UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Compost utilization in vegetables greenhouses industry Wong, Raymond Wa Leong 2002

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2002-0606.pdf [ 9.8MB ]
Metadata
JSON: 831-1.0058642.json
JSON-LD: 831-1.0058642-ld.json
RDF/XML (Pretty): 831-1.0058642-rdf.xml
RDF/JSON: 831-1.0058642-rdf.json
Turtle: 831-1.0058642-turtle.txt
N-Triples: 831-1.0058642-rdf-ntriples.txt
Original Record: 831-1.0058642-source.json
Full Text
831-1.0058642-fulltext.txt
Citation
831-1.0058642.ris

Full Text

Compost Utilization in Vegetables Greenhouses Industry  by Raymond W a Leong W o n g B . A . S c , T h e University of British C o l u m b i a , 1998  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER O F APPLIED  SCIENCE  in THE FACULTY O F G R A D U A T E STUDIES Department of C h e m i c a l a n d Biological Engineering  W e accept this thesis as conforming to the required standard  T H E U N I V E R S I T Y O F BRITISH  COLUMBIA  July 2002  © R a y m o n d W a L e o n g W o n g , 2002  In  presenting  degree freely  at  this  the  available  copying  of  department publication  of  in  partial  fulfilment  University  of  British  Columbia,  for  this or  thesis  reference  thesis by  this  for  his  and  scholarly  or  thesis  study.  for  her  of I  I further  purposes  gain  agree  of  T h e U n i v e r s i t y o f British Vancouver, Canada  Date  DE-6  (2/88)  A<4t.ti$7  g/QcD^s^  CHLTHICIC  Columbia  /2 2Da>^  that  agree be  It  is  shall  not  permission.  Department  requirements  may  representatives.  financial  the  t^u^m^  that 1  the  Library  an  by  understood allowed  the  advanced  shall  permission  granted  be  for  for  make  extensive  head  that without  it  of  copying my  my or  written  ABSTRACT T h i s study evaluates the utilization of g r e e n h o u s e c o m p o s t a s growing m e d i a in c o m m e r c i a l vegetable g r e e n h o u s e .  T h e greenhouse  from  a n d the  greenhouse  waste as  media  yellow  compost was  generated  c e d a r sawdust  conventional growing m e d i a u s e d in the B . C . g r e e n h o u s e  industry.  was  the  A series of  analysis w a s d o n e on the g r e e n h o u s e  c o m p o s t a n d sawdust to c o m p a r e their  physical a n d c h e m i c a l characteristics.  T h e results s u g g e s t e d the  greenhouse  c o m p o s t provides higher moisture retention a n d density, a n d lower porosity; for optimal growing conditions. A full growing trial w a s c o n d u c t e d to grow beefsteak tomatoes.  T h e study w a s setup in a commercial g r e e n h o u s e with independent  control environment.  T h e m e d i a tested were pure sawdust m e d i a , a mixture of  2:1 sawdust to g r e e n h o u s e c o m p o s t by volume, a n d pure g r e e n h o u s e  compost  E a c h m e d i a w a s irrigated with either N 1 , N2 or N3 nutrient recipes.  media.  N1  w a s the conventional nutrient recipe. N2 w a s catered to optimize the mix a n d the c o m p o s t media.  T h e N2 recipe w a s similar with N1 with an increase amount of  a m m o n i u m concentration.  N3 w a s the s a m e a s N2 with a lower E C value to  c o m p e n s a t e the high E C in the pure c o m p o s t media. for 10 months.  T h e study w a s conducted  During the trial, the fruit yield, fruit quality, plants growth a n d  conditions, p H & E C were monitored. T h e study indicates g r e e n h o u s e is suitable alternative a s a growing m e d i u m .  compost  G r e e n h o u s e c o m p o s t w a s able to  a c h i e v e similar yield, crop health a n d fruit quality w h e n c o m p a r e with sawdust media. size.  T h e results from pure c o m p o s t indicate a significant improvement in fruit  In addition,  greenhouse  conventional system.  compost  has  p H buffering  Finally, addition of g r e e n h o u s e  capability to  c o m p o s t to yellow c e d a r  sawdust d o e s not a p p e a r to increase the rate of degradation of the sawdust.  ii  the  Table of Contents Abstract  11  List of T a b l e s  v  List of Figures  V  Acknowledgements Chapter 1  v  Introduction  " 1  1.1 B a c k g r o u n d a n d Significance 1.1.1 W a s t e m a n a g e m e n t 1.1.2 Growing M e d i a for G r e e n h o u s e V e g e t a b l e s  1.1.3  l  2  2 3  1.1.2.1  Sawdust  3  1.1.2.2  Rockwool  3  C o m p o s t a s Growing M e d i a . . . .  1.2 Objectives  4 9  Chapter 2  Literature Review  10  Chapter 3  M e t h o d s a n d Materials  14  3.1 Growing M e d i a  14  3.2 T o m a t o Plants  17  3.3 Nutrient R e c i p e s  17  3.4 G r e e n h o u s e Setup a n d Layout  18  3.5 C r o p M a i n t e n a n c e  22  3.5.1  Irrigation  23  3.5.2  Lowering  23  3.5.3  Deleafing & Pruning  24  3.5.4  Pollination  25  P e s t and Plants Health M a n a g e m e n t . . .  26  3.5.5  3.6 M e a s u r e m e n t  27  3.6.1  Plant Height  27  3.6.2  S t e m Diameter  27  3.6.3  L e a f Length  27  3.6.4  Drain/Feed Measurement  28  3.6.5  Fruit Picking a n d G r a d i n g . . . :  29  3.6.6  Shelf Life A n a l y s i s  30  3.6.7  Plant T i s s u e Nutrient A n a l y s i s  30  iii  Chapter 4  Results a n d D i s c u s s i o n  31  4.1 Growing M e d i a T e s t  31  4.1.1  Pre-Season Media Analysis  31  4.1.2  Post-Season Media Analysis  35  4.2 T o m a t o Growing Trial  38  4.2.1  Fruit Yield  38  4.2.2  N o . of Fruit  41 42  4.2.3  Shelf Life T e s t  4.2.4  Fruit S i z e  42  4.2.5  % of Culls  45  4.3 Plant Growth 4.3.1  45  Plant Height  47  4.3.2  S t e m Diameter  47  4.3.3  L e a f Length  47  4.4 D i s e a s e  48  4.5 Plant T i s s u e Nutrient A n a l y s i s  49  4.6 Nutrient R e c i p e a n d Growing M e d i a  50  Chapter 5  4.6.1  EC&pH  50  4.6.2  A m m o n i u m and Growing M e d i u m  52  Conclusions & Recommendations  53  5.1 C o n c l u s i o n s  53  5.2 R e c o m m e n d a t i o n s  54  References  56  Appendix A  Fruit Yield a n d Quality Tracking T a b l e s  58  Appendix B  Plants Height M e a s u r e m e n t T a b l e s  81  Appendix C  Plants L e a f Length M e a s u r e m e n t T a b l e  84  Appendix D  Plants S t e m Diameter M e a s u r e m e n t T a b l e  86  iv  LIST OF TABLES Table  Page  1  S u m m a r y of plants height a n d fruit yield(water)  6  2  S u m m a r y of plants height a n d fruit yield(nutrient)  7  3  Growing M e d i a  15  4  Media Analysis Methods  16 17  5  Field T e s t Nutrient Solutions  6  Field T e s t Treatments  19  7  Field T e s t Planting Layout  19  8  P r e - S e a s o n M e d i a Physical Characteristics  32  9  M e d i a Nutrient Characteristics  33  10  M e d i a C h e m i c a l Characteristics  33  11  M e d i a Microbial C o u n t s  34  12  P o s t - S e a s o n M e d i a Density a n d Aeration porosity  37  13  P o s t - S e a s o n M e d i a C h e m i c a l Characteristics  37  14  Total Fruit Production  39  15  T o m a t o Shelf Life Results  42  16  Fruit Quality  44  17  Plant Growth S u m m a r y  46  18  D i s e a s e Incidence  49  19  Leaf T i s s u e Nutrient A n a l y s i s  50  A-1  Biweekly Fruit Yield a n d G r a d i n g S u m m a r y  58  A-2  No. O f Fruits set for all groups  74  A-3  Total T o m a t o Yield for all groups  76  A-4  Total of X X L & X L Fruit Yield for all groups  78  A-5  A v e r a g e Fruit S i z e for all groups  80  B-1  Actual Plant Height M e a s u r e m e n t for all groups  81  B-2  A v e r a g e cumulative plant height for all groups  83  C-1  Actual L e a f Length M e a s u r e m e n t for all groups  84  D-1  Actual S t e m Diameter M e a s u r e m e n t for all groups  86  V  LIST OF FIGURES Figure  Page  1 2 3  Preliminary Experiment Layout Preliminary Trial - Plants irrigated with water Preliminary Trial - Plants irrigated with nutrient  5 5 7  4 5  T h e test g r e e n h o u s e layout T e s t G r e e n h o u s e setup  20 21  6 7  Growing Trial S e t u p Nursery Plants just brought to the g r e e n h o u s e  21 22  8 9  Nursery Plants ready to be planted Irrigation unit  22 23  10  L o w e r e d Plants  24  11  Plants a n d L e a v e s after deleafing  25  12  B e e Hives  26  13  Drain Station  28  14  Picked Tomatoes  29  15  G r a d i n g of T o m a t o e s  29  16 17 18  Total cumulative tomato yield c o m p a r i s o n Total cumulative no. of fruit set c o m p a r i s o n Total cumulative yield of large fruits c o m p a r i s o n  38 41 44  19  Cumulative plant height c o m p a r i s o n  46  20  Drain p H c o m p a r i s o n  51  vi  ACKNOWLEDGEMENTS T h i s project w a s funded by British C o l u m b i a Investment Agriculture Foundation P r o g r a m (IAF) a n d W e s t e r n G r e e n h o u s e G r o w e r s Society ( W G G S ) .  T h e author w i s h e s to gratefully a c k n o w l e d g e the contribution of Dr. Victor L o without w h o s e contributions, the research would not have b e e n a s thorough.  S i n c e r e appreciation is extended to Dr. A n t h o n y L a u a n d Dr. T o n y Bi for their g u i d a n c e a n d input to the thesis research.  S p e c i a l thanks to  Mr. William C h e u k a n d Mr. B u d F r a s e r for their help  to  a c c o m p l i s h this research project.  Deep  appreciation to V i s i o n Envirotech International C o . Ltd. to provide  the  g r e e n h o u s e facility for the research a n d Houweling Nurseries Ltd. for providing tomato seedlings a n d propagation for the growing trial.  T h e author o n c e again e x p r e s s e s gratitude for their helpful review of this thesis.  vii  <  Chapter 1  INTRODUCTION Greenhouse environment. wastes  are  organic  wastes  A s the g r e e n h o u s e produced  and  are  of  great  industry continues  taken  up  valuable  concern  to  to e x p a n d ,  space  in the  the more  landfill.  However, t h e s e w a s t e s are rich of fertilizers a n d are a wonderful s o u r c e of organic materials for recycling.  C o m p o s t i n g is the ideal solution to treat  t h e s e organic w a s t e s a n d to generate c o m p o s t a s growing m e d i a or soil amendment.  High quality c o m p o s t has proven to be able to improve crop health a n d increase fruit production. WGGS  In 1997,  a research project funded  by  (Western G r e e n h o u s e G r o w e r Society) a n d U B C (University of  British C o l u m b i a ) w a s conducted to investigate the possibility to compost t h e s e g r e e n h o u s e organic wastes. T h e project successfully  demonstrated  g r e e n h o u s e organic w a s t e s could be converted into high quality compost.  In this research, the c o m p o s t generated from g r e e n h o u s e wastes  was  greenhouse  used  as  growing  media  tomatoes  growing  trial.  characteristics  of  the  media,  plants  to  conduct  The  a  full  physical  condition,  and  and  season  of  chemical  production  e x a m i n e d a n d c o m p a r e d with conventional growing method.  1  organic  were  1.1 BACKGROUND AND SIGNIFICANCE British C o l u m b i a has o n e of the biggest v e g e t a b l e s industries in the world.  greenhouse  T h e B C industry is just behind Holland, Israel &  Ontario in terms of g r e e n h o u s e vegetable production volume.  T h e year  round mild climate a n d abundant natural resources m a k e British C o l u m b i a the ideal location for g r e e n h o u s e  operations.  T h e greenhouse  industry  has doubled in s i z e in the last two years. T h e g r e e n h o u s e a r e a e x p a n d e d from 300 a c r e s to approximately 600 a c r e s within this period.  With s u c h rapid expansions, w a y s of waste reduction a n d recycle of material  have  to  be  explored.  Using the  organic wastes  from  the  g r e e n h o u s e to generate c o m p o s t and then, reuse the c o m p o s t a s growing media  is the  resources.  perfect  solution for both w a s t e s reduction a n d  If this model is possible, a closed g r e e n h o u s e  recycles  cycle c a n be  created with essentially no organic w a s t e s generated from this industry.  1.1.1  Waste Management  Each  year,  the  greenhouse  industry  generates  approximately  20,000 t o n n e s of organic wastes. T h e compositions of the organic wastes are old sawdust m e d i a , fruit rejects, leaf pruning, a n d the year-end plant debris (vines, stems, leaves).  T h e most c o m m o n practice of handling  t h e s e w a s t e s w a s to truck to landfill for disposal.  With composting, these  organic w a s t e s c a n be reduced and converted into high quality compost. With a well-controlled composting process, 70% reduction of the organic wastes  can  be  achieved.  For a  10  acres  greenhouse  operation,  approximately 210 tonnes of organic w a s t e s is generated yearly. materials  are  processed  for composting,  c o m p o s t c a n be p r o d u c e d . composting.  approximately 90  If all the  tonnes  of  T h e g r e e n h o u s e industry is the perfect fit for  T h e industry g e n e r a t e s a steady a n d relatively clean waste  2  stream.  Basically, the composting p r o c e s s c a n start without bringing in  any extra material to trigger the p r o c e s s .  T h e fruit rejects, leaf pruning,  and the y e a r - e n d plant debris provide the nitrogen source while the old sawdust provide the c a r b o n s o u r c e for the bacteria to d e c o m p o s e waste.  the  Moreover, the trucking cost for the waste disposal c a n be greatly  reduced.  1 . 1 . 2 Growing Media for Greenhouse Vegetables  Currently, the majority of the g r e e n h o u s e s in British C o l u m b i a use yellow c e d a r s a w d u s t or rockwool a s  growing m e d i a .  However,  both  m e d i a has their a d v a n t a g e s a n d disadvantages.  Sawdust  1.1.2.1  Sawdust media  in  is  the  most  common  British C o l u m b i a .  production.  Sawdust  vegetable is  It is a by-product from sawmill.  the  greenhouse  shavings  growing  from  lumber  H e n c e , S a w d u s t is readily  available in the Pacific Northwest a n d it is fairly inexpensive.  Untreated  yellow c e d a r is the preferred kind of sawdust u s e d a s growing m e d i a in BC.  It is c h o s e n for its availability a n d relatively low degradability a m o n g  other  kind of sawdust.  T h e a d v a n t a g e s of sawdust are the  porous  physical property for root development a n d the ability to have no d i s e a s e or virus attached onto it. However, the disadvantages  are the inability to  bond with the nutrients from the feed, a n d the tendency to break down near the e n d of the growing s e a s o n .  Rockwool  1.1.2.2  R o c k w o o l is the most c o m m o n g r e e n h o u s e growing m e d i a in the world.  R o c k w o o l is a fibrous insulating material p r o d u c e d from granite like  rock called d i a b a s e or basalt. blocks  or  slabs  with  T h e fibres are glued with resins to produce  wetting  agents  3  to  serve  as  growth  medium  ( P a p a d o p a u l o s , 1994).  T h e a d v a n t a g e s with rockwool are its high water  holding capacity a n d durability. R o c k w o o l c a n growing  seasons.  maintenance.  The  disadvantages  are  usually last for 2 to expensive  and  3  high  T h e rockwool block n e e d s to be disinfected before reuse  for every growing s e a s o n .  Moreover, rockwool is very difficult to d i s p o s e  (Robertson, 1993).  1.1.3 Compost as Growing Media  As  mentioned  organic w a s t e s w a s compost.  earlier, the  compost  demonstrated  T h e volume of c o m p o s t  generated  from g r e e n h o u s e  to be able to produce high quality generated  equals  to 30% of all the  s a w d u s t m e d i a n e e d e d for the g r e e n h o u s e operation.  T h e r e are m a n y  a d v a n t a g e s of introducing c o m p o s t a s growth m e d i a .  Compost can  increase  nutrient availability for plants, improve yield a n d plant growth  (Mathur, 1996).  Applying c o m p o s t a s growing m e d i a in g r e e n h o u s e c a n  recycle nutrients from the previous crop back to the next growing s e a s o n . H e n c e , reduction of fertilizer c a n be a c h i e v e d .  C o m p o s t also has  ability to s u p p r e s s several plant d i s e a s e s (Ketterer, 1992).  the  Moreover, the  cost of production c a n be benefited from the reduction of sawdust media, waste d i s p o s a l a n d fertilizer u s a g e .  In 1998, a preliminary growing trial w a s c o n d u c t e d for 5 months to evaluate the different kind of growing m e d i a best suited for g r e e n h o u s e operations.  6 kinds of m e d i a were tested to grow tomato plants:  •  100% S a w d u s t  •  30% S a w d u s t + 70% G r e e n h o u s e C o m p o s t  •  30% S a w d u s t + 70% C o m m e r c i a l M u s h r o o m C o m p o s t  •  100% Peat M o s s  •  30% Peat M o s s + 70% G r e e n h o u s e C o m p o s t  •  100% G r e e n h o u s e C o m p o s t  4  Each  media  had  4  replicates  and  was  irrigated with  experiment layout is s h o w n in Figure 1 and Figure 2.  water.  T h e plants heights  and fruit yields were monitored on a weekly basis.  Figure 1. Preliminary Experiment Layout  Figure 2. Prelim. Trial - Plants irrigated with water  5  The  Table 1 . Summary of plants height and fruit yield(water) Cumulative Height (cm)  Media Irrigated with Water  Cumulative Fruit Yield (kg)  Sawdust  121.84  0.9  70% Sawdust 3 0 % Greenhouse Compost  154.76  2.3  7 0 % Sawdust 3 0 % Com. Mush. Compost  132.15  0.9  Peat Moss  135.43  1  7 0 % Peat Moss 3 0 % Greenhouse Compost  146.33  1.9  Greenhouse Compost  206.75  4.1  T h e s u m m a r y of the plants growth a n d fruit yield is s h o w n in T a b l e 1. W h e n the tomato plants were irrigated with water, the plants grown on sawdust,  peat  moss,  and  c o m m e r c i a l m u s h r o o m c o m p o s t performed  poorly in both fruit production and plant height.  T h e plants grown on pure  g r e e n h o u s e c o m p o s t performed the best a m o n g all m e d i a .  T h e plants  grown with 30% g r e e n h o u s e c o m p o s t mix also s h o w e d improvement in both  plants growth a n d fruit yield.  However, the  performed better than the mix with peat m o s s .  mix with  sawdust  T h i s is probably d u e to the  increased moisture content of the mix m e d i a with peat m o s s . h a s a higher moisture retention capacity than sawdust.  Peat m o s s  T h e mix with  sawdust a n d c o m p o s t had a better moisture ratio (less wetness) than the mix with peat m o s s a n d compost. and  T h e r e a s o n for the mix with sawdust  c o m m e r c i a l m u s h r o o m c o m p o s t to perform poorly w a s d u e to the  instability of the compost. T h e m u s h r o o m c o m p o s t w a s not cured properly and w a s not suitable for use a s growing m e d i a .  