UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Compost utilization in vegetables greenhouses industry Wong, Raymond Wa Leong 2002

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2002-0606.pdf [ 9.8MB ]
Metadata
JSON: 831-1.0058642.json
JSON-LD: 831-1.0058642-ld.json
RDF/XML (Pretty): 831-1.0058642-rdf.xml
RDF/JSON: 831-1.0058642-rdf.json
Turtle: 831-1.0058642-turtle.txt
N-Triples: 831-1.0058642-rdf-ntriples.txt
Original Record: 831-1.0058642-source.json
Full Text
831-1.0058642-fulltext.txt
Citation
831-1.0058642.ris

Full Text

Compost Utilization in Vegetables Greenhouses Industry by Raymond W a Leong W o n g B . A . S c , The University of British Columbia, 1998 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF M A S T E R O F A P P L I E D S C I E N C E in T H E F A C U L T Y O F G R A D U A T E S T U D I E S Department of Chemical and Biological Engineering W e accept this thesis as conforming to the required standard T H E U N I V E R S I T Y O F BRITISH C O L U M B I A July 2002 © R a y m o n d W a Leong Wong, 2002 In p resent ing this thesis in partial fu l f i lment of t h e requ i remen ts for an advanced degree at the Univers i ty of Brit ish C o l u m b i a , I agree that t h e Library shall make it f reely available f o r re ference and s tudy. I fu r ther agree that permiss ion f o r extensive c o p y i n g o f th is thesis f o r scholar ly pu rposes may b e 1 g ran ted by the head of m y d e p a r t m e n t or by his o r her representat ives. It is u n d e r s t o o d that c o p y i n g o r pub l i ca t i on of this thesis f o r f inancial gain shall n o t b e a l l o w e d w i t h o u t m y w r i t t e n permiss ion . D e p a r t m e n t o f CHLTHICIC g/QcD^s^ t^u^m^ The Univers i ty o f Brit ish C o l u m b i a Vancouver , Canada Date A<4t.ti$7 /2 2Da>^ DE-6 (2/88) ABSTRACT This study evaluates the utilization of greenhouse compost as growing media in commercial vegetable greenhouse. T h e greenhouse compost was generated from greenhouse waste as media and the yellow cedar sawdust was the conventional growing media used in the B . C . greenhouse industry. A series of analysis was done on the greenhouse compost and sawdust to compare their physical and chemical characteristics. T h e results suggested the greenhouse compost provides higher moisture retention and density, and lower porosity; for optimal growing conditions. A full growing trial was conducted to grow beefsteak tomatoes. T h e study was setup in a commercial greenhouse with independent control environment. T h e media tested were pure sawdust media, a mixture of 2:1 sawdust to greenhouse compost by volume, and pure greenhouse compost media. E a c h media was irrigated with either N1, N2 or N3 nutrient recipes. N1 was the conventional nutrient recipe. N2 was catered to optimize the mix and the compost media. T h e N2 recipe was similar with N1 with an increase amount of ammonium concentration. N3 was the same as N2 with a lower E C value to compensate the high E C in the pure compost media. T h e study was conducted for 10 months. During the trial, the fruit yield, fruit quality, plants growth and conditions, p H & E C were monitored. T h e study indicates greenhouse compost is suitable alternative as a growing medium. Greenhouse compost was able to achieve similar yield, crop health and fruit quality when compare with sawdust media. T h e results from pure compost indicate a significant improvement in fruit size. In addition, greenhouse compost has p H buffering capability to the conventional system. Finally, addition of greenhouse compost to yellow cedar sawdust does not appear to increase the rate of degradation of the sawdust. ii Table of Contents Abstract 1 1 List of Tables v List of Figures V l Acknowledgements v " Chapter 1 Introduction 1 1.1 Background and Significance 2 1.1.1 Waste management 2 1.1.2 Growing Media for Greenhouse Vegetables 3 1.1.2.1 Sawdust 3 1.1.2.2 Rockwool 3 1.1.3 Compost as Growing Media . . . . 4 1.2 Objectives 9 Chapter 2 Literature Review 10 Chapter 3 Methods and Materials 14 3.1 Growing Media 14 3.2 Tomato Plants 17 3.3 Nutrient Recipes 17 3.4 Greenhouse Setup and Layout 18 3.5 Crop Maintenance 22 3.5.1 Irrigation 23 3.5.2 Lowering 23 3.5.3 Deleafing & Pruning 24 3.5.4 Pollination 25 3.5.5 Pest and Plants Health Management. . . 26 3.6 Measurement 27 3.6.1 Plant Height 27 3.6.2 Stem Diameter 27 3.6.3 Leaf Length 27 3.6.4 Drain/Feed Measurement 28 3.6.5 Fruit Picking and Grading . . . : 29 3.6.6 Shelf Life Analysis 30 3.6.7 Plant Tissue Nutrient Analysis 30 iii Chapter 4 Results and Discussion 31 4.1 Growing Media Test 31 4.1.1 Pre-Season Media Analysis 31 4.1.2 Post-Season Media Analysis 35 4.2 Tomato Growing Trial 38 4.2.1 Fruit Yield 38 4.2.2 No. of Fruit 41 4.2.3 Shelf Life Test 42 4.2.4 Fruit Size 42 4.2.5 % of Culls 45 4.3 Plant Growth 45 4.3.1 Plant Height 47 4.3.2 Stem Diameter 47 4.3.3 Leaf Length 47 4.4 Disease 48 4.5 Plant Tissue Nutrient Analysis 49 4.6 Nutrient Recipe and Growing Media 50 4.6.1 E C & p H 50 4.6.2 Ammonium and Growing Medium 52 Chapter 5 Conclusions & Recommendations 53 5.1 Conclusions 53 5.2 Recommendations 54 References 56 Appendix A Fruit Yield and Quality Tracking Tables 58 Appendix B Plants Height Measurement Tables 81 Appendix C Plants Leaf Length Measurement Table 84 Appendix D Plants Stem Diameter Measurement Table 86 iv LIST OF TABLES Table Page 1 Summary of plants height and fruit yield(water) 6 2 Summary of plants height and fruit yield(nutrient) 7 3 Growing Media 15 4 Media Analysis Methods 16 5 Field Test Nutrient Solutions 17 6 Field Test Treatments 19 7 Field Test Planting Layout 19 8 Pre-Season Media Physical Characteristics 32 9 Media Nutrient Characteristics 33 10 Media Chemical Characteristics 33 11 Media Microbial Counts 34 12 Post-Season Media Density and Aeration porosity 37 13 Post-Season Media Chemical Characteristics 37 14 Total Fruit Production 39 15 Tomato Shelf Life Results 42 16 Fruit Quality 44 17 Plant Growth Summary 46 18 Disease Incidence 49 19 Leaf Tissue Nutrient Analysis 50 A-1 Biweekly Fruit Yield and Grading Summary 58 A-2 No. Of Fruits set for all groups 74 A - 3 Total Tomato Yield for all groups 76 A-4 Total of X X L & X L Fruit Yield for all groups 78 A-5 Average Fruit Size for all groups 80 B-1 Actual Plant Height Measurement for all groups 81 B-2 Average cumulative plant height for all groups 83 C-1 Actual Leaf Length Measurement for all groups 84 D-1 Actual Stem Diameter Measurement for all groups 86 V LIST OF FIGURES Figure Page 1 Preliminary Experiment Layout 5 2 Preliminary Trial - Plants irrigated with water 5 3 Preliminary Trial - Plants irrigated with nutrient 7 4 T h e test greenhouse layout 20 5 Test Greenhouse setup 21 6 Growing Trial Setup 21 7 Nursery Plants just brought to the greenhouse 22 8 Nursery Plants ready to be planted 22 9 Irrigation unit 23 10 Lowered Plants 24 11 Plants and Leaves after deleafing 25 12 Bee Hives 26 13 Drain Station 28 14 Picked Tomatoes 29 15 Grading of Tomatoes 29 16 Total cumulative tomato yield comparison 38 17 Total cumulative no. of fruit set comparison 41 18 Total cumulative yield of large fruits comparison 44 19 Cumulative plant height comparison 46 20 Drain pH comparison 51 vi ACKNOWLEDGEMENTS This project was funded by British Columbia Investment Agriculture Foundation Program (IAF) and Western Greenhouse Growers Society ( W G G S ) . T h e author wishes to gratefully acknowledge the contribution of Dr. Victor Lo without whose contributions, the research would not have been as thorough. Sincere appreciation is extended to Dr. Anthony Lau and Dr. Tony Bi for their guidance and input to the thesis research. Special thanks to Mr. William Cheuk and Mr. Bud Fraser for their help to accomplish this research project. Deep appreciation to Vision Envirotech International C o . Ltd. to provide the greenhouse facility for the research and Houweling Nurseries Ltd. for providing tomato seedlings and propagation for the growing trial. T h e author once again expresses gratitude for their helpful review of this thesis. vii < Chapter 1 INTRODUCTION Greenhouse organic wastes are of great concern to the environment. A s the greenhouse industry continues to expand, more wastes are produced and taken up valuable space in the landfill. However, these wastes are rich of fertilizers and are a wonderful source of organic materials for recycling. Composting is the ideal solution to treat these organic wastes and to generate compost as growing media or soil amendment. High quality compost has proven to be able to improve crop health and increase fruit production. In 1997, a research project funded by W G G S (Western Greenhouse Grower Society) and U B C (University of British Columbia) was conducted to investigate the possibility to compost these greenhouse organic wastes. T h e project successfully demonstrated greenhouse organic wastes could be converted into high quality compost. In this research, the compost generated from greenhouse organic wastes was used as growing media to conduct a full season of greenhouse tomatoes growing trial. T h e physical and chemical characteristics of the media, plants condition, and production were examined and compared with conventional growing method. 1 1.1 BACKGROUND AND SIGNIFICANCE British Columbia has one of the biggest vegetables greenhouse industries in the world. T h e B C industry is just behind Holland, Israel & Ontario in terms of greenhouse vegetable production volume. T h e year round mild climate and abundant natural resources make British Columbia the ideal location for greenhouse operations. The greenhouse industry has doubled in size in the last two years. T h e greenhouse area expanded from 300 acres to approximately 600 acres within this period. With such rapid expansions, ways of waste reduction and recycle of material have to be explored. Using the organic wastes from the greenhouse to generate compost and then, reuse the compost as growing media is the perfect solution for both wastes reduction and recycles resources. If this model is possible, a closed greenhouse cycle can be created with essentially no organic wastes generated from this industry. 1.1.1 Waste Management E a c h year, the greenhouse industry generates approximately 20,000 tonnes of organic wastes. T h e compositions of the organic wastes are old sawdust media, fruit rejects, leaf pruning, and the year-end plant debris (vines, stems, leaves). T h e most common practice of handling these wastes was to truck to landfill for disposal. With composting, these organic wastes can be reduced and converted into high quality compost. With a well-controlled composting process, 70% reduction of the organic wastes can be achieved. For a 10 acres greenhouse operation, approximately 210 tonnes of organic wastes is generated yearly. If all the materials are processed for composting, approximately 90 tonnes of compost can be produced. T h e greenhouse industry is the perfect fit for composting. T h e industry generates a steady and relatively clean waste 2 stream. Basically, the composting process can start without bringing in any extra material to trigger the process. T h e fruit rejects, leaf pruning, and the year-end plant debris provide the nitrogen source while the old sawdust provide the carbon source for the bacteria to decompose the waste. Moreover, the trucking cost for the waste disposal can be greatly reduced. 1 . 1 . 2 Growing Media for Greenhouse Vegetables Currently, the majority of the greenhouses in British Columbia use yellow cedar sawdust or rockwool as growing media. However, both media has their advantages and disadvantages. 1 . 1 . 2 . 1 Sawdust Sawdust is the most common vegetable greenhouse growing media in British Columbia. Sawdust is the shavings from lumber production. It is a by-product from sawmill. Hence, Sawdust is readily available in the Pacific Northwest and it is fairly inexpensive. Untreated yellow cedar is the preferred kind of sawdust used as growing media in B C . It is chosen for its availability and relatively low degradability among other kind of sawdust. T h e advantages of sawdust are the porous physical property for root development and the ability to have no disease or virus attached onto it. However, the disadvantages are the inability to bond with the nutrients from the feed, and the tendency to break down near the end of the growing season. 1 . 1 . 2 . 2 Rockwool Rockwool is the most common greenhouse growing media in the world. Rockwool is a fibrous insulating material produced from granite like rock called diabase or basalt. T h e fibres are glued with resins to produce blocks or slabs with wetting agents to serve as growth medium 3 (Papadopaulos, 1994). T h e advantages with rockwool are its high water holding capacity and durability. Rockwool can usually last for 2 to 3 growing seasons. T h e disadvantages are expensive and high maintenance. T h e rockwool block needs to be disinfected before reuse for every growing season. Moreover, rockwool is very difficult to dispose (Robertson, 1993). 1.1.3 Compost as Growing Media A s mentioned earlier, the compost generated from greenhouse organic wastes was demonstrated to be able to produce high quality compost. T h e volume of compost generated equals to 30% of all the sawdust media needed for the greenhouse operation. There are many advantages of introducing compost as growth media. Compost can increase nutrient availability for plants, improve yield and plant growth (Mathur, 1996). Applying compost as growing media in greenhouse can recycle nutrients from the previous crop back to the next growing season. Hence, reduction of fertilizer can be achieved. Compost also has the ability to suppress several plant diseases (Ketterer, 1992). Moreover, the cost of production can be benefited from the reduction of sawdust media, waste disposal and fertilizer usage. In 1998, a preliminary growing trial was conducted for 5 months to evaluate the different kind of growing media best suited for greenhouse operations. 6 kinds of media were tested to grow tomato plants: • 100% Sawdust • 30% Sawdust + 70% Greenhouse Compost • 30% Sawdust + 70% Commercial Mushroom Compost • 100% Peat Moss • 30% Peat Moss + 70% Greenhouse Compost • 100% Greenhouse Compost 4 E a c h media had 4 replicates and was irrigated with water. The experiment layout is shown in Figure 1 and Figure 2. T h e plants heights and fruit yields were monitored on a weekly basis. Figure 1 . Preliminary Experiment Layout Figure 2. Prelim. Trial - Plants irrigated with water 5 Table 1 . Summary of plants height and fruit yield(water) Media Irrigated with Water Cumulative Height (cm) Cumulative Fruit Yield (kg) S a w d u s t 121.84 0.9 7 0 % S a w d u s t 3 0 % G r e e n h o u s e C o m p o s t 154.76 2.3 7 0 % Sawdus t 3 0 % C o m . Mush . C o m p o s t 132.15 0.9 Peat M o s s 135.43 1 7 0 % Peat Moss 3 0 % G r e e n h o u s e C o m p o s t 146.33 1.9 G r e e n h o u s e C o m p o s t 206 .75 4.1 T h e summary of the plants growth and fruit yield is shown in Table 1. W h e n the tomato plants were irrigated with water, the plants grown on sawdust, peat moss, and commercial mushroom compost performed poorly in both fruit production and plant height. T h e plants grown on pure greenhouse compost performed the best among all media. T h e plants grown with 30% greenhouse compost mix also showed improvement in both plants growth and fruit yield. However, the mix with sawdust performed better than the mix with peat moss. This is probably due to the increased moisture content of the mix media with peat moss. Peat moss has a higher moisture retention capacity than sawdust. The mix with sawdust and compost had a better moisture ratio (less wetness) than the mix with peat moss and compost. T h e reason for the mix with sawdust and commercial mushroom compost to perform poorly was due to the instability of the compost. T h e mushroom compost was not cured properly and was not suitable for use as growing media. T h e main reason being that greenhouse compost has nutrients within unlike all the other media. Hence, the plants grown on compost was able to survive despite the lack of nutrients from the feed. Sawdust and Peat moss had no nutrient value. Therefore, the plants were not able to extract any nutrients for growth. T h e main reason for the plants grown with commercial mushroom compost to perform poorly was due to the instability of the compost. If the curing process was not done properly, the 6 compost will be unstable and pathogens will still be presented in the media. T h e pathogens will have a significant negative effect on plants. Base on the positive results from the growth and yield trial with water, another experiment was done to examine the performance of tomatoes plants grown on 100% sawdust, 70% sawdust mixed with 30% greenhouse compost, and 100% greenhouse compost with conventional greenhouse nutrient feed. T h e setup was similar to the previous experiment and is shown in Figure 3. Again, 4 replicates were prepared for each media. T h e plants' heights and the fruit yields were monitored. Figure 3. Prelim. Trial - Plants irrigated with conventional greenhouse nutrients Table 2. Summary of plants height and fruit yield (Nutrient) Media Cumulative Height (cm) Cumulative Fruit Yield (kg) Sawdus t 375.75 23 7 0 % Sawdus t 3 0 % G r e e n h o u s e C o m p o s t 412.75 26.2 G r e e n h o u s e C o m p o s t 420.5 26.3 7 T h e results from this experiment are shown in table 2. O n this experiment, greenhouse compost was further demonstrated to be beneficial for greenhouse vegetables. With the introduction of greenhouse compost to the growing media, the plants grew approximately 10% more in height and produced 13% more in fruit yield. For a 10 acres greenhouse operation, 13% increase in yields equals to 338,000 kg of addition tomatoes production (assumed annual production of 65 kg/m 2). Moreover, the relationship between the amount of compost application as growing media and fruit production was observed. T h e experiment indicated the fruit production did not improve significantly with more greenhouse compost as growing media. T h e fruit yields were relatively the same for the plants with 100% compost and 70% sawdust mixed with 30% compost. T h e results from the preliminary trial showed several positive potentials of using greenhouse compost as growing media. A full season growing trial was conducted to further investigate the effect of greenhouse compost as growing media. 