i n e d above t h a t o f the second r e a c t o r . T h i s p r e v e n t e d t h e p o s s i b i l i t y o f c a t a l y s t p a s s i n g d i r e c t l y from the second to the f i r s t f l u i d i z e d bed. To r e t u r n the c a t a l y s t from the second to the f i r s t bed, a system o f hoppers, r o t a r y v a l v e s and b a l l v a l v e s was d e v e l o p e d . When f i l l i n g Hopper A and emptying Hopper B, B a l l v a l v e s 1 and 3 were opened and 2 and 4 were c l o s e d , and v i c e v e r s a . With such a system, the c a t a l y s t c i r c u l a t i o n was smooth and c o u l d be m a i n t a i n e d f o r p r o l o n g e d p e r i o d s . The o n l y a d d i t i o n a l problem e n c o u n t e r e d was the s e v e r e w e a r i n g o f the b l a d e s o f the r o t a r y v a l v e s ( d e t a i l s a r e shown i n F i g . 4.18). T h i s p r o b lem, : however, c o u l d be e l i m i n a t e d by r e p l a c i n g the r o t a r y v a l v e s w i t h s h u t t e r v a l v e s shown i n F i g s . 4.19 t o 4.21. The flo w r a t e o f the c a t a l y s t i s main l y a f u n c t i o n o f the d i a m e t e r o f the s h u t t e r opening which c o u l d be v a r i e d from about 2 t o 38 mm. The maximum c a t a l y s t f l o w r a t e a c h i e v e d was about 4 g/s. 4.17: Schematic diagram o f s o l i d c i r c u l a t i o n s y stem ( A l l dimensions i n mm) SS. 3/6" F i g . 4.18: Rotary v a l v e 72 7 2 ° APART F i g . 4.19: S h u t t e r d e v i c e 73 -3"-31/4"-_ 4 " -SECTION C - C F i g . 4.20 P Rotor o f the s h u t t e r d e v i c e 74 3 1/41 SECTION D-D F i g . 4.21: L e a f o f the s h u t t e r d e v i c e In a d d i t i o n to s t u d y i n g s o l i d c i r c u l a t i o n , one o f the f l u i d i z e d beds was used to determine the minimum f l u i d i z a t i o n v e l o c i t y o f the c a t a l y s t p a r t i c l e s . 76 C h a p t e r 5 5 EXPERIMENTAL PROCEDURE 5.1. REACTION PROCEDURE The C l a u s r e a c t i o n was performed i n a f l u i d i z e d bed by u s i n g the equipment d e s c r i b e d i n S e c t i o n 4.1. F o r s a f e t y r e a s o n s , i t was a b s o l u t e l y e s s e n t i a l to ensure t h a t a l l j o i n t s were l e a k -p r o o f e d . In a d d i t i o n , s i n c e the r e a c t o r f e e d was t o be f r e e o f oxygen, a l l oxygen had t o be removed from the r e a c t o r and r e c y c l e system. F u r t h e r m o r e , the c a t a l y s t c o u l d be d e a c t i v a t e d by oxygen and s u l p h u r compounds so t h a t p r o v i s i o n s had to be made f o r c a t a l y s t r e g e n e r a t i o n . The p r o c e d u r e s d e s c r i b e d below meet thes e v a r i o u s p r o v i s i o n s . 5.1.1. Equipment S t a r t - u p To a c h i e v e the c o n d i t i o n s mentioned above and to e n s ure the smooth o p e r a t i o n o f the equipment, the f o l l o w i n g s t a r t - u p procedure was a dopted: 1. Remove the f l u o r o c a r b o n panel i n f r o n t o f the r e a c t o r 2. D i s c o n n e c t the f r o n t s i g h t g l a s s from the r e a c t o r . 3. Through the p o r t o f the s i g h t g l a s s , i n t r o d u c e about 1.2 o r 2.4 kg o f the c a t a l y s t to g i v e a bed h e i g h t o f a p p r o x i m a t e l y 0.12 o r 0.25 m, r e s p e c t i v e l y . 4. Remount the s i g h t g l a s s and t e s t f o r l e a k s by p r e s s u r i z i n g the r e a c t o r and n i t r o g e n r e c y c l e l o o p w i t h n i t r o g e n from the 77 gas c y l i n d e r s . The p r e s s u r e i n the r e a c t o r was m a i n t a i n e d a t about 10 p s i g . To t e s t f o r l e a k s , soap s o l u t i o n was a p p l i e d to a l l j o i n t s . Most l e a k s d i d o c c u r a t the f l a n g e s which were then f u r t h e r t i g h t e n e d . The Swagelok f i t t i n g s r a r e l y l e a k e d p r o v i d e d the a p p r o p r i a t e p r o c e d u r e was adopted f o r t i g h t e n i n g the nuts [ 8 9 ] . 5. Replace the f l u o r o c a r b o n panel and s e a l a l l the edges o f the e n c l o s u r e w i t h 100 mm wide, d u c t s e a l i n g t a p e . 6. S t a r t p u r g i n g oxygen from t he r e a c t o r system by s w i t c h i n g on the sample pump. M a i n t a i n the p r e s s u r e i n the r e a c t o r a t about 560 mm Hg a b s o l u t e f o r 30 mins. 7. I n t r o d u c e n i t r o g e n i n t o the r e a c t o r system u n t i l the p r e s s u r e r e t u r n s t o a t m o s p h e r i c l e v e l s . 8. S w i t c h on the b e l l o w b o o s t e r pump to f l u i d i z e the bed. 9. Purge about 10% o f the t o t a l gas flow r a t e through the r e a c t o r f o r about 24 h r s w i t h the s a m p l i n g pump to e n s u r e t h a t v i r t u a l l y a l l oxygen i s removed from the system (see Appendix D). 10. S w i t c h on the c a u s t i c s o l u t i o n c i r c u l a t i o n pump, gas a n a l y s e r s , d a t a l o g g e r and h e a t e r s f o r the s i g h t g l a s s , p r e h e a t e r s , r e a c t o r and r e a c t o r - s c r u b b e r l i n e . 11. C i r c u l a t e c o l d water through the c o o l i n g c o i l s i n the c a u s t i c tank. 12. M o n i t o r a l l thermocouples e v e r y 15 mins u n t i l the d e s i r e d , s t e a d y temperatures a r e r e a c h e d . ( T h i s p r o c e d u r e u s u a l l y 78 r e q u i r e s about 1 h o u r ) . 13. E l i m i n a t e the l a s t t r a c e s o f oxygen and r e g e n e r a t e the c a t a l y s t , by a d m i t t i n g a s m a l l f l o w o f H 2S (20 ml/min) i n t o t h e r e a c t o r f o r about 30 min. The r e a c t o r system i s now ready f o r a r u n . 5.1.2. R e a c t i o n P r o c e s s A l l e x p eriments were performed w i t h the r e a c t o r s m a i n t a i n e d a t atm o s p h e r i c p r e s s u r e . T h i s c o n d i t i o n was a c h i e v e d by d e c r e a s i n g " o r i n c r e a s i n g the f l o w r a t e o f n i t r o g e n i n t o the n i t r o g e n r e c y c l e system to compensate f o r the purge. In a d d i t i o n to p u r g i n g n i t r o g e n w i t h the s a m p l i n g pump, a v a l v e l o c a t e d downstream o f the b o o s t e r pump c o u l d a l s o be used to ve n t a d d i t i o n a l n i t r o g e n . To ensure proper performance o f the gas a n a l y s e s , t h e i r e l e c t r o n i c z e r o e s were always checked a c c o r d i n g t o t h e i n s t r u c t i o n manuals [90, 9 1 ] . A t the b e g i n n i n g o f a r u n , the c a l i b r a t i o n c urve f o r the a n a l y s e r s was a l s o v a l i d a t e d by u s i n g a sample o f known c o m p o s i t i o n from the f e e d to t h e r e a c t o r . I f s i g n i f i c a n t d i f f e r e n c e s were d e t e c t e d , a new c a l i b r a t i o n c u r v e was g e n e r a t e d as d e s c r i b e d i n S e c t i o n 5.2.2. In o r d e r to o b t a i n the maximum y i e l d o f s u l p h u r , the h^S and S 0 2 c o n c e n t r a t i o n s i n the r e a c t o r f e e d were m a i n t a i n e d a t a r a t i o o f 2/1. T h i s r a t i o was a c h i e v e d by a d o p t i n g the f o l l o w i n g p r o c e d u r e : 79 Choose the flow r a t e o f hydrogen s u l p h i d e , F U c from the n2-> a p p r o p r i a t e r o t a m e t e r C a l i b r a t i o n T a b l e (see Appendix B). C a l c u l a t e the s c a l e r e a d i n g which g i v e s the f l o w r a t e o f S 0 2 p r e c i s e l y h a l f t h a t o f H 2S from: H = J + 2 J+10 2 H b'' < Fso > " ( p s o > where, c J+10 J J = 10, 20, 30 e t c . ( F s o 2 ) H - 0 . 5 F H 2 S , ( F S O ) and ( F S O ) denote the f l o w r a t e a t the s c a l e 2 J 2 j + i o r e a d i n g o f J and J+10 mm r e s p e c t i v e l y , o f the S 0 2 r o t a m e t e r . The c a l i b r a t i o n t a b l e f o r the l a t t e r i s a l s o g i v e n i n Appendix B. A summary o f s e l e c t r e s u l t s i s p r e s e n t e d i n T a b l e 5.1. 3. Open the s o l e n o i d v a l v e s mounted on the H 2S and S 0 2 c y l i n d e r s . 4. Open the H 2S and S 0 2 c y l i n d e r s and s e t the l i n e p r e s s u r e s t o about 15 p s i g u s i n g the v a l v e s on the r e g u l a t o r s . 5. S e t the hydrogen s u l p h i d e f l o w r a t e to the d e s i r e d v a l u e by a d j u s t i n g the r e g u l a t i n g v a l v e on the r o t a m e t e r . A t the same time s e t the f l o a t i n the S 0 2 r o t a m e t e r to the s c a l e r e a d i n g o f H, which was e s t i m a t e d from Eq. 5.1. When the r e g u l a t i n g v a l v e s s i t u a t e d downstream o f the r o t a m e t e r s are opened, the p r e s s u r e i n s i d e these r o t a m e t e r s f a l l s . Hence by t r i a l and e r r o r a d j u s t the p r e s s u r e s and the f l o a t p o s i t i o n s t o the T a b l e 5.1 : S e l e c t f l o w r a t e s o f r e a c t a n t s ( H o S / S 0 o r a t i o are 2/1) H 2S S 0 2 ROTAMETER CODE PRESSURE IN ROTAMETER ( p s i ) SCALE READING (mm) FLOW RATE AT S T P ml/mm ROTAMETER CODE PRESSURE IN ROTAMETER ( p s i ) SCALE READING (mm) FLOW RATE AT STP by (ml/mm) INTERPOLATION REGRESSION RG602 30 20 19.5 LG602 30 11.0 9.8 10.0 RG602 30 30 38.9 LG602 30 17.0 19.5 19.5 RG602 30 40 61.9 LG602 30 24.0 31.0 31.5 RG602 30 50 88.5 LG602 30 30.5 44.3 43.6 RG602 30 60 118.6 LG602 30 38.0 59.3 58.6 RG602 30 70 152.3 LG602 30 46.0 76.2 75.9 RG602 30 80 189.6 LG602 30 li4.0 94.8 94.6 S RG602 30 90 230.4 LG602 30 62.0 115.2 114.6 RG602 30 100 274.8 .LG602 30 71.0 137.4 138.6 Contd. T a b l e 5.1 : S e l e c t f l o w r a t e s o f r e a c t a n t s (H2S/SO2 r a t i o a r e 2/1) H 2S S 0 2 ROTAMETER CODE PRESSURE IN ROTAMETER ( p s i ) SCALE READING (mm) FLOW RATE AT S T P ml/mm ROTAMETER CODE PRESSURE IN ROTAMETER ( p s i SCALE READING (mm) FLOW RATE AT STP bv (ml/mm) INTERPOLATE REGRESSION RG602 30 110 322.7 LG602 30 79.0 161.4 161.5 RG602 30 120 374.2 LG602 30 87.5 187.1 187.1 RG602 30 140 . 487.9 LG602 30 104.5 244.0 243.0 I RSS602 30 90 633.4 LG602 • 30 124.5 316.7 316.5 RG604 30 20 1251.2 LSS602 32.3 99.0 625.6 62G.2 RG604 30 30 2139.5 LG604 30 22.5 1070.0 1060.1 RG604 30 40 3026.2 LG604 30 30.0 1533.8 1533.5 1 RG604 30 50 3911.2 LG604 30 36.5 1955.6 1945.7 RG604 30 60 4794.2 LG604 30 43.5 2400.0 2391.7 I 82 p r e d e t e r m i n e d v a l u e s . 6. Withdraw a sample o f the f e e d gas t o the r e a c t o r t h e r e b y c h e c k i n g the c a l i b r a t i o n c u r v e o f the gas a n a l y s e r s . 7. M o n i t o r the c o n c e n t r a t i o n o f f^S and SO^ i n the sample taken from the r e a c t o r o u t l e t . At s t e a d y s t a t e , which i s u s u a l l y a t t a i n e d a f t e r about 30 min, r e c o r d the r e a d i n g s from the a n a l y s e r s . 8. To determine the p r o p e r o p e r a t i o n o f the n i t r o g e n r e g e n e r a t i o n system, a n a l y s e a sample o f the r e g e n e r a t e d ni t r o g e n . 9. Record the f l o w r a t e s o f a l l the gases by n o t i n g the p r e s s u r e s i n s i d e the r o t a m e t e r s and the p o s i t i o n s o f the f l o a t s . The f o l l o w i n g f l o w r a t e s were r e c o r d e d : ( i ) N i t r o g e n i n the f e e d ( i i ) N i t r o g e n f o r p u r g i n g the manometers ( i i i ) H^S i n the f e e d ( i v ) S O 2 i n the f e e d (v) P r o d u c t Sample ( v i ) A i r f o r d i l u t i n g the p r o d u c t sample 10. At the c o m p l e t i o n o f Step 9, the e n t i r e p r o c e d u r e i s r e p e a t e d u s i n g new f l o w r a t e s f o r ^ S and SO2. The range o f o p e r a t i n g v a r i a b l e s i n v e s t i g a t e d are l i s t e d i n T a b l e 5.2 83 T a b l e 5.2 : O p e r a t i n g v a r i a b l e s and t h e i r ranges O p e r a t i n g V a r i a b l e Range Bed H e i g h t s 0.12 and 0.25 m Bed Temperatures 150, 200, 250, 280, 300°C Reactant C o n c e n t r a t i o n s 0.06 t o 18% H 2S 0.03 to 9% S 0 2 ( H 2 S / S 0 2 r a t i o o f 2/1) S u p e r f i c i a l gas V e l o c i t y , U 2 t o 4 m/min a t STP U/Umf 4 to 12.5 84 A l t h o u g h the c o n t i n u o u s c a t a l y s t c i r c u l a t i o n s y s t e m was t e s t e d , no attempt was made t o o b t a i n d a t a u s i n g t h a t system. The f l u i d i z e d bed r e a c t o r was run o n l y i n b a t c h mode. 5.1.3. C a t a l y s t R e g e n e r a t i o n A f t e r a s e r i e s o f r u n s , the c a t a l y s t was r e g e n e r a t e d In AAXU b e f o r e complete equipment shut-down. The r e g e n e r a t i o n was p a r t i c u l a r l y i m p o r t a n t a f t e r runs a t low temperatures where s u l p h u r c o n d e n s a t i o n on the c a t a l y s t d i d o c c u r . For runs a t h i g h temperatures i t was s t i l l e s s e n t i a l to r e g e n e r a t e the c a t a l y s t t o a v o i d p o s s i b l e s u l p h a t i o n . A l t h o u g h t he m a n u f a c t u r e r s o f the c a t a l y s t recommended 340 to 370°C [80] f o r regeneration,300°C proved to be a s u i t a b l e t e m perature. The e l e v a t e d temperatures a p p l y to c o a r s e c a t a l y s t p a r t i c l e s ( - 3 + 6 mesh). Such p a r t i c l e s have a h i g h p e r c e n t a g e o f pore space and hence e l e v a t e d r e g e n e r a t i o n temperatures a r e r e q u i r e d to ev a p o r a t e condensed s u l p h u r from the p o r e s . However, i n the p r e s e n t w o r k . f i n e p a r t i c l e s (- 35 + 150 mesh) were used and the c o n d e n s a t i o n o f s u l p h u r o c c u r e d p r i m a r i l y on the o u t s i d e s u r f a c e o f the p a r t i c l e s . Hence the c o m p a r a t i v e l y low r e g e n e r a t i o n temperature o f 300°C was adequate. To overcome p o s s i b l e s u l p h a t i o n , a s m a l l f l o w o f H 2S was i n t r o d u c e d i n t o the r e a c t o r to reduce any s u l p h a t e compounds. No l o s s o f c a t a l y s t a c t i v i t y was e v e r o b s e r v e d p r o v i d e d the c a t a l y s t was r e g e n e r a t e d by u s i n g the f o l l o w i n g p r o c e d u r e : 1. C l o s e the SG^ gas c y l i n d e r 2. S w i t c h o f f the s o l e n o i d v a l v e on the SC^ c y l i n d e r . 3. C l o s e the r e g u l a t i n g v a l v e s l o c a t e d downstream o f the r o t a m e t e r s used to measure h^S and SG^ f l o w r a t e s . 4. S e t t h e temperature c o n t r o l l e r s t o 300°C. 5. C i r c u l a t e o n l y n i t r o g e n through the r e a c t o r system f o r about 24 hrs t o remove any condensed s u l p h u r from the c a t a l y s t . 6. Admit a s m a l l f l o w o f H^S (20 ml/min) i n t o the n i t r o g e n s t r e a m e n t e r i n g the r e a c t o r . 7. A l l o w the equipment t o run under t h i s c o n d i t i o n f o r about 3 h r s . to reduce a l l p o s s i b l e s u l p h a t i o n . 5.1.4. Equipment Shut-down The main problem l i k e l y t o o c c u r d u r i n g equipment shut-down i s the sudden l o s s o f p r e s s u r e i n the r e a c t o r when the b o o s t e r pump i s s w i t c h e d o f f . The l o s s o f p r e s s u r e might cause a i r to l e a k i n t o the r e a c t o r and, i f t h e r e are any s u l p h u r compounds p r e s e n t , s u l p h a t i o n o f the c a t a l y s t c o u l d o c c u r . To a v o i d t h i s problem, the f o l l o w i n g p r o c e d u r e was adopted: 1. C l o s e the h^S gas c y l i n d e r . 2. S w i t c h o f f the s o l e n o i d v a l v e on the h^S c y l i n d e r . 3. C l o s e the r e g u l a t i n g v a l v e l o c a t e d down-stream o f the 86 r o t a m e t e r which measures the H^S flo w r a t e . 4. S w i t c h o f f the h e a t e r s , gas a n a l y s e r s , d a t a l o g g e r and c a u s t i c s o l u t i o n c i r c u l a t i o n pump. 5. Turn o f f the c o l d water f o r the c o o l i n g c o i l s . 6. Admit n i t r o g e n from a c y l i n d e r i n t o the r e a c t o r to r a i s e i t s p r e s s u r e to about 7 p s i g . 7. S w i t c h o f f the b o o s t e r pump and a l l o w a l l h e a t e d components to cool o v e r n i g h t . 8. In p r e p a r a t i o n f o r the next s e r i e s o f r u n s , c l e a n the sam p l i n g system and r e f i l l the condenser and the d r i e r s w i t h C a C ^ and g l a s s wool. A l s o i n s p e c t the f i l t e r c a r t r i d g e and r e p l a c e i t i f s e v e r e l y c o n t a m i n a t e d . 5.1.5. Scrubber. Clean-up The c o n d e n s a t i o n o f s u l p h u r i n the r e a c t o r o f f - g a s o c c u r r e d m o s t l y a t the top o f the s c r u b b e r . The f o r m a t i o n o f s a l t s such as Na 2S, NaHS, Na,,S03 and NaHS0 3 a l s o took p l a c e a t the s c r u b b e r t o p . Hence, even though the NaOH s o l u t i o n might n o t be t o t a l l y s p e n t , i t was n e c e s s a r y t o c l e a n the s c r u b b e r b e f o r e any bl o c k a g e a r o s e . S u l p h u r , which i s p a r t i a l l y s o l u b l e i n aqueous sodium h y d r o x i d e , i m p a r t e d a dark r e d c o l o u r to the s o l u t i o n . When the s o l u t i o n became d i l u t e d , d u r i n g the washing o f the s c r u b b e r w i t h w a t e r , i t changed c o l o u r to dark green and then to a l i g h t green. 87 The dark green was p r o b a b l y caused by f e r r o u s s u l p h i d e which h y d r o l y s e d to f e r r o u s i o n s i n more d i l u t e s o l u t i o n . In a d d i t i o n to the compounds l i s t e d above, t h e r e were a l s o i r o n , a l u m i n i u m and s i l i c o n compounds i n the s c r u b b e r due t o the e l u t r i a t i o n o f very s m a l l q u a n t i t i e s o f the c a t a l y s t from t h e r e a c t o r . To ensure adequate c l e a n - u p o f the s c r u b b e r the f o l l o w i n g p r o c e d u r e was adopted: 1. Check t o make sure the d i s c h a r g e v a l v e a t the bottom o f the c a u s t i c r e s e r v o i r i s c o n n e c t e d , through a pump, to t h e waste d i s p o s a l tank. 2. Open the d i s c h a r g e v a l v e and s w i t c h on the d i s c h a r g e pump. 3. A f t e r emptying t h e tank, c l o s e the d i s c h a r g e v a l v e and f i l l t h e r e s e r v o i r w i t h water. 4. C i r c u l a t e the water through t he s c r u b b e r f o r about 30 min. 5. Repeat s t e p s 2 to 4 about f o u r t i m e s . 6. Open the top o f the s c r u b b e r and remove the p a c k i n g , a t the top o f the column and c l e a n i t w i t h a brush t o g e t r i d o f the condensed s u l p h u r . 7. Cle a n the i n s i d e w a l l o f the top o f the column as w e l l as the c o v e r i n g p l a t e to remove condensed s u l p h u r . 8. Replace the top p l a t e o f the s c r u b b e r and wash t h e tower a g a i n t h r e e times u s i n g s t e p s 2 t o 4. At t h i s s t a g e , the s o l u t i o n i s v e r y d i l u t e and can be d i s c h a r g e d d i r e c t l y i n t o the d r a i n . 88 5.2. CALIBRATION OF INSTRUMENTS 5.2.1. C a l i b r a t i o n o f Rotameters The r o t a m e t e r s had t o be c a l i b r a t e d v e r y a c c u r a t e l y s i n c e they were used to p r e p a r e gas m i x t u r e s f o r c a l i b r a t i n g the a n a l y t i c a l i n s t r u m e n t s . In a d d i t i o n , the d i l u t i o n f a c t o r o f the r e a c t o r p r o d u c t sample was a l s o e s t i m a t e d from f l o w measurements. The r o t a m e t e r s were c a l i b r a t e d w i t h s t a n d a r d flowmeters such as a soap bubble meter, e l e c t r o n i c mass meter and w e t - t e s t meter. The soap bubble meter was used f o r the measurement o f f l o w r a t e s r a n g i n g from 10 t o 1000 ml/min s i n c e i t i s v e r y a c c u r a t e w i t h i n t h i s range [77]. The time r e q u i r e d f o r a soap bubble to move between two marks e n c l o s i n g a known volume was d e t e r m i n e d w i t h an e l e c t r o n i c t i m e r a c t i v a t e d by two p h o t o c e l l s . For flow r a t e s between 500 and 2000 ml/min an e l e c t r o n i c mass flowmeter was used. I t c o n s i s t e d e s s e n t i a l l y o f an e l e c t r i c a l l y h e a t e d tube and an arrangement o f thermocouples t o measure the d i f f e r e n t i a l c o o l i n g caused by a gas p a s s i n g through the tube. The w e t - t e s t meter was used f o r the measurement o f flow r a t e s between 1.0 1/min and 100 1/min. The p r i n c i p l e o f the w e t - t e s t meter i n v o l v e s the measurement o f gas f l o w by c o u n t i n g the r e v o l u t i o n s o f a s h a f t upon which w a t e r - s e a l e d , g a s - c a r r y i n g cups o f f i x e d c a p a c i t y a r e mounted. The e q u a t i o n f o r c a l c u l a t i n g the f l o w r a t e a t . s t a n d a r d c o n d i t i o n s f o r a g i v e n p o s i t i o n o f the f l o a t i n the r o t a m e t e r 89 i s g i v e n by [88], 0.5 V 5.2 where V-j i s t h e v o l u m e t r i c f l o w r a t e a t s t a n d a r d c o n d i t i o n s o f T-j and P-j and V 2 i s the f l o w r a t e a t the c o n d i t i o n s o f T 2 and P 2 i n s i d e the r e f e r e n c e flowmeter. and denote the temperature and p r e s s u r e i n s i d e the r o t a m e t e r . gases such as N 2 , H 2S and S 0 2 , the e q u i v a l e n t f l o w r a t e s were e s t i m a t e d from the f o l l o w i n g e q u a t i o n [89], where denotes the v o l u m e t r i c f l o w r a t e o f gas i a t s t a n d a r d c o n d i t i o n s and denotes i t s s p e c i f i c g r a v i t y w i t h r e s p e c t t o a i r . The computer programme f o r c a l c u l a t i n g the f l o w r a t e s t o g e t h e r w i t h a t y p i c a l o u t p u t are p r e s e n t e d i n Appendix B. 5.2.2. C a l i b r a t i o n o f A n a l y t i c a l Instruments The H 2S and SO^ c o n c e n t r a t i o n s were measured w i t h a P h o t o i o n i z a t i o n M o n i t o r and a P u l s e d F l u o r e s c e n t A n a l y s e r , r e s p e c t i v e l y . These i n s t r u m e n t s were c a l i b r a t e d w i t h the a p p a r a t u s shown s c h e m a t i c a l l y i n F i g 5 . 