UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effects of oxygen on Synthetic crude oil fouling Sundaram, Balamurali Navaneetha 1998

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_1998-0105.pdf [ 16.41MB ]
Metadata
JSON: 831-1.0058517.json
JSON-LD: 831-1.0058517-ld.json
RDF/XML (Pretty): 831-1.0058517-rdf.xml
RDF/JSON: 831-1.0058517-rdf.json
Turtle: 831-1.0058517-turtle.txt
N-Triples: 831-1.0058517-rdf-ntriples.txt
Original Record: 831-1.0058517-source.json
Full Text
831-1.0058517-fulltext.txt
Citation
831-1.0058517.ris

Full Text

THE EFFECTS OF OXYGEN ON SYNTHETIC CRUDE OIL FOULING by BalamuralilNavaneetha Sundaram B.Eng. (Chemical) Annamalai University, 1989 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in * THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF CHEMICAL AND BIO-RESOURCE ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February, 1998 © Balamurali Navaneetha Sundaram J In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Chjm^-^ fc^ 3 The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT Fouling may be defined as a process that leads to the formation of any undesirable deposit on the heat exchanger surfaces, which increases resistance to heat transmission or pressure drop. The effect of fouling is significant in the preheat exchanger networks of petroleum refineries, resulting in major economic penalties. Gum formation by autoxidation is reported to be one cause of fouling. This thesis involves a study of the effects of trace levels of dissolved oxygen on the fouling behaviour of synthetic crude oil. To measure dissolved oxygen content, a sophisticated technique based on gas chromatography / mass spectrometry was employed. The method was first used to determine the solubility of oxygen as a function of temperature in some pure hydrocarbons, some hydrocarbon distillates, and the synthetic crude oil. The synthetic crude oil is produced from bitumen by Syncrude Canada Limited at its plant in Mildred Lake, Alberta. Fouling in field conditions was simulated in a lab scale fouling rig. The synthetic crude oil was recirculated through an electrically heated annular probe, which operated at constant heat flux. The dissolved oxygen content of the oil was varied by sparging gas mixtures containing different air/nitrogen ratios continuously into the feed tank of the fouling loop. Fouling was detected by the increase in wall temperature of the probe. The fouling resistance increased roughly linearly with time after a short induction period for the relatively short run times of up to 24 hours which were typical of oxygenated experiments. A longer experiment of 130 hours under nitrogen saturation revealed asymptotic behaviour. The initial fouling rates showed a strong effect of the dissolved oxygen concentration in the range 0 - 9 ppmw which could be approximated by an exponential dependence. Above 9 ppmw of bulk dissolved oxygen, which corresponded to saturation by a mixture of 10% air -90% nitrogen, the initial fouling rates were independent of dissolved oxygen concentration. II Induction times were small or absent. Initial fouling rates were up to 3 times higher in the presence of oxygen than under inert gas blanketing, the above experiments were done at a bulk temperature of 75 °C and at an initial surface temperature of 290 °C. Experiments at different surface temperatures from 261 °C to 297 °C, under a constant dissolved oxygen content of 4.5 ppm, showed a strong effect on initial fouling rates. This was indicated by an apparent activation energy of 44 kJ/mol. Increasing the bulk temperature from 75 to 125 °C resulted in an increase of about 60% in initial fouling rate. When the annular velocity was increased from 0.44 m/s to 0.77 m/s, the initial fouling rate was reduced by a factor of two. Effects on fouling of dissolved oxygen content, wall and bulk temperature, and velocity were compared to previous results in the literature. The deposits formed at high dissolved oxygen content (100% air sparge) tended to be polymeric in nature. With 100%) nitrogen sparge fouling appeared to be particulate. The levels of total insolubles in the oil at the end of the fouling runs varied from about 200 ppmw for a 133 hour run (with zero ppmw dissolved oxygen) to 900 ppmw after a 16 hour run with 18 ppmw dissolved oxygen. The suspended solids formed were composed mostly of aromatics and/or poly cyclics. The morphology of particulates and deposits was investigated using scanning electron microscopy. Ill TABLE OF CONTENTS Abstract II Table of Contents IV List of Tables VI List of Figures VII Acknowledgement X 1. INTRODUCTION 1 2. LITERATURE REVIEW 4 2.1. Fouling - Categories 5 2.2. Chemical Reaction Fouling 6 2.2.1. Chemistry of Autoxidation Fouling 7 2.2.2. Polymerization Fouling 12 2.3. Experimental Studies 12 2.3.1. Crude Oil Fouling in Refineries 12 2.3.2. Effects of Oxygen on the Fouling Tendency of Hydrocarbons 17 2.3.3. Jet Fuel Autoxidation Stability Studies 25 2.3.4. Dissolved Oxygen Measurements 30 2.3.5. Experimental Methods in Thermal Fouling Studies 32 2.4. Fouling models 33 2.4.1. Transport and Adhesion/Reaction Models 33 2.4.2. Empirical Models 38 2.5. Aims of the work 39 3. EXPERIMENTAL SETUP AND MATERIALS 41 3.1. Synthetic Crude Oil Properties 41 3.2. Measurement of Dissolved Oxygen of Liquid Hydrocarbons by GC/MS 44 3.2.1. Gas Chromatograph 45 3.2.2. Mass selective Detector 47 3.2.3. GC/MS Split Ratio and Flow Rate Set-up 48 3.2.4. GC/MS Calibration for Oxygen 50 3.3. Portable Fouling Research Unit 52 IV 3.3.1. The Annular Test Section 55 3.3.2. Syringe Sampling System for GC/MS Analysis 57 3.3.3. Calibration of Liquid and Sparge Gases Flow Rates 58 3.3.4. The Control and Monitoring System 60 EXPERIMENTAL PROCEDURE 62 4.1. GC/MS Apparatus 62 4.2. PFRU Procedure 63 RESULTS AND DISCUSSION 66 5.1. Synthetic Sweet Blend - Oxygen Solubility Studies 66 5.2. Fouling Experiments 73 5.2.1. Effects of Bulk Dissolved Oxygen on Initial Fouling Rates 73 5.2.2. Effects of Surface Temperature under Oxygenated Conditions 84 5.2.3. Effects of Bulk Temperature under Oxygenated Conditions 87 5.2.4. Effects of Velocity under Oxygenated Conditions 91 5.2.5. Reproducability of Fouling Experiments 93 5.2.6. Suspended Solids and Deposits Characterization 95 CONCLUSIONS AND RECOMMENDATIONS 105 6.1. Conclusions 105 6.2. Recommendations for Furthur Study 107 Abbreviations 109 Nomenclature 109 References 113 APPENDICES 120 A. 1. Summary of Fouling Experiments 120 A.2. Sample Calculations 121 A.3. GCMS Calibration for Flow Rate and Oxygen 125 A.4. Oxygen Solubility of Distillates - GCMS Data 131 A.5. PFRU Experiments - Bulk Dissolved Oxygen Data 132 A.6. SSB Oil Density and Viscosity Data 134 A.7. Raw Data from Fouling Experiments 135 v LIST OF TABLES Table 2.1 Recent Investigations on Autoxidation Related Fouling 8 Table 2.2 Temperature and Velocity Effects on Rate of Autoxidation Fouling 9 Table 2.3 Industrial Thermal Fouling Studies 16 Table 2.4 Effect of Metal ions on the Fouling Nature of a Hydrocarbon Feedstock 17 Table 2.5 Models of Chemical Reaction Fouling 36 Table 3.1 SSB Sample Analysis Report by Syncrude Limited 43 Table 3.2 Air Saturated Dissolved Oxygen Content of Pure Hydrocarbons; Comparison of Experimental and Literature Values 52 Table 5.1 Bulk Dissolved Oxygen Concentration Effects on SSB Oil Fouling Rate 78 Table 5.2 Initial Fouling Rate Versus Partial Pressure of Oxygen in PFRU 81 Table 5.3 Effects of Surface Temperature on SSB Oil Fouling 87 Table 5.4 Effects of Bulk Temperature on SSB Oil Fouling 91 Table 5.5 Effects of Velocity on SSB Oil Fouling 93 Table A1 Summary of Fouling Runs 120 Table A3.1 Integration Values for Oxygen Chromatograms 126 Table A4 Oxygen Solubility of Various Distillates - GCMS Data 131 Table A5.1 Integration Values for Oxygen Chromatograms 132 Table A6.1 SSB Oil Density and Viscosity Data 134 VI LIST OF FIGURES Figure 1 U.S. Refineries; Annual Fouling Costs 2 Figure 2.1 Typical Crude Distillation Unit Preheat Exchanger Train 13 Figure 2.2 Dependence of Initial Fouling Rate on Oxygen Partial Pressure of a Hydrocarbon Feedstock (Data from Braun and Hausler, 1976) 19 Figure 2.3 Dependence of Fouling Rates on Oxygen Partial Pressures of a Hydrodesulphurizer Feedstock (Data from Eaton and Lux, 1984) 19 Figure 2.4 Effects of Oxygen on Fouling by Olefins in Hydrocarbon Mixtures (Data from Asomaning et al., 1995) 21 Figure 2.5 Effect of Oxygen Pressure on Initial Fouling Rate of Indene - Kerosene Mixture in the Presence of Thiophenol (Data from Yap et al., 1995) 22 Figure 2.6 Effect of Oxygen Concentration on Fouling Rates (Crittenden and Khater, 1987) 23 Figure 2.7 Typical Fouling Resistance Data (Crittenden and Khater, 1987) 24 Figure 2.8 Total Carbon in Surface Deposits and Bilk Insolubles Formed as Function of Stress Duration (Jones and Balster, 1995) 26 Figure 2.9 Linearity of Detector Response and Oxygen Solubility to Various Sparge Gas Fractions of Oxygen (Heneghan et al., 1995) 27 Figure 2.10 Dependence of Fraction of Oxygen Remaining on the Output Bulk Temperature for Two Initial Oxygen Sparge Conditions (Jones et al., 1995) 29 Figure 2.11 GC-MSD Calibration Data (Striebich and Rubey, 1994) 31 Figure 3.1 Viscosity Characteristics of SSB Sample Drum-3 42 Figure 3.2 Shematic of GC/MS Apparatus 45 Figure 3.3 Organization of MSD Hardware 49 Figure 3.4 Organization of MSD Electronics 49 Figure 3.5 GC/MS Calibration for Oxygen Using Ambient Air as Standard 51 VII Figure 3.6 Schematic Diagram of PFRU Apparatus 54 Figure 3.7 Annular Test Section with HTRI - Fouling Probe 56 Figure 3.8 Syringe Sampling Setup in PFRU for Dissolved Oxygen Measurement 57 Figure 3.9 Nitrogen Gas Calibration for PFRU 58 Figure 3.10 Air Calibration for PFRU 59 Figure 5.2 Air Saturated Dissolved Oxygen Solubility of LGO 67 Figure 5.3 Air Saturated Dissolved Oxygen Solubility of Treated Naphtha 68 Figure 5.1 Air Saturated Dissolved Oxygen Solubility of HGO 68 Figure 5.4 Air Saturated Dissolved Oxygen Characteristics of SSB Oil - GC/MS Results 69 Figure 5.5 SSB Oil - Air Saturated Oxygen Solubility Characteristics - Estimation by ASTM - D 2779 Method 71 Figure 5.6 Dissolved Oxygen Solubility of SSB Oil at 75 °C and 377 kPa, Under Various Air Sparge Rates 72 Figure 5.7 Presentation of Raw Data from Fouling Run - Data from Run SSB9 74 Figure 5.8 Comparisons of Runs With Different Bulk Oxygen Concentrations Under Identical Conditions 76 Figure 5.9 Kern and Seaton Regression for Nitrogen Blanketed Run (Run SSB 13) 77 Figure 5.10 Dependence of Initial Fouling Rates on Dissolved Oxygen Content of SSB Oil 79 Figure 5.11 Dissolved Oxygen Dependent Fouling Regime 80 Figure 5.12 Effects of Oxygen on Initial Fouling Rates: Comparison with Data from Asomaning et al. (1995) 82 Figure 5.13 Effect of Surface Temperature on SSB Oil Fouling 84 Figure 5.14 Arrhenius Type Plot 86 Figure 5.15 Effects of Bulk Temperature on 10% Air Sparged Runs 88 Figure 5.16 Effects of Film and Bulk Temperature on Fouling Rate VIII 90 Figure 5.17 Effects of Velocity Under Oxygenated Conditions 92 Figure 5.18 Repeatability of Fouling Experiments 94 Figure 5.19 Unmagnified Photograph of the Fouled Probe from Run SSB7 97 Figure 5.20 Interface Between Unheated and Heated Portion of the Fouled Probe Under Optical Microscope ( Magnification 136x) 97 Figure 5.21 Mid-Section of the Fouled Probe Under Optical Microscope (Magnification, 273x) 98 Figure 5.22 Mid-Section of the Fouled Probe Under Optical Microscope (Magnification, 1093x) 98 Figure 5.23 Probe Deposit Morphology of 100% Air Sparged Run Under SEM 99 Figure 5.24 Probe Deposit Morphology of 10% Air Sparged Run Under SEM 99 Figure 5.25 Suspended Solids of 10% Air Sparged Run Under SEM 100 Figure 5.26 Suspended Solids of Nitrogen Blanketed Run Under SEM 100 Figure 5.27 Suspended Solids of 1 % Air Sparged Run Under SEM 101 Figure 5.28 Suspended Solids of 5% Air Sparged Run Under SEM 101 Figure 5.29 Effect of Dissolved Oxygen on Insolubles Generation 102 Figure 5.30 Total Oxygen, C/H Ratio and Inorganics Content of Suspended Solids from Fouling Runs with Different Dissolved Oxygen Concentrations 103 Figure A2.1 Run SSB - Initial Fouling Rate Estimation 124 Figure A3.1 Chromatogram for 0.2 uL Air Injection 127 Figure A3.2 Chromatogram for 0.4 uL Air Injection 128 Figure A3.3 Chromatogram for 1.0 uL Air Injection 129 Figure A3.4 GCMS Calibration for Oxygen using Ambient Air as Standard 130 Figure A5.1 Chromatogram (32 amu) for 20% Air Sparge in SSB Oil at 75 °C 132 Figure A5.2 Chromatogram (32 amu) for 10% Air Sparge in SSB Oil at 75 °C 133 Figure A5.3 Chromatogram (32 amu) for 0.5% Air Sparge in SSB Oil at 75 °C 133 IX ACKNOWLEDGEMENT I wish to express my profound gratitude to my supervisor, Prof. Paul Watkinson, for providing me with this opportunity, and for his guidance, utmost patience and support during the course of this work. The financial support of Petro Canada, Shell Canada, and Syncrude Canada Limited, is gratefully acknowledged as is the support of the Natural Sciences and Engineering Research Council of Canada I wish to thank Dr. Roger Cowles of Syncrude Canada Limited for providing the samples and technical assistance. I thank Mr. Ian Rose for his helpful suggestions. My sincere thanks to the members of the chemical engineering office, workshop and stores for their willful assistance. This volume is dedicated to my parents, Thiru D. Navaneetha Sundaram and Thirumathi Santha Bai. X 1 1.0 INTRODUCTION The term "fouling", originally a descriptive expression used in the oil industry, became established in the literature to mean any undesirable deposit on the heat exchanger surfaces which increases resistance to heat transmission, or pressure drop. Fouling is a major cause of energy inefficiency in petroleum refineries. The economic penalties include the costs associated with the lost productivity, increased energy consumption, and the maintenance of heat exchange equipment. Panchal (1992) estimated that the total annual cost of fouling in U.S. refineries as high as US$ 2 billion by extrapolating the work done by Van Nostrand (1981). A more detailed breakup of the fouling costs is given in Figure 1. Fouling in heat exchangers is usually compensated for by over-design. Fouling influences the way in which process plants are designed and operated. As practically every heat exchanger manufactured for process use includes an allowance for fouling through the fouling factor, there is considerable effort devoted to the development of methods both for reducing and predicting the effects of fouling. These methods are important; they help reduce over-design margins and plan for improved plant operation. Petroleum refineries use extensive networks of heat exchange equipment for energy recovery. The effect of fouling is reported to be significant in the preheat exchanger networks of crude distillation units. Fouling may be caused by physical or chemical means or by the combination of both. Murphy and Campbell (1992) discussed refinery fouling under seven categories, four of which were by physical means caused by impurities in the oil and the remaining three namely, oxidative polymerization, asphaltene precipitation and coke formation were caused by the chemical reactions of the constituents in the oil. Chapter 1: Introduction 2 As the price of the conventional crude oils continue to increase, the pressing need is to look for alternate sources such as cracking of 'bitumen' (from tar sands) to produce synthetic crude oil. But one major undesirable outcome of the process is the inherent instability of the product. Depending upon the processing techniques adopted, the synthetic crude oil may accumulate impurities like metals (from catalyst), ultra-fine coke particles (from carbon rejection), unsaturated compounds, reformed hetero-cyclics, etc. Especially at enhanced temperatures, these impurities may catalyze or take part in reactions to produce foulant precursors. Consequently foulant itself may deposit on the surface of process lines and heat exchangers in petroleum refineries. Figure-1: U. S. Refineries; Annual Fouling Costs (1992 dollar)' 1400 1200 g 1000 o § 800 -o 600 200 0 -. Crude Dist. Hydrotreating Visbreaking Reforming *Panchal(1992) Significant fouling was observed in refinery preheat exchanger trains processing synthetic crude oil supplied by Syncrude Canada Limited. This synthetic crude oil, named Syncrude Sweet Blend (SSB), is produced from bitumen extracted from the tar sands of Alberta. A combination of hydrocracking and coking processes is used to upgrade the bitumen into SSB oil. • O & M • Throughput • Energy i i , L f l i ; B a a Chapter 1: Introduction 3 Trace amounts of oxygen enter the hydrocarbon processing systems mainly through vents and leaks in the storage tanks. Oxygen, coupled with above factors, plays a synergistic role in foulant formation in heat exchangers through a number of highly complex reaction pathways. Deposition of foulant is influenced by fluid flow conditions and temperatures. The emphasis in this study is on the role of oxygen in SSB oil fouling in heat exchangers under various simulated operating conditions. 4 2.0 LITERATURE REVIEW The design of a simple heat exchanger is given by Q=UAATj Im (2.1) where, Q - Heat Transfer Rate, kW U - Overall Heat Transfer Coefficient, kW/m . K A - Area Available for Heat Transfer, m 2 ATim - Log Mean Temperature Difference, K The decrease in heat transfer efficiency of the heat exchanger over time can be described by increase of the fouling resistance, R/y / Uit) U(t = 0) 1 7 (2.2) The fouling rate or the rate of increase in fouling resistance is given by dRf_d( j dt dt{U(t)) (2.3) Fouling is an extremely complex phenomenon. From the fundamental point of view, it may involve chemical kinetics, solubility characteristics of various components of the fluid involved, and momentum, heat and mass transfer. Chapter 2: Literature Review 5 2.1 Categories of fouling Epstein (1983) described five primary categories of fouling. (i) Crystallization Fouling Although treated by Hewitt et al. (1994) as two separate categories, precipitation and freezing fouling can both be regarded as crystallization fouling. (a) Precipitation Fouling This refers to crystallization from solution of dissolved substances onto the heat transfer surface and is sometimes called scaling. Normal solubility salts precipitate on cooled surfaces, while the more troublesome inverse solubility salts precipitate on heated surfaces. (b) Solidification Fouling This is the freezing of a pure liquid (for example, icing) or the higher melting point constituents of a multi-component solution onto a sub-cooled surface. (ii) Particulate Fouling Accumulation of finely divided solids suspended in the process fluid onto the heat transfer surface is referred to as particulate fouling. In cases where settling is controlled by gravity, the process is referred to as sedimentation fouling. (iii) Chemical Reaction Fouling This refers to deposit formation at the heat transfer surface by chemical reactions in the flowing fluid in which the surface material is not a reactant. (iv) Corrosion Fouling Accumulation of indigenous corrosion products on the heat transfer surface is known as corrosion fouling. Chapter 2: Literature Review 6 (v) Biological Fouling Attachment of macro-organisms and / or microorganisms to a heat transfer surface along with the adherent slimes often generated by the latter comprises biological fouling. 2.2 Chemical Reaction Fouling Watkinson (1992), described chemical reaction fouling as a deposition process in which a chemical reaction either forms the deposit directly on a surface or is involved in forming precursors (or foulants) which subsequently become deposited. At moderate temperatures, hydrocarbon fouling appears to proceed via autoxidation polymerization, propagated by free radical chain reactions. These reactions generally take place at temperatures below those at which coking occurs, but if the temperature of the deposit is high enough the polymer will convert in time to a coke-like material. At intermediate temperatures, both autoxidation and thermal decomposition reactions contribute to solids formation. Considerable experimental work has been performed in industry where this type of fouling occurs. This includes the petrochemical industry where hydrocarbons undergo chemical degradation, the food and dairy industry, where food products will spoil when exposed to heat, and also the pharmaceutical industry. Within hydrocarbon streams, oxygen, nitrogen, sulfur and metals ions all seem to participate in the mechanism somehow. Taylor (1970) has described the gross chemical process for deposit formation with a typical jet fuel deposit formulation as: o2 o2 Jet Fuel CioH 2 4 + traces S,N -> C10H22S0.3N0.05O ~£ C31H59S0.5N0.5O75 Soluble oxidation Insoluble polymer, products M W = 400 - 600 Chapter 2: Literature Review 7 An extensive review of chemical reaction fouling has been done recently by Watkinson and Wilson (1997). Table 2.1 & 2.2 represents the summary of their reviews on autoxidation fouling related studies. They conclude that for autoxidation, research has established the link between reaction and fouling. For non-oxidative fouling, high temperature coking chemistry of heavy petroleum fractions (and residues) offered some explanations of observed fouling behaviour and that this extensive research could be profitabily extended to better understanding of chemical reaction fouling at moderate temperatures. Dickakian and Seay (1988) suggest that incompatibility between asphaltenes and oils results in precipitates which adhere to the metal surfaces, and subsequently carbonize to infusible coke. Deposit formation during heating of jet fuels might be caused by polymeric peroxides (Mayo et al., 1988) which adsorb on the surfaces and cause growth of fouling deposits. 2.2.1 Chemistry of Autoxidation Fouling Petroleum process fouling involves the deposition of black or brown insoluble polymeric organic material with a high degree of unsaturation. Braun and Hausler (1976) suggested that, as temperatures are too low to suggest thermal cracking as the source of olefinic polymer precursors, autoxidation might provide a better basis for a consistent fouling mechanism. They cited the possible sources of process oxygen including storage tanks and suction side leaks. Reich and Stivala (1969) have performed extensive studies and reviewed the kinetics and mechanisms of hydrocarbon autoxidation in detail. Chapter 2: Literature Review 8 Table 2.1: Recent Investigations on Autoxidation Related Fouling* Reference Test Fluid Apparatus Temperature Row Other Analysis (Measurement method) Range Velocity Methods Roback et al. RIM, JP-7 fuels Tubular heater ISO^^C 6-30 m/s SEM of deposits (1983) and propane Constant heal flux (ATw.ii, mass deposilion) Szetela ec al. Jet A fuel Tubular heater I27-357°C 0.07 m/s (1986) Constant heat flux Re(in) = 60 Metal wafer inserts (AT„,,. mass deposition) Marteneyand JP-5 fuel and Tubular heater 152-6WC Re = 400, Oxygen analysis Spadiccini (1986) aromatic blends Constant beat flux 3000. (A=T„ii , mass 21000 deposition) Morris et al. Jet fuels. Adapted JFTOT unit 190<TT U R F < (1988.1989) additives. Constant heal flux 538°C Morris and model solutions (mass deposition) Mushrush (1991) Wilson and Indenein Annular beater T ^ = 180- Re = 3000- Chemical analysis Walkinson (1992) different solvents Constant heat flux 240°C 12000 of hydroperoxides. (thermal resistance) T M t = 80«C indene, deposit Asomaning and Alkencs in Annular heater T < u r f = 150- Re= 11000 Watkinson (1992) kerosene Constant heat flux 200°C (thermal resistance) T w k - 80°C Jones etal. (1992) 3 Jet A fuels Reaction flasks 185°C - Gumst Hexadccanc (mass deposition on Tbulk •= Twill discs) Parker et al. JP4, air said Isothermal healed lube <502°C Slow Optical analysis (1992) Optical cell T = 4-13.5 (absorbance. min scattering) Jones and Balsler Hcxadecane Reaction flasks I60-2CXTC - Gumst; TGA/MS (1992) S additives (mass deposition on of deposits discs) Heneghan et al. 3 Jet A fuels Isothermal lube -625°C Re = 300- Oxygen, methane (1993) aerated, deacrated (mass deposition) 11000 analysis. additives nitration Chin and Lefebvre DF2, kerosene Isothermal tube; T w a j r 14O-3S0°C Re = 1000-(1993) TMt varied 7000 (mass deposition) Zhang el at. Indenein Annular heater T M t = 80°C Re = 5000- Chemical analysis (1993) kerosene Constant heat flux T „ , = 137- 17000 of indene. ROOH, (thermal resistance) 216°C deposit and gum. Jones and Balsler Jel-A fuels Isodiermal tube 185°C Slow Oxygen analysis (1993), (1994) (Mass deposilion) 155-255°C x = 1-25 Gumst Heneghan el al. Jet A fuels Isothermal tube 270-335°C T < 6 sec Oxygen analysis (1995) Oxygen cone. (Mass deposilion) varied Additives Jones and Balsler Jcl Fuels Isothermal tube 185°C Slow Oxygen analysis (1995), Additives (Mass deposition) Gumst Jones el al. (1995a), (1995b) Asomaning et al. (1995) Wilson and Watkinson (1995), Wilson et aL (1995) Wilson and Walkinsoa(I996) Indene in kerosene and lube oil. oxygen varied Indene in kerosene and lube oil, antioxidants Indene in lube oil. Annular healer Constant heat flux (thermal resistance) Annular beater Constant beat flux (thermal resistance) Tubular healer Constant heat flux (Mass deposilion, pressure drop and (hernial resistance) Tbuifc = 85°C T„rf =188°C T M t = 80-100°C T , ^ = 180-240°C Re = 11000 Re = 3000-6500 T b u t t =IO0°C Re = 3000-"T.irf = 180- 14000 225°C Chemical analysis of indene. ROOH, deposit and gum Chemical analysis of indene. ROOH, deposit and gum SEM of deposits Chemical analysis of indene, ROOH, deposit and gum tGurris - classification of gum and filtration products based on solubilities; x - residence time in tubular section. Taken from Watkinson and Wilson (1997) Chapter 2: Literature Review 9 Table 2.2: Temperature and Velocity Effects on Rate of Autoxidation Fouling* Velocity Effect rate « Re0-605 Reference Vranos et al. (1981) Roback et al. (1983) Marteney and Spadiccini (1986) SzetelaetaL (1986) Chin and Lefebvre (1993) Jones and Balster (1993) Zhang et al. (1993) Heneghan et al. (1995) Wilson et al. (1995) Wilson and Watkinson (1996) Test fluid Jet-A fuel RIM, JP-7, propanes JP-5 and aromatic rich blends Jet-A fuel DF2, kerosene Jet-A fuel Indene in kerosene Jet-A fuels Indene in lube oil Indene in lube oil Temperature Effect E a c t = 42kJ/mol Maximum in thermal resistance as Tjurf increases E a c t = 42kJ/moI T I u r f <250°C; E ^ = 167 kJ/mol T t u r f> 250°C Eacf «= 200 kJ/mol (est) Increase with increasing T b u l k Eact = 150 kJ/mol (oxygen kinetics) E ^ = 39 kJ/mol Eact = 128 kJ/mol (oxygen kinetics) Eact = 82-85 kJ/mol Eact = 76.4 kJ/mol Thermal resistance maximum « (flow rate)"1 little effect of flow rate >250°C Comments Bulk reaction effects Thermal Resistance JFTOT breakthrough temperature = 252°C Bulk reaction effects Bulk reaction effects at high fluid temperatures. Non-Arrhenius temperature dependency Bulk reaction effects suspected. Bulk reaction effects rate «= Re0-65 rate <* (flow rate) rate Re 1- 0 4 Fouling Resistance rate «= (flow rate) B ulk reaction effects rate « Re" Fouling Resistance 2>n>l rate °= Re" Fouling Resistance 2>n>l 'Taken from Watkinson and Wilson (1997) Chapter 2: Literature Review 10 Autoxidation is a free radical mechanism involving hydrocarbons and oxygen to yield alkyl and peroxy radicals. Rosenwald (1955) proposed the following autoxidation mechanism for petroleum hydrocarbons. Initiation RH + Z* R* + HZ Chain Propagation: R* + O2 ROO* + RH Termination: ROO* + RH R* + R* ROO* + R* abstraction addition 2R2COO* 2R2CO* +0 2 ROO* ROOH + R* ROORH* RR ROOR 2R2CO +R2COH The autoxidation initiation reaction involves a radical Z» of sufficiently high reactivity to remove a hydrogen atom from a hydrocarbon molecule. Peroxy radical (ROO*) is the dominant species in this free radical mechanism. The peroxy radical can react with a hydrocarbon molecule via hydrogen abstraction to form hydroperoxide or by direct addition to form a dimeric or polymeric peroxy radical. Evidence suggests that where propagation proceeds by addition, polyperoxide gums are formed and where propagation proceeds by hydrogen abstraction, hydroperoxides are formed, which by themselves are not foulants. Mayo and Lan (1986) identified the addition step, which generates polymeric peroxides, as the main source of gum in fuel storage. Asomaning and Watkinson (1992) also found polymeric peroxides to be the source of deposits in their fouling studies. Alkanes generally favour hydrogen abstraction whereas Chapter 2: Literature Review 11 alkenes tend to undergo addition. At room temperature the radical character of oxygen is not sufficiently developed for this reaction to proceed at a significant rate. Here, transition metals can be used as catalysts. Mn + 2 + 0 2 • Mn + 3 + (02)" RH + (02)" • R* + (02H)-(0 2H)' + M n + 3 • M n + 2 + *0 2H *0 2H + RH • R* + H 2 0 2 Further investigations indicate that autoxidation of hydrocarbons is not the only mechanism which can account for radical formation. Chemically both nitrogen and sulfur make up a significant portion of the fouling deposits. Studies have shown that the degradation rate of jet fuels is most strongly dependent on oxygen concentration, with temperature and pressure being other important factors. Liang et al. (1988), verified the validity of Polyani-type empirical equation in estimating the activation energy of chain propagation reaction of the autoxidation of organic compounds by experimental data of a wider range of compounds. They report activation energies (Ea) in the range of 45-80 kJ/mol for saturated alkanes, 20-80 kJ/mol for olefinic systems, 15-85 kJ/mol for aromatic systems. Hiatt (1980) supported the view that alkyl hydroperoxides do not significantly decompose below 150 °C and that they are susceptible to radical-induced chain decomposition. Chapter 2: Literature Review 12 2.2.2. Polymerization Fouling Polymerization is an exothermic reaction and may be involved in hydrocarbon fouling. As in Autoxidation there are three main steps: 1. Radical formation and chain initiation; 2. Chain propagation; 3. Chain termination; Fouling is only evident only when the polymer becomes insoluble in the solvent. Because of the effect of oxygen has long been recognized in a qualitative manner, most processing of organic fluids is done with maximal exclusion of oxygen. Under such conditions, reactions leading to fouling are primarily vinyl type polymerization at moderate conditions and thermal decomposition (thermolysis, pyrolysis, cracking, etc.) at higher temperatures. Extensive research has been done using styrene polymerization as a model chemical system for the former case. Oufer and Knudsen (1990) reported experimental data and a model for polymerization fouling under flow boiling conditions. Epstein (1994) used the styrene polymerization data of Crittenden et al. (1987) to verify a mathematical model for chemical reaction fouling. 2.3 Experimental Studies 2.3.1. Crude Oil Fouling in Refineries Crude oil distillation units of petroleum refineries consist of a series of preheat exchangers (Figure 2.1) where the hot products and hot intermediate streams (pumparound and reflux streams) from the crude distillation column exchange heat with the incoming cold crude Chapter 2: Literature Review 13 oil feed. The preheated feed is then heated in a furnace to the required distillation column inlet temperature. A major part of the energy expended in processing is recovered by the preheat exchanger network. Prior to entering the preheat train, the cold feed is desalted by mechanical or electrical means in the desalter. A direct indicator of preheat exchanger train performance is the Figure 2.1 Typical Crude Distillation Unit Preheat Exchanger Train Kero TPA HGO LGO Crude Oil RES 4 Desalter Kero TPA TPA = top pump-around BPA = bottom pump-around Kero = kerosene HGO LGO BPA RES c o J5 Disti lumn — • Furnace HGO = heavy gas oil LGO = light gas oil RES = hot atmospheric residue furnace inlet temperature. A drop in furnace inlet temperature indicates a reduction in preheat efficiency usually caused by fouling. Most of the fouling problems in the crude distillation units are encountered in the preheat train. Murphy and Campbell (1992) suggested that the fouling could be by particulate, crystallization/precipitation, corrosion or chemical reaction mechanisms or a combination of these. Weiland et al. (1949), Butler and coworkers (1949), Van der Wee and Tritsmans (1966), Lambourne and Durrieu (1983), Crittenden et al. (1992) and Wilson and Vassiliadis (1997) have relied on actual oil refinery operating data for fouling - related studies. Table 2.3 lists a summary of industrial thermal fouling studies. Chapter 2: Literature Review 14 Butler and coworkers (1949) reported that fouling mostly occurred on the feed side of the exchangers even though the heat always flowed from the other side. They assigned a proportional amount of fouling to each side (shell side or tube side) of an exchanger dependant on the appearance of the exchanger when it was taken out for cleaning. The authors suggested that the residual salt deposition from crude oil (primarily caused by vaporization of the water due to decreases in pressure in the exchangers downstream of the desalter), had been a cause of decreased heat exchange and increased pressure drop in exchangers. They also observed that comparatively light gas oil streams at lower temperatures («100 °C) fouled more than heavier streams at higher temperatures. They stated that fouling in the light gas oil stream was caused primarily by the presence of dissolved oxygen in the feed stock, which was pumped from an open tankage. This is discussed in detail in section 2.3.2. Van der Wee and Tritsmans (1966) performed tests on the preheat section of a 100,000 bpsd crude distillation unit. The feed stock salt content varied from 5 to 90 pounds per thousand barrels depending upon the blend of crude oils processed. Hotter exchangers always had higher fouling rate than colder ones, which was contrary to that observed by Butler and coworkers (1949). Both the studies looked only into the physical aspects of crude preheat exchanger fouling such as scaling and crystallization of salts. Lambourn and Durrieu (1983) attributed the increase in fouling resistance to the presence of stable desalter emulsions containing metal chloride ions and asphaltenes. Asphaltene incompatibility with its constituent crude oil was shown to cause fouling. Asphaltenes tend to have an average atomic C/H ratio of 0.84 (Watkinson, 1988). Resins, which are supposed to be the precursors of asphaltenes, are soluble in hydrocarbons, which precipitate asphaltenes. Resins can undergo oxidative condensation to form asphaltenes. Dickakian and Seay (1988) described asphaltene precipitation, its adherence to the hot metal surface and subsequent Chapter 2: Literature Review 15 carbonization, as the major mechanism in crude oil exchanger fouling. They used a laboratory unit known as 'thermal fouling tester' to measure fouling tendencies of crude oils. They measured the effect of asphaltenes on typical oils in their test unit by comparing the fouling characteristics of a typical crude oil with those after the addition of a small quantity of asphaltenes. Recently Asomaning and Watkinson (1997) have shown that a colloidal instability index based on the chemical composition and colloidal nature of crude oils correlated well with the results of solvent and heavy oil concentration effects study on fouling of an asphaltene rich heavy oil mixed in a carrier fluid. They concluded that the fouling was governed by incompatibilities between asphaltenes and other components of the test fluid and adhesion processes at the heated surface rather than to chemical reaction in the bulk. The experiments were performed under moderate bulk test fluid temperatures (<150 °C) and initial surface temperatures (<250 °C). They used the portable fouling research unit (PFRU) for the fouling experiments. Watkinson's (1988) summary of the work by Crawford and Miller (1963) on the effect of metal ions on the fouling tendency of a hydrodesulphurizer feedstock is given in Table 2.2. Addition of just 1 ppm of dissolved metals to the feedstock resulted in a significant increase in fouling rates. The impact of the dissolved metals seems to vary with the origin (straight run or cracked) of the hydrocarbon feedstock. There are a number of limitations with respect to studying fouling mechanisms in the industrial situations. For example, deposits in heat exchangers cannot be obtained for analysis as is, because of the shutdown procedure involving steaming, purging, etc., before opening the exchanger. The operating conditions vary depending upon the nature of the feed (crude oil) being processed. Accurate measurement of fouling is difficult. Tube and shell side fouling may occur Chapter 2: Literature Review 16 simultaneously. Field conditions (where fouling is severe) can be simulated in laboratory scale experiments to elucidate the mechanisms step by step. Table 2.3: Industrial Thermal Fouling Studies Exchanger Location Service Maximum Wall Temperature, [°C] Deposition Source Reference Crude Preheat Crude/furnace oil 275 Salt, inorganics Butler etal. (1949) Flashed crude/gas oil 355 Salt, inorganics Butler etal. (1949) Crude/residues 310 Asphaltenes Weiland et al (1949) Crude/product streams 250 -375 Caustic, chlorides, organics Van Der Wee et al. (1966) Crude/residues 374 Asphaltenes, FeS particulates Lambourn and Durrieu(1983) Crude/residues 250 Salt, FeS, coke, organics Crittenden et al (1992) Catalytic Cracker Reflux/feed gas oil 350 Oxygen + unsaturates Butler et al. (1949) Gas oil /catalyst slurry oil 350 Unsaturated organics Weiland et al. (1949) Naphtha Reformer Naphtha feed preheat 340 Oxygen + unsaturates Butler etal. (1949) Naphtha/effluent 510 Unsaturates Duganet al (1978) Naphtha/cycle-fuel oil Reboiler 450 coke Weiland et al (1949) Hydrodesulphurizer Naphtha/kerosene 440 Unsaturates Duganet al (1978) Feed naphtha preheat 360 Oxygen + metal ions Crawford and Miller (1963) Chapter 2: Literature Review 17 Table 2.4 Effect of Metal Ions on the Fouling Nature of a Hydrodesulphurizer Feedstock % Increase In Fouling* Metal Added at 1 ppm* 25% coker - 75% Straight Run Naphtha 100% Straight Run Naptha Iron 47 17 Chromium 30 20 Vanadium 26 4 Nickel 11 51 Manganese 11 51 * - Taken from Watkinson (1988) * - Metal as oxide or soluble oleic or napthenic acid salt + - Based on deposit ratings Temperature 315 °C Pressure 4.236 MPa 2.3.2. Effects of Oxygen on Fouling Tendency of Hydrocarbons Epstein (1979) suggested that chemical reaction fouling rates were strongly dependent on temperature, pressure and composition, in particular upon the concentration and type of trace level constituents. Numerous studies have shown the key role of oxygen in hydrocarbon fouling. The autoxidation process is based on reaction of hydrocarbons with oxygen. Butler and co-workers (1949) reported that plant feed streams, which had been previously processed, such as naphthas and gas oils readily picked up oxygen from tankage and subsequently deposited gums on the heat exchanger surfaces in the temperature range of 120 - 250 °C. Use of natural gas for blanketing the tanks was effective but didn't completely eliminate fouling. Many other workers have shown that rigorous exclusion of dissolved oxygen or air substantially reduced or even eliminated deposition. Braun and Hausler (1976) suggested that the possible sources of process oxygen were floating roof tanks and suction-side leaks. Crittenden et al. (1997) hinted that the processing of slop oils in petroleum refineries should be avoided or reduced, as these materials tend to contain more oxygenated species, dissolved gases and hydrocarbons. Taylor and Chapter 2: Literature Review 18 Frankenfeld (1978) have shown that the addition of peroxides to deoxygenated hydrocarbons was highly detrimental and provided experimental support for the theory that the thermal degradation of liquid hydrocarbons occurs via a free-radical autoxidation mechanism. Taylor (1974) in his study on the effect of oxygen on hydrocarbon mixtures reported that the rigorous exclusion of oxygen eliminated deposit formation up to 315 °C in 5 out of 6 test fuels tested, even at pressures as high as 69 atm. In the temperature range of 150-315 °C, the apparent activation energies for the air saturated fuels ranged from 5 to 15 kcal/mol, whereas on a deoxygenated system, the activation energies were less than 5 kcal/mol. Crawford and Miller (1963) showed the catalytic effect of dissolved copper ions in the oxygen uptake mechanisms of reformer feedstocks. Canapary (1961), working on a laboratory scale single tube exchanger reported that fouling could be reduced considerably by complete removal of O2 from naphtha charge to hydrodesulphurizers. Heat transfer coefficients improved by as much as 80-90% by purging the feedstock with N2. Thermal fouling studies of Braun and Hausler (1976) on various hydrocarbon feedstocks indicated a marked dependence of oxygen pressures on fouling rates though the effect varied significantly dependent on the nature of the feedstock. The data of fouling rate dependency on oxygen pressures for one of the feedstocks is plotted in Figure 2.2. The fouling rates presented are for a surface temperature of approximately 260 °C. For the range of oxygen concentrations studied, the fouling rate seems to be an exponential function of oxygen partial pressure. The results of a similar study by Eaton and Lux (1984) who studied deposit formation from hydrocarbon feedstocks using a laboratory scale stirred apparatus are presented in Figure 2.3. The amount of fouling was measured by the increase in wall temperature of an electrically heated wire, due to deposition. For inert gas blanketed runs, no fouling was observed. Chapter 2: Literature Review 19 Figure 2.2. Dependence of Initial Fouling Rate on Oxygen Partial pressure of a Hydrocarbon Feed-Stock (Data from 'Braun and Hausler. 1976') 1>260°C 3.50E-06 | 1 0.00E+00 - ! — — 1 , , , ——I 0.00 5.00 10.00 15.00 20.00 25.00 Po2, kPa Fiqure 2.3: Dependence of Foulinq Rates on Oxvaen Pressure of a Hydrodesulohurizer Feedstock (Data from 'Eaton and Lux. 1984') 250 • 200 <» .2 150 • jerature E o> 100 -K s *-/ o X 50 -• 0 • k C 100 200 300 400 500 600 700 800 Po2, kPa Chapter 2: Literature Review 20 Watkinson (1987) concluded that a definitive study was needed on the role of oxygen in hydrocarbon fouling by using pure hydrocarbons or relatively well-defined mixtures without the presence of other heteroatomic species. Russell (1954) and Zhang et al. (1993) have shown that olefins form hydroperoxides in the presence of oxygen, which leads to the formation of polyperoxides. These polyperoxides become increasingly insoluble as the molecular weight increases with polymerization. Asomaning and Watkinson (1992) have shown that, in oxidative chain, reaction with olefins, the deposit formation was associated with species which favored addition reactions producing polymeric peroxides, rather than abstraction reactions producing hydroperoxides. Mayo et al. (1956) and Nicholson (1991) reported that for species such as styrene or acrylic acid where the rates of polymerization exceed those of autoxidation, reduction of oxygen levels could increase the amount of deposits. Asomaning et al. (1995) studied the effect of oxygen concentration on fouling of a mixture of indene in kerosene. The fluid was recirculated past the fouling probe, and the feed tank continuously sparged with oxygen-nitrogen mixtures. The relationship between partial pressure of oxygen and the resulting initial fouling rates is shown in Figure 2.4. At oxygen partial pressures below 10 kPa, the initial fouling rate increased with oxygen pressure to the power of about 0.7 and at about 20 kPa the initial rate became independent of oxygen pressure. The linear (final) fouling rate by contrast was essentially independent of oxygen pressure over the full range. The authors explained that because of the autocatalytic nature of the fouling mechanism in their system, the final fouling rates with estimated dissolved oxygen concentration of 2 ppm were essentially the same as at 340 ppm. Under deoxygenated conditions, the fouling rate was found to be negligible. Their semi-batch kinetic studies revealed that the rate of hydroperoxide generation and rate of consumption of indene in the bulk solution were Chapter 2: Literature Review 21 proportional to the oxygen pressure. Wilson and Watkinson (1994) studied autoxidation reaction fouling mechanisms of model solutions containing indene. They observed two stages in the deposition process. At high bulk polyperoxide concentrations, the fouling rate was almost insensitive to the surface temperature indicating bulk fluid reaction control. At lower polyperoxide concentrations, fouling was controlled by reaction and adhesion of material in the thermal boundary layer next to the heat transfer surface. They obtained an activation energy of 85 ± 13 kJ/mol for this highly surface temperature dependent regime. 