UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Pyrolysis of oil shale in a spouted bed pyrolyser 1987

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1987_A7 T35.pdf [ 8.03MB ]
Metadata
JSON: 1.0058776.json
JSON-LD: 1.0058776+ld.json
RDF/XML (Pretty): 1.0058776.xml
RDF/JSON: 1.0058776+rdf.json
Turtle: 1.0058776+rdf-turtle.txt
N-Triples: 1.0058776+rdf-ntriples.txt
Citation
1.0058776.ris

Full Text

PYROLYSIS OF OIL SHALE IN A SPOUTED BED PYROLYSER by TINA SUI-MAN TAM B.A.Sc, The University of Toronto, 1978 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF CHEMICAL ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 1987 © TINA SUI-MAN TAM, 1987 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of C/)<?/rv' C ou2s QJ?-t / The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date DE-6(3/81) A B S T R A C T Pyrolysis of a New Brunswick o i l shale has been studied in a 12.8cm diameter spouted bed reactor. The aim of the project was to study the effect of pyrolysis temperature, shale p a r t i c l e size , feed rate and bed material on o i l y i e l d . Gas and spent shale y i e l d s were also determined. Shale of di f f e r e n t p a r t i c l e size ranging from 0.5mm to 4mm was studied using an e l e c t r i c a l l y heated reactor containing sand or spent shale which was spouted with nitrogen or nitrogen/carbon dioxide mixtures. For a given p a r t i c l e size and feed rate, there i s a maximum in o i l y i e l d with temperature. For p a r t i c l e s of 1-2mm at a feed rate of about 1.4kg/hr, the optimum temperature i s at 475°C with an o i l y i e l d of 7.1% which represents 89.3% of the modified Fischer Assay y i e l d . For the 2-4mm and the same feed rate, the optimum temperature i s 505°C with an o i l y i e l d equal to 7.4% which i s 94.3% of the modified Fischer Assay value. At a fixed temperature of about 500°C, the o i l y i e l d increases with increasing p a r t i c l e s i z e . This trend i s in agreement with the Fischer Assay values which showed o i l y i e l d s increasing from 5.2% to about 8% as the p a r t i c l e size was increased. In the spouted bed, the o i l y i e l d decreases as the o i l shale feed rate increases at a given temperature. The use of spent shales as the spouting solids in the bed also has a negative e f f e c t on o i l y i e l d . The gas yi e l d s which were low (less than 2.1% ) and d i f f i c u l t to measure do not seem to be affected by i i p a r t i c l e s i z e s , feed rate and bed m a t e r i a l . Hydrogen, methane and other hydrocarbons are produced i n very small amounts. C0 2 and CO are not r e l e a s e d i n measurable y i e l d i n the experiments. The trend of the spent sha l e y i e l d has not been s u c c e s s f u l l y understood due to the u n r e l i a b i l i t y of the p a r t i c l e c o l l e c t i o n r e s u l t s . A t t r i t i o n of the spent shale appears to be a s e r i o u s problem. R e s u l t s of the experiments are r a t i o n a l i z e d with the a i d of a k i n e t i c model in which the kerogen i n the o i l shale decomposes to y i e l d a bitumen and other by products and the bitumen undergoes f u r t h e r decomposition i n t o o i l . The spouted bed i s t r e a t e d as a backmixed r e a c t o r with respect to the s o l i d s . A heat t r a n s f e r model i s used to p r e d i c t the temperature r i s e of the shale e n t e r i n g the p y r o l y z e r . i i i TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES v i i LIST OF FIGURES ix ACKNOWLEDGEMENT X 1. INTRODUCTION 1 1.1 Objective of the Thesis 2 2. BACKGROUND 3 2.1 The Properties of Oil Shale 3 2.2 The Basic Principle of Oil Shale Pyrolysis 8 2.3 Oil Shale Pyrolysis Processes 8 2.4 Parameters Affecting Oil Shale Pyrolysis 15 2.5 Heat Transfer in Spouted Beds 23 3. KINETICS OF OIL SHALE PYROLYSIS 32 3.1 Literature Review of the Kinetics of Oil 32 Shale Pyrolysis 3.2 Kinetic-Model 38 4. EXPERIMENTAL EQUIPMENT AND PROCEDURE 47 4.1 Pyrolysis Apparatus 47 4.2 Properties of Oil Shale 54 i v 4.3 General Procedure 54 4.4 Detailed Operating Procedure 58 4.5 Oil Collection 60 4.6 Gas Analysis 61 4.7 Spent Shale Determination and Analysis 62 5. RESULTS AND DISCUSSION 63 5.1 General Considerations 63 5.2 Effect of Temperature on Oil Yield and 65 Composition 5.3 Effect of Oil Shale Particle Size on Oil 73 Yield and Composition 5.4 Effect of Oil Shale Feed Rate on O i l Yield 78 and Composition 5.5 Effect of Bed Material on Oil Yield 83 5.6 Effect of Pyrolyzing Gas on Oil Yield 90 5.7 Gas Yields 90 5.8 Spent Shale Yields 95 6. KINETIC MODEL 100 6.1 General Discussion 100 6.2 The Effect of Rate Constant on Oil Yield 104 6.3 The Effect of Oil Shale Feed Rate on Oil 107 Yield 7. CONCLUSIONS 109 v 8. RECOMMENDATIONS FOR FUTURE WORK 111 NOMENCLATURE 113 REFERENCES 116 APPENDIX A) Temperature History Model 121 APPENDIX B) Sample Calculations B.1 Isokinetic Gas Sampling Calculation 129 B. 2 Product Yield Calculations 130 APPENDIX C) Computer Programs C. 1 Profile 132 C.2 Entrance 149 C.3 Calculate 154 C.4 Model 158 C.5 Jac 162 C.6 Jac (Printout) 166 v i L I S T OF TABLES Table 1 Inorganic Minerals Present in Typical 4 Medium Grade O i l Shale Table 2 Chemical Composition of the Inorganic 5 Portion of O i l Shale Table 3 Modified Fischer Assay for Typical O i l 6 Shale Samples Table 4 Conversion of Kerogen by the Fischer 7 Assay Table 5 Effect of Temperature on O i l Y i e l d 18 Table 6 Effect of P a r t i c l e Size on O i l Y i e l d 21 Table 7 P a r t i c l e Temperature History of the O i l 29 Shales (After One Pass) Table 8 P a r t i c l e Temperature History of the O i l 30 Shales (After Two Passes) Table 9 Design C h a r a c t e r i s t i c s of Spouted Bed 48 Pyrolyzer System Table 10 Proximate and Ultimate Analysis of Blend 55 of O i l Shale A Table 11 Analysis of O i l Shale Ash and Carbon 56 Table 12 Modified Fischer Assay of O i l Shales 57 Table 13 Experimental Conditions for Each Run 64 Table 14 Effect of Temperature on O i l Yiel d 67 Table 15 • Effect of Temperature on O i l Y i e l d and 72 Composition Table 16 Effect of P a r t i c l e Size on O i l Yi e l d 74 v i i Table 17 Effect of P a r t i c l e Size on O i l Yield and 77 Composition Table 18 Effect of Feedrate on O i l Y i e l d 79 (Unsteady Height Expt.) Table 19 Effect of Feedrate on O i l Y i e l d 80 (Unsteady Height Expt.) Table 20 Effect of Feedrate on O i l Y i e l d (Steady 84 Height Expt.) Table 21 Effect of Feedrate on O i l Yield and 86 Composition Table 22 Effect of Bed Material on O i l Yield 88 Table 23 Effect of Pyrolyzing Gas Composition 91 Table 24 Gas Yields 93 Table 25 Spent Shale Properties and Y i e l d 96 Table 26 Spent Shale Yields 98 Table 27 Effect of Temperature on O i l Yie l d (Predicted vs Experimental Values) 102 Table 28 Effect of Feed Rate on O i l Y i e l d (Predicted vs Experimental Values) 108 Table 29 Coordinates of the Tridiagonal Matrix 126 Table 30 Correlations used for estimation of the 127 Hydrodynamic Properties for the Spouted Bed v i i i L I S T OF FIGURES Figure 1 Effect of Pressure on O i l Y i e l d Figure 2 Effect of Retorting Temperature on O i l Yield Figure 3 Effect of P a r t i c l e Size on Tar Y i e l d Figure 4 Schematic Diagram for Spouted Bed Figure 5 A Schematic Diagram for the Experimental Apparatus Figure 6 O i l Yield Versus Temperature Plot (d =1-2mm) P Figure 7 O i l Yie l d Versus Temperature Plot (dp=2-4mm) % Fischer Assay Vs Temperature Plot O i l Y i e l d Vs P a r t i c l e Size Plot O i l Yield Vs Feedrate Plot (d =1-2mm) P O i l Y i e l d Vs Feedrate Plot (dp=2-4mm) O i l Y i e l d Vs Feedrate Plot (Steady Height Expt.) O i l Y i e l d Vs Spent Shale in Bed Hydrogen Gas Yi e l d Vs Temperature O i l Y i e l d vs Temperature Plot (Predicted vs Experimental values) Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 16 20 22 25 50 68 69 71 75 81 82 85 89 94 1 03 Figure 16 C R, Cg, C A and O i l Y i e l d vs Time Plot 105 i x ACKNOWLEDGEMENT I wish to thank Dr. A.P. Watkinson and Dr. J . Lim, under whose supervision and guidance t h i s research work was conducted, for their advice and encouragement in a l l stages of t h i s work. I am also grateful to Dr. B. Bowen for his advice on the mathematical modelling; to Dr. G.K. Khoe for his assistance in the modifications to the apparatus and the carry out of some of the experimental runs; and to Dr. K.C. Teo for his help in doing the gas samples analysis. In addition, I wish to thank Mr. Michael Standbrook for his assistance in operating the experimental apparatus. F i n a l l y , my appreciation to the s t a f f s of the Chemical Engineering Department workshop and stores for the i r continuing assistance through t h i s work. X 1 1. INTRODUCTION O i l shales are widely d i s t r i b u t e d throughout the world with known deposits in every continent. The vast majority of known o i l shale resources are found in United States (75% of the estimated world recoverable o i l reserves), with other major deposits in China (about 11% of the estimated world reserves) and Canada (about 7% of estimated world reserves)' ' 1 . After the discovery of crude o i l and petroleum, the o i l shale industry which had previously become established could not compete. At present, o i l shale i s exploited in only two countries - the USSR and China. Synthetic crude o i l can be obtained from o i l shale. The organic matter in o i l shale i s composed of about 10% bitumen, and about 90% kerogen. Both are thermally unstable, and with the application of heat (250°C or greater), thermally decompose to form gaseous and l i q u i d products that can be refined to synthetic crude. Therefore, many studies have been made of o i l shale r e t o r t i n g . For the Western US shales, a high l e v e l of conversion can be achieved by a simple thermal r e t o r t i n g procedure, whereas for the Eastern US shales, rapid r e t o r t i n g or the use of hydrogen as a retorting gas i s employed to achieve comparable organic matter recovery. By contrast, l i t t l e attention has been paid to o i l shales in Canada. Only a few research studies have been done on the shales from New Brunswick, Ontario, Quebec, Newfoundland and Nova Scotia. Since o i l shale is one of the 2 p r o m i s i n g a l t e r n a t e e n e r g y r e s o u r c e s i n p a r t s of C a n a d a , g i v e n t h e l e v e l o f r e s e r v e s , i t i s e s s e n t i a l t o i n v e s t i g a t e t h o s e p a r a m e t e r s t h a t w i l l i n f l u e n c e t h e o v e r a l l y i e l d o f p r o d u c t s d e r i v e d f r o m o i l s h a l e r e t o r t i n g , a n d w h i c h a f f e c t t h e d i s t r i b u t i o n o f p r o d u c t s among g a s e s , l i g h t o i l s a n d h e a v y o i l s . I n t h i s r e s e a r c h , a s p o u t e d b e d r e a c t o r t h a t was c o n s t r u c t e d f o r c o a l p y r o l y s i s * 2 > was u s e d t o s t u d y t h e p y r o l y s i s o f New B r u n s w i c k o i l s h a l e . 1 . 1 . O b j e c t i v e o f t h e T h e s i s The o b j e c t o f t h e s t u d y i s t o i n v e s t i g a t e t h e e f f e c t o f p y r o l y s i s t e m p e r a t u r e , s h a l e p a r t i c l e s i z e , s h a l e f e e d r a t e and bed c o m p o s i t i o n on o i l , g a s a n d s p e n t s h a l e y i e l d f r o m A l b e r t F o r m a t i o n New B r u n s w i c k o i l s h a l e i n a s p o u t e d b e d p y r o l y s e r . The s h a l e i s p y r o l y s e d i n e i t h e r N 2 - C 0 2 m i x t u r e s o r N 2 , a n d i n b e d s o f e i t h e r i n e r t s i l i c a ( O t t a w a s a n d ) o r s p e n t s h a l e . R e s u l t s a r e c o m p a r e d w i t h p r e d i c t i o n s o f t h e F i s c h e r A s s a y , w h i c h i s a s t a n d a r d i z e d t e s t f o r p o t e n t i a l o i l y i e l d . * * The F i s c h e r A s s a y m ethod i s u s e d f o r d e t e r m i n i n g t h e q u a n t i t y o f r e c o v e r a b l e l i q u i d o i l and o t h e r p r o d u c t s f r o m o i l s h a l e . A 100 gm s a m p l e o f f i n e l y c r u s h e d o i l s h a l e i s h e a t e d a t a r a t e o f 12°C. p e r min t o a f i n a l t e m p e r a t u r e o f 500°C and h e l d f o r an a d d i t i o n a l 70 m i n u t e s a t 500°C i n a s e a l e d a l u m i n u m r e t o r t u n d e r c o n t r o l l e d c o n d i t i o n s . As k e r o g e n i s p y r o l y s e d , t h e g a s e o u s and l i q u i d p r o d u c t s e v o l v e d a r e c o l l e c t e d and m e a s u r e d u s i n g s t a n d a r d i z e d e q u i p m e n t . 2. BACKGROUND 2.1 The P r o p e r t i e s o f O i l S h a l e O i l s h a l e s a r e g e o l o g i c a l l y c l a s s i f i e d a s m a r l s t o n e s b e c a u s e o f t h e i r l a r g e p e r c e n t a g e o f c a r b o n a t e s . A v e r a g e s h a l e s a r e composed o f a b o u t 8 6 % m i n e r a l a n d 14% o r g a n i c m a t t e r . T a b l e 1 shows t h e i n o r g a n i c m i n e r a l s p r e s e n t i n a t y p i c a l medium g r a d e o i l s h a l e a n d T a b l e 2 shows t h e c h e m i c a l c o m p o s i t i o n o f t h e i n o r g a n i c p o r t i o n s o f o i l s h a l e . The o r g a n i c m a t t e r i s p r e s e n t i n t h e o i l s h a l e a s a r e s i n o u s s o l i d , n o t as an o i l y l i q u i d . I t i s composed o f a b o u t 10% b i t u m e n a n d 90% k e r o g e n . The b i t u m e n i s a h e t e r o a t o m i c p o l y m e r s o l u b l e i n many o r g a n i c s o l v e n t s , w h e r e a s t h e k e r o g e n i s a h e t e r o a t o m i c p o l y m e r h a v i n g a m o l e c u l a r w e i g h t o f g r e a t e r t h a n 3000 a n d i s i n s o l u b l e i n most o r g a n i c s o l v e n t s . To t h e u n a i d e d e y e , k e r o g e n a p p e a r s b l a c k i n c o l o u r . Under t h e m i c r o s c o p e , t h i n s e c t i o n s o f k e r o g e n a p p e a r y e l l o w i n c o l o u r w i t h a m i n o r p o r t i o n a p p e a r i n g brown o r b l a c k . I t h a s no w e l l d e s i g n a t e d s t r u c t u r e , a p p e a r i n g a s s t r i n g e r s , m a s s e s a n d i r r e g u l a r g r a n u l e s a l l i n t e r m i x e d w i t h t h e i n o r g a n i c m a t e r i a l s i n t h e r o c k . The k e r o g e n s u b u n i t s a r e c r o s s - l i n k e d t o one a n o t h e r by o x y g e n a n d s u l f u r . Upon a p p l i c a t i o n o f h e a t , b o t h k e r o g e n and b i t u m e n decompose t o f o r m g a s e o u s a n d l i q u i d p r o d u c t s . T a b l e 3 shows a m o d i f i e d F i s c h e r a s s a y f o r t y p i c a l o i l s h a l e s a m p l e s . T a b l e 4 shows t h e c o n v e r s i o n o f k e r o g e n by F i s c h e r a s s a y . TABLE 1: Inorganic Minera ls Present i n Typica l Medium Grade Colorado Oi1 Shale M i n e r a l Formula Wt % Dolomite (CaMg)CQ 3 33 C a l c i t e CaCOj 2 0 P l a g i o c l a s e N a A l S i i O i and C a A l i S i z O i 12 I l l i t e K j 0 . 3 A l j 0 j . 6 S i 0 2 . 2 H z 0 11 Q u a r t z S i O i 10 A n a l c i t e NaA1Si;0 $.H20 7 O r t h o c l a s e K A l S i i O . 4 I r o n Fe 2 P y r i t e (or m a r c a s i t e ) F e S i 1 T o t a l 1 0 0 TABLE 2: Chemical Composition of the I n o r g a n i c P o r t i o n of C o l o r a d o O i l S h a l e Chemical Const i tuent S i 0 z,percent Al 2 0 3 CaO MgO SO 3 Na20 KzO Very Low Grade Shale 40. 9 4 . 3 9.4 1 1 .0 5.4 0. 1 1 .8 3.4 Med i um Grade Shale 26 . 1 2.6 6.5 17.5 5.3 0.6 2.6 1 .0 High Grade Shale 25 . 5 2.9 6.3 14.2 5.6 1 . 2 2.7 1 .9 Very High Grade Shale 26.4 3. 1 7.0 8.3 4 . 5 1 .4 1 .9 1 .0 TABLE 3: Modif ied F ischer Assay fo r Typ ica l Colorado O i l Shale Samples O i l , gal/ton O i l , wt % Water, wt % Spent Shale, wt % Gas, wt % Loss, wt % For Very Low Grade Shale 10.5 4.0 0.5 94.4 1 . 1 For Medium Grade Shale 26 . 7 10.4 1 .4 85.7 2.0 0.5 For High Grade Shale 36.3 13.8 1 . 5 82. 1 2 . 2 0.4 For Very High Grade Shale 61.8 23 .6 1 . 1 70.4 4.2 0.7 TABLE 4 : Conversion of Keroqen by the Fischer Assay Grade of Shale, g a l / t o n C o n v e r s i o n of Kerogen by the F i s c h e r Assay to O i l , wt % Gas, wt % O r g a n i c Residue, wt % Water 10.5 26.7 36.3 51 65 69 14 12 11 35 23 20 (Excluded from c a l c u l a t i o n s ) 100 100 100 57. 1 61.8 75.0 66 69 71 12 12 11 22 19 18 100 100 100 8 2.2 The B a s i c P r i n c i p l e o f O i l S h a l e P y r o l y s i s O i l s h a l e p y r o l y s i s i n v o l v e s t h e h e a t i n g o f o i l s h a l e s i n an i n e r t a t m o s p h e r e t o c a u s e d e c o m p o s i t i o n . O v e r a l o n g p e r i o d o f t i m e , c o m p l e t e d e v o l a t i l i z a t i o n c a n be a c h i e v e d a t t e m p e r a t u r e s o f a r o u n d 400-425°C. The m e c h a n i s m u s u a l l y g i v e n f o r o i l s h a l e d e c o m p o s i t i o n i s a s f o l l o w s : K e r o g e n > B i t u m e n + Gas, + C a r b o n R e s i d u e , B i t u m e n > O i l + G a s 2 + C a r b o n R e s i d u e 2 T y p i c a l l y a t t e m p e r a t u r e s b e l o w 470°C t h e d e c o m p o s i t i o n o f k e r o g e n i n t o s o l u b l e b i t u m e n i s a f a i r l y r a p i d s t e p c o m p a r e d t o t h e d e c o m p o s i t i o n o f b i t u m e n t o o i l - . H owever, a t t e m p e r a t u r e s a b o v e 470°C, t h e d e c o m p o s i t i o n o f b i t u m e n a p p e a r s t o be r a p i d ( a ' . The k i n e t i c s o f o i l s h a l e p y r o l y s i s w i l l be d i c u s s e d i n S e c t i o n 3.1. 2.3 The O i l S h a l e P y r o l y s i s P r o c e s s T h e r e a r e many t y p e s o f r e t o r t i n g p r o c e s s e s d e s c r i b e d i n t h e l i t e r a t u r e . O n l y t h e most d e v e l o p e d ones a r e d i s c u s s e d i n t h e t h e s i s . R e t o r t i n g p r o c e s s e s c a n be c l a s s i f i e d i n t o two t y p e s : t h e d i r e c t - h e a t i n g p r o c e s s e s a n d t h e i n d i r e c t - h e a t i n g p r o c e s s e s . The d i r e c t - h e a t i n g p r o c e s s e s r e l y on i n t e r n a l c o m b u s t i o n o f f u e l w i t h a i r o r o x y g e n w i t h i n t h e b e d o f s h a l e t o p r o v i d e a l l n e c e s s a r y p r o c e s s h e a t r e q u i r e m e n t s . 9 The i n d i r e c t - h e a t i n g processes r e l y on the heat p r o v i d e d by the i n j e c t i o n of heated s o l i d or gaseous h e a t - c a r r i e r media i n t o the r e t o r t . Among the d i r e c t - h e a t i n g processes are the Gas Combustion r e t o r t i n g process and the Union O i l r e t o r t i n g p r o c e s s ' 1 1 ' 5 1 . The Gas Combustion r e t o r t i n g process f e a t u r e s the continuous p y r o l y s i s of c o a r s l y crushed o i l sha l e i n a v e r t i c a l k i l n r e t o r t . The heat i s p r o v i d e d by an i n t e r n a l combustion of the p r o c e s s - d e r i v e d f u e l with a i r w i t h i n a downward-moving bed of s h a l e . The kerogen i n the shale i s p y r o l y z e d or decomposed by heat i n the r e t o r t i n g zone. The necessary heat i s p r o v i d e d by the hot gases r i s i n g from the combustion zone. As the kerogen p y r o l y z e s , i t y i e l d s o i l (as vapour), gas, and a r e s i d u a l carbonaceous.product which adheres to the s o l i d r e t o r t e d s h a l e . A l l vapours and gases are swept upward, and the s o l i d s descend i n t o the combustion zone where o x i d a t i o n of the carbon occurs to produce the hot f l u e gases. The o i l recovery of the Gas Combustion process i s i n the range of 80 to 90 percent of the F i s c h e r Assay. The Union O i l r e t o r t i n g process f e a t u r e s a 'rock pump1 shale f e e d i n g d e vice which pushes o i l shale upward i n t o an inverted-cone-shaped v e s s e l which i s open to the atmosphere at the top. The shale s o l i d s , a f t e r having been p y r o l y z e d , overflow the v e s s e l w a l l s at the top. A i r enters the bed of shale at the top and supports combustion w i t h i n the bed • of s h a l e . The flow of a i r , combustion product gases and p y r o l y s i s product vapors i s downward, c o u n t e r c u r r e n t to the upward flow of so l i d s . The TOSCO II, the Petrosix, and the Lurgi-Ruhrgas processes use indirect heating ( 1 ' ( 5 ' . The TOSCO II o i l shale retorting process' 6' features the use of a c i r c u l a t i n g load of heated ceramic b a l l s as a heat carrying medium for transfe r r i n g the necessary process heat to f i n e l y crushed o i l shale for pyrolysis of the shale's kerogen in a rotating drum type of vessel. The vessel i s kept under an internal pressure of about 135.8kPa to prevent admittance of a i r . No combustion occurs in the r e t o r t . The ceramic b a l l s and the f i n e l y ground spent shale are f i r s t separated from each other by a trommel. Then the ceramic b a l l s are reheated in a separate gas-fired furnace. Some of the b a l l s break from repeated thermal shock of alternate heating and cooling. The TOSCO II retorting technology is well advanced and has been demonstrated at a semi-works scale. The Lurgi-Ruhrgas process requires f i n e l y crushed o i l shale. It features the use of heat c a r r i e r s o l i d s of small p a r t i c l e size such as sand grains, coke p a r t i c l e s , or spent shale s o l i d s derived from the shale retorting process. The hot heat-carrier solids are mixed with the o i l shale in a sealed screw-type conveyor and p y r o l y s i s occurs during the mixing operation. In the Petrosix r e t o r t i n g process ( 1 ' ( 5 ' heated recycle gas rather than combustion a i r i s injected into the bed of shale to provide the necessary heat for pyr o l y s i s . The retort unit i s 5.48m in diameter and is capable of processing about 2500 tons of o i l shale feed/day. This scale of -operation is much greater than any other modern re t o r t i n g process. This process u t i l i s e s a v e r t i c a l k i l n retort very similar in design to the Gas Combustion re t o r t . However, in this case, recycle gas heated in a separate furnace i s used instead of combustion gas. Most of the processes described above are slow retorting processes in which large p a r t i c l e s are slowly heated to reaction temperature. In theory, rapid p y r o l y s i s processes tend to produce higher l i q u i d yields than slow retorting processes due to the minimization of secondary cracking of the l i q u i d to s o l i d s and gases. T y p i c a l l y , slow retorting processes have a p a r t i c l e heating rate around 12°C/min whereas the rapid retorting processes have a heating rate of upto 33,000°C/min. For l i q u i d y i e l d reasons, f l u i d bed technology has been suggested as a basis for an o i l shale r e t o r t . Marshall J . Margolis' 7' investigated the pyrolysis of Eastern U.S. O i l shales in a f l u i d i z e d bed system. The f l u i d bed reactor provides a rapid heat-up of the o i l shale p a r t i c l e because of i t s excellent heat transfer c h a r a c t e r i s t i c s ; and i t s short vapour residence time helps to mininize coking and o i l decomposition. The basic unit consisted of a quartz reactor v e r t i c a l l y mounted within an e l e c t r i c a l l y heated tube furnace and was capable of operating at temperatures up to to 1200°C. The f l u i d bed capacity was approximately 15 grams of shale. Raw shale was fed into the f l u i d i z e d bed through a 12 v a r i a b l e s p e e d s c r e w f e e d e r w h i c h was mo u n t e d a t t h e t o p o f t h e r e a c t o r . N i t r o g e n gas was u s e d t o m a i n t a i n f l u i d i z a t i o n . D u r i n g o p e r a t i o n , t h e s p e n t s h a l e was c o n t i n u o u s l y d i s p l a c e d a s raw s h a l e was a d d e d t o t h e r e a c t o r b e d . V o l a t i l e p r o d u c t s were swept f r o m t h e r e a c t o r i n t o a s e r i e s o f two c o o l e d t r a p s . The amount o f o i l p r o d u c e d was d e t e r m i n e d by w e i g h i n g t h e amount o f m a t e r i a l c o l l e c t e d i n t h e t r a p s a n d c o r r e c t i n g f o r w a t e r and p a r t i c u l a t e m a t t e r c o n t e n t . The e x p e r i m e n t a l r e s u l t s showed t h a t t h e r e i s an i m p r o v e m e n t o v e r t h e c a r b o n r e m o v a l a c h i e v e d u n d e r F i s c h e r A s s a y c o n d i t i o n s . A l s o , e v a l u a t i o n of s p e n t s h a l e c a r b o n a n a l y s e s a n d p r o d u c t c o l l e c t i o n d a t a s u g g e s t t h a t o i l y i e l d e q u i v a l e n t t o 120-140 % o f t h e F i s c h e r A s s a y may be a c h i e v e d . S a l i b , B a r u a a n d F u r i m s k y ( 8 > h a v e s t u d i e d t h e r e t o r t i n g o f New B r u n s w i c k o i l s h a l e s i n d i r e c t a n d i n d i r e c t modes i n a p i l o t s c a l e m o v i n g bed r e t o r t . The r e t o r t h a d a s q u a r e c r o s s - s e c t i o n a l a r e a o f 0.053m 2 a n d a h e i g h t o f 2.4m. The c r u s h e d s h a l e was f e d by g r a v i t y t h r o u g h a r o t a r y v a l v e a t t h e t o p o f t h e r e a c t o r . The d e s c e n d i n g s h a l e was h e a t e d by t h e a s c e n d i n g h o t gas ( a i r + r e c y c l e r e t o r t i n g g a s ) . O i l was r e c o v e r e d f r o m t h e o f f g a s e s by h o t c y c l o n e , c o n d e n s e r , p a c k e d c o l u m n and e l e c t r o s t a t i c p r e c i p i t a t o r . S p e n t s h a l e was d i s c h a r g e d by an e x t r a c t i