1 . Samples o f H 2S and S 0 2 were ge n e r a t e d by double d i l u t i o n w i t h N ? and a i r . In the sample A i r was used to c a l i b r a t e the r o t a m e t e r s . For o t h e r V* = V, (p,) -0.5 5.3 TO S0 2 and H2S ANALYSERS MIXING CHAMBERS ROTAMETERS F i g . 5.1 : Flowsheet f o r c a l i b r a t i o n o f a n a l y t i c a l i n s t r u m e n t s 10 o 91 m i x t u r e s , the c o n c e n t r a t i o n o f S O 2 was always kept a t h a l f o f H 2S, "since t h i s r a t i o was a l s o m a i n t a i n e d i n the f e e d t o the f l u i d i z e d bed C l a u s r e a c t o r . The f i n a l d i l u t i o n o f the samples w i t h a i r was n e c e s s i t a t e d by the f a c t t h a t the p r o d u c t samples from C l a u s r e a c t o r had t o be d i l u t e d w i t h a i r . The purpose o f the a i r d i l u t i o n was t o m i n i m i z e the quenching e f f e c t o f H 2S on the S 0 2 a n a l y s e r . The quenching e f f e c t was f u r t h e r s t u d i e d by measuring the s i g n a l from the S 0 2 a n a l y s e r f o r sample m i x t u r e s w i t h and w i t h o u t H 2S. The e f f e c t o f S 0 2 on t h e H 2S a n a l y s e r was s i m i l a r l y i n v e s t i g a t e d . The a n a l y s i s o f the c a l i b r a t i o n d a t a i n d i c a t e d t h a t the s i g n a l from the S 0 2 a n a l y s e r was a f f e c t e d by the p r e s e n c e o f H 2S i n the sample. The wavelength o f the u l t r a v i o l e t l i g h t s o u r c e f o r the i n s t r u m e n t ranged from 1900 t o 2300 A 0 . U n f o r t u n a t e l y t h i s f a l l s i n t o the a b s o r p t i o n band o f H 2S, i . e . 1900-2700 A 0 [ 8 2 ] . The quenching a c t i o n o f H 2S obeys the Lambert-Beer law, E = E Q exp (-K[H 2S]) 5.4 where E and E Q denote t h e i n s t r u m e n t s i g n a l s f o r samples w i t h and w i t h o u t H 2S, r e s p e c t i v e l y . To c o r r e c t f o r the p r e s e n c e o f H 2S, the e x t i n c t i o n c o e f f i c i e n t , K was e v a l u a t e d and found t o be 2.06 x 1 0 " 4 / ppm H 2S (see F i g . 5.2). Hence by knowing [H 2S] 0.12 UJ o L J c 0.08 EXPERIMENTAL POINTS o LINEARLY REGRESSED LINE SLOPE = K 2.06 *I0"4 INTERCEPT 9.8637 x|0" 7 CORRELATION COEFFICIENT 0.99973 0.04 200 400 600 800 H 2 S CONCENTRATION (ppm) F i q . 5.2: E s t i m a t i o n o f e x t i n c t i o n c o e f f i c i e n t due to H 2S 93 from the p h o t o i o n i z a t i o n m o n i t o r and E from the S02 a n a l y s e r , E „ c o u l d be d e t e r m i n e d . The t r u e S 0 o c o n c e n t r a t i o n was then 0 2 e s t i m a t e d from a c a l i b r a t i o n p l o t o f [ S 0 2 ] v e r s u s E 0 shown i n F i g s . 5.3 and 5.4. At low c o n c e n t r a t i o n s o f S 0 2 , the c a l i b r a t i o n p l o t i s almos t l i n e a r ( F i g . 5.3). However, a t h i g h c o n c e n t r a t i o n s some c u r v a t u r e as w e l l as s c a t t e r are n o t e d . The c u r v a t u r e a t h i g h c o n c e n t r a t i o n s can be a t t r i b u t e d t o the f a c t t h a t the f l u o r e s c e n c e o f S 0 2 , F, i s an e x p o n e n t i a l f u n c t i o n o f S O 2 c o n c e n t r a t i o n [ 8 3 ] . F = C 1 {1 - exp ( - C 2 [ S 0 2 ] )} 5.5 The parameters C-| and C 2 a r e c o n s t a n t s . A t low c o n c e n t r a t i o n s o f S0"2, Eq. 5.5 can be approximated by the l i n e a r r e l a t i o n s h i p , F =. C-jC^ [ S 0 2 ] o r = K [ S 0 2 ] 5.5 The H 2S a n a l y s e r uses p h o t o i o n i z a t i o n as the p r i n c i p l e o f d e t e c t i o n . F or a compound t o be d e t e c t a b l e , i t s i o n i z a t i o n p o t e n t i a l must be l e s s than o r equal t o the energy o f the photons e m i t t e d by the u l t r a v i o l e t l i g h t s o u r c e i n the i n s t r u m e n t . The energy o f the l i g h t s o u r c e o f t h i s i n s t r u m e n t , i . e . 10.2 ev, i s lower than the i o n i z a t i o n p o t e n t i a l o f a l l o t h e r compounds i n the sample stream: S 0 2 = 12.063 ev, N 2 = 15.76 ev and 0 2 = 12.063 ev. Hence t h e r e was no i n t e r f e r e n c e from any o f t h e s e compounds. 30 EXPERIMENTAL POINTS o LINEARLY REGRESSED LINE CONSTANT 0.3151 X-COEFFICIENT 3.9543 > <I0 2 X 2 -COEFFICIENT - 6.0499 xlO" 6 200 400 600 INSTRUMENT READING , E Q (mv) F i g . 5.3: C a l i b r a t i o n c u r v e f o r SC^ a n a l y s e r INSTRUMENT READING , E 0 (mv) F i g . 5.4: C a l i b r a t i o n curve f o r S 0 2 a n a l y s e r 96 The c a l i b r a t i o n c u r v e f o r low and h i g h c o n c e n t r a t i o n s o f the h^S a n a l y s e r a r e p r e s e n t e d i n F i g s . 5.5 and 5.6, r e s p e c t i v e l y . I t i s noteworthy t h a t , l i k e t he S 0 2 c a l i b r a t i o n c u r v e s , t h e r e was l e s s s c a t t e r a t low than a t h i g h c o n c e n t r a t i o n s . T h i s can be e x p l a i n e d by the f a c t t h a t a t h i g h c o n c e n t r a t i o n s , the f l o w r a t e o f the d i l u t i o n gases were low; hence the f l o a t s o f the r o t a m e t e r s were a t the bottom o f the s c a l e where the a c c u r a c y i s low. Because o f the s l i g h t c u r v a t u r e , second degree p o l y n o m i a l s were f i t t e d t o the e x p e r i m e n t a l p o i n t s u s i n g t he method o f l e a s t s q u a r e s . 5.0 3.0 EXPERIMENTAL POINTS o LINEARLY REGRESSED LINE CONSTANT 0.0429 X-COEFFICIENT 1.0894 X 2 - COEFFICIENT - 0 . 0 4 7 5 2.0 3.0 4.0 5.0 INSTRUMENT READING (mv) F i g . 5.5: C a l i b r a t i o n curve f o r H 2S a n a l y s e r EXPERIMENTAL POINTS LINEARLY REGRESSED LINE o CONSTANT 0.30905 X-COEFFICIENT 0.1 1094 X 2 -COEFFICIENT 0.01033 o 99 C h a p t e r 6 6 RESULTS AND DISCUSSION 6.1. SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS The v a l i d i t y o f the c o m p u t a t i o n a l p r o c e d u r e was deduced from t he good agreement between the p r e s e n t r e s u l t s and those o f o t h e r workers f o r Case 5. As seen from F i g . 2.1, the d i s c r e p a n c i e s are v e r y s m a l l and t h e y can be a t t r i b u t e d t o u s i n g somewhat d i f f e r e n t f r e e energy d a t a . T a b l e 6.1 summarizes the e q u i l i b r i u m c o n v e r s i o n s o f the Clau s p r o c e s s e s c o n t a i n i n g two f l u i d i z e d bed c a t a l y t i c r e a c t o r s i n s e r i e s . I t i s noteworthy t h a t the t o t a l c o n v e r s i o n i s c o n s t a n t w i t h r e s p e c t t o the f i r s t r e a c t o r t e m p e r a t u r e . The reason f o r t h i s i s t h a t t he second r e a c t o r compensates ( a t l e a s t t h e o r e t i c a l l y ) f o r the d e f i c i e n c i e s o f the f i r s t r e a c t o r . S i n c e the c o m p o s i t i o n o f the stream l e a v i n g the second r e a c t o r depends p r i m a r i l y on the r e a c t o r temperature (and t h i s was kept a t 3 8 3 . 2 ° K ) , the o v e r a l l c o n v e r s i o n i s a l s o c o n s t a n t . The r e c y c l e o f s u l p h u r - l a d e n c a t a l y s t does not n o t i c e a b l y a f f e c t t he t o t a l c o n v e r s i o n . The t o t a l c o n v e r s i o n i s the same f o r Cases 1 and 2 as w e l l as Cases 3 and 4. A s e p a r a t e c a t a l y s t r e g e n e r a t o r does t h e r e f o r e not appear t o be n e c e s s a r y . T a b l e 6.1: E s t i m a t e s o f s u l p h u r c o n v e r s i o n s i n m o d i f i e d Claus p r o c e s s i n c o r p o r a t i n g two f l u i d i z e d bed r e a c t i o n . (Temperature i n second r e a c t o r i s s e t a t 383.2°K the f u r n a c e y i e l d i s assumed to be 70%) TEMP I S U L P H U R C O N V E R S I O N S % i n \ F i r s t j Re a c t o r j Case 1 r Case 2 Case 3 Case 4 j °K j F i r s t R e a c t o r Second R e a c t o r T o t a l Fi r s t R e a c t o r Second R p a r t n r T o t a l Fi r s t R e a c t o r Second Reactor T o t a l F i r s t R e a c t o r Second R e a c t o r T o t a l 400 1 99.63 73.37 99.97 99.63 73.37 99.97 98.86 72.21 99.90 98.86 72.24 99.90 J 450 98.83 91.67 99.97 98.84 91.68 99.97 96.35 91.30 99.90 96.45 91.34 99.90 500 97.08 96.66 99.97 97.15 96.68 99.97 90.87 96.51 99.90 91.54 96.55 99.90 550 93.96 98.39 99.97 94.26 98.40 99.97 81.26 98.30 99.90 83.80 98.35 99.90 I 6 0 0 I 89.27 99.09 99.97 90.17 99.10. 99.97 67.02 99.04 99.90 74.09 99.09 99.90 J 650 | 83.17 99.42 99.97 85o27 99.43 99.97 49.35 99.37 99.90 63.98 99.43 99.90 700 76.26 99.59 99.97 80.20 99.60 99.97 32.11 99.53 99.90 54.95 99.61 99.90 750 1 69.74 99.68 99.97 75.71 99.70 99.97 22.77 99.59 99.90 48.07 99.70 99.90 800 65.79 99.72 99.97 72.69 99„74 99.97 23.21 99.59 99.90 44.32 99.75 &9.90 850 65.96 99.71 99.97 72.07 99.75 99.97 26.56 99.57 99.90 44.32 99.75 99.90 101 Comparison o f the t o t a l c o n v e r s i o n s i n Cases 1 and 2 w i t h t h o s e o f Cases 3 and 4 i n d i c a t e s t h a t t h e removal o f water from t h e f u r n a c e e f f l u e n t s l i g h t l y enhances t h e t o t a l c o n v e r s i o n . Hence, the c o n v e r s i o n e f f i c i e n c y o f C l a u s p r o c e s s e s c o u l d be improved f u r t h e r i f m o i s t u r e i s removed from the f u r n a c e o f f - g a s . However, t h i s might r e s u l t i n u n a c c e p t a b l e c o r r o s i o n r a t e s u n l e s s d r y i n g a g e n t s , r a t h e r than water c o n d e n s e r s , a r e used. The s u l p h u r p a r t i a l p r e s s u r e was p r e d i c t e d , by means o f the mathematical model, as a f u n c t i o n o f the r e a c t o r temperature and the H 2S c o n c e n t r a t i o n i n the f e e d . T a b l e 6.2 i n d i c a t e s t h a t , w i t h i n the range o f 150 t o 300°C, the p a r t i a l p r e s s u r e o f s u l p h u r i s v i r t u a l l y independent o f the r e a c t o r t e m p e r a t u r e . I t i s o n l y a f u n c t i o n o f the H 2S c o n c e n t r a t i o n i n the f e e d . F u r t h e r m o r e , the dew p o i n t o f a compound i s o n l y a f u n c t i o n o f i t s p a r t i a l p r e s s u r e . Hence, a r e l a t i o n s h i p c o u l d be d e v e l o p e d between the s u l p h u r dew p o i n t and the c o n c e n t r a t i o n o f H 2S i n the f e e d . For t h i s p u r p o s e , the f o l l o w i n g e q u a t i o n i s p r o p o s e d : l n ( C F ) = a + bT + C/T + d / T 2 6.1 where Cp % and T°K denote the c o n c e n t r a t i o n o f H 2S i n the f e e d and the s u l p h u r dew p o i n t , r e s p e c t i v e l y . The c o e f f i c i e n t s a r e , a = 4.597288 b = 0.00542412 c = 1,439.83 d = -2,208,580 T a b l e 6 .2 : P a r t i a l p r e s s u r e s (atm) and dew p o i n t s ( ° C ) o f s u l p h u r R e a c t o r H 2 S C o n c e n t r a t i o n i n the Feed* Temp. OC 20% 10% 3% 1% 0.5% 0.1% 150 0 .0403 0 .0195 0 .0058 0 .0019 0 .0010 0 .0019 j 180 0 .0405 0 .0196 0 .0058 0 .0019 0 .0010 0 .0020 200 0 .0406 0 .0197 0 .0058 0 .0020 0 .0010 0 .0020 220 0 .0408 0 .0198 0 .0059 0 .0020 0 .0010 0 .0020 250 0 .0410 0 .0200 0 .0059 0 .0020 0 .0010 0 .0020 280 0 .0412 0.0201 0 .0060 0 .0020 0 .0010 0.0021 I 300 0.0412 0.0201 0 .0060 0 .0020 0 .0010 0 .0022 S Dew P o i n t 281 .3 256 .0 219 .2 191 .8 176 .3 145 .3 * S 0 9 i s h a l f the c o n c e n t r a t i o n o f HoS and the b a l a n c e i s n i t r o g e n 103 E q u a t i o n 6.1 i s s i m i l a r t o t h a t d e v e l o p e d f o r the p r e d i c t i o n o f s u l p h u r vapour p r e s s u r e by Meisen and B e n n e t t [81]. The d i s t r i b u t i o n o f the s u l p h u r polymers i n the f i r s t r e a c t o r a t 1 atm i s shown i n F i g . 6.1. At t e m p e r a t u r e s below 300°C, the p r i n c i p a l s u l p h u r polymers a r e Sg and Sg. Above 300°C, the dominant s u l p h u r polymer i s i s p r e s e n t i n s i g n i f i c a n t amounts between 400 and 600°C. 6.2 EXPERIMENTAL RESULTS 6.2.1. Minimum F l u i d i z a t i o n V e l o c i t y The minimum f l u i d i z a t i o n v e l o c i t y f o r the c a t a l y s t p a r t i c l e s was d e t e r m i n e d by f l u i d i z i n g a bed o f the p a r t i c l e s w i t h a i r i n a P l e x i g l a s column (100 mm ID). The d i s t r i b u t o r was s i m i l a r to t h a t used i n the r e a c t o r . By p l o t t i n g the p r e s s u r e drop a c r o s s the bed as a f u n c t i o n o f the gas v e l o c i t y , 0.0245 m/s was o b t a i n e d as the minimum f l u i d i z a t i o n v e l o c i t y (See F i g . 6.2). T h i s v a l u e a g r e e s w e l l w i t h t h e t h e o r e t i c a l e s t i m a t e o f 0.0268 m/s ( s e e S e c t i o n 2.2.2). The d i f f e r e n c e between the e x p e r i m e n t a l and t h e o r e t i c a l v a l u e s i s 7.8%, i n d i c a t i n g t h a t t h e r e was no c h a n n e l l i n g . o o PARTIAL PRESSURE , ATM O b CO m e — J c -a — 1 C -s -s T3 O c — I 3 << 3 -a (D ai -s -s LO c+ _i. — 1 -a -i a> to LO c -s fD LO O -h m "D m > H C m o O ro O O o o CO . 0 1 CO CO ro CD O o 170L SUPERFICIAL AIR VELOCITY , U m/s F i g . 6.2: P r e s s u r e drop v e r s u s a i r v e l o c i t y f o r a bed o f a c t i v a t e d alumina ( K a i s e r S-501) 106 6.2.2. S u l p h u r C o n v e r s i o n s The s u l p h u r c o n v e r s i o n was c a l c u l a t e d from the f o l l o w i n g e q u a t i o n : r F N ^ x + i ! _ _ £ | X TOO 6.2 C = F i n ^ o u t l l where F M i s t h e n i t r o g e n f l o w r a t e (assumed t o be c o n s t a n t ) , F- i s the t o t a l f l o w r a t e o f H 9S and SO? i n the r e a c t o r f e e d and i n d. c ^ o u t ^ s t n e t o^ a^ m o^ e f r a c t i o n o f H 2S and S 0 2 i n the r e a c t o r e f f l u e n t a{tox m o i s t u r e and s u l p h u r removal. The computer programme f o r a n a l y s i n g the e x p e r i m e n t a l d a t a i s p r e s e n t e d i n Appendix C. 6.2.2-1 E x p e r i m e n t a l and T h e o r e t i c a l S u l p h u r C o n v e r s i o n s In agreement w i t h most p r e v i o u s s t u d i e s on the C l a u s p r o c e s s [1, 1 4 ] , i t was o b s e r v e d t h a t the e x p e r i m e n t a l c o n v e r s i o n s a r e somewhat h i g h e r than the e q u i l i b r i u m v a l u e s p r e d i c t e d from thermodynamic c a l c u l a t i o n s . T h i s f i n d i n g i s e v i d e n t from F i g . 6.3 which shows the s u l p h u r c o n v e r s i o n s as a f u n c t i o n o f temperature f o r a f i x e d H 2S f e e d c o n c e n t r a t i o n o f 0.5%. F i g u r e 6.4 which shows the s u l p h u r c o n v e r s i o n s a t 250 and 280°C as a f u n c t i o n o f H 2S f e e d c o n c e n t r a t i o n r a n g i n g from 0.06 t o 1.0% a l s o s u p p o r t s t h i s f i n d i n g . B e n n e t t and Meisen [84] had a t t r i b u t e d the d i s c r e p a n c i e s REACTOR TEMPERATURE , °C F i q 6 3- Su l p h u r c o n v e r s i o n as a f u n c t i o n o f r e a c t o r temperature ( O p e r a t i n g c o n d i t i o n s : H 2S - 0.5%, S 0 2 - 0.25%, N 2 - 99.25%, p r e s s u r e - 1 atm) o -sj 100 o o 2 90 CO or UJ Temperature °C 250 280 Equilibrium Conversion Experimental Conversion o • U / U m f 9.3 10 F i g . FEED H 2 S CONCENTRATION , v % 6 4- S u l p h u r c o n v e r s i o n as a f u n c t i o n o f H 9S c o n c e n t r a t i o n i n f e e d ( O p e r a t i n g c o n d i t i o n s : bed h e i g h t - 0.25 m, H 2 S / S 0 2 r a t i o o 00 I •»-<-•• V I , p r e s s u r e - 1 atm) 109 t o p o s s i b l e i n a c c u r a t e thermodynamic d a t a . By s l i g h t l y c h a n g i n g the f r e e energy o f the c h e m i c a l s p e c i e s , they were a b l e t o match the e x p e r i m e n t a l and t h e o r e t i c a l c o n v e r s i o n s . 6.2.2-2 E f f e c t o f Temperature on S u l p h u r C o n v e r s i o n As shown by F i g s . 6.3 and 6.4, the e x p e r i m e n t a l l y d e t e r m i n e d s u l p h u r c o n v e r s i o n s d e c r e a s e w i t h i n c r e a s i n g temperature above 200°C. T h i s s u g g e s t s t h a t the C l a u s r e a c t i o n (which i s s t r o n g l y e x o t h e r m i c ) i s t h e r m o d y n a m i c a l l y c o n t r o l l e d . However, below about 200°C the o p p o s i t e b e h a v i o u r i s o b s e r v e d . T h i s phenomenom i s a l s o c o n f i r m e d by F i g . 6.5.which shows the e x p e r i m e n t a l s u l p h u r c o n v e r s i o n s a t 150 and 200°C as a f u n c t i o n o f H,>S f e e d c o n c e n t r a t i o n r a n g i n g from about 0.05 t o 1.0%. The c o n v e r s i o n s a t 150°C a r e g e n e r a l l y lower than t h o s e a t 200°C. However, t h e r e i s an e x c e p t i o n f o r H 2S f e e d c o n c e n t r a t i o n s l e s s than about 0.25%. Below 0.25%, the c o n v e r s i o n s a t 150°C approach the v a l u e s a t 200°C; and, a t an H 2S f e e d c o n c e n t r a t i o n o f about 0.05%, the c o n v e r s i o n a t 150°C i s h i g h e r than t h a t a t 200OC. Thus the s u l p h u r c o n v e r s i o n s are reduced a t low temperatures c o u p l e d w i t h h i g h H 2S f e e d c o n c e n t r a t i o n s . The r e a s o n f o r t h i s phenomenon i s c a t a l y s t f o u l i n g caused by s u l p h u r c o n d e n s a t i o n . The l a t t e r c o u l d be o b s e r v e d e x p e r i m e n t a l l y by n o t i n g a y e l l o w f i l m on the c a t a l y s t . S u l p h u r c o n d e n s a t i o n c o u l d a l s o be p r e d i c t e d by c a l c u l a t i n g the thermodynamic e q u i l i b r i u m TEMPERATURE , ° C Bed Height , m 0.12 0.25 150 o • 200 A A 0.25 0.50 0.75 FEED H 2 S CONCENTRATION , v % c u S c o n c e n t r a t i o n i n the f e e d ( O p e r a t i n g S u l p h u r c o n v e r s i o n as a f u n c t i o n o f H 2 b c o n c e n t r a t i o n c o n d i t i o n s : H 2 S / S 0 2 r a t i o - 2/1) I l l p a r t i a l p r e s s u r e o f s u l p h u r ( f o r d e t a i l s see S e c t i o n 6.1) and comparing i t w i t h t he s u l p h u r vapour p r e s s u r e . 6.2.2-3 E f f e c t o f U/U m^ on S u l p h u r C o n v e r s i o n A weak, l i n e a r r e l a t i o n s h i p was found t o e x i s t between the s u l p h u r c o n v e r s i o n and the r a t i o o f the s u p e r f i c i a l gas v e l o c i t y , U, t o the minimum f l u i d i z a t i o n v e l o c i t y , U ^ . T h i s i s p r e s e n t e d i n F i g . 6.6 which shows the s u l p h u r c o n v e r s i o n as a f u n c t i o n o f U/U m^ a t a r e a c t o r temperature o f 150°C and an H 2S f e e d c o n c e n t r a t i o n o f 0.85%. The e x p e r i m e n t a l c o n v e r s i o n d e c r e a s e d from 99.8 t o 98.7% when U/U .p was i n c r e a s e d from 4 t o 8. T h i s i n d i c a t e s t h a t t he C l a u s r e a c t i o n i s v e r y f a s t and the performance o f the f l u i d i z e d bed i s o n l y s l i g h t l y a f f e c t e d by gas b y - p a s s i n g the c a t a l y s t i n the form o f b u b b l e s . 6.2.2-4 E f f e c t o f Bed H e i g h t on S u l p h u r C o n v e r s i o n The s u l p h u r c o n v e r s i o n s a t 150 and 200°C and f o r bed h e i g h t s o f 0.12 and 0.25 m a r e p r e s e n t e d i n F i g . 6.5. The r e s u l t s i n d i c a t e t h a t the e x p e r i m e n t a l c o n v e r s i o n s a r e v i r t u a l l y the same f o r the two bed h e i g h t s . Once a g a i n , t h i s i m p l i e s t h a t t he C l a u s r e a c t i o n i s f a s t and goes e s s e n t i a l l y t o c o m p l e t i o n w i t h i n a bed h e i g h t o f about 0.12 m. u / u m f F i q 6.6 : S u l p h u r c o n v e r s i o n as a f u n c t i o n o f U /U m f ( O p e r a t i n g c o n d i t i o n s : bed h e i g h t -0.25 m, H 2S- 0.85%, S0 2-0.425%, N 2 - 98.725%, p r e s s u r e - 1 atm, temperature - 150°C) 113 6.2.2-5 E f f e c t o f H 2S Feed C o n c e n t r a t i o n on S u l p h u r C o n v e r s i o n F i g u r e s 6.4, 6.5 and 6.7 i n d i c a t e t h a t the s u l p h u r c o n v e r s i o n i n c r e a s e s as the f e e d c o n c e n t r a t i o n o f the r e a c t a n t s i n c r e a s e s . Such b e h a v i o u r i s g e n e r a l l y t r u e when t h e number o f moles d e c r e a s e s d u r i n g the r e a c t i o n . For the C l a u s r e a c t i o n , 2H 2S + S 0 2 •« » 3/n S n + 2H 20, 5.4 3 moles r e a c t t o form 2 + 3/n moles o f p r o d u c t . A c c o r d i n g t o F i g . 6.1, a t tempe r a t u r e s l e s s than 300°C, the average v a l u e o f n i s g r e a t e r than 3 and t h e r e f o r e the r e d u c t i o n i n moles o c c u r r e d . 6.2.2-6 Comparison o f F l u i d i z e d and F i x e d Beds  S u l p h u r C o n v e r s i o n s F i g u r e 6.8 i n d i c a t e s t h a t , a t 280°C and f o r the f e e d c o n c e n t r a t i o n s o f about 0.05 t o 1.0%, s u l p h u r c o n v e r s i o n s comparable t o t h o s e o b t a i n a b l e w i t h a f i x e d bed can be a c h i e v e d i n the f l u i d i z e d bed. To o p e r a t e the r e a c t o r as a f i x e d bed w h i l e m a i n t a i n i n g the gas f l o w r a t e c o n s t a n t and i n the same d i r e c t i o n as the f l u i d i z e d bed, about 2.4 kg o f l a r g e s p h e r e s o f the c a t a l y s t (-5+8 mesh) was used. I t was a l s o o b s e r v e d t h a t a t 300°C and a t 3% H 2S f e e d c o n c e n t r a t i o n , t he f l u i d i z e d bed c o n v e r s i o n o f 95.7% i s comparable w i t h 94.3% which was o b t a i n e d by Gamson and E l k i n s [3] and 96.2% FEED H 2 S CONCENTRATION , v % F i g . 