1.0E-05 -Fiqure 2.4: Ef M fee xt :ts ur J 0 es fC -)xvajen Data fro on F m A ou sor in na q ni by nq 0 el efins in tal. (19S Hyc Iro ca rb on 2 CM E S ra ro 10E-06 Initial Foulin o rn o Initial Foulin o rn o Initial Foulin o rn o y-Initial Foulin o rn o Initial Foulin o rn o Initial Foulin o rn o Initial Foulin o rn o 1 1 1 Po2 l kPa 0 1 00 Sulfur compounds were found to be very reactive with complex mechanisms in autoxidation reactions. Offenhauer et al. (1957) explored the sediment formation in catalytically cracked middle distillates and showed that aromatic thiols accelerated the sediment formation and decreased the fuel stability. The studies of Taylor (1976) on the effects of trace quantities of Chapter 2: Literature Review 22 Figure 2.5: Effect of Oxvqen Partial Pressure on Initial Foulinq rate of Indene - Kerosene Mixture in the presence Thiophenol (Data from Yap et al., 1995) 1 6E-05 1 4E-05 / \ -> / \ E J \ . 3 * ^ 1 OE-05 O) •E 8 OE-06 \ 3 o 11 \ — g OE-06 4 OE-06 2 OE-06 0 0E+O0 C 100 200 300 400 500 600 700 800 900 Oxygen Partial Pressure, kPa sulfur on deposit formation from deoxygenated hydrocarbons indicated that sulfides, polysulfides and thiols increased the rate of formation of deposits. Yap et al. (1995) investigated the effects of thiols on aerated mixtures of indene in kerosene. A plot of their initial fouling rates Vs partial pressure of oxygen, in the presence of 300 ppm (sulfur basis) of thiophenol is shown in Figure 2.5. The initial fouling rates show an initial increase with oxygen partial pressures and subsequently show an opposite trend with increase in oxygen pressure. The authors explained that thiophenol acted as a catalyst for rapid formation of peroxide and subsequently, the products formed by thiophenols inhibited the formation of indene peroxide. Crittenden and Khater (1984) cited that increases in system pressure could affect fouling rates by virtue of the increased solubility of gases in fluids and suppression of vaporization. Chapter 2: Literature Review 23 Crittenden and Khater (1987) studied the fouling properties of oxygenated- vapourizing kerosene by passing kerosene at a low flow rate through a small horizontal tubular furnace. The fouling rates for the deoxygenated kerosene were very low. Reduction of the oxygen concentration virtually eliminated the circumferential variation in fouling rate. The fouling rates for 15% and 100% O2 saturated kerosene at the top (vapor), side and bottom (liquid) portion of the heated tube are given in Figure 2.6. For the liquid side (bottom), the initial fouling rates for 15% and 100% air saturated kerosene at a surface temperature of 250 °C are 0.7 E-9 and 3.4 E-9 m2.K/kJ respectively. For deoxygenated kerosene they observed very low fouling. Figure 2.6 too c aieiat locatioa o Bottom * Side . Top E((ect o( oxygen concentration on fouling rates Chapter 2: Literature Review 24 A typical fouling curve for one of the temperature locations in the tube, for 15% and 100% oxygenated kerosene is given in Figure 2.7. It can be noted that fouling resistance for the 100%) oxygenated kerosene progressed almost linearly till the end of the run. Shibuya et al. (1995) observed 30%> higher fouling rate for aerated untreated gas oils than for non-aerated ones, using a pilot scale plate heat exchanger. Figure 2.7 E O.OOIO 0.0008 0.0006 O.OCKM 0.0002 O -0.0002 -0.0004 -0.0006 -0.0008 -0.0010 • • 8 ^ ° • ° .S o o . o o ° o o „ o ° o -< 1 !_ ' I 1 20 40 60 80 tOO t im«, h Run 2 . 2 . 1.43 bar . T s o = C. 1001 oxygen Run S . 1.43 bar . T s o - 300« C. 152 oxygen Typical fouling resistance <JaU (location O, side) All the above studies show how trace levels of oxygen in hydrocarbons could affect its fouling tendency during processing. As noted by many workers, total exclusion of oxygen in large-scale hydrocarbon processing is r.ct always possible. Knowledge of accurate concentrations Chapter 2: Literature Review 25 of dissolved oxygen in test hydrocarbon samples rather than just its partial pressure will help in elucidating the kinetic mechanisms and subsequently in the mitigation of autoxidation related fouling in industries. 2.3.1 Jet Fuel Autoxidation Stability Studies Extensive studies have been done with respect to jet fuel instability. Jet aircraft use jet fuel as a sink or working fluid for heat management. After absorbing heat, a fraction of the fuel is consumed in the engines; the remainder is returned to the storage tanks. Jet fuels are known to degrade by thermal-oxidative pathways at temperatures approaching 450 K for times in the neighborhood of ten seconds. Hazlett (1991) have studied free radical reactions related to thermal decomposition and concluded that autoxidation via hydroperoxides is the dominant chemical mechanism for temperatures up to approximately 535 K. At higher temperatures, approaching the region of hydrocarbon pyrolysis, dissociation of oxygenated products (alkoxides, hydroperoxides, etc.,) may play an important role. Therefore, changes in activation energy may be the result of different rate-controlling reactions at low, intermediate and high temperatures. In a study of thermal degradation of jet-A fuel by Jones & Balster (1995), a close coupling between oxygen loss and surface deposition was obvious. Based on the stress duration required for deposition and that required for 0 2 depletion, they suggested that the precursor to deposition must have been an early and primary autoxidation product. This furthur explains the existence of a maximum in the deposition rate. Once the O2 has been totally consumed, the deposition precursor soon forms and subsequently diffuses to the wall. The importance of oxygen in determining the total amount of bulk and surface deposits is readily apparent in Figure 2.8, Chapter 2: Literature Review 26 where the total amount of bulk and surface deposits increases until the oxygen is totally depleted and then remains constant for up to 20 minutes of additional heat stressing. Figure 2.8 10 • 1 • 1—'—> Q _ Fr«ctlon o( Tout Carbon Q( on Filter (XtO) S" 8 « m m T 185 *C 0. O 1 6 en £ \ O « H £ / o 3 2 JO •<— Tot«l Carbon /-» ' \ Oxygen Consumed 0 10 20 30 STRESS DURATION (mln) Total carbon In surface deposits and bulk Insoluble* formed as function of stress duration. Superimposed Is that fraction of total carbon measured on filter. Thus the present approach is to monitor two key aspects of the fouling processes in jet fuels; namely, oxygen loss and growth of deposits. Peroxide formation is closely related to oxygen loss. Fodder & co-workers (1992) have measured peroxide formation in many jet fuels at lower temperatures (40-120 °C) using a stirred reactor and have observed induction periods on the order of hours and a stress-time dependant increase in peroxide concentration. Heneghan et al. (1995), have developed the "phoenix rig" to study the kinetics of the thermal degradation process, evaluate the effectiveness of various additives, and assist in the development of effective models for the prediction of thermal deposition. The Phoenix rig is a flowing single pass heat exchanger test rig used for jet fuel thermal stability studies. Fuel-degradation products that form on the walls of exchanger tubes are measured by carbon burnoff. Chapter 2: Literature Review 27 The partial pressure of oxygen in their system was set by adjusting the nitrogen to oxygen ratio in the sparge gas. They have used gas chromatographic analysis of the fuel for the dissolved oxygen content after 15 hours of sparging for different fractions of oxygen in the sparge gas. The resultant fit (Figure 2.9) shows linear dependance of dissolved oxygen on fraction of oxygen in the sparge gas, and also shows that the detector response is in a linear regime. that kinetics are pseudo-first-order (assuming oxygen as the limiting reactant) and proposed the following equation to fit the 21% oxygen sparge or about 50 ppm dissolved oxygen depletion data from solutions which are saturated: Figure 2.9 3 T 0.00 5.00 10.00 15X0 20.00 25.00" %Oxygca in Sparge With respect to oxygen consumption with jet fuel, they have concluded (2.4) Chapter 2: Literature Review 28 where, 9 is the residence time of the fluid in the heated section and the temperature range is 420 - 550 °C. However Heneghan and Zabarnick (1994) have recently shown that the oxidation of fuel may be zero order in oxygen, first order in oxygen, or mixed order. l n f { ^ i ] = l-r—, '[Aexp(rE/RT)dT ,,,, It can be noted that in contrast to Equation 2.4, the rate of decrease in the fraction of oxygen remaining depends on the initial concentration of oxygen. In fact, as the initial concentration of oxygen is decreased, the rate of consumption of the fraction increases. The curve (Figure 2.10) for the saturated oxygen level (21% oxygen sparge) represented the expected concentration if the depletion were zero order with an'A'factor of 1015ppm/sec and activation energy of 127.5 kJ/mol. The curves for the diminished (6% oxygen sparge) and saturated initial (21% oxygen sparge) oxygen concentration are shown in Figure 2.10. However the formation of deposit was shown to be linearly dependent on the availability of oxygen. Taylor and Wallace (1977) obtained an activation energy of 42 kJ/mol for jet fuel deposit formation at temperatures < 300 °C; above this temperature the activation energy decreased, indicating that different mechanisms were involved (or that mass transfer is significant). This work confirms that it is imporatant to identify the range of any fouling studies before comparisons are made. Reactions in flowing fluids saturated with respect to air are best described by oxygen nonlimited kinetics (i.e., zeroth order in oxygen). This explains the anomaly in studies by Jones & Balster (1995), where increasing oxygen by five times did not produce a significant increase in the deposition rate. It produced five times more insolubles, but much more time was required. Chapter 2: Literature Review 29 Marteney & Spadaccini (1986), have proposed a two-stage thermal degradation process characterized by unique activation energies. The first stage reactions occur at temperatures below 535 K, and are probably limited to autoxidation, while the second-stage reactions occur in the temperature range 535 to 615 K, between autoxidation and hydrocarbon pyrolysis. The rate of deposit formation decreases above initial wall temperatures of 645 K. A similar trend was observed by Taylor. The explanation for this behaviour is that fuel thermal decomposition reactions usually begin with oxidation (by dissolved oxygen) and propagate by the formation of hydroperoxides. Therefore, the sudden decrease in deposit formation at temperatures above 645 K may be indicative of a depletion of oxygen in the fuel, related to the known decomposition of hydroperoxides at elevated temperatures or to competing mechanisms in which specific reactions become the rate-limiting steps. Figure 2.10 400 450 600 S50 B ulk Fuel Temperature (K) Dependence of fraction of oxygen remaining on the output bulk temperature for two Initial oxygen »porge conditions Chapter 2: Literature Review 30 2.3.2 Dissolved Oxygen Measurements There are a variety of measurement techniques for determining the solubility of dissolved oxygen in liquid hydrocarbons. These techniques have used polarographic and electrochemical procedures in addition to sophisticated gas chromatographic procedures. Gas solubilities can be determined physically, i.e., by measuring a volume change by removing the dissolved gases from the liquid matrix (Taylor and Wallace, 1967). Another technique of measuring oxygen content in a real time fashion is by using an electrolytic-probe contained in a room-temperature jet fuel. Petrocelli and Lichtenfels (1959), were the earliest known authors to adopt gas chromatography to measure dissolved O2 in petroleum fractions. Chromatographic techniques for measuring dissolved gases are common, but the associated precision historically has been low (error greater than 3%) compared to physical measurements. Striebich and Rubey (1994), have developed a method which is different from previously published procedures in that, although conducted by GC methods, no separation of fuel and dissolved gases occurs in the chromatographic column but rather only in the injector. They used a Hewlett Packard 5890A/5970B gas chromatograph-mass selective detector (GC-MSD). The results of their GC-MSD calibration using atmospheric air are presented in Figure 2.11. The authors claim a high degree of accuracy using the above technique. Another reason for the higher accuracy might be the high selectivity of mass spectroscopy. The measured values (using GC-MSD) of saturated dissolved oxygen solubilities in pure compounds such as n-octane, n-nonane and n-decane, were in close agreement with the literature values whereas for more volatile compounds such as n-heptane, the deviation was more than 30% because of the flooding of the mass spectrometer ion source by volatiles. Chapter 2: Literature Review 31 Taylor (1967), Braun and Hausler (1976), Asomaning and Watkinson (1992), Crittenden and Khater (1992), Wilson and Watkinson (1994) adopted ASTM D2779 & ASTM D3287 methods to estimate dissolved oxygen concentration using the partial pressure of oxygen in the vapour phase of their systems. No measurements of the dissolved oxygen were made. Heneghan et al. (1995) and, Jones and Balster (1995) used the on-line gas-chromatographic dissolved oxygen measurement technique developed by Rubey et al. (1995). Hazelett (1991) also employed on-line gas chromatography to measure dissolved oxygen levels in jet fuels and found that the deposition rates and deposit patterns were determined by oxygen concentration. Figure 2.11 G C - M S D Calibration Data 2 < 6 8 tC Retention lime, minutes Jjfl 10* r • r » so too ISO 100 ISO nanograms 02 GC-MSD calibration using atmospheric air. Chapter 2: Literature Review 32 2.3.3 Experimental Techniques in Thermal Fouling Studies Braun and Hausler (1976) and subsequently Knudsen (1979) reviewed the experimental techniques used in fouling studies. Thermal fouling studies involve the measurement of the rate of decrease in heat transfer coefficients due to the deposition of foulant material on the heat transfer surface. Braun and Hausler (1976) used an electrically heated hot wire probe (UOP Monirex Fouling Test) in a test cell through which the feed stream is recirculated from a reservoir. Watkinson and Epstein (1969) employed a recirculating system (Thermal Fouling Unit), where the feed was passed from a reservoir held at a constant temperature through an electrically heated tube. Test fouling rates were often higher compared to the field ones, particularly at higher temperatures (Braun and Hausler, 1976). Reproducibility of recirculating systems was established as was reported by Watkinson and Epstein (1970). Fetissoff et al. (1982) compared the performance of the hot wire probe (HWP) and annular probe (PFRU) for the polymerization of styrene from a heptane solution under subcooled boiling conditions and found that the asymptotic fouling resistances measured using the coiled wire (laminar flow) were about twice as high as those of annular probe (turbulent flow). Muller-Steinhagen (1991) compared the performance of the above fouling probes (HWP & PFRU) and found that they had identical initial fouling rates, but the final fouling resistance of HWP was always higher than that of PFRU. He concluded that for industrial fluids where fibres, larger particles or sticky material may be present, hot wire probe would not give a true representation of fouling. This behaviour is most likely caused by the fact that thin wire can give less support to the deposit than the annular probe. Eaton and Lux (1983) have designed a 'Laboratory fouling test apparatus' to simulate a heat exchanger surface, in particular a small section of a heat Chapter 2: Literature Review 33 exchanger tube, exposed to hydrocarbon media. Deposits accumulate on an electrically heated probe placed vertically inside a cylinder (autoclave) filled with the sample fluid. The fluid velocity is simulated by rotating a hollow cylinder around the heated probe. They observed the reproducibilities to be ± 5% of the median value of the base line. The design temperature of the probe was 800 K and the design system pressure was 3.5 x 105 Pa. More recently Panchal and Watkinson (1993), have shown that the initial fouling rates of a model solution of indene in kerosene estimated using two different fouling rigs were in close agreement. 2.4 Fouling Models The fouling mechanisms are complex; however, analytical models to predict threshold-fouling conditions are needed. Fouling models should include the rate controlling chemical reactions, fluid dynamics and heat/mass transfer processes. The challenge is to apply fouling models validated with the laboratory data to industrial heat exchangers. 2.4.1 Transport and Adhesion/Reaction Models Reitzer (1964) described the crystallization of salt solutions and calculated the deposited solid mass flow rate with the aid of a mass transfer coefficient, Pk and the concentration difference between the mean liquid concentration, Cf and saturation concentration, C s a t . m d =p k(C f - C s a t ) n ( 2. 6 ) For a deposition controlled by mass transfer, n=l. Kern and Seaton (1959) included in their consideration for the first time the solids removal. They modelled fouling (by sedimentation) as a competition between a deposition flux Chapter 2: Literature Review 34 (md) proportional to the concentration of precursors and the mass flow rate, and a removal flux (mr) proportional to the deposit thickness and the wall shear stress, xs. This removal term was furthur developed by Taborek et al. (1972) mr=bTs— (2.7) ¥ The removal flux (mr) is directly proportional to both the mass of the deposit (m) and the shear stress xs on the heat transfer surface and inversely proportional to the deposit strength v|/. Removability increases linearly with deposit thickness and hence with m. With the assumption that removal always coexists with deposition, the fouling rate at any time 9 is given by dm Btsm — = m<j-mr = md (2.8) dd y/ v ' Integration of the above equation from the initial condition 6 = 0, m = 0, yields the following well-known Kern-Seaton equation f 0V m = m 1 - exp (2.9) \ Oc), Epstein (1988), explained that 9C can be interpreted as the average residence time of an element of fouling deposit on the heat transfer surface, as well as the time it would take to accumulate the asymptotic fouling deposit m* if the fouling proceeded linearly at the initial deposition rate ma. 6c, can also be taken as the actual time required to achieve 63.2% of the asymptotic fouling resistance. This model gives initial fouling rate as [dm/de]e=o = m . b ( 2.io) where b = 1/0C = time constant. Chapter 2: Literature Review 35 Beal (1970) added the velocity co of the particles normal to the direction of liquid flow to his approach, which includes a mass transfer coefficient (3 and a particle adhesion probability, P. md=a6Cf f l 1 V • + - (2.11) (2.12) mr = b3 mf In his.model, Burrill (1977) considers re-dissolution of solid material from the fouling layer, m r = b 4 ( C s a t - C f ) m f <2-13> Watkinson and Epstein (1970) modeled gas oil fouling as due to suspended particulates but observed very different behaviour to that predicted by Kern and Seaton's model; the initial fouling rate decreased as mass flow rate increased . They proposed a model featuring mass transfer of particulates to the surface followed by adhesion to form deposit and release; [1/Xf] dxf/dt = a i SJdep - a2 rw x/ (2U) where, Jdep = km (Cb - C5 /"* 0J) <2-15> and S, the 'sticking probability' was used, which is defined as S = Particle deposition rate a exp [-Esurf/R Tsur/J (2-16) Particle flux rw Crittenden (1988) reviewed chemical reaction fouling models in detail (Table 2.5). Most models relate fouling inside round tubes. The model by Fryer and Slater (1987) applies to all local points within the equipment from which the average fouling resistances can be computed. Film theories of heat and mass transfer have been used to simplify the computational effort. Nelson (1934) proposed that the rate of coking is directly proportional to the volume of fluid in Chapter 2: Literature Review 36 Table 2.5* Models of chemical r e a c t i o n f o u l i n g Authors A p p l i c a t i o n Depos i t ion Term Removal Term Remarks Nelson ( 1934 } 1 6 Oil refining Rate is directly dependent upon thickness of thermal boundary layer None considered Fouling rate can be reduced by increasing f luid velocity A tk ins ( 1 9 6 Z ) 1 7 Fired heaters in o i l industry Constant monthly increase in coke resistance for various refinery streams None considered Two layer concept - porous coke adjacent to f luid and hard coke adjacent to wall N i j s i n g {I 9 6 4 ) 1 8 Organic coolant in nuclear reactors Hydrodynamic boundary layer and diffusion partial differential equations (1) instantaneous f i rs t order reaction 1n zone close to wall (2) very rapid crystal l isation at hot surface Product diffusion back to the f luid bulk 1s an integral part of the differential equations (1) Solution with diffusion control f i ts plant data. Fouling rate predicted to increase with velocity (2) Extended to consider colloidal transfer to the hot surface Watkinson and E p s t e i n ( 1 9 7 0 ) i 9 Liquid phase fouling from gas oiIs Mass transfer and adhesion of suspended particles (1) sticking probability proportional to «xp (-E/RT) (2) sticking probability Inversely proportional to hydrodynamic forces on particle as i t reaches wall First order Kem and Seaton2* shear removal terra (1) Correct prediction of in i t ia l rate dependence on velocity (2) Incorrect prediction of asymptotic resistance on velocity Jackman and Ar ts {1971) 2 0 Vapour phase pyrolysis Kinetics control - two reactions: (1) f i r s t order dissociation of A into products (2) zero order coke formation None considered (1) Cu«1-steady state assumption (2) Untested Fernandez-Bauj i n and Solomon ( 1976)-*1 Vapour phase pyrolysis Kinetics and/or mass transfer control with f i rs t order reaction None considered Solution with mass transfer control f i ts plant run-time data, ia fouling rate increases with velocity Sundaram and Froment ( 1 9 79 ) 2 2 Vapour phase pyrolysis of ethane Kinetics control (1) at surface temperature (2) f i r s t order in propylene concen-tration, a product of primary cracking reactions None considered (1} Quasi-steady state assumption (2) Good agreement between industrial and numerically simulated data C r i t t e n d e n and Kolaczkowski ( 1979 l " - " Hydrocarbons in general Kinetics and/or mass transfer control with f i rs t order reaction (later with other orders $) (1) Diffusion of foulant back Into f luid bulk (2) First order Kern and Seaton 2 5 shear removal term (1) Complex - many parameters (2) Limited testing with o i l s 2 4 (3) Tested with styrene polymerisation* (4) Extended2* to two layer concept proposed by Atkins 1 'Crittenden et al (1988) Chapter 2: Literature Review 37 the film which is exposed to high temperatures, and which therefore can be reduced by increasing fluid velocities. Reaction kinetic efforts have been introduced by Fernandez-Baujin and Solomon and by Crittenden and Kolaczkowski. In both cases the mass flux of reactant or fouling precursor, to the reaction zone, is given by: J, = k, (Cb-CJ (2.17) where C s = reactant concentration at the fluid/solid interface. Under steady state conditions this flux is balanced by the consumption of reactant in the fouling reaction. Assuming first order kinetics, with a rate constant, k: (2.18) The rate of fouling, which is proportional to J t , is obtained by eliminating C s from above two equations, ie W_ = d{y, I kf) = _ J _ dt dt pn kf Using Chilton and Colburn analogy and assuming k » kt, Fernandez-Baujin expressed k t in terms of the average fluid velocity and fluid physical properties as follows Cb 1 1 —+ — h k (2.19) dJL = * * W°* (2.20) dt (d-2yj)n * where K is a function of feedstock, cracking severity and selectivity, dilution steam ratio etc. Panchal and Watkinson (1993) developed mathematical models based on the assumptions that the fouling process can be represented by one of the three cases (based individually on fouling precursor generation in bulk fluid, in thermal boundary layer and at wall) using experimental data Chapter 2: Literature Review 38 of autoxidation of indene in kerosene. They have shown that the model based on the assumption of precursor and foulant formation in the thermal boundary layer predicted the fouling rate more accurately than the other two cases. They didn't include removal or film aging processes in their models citing that the latter was governed by the reaction in the fouling film at the wall and therefore the effects of fluid dynamics would be minimal. Yap and Panchal (1995) extended the model proposed by Panchal and Watkinson (1993) for fouling due to co-oxidation of indene and thiophenol. The removal or release of deposits by the shear action of the fluid, as originally proposed by Kern and Seaton, has been included in chemical reaction fouling models by Watkinson and Epstein (1970), Fernandez-Bauzin and Solomon (1976) and Crittenden and Kolackzowski (1979). 2.4.2. Empirical Models in Hydrocarbon Fouling Crittenden et al (1992) established a correlation between the total fouling rate and tube wall temperature of individual heat exchangers in the preheat exchanger train of a crude oil distillation unit. Fouling resistances were calculated from actual plant data collected over a three-year period. They used a simple modified Arrhenius equation, dR -f- = Aexp(-E/RTw) (2-21) dt => Rf = C, + \[A exp(- E/RTw)]dt (2-22> where Q is the offset which is unique to a particular exchanger. Finally, they obtained a simple correlation, Chapter 2: Literature Review 39 Rf {m2.K.W')=Ci + \[4.9X10~7 exp(-33000/'RT,)]dt (2-23) where, Q is the apparent initial fouling resistance of exchanger i , which was within 20% error based upon their error estimation and t is the time in seconds. Ebert and Panchal (1995) proposed the following correlation for predicting the linear rate of fouling in coking experiments for crude oils subjected to heat fluxes greater than typical refining conditions: ^ = aRJexpi-E/RTj^-yx <2-24> at The resulting values of the four constants were a = 30.2 * 106 (K m2/kW)/hr, p = -0.88, E = 68 kJ/mol, y = 1.45 * 10"4 m2/N (K m2/kW)/hr. The range of film temperature was 370 - 400 °C and the range of velocity was 1.2 - 2.5 m/s. Dickakian and Seay (1988) studied the asphaltene incompatibility of a wide range of crude oils and proposed the AFC index, which was used to categorize crude oils as low, medium or high fouling. They contend that this knowledge could then be used to apply antifoulants more effectively to crude unit exchangers. 2.5 Objectives A lot of work has been done so far, with respect to autoxidative fouling research in hydrocarbons, mainly because of the magnitude of the problem faced by petroleum and aviation industries. Numerous thermal fouling studies have been done in which the effect of oxygen has been mentioned on fouling of crude oils and model solutions comprising olefins (which tend to foul easily). There are very few systematic studies of the effect of oxygen on thermal fouling of organic mixtures. Most of these thermal-fouling studies have relied on the ASTM methods for Chapter 2: Literature Review 40 estimation of the dissolved oxygen concentration based on the partial pressure of oxygen and specific gravity of the oils, which is very approximate and susceptible to inaccuracies. Considering the role played by even trace amounts of oxygen in organic fluid fouling, an accurate real time measurement of dissolved oxygen is very important especially to study its quantitative effects on fouling behaviour of hydrocarbons. Research in synthetic crude oils derived from shale, oil sands, etc., has been mainly devoted to the thermal instability studies. The thermal fouling nature of synthetic crude oils is poorly understood. Hence, the objectives of this study are • Set-up a system to measure the dissolved oxygen content of liquid hydrocarbons in a direct and real time fashion; • Determine the quantitative effects of dissolved oxygen on fouling of synthetic crude oil produced by Syncrude Canada Limited; • Study the effects of temperature and velocity changes on fouling under oxygenated conditions; • Compare the results of oxygenated runs with that of non-oxygenated runs and propose threshold conditions for severe fouling. 3.0 EXPERIMENTAL SETUP 41 3.1. Synthetic Crude Oil Properties The synthetic' crude oil sample used for fouling experiments originated at Syncrude Canada Limited and was supplied by Shell Canada and PetroCanada refineries. The terminology used by Syncrude for the above oil is Syncrude Sweet Blend (SSB) and the same format will be followed throughout the rest of this work. SSB oil is produced by cracking of bitumen extracted from the oil sands of Alberta. The cracking process involves the combination of fluid coking and hydrocracking technologies. The three distillation cuts of the cracked oil namely Naphtha, Light gas oil and Heavy gas oil are blended in accordance with predetermined product specifications to constitute the synthetic sweet blend (SSB). Al l the three distillates have been hydrotreated prior to blending. SSB is a complex mixture of C 3 - C45 hydrocarbons. It has a specific gravity of 0.87 (@15.6 °C). The boiling range is from -10 °C to 540 °C, making it very different from conventional crude oils. It contains negligible residue (Conradson) while a typical conventional crude oil might have about 8% residue. Table 3.1 lists the laboratory analysis of SSB done by Syncrude Canada Limited. The approximate contents of various chemical classes are paraffins (alkanes) = 32%, napthenes (cycloalkanes) = 32% and aromatics = 36%. It has a very low freezing point of -45 °C, and an autoignition temperature of 245 °C. The viscosity was measured using a rotary viscometer immersed in a constant temperature bath at temperatures up to 90 °C and the data regressed to give the following function (Equation 3.1) of temperature, T. Chapter 3: Experimental Setup 42 Viscosity (mPa. s) = 1.85237 + 3.2280 *exp (7/(°C)- 22.3545) 25.3808 (3.1) Figure 3.1 gives the graphical representation of the SSB viscosity as a function of temperature. The density variation of SSB with temperature, was measured over the same temperature range using specific gravity bottles and data regressed to give the following relation. Density (kg/m3) = 874.099 - 0.41356 T (°Q (3.2) Figure 3.1 Viscosity Characteristics of SSB Sample Drum-3 0-1 , , , , , , : , , 1 0 10 20 30 40 50 60 70 80 90 100 Temperature, °C A total of four SSB sample drums were received over the course of the project. The variation in density and viscosity among drums was minimal. The major part of this work has been done with samples taken from Drum-3. Al l the properties listed in this section were representative of SSB oil sample from Drum-3. Chapter 3: Experimental Setup 43 Table 3.1. SSB Sample Analysis Report by Syncrude Canada Limited Test Description API Gravity® 15.6 °C 31.5 R.V.P. @ 100 °F 4.85 psi Nitrogen ppm wt/wt 544 Sulphur ppm wt/wt 992 Solids ppm wt/wt Simulated Distillation Data SIMD IBP 0.5 °C SIMD 1% Recovery 4.4 °C SIMD 5% Recovery 74.6 °C SIMD 10% Recovery 120.1 °C SIMD 15%> Recovery 159.4 °C SIMD 20% Recovery 194.9 °C SIMD 25% Recovery 218.9 °C SIMD 30% Recovery 239.7 °C SIMD 35% Recovery 257.6 °C SIMD 40% Recovery 274.5 °C SIMD 45% Recovery 290.6 °C SIMD 50% Recovery 305.6 °C SIMD 55% Recovery 321.1 °C SIMD 65% Recovery 353.6 °C SIMD 70% Recovery 370.0 °C SIMD 75% Recovery 387.8 °C ' ~ SIMD 80% Recovery 407.5 °C SIMD 85% Recovery 428.8 °C SIMD 90% Recovery 453.4 °C SIMD 95% Recovery 488.1 °C SIMD 99% Recovery 541.8 °C Volatiles % wt/wt N-pentane 1.61 Propane 0.15 Iso-butane 0.68 N-butane 2.34 Iso-pentane 1.03 Chapter 3: Experimental Setup 44 3.2. Measurement of Dissolved Oxygen Content of Liquid Hydrocarbons by GC/MS Dissolved O2 measurement in hydrocarbon liquids is difficult, and accuracy has been a major problem in prior work. The chosen method exploits the high sensitivity of mass spectroscopy to measure the dissolved O2 content in any hydrocarbon fluid (except highly volatile compounds). The method involves injecting a known quantity of liquid sample into the gas chromatograph (GC), the gaseous portion of which is separated and taken to the mass selective detector. The mass selective detector, which is set to monitor ions of mass 32 A M U (for O2), gives a response proportional to the concentration of O2 in the sample. This work is an emulation of the technique developed by R.C.Striebich and W.A.Rubey (1994) of The University of Dayton Research Institute, Dayton, U.S.A. and is being widely used in jet fuel autoxidation studies. Chromatographic techniques for measuring dissolved gases are common, but historically the associated precision has been low (error greater than 3%). This technique is different from earlier methods in that although conducted by GC methods, no separation of fuel and dissolved gases occurs in the chromatographic column but rather only in the injector. The mass spectrometer is the major disengagement device (separation by atomic masses) and not the chromatographic column. The authors concluded that the fixed gas concentration of dissolved gases such as oxygen, nitrogen, argon, etc., in liquids could be accurately determined using GC-MSD analysis. Accurate, absolute quantitation can be readily performed using ambient air as the calibration standard. The setup consists of two major sections; an "HP5890A Series-II" gas chromatograph and an "HP5971A" mass selective detector (MSD) as shown in Figure 3.2. Chapter 3: Experimental Setup 45 Figure 3.2. Schematic of GC/MS Apparatus Oil Sample + Helium Carrier Gas In _ Diatomaceous Earth Packing Split/splitless Injection Liner - Glass Wool Packing (Cross linked Methyl Silicone Gum Coated) Mass Selective DDetector Detector output for 32 AMU SIM set at 3 2 AMU A double stage vacuum (pumping) system that is not part of this schematic was used to bring down the pressure of the MSD to the desired operating range of 3.3 - 5.3 Pa. Both the gas chromatograph and the mass selective detector were interfaced to a 'Hewlett Packard Vectra RS-20' personal computer. All the parameters were controlled from the computer using the proprietary software 'HP G103A Chemstation (DOS series)'. 3.2.1. Gas Chromatograph The main modification in the GC is the injector portion. A split/splitless injection liner is packed with diatomaceous earth covered on both ends by silanized glass wool. This arrangement Chapter 3: Experimental Setup 46 is essential to adsorb the liquid sample for subsequent sweeping of the gaseous (and volatile) portion of the sample by helium (carrier gas) into the mass selective detector. The capillary column acts only as a conduit between the injector and the mass selective detector. The GC portion of the technique provides an isothermal separation (GC oven at 30 °C) of the dissolved gases from the rest of the sample. A split/splitless injector was used with a split ratio of approximately 12:1 (the exact ratio is not critical) and an injector temperature of 50 °C with helium carrier gas. The temperature of the injector was chosen to provide the best chromatographic peak shape for the dissolved gases. The injector liner was made from borosilicate glass with a 4 mm internal diameter. This liner is packed with diatomaceous earth sealed by silanized glass wool at both ends. The diatomaceous earth provided a high surface area for the liquid sample to be exposed to the flowing helium in the injector. The glass wool was added to wick the tip of the syringe as the sample was expelled, and as the syringe was drawn out of the injector. This particular arrangement for the split/splitless liner was of key importance relative to the chromatographic peak shapes and precision of these measurements. A standard column nut and graphite ferrule combination connected the fused silica open tubular column to the injector port. The capillary column was 12m long with 0.2mm ID, coated with 0.25 um film thickness of phenylmethyl silicone stationery phase. The selection of the column was not critical as most of the separation of hydrocarbons and dissolved fixed gases occurred in the injector, and also due to the relatively low temperatures of the injector and the GC oven. A column head pressure of less than 108 kPa was used for all experiments in order to allow accurate injection of air as the standard, without compressing the air back into the syringe due to higher inlet pressures. Chapter 3: Experimental Setup 47 3.2.2. Mass Selective Detector: The capillary column was attached to the mass selective detector (MSD) in a direct to source connection. The MSD was operated in the selected ion monitoring (SIM) mode, using 32 A M U for oxygen detection and 28 A M U for nitrogen detection. The dwell time used in all experiments was 10 milliseconds. No major interferences from compounds with 32 A M U fragments were observed. However, when handling highly volatile compounds like n-heptane, the MSD ion source was flooded during extended periods of analysis. The MSD operating pressure was in the range of 3.3 -5.3 Pa. The vacuum was achieved by a two stage vacuum system comprising of a mechanical foreline vacuum pump (Alcatel 200B), which initially brought down the pressure to 40 Pa (rough vacuum) and an Edwards E050/60 air cooled molecular diffusion pump which pulled down the vacuum to 3.3 - 5.3 Pa. The standard MSD includes a GC/MSD interface, an electron impact ion source, a hyperbolic quadrupole mass filter, an electron multiplier detector, four electronics boards, a power supply, and the above mentioned vacuum system. Real-time control of the MSD was from the 'HP G103A MS Chemstation' software. Data system software includes programs to calibrate the MSD, acquire data and process data. The calibration (tuning) programs can adjust voltages in the ion source, calibrate mass assignments, and control the scanning of the mass analyzer. Data acquisition programs allow the operator to monitor the total ion current and to monitor the concentration of particular ions (selected ion-monitoring mode). The MSD vacuum system provides the molecular mean free path needed for the operation of the analyzer. The major components of the vacuum system are; vacuum manifold; vacuum seals, top plate; diffusion pump and fan; foreline vacuum gauge; foreline pump and trap; calibration valve. The eluent from the gas chromatograph enters the vacuum system through the Chapter 3: Experimental Setup 48 GC/MSD interface and flows in sequence through the analyzer, the diffusion pump, a flexible hose, the foreline trap, and the foreline pump. During normal operation the diffusion pump maintains an indicated pressure of less than 5 x 10"5 Torr in the analyzer portion of the vacuum chamber, with helium (carrier gas) flows upto 1 mL/min. Schematic diagrams of the organization of the MSD system hardware and electronics are shown in Figures 3.3 & 3.4 respectively. 3.2.3. GC/MS Split Ratio and the Flow Rate Set-up Direct measurement of total gas flow rate through the GC column was done by injecting a small amount (less than 1 uL) of air into the septum at the head of the column and noticing the retention time for a peak with a mass of 28 AMU. The average linear velocity in the column is then; Linear Velocity (v) = 100 L/t, (3.3) where, V is the average linear velocity in cm/sec and is the column length in meters and't' is the retention time in seconds. The corresponding volumetric flow rate is given by Flow rate = v * 60 *TT*D2/400 (3. 4 ) where the flow rate is in milliliters per minute and 'D ' is the column ID in millimeters. The total volumetric flow to the MSD was maintained at 0.5 mL/min. The MSD vacuum system is designed to handle a maximum gas flow rate of 1 mL/min. A split ratio of 12:1 was Chapter 3: Experimental Setup 49 Figure 3.3. Organization of MSD Hardware MASS SELECTIVE DETECTOR GC GC/MSD IN' ERFACE ION SOURCE MASS FILTER ELECTRONICS t AC POWER TO DATA SYSTEM D L 1 E C I O W V A C U U M S Y S T F M Figure 3.4 Organization of MSD Electronics Data Svstem MSD ELECTRONICS Communication Interface Board Power Supply Top Board Main Board Power Distribution RnarH AC Line Power Chapter 3: Experimental Setup 50 maintained for all the analyses done in GC/MS. The split ratio was calculated using the following relation Split Ratio = (Split Vent Rate/Volumetric Column Flow Rate) + 1 (3- 5) A detailed calculation of the flow rate and split ratio can be seen in Appendix A.3. 