8 1.2 OBJECTIVES T h e objectives of this thesis research are: 1 . T o compare the chemical and physical characteristic of the different growing media. 2. T o evaluate the use of greenhouse compost as growing media for a commercial tomato greenhouse operation. 3. T o evaluate the nutrient strategy for growing with compost media. 4. T o determine the effect of the growing media and nutrient strategy on the tomato plants via measurement of the plants growth, fruit yield and quality. 9 Chapter 2 LITERATURE REVIEW Compost used as growing media should be consistently high quality to ensure reliable plant growth (Spiers et al., 2000). Quality control during production should ensure adequate maturity and both chemical and physical properties (Inbar et al., 1993). T h e keys to maintain high quality compost are to have a consistent waste stream and an ample supply of oxygen. Consistent waste stream ensures each batch of compost maintain with the same mixing ratio, moisture content, and C : N ratio. T h e oxygen level is very important in the composting process. T h e bacteria require the presence of oxygen in order to degrade the organic waste. If the organic material is not fully degraded by the bacteria, the microbial will consume oxygen and soluble nitrogen from the growing media at the expense of the plant roots (Spier et al., 2000) Compost has the ability to improve nutrient retention, pH buffering capacity, reduction in fertilizer and suppression of soilborne diseases (Hoitink et al., 1997). However, Compost is usually not suitable as a sole growing medium. This is due to its inadequate airspace, high salt content, and high p H . T h e study indicated compost should be used as an amendment to growing media at a rate no greater than 30% (Spier et al., 2000). A study demonstrated that compost application as growing media can change the form and amount of plant-available nitrogen within a growing season. Nitrogen in conventional chemical fertilizers is immediately available for plant uptake. Fertilizer nitrogen is rapidly converted to NO3 through nitrification. Hence, nitrogen will be leached out 10 or converted to N 2 0 (volatile gas). In contrast, nitrogen in compost is in organic form. T h e conversion of organic nitrogen to nitrite is much slower than of inorganic fertilizer. Substitution of compost for nitrogen fertilizer can decrease nitrification rates by 25% and yet without compensate on yield (Ezanno etal . , 1999). Another study showed compost-based systems tend to have more plant-available nitrogen in ammonium, an inorganic nitrogen source that does not get converted to N 2 O or leached (Ezanno et al., 1999). The use of high ammonium nutrient solutions in compost based system has been shown to have a positive effect on rooting. However, excessive amount of ammonium may be detrimental to plants (Ansermino et al., 1995) There were several researches on compost utilization in tomato production. In most cases, compost was able to improve plants' growth. Maynard et al. (2000) studied the effect of applying leaf compost to reduce fertilizer use in tomato production. T h e study showed tomato yield from plots amended with leaf compost and no fertilizer was equivalent to the fertilized control plots. The greatest yields were from plots amended with compost and the full rate of inorganic fertilizer. A trial was done with the application of yard trimming compost for tomato transplant. A combination of compost, peat, and vermiculite were mixed into five types of media: 0:70:30(control), 18:52:30, 35:35:30, 52:18:30, and 70:0:30%. T h e result showed the plants with increased tomato seedling leaf area and shoot dry. In addition, the plants with compost had higher root volume and greater stem diameter than the control. However, the improvements decreased linearly as compost rate increased. T h e main reason is due to the high E C of the compost, which restricted plant growth (Ozores et al., 1999). 11 Another study was performed using sugarcane filtercake compost as a partial substitute for inorganic fertilizer for tomato production. T h e plants were fertilized with 0, 50, & 100% of (153N-134P-280K). The plants were then amended with or without compost. T h e plants' height, stem diameter, shoot weight, fruit yields, and fruit size were measured. T h e result showed the plants with compost amendment had heavier shoots, thicker stems, higher total and early marketable fruit number and weight and larger fruit size (Stoffella et al., 2000). Research was also conducted with the use of leaf compost to reduce fertilizer cost for tomato production. T h e result showed the plants with compost amendment and no additional fertilizer had yields equivalent to the control with full fertilization. There were no significant differences with the yields from the unfertilized compost-amended plants and the control with fertilizer. W h e n the plants with compost were fertilized with inorganic fertilizer, the yields were increased from 21 to 28 % (Maynard, 2000). Several researches indicate that compost amendment was able to increase tomato yields and improve soil conditions. Tomato plants with Municipal Solid Waste (MSW) compost amendments of 25 and 50 tons per acre were compared to the control with no compost amendment. The plants with 25 and 50 t/a of M S W compost amendment had an increase of 23 % and 38% in yield respectively. In terms of soil improvement, the soil amended with M S W compost was observed to have an increase in p H , organic matter, water holding capacity, and Nitrate-nitrogen level (Maynard, 1995). 12 Besides tomato production, compost applications were tested with other crop. In this research, compost value on pepper transplants was investigated. T h e pepper transplants were tested with media composed of peat moss, perlite and vermiculite and the same mixture of media plus the addition of 20% high quality compost. T h e result showed the compost-amended media significantly increased plant height and stem diameter, leaf area, leaf dry weight, stem dry weight, shoot dry weight, and root dry weight. In terms of yield, the plants grown in compost-amended media out-yielded the control plants by 20% (Granberry et al., 2001). Even though a fair amount of research was done with compost growing trial on tomatoes. However, most of the research was done on field tomato production. T h u s far, no research was conducted to evaluate compost as growing media in a commercial hydroponics inorganic greenhouse environment with continuous nutrient feeding. This study is very important for the future development of the greenhouse industry worldwide. 13 Chapter 3 METHODS AND MATERIALS T h e setup of the experiment consisted of equipment and materials from conventional greenhouse operations, beefsteak tomato plants with rockwool blocks, yellow cedar sawdust, and greenhouse compost. A full season (10 months) of growing trial was conducted. T h e experiment took place in a test greenhouse at Vision Envirotech Greenhouse in Surrey, British Columbia. Details of the setup are described in the following sections. 3.1 GROWING MEDIA Two materials were chosen as growing media: yellow cedar sawdust and greenhouse compost. T h e sawdust was provided for us from the greenhouse operations. Yellow cedar sawdust is the most common vegetable greenhouse growing media used in British Columbia. The sawdust was untreated to prevent any chemical contamination or toxication to the plants. T h e greenhouse compost was generated in July 1998. This compost batch was produced from greenhouse tomato plants and fruit wastes, alder bark hog fuel, and used sawdust. A pilot-scale, in-vessel composting system built for the previous greenhouse composting study was used to process this batch of compost. During the composting process, the maximum temperature of 6 5 ° C was reached to ensure no pathogens can survive. T h e feedstock was composted for approximately 30 days in the container, cured for several months, and screened to size before usage. 14 T h e growing media for this study is shown in Table 3. Three types of growing media were chosen for this experiment: 100% sawdust, 67% sawdust mixed with 33% greenhouse compost, and 100% greenhouse compost. T h e mixing ratio was based on the volume ratio of the compost that can be generated from a 10 acres greenhouse operations and literature review. T h e amount of compost can be produced in a greenhouse operation equal to approximately 1/3 of the sawdust media needed for the greenhouse operations. T h e three types of media were then put into a 30L white plastic bag for support. E a c h bag had enough media to support 3 plants. Table 3. Growing Media Growing Media Mixing Ratio Yellow Cedar Sawdust S 100% Yellow Cedar Sawdust / Greenhouse Compost SGC 2:1 v/v Greenhouse Compost GC 100% Before the growing trial, the physical, chemical and microbiological characteristics of the sawdust, greenhouse compost, and sawdust / compost mixture were measured. This was done to determine the differences of each media and to compare the various properties of the media after the growing season. Table 4 illustrated the methods for all the analysis. 15 Table 4. Media Analysis Methods Test Laboratory Method Moisture UBC Oven-drying gravimetric (Amer. Soc. Agron., 1982) Bulk density UBC Gravimetric/volume estimation (Cornell, 1999) Particle Size UBC Manual Dry Sieving Porosity - pre-season* Porosity - post-season* UBC Soilcon Laboratories Gravimetric water saturation and drainage (Cornell, 1999) Desorption from saturation under 10 kPa Total Nitrogen UBC Ignition at 950 °C in Leco FP228 Nitrogen Determinator Total Organic Carbon UBC Combustion at 680 °C in Shimadzu Total Organic Carbon Analyser with Solid Sampling Module Nutrients Norwest Labs (Langley, BC) CMPT-Turf CEC Norwest Labs CL11 pH, EC UBC 10x dilution distilled water extraction (shaken and centrifuged) Total Bacteria and Fungi Cantest Laboratories (Burnaby, BC) Standard Plate Count in Solid Material (bacteria) Yeast and Mold Analysis in Solid Samples: Peptone water rinse, PDA medium • Pre-season porosity measurements of the media were done at U B C on bulk materials. At season end, to reflect actual in-situ porosity the bags were taken to Soilcon Labs (Richmond, BC) and core-sampled for water retention, as a reflection of aeration porosity. Core samples were taken at about 1" below the surface (near mid-level). 16 3.2 TOMATO PLANTS A total of 291 tomato plants were used for this trial. T h e tomato variety used was called "Mississippi", a type of beefsteak tomato. This cultivar was chosen for its ability to withstand heat and fast growth to compensate for the late start in February. T h e seeds were from Holland and were propagated by Houweling Nurseries Ltd. T h e tomato plants were seeded on February 4, 1999. T h e seeds were grown in plugs and then transplanted onto rockwool blocks for propagation. T h e tomato plants were delivered to the test site after 21 days of propagation. The plants were then planted into the media bags on February 25, 1999. The tomato plants were spaced at 3.75 shoots/m 2 , which simulate the convention greenhouse environment. T o create this spacing, the plants were double-headed to generate two growing tips right after planting. 3.3 NUTRIENT RECIPES In this study, three types of nutrient recipes were used to irrigate the crop. T h e nutrient recipes are listed in Table 5. Nutrient solution 1 (N1) was the conventional or typical commercial feed. Nutrient solution 2 (N2) had an increase in ammonium concentration. This was based on the hypothesis that ammonium would benefit yield while the mix media and pure compost media provided buffering to prevent acidification. Nutrient solution 3 (N3) had the same recipe as nutrient 2, with a lower E C by dilution to compensate for the high E C from the greenhouse compost. Table 5. Field Test Nutrient Solutions Nutrient Average EC Recipe Average ammonia as % of nitrogen N1 - Conventional 3.2 1 4.3 N2 - Modified 3.1 2 6.4 N3 - Modified 2.8 2 6.4 17 All the nutrient recipes were generated from inorganic fertilizers. Fertilizers were mixed into either A or B Tanks . A Tank fertilizer consisted of Calc ium Nitrate and Iron. B Tank fertilizer consisted of Potassium Nitrate, E p s o m Salts, Mono Potassium Phosphate (MKP), Potassium Chloride, Manganese Sulphate, Zinc Suphate, Borax, Copper Sulphate, and Sodium Moybdate. T h e mixing ratio changed periodically in accordance to the weather, and plants conditions. In most cases, the mixing ratio was the same as the conventional greenhouse operations. 3 . 4 G R E E N H O U S E S E T U P A N D L A Y O U T T h e field test was conducted in the test greenhouse located at Vision Envirotech Greenhouse in Surrey. T h e total area of the test greenhouse is 153 m 2 . T h e test greenhouse is a "Venlo" type glass greenhouse. T h e test greenhouse has all the climate and irrigation control equipment for commercial operation. The computer control system for the test greenhouse is called "Previa". It is the most common and the leading brand of greenhouse control computer software worldwide. Four treatments were assigned to examine the two media and the three nutrient recipes as shown in Table 6. E a c h treatment was divided into 3 north-south rows (A, B, C) , which were interspersed as evenly as possible in the east-west direction as shown in Table 7. Two treatments were assigned to test the pure greenhouse compost. E a c h treatment had only a single end row. This is due to the space constraint of the greenhouse. T h e layout is shown in Figure 4. 18 Table 6. Field Test Treatments Group Growing medium Feeding No. of rows 1 Sawdus t N1 3 2 Sawdus t N2 3 3 S a w d u s t + G r e e n h o u s e Compos t , 2:1 v/v N1 3 4 S a w d u s t + G r e e n h o u s e Compos t , 2:1 v/v N2 3 5 G r e e n h o u s e C o m p o s t N2 1 6 G r e e n h o u s e C o m p o s t N3 1 Tota l 14 Table 7. Field Test Planting Layout Row No. Treatment Replicate No. of plants 1 (East) X X 0 2 X X 0 3 6 A 18 4 2 A 21 5 3 A 21 6 4 A 21 7 1 A 21 8 2 B 21 9 3 B 21 10 4 B 21 11 1 B 21 12 2 C 21 13 3 C 21 14 4 C 21 15 1 C 21 16 (West ) 5 A 21 Total • 291 19 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N3 • 100% GC • 70% S + 30% GC Q 100% S Figure 4. Test Greenhouse Layout T h e test greenhouse was covered with white plastic sheets as ground cover to reflect light for the crops and to keep the weeds from growing in the greenhouse. T h e media bags and the irrigation lines were laid in rows. E a c h tomato plants were supplied with nutrient solution from drippers. T h e volume of the dripper was 2L/min. T h e setup of the test greenhouse is shown in Figure 5 and Figure 6. 20 Figure 5. Test Greenhouse Setup Figure 6. Growing Trial Setup 21 3 . 5 C R O P M A I N T E N A N C E Lots of choirs were involved in growing tomatoes. A s the plants were brought to the greenhouse, they were placed on top of the media bags with a dripper placed into the rockwool block for irrigation. This was done to generate the roots to grow out of the rockwool block. A s soon as the volume of roots at the bottom of the rockwool block were significant, the plants were then planted into the media bags. T h e nursery plants at the beginning of the growing trial are shown in Figures 7 & 8. Figure 7. Nursery Plants just brought to the greenhouse Figure 8. Nursery Plants ready to be planted 22 3.5.1 Irrigation Irrigation was done via the greenhouse computer control. Each feeding was approximately 100mL/dripper. T h e amount of feedings per day was determined by the setting on the computer. Irrigation varies pending on light level, outside and inside temperature, length of days, plants conditions, and drain volume. Irrigation drippers had to be checked regularly to ensure they were not plugged. T h e irrigation unit of the test greenhouse is shown on Figure 9. Figure 9. Irrigation Unit 3.5.2 Lowering A s the plants grew in size and length, T h e tomato shoots were long, heavy and brittle. Plastic twines and clips were used to hold the plants in place in order to avoid any breakage to the plants. A s the shoots reached to the top of the crop wire, lowering was needed to create more room for tomato growth. Lowering was done on a biweekly basis. The lowered plants are shown in Figure 10. 23 Figure 1 0 . Lowered Plants 3.5.3 Deleafing & Pruning Deleafing was needed to ensure the tomato plants growth was in the right balance. Deleafing is to keep the number of leaves on each shoot for optimal growth. Usually, each plant had an average of 15 leaves per shoot. Deleafing was done on a weekly basis. T h e leaves were laid on the walkway for drying to reduce volume before they were taken out of the greenhouse. Deleafing should only be done on a sunny day. This will speed up the healing of the wounds on the shoots and also reduce the chances of airborne disease infection such as Botrytis. T h e deleafing and pruning of plants is shown in Figure 11. Pruning is to take off the extra shoots, flowers, and fruits from the plants. T h e extra shoots and fruits take up nutrients from plants, which would consider as waste. By pruning off those unwanted shoots and fruits, the plant can channel the nutrients more efficient. Pruning was done on a biweekly basis. 