6.7: S u l p h u r c o n v e r s i o n as a f u n c t i o n o f H 2S c o n c e n t r a t i o n i n f e e d ( o p e r a t i n g c o n d i t i o n s bed h e i g h t - 0.25 m, HoS/SOo r a t i o - 2/1, p r e s s u r e - 1 atm, temperature -300OC, U / U m f - 8.4) 100 - 90 CO or UJ > z o o FIXED BED FLUIDIZED BED o • GAS FLOW RATE, I/min 33.7 33.3 u / u m f — 10.0 SPACE VEL0CITY.hr"1 1030 — 80 0.2 0.4 0 6 0.8 1.0 FEED H 2 S CONCENTRATION , V % F i g 6 8: Su l p h u r c o n v e r s i o n as a f u n c t i o n o f H 2S c o n c e n t r a t i o n i n the f e e d ( O p e r a t i n g 9* c o n d i t i o n s : bed h e i g h t - 0.25 m, H o S / S 0 2 r a t ! 0 - 2/1, p r e s s u r e - 1 atm, temperature - 280°C cn 116 o b t a i n e d b t D a l l a Lana [85] u s i n g f i x e d beds. 6.3 PRACTICAL IMPLICATIONS Based on the e q u i l i b r i u m p r e d i c t i o n s and the e x p e r i m e n t a l f i n d i n g s , the m o d i f i e d C l a u s p r o c e s s shown i n F i g . 6.9 i s p r o p o s e d . In t h i s p r o c e s s , the t r a d i t i o n a l f i x e d bed r e a c t o r s have been r e p l a c e d by two f l u i d i z e d bed r e a c t o r s i n s e r i e s . The f i r s t and second r e a c t o r s o p e r a t e a t t e m p e r a t u r e s above the dew p o i n t and below the m e l t i n g p o i n t o f s u l p h u r , r e s p e c t i v e l y . The f i r s t r e a c t o r f u n c t i o n s as a r e a c t o r as w e l l as a r e g e n e r a t o r . Most o f the h^S and S O 2 i n the f u r n a c e o f f - g a s a r e c o n v e r t e d t o s u l p h u r i n the f i r s t r e a c t o r . The s u l p h u r which condenses on the c a t a l y s t i n the second r e a c t o r i s r e c y c l e d t o and e v a p o r a t e d i n the f i r s t r e a c t o r . A condenser l o c a t e d between the two r e a c t o r s removes the s u l p h u r from the f i r s t r e a c t o r e f f l u e n t . In a n o t h e r C l a u s p r o c e s s (See F i g . 6.10), a s e p a r a t e r e g e n e r a t o r i s p r o v i d e d t o remove the s u l p h u r formed on the c a t a l y s t i n t h e second r e a c t o r . A l t h o u g h t h i s p r o c e s s c o n t a i n s more u n i t s than the f i r s t p r o c e s s , i t may be e a s i e r t o d e s i g n and o p e r a t e . The c i r c u l a t i o n o f c a t a l y s t between two r e a c t o r s which a r e i n s e r i e s w i t h r e s p e c t t o the gas f l o w r e q u i r e s p r o p e r p r e s s u r e b a l a n c e . E q u i l i b r i u m c a l c u l a t i o n s based on t h e s e p r o c e s s e s i n d i c a t e t h a t t o t a l s u l p h u r c o n v e r s i o n e f f i c i e n c i e s i n e x c e s s o f FURNACE CONDENSER STACK H2O PREHEATERS FLUIDIZED-BED REACTORS CONDENSER INCINERATOR A=SULPHUR-LADEN CATALYST B=SULPHUR-FREE CATALYST F i g . 6.9: M o d i f i e d C l a u s p r o c e s s based on f l u i d i z e d bed t e c h n o l o g y ( R e a c t o r 1 a c t s a l s o as a r e g e n e r a t o r ) ^1 STACK FURNACE A I F T H 2 0 PREHEATERS FLUIDIZED-BED REACTORS CONDENSER INCINERATOR A= SULPHUR-LADEN CATALYST B=SULPHUR-FREE CATALYST REGENERATOR H 2 0 PREHEATER INERTl H 2 0 CONDENSER F i g . 6.10: M o d i f i e d C l a u s p r o c e s s based on f l u i d i z e d bed t e c h n o l o g y (A s e p a r a t e c a t a l y s t r e g e n e r a t o r i s p r o v i d e d ) CO 119 99% can be a c h i e v e d . The e x p e r i m e n t a l r e s u l t s based on the f l u i d i z e d bed C l a u s r e a c t o r s u g g e s t t h a t e x p e r i m e n t a l s u l p h u r c o n v e r s i o n s may be even h i g h e r . 6.4 ERROR ANALYSIS The e x p e r i m e n t a l s u l p h u r c o n v e r s i o n , C, was e v a l u a t e d from t h e c a l i b r a t i o n c u r v e s o f the r o t a m e t e r s and the a n a l y t i c a l i n s t r u m e n t s . Hence the v a r i a n c e o f C can be e v a l u a t e d from the f o l l o w i n g e q u a t i o n , 2 _ 7 , 3 C * 2 c k = 1 3 x k x. x k where denotes the nominal f l o w r a t e s o f (1) the f l u i d i z i n g N 2, (2) H 2S (3) S 0 2 , (4) p r o d u c t sample, (5) d i l u t i o n a i r . Xg and r e p r e s e n t the c o n c e n t r a t i o n s o f H 2S and S 0 2 e s t i m a t e d from the r e a d i n g s o f the gas a n a l y s e r s , r e s p e c t i v e l y . The s u b s c r i p t X. denotes t h a t a l l v a r i a b l e s e x c e p t the feth one a r e h e l d c o n s t a n t . The p a r t i a l d e r i v a t i v e s were c a l c u l a t e d a p p r o x i m a t e l y by e s t i m a t i n g the change i n C f o r a s m a l l change i n one o f the v a r i a b l e s w h i l e keeping the r e s t c o n s t a n t . T a b l e 6.3 summarizes the r e s u l t s o f the c a l c u l a t i o n s f o r t h e runs performed a t 280°C. The f i r s t p a r t o f the t a b l e g i v e s t h e n u m e r i c a l a p p r o x i m a t i o n s o f the p a r t i a l d e r i v a t i v e s . The second p a r t o f the t a b l e l i s t s the v a r i a n c e s and the s t a n d a r d d e v i a t i o n s . T a b l e 6.3: E r r o r a n a l y s i s Temperature = 280 C Bed h e i g h t = 0.25 m P a r t i a l D e r i v a t i v e s f o r V a r i o u s V a r i a b l e s V a r i a b l e | H 0S Feed C o n c e n t r a t i o n 0.1830% 0.3522% 0.5611% 0.8102% 0.9795% X l j - 1 . 3 5 8 8 x l 0 ' 4 - 9 . 0 5 8 7 x l 0 " 5 - 7 . 4 4 6 4 x l 0 ~ 5 - 5 . 2 8 4 5 x l 0 " 5 - 3 . 8 6 7 9 x l 0 " 5 X2 4 . 9 2 8 9 x l 0 "2 1 . 6 3 2 7 x l 0 " 2 8 . 2 1 5 7 x l 0 " 3 3 . 9 0 9 1 x l 0 " 3 2 . 4 1 9 6 x l 0 " 3 X 3 4 . 9 1 8 9 x l 0 "2 1 . 6 3 5 7 x l 0 ' 2 8.3008x10" 3 3 . 6 2 1 9 x l 0 ' 3 2 . 0 5 0 3 x l 0 " 3 1 ^  9.3286x10" 4 5 . 1 3 4 2 x l 0 " 4 4 . 1 0 7 4 x l 0 " 4 3.0805x10" 4 2 . 0 5 3 1 x l 0 ' 4 1 X 5 -1.2030x10' 4 - 7 . 6 9 1 5 x l 0 " 5 - 6 . 3 1 1 0 x l 0 " 5 - 2 . 9 1 6 1 x l 0 " 5 2 . 1 3 8 5 x l 0 " 5 k - 3 . 3 0 0 x l O ~ 2 -1.8889x10"* - l . l l l l x l O " 2 - 8 . 5 7 1 4 x l 0 " 3 - 7 . 1 4 2 9 x l 0 " 3 X 7 - 3 . 6 6 6 7 x l 0 ~2 1 - 2 . 0 0 0 x l 0 " 2 - 1 . 2 2 2 x l 0 " 2 - 8 . 5 7 1 4 x l 0 " 3 - 7 . 1 4 2 9 x l 0 ' 3 2 °c 0.78645 0.098879 0.031904 0.00712 0.00299 d [ 0.88682 0.31445 L | 0.17862 0.083738 0.05684 121 A c c o r d i n g t o T a b l e 6.3, the v a r i a n c e s and hence the s t a n d a r d d e v i a t i o n s d e c r e a s e as the f e e d c o n c e n t r a t i o n s o f h^S i n c r e a s e . T h i s t r e n d can be e x p l a i n e d by the s e n s i t i v i t y t e s t which i s summarized i n T a b l e 6.4. A c c o r d i n g t o t h i s t e s t , the l a r g e s t c o n t r i b u t i o n t o the v a r i a n c e s a r i s e s from X 2 and which a r e the f l o w r a t e s o f h^S and S 0 2 , r e s p e c t i v e l y . A t low f e e d c o n c e n t r a t i o n s o f H 2S the f l o w r a t e s o f the r e a c t a n t s a r e low and the f l o a t s i n t h e r o t a m e t e r s a r e c l o s e t o the bottom. Hence even v e r y s m a l l e r r o r s i n r e a d i n g the p o s i t i o n o f the f l o a t s l e a d s t o l a r g e e r r o r s i n the e s t i m a t i o n o f the s u l p h u r c o n v e r s i o n e f f i c i e n c y . The average v a l u e o f the s t a n d a r d d e v i a t i o n based on the mean o f the v a r i a n c e s f o r the runs a t 280°C was 0.4306%. Hence the average e r r o r i n the e s t i m a t i o n o f the s u l p h u r c o n v e r s i o n e f f i c i e n c y can be taken as r a n g i n g from about ±0.5 t o ±1.0%. T a b l e 6.4 : S e n s i t i v i t y t e s t Temperature Bed H e i g h t H 2S Feed C o n c e n t r a t i o n = 280°C = 0.25 m = 0.5611% V a r i a b l e AC/AX. -7.4464x10 8.2157x10 -5 8.3008x10" 4.1074x10 -4 -6.3110x10" •1.1111x10" • 1.222x10 -2 315.00 11.37 13.33 31.18 1562.60 1.1172 1.5127 ( A C / A X k ) 2 c r x 2 5.5019x10 8.7259x10 -4 1.2243x10 1.6402x10 -4 9.7251x10 -3 1.5412x10 -4 3.417x10 -4 -123 C h a p t e r 7 7 CONCLUSIONS 7.1. SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS A mathematical model based on thermodynamic e q u i l i b r i u m c a l c u l a t i o n s has been d e v e l o p e d t o e s t i m a t e t he p r o d u c t c o m p o s i t i o n and s u l p h u r c o n v e r s i o n o f v a r i o u s C l a u s p r o c e s s e s . The c o m p u t a t i o n a l p r o c e d u r e has c o n s i d e r a b l e advantages o v e r a s i m i l a r method d e v e l o p e d by Gamson and E l k i n s [ 3 ] . F or i n s t a n c e , the p r e s e n t p r o c e d u r e s e l e c t s i t s own i n i t i a l v a l u e s f o r the i t e r a t i v e s o l u t i o n o f t h e e q u i l i b r i u m e q u a t i o n s . T h i s l e a d s t o a s u b s t a n t i a l s a v i n g o f computer time and money. The r e s u l t s o f the c a l c u l a t i o n s i n d i c a t e d t h a t s u l p h u r c o n v e r s i o n e f f i c i e n c i e s i n e x c e s s o f 99% can be a c h i e v e d u s i n g a f u r n a c e and two f l u i d i z e d bed r e a c t o r s i n s e r i e s . The r e c y c l e o f s u l p h u r - l a d e n c a t a l y s t from the second t o the f i r s t r e a c t o r does no t a f f e c t the o v e r a l l s u l p h u r c o n v e r s i o n e f f i c i e n c y s i g n i f i c a n t l y . Hence the o v e r a l l s u l p h u r c o n v e r s i o n e f f i c i e n c y i s v e r y s i m i l a r t o the two proposed p r o c e s s e s (see S e c t i o n 6.4). F i n a l l y , a c c o r d i n g t o the thermodynamic c a l c u l a t i o n s , removal o f m o i s t u r e from the f u r n a c e o f f - g a s can improve the o v e r a l l s u l p h u r c o n v e r s i o n e f f i c i e n c y . 124 7.2 EQUIPMENT PERFORMANCE The equipment used t o p e r f o r m the e x p e r i m e n t s f u n c t i o n e d v e r y s a t i s f a c t o r i l y and s a f e l y . There was no d e t e c t a b l e amount o f and SOg i n the neighbourhood o f the equipment. The temperature c o n t r o l o f the r e a c t o r worked e x c e p t i o n a l l y w e l l . The temperature o f the f l u i d i z e d bed c o u l d be c o n t r o l l e d w i t h i n ±0.5%. The p u r i f i c a t i o n o f the r e c y c l e d n i t r o g e n was s a t i s f a c t o r y . With a purge o f about 10%, the p u r i t y o f the r e c y c l e d n i t r o g e n c o u l d be m a i n t a i n e d above 99.99%. The sampling system f u n c t i o n e d w e l l . Dry s u r f a c e s were m a i n t a i n e d i n the c o n d i t i o n i n g u n i t s t o e l i m i n a t e f u r t h e r r e a c t i o n between h^S and S O 2 . 7.3 EXPERIMENTAL RESULTS Second degree p o l y n o m i a l s were f i t t e d t o the raw d a t a o f the v a r i a b l e s i n v o l v e d i n the e s t i m a t i o n o f the e x p e r i m e n t a l c o n v e r s i o n u s i n g t he method o f l e a s t s q u a r e s . An e r r o r a n a l y s i s i n d i c a t e d t h a t t he e x p e r i m e n t a l s u l p h u r c o n v e r s i o n s were determined w i t h u n c e r t a i n i t i e s l e s s than about ±1.0%. T h i s i s q u i t e good c o n s i d e r i n g the l a r g e number o f v a r i a b l e s i n v o l v e d . The h i g h a c c u r a c y was a c h i e v e d by r i g o r o u s l y c a l i b r a t i n g each i n s t r u m e n t . 1 From t h e e x p e r i m e n t a l r e s u l t s p r e s e n t e d i n S e c t i o n 6.2, the f o l l o w i n g c o n c l u s i o n s can be drawn: 1. S u l p h u r c o n v e r s i o n s comparable t o those a t t a i n e d i n f i x e d bed C l a u s r e a c t o r s can be a c h i e v e d i n f l u i d i z e d bed r e a c t o r s . T h i s i s due t o the f a c t t h a t the C l a u s r e a c t i o n s a r e f a s t . In a d d i t i o n , the c a t a l y s t a c t i v i t y has been enhanced by t h e l a r g e s p e c i f i c s u r f a c e a r e a o f the f i n e p a r t i c l e s used i n the f l u i d i z e d bed r e a c t o r as opposed t o t h e c o a r s e p a r t i c l e s used i n the f i x e d bed r e a c t o r s . 2. The r e a c t i o n s a r e complete w i t h i n a s h a l l o w bed h e i g h t o f about 0.12 m. T h i s i s a g a i n due the h i g h r e a c t i o n r a t e s and the l a r g e s p e c i f i c a r e a o f the f i n e c a t a l y s t p a r t i c l e s . 3. D e f l u i d i z a t i o n d i d not o c c u r when exp e r i m e n t s were performed i n the p r e s e n c e o f c o n d e n s i n g s u l p h u r . A l t h o u g h the s u l p h u r b u i l d - u p was low, the p r e v e n t i o n o f d e f l u i d i z a t i o n c o u l d be l a r g e l y a t t r i b u t e d t o the r a p i d a g i t a t i o n o f t h e bed by the gas b u b b l e s . 4. S u l p h u r c o n d e n s a t i o n reduces the a c t i v i t y o f the c a t a l y s t . C o n t r a r y t o thermodynamic p r e d i c t i o n s , s u l p h u r c o n v e r s i o n s a t 150°C were lower than t h o s e o f 200°C. F o r H 2S f e e d c o n c e n t r a t i o n s between 0.2 and 1.0%, t h e s u l p h u r dew p o i n t l i e s between 150°C and 200°C. 126 5. F l u i d i z e d bed C l a u s r e a c t o r s o p e r a t i n g a t t e m p e r a t u r e s near 300°C can be used as c a t a l y s t r e g e n e r a t o r s . There was no condensed s u l p h u r on the c a t a l y s t a t 300°C even when the i ^ S and S 0 9 f e e d c o n c e n t r a t i o n s ranged up t o 18 and 9%, r e s p e c t i v e l y . 1 127 Ch a p t e r 8 8 RECOMMENDATIONS 1. In i n d u s t r i a l C l a u s p l a n t s , t he m o i s t u r e i n the f u r n a c e o f f - g a s i s a l l o w e d t o e n t e r the c a t a l y t i c r e a c t o r s even though i t s removal c o u l d s u b s t a n t i a l l y i n c r e a s e the s u l p h u r c o n v e r s i o n . I t i s t h e r e f o r e recommended t h a t a m o i s t u r e g e n e r a t o r be p r o v i d e d t o i n t r o d u c e w a t er vapour i n t o the f e e d o f the e x p e r i m e n t a l r e a c t o r . Such a system c o u l d a l s o be used f o r a d d i t i o n a l t e s t i n g o f the sample c o n d i t i o n i n g p r o c e d u r e . 2. Runs s h o u l d be conducte d w i t h i m p u r i t i e s such as C O 2 , COS and C S 2 i n the r e a c t o r f e e d . 3. A d d i t i o n a l runs s h o u l d be performed under c o n d e n s i n g c o n d i t i o n s t o d e t e r m i n e t he r a t e o f c a t a l y s t f o u l i n g . 4. T e s t s s h o u l d be performed t o stu d y t he l o n g term s t a b i l i t y o f the c a t a l y s t . 5. Runs s h o u l d be undert a k e n t o o b t a i n d a t a u s i n g c o n t i n u o u s c a t a l y s t c i r c u l a t i o n through t he r e a c t o r . The r e s u l t s w i l l be u s e f u l i n t h e d e s i g n o f an i n d u s t r i a l u n i t . 6. E x p l o r a t o r y s t u d i e s s h o u l d be co n d u c t e d t o i n v e s t i g a t e t he d i r e c t o x i d a t i o n o f h^S w i t h a i r i n the f l u i d i z e d bed C l a u s r e a c t o r . I f s u c c e s s f u l , such an arrangement c o u l d be o f importance where ^ S c o n c e n t r a t i o n s a r e v e r y low and S O 2 i s ab s e n t . 128 7. C o n s i d e r a t i o n s h o u l d be g i v e n t o b u i l d i n g a l a r g e r p i l o t p l a n t w i t h a f l u i d i z e d bed d i a m e t e r o f a p p r o x i m a t e l y 300 - 600 mm i n d i a m e t e r i n o r d e r t o e l u c i d a t e s c a l e - u p problems. Such a l a r g e system c o u l d c o n t a i n two r e a c t o r s i n s e r i e s . 129 NOMENCLATURE C o e f f i c i e n t s i n the e q u i l i b r i u m e q u a t i o n S u l p h u r c o n v e r s i o n , % I n i t i a l c o n c e n t r a t i o n o f oxygen, % F i n a l c o n c e n t r a t i o n o f oxygen C o e f f i c i e n t s i n the e q u i l i b r i u m e q u a t i o n P a r t i c l e d i a m e t e r , u m A r i t h m e t i c mean o f the mesh dimensions o f the two s i e v e s t h a t d e f i n e the f r a c t i o n i , um(eq. 2.11) Bed d i a m e t e r , m The s i g n a l from the S 0 2 a n a l y s e r f o r samples w and w i t h o u t H 2S. T o t a l f l o w r a t e o f H 2S and S 0 2 i n the r e a c t o r f e e d Flow r a t e o f n i t r o g e n through the r e a c t o r . 2 G r a v i t a t i o n a l a c c e l e r a t i o n , m/S R e a c t i o n r a t e c o n s t a n t hr"^ E q u i l i b r i u m C o n s t a n t s ( c h a p t e r 3) Bed h e i g h t , m Bed h e i g h t a t U f, m T o t a l p r e s s u r e i n a r e a c t o r (atm) R e a c t i o n r a t e , gmole / h r - g - c a t a l y s t 130 S u p e r f i c i a l v e l o c i t y , based on empty c r o s s -s e c t i o n , m/s Minimum f l u i d i z a t i o n v e l o c i t y , m/s Volume o f purged system , 1 V o l u m e t r i c f l o w r a t e o f a i r a t s t a n d a r d c o n d i t i o n s , ml/min. V o l u m e t r i c f l o w r a t e o f gas i a t s t a n d a r d c o n d i t i o n s , ml/min. T o t a l mole f r a c t i o n o f H 2S and S 0 2 i n t h e r e a e f f l u e n t P a r t i a l p r e s s u r e o f S 0 2 (atm) F r a c t i o n o f m a t e r i a l i n s i z e i n t e r v a l (eq. 2.11) V a r i a b l e s o f the e r r o r a n a l y s i s P a r t i a l p r e s s u r e o f Sg (atm) 131 Greek Symbols e Voidage f r a c t i o n o f the bed e Voidage f r a c t i o n a t U m f y F l u i d v i s c o s i t y , Kg/ms 3 p F l u i d d e n s i t y , Kg/m 3 p g Gas d e n s i t y , Kg/m p. S p e c i f i c g r a v i t y o f gas i w i t h r e s p e c t t o a i r 3 Pp S o l i d p a r t i c l e s d e n s i t y , kg/m (j, F r a c t i o n a l y i e l d o f s u l p h u r a c h i e v e d by the f u r n a c e cj) S p h e r i c i t y o f p a r t i c l e s Y R a t i o between N 2 and 0 2 i n a i r AP P r e s s u r e drop a c r o s s the bed, cm H o0 132 REFERENCES 1. Anon, HydAo. PAOC. 57, (1) 181 (1978). 2. George Z.M., PhotphoAouA and SulphuA, 1_, 315-322 (1976). 3. Gamson B.W., E l k i n s R.H., Chm. Eng. PAog.,49_, 203 (1953). 4. Crynes B., Chemical R e a c t i o n s as a Means o f S e p a r a t i o n -S u l f u r Removal, Marcel Dekker, I n c . , New York, (1977). 5. Durr J.H., Woertz B.B., B l a c k C.L., PAOC oft AmeAlcan PetAoleim Institute. Re-^nlng Ve.paAtme.nt,- 416t Uldyenn tte.eJU.ng, 577-587 (1976). 6. B e n n e t t H.A., Ph.D. t h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B.C. (1979). 7. K e l l e y K.K., U.S. BUA UiweA Bull. 406,(1937). 8. White W.B., Johnson, S.M., Dantzig, G.B., J . Chm. Phyi>. 28, 751 (1958). 9. Mc-Gregor D.E., Ph.D. T h e s i s , U n i v e r s i t y o f A l b e r t a , Edmonton, A l b e r t a ( 1 9 7 T ) T ~ 10. McBride B . J . , Hermel S., E l d e r s J.G., Gordon S., Thermodynamic P r o p e r t i e s to 6000°K f o r 210 Substances I n v o l v i n g t h e F i r s t 18 Elements,NASA SP-3001, Washington, D.C. (1963). 11. Maadah A.G., Maddox R.N.-, HydAo. PAOC. , 57, (8) 143 (1978). 12. K e l l o g g H.H., Me*. TAam. , 2, 2161 (1971). 13. Bragg J.R., AlChE Symposium SeAiu, Tl, ( 1 5 6 ) , 48-62/ (1976). . 14. Benn e t t H.A., Meisen A., Can. J. Chm. Eng., 51 , 720 (Dec. 1973). 15. D e t r y D., Drowart J . , G o l d f i n g e r P., K e l l e r H., and R i c k e r t H., . Z. Phyi,. Chm., 55, 314 (1967) 16. Gomezplata A., Kugelman A.M., "P r o c e s s Systems" i n Gas-S o l i d s H a n d l i n g i n the P r o c e s s I n d u s t r i e s , M a r c h e l l o , J.M. Gomezplata, A., M a r c e l l Dekker, I n c . , New York (1976). 133 17. C a r b e r r y J . J . , Chemical and C a t a l y t i c R e a c t i o n E n g i n e e r i n g , McGraw-Hi11, New York (1976). 18. Wen C.Y., Fan L.T., Models f o r Flow Systems and Chemical R e a c t o r s , Marcel Dekker, I n c . , New York (1976). 19. Froment G.F., B i s c h o f f K.B., Chemical R e a c t o r A n a l y s i s and D e s i g n , John W i l e y and Sons, New York, (1979). 20. Bukur D., Caram H.S., Amundson, N.R., "Some Models o f F l u i d i z e d Bed R e a c t o r s " i n Chemical R e a c t o r Theroy A  Review, La p i d u s L., Amundson N.R., P r e n t i c e - H a l l , Inc. Englewood C l i f f s , New J e r s e y (1977). 21. Wen C.Y., Yu Y.H., A . I . Ck. E. J . , U, 610 (1966). 22. K u n i i D., L e v e n s p i e l 0., F l u i d i z a t i o n E n g i n e e r i n g , John W i l e y and Sons, I n c . , New York, (1969). 23. Orr J r . C , P a r t i c u l a t e T e c h n o l o g y , M c M i l l a n , New York, (1966). 24. Toomey R.D., Johnstone H.F., Chem. Eng. ?n.og. Symp. S2AA.U>, 49 ( 5 ) , 51 (1953). 25. L e v e n s p i e l 0., Walton J.S., Chm. Eng. ?fiog. Symp. SVLLU, 50, ( 9 ) , 1, (1954). 26. Dow W.M., Jakob M., Chm. Eng. Vftog., 47, 637 (1951 ). 27. Van Heerden G., Nobel P., Van K r e v e l e n D.W., Chm. Eng. Sci., 1_, 51 (1951). 28. Wen C.Y., Leva M., A . I . Ck. E. 2, 482 (1956). 29. Kato K., Wen C.Y., Chm. Eng. S(U., 24, 1351-1369(1969). 30. Davidson J . F . , H a r r i s o n D., Darton R.C., La Nauze R.D., "The Two-Phase Theory o f F l u i d i z a t i o n and I t s A p p l i c a t i o n t o Chemical R e a c t o r " i n Chemical R e a c t o r Theory A Review, L a p i d u s , L., Amundson, N.R., P r e n t i c e - H a l l , I n c . , Englewood C l i f f s , New J e r s e y (1977). 31. Davidson J . F . , H a r r i s o n D., F l u i d i z e d P a r t i c l e s , Cambridge U n i v e r s i t y P r e s s , New York (1963). 32. G e l d a r t D., "The B e h a v i o u r o f F r e e l y B u b b l i n g F l u i d i z e d Beds", Ph.D. d i s s e r t a t i o n , U n i v e r s i t y o f B r a d f o r d , U.K., (1971). 134 33. Toor F.D., C a l d e r b a n k , P.H., "Performance o f an 18 i n Diameter F l u i d i z e d - Bed C a t a l y t i c R e a ctor w i t h a Pseudo F i r s t - O r d e r R e a c t i o n and D i s c u s s i o n o f S c a l e - u p Problems," i n Vfioc. o{ the Symp. on Fluidization, Montreal, I Chem. E. Sump. Sen.. ( 3 0 ) , 12 (1968). 34. Hovmand S., Davidson, J . F . , "Chemical C o n v e r s i o n i n a S l u g g i n g F l u i d i z e d Bed," Than*. lm>t. Chem. Engn.. 4 6 ^ 7 1 9 0 (1968). 35. Behie L.A., Kehoe P., "The G r i d Region i n a F l u i d i z e d Bed R e a c t o r , " A . I . C f i . E.'19,1070 (1973). 