The  main r e a s o n being that g r e e n h o u s e  within unlike all the other m e d i a .  compost  has  nutrients  H e n c e , the plants grown on c o m p o s t  w a s able to survive despite the lack of nutrients from the feed.  Sawdust  and Peat m o s s had no nutrient value. Therefore, the plants were not able to extract any nutrients for growth. T h e main r e a s o n for the plants grown with c o m m e r c i a l m u s h r o o m c o m p o s t to perform poorly w a s d u e to the instability of the compost.  If the curing p r o c e s s w a s not d o n e properly, the  6  c o m p o s t will b e unstable a n d pathogens will still be presented in the media. T h e pathogens will have a significant negative effect on plants.  B a s e on the positive results from the growth a n d yield trial with water,  another experiment w a s  d o n e to e x a m i n e the  performance of  tomatoes plants grown on 100% sawdust, 70% sawdust mixed with 30% g r e e n h o u s e compost, and 100% g r e e n h o u s e c o m p o s t with conventional greenhouse  nutrient feed.  The  setup  experiment and is s h o w n in Figure 3.  was  similar to  the  previous  A g a i n , 4 replicates were prepared  for e a c h m e d i a . T h e plants' heights a n d the fruit yields were monitored.  Figure 3. Prelim. Trial - Plants irrigated with conventional greenhouse nutrients Table 2. Summary of plants height and fruit yield (Nutrient) Media  Cumulative Height (cm)  Cumulative Fruit Yield (kg)  Sawdust  375.75  23  7 0 % Sawdust 30% Greenhouse Compost  412.75  26.2  Greenhouse Compost  420.5  26.3  7  T h e results from this experiment are shown in table 2. experiment,  greenhouse  compost  was  further  O n this  demonstrated  to  be  beneficial for g r e e n h o u s e vegetables. With the introduction of g r e e n h o u s e c o m p o s t to the growing m e d i a , the plants grew approximately 10% more in  height  and  greenhouse  produced  13%  more  in fruit yield.  For a  10  acres  operation, 13% increase in yields equals to 338,000 kg of  addition tomatoes production ( a s s u m e d annual production of 65 kg/m ). 2  Moreover,  the  relationship  between  the  amount  of  compost  application a s growing m e d i a and fruit production w a s o b s e r v e d .  The  experiment indicated the fruit production did not improve significantly with more greenhouse  compost  as  growing  media.  T h e fruit yields  relatively the s a m e for the plants with 100% c o m p o s t a n d 70%  were  sawdust  mixed with 30% compost.  The  results  from the  preliminary trial  showed  several  potentials of using g r e e n h o u s e c o m p o s t a s growing m e d i a .  positive  A full s e a s o n  growing trial w a s c o n d u c t e d to further investigate the effect of g r e e n h o u s e c o m p o s t a s growing m e d i a .  8  1.2 OBJECTIVES T h e objectives of this thesis research are:  1.  T o c o m p a r e the c h e m i c a l a n d physical characteristic of the  different  growing m e d i a .  2.  T o evaluate the use of g r e e n h o u s e c o m p o s t a s growing m e d i a for a c o m m e r c i a l tomato g r e e n h o u s e operation.  3.  T o evaluate the nutrient strategy for growing with c o m p o s t media.  4.  T o determine the effect of the growing m e d i a a n d nutrient strategy on the tomato plants via m e a s u r e m e n t of the plants growth, fruit yield and quality.  9  Chapter 2  LITERATURE REVIEW Compost  used  as  growing  media  should  be  consistently  high  quality to e n s u r e reliable plant growth (Spiers et al., 2000). Quality control during production should e n s u r e a d e q u a t e maturity a n d both chemical a n d physical properties (Inbar et al., 1993).  T h e keys to maintain high quality  c o m p o s t are to have a consistent waste stream a n d a n a m p l e supply of oxygen.  Consistent  waste  stream  ensures  each  batch  of  compost  maintain with the s a m e mixing ratio, moisture content, a n d C : N ratio. T h e oxygen level is very important in the composting p r o c e s s .  T h e bacteria  require the p r e s e n c e of oxygen in order to d e g r a d e the organic waste.  If  the organic material is not fully d e g r a d e d by the bacteria, the microbial will consume  oxygen  a n d soluble  nitrogen from the growing m e d i a at the  e x p e n s e of the plant roots (Spier et al., 2000)  C o m p o s t has the ability to improve nutrient retention, p H buffering capacity,  reduction in fertilizer a n d s u p p r e s s i o n  (Hoitink et al., 1997).  of soilborne  diseases  However, C o m p o s t is usually not suitable a s a sole  growing m e d i u m . T h i s is d u e to its inadequate airspace, high salt content, and  high p H .  T h e study  indicated  compost  should  be  used  as  an  a m e n d m e n t to growing m e d i a at a rate no greater than 30% (Spier et al., 2000).  A study demonstrated that c o m p o s t application a s growing m e d i a can change growing  the form a n d amount of plant-available  season.  immediately  Nitrogen  available  in  conventional  for plant uptake.  nitrogen within a  chemical  fertilizers  Fertilizer nitrogen  is  is rapidly  converted to NO3 through nitrification. H e n c e , nitrogen will be leached out  10  or converted to N 0 (volatile gas). 2  organic form.  In contrast, nitrogen in c o m p o s t is in  T h e conversion of organic nitrogen to nitrite is m u c h slower  than of inorganic fertilizer.  Substitution of c o m p o s t for nitrogen fertilizer  c a n d e c r e a s e nitrification rates by 25% and yet without c o m p e n s a t e  on  yield ( E z a n n o e t a l . , 1999).  A n o t h e r study s h o w e d c o m p o s t - b a s e d s y s t e m s tend to have more plant-available nitrogen in a m m o n i u m , an inorganic nitrogen source that d o e s not get converted to N 2 O or leached ( E z a n n o et al., 1999).  T h e use  of high a m m o n i u m nutrient solutions in c o m p o s t b a s e d s y s t e m has b e e n s h o w n to have a positive effect on rooting. However, e x c e s s i v e amount of a m m o n i u m m a y be detrimental to plants (Ansermino et al., 1995)  T h e r e were several r e s e a r c h e s  on c o m p o s t  utilization in tomato  production. In most c a s e s , c o m p o s t w a s able to improve plants' growth. M a y n a r d et al. (2000) studied the effect of applying leaf c o m p o s t to reduce fertilizer u s e in tomato production.  T h e study s h o w e d tomato yield from  plots a m e n d e d with leaf c o m p o s t a n d no fertilizer w a s equivalent to the fertilized control plots.  T h e greatest yields were from plots a m e n d e d with  c o m p o s t a n d the full rate of inorganic fertilizer.  A trial w a s d o n e with the application of yard trimming compost for tomato transplant. mixed  into five  A combination of compost, peat, a n d vermiculite were  types  of  52:18:30, a n d 70:0:30%. tomato seedling compost control.  media:  0:70:30(control),  T h e result s h o w e d  leaf a r e a a n d shoot dry.  18:52:30,  35:35:30,  the plants with increased  In addition, the plants with  h a d higher root volume a n d greater stem diameter than  the  However, the improvements d e c r e a s e d linearly a s c o m p o s t rate  increased.  T h e main reason is d u e to the high E C of the compost, which  restricted plant growth ( O z o r e s et al., 1999).  11  A n o t h e r study w a s performed using s u g a r c a n e filtercake c o m p o s t a s a partial substitute for inorganic fertilizer for tomato production. T h e plants w e r e fertilized with 0, 50, & 100% of ( 1 5 3 N - 1 3 4 P - 2 8 0 K ) . plants were then a m e n d e d with or without compost.  The  T h e plants' height,  stem diameter, shoot weight, fruit yields, a n d fruit size were m e a s u r e d . The  result s h o w e d  the  plants with c o m p o s t  amendment  had  heavier  shoots, thicker stems, higher total and early marketable fruit number a n d weight a n d larger fruit size (Stoffella et al., 2000).  Research was  also conducted with the u s e  of leaf c o m p o s t to  r e d u c e fertilizer cost for tomato production. T h e result s h o w e d the plants with c o m p o s t a m e n d m e n t a n d no additional fertilizer h a d yields equivalent to the control with full fertilization.  T h e r e were no significant differences  with the yields from the unfertilized c o m p o s t - a m e n d e d control with fertilizer.  plants a n d the  W h e n the plants with c o m p o s t were fertilized with  inorganic fertilizer, the yields were increased from 21 to 28 % (Maynard, 2000).  S e v e r a l r e s e a r c h e s indicate that c o m p o s t a m e n d m e n t w a s able to increase tomato yields a n d improve soil conditions.  T o m a t o plants with  Municipal Solid W a s t e ( M S W ) c o m p o s t a m e n d m e n t s of 25 a n d 50 tons per acre were c o m p a r e d to the control with no c o m p o s t a m e n d m e n t .  The  plants with 25 a n d 50 t/a of M S W c o m p o s t a m e n d m e n t had a n increase of 23 % a n d 38% in yield respectively.  In terms of soil improvement, the soil  a m e n d e d with M S W c o m p o s t w a s o b s e r v e d to h a v e a n increase in p H , organic  matter,  water  holding  capacity,  (Maynard, 1995).  12  and  Nitrate-nitrogen  level  B e s i d e s tomato production, c o m p o s t applications were tested with other crop. investigated.  In this research, c o m p o s t value on p e p p e r transplants  was  T h e p e p p e r transplants were tested with m e d i a c o m p o s e d of  peat m o s s , perlite a n d vermiculite a n d the s a m e mixture of m e d i a plus the addition of 20% high quality compost.  T h e result s h o w e d the  compost-  a m e n d e d m e d i a significantly increased plant height a n d stem diameter, leaf a r e a , leaf dry weight, stem dry weight, shoot dry weight, a n d root dry weight.  In terms of yield, the plants grown in c o m p o s t - a m e n d e d  out-yielded the control plants by  20% (Granberry et al., 2001).  E v e n though a fair amount of research w a s d o n e with growing trial on tomatoes.  media  compost  However, most of the research w a s d o n e on  field tomato production. T h u s far, no research w a s conducted to evaluate compost  as  greenhouse  growing  media  in  a  commercial  hydroponics  environment with continuous nutrient feeding.  very important for the future development worldwide.  13  inorganic  T h i s study is  of the g r e e n h o u s e  industry  Chapter 3  METHODS AND MATERIALS T h e setup of the experiment consisted of equipment a n d materials from conventional g r e e n h o u s e operations, beefsteak tomato plants with rockwool blocks, yellow c e d a r sawdust, a n d g r e e n h o u s e compost.  A full  s e a s o n (10 months) of growing trial w a s c o n d u c t e d . T h e experiment took place in a test g r e e n h o u s e at V i s i o n Envirotech G r e e n h o u s e in Surrey, British C o l u m b i a .  Details of the setup are d e s c r i b e d in the following  sections.  3.1 GROWING MEDIA Two  materials  were  chosen  as  growing  media: yellow  cedar  sawdust a n d g r e e n h o u s e compost. T h e sawdust w a s provided for us from the g r e e n h o u s e operations. vegetable g r e e n h o u s e sawdust  was  1998.  growing m e d i a u s e d  untreated  toxication to the plants.  Yellow c e d a r sawdust is the most c o m m o n  to  prevent  any  in British C o l u m b i a . chemical  The  contamination  or  T h e g r e e n h o u s e c o m p o s t w a s generated in July  T h i s c o m p o s t batch w a s p r o d u c e d from g r e e n h o u s e tomato plants  and fruit wastes, alder bark hog fuel, a n d u s e d sawdust.  A pilot-scale, in-  v e s s e l composting s y s t e m built for the previous g r e e n h o u s e composting study w a s u s e d to p r o c e s s this batch of compost.  During the composting  p r o c e s s , the m a x i m u m temperature of 6 5 ° C w a s r e a c h e d to ensure no pathogens c a n survive.  T h e feedstock w a s c o m p o s t e d for approximately  30 d a y s in the container, cured for several months, a n d s c r e e n e d to size before u s a g e .  14  T h e growing m e d i a for this study is s h o w n in T a b l e 3.  T h r e e types  of growing m e d i a w e r e c h o s e n for this experiment: 100% sawdust, sawdust mixed with 33% g r e e n h o u s e  compost, a n d 100%  67%  greenhouse  compost.  T h e mixing ratio w a s b a s e d on the v o l u m e ratio of the c o m p o s t  that c a n  be  literature  review.  generated  from  The  a  10  amount  of  acres  greenhouse  compost  can  be  operations produced  and in  a  g r e e n h o u s e operation equal to approximately 1/3 of the sawdust m e d i a n e e d e d for the g r e e n h o u s e operations.  T h e three types of m e d i a were  then put into a 3 0 L white plastic b a g for support.  E a c h bag had enough  m e d i a to support 3 plants.  Table 3. Growing Media Growing Media  Mixing Ratio  Yellow Cedar Sawdust S Yellow Cedar Sawdust / Greenhouse Compost SGC Greenhouse Compost GC  100% 2:1 v/v 100%  Before the growing trial, the physical, c h e m i c a l a n d microbiological characteristics of the compost  mixture were  sawdust,  greenhouse  measured.  compost,  This was  done  and  sawdust  to determine  /  the  differences of e a c h m e d i a and to c o m p a r e the various properties of the m e d i a after the growing s e a s o n .  T a b l e 4 illustrated the methods for all the  analysis.  15  Table 4. Media Analysis Methods Test  Laboratory  Method  Moisture  UBC  Oven-drying gravimetric (Amer. Soc. Agron., 1982)  Bulk density  UBC  Gravimetric/volume estimation (Cornell, 1999)  Particle Size  UBC  Manual Dry Sieving  Porosity - pre-season*  UBC  Gravimetric water saturation and drainage (Cornell, 1999)  Porosity - post-season*  Soilcon Laboratories  Desorption from saturation under 10 kPa  Total Nitrogen  UBC  Ignition at 950 °C in Leco FP228 Nitrogen Determinator  Total Organic Carbon  UBC  Combustion at 680 °C in Shimadzu Total Organic Carbon Analyser with Solid Sampling Module  Nutrients  Norwest Labs (Langley, BC)  CMPT-Turf  CEC  Norwest Labs  CL11  pH, EC  UBC  10x dilution distilled water extraction (shaken and centrifuged)  Total Bacteria and Fungi  Cantest Laboratories (Burnaby, BC)  Standard Plate Count in Solid Material (bacteria) Yeast and Mold Analysis in Solid Samples: Peptone water rinse, PDA medium  •  P r e - s e a s o n porosity m e a s u r e m e n t s of the m e d i a were d o n e at U B C on bulk materials. A t s e a s o n e n d , to reflect actual in-situ porosity the b a g s were taken to S o i l c o n L a b s ( R i c h m o n d , B C ) and c o r e - s a m p l e d for water retention, a s a reflection of aeration porosity.  Core  samples  were  surface (near mid-level).  16  taken  at  about  1" below  the  3.2 TOMATO PLANTS A total of 291 tomato plants were u s e d for this trial.  T h e tomato  variety u s e d w a s called "Mississippi", a type of beefsteak tomato.  This  cultivar w a s c h o s e n for its ability to withstand heat a n d fast growth to c o m p e n s a t e for the late start in February. and  T h e s e e d s were from Holland  were propagated by Houweling Nurseries Ltd.  were s e e d e d on February 4, 1999.  T h e tomato plants  T h e s e e d s were grown in plugs and  then transplanted onto rockwool blocks for propagation.  T h e tomato  plants were delivered to the test site after 21 d a y s of propagation.  The  plants were then planted into the m e d i a b a g s on February 25, 1999.  The  tomato  plants  were  spaced  at  3.75  convention g r e e n h o u s e environment.  shoots/m ,  which  2  simulate  the  T o create this s p a c i n g , the plants  were d o u b l e - h e a d e d to generate two growing tips right after planting.  3.3 NUTRIENT RECIPES In this study, three types of nutrient recipes were u s e d to irrigate the crop.  T h e nutrient recipes are listed in T a b l e 5.  Nutrient solution 1  (N1) w a s the conventional or typical c o m m e r c i a l feed.  Nutrient solution 2  (N2) h a d a n increase in a m m o n i u m concentration. T h i s w a s b a s e d on the hypothesis that a m m o n i u m would benefit yield while the mix m e d i a and pure c o m p o s t m e d i a provided buffering to prevent acidification. Nutrient solution 3 (N3) had the s a m e recipe a s nutrient 2, with a lower E C by dilution to c o m p e n s a t e for the high E C from the g r e e n h o u s e compost.  Table 5. Field Test Nutrient Solutions Nutrient  Average EC  Recipe  N1 - Conventional N2 - Modified N3 - Modified  3.2 3.1 2.8  1 2 2  17  Average ammonia as % of nitrogen 4.3 6.4 6.4  All  the nutrient recipes were generated from inorganic fertilizers.  Fertilizers were mixed into either A or B T a n k s . A T a n k fertilizer consisted of  C a l c i u m Nitrate a n d Iron.  Nitrate,  Epsom  Salts,  Mono  B T a n k fertilizer consisted Potassium  Phosphate  of P o t a s s i u m  (MKP),  Potassium  Chloride, M a n g a n e s e Sulphate, Z i n c Suphate, Borax, C o p p e r Sulphate, and  Sodium  Moybdate.  The  mixing  ratio  changed  a c c o r d a n c e to the weather, a n d plants conditions.  periodically in  In most c a s e s , the  mixing ratio w a s the s a m e a s the conventional g r e e n h o u s e operations.  3.4 G R E E N H O U S E S E T U P A N D  The Vision  field test w a s  conducted in the test g r e e n h o u s e  Envirotech G r e e n h o u s e  greenhouse  is 153 m .  greenhouse.  2  LAYOUT  in Surrey.  located  T h e total a r e a of the  T h e test g r e e n h o u s e  is a "Venlo" type  at  test glass  T h e test g r e e n h o u s e has all the climate a n d irrigation control  equipment for c o m m e r c i a l operation. T h e computer control system for the test g r e e n h o u s e is called "Previa".  It is the most c o m m o n a n d the leading  brand of g r e e n h o u s e control computer software worldwide.  F o u r treatments were a s s i g n e d to e x a m i n e the two m e d i a a n d the three nutrient recipes a s shown in T a b l e 6. E a c h treatment w a s divided into 3 north-south rows (A, B, C ) , which were interspersed a s evenly a s possible in the east-west direction a s s h o w n in T a b l e 7. T w o treatments were a s s i g n e d to test the pure g r e e n h o u s e compost. only a single greenhouse.  end  row.  