o n s c r e w . The e f f e c t o f s h a l e g r a d e , b e d h e i g h t , r e t o r t t e m p e r a t u r e p r o f i l e , r e c y c l e g a s and i t s d i s t r i b u t i o n , and a i r f e e d r a t e on o i l r e c o v e r y were s t u d i e d . The maximum o i l r e c o v e r i e s a r e 8 1 % a n d 89% o f t h e F i s c h e r A s s a y f o r d i r e c t and i n d i r e c t mode r e t o r t i n g 13 respectively. Levy et a l 1 ' 3 1 have investigated the vapour phase thermal behaviour of shale o i l samples derived from the Condor, Nagoorin carbonaceous and Stuart deposits of Austr a l i a . The o i l vapours released during retorting were passed through packed beds of sand, or the spent shale ash corresponding to the pa r t i c u l a r o i l at temperatures between 500 and 600°C over a range of residence times. The results showed that there was minimal o i l cracking over the sand. O i l degradation was attr i b u t e d to thermal cracking. When the o i l vapours were passed through the spent shale, their behaviour was quite d i f f e r e n t from that over the sand. The spent shale ash catalysed o i l degradation greatly and resulted in major o i l losses due to coking even at 500°C the lower range of the temperature studied. Dung et a l ' * " ' report the pyrolysis behaviour of Condor and Stuart Shales in a 150mm diameter f l u i d i z e d bed process development unit. The process used the hot shale ash as a heat c a r r i e r . The aim of the project was to determine i f the recycle of the shale ash from th i s o i l shale would adversely affect the o i l y i e l d . When the ash to shale recycle r a t i o was two, the results show an o i l y i e l d of loss of 28% compared to reto r t i n g in the absence of hot shale ash. The loss o i l s were mainly heavy fractions which adsorbed onto the shale ash. The loss seriously a f f e c t the economic f e a s i b i l i t y of o i l shale processing. Dung ( 1 | 5 ) has studied a new concept for retorting o i l shales. The p r i n c i p l e of the 14 proposed method was the transfer of heat through walls separating the heat source and the shales. The heat was supplied by combusting spent shale. The o i l shale p a r t i c l e s were conveyed by gas through heat exchange tubes, the heated shales then being retorted in the absence of ash. Calculations based on data and correlations in the l i t e r a t u r e demonstrated that shale p a r t i c l e s can be heated e f f e c t i v e l y while being conveyed, in d i l u t e phase, in heat exchanger tubes immersed in a f l u i d i z e d bed of combusting spent shale. Experimental information about the performance and operation of the reactor i s required to confirm the proposed advantages. One of the main disadvantages of the f l u i d i z e d bed i s the d i f f i c u l t i e s in handling r e l a t i v e l y large p a r t i c l e sizes (>1 mm) which may lead to unstable f l u i d i z e d bed operation. The employment of a spouted bed reactor could solve t h i s problem. Spouted bed technology was developed in the 1950's in Canada to dry wheat with a i r prior to storage. The properties and applications of spouted beds are described in a book by Mathur and Epstein' 9' and other l i t e r a t u r e ' , 0 | ' ( U 1 . Leite et a l ' 1 6 ) have studied o i l shale pyrolysis in a 8cm diameter spouted bed reactor. The o i l shale of 1.11mm p a r t i c l e size is pyrolyzed at 600°C at a feed rate of 2.7 to 9.0kg/hr with nitrogen, steam and a i r mixture as spouting gas. 15 J a r a l l a h ' 2 ' h a s s t u d i e d c o a l p y r o l y s i s i n a 12.8cm d i a m e t e r c o n t i n u o u s s p o u t e d bed r e a c t o r . The e f f e c t s o f c o a l f e e d r a t e , p a r t i c l e s i z e , r e a c t o r t e m p e r a t u r e a n d bed h e i g h t on y i e l d s f r o m two B r i t i s h C o l u m b i a b i t u m i n o u s c o a l s and one A l b e r t a s u b - b i t u m i n u o u s c o a l were i n v e s t i g a t e d . The s p o u t i n g g a s e s u s e d were e i t h e r n i t r o g e n o r a n i t r o g e n - c a r b o n d i o x i d e m i x t u r e . C o a l s i z e s b e t w e e n 0.6 a n d 3.36mm were f e d a t a t m o s p h e r i c p r e s s u r e t o t h e e l e c t r i c a l l y h e a t e d r e a c t o r c o n t a i n i n g s a n d a s s p o u t i n g m e d i a . The t a r y i e l d was d e t e r m i n e d by s a m p l i n g t h e o u t l e t g a s t h r o u g h a s e r i e s o f c o o l e d i m p i n g e r s . I n t h i s t h e s i s , t h e s p o u t e d b e d d e v e l o p e d by J a r a l l a h 1 2 ' was u s e d t o s t u d y t h e p y r o l y s i s o f New B r u n s w i c k o i l s h a l e . 2.4 P a r a m e t e r s A f f e c t i n g O i l S h a l e P y r o l y s i s S t u d i e s show t h a t t h e o i l s h a l e p y r o l y s i s i s a f f e c t e d by many p a r a m e t e r s , s u c h a s p r e s s u r e , t e m p e r a t u r e Sc h e a t i n g r a t e , p a r t i c l e s i z e a n d s h a l e f e e d r a t e . B a e ( 1 7 ' h a s i n v e s t i g a t e d t h e e f f e c t o f p r e s s u r e a n d s u r r o u n d i n g a t m o s p h e r e on t h e r e t o r t i n g o f o i l s h a l e . He c o n d u c t e d b a t c h e x p e r i m e n t s a t 510°C u s i n g d i f f e r e n t r e t o r t g a s e s s u c h a s N 2 , C 0 2 , H 2 0 , NH 3, a n d H 2 a t p r e s s u r e s r a n g i n g f r o m a t m o s p h e r i c t o 2500 p s i g . T e s t r e s u l t s i n F i g u r e 1 i n d i c a t e t h a t h i g h p r e s s u r e r e d u c e s t h e o i l y i e l d s i g n i f i c a n t l y , b u t p r o d u c e s a l a r g e r v o l u m e o f l i g h t h y d r o c a r b o n g a s e s . H i g h p r e s s u r e f a v o u r s t h e s e c o n d a r y r e a c t i o n o f t h e p r i m a r y v o l a t i l e s . O i l y i e l d s were g e n e r a l l y 3 0 0 500 .1000 1500 2000 2500 PRESSURE, PSIG Fig 1: Effect of Pressure on Oil Yield ( Adapted from Reference No. 17 ) 17 similar in nitrogen than carbon dioxide atmospheres. As the aim of the present project is to find conditions for high o i l y i e l d , experiments have been conducted under atmospheric pressure. Furimsky et a l ( 1 8 ' have studied the retorting of t h i r t y o i l shales samples form Eastern Canada by Fischer assay retort and pyrochem reto r t . The o i l y i e l d increased s i g n i f i c a n t l y with hydrogen as the retorting gas. This is due to the s t a b l i z a t i o n of reactive r a d i c a l intermediates by hydrogen which would otherwise polymerize to higher molecular weight species. The effect of temperature on o i l shale pyrolysis, especially the o i l y i e l d , i s very s i g n i f i c a n t . Studies show that the kerogen in o i l shale w i l l begin to decompose at 250°C. and w i l l even pyrolyse completely at temperatures around 400°C. Table 5 l i s t s the results of a temperature study on Colorado o i l shale by H i l l * 1 9 ) . It can be seen that for lower temperatures, a longer retorting period is required. From a p r a c t i c a l standpoint, therefore a higher temperature is preferred to shorten the retorting period. The temperature affects both the decomposition of o i l shale and the secondary reactions of the primary v o l a t i l e s . In the absence of secondary reactions, the o i l y i e l d w i l l increase gradually with temperature. In the presence of substantial secondary reactions, an increase in temperature w i l l enhance the cracking of the o i l into l i g h t e r v o l a t i l e s . Therefore, t y p i c a l l y there is a maximum o i l y i e l d at an TABLE 5: Effect of Temperature on Oil Y i e l d Test Temperature C O Durat i on (hr) O i l Wt% Y i e l d % F i s c h e r Assay D-4 D-5 D-19 D-7 D-22 D-16 0-17 D-10 D-1 331 347 353 364 395 399 420 427 500 550 425 159 312 71 86 . 5 38 .0 37.5 13.5 4.0 4.8 4.3 6.0 7.6 8.0 8.8 8.9 7.6 33.6 40.4 39. 1 52.6 71.6 72.8 80.0 78 . 1 92 .6 T e s t s were performed at the U n i v e r s i t y of Utah A l l experiments were c a r r i e d out at atmospheric p r e s s u r e 19 optimum t e m p e r a t u r e . T h i s i s i n agreement w i t h th e f i n d i n g s of L i u e t a l ( 2 0 > . T h e y have s t u d i e d t h e p y r o l y s i s o f 20-40 mesh C o l o r a d o o i l s h a l e i n a t w i n f l u i d i z e d bed r e a c t o r . A m i x t u r e o f n i t r o g e n and steam was u s e d as t h e f l u i d i z i n g g a s . The f e e d r a t e o f o i l s h a l e was 7.2Kg/hr. F i g u r e 2 shows the t e s t r e s u l t s . I t i n d i c a t e s t h a t o i l y i e l d i n c r e a s e s from 60% F i s c h e r A s s a y a t 427°C t o 67% F i s c h e r A s s a y a t 491°C. Beyond 491°C, o i l y i e l d d e c r e a s e s t o 42% F i s c h e r A s s a y a t 548°C. The optimum r e t o r t i n g t e m p e r a t u r e f o r t h i s c o n d i t i o n i s e s t i m a t e d t o be a p p r o x i m a t e l y 4 77°C. The s t u d y of t h e e f f e c t of p a r t i c l e s i z e on o i l y i e l d i s n e c e s s a r y b e c a u s e t h e o p e r a t i o n a l r e q u i r e m e n t s o f a r e t o r t i n g p r o c e s s f r e q u e n t l y r e q u i r e t h e s h a l e t o be of a s p e c i f i c p a r t i c l e s i z e r a n g e . F o r e x ample, t h e TOSCO I I p r o c e s s r e q u i r e s f e e d s h a l e t o be s m a l l e r t h a n 1.27cm , so t h a t t h e s p e n t s h a l e c a n be s e p a r a t e d f r o m t h e 1.27cm d i a m e t e r h e a t - c a r r i e r c e r a m i c b a l l s by s c r e e n i n g . Gas c o m b u s t i o n and P e t r o s i x p r o c e s s e s r e q u i r e d i s c r e t e p a r t i c l e l a r g e r t h a n 0.64cm s i z e . A s e r i e s o f F i s c h e r A s s a y s was made on 100 gram of a C o l o r a d o o i l s h a l e c r u s h e d t o v a r i o u s s i z e s range from 2 t o 65 mesh and p y r o l y s e d a c c o r d i n g t o t h e s t a n d a r d r e t o r t i n g r a t e . The r e s u l t s a r e l i s t e d i n T a b l e 6 and i t c a n be seen t h a t t h e e f f e c t seems t o be v e r y s m a l l . J a r a l l a h < 2 ) has a l s o s t u d i e d t h e p a r t i c l e s i z e e f f e c t on c o a l p y r o l y s i s and f o u n d t h a t t h e r e i s a h i g h e r o i l y i e l d w i t h d e c r e a s i n g p a r t i c l e s i z e . F i g u r e 3 shows the p l o t o f c o a l p a r t i c l e s i z e v e r s u s t a r y i e l d . H i s e x p l a n a t i o n i s t h a t 100 O 20- i i 1 1 1 1 700 800 900 1000 1100 1200 . TEMPERATURE OF RETORTING CHAMBER °F Fig 2: Effect of Retorting Temperature on Oil Yield ( Adapted from Reference No. 20 ) ro O TABLE 6 : Effect of P a r t i c l e S i ze On O i l Y i e l d P a r t i c l e S i z e Number of O i l Wt% (mesh) d e t e r m i n a t i o n s Minus 2 2 14.22 Minus 4 2 14.78 Minus 8 5 14.37 Minus 20 2 14.45 Minus 65 2 13.47 100.Ogm samples of Colorado o i l s h a l e No. 44L-69 were heated from room temperature to 500"C i n 50 minutes and then m a i n t a i n e d at 500'C f o r an a d d i t i o n a l 70 minutes. 22 Q L U AO LJL < 30 LL O 20 >- < 10 0 T r 580 C F 0 = 1 -1 :0 .2 K g / h 4 0 1 2 3 PARTICLE DIAMETER, mm Fig 3: Effect of Particle Size on Tar Yield ( Adapted from Reference No. 2 ) 23 f o r s m a l l e r p a r t i c l e s , t h e p y r o l y s i s i s more r a p i d a n d t h e o p p o r t u n i t y f o r p o l y m e r i z a t i o n and d e p o s i t i o n w i t h i n t h e p a r t i c l e i s r e d u c e d . H owever, t h e F i s c h e r A s s a y v a l u e s f o r t h e New B r u n s w i c k o i l ( T a b l e 12) s h a l e A i n d i c a t e t h a t t h e s m a l l e r o i l s h a l e s p a r t i c l e s have a s m a l l e r p o t e n t i a l o i l y i e l d , a n d t h e r e f o r e c o m p a r i s o n s o f p a r t i c l e s i z e e f f e c t s s h o u l d n o t be b a s e d on t h e m a g n i t u d e o f t h e o i l y i e l d a l o n e . The s t u d y o f s h a l e f e e d r a t e on o i l y i e l d i s o f s p e c i a l i n t e r e s t i n t h i s c a s e . J a r a l l a h ' 2 1 f o u n d t h a t i n c r e a s i n g c o a l f e e d r a t e h a s n e g a t i v e e f f e c t on o i l y i e l d . The c h a r a c c u m u l a t e d i n t h e r e a c t o r a p p a r e n t l y e n c h a n c e d t h e s e c o n d a r y c r a c k i n g o f t a r t o v o l a t i l e s . T h e r e f o r e , i t i s n e c e s s a r y t o o b s e r v e i f t h e s p e n t s h a l e a c c u m u l a t e d i n t h e r e a c t o r o v e r t h e t i m e o f t h e e x p e r i m e n t w o u l d have a s i m i l a r e f f e c t on o i l y i e l d . 2.5 H e a t T r a n s f e r i n S p o u t e d Beds B e c a u s e r e t o r t i n g i s an e n d o t h e r m i c p r o c e s s , i t i s v e r y i m p o r t a n t t o u n d e r s t a n d t h e h e a t t r a n s f e r i n a s p o u t e d b e d . I n o u r e x p e r i m e n t , t h e o i l s h a l e i s f e d a t room t e m p e r a t u r e t o t h e a p e x o f t h e s p o u t e d b e d . I t i s n e c e s s a r y t o f i n d o u t t h e t i m e r e q u i r e d f o r t h e o i l s h a l e p a r t i c l e t o r e a c h t h e bed t e m p e r a t u r e , a n d w h e t h e r a s i g n i f i c a n t i n t r a p a r t i c l e t e m p e r a t u r e g r a d i e n t e x i s t s . I n o t h e r w o r d s , k n o w l e d g e o f t h e t e m p e r a t u r e h i s t o r y o f t h e o i l s h a l e p a r t i c l e h e l p s i n u n d e r s t a n d i n g t h e p y r o l y s i s k i n e t i c s . 2 4 Work on s p o u t e d beds t o 1974'can be f o u n d i n t h e book by M a t h e r and E p s t e i n ' 9 ) . The s p o u t e d bed c o n s i s t s o f two d i s t i n c t r e g i o n s : t h e s p o u t and t h e a n n u l u s . F i g u r e 4 shows a s c h e m a t i c d i a g r a m o f a s p o u t e d b e d . I n t h e s p o u t , t h e a v e r a g e g a s v e l o c i t y i s o f t e n one o r two o r d e r s o f m a g n i t u d e h i g h e r t h a n t h e a n n u l u s , w h e r e a s t h e volume f r a c t i o n o f p a r t i c l e s , ( 1 - e ) , i s a t most o n e - f i f t h o f t h a t i n t h e d e n s e p h a s e a n n u l u s . An e q u a t i o n " 9 ) f o r e s t i m a t i n g t h e h e a t t r a n s f e r c o e f f i c i e n t i n t h e s p o u t f o r t h e p a r t i c l e R e y n o l d s number h i g h e r t h a n 1000 i s , Nu = A + B P r 1 / 3 + R e 0 - 5 5 ( 2 . 1 ) where A = 2/[1 - ( 1 - e ) 1 / 3 ] a n d B = 2/3e F o r t h e a n n u l u s r e g i o n , t h e p a c k e d bed c o r r e l a t i o n ( 9 ' f o r e s t i m a t i n g t h e h e a t t r a n s f e r c o e f f i c i e n t where Re f o r t h e p a r t i c l e i s g e n e r a l l y s m a l l e r t h a n 100 i s , Nu = 0.42 + 0.35 R e 0 • 8 ( 2 . 2 ) I t s h o u l d be n o t e d t h a t t h e a b o v e c o r r e l a t i o n i s b a s e d on e x p e r i m e n t a l d a t a u s i n g a i r n e a r room t e m p e r a t u r e . I n t h i s r e s e a r c h , t h e r e a c t o r t e m p e r a t u r e i s a t l e a s t 450°C, t h e r e f o r e e q u a t i o n 2.2 may o n l y g i v e an e s t i m a t e o f t h e h e a t t r a n s f e r c o e f f i c i e n t . I t c a n be shown t h a t t h e h e a t t r a n s f e r c o e f f i c i e n t i n t h e s p o u t i s much h i g h e r t h a n i n t h e a n n u l u s r e g i o n . F i g 4 : S c h e m a t i c D i a g r a m f o r S p o u t e d B e d 26 However, the time which a p a r t i c l e spends in the spout is very small compared to that in the annulus. Therefore, the t o t a l heat transferred in the spout w i l l be less than that in the annulus. The time required to bring a feed p a r t i c l e close to the bulk s o l i d s temperature is given by the following unsteady state equation, From th i s equation, the time required to heat up a t y p i c a l size o i l shale p a r t i c l e , say 2 mm diameter from room temperature to a bed temperature of 500°C was estimated to be of the order of 20 seconds. Since the p r a c t i c a l mean residence time in the annulus i s at least several minutes, the steady state concentration of bed p a r t i c l e s reaching the bed temperature i s high. Therefore, the ov e r a l l heat transfer rate would not normally be limited by the external heat transfer. For equation 2.3, the temperature within the p a r t i c l e is assumed uniform. However, in the case of the spouted bed where large sized p a r t i c l e s may be used, the i n t r a p a r t i c l e temperature gradient could not be ignored. The magnitude of the i n t r a p a r t i c l e temperature difference r e l a t i v e to the temperature difference between the p a r t i c l e surface and f l u i d i s determined by Biot number, Bi =h r /k , H p p p provided that the Fourier number Fo H=at/rp 2 , which is a dimensionless time variable, exceeds a minimum value of 0.2. The r e l a t i v e magnitude of i n t r a p a r t i c l e temperature Tp Tpo Tb " Tpo - = 1 - exp[ * t (2.3) 2 7 d i f f e r e n c e d e c r e a s e s w i th d e c r e a s i n g Bi , the maximum va lue becoming l e s s than 5% of the temperature d i f f e r e n c e between the f l u i d and p a r t i c l e s u r f a c e at B i H = 0 . 1 . For the o i l s h a l e p a r t i c l e s used i n our exper iment , assuming that an i n t r a p a r t i c l e temperature g r a d i e n t e x i s t s , the p a r t i c l e temperature p r o f i l e can be p r e d i c t e d by the unsteady s t a t e c o n d u c t i o n e q u a t i o n , 3T a 3 ( r 2 3 T / 3 r ) = (2 .4 ) 3t r 2 3r and can be c a l c u l a t e d as a f u n c t i o n of t ime f o r the v a r i a b l e c o n d i t i o n s a l o n g the 4 d i f f e r e n t r e g i o n s of the spouted bed: spout , f o u n t a i n (upward) , f o u n t a i n (downward) and annulus r e g i o n , by a n u m e r i c a l s o l u t i o n of t h i s e q u a t i o n as the l o n g i t u d i n a l p r o f i l e s of gas and p a r t i c l e v e l o c i t i e s , gas temperature and spout vo idage are known. The boundary c o n d i t i o n in t h i s case i s , K p ( 3 T / 3 r ) r = r p = h p ( T b - T r = r p ) ( 2 . 5 ) The d e t a i l s of the computer program are g iven in Appendix A . T a b l e 7 and 8 l i s t the p a r t i c l e temperature h i s t o r y for o i l sha l e of 3mm, 1.5mm and 0.75mm diameter a f t e r one and two passes in the r e a c t o r r e s p e c t i v e l y . The temperature h i s t o r y i s e s t i m a t e d at a f u n c t i o n of t ime a lon g the spout , f o u n t a i n (upward), f o u n t a i n (downward) and annulus r e g i o n s . The r e a c t o r temperatures chosen are 723, 28 773 a nd 823K. The v e l o c i t y o f t h e o i l s h a l e p a r t i c l e a t t h e apex o f t h e s p o u t i s assumed t o be z e r o . From t h e t y p i c a l r e s u l t s shown i n T a b l e 7, i t c a n be s e e n t h a t f o r t h e 3mm p a r t i c l e s i z e o i l s h a l e , t h e r e i s a c o n s i d e r a b l e t e m p e r a t u r e g r a d i e n t i n t h e s p o u t , f o u n t a i n ( u p w a r d) a n d f o u n t a i n (downward) r e g i o n s . B u t d u r i n g t h e s l o w t r a v e l down i n t h e a n n u l u s s e c t i o n , t h e t e m p e r a t u r e g r a d i e n t i s e f f e c t i v e l y r e l a x e d . I t s h o u l d be n o t e d t h a t a f t e r t h e f i r s t p a s s t h r o u g h t h e f o u r r e g i o n s , t h e p a r t i c l e h a s n o t y e t r e a c h e d t h e r e a c t o r t e m p e r a t u r e . I n f a c t , t h e t e m p e r a t u r e o f t h e p a r t i c l e i s o n l y a t 568.0 - 606.2K w h i c h i s n o t e v e n h i g h e n o u g h f o r p y r o l y s i s t o s t a r t . The p a r t i c l e h a s t o t r a v e l t h e c y c l e t h e s e c o n d t i m e i n o r d e r t o e f f e c t i v e l y r e a c h t h e r e a c t o r t e m p e r a t u r e , a n d p y r o l y s i s i s e x p e c t e d t o t a k e p l a c e i n t h e a n n u l u s . F o r t h e 1.5mm d i a m e t e r s i z e o i l s h a l e , a t e m p e r a t u r e g r a d i e n t s t i l l e x i s t s i n t h e p a r t i c l e b u t i s l e s s s i g n i f i c a n t t h a n f o r t h e 3mm p a r t i c l e s i z e . F o r r e a c t o r t e m p e r a t u r e 773 a n d 823K, t h e p a r t i c l e r e a c h e s t o 732.1 a n d 767.6K r e s p e c t i v e l y i n t h e a n n u l u s r e g i o n , w h i c h i s h i g h e nough f o r p y r o l y s i s t o b e g i n . A g a i n , p y r o l y s i s i s e x p e c t e d t o t a k e p l a c e i n t h e a n n u l u s . F o r t h e 0.75mm p a r t i c l e s i z e o i l s h a l e , i n t r a p a r t i c l e t e m p e r a t u r e g r a d i e n t g r e a t e r t h a n 10K h a r d l y e x i s t . A t t h e t o p o f t h e s p o u t , t h e p a r t i c l e h a s n o t r e a c h e d t h e r e a c t o r t e m p e r a t u r e but t h e t e m p e r a t u r e i s s u f f i c i e n t f o r p y r o l y s i s t o t a k e p l a c e . As t h e 0.75mm o i l s h a l e i s s m a l l e r t h a n t h e Table 7: P a r t i c l e Temperature History for 3.0, 1.5 and 0.75mm O i l Shale (After One Pass) Reactor Temperature (K) PartIcle S Ize (mm) Part icle Spout (K) Founta1n (Upward) (K) Founta i n (downward) (K) Annu1 us (K) 723.0 3.0 centre surface 361 .8 431 .4 367 . 4 422 . 3 372 .9 4 18.1 567 . 1 568 .0 1 . 5 centre surface 533 .8 566.2 543.6 559 . 3 550.0 557 . 9 690.0 690. 1 0. 75 centre surface 693 . 2 697.8 696 . 1 696.8 696 . 8 697 . 1 722.2 722 . 2 773.0 3.0 centre surface 359.8 439. 1 366 . 7 428 . 1 373 423 . 59 1 . 1 592 . 2 1 . 5 cent re surface 545 .0 584 . 3 557 . 8 575.6 565 . 574 . 731.9 732 . 1 0.75 centre surface 732 .3 738.7 736 .4 737 .3 737 . 737 . 771.9 771.9 823 . 0 3.0 centre surface 347 . 2 438 . 1 356 . 4 423 . 9 365 419 604 . 9 606 . 2 1 . 5 centre surface 533 . 584 . 552 . 8 572 .8 562 . 572 767 . 3 767 . 6 0. 75 centre sur face 757 . 767 . 764 .5 765.8 766 766 821.0 82 1.0 Inlet temperature of the particle 1s assummed to be at 298K The temperatures are calculated as particle leaving different regions of the spouted bed reactor to Table 8:Particle Temperature History for 3.0, 1.5 and 0,75mm O i l Shale (After Two Passes) K t a a c t or T empera t ure (K) Particle S i 2e (mm) Part icle Entrance ( K ) Spout ( K ) Founta i n (Upward) ( K ) Founta i n (downward) (K) Annu1 us (K) 7 2 3.0 3.0 centre surface 5G7 . 1 568 .0 590.9 6 16.4 593 .0 613.1 595 .0 6 11.5 666 . 3 6G6 . 3 1 . 5 cent re surface 690.0 690. 1 708 . 3 7 10. 9 709 . 1 7 10.3 709 . 6 7 10.2 7 20 . -1 720. 5 0.75 cent re surface 722 . 2 722 . 2 722.9 723.0 722 .9 723.0 723.0 723 .0 723.0 723 .0 7 7 3.0 3.0 centre surface 591 . 1 592 . 2 615.3 645 . 6 617.9 64 1 . 4 620. 5 639 . 6 703 . 6 704 .O 1 . 5 cent re surface 731 .9 732 . 1 753.3 756.7 754 .4 756 .0 755 . 1 755 .9 7G9 . 5 769 . 5 0.75 centre surface 771 .9 77 1.9 772.9 772.9 772.9 772.9 772.9 772 . 9 773.0 773 . 0 823.0 3 .0 centre sur face 604 . 9 606 . 2 625 . 9 663 . 7 629 . 8 657 . 8 633 . 6 655 . 8 732.7 733 . 2 1 . 5 centre surface 767 . 3 767 . 6 792 . 4 797 . 8 794 . 4 796.5 795 . 5 796 . 5 8 17.1 8 17.1 0.7 5 cent re surface 82 1 .0 821 .0 822 .8 822.8 822 . 8 822.8 822 . 8 822 . 8 823 .0 823.0 The temperatures are calculated as particle leaving different regions of the spouted bed reactor O 31 spouting sand, 1.11mm , i t i s expected that some of the o i l shale w i l l actually escape from the fountain (upward) region and be entrained to the cyclone. Even in thi s case, these p a r t i c l e s w i l l s t i l l undergo py r o l y s i s . In the actual experimental case, there i s a 17.8cm long section between the feed point and the apex of the spouted bed. A supplementary program (in Appendix A) was written to calculate the p a r t i c l e temperature p r o f i l e for this section. It was found that the o i l shale p a r t i c l e s are s t i l l e s s e n t i a l l y at room temperature as they leave this section. This indicated that the above assumption that the p a r t i c l e at the apex of the spouted bed i s at room temperature i s correct. 3 2 3. K I N E T I C S 3.1 L i t e r a t u r e R e v i e w o f t h e K i n e t i c s o f O i l S h a l e P y r o l y s i s S e v e r a l i n v e s t i g a t i o n s ( 2 2 ' " ( 3 4 > ( 3 9 1 " ( * 1 ' have been c a r r i e d o u t on t h e k i n e t i c s o f t h e d e c o m p o s i t i o n o f k e r o g e n i n o i l s h a l e . The f i r s t c o m p r e h e n s i v e e x p e r i m e n t a l s t u d y o f t h e p r o c e s s was r e p o r t e d by H u b b a r d a n d R o b i n s o n ( 2 2 > . They s t u d i e d t h e d e c o m p o s i t i o n o f k e r o g e n i n C o l o r a d o o i l s h a l e a t t e m p e r a t u r e s f r o m 400 t o 525°C by h e a t i n g t h e s h a l e s a m p l e i n t h e a b s e n c e o f o x y g e n a t a t m o s p h e r i c p r e s s u r e a n d m e a s u r i n g t h e d e c o m p o s i t i o n p r o d u c t s . The f i r s t d e c o m p o s i t i o n p r o d u c t s t o f o r m were g a s and b i t u m e n . On f u r t h e r h e a t i n g , t h e b i t u m e n d e c o m p o s e d t o f o r m t h e f i n a l p r o d u c t s : gas ( t h e n o n - c o n d e n s a b l e v a p o r s ) , o i l ( t h e c o n d e n s a b l e v a p o r s ) a n d c a r b o n a c e o u s r e s i d u e . H u b b a r d a n d R o b i n s o n i n t e r p r e t e d t h e i r d a t a by a s s u m i n g t h a t t h e t o t a l amount o f k e r o g e n t h a t d e c o m p o s e d was e q u a l t o t h e t o t a l amount of g a s , o i l a n d b i t u m e n . B r a u n and R o t h m a n ' 2 " ' s t u d i e d t h e H u b b a r d and R o b i n s o n d a t a a n d p r o p o s e d t o i n c l u d e a t h e r m a l i n d u c t i o n p e r i o d i n t h e d a t a a n a l y s i s , a n d r e p r e s e n t e d t h e k i n e t i c s o f o i l p r o d u c t i o n by a s i m p l e m e c h a n i s m i n v o l v i n g two c o n s e c u t i v e f i r s t o r d e r r e a c t i o n s . The t h e r m a l i n d u c t i o n p e r i o d was r e q u i r e d t o a c c o u n t f o r t h e n o n - i s o t h e r m a l h e a t i n g e f f e c t s i n t h e H u b b a r d and R o b i n s o n e x p e r i m e n t s . The p y r o l y s i s o f k e r o g e n c a n be e x p r e s s e d a s : K => B + G, + C, (3.1) k 2 and B > A + G 2 + C 2 (3.2) The rate of kerogen decomposition is given by, 3K = -k,K (3.3) 3t The net rate of bitumen formation and decomposition i s , 3B = k , f ,K - k 2B (3.4) 3t The rate of o i l production i s given by, 3A = k 2 f 2 B (3.5) 3t The rate of gas production i s 3G = k,f 3K + k 2f,B ( 3 . 