3.2.4. GC/MS Calibration for On Ambient air was used as calibration standard. Calibration was performed by injecting ambient air in steps of 0.2 uL up to luL. This method of calibration is satisfactory for measuring dissolved O2 content of hydrocarbon fluids in the range of 0.5 - 150 ppm (considering a typical liquid sample volume of 2 uL). Calibration for O2 was done before each run and a plot of 'MS detector area response versus amount of air injected' was obtained. The response was linear within experimental error. Any deviations from linearity were probably due to small errors in injecting the exact volume (because of the narrow markings on the injection syringe). A typical calibration curve is shown in Figure 3.5. To test the reliability of this technique, pure compounds for which the literature values of air saturated dissolved oxygen content are available, were tested and found to be in satisfactory agreement. Reagent grade Benzene, Toluene, n-Heptane and n-Octane were tested at 25 °C. Analysis was done in triplicates for each sample. The results are listed in Table-3.2. The standard deviation of the measured values varied from 1.7 ppm wt/wt for toluene to 6.6 ppm wt/wt for n-octane. This method was then applied to the synthetic sweet blend (SSB oil) and other distillates. Chapter 3: Experimental Setup 51 The present method yielded results for the pure hydrocarbons, which were 4 to 18% below literature values. Given that the purpose of the measurement was not to establish oxygen solubility per se, but to follow effects on fouling this level of accuracy was considered acceptable. As can be seen from the table, the results for less volatile compounds are more in line with literature values while the converse is true for highly volatile compounds such as n-Heptane and benzene. This is mainly because of the change in baseline of the chromatogram caused by flooding of the MSD ion source by volatile vapors. A column head pressure of 6.9 kPa was used for all runs in order to allow accurate injection of ambient air as a standard, without compressing the air back into the syringe due to higher inlet pressures. Near isothermal conditions were used to prevent any expansion effects. The temperatures of the injector, GC oven and GC-MSD interface were controlled, and maintained constant by the computer. Fiqure-3.5. GCMS Calibration for O, using Ambient Air as Standard 3000000 y = 10850x 3 2500000 C 2000000 o o c o a. •m 1500000 2 500000 1000000 0 0 50 100 150 200 250 300 0 2 , nanograms Chapter 3: Experimental Setup 52 Table - 3.2 Air saturated dissolved oxygen content of pure components; comparison of experimental and literature values Compound P P M 0 2 wt/wt Literature* P P M Op wt/wt Measured Standard Deviation P P M 0 2 wt/wt E R R O R % S S B Oil N/A 54 2.6 n-Heptane 138 115 6.5 -16 n-Octane 125 110 6.6 -12 Benzene 69 57 4.1 -18 Toluene 67 64 1.7 -4 T Battino et al. (1976), Temperature = 288 K 3.3. Portable Fouling Research Unit Apparatus This apparatus was originally constructed by Fetissoff (1982) and has undergone minor modifications. It is equipped with a 'Portable Fouling Research Unit' (PFRU) probe supplied by 'Heat Transfer Research Incorporated (HTRI)'. The fouling loop is a recirculation system which consists of a supply tank for holding the liquid, a centrifugal pump, an orifice meter for measuring flow rates, the annular fouling probe, two pressure relief valves, one for liquid side and another for gas side, two rotameters and a host of regulating valves. A schematic of the PFRU apparatus is shown in Figure 3.6. Al l surfaces in contact with the liquid other than the pump, were constructed from stainless steel. Liquid is pumped by a 2.2 kW centrifugal pump from a 9.45 L holding tank through the flow control valve, the orifice and the fouling probe before being returned to the tank. The fluid flows through two mixing chambers (MC) one upstream and another downstream of the test section where thermocouples Chapter 3: Experimental Setup 53 measure the entry and exit bulk temperatures respectively. All the experiments were performed at a constant holding tank pressure of 377 kPa (40 psig). Heating tapes on the holding tank exterior and an internal immersion heater were used to bring the test liquid to its operating temperature. Once the sample attained the desired operating temperature, the external tape heater was switched off. The immersion heater was left on because it acts as the sample bulk temperature controller. The cooling water coil is connected to either the building water supply or steam supply and exits into the sewer through a stainless steel tubing. The coil can therefore be used with steam to heat the bulk sample in the holding tank at a faster rate than is possible with the electrical heaters. This option was added because of the difficulties faced when bulk sample temperatures needed to be raised beyond 130 °C. Temperatures were measured using ' J ' type thermocouples located at various points in the system. Pressure gauges and mercury manometers were used to monitor absolute and differential pressures respectively. An Omega electronic pressure transmitter (model PX-202-100GV) was connected to the holding tank so that the pressure fluctuations of the holding tank could be recorded along with other parameters. This was useful in eliminating the effect of pressure fluctuations in the calculation of the overall heat transfer coefficient for the probe heat transfer. A 1.25 kVA auto voltage regulator was connected to the electrically heated probe to overcome unusual line voltage fluctuations. Chapter 3: Experimental Setup 54 Figure-3.6 Schematic Diagram of PFRU Apparatus N 2 Air 1 I Rotameter RBPC Cooling * Water out STT I m m e r s i o n | H e a t e r Supply Tank H X -Bypass Valve Hx3-D r a i n ' V a l v e *—(Pump) M C P""" " T b , o , TC ss A DPM u Annular Test Section 3n T | _ > - - T b , i n Orifice Plate SS - Syringe Sampling (Septum) RBPC - Rotameter Back Pressure Control V - Outlet for Venting Gas MC - Mixing Chamber T b - Bulk Temperature Thermocouples DPM - Differential Pressure Manometer P - Pressure Gauge STT - Supply Tank Thermocouple TC - PFRU Thermocouples Chapter 3: Experimental Setup 55 3.3.1. The Annular Test Section The annular test section consists of the PFRU probe and an outer probe assembly. The design of the PFRU probe is shown in Figure-3.7. Liquid flows upwards through the annulus between the metal core and the outside wall. The heated section consists of a 32 ohm nichrome electric heater embedded in a ceramic matrix and sheathed with a stainless steel tube. The length of the heated section is 0.102 m. The surface temperature (Ts) is calculated from the temperatures, T m , measured by four thermocouples imbedded in the sheath, a distance x s below the surface, using the calibrations supplied by HTRI and the following relationship where, q = Q/A = power input to the probe/probe heat transfer area. The diameter of the probe and outer annulus are 0.01 lm and 0.0254m respectively. The probe is designed for a maximum power input of 1920 Watts. The probe always operates at a constant heat flux. Hence the fluid/deposit interface is assumed to be at a constant temperature. The heat transfer coefficient was calculated from; (3.6) q = U(,) (Ts-Tb) (3. 7) The fouling resistance could then be calculated using the expression Rf(t) = 1/U(t) - 1/U(0) (3.8) The fouling rate is then, (3.9) 0 For a linearly progressing fouling, the rate is constant with time. Chapter 3: Experimental Setup 56 The slope of the plot of 1/U versus time gives the linear fouling rate. The fouling curves for all the runs under oxygenated conditions seemed to progress roughly linearly. Figure-3.7. Annular Test Section with HTRT- Fouling Probe 294 mm Power & Thermocouples Connector 25.4 mm 10.7 mm To Datalogger To 240V Power Supply 102 mm Chapter 3: Experimental Setup 57 3.3.2. Syringe Sampling System for GC/MS Analysis A new technique was adopted for sampling of the recirculating fluid in the fouling rig using a 10 uL Hamilton syringe (for dissolved oxygen content analysis using GC/MS). The schematic diagram of the syringe sampling setup is shown in Figure 3.8. It consists of a 5 mm Figure-3.8. Syringe Sampling Setup in PFRU for Dissolved Oxygen Measurement Nut- -Ferrule — T- Joint-Sample inlet needle valve Test Liquid from Pump Discharge Thremogreen Septum Downstream Needle valve for isobaric sampling -> To Annular Test Section thermogreen septum capable of withstanding temperatures up to 190 °C, held in place inside a 1/4" nut, by a ferrule. Excessive tightening of the nut may result in deformation of the septum and may damage the syringe needle. There are two needle valves: one upstream and one downstream of this arrangement. The downstream needle valve is important because it allows for isobaric sampling i.e., by closing this valve, the sampling pressure will be same as the system pressure thereby preventing flashing of the gaseous and volatile portion of the sample. Extra care was always taken to bleed enough amount of sample to displace fluid dead-locked inside the tubing. The septum was changed after approximately 20 samplings. Once the sampling was over, Chapter 3: Experimental Setup 58 the tip of the syringe needle was capped by a septum to prevent escape of gaseous matter from the sample before it was injected into the GC for analysis. 3.3.3. Calibration of Liquid and Sparge Gases Flow Rates The desired ratio of air and nitrogen was maintained in the gas space of the holding tank using two rotameters. The total gas flow (air + nitrogen) was maintained at 50 mL/second for all the runs for consistency. Only the air/nitrogen ratio was changed to achieve the desired concentration of dissolved oxygen in the test fluid. The rotameters were calibrated for respective gases using a wet gas flow meter at atmospheric pressure conditions, but the back pressures of the rotameters were kept at 460 kPa (52 psig) to simulate actual run conditions. The calibration curves for the rotameters are shown in Figures 3.9 & 3.10. 19 18 17 16 -O 1 5 CO 1 4 V) 13 O ~ 1 2 = 11 E io-aT 9 2 8 5 7 o LL e-.!= 5 < 4 Figure 3.9: Air flow Rotameter Calibration for PFRU ((3> Rotameter Back Pressure = 460 kPa) 5 3 -2 1 . 0 ' c ) 5 10 15 20 25 30 3 Rotameter Read 5 4 i n g , ur 0 4 •its 5 5 0 5 5 6 0 6 Chapter 3: Experimental Setup 59 Even during the experimental runs, the back pressure of the rotameters was maintained constant at 460 kPa using the back pressure regulator valve to arrive at the exact gas flow rates. Proper mixing of the gas and liquid in the holding tank was provided by recirculation of the liquid. Fiqure-3.10. N, Gas Rotameter Calibration for PFRU ((a) Rotameter Back Pressure = 460 kPa) 0-! 1 1 1 1 1 1 1 1 1 0 20 40 60 80 100 120 140 160 180 Rotameter Reading, units A mercury manometer measured the pressure drop across the orifice plate, caused by the recirculating liquid flow. The flow rate of the liquid was then calculated using Equation 3.10. (3.10) where V is the volumetric flow rate of liquid in m /sec, Cd is the orifice discharge coefficient, A o r is the cross sectional area of the orifice, AP is the pressure drop across the orifice, p is the density of the liquid and p (= dj/d2) is the ratio of the diameter of the orifice (di) to the diameter of the Chapter 3: Experimental Setup 60 pipe (0*2). The value of the orifice discharge coefficient had been measured by earlier workers (Wilson, 1994) by circulating a known flow rate (measured directly) of a liquid (Paraflex) of known density and viscosity and by measuring the pressure drop across the orifice. Substitution of these values in Equation 3.10 results in the value of the orifice discharge coefficient (Ca). Hence the known value of Cd (= 0.6102) was used in all the calculations. 3.2.4. The Control and Monitoring System The control system for the PFRU consists of two sections, the local control panel and a remote data acquisition-cum-monitoring system. The output of all the thermocouples and other sensors are connected in parallel to both the local control panel as well as the data acquisition system. The local control panel consists of selector switches, powerstats, manometers, pressure gauges and thermometers that control the parameters of the PFRU. The selector switch is connected to an Omega model 670E digital meter, where all the temperatures could be read visually. There are individual digital meters to read the probe voltage and current respectively. The electrically heated probe is connected to a 230 V power supply whereas the rest of the system is connected to 115V power supply. The power to the probe is controlled manually by a Superior Electric 236 Powerstat. The main safety interlock to the system consists of a thermoelectric controller, which receives the output of one of the probe thermocouples. The output of the thermoelectric controller is received by a magnetic relay switch, which controls power to the entire PFRU system with the exception of the pump. When the probe temperature exceeds the preset temperature (usually 360 °C, the maximum design temperature of the probe) Chapter 3: Experimental Setup 61 on the thermoelectric controller, the magnetic relay switch shuts off power to the system with the exception of the pump. The data acquisition system consists of a Digitrend Doric 235 datalogger and a 386SX personal computer running Windows 3.1 operating system. The datalogger converts the analog ('milli Volt' and 'milli Amp') outputs of the thermocouples and other sensors into digital signals. These signals were then transmitted to the personal computer, in which a 'Visual Basic' program recorded the data at any specified time intervals on the hard disk. This arrangement was useful in many ways; the recorded data is readily available and transportable for data analysis in spreadsheet programs; data sampling can be done at short intervals allowing for tracking of fast changes that occur during the experiments; a backup of raw data is always available; online graphical representation of fouling progression is possible which is useful for monitoring. 62 4.0. EXPERIMENTAL PROCEDURE 4.1. GC/MS Apparatus The main control of the GC/MS apparatus was from the 'HP G103A MS Chemstation' software running on a 'HP Vectra RS20' personal computer. The communication between the apparatus and the computer was achieved through the 'HPB-103A' interface card. This was earlier illustrated in Figure 3.4. The vacuum pull-down cycle was started initially by switching on the mechanical foreline (roughing) pump. After the MSD vacuum reached 300 mTorr, the molecular diffusion pump came on line (automatic control from computer) and pulled vacuum furthur down to 25-40 mTorr, which was the normal operating pressure of the MSD. The temperatures of the GC injector, the GC oven and the GC/MS interface were maintained constant at 50 °C, 30 °C and 250 °C respectively. Once the GC/MS reached steady state, auto tuning of the MSD was done for the standard PBFTA (internal calibration sample supplied by HP) spectra, which was subsequently used by MSD as reference to draw ion chromatograms. A typical result of MSD auto tuning is shown in Figure 4.1. The tuning results also show the amount of contaminants, if any. These are mostly the constituents of atmospheric air. The presence of contaminants was an indication of leaks in the connections or inadequate time in pumping-out the dead gaseous volume that was present before start up. The calibration of MSD for molecular oxygen was performed before each fouling run in the PFRU, by injecting up to 1 uL of ambient air, in steps of 0.2 uL. A plot was constructed with the MSD detector response for each volume of injection as explained earlier (Figure 3.5). The plot was regressed to give a linear equation. This equation was then used to translate the MSD Chapter 4: Experimental Procedure 63 response for actual SSB oil samples (from the oxygenated fouling runs) into mass of oxygen in the oil sample. A 10 uL Hamilton liquid syringe was used to inject SSB oil sample into the GC. The syringe was cleaned with n-pentane and dried before each sampling. A standard oil volume of 2 uL was used in all the injections. Online syringe sampling of SSB oil from the PFRU apparatus will be discussed in the next section of this chapter. An excessive, steady gas vent rate from the PFRU was maintained such that there was no change in the partial pressure of oxygen in the gas space of the supply tank, even after consumption of oxygen in the reaction. This was achieved by trial and error, with various gas vent rates and by simultaneous sampling of the vent gas for % oxygen in GCMS. The calibration for oxygen was performed (with ambient air) before any series of new analyses. Hence, any shift in the baseline of the chromatograms was of minimal concern. The boiling of volatiles (in PFRU) present in SSB oil prior to the start of each fouling experiment solved the problems associated with the flooding of the MSD ion source during dissolved oxygen analysis. The shut down of the GC/MSD involved the following steps in succession; 1. Switch-off of GC heaters & GC/MS interface heater; 2. Initiation of venting cycle of MSD from 'HP Chemstation' to release vacuum; 3. Switch-off of the mechanical vacuum pump after venting cycle was over; 4. Closing the carrier gas (helium) flow to the GC. 4.2. PFRU Procedure The SSB oil sample drum (156 L) was always kept under positive nitrogen pressure to avoid any exposure to oxygen. Nine liters of sample was pumped out of the drum using positive nitrogen pressure, and loaded in the PFRU supply tank. The annular probe and rig were cleaned Chapter 4: Experimental Procedure 64 using varsol before loading the sample. When the system got heavily fouled, stronger solvents such as acetone and toluene were used for cleaning. When using stronger solvents, the rinsing cycles were shortened, as the elastomeric O-ring of the centrifugal pump was prone to damage. The bulk sample recirculation was started before heating to the required bulk temperature to ensure uniform heating, and to prevent any hotspots in the internal immersion heater. The cooling water flow was commissioned to the system and flow adjusted in such a way that any fluctuation in bulk temperature was within the control range of the bulk temperature controller. The datalogger was powered-on, followed by the personal computer. The visual basic program opened up a dialog box, in which the file name of the data to be stored and the data sampling intervals were set. Real time parameters of the PFRU such as the temperatures, power to the probe and supply tank pressure were simultaneously displayed on the computer while being stored in the hard disk. Once the bulk temperature of the sample reached a steady state, the pressure was increased to 377 kPa using nitrogen. The liquid flow rate was set using a ball valve in conjunction with a mercury manometer. The flows on both of the gas rotameters were adjusted to arrive at the required air/nitrogen sparge ratio. The total gas flow rate (air + nitrogen) was kept constant at 50 mL/s, for all the runs irrespective of the sparge ratios. The system was allowed to equilibrate for 30 minutes before switching on the power to the probe. Liquid samples of 2 uL were taken using a 10 uL syringe for dissolved oxygen analysis by GC/MS. The vent gas was also analyzed by GC/MS to ensure constant gas ratios of air and nitrogen. The power to the probe was raised in increments of 10% (of the maximum design rating) over a period of 1 or 2 minutes, to the desired heat flux or surface temperature. The run then proceeded for 20 hours to 140 hours, depending on operating conditions. Boiling of the lighter components of SSB oil, was Chapter 4: Experimental Procedure 65 observed on the probe surface, as the surface temperature was above 250 °C for most of the experiments. The shutdown procedure was initiated by opening the cooling water to bring down the bulk sample temperature and depressurizing the system. The probe power level was brought down in gradual steps so as not to cause any thermal shock which might distrupt the deposit. The recirculating pump was stopped, once the temperatures had fallen to near ambient levels. The probe was removed and replaced by a dummy probe for cleaning purposes. The cleaning procedure involved draining the spent sample and rinsing the system with varsol twice. The probe was washed in n-pentane to dissolve any oil on top of the deposit. Visual inspection of the deposits was performed using an optical microscope. The spent SSB oil was filtered on a 0.2 u.m, millipore filter paper (40mm diameter) using an n-pentane wash to measure total insolubles (resins, asphaltenes, coke, inorganics, etc.) and toluene wash to measure the amount of coke and inorganics. The filtered solids were then subjected to scanning electron microscopy (SEM), EDX. and elemental analysis. For most of the runs, the fouling deposit was strongly attached to the probe surface and was difficult to remove just by scraping. Harsher methods for scraping of deposits could not be employed due to possibility of damage to the metal surface of the probe. Hence probe deposit samples could not be characterized for all of the runs. The deposit was removed from the probe surface by a combination of mechanical cleaning (using fine sand paper) and solvent wash (using toluene or varsol). 66 5.0. RESULTS AND DISCUSSION 5.1. Synthetic Sweet Blend - Oxygen Solubility Studies Synthetic sweet blend is a mixture of three Synthetic petroleum distillates namely, treated-naphtha, light gas oil (LGO) and heavy gas oil (HGO). Samples of these three distillates were provided by Syncrude Canada Ltd., to study the oxygen solubility characteristics of the individual cuts as well as the blend of the three distillates, which constitutes the synthetic sweet blend (SSB). Samples of 30 mL aliquots were brought to the desired temperature either by heating or cooling. Then the samples were saturated with air for a period of 10 minutes and time was allowed for the sample to equilibrate. Two uL of the sample was injected into the injection port of the GC (refer to Section 4.1) connected to the Mass Selective Detector (MSD). The detector was set to selective ion monitoring mode (set to monitor oxygen and nitrogen). The MSD was earlier calibrated for Oxygen using air as the standard. The detector response for individual samples was then converted to ppm of oxygen (wt/wt). Tests were performed from 0 °C to 40 °C in increments of 10 °C. In the case of HGO, a peculiarity was observed at 0 °C. Air bubbles were in the fluid and it was not possible to get rid of the bubbles without disturbing the solution. Hence the test for HGO at 0 °C was discarded. In the case of treated naphtha, the volatiles migrated down the GC-column and flooded the MS-ion source, which made it highly unstable.. Hence the tests were only partially completed. A comparison of the experimental results and the ASTM estimation methods is shown in Figures 5.1 - 5.3. Gas chromatographic measurement techniques generally involve 3-5% error. Hence, Chapter 5: Results And Discussion 67 error bars (±5% in y-axis and ±1 °C in x-axis) are introduced in the graphical representations of the measured values. Two ASTM methods, namely ASTM- D 2779-79 and ASTM- D 3827-79, were available for estimation of solubility of gases in petroleum liquids. ASTM- D 2779-79 method covers petroleum fractions commonly used in aerospace industry, with specific gravities in the range from 0.63 to 0.9 at 15.5 °C, whereas ASTM- D 3827-79 method is more applicable to lubricants. ASTM- D 3827-79 method could not be applied to estimate the solubility of oxygen in treated naphtha and SSB because the vapour pressures of both these oils were above the partial pressure of oxygen in air. This resulted in negative values for Bunsen coefficient, estimated as prescribed by the above method, which was not realistic. Fiqure-5.2: Air Saturated Dissolved Oxygen Solubility of LGO 15 20 25 30 35 Saturation Temp Deg C The estimated air saturated oxygen solubilities for all oils by ASTM methods D 2779-79 and D 3827-79 always showed an increasing trend with temperature, and neither Chapter 5: Results And Discussion 68 Figure-5.3: Air Saturated Dissolved Oxygen Solubility of Treated Naphtha 120 110 100 -Theoretical - • Estimation (ASTM-D2779) 30 20 15 20 25 30 Saturation Temp Deg C 35 40 45 50 •a o > o (0 (0 Figure-5.1: Air Saturated Dissolved Oxygen Solubility of HGO 50 -45 a, l_ — - Theoretical g> J Estimation O "o 35 25 1 20 (ASTM-D3827) 30 -, Measured E | J (byGCMS) a T (by GCMS) X M L . i j i 4" T h o n r A t l m l ^m eoretical Estimation (ASTM-D2779) 0 5 10 15 20 25 30 35 40 45 Saturation Temp Deg C Chapter 5: Results And Discussion 69 method exhibited the expected decrease in oxygen solubility with temperature. ASTM - D 2779-79 method is based on the Clausius-Clapeyron equation, Henry's law and the ideal gas law, with empirically assigned constants for the variation with density and for each gas. This method is very simple because the only liquid property data required for estimating gas solubility is its density at 15.5 °C. The ASTM - D 3827-79 method is based on solubility parameters of the liquid and the gas. It takes into account the vapour pressure of the liquid relative to the partial pressure of the gas. Both of the ASTM methods involve the estimation of Ostwald coefficient and Bunsen coefficient, though by different means. The values of the coefficients vary markedly for the two ASTM estimation methods. Ostwald coefficient is defined as the volume of a gas dissolved per volume of the liquid when the gas and liquid are in equilibrium at the specified 50 E Q. 45 Q. C O O) 40 35 > O V) . 2 30 Q Fiqure-5.4: Air Saturated Dissolved Oxygen Characteristics of SSB Oil GC/MS Analysis Results y = -0.0002X 3 + 0.0391X 2 - 2.8179x + 102.94 R 2 = 0.9996 30 40 50 60 70 Saturation Temperature, Deg C 90 partial pressure of gas and at the specified temperature. Bunsen coefficient is defined as the solubility of a gas expressed as the volume reduced to 0 °C and 1 atm, dissolved by one volume Chapter 5: Results And Discussion 70 of liquid at the specified temperature and 1 atm. The estimated values of Ostwald coefficient by both of the ASTM methods always show an increasing oxygen solubility with temperature and this seems to be the main reason for the unexpected solubility trend with temperature. The dissolved oxygen concentration of distillates as measured directly by GC/MS, shows the expected decrease in solubility with increase in temperature. For heavy distillates (HGO), ASTM - 2779-79 method seems to be more in line with directly measured values. For treated naphtha, the estimated (ASTM - D 2779-79) saturated dissolved oxygen content is 22% higher than directly measured values at 10 °C. The air saturated dissolved oxygen contents of SSB oil were measured from 25 °C - 90 °C. Above 90 °C, the oil seemed to degrade apparently due to the reaction with oxygen in air used for saturation, as was evident from the change in color of the oil from straw yellow to deep brown. The resultant values are shown in Figure 5.4. A third order polynomial regression of the results gives the following relationship between the air saturated dissolved oxygen solubility of SSB oil and the saturation temperature, T (°C), ( wt\ Dissolved[Oi] ppm,— = 102.94 - 2.8179T + 0.0391T2 + 0.0002T3 (5.1) The estimated (ASTM - D 2779) SSB oil, oxygen solubilities show only a variation of 3 ppm wt/wt over the range of 0 - 100 °C whereas the direct measurement values show a change of 21 ppm wt/wt over the range of 25-90 °C. Figure 5.5. shows the estimated values of air saturated dissolved oxygen content of SSB with temperature using ASTM - D 2779-79 method. Al l the SSB oil samples used in the fouling experiments were initially kept at 100 °C for 2 hours, under nitrogen atmosphere to boil-off the volatiles, the reason for which is discussed in Chapter 5: Results And Discussion 71 Section 5.2.1. The majority of the experiments in the PFRU apparatus were performed at a supply tank pressure of 377 kPa (40 psig) and a SSB oil sample bulk temperature of 75 °C. A blank run was performed with above conditions with a dummy annular probe instead of the electrically heated probe, with varying sparge ratios of air and nitrogen. The dissolved oxygen content was measured for each sparge ratio. A time interval of 30 minutes was provided after varying each sparge ratios before measurements were taken. The system was depressurized and Figure-5.5: SSB Oil-Air Saturated Oxygen Solubility Characteristics -Estimation Bv ASTM- D 2779 Method 60 -i — UJ 20-1 , , , , , , , , I 0 10 20 30 40 50 60 70 80 90 100 Temperature, Deg C brought back to 377 kPa nitrogen pressure before varying the sparge ratios. A correlation was established between dissolved oxygen content of the SSB oil sample and the air/nitrogen sparge ratio, which is illustrated, in Figure 5.6. The x - axis represents the volume percent (or mole percent) of air in the sparge gas. The relationship is linear, represented by Chapter 5: Results And Discussion 72 Dissolved [O2] ppm,— wt J = 0.9168 *AirSparge% (5.2) The coefficient of variation (R2) « 0.9995. Air sparge% is defined as the volume% or mole% of air in the sparge gas mixture (air + nitrogen). This relationship was then used to convert the air/nitrogen sparge ratios of the fouling runs into actual amount of dissolved oxygen in SSB oil sample. During each fouling run, the dissolved oxygen content of SSB oil sample was measured and found to be in agreement with linear correlation given above (Equation 5.2). Figure 5.6: Dissolved O, Solubility of SSB Oil (5) 75 °C & 377 kPa Under Various Air Sparge Rates 20 - 1 — Air Sparge, % Chapter 5: Results And Discussion 73 5.2 Fouling Experiments 5.2.1 Effects of Bulk Dissolved Oxygen on Initial Fouling Rates The core objective of this study is to quantify the effect of dissolved oxygen in SSB oil on its fouling behaviour, and compare the results with runs performed under deoxygenated conditions. Considerable mechanistic studies have been performed in thermal fouling research on hydrocarbon autoxidation fouling. But none of them involved real time measurement of the dissolved oxygen concentration in the fouling fluid, the quantification of which is more important for understanding the kinetic mechanisms. Studies discussed in Section 2.3.2 have shown a strong and complex effect of oxygen on the fouling tendency of hydrocarbons. In field studies (NPRA Q&A, 1995), the blanketing of naphtha storage tanks with inert gas totally eliminated fouling in the naphtha reforming units. Initially, a bulk temperature of 155 °C was selected so as to compare the results of air/nitrogen blanketed runs with that of inert gas blanketed runs (which comprise another part of the SSB oil fouling project). Nine liters of SSB was loaded into the PFRU tank and saturated with air at 15 °C, for two hours. Even while heating the sample to the required bulk temperature (Tb) of 155 °C, most of the dissolved oxygen disappeared because of bulk reaction and by degassing at elevated temperatures. The SSB oil appeared degraded in color from transparent straw yellow to dark brown. Furthermore, in actual process conditions, trace amounts of oxygen typically enters oils mainly through poorly sealed storage tanks (Braun and Hausler, 1976). Hence it was decided to lower the bulk temperature to 75 °C, to represent more closely approximate storage conditions. Also, instead of initial air saturation, continuous air/nitrogen Chapter 5: Results And Discussion 74 sparging was done throughout the length of the experiment. Two rotameters were used to control the ratio of air and nitrogen flows as shown in the schematic (Figure 3.7). Because of continuous venting of gas from the system, the volatiles in SSB oil sample would be gradually lost in the vent gas and this would affect the results, in the form of a reduction in the 'boiling heat transfer coefficient' component of the overall heat transfer coefficient. To overcome this problem, the sample was initially heated to 100 °C, in a nitrogen atmosphere (with continuous nitrogen sparging) and kept at the same temperature for two hours to boil off the volatiles. This procedure was followed for all the runs. Reproducibility of the experiments is discussed in Section 5.2.6. Figure 5.7 represents the typical raw data recorded from one of the fouling experiments. The probe heat flux is maintained constant at « 430 kW/m2, with a variation of ± 15 kW/m2. In most runs, the heat flux decreased by 3 - 5% over the initial 3 or 4 hours. Any change in heat 450 250 200 150 supply-Tank Pressu re , k P a Figure 5.7: Presentation of Raw Data from Fouling Run Data from Run SSB9 P r o b e Heat Flux, kW/rrT P r o b e Surface Tempera ture ( T s a v g ) , °C Overa l l Hea t Transfer Coefficient, U -Bulk-Temperature-^Tu-avgJ.-C 2.5 1.5 Ng S 1 3 0.5 200 400 600 800 Time, min 1000 1200 1400 1600 Chapter 5: Results And Discussion 75 flux causes considerable variation in the value of the overall heat transfer coefficient (U). The clean heat transfer coefficient is ~ 2.0 kW/K.m 2 and this value changed for the same set of conditions due to minor inconsistancy in the above mentioned volatiles stripping procedure. Nevertheless, this change in the clean heat transfer coefficient did not affect the results of the fouling experiments. The probe surface temperature (Ts) increases with time due to foulant deposition over the range 280 - 350 °C. The supply tank pressure and SSB oil bulk temperature are kept fairly constant at 377 kPa and 75 °C, respectively. The dissolved oxygen levels in SSB oil were measured periodically using the syringe sampling arrangement in the PFRU. At a bulk temperature of 75 °C, the bulk dissolved oxygen levels were found to be constant at any point of time during the fouling experiment. This was achieved by the surplus supply and venting of the sparge gas. Appendix A.5 lists the chromatograms for oxygen and the associated integration values. Six runs were performed at a bulk temperature of 75 °C and surface heat flux (q) of about 430 kW/m with bulk concentrations of dissolved oxygen in the SSB oil sample varying from 0.5 to 18 ppm oxygen. The bulk velocity and the Reynolds number were 0.441 m/s and 2270 respectively. The results of the experiments are shown in Figure 5.8. The film Reynolds number (Refum) was approximately 2740, based on extrapolation of of viscosity and density data. The initial clean surface temperature (TS]0) for all the runs was between 280 - 295 °C. The end of the run surface temperature (TS;f) was around 350 °C. The duration of the runs was typically 20 hours. A reference run (SSB 13) was conducted with the above said conditions under nitrogen gas blanketing for comparison. The results for Run SSB 13 are shown in Figure 5.9. This run was carried out for over 140 hours. Chapter 5: Results And Discussion 76 0.2 Figure- 5.8: Comparison of Runs with Different Bulk Oxygen Concentrations Under Identical Conditions. Th=75 °C. g=430 kW/m2. T.„=260°C 20bO XSSB15 13.5ppm 02 OSSB6 0.5ppm 02 OSSB7 4.5ppm 02 + SSB10 1ppm 02 ASSB5 18ppm 02 • SSB3 9ppm 02 o -0.05 1 Time, min For the three runs at 9 - 18 ppm oxygen, there appears to be no induction period and the Rf versus time curve is essentially linear. Furthermore, any incremental increase in dissolved oxygen concentration of bulk SSB oil sample above 9 ppm did not result in any marked increase in initial fouling rate, as the slopes of the three curves are similar within experimental error. Above 9 ppm dissolved oxygen, the fouling rate therefore seems not to be limited by the presence of oxygen. Below 9 ppm, the dissolved oxygen concentration seems to have a very significant impact on the initial fouling rate. Run SSB7 with dissolved oxygen concentration of 4.5 ppm wt/wt has an induction of more than 200 minutes. Fouling resistance is initially negative, and then increases nearly linearly after about 150 minutes. Negative fouling resistances are usually the result of formation of rough deposits which increase the film heat transfer coefficient. Run SSB 10 (Figure 5.8) with a bulk dissolved oxygen concentration of 1 ppm wt/wt has no induction period at all. The fouling curve for Run SSB6 at 0.5 ppm oxygen shows less Chapter 5: Results And Discussion 77 Fiqure-5.9: Kern and Seaton Regression For Nitrogen Blanketed Run (SSB13) 0.14 R,0=1.11 E-06m2.K/kJ 9000 ioqoo Time, min fouling, with Rf values below 0.03 m K/kW and a negative fouling resistance for a long time. After-500 minutes, the Rf versus time curve appears to be linear. The fouling curves for all the oxygenated runs seem to progress linearly after induction, whereas the run (SSB 13) performed under nitrogen blanketing, which was operated for a much longer period, appeared to reach an asymptotic state (Figure 5.9). Hence, the asymptotic equation, which is represented by a solid line in Figure 5.9, was applied to fit the fouling data for Run SSB13. The fouling resistance at any time't' is given by R/ = R/. (1 - expf-btj) (5.3) where 'Rf ' is the asymptotic fouling resistance (= 0.1339 m . K/kW) and 'b' is the time constant (= 1/2014 min'1). The initial fouling rate was calculated using Equation 5.4 and found to be 1.11 x 10"6m2K/kJ. Chapter 5: Results And Discussion 78 dRj dt = Rf*.b (5.4) \t=0 The Rf value of 0.134 m K/kW, represents a decrease in film coefficient of w 25.2%. Comparison with Figure 5.8 suggests that where oxygen is provided continuously, the fouling will continue in excess of 0.134 m2K/kW if the apparatus was run for time comparable to that of Figure 5.9. For all the oxygenated runs, a linear curve fitting was performed to calculate the initial fouling rate. The fouling induction period doesn't show any clear-cut trend with respect to bulk dissolved oxygen concentration. As fouling resistance trend varied from run to run for the initial Table- 5.1; Bulk Dissolved Oxygen Concentration Effects on SSB Oil Fouling Rate Th= 75 °C, U= 0.44 m/s, q « 430 kW/m2 Run # Dissolved (o2l ppm, wt/wt Initial Surface Temperature °C Initial Fouling Rate (m2.K/kJ) Range of Initial Rate Calculation min Rf Final (m2.K/kW) U 0, Clean Heat Transfer Coefficient (k\V/m2.K) SSB 13 N2 Blanket 282 1.11 E-06 100-8000 0.1339 2.0959 SSB6 0.45 296 1.27 E-06 400-1100 0.03940 1.9678 SSB10 0.90 282 1.30 E-06 400-850 0.06689 2.0607 SSB7 4.50 304 1.62 E-06 400-1700 0.13111 1.9032 SSB3 9.00 291 2.77 E-06 400-950 0.15580 1.9960 SSB5 18.00 296 2.84 E-06 400-950 0.15544 1.9635 SSB 15 13.50 279 2.81 E-06 400-1100 0.17061 2.0408 400 minutes and then proceeded linearly for all the runs, a linear fitting was done from 400 minutes to the end of the run. During Run SSB6 (Figure 5.8), air to the PFRU supply tank was accidentally cut-off around 850 minutes; the fouling resistance reached a near asymptotic state immediately. Table 5.1 lists the conditions and values for each of the runs. The initial fouling rates for the three runs with dissolved oxygen concentrations of 9, 13.5 and 18 ppm were almost Chapter 5: Results And Discussion 79 the same whereas it shows an increasing dependence on dissolved oxygen concentration in the range 0.45 - 9 ppm. This is illustrated in Figure 5.10. Using the initial fouling rate data from Figure 5.9 for dissolved oxygen concentrations 0.45 - 9 ppm where it is oxygen dependent, different expressions can be derived. Following this author's fit of the data of Braun and Hausler (Figure 2.2), an exponential relationship was determined between the initial fouling rate and the bulk oxygen concentration ([O2] ppm wt/wt) of SSB oil, dRt dt kJ = 1.1787E-06*e00m*[O^ (5.5) valid over the range [O2] < 9 ppm wt/wt. Given the reproducibility of data, a linear fit might approximate the rate versus oxygen concentration over the same range. Theoretical approaches based on the chemistry of autoxidation give little guidance to the form of equation because of the complexity of the fluid mixture. Figure-5.10: Dependence of Initial Fouling Rates on Dissolved Oxygen Content of Bulk SSB Oil 3.00E-6 1.00E-6 0 2 Dependent Regime M ni ir • A D D A T A F R O M R U N S SSB-3.SSB-5, IN2 f'anxetea Kun S S B _ 6 S S B -7,SSB-10, SSB-13 &SSB15 4 6 8 10 12 14 16 Dissolved [OJ in Bulk Sample, ppm (wt/wt) 18 20 Chapter 5: Results And Discussion 80 Figure-5.11: Dissolved O, Dependent Fouling Regime 1.00E-6 -I : 1 1 1 1 1 -. 1 1 0 2 4 6 S 10 12 14 IS IS 20 Dissolved [OJ in Bulk Sample, ppm (wt/wt) An interesting thing to be noted is that the difference in initial fouling rates between runs SSB6 (0.45 ppm [02]) and SSB 10 (0.9 ppm [02] is less than 3%, even though the dissolved oxygen the latter run is twice as much. The degree of increase in fouling rate seems to increase with dissolved oxygen concentration up to 9 ppm. This kind of relationship is better described by an exponential regression, as is shown in Figure 5.11. However, extrapolation beyond 9 ppm oxygen cannot be made. A simple power law relationship was not possible was because of more complex dissolved oxygen dependency on initial fouling rates. Most of the literature data on thermal fouling studies under oxygenated conditions correlates thermal fouling behavior to the partial pressure of oxygen (PoO, because dissolved oxygen is not measured. Table 5.2 gives the correlation of the dissolved oxygen concentration of SSB oil in ppm wt/wt to the partial pressure of oxygen (P02) in PFRU apparatus @ 377 kPa total Chapter 5: Results And Discussion 81 supply tank pressure and the corresponding initial fouling rates. It is noteworthy that at oxygen partial pressures of 15.8 kPa, the fouling rate is only 2.6 times that under nitrogen blanketing. Table- 5.2: Initial Fouling Rate Vs Partial Pressure of Oxygen in PFRU Th= 75 °C, U= 0.44 m/sec, q= 430 kW/m2, Total Pressure= 405 kPa Run # Dissolved [o2] ppm, wt/wt Air Sparge Volume % Oxygen Partial Pressure kPa Initial Fouling Rate (m2.K/kJ) SSB 13 N : Blanket 0.0 0 1.11 E-06 SSB6 0.45 0.5 0.39 1.27 E-06 SSB10 0.90 1.0 0.79 1.30 E-06 SSB7 4.50 5.0 3.94 1.62 E-06 SSB3 9.00 10.0 7.88 2.77 E-06 SSB 15 13.50 15.0 11.82 2.81 E-06 SSB5 18.00 20.0 15.76 2.84 E-06 Figures 2.1 - 2.6, illustrated the complex nature of oxygen dependency on fouling of hydrocarbons based on data from other workers. In the present work, the exponential fit of initial fouling rates on dissolved oxygen concentration in the range 0.45- 9 ppm wt/wt, resembles that of the trend (Figure 2.2) obtained by Braun and Hausler (1976) for an aerated hydrocarbon feed stock at a surface temperature of 260 °C. However, the chemical reasons for the exponential fit are unclear, and statistical reasons for preferring the exponential form to a linear fit should be examined. The results (Figure 2.4) of Asomaning et al. (1995) showed that the fouling rate of an aerated model solution of 10% wt/wt indene in kerosene was determined by fouling precursor generation in the bulk, which attached to the heat transfer surface and subsequently aged to form the deposit. The linear (final) fouling rate of their system was reported to be the same for all runs Chapter 5: Results And Discussion 82 irrespective of the partial pressure of oxygen. For the SSB oil showed a dependence not unlike that of Figure 2.4, as is shown in Figure 5.12. This could be explained by the fact that the source of precursor generation is a single species (indene) and once the threshold bulk concentration of precursors had been reached, the deposition process started. In that case, fouling was caused by a known autoxidative polymerization. n.Indene + n.C>2 > n.Indene.Ch (polymeric peroxide) This also explains the decreased induction periods with increased oxygen pressure in their work. In the current study, the initial fouling rates are equal to the linear fouling rates, as the progression of fouling resistance is fairly linear. Thus, the strong linear fouling rate dependence on dissolved oxygen concentration in the present study may be due to multiple or unlimited Figure 5.12: Effects of Oxygen on Initial Fouling Rates Comparison with Data from Asomaning et al. (1995) 1.0E-05 "I 1 1 1 1 1 1 I | I 1 1 ; , , [ I | I 1 1 r 1.0E-07 -I 1 1 1 I II II | 1 1 ' I I I | | I I I I I M i l l 0.1 1 10 100 Po 2, kPa --•--Asomaning etal. (1995) — S S S B Oil Chapter 5: Results And Discussion 83 source-species for the foulant precursor generation in the presence of oxygen (through autoxidation reactions). Butler and McCurdy (1949) reported that preprocessed hydrocarbon cuts of naphtha and gas oils, which absorbed trace levels of oxygen in tankage, tend to foul heavily in the heat exchangers of downstream units. Eaton and Lux (1984) reported that the repeated use of the same hydrocarbon sample under oxygen atmosphere in a lab scale test apparatus produced more and more foulants whereas similar runs under inert gas atmosphere resulted in sharp decrease in fouling. They explained that oxygen was consumed in the formation of foulants. Bitumen from tar sands undergoes a variety of physical and chemical processes (mechanical separation from sands, coking, hydrocracking and hydrotreating) before being blended into SSB oil. The findings by Eaton and Lux (1984) and Butler and McCurdy (1949) might hold some key for the heavy fouling tendency of SSB oil under oxygenated conditions. In summary, initial fouling rate has an oxygen-dependent regime in the range 0.45 - 9 ppm wt/wt bulk SSB oil oxygen concentration. This regime can be approximated by an exponential or linear function. The initial fouling rate is independent of oxygen concentration, above 9 ppm wt/wt. Excluding runs SSB7 and SSB 10, there seems to be no significant induction period for the onset of fouling. Lack of induction period strongly suggests that fouling may not be controlled by bulk reaction. The magnitude of initial fouling rates are comparable to those of aerated model solutions containing olefins, signifying severe fouling tendency in the presence of oxygen. Under oxygenated conditions, the progression of fouling resistance seems to be linear with time, for the range of conditions studied, signifying that the presence of oxygen triggers additional formation of foulants and precursors, which leads to a linear fouling behavior. Under inert gas blanketing, fouling reaches an asymptotic state with time. Chapter 5: Results And Discussion 84 One interesting observation is that even under inert gas blanketing, there is no significant induction period. Added to the sawtooth type, asymptotic fouling behavior observed (Figure 5.8) under inert gas blanketing suggest that fouling might be largely due to deposition of particulates from the bulk solution. This behaviour is further confirmed by the other SSB oil fouling project results (performed under inert gas blanketing at various bulk and surface temperatures). 