This  is d u e  to the  T h e layout is s h o w n in Figure 4 .  18  E a c h treatment had  space  constraint of  the  Table 6. Field Test Treatments Group  Growing medium  Feeding  No. of rows  1 2  Sawdust  N1  Sawdust S a w d u s t + G r e e n h o u s e C o m p o s t , 2:1 v/v  N2  3 3  S a w d u s t + G r e e n h o u s e C o m p o s t , 2:1 v/v  3 4  N1  5  Greenhouse Compost  N2 N2  6  Greenhouse Compost  N3  3 3 1 1 14  Total  Table 7. Field Test Planting Layout Row No.  Treatment  Replicate  No. of plants  1 (East)  X  X  0  2  X  X  0  3  6  A  18  4  2  A  21  5  3  A  21  6  4  A  21  7  1  A  21  8  2  B  21  9  3  B  21  10  4  B  21  11  1  B  21  12  2  C  21  13  3  C  21  14  4  C  21  15  1  C  21  16 ( W e s t )  5  A  21 291  Total •  19  N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N3  GC  •  100%  •  70%  Q  100% S  S + 30% GC  Figure 4. Test Greenhouse Layout  The  test g r e e n h o u s e  was  c o v e r e d with white plastic sheets  as  ground cover to reflect light for the crops a n d to keep the w e e d s from growing in the g r e e n h o u s e . laid in rows. drippers.  T h e m e d i a bags and the irrigation lines were  E a c h tomato plants were supplied with nutrient solution from  T h e volume of the dripper w a s 2L/min.  g r e e n h o u s e is s h o w n in Figure 5 and Figure 6.  20  T h e setup of the test  Figure 5. Test Greenhouse Setup  Figure 6. Growing Trial Setup  21  3.5 C R O P  MAINTENANCE  Lots of choirs were involved in growing tomatoes.  A s the  plants  were brought to the g r e e n h o u s e , they were placed on top of the media b a g s with a dripper placed into the rockwool block for irrigation. T h i s w a s d o n e to generate the roots to grow out of the rockwool block. A s s o o n as the volume of roots at the bottom of the rockwool block were significant, the plants were then planted into the m e d i a bags.  T h e nursery plants at  the beginning of the growing trial are s h o w n in Figures 7 & 8.  Figure 7. Nursery Plants just brought to the greenhouse  Figure 8. Nursery Plants ready to be planted  22  3.5.1 Irrigation Irrigation w a s d o n e via the g r e e n h o u s e  computer control.  Each  feeding w a s approximately 100mL/dripper. T h e amount of feedings per day was  determined by the setting  on the computer.  Irrigation varies  pending on light level, outside a n d inside temperature, length of days, plants conditions, and drain volume.  Irrigation drippers had to be c h e c k e d  regularly to e n s u r e they were not plugged.  T h e irrigation unit of the test  g r e e n h o u s e is s h o w n on Figure 9.  Figure 9. Irrigation Unit  3.5.2 Lowering A s the plants grew in size a n d length, T h e tomato shoots were long, heavy a n d brittle.  Plastic twines and clips were used to hold the  plants in place in order to avoid any breakage to the plants. A s the shoots r e a c h e d to the top of the crop wire, lowering w a s n e e d e d to create more room for tomato growth.  Lowering w a s d o n e on a biweekly basis. T h e  lowered plants are s h o w n in Figure 10.  23  Figure 1 0 . Lowered Plants 3.5.3 Deleafing & Pruning  Deleafing w a s n e e d e d to e n s u r e the tomato plants growth w a s in the right balance.  Deleafing is to keep the number of leaves on e a c h  shoot for optimal growth. Usually, e a c h plant had an a v e r a g e of 15 leaves per shoot.  Deleafing w a s d o n e on a weekly basis.  T h e leaves were laid  on the walkway for drying to reduce volume before they were taken out of the g r e e n h o u s e .  Deleafing should only be d o n e on a sunny day. T h i s will  s p e e d up the healing of the w o u n d s on the shoots and also reduce the c h a n c e s of airborne d i s e a s e infection s u c h as Botrytis. T h e deleafing and pruning of plants is s h o w n in Figure 11.  Pruning is to take off the extra shoots, flowers, a n d fruits from the plants.  T h e extra shoots a n d fruits take up nutrients from plants, which  would consider a s waste.  By pruning off those unwanted shoots and  fruits, the plant c a n c h a n n e l the nutrients more efficient. d o n e on a biweekly basis.  24  Pruning  was  M o s t growers u s e d deleafing and pruning to direct the plants into a specific m o d e of growth.  In most c a s e s , growers tend to create a more  generative condition for tomato plants. tomato plants to p r o d u c e more fruit.  Generative m o d e w a s to have the  In contrast, vegetative m o d e w a s to  have the tomato plants to produce more leaves.  By taking off the leaves  and extra shoots a n d fruits, the tomato plants would have to survive with fewer  leaves  for transpiration a n d  less  shoots  and  fruit to  support  production.  Figure 1 1 . Plants and Leaves after deleafing  3.5.4 Pollination Pollination is very critical for tomato crop.  Hives were brought into  the g r e e n h o u s e to help pollinate the tomato flowers. occidentalis.  T h e b e e s variety are  E a c h week, a pollination c h e c k w a s d o n e on the crop to  determine the pollination level of the hives. c h e c k for b e e s visitation. hives were n e e d e d .  Flowers were inspected to  If the pollination level w a s less than 70%, new  T h e beehives are shown in Figure 12.  25  Figure 12. Bee hives  3.5.5 Pest and Plants Health Management  Throughout the growing s e a s o n , the plants were closely monitored for pests a n d d i s e a s e s . were  Pest s u c h a s white flies, spider mites, a n d loopers  c o m m o n l y found in tomato  greenhouse  represent the c o m m e r c i a l g r e e n h o u s e allowed for this trial.  operations.  To  closely  environment, no pesticides  were  Predators s u c h a s encarsia, & podius were put into  the g r e e n h o u s e weekly to control pest.  B e s i d e s pest, the health of the plants w a s another major concerns. The  plants  were  constantly  monitored  for  diseases  and  abnormal  conditions. D i s e a s e s s u c h a s botrytis, fuasurium & corky roots were s o m e of  the  concerns  in tomato operations.  Abnormal  conditions s u c h  as  b l o s s o m e n d rot, brown roots were indications of the plants were under a significant amount of stress. plants were  O n c e a d i s e a s e plant w a s found, the infected  either receiving treatments  g r e e n h o u s e to prevent spreading.  26  or being taken  out from  the  3.6  MEASUREMENT  A s the growing trial p r o g r e s s e d , a series of tracking analysis a n d m e a s u r e m e n t s were d o n e . on all the tomato plants.  T h e yield a n d fruit quality tracking were d o n e  T h e growth a n d drain/feed m e a s u r e m e n t s were  d o n e on random s a m p l e s .  3.6.1  Plant Height The  plant height w a s  m e a s u r e d on a weekly basis.  T h e first  m e a s u r e m e n t w a s m e a s u r e d from the tip of the plants to the top of the rockwool block.  A marking w a s m a d e at the tip of the plants.  T h e next  incremental plant height m e a s u r e m e n t w a s m a d e from the marking of the last m e a s u r e m e n t to the tip of the plants.  3.6.2 Stem Diameter The caliper w a s  stem diameter w a s m e a s u r e d on a weekly basis. u s e d to m e a s u r e the stem  diameter of the  A digital  plants.  The  m e a s u r e m e n t w a s d o n e at the marking of the last height measurement.  3.6.3 Leaf Length The  leaf  length  was  also  measured  on  a  weekly  basis.  M e a s u r e m e n t w a s m a d e from the tip of the leaf to the e n d of the leaf where it joints with the main stem. to be a full growth leaf.  T h e leaf c h o s e n for m e a s u r e m e n t had  F o r this study, the leaf c h o s e n for m e a s u r e m e n t  located at the marking of the last height m e a s u r e m e n t a s well.  27  3.6.4 Drain/Feed Measurement E C , p H a n d volume of the feed and drain were monitored regularly. The  E C a n d p H of the feed c a n be monitored through the climate and  irrigation control computer. manually.  Drain and feed  measurement.  However, the  drain has to be  measured  stations were setup to collect s a m p l e s  for  A drain station in the g r e e n h o u s e is shown in Figure 13.  Portable E C and p H meters were u s e d to m e a s u r e the feed and drain samples.  A volumetric b e a k e r w a s u s e d to m e a s u r e the volume of the  feed a n d drain volume to e n s u r e the system w a s functioning correctly. S a m p l e s of the drain taken periodically for nutrient analysis (den  Haan  Horticultural C o n s u l t a n c y , Netherlands, via Westgro). T h e nutrient recipes were adjusted to keep drain nutrients within r e c o m m e n d e d ranges.  Feed  volume w a s adjusted to e n s u r e a d e q u a t e drainage, typically 30% of feed volume. F e e d E C and p H were adjusted where n e c e s s a r y to keep drain E C a n d p H in the r e c o m m e n d e d ranges.  Figure 13. Drain Station  28  the  3.6.5 Fruit Picking and Grading  Fruit yield w a s tracked for e a c h row separately. between  one  a n d three  times  per week  depending  Picking was d o n e on the  season.  T o m a t o e s were sorted in size a n d grade according to B C Hot H o u s e grading standards provided in the spring of 1999.  T h e different g r a d e s  were X X L , X L , L, M , & Culls. T h e tomatoes were then weighted in bulk for e a c h category.  T h e fruit number a n d weight were recorded for yield  tracking. T h e picking a n d grading of the tomatoes are shown in Figure 14 and Figure 15.  3.6.6 Shelf Life Analysis A tomato shelf life test w a s performed at B C Hot H o u s e , quality assurance. and  T h r e e approximately 5kg composite s a m p l e s of similarly sized  ripened tomatoes were taken, s a m p l e d from e a c h row, a n d grouped  according to growing m e d i u m . T h e tests performed included observation of colour development,  tray weight,  calyx condition, firmness, wrinkles,  soft spots, a n d mold or rot, a n d were conducted in both laboratory ( 1 8 - 1 9 ° C ) a n d w a r e h o u s e ( 1 2 - 1 3 ° C ) conditions. E a c h test w a s conducted after 1, 5, 8, a n d 14 d a y s of storage.  3.6.7 Plant Tissue Nutrient Analysis For  analysis  of nutrients in the  s a m p l e d from e a c h row.  plant tissue, 8-10  leaves were  Mature leaves were taken only from healthy  plants. C o m p o s i t e s a m p l e s for e a c h treatment were created by combining the appropriate row s a m p l e s .  A n a l y s i s w a s performed by Norwest L a b s ,  Langley, B C .  30  Chapter 4  RESULTS AND DISCUSSION  4.1 GROWING MEDIA TEST  The  m e d i a u s e d for this growing trial were tested for both  physical a n d chemical characteristics.  the  M e d i a analysis w a s d o n e on pre-  s e a s o n a n d p o s t - s e a s o n growing trial.  4.1.1 Pre-Season Media Analysis Density a n d porosity characteristics of sawdust compost  are c o m p a r e d , a s  shown  in T a b l e 8.  and  Greenhouse  tends to bond together while, sawdust tends to be loose. greenhouse and  greenhouse Compost  A s a result, the  c o m p o s t s h o w s significantly higher bulk density, lower total  aeration porosity, a n d higher water holding porosity than  Consequently,  the  sawdust-greenhouse  compost  mixture  sawdust. displays  characteristics generally in between the two, resulting in the tendency for the m e d i u m to retain more moisture than sawdust m e d i a d o e s .  31  Table 8. Pre-season Media Physical Characteristics Sawdust  Sawdust+ Ghse Comp mix  Greenhouse Compost  409  476  587  Total Porosity %  63.4  58.6  49.7  Aeration Porosity %  46.9  35.9  22.8  W a t e r H o l d i n g Porosity %  16.6  22.8  26.9  Bulk D e n s i t y k g / m  171  200  332  T o t a l Porosity %  76.0  72.4  74.1  Aeration Porosity %  39.4  36.1  28.4  W a t e r H o l d i n g Porosity %  36.7  36.4  45.6  Media status  Parameter  Moist  Bulk D e n s i t y k g / m  Air-Dried  J  J  T h e m e d i a nutrient a n d c h e m i c a l characteristics are s h o w n in T a b l e 9 and  10. W h e n c o m p a r e with sawdust,  relatively  rich  in  macro-  concentrations are 1 0 - 2 0  and  the  greenhouse  micro-nutrients.  Most  of  compost the  is  nutrient  times higher than sawdust. T h e N - P - K value  for the g r e e n h o u s e c o m p o s t would be approximately 2 - 0.1 - 1 . 4 . E C and p H are higher than sawdust, a s expected.  However, they are both within  an acceptable range for u s e a s a growing m e d i u m .  It is important to note that with fresh compost, soluble nutrient and salt concentrations will be higher w h e n the material is first irrigated. T h i s initial p e a k will stabilize a s the m e d i a is flushed or irrigated. T h i s  was  apparent in the experiment a s well.  T h e initial E C w a s at 6.8.  gradually lower to a n a v e r a g e of 5.5.  H o w e v e r the material should not be  flushed  will  excessively,  since  this  cause  excessive  (waterlogging) a n d reduce beneficial microbial populations.  32  The E C  wetness  Cation  Exchange  C a p a c i t y ( C E C ) is significantly  higher for the  g r e e n h o u s e c o m p o s t c o m p a r e d to sawdust. T h i s characteristic provides increased adsorption of nutrients by the m e d i u m , generally a desirable characteristic for growing m e d i a .  Table 9. Media Nutrient Characteristics Measurement  Lab  Unit  Sawdust  Ghse Compost  Sodium-Na  NW  ppm  80  2460  CEC  NW  Meq/100g  8.2  127.1  Ammonia-N  UBC  ppm  0  25.8  Nitrate-N  NW  ppm  8.4  94  Phosphate-P  NW  ppm  20  716  . Potassium-K  NW  ppm  190  14200  Calcium-Ca  NW  ppm  1300  12000  Magnesium-Mg  NW  ppm  100  2400  Sulphate-S  NW  ppm  296  1626  Iron-Fe  NW  ppm  20  560  Manganese-Mn  NW  ppm  6.3  149  Zinc - Z n  NW  ppm  0  35.4  Copper - Cu  NW  ppm  0  2.6  Chloride-CI  NW  :g/g  44  4800  .  N W - Norwest L a b s ; d b - dry basis; wb - wet basis  Table 1 0 . Media Chemical Characteristics Treatment/ media  Moisture %  Total nitrogen  Total organic carbon  EC  PH  C/N ratio  6.2  >524  mS/cm  %  % Sawdust  65.9  52.4  <0.1  Sawdust+ Greenhouse Compost  65.0  48.6  0.9  Greenhouse Compost  63.8  43.7  2.0  33  <0.1  52.8  0.9  7.3  21.9  S a m p l e s from fresh g r e e n h o u s e compost, a n d fresh sawdust, were taken D e c e m b e r 9, 1999 a n d a n a l y s e d for bacteria a n d fungi counts as s h o w n in T a b l e 11. T h e microbial counts indicate a n approximately 50x higher bacterial count for the g r e e n h o u s e c o m p o s t than the sawdust. fungal counts show that sawdust is richer in y e a s t s a n d the  The  greenhouse  c o m p o s t richer in molds. Despite the difference in the yeast and mold plate count between  Sawdust and Greenhouse Compost, Greenhouse  C o m p o s t h a s a higher bacteria to fungi ratio than Sawdust.  This was  proven to b e beneficial for vegetable crops (Kai a n d S a k a g u c h i , 1990). Besides  mycorrhizal  fungi, which  is  beneficial  to  plants;  Most  fungi  microorganisms in c o m p o s t c a n b e c o m e a nuisance a n d e v e n c a u s e plant diseases.  Fungi s u c h a s shotgun or artillery fungus m a y c a u s e  problems to plants (Hoitink et al., 1998).  serious  With s u c h high bacteria to fungi  ratio in g r e e n h o u s e compost, it is very difficult for the fungi to dominate and establish in the compost.  Table 1 1 . Media Microbial Counts Material  Total bacteria (standard plate count)  Yeast  Mold  CFU/g  CFU/g  CFU/g Sawdust  8x 10  Greenhouse Compost  4.5x10  4  b  34  1.6x10"  7x10'  2.1 x10  7.1 x10  J  J  4.1.2 Post-Season Media Analysis P o s t - s e a s o n analysis results of the m e d i a u s e d in the growing trial are  s h o w n in T a b l e s 12 a n d 13. A t s e a s o n - e n d ,  the sawdust visually  a p p e a r e d more s o g g y a n d soft than season-start. degradation of the structure in sawdust. significantly.  T h i s is d u e to the  H e n c e , the total porosity d r o p p e d  T h e total porosity of the mix a n d c o m p o s t m e d i a remains  relatively the s a m e a s season-start.  A s expected, the mix a n d c o m p o s t  m e d i a are more stable than sawdust.  D u e to the continuous feeding into  the m e d i a bags, the air porosity of all m e d i a is lowered than season-start. T h e sawdust m e d i a still had the highest air porosity than the other media, while the mix a n d c o m p o s t m e d i a had higher water retention porosity than sawdust.  This was  especially apparent near the bottom of the  bags,  where in the c a s e of s o m e g r e e n h o u s e c o m p o s t m e d i a bags; there w a s excessive  moisture  and  poor root development  near the  bottom. In  general, the root d e v e l o p m e n t in the mix a n d sawdust b a g s looked similar. The  bulk density w a s higher with increasing c o m p o s t volume, a s in pre-  season.  However, all the values were lowered from the beginning of the  season.  An  important note to point out is that this g r e e n h o u s e  program w a s setup to optimize for sawdust growing.  irrigation  In which, the other  m e d i a have to follow the s a m e irrigation s c h e d u l e a s the sawdust media. The  mix a n d c o m p o s t m e d i a m a y b e subjected to e x c e s s i v e irrigation.  H e n c e , the growing condition s u c h a s moisture a n d nutrient level m a y not b e optimal for the mix a n d c o m p o s t m e d i a .  A white fungus w a s also o b s e r v e d in the m e d i a immediately under the rockwool block a n d on the surface of the media, in m a n y of the sawdust-greenhouse  c o m p o s t mix bags. A few of the sawdust b a g s had  35  smaller amounts, and virtually none w a s o b s e r v e d in the c o m p o s t T h e fungus  a p p e a r e d to be  more c o m m o n  in G r o u p 4  bags.  (higher  feed  a m m o n i a ) b a g s than G r o u p 3. T h e Plant Diagnostic L a b at the B C M A F F Abbotsford  Centre,  and  Soil  Foodweb  Inc.  (Corvallis, O r e g o n )  both  tentatively identified the fungus a s non-pathogenic a n d saprophytic.  The  significance of the white fungus w a s not determined in this study.  The increase  moisture contents of all treatments  of moisture content from p r e - s e a s o n  regular feeding  were was  of nutrients to all the media.  near 78%.  expected  from  T h e E C of the  The the  sawdust  i n c r e a s e d significantly while the pure c o m p o s t d e c r e a s e d by half.  The  increase of E C in sawdust is probably influenced from the feed solution. T h e d e c r e a s e of E C in pure c o m p o s t is d u e to the constant flushing of the m e d i a by the feed.  