6 3t Integrating equation (3.3) for K=Kq at t=t gives: - k , ( t - t Q ) K = K 0e (3.7) By combining (3.4) and (3.7), and integrating for B=0 34 c=t Q, then the amount of B, bitumen at any time is k,f,K 0 - k , ( t - t 0 ) - k 2 ( t - t G ) B = [ e _ e ] ( 3 . 8 ) (k 2-k,) Combining equations (3.5) and (3.8), and integrating for A = 0 at t = t Q , then the f r a c t i o n of i n i t i a l kerogen A / K q that is converted to o i l at any time t i s : f A . r - k , ( t - t 0 ) - k 2 ( t - t 0 ) U 2 [ 1- e ] - k , [ 1 - e ]} K 0 ( k 2 - k , ) (3.9) Combining equations (3.6) and (3.8), and integrating for G=0 at t = t D ' the fr a c t i o n of i n i t i a l kerogen G / K Q that i s converted to gas at any time t i s : G - k , ( t - t 0 ) — = f 3[1-e ] + f if« - k , ( t - t 0 ) - k 2 ( t - t Q ) i k 2 ( l - e ] - k,[1-e ]} (k,-k 2) (3.10) Braun et a l ' 2 " 1 used equation (3.9) to analyse the data of Hubbard and Robinson 1 Z Z ) for production of o i l from a Colorado o i l shale having a Fischer Assay of 2 6 . 7 gal/ton. The measured and calcula t e d values o£ A/KQ are found to be in agreement with each other. 35 Johnson et a l ( 2 5 ) used thermogravimetric analysis (TGA) to study the pyrolysis of o i l shale spheres. The sample weight was measured while the temperature was increased with heating time. They developed a complex kinetic model which incorporated both heat transfer and chemical k i n e t i c s , but the kinetic scheme required a series of ten coupled chemical reaction steps. Campbell et a l ( 2 7 ) obtained kinetic data on Colorado o i l shale pyrolysis by both the isothermal and the non-isothermal technique. The non-isothermal results show that the o i l evolution process can be quite accurately represented as a f i r s t order reaction. Granoff and N u t t a l < 2 8 > investigated the pyroly s i s kinetics for large single p a r t i c l e (12.7mm diameter cylinder and sphere). The experiment was ca r r i e d out at 384 to 520°C with nitrogen as pyrolyzing gas. The weight loss of the o i l shale p a r t i c l e was continuously measured with a Cahn recording thermobalance. They also obtained the centreline temperature h i s t o r i e s for the o i l shale with a microthermocouple. The non-isothermal shrinking-core model and non-isothermal homogeneous model were developed in order to describe the pyrolysis process. For the non-isothermal shrinking-core model, i t i s assumed, that the reaction always occurs at the interface between the unreacted core and the surrounding spent shale layer. The model consists of the dynamic dis t r i b u t e d energy balance, convective and radiant surface boundary condition, 36 and a f i r s t o r d e r k i n e t i c c o n t r o l l e d s h r i n k i n g c o r e m a t e r i a l b a l a n c e . The r e s u l t i n g e q u a t i o n s must be s o l v e d s i m u l t a n e o u s l y , s i n c e t h e r a t e o f c o r e s h r i n k a g e i s s t r o n g l y t e m p e r a t u r e d e p e n d e n t a s i n d i c a t e d by t h e A r r h e n i u s e x p r e s s i o n . The p a r t i a l d i f f e r e n t i a l e q u a t i o n d e s c r i b i n g t h e d y n a m i c t e m p e r a t u r e p r o f i l e w i t h i n a s p h e r e , i s , 3 T S 1 3 3 T S ba P s C p s ~= M r 2 ( ) ] + C( ) A H r x n at r 2 3r 3r at ( 3 . 1 1 ) ( w Q-w t) a = ( W Q - W O J where t h e i n i t i a l c o n d i t i o n i s , T = T. ... , a t t=0 s i n i t i a l Tg= c o n s t a n t s t e a d y - s t a t e v a l u e a t t=0 and t h e b o u n d a r y c o n d i t i o n i s , Q r p = h A p ( T r p - T g ) + 5 e A p ( T r ? a - T w ' ) ( 3 . 1 2 ) The s h r i n k i n g - c o r e m a t e r i a l b a l a n c e e q u a t i o n s a r e , 3 r c AE k i e x p ( ) ( 3 . 1 3 ) at R T C 37 3a 4 7 r r c 2k i exp[ (-AE/RTC ) /C ] = - (3.14) 3t 0 . 757rr D 3C therefore the appearance rate of individual species i s given as: 3a 4 r r r c 2 k i exp[ ( -AE/RTC ) /C{] •= ~ (3.15) 3t 0 . 757rr p 3Ci The model f i t s very well at high temperature (520°C), but is not so good at the lowest temperature. The second model developed was the non-isothermal homogeneous model in which i t is assumed that there are no temperature gradients within the p a r t i c l e . The p a r t i c l e temperature i s given by: 3T S PsvpCps = hA p (Tg-T s) + 5 « p A p(T w«-T s«) + k ( l - a ) V D 31 (3.16) The model was able to match both the high and low temperature conversion for small and moderate o i l - s i z e d spherical p a r t i c l e s where the p a r t i c l e temperature is assumed to be uniform. Wang and Noble' 3 1 1 carried out o i l shale pyrolysis under non-isothermal conditions between 350 and 500°C. and at different pressures (78 and 765 kPa). They used a comprehensive a n a l y t i c a l procedure to separate the o i l shale into five individual components: polar, weak polar, 3 8 saturates, aromatics and olefins.•They proposed a s i m p l i f i e d kinetic scheme that include the d i s t r i b u t i o n of products as follows: 3 C i k i - E i f K Q R T 2 - E Q = exp[ -( )( ) exp( )] (3.17) at C RT C E Q RT Yang and S o h n < 3 3 ) studied a Chinese o i l shale, and found that the mechanism of kerogen decomposition can be represented by an o v e r a l l f i r s t - o r d e r k i n e t i c s . . In view of the above survey, i t appears that from an engineering standpoint, the rate of o i l generation can be adequately described by an o v e r a l l f i r s t order k i n e t i c s . 3.2 Development of the K i n e t i c Model A model was derived to predict the change of kerogen, bitumen and o i l content of the o i l shale with time. The basic idea is that upon the application of heat, kerogen in the shale p a r t i c l e s i s f i r s t decomposed to bitumen and gas. The bitumen is defined as the benzene-soluble organic material that does not vaporize but remains in the shale sample. Then the bitumen i s heated to decompose to form o i l and gas, and carbonaceous product adheaved to the shale mineral matrix. O i l i s defined as the condensable hydrocarbons and other compounds escaping from the shale sample, whereas gas is defined as the non-condensable vapours escaping from the shale sample. The carbonaceous residue is the benzene-insoluble portion of the kerogen 39 r e m a i n i n g i n t h e s p e n t s h a l e . On f u r t h e r h e a t i n g , o i l i s decomposed t o gas and c a r b o n a c e o u s p r o d u c t s . The p y r o l y s i s o f k e r o g e n i s e x p r e s s e d a s Kerogen > B i t u m e n + Gas + C a r b o n a c e o u s r e s i d u e Bitumen > O i l + Gas + C a r b o n a c e o u s r e s i d u e O i l > Gas The f i r s t two r e a c t i o n s t a k e p l a c e i n t h e s o l i d p h a s e and t h e t i m e of r e a c t i o n c a n be t a k e n as t h e r e s i d e n c e t i m e of t h e s o l i d s . Whereas t h e o i l d e c o m p o s i t i o n o c c u r s i n t h e gas p h a s e , and t h e t i m e f o r r e a c t i o n i s v e r y s h o r t i . e . t h e mean r e s i d e n c e t i m e o f t h e gas ( V o l of t h e gas p h a s e / F l o w r a t e of g a s ) . The k i n e t i c e q u a t i o n s u s e d t o d e s c r i b e t h e r e a c t i o n s a r e t a k e n from B r a u n a n d R o t h m a n ' 1 3 ' and were p r e s e n t e d i n the b e g i n n i n g of S e c t i o n 3.1. In t h e p r e s e n t r e s e a r c h , t h e amount of o i l p r o d u c e d i s measured by s a m p l i n g o f t h e o f f - g a s . N e i t h e r k e r o g e n nor bi t u m e n were me a s u r e d . The s t r u c t u r e o f t h e s p o u t e d bed i s not t a k e n i n t o a c c o u n t . However, a few a s s u m p t i o n s a r e made ba s e d on t h e c h a r a c t i s t i c s of t h e s p o u t e d bed. 1) F 0 , C , „ , F . , F i , F 2 , V a r e a l l c o n s t a n t . o , k 0 g , i n , z 40 2) Bed solids and gases within the reactor are well mixed. 3) The i n t r a p a r t i c l e temperature gradient of the o i l shale is ignored because the time required to heat up the p a r t i c l e s (in the range of 20 seconds, Section 2.6) is in s i g n i f i c a n t compared to the average holding time of the p a r t i c l e in the reactor (in the range of 30 minutes). The configuration of the model is shown as below: F 2 Fg,o Ut C A ^ ) <Vfc) C K * ( t ) A A C B ( t ) U n s t e a d y S t a t e M a t e r i a l B a l a n c e w e i g h t w e i g h t w e i g h t w e i g h t w e i g h t o f s o l i d + o f g a s - o f s o l i d - o f gas = A c c u m u l a t e d f e d i n i n f l o w w i t h d r a w n o u t f l o w & e n t r a i n e d dW F o + F ( g , i n ) P ( g , i n ) " < Fi + F 2 > " F ( g , o u t ) P ( g , o u t ) = (3 d t A s s u m i n g F . p . = F up , ( a s s p o u t i n g g a s a c c o u n t s ^ g , i n ^ g , i n g , o u t g , o u t c f o r 97% o f t h e t o t a l g a s o u t f l o w ) , t h e n ( 3 . 1 9 ) b ecomes, dW F, - F 2 = ( 3 . 2 0 ) d t K e r o g e n B a l a n c e K e r o g e n K e r o g e n K e r o g e n K e r o g e n e n t e r i n g - w i t h d r a w n - decomposed = A c c u m u l a t e d w i t h s h a l e & e n t r a i n e d d C K " ( 3 2 1 ) F 0 C K o " F 2 C K 2 - F I C R I - r K = ( J . ^ W d t B i t u m e n B a l a n c e B i tumen p r o d u c e d by k e r o g e n B i tumen decomposed B i tumen w i t h d r a w n & e n t r a i n e d B i tumen A c c u m u l a t e d 4 2 C B " F 2 C B 2 " F i C B 1 dC BW dt ( 3 . 2 2 O i l Balance O i l produc ed by bitumen O i l decomDOsed O i l entrained O i l Accumula t e d rA " Fg cA = d C a v dt ( 3 . 2 3 ) Reaction Kinetics 1-f i Kerogen f l Gas 1<2 Bitumen l - f 2 Gas O i l " k 3 "> Gas ( 3 . 2 4 ) r B = f , k , C K W - k 2 C B W ( 3 . 2 5 ) r A = izkzCBU - k 3 C A V ( 3 . 2 6 ) 43 From the e x p e r i m e n t , F 0 , F 1 , " " F 2 , V, C,,n a r e known, and KU O o from t h e l i t e r a t u r e , k 1 f k 2, E 1 ( E 2 f , , f 2 a r e known, t h e n W ( t ) , C K ( t ) , C g ( t ) , c ^ ( f c ) c a n ^ e s o l v e d from e q u a t i o n s ( 3 . 2 0 ) , ( 3 . 2 1 ) , (3.22) and ( 3 . 2 3 ) . A. s i m p l i f i e d model w i t h one l e s s e q u a t i o n t o s o l v e was base d on f u r t h e r a s s u m p t i o n t h a t W was c o n s t a n t a t t h e a v e r a g e o f t h e i n i t i a l w e i g h t and f i n a l w e i g h t o f t h e b e d . T h i s model can be u s e d t o work out k 3 , E 3 and th e n s o l v e f o r C„(t ) , C n ( t ) and C . ( t ) . K B A Fo r K e r o g e n R e c a l l e q u a t i o n ( 3 . 2 1 ) , dC KW F 0 C K o ~ F 2 C K 2 - F,C K1 " r K = (3.21) d t By a s s u m p t i o n C K 1 = C K 2 = C K b e c a u s e o f b a c k m i x i n g , and W=constant then e q u a t i o n (3.21) becomes, d C K F 0 C K o - F 2 C K - F , C K " r K = W (3.27) d t S u b s t i t u t e (3.24) i n t o (3.27),. d C K F 0 C K o - F 2 C K ~ F , C K - k,C KW = W (3.28) d t R e a r r a n g i n g (3.28) g i v e s , F 0 C K o F , F 2 d C K - (k, + + ) C K = (3.29) W W W d t 44 and A = F o K o W Fi F 2 B = (k,+ — + —-) W W dC K = A - BC K d t (3.30) For Bitumen R e c a l l equation (3.22), dCBW rB - F 2 C B 2 " F i C B 1 = (3.22) dt For C B 1 = C B 2 = Cg, and t a k i n g W consta n t , and s u b s t i t u t i n g (3.25) i n t o (3.22), g i v e s d C B f,k,C KW - k 2C BW - ( F , + F 2 ) C B = W (3.31) dt Rearranging (3.31) g i v e s , F1 F 2 dC B f , k , C K " ( + * k 2 ) C B = (3.32) W W dt Let C = f , k , F, F 2 D = + — + k 2 W W To s o l v e for C „ , equat ion ( 3 . 3 0 ) and ( 3 . 3 2 ) have to b b taken t o g e t h e r . Us ing L a p l a c e t r a n s f o r m a t i o n , these become, A - B t C K = — ( 1 - e ) ( 3 . 3 3 ) B -Dt - B t C B = CA( C n + C 1 2 e .+ C 1 3 e ) ( 3 . 3 4 ) 1 where C\]= BD 1 C ] 2 : (D 2 -BD) C 1 3 = (B 2 - B D ) Then Kerogen = KBW ( 3 . 3 5 ) (mass) Bitumen = CBW ( 3 . 3 6 ) (mass) For O i l R e c a l l equat ion ( 3 . 2 3 ) , d C A V r A " F g C A = dt ( 3 . 2 3 ) 46 S u b s t i t u t e (3.26) i n t o ( 3 . 2 3 ) , d C A V f 2 k 2 C B W - k 3 C A V - F q C A = (3 .37) dt f 2 k 2 C B W Fg d C A - C A ( — + k 3 ) = (3 .38) V V dt L e t P f 2 k 2 C B W . F g v Q = — + k 3 v v t h e r e f o r e , P - Q t C A = — ( 1- e ) (3 .39) Q T o t a l o i l accumulated over t ime, t=0 and t=t t O i l = / C A F q d t (3 .40) 0 Y i e l d P r e d i c t i o n s of e q u a t i o n 3.40 w i l l be compared w i t h the accumulated o i l y i e l d determined by sampl ing the o u t l e t v a p o u r . 47 4. EXPERIMENTAL EQUIPMENT AND PROCEDURE* 4.1 P y r o l y s i s A p p a r a t u s The a p p a r a t u s u s e d i n t h i s t h e s i s was o r i g i n a l l y d e s i g n e d a n d b u i l t by A. J a r a l l a h ' 2 1 f o r c o a l p y r o l y s i s . A number o f m o d i f i c a t i o n s were made t o i m p r o v e t h e o p e r a t i o n and r e l i a b i l i t y o f t h e a p p a r a t u s . The d e s i g n c h a r a c t e r i s t i c s o f t h e m a j o r u n i t s a r e l i s t e d i n T a b l e 9. A s c h e m a t i c d i a g r a m o f t h e e x p e r i m e n t a l a p p a r a t u s i s shown i n F i g u r e 5. A new f e e d s y s t e m was i n s t a l l e d t o r e p l a c e t h e o r i g i n a l v i b r a t o r y f e e d e r w h i c h was. d i f f i c u l t t o c o n t r o l a n d was n o t d e s i g n e d t o h a n d l e p a r t i c l e s b e l o w 1mm d i a m e t e r . The new s y s t e m i n c l u d e s a p l e x i - g l a s s h o p p e r , a r o t a r y f e e d e r and a i n c l i n e d g l a s s s e c t i o n . The f e e d h o p p e r was 305mm h i g h x 165mm d i a m e t e r . I t h a d a c o n i c a l b o t t o m w h i c h was f i t t e d w i t h a 12.5mm d i a m e t e r b a l l v a l v e . A p l a s t i c t u b e c o n n e c t e d t h e f e e d h o p p e r a n d t h e i n c l i n e d i n l e t p i p e s e c t i o n t o b a l a n c e t h e p r e s s u r e i n t h e f e e d h o p p e r w i t h t h a t i n t h e r e a c t o r i n o r d e r t o g e t a c o n s t a n t f e e d r a t e . A s y n t r o n m a g n e t i c v i b r a t o r ( M o d e l V-2-B) was mounted on t h e b o t t o m o f t h e h o p p e r w h i c h a i d e d t h e f l o w o f t h e o i l s h a l e o u t o f t h e r o t a r y v a l v e . The v a l v e r o t a t i o n s p e e d was c o n t r o l l e d by t h e G K H e l l e r m o t o r c o n t r o l l e r . B e c a u s e o f t h e low f e e d r a t e r e q u i r e d , a 30:1 g e a r r e d u c t o r was i n s t a l l e d . The c o n t r o l l e r was a l w a y s s e t * The a u t h o r i s i n d e b t e d t o D r . G.K. Khoe who a s s i s t e d w i t h t h e m o d i f i c a t i o n s t o t h e a p p a r a t u s , a n d made many o f t h e im p r o v e m e n t i n t e c h n i q u e s a n d h e l p e d c a r r y o u t some o f t h e e x p e r i m e n t a l r u n s . TABLE 9: Design C h a r a c t e r i s t i c s of Spouted Bed Pyro lyzer System R e a c t o r : Material - 317 Stainless Steel Inside diameter - 128mm Wall Thickness - G.Gmm Cone Angle - 70' Disengaging Section Diameter - 255mm Height (Includes cone and disengagement sect ion) - 1.22m Spent Shale Receiver: Material - Mild Steel Outside Diameter - 305mm Height - 0.91m 0 i 1 Sha1e Hopper: Material Steel - Plexi-glass Outside Diameter - 165mm Height - 305mm Spouted Bed Furnace: Electrical Rating - 6.9kW Maximum Temperature - 1200'C Heaters: 6 1/4-Round 304mm high x 178mm I.D. Heated Length - 0.69m Spouted Gas Preheater: Electrical Rating - 8.45kW Maximum Temperature - 1200'C Heaters: 4 semi-cy1inderica1 69.85mm x 44.45mm I.D Flexible electrical heating tape Heated Length - 0.69m 0 I 1 Sha1e Feeder: Rotary Feeder 0 0 Gas-Sol id Cycl Condenser: 0 i1 Rece i ver : Oil F i 1 t e r : P i p i ng: Material - Stainless Steel Diameter - 150mm Cylinder Height - 500mm Cone Height - 300mm Shell - 316 Stainless Steel Inside Diameter - 128mm Wall Thickness - 6.6mm Tubes - 6 U-tubes 0.86m long Diameter - 12.7mm Area - 4130 cm1 Material - Glass and Stainless Inside Diameter - 229mm Height - 305mm Materia! - Stainless steel Diameter of o r i f i c e - 19.1m Ma ter I a 1 - 316 Stainless steel 5: A S c h e m a t i c D i a g r a m f o r t h e E x p e r i m e n t a l A p p a r a t u s 51 below 10% of t h e maximum s p e e d r a t e a n d s l i g h t f l u c t u a t i o n s were r e c o r d e d . F o r t h i s r e a s o n , a h i g h e r g e a r r a t i o r e d u c e r i s recommended. The o i l s h a l e d r o p p e d f r o m t h e r o t a r y v a l v e t h r o u g h t h e r u b b e r t u b i n g o n t o t h e c o p p e r p i p e t h a t was f i t t e d i n s i d e a 25.4mm x 150mm QVF g l a s s t u b e . A s e c o n d s y n t r o n v i b r a t o r was a t t a c h e d t o t h e end o f t h e c o p p e r p i p e t o p r o m o t e t r a n s f e r of t h e o i l s h a l e d i r e c t l y t o t h e i n l e t p i p e o f t h e r e a c t o r . T r i a l s h a d been done i n w h i c h t h e o i l s h a l e d r o p p e d d i r e c t l y o n t o t h e g l a s s t u b i n g i t s e l f , i . e . i n t h e a b s e n c e o f t h e c o p p e r p i p e , b u t a c c u m u l a t i o n o f t h e s o l i d s and e v e n t u a l b l o c k a g e a t t h e e n t r a n c e o f t h e i n l e t o c c u r r e d . The o f f - g a s s a m p l i n g t r a i n f r o m w h i c h t h e o i l y i e l d s were t o be d e t e r m i n e d was c o m p l e t e l y r e b u i l t f r o m J a r a l l a h ' s d e s i g n 1 2 3 . I n s t e a d o f s t a i n l e s s s t e e l i m p i n g e r s , g l a s s i m p i n g e r s were u s e d . T h e s e were e a s i e r t o h a n d l e a n d p r o v i d e d a c l e a r v i e w d u r i n g t h e e x p e r i m e n t . The i m p i n g e r t r a i n was immersed i n a t a n k f i l l e d w i t h c r a c k e d i c e and w a t e r . The wh o l e s y s t e m r e s t e d on a t r o l l e y w h i c h c o u l d be c a r r i e d t o a fume h o o d f o r o i l r e c o v e r y . The p o s i t i o n o f t h e o f f - g a s s a m p l i n g p o i n t was a l s o r e l o c a t e d . P r e v i o u s l y , i t was a t t h e o u t l e t p i p e o f t h e d r y i n g c o l u m n t h a t was p l a c e d a f t e r t h e l a s t i m p i n g e r . H o w e v e r , some o f t h e m e t h y l e n e c h l o r i d e s o l u t i o n h a d e v a p o r a t e d w i t h t h e gas and t h e r e f o r e a f f e c t e d t h e gas c h r o m a t o g r a p h r e s u l t s . The o f f - g a s s a m p l i n g p o i n t was t h e r e f o r e l o c a t e d a t t h e u p s t r e a m o f t h e f i r s t i m p i n g e r ( r e f e r t o F i g u r e 5 ) . 5 2 The h e a t i n g s y s t e m was a l s o m o d i f i e d . The p r e h e a t e r h a d t o be r e b u i l t b e c a u s e t h e o r i g i n a l s e m i - c y l i n d r i c a l h e a t e r s were b u r n t o u t and a s t h e h e a t e r s were t o u c h i n g t h e s u r f a c e o f t h e s t a i n l e s s s t e e l p i p e , a h o l e h a d been made i n t h e p i p e a s w e l l . An e l e c t r i c f o r c e d a i r d u c t h e a t e r e l e m e n t e n c l o s e d i n a f l u i d i z e d s a n d bed was t h e n t r i e d . The s a n d was u s e d t o i m p r o v e t h e h e a t t r a n s f e r and a v o i d h o t s p o t s i n t h e h e a t e r b o x . T h i s s y s t e m f a i l e d a s t h e e l e c t r i c a l e l e m e n t o v e r h e a t e d and m e l t e d . F i n a l l y , t h e L i n d b e r g h a l f c i r c l e h e a t i n g u n i t was u s e d . T h e s e c o n s i s t e d o f 4 s e m i c y l i n d r i c a l h e a t e r s o f 44.5mm ID w h i c h were c l a m p e d a r o u n d t h e 3.8cm d i a m e t e r p i p e t o g i v e a h e a t e d l e n g t h o f 698.5mm. The t o t a l e l e c t r i c a l r a t i n g o f t h e s e h e a t e r s was 7.2kW. To a v o i d a s h o r t c i r c u i t i n g o f t h e s e h e a t e r s a s o c c u r r e d i n t h e p r e v i o u s c a s e , an a i r gap o f 1.5mm was l e f t b e t w e e n t h e h e a t i n g e l e m e n t a n d t h e p i p e s e c t i o n . To i n c r e a s e t h e r a t e o f h e a t t r a n s f e r , t h e p i p e s e c t i o n was f i l l e d w i t h c e r a m i c R a s c h i g r i n g s . A t h e r m o c o u p l e was i n s e r t e d i n t h e a i r gap, and t h e t e m p e r a t u r e was c o n t r o l l e d by an Omega c o n t r o l l e r . As i t was t h e t e m p e r a t u r e i n t h e a i r gap t h a t was m e a s u r e d , t h e c o n t r o l was a b i t d i f f i c u l t . I n t h e o r i g i n a l d e s i g n , t h e mai n h e a t e r on t h e s p o u t e d bed r e a c t o r c o n s i s t e d o f 16 q u a r t e r - c y l i n d r i c a l e l e c t r i c a l e l e m e n t s e a c h o f 178mm ID and 152mm h e i g h t . T h e s e were mounted a r o u n d t h e m a i n c y l i n d r i c a l s e c t i o n o f t h e r e a c t o r t o f o r m a s h e l l . An a i r g ap o f 18mm e x i s t e d b e t ween i n s i d e o f t h e h e a t e r s a n d t h e o u t s i d e s u r f a c e o f t h e r e a c t o r . T h i s 53 r e d u c e d t h e e f f i c i e n c y of h e a t t r a n s f e r and t h e t i m e f o r h e a t i n g up was l e n g t h y . A f t e r r e a r r a n g e m e n t , 6 q u a r t e r - c y l i n d r i c a l e l e c t r i c a l e l e m e n t s were u s e d . The h e a t e d s e c t i o n was 609.6mm h i g h and the t o t a l e l e c t r i c a l r a t i n g s f o r t h e s e h e a t e r s was 6.9kW. The a i r gap was r e d u c e d t o 1.5mm, t h e r e f o r e t h e r a t e o f h e a t t r a n s f e r was i m p r o v e d and t h e h e a t i n g up t i m e was h a l v e d . The t e m p e r a t u r e was c o n t r o l l e d by an Omega c o n t r o l l e r mounted on t h e c o n t r o l p a n e l . T h e r e was a s e r i o u s h e a t l o s s between t h e p r e h e a t e r s and t h e main h e a t e r , t h e r e f o r e a f l e x i b l e e l e c t r i c a l h e a t i n g t a p e ( H e a v i l y i n s u l a t e d Samox) was wrapped a r o u n d t h e c o n i c a l s e c t i o n of t h e r e a c t o r . The t o t a l e l e c t r i c a l r a t i n g was 1.25 kW, and t h e power a p p l i e d was a d j u s t e d by a v a r i a c . B o t h t h e r e a c t o r and t h e downstream p i p e were i n s u l a t e d by 5-7.5cm c e r a m i c b l a n k e t t o p r e v e n t h e a t l o s s t o t h e s u r r o u n d i n g s . O t h e r m o d i f i c a t i o n s i n c l u d e d p r o v i s i o n of new g a s k e t s i n a l l j o i n t s ; and t h e i n s t a l l a t i o n of an i n s e r t i n t h e h o r i z o n t a l p i p e u p s t r e a m of t h e c y c l o n e t o r e d u c e t h e c r o s s - s e c t i o n a l a r e a a v a i l a b l e f o r f l o w , so as t o a v o i d t h e s e t t l i n g of s o l i d s i n t h i s r e g i o n . The t e m p e r a t u r e t h r o u g h o u t t h e a p p a r t u s was measured by by c h r o m e l - a l u m e l t h e r m o c o u p l e s w i t h 316 s t a i n l e s s s t e e l s h e a t h of 1.6mm d i a m e t e r . In t h e r e a c t o r , and t h e p r e h e a t e r s , more r u g g e d K - t y p e t h e r m o c o u p l e s o f 6.3 mm d i a m e t e r were u s e d . 54 4.2 P r o p e r t i e s o f t h e O i l S h a l e The o i l s h a l e s s t u d i e d i n t h i s p r o j e c t were s u p p l i e d by th e R e s e a r c h P r o d u c t i v i t y C o u n c i l of New B r u n s w i c k . The o r i g i n a l c o a r s e o i l s h a l e , a s r e c e i v e d was r e d u c e d i n s i z e u s i n g a jaw c r u s h e r . I t was t h e n s c r e e n e d t o 3 d i f f e r e n t s i z e s : 2-4mm, 1-2mm and 0.5-1mm w h i c h were s t o r e d i n s e p a r a t e p l a s t i c b u c k e t s . R e p r e s e n t a t i v e s a m p l e s o f t h e o i l s h a l e s were s e n t t o t h e G e n e r a l T e s t i n g L a b o r a t o r i e s o f V a n c o u v e r f o r p r o x i m a t e a n d u l t i m a t e a n a l y s e s . The r e s u l t s a r e l i s t e d i n T a b l e 10. T a b l e 11 g i v e s t h e a n a l y s i s o f o i l s h a l e a s h and c a r b o n . I t c a n be seem t h a t t h e r e i s s l i g h t v a r i a t i o n among t h e d i f f e r e n t s i z e s . T a b l e 12 l i s t s t h e m o d i f i e d F i s c h e r A s s a y r e s u l t s f o r t h e d i f f e r e n t s i z e s o f o i l s h a l e A and r e p o r t s t h a t l a r g e r s i z e f r a c t i o n s have b e t t e r o i l y i e l d s . T h e s e a n a l y s e s were c a r r i e d o u t a t t h e R e s e a r c h a n d P r o d u c t i v i t y C o u n c i l o f New B r u n s w i c k . 