5.2.2. Effects of Surface Temperature under Oxygenated Conditions Three runs were conducted at a dissolved oxygen content of 4.5 ppm and initial wall temperatures of 261 °C, 270 °C and 297 °C. The results are shown in Figure 5.13. The PFRU probe was permanantly damaged when a probe heat flux (q) of 500 kW/m2 was tried. Fortunately a previously used probe was available and a new unit was being fabricated. Run 'SSB-11' Figure 5.13: Effects of Surface Temperature on SSB Oil Fouling Dissolved Oxygen Content = 4.5 ppm 0.2 , 0.1S CM E f £ 0.05 0 q = 430 kW/m 2 , T s o = 297 °C ft, 0 = 16.48 E-07 m 2 .K /kJ 2000 q = 200 kW/m 2 , T 8 0 = 236 ° C R,,0 = 9.03 E-07 m 2 .K /kJ 2S00 3000 3500 4000 4500 50b0 ASSB12 DSSB11 OSSB7 O -0.05 1 Time, min Chapter 5: Results And Discussion 85 (Figure 5.13) generated an unusual amount of scatter due to high electrical power fluctuations. The portion of the curve denoted by the power surge is omitted for calculation of initial fouling rate. The data from this run is subject to question. As followed for the bulk oxygen concentration effects, the initial fouling rates for Runs SSB7 and SSB 12 were calculated by linear fitting of fouling resistance - time profile from 400 minutes until the end of the run. For Run SSB11, the initial fouling rate was calculated from the linear portion of the curve starting from 700 minutes till the end of the run. The initial fouling rates generally increased with increases in initial probe surface temperature, signifying a strong dependence. Except for Run SSB7, there is no significant induction period for the onset of fouling. Al l the runs were performed at a constant annular velocity of 0.444 m/s. The probe surface temperatures were in the range 261 - 297 °C. A simple dependence of initial fouling rate on surface temperature is not always possible. However, in the absence of information about actual reaction involved, a global energy of activation can be arrived at, based on the Arrehenius type equation shown below. dRf dt = Ae -E (5.6) 6 = 0 where ' A ' is the pre-exponential constant, 'E ' is the global activation energy for the overall reaction, 'R' is the universal gas constant and 'TS;o' is the initial surface temperature. The plot of 'ln[dRf/dfJ' Vs '1/TS' is shown in Figure 5.14. The slope of the plot is '-E/R', from which the value of the global activation energy (E) can be obtained. The value of the global activation energy obtained is 44 kJ/mol and that of pre-exponential constant (A) is 0.0178. A summary of the three runs is listed in Table 5.3, which also lists the results of Run SSB 17 that was performed using a different probe under similar conditions. Eventhough the offset of the data point from Chapter 5: Results And Discussion 86 Run SSB 17 is marked (Figure 5.14), it gives considerable confidence in comparing results from experiments using different probes. However, the results from Run SSB 17 were not used for estimating the global activation energy. Given that only three runs were done, and that one of them was suspect, little meaning can be ascribed to the activation energy. Nevertheless, Figure 5.14: Arrhenius Type Plot Bulk Temperature = 75 °C. Dissolved TCM = 4.5 ppm -13 .2 -13 .3 -13.4 -13 .5 -13 .6 -13 .7 -13 .8 -13 .9 -14 [ 1 7 4 O.OC I 176 O.OC 178 0.0 I D18 O.OC 182 O.OC 184 O.OC 186 O.OC 188 0.0 )19 O.OC y = • 5301.4x-R2 = 0.97 4.0292 86 Dat Diffe a using a rent probe • >v ? C f ] 1/TS, K comparison of data from the two best runs suggests that a 36 °C increase in surface temperature has given rise to a 78% increase in fouling rate. Based on the activation energy, the fouling rate is roughly doubled for a 40 °C increase in clean surface temperature. Watkinson (1992) and Crittenden (1997) suggested that activation energies of over 40 kJ/mol might be safely assumed to be in the chemical reaction regime. For an aerated model solution containing indene, Wilson and Watkinson (1994) observed two stages in the depositi ion Chapter 5: Results And Discussion 87 process, the first stage in which the high bulk polyperoxide concentration was almost insensitive to the surface temperature indicating bulk fluid reaction control and for the second stage which was lower in polyperoxide concentrations, the deposition was controlled by surface temperature. They obtained an activation energy of 85 ± 13 kJ/mol for this highly surface temperature dependent regime. Liang et al. (1988), reported activation energies (Ea) for the chain propagation reaction of autoxidation of organic compounds, in the range of 45-80 kJ/mol for saturated alkanes, 20-80 kJ/mol for olefinic systems, 15-85 kJ/mol for aromatic systems. From the value of Table- 5.3: Effects of Surface Temperature on SSB Oil Fouling Th= 75 °C, U= 0.44 m/sec, Dissolved Oxygen = 4.5 ppm wt/wt Run # Initial Surface Temperature °C Probe Heat Flux kW/m2 Initial Fouling Rate (m2.K/kJ) Range of Initial Rate Calculation min Rf Final (m2.K/k\V) Uo, Clean Heat Transfer Coefficient (k\V7K.m2) SSB7 297 415 16.48 E-07 400-1700 0.1311 1.9488 SSB 11 270 283 9.70 E-07 700-1340 0.1096 1.5289 SSB 12 261 196 9.03 E-07 400-850 0.0402 1.1256 SSB17* 250 180 8.97 E-07~ 0-5600 0.2955 1.0416 the activation energy of 44 kJ/mol and from the lack of any induction time for fouling, it is practical to say that surface reaction is controlling the initial fouling rates in the range of conditions studied. 5.2.3 Effects of Bulk Temperature Under Oxygenated Conditions Three runs (SSB3, SSB 18 and SSB 19) were conducted with 10% air sparge (90% nitrogen) at bulk temperatures (Tb) of 75 °C, 100 °C and 125 °C respectively. The initial surface temperature was in the range 291 - 279 °C. Figure 5.15 displays the results of these three runs. Chapter 5: Results And Discussion 88 As was the trend observed for most of the other oxygenated runs, there is virtually no fouling induction period for all the three runs. The fouling resistance versus time trend is fairly linear for a bulk temperature of 75 °C, whereas at higher bulk temperatures (Tb = 100 & 125 °C), falling rate behaviour is observed. The latter run appears to have two distinct slopes. Figure 5.15: Effects of Bulk Temperature on 10% Air Sparged Runs Annular Velocity = 0.444 m/s 0.2 T b =125 °C, q = 215kw/m 2 R,,„ = 9.50 E-6 m 2 .K/kJ T . o = 279 °C 278 °C T b = 1 0 0 °C, q = 335 kw/m 2 R,,„ = 7.16 E-6 m 2 .K/kJ r b = 7 5 °C, q = 430 kw/m 2 R,.„ = 5.99 E-6 m 2 .K/kJ T s o = 295 °C • SSB19 • SSB18 ASSB3 200 400 600 800 Time, min 1000 1200 1400 The initial fouling rates show an increasing trend with bulk temperature, an increase of 58% over the bulk temperature range 75 °C - 125 °C. An asymptotic fit, which was described by Equations 5.3 and 5.4, was used to calculate the initial fouling rates. It has been earlier noted that the SSB oil undergoes visible colour degradation above 90 °C under oxygenated conditions, probably caused by oxidation products. In fouling runs under inert gas atmosphere, no colour degradation was observed even after a run length of 6 days and at bulk temperatures above 150 °C. If the assumption that the bulk degradation products are fouling precursors, then one would expect significantly higher fouling rates at higher bulk temperatures. Results from Figures 5.15 Chapter 5: Results And Discussion 89 and 5.16 suggest that the effect of bulk temperatures is moderate on SSB oil fouling rates. However, for the initial period of 150 minutes (Figure 5.15) there is a marked increase in slopes of the fouling resistance versus time profile from lower bulk temperature Run SSB3 (Tb = 75 °C) to that of runs at higher bulk temperatures (Tb =100 and 125 °C). This initial difference in slopes of fouling resistance versus time profile might have been caused by the active bulk degradation species formed at higher bulk temperatures (>100 °C), and which are limited in concentration. Eaton and Lux (1984) observed a different trend. With their probe at 267 °C, the fouling of paraffin oils was significant with a bulk temperature of 38 °C, but minimal deposition was observed with fluid itself at a bulk temperature of 267 °C. Asomaning (1997) reported that for an asphaltene rich hydrocarbon mixture, the initial fouling rates dropped from 8.3 E-6 m 2K/kJ at a bulk temperature of 60 °C (T s o = 220 °C) to virtually no fouling above a bulk temperature of 100 °C stating the probable reason being the normal solubility characteristics of asphaltenes below 100 °C, rather than any bulk chemical reaction mechanism. Ebert and Panchal (1995) proposed the threshold-fouling model (Equation 2.24) based on the fluid film temperature (Tfnm) and wall shear stress (x). The results of the three runs discussed in this section were regressed (Figure 5.16) to their model. The wall shear stress is almost constant around 0.5 ± 0.03 N/m for the current runs and the range of film Reynolds number (Refiim) is 2387 - 2532. The activation energy (Ea) of 44.5 kJ/mol, for the range of film temperature studied based on Arrhenius type expression described in Section 5.2.2 was used in the model fitting. The range of film temperatures studied is 183 - 203 °C. The resulting values of the constants were a = 2.5 E+7 m2.K/kJ, p = -1.9 and y = 2.67 E-7 m2./N (m2K/kJ). The trend with film temperature is supported as can be seen from the fit of the current film temperature data to their model, shown by dotted lines in Figure 5.16. The very low value of y for the current Chapter 5: Results And Discussion 90 data which in turn results in a lower value of the removal term, may signify that the attachment of foulants to the surface is strong. Figure 5.16: Effects of Film Temperature on Fouling Rate Annular Velocity = 0.444 m/s 1 . 2 0 E - 0 5 1 1 .00E-05 N g 8 . 0 0 E - 0 6 6 . 0 0 E - 0 6 n o> c "5 o — 4 . 0 0 E - 0 6 CO 2 . 0 0 E - 0 6 O.OOE+00 T„ = 1 0 0 ° C T„ , 0 = 2 7 9 ° C q =335 kW/m 2 Run = S S B 1 8 T b =125 ° C T s - ^ - = - 2 7 8 ° C q = 221 k W / m 2 Run = S S B 1 9 T b = 7 5 ° C T s o = 291 °C ~q =-430kW/m 2 Run = S S B 3 Data fit based on Ebert and Panchal model 180 185 190 195 2 0 0 Film Temperature, °C 2 0 5 2 1 0 In summary, the effect of bulk temperature on the fouling behavior of SSB oil was studied over the range 75 °C - 125 °C. The fouling resistance versus temperature profile exhibits an increasing falling rate behavior with bulk temperature. The initial fouling rates show a moderate increase of 58% over this range. The overall variation in final fouling rate in this range is only ± 15%) of the average value of 2.71 E-6 m2K/kJ, which suggests that the effects of bulk temperature on final fouling rates are minimal. A threshold-fouling model based on film temperature was consistent with the current data. The range of film temperature involved is 183 - 203 °C, with wall shear stress almost constant. The activation energy based on film temperature under 10% air sparge is 44.5 kJ/mol. Almost the same activation energy (E a based on surface temperature is 44 kJ/mol) is obtained for surface temperature even under a lower (5% Chapter 5: Results And Discussion 91 air sparge) air sparge ratio. This suggests that surface temperature is a more important variable. Studies with a broader range of film temperatures and velocities might help in elucidating the validity of the model more accurately. Table- 5.4: Effects of Bulk Temperature on SSB Oil Fouling U= 0.44 m/sec. 10% Air Snarge Run# Ts,o °C T b °C Tf,o °C Initial Fouling Rate* (mJ.K/kJ) Final Fouling Rate (m2.K/kJ) Range of Fouling Rate Calculation min Clean Heat Transfer Coefficient kW/K.m2 SSB3 291 75 183 5.99 E-6 2.77 E-6 0-920 2.3803 SSB 18 279 100 189 7.16 E-6 2.32 E-6 0-920 1.8988 SSB 19 278 125 203 9.50 E-6 3.32 E-6 0-920 1.4646 - Based on Kern and Seaton model 5.2.4 Effects of Velocity under Oxygenated conditions Two runs were conducted with PFRU annular velocities of 0.444 and 0.769 m/sec respectively. The bulk dissolved oxygen content was maintained at 4.5 ppm wt/wt. The probe used in these experiments is different from the one used in earlier runs. Figure 5.17 shows the effect of velocity on fouling behaviour under oxygenated conditions. The Reynolds number presented in the figure is based on film temperature, which is the average of bulk and clean surface temperatures. The fouling resistance - time profiles for both runs show an initial slow fouling behavior up to 2500 minutes, followed by a linear fouling at a higher rate. This is quite different compared to all the other oxygenated runs which were only run for about 1500 minutes. The increased fouling rate is characteristic of autoxidation fouling in recirculating systems (Asomaning et al., 1995, Wilson, 1994). From 2500 minutes the fouling resistance -time profile shows a linear fouling tendency. Table 5.6 lists the summary of conditions used in the experiments. Chapter 5: Results And Discussion 92 Linear regressions (denoted by solid lines in Figure 5.17) were performed for the initial and final, linear portions of the fouling resistance - time profile of both the runs to arrive at the value of initial and final fouling rates respectively. At lower heat flux (SSB 16), scatter of the data was significant. The initial fouling rates for the annular velocities of 0.4439 m/s (Ref,im = 2749) and 0.769 m/s (Re f lim = 4762) are 2.957 E-7 m2.K/kJ and 1.465 E-7 m2.K/kJ respectively. These values are 5.5 to 10 times lower than initial rates observed in Figure 5.8 (Table 5.1). The initial surface temperature was 250 °C, which is some 47 °C lower than Run SSB7, the Figure 5.17: Effect of Velocity under Oxygenated Conditions Dissolved Oxygen Content = 4.5 ppm, T h = 75 °C. TQ „ = 250 °C 0.350000 -0.050000 I . Time, min corresponding experiment in Table 5.1. The final fouling rates are 20.43 E-7 m2.K/kJ and 4.078 E-7 m2.K/kJ respectively. At lower annular velocity (Ref,im = 2749), the initial and final fouling rates are two times and five times respectively, those of the higher velocity run (Ref,|m = 4762). Thus, the results indicate that as flow rate is increased, the extent of fouling is reduced. Chapter 5: Results And Discussion 93 Autoxidative studies in thermal fouling generally show an inverse dependency of fouling rates on flow rates. Zhang et al. (1993), Wilson et al. (1995) and Wilson and Watkinson (1996) observed similar effects of flowrate on fouling using an aerated mixture of indene in hydrocarbon solvents. For fouling under deoxygenated conditions, the reported effects in literature are contradictory. One of the queries raised by Wilson (1994) about the diffusional limitation in the PFRU with the uptake of oxygen by the bulk fluid might be answered by the results of the present study on the effect of velocity under oxygenated conditions. If the oxygen uptake by the bulk fluid is limiting the fouling rate, higher fluid velocities should result in higher fouling rates (assuming surface reaction controlling in the present study) for the same surface and bulk temperature, because of the increased availability of oxygen on the probe surface. Hence, it can be inferred that the diffusional limitations in the PFRU, with respect to oxygen uptake by the bulk fluid are minimal. Table- 5.5: Effects of Velocity on SSB Oil Fouling Th= 75 °C, X, n = 250 °C, Dissolved Oxygen = 4.5 ppm wt/wt Run # Velocity m/s Probe Heat Flux kW/m2 Initial Fouling Rate (m2.K/kJ) Range of Initial Rate Calculation min Final Fouling Rate (m2.K/kJ) Range of Final Rate Calculation min U 0, Clean Heat Transfer Coefficient (kW/K.m2) SSB 16 0.77 340 1.465 E-07 0 - 3000 4.078 E-7 4000 - 8000 2.2522 SSB 17 0.44 180 2.957 E-07 0 - 3000 2.043 E-6 4000 - 5500 1.0416 Chapter 5: Results And Discussion 94 5.2.5. Reproducibility of Fouling Runs To check for the repeatability of the experiments, Run SSB7, in which the dissolved oxygen concentration was 4.5 ppm wt/wt (near the middle of the range), was taken as a base run and was repeated as Run SSB9. These runs lasted 29 and 23 hours respectively. As was observed previously (Figure 5.7), there was an initial variation for the first 400 minutes after which the progression of fouling resistance was very similar in both Runs, SSB7 and SSB9. The initial fouling rates of Runs SSB7 and SSB9 were in close agreement falling within ± 0.4% of their mean value of 1.604 E-6 m K/kJ, although there is a considerable difference in the length of the Figure- 5.18: Repeatability of Fouling Experiments Comparison of Two Runs Done Under Identical Condiions Refi,m=2739. a=428 kW/m2. T„ n=263 °C. Bulk Dissolved TCI =4.5 ppm 0.2 7 0.15 -y = 9.59E-05x-5.19E-03 R 2 = 9.77E-01 A 1800 A(SSB7) • (SSB9) -0 .05 -0.1 -i Time, min induction periods. The comparison of both the runs is shown in Figure 5.18. The slopes of the linear regression, which represents the initial fouling rate, fitted from 400 minutes, for both the runs are quite similar. Results from these two runs may underestimate the true value of the Chapter 5: Results And Discussion 95 variance among experiments, as they do not provide a statistical sample. The three runs at high dissolved oxygen content (Table 5.2), where fouling rate is independent of oxygen content, had a mean fouling rate of 2.81 E-06 m2.K/kJ, and a range of ± 1.4%. These results also validate the methodology for calculation of initial fouling rates for other runs, as once the initial 400 minute period is over, the reproducibility of the fouling rate is high. 5.2.6. Suspended Solids and Deposits Characterization The probe deposits from the PFRU experiments were washed with n-pentane to remove the associated oil content and subjected visual inspection under an optical microscope to study the morphology. Figure 5.19 shows an unmagnified photograph of the fouled probe (from Run SSB7) after the pentane wash. The deposits which were localized on the heated part of the probe, generally had two layers: a sticky-brownish outer layer most of which got washed away with the pentane and a black inner layer which was highly fused to the probe metal surface. Chemical characterization of the deposits could not generally be performed because it was not possible to scrape off enough deposit mechanically without damaging the probe due to the highly fused nature of the deposits. The probe deposits were very thin, as can be seen from Figure 5.19 and hence it was difficult to do any meaningful thickness measurements. A combination of solvent and mechanical cleaning methods was used to clean the probe. Figures 5.20 - 5.22 show the results of inspection under an optical microscope. The interface between heated and unheated lengths of the probe is shown in Figure 5.20. There are no marked thermal entry length effects wherein entrained insolubles in the bulk fluid would tend to deposit on first contact with the hot surface. There are no striation patterns indicative of any velocity effects. The bright streaks on the probe metal surface are roughness elements caused by Chapter 5: Results And Discussion 96 mechanical cleaning. After the short thermal entry length, deposit density is fairly uniform along the heated section as can be seen in Figure 5.21, which shows the mid-heated section of the probe. A closer view (Figure 5.22, Magnification 1093x ) of the same area shows the exposed metal surface in between deposit agglomerates, which might have been the result of boiling. The size of the agglomerates ranges from 0.05 to 0.07 mm. Small amounts of probe deposit samples were obtained from Runs SSB1 (100% continuous air sparge run) and SSB3 (9 ppm bulk dissolved oxygen or 10% air sparge run). Figures 5.23 and 5.24 show the deposit morphology of these runs under scanning electron microscopy. The magnification is denoted on the right-bottom corner of each image. The deposit (Figure 5.23) of the '100% air sparge run (SSB1)' shows a polymeric nature with long visible strands while for 10% air sparged run (Figure 5.24) shows more of an amorphous nature. Higher availability of oxygen might have promoted the final stage of polymerization in an autoxidative fouling mechanism. Suspended solids filtered from spent oil of the fouling runs were subjected to scanning electron microscopy (SEM) and elemental analyses. Figures 5.25 - 5.28 show the morphology of suspended solids under SEM. There are no visible differences between the morphologies of the solids from nitrogen blanketed run and the oxygenated runs. Suspended solids are mostly amorphous in nature with no signs of any resinous material in the suspended solids. The spent oil from fouling runs was filtered using a 0.2 u.m millipore filter and washed with either pentane or toluene. The former procedure yields total insolubles whereas the latter yields inorganics plus coke in the solids. Figure 5.29 illustrates the change in the amount of suspended solids with respect to dissolved oxygen content of the oil in the fouling runs. Al l the experiments referred to here were performed at an initial surface temperature of 280 - 296 °C, a Figure 5.20: Interface Between Unheated and Heated Section of the Fouled Probe Under Optical Microscope (Magnification 136x) Chapter 5: Results And Discussion 98 Figure 5.21: Mid-Section of the Fouled Probe Under Optical Microscope (Magnification, 273x) Figure 5.22: Mid-Section of the Fouled Probe Under Optical Microscope (Magnification, 1093x) Chapter 5: Results And Discussion 99 Figure 5.23: Probe Deposit Morphology of 100% Air Sparged Run Under SEM Figure 5.24: Probe Deposit Morphology of 10% Air Sparged Run Under SEM Chapter 5: Results And Discussion 100 Figure 5.25: Suspended Solids of 10% Air Sparged Run Under SEM Figure 5.26: Suspended Solids of Nitrogen Blanketed Run Under SEM Chapter 5: Results And Discussion 101 Figure 5.27: Suspended Solids of 1% Air Sparged Run Under SEM Figure 5.28: Suspended Solids of 5% Air Sparged Run Under SEM Chapter 5: Results And Discussion 102 bulk temperature of 75 °C and an annular velocity of 0.444 m/s. The amount of pentane insolubles increases linearly with increases in the bulk dissolved oxygen content of the fouling fluid. Jones and Balster (1995) observed a similar kind of oxygen dependency in jet fuel oxidation (mass deposition) stability studies. They also reported that a five fold increase in the oxygen content of a jet fuel did not result in any significant increase in the deposition rate, but resulted in five times more insolubles. The total suspended solids increases more than four-fold, from 223 ppm for the nitrogen blanketed run (SSB 13), to 897 ppm for the run (SSB5) with 18 ppm dissolved oxygen content. This is in contrast to the 25.6 ppm wt/wt of total suspended solids in a fresh SSB oil sample. The total suspended solids generated seem to be much less dependent 1000 900 800 700 " 600 E a. a. . 500 v> a> 25 3 O CO 400 300 100 Figure 5.29: Effect of Dissolved Oxygen on Insolubles Generation Run Length 8000 min ^S" / 2500 min ^ x " " / f > j ysu mm 1—! 980-min ^ / / 1750 min / / / A / mi f[ < 1 " 1 v» ~~~ -Total Insolubles Coke Plus Inorganics 6 8 10 12 14 Dissolved 02, ppm wt/wt 16 18 20 on the run length (Figure 5.29), which varies from 950 minutes to 8000 minutes. Below 5 ppm of dissolved oxygen, the amount of coke plus inorganics generated seems to increase with Chapter 5: Results And Discussion 103 increasing run length. One possible explanation for this behaviour is that more time is available for aging of the deposit on the probe surface. In this regime (< 5 ppm dissolved oxygen) the amount of coke plus inorganics generated is relatively independent of bulk dissolved oxygen content. For the two runs with dissolved oxygen contents of 9 and 18 ppm, the amount of coke plus inorganics generated remains practically constant possibly due to lack of time for the freshly Figure 5.30: Total Oxygen. C/H Ratio and Inorganics Content of Suspended Solids from Fouling Runs with Different Dissolved 45 Concentrations Oxygen [Ratio Oxygen % 4 6 8 10 12 14 16 18 Dissolved 0 2 Content in SSB Oil, ppm wt/wt 1.8 1.6 1.4 1 ^ or u 1 I 0.8 0.6 0.4 0.2 o 3 20 formed insolubles to undergo thermal ageing. The results of the elemental analysis (C, H, N , O) and ash levels of the suspended solids are shown in Figure 5.30. Analysis of sulphur was not done. There is a significant decrease in the total inorganics content (ash) from 39% to 4% with increase in bulk dissolved oxygen content from zero to 18 ppmw. This decrease in percentage of inorganics is due to the increase in concentration of total suspended solids (the amount of total inorganics being fixed) with increase Chapter 5: Results And Discussion 104 in dissolved oxygen concentration as was earlier shown in Figure 5.29. This result also serves as a counter-check for any errors in measuring filtered solids. The amount of oxygen in the suspended solids does not seem to vary much, in contrast to many autoxidation studies that have shown that increases in oxygen partial pressure or dissolved oxygen translated into increased percentage of oxygen in the deposits. The atomic C/H ratio is around 1, signifying that the solids might be composed of aromatics and/or polycyclics. To check for the possibility that the nitrogen blanketed run might have been contaminated by oxygen' (the high oxygen percentage in suspended solids makes one suspicious), fresh SSB oil sample insolubles were analyzed for oxygen content and found to contain 16.93 % wt/wt. The actual field heat exchanger deposit analysis (reported by Syncrude Canada Limited, in private correspondence) indicates an oxygen content of 14.73%. In summary, high bulk oxygen content in SSB oil leads to the formation of deposits which seem to be polymeric in nature. The amount of bulk insolubles formed is strongly dependent on the bulk dissolved oxygen content whereas the percentage of oxygen in the insolubles is largely unaffected. The atomic C/H ratio is fairly similar around 1, for all the runs. From this value of C/H ratio, it can be inferred that the suspended solids are composed of mainly of aromatics and/or polycyclics. The amount of carbonaceous material formed in the insolubles depends mainly on the length of the fouling run and to a lesser extent on the bulk dissolved oxygen content. 105 (nO CONCLUSIONS AND RECOMMENDATIONS 6.1 Conclusions Various aspects of the effects of trace dissolved oxygen on the SSB oil fouling behaviour, were studied. The range of temperatures was selected, so as to represent near process conditions. The current study involved the direct measurement of the dissolved oxygen content in the test fluid. The results of this study are as follows. • The air saturated solubility of oxygen in SSB oil and its fractions was measured in the temperature range 0-90 °C using GC/MS, and the temperature effects were found to be in marked contrast to that estimated by ASTM methods. The solubilities estimated by ASTM methods show an increase with the saturation temperature, whereas measurements by GC/MS show the expected decrease in oxygen solubility of SSB oil with increase in temperature. Values were in agreement at about 38 °C. • The effects of bulk dissolved oxygen concentration over the range 0-18 ppm wt/wt, on the SSB oil fouling rates were studied at a bulk temperature of 75 °C and at an initial surface temperature of « 279 - 295 °C. A strong dissolved oxygen dependent regime in the range 0 - 9 ppm wt/wt, was observed. This could be approximated by either an exponential or linear function. Above bulk dissolved oxygen content of 9 ppm wt/wt, the fouling rates are independent of oxygen content. The progression of fouling resistance was almost linear for all the runs under oxygenated conditions. At the highest dissolved oxygen level (18 ppmw), the fouling rate was 2.6 times that under nitrogen sparging. • Induction times for all the oxygenated runs were small or absent. Negative fouling resistances were observed for some runs. Cut-off of the Air or oxygen supply at any time Chapter 6: Conclusions And Recommendations 106 during the oxygenated runs resulted in cessation of fouling. This reflects the role played by oxygen in formation of foulants. • Under inert gas blanketing the initial fouling rate was lower than in the presence of oxygen. The fouling resistance reached an asymptotic state after 140 hours. Fouling seems to be mostly particulate. • Surface temperature was found to have a major impact on fouling rates. This is indicated by the high activation energy of 44 kJ/mol. An increase of roughly 40 °C results in doubling of the initial fouling rate. The three runs on surface temperature effects were done at a bulk temperature of 75 °C and at a constant bulk dissolved oxygen concentration of 4.5 ppm wt/wt. The surface temperatures studied varied from 261 - 297 °C. • The initial fouling rates show a moderate increase of 58% over the range of bulk temperatures 75 - 125 °C. Three runs were performed with 10% air sparging, with surface temperatures in the range 260 - 279 °C. The effects of bulk temperature on final fouling rates were found to be minimal, with a variation of only + 14% of the mean value over the range of bulk temperatures. The current data was consistent with a threshold-fouling model based on film temperature. The range of film temperature involved is 183 - 203 °C, with wall shear stress almost constant. The activation energy of 44.5 kJ/mol for this range of film temperatures is similar to that obtained above for surface temperature, even though the former runs were performed under more severe conditions. • Experiments at film Reynolds numbers 2749 and 4762, suggested that increased bulk velocities result in decreased fouling rates. The experiments were performed at an initial surface temperature of 250 °C and at a constant bulk dissolved oxygen content of 4.5 ppm wt/wt. Additional experiments are required to delineate the precise form of the fouling rate -Chapter 6: Conclusions And Recommendations 107 velocity dependence. The results also suggest that the diffusional limitations with respect to oxygen uptake by the bulk fluid in the PFRU were minimal. • Once the initial 400 minute period was over, the fouling rates were reproducible, with a variation in initial fouling rates of only 0.4% of the mean value in two experiments, and 1.4% of the mean in three others. • High dissolved oxygen content (100% air sparge) in the bulk fluid led to the formation of deposits which tended to be polymeric in nature. The amount of total insolubles formed ranged from 225 to 900 ppm and was strongly dependent on the bulk dissolved oxygen content, whereas the percentage of oxygen in the insolubles is independent of bulk dissolved oxygen concentration. The atomic C/H ratio of insolubles from all the runs is fairly similar having a value of around 1, which signifies that the solids are mostly composed of aromatics and/or polycyclics. The amount of coke-like material formed in the insolubles depends mainly on the length of the fouling run and to a lesser extent on the bulk dissolved oxygen concentration. • The results of the current work, which has correlated fouling behaviour with the actual concentrations of dissolved oxygen, represents a significant step towards the development of a reliable model for autoxidation related fouling. 6.2 Recommendations The present study related fouling behaviour to the actual concentration of dissolved oxygen. A well-defined organic fluid or a model solution may be selected so that the benefit of oxygen measurement in conjunction with peroxide measurement, will be realized in the Chapter 6: Conclusions And Recommendations 108 elucidation the actual kinetics involved. Experiments should be conducted in different fouling rigs to delineate any equipment specific effects. The effects of corrosion products and antifoulants under oxygenated conditions may be studied as an extension of the current work. Offline measurement of dissolved oxygen was employed in the current work. For continuous monitoring of the dissolved oxygen concentration, as is needed for kinetic studies, an online measurement system might be devised. This can be achieved by connecting the GC/MS (with minor modifications to the injection part) directly to the PFRU flow loop. An automatic pressure regulator - controller is needed for maintaining the PFRU supply tank pressure as this is crucial in maintaining a constant sparge ratios of different gases. Two major bottlenecks in the PFRU, the pump flow capacity and the probe heat flux (or surface temperature) limitation should be addressed. The graphical interface on the data logging system has room for further improvement. A safe, non-destructive method has to be devised for the removal of deposit from the probe surface. A more powerful solvent is needed for cleaning the probe. Abbreviations And Nomenclature 109 Abbreviations A M U Atomic Mass Unit GC/MS Gas Chromatography - Mass Spectroscopy HWP Hot Wire Probe HGO Heavy Gas Oil LGO Light Gas Oil PFRU Portable Fouling Research Unit fouling apparatus RVP Reid Vapor Pressure SEM Scanning Electron Microscopy SIMD Simulated Distillation Data SSB Syncrude Sweet Blend Nomenclature A pre-exponential constant m2.K/kJ b time constant l/s C s at Saturation concentration g/m3 Cj offset (integral constant), Equation [2.22] C o r orifice discharge coefficient C p concentration of precursor or particulates mol/m3, g/m3 Cj concentration, species j mol/m3 E, E a global activation energy J/mol, kJ/mol f friction factor h local film heat transfer cofficient kW/m2K Abbreviations And Nomenclature 110 I current amps J t mass flux of reactant, Equation [2.17] kg/m s k, kf rate constant, Equation [2.19] K* lumped constant, Equation [2.20] km Mass transfer coefficient kg/m.s ma deposition flux kg/m s mf mass flux of foulant at surface kg/m s m r removal flux kg/m2s m mass of deposit kg P particle adhesion probability, Equation [2.11] q heat flux kW/m2 Q heat supplied as electrical power kW R universal gas constant J/mol.K R Regression coefficient of variation Rf fouling resistance m2K/kW Rf asymptotic fouling resistance m K/kW Rc Clean thermal resistance m 2K/kW R f ; 0 initial fouling rate m K/kJ Re Reynolds number S sticking probability Sc Schmidt number T temperature °C, K t time s Abbreviations And Nomenclature 111 u U 0 u V Xf x s Subscripts 0 act b, bulk d, dep f lm met or r s w Greek P co AT 2 overall heat transfer coefficient kW/m .K clean overall heat transfer coefficient kW/m .K fluid velocity m/s voltage volts deposit thickness m PFRU thermocouple depth m time zero activation energy bulk liquid deposition foulant, deposition log mean metal orifice removal surface wall general constant particle velocity ni/s temperature difference K Abbreviations And Nomenclature 112 5 film/deposit thickness m y constant, Equation [2.24] X thermal conductivity W/m.K u. viscosity Pa.s v kinematic viscosity m2/s 0 residence time s p density kg/m3 x wall shear stress Pa VJ/D deposit strength factor References 113 References Asomaning, S. & Watkinson, A.P. (1992). "Heat exchanger fouling by olefin-kerosene mixtures", Can. J. Chem. Eng., Vol. 70, 444-451. Asomaning, S. (1990). "The role of olefins in fouling of heat exchangers", M.A.Sc. Thesis, The University of British Columbia. Asomaning, S. (\991)"Heat exchanger fouling by asphaltenes ", Ph.D Thesis, The University of British Columbia. Asomaning, S., Wilson, D.I. & Watkinson, A. P. (1995). "Effects of oxygen on fouling by olefins in hydrocarbon mixtures", Presented at the 'Fouling Mitigation of Industrial Exchangers', Shell Beach, CA, June 18-23, Paper #: D l Battino, R., Timothy, R.R. & Tominaga, T. (1983). "The solubility of oxygen and ozone in liquids", Journal of Phys. Chem. Ref. Data, Vol.12, 163-177. Beal, E.J., Mushrush, G.W. & Cooney, D.G. (1989). "Chemical factors affecting insolubles formation in shale deriveddiesel fuel", Fuel Science and Technology Int'l., Vol. 7, n l , 15.-31. Blaine, S., & Savage, P.E. (1991). "Reactionpathways in lubricant degradation. 1. Analytical characterization of n-hexadecane autoxidation products", Ind. Eng. Chem. Res., Vol. 30, n4, 792-798. Blaine, S., & Savage, P.E. (1991). "Reactionpathways in lubricant degradation. 2. n-hexadecane autoxidation", Ind. Eng. Chem. Res., Vol. 30, n9, 2185-2191. Bohnet, M . (1987). "Fouling of heat transfer surfaces", Chem. Eng. Technology, Vol. 10, 20-25. Bott, T.R. and Walker, R.A. (1971) "Fouling in heat transfer equipment", Chemical Engineering, Nov., 391-394 Braun, R. & Hausler, R.H. (1976). "Contribution to understanding fouling phenomena in the petroleum industry", Paper 76-CSME/CSCHE-23, 16th National Heat Transfer Conference, Aug. 8-11, S. Louis, MO. Butler, R.C. and McCurdy Jr. W.N. (1949). "Fouling rates and cleaning methods in refinery heat exchangers", Trans. ASME, Vol. 71, 843-849. Butterworth, D. & Mascone, C F . (1991). "Heat transfer heads into the 21st century", Chemical Engineering Progress, Vol. 87, (Sept.), 30-37. Crittenden, B. D., Kolaczkowski, S.T. (1988). "Negative fouling resistances: The effect of surface roughness", Chemical Engineering Science, Vol. 43, n4, 829-838. Crittenden, B.D. & Khater, E.M.H. (1987). "Fouling from vapourizing kerosine", Journal of Heat Transfer (Trans. ASME), Vol. 109, 583-589. Crittenden, B.D. and Khater, E.M.H. (1984). "Fouling in a hydrocarbon vaporiser", I.Chem.E Sym. Ser., Vol. 86, 401-414. Crittenden, B.D., Hout, S.A. & Alderman, N.J. (1987). "Model experiments of chemical reaction fouling", Chem. Eng. Res. Des., Vol. 65, 165-170. References 114 Crittenden, B.D., Kolaczkowski, S.T. & Hout, S.A. (1987). "Modelling hydrocarbon fouling", Chem. Eng. Res. Des., Vol. 65, 171-179. Crittenden, B.D., Kolaczkowski, S.T. & Takemoto, T. (1992). "Fouling of crude oil preheat exchangers", Trans. IchemE., Vol. 70, (Nov.) part A, 547-557. Crittenden, B.D. (1997). "Chemical reaction fouling", Proc. Understanding Heat Exchanger Fouling and its Mitigation, Engineering Foundation, Lucca, Italy. Dickakian, G. & Seay, S. (1988). "Asphaltene primary crude exchanger fouling mechanism ", Oil & Gas Journal, (Mar.), Vol. 86, 47-50. Dickakian, G. (1997) "The role of asphaltenes and polars in the thermal fouling of hydrocarbon streams ", Proc. Understanding Heat Exchanger Fouling and its Mitigation, Engineering Foundation, Lucca, Italy. Dugan, C.F., Van Norstrand Jr., W.L. and Haluska, J.L. (1978). "How antifoulants reduce energy consumption of refineries", Chem. Eng. Prog., Vol. 74, 53-57. Eaton, P. & Lux, R. (1984). "Laboratory fouling test apparatus for hydrocarbon feedstocks ", ASME HTD, Vol. 35, 33-42. Ebert, W.A. & Panchal, C.B. ( 1995) "Analysis of Exxon crude oil slip-stream coking data", Presented at the 'Fouling Mitigation of Industrial Exchangers', Shell Beach, CA, June 18-23,1995, Paper #: D3 Epstein, N. (1979). "Fouling in heat exchangers", Fouling of Heat Transfer Equipment, eds. Somerscales, E.F.C & Knusden, J.G., pub. Hemisphere, 701-734. Epstein, N . (1979). "Fouling: Technical aspects", Fouling of heat transfer equipment, eds. Somerscales, E.F.C & Knusden, J.G., pub. Hemisphere, 31-53. Epstein, N . (1983). "Thinking about heat transfer fouling: A 5x5 matrix", Heat Transfer Eng., Vol. 4, 43-56. Epstein, N . (1995). "Towards mitigation of fouling by consideration of fouling mechanisms", Keynote address at the'Fouling Mitigation of Industrial Exchangers', Shell beach, CA, June 18-23. Fernandez-Baujin, J.M. & Solomon, S.M. (1976) "Industrial and laboratory pyrolyses", eds. Albright, L.F. & Crynes, B.L., A.C.S. Symp. Ser., Vol. 32, 345-372. Fetissoff, P.E., (1982). "Comparison of two fouling probes", M.A.Sc. Thesis, The University of British Columbia, Fields, D. E., Freeman, R.F. & Wright, B.E. (1988). "Predicting crude fouling tendency", Energy Progress, Vol. 8, n4,220-225. Frankfeld, J.W. & Taylor, W.F. (1983) "Storage storage of synfuels from oil shale. 1. General features of sediment formation in model fuel systems ", Ind. Eng. Chem. Prod. Res. Dev., Vol. 22, 608-614. Frankenfeld, J.W. & Taylor, W.F. "Storage storage of synfuels from oil shale. 2. Effects of nitrogen compound type and the influence of other nonhydrocarbons on sediment formation in model fuel systems", Ind. Eng. Chem. Prod. Res. Dev., 1983, Vol. 22, 614-623. References 115 Fryer, P.J. & Slater, N.K.H. (1986) "The simulation of heat exchanger control with tube-side chemical reaction fouling", Chem. Eng. Sci., Vol. 41, 2363-2372 Fryer, P.J. (1987) "Modelling heat exchanger fouling", The Chemical Engineer, n441, 20-22. Fryer, P.J., Hobin, S.P. & Mawer, S.P. (1988J "Optimal design of a heat exchanger undergoing reaction fouling", Can. J. Chem. Eng., Vol. 66, 558-562. Goosen, A. & Morgan, D.H. (1994). "Autoxidation ofNonane and Decane: A product study", J. of Chem. Soc. Perkin Trans. 2, 1994, 557-561. Hausler, R.H. & Thalmayer, C.E. (1975/ "Fouling and corrosion in feed effluent exchangers -Discussion of a new test method", Prepr. 06-75, API refining 40 th mid year meeting, Chicago. Hazlett, Robert N . (1991). "Thermal oxidation stability of aviation turbine fuels", ASTM Monograph 1; American Society of Testing and Materials, Philadelphia, 150-151. Heneghan, S.P., Martel, C.R., Williams, T.F. & Ballal, D.R. (1995). "Effects of oxygen and additives on the thermal stability ofjet fuels", Journal of Engineering for Gas Turbines and Power (Trans. ASME).,(Jan.), Vol. 117, 120-124. Hughes, J.M., Beal, E.J. & Mushrush, G.W. (1995). "Nitrogen compound distribution andfuel incompatibility reactions in a tarsand derived middle distillate fuel", Fuel Science and Technology Int'l., Vol.13, n4, 413-429. Hewitt, G.F., Shires, G.L. & Bott, T.R. (1994) "Fouling of heat exchangers", in Process Heat Transfer, Pub. by CRC Press & Begell House, 857-877. Jaime De Andres, Antonio Aguilar & Jorge Domenech. (1988). "Autoxidation kinetics of Actactic polypropylene in bulk", J. of Polymer Science: part A, Polymer Chemistry, Vol. 26, 1323-1334. Jenson, R. K., Korcek, S., Zinbo, M. & Johnson, M.D. (1990). "Initiation in hydrocarbon autoxidation at elevated temperatures ", International J. of Chemical Kinetics, Vol. 22,1095-1107. Jones, E.G., & Balster, W. J. (1995). "Quantitative evaluation ofjet-fuel fouling and the effect of additives", Energy & Fuels, Vol. 9, n5, 906-912. Jones, E.G., & Balster, W.J. (1995). "Surface fouling in aviation fuel: Short- Vs long term isothermal tests", Energy & Fuels, Vol. 9, n4, 610-615. Jones, E.G., Balster, W.J. & Post, M . E. (1995). "Degradation of a jet -A fuel in a single-pass heat exchanger", Journal of Engineering for Gas Turbines and Power (Trans. ASME), Vol. 117, (Jan.),125-131. Kalsi, W. R. & Sarpal, A. S. (1995). "Determination of oxygenates in gasoline by H- NMR spectroscopy", Energy & Fuels, Vol. 9, n4, 574-579. Knudsen, J.G. and Hays, G. (1997) "Use of operating conditions to mitigate fouling of heat exchangers, in Fouling mitigation of industrial heat exchange equipment", Panchal, Bott, Somerscales and Toyama (eds.), Begell House, New York, 41-51. References 116 Knudsen, J.G., Lin, D. and Ebert, W. (1997) "The determination of the threshold fouling curve for a crude oil", Proc. Understanding Heat Exchanger Fouling and its Mitigation, Engineering Foundation, Lucca, Italy. Kotjabasakis, E. & Linhoff, B. "Better system design reduces heat-exchanger fouling costs", Oil & Gas Journal, 1987, Vol. 85, (Sept.), 49-56. Lai, R.C. (1993). "Autoxidation and antioxidation; Fighting fouling chemically", B.A.Sc. Thesis, The University of British Columbia. Lambourn, G.A. and Durrieu, M . (1983) "Fouling in crude oil preheat trains", Heat Exchangers - Theory and Practice, (Eds.) Taborek, Hewitt and Afgan, Hemisphere Publishing Co., New York, 841. Lemke, H. and Stevenson, K. (1997) "Fouling in delayedcoker andvisbreakerfurnaces", Proc. Understanding Heat Exchanger Fouling and its Mitigation, Engineering Foundation, Lucca, Italy. Liang, H. & Tanaka, T. (1988). "Evaluating the Arrhenius parameters for the autoxidation of organic compounds", Ind. Eng. Chem. Res., Vol. 27, nl2, 2232-2237. Lockwood, F.E. & Klaus, E. E. (1981). "Ester oxidation under simulated boundary lubrication conditions ", ASLE Transactions, Vol. 24, n2, 276-284. Luis E. Cadus et al.