24 Most growers used deleafing and pruning to direct the plants into a specific mode of growth. In most cases, growers tend to create a more generative condition for tomato plants. Generative mode was to have the tomato plants to produce more fruit. In contrast, vegetative mode was to have the tomato plants to produce more leaves. By taking off the leaves and extra shoots and fruits, the tomato plants would have to survive with fewer leaves for transpiration and less shoots and fruit to support production. Figure 1 1 . Plants and Leaves after deleafing 3.5.4 Pollination Pollination is very critical for tomato crop. Hives were brought into the greenhouse to help pollinate the tomato flowers. T h e bees variety are occidentalis. E a c h week, a pollination check was done on the crop to determine the pollination level of the hives. Flowers were inspected to check for bees visitation. If the pollination level was less than 70%, new hives were needed. T h e beehives are shown in Figure 12. 25 Figure 12. Bee hives 3.5.5 Pest and Plants Health Management Throughout the growing season, the plants were closely monitored for pests and diseases. Pest such as white flies, spider mites, and loopers were commonly found in tomato greenhouse operations. T o closely represent the commercial greenhouse environment, no pesticides were allowed for this trial. Predators such as encarsia, & podius were put into the greenhouse weekly to control pest. Besides pest, the health of the plants was another major concerns. The plants were constantly monitored for diseases and abnormal conditions. Diseases such as botrytis, fuasurium & corky roots were some of the concerns in tomato operations. Abnormal conditions such as blossom end rot, brown roots were indications of the plants were under a significant amount of stress. O n c e a disease plant was found, the infected plants were either receiving treatments or being taken out from the greenhouse to prevent spreading. 26 3 . 6 M E A S U R E M E N T A s the growing trial progressed, a series of tracking analysis and measurements were done. T h e yield and fruit quality tracking were done on all the tomato plants. T h e growth and drain/feed measurements were done on random samples. 3.6.1 Plant Height T h e plant height was measured on a weekly basis. T h e first measurement was measured from the tip of the plants to the top of the rockwool block. A marking was made at the tip of the plants. T h e next incremental plant height measurement was made from the marking of the last measurement to the tip of the plants. 3.6.2 Stem Diameter T h e stem diameter was measured on a weekly basis. A digital caliper was used to measure the stem diameter of the plants. The measurement was done at the marking of the last height measurement. 3.6.3 Leaf Length T h e leaf length was also measured on a weekly basis. Measurement was made from the tip of the leaf to the end of the leaf where it joints with the main stem. T h e leaf chosen for measurement had to be a full growth leaf. For this study, the leaf chosen for measurement located at the marking of the last height measurement as well. 27 3.6.4 Drain/Feed Measurement E C , p H and volume of the feed and drain were monitored regularly. T h e E C and pH of the feed can be monitored through the climate and irrigation control computer. However, the drain has to be measured manually. Drain and feed stations were setup to collect samples for measurement. A drain station in the greenhouse is shown in Figure 13. Portable E C and p H meters were used to measure the feed and drain samples. A volumetric beaker was used to measure the volume of the feed and drain volume to ensure the system was functioning correctly. Samples of the drain taken periodically for nutrient analysis (den Haan Horticultural Consultancy, Netherlands, via Westgro). The nutrient recipes were adjusted to keep drain nutrients within recommended ranges. Feed volume was adjusted to ensure adequate drainage, typically 30% of feed volume. Feed E C and pH were adjusted where necessary to keep the drain E C and pH in the recommended ranges. Figure 13. Drain Station 28 3.6.5 Fruit Picking and Grading Fruit yield was tracked for each row separately. Picking was done between one and three times per week depending on the season. Tomatoes were sorted in size and grade according to B C Hot House grading standards provided in the spring of 1999. T h e different grades were X X L , X L , L, M , & Culls. T h e tomatoes were then weighted in bulk for each category. T h e fruit number and weight were recorded for yield tracking. T h e picking and grading of the tomatoes are shown in Figure 14 and Figure 15. 3.6.6 Shelf Life Analysis A tomato shelf life test was performed at B C Hot House, quality assurance. Three approximately 5kg composite samples of similarly sized and ripened tomatoes were taken, sampled from each row, and grouped according to growing medium. T h e tests performed included observation of colour development, tray weight, calyx condition, firmness, wrinkles, soft spots, and mold or rot, and were conducted in both laboratory (18-19 ° C ) and warehouse (12-13 ° C ) conditions. E a c h test was conducted after 1, 5, 8, and 14 days of storage. 3.6.7 Plant Tissue Nutrient Analysis For analysis of nutrients in the plant tissue, 8-10 leaves were sampled from each row. Mature leaves were taken only from healthy plants. Composite samples for each treatment were created by combining the appropriate row samples. Analysis was performed by Norwest Labs, Langley, B C . 30 Chapter 4 RESULTS AND DISCUSSION 4.1 GROWING MEDIA TEST T h e media used for this growing trial were tested for both the physical and chemical characteristics. Media analysis was done on pre-season and post-season growing trial. 4.1.1 Pre-Season Media Analysis Density and porosity characteristics of sawdust and greenhouse compost are compared, as shown in Table 8. Greenhouse Compost tends to bond together while, sawdust tends to be loose. A s a result, the greenhouse compost shows significantly higher bulk density, lower total and aeration porosity, and higher water holding porosity than sawdust. Consequently, the sawdust-greenhouse compost mixture displays characteristics generally in between the two, resulting in the tendency for the medium to retain more moisture than sawdust media does. 31 Table 8. Pre-season Media Physical Characteristics Media status Parameter Sawdust Sawdust+ Ghse Comp mix Greenhouse Compost Moist Bulk Densi ty k g / m J 4 0 9 4 7 6 587 Tota l Porosi ty % 63.4 58.6 49.7 Aerat ion Porosi ty % 46.9 35.9 22.8 W a t e r Holding Porosi ty % 16.6 22.8 26.9 Ai r -Dr ied Bulk Densi ty k g / m J 171 200 332 Tota l Porosi ty % 76.0 72.4 74.1 Aerat ion Porosi ty % 39.4 36.1 28.4 W a t e r Holding Porosi ty % 36.7 36.4 45.6 T h e media nutrient and chemical characteristics are shown in Table 9 and 10. W h e n compare with sawdust, the greenhouse compost is relatively rich in macro- and micro-nutrients. Most of the nutrient concentrations are 1 0 - 2 0 times higher than sawdust. T h e N - P - K value for the greenhouse compost would be approximately 2 - 0.1 - 1 . 4 . E C and pH are higher than sawdust, as expected. However, they are both within an acceptable range for use as a growing medium. It is important to note that with fresh compost, soluble nutrient and salt concentrations will be higher when the material is first irrigated. This initial peak will stabilize as the media is flushed or irrigated. This was apparent in the experiment as well. The initial E C was at 6.8. T h e E C gradually lower to an average of 5.5. However the material should not be flushed excessively, since this will cause excessive wetness (waterlogging) and reduce beneficial microbial populations. 32 Cation Exchange Capacity ( C E C ) is significantly higher for the greenhouse compost compared to sawdust. This characteristic provides increased adsorption of nutrients by the medium, generally a desirable characteristic for growing media. Table 9. Media Nutrient Characteristics Measurement Lab Unit Sawdust Ghse Compost S o d i u m - N a N W p p m 80 2460 C E C N W Meq/100g 8.2 127.1 A m m o n i a - N U B C p p m 0 25.8 Nitrate-N N W p p m 8.4 94 Phospha te -P N W p p m 20 716 . Po tass ium-K N W ppm 190 14200 Ca lc ium-Ca N W ppm 1300 12000 M a g n e s i u m - M g N W ppm . 100 2400 Su lphate-S N W p p m 296 1626 I ron-Fe N W p p m 20 560 M a n g a n e s e - M n N W p p m 6.3 149 Z inc - Zn N W p p m 0 35.4 C o p p e r - C u N W p p m 0 2.6 Chlor ide-CI N W :g/g 4 4 4800 N W - Norwest Labs; d b - dry basis; wb - wet basis Table 1 0 . Media Chemical Characteristics Treatment/ media Moisture % Total organic carbon % Total nitrogen % EC mS/cm PH C/N ratio Sawdus t 65.9 52.4 <0.1 <0.1 6.2 >524 Sawdus t+ G r e e n h o u s e C o m p o s t 65.0 48.6 0.9 52.8 G r e e n h o u s e C o m p o s t 63.8 43.7 2.0 0.9 7.3 21.9 33 Samples from fresh greenhouse compost, and fresh sawdust, were taken December 9, 1999 and analysed for bacteria and fungi counts as shown in Table 11. T h e microbial counts indicate an approximately 50x higher bacterial count for the greenhouse compost than the sawdust. The fungal counts show that sawdust is richer in yeasts and the greenhouse compost richer in molds. Despite the difference in the yeast and mold plate count between Sawdust and Greenhouse Compost , Greenhouse Compost has a higher bacteria to fungi ratio than Sawdust. This was proven to be beneficial for vegetable crops (Kai and Sakaguchi, 1990). Besides mycorrhizal fungi, which is beneficial to plants; Most fungi microorganisms in compost can become a nuisance and even cause plant diseases. Fungi such as shotgun or artillery fungus may cause serious problems to plants (Hoitink et al., 1998). With such high bacteria to fungi ratio in greenhouse compost, it is very difficult for the fungi to dominate and establish in the compost. Table 1 1 . Media Microbial Counts Material Total bacteria Yeast Mold (standard plate count) CFU/g CFU/g CFU/g Sawdust 8x 104 1.6x10" 7x10' Greenhouse 4.5x10 b 2.1 x10 J 7.1 x10 J Compost 34 4.1.2 Post-Season Media Analysis Post-season analysis results of the media used in the growing trial are shown in Tables 12 and 13. At season-end, the sawdust visually appeared more soggy and soft than season-start. This is due to the degradation of the structure in sawdust. Hence, the total porosity dropped significantly. T h e total porosity of the mix and compost media remains relatively the same as season-start. A s expected, the mix and compost media are more stable than sawdust. Due to the continuous feeding into the media bags, the air porosity of all media is lowered than season-start. T h e sawdust media still had the highest air porosity than the other media, while the mix and compost media had higher water retention porosity than sawdust. This was especially apparent near the bottom of the bags, where in the case of some greenhouse compost media bags; there was excessive moisture and poor root development near the bottom. In general, the root development in the mix and sawdust bags looked similar. The bulk density was higher with increasing compost volume, as in pre-season. However, all the values were lowered from the beginning of the season. A n important note to point out is that this greenhouse irrigation program was setup to optimize for sawdust growing. In which, the other media have to follow the same irrigation schedule as the sawdust media. The mix and compost media may be subjected to excessive irrigation. Hence, the growing condition such as moisture and nutrient level may not be optimal for the mix and compost media. A white fungus was also observed in the media immediately under the rockwool block and on the surface of the media, in many of the sawdust-greenhouse compost mix bags. A few of the sawdust bags had 35 smaller amounts, and virtually none was observed in the compost bags. T h e fungus appeared to be more common in Group 4 (higher feed ammonia) bags than Group 3. T h e Plant Diagnostic Lab at the B C M A F F Abbotsford Centre, and Soil Foodweb Inc. (Corvallis, Oregon) both tentatively identified the fungus as non-pathogenic and saprophytic. The significance of the white fungus was not determined in this study. T h e moisture contents of all treatments were near 78%. Th e increase of moisture content from pre-season was expected from the regular feeding of nutrients to all the media. T h e E C of the sawdust increased significantly while the pure compost decreased by half. Th e increase of E C in sawdust is probably influenced from the feed solution. T h e decrease of E C in pure compost is due to the constant flushing of the media by the feed. T h e p H of all treatments was all within acceptable range. T h e total organic carbon ( T O C ) of all media was relatively unchanged from pre-season. T h e T O C of sawdust only reduced by 2%, while the T O C of the mix and compost media reduced by 4 - 6 %. T h e T O C values indicate that all media had minimal degradation and are suitable for growing. T h e total nitrogen (TN) of sawdust and mix media changes significantly from pre-season. T h e sawdust media had more than 10 times the amount of T N than pre-season. T h e mix media had more than double the amount of T N than pre-season. However, the T N in compost remains relatively the same as before. T h e cumulative amount of nitrogen in the sawdust and mix media is from the constant saturation of the nutrient feed. T h e reason for the compost to remain relative the same as before is due to the nitrogen fixing ability of the compost (Jakobsen, 1995). 36 C / N ratio is a commonly used parameter for indicating the state of organic materials. Composting typically starts at 30 to 40, and is reduced to near 20 or less when it is considered mature and stable. Over the season, the C / N ratios of the sawdust media decreased from over 500 to between 30 and 40; the mixture from 53 to 17 - 21; and the compost from 22 to 14 - 17. T h e drastic drop of C : N ratio in sawdust media was from the significant increase of total nitrogen. Both the pure compost or sawdust-compost mixture showed less degradation. This is most likely due to the stability nature of the compost, having previously gone through an intensive biological degradation process during manufacturing. Table 12. Post-Season Media Physical Characteristics Parameter (Oven-Dr ied Media) Sawdus t Sawdus t+ Greenhouse C o m p o s t Greenhouse C o m p o s t Bulk Densi ty kg /m - 3 144 183.1 209 .9 Tota l Porosi ty % 64 73.8 79 Aerat ion Porosi ty % 28.2 20.8 25.6 W a t e r Hold ing Porosi ty % 35.8 53 53.4 Table 13. Post-Season Media Chemical Characteristics Treatment/ media Moisture % Total organic carbon % Total nitrogen % EC mS/cm PH C/N ratio 1 Sawdus t 75.3 50.8 1.41 0.70 6.3 36.1 2 Sawdus t 79.9 49.7 1.59 0.50 6.4 31.2 3 S a w d u s t + G h s e C o m p . 78.2 44.8 2.13 0.80 6.7 21.1 4 S a w d u s t + G h s e C o m p . 78.3 42.4 2.56 0.90 6.7 16.6 5 G h s e C o m p . 78.3 39.6 2.38 0.50 6.3 16.6 6 G h s e C o m p . 79.4 38.8 2.78 0.40 6.8 13.9 37 4.2 Tomato Growing Trial T h e tomato crop was successfully grown from February 25 to December 6, 1999. Total marketable yield harvested was 7642 kg and various parameters such as fruit yield, fruit quality, plant growth, and disease were monitored. 4.2.1 Fruit Yield All the tomatoes were picked and recorded accordingly to weight and grade per row. T h e actual yields were adjusted taken into the account of any plant damage such as broken head done by human intervention. The bi-weekly cumulative yields of each trial group are shown in Figure 16 and Table 14. Total Yield Kg/m2 Comparison 60.00 50.00 40.00 CM 30.00 at 20.00 10.00 0.00 - Group 1 Sawdust - Group 2 Sawdust - Group 3 Mix Group 4 Mix -*— Group 5 Compost - » - Group 6 Compost f / f / / • £ # • / • / / / / / Week Figure 16. Total Cumulative Tomato Yield Comparison 38 Table 14. Total Fruit Production Nutrient feed Group Medium Adjusted marketable yield -kg/m2 No. of Fruits/m2 Conventional (N1) 1 Sawdust 55.6±1.86 328±8.60 3 Sawdust+ Ghse Comp. 53.5±1.82 314±8.74 Modified (N2) 2 Sawdust 55.3±1.78 319±8.86 4 Sawdust+ Ghse Comp. 55.211.70 312±8.19 5 Ghse Comp. 50.9±1.68 292±7.21 Modified (N3) 6 Ghse Comp. 57.1±1.78 306±7.60 T h e graph shows very similar trend for the 6 groups. The production range from 50 kg /m 2 to 57 kg/m 2 . The production levels of all groups are considered acceptable in most commercial operations. From week 18 to week 25, the production levels of all groups were very similar. However from week 26 and on, the production curves begin to widen. T h e period between week 26 to week 33 was the hottest period of the season. This reflected with an increase in production during that period. A s the season progress to the end, the light level and temperature decrease. T h e slow down in production was apparent with a much flatter slope. T h e pure greenhouse compost media with N3 had the best production yield at 57.1 kg/m 2 . In contrast, the pure greenhouse compost media with N2 had the worst production yield at 50.9kg/m 2 . T h e pure greenhouse compost was not expected to have the best yield. T h e greater yields may attribute to increased organic matter, pH, and nitrogen level (Maynard, 1995). T h e results suggested the added nutrients and 39 effects of beneficial organisms such as disease suppression, mycorrhizal fungi, or additional nutrients or stimulators such as humic acids seem to be having a positive effect on the plants development. Moreover, the significance effect of E C level on crop is very critical. T h e tomato plants s eem to be very sensitive with conductivity. With a higher E C level in Group 5, the plant health and production was less when comparing with other groups. T h e sawdust irrigated with nutrient N1 had a total marketable yield of 55.6 kg/m2. T h e sawdust irrigated with nutrient N2 had a total marketable yield of 55.3 kg/m2. T h e difference is very minimal. Th e results suggest the increase in ammonium level to the nutrient had no positive effects on yield. W h e n compared the mix media irrigated with nutrient N1 and N2, the difference is more apparent. T h e mix media with nutrient N2 had a total yield of 55.2 kg /m 2 and the mix media with nutrient N1 had a total yield of 53.5 kg/m 2 . T h e difference of 1.7 kg /m 2 equals to 68,000 kg of tomato production for a 10 acres greenhouse operation. T h e addition of ammonium concentration proves to have a positive effect on yield. Th e positively charged ammonium ions were adsorbed in the compost media due to its high cation exchange capacity (Mathur, 1996). T h e ammonium did not get converted to N 2 O or leached. In terms, the compost converted this nitrogen source into N O 3 in a much slower rate (Ezanno et al., 1999). Hence, this can prolong the nitrogen availability for the plants and improve yield. 