4.3 G e n e r a l P r o c e d u r e The b a s i c mode o f o p e r a t i o n w i t h t h i s p y r o l y s i s u n i t i s t o f i l l t h e r e a c t o r w i t h i n e r t s o l i d s ( s a n d o r s p e n t s h a l e ) , h e a t t o t h e r e q u i r e d t e m p e r a t u r e w i t h a i r , t h e n s w i t c h t h e gas t o N 2 / C 0 2 o r N 2 . The v e l o c i t y o f gas i s s e t a t 10% abo v e t h e minimum s p o u t i n g v e l o c i t y . (The c a l c u l a t i o n f o r mimumum s p o u t i n g v e l o c i t y i s i n c l u d e d i n t h e c o m p u t e r p r o g r a m - P r o f i l e . ) The o i l s h a l e i s f e d i n t o t h e r e a c t o r o v e r a p e r i o d o f 1 1/2 h o u r . I n t h i s c a s e , t h e h e i g h t o f t h e bed w i l l g r a d u a t e l y r i s e w i t h t i m e . The o i l i s r e c o v e r e d f r o m TABLE 10: Proximate and U l t i m a t e A n a l y s i s of Blend of O i l S h a l e A Proximate A n a l y s i s % M o i s t u r e % Ash % Vol at 11es % F i xed Carbon U l t i m a t e A n a l y s i s (Dry B a s i s ) % C % H % N % S •/. Cl 7. Ash % Oxygen ( d i f f ) 1 .69 72 . 53 25 . 17 0.61 100.00 15.91 2.05 ' 0.51 0.92 0.01 73.78 6 .82 100.00 TABLE 11: A n a l y s i s of O i l S h a l e Ash and Carbon S i z e F r a c t i o n (mm) 0.5-1.0 1-2 2-4 T o t a l O r g a n i c Carbon (%) 10.2 10.6 12.4 T o t a l Carbon (%) 12.3 13.3 14.7 SiO, (wt%) 43.4 41.9 41.6 A ' '0> 10.6 10.4 10.3 Fe;0, 4.56 4.38 4.36 C a n 8.32 9.03 8. 10 M 9 n 3.38 3.57 3.20 N a ' ° 0.95 1.05 1.05 K ' ° 1.63 1.60 1.57 s o > 1 .70 1 .87 2.22 Loss on I g n i t i o n 24.1 25.1 26 1 Ba (ppm) • 3 10 306 283 M n 602 568 508 S r 309 333 302 T 1 2910 2560 2890 * D i g e s t e d samples In mixture of a c i d s , a n a l y z e d s o l u t i o n by i n d u c t i v e l y c o u p l e d Argon Plasma S p e c t r o g r a p h Carbon and Su l p h u r by Leco I n d u c t i o n Furnace A n a l y s e s by Can-Test L t d . TABLE 1 2 : M o d i f i e d F i s c h e r Assay of O i l S h a l e s Shale Sample A Shale Sample B Size Fraction (mm) 0.5 0.5-1 .0 1-2 2-4 4 0.5-1.0 1.0-2.0 Oil Yield (wt0/.) 5 . 2 5.5 7.8 8 . 1 7 .95 8 . 1 7.6 7 . 85 7 .6 2 . 9 4 . 5 Wa ter Yield- (wt%) 2 . 1 2.0 2 . 2 2 . 3 2 . 25 2 . 2 1 .8 2.0 1 .6 3.2 2 . 4 Gas Lost (wt*/.) 1.2 5.5 3.0 1 .6 2 . 3 1 . 7 3.6 2 . 7 4 . 8 1 . 4 3 . 1 Char Yield ( d i f f . ) 91.5 87 .0 87 .0 88 .0 87 .0 88 .0 86 .0 92 . 5 90.0 Oil Yield (I.gal/ton) 12.1 12.7 18.0 18.6 18.9 17.4 17.4 6 . 7 10.4 Oil Density (g/ml at 15.5'C) 0.85G2 0. 8G70 0.8670 0.8563 0.8752 0.8573 0.8634 0.8678 0.8763 Analysed at Research and Productivity Council, Frederiction 58 the o f f - g a s sampling t r a i n which i s a c t i v a t e d 5 minutes a f t e r the o i l shale feeding begins. The gas samples are obtained by s y r i n g e d u r i n g the experiment. Other sets of experiments were c a r r i e d out i n which the height of the bed m a t e r i a l was kept c o n s t a n t . T h i s was achieved by r e l e a s i n g p a r t of the overflow m a t e r i a l through a side pipe at the c o n c i a l s e c t i o n of the spouted bed at s p e c i f i c time i n t e r v a l s (5 or 10 minutes). The overflow m a t e r i a l dropped through a b a l l v a l v e i n t o a s t a i n l e s s s t e e l pipe s e c t i o n with an end-cap. A f t e r c l o s i n g the b a l l v a l v e , the end-cap was unscrewed to r e l e a s e the overflow m a t e r i a l . Then the end-cap was put on again, and the b a l l v a l v e was opened to allow more m a t e r i a l to be removed. In t h i s way the reac t o r operated i n a quasi-steady s t a t e , r a t h e r than having the s o l i d s holdup s t e a d i l y i n c r e a s i n g . 4 . 4 D e t a i l e d O p e r a t i n g Procedure The screened o i l shale (about 2 kg) was loaded i n t o the feed hopper. The r e q u i r e d amount of i n e r t s (Ottawa sand -14 +20 mesh, 5.9kg) was charged i n t o the r e a c t o r from the top. This give a s t a t i c bed height of 33cm. During c h a r g i n g , the a i r was turned on at a low rate to prevent the sand from dropping i n t o the spouting gas i n l e t pipe and c r e a t i n g a blockage. To conserve n i t r o g e n and carbon d i o x i d e , a i r was f i r s t used for spouting to heat up the sand to the d e s i r e d temperature. The tube s e c t i o n of the o f f - g a s sampling l i n e was i n s t a l l e d and the b a l l valve c l o s e d . Then the a i r flow 59 was a d j u s t e d t o t h e o p e r a t i n g • f l o w , and t h e main r e a c t o r h e a t e r , s p o u t i n g gas p r e h e a t e r , t a p e h e a t e r and t h e c o o l i n g water f o r t h e c o n d e n s e r were a l l t u r n e d on. D u r i n g t h e h e a t i n g up p e r i o d , t h e a s s e m b l y o f the r e m a i n i n g p a r t s i n c l u d i n g t h e i m p i n g e r t r a i n was c a r r i e d o u t . The i m p i n g e r s were p r e p a r e d as e x p l a i n e d i n S e c t i o n 4.5. Soon a f t e r t h e r e q u i r e d t e m p e r a t u r e of about 500°C was r e a c h e d , t h e a i r was r e p l a c e d by a m i x e d gas s t r e a m o f C 0 2 and N 2 (volume r a t i o 15:85), and a p e r i o d o f 15 m i n u t e s was a l l o w e d t o p u r g e t h e a i r b e f o r e o i l s h a l e f e e d i n g was s t a r t e d . I t was r e c o g n i s e d t h a t when t h e t e m p e r a t u r e r e a c h e d above 5 0 0 ° C . the a i r s t r e a m s h o u l d be r e p l a c e d w i t h i n e r t g as, a s t h e r e was some o i l w h i c h had been d e p o s i t e d i n p r e v i o u s e x p e r i m e n t s a l o n g t h e p i p e , w h i c h c o u l d be i g n i t e d i f t h e t e m p e r a t u r e became t o o h i g h . B e f o r e t h e o i l s h a l e f e e d i n g was begun, a z e r o f e e d r a t e gas sample was o b t a i n e d . T h i s was done by o p e n i n g t h e b a l l v a l v e of t h e i m p i n g e r t r a i n , f o l l o w e d by e x t r a c t i n g a b l a n k gas sample u s i n g a s y r i n g e . The b a l l v a l v e was t h e n c l o s e d . The sample was i n j e c t e d i n t o t h e gas c h r o m a t o g r a p h . The o i l s h a l e f e e d e r c o n t r o l l e r was s e t a t t h e d e s i r e d p o i n t and t h e f e e d e r t u r n e d on. The t i m e a t w h i c h o i l s h a l e f e e d i n g s t a r t e d was r e c o r d e d . A f t e r 5 m i n u t e s , t h e b a l l v a l v e o f t h e i m p i n g e r t r a i n was opened and t h e gas sample pump was t h e n t u r n e d on and o i l c o l l e c t i o n s t a r t e d . The f i v e m i n u t e s d e l a y was d e s i g n e d t o e x c l u d e t h e n o n - s t e a d y s t a t e e f f e c t s d u r i n g t h e i n i t i a l m i n u t e s o f f e e d i n g . Gas sample 60 flow rate was a d j u s t e d to the d e s i r e d value and the gas sample rotameter r e a d i n g was recorded. Gas samples were e x t r a c t e d at r e s p e c t i v e l y 15, 30, 45, 60, 75 and 80 minutes. A f t e r the l a s t e x t r a c t i o n , the feeder, gas pump and heaters were turned o f f . O i l c o l l e c t i o n l a s t e d f o r 75 minutes (5 to 80 minutes). A l l temperatures and p r e s s u r e s throughout the system were recorded, and the spouting gas rotameter reading was taken. The n i t r o g e n i n l e t gas stream was used to c o o l the system. The feed hopper was emptied of unused o i l shale to determine the o i l s h a l e feed r a t e . 4.5 O i l Coll e c t i o n The o i l vapour i s c o l l e c t e d by i s o k i n e t i c sampling of the o f f - g a s . The v e l o c i t i e s of the gases in the main pipe and the sampling tube are set equal. The f i r s t impinger was a 9.5mm x 30mm QVF g l a s s tube f i l l e d with g l a s s wool to provide a l a r g e c o n t a c t i n g s u r f a c e f o r condensation and f i l t e r i n g e f f e c t s . T h i s a l s o helped to r e t a i n h e a v i e r o i l f r a c t i o n . The second to the f i f t h impingers were f i l l e d with a mixture of methlylene c h l o r i d e and water (2:1 volume r a t i o ) . The s i x t h impinger c o n t a i n e d methanol to t r a p the remaining o i l - m i s t and e n t r a i n e d methlyene c h l o r i d e . The l a s t impinger contained water to t r a p any e n t r a i n e d methanol. The c o n t a i n e r s were i n t e r c o n n e c t e d in the l a s t minute before the sampling l i n e was a c t i v a t e d inorder to prevent a b a c k s p i l l of methlyene c h l o r i d e from the second impinger i n t o the 61 f i r s t one. This could contaminate' the gas samples that were extracted through a septum at the upstream of the f i r s t impinger. For this reason, a s l i g h t vacuum was always maintained during an interruption, and the ice was added to the water bath just before the start of the o i l c o l l e c t i o n . The day after the experiment, the impingers, interconnecting pipes and the tube sections of the sampling li n e s which connected to the main off-gas li n e were thoroughly rinsed with solvents (methlyene chloride and methanol), and then cleansed and dried before the next experiment. The solution in the impingers and the washing solution would then be f i l t e r e d to remove a l l fine p a r t i c l e s . The water was separated from the methyl chloride and methanol - o i l solution by using separation funnel. Any remaining trace of water was removed by adding sodium sulphate to the solution. The solution was then f i l t e r e d and evaporated in a rotrary evaporator (at 55°C, 20mmHg) to recover the o i l . The recovered o i l was weighed and the weight was recorded. 4.6 Gas Analysis The gas analysis was performed on a Hewett-packard 5710A gas chromatograph with a 3388A automatic integraton system. The column separates hydrogen, oxygen, nitrogen, methane, carbon dioxide and carbon monoxide. Because of the l i m i t a t i o n of this gas chromatograph, the hydrocarbons with molecular weight higher than methane cannot be detected. For 62 a few experiments , the gas analysis was done by using a another chromatograph by K.C. T e o < 3 5 ) which was able to resolve upto C 6 hydrocarbons. The gas sample was extracted by a syringe through a septum at the upstream of the f i r s t impinger. The gas samples were analyzed and the values reported for each run. 4 . 7 Spent Shale Determination and A n a l y s i s After the experiment, the reactor and the cyclone receiver were emptied and the contents of each one were separatly weighed. The weight of the spent shale produced was obtained by subtracting the weight of o r i g i n a l Ottawa sand from the t o t a l weight of above. Although some solids have passed through the cyclone and were not recovered, the weight of the material from the dust receiver was taken to represent the s o l i d entrained. 63 5. RESULTS AND DISCUSSIONS 5.1 General considerations There were 26 successful experiments done on the New Brunswick o i l shale A. The experimental conditions for each run are l i s t e d in Table 13. The o i l y i e l d i s calculated from the weight of o i l co l l e c t e d from the sampled gas, multiplied with the r a t i o of the mass flow rate of the sampled gas streams to the t o t a l gas output from the reactor, and then divided by the o i l shale feed rate. Care was espe c i a l l y required in washing the impinger t r a i n and sampling l i n e s to recover o i l from the sampled gas because the f i n a l o i l product weighed about 1-4 gm. The gas y i e l d by species is calculated from the individual gas analysis, the t o t a l gas output from the reactor and the o i l shale feed rate. Because of the l i m i t a t i o n of the gas chromatograph, hydrocarbon gases of molecular weight higher than methane and gaseous sulphur, and nitrogen compounds are not detected. However, i t i s expected that the quantities of these gases are very small. The spent shale y i e l d i s calculated from the weight of shale remaining in the reactor and cyclone receiver vessel after the run and the o i l shale feed rate. Data indicated that about 2/3 of the o i l shale feed remained in the reactor and cyclone receiver , and 1/3 had passed through the cyclone as entrained f i n e s . Because the cyclone is oversized, the c o l l e c t i o n e f f i c i e n c y is not high. Since a TABLE 13: Experimental C o n d i t i o n s f o r Each Run Expt. P a r t i c l e Temperature Shale I n i t i a l Bed Pyrolyzlng Gas No Size Bed Inlet Feedrate Sand/Spent Shale N i / C O i mm C O (kg/hr) (kg) (vol'/.) 2 0.5-1 509 509 1 . 49 5.9/0.0 85/15 3 0.5-1 505 505 1 .37 5.9/0.0 85/15 4 1-2 503 503 1 . 65 5.9/0.0 85/15 5 1-2 501 501 1 . 33 5.9/0.0 85/15 6A 2-4 507 518 1 . 25 5.9/0.0 85/15 6B 1-2 540 528 1 . 29 5.9/0.0 85/15 7 1-2 554 554 1 .33 5.9/0.0 85/15 8 1-2 454 450 1 . 39 5.9/0.0 85/15 9 1-2 530 530 1 . 39 5.9/0.0 85/ 15 10 2-4 506 505 1.21 5.9/0.0 85/ 15 1 1 1-2 477 470 1 . 52 5.9/0.0 85/15 12 2-4 506 502 2.71 5.9/0.0 85/15 12A 2-4 506 502 1 .94 5.9/0.0 85/15 14 1-2 500 491 1 . 35 5.9/0.0 100/0 15 1-2 480 470 1 . 37 0.0/5.0 85/15 16 1-2 470 470 1 .26 0.0/5.0 85/15 17 1-2 500 500 1 .27 5.9/0.0 100/0 18 0.5-1 501 498 1 . 27 5.9/0.0 85/15 19 1-2 470 480 3 . 39 0.0/5.0 85/15 20 1-2 472 476 4 .45 0.0/5.0 85/ 15 2 1 2-4 5 18 5 18 1 . 3 5.9/0.0 85/15 22 1 -2 470 480 1 .63 2 . 4/3.0 85/ 15 23 1-2 474 474 1.13 4.1/1.5 85/15 24 1-2 500 500 1 .89 5.9/0.0 85/15 25 1-2 505 506 3.32 5.9/0.0 85/ 15 26 2-4 47 1 476 1 . 35 5.9/0.0 85/15 ON 65 s i g n i f i c a n t amount of fines passed through the cyclone, therefore an o v e r a l l mass balance could not be closed. It was found that a small fracti o n of the fines were stuck onto the wall of the cyclone, and mechancial brushing was employed in Runs 16 to 26 to recover as much of the fines as possible to obtain a more r e l i a b l e spent shale y i e l d . 5.2 E f f e c t of Temperature on O i l Yi e l d and Composition The study of the temperature e f f e c t was done on two feed s i z e s : 1-2mm and 2-4mm, at a constant feed rate of 1.40 and 1.28kg/h respectively. A l l of these experiments were done in a bed of s i l i c a sand, with pyrolyzing gas of 15% C0 2 and 85% N 2. The height of the bed increased gradually as the feed shale accumulated in the reactor during the experiment. There are two temperatures of potential importance in the o i l shale pyrolysis experiments; the i n l e t temperature and the bed temperature. The i n l e t temperature refers to the temperature of the preheated gas where i t meets the shale at the bed i n l e t , and the bed temperature refers to the average temperature in the annulus of the spouted bed i t s e l f . If the heating rate in the i n l e t region i s low, the p a r t i c l e w i l l reach pyrolysis temperature only af t e r passing into the bed. Then the bed temperature w i l l govern the o i l y i e l d . If the heating rate in the i n l e t region i s high and the p a r t i c l e begins to pyrolyze before reaching the bed, the i n l e t temperature w i l l be important. In a l l experiments, the i n l e t temperature and the bed temperature were kept to the same 66 v a l u e w i t h i n e x p e r i m e n t a l e r r o r e x c e p t f o r Run 6B. The c a l c u l a t e d t e m p e r a t u r e h i s t o r y f o r t h e o i l s h a l e p a r t i c l e s was p r e s e n t e d i n S e c t i o n 2.5. I t was shown t h a t t h e p a r t i c l e s a r e s t i l l n e a r room t e m p e r a t u r e a t t h e e n t r a n c e o f t h e s p o u t e d b e d . I n o t h e r w o r d s , p y r o l y s i s o f t h e s h a l e p a r t i c l e s d o e s n o t s t a r t b e f o r e t h e p a r t i c l e s a r e i n t h e be d , t h u s t h e i n l e t t e m p e r a t u r e i s l e s s i m p o r t a n t i n t h i s c a s e . T a b l e 14 l i s t s t h e r e s u l t s . F i g u r e 6 and 7 a r e p l o t s o f o i l y i e l d v e r s u s t e m p e r a t u r e . I t c a n be s e e n t h a t a maximum o i l y i e l d e x i s t s a t some optimum t e m p e r a t u r e . F o r p a r t i c l e s of 1-2mm, t h e optimum t e m p e r a t u r e i s a r o u n d 470-490°C. The o i l y i e l d i s 7.1% w h i c h r e p r e s e n t s 8 9 . 3 % o f t h e m o d i f i e d F i s c h e r A s s a y y i e l d . I t c a n be see n t h a t t h e r e s u l t f o r Run 6B i n F i g u r e 6 i s s l i g h t l y a bove t h e smooth c u r v e t h r o u g h t h e o t h e r r e s u l t s . I f t h e o i l y i e l d i s p l o t t e d a g a i n s t t h e i n l e t t e m p e r a t u r e t h e c u r v e w i l l seem t o be s m o o t h e r , so i t was t h o u g h t t h a t t h e t e m p e r a t u r e d i f f e r e n c e o f 12°C b e t w e e n t h e i n l e t t e m p e r a t u r e a n d t h e bed t e m p e r a t u r e h a s p r o d u c e d t h i s r e s u l t . H owever, t h e t e m p e r a t u r e h i s t o r y c a l c u l a t i o n s u g g e s t e d l i t t l e e f f e c t o f i n l e t t e m p e r a t u r e . E x p e r i m e n t 6B s h o u l d be r e p e a t e d t o v e r i f y t h e r e l i a b i l i t y o f t h i s d a t a p o i n t . F o r t h e 2-4mm p a r t i c l e s i z e , t h e s m a l l number o f d a t a p o i n t s p r e c l u d e t h e d e t e r m i n a t i o n o f an optimum t e m p e r a t u r e . The few r e s u l t s i n F i g u r e 6 s u g g e s t an optimum somewhere between 490 and 510°C. A t 505°C t h e o i l y i e l d was 7.4% w h i c h TABLE 14: E f f e c t of Temperature on CHI Y i e l d Expt Particle Temperature Shale Oil Yield No. Size Bed Inlet Feedrate wt% %Fischer (mm) C O (kg/hr) Assay 1 1 5 4 9 6B 7 1-2 1-2 1-2 1-2 1-2 1-2 1-2 454 477 501 503 530 540 554 450 470 501 503 530 528 554 1 . 39 1 .52 1 . 33 1 . G5 1 . 39 1 . 29 1 . 33 54 . 1 89 .3 79 73 4 1 66 30 26 10 6A 2 1 2-4 2-4 2-4 2-4 47 1 506 507 518 476 505 518 518 1 . 35 1.21 1 . 25 1 . 30 4 . 2 7 . 2 7 . 4 3 . 3 53 . 3 9 1.7 94 . 3 42.0 I n i t i a l Bed Compostlon: Ottawa sand -14 +20 mesh I n i t i a l Weight : 5 .9 kg Spouting Gas: 85% N, - 15°/. CO; Fig 6: Oil Yield Versus Temperature Plot 10 Dp = 2 -4 mm Fo = 1.21 - 1.35 kg /hr 2 - 0 - | , — , 1 -, , 1 ! 420 4 4 0 460 4 8 0 5 0 0 520 5 4 0 560 BED TEMPERATURE (C) Fig 7: Oil Yield Versus Temperature Plot 70 r e p r e s e n t s 9 4 . 3 % o f t h e m o d i f i e d F i s c h e r A s s a y y i e l d . H owever, more e x p e r i m e n t s a r e r e q u i r e d t o q u a n t i f y t h e t e m p e r a t u r e optimum. F i g u r e 8 shows a p l o t o f t h e p e r c e n t a g e o f t h e F i s c h e r A s s a y o i l y i e l d v e r s u s t e m p e r a t u r e p l o t s f o r b o t h 1-2mm and 2-4mm p a r t i c l e s i z e s . I t c a n be see n t h a t t h e c u r v e f o r t h e 2-4mm i s s h i f t e d s l i g h t l y t o t h e r i g h t , r e f l e c t i n g a h i g h e r optimum t e m p e r a t u r e f o r maximum o i l y i e l d c o m p a r e d t o t h e 1-2mm s i z e . T h i s m i g h t a r i s e b e c a u s e t h e 2-4mm p a r t i c l e i s l a r g e r a n d w i l l h a v e l a r g e r i n t e r n a l t e m p e r a t u r e g r a d i e n t s , a nd w i l l r e q u i r e a l o n g e r h e a t i n g p e r i o d o r h i g h e r t e m p e r a t u r e t o h e a t up t h e e n t i r e p a r t i c l e f o r c o m p l e t e p y r o l y s i s . As m e n t i o n e d e a r l i e r , more e x p e r i m e n t s a r e r e q u i r e d t o be done f o r 2-4mm s i z e s a t 500-550°C. H o w e v e r , t h e t r e n d o f t h e F i s c h e r A s s a y o i l y i e l d - T e m p e r a t u r e c u r v e i n F i g u r e 8 i s i n a g r e e m e n t w i t h t h o s e o b s e r v e d by L i u e t a l < 2 0 > ( r e f e r t o F i g u r e 2 ) . They h a v e a l s o c o n c l u d e d t h a t t h a t t h e r e i s an opti m u m t e m p e r a t u r e c o r r e s p o n d i n g t o a maximum o i l y i e l d . T a b l e 15 l i s t s t h e c o m p o s i t i o n o f t h e o i l s p r o d u c e d a t d i f f e r e n t t e m p e r a t u r e s f o r p a r t i c l e s o f d i a m e t e r 1-2mm. T y p i c a l o i l s c o n t a i n 8 1 . 5 - 8 3 . 0 % C, 10.6-10.9% H, 1% N and 5-6.8% i s n o t a c c o u n t e d f o r . I t was f i r s t t h o u g h t t h a t t h e u n a c c o u n t e d s p e c i e s p r e s e n t i n t h e o i l s was e i t h e r m e t h a n o l o r m e t h y l e n e c h l o r i d e f r o m t h e s o l v e n t t r a i n . An i n v e s t i g a t i o n was c a r r i e d o u t by d i s s o l v i n g t h e o i l i n e t h y l b e n z e n e and i n j e c t i n g i n t o a 50m l o n g DB5 c a p i l l a r y I—' Fig 8: % Fischer Assay VS Temperature Plot TABLE 15: E f f e c t of Temperature on O i l Y i e l d and C o m p o s i t i o n Expt Temperature No. Bed Inlet (' C) Shale Oil Feedrate wt% (kg/hr) Yield %FIscher Assay Oil Analysis* (wt%) H N S A torn i c Ratio H/C 8 454 450 I .39 4.3 54. 1 11 477 470 1.52 7.2 90.6 5 501 501 1.33 6.3 79.2 4 503 503 1.65 5.8 73.0 6B 540 528 1.29 5.3 66.6 7 554 554 1.33 2.4 30.2 Oil Shale P a r t i c l e Size: 1-2mm I n i t i a l Bed Composition: Ottawa Sand -14 +20 mesh I n i t i a l We ight: 5.9 kg Spouting Gas: 85% Ni - 15% COi 83.03 10.55 1.25 5.17 1.51 82.46 10.66 1.13 0.63 5.12 1.54 81.47 10.70 1.02 6.81 1.57 81.92 10.91 0.88 6.29 1.59 81.77 10.92 0.81 6.50 1.59 * MIcroana1yt1ca1 Analysis ** Unaccounted 7 3 c o l u m n i n a c h r o m o t o g r a p h . R e s u l t s i n d i c a t e d t h a t n e i t h e r m e t h a n o l n o r m e t h y l e n e c h l o r i d e was p r e s e n t . The u n a c c o u n t e d s p e c i e s a r e a s y e t u n i d e n t i f i e d . As t h e p y r o l y s i s t e m p e r a t u r e i n c r e a s e s , t h e a t o m i c H/C r a t i o i n c r e a s e s . A t t h e optimum t e m p e r a t u r e , H/C i s 1.54, w h i c h seems t o be i n a g r e e m e n t w i t h t h e e x p e c t e d v a l u e s f o r s h a l e o i l s p r o d u c e d by p y r o l y s i s . 5.3 E f f e c t o f O i l S h a l e P a r t i c l e S i z e on O i l Y i e l d and C o m p o s i t i o n The s t u d y o f t h e p a r t i c l e s i z e e f f e c t on o i l y i e l d a n d c o m p o s i t i o n was c a r r i e d o u t f o r 2-4, 1-2, a n d 0.5-1mm s i z e s . A l l o f t h e s e e x p e r i m e n t s w e re done a t a b o u t 506°C w i t h 15% C 0 2 and 8 5 % N 2 a s p y r o l y z i n g g a s . The bed was i n i t i a l l y f i l l e d w i t h s i l i c a s a n d , a nd t h e bed h e i g h t i n c r e a s e d g r a d u a l l y w i t h t i m e a s t h e f e e d s h a l e a c c u m u l a t e d d u r i n g t h e e x p e r i m e n t . T a b l e 16 l i s t s t h e r e s u l t s . F i g u r e 9 shows t h e o i l y i e l d v e r s u s mean p a r t i c l e s i z e s . I t c a n be se e n t h a t o i l y i e l d i n c r e a s e s w i t h i n c r e a s i n g p a r t i c l e s i z e . T h i s i s e x a c t l y o p p o s i t e t o t h e o b s e r v a t i o n made by J a r a l l a h * 2 ' on c o a l p y r o l y s i s . He f o u n d t h a t t h e t a r y i e l d d e c r e a s e s w i t h i n c r e a s i n g p a r t i c l e s i z e , a n d h i s e x p l a n a t i o n i s t h a t t h e r e i s an i n c r e a s e d e x t e n t o f s e c o n d a r y r e a c t i o n s w h i c h consume t a r f o r l a r g e r p a r t i c l e s . The e x t e n t o f s e c o n d a r y r e a c t i o n s may be l e s s s i g n i f i c a n t i n o i l s h a l e p y r o l y s i s . I f t h e e x p e r i m e n t a l t e m p e r a t u r e i s h i g h e r t h a n t h e optimum TABLE 16: E f f e c t of P a r t i c l e S i z e on 011 Y i e l d Expt P a r t i c l e Temperature Shale Spent Shale Oil Y i e l d No. Size Bed Inlet Feedrate In Bed wt'/. '/.Fischer (mm) C O (kg/hr) (gm) Assay 18 0.5-1 501 498 1.26 681.0 2.4 43.6 3 0.5-1 505 505 1.37 454.0 4.2 76.4 2 0.5-1 509 509 1.49 510.8 2.4 43.6 5 1.0-2 501 501 1.33 681.0 6.3 79.2 4 1.0-2 503 503 1.65 539.1 5.8 73.0 10 2.0-4 506 505 1.21 652.6 7.2 91.7 6A 2.0-4 507 518 1.25 908.0 7.4 94.3 I n i t i a l Bed Composition: Ottawa Sand -14 +20 mesh I n i t i a l WeIght : 5.9 kg Spouting Gas: 85% N i - 15% CO, 10 Fig 9: Oil Yield VS Particle Size Plot 76 temperature, the chance is greater that the o i l is further decomposed to secondary v o l a t i l e s . In the present case, the optimum temperature for 1-2mm p a r t i c l e size is around 475°C which i s about 31°C lower than the experimental temperature in Figure 7. The extra temperature has enhanced secondary reaction, and therefore the o i l y i e l d obtained at 6.3% i s lower than the maximum of 7.1%. Whereas for the 2-4mm siz e , the optimum temperature is around 505°C which i s approximately the same as the temperature in Figure 6. For the 0.5-1mm p a r t i c l e s i z e , although the optimum temperature was not studied, i t i s expected to be lower than 475°C. With the same argument, therefore the greater difference between the experimental and optimum temperature results in an even lower o i l y i e l d for the smallest p a r t i c l e s . Based on these observations, the dependance of o i l yi e l d on p a r t i c l e size w i l l be dif f e r e n t i f the comparision is made at say 475°C. In this case, the 2-4mm p a r t i c l e s w i l l produce a lower o i l y i e l d as the optimum temperature has not been attained, whereas for the 0.5-1mm p a r t i c l e , the gap between the optimum and experimental temperature i s reduced, so a higher o i l y i e l d i s expected. Certainly, more tests at lower temperature should be carried out to provide a more complete picture. Table 17 l i s t s the elemental composition of the o i l s produced. There is no consistent trend among the three samples analyzed. The 2-4mm sized shale has the highest atomic H/C rat i o and lowest unaccounted for species. TABLE 17: E f f e c t of P a r t i c l e S i z e on O i l Y i e l d and C o m p o s i t i o n Expt Particle Temperature Shale Oil Yield Oil Analysis* (wt%) Atomic No. Size Bed Inlet Feedrate wt% '/Fischer C H N S ** Ratio (mm) C O (kg/hr) Assay H/C 2 0.5-1 509 509 1.49 2.4 43.6 8 1.58 11.02 0.7 6.70 1.61 3 505 505 1.37 4.2 76.4 82.18 10.73 1.05 6.04 1.56 4 1-2 503 503 1.65 5.8 73.0 81.47 10.70 1.02 6.81 1.57 5 501 501 1.33 6.3 79.3 82.46 10.66 1.13 0.63 5.12 1.54 6A 2-4 507 518 1.25 7.4 94.3 82.73 10.66 1.14 5.47 1.54 10 506 505 1.21 7.2 91.7 82.64 1 1.35 1.12 4.89 1.64 I n i t i a l Bed Composition: Ottawa Sand -14 +20 mesh * Microanalyt1ca1 Analysis I n i t i a l Weight: 5.9 kg *+ Unaccounted Spouting Gas: 85% N> - 15% CO> 78 5.4 E f f e c t o f O i l S h a l e F e e d R a t e on O i l Y i e l d a n d C o m p o s i t i o n The f e e d r a t e s t u d y was c a r r i e d o u t f o r 2 s i z e s : 2-4mm and 1-2mm. A l l o f t h e s e e x p e r i m e n t s were done a t 500-506°C, u s i n g 15% C 0 2 and 8 5 % N 2 a s p y r o l y z i n g g a s . The b e d i n i t i a l l y c o n s i s t e d o f s i l i c a s a n d a n d t h e bed h e i g h t i n c r e a s e d g r a d u a l l y a s t h e f e e d s h a l e a c c u m u l a t e d d u r i n g t h e e x p e r i m e n t . T a b l e s 18 and 19 l i s t t h e r e s u l t s . F i g u r e s 10 and 11 show t h e p l o t s o f o i l y i e l d v e r s u s s h a l e f e e d r a t e . B o t h c u r v e s i n d i c a t e t h a t t h e r e i s a m a r k e d d e c r e a s e o f o i l y i e l d w i t h i n c r e a s i n g f e e d r a t e . F o r 1-2mm s h a l e , t h e o i l y i e l d h a s d r o p p e d f r o m 6.3% t o 2.9% as t h e f e e d r a t e was i n c r e a s e d f r o m 1.33 t o 3.3 2 k g / h , w h i c h i s a d r o p o f 79.2 t o 3 6 . 