36. C h a v a r i e C , Grace J.R., "Chemical R e a c t i o n i n a Two-Dimensional F l u i d i z e d Bed," Vfioc. o{ the 5th European Symp. on Chemical Reaction Engineering, E l s e v i e r , Amsterdam, B 9-37 (1972). 37. Rowe P.N., "The e f f e c t o f Bubbles on G a s - S o l i d C o n t a c t i n g i n F l u i d i z e d Beds," Chem. Eng, Vnog. Symp. Sen.., 58 (38 ) , 42 (1962). 38. F r y e r C., P o r t e r D.E., " C o u n t e r c u r r e n t Backmixing Model f o r F l u i d i z e d Bed C a t a l y t i c R e a c t o r s . A p p l i c a b i l i t y o f S i m p l i f i e d S o l u t i o n s , " Ind. Emg. Chem. Fund., 1J_, 383 (1972). 39. Latham R., P o t t e r O.E., "Back-mixing o f Gas i n a 6 - i n d i a m e t e r F l u i d i z e d Bed," Chem. Eng. J . , 1, 152 (1970). 40. Davidson J.R., H a r r i s o n D., F l u i d i z e d P a r t i c l e s , Cambridge U n i v e r s i t y P r e s s , New York (1963). 41. P y l e D.L., " F l u i d i z e d Bed R e a c t o r s : A Review," Advances i n Ch e m i s t r y S e r i e s No. 109 Chemical R e a c t i o n  E n g i n e e r i n g , American Chemical S o c i e t y , Washington, D.C. p.106 (1972). 42. Rowe P.N., P a r t r i d g e B.A., Tuan*. lm,t. Chem. EngU. 43_, T157 (1965). 43. Chiba T., Ko b a y a s h i , H., Chem. Eng. Sci. 25_, p. 1375 (1970). 44. Toei R., Matsuno R., Miyakawa H., N i s h i y a K., Komagawa Y., Chem. Eng. (Tokyo) 32, p. 565 (1968). 45. F a r t r i d g e B.A., Rowe P.N., Thjxnb. InMt. Chem. Engu. 44 T335 (1966). 135 46. Latham R.,.Hamilton C , P o t t e r O.E., B-xlt. Chem. Eng. 13, 5, 333 (1968). 47. O r c u t t J.C., Davidson J . F . , P i g f o r d R.L., Chem. Eng. Phagn. Symp. SeA. 58, 38 (1962). 48. Toor F.D., Calderbank P.H., Pfioc. Symp. fluidization, N e t h e r l a n d s U n i v e r s i t y P r e s s , Amsterdam, P 652 (1967). 49. M i c h e l ! S . J . , F l u i d and P a r t i c l e Mechanics, Pergamon P r e s s , New York, P 318 (1970). 50. Grace J.R., Wen C.Y., Yerushalmi. J . , " F l u i d i z a t i o n " i n Handbook o f M u l t i p h a s e Systems by H e t s r o n i , G., Hemisphere Pub. Co., Washington D.C. (1980). 51. Leva M., F l u i d i z a t i o n , M c G r a w - H i l l , New York (1960). 52. B r o t z W., Fundamentals o f Chemical R e a c t i o n E n g i n e e r i n g , A d d i s o n - Wesley Pub. Co. (1965). 53. M i l l e r C O . , Logwinuk A.K., Ind. Eng. Chm., 43, 1220 (1951 ). 54. J o r d a n D.G., Chemical P r o c e s s Development, P a r t 1, I n t e r -s c i e n c e P u b l i s h e r s , New York (1968). 55. Rowe P.N., E x p e r i m e n t a l P r o p e r t i e s o f Bub b l e s , i n F l u i d i z a t i o n e d i t e d by Davidson, J . F . , H a r r i s o n D., Academic P r e s s , New York (1971). 56. T a y l o r H.A., Wesley W.A., J . chem. Phy*. 31_, 216 (1927). 57. Murthy A.R., Rao S.B., Pfwc. Ind. Acad. Sci. 24A, 283 (1951). 58. D a l l a Lana I.G., McGregor D.E., L i u C.L., and Cormode A.E., Paper 2-2 V. Eur and 2nd I n t . Symp. Chem. R e a c t i o n Eng., Amsterdam, May 1972. 59. Cormode D.A., M.Sc. T h e s i s , U n i v e r s i t y o f A l b e r t a , Edmonton (1965). 60. Grancher P., Hydn.0 Pfwc. 5_7 ( 7 ) , 1978. 61. George Z.M., J . CaZal. 32^,261 (1974). 62. Landau M., Molyneux A., Houghton R., I. Chem. E. Symp. Sale*, No. 27, (1968). 136 63. George Z.M., i n S u l f u r Removal and Recovery from I n d u s t r i a l P r o c e s s e s , Adv. Chem. S e r i e s , No. 139, John B. P f e i f f e r , Ed., Amer, Chem. Soc. Washington D.C. (1975). 64. Pearson M.J, "Recent Developments i n Clau s C a t a l y s t s " , pub. by K a i s e r Aluminium and Chemical C o r p o r a t i o n and p r e s e n t e d a t t h e Canadian N a t u r a l Gas P r o c e s s o r s ' A s s o c i a t i o n i n C a l g a r y , Nov. 24, 1972. 65. Maddox R.N., i n Chemical R e a c t i o n s As a means o f S e p a r a t i o n -S u l f u r Removal. by Crynes B.L., P u b l i s h e d by Marcel Dekker, I n c . , New York. 66. Naber J . E . , W e s s e l i n g h J.A., Groenendaol W., Dodd D.E., "The S h e l l C l a u s Off-Gas T r e a t i n g P r o c e s s " , p/wc.ol Bifid Annual Convention o{ Gou> PAoce660A6 h&bocJjoctioYi, 53 (1974). 67. B a r t h e l Yves et.al. i n S u l f u r Removal and Recovery from I n d u s t r i a l P r o c e s s e s , Adv. Chem. S e r i e s , No. 139, John B. P f e i f f e r , Ed., Amer. Chem. Soc. Washington, D.C. (1975). 68. E s t e p J.W., McBridge G.T., West J.R. i n Advance* In VetA.ole.um Chemu>tAy and Refining, 6_, 315, McKetta, J . J . e d . , I n t e r s c i e n c e , N.Y. (1962). 69. Gray J.H., Handwerk G.E., P e t r o l e u m R e f i n i n g T e c h n o l o g y and Economics, 190, Marcel Dekker, I n d . , New York (1975). 70. Goar B.G., Hydfw. PAOC., 47_ ( 9 ) , 249 (1968). 71. Kopp S.P., Morin M.M., " S u l p h u r Recovery a t the Ram R i v e r Gas P l a n t , " PAO{. Go* Cond. Con{. U n i v e r s i t y o f Oklahoma, Norman, OK. (1977). 72. Meisen A., "A Novel F l u i d i z e d Bed Clau s P r o c . " p r e s e n t e d a t the nth Can. Chem. Eng. Con{., C a l g a r y , A l b e r t a , O c t o b e r 23 - 27 (1977). 73. Audas F.G., Gcu> and Coke, U, 229 (1951 ). 74. Goar B.G., HydAo. PAOC. , 53 (7),129 (1974). 75. Kunkel L.V., "A Review o f Improvements o f the Cla u s S u l f u r Recovery P r o c e s s , " PAOC. Annual Conv. Go* PAOC. M-6. 57, 147 (1978). 137 76. Schampine L., A l l e n R., Numerical Computing: An I n t r o d u c t i o n , W.B. Saunder, 242 (1973). 77. N e l s o n G.O., C o n t r o l l e d T e s t Atmospheres - P r i n c i p l e s and Te c h n i q u e s , Ann A r b o r S c i e n c e Pub., Inc . (1971). 78. A r c h i b o l d R.G., Hydno. Pioc., 56 (3) ,219 (1977). 79. K a i s e r Chemicals P r i v a t e Communication, Baton Rouge, LA. (1977). 80. Norman W.S. "There a r e Ways to Smoother O p e r a t i o n o f S u l p h u r P l a n t s , " Vfiod. Gcu> Cond. Con^., Univ. o f Oklahoma, Norman, OK. (1976). 81. Meisen A., Bennet H.A., Hydfw. Pnoc, 58 (1 2 ) , 131 (1979). 82. Watanable K., J u r s a A.S., J . Chm. Phy6., 4J_, 1650 (1964). 83. Thermo E l e c t r o n C o r p o r a t i o n , I n s t r u c t i o n Manual f o r Model 40 P u l s e d F l u o r e s c e n t S 0 2 A n a l y s e r (1976). 84. Bennett H.A., Meisen A., Con. J . Chm. Eng. ( i n p r e s s ) . 85. Dal l a Lana I.G., " C a t a l y s i s Research on the M o d i f i e d Claus P r o c e s s , " Energy Proc./Canada, 7p_ ( 4 ) , 34, 1978. 86. P e r r y R.H., C h i l t o n C.H., Chemical E n g i n e e r s Handbook, 5th ed. M c G r a w - H i l l , New York (1973). 87. Hammond W.A., D r i e r i t e , the V e r s a t i l e D e s i c a n t and I t s A p p l i c a t i o n s i n the D r y i n g o f S o l i d s , L i q u i d s and Gases, The Stoneman P r e s s , Columbus, Ohio (1958). 88. C o s i d i n e D.M., P r o c e s s Instruments and C o n t r o l s Handbook, McGraw-Hill~Book Company, New York (1974). 89. C a l l a h a n F . J . , J r . , Swagelok Tube F i t t i n g and I n s t a l l a t i o n Manual, Markad S e r v i c e Co., C l e v e l a n d , Ohio (1974). 90. I n s t r u c t i o n Manual f o r Model HO P u l s e d F l u o r e s c e n t S 0 2 A n a l y e r , TE5405-30-76, Thermo E l e c t r o n C o r p o r a t i o n , H o p k i n t i n , Mass. 91. I n s t r u c t i o n Manual f o r PI 201 P h o t o i o n i z a t i o n M o n i t o r , HNU Systems, I n c . , Newton, Mass. 138 92. I n s t r u c t i o n Manual f o r D a t a l o g g e r Model 2240A, P/N 427948, John F l u k e Mfg. Co., I n c . , Mountlake T e r r a c e , Washington. 93. Kohl A.L., R i e s e n f e l d F.C., Gas P u r i f i c a t i o n , McGraw-Hill Book Co., New York (1980. 139 APPENDIX A COMPUTER PROGRAMME FOR THE SIMULATION OF VARIOUS TYPES OF CLAUS PLANTS The F o r t r a n IV computer programme was.used f o r p r e d i c t i n g the performance o f two f l u i d i z e d bed C l a u s r e a c t o r s i n s e r i e s . The e q u i l i b r i u m c o m p o s i t i o n and c o n v e r s i o n i n each r e a c t o r were e s t i m a t e d . In a d d i t i o n , t o t a l p r o c e s s c o n v e r s i o n s ( i n c l u d i n g the f u r n a c e ) were c a l c u l a t e d . The programme f o r Case l ( s e e s e c t i o n 3 . 1 ) , l i s t e d s u b s e q u e n t l y , c o n s i s t s o f a main programme and f i v e subprogrammes. A c a p t i o n a t t h e b e g i n n i n g o f each s e t o f l i s t i n g s d e s c r i b e s i t s f u n c t i o n . The main symbols used i n the programme a r e d e f i n e d by the comment stat e m e n t s a t t h e b e g i n n i n g o f the main programme. To check the v a l i d i t y o f the a l g o r i t h m s , m a t e r i a l b a l a n c e s f o r a l l the elements p r e s e n t i n the r e a c t o r s were performed. In the computer o u t p u t , the t e m p e r a t u r e s a r e i n degrees K e l v i n and the e q u i l i b r i u m c o m p o s i t i o n c o n s i s t s o f the p a r t i a l p r e s s u r e s o f the components i n atmospheres. For more d e t a i l s on the E q u i l i b r i u m model see S e c t i o n 3.1. 140 c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c THIS EEOGEAMME DETERMINES TEE MATERIAL EALANCE OF THE CLA'JS REACTION AT EQUILIEBIUM IN TWO FLUIDIZED BED REACTORS IN SERIES USING THE EQUILIBRIUM CONSTANT METHOD DELFT = RK A TEMP H2S S S2 S4 S6 S8 S02 H20 N2 02 B,C RE N BH C HM M SENAM DEL A1 A2 KCCNV1 CHANGE IN GIBBS FREE ENERGY FOB THE STANDARD STATE PER FORMULA IN GRAM CAICEIES EQUILIBRIUM CONSTANT COEFFICIENTS FCR THE FREE ENERGY EXPRESSIONS TEMEEEATUHE HY EfiCGEN SULPHIDE SUIEHUE SUIEHUE POLYMER OF SUIFHUB POLYMEE OF SULEHUE POLYMER OF SUIEHUE POLYMER SULPHUR DIOXIDE WATER NITECGEN 2 4 6 OF 8 ATOMS ATOMS ATOMS ATOMS EE ESSURE OF ERESSURE OF PRESSURE OF ERESSURE OF PRESSUEE OF PRESSURE OF ERESSURE OF PRESSUEE OF ERESSURE OF PRESSURE OF OXYGEN = COEFFICIENTS OF POLYNOMIALS = PERCENTAGE CONVERSION IN THE = NUMEEE CF TEMPERATURES USEE = PARTIAL PRESSURES CF COMPONENTS IN THE SECOND REACTOR* = PARTIAL PRESSURES CF CO MFC KENTS IN THE FIRST REACIOR * = NUMEEE OF CHEMICAL SPECIES * =NAME CF SPECIES * =TCTAL MOLES PER UNIT TOTAL ERESSURE IN FIRST REACTOR * PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL PARTIAL FLAME COMBUSTION =ECIES CF S02 IN FIRST REACTCE =BOLES CF H2S IN FIRST EEACTCE =CCN¥EESICN IN FIRST EEACTCE 3SCCNV2 =CCNVEESICN IN SECOND EEACTCE TCCNV12=T0TAL CONVERSION IN F I E S I AND TCCNV =T0TAL CON VEE5IC N IN FUEKACE • TEP =TOTAI ERESSURE AT EQUILIERIUM SECOND REACTOR REACTORS ******************************* *********************************** IMPLICIT EEAL*8 (A-H,0-J) ,INTEGEE (I-N) DIMENSION A(20,20),B(10),C(10),D(500),EH(20,20),CHH(20,20),S?NAM(2 10) ,RK (10) ,TT (20) , ECCN1 (20) ,PCONV2 (20) ,TC0NV (20) ,V (20) DIMENSION FF (20) ,LFAG1 (20) ,FRTT (20) DIMENSION VE (20,20),VC(20,20) DIMENSION ATOM (5),AMEI(5) ,AMBO (5) ,TCOV 12 (20) COMMON /AMMA/RK,B,C,P COMMCN /AFUA/T1,T2,T3,T4,T5,A EXTERNAL F EXTERNAL G READ (5,860) REAL (5,20C) READ (5,200) WRITE (6,320) (ATCM(I) ,1=1,5) H N WRITE (6,330) WRITE (6,340) WRITE (6,350) WRITE (6,340) WRITE (6,330) WRITE (6,340) DO 1C 11=1,M RE AD (5,300) SENAM (II) , (A (II , J) ,J=1,7) WHITE (6,310) SPNAW (II) , (A (II,J) ,J=1,7) WRITE (6,340) WRITE (6,330) 1=383 .2D0 T1 = 1.0D0-CLCG (T) I2=T 13=1*1 14=T3*T T5=T4*T DELFT 5=2.0D0*FRT(3)+3.0DO*F5T (10)-2.0D0*FR1(2)-FRT(1) RK(5) = DEXE (-DELF15) DO 7C IN=1,3 3EAD(5,100) P READ(5,100) TI READ(5,100) ER DO 20 1=1,N ZI=I- 1 T=TI*ZI*50.0D0 II(I)=T ****** CALCULATION OF EQUILIBRIUM CONSTANTS I1 = 1.0D0-DLOG (T) T2=T 13=1*1 14=13*1 IS=T4*I DO 30 K=1,7 FRTT (K)=A (K, 1) *11-A (K,2)*T2*0.5D0-A (K,3)*T3/6.ODO-A (K,4)* 14/12. 10-A(K,5)*T5*0.0ED0+A (K,6)/T2-A (K,7) DELFT 1=2.ODO*FRTT (3)+0.375D0*FRTT(7)-2.0D0*FRTT (2)-FRTT (1) RK(1) = DEXE (-DELF11) DEIFT2=FETT (4)-0.25D0*ERTT (7) fiK(2) = DEXF (-DELFT2) DELFT3 = FETT (5)-0 .5DO*FRTT (7) RK(3) = DEXE (-DELFT3) DEL FT4 = FRTT (6)- 0.75D0*F2TT(7) RK(4) =DEXP (-DELFT4) WRITE(6,360) WRITE(6,370) WRITE (6,380) WRITE (6,660) TT(I) WRITE (6,380) WBITE (6,370) WRITE (6,380) WRITE (6,390) 142 WHITE (6,380) WHITE (6,370) WHITE (6,380) DO 40 K=1,E WRITE(6,400) K, EK(K) 40 WRITE(6,380) WHITE (6,370) C C ****** CALCULATION OF THE EQUILIBRIUM DATA FOR THE FIRST REACTOR C KK=1 D ( 1) =0. ODC 41 IF (KK.EC-2) GC TC 65 R = HH-D(KK) KK = K K*1 C c ****** CALCULATION OF COEFFICIENTS CF POLYNOMIALS C 3TA=2..0D0* (1-0DO-RR)/3-0DO APH=1.ODO-E BR =(3.76 2D0+3.OD0*BTA)*APH-(2.OD0*APH-3.ODO*ETA)*(1.88 1DO-BTA) B ( 1)=ETA*AEH/ER B(2 )=RK(2)*ETA*(AEH + 2.0D0*ETA+3.762D 0)/BR E(3)=SK(3)*ETA*(APH«-4.0DO*ETA + 7.524EO)/ER B(4)=RK(4)*ETA*(AEH+6.GD0*ETA+11.266D0)/BR 3 (5)= ETA * (APH+8.OE0*ETA+15.0480)/BE CH = E E C ( 1)=- (2.0D0*APH-3.OEO + BTA)*BTA/CR C(2)=RK(2)*ETA*(2.0EO*APH+3.0DQ*ETA+7.524DO)/CH C(3)=RK(3)*ETA*(2.0D0*APH+9.OD0*ETA+15.043CO)/CR C(4) = RK(4)*ETA* (2.0 DO*APH+15.0 DO*ETA+22.572D0)/CH C (5) =ETA* (2.0DO*APH + 21..0DO*ETA+3 0. C96D0)/CS C c ****** PRINTING THE COEFFICIENTS CF FUNCTIONS C WRITE (6,37C) WRITE (6,370) WRITE (6,380) WRITE (6,1 10) WRITE (6,380) WRITE(6,370) WRITE (6,380) DO 43 JI=1,S WRITE (6,420) JI,B(JI) 43 WRITE (6,380) WRITE (6,370) WRITE (6,380) DO 44 JI=1,£ WHITE(6,430) JI,C(JI) 44 WRITE(6,380) WRITE (6,370) ES=0. 1C0 CS=C.CDO CALL ZERCIN (G,BS,CS,0.0DO,1.OD-05,IFLAG) 143 EPSL1=0.01D0 56 EPSL1=EPSL1*C.1D0 If (BS.LE-EESL1) GC TC 56 45 EB = B S-EE EL 1 FB = F (EE) IE (FB.IT.O.OEO) GC TO 46 EPSL1=EPSL1*0.5D0 GO TO 45 4o EPSL2=0.0C01D0 47 EPSL2=EESI2*C.1E0 If (BE .IE.EPSL2) GC TC 47 49 CC=BE-EF£L2 EC=F (CC) IF(FC.GT.O.ODO) GC TO 48 EPSL2=EPSL2*2.0E0 IF (ES.LE.EPSL2) GC TO 47 GO TO 49 48 £ELEB=1.0E-10 CALL ZERCIN(F,EE,CC,O.0DO,RELER,IFIAG) X=EB FF(I)=F(X) LFAG 1 (I)=IFLAG X2=X**0.25DC X3=X2*X2 X4=X3*X2 Q =B ( 1) *P-E (2)*X2-B(3)*X3-B(4)*X4-B(5)*X S =C (1) *P + C (2)*X2 + C(3) *X3+C(4)*X4 + C(5)*X S1=RK (2)*X2 S2=RK (3)*X3 S3=RK (4)*X4 S4=3.76 0DC*(Q+0.5E0*S) CHM (I, 1) =Q CHM (I,2)=2.0D0*£ CHM (1,3)=S CHM (I,4)=£1 CHM (I,5)=E2 CHM(I,6)=E3 CHM (I,7) = X CHM(I,8)=£4 CHM (I,9) = 0.0D0 TOTS=3.0D0*Q+2.0D0*S1+4.0D0*S2*e.0D0*S3+8.0D0*X PCCN1 (I)= (1.0E0-3.0D0*C/TOTS)*10O.E0 C c ****** CALCOLATICN CF THE EQUIIIERIUfl DATA FOR THE SECCND REACTOR DEL = ETA/ (2.0D0*C_ + S) A1=DEL*C A2=DEL*S ALE=A2+2.ODO*A1+1.88CD0 AL=1.880D0/ALP U1=(AL-3.0D0) U2 = (AL-1.ODO) U3=P*EK (5) B1=~0 1*0 1/U3/4.CDO C1 = + 0 1*02/113/2. 0D0 D1=-U2*a2/(J3/4. ODO CALL CUEECT (E1,C1,D1,Y,A1,ALP) BH (I,1)=Y*F BH (1,2)=2.OD0*Y*P BH (1,3) = (1.0DO-3.0DC*Y-AL*(1.0DO-Y)) *P BH(I,4)=AI*(1.0E0-Y)*E BH (I,5)=3-OD0* (A 1-Y*ALP/(1.ODO-Y)) V(I)=BH(I,1)+BH(I,2)*BH(I,3)+BH(I,4) D(KK)=3.0CO*(A1-Y*ALE/(1.0DO-Y)) EPS2 = EAE£(E(KK)-E(KK-1)) IF (EPS2.GI.1 .0D-C6) GO TO 41 KH= KK- 1 PCCNV2 (I) = (1.ODO-Y*ALP/A1/(1.ODO-Y))* 100.0DO TCCV12(I) = (EEL*(TCTS-3.0D0*Q)+D(KK)) * 100. 0 EO/0. 3 DO TCONV (I) = 70.0DO+ (EEL*(TOTS-3.OEO*Q)+D(KK))*100.0D0 AMBI (1) = 1 .ODO-HK Ail BO (1) =3- 0 DO* Y* ALP/ (1. ODO-Y) + DEL* (TCI S-3. 0D0*C) +D AMEI(2)=2.0E0* (1.0DO-BE)/3.ODO AHBC (2)=A2+2.0D0*A1 AMBI (3)=4.0C0*(1.0DO-B5)/3.0D0 AMBC (3)=2.CDC*(A2 + 2.0D0*A1) AMBI (4) = 1.88D0 AMBC (4)=1.88E0 AMBI (5) = 1.0D0-8E AMEC (5)=D£L*TCT£ WRITE(6,810) WRITE (6,630) WHITE (6,640) WRITE (6,820) WRITE(6,840) WRITE (6,630) WRITE (6,840) DO 90 IA=1,£ WRITE (6,850) ATCM(IA),AMBI(IA) ,AMEC(IA) WRITE (6,840) WRITE (6,830) CCKTINOE WRITE (6,500) WRITE (6,510) WRITE (6, 520) WEITE(6,5S0) P WRITE (€,£20) WRITE (6,510) WRITE (6,520) WRITE(6,560) WRITE (6,520) WRITE (6,510) WRITE(6,520) WRITE(6,540) WRITE (6,520) WRITE (6,510) WRITE(6,520) DO 61 1=1,N 145 WBITE (6,530) TT(I) , (CHM (I,J) ,J= 1, 9) ,ECCN1(I) 61 WRITE(6,520) WBITE (6,510) WRITE (6,5 10) WRITE (6,510) WRITE (6,500) WRITE (6,600) WRITE (6,590) WRITE (6,570) WHITE (6,590) WRITE (6,600) WRITE (6,590) WRITE (6 ,620) WBITE(6,590) WBITE (6,600) WHITE (6,590) DC 52 1=1, N WRITE (6,610) TT ( I ) , (BH (I,J) , J=1,5) ,V (I),PCCNV2 (I) ,TCOV12(1) ,TC0NV ( 21) 52 WHITE(6,590) WHITE (6,600) WRITE (6,600) WRITE (6,6C0) WRITE (6,360) WRITE (6,690) WHITE (6,680) WRITE (6,670) WBITE (6,680) WRITE (6,6SC) DC 5 5 IC=1,N WRITE(6,7CC) IC,FF(IC), IC,1FAG1(IC) 55 WRITE(6,6E0) WRITE (6,690) 70 CONTINUE 100 FCBMAT (5D10.3) 200 FORMAT (12) 300 FCBMAT (A4,4E15.7,/,3D15.7) 310 FORMAT (10X,'*•,AH,2X,7D15.7,2X,'*' ) 320 FORMAT (' 1',////////) 330 FCBMAT (10X,115(1H*) ) 340 F O R M A T t ^ ^ ' j n S X , ' * ' ) 350 FORMAT (10X,'*•,43X,'COEFFICIENTS OF FREE ENEBGY',43X,'*») 360 FCBMAT (' 1 *,///) 370 FOEMAT (SOX,32 (1H*)) 360 FCEMAT(5CX,«*',30X,'*') 390 FOEMAT (50X,'**,5X,*EQUILIBRIUM CONSIA NTS',4X, ' * •) 400 FOEMAT (SOX, •*',4X,'RK(',12, •) = ,,d5-7,4X,'*') 410 FOEMAT (SOX,•*»,2X,"COEFFICIENTS OF POLYNOMIALS'^IX,1*') »»20 FOEMAT (50X , • * ' , 5X , ' B (' , 11 , ') =« , 115. 7, 5X , ' * ') 430 FOEMAT (50X, ,* ,,5X,'C( ,,I1,') = ,,D15.7/5X,'*') 500 FOEMAT (• 1',//////) 510 FOEMAT (8X,116 (1H*)) 520 FOEMAT(8X,'*•, 1 14X,•*• ) 530 FORMAT (eX, ,*•,F8.2 #4X,10F10.5,2X, ,* ,) 146 540 FOFMAT (ex, ,*',3X,«TEMP',8X, ,SC2 ,,7X, ,H2S',7X,' H20',8X,'S2',3X,'S4' 1,3X,'S6',8X,'S8«,8X,'N2',8X,'02',6X, ' KCNV 1 • , 4X ,' *') 560 FOEMAT (8X,'*',35X,'EQUILIBRIUM CCfiECSITION FOB THE FIRST REACTOR' , 134X, « *•) 580 FORMAT (eX,»*',49X,'EEESSURE=',F6.2,50X,'*') 570 FORMAT ( 13X,•*',29X,•EQOILIEEIUM CCMECSITION FOR THE SECCNE REACTOR 1',29X,'*«) 590 FOEMAT (13X,** 1, 1C4X, '**) 600 FOEMAT( 13X, 106 (1H*)) 610 FOEMAT (13X, '*',F8.2,4X,9F10.5,2X , '*•) 620 FOEMAI(13X,'*',3X,'TEMP',8X,'SC2,,7X,'K2S',7X,'H20',8X,'N2',3X,'Sd 1', 7X ,'TEF ' ,6X, • 3JCCNV2',4X, • TCCNV 12 ' ,4X, « TCONV ',2X,'*') 660 FGEMAI(50X,'*',4X,•TEMEESATUEE=•,F10.2,4X,'*') 670 FORMAT (35X, '*' , 18X, 'OUTPUT FROM ZEECI ti • , 1 8X , ' * •) 680 FOEMAT (35X,•*',54X,•*•) 690 FCEMAT (35X,56 (1H*)) 70 0 FGEHAIpEX^'^X.'FFC^'^'.DIS^ex,' FLAG (' ,12, ' )=',1X,I2,7X, 1 '* •) 810 FCEMAT ('1',//////////) 820 FORMAT (35X,•*',1X,•GRAM ATOM OF',14X,'INPUT', 15X,'OUTPUT' ,7X,1*') 830 FCEMAT (35X,62 (1H*)) 840 FCEMAT(35X,'*',60X, ' *') 850 FCEMAI(35X,'*',7X,A1,7X,2F20.8,EX,'*') 860 FOEMAT (5A 1) 870 FCEMAT (6F10.5) STCP END .147 c c c c c c c c c c c c c c c c c c c c c c c c ************* * * SOEPECGEAMME POE CALCULATING * IS GIEES FEEE ENEBGY F/ ET WHERE F • ••••^•••••••i***********:,,**^^^.^^.^ * ** * * * **************$$ FUNCTION FET(K) IMFLICIT EEAL*8 (A-H,0-$) ,INTEG EE (I-N) DIMENSION A(20,1C) CCKMCN /AFUA/T1,12,13,14,15,A EEIUEN END ************** * * SUE EECGEA KME FOB CALCUIATING TEE MAIN ***** * FUNCTION * * ******* FUNCTION F(X) IMPLICIT EEAI*8(A-H,C-$) ,INTEGER(I-N) DIMENSION EK(10),E(10),C(10),CHM(20,2 0) COMMON /ABMA/RK,E,C,P X2=X**0.25E0 X3=X2*X2 X4=X3*X2 ZC=B (1) *P-E (2) *X2-E (3) *X3-E (4) *X4-E (5)*X ZA=C(1)*E+C(2)*X2+C(3)*X3+C(4) *X4 + C (5)*X F =SK(1)-ZA*ZA*X**O.37 5D0*0.2 5ODO/ZC/ZC/ZC BETUE N END , ,,-**•****** * SUE PEOGEAMME FOE CALCULATING THE FUNCTIGN * * WHICH DETERMINES THE POINT WHERE THE MAIN * * FUNCTION IS NOT CONTINUOUS * * * ***********, FUNCTION G(X) IMPLICIT EEAL*8 (A-H,0-I) ,INTEGEE(I-N) DIMENSION BK(10) ,E(10) ,C (10),CHM (20,20) CCMBCN /AKMA/EK,E,C,f X2=X**0.25D0 X3=X2*X2 X4=X3*X2 G =B (1)*P-B (2)*X2-B(3)*X3-B(4) *X4-E(5) *X BET DEN END 148 C * * C * SUBROUTIN ZEECIN * C * * C * ZERCIN COMPUTES A BOOT OF THE NCN I I N E A B EQUATION * C * F ( X ) = 0 WHERE F (X) I S A CONTINUOUS FEAL FUNCTION OF * C * A SINGLE VARIABLE X. THE METHOD USED I S A COMBINATION * C * CF EIS E C T I C N ANE THE SECANT * C * * C * NCECAL INPUT CONSISTS OF A CONTINUOUS FUNCTION F AND * C * AN INTEBVAL (E,C) SUCH THAT F( E ) *F (C) .LE.O.ODO. EACH. * C * ITERATION FINES NEW VALUES CF E AND C SUCH THAT THE * C * INTERVAL (B,C) I S SERUNK AND F (E) *F (C) .LE.O.ODO. THE * C * STOPPING CRITERION I S * C * * C * CAES (E-C) .LE.2.0*(BELER*DAES(B) +ABSER) * C * * C * WEEBE BELER=BELATIVE ERROR ANE AESER=AESOLUTE ERROR * C * ABE INPUT QUANTITIES. AS B AND C ABE USED FCR BOTH * C * INPUT AND OUTPUT, THEY MUST EE VARIABLES IN THE * C * CALLING PBCGEAMME * C * * C * I F 0 I S A POSSIBLE ZERO,ONE SHOULD NOT CHOOSE ABSER=0. * C * - * C * I HE OUTPUT V I I U E OF B I S TEE EEITEB APPROXIMATION TO * C * A BOCI AS E ANE C ARE ALWAYS EEDEFINED SO THAT * C * DABS (F (B) ) .LE.DABS (F (C) ) . * C * * C * A FLAG,IFLAG I S EROVIDED AS AN OUTPUT QUANTITY. I T MAY * C * ASSUME THE VALUES 1-5 WHERE * C * * C * IFLAG=1 I F F ( E ) * E ( C ) .LT-0 AND THE CRITERION I S MET * C * * C * =2 I F A VALUE B I S FOUND SUCH THAT THE COMPUTED * C * VALUE F{E) I S EXACTLY ZERO. THE INTERVAL (B,C) * C * MAY NOT SATISFY THE STOPPING CRITERION. * C * * C * =3 I F C A E S ( F ( E ) ) EXCEEDS THE INPUT VALUES * C * CABS (F (B) ) , D A B S ( F ( C ) ) . IN THIS CASE IT I S * C * I I K E L Y THAT B I S CLOSE TO A POLE OF F * C * * C * —U I F NC CDD ORDER ZERO WAS FCUND I N THE INTERVAL.* C * A LOCAL MINIMUM MAY HAVE BEEN OBTAINED. * C * * C * =5 I F TCC MANY FUNCTION EVALUATIONS WERE MADE. * C * (AS PROGRAMMED,500 ARE ALLOWED * C * * C ***************************^ SUBROUTINE ZERCIN (F,E,C,ABSER,BELEE,IFLAG) I M P L I C I T E E A L * 8 ( A - H , G - $ ) , I N T E G E R ( I - N ) C C (HERE AN IEM 360/67) C U=1.0D-10 149 RE=DMAX1(RELER,U) IC=0 ACBS=EAES(E-C) A=C FA=F(A) EB=I (E) FC = F A KCCUNT=2 FX=DMAX 1(EAES (FE) ,DAES (FC)) IF (DAES(FC) . G E . CAES (IB)) GC TO 2 • •••••INTERCHANGE E AND C SC THAT DABS (F(B)) . L E . D A B S ( F ( C ) ) A=E FA=EB E=C FB = FC C=A EC=F A CMB=0.5DO+ (C-B) AC MB = EAES (CME) TOL=RE+EAES (E)+AESER ••••••TEST STOPPING CRITERION AND FUNCTION COUNT. IF (ACME.1E.TCL) GC TC 8 IF (KCCUNT.GT-500) GO TC 12 ••••••CALCULATE NEW ITERATE IMEIICITLY AS B+P/Q ••••••WHERE WE AERANGE P . G E - O . D O . THE IMPLICIT ••••••FCEM IS USEE TC PREVENT CVERF1CW P= (E-A) •FE Q=FA-FE I F ( P . G E . O . E O ) GC TO 3 P=-P Q=-Q * * * * * * U p E A T E A, CHECK IF REDUCTION IN THE SIZE OF BRACKETING • • • • • • O T E E V A L IS SATISFACTORY. IF NCT,EISECT UNTIL IT I S . A=E FA=FB IC=IC+1 IF ( I C - L T . 