40 4.2.2 No. of Fruit T h e number of fruit set per m 2 for each group is shown in Figure 17 and Table 14. Again, the graph trends are very similar for all 6 groups. Sawdust (Groups 1 & 2) had the most fruit set. Mix media (Groups 3 & 4) was second and the last was Pure Compost (Groups 5 & 6). A finding was observed that high number of fruit set does not correlate with high production. T h e plants with sawdust as growing media (Group 1) had the highest number of fruits and the plants with pure compost as growing media (Group 6) had the second lowest number of fruits. In contrast, Group 6 had the highest yield of all groups. Group 1 was observed to have more small fruit and of less quality. Group 6 had less fruits but with a much larger size in general. T h e results suggest that pure compost with lower E C can enhance higher quality fruit. No. of Frurts/m2 Comparison ^ \T> $> <fr $ # ftN $ # \4 \>N ^ \ & \ $ \# Week Figure 17. Total Cumulative no. of Fruit set Comparison 41 4.2.3 Shelf Life Test B C Hot House shelf life results for the samples taken in June 1999 are shown in Table 15. T h e results from the shelf life test show very little difference between the groups, and all groups showed acceptable quality. T h e data suggests that with increase usage of greenhouse compost in the media may have contributed to slight decrease in firmness and increase in weight loss and soft spots. During production, the fruits from compost were observed to be more swollen and watery. This could contribution to the results from the shelf life test. However, further study would be required to confirm this. Table 15. Tomato Shelf Life Results Colour Stage Tray Weight loss Calyx condition Firmness (hand) Sugars No. Wrinkled No. W/soft spots No. with mold/rot Range/Unit 1-12 % 1 -5 0-5 1 -6 Key 1-Green 1-Fresh 0-Hard 1-Lowest S a w d u s t 8.38 3 .9% 3.25 0.75 5 0 0.75 0 S a w d u s t + G h s e C o m p . 8.25 4 . 7 % 3.25 0.88 5 0 0.88 0 G h s e C o m p . 8.38 5 .3% 3.25 1.00 5 0 1.13 0 4.2.4 Fruit Size X X L & X L fruit means the fruit size has to be 210g or higher. This guideline was set by the B C H H F I grading standard. T h e reason for monitoring this parameter is because the premium market of all greenhouse tomato is in this size range. T h e total kg of large size fruits per m 2 of each group is shown in Figure 18 and Table 16. T h e variance between groups for this parameter is much greater than production yield and fruit numbers. 42 Group 6 had a significant larger amount of xxl & xl fruits than any other group at 22.1 kg/m2. Group 5 had the least amount of xxl & xl fruits at 12.0kg/m2. The difference between the two groups is more than 45%. The combination of pure compost media and lower EC nutrient had the most positive effect on fruit quality. Similar to the total fruit yield, sawdust media with nutrient N1 and mix media with nutrient N2 had more large fruits than sawdust with N2 by 1.70 kg/m2 and mix media with nutrient N1 by 2.00 kg/m2 respectively. Again, the difference will be significance when scale up to a 10 acres operations. The results indicate that the increase ammonium concentration of N2 had a positive effect on mix and pure compost media. In contrary, N2 had simply no or even negative effect on sawdust media. The added ammonium concentration seems to be leached out and not being uptake by the roots with sawdust as growing media. The average fruit size is shown in Table 16. The range of all groups was between 170g to 186g. In coherent with the previous parameters, Group 6 had the largest average fruit size of 186g. In this observation, Group 4 out performed Group 1 and had the second largest average fruit of 178g. Again, this further strengthens the point that compost media with lower EC had a definite improvement on fruit quality. 43 Kg/m2 of XXL & XL Comparison 25.00 Week Figure 18. Total cumulative yield of Large Fruits Comparison Table 16. Fruit Quality Nutrient feed Group Medium XXL & XL yield - kg/rri Average Fruit Size (g) % Cull Conventional (N1) 1 Sawdust 18.7±1.082 175.9±47.41 7.9 3 Sawdust+ Ghse Comp. 15.3+1.023 170.3+49.08 10.2 Modified (N2) 2 Sawdust 17.0+1.022 174.1+42.80 8.6 4 Sawdust+ Ghse Comp. 17.3+0.998 177.7+42.38 6.5 5 Ghse Comp. 12.0±0.794 171.1±46.14 10.4 Modified (N3) 6 Ghse Comp. 22.1 ±1 .374 186.2±49.39 9.7 44 4.2.5 % of Culls The percentage of culls for each group is shown in Table 16. The range is between 6.5% to 10.4%. Culls were generally cause from bad crop management, pest damage, small fruits, and diseases. Group 5 had the most culls. The high percentage of culls was due to an excessive amount of blossom end rot tomatoes. In fact, most culls from the mix media or the pure compost media were blossom end rot tomatoes. Blossom end rot was created when the plant roots were under stressed. When the plants have trouble retain nutrients from the roots, the plants will resource to take up nutrients from the fruits instead. This was evident in the research done in Mt. Carmel. The plants with inorganic fertilizer plus compost amended plots had a greater incidence of blossom-end rot. The reason was due to the excessive amount of nitrogen available for the plants (Maynard, 1999) 4.3 Plant Growth The plant growth measurements were done to determine whether the plants were in healthy conditions and also to verify any influence from the media or the nutrient recipes. Results for cumulative plant height, leaf length, and stem diameter were analysed, and the results are summarized in Table 17. The cumulative plant growth of all groups is shown in Figure 19. 45 Cumulative Plant Growth 700 .0 -i 0 . 0 4 1 1 1 1 1 1 1 1 i 1 1 1 1 1 i 1 1 1 1—" i 1 1 1 1 1 1 1 1 1 r ~ i 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Week Figure 19. Cumulative Plant Height Comparison Table 17. Plant Growth Summary Nutrient feed Group Medium Overall Average Shoot height - c m Average Leaf length -cm Average Stem diameter -mm Conventional (N1) 1 Sawdust 564±6.40 38±2.05 9.4+0.94 3 Sawdust+ Ghse Comp. 567±6.32 38±0.17 9.3+0.26 Modified (N2) 2 Sawdust 593±7.68 38±1.56 9.3±0.88 4 Sawdust+ Ghse Comp. 580+5.93 39±1.86 9.6+1.88 5 Ghse Comp. 572±6.53 37+0.50 8.7+0.73 Modified (N3) 6 Ghse Comp. 546±7.14 38±0.65 8.9+1.02 46 4.3.1 Plant Height Plant height graphs are different from the fruit yield and fruit quality parameters. T h e plant height varies from 546 cm to 593 cm. T h e plants from Group 6 had the shortest height despite the fact that this group had more yield and higher fruit quality. T h e short height stems may be influenced by the location of the plants. The plants were located at the east end of the greenhouse. Since that area had lots of space and open area surrounded, the plants may not need to grow taller. Hence, the plant height of Group 6 did not have as tall a plant than the other groups. Sawdust with N2 (Group 2) had the tallest plant. This is due to the extra source of nitrogen available to plants (Ansermino et al., 1995). The plant growth data did not indicate any trend in relation to the media or the nutrient recipe. T h e only conclusion drawn from this analysis is that the plant height does not represent the productivity of the plants. 4.3.2 Stem Diameter T h e stem diameter of each group is shown in Table 17. The range from each group is very minimal: 8.7 to 9.6 mm. This range is considered acceptable. The stem diameter of Group 4 had the thickest stem while Group 5 had the thinnest stem. T h e stem diameter also follows the same pattern as the fruit yield and no. of xxl & xl fruits. Sawdust media seems to perform better with N1 while mix media seems to have an advantage with N2. 4.3.3 Leaf Length T h e leaf length of each group is shown in Table 17. T h e range was between 39 to 37 cm. T h e leaf length had the same trend as the stem diameter. Group 4 had the longest leaf while Group 5 had the shortest 47 leaf. Sawdust with N1, mix media with N2, and pure compost with N3 did better. However, the differences between groups are extremely minimal. The average optimal leaf length is 38 - 40 cm. The overall leaf length results suggest that the plants in all groups are in relatively good health. 4.4 Disease The percentage of plants (heads) recorded as lost to disease for each treatment is shown in Table 18. Botrytis stem rot, with only a few exceptions, was the cause of these losses. There is no significant patterns developed in the results. Botrytis is an airborne disease and the plants can be infected when there is a fresh wound opening. Based on the results, plants grown on the mix or the pure compost media did not show an significant resistance to this disease. The only method to avoid Botrytis is to keep the greenhouse dry and clean and to ensure the fresh wounds of the plants dry up as soon as possible. Other than Botrytis, three plants developed disease with symptoms similar to cucumber mosaic virus. These plants were removed and the yield results were adjusted to compensate. These plants were likely to be infected prior to planting and the disease was unrelated to the experimental conditions. Later in the season several other plants developed Fusahum-Wke symptoms, but the exact cause could not be identified, with the exception of one plant from which Fusarium was recovered. Although there were differences in the number of diseased plants between groups, they were not statistically significant. These results suggest that the growing media and nutrient combinations tested did not impact Botrytis development. This conclusion is not very surprising 48 considering the fungus is not soilborne. No other major disease problems were evident. Table 18. Disease Incidence Nutrient feed Tmt. No. Medium Plants lost to disease % Conventional 1 Sawdust 29.8 3 Sawdust* Ghse Comp. 28.7 Modified (N2) 2 Sawdust 21.4 4 Sawdust+ Ghse Comp. 16.7 5 Ghse Comp. 26.2 Modified (N3) 6 Ghse Comp. 16.7 4.5 Plant Tissue Nutrient Analysis Leaf tissue nutrient analysis results are shown in Table 19. The results indicate that all nutrients fell within acceptable ranges ( B C M A F F , 1996), with the exception of Group 4, which showed highly elevated levels of copper and zinc. There were no deficiencies identified in any group. T h e cause of the elevated C u and Z n levels is unclear. Alternatively, the measurements could be incorrect due to lab error or sample contamination. Other nutrients for group 4 plants appear normal. 49 Table 19. Leaf Tissue Nutrient Analysis, sampled November 26,1999 Group: 1 2 3 4 5 6 Unit Average Nutrient TN 5.2 5.2 5.3 5.3 5.5 6 % 5.42 P 0.979 1.09 1.08 0.956 0.951 1.04 % 1.02 K 4.6 4.68 4.77 4.43 4.11 4.23 % 4.47 S 2.24 2.13 1.73 1.72 1.62 1.8 % 1.87 Ca 3.6 3.41 3.2 3.39 3.06 3.47 % 3.36 Mg 0.555 0.557 0.61 0.611 0.53 0.578 % 0.57 Na 710 840 730 700 670 460 :g/g 685 Zn 25 21 23 177 24 30 :g/g 50.0 Cu 15 14 13 304 7 <20 :g/g 70.6 Fe 120 120 110 110 120 100 :g/g 113.3 Mn 244 254 213 171 247 210 ;g/g 223.2 B 118 125 105 100 119 150 ;g/g 119.5 4.6 Nutrient Recipe and Growing Media 4.6.1 EC & pH With the computer control irrigation, the feed E C & pH were accurately dosed for each nutrient recipe. Throughout the season, the feed E C was kept between 2.7 to 3.2. T h e drain average drain E C was rather stable throughout the growing trial. T h e average drain E C for sawdust and mix media was between 4.4 - 4.8. However, the drain E C for pure compost media was higher initially at 6.8. T h e high E C in compost is usually due to the presence of potassium, calcium and nitrate in the media (Mathur, 1996). This spike was expected, as compost tends to have high E C drain in the beginning of the trial. A s the trial continues, the E C gradually came down to between 5 and 5.7. 50 T h e feed pH was kept between 5.8 to 6.1. T h e drain p H for mix and pure compost media was between 5 - 6.8 while the drain pH for sawdust media was between 4.2 - 6.2. A low p H can cause acidity to the media and decreases the availability of calcium to plants (Mathur, 1996). T h e compost in the media demonstrated a significant buffering capability as shown in Figure 20. T h e buffering against acidification in the compost media is caused by decomposition of compost whereby hydrogen carbonate develops. Hydrogen carbonate splits carbon dioxide and carbonate. Carbon dioxide evaporates, if the compost is aerated, and carbonate neutralizes the compost and the activity of calcium ions decreases (Jakobsen, 1995). Despite the fact that increasing ammonium concentration will create acidification to the media, the mix and pure compost media were able to maintain a significant higher pH value. Subsequent to the minimum pH occurring in the sawdust media, bicarbonate buffering was added to all nutrient solutions to maintain a minimum feed p H . Drain p H of all groups eventually became stabilized near 6. 9 8 7 5 4 3 Drain pH - Modified Feed 10 15 20 25 30 35 Week No. 40 45 • 2: Sawdust A 4: Sawdust+Amendment 2: Sawdust - Trendline (mov. avg.) — 4: Sawdust+Amendment -Trendline (mov. avg.) 50 Figure 20. Drain pH Comparison 51 4.6.2 Ammonium and Growing Medium A s discussed earlier, the modified feed with increased ammonium concentration (N2) did provide the expected yield benefits when used in conjunction with the sawdust and compost mix. However, the effect was not enough to surpass the sawdust media without increased ammonium concentration. The increased ammonium strategy was probably not optimal. For sawdust media, the excessive ammonium concentration was either converted into N 2 0 gas or leached out of the media. However, for mix and pure compost media, the extra ammonium was retained in the media for the microbial in the compost to breakdown. A s an excessive amount of nitrogen (up to 12% of TN) was dosed to the mix and pure compost media, the plants were under stress. This resulted in a higher number of blossom end rot tomatoes at the end of the growing season. Moreover, the result from Group 6 clearly indicates the benefits of using compost as growing media with the increased ammonium concentration. T h e mix media should benefit more with the increased ammonium concentration. O n e of the reasons for the less than desirable result of sawdust/compost mix media could be the irrigation schedule of the trial. T h e test greenhouse was setup for conventional operations. Hence, the irrigation program and set points were all ideal for sawdust media. Since the mix media retains more moisture than sawdust, over irrigation could be the main factors affecting the results of the mix media. Another reason could be the E C of the mix media. T h e importance of E C was very apparent between Group 5 and Group 6. With lower E C , the plants performed better. Since Group 3 and Group 4 had compost in the media. T h e conventional E C level may not be suitable for optimal growth. 52 Chapter 5 CONCLUSIONS & RECOMMENDATIONS 5.1 CONCLUSIONS 1. Greenhouse compost retains more moisture, and is less porous and more dense than conventional yel low cedar sawdust. The potential effects of these dif ferences will increase with the proportion of compost used. 2. The greenhouse compost contains a much higher (measured at 50 t imes) total bacterial population than sawdust medium (fresh materials, prior to bagging and planting). This population promotes better soil propert ies for nutrient uptake. 3. The combinat ion of increased ammonium concentrat ion with sawdust media had a negative effect on yield while the increased ammonium concentrat ion with sawdust compost mix media had a positive effect on fruit yield and fruit quality. 4. The combinat ion of increased ammonium concentrat ion and lower EC with pure greenhouse compost media had a significant improvement on yield and fruit quality. 5. The results of Group 5 & Group 6 prove that a lower EC nutrient recipe is very critical for growing with greenhouse compost media. 53 6. The greenhouse compost is suitable alternative for use as a growing media in a commercial tomato greenhouse. Using conventional management techniques, a similar yield can be achieved compared to conventional sawdust medium under condit ions where there is no major soi lborne disease pressure, using a 2:1 sawdust to amendment mix by volume. 7. Excessively low pH in the feed or medium can be mediated by using the compost as a medium supplement, which has significant buffering capability. 8. Based on the carbon to nitrogen analysis, addit ion of compost to the sawdust does not significantly increase the biological breakdown of the sawdust. The breakdown of the sawdust by itself, as represented by decreasing C/N ratio, is much greater than the breakdown of the greenhouse compost. 5.2 RECOMMENDATIONS 1. Investigate the effects of different mixing ratios of greenhouse compost and sawdust in terms of medium porosity and disease suppression. A mixture of less than 3 3 % amendment , such as 15 or 2 0 % , may provide more suitable medium porosity characteristics (Spiers and Fietje, 2000) . 2. Conduct more trials of similar experiment on alternate vegetable crops, such as sweet pepper and cucumber. 