T h e p H of all treatments w a s all within  acceptable  range.  The  total  organic  carbon  u n c h a n g e d from p r e - s e a s o n .  ( T O C ) of  all  media  was  relatively  T h e T O C of sawdust only r e d u c e d by 2%,  while the T O C of the mix a n d c o m p o s t m e d i a r e d u c e d by 4 - 6 %. T h e TOC  values  indicate that all m e d i a had minimal degradation a n d are  suitable for growing.  T h e total nitrogen (TN) of sawdust a n d mix m e d i a  c h a n g e s significantly from p r e - s e a s o n .  T h e sawdust m e d i a had more  than 10 times the amount of T N than p r e - s e a s o n . m o r e than double the amount of T N than p r e - s e a s o n . c o m p o s t remains relatively the s a m e a s before.  T h e mix m e d i a h a d However, the T N in  T h e cumulative amount  of nitrogen in the sawdust a n d mix m e d i a is from the constant saturation of the nutrient feed.  T h e r e a s o n for the c o m p o s t to remain relative the s a m e  a s before is d u e to the nitrogen fixing ability of the c o m p o s t 1995).  36  (Jakobsen,  C / N ratio is a c o m m o n l y u s e d parameter for indicating the state of organic materials.  C o m p o s t i n g typically starts at 30 to 40, a n d is reduced  to near 20 or less w h e n  it is considered  mature a n d stable.  O v e r the  s e a s o n , the C / N ratios of the sawdust m e d i a d e c r e a s e d from over 500 to between 30 a n d 40; the mixture from 53 to 17 - 21; a n d the c o m p o s t from 22 to 14 the  17.  significant  T h e drastic drop of C : N ratio in sawdust m e d i a w a s from increase  sawdust-compost  of total  nitrogen.  Both the  mixture s h o w e d less degradation.  pure  compost  or  T h i s is most likely  d u e to the stability nature of the compost, having previously g o n e through an intensive biological degradation p r o c e s s during manufacturing.  Table 12. Post-Season Media Physical Characteristics Parameter (Oven-Dried Media)  Sawdust  Sawdust+ Greenhouse Compost  Greenhouse Compost  Bulk D e n s i t y k g / m  144  183.1  209.9  Total Porosity %  64  73.8  79  Aeration Porosity %  28.2  20.8  25.6  Water Holding Porosity %  35.8  53  53.4  -3  Table 13. Post-Season Media Chemical Characteristics Treatment/ media  Moisture %  Total organic carbon  Total nitrogen  EC  PH  C/N ratio  mS/cm  %  % 1 Sawdust  75.3  50.8  1.41  0.70  6.3  36.1  2 Sawdust  79.9  49.7  1.59  0.50  6.4  31.2  3 Sawdust+ Ghse Comp.  78.2  44.8  2.13  0.80  6.7  21.1  4 Sawdust+ Ghse Comp.  78.3  42.4  2.56  0.90  6.7  16.6  5 Ghse Comp.  78.3  39.6  2.38  0.50  6.3  16.6  6 Ghse Comp.  79.4  38.8  2.78  0.40  6.8  13.9  37  4.2 Tomato Growing Trial The  tomato  crop w a s  D e c e m b e r 6, 1999.  successfully  grown from February 25  to  Total marketable yield harvested w a s 7642 kg and  various parameters s u c h as fruit yield, fruit quality, plant growth, and d i s e a s e were monitored.  4.2.1 Fruit Yield All the tomatoes were picked and recorded accordingly to weight and grade per row. T h e actual yields were adjusted taken into the account of any plant d a m a g e s u c h as broken head d o n e by h u m a n intervention. T h e bi-weekly cumulative yields of e a c h trial group are shown in Figure 16 and T a b l e 14.  Total Yield Kg/m2 Comparison 60.00 50.00 40.00  - Group 1 Sawdust - Group 2 Sawdust - Group 3 Mix Group 4 Mix -*— Group 5 Compost - » - Group 6 Compost  CM  at  30.00  20.00 10.00 0.00  f  /  f  /  /  •  £  #  •  /  •  /  /  /  /  /  Week  Figure 16. Total Cumulative Tomato Yield Comparison  38  Table 14. Total Fruit Production Nutrient feed  Medium  Group  Adjusted marketable yield kg/m  No. of Fruits/m  2  2  Conventional  1  Sawdust  55.6±1.86  328±8.60  3  Sawdust+ Ghse Comp.  53.5±1.82  314±8.74  2  Sawdust  55.3±1.78  319±8.86  4  Sawdust+ Ghse Comp.  55.211.70  312±8.19  5  Ghse Comp.  50.9±1.68  292±7.21  6  Ghse Comp.  57.1±1.78  306±7.60  (N1)  Modified (N2)  Modified (N3)  The  graph s h o w s  very similar trend for the  production range from 50 k g / m to 57 k g / m . 2  2  6  groups.  The  T h e production levels of all  g r o u p s are c o n s i d e r e d acceptable in most c o m m e r c i a l operations.  From  w e e k 18 to w e e k 25, the production levels of all groups were very similar. H o w e v e r from w e e k 26 a n d on, the production curves begin to widen. T h e period between w e e k 26 to w e e k 33 w a s the hottest period of the s e a s o n . T h i s reflected with a n increase in production during that period. s e a s o n progress to the e n d , the light level a n d temperature  A s the  decrease.  T h e slow down in production w a s apparent with a m u c h flatter slope.  The  pure  greenhouse  production yield at 57.1 k g / m . 2  compost  media  with  N3  had  In contrast, the pure g r e e n h o u s e  m e d i a with N2 had the worst production yield at 5 0 . 9 k g / m . 2  greenhouse  compost was  not expected  to have the  the  best  compost T h e pure  best yield.  The  greater yields m a y attribute to increased organic matter, p H , a n d nitrogen level (Maynard, 1995).  T h e results s u g g e s t e d the a d d e d nutrients a n d  39  effects of beneficial o r g a n i s m s s u c h a s d i s e a s e s u p p r e s s i o n , mycorrhizal fungi, or additional nutrients or stimulators s u c h a s humic acids s e e m to be having a positive effect on the plants development. significance effect of E C level on crop is very critical. s e e m to be very sensitive with conductivity.  Moreover, the  T h e tomato plants  With a higher E C level in  G r o u p 5, the plant health a n d production w a s less w h e n comparing with other groups.  T h e sawdust irrigated with nutrient N1 had a total marketable yield of  55.6  kg/m2.  T h e sawdust  marketable yield of 55.3  irrigated with  nutrient N2  kg/m2. T h e difference  had a  total  is very minimal.  The  results s u g g e s t the increase in a m m o n i u m level to the nutrient had no positive effects on yield.  W h e n c o m p a r e d the mix m e d i a irrigated with nutrient N1 and N2, the difference is more apparent.  T h e mix m e d i a with nutrient N2 had a  total yield of 55.2 k g / m a n d the mix m e d i a with nutrient N1 had a total 2  yield of 53.5 k g / m . 2  T h e difference of 1.7 k g / m e q u a l s to 68,000 kg of 2  tomato production for a 10 a c r e s g r e e n h o u s e operation.  T h e addition of  a m m o n i u m concentration proves to have a positive effect on yield.  The  positively c h a r g e d a m m o n i u m ions were a d s o r b e d in the c o m p o s t m e d i a d u e to its high cation e x c h a n g e capacity (Mathur, 1996). did not get converted to N 2 O or leached.  T h e ammonium  In terms, the c o m p o s t converted  this nitrogen s o u r c e into N O 3 in a m u c h slower rate ( E z a n n o et al., 1999). H e n c e , this c a n prolong the nitrogen availability for the plants a n d improve yield.  40  4.2.2 No. of Fruit  T h e n u m b e r of fruit set per m for e a c h group is shown in Figure 17 2  and T a b l e 14.  A g a i n , the graph trends are very similar for all 6 groups.  S a w d u s t ( G r o u p s 1 & 2) had the most fruit set.  Mix m e d i a (Groups 3 & 4)  w a s s e c o n d a n d the last w a s Pure C o m p o s t ( G r o u p s 5 & 6).  A finding  w a s o b s e r v e d that high number of fruit set d o e s not correlate with high production.  T h e plants with sawdust as growing m e d i a (Group 1) had the  highest number of fruits a n d the plants with pure compost a s m e d i a (Group 6) had the s e c o n d  lowest n u m b e r of fruits.  G r o u p 6 had the highest yield of all groups. have more small fruit and of less quality. a m u c h larger s i z e in general.  growing  In contrast,  G r o u p 1 w a s observed  G r o u p 6 had less fruits but with  T h e results s u g g e s t that pure compost with  lower E C c a n e n h a n c e higher quality fruit.  No. of Frurts/m2 Comparison  ^  \T>  $> <fr $  to  # ft  N  $  #  \4  \> ^ \ & \ $ \# N  Week  Figure 17. Total Cumulative no. of Fruit set Comparison  41  4.2.3 Shelf Life Test B C Hot H o u s e shelf life results for the s a m p l e s taken in J u n e 1999 are s h o w n in T a b l e 15.  T h e results from the shelf life test s h o w very little  difference between the groups, a n d all groups s h o w e d acceptable quality. T h e data s u g g e s t s that with increase u s a g e of g r e e n h o u s e c o m p o s t in the m e d i a m a y have contributed to slight d e c r e a s e in firmness a n d increase in weight loss a n d soft spots.  During production, the fruits from c o m p o s t  were o b s e r v e d to be more swollen a n d watery. the results from the shelf life test.  T h i s could contribution to  However, further study would  be  required to confirm this.  Table 15. Tomato Shelf Life Results Colour Stage  Tray  1-12  Key  1Green  Sawdust  8.38  Sawdust+  Firmness Sugars  Weight condition loss %  Range/Unit  Calyx  (hand)  No.  No. with  No.  Wrinkled W/soft spots  mold/rot  1 -5  0-5  1 -6  1-Fresh  0-Hard  1Lowest  3.9%  3.25  0.75  5  0  0.75  0  8.25  4.7%  3.25  0.88  5  0  0.88  0  8.38  5.3%  3.25  1.00  5  0  1.13  0  Ghse Comp. Ghse Comp.  4.2.4 Fruit Size  X X L & X L fruit m e a n s the fruit size h a s to be 210g or higher. guideline w a s monitoring  set  this  by the B C H H F I  parameter  is  grading standard.  because  g r e e n h o u s e tomato is in this size range. per m  2  the  premium  This  T h e reason for market  of  all  T h e total kg of large size fruits  of e a c h group is shown in Figure 18 a n d T a b l e 16. T h e variance  between g r o u p s for this parameter is m u c h greater than production yield and fruit numbers.  42  Group 6 had a significant larger amount of xxl & xl fruits than any other group at 22.1 kg/m . Group 5 had the least amount of xxl & xl fruits 2  at 12.0kg/m . The difference between the two groups is more than 45%. 2  The combination of pure compost media and lower EC nutrient had the most positive effect on fruit quality.  Similar to the total fruit yield, sawdust media with nutrient N1 and mix media with nutrient N2 had more large fruits than sawdust with N2 by 1.70 kg/m and mix media with nutrient N1 by 2.00 kg/m respectively. 2  2  Again, the difference will be significance when scale up to a 10 acres operations.  The  results  indicate  that  the  increase  ammonium  concentration of N2 had a positive effect on mix and pure compost media. In contrary, N2 had simply no or even negative effect on sawdust media. The added ammonium concentration seems to be leached out and not being uptake by the roots with sawdust as growing media.  The average fruit size is shown in Table 16. The range of all groups was between 170g to 186g.  In coherent with the previous  parameters, Group 6 had the largest average fruit size of 186g. In this observation, Group 4 out performed Group 1 and had the second largest average fruit of 178g.  Again, this further strengthens the point that  compost media with lower EC had a definite improvement on fruit quality.  43  Kg/m of XXL & XL Comparison 2  25.00  Week  Figure 18. Total cumulative yield of Large Fruits Comparison  Table 16. Fruit Quality Nutrient feed  Conventional (N1)  Modified (N2)  Group  XXL & XL yield  Average Fruit Size (g)  % Cull  - kg/rri  1  Sawdust  18.7±1.082  175.9±47.41  7.9  3  Sawdust+ Ghse Comp. Sawdust  15.3+1.023  170.3+49.08  10.2  17.0+1.022  174.1+42.80  8.6  Sawdust+ Ghse Comp. Ghse Comp. Ghse Comp.  17.3+0.998  177.7+42.38  6.5  12.0±0.794  171.1±46.14  10.4  22.1 ± 1 . 3 7 4  186.2±49.39  9.7  2 4 5  Modified (N3)  Medium  6  44  4.2.5 % of Culls  The percentage of culls for each group is shown in Table 16. The range is between 6.5% to 10.4%. Culls were generally cause from bad crop management, pest damage, small fruits, and diseases. Group 5 had the most culls. The high percentage of culls was due to an excessive amount of blossom end rot tomatoes. In fact, most culls from the mix media or the pure compost media were blossom end rot tomatoes. Blossom end rot was created when the plant roots were under stressed. When the plants have trouble retain nutrients from the roots, the plants will resource to take up nutrients from the fruits instead. This was evident in the research done in Mt. Carmel. The plants with inorganic fertilizer plus compost amended plots had a greater incidence of blossom-end rot. The reason was due to the excessive amount of nitrogen available for the plants (Maynard, 1999)  4.3 Plant Growth  The plant growth measurements were done to determine whether the plants were in healthy conditions and also to verify any influence from the media or the nutrient recipes. Results for cumulative plant height, leaf length, and stem diameter were analysed, and the results are summarized in Table 17. The cumulative plant growth of all groups is shown in Figure 19.  45  Cumulative Plant Growth 7 0 0 . 0 -i  0.0 4 13  1  1  1  15  1  1  17  1  1  i  1  19 2 1  1  1  1  1  23 25  1  i  1  1  27 29  1  1—" i  31  1  33  1  1  35  1  1  37  1  1  1  1  r~i  39 4 1 4 3  Week  Figure 19. Cumulative Plant Height Comparison  Table 17. Plant Growth Summary Nutrient feed  Group  Medium  Overall Average Shoot height -cm  Average Leaf length cm  Average Stem diameter mm  Conventional (N1)  1  Sawdust  564±6.40  38±2.05  9.4+0.94  3  Sawdust+ Ghse Comp.  567±6.32  38±0.17  9.3+0.26  2  Sawdust  593±7.68  38±1.56  9.3±0.88  4  Sawdust+ Ghse Comp.  580+5.93  39±1.86  9.6+1.88  5  Ghse Comp.  572±6.53  37+0.50  8.7+0.73  6  Ghse Comp.  546±7.14  38±0.65  8.9+1.02  Modified (N2)  Modified (N3)  46  4.3.1 Plant Height  Plant height g r a p h s are different from the fruit yield a n d fruit quality parameters.  T h e plant height varies from 546 c m to 593 c m .  T h e plants  from G r o u p 6 had the shortest height despite the fact that this group had more yield a n d higher fruit quality.  T h e short height  influenced by the location of the plants. e a s t e n d of the g r e e n h o u s e .  stems may  be  T h e plants were located at the  S i n c e that a r e a had lots of s p a c e a n d o p e n  a r e a surrounded, the plants m a y not need to grow taller.  H e n c e , the plant  height of G r o u p 6 did not have a s tall a plant than the other groups. S a w d u s t with N2 (Group 2) had the tallest plant.  T h i s is d u e to the extra  s o u r c e of nitrogen available to plants (Ansermino et al.,  1995). T h e plant  growth data did not indicate any trend in relation to the m e d i a or the nutrient recipe.  T h e only conclusion drawn from this analysis is that the  plant height d o e s not represent the productivity of the plants.  4.3.2 Stem Diameter  T h e stem diameter of e a c h group is shown in T a b l e 17. T h e range from e a c h group is very minimal: 8.7 to 9.6 m m . T h i s range is considered acceptable.  T h e stem diameter of G r o u p 4 had the thickest stem while  G r o u p 5 had the thinnest stem.  T h e stem diameter also follows the s a m e  pattern a s the fruit yield a n d no. of xxl & xl fruits.  Sawdust media s e e m s  to perform better with N1 while mix m e d i a s e e m s to have an advantage with N2.  4.3.3 Leaf Length  T h e leaf length of e a c h group is shown in T a b l e 17. T h e range w a s between 39 to 37 c m . diameter.  T h e leaf length had the s a m e trend a s the stem  G r o u p 4 had the longest leaf while G r o u p 5 had the shortest  47  leaf. Sawdust with N1, mix media with N2, and pure compost with N3 did better. However, the differences between groups are extremely minimal. The average optimal leaf length is 38 - 40 cm. The overall leaf length results suggest that the plants in all groups are in relatively good health. 4.4 Disease The percentage of plants (heads) recorded as lost to disease for each treatment is shown in Table 18.  Botrytis  stem rot, with only a few  exceptions, was the cause of these losses. There is no significant patterns developed in the results. Botrytis is an airborne disease and the plants can be infected when there is a fresh wound opening. Based on the results, plants grown on the mix or the pure compost media did not show an significant resistance to this disease.  The only method to avoid  Botrytis is to keep the greenhouse dry and clean and to ensure the fresh wounds of the plants dry up as soon as possible.  Other than Botrytis, three plants developed disease with symptoms similar to cucumber mosaic virus. These plants were removed and the yield results were adjusted to compensate. These plants were likely to be infected prior to planting and the disease was unrelated to the experimental conditions. Later in the season several other plants developed  Fusahum-Wke  symptoms, but the exact cause could not be  identified, with the exception of one plant from which  Fusarium  was  recovered.  Although there were differences in the number of diseased plants between groups, they were not statistically significant. These results suggest that the growing media and nutrient combinations tested did not impact Botrytis development. This conclusion is not very surprising  48  considering the fungus is not soilborne. N o other major d i s e a s e problems were evident.  Table 18. Disease Incidence Nutrient feed  Tmt. No.  Medium  Plants lost to disease %  Conventional  1  Sawdust  29.8  3  Sawdust* Ghse Comp.  28.7  2  Sawdust  21.4  4  Sawdust+ Ghse Comp.  16.7  5  Ghse Comp.  26.2  6  Ghse Comp.  16.7  Modified (N2)  Modified (N3)  4.5 Plant Tissue Nutrient Analysis L e a f tissue nutrient analysis results are shown in T a b l e 19. T h e results indicate that all nutrients fell within acceptable ranges ( B C M A F F , 1996), with the exception of G r o u p 4, which s h o w e d highly elevated levels of c o p p e r a n d zinc. T h e r e were no deficiencies identified in a n y group. T h e c a u s e of the elevated C u a n d Z n levels is unclear. Alternatively, the measurements  could  be  incorrect  due  to  lab  error  or  contamination. Other nutrients for group 4 plants a p p e a r normal.  49  sample  Table 19. Leaf Tissue Nutrient Analysis, sampled November 26,1999 Group:  1  2  3  4  5  6  Unit  Average  TN  5.2  5.2  5.3  5.3  5.5  6  %  5.42  P  0.979  1.09  1.08  0.956  0.951  1.04  %  1.02  K  4.6  4.68  4.77  4.43  4.11  4.23  %  4.47  S  2.24  2.13  1.73  1.72  1.62  1.8  %  1.87  Ca  3.6  3.41  3.2  3.39  3.06  3.47  %  3.36  Mg  0.555  0.557  0.61  0.611  0.53  0.578  %  0.57  Na  710  840  730  700  670  460  :g/g  685  Zn  25  21  23  177  24  30  :g/g  50.0  Cu  15  14  13  304  7  <20  :g/g  70.6  Fe  120  120  110  110  120  100  :g/g  113.3  Mn  244  254  213  171  247  210  ;g/g  223.2  B  118  125  105  100  119  150  ;g/g  119.5  Nutrient  4.6 Nutrient Recipe and Growing Media  4.6.1 EC & pH With the  computer  control irrigation, the  accurately d o s e d for e a c h nutrient recipe. feed E C w a s kept between 2.7 to 3.2.  