4 ) GO TC 4 IF (8 . 0DC+ACME.GE.ACBS) GO TC 6 IC=0 ACES=ACME • •••••TEST FCE TCC SMAIL A CHANGE I F ( P . G T - E A E S (Q)+TCL) GO TO 5 ••••••INCEEMENT BY TOLERANCE 150 C B=B + D£IGN (1CL,CME) GO 10 7 C C ******ECCT OUGHT 10 EE BETWEEN E ANE (C+B)/2. C 5 I F (P-GE.CME *C) GO TC 6 C C * * * * * * U S £ SECANT EULE C B=B+ E/Q GO TC 7 C C * * * * * * u S E EISECTICN C 6 B=0.5D0*(C+E) C C ******HAVE COMPLETED COMPUTATICK FOE NEW ITERATE B.* C 7 FB = F (B) IF (FE.EC.-O.OEO) GC TO 9 KCGCN1=KCCUNT+ 1 I F (DSIGN ( 1 . 0 E 0 , F E ) . ME. ESIGN ( 1 - ODO,FC) ) GO TO 1 C=A FC=F A GO TO 1 C C ******EINISHED SET IFLAG. C 8 I F ( D S I G N ( 1 . 0 E O , F E ) . E C . - D S I G N ( 1 . 0 E O , F C ) ) GO TO 1 1 IF (CAES (EE) .GT.FX) GC 10 1 0 I F I A G = 1 BETUEN 9 IFLAG=2 HETUEN 1 0 I F I A G = 3 EE10EN 1 1 I F L A G = 4 BETO EN 1 2 IFIAG=5 HETUEN END 151 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c * * C * S U E R C U T I N E C U E E C T * C * * C * T E E F U N C T I O N O F T H I S S U B R O U T I N E I S T C C A L C U L A T E * C * T H E S E A L B O O T S C F A C U E I C E Q U A T I O N * C * * £ ************************************************************ S U B B O U T I N E C U B B C T ( E 1 , C 1 , D 1 « Y , P 1 , A L E ) I M P L I C I T E E A L * 8 ( A - H , 0 - $ ) , I N T E G E E ( I - N ) D I M E N S I O N H ( 1 0 ) P= ( 3 . 0 D 0 * C 1 - E 1 * E 1 ) / 3 . 0 D 0 Q= (2 7 . 0 E C * D 1 - 9 . 0 £ 0 * E 1 * C 1 + 2 . 0 D O * E 1 * E 1 * B 1 ) / 2 7 . 0 D O fi= ( P / 3 . 0 E 0 ) * * 3 + ( Q / 2 . O D O ) * * 2 I F ( B . I I . C O O ) GO T C 2 A S = - Q * 0 . 5 E 0 + E S Q E T (B) A R = D A E S ( A S ) A = A R * * 0 . 3 3 3 3 3 3 3 3 D C I F ( A S . I T . 0 . O D O ) A = - A B S = - Q * 0 . 5 D 0 - D S Q E T (B) BB=D A E S ( E S ) B = B B * * 0 . 3 3 3 3 3 3 3 3 E C I F ( B S . L T . O . O D O ) E = - E I F ( R . E Q . O E O ) GO T C 1 Y=A + B - E 1 / 3 . C D 0 B E T UE N 1 Y 1 = A + E - E 1 / 3 . O D O Y 2 = - ( A + E ) / 2 . 0 D O - E 1 / 3 . 0 D 0 Y 3 = Y 2 F1 = Y 1 * A L P / ( 1 . 0 D 0 - Y 1 ) F 2 = Y 2 * A L E / ( 1 . 0 D 0 - Y 2 ) F 3 = Y 3 * A I E / ( 1 . 0 D 0 - Y 3 ) GC T C a 2 V = 3 . 0 B 0 * Q / 2 . 0 D 0 / P * D S Q R T ( 3 . O D O / ( - P ) ) V = E A B S ( \ i ) W = V * D S Q E T ( 1 . 0 D 0 - V * V ) U = D A T A N (K) D U M M Y = 1 . 0 D 0 I F ( Q . I T . O D O ) D U M M Y = - 1 . 0 D 0 DO 3 K = 1 , 3 Z=K 3 H ( K ) = D U M f l Y * 2 . 0 D 0 * ( - P / 3 . 0 D 0 ) * * 0 . 5 D 0 * C C O S ( U / 3 . 0 D 0 + 1 2 0 . 0 D 0 * Z ) Y1 = H (1) Y2=H (2) Y3 = H (3 ) F 3 = Y 3 * A L E / ( 1 . 0 D 0 - Y 3 ) F 2 = Y 2 * A I I / ( 1 . 0 D 0 - Y 2 ) F 1 = Y 1 * A I E / ( 1 . 0 D 0 - Y 1 ) 4 I F ( F 1 . L 1 . 0 . 0 E 0 . O B . F 1 . G 1 . P 1 ) GO T C 5 Y=Y1 E E T U E N 5 I F ( F 2 . L T . 0 . 0 E 0 . O E . F 2 . G T . P 1 ) GO 1 0 6 Y=Y2 B E T U E N 6 Y=Y3 BET OR N END 153 S O H N S 11 1 0 S 0 2 + 3 . 2 2 5 7 1 3 2 D + C 0 + 5 . 6 5 5 1 2 C 7 D - 0 3 - 2 . 4 9 7 0 2 C 8 D - 0 7 - 4 . 2 2 0 6 7 6 6 D - 0 9 + 2 . 1 3 9 2 7 3 3 D - 1 2 - 3 . 6 9 0 4 4 7 6 D + 0 4 + 9 - 8 1 7 7 0 3 6 E + 0 0 H 2 S + 3 . 9 1 6 3 0 7 4 D + 0 0 - 3 . 5 1 3 8 6 7 1 D - 0 4 + 4 . 2 1 9 13 1 2 D - 0 6 - 2 . 7 4 5 3 6 6 5 D - 0 9 + 4 . 8 5 8 4 3 6 E D - 1 3 - 3 . 6 0 S 5 5 8 5 C + 0 3 + 2 . 3 6 6 0 0 4 2 D + 0 0 H 2 0 + 4 . 1 5 6 5 0 1 6 D + 0 0 - 1 . 7 2 4 4 3 3 4 D - 0 3 + 5 - 6 9 8 2 3 1 6 D - 0 6 - 4 . 5 9 3 0 0 4 4 D - 0 9 + 1 . 4 2 3 3 6 5 4 E - 1 2 - 3 . 0 2 8 8 7 7 O D + 0 4 - 6 . 8 6 1 6 2 4 6 E - 0 1 S 2 + 2 . 6 9 9 9 3 4 9 D + 0 0 + 6 . 2 7 4 9 5 4 9 D - 0 3 - 9 . 2 8 7 C 7 7 5 D - 0 6 • 6 . 5 3 9 3 2 7 6 D - 0 9 - 1 . 7 8 0 2 2 8 2 D - 1 2 + 1 . 4 5 0 4 9 3 5 E + 0 4 + 1 - 0 5 3 4 2 2 2 E + 0 1 S 4 + 6 . 3 0 5 6 6 6 9 D + 0 0 + 1 . 2 5 4 9 9 1 O D - 0 2 - 1 . 6 5 7 4 1 5 5 D - 0 5 + 1 . 3 0 7 8 6 5 5 D - 0 8 - 3 . 5 6 0 4 5 6 4 E - 1 2 + 1 . 4 3 8 S 8 7 0 E + 0 4 - 2 . 2 8 6 0 6 6 7 D + 0 0 S 6 + 6 . C 8 9 2 H 2 9 D + 0 C + 1 . 8 8 2 4 8 6 5 D - 0 2 - 2 . 7 8 6 1 2 3 3 D - 0 5 + 1 . 9 6 1 7 9 8 3 D - 0 8 - 5 . 3 4 0 6 6 4 6 E - 12 + 1 - 1 2 6 4 3 7 0 E + 0 4 + 7 . 3 2 0 2 3 2 2 E + 0 0 S 8 + 7 . 7 8 3 8 S 6 8 D + 0 C + 2 . 5 0 9 9 8 2 0 D - 0 2 - 3 . 7 1 4 8 3 1 0 D - 0 5 + 2 . 6 1 5 7 3 1 0 D - 0 8 - 7 . 1 2 0 9 1 2 8 D - 1 2 + 1 - 0 1 1 4 5 8 4 E + 0 4 + 4 » 7 6 2 1 7 S 2 E + 0 0 N 2 + 3 . 6 S 1 6 1 4 8 D + 0 C - 1 . 3 3 3 2 5 S 2 D - 0 3 + 2 . 6 5 0 3 1 0 0 D - 0 6 - 9 . 7 6 8 8 3 4 1 D - 1 0 - 9 . 9 7 7 2 2 3 4 E - 1 4 - 1 . 0 6 2 8 3 3 6 E + 0 3 + 2 . 2 8 7 4 9 8 C E + 0 0 C 2 + 3 . 7 1 8 9 9 4 6 D + 0 0 - 2 - 5 1 6 7 2 8 8 D - 0 3 + 8 - 5 8 3 7 3 5 3 D - 0 6 - 8 - 2 9 9 8 7 1 6 D - 0 9 + 2 . 7 0 8 2 1 8 0 D - 1 2 - 1 . 0 5 7 6 7 0 6 D + 0 3 + 3 . 9 0 6 C 7 0 4 D + 0 0 S M - 3 . 7 8 3 6 6 5 7 E + 0 C - 1 . 2 6 4 2 0 8 1 D - 0 1 + 1 . 0 4 0 8 7 6 2 D - 0 3 - 2 . 1 5 8 4 1 6 3 D - 0 6 + 1 . 1 1 5 0 1 7 5 E - 0 9 +1 . 2 9 0 0 7 7 3 D + 0 3 + 3 . 3 7 3 4 1 8 C E + C 1 S + 2 . 9 1 3 7 2 5 8 D + 0 C + 3 . 1 2 9 4 0 6 1 D - 0 4 - 2 . 6 0 9 2 5 0 8 D - 0 6 + 3 . 1 3 8 2 4 3 9 D - 0 9 - 1 . 1 7 0 8 9 8 8 E - 1 2 + 3 - 2 5 6 8 2 7 2 E + 0 4 + 3 . 5 6 8 1 1 5 4 D + 0 0 + 0 . 0 5 0 D + 0 1 + 4 . 0 0 0 D + 0 2 + 0 . 0 7 0 D + 0 1 + 0,. 1 0 0 D + 0 1 + 4 . 0 0 0 D + 0 2 + 0 . 0 7 0 D + 0 1 + 0 . 2 0 0 D + 0 1 + 4 . 0 0 0 D + 0 2 + 0 . 0 7 0 D + 0 1 t m r n * * * * * * * * * * * * * * * * * * * * * * * * • S3 2 0 . 3 2 2 5 7 1 3 E * 0 l • *H2S 0 . 3 9 1 6 3 0 7 E » 0 1 * H 2 3 0 . 4 1 5 6 5 0 2 6 * 0 1 * S 2 0 .2699935E+01 * S 4 0 . 6 3 C 5 6 6 7 E * 0 l • S o 0 . 6 0 8 9 2 4 3 E « - 0 1 # • S B 0 .7783897E+01 *N2 0 . 3 6 9 1 6 1 5 6 * 0 1 * J 2 0 . 3 7 1 8 9 9 5 E * 0 1 # »SM - 0 . 3 7 8 3 6 6 6 E + 0 1 • •s 0 .2913726E+01 **.***•*#*#•****••••*** C O E F F I C I E N T S OF FREE ENERGY 0 . 5 6 5 5 1 2 1 E - 0 2 - 0 . 3 5 1 3 8 6 7 E - 0 3 - 0 . 1 7 2 4 4 3 3 E - 0 2 0 . 6 2 7 4 9 5 5 6 - C 2 0 . 1 2 5 4 9 9 1 E - C I 0 . 1 8 8 2 4 8 6 E - U 0 . 2 5 0 9 9 8 2 E - 0 1 - 0 . 1 3 3 3 2 5 5 E - C 2 - 0 . 2 5 1 6 7 2 9 E - 0 2 - 0 . 1 2 6 4 2 C 8 E * C C 0 . 3 1 2 9 4 0 6 E - C 3 - 0 . 2 4 9 7 0 2 1 E - 0 6 C . 4 2 1 9 1 3 1 E - 0 5 0 . 5 6 9 8 2 3 2 E - 0 5 - C . 9 2 8 7 0 7 7 E - 0 5 - 0 . 1 8 5 7 4 1 5 E - 0 4 - 0 . 2 7 8 6 1 2 3 E - 0 4 - 0 . 3 7 1 4 8 3 1 E - 0 4 0.2b 5 0 3 1 0 E - 0 5 0 . 8 5 8 3 7 3 5 E - 0 5 0 . 1 0 4 0 8 7 6 E - 0 2 - 0 . 2 6 0 9 2 5 1 E - 0 5 - 0 . 4 2 2 0 6 7 7 E - 0 8 - 0 . 2 7 4 5 3 6 6 E - 0 8 - 0 . 4 5 9 3 0 0 4 E - 0 8 0 . 6 5 3 9 3 2 8 E - 0 8 0 . 1 3 0 7 8 6 6 E - 0 7 0 . 1 9 6 1 7 9 8 E - 0 7 0 . 2 6 1 5 7 3 1 E - 0 7 - U . 9 7 6 8 8 3 4 E - 0 9 - 0 . 8 2 9 9 8 7 2 E - 0 8 - 0 . 2 1 5 8 4 1 6 E - 0 5 0 . 3 1 3 8 2 4 4 E - 0 8 0 . 2 1 3 9 2 7 3 E - 1 1 0 . 4 8 5 8 4 3 6 E - 1 2 0 . 1 4 2 3 3 6 5 E - 1 1 - 0 . 1 7 3 0 2 2 8 F - U - 0 . 3 5 6 0 4 5 6 E - 1 1 - 0 . 5 3 4 0 6 8 5 E - U - 0 . 7 1 2 0 9 1 3 E - 1 1 - 0 . 9 9 7 7 2 2 3 E - 1 3 0 . 2 7 0 8 2 1 8 E - 1 1 0 . 1 1 1 5 0 1 7 E - 0 8 - 0 . 1 1 7 0 8 9 9 E - 1 1 - 0 . 3 6 9 0 4 4 8 E + 0 5 - 0 . 3 6 0 9 5 5 8 E * 0 4 - 0 . 3 0 2 8 8 7 7 E + 0 5 0 .1450494E+05 0 .1438987E+05 0 . U 2 6 4 3 7 E * 0 5 0 . 1 0 1 1 4 5 8 E * 0 5 - 0 . 1 0 6 2 8 3 4 E + 0 4 - 0 . 1 0 5 7 6 7 1 E » 0 4 0 . 1 2 9 0 0 7 7 E * 0 4 0 .3256827E+05 0 . 9 8 1 7 7 0 4 E * 0 1 0 .2366004E+01 - 0 . 6 8 6 1 6 2 5 E * 0 0 0 . 1 0 5 3 4 2 2 E * 0 2 - 0 . 2 2 8 6 0 8 9 E + 0 1 0 . 7 3 2 0 2 3 2 E * 0 l 0 . 4 7 6 2 1 7 9 E * 0 1 0 .228749BE+01 0 . 3 9 0 8 0 7 0 E * 0 i 0 .3373418E+02 0 . 3 5 6 8 1 1 5 E » 0 1 * * t* * * * * * * * * * -P=> ******************************** * To-»3eee£££fi*o = is)0 * * * * * * 90-2£08ZST£'0 = f£)0 * * * * 10-269Z.8TS9'0 = 1Z»0 * * * * n-2£10TZTZ"0- = {T>0 * * * ******************************** * * * 10+36*Z06£Z'0 = 15)8 * * * * 10-38980S6Z'0 = ( M 9 * * * * 90-3Z££8SST"0 = (E)B * * * * !C-5Z0I*£E£'0 =(Z)8 * * * * 10-3£S0S8SV0 =(1)8 * * * ******************************** * * * SlVIkONAIOd JC S iN3101 30D * * * ******************************** ******************************** ******************************** * * * II+396*6£ZZ*0 =(S )Xti * * * * To-azsooTSfo )»y * * * * 90-3IC£Z8TT0 = l£ * * * * 10-3ZZ0688*'0 =(Z )»b * * * * 80-»300T£Z£6'0 =(I )>Td * * * ******************************** * * * siNvisNCO w n m a m n o a * * * ******************************** * * * 0G*00^ =3fcfUVy3dW3i * * * ******************************** ******************************** * * * TEMPERATURE2 550.00 * * * ******************************** * * * EQUILIBRIUM CONSTANTS * * * ******************************** * * * RK( 1)= 0.1588409E+05 * * * * RK{ 2)= 0.2186750E-03 * * RK( 3)= 0.1479178E-03 * * * * RK( 4» = 0.2008956E+00 * * * RK( 5)= 0.2239496E + U * ******************************** ******************************** ******************************** * * * COEFFICIENTS OF POLYNOMIALS * * * ******************************** * * * 8(11= 0.4585053E-01 * * * * 8(21= 0.1491254E-03 * * * * 8(31= 0.1949630E-03 * * * * B(4I= 0.3925799E+00 * * * * B(5I= 0.2590249E+01 * * * *** ***************************** * * * C l l ) = -0.21210135-17 * * * * C(2) = 0.2915666E-03 * * * * C(3) = 0.39444745-03 * * * * C(4J = 0.8035822E+00 * * * * C( 5) = 0.5333333E»01 * * * ******************************** ******************************** * 600.00 * * * * * TEMPERATURE^ ******************************** * * * * *** * * * * * * * * * * * FQUILIBRIUM CONSTANTS * * ***************************** RK( 1) = 0.22745105*0* RKl 2) = 0.1433363E-02 RK( 3) = 0.7504737E-03 RK( 4) = 0.3585224E+00 RK( 5) = 0.2239496EH1 * * * * * * * * * * * 6(11 = 0 .4585053E-01 8(2) = 0.9774824E-03 B(3) = 0.9891617E-03 B(4> = 0.7006063E+00 BC 51 = 0.2590249E+01 * * * C( 1) = -0.2121013E-17 * * * * C(2) = 0.1911151E-02 * * * * C(3) = 0.2001263E-02 * * * * C<4) = 0.1434089E+01 * * * * C( 51 = 0.5333333E*01 * * * ******************************** ********************************* * * GRAM ATOM O F * * * * * * * * * * * * S 0 H N S INPUT :**•**> 0.30000000 0.20000000 0.40000000 1.83000000 0.30000000 OUTPUT *******: 0.30000000 0.20000000 0.40000000 1.38000000 0.30000000 * * E * * * * * * * * * * * * ********** PRESSURE3 0.50 EQUILIBRIUM COMPOSITION FOR ThE FIRST REACTOR TEMP S02 H2S H20 S2 S4 S6 S8 N2 02 * 400.00 0.00010 0.00020 0.04699 0. 00000 0.00000 0.00042 0.00849 0.08871 0.0 * * 450.00 0.00032 0.00064 0.04652 0. 00000 0.00000 0.00114 0.00787 0.08866 0.0 * * 500.00 0.00079 0.00158 0.04552 0. 00001 0.00000 0.00237 0.00676 0.08855 0.0 * 550.00 0.00162 0.00323 0.04378 0. 00006 0.00001 0.00392 0.00525 0.08838 0.0 * m 600.00 0.00283 0.00566 0.04122 0. 00035 0.00005 0.00531 0.00364 0.08814 0.0 m * 65 0.00 0.00437 0.0C873 0.03796 0. 00153 0.00014 0.00595 0.00220 0.08778 0.0 * * 700.00 0.00600 0.01200 0.03435 0. 00503 0.00033 0.00527 0.00106 0.08714 0.0 * * 750.00 0.00729 0.01458 0.03123 0. 01217 0.00051 0.00300 0.00031 0.08614 0.0 * * 800.00 0.00765 0.01531 0.03003 0. 01941 0.00040 0.00073 0.00003 0.08524 0.0 * * 850.00 0.00725 0.01449 0.03069 0. 02235 0.00019 0.00009 0.00000 0.08494 0.0 SCONVI 99.57754 98.65269 96.65058 93.12879 87.91712 81.29340 74.11591 68.16809 66.23892 67.92038 i * * * * * * * * * * * * * * * ********************** ***************** * SU96'66 LULV'bb UiT.9'66 OOOOS'C * * * * * * * * * * * * * * * * * * * * *********************************** * * ANOOJ. 2TAN03JI 2AN03S; * SU96'66 LULB'bb 91969*66 00005*0 SU96*66 £UA9*66 E*M9*66 0O005'0 ST£96*66 LllLVSS £*S25'66 00005*0 SU96'66 IXUVbb 6E£*/E*66 00005*0 STE96'66 IXlLG'bb 5*;€86*96 00005*0 5T£96'66 ZU£8*66 T*/2T2*86 00005*0 ST€96'66 ZUZ8'66 €92£E'96 00005*0 STC96'66 ZU*.8*66 2»7E88*06 00005*0 STE96*66 IXLLB'bb Z9S26'0Z 00005*0 d31 /.9S60'0 T600T'0 £1560*0 82Z/C0 5*550*0 885E0*0 S2020'0 89600*0 I9£00'0 C60C0"0 ********* «OiOV3» CN009S 9H1 VOJ ************* 06TS*7*0 06*5*7*0 06*5*7*0 06T5V0 06*5*7'0 06T5V0 0615*7*0 06T5V0 0615V0 0615*7*0 209*70*0 208*70*0 209*70*0 208*>0'0 209*70*0 209*70*0 208*70*0 209*70*0 208*70*0 208*70 '0 90000*0 90000*0 90000*0 90000 *0 90000*0 90000*0 90000*0 90000*0 90000*0 90000*0 €0000*0 E0000*0 EOOOO'O EOOOO'O EOOOO'O €0000*0 £0000*0 EOOOO'O €0000*0 €0000*0 * * ££556*59 0*0 20000*0 65000*0 '9000*0 6Si<70*o 596SD *0 T8oeo*o T*STO*0 * * 9U8£*59 0*0 seiii'o 22000*0 i2eoo*o OltOC'O £02E0*0 £6650 *0 9Tte0'0 85510*0 *' * O W r l '69 0*0 eetii'o i.TTOO'0 8TflOO*0 66000*0 66910*0 92*90*0 88/20 '0 •/6ET0 *0 * * 8*S52*9£ 0*0 68"7Zt*0 •>6200*0 63110*0 «>S000*0 6*7900 *0 2602.0*0 80220*0 *OTTO*0 * * oeoii*C8 0* 0 28S£T*0 ££500*0 9sno*o 22000*0 T6T0O*0 82.220*0 •rlSTO'O 2.82.00*0 * 0*0 E*9/.T*0 22800'0 62.600*0 Z.0000'0 £M)00*0 82. £80*0 2.0010*0 £0500*0 * * 06*96'E6 O'O 58 9 i T 0 z m o ' o Z690C0 20000*0 2.0000*0 6E880*0 B9S00'0 •>8200*0 * * T.0810'16 O'O S U M * O iOMO'O 11^00*0 00000*0 10000*0 2VI60*0 52.200*0 8ET00*0 * * i.86Z8*86 0*0 •>EiU*0 20910*0 56100*0 00000 *0 00000 *0 22£60*0 01100*0 55000*0 * * * 26EC9*66 O'O €*>AM*0 OUTO'O UOOO'O 00000*0 OOOOO'O £0*/6D*0 seooo*o 2.1000*0 8S 9S ******************************< * TANGO* 20 2N ************ ' * * * ******************************************* * * * t****************************************** 02H S2H «010V3» l S M d 3H1 MDd NOUISOdWOO w n m m n a a OO'T =3*nSS3«d eos CO * 0 5 8 0 0 * 0 0 8 0 0 * 0 S i 0 0 * 0 0 2 . 0 0 * 0 5 9 0 0 * 0 0 9 0 0 *oss 0 0 * 0 0 5 0 0 * 0 5 * 0 0 * 0 ' ) * ' »****< dwai * * * * * * * * * * * * * * * * * * * * C M V O ************************** ********* * 51016*66 51016*66 51016*66. 51016*66 S1016*66 51016*66 51016*66 51016*66 51016*66 51016*66 6*206*66 6*206*65 6*206*66 6*206*66 6*206*66 6*206*66 6*206*66 6*206*66 6*206*66 6*206*66 6SEU*66 00SU*66 91119*66 9E6BS*66 E902**66 56060*66 9158E*86 S0E99*96 21199*16 12S9CE1 00000*1 00000*1 00000*1 00000* 1 00000*1 00000*1 00000*1 00000*1 00000*1 00000*1 *810 VO SEZ0V0 8*060*0 *6010*0 02050*0 681EC0 28110*0 1*800*0 ZZEOO'C 18000*0 I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0PE06*0 90960*0 50000*0 CPE06*0 90960*0 50000*0 08C06*0 90960*0 50000*0 08E06*0 90960*0 50000*0 0PE06'0 90960*0 60000*0 08E06*0 90960*0 60000*0 08E06*0 90960*0 50000*0 08E06*0 90960*0 50300*0 08E06*0 90960*0 60000*0 08E06'0 90960*0 50000*0 * 50000*0 00*058 * * 50000*0 00*008 * * 50000*0 00*051 * * 50000*0 00*001 * * 50000*0 00*059 * * 50000*0 00*009 * * 50000*0 00*055 * * 50000*0 00*005 * * 50000*0 00*05* ' * * 50000 *0 00*00* * * * 20S dW3J. * ************* SI619**9 * * * * * * * * * * * * * * * ***************** * * TANCm * ************** * * ***** * * * 2266**99 25*51*11 1EE6£*81 29126**8 51905 *06 92*01 **6 S9E5**16 52*86*86 £8289*66 0*0 0E1*E*0 51000*0 92E0C0 80200*0 £*E10*0 1E11V0 £2*90*0 212E0*0 00*058 * * 0*0 E***E*0 51100*0 81110*0 6*200* 0 £28*0*0 £8121*0 B£T90*0 690E0 *0 00*008 * * 0*0 208*E*0 ElEOO'O 05610*0 91100*0 01220*0 EB2£I*0 62250*0 *1920*0 00*0 51 * * 0*0 *S0SE*0 19100*0 90E20*0 88000*0 £2800'0 119*1*0 620*0*0 *1020*0 00*001 * * 0*0 802SE*0 95210*0 00220*0 *£000*0 1EZ00 '0 50651*0 £2820*0 11*10*0 00*059 * * 0*0 n£5E*0 iE8io*o *cno*o OTOOC'O £5000*0 66691*0 £8110*0 26800*0 00*009 * * 0*0 98E5E*0 91*20*0 1£210*0 20000*0 60000*0 5281T0 16600*0 86*00*0 00*055 * * 0*0 6E*5E*0 £1620*0 80100*0 00000*0 10000 "0 01E8T0 08*00 *0 0*200*0 00 *00S * * 0*0 U*SE*0 £52E0*0 lEEOO'O OOOOO'O 00000 *0 91981*0 26100*0 96000*0 00*05* * * 0*0 B8*5E*0 8£*£0*0 12100*0 00000* 0 00000 *0 11881*0 09000*0 OEOOO'O 00*00* • * 20 2N 8S 02H (,*************** 9S *S 2S |I * * * * * * * * ! woiovga i.sau 3Hi yoj Nomsodwco wniaanmoj 00*2 =3»OSS3yd S2H 2CS d H 3 i * * * • * * * * • * * * * ********************** ******************************** ******** * * * EQUILIBRIUM COMPOSITION * * TEMP * ************«*! S02 H2S H20 N2 * 400.00 0.00007 0.00015 0.19215 1. 80763 *. * 450.00 0.00007 0.00015 0. L9215 1. 80763 * * 500.00 0.00007 0.00015 0.19215 1. 80763 * * 550.00 0.00007 0.00015 0.19215 1. 80763 * * 600.00 0.00007 0.C0015 0.19215 1. 80763 * * 650.00 0.00007 0.00015 0.19215 1. 80763 * * 700.00 0.00007 0.00015 0.19215 1. 80763 * * 750.00 0.00007 0.00015 C.19215 1. 80763 * * 800.00 0.00007 0.00015 0.19215 1. 80763 * * 850.00 0.00007 O.C0015 0.19215 1. 80763 0.00072 0.00282 0.00741 0.01566 0.02825 0.04498 0.06459 0.08450 0.10027 0.10591 2 .00000 2.00000 2.00000 2.00000 2 .00000 2.00000 2.00000 2.00000 2.00000 2 .00000 75.59681 92.37998 96.96035 98.53844 99.18468 99.48648 99.64178 99.72597 99.76896 99.78124 99.92260 99.92260 99.92260 99.92260 99.92260 99.92260 99.92260 99.92260 99.92260 99.92260 99.97678 99.97678 99.97678 99.97678 99.97678 99.97678 99.97678 99 .97678 99.97678 99.97678 165 APPENDIX B COMPUTER PROGRAMME FOR THE ROTAMETERS CALIBRATION TABLE Below i s the F o r t r a n IV computer language l i s t i n g s o f the programme used t o compute the r o t a m e t e r s c a l i b r a t i o n t a b l e . From the l i n e a r r e g r e s s i o n c o e f f i c i e n t s o f the a i r c a l i b r a t i o n c u r v e , t he c a l i b r a t i o n t a b l e f o r .other gases a t d i f f e r e n t p r e s s u r e s i n s i d e the r o t a m e t e r were computed. The temperature was kept a t 21°C. A sample o f the o u t p u t f o r each r o t a m e t e r i s i n c l u d e d i n the l i s t i n g s . F o r more d e t a i l s see S e c t i o n 5.2.1. 1 6 6 c * c * A,E,C = COEFFICIENTS OF ECLYNCMIAIS FOB c AGF = VOLUMETRIC FLOW BATE (ML/MIN) c * GFM = HCLAE FLCW BATE (GMO/E/MIN) c FA = A IB FLCW BATE L/MIN c * SG = SEECIFIC GRAVITY c GAS - SYHECI CF GAS c * BCT = CCDE FOB BCTAMETEF c P = EBESSOEE INSIDE BCTAMETEF c * PA = CKE AIMOSPEERE c * DE F = FICW FACTCB C * * C * EECGEAMME FOE COMPUTING TEE FLCW RATE THROUGH THE * C * BOTAMETEES AT DIFFERENT EE ESS UEES FCR N2 , H2S , SC2 * C * * C *************************************************************** AIB FLOW HATE * * * C * * C C IMPLICIT EEAl*8 (A-H.C-Z) DIMENSION A(20) ,E(20),C(20) ,SR(30),E(20),T(10) , AGF (30,30) DIMENSION GFR (30,30) ,FA (30,30) ,ECT (2C),GAS (5) ,SG(5) READ (5,10C) SGA,EA,EA,TA DO 1 1=1,3 BEAD(£,100) SG(I) 1 BEAD(5,920) GAS (I) DO 2 1=1,19 BEAD(5,930) EOT (I) BEAE(5,10C) A (I),E (I),C(I) 2 WBITE(6,S60) ECT (I) , A (I) , E (I),C (I) C c ***** ESTIMATE AIE FLCW BATE AGAINST SCALE READING C DO 3 1=1, 1S DO 3 K=1,2S XX = K X=XX/10.0C0 SB (K)=X*1CO.0DO 3 FA (I, K)=A (I)+E (I) *X + C (I) *X**2 C c ****** CHOOSE TEMEEEATURE C KK = 1 DO 30 1=1,KK YY = I Y =YY*21.CD0+273.2D0 T(I)=Y C c ****** CHCCSE BCT AM ETEE C DO 30 J=1,19 READ(5,S70) MA ****** CHCCSE GAS DO 30 K=1,3 ****** s E i i E RESULTS WRITE (6,910) WRITE (6,200) WRITE (6,300) WRITE (6,800) WRITE (6,300) WRITE (6,200) WRITE (6,300) WRITE(6,900) T(I) ,RCT (J) , GAS (K) WRITE (6,300) WRITE (6,200) ****** CHCCSE PRESSURE DO 10 L=1,9 ZL=L Z =ZL*5.0EC IF (L.EC-3) Z=14.7E0 P(L)=Z ****** CALCULATE FLCW FACTOR DSF = £GA*TA*Z/SG (KJ/Y/PA DDF =CSQRT (ESF) ****** CALCULATING ACTUAL GAS FLCW RATE ****** CHCCSE SCAIE READING DO 10 R=1,HA AGF(K,L)=FA(J,M)*EEF*1000.D0 GFM (M,L)=AGF (fl,L)*PA/TA/1.2074 6D+03 CONTINUE ****** PRIMING FLOW RATE AGAINST ERESSURE AND SCALE READING WRITE (6,500) WRITE (6,120) WRITE(6,600) (P(II),11=1,9) WRITE (6,400) WRITE (6,200) WRITE (6,540) WRITE (6,2C0) DO 2C KA= 1,MA WBITE(6,7C0) SR(KA),(AGF(KA,KB),KB=1,9) CONTINUE WRITE (6, 200) WRITE(6,950) WRITE (6,200) CO 2 1 K A= 1, B A 168 WRITE (6,7 5 0) SR (KA) , (GIM(KA,KB) ,KB=1,9) 21 CONTINUE WRITE (6,200) 30 CONTINUE 100 FOEMAT (6F10.5) 120 FOEMAT ( 10X,>*',10X,1C0(1H*)) 200 FCFMAT (10X,111(1 H*) ) 300 FOEMAT (1 OX,•*',10SX,•* •) 400 FOEHATCIOX.^'flOjIOX,"*")) 500 FCEMAT(10X,**SCALE R EAE* 1,38X, 1ERESSURE (PSI) *,47X,* *') 600 FORMAT (10X , '* (tM) *•,9 (2X,F5. 1,3X,•*•)) 700 FOEMAT(10X, ,*•,2X,FE.1,3X, ,*•,9(1X,F8.1,1X,•*•)) 750 FCEMAT(10X # ,* ,,2X,F5.1,3X, ,* ,,9(2X,F7.4,1X,'*")) 800 FORMAT (10X,'**,4 1X, •CAIBRATICN CF EOTAMETERS•,42X,'*1) 900 FOEMAT (10X,'* ' ,29X,'TEHPERATURE=•,F5.1,4X,1 ROTAMETER=,,A8,4X,,GAS= 1•,A3,3CX,,*•) 910 FOEMAT (•1• ,//) 920 FOEMAT (A3) 930 FOEMAT (A8) 940 FOEMAT (10X, 1**,10X, 1 * *,33X,1VOLUMETEIC FLCW BATE (ML/MIN) ',33X, 2"*») 950 FOEMAT (10X,'*•,10X,•*•,34X,•MOLAE FLOW RATE (GMOLE/MIN) •,34X , '* 3') 960 FOEMAT(10X,A8,3F1C.5) 970 FC EM AT (12) SICP ENE 1 .00000 0. 96724 N2 1. 19000 H2S 2.26360 S02 1963 - 0 . 0 0 5 9 1 E 1402 0. 18104 R7M2E1 - 0 . 13257 RG602 -0 . 0 0 6 6 0 RSS602 -0.02748 LG602 -0.00581 LSS602 - 0 . 0 1 5 7 8 RG604 - 0 . 4 0 5 1 8 RSS604 - 0 - 2 8 8 0 9 LG604 -0-36400 LSS604 - 0 . 4 4 1 6 8 L1G603 - 0 . 0 6 1 4 3 L 1 S S 6 0 3 - 0 . 0 1 2 2 0 L2G603 - 0 . 0 4 7 9 5 L2SS603 - 0 . 0 2 7 4 9 L3G603 - 0 - 0 2 7 7 7 L3SS603 0.04501 L4G603 -0.02777 L4SS603 0.04501 10 10 25 15 15 15 15 15 15 15 14.70000 0.00120 294.30CO0 0.12439 76.S86C0 2 1.987C0 C.08027 0.30538 0,. 13618 0.46763 6.61500 12.65200 6-52890 13.421 2.248C0 4- 3642 2.20260 4-48560 2.07170 4-54820 2.07170 4.54820 0.21290 0.87756 -1.50720 0. 13610 0-2S168 C. 10939 0.19225 - 0 . 0 6 4 7 2 - 0 . 0 4 1 2 3 0.22695 -C.70844 - C 3 5 7 0 0 -C.6S732 -0.38328 - C 8 7 8 C 8 -0.27647 -C.90123 - 0 . 