54 3. Conduct field trials and research to optimize the fertigation and irrigation schedules more suitable for greenhouse compost / sawdust mix and pure compost media production. In most likely hood, the media with compost additives should require less nutrient and irrigation. 4. Due to the lack of sample plants for Group 5 and Group 6 and the encouraging results obtained from Group 6, further investigation should be done with a variety of EC level for sawdust compost mix and pure compost media to determine the optimal level. This may improve the yield and fruit quality of the greenhouse production. 5. Investigate the effects and interaction of compost media and increased ammonium fertilizer. Further trials such as applying different ammonium concentrations to the media should be conducted. 55 REFERENCES Granberry, D.M., Kelley, W.T. , Langston Jr., D.B., Rucker, K.S., Diaz-Perez, J.C. (2001). Testing Compost Value On Pepper Transplants. BioCycle 42 (10): 60-63. Ansermino, S.D., Holcroft, D.M., Levin, J.B., A d a m . (1995). A comparison of peat and pine bark as a medium. Acta Horticulturae 4 0 1 : 151-160. Ezanno, A.F. , Harwood, R.R., Paul, E.A. (1999). Compost Applications Provide Mult i -Seasonal Agronomic and Environmental Benefits. Extension Summary for the 1999 All-Investigator Meeting. http:/ / l ter.kbs.msu.edu/Meetings/Ext 99/Ezanno.htm Mathur, S.P. (1996). The use of Compost as a Greenhouse Growth Media. Was te Reduction Branch Ontario Ministry of Environment and Energy. Maynard, A.A. (2000). Applying Leaf Compost to Reduce Fertilizer Use in Tomato Product ion. Compost Science & Utilization 8 (3): 203-210. Stoffella, P.J., Graetz, D.A. (2000). Utilization of Sugarcane Compost as a Soil Amendment In a Tomato Production System. Compost Science & Utilization 8 (3): 210-215. Spiers, T .M. , Fietje, G. (2000). Green Waste Compost as a Component in Soil less Growing Media. Compost Science & Utilization 8 (1): 19-24. Hoitink, H.A.J., Stone, A .G. , Han, D.Y. (1997). Suppression of plant d iseases by composts. HortScience 32: 184-187. Inbar, Y., Chen, Y., Hoitink, H.A.J. (1993). Properties for establishing standards for utilization of composts in container media. In: Hoitink, H.A.J, and H.M. Keener (eds). Science and Engineering of Compost ing: Design, Environmental , Microbiological and Utilization Aspects. Ohio State University, USA, pp 668-690. 56 Ozores-Hampton, M., Vavr ina, C.S. (1999). Yard Trimming-Biosol ids Compost : Possible Alternative to Sphagnum Peat Moss in Tomato Transplant. Compost Science & Utilization 7 (4): 42-50. Maynard, A.A. (1999). Reducing Fertilizer Costs Wi th Leaf Compost. BioCycle 40 (4): 54-56. Maynard, A.A. (1995). Increasing tomato yields with M S W compost. Biocycle 36 (4): 104-106. Papadopoulos, A .P . (1994). Growing Greenhouse seedless cucumbers in soil and soil less media. Agriculture and Agri -Food Canada Publication 1902/E. Ot tawa. Robertson, R.A. (1993). Peat, horticulture and environment. Biodiversity and conservat ion: 2: 541-547. Amer ican Society of Agronomy. 1982. Methods of Soil Analysis, 2 Ed. Soil Science Society of Amer ica, Madison, Wis . Kai, H., Ueda, T., and Sakaguchi , M. 1990. Antimicrobial Activity of Bark-Compost Extracts. Soil Biol. Biochem 22(7):983-986. Ketterer, N., Fisher, B., and Weltz ien, H. C. (1992). Biological Control of Botrytis cinerea on Grapevine by Compost Extracts and their Microorganisms in Pure Culture. Recent Advances in Botrytis Research: Proceedings of the 10th International Botrytis Sympos ium, Herakl ion, Crete, Greece, Apri l 1992. Jakobsen, S T . , (1995). Leaching of nutrients f rom pots with and without applied compost. Resources, conservat ion and recycling. 17:1-11. Hoitlink, H.A.J., Krause, M.S. (1998). Controll ing Nuisance Molds in Mulches and Composts. BioCycle. 39(9): 59 - 62. 57 CULL | 0.74 | 0.63 I 0.241 | 0.69 | 0.151 | 0.23 | CULL | 0.095 | 0.42 | 0.885 I 0.49 | 0.195 | 1.815 | P0.315 | 0.295 | 0.645 I I 109 I [ 0.69 | I 1-175 | MED | MED | LGE 0.145 0.511 I 0.149 I 0.205 0.17 LGE 0.815 0.925 I 1.045 0.75 0.82 1.765 I 0.955 0.225 0.825 1.655 1.42 0.175 0.445 XLG j 1.716 j 1.149 I 0.501 j 0.485 I 0.69 | 0.513 | XLG | 3.17 | o> CM 1.59 | 4.44 | 2.03 | 4.59 I 4.035 | | 90S 6.07 J 5.76 | 2.545 I 1.395 I 2.865 | 3.26 | XXL ] 0.389 I 0.406 I I XXL I 2.07 | 0.71 I 1.255 | 1.02 | 1.18 I 0.71 | 1.045 j 3.515 ] 0.785 | 0.85 I 0.69 j 3.205 ! I 2.625 I [99/05/07 | Number CM o CO CM CO CO CM CM 99/05/15 I Number CN CN CO CO 00 CN CO CM CN CN i n CO CM CO CM CM CM cn CN CULL 0.254 I 0.292 I CULL I 1.06 I 0.345 I 0.34 I 1.64 I 1.045 | 1.275 I 1.33 I 0.375 I 0.295 I 0.955 I 0.59 I 0.07 I 0.27 I MED 0.14 0.132 MED LGE I 0.184 0.15 | 0.164 I LGE I 0.62 I 0.42 I 0.405 | 0.61 I 0.55 I 0.67 I 0.72 I 0.205 I 0.365 I XLG 0.998 1.032 0.262 0.49 0.232 0.204 XLG 3.37 5.415 3.31 I 3.56 | 2.345 I 2.66 I 1.735 2.755 3.21 1.895 0.835 0.83 I XXL I 0.414 I XXL j 2.79 j 1.865 I 1.01 I 1.75 I 2.05 | 0.92 I 0.325 I 0.655 I 3.09 I 0.31 I 0.69 j 0.63 I 199/05/05 | Number m CO CO 99/05/12 I Number I o CM CN CM O) CM LO CN LO CM CM CM - CO CM CO CO CD to -CULL I CULL I 0.87 | 2.05 I 0.51 I 0.26 I 0.56 | 0.57 I 0.44 I CO d 0.48 I 0.27 I 0.65 I 0.25 I liable A-1 Fruit Yield and Grading Summary MED MED liable A-1 Fruit Yield and Grading Summary LGE 0.152 LGE I 0.444 I 0.14 I 0.439 j 0.316 | 0.304 I 0.151 I 0.452 0.295 liable A-1 Fruit Yield and Grading Summary | BI-WEEKLY DATA ENTRY SHEET XLG 0.224 0.762 I XLG I 4.207 I 5.48 I 6.368 I 2.712 I 6.653 | 4.359 I 2.794 I 1.524 j i n d 2.985 1.706 0.25 I 0.291 liable A-1 Fruit Yield and Grading Summary | BI-WEEKLY DATA ENTRY SHEET XXL 0.324 XXL 1.668 I 2.371 1.497 1.564 I 2.111 I 1.627 I 0.403 0.395 0.774 liable A-1 Fruit Yield and Grading Summary | BI-WEEKLY DATA ENTRY SHEET CO 99/05/031 Number j CM CO OJ 99/05/10! Number j w CM Oi CO 5 OS s i n CM i n CD CM liable A-1 Fruit Yield and Grading Summary | BI-WEEKLY DATA ENTRY SHEET |WEEK NO I Date: I Row CO m CD CO o CM CO i n CD |WEEK NOl | Date: I Row CO m CD CO o i o CN CO lO CO 5SY 3 o Q LU UJ O o X 3 o o m 5 LU o O o o o o d d d d o 0 0 ^ d 0 o O o ° T j T j T j ^ - o m o C M c s | ^ Q LU 2 Q 1X3 CM CO CO LU CO CM to 5 ci O O ci £ r- r- r-g s » O) „ d d o LU ^ - LO CO CM co O CO at CO T- CO _ i d o o v~ ci c i - l d ^ d d ^ ^ ' N c \ i c v l - » C N I m t N I ( \ i C D S ^ < D S t D c s i 0 > , o t o t o ^ S S ' 9 -X d T - , , - ^ , - , - , - T - T - d , ~ ^ v - ' ' - *v I M " in © if) lO ^- s_ l O i n i O m i o u i n i o i o u i M i o i o O O O ^ C O O i - O s t O r ^ ^ O W ^ ^ ^ O d ^ ^ d ^ T - ™ ^ - ^ CO T- CM CO § f ?! ! - IU ^  ^ l-J 1^  PJ 0 1 CM CN T- T- T- ^ • c O c o ^ - o j o > C M T ~ c o o N . i r > e o c o c M in t c o ^ r c o - ^ - i n < D < D c o r ^ - 0 ) r * - 0 ) 0 ) c o O ~1 3 O o o o o - I IO ^  IO IO D i o T n ^ O d ^  ^  d ' •°. co •* S 3 " « 1 ° ^ o d ^ N Q LU a IO CO CM CO LU CO CO 2 O ci ci h- o o o T-lf) If) If) O CM O ( O S S co E E 3 (0 O) c 2 K ® Hi "5 1 « OT Z • £ I £ Lt 2 ® H UJ •Q c S co o 2 h O (D . - m i o . i o i o w i o ^ r t W B i o m i n I 1 * m ' m m r i^ ' ^ rv> .— m -rf X o (D CO " d o O O CM T- T-LO LO W CO s ^ h- CO III 1 0 1 0 ta CM LO LO LO I^COOSSCMOCOCO Ococo". 9 *j CO (0 K ' , n i n i n i n i n m i n i n m ^ u ; m u i J o c o c o m r o o . ^ . ( D T N U ) O 00 CO CO CM CM 1 as -5 ,io— m i o B i n i o « i n m B i o i o X ^ CN N j j ^ f j f j ^ T - N ^ r i r i 1 C! 5 o r c o o i n o n i s a i i o n a i i o i o o i c n ^ b c N c o c o c o ^ r c o c o c o c o c N c o ^ - i o h -O B * Q § LU Lt LU g « i n i i i M i i f f l O r 5 ! 2 J ! ! S O S z s LU LU 5 5 O CO Tf UO tO N CO O) O CM CO ^ IO CO 59 3 o 3 O Q LU Q LU LU LU O -j X o X O 0 0 0 0 0 d d d d IT) CM CM i n i n -1 C O 00 o cn oo O ° O d CD d d ^ CM ci d (D ^ t S S to N u n 1 d d ^ Q CO ^ £ CD £ £ [2 S CM CO S CN o> S d CO CO CO CO ' d o ^ T- ^ PI' T" UJ_:'q-a?COl".|--.'«-r--CDCNCMI-~^~ S d 0 o ° d d d d ^ d d 0 0 - J ' ~ r J ' - C N T - ' - ^ C N r s l r J r J C O UJ C M i n 00 00 i n CD o> C O O C D cn m _i C M iri oo" iri C M ^ in in j ; co co . CO C O >v ^ COT- IN <o *f fO (M N m in _ ^ t . w m , r i N _ f n i n i n y ^ ^ i ^ c » S ^ ' » c o i o r ~ : P 0 ° " K X j ^ c M C N ^ ^ ^ c o c x i r J ^ ^ ^ d _1 " CM m m m m C M m C M Is-O » T" t £ oJ g -^ d ° d CM ^ ,1 ^ . " c ^ - O O O J r - O C M C O T - C O C D C M O . t c O ^ C M C M C O n t O M - ^ - ^ - ^ U ) C ' - O O C M C D O S f - C O C O C O } 0 ) 0 ) O > ( 0 O ) ~ C 0 S C 0 -5 co cn G O oo J i f l » n i o w n i o w _ ( . u ) i n i o i o i o 3 1 o m CM 00 O CD 6 T- d N 6 —* m m m m . m _ O o ° o o o 0 0 0 0 0 ^ C N ^ S r ^ d , r " d d d , - T ~ v - ' d 0 0 ^ S IS to to 12 « 00 CO pi Sc 00 C O O) O ° W ^ -N-d i-1 *~ ° d d co m ^- oo co E E 3 (0 O) c •B 2 IB « 0 5 09 > •a v. I £ * £ Li. Q T "S 5 i = " •a = g to o 2 I - o m . i i m i o i n m - c i n ^ i o m — . m m C D c D c o o c M V c o ^ c o m P m c o , - 1 ^ C N C M ' * C v l ^ ' " ^ C v i , - C M ^ ; r n c N T j - ^ ^ ^ ^ ^ c o ^ m c n ^ i ^ f O > < ' « ' n C O ' ^ • ^ C M ' c o ' < N c o ' m ' - c o ' m , , ' <°. fe ™ co £ - 8> "> . - ^ C M d d < - - < -m o d °° o c o ! £ ! " c o * r > - m o > t n c o O i C : c o ^ < ? 0 > £ c o < 0 . < 0 . 0 > — l m r r|CMCN-"-~i , r;cO*-CO O ^ . n ^ t - m c N c O T r ^ ^ - g S S X m ^ c o c o c o ^ m m . n ^ c D ^ o J m -_ i m x ? S CO - ^  CD CM - C  O T-' u £Jj o to o ° i T- co O CM T- T-> r ^ - C M W ( O i r ) r l N O ) N { 0 0 ( D CD C t f T r T j - t O C M C M C O C M T r C O C O C O 2 t i n i n c o ^ - ^ - c o c D i n c o c o r - - C D o o c D CD 3 g f LU UJ g 6 c o - < r i o c D i - c o o > 2 : : D ! £ 2 : ! £ £ Ct T- T- T- T-Z S s * S co LU CC UJ 60 3 O LL m o 10 to o> 3 T— O d ci O CO to CO I TJ- CM CO O i- o o o LU LU CD X ^ n w — ^ w rn p ] in rv) «-J 1 0 N . " > i t- £ r» ) C O . w - d ° d IT) CD CO 3 a z 3 o 1 n m M " 1 1 0 in -l-^to^uy^miom I O m in S S S «> S — , e S c v ' m o > S 0 o ' - o > m i n S ' -" > ~ C O O O ^ 0 o ,J d ° O 0 d 0 d 0 d d d d 0 ^ L u S 5 ^ c o < o ^ ' a : c N c S S < P ' , > : a > c o . S d ^ ' - d ' - ' - ' - ' - d d 0 ' - 0 0 Q to CO LU cq CO 5 T~ to to CO o> o *-O T- T- O ( 5 S T : o l » C 0 r 2 l 0 C 0 l ! ! 0 ! N M - L U C D C o S i r ~ . i i S i c o T - n c o c \ i S i S — . - i - a - c o ^ r ^ o j a j c o o c o ^ c o o j ^ ^ - i <°. I O N »J N 2 M - to •» I u) in io m CNJ co K; T- co n o ) ~ ^ S ^ ' - S r i r i J c o V J i n , r , i o , _ a , . n i o i n i o ~ . . n i o ; t ; i n i o i o 5 3 s ^ S S 8 § S i 8 S ? 5 c o S 5 g Xcd^ r o ^ c 6 r^i^^ebcb2cM.<tb co cn <o N CO CM 0> tO CNJ CM T- i-to to to _ }T O Qi II i to to to lO CN CO CD if) O) CO CO CO o o o o CD OOjQ — COCOCOOCOCD^-OOtOOOOO-t-r^ EaJCMCMCOCMCMOCMCM^-COCOCMO CD 3 I--«-*-I-T-T-T~T— r O f O ) N O S ( D ( O T f S o ) o S t z c o c o c o c o a > c o c o a > o>2o ) c o ^ O d ° ° ' COCNCN^g^iSo q c p c o o i g S S S o O ' - ' - ^ d d d 3 O a to CO to CO CO CO LU to CO d CM CM t CNJ CO r- T~ CZi a LU <s E E 3 CO O) c 2 o •o c « 0) UJ LU I (0 >-a: i-z UJ S S U- Q __ "D > T » _J < = * • -5 Hi co o 2 H o r n ... LO IO Hj CO IO O f- to io io m IO «T O) S to O) CN . C\i tri °> 3 T c o S r M n " ^ o « S n > - ( i t -LO io CO IO d CO Oi ^ d ^ co ~ O CO ^ s LU o " (3 co * }U X CN 2 UI Lu x c M t - L O t N O I I O O ^ I O ^ C O b O C O O ) C i n c O N C O C O C D N C O C n S C O N C O C O E $2 co i l LO CM CO to o> o> «? ^ ^ CO CO to CM CO IO CD O r- CM O Tf If) CO LU 61 3 O 3 o Q L U a L U 5 L U o CD x o x 3 sr O o W W CM CO CM CM to m m CO s- co CO s- o w to in St St CM CO O to l U J U J 1 r . l ^ - U J - \ T _ f - * n U J r n C O I — Oi Oi ^ c o r ^ ^ q q ^ ^ g j h - J i T r o o ^ ^ Q d d Q d d d ^ Q ' d o d d c i d Q to 03 -o to ,_ in S ri O r „ o CO CO 0 | 8 K c o s t g i n c o s - £ £ i - - c o s - C M L u S ^ o c o g c o i - c s j g f S c q c o q o S ^ ^ n o r ; O O T - T ; r i O , _ p l ' " UJ _^ Oi (O CM CD CO i n i n O) CM LO CO CO O CO to CO o o _ i CO CO CM CM CM CM CM CO CO • 12 12 co ri in " O CM CO —' 03 tfi tri co ( O - L O l O L O l O l o g g , c o . t c n o c D i o c : h : . - l O U ) U O L D L n L O m L O m i n i n ^ t f ) L O " O r : C N i ( \ i c O T : T " r i t O T " T " ' " ( \ i ^ 1 - r \ « i ^ m ^ w ^ f O , r > l f ) i r > i r > l f ) f n , r > - i O r n r c O C M n o O L O C M ^ S T O ) X r r; CO (N LO ' — CO lO CO CO CM CM S O f ID ^ LO LO co cn N O ° co o d S « O ri o to « «? CM ° d lO to to T CM CM d d 3 co O o co m to \t O O St o ' d d d d CM o> h~ O CM CO d d o /-I m m to in m LU 2 ™ £ £ ™ 1 5 d ° d d ^ ' Q 00 st 00 L U o CO in 5 d d d s- S CD is. , CO • St CO d ° d d : 5 °> °> -co E E 3 </> O) c •5 2 _ "5 1 « w  j . •o a I £ "Si < 3 * ja c g fa o J L r - o 00 in in m tn O i n ( O O c o ^ t T N h ; c i ) ( D . M n o — 1 ri ri ^ sf l o i r i l o t r i c o , ^ i o c d o d O m w m , ^ , 0 t n ^ i n x 2 ~ r i C 0 - " 2 < N C O t t > £ l o S . . . " i n i n ^ t n t o i n t o t O m t o t o ^ t o " J ^ o i s - r ; S c D O > i n r - . £ c n c o S ? c o 03CDI-- <?~COO>OOT-C O.COCO I^O J ^ s t s t ' * ' * s t r i i o c b c ' > c o i r i t D c o O CN ! c o _ _ . , r . i n i n ~ . i n w t n m m « £ o > c o , » , t " > , - : c o o > s - c o i n I s - ^ q q c M C O T c O O C O s - l s . ^ C O C M s - ^ ^ t O r i c M C O T r ' c s i 1 0 "> O) co co SJ CO CO . d d O !^ CI) CO , Si E ! — CO > [fj Q S co |s. CO CMg st in co s co O) o ^ C M co sr w co s> E • O ii ffl Q S co Ml ^ st i n co s co o> O s- CM CO St in CD L U 62 Z3 o a m LU o o O LU LU X 3 co T J N ^ n f - . " n r t 1 1 ! O ° ° d ° O o O ' d t j O o O JSCOCMCOS^CO Q Q O O O Q O O co co co }5 co r ~ O O Tf ^  T- O d d d .-: d d q S £ c v . E c D U ) , S 8 E c N T R C O C O C O CM d -r^  d 2 d ^ n l O I O l O n j m l O I O I O l O I O l O n A ^ L U i o C O O ^ ^ I O C f t S S C J L O ™ ™ ^ S d ^ c N 0 0 ^ d d d ^ T - : 0 0 ' -C M C M f H C O C O C N C O i y ^ S CO CO CO S CO CO CO M l ' 0 ^ f n ( n r M t - m | 0 | 0 | O i O L O t T I O O^CNI^^™ e^ f lPf^-r^-tococo 0^h-J r i « " " n n l N l d ^ l O ' < f t \ i N l N ^ T r i > i n c N ^ g o ) T r ^ S J i q c o g f e X c O T f c o i o c o ^ c M - a - ^ ^ - c r c M ^ p j n c o ^ » S c o S g i ; " c o i o o > 5 o i d ^ ^ S c o ^ S c o S u o , " . < » < P - c > X c M C O ^ ^ ^ p j ^ ^ ^ ^ C N O ^ J ^ O O T- ^ ' CN LO ^ S CD O CO . LO IO LO o> LO o CN CO £ I S CD CO o ^ b ro L O co co co L O OJ 3 c o - , , : c N t - - ' 0 . a ! , 0 . ? c o ? c o ' » o 1 ^ O ° ° d d 0 0 0 d d d d ' ~ c > - j C N ^ K ^ o i g i n c o ^ T - N . ^ g C O C V I ^ C D L O Q CO m CO to CO CO H i I s- o CD 5 d cvi C\i CN + + Q £ S c o t o o ) ! i 3 K ! S ! P S i 2 u , c o i o U J i o c D i n . ™ c ! c O L O » - C O C D C \ . T - ! 0 . T T 5 d ^  ^  ° « CN CN CO O CO E E 3 CO o> c 2 r— = <0 •o K I z >- "J ' I u. a »= s •Q c 3 s o l h u m - i ^ ^ o ^ - ^ c o ^ c o c o j j i $2 t cq $ 0 0 > o > g c o - g ^ i " i ! ' c o 0 ' u ' S i 2 J ° « c o « ® c o ^ 5 ! c \ i " ' n . < ^ r - : r ^ Xcoco ujCNco^'«- h: 0i ( 0r-i-.o u i CD I s- CO -r-1 d i o ,_ N i i - n o o N c o c o ^ i O T t n T - O T t T r oi E c o ^ o c o o ' [ ~ c o c o c o ^ ' C O C O C O C s ' UJ UJ 5 OfOTtLfJCOSCOO) O v CN CO Tf LO (O UJ CO a> LO O ^ T— CO _l Ol oS oi CO o s t o s co ^ ^ , r t ^ l O m L O - . L O L O I O ^ L O L O L O L O t 3 S c o J S o J i n , ^ 0 1 c o 0 0 0 < 0 ' ~ -x ^ d " u i " d u i c N m c o c o ' c o ' c N T- O ^ t r ^ C » 0 ) l O r Ifl Ol t O) N CO N O) O) — CO j ¥ Q O CO Tf LO CD O T- CM CO Tf LO CD 63 z> o 3 o Q LU o LU LU X E =1 z 3 O 3 5 s 8 a s?« o CO CD CO . ^ : d ' o o ^ Q I D CO to co CO Oi LO CO CO UJ i n OS i n CO 5 esi c\i c\i CN CO esi CO CO CN n w i o f 0 LO i n m LO i n _ ^ C O L O ^ ^ C D L O ^ « ^ LO TT LO 0 3 T f t f i o i o - j i o i o n O o> ^ • — 1 CD CO CO m in LO in LO CN -i— Tf CD O") Tf o m Tf m N CO N O) S T- 0 1 T-P 2 CN O CD CO ^ CO O) ^  X ^ C N - ^ C N ^ ^ C O CO N T- N N CO ( ^ i n C O ^ ^ ^ ^ C O C D ^ C O i i C N C N L O y c p c o g ^ r ^ c q c o g q g r o L O T f X C O C O ^ ^ ^ ^ C O C S J ^ T - ^ ^ C N C O T- 1 0 , LO LO d o >5 Tf CO IO LO CN CO a> co o r» . co cz 1 5 5 ^ 5 w W C O m n n n O r - _ C O C O O O ' r -CO 13 T-T- 1— *~ 1~ ^-T—T-T-d S £ 8 - £ g £ O 0 0 d ° d ° 1 0 C M 1 0 cn 1 / 5 • io " P ~ •<r co * " —• c"> O o o " O I O ^ ° 5 o ^ . , co ~ R co d o ,_• _ • o o _ • O d ^ 0 0 0 0 d T ^ d d 0 0 d ^ P 8 S S o » r S n r S < o « ) S ( UJ CO o o rS g t M CO CD co -*r r , i o t o i o _ i o i o _ i o T - o > L O I N L O ' ^ C O C \ I C N | S ' - C \ | J C D C N S C N J C V ' 0 C O U J c » C \ l l O t ? C O l O , ^ t - ( x < P < N ! c O C D c 9 S d c o ' c \ i ^ c N c o ^ i o " m i o ' i o ' , r a E E 3 OT Ol c "5 s o •o c a •D I s = u 1- < u_ a T "S 5 i = * — V LU n o ' I— o en UJ UJ X in > w i o £ c N i £ & < » n S L O » < - ( N i L r > £ —I r- ' IO LO IO CO O) ^ CO o N CM CO S CO -tj- Csi CO CD CD CD CO LO IO LO IO LO TT "cr CO CO CO CO T- CO CO CO CO CO CO i £ r- g to § C N O j g ; CO ^ CO ^ CN ^ 1 0 LO > ^ O Q O O O O Q CO CO ^ ^ C O C D L O C O C O T f O C O C O T f C O C O C O C N CD C l D C D K C O C D C O r o C O N C f t N C O O j C O O 1- CN CO TJ- LO CD U J o g S ^ ^ ^ ^ ^ t o S K S c o -( 3 0 ° { g o C O i D C \ t C O S f e f c S ! 