5 % o f m o d i f i e d F i s c h e r A s s a y v a l u e s . S i m i l a r r e s u l t s were o b s e r v e d f o r t h e 2-4mm s i z e d s h a l e where f e e d r a t e i n c r e a s e s f r o m 1.53 t o 2.71kg/h r e s u l t e d an o i l d r o p f r o m 7.4 t o 2.0%, w h i c h i s a d r o p o f 94.3 t o 2 5 . 5 % o f m o d i f i e d F i s c h e r A s s a y v a l u e s . I t c a n be s e e n i n F i g u r e 10 t h a t t h e f i r s t t h r e e p o i n t s a r e i n a s t r a i g h t l i n e , i n d i c a t i n g a l i n e a r d e c r e a s i n g e f f e c t a n d t h e n t h e l i n e a p p r o a c h e s an a s y m p t o t i c v a l u e . The r e a s o n f o r t h e d e c r e a s e i s p r e s u m a b l y t h a t t h e h o t s p e n t s h a l e a c c u m u l a t e d i n t h e r e a c t o r h a s a c t e d a s a s u r f a c e on w h i c h t h e s e c o n d a r y o i l - c o n s u m i n g r e a c t i o n s o c c u r , o r p e r h a p s as a c a t a l y s t f o r o i l d e c o m p o s i t i o n . T h i s e f f e c t w i l l be d e m o n s t r a t e d f u r t h e r b e l o w . The t r e n d s i n F i g u r e 10 and 11 a r e i n t h e same d i r e c t i o n a s t h o s e o b s e r v e d TABLE 18: E f f e c t of F e e d r a t e on O i l Y i e l d (Unsteady H e i g h t Expt.) Expt No . Temperature Bed Inlet C O Shale Feedrate (kg/hr) Spent Shale In Bed (kg) 01 1 Y i e l d wt % % F1scher Assay 24 25 501 503 506 505 501 503 506 506 1 .33 1 .65 1 .90 3.32 0. 68 O. 54 1.31 1 . 46 6 . 3 5 . 8 3 . 4 2.9 79 . 2 73 .0 42.8 36 . 5 Oil Shale P a r t i c l e Size: 1-2mm I n i t i a l Bed Composition: Ottawa Sand -14 +20 mesh I n i t i a l WeIght: 5.9 kg Spouting Gas: 85% N, - 15% CO: vO TABLE 19: Effect of Feedrate on 011 Yi e l d (Unsteady Height Expt.) Expt No . Temperature Bed Inlet C O Shale Feedrate (kg/hr) Spent Shale In Bed (kg) 01 1 wty. Y i e l d % F i s c h e r Assay 10 506 505 1.21 0. 65 7 . 2 9 1.7 6A 507 5 18 1 . 25 0.9 1 7 . 4 94 . 3 I 2 A 12 506 506 502 502 1 .94 2.71 1 .02 1 . 28 4 . 5 2.0 57 . 3 25 . 5 Oil Shale P a r t i c l e Size: 2-4mm I n i t i a l Bed Composition: Ottawa Sand -14 +20 mesh I n i t i a l Weight: 5 .9 kg Spouting Gas: 85% N i - 15% C O i Co o 10 8 Dp = 1 - 2 mm Tb = 501 - 506 C 1 6 Q _ J UJ >- 4 _ J o 25 0.5 1 1.5 2 2.5 3 FEED RATE, (kg/hr) 3.5 4 Fig 10: Oil Yield VS Feed Rate Plot 82 o C L CD •f-* CO DC ~u CD CD U L > CD > - O (%1AA) ' C T B A 110 83 by J a r a l l a h 1 2 1 on c o a l p y r o l y s i s . A n o t h e r s e r i e s o f f e e d r a t e e x p e r i m e n t s was c a r r i e d o u t i n a bed c o n s i s t i n g i n i t i a l l y o f s p e n t s h a l e w i t h t h e bed h e i g h t k e p t c o n s t a n t by r e l e a s i n g t h e a c c u m u l a t e d s p e n t s h a l e p e r i o d i c a l l y t h r o u g h t h e bed o v e r f l o w l i n e . T a b l e 20 l i s t s t h e r e s u l t s . F i g u r e 12 shows t h e o i l y i e l d v e r s u s f e e d r a t e p l o t . R e s u l t s i n d i c a t e t h a t t h e o i l y i e l d h a s r e m a i n e d q u i t e s t e a d y a t 2.4-2.6% r e g a r d l e s s o f t h e f e e d r a t e . T h i s v a l u e i s v e r y c l o s e t o t h e l o w e s t y i e l d i n p r e v i o u s F i g u r e 10. T h i s i m p l i e s t h a t t h e p r e s e n c e o f s p e n t s h a l e h a s i n d e e d e n h a n c e d s e c o n d a r y r e c t i o n s o f t h e o i l ( s u c h as c r a c k i n g ) , t h e r e f o r e d r o p p i n g t h e o i l y i e l d s i g n i f i c a n t l y . A c a r e f u l s t u d y o f t h e two f i g u r e s l e a d s t o t h e c o n c l u s i o n t h a t w i t h i n c r e a s i n g f e e d r a t e i n a s a n d b e d , t h e o i l y i e l d w i l l d r o p l i n e a r l y i n t h e b e g i n n i n g , a n d t h e n g r a d u a l l y a p p r o a c h an a s y m p t o t i c v a l u e o f a r o u n d 2.4%. T a b l e 21 l i s t s t h e c o m p o s i t i o n o f t h e o i l p r o d u c e d f o r t h e 2-4mm s i z e . The h y d r o g e n c o n t e n t d e c r e a s e s , b u t t h e h y d r o g e n / c a r b o n a t o m i c r a t i o seems t o i n c r e a s e f r o m 1.46 t o 1.56 a s t h e o i l y i e l d f a l l s o f f w i t h i n c r e a s i n g f e e d r a t e i n t h e s a n d b e d e x p e r i m e n t s . 5.5 E f f e c t of Bed M a t e r i a l on O i l Y i e l d The s t u d y o f t h e bed m a t e r i a l e f f e c t on o i l . y i e l d was c a r r i e d o u t on s h a l e o f 1-2mm s i z e a t 470-477°C w i t h 15% C 0 2 and 8 5 % N 2 a s t h e p y r o l y z i n g g a s . F o r a l l e x p e r i m e n t s , t h e volume o f t h e i n i t i a l bed was k e p t t h e same ( v o l = 3 7 3 5 c m 3 , TABLE 20: E f f e c t of F e e d r a t e on O i l Y i e l d (Steady H e i g h t Expt.) Expt No . Temperature Bed Inlet C C ) 16 4 7 0 4 7 0 4 7 0 4 8 0 2 0 4 7 2 4 7 6 Shale Feedrate (kg/hr) O i l Y i e l d % Fischer Assay 1 . 2 6 3 . 3 9 2 . 4 2 . 6 3 0 . 2 3 2 . 7 4 . 4 5 2 . 5 3 1 . 4 Oil Shale P a r t i c l e Size: 1 - 2 m m I n i t i a l Bed Composition: Spent Shale I n i t i a l Weight: 5 . 9 kg Spouting Gas: 8 5 % N i - 1 5 % C0> * Periodic release of spent shale from the reactor to keep bed height steady co •o- 10 8 S T E A D Y BED HEIGHT Dp = 1 - 2 mm Tb « 470 - 472 C Initial Bed : Spent Shale £ 6 UJ >- 2- 16 19 20 0 r 0 1 2 3 FEED RATE, (kg/hr) Fig 12: Oil Yield VS Feed Rate Plot oo TABLE 21: E f fect of Feedrate on 011 Y i e l d and Composition Expt No . Temperature Bed Inlet C O Shale o i l Feedrate wt% (kg/hr) Yield %Flscher C Assay Oil Analysis* (wt%) H N A torn 1c Rat io H / C 10 12A 506 506 505 502 1 .2 1 .94 7 . 2 4 . 5 91.7 57 . 3 82.64 83.65 1 1 . 35 10. 77 1.12 1 . 23 4 .89 4 . 35 1 .46 1 . 53 12 506 502 2.7 1 2.0 25.5 83 . 42 10.89 1 . 29 4 .40 1 . 56 Oil Shale P a r t i c l e Size: 2-4mm * Microana1yt1ca1 Analysis I n i t i a l Bed Composition: Ottawa Sand -14 +20 mesh ** Unaccounted I n i t i a l Weight: 5.9 kg Spouting Gas: 85% N i - 15% C O i Co ON 87 i n i t i a l bed depth=33cm), but t h e amount of s p e n t s h a l e i n th e bed r a n g e s from 1 t o 6.9kg. The r e m a i n d e r o f t h e bed was s i l i c a s a n d . As t h e e x p e r i m e n t p r o c e e d e d , t h e bed h e i g h t i n c r e a s e d g r a d u a l l y a s s p e n t s h a l e a c c u m u l a t e d i n t h e r e a c t o r . T a b l e 22 l i s t s t h e r e s u l t s . F i g u r e 13 shows t h e p l o t o f th e o i l y i e l d v e r s u s t h e f i n a l s p e n t s h a l e mass i n t h e r e a c t o r a f t e r t h e r u n . The f i n a l mass r e p r e s e n t s t h e s p e n t s h a l e a c c u m u l a t e d d u r i n g t h e e x p e r i m e n t . The r e s u l t s show t h a t t h e r e i s a marked d e c r e a s e i n o i l y i e l d w i t h i n c r e a s i n g s p e n t s h a l e mass i n t h e bed. Th e s e e x p e r i m e n t s show e s s e n t i a l l y t h e same e f f e c t as t h e f e e d r a t e e x p e r i m e n t s . As more and more s p e n t s h a l e becomes a v a i l a b l e i n t h e bed, t h e o i l y i e l d d r o p s b e c a u s e t h e hot s p e n t s h a l e has a c t e d as a s o r b e n t f o r t h e o i l o r a c a t a l y s t f o r t h e s e c o n d a r y r e a c t i o n s . When th e i n i t i a l bed i s c o m p r i s e d s o l e l y o f s p e n t s h a l e , t h e o i l y i e l d d r o p s t o 2.4% w h i c h i s e q u i v a l e n t t o th e a s y m p t o t i c v a l u e f o r F i g u r e 12. I t c a n be c o n c l u d e d t h a t t h e p r e s e n c e o f s p e n t s h a l e has a n e g a t i v e e f f e c t on t h e o i l y i e l d . T h i s i s i n agreement w i t h t h e o b s e r v a t i o n made by Levy e t a l ( * 3 ) . In t h e i r s t u d y , v a p o r i z e d o i l was p a s s e d t h r o u g h a p a c k e d bed o f sand, o r s p e n t s h a l e a s h a t t e m p e r a t u r e s between 500 and 600°C. In t h e c a s e o f sand bed, c r a c k i n g was m i n i m a l a t 500°C and g r a d u a l l y i n c r e a s e d a t h i g h e r t e m p e r a t u r e s . In t h e c a s e f o r s p e n t s h a l e a s h bed, c o k i n g was p r e v a l e n t a t a l l t e m p e r a t u r e s s t u d i e d , and a major o i l l o s s e s was r e s u l t e d even a t 500°C. The a s h has TABLE 22: E f f e c t of Bed M a t e r i a l on O i l Y i e l d Expt. Temperature Shale I n i t i a l Bed Final Oil Yield No Bed Inlet Feedrate -Spent Shale Sand Spent Shale wt7- 7.F l scher C C ) (kg/hr) (kg) (kg) 11 470 477 1.52 0.0 5.9 1.0 7.1 89.3 23 474 474 1.13 1.5 4.1 2.25 3.9 49.0 22 470 470 1.63 3.0 2.4 3.73 2.7 34.0 16 470 470 1.26 5.0 0.0 6.84 2.4 30.2 Oil shale Particle Size: 1-2mm Spouting Gas: 85% N, - 15% COi 00 00 Dp = 1 - 2 mm Tb - 470 -474 C Fo = 1.13 - 1.63 kg/hr • 11 2 3 4 5 SPENT SHALE MASS, (kg) Fig 13: Oil Yield VS Spent Shale In Bed 90 c a t a l y s e d t h e o i l d e g r a d a t i o n g r e a t l y . On t h e o t h e r h a n d , t h i s s o r b e n t e f f e c t p r e s u m a b l y i s s p e c i f i c t o t h e o i l s h a l e , a s F l o e s s e t a l . ( 3 6 ) f o u n d no d i f f e r e n c e i n o i l s h a l e y i e l d s i n f l u i d i z e d b eds o f s i l i c a s a n d and c a l c i n e d d o l o m i t e o f s u r f a c e a r e a 6.3m 2/g. I t s h o u l d be n o t e d t h a t t h e f e e d r a t e a c t u a l l y f l u c t u a t e d f r o m 1.13 t o 1. 6 3 k g / h r . T h i s s h o u l d n o t have a f f e c t e d t h e o i l y i e l d r e s u l t b e c a u s e F i g u r e 10 of S e c t i o n 5.4 a l r e a d y shows t h a t t h e o i l y i e l d r e m a i n s a r o u n d 6% i n t h a t f e e d r a n g e . 5 . 6 E f f e c t o f P y r o l y z i n g Gas on O i l Y i e l d Two e x p e r i m e n t s were done i n t h e 1-2mm s i z e d s h a l e a t 500°C u s i n g N 2 i n s t e a d o f t h e m i x t u r e o f 15% C 0 2 a n d 8 5 % N 2 a s p y r o l y z i n g g a s . T a b l e 23 l i s t s t h e r e s u l t s . The d a t a a r e v e r y r e p r o d u c i b l e , a n d b o t h r e f l e c t a l o w e r o i l y i e l d a t 3.4% i n n i t r o g e n c o m p a r e d t o 6.3% when u s i n g t h e N 2 / C 0 2 m i x t u r e . An e x p l a n a t i o n o f t h i s u n e x p e c t e d r e s u l t i s n o t a v a i l a b l e y e t . B a e 1 1 7 ' o b s e r v e d t h a t a t a t m o s p h e r i c p r e s s u r e , t h e o i l y i e l d i s n o t a f f e c t e d by t h e n a t u r e o f p y r o l y z i n g gas ( r e f e r t o F i g u r e 1 ) . 5 . 7 Gas Y i e l d s The s p o u t e d bed r e t o r t i n g t e c h n i q u e i n w h i c h a l a r g e v o l u m e o f gas i s n e e d e d f o r s p o u t i n g i s n o t p a r t i c u l a r l y w e l l s u i t e d f o r measurement o f gas y i e l d s , as c o n c e n t r a t i o n of p r o d u c e d g a s i n t h e o f f gas w i l l t e n d t o be v e r y l o w . TABLE 23: Effect of Pyrolyzing Gas Composition Pyro1yz i ng Gas 85% N,- 15% COV 100% N> Expt. No Temperature (Inlet/Bed) 'C Feed Rate (kg/hr) Oil Y i e l d (wt%) Oil Y i e l d (%Fischer Assay) Oil Analysis (wt%) C H N S Unaccounted 503/503 1 .65 5.8 73.0 81 .47 10.70 1 .02 501/501 1 .33 6.81 6.3 79.2 82 .46 10.66 1.13 0.63 5. 12 14 49 1/500 1 .35 3.4 42.8 82.49 10. 89 1.17 0.75 4 .70 17 500/500 1 . 27 3 . 4 42 . 8 Atomic H/C Ratio 1 .57 1 .54 1 .57 Oil Shale P a r t i c l e Size: 1-2mm I n i t i a l Bed Composition: Ottawa Sand -14 +20 mesh I n i t i a l We ight: 5.9 kg 92 Nevertheless some res u l t s were obtained. As stated in Section 4.6, two chromatographs were used. For most of the runs, the GC used was set for concentration of H 2, CO, C0 2, and CH„ in the percent range. A few analyses were also done on the second GC, which permitted determination of the above species and addition information on C 2H 2, C 2H„, C 2H 6,C 3H 8 and C«H 1 0 . Table 24 l i s t s the re s u l t s . Hydrogen i s produced during pyrolysis of o i l shale. The y i e l d ranges from 0.02 to 0.045%, and does not seem to be affected by p a r t i c l e s i z e s , feed rate and bed material. Figure 14 shows the plot of hydrogen y i e l d versus temperature. The p r o f i l e seems to be marked by two peaks although the data i s scattered. According to Campbell et a l < 3 7 ) , the peaks are associated with 'secondary' pyrolysis reaction of the carbon residue remaining aft e r the primary bitumen decomposition. Methane yi e l d s are recorded in a few experiments. Campbell et a l ( 3 7 ) observed that methane i s released during the o i l generation, and higher temperature pyrolysis of the spent shale. The methane released during the secondary pyrolysis (above 500°C) may result primarily from the cleavage of methyl and methoxyl groups bonded to aromatic structures and possibly, from cleavage of methylene bridges between aromatic rings. The evolution of C 2 and C 3 was determined by the second GC. Campbell et a l ( 3 7 ) observed that these gases are evolved TABLE 24: Gas Y i e l d s Expt P a r t i c l e % Gas Yield (kg/kg shale) No Size (mm) H i t C H . C i i H . C i r H s C: I H I C * H i o C i 1 H | 4 Tota 1 2 0.5-1 0. .028 0. 028 3 0.5-1 4 1-2 0, .023 0.065 0 ,059 0, .059 0. 460 0. 666 5 1-2 0. .033 0.062 0, .04 2 0 .045 0. ,760 0. 942 SA 2-4 0, .037 0.098 0. .049 0, .060 0. ,820 1 . 064 6B 1-2 0 .027 0.079 0 068 0 .075 0. .631 0, . 880 7 1-2 0, .02 1 0.077 0. ,082 0 .052 0. ,914 1 . , 146 8 1-2 0, .032 0.057 0. , 160 0. .095 0. , 190 0.2 1 0, , 744 9 1-2 0 .038 0.068 0 .028 0 .045 0. , 4 10 0. 220 0 . 170 0 . 979 10 2-4 0. 036 0.088 0. 027 0. ,064 1 .650 0. 330 2 . 195 1 1 1-2 0. 03 1 0.080 0. 038 0. 07 4 0. 400 1 . 220 0 3 10 2 . 153 1 2 2-4 0. .042 0. 042 12A 2-4 0, ,024 0. 024 14 1-2 0. 037 0. 037 15 1 -2 0. .022 0. 022 16 1-2 0, .034 0. 034 1 7 1-2 0 .018 0. ,018 18 1-2 19 1-2 0 038 0 038 20 1-2 0 .039 0.029 0 . 06C 2 1 2-4 0 .019 0. .019 22 1-2 0. .015 0 .015 23 1-2 0 .033 0 .033 24 1-2 0 .030 0 .030 25 1-2 0 . 038 0.020 0 .058 26 2-4 0 .030 0 .030 * The experimental conditions for each run are l i s t e d 1n Table 12 0.07 0.06 c£ 0.05 Q _ J LU 0.04 z LU § 0.03 CC Q X 0.02 11 6B 0.01- 0.00 440 460 480 500 520 540 BED T E M P E R A T U R E , (C) 560 580 Fig 14: Hydrogen Gas Yield VS Temperature vO 95 during the o i l generation, i . e . between 350-550°C. The evolution of C« and C 6 was determined in a few experiments only, therefore no conclusion can be drawn. In most experiments, carbon dioxide was included in the pyrolyzing gas at a level of 15%. Because of the fluctuations of the gas i n l e t flowrate, i t was d i f f i c u l t to determine i t s y i e l d . However, i t was noted that for the run done with nitrogen alone as pyrolyzing gas, there was no C0 2 nor CO produced. These results agreed with the findings of Campbell et a l 1 3 " . They found that no C0 2 and CO were released during p y r o l y s i s below the temperature of 550°C. The release of C0 2 and CO occurs primarily above 600°C. Carbon dioxide i s produced during the decomposition and reaction of carbonate minerals present in the o i l shale, and carbon monoxide i s then produced by the subsequent reaction of C0 2 with carbon. 5.8 Spent Shale Yields As mentioned in the beginning of the section, there was a substantial loss of entrained spent shales p a r t i c l e s . Some had escaped to the atmosphere due to the i n e f f i c i e n c y of the cyclone, and some had stuck onto the wall of the cyclone. From experiment 14 onwards, mechanical brushing had been used to recover the fines from the cyclone, and thus higher percentages of fines were recovered. Table 25 l i s t s the compositions of spent shales found in the bed and recovered from the cyclone catch for three d i f f e r e n t p a r t i c l e sizes. TABLE 25: Spent Shale P roper t i e s and Y i e l d Run T emperature (' C) P a r t i c l e Size (mm) 505/505 0.5-1.0 503/503 1-2 10 506/505 2-4 Bed Shale Cyc1 one Catch Bed Sha 1 e Cyc1 one Catch Bed Shale Cyc1 one Catch Total Carbon (%wt) 4.91 Organic Carbon (%) 3.48 6.84 4 .77 4 .64 2.37 6.87 4 . 30 5 . 33 2 . 36 5 . 89 3 . 20 S10> (%wt) Al ,0, F e t 0 i CaO MgO Na.O K, 0 56 . 7 16.6 10. 1 3 . 34 2 . 24 1 . 35 2 . 64 61.2 9.33 3.96 6.54 2.50 0.95 1 .58 51.6 14.5 5.66 9 . 30 3.97 1 .6 2.23 52.4 11.2 4 . 80 8 . 77 3.45 1.31 1 . 83 50. 3 13.1 5 . 52 10.9 4 . 28 1 .38 2.17 59 . 8 8.81 3 . 84 7.42 2 . 93 1 . 10 1 . 55 Ba (ppm) Mn S r T 1 440 790 175 2960 373 402 290 2440 390 690 340 3430 373 570 368 2970 376 705 385 3 180 300 446 3 10 2340 97 Mass balances using several species (Sr, Ba, T i , Fe 20 3) present in the shale, the bed material and the cyclone catch, a l l showed that the uncollected material which passed through the cyclone was about one-third of the o i l shale feed. Also i t can be observed that the cyclone catch contains higher carbon content than does the bed material which indicates that the entrained p a r t i c l e s are generally incompletely reacted. It was intended that the spent shale y i e l d be calculated from the weight of the shale in the shale-sand mixture remaining in the reactor plus the weight of entrained fines in the cyclone after the run. In practice, the actual weight of shale remaining in the reactor cannot be obtained simply by weighing the t o t a l s o l i d s due to the fact that some of the sand was also entrained to the cyclone. Therefore, the method chosen to obtain the y i e l d i s by combining 'the weight of entrained p a r t i c l e s in the cyclone receiver plus the weight of the bed after the run minus the weight of inert material o r g i n a l l y present in the bed. Table 26 l i s t s the results of the spent shale y i e l d . Due to the incomplete recovery, the trends of the spent shale y i e l d with process variable were not meaningful. A t t r i t i o n i s obviously a serious problem for processing these o i l shales in a spouted bed. TABLE 26: Spent S h a l e Y i e l d s Expt Temperature P a r t i c l e Shale Spent Shale Total Spent No Bed Inlet Size Feedrate Cyclone Bed Spent Shale Shale Yield (*C) (mm) (kg/hr) (gm) (gm) (wt%) 2 509 509 0.5-1 1 . , 49 68 1 .0 510.8 119 1.8 60.0 3 505 505 0.5-1 1 . . 37 652 .6 454 .0 1106.6 60.4 4 503 503 1-2 1 . ,65 68 1 .0 539 . 1 1220.1 55 . 3 5 501 501 1-2 1 . 33 397 .5 681 .0 1078 .5 60.8 GA 507 518 2-4 1 . 25 56.8 908 .0 964 . 8 57 .8 GB 540 528 1-2 1 , . 29 397 . 5 68 1 .0 1078.5 62 . 6 7 554 554 1-2 1 , .33 368 .9 766 . 1 1 135 .0 62 .8 8 4 50 4 50 1-2 1 . 38 539 . 1 595.9 1135 .0 6 1.0 9 530 530 1-2 1 . , 39 567 . 5 567 . 5 1135.0 6 1.0 10 506 505 2-4 1 . ,21 454 .0 652 .6 1106 .6 68 .4 1 1 477 470 1-2 1 , , 52 737 . 7 68 1 .0 14 18.7 70.O 12 506 502 2-4 2. . 7 1 1135 .0 127G . 8 2411.8 66 .8 12A 506 502 2-4 1 , .94 567 . 5 102 1 . 5 1589.0 6 1.4 14 500 491 1-2 1 . 35 835 . 2 500.0 1335 . 2 74 . 2 15 480 472 1-2 1 . . 37 1779. 1 (1135.0)* 664 . 1 66 .0 16 470 470 1-2 1 . 26 948 . 6 0 948 . 6 56 . 5 17 500 500 1-2 1 , . 27 62 1 .0 510.7 113 1.7 66 .8 18 500 498 0.5-1 1 . 26 449 . 3 681 .0 1130.3 67 19* 470 480 1-2 3 .39 1602.7 1021.5 3298.0 82 . 1 20* 472 476 1-2 4 .45 1906.8 (170.25)' 4823 . 7 84 . 3 00 21 518 518 2-4 1.30 514.0 1078.3 1592.3 91.8 22 470 480 1-2 1.63 803.7 1163.4 1967.1 90.0 23 474 474 1-2 1.13 736.4 595.8 1332.2 88.5 24 500 500 1-2 1.89 824.8 1305.3 2 130.1 84.3 25 500 506 1-2 3.32 981.0 1459.2 2740.2 86.9 26 471 476 2-4 1.35 1161.8 170.3 1332.1 73.8 * Discharge for expt 19 1s 673.8gm * Discharge for expt 20 1s 2746.6gm * For experiments 15 and 24, the bed actually had a lost in weight of 1135.0 and 170.25gm respectively 100 6. K i n e t i c Model 6.1 G e n e r a l D i s c u s s i o n From the s i m p l i f i e d model deve loped in S e c t i o n 3 . 2 , equat ions ( 3. 33 ) , ( 3. 34) , ( 3.39) and (3.40) have been d e r i v e d , A - B t C K = — (1 - e ) (3 .33) B " -Dt - B t C B = CA( C, ,+ C 1 2 e + C 1 3 e ) (3 .34) P - Q t C A = — (1- e ) (3 .39) Q t O i l = / C A F g d t (3 .40) Yield 0 with the A r r h e n i u s r e l a t i o n s h i p s , o -E,/RT k, = k ,e (6-D o "E 2/RT k 2 = k 2 e (6.2) c - E 3 / R T k 3 = k 3 e (6-3) T a k i n g k , , k 2 , E , and E 2 from the l i t e r a t u r e 2 " and F 0 , F , , a F 2 , V , C K o and o i l y i e l d from the exper iments , k 3 and E 3 can be s o l v e d for u s i n g UBC L i b r a r y Program NL2SOL. The computer 101 program i s i n c l u d e d i n Appendix C."' ^able 27 l i s t s the exper imenta l da ta and l i t e r a t u r e va lues used for the g e n e r a t i o n of k 3 and E 3 . The p r e d i c t e d o i l y i e l d va lues and the e x p e r i m e n t a l da ta are p l o t t e d in F i g u r e 15. I t can be seen tha t the model p r e d i c t s a t r e n d s i m i l a r to the e x p e r i m e n t a l data a l t h o u g h the e x p e r i m e n t a l o i l y i e l d drops more s h a r p l y at low t e m p a r t u r e s . The p r e d i c t e d maximum o i l y i e l d occurs a t a temperature of 4 4 0 ° C , which i s some 3 7 ° C lower than tha t found by exper iment . No measurements of kerogen and bitumen are a v a i l a b l e for c h e c k i n g the model . The v a l u e s of C „ , C ^ , C T and o i l y i e l d as f u n c t i o n s of K B A 2 time can be c a l c u l a t e d by UBC L i b r a r y Program J a c o b i a n u s i n g the f o l l o w i n g e q u a t i o n s : d C K FQCRO fo - . = ( +k, ) C K (3 .44) dt W W d C B F 0 = f , k , C K " ( + k 2 ) C B (3 .45) dt W d C A f 2 k 2 C B W F g = ( + k 3 ) C A (3 .46) d t V V O i l = / C A F q d t (3 .47) • 0 TABLE 27: E f f e c t of Temperature on O i l Y i e l d ( P r e d i c t e d vs Ex p e r i m e n t a l V a l u e s ) Expt No. Part i c l e Size (mm) Temperature Bed Inlet CC) Shale Feedrate (kg/hr) Exper imental Oil wt% Pred i cted Oil wt% (Unsteady Height Experiment) 8 1 - 2 11 1 - 2 5 1 - 2 4 1 - 2 9 1 - 2 7 1 - 2 4 5 4 4 7 7 5 0 1 5 0 3 5 3 0 5 5 4 4 5 0 4 7 0 5 0 1 5 0 3 5 3 0 5 5 4 1 . 3 9 1 . 5 2 1 . 3 3 1 . 6 5 1 . 3 9 1 . 3 3 4 . 3 7 . 1 6 . 3 5 . 8 3 . 3 2 . 4 6 . 6 6 . 4 5 . 7 5 . 6 3 . 9 2 . 2 From L i t e r a t u r e t 2 3 ) k' = 1 4 . 4 s- 1 E i = 4 4 5 6 0 kJ/mol k i = 2 . 0 2 5 E 1 0 s- 1 E i = 1 7 7 5 8 0 kJ/mol From Calculation k" = 1 . 7 E 1 4 s- 1 E J = 2 4 4 3 1 9 . 4 5 kJ/mol O NJ PREDICTED VALUES "1 1 1 1 1 I 350 400 450 500 550 800 BED T E M P E R A T U R E (C) Fig 15: Oil Yield Versus Temperature Plot P r e d i c t e d V a l u e s V S E x p e r i m e n t a l V a l u e s 104 The r e s u l t s a r e p l o t t e d i n F i g u r e 16 f o r one e x p e r i m e n t a l r u n . As e x p e c t e d , , t h e c o n c e n t r a t i o n o f k e r o g e n , i n c r e a s e s w i t h t i m e and t h e n r e m a i n s s t e a d y a s a f r a c t i o n o f t h e k e r o g e n i s d ecomposed t o f o r m b i t u m e n . Cg s t a r t s f r o m z e r o a n d i n c r e a s e s t o some v a l u e , and t h e n g r a d u a l l y r e m a i n s c o n s t a n t a s t h e b i t u m e n i s decomposed t o o i l . O i l c o n c e n t r a t i o n b e g i n s a t z e r o , and g r a d u a l l y i n c r e a s e s a s i t i s p r o d u c e d by t h e d e c o m p o s i t i o n o f b i t u m e n . A t t h e same t i m e , t h e o i l d e g r a d e s t o f o r m gas on f u r t h e r h e a t i n g . The c u m u l a t i v e o i l y i e l d i n c r e a s e s r a p i d l y a t t h e b e g i n n i n g , and t h e n more s l o w l y a s t i m e g o es on a n d g r a d u a l l y a p p r o a c h e s a c o n s t a n t v a l u e . 6.2 The e f f e c t o f R a t e C o n s t a n t on O i l Y i e l d The e f f e c t o f i n d i v i d u a l r a t e c o n s t a n t s k,, k 2 a n d k 3 on o i l y i e l d was s t u d i e d u s i n g t h e UBC l i b r a r y p r o g r a m J a c o b i a n t o s o l v e t h e m o d e l . The k,, k 2 o r k 3 o f t h e A r r h e n i u s r e l a t i o n s h i p ( e q n . 