27647 -C-90123 \ 170 15 15 15 15 15 15 15 15 15 ** **20'0 * 0E20'0 ft 5120*0 * 6610*0 5020'P * £610*0 ft 1810*0 ft 1910*0 6910*0 » 0910*0 « 6*10*0 * 8E10*C ZEIO'O ft 6210*0 • 0210*0 ft 1110*0 i.010'0 * 1010*0 ft *600*0 ft Z800'0 1800*0 ft 9/00*0 * 1100*0 ft 9900*0 1500*0 ft *500*0 ft 1500*0 ft Z*00'0 ZEOO'O ft SEOO'O « EEOO'O * OEOO'O 0200 *0 » 6100*0 ft 8100*0 ft Z.100'0 9000*0 ft 9000*0 ft 9000*0 • 5000*0 2810*0 £510*0 9210*0 2010*0 0800*0 0900*0 E*00'0 8200*0 5100*0 5000*0 ft £910*0 ft 6CI0*0 ft 5110*0 ft 1800*0 ft 0*001 ft ft ZEIO'O ft ZllO'O ft Z600'0 ft 8900*0 ft 0*06 ft ft £110*0 ft Z600*0 ft 0800*0 ft 9500*0 ft 0*08 ft ft 1600 *0 ft 8Z00 *0 * *900 *0 ft 9*00*0 ft 0*0/ ft ft UOO'O ft 1900*0 ft 0500*0 * 9£00*0 ft 0*09 ft ft *500'0 ft 9*00*0 ft 8E00*0 * Z200*0 ft 0*05 ft ft 8E00*0 ft EEOO'O * Z200'0 * 6100*0 ft 0*0* ft ft 5200*0 ft 1200*0 « 8100*0 ft 2100*0 ft ' O'OE ft ft £100*0 ft 2100*0 * 0100*0 * ZOOO *0 ft 0*02 ft ft *000*0 ft *000 *0 ft £000*0 ft 2000*0 * 0*01 ft ft 9'68S ft 6*555 ft 0'025 * ** 18* ft 5*56* * 2'Z9* ft O'lE* ft 9**0* * 0'60* * 9'58£ ft /*09E * 6*£EE ft O'OEE ft 2*11£ ft 1'162 ft 5*692 * Z*8S2 * 6'£*2 ft 1'822 • 2*112 * 6**6l ft L *£81 ft 8*U1 ft 1 '651 ft 9*8E1 ft Z'OEl ft E'221 ft 2*E11 ft 0*06 * 8 **8 ft **6Z ft 5*f Z * 6*8* ft 1*9* ft 1*E* ft 6'6E * **S1 * S**l ft 9*E1 ft 9'21 S*6E* £'69£ 8**0E 0*9*2 8*261 2*5*1 E*£01 VZ9 5 *9£ 5*11 ft VE6E * O'ZEE * 0'8Z2 ft 5*961 ft 0*001 ft ft £*0££ ft 2'£82 ft 9 '££2 ft 2*591 ft 0*06 ft ft L'ZLZ ft 8 *££2 ft 8'261 ft £*9E1 * 0*08 ft ft C'022 ft 9'8B1 * 9*551 ft 0*011 ft O'OZ * ft **2Z1 ft 8 'Z*l ft 6*121 ft 2*98 ft 0*09 * ft 6'6Z1 ft **111 ft 6*16 ft 0*59 ft 0*05 ft ft **26 * 2'6Z ft £'59 ft 2*9* * 0*0* ft ft 0*09 ft *'1S ft *'2* ft O'OE ft O'OE ft ft 9'2£ ft 0*82 ft 1 '£2 ft £*91 ft 0*02 ft ft E'Ol * 8'8 « E'Z ft 1 *5 ft O'Ol ft I N I K / I W ) 3iv« MOT j omawrno/v 0*52 * 0*02 i f t » f t f t 4 « ISd>3*nSS3«d * 0 V 3 « 31V0S* ft ft ft »**ft* ft ft ft *ft»ft*******************ftft***ft************************** 2N =SVO E 9 6 T =831 = W V 1 0 « 2 ' * 6 2=3anj.VM 3d W3i •SCALE READ* „ ************ * IMM) * 5.0 * * * ******************** C AL BRAT ION OF ROTAMETERS **************4 TEMP*RATURE=294.2 ROT AMF.TER= E1402 GAS= N2 <*«****««* * * * <* * * 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 * 4678.7 * * 9260.4 • * 13852.5 * * 18455.0 • * 23068.0 * * 27691.3 * * 32325.1 * * 36969.2 • * 41623.8 • * 46288.8 • 6616.6 13096.2 19590.4 26099.3 32623.0 39161.4 45714.5 52282.4 58865.0 65462.2 8022.3 15878.2 23752.1 31643.8 39553.3 47480.7 55425.9 63389.0 71370.0 79368.7 9357.3 18520.8 27705.0 36910.1 46135.9 55382.6 64650.1 73938.5 83247.6 92577.6 10461.8 20706.8 30975.1 41266.7 51581.5 61919.7 72231.0 82665.7 93073.7 103504.9 11460.4 22683.2 33931.6 45205.4 56504.7 67829.6 79179.9 90555.8 101957.1 113383.9 12378.6 24500.7 36650.3 48827.4 61032.1 73264.3 85524.1 97811.4 110126.2 122468.6 13233.3 26192.3 39180.8 52198.7 65246.1 78322.9 91429.1 104564.8 117729.9 130924.5 14036.0 27781.1 41557.5 55365.1 69203.9 83073.9 96975.2 110907.7 124871.4 138866.4 * 10.0 * 0.1935 * • 20.0 * 0.3831 • • 30.0 * 0.5730 * * 40.0 * 0.7634 * • 50.0 * 0.9543 • * 60.0 * 1.1455 * * 70.0 * 1.3372 • * 80.0 * 1.5293 * • 90.0 * 1.7219 * • 100.0 * 1.9148 * 0.2737 0.5417 0.8104 1.0797 1.349 5 1.6200 1.8911 2.1628 2.4351 2.7080 0.3319 0.6568 0.9826 1.3090 1.6362 1.9641 2.2928 2.6222 2.9524 3.2832 0.3871 0.7661 1.1461 1.5269 1.9085 2.2910 2.6744 3.0586 3.4437 3.8297 0.4328 0.8566 1.2813 1.7071 2.1338 2.5614 2.9901 3.4196 3.8502 4.2817 0.4741 0.9383 1.4036 1.8700 2.3374 2.8059 3.2754 3.7460 4.2177 4.6904 0.5121 1.0135 I.5161 2.0198 2.5247 3.0307 3.5379 4.0462 4.5556 5.0662 * 0.5474 • * 1.0835 • * 1.6208 * * 2.1593 * * 2.6990 • •• 3.2400 * * 3.7821 * * 4.3255 * * 4.8701 * * 5.4160 * 0.5806 1.1492 1.7191 2.2903 2.8628 3.4365 4.0116 4.5879 5.1656 5.7445 ***************•******»• ro I * • • * i*> rw • - O • • o o o o o © < s o o o o o o o o o o o • o o c o o c - o o o c o o o o o o o o o o o o o c o • • o o o o o o o o o o o o o o o o o o o c o o • o o o o o b o o o o o o o o o o o o o o o o o o o # • • • • o o o » t • « * • • — o O C >n <c f f I- O ? M ( • j- CD — * o e I 1>| ^ s o o o o o o o o o o o p o p o o o o o • Ul^.f-^I^Jl-»lN(*^l^""*'0 ft i -a -a M -* 0- i/i Ui o i ^ ) O) B A N ** ft • * • ft J^_._*-_H-*-*-*---»~O o o o o o o o o o o o c o » » 2 rv — NO - -o # w r« 0" 4)Wj-*OW^OW{J*-0"-*;'>« • WWHIWU.WWMNNNNNN-'HH^--"' .„ , . „ 2 -r-OOOOOOOCOOO ft fte»«4^C**0*'CB*"-*' » » • ft • 0* (J1 M O O" M • • ft ft • o • • a . • _ O W W N N M * *^ • * " lv i * 7 : r T _ — ^ (M-^O-O^N^ON t r'^ o^a^'^'^Onj-^^ ft g- o- *• O" * r-> • - .r o — - — -1 # c ** • • u» O tf» o **•» t Ni N f • ft^»c^vjtui^^^^-«-*-*->*'«'w'vJrvrNjrw»-> ft ft ft I ft ft ft ' h ft ft ft N ulH # O f ( ft — _ _ -* ft Z ft • • t ft — # *J * - _ . . . . . . . . ^ H. _j - nndOJOM^OffO^W :S5sss»sssssssssssss?s???=: 4 «- O) C jvu'*'^ 0(I|J>(B(I>J) ft 5SwwaSiwS---*v*-0'Vi«o*wrs)0'^ *c ft ft ft ^ » • ft ft ft ft - * M *• i- r« j Ji v< C ft ft JW;jNMNNM«l«t-»"''"*,""CC0000 2 O »— J I ? *- fvj O- U 0-JUOW'"(frj"J*"Cp0v" • f r» t O » t J M ». - w -I * ft ft ft ' ft ft ft ft 1 0 . 0 * 5 2 2 . 3 ft 7 3 8 . 6 ft 8 9 5 . 5 ft 1 0 4 4 . 5 ft * 2 0 . 0 * 1 1 9 8 . 1 * 1 6 9 4 . 4 • 2 0 5 4 . 4 ft 2 3 9 6 . 3 « . 3 0 . 0 * 1 8 7 3 . 6 * 2 6 4 9 . 6 ft 3 2 1 2 . 5 « 3 7 4 7 . 1 ft ft 4 0 . 0 * 2 5 4 8 . 5 * 3 6 0 4 . 2 ft 4 3 6 9 . 8 • 5 0 9 7 . 1 ft ft 5 0 . 0 ft 3 2 2 3 . 1 ft 4 5 5 8 . 1 ft 5 5 2 6 . 4 * 6 4 4 6 . 2 ft ft 6 0 . 0 ft 3 8 9 7 . 2 * 5 5 1 1 . 5 * 6 6 8 2 . 3 « 7 7 9 4 . 4 ft ft 7 0 . 0 * 4 5 7 0 . 8 ft 6 4 6 4 . 2 ft 7 8 3 7 . 4 « 9 1 4 1 . 7 ft * 8 0 . 0 * 5 2 4 4 . 1 ft 7 4 1 6 . 2 « 3 9 9 1 . 7 ft 1 0 4 8 8 . 1 ft ft 9 0 . 0 * 5 9 1 6 . 8 ft 83 6 7 . 7 ft 1 0 1 4 5 . 3 ft 1 1 8 3 3 . 7 ft * 1 0 0 . 0 * 6 5 8 9 . 2 ft 9 3 1 8 . 5 » 1 1 2 9 8 . 1 ft 1 3 1 7 8 . 4 ft ft 1 1 0 . 0 * 7 2 6 1 . 1 * 1 0 2 6 8 . 7 ft 1 2 4 5 0 . 2 ft 1 4 5 2 2 . 2 * * 1 2 0 . 0 * 7 9 3 2 . 5 * 1 1 2 1 8 . 3 ft 1 3 6 0 1 . 5 ft 1 5 8 6 5 . 1 ft 1 3 0 . 0 * 8 6 0 3 . 6 ft 1 2 1 6 7 . 3 ft 1 4 7 5 2 . 0 ft 1 7 2 0 7 . 1 * * 1 4 0 . 0 * 9 2 7 4 . 1 ft 1 3 1 1 5 . 6 ft 1 5 9 0 1 . 8 ft 1 8 5 4 8 . 3 ft 1 5 0 . 0 ft 9 9 4 4 . 3 ft 1 4 0 6 3 . 3 * 1 7 0 5 0 . 9 * 1 9 3 8 8 . 5 * 1 1 6 7 . 8 2 6 7 9 . 1 4 1 3 9 . 4 5 6 9 8 . 7 7 2 0 7 . 0 8 7 1 4 . 4 1 0 2 2 0 . 7 1 1 7 2 6 . 1 1 3 2 3 0 . 5 1 4 7 3 3 . 9 1 6 2 3 6 . 3 1 7 7 3 7 . 7 1 9 2 3 8 . 1 2 0 7 3 7 . 6 2 2 2 3 6 . 1 1 2 7 9 . 3 * 1 3 8 1 . 8 ft 1 4 7 7 . 2 ft 1 5 6 6 . 8 * 2 9 3 4 . 8 ft 3 1 6 9 . 9 ft 3 3 8 8 . 8 ft 3 5 9 4 . 4 ft 4 5 8 9 . 2 * 4 9 5 7 . 0 ft 5 2 9 9 . 2 ft 5 6 2 0 . 7 ft 6 2 4 2 . 6 ft 6 7 4 2 . 8 ft 7 2 0 8 . 4 » 7 6 4 5 . 6 ft 7 8 9 4 . 9 * 8 5 2 7 . 5 ft 9 1 1 6 . 3 ft 9 6 6 9 . 2 ft 9 5 4 6 . 1 « 1 0 3 1 1 . 0 * 1 1 0 2 2 . 9 * 1 1 6 9 1 . 6 ft 1 1 1 9 6 . 2 ft 1 2 0 9 3 . 3 * 1 2 9 2 8 . 3 ft 1 3 7 1 2 . 5 ft 1 2 8 4 5 . 3 * 1 3 8 7 4 . 5 ft 1 4 8 3 2 . 5 ft 1 5 7 3 2 . 2 ft 1 4 4 9 3 . 3 ft 1 5 6 5 4 . 5 ft 1 6 7 3 5 . 4 ft 1 7 7 5 0 . 5 ft 1 6 1 4 0 . 1 ft 1 7 4 3 3 . 3 ft 1 8 6 3 7 . 0 ft 1 9 7 6 7 . 6 ft 1 7 7 8 6 . 0 ft 1 9 2 1 1 . 0 ft 2 0 5 3 7 . 5 ft 2 1 7 8 3 . 3 ft 1 9 4 3 0 . 7 ft 2 0 9 8 7 . 5 ft 2 2 4 3 6 . 6 ft 2 3 7 9 7 . 6 « 2 1 0 7 4 . 3 ft 2 2 7 6 2 . 9 ft 2 4 3 3 4 . 5 ft 2 5 8 1 0 . 7 ft 2 2 7 1 6 . 9 ft 2 4 5 3 7 . 1 ft 2 6 2 3 1 . 2 ft 2 7 8 2 2 . 4 ft 2 4 3 5 8 . 4 ft 2 6 3 1 0 . 1 ft 2 3 1 2 6 . 6 ft 2 9 8 3 2 . 8 ft ftftftft**«ftft***»**«**ft****ftft*ft******** ft 1 0 . 0 ft 0 . 0 2 1 6 ft 0 . 0 3 0 6 ft 0 . 0 3 7 0 ft 0 . 0 4 3 2 ft 0 . 0 4 8 3 ft 0 . 0 5 2 9 ft 0 . 0 5 7 2 ft 0 . 0 6 1 1 ft ft 2 0 . 0 ft 0 . 0 4 9 6 ft 0 . 0 7 0 1 ft 0 . C 8 5 0 * 0 . 0 9 9 1 * 0 . 1 1 0 8 * 0 . 1 2 1 4 ft 0 . 1 3 1 1 ft 0 . 1 4 0 2 ft ft 3 0 . 0 ft 0 . C 7 7 5 ft 0 . 1 0 9 6 ft 0 . 1 3 2 9 ft 0 . 1 5 5 0 ft 0 . 1 7 3 3 ft 0 . 1 8 9 8 * 0 . 2 0 5 1 ft 0 . 2 1 9 2 * ft 4 0 . 0 ft 0 . 1 0 5 4 ft 0 . 1 4 9 1 * 0 . 1 8 0 3 * 0 . 2 1 0 9 ft 0 . 2 3 5 7 ft 0 . 2 5 8 2 ft 0 . 2 7 8 9 « 0 . 2 9 8 2 « ft 5 0 . 0 ft 0 . 1 3 3 3 ft 0 . 1 8 8 6 « 0 . 2 2 8 6 ft 0 . 2 6 6 7 * 0 . 2 9 8 1 ft 0 . 3 2 6 6 ft 0 . 3 5 2 8 ft 0 . 3 7 7 1 ft ft 6 0 . 0 ft 0 . 1 6 1 2 * 0 . 2 2 8 0 * 0 . 2 7 6 4 * 0 . 3 2 2 4 * 0 . 3 6 0 5 ft 0 . 3 9 4 9 ft 0 . 4 2 6 5 * 0 . 4 5 6 0 ft ft 7 0 . 0 ft 0 . 1 8 9 1 * 0 . 2 6 7 4 ft 0 . 3 2 4 2 ft 0 . 3 7 8 2 * 0 . 4 2 2 8 ft 0 . 4 6 3 2 » 0 . 5 0 0 3 « 0 . 5 3 4 8 ft ft 8 0 . 0 ft 0 . 2 1 6 9 * 0 . 3 0 6 8 ft 0 . 3 7 2 0 • 0 . 4 3 3 9 ft 0 . 4 8 5 1 * 0 . 5 3 1 4 ft 0 . 5 7 3 9 ft 0 . 6 1 3 6 * ft 9 0 . 0 ft 0 . 2 4 4 8 ft 0 . 3 4 6 1 ft 0 . 4 1 9 7 ft 0 . 4 8 9 5 * 0 . 5 4 7 3 0 . 5 9 9 5 ft 0 . 6 4 7 6 ft 0 . 6 9 2 3 ft ft 1 0 0 . 0 * 0 . 2 7 2 6 ft 0 . 3 8 5 5 ft 0 . 4 6 7 4 * 0 . 5 4 5 2 # 0 . 6 0 9 5 * 0 . 6 6 7 7 ft 0 . 7 2 1 2 ft 0 . 7 7 1 0 ft ft 1 1 0 . 0 ft 0 . 3 0 0 4 ft 0 . 4 2 4 8 ft 0 . 5 1 5 0 * 0 . 6 0 0 7 * 0 . 6 7 1 6 ft 0 . 7 3 5 8 ft 0 . 7 9 4 7 * 0 . 8 4 9 6 ft ft 1 2 0 . 0 ft 0 . 3 2 8 1 ft 0 . 4 6 4 1 ft 0 . 5 6 2 7 * 0 . 6 5 6 3 * 0 . 7 3 3 8 ft 0 . 8 0 3 8 * 0 . 8 6 8 2 * 0 . 9 2 8 1 « ft 1 3 0 . 0 . * 0 . 3 5 5 9 « 0 . 5 0 3 3 * 0 . 6 1 0 2 ft 0 . 7 1 1 8 * 0 . 7 9 5 8 « 0 . 8 7 1 8 * 0 . 9 4 1 6 ft 1 . 0 0 6 6 * ft 1 4 0 . 0 * 0 . 3 8 3 6 • 0 . 5 4 2 6 ft 0 . 6 5 7 8 ft 0 . 7 6 7 3 * 0 . 8 5 7 9 ft 0 . 9 3 9 7 ft 1 . 0 1 5 0 ft 1 . 0 8 5 1 ft ft 1 5 0 . 0 0 . 4 1 1 4 ft 0 . 5 8 1 8 * 0 . 7 0 5 3 ft 0 . 8 2 2 7 ft 0 . 9 1 9 3 ft 1 . 0 0 7 6 * 1 . 0 8 8 4 ft 1 . 1 6 3 5 * 0 . 0 6 4 8 0 . 1 4 8 7 0 . 2 3 2 5 0 . 3 1 6 3 0 . 4 0 0 0 0 . 4 8 3 6 0 . 5 6 7 2 0 . 6 5 0 8 0 . 7 3 4 3 0 . 8 1 7 7 0 . 9 0 1 1 0 . 9 8 4 4 1 . 0 6 7 7 1 . 1 5 0 9 1 . 2 3 4 1 tttft***ftft 4^  * * * * * * * * * * * * * * * 4 * * * * ************************* •SCALE READ* * * (MM) * 5.0 * * * C AL BRAT I ON OF ROTAMETERS TEMPERATURE=294.2 ROT AMET ER= RG604 ************** PRESSURE(PSI> • ****< 25.0 GAS=H2S * * > * * * VOLUMETRIC FLOH RATE (ML/MINI * 10.0 * 147.4 * 208. 5 • 252. 8 * 294. 8 • 20.0 • 510.8 * 722.4 • 875.8 • 1021.6 • • 3Q.0 • 873.5 * 1235.3 • 1497.7 * 1746.9 * * 40.0 * 1235.5 * 1747.2 * 2118.4 * 2470.9 * • 50.0 * 1596. 7 • 2258. 1, * 2737.9 * 3193.5 * * 60.0 * 1957.4 * 2768.1 * 3356.2 * 3914.7 * 70.0 • 2317.3 * 3277.1 • 3973.3 * 4634.5 * * 80.0 * 2676.5 * 3785.1 * 4589.2 * 5353.0 * * 90.0 * 3035.0 * 4292.2 * 5204.0 * 6070.0 * • 100.0 * 3392.9 * 4798.2 • 5817.5 * 6785.7 * * 110.0 • 3750.0 * 5303.3 * 6429.9 * 7500.0 * * 120.0 * 4106.5 * 5807.4 * 7041.1 * 8212.9 * • 130.0 * 4462.2 • 6310.5 * 7651.1 * 8924.4 * • 140.0 * 4817.3 • 6812.7 * 8259.9 * 9634.6 * * 150.0 * 5171.7 * 7313.8 * 8867.5 * 10343.3 • 329.6 1142.1 1953. I 2762.6 3570.4 4376.8 5181.6 5934.8 6786.5 7586.7 8385.3 9182.3 9977.8 10771.8 11564.2 361.1 * 390.0 * 416.9 * 442.2 • 1251.2 • 1351.4 * 1444.7 * 1532.3 • 2139.5 * 2311.0 * 2470.5 * 2620.4 * 3026.2 • 3268.7 * 3494.4 * 3706.4 * 3911.2 • 4224.6 * 4516.3 * 4790.2 * 4794.5 * 5178.7 * 5536.2 * 5872.1 * 5676.1 * 6130.9 * 6554.2 * 6951.8 * 6556.0 * 7081.3 * 7570.3 * 8029.5 • 7434.2 • 8029.9 * 8584.3 * 9105.1 • 8310.8 * 8976.6 • 9596.4 * 10178.6 * 9185.6 * 9921.6 * 10606.6 * 11250.0 * 10058.7 * 10864.6 • 11614.8 * 12319.4 • 10930.1 • 11805.9 • 12621.0 * 13386.6 * 11799.9 * 12745.3 * 13625.3 * 14451.8 • 12667.9 • 13682.9 * 14627.6 * 15515.0 • *****************************•»* * ***< * 10.0 * * 20.0 * * 30.0 * * 40.0 • » 50.0 • * 60.0 • * 70.0 * * 80.0 * * 90.0 * * 100.0 * * 110.0 * * 120.0 • * 130.0 * * 140.0 • * 150.0 * ***> MOLAR FLOW RATE (GMOL E/MIN I 0.0061 0.0211 0.0361 0.0511 0.0661 0.0810 0.0959 0. 1107 0.1255 0. L404 0.1551 0.1699 0.1846 0.1993 0.2139 0.0086 0. 0299 0.0511 0.0723 0.0934 0.1145 0.1356 0. 1566 ,1776 , 1985 , 2194 ,2402 0.2610 0.2818 0.3026 0.0105 0.0362 0.0620 0.0876 0.1133 0.1388 0.1644 0.1898 0.2153 0.2407 0. 2660 0.2913 0.3165 0.3417 0.3668 0.0122 0.0423 0.0723 0.1022 0.1321 0.1619 0.1917 0.2214 0.2511 0.2807 0.3103 0.3397 0.3692 0.3986 0.4279 * 0.0136 * * 0.0472 • * 0.0808 * * 0.1143 * * 0.1477 * * 0.1811 * * 0.2143 * * 0.2476 * * 0.2807 * * 0.3138 * * 0.3469 * * 0.3798 * * 0.4123 * * 0.4456 * * 0.4784 * >***4 0.0149 0.0518 0.0885 0.1252 0.1618 0.1983 0.2348 0.2712 0.3075 0.3438 0.3800 0.4161 0.4521 •.4831 0.5240 0.0161 0.0559 0.0956 0.1352 0.1748 0.2142 0.2536 0.2929 0.3322 0.3713 0.4104 0.4494 0.4884 0.5272 0.5660 0.0172 0.0598 0.1022 0.1446 0.1868 0.2290 0.2711 0.3132 0.3551 0.3970 0.4388 0.4305 0.5221 0.5636 0.6051 0.0183 0.0634 0.1084 0.1533 0.1982 0.2429 0.2876 0.3322 0.3766 0.4211 0.4654 0.5096 0.5538 0.5978 0.6418 * * * * * * * * * * * * * * i * * * * * * * * * * * —I I D * 9 0 1 8 * 0 * * 6 5 X 8 * 0 * * 9 0 9 1 * 0 * * 5 * 0 1 * 0 * * 9 1 * 9 * 0 * * * 0 6 5 * 0 * * £ 2 E S * 0 * * S E I * * O * * 0 * 1 * * 0 * * 6 E S E * C * * 1 E 6 2 * 0 * * 9 I E 2 * 0 * * * 6 9 1 * 0 * * 5 9 0 1 ' 0 * * O E * 0 ' 0 * * * * * * * * * * * * * * ****** * 5 * 9 * 0 1 2 * * 9 ' * 2 1 6 I * * 1 ' 9 9 E 6 1 * * T * i e o i i * * 1 * 6 5 9 5 1 * * 8 * 1 1 2 * 1 * * * * 1 9 8 2 1 * * 5 * 9 * * 1 1 * * 2 * 6 0 0 0 1 * * E ' 5 5 5 8 * * 0 * 5 8 0 1 * * 2 * B 6 5 S * * 0 * 5 6 0 * * * 2 * 5 1 5 2 * * 0 * 6 E 0 1 * 8028*0 £691*0 1111*0 2*99*0 1019*0 9955*0 8105*0 *9***0 *066*0 IEEE'0 E912*0 E812*0 1651*0 *O0TO 50*0*0 8191*0 9611*0 8019*0 E129*0 £115*0 1025*0 *69**0 911**0 2S9£*0 121£*0 5852*0 2*02*0 *6*I*0 0*60*0 61E0*0 6011*0 2999*0 0129*0 2515*0 6825*0 028**0 9*£**0 998£*0 18E£*0 0682*0 £6E2*0 1681*0 £8£1*0 0180*0 15E0*0 68*9*0 2809*0 6995*0 1525*0 828**0 00***0 196£*0 625£*0 980£*0 8E92*0 5812*0 9211*0 £921*0 *610*0 02£0*0 * *085*0 * 0**5*0 * 1105*0 * 169**0 * 6I£**0 * 9£6£*0 * 6*5E*0 * 151£*0 * 0912*0 * 65£2*0 * *561*0 * **51*0 * 6211*0 * 0110*0 * 1820*0 • 916**0 *99**0 1*£**0 120**0 20i£*0 *1£E*0 2*0£ *0 9012*0 99E2*0 £202*0 5191*0 *2£1*0 8960*0 6090 *0 9*20*0 *01**0 9*8E *0 5P5£*0 12££*0 *S0£*0 £812*0 6052*0 2£22*0 2561*0 8991*0 28£I*0 2601*0 6610*0 2050*0 £020*0 2062*0 0212*0 S£52*0 8*£2*0 6512*0 8961*0 *11T0 8151*0 08£1*0 0811*0 IISO'O 2110*0 5950*0 SSEO'O E*10*0 * 0*051 * * 0*0*1 * * O'OE! * * 0*021 * * 0*011 * * 0*001 * * 0*06 * * 0*08 * * 0*01 * * 0*09 * * 0*05 * * 0*0* * * 0*0£ * * 0*02 * * 0*01 * 6*2*861 5*96581 9**E£11 1*15091 1**91*1 9*SS*£1 5*1E121 6*16101 1*9E*6 0*9908 8*6199 1*8125 8*098£ 6*12*2 9*616 £'19581 VS6E11 0*51291 0*02051 5*018E1 5*98521 0*8*£11 6**6001 E'1288 1*5*51 **8*29 2*1£6* V119E 1*1122 £*916 ***8U1 0*50191 2*21051 6*506£1 1 '98121 6'2S911 2*90501 0'9*E6 **2118 *'S869 6'*81S 6'015* S'£*£E 1'2012 £'8*8 2*18951 8*101*1 2**01E1 2**6921 0*21911 9*1E901 8*0656 1'lESfi **09*i 8'91E9 6*0825 1*211* 2*2S0£ 5*6161 * ' * i l * 0'lEO*t * * 1*6*1£1 * * **1S221 * * l'*5£ll * * P*6E*01 * * 5'*T56 * * E'8158 * * 0'1£91 * * 8'2199 * * 9'£015 * * *'E21* * * 2'2£1E * * 0'0£12 * * 8*9111 * * 1*269 * 1*62021 5'E1211 5 '90501 1 '*£16 £'0569 0*1518 £ '*5f 1 2'2*59 1*0215 8*688* * *6*0* 1*661£ 5 *0*£2 6'11*1 8'E6S * * * * * * * * * * * * * * *'1266 * 5*5101 * 0*051 * 2'8626 * 6**1S9 * 0*0*1 * E *1998 * 1*8219 * O'OEl * 5 *8208 * 0*1195 * 0*021 * 0*28£i * 6 *6T2S * 0*011 * 8*1219 * £*15i* * 0*001 * 1*5909 * 1*682* * 0*06 * 6*56ES * 5*SI8£ * 0*08 * **8T1* * **9££E * 0*01 * 0*££0* * P*1S82 * 0*09 * 6 *&£££ * 1*T9£2 * 0*05 * 0*6£92 * T9981 * 0*0* * **0£6I * 0*S9E1 * O'OE' * 0**121 * **858 * 0*02 * 8*68* * E'9*E * O'Ol * ****************** * * * 0*5* * 0*0* * ****** * * * ************* * * * ***************** 20S=SVS 0*52 * 0*02 r * < I ISd)3«nSS38d i * * * * * * * * * * * * * *09SST =»3JL3HViC« * Q V 3 » 3 1 V D S * 2**62=3«niV83dK31 S83J.3WV.lCiy 30 Ncuvasivo * * * '* * * * 28Z**0 Z£** '0 E60*'0 25Z£'0 21*£*0 SZOE'C 0*Z2'0 eo*2*o ZZ02'0 6 w r o £2*1*0 660T*0 zzzo*o ZS*0*0 0*10*0 60SV0 £ 8 1 * ' 0 558E'0 Z£S£'0 Z12E'0 66R2'0 *8S2*0 OZ22'0 8561*0 6*9V0 1 * £ V 0 9£01 *0 EEZO'O t £ * 0 * 0 2£10*0 812**C E16£*0 0T9E *0 60EE*0 600E *0 2IZ2*0 Zl*2*0 £212*0 2E8 VO 2*51*0 552T*0 6960*0 5890*0 £0*0*0 *210'0 S06£*0 229£*0 2*EE*0 £90£*0 98Z2'0 1152*0 8£22*0 9961*0 9691'C 82*1*0 291V0 Z68C0 *£90*0 *ZE0'O *110*0 S95£*0 ZOEE'O 15C£*0 96/2*0 £*52*0 2622*0 E*02*0 56/1*0 8*51*0 *0£1*0 0901*0 6180*0 6/50*0 l*f0*0 *010*0 881£ *0 8562*0 62/2*0 1052*0 6/22*0 0502*0 7.28 VO 5091*0 58£1*0 9911*0 6*60 *0 £E/0*0 8150*0 50£0*0 £600*0 ££ /2*0 9£52*0 6££2*0 **12*0 0S6V0 85/1*0 9951*0 9 / £ l * 0 Z81V0 0001*0 £180 *0 8290*0 ***0*0 1920*0 0800*0 *522*0 1602*0 626V0 69/1*0 6091*0 05*1*0 2621*0 S £ l l * 0 6/60 *0 *280*0 1/90*0 8160 *0 99£0*0 9120*0 99C0 *0 *6SI*0 6/* V O *9E VO 1521*0 / E l l * 0 5201*0 £160*0 £080 *0 2690*0 £850*0 *Z*0*0 99EO*0 6520*0 2510*0 Z*00*0 * 0*051 * * 0*0*1 * * O'OEl * * 0'021 * * O ' O l l * * 0*001 * * 0*06 * * 0*08 * * O'OZ * * 0'09 * * 0*05 * * O'O* * * 0*0€ * * 0*02 * * 0*01 * ******************************* ********* * 8*09511 6**2/01 E**686 0*6906 6*8*28 ! * * £ * / 9**299 V02RS **120S 8'/22* * ' 6 £ * £ E'9592 s*e /e i 6*5011 9*8£E 9*66801 5*11101 **82E6 £ ' 0 5 5 8 X'LLLL 6'800Z Z'S*29 S'/8*S £'*£/* 0'986E Z'2*2E *'*0S2 O' lZZl /*2*01 £ '6 IE / '56101 5*85*6 6*52/8 1*866/ 8**/2Z £•9559 **2*8S VEEI5 5*82** 5'82ZE E'EEOE 9 ' 2 * £ 2 9*9591 £*SZ6 9'862 * *'6E*6 * 6'9198 * 2*Z0ZZ * 9 *Z099 * 8*6**5 * 9*ES6E * 0*051 * * 6'95/8 * 6*E66Z * 6'6*1Z * 8 *6219 * 8 *5S0S * O'SZSE * 0*0*1 * * /'8/08 * 8'*ZEZ * 2*9659 * VSS9S * 2 **99* * 1 '362E * O'OEl * * 8**0*/ * 9'65Z9 * 0*9*09 * £*£81S • 1 "5Z2* * 0*£20£ * 0*021 * * 2 ' 5 £ / 9 * *'8*19 * E *66*5 * 9'*1Z* * 9'888E * 9*6*/2 * O ' O l l * * 6 * 6 90 9 * 1'1*SS * V9S6* * 6*8*2* * 5 **05£ * 0*8Z*2 * 0*001 * * 0*60*5 * Z'ZE6* * *'91** * £*98ZE * 6*221£ * 2 '8022 * 0*06 * * E*2S/* * £ ' 8 £ E * * E*088£ * 9*92E£ * 8*£*ZZ * 1 '0*61 * 0*08 * * 0*001* * 8'2*ZE * 9'Z*£E * 0*0Z82 * VZ9E2 * 8 'EZ91 * O'OZ * * 0*2S*E * 2'1S1E * S'8182 * **91*2 * 0'E661 * £*60*T * 0*09 * * 2*8082 * 9'E9S2 * 6'2622 * 8*5961 * E '1291 * 5*9*11 * O'OS * • 8*8912 * 6'6Z61 * 6*0ZZI * 2*8151 * 2'2S21 * *'S88 * 0*0* * * 8 'EES1 * V00*1 * E'2521 * 9*£Z01 * 5'588 * 2*929 * 0*0£ * * 0'E06 * E'*28 * E'ZEZ * V2E9 * E'12S * 9 '89E * 0*02 * * S'9/2 * *'2S2 * 8*522 * 5 *E61 * 9*651 * 6*211 * 0*01 * ( N I W / I N ) 3J.v« Moid oiaidwmoA * * 0*0* ****************************** * * ' * * *QV3» 31VOS* 20S=SV9 *09sn =M3i?WV10* 2'*62=3«niVW3dW3i ************* * * * ****** sa3J.3NVi.on do NoiivaeivD * * * >* * * * 00 * I210'0 * 5*90*0 * 21S0'0 * *0S0'0 « 6£*o*o * 8i£0'0 12E0'0 8920*0 8120*0 £110*0 IEIO'0 *600*0 0900*0 OEOO'O *000*0 0890*0 8090*0 0*50*0 51*0' 0 *1*0*0 9SE0*0 EOEO'O 2520*0 9020*0 £910*0 *210*0 8800*0 1500*0 8200*0 *000*0 9f90*0 6950*0 5050*0 ***0*0 IfiEO'O £££0*0 £820*0 9£20*0 £610*0 £510*0 9110*0 £800*0 £500*0 9200 *0 £000*0 6850*0 1250*0 19*0*0 11*0*C 85£0*0 6C£0*0 2920*0 6120*0 8110*0 1*10*0 1010*0 1100*0 6*00*0 5200*0 £000*0 8ESC0 18*0*0 12*C*0 5/£C*C 12f0*0 2820*0 6£20*0 002CT £910*0 6210*0 8600*0 0100*0 5*00*0 2200*0 £000*0 18*0 *0 0£*0*0 28£0*0 9EE0*0 £620*0 2520*0 *120*0 6110 *0 9*10*0 5110*0 8800*0 £900*0 0*00*0 0200*0 £000*0 21*0*0 69£0*0 12£0*0 8820*0 1520*0 9120*0 £810*0 £510*0 5210*0 6600*0 5100*0 *500*0 *£00*0 1100*0 2000*0 0*£0 *0 *0E0*0 0120*0 1£20*0 1020*0 8110*0 1510*0 9210*0 £010*0 2800*0 2900*0 **00*0 8200*0 *100*0 2000*0 0*20*0 6120*0 1610*0 8910 *0 9*10*0 9210*0 1010*0 6800*0 £100*0 8 500*0 **00*0 TEOO'O 0200*0 0100*0 1000*0 * 0*051 * * 0*0*1 * * O'OEl * * 0*07* * * 0*011 * * 0*001 * * 0*06 * * 0*08 * * 0*01 * * 0*09 * * 0*05 * * 0*0* * * O'OE * * 0*02 * * 0*01 * 5'£*11 8'8S5I S*£8£l 9'1121 6*0901 1-E16 8*511 E*l*9 I'82S £-81* 8*il£ 1-922 0*5*1 9*21 9*6 *»*»******»»« * 8*e*9i * 9-1E51 * 9*£2*1 * 1 69*1 * 8**1£1 * 8*2121 * ***0E1 * 1*0221 * 9*6211 * 6*1*11 * 8-E101 T*66 * £-0001 * 1-5E6 * £•998 * **198 * 8*508 * 0*9*1 * *•!£! » 2**89 * **EE9 * £'019 * 8*015 * 5'82S * 6-16* * 1*59* * 2-IE* * *'*6E * 6-89E * 5*1*E * 1*662 * E*082 * 5'6S2 * 8*£12 * 0*002 * T*581 * 1*9£1 * 6*1Z1 **811 * 5*89 * 0**9 * E*65 * 0*6 * 5-8 * 8*/ S'6621 6*1911 2-1E01 5- 106 8*061 0-189 £•815 5*28* 9-E6E 8*11E 6- 9E2 0 -691 1*801 1**S 1*1 * * * * * * » £•2911 2*6£0l £•226 1*118 £-101 1*609 2* 115 5 *!£* l*2SE 6*812 6*112 2*151 1*96 *-8* *'9 966 068 061 569 •909 •225 *£** •69E *10E •6E2 •181 •621 •28 •1* •5 •128 •*£1 •259 **15 •005 •0£* •59E •50E •6*2 •161 •6*1 •901 •89 **£ •* '185 •615 •19* •SO* *£S€ •*oe *8S2 •512 •911 •6E1 •SOT •51 •8* •*2 •E * * ***»*. ********** * S2H = SV9 209SSM =83i?WVJ.08 2-*62 = 38niV83dH3i S831.3WVi.0X 3C NOIlvy81V0 * 0*051 * * 0 * 0*1 * * O'OEl * * 0*021 * * O'Oll * * 0*001 * * 0*06 * * 0*08 * * 0*01 * * 0*09 * * 0*05 * * 0*0* * * • O'OE * * 0'02 * * O'Ol * CX> r-. ********* * 62.20*0 * 2.*20*0 * 2.120*0 * 0610*0 * £910*0 * 6E10*0 * 2.110*0 9600*0 2.2 00*0 0900 *0 5*00*0 1£00*0 0200*0 0100*0 2000*0 * £920*0 * 9*20*0 * 8220*0 * * ££20*0 * 8120*0 * 2020*0 * * 5020*0 * 2610 *0 * 8210*0 * * 6210*0 * 2.910*0 * 5510*0 * * *510*0 * **10*0 * ££10*0 * * 1£10*0 * £210*0 * *110*0 * * 0110*0 * £010*0 * 5600*0 * * 1600*0 * 5800*0 * 8ZC0*0 * * £2.00*0 * 8900*0 • £900*0 * * 2.500*0 * £500*0 * 6*00*0 • * * 2*00*0 * 0*00*0 * 2.E0C0 * * 0£00*0 * 8200*0 * 9200*0 * * 6100*0 * 2100*0 * 9100*0 * * 6000*0 * 6000*0 * 8000*0 * * 2000*0 * 2000*0 * 2000*0 * 8020*0 *810*0 2910*0 1*10*0 2210*0 *010*0 2800*0 22.00*0 8500*0 5*00*0 ££00*0 £200*0 5100*0 2000*0 1000*0 9810 *0 5910*0 5*10*0 92X0*0 6010*0 £600*0 8200*0 *900*0 1500*0 C*00*0 OEOO'O 1200*0 £100*0 2.000*0 1000*0 6510 *0 1*10*0 *210*0 8010*0 £600*0 0800 *0 2900*0 5500*0 **00*0 *£00*0 9200*0 8100*0 1100*0 9000*0 1000*0 IEIO'0 2.110*0 £010*0 6P00*0 22.00*0 9900*0 5500*0 5*00*0 9£00*0 8 2C0 * 0 1200*0 5100*0 6000*0 5000 *0 1000*0 £6C0*0 2800*0 22.00*0 £900*0 *500*0 9*00*0 6E00 *0 2E00*0 9200*0 0200*0 5100*0 0100*0 2.000*0 £000*0 1000*0 * * * * * * * * *************************** * 0*051 0*0*1 O'OEl 0*021 0*011 0*001 0*06 0*08 0*02. 0*09 0*05 0*0* 0*OE 0*02 0*01 * * * * * * * * * * * * * * * * * * « * • * *** * * * 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 12. 33. 55. 78. 103. 129. 157. 186. 217. 249. 283. 318. 355. 393. 433. 18.0 46. 8 77.8 110. 8 145.9 183. I 222. 5 263.9 307.5 353. I 400. 9 450.8 502.8 556.9 613. I 21. 56. 94. 134. 176. 222. 269. 320. 372. 428. 486. 546. 609. 675. 743. 25.5 66.2 110.0 156.7 206.3 259.0 314.6 373.2 434.8 499.4 567.0 637.5 711.0 787.6 86 7.0 28.5 74.1 122.9 175.1 230.7 289.5 351.8 417.3 486.2 558.4 633.9 712.8 795.0 830.5 969.4 31.2 * 33.8 * 36. 1 38.3 * 81. 1 * 87.6 * 93 .7 * 99 .4 * 134.7 * 145.5 155.5 * 164.9 * 191.9 * 207.2 * 221.5 * 235.0 * 252.7 * 272.9 * 291 .0 * 309.5 317.2 * 342.6 * 366.3 * 388.5 * 385.3 « 416.2 * 444.9 471 .9 • 457. 1 * 493.7 * 527.8 * 559.9 * 532.6 « 575.2 * 615.0 * 652.3 * 611.7 660.7 706.3 * 749.1 * 694.4 * 750.0 * 801.8 * 850.5 780.8 * 843.4 * 901.6 * 956.3 * 870.9 * 940.6 * 1005.6 * 1066.6 * 964.6 * 1041.8 * 1113.8 * 1181.3 * 1061.9 * 1147.0 * 1226.2 * 1300.6 * ****************************** * 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140 .0 150.0 * » 0.0005 0.0014 0.0023 0.0032 0.0043 0.0054 0.0065 0.0077 0.0090 0.0103 0.0117 0.0132 0.0147 0.0163 0.0179 0.0007 0.0019 0.0032 0.0046 0.0060 0.0076 0.0092 0.0109 0.0127 0.0146 0.0166 0.0186 0.0208 0.0230 0.0254 0.0009 0.002 3 0.0039 0.0056 0.0073 0.0092 0.0112 0.0132 0.0154 0.0177 0.0201 0.0226 0.0252 0.0279 0.0307 0.0011 0.0027 0.0045 0.0065 0.0085 0.0107 0.0130 0.0154 0.0130 0.0207 0.0235 0.0264 0.0294 0.0326 0. 