2 i -CO CO O) CO N CD CO n TJ- co r-_ j LO CO CD X esi LO co Ol h- IS- CO ,_• CN , J C N - £ £ c O » £ g l O CD O) . . „• CM CN CO CM Si ^ <°. CO T- CO o> -9 CO ^  CO OS fc CO CO S S £ 2 - S c 5 S S - c 5 Si Q LU LU c o ^ c o c d c o c S K ^ ^ ^ ^ c J ) ^ ^ : O T- C J C O Tf W C D 64 o o a LU Q LU LU CD LU CD CD X CD X 3 o O ^ d ^- (M 1 / 5 I Q O to K UI UI o 03 5 5 irj cb > CD OI > CD CD ( D c o - s T T : i n l o . C M P T : 0 ) . ™ - o m c o J a J f f l ' 2 a J ° ' " ° w s o l T - ' " c o , n CD _i X r n l 0 i s . i f i l 0 l 0 i r i l 0 , n ( O 1 ' 5 ^ r i ^ ^ c N i c o c c i i n V ^ c o ' i 1 0 ! o> > « • o " S S ^ C S ' N I O ^ S ^ C - J 0 d d ° d 0 d 0 d ° d O - n s t O C O T - T - C O C M N I D T - N E g J c M C M T - s r m c O s - C M C O C O C M C M — i i n i n IO i n ir> r n i n m L O ~ . . r , m i n 3 CO CO r (O P) Q O ^ d ^ d CO \-d ^ 3 ^ • = ^ ri O d ° m m i n m , n _ i CO O O) I— ^  A co sr v- co T m . i d d d d ° ° i r - i o CM CD CD Is- CO CO m Is- CO LO CM a> a CO CD CO CO LU CO CM o CO o Is- CO CO o i n LU CM CM S yr i b CO ir i i r i CD CO CO IO s CM d CO 00 m Oi d •<- T- CM h- Is- ; CM -r-n E E 3 (0 ra c T5 2 _ o y ^ 1 IB >. •o a 2 £ T • j < 3 * C UJ * •& 111 ca o 2 H o r n W^rngggs - c o g^SP ^ c o C n O s T f f l S o ^ O c o c o J r i " " * -i|o'f-NiD,ai'»«'sosi:ivB'-jJ2fCCNi--t-.coinsf5i-~ 02'' , f~-! i n m m m m m o co oo co i n co CO CM CM m CM CM d d d d d d O r ^ 5 ? l ? < ? c o 2 < D ° 3 P § 5 t J CO N CO CO O CO CO • CO ^  CO ' ^ h~ ^  CD . . l O ^ u l n r u i o l o u l . l O m U ) C D c M j o g ^ C O O O ' O - f e c M g O ) - J c D l n . ' > J - t t ! T : c j > s - s T a ! s ! - R s - 1 CM CM 00 £1 co.srm5Sosf;g^«js«8 CCOO)0)^^0 )CO^^O>5}!0)0)° O bj ui £ CD 00 ^3 e E O bj z « ^ Q UI UJ o co ^ IO CO N ( o c O s - c M c o s r m c D 65 3 o Q UJ 2 LU CD CD _J 3 o Q LU 5 UJ o CD _J ° ° . s - £ ; - < r c D C M £ _ c o ! £ c o U] U) U) C D C D in C D co m ZD <d cd . . . r r . . r o Q O d d 0 0 0 ° ° ° ° o d CM CO T— CN -t— Tf CO Q CO sr LU CO o 2 CO ^ c o 2 | i r « s 5 , 0 S _ j . . C O t ^ - C O C O . s — CO • ^ • s t s r s r e o ' c N ' ^ ' ^ C N i U j £ s r £ £ g s f i n £ c M C M C M O > c o £ ^ i r i ^ r t i n c d « ^ c \ i l " « t M t M | n c \ i i n i n L o i n i n — i^inLO-, m 1 0 cn s* \ _ > C O h - O C N I . ^ : s t C 0 ^ ~ J ^ . C M . C - l c O s - - g - J g ! 2 c O s - s t - * } 0 . c o r - - £ X s - o ' - c , 0 d O O s - ' - ^ s - ' - d CD co N 3 co s S S S C D O O H O d d^-~ < - o _ _ ° o _ _ m w __ CD te_«(0<tl0'-Oi-M0C0lf>stOO b c O C O U ) C D C D ( Q l f ) U ) M D I O S O ) C O CO _J Si Z 3 CM O d s -gojco2cMO> co 2 d ° d ° d d d ° ° —i m m m m , n m —i co h- o> r- ig v , 3 CO 0) n eo ^ st - -. 0 ^ d d d o d 0 0 Q co <J> CO CO IO CO If) If) If) TT to CO CM Lit * f at CO o If) if) 2 CM CO CO CO CM CO CO IO i o t o , n •0- CM CM ^ ^1 o j « PJ w S ™ O . CO CM . to en en l " J to o Jo ^ ^ IO lO I s- o eo co ca E E 3 (0 UI c 2 O •D C ca CD -7 S J-t C ro o LU LU X M __ UJ < a >-_i _£ UJ UJ 3 . . . i f l i o i o i f l ^ m ^ m i n ^ - i o i o i f i ^ c o c o o M o S o g S ^ X S c o ^ o O o i n s t c M ~ c o H H c o < 0 0 ° i - - i n o - • ^ e N d c N i ^ d ^ ^ c N i ^ ^ ^ c M C N i CD So o> g co ! - J CO __ P CO x ci *~ T"^  1 m m CO CM co in i l i L O _ _ i n i n _ _ _ . m i n m m m - i _-O c o P i o s t v ^ . c o i O T - t o o ^ n r J ^ n l \ i N « n C i i ^ c O N C O n N CD co m i o , N. O N- CM ' LO lO to IO * f CD T T— CO O CO T- C) T~ LO LO CO T-CM CM LO tO LO lO CM CM d d 5 g UJ f N CD to cn CN O f- CM CO LO CD o i E ! x a UJ , UJ 1 O CM CO Tf LO CO 66 3 o Q LU LU CD CD X 3 O O UJ UJ CD CD X LO LO LO 3 O 1 T- co «- CM O CD 3 O Q CO oi £ to lO I s- Ol UJ TT <? CO CN I s- Tf s Tf CM CO CO Tf LO IO OS CD TT CO Q UJ T f O C O C \ I O c N < P i n . < 0 . C O T f c o ' c M C M ' c O , r > < N l r _ < N T ^ ^ <P CM CM . LU CD - J C M C O a ? ' ^ c r i - - I ^ C O C M T - T 1 : CD X *~ T-' 0 i Eco l O i o c o i o c o o T j - ^ - c o r - c o - i LO i n LO i n - I CO O O CO : 3 LO CN Tf 00 O d d c> LO OJ CD T- £ , CN 1- CO CO ° 1 d d d d x ' O ° ° d ° LO LO LO LO CN Tf O CN Tf Tf CN CO d d d Q ^ i ^ ^ ^ ^ c o c o ^ ^ ^ L o ^ r o L O N ^ ^ co LO Tf Tf Tf LO 5 CN CD co co ; h- CD Ol ^ ™ o i o i o c o L O S L O i O i r : ca E E 3 10 Ol c 2 _ o SJ IB j , 5 !i >- "J * i I- < U. Q T ® i j »= s — VB UJ w o 2 h- O CO l u S o.Sr - i g r ~ - i R c o c o - I ^ C M p j C O p j T t ^ C M - t • LO CO : co « ' to " J ^ H ^ c 6 ^ ^ ^ t o u ? c o ^ K ^ : X ^ T - C M Q T - C M T - ^ T - ^ J T - ^ T -, CO LO ) tt CM - o ° o ess s o o d ° <2? LO CM LO UJ o LO LO CN CO o> CO I s-oi CO o LO CD I s- io Ol CD CO Tf LO CO to I s-LO O CM LO _1 CO Tf l< Tf Tf Tf Tf to Tf CO LO LO o> CO O _i LO Tf Is-CN LO Tf CD CO CD LO CN O to CM I s-LO LO o LO o CD IO CO CD CN LO CM LO CO CO X CN •*~ CM CO CM CM CN CM CM _ i LO CN LO d CO CO Ol CM CO CO CO >< LO CO CN LO CN LO CM R d d d d d d CO CO i c s s c D c n c o m c o c O T r c o c o i o M O > b v O s c o N a > a } S c o o . c o N S N c o * <=> o c o T r i n c o t - c o c » 2 ' l 2 ! ! 2 2 l 0 2 L U f V T-T-T-T-T-T-T-U r-~ i o m CD S c » - I O O ) n T - f l > t r O S P ) " N N ^ ?> b c D O } 0 ) ° C O N C O O > 0 ) C O ^ O ) M O CD 3 ^ O oi z ra a LU LU 3 6 c o - c f i o c D r - - c o c j>2r ^ " 5 ^ 5 E 67 3 O Q HI 2 LU o C3 — i X 3 O Q UJ 5 UJ x o - - ° ^ -IO _,. IO u"> u*> o 3 o s-irt " «s fvi CM ? o. Jvj (2 ^  CD — ITI n m (ft ni tn 3 - ° o o o o o o ^SSC,<?U?^CDO)9c>l(DCOCOt ^ c o ' ^ i ^ ^ ^ ^ L r i - r i ^ u S - b T r c b ™ H o j c o o ^ c n c n o r o x c n i f i ^ C N L O T f ^ T - i n C N I ' r - r H C O T _ ^cNJcNJcN^cNcoTr'Tr'0^ 1 J^COCO^T-TfCOCO O o o o u ^ o o r ; n c M —' CO T- ^ T- CM CO CM CO CM ^ T- ^ u c N c o l ? ! G ! 5 S ! 5 t D , f l , n j 2 n ^ t ^ K ^ i ^ ^ ^ O ^ C O O T « T - ^ C O " C 0 O ^ v n o c o o j i n ^ o j o s c n ^ o _ i i x , e o o x r c o ^ f P i o c o S 6 6 6 6 ' " 0 d d ^ " . i O C D __J CM X o S co £ ^ LO in in LO T- CM CO IO CM CN CM N d o c i o C D h - C N I C O C M L O O C T > C D C O C O C O C D l O C O S S C D C D ^ ' N C O ^rS'-SCOT-OJIOCOCOCJCNCO^CO O C C O C O C M C O C O C O T J - T I - C M T J - C O C O C M C O - J ^ C M C O t o T j - C D C M ^ CD ^ £ £ "2 ^ ( S C M C P ^ ^ ^ P O ^ ^ R C D C D S —I ~. UJ ... UJ , UJ UJ UJ ... UJ 3 *^  CO 0) ™ T "? CO CO |s- "? CSI O s^ ° d ° 0 0 d d c i ° d £_ CM is. P CO ? |s-UJ CO s* fe CM ^  s-S c o o j j o j c o f f i d ^ CO CM CO _ - CM IO n io io io S 5 t g ° , 5 N iri io in . IO IO IO m HI IO __ » n c \ i c o S w o > _ S cs E E 3 CO O) c '•5 S ,_ o Sj ? 1 CD >_ 13 0-2 >- LU = i LL. Q CS o 2 I- o m uj K —' CO 2S X CM CO fs- St i I^OlN.CDOlCsiLONCONCD .J^conyccistcs l iooujcnco ; r i s J -^ c o cOT^cdcs icd^ : cs ics i CO CO d d CO CO LO CO Oi r- CO TT CO m Tf Oi CM CO CM CO CM *~ CO *~ *~ « = - a * sg o ^ r - °H co ^ o ,_J o 0 - o OJULOLOOCOSOT-5> P £ T - I O C O T - L O C O CD > w rr - - - - - - - - - - - - - -O C O ^ l O t D S C O O ) O CM CO TT LO CD 68 3 O 3 O Q LU Q LU LU LU O CD X C3 -J X 1 ° s^  3 O / - » i o t o _ _ _ , . i o i o i o CO 00 to cd cd o co i n LO i o co oo *cr cd -st Q UJ 2 ( J J C O C O l O L O g c O ^ s f C O ^ ^ g c O l O - J C N - ^ c s i ^ - J C s j ^ C s i c s i - ^ ^ - C O C s i O co d ^ ™ X CM o> 5 CO O d o - j c o s T t s . _ m . - - t o , 3 . ' o O s - O s - 0 0 O r i O r i «. |£! s t i : s t t o S CN 5 co 8 co q d ° d ° d ° N -icostffiSrs-KcoLogoeNScoS 3is . s T t»c ° s T C s i _ _ . r ^ - j O J O T l o o > 0 d ^ o o d o d o ^ d 0 ^ 0 O CO CO N LU 1— CO 00 5 d csi d IO m ^ - . l O l f l m m l f l L O t D . q q s r T _ _ r ^ ^ - 0 _ 3 __^S-T-S-___:CSIS-_:_J i o i o i o i o m m N A , n i n 4 t s - c o s - s f s t S S m S c O s f D f M C D C O N ^ ^ n ^ o " coio ' cdsrcd < 0 < 0io '* ' sr L O Er-rs E E 3 (0 e» c -F, "J CO •O L_ 2 z >- "J .ti <• LL. a i B 111 •o=3 eo o 2 r- o m to m LO m LU CO K K S S m W O O _ CD °S o> s- o co "! co co '~ 1'. ^ . co ^ -JCN__.j____CSI-j__OeNCs|s- e o-CO o -J X : - 9 o s t ( O s t c O O C O O ) h - C O O ) C O C O I - ~ » t s t i o c o e o c s i c o e o c s i s — COCOT-COSI-W 0. ^ if) CO N CO O) O t- CN CO TJ- LO CO LU o> LO h- to CM co o o> o co o LO Oi _ J CN CN CM csi •r- t -— l St to t o o> o h- O) <il S - ^ s t C D O r ^ - O s t l O s — O) IO s- s t O CO -_. ccDstiosrcDstiosrsttoi^cor^.co at ~5 w a, z co s.: a LU LU - - O ^ N C O S t O C O 69 3 O 3 O Q LU S Q UJ UJ CD UJ CD CD _) X CD X 3 " s » •> 2 " ™ ° °° <° °> °° O d d O O ^ O T - O O O O O ^ : 3 O T-^CNa?10.Cnc3>0;<0 io io ~. io io io io io CO Tf Tf IO CO i^ . ^ cp T- cp Tf CO CO CO a LU " " £ LU CD co co cpcoSCD^ ^ C O C N " - c v i ^ c o ^ " ^ LU CD CD _j X LO i E ; z T - T - i o f c f l W c o c n w S C D N C O v O S f l O i n 3 co . O d ° S P: £ $2 s ^ S ° ri ri i-^  ri CO CO N CD T T O N 6 r- 6 d _J LO LO CM to _l CO Tf CM CO CO ^ ! O O T- T~ d T~ LO ~s. LO — LO O q Tf £ QKcorocviKcoc\iS_<oc\icoh-.CN UjgT-OJCOf^COh-^ C^OCOCOT-Tr « S , ^ C N d T * ^ C O T f ^ m T f C O T f i n C O £> co E E 3 CO O) c T5 E. »> 41 £ I z >- " J u. a < = ^ » •= Lu to o 2 I— o to m c o g § r - C N ^ | e S c o g c O S ^ § O ^ S S ^ » ^ c o » P i o ^ ^ o g c o „ I O I O I O ( 1 ) f n ( n m L 0 1 0 IO LO IO LO Ur~CNCNKS"SeNr - - c O T f o o c o c\ i j J ' f N c o ^ P r ^ c o t o - C N N c n c o X T ^ d ^ o r > l t o o d T ^ c N i r ^ c j d io r- r- S co C M co d d d ... _ to LO m H co TJ. CD *>. io ? -I « CM co q CM ; X ° • LO tO 1 VN IN IV ..N —i. , en jCOCOlOtNCOCOT-"Hr T - c o t o c v i ^ T r c N ^ " 0 K CO CM CM S CM t 2 to CM LO CM T- O ^ _ O , n CO LO Xj to LO "** CM d « 8 => d j- Cl) C:cDtON0D^COSO)COO)O)CDO)CO Oi 3 O bj Z ™ 3 OCOfWCDNCOO) 5 O T- CM CO Tf LO CD ^ Q o n » L O f f l s o c » 0 r « | 2 J " UjCt: T - T - T - T - T - T - T -70 3 o Q LU 5 UJ CD CD _i X 3 O Q UJ 2 UJ CD CD —J X 3 O 3 O Q LU Q UJ 5 LU CD LU CD CD -j X CD _i X a E Z\ £ CM s- CO g g 3 S ™ » °> " § 3 O g ^ S S l s s S c N 5"cvi*M ;<0'*cd« CM CO cd ir> 1 Q UJ cs E E 3 CO o> c 2 O •o c CB I -E >- UJ .ti < E < LL Q T "Si < 3 . •££ ja c g Q O -LU LU X CO >-Oi " ' n Q n S ' - S c o 1 , " " S « " n « ' « > O ^ o o l o ^ o " 1 " " " " " " ? " - ' " m ^ r J C M - W f o ' O C M - J C M C M C M C M X s- O O 1 _1 "> ID IO IT> IT) LO O CM CO CO CO s-s to co st co ^ d d d io io in co io CO CO CM CM d 6 d LU CD CD _i X - £ Q LU LU g O T- CM CO Tf LO CD CO ^ ^ O CO Tf LO CD CO or CM CO Tf LO CD 71 3 O 3 O Q LU s a LU s LU CD LU CD o _l X CD _ i X Jir)if) inir)ifj inio m u} n in in L O JcoocoinioootviSco^-miMcO'vr D l N t O N C O L O C O O T T - Q ^ s ^ i N 3 O o in » n w s ^ co co V i o co co o co CM a LU S L U C O X C s T r ^ ^ C O l O O ) C N I ^ K l ^ O J C M ' ° T ^ ° ^ * , - - ^ C \ i ' ~ T - T - T - T - : LU o CD to co Zj •» CM X d d ««• io 3 g o _ LD LO LO CO LO i - O o> o> Tj- CM en CD i o O _i X s i ° d —I IO M LO ^ IO J io S in H oi 3 O) . CM . O) O -' ™ -' *- - : l o a o > K 0 0 c \ J < O ' ~ -•i i C N ^ J ^ L O ^ C M O ) 1 CM ' — " — !2.coSP.!£>co i r>r-!5 I r H c O ) ^ a > t P c O 3 o UJ S °> - 8 s co •* N: "* io CO <t » Q LU s ra E E 3 CO O) c '•5 2 o UJ UJ X in lu-ce •o • z >- UJ .-e < S 5 u. a 7, C UJ * *5 Uj A C S n o ' H O CO UJ co t CM cd 3? ! CD T- cn o> T . n io io to LO io io , n C J c D C D C O C O C O C O f " J l O C O V M O C O n > < d d c \ i d d T - : T " io to Oi to oo r-. CO CM CM CO g g 0> ^ r O n S n K n " s s i o o « o ) c o C S C O 5 N 2 2 ^ C O S N N C O S C O g n ^ u x o s c o o i 0 ^ ^ J U ® LUce T - T - T - T - T - T - T -LU CD CD X • " 5 D o n ^ i o c o s c o o ) LU LU O T- CM CO Tj- LO CO 72 3 o 3 o o LU Q UJ CD LU CD CD _i X CD X 01 .a E ZJ Z 3 O 3 O Q LU 5 Q UJ 2 LU CD UJ CD CD i X CD _j X -J i o in m , n m . J o i n J o S o i 3 o i - co u> r-O ^ ^ ^ CM ^ ' If) If) If) If) . CO CO s- IO . C O O T - O c\i d csi csi ' J m _ n i n i n i n i n m - J s » 5 J . » » c o o » » o > D C O . r s T T - C M C O i n O d 0 , - ^ s - ^ ^ s - ' f> tr\ tn o g g co o CO °. °. O IO S^  *~ *~ O Q CO LO CO CO CO CO LO CM LU LO CO CD CO CD CD to Tj" iri CO CO CO O LO . CO «o CO LO y j c o T : r ^ c o 0 ; - s - < o - " i o S ^ c o i o - j c o ^ - c r r i t O T f ^ : r-!£-a-iogin!£_i--et in -rt ' CO ^ CO £> co E E 3 CO at c '•5 2 _ O UJ •a c CO •o 2 £ >- UJ = i LL • v "5 _] < 9 1 1 1 I I O J I- o m X CO >-Of ,-s-S<°C^-CMinCMCN"r^S5!ScO C _ ) c o ^ C O , ^ T - r ~ - c D I O T : c D ™ < P T -O) CD "> SS s _J CN co CN CO X O 0 - O O - m m m i n _ O) O O CM T CO CM CO ™ d d ^ ^ C O N f f l C M ^ ^ O ) ^ ^ s-CM.JO-jcsi ' -WcN CO sr O O) CO s E o n s c o ^ ? 5 2 o ) » 2 ^ » _ 0 ' CD T J co I CM _J CD CO CM o> CO ^ CN* <D 5 r C N I O ) ( N C N t C O ( N O ^ C n ' f C O O C O CD t S ^ C O 0 N N C O N O ) N S ( D N L O CD 3 OCOvfLfiCDKOOO) O i— CM CO TJ- LO CO LU O oi Z » 3 ? f : Q o co t i n co s LU c O "- CN CO Tj- IO CO 73 i^iisniiiiiiiii 1iiisiianiiii|5|i I Yisiiiiiniiiiii j " j s a » U H i ! S H i i 3 J;J2?i?i|i|i||||||i j;jsiiii|iii||i|i|| M M 1 il l i l l i l l l l i l l l l l l I jfiillllillilllflf i j i l l l l i l l l l i l l l l l! .g g r r r N N N N N N M f l h- LU LO N T t O V i J 1 0 T - 0 ( O O N C O n O ) 0 ) l N r N n o i n o s a o o a i D i D O C O ^ u } ^ N 9 c o o r t N c o » - o i n s c i ) O T - { 0 tN 5 ^ T - T - T - ( S | ( \ ( N f « l ( N C O ( O e O ». UL P T- ^ N T - « N l O ' l T f O S i p L n O ' - K O £ T-co^ooorsiTrcN<ocNf^ro(OioocNCD ^ i n c o c p ' c M c b c o c o T r c d ^ i ^ o t t-«sc»N©eoo«uiscoci>otN S i-^i-CNCNCNCNCMCNCOCO z 2 > r- c o a > ( D L O ( D C N C O T f ( N n n c p K O T r ( N 3 -E cNnscoT-«scntNTf(otoo)'-csi P T-T-T-T-rgcNcsjcNitNcoco • CN 2 O E il °* I - co 5 ep<}»(6OraNNG0CAtDNnNC9 SSCT)nCNCNCOS(OOTC))TfCnSCpl/) Ot lOrmnNOOWOMCONlOff lS |TTNNCOU)«cC)NT-l>>tDnT-N(Dr- N « N C n N » n v « r u O N ( D O O « i O C N u ? * ^ , T < ^ U ? T c ^ ' * : , r , n . N . ^ < t ? ^ " 1 ^ l l r i t d t t N O i t V r i ^ u j t t r S N N C N N a W C O N n r N N « n C j S t i J N t t C * i - » - « d r n d N O ' c £ i N O S r l O C N ( N ( D * i - W T - C f l M N C O i D O i n T - l N S T - T - i ^ t O C O C N O O C D S C f t ' J - C t l l D O c^coL6^^aicaci-vc6y-:~6-r:<Dcio6 r -CNl r t tN(NCOCNCNT-CN' - lN T-T-CM C IN CO ID | - CM 2 Lu I 2 T - o c R c o r ^ c o a > o c o ( D o > c o i O ' i - a > « OTCMVCNCOCNI^TTISLOT-CO^-LOCNCO ' - rSCNCOCOCNCNCNCN ' -T- T-T-, T-T-(OT-nniNiN(NNi-T- T- _J= l ! l i h- LL I- LL i ( o o i f f i r S r t s o i n c o x f o i n ' - c o i N T o o c o o r n ^ i r n i p f f i a o i N n r o • n r o \ r c N c v i c N O T r K ^ c n c o » - O T f ( p ^ r N f ^ , _ r v l ' s ; t N l l P T " , i ' l 9 x c : ! ( ^ t ^ ( ^ ' ^ < ^ c(dncdcoNcoTi : r : 6d(Dui)N c ^ ^ r i r i r d r i d ^ d r i N o s r i r i i T - T - f l T - c o A N N C N C M r C N v- J= T-CNfjCNCNCOCNCMtNtN'- t - I-T-2 2 LL. LL. CM i '2 LU OOjO )QIDOmCN (DSlOCDtOOCOm O C o W f f l C O C O O O O N C p C O N I f l O g S KTrfflrtuiNncoScocDCNcncNincn «-N uiomoiwr,sswiDcpNStD T - t -COT-COCONCNNCNr-CN H-T- .§ T-T-cOCNnnCNCN'-tN'-CM i - i -(N 1 1' 2 Lu 5 3s i» a— h- O l C i l C D n r f f i S f i O O O t f r N U j O ]  Tf I N W O O m T f C O N i D C N C O C O N O O l i n 5 CD rtOCNt5swc5,"fiSc5T:C!Sin N n r S O ) T - ( O C p N O i r - S I D C O T - T - C ( J i V i n r O l C l O i n t N S C N l O ' - r n o C N N ' - L O V l f l i D O S O C O n C O n c O ' -|f- ^ r ^ c N i ^ < r > C R a D C N r t T ^ c N » ^ r c o o r - c N d d n d n N ^ ^ ^ c d i N i r i _ ^ r - . c o ' ^ ^ d < N ^ d c » C N i ^ c N m •g J= T - T - n r - C N O C N C N N C N ' - C N *£ 4= T-CNtO-r-tOPiCMCNCNCOt-t- "g C N O C N n i n i N ' - i N C N ' - ' - T-6 CN 2 ON g 6 IN E Z E LL Z E I T Z E Lu 0) r\l O (Ni OJ CM LO e in c LO C "I 2 i 2 i co 2 co 2 M 2 T- LL CM LU CO LU T o^cn^«Lo^cnT-coLor^c»T-coLorv.cj> ^- c 5 ^ r o i - « i n s c » r - c o L o s o ) r - n w s o ) 9- o^co^cowNCOT-niijsc»»-nwNce c o^cSocNTrcDCDocMTtcDcooSTfcBS 5 ? ® ° ^ ^ W * ° N 5 ( D C O O C 3 ' J - { D S .5 o ^ o o o c N ^ c o c o g c N j c p c o o w ^ c p c o O Z>^ CNCMCNCMCMCOCOCOCOCOTTTrT>Tr'* O Z>T-CNCNCNCNCMCOCOCOCOCOTrTrTrTr--T O Z>T-CMCMCMCNCMCOCOCOrtCOTrTrTrTT'tr cnc Ocor-ujCNcorvicOLOLO(OcDCJi'«-c N C M O T L O ^ e o v ' S ' « - » - * e r * ~ * t r * - c N < N t N t C O « - t C O O C O l f l S O ) r C N n i O f-i-i-CNCMCMCNCNCOCOCOCO m oincDcoroeos^co^cNOconcocN t- N C O C D C O i n T -OT- l f lOr tSNS^ O i Q ^CNCOCMCO*tfCNCNCMCM'«-CN *~ *~ c I I I I 1 % I iiiSiiiiiiiiiiiiiiiii i co tr in CO d I Lu cococoOTfcOT-cnoL cNL ^ fLO'* { D r - ^ t \ O m ( N V S C O S W S r t ( 0 5 r^TrajonNCDT-ncocogriN't T - f t - r N N C M C N r t r t r t A c o a ) N N V V « c o i - u i K c o i s n ^ c n •»* COTTCPOCDU>COtMCM^Cl3COCOCOOO i -r - T - V t - t t r t C N l N t N C N T - C N T- CN C N u i c p n c n c o n v i n s c g c o r s n ' T a ) T - * N M O ) T f c p c o < n c 0 c O ' - s ^ C N CNtONCDCNCoS'-rtCONtggCNJ i - i - ^ C N C N M N r t ( O r t C O d Z N r t r S f f l C f t i O r T - C f t S O O C O C D j ; O T-^CO^-COrtCNCNfMCMT-CM i - £ ro < cgTrr^c»CN(OoD»-rtcococ^Q^co 1-T-r-CNfMCNCNNrtrtrt i D r m M r O C N S C O N C l r t i - U I C N C B OT*-CNTrCDCMCO*-VTrcOinLOCDMCO «-CNCO^ncOCNCNCNOT-r- r - t -I CO < L  CO ci 2 LL ™ o ^ C B T - c o i n s c » ' - c o L n s r o T - n i n s c » _*5 SO o^OOCNTTCDCOOCNTrCOCOOCMTrCOCO >- ° <Z>T-CNCNCNCNNtOCOrtrtCOtI»I»t'T^ <Z "BiBiiiiililSiil l l l l l l l l l l l i l l l ! 74 3 | 5 i i i i i i i i i i i i i i i B issaii|iiiiiiiiii ^issiiiiijiiniiig 1 Yiiiiisiiiiniii 1 j . Y H . s i . i S H H . . . j;|siiii||ii|iiini -jsgsiiiijiiiiiiis A\ M M I sfililiilliiiilfH I jJlillillllllilli! I HiiSISiiilliiliii _8siiniiiiiSis§si .jsgiiigniiiiissi ^mmmim ii Si l l co i-s- TT CN E ' ij '2 LL 8 0 1 0 f f l * T - 0 ( p i n f M O O ) r S N incocft^<oujOCNScoinio©cN <-CNCO^«<0(N'-(NrN'-CN i-cn T-corsii^ i^ CNT-co^<jOr-T-i>~ocpTr ita>i-\eicv<D-*t-<-ai^it}t^cDc*io>p~-S T-CN|CNT-CNICO(NT-CN|CO'<-(N I- I-(N I '2 ci^cxiodT^edoT^cJ^oScd *^ cffli^CN-ocricricricri ^ c " ^ - ^ ^ ( ^ ^ T r ^ o c ^ o t c , u 0 < 0 , - ^ r •3 ^ ^CO^rtCO(\CV|i-(Nt-T- i - i - C CN|<Ni-CN|CNi-Cs|tNCN'>-'- *~ i~ *5 = T-NtNWWCOt-CN'-rgT-r- i- i-6 CN 2 o <N a o a O) (Ni 00 CN CO (\| CD t If) t CD = 1^  1 cri 1 0 1 co a 2 5 LU CO LL IO LL. 9- o^cn^nuiscn^nLnNcn^ninNcii 9- o^cnr-ninscn<-nioNCOT-nioso> 9- o ^ c n r ' p , i n r v 0 , ' : 5 ' 5 t : 5 ! : _ ? _ ? _ : ? O Z S i - c N N N N N n n c o n n ^ ' f v v v O Z^t-cMtMc^ciCMmmAnto^r^^^^ (!) Z>i-c\iNNCNc>inncocon^^^^v I i 1 1 I ! I I 8 ^ g 8 § i i g | g ^ l l l B ^S83 | ! I | |S l i i g ^ I l i l l l l l H I I I I I ? I i I I | - § » d B 8 f e g f e g g g s g g f e f e S f g -|-d8B5g8gg8gg8as8?8 "is^teggjggssigfcspsa 5 s I ' 1 s 1 3 1 1 2 I i J l l l I I I I i l I l l l l I I ! I l l l l l l l l l l l l i l l l l l ! I l i l l l l l l l l l l l l l ! ! ! ! 