(1988). "Action of coke as a catalyst: oxyhydrogenation of ethyl benzene to styrene", Ind. Eng. Chem. Res., Vol. 27, 2241-2246. Mamora, D. D. (1995). "New findings in low temperature oxidation of crude oil", SPE - Asia Pacific Oil & Gas Conference 1995, Society of Petroleum Engineers (SPE), Richardson, TX, USA. 577-592, SPE 29324. Marteney, P.J. & Spadaccini, L. J. (1995). "Thermal decomposition of aircraft fuel", Journal of Engineering for Gas Turbines and Power (Trans. ASME), Vol. 108, Oct., 648-653. Mayo, F.R. & Lan, B.L. "Gum and deposit formation from jet turbine anddiesel fuels at 130 °C", Ind. Eng. Chem. Prod. Res. Dev., Vol. 25, 333-348. Morris, R.E. & Hazelett, R.N. (1989). "Methods for quantifying JFTOT heater tube deposits produced from jet fuels", Energy & Fuels, Vol. 3, n2, 262-267. Morris, R.E. & Mushrush, G.W. (1990). "JFTOT model studies: Oxidation of selected model organosulfur compounds in dodecane", Fuel Science and Technology int'l., Vol. 8, n5, 527-544. Morris, R.E. & Mushrush, G.W. (1991). "Fuel instability model studies: The liquid-phase cooxidation of thiols and indene by oxygen ", Energy and Fuels, Vol. 5, n5, 744-748. Muller-Steinhagen, H., Watkinson, A.P., Epstein, N . (1986). "Subcooled boiling and convective heat transfer to heptane flowing inside an annulus and past a coiled wire: Part I- Experimental results & Part Il-Corr elation of data, Journal of heat transfer, Vol. 108,922-933. References 117 Murphy, G. and Campbell, J. (1992). "Fouling in refinery heat exchangers: Causes, effects, measurements and control, in Fouling mechanisms", M.Bohnet et al (eds), 249-261, GRETh Seminar, Grenoble. Mushrush, G.W. & Hazelett, R.N. (1985). "Liquidphase radical reactions of octanol and tert-butyl hydroperoxide", J. Org. Chem., Vol. 50, 2387-2390. Mushrush, G.W., Beal, E.J., & Hardy, D.R. (1993). "Chemical basis of middle distillate fuel instability: Interactive effects of selected nitrogen heterocycles with organic bases in a shale-deriveddieselfuel", Fuel Science & Technology Int'l., Vol. 11, n3&4, 429-443. Mushrush, G.W., Beal, E.J., Hardy, R. & Hazelett, R.N. (1994). "Liquidphase oxidation of organo-sulfur compounds by tert-butyl hydroperoxide and fuel instability reactions ", Fuel, Vol. 73, n9, 1481-1485. Mushrush, G.W., Beal, E.J., Hazelett, R.N. & Hardy, D.R. (1990). "Interactive effects of 2,5,-dimethylpyrolle, 3-methylindole, and tert-butyl hydroperoxide in a shale derived diesel fuel", Energy and Fuels, Vol. 4, n l , 15-19. Mushrush, G.W., Beal, E.J., Hazelett, R.N. & Hardy, D.R. (1991). "Chemical basis of the instability of shale derived middle distillate fuels: A model study of the interactive effects between 2,5-Dimethylpyrolle and 3-Methylindole with Sulfonic and Carboxylic acids", Energy and Fuels, Vol. 5, n5, 749-753. Mushrush, G.W., Beal, E.J., Pellanbarg, E., Hazelett, R.N., Eaton, H.R. & Hardy, D.R. (1994). "A model study of the thermal degradation of cumene hydroperoxide and fuel incompatibility reactions", Energy & Fuels, Vol. 8, n4, 851-855. Mushrush, G.W., Honeychuck, R.V. & Hardy, D.R. (1995). "The reaction of3-methyl indole with P-ethylbenzene sulfonic acid: Fuel incompatibility reactions ", Fuel Science and ' Technology Int'l, Vol. 13, n6, 703-805. Nicolson, A. (1991). "The effect of O2 concentration on methacrylic acid stability", Plant/Operations Progress, Vol. 10, n3, 171-183. "NPRA Q&A—conclusion: hydrotreating operations discussed at refining meeting", Oil & Gas Journal, 1995, Vol. 93, 128-31 June 12. Offenhauer, R.D., Brennan, J.A. & Miller, R.C. (1957). "Sedimentformation in catalytically cracked distillate fuel oils", Ind. Eng. Chem., Vol. 49, n8, 1265-1266. Oufer, L. & Knudsen, J.G. (1987). "Nucleate boiling of various fluids in a thermosiphon reboiler", Heat and Technology, Vol. 5, n3-4, 17-35. Oufer, L. & Knusden, J.G. (1993). "Modelling chemical reaction fouling under sub-cooled boiling conditions", AIChE Symp. Ser., Vol. 89, 308-313. Panchal, C.B. & Watkinson, A.P. (1993). "Chemical reaction fouling model for single-phase heat transfer", AlChe Symp. Ser., Vol. 89, 323-334. References 118 Panchal, C.B. (1995). "Fouling mitigation in the petroleum industry: Where do we go from here ", Keynote address at 'Fouling Mitigation of Industrial Exchangers', Shell Beach, CA, June 18-23. Panchal, C.B., Halpern, Y., Kuru, W.C. and Miller, G. (1997) "Mechanisms of iron sulfide formation in refining processes ", Proc. Understanding Heat Exchanger Fouling and its Mitigation, Engineering Foundation, Lucca, Italy. Petrocelli, J. A. & Lichtenfels, D. H. (1959). "Determination of dissolved gases in petroleum fractions by gas chromatography", Anal. Chem., Vol. 31, 2017 - 2022. Reich L. & Stivala S. S., (1969). "Autoxidation of hydrocarbons andpoly olefins'', Marcel Dekker Inc., New York. Roback, R., Szetela, E.J. and Spadaccini, L.J. (1983). "Deposit formation in hydrocarbon fuels", ASME J. of Eng. for Pow., Vol.105, p59-65. • Rubey, W.A., Striebich, R.C., Tissandier, M.D. (1995). "Gas chromatograpic measurement of trace oxygen and other dissolved gases in thermally stressed jet fuel", Journal of Gas Chrom. Sc., Vol. 33, 433-437 Russell, G.A. (1955) "Oxidation of unsaturated compounds. III. Products of the reaction of indene and oxygen; Stereo chemistry of the addition of a peroxy radical and oxygen to a double bond", The Journal of the American Chemical Society, Vol. 78, Mar., 1035-1040. Russell, G.A. (1955). "Oxidation of unsaturated compounds. IV. Kinetics of reaction of indene with oxygen; Evidence of the identity of active intermediates in thermal and catalyzed oxidations", The journal of the American Chemical Society, Vol. 78, Mar., 1041-1046. Russell, G.A. (1955). "The rates of oxidation of aralkyl hydrocarbons; polar effects in free radical reactions'', The journal of the American Chemical Society, Vol. 78, Mar., 1047-1054. Russell, G.A. (1955) "The competitive oxidation of cumene and tetralin", The Journal of the American Chemical Society, Vol. 77, Sept., 4583-4590. Scarborough, C.E., Charington, A.C., Diener, R. and Golan, L.P. (1979) "Coking of crude oil at high heat flux levels ", Chem. Eng. Prog., Vol. 75, 41-46. Schreier, P.J.R. & Fryer, P.J. (1995). "Heat exchanger fouling: A model study of the scaleup of laboratory data", Chem. Eng. Sci., Vol. 50, n8, 1311-1321. Somerscales, E.F.C. & Kassemi, M. (1987). "Fouling due to corrosion products formed on a heat transfer surface ", Journal of Heat Trans., Vol. 109, 267-271. "Study scheduled on fouling of refinery units", Oil & Gas Journal, 1994, Vol. 92, (May), 47-50. Taylor, W.F. (1974) "Deposit formation from de-oxygenated hydrocarbons-1. General features, Ind. Eng. Chem. Prod. Res. Dev., Vol. 13, 133-138. Van der Wee, P. and Tritsman, P.A. (1966) "Crude unit preheat exchanger fouling", Hydrocarbon Processing, Vol. 45, 145-151 References 119 Vanhove, A. (1997) "Fouling control in refinery process heat exchanger systems by the use of chemical treatment programs ", Proc. Understanding Heat Exchanger Fouling and its Mitigation, Engineering Foundation, Lucca, Italy Watkinson, A.P & Wilson, D.I. (1997). "Chemical reaction fouling: A review", Experimental Thermal and Fluid Science, Vol. 14, 361-374. Watkinson, A.P. & Epstein, N . (1969). "Gas oil fouling in a sensible heat exchanger", Chem. Eng. Prog. Symp. Ser., Vol. 65, 84-90. Watkinson, A.P. (1988). "Critical review of organic fluid fouling", Final report, ANL/CNSV-TM-208, Argonne National Laboratory, II. Watkinson, A.P. (1992). "Chemical reaction fouling of organic fluids", Chem. Eng. Tech., Vol. 15,82-90. Williams, A.L. & Offenhauer, D.R. (1957). "Acidic components of catalytically cracked distillate fuel oil", Ind. & Eng. Chem., Vol. 49, n8, 1259-1264. Wilson, D. I., & A. P. Watkinson, (1995) "Model experiments of autoxidation reaction fouling Part I: Mechanisims", Trans. Ichem (part A), Vol. 73, 59-68. Wilson, D. I., R. Lai, C. & Watkinson, A.P. (1995) "Model experiments of autoxidation reaction fouling Part II: Effect of flow parameters and antioxidants ", Trans. I. Chem (part A), Vol. 73, 69-77. Wilson, D.I. (1994). "Model experiments of autoxidation reaction fouling", P.hD. thesis, The University of British Columbia. Wilson, D.I. and Vassiliadis, V.S. (1997) "Mitigation of refinery fouling by management of cleaning", Proc. Understanding Heat Exchanger Fouling and its Mitigation, Engineering Foundation, Lucca, Italy. Wilson, D.I. & Watkinson, A.P. (1995) "Mitigation of autoxidation reaction fouling", Presented at the 'Fouling Mitigation of Industrial Exchangers', Shell Beach, CA, June 18-23,1995, Paper #:D4 Yap, S., Dranoff, J. & Panchal, C.B. (1995) "Fouling formation of an olefin in the presence of oxygen and thiophenol", Presented at the 'Fouling Mitigation of Industrial Exchangers', Shell Beach, CA, June 18-23,1995, Paper #: D6 Zhang, G., Wilson, D. I. & Watkinson, A. P. (1993). "Fouling of a cyclic Olefin on plain and enhanced surfaces", AIChE Symposium Series, Vol. 89, 314-322. Appendix A. 1 120 Table Al : SUMMARY OF FOULING RUNS Run Annular Velocity, m/s Reynolds No. Re/Re(film) Air/Nitrogen Sparge Ratio, % Average Probe Heat Flux qavg, kW/m2 7~s,avg °c Tb.avg °c Rc m2. K/kW Rf (final) m2.K/kW SSB-2 0.44 2739/2757 100% Initial 439 290 160 0.4453 0.0116 SSB-3 0.44 2268/2739 10%/90% 426 291 76.9 0.5010 0.1558 SSB-4 0.44 2683/2755 100% Initial 429 310 124 0.4363 0.0859 SSB-5 0.44 2268/2739 20%/80% 419 296 77 0.5093 0.1544 SSB-6 0.44 2268/2739 0.5%/99.5% 416 296 78 0.5082 0.0394 SSB-7 0.44 2268/2739 5%/95% 415 297 78 0.5254 6.1311 SSB-8 0.44 2268/2739 5%/95% Run Aborted because of Contamination SSB-9 0.44 2268/2739 5%/95% 418 284 77 0.4914 0.1327 SSB-10 0.44 2268/2749 1%/99% 419 282 75 0.4853 0.0669 SSB-11 044 2268/2737 5%/95% 283 270 75 0.6511 0.1081 SSB-12 0.44 2268/2734 5%/95% 196 261 75 0.8884 0.1060 SSB-13 0.44 2268/2739 6%/100% 418 282 77 0.4771 0.1254 SSB-14 0.44 Probe - Damaged 511 Run - Aborted SSB-15" 0.44 2268/2739 15%/95% 400 279 75 0.4900 0.1706 0.77 0.44 SSB-16 3929/4762 5%/95% 333 250 75 0.4999 0.1819 SSB-17 2268/2749 5%/95% 177 249 75 0.9601 0.2955 j SSB-18' | 0.44 I 2557/2757 10%/90% 340 279 100 0.5266 0.1589 SSB-19" I 0.44 ; 2682/2780 10%/90% 221 278 125 0.6828 0.1761 Different probe (old) used after new probe was damaged Appendix A. 2 121 Calculation of Annular Velocity and Reynolds Number The volume flow rates are calculated as follows, using Equation 3.10 V = CdxA„x 2xgcxAp P(l-P4) Where Cd- orifice discharge coefficient ,0.6102 d2 - pipe diameter, 0.0158 m di - orifice diameter, 0.0008 m Az - manometer differential pressure, inches Hg P - di/ d2, 0.5024 ^-orifice cross-sectional area, T C * di I A, m p - density of the flowing fluid, kg/m3 pm - density of the mercury in the manometer, 13543 kg/m3 Ap = Az * (p - pm) * g gc - dimensional constant 1.0 (kg . m) (N.S2), constant of gravity, 9.81 m/s2 For a manometer reading of 4 inches of mercury, the differential pressure is, Ap = Az*(p-p„)*g = (4*2.54/100) * (13546- 832.6) * 9.81 = 12671.29 Pa V= 0.000175 rri/s The cross-sectional area of the Annulus is given by ACT =-x(d20 -df), m2 = n/4 * (0.0252-0.01072) 4 = 0.000401 m2 where d0 - annulus outer diameter - annulus inner diameter The bulk fluid annular velocity is given as u = = 0.4366 m/s Appendix A. 2 122 The bulk Reynolds number is calculated as follows: Re = uxdeqxp M Where deq - equivalent diameter of the annulus = (d0 -d,) = 0.025 -0.0107 = 0.0143m u. - viscosity of the fluid, 2.25 mPa.s v / 2.25x10-' . . . . . u = V/A = — = 0.436 m/s /Acr 0.401x10-' _ 0.44x0.0143x832.7 Re = : = 2307 2.25 xlO'3 Calculation of Heat transfer and Fouling rates Data collected from the fouling rig were, the three wall temperatures (Twi) of the probe, the entry and exit bulk fluid temperatures, the power supplied to the probe, indicated by voltage (V) and current (I). The data below represents the values for the new probe, which got permanantly damaged while perfoming Run SSB 14. For the subsequent runs an existing older probe was used. Calibration factor for the old probe is given at the end of this section. The data from Run SSB3 is used here for sample calculation. The power supplied to the probe is: Q = VxI =203 * 6.28 = 1279 W and the heat flux: q = °/A = 1279/2.97 E-3 = 430.64 kW/m2 The surface area A is calculated from A = nx Dxl, Where D is the diameter (0.011m) of the heater and 1 is the length (0.1016m) of the heated section, A = 2.97 E-3 m2. The wall temperatures were converted to the surface temperatures using the formula: T =T A A Where sA, was determined by Wilson method (Asomaning, 1997), = 8.333 x70 _ i m 2 k /kW X ^-= 7.692xl0~3 m 2 K/kW, and ^ = 1.667xlO'2 m 2k/kW X X Appendix A.2 123 For probe thermocouple number 1 (from Run SSB3, time = 0 min), T, = Twl -^x^ = 295.9-8.333xl0~3 x 411.9 = 292.3 °C The average surface temperature is given by Ts = (T s]+Ts2 + Ts3 )/3 = (292.3 + 291.3 + 290.0)7 3 = 291.2 °C The bulk fluid temperature is evaluated as the average of the entry and exit bulk fluid temperatures Tb = (Tbl + Tb2)/2 = (73.7 + 77.2)/2 = 75.4 The initial thermal resistance or the reciprocal of the initial heat transfer coefficient is calculated from: Rt,0 = —= Tso ~ Tb0 m2K/kW = (256.4 - 75.4)7430.64 = 0.4203 m2K/kW The thermal resistance or the reciprocal of heat transfer coefficient at any time t (under fouled conditions, in this case at 920 minutes ), is evaluated from: — = T s ~ T " m2K7kW = (319.9 - 80.35)7415.82 = 0.5761 m 2K/kW Uf q The thermal fouling resistance is calculated as the difference between the reciprocals of overall heat transfer coefficients under clean and fouled conditions. Rf =— — m2K/kW = (0.5671 - 0.4203) = 0.1468 m 2K/kW 1 Uf U0 The initial fouling rates were evaluated as the slope (linear regression) of the fouling resistance versus time plot (Equation 3.9), wherever the profile was linear. Figure A2.1 shows the linear regression and the resulting correlation for the fouling resistance versus time profile. The slope of the curve (Figure A2.1) = dRf/dt = 1.664 E-4 m2.K/kW.min = 1.664 E-4/60 m2.K7kJ = 2.77 E-6 m2.K/kJ Appendix A.2 124 For estimation of activation energy of fouling, based on surface temperature an Arrhenius type expression explained in Section 5.2.2 was used. The slope of the plot of ln(dRf/dt) versus 1/TS (Figure 5.14) represents, Slope = -5301.4 = -Ea/R, where R is the universal gas constant (= 8.314 J/mol) =^Ea = 44.061 kJ/mol Calibration factor for the old probe: The wall temperature measured by the thermocouple (only one thermocouple is active) is converted to surface temperature by the following formula: T =T - - x - 2 A A where the calibration factor, s/X = 8.333 E-3 m2.K/kW. Appendix A.3 125 GCMS Flow Rate Calibration Method: Direct measurement of flow rate can be done by injecting a small amount of (less than 1 uL) air into the septum at the head of the column and noticing the retention time for a peak with a mass of 28 AMU. The average linear velocity in the column is then : Linear Velocity(v) = 100 L/t , where "v" is the average linear velocity in cm/sec and " L " is the column length in meters and "t" is the retention time in seconds. The corresponding volumetric flow rate is given by Flowrate = v * 60 *TT*D2/400 where the flow rate is in milliliters per minute and "D" is the column ID in millimeters. Observation: Column Head Pressure = lpsi Average Retention Time = 0.73 minute = 43.8 seconds Length of the column = 12 meters Column ID = 0.2mm Therefore, Average Linear Velocity(v) = 100 * 12/43.8 = 27.4 cm/sec The corresponding volumetric flow rate is = 27.4 * 60 * n* (0.2)2/400 = 0.516milliliters/minute Split Ratio: Split Ratio = (Split Vent Rate/Volumetric Column Flow Rate) + 1 Measured Split vent Rate = 5.7859 milliliters/minute Current Split Ratio = (5.7859/0.516) + 1 = 12.213 Appendix A.3 126 GCMS Calibration for Oxygen using Air as Standard Ambient air was used as the calibration standard. Figures A3.1 - A3.3 show the ion chromatograms for different quantities of oxygen (injected as air). The top half of each figure shows the ion chromatograms for 32 amu (oxygen). The horizontal bracket under the peaks shows the limit of integration. The bottom half shows relative abundance of oxygen and nitrogen. The resulting integration values (for 32 amu) are listed in Table A3.1. A plot of the integration values versus amount of air injected and its linear regression gives a correlation, which is subsequently used to determine the amount of oxygen in test samples. The volume of air injected is converted to the weight of oxygen using the following relationship. Density of air (at 101.325 kPa and 300 K) =1.161 kg/m3 1 uL air contains = 1.161 E-6 g of air = 1.161 ug of air = 1.61 * 20.9/100 ug of oxygen = 243.8 ng of oxygen The oxygen Calibration plot and the resulting correlation is shown Figure A3.4. As calibrations were done before each series of analyses, any shift in baseline of the chromatograms did not affect the accuracy of the results. Table A3.1: Integration Values for Oxygen Chromatograms Amount Air Injected uL MS - Area Response 0.2 574925 0.4 957674 1 2308312 Appendix A.3 127 Figure A3.1: Chromatogram for 0.2 uL Air Injection r \bundance 16000 1 4 0 0 0 -12000-10000 8000-1 6000 4000 2000 I o n 3 2 . 0 0 : A P 1 C - 2 D . D • i i i i I i i—i i [ i i < i | < • ' ' i 1 • < < 1 ' • 1 1 | ' ' 1 • i • > ' • i "~~ t i m e - > 0 . 2 0 0 . 4 0 0 . 6 0 0 . 8 0 1 .00 1 -20 1 . 4 0 1 . 6 0 1 . 8 0 Abundance 50000 45000 40000 3 5 0 0 0 -30000-25000 20000 15000 10000 5000 0 S c a n 166 ( 0 . 8 0 7 m i n ) : A P 1 C - 2 D . D 2fe H /Z - > 18 i i i i I i i i i I i i » i I i i • » I < i 20 22 24 26 32 i i i i I i i i 28 30 32 34 ~rT~r 36 » 1 ' • « ' I 1 « ' " 38 40 Appendix A.3 128 Figure A3.1: Chromatogram for 0.4 u.L Air Injection Sundance 2 5 0 0 0 2 0 0 0 0 1 5 0 0 0 1 0 0 0 0 5 0 0 0 I o n 3 2 . 0 0 : A P 1 C - 4 D . D o J s o 0 - ^ — i — i — i — i — i — i — i — i — i — i — i — j - I I I I I I I I I I • I I I I I I I I I I I I I I I 1 p i r n e - > 0 . 2 0 0 . 4 0 0 . 6 0 0 . 8 0 1 . 0 0 1 . 2 0 1 . 4 0 1 . 6 0 1 . 8 0 Abundance 7 0 0 0 0 6 0 0 0 0 5 0 0 0 0 4 0 0 0 0 3 0 0 0 0 A 2 0 0 0 0 1 0 0 0 0 H S c a n 1 6 5 ( 0 . 8 0 3 m i n ) : A P 1 C - 4 D . D 2 b I 1 1 1 1 I 1 1 1 1 1 1 \lfZ -> 1 8 2 0 2 2 ~ rr r 2 4 < i | i i 2 6 3 2 2 8 3 0 3 2 1 > ' ' I > 3 4 3 6 ' 1 1 ' " 1 I 1 3 8 4 0 Appendix A.3 129 Figure A3.1: Chromatogram for 1.0 U.L Air Injection abundance Ion 32.00: AP3SIME1. D 50000 - 2 45000 -J 40000-: 3 5 0 0 0 • 3 0 o b o - : 2 5 0 0 0 ^ 20000-; 1 5 0 0 0 - | 10000-1 5000 -J i . -(\ i — i — i — | — I — r • • 1 i i 1 i rime -> 0.20 0.30 0.40 0.50 0. 60 0.70 0.80 0.90 1.00 Appendix A.3 130 Figure A3.4: GCMS Calibration for Oxygen using Ambient Air as Standard 3.E+06 n 2.E+06 a> to c ° 2.E+06 < 1.E+06 5.E+05 O.E+00 0 0.2 0.4 0.6 0.8 1 1.2 Amount Air injected Appendix A.4 131 Appendix A.4: Oxygen Solubility of Distillates - GCMS Data Compound Air Saturation MS-AREA* O? PPM wt/wt O, PPM wt/wt O, PPM wt/wt Temperature °C RESPONSE Measured(GCMS) (ASTM-D2779) (ASTM-D3827) HGO 0 25.29 42.44 10 268678 27.01 25.57 43.92 20 257073 25.85 25.81 45.32 30 261465 26.29 26.02 46.63 40 265389 26.68 26.20 47.86 LGO 0 392973 41.30 40.27 44.15 10 392554 41.25 40.72 45.13 20 392719 41.27 41.11 46.04 30 357433 37.56 41.46 46.87 40 365467 38.41 / 41.76 47.64 | Treated Naphtha 0 103.96 10 690564 84.68 105.27 20 I 106.44 30 571053 70.03 107.49 40 661742 81.15 108.44 SSB Oil 25 514269 54 41.74 50 351446 37 42.48 60 339562 36 42.72 70 331589 35 42.92 90 321076 34 43.25 ! 1 *Sample volume = 1 uL Appendix A.5 132 PFRU Experiments - Bulk Dissolved Oxygen Data The dissolved oxygen concentrations of SSB oil at a bulk temperature of 75 °C, under various air/nitrogen sparge ratios were measured using GCMS. The linear Correlation obtained from the Calibrations (using air as the standard, Appendix A.3) was used to convert the integrated MS area response (for ion 32 amu) into the actual amount of oxygen. Figures A5.1 — A5.3 show the ion chromatograms (32 amu) for different air/nitrogen sparge ratios. The horizontal brackets under the peaks represent the limits of area integration. Table A5.1 lists the integration values and the actual ppm of oxygen in the test samples. Table A5.1: Integration Values for Oxygen Chromatograms Air/Nitrogen Sparge Ratio% Sample Volume Injected u.L MS - Area Response for 32 amu Amount of Dissolved Oxygen ppmw 0.5 2 11483 0.45 10 2 216788 9.0 20 2 434560 18 Figure A5.1: Chromatogram (32 amu) for 20% Air Sparge in SSB Oil at 75 °C Abundance 6000-1 5000 4000-1 3000 2000 1000 Ion 32.00: SSB5S1.D 0 J 9 7 0-1^ 1 • « » • 1 * * * » 1 * » • • 1 • * • • 1 ' * • • 1 • * • • 1 > < • • i • tTime -> 0.20 0.40 0.60 0.80 1.00 1.20 1.. 4-0 1 . 6 0 ' I ' ' Appendix A.5 133 Figure A5.2: Chromatogram (32 amu) for 10% Air Sparge in SSB Oil at 75 °C Abundance ~ IoH 32.00: SSB3S7.D Figure A5.3: Chromatogram (32 amu) for 0.5% Air Sparge in SSB Oil at 75 °C tVbundance Ion 32.00: SSB6S3.D 800-600-400-200-I 0 •' i i i j i i i i ; i < i i | i i i i | ' • ' • | • ' ' ' | ' ' ' ' i ' 1 1 1 1 ' ' ' 1 1 ' ' ' time -> 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 l.QO Appendix A.6 134 Table A6.1: (Sample Drum - 3) SSB Oil Viscosity and Density Data Temperature °c Viscosity mPas Density kg/m3 20 5.33 864 30 4.365 860 40 3.575 854 50 2.68 851 60 2.565 844 70 2.405 841 80 2.24 834 90 2.07 830 Appendix A. 7 135 Appendix A.7: Raw Data from Fouling Runs Run SSB3 Time, Pres, Volt Current Power, q. , Ts.avg Tb.avg U, 1/U, Rf, min psi V amps W kw/m °C °c kW/K.m2 m2.K/kW m2.K/kW 0 39 203.62 6.28 1279 430.64 291.21 75.45 1.9960 0.5010 0.0000 10 39 203.29 6.27 1274 428.96 290.29 73.85 1.9819 0.5046 0.0036 20 40 203.19 6.26 1272 428.28 290.43 72.65 1.9666 0.5085 0.0075 30 40 202.92 6.25 1268 426.94 291.55 76.6 1.9862 0.5035 0.0024 40 40 202.79 6.24 1266 426.26 291.19 77.5 1.9948 0.5013 0.0003 50 40 202.56 6.24 1263 425.25 291.77 78.2 1.9912 0.5022 0.0012 60 39 202.33 6.22 1259 423.91 292.31 76.65 1.9656 0.5088 0.0077 70 39 202.14 6.21 1256 422.90 292.79 76.4 1.9543 0.5117 0.0107 80 39 201.99 6.21 1254 422.22 292.57 76.45 1.9537 0.5119 0.0108 90 39 201.88 6.2 1252 421.55 293.41 76.5 1.9435 0.5145 0.0135 100 40 201.67 6.2 1250 420.88 294.61 76.6 1.9305 0.5180 0.0170 l i b 40 201.49 6.19 1246 419.53 295.36 76.6 1.9177 0.5214 0.0204 120 40 201.52 6.19 1247 419.87 297.39 76.6 1.9016 0.5259 0.0248 130 40 201.39 6.18 1245 419.19 298.43 76.6 1.8897 0.5292 0.0282 140 40 201.36 6.18 1244 418.86 299.67 76.7 1.8785 0.5323 0.0313 150 40 201.23 6.17 1242 418.18 301.58 76.75 1.8600 0.5376 0.0366 150 40 201.18 6.17 1241 417.85 302.88 76.75 1.8478 0.5412 0.0402 170 40 201.16 6.16 1240 417.51 304.68 76.7 1.8313 0.5461 0.0450 180 40 • 201.09 6.16 1239 417.17 304.32 76.8 1.8336 0.5454 0.0444 190 40 200.97 6.15 1237 416.50 305.43 76.85 1.8221 0.5488 0.0478 200 40 201.05 6.15 1237 416.50 305.09 76.9 1.8252 0.5479 0.0469 210 40 201.05 6.15 1237 416.50 306.16 77 1.8175 0.5502 0.0492 220 40 200.99 6.15 1236 416.16 306.56 77 1.8128 0.5516 0.0506 230 40 201 6.15 1236 416.16 308.06 77 1.8011 0.5552 0.0542 240 41 200.86 6.14 1233 415.15 308.68 77 1.7920 0.5581 0.0570 250 41 200.87 6.14 1233 415.15 309.41 76.95 1.7859 0.5599 0.0589 260 41 201 6.14 1234 415.49 310.67 76.9 1.7773 0.5626 0.0616 270 41 200.98 6.14 1234 416.49 310.64 76.75 1.7764 0.5629 0.0619 280 41 200.97 6.14 1233 415.15 311.34 76.85 1.7704 0.5648 0.0638 290 41 200.94 6.14 1233 415.15 311.54 76.8 1.7685 0.5654 0.0644 300 41 200.96 6.13 1233 415.15 312.08 76.75 1.7642 0.5668 0.0658 310 42 200.97 6.13 1233 415.15 313.11 76.8 i.7568 0.5692 0.0682 320 42 200.95 6.13 1232 414.81 313.41 76.8 1.7531 0.5704 0.0694 330 42 200.87 6.13 1231 414.48 313.95 76.75 1.7474 0.5723 0.0713 340" 42 200 91 6.13 1232 414.81 315.31 76.8 1.7392 0.5750 0.0740 350 43 200.92 6.13 1231 414.48 315.95 76.85 1.7335 0.5769 0.0759 360 43 200.84 6.13 1230 414.14 316.29 76.8 1.7293 0.5783 0.0773 370 43 200.91 6.13 1231 414.48 317.18 76.85 H 1.7246 0.5798 0.0788 380 43 200.91 6.13 1231 414.48 318.28 76.85 1.7167 0.5825 0.0815 390 43 200.93 6.12 1230 414.14 319.05 76.85 1.7099 0.5848 0.0838 400 44 200.94 6.12 1231 414.48 319.42 76.85 1.7087 0.5852 6.0842 410 44 200.94 6.12 1230 414.14 320.42 76.9 1.7006 0.5880 0.0870 420 44 200.94 6.12 1230 414.14 320.85 76.85 1.6973 0.5892 0.0882 430 44 200.91 6.12 1229 413.80 321.59 76.85 1.6908 0.5914 0.0904 440 44 200.86 6.12 1228 413.47 321.49 76.8 1.6897 0.5918 0.0908 450 45 200.78 6.12 1228 413.47 322.79 76.9 1.6815 0.5947 0.0937 460 45 200.84 6.12 1228 413.47 323.36 77 1.6783 0.5958 0.0948 470 45 200.93 6.12 1229 413.80 324.29 77 1.6734 0.5976 0.0966 480 45 200.83 6.12 1228 413.47 325.06 77 1.6668 0.6000 0.0989 490 45 200.87 6.12 1229 413.80 325.86 77 1.6628 0.6014 0.1004 500 45 200.95 6.12 1229 413.80 326.72 77.1 1.6577 0.6032 0.1022 510 45 200.91 6.12 1229 413.80 327.29 77.1 1.6540 0.6046 0.1036 520 45 200.79 6.11 1227 413.13 328.20 77.15 1.6456 0.6077 0.1067 530 46 200.91 6.12 1229 413.80 328.92 77.25 1.6442 0.6082 0.1072 540 46 200.95 6.12 1229 413.80 329.66 77.4 + 1.6404 0.6096 0.1086 550 46 200.95 6.12 1229 413.80 330.22 77.4 1.6367 0.6110 0.1100 560 46 200.99 6.12 1229 413.80 331.19 77.4 1.6305 0.6133 0.1123 570 46 200.97 6.12 1229 413.80 332.12 77.35 1.6242 0.6157 0.1147 580 46 200.85 6.11 1228 413.47 332.46 77.45 1.6214 0.6168 0.1157 590 46 200.81 6.11 1228 413.47 332.93 77.55 1.6190 0.6176 0.1166 600 46 200.87 6.12 1229 413.80 333.96 I 77.55 + 1.6139 0.6196 0.1186 610 46 200.84 6.12 1228 413.47 334.89 77.55 1.6067 0.6224 0.1214 620 46 200.86 6.12 1228 413.47 335.36 77.55 1.6038 0.6235 0.1225 630 46 200.92 6.12 1230 414.14 336.22 77.5 1.6007 0.6247 0.1237 640 46 200.86 6.12 1229 413.80 336.69 77.45 1.5962 0.6265 0.1255 650 47 200.86 6.12 1229 413.80 337.66 77.55 1.5909 0.6286 0.1276 660 47 200.9 6.12 1230 414.14 338.62 77.6 + 1.5866 0.6303 0.1293 670 47 200.89 6.12 1230 414.14 339.15 77.6 1.5834 0.6316 0.1305 680 47 200.85 6.12 1229 413.80 339.92 77.7 1.5781 0.6337 0.1327 690 47 200.79 6.12 1229 413.80 340.79 77.75 1.5732 0.6357 0.1346 700 47 200.91 6.13 1231 414.48 341.62 77.75 1.5708 0.6366 0.1356 710 47 200.86 6.12 1230 414.14 341.89 77.75 1.5679 0.6378 0.1368 Appendix A. 7 136 720 47 200.86 6.13 1230 414.14 342.69 77.75 1.5632 0.6397 0.1387 730 47 200.86 6.13 1230 414.14 343.12 77.75 1.5606 0.6408 0.1398 740 47 200.91 6.13 1231 414.48 343.78 77.75 1.5580 0.6419 0.1408 750 47 200.91 6.13 1232 414.81 344.45 77.85 1.5560 0.6427 0.1417 760 47 200.92 6.13 1231 414.48 345.12 77.95 1.5514 0.6446 0.1436 770 42 200.86 6.13 1231 414.48 340.12 78.1 1.5819 0.6322 0.1311 780 . 41 200.91 6.13 1231 414.48 342.98 78.1 1.5648 0.6391 0.1381 790 41 200.9 6.13 1231 414.48 343.85 78.95 1.5647 0.6391 0.1381 800 41 200.89 6.13 1231 414.48 344.78 78.45 1.5562 0.6426 0.1416 S10 41 200.88 6.13 1231 414.48 345.55 78.55 1.5524 0.6442 0.1432 820 41 200.87 6.13 1231 414.48 346.18 78.85 1.5504 0.6450 0.1440 830 1 41 200.85 6.13 1231 414.48 346.88 79.05 H 1.5475 0.6462 0.1452 840 41 200.84 6.13 1231 414.48 347.55 79.2 1.5445 0.6474 0.1464 850 41 200.83 6.13 1231 414.48 348.52 79.45 1.5404 0.6492 0.1482 860 41 [ 200.88 6.14 1232 414.81 349.25 ' 79.45 1.5375 0.6504 0.1494 870 41 200.9 6.14 1233 415.15 350.01 79.8 1.5364 0.6509 0.1499 880 41 200.92 6.14 1233 415.15 350.41 80.35 1.5373 0.6505 0.1495 890 41 200.92 6.14 1234 415.49 350.77 80.25 H 1.5359 0.6511 0.1501 900 41 200.95 6.14 1234 415.49 351.27 80.25 1.5330 0.6523 0.1513 910 41 200.93 6.14 1234 415.49 352.37 80.2 1.5266 0.6551 0.1541 920 41 200.95 6.14 1235 415.82 353.47 80.35 1.5225 0.6568 0.1558 Run SSB4 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg | U,kW/K.m2 1/U, I m2.K/kW Rf, m2.K/kW 0 41 204.78 6.3 1289 434.01 310.20 120.85 I 2.2920 i 0.4363 0.0000 10 41 204.53 6.28 1284 432.32 311.69 123.75 j 2.3003 j 0.4347 -0.0016 20 41 204.21 6.26 1278 430.30 312.78 126.3 + 2.3075 0.4334 -0.0029 30 41 205.75 6.31 1297 436.70 313.67 125.25 2.3176 0.4315 -0.0048 40 40 205.64 6.3 1295 436.03 312.75 123.45 2.3034 0.4341 -0.0021 50 40 205.31 6.28 1290 434.34 311.00 119.4 2.2669 0.4411 0.0048 60 40 205.08 6.27 1287 433.33 310.54 117.15 2.2407 0.4463 0.0100 70 40 204.91 6.27 1284 432.32 311.79 119.65 2.2501 0.4444 0.0081 80 40 204.71 6.26 1281 431.31 313.23 121.6 2.2507 0.4443 0.0080 90 40 204.59 6.25 1279 430.64 313.94 123.1 2.2565 0.4432 0.0069 100 40 204.56 6.25 1278 430.30 314.08 1245 2.2662 0.4413 0.0050 110 40 204.32 6.24 1275 429.29 312.55 124.1 2.2780 0.4390 0.0027 120 40 204.3 6.24 1275 429.29 311.99 124.15 2.2854 0.4376 0.0013 130 40 204.06 6.23 1272 428.28 310.57 123.9 2.2944 0.4358 -0.0004 140 ' 40 204.08 6.23 1272 428.28 308.23 123.15 2.3140 0.4322 -0.0041 150 40 204.06 6.23 1271 427.95 307.24 123.05 2.3234 0.4304 -0.0059 160 40 204.98 6.26 1283 431.99 306.93 123.2 2.3513 f 0.4253 -0.0110 170 40 204.92 6.26 1282 431.65 306.70 123.65 2.3582 0.4241 -0.0122 180 40 204.9 6.25 1281 431.31 305.83 123.65 2.3675 0.4224 -0.0139 190 40 204.81 6.25 1280 430.98 305.50 123.85 f 2.3725 0.4215 -0.0148 200 40 204.77 6.25 1279 430.64 304.87 124.1 2.3822 0.4198 -0.0165 210 40 204.75 6.25 1279 430.64 304.61 124.25 2.3877 0.4188 -0.0175 220 40 204.75 6.25 1279 430.64 304.44 124.45 2.3926 *" 0.4180 -0.0183 230 40 204.78 6.25 1279 430.64 304.41 124.7 2.3963 0.4173 -0.0190 240 40 204.65 6.24 1277 429.97 304.18 124.8 2.3969 0.4172 -0.0191 250 40 204.55 6.24 1276 429.63 304.55 125 H V 2.3928 0.4179 -0.0184 260 40 204.61 6.24 1276 429.63 304.48 125.1 2.3950 0.4175 -0.0188 204.57 6.24 1276 429.63 304.38 125.3 2.3990 0.4168 -0.0195 *ou 4U ' 204.56 6.24 1275 429.29 304.69 h 125.5 2.3958 H 0.4174 -0.0189 290 39 204.75 6.24 1277 429.97 304.65 125.65 2.4021 0.4163 -0.0200 300 310 H 39 6204.57 6.23 61275 63429.29 304.78 125.75 2.3997 0.4167 -0.0196 320 39 204.62 6.24 1276 429.63 305.12 125.9 126.25 2.3962 2.4019 0.4173 0.4163 -0.0190 -0.0200 330 39 204.69 ' 6.24 1276 429.63 305.62 126.35 2.3966 0.4173 -0.0190 340 39 204.69 6.24 1276 429.63 306.25 126.5 2.3901 •* 0.4184 -0.0179 5360 39 57204.7 36.23 1275 1276 29429.63 306.59 126.7 2.3864 0.4190 -0.0173 370 380 39 39 204.53 204.4 6.23 6.22 1273 1272 428.62 426.28 307.73 308.23 126.9 127.2 127.35 2.3613 2.3742 2.3677 0.4199 0.4212 0.4223 -0.0164 -0.0151 -0.0139 390 400 410 39 39 39 204.48 204.37 204.56 6.22 6.22 6.23 1272 1271 1274 428.28 427.95 428.96 309.00 309.27 310.09 127.6 127.7 127.9 2.3610 2.3569 2.3544 0.4235 0.4243 0.4247 -0.0127 -0.0120 -0.0116 420 430 440 39 39 39 204.31 204.38 204.45 6.22 6.22 6.22 1271 1271 1272 427.95 427.95 428.28 310.70 311.37 128.05 128.15 2.3429 2.3357 0.4268 0.4281 -0.0095 -0.0082 450 39 204.45 6.22 1272 428.28 312.87 126.2 128.3 2.3281 2.3205 + 0.4295 0.4309 -0.0067 -0.0053 460 470 39 39 204.38 204.38 6.22 6.22 1271 1271 427.95 313.40 128.35 2.3126 0.4324 -0.0039 480 + 39 204.37 6.22 1270 427.61 314.64 128.5 128.7 + 2.3049 2.2997 0.4339 0.4348 -0.0024 -0.0015 490 500 39 39 204.24 204.35 6.21 6.21 1269 1270 427.27 427 61 315.58 128.75 2.2870 0.4373 0.0010 h 510 j 39 204.31 6.21 1270 427.61 317.04 128.8 128.9 2.2809 2.2728 + 0.4384 0.4400 0.0021 0.0037 i jy 204.4 6.22 1270 427.61 317.41 129 2.2696 0.4406 0.0043 ""I Appendix A. 7 137 530 . 39 204.38 6.22 1270 427.61 318.24 129.05 2.2602 0.4424 0.0061 540 39 204.38 6.22 1270 427.61 319.31 129.15 2.2487 0.4447 0.0084 550 39 204.38 6.21 1270 427.61 319.87 129.2 2.2426 + 0.4459 0.0096 560 39 204.33 • 6.21 1270 427.61 320.34 129.2 2.2372 0.4470 0.0107 570 39 204.26 6.21 1269 427.27 321.18 129.2 I 2.2256 0.4493 0.0130 580 39 204.42 6.22 1271 427.95 321.87 129.3 2.2223 0.4500 0.0137 590 39 204.39 6.22 1270 427.61 322.54 129.3 2.2128 0.4519 0.0156 600 39 204.43 6.22 1271 427.95 323.34 129.4 2.2066 0.4532 0.0169 610 39 204.62 6.22 1273 42B.62 324.06 129.5 2.2030 + 0.4539 0.0176 620 39 204.39 6.22 1270 427.61 324.74 129.5 2.1902 0.4566 0.0203 630 39 204.34 6.21 1270 427.61 325.34 129.55 2.1840 0.4579 0.0216 640 39 204.32 6.22 1270 427.61 325.74 129.6 + 2.1801 0.4587 0.0224 650 39 204.36 6.21 1270 427.61 326.47 129.75 2.1737 0.4601 0.0238 660 39 204.35 6.22 1270 427.61 326.97 129.75 2.1682 0.4612 0.0249 670 39 204.53 6.22 1272 428.28 327.80 129.8 2.1631 0.4623 0.0260 680 39 204.36 6.22 1271 427.95 328.44 129.8 2.1544 0.4642 0.0279 690 39 204.47 6.22 1272 428.28 329.23 129.8 2.1475 0.4657 0.0294 700 39 204.37 6.22 1270 427.61 329.67 129.9 ¥ 2.1405 0.4672 0.0309 710 39 204.39 6.22 1271 427.95 330.37 129.95 2.1353 0.4683 0.0320 720 39 204.37 6.22 1270 427.61 330.97 130 2.1277 0.4700 0.0337 730 39 204.35 6.22 1271 427.95 331.70 130 2.1217 f 0.4713 0.0350 740 39 204.46 6.22 1272 428.28 332.17 130.1 2.1195 0.4718 0.0355 750 39 204.29 6.22 1270 427.61 332.91 130.05 2.1079 0.4744 0.0381 760 39 204.25 6.22 1269 427.27 333.41 130.2 2.1026 0.4756 0.0393 770 39 204.37 6.22 1271 427.95 334.44 130.2 2.0954 0.4772 0.0410 780 39 204.29 6.22 1270 427.61 334.97 130.3 2.0892 0.4786 0.0424 790 39 204.31 6.22 1271 427.95 335.54 130.4 2.0862 0.4794 0.0431 800 39 204.31 6.22 1271 427.95 336.17 130.45 2.0802 0.4807 0.0444 810. 39 204.38 6.22 1272 428.28 336.90 130.5 2.0750 0.4819 0.0456 820 39 204.37 6.22 1272 428.28 337.50 130.6 2.0700 0.4831 0.0468 830 39 204.26 6.22 1270 427.61 338.27 130.8 2.0610 0.4852 0.0489 840 39 204.2 6.22 1270 427.61 338.61 130.8 2.0577 H 0.4860 6.0497 850 39 204.29 6.22 1271 427.95 339.60 130.95 2.0510 0.4876 0.0513 860 39 204.21 6.22 1270 427.61 340.11 131.05 , 2.0454 0.4889 0.0526 870 39 204.12 6.22 1270 427.61 340.74 131.2 2.0407 0.4900 0.0537 880 39 204.31 6.23 1272 428.28 341.60 131.2 2.0356 0.4913 0.0550 890 39 204.28 6.23 1272 428.28 342.37 131.3 2.0291 0.4928 0.0565 900 39 204.17 6.23 1271 427.95 342.90 131.4 2.0234 H 0.4942 0.0579 910 39 204.19 6.23 1272 428.28 343.80 131.4 2.0164 0.4959 0.0596 920 39 203.99 6.22 1269 427.27 344.31 131.5 2.0078 0.4981 0.0618 930 39 204.19 6.23 1272 428.28 345.17 131,55 •* 2.0049 0.4986 0.0625 940 39 204.31 6.23 1274 428.96 346.29 131.6 1.9980 0.5005 0.0642 950 39 204.24 6.23 1273 428.62 347.03 131.6 1.9896 0.5026 0.0663 960 39 204.25 6.24 1274 428.96 348.03 1317 1.9829 "* 0.5043 0.0680 970 39 204.32 6.24 1274 428.96 347.16 126.6 1.9449 0.5142 0.0779 980 39 204.33 6.24 1275 429.29 347.05 120.5 1.8949 0.5277 0.0914 990 40 204.2 6.24 1273 428.62 347.90 117.4 + 1.8596 0.5378 0.1015 1000 42 204.52 6.25 1278 430.30 349.04 115.9 1.8457 0.5418 0.1055 43 204.22 6.24 1274 428.96 349.19 115.2 . 1.8332 0.5455 0.1092 1020 43 204.15 6.24 1273 428.62 349.66 115.6 1.8312 + 0.5461 0.1098 1030 42 204.06 6.24 1273 428.62 350.23 118.25 1.8477 0.5412 0.1049 1040 42 204.18 6.24 1274 428.96 351.43 120.15 1.8547 0.5392 0.1029 1050 42 203.99 6.24 1272 428.28 351.77 121.25 t i.8679 0.5382 0.1019 61070 41 422204.12 6.24 51274 99428.96 352.62 122.15 1.8627 0.5369 0.1006 1080 41 203.97 6.24 1272 428.28 354.27 122.8 123.15 1.8608 1.8531 0.5374 0.5396 0.1011 0.1033 1090 i 42 204.13 6.24 1275 429.29 355.35 | 123.45 1.8512 0.5402 0.1039 Run SSB5 Time,min 0 10 20 30 40 Pres, psj 40 42 40 42 39 Volt 203.57 203.22 203.04 202.74 202.54 Curent 6.25 6.23 6.22 6.21 6.2 Power.W 1271 1267 1264 1259 1256 q, kw/m2 427.95 426.60 425.59 423.91 422.90 Ts.avg 296.50 296.58 299.13 295.58 294.22 Tb.avg 78.55 78.1 78.4 78.45 77.95 U,kW/K.m2 1.9635 1.9525 1.9281 1.9523 1.9554 1/U, m2.K.kW 0.5093 0.5122 0.5186 0.5122 0.5114 Rf, mZK.kW 0.0000 0.0029 0.0093 0.0029 0.0021 50 60 70 80 90 100 110 40 40 41 41 41 41 42 202.31 202.11 202.01 201.9 201.72 201.73 201.67 6.19 6.19 6.18 6.18 6.17 6.17 6.17 1253 J 1250 1249 1247 1244 1244 1243 421.89 420.88 420.54 419.87 418.86 1 418.86 418.52 292.20 292.11 H 290.95 291.72 291.87 291.24 291.91 77.55 77.3 76.85 76.55 76.35 76.35 76.25 1.9654 1.9593 1.9642 1.9513 1.9435 1.9492 1.9407 0.5088 0.5104 0.5091 0.5125 0.5145 0.5130 0.5153 -0.0005 0.0011 -0.0002 0.0032 0.0052 0.0037 0.0060 120 130 140 150 42 42 42 43 201.61 201.5 201.46 201.36 6.16 6.16 6.16 6.15 1242 1241 1240 1239 418.18 417.85 417.51 417.17 •* 292.74 4 293.28 293.62 293.89 76.2 76.2 76.2 76.05 1.9312 1.9248 1.9203 1.9151 0.5178 0.5195 0.5207 0.5222 0.0085 0.0102 0.0114 0.0129 Appendix A. 7 138 160 43 201.35 6.15 1238 416.84 294.76 76.15 1.9068 0.5244 0.0151 170 39 201.29 6.15 1238 416.84 291.56 76.2 1.9356 0.5166 0.0073 130 43 202.31 6.18 1250 420.88 296.68 76.8 1.9141 0.5224 0.0131 190 41 202.2 6.18 1249 420.54 295.82 77.25 1.9241 0.5197 0.0104 200 41 203.88 6.23 1270 427.61 299.01 77.1 1.9270 0.5189 0.0096 210 42 203.S2 6.23 1269 427.27 300.18 77.25 1.9167 0.5217 0.0124 220 39 203.64 6.22 1267 426.60 299.45 77.35 1.9207 0.5206 0.0113 230 40 203.56 6.22 1266 426.26 300.55 77.1 1.9076 0.5242 0.0149 240 41 203.38 6.21 1263 425.25 301.77 76.95 1.8916 0.5287 0.0194 250 42 203.21 6.2 1261 424.58 302.84 76.95 1.8796 0.5320 0.0227 260. 43 202.25 6.17 1248 420.20 302.45 76.75 1.8617 0.5371 0.0278 270 43 202.32 6.17 1249 420.54 303.15 76.65 1.8567 0.5386 0.0293 280 • 44 202.29 6.17 1248 420.20 303.89 76.55 1.8484 0.5410 0.0317 290 45 202.23 6.17 1247 419.87 304.89 76.65 1.8396 0.5436 0.0343 300 45 202.12 6.17 1246 419.53 305.33 76.65 1.8346 0.5451 0.0358 310 45 201.92 6.16 1243 418.52 306.57 76.65 1.8203 0.5494 0.0401 320 46 201.84 6.15 1242 418.18 308.01 76.65 1.8075 0.5533 0.0440 330 46 201.77 6.15 1240 417.51 308.55 76.65 1.8004 0.5554 0.0461 340 47 201.75 6.15 1240 417.51 309.25 76.75 1.7957 0.5569 0.0476 350 47 201.79 6.15 1240 417.51 310.05 76.75 1.7896 0.5588 0.0495 360 47 201.7 6.14 1239 417.17 310.75 76.8 1.7831 0.5608 0.0515 370 47 201.56 6.14 1237 416.50 310.89 76.85 1.7796 0.5619 0.0526 380 48 201.67 6.14 1239 417.17 311.82 76.95 1.7762 0.5630 0.0537 390 48 201.67 6.14 1238 416.84 312.62 77.05 1.7694 0.5651 0.0558 400 48 201.58 6.14 1237 416.50 313.36 77.05 1.7625 0.5674 0.0581 410 48 201.74 6.14 1239 417.17 314.19 77.15 1.7599 0.5682 0.0589 420 48 201.7 6.14 1238 416.84 314.52 77.15 1.7560 0.5695 0.0602 430 48 201.71 6.14 1238 416.84 315.19 77.15 1.7511 0.5711 0.0618 440 48 201.64 6.14 1238 416.84 315.86 77.2 1.7466 0.5725 0.0632 450 48 201.64 6.14 1238 416.84 316.36 77.2 1.7429 0.5737 0.0644 460 48 201.55 6.14 1237 416.50 316.89 77.2 1.7376 0.5755 0.0662 470 48 201.65 6.14 1238 416.84 31*7.39 77.2 1.7354 0.5762 0.0669 480 48 201.55 6.14 1237 416.50 318.29 77.2 1.7275 0.5789 0.0696 490 48 201.57 6.14 1237 416.50 318.96 77.25 1.7231 0.5803 0.0710 500 48 ' 201.57 6.14 1237 416.50 319.83 77.2 1.7166 0.5825 0.0732 510 48 201.6 6.14 1237 416.50 320.53 77.2 1.7117 0.5842 0.0749 520 48 201.56 6.14 1237 416.50 320.83 77.2 1.7096 0.5849 0.0756 530 48 201.52 6.13 1236 416.16 32*173 77.3 1.7026 0.5873 0.0780 540 48 201.51 6.13 1236 416.16 322.23 77.3 1.6991 0.5885 0.0792 550 48 201.61 6.14 1237 416.50 323.23 77.3 1.6936 0.5905 0.0812 560 48 201.56 6.14 1237 416.50 323.99 77.3 1.6883 0.5923 0.0830 570 48 201.56 6.14 1237 416.50 325.13 77.3 1.6806 0.5950 0.0857 580 46 201.49 6.14 1236 416.16 325.96 77.3 1.6736 0.5975 0.0882 590 48 201.49 6.14 1236 4*16.16 H """.46 77.3 1.6702 0.5987 0.0894 600 48 201.45 6.13 1236 416.16 327.26 77.3 1.6649 0.6006 0.0913 610 48 201.46 6.14 1236 " 416.16 328.30 77.4 1.6587 0.6029 0.0936 620 48 201.48 6.14 1236 416.16 329.26* 77.45 1.6527 0.6051 0.0958 630 48 201.5 6.14 1237 416.50 329.89 77.7 1.6515 0.6055 0.0962 640 48 201.45 6.14 1236 416.16 330.53 77.95 1.6476 0.6069 0.0976 650 49 201.42 6.14 1236 416.16 H 331.53 78 1.6415 0.6092 0.0999 660 49 201.38 6.14 1236 416.16 332.40 78.1 1.6365 0.6111 0.1018 670 49 201.42 6.14 1237 416.50 332.83 78.15 1.6354 0.6115 0.1022 680 49 201.4 6.14 1237 416.50 333.86 H 78.2 1.6291 0.6138 0.1045 690 49 201.35 6.14 1236 416.16 334.60 78.25 1.6234 0.6160 0.1067 700 49 201.25 6.14 1235 415.82 335.60 78.2 1.6155 0.6190 0.1097 710 49 202.1 6.17 1246 419.53 337.59 78.2 1.6173 0.6183 0.1090 2730 49 .4202.01 6.17 71246 419.87 338.62 78.3 1.6129 0.6200 0.1107 740 49 201.93 6.17 1245 419.19 j 339.80 i 78.4 78.45 1.6085 1.6040 0.6217 0.6235 0.1124 0.1142 750 49 201.85 6.16 1244 418.86 ! 340.47 78.45 1.5986 0.6256 0.1163 760 49 202.33 6.18 1250 420.88 i 342.11 78.45 1.5963 0.6265 0.1172 770 49 202.09 6.17 1248 420.20 i 342.22 78.45 1.5931 0.6277 0.1184 780 49 202.05 6.17 1247 419.87 342.92 78.5 1.5878 0.6298 0.1205 790 49 202.06 6.18 1248 420.20 343.82 + 78.45 1.5835 0.6315 0.1222 80810 49 19201.87 6.17 71246 419.87 344.79 78.45 1.5764 0.6343 0.1250 820 830 840 850 . 49 49 49 49 201.93 201.45 201.24 201.31 6.18 6.16 6.15 6.16 1247 1241 1238 1239 419.87 + 417.85 416.84 345.16 345.96 345.98 346.39 78.45 78.45 78.3 78.2 1.5730 1.5695 1.5610 1.5542 0.6357 0.6371 0.6406 0.6434 0.1264 0.1278 0.1313 0.1341 860 870 880 890 900 910 920 49 49 49 49 49 49 49 201.65 201.66 201.9 201.98 201.86 201.94 201.83 6.17 6.17 6.18 6.19 6.18 6.19 6.19 1244 1244 1248 1249 1248 1250 1249 418.86 418.86 420.20 420.54 420.20 420.88 347.19 348.64 349.70 350.49 351.28 351.82 352.98 + 78.2 78.3 78.35 78.45 78.45 78.55 78.55 1.5509 1.5494 1.5436 1.5446 1.5414 1.5377 1.5336 0.6448 0.6454 0.6478 0.6474 0.6488 0.6503 0.6520 0.1355 0.1361 0.1385 0.1381 0.1395 0.1410 0.1427 930 940 950 960 970 980 990 49 49 49 49 49 49 49 201.88 201.6 201.41 201.82 202.07 201.96 201.94 6.19 6.18 6.17 6.19 6.2 6.19 6.19 1249 1245 1243 1248 1252 1251 1251 420.54 419.19 418.52 420.20 421.55 421.21 421.21 354.45 354.63 355.24 356.19 357.17 + 358.04 358.28 78.55 78.5 78.5 78.45 78.45 78.55 78.6 78.7 1.5307 1.5240 1.5181 1.5120 1.5129 1.5130 1.5073 1.5066 0.6533 0.6562 0.6587 0.6614 0.6610 0.6609 0.6634 0.6637 [ 0.1440 0.1469 0.1494 0.1521 0.1517 0.1516 0.1541 0.1544 I Appendix A. 7 139 Run SSB6 i Time,min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW i- 5 39 203.66 6.27 1278 430.30 296.78 78.1 1.9678 0.5082 0.0000 : 10 39 203.3 6.26 1272 428.28 296.83 78.2 1.9589 0.5105 0.0023 20 39 203.03 6.25 1268 426.94 297.18 78.1 1.9488 0.5131 0.0050 30 39 202.88 6.24 1266 426.26 298.09 78 1.9368 0.5163 0.0081 40 39 202.65 6.23 1263 425.25 298.23 77.8 1.9292 0.5184 0.0102 50 39 202.43 6.22 1259 423.91 298.68 77.4 1.9157 0.5220 0.0138 60 39 202.12 6.21 1255 422.56 298.13 77 1.9109 0.5233 0.0151 70 39 201.97 6.2 1253 421.89 296.30 76.75 1.9216 0.5204 0.0122 80 39 201.79 6.2 1250 420.88 296.71 76.5 1.9112 0.5232 0.0150 90 39 201.62 6.19 1248 420.20 297.05 76.45 1.9048 0.5250 0.0168 100 39 201.53 6.18 1246 419.53 297.16 76.4 1.9004 0.5262 0.0180 110 38 201.5 6.18 1245 419.19 296.96 76.35 1.9001 0.5263 0.0181 120 41 201.41 6.18 1244 418.86 297.44 76.55 1.8963 0.5274 0.0192 130 41 201.33 6.17 1243 418.52 297.04 76.75 1.8999 0.5264 0.0182 140 41 201.24 6.17 1242 418.18 296.48 76.85 1.9041 0.5252 0.0170 150 40 201.15 6.17 1240 417.51 294.98 76.65 1.9123 0.5229 0.0147 160 40 201.06 6.16 1239 417.17 294.69 76.55 1.9124 0.5229 0.0147 170 40 201.22 6.17 1241 417.85 293.41 76.45 1.9259 0.5192 0.0110 180 40 201.19 6.17 1240 417.51 292.32 76.4 1.9337 0.5172 0.0090 190 40 201.16 6.16 1240 417.51 292.48 76.35 1.9317 0.5177 0.0095 200 40 201.11 6.16 1239 417.17 292.29 76.45 1.9328 0.5174 0.0092 210 40 201.03 6.16 1238 416.84 290.92 76.55 1.9444 0.5143 0.0061 40 200.95 6.16 1237 416.50 289.26 76.55 1.9580 0.5107 0.0025 230 40 200.93 6.15 1237 416.50 288.46 76.55 1.9654 0.5088 0.0006 240 40 200.94 6.15 1237 416.50 288.06 76.6 1.9696 0.5077 -0.0005 250 40 200.89 6.15 1236 416.16 287.86 76.6 1.9699 0.5077 -0.0005 260 40 200.86 6.15 1236 416.16 287.13 76.7 1.9777 0.5056 -0.0025 270 40 200.83 6.15 1236 416.16 286.90 76.75 i.9803 0.5050 -0.0032 280 40 200.69 6.15 1233 415.15 286.48 76.75 . 1.9795 0.5052 -0.0030 290 40 200.75 6.15 1234 415.49 286.14 76.85 1.9852 0.5037 -0.0045 300 40 200.69 6.14 1233 415.15 285.64 76.75 1.9874 0.5032 -0.0050 310 40 200.69 6.15 1233 415.15 285.91 76.85 1.9858 0.5036 -0.0046 320 40 200.79 6.15 1234 415.49 285.47 76.9 1.9921 0.5020 -0.0062 330 ' 40 200.79 6.15 1234 415.49 285.41 76.9 1.9927 0.5016 -0.0064 340 40 200.69 6.14 1233 415.15 284.88 76.95 1.9966 0.5008 -0.0074 350 40 200.69 6.14 1232 414.81 284.75 77 1.9967 0.5008 -0.0074 360 40 200.7 6.14 1232 414.81 284.65 77.05 1.9982 1 0.5005 -0.0077 370 40 200.67 6.14 1232 414.81 284.51 77.05 1.9995 0.5001 -0.0081 380 40 200.74 6.14 1233 415.15 284.28 77.15 2.0043 0.4989 -0.0093 390 40 200.69 6.14 1232 414.81 284.28 77.15 H h 2.0027 0.4993 -0.0089 40410 40 .7 200.7 6.14 1232 414.81 283.58 77.15 2.0095 0.4976 -0.0106 420 40 200.71 6.14 1232 414.81 283.65 77.15 77.25 2.0066 2.0098 0.4984 0.4976 -0.0098 -0.0106 430 440 40 40 200.69 200.82 6.14 6.14 1232 1233 414.81 283.71 77.25 2.0092 0.4977 -0.0105 450 40 200.89 6.15 1234 415.49 283.81 283.71 77.25 77.25 2.0098 2.0125 0.4976 0.4969 -0.0106 -0.0113 460 470 40 40 200.78 200.86 6.14 6.14 1233 1234 415.15 283.78 77.25 2.0102 0.4975 -0.0107 480 490 40 40 200.82 200.83 6.14 6.14 1233 1233 415.15 415.15 283.94 283.84 77.35 77.4 77.45 2.0122 2.0100 2.0115 0.4970 0.4975 0.4971 -0.0112 -0.0107 -0.0110 500 510 520 40 40 40 200.86 .74 200.81 6.14 6.14 6.14 1234 . 1232 1233 415.49 414.81 283.77 283.98 77.45+ 77.45 2.0138 2.0085 0.4966 0.4979 -0.0116 -0.0103 530 40 200.74 6.14 1232 414.81 283.95 77.45 77.45 2.0111 2.0088 0.4972 0.4978 -0.0110 -0.0104 540 550 560 + 40 40 40 200.82 200.7 200.74 6.14 6.14 6.14 1233 1231 1232 415.15 414.48 284.01 284.08 77.5 77.45 2.0103 2.0059 0.4974 0.4985 -0.0108 -0.0097 570 580 590 600 610 620 T 630 ' 640 650 660 670 680 + 690 700 710 720 730 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 200.78 200.68 200.78 200.72 200.72 200.69 200.67 200.68 200.69 200.71 200.8 200.74 200.75 200.71 200.8 200.76 200.75 6.14 6.13 6.14 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 1232 1231 1232 1231 1231 1231 1230 1230 1230 1231 1232 1231 1231 1230 1231 1231 1230 414.81 414.48 414.81 414.48 414.48 414.48 414.14 414.14 414.14 414.48 414.81 414.48 414.48 414.14 414.48 414.48 414.14 284.55 284.62 285.01 285.32 285.62 286.05 286.09 286.39 286.49 286.98 287.51 287.72 287.82 288.02 288.62 288.82 289.12 77.55 77.55 77.55 77.55 77.55 77.55 77.7 + 77.7 77.7 77.7 77.7 77.75 77.75 + 77.75 77.8 77.75 77.8 77.8 j 2.0059 2.0040 2.0017 1.9995 1.9949 1.9920 1.9893 1.9874 1.9845 1.9836 + 1.9805 1.9775 1.9740 1.9731 1.9700 1.9656 + 1.9642 1.9596 0.4985 0.4990 0.4996 0.5001 0.5013 0.5020 0.5027 0.5032 0.5039 0.5041 0.5049 0.5057 0.5066 0.5068 0.5076 0.5088 0.5091 0.5103 [ -0.0097 -0.0092 -0.0086 -0.0081 -0.0069 -0.0062 -0.0055 -0.0050 -0.0043 -0.0041 -0.0033 -0.0025 -0.0016 -0.0014 -0.0006 0.0006 0.0009 0.0021 Appendix A. 7 140 740 40 200.73 6.13 1230 414.14 289.55 77.8 1.9558 i 0.5113 0.0031 750 40 200.76 6.13 1230 414.14 289.85 77.8 1.9530 1 0.5120 0.0038 760 40 200.78 6.13 1231 414.48 290.22 77.8 1.9513 I 0.5125 0.0043 770 40 200.77 6.13 1230 414.14 290.62 77.S5 1.9464 ! 