T h r o u g h o u t the s e a s o n , the  T h e average  sawdust a n d mix m e d i a w a s between 4.4 - 4.8. pure c o m p o s t  media was  E C & p H were  T h e drain a v e r a g e drain E C w a s  rather stable throughout the growing trial.  for  feed  drain E C for  However, the drain E C  higher initially at 6.8.  T h e high E C in  c o m p o s t is usually d u e to the p r e s e n c e of potassium, calcium a n d nitrate in the m e d i a (Mathur, 1996). T h i s spike w a s expected, a s c o m p o s t tends to have high E C drain in the beginning of the trial. the E C gradually c a m e down to between 5 a n d 5.7.  50  A s the trial continues,  T h e feed p H w a s kept between 5.8 to 6.1. and  pure c o m p o s t m e d i a w a s between 5 -  sawdust m e d i a w a s between 4.2 - 6.2.  T h e drain p H for mix  6.8 while the drain p H for  A low p H c a n c a u s e acidity to the  m e d i a a n d d e c r e a s e s the availability of calcium to plants (Mathur, 1996). T h e c o m p o s t in the m e d i a demonstrated a significant buffering capability a s s h o w n in Figure 20.  T h e buffering against acidification in the c o m p o s t  media  decomposition  is  caused  carbonate  develops.  carbonate. carbonate  by  Hydrogen  of  compost  carbonate splits  whereby  hydrogen  c a r b o n dioxide  and  C a r b o n dioxide evaporates, if the c o m p o s t is aerated, and neutralizes  the  compost  d e c r e a s e s ( J a k o b s e n , 1995).  and  the  activity of  calcium  ions  Despite the fact that increasing a m m o n i u m  concentration will create acidification to the media, the mix a n d pure compost  m e d i a were  Subsequent  to  the  able to maintain a significant higher p H value. minimum  pH  occurring  in  the  sawdust  media,  bicarbonate buffering w a s a d d e d to all nutrient solutions to maintain a minimum feed p H .  Drain p H of all groups eventually b e c a m e stabilized  near 6.  Drain pH - Modified Feed 9  •  2: Sawdust  8  A  4: Sawdust+Amendment  7 2: Sawdust - Trendline (mov. avg.) —  5 4 3  10  15  20  25  30  35  40  Week No.  Figure 20. Drain pH Comparison  51  45  50  4: Sawdust+Amendment Trendline (mov. avg.)  4.6.2 Ammonium and Growing Medium A s d i s c u s s e d earlier, the modified feed with increased a m m o n i u m concentration (N2) did provide the expected yield benefits w h e n used in conjunction with the sawdust a n d c o m p o s t mix. However, the effect w a s not e n o u g h to s u r p a s s the sawdust m e d i a without increased a m m o n i u m concentration. optimal.  T h e increased  a m m o n i u m strategy  was  probably not  F o r sawdust media, the e x c e s s i v e a m m o n i u m concentration w a s  either converted into N 0 g a s or leached out of the media. 2  However, for  mix a n d pure c o m p o s t media, the extra a m m o n i u m w a s retained in the m e d i a for the microbial in the c o m p o s t to breakdown.  A s an e x c e s s i v e  amount of nitrogen (up to 12% of T N ) w a s d o s e d to the mix a n d pure c o m p o s t media, the plants were under stress.  T h i s resulted in a higher  n u m b e r of b l o s s o m e n d rot tomatoes at the e n d of the growing s e a s o n .  Moreover, the result from G r o u p 6 clearly indicates the benefits of using  compost  concentration.  as  growing  media  with  the  increased  T h e mix m e d i a should benefit more with the  ammonium increased  a m m o n i u m concentration.  O n e of the r e a s o n s for the less than desirable  result of sawdust/compost  mix m e d i a could be the irrigation s c h e d u l e of  the trial.  T h e test g r e e n h o u s e  was  setup for conventional  operations.  H e n c e , the irrigation program and set points were all ideal for sawdust media.  S i n c e the mix m e d i a retains more moisture than sawdust,  over  irrigation could be the main factors affecting the results of the mix media. A n o t h e r reason could be the E C of the mix m e d i a . T h e importance of E C w a s very apparent between G r o u p 5 and G r o u p 6. plants performed better.  With lower E C , the  S i n c e G r o u p 3 a n d G r o u p 4 had c o m p o s t in the  m e d i a . T h e conventional E C level m a y not be suitable for optimal growth.  52  Chapter  5  CONCLUSIONS & RECOMMENDATIONS 5.1 CONCLUSIONS 1. G r e e n h o u s e c o m p o s t retains m o r e moisture, and is less porous and m o r e d e n s e than conventional yellow c e d a r sawdust. T h e potential effects of t h e s e differences will increase with the proportion of c o m p o s t used.  2. T h e g r e e n h o u s e c o m p o s t contains a m u c h higher ( m e a s u r e d at 50 times) total bacterial population than s a w d u s t m e d i u m (fresh materials, prior to bagging a n d planting). This population p r o m o t e s better soil properties for nutrient uptake.  3. T h e combination of increased a m m o n i u m concentration with sawdust m e d i a had a negative effect on yield while the increased a m m o n i u m concentration with s a w d u s t c o m p o s t mix m e d i a had a positive effect on fruit yield a n d fruit quality.  4.  T h e combination of increased a m m o n i u m concentration and lower EC with pure g r e e n h o u s e c o m p o s t m e d i a had a significant i m p r o v e m e n t on yield and fruit quality.  5. T h e results of G r o u p 5 & Group 6 prove that a lower EC nutrient recipe is very critical for growing with g r e e n h o u s e c o m p o s t m e d i a .  53  6. T h e g r e e n h o u s e c o m p o s t is suitable alternative for use as a growing media  in  a  commercial  tomato  greenhouse.  Using  conventional  m a n a g e m e n t techniques, a similar yield can be achieved c o m p a r e d to conventional s a w d u s t m e d i u m under conditions w h e r e there is no major soilborne d i s e a s e pressure, using a 2:1 s a w d u s t to a m e n d m e n t mix by v o l u m e .  7. Excessively low pH in the feed or m e d i u m can be mediated by using the c o m p o s t as a m e d i u m supplement, w h i c h has significant buffering capability.  8. B a s e d on the carbon to nitrogen analysis, addition of c o m p o s t to the s a w d u s t d o e s not significantly increase the biological b r e a k d o w n of the sawdust.  T h e b r e a k d o w n of the s a w d u s t by itself, as represented by  decreasing C/N ratio, is m u c h greater than the b r e a k d o w n of the g r e e n h o u s e compost.  5.2 RECOMMENDATIONS 1.  Investigate the effects of different mixing ratios of g r e e n h o u s e c o m p o s t and s a w d u s t in t e r m s of m e d i u m porosity and disease suppression. A mixture of less than 3 3 % a m e n d m e n t , such as 15 or 2 0 % , m a y provide m o r e suitable  medium  porosity characteristics  (Spiers and  Fietje,  2000).  2. C o n d u c t more trials of similar experiment on alternate vegetable crops, such as s w e e t pepper and cucumber.  54  3. Conduct field trials and research to optimize the fertigation and irrigation schedules more suitable for greenhouse compost / sawdust mix and pure compost media production. In most likely hood, the media with compost additives should require less nutrient and irrigation.  4. Due to the lack of sample plants for Group 5 and Group 6 and the encouraging results obtained from Group 6, further investigation should be done with a variety of EC level for sawdust compost mix and pure compost media to determine the optimal level. This may improve the yield and fruit quality of the greenhouse production.  5. Investigate the effects and interaction of compost media and increased ammonium fertilizer.  Further trials such as applying different  ammonium concentrations to the media should be conducted.  55  REFERENCES Granberry, D.M., Kelley, W . T . , Langston Jr., D.B., Rucker, K.S., DiazPerez, J.C. (2001). Testing C o m p o s t V a l u e O n P e p p e r Transplants. BioCycle 4 2 (10): 6 0 - 6 3 .  A n s e r m i n o , S.D., Holcroft, D.M., Levin, J.B., A d a m . (1995). A c o m p a r i s o n of peat and pine bark as a m e d i u m . A c t a Horticulturae 4 0 1 : 151-160.  E z a n n o , A . F . , H a r w o o d , R.R., Paul, E.A. (1999). C o m p o s t Applications Provide Multi-Seasonal A g r o n o m i c and Environmental Benefits. Extension S u m m a r y for the 1999 All-Investigator Meeting. http://lter.kbs.msu.edu/Meetings/Ext 9 9 / E z a n n o . h t m  Mathur, S.P. (1996). T h e use of C o m p o s t as a G r e e n h o u s e G r o w t h M e d i a . W a s t e Reduction Branch Ontario Ministry of Environment and Energy.  M a y n a r d , A . A . (2000). Applying Leaf C o m p o s t to R e d u c e Fertilizer Use in T o m a t o Production. C o m p o s t Science & Utilization 8 (3): 2 0 3 - 2 1 0 .  Stoffella, P.J., Graetz, D.A. (2000). Utilization of S u g a r c a n e C o m p o s t as a Soil A m e n d m e n t In a T o m a t o Production S y s t e m . C o m p o s t Science & Utilization 8 (3): 2 1 0 - 2 1 5 .  Spiers, T . M . , Fietje, G. (2000). Green W a s t e C o m p o s t as a C o m p o n e n t in Soilless Growing M e d i a . C o m p o s t Science & Utilization 8 (1): 19-24.  Hoitink, H.A.J., Stone, A . G . , H a n , D.Y. (1997). Suppression of plant d i s e a s e s by c o m p o s t s . HortScience 32: 184-187.  Inbar, Y., C h e n , Y., Hoitink, H.A.J. (1993). Properties for establishing standards for utilization of c o m p o s t s in container m e d i a . In: Hoitink, H.A.J, and H.M. K e e n e r (eds). Science and Engineering of C o m p o s t i n g : Design, Environmental, Microbiological and Utilization A s p e c t s . Ohio State University, USA, pp 6 6 8 - 6 9 0 .  56  O z o r e s - H a m p t o n , M., V a v r i n a , C . S . (1999). Yard Trimming-Biosolids C o m p o s t : Possible Alternative t o S p h a g n u m Peat M o s s in T o m a t o Transplant. C o m p o s t Science & Utilization 7 (4): 4 2 - 5 0 .  M a y n a r d , A . A . (1999). Reducing Fertilizer Costs W i t h Leaf C o m p o s t . BioCycle 4 0 (4): 54-56.  M a y n a r d , A . A . (1995). Increasing t o m a t o yields with M S W compost. Biocycle 3 6 (4): 104-106.  P a p a d o p o u l o s , A . P . (1994). Growing G r e e n h o u s e seedless c u c u m b e r s in soil a n d soilless m e d i a . Agriculture a n d Agri-Food C a n a d a Publication 1902/E. O t t a w a .  R o b e r t s o n , R.A. (1993). Peat, horticulture a n d environment. Biodiversity a n d conservation: 2 : 5 4 1 - 5 4 7 .  A m e r i c a n Society of A g r o n o m y . 1982. M e t h o d s of Soil Analysis, 2 Soil Science Society of A m e r i c a , M a d i s o n , W i s .  Ed.  Kai, H., U e d a , T., a n d S a k a g u c h i , M. 1990. Antimicrobial Activity of BarkC o m p o s t Extracts. Soil Biol. Biochem 22(7):983-986.  Ketterer, N., Fisher, B., a n d W e l t z i e n , H. C. (1992). Biological Control of Botrytis cinerea o n G r a p e v i n e by C o m p o s t Extracts a n d their Microorganisms in Pure Culture. Recent A d v a n c e s in Botrytis R e s e a r c h : Proceedings of t h e 10th International Botrytis S y m p o s i u m , Heraklion, Crete, G r e e c e , April 1992.  J a k o b s e n , S T . , (1995). Leaching o f nutrients from pots with a n d without applied c o m p o s t . Resources, conservation a n d recycling. 1 7 : 1 - 1 1 .  Hoitlink, H.A.J., Krause, M.S. (1998). Controlling Mulches a n d C o m p o s t s . BioCycle. 39(9): 5 9 - 6 2 .  57  Nuisance  Molds in  |WEEK NO I Date: 99/05/031 I Row Number j  CM  m  CD  CO  o  CM  CO  CO  CO  in  CD  w  CM  CO  Oi CO  5  OS  m  CD  5SY  s  in CM  in  CO  oi  I  o in  d  CN CO  CD  CO  0.63 I  CD  0.83  I  0.365 I  I I I I  I I | I  I  MED  1.33 0.375 0.295 0.955 0.59 0.07 0.27  CULL 1.06 0.345 0.34 1.64 1.045 1.275  I  I I I I I I I  I  99/05/15 II Number I I I I I | I  CM  I  CO  CM  0.25  j  I  0.55 0.67 0.72 0.205  0.62 0.42 0.405 0.61  LGE  0.292 I  CM CO  0.25  d CM  0.31 0.69  I  I  I|  2.345 I 2.66 1.735 2.755 3.21 1.895 0.835  3.31 3.56  3.37 5.415  XLG  [99/05/07 | Number  0.254 I  CULL  in CO CM  to  0.291  CO  0.295  CO  2.985 1.706  -  CN  0.395 0.774  CM CM  I I I  LO CM  CN  0.48 0.27 0.65  I I I | I I I  j j  0.164 I  0.14 0.132  MED  CO CM  j  XXL 2.79 1.865 1.01 1.75 2.05 0.92 0.325 0.655 3.09  I  0.184 0.15 |  LGE  00 CN  0.403  O) LO CM CN  I  CN CM  CO  0.151 0.452  o CM  j | I  99/05/12 I I Number I | I I I | I I  CO CO  I I I  CULL 0.87 2.05 0.51 0.26 0.56 0.57 0.44  XLG 0.998 1.032 0.262 0.49 0.232 0.204  CN CN  I  MED  I  I  CM  I  I  0.414  XXL  CM  0.444 0.14 0.439 0.316 0.304  LGE  199/05/05 CULL I| Number  CO  1.564 2.111 1.627  I  I I I I I | I I  MED  CO  XLG 4.207 5.48 6.368 2.712 6.653 4.359 2.794 1.524  LGE 0.152 CO CM  1.668 2.371 1.497  XXL  0.762 I  XLG 0.224 m  CO  OJ  |WEEK NOl | Date: 99/05/10! I Row Number j  0.324  XXL  | BI-WEEKLY DATA ENTRY SHEET  liable A-1 Fruit Yield and Grading Summary  CO  o  XLG 1.716  2.625 I  I  ] |  6.07 5.76 2.545 1.395 2.865 3.26  | I I | |  J  j  | | | I |  | |  | | I |  0.85 0.69 j 3.205 !  1.255 1.02 1.18 0.71 1.045 3.515 0.785  XLG 3.17  I | |  j  I  j j  1.59 4.44 2.03 4.59 4.035  XXL I 2.07 | 0.71 I  1.149 0.501 0.485 0.69 0.406 I 0.513  XXL ] 0.389  | 90S  CM o> CM  cn CN  -  CM  l O CO  0.445  1.765 0.955 0.225 0.825 1.655 1.42 0.175  I  I [ I  | | |  I | |  0.645 I 109 I 0.69 | 1-175 |  1.815 P0.315 0.295  0.885 0.49 0.195  | |  0.095 0.42 0.925 I 1.045 0.75 0.82  |  CULL |  I  | |  LGE 0.815  0.63  CULL 0.74  | | | |  MED  |  0.241 0.69 0.151 0.23  I I  MED  0.17  0.205  0.511 0.149  LGE 0.145  3 o  3  o  Q LU  o m  UJ  LU  o  o  5  O  X  O o o o o d d d d o  0  ^ d  0  o O o °  0  Q LU 2  Q 1X3 CM LU CO CM 5 ci O  O CO CM co ^- L at O O T CO c i c i _ i CO d C o o ~ LU  T  j  j  T  j ^ - o m o C M  T  | ^  s  £ r- r- rg s » O) „ dd o  CO CO O  c  to ci  -  v  - d^dd^^' c\i l  CDS^ S si > to^SS'9Xd ^ - -d ~^v-''< D  T - , , -  t D c  ,  0  , - , - T  N  c v l  -»  C N I m t N I  (\i  , o t o  T  ,  *v  " in © if) l O  I M  ^ - s_  lOiniOmiouinioiouiMioio O O O ^ C O O i - O s t O r ^ ^ O W  ^ ^ ^ O d ^ ^ d ^ T - ™ ^ - ^  § f ?! !  CO  - IU ^ ^ l-J 1^ PJ CM CN T- T- T-  O  ~1  - I IO ^  a LU 2  ,  . - m i o . i o i o w i o ^ r t W B i o m i n I  1  * m  X o K  '  mm  (D CO "do  r^i  '  ^  rv> .— m -rf  O O CM  1  W ^  OT  T- TLO  lf) If) If) O CM O ( O S S  ,io—  LO CO h - CO  s  1  2  ® H UJ •Q c S co o 2 h O (D  as  -5  LU LU  g  Q  ^  m  o  o  .  ^  u;  m  .  (  D  ui T  N  U  )  ^  CN  m  ioBinio«i  n  m  Bioio  N j j ^ f j f j ^ T - N ^ r i r i  C! 5 orcooinonisaiionaiioiooicn ^  bcNcococo^rcococococNco^-ioh-  O S  O B *  in in  m  O c00o c o m r CO CO CM CM  o  1  X  £  in i n in in  n  J  Z •£ Lt  IO CO CO CM CO CO ho O c i c i o o T-  1  N  1 01 0  ® Hi  I  •* S  III ta C M LO LO LO I^COOSSCMOCOCO Ococo". 9 *j CO (0 K '  co E E 3 (0 O) c  "5 «  IO IO  D i o T n ^ •°. co 3" « ^ O d^^d ' ° ^od  o o oo  Q LU  2  CM CO  ^•cOco^-ojo>CMT~cooN.ir>eococM in t c o ^ r c o - ^ - i n < D < D c o r ^ - 0 ) r * - 0 ) 0 ) c o  0 1  3 O  T-  z  §  Lt  «iniiiMiifflOr5!2J!!S  LU LU  s  5 Tf O CO  UO t O N  5  59  CO O)  O  CM CO ^ IO CO  3  o  3 O  Q LU  Q LU  LU  LU  O -j X  o X  -1 C O  O  0  0  0  0  d d d d  0  O  CO ^ £ CD £ £ [2 S CM CO CO CO CO CO^ 'T- ^ PI' d  Q S  S  CN  o>  °  s  l r  J  r  in oo  CM (D ^ to N  ^  d o CD d d  a  S  d  UJ  r  O  in CM 00 CM cn  ci d  CM  O _i  J C O  0  CM  iri  °  d  d  d  d  ^  d  _1 "  <o *f fO  m m m m CM m C M IO » T" t  CM  in 00 00 CO CD cn m oo" iri CM  d  w n  r i N  w  m  f n 0  -  ^ d  ,  r  " d d d  —*  ,  -  T  ~ v - ' d  N  0  1  ^ C N C M ' *  C  v  l  ^ ' " ^ C v i  ,  > <  '«' CO'^•^CM'co' n  IB <°. fe ™ - ^ CM  0 5  < N  .  O o ° o o o  6  m _  m  0  0  ^ C N ^  0  12 «  co m  00 C O ^ -N-  ^ - oo  d i- *~ ° d d  co!£!"co*r>- o>tnco OiC:co^ ? >£co .< . > —lmrr|CMCN-"-~i,r;cO*-CO m  <  m , ,  8> " > .d  co £ dd<--<-  W  0  1  ;  co' '-co'  0  S IS to to pi Sc  00 CO O) O °  ^  0  - C M ^  m m m m  c n G O oo  CD  rncNTj-^^^^^co^mcn^i^fO  •B  09  T- d  co  -5  .iimioinm-cin^iom—.mm CDcDcoocMVco^comPmco,  co E E 3 (0 O) c  2 «  CM 00 O  6  r  C O } 0 ) 0 ) O > ( 0 O ) ~ C 0 S C 0  (  o  S  C ' - O O C M C D O S f - C O C O  io _ .u)inioioio  1  CO  ,1 ^  CM ^  . " c ^ - O O O J r - O C M C O T - C O C D C M O . t c O ^ C M C M C O n t O M - ^ - ^ - ^ U )  Jifl»nio 3  0  . CO  o>  CD  0  m in _^ .wm, _ inin y ^ ^ i ^ c » S ^ ' » c o i o ~ : P ° " K X j ^ c M C N ^ ^ ^ c o c x i r J ^ ^ ^ d  (M N  ^ d °  S 1  ^ in in j ; co co  in  £ oJ g -  s  ^  d  r  COT-IN  S n  l  o  t  >v ^  t u  d d  UJ_:'q- ?CO".|--.'«-r--CDCNCMI-~^~  T"  d o  - J ' ~ r J ' - C N T - ' - ^ C N  IT)  0  < 0  0  0  O ^ . n ^ t - m c N c O T r ^ ^ - g S S Xm^cococo^mm.n^cD^oJm-  '  m o °° o  _ i  m  x?S  CO  - ^  CD CM T-'  CD CM O  O  u £Jj o to o ° i T- co CM T- T-  >  •a v. I  £  > r ^ - C M W ( O i r ) r l N O ) N { 0 0 ( D CD C t f T r T j - t O C M C M C O C M T r C O C O C O  * £ Li.  T i  2  t i n i n c o ^ - ^ - c o c D i n c o c o r - - C D o o c D  CD  3  Q  "S 5 = "  •a = g to o 2 I- o m  g f LU UJ  g  Z  6co-<riocDi-coo>2::D!£2:!££ Ct T- TTT-  S s  * LU UJ  S co CC  60  m 10 to o> o 3 T— O d ci O  CO to CO I TJ- CM CO O i- o o o  LL  3 O  LU  LU  CD X  ^  w — ^ w rn  n  J  1  in  rv) «-  N .  0  i t)  p ]  CO  - d  "> £. r» w  °  d  IT) CD  n mM " in S S S «> S "> ~ CO OO ^ 0 o ,J d ° 1  3 o  1  a  c  <  ,  a  0  (5S :o »C0r2l0C0 T  - i <°.  IO  M-  l  l  !  3  z -l-^to^uy^miom — eS 'm O d d  1 0  ,  o >  c v  0  0  IO in S 'S'd d d d ^ o > m i nm  0 o  0  0  to to CO o>  Q to LU CO cq CO 5 ~ O T- T- O  LuS5^co o^' : NcSS P' >: > . Sd^'-d'-'-'-'-dd '<  CO  a  c o  o  T  0 0  *-  LUCDCoSir~.iiSicoT-ncoc\iSiS—. -i-a-co^r^ojajcooco^cooj^^  ! !NM0  u) in io m »J N 2 CNJ co K; T- co no) ~ to S•»^ ' - IS r i r i J c o V J i n ^  , ,io,_ ,. ioinio~..nio;t;inioio 5 3 s ^ S S 8 § S i 8 S ? c o S g Xcd^ ^c6r^i^^ebcb2cM.<tb  N  r  a  n  5  5  r o  to  co cn <o N CO CM 0> tO CNJ CM T- i-  i to to to lO CN CO CD if) O) CO CO CO  to to _ }T O Qi II  o  CD OOjQ — COCOCOOCOCD^-OOtOOOOO-t-r^ EaJCMCMCOCMCMOCMCM^-COCOCMO CD 3 I--«-*-I-T-T-T~T—  to CO CO CO CO LU to to CO d CM CM a  o O ' - ' - ^ d d d  3 O  t  a LU  r-  CNJ CO T~  CZi  <s E E  ... LO IO Hj CO IO O f-  c  3 T c o S r M n " ^ o « S n > - i t co O~ CO ^ s  3 CO O)  2 o  •o c «  to io io IO «T O) S to O) CN . C\i tri °>  LU o ( 3 co  m  (  UJ LU I  LO io CO IO  (0  0)  >a: iz UJ  S  SQ  d  }U X CN UI  CO Oi ^  d  o  o  rOfO)NOS(D(OTfSo)oS tzcocococoa>cocoa>o>2o)co^  COCNCN^g^iSo qcpcooigSSS  O d ° °'  o  "  *  2  LO CM CO  to «?  