6.1-6.3) i s m u l t i p l i e d by a f a c t o r w h i l e h o l d i n g a l l o t h e r v a l u e s c o n s t a n t . The c o m p u t e r p r i n t o u t f o r one e x p e r i m e n t a l r u n i s shown i n A p p e n d i x C.6. The m o d e l g i v e s t h e same f i n a l o i l y i e l d r e s u l t s e v e n f o r d i f f e r e n t v a l u e s o f k, and k 2 . As k, i n c r e a s e s , t h e t i m e r e q u i r e d f o r t h e k e r o g e n t o decompose t o b i t u m e n d e c r e a s e s . The t i m e e f f e c t i s a l s o t r u e f o r k 2 . As k 2 i n c r e a s e s , t h e t i m e f o r b i t u m e n t o decompose t o o i l i s s h o r t e r . C h a n g i n g k 3 , h o w e v e r , w i l l a f f e c t t h e q u a n t i t y a n d r a t e o f o i l d e g r a d a t i o n . F o r t h i s r e a s o n , i t c a n be s e e n t h a t o n l y k 3 105 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 0.002 0.001 1000 2000 3000 4000 5000 2000 3000 Time (sec) 4000 5000 F i g . 16: C R, CQ, C A and O i l Y i e l d vs Time P l o t 106 and E 3 have an effect on the maximization of the o i l y i e l d . If some data of kerogen and bitumen were taken, a better model could be obtained. 107 6.3 The effect of O i l Shale Feed Rate on O i l Yie l d Using the UBC Library Program Jacobian to solve the model, the effect of o i l shale feed rate on o i l y i e l d was studied. Table 27 shows the comparison of the predicted o i l y i e l d results with the experimental values. Instead of a decreasing trend, the model predicted a constant o i l y i e l d value at 5.8 wt% for 2-4mm, and 5.5-6.0 for 1-2mm p a r t i c l e size. For the feed rate experiment c a r r i e d under the steady height condition, again the model predicted a constant value at 6.6-6.7 wt % o i l y i e l d which is higher than the experimental value of 2.4-2.6 wt%. The predicted values indicate that the o i l y i e l d should be proportional to the feed rate. However the model does not take into consideration the e f f e c t of spent shale that acts as a catalyst for o i l degradation. For future development of the model, the effect of spent shale should be included by putting the rate of o i l decomposition proportional to the mass of spent shale. TABLE 27: E f f e c t of F e e d r a t e on O i l Y i e l d ( P r e d i c t e d vs E x p e r i m e n t a l V a l u e s ) Expt No . Part 1c1e Size (mm) Temperature Bed Inlet CC) Shale Feedrate (kg/hr) Exper i menta1 O i l wt% PredIcted O i l u t % (Unsteady H e i g h t Experiment) 10 2-4 6A 2-4 12A 2-4 12 2-4 501 503 50G 505 501 503 506 506 1 . 33 1 .65 1 . 90 3 . 32 7.2 7 . 4 4 . 5 2.0 5 . 8 5.8 5 . 8 5 . 8 5 4 24 25 1 -2 1-2 1-2 1-2 501 503 506 505 501 503 506 506 1 . 33 1 . 65 1 .90 3 . 32 6 . 3 5 . 8 3 . 4 2 . 9 5 . 7 5 . 5 6.0 6.0 (Steady Height Experiment) 16 1-2 19 1-2 20 1 -2 470 470 472 470 480 476 1 . 26 3 . 39 4 . 45 2 . 4 2.6 2.5 6 . 8 6 . 7 6.6 O 00 109 7. CONCLUSION The e x p e r i m e n t a l s t u d i e s have shown t h a t New B r u n s w i c k o i l s h a l e s c a n be p y r o l y z e d i n a s p o u t e d bed r e a c t o r . At optimum p y r o l y s i s t e m p e r a t u r e , s h a l e p a r t i c l e s i z e s and f e e d r a t e , o i l y i e l d s up t o 94% of t h e F i s c h e r A s s a y v a l u e were a c h i e v e d . The t e m p e r a t u r e e f f e c t was s t u d i e d u s i n g two p a r t i c l e s i z e s : 1-2mm and 2-4mm. The optimum t e m p e r a t u r e s a r e a r o u n d 457°C and 505°C r e s p e c t i v e l y , and above t h i s t e m p e r a t u r e t h e o i l y i e l d s f a l l o f f . T h r e e p a r t i c l e s i z e r a n g e were t e s t e d : 2-4mm, 1-2mm and 0.5-1mm. At a g i v e n f e e d r a t e and t e m p e r a t u r e , t h e o i l y i e l d s i n c r e a s e w i t h i n c r e a s i n g mean p a r t i c l e s i z e . T h e r e i s a m a r k e d . d e c r e a s e o f o i l y i e l d w i t h i n c r e a s i n g s h a l e f e e d r a t e i n beds of s a n d . The h o t s p e n t s h a l e w h i c h a c c u m u l a t e s i n t h e r e a c t o r a p p e a r s t o a c t as a s o r b e n t f o r o i l o r a s u r f a c e f o r t h e s e c o n d a r y o i l - c o n s u m i n g r e a c t i o n s . R e s u l t s o f a s e r i e s o f e x p e r i m e n t s a t f i x e d f e e d r a t e show t h a t as t h e r a t i o o f s p e n t s h a l e t o sand i n t h e i n i t i a l bed i n c r e a s e s , the o i l y i e l d s d e c r e a s e . F o r e x p e r i m e n t s i n w h i c h t h e bed i n i t i a l l y c o n s i s t e d o n l y of s p e n t s h a l e , t h e o i l y i e l d s r e m a i n e d a t a c o n s t a n t low v a l u e r e g a r d l e s s o f t h e f e e d r a t e , o v e r t h e range t e s t e d . A l l t h e e x p e r i m e n t s were done u s i n g 15% C 0 2 and 85%N 2 as p y r o l y z i n g gas e x c e p t f o r two e x p e r i m e n t s where N 2 was used a l o n e . F o r t h e l a t t e r two r u n s , the o i l y i e l d s d e c r e a s e d by 50%. No l o g i c a l e x p l a n a t i o n f o r t h i s r e s u l t i s 110 apparent, and some c o n f i r m a t i o n of t h i s r e s u l t i s r e q u i r e d . Gas s p e c i e s produced in the p y r o l y s i s are H 2, CH„, C 2 H » - C 2 H 6 / C 3 H 8 and C « H 1 0 . Carbon d i o x i d e i s not produced in the temperature range s t u d i e d . The y i e l d s do not seem to be a f f e c t e d by shale p a r t i c l e s i z e s , feed r a t e and bed m a t e r i a l . The r e p o r t e d gas y i e l d s were g e n e r a l l y lower than the F i s c h e r Assay values although for many runs the a n a l y t i c a l equipment a v a i l a b l e d i d not d e t e c t hydrocarbons h e a v i e r than methane. There i s a s u b s t a n t i a l l o s s of shale which i s e n t r a i n e d in the gases and passes through the c y c l o n e . Due to the low percentage recovery, trends of the spent sha l e y i e l d were not r e l i a b l e . A k i n e t i c model which i n v o l v e s r e l e a s e of bitumen from the shale kerogen, and the subsequent decomposition of bitumen i n t o o i l accounts f o r the basic trends of the experimental r e s u l t s . I l l 8. RECOMMENDATIONS FOR FUTURE WORK As mentioned in the p r e v i o u s S e c t i o n s 4 and 5, there are a few areas t h a t need f u r t h e r s t u d i e s . M o d i f i c a t i o n s to the equipment and f u t u r e work i n c l u d e : 1) An e l e c t r o s t a t i c p r e c i p i t a t o r should be i n s t a l l e d downstream to enab le b e t t e r c o l l e c t i o n of o i l from the p y r o l y s i s of o i l s h a l e . 2) A more e f f i c i e n t c y c l o n e s h o u l d be used in order to c o l l e c t a l l the e n t r a i n e d p a r t i c l e s so as to do a b e t t e r study on the spent s h a l e t r e n d . 3) A h i g h e r gear r a t i o reducer i s recommended f o r the feed system to enable a more c o n s t a n t f eed ing r a t e d u r i n g the exper iment . 4) M o d i f i c a t i o n s a r e recommended to the f o u n t a i n s e c t i o n of the r e a c t o r in order to c a t c h the spent s h a l e ash to enable exper iments to be c a r r i e d out w i thout i n t e r f e r e n c e of the spent s h a l e which act as a c a t a l y s t f o r o i l d e g r a d a t i o n . 5) More p y r o l y s i s exper iments s h o u l d be c a r r i e d out a t the lower temperature range , s p e c i f i c a l l y at 380-450°C i n o r d e r to p e r m i t a b e t t e r comparison wi th the model deve loped in S e c t i o n 3 .2 . 6) At tempts shou ld be made to c o l l e c t some data on kerogen and bitumen content so as to o b t a i n a b e t t e r c o r r e l a t e d model as d i s c u s s e d i n S e c t i o n 6. 7) The e f f e c t of the spent s h a l e s h o u l d be i n c l u d e d in the f u t u r e development of the mode l . 112- 8) A set of o i l y i e l d vs temperature experiments should be carried out for the 0.5-1mm o i l shale p a r t i c l e size so as to obtain the optimum temperature and compare the optimum o i l y i e l d with the Fischer Assay value. 113 NOMENCLATURE A O i l mass, kg Ap Surface area of p a r t i c l e s , m2 B Bitumen mass, kg Bi„ Heat t r a n s f e r B i o t number, h r /k H p p p C Co n c e n t r a t i o n of p y r o l y s a b l e mass, kg/kg C^ Carbonaceous mass, kg C A C o n c e n t r a t i o n of o i l , kg/kg C_, C o n c e n t r a t i o n of bitumen, kg/kg C R C o n c e n t r a t i o n of kerogen, kg/kg Cp£ Heat c a p a c i t y of f l u i d , KJ/kg-K Cp Heat c a p a c i t y of p a r t i c l e , KJ/kg-K Cp s Heat c a p a c i t y of o i l s h a l e , KJ/kg-K E A c t i v a t i o n energy, KJ/mol f, Weight f r a c t i o n of kerogen that y i e l d s bitumen f 2 Weight f r a c t i o n of bitumen that y i e l d s o i l f 3 Weight f r a c t i o n of kerogen that y i e l d s gas f„ Weight f r a c t i o n of bitumen that y i e l d s gas F 0 Mass feed r a t e of o i l shale , kg/s F, Mass flow r a t e of e n t r a i n e d p a r t i c l e s , kg/s F 2 Mass flow r a t e of o i l shale i n the side l i n e , kg/s Fg ^ n Spouting gas flow r a t e , m3/s F o u F o u r i e r number, a t / r 2 H p Gas mass, kg 114 hp H e a t t r a n s f e r c o e f f i c i e n t b e t w e e n f l u i d a n d p a r t i c l e , J/m 2-s«K AH H e a t o f p y r o l y s i s (assumed t o be z e r o ) r x n fi i T h e r m a l c o n d u c t i v i t y o f f l u i d , J/m-s-K k T h e r m a l c o n d u c t i v i t y o f s o l i d p a r t i c l e , J/m-s-K P K K e r o g e n mass, kg k. F r e q u e n c y f a c t o r f o r k e r o g e n , 1/s k 2 F r e q u e n c y f a c t o r f o r b i t u m e n , 1/s k 3 F r e q u e n c y f a c t o r f o r o i l , 1/s k. R a t e c o n s t a n t f o r k e r o g e n , 1/s k 2 R a t e c o n s t a n t f o r b i t u m e n , 1/s k 3 R a t e c o n s t a n t f o r o i l , 1/s Mp Mass o f a p a r t i c l e , kg Nu N u s s e l t number, h d / k , p p / f P r P r a n t l number, Cp^u/k^ Q_ H e a t t r a n s f e r r a t e a t p a r t i c l e s u r f a c e , J / s r R a d i u s , m R a d i u s o f p a r t i c l e , m r„ O v e r a l l r a t e o f K e r o g e n p r o d u c t i o n , 1/s r g O v e r a l l r a t e o f B i t u m e n p r o d u c t i o n , 1/s r O v e r a l l r a t e o f O i l p r o d u c t i o n , 1/s R Gas r a t e c o n s t a n t , 8.3143J/mol•K Re R e y n o l d number, dpUpP^/^ 115 t Time, s t 0 I n i t i a l time, s T Temperature, K T^ Bulk bed s o l i d temperature, K T c Temperature of shrinking core surface, K Tg Temperature of gas, K Tp Temperature of p a r t i c l e , K T R Temperature of p a r t i c l e surface, K T g Internal p a r t i c l e temperature, K T w Wall or heater temperature, K V • Volume of the vapor reaction zone, m3 V P a r t i c l e volume, m3 P W Weight of spent shale in bed, kg w0 I n i t i a l weight of p a r t i c l e , kg wfc Weight of p a r t i c l e at time t, kg W Q Final weight of p a r t i c l e , kg a Thermal d i f f u s i v i t y of p a r t i c l e , k /(p -Cp ), m2/s p s p e v Voidage e Ef f e c t i v e emmissivity (0.9) n V i s c o s i t y of f l u i d , g/cm-s P s Average density of o i l shale, g/m3 a Stefan-Boltzmann constant, 5.673X10" 1 2 J/cm 2«s-K* 116 REFERENCE 1. Ranny, M.W., O i l S h a l e and T a r Sands T e c h n o l o g y - R e c e n t D e v e l o p m e n t s , Noyes D a t a C o r p . , 1979. 2. A l - J a r a l l a h , A.M., " P y r o l y s i s of Some W e s t e r n C a n a d i a n C o a l s i n a S p o u t e d Bed R e a c t o r , " PhD t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1983. 3. S t a n f i e l d , K.E., " P r o p e r t i e s o f C o l o r a d o O i l S h a l e , " USBM R e p o r t o f I n v e s t i g a t i o n s 4825, 1951. 4. A l l r e d , V.D., " K i n e t i c s of O i l S h a l e P y r o l y s i s , " Q u a r t e r l y o f t h e C o l o r a d o S c h o o l o f M i n e s , V o l 62, No. 3, 657-669 ( 1 9 6 7 ) . 5. H e n d e r i c k , T.A., S y n t h e t i c F u e l s D a t a Handbook , Cameron E n g i n e e r s I n c . , 1975. 6. P e a s e , L.R., " T o s c o T e c h n o l o g y A p p l i e d t o E a s t e r n US O i l S h a l e s , " E a s t e r n O i l S h a l e Symposium P r o c e e d i n g s ( 1 9 8 1 ) . 7. M a r g o l i s , M.J., " F l u i d i z e d Bed O i l S h a l e R e t o r t i n g : A Bench S c a l e E v a l u a t i o n f o r E a s t e r n O i l S h a l e , " E a s t e r n O i l S h a l e Symposium P r o c e e d i n g s ( 1 9 8 1 ) . 8. S a l i b , P.F., B a r u a , S.K., and F u r i m s k y , E., " R e t o r t i n g of O i l S h a l e f r o m New B r u n s w i c k , C a n a d a , " E n e r g y R e s e a r c h L a b o r a t o r i e s , E n e r g y , M i n e s and R e s o u r c e s , CANMET, O t t a w a ( 1 9 8 6 ) . 9. Mathur, K.B., a n d E p s t e i n , N., S p o u t e d Beds , Aca d e m i c P r e s s , 1974. 10. Kmiec, A., " S i m u l t a n e o u s Heat and Mass T r a n s f e r In S p o u t e d B e d s , " C a n. J . Chem. Eng., V o l 53, 18-24 ( 1 9 7 5 ) . 11. G r a c e , J.R., a n d Ma t h u r , K.B., " H e i g h t and S t r u c t u r e o f F o u n t a i n R e g i o n Above S p o u t e d Bed," Can. J . Chem. Eng., V o l 58, 533-537 ( 1 9 7 8 ) . 117 12. E p s t e i n , N., L i m , C . J . , a n d M a t h u r , K.B., " D a t a a n d M o d e l s f o r F l o w D i s t r i b u t i o n a n d P r e s s u r e D r o p i n S p o u t e d B e d s , " Can. J . Chem. E n g . , V o l 56, 436-447 ( 1 9 7 8 ) . 13. F o o n g , S.K., L i m , C . J . , a n d W a t k i n s o n , A.P., " C o a l G a s i f i c a t i o n i n a S p o u t e d B e d , " Can. J . Chem. Eng., V o l 58, 84-91 ( 1 9 8 0 ) . 14. S m i t h , K . J . , A r k u n , Y., a n d L i t t m a n , H., " S t u d i e s on M o d e l l i n g and C o n t r o l o f S p o u t e d Bed R e a c t o r - I , " Chem. E n g . S c i . , V o l 37, 567-579 ( 1 9 8 2 ) . 15. V a i d , R.P., a n d Sen G u p t a , P., "Minimum F l u i d i s e d V e l o c i t i e s Beds o f M i x e d S o l i d s , " Can. J . Chem. E n g . , V o l 56, 292 ( 1 9 7 8 ) . 16. L e i t e , A.C.B., W o d t k e , R.M.P., L i s b o a , A.C.L., a n d R e s t i n i , F., " P y r o l y s i s o f O i l S h a l e F i n e s i n a S p o u t e d Bed R e a c t o r , " VI C o n g r e s s o B r a s i l e i r o de E n g e n h a r i a Q u i m i c a , C a m p i n a s , J u l h o ( 1 9 8 4 ) , XVI C o n g r e s s o L a t i n o A m e r i c a n o de Q u i m i c a , R i o de J a n e i r o , O c t u b r o ( 1 9 8 4 ) . 17. B a e, J.H., "Some E f f e c t s o f P r e s s u r e on O i l S h a l e R e t o r t i n g , " A n n u a l F a l l M e e t i n g o f t h e S o c i e t y o f P e t r o l e u m E n g i n e e r s ( A I M E ) , 1968. 18. F u r i m s k y , E., " H y d r o g e n R e t o r t i n g o f O i l S h a l e s f r o m E a s t e r n C a n a d a , " F u e l P r o c e s s i n g T e c h n o l o g y , 8, 293-306 ( 1 9 8 4 ) . 19. H i l l , G.R., "The D i r e c t P r o d u c t i o n o f a Low Po u r P o i n t H i g h G r a v i t y S h a l e O i l , " ACS Symposium on P y r o l y s i s R e a c t i o n s o f F o s s i l F u e l s , P i t t s b u r g h ( 1 9 6 6 ) . 20. L u i , A.P., M e i , J . S . , S h a n g , J . Y . , and Zhang, G.Q., " A p p l i c a t i o n o f a T w i n F l u i d i z e d - B e d R e a c t o r f o r R e t o r t i n g C o m b u s t i o n a n d G a s i f i c a t i o n / C o m b u s t i o n P r o c e s s e s , " P r o c . 7 t h I n t e r n a t i o n a l C o n f e r e n c e on F l u i d i z e d ' B e d C o m b u s t i o n , 1270-1281 (1983) 118 21. S t a n f i e l d K.E., and F r o s t I . C , "Method of A s s a y i n g O i l S h a l e by M o d i f i c a t i o n F i s c h e r R e t o r t , " US B u r e a u of Min e s R e p o r t of I n v e s t i g a t i o n 4477 ( 1 9 4 9 ) . 22. Hubbard, A.B., and R o b i n s o n , W.E., US B u r e a u of M i n e s R e p o r t of I n v e s t i g a t i o n s 4744 ( 1 9 5 0 ) . 23. Cook, E.W., "Green R i v e r S h a l e - O i l Y i e l d s : C o r r e l a t i o n w i t h E l e m e n t a l A n a l y s i s , " F u e l , V o l 53, 16-20 ( 1 9 7 4 ) . 24. B r a u n , R.L., and Rothman, A . J . , " O i l S h a l e P y r o l y s i s K i n e t i c s and Mechanism of O i l P r o d u c t i o n , " F u e l , V o l 54, 129-131 ( 1 9 7 5 ) . 25. J o h n s o n , W.F., W a l t o n , D.K., K e l l e r , H.H., and Couch, E . J . , P r o c e e d i n g 8 t h O i l S h a l e Symposium, C o l o r a d o S c h o o l M i n e s , 7 0 ( 3 0 ) , 237 ( 1 9 7 5 ) . 26. F i n u c a n e , D., G e o r g e , J.H., and H a r r i s t , H.G., " P e r t u r b a t i o n A n a l y s i s o f S e c o n d O r d e r E f f e c t s i n K i n e t i c s of O i l S h a l e P y r o l y s i s , " F u e l , V o l 56, 66-69 ( 1 9 7 7 ) . 27. C a m p b e l l , J.H., K e s k i n a s , G.H., and S t o u t , N.D., " K i n e t i c s of O i l G e n e r a t i o n f r o m C o l o r a d o O i l S h a l e , " F u e l , V o l 57, 372-376 ( 1 9 7 8 ) . 28. G r a n o f f , B,, and N u t t a l l , H.E., " P y r o l y s i s K i n e t i c s f o r O i l - S h a l e P a r t i c l e s , " F u e l , V o l 56, 234-240 ( 1 9 7 7 ) . 29. S h i h , S.M., and Sohn, H.Y., " N o n i s o t h e r m a l D e t e r m i n a t i o n o f t h e I n s t r i n s i c K i n e t i c s o f O i l G e n e r a t i o n from O i l S h a l e , " I n d . Eng. Chem. P r o . Des. Dev., V o l 1 9 , 420-426 (1980) . 30. Wen, C.S., and K o b y 1 i n s k i , T.P., "Low T e m p e r a t u r e O i l S h a l e C o n v e r s i o n , " F u e l , V o l 62, 1269-1273 ( 1 9 8 3 ) . 31. Wang, C C , and N o b l e , R.D., " C o m p o s i t i o n and K i n e t i c s of O i l G e n e r a t i o n from N o n - i s o t h e r m a l O i l S h a l e R e t o r t i n g , " F u e l , V o l 62, 529-533 ( 198 3 ) . 119 32. Burnham, A.K., and Happe, J.A., "On the Mechanism of Kerogen P y r o l y s i s , " Fuel, Vol 63, 1353-1356 (1984). 33. Yang, H.S., and Sohn, H.Y., "Kinetics of O i l Generation from O i l Shale from Liaoning Province of China," Fuel, Vol 63, 1511-1514 (1984). 34. Pan, Z., Feng, H.Y., and Smith, J.M., "Rates of Pyrolysis of Colorado O i l Shale," AlChe Journal, Vol 31, No. 5, 721-728 (1985). 35. Teo, K.C., Watkinson, A.P., and Jung, D.J., "Characterization and Storage S t a b i l i t y of Untreated and Hydrotreated Liquids from Spouted Bed Pyrolysis of Canadian Coals," Dept. of Chem. Eng., University of B r i t i s h Columbia, DSS F i l e No. 20ST 23440-4-9074 , DSS Contract S e r i a l No. OST84-0015-1 , Pg. 22-32 (1985) . 36. Floess, J.K., Plawsky, J., Longwell, J.P., and Peters, W.A., "Ef f e c t s of Calcined Dolomite on the Fluid i s e d Bed Pyrolysis of a Colorado O i l Shale and a Texas L i g n i t e , " Ind. Eng. Chem. Proc. Des. Dev. Vol 24, 730-737 (1985) 37. Campbell, J.H., Koskinas, G.J., Gallegos, G., and Gregg, M., "Gas Evolution during O i l Shale Pyrolysis: Nonisothermal Rate Measurements," Fuel, Vol 59, 718-725 (1980). 38. Wu, Stanely W.M., "Hydrodynamic of Gas Spouting at High Temperature," MASc. thesis, University of B r i t i s h Columbia, 1986. 39. Ekstrom, A., and Callaghan, G., "The Pyrolysis Kinetics of some Australian O i l Shales,", Fuel, Vol 66, 331-337 (1987). 40. Parks, T.J., Lynch, L.J., and Webster, D.S., "Pyrolysis model of Rundle O i l Shale from i n - s i t u H n.m.r. data," Fuel, Vol 66, 338-344 (1987). 120 41. Wall, G.C., and Smith, S.J.C., "Kinetics of production of Individual Products from the Isothermal Pyrolysis of Seven Australian O i l Shales," Fuel, Vol 66, 345-349 (1987). 42. Gannon, A.J., and Henstridge, D.A., "Pyrolysis Stoichiometry for Three Kerogen Types," Fuel, Vol 66, 350-352 (1987). 43. Levy, J.H., Mallon, R.G., and Wall, G.C., "Vapour Phase Cracking and Coking of Three Australian Shale O i l s : Kinetics in the Presence and Absence of Shale Ash," Fuel, Vol 66, 358-364 (1987). 44. Dung, N.V., Wall, G.C. , and Kastl G., "Continuous Fl u i d i z e d Bed Retorting of Condor and Stuart O i l Shales in a 150mm diameter Reactor," Fuel, Vol 66, 372-376 (1987) . 45. Dung, N.V.,"A New Concept for Retorting O i l Shales," Fuel, Vol 66, 377-383 (1987). 46. Charlton, Brian G., "Comparative F l u i d i z e d Bed Combustion Kinetics of some Australian Spent O i l Shales," Fuel, Vol 66, 384-387 (1987). 121 A P P E N D I X A T e m p e r a t u r e H i s t o r y Model The h e a t t r a n s f e r i n a s p o u t e d bed has been d i s c u s s e d i n S e c t i o n 2.6. I t i s shown t h a t t h e p a r t i c l e t e m p e r a t u r e p r o f i l e i s g o v e r n e d by the u n s t e a d y s t a t e d i f f u s i o n e q u a t i o n , 3T a 3 ( r 2 3 T / 3 r ) = (2.4) 3t r 2 3r w i t h t h e b o u n d a r y c o n d i t i o n f o r r=R, K p O T / 3 r ) r = r p = h p ( T b - T r = r p ) (2.5) From e q u a t i o n 2.4, the t e m p e r a t u r e p r o f i l e of a p a r t i c l e as a f u n c t i o n o f time c a n be e s t i m a t e d a l o n g t h e l o n g t i t u d e h e i g h t o f t h e "4 r e g i o n s o f a s p o u t e d bed: t h e s p o u t , f o u n t a i n ( u p w a r d ) , f o u n t a i n (downward) and a n n u l u s . The s k e t c h o f t h e d i f f e r e n t r e g i o n s a r e shown i n F i g u r e 4. The e q u a t i o n c a n be w r i t t e n as a t r i d i a g o n a l m a t r i x . The r a d i u s o f t h e p a r t i c l e i s d i v i d e d i n t o 10 s e c t i o n s w i t h r ( l ) = r , i e . t h e c e n t r e of the p a r t i c l e , and r ( l 0 ) = R , i e . t h e s u r f a c e of t h e p a r t i c l e , and t h e l o n g t i t u d e h e i g h t of t h e bed i s a l s o e q u a l l y d i v i d e d i n t o 10 s e c t i o n s , t h u s f o r m i n g a m a t r i x o f 10 x 10. To put t h e e q u a t i o n i n a m a t r i x form, e q u a t i o n 2.4 has t o be d i f f e r e n t i a t e d and put i n t o f i n i t e s e r i e s form, a 3T 3 2T — (2r — + r 2 ) = r 2 3r 3 r 2 3T dt ( A . l ) 2a3T d 2T 3T + a = (A.2) r3r dt2 dt where 3T T n + i »- - T n _ i t 3r 2Ar 3 2T T n + 1 > t - 2 T n > t + T n - ! > t 77 = A 2 ( A - 4 ) 3 r 2 A r 2 3T T n «. - T n,t A n,t-1 ( A . 5 ) 3t At t h e r e f o r e equation ( A . 2 ) becomes, 2 a , Tn+1,t - T n _ l f t T n + , f t - 2 T n , t + T n - ! , t ( ) + a( 2Ar Ar T n , t T n , t - 1 At ( A . 6 ) 123 Rearranging equation (A.6) gives, a a 2a 1 a a < " — + — ) T n - 1 , t + — >Tnft + ( + ") T n + , , t rAr Ar 2 A r 2 At rAr Ar 2 Tn,t- 1 At 3a 6a 1 3a — " — ) T n, t + — Ar 2 At Ar — T n - 1 , t + ( - — " —) T n, t + — T n + 1 # t Ar' Ar 2 At A r 2 (A.7) At the boundary condition when r=r c=0, then (A.2) becomes, 3 2T 3T 3 a 7 T = T ~ <A-8) 3r 2 3r A r 2 A t = _ T n ' f c 1 ( A . 10) At 3T The boundary condition at r=0 is = 0 ( A . l l ) dr T n+1,t" Tn-1,t ( ) = 0 (A.12) 2Ar o r Tn+1,t = T n _ | f t (A.13) 124 T h e r e f o r e , 6a 1 6a T n , t - 1 3r k p (A. 14) ( ) T n , t + ^ Tn+1,t A r 2 At A r 2 At The boundary c o n d i t i o n a t r=R i s = — ( T g - T) (A. 15) or T " * , ' t " T""'' t = - T „ , t ) (*.,6> 2Ar k p hp •n+l,t = T n - l , t + 2 r < Tg " T n , t > ( A - 1 ? ) S u b s t i t u t i n g t h e r e s u l t i n t o t h e g e n e r a l form of the (A.7) y i e l d s : a a 2a 1 ( + ) T + ( ) T n / t r A r A r 2 A r 2 At ( + ) [ T n - i f t + ' ( T g - T n f t ) ] = 2 A r h n T n , t - 1 r A r A r ' K p ( A . 1 8 ) 125 2a 2a 1 2 A r h p a a or - T n - l , t + I , < + : ^ T n , t A r 2 A r 2 At k p rAr A r 2 T n f t - i 2 A r h p a a ( + ) T q (A.19) At k p rAr A r 2 The c o o r d i n a t e s of the m a t r i x a r e l i s t e d in t a b l e 29. A l i b r a r y program TRISLV i s used to s o l v e the t r i d i a g o n a l e q u a t i o n s . T a b l e 30 l i s t s the c o r r e l a t i o n s used for e s t i m a t i o n of the hydrodynamic p r o p e r t i e s for the spouted b e d . There are a few assumpt ions made: 1) The v e l o c i t y of the p a r t i c l e at the apex of the spouted bed i s assumed to be z e r o . 2) The p a r t i c l e at the apex of the spouted bed i s assumed to be at room t e m p e r a t u r e , 2 9 8 ° K , i e . the i n l e t temperature e f f e c t on the p a r t i c l e i s i g n o r e d . 3) The c a l c u l a t i o n of the hydrodynamic p r o p e r t i e s of the spouted bed i s based on sand as s p o u t i n g media . The o i l s h a l e p a r t i c l e i s assumed to f o l l o w the flow p a t t e r n of the sand . 4) The r e a c t o r temperature i s assumed to be c o n s t a n t . There i s assumed to be no heat l o s s to the s u r r o u n d i n g s . T a b l e 29: C o o r d i n a t e s of the T r i d i a q o n a l M a t r i x of s p o u t e d bed b, 2a Ar' 1 At c, - 2a A r J n, t ~ I Ac A r 4 rAr 2a I Ar» Ac rAc Ac' l n , c - i Ac 2a A r ; 2 a h p 2ahpAr c K p A r ' k p Ar* At 2 a h p T q 2 a h p T q T n < c _ , rUp d r l c p AC 127 Table 30: C o r r e l a t i o n s used to e s t imate the p r o p e r t i e s of spouted bed hydrodynamic D c . .. D c . . . . D c 0. 105( )° 7 5 ( )° , Dp D i p p , / 2 Reference (9) 2gHH(p p-p g) urns £ 2 ) o . s D C D c Pg (9) 0.118(G)°' 9(D c)°-«' (9) u m ( 0.5(nbf + M t f ) (10) nebf nebf•u DpPg n e t f • M DpPg D p 3 P g ( P p - P q ) g u t [ 1 8 . 1 J + 0 . 0 1 9 2 ( — - — - 2 ) ] i / » _ 1 8 . ( 10) n e t f [ 2 4 . 0 2 + 0.0546( D p 3 P g ( p P - p g ) g ) ] 1 / * - 24.0 (10) ( E o ' - ' M ( V P m a x ) M p s ) 2g ( p s ~ P g ) (12) ( 0 . 3 X 0 . 