0.5138 0.0056 780 40 200.76 6.13 1230 414.14 290.79 77.9 1.9454 i 0.5140 0.0058 790 40 200.7 6.12 1229 413.80 291.06 77.85 1.9409 i 0.5152 0.0070 800 40 200.78 6.13 1230 414.14 291.52 77.8 1.9378 0.5161 0.0079 810 40 200.76 6.13 1230 414.14 291.79 77.8 1.9354 0.5167 0.0085 820 40 200.83 6.13 1231 414.48 292.28 77.85 1.9329 0.5174 0.0092 830 40 200.83 6.13 1231 414.48 292.45 77.95 1.9323 0.5175 0.0093 840 40 200.81 6.13 1230 414.14 292.75 78 1.9285 0.5186 0.0104 850 40 200.81 6.12 1230 414.14 293.09 78.05 1.9259 0.5192 0.0110 860 40 200.81 6.13 1230 414.14 293.59 78.05 1.9214 0.5204 0.0122 870 40 200.77 6.13 1230 414.14 293.92 78.05 1.9185 0.5212 0.0131 880 40 200.54 6.12 1227 413.13 294.00 78.05 1.9131 0.5227 0.0145 890 40 200.61 6.12 1228 413.47 294.33 78.1 1.9122 0.5230 0.0148 900 , 40 200.61 6.12 1227 413.13 294.70 78.15 1.9078 0.5242 0.0160 910 r 40 200.62 6.12 1227 413.13 294.93 78.15 H ' 1.9058 0.5247 0.0165 920 40 200.66 6.12 1228 413.47 295.63 78.2 1.9016 0.5259 0.0177 930 40 200.68 6.12 1228 413.47 295.69 78.2 1.9011 0.5260 0.0178 940 40 200.69 6.12 1228 413.47 296.06 78.2 i.8979 H 0.5269 0.0187 950 40 200.76 1 6.12 1228 413.47 296.13 78.2 1.8973 0.5271 0.0189 960 40 200.66 6.11 1227 413.13 296.73 78.25 1.8909 0.5288 0.0206 970 40 200.63 6.12 1227 413.13 297.20 78.3 1.8873 0.5298 0.0217 8990 40 200.71 6.11 6.12 1227 1228 413.13 297.16 78.3 1.8876 0.5298 0.0216 1000 40 200.76 6.12 1228 413.47 298.03 78.3 78.3 1.8837 1.8817 0.5309 0.5314 0.0227 0.0232 1010 1020 40 40 200.8 200.67 6.12 6.11 1228 1227 413.47 413.13 298.46 78.3 1.8780 0.5325 0.0243 1030 1040 40 40 200.72 200.74 6.12 6.12 1228 1228 413.47 298.93 78.3 78.35 1.8756 1.8745 0.5332 0.5335 0.0250 0.0253 1050 40 200.76 6.12 1228 413.47 299.39 299.43 78.45 78.45 1.8714 1.8711 "t 0.5344 0.5344 0.0262 0.0263 1060 40 200.7 6.11 1227 413.13 300.26 78.45 1.8625 0.5369 0.0287 1070 40 200.71 6.12 1227 413.13 300.23 78.8 1.8657 0.5360 0.0278 Run SSB7 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 40 203.09 6.26 1272 428.28 297.27 77.5 1.9488 0.5131 0 1  20 41 41 27202.55 56.24 671264 660425.59 296.05 76.6 1.9439 0.5144 0.001286625 30 40 50 41 41 41 202.5 202.19 202.11 6.24 6.23 6.22 1263 1259 1258 425.25 423.91 423.57 289.97 287.88 285.62 76.15 76.2 76.15 76.05 1.9696 1.9893 2.0021 2.0212 0.5077 0.5027 0.4995 0.4948 -0.005416341 -0.010453463 -0.013657745 -0.018367306 60 70 80 41 41 41 201.64 201.73 201.62 6.21 6.21 6.21 1254 1253 1251 422.22 421.89 421.21 284.93 284.17 283.21 75.95 75.95 75.95 2.0204 2.0262 2.0323 0.4950 0.4935 0.4921 -0.018175397 -0.019588921 -0.021077423 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 41 42 43 43 44 44 45 45 39 41 42 41 40 41 40 41 42 39 41 38 42 42 43 43 44 44 45 45 45 45 45 201.42 201.3 201.22 201.12 200.99 200.94 200.82 200.79 200.81 200.76 200.68 201.54 201.38 200.67 201.31 200.59 200.59 201.61 201.52 201.46 201.43 201.47 201.59 201.56 201.49 201.43 201.48 201.43 201.44 201.47 201.52 6.2 6.19 6.19 6.19 6.18 6.18 6.17 6.17 6.17 6.17 6.17 6.19 6.19 6.17 6.19 6.16 6.16 6.19 6.19 6.19 .6.18 6.19 6.19 6.19 6.19 6.18 6.18 6.18 6.18 6.18 6.18 1248 1247 1246 1244 1243 1242 1240 1239 1240 1239 1238 1248 1246 1237 1245 1236 1236 1249 1247 1246 1246 1246 1248 1247 1246 1245 1246 . 1245 1245 1245 1246 420.20 419.87 419.53 418.86 418.52 416.18 417.51 417.17 417.51 417.17 416.84 420.20 419.53 416.50 419.19 416.16 416.16 420.54 419.87 419.53 419.53 419.53 420.20 419.87 419.53 419.19 419.53 419.19 419.19 419.19 419.53 283.12 283.56 283.36 283.37 283.47 283.71 284.05 284.62 278.48 283.09 283.99 284.59 283.99 284.29 284.56 285.00 285.30 285.75 287.02 285.53 288.43 288.79 2S9!42 290.02 290.43 291.13 291.69 291.76 292.50 292.86 293.03 76.15 76.55 76.8 76.8 76.9 76.95 76.9 76.9 76.95 77.05 77.05 77.05 76.6 76.2 76.4 76.5 76.5 76.55 76.45 76.65 76.4 76.35 76.15 76.05 75.95 75.95 75.95 76 75.95 75.95 76.05 2.0303 2.0283 2.0310 2.0277 2.0260 2.0226 2.0155 2.0083 2.0717 2.0247 2.0143 2.0247 2.0229 2.0015 2.0137 1.9960 1.9931 2.0102 1.9939 2.0085 1.9786 1.9748 1.9703 1.9622 1.9560 1.9481 1.9446 1.9428 1.9358 1.9325 1.9335 0.4925 0.4930 0.4924 0.4932 0.4936 0.4944 0.4962 0.4979 0.4827 0.4939 0.4965 0.4939 0.4944 0.4996 0.4966 0.5010 0.5017 0.4975 0.5015 0.4979 0.5054 0.5064 0.5075 0.5096 0.5112 0.5133 0.5143 0.5147 0.5166 0.5175 0.5172 -0.020582343 -0.020099225 -0.020767418 -0.019958313 -0.019552784 -0.018708197 -0.016975015-" -0.015207416 -0.030427838 -0.019242525 -0.016675652 -0.019233785 -0.018781062 -0.013504387 -0.016546323 -0.012130175 -0.011409301 -0.015674776 -0.011604437 -0.015245347 -0.00773692 -6.006743742 -0.O05589555 -0.003506603 -0.001897033 0.000192231 0.001122229 0.001583797 0.003452472 0.004327171 O.004O62036 Appendix A. 7 141 too 45 201.52 6.18 1245 419.19 293.63 76.05 1.9266 0.5190 0.005917532 410 45 201.46 6.18 1245 419.19 293.86 75.95 1.9237 0.5198 0.006712713 420 46 201.4 6.18 1244 418.86 294.27 75.95 1.9186 0.5212 0.00809434 430 46 201.44 6.18 1244 418.86 294.74 75.95 1.9145 0.5223 0.009208488 440 46 201.4 6.17 1243 418.52 295.11 75.95 1.9097 0.5236 0.010513587 450 46 201.4 6.17 1243 418.52 295.37 75.95 1.9074 0.5243 0.011150756 460 46 201.37 6.17 1243 418.52 295.94 76 1.9029 0.5255 0.012385269 470 46 201.4 6.17 1243 418.52 296.31 76.05 1.9002 0.5263 0.013141906 480 46 201.46 6.17 1243 418.52 297.01 76.05 1.8941 0.5279 0.014814472 490 46 201.39 6.17 1242 418.18 297.28 75.95 1.8894 0.5293 0.016125137 500 46 201.35 6.17 1242 418.18 297.88 75.95 1.8843 0.5307 0.017559919 510 46 201.31 6.17 1241 417.85 298.11 75.95 1.8808 0.5317 0.018554755 520 46 201.4 6.17 1242 418.18 298.41 75.95 1.8798 0.5320 0.018835282 530 46 201.34 6.17 1242 418.18 299.04 75.95 1.8745 0.5335 0.020349774 540 46 201.34 6.17 1241 417.85 299.51 75.95 1.8690 0.5350 0.021905278 550 46 201.33 6.16 1241 417.85 300.05 75.95 1.8646 0.5363 0.023181668 560 46 201.38 6.16 1241 417.85 300.45 75.95 1.8613 0.5373 0.024138961 570 46 201.37 6.16 1241 417.85 300.71 75.95 1.8590 0.5379 0.024777156 580 46 201.36 6.16 1241 417.85 300.98 75.95 1.8568 0.5385 0.025415351 590 46 201.34 6.16 1240 417.51 301.38 75.95 1.8520 0.5399 0.026816517 600 47 201.31 6.16 1240 417.51 302.25 75.95 1.8449 0.5420 0.028892323 610 47 201.25 616 1239 417.17 302.55 76.05 1.8418 0.5430 0.029818008 620 47 201.22 6.16 1239 417.17 303.09 75.95 1.8367 0.5445 0.031336168 630 47 201.03 6.15 1237 416.50 303.39 76 1.8316 0.5460 0.032834336 640 47 201.05 6.15 1237 416.50 303.96 76.1 1.8279 0.5471 0.033954788 650 47 201.04 6.15 1237 416.50 304.13 7615 1.8269 0.5474 0.034234901 660 47 200.99 6.15 1236 416.16 304.23 76.1 1.8242 0.5482 0.03504701 670 47 200.66 6.14 1234 415.49 305.07 76.2 1.8154 0.5509 0.037718124 680 47 200.79 6.14 1233 415.15 305.44 76.2 1.8110 0.5522 0.039056931 690 47 200.76 6.14 1233 415.15 306.04 76.25 1.8066 0.5535 0.040381748 700 47 200.68 6.14 1232 414.81 306.48 76.25 1.8017 0.5550 0.041884518 710 47 200.49 6.13 1229 413.80 306.99 76.2 1.7930 0.5577 0.044595052 720 47 200.48 6.13 1229 413.80 307.29 76.3 1.7914 0.5582 0.045078371 730 47 200.34 6.12 1227 413.13 307.43 76.2 1.7867 0.5597 0.046570807 740 47 200.62 6.13 1230 414.14 308.22 76.2 1.7849 0.5602 0.047110803 750 47 200.3 6.12 1226 412.79 308.63 76.2 1.7760 0.5631 0.049943238 760 47 200.35 6.12 1227 413.13 309.10 76.2 1.7739 0.5637 0.050605036 770 47 200.27 6.12 1225 412.46 309.44 76.2 1.7684 0.5655 0.05235138 780 47 200.37 6.12 1226 412.79 309.57 76.2 1.7689 0.5653 0.05220425 790 47 200.29 6.12 1225 412.46 310.17 76.25 1.7632 0.5671 0.054008115 800 47 200.35 6.12 1226 412.79 310.77 76.25 1.7602 0.5681 0.054990139 810 47 200.29 6.11 1225 412.46 311.17 76.3 1.7561 0.5694 0.05631138 820 47 200.31 6.12 1225 412.46 311.97 76.3 1.7501 0.5714 0.058250972 830 47 200.37 6.12 1226 412.79 312.60 76.3 1.7469 0.5724 0.059310286 840 47 200.37 6.12 1226 412.79 313.03 76.3 1.7437 0.5735 0.060360041 850 47 200.39 6.12 1226 412.79 313.97 76.3 1.7369 0.5758 0.062621053 860 47 200.16 6.11 1222 411.45 314.42 76.4 1.7287 0.5785 0.0653515 870 47 200.3 6.11 1224 412.12 314.84 76.5 1.7291 0.5783 0.065197281 880 47 200.39 6.12 1225 412.46 315.70 76.5 1.7243 0.5799 0.066817503 890 47 200.38 6.11 1225 412.46 315.80 76.5 1.7236 0.5802 0.067059952 900 47 200.43 6.12 1226 412.79 316.37 76.5 1.7209 0.5811 0.067950579 910 47 200.24 6.11 1223 411.78 316.85 76.5 1.7133 0.5837 0.070535979 920 47 200.31 6.11 1224 412.12 317.78 76.55 1.7084 0.5853 0.072193604 930 47 200.24 6.11 1223 411.78 317.98 76.6 1.7060 0.5862 0.073045382 940 47 200.3 6.11 1224 412.12 318.84 76.6 1.7013 0.5878 0.074660516 950 47 200.24 6.11 1223 411.78 318.95 76.6 1.6992 0.5885 0.075392888 960 47 200.21 6.11 1223 411.78 319.78 76.6 1.6933 0.5905 0.0774166 970 47 200.33 6.11 1224 412.12 320.34 76.6 1.6908 0.5914 0.078300222 980 47 200.38 6.11 1225 412.46 320.80 76.8 1.6904 0.5916 0.078455054 990 47 200.26 6.11 1223 411.78 321.51 76.7 1.6820 0.5945 0.081383076 1000 39 200.23 6.11 1223 411.78 315.65 76.75 1.7237 0.5801 0.06701472 1010 40 200.3 6.11 1224 412.12 320.51 77.2 1.6938 0.5904 0.077248751 1020 41 200.23 6.11 1223 411.78 321.08 77.45 1.6902 0.5916 0.078509405 1030 42 200.25 6.11 1223 411.78 322.11 77.3 1.6820 0.5945 0.081383076 1040 42 200.25 6.11 1223 411.78 322.71 77.15 1.6769 0.5963 0.083204417 1050 43 200.27 6.11 1224 412.12 323.08 77.05 1.6751 0.5970 0.083840663 61070 43 33200.24 6.11 51223 46411.78 323.90 77 1.6705 0.5986 0.085486074 1080 44 200.23 6.11 1223 411.78 324.98 76.95 76.8 1.6654 1.6592 0.6005 0.6027 0.08733279 0.089558874 1090 44 200.27 6.11 1224 412.12 325.31 76.8 1.6584 0.6030 0.089866398 1100 44 . 200.37 6.12 1225 412.46 326.04 76.7 1.6542 0.6045 0.091385666 1110 45 200.33 6.12 1225 412.46 326.60 76.65 1.6501 0.6060 0.092880768 1120 45 200.31 6.11 1225 412.46 326.64 76.6 1.6496 0.6062 0.093082809 1130 45 200.26 6.11 1224 412.12 326.88 76.65 1.6470 0.6072 0.09403184 1140 45 200.2 6.11 1224 412.12 327.38 76.55 1.6431 0.6086 0.095487722 1150 45 200.26 6.12 1225 412.46 327.67 76.55 1.6425 0.6088 0.09570934 1160 45 200.17 6.11 1223 411.78 328.11 76.5 1.6366 0.6110 0.097896568 1170 46 200.18 6.11 1224 412.12 328.41 76.5 1.6360 0.6112 0.098116398 1160 46 200.16 6.11 1223 411.78 328.65 76.55 1.6334 0.6122 0.099070321 1190 46 200.17 6.11 1224 412.12 329.41 76.6 1.6302 0.6134 0.100300222 1200 46 200.18 6.11 1224 412.12 329.31 76.65 1.6311 0.6131 0.099936251 1210 i 46 1200.18 6.11 6.12 1223 1224 178412.12 329.85 76.7 1.6267 0.6148 0.101620198 1230 46 200.18 6.12 1224 412.12 330.71 76.7 76.7 1.6257 1.6225 0.6151 0.6163 0.101998751 0.103211987 1240 46 200.23 6.12 1225 412.46 330.94 76.65 1.6220 0.6165 0.103386891 Appendix A. 7 142 1250 46 200.21 6.12 1225 412.46 331.00 76.7 1.6219 0.6166 0.103427299 1260 46 200.19 6.12 1225 412.46 331.40 76.7 1.6194 0.6175 0.104397095 1270 46 200.21 6.12 1225 412.46 331.90 76.65 1.6159 0.6189 0.105730564 1280 46 200.2 6.12 1225 412.46 331.84 76.65 1.6163 0.6187 0.105568931 1290 46 200.24 6.12 1226 412.79 332.13 76.7 1.6160 0.6188 0.10568102 1300 46 200.19 6.12 1225 412.46 332.44 76.65 1.6125 0.6202 0.107023625 1310 46 200.19 6.12 1225 412.46 332.80 76.7 1.6105 0.6209 0.10779138 1320 46 200.2 6.12 1225 412.46 332.87 76.55 1.6091 0.6214 0.108316687 1330 41 200.11 6.12 1224 412.12 329.64 76.7 1.6293 0.6138 0.100623751 1340 41 200.13 6.12 1224 412.12 331.04 76.8 1.6210 0.6169 0.103778163 1350 41 200.21 6.12 1225 412.46 331.84 76.8 1.6172 0.6183 0.105205258 1360 42 200.07 6.12 1224 412.12 332.14 76.9 1.6146 0.6193 0.106204634 1370 42 200.09 6.12 1224 412.12 332.68 76.95 1.6116 0.6205 0.107377428 1380 42 200.2 6.12 1225 412.46 333.14 77 1.6103 0.6210 0.107872197 1390 43 200.19 6.12 1225 412.46 333.44 77 1.6084 0.6217 0.108599544 1400 43 200.18 6.12 1225 412.46 333.87 77 1.6057 0.6228 0.109650156 1410 43 200.16 6.12 1225 412.46 334.27 77 1.6032 0.6238 0.110619952 1420 41 200.16 6.12 1226 412.79 330.53 77.05 1.6285 0.6141 0.100937121 1430 39 200.17 6.12 1226 412.79 332.90 76.9 1.6125 0.6202 0.107033777 1440 39 200.19 6.12 1226 412.79 333.53 76.8 1.6079 0.6219 0.108810286 1450 39 200.13 6.12 1225 412.46 333.64 76.8 1.6059 0.6227 0.10956934 1460 40 200.1 6.12 1225 412.46 333.97 76.8 1.6038 0.6235 0.110377503 1470 40 200.15 6.12 1226 412.79 334.57 76.8 1.6014 0.6244 0.111313548 1480 40 200.1 6.12 1225 412.46 334.77 76.8 1.5989 0.6254 0.112317095 1490 40 200.16 6.12 1226 412.79 . 335.50 76.8 1.5956 0.6267 0.11357456 1500 41 200.12 6.12 1226 412.79 335.77 76.8 1.5940 0.6274 0.114220563 1510 41 200.15 6.13 1226 412.79 • 336.27 76.75 1.5906 0.6287 0.115552945 1520 41 200.17 6.13 1226 412.79 336.67 76.8 1.5885 0.6295 0.116400824 1530 41 200.15 6.13 1226 412.79 337.30 76.8 1.5846 0.6311 0.117935082 1540 41 200.11 6.13 1226 412.79 337.40 76.8 1.5840 0.6313 0.118177333 1550 41 200.15 6.13 1227 413.13 338.03 76.8 1.5815 0.6323 0.119186944 1560 42 200.11 6.13 1226 412.79 338.20 76.85 1.5795 0.6331 0.119994217 1570 42 200.25 6.13 1228 413.47 338.93 76.9 1.5780 0.6337 0.120598004 1580 42 200.19 6.13 1227 413.13 336.93 76.8 1.5760 0.6345 0.121365428 ' 1590 42 200.27 6.14 1229 413.80 339.59 76.8 1.5747 0.6351 0.121926215 1600 42 200.21 6.13 1228 413.47 339.83 76.8 1.5720 0.6361 0.123016571 1610 42 200.23 6.13 1228 413.47 340.13 76.8 1.5702 0.6369 0.123742141 1620 42 200.18 6.13 1228 413.47 340.66 76.8 1.5670 0.6382 0.125032043 1630 42 200.21 6.14 1228 413.47 340.96 76.85 1.5655 0.6388 0.125636685 1640 43 200.21 6.14 1229 413.80 341.16 76.8 1.5653 0.6388 0.12571222 1650 43 200.13 6.13 1228 413.47 341.59 76.8 1.5615 0.6404 0.127289372 1660 43 200.16 6.14 1228 413.47 342.19 76.8 1.5579 0.6419 0.128740512 1670 43 200.25 6.14 1229 413.80 342.66 76.8 1.5565 0.6425 0.129337118 1680 43 200.19 6.14 1229 413.80 343.19 76.8 1.5534 0.6438 0.130625971 1690 43 200.21 6.14 1229 413.80 343.49 76.9 1.5522 0.6442 0.131109291 1700 Run SSB9 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 40 201.47 6.2 1249 420.54 283.88 77.2 2.0347 0.4915 0.0000 10 40 201.23 6.19 1245 419.19 281.93 75.55 2.0312 0.4923 0.0009 20 40 200.95 6.18 1241 417.85 282.91 75.6 2.0155 0.4961 0.0047 30 40 201.24 6.18 1244 418.86 284.97 76.2 2.0063 0.4984 0.0070 40 40 200.87 6.17 1239 417.17 285.69 76.5 1.9943 0.5014 0.0100 50 40 200.41 6.15 1233 415.15 287.28 76.7 1.9715 0.5072 0.0158 60 40 200.3 6.15 1231 414.48 288.95 77 1.9556 0.5114 0.0199 70 40 200.16 6.14 1229 413.80 290.36 77.2 1.9413 0.5151 0.0236 80 40 199.76 6.13 1224 412.12 291.66 77.4 1.9233 0.5199 0.0285 90 40 199.65 6.12 1222 411.45 292.18 77.55 1.9170 0.5217 0.0302 100 40 199.57 6.12 1220 410.77 292.89 77.8 1.9098 0.5236 0.0321 110 40 199.34 6.11 1217 409.76 292.50 78 1.9103 0.5235 0.0320 120 40 199.26 6.11 1217 409.76 293.00 78.2 1.9076 0.5242 0.0327 130 40 199.24 6.1 1215 409.09 294.11 78.3 1.8956 0.5275 0.0361 140 40 199.08 6.09 1213 408.42 294.72 78.65 1.8902 0.5290 0.0376 150 40 199.07 6.09 1213 408.42 295.22 78.85 1.8876 0.5298 0.0383 160 40 198.99 6.09 1211 407.74 296.26 79.25 1.8790 0.5322 0.0407 170 40 201.17 6.16 1239 417.17 299.12 77.55 1.8828 0.5311 0.0397 180 40 201.13 6.16 1238 416.84 299.96 77.8 1.8763 0.5330 0.0415 ' 190 40 201.12 6.15 1237 416.50 300.63 78.2 1.8725 0.5340 0.0426 200 40 201.03 6.15 1236 416.16 301.36 78.7 1.8690 0.5350 0.0436 210 40 200.91 6.14 1234 415.49 298.71 79.1 1.8920 0.5285 0.0371 1 220 40 200.85 6.14 1233 415.15 300.01 79.4 1.8818 0.5314 0.0399 230 40 200.83 6.14 1232 414.81 300.98 79.55 1.8734 0.5338 0.0423 240 40 200.92 6.14 1233 415.15 300.98 79.7 1.8762 0.5330 0.0415 250 40 200.94 6.14 1234 415.49 303.41 80.05 1.8602 0.5376 0.0461 260 39 202.76 6.2 1257 423.23 303.89 77.55 1.8699 0.5348 0.0433 270 39 202.69 6.19 1255 422.56 304.29 76.25 1.8530 0.5397 0.0482 280 39 202.51 6.19 1253 421.89 303.37 75.95 1.8551 0.5391 0.0476 Appendix A. 7 143 290 39 202.53 6.18 1252 421.55 303.01 75.95 1.8566 0.5386 0.0471 300 39 202.52 6.18 1252 421.55 304.47 76.1 1.8459 0.5417 0,0503 310 39 202.52 6.18 1252 421.55 306.81 76.35 1.8292 0.5467 0.0552 320 39 202.52 6.18 1252 421.55 307.84 76.45 1.8218 0.5489 0.0574 330 39 202.44 6.18 1251 421.21 306.41 76.5 1.8321 0.5458 0.0544 340 39 202.44 6.18 1250 420.88 304.31 76.55 1.8479 0.5412 0.0497 350 39 202.41 6.18 1250 420.88 305.85 76.75 1.8371 0.5443 0.0529 360 39 202.31 6.17 1248 420.20 305.59 76.95 1.8379 0.5441 0.0526 370 39 202.31 6.17 1248 420.20 305.79 77.1 1.8375 0.5442 0.0528 380 39 202.27 6.17 1248 420.20 305.65 77.2 1.8393 0.5437 0.0522 390 39 202.21 6.17 1247 419.87 304.62 77.4 1.8478 0.5412 0.0497 400 39 202.21 6.17 1247 419.87 303.12 77.45 1.8605 0.5375 0.0460 410 39 202.18 6.16 1246 419.53 301.86 77.45 1.8695 0.5349 0.0434 420 39 202.04 6.16 1244 418.86 301.47 77.55 1.8706 0.5346 0.0431 430 39 201.66 6.15 1239 417.17 300.85 77.55 1.8682 0.5353 0.0438 440 39 201.61 6.14 1238 416.84 301.16 77.45 1.8633 0.5367 0.0452 450 39 201.58 6.14 1238 416.84 299.96 77.55 1.8742 0.5336 0.0421 460 39 201.5 6.14 1237 416.50 299.59 77.45 1.8749 0.5334 0.0419 470 39 201.44 6.14 1236 416.16 300.10 77.55 1.8700 0.5348 0.0433 480 39 201.4 6.13 1235 415.82 300.63 77.8 1.8661 0.5359 0.0444 490 39 201.4 6.13 1235 415.82 300.03 77.85 1.8715 0.5343 0.0428 500 39 201.45 6.13 1235 415.82 301.07 77.85 1.8629 0.5368 0.0453 510 39 201.89 6.15 1241 417.85 301.65 77.3 1.8625 0.5369 0.0454 520 39 201.46 6.13 1235 415.82 300.73 77.5 1.8627 0.5368 0.0454 530 39 201.74 6.14 1239 417.17 301.85 77.8 1.8619 0.5371 0.0456 540 39 202.65 6.17 1250 420.88 303.41 77.1 1.8597 0.5377 0.0462 550 39 202.67 6.17 1251 421.21 303.41 76 1.8522 0.5399 0.0484 560 39 202.62 6.17 1250 420.88 301.95 74.45 1.8500 0.5405 0.0491 570 39 202.59 6.17 1249 420.54 302.92 74.8 1.8435 0.5424 0.0510 580 39 202.55 6.17 1249 420.54 303.08 75.45 1.8474 0.5413 0.0498 590 39 202.47 6.16 1248 420.20 304.09 75.95 1.8419 0.5429 0.0514 600 39 202.45 6.16 1247 419.87 304.09 76.3 1.8432 0.5425 0.0511 610 40 202.39 6.16 1247 419.87 304.66 76.5 1.8402 0.5434 0.0519 620 40 202.34 6.16 1246 419.53 304.76 76.75 1.8399 0.5435 0.0520 630 40 202.14 6.15 1243 418.52 305.21 76.9 1.8332 0.5455 0.0540 640 40 201.81 6.14 1239 417.17 305.59 76.85 1.8238 0.5483 0.0568 650 40 201.76 6.14 1239 417.17 305.62 76.95 1.8243 0.5481 0.0567 660 40 201.74 6.14 1238 416.84 306.16 76.95 1.8186 0.5499 0.0584 670 40 201.65 6.13 1237 416.50 306.06 76.95 1.8179 0.5501 0.0586 680 40 203.08 6.18 1255 422.56 307.66 77.3 1.8343 0.5452 0.0537 690 40 203.05 6.18 1255 422.56 308.49 77.45 1.8289 0.5468 0.0553 700 40 203.01 6.18 1254 422.22 309.33 77.55 1.8216 0.5490 0,0575 710 40 203.05 6.18 1255 422.56 309.99 77.75 1.8195 0.5496 0.0581 720 40 202.97 6.18 1254 422.22 310.40 77.95 1.8164 0.5505 0.0591 730 40 202.83 6.17 1251 421.21 309.51 77.85 1.8182 0.5500 0.0585 740 40 201.69 6.14 1238 416.84 308.16 77.75 1.8091 0.5528 0.0613 750 40 201.75 6.13 1238 416.64 308.62 77.7 1.8051 0.5540 0.0625 760 40 201.59 6.13 1236 416.16 309.96 77.7 1.7918 0.5581 0.0666 770 40 201.62 6.13 1237 416.50 309.69 77.75 1.7957 0.5569 0.0654 780 40 201.63 6.13 1237 416.50 310.93 77.7 1.7858 0.5600 0.0685 790 40 201.56 6.13 1236 416.16 310.73 77.8 1.7866 0.5597 0.0682 800 40 201.57 6.13 1236 416.16 311.40 77.85 1.7819 0.5612 0.0697 810 40 201.18 6.12 1231 414.48 312.02 77.85 1.7700 0.5650 0.0735 820 40 201.44 6.13 1234 415.49 312.81 77.85 1.7684 0.5655 0.0740 830 40 201.43 6.13 1234 415.49 314.04 78.05 1.7606 0.5680 0.0765 840 40 201.44 6.13 1234 415.49 313.71 78.1 1.7635 0.5671 0.0756 850 40 201.29 6.12 1233 415.15 313.84 78.1 1.7610 0.5678 0.0764 860 40 201.32 6.12 1233 415.15 314.68 78.1 1.7548 0.5699 0.0784 870 40 202.94 6.17 1253 421.89 317.64 78.2 1.7620 0.5675 0.0761 880 40 203.04 6.18 1254 422.22 318.20 78.4 1.7607 0.5679 0.0765 890 40 202.9 6.18 1253 421.89 319.44 78.45 1.7507 0.5712 0.0797 90910 40 1.5  201.61 46.13 371237 1650416.50 319.06 78.35 1.7303 0.5779 0.0865 920 930 940 40 40 40 201.34 201.25 201.46 6.13 6.12 6.13 1234 1232 1235 415.49 414.81 415.82 318.74 317.75 318.73 78.35 78.35 78.35 1.7286 1.7284 1.7328 1.7298 0.5785 0.5786 0.5771 0.5781 0.0870 0.0871 0.0856 0.0866 950 960 970 980" 990 1000 40 40 40 40 40 40 201.03 202.78 201.95 201.48 200.94 201.14 6.12 6.17 6.15 6.13 6.12 6.12 1230 1252 1241 1236 1229 1231 414.14 421.55 417.85 416.16 413.80 414.48 318.42 321.37 320.18 319.96 319.79 78.35 78.65 78.7 78.8 78.7 1.7251 1.7368 1.7304 1.7256 1.7164 0.5797 0.5758 0.5779 0.5795 0.5826 0.0882 0.0843 0.0864 0.0880 0.0911 1010 1020 1030 40 40 40 202.3 202.29 20255 6.16 6.16 6.16 1245 1245 1245 419.19 419.19 419.19 322.00 321.96 321.90 78.65 78.95 79.15 79.15 1.7160 1.7247 1.7264 1.7269 0.5827 0.5798 0.5792 0.5791 0.0913 0.0883 0.0878 0.0876 1040 1050 40 40 202.2 202.3 6.16 6.16 1245 1246 419.19 419.53 323.06 79.2 1.7190 0.5817 0.0903 1060 40 202.17 6.15 1244 418.86 322.34 79.2 79.3 1.7206 1.7234 0.5812 0.5802 0.0897 0.0888 1070 1080 40 40 .08 202.16 6.15 6.16 1243 1244 418.52 418.86 322.54 79.55 1.7224 0.5806 0.0891 1090 40 202.15 6.15 1244 418.86 324.10 .7 79.85 1.7213 1.7148 0.5810 0.5831 0.0895 0.0917 1100 1110 40 40 202.11 202.29 .  , 6.16  1246 418.86 419.53 324.64 80 1.7122 0.5841 0.0926 1120 1130 40 40 202.1 201.99 j 6.15 6.15 1244 1242 418.86 418.18 325.37 325.74 80.1 80.1 80.2 1.7143 1.7077 1.7031 0.5833 0.5856 0.5872 0.0919 0.0941 0.0957 Appendix AJ 144 1140 40 202.01 6.15 1243 418.52 325.51 76.9 1.6835 0.5940 0.1025 1150 40 201.97 6.15 1242 418.18 325.54 75.8 1.6745 0.5972 0.1057 1160 40 202.08 6.15 1243 418.52 326.77 75.55 1.6659 0.6003 0.1088 1170 40 201.94 6.15 1242 418.18 326.91 76.2 1.6680 0.5995 0.1080 1180 40 201.96 6.15 1242 418.18 327.84 76.45 1.6635 0.6012 0.1097 1190 40 201.93 6.15 1242 418.18 327.98 76.7 1.6642 0.6009 0.1094 1200 40 201.95 6.15 1243 418.52 328.64 76.8 1.6619 0.6017 0.1103 1210 40 201.93 6.15 1243 418.52 329.57 76.95 1.6567 0.6036 0.1121 1220 41 201.96 6.16 1243 418.52 330.21 77.05 1.6532 0.6049 0.1134 1230 41 201.97 6.16 1244 418.86 330.90 77.15 1.6506 0.6058 0.1143 1240 41 201.9 6.16 1243 418.52 331.24 77.55 1.6497 0.6062 0.1147 1250 41 201.83 6.16 1242 418.18 332.51 78 1.6431 0.6086 0.1171 1260 41 201.91 • 6.16 1244 418.86 333.57 78.25 1.6405 0.6096 0.1181 1270 41 201.83 6.16 1243 418.52 334.14 78.45 1.6368 0.6109 0.1195 1280 41 201.76 6.16 1243 418.52 335.34 79.2 1.6340 0.6120 0.1205 1290 41 201.83 6.18 1243 418.52 336.11 79.9 1.6335 0.6122 0.1207 1300 41 201.81 6.16 1243 418.52 336.61 80.45 1.6338 0.6121 0.1206 1310 41 201.79 6.16 1243 418.52 337.41 80.75 1.6307 0.6132 0.1218 1320 41 201.83 6.16 1244 418.86 338.07 81 1.6294 0.6137 0.1223 1330 41 201.79 6.16 1243 418.52 338.71 81.4 1.6265 0.6148 0.1233 ' 1340 41 201.66 6.16 1244 418.86 339.64 81.8 1.6245 0.6156 0.1241 1350 41 201.91 6.17 1245 419.19 340.33 82.25 1.6243 0.6157 0.1242 1360 41 201.87 6.16 1244 418.86 340.87 82.35 1.6202 0.6172 0.1257 1370 41 201.69 6.16 1242 418.18 341.58 78.45 1.5893 0.6292 0.1377 1380 42 201 83 6.16 1244 418.86 341.90 78.5 1.5902 0.6289 0.1374 1390 42 201.78 6.16 1244 418.86 342.17 78.85 1.5907 0.6287 0.1372 1400 41 201.78 6.16 1243 418.52 342.64 78.85 1.5866 0.6303 0.1388 i Run SSB10 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 41 203.15 6.23 1266 426.26 281.45 74.6 2.0607 0.4853 0.0000 10 41 202.91 6.22 1262 424.92 278.74 73.15 2.0669 0.4838 -0.0014 20 42 202.62 6.21 1258 423.57 279.65 71.95 2.0393 0.4904 0.0051 30 40 202.43 6.2 1255 422.56 280.99 79.55 2.0976 0.4767 -0.0085 40 40 202.25 6.19 1252 421.55 283.74 80.85 2.0777 0.4813 -0.0040 50 39 202 6.19 1249 420.54 28442 81.6 2.0735 0.4823 -0.0030 60 39 203.14 6.22 1263 425.25 285.93 79.5 2.0600 0.4854 0.0002 70 39 203.03 6.22 1262 424.92 285.94 75.95 2.0235 0.4942 0.0089 80 39 202.83 6.21 1259 423.91 285.98 74.75 2.0066 0.4983 0.0130 90 39 202.74 6.2 1257 423.23 286.35 74.25 1.9954 0.5012 0.0159 100 40 202.56 6.2 1255 422.56 286.69 74.05 1.9872 0.5032 0.0180 110 40 202.47 6.19 1254 422.22 287.23 74.05 1.9806 0.5049 0.0196 120 40 202.41 6.19 1253 421.89 287.30 74.05 1.9783 0.5055 0.0202 130 40 202.32 6.19 1252 421.55 287.71 74.55 1.9777 0.5056 0.0204 140 41 202.3 6.18 1251 421.21 293.28 74.75 1.9275 0.5188 0.0335 150 38 202.24 6.18 1250 420.88 290.05 75.25 1.9594 0.5104 0.0251 160 39 202.12 6.18 1249 420.54 290.75 75.45 1.9533 0.5120 0.0267 170 39 202.03 6.18 1248 420.20 290.82 75.55 1.9520 0.5123 0.0270 180 39 201.99 6.17 1247 419.87 291.26 75.7 1.9478 0.5134 0.0281 190 39 201.93 6.17 1246 419.53 291.33 75.85 1.9470 0.5136 0.0283 200 39 201.89 6.17 1245 419.19 292.00 75.9 1.9398 0.5155 0.0302 210 39 201.86 6.16 1244 418.86 292.20 75.95 1.9369 0.5163 0.0310 39 201.91 6.16 1245 419.19 292.36 75.95 1.9370 0.5163 0.0310 230 38 201.82 6.16 1243 418.52 292.64 75.9 1.9310 0.5179 0.0326 240 38 201.79 6.16 1243 418.52 292.84 75.95 1.9296 0.5182 0.0330 250 38 201.73 6.16 1242 418.18 293.21 76 1.9252 0.5194 0.0341 260 39 201.67 6.16 1241 417.85 294.35 76.05 1.9141 0.5224 0.0372 270 38 201.63 6.15 1241 417.85 294.41 76.05 1.9135 0.5226 0.0373 280 38 201.68 6.16 1241 417.85 295.01 76.15 1.9092 0.5238 0.0385 290 38 201.67 6.15 1241 417.85 295.05 76.2 1.9093 0.5237 0.0385 300 38 201.65 6.15 1241 417.85 295.45 76.25 1.9063 0.5246 0.0393 310 38 201.66 6.15 1240 417.51 295.28 76.3 1.9066 0.5245 0.0392 38 201.53 6.15 1239 417.17 295.59 76.25 1.9020 0.5258 0.0405 330 38 201.46 6.14 1237 416.50 297.79 76.2 1.8796 0.5320 0.0468 340 41 202.58 6.17 1251 421.21 298.41 76.5 1.8981 0.5268 0.0416 350 41 202.65 6.17 1251 421.21 298.24 76.75 1.9017 0.5258 0.0406 360 41 202.59 6.17 1250 420.88 298.15 76.9 1.9023 0.5257 0.0404 370 41 202.63 6.17 1251 421.21 298.28 76.95 1.9031 0.5255 0.0402 380 41 202.53 6.17 1249 420.54 298.45 76.95 1.8986 0.5267 0.0414 390 41 202.59 6.17 1250 420.88 298.18 77.05 1.9033 0.5254 0.0401 400 41 202.52 6.17 1249 420.54 297.98 77.05 1.9035 0.5254 0.0401 410 41 202.51 6.17 1248 420.20 297.95 77.1 1.9026 0,5256 0.0403 420 41 202.46 6.16 1248 420.20 298.22 77.05 1.8999 0.5263 0.0411 430 41 202.51 6.16 1248 420.20 298.99 77.15 1.8942 0.5279 0.0427 440 41 202.38 6.16 1247 419.87 298.89 77.15 1.8935 0.5281 ' 0.0428 450 41 202.38 6.16 1246 419.53 298.93 77.15 1.8917 0.5286 0.0434 460 41 202.35 6.16 1246 419.53 299.09 77.15 1.8902 0.5290 0.0438 470 41 202.32 6.16 1246 419.53 299.26 77.1 1.8884 0.5295 0.0443 480 41 202.35 6.16 1245 419.19 299.56 77.15 1.8847 0.5306 0.0453 Appendix A. 7 145 490 41 202.37 6.16 1246 419.53 299.79 77.15 1.8843 0.5307 0.0454 500 41 202.38 6.16 1246 419.53 299.69 77.25 1.8860 0.5302 0.0450 510 41 202.29 6.15 1244 418.86 300.30 77.3 1.8783 0.5324 0.0471 520 41 202.28 6.15 1244 418.86 300.64 77.25 1.8750 0.5333 0.0480 530 41 202.22 6.15 1244 418.86 300.87 77.25 1.8731 0.5339 0.0486 540 41 202.22 6.15 1243 418.52 300.67 77.3 1.8736 0.5337 0.0484 550 41 202.31 6.15 1244 418.86 301.37 77.25 1.8689 0.5351 0.0498 560 41 202.21 6.15 1243 418.52 301.21 77.3 1.8692 0.5350 0.0497 570 41 202.34 6.15 1244 418.86 301.80 77.35 1.8661 0.5359 0.0506 580 41 202.2 6.15 1243 418.52 301.94 77.45 1.8643 0.5364 0.0511 590 41 202.33 6.15 1244 418.86 301.87 77.45 1.8664 0.5358 0.0505 600 41 202.23 6.15 1243 418.52 302.84 77.45 1.8569 0.5385 0.0533 610 41 202.19 6.15 1243 418.52 302.71 77.45 1.8580 0.5382 0.0529 620 41 202.08 6.14 1241 417.85 303.08 77.45 1.8519 0.5400 0.0547 630 41 201.98 6.14 1240 417.51 302.72 77.55 1.8542 0.5393 0.0540 640 41 202.13 6.14 1242 418.18 302.84 77.45 1.8553 0.5390 0.0537 650 41 202.12 6.14 1241 417.85 303.05 77.55 1.8530 0.5397 0.0544 660 41 202.11 6.14 1241 417.85 303.28 77.5 1.8507 0.5403 0.0551 670 41 202.01 6.14 1240 417.51 303.25 77.45 1.8490 0.5408 0.0556 680 41 201.95 6.14 1239 417.17 304.05 77.55 1.8418 0.5430 0.0577 690 41 202.08 8.14 1241 417.85 303.98 77.55 1.8454 0.5419 0.0566 700 41 201.78 6.13 1237 416.50 304.43 77.7 1.8370 0.5444 0.0591 710 41 201.99 6.14 1240 417.51 304.72 77.7 1.8391 0.5437 0.0585 720 41 201.94 6.14 1239 417.17 304.72 77.8 1.8384 0.5439 0.0587 730 41 201.9 6.13 1238 416.84 304.96 77.9 1.8358 0.5447 0.0594 740 41 201.97 6.14 1239 417.17 305.19 77.85 1.8350 0.5449 0.0597 750 41 202.01 6.14 1240 417.51 306.12 77.95 1.8298 0.5465 0.0612 760 41 202.09 6.14 1240 417.51 306.08 77.95 1.8301 0.5464 0.0611 770 41 202.04 6.14 1240 417.51 306.72 78 1.8254 0.5478 0.0625 780 41 201.96 6.13 1238 416.84 306.42 78 1.8248 0.5480 0.0627 790 41 • 201.71 6.13 1235 415.82 306.20 78 1.8222 0.5488 0.0635 800 41 201.67 6.13 1235 415.82 306.73 77.95 1.8175 0.5502 0.0649 810 41 201.87 6.13 1237 416.50 306.89 77.9 1.8188 0.5498 0.0645 820 41 202.17 6.14 1241 417.85 307.38 77.85 1.8204 0.5493 0.0640 830 41 202.03 6.14 1239 417.17 307.85 77.85 1.8138 0.5513 0.0661 840 41 202.04 6.14 1240 417.51 307.22 77.85 1.8203 0.S494 0.0641 850 41 202.09 6.14 1240 417.51 308.35 77.95 1.8121 0.5518 0.0666 860 41 202.1 6.14 1240 417.51 307.88 78.05 1.8166 0.5505 0.0652 870 41 202.11 6.14 1240 417.51 308.18 78.05 1.8142 0.5512 0.0659 880 41 202.19 6.14 1241 417.85 308.38 78.05 1.8141 0.5512 0.0660 890 41 202.09 6.14 1240 417.51 308.32 78.05 1.8132 0.5515 0.0663 900 41 202.14 6.14 1240 417.51 308.68 78.15 1.8111 0.5522 0.0669 910 41 202.04 6.13 1239 417.17 308.89 78.15 1.8080 0.5531 0.0678 920 41 202.04 6.13 1239 417.17 309.52 78.15 1.8030 0.5546 0.0693 930 41 203.75 6.19 1260 424.24 311.51 78.25 1.8188 0.5498 0.0646 940 41 203.53 6.18 1258 423.57 311.22 78.45 1.8197 0.5495 0.0643 950 41 203.57 6.18 1258 423.57 311.45 78.55 1.8187 0.5499 0.0646 960 41 203.58 6.18 1259 423.91 311.81 78.65 1.8181 0.5500 0.0648 970 41 203.51 6.18 1257 423.23 311.79 78.5 1.S142 0.5512 0.0659 980 41 203.54 ' 6.18 1258 423.57 312.28 78.05 1.8083 0.5530 0.0677 990 41 203.56 6.18 1258 423.57 311.55 77.8 1.8121 0.5519 0.0666 1000 41 203.49 6.18 1257 423.23 311.55 77.75 1.8102 0.5524 0.0672 1010 41 203.54 6.18 1258 423.57 311.65 77.7 1.8105 0.5523 0.0671 1020 41 203.48 6.18 1257 423.23 312.12 77.6 1.8047 0.5541 0.0688 1030 41 203.52 6.18 1258 423.57 310.92 77.5 1.8146 0.5511 0.0658 1040 41 203.6 6.18 1259 423.91 311.08 77.5 1.8148 0.5510 0.0657 1050 41 203.49 6.18 1257 423.23 310.25 77.5 1.8184 0.5499 0.0647 1060 41 203.51 6.18 1258 423.57 310.95 77.5 1.8144 0.5512 0.0659 1070 41 203.54 6.18 1258 423.57 312.18 77.75 1.8068 0.5535 0.0682 1080 42 203.46 6.18 1258 423.57 311.08 77.75 1.8153 0.5509 0.0656 1090 42 • 203.54 6.18 1258 423.57 311.82 77.8 1.8100 0.5525 0.0672 1100 42 203.47 6.18 1257 423.23 311.12 77.85 1.8143 0.5512 0.0659 1110 42 203.45 6.18 1257 423.23 310.55 77.9 1.8191 0.5497 0.0644 1120 42 203.4 6.18 1256 422.90 310.72 77.95 1.8168 0.5504 0.0652 1130 42 203.46 6.18 1257 423.23 310.85 77.95 1.8172 0.5503 0.0650 1140 42 203.4 6.18 1256 422.90 311.29 78.05 1.8131 0.5515 0.0663 1150 42 203.41 6.18 1257 423.23 311.12 78.05 1.8159 0.5507 0.0654 1160 42 203.41 6.18 1256 422.90 311.39 78.05 1.8123 0.5518 0.0665 1170 42 203.55 6.18 1258 423.57 311.25 78.1 1.8167 0.5504 0.0652 1180 42 203.29 6.17 1255 422.56 311.09 78.15 1.8140 0.5513 0.0660 1190 42 203.26 6.17 1255 422.56 311.03 78.25 1.8153 0.5509 0.0656 1200 42 203.3 6.17 1255 422.56 310.23 78.4 1.8227 0.5486 0.0634 1210 42 203.27 6.17 1255 422.56 310.56 78.4 1.8201 0.5494 0.0641 1220 42 203.3 6.17 1255 422.56 310.43 78.5 1.8219 0.5489 0.0636 1230 41 203.24 6.17 1254 422.22 311.00 78.55 1.8164 0.5505 0.0653 1240 41 203.06 6.16 1251 421.21 311.24 78.4 1.8090 0.5528 0.0675 1250 41 201.95 6.13 1238 416.84 309.96 78.25 1.7990 0.5559 0.0706 1260 41 201.78 6.12 1235 415.82 309.47 78.05 1.7969 0.5565 0.0713 7  1280  41 2.01 202.03 .3 6.13 1238 1239 416.84 310.62 78.05 1.7923 0.5560 0.0727 1290 41 201.99 6.13 1238 416.84 309.32 78.15 78.3 1.7963 1.8043 0.5567 0.5542 0.0714 0.0690 1300 41 201.98 6.13 1238 416.64 309.86 78.45 1.8013 0.5552 0.0699 V 1310 41 201.87 6.13 1236 416.16 309.73 78.55 1.8002 0.5555 0.0702 ! 1320 1 7^  41 201.87 6.13 1236 416.16 309.43 78.6 1.8029 0.5547 0.0694 : 1330 41 , 201.96 6.13 1238 416.84 309.49 78.55 1.8049 0.5540 0.0688 Appendix A. 7 146 1340 41 202.05 6.13 1239 417.17 310.22 78.7 1.8019 0.5550 0.0697 1350 41 201. S5 6.12 1236 416.16 309.53 78.75 1.8033 0.5545 0.0693 1360 41 201.75 6.12 1235 415.82 310.03 78.75 1.7979 0.5562 0.0709 1370 41 202.13 6.13 1239 417.17 309.62 78.75, 1.8070 0.5534 0.0681 1380 41 202.08 6.13 1239 417.17 309.95 78.8 1.8047 0.5541 0.0688 1390 41 202.08 6.13 1238 416.84 310.06 79 1.8040 0.5543 0.0690 1400 41 201.88 6.12 1236 416.16 310.13 79.05 1.8009 0.5553 0.0700 1410 41 201.94 6.12 1236 416.16 310.40 79.2 1.8000 0.5555 0.0703 1420 41 201.99 6.13 1237 416.50 310.26 79.15 1.8022 0.5549 0.0696 1430 40 201.97 6.13 1237 416.50 309.93 79.2 1.8052 0.5540 0.0687 1440 41 201.97 6.13 1237 418.50 310.43 79.25 1.8016 0.5551 0.0698 1450 40 202.13 ' 6.13 1239 417.17 310.15 79.3 1.8071 0.5534 0.0681 1460 40 202.07 6.13 1238 416.84 310.39 79.3 1.6038 0.5544 0.0691 1470 40 202.03 6.12 1237 416.50 309.76 79.25 1.8068 0.5534 0.0682 1480 40 201.74 6.12 1234 415.49 309.71 79.25 1.8029 0.5547 0.0694 1490 40 202.19 6.13 1239 417.17 309.65 79.3 1.8110 0.5522 0.0669 1500 40 201.98 6.12 1236 416.16 309.66 79.4 1.8073 0.5533 0.0680 1510 40 202.1 6.13 1238 416.84 309.59 79.4 1.8108 0.5522 0.0670 1520 40 202.09 6.12 1237 416.50 310.09 79.45 1.8058 0.5538 0.0685 1530 40 202.04 6.12 1236 416.16 309.90 79.45 1.8059 0.5537 0.0685 1540 40 202.08 6.13 1238 416.84 310.09 79.45 1.8073 0.5533 0.0680 1550 40 201.97 6.12 1236 416.16 309.83 79.55 1.8072 0.5533 0.0681 1560 40 201.94 6.12 1236 416.16 309.60 79.55 1.8090 0.5528 0.0675 1570 40 201.98 6.12 1237 416.50 309.69 79.6 1.8101 0.5524 0.0672 1580 40 202 6.12 1237 416.50 309.83 79.55 1.8087 0.5529 0.0676 1590 40 201.98 6.12 1237 416.50 310.36 79.45 1.8037 0.5544 0.0691 1600 40 201.98 6.12 1236 416.16 310.03 79.45 1.8048 0.5541 0.0688 1610 40 202.01 6.12 1237 416.50 309.93 79.55 1.8079 0.5531 0.0679 1620 40 201.62 6.12 1233 415.15 309.58 79.65 1.8056 0.5538 0.0686 1630 40 201.98 6.12 1237 416.50 309.69 79.7 1.8109 0.5522 0.0669 1640 40 202.02 6.12 1237 416.50 309.89 79.7 1.8093 0.5527 0.0674 1650 40 202.01 6.12 1237 416.50 310.23 79.8 1.8075 0.5532 0.0680 1660 40 202.02 6.12 1237 416.50 310.49 79.8 1.8054 0.5539 0.0686 1670 40 202.13 6.13 1238 416.84 310.26 79.8 1.8087 0.5529 0.0676 1680 40 202.04 6.12 1237 416.50 310.56 79.8 1.8049 0.5540 0.0688 1690 40 201.97 6.12 1236 416.16 310.50 79.9 1.8047 0.5541 0.0688 1700 40 201.94 6.12 1236 416.16 310.43 79.9 1.8052 0.5539 0.0687 1710 40 201.91 6.12 1236 416.16 310.23 79.85 1.8064 0.5536 0.0683 1720 40 201.88 6.12 1235 415.82 311.03 79.9 1.7991 0.5558 0.0706 1730 40 201.89 6.11 1234 415.49 310.67 80 1.8012 0.5552 0.0699 1740 '40 201.86 6.12 1235 415.82 310.37 80.2 1.8066 0.5535 0.0682 1750 40 201.74 6.11 1233 415.15 310.58 80.2 1.8021 0.5549 0.0696 1760 40 201.88 6.12 1235 415.82 310.67 80.2 1.8043 0.5542 0.0690 1770 40 201.9 6.12 1235 415.82 310.83 80.3 1.8037 0.5544 0.0691 1780 40 201.8 6.11 1234 415.49 310.37 80.3 1.8059 0.5537 0.0685 1790 40 201.9 6.12 1235 415.82 310.73 80.3 1.8045 0.5542 0.0689 1800 40 203.1 6.16 1250 420.88 312.21 80.35 1.8152 0.5509 0.0656 1810 40 203.08 6.16 1250 420.88 312.11 80.45 1.8168 0.5504 0.0652 1820 40 202.99 6.15 1249 420.54 312.62 80.55 1.8121 0.5518 0.0666 1830 40 203.02 6.16 1250 420.88 312.18 80.65 1.8178 0.5501 0.0648 1840 40 202.93 6.15 1248 420.20 312.65 80.8 1.8124 0.5518 0.0665 1850 40 202.82 6.15 1247 419.87 312.49 80.95 1.8134 0.5515 0.0662 1860 40 202.76 6.15 1246 419.53 312.23 80.95 1.8140 0.5513 0.0660 1870 40 201.92 6.12 1236 416.16 311.50 80.7 1.8031 0.5546 0.0693 1880 40 201.87 6.12 1235 415.82 311.17 80.6 1.8050 0.5540 0.0687 1890 40 201.94 6.12 1235 415.82 311.27 80.8 1.8043 0.5542 0.0690 1900 40 201.88 6.12 1235 415.82 311.67 80.8 1.8011 0.5552 0.0699 1910 40 201.75 6.11 1233 415.15 311.41 80.8 1.8002 0.5555 0.0702 1920 40 201.88 6.12 1235 415.82 311.50 80.95 1.8036 0.5544 0.0692 1930 40 201.9 6.12 1235 415.82 311.10 81 1.8071 0.5534 0.0681 1940 40 201.78 6.11 1234 415.49 310.34 81 1.8117 0.5520 0.0667 1950 40 201.83 6.12 1234 415.49 311.04 81 1.8062 0.5537 0.0684 1960 40 201.68 6.11 1233 415.15 310.91 81 1.8057 0.5538 0.0685 1970 40 201.94 6.12 1235 415.82 311.27 81 1.8058 0.5538 0.0685 1980 40 201.66 6.11 1231 414.48 310.88 81 1.8030 0.5546 0.0694 1990 40 201.87 6.11 1234 415.49 311.24 81 1.8046 0.5541 0.0689 2000 40 201.94 6.12 1235 415.82 311.47 81 1.8043 0.5542 0.0690 2010 40 201.85 6.12 1235 415.82 311.23 80.85 1.8049 0.5540 0.0688 2020 40 201.66 6.11 1232 414.81 311.25 81 1.8016 0.5551 0.0698 2030 40 201.5 6.11 1230 414.14 311.12 81 1.7997 0.5557 0.0704 2040 40 201.8 6.12 1234 415.49 311.51 81 1.8025 0.5548 0.0695 2050 40 201.85 6.12 1235 415.82 311.53 80.9 1.8030 0.5546 0.0694 2060 40 201.85 6.12 1235 415.82 311.13 81 1.8069 0.5534 0.0682 2070 40 201.78 6.12 1234 415.49 311.57 81 1.8020 0.5549 0.0697 2080 40 201.96 6.12 1236 416.16 311.96 81.1 1.8026 0.5547 0.0695 2090 40 201.92 6.12 1235 415.82 311.57 81.15 1.8047 0.5541 0.0688 2100 40 201.79 6.12 1235 415.82 312.30 81.1 1.7985 0.5560 0.0707 2110. 40 201.99 6.12 1236 416.16 312.73 81.1 1.7967 0.5566 0.0713 2120 40 201.92 6.12 1236 416.16 312.63 81.2 1.7982 0.5561 0.0708 2130 40 201.89 6.12 1235 415.82 312.30 81.2 1.7993 0.5558 0.0705 2140 40 201.82 6.11 1234 415.49 312.91 81.3 1.7940 0.5574 0.0722 2150 40 201.87 6.12 1235 415.82 312.97 81.3 1.7949 0.5571 0.0719 2160 40 201.9 6.12 1235 415.82 312.83 81.45 1.7971 0.5564 0.0712 2170 40 201.88 6.12 1235 415.82 312.87 81.5 1.7972 0.5564 0.0711 2180 40 201.81 6.11 1234 415.49 312.61 8.1.5 1.7978 0.5562 0.0710 Appendix A. 7 147 2190 40 201.91 6.12 1235 415.82 312.77 81.5 1.7980 0.5562 0.0709 2200 40 201.95 6.12 1236 416.16 313.10 81.5 1.7969 0.5565 0.0712 2210 40 201.99 6.12 1236 416.16 313.16 81.5 1.7964 0.5567 0.0714 2220 40 201.99 6.12 1236 416.16 313.26 81.6 1.7964 0.5567 0.0714 2230 40 202.01 6.12 1237 416.50 313.29 81.7 1.7984 0.5561 0.0708 2240 40 201.93 6.12 1236 416.16 313.33 81.7 1.7967 0.5566 0.0713 2250 40 201.96 6.12 1236 416.16 313.50 81.7 1.7954 0.5570 0.0717 2260 40 201.99 6.12 1236 416.16 313.76 81.7 1.7933 0.5576 0.0724 2270 41 201.93 6.12 1236 416.16 313.66 81.8 1.7948 0.5572 0.0719 2280 41 201.85 6.12 1235 415.82 313.17 81.9 1.7980 0.5562 0.0709 2290 41 201.95 6.12 1236 416.16 312.76 81.95 1.8030 0.5546 0.0694 2300 40 201.88 6.12 1236 416.16 313.70 81.95 1.7968 0.5569 0.0716 2310 41 201.97 6.12 1236 416.16 313.30 82 1.7992 0.5558 0.0705 2320 40 201.62 6.12 1233 415.15 313.54 82.1 1.7938 0.5575 0.0722 2330 40 203.37 6.17 1254 422.22 314.50 78.55 1.7895 0.5588 0.0736 2340 41 203.36 6.17 1254 422.22 313.97 75.35 1.7695 0.5651 0.0799 2350 41 203.08 6.16 1251 421.21 314.08 74.25 1.7563 0.5694 0.0841 2360 41 203.06 6.16 1251 421.21 313.91 74.25 1.7575 0.5690 0.0837 2370 41 203.11 6.16 1252 421.55 314.41 74.55 1.7575 0.5690 0.0837 2380 41 203.11 6.16 1252 421.55 314.47 74.75 1.7585 0.5687 0.0834 2390 41 203.1 6.16 1251 421.21 314.34 74.75 1.7580 0.5688 0.0835 2400 41 203.13 6.16 1251 421.21 314.44 74.8 1.7577 0.5689 0.0837 2410 41 203.14 6.16 1252 421.55 314.67 75.05 1.7592 0.5684 0.0832 2420 41 202.94 6.16 1250 420.88 314.31 75.2 1.7602 0.5681 0.0829 2430 41 203.09 6.16 1250 420.88 314.61 75.1 1.7572 0.5691 0.0838 2440 41 203.05 6.16 1251 421.21 314.76 75.05 1.7571 0.5691 0.0839 2450 41 202.03 6.13 1237 416.50 313.36 74.95 1.7470 0.5724 0.0871 2460 41 201.78 6.12 1234 415.49 313.24 74.9 1.7433 0.5736 0.0884 2470 41 201.64 6.11 1233 415.15 313.34 75.05 1.7422 0.5740 0.0887 2480 41 201.72 6.12 1234 415.49 313.81 75.2 1.7413 0.5743 0.0690 2490 41 201.87 6.12 1235 415.82 313.50 75.3 1.7457 0.5728 0.0876 2500 41 201.73 6.12 1234 415.49 . 313.97 75.5 1.7423 0.5740 0.0887 2510 41 201.73 6.12 1234 415.49 313.87 75.55 1.7434 0.5736 0.0883 2520 41 201.74 6.12 1234 415.49 314.37 75.6 1.7401 0.5747 0.0894 2530 41 201.75 6.12 1234 415.49 314.14 75.7 1.7425 0.5739 0.0886 2540 41 201.79 6.12 1235 415.82 314.03 75.7 1.7447 0.5732 0.0879 2550 41 201.79 6.12 1235 415.82 314.63 75.8 1.7411 0.5744 0.0891 2560 41 201.69 6.12 1234 415.49 314.54 75.95 1.7414 0.5742 0.0890 2570 41 201.7 6.11 1233 415.15 314.41 75.95 1.7410 0.5744 0.0891 2580 41 203.28 6.16 1253 421.89 316.70 76.3 1.7549 0.5698 0.0846 2590 41 202.88 6.15 1248 420.20 316.45 76.45 1.750S 0.5712 0.0859 2600 41 202.76 6.15 1247 419.87 316.52 76.45 1.7489 0.5718 0.0865 2610 41 202.61 6.15 1245 419.19 316.13 76.55 1.7497 0.5715 0.0863 2620 41 203.18 6.17 1253 421.89 317.20 76.65 1.7538 0.5702 0.0849 2630 41 203.11 6.16 1252 421.55 317.07 76.9 1.7552 0.5697 0.0845 2640 41 202.94 6.16 1250 420.88 317.28 77 1.7516 0.5709 0.0856 2650 41 202.99 6.16 1250 420.88 317.45 77.05 1.7508 0.5712 0.0859 2660 41 202.97 6.16 1250 420.88 317.01 77.15 1.7546 0.5699 0.0846 2670 41 203.01 6.16 1250 420.88 317.68 77.25 1.7505 0.5713 0.0860 2680 41 203.05 6.16 1251 421.21 317.51 77.25 1.7532 0.5704 0.0851 2690 41 202.73 6.15 1247 419.87 317.36 77.45 1.7501 0.5714 0.0861 Run SSB11 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 40 170.17 5.13 872 293.60 270.03 78 1.5289 0.6541 0.0000 10 40 170.09 5.12 871 293.27 268.37 77.2 1.5341 0.6519 -0.0022 20 40 169.82 5.11 868 292.26 267.81 76.3 1.5260 0.6553 0.0012 30 40 169.62 5.11 866 291.58 268.56 75.9 1.5135 0.6607 0.0067 40 40 169.72 5.11 867 291.92 266.45 75.75 1.5308 0.6533 -0.0008 50 40 169.56 5.1 865 291.25 267.63 75.55 1.5163 0.6595 0.0054 60 40 169.45 5.1 664 290.91 269.83 75.7 1.4985 0.6673 0.0133 70 40 169.11 5.09 860 289.56 270.11 75.75 1.4898 0.6712 0.0172 80 40 169.03 5.09 860 289.56 271.08 75.85 1.4832 0.6742 0.0202 90 40 168.83 5.08 857 288.55 273.29 75.85 1.4615 0.6842 0.0302 100 40 168.72 5.07 856 288.22 273.03 75.85 1.4617 0.6841 0.0301 110 40 168.78 5.07 856 288.22 273.76 75.85 1.4563 0.6867 0.0326 120 40 168.66 5.07 855 287.88 273.23 75.75 1.4578 0.6860 0.0319 130 40 168.55 5.07 854 287.54 272.77 75.75 1.4595 0.6852 0.0311 140 40 168.43 5.06 853 287.21 273.54 75.8 1.4525 0.6885 0.0344 150 40 168.45 5.06 853 287.21 273.07 75.85 1.4563 0.6867 0.0326 160 40 168.25 5.06 851 286.53 273.51 75.95 1.4503 0.6895 0.0354 170 40 168.29 5.06 851 286.53 273.48 76.15 1.4521 0.6887 0.0346 180 40 168.19 5.06 850 286.20 273.91 76.05 1.4464 0.6914 0.0373 190 40 168.25 5.05 850 286.20 274.58 76.15 1.4423 0.6933 0.0393 200 40 168.16 5.05 850 286.20 274.91 76.15 1.4399 0.6945 0.0404 Appendix A.7 148 210 40 168.01 5.05 848 285.52 274.72 76.2 1.4382 0.6953 0.0412 220 40 167.99 5.05 848 285.52 275.15 76.25 1.4355 0.6966 0.0426 230 39 167.94 5.05 848 285.52 275.92 76.35 1.4307 0.6990 0.0449 240 39 167.95 5.05 848 285.52 276.39 76.35 1.4273 0.7006 0.0465 250 39 167.88 5.04 847 285.19 277.16 76.35 1.4202 0.7041 0.0501 260 39 167.98 5.05 846 285.52 277.92 76.35 1.4165 0.7060 0.0519 270 39 168.01 5.05 848 285.52 278.55 76.45 1.4127 0.7078 0.0538 280 39 167.88 5.05 847 285.19 279.09 76.55 1.4080 0.7102 0.0562 290 39 167.97 5.05 848 285.52 279.69 76.6 1.4059 0.7113 0.0572 300 39 168.02 5.05 848 285.52 280.55 76.65 1.4003 0.7141 0.0601 310 39 167.8 5.04 845 284.51 281.87 76.65 1.3864 0.7213 0.0672 320 39 168.06 5.05 849 285.86 283.08 76.65 1.3847 0.7222 0.0681 330 39 168.01 5.05 848 285.52 286.89 76.65 1.3581 0.7363 0.0823 340 39 167.84 5.04 846 284.85 288.73 76.65 1.3431 0.7445 0.0905 350 39 167.78 5.04 846 284.85 289.96 76.7 1.3357 0.7487 0.0946 360 39 167.96 5.05 848 285.52 289.05 76.8 1.3452 0.7434 0.0893 370 39 167.84 5.04 846 284.85 289.56 76.9 1.3394 0.7466 0.0925 380 39 167.79 5.04 846 284.85 289.86 76.95 1.3379 0.7475 0.0934 390 39 167.74 5.04 846 284.85 289.86 77.05 1.3385 0.7471 0.0930 400 39 167.63 5.03 843 283.84 289.67 77.05 1.3349 0.7491 0.0950 410 39 167.74 5.04 845 284.51 290.33 77.1 1.3343 0.7495 0.0954 420 39 167.63 5.03 844 284.18 290.94 77.1 1.3289 0.7525 0.0984 430 39 167.7 5.04 845 284.51 291.87 77.15 1.3251 0.7547 0.1006 440 39 167.69 5.03 844 284.18 291.64 77.25 1.3255 0.7544 0.1004 450 39 168.12 5.05 849 285.86 292.95 77.3 1.3256 0.7544 0.1003 460 39 168.07 5.05 848 285.52 293.92 77.35 1.3184 0.7585 0.1045 470 39 167.91 5.04 846 284.85 294.40 77.35 1.3124 0.7620 0.1079 480 39 167.96 5.04 847 285.19 296.63 77.35 1.3006 0.7689 0.1148 490 39 167.88 5.04 846 284.85 291.73 77.35 1.3287 0.7526 0.0985 500 39 168.01 5.05 848 285.52 291.85 77.35 1.3311 0.7513 0.0972 510 39 168.03 5.05 848 285.52 289.82 77.35 1.3438 0.7442 0.0901 520 39 168.07 5.05 848 285.52 284.72 77.35 1.3769 0.7263 0.0722 530 39 167.99 5.05 848 285.52 282.22 77.3 1.3933 0.7177 0.0636 540 39 168.02 5.05 848 285.52 282.35 77.35 1.3928 0.7180 0.0639 550 39 167.89 5.04 847 285.19 281.29 77.35 1.3984 0.7151 0.0611 560 39 167.9 5.05 847 285.19 280.26 77.35 1.4055 0.7115 0.0574 570 39 167.89 5.05 847 285.19 280.06 77.45 1.4076 0.7104 0.0564 580 39 168.01 5.05 849 285.86 280.05 77.5 1.4113 0.7086 0.0545 590 39 167.94 5.05 847 285.19 279.46 77.55 1.4124 0.7080 0.0539 600 39 168.03 5.05 848 285.52 279.92 77.5 1.4105 0.7090 0.0549 610 39 167.99 5.05 848 285.52 280.82 77.5 1.4043 0.7121 0.0580 620 39 168.05 5.05 849 285.86 281.82 77.5 1.3991 0.7148 0.0607 630 39 167.97 5.05 848 285.52 281.55 77.55 1.3996 0.7145 0.0604 640 39 168.05 5.05 848 285.52 280.75 77.55 1.4051 0.7117 0.0576 650 39 167.93 5.05 848 285.52 281.42 77.55 1.4005 0.7140 0.0600 660 39 167.98 5.05 848 285.52 281.65 77.55 1.3969 0.7148 0.0608 670 39 168.08 5.05 849 285.86 282.25 77.6 1.3968 0.7159 0.0619 680 39 168 5.05 848 285.52 281.85 77.6 1.3979 0.7154 0.0613 690 39 167.96 5.05 848 285.52 281.45 77.7 1.4013 0.7136 0.0596 700 39 167.9 5.05 847 285.19 281.43 77.75 1.4002 0.7142 0.0601 710 39 167.96 5.05 847 285.19 281.23 77.7 1.4012 0.7137 0.0596 720 39 168.14 5.05 850 286.20 281.95 77.75 1.4016 0.7135 0.0594 730 39 168.06 5.05 849 285.86 281.32 77.75 1.4042 0.7121 0.0581 740 39 167.99 5.05 848 285.52 281.22 77.75 1.4033 0.7126 0.0586 750 39 168.09 5.05 849 285.86 280.28 77.8 1.4118 0.7083 0.0543 760 39 168.01 5.05 848 285.52 281.45 77.8 1.4020 0.7133 0.0592 770 39 168.13 5.05 849 285.86 281.35 77.85 1.4047 0.7119 0.0578 780 39 168.11 5.05 849 285.86 282.02 77.75 1.3994 0.7146 0.0605 790 39 167.83 5.05 847 285.19 280.16 77.85 1.4097 0.7094 0.0553 800 39 168.06 5.05 849 285.86 280.92 78 1.4087 0.7099 0.0558 810 39 168.16 5.06 850 286.20 282.15 78.05 1.4022 0.7131 0.0591 820 39 167.94 5.05 848 285.52 283.79 78.15 1.3885 0.7202 0.0662 830 39 168.19 5.05 850 286.20 286.35 78.15 1.3746 0.7275 0.0734 840 39 168.06 5.05 849 285.86 287.35 78.15 1.3664 0.7318 0.0778 850 39 168.02 5.05 849 285.86 287.65 78.15 1.3645 0.7329 0.0788 860 39 167.94 5.05 847 285.19 289.59 78.1 1.3484 0.7416 0.0875 870 39 168.08 5.05 849 285.86 290.42 78.15 1.3467 0.7426 0.0885 880 39 168.15 5.05 849 285.86 290.05 78.15 1.3490 0.7413 0.0872 890 39 168.04 5.05 849 285.86 289.85 78 1.3493 0.7411 0.0870 900 39 168.11 5.05 649 285.86 290.48 77.85 1.3444 0.7438 0.0898 910 39 167.77 5.04 846 284.85 287.06 77.75 1.3609 0.7346 0.0808 920 39 167.94 5.05 848 285.52 287.12 77.65 1.3631 0.7336 0.0796 930. 