0359 0.0012 0.0031 0.0051 0.0072 0.0095 0.0120 0.0146 0.0173 0.0201 0.0231 0.0262 0.0295 0.0329 0.0364 0.0401 0.0013 0.0034 0.0056 0.0079 0.0105 0.0131 0.0159 0.0189 0.0220 0.0253 0.0237 0.0323 0.0360 0.0399 0.0439 0.0014 0.0036 0.0060 0.0086 0.0113 0.0142 0.0172 0. 0204 0.0238 0.0273 0.0310 0.0349 0.0339 0.0431 0.0474 • *( 0.0015 0.0039 0.0064 0.0092 0.0121 0.0152 0.0184 0.0218 0.0254 0.0292 0.0332 0.0373 0.0416 0.0461 0.0507 0.0016 0.0041 0.0068 0.0097 0.0128 0.0161 0.0195 0.0232 0.0270 0.0310 0.0352 0.0396 0.0441 0.0489 0.0533 C O O C ALBRATI ON OF ROTAMETERS * 10.0 * 0.0001 * 0.0002 * 0.0002 * 20.0 * 0.0004 * 0.0006 * 0.0007 4i * 30.0 m 0.0007 * 0.0010 0.0012 * 40.0 * 0.0011 0.0015 * 0.0018 * * 50.0 * 0.0014 4> 0.0020 * 0.0025 * * 60.0 * 0.0018 0.0026 * 0.0032 * 70.0 4i 0.0023 * 0.0032 * 0.003 9 * * 80.0 * 0.0028 * 0.0039 * 0.0048 4i * 90.0 4t 0.0033 * 0.0047 * 0.0056 * * 100.0 * 0.0038 m 0.0054 0.0066 4i * 110.0 * 0.0044 * 0.0063 * 0.0076 * * 120.0 * 0.0051 * 0.0071 * 0.0087 * 130.0 * 0.0057 * 0.0081 * 0.0098 * * 140.0 * 0.0064 * 0.0091 * 0.0110 m * 150.0 * 0.0071 * 0.0101 * 0.0122 * 0.0003 0.0008 0.0014 0.0021 0.0029 0.0037 0.0046 0.0056 0.0066 0.0077 0.0089 0.0101 0.0114 0. 0128 0.0143 4i 0.0003 * 0.0003 0.0004 * 0.0004 * 0.0004 * * 0.0009 * 0.0010 * 0.0011 * 0.0012 4C 0.0012 * 0.0016 0.0018 * 0.0019 * 0.0020 4t 0.0022 * 0.0024 * 0.0026 * 0.0028 * 0.0030 * 0.0032 * * 0.0032 * 0.0035 0.0038 * 0.0041 4" 0.0043 4i 4" 0.0041 * 0.0045 * 0.0049 * 0.0052 0.0055 « 4i 0.0051 * 0.0056 * 0.0061 * 0 .0065 4> 0.0069 4> * 0.0062 0.0068 4i 0.0073 * 0.0079 * 0.0083 * 4i 0.0374 0.0081 * 0.0087 * 0.0093 * 0.0099 * * 0.0086 * 0.0094 * 0.0 102 0.0109 * 0.0115 * * 0.0099 * 0.0109 * 0.0117 * 0.0125 * 0.0133 * 4i 0.0113 * 0.0124 0.0134 * 0.0143 0.0152 * 41 0.0128 * 0.0140 tt 0.0151 * 0.0162 * 0.0171 4i 41 0.0143 * 0.0157 41 0.0169 0.0181 * 0.0192 * * 0.0159 * 0.0175 * 0.0189 * 0.0202 41 0.0214 * « * * • « * • * * « * * * 4 < * 4 ^ * 4 < * * * * 4 ^ * * * * 4 . * * * 4 < * * * * * 4 . 4 = * C M C O * 5 5 9 E * 0 * 9 * * £ ' 0 * £ 2 2 £ " 0 * • 7 8 6 2 * 0 * * 2 8 * E * 0 * E 8 2 E * 0 * U O E ' O * E * 7 8 2 * 0 * * O O E E ' C * T l l E ' O * 0 1 6 2 * 0 * • 7 6 9 2 * 0 * * / o i f * o * 6 2 6 2 * 0 * 0 * 7 * 2 * 0 » / £ 5 2 * 0 * * £ 0 6 2 ' 0 * / . E / 2 ' 0 * 1 9 5 2 * 0 * 1 / f 2 * 0 * * 0 6 9 2 * 0 * 9 E 5 2 ' 0 * 2 / E 2 * 0 * 9 6 I 2 * C * * 9 9 * 2 ' 0 * 5 2 £ 2 ' 0 • 5 / 1 2 * 0 • * 7 l 0 2 * C * * 2 £ 2 2 ' 0 * 6 0 1 2 * 0 * 6 9 6 1 * 0 * E 2 6 T O * * 8 8 6 1 ' 0 * * / 8 1 * 0 * £ 5 / 1 * 0 * £ 2 9 1 * 0 • * * E / 1 ' 0 * * £ 9 T 0 * 6 2 5 1 * 0 * 61 * 7 1 *0 * * 6 9 * 1 * 0 * 5 8 £ 1 * 0 * 5 6 2 1 * 0 * 6 6 1 1 * 0 • * * 6 1 1 * 0 * 9 2 1 1 * 0 * £ 5 0 1 * 0 * 5 / 6 0 * 0 • * 6 0 6 0 * 0 * 1 6 8 0 * 0 * 1 0 8 0 * 0 * 2 * 7 / 0 * 0 * * £ 1 9 0 * 0 * 8 / 5 0 * 0 * 1*750*0 * 0 0 6 0 * 0 * * / O E O ' O * 0 6 2 0 * 0 * 1 / 2 0 *0 * 1 5 2 0 * 0 * * ; 2 / 2 * 0 6 6 5 2 * 0 66*72*0 9 1 f 2 * 0 * 7 9 1 2 * 0 5 0 C 2 * 0 8 £ 8 1 * 0 • 7 9 9 1 * 0 28 *71 *0 2 6 2 1 * 0 5 6 0 1 * 0 0 6 8 0 * 0 / / 9 0 * 0 / 5 * 0 ' 0 6 2 2 0 * 0 * 9 £ * 7 2 * 0 * 6 8 0 2 * 0 * £ 2 / 1 * 0 * 8 1 2 1 * 0 • 0 * 0 5 1 * * 1 2 £ 2 * 0 * 0 6 6 1 * 0 * 2*791 * 0 * 1 9 1 1 * 0 * 0 * 0 * 7 l * * 0 0 2 2 * 0 * 9 8 8 1 * 0 * 6 5 S T 0 * 0 0 1 1 * 0 * O ' O E l * * 1 / 0 2 * 0 * 9 / / 1 * 0 * •7 9 *71*0 * 9 £ 0 1 * 0 * 0 * 0 2 1 * * 9 £ 6 1 * 0 * 6 5 9 1 * 0 * 6 9 E T 0 * 8 9 6 0 * 0 * 0 * 0 1 1 * £ 6 / 1 * 0 * / £ S 1 * 0 * 6 9 2 1 * 0 * Z.680 * C * 0 * 0 0 1 * * *7*791*0 * 0 1 * 7 1 * 0 * £ 9 1 1 * 0 * 2 2 8 0 * 0 * 0 * 0 6 * * 88*71 *0 * 9 / 2 1 * 0 * 2 6 0 1 * 0 * * / 0 ' 0 * 0 * 0 8 • * S 2 £ l * 0 * 9 E 1 1 * 0 * / . £ 6 0 * 0 * £ 9 9 0 * 0 * 0 * 0 / * * 9 6 1 1 * 0 * 1 6 6 0 * 0 * / 1 8 0 * 0 * 8 / 5 0 * 0 * 0 * 0 9 * * 6 / 6 0 * 0 * 0*780*0 * 2 6 9 0 * 0 * 0 6 * 7 0 * 0 * 0 * 0 5 * * 9 6 / 0 * 0 * 2 8 9 0 * 0 * £ 9 6 0 * 0 * 8 6 E 0 * 0 * O ' O * * * 9 0 9 0 * 0 * 6 1 5 0 * 0 * 8 2 * 7 0 * 0 * E O E O ' O * O ' O E * * 60 *70 *0 * O S E O ' O * 6 8 2 0 * 0 * * 0 2 0 *0 * 0 * 0 2 * * 5 0 2 0 * 0 * 9 / 1 0 * 0 * 5*710 * 0 2 0 1 0 * 0 0 * 0 1 * * E ' 6 2 6 8 9 E 6 * 0 2 5 / 0 8 0 / / . 1 9 9 0 E 1 9 1 2 9 5 ' / 8 0 5 ' 1 E S * • 1 S 6 E ' / * £ £ ' 0 2 / 2 " 0 / 0 2 •Z .6E1 • 0 0 / E ' 1 6 / / 8 ' E 2 * / S ' * E 0 / . 2 ' £ 2 9 9 0 ' 0 6 1 9 O ' S E / 5 0 * 8 5 2 5 2 '6S/*7 5*8E2*7 6 * 5 6 9 E S * l £ l £ 1 * S * 5 2 6 * 9 E 6 I 8 * 9 0 £ 1 / * * 5 9 9 * * E 8 8 8 * / . l * 8 £ * 9 / 6 / 0 * 0 1 5 / . 8 * 8 1 0 / . 8 * 2 0 5 9 T 2 9 6 S 5 * 9 6 E S 0*908*7 8*061*7 8 * 0 5 S E 6 * 5 8 8 2 2 ' 9 6 1 2 / . * 1 8 * 1 * ' 2 * / . *****»*«>*><* * ** * * * O ' S * * * * * * * * * * * * * * *************************** * * * ************** * * * ************] *7 * € 1 2 / l ' E / , 8 9 9 ' 2 1 5 9 6 ' 1 £ 1 9 8 * 0 E Z 6 9 ' 6 0 £ 5 0 * 8 9 8 * ; 2 ' 9 0 * * 1**726£ 8 ' 1 2 * E 2 * 6 6 8 2 £ * 9 S E 2 2 ' £ 6 i l 8 * 6 0 2 1 2 ' 9 0 9 6 * * 7 8 5 9 £ ' * ; / 2 9 2 *5*765 9 ' / 6 5 S 5 * 1 £ 2 6 6'9*78*7 6 ' £ * * * £ ' 2 2 0 * 7 2 ' 2 8 S £ 9 ' £ 2 1 £ 9 * 9 * 9 2 0 ' 1 5 1 2 0 * / E 9 1 * * * 0 1 1 * 7 * E S S / * 6 8 8 S 6 * 1 1 9 5 S ' / 1 E 5 / ' 9 0 0 5 2 * 6 / 9 * 2 ' 5 £ E * / * * 7 / 6 £ 9 ' / 6 5 E 0 ' * 7 0 2 £ 6 ' E 6 / 2 2 ' / 9 £ 2 6 ' E 2 6 1 1'*>9*?1 8 ' / 8 6 6 ' * 7 6 * 7 * * * 6 * 0 5 * / * * 9 1 * * 6 * * * 6 2 * 0 * 0 5 1 * * 2 ' 1 1 8 * * 2 * 8 9 6 £ * 6 * 5 0 8 2 * 0 * 0 * 1 * * 8 '895*7 * 1 * 0 9 / £ * 8 * 8 5 9 2 * O ' O E l * * £ • 2 6 2 * * 2 * 0 * S E * £ • £ 0 5 2 * 0 * 0 2 1 * * 9 ' H O * * / . ' 8 0 E E * 9 * 6 E £ 2 * O ' O l l * * / * 9 1 / £ * 5 ' 5 9 0 E * 9 * / 9 1 2 * O ' O O l * * 9 ' / 0 * / £ * 5 * 0 1 8 2 * * * Z 8 6 1 * 0 * 0 6 * * £ ' * 8 0 £ * 6 * E * S 2 * 8 * 8 6 / 1 * 0 * 0 8 * * 6 * 9*7 / 2 * 9 * 5 9 2 2 * 0 * 2 0 9 1 * 0 * 0 / . * * 2 ' 5 6 £ 2 * 9 * 5 / - 6 1 * 6 * 9 6 E 1 * 0 * 0 9 * * * ' 6 2 0 2 * 8 ' £ / 9 1 * 9 ' E 8 1 1 * 0 * 0 6 * * * ' 6 * 9 1 * * * 0 9 E 1 * 0 * 2 9 6 * 0 * 0 * * * 2 ' 5 5 2 1 * E ' S E O l * 1 mZiL * O ' O E ' * * 6 ' 9 * 8 * 5 ' 8 6 9 * 6 * E 6 * * 0 * 0 2 * * E ' * 2 * * O ' O S E * S * i * 2 * 0 * 0 1 * (Nlwnw) 31VM MOTd 0I«i3WmOA 2N =SVO 0*52 * C ' 0 2 <****> IlSd)3*nSS3«d ************** E09SS11 =8313WVi0b *uV3H 31VDS* 2**62=3aniV83dW31 S b 3 i 3 H V 1 0 8 30 N O I I V M S I V D * * * <* * * * • *** ********************** CO 00 * * * * * * 9*81*0 95£1*0 2991*0 2951*0 £5*1*0 £*£1*0 1E21*0 0111*0 *860*0 £580*0 9U0*0 S£SO*0 82*0*0 5£20*0 8110*0 * * * * * * * 0*£1*0 9591*0 £951*0 E £ * T 0 * £ £ T 0 0£2 1*0 1911*0 £*01*0 8260*0 *080*0 5£90*0 2*50*0 £0*0*0 6520*0 1110*0 8291*0 6*51*0 99*1*0 8££1*0 5821*0 8811*0 9801*0 6£60*0 8980*0 2510*0 7£90*0 £050*0 ££60*0 E*20*0 *0IO*0 £051*0 * £ * T 0 £5E1*0 S £ 2 T 0 0611*0 0011*0 5001*0 £060*0 *080*0 9690*0 5850*0 69*0*0 6*E0*0 5220*0 9600*0 92EV0 6 0 £ T 0 6£21*P *91T0 9801*0 *OOV0 8160*0 8280*0 *E£0*0 9£90*0 *£S0*0 8 2*0*0 61f0*0 5020*0 8800*0 0E21*0 1£IT*0 8011*0 1*01*0 1£60*0 8680*0 1280*0 0*£0*0 9590*0 6950*0 8i*0*0 £8£0*0 5820*0 £810*0 8£00*0 * 5501*0 * 0£80*0 * 5190*0 * *001*0 8280*0 * 5850 *0 * 0560 *0 * €820*0 * *550*0 * £680*0 * 9££0*0 * 1250*0 * ££80*0 * £890*0 * 98*0*0 * 0££0*0 S£90*0 * 6**0*0 * *0£0*0 * 0850*0 * 01*0*0 * 5£90*0 * £250*0 * 0£€0*0 * £950*0 * *9*0*0 * 82E0*0 * 88*0*0 * 20*0*0 * *820*0 * 60*0*0 8EE0*0 * 6E20*0 * 82£0*0 * 1£20*0 * 2610*0 * **20*0 * 2020*0 * E*10*0 * £510*0 * OEIO'O * 2600*0 * £900*0 * 5500*0 * 6£00*0 * * * 4> * *"•• 4> * 4i 0*051 0*0*1 O'OEl 0*021 O'OIT 0*001 0*06 0*08 O'Oi 0*09 0*05 0*0* 0*0£ 0*02 0*01 * 41 * * 4i * 4i 4i * 4i * * 4i 4i 4i £*19** * 2*902* * 5**E6£ * 5*5*2* * £•200* * 2***£E * 1*£10* * E*£8££ * £*2*S£ * 6*S££E * 6'65S€ * O'OEEE 4i 0*225E * 9 *02E£ * 1*901E * **552E * 2*690E * 0*1£82 * 1*9£62 * 6*5082 * £'*292 * 1**892 41 9*0E52 * 1*£9£2 * **6££2 * E*E*22 * **8602 41 0*2902 * 0***61 * 5*8181 * 8*1££1 * 8*2E91 * £*£2SI 4i 0*68E1 * 9*60E1 * 0*5221 4i S'EEOl * ***£6 * 5*116 4i E*S99 * 2*£29 * £*985 4i £**82 * 1*892 * 8*052 * * * * * 4 i 4 i * * * * 4 i * 4 i * * * * * * * £*2*9E 5 *99*E 6*6£2E 0*£80E £*5£82 0*8592 0 *0£*2 5*1612 8*2*61 9*E891 0**1*1 1**E11 8*£*8 2*£*5 2*2£2 1 * * * 1 (Nlh/lW) £*52E£ ***91E 1**662 ***182 1*5292 **92*2 2*8122 9*0002 5*£££1 6*9£51 8'0621 £*5E01 £'0££ 6 '56* 6'112 2**£62 *'0£82 0*8£92 £'£152 0'8*£2 E*0£12 T * 8 6 l **68£1 £•9851 9**£E1 9**511 0*926 0*689 5*E** 9*681 * 6*6*52 * VE012 * 1*£8*1 * 5*92*2 * **1002 * Z'S1*1 * 6*5622 * £*£681 * 0"6E£1 * 1*8S12 * 0*C8£1 * 9*8521 * 0*E102 * £•0991 * 0'*£1X * 9 *0981 * 9**€S 1 * TS801 * 0*10£1 * 6*20*1 * 0*266 * 1**ES1 * £ *5921 * £'*68 * 6*65£1 * £ *1211 * T £ 6 £ * 5*8£1I * 0*2£6 * E*£89 * 8*686 * **918 * £*££5 * 6 *E6£ * P'*59 * 0*E9* * £ *06S * 2*£P* * 5 ***£ * 2*08E * 9*£TE * 8*122 * 5*291 * 0**£1 _ * 8**6 * 41 * 41 * 41 * * * * * 41 0*05T 0*0*1 0*0£1 0*021 0*011 0*001 0*06 o*oe 0*0£ 0*09 O'OS O'O* O'OE ' 0*02 0*01 * * * * * * * * * * * * * * ******************** 3J.VX M013 DI«i3WmOA ********************************************* ^ * * * * * ********************** * * 0*5 * «HW) * * *0V3X 31V0S* * * * ************ • 8 * * E * O * 6 * 2 £ ' 0 * 6 9 0 E ' 0 * 0 * 8 2 * 0 * * S E E E ' O * S * 1 E ' 0 * 2 * 6 2 ' 0 * E ? * 2 ' 0 * * 0 8 1 E ' 0 * 8 6 6 2 * 0 * * 0 8 2 ' 0 * 9 6 5 2 * 0 V A T 1 0 £ * 0 * 6 E 8 2 * 0 * 9 S 9 2 ' 0 * 6 5 * 2 * 0 w * o £ 8 2 * o * 8 9 9 2 * 0 * 9 6 * 2 ' 0 * 0 1 € 2 * C * * S E 9 2 * 0 * 5 8 * 2 * 0 * * 2 E 2 * 0 * 2 5 1 2 * 0 * * P 2 * 2 ' 0 * 6 8 2 2 * 0 * 1 * 1 2 * 0 * 2 8 6 1 * 0 • * e o z z ' o * 1 8 0 2 * 0 * * * 6 1 ' 0 * 2 0 8 1 * 0 * * * * 6 1 * 0 * 1 9 8 1 * 0 * 1 * * 1 ' 0 * 2 1 9 1 * 0 * * 8 2 * 1 * 0 * 6 2 9 1 * 0 * * 2 S 1 * 0 * 1 1 * 1 * 0 * * 6 9 * 1 * 0 * 5 8 E 1 ' 0 * 9 6 2 1 * 0 * 6 6 1 1 * 0 * * * 6 1 1 * 0 * 6 2 1 1 * 0 * 9 5 0 1 * 0 * * * S 0 ' 0 * * 2 1 6 0 * 0 * 0 9 8 0 * 0 * * 0 8 0 * 0 * S * * 0 * 0 * * * 1 9 0 * 0 * 6 * 5 0 * 0 * 2 * 5 0 * 0 * 2 0 5 0 * 0 * * e o c o ' o * 9 8 2 0 * 0 * 8 9 2 0 * 0 * 8 * 2 0 * 0 * E652*0 98*2*0 0i£2*0 **22*0 6012*0 *961*0 0181*0 5*91*0 2**1*0 8821*0 5601*0 2680*0 0890*0 85*0*0 9220*0 61E2*0 *222*0 0212*0 *002'0 9881*0 *S*TO 6191*0 2**1*0 91ET0 2511*0 6*60*0 86*0*0 8090*0 01*0*0 2020*0 8861*0 9061*0 *18I*0 12*1*0 *191*0 9051*0 R8E1*0 2921*0 8211*0 8860 *0 0*80*0 *890*0 1250*0 15E0*0 £*10*0 >********** * 0*91*0 * 2*51*0 * 66*1*0 * 02*1*0 * *E£1*0 * 2*21*0 * 5*11*0 * 1*01*0 * 1E60*0 * 5180*0 * £690*0 * *9S0*0 * OE*0*0 * 0620*0 * E*10*0 *********************** 6511*0 2111*0 0901*0 *001*0 E*60*0 8*8D*0 6080 '0 9£*0*0 8590*0 9*50*0 06*0*0 66E0*0 *0E0*0 5020*0 1010*0 * 0*051 * * 0*0*1 * * O'OEl * * 0*021 * * 0*011 * * 0*001 * * 0*06 * * 0*08 * * 0*0* * * 0*09 * * 0*05 * * 0*0* * * O'OE * * 0*02 * * 0*01 * (NIW/310W9) 31VM MOTd XV10W * 2'80*R * *'*26i * * * S l * i * E'5989 * 2*£908 * 0*209* * 0*111* * 5*£859 * 8'989* * 2'**2* * 2*6**9 * E*9*29 * £'6*2* * 0'£989 * i*61*9 * 5*£*6S * *'0*89 * 2*6**9 * i'2E09 * 2 "5855 * *'0i£9 * 0'9009 * 1*8195 * **1025 * T6985 * **E£55 * 0*9*15 * 1"26** * S*9£E5 * £'1£05 * * * 9 0 i * * 2**S£* * i ' 2 * i * , * *'66** * 1*602* * 6'96PE * 9'**1* * *'8£6£ * E**89£ * 0*11*£ * E'1S5E * 2'8*££ * 0*2£1E * 9*6682 * 8'£682 * £'82*2 * T2S52 * 8*29£2 * 0'5022 * 6*8*02 * 9***61 * *'0081 * 6**8*1 * 0*00*1 * 9*60E1 * *'2121 * 9'££* * i'169 * 0*i*9 * 0*665 T*929 6*6009 **62*5 9*52*5 9*8605 2*8*** 5***£* 9***6£ ***5SE 8*£11E 0***92 6*9512 5*£*91 8*9011 8*9*5 * 5*5095 * * *508* * i *£9fc£ * **2082 * 0*051 * * *'5*E5 * S'809* * 0*108E * * **892 * 0*0*1 * * 9'*2IS * **£6E* * 9*£29£ * £•2952 * O'OEl * * 8'2S8* * *'091* * 5 *!£*£ * *"92*2 * 0*021 * * E*09S* * 9*606£ * 9'*22E * 1*0822 * 0*011 * * 6 *9*2* * 0*I*9E * 0 *£00E * S'£Z12 * 0*001 * * **216£ * ***5€£ * **99*2 * **9S61 * 0*06 * * * **SS£ * 1*0S0£ * i*S152 * 8*8**1 * 0*08 * * 8'181E * 8**2*2 * 6 *6*22 * 6*0651 * 0*0* * * 1*S8*2 * i '*8£2 * **6961 • S'26E1 * 0*09 * * 9**9E2 * 8 '6202 * 1***91 * 8 *E811 * 0*05 * * 2*6261 * 6*£591 * 1**9£1 * 9'*96 * 0*0* * * 0'0**1 * 2*0921 * **6E01 * 0*5£i * O'OE * * 0*066 * **8*8 * 0*00* * 0*56* * 0*02 at * 1 *68* * £*61* * 8*5*E * S***2 * O'Ol • L f ) co ********** * Z91I*0 * 1891*0 9651*0 *05I*0 10*1'0 *0E1*0 S6TI'0 1801*0 1960*0 9E80*0 5010*0 8950*0 92*0*0 8/20*0 *210'0 * * * * * * » 1991 5851 *051 81*1 92ET 6221 1211 6101 9060 88/0 *990 9E50 10*0 2920 1110 •o •o •o •o •o •o •o •o *0 •o •o •o •o •o *0 ****************' * * * * * 6*852* 8**90* C158E 9'5£9E s*oo*e 8'ISIE 5*6882 5*E192 6'£2E2 9*0202 8'E011 2*Ei£l 0*6201 2*1/9 8*662 **S10* E*2E8E **9E9£ 1*12*E 1*902E 9 *l/62 2**2/2 1**9*2 0*1612 1*5061 £•9091 Z**621 2*0/6 8*2E9 9*282 *551*0 £8*1 *0 Z0*V0 92E1*0 1*21*0 0511*0 *501*0 £560*0 8*80*0 IE/0'O 2290*0 1050*0 S/£0*0 5*20*0 6010*0 0'95/E fl**85E 9*10*£ E*902E 0*6662 L'bLLZ E*8*52 6**0£2 5*6*02 0*2811 9*2051 1*1121 5*106 0*265 ***92 8£*1*0 E/f.l'C EOEl'O 8221*0 6*11*0 5901'0 9/60*0 E8P0*0 56/0*0 2890*0 5/50*0 *9*0*0 8*E0*0 1220*0 1010*0 ElEl'O €521*0 6811*0 I21T0 8*01*0 2/60*0 1680*0 9080*0 /I/O'O £290*0 5250*0 £2*0*0 /1€0*0 1020*0 2600*0 5/11*0 1211*0 *901*0 EOOTO 8£60*0 6980*0 /6/0*0 12/0*0 1*90*0 /550*0 0/*0*0 6/£0*0 *820*0 5810*0 £800*0 **//*£ 6*81£E 2'6*1£ **8962 S*9//2 5'E/S2 £*65E2 6*€£12 5*1681 6*6*91 V16E1 2*1211 2*0*8 1*8*5 8 ***2 ***/.!£ 1*620E 8**1B2 8*6012 9**E52 2*6*€2 /*ESI2 0*8*61 T2E/I 1*9051 6*6921 S*E201 0'/9/ E'OOS *'E22 * * * * * * * E-6E82 6*60/2 E*l/52 /*E2*Z 0 */9Z2 2*1012 E'9261 £*2*/l £•6*51 1*/*£! P'5f11 5'516 0*989 S ' i * * 8*661 /OOl'O 1960*0 2160 *0 0980 '0 *080*0 S*/0*0 £890*0 8190*0 6*50*0 8/*0*0 £0*0'0 52£0*0 £*20"0 6510*0 1100*0 (Niw/anowo) 3J.VM woid «viow 2 **£*2 2*E2E2 5'*022 6*1102 9*E*61 **108l 5*1591 8'€6*1 2 '82E1 6**S11 8*E16 6**81 1*885 9*£8£ £*111 1E80*0 £610*0 2510*0 6010*0 £990*0 5190*0 £950 *0' 0150*0 £5*0*0 *6£0*0 2£E0*0 8920*0 1020'0 1E10*0 8500'0 1 '1002 2*9161 2*8181 8*E111 0'£091 8 *58*1 1*29€1 0*2€2I S'5601 5*256 2*E08 E * l * 9 1 *58* **91€ £•1*1 1850*0 09S0'0 2£50*0 1050*0 69*0*0 S£*0*0 B6£0*0 09£0*0 02E0*0 6120*0 SEZO'O 6810*0 2*10*0 £600*0 1*00*0 * * * * 9*61*1 6**5£1 1*5821 6*1121 5*E€11 9*0501 2*E96 2*118 9**11 S*£19 6*195 1*15* 0*E*E 1 *£22 6*66 * 0*0S1 * * 0*0*1 * * O'OEl * * 0'021 * * O'Oll * * 0*001 * * 0*06 * * 0*08 * * 0*01 * * 0*09 * * 0*05 * * 0*0* * * O'OE * * 0*02 * * 0*01 * * 0*051 * * 0*0*1 * * O'OEl * * 0*021 * * 0*011 * * 0*001 * * 0*06 * * 0*08 * * 0*01 * * 0*09 * » 0*05 * * 0*0* * * O'OE * * 0*02 * * 0*01 * ************************* **************** * * 0*5* ***** * *********** * * * O'O* 0'5E O'OE 0*52 * 0'02 [****> ( ISd)3*nSS3ad l ' * l ******************** *0V3« 31V3S* ******************** S«3J.3W*iOa JO r.'0Ii.VH8~IV3 CO z9se*o O 2 * E * O * 9 2 £ * 0 S 6 0 E * 0 € 1 6 2 * 0 £ 1 £ 2 * 0 6 0 5 2 * 0 £ 8 2 2 * 0 1 5 0 2 * 0 € 0 8 1 * 0 1 * 5 1 * 0 9 9 2 1 * 0 8 £ 6 0 * 0 9 £ 9 0 * 0 1 9 € 0 * 0 * * * * * * * * * * ** * 1 * 1 1 9 8 6 * 9 9 2 8 9 * 0 6 8 £ 2 * 2 8 * £ £ * 1 * 0 £ 2 * 6 9 5 9 9 ' * 9 0 9 0 * 8 2 S S 2 * 6 5 6 * * * 8 S € * S*52£t 9 * 0 9 0 C 9 * € 9 E 2 S * * € 9 1 € * € £ 8 * 8S€€*0 * 2*1€*0 * 8062*0 * * *22€*0 * 910€'0 * 26£2*0 * * ££0£*0 * 6£82*0 5992*0 * * 8162*0 * 0€£2*0 * £252*0 * * 9*£2*0 6952*0 * 8£E2*0 * * 2952*0 £6€2 *0 * 6122*0 * * S9€2*0 * €122*0 * 8*02*0 * 9512*0 * £102*0 * £981*0 * * *£61*0 * 6081*0 * S£91*0 * * 00£1*0 0651*0 * 2£*1*0 * * €5*1*0 * 65€l *0 8521*0 * * *61I*0 * £111*0 * *€01*0 * * 2260*0 * 2980*0 * 86£0*0 * * £€9C*0 * 9650*0 * 2550*0 * * I*€0*0 * 61€0*0 5620*0 * 5592*0 6*52*0 €€*2*0 £0€2*0 1£12*0 5202*0 0£81*0 * 0 £ T 0 6251*0 **£l*0 6*11*0 **60*0 62£C*0 *0S0*0 6920*0 5£€2*0 0822*0 9£12*0 €902*0 2*61*0 2181*0 €£91*0 5251*0 89€1*0 2021*0 £201*0 **P0*0 2590 *0 15*0*0 1*20*0 * 9€02*0 * 6 £ 9 T 0 * £811*0 * 0*051 * * 5561*0 * 219VO * 0*11*0 * 0*0*1 * * 9981*0 * 6E51*0 * 8801*0 * O'OEl * * 69£1*0 * 65*1*0 * 2€01*0 * 0*021 * * 5991*0 * ££€1*0 * 1£60*0 * 0*011 * * £551 *0 * 1821*0 * 9060 *C * 0*001 * *€*!*0 * €811*0 * 9€80*0 * 0*06 * * £0C1*0 * G£01*0 * 29£0*0 * 0*08 * * €£11*0 * £960*0 * *B90*0 * 0*0£ * • 0£0l*0 0580*0 * 1090*0 0*09 * * 1880*0 * £2£0*0 * *1S0*0 * 0*05 * * *2£0*0 £650*0 * 22*0*0 * 0*0* * * 6550*0 * 19*0*0 * 92€0*0 * O'OE * * 98€0 *0 * 6l€0*0 * 5220*0 * 0*02 • * 9020*0 * 0£10*0 * 0210*0 * 0*01 * * 9*8118 * E**6S£ * 6*0E0£ * 1**6££ * £*062£ * 6*6*£9 * €*6E*£ * 8*8569 * 9*2**9 * £**50£ * £•8659 * 2*6019 * 0*6€99 * 2*0129 * 9*6*£5 * S*£619 * S'E6£S • £*€9E5 * 8*£1£S * 5*8*£S * £*1S6* * 8*1125 * 2*5£8* * 9*€15* * 9*5£9* * 9*£££* * 2*6*0* * 2*601* * 8*£*8E * 9*85S€ * S*21S€ * 9*S82E * 6*1*0€ * 9*5882 2*6692 0*66*2 * **8222 * 5**802 6*6261 * 0*1*51 * 5*1**1 * 9**€€1 * **E28 * 2*0££ * 1*E1£ * * * * * * * * £*8l*9 8*1919 EM88S 6*9£S5 9*8*25 **968* E*02S* E*02T* V969E 9*8*2E 6*9££2 2*1822 £*19£1 €'8121 6*059 •0*£5 '1155 •0925 "886* •*69* *6£€* *€*0* *S89€ •90EE •5062 •€R*2 •0*02 *5£51 •6801 •285 * £•126* * €*6S0* * **0£B2 * 0*051 * * 6**2£* * 0 *£68€ * 9*5S£2 * 0*0*1 * * 8 '60S* * 9*61£€ * 2*0E92 * O'OEl * * **9£2* * 1*£25€ * 1**6*2 * 0*02T * * £**20* * 5*6!€E * 2*£*E2 * O'Oll * * 9**5£€ * 8*960€ * £ *6812 * 0*001 • * 2*99*€ * 6*8582 * 5*1202 * 0*06 * * 5*651€ * 6*5092 * £ *2*81 * 0*08 * * ***€82 * 8 *£€E2 * 1*ES91 * 0*0£ * * 0*16*2 * 9 **502 * 8*2S*1 * 0*09 * * € *6212 * 2 *95£1 * 8*1*21 * 0*05 * • € *6*£1 * 8 * 2**1 * 2*0201 * 0*0* * * 6*0S€1 * 2**111 * 6*£8£ * O'OE • * * 2**€6 5*0££ * 8***S * 0*02 * * 1 *66* £*11* * 1 *162 * 0*01 * ************************* *1 * * * 2N = S V 0 E 0 9 S S E T =>)313WViO» 2 * *6 2=3»rUV8 3dK3i s»3i3w»ioa do NouvaeivD * * * >*** * * * co *********w * 6081*0 91/1*0 9191 *0 9151 *C n*i*o 10E1 '0 ZBll'O 6901*0 Z*60'0 1280*0 1690*0 ZS50*0 61*0*0 92.20*0 OEIO'O ******************i 90/1*0 ZI9V0 5251*0 0E*1*0 OEEI'O Z22T0 6111*0 8001*0 E680 *0 *ZZ0*0 2590*0 5250*0 S6EC0 1920*0 £210*0 5651*0 £151*0 Z2*l*0 /£EI*0 **21*0 /*11*0 /*0T0 £*60*0 SE80*0 *2/0*0 0190*0 16*0*0 69E0 *0 **20*0 5110*0 //*!* 10*1' I2E1' 8£21' 2511 2901 6960 E/80 E//0 I/QO *9S0 55*0 2*E0 9220 9010 B*f.TO 6/21*0 9021*0 0E1V0 1501*0 0/60*0 5880*0 /6/0*0 90/0*0 2190*0 5150*0 51*0*0 21EC0 9020*0 /600*0 9021 **11 6/01 1101 C*60 /980 16/0 El/O 2E90 /*50 19*0 1/EO 6/20 *810 /BOO *0 *0 *0 •o •o •o •o •o •o •o •o •o •o *0 •o *£01*0 1860*0 5260 *0 /980 *0 9080*0 **/0*0 8/90*0 1190*0 1*50*0 69*0*0 56E0 *0 81E0*0 6E20*0 8510 *0 */00*0 £560 *0 6080*0 £9/0*0 51/0*0 5990*0 £190*0 0950*0 *050*0 /**0*0 /8£0*0 92£0*0 £920*0 /610*0 OEIO'O 1900*0 £090*0 2/50*0 6ES0*0 5050*0 0/*0*0 *E*0*C 96E0*0 9S£0*0 91E0*0 */20*0 0E20*0 9810*0 0*10*0 2600*0 E*00*0 * 0*051 * * 0*0*1 * * O'OEl * * 0'021 * * O'Oll * * O'OOl * * 0*06 * * 0*08 * * 0*0/ * * 0*09 * * 0*05 * * 0*0* * * O'OE * * 0'02 * * O'Ol * ************************ * 1'E/E* * 0*E21* * /•958E * 9'0/5E * * 1*/*1* * 6*606£ * *'/S9E * 1 '98EE * * E*116E * 9*/89E * 5*6**E * 9'£61£ * * /*S99£ * 0*95*E * 8'2£2E * 0'£662 * * 2*01*E * 2*512E * 5*/00E * ***8/2 * * 6***1E * 0*5962 * S*£//2 * B'/9S2 * * /•69B2 * 9*50/2 * 6*0£52 * T £ * £ 2 * * /**852 * 6*9E*2 * 5*6/22 * *'0112 * * 6*6822 * 6*8512 • 5*6102 * i'6981 * * 2*5861 * /*1/81 * 8*05/1 * 6*0291 ' * * /*0/91 * 2*5/51 * *'£/*! * 1**9E1 * * **9*£1 * **6921 * **/811 * £•6601 * * 2*2101 * E**56 * /'26B * **928 * * 2*899 * 6'629 * £'685 * 5*5*5 * * £**!£ * £•962 * 2'//2 * 9*952 * S*652E 1*160E E*5I62 2*2E/2 8*1*52 1'**E2 0*6E12 S'9261 8*90/1 /'6/*1 E*S*21 5*£001 ***5Z 0*86* E**E2 **5162 Z**9Z2 S*Z092 8*£**2 5*£Z22 9*9602 TE16I 2*£2Z1 9*9251 5*E2E1 8*E1I1 9*Z68 8**Z9 **5** 5*602 * **66*2 * 5 * 1902 * Z*ZS*1 * 0*051 * * E *0Z£2 * 0*5561 * **28E1 * 0*0*1 * * 5 *5£22 * 8 *E*8I * B'EOEl * O'OEl * * 1*S602 * 0*82Z1 * 6*1221 * 0*021 * * 1*6*61 * 9 *Z09l * Z'9E11 * 0*011 * * **/6/1 * 5 *28*1 * E*8*01 * 0*001 * * 2*0*91 * 8 *2S£1 * 9*956 * 0*06 * * £*//*! * 5*8121 * 9*198 * 0*08 * * 8*80E1 * 5 *6Z01 * E*£9Z * 0*0/ * * /**£!! * 8 *5E6 * Z *199 * 0*09 * * 6**S6 * 9*Z8Z * 6*955 * O'OS * * 5 *69Z * Z **E9 * 8*8** * 0*0* * * 5*8Z5 * 1 *ZZ* * **/££ * O'OE * 6*18£ * O'SIE * /*222 * 0*02 * * 9*6Z1 * 2 *8*1 * B**01 * 0*01 * 00 CO *» * 295E'0 * 8SE£-0 ft 2*1£*0 ft 8062*0 ft * 02*E*0 ft *22E*0 ft 910£*0 ft 26Z2'0 ft * *92E*0 ft ZZOE'O * 6Z82'0 ft 5992*0 ft * 560E'0 * 8T62'0 ft 0EZ2'0 ft Z2S2*C ft * £162*0 ft 9*Z2*0 * 6952*0 ft 8Z£2'0 ft * LILZ'O * 2952*0 « Z6E2'0 ft 6122*0 ft * 6052 '0 ft 59E2'0 * £122*0 ft 8*02'0 ft * ZB22*0 ft 9512*0 ft •102*0 ft /98 1*0 ft ft 1S02'0 ft *E61'0 ft 6081*0 * 5791*0 ft ft £081 '0 ft OOZVO ft 06ST0 ft 2Z*1*0 ft ft 1*51*0 * £5*1*0 ft 65£1*0 ft 8S2V0 ft ft 992V0 ft *61V0 ft 111!