o> ^  o> ^  CO  CO to  Lu x  ^  cMt-LOtNOIIOO^IO^CObOCOO) CincONCOCOCDNCOCnSCONCOCO  E $2 co  U__ "D > T » _J  < =* •co -5 Hi o 2  i l  CM CO  O r- CM O Tf If) CO  IO CD LU  H o r n  61  3 O  3 o  Q  a  LU  LU  5 LU  o  CD x  o x  W W CM CO CM CM  3 sr O o  to m m CO s- co CO s- o  to 03 -o to ,_ in  Q  S ri O r „  w to in St St CM CO O to  CO  l U J U J r . l ^ - U J - \ T _ f - * n U J n C O I — Oi Oi ^cor^^qq^^gjh-JiTroo^^ Q d d Q d d d ^ Q ' d o d d c i d 1  r  0|8Kcostgincos-££i--cos-CM LuS^ocogcoi-csjgfScqcoqo S ^ ^ n o ; O O T - ; r i O l ' "  CO  o  ,  r  O CO i n ^_ Oi (C CM LO M in O O CO to CD CO C CO o o O) CO CO CM CM CM CM CM CO CO  • 12 12  UJ  .-lOU)UOLDLnLO LO m  co  m i n i n  p  (O-LOlOLOlOlogg, . t c n o c D i o : :  O CM CO —' 03 i tri co  ri in "  _ i  _  T  c  o  c  h  tf  ^tf)LO  -r\«i^m^ ^fO > > fn > -iOrnrcOCMnoOLOCM^STO) X ; CO ( N LO CO l O CO CO CM' — w  , r  l f ) i r > i r  l f )  , r  1  "Or CNi(\icOT :  : T  "ri  t O T  " "'"(\i^ T  r r  S  CM  O  S«  co o d  °  to  lO to CM d  «  «? CM ° d  O ri o  to T CM d  3 co O o  Q  /-I m to in m 1 LU 2 ™ £ £ ™ 5 d ° d d ^ ' m  2  "5 «  •o  I  5  O i n ( O O c o ^ — ri ri ^ sf 1  O m  w  t  o  l  m,^,  o  tn^in t t  0  ja fa r-  O CN !  _  r,  1  1 0  co CO d  w  a  s> E  c g o JL o 00  O Q  , t  " > co CO d  O SJ) . O  |s. CO CMg  "Si 3 * — CO > o ^ [fj S co st in co s co O)  I  t D  co__., .inin~.inwtnmm «£o>co » ">,-:coo>s-coin Is-^qqcMCOTcOOCOs-ls. ^COCMs-^^tOricMCOTr'csi  j.  !^ CI) CO , Si E !  <  c  >£loS  £  : 5 °> °> -  CO  J  ,  0  x2~riC -"2<NCO  o> h~ CM CO d o  s- S CD is. , CO • St CO d ° d d  <  T N ; c i ) ( D . M n o i r i t r i c o ^ i o c d o d h  l  st 00 o CO in d d d 00  CM O d  ..."inin^tntointotOmtoto^to "J^ois-r;ScDO>inr-.£cncoS?co 03CDI-- ?~COO>OOT- .COCO ^O ^stst'*'*striiocb '>coiri co  in in m tn  co E E 3 </> O) c  •5  LU  co m to \t O O St o ' d d d d  O fO co cn ID N ^ LO L  CM  co sr w co  ffl LMl U  •  ii Q  S co st ^  i n co s  62  c o o>  O s- CM CO St in CD  Z3  o  a m  O LU  LU  LU  o  o  X  3 co T J N O ° ° d °  JSCOCMCOS^CO  ^nf-. " n r t ! OoO'dtjOoO 1  1  Q  qS£cv.EcDU),S8EcN COCOCO CM 2 d ^ d -r^ d  Q  O  O  O  O  Q  co c o co O  S d ^ c N  0  ^ d d d ^ T - :  0  S  e  CO CO CO  n  O  CN LO ^ CD O CO  T- ^ '  ' -  0  |  |  t T 0  f l  n  l  N  N  nco^»ScoSgi;"coioo>5oi d^^Sco^ScoSuo ". »<P- >  ^ T r i > i n c N ^ g o ) T r ^ S J i q c o g f e X c O T f c o i o c o ^ c M - a - ^ ^ - c r c M ^ p j  O  0  Ml'0^fn(nrMt-m 0 0 OiOLO IO O^CNI^^™ ^ Pf^-r^-tococo ^hJ r i « " " l d ^ l O ' < f t \ i l N |  CO CO CO  r~  Tf ^  L U i o C O O ^ ^ I O C f t S S C J L O ™ ™ ^  CMCMfHCOCOCNCOiy S  O  n l O I O l O n j m l O I O I O l O I O l O n A ^  T R  ^  }5 co  T- O d d d .-: d d  O  ,  <  c  X c M C O ^ ^ ^ p j ^ ^ ^ ^ C N O ^ J ^  LO IO LO o> LO o  S  .  CN CO  CD  CO o ^ b ro  £ I S  co co co  LO  LO  OJ  3  c  o  -  ,  : c N t - - '  ,  O ° ° d d  0  0  0  .  0  a  !  ,  . ? c o ? c o ' » o  0  d d d d ' ~  Q CO m CO CO CO H i I - to o CD cvi 5 d  c  1  >  -j C N ^ K ^ o i g i n c o ^ T - N . ^ g C O C V I ^ C D L O  ^  Q£Scotoo)!i3K!S!PSi2  s  U J i o c D C\i CN  +  CO  n  . ™  c  5 d ^ ^ °  +  -i^^o^-^co^cocojji  u ,  coio  ! c O L O » - C O C D C \ . T « CN CN CO O  UJ CO a> LO O ^ T— CO _l Ol oS oi CO  $2 t cq $  E E  i  !  0  .  T  T  co ^ o ^s t o s  3  CO  o> c  00>o>gco-g^i"i!'co ' 'Si2 J°«co«®co^5 c\i"' . ^ -:r^ Xcoco jCNco^'«- : i r-i-.o 0  !  2  r—  =  <0  •o  K  I  >-  u  CD -r1  Is  d  i  n  h  0  CO  <  o  ,  u  r  (0  r  t  ^ l O  m  L O - . L O L O I O ^ L O L O L O L O  t3ScoJSoJ ^ co 0'~^d"ui"duicN coco'co'cN i n ,  ui  x  0 1  0 0 0 <  m  ,_  T-  O  ^  z  "J  ' I u.  oi E c o ^  o c o o  ' ~co [  c o c o  ^'  C O C O C O C s  '  t r ^ C » 0 ) l O r Ifl Ol t O) N CO N O) O)  a  »= s •Q c 3 s o l h u m  N i i - n o o N c o c o ^ i O T t n T - O T t T r  UJ UJ 5  O f O T t L f J C O S C O O ) O v CN CO Tf LO (O  — CO j ¥ O CO Tf LO CD Q  63  O T- CM CO Tf LO CD  z> o  o  Q LU  o  3  LU  LU  X  1 z= E  3 5 s CO 8 CD a COs?« . ^: d ' o  3 O  ID  Q UJ 5  CO i n OS esi c\i c\i  to Oi LO CO CO co in CO CO CN CO esi CO CO CN  n  f  O —  N 2 CN O CD ^CO CO O) CO ^ N T- N  ^  m LO i n _ «  ^ L O TT LO  0  3  m in LO in LO CN — iT f CD O")  o> ^ • CD CO CO  1  o  LO i n  0  ^COLO^^CDLO^  T f t f i o i o - j i o i o n  P  w io  o  Tf  o  N  CO N O) S  m Tf m  T-  0  T-  1  ( ^ i n C O ^ ^ ^ ^ C O C D ^ C O i i C N C N L O  CO  X ^ C N - ^ C N ^ ^ C O  ycpcog^r^cqcogqgroLOTf X C O C O ^ ^ ^ ^ C O C S J ^ T - ^ ^ C N C O T -  o co  1  0  r» . cz  ^  1  55 d O  0  5  w  0  8 d  1  CM  0  1  0  cn  °• 5  1/5  "O  I O  m  n  T-T-  n  n  O r - _ C O C O O O ' r -  1 —  *~ 1 ~  ^-T—T-T-  ^  - £ g £ o ^ io " P ~. •,<r co co ~ R co o ,_• _ • o o _ • ° d ° * " —• c " " > O  O  d  o  IO LO CN CO a> co  W C O  C O 13  £  S  , LO LO  >5 T f COo d  d  ^  0  0  0  0  d  T  ^  d  d  0  d  0  r , i o t o i o _ i o i o _ i o - o > L O ' ^ C O C \ I C N | S ' - C \ | J C D C N S C N J ' C O U J c » C \ l l O ? C O l O ^ t - x P ! c O C D 9 S d c o ' c \ i ^ c N c o ^ i o " i o ' i o ' L  P 8 S S rSo » r S n r S < o « ) S UJ CO o o CO CD co -*r g t M  a  w i o £ c  N  i £ & < »  n  S  L  O  E  » < -  (  N i  CD CD CD  E  ^  o O  I  N  T  C  (  t  <  ,  <  V  0  c  N  (  m  L  r  ,  U J o g S ^ ^ ^ ^ ^ t o S K S CO ( 3 0 ° { g o C O i D C \ t C O S f e f c O) CO N  > £  CO  r  c o CO S ! 2 i CD CO  3 OT Ol  —I  c  "5  s o •o c a  •D  UJ UJ X in >  r- '  IO O) N CO  LO ^ CM -tj-  i £ r - g to ; CO ^ CO ^ > ^ O Q O  IO CO CO Csi  LO IO LO IO LO TT "cr CO CO CO CO T- CO CO CO CO CO CO  CO o S CO  §CNOjg CN ^ LO O O OQ 1  0  C O C O  I s = u 1-  u_ T  n _j  TJ- co r LO CO CD O l  X  esi LO co  h- I - CO ,_• CN , S  CD O ) . . „• CM CN  J C N - £ £ c O » £ g l O  CO CM Si ^ <°. CO  T- CO ^ ^ C O C D L O C O C O T f O C O C O T f C O C O C O C N CD C l D C D K C O C D C O r o C O N C f t N C O O j C O  -9  o> CO ^ CO S S £ 2 - S c 5 S S - c 5 OSfcCO c o ^CO c o c d c o c S K ^ ^ ^ ^ c J ) ^ ^ :  <  a "S 5  i  = *  —  V LU  n o ' I— o en  O 1- CN CO TJ- LO CD  Si Q LU LU  O  64  T-  C J CO  T f  W CD  o  o  a LU  Q LU  LU  LU  CD  CD  X  X  CD  CD  ^-  3  o  (M  1  /  I  5  O ^ d  Q UI  O to K 03 UI o 5 irj cb  5  > CD OI > CD CD  (Dco-sT :in .CMP : aJffl'2aJ°'"° T  l o  T  J  w  r n  CD _i X  l  0  i s . i f i  l  0  l  0  i  r  i  l  0  ,  n  s  0 )  .  o  l  ™ - o m c o T-'"co n ,  ( O  1  '  5  ^ r i ^ ^ c N i c o c c i i n V ^ c o '  i  1  0  ! o>  "SS^CS'NIO^S^C-J  > « • o  d  0  d  °  d  0  d  0  d  °  d  O - n s t O C O T - T - C O C M N I D T - N E g J c M C M T - s r m c O s - C M C O C O C M C M  — i  i n i n IO i n ir>  r  n  i n m L O ~ . .  r  , m i n  3 CO CO r (O P) Q O ^  rLU CO CM  S  d  d ^ d  i o CD CD I- CO CO m CM o CO o I- CO CO i r i i r i CD s  s  yr i b  ^  = ^ O d ri °  a>  a  I- CO LO CM i n CO o CO CO IO s  m m  3 ^ •  CO \-  CO O  in m , n O) I — ^  _ i  A  co sr v- co T . i d d d d ° ° i m  CO CD CO CO CM CO 00 m Oi LU CM CM d d •<- T- CM  h-  I- ; CM -r-  s  s  n E E  W^rngggs-cog^SP^coCn OsTfflSo^OcocoJri""* -i|o'f-NiD ai'»«'sosi:i B'-  O2 <• DCO° 3 P § 5 t O ^ 5 ? ? ^? c oC C J CO N CO CO O C OO CO ' ^ h ~ ^ CD  T5  jJ2fCCNi--t-.coinsf5i-~ 2'' ~-!  ..lO^ulnruioloul.lOmU) CDcMjog^COOO'O-fecMgO) -JcD .'>J- ! :cj>s-sT !s!-Rs-  0  2 _ y ^  o  1  IB •o  >. a  in  r  v  ,  3 (0 ra c  ,f  l  l n  <  t t  T  a  1  mmm m m  o c o oo c o i n co CO CM CM m CM CM  2 £  d dddd d  CM CM  T < *  • 3  C  j * UJ  O  • & 111  ca o 2 H o r n  ui  00  £1  £ CD  CCOO)0)^^0)CO^^O>5}!0)0)°  eE  co.srm5Sosf;g^«js«8  bj  00 ^3  O bj z « ^ UI UJ  Q  o  co ^  IO CO  65  N  ( o c O s - c M c o s r m c D  3  3  o  o  Q UJ 2  Q LU 5  LU  UJ  CD  o  CD _J  CD _J  U] U) U) CD CD  °°.s-£;-<rcDCM£_co!£co  CM CO T —  CN — t-  Tf  CD  co  in m  ZD <d cd  O d d  CO  U j £ s r £ £ g s f i n £ c M C M C M O > c o £  . 0  .  r r . . ro Q ° ° ° ° o d  .  0  0  Q CO s r LU CO o 2 CO  ^co2|ir«s5  i n i n L o i n i n  —  i^inLO-,  m  \ _ > C O h - O C N I . ^ : s t C 0 ^ ~ J ^ . ^ i r i ^ r t i n c d « ^ c \ i  C - l c O s - X s - o ' -  g  c  J  l  " « t M t M  g ! 2 c O s - s t - * }  , 0  0  |  ,  0  S  _ j . . C O t ^ - C O C O . s — CO •^•stsrsreo'cN'^'^CNi  1  cn s*  0  C M .  n c \ i  . c o r - - £  CD co  N  co s  3  S  S S C D O O H O  d^-~  d  d O O s - ' - ^ s - ' - d  < - o _ _ ° o _ _  m w __  CD te_«(0<tl0'-Oi-M0C0lf>stOO bcOCOU)CDCD(Qlf)U)MDIOSO)CO CO _J  Si Z  s-gojco2cMO>  3 CM O d  d  °  d  °  d  d  °  n  °  ca E E  0  to IO i o t o , CO CO IO CO If) If) TT O o If) If) if) C •0- C M CM ^ CM CO CO CO CO CM CO CO  Q co <J> Lit * f at 2  —i m m m m , m —i co h- o> r- ig v , 3 CO 0) n eo ^ st -  co 2 d  CM  ^  d  n  ^1 o j « ™ O .  ...iflioioifl^m^min^-ioioifi ^cocooMoSogS^XSco^o OoinstcM~coHHco °i--ino  d  d  d  o  PCJO wCM S.  0  to  J  -. 0  en en to o  l  IO l O I- o eo co  "  s  Jo ^ ^  i iLO__inin___.minmmm_OcoPiostv^.coiOT-too^nr i  l  < 0 0  - • ^ e N d c N i ^ d ^ ^ c N i ^ ^ ^ c M C N i  J  ^  n  l \ i N «  n  C i i ^ c O N C O  n  N  3 (0  UI  c  2  CD  So  -J  CO __  x  O •D C  LU LU X M  ca  ci  o>  g co  P CO *~ T"^  CD co  !  CD T— CO CO  N- CM '  m m CO CM co in  LO LO  CO TCM CM  __  CD  LO l O t o IO *f T O T- C) T~  m io , N. O  1  LO t O LO l O  CM CM d d  UJ  f N CD to cn CN  < -7  oi  E !  Sa >_i  J-t C ro o  _£ UJ UJ  5 3  UJ  g  O  f- CM CO  LO CD xUJ UJ  a  O  ,  1  66  CM CO T f LO CO  3  o  3 O  Q LU  O UJ  LU  UJ  CD  CD  CD  CD  X  X  T-  LO LO LO  co «- CM O CD  3 O  1  Q UJ  3 O  CO oi £ to l O I - Ol TT <? CO CN I - T f T f Tf CM CO CO s  s  s  T f O C O C \ I O N P Tfco'cMCM'cO c  <  ,  r  i  n  .  >  <  N  l  <  0  r  _  ^ <P CM .  . C O T^ <  N  -JCMCO ?'^ ri--I^COCMTa  *~ T-'  c  T  1  LU  CM  CD  CD  :  X  0  lOiocoiocooTj-^-cor-co  i Eco  LO 3 O d  Q UJ  LO IO OS CD TT CO  LO  - i in in - I CO O O CO : LO CN T f  00 d c>  T- £ , d d d d x' LO OJ CD CN 1- CO CO °  O ° ° d °  Q^i^^^^coco^^ co  ^ L o ^ r o L O N ^ ^  ca E E 3 10 Ol c  luSo.Sr-igr~-iRcoco - I ^ C M p j C O p j T t ^ C M - t  • LO CO : co « ' to "  u  _  o  SJ  , CO  j ,  ) tt CM - o ° o  IB  LO T f T f T f LO  J^H^c6^^^to ?co^K^: X^T-CMQT-CMT-^T-^JT-^T-  2  5 !i >-  "J  * IU.  i < Q  LO  ess o o  d  s  °  — VB UJ w o 2 h- O CO  5  UJ  LO CM LO LO  O  _i  CO  X  h- CD  o>  Ol ^ ™ o  i o i o c o L O S L O i O  i  r  :  s  oi o  s  to  io  s  to  to  LO LO LO IO LO CO I - T f CO CM LO CO CN CM CD CN Tf O I - o CD CD LO LO CO CN CD CN CM CM CN •*~ CM CO CM CM LO  Rd  CO CO  d d  LO LO LO O l CO LO I - CO CD O LO CO CD T f CO I - CM CO ITf l< Tf Tf Tf Tf Tf LO LO CO  _ i LO CN >< LO  <2?  d  co co ;  CN CD  CN o _1 CO  o>  s  o  s  CO LO  CO CO  d  d  Ol CN  d  CM CO CO CO LO CN LO CM  d d  d  r-~ i o CD  m  icsscDcncomcocOTrcocoioMO > bvOscoNa>a}Scoo.coNSNco  S c » - I O O ) n f l > t r O S P ) " N N ^ ?> b c D O } 0 ) ° C O N C O O > 0 ) C O ^ O ) M O CD 3 ^ T  -  O oi  T ® ij  »= s  LO LO LO LO CN T f O CN T f T f CN CO  1  * <=> o c o T r i n c o t - c o c » 2 ' l 2 ! ! 2 2 l 2 LUU f V L T-T-T-T-T-T-T0  z  ra6 c o - c f i o c D r - - c o c j > 2 r ^ " 5 ^ 5 E  LU LU 3  a  67  3 O  3 O  Q HI 2  Q UJ 5  LU  UJ  o C3 —i X  x  IO _,. IO u"> u*> o 3 o C sM - ? o. irt " «s fvi  o- - °^-  Jvj (2 ^ 3 - °  nm o  o  ni tn o  o  ucNcol?!G!5S!5tD  O o o o ^ o o ; n c M CM —' CO T- ^ TCM CO r  CO CM  r  C O T  0  ^ T- ^  x,  O CD __J CM X o  CDh-CNICOCMLOOCT>CDCOCO C O C D l O C O S S C D C D ^ ' N C O  CD ^  £  £  "2  ^ ( S C M C P ^ ^ ^ P O ^ ^ R C D C D S  £_ CM is. P CO ? |sUJ CO s*feCM ^ sCO S c o o j j o j c o f f i d ^ _  CM CO - CM IO  CM CN CM N  docio  O  CCOCOCMCOCOCOTJ-TI-CMTJ-COCOCMCO  —I ~. UJ ... UJ 3 *^ CO 0) ™ O s^ ° d ° n  io io io  X CM  , UJ UJ UJ ... UJ T "? CO CO |s- "? CSI d d c i ° d 0  .  S5 t g ° ,  0  IO IO IO m HI IO  N  iri io in CO CO  CO fs- St i  m  CO CM  LO CO TT CO CO rCO CM Oi Tf Oi CM CO *~ * ~ *~  I^OlN.CDOlCsiLONCONCD .J^conyccistcsliooujcnco ris -^ cOT^cdcsicd^ csicsi ;  J  co  __  » n c \ i c o S w o > _ S  uj K  2S  LO in in LO T- CM CO IO  S co £ ^  ^rS'-SCOT-OJIOCOCOCJCNCO^CO  5  —' CO  j2n^  O^vnocoojin^ojoscn^o  0  - J ^ C M C O t o T j - C D C M ^  , f l , n  1  t ^ K ^ i ^ ^ ^ O ^ C O O T « T - ^ C O " C 0  eooxrco^fPiocoS 6 6 6 6 ' " d d ^".i  _i i  « = - a * sg  :  o  o Sj ?  (ft o  J^COCO^T-TfCOCO  U  u  ,_  ITI o  ^co'^i^^^^Lri-ri^uS-bTrcb™  <  S  —  Hojcoo^cncnoroxcnifi ^CNLOTf^T-inCNI'r- H _ ^cNJcNJcN^cNcoTr'Tr' ^  ^SSC, ? ?^CDO)9c>l(DCOCOt  cs E E 3 CO O) c '•5  CD  ^ o  r - °H co ,_J o 0  ^ o  1  CD 13  >_ 0-  >-  LU  =  i  CO CO d d  2  OJULOLOOCOSOT5>  CD  LL.  Q  CS o  2  I- o m  w  P£T-IOCOT-LOCO  >  rr  --------------  O C O ^ l O t D S C O O )  68  O  CM CO TT LO CD  3 O  3 O  Q LU  Q LU  LU  LU  CD  C3  X  X  O  -J  3 O  ° s^  1  Q UJ  /-»ioto___,.ioioio o  00  CO to cd cd  co i n oo *cr i o c o c d -st  LO  2  ( J J C O C O l O L O g c O ^ s f C O ^ ^ g c O l O - J C N - ^ c s i ^ - J C s j ^ C s i c s i - ^ ^ - C O C s i  O  co d  ^  CM  -j  c o s  O  CO CO LU 1— CO 5 d csi  rs  5  O  d  CO o  -icostffiSrs-KcoLogoeNScoS 3is.sT »c°sTCsi__.r^-j OT o>  S CN 5 co 8 co q  N IO  00 d  o>  t s . _ m . - - t o« ., 3 . '|£! o s t i : st to  s - O s -  O  Er-  T  X  ™  0 0  m  O rdi O ° rdi °  ^ - . l O l f l  m  d  m  °  t  O J  N  0  D  T  r  0  ^  o  o  d  o  d  o  ^  d  l o  ^  0  0  i o i o i o i o m A , i n ts-cos-sfstSSmScOsf  l f l L O  m  . q q s r _ _ ^ ^ - _ __^S-T-S-___:CSIS-_:_J t  N  n  4  D f M C D C O N ^ ^ n ^ o "  3  coio'cdsrcd  to m LU CO K K LSO m S m W O O _ CD °S o> s- o co " ! c o c o '~ '. ^ . co ^ -JCN__.j____CSI-j__OeNCs|s- -CO  E E  d  <0<0  io'*'sr  LO  LO h- t o CM co LU o> LO o> o co o _ J CN tCM csi CN  o  1  •r-  Oi  eo  3 (0 e» c  o  -J  to t o o> o h- O)  — l St  X  -F,  "J  CO •O  L_  2  z  >.ti LL.  i  "J <•  <il : - 9 o s t ( O s t c O O C O O ) h - C O O ) C O C O I - ~  a  B  » t s t i o c o e o c s i c o e o c s i s —  S - ^ s t C D O r ^ - O s t l O s —  COCOT-COSI-  O) IO s - s t O  CO  -_. atc c~5 D s t i o s r c D s t i o s r s t t o i ^ c o r ^ . c o w a, co s.: a LU LU z  111  •o=3 eo o 2 r- o m  W  0.  ^  if) CO N  CO O) O  t-  CN CO TJ-  LO CO  --O^NCOStOCO  69  3 O  3 O  Q LU S  Q UJ  UJ CD  UJ CD  CD _) X  CD X  " s » •> 2 " ™ ° °° <° °> °°  3  O  O d d  O  ^  O  T  -  O  O  O  O  O  ^  :  io io ~. io io io io io CO Tf Tf IO CO T-^CN ? .Cnc3> ;<0 i^. ^ cp T - cp Tf CO CO CO a  LU " " CD co co  10  0  £  cpcoSCD^^COCN "-cvi^co^"^  3 O a LU  LU CD  CD _j X  LO  T-T-iofcflWcocnw SCDNCOvOSflOin  iE  ; z  CO CO N CD S P: £ $2 s ^ S T T O N 6 r- 6 d °ririi-^ ri  3 co . O d °  q Tf £  _J LO LO CM to _l CO Tf CM CO CO ^! O T~ d ~ O T  L O ~s.  T  L O — L O  O  QKcorocviKcoc\iS_<oc\icoh-.CN U j g T O J C O f ^ C O h ^ ^ C O C O C O T T r  «S,^CNdT*^COTf^ TfCOTfinCO m  £> co  mcog§r-CN^|e cogcO ^§  E E  S  O ^ S S ^ » ^ c o » P i o ^ ^ o g c o  3 CO O) c T5  ... _ to LO H co TJ. CD *>. io ? -I « CM co m  LO tO —i. , en jCOCOlOtNCOCOT-"Hr T - c o t o c v i ^ T r c N ^ " 1  V N  IN  ..N  IV  0  „IOIOIO L010 IO LO IO LO Ur~CNCNKS"SeNr--cOTfoococ\i jJ'fNco^Pr^coto-CNNcnco X ^ d ^ d T ^ cNir^cjd ( 1 ) f n ( n m  o  r  >  l  t  o  o  T  E. »>  41 £ I  S  K CO CM CM S CM t 2 to CM LO CM  q  CM ; X ° •  T-  u. a <=^ » •= Lu  to o 2 I — o to  ^ _  O  , CO LO Xj to LO "** C M d => d  io r- r- S co C M co d d d  n  «8  z  >- " J  O  j- Cl) C:cDtON0D^COSO)COO)O)CDO)CO Oi 3 O bj ™ 3 O T- CM CO Tf LO CD OCOfWCDNCOO) Z  5  ^ Q o n » L O f f l s o c »  UjCt:  0  r « | 2 J "  T - T - T - T - T - T - T -  70  3 O  3  o Q LU 5  Q UJ 2  UJ  UJ  CD  CD  CD _i X  CD —J X  3 O  3 O  Q LU  Q UJ 5  LU  LU  CD -j X  CD _i X  CD  CD  a  E  £ CM s- CO g g 3 S ™ » °> " § Z\  3 O  g^SSlssScN  CM CO cd ir>  5"cvi*M <0'*cd« ;  cs E E 3  " 'nQnS'-Sco ""S«"n«'«> O ^ o o l o ^ o " " " " " " " ? " 1 ,  1  -'"m^rJCM-Wfo'OCM-JCMCMCMCM  CO o> c  2  O  •o c  CB  X LU LU X CO >Oi  I  -E  .ti E  < <  >-  LL  T <  _1  s-  O O  ">  1  Q UJ  1  ID IO IT> IT) LO O CM CO CO CO ss to co st co ^ d d d io co CO d  LU  CD  CD _i X  io in io CO CM CM 6 d  UJ Q  "Si 3 . •££  ja c g Q O -  -£ Q LU LU  g  O T- CM CO Tf LO CD  CO ^ ^ O CO Tf LO CD or  71  CO  CM CO Tf LO CD  3 O  3 O  Q LU  a LU  s  s  LU  LU  CD  CD  o  CD _i X  _l X  J ci ro)oicf o ) iin i oc ou^}- m i M in J niiro)oiof jt ivni S c Oin ' v LrO DlNtONCOLOCOOTT-Q^s^iN m  o  in »  ^  co co V  L U  J  n  w s  n  3 O  a  co co o co CM  io  LU  S LU  COXCsTr^^COlOO)CNI^K ^O l  C  M ' ° T ^ ° ^ * , -  CD to Zj •» X d  -  co  ««• io  d  o _  CM  3  ^ C \ i ' ~  T  -  T  LD LO i- O Tj- CM  g  -  T  - T -  o  :  LO CO LO o> o> en CD i o  O _i X  si °  d  LO ^ IO r-!5 J io S lin oiK c!2.coSP.!£ oC aH > \OJ^HO -) ) ^ aco •i . iCM No J ^ LI O Cc M'M~OO 3 O) .^ OO) > PcO 1 ™ CM -'' *— -" — O -' — I IO  >  M  0 0  ir>  <  r  3  t  :  S °> 8 s co •* N: "* io UJ  ra E E  UJ co t CD T-  3 CO O)  s io to O i to oo r-. CO CM  !  n  CM CO g  g  LU  CD  0>  CD X  JlOCOVMOCOn ddc\iddT- " > <  UJ UJ X  Q LU  CO <t »  . n io io to LO io io , CJcDCDCOCOCOCOf"  c '•5  2 o  CM cd 3? cn o> T  o  : T  in  •o • >-  .-e S  luce z UJ  < 5  u. a  7, C UJ * *5 Uj A C S n o '  H  ^ r O n S n K n " s s i o o « o ) c o C S C O 5 N 2 2 ^ C O S N N C O S C O  g n ^ u x o s c o o i  LUce  0  ^ ^ J U ®  T - T - T - T - T - T - T -  •"5 on^iocoscoo) D  LU LU  O CO  72  O T- CM CO  Tj-  LO CO  3 o  3 o  o  Q UJ  CD  LU CD  CD X  CD X  LU  _i  01 .a  E ZJ Z  3  3  Q LU 5  Q UJ 2  LU CD  UJ CD  i  CD _j X  O  O  CD X  If) If) If) If) . -J i o in m , m . Join JoSoi CO CO s- IO . 3 o ico > rCOOT-O O ^ ^ ^ CM ^ ' c\i d csi csi '  J m _  i n i n i n i n m  -Js»5J.»»coo»»o>  n  u  n  f>  o  O d  CO ° .  0  ,  - ^ s - ^ ^ s - '  S^ Q CO LO CO CO LO CM CO CO O CO LU LO CO CO CD CO CD CD t o Tj" iri CO  £> co  LO . CO  CO LO  ,-s-S<°C^-CMinCMCN"r^S5!ScO C _ ) c o ^ C O ^ T - r ~ - c D I O : c D ™ P T -  E E  ,  T  g g co o  r  I CM _J  IO O  r-!£-a-iogin!£_i-  0  CD T J co  <  °. O  *~ *~  y j c o : ^ c o ; - s --et< o in - -rt " i o' S^coio-jco^-crritOTf^: T  «o  tr\ tn  D C O . r s T T - C M C O i n  CO ^  CO  CONfflCM^^O)^^ s-CM.JO-jcsi'-WcN  3  CO at c '•5  2  O  •a c CO •o  LL  co  _  _ T  O)  CO O  m m m in O) O O CM CO CM CO  ™ d d ^  X CO >Of  UJ i  CO  sr  s Eonsco^?52o)»2^»_ ' O  O ) CO  0  CO CM  o> CO ^ CN* <D 5 r C N I O ) ( N C N t C O ( N O ^ C n ' f C O O C O  CD CD  •  v "5 _] < 9111 II  CD  ^  UJ  2 £ >=  CD "> SS s _J CN CN X O0- O  O J  I- o m  LU  OCOvfLfiCDKOOO)  O  i—  3t S ^ C O 0 N N C O N O ) N S ( D N L O  O oi » 3 Z  CM CO TJ- LO CO  ? f : LU  Q  o  co  t  O i n co  c  73  s  "- CN CO  Tj-  IO CO  ^iiisniiiiiiiii iiisiianiiii|5|i  .g g r r r N N N N N N M f l h- LU LO NTtOViJ10T-0(OONCOnO)0)lN rNnoinosaooaiDiDOCO^u} ^  N9coortNco»-oinsci)OT-{0 ^T-T-T-(S|(\(Nf«l(NCO(OeO  tN  5  ».  