39 168.05 5.06 849 285.86 288.95 77.65 1.3528 0.7392 0.0851 940 39 168 5.05 849 285.86 288.02 77.65 1.3589 0.7359 0.0819 950 39 168.04 5.06 849 285.86 288.78 77.65 1.3539 0.7386 0.0845 960 39 167.94 5.05 848 285.52 287.89 77.65 1.3581 0.7363 0.0823 970 39 168.04 5.05 849 285.86 288.48 77.65 1.3558 0.7375 0.0835 980 40 168.04 5.05 849 285.86 288.12 77.65 1.3582 0.7363 0.0822 990 40 168.02 5.05 849 285.86 288.75 77.65 1.3541 0.7385 0.0844 1000 40 167.94 5.05 848 285.52 288.45 77.75 1.3551 0.7380 0.0839 1  40 167.95 5.05 848 285.52 289.25 77.7 1.3496 0.7409 0.0869 1020 40 167.96 5.05 848 285.52 289.05 77.65 1.3506 0.7404 0.0884 1030 40 167.77 1 5.04 846 284.85 289.83 77.5 1.3415 0.7454 0.0914 1040 39 167.87 5.05 847 285.19 290.06 77.45 1.3414 0.7455 0.0915 1050 39 167.93 5.05 847 285.19 291.33 77.45 1.3334 0.7500 0.0959 Appendix A. 7 149 | 1060 39 167.91 5.05 848 285.52 292.62 77.35 1.3263 0.7540 0.0999 | 1070 39 167.9 5.05 848 285.52 292.55 77.25 1.3261 0.7541 0.1000 | 1060 39 167.86 5.05 847 285.19 292.99 77.3 1.3222 0.7563 0.1023 1 1090 39 168 5.05 848 285.52 292.79 77.25 1.3247 0.7549 0.1008 1100 39 167.82 5.04 846 284.85 293.03 77.25 1.3201 0.7575 0.1035 ! 1110 39 167.96 5.05 848 285.52 293.22 77.25 1.3220 0.7564 0.1024 ! 1120 39 167.86 5.05 847 285.19 292.23 77.25 1.3266 0.7538 0.0996 1130 39 167.76 5.04 846 284.85 292.00 77.25 1.3264 0.7539 0.0998 1140 39 167.9 5.05 848 285.52 291.15 77.25 1.3348 0.7492 0.0951 1150 39 167.79 5.04 846 284.85 292.10 77.25 1.3258 0.7542 0.1002 1160 39 168 5.05 848 285.52 292.42 77.35 1.3276 0.7533 0.0992 1170 39 167.79 5.04 846 284.85 292.26 77.3 1.3251 0.7547 0.1006 1180 39 167.8 5.04 846 284.85 293.40 77.35 1.3185 0.7585 0.1044 1190 39 167.81 5.04 846 284.85 293.46 77.4 1.3184 0.7585 0.1045 1200 39 167.82 5.04 846 284.85 295.40 77.45 1.3070 0.7651 0.1111 1210 39 167.82 5.04 846 284.85 294.13 77.5 1.3149 0.7605 0.1064 1220 39 167.76 5.04 846 284.85 294.90 77.55 1.3106 0.7630 0.1090 1230 39 167.78 5.04 845 284.51 295.50 77.65 1.3060 0.7657 0.1116 1240 39 167.84 5.04 846 284.85 295.03 77.65 1.3104 0.7631 0.1091 1250 39 167.87 5.04 847 285.19 295.29 77.7 1.3106 0.7630 0.1089 1260 39 167.75 5.04 845 284.51 295.57 77.7 1.3059 0.7658 0.1117 1270 39 167.79 5.04 846 284.85 295.66 77.75 1.3072 0.7650 0.1110 1280 39 167.77 5.04 846 284.85 295.66 78.15 1.3096 0.7636 0.1095 1290 39 167.72 5.04 845 284.51 296.23 78.85 1.3088 0.7641 0.1100 1300 39 167.76 5.03 645 284.51 296.20 79.35 1.3120 0.7622 0.1081 1310 39 167.77 5.04 845 284.51 296.87 79.75 1.3104 0.7631 0.1091 1320 39 167.77 5.04 845 284.51 29753 80.05 1.3100 0.7634 0.1093 1330 39 167.81 5.04 846 284.85 297.56 80.3 1.3111 0.7627 0.1087 1340 39 167.76 5.04 845 284.51 297.83 80.55 1.3094 0.7637 0.1096 1350 39 167.9 5.04 847 285.19 298.03 80.8 1.3129 0.7617 0.1076 1360 39 167.64 5.04 844 284.18 298.07 74.8 1.2728 0.7657 0.1316 1370 39 167.72 5.04 845 284.51 298.10 74.25 1.2710 0.7868 0.1327 1380 39 167.8 5.03 845 284.51 297.93 74.15 1.2714 0.7865 0.1325 1390 39 167.73 5.03 845 284.51 297.70 74.25 1.2733 0.7854 0.1313 1400 40 167.89 5.04 846 284.85 298.76 74.3 1.2690 0.7880 0.1339 1410 40 167.73 5.04 845 284.51 298.97 74.4 1.2669 0.7893 0.1352 1420 40 167.66 5.03 844 284.18 299.70 74.6 1.2624 0.7921 0.1381 1430 40 167.67 5.03 844 284.18 299.34 74.75 1.2653 0.7903 0.1363 1440 40 168.07 5.05 848 285.52 300.39 74.85 1.2660 0.7899 0.1359 1450 40 167.68 5.03 844 284.18 300.64 75 15594 0.7940 0.1399 1460 40 167.67 5.03 844 284.18 300.54 75.05 1.2603 0.7935 0.1394 1470 40 167.68 5.03 843 283.64 300.07 75.05 15614 0.7928 0.1387 1480 40 167.64 5.03 843 283.34 300.87 75.15 1.2575 0.7953 0.1412 1490 40 167.64 5.03 843 283.84 300.64 75.15 1.2588 0.7944 0.1404 1500 40 167.44 5.02 841 283.16 301.61 75.2 1.2507 0.7996 0.1455 1510 40 167.53" 5.02 842 283.50 302.31 75.3 1.2488 0.8007 0.1467 1520 40 167.38 5.02 840 282.83 302.35 75.35 1.2459 0.8026 0.1486 1530 41 167.37 5.02 840 282.83 303.55 75.45 15399 0.8065 0.1524 1540 41 167.64 5.03 843 283.84 306.67 75.45 1.2276 0.8146 0.1606 1550 42 167.49 5.02 841 283.16 306.95 75.5 1.2235 0.8174 0.1633 1560 42 167.42 5.02 840 282.83 307.28 75.55 1.2205 0.8193 0.1653 1570 42 167.78 5.03 844 284.18 308.84 75.65 1.2187 0.8206 0.1665 1580 41 167.69 5.03 843 283.84 309.01 75.8 15171 0.8216 0.1676 1590 41 167.69 5.03 843 283.84 309.27 75.85 1.2160 0.8224 0.1683 1600 41 167.7 5.03 844 284.18 309.14 75.95 1.2187 0.8206 0.1665 1610 41 167.88 5.03 845 284.51 309.57 75.95 1.2179 0.8211 0.1671 1620 41 167.62 5.03 843 283.84 309.21 76 1.2171 0.6216 0.1676 1630 41 167.52 5.02 842 283.50 306.41 76.15 1.2312 0.8122 0.1581 1640 41 167.62 5.03 843 283.84 307.17 76 1.2278 0.8145 0.1604 1650 41 167.62 5.03 843 283.84 307.44 76.05 1.2267 0.8152 0.1612 1660 41 167.55 5.03 842 283.50 307.41 76.05 1.2254 0.8161 0.1620 1670 42 167.49 5.02 841 283.16 306.98 76.15 1.2267 0.8152 0.1611 1680 41 167.4 5.02 841 283.16 307.98 76.25 1.2220 0.8184 0.1643 1690 42 167.45 5.02 841 283.16 308.61 765 15184 0.6208 0.1667 1700 42 167.55 5.02 842 283.50 308.11 76.2 1.2225 0.8180 0.1640 1710 42 167.62 5.03 843 283.84 308.14 76.2 1.2238 0.8172 0.1631 1720 42 167.57 5.03 842 283.50 308.41 76.25 1.2211 0.8189 0.1648 1730 42 167.73 5.03 844 284.18 309.74 76.2 1.2168 0.8218 0.1677 1740 42 167.49 5.03 842 283.50 308.81 76.25 1.2190 0.8203 0.1663 1750 42 167.61 5.03 843 283.84 309.61 76.25 1.2163 0.8221 0.1681 1760 42 167.56 5.03 842 283.50 31154 76.35 1.2069 0.8285 0.1745 1770 42 167.33 5.02 839 282.49 30559 76.35 1.2339 0.8104 0.1564 1780 42 167.26 5.02 839 282.49 306.05 76.35 1.2298 0.8131 0.1591 1790 42 167.27 5.01 839 282.49 305.12 76.35 1.2348 0.8098 0.1558 1800 42 167.19 5.01 838 282.15 304.82 76.45 1.2355 0.8094 0.1553 1810 42 16754 5.01 838 282.15 305.96 76.5 1.2297 0.8132 0.1592 1820 42 167.22 5.01 838 282.15 304.56 76.55 1.2375 0.8081 0.1540 1830 42 167.2 5.01 838 282.15 305.22 76.6 1.2341 0.8103 0.1562 1840 42 167.23 5.02 839 282.49 305.95 76.65 1.2319 0.8117 0.1577 1850 42 167.24 5.01 839 282.49 305.89 76.7 1.2326 0.8113 0.1572 1860 42 167.3 5.01 839 282.49 305.12 76.75 1.2370 0.8084 0.1544 1870 42 167.23 5.01 838 282.15 304.72 76.8 1.2379 0.8078 0.1537 1880 42 167.24 5.01 838 282.15 305.19 76.8 1.2354 0.8095 0.1554 1890 42 167.2 5.01 838 282.15 304.92 76.8 1.2368 0.8085 0.1545 1900 42 167.18 5.01 838 282.15 305.16 76.8 1.2356 0.8093 0.1553 Appendix A. 7 150 j 1910 42 167.2 5.01 838 282.15 303.89 76.85 1.2427 0.8047 0.1506 i 1920 42 167.17 5.01 838 282.15 302.02 76.95 1.2536 0.7977 0.1436 1 1930 42 167.18 5.01 838 282.15 302.19 77.1 1.2535 0.7978 0.1437 I 1940 42 167.19 5.01 838 282.15 302.69 77.05 1.2505 0.7997 0.1456 | 1950 42 167.11 5.01 837 281.82 302.53 77.15 1.2504 0.7997 0.1457 ! 1960 42 167.12 5.01 838 282.15 300.86 77.2 1.2615 0.7927 0.1386 | 1970 42 167.14 5.01 838 282.15 298.02 77.35 1.2786 0.7821 0.1280 I I960 42 167.08 5.01 837 281.82 296.70 77.45 1.2854 0.7780 0.1239 1 1990 42 167.12 5.01 837 281.82 297.76 77.45 1.2792 0.7818 0.1277 2000 42 167.14 5.01 838 282.15 297.72 77.55 1.2815 0.7803 0.1263 i 2010 42 167.14 5.01 838 282.15 298.29 77.55 1.2782 0.7823 0.1283 i 2020 42 167.07 5.01 837 281.82 297.90 77.65 1.2796 0.7815 0.1275 i 2030 j 42 167.07 5.01 837 281.82 297.36 77.65 1.2827 0.7796 0.1256 1 2040 42 167.14 5.01 837 281.82 297.73 77.65 1.2805 0.7809 0.1269 i 2050 42 167.1 5.01 837 281.82 298.36 77.65 1.2769 0.7832 0.1291 i 2060 42 167.09 5.01 837 281.82 298.10 77.65 1.2784 0.7622 0.1282 2070 42 167.05 5 836 281.48 298.10 77.65 1.2769 0.7832 0.1291 2080 42 167.1 5 836 281.48 297.77 77.65 1.2788 0.7820 0.1279 2090 42 16752 5.01 838 282.15 298.16 77.65 1.2796 0.7815 0.1275 2100 42 167.17 5.01 838 282.15 297.79 77.65 1.2817 0.7802 0.1262 2110 42 167.14 5.01 837 281.82 297.86 77.65 1.2798 0.7814 0.1273 2120 42 167.1 5.01 837 281.62 297.90 77.65 1.2796 0.7815 0.1275 2130 42 167.19 5.01 838 282.15 297.49 77.65 1.2834 0.7792 0.1251 2140 42 167.13 5.01 837 281.82 296.36 77.65 1.2885 0.7761 0.1220 2150 42 167.19 5.01 838 282.15 296.72 77.75 1.2885 0.7761 0.1220 2160 42 16751 5.01 838 282.15 297.02 77.65 1.2862 0.7775 0,1234 2170 42 167.16 5.01 837 281.82 296.93 77.7 1.2855 0.7779 0.1238 2180 41 167.17 5.01 838 282.15 297.02 77.7 1.2865 0.7773 0.1233 2190 41 167.17 5.01 838 282.15 297.22 77.75 1.2856 0.7779 0.1238 2200 41 167.45 5.02 840 282.83 297.62 77.8 1.2866 0.7772 0.1232 2210 41 167.41 5.02 840 282.83 297.45 77.75 1.2873 0.7768 0.1227 2220 41 167.33 5.02 839 282.49 297.49 77.75 1.2856 0.7779 0.1238 2230 41 167.34 5.02 839 282.49 296.42 77.75 1.2919 0.7741 0.1200 2240 41 167.31 5.01 839 282.49 296.52 77.85 1.2919 0.7741 0.1200 2250 41 167.24 5.01 838 282.15 296.39 77.85 1.2911 0.7745 0.1205 2260 41 167.16 5.01 837 281.82 297.00 77.95 1.2866 0.7773 0.1232 2270 41 167.2 5.01 838 282.15 297.19 78.05 1.2875 0.7767 0.1226 2280 41 167.16 5.01 837 281.82 296.83 78.05 1.2881 0.7763 0.1223 2290 41 167.09 5.01 836 281.48 296.53 78.05 1.2883 0.7762 0.1221 2300 41 167.1 5.01 837 281.82 297.40 78.1 1.2851 0.7781 0.1241 2310 41 167.11 5.01 837 281.82 296.50 78.15 1.2907 0.7748 0.1207 2320 41 167.15 5.01 837 281.82 297.40 78.15 1.2854 0.7780 0.1239 2330 41 167.13 5.01 837 281.82 296.86 78.1 1.2882 0.7763 0.1222 2340 41 167.16 5.01 837 281.82 297.16 78.15 1.2868 0.7771 0.1231 2350 41 167.2 5.01 838 282.15 • 297.86 78.2 1.2845 0.7785 0.1244 2360 41 167.65 5.03 843 283.84 298.34 78.25 1.2896 0.7754 0.1213 2370 41 167.62 5.02 842 283.50 299.31 78.25 1.2825 0.7797 0.1257 2380 41 167.57 5.02 841 283.16 298.75 78.35 1.2848 0.7783 0.1243 2390 41 167.33 5.01 838 282.15 298.79 78.45 1.2805 0.7809 0.1269 2400 41 167.21 5 837 261.82 296.96 78.6 1.2906 0.7748 0.1208 2410 41 167.25 5.01 837 281.82 297.60 78.65 1.2872 0.7769 0.1228 2420 41 167.11 5.01 837 281.82 297.73 78.65 1.2864 0.7774 0.1233 2430 41 167.11 5 836 281.48 298.03 78.65 1.2831 0.7794 0.1253 2440 41 167.08 5 836 281.48 297.77 78.75 1.2852 0.7781 0.1240 2450 41 167.05 5 835 281.14 297.80 78.75 1.2835 0.7791 0.1251 2460 41 167.02 5 835 281.14 297.90 78.85 1.2835 0.7791 0.1251 2470 41 167.05 5 835 281.14 297.97 78.95 1.2837 0.7790 0.1250 2480 41 167.11 5 836 281.48 297.93 78.95 1.2854 0.7780 0.1239 2490 41 167.12 5 636 281.48 298.03 79.1 1.2857 0.7778 0.1237 2500 41 167.05 5 835 281.14 298.54 79.1 1.2812 0.7805 0.1264 2510 41 167.06 5 835 281.14 297.67 79.15 1.2866 0.7772 0.1232 2520 41 167.09 5 836 281.48 298.13 79.15 1.2854 0.7780 0.1239 2530 41 167.12 5 835 281.14 297.94 79.2 1.2853 0.7780 0.1240 2540 41 167.06 5 835 281.14 298.14 79.2 1.2841 0.7787 0.1247 2550 41 167.09 5 835 281.14 298.47 79.25 1.2825 0.7797 0.1257 2560 40 167.17 5 836 281.48 298.13 79.25 1.2860 0.7776 0.1235 2570 40 167.14 5 836 281.48 298.90 79.25 1.2815 0.7803 0.1263 2580 40 167.15 5 835 281.14 298.64 79.25 1.2815 0.7803 0.1263 2590 40 167.22 5 836 281.48 298.00 79.3 1.2871 0.7770 0.1229 2600 40 167.23 5 836 281.48 298.13 79.25 1.2860 0.7776 0.1235 2610 40 167.53 5.02 840 282.83 297.98 79.2 1.2927 0.7736 0.1195 2620 40 167.21 5 836 281.48 297.63 79.2 1.2886 0.7760 0.1220 2630 40 167.13 5 836 281.48 298.10 79.2 1.2859 0.7777 0.1236 2640 40 167.15 5 836 281.48 298.13 79.15 1.2854 0.7780 0.1239 2650 40 167.18 5 836 281.48 297.67 78.95 1.2870 0.7770 0.1230 2660 40 167.22 5 836 281.48 298.10 78.85 1.2838 0.7789 0.1249 2670 40 167.18 5 836 281.48 298.23 78.85 1.2831 0.7794 0.1253 2680 40 167.13 5 835 281.14 298.37 78.75 1.2801 0.7812 0.1271 2690 40 167.14 5 835 281.14 298.70 78.75 1.2782 0.7823 0.1283 2700 40 167.16 5 836 281.48 298.50 77.45 1.2734 0.7853 0.1312 2710 40 167.14 5 836 281.48 298.70 76.65 1.2677 0.7889 0.1348 2720' 40 167.08 5 835 281.14 298.97 76.4 1.2632 0.7917 0.1376 2730 40 167.17 5 836 281.48 298.67 76.4 1.2664 0.7896 0.1356 2740 40 167.16 5 836 281.48 298.73 76.35 1.2658 0.7900 0.1360 2750 41 167.16 5 836 281.48 299.40 76.35 1.2620 0.7924 0.1384 Appendix A. 7 151 2760 41 167.14 5 836 281.48 299.30 76.45 1.2631 0.7917 0.1376 2770 41 167.23 5 836 281.48 299.83 76.55 1.2607 0.7932 0.1392 2780 40 167.21 5 837 281.82 299.40 76.2 1.2627 0.7920 0.1379 2790 40 167.14 5 836 281.48 299.33 75.95 1.2601 0.7936 0.1395 2800 41 167.77 5.02 842 283.50 299.44 75.85 1.2679 0.7887 0.1346 2810 41 167.54 5.01 640 282.83 299.08 75.85 1.2670 0.7893 0.1352 2820 41 167.44 5.01 839 282.49 299.79 75.85 1.2615 0.7927 0.1387 2830 41 167.58 5.02 841 283.16 299.75 75.85 1.2647 0.7907 0.1366 2840 41 167.54 5.01 840 282.83 300.05 75.9 1.2618 0.7925 0.1385 2850 41 167.47 5.01 840 282.83 299.75 75.95 1.2637 0.7913 0.1372 2860 41 167.16 5 836 281.48 299.70 75.85 1.2575 0.7953 0.1412 2870 41 167.18 5 837 281.82 299.43 75.9 1.2608 0.7932 0.1391 2880 41 167.14 5 836 281.48 299.10 75.95 1.2614 0.7928 0.1387 2890 41 167.53 5.02 840 282.83 299.95 76.05 1.2632 0.7916 0.1376 2900 41 167.07 5 835 281.14 299.40 76.15 1.2593 0.7941 0.1400 2910 41 167.11 5 836 281.46 299.47 76.2 1.2607 0.7932 0.1391 2920 41 167.09 5 835 281.14 299.27 76.2 1.2603 0.7934 0.1394 2930 41 167.22 5 837 281.82 299.20 76.25 1.2641 0.7911 0.1370 2940 41 167.07 5 835 281.14 299.37 76.35 1.2606 0.7933 0.1392 2950 41 167.01 5 834 280.81 299.01 76.3 1.2609 0.7931 0.1390 2960 41 167.03 5 834 280.81 298.41 76.35 1.2646 0.7908 0.1367 2970 41 167.06 5 835 281.14 298.54 76.35 1.2654 0.7903 0.1362 2980 41 167.02 5 834 280.81 296.51 76.35 1.2640 0.7911 0.1371 2990 41 167.01 5 834 280.81 298.41 76.4 1.2649 0.7906 0.1365 3000 41 167.05 5 835 281.14 298.40 76.35 1.2661 0.7898 0.1358 3010 41 166.98 5 834 280.81 298.37 76.4 1.2651 0.7905 0.1364 3020 41 166.99 5 834 280.81 298.17 76.4 1.2662 0.7898 0.1357 3030 41 167.03 5 835 281.14 298.27 76.4 1.2672 0.7892 0.1351 3040 41 167.03 5 834 280.81 298.27 76.35 1.2653 0.7903 0.1362 3050 41 166.98 5 834 280.81 298.54 76.35 1.2638 0.7913 0.1372 3060 41 167.04 5 835 281.14 298.80 76.35 1.2638 0.7912 0.1372 3070 41 167 5 834 280.81 299.11 76.45 1.2612 0.7929 0.1389 3080 41 166.97 4.99 833 280.47 298.74 76.35 1.2612 0.7929 0.1389 3090 41 166.94 4.99 833 280.47 299.04 76.4 1.2597 0.7938 0.1398 3100 41 167.01 5 835 281.14 299.57 76.45 1.2601 0.7936 0.1396 3110 41 166.93 4.99 833 280.47 299.21 76.45 1.2591 0.7942 0.1402 3120 41 167 5 834 280.81 299.61 76.55 1.2589 0.7943 0.1403 3130 41 166.99 5 834 280.81 299.17 76.55 1.2614 0.7928 0.1387 3140 41 167.03 5 834 280.81 299.64 76.65 1.2593 0.7941 0.1400 3150 41 167.02 5 835 281.14 299.80 76.65 1.2599 0.7937 0.1397 3160 41 167.11 4.99 835 281.14 299.94 76.65 1.2591 0.7942 0.1401 3170 41 167.58 5.01 840 282.83 300.28 76.65 1.2647 0.7907 0.1366 3180 41 167.5 5.01 840 282.83 300.48 76.75 1.2641 0.7911 0.1370 3190 41 167.48 5.01 839 282.49 300.42 76.65 1.2624 0.7921 0.1381 3200 41 167.5 5.01 839 282.49 300.55 76.65 1.2617 0.7926 0.1385 3210 41 167.06 5 835 281.14 300.04 76.65 1.2586 0.7946 0.1405 3220 41 167.03 5 834 280.81 300.07 76.65 1.2568 0.7956 0.1416 3230 41 166.99 4.99 834 280.81 300.47 76.5 1.2538 0.7976 0.1435 3240 41 167.02 4.99 834 280.81 300.44 76.55 1.2542 0.7973 0.1432 3250 41 166.98 4.99 834 280.61 300.67 76.6 1.2532 0.7980 0.1439 3260 41 166.94 4.99 833 280.47 300.38 76.65 1.2536 0.7977 0.1436 3270 41 167.06 5 834 280.81 301.01 76.75 1.2522 0.7986 0.1446 3280 41 166.94 4.99 833 280.47 300.98 76.8 1.2511 0.7993 0.1452 3290 41 166.94 4.99 833 280.47 301.08 76.95 1.2514 0.7991 0.1450 3300 41 167.02 5 834 280.81 301.57 76.95 1.2501 0.7999 0.1459 3310 41 167.01 5 834 280.81 301.44 76.9 1.2506 0.7996 0.1456 3320 41 166.93 4.99 833 280.47 301.11 76.8 1.2504 0.7998 0.1457 3330 41 166.86 4.99 832 280.13 301.15 76.85 1.2489 0.8007 0.1466 3340 41 166.91 4.99 832 280.13 301.48 76.8 1.2468 0.6020 0.1480 3350 41 166.78 4.99 832 280.13 301.65 76.75 1.2456 0.8028 0.1488 3360 41 166.88 4.99 832 280.13 301.68 76.75 1.2454 0.8029 0.1489 3370 41 167.43 5 836 282.15 302.46 76.8 1.2504 0.7998 0.1457 3380 41 167.32 5 836 281.48 302.60 76.9 1.2472 0.8018 0.1478 3390 41 167.35 5.01 838 282.15 302.76 76.95 1.2495 0.8003 0.1462 3400 41 167.33 5 837 281.82 302.83 76.9 1.2474 0.8017 0.1476 3410 41 167.31 5 837 281.82 302.93 76.85 1.2465 0.8022 0.1482 3420 41 167.36 5.01 838 282.15 303.42 76.9 1.2456 0.8028 0.1488 3430 41 167.06 5 835 281.14 303.54 76.8 1.2400 0.8065 0.1524 3440 41 166.91 4.99 833 280.47 303.44 76.8 1.2375 0.8081 0.1540 3450 41 167.49 5.01 839 282.49 303.99 76.8 1.2434 0.8042 0.1502 3460 41 167.3 5 837 281.82 304.20 76.75 1.2391 0.8071 0.1530 3470 41 166.93 4.99 833 280.47 304.18 76.8 1.2335 0.8107 0.1566 3480 41 167.36 5 837 281.62 304.33 76.85 1.2389 0.8072 0.1531 3490 41 167.49 5 838 282.15 304.82 76.85 1.2377 0.8080 0.1539 3500 41 166.93 4.99 833 280.47 304.81 76.8 1.2301 0.8130 0.1589 3510 41 166.98 4.99 834 280.81 304.97 76.8 1.2307 0.8126 0.1585 3520 41 16755 5 837 281.82 305.16 76.85 1.2344 0.8101 0.1561 3530 41 167.36 5.01 838 282.15 306.12 76.85 1.2306 0.8126 0.1585 3540 41 167.47 5.01 839 282.49 306.22 77 1.2324 0.8114 0.1574 3550 41 167.01 4.99 834 280.61 305.91 76.95 1.2265 0.8153 0.1613 3560 41 167.32 5 837 281.82 306.33 76.9 1.2283 0.8141 0.1600 3570 41 166.91 4.99 833 280.47 306.94 76.9 1.2192 0.8202 0.1661 3580 41 167.44 5.01 839 282.49 307.49 76.85 1.2248 0.S164 0.1624 3590 41 167.1 5 835 281.14 307.24 76.9 1.2206 0.8193 0.1652 3600 41 167.41 5.01 838 282.15 307.92 76.95 1.2216 0.8186 0.1646 Appendix A. 7 152 3610 41 167.35 5.01 838 282.15 307.89 77 1.2220 0.8183 0.1643 3620 41 167.83 5.02 843 263.84 308.61 77 1.2255 0.8160 0.1619 3630 41 167.53 5.01 839 282.49 308.55 77 1.2200 0.8197 0.1656 3640 41 167.45 5.01 839 282.49 308.52 76.95 1.2199 0.8197 0.1657 3650 41 167.49 5.01 840 282.83 309.12 77 1.2185 0.8207 0.1666 3660 41 167.14 5 835 281.14 308.54 77 1.2143 0.8235 0.1695 3670 41 167.42 5.01 838 282.15 309.29 76.95 1.2144 0.8235 0.1694 3660 41 166.91 4.99 833 280.47 309.38 76.95 1.2067 0.8287 0.1746 3690 41 166.85 4.98 831 279.80 309.18 76.95 1.2048 0.8300 0.1759 3700 41 166.98 4.99 833 280.47 310.51 77.1 1.2016 0.8322 0.1781 3710 41 167 4.99 834 280.81 310.67 77.1 1.2022 0.8318 0.1777 3720 41 167.45 5.01 839 282.49 311.49 77 1.2047 0.8301 0.1760 3730 41 166.92 4.99 833 280.47 310.74 77.1 1.2004 0.8330 0.1790 3740 41 166.9 4.99 833 280.47 310.88 77.1 1.1997 0.8335 0.1795 3750 41 167.43 5.01 839 282.49 312.05 77.15 1.2026 0.8315 0.1775 3760 41 166.97 4.99 833 280.47 311.81 77.1 1.1950 0.8368 0.1828 3770 41 ' 166.99 5 834 280.81 312.64 77.1 1.1922 0.8388 0.1847 3780 41 167.16 5 835 281.14 313.27 77.15 1.1907 0.8398 0.1858 3790 41 167.38 5 838 282.15 313.96 77.1 1.1912 0.8395 0.1854 3800 41 167.75 5.02 842 283.50 314.94 77.25 1.1927 0.8384 0.1844 3810 41 167.63 5.02 841 283.16 314.85 77.25 1.1918 0.8391 0.1850 3820 41 167.61 5.01 840 282.83 315.35 77.35 1.1883 0.8415 0.1874 3830 41 167.47 5.01 839 282.49 315.49 77.25 1.1858 0.8433 0.1893 3840 41 167.16 5 835 281.14 315.80 77.35 1.1790 0.8481 0.1941 3850 41 167.32 5.01 838 282.15 315.89 77.35 1.1828 0.8454 0.1914 3860 41 166.93 4.99 833 280.47 316.24 77.45 1.1745 0.8514 0.1973 3870 41 167.33 5.01 838 282.15 317.19 77.55 1.1774 0.8493 0.1953 3880 41 167.36 5.01 838 282.15 317.92 77.65 1.1743 0.8516 0.1975 3890 41 167.13 5.01 837 281.82 318.43 77.65 1.1704 0.8544 0.2X3 3900 41 167.33 5 837 281.82 319.03 77.65 1.1675 0.8565 0.2024 3910 41 167.51 5.01 839 282.49 319.75 77.7 1.1671 0.8569 0.2028 3920 41 166.89 4.99 832 280.13 319.35 77.75 1.1595 0.8624 0.2084 3930 41 166.84 4.99 832 280.13 319.98 77.75 1.1565 0.8647 0.2106 3940 41 167.52 5.01 839 282.49 321.25 77.85 1.1606 0.8616 0.2076 3950 41 167.22 5 835 281.14 321.47 77.85 1.1540 0.8665 0.2125 3960 41 167.43 5.01 838 282.15 322.29 77.85 1.1543 0.8663 0.2123 3970 41 167.36 5 837 281.82 322.26 77.95 1.1535 0.8669 0.2129 3980 41 166.92 4.99 833 280.47 322.48 77.9 1.1468 0.8720 0.2180 3990 41 167.61 5.01 840 282.83 323.92 78.1 1.1506 0.8691 0.2151 4000 41 167.49 5 838 282.15 324.42 78.25 1.1462 0.8725 0.2184 4010 41 167.39 5 838 282.15 325.02 78.2 1.1431 0.8748 0.2207 4020 41 166.9 4.99 832 280.13 325.11 78.2 1.1345 0.8814 0.2274 4030 41 166.93 4.99 832 280.13 326.01 78.2 1.1304 0.8846 0.2306 4040 41 167.41 5 838 282.15 326.62 78.35 1.1355 0.8806 0.2266 4050 41 167.31 5 837 281.82 327.03 78.4 1.1335 0.8822 0.2262 4060 41 167.32 5 837 281.82 327.36 78.5 1.1324 0.8831 0.2290 4070 41 166.82 4.98 831 279.80 327.22 78.45 1.1247 0.8691 0.2350 4080 41 166.9 4.98 832 280.13 328.05 78.35 1.1219 0.8913 0.2373 4090 41 166.81 4.98 831 279.80 328.08 78.3 1.1202 0.8927 0.2387 4100 40 166.72 4.98 830 279.46 328.29 78.35 1.1181 0.8944 0.2403 4110 40 166.83 4.98 831 279.80 328.95 78.4 1.1167 0.8955 0.2414 4120 40 166.81 4.98 831 279.80 329.45 78.35 1.1143 0.8974 0.2434 4130 40 166.77 4.98 831 279.80 329.78 78.4 1.1130 0.8984 0.2444 4140 40 166.74 4.98 830 279.46 329.59 78.4 1.1126 0.8986 0.2448 4150 40 . 166.86 4.98 832 280.13 330.11 77.55 1.1092 0.9016 0.2475 4160 40 166.91 4.99 832 280.13 331.18 74.85 1.0929 0.9150 0.2610 4170 40 166.8 4.98 830 279.46 331.19 73.85 1.0860 0.9208 0.2668 4180 40 166.74 4.98 830 279.46 331.02 73.55 1.0854 0.9213 0.2673 4190 40 166.93 4.98 831 279.80 331.75 73.65 1.0841 0.9225 0.2684 4200 40 166.84 4.98 831 279.80 331.92 73.75 1.0838 0.9227 0.2686 4210 40 166.81 4.98 831 279.80 33255 73.85 1.0828 0.9235 0.2695 4220 40 167.62 5.01 839 282.49 333.62 73.95 1.0879 0.9192 0.2652 4230 40 167.5 5 838 282.15 333.89 74.05 1.0859 0.9209 0.2669 4240 40 167.64 5.01 840 282.83 334.15 74.15 1.0878 0.9193 0.2652 4250 40 167.39 5 837 281.82 334.13 74.15 1.0840 0.9225 0.2684 4260 40 167.31 5 836 281.48 334.33 74.25 1.0823 0.9240 0.2699 4270 40 167.43 5 837 281.82 334.63 74.25 1.0823 0.9239 0.2699 4280 40 166.75 4.99 831 279.80 333.62 74.25 1.0788 0.9270 0.2729 4290 40 166.78 4.98 831 279.80 333.88 74.25 1.0777 0.9279 0.2739 4300 40 166.84 4.98 831 279.80 334.22 74.35 1.0767 0.9288 0.2747 4310 40 167.42 5 837 281.82 335.16 74.65 1.0818 0.9244 0.2703 4320 40 167.12 5 835 281.14 334.10 74.75 1.0840 0.9225 0.2684 4330 40 166.71 4.98 830 279.46 334.25 74.9 1.0775 0.9281 0.2740 4340 40 166.88 4.98 832 280.13 334.51 75.05 1.0797 0.9262 0.2722 4350 40 166.78 4.98 831 279.80 334.72 75.15 1.0779 0.9277 0.2736 4360 40 167.27 5 837 281.62 335.73 75.2 1.0817 0.9245 0.2704 4370 40 166.89 4.98 832 280.13 334.48 75.2 1.0804 0.9256 0.2715 4380 40 166.78 4.98 831 279.80 334.92 75.25 1.0775 0.9281 0.2740 4390 40 166.59 4.98 829 279.12 334.76 75.35 1.0760 0.9294 0.2753 44X 40 166.72 4.98 830 279.46 334.75 75.45 1.0777 0.9279 0.2738 4410 40 167.72 5.01 841 283.16 336.68 75.75 1.0852 0.9215 0.2674 4420 40 167.74 5.01 841 283.16 336.58 75.95 1.0865 0.9204 0.2664 4430 40 167.62 5.01 839 282.49 336.69 76.05 1.0838 0.9226 0.2686 4440 40 167.63 5.01 840 282.83 336.75 76.1 1.0851 0.9216 0.2675 4450 40 167.52 5.01 839 262.49 336.92 76.05 1.0829 0.9235 0.2694 Appendix A. 7 153 4460 40 167.56 5.01 839 282.49 336.79 76.15 1.0838 0.9226 0.2686 4470 40 167.19 5 835 281.14 336.67 76.1 1.0790 0.9268 0.2728 4480 40 167.07 4.99 834 280.81 336.54 76.05 1.0780 0.9276 0.2736 4490 41 167.31 5 837 281.82 336.90 76.05 1.0804 0.9256 0.2715 4500 41 167.45 5.01 839 282.49 337.35 75.95 1.0807 0.9254 0.2713 4510 41 167.04 4.99 834 280.81 336.74 75.95 1.0768 0.9287 0.2747 Run SSB12 Time.min Pres. psi Volt Curent Power.W q, kw/m2 Ts,avg Tb.avg U,kW7K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 40 143.46 4.29 615 207.07 261.21 77.25 1.1256 0.8884 0.0000 10 40 143.09 4.27 612 206.06 260.62 78.5 1.1314 0.8838 -0.0046 20 40 142.9 4.27 610 205.39 253.29 76.6 1.1624 0.8603 -0.0281 30. 40 142.84 4.26 608 204.71 256.64 75.75 1.1317 0.8836 -0.0048 40 40 142.7 4.25 607 204.38 257.21 75.25 1.1232 0.8903 0.0019 50 40 142.73 4.25 607 204.38 256.77 74.9 1.1237 0.8899 0.0015 60 40 142.49 4.25 605 203.70 256.11 74.6 1.1223 0.8911 0.0027 70 40 142.58 4.25 606 204.04 255.74 74.4 1.1252 0.8888 0.0004 80 40 142.15 4.23 602 202.69 255.59 74.35 1.1184 0.8942 0.0058 90 40 142.02 4.23 600 202.02 254.90 74.25 1.1183 0.8942 0.0058 100 40 142.02 4.23 601 202.36 255.36 74.25 1.1173 0.8950 0.0066 110 40 141.95 4.23 600 202.02 252.70 74.25 1.1321 0.8833 -0.0051 120 40 141.75 4.22 598 201.35 254.54 74.4 1.1177 0.8947 0.0063 130 40 141.76 4.22 598 201.35 255.91 74.5 1.1099 0.9010 0.0126 140 40 141.77 4.22 598 201.35 252.77 74.5 1.1294 0.8854 -0.0030 150 40 141.81 4.22 599 201.68 252.04 74.5 1.1360 0.8803 -0.0081 160 40 141.61 4.22 597 201.01 252.41 74.6 1.1305 0.8846 -0.0038 170 40 141.46 4.21 596 200.67 252.21 74.6 1.1298 0.8851 -0.0033 180 40 141.47 4.21 596 200.67 252.71 74.65 1.1270 0.8873 -0.0011 190 40 141.46 4.21 596 200.67 252.61 74.75 1.1282 0.8863 -0.0021 200 40 141.29 4.21 595 200.34 252.42 74.75 1.1276 0.8868 -0.0016 210 40 141.32 4.21 595 200.34 252.75 74.75 1.1255 0.6885 0.0001 220 40 141.24 4.21 594 200.00 252.59 74.75 1.1246 0.8892 0.0008 230 40 141.15 4.2 593 199.66 252.92 74.75 1.1206 0.8924 0.0040 240 40 141.18 4.2 593 199.66 252.16 74.85 1.1261 0.8880 -0.0004 250 40 141.21 4.21 594 200.00 252.69 74.9 1.1249 0.8889 0.0005 260 40 141.2 4.2 594 200.00 252.15 75 1.1290 0.8858 -0.0026 270 40 141.1 4.2 593 199.66 252.09 74.85 1.1265 0.8877 -0.0007 280 40 141.09 4.2 592 199.33 252.39 74.65 1.1214 0.8917 0.0033 290 40 141.05 4.2 593 199.66 252.86 74.55 1.1198 0.8930 0.0046 300 40 140.95 4.2 592 199.33 252.49 74.5 1.1198 0.8930 0.0046 310 40 140.92 4.2 591 198.99 252.66 74.55 1.1172 0.8951 0.0067 320 40 140.94 4.2 592 199.33 252.29 74.55 1.1214 0.8917 0.0033 330 40 140.89 4.2 591 198.99 252.30 74.6 1.1198 0.8930 0.0046 340 40 140.94 4.2 591 198.99 253.03 74.55 1.1149 0.8969 0.0085 350 40 140.93 4.2 592 199.33 253.13 74.55 1.1162 0.8959 0.0075 360 40 140.86 4.2 591 198.99 253.20 74.55 1.1139 0.8978 0.0094 370 40 140.88 4.2 592 199.33 253.23 74.55 1.1156 0.8964 0.0080 360 40 141 4.2 592 199.33 253.66 74.55 1.1129 0.8986 0.0102 390 40 140.79 4.19 590 196.65 253.67 74.65 1.1097 0.9012 0.0128 400 40 141 4.2 592 199.33 254.03 74.75 1.1118 0.8994 0.0110 410 40 140.91 4.2 592 199.33 253.73 74.85 1.1143 0.8974 0.0090 420 40 140.87 4.19 591 198.99 253.53 74.85 1.1137 0.8979 0.0095 430 40 140.74 4.19 590 198.65 253.14 74.9 1.1146 0.8972 0.0088 440 40 140.8 4.19 590 198.65 253.47 74.95 1.1128 0.8986 0.0103 450 40 140.69 4.19 589 198.32 253.51 74.9 1.1104 0.9006 0.0122 460 40 140.77 4.19 590 198.65 253.47 74.95 1.1128 0.8986 0.0103 470 40 140.59 4.19 589 198.32 253.71 74.95 1.1094 0.9014 0.0130 480 40 140.61 4.19 589 198.32 253.84 75 1.1089 0.9018 0.0134 490 40 140.69 4.19 590 198.65 254.84 75 1.1046 0.9053 0.0169 500 40 140.71 4.19 590 198.65 254.47 75.05 1.1072 0.9032 0.0148 510 40 140.61 4.19 588 197.98 254.18 75.1 1.1056 0.9045 0.0161 520 40 140.47 4.18 588 197.98 254.31 75.1 1.1047 0.9052 0.0168 530 40 140.78 4.19 590 198.65 254.77 75.05 1.1054 0.9047 0.0163 540 40 140.62 4.19 589 198.32 254.81 75.05 1.1033 0.9064 0.0180 550 40 140.74 4.19 590 198.65 254.74 75 1.1053 0.9048 0.0164 560 40 140.67 4.19 589 198.32 254.71 74.95 1.1033 0.9064 0.0180 570 40 140.66 4.19 589 198.32 254.77 74.9 1.1025 0.9070 0.0186 580 40 140.63 4.19 589 198.32 255.54 74.95 1.0982 0.9106 0.0222 590 40 140.67 4.19 590 198.65 255.97 74.95 1.0974 0.9112 0.0228 600 40 140.68 4.19 589 198.32 255.84 75 1.0966 0.9119 0.0235 610 40 140.68 4.19 590 198.65 255.30 74.95 1.1015 0.9079 0.0195 620 40 140.45 4.18 587 197.64 254.81 74.95 1.0989 0.9100 0.0216 630 40 140.63 4.19 589 198.32 255.37 74.95 1.0992 0.9098 0.0214 640 40 140.39 4.18 586 197.31 254.95 74.95 1.0961 0.9123 0.0239 650 40 140.57 4.19 589 198.32 255.34 74.85 1.0988 0.9101 0.0217 660 40 140.56 4.19 588 197.98 255.98 74.85 1.0931 0.9149 0.0265 670 40 140.36 4.18 586 197.31 255.28 74.9 1.0838 0.9142 0.0258 660 40 140.51 4.18 588 197.98 255.91 74.85 1.0935 0.9145 0.0261 690 40 140.47 4.18 587 197.64 255.98 74.85 1.0912 0.9164 0.0281 700 40 140.3 4.18 586 197.31 255.62 74.85 1.0903 0.9172 0.0288 Appendix A. 7 154 710 40 140.22 4.17 585 196.97 255.85 74.75 1.0876 0.9194 0.0311 720 40 140.28 4.18 586 197.31 256.12 74.8 1.0882 0.9190 0.0306 730 40 140.2 4.17 585 196.97 256.19 74.85 1.0862 0.9206 0.0322 740 40 140.33 4.18 586 197.31 255.52 74.75 1.0915 0.9162 0.027S 750 40 140.27 4.18 586 197.31 255.75 74.65 1.0895 0.9179 0.0295 760 40 140.23 4.17 585 196.97 255.95 74.75 1.0870 0.9200 0.0316 770 40 140.26 4.17 585 196.97 256.12 74.85 1.0866 0.9203 0.0319 780 40 140.2 4.18 585 196.97 256.59 74.75 1.0832 0.9232 0.0348 790 40 140.39 4.18 587 197.64 256.31 74.75 1.0886 0.9186 0.0302 800 40 140.2 4.17 585 196.97 256.32 74.65 1.0842 0.9223 0.0339 810 40 140.07 4.17 584 196.63 256.59 74.75 1.0813 0.9248 0.0364 820 40 140.13 4.17 585 196.97 256.55 74.75 1.0834 0.9230 0.0346 830 40 140.13 4.17 584 196.63 256.16 74.S 1.0842 0.9223 0.0339 840 40 140.11 4.17 584 196.63 256.16 74.85 1.0845 0.9221 0.0337 850 40 140.12 4.17 584 196.63 25652 74.85 1.0841 0.9224 0.0340 860 40 140.18 4.17 585 196.97 256.39 74.95 1.0856 0.9211 0.0327 870 40 14053 4.18 585 196.97 257.02 74.95 1.0818 0.9244 0.0360 880 40 140.26 4.18 586 197.31 256.88 74.95 1.0845 0.9221 0.0337 890 40 140.14 4.17 585 196.97 257.35 75 1.0802 0.9256 0.0374 900 40 140.18 4.17 585 196.97 257.69 75.15 1.0791 0.9267 0.0383 910 40 140.21 4.17 585 196.97 257.55 75.25 1.0805 0.9255 0.0371 920 40 140.27 4.18 586 197.31 257.35 75.25 1.0835 0.9229 0.0345 930 40 140.2 4.17 585 196.97 257.25 75.25 1.0822 0.9240 0.0356 940 40 140.11 4.17 584 196.63 257.46 75.3 1.0795 0.9264 0.0380 950 40 140.25 4.18 586 197.31 257.92 75.45 1.0813 0.9248 0.0364 960 40 140.12 4.17 584 196.63 258.09 75.5 1.0769 0.9286 0.0402 970 40 140.34 4.18 586 197.31 258.15 75.65 1.0811 0.9250 0.0366 980 40 140.14 4.17 585 196.97 25852 75.85 1.0801 0.9259 0.0375 990 40 140.2 4.17 585 196.97 258.32 75.75 1.0789 0.9269 0.0385 1000 40 140.13 4.17 584 196.63 258.19 75.8 1.0781 0.9276 0.0392 1010 40 140.17 4.17 585 196.97 258.42 76.05 1.0801 0.9259 0.0375 1020 40 140.17 4.17 585 196.97 258.02 76.15 1.0830 0.9233 0.0349 1030 40 140.2 4.17 585 196.97 258.15 78.1 1.0819 0.9243 0.0359 1040 40 140.23 4.17 585 196.97 258.62 76.15 1.0795 0.9264 0.0380 1050 40 140.15 4.17 585 198.97 258.65 76.15 1.0793 0.9266 0.0382 1060 40 140.16 4.17 585 196.97 258.35 76.25 1.0816 0.9245 0.0361 1070 40 140.16 4.17 585 196.97 258.82 76.55 1.0806 0.9254 0.0370 1080 39 140.23 4.17 585 196.97 259.55 76.95 1.0787 0.9271 0.0387 1090 39 140.17 4.17 585 196.97 259.02 77.25 1.0836 0.9228 0.0344 1100 39 140.23 4.19 587 197.64 259.95 77.45 1.0830 0.9234 0.0350 1110 39 140.12 4.19 587 197.64 260.35 77.65 1.081 a 0.9244 0.0360 1120 39 140.23 4.19 587 197.64 260.71 77.75 1.0802 0.9257 0.0373 1130 39 140.62 4.2 591 198.99 261.40 78 1.0850 0.9216 0.0333 1140 38 140.39 4.19 588 197.98 261.31 80.05 1.0922 0.9155 0.0272 1150 38 140.23 4.19 587 197.64 262.38 81.95 1.0954 0.9129 0.0245 1160 38 140.31 4.19 587 197.64 262.85 83.05 1.0993 0.9097 0.0213 1170 38 140.26 4.18 587 197.64 263.68 83.65 1.0978 0.9109 0.0225 1180 38 140.19 4.18 586 197.31 263.28 83.9 1.0999 0.9092 0.0208 1190 40 140.45 4.19 588 197.98 259.68 76 1.0779 0.9277 0.0394 1200 39 140.36 4.19 588 197.98 259.78 75 1.0715 0.9333 0.0449 1210 39 140.22 4.19 587 197.64 259.71 74.6 1.0677 0.9366 0.0482 1220 39 140.44 4.19 588 197.98 260.34 74.6 1.0659 0.9382 0.0498 1230 39 140.36 4.17 586 197.31 258.88 74.65 1.0710 0.9337 0.0453 1240 39 140.17 4.18 586 197.31 259.62 74.85 1.0679 0.9364 0.0481 1250 39 140.19 4.18 586 197.31 259.78 74.9 1.0672 0.9370 0.0486 1260 39 140.17 4.18 586 197.31 259.12 75.05 1.0719 0.9329 0.0445 1270 39 140.36 4.19 587 197.64 259.58 75.1 1.0714 0.9334 0.0450 1280 39 140.19 4.18 586 197.31 259.32 75.25 1.0719 0.9329 0.0445 1290 39 140.15 4.18 586 197.31 260.18 75.45 1.0681 0.9363 0.0479 1300 39 140.11 4.18 585 196.97 260.55 75.55 1.0647 0.9392 0.0509 1310 39 140.17 4.18 586 197.31 260.08 75.75 1.0704 0.9342 0.0459 1320 39 140.19 4.18 586 197.31 260.38 75.85 1.0692 0.9353 0.0469 1330 39 140.14 4.18 585 196.97 259.72 75.9 1.0715 0.9332 0.0448 1340 39 140.43 4.19 588 197.98 259.81 75.95 1.0768 0.9287 0.0403 1350 39 140.24 4.18 587 197.64 261.08 76 1.0679 0.9364 0.0480 1360 39 140.15 4.18 585 196.97 260.09 76.1 1.0706 0.9341 0.0457 1370 39 140.12 4.18 585 196.97 260.32 76.15 1.0695 0.9350 0.0466 1380 39 140.11 4.18 585 196.97 260.12 76.25 1.0712 0.9335 0.0451 1390 39 140.07 4.18 585 196.97 260.42 76.4 1.0704 0.9343 0.0459 1400 39 140.26 4.18 566 197.31 26152 76.45 1.0679 0.9364 0.0481 1410 39 140.13 4.16 583 196.30 258.89 76.45 1.0759 0.9294 0.0410 1420 39 140.16 4.16 583 196.30 259.19 76.5 1.0745 0.9307 0.0423 1430 39 140.29 4.17 585 196.97 259.09 76.55 1.0791 0.9267 0.0383 1440 39 140.31 4.17 585 196.97 259.52 76.6 1.0768 0.9287 0.0403 1450 39 140.11 4.16 583 196.30 259.39 76.75 1.0747 0.9305 0.0421 1460 39 140.15 4.16 583 196.30 259.33 76.25 1.0722 0.9327 0.0443 1470 39 140.26 4.17 584 196.63 259.42 76.1 1.0726 0.9323 0.0439 1480 39 140.06 4.16 583 196.30 259.49 76.15 1.0706 0.9340 0.0456 1490 39 140.13 4.16 583 196.30 259.49 76.15 1.0706 0.9340 0.0456 1500 39 140.05 4.16 582 195.96 259.46 76.2 1.0693 0.9352 0.0468 1510 40 140.05 4.16 582 195.96 260.13 76.25 1.0657 0.9384 0.0500 1520 40 140.18 4.16 583 196.30 259.49 76.4 1.0721 0.9327 0.0444 1530 40 140.3 4.17 585 196.97 260.15 76.45 1.0722 0.9326 0.0443 1540 40 140.16 4.16 583 196.30 259.46 76.55 1.0732 0.9318 0.0434 1550 40 140.23 4.16 584 196.63 259.86 76.55 1.0727 0.9322 0.0438 Appendix A. 7 155 1560 39 140.36 4.17 585 196.97 260.12 76.75 1.0742 0.9310 0.0426 1570 40 140.05 4.16 582 195.96 259.23 76.8 1.0742 0.9310 0.0426 1580 40 140.24 4.16 584 196.63 260.56 76.8 1.0701 0.9345 0.0461 1590 40 140.16 4.16 583 196.30 260.56 76.95 1.0691 0.9354 0.0470 1600 40 140.18 4.16 583 196.30 260.43 76.75 1.0687 0.9357 0.0473 1610 40 140.16 4.16 583 196.30 260.76 77.05 1.0685 0.9359 0.0475 1620 40 140.22 4.17 584 196.63 260.36 77.05 1.0727 0.9322 0.0438 1630 40 140.17 4.16 584 196.63 260.99 77.15 1.0696 0.9349 0.0465 1640 40 140.16 4.16 583 196.30 259.93 77.15 1.0740 0.9311 0.0427 1650 40 140.24 4.17 584 196.63 260.26 77.25 1.0745 0.9307 0.0423 1660 40 140.38 4.17 585 196.97 261.12 77.2 1.0710 0.9337 0.0454 1670 40 140.25 4.17 584 196.63 260.69 77.15 1.0713 0.9334 0.0450 1680 40 140.1 4.16 583 196.30 259.96 77.15 1.0738 0.9313 0.0429 1690 40 140.16 4.16 583 196.30 260.69 77.25 1.0701 0.9345 0.0461 1700 40 140.23 4.16 584 196.63 260.66 77.25 1.0721 0.9327 0.0443 1710 40 140.14 4.16 583 196.30 260.56 77.25 1.0708 0.9338 0.0455 1720 40 140.04 4.16 582 195.96 260.56 77.45 1.0701 0.9344 0.0461 1730 40 140.31 4.17 585 196.97 261.22 77.45 1.0718 0.9330 0.0446 1740 40 140.31 4.17 585 196.97 261.82 77.55 1.0689 0.9355 0.0471 1750 40 140.1 4.16 583 196.30 260.73 77.55 1.0716 0.9332 0.0448 1760 40 140.18 4.16 584 196.63 261.89 77.55 1.0667 0.9375 0.0491 1770 40 140.2 4.16 584 196.63 261.52 77.55 1.0688 0.9356 0.0472 1780 40 140.25 4.17 584 196.63 261.52 77.65 1.0694 0.9351 0.0467 1790 40 140.13 4.16 583 196.30 261.23 77.75 1.0699 0.9347 0.0463 1800 40 140.11 4.16 583 196.30 261.23 74.65 1.0521 0.9505 0.0621 1810 41 140.5 4.17 586 197.31 261.55 73.2 1.0476 0.9546 0.0662 1820 40 140.16 4.16 583 196.30 260.29 73 1.0481 0.9541 0.0657 1830 40 140.18 4.16 584 196.63 260.89 72.75 1.0451 0.9568 0.0684 1840 40 140.36 4.17 585 196.97 260.59 72.7 1.0483 0.9539 0.0655 1850 40 139.94 4.16 582 195.96 260.50 72.65 1.0432 0.9586 0.0702 1860 40 140.18 4.16 583 196.30 261.06 72.6 1.0416 0.9601 0.0717 1870 40 140.27 4.17 584 196.63 260.72 72.6 1.0452 0.9567 0.0683 1880 40 140.15 4.16 583 196.30 260.73 72.6 1.0434 0.9584 0.0700 1890 40 140.06 4.16 583 196.30 260.26 72.75 1.0469 0.9552 0.0669 1900 . 40 140.07 4.16 583 196.30 261.13 72.75 1.0420 0.9597 0.0713 1910 40 140.02 4.16 582 195.96 260.30 72.75 1.0449 0.9571 0.0687 1920 40 140.07 4.16 583 196.30 260.86 72.9 1.0443 0.9575 0.0691 1930 40 140.14 4.16 583 196.30 260.63 72.75 1.0448 0.9571 0.0687 1940 40 140.08 4.16 583 196.30 260.76 73 1.0455 0.9565 0.0681 1950 40 139.99 4.16 582 195.96 260.56 73 1.0448 0.9572 0.0688 1960 40 140.06 4.16 582 195.96 259.93 73 1.0483 0.9539 0.0655 1970 40 139.96 4.15 582 195.96 260.56 73.05 1.0450 0.9569 0.0685 1980 40 140.02 4.16 582 195.96 260.26 73.1 1.0470 0.9551 0.0667 1990 40 140.05 4.16 582 195.96 260.43 73.2 1.0466 0.9555 0.0671 2000 40 139.95 4.15 581 195.62 260.73 73.2 1.0431 0.9587 0.0703 2010 40 140 4.16 582 195.96 260.56 73.25 1.0462 0.9559 0.0675 2020 39 140.25 4.16 584 196.63 261.86 73.35 1.0431 0.9567 0.0703 2030 39 140.21 4.16 584 196.63 261.39 73.35 1.0457 0.9563 0.0679 2040 40 140.14 4.16 583 196.30 260.93 73.35 1.0465 0.9556 0.0672 2050 40 140.03 4.16 582 195.96 261.03 73.3 1.0438 0.9580 0.0696 2060 40 140.32 4.17 585 196.97 260.85 73.4 1.0508 0.8517 0.0633 2070 40 140.19 4.16 583 196.30 261.26 73.4 1.0449 0.9570 0.0686 2080 40 140 4.16 582 195.96 262.10 73.4 1.0385 0.9629 0.0745 2090 40 140 4.16 582 195.96 261.76 73.45 1.0406 0.9610 0.0726 2100 40 139.95 4.16 582 195.96 261.13 73.5 1.0444 0.9575 0.0691 2110 40 139.97 4.16 582 195.96 261.86 73.5 1.0403 0.9612 0.0728 2120 40 139.86 4.16 581 195.62 260.70 73.5 1.0450 0.9570 0.0686 2130 40 139.97 4.16 582 195.96 261.60 73.5 1.0418 0.9599 0.0715 2140 40 140 4.16 582 195.96 261.76 73.6 1.0414 0.9602 0.0718 2150 40 140 4.16 582 195.96 260.93 73.6 1.0461 0.9560 0.0676 2160 40 140.12 4.16 583 196.30 261.49 73.6 1.0447 0.9572 0.0688 2170 40 140.26 4.16 584 196.63 262.02 73.6 1.0436 0.9583 0.0699 2180 40 140.22 4.16 584 196.63 262.29 73.7 1.0426 0.9591 0.0707 2190 40 140.04 4.16 582 195.96 262.06 73.75 1.0406 0.9610 0.0726 2200 40 140.1 4.16 583 196.30 261.46 73.7 1.0455 0.9565 0.0681 2210 40 140.15 4.16 583 196.30 282.03 73.65 1.0420 0.9597 0.0713 2220 40 140.29 4.17 584 196.63 262.46 73.7 1.0415 0.9601 0.0717 2230 40 140.26 4.17 584 196.63 261.99 73.6 1.0438 0.9581 0.0697 2240 40 140.33 4.17 585 196.97 262.52 73.6 1.0426 0.9591 0.0707 2250 40 140.17 4.16 584 196.63 261.82 73.65 1.0444 0.9575 0.0691 2260 40 140.27 4.17 584 196.63 262.16 73.7 1.0434 0.9584 0.0700 2270 40 139.96 4.15 582 195.96 261.40 73.75 1.0443 0.9576 0.0692 2280 40 140.04 4.16 582 195.96 262.16 73.8 1.0403 0.9612 0.0728 2290 40 140.03 4.16 583 196.30 262.26 73.75 1.0413 0.9603 0.0719 23X 40 140.05 4.16 583 196.30 262.16 73.75 1.0419 0.9598 0.0714 2310 40 140.1 4.16 583 196.30 262.49 73.75 1.0400 0.9615 0.0731 2320 40 140.04 4.16 583 196.30 262.86 73.8 1.0383 0.9631 0.0747 2330 40 140.07 4.16 583 196.30 261.99 73.9 1.0436 0.9582 0.0698 2340 40 140.2 4.17 584 196.63 262.56 73.8 1.0417 0.9599 0.0716 2350 40 140.06 4.16 583 196.30 262.83 73.8 1.0385 0.9630 0.0746 2360 40 140.23 4.17 584 196.63 263.52 73.75 1.0361 0.9651 0.0767 2370 40 140.11 4.16 583 196.30 262.19 73.75 1.0417 0.9600 0.0716 2380 40 140.01 4.16 583 196.30 262.46 73.9 1.0410 0.9606 0.0722 2390 40 140.16 4.17 584 196.63 262.59 74 1.0426 0.9591 0.0707 i 2400 40 140.15 4.16 584 196.63 262.39 74.1 1.0443 0.9576 0.0692 | Appendix A. 7 156 2410 40 140.12 4.16 583 196.30 262.26 74.1 1.0432 0.9586 0.0702 2420 40 140.14 4.16 583 196.30 262.99 74.25 1.0400 0.9615 0.0731 2430 40 140.18 4.16 584 196.63 262.59 74.3 1.0443 0.9576 0.0692 2440 40 140.05 4.16 583 196.30 262.59 74.4 1.0431 0.9587 0.0703 2450 40 140.14 4.16 583 196.30 263.19 74.4 1.0397 0.9618 0.0734 2460 40 140.14 4.16 583 196.30 263.39 74.35 1.0384 0.9631 0.0747 2470 40 140.39 4.17 585 196.97 263.12 74.4 1.0437 0.9581 0.0697 2460 40 140.44 4.17 586 197.31 264.18 74.4 1.0396 0.9619 0.0735 2490 40 140.36 4.17 585 196.97 263.35 74.4 1.0424 0.9593 0.0709 2500 40 140.22 4.17 584 196.63 263.66 74.5 1.0395 0.9620 0.0736 2510 40 140.36 4.17 585 196.97 263.89 74.5 1.0400 0.9615 0.0731 2520 40 140.26 4.17 585 196.97 263.79 74.45 1.0403 0.9612 0.0729 2530 40 140.4 4.17 585 196.97 263.52 74.5 1.0421 0.9596 0.0712 2540 40 140.22 4.17 584 196.63 263.79 74.6 1.0393 0.9621 0.0738 2550 40 140.05 4.16 583 196.30 262.73 74.6 1.0434 0.9584 0.0700 2560 40 140.23 4.17 584 196.63 263.96 74.65 1.0387 0.9627 0.0744 2570 40 140.09 4.16 583 196.30 264.19 74.75 1.0362 0.9651 0.0767 2560 40 140.38 4.17 585 196.97 264.22 74.8 1.0399 0.9617 0.0733 2590 40 140.16 4.16 583 196.30 264.13 74.7 1.0363 0.9650 0.0766 2600 40 140.37 4.17 585 196.97 263.85 74.65 1.0410 0.9606 0.0722 2610 40 140.99 4.19 590 198.65 265.27 74.6 1.0419 0.9598 0.0714 2620 40 140.56 4.18 587 197.64 264.81 74.6 1.0391 0.9624 0.0740 2630 40 140.7 4.18 589 198.32 265.27 74.75 1.0409 0.9607 0.0723 2640 40 140.29 4.17 585 196.97 264.02 74.75 1.0407 0.9609 0.0725 2650 40 140.93 4.19 590 198.65 265.74 74.9 1.0410 0.9606 0.0723 2660 40 141.03 4.19 591 198.99 266.06 75 1.0415 0.9602 0.0718 2670 40 140.75 4.18 588 197.98 265.58 75 1.0389 0.9626 0.0742 2660 40 140.82 4.18 589 198.32 265.47 75.15 1.0420 0.9597 0.0713 2690 40 140.77 4.18 589 198.32 265.67 75.25 1.0415 0.9602 0.0718 2700 40 140.68 4.18 588 197.98 265.44 75.45 1.0420 0.9597 0.0713 2710 • 40 140.69 4.18 588 197.98 264.58 75.55 1.0474 0.9548 0.0664 2720 40 140.35 4.17 585 196.97 264.65 75.75 1.0427 0.9590 0.0707 2730 40 140.23 4.16 584 196.63 264.52 75.9 1.0425 0.9593 0.0709 2740 40 140.28 4.16 584 196.63 265.12 76 1.0397 0.9618 0.0734 2750 40 140.27 4.17 584 196.63 265.26 76.15 1.0398 0.9617 0.0733 2760 40 140.59 4.18 587 197.64 264.85 76.25 1.0480 0.9542 0.0658 2770 40 140.29 4.16 584 196.63 264.59 76.4 1.0449 0.9571 0.0687 2760 39 140.26 4.16 584 196.63 264.56 76.45 1.0453 0.9566 0.0682 2790 39 140.6 4.18 587 197.64 265.08 76.5 1.0481 0.9541 0.0657 2600 39 140.7 4.18 588 197.98 266.18 76.6 1.0443 0.9576 0.0692 2610 39 140.53 4.17 586 197.31 266.02 76.75 1.0425 0.9593 0.0709 2620 40 140.54 4.17 586 197.31 266.18 76.75 1.0416 0.9601 0.0717 2830 40 140.57 4.17 586 197.31 266.48 76.85 1.0405 0.9611 0.0727 2840 40 140.61 4.18 587 197.64 266.38 76.65 1.0417 0.9600 0.0716 2850 40 140.5 4.17 586 197.31 266.12 76.55 1.0408 0.9608 0.0724 2860 40 140.59 4.17 587 197.64 266.45 76.55 1.0408 0.9608 0.0724 2870 40 140.3 4.16 584 196.63 265.06 76.5 1.0428 0.9589 0.0705 2880 40 140.36 4.16 584 196.63 265.12 76.5 1.0425 0.9593 0.0709 2890 40 140.19 4.16 583 196.30 266.09 76.45 1.0351 0.9661 0.0777 2900 40 140.64 4.18 588 197.98 266.78 76.5 1.0405 0.9611 0.0727 2910 40 140.54 4.18 587 197.64 266.88 76.65 1.0390 0.9625 0.0741 2920 40 140.43 4.18 587 197.64 265.75 76.75 1.0458 0.9562 0.0679 2930 40 139.99 4.16 582 195.96 265.56 76.85 1.0384 0.9630 0.0746 2940 40 140.05 4.16 582 195.96 265.53 76.9 1.0389 0.9626 0.0742 2950 40 140.05 4.16 582 195.96 265.20 76.9 1.0407 0.9609 0.0725 2960 40 140.05 4.16 582 195.96 265.53 76.95 1.0391 0.9623 0.0740 2970 40 139.91 4.15 581 195.62 265.10 76.9 1.0394 0.9621 0.0737 2980 40 139.98 4.15 581 195.62 264.33 76.85 1.0434 0.9584 0.0700 2990 40 140.11 4.16 583 196.30 265.26 76.8 1.0416 0.9601 0.0717 3000 40 139.99 4.16 582 195.96 265.30 76.75 1.0393 0.9622 0.0738 3010 40 139.96 4.15 581 195.62 265.17 76.85 1.0388 0.9627 0.0743 3020 40 139.97 4.16 582 195.96 264.66 76.95 1.0439 0.9579 0.0695 3030 40 140.03 4.16 582 195.96 265.56 77 1.0392 0.9623 0.0739 3040 40 140.02 4.16 582 195.96 265.43 77.05 1.0402 0.9613 0.0729 3050 40 140.16 4.16 583 196.30 266.13 77.15 1.0387 0.9627 0.0743 3060 40 139.99 4.16 582 195.96 265.50 77.25 1.0410 0.9606 0.0723 3070 40 140.06 4.16 583 196.30 265.66 77.35 1.0424 0.9593 0.0709 3080 40 140.14 4.16 583 196.30 265.83 77.4 1.0418 0.9599 0.0715 3090 40 140.04 4.16 582 195.96 266.10 77.4 1.0385 0.9629 0.0745 3100 40 139.93 4.15 581 165.62 266.00 77.45 1.0375 0.9639 0.0755 3110 40 140.02 4.16 582 195.96 266.16 77.45 1.0384 0.9630 0.0746 3120 40 140.06 4.16 583 196.30 266.16 77.45 1.0402 0.9614 0.0730 3130 40 140.07 4.16 582 195.96 266.13 77.35 1.0380 0.9634 0.0750 3140 40 140.05 4.15 582 195.96 265.70 77.25 1.0399 0.9617 0.0733 3150 41 139.9 4.15 581 195.62 265.87 77.25 1.0371 0.9642 0.0758 3160 40 140.02 4.16 582 195.96 265.76 77.25 1.0395 0.9620 0.0736 3170 40 140.03 4.16 582 195.96 265.50 77.25 1.0410 0.9606 0.0723 3180 41 139.97 4.15 581 195.62 266.27 77.35 1.0355 0.9657 0.0773 3190 41 140.06 4.16 583 196.30 266.06 77.3 1.0399 0.9616 0.0732 3200 41 140.02 4.16 582 195.96 266.30 77.3 1.0368 0.9645 0.0761 3210 41 139.96 4.16 582 195.96 266.00 77.35 1.0388 0.9627 0.0743 3220 41 139.93 4.15 581 195.62 266.10 77.45 1.0370 0.9644 0.0760 3230 41 139.94 4.16 582 195.96 266.20 77.45 1.0382 0.9632 0.0748 3240 41 140.92 4.19 590 198.65 268.54 77.45 1.0396 0.9619 0.0735 3250 41 140.65 4.18 588 197.98 268.01 77.5 1.0392 0.9623 0.0739 Appendix A. 7 157 3260 41 140.01 4.16 582 195.96 266.03 77.5 1.0394 0.9621 0.0737 3270 4 1 140.02 4.16 582 195.96 266.36 77.5 1.0376 0.9638 0.0754 3260 41 139.97 4.16 582 195.96 266.83 77.5 1.0350 0.9662 0.0778 3290 41 139.87 4.15 581 195.62 266.77 77.5 1.0336 0.9675 0.0791 3300 41 139.88 4.16 581 165.62 266.60 77.65 1.0353 0.9659 0.0775 3310 4 1 139.89 4.15 581 195.62 266.70 77.7 1.0350 0.9662 0.0778 3320 4 1 139.83 4.15 581 195.62 265.87 77.7 1.0396 0.9619 0.0735 3330 41 139.82 4.15 581 195.62 266.80 77.75 1.0348 0.9664 0.0780 3340 4 i 139.93 4.16 582 195.96 266.73 77.75 1.0369 0.9644 0.0760 3350 4 1 139.95 4.16 582 195.96 266.13 77.8 1.0405 0.6611 0.0727 3360 41 139.75 4.15 580 195.29 265.77 77.75 1.0386 0.9628 0.0744 3370 41 140.06 4.16 583 196.30 266.39 77.75 1.0406 0.9610 0.0726 3380 41 140.69 4.18 589 198.32 269.11 77.75 1.0364 0.9649 0.0765 3390 41 139.93 4.15 581 195.62 267.30 77.65 1.0315 0.9695 0.0811 3400 4 1 139.94 4.15 581 195.62 266.87 77.65 1.0338 0.9673 0.0789 3410 4 1 139.94 4.15 581 195.62 266.47 77.65 1.0360 0.9652 0.0768 3420 41 139.9 4.16 581 195.62 266.77 77.65 1.0344 0.9667 0.0784 3430 41 139.88 4.15 581 195.62 266.77 77.65 1.0344 0.9667 0.0784 3440 4 1 139.75 4.15 580 195.29 266.67 77.65 1.0320 0.9689 0.0806 3450 41 139.88 4.15 581 195.62 266.97 77.7 1.0336 0.9675 0.0791 3460 41 139.94 4.16 582 195.96 266.73 77.75 1.0369 0.9644 0.0760 3470 41 140.02 4.16 582 195.96 267.26 77.75 1.0340 0.9671 0.0787 3480 4 1 139.98 4.16 582 195.96 267.46 77.75 1.0329 0.9681 0.0797 3490 4 1 139.97 4.16 582 195.96 267.33 77.8 1.0339 0.9672 0.0788 3500 41 139.82 4.15 581 195.62 267.63 77.85 1.0308 0.9702 0.0818 3510 41 139.98 4.16 582 195.96 267.66 77.9 1.0326 0.9684 0.0800 3520 4 1 140.05 4.16 583 196.30 267.69 77.9 1.0343 0.9669 0.0785 3530 4 1 139.95 4.16 582 195.96 267.06 77.9 1.0359 0.9653 0.0769 3540 41 140.79 4.18 589 198.32 269.17 77.9 1.0368 0.9645 0.0761 3550 41 140.57 4.16 567 197.64 269.48 78 1.0322 0.9688 0.0804 3560 41 139.98 4.16 582 195.96 268.23 78 1.0301 0.9708 0.0824 3570 41 139.97 4.16 582 195.96 268.30 77.95 1.0295 0.9714 0.0830 3580 4 1 139.98 4.16 562 195.96 268.03 77.95 1.0309 0.9700 0.0816 3590 4 1 139.99 4.16 582 195.96 267.76 77.9 1.0321 0.9689 0.0805 3600 41 139.89 4.16 582 195.96 267.90 77.9 1.0314 0.9696 0.0812 3610. 