75 ^mmmmm _jmmmmm ^mmmmm I ^mmmmm j "jmmmmm j ^mnmnmm lymmmmm Ij^mmmmm l^mmmmm 1( 1( 1( I I l I i I I I I I l I I I i I I I ! I S l l l I I l l I I I I l i I i i ! I l l l l l l l l l l f l l l l l l l MS5SS353SS3SS3555 M55353535353S3333 M355S353533333SS5 II II II ^mmmmm* -^mmmmmw I I i I I 1 2l I h l Ii l | 2 J B | S I i i i i i i i i i i i i i i i i i i 1 i s i i l l l l i l l l l i i l l l I i l ig l i i l i l i i i i l i i i h- CN CN CN o •«- r-- T T- lO CO T-xr" Tf d od CN CO LO CD LO LO I D in ^lIlIIIIIHIf s Sl i l i l i | | l l lH| | . i i i l l i l i l i S ^ P I F I I F I I H ° " I I P I I P ^ I P ! I '"immmmm Iiiiiiiiisipiiii jiiiiiipiiiiii "iiiimifmini J 5"lI!IIPIIP|PII | - p r l l i p p i p i l I E"piI=IHIII!I!sl i ' . IlllllllllllllllI \ >1IIIII11?IIIII [lllIIIHIlIISIll ! T I I I P P H P I P P T mummim x mnmmm I S S 2 l l l l l l l l l l l l l l i l l l l l l I l l l i l l l l l l l l l l l l l l I l l l l I I I l I l I I l l I I l l 76 ^mnmmrn ^mmmmm .Jmmmmm f \mmmmm I\mmmmm f ii i ii & i i * i I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ! I I i i i i i i i i i i i i i i i i i „333S52S5Sg3SS53S M5S5S3S23SS§33^33 JS533S3333S33335 ?! ' l l If I l i 1 l i I l J , J i J l I i i i i i i i i i i i i i i i i i i I I I I I I I I I I I I I I I I I I I I i i i i i i i i i i i i i i i i i i w t o i n o D i o a i o c N U i i o c o o w c N ' - n c N C M O i - T f c o o ^ o o i - T r T f T - c o c M T f L n n n n c o T - c o i n 5 s c o « - N ; N c o o c M E i - T f O T i - t N C M T f T f r t i v i n L O f - - L O t o c o 3 CM rt Tf TT io O co i n o a j i o i n i n u j u j i n n i n n i n i n c n c N T - N n i f i s i f l N ' O i N O i n c o s N c o ' - ' -c o m s o c M t N ' - o c o t M n o T - T -T - 00 Tf CD CO CD CO Tf CO t— CD o c o c o c n c n ^ N a j c o c o v c N r o c o c N c g C N J ^ c o ^ ^ ^ ^ o i ' c o e d r ^ d r ^ " ® T - r o f i n c D n c f t r t N o u i i D ^ s o c o E co LOoom<DrtcoTfTrTrT-c\iiftco 3 t- i - CM CM uo ur> to io <J> O "> E t= "D =i cn i ^ u j i o u ^ c N i u ^ r t t f i c o r t o o o o c o u j U i U j ^ a •= o o i o o T f ^ r o u o i n i o c o i v r ^ T f c o T f c o •= = 5 CN ^ o ® co co co ^  co in ob CN « » T « •§ ,E »~ S S S T f l O O C O C O T f C N C O C N C O O O £ «j CNI Tf CO LO C O * - C M T - f l j O o q> o O r — ^ r -r ^ r ^ C N r ^ r ^ r - - r * r « > - c > i h - f * - r ^ h - r ^ r ^ r ^ v t c n c n r o a i c o c o c Q c o i f i c o c o c o a i c o c o O J U i f f l C N i n c o s L n i n i n u i i f l s s i n n i O T f T - o Q r ^ i - c o c o c N i T f T f i o c o < N i c n r n N N i n o u j i n o u j o o i n o i n o e o « - c » K ^ s r o c o ^ i N o u i n c o K ^ •D T - i o o T f e O T - c o o o c o o o T - T f i o h - a o S T - N r g c O L O i - T - c o i - C M O C O C M L n N o i ' N d i n ' ) : N N r l ' l r | y | ( v i r , n N <u d r g i i j ' K r i c > i d d 5 O T ^ i n ^ r i t N t N N ^ ^ ^ ^ w s w c o c o c B c o ^ a j ^ r^ocoedf^CNiTfcncNiJOi-O'-cbTf •= f z C N T T a o i n c n w T - c o c n c N ^ m c N i r t i A N . c C N T f o c o o O T i - c o C v i o o o o c o T f c o r ^ c V T - t - o c N n m c o N i n c o i f l i o c s L O * is, = i - i - c s i c o M c O T f T r T r u j i o i o i o ^ t r o m r m c o o i i o o o ' - i N ^ = CN rt T f T f T f m ° £ Q E O t N C M c o c o c O T f T r T f L O L O L O L O E O P T f r t L O s c B u i i n c O T - v c N L O i o c N ' - ' - c O T r s c o o o c o T f i i > T f i n c o L O L O T f i J O u o t n c o i n u ^ i o i n m co to OTWtncoioin<OLnmincotfiui^inLn 5 in u i r t c o o r i T f r t T - i o c n o J O - c O T - T - i - oo i - c M c O m C O ^ c o ^ ^ i n o o c o i n c o * - m a J o j T f r ^ r o c o ^ c n i - i ^ t - T - i - T r r t i f ) o cq r N 7 « . f f i B o d » r i f l w c » f f i - c d ^ ^ ' . r o S ^ q ? « 9 ^ t N » N c q u ) q o S ^ ^ i ^ ^ ^ c o ^ ^ ^ c N c d ' r cri ^  <° _ O O C J C N C S C O l O t n L O C O T f T f CM IN r CD CN CD Tf °i CO CN OOOOOOCMCMOTfCO O N i n U l N C O L O m N r - C O l N r - Tf 10 TO r - CN Tf Is- rtrt C M * - O ) l O L O C M r t C 0 C M » - t - t — i - co m TT CO CO CN co CM » - *-O CO CO CO h- S i * * <•» p 2 p L CD CD CD ® _ - ^ o > T - o i n s C D T - n i j i s o ) » - n i n s o > T _ - ^ c j ^ n i n N C » T - o i o s f f i ' - c o i O N O i T ^ - ^ c n r - n L O s c ^ T - n i n s c n T - r o i n S S2S^yCJQG^Q£2£2£2£2-2a:a:-S:S:S P S iS ^ ^ Q ^ C C o g s g c y ^ ^ f d r d Q Q Q Q s a ^ s s s s o £ o>coocNTrcocoocNTrcocoocNTrcoco Js ? o s c o o N ^ i o c o o N j c g e o o N n c o c o / n S . ° > » O ( ^ ^ t D 0 0 S c 3 S B 2 2 c 2 i 3 2 2 I— < H > ^ C M C N C M C M C M r t r t r t c O r t T f T f T f T F T r O < H > T - C M C N C M C M C M r t r t r t r t C 0 T f T f T f T f T f 0 < H > ^ C M C M C N C M C M r t r t r t C O r t T r T f T f T l i T f 77 CM n « o > n N u i < f l t - T - o ) ( O T - s i f l s i n ^ < n N s o o t o t O T - e o < D * t i o n t } t N « « » c O T f « » f t O T - m c N * - i t f > » * K n M « T O K > 9 r e e n n n < t l « i n i A I D lONOID!>IOeOIOOSONISI>0)0 » l D « l n O l » » - S r O O ) t J r r N i N I t — — — — ? E . . . . . . . . . . . . CNJ CN ^ CN ^ T— s^©'-cDCNir>i inT 'CO^(DCN^u)cp i% i- cvicocNt-cgcocoinciiiAcooicDNcoo ^ i - N r t ^ r t n o i N C N S n c o s c n o c N r t j ••- OCOiNCNNONCNNint-NCJ COXT- l-» , CO C f t t N I S O N C O S S C N O C N C O ' - n n S ""j O COini -OiCOOt - r t f f lTrBJNJS^CD i- i f i * T n c o © t n T - o i o c \ i c o c o t f i s o ) c o iocMcnuicoTrcocncocMr-cncDr-oo & c o N t D v a c o s i N ^ O N n ' T ^ ^ ' T _ r- c d d d c N i n ^ c b c d d d c j i d d d d , ^ d i r i d d c N c o T r u i d d d r ^ r ^ c d c d - dcNuSa idcNm^Tr ' LO i r i i r i i r i -1 E _J E -J E X 5 3 & 3 * 5 r- C D O ^ N « V l f t ( D N © O N t O C O » - l O 5 Tf OOlONNCl>VUjCOOIli) l i )OrNin £ CO OCNCOQ^*r-fOin'trcOCOCOC\ICDcOCO •5 N N c n ^ w s o s N S N ' T c o C i i C N C ] co<DvHio*cntoconininNtt icDcn .5 i n c o i / » « o v P ) c i i N T - » f s s a j O ) 0 0 ra ^. ^c6idaicici^^tain<D<Dt6<ot^t^ ra ^ ' c o ' c o d ^ d ^ i r i w c o d d c b c b c b c b ra r C N i n c d d n ^ i r i c o c D t d 3 C M o ) I CN "B) I CN a> O E SC O E * O E * <- O) d N Ol 2 co a> 2 CJ C J > T cNc \ i«NOinnr t« r t ' i ' ' i ' ' t ' J ^ CD 0>T-wcNc,cNNconrt«cO'j ' ' i ,v'* ' j ' CJ) 0>^CNCNCMCNCNcococococoi*' j- ,T*er*» CN N O > n m © n r l f t O t o a ) O a ) C l l r l O I O K n V n C O C O N n t S C S S t - S r - N C N N » 0 ) T - f t N i n T - N l f t C 6 5 C 0 5 n N n C D I f i o n N t l D ^ M l A r r r l O U ( D M - B ) N N « T ( D n T - C 0 i - r t - C D N C O O n O T - l D n U J I N O ' - f i O O N N n ^ t N ^ o d d d c i o d d o N ^ r N n r r r d d d d o d c i d 6 ^ d r i N ' H r i N V d d d d d d d d d I B> I ob 1 B» »- N C N ^ ' r « ] c 5 L n n i n t j i O ( O T - < - T - T- o i i S ^ c o T - u j o c o v u i v c N r t » - T - t N Moco»-o ioco in tconrcNOi -o O N w r i r r r d d d d d d d d d r r i N ' n r r r d d d d d d d d d . d c s c N P i r r d d d d d d d d d d CM CM CM 1 I) l l CN ^ CNJ ^ CM ^ E *- o n r o o i n w c N O i f l c o c o i n t N c o i B E co cncOLomr^^cncocoincocococNO*«- E o e o ^ c o c o o c M ^ t M c o c o c O T f C M o o c M —• »— inC»COF)OCO©CnOCDifiT-lAcN'-0 UjCOSinT -COnOCOCD^lNCD ' - r tO ~~ r- C»SCOCOUlCOi-lDCNin(NOT-oOO 2 ^ ^ T ^ c N V c s i c N r d d d d d d d d d 2 ^ ^ ^ N i T j V ^ T ^ T ^ d d d d d d d d 33 ^ , o ^ ' c N c O ' - * - T - d d d d o d d d d CD CM aj CN (0 CM f s i 5 i 5 i Is- CD 5 ^ c o c o ^ T - r - ( p c O T - c N > Y ) C N ' } - v . ^ o o m s ' T n w Q n t n o i n r ' p e o . co Q C N c o c N ^ s n c N c o v w Q c » 5 N O d t ^ c n c D ^ T F c o r t r ^ * u i T r c M , - T i - c M ' t - rococnkt-i-TfcD^cocNO'-'-oo ^ i5eoNCNC&co«con io« 5 ' - ooo "j ^ c N c o T - v - t - o d d d d d d d d ^ B 1 r r N r i r i N r d d d d d d d d d . . r r N c i ^ i N ^ d d d d d d d d d CJ) , CD . O) , i-C)X CN CO X CO 0) X §" co 0 3 0 1 ^ « w s c n i - n i o N O ) » - « i n N C D & £ ^ ^ c j > ^ c o u ) r ^ o ) ^ « L o r . c » ^ c O L O r » . o > ^ m ^ ^ c n ^ n i f l S C f l i - n ^ N f f i ^ c o u i s c n cn 5 > c o o c N ^ c o c o g S s c S c o o N j c o c o % X j a i o N v i o c f i o N s c o c o o N ^ c o i S ,^ KSJCOOCN^CDCDOCM^COCOOCM^CDCO C3 X !>T - CNCNCNCNCNCOCOrtcOtO'JV'I'T'r C3 X>^CNCNCNCMCMC0CTrtC0(0^^ ,»T ;tr'iT CD X>r-CNC\ICNCNCNCOCOCOCOCO*T '^^ -'^ -'*r c o r - ^ w i n i n c D i n i n i n c n c M i n T - c o c o ^ t ^^cMCNt^ [^ tNCN^CNCNCN£-^ - S S t ^ ^ ^ 2 ^ S S ^ 2 S 2 £ ^ T r o c M c o r - o c N c o ^ o o i ' f l - c M c o c n o ) ^ c o s i f i c o i N c o n o o c o n n c D i n OTJ2'^r^oii5^f^P9'n.^S^IIcN ^ ^ ^ c o c o o ^ c B ^ ^ ^ i ^ ' - i r i ' ^ c o ^ o a c o c N C f t c o s c o c n i n i n c N ' C ' - c o CM P i r i ^ S ^ ^ r ^ ^ s ^ c M C M ^ i J c o r ^ c b r t r ^ i n r ^ c o c o r ^ r ^ ^ c o r ^ c r i c o ' d i r i i ^ d i r i c D c d a D ^ d c N c p m pp K ^ S ; j c o ™ £ c S 2 l I ' , ~ g OCN^T-lfl^T-^^COT-COCO c;i-COU)C»ONfi^V-OLO(D(B(DlDS £ N ^ OT-CMCM«-T-COCO«'J S ^ i n c o m i n i n i n c n ^ c o i n i n r t i n CM i n c M i n i n i n c o i n c s u ^ ^ i n i n i n c N u j C R tr ^ ^ S S S K K f i E S S S P G ^ I P S ^ l S (j)'v^Lo '^cM'«r-q- i n^ u jr-triocM T < P ^ ^ l » d s . s s ? o 1 P P c o ^ c N c M 9 ^ 9 ^ « c d i r i - a : ( ^ c d P c M O °> cMcoh-T-T-^-ioco CD T- T- n c i O T - r r o f i n T- CN g co o CD to o CO T— r r N IT r- T— CN CO CM T-LO CO T~ If O) O) co inininmincoifiLninceincocpT-t- cp^cpco<pcp*-cpcocp^cO't-'t-co*- CNr^CMCNr-.i^i^cNCNr^r-r^cNCNCNh-roc»iJ)»-ci>^coc6iocj)00)ftScNT- OfflQLfioujcooininLncncncBifico N c o n i n o n s n s n c N i N C D c o c p c D • n ^ c M ^ w ^ ^ r o e o q ^ c p c o r ^ r ^ i cj>cNcDCMi^OTr^T-cocN^cDina>p^ V N N q q N q i o q N S r t f ^ t J c i *- iBsnrtirJco^NiriT-rgcddcNco' cdivri^co'cNiscBcbrioidscdN o r o c r i r ^ N v d i - ^ d i N n i t ' t T f T f C COCOT-T-CO'-a)0)OCN*-'«-CMCMCM ci-COCDO^n^lOCOSSCOCOCOCOC)) C^rMlOOT-rt^UlinCOCDCDCOCOCDCD § t- *- t-^-CM CN CN CN CN CN g i - ^ - T - t - ' I - T - ^ T - ^ ^ ^ T - r - = i - T - T - ^ ^ T - ^ ^ ^ ^ - t - T - T -O O O *- to LOcocNiOLOinLOi^^Lf>ini-a)ina) co <pininininiAiAinLOci)Lninincoinin o CNinincMinco'*TtncOLOO>ininooin *~ C^  ( C r > t o 3 i n s c n c o ' s , ? T o c o " ( C O S N O V W N N N m C f t ^ C f t ' C D O »- CNCD^COinCM0D»-»a'CD'a''CfCO  i n ' « n i i j ' » r N « i f l ' s C » © s N o ) o ej )coco^^^<Dco K m CDr-co^^-'* T « 4 ^ cn ^  ^ . in ^  ^ 0 <N CM T-O * »- O S O) LO T- lO T- (DSOlCOi -T -^ t - T CN CO CO O O C O O T L D ' - i - L n <D *— o CN CN CO t- T- T— CN T-T- y- -r- <r> T-2 o» oi ct> .2 * co i n u ] i - u i c n i i > L i j i o u ) N i o i o u i i n « T-©CO^CDCDCQ*-COCQ'«-T-*-CD^CD COCDCOT-CO'-'-COCO'«-COCOCDCDT-T-* N SCOCOCNCDCDT-i-CNUlffimcONCO O N N O S l B M l N r C O r i - O M ' - OAlONCnfflC&NOICNCOnnCOOO 3 a j < ° ^ d ^ l O O ) N ^ c d c N V * d r t ' 4 r MCOSOlON'-OOCOntOmOMD 00*Si-SOCOCOlOCMCMCM10'J if N- ^ d s o c b n v S N ( D N K d a ) n c o cocoaj 'cb^nn^scocdcb ( b d c s r i r r f f i N r i r i ibcc iddr r _| C n i O - - r - T - i - L n i D > - T - r S < - C O t - C ' -COCDOCN'JIOCDCDSNSSSSCO c i - « t n 0 ) T - V U l ( D S N S S C O C 0 C O C 0 X C M 3 ^ ^ T - ^ CM • « - i - i - r - T - » - i - T - » - ^ ^ - . - - < - CM 3 *-i--<-*-T--^-r-.«-*-*--i--<-oB E O E O E O j r n N CD incNinLOinoiinoJincNcoini^inin CN co T ^inininincscoinincMinocntnintn co co co oin^iwioincoinsuiinoN'rino S LO r^^CDT-i-COC»CO^COCOcOi-COCNCD LO OSCONSCDVnCDCOS li) S ID N LO O O n i C M D C O O O l N r rSCO 5 co „ c D ^ r ^ i n c N ^ i n ^ T - ^ ^ t o c N i n - g - co I N , " c i , " ' " c N < n ' < r c o i D , r ^ ^ to co CD o ^ ^ C M f L f t ^ N ^ t D S ° N _ O T-ONCOinCBr-N CD * r (\i r o doScodcNCN'-d'- CN r d 6 O CD*- t N o <- CO COfM o O O) D> CB •— ^ ^ icT tr _1 _l _1 <; X X X o ?fl*^ CBi-cowNO)^ coiiiNcn»-«iriKcn &_^^.c3)T-coini^cn^coinr^cn^coior-.cj) ^m^^cn^cOLOi^oi^cOLorj-cB^coini^m hCJ<X>i-NCNCV|Nf>ICOCOCOnnV^V'f'T 0<X>T-CMCNCNCMCM«COCOCOCO'»3-««r'!|-'ir,T C J < X > r C \ | C N « r . N C O O r t f l C O ^ V ' T ^ V 78 ^ N ? r n o 9 « o c 9 n i a O r n n a v n v N u n r i f l N ^ ^ K o q o N N U | H ) N * c f l N i n o r t » c P N » N ^ C t i l o d©CMrt^ l r i l o d d r ^ K r ^ l ^ ^ T ^ r i d T ^ M C O d d d d ^ ^ ^ ^ e N C M N O N W I f l B » » O O ^ r r r r r r a E « E « E a I* « Is « » c n c n t o i c N i D N u i N C ' i o i t n ' - o i r in c c ^ i - s s i n o N ^ i i J C r f f l i n c o i n i n N S ^ ^ CD CM T— T— T— T— «— >T— T— T— T— T-r—T— T— CD CO 1 ^ I 1 j O CftCOCNCNI^CO^N(D(OCONO)(NCOCI) j _j ri O) ft « CO N N ID © IN O in N O lO V V v £ _j E ^ " " " " ^ ^ " " " ~ T " _i _j ^ S1 x s S io cgr^c»Tfoortrtr^coc»inoocoi-cDao S co N ^ c o n o i o s i n n N i O N u i T - c i c n ? co w o i f l c o c N i N N O r t O t N c n i n s N ra i^cNLridd^rtTfTf ' i r i i r idcbdd J2 i^cdd^co'eddoj 'doT-^^^CMCM n d c N i o c b o o c r i c r i d o ^ ^ ^ ^ ^ ' - ' -3 CM I - I - T - I - I - T - T - I - I - I - I - I - 3 CN i - ^ ^ i - t - t - N N C N t N N l N C V | 3 CM I - T - T - * - I - I - I - I - I -i CN cb ICN'SB icN"B> O E * O E O E * S -= S —! in —! M- cn c ID X m to X T«-^ci )^nu )NO)i -n iosc»' -co iONci) T ^ ^ ^ r o ^ n u i s o i T - n i f l s c n T - n i n N c s 9-2^^cni-rtiOr^cn*-rtinr^cnT-coinr^cn ,*= 3>aooNTrcoaJO(NTJ:<Doooc\iTrtoco ,*= ^ s c o o N v i o c o o N ^ c D e o o c N ^ ^ c o Js X>COO(NTTS(DON^ID(DON^IP(O r«i-nCOT<(V|NNMnO)Cer(OC<l S f f l l f l l f l N « « « C O i n c O N « C P N N N a 5 C O t - l f l p i - 2 2 t 5 2 N ! S ° t N r i e N N i - s n O U ) M D * > 9 i - i - 0 S I ^ U K O O O S N n i N n N n f r O S O N ^ W N V n n ^ r t N r q ^ r N T ^ ^ r 4 n T ^ ^ ^ r ^ d o d d d o o o N P r r i * N N i ; d d r d d 6 d d d N o N o i r r r d d o o d 6 d d o o •f "a ^ "a o cb co c » « i j i n © t n N N O i n o ) c o c O ( N 5 i - S f f i f l O * N O » » - l i l C O l u l N C > O i - 0 ^ o » - o J T f T - > r - T - T - o d o o o o o o I CN CM CM E c n c n c n i n o c M T f C M t p i - L o i n T f r ^ ^ K o E E —• ft ifl s co T->n eo 5 co N in »-co cs ^  o ~-32 A , d r N « r r r r d d d c i d d 6 d 2 32 0) CM CD CD '>. jE '>» '>> ! * 1 1 , in co^^inioinococpcoinroocNtncM , rt sipininsincNcocoiftcoscNiOcNS , co CNcpco'-cQOT-cgcOh-^cocNcnocN ri K^ l f i ^ T - S N O i f i N i n T - v ' O i N O ri C))?in(DOCl)SNCONrOlNCO'-'-0 d *~ S O S ^ B « ^ r t r t « r t N r ; C 5 r ; ^ x ^ T ^ ^ r M C 0 ' i - : i - : i - : ' i - : d d d d d d d d . . r r ' r i v c i i i N r d d ^ d d d d d d „ d w i N r r r d d d d d d d d d o otj CM o3 CM ofl CM SI !• ^ S S | in -i co H to —j (J) X CO UJ A LO CO X T r n * T S " ^ n « ^ * ^ w w s o ) T - o i f i S C B T ^ ^ m ^ ^ ^ ^ ^ ^ ^ c o i n N c n ^ c o i o s o ) ^^^^cnr-nioscn^coLONcn^coioNcn g"jg i -CMCM^cMCM«rtcoco<OTf^TrTrTf g - 1 S ^ Q N c N N N c o p n t o n ^ T i - ^ ^ i i ' o - 1 f f l , ' Q E ) C i y 5 ! 5 G Q G Q S ? S 5 5 £ K > o o N ^ i i j ( 0 O N 3 « 5 o c i n < D O X > « o S ^ i D O ) g S s c Q e o o N g c o c D = g i c o o S N ' t o c o g N t s e g N j f f l c o (3 X>^cNCNCMCMCMcocortrtrtTfTfTfTfTf CD xS^cNCMCMCMtMrtrtrtrttOTfTfTfTfTf O X S T - N N N N C N c o c o r t r t n v ^ ' * ^ ' > T to io incoNNiouiui iou^io^ininn • tJoissT-soincNOjcoinoiT-s co T ^ d d c r i P ^ ^ . P ^ ^ r ^ ^ o i cncnocNrtuj(0(viT-cocnNsa)Ci> g cNu^T-i-i-inco^cncooocncTicjj'-o i cpincoini-Louiinr^eorrcncMscMLO * c o n i D ^ i n c o c » i n ^ c o o c N C o c o r -d ^ d ^ c d d ^ ^ i r i c D u i r t i ^ d i - 1 ^ O t O N ' - T - l f l r O CM Tf" i-O) X. ^ ^ * c n a v ^ 5 5 0 ) V 0 i c « i s s s CNOrtcocnuiT-mcflcortcocDcoif'* i f l n i c c o S N r t i n o o c D t c o c o t o i D d s i o V r i d ^ i r i N d i r i s ^ r i i n i i j ' -f;T-CNifiO)0(Nrt'rif)(DCD(OSNNN 3 i— T - T - T - T - r - T - i - i - T - i - i -O cn TroortLOcpincocoinininincoLncoo cMi^rtOOTinocMjritnTf-coT-oi^ ^ d C 6 N T : * t ' - 0 > l ° u , C D i n r ; d i - ( M L O » - ( 0 ' - ' - S IT) T- ri (N i - CO i -« * rtcortcDoortrtrtcocooocococooooo NNNNSNNOICNWWSSNCNN MinNSNCNViA^uiuico incNinco .ti Tf^cot jocn^cocor^<or - .T-I>.co^in n i n w r n o n ' - c v i N c o o c B s c o i N cod<-cnincoioco-:cnocMO'-inTr • < D i o ^ i - n o c o c o e o c » c o n i f l i x > i n s cBairoiontji-iocstT-NirvOT-co m ® d d s d ^ ' m r ^ m r i i n i i i ' ' " N «_ d ^ d i d s i D d d i o r i d r i h i d d m cdNcd^^cricdcosoScNiriiD s d i n N o o o d r N d c N v c N C D N • c i -n inc l lOiNCO^LOID(OSI , , -NNS C T - ( O f f l » - n m N C O { O O i O O O « - r r C CM T— T- O »- CN CM i - CM *-X CM § ^ , _ ^ ^ ^ „ ^ ^ , - , r - CM 1 - - ^ -r- ^  ^  CM CM CM CM OI CM CM | " *" oB E O E O E O j ^ co m coininu>T - in inio in^-cnincDcoin»- co co to cNCMror^iomiocoi-ini-incT>coinin m co co i n K i n c o c D i n c M i o i o i n T - i n i n i o i o i n 3 io TfocoincMTroiCM'«-*-eococMCMT-cM oo coocnincMrtcDTfcocntocMOiOi-co m T- rtO)co-^r^rtcncpo>cDCMi,-'-rtCM 3 co <S q s s i N P P t o ' i a ^ ^ d ^ . d ^ ^ T r ' c o W ^ c o ^ f ^ c o ' ^ r i ^ r t ^ * - ® « c p ^ i S ^ ^ ^ ^ c n K c T i ^ ^ c N c p o c o _ O COtflOCpt-COCM'T-CO T- CM 0> CO t- CO Tf 0) CM CD CM i- O O S N 0) i - CO CO Tf IN «- O r m i - i - i - C N r t i - i - i - t— i - i - t— CM O CO CO CO f- * ^ * Tf _l _| _| ,J X X X ® T _ * ^ c 6 r n i n s o ) T - n i J i s c ) i r « i n N O i T _ * ^ C J i r - r t i f l N f f l ^ o i f t s C B T - c o u j s o 9 - _ ^ ^ O ) T - c r ) i n i ^ c n ' i - n i n ^ O T ^ r t i 0 i ^ c n 5 D S J c j i C Q N E J ^ 0 ! Q E 3 C G r t ' , r S S S o S J S ^ ^ 0 ' r ^ r ^ C J C t o t o c o £ 2 5 S 3 ' , r ' , T o S J m C C ! C C ! Q C i S ! Q G Q C 5 S ! 