2 ) ( V m a x ) D I S J ( s p o u c ) { 1-o.2) HH Vmax 2 " 2 g ( D I S J ) ( p P - p g ) [ . L_] o. 5 ( f o u n t a i n > o Pp [ 2g(Pp"Pg) ( f a l l i n g ; E 0 ' - ' 6 p p •(H - DISJ)]°- 5 128 5) The o i l s h a l e p a r t i c l e i s assumed t o be a p e r f e c t s p h e r i c a l p a r t i c l e . The computer program c o n s i s t s o f t h r e e s e c t i o n s . S e c t i o n 1 s p e c i f i e s a l l the d a t a and i n f o r m a t i o n o f t h e s p o u t e d bed r e a c t o r , the p r o p e r t i e s o f s a n d ( s p o u t i n g m e d i a ) , o i l s h a l e and s p o u t i n g g a s . I t a l s o c a l c u l a t e s t h e h y d r o d y n a m i c p r o p e r t i e s . f o r t h e s p o u t e d b e d . S e c t i o n 2 o f th e p r o g r a m c a l l s t h e s u b r o u t i n e Temp2 t o Temp5 t o c a l c u l a t e and p r i n t o u t t h e s o l u t i o n s . S e c t i o n 3 o f t h e pr o g r a m s t o r e s a l l t h e s u b r o u t i n e s . The c a l c u l a t i o n s were done on t h r e e a v e r a g e o i l s h a l e s i z e s : 3mm, 1.5mm and 0.75mm; and t h r e e r e a c t o r t e m p e r a t u r e s : 450, 500 and 5 5 0 ° C . O t h e r p r o f i l e s c a n be o b t a i n e d by s i m p l y c h a n g i n g t h e d a t a i n f o r m a t i o n i n l i n e 44, 45 and 46 of t h e program. 129 APPENDIX B B.1 C a l c u l a t i o n s f o r I s o k i n e t i c Gas S a m p l i n g I s o k i n e t i c s a m p l i n g means t h a t t h e v e l o c i t i e s o f the g a s e s i n the main p i p e i s t h e same as t h e v e l o c i t i e s of g a s e s i n t h e s a m p l i n g t u b e . To e n s u r e t h i s , t h e v o l u m e t r i c f l o w r a t e of t h e gas i n t h e main p i p e i s f i r s t e s t i m a t e d , and t h e v o l u m e t r i c f l o w r a t e o f t h e sample i s t h e n c a l c u l a t e d and a d j u s t e d t o t h e t e m p e r a t u r e of t h e s a m p l i n g gas r o t a m e t e r . A sample c a l c u l a t i o n f o r Run #2 i s shown as below: O i l s h a l e p a r t i c l e s i z e = 0.5-1.Omm Te m p e r a t u r e of t h e r e a c t o r = 501°C T e m p e r a t u r e of t h e s a m p l i n g t u b e = 400°C Mass f l o w r a t e of s p o u t i n g gas = 4.95g/s Mass f l o w r a t e of o i l s h a l e ( as r e c e i v e d ) = 0.369g/s Mass f l o w r a t e of o i l s h a l e (MAF) = 0.095g/s Water v a p o r and gas e x p e c t e d t o e v o l v e from o i l s h a l e = 0 . 0 l 9 g / s T o t a l mass f l o w r a t e o f g a s e s = 4.969g/s I t c an be seen t h a t t h e s p o u t i n g gas a c c o u n t s f o r 99% of t h e g a s e s , hence t h e mass f l o w r a t e and d e n s i t y of s p o u t i n g gas a r e u s e d f o r t h e p u r p o s e of t h i s c a l c u l a t i o n . D e n s i t y of s p o u t i n g gas a t 501°C = 0.0004793g/cm 3 V o l u m e t r i c f l o w r a t e o f g a s e s = 10367.20cm 3/s Main p i p e f l o w r a t e = 23.58cm 2 130 V e l o c i t y of t h e s p o u t i n g gas = 439.66cm/s S a m p l i n g tube c r o s s - s e c t i o n a l a r e a = 0.7cm 2 V o l u m e t r i c f l o w r a t e of sample g a s , 500°C = 307.76cm 3/s V o l u m e t r i c f l o w r a t e of sample g a s , 21°C = 1 l 7 . 0 c m 3 / s Hence t h e sample gas r o t a m e t e r s e t t i n g i s a d j u s t e d a c c o r d l i n g l y . B.2 P r o d u c t Y i e l d C a l c u l a t i o n The p r o c e d u r e used t o c a l c u l a t e o i l , gas and s p e n t s h a l e y i e l d s i s o u t l i n e d a s below, and a s i m p l e c o m p u t e r p r o g r a m i s w r i t t e n f o r t h i s p u r p o s e . o i l O i l Y i e l d : x 100% Feed Spent S h a l e Y i e l d : s p e n t x 1 00% F e e d TG - SG T o t a l Gas Y i e l d : x 1 00% F e e d TG = SG = T o t a l g a s o u t p u t , g/s Mass f l o w r a t e of s p o u t i n g g a s , g/s APPENDIX C Computer Programmes P r o f i l e 133 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC i d = TITA 1 2 c • C 2. . 2 r NAME OF THIS PROGRAM: PROFILE • 2 . 4 C * 2. 8 c * 3 C THIS PROGRAM IS USED TO WORK OUT THE TEMPERATURE HISTORY OF * 4 C AN OIL SHALE PARTICLE IN THE 5 REGIONS OF A SPOUTED BED: * 6 C 1 ) SPOUT REGION * 7 C 2) FOUNTAIN REGION * 8 C 3) FALLING REGION 9 C 4) ANNULLUS REGION * 10 C * 1 1 c THIS PROGRAM IS CONSISTED OF 3 SECTIONS: * 12 c SECTION 1) SPECIFIES ALL THE INFORMATION OF THE SPOUTED BED * 13 c BED REACTOR. PROPERTIES OF SANO (SPOUTING MEDIA) * 14 c AND PROPERTIES OF OIL SHALE. IT ALSO WORKS OUT 15 c THE HYDRODYNAMIC PROPERTIES (HM. UMS, UMF ETC) 16 c FOR THE SPOUTED BED * 17 c * 18 c SECTION 2) CALLS THE SUBROUTINE TEMP2. TEMP3. TEMP4 AND 19 c TEMP5 TO CALCULATE AND PRINT OUT THE TEMPERATURE * 20 c HISTORY FOR THE OIL SHALE AT A GIVEN SIZE AND * 21 c REACTOR TEMPERATURE * 22 c * 23 c SECTION 3) STORES ALL THE SUBROUTINE TEMP2 TO TEMP5 * 24 25 c * 26 c 27 c 28 IMPLICIT REAL*8 (A-H.O-Z) 29 c 30 DIMENSION DP(3),TEMPG(3).TERM(3) 31 DIMENSION BI0T2(2O),BIOT3(2O).BI0T4(2O).BI0T5(2O) 32 DIMENSION DIS1(20). DIS2(20), DIS3(20). DIS4(20). DIS5(20) 33 OIMENSION DTIME1(20).DTIME2(20).DTIME3(20).DTIME4(20) 34 DIMENSION DTIME5(20) 35 DIMENSION HP2(20).HP3(20).HP4(20).HP5(20) 36 DIMENSION Ri(20).R2(20).R3(20),R4(20),R5(20) 37 DIMENSION T1(20.20),T2(20.20),T3(20.20).T4(20,20).T5(20.20) 38 DIMENSION UP2(20).UP3(20).UP4(20),UP5(20) 39 c 40 REAL KP.KPP.NU 4 1 c 42 c READ DATA 43 c 44 DATA DP/0.3DO.O.15DO.0.O7500/ 45 DATA TERM/567.96DO.784.3500.355.200/ 46 DATA TEMPG/723.DO.823.DO.773.00/ 47 c 48 c USE DO-LOOP TO ESTIMATE THE TEMPERATURE PROFILE 49 c FOR 3 DIFFERENT SIZES AT DIFFERENT TEMPERATURES 50 c 51 c DO 9999 MM=1,3 52 TG=TEMPG(3) 53 c DO 999 M=1.3 54 DIA=DP(3) 55 UT=TERM(3) 56 134 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC1d=TITA 57 C 58 59 C 60 C 61 c SECTION 1) SPECIFY THE BASIC INFORMATIN OF THE SPOUTED BED 62 c REACTOR. SAND PARTICLES. OIL SHALE AND SPOUTING 63 64 c 65 c 66 c INFORMATION OF THE SPOUTED BED REACTOR 67 c 68 DI=1.5800 69 DC=12.8DO 70 DPIPE=1.58D0 71 HPIPE=17.8D0 72 APIPE = 3. 14 1600*(DPIPE**2.DO)/4.00 73 HH=33.DO 74 AC0L = 3. 1416DO*(0C*-2.DO)/4.DO 75 ES=0.95DO 76 EA=0.42DO 77 E0=0.7D0 78 c 79 c PROPERTIES OF THE SAND PARTICLES 80 c 81 DPS=0. 1 121D0 82 RRS=0PS/2.DO 83 DENS=2.68D0 84 c 85 c PROPERTIES OF THE OIL SHALE 86 c 87 RR=DIA/2.D0 88 DEN=2.0O 89 KPP= 1 . 25D-2/4. 18600 89. 5 CPP=1.1300/4.186D0 90 c 91 c PROPERTIES OF GAS 92 c 93 CP=(6.76D0+((0.606D-3)*TG)+((0.13D-6)*(TG**2.DO)))/28.DO 94 DENG=1.00*((28.000*0.85DO)+(44.000*0.15D0))/82.05D0/TG 95 KP=0.0001257D0 96 VIS=0.00033D0 97 c 98 c FURTHER INFORMATION 98. 5 c THE FOLLOWING DATA ARE TAKEN FROM STANELY WU'S THESIS 99 c 100 DIS5(1 ) =33.DO 100. 5 DIS5(2)=32.DO 101 DIS5(3)=25.DO 102 DIS5(4 )=20.00 103 DIS5(5)=15.D0 104 DIS5(6)=10.DO 105 DIS5(7)=5.DO 106 c 106 . 5 UP5(2) = 1 .335DO 107 UP5(3)=1 .28900 108 UP5(4 ) = 1 . 188D0 109 UP5(5)=1.05900 1 10 UP5(6 )=2 . 176D0 135 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC i d=TITA 111 UP5(7)=0.83800 1 12 C 1 13 C TO CALCULATE THE HYDRODYNAMIC PROPERTIES OF THE SPOUTED BED 1 14 C BASED ON SAND AS SPOUTING MEDIA 1 15 C 1 16 C TO CALCULATE MAXIMUM SPOUTABLE BED HEIGHT. HM 117 C 1 18 HM=0. 105D0*((DC/DPS)**0.75DO)*((DC/DI)•*0.400)*DC/( DENS' * 1 .200) 1 19 C 120 C TO CALCULATE MINIMUM SPOUTING VELOCITY. UMS 121 C - 122 UMS=(DPS/DC)*((DI/DC)**(1.DO/3.DO))*((2.DO*980.DO*HH* 123 & (DENS-DENG)/DENG)* * ( 1.DO/2.DO)) 124 U=1.1D0*UMS 125 0=U*ACOL 126 C 127 C TO CALCULATE THE DIAMETER OF SPOUT. DS 128 C 129 EMF=0.5D0 130 DENB=OENS*(1.DO-EMF) 131 G=DENG*U 132 DS=(0.11800*((G*10.D0)**0.49D0)*((DC/100.DO)* *0.68D0)/ 133 & (0ENB**0.41D0))*100.00 134 AS = 3. 1416DO*(DS**2.DO)/4.00 135 C 136 C TO CALCULATE MINIMUM FLUIDISATION VELOCITY. UMF 137 C 138 CONST=(DPS**3.DO)*(DENG*(DENS-DENG)*980.D0)/(VIS**2.DO) 139 NEBF = (( ( 18.1DO**2.DO) + (O.O192DO*C0NST))**0.5D0)- 18 . 1D0 140 U8F=NEBF*VIS/DPS/DENG 141 NETF = (((24.DO* * 2.DO) + (0.0546DO*C0NST))* *0.5D0)-24.DO 142 UTF=NETF*VIS/DPS/DENG 143 UMF=0.5D0*(UBF+UTF) 144 C 145 WRITE(6,991 (DIA 146 991 FORMAT(1H1,/, '01A OF OIL SHALE PARTICLE = ' ,F6.4. 'CM') 147 WRITE(6.992)UMS 148 992 FORMAT(//. 'MIN SPOUTING VELOCITY ='.F8.4,'CM/SEC') 149 WRITE(6.993)U 150 993 FORMAT(//. 'SPOUTING VELOCITY =',F8.4,'CM/SEC' ) 151 WRITE(6.994)HM 152 994 FORMAT(//. 'MAX SPOUTABLE HEIGHT =' .F7 . 4 , ' CM' ) 153 WRITE(6.995)DS 154 995 FORMAT(//,'DIAMETER OF SPOUT ='.F6.4.'CM') 154.3 WRITE(6.996)TG 154.6 996 FORMAT(//.'REACTOR TEMPERATURE ='.F7.3.'DEG K') 155 C 156 157 C 158 C * 159 C SECTION 2) CALL THE SUBROUTINES TO PERFORM THE CALCULATION AND * 160 C PRINT OUT THE RESULTS 161 C * 162 163 C 164 C INITIALISE ALL TEMPERATURES 165 C 166 DO 111 1=1.10 136 L i s t i n g of PROFILE at 11:37:26 on MAY 28: 1987 f o r CCid=TITA 167 T1( I . 1 ) = 771 .900 167.011 C 168 111 CONTINUE 209 C 210 C 211 C ««•»««*« * ...................... 212 C 213 C CALL SUBROUTINE TEMP2 TO WORK OUT THE * 214 C TEMPERATURE PROFILE IN THE SPOUT 215 C 2 *| 6 c **********|***'************* + **************** 217 C 217.2 C 217.4 WRITE(6.606)CP 217.6 606 F0RMAT(//,F1O.5) 217.8 C 218 CALL TEMP2(TG.DIA,CP,DENG,KP.VIS.RR.DEN,CPP.KPP,HH,AC0L.HM.Q, 219 & AS.ES.EA.T1.UMF.T2.DTIME2.DIS2.R2.UP2.TT2.HP2.BI0T2) 220 C 221 C WRITE TITLE 222 C 223 WRITE(6,200)DIA 224 200 FORMAT(1H1, 'IN THE SPOUTING REGION FOR SIZE =' ,2X,F6.4 . 'CM' ) 225 C 226 C WRITE OUT THE SOLUTIONS OF T2 ( I . d ) 227 C 228 WRITE(6.201) 229 201 F0RMAT(//2X.'VEL CM/SEC'.20X,'TEMP DEG K',28X.'HEIGHT CM', 230 & 3X,'TIME',5X,'HP',4X,'BIOT NO') 231 C 232 DO 202 KK=1 , 10 233 J=11-KK 234 WRITE(6,203)UP2(J),(T2(I,J ) ,I = 1,10).DIS2(d).DTIME2(J).HP2(J ) . 235 & BI0T2(J) 236 203 FORMAT(//2X.F7.2. 1X. 10F6. 1 , 2X.F6.3,2X.F7.5.2X,F7.4,2X.F5.2 ) 237 C 238 202 CONTINUE 239 C 240 C WRITE OUT THE DELTA RADIUS FOR THE PARTICLE AT BOTTOM LINE 24 1 C 242 WRITE(6.204)(R2(I).1=1.10) 243 204 F0RMAT(//10X.10F6.3) 244 C 245 C TO WRITE OUT THE SUB-TIME FOR PARTICLE TO REACH TOP LINE 246 C OF THE SPOUT 247 C 248 WRITE(6.205)TT2 249 205 FORMAT(///, 'SUB-TIME=',F8.4, 'SEC' ) 250 C 251 C 252 C **«*•**«««««» « .««.«....*.«,.....«....» 253 C 254 C CALL SUBROUTINE TEMP3 TO WORK OUT THE 255 C TEMPERATURE PROFILE IN THE FOUNTAIN REGION 256 C • 257 C • •- •• - 258 C 259 CALL TEMP3(TG.DIA,DENG.'KP.VIS,DENS.RR.DEN.CPP.KPP,U.UP2.T2.H, 137 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC1d=TITA 260 & T3,0TIME3.DIS3.R3.UP3.TT3.HP3,BI0T3) 26 1 262 C 263 C WRITE TITLE 264 C 265 WRITE(6.300)DIA 266 300 FORMAT(1H1.'IN THE FOUNTAIN REGION FOR SI ZE = '.2X.F6.4.'CM' ) 267 C 268 WRITE(6.301)H 269 301 F0RMAT(//2X,'FOUNTAIN HEIGHT='.F6.3.'CM') 270 C 273 C WRITE OUT THE SOLUTIONS OF T 3 ( I . J ) 274 C 275 WRITE (6.302) 276 302 F0RMAT(//2X, 'VEL CM/SEC',20X . 'TEMP DEG K'.28X, 'HEIGHT CM', 277 & 4X,'TIME'.4X,'HP',4X.'BIOT NO') 278 C 279 DO 303 KK=1, 10 280 d=11-KK 281 WRITE(6.304)UP3(J).(T3(I,d) ,1 = 1. 10),DIS3(d),DTIME3(J) , 282 & HP3(d),BI0T3(J) 283 304 FORMAT(//2X.F7.2,1X.10F6.1.2X.F6.3.2X.F6.4.2X.F7.5.2X.F5.2) 284 C 285 303 CONTINUE 286 C 287 C WRITE OUT THE DELTA RADIUS FOR THE PARTICLE AT BOTTOM LINE 288 C 289 WRITE(6.305)(R3(I),I=1,10) 290 305 F0RMAT(//1OX.10F6.3) 291 C 292 C TO WRITE OUT SUB-TIME FOR PARTICLE TO REACH THE FOUNTAIN 293 C 294 WRITE(6.306)TT3 295 306 FORMAT(///. 'SUB-TIME=' .F6.4. 'SEC ) 296 C 297 C 298 C *•-••* , . , . . , . . . . . . . , « . . . . . . . . . « 299 C 300 C CALL SUBROUTINE TEMP4 TO WORK OUT THE * 301 C TEMPERATURE PROFILE IN THE FOUNTAIN FALLING REGION « 302 C 303 C **----«*«-*««••**«.«»*«*•«*.««-««««••«-•.**---««----«-*•* 304 C 305 C 306 CALL TEMP4(TG.DENG.KP.VIS.DIA.DEN,CPP.KPP,DENS.H.E0.U.UP3. 307 S T3,T4,DTIME4,DIS4.R4,UP4,TT4,HP4,BI0T4) 308 C 309 C WRITE TITLE 310 C 311 WRITE(6.400)DIA 312 400 FORMAT(1H1,'IN THE FALLING REGION FOR SIZE -',2X.F6.4,'CM') 313 C 314 WRITE(6.401) 315 401 FORMAT(//2X. 'VEL CM/SEC'.20X,'TEMP DEG K' ,28X. 'HE IGHT CM'. 316 8. 4X ,' TIME '. 4X , 'HP' , 4X , 'BIOT NO') 317 C 319 C 320 00 402 KK=1.10 138 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CCid=TITA 322 WRITE(6.403)UP4(KK). (T4( I.KK), I = 1 . 10),DIS4(KK) .DTIME4(KK), 323 & HP41KK).BI0T4IKK) 324 403 F0RMAT(//2X.F7.2.1X.10F6.1.2X.F6.3.2X.F6.4.2X.F7.5.2X. 325 & F5.2) 326 C 327 402 CONTINUE 328 C 329 C 330 c WRITE OUT THE DELTA RADIUS FOR THE PARTICLE AT BOTTOM LINE 331 c 332 WRITE(6.404)(R4(I),I=1,10) 333 404 F0RMAT(//10X.10F6.3) 334 C 335 C WRITE OUT SUB-TIME FOR PARTICLE TO DROP FROM FOUNTAIN 336 C 337 WRITE(6.405)TT4 338 405 FORMAT(///. 'SUB-TIME='.F6.4. ' S E C ) 339 C 340 341 C • 342 C CALL SUBROUTINE TEMP5 TO WORK OUT THE TEMPERATURE - 343 c PROFILE IN THE ANNULUS REGION 344 c 345 346 C 347 CALL TEMP5(TG.01A,DENG.KP,VIS.RR,DEN,CPP.KPP.HH.EA.ES.ACOL.AS 348 & UMF,HM,UP5,DIS5,T4.UP4.T5.DTIME5.R5.TT5.HP5.BI0T5) 349 c 350 c WRITE TITLE 351 c 352 WRITE(6.500)DIA 353 500 FORMAT(1H1,2X,'IN THE ANNULUS REGION FOR SIZE=',F6.4.'CM') 354 C 355 WRITE(6,501) 356 501 F0RMAT(//2X. 'VEL CM/SEC'.20X,'TEMP DEG K ' , 28X . 'HEIGHT CM'. 357 & 4X,'TIME',4X,'HP',4X,'BIOT NO') 358 C 359 DO 502 KK=1.7 360 WRITE(6.503)UP5(KK),(T5(I.KK).I = 1,10).DIS5(KK).DTIME5( KK) . 361 & HP5(KK>.BI0T51KK) 362 503 FORMAT(//2X.F7.2. 1X. 10F6. 1.2X.F6.3.2X,F6 . 4.2X.F7.5.2X. 363 & F5.2) 364 C 365 502 CONTINUE 366 C 367 C WRITE OUT THE DELTA RADIUS FOR THE PARTICLE AT BOTTOM LINE 368 C 369 WRITE(6.504 )(R 5 ( I ) . 1 = 1. 10) 370 504 FORMAT(//10X.10F6.3) 371 C 372 C WRITE OUT TOTAL TIME FOR PARTICLE TO GO DOWN TO ANNULUS 373 C 374 WRITE(6,505)TT5 375 505 FORMAT(III, 'SUB-TIME='.F8.4.'SEC) 376 C 377 C TO WORK OUT THE TOTAL TIME SPENT IN THE 5 REGIONS 378 C 379 TIME=TT1+TT2+TT3+TT4+TT5 139 L i s t i n g of PROFILE at 1 1:37:26 on MAY 23. 1987 f o r CC i d = TITA 380 WRITE(6.600)TIME 38 1 600 FORMAT(///2X, 'TOTAL TIME SPENT IN 5 REGIONS =' .F8 . 4, ' SEC' ) 382 C 383 999 CONTINUE 384 C 385 9999 CONTINUE 386 STOP 387 END 388 389 C 390 C * 391 C SECTION 3) STORE ALL THE SUBROUTINES 392 C * 393 510 C 511 C 512 C * 513 C - 514 C SUBROUTINE TEMP2 * 515 C * 516 517 C 518 C 519 SUBROUTINE TEMP2(TG.DIA.CP.DENG.KP,VIS.RR.DEN,CPP.KPP,HH.ACOL. 520 & HM.O,AS.ES.EA.T1,UMF.T2.DTIME2.DIS2.R2,UP2,TT2,HP2.BI0T2) 521 C 522 C 523 IMPLICIT REAL»8 (A-H.O-Z) 524 DIMENSION A(100),B(100),C(100),D(100) 525 DIMENSION 0TIME2(20).DIS2(20),R2(20).HP2(20).BI0T2(20) 526 DIMENSION T1(20.20).T2(20.20).UP2(20) 527 REAL KPP.NU.KP 528 C 529 c SPECIFY CONDITIONS OF GRID 530 c 531 N=10 532 DR=RR/9.D0 533 DD=HH/9.00 534 TT2=O.0D0 535 DTIME2(1)=O.ODO 536 c 537 c 538 c INITIALISE ALL R(I) -539 c 540 DO 20 I=1.N 54 1 20 R2(I)=(I-1)*DR 542 c 543 c 544 c INITIALISE ALL TEMPERATURES 545 c 546 DO 21 IK=1 ,10 547 T2(IK. 1 )=T1(IK. 1) 548 2 1 CONTINUE 549 c 550 c 551 c WORK OUT THE VERTICAL DISTANCE 552 c 553 DO 22 1=1.11 140 L i s t i n g o f PROFILE at 1 1:37:26 on MAY 28. 1987 f o r CC id = TITA 554 22 01S 2( I)=DD * ( I - 1 ) 555 C 556 C TO WORK OUT SPOUTING VELOCITY AT THE TOP OF THE SPOUT. USH 557 C 558 C 559 UA = UMF*( 1 .D0-(( 1 .DO-(HH/HM))* * 3.DO)) 560 OA=UA*(ACOL-AS) 561 OS=Q-QA 562 USH=QS/AS/ES 563 c 564 c 565 c TO SET UP TRIDIAGONAL EOUATIONS TO SOLVE THE 566 c TEMPERATURE HISTORY FOR A SINGLE PARTICLE 567 c 568 DO 23 0 = 2. 1 1 569 c 570 c 571 c TO WORK OUT THE UA AT EACH INTERVAL 572 c 573 IF ( J .EO. 11) GOTO 24 574 UA=UMF*(1.D0-((1.DO-(DIS2(J)/HM))**3.D0)) 575 OA=UA*(ACOL-AS) 576 QS=Q-QA 577 US=OS/AS/ES 578 UP2(d)=( (0.3D0*0.2D0*USH)*(DIS2(d)/HH) )/(1.D0-0.2D0) 579 GOTO 25 580 24 UA=UMF 581 OA=UA*(ACOL-AS) 582 US=QS/AS/ES 583 UP2(J)=((0.3D0*0.2D0*USH)*(DIS2(J)/HH))/(1.D0-0.2D0) 584 25 RV=DABS(US-UP2(J)) 585 c 586 c TO CALCULATE HP FOR THE OIL SHALE IN THE SPOUTING REGION 587 c 588 E=0.400 589 RE=DIA*RV*DENG/VIS 590 PR=CP*VIS/KP 591 AA=2.D0/(1.D0-((1.DO-E)**(1.D0/3.D0))) 592 BB = 2.DO* E/3.DO 593 NU = AA+BB*(PR**( 1.00/3.DO))*(RE * *0.55D0) 594 HP=NU*KP/2.D0/RR 595 J J = d- 1 596 HP2(Jd)=HP 597 BI0T2(dJ)=HP*RR/KPP 598 c 599 c 600 ALPHA=KPP/CPP/DEN 601 c 602 c TO WORK OUT THE DT 603 c 604 DTIME2(d)=0D/UP2(d) 605 TT2=TT2+DTIME2(J) 606 DT=DTIME2(d) 607 UP2(1)=O.ODO 608 c 609 c SET COEFFICIENTS OF MATRICS 610 c 6 1 1 c BOUNDARY CONDITION AT R=0 141 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC i d = TITA 6 12 C 6 13 B( 1) = -(6.DO*ALPHA/(DR*"2.DO) )-( 1 .DO/DT) 6 14 C(1 ) =6.DO*ALPHA/(DR**2.DO) 6 15 C 616 c BOUNDARY CONDITION AT R=N 617 C 6 18 A(N) = 2.DO*ALPHA/(DR * * 2.DO) 619 B(N) = (- 1.DO/DT)-(2.DO* A LPHA *HP/R2(N)/KPP) - 620 > (2.DO*ALPHA/(DR**2.DO))-(2.DO*ALPHA*HP/DR/KPP) 62 1 C 622 C INITIALISE ALL VALUES OF A ( I ) . B ( I ) . ANO C ( I ) 623 c 624 DO 26 IK=2.9 625 A(IK) = (ALPHA/(DR * * 2.DO))-(ALPHA/R2(IK)/DR) 626 B(IK) = (-2.DO*ALPHA/(DR* *2.DO))-( 1.DO/OT) 627 26 C(IK)=(ALPHA/R2(IK)/OR)+(ALPHA/(DR* *2.DO)) 628 c 629 D(1) = -T2( 1 .J-1)/DT 630 DO 27 1=2.9 631 27 D(I)=-T2(I.J-1)/DT 632 0(N) = -(T2(N,«J-1)/DT) - ( 2 .DO*ALPHA *HP *TG/R2(N)/KPP)- 633 > (2.D0*ALPHA*HP*TG/DR/KPP) 634 c 635 c CALL LIBRARY PROGRAMM TO SOLVE THE TRI-DIA EONS 636 c 637 CALL TRISLV(N,A.B.C.D.0.&99) 638 C 639 C 640 C STORE THE SOLUTIONS T 2 ( I . d ) 64 1 C 642 DO 28 11=1.N 643 T 2 ( I I . J ) = D ( I I ) 644 28 CONTINUE 645 C 646 23 CONTINUE 647 C 648 GOTO 299 649 99 WRITE(6.29) 650 29 F0RMAT(///2X.'ERROR MESSAGE') 651 299 CONTINUE 652 C 653 RETURN 654 END 655 C 656 C 657 658 C * 659 C SUBROUTINE TEMP3 * 660 C * 66 1 662 C 663 C 664 SUBROUTINE TEMP3(TG.DIA,DENG,KP,VIS.DENS.RR,DEN.CPP.KPP 665 & UP2.T2.H.T3.DTIME3.DIS3.R.UP3.TT3.HP3.BI0T3) 666 C 667 IMPLICIT REAL * 8 (A-H.O-Z) 668 DIMENSION A( 100),B( 100),C( 100) .D( 100) 669 DIMENSION BI0T3(20).DI S3(20 ) .DTIME3(20).HP3(20).R(20) 142 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CCid=TITA 670 DIMENSION T2(20.20).T3(20.20),UP2(20).UP3(20) 671 REAL KP.NU.KPP 672 C 673 C TO CALCULATE THE HEIGHT OF FOUNTAIN REGION. H. 674 C 675 UP3( 1 )=UP2( 10) 676 UP3(11)=O.ODO 677 E0=0.7D0 678 H=(E0**1.46D0)*(UP3( 1)**2.DO)*DENS/(DENS-DENG ) /2.DO/980.DO 679 C 680 C TO WORK OUT THE TEMPERATURE OF DIFFERENT PARTICLE SIZE 681 C 682 C 683 C SPECIFY CONDITIONS OF GRID 684 C 685 N= 10 686 DR=RR/9.D0 687 DD=H/9.D0 688 TT3=0.0D0 689 DTIME3(1)=0.0D0 690 C 691 c 692 c INITIALISE ALL R(I) 693 c 694 DO 30 1=1.N 695 30 R(I ) = (I-1 )»DR 696 c 697 c 698 c INTIALISE ALL TEMPERATURES 699 c 700 DO 31 11 = 1 . 10 701 T 3 ( I I . 1 )=T2(II.10) 702 31 CONTINUE 703 C 704 C 705 C WORK OUT THE VERTICL DISTANCE 706 c 707 DO 32 1=1.11 708 32 DIS3(I ) =DD*( I - 1 ) 709 C 710 C 711 C TO SET UP TRIDIAGONAL EOUATIONS TO SOLVE THE TEMPERATURE 7 12 C HISTORY FOR A SINGLE PARTICLE 713 C 714 DO 33 d = 2, 1 1 715 C 716 C 717 IF (J.EO. 1 1 ) GOTO 34 718 C 719 C TO WORK OUT THE VELOCITY OF PARTICLE AT EACH INTERVAL IN 720 C THE FOUNTAIN REGION 721 c 722 UP3(J) = ((UP3( 1 )* * 2.DO)-(2.D0*980.DO*DI S3(J)*(DENS-DENG)/DENS/ 723 > (E0*« 1 .46D0)))**0.5D0 724 c 725 c TO WORK OUT THE DELTA TIME 726 c 727 DTIME3(d)=DD/UP3(d-1) 143 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC i d = TITA 728 TT3=TT3+DTIME3(d) 729 DT=0TIME3(d) 730 C 731 34 CONTINUE 732 C 733 RV = DABS(U-UP3(d) ) 734 C 735 c TO CALCULATE HP FOR THE COAL PARTICLE IN FOUNTAIN REGION 736 c 737 RE=DIA*RV*DENG/VIS 738 NU=0.42D0+0.3500*(RE * *0.8DO) 739 HP=NU*KP/2.D0/RR 740 ALPHA=KPP/CPP/DEN 741 dd=d-1 742 HP3(dd)=HP 743 BI0T3(dd)=HP*RR/KPP 744 c 745 c SET COEFFICIENTS OF MATRICS 746 c 747 c BOUNDARY CONDITION AT R=0 748 c 749 B(1)=-(6.00*ALPHA/(DR**2.DO))-(1.DO/OT) 750 C(1)=6.DO*ALPHA/(DR**2.DO) 751 c 752 c 753 c BOUNDARY CONDITION AT R=N 754 c 755 A(N)=2.DO*ALPHA/(DR**2.00) 756 B(N)=(-1.DO/DT)-(2.DO*ALPHA*HP/R(N)/KPP)- 757 > (2.DO*ALPHA/(DR**2.DO))-(2.DO*ALPHA*HP/DR/KPP) 758 c 759 c INITIALISE ALL VALUES OF A ( I ) . B ( I ) . C ( I ) 760 c 761 DO 35 IK=2.9 762 A(IK)=(ALPHA/(DR**2.DO))-(ALPHA/R(IK)/DR) 763 B(IK)=(-2.D0*ALPHA/(DR**2.D0))-(1.DO/DT) 764 C(IK)=(ALPHA/R(IK)/DR)+(ALPHA/(DR**2.DO)) 765 35 CONTINUE 766 C 767 D( 1) = -T3(1,d-1)/DT 768 C 769 DO 36 1=2,9 770 D(I)=-T3(I,d-1)/DT 77 1 36 CONTINUE 772 C 773 C 774 D(N) = -(T3(N,d-1)/DT)-(2.DO*ALPHA *HP *TG/R(N)/KPP)- 775 > (2.D0*ALPHA*HP*TG/DR/KPP) 776 C 777 C 778 C CALL LIBRARY PROGRAM TO SOLVE THE TRI-DIA EOUATIONS 779 c 780 CALL TRISLV(N.A.B,C,D.0.&99) 781 c 782 c 783 c STORE THE SOLUTIONS T 3 ( I . d ) 784 c 785 DO 37 11 = 1 .N 1AA L i s t i n g of PROFILE at 1 1:37:26 on MAY 28. 1987 f o r CC i d = TITA 786 T3(II .J)=D(I I ) 787 37 CONTINUE 788 C 789 33 CONTINUE 790 C 791 C 792 GOTO 39 793 99 WRITE(6.38) 794 38 FORMAT(///2X.'ERROR MESSAGE') 795 C 796 39 RETURN 797 END 798 C 799 C 800 C QQ -j Q ********************** 802 C 803 C SUBROUTINE TEMP4 * 804 C 805 C » 806 C 807 C 808 SUBROUTINE TEMP4(TG,DENG.KP.VIS,DIA.DEN,CPP,KPP.DENS.H.EO.U. 809 & UP3.T3.T4.DTIME4,0IS4,R.UP4,TT4.HP4.BI0T4) 8 10 C 811 IMPLICIT REAL*8 (A-H.O-Z) 812 DIMENSION A(100).B(100).C(100).D(1OO) 813 DIMENSION BI0T4(20),DIS4(20),DTIME4(20).HP4(20).R(20) 814 DIMENSION T3(20.20).T4(20.20).UP3(20).UP4(20) 815 REAL NU.KP.KPP 816 C 817 C SPECIFY CONDITIONS OF OIL SHALE 818 C 819 RR=DIA/2.DO 820 DEN=2.0DO 821 KPP=1.25D-2/4.186DO 822 C 823 C SPECIFY CONDITION OF GRID 824 C 825 N=10 826 DR=RR/9.D0 827 DD=H/9.D0 828 TT4=0.0D0 829 DTIME4(1)=0.0D0 830 UP4(1)=0.0D0 831 C 832 C INITIALISE ALL R(I) 833 C 834 DO 40 1 = 1 ,N 835 40 R( I ) = (I-1)*DR 836 C 837 C 838 C INITIALISE ALL TEMPERATURES 839 C 840 DO 4 1 11=1,10 84 1 4 1 T4( 11, 1 )=T3(11.10) 842 C 843 C 145 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC1d=TITA 844 C WORK OUT THE VERTICAL DISTANCE 845 C 846 DO 4 2 1=1.11 847 42 DIS4(I )=DD*(1-1) 848 C 849 C 850 C TO SET UP TRIDIAGONAL EOUATIONS TO SOLVE THE TEMPERATURE 851 C HISTORY FOR A SINGLE PARTICLE 852 C 853 DO 43 d = 2. 1 1 854 C 855 C TO WORK OUT THE VELOCITY OF PARTICLE AT EACH INTERVAL 856 C OF THE FALLING REGION 857 C 857. .3 IF (d .EO. 11) GOTO 44 857. 6 c 858 UP4(J) = ((2.00*980.DO*(DENS-DENG )/OENS/(EO**1.4600))* 859 & (H-DIS4(11-d)))**0.5D0 859. 5 c 859. 7 44 UP4(11)=UP3( 1 ) 860 C 861 C 862 C TO WORK OUT THE DELTA TIME 863 C 864 0TIME4(d)=0D/UP4(d) 865 TT4=TT4+DTIME4(d) 866 OT=DTIME4(d ) 867 C 868 c 869 c TO CALCULATE HP FOR THE OIL SHALE IN THE FALLING REGION 870 c 871 RV=DABS(U-UP4(d)) 872 RE=DIA*RV*DENG/VIS 873 NU=0.42DO+0.35DO*(RE * *0.8D0) 874 HP=NU*KP/2.D0/RR 875 ALPHA=KPP/CPP/DEN 876 dd=d-1 877 HP4(dd)=HP 878 BI0T4(dd)=HP*RR/KPP 879 c 880 c SET COEFFICIENTS OF MATRICS 881 c 882 c BOUNDARY CONDITION AT R=0 883 c 884 B(1 ) = -(6.00*ALPHA/(DR**2.DO))-( 1 .DO/DT) 885 C(1)=6.DO*ALPHA/(OR**2.00) 886 c 887 c 888 c BOUNDARY CONDITION AT R=N 889 c 890 A(N)=2.DO*ALPHA/(DR * * 2.DO) 891 B(N)=(-1.DO/DT)-(2.DO*ALPHA*HP/R(N)/KPP)- 892 & (2.DO*ALPHA/(DR**2.DO))-(2.DO*ALPHA'HP/DR/KPP) 893 c 894 c INITIALISE ALL VALUES OF A(I ) .B(I ) .C(I ) 895 c 896 DO 45 IK=2,9 897 A(IK ) = (ALPHA/(DR**2.D0) )-(ALPHA/R(IK)/DR) 146 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC i d= TITA 898 B(IK)=(-2.DO*ALPHA/(DR**2.DO))-(1.DO/DT) 899 C(IK ) = (ALPHA/R( IK)/DR)+(ALPHA/(DR**2.D0)) 900 45 CONTINUE 901 C 902 D( 1 ) = -T4( 1 .J-1)/DT 903 DO 46 1=2.9 904 0(I)=-T4(I.d-1)/DT 905 46 CONTINUE 906 C 907 C 908 D(N)=-(T4(N,d-1)/DT)-(2.DO*ALPHA*HP*TG/R(N)/KPP)- 909 & (2.D0*ALPHA*HP*TG/DR/KPP) 910 C 91 1 C CALL LIBRARY PROGRAM TO SOLVE THE TRI-DIA EQUATIONS 912 C 913 CALL TRISLV(N,A.B.C,D.0.&99) 914 C 915 C STORE THE SOLUTIONS T 4 ( I . J ) 916 C 917 DO 47 11 = 1 .N 918 T 4 ( I I . J ) = D ( I I ) 919 47 CONTINUE 920 C 921 43 CONTINUE 922 C 923 C 924 GOTO 49 925 99 WRITE(6.48) 926 48 FORMAT(///2X,'ERROR MESSAGE') 927 C 928 49 RETURN 929 END 930 C 931 C 932 C 933 934 C * 935 C SUBROUTINE TEMP5 * 936 C * 937 938 C 939 C 940 SUBROUTINE TEMPS(TG,DIA.DENG,KP.VIS.RR .DEN.CPP.KPP,HH.EA,ES 94 1 & ACOL.AS.UMF,HM.UP5,DIS5,T4,UP4,T5.DTIME5.R.TT5.HP5.BI0T5) 942 c 943 IMPLICIT REAL*8 (A-H.O-Z) 944 DIMENSION A(100). B(100). C ( 1 0 0 ) . D(100) 945 DIMENSION BI0T5(20),DIS5(20).DTIME5(20).HP5(20).R(20) 94G DIMENSION T4(20.20).T5(20.20).UP4(20).UP5(20) 947 REAL NU. KP, KPP 948 c 949 c 950 c SPECIFY CONDITIONS OF GRID 951 c 952 N= 10 953 0R=RR/9.D0 954 TT5=O.ODO 955 DTIME5(1)=0.0D0 147 L i s t i n g of PROFILE at 1 1:37:26 on MAY 28. I987 f o r CC i d = TITA 956 C 957 C 958 C IN IT IALISE ALL R( I ) 959 C 960 00 50 I = 1.N 961 R( I ) = ( I - 1 ) *DR 962 50 CONTINUE 963 C 964 C 965 C IN IT IAL ISE ALL TEMPERATURE 966 C 967 00 51 IK=1 . 10 968 T 5 ( I K , 1 )=T4(IK. 10) 969 5 1 CONTINUE 970 C 971 C WORK OUT THE VERTICAL DISTANCE 972 C 973 C 974 c TO SET UP TRIDIAGONAL EOUATIONS TO SOLVE THE TEMPERATURE 975 c HISTORY FOR A SINGLE PARTICLE 976 c 977 DO 52 J=2 .8 978 c 979 c TO WORK OUT THE UA AT EACH INTERVAL 980 c 981 UP5(1)=UP4(10) 982 U A = U M F * ( 1 . D 0 - ( ( 1 . D 0 - ( D I S 5 ( 0 - 1 ) / H M ) * * 3 . D O ) ) ) 983 OA=UA*(ACOL-AS) 984 RV=DABS(UA-UP5(d -1 ) ) 985 c 986 c 987 c TO CALCULATE HP FOR THE OIL SHALE PARTICLE IN THE ANNULUS 988 c 989 R E = D I A * R V « O E N G / V I S 990 N U = O . 4 2 D O + O . 3 5 D 0 « ( R E * * O . 8 0 O ) 991 HP=NU*KP/2 .D0/RR 992 dd=d-1 993 HP5(JJ)=HP 994 B I0T5(Jd )=HP*RR/KPP 995 c 996 ALPHA=KPP/CPP/DEN 997 c 998 c TO WORK OUT DT 999 c 1000 IF ( J . E O . 8)G0T0 53 1001 D T I M E 5 CJ ) = ( D I S 5(d - 1 ) - D I S 5(d) ) / U P 5(J - 1 ) 1002 TT5=TT5+DTIME5(J) 1003 DT=0TIME5(iJ) 1004 53 CONTINUE 10O5 C 1006 C TO SET COEFFICIENTS OF MATRICS 10O7 C 1008 c BOUNDARY CONDITION AT R=0 1009 c 1010 B( 1) = - ( 6 . D 0 * A L P H A / ( D R ' * 2 . 0 0 ) ) - ( 1 .DO/DT) 101 1 C ( 1 ) = 6 . D 0 * A L P H A / ( D R * * 2 . D 0 ) 1012 c 1013 c BOUNDARY CONDTION AT R=N 148 L i s t i n g of PROFILE at 11:37:26 on MAY 28. 