U L  P  T-  £  T-co^ooorsiTrcN<ocNf^ro(OioocNCD ^incocp'cMcbcocoTrcd^i^  o  z > 3 P • O  1  ^NT-«NlO'lTfOSipLnO'-KO t  t « s c » N © e o o « u i s c o c i > o t N  S i-^i-CNCNCNCNCMCNCOCO 2 r- c o a > ( D L O ( D C N C O T f ( N n n c p K O T r ( N -E cNnscoT-«scntNTf(otoo)'-csi T-T-T-T-rgcNcsjcNitNcoco CN 2 E il  °* I  - co 5  I Yisiiiiiniiiiii j " j s a » J;J2?i?i|i|i||||||i j;jsiiii|iii||i|i|| M  M  1 illillillllillllll I jfiillllillilllflf i jillllillllilllll! ep<}»(6OraNNG0CAtDNnNC9 |TTNNCOU)«cC)NT-l>>tDnT-N(DrllritdttNOitVri^ujttrSNN  N  l!  CN(N(D*i-WT-CflMNCOiDOinT-lN ST-T-i^tOCOCNOOCDSCft'J-CtllDO ~6-r <Dcio6 C c^coL6^^aicaci-vc6yIN CO ID | r-- CCM NlrttN(NCOCNCNT-CN'-lN T-T2 CM  :  |f-  I  h -O l C i l C D n r f f i S f i O O O t f r N U j O ] NnrSO)T-(OCpNOir-SIDCOT-T^2r ^ c N i ^ < r > C R a D C N r t T ^ c N »  •g J= T - T - n r - C N O C N C N N C N ' - C N 6 CN 2 Z E LL 0) r\l LO e  "I  u  ,  <  U  c  ,  , n  N  <  t  1  l i :  T-ocRcor^coa>oco(Do>coiO'i-a>«  5 — a  OtlOrmnNOOWOMCONlOfflS CN ?*^ T ^ ?T ^'*: r . . ^ ? ^ " ^ C*i-»-«drndNO'c£iNOSrlO _J=  h- LL i (ooiffirSrtsoincoxfoin'-coiN •nro\rcNcvicNOTrK^cnco»-OTf(p c(dncdcoNcoTi r 6d(Dui)N iT-T-flT-coANNCNCMrCN vOOjO)QIDOmCN(DSlOCDtOOCOm 2 K T r f f l r t u i N n c o S c o c D C N c n c N i n c n  :  Lu OTCMVCNCOCNI^TTISLOT-CO^-LOCNCO '-rSCNCOCOCNCNCNCN'-TT-T-  SSCT)nCNCNCOS(OOTC))TfCnSCpl/) « N C n N » n v « r u O N ( D O O « i O CNNaWCONnrNN«nCjStiJNtt , T-T-(OT-nniNiN(NNi-TT-  I- LL T oocoorn^irnipffiaoiNnro ^rN ^ l' ; l P " 'l9x ! ^ ^ ^'^ ^ c ^ ^ r i r i r d r i d ^ d r i N o s r i r i J= T-CNfjCNCNCOCNCMtNtN'-tI-TO CoWfflCOCOOOONCpCONIflOgS 2 « -(N Nuiomoiwr,sswiDcpNStD f  :  s  t N  l  T  , i  c :  (  t  (  <  1  1' .§  N  T-T-cOCNnnCNCN'-tN'-CM i-i2 3s CM i» 3 Tf INWOOmTfCONiDCNCOCONOOlin 5 C DLu rtOCNt5 5 "fiS 5T:C!S C (JiVinrOlClOintNSCNlO'-rno C NN'-LOVlfliDOSOCOnCOncO'ir c o o r - c N d d n d n N ^ ^ ^ c d i N i r i ^ _ ^r-.co'^^d<N^dc»CNi^cNm '2 *£ L 4 = T-CNtO-r-tOPiCMCNCNCOt-t" g C NOCNniniN'-iNCN'-'T U ON g 6 IN E Z E I T Z E Lu O (Ni OJ CM in c LO C LL.  T-t-COT-COCONCNNCNr-CN  , _ r v  H-T-  LL.  swc  2i  co 2  ,  c  in  2i  co 2  M 2  TT  LL o^cn^«Lo^cnT-coLor^c»T-coLorv.cj>  CM LU ^c5^roi-«insc»r-coLoso)r-nwso)  CO LU 9 - o^co^cowNCOT-niijsc»»-nwNce  c  o^cSocNTrcDCDocMTtcDcooSTfcBS cncMOcor-ujCNcorvicOLOLO(OcDCJi'«Z>^CNCMCNCMCMCOCOCOCOCOTTTrT>Tr'* cNCMOTLO^eov'S'«-»-*er*~*tr*-cN<N tNtCO«-tCOOCOlflSO)rCNniO f-i-i-CNCMCMCNCNCOCOCOCO  5?®°^^W*°N5(DCOOC3'J-{DS cococoOTfcOT-cnoLOcNLO^TfLO'* Z>T-CNCNCNCNCMCOCOCOCOCOTrTrTrTr--T {Dr-^t\Om(NVSCOSWSrt(05 r^TrajonNCDT-ncocogriN't T-ft-rNNCMCNrtrtrtA  .5 o ^ o o o c N ^ c o c o g c N j c p c o o w ^ c p c o  O  O  m t-  Q c  coa)NNVV«coi-uiKcoisn^cn COTTCPOCDU>COtMCM^Cl3COCOCOOO r-T-Vt-ttrtCNlNtNCNT-CN T- CN  oincDcoroeos^co^cNOconcocN NCOCDCOinT-OT-lflOrtSNS^Oi ^CNCOCMCO*tfCNCNCMCM'«-CN *~ *~  O  Z>T-CMCMCMCNCMCOCOCOrtCOTrTrTrTT'tr  "BiBiiiiililSiil  • » * i -  CNuicpncnconvinscgcorsn'T a)T-*NMO)Tfcpco<nc0cO'-s^CN CNtONCDCNCoS'-rtCONtggCNJ i-i-^CNCNMNrt(OrtCO  I  I  NrtrSfflCftiOrT-CftSOOCOCDj; O T-^CO^-COrtCNCNfMCMT-CM i - £  I  I  1  d Z  %  I  ro < cgTrr^c»CN(OoD»-rtcococ^Q^co i co tr in C O d  iiiSiiiiiiiiiiiiiiiii  1-T-r-CNfMCNCNNrtrtrt I CO < iDrmMrOCNSCONClrti-UICNCB OT*-CNTrCDCMCO*-VTrcOinLOCDMCO LO «-CNCO^ncOCNCNCNOT-r- r - t C O ci  I  2  LL ™Lou^ C B T - c o i n s c » ' - c o L n s r o T - n i n s c » _*5 SO^oOOCNTTCDCOOCNTrCOCOOCMTrCOCO >- ° <Z>T-CNCNCNCNNtOCOrtrtCOtI»I»t'T^ < Z  74  l l l l l l l l l l l i l l l !  U H  3  |5iiiiiiiiiiiiiii  Bi  ssaii|iiiiiiiiii  1 Yiiiiisiiiiniii 1 j.YH.si.iSHH...  ^issiiiiijiiniiig  j;siiii||ii|iiini -jsgsiiiijiiiiiiis |  A\ M M I sfililiilliiiilfH I jJlillillllllilli! I HiiSISiiilliiliii _siiniiiiiSis§si .jsgiiigniiiiissi ^mmmim ii Si ll 8  10ffl*T-0(pinfMOO)rSN i- 8 0 incocft^<oujOCNScoinio©cN CNTT <-CNCO^«<0(N'-(NrN'-CN iijE ' '2 cn LLT-corsii^i^CNT-co^<jOr-T-i>~ocpTr ita>i-\eicv<D-*t-<-ai^it}t^cDc*io>p~(N  co s-  I S  T-CN|CNT-CNICO(NT-CN|CO'<-(N  I- I-  ci^cxiodT^edoT^cJ^oScd ^ ^CO^rtCO(\CV|i-(Nt-T-  i-i-  '2 •3  ^*  cffli^CN-ocricricricri C CN|<Ni-CN|CNi-Cs|tNCN'>-'-  *~ i~  ^ *5  c"^-^^ ^^Tr^ ^ = T-NtNWWCOt-CN'-rgT-r(  LU  o <N a 00 CN If) t cri 1 2 C O LL  9-  o^cn^nuiscn^nLnNcn^ninNcii  9-  o^cnr-ninscn<-nioNCOT-nioso>  9- o ^  O  ZSi-cNNNNNnnconn^'fvvv  O  Z^t-cMtMc^ciCMmmAnto^r^^^^  (!)  6  CN  O) (Ni CD t 1^ 1 co  2  a  o  o c  ^ i- i-  o t c , u 0 < 0 , -  r  a  CO (\| CD = 0 51  IO LL. c n r  '  p , i n r v 0 ,  ':5'5t:5!:_?_?_:?  Z>i-c\iNNCNc>inncocon^^^^v  I  i  1  1  I  I!  8  I ?  I ^g8§iig|g^lll  I |-§» B8fegfegggsggfefeSfg d  5 I s  3  1  '  I iJlllIIIIilIllllII!  ^S83|!I||Sliig ^IlilllllHIIII I -|- 8B5g8gg8gg8as8?8 "is^teggjggssigfcspsa B  i  I  d  1 1  s  Illllllllllllilllll! 75  1  2  Ililllllllllllll!!!!  ^mmmmm _jmmmmm ^mmmmm I ^mmmmm j "jmmmmm j ^mnmnmm lymmmmm Ij^mmmmm l^mmmmm 1( 1( 1( I IlIiIIIIIlIIIiIII! S5SS353SS3SS3555 II  IS l l l I I l l I I I I l i I i i !  55353535353S3333 II  M  M  ^mmmmm*  355S353533333SS5 II  M  -^mmmmmw  I I  i I  I 1  I  hl  Ii l  J  |  2l  |  2  I llllllllll  B  S  I i i^lIlIIIIIHIf i i i i i i i i i i i i i i i i 1 i sSi li il ll il ll ii l| |l ll ll li iHl l|l| I iligliililiiiiliii .iiillilili in h-  CN CN CN  o •«- r--  T- lO  ^PIFIIFIIH  S  CO  T  T-  xr" Tf d od  s  CN CO LO CD LO LO I D  °"IIPIIP^IP!I  '"immmmm  Iiiiiiiiisipiiii jiiiiiipiiiiii "iiiimifmini J "lI!IIPIIP|PII | - p r l l i p p i p i l I "piI=IHIII!I!sl IlllllllllllllllI \ >1IIIII11?IIIII [lllIIIHIlIISIll 5  E  i'.  ! T I  IIIPPHPIPP S  llllllllllllllillllll  T mummim x mnmmm S  2  Illlillllllllllllll 76  IllllIIIlIlIIllIIll  ^mnmmrn  ^mmmmm .Jmmmmm  fii \mmmmm I\mmmmm fi i i ii & i Iiiiiiiiiiiiiiiiii  iiiiiiiiiiiiiiiiii!  „333S52S5Sg3SS53S  ?! I  M  '  li 1 I iiiiiiiiiiiiiiiiii  Iiiiiiiiiiiiiiiiii JS533S3333S33335  If  l iI  J,  I  5S5S3S23SS§33^33  l l  *  J  l  i  J  I IIIIIIIIIIIIIIIIII I iiiiiiiiiiiiiiiiii  w t o i n o D i o a i o c N U i i o c o o w c N ' - n cNCMOi-Tfcoo^ooi-TrTfT-cocMTfLn  E 3  n n n c o T - c o i n 5 s c o « - N ; N c o o c M i-TfOTi-tNCMTfTfrtivinLOf--LOtoco CM rt Tf T T io  O  co T-  i n o a j i o i n i n u j u j i n n i n n i n i n c n c N NnifisiflN'OiNOincosNco'-'co T-  CD  E 3  =5  ocococncn^NajcocovcNrococNcg C N J ^ c o ^ ^ ^ ^ o i ' c o e d r ^ d r ^ " ® T - r o f i n c D n c f t r t N o u i i D ^ s o c o co LOoom<DrtcoTfTrTrT-c\iiftco t- i - CM CM uo ur> to io  O  <J>  E "D =i a •=  m s o c M t N ' - o c o t M n o T - T 00 Tf CD CO CD CO T f CO t—  cn  ,E £ «j O o Or— •D < u •= * is, ° £  ">  i^ujiou^cNiu^rttficortoooocoujUiUj ooiooTf^rouoiniocoivr^TfcoTfco C N ^ o ® co co co ^ co in ob CN « » T «  »~ S S S TflOOCOCOTfCNCOCNCOOO CNI Tf CO LO C O * - C M T - f l j q> o r^r^CNr^r^r--r*r«>-c>ih-f*-r^h-r^r^r^ ^ iOTfT-oQr^i-cococNiTfTfioco<Nicn rT - i o o T f e O T - c o o o c o o o T - T f i o h - a o drgiij'Kric>idd5OT^in^ritN fzCNTTaoincnwT-cocncN^mcNirtiAN. = i - i - c s i c o M c O T f T r T r u j i o i o i o ^ Q E  PTfrtLO s c B u i i n c O T - v c N L O i o c N ' - ' - c O T r s 5 in u i r t c o o r i T f r t T - i o c n o J O - c O T - T - i o cq r N 7 « . f f i B o d » r i f l w c » f f i - c d _ O OCJCNCSCOlOtnLOCOTfTf CM IN r TO r CN Tf I rtrt O CO hSi s  <•» L ® S o I—  t= ^ •= •§  p C D _-^o>T-oinsCDT-nijiso)»-ninso> S2S^yCJQG^Q£2£2£2£2-2a:a:-S:S:S £ o>coocNTrcocoocNTrcocoocNTrcoco < H > ^ C M C N C M C M C M r t r t r t c O r t T f T f T f T F T r  vtcncnroaicococQcoificococoaicoco r n N N i n o u j i n o u j o o i n o i n o ST-NrgcOLOi-T-coi-CMOCOCMLnN t N N ^ ^ ^ ^ w s w c o c o c B c o ^ a j ^ c C N T f o c o o O T i - c o C v i o o o o c o T f c o r ^ t romrmcooiiooo'-iN^ O tNCMcococOTfTrTfLOLOLOLO  coooco oo ^ CD  Tfii>TfincoLOLOTfiJOuotncoinu^ioin i - c M c O m C O ^ c o ^ ^ i n o o c o i n c o * ^ ' . r o S ^ q ? « 9 ^ t N » N c q u ) CN CD Tf °i CO CN OOOOOOCMCMOTfCO C M * -O)lOLOCMrtC0CM»-t-t— CO *  2  OJUifflCNincosLnininuiiflssinn e o « - c » K ^ s r o c o ^ i N o u i n c o K ^ o i ' N d ' ) N r ' ( v i r N r^ocoedf^CNiTfcncNiJOi-O'-cbTf c V T - t - o c N n m c o N i n c o i f l i o c s L O = CN rt TfTfTf m O i  E  n  :  N  l  l  r  |  y  |  ,  n  m co to OTWtncoioin<OLnmincotfiui^inLn m a J o j T f r ^ r o c o ^ c n i - i ^ t - T - i - T r r t i f ) q o S ^ ^ i ^ ^ ^ c o ^ ^ ^ c N c d ' r cri ^ <° O N i n U l N C O L O m N r - C O l N r T f 10 i co m TT CO CO CN co CM » - * CO * p  CD  CD  T_-^cj^ninNC»T-oiosffi'-coiONOi P S iS ^ ^ Q ^ C C Js ? o s c o o N ^ i o c o o N j c g e o o N n c o c o O < H > T - C M C N C M C M C M r t r t r t r t C 0 T f T f T f T f T f  77  T^-^cnr-nLOsc^T-ninscnT-roin o g s g c y ^ ^ f d r d Q Q Q Q s a ^ s s s s / n S . ° > » ^ ^ S 3 S B 2 2 2 i 3 2 2 0 < H > ^ C M C M C N C M C M r t r t r t C O r t T r T f T f T l T f O  (  t  D  0  0  c  c  i  l  CM n « o > n N u i < f l t - T - o ) ( O T - s i f l s nM«TOK>9reennn<tl«iniAID I t  —  in^<nNsoototOT-eo<D*tiont} lONOID!>IOeOIOOSONISI>0)0  ———  CNJ  E  ?  tN««»cOTf«»ftOT-mcN*-itf>»*K »lD«lnOl»»-SrOO)tJrrNiN  . . . . . . . . . . . .  C N ^  C N  ^  T — s^©'-cDCNir>iinT'CO^(DCN^u)cp  i% i - cvicocNt-cgcocoinciiiAcooicDNcoo  ^ i-  j  ••- OCOiNCNNONCNNint-NCJ COXT- l-» iifi*Tnco©tnT-oioc\icocotfiso)co r- c d d d c N i n ^ c b c d d d c j i d d d d E  , C O CfttNISONCOSSCNOCNCO'-nnS iocMcnuicoTrcocncocMr-cncDr-oo , ^diriddcNcoTruidddr^r^cdcd _J E  " " j O COini-OiCOOt-rtfflTrBJNJS^CD & coNtDvacosiN^ONn'T^^'T dcNuSaidcNm^Tr'LOiriiriiri -J E  5 r- C D O ^ N « V l f t ( D N © O N t O C O » - l O 5 Tf O O l O N N C l > V U j C O O I l i ) l i ) O r N i n •5 NNcn^wsosNSN'TcoCiiCNC] co<DvHio*cntoconininNtticDcn ra ^. ^c6idaicici^^tain<D<Dt6<ot^t^ ra ^'co'cod^d^iriwcoddcbcbcbcb 3CMo) I CN "B) O E SC OE * <- O) d N Ol 2  £ C O OCNCOQ^*r-fOin'trcOCOCOC\ICDcOCO .5 incoi/»«ovP)ciiNT-»fssajO)00 ra rCNincddn^iricocDtd I CN a> OE *  CJ  CJ) 0>^CNCNCMCNCNcococococoi*'j- T*er*»  _ -1  5  X  CJ>T cNc\i«NOinnrt«rt'i''i''t'J^  3 &  C D 0>T-wcNc,cNNconrt«cO'j''i v'*'j' ,  CN N O > n m © n r l f t O t o a ) O a ) C l l r n N n C D I f i o n N t l D ^ M l A r r r  »-  1  CM  CD  ^ *- o n r o o i n w c N O i f l c o c o i n t N c o i B » — inC»COF)OCO©CnOCDifiT-lAcN'-0 ^^T^cNVcsicNrddddddddd C M  f i d "j  s I- CD 5 ^ c o c o ^ T - r - ( p c O T - c N ) C N ' } - v t^cncD^TFcortr^*uiTrcM -Ti-cM't^cNcoT-v-t-odddddddd Y  s  ,>  CJ) , i-C)X §" co ^«wscni-nioNO)»-«inNCD cn 5>co ocN^cocogSscScooNjcoco C3 X ! > T - CNCNCNCNCNCOCOrtcOtO'JV'I'T'r 0 3  0  N  1  cor-^winincDininincncMinT-coco TrocMcor-ocNco^ooi'fl-cMcocno) ^^^cocoo^cB^^^i^'-iri'^co cor^cbrtr^inr^cocor^r^^cor^cri g OCN^T-lfl^T-^^COT-COCO LO C O S ^incomininincn^coininrtin T~ If (j)'v^Lo'^cM'«r-q- ^ jr-triocM cMcoh-T-T-^-ioco C D T- TO) CO T — co inininmincoifiLninceincocpT-troc»iJ)»-ci>^coc6iocj)00)ftScNT•n^cM^w^^roeoq^cpcor^r^i *- iBsnrtirJco^NiriT-rgcddcNco' C COCOT-T-CO'-a)0)OCN*-'«-CMCMCM § t- *- t-^-CM CN CN CN CN CN in  u  ^ r N n r r r d d d d o d c i d 6  I ob  T- o i i S ^ c o T - u j o c o v u i v c N r t » - T - t N r r i N ' n r r r d d d d d d d d d C M  NCN^'r«]c5LnnintjiO(OT-<-TO N w r i r r r d d d d d d d d d  CN E —• 2  I)  C N J ^ E co cncOLomr^^cncocoincocococNO*«UjCOSinT-COnOCOCD^lNCD'-rtO 2 ^^^NiTjV^T^T^dddddddd aj C N  i  5  . ^ o o m s ' T n w Q n t n o i n r ' p e o rococnkt-i-TfcD^cocNO'-'-oo ^ r r N r i r i N r d d d d d d d d d B  1  CD . CN CO X &£^^cj>^cou)r^o)^«Lor.c»^cOLOr».o> % XjaioNviocfioNscocooN^coiS C3 X>^CNCNCNCMCMC0CTrtC0(0^^ »T tr'iT ,  ;  ^t^^cMCNt^[^tNCN^CNCNCN£-^^cosificoiNconooconncDin ^oacocNCftcoscocninincN'C'-co co'dirii^diricDcdaD^dcNcp c;i-COU)C»ONfi^V-OLO(D(B(DlDS C M incMininincoincsu^^ininincNujCR T < P ^ ^ » d . s ? o P P c o ^ c N nciOT-rro f i n TO ) r r N IT rT — cp^cpco<pcp*-cpcocp^cO't-'t-co*OfflQLfioujcooininLncncncBifico cj>cNcDCMi^OTr^T-cocN^cDina>p^ cdivri^co'cNiscBcbrioidscdN ci-COCDO^n^lOCOSSCOCOCOCOC)) g i-^-T-t-' -T-^ -^^^ -rl  s  s  1  T  I  T  O to LOcocNiOLOinLOi^^Lf>ini-a)ina) co <pininininiAiAinLOci)Lninincoinin C^ C r > 3 ' ? T " C OSNOVWNNNmCft^Cft'CDO in'«niij'»rN«ifl'sC»©s o)o ej)coco^^^<Dco CDr-co^^-'* T-O * »O S O ) L O TlO T ( DT S OClNC O i - T - ^T-TtT CN CO CO O CN CN CO tT — 2 o» oi .2 * co i n u ] i - u i c n i i > L i j i o u ) N i o i o u i i n « T-©CO^CDCDCQ*-COCQ'«-T-*-CD^CD * N SCOCOCNCDCDT-i-CNUlffimcONCO ONNOSlBMlNrCOri-OM'3 aj °^d^lOO) ^cdcNV*d '4r MCOSOlON'-OOCOntOmOMD N^dsocbnvSN(DNKda)nco cocoaj'cb^nn^scocdcb _| C niO--r-T-i-LniD>-T-rS<-COtC'-COCDOCN'JIOCDCDSNSSSSCO XCM 3 ^ ^ T - ^ C M • «-i-i-r-T-»-i-T-»-^^-.--<oB E O E O j r nN CD incNinLOinoiinoJincNcoini^inin CN co T ^inininincscoinincMinocntnintn S L O r^^CDT-i-COC»CO^COCOcOi-COCNCD L O O S C O N S C D V n C D C O S li) S ID N 5 co „ cD^r^incN^in^T-^^tocNin-gc o "ci "'"cN<n' iD ^ ^ to co _ O T-ONCOinCBr-N C D * r (\i r o doScodcNCN'-d'C N rd6 O O ) D > •— ^ ^ **~  O  (  t  o  i  n  s  c  n  c  o  s  ,  o  c  o  (  m  N  K  -  <  N  r t  I N ,  tr _ 1 <; X o ?*^CBi-cowNO)^coiiiNcn»-«iriKcn hCJ<X>i-NCNCV|Nf>ICOCOCOnnV^V'f'T l f  3  *  co a> 2 ,  NCNN»0)T-ftNinT-NlftC65C05 CDNCOOnOT-lDnUJINO'-fiOO  lOIOKnVnCOCONntSCSSt-SrlOU(DM-B)NN«T(DnT-C0i-rt-  N N n ^ t N ^ o d d d c i o d d o  I B>  Nrt^rtnoiNCNSncoscnocNrt  ,  < r c o  , r  _l X &_^^.c3)T-coini^cn^coinr^cn^coior-.cj) 0<X>T-CMCNCNCMCM«COCOCOCO'»3-««r'!|-'irT ,  78  ^ d r i N ' H r i N V d d d d d d d d d  1 B»  Moco»-oiocointconrcNOi-o . dcscNPirrdddddddddd C M  ll  C M ^ E o eo^cocoocM^tMcococOTfCMoocM ~~ r- C»SCOCOUlCOi-lDCNin(NOT-oOO 33 ^,o^'cNcO'-*-T-ddddodddd (0 C M  i 5  . co QCNcocN^sncNcovwQc»5NO ^ i5eoNCNC&co«conio«5'-ooo . . r r N c i ^ i N ^ d d d d d d d d d  O) , CO 0) X ^m^^cn^niflSCfli-n^Nffi^couiscn ,^ KSJCOOCN^CDCDOCM^COCOOCM^CDCO CD X>r-CNC\ICNCNCNCOCOCOCOCO*T^'^-'^-'*r  S S t ^ ^ ^ 2 ^ S S ^ 2 S 2 £ ^ J2'^ ^oii5^ ^P9' .^S^IIcN CM P i r i ^ S ^ ^ r ^ ^ s ^ c M C M ^ i J m pp K^S;j ™£ S2lI' ~ £ ^ OT-CMCM«-T-COCO«'J OT  r  f  c  n  o  c  ,  N  tr ^ ^ S S S K K f i E S S S P G ^ I P S ^ l S c M 9 ^ 9 ^ « c d i r i - a ^ c d P c M O °> CN g co o CD to o CN CO CM TCNr^CMCNr-.i^i^cNCNr^r-r^cNCNCNhNconinonsnsncNiNCDcocpcD VNNqqNqioqNSrtf^tJci orocrir^Nvdi-^diNnit'tTfTf C^rMlOOT-rt^UlinCOCDCDCOCOCDCD = i-T-T-^^T-^^^^-t-T-T: (  O o CNinincMinco'*TtncOLOO>ininooin »- CNCD^COinCM0D»-»a'CD'a''CfCO o T « 4 ^cn ^ ^. in ^ ^ <N C M Oy-C -rO O<r> T L D ' - Ti-Ln < D * —o 0  c t >  COCDCOT-CO'-'-COCO'«-COCOCDCDT-TOAlONCnfflC&NOICNCOnnCOOO 00*Si-SOCOCOlOCMCMCM10'J f ( b d c s r i r r f f i N r iriibcciddr r ci-«tn0)T-VUl(DSNSSCOC0COC0 C M 3 *-i--<-*-T--^-r-.«-*-*--i--<E O co co co oin^iwioincoinsuiinoN'rino L O OOniCMDCOOOlNr rSCO C D o^^CMfLft^N^tDS ° N O CD* t N o <- CO COfM o C B i c T i  -  _ 1 X ^m^^cn^cOLOi^oi^cOLorj-cB^coini^m CJ<X>rC\|CN«r.NCOOrtflCO^V'T^V  ^ N ? r n o 9 « o c 9 n i a O r n n  ^Ctilod©CMrt^lriloddr^Kr^l^ a E  a v n v N u n r i f l N ^ ^ K o q o  I*  a c ^  n i-  1j  C D  c n t o i c N i D N u i N C ' i o i t n ' - o i r in ssinoN^iiJCrfflincoininNS  N N U | H ) N * c f l N i n o r t » c P N »  ^T^ridT^MCOdddd^^^^eNCM «E  N  O N W I f l B » » O O ^ r r r r r r « E N  « Is  «»  c ^  c ^  1 _j  T— T— T— T— «— >T— T— T— T— T-r—T— T— C ^CftCOCNCNI^CO^N(D(OCONO)(NCOCI) ID j  C M  O  ri  O)ft« CO N  _j  E  ^  S  N ID © IN  O in N O lO V V  ^ " " " " ^ ^ " " " ~  "  T  1  S io c g r ^ c » T f o o r t r t r ^ c o c » i n o o c o i - c D a o ra i^cNLridd^rtTfTf'iriiridcbdd C M I-I-T-I-I-T-T-I-I-I-I-I-  i CN  cb  3  O E * -= M- S cn c T«-^ci)^nu)NO)i-niosc»'-coiONci) ,*= 3>aooNTrcoaJO(NTJ:<Doooc\iTrtoco  C O  v  £  _i  _j  x s S co N ^ c o n o i o s i n n N i O N u i T - c i c n ? J2 i^cdd^co'eddoj'doT-^^^CMCM n C N i-^^i-t-t-NNCNtNNlNCV| 3 3  ICN'SB  O E * in —! m to X 9-2^^cni-rtiOr^cn*-rtinr^cnT-coinr^cn Js X>COO(NTTS(DON^ID(DON^IP(O  SX —! ID  T^^^ro^nuisoiT-niflscnT-ninNcs * ,= ^ s c o o N v i o c o o N ^ c D e o o c N ^ ^ c o  NS aO 5NC ^O Wt -N l Vf lnp ni -^2 r2 tt 5 N2 r ! qS ^° N  S f f l l f l l f l N « « « C O i n c O N « C P N N S I ^ U K O O O S N n i N n N n f r O P r r i * N N i d d r d d 6 d d d ;  N  "a  •f co  woiflcocNiNNOrtOtNcninsN dcNiocboocricrido^^^^^'-'C M I-T-T-*-I-I-I-I-I-  icN"B>  O E  r«i-nCOT<(V|NNMnO)Cer(OC<l r i e N N i - s n O U ) M D * > 9 i - i - 0 T ^ ^ r 4 n T ^ ^ ^ r ^ d o d d d o o o  N  co  N  ^ "a  o  N  o  i  r  r  r  d  d  o  o  d  6  d  d  o  t N  r o  o cb  c»«ijin©tnNNOino)cocO(N5  i-  S f f i f l O * N O » » - l i l C O l u l N C > O i - 0 ^ o » - o J T f T - > r - T - T - o d o o o o o o  I  CN C M EcncncninocMTfCMtpi-LoinTfr^^KoE —• ft ifl s co T->n eo 5 co N i n »-co cs ^ o 32 , d r N « r r r r d d d c i d d 6 d 2 0) C M C D '>. jE '>»  C M E ~32  C D  A  !  *  ,  in  co^^inioinococpcoinroocNtncM K^lfi^T-SNOifiNinT-v'OiNO  ri  ^T^^rMC0'i- i- i- 'i- dddddddd  x  :  otj  '>>  1  :  :  ,  1  rt  ri  . . r r ' r i v c i i i N r d d ^ d d d d d d  :  C M  sipininsincNcocoiftcoscNiOcNS C))?in(DOCl)SNCONrOlNCO'-'-0  o3  C M  SI !•  ^  in -i (J) X Trn*TS"^n«^*^wwso)T-oifiSCB g"jgi-CMCM^cMCM«rtcoco<OTf^TrTrTf £ K>ooN^iij(0ON3«5ocin<DO (3 X>^cNCNCMCMCMcocortrtrtTfTfTfTfTf toioincoNNiouiuiiou^io^ininn •tJoissT-soincNOjcoinoiT-s co T ^ d d c r i P ^ ^ . P ^ ^ r ^ ^ o i cncnocNrtuj(0(viT-cocnNsa)Ci> g cNu^T-i-i-inco^cncooocncTicjj'-  co H CO UJ A T^^m^^^^^^^coinNcn^coioso) g - S^QNcNNNcopnton^Ti-^^ii' X>«oS^iDO)gSscQeooNgcocD C D xS^cNCMCMCMtMrtrtrtrttOTfTfTfTfTf  i  o  S  ,  co CNcpco'-cQOT-cgcOh-^cocNcnocN  d  S O S ^ B « ^ r t r t « r t N r ; C 5 r ; ^  *~  „  d w i N r r r d d d d d d d d d o  ofl C M  S|  1  to —j LO CO X ^^^^cnr-nioscn^coLONcn^coioNcn o- ffl 'QE)Ciy5!5GQGQS?S55 = gicooSN'tocogNtsegNjfflco O XST-NNNNCNcocortrtnv^'*^'>T 1  ,  cpincoini-Louiinr^eorrcncMscMLO *coniD^incoc»in^coocNCocord^d^cdd^^iricDuirti^di- ^ OtON'-T-lflr O CM Tf" i 1  O) X.  ^ ^ * c n a v ^ 5 5 0 ) V 0 i c « i s s s CNOrtcocnuiT-mcflcortcocDcoif'* iflniccoSNrtinoocDtcocotoiD dsioVrid^iriNdiris^riiniij'f;T-CNifiO)0(Nrt'rif)(DCD(OSNNN 3  i— T - T - T - T - r - T - i - i - T - i - i -  cn O TroortLOcpincocoinininincoLncoo cMi^rtOOTinocMjritnTf-coT-oi^ ^ d C 6 T * t ' ° r di-(MLO»-(0'-'S IT) T-ri(N iC O i N  «  :  0  >  l  u  ,  C  D  i  n  ;  *  rtcortcDoortrtrtcocooocococooooo NNNNSNNOICNWWSSNCNN MinNSNCNViA^uiuicoincNinco Tf^cotjocn^cocor^<or-.T-I>.co^in ninwrnon'-cviNcoocBscoiN cod<-cnincoioco-:cnocMO'-inTr <Dio^i-nococoeoc»coniflix>ins cBairoiontji-iocstT-NirvOT-co ®ddsd^' r^ ri iii''"N d^didsiDddioridrihiddm cdNcd^^cricdcosoScNiriiD sdinNooodrNdcNvcNCDN ci-nincllOiNCO^LOID(OSI -NNS CT-(Offl»-nmNCO{OOiOOO«-rr C C M T— T- O »- CN CM i - CM *C M§ ^ , _ ^ ^ ^ „ ^ ^ , - , C M1 - - ^ -r- ^ ^ CM CM CM CM OI CM C M| " *" oB E O E O E O j ^ co m c o i n i n u > T - i n i n i o i n ^ - c n i n c D c o i n » co co to cNCMror^iomiocoi-ini-incT>coinin m co co i n K i n c o c D i n c M i o i o i n T - i n i n i o i o i n 3 io TfocoincMTroiCM'«-*-eococMCMT-cM oo coocnincMrtcDTfcocntocMOiOi-co m TrtO)co-^r^rtcncpo>cDCMi -'-rtCM 3 co <S q s s i N PPto'ia^^d^. d ^ ^Tr'coW^co^f^co'^ri^rt^*-® « cp^iS^^^^cnKcTi^^cNcpoco _ O COtflOCpt-COCM'T-CO TC M 0> CO t- CO Tf 0) CM CD C M i- O O S N 0) i - CO CO Tf IN «- O r .ti • «_ • X  m  m  m  i  n  ,,  r  ,  m i - i - i - C N r t i - i - i -  O  C O  f-  *  — t  C O  -i -  — t  C O  ^  _l ,J X ®T_*^c6rninso)T-niJisc)ir«inNOi 5 D S c j i C Q E J ^ 0 ! Q E 3 C G ' S S S 10 }~ ^X>3oCNTfCDOOOCMTrco56c^^rj3CO HO<X>^CMCMCMCMCMrtrtrtC0C0TfTfTfTfTf Tf  J  i  N  r  t  ,  r  C M  *  _| _| X X T_*^CJir-rtiflNffl^oiftsCBT-coujso 9-_^^O)T-cr)ini^cn'i-nin^OT^rti0i^cn o S S ^ ^ 0 ' ^ ^ C J C £ 2 5 S 3 ' ' o S m C C ! C C ! Q C i S ! Q G Q C 5 S ! 5 5 5 S"X<5oCMTfCO<DOCMTFcBcOOCNTr<B5 ,^SX>a0OCNTfC000OCMTfCQa3OCNTfCD00 0<X>^CMCMCNCNCMCOrtrtrtCOTfTfT>TfTf 0<X>^CMCMCNCNCMrtrtCOCO<OTfTfTfTfTT J  r  r  t  o  t  o  c  o  79  ,  r  ,  T  J  3a  i - i - S S » O l t n « N T - Tt CO T~ O Tf Tf Tt CO CO CN  >  r^eNCNT-OCOtOCNTflOCOCNCOCMCNO)  £  T t O T - i o o O T - i o e n c M i / )  CO  O  a  3  o  3  2  0)T-OC0C0(0SCflT-  Tf  I t l O C M O C O M D i - T f ( N N C N C M i - T - t - C M » -  CM N CO CO TO CN CN T - O) CO CN CN CNJ T~  cu CD CO  O  '  >  < E  MNOO(00iT-K)i-*oinoincom  CO CO If) CD  ui  CDCOCNCNO)0)SCNIO\rcNCNCMCM'-0) C N C N C N C N T - T - T - C N T - T - T - T - T - T - T -  C N  If) CO ' If) CO  T - T - t ^ r ~ c o a > a > i r > r ^ T - T j - c o - < - O T j - c o T f O T - l O C O T - l O O C N l O T t T f C O C O C N O N N I M N r N r r r i - i - i - i - i - i - r  X  «8  a)  T— CO If) — I O) CM CM CM CM CM CO O CM T f CO o T CM CM CN CM CM CO  5  -  UI  CO If)  o> CO If) CO CO J f J f T f CO CO o CN T f CO CO T f T f T f  CO 23 COCM CO CO  T—  r~ o>  O)  CO CM CN  r ~ a> CM CM  CO CO  CO  o CN  CO CM  Tf  Tf  Tf  Tf  Ul  a>CMT-Tfcocoo>T-if)coco  > < a  C M C M C M C M T - T - T - C M T - T - T -  CO  CO CO  CO o CM CO  CN CO  If) o CO CO CO j f T f CO CO o CO CO CO T f  CO Tf  LO Tf  rTf  CM Tf  Tf Tf  CO CO Tf Tf  o>  N<ernoiio«it)Ncgi-ino>riii  $  m C N C N T - C O C O C O C N T t T t T t  LO CM CN T f CN CM  C 0 l f ) C 0 l f ) O O C 0 C M C 0 C 0 l f ) T f T f l 0 C 0  C M C M C M C M C M C M T - C M T - T - T - T - T - T - T -  a.  3  3  o (9 a>  2  r * - r ^ c o c N i f ) T f T f r ^ c o a > c o c o c o c o a >  O  O T - O C 0 r ~ C D C N T f T f T f T f T f T f T f O  u>  C N C N C N T - T - T - C N T - T - T - T - T - T - T - T -  LOCOCMCONOJOlM-M-COinNOOCO T-cMT-cnr^coT-ioioioiOTfTfTfo  cu  N  O)  N  N  r  r  r  «  r  »  -  r  r  <  -  r  r  r  CO  < E  < E CN  cu cn co  T f o i n o i M O Q i n n c o o o i s t - m  CO T f io co  T f T - C N e O O ) I ^ T - C O T f C N C N C N C O C N O  C N C N C M T - T - T - C M T - T - T - T - T - T - T - T -  CO CO GO If)  i  r~eOT-coo)cOTfcoi^coT-if>o5T-if)Tf CDlOCOlOOOCOCNCOCDlOTfTfincOTC N C N C N C M C M C N T - C M T - T - T - T - T - T - T - T -  cri  X O)  T-  CO If)  O) CN CM CO  s  CO CO CM CM CO  UI  CO CO CM CO  IO CO  r~ CO  o CO  Tf  CO Tf  If) Jf Jf  CO  CO CO  CO CO  oT f  CN Tf  Tf Tf  CO Tf  n  CM  s  OI  co  Tf  T t CO CM  O  r * O t f ) T f C M T f O ) l f ) T f COCOCMT-OJCOCOT-Tf  >  C N C N C N C N T - T - T - C M T -  <  O) Jf  S CO Tf  o8  S2  CD <  Q. 3  C9  3  2  O T t e O C N C N C N O C N O  CM  r - co o  O) c o eo  C N C N C N C N T - T - T - C N T -  LO  CO T f  CO CO  C3>CNT-T-0)r^COT-Tf  C9 a  if)  tOT-r^c3)a)CMr^OLOc7>r^Tfc3)Tf  N '  <B  0=  O CM  If) O) CN CN CM CO  CM T f CM CN  CO CN  s  CO CN CO  Ul  CO  s S CN  cj»  M  o  0 ) C O C M T - a ) C 3 ) I ^ C M T f T f T f T j - T f T f e N C N C N C M T - T - i - C N v - r - T - T - T - T -  5 u>  CO CM CN  CO  CO CO  If) r ~ o CO CO CO  Jf  CO Tt  If) Jf Jf  a> Jf  CM CO  Tf CO  o Tf  CM Tf  Tf Tf  00  c o CO CO CO  co Tf  Tf  o m i n N o i o f rt rt CB 1" T— O ) CO 0> rt cp C M en eo N - r t l A I A I O I O T t r t r t O CN CM CM CM  ? <  a.  O)  cOTfcncof^TfioTfcoTf  o> o n o i o T" CM CM O I*- f ^ C O T f l O T f T f T f C O C O O CN CN CN CM T- T - C N T - T - T - T - T - T - T - r -  O O ) I O i - CM T f c O O i C N O C O C O C O C O C O IO T - O T - O) CO r ^ c o i o e o i o i O T f c o c o o ) CN CN CN CN T- T- T - C M T - T - T - T - T - r - T -  CO  «  3  "5  E  * •  T-  CO  < E  MOCMNinoionsscocoeosoeo  N  6 S' (0  1£ =2 I— C3  Tf  C O C O C O T - C O C O r ^ T - T f T f c O C O C N C M C N O )  eo IO  CO Tf CN  m  CO  C N C N C N C N T - T - T - C M T - T - T - T - T - T - T -  CN CO T f CO Ti o T- T- e o c o CN CN CM T— T—  o  o  X  X  ^-j-oii-ninMBi-nioMjiT-ninMi V X  SBr fiN C N C O C  5  ?  CN  C M C M C N C O C O C O C O C O T f T f T f j f j r N T f c O O O O C N T f C D O O O C N T f e O O O CM CN CN CN CO CO CO CO CO T f T f T f T f T f  Q  o <  ri  cu  c j > T - c o i o r ~ a > T - c o i o r ^ a ) T - e o i o i ^ a ) T - C N C M C N C N C N e O C O C O C O C O j f J f J f J f j £  COOCNTfcOCOcSeMTfcOCOOCNTfcOCO  T - C N C N C N C N C N C O C O C O C O C O T f T f T f T f T f  80  1  NWrtifiinoiowininmininioiflinininiowinifi  CN N cor- inCN(DCO CDO)LO CO C S C O LO in LO LO LO LO m  •I  o  81  LO LO CD  'T  N  OTCNcoLor^So^^cocDoDcnQ  S  CO LO L O C O I O C N ^ L O O O ^ C N C O C N O O I ^ ^ L O C N O C N C O ^CN  --1  co  >CNCN^CNCN-«-->-T-CNCN  < X  *-  t§  LO  I-  I-  T-  (N  CN CN  I-  CNfMCNi-i-^'-'-  liiiilliiiilii  =1 I  CO  ovow»NO)N(Di-»-(9(Dnn«)ai(N'-oo(NO'ra3nfflaiNfl00i ^WWQW'-'-M'-CMCIN'-'-'-'-'-WtMlN^'-i-^f-i-'-'-'-'CM  I  llllllllllllll  i "SiisgiigjiiiiiiiiSiiiiiiiiiiii °1 £  o  "I  roconncocovno^incDmcn^rocD^cocNco^^rtvN coioNCDt-Nxtccscn^coincocom^coinNoDroocNvcosro ^^^^^^(si(si (Nifsi^coMcocococo^<^v^^ininuii N  a o i w o o c o w o t N c o ^ ^ N o i n i o s c o r o c n i - i - o c n T - c o c D i f l ^ f N O i CO^-*-CMCN*-*-CN-»-^-CNCN*-*-'-*-*-^-*-^'-'-'--^CN*--r-^-»-*-*-  I 5|lllli||iiliIIII||?HllililiI s s  I  CO  CN  O  CD LO LO LO LO lO If) LO LO IO IO LO LO LO LO LO LO LO IO LO LO LO LO LO LO LO IO IO LO LO LO l O  I  8 S !  ?SSllllli||iiIlilIllllilililIl  ii I'* •S  '  5  I 6  fNCNCNCNCNcococococicorocococO'q'^r^i'^r^J'  si 82  Table B-2  Average Cumulative plant height of both heads  (cm)  Group 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  1 72.3 92.1 112.8 132.3 150.9 167.4 185.9 204.1 215.6 233.3 254.4 275.3 298.3 312.4 324.8 340.8 358.6 378.4 395.1 412.1 420.6 431.9 441.3 456.4 473.9 488.1 502.3 517.1 531.8 544.8 554.3 563.9  2 58.1 80.4 98.6 121.6 146.3 163.4 185.1 206.1 221.3 238.6 259.8 280.8 302.6 315.1 327.4 344.4 360.8 375.3 415.4 434.1 443.4 456.1 464.1 477.9 497.4 514.1 529.9 544.6 559.9 573.1 583.9 593.1  3 60.0 78.3 96.6 118.9 141.8 157.4 176.6 196.9 210.9 230.6 253.1 269.0 288.2 302.4 315.2 329.8 346.8 365.8 385.6 405.8 414.8 425.8 434.4 450.8 469.6 486.8 503.6 519.6 533.8 546.6 557.2 566.6  4 58.7 78.8 98.8 117.2 139.7 156.3 175.7 195.5 207.8 225.8 246.8 268.5 288.8 303.5 317.7 336.0 353.3 374.2 391.7 408.8 419.0 433.2 443.0 465.7 485.9 502.5 518.7 535.1 550.3 562.1 571.9 580.1  83  5 58.8 79.8 99.5 122.0 145.0 159.5 178.5 198.0 209.5 223.0 239.5 261.0 280.5 290.0 300.5 313.0 328.5 351.5 371.5 392.5 401.5 413.5 422.5 443.0 468.0 491.0 508.0 522.5 538.5 552.5 563.0 572.0  6 68.5 84.3 103.0 123.5 141.5 164.5 185.5 203.5 214.5 232.0 254.0 273.0 293.5 308.5 318.8 333.0 347.0 365.0 381.5 397.0 403.5 413.5 420.5 432.5 453.5 470.5 485.5 497.5 512.0 525.0 535.5 546.0  ONNricnoouio^TfNNn^cN^conoiaioconinTj-ocMONOeotD T r * v f * n v r t o c o * n n c o t o n n n n ( v i n t o c o T f r o n  CO CO CO  tDNLOCOS(00)T-OtOTtfMCOnS^tnT-CO(D*0)010C0400)4(DO(Bin CO cu COCJJT*r^COOT-CNCOT-TfC»COT-C£>COOCN'*'* n \ f c o n n \ f n c o n n n n * t t n n t i - n n c o ( O T f n n n r t CO 0) mOONCOCOLON'-OSO) co CD  z z z z z z z z z z z z z z z z z z z z z NnT-ificoo*tDNinoeotDO)mo)comni-(NNa)0'-tnotoNcoLnco N *M'N'coN'conntNTfcococonococNncinMcitf*xf -  CO a>  c o ^ i - c o i - ^ n i o o o c D O t o w i o N O O K O O T - o n o i o O ' t f f i c o m o o i i -  co co ^ » i o s c o u ) c N n o ^ i - c o c o n n M o n n o T - o N n o > o i ( D e o ^ ( B ^ ' - N  co 00'-rocOr\ICJ»(10innO)T-(DN10CDNIOC))T-cONOfflN  -*— CO 1  co NSn(ON(O^COC\l(DnOT-OCOlD'-(DLOCOeOlONOOi-OC)>N TfTj-^concococonwn^N'^nn^ncococoncocoocoN co cu nfflsiONOiosio^iooominooNiflcaconofflcofflT-coiotofflcoN nM^Q^ionvfTrrtnvfTfnnnvfrtnconconN •cf  -*—  1  co CO  CD  IfiCO^nOtN^COOfflT-oaffltfflOin^NNQNffiNfflOOCDTj-lXlNinO * * * c o * T f N ' M ' N - N T t T t n n c o n c o c i m c o n  E o  CO CD lOinSCNtNNC»CO*NlflT-l»Ni-0)T-fflOCDlOCOlO» * * n c o * T f n o T } v f T f * « v t n c O T r c O T f c o n n n n n  2  confflot^fflosifico^Gm'-iDffi^niniDorMininNffltDNncostD TfiOTfTfrtTfciTfconnnoconconnnnnconn  ^ x: a> CO CO  sa)^coioncNO^NtDnoicoNinror-T-Nco^nooso(SNtococo(DN TtN N TfTfTfTfTfrtCNCOTfcicoconncoTfncococinn  O) CO r±= c CD 0) CO CD  ,  -  CO CD NnTftnCDNCOCi)0'-CNnTflO(DNCOC))0'-CNCO*U)(ONCOffl r-T-T-T-T-r-T-T-CNCNCNCNCNCNCNCVJCNCNICOM CO CO  84  co-^in«a>rocNjcoocoh-cOT-(Nr^ TfTfconcocON'cocococoocococoNcocococon CO CO C O i - N O l O O O S M O O C M K l T f l O C M O  CO  CO CO  <<<<<<<<^<:<:<:$<: z z z z z z z z z z z z z z iriO'-i-onciiocointNifojoNoO'-scoioois vfTf^^^^nnciTfvf^cO'tconnncocococo  CO CO  <<<<<<<<<: z z z z z z z z z  _J  CO CO (DOtDONNUllOO^^OlOOO^COOltD'tCOCOCOOtD^CJ'-OCOtnO) CO CO fflNT-CDOJCOCO'-inCOCOOCOSlOlOCO ^ T j - T f T j - T f T f T r c O T f C O C O T r C O C O C O C N I C N I CO CO T"  <<<<<<<<^^:^<:^<; z z z z z z z z z z z z z z t T*  fe  Ifl  I -  O N c o N N i n ^ o i i o f f l ' - ^ t c O ' - n n ^ c o c o o c o c B i f l N s s  co <o i-OtCOSO*OOCNONIO(OCOT-NOO)SO)lf)COT-OC001IOninN TtTtTtCOCOTtTtCOTtTfTtcOCOCOCOCOCOTtCOCOCOCOCOTtTtCOCOCOCOCOCO co co  "g »  inc0OSOC0CNNOO(0'rS'-n*(001tD(ll(J)i-N'tNO00inNIDO TtTfTtcOCOCOTtcOTtTfcOTtcOTtTtCOCOCOCOCOCOTtTtTtTtTtcOCOCOCOCO  j=  ico 5CO  o  CO  E o  CO CO  iflooitcoiDiO'-cosiBOtfcostwioinrtT-niflN'-ncoNioioio ^TfTfiocOTfTfconcooTtoncoconcocoococoMon  TfCO^NT-^rtiOOT-0(tDTflOffltD*StDCONT-OC\|t-fflfflNO)COCO CO CO  o o  TrCOTtTtTfTtTfTf^TJ-TtTtcOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO  CO  CO  o CO CO  fe  #—  C J J O C O C O I O I O O T C N C O C O C O O C O T - C ^  cOTtTtTtTtTtcoco<r)cocOTtr\icocococNcococNcococ^  CD  o  CO CO  c (0  fe  CO CO  CO CO  CONOCOfflWNlOST-CS^OIOincNSiOlONNCanCOfflOincOlDSS TfTtiON'tfTfcococOTfcococococonrtcococonncocoo  CD  ^ T -l «O-CT O- N » -C TO-fT f- l C NO C<N-NNN ON CT >fIlC ON (N ON SN CC O O CO O) 0n 'n-r N t nO t * w  o  CO CO  s t o f f l  9!:5l<5S  ro  CO  T3  E £ to  Tf  •of CO CO  Tf  1^  r ~ CO o> CO r - CO T f CO o> 00 00 CO T f oo T f 00 T f m T f O) CO 00 in oi CO o> m 00 CO 1^ 1^ C\i oi oi CO 00 od oi CO in CO CO r-  m CM CO Ti- in T f IV 00 CM 00 CO in 00 O) 00 ed CO CO in od oi  in CO CM CO CM CO CO CO 00 CO CM Tr CO CD m CM CD CM m m m CO CO — CO T f CO CM 00 In m CO CO CO CO d o CO o o CO o CO CN CO in CO in o CO Tr CM CO i - oi oi CO i^: CO CO oo cn oi CO 00 oi o ci in oi oi CO 00 od 00 | v T  co  TJ  1  E  CU CO  Tf  oo CO CN  TT CO Ol i - in T — C 00 CO - oo D5 C O CO 00 in C M CO CM CO CO CM O O) CD CM in CO CM in C Om IV. |V. T - m O iv! C O CD in TT CM O CM T - Ol oi CO CO CO o CM in ^~ IV. o CO TT T — TT |v! IV. | v rvi 00 00 CO CD CO CO CM CO 1 ^ d d oi oi CO CO od CO CO T  CO  T3  s co  co CO co o> m o iv! •*~ CO in  CD T3  E  CD CO  m CO  CM  ^_ m ci cl s CM CM oi 00 TT  T—  iv  TT  z z z z z z z z z z z z z z z z z z z z z  i v T C m T f CO m i v m m CD r- m CO o> i v CM 00 CM 00 CM CO CM C Miv CO TT | v 00 ro 00 T - CO CM 00 CM CO CO o> q cn d T f iv. Oi CO CO CN in o> o 00 r v T f CD 00 00 CO CO CO oi oi oi oi oi oi CO CO CM Tf' in iri iri Tr d in CO oi oi oi TT  s  CO  TD  E cu co  Ti-  -4—'  CO OJ T — CD CO — r - r v CO TT 00 CO o m T f CO CD oo T f oi CM CM CO CO 1^  TD  E B co  o  00 O) LO CO 00 CO CD oi CO 00 CO  T  CO  CO CO T f CD o> 00 m CO m CO co T f iri co oi T— T— T— T—  TD  E cu  CO  CO CO  T— T f T f T f CM T— T—  T—  T—  d T—  m •K— CO CD in CO d CO oi CM T—  CO O) in 00 T f CM m CO T f O) CO T f T f co iri CM o> Tf d o CD od CO CM CO CO CM d CO CO  CD CO  73  oi  oi  y—  Tf  CO CO CO CO  d  Tf  CD CD 00 00 X— CO CO T f CD CD CO in 00 iri in CM CO T f in CO CO 00 1 ^ CO CO iri  Tf T—  Tf co 00 T f CD T— CD co CM CO in CM CO in T— T f CM 00 in T f CO CD T f CD T f o CO CO CO CD oi CD oi x— 00 CO iri cd oi od cd CO iri iri  x—  in x— CM •<- CM 00 CM CO m CM in co CD CO co CD CO CN O T — in CO CO o od T f oi CO 1 ^ oi 1^  X  -  T~  x—  CM CO in CD 00 T — oo CO CO  E &  CO — CO oo T f CO 05 00 in CD m CO CM co CO CO CO CD CD CO d CN CO CM CM iri iri CO CN 00 oi oi oi T CO d oi oi  CO CO  1  E & co  T f CM CO in OJ O) CM CO CO CO T - CO CD T — 1^- T f in co CO CO T f T f CO CM 00 d oi O) oi  iv CO  I  Tf  T-  d  i  •E co co  ro  TD  T -  m  TTO  (JQ O  ~:  co  CM  00 iri  co  Tf  T-  CM  T—  in  00  Tf  CM  iri  CD CO h - CO CO  co  C M r— a>CO 00 CO OJ CO oo TT ff CM x— CO in CO C O ^— CM Tf o 00 CM in CN iri CO T f o oo iri O CO iri iri CO iri CO oi CO CO CO CO CO iri  Tf Tf Tf m CO 1 ^ CO T f m 00 o> CO CD 05 00 T — CM T f CM CD 00 1^ CO CD CO in m o> 00 T f 0> CO Tf 00 CO m CO o O CO x— o Oi T f CO CD 00 CD oo d 00 oo o co CM •<- CO CM CM CM CM d d od CM T — oi d oi d d T - 00 CO iri CD 1^ 1 ^ 1 ^ CO iri oi d 1^ CO T-  s  1  E SCD  CO  o o  CO CO Tf CN  co  CO  E S co  CO in co CM T - Tf CN CD CO CO d m CM oi oi  il ^ • O in  T3 E  c O CO  .S  £  E oj  CO  -  1^- 00 Tf in CO CO in CO CDCM Tf T — in CM Tf T - CM oo CD in x— IV CM q oi <P 00 m CD 00 CO CD Tf CN o CD Tf od od 00 oi CO CO CO oi h-- CO CO CO CD CD oi oi  -•—<  co  '£  E  s  TD  2 Q  00 CO in CO CO CM Tf CM CO 00 in O) OJ Tf CO CO T — CD CN CN x— 1^ r ~ m CM CM CM Tf CO CN oo CO m o in CD x— o> 00 cp in in CO CO CD CO CM CD x 1 ^ od 1^ CO oi oi ro CO oi d d d od CO CO CO CO CO CO CO oi CO od  Tf x— in CD Tf Tf in CO CO LD CO CO CM Tf CD Tf x— Tf 00 T— CM d d co iri co oi CM Tf iri Tf T—  CO  si  00 CO CO OJ in CD in m O) 1 ^ CO CO 00 in •<- CD CD in CO T— 00 CO CO Tf in CD CM CO o Tf od Tf CO 00 d co oi Tco CO od oi od CO CO  x—  co  1  CMCOTfinCDI^OOO)OT-CNCOTfinCOI^OOO)OT-CNCO •"-T-T-T-T-T-T-T-CMCMCMCMCNCNCMCNCNCNCOCOCOCO  CD CD  86  s  U O C O r - O O C D O T - C N C O T f C O C O C O C O C O T f T f T f T f T f  CD ID CD CO C M i n 00 CD CO CO T— Tf o m in  CO  O CD CO ro If) CD C CM CO CM 00 cn CD r-^ oi  m  T3  in hin CO CO CM •r- O C M 0 0 CO CO CM ro o T o in CO CO CO CO 00 CD CO o CO o 00 CD CD CO CD i r i i r i CD CD CO oi 00 CJ) 00 CO i — CO  E  &  CJ) O) CN i n CD m 00 i n T— CM CO O) CO CJ) CM i n oi m CO CD O o CD ro CM CM r — CM o CM oi oi CO 00 cd CJ) oo o CO CD cci i n  CO  ^—  ro  <<<<<<:<:^g:^s:«:<:<:  73  z z z z z z z z z z z z z z m CM CO CO CD CJ) 00 CO i n m o CD CD C J ) C O 0 0 C J ) C O CO CM CD CM 00 ro CM CD CO CM CJ) o C O CO CD CO m CO ro' o ro' d o CD CO CJ) CO CJ) 00 cb cb  E  CD  55  T—  CO  T3  T—  E CD  i n co co co T f CM C O roi n co oo oo T t o T f roi n T t CM CM o o i - i - CN d  CO to  73  Tf Tf  E  z z z z z z z z z M co C O CN •sr r~- CM i n CM r — CO co i n CO roT t C i n Tip CM o oi CD roroo m o ro CO T— r- O ro' o roob CJ) roCJ) o o o b roro  CD CO  ro  c o T - c o c o c M T - m o o i n o o i - ~ o o c o c M C M i n i n T j - o o c N r o o o T t c o c N r o r - c o o c D t i d d N r b o i i o d ^ c M V o i b ^  CO 00 T— T f ro 00 CO CO m CO TCO T— ro o CD in C O C O 0 0 C D 0 0 C O C M C J ) C O C N iri o CJ) CD ob ob ro' CJ) ob CD ob ob iri CO  Tf CM ,— CO T"T— T— O co CM cb cd T-" CM O  Tf Tf o  E £ co oo i n  CO T3  E  S  in C O CO CD CO oo CJ) T f CO ro ro  s CcdM CM co  m  1 -  in  ^ z T— T— T— in C m C m T— C D C M C O C N C O C M O cp O ro T f T— Tf C M iri CD oi m 00 CM CD m o CM T f CO csi O CJ) cb CM d CJ) ro d ob ro  co CO TJ  E .22 co  m  CO CO m r ~ 00 CM T f m ro CO CO CO ro T f CO CD CO 00 ro 00 m ob CO CO CM ro CO ro ro ro d CJ) d CJ) ob ob CO ob Tf  C M i n ro iri  CO  •a E  ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ z z z z z z z z z z z z z 00 mT f CO CN oo i n CO CJ) T— CM r- Tj" m cb 00 CO CO o ro ro CD CO r-' ob CO CD CD CO i r i  rT—  in C O m CO CM Ti- CO ro ob ob er! d ro T—  co  o m T -  ro'  CO o CO CD CO ro ro ob  £  CO  T3 o o 0)  0 0 oo T— O m CM co C N i n T— ro oo CM ro c o T f co co m •Tf CM T f i n T— CO C in TiCM i n CM CO CJ) CM iTn" CJ) ro ro' T— 0 0 00 00 00 CN m CM TT T " ro' CM CO CM CO d T • CO d C O O ) c b o b ro to -  E  o  -  -  CD  o  14.7  CO ro  73  i S  £.  CO C O ro 0 0 o ro T~ ro' ob  o  co  73  co  CO  Tf O M M CO 00 0 0 0 TiN CO i n C O co CO 0 T— CO oro CO oT f C O 00 C 00 m CO CO CM O CM C 00 CO C o CM ro C CO CO ro C o •<iin o 00 oo d ob ob d ob Tf C i r i cri M i r i i r i cb cb ob r > ^ ob r-^ C J ) CM r— CJ) O) CO CO CO* r-^ ro in  J) CM C CM T f CO cb d  to 73  Tf CJ) CO ro 00 i n 00 CO ro 0 CM CO CO TICO ro ro 0 CD CO CO CD CN CO CO CO 1- ob dO csi ob ob T— d d ro ob d C CO CJ) CO i r i r-i  CO oo CO CM m r~ 0 0 T f CM 00 CM d J) ob CO CM CM i r i ro ob T— C CJ) CJ) CO CO  E CD  X— r- CJ) m CD r~ CO CO 00 •sl- CJ) CO CO r-- LO C OC CM O m CO CO CN C oo CO to CO o co Tl- 00 T f o m CO O CO 00 ^1 CM Csi o C O oi d CM CO CJ) cb cb CM cji o i ob d CD CO i r i CO cd CO  CO  §  l  ° cd " ED  "? I *  CO  1-  in  CO CD 00 CM C O CM o  CD  m  CO  CO  2^ O  "D  io c  co  o  £  in C O CO M ro O T f ro oM C oO C d m CO cb CM C T- C O cb cb d d CO ro T—  a  T—  T—  Tf i n in CM CO CM CO ro co CM C O CN 00 T f CM 00 i r i CM i n CO CN CM m 00 ro T— i n CN CD CO CO CO CO CO CD r-^ r-' ob ob ob ob  E CO  **  E «  co  ll  CO m CJ) CM cb  .2  Tf in T—  o cb  CO  CO CM m d d  T -  i- C CN CO CO CO CM CO C O CD CO O CO ro TlO co CM C Ji) CM CO 00 ro CO O o N- i n i r CJ) CJ) CJ) r-' hCD CO CD tO CO r-^ CJ) r-^ ob T -  T -  to  T—  1  ob  00 CO iri CO CO ••cr  ro o  73  E a> co  Tf  m CO T—  CM CO i n CO 00 ro o 00 ro o CM CO Tl" i n CO 00 ro O CM CM CN CM CM CM CM CM CN CN CO CO CO CO CO CO CO co CO eo TiTI-  CD CD  87  T-* Tf  CN CO Tf  Tf  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0058642/manifest

Comment

Related Items