5 5 5 10 }~ ^X>3oCNTfCDOOOCMTrco56c^^rj3CO S"X<5oCMTfCO<DOCMTFcBcOOCNTr<B5 ,^SX>a0OCNTfC000OCMTfCQa3OCNTfCD00 HO<X>^CMCMCMCMCMrtrtrtC0C0TfTfTfTfTf 0<X>^CMCMCNCNCMCOrtrtrtCOTfTfT>TfTf 0<X>^CMCMCNCNCMrtrtCOCO<OTfTfTfTfTT 79 3 a 3 o T f r ^ e N C N T - O C O t O C N T f l O C O C N C O C M C N O ) 0)T - O C 0 C 0 ( 0 S C f l T -I t l O C M O C O M D i - T f ( N N C N C M i - T - t - C M » -> i - i - S S » O l t n « N T -£ T t O T - i o o O T - i o e n c M i / ) a 3 2 O ui Tt CO T~ O Tf CO Tf Tt CO CO CN O cu C D CO < E CO CO If) CD CM N CO CO T-O CN CN T - O) CO CN CN CNJ T~ ' M N O O ( 0 0 i T - K ) i - * o i n o i n c o m C D C O C N C N O ) 0 ) S C N I O \ r c N C N C M C M ' - 0 ) C N C N C N C N T - T - T - C N T - T - T - T - T - T - T -> C N If) CO ' If) CO T - T - t ^ r ~ c o a > a > i r > r ^ T - T j - c o - < - O T j - c o T f O T - l O C O T - l O O C N l O T t T f C O C O C N O N N I M N r N r r r i - i - i - i - i - i - r X «8 a) T— CO If) I— O) CO If) o> CO If) r~ o> T— CM CM CM CM CM 23 CO CO CO CO J f J f T f T f T f CO O CM T f 5 CO o CM CO CO o CN T f CO CO T - CM CM CN CM CM CO CO CO CO CO T f T f T f T f T f O) CO LO r ~ a> CO If) o CO LO r - o> CM CN CM CM CM CO CO CO CO CO j f T f T f T f CO o CN T f CO CO o CN T f CO CO o CM T f CO CO CN CN CM CM CM CO CO CO CO CO T f T f T f T f T f UI > < a 3 o (9 a> a > C M T - T f c o c o o > T - i f ) c o c o m C N C N T - C O C O C O C N T t T t T t C M C M C M C M T - T - T - C M T - T - T -r * - r ^ c o c N i f ) T f T f r ^ c o a > c o c o c o c o a > O T - O C 0 r ~ C D C N T f T f T f T f T f T f T f O C N C N C N T - T - T - C N T - T - T - T - T - T - T - T -Ul $ a. 3 2 O u> N < e r n o i i o « i t ) N c g i - i n o > r i i i C 0 l f ) C 0 l f ) O O C 0 C M C 0 C 0 l f ) T f T f l 0 C 0 C M C M C M C M C M C M T - C M T - T - T - T - T - T - T -cu O) CO LOCOCMCONOJOlM-M-COinNOOCO T - c M T - c n r ^ c o T - i o i o i o i O T f T f T f o N N N r r r « r » - r r < - r r r cu c n co < E CN CO T f i o c o T f o i n o i M O Q i n n c o o o i s t - m T f T - C N e O O ) I ^ T - C O T f C N C N C N C O C N O C N C N C M T - T - T - C M T - T - T - T - T - T - T - T -< E CO CO i GO If) cri r ~ e O T - c o o ) c O T f c o i ^ c o T - i f > o 5 T - i f ) T f C D l O C O l O O O C O C N C O C D l O T f T f i n c O T -C N C N C N C M C M C N T - C M T - T - T - T - T - T - T - T -O) T- CO If) O) CO IO r ~ o CO If) O) CN CM CO CO CO CO CO T f T f J f J f J f CO CO s CM CO CO o CN T f CO CO CM CM CO CO CO CO CO T f T f T f T f T f X o8 S S 2 CD < O) CO If) O) CO If) r ~ o CO If) a> CM CN CN CN CM CO CO CO CO CO J f T t J f J f J f CO O CM T f CO CO s CM T f c o CO o CM T f co 00 CM CM CN CN CN CO CO CO CO CO T f T f T f T f T f UI > < a. 3 2 C9 a r * O t f ) T f C M T f O ) l f ) T f C O C O C M T - O J C O C O T - T f C N C N C N C N T - T - T - C M T -n CM s OI co Tf Tt CO CM O O T t e O C N C N C N O C N O C 3 > C N T - T - 0 ) r ^ C O T - T f C N C N C N C N T - T - T - C N T -C M r - c o o O) c o eo LO CO T f if) CO CO o ? o m i n N oi o < cp C M en eo Q. 3 CN CM CM CM C9 Ul CO s o> o n o i o S T" CM CM O I*-CN CN CN CN CM T-f rt rt CB 1" T— O) CO 0> rt N - r t l A I A I O I O T t r t r t O cOTfcncof^Tf ioTfcoTf f ^ C O T f l O T f T f T f C O C O O T - C N T - T - T - T - T - T - T - r -5 u> N CO ' < B « 3 "5 E * • T- CO N 6 S ' (0 o tOT - r^c3)a ) C M r ^ O L O c 7 > r ^ T f c 3)Tf 0 ) C O C M T - a ) C 3 ) I ^ C M T f T f T f T j - T f T f e N C N C N C M T - T - i - C N v - r - T - T - T - T -M O C M N i n o i o n s s c o c o e o s o e o C O C O C O T - C O C O r ^ T - T f T f c O C O C N C M C N O ) C N C N C N C N T - T - T - C M T - T - T - T - T - T - T -0= cj» < E T f eo m IO CO o M O O) IO i - CM IO T - O T - O) CO CN CN CN CN T- T-T f c O O i C N O C O C O C O C O C O r ^ c o i o e o i o i O T f c o c o o ) T - C M T - T - T - T - T - r - T -CO CN CO T f CO T-T f i o T- T- eo co CN CN CN CM T— T— 1 = £ 2 I— C3 X ^ - j - o i i - n i n M B i - n i o M j i T - n i n M i S r f N C N C M C M C N C O C O C O C O C O T f T f T f j f j r Q V CB i X 5 ? O C N T f c O O O O C N T f C D O O O C N T f e O O O CN CM CN CN CN CO CO CO CO CO T f T f T f T f T f X o < ri cu c j > T - c o i o r ~ a > T - c o i o r ^ a ) T - e o i o i ^ a ) T - C N C M C N C N C N e O C O C O C O C O j f J f J f J f j £ C O O C N T f c O C O c S e M T f c O C O O C N T f c O C O T - C N C N C N C N C N C O C O C O C O C O T f T f T f T f T f 80 1 N W r t i f i i n o i o w i n i n m i n i n i o i f l i n i n i n i o w i n i f i CN r- CN CO CD LO CO CN co in (D S CO O) LO in LO LO LO LO m • I o 81 LO LO CD 'T N S CO LO LO CO °1 £ o I 6 OTCNcoLor^So^^cocDoDcnQ L O C O I O C N ^ L O O O ^ C N C O C N O O I ^ ^ L O C N O C N C O ^ C N < X > C N C N ^ C N C N - « - - > - T - C N C N I- I- T- (N CN CN I- C N f M C N i - i - ^ ' - ' -co *---1 t§ l i i i i l l i i i i l i i ovow»NO)N(Di-»-(9(Dnn«)ai(N'-oo(NO'ra3nfflaiNfl00i ^WWQW'-'-M'-CMCIN'-'-'-'-'-WtMlN^'-i-^f-i-'-'-'-'-CM = 1 I I l l l l l l l l l l l l l l i " S i i s g i i g j i i i i i i i i S i i i i i i i i i i i i roconncocovno^incDmcn^rocD^cocNco^^rtvN c o i o N C D t - N x t c c s c n ^ c o i n c o c o m ^ c o i n N o D r o o c N v c o s r o ^ ^ ^ ^ ^ ^ ( s i ( s i N ( N i f s i ^ c o M c o c o c o c o ^ < ^ v ^ ^ i n i n u i i a o i w o o c o w o t N c o ^ ^ N o i n i o s c o r o c n i - i - o c n T - c o c D i f l ^ f N O i C O ^ - * - C M C N * - * - C N - » - ^ - C N C N * - * - ' - * - * - ^ - * - ^ ' - ' - ' - - ^ C N * - - r - ^ - » - * - * -" I I s s 5 | l l l l i | | i i l i I I I I | | ? H l l i l i l i I CO I CN O CD LO LO LO LO lO If) LO LO IO IO LO LO LO LO LO LO LO IO LO LO LO LO LO LO LO IO IO LO LO LO lO I 8 S ! ? S S l l l l l i | | i i I l i l I l l l l i l i l i l I l i i I'* ' •S 5 fNCNCNCNCNcococococicorocococO'q'^r^i'^r^J' si 82 Table B-2 Average Cumulative plant height of both heads (cm) Group 1 2 3 4 5 6 13 72.3 58.1 60.0 58.7 58.8 68.5 14 92.1 80.4 78.3 78.8 79.8 84.3 15 112.8 98.6 96.6 98.8 99.5 103.0 16 132.3 121.6 118.9 117.2 122.0 123.5 17 150.9 146.3 141.8 139.7 145.0 141.5 18 167.4 163.4 157.4 156.3 159.5 164.5 19 185.9 185.1 176.6 175.7 178.5 185.5 20 204.1 206.1 196.9 195.5 198.0 203.5 21 215.6 221.3 210.9 207.8 209.5 214.5 22 233.3 238.6 230.6 225.8 223.0 232.0 23 254.4 259.8 253.1 246.8 239.5 254.0 24 275.3 280.8 269.0 268.5 261.0 273.0 25 298.3 302.6 288.2 288.8 280.5 293.5 26 312.4 315.1 302.4 303.5 290.0 308.5 27 324.8 327.4 315.2 317.7 300.5 318.8 28 340.8 344.4 329.8 336.0 313.0 333.0 29 358.6 360.8 346.8 353.3 328.5 347.0 30 378.4 375.3 365.8 374.2 351.5 365.0 31 395.1 415.4 385.6 391.7 371.5 381.5 32 412.1 434.1 405.8 408.8 392.5 397.0 33 420.6 443.4 414.8 419.0 401.5 403.5 34 431.9 456.1 425.8 433.2 413.5 413.5 35 441.3 464.1 434.4 443.0 422.5 420.5 36 456.4 477.9 450.8 465.7 443.0 432.5 37 473.9 497.4 469.6 485.9 468.0 453.5 38 488.1 514.1 486.8 502.5 491.0 470.5 39 502.3 529.9 503.6 518.7 508.0 485.5 40 517.1 544.6 519.6 535.1 522.5 497.5 41 531.8 559.9 533.8 550.3 538.5 512.0 42 544.8 573.1 546.6 562.1 552.5 525.0 43 554.3 583.9 557.2 571.9 563.0 535.5 44 563.9 593.1 566.6 580.1 572.0 546.0 83 CO O N N r i c n o o u i o ^ T f N N n ^ c N ^ c o n o i a i o c o n i n T j - o c M O N O e o t D T r * v f * n v r t o c o * n n c o t o n n n n ( v i n t o c o T f r o n CO CO CO cu CO 0) t D N L O C O S ( 0 0 ) T - O t O T t f M C O n S ^ t n T - C O ( D * 0 ) 0 1 0 C 0 4 0 0 ) 4 ( D O ( B i n C O C J J T * r ^ C O O T - C N C O T - T f C » C O T - C £ > C O O C N ' * ' * n \ f c o n n \ f n c o n n n n * t t n n t i - n n c o ( O T f n n n r t m O O N C O C O L O N ' - O S O ) co CD z z z z z z z z z z z z z z z z z z z z z N n T - i f i c o o * t D N i n o e o t D O ) m o ) c o m n i - ( N N a ) 0 ' - t n o t o N c o L n c o N - * M ' N ' c o N ' c o n n t N T f c o c o c o n o c o c N n c i n M c i t f * x f CO a> co co co c o ^ i - c o i - ^ n i o o o c D O t o w i o N O O K O O T - o n o i o O ' t f f i c o m o o i i -^ » i o s c o u ) c N n o ^ i - c o c o n n M o n n o T - o N n o > o i ( D e o ^ ( B ^ ' - N -*—1 CO 0 0 ' - r o c O r \ I C J » ( 1 0 i n n O ) T - ( D N 1 0 C D N I O C ) ) T - c O N O f f l N co co cu N S n ( O N ( O ^ C O C \ l ( D n O T - O C O l D ' - ( D L O C O e O l O N O O i - O C ) > N T f T j - ^ c o n c o c o c o n w n ^ N ' ^ n n ^ n c o c o c o n c o c o o c o N -*—1 n f f l s i O N O i o s i o ^ i o o o m i n o o N i f l c a c o n o f f l c o f f l T - c o i o t o f f l c o N n M ^ Q ^ i o n v f T r r t n v f T f n n n v f r t n c o n c o n N •cf co CO CD I f i C O ^ n O t N ^ C O O f f l T - o a f f l t f f l O i n ^ N N Q N f f i N f f l O O C D T j - l X l N i n O * * * c o * T f N ' M ' N - N T t T t n n c o n c o c i m c o n E o CO CD l O i n S C N t N N C » C O * N l f l T - l » N i - 0 ) T - f f l O C D l O C O l O » * * n c o * T f n o T } v f T f * « v t n c O T r c O T f c o n n n n n ^ x: 2 a> c o n f f l o t ^ f f l o s i f i c o ^ G m ' - i D f f i ^ n i n i D o r M i n i n N f f l t D N n c o s t D T f i O T f T f r t T f c i T f c o n n n o c o n c o n n n n n c o n n CO CO O) CO c 0) r- s a ) ^ c o i o n c N O ^ N t D n o i c o N i n r o r - T - N c o ^ n o o s o ( S N t o c o c o ( D N ±= T t N , N - T f T f T f T f T f r t C N C O T f c i c o c o n n c o T f n c o c o c i n n CD CO CD CO CD N n T f t n C D N C O C i ) 0 ' - C N n T f l O ( D N C O C ) ) 0 ' - C N C O * U ) ( O N C O f f l r - T - T - T - T - r - T - T - C N C N C N C N C N C N C N C V J C N C N I C O M CO CO 84 CO CO CO CO c o - ^ i n « a > r o c N j c o o c o h - c O T - ( N r ^ TfTfconcocON'cocococoocococoNcocococon C O i - N O l O O O S M O O C M K l T f l O C M O < < < < < < < < ^ < : < : < : $ < : z z z z z z z z z z z z z z i r i O ' - i - o n c i i o c o i n t N i f o j o N o O ' - s c o i o o i s v f T f ^ ^ ^ ^ n n c i T f v f ^ c O ' t c o n n n c o c o c o c o CO CO _ J CO < < < < < < < < < : z z z z z z z z z CO CO CO CO ( D O t D O N N U l l O O ^ ^ O l O O O ^ C O O l t D ' t C O C O C O O t D ^ C J ' - O C O t n O ) fflNT-CDOJCOCO'-inCOCOOCOSlOlOCO ^ T j - T f T j - T f T f T r c O T f C O C O T r C O C O C O C N I C N I CO CO < < < < < < < < ^ ^ : ^ < : ^ < ; z z z z z z z z z z z z z z T " fe T * t I f l I - O N c o N N i n ^ o i i o f f l ' - ^ t c O ' - n n ^ c o c o o c o c B i f l N s s co <o co co "g » j= i 5 c o o E o CO CO CO CO CO CO i - O t C O S O * O O C N O N I O ( O C O T - N O O ) S O ) l f ) C O T - O C 0 0 1 I O n i n N TtTtTtCOCOTtTtCOTtTfTtcOCOCOCOCOCOTtCOCOCOCOCOTtTtCOCOCOCOCOCO i n c 0 O S O C 0 C N N O O ( 0 ' r S ' - n * ( 0 0 1 t D ( l l ( J ) i - N ' t N O 0 0 i n N I D O T t T f T t c O C O C O T t c O T t T f c O T t c O T t T t C O C O C O C O C O C O T t T t T t T t T t c O C O C O C O C O i f l o o i t c o i D i O ' - c o s i B O t f c o s t w i o i n r t T - n i f l N ' - n c o N i o i o i o ^ T f T f i o c O T f T f c o n c o o T t o n c o c o n c o c o o c o c o M o n TfCO^NT-^rtiOOT-0(tDTflOffltD*StDCONT-OC\|t-fflfflNO)COCO o o CO CO o CO CO T r C O T t T t T f T t T f T f ^ T J - T t T t c O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O #— C J J O C O C O I O I O O T C N C O C O C O O C O T - C ^ fe c O T t T t T t T t T t c o c o < r ) c o c O T t r \ i c o c o c o c N c o c o c N c o c o c ^ CD CO CO o c fe (0 CD C O N O C O f f l W N l O S T - C S ^ O I O i n c N S i O l O N N C a n C O f f l O i n c O l D S S T f T t i O N ' t f T f c o c o c O T f c o c o c o c o c o n r t c o c o c o n n c o c o o CO CO CO CO ^ l O C O N C O f f l O < - N O T f l O ( O S C O O ) 0 ' - N O t w * s t o f f l 9 ! : 5 l < 5 S T - « - T - » - T - T - C N C N N N N C > I C N N N N C O C O n n r t n o CO CO ro T3 E £ to co TJ E CU CO oo CO CN Tf 1^ r - r~ CO o> CO r - CO T f CO o> 00 00 CO Tf oo m CM CO Ti- in Tf IV CO oi CO Tf 00 Tf m o> m 00 in T f O) CO 00 00 CM 00 CO in 00 O) •of CO CO Tf C\i oi oi CO 00 od oi CO in CO CO CO 1^ 1^ od oi 00 ed CO CO in in Tf CO CO CM o CM CO in CM CO CO CO 00 00 In m CO CO CM CO CO in CO Tr CM CO i - 1 oi oi CO i^: CO in CO oo cn Tr CO CD m CM CD CM m m m CO CO T — CO o CO o CO CO d o CO o CO CN CO oi CO 00 oi o ci oi oi CO 00 od 00 | v T f CO CO 00 in CM CO CM CO CO CM TT CO Ol i - in T— CO O) 00 CO T- oo D5 CD CM in CO CM in CO m CO IV. CO CD in TT CM O CM T - Ol oi |V. T - m CO CO CO o CM in ~^ IV. o O iv! CO TT T — T3 CO TT CD CO CO CM 00 CO 1 ^ | v d d oi oi CO CO IV. od 00 |v! CO CO rvi s co CD T3 E CD CO CO TD E cu -4—' co CO TD E B co o TD E cu CO C D CO 73 E & CO C O CO E & co i v CO I i •E co co o o CO ro TD E S-CO co TD E S co 2 il ^ • O T3 E in Q -•—< c co O CO '£ .S E E £ oj CO CO co CO co o> s m CO T T CM T— _^ m o iv! •*~ m ci cl i v in CO T T CM CM oi 00 z z z z z z z z z z z z z z z z z z z z z s Ti- r- m CO o> i v CM 00 CM 00 CM CO CM CM i v CO TT | v i v T C m T f CO m i v m m CD ro 00 T - CO CM 00 CM CO CO o> q cn d T f iv. Oi CO CO CN in o> 00 o 00 r v Tf CD CM Tf' in iri iri Tr d in CO oi oi oi TT 00 00 CO CO CO oi oi oi oi oi oi CO CO CO OJ T— CD CO T — r - rv CO TT 00 m Tf CO CD oo CO o CM CM CO CO Tf oi 1 ^ 00 O) LO CO 00 CO Tf y — T f CD CD 00 00 X— CO CO Tf CD CD d CD oi CO 00 CO CO CO in CM CO T f in CO in 00 iri T— oi oi d CO CO CO CO 00 1 ^ CO CO iri CO CO Tf CD o> CO CO 00 m CO m CO T— T f Tf CD co T f iri co oi T f CM T— d T— T— T— T— T— T— T— T— m •K— CO T f co 00 T f CD T— CD in CM CO in T f CM CO co in CO T— CD Tf T f CM 00 in CO CD Tf o T — CO CO Tf CO CO oi CM CD oi CD oi x— 00 CO iri cd oi od cd CO iri iri CO O) in 00 Tf CM m CO T f O) CO T f x— in x— CM •<- CM 00 CM CO m CM in co CD CO x— in CM CO Tf co iri CM o> o CD od Tf d X- co CD CO CN O T— in CO CO o od T f CD 00 T— oo CO CM CO CO CM d CO CO T~ o i 1 ^ CO 1 ^ o i CO CO 05 00 in CD — m CO CM CO oo Tf CO CO CO CO CD CD CO d CN CO CM CM iri iri CO CN 00 oi oi oi T - 1 CO d oi oi co T - T - m CM co TO (JQ O 00 CM ~: co iri co T f T - 00 T — in CM CD CO h - CO CO Tf iri Tf CO CM CO CO T - in CO OJ CD O) T — 1^- Tf in CM co CO CO CO T f Tf CO CM 00 d oi O) oi T f T -d CM r— a> CO 00 CO OJ CO oo Tf CM x— CO in CO CO ^— CM Tf O CO o 00 CM in CN Tf iri CO Tf o oo iri CO oi CO CO CO CO CO iri iri iri CO iri o> Tf 00 Tf 0> •<- CO CO CO 1 ^ oo CO 00 T f CO m m 00 CO o> o CO d CD 00 05 00 oo T — o CM co Tf CM s CM O CD CO 00 x— 1^ o CO Oi CD T f CO CO in CD m CM T f Tf Tf 00 m CD CM CM T - 1 CM d d od CM T — oi d oi d d T - 00 CO iri CD 1^ 1 ^ 1 ^ CO iri oi d 1^ CO CD 00 CO in CM CO 00 in O) OJ CO CO CM Tf CD CN CN x— 1^ r~ m CM s Tf CO CO T — CO CO CM CM Tf in CD x— o> 00 cp in in CO CO CO CN oo CO m o CD CO CM CD x-Tf CN oi oi od ro CO oi d d d od CO CO CO CO CO CO CO oi CO od 1^ 1 ^ CO CM T -CN CD Tf CO in co CO CO d m CM oi oi CM Tf T - CM oo CD in 1^- 00 Tf in CO CO in CO CD CM Tf T — in CM q oi <P 00 m CD 00 CO x— CD Tf CN IV o CD Tf oi CO 00 CO CO oi h-- CO CO CO CD CD oi oi od od T— Tf x— in CD Tf Tf in CO CO in m O) 1 ^ CO CO 00 in •<- CD CD in 00 CO CO OJ in CD LD CO CO CM Tf CD Tf x— Tf 00 T— x— CO T— 00 CO CO Tf in CD CM CO o Tf od Tf CM Tf iri Tf CM d d co iri co oi co CO 00 d co oi T-1 co CO od oi od CO CO C M C O T f i n C D I ^ O O O ) O T - C N C O T f i n C O I ^ O O O ) O T - C N C O •"-T-T-T-T-T-T-T-CMCMCMCMCNCNCMCNCNCNCOCOCOCO s U O C O r - O O C D O T - C N C O T f C O C O C O C O C O T f T f T f T f T f si CD CD 86 CO T3 oo 0) o o ro T3 E & CO ro 73 E CD 55 CO T3 E CD CO to 73 E CD CO ro E £ co CO T3 E S co CO TJ E .22 co CO •a E £ CO co 73 E CD CO ro 73 i S £ . co CO to 73 E CD CO § l ° cd CO "D "? E I * CO 2^  a O "D io E c co o CO £ .2 ** 73 E E « a> co co CD ID CD CO CM i n 00 CD CO CO CO i n CO CM •r- CM h- i n ro 00 CO CO CM T— CO CD Tf CO o m i n m CO CO CO CO 00 CD O i n CO o CO o o T o 00 CD If) CD CM CO CM 00 cn CD r-^  oi CD CO CD i r i i r i CD CD CO oi 00 CJ) 00 CO i — CO CJ) O) CN i n CD m 00 i n T— CM CO O) CO CJ) CM i n oi m CO CD O o CD ro CM ^ — CM r — CM o CM oi oi CO 00 cd CJ) oo o CO CD cci i n CM CO CO CD CJ) 00 CO i n m CD CD CJ) CO 00 CJ) CO m CO CM CD CM 00 ro CM CD CO o CM CJ) o CO CO CD CO m CO CD T — d ro' o CO CJ) o ro' CO CJ) T — 00 cb cb < < < < < < : < : ^ g : ^ s : « : < : < : z z z z z z z z z z z z z z z z z z z z z z z CM CO ro i n i n co co co Tf Tf co CO CN •sr r~- CM CM r— CO co i n CO ro Tt ro i n co oo oo Tt o Tf Tf p i n Ti- CM o oi i n CD ro ro o m o ro CO T— r-CM Tt CM o o i - i - CN d o ro ob CJ) ro CJ) o o ro' ro ro ob CM O c o T - c o c o c M T - m o o i n o o i - ~ o o c o c M C M i n i n T j - o o c N r o o o T t c o c N r o r - c o o c D t i d d N r b o i i o d ^ c M V o i b ^ CO 00 T— Tf ro 00 CO CO m CO T- CO T— ro CO CO 00 CD 00 CO CM CJ) CO CN o CD in iri o CJ) CD ob ob ro' CJ) ob CD ob ob iri CO CM ,— CO T— T— Tf m i n CO CO CD s i n Tf oo i n co 1 - T" O CM CO oo CJ) Tf CM Tf o cb cd T - " CM O ro ro CO cd CM co CD CM CO CN CO CM i n CO cp m CO T— m T— ro T— T— 00 m CO CN oo i n CO CJ) T— Tf CM Tf iri CD oi m 00 CM T— CD m o CM Tf ro Tf CM r- Tj" m cb 00 CO CO o CO csi O CJ) cb CM d CJ) ro d ob ro CD CO r-' ob CO CD CD CO ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ z z z z z z z z z z z z z z ro iri m Tf CO CO r ~ 00 CM Tf m ro CO CO CO ro Tf r - T — i n CO m CO o m CO CO CM i n ro CO m CD CO 00 ro 00 m ob CO CO CM T — co CM Ti- CO ro T - ro' CD o CO i r i ro CO ro ro ro d CJ) d CJ) ob ob CO ob ob ob er! d ro ro ro ob 00 oo ro oo CM ro co Tf co co m •Tf CM Tf i n CO CO m CM co CN i n T— CO CO ro o i n CM T— i n CM CO CJ) CM i n CJ) ro 00 00 T— Ti- 00 00 CN m CM TT 00 o ro T~ CM CO CM CO d T-• CO T-" d ro' T— T-" ro' ro to CO O) cb ob ro' ob 14.7 ro i n T— CO ro o CO oo Tf o CM CO CM ob CN CO CO i n CM CO ro CJ) CM o CO •<i-00 00 00 CO CO i n co o CO o 00 CM Ti-ro CO Tf 00 CO 00 m 00 CO CO 14.7 CM Tf CM r— CJ) O) d ob d ob ob r>^  ob CO i r i i r i cb cb r-^  i r i cri CO CO* r-^  CM CJ) CM Tf CN T— CJ) CO CO CO CO ro 00 i n CO 00 1-CO ob ro ro Tf ro 00 CO CM CD CO CO CO CO TI-CD CO ro d oo CJ) CO CM CM m CO r~ CM 00 00 Tf CM CM CO cb d d d ro ob d d csi CO ob ob CJ) CO i r i r-i ob T— CJ) CJ) ob CO CO i r i CM CO m CO X— CO CO 00 CN CO CM r-CO CJ) o m CO CD oo r~ CO CO to CO CO 00 o •sl-co CJ) Tl-CO 00 Tf CO o r--m LO CO 1- i n CO o CD 00 m CM CO CM o i d CM CO ^ 1 Csi CJ) cb cb CM cji o i ob d CD CO i r i CO cd CO CD CO CM CO CO CO T — CM ro o o CO cb CM T - CO CO cb ro T — cb O Tf d d ro i n T— Tf i n i n CM CO CM CO ro CM CO CN 00 Tf CM d m 00 i r i CM i n CO CN CM m 00 co ro T— i n CN CD CO CO CO CO CO CD r-^  r-' ob ob ob ob CO m Tf CO CM T - CN CO CO CO CM CO CO CD CO T - ro i - CO CO T - to ••cr 00 CO CJ) i n o CO m ro CO O o N- i n O co CM CJ) Tl- CM T — CO 00 ro o i r i CM cb T — cb d d CJ) CJ) CJ) r-' h-1 CD CO CD i r i tO CO r-^  CJ) r-^  ob ob CO CO Tf m CO 00 ro o CM CO Tl" i n CO 00 ro O CM CO T I - i n CO 00 ro o T-* CN CO T — CM CM CN CM CM CM CM CM CN CN CO CO CO CO CO CO CO co CO eo Ti- Tf Tf Tf l l CD CD 87 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0058642/manifest

Comment

Related Items