*0 ft *£01'0 * ft 8Z60*0 « 2260*0 * 2980*0 ft 86Z0'0 ft ft 9Z90'0 ft ZE9C0 ft 9650*0 ft 2550*0 ft ft 19E0'0 * I*£0'0 ft 6T£0*0 * 5620*0 ft 5592*0 6*52*0 £E*2*0 Z0E2*0 1112*0 5202*0 0/8 VO MUl'O 6251*0 **£1*0 6*11*0 **60'0 6270*0 *OSO*C 6920*0 5ZE2'0 0822*0 9/12*0 £902*0 2*61*0 2181*0 EZ91*0 5251*0 89£1*0 2021*0 /201*0 **80*0 2590*0 15*0*0 1*20*0 ft 9£02*0 ft 6/91*0 ft Z8II*0 ft 0*051 ft ft 5561*0 * 2191*0 ft 0*11*0 ft 0*0*1 ft ft 9981*0 ft 6E51*0 ft 8801*0 ft O'OEl * ft 69/1*0 ft 65*1*0 ft 2£01*0 * 0*021 ft ft 5991*0 ft E/.E1 *0 ft 1/60*0 ft O'Oll ft ft £551*0 ft 1821*0 ft 9060*0 ft 0*001 ft ft *£*1*0 ft £811*0 ft 9EB0*O ft 0*06 * ft 70E1*0 ft 8/01*0 ft 29/0*0 ft 0*08 * ft EZll'O * 7960*0 ft *890 *0 ft 0*07 ft ft OEOl'O ft 0580*0 ft 1090*0 ft 0*09 ft ft 1880 *0 ft /2/0*0 ft *150*0 ft 0*05 * ft *2/0*0 * /650*0 ft 22*0*0 ft O'O* * ft 6550*0 ft 19*0*0 ft 92E0*0 * O'OE ft ft 98E0*0 ft 61E0*0 ft 5 220*0 ft 0*02 ft ft 9020*0 ft 0/10*0 ft 0210*0 « 0*01 ft ftft********»ft*****ft*»**ft»«** Wftftftftftftftftft* ft 1*1198 ft 6*9928 ft 9*068/ * 2*28*>Z ft I'I*OZ ft 2'69S9 ft 9'*909 ft 0*8255 ft 2*656* * *'85E* ft S*S2Z£ « 9'090£ ft 9'E9£2 ft 5"*£91 ft £'£Z8 ft 9*8118 ft E'*65Z ft 6*0EOZ ft l'*6ZZ ft Z'062Z ft 6*6*Z9 ft £*6E*Z * P'8S69 * 9*2**9 ft £'*SOZ ft Z'8659 * 2*6019 ft 0'6£99 ft 2*0129 ft 9*6*ZS ft S*£619 ft S'£6Z5 ft Z*f9ES ft 8*Z1Z5 ft S*B*E5 ft Z*156* ft 8'112S ft 2'5Z8* ft 9*E15* ft 9'5Z9* ft 9'£Z£* ft 2*6*0* ft 2'601* ft 8*E*8E ft 9*8SSE ft S'215E * 9'582E ft 6*1*0E ft 9'5882 ft 2'6692 ft 0*66*2 ft *'8222 * 5**802 ft 6*6261 ft 0*1*51 * 5*1**1 * 9**EE 1 ft *'£29 ft 2*0ZZ ft 1 *£1Z £'81*9 8*1919 £'1885 6'9ZS5 9'8*25 **968* E'025* £*021* *'969E 9'8*2E 6'9ZZ2 2*1822 Z'19Z1 £'6121 6'0S9 Z'0*ZS 2*1155 *'092S 1*886* 5'*69* 5'6ZE* l'E*0* E*589£ 2*90£E 9*5062 Z'£8*2 **0*02 Z'5ZS1 Z*6801 2'285 ft Z*126* * £*6S0* ft **0Z82 ft 0'05I ft ft 6**2Z* • 0 *Z68£ ft 9*SSZ2 ft 0'0*1 ft ft 8*605* ft 9*61ZE ft 2'0E92 ft O'OEl ft ft **9Z2* ft l'Z2SE « l'*6*2 * 0*021 ft ft Z**20* ft 5 '61EE ft 2*Z*E2 ft 0*011 * ft 9**SZ£ ft 8 *960£ ft Z'6812 ft 0*001 ft ft 2'99*£ ft 6 *8582 ft 5*1202 ft 0*06 ft ft S*651E ft 6*5092 ft 7 *2*81 ft 0*08 ft ft *'*£82 ft 8 *Z£E2 ft 1*E591 ft O'OZ * ft 0'16*2 ft 9 **502 ft 8*25*1 ft 0*09 * ft £•6212 * 2*95Z1 ft 8*1*21 ft O'OS ft ft £'6*Z1 ft 8 * 2**1 ft 2*0201 ft 0*0* ft ft 6*0S£1 ft 2**11T ft 6*78Z ft • O'OE ft ft 2'*£6 ft S'OZZ ft 8***5 ft 0*02 ft ft 1*66* ft Z '11* ft 1'162 ft O'Ol ft ft ft ft ft ft ft ft ft ft ft * s«3i.3KVJ.oa 30 Nouvagivo | r f t * * » « * * * * * f t » * * * * * f t * * ^ CAL BR ATI ON OF ROTAMETERS TEMPERATURE=294.2 D* **************************** ( MM I 5.0 LO.O 14.7 ROT AMET ER= L4G603 »*****************< PRESSURE(PSI» GAS= N2 20.0 40.0 45.0 104.8 222.7 337.4 448.8 556.9 661. 7 763.3 861.6 956.6 1048.3 1136.7 1221.9 1303.8 1382.4 1457.7 148.2 315.0 477. 1 634. 7 787.6 935.8 1079.5 1218.5 1352.8 1482.5 1607.6 1728.0 1843.8 1955.0 2061. 5 179.6 381.9 578.5 769.5 954. 9 1134.7 1308.8 1477.3 1640.2 1797.4 1949.1 2095.1 2235.5 2370.3 2499.4 209.5 445.4 674.8 897.6 1113.8 1323.5 1526.6 1723.2 1913.1 2096.6 2273.5 2443.8 2607.5 2764.7 2915.4 234.3 493.0 754.4 10J3.5 1245.3 1479.7 1706. 8 1926.5 2139.0 2344.1 2541.8 2732.2 2915.3 3091.1 3259.5 256.6 545.5 826.4 1099.3 1364.1 1620.9 1369.7 2110.4 2343.1 2567.8 2784.4 2993.0 3193.6 3386. I 3570.6 *********< 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 * * * « * *** 0.0043 0.0092 0.0140 0.0186 0.0230 0.0274 0.0316 0.0356 0.0396 0.0434 0.0470 0.0505 0.0539 0.0572 0.0603 0.0061 0.0130 0.019 7 0.0263 0.0326 0.0387 0.0447 0.0504 0.0560 0.0613 0.066 5 0.0715 0.0763 0.0809 0.0853 .0074 0.0158 0.0239 0.0318 0.0395 0.0469 0.0541 0.0611 0.0678 0.0744 0.0806 0.0867 0.0925 0.0981 . 1034 0.0087 0.0184 0.0279 0.0371 0.0461 0.0547 0.0632 0.0713 0.0791 0.0867 0.0940 0.1011 0.1079 0.1144 0.1206 0.0097 0.0206 0.0312 0.0415 0.0515 0.0612 0.0706 0.0797 0.0885 0.0970 0.1051 0.1130 0.1206 0.1279 0.1348 0 0.0106 0.0226 0.0342 0.0455 0.0564 0671 0.0773 0.0873 0.0969 0. 1062 0.1152 0.1238 0.1321 0.1401 0.1477 • **»* 277.2 589.3 892.7 1187.4 1473.4 1750.8 2019.5 2279.5 2530.9 2773.5 3007.5 3232.8 3449.5 3657.4 3856.7 0.0115 0.0244 0.0369 0.0491 0.0610 0.0724 0.0835 0.0943 0.1047 0.1147 0.1244 0.1337 0.1427 0.1513 0.1595 *********************** 296.3 629.9 954.3 1269.4 1575.2 1871.7 2158.9 2436.9 2705.6 2965.0 3215.2 3456.0 3687.6 3909.9 4123.0 0.0123 0.0261 0.0395 0.0525 0.0652 0.0774 0.0893 0.1008 0.1119 0.1227 0.1330 0.1430 0.1525 0.1617 0.1706 314.3 668 .2 1012.2 1346.4 1670.7 1985.2 2289.9 2584.7 2869.7 3144.9 3410.2 3665.7 3911.3 4147.1 4373.1 0.0130 0.0276 0.0419 0.0557 0.0691 0.0821 0.0947 0.1069 0.1187 0.1301 0.1411 0.1516 0.1618 0.1716 0.1809 CO «**********«<"< 190 APPENDIX C COMPUTER PROGRAMME FOR THE DATA ANALYSIS L i s t e d below i s the computer programme f o r the e s t i m a t i o n o f the s u l p h u r c o n v e r s i o n s from t he e x p e r i m e n t a l d a t a . The f l o w r a t e s o f t h e f e e d gases were e s t i m a t e d from the second o r d e r l i n e a r r e g r e s s i o n c o e f f i c i e n t s o f t h e r o t a m e t e r c a l i b r a t i o n c u r v e s . The c o m p o s i t i o n s o f the r e a c t o r e f f l u e n t were a l s o e s t i m a t e d from second o r d e r l i n e a r r e g r e s s i o n c o e f f i c i e n t s o f the c a l i b r a t i o n c u r v e s f o r the I^S and S O 2 a n a l y s e r s . F i n a l l y the s u l p h u r c o n v e r s i o n was determined u s i n g Eq. 6.2. 191 c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c * EECGEABMI JO* IAlA ANALYSIS * EAIA IS FECK FLUIDIZED EED CIAUS REACTOR CFN = COEF. FOR TEE CA LIB. CURVE OF THE ROTA. FOR FLUID. NITROGEN CLK = CCEF. JOE THE CALIB. CURVE CF THI EOIA. FOR N2 PURGING MA NC METER CURVE OF THE ROTA. FOR N2 PURGING CAN = CCEF. FOR THE CAIIB. CHSS= CHSG= CSCS= CSCG= CCEF. CCEF. FEED LINE FOR THE CALIB. CURVE OF THE ROTA. FOR H2S CUEVI OF THE ROTA. FOR H2S FOB TEE CALIB. SS FLOAT GLASS CCEF. FOR THE CAIIB. CCEF. FCE TEE CALIB. FLOAT CURVE CF THE BOTA. FOR S02 FOE S02 SS FLCAT GLASS CHSA= CCEF. FOR TEE CALIB. CSAM CASA T IB = P PR = BH = R M AN = XFN = XPN = XKS = HSO = FFN = FIN = FM N = FHS = FSO = FHA = FSM = FSA = PFN = PEN = PHS = HSC = DSJ = AFN = AHS = ASO = EHS = ESC = EPS = EPC = PR M = JSA = G2 = 12 = CURVE CJ THE BOTA JLOAT CUEVI CF THE BOTA. FOE AIR DILUTING SAMPLE TC H2S ANALYSES CCEF. FOR THE CALIB. CUBVE CF THE ROTA. FOR SAMPLE CCEJ. JOR TEE CALIB. CUEVE CJ THE BOTA. FOB AIR DILUTING SAMPLE ECCM TEMEEEATUEE EEACIICN TEMEEEATUSE ATMOSPHERIC FBESSUBE EEESSDEE INSIDE EEACTCE EIE HEIGHT GA£ CCNSIANT K 0 KEF. E CI EUKS NAKE CF GASES REAE1NG CF EEAIING CF BEATING CF EEALING CF SCAIF SCAIE SCAIE SCALE FLHIDIZING NITROGEN ROTAMETER N2 EUBGING FEEELINE ROTAMETER H2S EOT A METEE SC2 ECIABETEE FICW EATE CJ JIUIDIZING NITBCGEN JLCH EATE CJ KITEOGEN PURGING MANOMETER JLOH BATE CF NITROGEN PUEGING CATALYST FEED LINE FLOW FATE CF H2S FLCH EATE CF SC2 FLOW EATE CF AIR DILUTING SAtELE TO H2S ANALYSES FLCK BATE CJ SAMELE FLOW EATE CF AIR DILUTING SABELE EFESSUBE IKSIEE FLUIDIZING N2 ROTAMETER EEESSUFE INSIDE 3 OTA METE E PUEGING FEEDLINE EBESSUBE INSIEE H2S BC1AMEIEE EEESSOEE INSIDE S02 BC1AMETEE DENSITY FACTOR, 20.69 =2 94.2*14.7/0.96724 MCLAE FLOW EATE CF NITROGEN MCLAE FLOW BATE CF H2S BCIAE FLOli EATE CF SC2 RIIIIVCLTS ,H2S , JIED VC1TS ,SC2 , J EED BIILIVCLTS ,H2S , PECDUCI VCITS ,S02 , PECDUCI EEESSUEE INSIDE BOTAMEIEB AIE JLCH EATJ - PRODUCT FLCK EATE CF SAMPLE TO H2S ANALYSER FLCH EATE CF SAMPLE TC H2S ANALYSER FOE AIB - PBODUCT FOB FOR CALIBRATION ANALYSIS 192 c c c c c c IMPLICIT EXTERNAL CCMKCK H DIMENSION DIMEtiSICN DIMENSION DIKEKSICN DIMENSION DIMENSION DIKE NSICN DIMENSION EIKE N SIC K FEAI*8(A-B,C-$) EAOX EHS(20),ESC(20),IRCOD EX(20) ,TY(20), DYF (20) DXX(20) ,DYY (20) ,DYYF ( F1 (20) ,F2(20) ,CPS (20) CSC(20),XS(20),PS (20) CFN (5) ,CLN (5) ,CMN (5) , CHSA(5) ,CSAM (5) ,CASA ( FHS(20),FSC(20) ,AFN (2 OMFNO(20) (2 0),EHS (5) ,BSO (5) , D 1 ( 20) , E2 (2 0) ,DWT(20),DE1(5),DE2(5),DP(5) 2 0),EPS (20) ,EPO (20),XP (2 0) ,PF(20) ,CFC(20),CPN(20) ,CN2(20) ,CHS (20) ,F2 (20),G2(20) CHSS (5) ,CHSG (5) ,CSOS (5) ,CSCG (5) 5),AN(5),FFN(20),FLN(20),FMN(20) 0) , AHS (20) , ASO (20) ,FSA (2 0) ,PEM (20) **»* BEADING CCEF. FECM ROTAMETEB CAIIEBA1IO N CUEVE REAE(S,100) SFN, (CFN (I),1=1,3) BEAD(5,10C) £LN, (CLN(I) ,1=1,3) R£AD(5,100) SMN, (CMN(I) ,1=1,3) BEAE(£,100) SHSS, (CHSS (I) ,1=1,3) EE AD (5 , 100) SHSG, (CESG (I) ,1=1,3) READ(£,10C) SSCS, (CSCS (I) ,1=1,3) BEAD (5, 100) SSOG, (CSCG (I) ,1=1,3) EEAD(£,100) SHSA, (CESA (I) ,1=1,3) BEAD (5,100) SSAM, (CSAM (I) ,1=1,3) BEAC(5,100) SASA, (CASA (I) ,1=1,3) **** WEITING CCEF. FECM ROTAMETER CAIIERATICN CURVE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WilTE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WRITE WHITE WRITE WRITE (6,1000 (6,1100 (6,130C (6,1400 (6,1300 (6,1100 (6,1300 (6,1200 (6,1300 (6,1200 (6,1300 (6,1200 (6,1300 (6,1200 (6,1300 (6,1200 (6,1300 (6,1200 (6,1300 (6,1200 (6, 1300 (6,1200 (6,1300 (6,1200 (6,1300 SFN, (CFN (I) ,1=1,3) SMK, (CBN (I) ,1=1,3) SHSS, (CHSS(I),1=1,3) SHSG, (CHSG(I) ,1=1,3) SSCS, (CSCS(I) ,1=1,3) SSCG, (CSCG(I) ,1=1,3) SHSA, (CHSA(I) ,1=1,3) SSA", (CSAM(I) ,1=1,3) SASA, (CASA(I),1=1,3) 1 9 3 WRITE (6, 1200) SLN,(CLN(I) ,1=1,3) WHITE (6, 1200) WBITE (6,1100) C c ft*** BEADING AND WRITING GENERAL OPERATING DATA C NCCDNI = 2 DO 97 KA=1,NCCUNT EEAE(5,200) I,TE,P,PB,EH,UKF WHITE (6,2000) WRITE (6,2100) T WRITE (6,2200) TR WRITE (6,2.300) P WHITE (6,2100) EE WRITE (6,2500) EH WEITE (6,2600) DBF C c ***** ANALYSING TEE DATA FCE EACH BUN C BEAE(5,30C) NE WRITE (6,3000) KB DO 50 1=1,NE BEAD (5,300) IRCCE (I) C c **** BEADING OPIEATING EATA FCE EACH BUN C READ (5,400) XFN,XLN,XBN,XH£,XSC,XP(I) ,ESA(I) ,XS(I) BEAE ( 5 , H O C ) EFN,EIN,EMN,PHS,PSC,EE (I) , EEM (I) ,PS (I) BEAD (5,4 0 C) EPS (I),EEC (I) ,F2 (I) EEAE(5,30C) IFHS,IFSC XL N =XLN/100.DO XBK =XKN/100.E0 XHS =XH£/1C0.E0 XSO =XSC/10C.E0 XP(I)=XE (IJ/100.E0 XFK =XFN/100.E0 XS(I)=X£ (I)/100.EC C C **** CALCULATING FEED FLCW BATES C CALL FLCW(XFN,PFN,T,20.69D0,CFN,FE) FF R(I)=F R CALL ELCK (XLN,ELN,T,20.69D0,CLN, FR) FLN(I)=JE CALL FLCW(XKN,EKK,T,20.69D0,CI!iN,FE) FBN(I)=FB FFN(I)=IFN(I)+JLN(I)+FBN(I) AFH(I)=JFK(I)/24 141.17E0 IF (IFES.G1. 1) GC TO 10 CAIL FLCW (XHS,PHS,T, 16.818D0,CHSG,FE) GO TC 20 10 CALL FLCW(XHS,PHS,T,16.818D0,CHSS,FB) 20 FHS(I)=FE 194 AHS(I)=FHS(I)/24141.17E0 IF (IFSC.GT. 1) GC 10 30 CALL FLCW (XSC,FSC,T,8. 6407D0,CSCG,FE) GO TO 40 30 CALL FLCW (X£C,PSC,1 ,8.8407D0,CSCS,FE) 40 FSC(I)=FE ASC(I)=FSC (I)/24 141.17D0 C c ***** CALCULATING FI ED COBECSITICN C TOTF = FFN(I) + (FHS (I)+FSO (I))*0.79 1667D0 TOTE = TCTF*TR*14.7EO/294.2DO/60.E0/PE VEL = TCTE/81.0732E0 UMFNC (I)=VEL/UBF TMCLA=(AFN(I)+AHS(I)+ASO(I))/10C.DG CN2 (1) = AFN (I)/TMCLA CHS (I)=AHS (IJ/TBCIA CSC(I)=ASC (I)/THCIA 50 CCNTINUE C C **** BEADING THE FARAMETEES FCE CALIBRATING H2S ANE C SC2 ANA1YSEES C REAE (5,300) NS BY (1) =0.0E0 DYY (1)=C.ODO DX(1) =O.0DC EXX(1)=C.0DC DC 56 1=2,NS READ(5,30C) IGH£,IGSC READ (5,400) XCN,X£B,XSA,XB,XHS,XSO REAE (5,400) FCN,ESB,FSA,PF.,PHS,ESC BEAD(5,400) EHS (I) , ESO (I) , G2 (I) XCK =XCN/100.DO XSB =XSH/100.D0 XR =XE/100.D0 XHS =XHS/100.D0 XSC =XEC/1C0.D0 c C **** CALCULATING THE VARIABLES FCE CURVE FITTING TO THE C **** CAIIEEATING DATA FOR H2S AND SC2 C CAIL FLCW (XCN,PCK,T,20.69D0,CFK,FE) FN=FR CALL ILCW(XS«,PSB,T,20.69D0,CSAB,FR) FS = FB DSF=20.C1E0*PSA/T DDF = DSQET (DSF) FA =XSA*EEF D1 (I) = (FS + FA)/FS AF =PH/24 1«1.17E0 CALL FLCW (XE,PR,1,20-01D0,CHSA,FE) D2 (I)=FE/G2 (I) IF (IGBS.G1.1) GC TO 51 CAU FLCii(XHS,FHS,T,16.818D0,CHSG,FR) GO TC 5 2 CALL FLCW(XHS,PHS,T,16.818DC,CHSS,FE) RHS=FE/24141.17EC IF (ICSC.GT. 1) GC TC £3 CALL FLCW (X SO,PSC,T,8.£407D0,CSCG,FE) GO TO 5 4 CALL FLCW (XSC,PSC,T,8.S407D0,CSCS,FE) BSC=FE/24 141. 17DC TMCL =(AF+EHS+RSC)/1.0E06 DY (I)= RH S/T MCL/D 1 (I)/E2 (I) EYY(I)=ESC/T«CL/D1 (I) DX (I) = EHS(I) VV = C.CC0206EC»EY (I)*D2 (I) DXX(I)=EEXF(VV)*ESC(I)*1000.0DO CONTINUE N=KS M=3 NI=10 DEES=C.00001EO DO 60 0=1,3 DP (0)=O.ODO WEITE(6,4000) CALL DLQF(EX,DY,EYF,EKI,DE1,DE2,DF,0.ODO,N,M,NI,ND,DEPS,DAUX) IF (ND.NE.1) GC TC 71 DO 65 0=1,; BHS(J)=EE (J) WEITE (6,4 IOC) DC 7 0 0=1, N WEITE (6,4200) DX (0) , EY (0) ,DYF (0) «=3 NI=10 DEFS=0.C0001E0 DO 80 0=1,3 DP(0)=0.ODO WEITE (6,4000) CALL ELQF (EXX,EYY,DYYF,DWT,DE1,EE2,DP,0.ODO,N,M,NI,ND,DEPS,DAUX) IF (BE.NE. 1) GO TO 91 DO 65 0=1,3 BSC(0) = DF (0) WEITE (6 ,4300) DC 9 0 0= 1, N WEITE (6,4 2 00) DXX (0) ,DYY (0) ,DYYF(0) **** PRINTING IEEE COMPOSITION WRITE (6,3100) WEITE (6,3200) WRITE (6,3300) WRITE (6,3400) WRITE (6,3500) DO 9 5 1=1, NE WRITE (6,360 0) IECCD(I) ,FFN (I),FHS (I),F£C(I),AFN(I),AHS(I) ,ASO(I), 196 1N2(I) ,CHS (I) ,CSC (I) ,DMfNO (I) WRITE(6,3800) WRITE(6,3900) (E1 (I),I=2,N) WRITE(6,3900) (E2 (I) ,1=2,N) C C **** CAICUIATING PRODUCT CCKFCSITICN C WRITE (6,3100) WRITE (6,500C) WRITE (6,5100) WRITE(6,5200) DO 96 1=1,HR XT =X£(I) PI = ES(I) CALL FLCK (XT,PT,I,20.01D0,CHSA,F£) P2(I)=FB/F2(I) XE =XE(I) PR = EE(I) CALL FLCW (XR,PR,T,20.69D0,CSAM,FE) BE =Ffi DSF =20.01E0*EEfl(I)/T DDF =C£CBT (ESF) RS =F£A(I)*EEF PI (I)= (EE + E £)/EE S =EE£(I) SS = EH£ (1)+S*EHS(2)+S*S*EHS(3) CPS(I)=££*E1(I)*P2(I)/10000.DO V =0.C00206DO»£S*P2(I) C =DEXF (V)*FEC(I)*1000. ODO W =E£C (1)+Q*ESC(2)+C*Q*ESO(3) CPC(I)=W*F1(I)/10000.DC CN2(I)=100.EO-CES-I)-CEO(I) QV =AFH (I)/CN211) QS =£V*CFS(I) PH2S = (1.0DO-Q£/AHS(I) ) *1OO.D0 QT =CV*CFC(I) PSC2 = (1.0DC-QT/AS0(I)) * 100.DO TS= (1- (QS + CT)/(AHS(I)+ASO(I)))*100.D0 WRITE(6, 53 00) IRCCD(I) ,CN2(I) ,CES (I),CEC (I),PH2S,PS02,TS 96 CONTINUE WRITE (6,5400) WiilTE (6,5500) (£1(1) ,1= 1, NE) WRITE (6,5500) (E2 (I),1=1,NR) WE IT F (6,4000) 97 CONTINUE GC TO S9 91 WRITE (6,56C0) 100 FORMAT (6X,A4,3D1C5) 200 FCEMAT(8E10.2) 300 FOEMAT(5X,513) 400 FOEMAT(8E10.4) 1000 FOEMAT (»1«,//////////) 1100 FOEMAT(33X,64 (1H *)) 197 1 2 0 0 F C B M A T ( 3 3 X , » * ' , 2 X , A 4 , 1 0 X , 3 D 1 5 . 5 , 1 X , ' * ' ) 1 3 0 0 F O B M A T ( 3 3 X , • * ' # 6 2 X , ' * 1 ) 1 4 0 0 F O E M A T ( 3 3 X , • * • , 9 X , ' C O E F C F C A I I E E A T I C N C U E V E F O R R C T A M E T E E 1 , 9 2 0 0 0 F O R M A T ( / / / / / ) 2 1 0 0 F O R M A T ( 4 5 X , ' B O O M 1EBPEflATUEE = ' , F 1 0 . 2 , / ) 2 2 0 0 F O R M A T ( 4 5 X , ' E E A C T I C N T E M P E E A T U E E = ' , F 1 0 . 2 , / ) 2 3 0 0 F O B B A T ( 4 5 X , ' A I B C S P H E B I C F E E S S U B E = ' , F 1 0 . 2 , / ) 2 4 0 0 F O R M A T ( 4 5 X , « F R E S S C R E I N S I E E E E A C T C E = ' , F 1 0 . 2 , / ) 2 5 0 0 F O B B A T ( 4 5 X , • E E C H E I G H T = ' , F 1 0 . 2 , / ) 2 6 0 0 F O E M A T ( 4 5 X , ' K I N I M U M F L U I D I Z I N G V E 1 C C I T Y = • , F 1 0 . 2 , / ) 3 0 0 0 F O E M A T ( 4 5 X , • N U M E E E C F R U N S = ' , I 3 , / ) 3 1 0 0 F O E M A T ( ' 1 • , / / / / / / / / / / ) 3 2 0 0 F O E M A T ( 5 8 X , • E E E E C C N D I T I O N S ' , / / / / / ) 3300 F O E M A T ( 9 X , " E O N C C D E • , 6 X , ' V 0 1 U B E 1 E I C FLOW E A T E » , 1 1 X , • M O L A E FLOU B A T I E ' , 1 8 X , ' C O M P O S I T I O N • , / ) 3 4 0 0 F O E M A T ( 2 4 X , ' ( M L / B I N ; 7 6 O M M , 2 1 C ) ' , 1 5 X , • ( G B O L E / M I S ) • , 2 4 X , ' % ' , / ) 3 5 0 0 F O B B A T ( 2 3 X , 3 ( 2 H N 2 , 7 X , 3 K H 2 S , 7 X . 3 H S 0 2 , e X ) , ' N U M F ' , / / / ) 3 6 0 0 F C E B A T ( 1 0 X , 1 3 , 4 X , 1 C F 1 0 . 4 , / ) 3 8 0 0 F C B M A T ( / / / / / , 1 6 X , " D I L U T I O N F A C T C B S F C E F E E D ' , / / / ) 3 9 0 0 F O R M A T ( / / / / , 1 6 X , 1 C F 1 C . 2 , / / , 1 6 X , 1 0 F 1 0 . 2 ) 4 0 0 0 F O E M A T ( ' 1 • , / / ) 4 1 0 0 F C B M A T ( 1 4 X , ' X ' , 2 O X , • Y » , 2 0 X , * Y F » ) 4 2 0 0 F O E M A T ( 8 X , F 1 0 . 4 , 1 1 X , F 1 0 . 4 , 1 1 X , F 1 0 . 4 , / / ) 4 3 0 0 F C E B A T ( 1 4 X , ' X X ' , 1 S X , ' Y Y * , 1 9 X , ' Y Y F ' , / / ) 5 0 0 0 F O E M A T ( 4 3 X , ' P E O D U C T C O M P O S I T I O N AND C C N V E R S I O N E F F I C I E N C Y • , / / / / / ) 5 1 0 0 F O R M A T ( 2 2 X , ' E U N C C D E ' , 2 5 X , 1 C O M P O S I T I O N (%) ' , 2 5 X , ' P E R C E N T C C N V E R S I O N •',/) 5 2 0 0 F O E M A I ( 4 0 X , • N 2 ' , 1 9 X , ' H 2 S ' , 1 7 X , ' S 0 2 ' , 1 2 X , ' 3 . H 2 S ' , 6 X , ' % S 0 2 ' , 7 X , ' % 1 S ' , V / / ) 5 3 0 0 F C E M A T ( 2 4 X , I 3 , 9 X , F 1 0 . 5 , 1 0 X , F 1 0 . £ , 1 0 X , F 1 0 . 5 , 5 X , 3 F 1 0 . 3 , / ) 5 4 0 0 F O E M A T ( / / / / / , 2 0 X , ' E I I U T I O N F A C I C E S F C E P B O D D C T ' , / / / ) 5 5 0 0 F O E M A T ( 2 0 X , 1 C F 1 0 . 2 , / / ) 5 6 0 0 F O E M A T ( / / / / / / / / / , 1 0 X , ' U N A B I E T C F I T A C U E V E * ) 9 9 S T CP E N D 198 FUNCTION CJSUI (DP,ED,CX,L) IMPLICIT FIAI*8 (A-H,C-$) DIKENSICN DE (1) ,11 ( 1) CCBKGK B DD(1) = 1-0E0 EAUX =DE ( 1) DO 10 J=2,K DD (J)=DD (J- 1)*DX 10 DA OX =EADX + EF (J)*ED (J) BETUEK ENE c * C * SUEBCCTINE 10 CALCULATE FICK EATE * C * * SUEROUTINE FLO»(X,FF,TF,R,CF,FB) IMELICII EEAI*8 (A-H,C-$) DIME S SIC N CF (5) EN =CF (1)+ X*CF (2)+X*X*CF (3) ESF =E»EF/TF DDF =D£CET(DSF) FE =EN*EEF*1000.D0 HETUEN END 199 **************************************************************** * * * C3EF OF CALIBRATION CURVE FOR ROTAMETER * * * * * * * * * * * ^ * * t * ^ ^ ^ ^ ^ 4 i t ********************************** ********** * * * * * * * * * * * * *> * * 0.87756E*00 * 0.2 1290E*00 * * 0.29168E*00 * 0.13610E*00 * 0.19225E*00 * * 0.10939E+00 * * -0.27647E+00 * * -0.90123E+00 * * -0.56597E+02 * 0.21290E*00 * ***************************************** * * * * * * * * t t m * m m m C F N CMN C H S S C H S G C S O S C S 3 G C H S A C S A M C A S A C L N 0. 18104E+00 •0. 59100E-02 •0.27480E-01 -0.66000E-02 •0. 15780E-01 -0. 58100E-02 0. 27770E-01 0. 45310E-01 -0. 66355E*01 -0. 59130E-02 0.76986E*02 0.12439EO0 0.30538Et-30 0.80270E-01 0.46763EO0 0.13618E*00 0.20717EfJl 0.45482Ef31 0.14204EO3 0.12439E*30 ROOM TEMPERATURE = 294.33 REACTION TEMPERATURE = 553.20 ATMOSPHERIC PRESSURE = 14.72 PRESSURE INSIDE REACTOR = 14.72 BED HEIGHT = 10.00 MINIMUM FLJIDIZING VELOCITY = 1.27 NUMBER Of RJNS = 6 INTERMEDIATE ESTIMATES OF PARAMETERS, SUM OF SQJARES 0.0 0.71731E-02 0.71731E-02 0.0 0.?6467 0. 26467 FINAL ESTIMATES OF PARAMETERS 0.71731E-02 0.26467 SUM OF SQUARES X 0.0 6.4000 8.1000 15.2000 25.6000 3.3518 0.0 -0.31354F-02 -0.31354E-02 -0.31354E-02 Y 0.0 1.6010 2.1260 2.6839 3.7456 63.099 3.3518 3.3518 0.0072 I. 5726 1.9453 3.3058 4.7279 23.5000 5.8978 4.4954 NO OF ITERATI3NS= 3 ro o o INTERMEDIATE ESTIMATES OF PARAMETERS, SUM OF SQUARES 0.0 0.0 0.0 2208.6 0,97211 0.73506 -0.23828E-03 4.5382 0.97211 0.23506 -0.23828E-03 4.5382 FINAL ESTIMATES OF PARAMETERS 0.97211 0.73506 SUM OF SQUARES 4.5382 XX 0.0 30.0989 51.8306 70.3951 105.8199 172.0743 -0.23828E-03 YY 0.0 9.4159 12.7516 16.0983 22.7480 34.6872 WF 0.9721 7.8314 12.5155 16.3386 23. 1783 34.3651 NO OF ITERATIONS RUN CODE VOLUMETRIC FLOW RATE (ML/MIN;760MM,21C> N2 H2S S02 20 33600.7907 61.6527 31.3612 21 33346.3513 118.0768 58.3607 22 33346.3513 188.6976 94.1811 23 33346.3513 273.5151 138.0417 24 32314.0338 321.2476 160.7502 25 32314.0338 151.6127 75.6091 FEEO CONOITIQNS M3LAH FLOW RAIE COMPOSITION (1M0LE/MINJ % N2 H2S S02 N2 H2S S02 NUMF 1.3918 0.0026 0.0013 99.7239 0.1830 0.0931 10.2357 1.3813 0.0049 0.0024 99.4737 0.3522 0.1741 10.1784 1.3813 0.0078 0.0039 99.1588 0.5611 0.2801 10.2040 I.3813 0.0113 0.0057 98.7809 0.8102 0.4089 10.2350 I. 3385 0.0133 0.0067 93.5303 0.9795 0.4902 9.9382 I . 3385 0.0063 0.0031 99.3017 0.4659 0.2323 9.8769 ro o PRODUCT COMP3 SIT13M 4ND CONVERSION EFFICIENCY RUN CODE 20 21 22 23 24 25 N2 99.98733 99.93415 99.97944 99.97897 99.98213 99.98039 3 S I T I O N U ) PERCENT CONVERSION r|2S S02 XH2S «S02 XTS 0.31003 0.30264 94.530 97.173 95.421 0.01283 0.30302 96.377 98.275 97.005 3.01717 0.30339 96.965 98.800 97.576 3.31553 0.30550 98.106 98.671 98.296 0.01260 0.30527 98.733 98.940 98.802 3.01608 0.30353 96.571 98.492 97.210 ro o co t ROOM TEMPERATURE = 293.70 REACT I ON TEMPERATURE = 573.20 ATMOSPHERIC PRESSURE = 14.55 PRESSURE INSIDE REACTOR = 14.55 BED HEIGHT = 10.00 MINIMUM FLJIDIZING VELOCITY = 1.25 NUMBER OF RJNS = 6 INTERMEDIATE ESTIMATES OF PARAMETERS, SUM OF SQUARES n 0 0.0 0.0 46.726 0 42801E-0L i.0880 -0.47432E-01 0.23487E-0 SltzSSlli-Ol 1 .0880 -0.47432E-31 0.23487E-01 FINAL ESTIMATES OF PARAMETERS 0.42301E-01 1.0880 -0.474326-0L NO OF ITERATIDNS SUM OF SQUARES 0.23487E-01 X Y 0.0 o-o 1.4000 1.6500 2.3000 3.8000 6.1000 I.4979 1.7399 2.3668 3.3747 4.9461 YF 0.0428 1. 4730 1.7038 2.29*2 3.4922 4.9145 INTERMEDIATE ESTIMATES O F PARAMETERS, SUM 3 F SQJARES 0.0 0.31510 0.31510 0.0 0.0 1*59.2 0.395*3E-0l -0.60*99E-05 0.6*96* 0.39543E-01 -0.60*99E-05 • 0.6496* FINAL ESTIMATES OF PARAMETERS 0.31510 0.39543E-01 -0.60499E-05 SUM OF SQUARES 0.64964 XX 0.0 185.5068 220.7002 321.3862 493.0634 828.3754 YY 0.0 7.82*1 9.0883 12.3627 17.8255 29.0651 YYF 0.3151 7. **2* 8.7*76 12.3988 18.3*16 28.9232 NO OF I TERATl ONS= 3 ro o FEED CONDITIONS RUN CODE VOLUMETRIC FLOW RATE (ML/MIN;760MM,21C» N2 H2S S02 53 31021.6362 19.3795 11.4183 54 30608.8548 38.6731 19.3360 55 30608.8548 61.5075 31.2873 56 30513.3511 87.8827 43.2904 57 30465.4870 117.7988 58.2233 58 30561.1402 188.2533 93.9593 MOLAR FLOW RATE COMPOSITION ( GMOLE/MIN) % N2 H2S SO 2 N2 H2S S02 NUMF I.2853 0.0008 0.0005 99.9003 0.0624 0.0368 10.0504 1.2679 0.0016 0.0008 99.8108 0.1261 0.0631 9.9238 1.2679 0.0025 0.0013 99.6978 0.2003 0.1019 9.9327 1.2640 3.0036 0.0018 99.5720 0.2868 0.1413 9.9116 1.2620 0.0049 0.0024 99.4255 0.3844 0. 1900 9.9076 1.2659 0.0078 0.0039 99.0850 0.6104 0.3046 9.9658 ro o PRODUCT COMPOSITION AND CONVERSION EFFICIENCY RUN CODE COMPOSITION!*) PERCENT CONVERSION N2 H2S S02 XH2S *S02 XTS 53 99.99423 0.30539 0.30038 91.374 98.954 94.184 54 99.99150 3.00780 0.33060 93.827 99.052 95.569 55 99.98093 3.01758 0.00149 91.249 98.544 93.709 56 99.98266 0.01605 0.30129 94.425 99.090 95.965 57 99.97762 0.01988 0.30250 94.857 98.691 96.125 58 99.97322 0.02245 0.30433 96.355 98.592 97.099 ro o CO 209 APPENDIX D PURGING-TIME OF REACTOR SYSTEM The p r e s e n c e o f oxygen i n the r e a c t o r system c o u l d a d v e r s e l y a f f e c t t he a c t i v i t y o f the c a t a l y s t a t h i g h t e m p e r a t u r e s . In a d d i t i o n , s i n c e i t d i d not c o n s t i t u t e p a r t o f the f e e d gas, i t was a b s o l u t e l y n e c e s s a r y t o purge i t from the r e a c t o r as w e l l as the n i t r o g e n r e c y c l e l o o p . The p u r g i n g - t i m e , T, f o r a system o f known volume, V, i s g i v e n by [77] x = 2.303 V l o g S _ Q G f where C^ and C^ denote the i n i t i a l and f i n a l c o n c e n t r a t i o n o f oxygen.Q denotes t h e purge r a t e . I t i s easy t o show t h a t the oxygen c o n c e n t r a t i o n i s reduced from 21% t o 1 ppb w i t h i n a p e r i o d o f about 6 hrs a t a purge r a t e o f 5 1/min; the volume o f t h e system was a p p r o x i m a t e l y 90 1. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0058805/manifest

Comment

Related Items