1987 f o r CC1d=TITA 1014 C 1015 A(N)=2.DO*ALPHA/(DR**2.DO) 1016 B(N) = (- 1 .DO/DT)-(2.DO*ALPHA*HP/R(N)/KPP)- 1017 & (2.D0*ALPHA/(DR**2.D0))-(2.DO*ALPHA•HP/DR/KPP) 1018 C 1019 C INITIALISE ALL VALUES OF A ( I ) , B ( I ) , AND C ( I ) 1020 C 1021 DO 54 IK=2.9 1022 A(IK)=(ALPHA/(DR**2.D0))-(ALPHA/R(IK)/DR) 1023 B(IK)=(-2.DO*ALPHA/(DR**2.DO))-(1.DO/DT) 1024 54 C(IK)=(ALPHA/R(IK)/DR)+(ALPHA/(DR**2.DO)) 1025 C 1026 D(1)=-T5(1.J-1)/DT 1027 DO 55 1=2,9 1028 55 D(I)=-T5(I.J-1)/DT 1029 0(N)=-(T5(N.d-1)/DT)-(2.D0*ALPHA*HP*TG/R(N)/KPP) 1030 & (2.D0*ALPHA*HP*TG/DR/KPP) 1031 C 1032 C 1033 C 1034 C CALL LIBRARY PROGRAMM TO SOLVE THE TRI-DIA EONS 1035 C 1036 CALL TRISLV(N,A,B.C.D,0,&99) 1037 C 1038 DO 56 11 = 1 ,N 1039 T 5 ( I I , J ) = D ( I I ) 1040 56 CONTINUE 1041 C 1042 52 CONTINUE 1043 C 1044 GOTO 58 1045 99 WRITE(6,57) 1046 57 F0RMAT(///2X.'ERROR MESSAGE') 1047 C 1048 58 RETURN 1049 END 149 C.2 E n t r a n c e 150 L i s t i n g of ENTRANCE at 13:07:28 on JUN 11, 1987 f o r CC i d = TIT A 1 2 C - 3 C NAME: ENTRANCE 4 C * • 5 C THIS PROGRAM IS USED TO ESTIMATE THE TEMPERATURE PROFILE 6 C FOR A PARTICLE IN THE ENTRANCE SECTION OF THE SPOUTED BED * 7 8 9 C * 10 IMPLICIT REAL"8 (A-H.O-Z) 1 1 DIMENSION A(100),B(100),C(100) 12 DIMENSION D(100), DTIME(IOO). DIS(100) 13 DIMENSION R(100),T(100,100) 14 DIMENSION DP(3 ) .VELT(3),TEMPG(3) 15 REAL KP.NU 16 C 17 C 18 C READ DATA 19 c 20 DATA DP/0.30D0.0.15D0,0.075D0/ 21 DATA VELT/567.9666DO, 784.358DO.355.02D0/ 22 DATA TEMPG/723.0D0.773.0D0.823.0DO/ 23 c 24 c TO WORK OUT THE TEMP PROFILE FOR TWO DIFFERENT GAS TEMPERATURE 25 c 26 DO 777 JJ=1.3 27 28 c 29 c 30 c SPECIFY CONDITIONS OF SPOUTING GAS 31 c 32 TG=TEMPG(JJ) 33 KP=O.OOO15O80O 34 DENG=1.DO*(28.00*0.85D0 +44.00*0.15DO)/82.0500/TG 35 VIS=O.OOO330O 36 CP = (6.76D0+((0.606D-3)*TG)+((0. 13D-6)*(TG**2.DO)))/28.DO 37 c 38 c 39 c CONDITION OF SAND PARTICLE 40 c 4 1 DPS=0. 1 121 1D0 42 RRS=DPS/2.D0 43 DENS=2.68D0 44 c 45 c 46 c DATA ON THE REACTOR 47 c 48 DI=1.58D0 49 DC=12.8D0 50 HC=76.2DO 51 AC0L = 3. 1416D0*(DC**2.D0)/4.D0 52 HH=33.ODO 53 c 54 c 55 c DATA ON THE ENTRANCE REGION 56 c 57 DPIPE= 1 .58D0 58 HPIPE=17.8D0 151 L i s t i n g of ENTRANCE at 13:07:28 on JUN 1 1. 1987 f o r CC i d = TITA 59 APIPE=3. 1416DO*(DPIPE**2.DO)/4.DC 60 C 61 C USE DO-LOOP TO ESTIMATE THE TEMPERATURE PROFILE 62 C FOR 3 01FFERENT SIZES 63 C 64 DO 999 M=1,3 65 DIA=DP(M) 66 UT=VELT(M) 67 C 68 C 69 C WRITE TITLE 70 c 71 WRITE(6.101)DP(M) 72 101 FORMAT(1H1,'IN THE ENTRANCE REGION FOR SIZE =' ,2X,F6. 4, 'CM' ) 73 WRITE(6. 1 1 1 )TG 74 111 FORMATf /7.1X.'THE TEMPERATURE OF THE GAS IS ', F6. 1 .' DEG K' ) 75 c 76 C 77 C SPECIFY CONDITIONS OF OIL SHALE PARTICLE 78 C 79 RR=DIA/2.D0 80 DEN=2.0D0 81 E=0.4D0 82 KPP=1.25D-2/4. 186DO 83 CPP=1 . 13DO/4.186DO 84 C 85 C 86 C TO WORK OUT HM BASED ON SAND PROPERTIES 87 C 88 GEMA= 1 . 89 HM=0.105D0*((DC/DPS)*"0.75D0)*((OC/DI)**O.40O) *DC/(DENS **1 .200) 90 WRITE(6,41)HM 91 41 FORMAT(//'HM=',F8.4,'CM') 92 c 93 C TO CALCULATE THE MINIMUM SPOUTING VELOCITY USING 94 c MARTHER GISHLER MODEL 95 C 96 UMS=(DPS/DC)*((DI/OC)**(1.DO/3.DO))*((2.D0*980 .DO*HH* 97 & (DENS-DENGJ/DENG) - *(1.DO/2.DO)) 98 U=1.1DO*UMS 99 Q=U*ACOL 100 VEL=0/APIPE 101 V=VEL-UT 102 RV=VEL-V 103 C 104 C 105 c TO CALCULATE HP FOR OIL SHALE PARTICLE 106 c 107 RE=DIA*RV*DENG/VIS 108 PR=CP*VIS/KP 109 AA=2.D0/(1.D0-((1.DO-E)**(1.DO/3.DO))) 1 10 BB = 2.DO* E/3.DO 1 1 1 C 1 12 c IN THE ENTRANCE REGION 113 c 1 14 NU=2.DO+0.6DO*(RE**0.5D0)*(PR**(1.DO/3.DO)) 1 15 HP=NU*KP/2.DO/RR 1 16 ALPHA=KPP/CPP/DEN 152 L i s t i n g of ENTRANCE at 13:07:28 on JUN 1 1. 1987 f o r CC i d = TITA 1 17 C 1 18 C 1 19 C SPECIFY CONDITIONS OF GRID 120 c 121 N=10 122 DR=RR/9.D0 123 DT=HPIPE/9.D0/V 124 c 125 c 126 c SET ALL DELTA TIME 127 c 128 DO 4 1 = 1 ,N 129 4 DTIME(I)=0T*(1-1) 130 c 131 c 132 c INITIALISE ALL R(I ) 133 c 134 DO 5 1 = 1 ,N 135 5 R(I) = (I-1 )*DR 136 c 137 c 138 c INITIALISE ALL TEMPERATURES 139 c 140 DO 10 1=1,N 141 10 T(I.1)=298.DO 142 c 143 c 144 c WORK OUT THE VERTICAL DISTANCE 145 c 146 DO 6 I = 1 , N 147 6 DIS(I)=V*DTIME(I) 148 c 149 c 150 c TO SET UP TRIDIAGONAL EQUATIONS TO SOLVE THE 151 c TEMPERATURE HISTORY FOR A SINGLE PARTICLE 152 c 153 DO 30 0=2.11 154 c 155 c 156 c SET COEFFICIENTS OF MATRICS 157 c 158 c BOUNDARY CONDITION AT R=0 159 c 160- B(1) = -(6.DO* ALPHA/(DR* * 2.DO))-(1.DO/DT) 161 C(1)=6.DO*ALPHA/(DR**2.DO) 162 c 163 c BOUNDARY CONDITION AT R=N 164 c 165 A(N)=2.DO*ALPHA/(DR**2.DO) 166 B(N) = (- 1 .DO/DT)-(2.DO*ALPHA*HP/R(N )/KP ) - 167 > (2.DO*ALPHA/(DR**2.DO))-(2.DO*ALPHA*HP/DR/KP ) 168 c 169 c 170 c INITIALISE ALL VALUES OF A ( I ) . B ( I ) AND C ( I ) 17 1 c 172 DO 20 IK=2.9 173 A(IK) = (ALPHA/(DR**2.DO) )-(ALPHA/R(IK)/DR ) 174 B(IK) = (-2.DO* ALPHA/(DR * * 2.DO ) ) -( 1 .DO/DT) 153 L i s t i n g of ENTRANCE at 13:07:28 on JUN 1 1. 1987 f o r CC i d = TITA 175 20 C ( IK ) = (ALPHA/R(IK)/DR)+(ALPHA/(DR**2.D0)) 176 C 177 D( 1 ) = -T( 1.J-1)/DT 178 00 40 1=2,9 179 40 D(I)=-T(I,J-1)/DT 180 D(N)=-(T(N.J-1)/DT)-(2.D0*ALPHA*HP*TG/R(N)/KP)- 181 > (2.DO*ALPHA*HP*TG/DR/KP) 182 C 183 c 184 c CALL LIBRARY PROGRAM TO SOLVE THE TRI-DIA EONS 185 c 186 CALL TRISLV(N. A.B,CD.0.599) 187 c 188 c 189 c STORE THE SOLUTIONS T ( I . d ) 190 c 191 DO 50 11 = 1 .N 192 T ( I I . d ) = D ( I I ) 193 50 CONTINUE 194 c 195 30 CONTINUE 196 c GO TO 500 197 c 198 99 WRITE(6.103) 199 103 FORMAT(//.'SOLUTIONS ARE') 200 500 CONTINUE 201 c 202 c 203 c WRITE OUT THE SOLUTIONS OF T ( I . d ) 204 c 205 WRITE(6.301) 206 301 FORMAT(//'SEC,20X,'TEMPERATURE DEG K',28X,' CM ') 207 c 208 DO 200 KK= 1 , 10 209 J=11-KK 210 WRITE(6.300)DTIME(d).(T(I.J),I=1,10),DIS(d) 21 1 300 FORMAT(//1X.F5.4.2X. 10F6. 1.2X.F6.3 ) 212 c 213 200 CONTINUE 2 14 c 215 c 216 c WRITE OUT THE DELTA RADIUS FOR THE PARTICLE AT BOTTOM 217 c 218 WRITE(6,400)(R(I).1=1,10) 219 400 F0RMAT(//8X,10F6.3) 220 c 221 c 222 999 CONTINUE 223 c 224 777 CONTINUE 225 STOP 226 END 154 C.3 C a l c u l a t e 155 L i s t i n g of CALCULATE at 14:22:12 on MAY 28. 1987 f o r CC1d=TITA t c ................. ........................................ 2 C 3 C NAME OF THIS PROGRAM: CALCULATE 4 C 5 C THIS PROGRAM IS USED TO CALCULATE THE DATA FOR ANALYSIS 6 C SECTION 1: TO CALCULATE OIL YIELD 7 C SECTION 2: TO CALCULATE SPENT SHALE YIELD 8 C SECTION 3: TO CALCULATE TOTAL GAS AND INDIVIDUAL GAS YIELDS 9 C 10 c *«***«*«-«««««««•««*«*«««*««»*«*****«•**«*•*«*-••***••******«* 1 1 c 12 REAL NF 13 C 14 C READ DATA 15 C 16 SN=5.371 17 CF=1801.5/80./60. 18 FEED= 19 WRITE(6.8)CF 20 8 FORMAT(2X, 'CF =' ,F7.4) 21 CFMA=CF 22 SG=0.158 23 WRITE(6.333)CF 24 333 FORMAT(2X,'CF',F7.4) 25 C 26 C *»«•*«••****•««*«*-*«*««--**«»*•*«**»•** 27 C * 28 C SECTION 1: TO CALCULATE OIL YIELD * 29 C * 30 C ****•**•*«»****«••«»•*«•»•««*««•«*«»*«« 31 C 32 C 33 OYIELD=(OIL/FEED)*100.0 34 WRITE(6. 11)0YI ELD 35 11 FORMAT(/,'OIL YIELD=' .F10.5) 36 C 37 C 38 C «•«•*-*•«*-«*«*•*-*•***••«*«***»*•*-««*••••*«*- 39 C « 40 C SECTION 2: TO CALCULATE SPENT SHALE YIELD * 41 C * 42 C •**••••*«*««••*•*•--**•••««•«*«*«***«***«*»«-•* 43 C 44 SYIELD=(SPENT/FEED)*100.0 45 WRITE(6.22)SYIELD 46 22 FORMAT(/. 'SPENT SHALE YIELD=' .F 10.5 ) 47 C 48 C 49 C «**«**••*•-»»•••*««»••--«««*-«««««««•*«*«***«««*•«******«*-**• 50 C 51 C SECTION 3: TO CALCULATE TOTAL GAS AND INDIVIDUAL GAS YIELDS 52 C 53 C *«*«*-*«•***•*««»«-••«.-•••*««****«*«*****•**»»* 54 C 55 C READ VOLUME PERCENTAGE OF INDIVIDUAL FROM GAS CHROMOTOGRAPH 56 C 57 VH2=0.03324 58 VC02=1S.239O 156 L i s t i n g of CALCULATE at 14:22:12 on MAY 28. 1987 f o r CC i d = TITA 59 V02=0.0000 60 VN2=84.727 61 VCH4=0.00 62 VC0=0.0 63 C 64 C 65 WRITE(6. 1 ) 66 1 FORMAT(1H1.21X.'H2',7X,'C02',7X.'02'.8X.'N2'.8X, ,'CH4'. 67 & 8X, 'CO' ) 68 WRITE(6,2)VH2,VC02.V02,VN2.VCH4 . VCO 69 2 FORMAT(//.2X. 'VOL %' . 12X.6(F7.4,3X ) ) 70 c 71 C TO CORRECT FOR AIR LEAKED INTO THE SYSTEM 72 C 73 AIR = V02 + (V02*(0.79/0.21 ) ) 74 C0R=10O./(100.-AIR) 75 c 76 CVH=VH2*C0R 77 CVC02=VC02*C0R 78 CVN2=(VN2-(V02*(0.79/0.21)))*COR 79 CVCH4=VCH4*C0R 80 CVC0=VC0*C0R 81 C 82 C TO WRITE THE CORRECTED VOLUME PERCENTAGE OF INDIVIDUAL GAS 83 c 84 WRITE(6,IO)CVH.CVC02.CVN2.CVCH4.CVCO 85 10 FORMAT(/,2X. 'CORRECTED VOL %'.2X.2(F7.4,3X), 10X , 3(F7.4.3X)) 86 c 87 c TO CALCULATE WEIGHT PERCENTAGE FOR INDIVIDUAL GAS 88 c 89 WH2=(2./82.07/293.)*CVH 90 WC02=(44./82.07/293.)*CVC02 91 WN2=(28./82.07/293.)-CVN2 92 WCH4=(16./82.07/293.)*CVCH4 93 WC0=(28./82.07/293.)•CVCO 94 TW=WH2+WC02+WN2+WCH4+WC0 95 c 96 c 97 HF=100."WH2/TW 98 C02F=10C.*WC02/TW 99 NF=100.*WN2/TW 100 CH4F=100.*WCH4/TW 101 COF=100.*WCO/TW 102 c 103 c TO WRITE THE WEIGHT PERCENTAGE OF INDIVIDUAL GAS 104 c 105 WRITE(6.20)HF,C02F.NF,CH4F,COF 106 20 FORMAT(/ , 2X , 'WEIGHT %' . 9X . 2 ( F7.4.3X ) . 10X.3(F7 . 4, 3X) ) 107 WRITE(6.30)TW 108 30 FORMAT(/ , 2X ,'TW='.F10.4) 109 c 1 10 c WEIGHT FRACTION OF NITROGEN 1 1 1 c 1 12 NF=(WN2+WC02)/TW 1 13 WRITE(6,7)NF 1 14 7 FORMAT(2X.F10.5) 1 15 TG=SN/NF 1 16 c 157 L i s t i n g of CALCULATE at 14:22:12 on MAY 28, 1987 f o r CC i d = TITA 1 17 C 1 18 C GAS PRODUCED DUE TO PYROLYSIS 1 19 C 120 PGAS=TG-SN 121 WRITE (6. 1 1 )TG.PGAS 122 1 1 FORMAT(2X.F10.5.5X,F10.5) 123 C 124 C GAS YIELD 125 C 126 YI ELD=100.*(TG-SN)/CFMA 127 C 128 WRITE(6,21)YIELD 129 21 F0RMAT(2X.'TOTAL YIELD OF GAS='.F7 .4) 130 C 131 C INDIVIDUAL GAS YIELD 132 C 133 YH=(TG/FEED)*(WH2/TW)*100. 134 YCH4=(TG/FEED)*(WCH4/TW)«100. 135 YC0=(TG/FEED)*(WC0/TW)*1O0. 136 C 137 C 138 C WRITE THE YIELD OF INDIVIDUAL GAS 139 C 140 WRITEC6.31)YH,YCH4,YC0 141 31 FORMAT (/,2X. 'YIELD 7,' , 1 1X . F7 . 4 . 32X , , (F7 142 C 143 C 144 RETURN 145 END 158 C.4 M o d e l 159 L i s t i n g of MODEL at 12:26:52 on MAY 28. 1987 f o r CC i d = TITA , c 2 C 3 C NAME OF THIS PROGRAM: MODEL 4 C 5 C THIS PROGRAM USES UBC LIBRARY PROGRAM NL2SN0 TO SOLVE FOR 6 C THE PARAMETERS K3 & E3. INOROER TO OBTAIN THE RATE CONSTANT « 7 C FOR THE OIL TO GASES REACTION. * 8 C THE OTHER PARAMETERS KI. K2. E1. E2. FRACT1. FRACT2. AND 9 C KO ARE TAKEN FROM THE LITERATURES. * 10 C 12 C 13 C 14 IMPLICIT REAL*8 (A-H.K.O-Z) 15 INTEGER I.L.N.KK 16 COMMON/BLKA/FO(10).F1(10).F2(10).W(10).TEMP(10).SIZE ( 10) . 17 & FEED(10) .AEXPT( 10).ACAL(10),MUM( 10) 18 DIMENSION P ( 6 ) . I V ( 6 6 ) . V ( 5 0 0 0 ) . R(10) 19 EXTERNAL CALCR 20 C 21 C READ IN DATA 22 C 23 DO 1100 MM=1,6 24 READ(5,551)MUM(MM),FO(MM).F1(MM ) ,F2(MM).W(MM),TEMP (MM). 25 & SIZE(MM).FEED(MM).AEXPT(MM) 26 551 FORMAT(14,IX.F6.4,1X,F6.4,1X,F5.3. 1X.F6.1,1X.F5. 1, 1X.F4.2. 27 & 1X.F6. 1 . 1X.F6.2) 28 WRITE(6.66)TEMP(MM),AEXPT(MM).F0(MM).F1(MM) 29 66 FORMAT(1X,F10.4,2X.F1O.4,2X.F10.4.2X.F10.4) 30 1100 CONTINUE 31 C 32 C TO DEFINE THE N, M. P, IV AND V 33 C 34 N=6 35 M=2 36 P(1)=1.7D14 37 P(2)=2.D5 38 CALL DFALT (IV,V) 39 V(42)=1.00-25 40 IV(17)=1000 41 IV(18)=1000 42 C 43 C WRITE INITIAL GUESS VALUES 44 C 45 WRITE(6,666) ( P ( I ) , 1=1.2) 46 666 FORMAT('INITIAL GUESS=' . 1P2G16.8) 47 C 48 C TO CALL FOR LIBRARY PROGRAM NL2SN0 49 C 50 CALL NL2SN0(N.M.P.CALCR,IV,V,IPARM,RPARM,FPARM) 51 C 52 WRITE(6.120) IV(1) 53 120 F0RMAT('RETURN CODE ='. 110) 54 WRITE(6,140) ( P ( I ) , 1=1.2) 55 140 FORMAT('SOLUTION:', 1P2G16.8) 56 C 57 EE=2.718281728D0 58 RR=8.314D0 160 L i s t i n g of MODEL at 12:26:52 on MAY 28. 1987 f o r CC i d = TITA 59 K1=14.4DO 60 K2=2.025D10 61 E1=44560.D0 62 E2=177580.D0 63 T=4800.D0 64 65 C 66 C TO CALCULATE THE PREDICTED OIL YIELD VALUE BASED ON 67 C K3 AND E3 VALUES OBTAINED FROM THE NL2SN0 PROGRAM 68 C 69 DO 22 I= 1 ,N 70 TEMPA = TEMP(I) + 273.DO 71 T=4800.D0 72 KC 1=K1*EE**(-(E1/(RR*TEMPA))) 73 KC2=K2*EE**(-(E2/(RR*TEMPA))) 74 KC3=P(1)*EE**(-(P(2)/(RR*TEMPA))) 75 WF=(13.D0*454.D0)+(W(I)/2.DO) 76 FRACT2=0.62D0/0.9D0 77 A=FO(I)*0.11D0/WF 78 B=KC1 + (F 1 (I)/WF) + (F2( I)/WF) 79 C=0.9D0*KC1 80 D = (F 1 (I )/WF) + (F2(I)/WF)+KC2 81 C11=1.D0/B/D 82 C12=1 .D0/((D*-2)-(B*D)) 83 C13=1.D0/((B**2)-(B*D)) 84 CB=C*A*(C11+(C12*(EE**(-D*T)))+(C13*(EE**(-B*T)))) 85 V0L=O.0322DO*1.3D0 86 FN=0.000472DO*TEMPA/293.DO 87 TT=VOL/FN 88 PP=KC2*FRACT2*CB*WF/VOL 89 0=(FN/VOL)+KC3 90 CA=(PP/Q)*(1.00-(OEXP(-0*TT))) 91 OIL=(FN*PP/Q)*((T+((DEXP(-Q*T))/Q))-(1.DO/0)) 92 ACAL(I)=OIL 93 22 CONTINUE 94 C 95 C WRITE THE FINAL RESULTS 96 C 97 WRITE(6. 1111) 98 1111 FORMAT( 10X, 'TEMP' .9X.'TIME'.5X. 'OIL CALCULATED'.8X.'01L EXPT') 99 C 100 DO 40 KK= 1 .N 101 WRITE(6,515)TEMP(KK).T.ACAL(KK),AEXPT(KK) 102 515 F0RMAT(5X,F1O.4.4X.F10'.4,4X,F1O.4.8X,F1O.4) 103 40 CONTINUE 104 C 105 STOP 106 END 107 108 109 C. **««***»»-«•*««**«**-.* 1 10 c * 111 C SUBROUTINE: CALCR - 1 12 C 114 C 115 C 116 SUBROUTINE CALCR(N.M.P,NF.R,IPARM.RPARM.FPARM ) 161 L i s t i n g of MODEL at 12:26:52 on MAY 28. 1987 f o r CC i d = TITA 1 17 C 1 18 IMPLICIT REAL *8 (A-H.K.O-Z) 1 19 DIMENSION P(M), R(N) 120 COMMON /BLKA/ F0( 10),F1(10),F2( 10),W( 10).TEMP( 10),SIZE! 10), 121 & FEED(10).AEXPT(10).ACAL(10),MUM(10) 122 C 123 C 124 EE=2.71828172800 125 RR=8.31400 126 K1=14.4D0 127 K2=2.025D10 128 E1=44560.DO 129 E2=177580.D0 130 T=4800.D0 131 132 C 133 C TO CALCULATE PREDICTED CK,CB ANO CA VALUES BASED ON GUESSED 134 C K3 AND E3 135 C 136 00 20 1=1.N 137 TEMPA=TEMP(I)+273.00 138 T=4800.D0 139 KC1=K1*EE**(-(E1/(RR*TEMPA))) 140 KC2=K2*EE**(-(E2/(RR*TEMPA))) 14 1 KC3 = P( 1 )*EE**(-(P(2)/(RR*TEMPA))) 142 WF=(13.00*454.DO)+(W(I)/2.DO) 143 FRACT2=0.62D0/0.9D0 144 A=FO(I)*0.11D0/WF 145 B=KC1 + ( F 1 ( I )/WF) + (F2(I)/WF) 146 C=0.9D0*KC1 147 D=(F1(I)/WF)+(F2(I)/WF)+KC2 148 C11=1.DO/B/D 149 C12=1.D0/((D**2)-(B*D)) 150 C13=1.D0/((B**2)-(B*D)) 151 CB=C*A*(C11+(C12*(EE**(-D*T)))+(C13*(EE**(-B*T)))) 152 VOL=0.0322DO*1.3D0 153 FN=0.000472D0*TEMPA/293.DO 154 TT=VOL/FN 155 PP=KC2*FRACT2*CB*WF/V0L 156 Q=(FN/V0L)+KC3 157 CA=(PP/0)*(1.D0-(DEXP(-0*TT))) 158 OIL=(FN*PP/0)*((T+((DEXP(-0*T))/0))-(1.DO/0)) 159 ACAL(I)=OIL 160 C 161 C •TO CALCULATE THE DIFFERENCE BETWEEN EXPERIMENTAL AND PREDICTED 162 C OIL YIELD VALUE 163 C 164 R(I)=ACAL(I ) -AEXPT(I ) 165 C 166 20 CONTINUE 167 RETURN 168 C 169 END 170 162 C.5 Jac 163 L i s t i n g of JAC at 12:27:06 on MAY 28. 1987 f o r CC1d=TITA 2 C 3 C NAME OF THIS PROGRAM: JAC * 4 C 5 C THIS PROGRAM USES UBC LIBRARY PROGRAM JACOBIAN TO SOLVE * 6 C FOR THE SET OF DIFFERENTIAL EQUATIONS TO CALCULATE KEROGEN. 7 C BITUMEN. AND OIL AS A FUNCTION OF TIME AT A GIVEN SET OF * 8 C OPERATING CONDITIONS. * 9 C * 10 C dW/dt = YDOT( 1 ) * 11 C dCK/dt = YD0T(2) * 12 C dC8/dt = YD0T(3) * 13 C dCA/dt = YD0T(4) * 14 C * 15 C 17 18 19 IMPLICIT REAL*8 (A-H.K.O-Z) 20 EXTERNAL FUNC.PD 21 C0MM0N/BLKA/FO( 10) . F1(10).F2( 10 ) . WW( 10).TEMP(10),SIZE(10). 22 & FEED(10),AEXPT(10).ACAL(10),MUM(10),WF(10).WT 23 C0MM0N/BLKB/KC1.KC2.KC3.FRACT1.FRACT2.FN.V,I 24 COMMON/GEAR9/HUSED,NQUSED.NSTEP.NFE.NJE 25 DIMENSION Y0(112),A(10) 26 C 27 C READ IN DATA. MM=N0 OF DATA READ IN 28 C 29 MM=3 30 DO 110 M=1.MM 31 READ(5,55)MUM(M),FO(M).F1(M).F2(M),WW(M).TEMP(M),SIZE(M). 32 & FEED(M),AEXPT(M) 33 55 FORMAT(14,1X.F6.4,1X,F6.4.1X,F5.3,1X,F6.1.1X,F5.1.1X,F4.2. 34 & 1X.F6.1,1X.F6.2) 35 WRITE(6,11)AEXPT(M),TEMP(M),F1(M),WW(M) 36 11 F0RMAT(2X,4(F10.4.2X)) 37 110 CONTINUE 38 C 39 C DEFINE ALL PARAMETERS AND BASIC INFORMATION 40 C 4 1 DO 1001 1=1.MM 42 EE=2.718281728DO 43 K1=10.4D0 44 K2=2.285010 45 K3=1.7D14 46 E1=44560.00 47 E2=177580.D0 48 £3=244319.45 49 FRACT1=0.9 50 FRACT2=0.62DO/FRACT1 51 WF(I)=(13.00*454.DO)+(WW(I)/2.DO) 52 WT=WF(I) 53 V=0.O3220O*1.300 54 RR=8.314DO 55 C 56 C 57 T EMPA = TEMP( I )+273.DO 58 KC1=K1*0EXP(-(E1/(RR*TEMPA) ) ) 164 L i s t i n g of JAC at 12:27:06 on MAY 28. 1987 f o r CC i d = TITA 59 KC2=K2*DEXP(-(E 2/(RR * TEMPA))) 60 KC3 = K3 *0EXP(-(E3/(RR * TEMPA))) 61 FN=O.OOO472DO*TEMPA/293.0O 62 63 C 64 WRITE(6,66)KC1 .KC2.KC3 65 66 FORMAT(//,'KC1='.F10.8.3X,'KC2='.F10.8.3X.'KC3='.F10.8) 66 67 C 68 C SET VALUES FOR THE LIBRARY PROGRAM GEAR 69 C 70 N=4 71 H0=1.D-7 72 EPS=1.0-4 73 METH=2 74 MITER=2 75 MF=10*METH+MITER 76 ML = 3 77 MU=3 78 TOUT=100.00 79 INDEX=1 80 C 81 TO=O.DO 82 Y0(1)=13.DO 83 C 84 C INITIALISE THE VALUES OF YO AT TIME=0 85 C 86 DO 5 J=2.4 87 5 Y0(J)=O.ODO 88 C 89 C WRITE TITLE 90 c 91 WRITE(6,41) 92 41 FORMAT(5X,'TIME'.8X.'W'.12X,'CK'.12X,'CB',12X,'CA') 93 c 94 C CALL GEARB TO SOLVE PROBLEM 95 C 96 97 10 CALL GEARB(N,TO.HO,YO,TOUT,EPS.MF,INDEX,ML.MU,FUNC.PD . 6) 98 C 99 WRITE(6,20)T0UT.WT.YO(2),YO(3).YO(4) 100 20 FORMAT(2X,F8.2.4(3X,F10.5)) 101 102 IF(INDEX .EO. 0)GOTO 40 103 WRITE(6.30)INDEX 104 30 F0RMAT(//26X. 'ERROR RETURN WITH INDEX ='.I3) 105 GOTO 50 106 40 T0UT=T0UT+4OO.DO 107 IF(T0UT .GE. 490O.DO)G0T0 50 108 GOTO 10 109 50 WRITE(6.60)NSTEP 1 10 60 FORMAT(//2 1X.'PROBLEM COMPLETED IN',I 5. 'STEPS' ) 1 1 1 C 1 12 C CALCULATE OIL AT THE FINAL TIME 1 13 C 1 14 WRITE(6.69)YO(3).Y0(1) 1 15 69 FORMAT(2(F10.5.2X)) 1 16 C 165 L i s t i n g of JAC at 12:27:06 on MAY 28, 1987 f o r CC i d=T ITA 1 17 X=4800.D0 118 P=FRACT2*KC2*Y0< 3)'WT/V 1 19 Q=(FN/V)+KC3 120 OIL=(FN»P/Q)*((X+((0EXP(-Q«X))/Q))-( 1 .00/0) ) 121 ACAL(I )=0IL 122 WRITE(6,44)0IL 123 44 F0RMAT('OIL = ', F10.4) 124 C 125 1001 CONTINUE 126 DO 1 11=1,MM 127 WRITE(6. 1 1 1 1 )TEMP(II).ACAL( II ) 128 1111 F0RMAT(//,F6.2,2X.F7.2) 129 1 CONTINUE 130 STOP 131 END 132 133 134 C 135 C * 136 C SUBROUTINE FUNC * 137 C * 138 C 139 140 SUBROUTINE FUNC(N,T,Y,YDOT) 141 IMPLICIT REAL*8 (A-H.K.O-Z) 142 DIMENSION Y(4),YD0T(4) 143 C0MM0N/BLKA/F0(10).F1(10),F2(10).W(10),TEMP(10).SIZE(10). 144 & FEED(10).AEXPT(10).ACAL(10),MUM(10),WF(10),WT 145 C0MM0N/BLKB/KC1,KC2.KC3.FRACT1.FRACT2.FN.V,I 146 C 147 C 148 Y D 0 T ( 1 ) = F O ( I ) - F 1 ( I ) - F 2 ( I ) 149 Y00T(2) = (FO(I )*0.11D0/WT)-(((F0(I)/WT)+KC1)*Y(2)) 150 YD0T(3)=(FRACT1*KC1*Y(2))-(((F0(I)/WT)+KC2)*Y(3)) 151 YD0T(4)=(FRACT2*KC2*Y(3)*WT/V)-(((FN/V)+KC3)*Y(4)) 152 RETURN 153 END 154 155 156 C * * * * * * * * * * * * * * * * * * * * * * * * * * 157 C * 158 C DUMMY SUBROUTINE PD 159 C * 160 C * * * * * * * * * * * * * * * * * * * * * * * * * * 161 162 SUBROUTINE PD(N.T.Y,P,NDIMPD,ML.MU) 163 IMPLICIT REAL*8 (A-H.K.O-Z) 164 DIMENSION Y(N),P(NDIMPD,N) 165 RETURN 166 END 166 C.6 J a c ( P r i n t o u t ) Increasing KC1 : i = 5 x KC 1 KC2 =0.00337898 KC3=0. 00037883 TIME W CK CB CA 100. .00 6051 .OOOOO 0 .00021 0. .00038 2. .77130 500, .00 6051 .OOOOO 0 .00022 0, .00145 16, .72927 900. .00 6051 .OOOOO 0 .00022 0, .00173 20, .44090 1300. .00 6051 .OOOOO 0 .00022 0, .00179 21 .37767 1700. ,00 6051 .OOOOO 0, .00022 0. .00181 21 , .61381 2100. .00 6051 .ooooo 0 .00022 0. .00182 21 , .67278 2500. ,00 6051 .ooooo 0 .00022 0. .00182 21 , .68747 2900. ,00 6051 .ooooo 0 .00022 0, .00182 21 .69148 3300. ,00 6051 .00000 0 .00022 0. .00182 21 , .69184 3700. ,00 6051 .ooooo 0 .00022 0, .00182 21 .69180 4100. oo 6051 .ooooo 0 .00022 0. .00182 21 .69219 4500. ,00 605 1 .ooooo 0 .00022 0, .00182 21 .69247 KC1 = 10. x KC1 KC2=0.00337898 KC3=0.00037883 TIME W CK CB CA 100 .00 6051 .OOOOO 0 .00011 0 .00046 3 .49169 500 .OO 6051 .OOOOO 0 .00011 0 .00148 17 .03408 900 .00 6051 .OOOOO o .00011 0 .00173 20 . 534 15 1300, .00 6051 .OOOOO 0 .00011 0, .00180 21 , .41725 1700, .00 6051 .OOOOO 0, .00011 0, .00181 21 , .63994 2100. .00 6051 .OOOOO 0, .00011 o: .00182 21 , .69574 2500..00 6051 .OOOOO 0, .OOO11 0, .00182 21 , .70991 2900. ,00 6051 .ooooo 0. .00011 0. .00182 21 . 71281 3300. OO 6051 .ooooo o. .OOO11 0. ,00182 21 . ,71394 3700. 00 6051 .ooooo 0. ,00011 0. ,00182 21 . ,71461 4100. 00 6051 .ooooo 0. .00011 0. 00182 21 . 71447 4500. 00 605 1 , .ooooo o. ,00011 0. 00182 21 . 71394 KC1= 50 x KC1 KC2=0.00337898 KC3=0.00037883 TIME W CK CB CA 100 .00 6051 .OOOOO 0 .00002 0, .00052 4 .19059 500 .OO 6051 .OOOOO 0 .00002 0 .00149 17 .25547 900 .00 6051 .OOOOO 0 .00002 0, .00174 20, .60514 1300 .00 6051 .OOOOO 0 .00002 0 .00180 21 . 44784 1700, .00 6051 .OOOOO 0 .00002 0, .00182 21 , .66002 2100, .00 6051 .OOOOO 0 .00002 0. .00182 21 , .71425 2500, .OO 6051 .OOOOO o .00002 0, ,00182 21 , . 727 18 2900. .00 6051 .ooooo 0 .00002 0. .00182 21 . 73055 3300, .00 6051 .ooooo 0 .00002 0. ,00182 21 . 73167 3700. ,00 6051 .ooooo 0 .00002 0. ,00182 21 . ,73151 4 100. oo 605 1 .ooooo o .00002 0. 00182 21 . ,73124 4 500. 00 6051 .ooooo 0 .00002 0. 00182 21 . 73124 KC1= 100 x KC1 KC2=0.00337898 KC3=0.00037883 TIME W CK C8 CA 100 .00 6051 .00000 0 .00001 0, .00052 4 . 27888 500 .00 6051 .ooooo 0 .OOOO1 o .00149 17 . 28228 900, .00 6051 .ooooo 0 .00001 0, ,00174 20 .61495 1300, ,00 6051 .ooooo 0 .00001 0. ,00180 2 1 , ,45220 1700, ,00 6051 .ooooo 0 .00001 0. ,00182 21 . ,66309 2100. .00 6051 .ooooo 0 .00001 0, ,00182 2 1 . .71656 2500. 00 605 1 .ooooo 0 .OOOO1 0. ,00182 2 1 , ,72962 2900. 00 6051 .ooooo 0 .OOOO1 0, 00182 2 1 , ,73265 3300. 00 6051 .ooooo 0 .OOOO1 0. 00182 2 1 . ,73393 3700. 00 605 1 .ooooo 0 .OOOO1 0. 00182 2 1 . , 73416 4 100 . 00 605 1 .ooooo 0, .OOOO1 0. 00182 2 1 . ,73372 4 500. 00 605 1 .ooooo 0 .OOOO1 0. 00182 2 1 , 73339 Increasing KC2 KC1=0.01689492 KC2 = 5 X KC2 KC3=0.00037883 TIME W CK CB CA 100 .oo 605 1 .OOOOO 0 .00052 o .OOO10 3 . 40206 500 .00 6051 .OOOOO 0 .00105 0 .00034 19 .95759 900. .OO 6051 .OOOOO 0 .00110 0. .00036 21 .69000 1300. .00 6051 .OOOOO 0 .00110 0. .00037 21 .82659 1700. .00 6051 .OOOOO 0 .00110 0. .00037 2 1 .83867 2100. OO 605 1 .OOOOO 0 .00110 o. ,00037 21 .8376 1 2500. .00 6051 .OOOOO 0 .00110 0. ,00037 21 .83987 2900. OO 6051 .OOOOO 0 .00110 o. ,00037 21 , .83983 3300. OO 605 1 .OOOOO 0 .00110 0. 00037 21 , .84067 3700. 00 6051 .OOOOO 0 .00110 0. ,00037 21 . 84042 4 100. 00 6051 .OOOOO 0. .00110 o. ,00037 21 . 83975 4500. 00 6051 .OOOOO 0 .00110 0. 00037 21 . 83986 KC1=0.03378984 KC2= W_ X KC2 KC3=0.00037883 TIME W CK CB CA 100. .00 6051 .OOOOO 0 .00052 0, 0 0 0 0 7 4 .87035 500. .OO 6051 .OOOOO 0. .00105 0. .OOO17 20 .42427 900. .00 6051 .OOOOO 0. .00110 0. .00018 21 .76849 1300. ,OC 605 1 .OOOOO 0. .00110 0. .OOO18 21 .87208 1700. .00 6051 .00000 0. .00110 0. .00018 21 , .88049 2100. ,00 6051 .OOOOO 0. .00110 o. ,OOO18 21 .88077 2500. ,00 6051 .00000 0, .00110 0. .00018 21 .88094 2900. ,00 6051 .OOOOO 0. .00110 0. ,OOO18 21 . 881 12 3300. oo 6051 .OOOOO 0. .00110 0. .00018 21 , .88088 3700. ,00 6051 .OOOOO 0. .00110 0. ,00018 21 .88068 4100. ,00 6051 .OOOOO 0. ,00110 0. .00018 21 , .88069 4500. 00 6051 .OOOOO 0. ,00110 0. ,00018 21 . 88081 KC1=0.16894918 KC2= 50 X KC2 KC3=0.00037883 TIME W CK CB CA 100 .00 6051 .OOOOO 0. .00052 0 . 00002 6 . 7853 1 500 .00 6051 .OOOOO 0. .00105 0 .00004 20 .68129 900. .OO 6051 .OOOOO 0. .00110 o. .00004 21 .81870 1300. .OO 6051 .OOOOO 0. .00110 0 .00004 21 .90688 1700. .00 6051 .OOOOO 0, .00110 0, .00004 21 .91321 2 100. OO 6051 .OOOOO 0. ,00110 0, .00004 2 1 .91394 2500, .00 6051 .OOOOO 0. ,00110 0, .00004 21 .91418 2900. do 605 1 .OOOOO 0. . 00110 0. .00004 21 .91357 3300. ,00 6051 .OOOOO 0. 001 10 0, .00004 21 .91348 3700. ,00 6051 .OOOOO 0. 001 10 0. .00004 21 .91379 4100. ,00 6051 .OOOOO 0. 001 10 0. .00004 21 . 91378 4500. ,00 6051 .OOOOO 0. 001 10 0, .00004 21 , .91366 KC1=0.33789836 KC2= 100 X KC2 KC3=0.00037883 TIME W — CK CB CA 100 .OO 605 1 .OOOOO 0. .00052 0, .OOOO1 7 .04378 500 .OO 6051 .OOOOO 0 .00105 0 .00002 20 .70764 900 .00 6051 .OOOOO 0 .00110 0, .00002 21 , .82087 1300 .00 605 1 .OOOOO 0 .00110 0 .00002 21 , .90879 1700 .00 605 1 .OOOOO 0. .00110 0 .00002 2 1 .91601 2100 .00 605 1 .OOOOO 0. .00110 0. .OOOO2 2 1 .91758 2500 .00 605 1 .OOOOO 0 .00110 0 .00002 21 , .91746 2900 .00 605 1 .OOOOO o .00110 0 .00002 2 1 , .91720 3300, ,00 6051 .OOOOO 0 .00110 0. .00002 21 , .91753 3700, ,00 605 1 .OOOOO 0 .00110 0 .OOOO2 2 1 , . 9 1772 4 100, ,00 6051 .OOOOO 0 .00110 0, .00002 2 1 .91764 4 500, .00 605 1 .OOOOO 0 .001 10 0 .OOOO2 2 1 .91760 169 Increasing KC3 :1=0.00337898 KC2=0. .00189415 KC3= 5 X KC3 TIME w CK CB CA 100 .00 6051 .OOOOO 0 .00052 0 .00014 0. .92593 500 .00 6051 .OOOOO 0 .00105 0 .00119 12. .67593 900. .00 6051 .00000 0 .00110 0 .00163 18 . ,23956 1300. .00 6051 .00000 0 .00110 0. .00176 19. ,84550 1700. .00 6051 .OOOOO 0 .00110 0. .00179 20. ,28006 2100, .00 6051 .OOOOO 0 .00110 0, .00180 20. ,38640 2500. .00 6051 .ooooo 0 .00110 0, .00180 20. ,41554 2900, .00 6051 .ooooo 0 .00110 0. .00180 20. ,42144 3300. .00 6051 .ooooo 0 .00110 0. ,00180 20. 42108 3700. OO 6051 .ooooo 0. .00110 0. .00180 20. ,42134 4100. .00 6051 .ooooo 0. .00110 0. ,00180 20. 42187 4500. .00 6051 .ooooo 0. .00110 0. .00180 20. 42171 KC1=0.00337898 KC2=0.00378831 KC3= 10 X KC3 TIME w CK 'CB CA 100, .00 6051 .OOOOO 0. .00052 0. .00014 0. .89680 500, .00 6051 .OOOOO o. .00105 0. . 00119 1 1 . .96279 900 .00 6051 .00000 0. .00110 0. ,00163 17, .16337 1300, .00 6051 .OOOOO o. .00110 0. .00176 18 . .661 19 1700 .00 6051 .OOOOO 0, .001 10 0. .00179 19 .06403 2100, .00 6051 .OOOOO 0, .001 10 0. , 00180 19, .16432 2500 .00 6051 .00000 0, .00110 0. .00180 19 , . 19162 2900, .00 6051 .00000 0. .00110 0. .0018O 19, . 19713 3300. .00 6051 .ooooo 0, .00110 0. .00180 19, .19735 3700, .oo 6051 .ooooo 0, .00110 o. .00180 19, . 19782 4100. .oo 6051 .ooooo 0, .00110 0. ,00180 19. .19849 4500, .00 6051 .ooooo 0, .00110 0, .00180 19, .19836 KC1=0.00337898 KC2=0.O1894153 KC3= 50 X KC3 TIME W CK CB CA 100 .00 6051 .OOOOO 0 .00052 0, .00014 0 .71225 500, .00 6051 .OOOOO 0 .00105 0, ,001 19 8 .24347 900, .OO 6051 .OOOOO 0 .OO110 0. .00163 1 1 .6528 1 1300. .00 6051 .OOOOO 0, .00110 0. ,00176 12 , .63242 1700, .00 6051 .OOOOO 0, .OO110 0, .00179 12 .88867 2100. .00 6051 .OOOOO 0, .00110 0. ,OO180 12, .95430 2500 .00 6051 .ooooo 0, .00110 0. .00180 12 .97087 2900, .00 6051 .ooooo 0. .00110 0. ,00180 12, .97498 3300 .OO 6051 .ooooo o. .00110 o. .00180 12 .97647 3700. .00 6051 .ooooo 0, .00110 0, ,00180 12 .97676 4 100. 00 6051 .ooooo 0. .001 IO 0. , 00180 12 .97664 4500, .00 6051 .ooooo 0, .00110 0, ,00180 12 , .97668 KC1=0.00337898 KC2 =0.03788306 KC3= 100 X KC3 TIME W CK CB CA 100, .00 6051 .OOOOO 0 .00052 0 , 00014 0 .56242 500, .00 6051 .OOOOO 0 .00105 0. ,00119 5, .93075 900, ,00 6051 .OOOOO 0 .00110 0, .00163 8 . 31349 1300. .00 6051 .OOOOO 0 .00110 0. ,00176 8 , . 99782 1700, .00 605 1 .OOOOO 0 .00110 0, 00179 9 . 17796 2 100. 00 605 1 .OOOOO 0 .00110 0, ,00180 9 . 22189 2500, OO 605 1 .OOOOO 0. .00110 0, 00180 9 . 23268 2900. .00 605 1 .OOOOO 0 .OO110 0, ,00180 9 . 23522 3300. 00 6051 .OOOOO 0. .00110 0. 00180 9 . , 23585 3700, ,00 605 1 .OOOOO 0 .001 10 0. 0O18O 9 , 23601 4 100. 00 6051 .OOOOO 0. .001 10 0, 00180 9 . 23602 4500, .00 6051 .OOOOO 0 .00110 0, ,00180 9 , 23601

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 5 0
Japan 3 0
United States 2 0
Australia 1 0
City Views Downloads
Beijing 5 0
Tokyo 3 0
Unknown 1 1
Mountain View 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items