4 1 140.04 4.16 582 195.96 267.76 77.95 1.0324 0.9688 0.0802 3620 41 139.88 4.15 581 195.62 267.50 77.9 1.0318 0.9692 0.0808 3630 4 1 140.02 4.16 582 195.96 268.26 77.85 1.0291 0.9717 0.0833 3640 4 1 139.87 4.16 581 195.62 267.73 77.9 1.0305 0.9704 0.0820 3650 41 139.94 4.16 582 195.96 267.50 77.9 1.0338 0.9675 0.0791 3660 4 1 139.84 4.15 581 195.62 267.53 77.85 1.0313 0.9696 0.0813 3670 4 1 139.63 4.15 581 195.62 267.83 77.9 1.0299 0.9709 0.0825 3680 4 1 139.99 4.16 582 195.96 269.06 77.9 1.0251 0.9755 0.0871 3690 4 1 139.9 4.15 581 195.62 268.10 77.9 1.0285 0.9723 0.0839 3700 4 1 139.98 4.16 582 195.96 26820 77.9 1.0298 0.9711 0.0827 3710 4 1 139.95 4.16 582 195.96 268.43 77.9 1.0285 0.9723 0.0839 3720 4 1 139.86 4.15 581 195.62 268.00 77.9 1.0290 0.9718 0.0834 3730 41 139.91 4.15 581 195.62 268.53 77.9 1.0262 0.9745 0.0861 3740 41 139.92 4.15 581 195.62 268.87 77.9 1.0244 0.9762 0.0878 3750 41 139.96 4.16 582 195.96 269.16 78 1.0251 0.9755 0.0871 3760 4 1 140.05 4.16 583 196.30 268.99 77.95 1.0275 0.9732 0.0849 3770 4 1 140.01 4.16 582 195.96 268.80 78 1.0271 0.9737 0.0853 3780 41 139.96 4.15 582 185.98 268.93 78 1.0263 0.9743 0.0859 3790 41 139.87 4.15 581 195.62 268.73 78.05 1.0259 0.9748 0.0864 * 3800 41 139.78 4.15 580 195.29 268.24 78.1 1.0271 0.9736 0.0852 1 3810 41 139.82 4.15 580 195.29 268.84 78.15 1.0241 0.9765 0.0881 3820 4 1 139.98 4.15 582 195.96 269.43 78.25 1.0250 0.9756 0.0872 3830 40 139.94 4.15 581 195.62 268.57 78.25 1.0279 0.9729 0.0845 3840 40 139.99 4.15 582 195.96 269.16 78.25 1.0264 0.9743 0.0859 3850 40 139.83 4.15 580 195.29 269.14 78.35 1.0236 0.9770 0.0886 3860 40 139.87 4.15 581 195.62 269.20 78.35 1.0250 0.9756 0.0872 3870 40 139.68 4.15 579 194.95 269.41 78.4 1.0206 0.9798 0.0914 3880 40 139.87 4.15 580 195.29 269.34 78.45 1.0230 0.9775 0.0891 3890 40 139.82 4.15 580 195.29 268.94 78.4 1.0249 0.9757 0.0873 3900 40 139.87 4.15 581 195.62 269.67 78.45 1.0230 0.9775 0.0891 3910 40 139.87 4.15 580 195.29 269.44 78.45 1.0225 0.9780 0.0896 3920 40 139.84 4.15 580 195.29 269.47 78.45 1.0223 0.9782 0.0898 3930 40 139.8 4.15 580 195.29 269.74 78.45 1.0209 0.9795 0.0911 3940 40 139.89 4.15 581 195.62 269.90 78.45 1.0218 0.9787 0.0903 3950 40 139.88 4.15 581 195.62 268.97 76.4 1.0159 0.9844 0.0960 3960 40 139.99 4.15 582 195.96 268.00 73.9 1.0096 0.9905 0.1021 3970 40 139.92 4.15 581 195.62 267.50 73 1.0058 0.9943 0.1059 3980 40 139.85 4.15 580 195.29 267.34 73.6 1.0080 0.9921 0.1037 3990 40 139.85 4.15 580 195.29 268.81 74.55 1.0053 0.9947 0.1063 4000 40 139.91 4.15 581 195.62 268.57 75.05 1.0109 0.9892 0.1008 4010 40 140.56 4.17 587 197.64 270.81 75.5 1.0119 0.9882 0.0998 4020 40 140.35 4.16 584 196.63 269.76 75.65 1.0130 0.9872 0.0988 4030 40 140.67 4.19 569 198.32 271.24 75.7 1.0142 0.9860 0.0976 4040 40 140.19 4.16 583 196.30 269.99 75.75 1.0106 0.9895 0.1012 4050 40 140.12 4.15 582 195.96 269.96 75.9 1.0098 0.9903 0.1019 4060 40 140.16 4.16 583 196.30 269.73 75.95 1.0130 0.9872 0.0968 4070 40 140.12 4.15 582 195.96 270.56 75.95 1.0069 0.9931 0.1047 4080 40 140.58 4.17 586 197.31 271.15 76 1.0111 0.9891 0.1007 4090 40 40.55 4.17 169 56.90 206.11 76.15 0.4378 2.2840 1.3956 4100 40 140.37 4.16 584 196.63 271.59 76.25 1.0066 0.9934 0.1050 Appendix A. 7 158 4110 40 140.04 4.15 582 195.96 271.86 76.3 1.0020 0.9980 0.1096 4120 40 14059 4.18 586 197.31 271.42 76.25 1.0110 0.9892 0.1008 4130 40 140.11 4.16 583 196.30 272.63 76.4 1.0004 0.9996 0.1113 4140 40 140.34 4.17 585 196.97 272.12 76.4 1.0064 0.9937 0.1053 4150 40 140.16 4.16 583 196.30 271.73 76.55 1.0057 0.9943 0.1059 4160 40 140.15 4.16 582 195.96 272.00 76.55 1.0026 0.9974 0.1090 4170 40 140.54 4.17 586 197.31 272.18 76.75 1.0096 0.9905 0.1021 4160 40 140.04 4.17 583 196.30 272.53 76.75 1.0027 0.9974 0.1090 4160 40 139.84 4.15 580 195.29 271.44 76.85 1.0036 0.9964 0.1060 4200 40 139.73 4.14 579 194.95 270.71 76.85 1.0056 0.9944 0.1060 4210 40 139.85 4.15 580 19559 271.71 77 1.0030 0.9970 0.1086 4220 40 139.85 4.14 579 194.95 271.91 77.05 1.0005 0.9995 0.1111 4230 40 139.69 4.14 579 194.95 271.28 77.1 1.0040 0.9960 0.1076 4240 40 139.74 4.14 579 194.95 271.61 77.15 1.0025 0.9975 0.1091 4250 40 140.99 4.18 590 198.65 275.07 77.35 1.0047 0.9953 0.1069 Run SSB13 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 40 204.77 6.2 1270 427.61 282.57 78.55 2.0959 0.4771 0.0X0 10 41 205.2 6.22 1276 429.63 277.15 77.9 2.1562 0.4638 -0.0134 20 41 204.92 6.21 1272 428.28 275.40 77.8 2.1674 0.4614 -0.0157 30 41 204.66 6.2 1268 426.94 274.55 77.95 2.1716 0.4X5 -0.0166 40 41 204.41 6.19 1265 425.93 273.82 78.1 2.1761 0.4X5 -0.0176 50 41 204.19 6.18 1262 424.92 273.87 78.45 2.1744 0.4X9 -0.0172 60 41 203.93 6.17 1259 423.91 273.35 78.25 2.1728 0.4X2 -0.0169 70 41 203.71 6.16 1256 422.90 273.22 78.25 2.1690 0.4610 -0.0161 80 41 203.07 6.15 1248 420.20 273.29 78.25 2.1545 0.4642 -0.0130 90 41 202.89 6.14 1245 419.19 273.20 78.25 2.1503 0.4651 -0.0121 100 41 202.73 6.13 1244 418.86 273.77 78.05 2.1401 0.4673 -0.0099 110 41 202.63 6.13 1242 418.18 273.64 78.2 2.1397 0.4674 -0.0098 120 41 202.46 6.13 1240 417.51 274.38 78.55 2.1320 0.4X1 -0.0081 130 41 202.38 6.12 1239 417.17 274.52 78.8 2.1315 0.4X2 -0.X80 140 41 202.32 6.12 1238 416.84 274.79 79.05 2.1295 0.4X6 -0.X75 150 41 202.27 6.12 1238 416.84 275.22 79.3 2.1275 0.4700 -0.X71 160 41 202.22 6.12 1237 416.50 275.46 79.55 2.1260 0.4704 -0.X67 170 41 202.12 6.11 1236 416.16 275.46 79.7 2.1258 0.4704 -0.X67 180 41 202.04 6.11 1234 415.49 275.74 79.8 2.1205 0.4716 -0.X55 190 41 201.99 6.11 1234 415.49 275.97 79.9 2.1191 0.4719 -0.X52 200 41 202.02 6.11 1234 415.49 276.47 79.95 2.1142 0.4730 -0.X41 210 41 201.9 6.11 1233 415.15 276.51 80 2.1126 0.4733 -0.0038 220 41 201.91 6.11 1233 415.15 276.78 80 2.109a 0.4740 -0.0031 230 41 201.92 6.11 1233 415.15 277.44 80.1 2.1037 0.4753 -0.0018 240 41 201.77 6.1 1231 414.48 277.38 80.1 2 1009 0.4760 -0.0011 250 41 201.87 6.1 1232 414.81 277.71 80.2 2.1X2 0.4761 -0.X10 260 41 201.76 6.1 1231 414.48 278.42 80.25 2.0916 0.4781 0.0010 270 40 201.82 6.1 1232 414.81 279.21 80.3 2.0854 0.4795 0.0024 280 40 201.81 6.1 1231 414.48 279.02 80.3 2.0858 0.4794 0.0023 290 40 201.77 6.1 1231 414.48 279.12 80.35 2.0853 0.4796 0.0024 300 40 201.72 6.1 1230 414.14 279.15 80.4 2.0837 0.4799 0.0028 310 40 201.68 6.1 1230 414.14 280.19 80.5 2.0740 0.4822 0.0050 320 40 201.7 6.1 1230 414.14 280.22 80.55 2.0741 0.4821 0.0050 330 40 201.71 6.1 1230 414.14 280.65 80.75 2.0717 0.4827 0.0056 340 40 201.65 6.09 1229 413.80 280.69 80.8 2.0702 0.4831 0.0059 350 40 201.63 6.1 1229 413.80 281.12 80.9 2.0667 0.4839 0.0067 360 40 201.68 6.1 1229 413.80 281.32 80.9 2.0647 0.4843 0.0072 370 40 201.69 6.1 1230 414.14 281.85 80.9 2.0X9 0.4852 0.0X1 380 40 201.8 6.1 1231 414.48 281.98 81 2.0623 0.4849 0.0078 390 40 201.66 6.09 1229 413.80 282.19 81 2.0566 0.4862 0.0X1 400 40 201.64 6.09 1229 413.80 282.56 81 2.0530 0.4871 0.0100 410 40 201.65 6.1 1229 413.80 282.66 81 2.0520 0.4873 0.0102 420 40 201.64 6.1 1229 413.80 282.79 81 2.0X7 0.4876 0.0105 430 40 201.54 6.09 1227 413.13 282.53 81.05 2.0X5 0.4877 0.0106 440 40 201.6 6.09 1228 413.47 283.29 81.1 2.0449 0.4890 0.0119 450 40 201.53 6.09 1228 413.47 283.29 81.15 2.0454 0.4889 0.0118 460 40 201.53 6.09 1227 413.13 283.36 81.15 2.0430 0.4X5 0.0123 470 40 201.59 6.09 1228 413.47 283.66 81.15 2.0417 0.4X8 0.0127 480 40 201.63 6.09 1228 413.47 284.19 81.2 2.0368 0.4910 0.0138 490 40 201.68 6.1 1229 413.80 264.26 81.1 2.0369 0.4909 0.0138 500 40 201.55 6.09 1227 413.13 284.50 81.1 2.0312 0.4923 0.0152 510 40 201.63 6.09 1228 413.47 284.56 81.1 2.0322 0.4921 0.0150 520 40 201.61 6.09 1228 413.47 284.86 81.1 2.0292 0.4928 0.0157 530. 40 201.61 6.09 1228 413.47 285.19 81.2 2.0269 0.4934 0.0162 540 40 201.63 6.09 1228 413.47 285.06 81.2 2.0282 0.4931 0.0159 550 40 201.7 6.09 1229 413.80 285.42 81.25 2.0267 0.4934 0.0163 560 40 201.67 6.09 1229 413.80 28559 81.35 2.0290 0.4928 0.0157 570 40 201.54 6.09 1227 413.13 285.66 81.35 2.0220 0.4946 0.0174 580 40 201.65 6.09 1228 413.47 286.03 81.4 2.0206 0.4949 0.0178 590 40 201.69 6.09 1229 413.80 286.59 81.35 2.0162 0.4960 0.0189 Appendix A.7 159 600 40 201.52 6.09 1227 413.13 286.80 81.45 2.0119 0.4971 0.0199 610 40 201.55 6.09 1227 413.13 287.03 81.5 2.0101 0.4975 0.0204 620 40 201.48 6.08 1226 412.79 287.00 81.5 2.0087 0.4978 0.0207 630 40 201.49 6.09 1226 412.79 287.53 S1.65 2.0050 0.4988 0.0216 640 40 201.53 6.09 1227 413.13 287.76 81.65 2.0044 0.4989 0.0218 650 40 201.49 6.09 1226 412.79 287.73 81.7 2.0035 0.4991 0.0220 660 40 201.54 6.09 1227 413.13 287.90 81.75 2.0041 0.4990 0.0219 670 40 201.48 6.09 1226 412.79 288.17 81.75 1.9998 0.5X0 0.0229 680 40 201.49 6.09 1226 412.79 288.57 81.75 1.9959 0.5010 0.0239 690 40 201.5 6.09 1226 412.79 288.33 81.85 1.9992 0.5X2 0.0231 700 40 201.49 6.08 1226 412.79 288.60 81.8 1.9961 0.5010 0.0239 710 40 201.49 6.08 1226 412.79 288.97 81.85 1.9930 0.5017 0.0246 720 40 201.47 6.08 1225 412.46 288.97 82 1.9928 0.5018 0.0247 730 40 201.5 6.08 1225 412.46 288.90 81.85 1.9920 0.5020 0.0249 740 40 201.5 6.08 1226 412.79 289 47 81.95 1.9892 0.5027 0.0256 750 40 201.49 6.08 1225 412.46 290.10 81.95 1.9815 0.5047 0.0275 760 40 201.46 6.08 1225 412.46 289.67 82 1.9861 0.5035 0.0264 770 40 201.55 6.06 1226 412.79 289.90 82 1.9855 0.5036 0.0265 780 40 201.43 6.08 1225 412.46 289.87 82.1 1.9852 0.5037 0.0266 790 40 201.46 6.08 1225 412.46 289.77 82.05 1.9856 0.5036 0.0265 800 40 201.41 6.08 1225 412.46 289.70 82.15 1.9872 0.5032 0.0261 810 40 201.46 6.08 1225 412.46 290.07 82.25 1.9847 0.5039 0.0267 820 40 201.39 6.08 1224 412.12 290.38 82.35 1.9811 0.5048 0.0276 830 40 201.41 6.08 1225 412.46 290.44 82.25 1.9812 0.5048 0.0276 840 40 201.44 6.08 1224 412.12 290.31 82.25 1.9808 0.5048 0.0277 850 40 201.45 6.08 1225 412.46 290.60 82.25 1.9796 0.5052 0.0280 860 40 201.47 6.08 1225 412.46 291.04 82.25 1.9755 0.5X2 0.0291 870 40 201.43 6.08 1225 412.46 290.97 82.25 1.9761 0.5X0 0.0289 880 40 201.39 6.06 1224 412.12 291.28 82.35 1.9726 0.5070 0.0298 890 40 201.38 6.08 1224 412.12 291.21 82.35 1.9732 0.5X8 0.0297 900 40 201.28 6.08 1223 411.78 291.28 82.25 1.9700 0.5076 0.0305 910 40 201.5 6.08 1226 412.79 291.93 82.35 1.9696 0.5077 0.0306 920 40 201.47 6.08 1225 412.46 291.84 82.3 1.9684 0.5X0 0.0309 930 40 201.48 8.08 1226 412.79 292.03 82.3 1.9682 0 5081 0.0310 940 40 201.56 6.09 1227 413.13 292.16 82.3 1.9686 0.5X0 0.0309 950 40 201.69 6.09 1228 413.47 292.53 82.35 1.9672 0.5083 0.0312 960 40 201.48 6.08 1226 412.79 292.53 82.35 1.9840 0.5X2 0.0320 970 40 201.5 6.08 1226 412.79 292.60 82.35 1.9633 0.5X3 0.0322 980 40 201.66 6.09 1228 413.47 292.96 82.35 1.9632 0.5X4 0.0323 990 40 201.63 6.09 1228 413.47 293.39 82.3 1.9587 0.5105 0.0334 1000 40 201.54 6.09 1227 413.13 293.20 82.35 1.9594 0.5104 0.0332 1010 40 201.62 6.09 1227 413.13 293.13 82.35 1.9600 0.5102 0.0331 1020 40 201.54 6.09 1226 412.79 293.40 62.25 1.9550 0.5115 0.0344 1030 40 201.47 6.08 1226 412.79 293.60 82.4 1.9545 0.5116 0.0345 1040 40 201.41 6.08 1225 412.46 293.50 82.35 1.9533 0.5119 0.0348 1050 40 201.41 6.08 1225 412.46 293.80 82.4 1.9510 0.5125 0.0354 1060 40 201.44 6.08 1225 412.46 293.70 82.5 1.9529 0.5121 0.0349 1070 40 201.5 6.09 1226 412.79 293.97 82.5 1.9520 0.5123 0.0352 1080 40 201.53 6.09 1226 412.79 294.03 82.6 1.9524 0.5122 0.0351 1090 40 201.58 6.09 1227 413.13 294.20 82.65 1.9529 0.5121 0.0349 1100 40 201.21 6.08 1223 411.78 294.28 82.7 1.9462 0.5138 0.0367 1110 40 201.19 6.07 1222 411.45 294.38 62.75 1.9442 0.5144 0.0372 1120 40 201.04 6.07 1220 410.77 293.79 81.1 1.9313 0.5176 0.0407 1130 40 201.16 6.07 1222 411.45 293.95 80.3 1.9258 0.5193 0.0421 1140 39 201.14 6.07 1221 411.11 293.65 79 1.9152 0.5221 0.0450 1150 40 201.09 6.07 1221 411.11 293.75 78.5 1.9099 0.5236 0.0465 1160 40 200.89 6.07 1218 410.10 294.06 78.4 1.9016 0.5259 0.0488 1170 40 200.84 6.06 1218 410.10 294.23 78.55 1.9014 0.5259 0.0488 1180 39 200.85 6.06 1218 410.10 294.40 78.6 1.9X4 0.5262 0.0491 1190 40 200.74 6.06 1216 409.43 294.20 78.7 1.8999 0.5264 0.0492 1200 39 202.49 6.12 1238 416.84 295.92 79.05 1.9220 0.5203 0.0432 1210 39 202.27 6.11 1235 415.82 295.80 79.3 1.9207 0.5207 0.0435 1220 39 201.02 6.07 1219 410.44 295.06 79.4 1.9032 0.5254 0.0483 1230 39 200.72 6.06 1216 409.43 294.97 79.3 1.8984 0.5268 0.0496 1240 39 200.65 6.06 1215 409.09 294.67 79.4 1.9X3 0.5262 0.0491 1250 39 200.66 6.06 1215 409.09 295.07 79.65 1.6990 0.5266 0.0495 1260 39 200.54 6.05 1214 408.75 295.08 79.7 1.8978 0.5269 0.0498 1270 39 200.25 6.04 1210 407.41 294.96 79.65 1.8922 0.5285 0.0514 1280 39 202.51 6.11 1238 416.84 296.92 80.05 1.9220 0.5203 0.0432 1290 39 202.33 6.11 1236 416.16 296.80 79.3 1.9134 0.5226 0.0455 13X 39 201.51 6.08 1225 412.46 296.37 79 1.8975 0.5270 0.0499 1310 39 201.15 6.07 1221 411.11 295.69 79.1 1.8681 0.5268 0.0497 1320 39 201.01 6.07 1219 410.44 295.63 79.25 1.8969 0.5272 0.0501 1330 39. 200.78 6.06 1216 409.43 295.20 77.15 1.8776 0.5326 0.0555 1340 39 201.81 6.09 1229 413.80 296.12 75.8 1.8782 0.5324 0.0553 1350 39 200.73 6.06 1216 409.43 295.34 75.4 1.8616 0.5372 0.0X1 1360 39 200.55 6.05 1214 408.75 295.08 75.2 1.8590 0.5379 0.0X8 1370 39 200.66 6.05 1215 409.09 294.67 75.2 1.8640 0.5365 0.0594 1380 39 201.77 6.09 1229 413.80 295.92 75.3 1.8756 0.5332 0.0560 1390 39 200.05 6.04 1206 406.73 294.50 75.3 1.8555 0.5389 0.0618 1400 39 201.95 8.09 1231 414.48 296.15 75.55 1.8789 0.5322 0.0551 1410 39 201.93 6.09 1231 414.48 296.88 75.7 1.8739 0.5336 0.0565 1420 39 201.83 6.09 1229 413.80 296.52 75.8 1.8748 0.5334 0.0563 1430 39 201.96 6.09 1231 414.48 296.58 76.05 1.8794 0.5321 0.0549 1440 39 201.95 6.09 1230 414.14 296.89 76.2 1.8766 0.5329 0.0558 Appendix A. 7 160 1450 39 201.86 6.09 1230 414.14 296.89 76.2 1.8766 0.5329 0.0X8 1460 39 201.79 6.09 1228 413.47 296.99 76.15 1.8722 0.5341 0.0570 1470 39 201.79 6.09 1229 413.80 296.86 76.2 1.8753 0.5332 0.0X1 1480 39 201.75 6.09 1229 413.80 296.59 76.3 1.8785 0.5324 0.0552 1490 39 201.79 6.09 1229 413.80 296.92 76.45 1.8769 0.5328 0.0X7 1500 39 201.8 6.09 1229 413.80 29752 76.45 1.8743 0.5335 0.0X4 1510 39 201.85 6.09 1229 413.80 297.26 76.5 1.8745 0.5335 0.0X4 1520 39 201.73 6.09 1228 413.47 297.43 76.55 1.8719 0.5342 0.0571 1530 39 201.83 6.09 1229 413.80 297.66 76.6 1.8719 0.5342 0.0571 1540 39 201.79 6.09 1229 413.80 297.59 76.7 1.8734 0.5338 0.0X7 1550 39 201.77 6.09 1228 413.47 297.66 76.75 1.8717 0.5343 0.0572 1560 39 201.86 6.09 1229 413.80 297.76 76.8 1.8728 0.5340 0.0X8 1570 39 201.78 6.09 1229 413.80 298.16 76.7 1.8686 0.5352 0.0X0 1580 39 201.79 6.09 1229 413.80 298.26 76.85 1.8690 0.5351 0.0579 1590 39 201.77 6.09 1228 413.47 298.19 76.95 1.8688 0.5351 0.0X0 1600 39 201.7 6.09 1228 413.47 297.83 77.05 1.8728 0.5340 0.0X8 1610 39 201.72 6.09 1228 413.47 297.99 76.95 1.8705 0.5348 0.0575 1620. 39 201.66 6.09 1227 413.13 298.56 76.95 1.8642 0.5364 0.0X3 1630 39 201.65 6.09 1227 413.13 298.40 76.95 1.8656 0.5360 0.0X9 1640 39 201.66 6.09 1227 413.13 298.60 76.95 1.8639 0.5365 0.0X4 1650 39 201.68 6.09 1227 413.13 298.43 77.05 1.8662 0.5359 0.0X7 1660 39 201.73 6.09 1228 413.47 298.66 77.05 1.8657 0.5X0 0.0X9 1670 39 201.68 6.09 1228 413.47 298.69 77.05 1.8655 0.5361 0.0X9 1680 39 201.63 6.09 1227 413.13 299.06 77.1 1.8613 0.5373 0.0X1 1690 39 201.53 6.08 1226 412.76 299.30 77.1 1.8578 0.5383 0.0612 1700 39 201.62 6.09 1227 413.13 298.73 77.1 1.8641 0.5365 0.0X3 1710 39 201.61 6.08 1227 413.13 29950 77.1 1.8601 0.5376 0.0X5 1720 39 201.58 6.08 1226 412.79 299.33 77.2 1.8583 0.5381 0.0610 1730 39 201.52 6.08 1225 412.46 298.97 77.2 1.8598 0.5377 0.0X6 1740 39 201.59 6.08 1226 412.79 299.10 77.2 1.8603 0.5376 0.0X4 1750 39 201.55 6.08 1226 412.79 299.17 77.2 1.8597 0.5377 0.0X6 1760 39 201.46 6.08 1225 412.46 298.94 77.3 1.8610 0.5374 0.0X2 1770 39 201.43 6.08 1224 412.12 299.31 77.3 1.8563 0.5387 0.0616 1780 39 201.38 6.08 1223 411.78 298.85 77.3 1.8587 0.5380 0.0X9 1790 39 201.39 6.08 1224 412.12 299.51 77.4 1.8555 0.5389 0.0618 1800 39 201.26 6.07 1222 411.45 299.52 77.45 1.8528 0.5X7 0.0626 1810 39 201.3 6.07 1223 411.78 29951 77.5 1.8573 0.5384 0.0613 1820 39 201.06 6.07 1220 410.77 298.66 77.55 1.8578 0.5383 0.0611 1830 39 201.11 6.07 1220 410.77 299.76 77.55 1.8486 0.5409 0.0X8 1840 39 201.17 6.07 1221 411.11 299.35 77.5 1.8531 0.5X6 0.0625 1850 39 201.11 6.07 1220 410.77 299.19 77.55 1.8533 0.5X6 0.0624 1860 39 200.96 6.06 1218 410.10 299.26 77.6 1.8501 0.5405 0.0X4 1870 39 201.12 6.07 1221 411.11 299.75 77.9 1.8531 0.5396 0.0625 1880 39 200.82 6.06 1217 409.76 299.50 78 1.8499 0.5406 0.0X4 1890 39 200.96 6.06 1218 410.10 299.86 78.15 1.8497 0.5406 0.0X5 1900 39 200.89 6.06 1218 410.10 300.03 78.2 1.8487 0.5409 0.0X8 1910 39 201.71 6.09 1229 413.80 300.49 77.65 1.8570 0.5X5 0.0614 1920 39 201.34 6.08 1223 411.78 299.78 75.45 1.8356 0.5448 0.0676 1930 39 201 6.06 1219 410.44 299.73 74.8 1.8248 0.5480 0.0709 1940 39 200.67 6.06 1215 409.09 299.77 74.6 1.8168 0.5X4 0.0733 1950 39 200.44 6.05 1213 408.42 299.58 74.6 1.8153 0.5X9 0.0737 1960 39 200.56 6.05 1214 408.75 300.11 74.65 1.8130 0.5516 0.0745 1970 39 200.26 6.05 1211 407.74 299.76 74.7 1.8117 0.5520 0.0748 1980 39 200.21 6.05 1210 407.41 300.06 74.8 1.8086 0.5529 0.0758 1990 39 202.26 6.11 1235 415.82 301.70 74.95 1.8338 0.5453 0.0X2 2000 39 201.49 6.08 1226 412.79 301.20 75.2 1.8265 0.5475 0.0704 2010 39 200.11 6.04 1209 407.07 300.13 75 1.6082 0.5530 0.0759 2020 39 200.25 6.05 1211 407.74 300.38 74.9 1.8085 0.5529 0.0758 2030 39 200.16 6.04 1210 407.41 300.46 74.9 1.8062 0.5536 0.0765 2040 39 201.92 6.1 1231 414.48 301.82 75 1.8274 0.5472 0.0701 2050 39 201.14 6.07 1221 411.11 301.29 75.05 1.8172 0.5X3 0.0732 2060 39 200.83 6.06 1217 409.76 30150 75 1.8115 0.5520 0.0749 2070 39 200.81 6.06 1217 409.76 301.07 75.1 1.8134 0.5515 0.0743 2080 39 200.53 6.05 1214 408.75 301.08 75.1 1.8088 0.5528 0.0757 2090 39 200.44 6.05 1213 408.42 301.45 75.1 1.8044 0.5542 0.0771 2100 39 200.21 6.04 1210 407.41 30159 75.1 1.8011 0.5552 0.0781 2110 39 200.32 6.05 1212 408.08 301.39 75.1 1.8034 0.5545 0.0774 2120 39 200.24 6.05 1211 407.74 301.32 75.1 1.8024 0.5548 0.0777 2130 39 201.71 6.09 1229 413.80 302.49 75.2 1.8206 0.5493 0.0721 2140 39 200.31 6.05 1211 407.74 301.69 75.25 1.8X7 0.5553 0.0782 2150 39 200.19 6.04 1210 407.41 301.36 75.15 1.8010 0.5X2 0.0781 2160 39 199.93 6.04 1207 406.40 301.64 75.1 1.7940 0.5574 0.0X3 2170 39 201.57 6.09 1227 413.13 302.83 75.3 1.8157 0.5X7 0.0736 2180 39 201.25 6.08 1223 411.78 302.88 75.4 1.8102 0.5524 0.0753 2190 39 201 6.07 1220 410.77 302.62 75.5 1.8X6 0.5529 0.0758 2200 39 200.75 6.06 1217 409.76 302.40 75.45 1.8055 0.5X9 0.0767 2210 39 202.35 6.11 1237 416.50 303.96 75.35 1.8219 0.5489 0.0718 2220 39 201.12 6.07 1222 411.45 303.05 75.55 1.8X6 0.5529 0.0758 2230 39 201.01 6.07 1220 410.77 302.89 75.55 1.8X9 0.5S34 0.0763 2240 39 200.97 6.07 1219 410.44 303.56 75.55 1.8001 0.5X5 0.0784 2250 39 200.76 6.06 1217 409.76 303.43 75.5 1.7977 0.5X3 0.0791 2260 39 200.59 6.06 1215 409.09 303.27 75.5 1.7960 0.5X8 0.0797 2270 39 200.64 6.06 1216 409.43 302.77 75.5 1.8015 0.5X1 0.0780 2280 39 200.31 6.05 1211 407.74 303.32 75.55 1.7X1 0.5X6 0.0815 2290 39 200.24 6.05 1210 407.41 303.29 75.65 1.7X7 0.5X8 0.0816 Appendix A. 7 161 2300 39 200.27 6.05 1211 407.74 303.26 75.7 1.7918 0.5581 0.0810 2310 39 200.2 6.05 1210 407.41 303.39 75.75 1.7897 0.5588 0.0816 2320 39 200.14 6.05 1210 407.41 303.26 75.8 1.7911 0.5563 0.0812 2330 39 201.96 6.1 1232 414.81 304.88 75.95 1.8120 0.5519 0.074S 2340 39 201.03 6.07 1220 410.77 304.29 75.9 1.7986 0.5560 0.0789 2350 39 201 6.07 1220 410.77 304.32 76 1.7991 0.5558 0.0787 2360 39 200.71 6.06 1216 409.43 303.94 75.95 1.7958 0.5568 0.0797 2370 39 201.9 6.1 1231 414.48 305.05 76.05 1.8100 0.5525 0.0754 2380 39 200.85 6.06 1218 410.10 304.70 76.1 1.7940 0.5574 0.0803 2390 39 202.18 6.11 1235 415.82 305.57 76.05 1.8117 0.5520 0.0748 2400 39 200.95 6.07 1219 410.44 304.59 76.2 1.7971 0.5565 0.0793 2410 39 200.42 6.05 1213 408.42 303.98 76.1 1.7922 0.5580 0.0808 2420 39 202.07 6.1 1233 415.15 304.44 76 1.8173 0.5503 0.0731 2430 39 201 99 6.1 1232 414.81 305.95 76.25 1.8059 0.5537 0.0766 2440 39 201.53 6.09 1227 413.13 305.86 76.3 1.7996 0.5557 0.0785 2450 39 201.66 6.09 1228 413.47 305.76 76.45 1.8031 0.5546 0.0775 2460 39 201.61 6.09 122a 413.47 305.56 76.5 1.8051 0.5540 0.0769 2470 39 201.44 6.08 1226 412.79 305.53 76.55 1.8027 0.5547 0.0776 2480 39 202 6.1 1233 415.15 306.31 76.75 1.8085 0.5530 0.0758 2490 39 201.95 6.1 1232 414.81 306.91 76.95 1.8038 0.5544 0.0772 2500 39 201.73 6.09 1229 413.80 306.39 76.8 1.8024 0.5548 0.0777 2510 39 201.66 6.09 1228 413.47 306.83 76.8 1.7975 0.5563 0.0792 2520 39 201.69 6.09 1229 413.80 306.49 76.85 1.8020 0.5549 0.0778 2530 39 201.63 6.09 1228 413.47 306.69 76.9 1.7993 0.5558 0.0786 2540 39 201.65 6.09 1228 413.47 307.06 77.2 1.7988 0.5559 0.0788 2550 39 201.65 6.09 1228 413.47 30756 77.45 1.7992 0.5558 0.0787 2560 39 201.63 6.09 1228 413.47 306.99 77.55 1.8020 0.5549 0.0778 2570 39 201.7 6.09 1229 413.80 307.46 77.7 1.8011 0.5552 0.0781 2580 39 201.59 6.09 1228 413.47 307.29 77.8 1.8017 0.5550 ' 0.0779 2590 39 201.64 6.09 1228 413.47 307.29 77.95 1.8028 0.5547 0.0776 2600 39 201.46 6.09 1226 412.79 307.40 77.95 1.7991 0.5558 0.0787 2610 38 201.35 6.08 1225 412.46 307.24 77.95 1.7989 0.5559 0.0788 2620 39 201.25 6.08 1223 411.78 307.48 77.95 1.7940 0.5574 0.0803 2630 39 201.48 8.09 1226 412.76 308.03 78 1.7945 0.5573 0.0801 2640 38 201.41 6.09 1226 412.79 308.13 78.05 1.7941 0.5574 0.0803 2650 39 201.23 6.08 1223 411.78 308.18 78.1 1.7898 0.5587 0.0816 2660 39 201.47 6.09 1226 412.79 308.13 78.2 1.7953 0.5570 0.0799 2670 39 202.56 6.12 1240 417.51 309.42 78.4 1.8073 0.5533 0.0762 2680 39 202.36 6.12 1238 416.84 308.96 78.6 1.8095 0.5526 0.0755 2690 40 202.3 6.12 1237 416.50 310.79 78.55 1.7934 0.5576 0.0605 2700 39 201.39 6.09 1226 412.79 308.63 78.8 1.7961 0.5568 0.0797 2710 40 201.6 6.1 1229 413.80 309.32 78.6 1.7635 0.5576 0.0804 2720 40 201.81 6.1 1231 414.48 309.52 78.55 1.7945 0.5572 0.0801 2730 40 201.91 6.11 1233 415.15 309.98 78.6 1.7943 0.5573 0.0802 2740 40 201.84 6.1 1232 414.81 309.85 78.6 1.7938 0.5575 0.0803 2750 41 201.92 6.11 1233 415.15 310.38 76.6 1.7912 0.5583 0.0812 2760 41 201.96 6.11 1233 415.15 309.94 78.6 1.7945 0.5572 0.0801 2770 41 201.91 6.11 1233 415.15 310.18 78.65 1.7631 0.5577 0.0606 2780 41 201.97 6.11 1233 415.15 310.46 78.7 1.7912 0.5583 0.0812 2790 41 202.01 6.11 1234 415.49 311.01 78.8 1.7893 0.5589 0.0817 2800 41 202.01 6.11 1234 415.49 310.61 78.9 1.7932 0.5577 0.0805 2810 41 201.95 6.11 1233 415.15 310.58 78.25 1.7869 0.5596 0.0825 2820 41 201.97 6.11 1233 415.15 310.34 75.8 1.7701 0.5650 0.0878 2830 41 201.92 6.11 1233 415.15 310.78 75.55 1.7649 0.5666 0.0895 2840 41 201.95 6.11 1233 415.15 310.81 75.65 1.7654 0.5664 0.0893 2850 41 201.93 6.11 1233 415.15 310.94 75.9 1.7663 0.5662 0.0890 2860 41 201.91 6.11 1233 415.15 311.01 76.1 1.7673 0.5658 0.0887 2870 41 201.92 6.11 1233 415.16 311.34 76.2 1.7655 0.5664 0.0893 2680 41 201.88 6.11 1233 415.15 311.41 76.25 1.7654 0.5664 0.0893 2890 41 201.88 6.11 1232 414.81 311.65 76.45 1.7637 0.5670 0.0899 2900 41 201.93 6.11 1233 415.15 311.21 76.5 1.7688 0.5654 0.0882 2910 41 201.79 6.1 1232 414.81 311.35 76.5 1.7663 0.5661 0.0890 2920 41 201.82 6.11 1232 414.81 311.51 76.6 1.7658 0.5663 0.0892 2930 41 201.82 6.11 1232 414.81 311.35 76.6 1.7671 0.5659 0.0888 2940 41 201.8 6.1 1232 414.81 311.31 76.65 1.7677 0.5657 0.0886 2950 41 201.95 6.11 1234 415.49 311.57 76.65 1.7686 0.5654 0.0883 2960 . 41 201.89 6.11 1233 415.15 311.78 76.65 1.7657 0.5664 0.0892 2970 41 201.77 6.1 1231 414.48 311.88 76.65 1.7620 0.5675 0.0904 2980 41 201.65 6.1 1230 414.14 311.75 76.8 1.7627 0.5673 0.0902 2990 41 201.57 6.1 1229 413.80 311.96 76.75 1.7593 0.5684 0.0913 3000 41 201.47 6.1 1228 413.47 311.63 76.7 1.7600 0.5682 0.0911 3010 41 202.82 6.14 1245 419.19 313.10 76.8 1.7740 0.5637 0.0866 3020 41 202.54 6.13 1241 417.85 312.61 77 1.7734 0.5639 0.0868 3030 41 202.09 6.11 1235 415.82 312.47 77.05 1.7663 0.5661 0.0890 3040 41 201.35 6.09 1226 412.79 311.97 77.1 1.7576 0.5690 0.0918 3050 41 202.67 6.13 1243 418.52 313.14 77.1 1.7731 0.5640 0.0869 3060 40 202.62 6.13 1242 418.18 313.08 77.2 1.7729 0.5641 0.0869 3070 41 202.58 6.13 1241 417.85 312.98 77.3 1.7729 0.5640 0.0869 3080 41 202.53 6.13 1241 417.85 313.11 77.3 1.7719 0.5644 0.0872 3090 40 202.31 6.12 1239 417.17 312.92 77.3 1.7705 0.5648 0.0877 3100 41 201.66 6.1 1230 414.14 312.35 77.25 1.7615 0.5677 0.0906 3110 41 201.96 6.11 1234 415.49 312.84 77.3 1.7640 0.5669 0.0898 3120 41 202.06 6.11 1235 415.82 313.30 77.3 1.7620 0.5676 0.0904 3130 41 201.66 6.1 1230 414.14 312.75 77.35 1.7593 0.5684 0.0913 3140 41 201.82 6.11 1233 415.15 312.54 77.45 1.7659 0.5663 0.0862 Appendix A.7 162 3150 41 201.85 6.11 1233 415.15 313.51 77.45 1.7587 0.5686 0.0915 3160 41 201.91 6.11 1233 415.15 313.24 77.5 1.7610 0.5678 0.0907 3170 41 201.93 6.11 1234 415.49 313.17 77.65 1.7641 0.5669 0.0897 3160 41 201.89 6.11 1234 415.49 313.21 77.65 1.7639 0.5669 0.0898 3190 41 201.87 6.11 1233 415.15 313.44 77.65 1.7607 0.5680 0.0908 3200 41 201.97 6.11 1234 415.49 313.57 77.75 1.7619 0.5676 0.0905 3210 41 201.95 6.11 1234 415.49 313.74 77.8 1.7610 0.5679 0.0907 3220 41 201.96 6.11 1235 415.82 314.00 77.8 1.7605 0.5680 0.0909 3230 41 201.91 6.11 1234 415.49 313.67 77.9 1.7622 0.5675 0.0903 3240 41 201.92 6.11 1234 415.49 314.01 78 1.7605 0.5680 0.0909 3250 41 201.88 6.11 1234 415.49 313.84 78 1.7617 0.5676 0.0905 3260 41 201.87 6.11 1234 415.49 314.14 78 1.7595 0.5683 0.0912 3270 41 201.88 6.11 1234 415.49 314.31 78 1.7583 0.5687 0.0916 3280 41 201.95 6.11 1235 415.82 313.87 78 1.7630 0.5672 0.0901 3290 41 201.93 6.11 1234 415.49 314.07 78.1 1.7608 0.5679 0.0908 3300 41 201.91 6.11 1234 415.49 314.14 78.1 1.7603 0.5681 0.0910 3310 41 201.85 6.11 1234 415.49 314.37 78.1 1.7585 0.5687 0.0915 3320 41 201.81 6.11 1233 415.15 314.54 78.05 1.7555 0.5697 0.0925 3330 41 201.85 6.11 1234 415.49 314.67 78.15 1.7567 0.5693 0.0921 3340 41 201.81 6.11 1233 415.15 315.01 78.15 1.7527 0.5705 0.0934 3350 41 201.9 6.11 1234 415.49 315.04 78.15 1.7539 0.5701 0.0930 3360 41 201.95 6.12 1235 415.82 314.93 78.2 1.7565 0.5693 0.0922 3370 41 201.96 6.12 1235 415.82 314.90 78.2 1.7567 0.5692 0.0921 3380 41 201.94 6.12 1235 415.82 314.70 78.2 1.7582 0.5688 0.0916 3390 41 201.91 6.11 1234 415.49 314.94 78.05 1.7539 0.5701 0.0930 3400 41 201.95 6.12 1235 415.82 315.53 78.1 1.7513 0.5710 0.0939 3410 41 201.87 6.12 1235 415.82 315.20 78.1 1.7538 0.5702 0.0931 3420 41 201.84 6.11 1234 415.49 315.14 78.1 1.7528 0.5705 0.0934 3430 41 201.8 6.11 1234 415.49 315.11 78.15 1.7534 0.5703 0.0932 3440 41 201.73 6.11 1233 415.15 315.38 78 1.7489 0.5718 0.0947 3450 41 201.75 6.11 1233 415.15 315.54 78.15 1.7488 0.5718 0.0947 3460 41 201.69 6.11 1233 415.15 315.51 78.1 1.7487 0.5719 0.0947 3470 41 201.76 6.11 1233 415.15 316.08 78.15 1.7449 0.5731 0.0960 3480 41 201.77 6.11 1234 415.49 315.77 78.5 1.7511 0.5711 0.0939 3490 41 201.78 6.12 1234 415.49 315.74 79.7 1.7603 0.5681 0.0910 3500 41 201.77 6.12 1234 415.49 316.44 80.25 1.7591 0.5685 0.0913 3510 41 201.8 6.12 1234 415.49 316.17 80.5 1.7630 0.5672 0.0901 3520 41 201.79 6.12 1234 415.49 316.07 80.5 1.7637 0.5670 0.0899 3530 41 201.76 6.12 1234 415.49 316.51 80.75 1.7624 0.5674 0.0903 3540 41 201.74 6.12 1234 415.49 316.34 80.75 1.7636 0.5670 0.0899 3550 41 201.72 6.12 1234 415.49 315.37 80.95 1.7724 0.5642 0.0871 3560 41 201.75 6.12 1234 415.49 315.44 81 1.7723 0.5642 0.0871 3570 41 201.76 6.12 1234 415.49 315.17 80.95 1.7739 0.5637 0.0866 3580 41 201.76 6.12 1234 415.49 315.24 81 1.7738 0.5638 0.0866 3590 41 201.75 6.12 1234 415.49 315.21 81 1.7740 0.5637 0.0866 3600 41 201.72 6.12 1234 415.49 315.51 80.65 1.7691 0.5653 0.0881 3610 41 201.75 6.12 1235 415.82 31553 80.5 1.7715 0.5645 0.0874 3620 41 201.65 6.11 1233 415.15 315.31 80.45 1.7677 0.5657 0.0886 3630 41 201.66 6.11 1233 415.15 315.31 80.45 1.7677 0.5657 0.0886 3640 41 201.65 6.12 1233 415.15 315.28 80.4 1.7675 0.5658 0.0886 3650 41 201.81 6.12 1235 415.82 316.23 80.5 1.7640 0.5669 0.0898 3660 41 201.87 6.12 1235 415.82 316.03 80.5 1.7654 0.5664 0.0893 3670 41 201.86 6.12 1235 415.82 316.00 80.5 1.7657 0.5663 0.0892 3680 41 201.85 6.12 1235 415.82 315.67 80.5 1.7682 0.5655 0.0884 3690 41 201.76 6.12 1234 415.49 315.97 80.55 1.7649 0.5666 0.0895 3700 41 201.8 6.12 1235 415.82 316.23 80.5 1.7640 0.5669 0.0898 3710 41 201.78 6.12 1234 415.49 316.11 80.45 1.7631 0.5672 0.0901 3720 41 201.85 6.12 1235 415.82 316.23 80.4 1.7632 0.5671 0.0900 3730 41 201.74 6.12 1234 415.49 316.27 S0.35 1.7611 0.5678 0.0907 3740 41 201.77 6.12 1235 415.82 316.30 80.35 1.7623 0.5674 0.0903 3750 41 201.86 6.12 1236 416.16 31650 80.3 1.7642 0.5668 0.0897 3760 41 201.79 6.12 1235 415.82 316.50 80.35 1.7608 0.5679 0.0908 3770 41 201.78 6.12 1235 415.82 316.27 80.35 1.7626 0.5673 0.0902 3780 41 201.86 6.12 1236 416.16 316.86 80.35 1.7596 0.5683 0.0912 3790 41 201.95 6.13 1237 416.50 316.56 80.45 1.7640 0.5669 0.0898 3800 41 201.88 6.12 1236 416.16 316.80 80.45 1.7608 0.5679 0.0908 3810 41 201.85 6.12 1236 416.16 317.10 80.65 1.7601 0.5682 0.0910 3820 41 201.85 6.12 1236 416.16 316.76 80.65 1.7625 0.5674 0.0902 3830 41 201.81 6.12 1235 415.82 316.80 80.75 1.7616 0.5677 0.0905 3840 41 201.88 6.12 1236 416.16 317.40 80.65 1.7578 0.5689 0.0918 3850 41 201.99 6.13 1238 416.84 317.16 80.75 1.7632 0.5671 0.0900 3860 41 201.86 6.13 1237 416.50 317.06 80.75 1.7625 0.5674 0.0903 3870 41 201.92 6.13 1237 416.50 317.43 80.85 1.7605 0.5680 0.0909 3880 41 202.03 6.13 1238 416.84 317.49 80.85 1.7615 0.5677 0.0906 3890 41 201.98 6.13 1238 416.84 317.66 81 1.7613 0.5677 0.0906 3900 41 201.99 6.13 1238 416.84 317.72 80.95 1.7605 0.5680 0.0909 3910 41 201.94 6.13 1237 416.50 317.39 81.1 1.7626 0.5673 0.0902 3920 40 201.92 6.13 1237 416.50 317.76 81.15 1.7603 0.5681 0.0910 3930 40 201.72 6.12 1234 415.49 317.31 81.15 1.7594 0.5684 0.0913 3940 40 201.68 6.12 1234 415.49 31754 81.15 1.7599 0.5682 0.0911 3950 40 201.6 6.11 1232 414.81 317.28 81.15 1.7567 0.5692 0.0921 3960 40 201.39 6.11 1230 414.14 317.09 81.1 1.7549 0.5698 . 0.0927 3970 40 201.47 6.11 1231 414.48 317.22 81.2 1.7561 0.5694 0.0923 3980 40 201.55 6.11 1232 414.81 317.25 81.25 1.7577 0.5689 0.0918 3990 40 201.56 6.11 1232 414.81 317.45 81.45 1.7577 0.5689 0.0918 Appendix A. 7 163 4000 40 201.32 6.1 1229 413.80 317.28 81.45 1.7546 0.5699 0.0928 4010 40 201.43 6.11 1230 414.14 31722 81.45 1.7565 0.5693 0.0922 4020 40 201.6 6.11 1232 414.81 317.75 81.55 1.7562 0.5694 0.0923 4030 40 201.64 6.12 1233 415.15 317.01 78.2 1.7384 0.5752 0.0981 4040 40 201.7 6.12 1234 415.49 317.34 75.4 1.7173 0.5823 0.1052 4050 40 201.68 6.11 1233 415.15 317.58 74.45 1.7076 0.5856 0.1085 4060 40 201.82 6.11 1232 414.81 317.91 74 1.7007 0.5880 0.1109 4070 40 201.66 6.12 1233 415.15 317.61 73.7 1.7021 0.5875 0.1104 4060 40 201.59 6.11 1232 414.81 317.55 73.55 1.7001 0.5882 0.1111 4090 40 201.56 6.11 1232 414.81 317.71 73.55 1.6969 0.5886 0.1115 4100 40 201.57 6.11 1232 414.81 317.48 73.6 1.7009 0.5879 0.1108 4110 40 201.58 6.11 1232 414.81 317.81 73.55 1.6982 0.5888 0.1117 4120 39 201.61 6.11 1232 414.81 317.58 73.55 1.6999 0.5883 0.1112 4130 39 201.47 6.11 1230 414.14 317.59 73.55 1.6970 0.5893 0.1121 4140 39 201.42 6.1 1229 413.80 317.36 73.55 1.6973 0.5892 0.1121 4150 39 201.39 6.1 1229 413.80 317.49 73.7 1.6974 0.5891 0.1120 4160 39 202.02 6.12 1237 416.50 318.13 73.7 1.7040 0.5869 0.1097 4170 39 202.03 6.12 1237 416.50 317.83 73.8 1.7068 0.5859 0.1088 4160 39 201.64 6.11 1232 414.81 317.81 73.85 1.7003 0.5881 0.1110 4190 39 201.31 6.1 1228 413.47 317.59 73.8 1.6960 0.5896 0.1125 4200 39 202.03 6.13 1238 416.84 318.36 73.95 1.7055 0.5863 0.1092 4210 39 201.46 6.11 1230 414.14 317.52 73.9 1.6999 0.5883 0.1111 4220 39 201.46 6.11 1230 414.14 317.89 74 1.6981 0.5889 0.1118 4230 39 201.4 6.11 1230 414.14 318.05 74.3 1.6960 0.5886 0.1114 4240 39 201.35 6.1 1229 413.80 317.76 74.6 1.7018 0.5876 0.1105 4250 39 201.38 6.1 1229 413.80 317.92 74.75 1.7017 0.5877 0.1105 4260 39 202.37 6.14 1242 418.18 318.48 74.95 1.7172 0.5823 0.1052 4270 39 202.74 6.15 1246 419.53 319.23 75 1.7178 0.5821 0.1050 4260 39 201.74 6.11 1233 415.15 318.41 75.2 1.7070 0.5858 0.1087 4290 39 202.17 6.13 1239 417.17 319.15 75.3 1.7107 0.5845 0.1074 4300 39 202.91 6.15 1249 420.54 319.72 75.45 1.7216 0.5808 0.1037 4310 39 202.75 6.15 1247 419.87 319.52 75.5 1.7206 0.5812 0.1041 4320 39 202.68 6.15 1246 419.53 319.56 75.55 1.7193 0.5816 0.1045 4330 39 202.63 6.14 1245 419.19 319.63 75.7 1.7185 0.5819 0.1048 4340 39 202.6 6.14 1245 419.19 319.63 75.8 1.7192 0.5817 0.1045 4350 39 202.46 6.14 1243 418.52 319.31 75.8 1.7187 0.5818 0.1047 4360 39 202.41 6.14 1242 418.18 319.41 75.7 1.7159 0.5828 0.1057 4370 39 202.29 6.13 1241 417.85 319.28 75.7 1.7154 0.5829 0.1058 4380 39 202.16 6.13 1239 417.17 318.25 75.7 1.7129 0 5838 0.1067 4390 39 201.49 6.11 1231 414.48 318.75 75.7 1.7053 0.5864 0.1093 4400 39 201.44 6.11 1230 414.14 318.82 75.65 1.7031 0.5872 0.1100 4410 39 201.36 6.1 1229 413.80 318.79 75.7 1.7023 0.5875 0.1103 4420 39 203.12 6.16 1251 421.21 320.28 75.85 1.7233 0.5803 0.1032 4430 39 203.04 6.16 1250 420.88 320.55 76 1.7210 0.5810 0.1039 4440 39 203.03 6.16 1250 420.88 320.35 76.05 1.7228 0.5804 0.1033 4450 39 203.09 6.16 1251 421.21 320.28 75.95 1.7240 0.5801 0.1029 4460 39 202.97 6.16 1249 420.54 320.55 75.95 1.7193 0.5816 0.1045 4470 39 202.91 6.15 1249 420.54 320.58 76.05 1.7198 0.5815 0.1044 4480 39 202.94 6.16 1249 420.54 320.22 76.05 1.7223 0.5806 0.1035 4490 39 203.01 6.16 1250 420.88 320.48 76.05 1.7219 0.5806 0.1036 4500 39 203.01 6.16 1251 421.21 320.41 76 1.7234 0.5803 0.1031 4510 39 202.99 6.16 1250 420.88 320.75 76.05 1.7200 0.5814 0.1043 4520 40 203 6.16 1250 420.88 320.51 76.05 1.7216 0.5808 0.1037 4530 40 202.99 6.16 1250 420.88 320.75 75.95 1.7193 0.5816 0.1045 4540 40 202.94 6.16 1250 420.88 320.88 76 1.7187 0.5818 0.1047 4550 40 202.97 6.16 1250 420.88 320.78 76.05 1.7198 0.5815 0.1044 4560 40 202.94 6.16 1250 420.68 321.08 76.1 1.7180 0.5821 0.1049 4570 40 202.94 6.16 1250 420.66 320.58 76.05 1.7212 0.5810 0.1039 4580 40 202.89 6.16 1249 420.54 320.85 76.1 1.7182 0.5820 0.1049 4590 40 202.91 6.16 1250 420.88 321.15 76.1 1.7175 0.5822 0.1051 4600 40 202.95 6.16 1250 420.88 321.31 76.05 1.7160 0.5827 0.1056 4610 40 202.95 6.16 1250 420.68 320.71 76.05 1.7202 0.5813 0.1042 4620 40 202.92 6.16 1250 420.86 321.21 76 1.7164 0.5826 0.1055 4630 40 202.85 6.16 1249 420.54 321.18 76.05 1.7155 0.5829 0.1058 4640 40 202.92 6.16 1250 420.88 321.31 76 1.7157 0.5829 0.1057 4650 40 202.96 6.16 1250 420.88 321.38 76 1.7152 0.5830 0.1059 4660 40 202.89 6.16 1250 420.88 321.48 76 1.7145 0.5833 0.1061 4670 40 202.95 6.16 1251 421.21 321.74 76.1 1.7147 0.5832 0.1061 4680 40 202.81 6.16 1249 420.54 321.35 76.15 1.7151 0.5831 0.1059 4690 40 202.94 6.16 1251 421.21 321.38 76.2 1.7180 0.5821 0.1049 4700 40 202.91 6.18 1250 420.88 321.21 76.2 1.7178 0.5822 0.1050 4710 40 202.94 6.16 1250 420.88 321.28 76.2 1.7173 0.5823 0.1052 4720 40 202.9 6.16 1250 420.88 321.35 76.3 1.7175 0.5822 0.1051 4730 40 202.86 6.16 1249 420.54 321.38 76.35 1.7162 0.5827 0.1055 4740 40 202.81 6.16 1249 420.54 321.75 76.45 1.7144 0.5833 0.1062 4750 40 202.71 6.15 1247 419.87 321.36 76.45 1.7144 0.5833 0.1062 4760 40 202.82 6.16 1249 420.54 321.58 76.5 1.7159 0.5828 0.1057 4770 40 202.66 6.16 1249 420.54 321.22 76.6 1.7192 0.5817 0.1046 4780 40 202.83 6.16 1249 420.54 321.42 76.7 1.7185 0.5819 0.1048 4790 40 202.86 6.16 1250 420.88 321.71 76.7 1.7178 0.5822 0.1050 4800 40 202.86 6.16 1249 420.54 321.55 76.7 1.7175 0.5822 0.1051 4810 40 202.76 6.16 1248 420.20 321.75 76.7 1.7147 0.5832 0.1061 4820 40 202.98 6.16 1251 421.21 321.98 76.7 1.7173 0.5823 0.1052 4830 40 202.94 6.16 1250 420.88 321.91 76.7 1.7164 0.5826 0.1055 4840 40 202.85 6.16 1250 420.88 321.75 76.7 1.7175 0.5822 0.1051 Appendix A. 7 164 4850 40 202.84 6.16 1250 420.88 322.25 76.7 1.7140 0.5834 0.1063 4660 40 202.86 6.16 1250 420.68 322.11 76.7 1.7150 0.5831 0.1060 4870' 40 202.87 6.16 1250 420.88 322.01 76.8 1.7164 0.5826 0.1055 4880 40 202.81 6.16 1249 420.54 321.98 76.8 1.7152 0.5830 0.1059 4890 40 202.82 6.16 1250 420.88 321.91 76.8 1.7171 0.5824 0.1053 4900 40 203.03 6.17 1252 421.55 322.17 76.7 1.7173 0.5823 0.1052 4910 40 202.95 6.17 1252 421.55 321.91 76.7 1.7192 0.5817 0.1046 4920 40 202.97 6.17 1251 421.21 322.38 76.7 1.7145 0.5833 0.1061 4930 40 202.92 6.16 1251 421.21 322.01 76.8 17178 0.5822 0.1050 4940 40 202.9 6.16 1250 420.88 321.85 76.8 1.7175 0.5822 0.1051 4950 40 202.97 6.17 1251 421.21 322.14 76.85 1.7172 0.5823 0.1052 4960 40 202.89 6.16 1251 421.21 32251 76.8 17164 0.5826 0.1055 4970 40 202.9 6.17 1251 421.21 322.01 77.05 17195 0.5816 0.1044 4980 40 202.86 6.16 1250 420.88 322.05 77.05 1.7179 0.5821 0.1050 4990 40 202.87 6.16 1250 420.88 322.11 77.05 1.7174 0.5823 0.1051 5000 40 202.84 6.16 1250 420.88 322.31 77.05 1.7160 0.5827 0.1056 5010 40 202.89 6.17 1251 421.21 322.68 77.05 1.7149 0.5831 0.1060 5020 40 202.86 6.16 1250 420.88 322.75 77 1.7126 0.5839 0.1068 5030 40 202.88 6.17 1251 421.21 322.7S 76.95 1.7135 0.5836 0.1065 5040 40 202.82 6.17 1251 421.21 322.31 76.95 1.7167 0.5825 0.1054 5050 40 202.85 6.17 1251 421.21 322.38 76.95 1.7162 0.5827 0.1055 5060 40 202.85 6.17 1251 421.21 322.21 76.95 1.7174 0.5823 0.1051 5070 40 202.86 6.17 1251 421.21 322.31 77 1.7171 0.5824 0.1053 5080 40 202.82 6.17 1251 421.21 322.84 77 1.7133 0.5837 0.1065 5090 40 202.85 6.17 1251 421.21 322.58 77.05 1.7155 0.5829 0.1058 5100 40 202.84 6.17 1251 421.21 322.21 77.05 1.7181 0.5820 0.1049 5110 40 202.88 6.17 1251 421.21 322.58 77 1.7152 0.5830 0.1059 5120 40. 202.82 6.17 1251 421.21 32251 77.1 1.7185 0.5819 0.1048 5130 40 202.8 6.17 1250 420.88 32258 77.1 1.7145 0.5833 0.1061 5140 40 202.87 6.17 1252 421.55 322.47 77.1 1.7180 0.5821 0.1049 5150 40 202.88 6.17 1252 421.55 322.54 77.05 1.7172 0.5824 0.1052 5160 40 202.88 6.17 1252 421.55 322.77 77.1 1.7159 0.5828 0.1057 5170 40 202.86 6.17 1251 421.21 322.58 77.1 1.7159 0.5828 0.1057 5180 40 202.89 6.17 1252 421.55 322.61 77.1 1.7171 0.5824 0.1053 5190 40 202.85 6.17 1251 421.21 322.98 77.1 1.7131 0.5837 0.1066 5200 41 202.9 6.17 1252 421.55 322.74 77.05 1.7158 0.5828 0.1057 5210 40 202.88 6.17 1251 421.21 323.01 77.05 1.7125 0.5839 0.1068 5220 40 202.81 6.17 1251 421.21 322.54 77.1 1.7161 0.5827 0.1056 5230 40 202.77 6.17 1250 420.88 322.58 77.1 1.7145 0.5833 0.1061 5240 40 202.76 6.17 1250 420.88 322.48 77.2 1.7159 0.5828 0.1057 5250 40 202.71 6.17 1250 420.88 322.58 77.2 1.7152 0.5830 0.1059 5260 40 202.77 6.17 1250 420.88 322.61 77.4 1.7164 0.5826 0.1055 5270 40 202.77 6.17 1250 420.88 322.85 77.45 1.7151 0.5831 0.1059 5280 40 202.69 6.16 1249 420.54 322.72 77.45 1.7146 0.5832 0.1061 5290 40 202.81 6.17 1251 421.21 323.01 77.55 1.7160 0.5827 0.1056 5300 40 202.76 6.17 1250 420.86 322.68 77.5 1.7166 0.5825 0.1054 5310 40 202.77 6.17 1251 421.21 322.94 77.55 1.7165 0.5826 0.1055 5320 40 202.76 6.17 1250 420.88 323.25 77.6 1.7133 0.5837 0.1065 5330 40 202.71 6.16 1250 420.88 322.91 77.7 1.7164 0.5826 0.1055 5340 40 202.75 6.17 1250 420.88 322.71 77.8 1.7185 0.5819 0.1048 5350 40 202.67 6.16 1249 420.54 322.85 77.85 1.7165 0.5826 0.1055 5360 40 202.72 6.17 1250 420.88 322.78 77.9 1.7187 0.5818 0.1047 5370 40 202.75 6.17 1250 420.88 323.01 77.85 1.7167 0.5825 0.1054 5380 40 202.72 6.16 1249 420.54 322.92 77.85 1.7160 0.5827 0.1056 5390 40 202.72 6.16 1250 420.88 322.78 77.8 1.7180 0.5821 0.1049 5400 40 202.76 6.17 1250 420.88 322.98 77.8 1.7166 0.5825 0.1054 5410 40 202.68 6.16 1249 420.54 322.65 77.8 1.7175 0.5822 0.1051 5420 40 202.72 6.16 1250 420.88 322.81 77.85 1.7181 0.5820 0.1049 5430 40 202.7 6.16 1249 420.54 322.98 77.9 1.7159 0.5628 0.1057 5440 40 202.74 6.17 1250 420.88 323.15 77.9 1.7161 0.5827 0.1056 5450 40 202.75 6.17 1250 420.S8 322.68 78 1.7201 0.5814 0.1042 5460 40 202.84 6.17 1251 421.21 323.28 78 1.7173 0.5823 0.1052 5470 40 202.83 6.17 1251 421.21 322.84 78 1.7203 0.5813 0.1042 5480 40 202.84 6.17 1251 421.21 322.88 78 1.7201 0.5814 0.1042 5490 40 202.79 6.17 1251 42151 323.24 78.05 1.7179 0.5821 0.1050 5500 40 202.81 6.17 1251 421.21 32358 78.2 1.7187 0.5818 0.1047 5510 40 202.82 6.17 1251 421.21 323.44 78.2 1.7175 0.5822 0.1051 5520 40 202.8 6.17 1251 421.21 323.01 78.2 1.7206 0.5812 0.1041 5530 40 202.78 6.17 1251 421.21 323.11 78.25 1.7202 0.5813 0.1042 5540 40 202.79 6.17 1251 421.21 323.18 78.3 1.7201 0.5814 0.1042 5550 40 202.77 6.16 1250 420.88 323.15 78.25 1.7186 0.5819 0.1047 5560 40 202.8 6.17 1251 421.21 323.01 78.3 1.7213 0.5810 0.1038 5570 40 202.8 6.17 1251 421.21 323.01 78.3 1.7213 0.5810 0.1038 5580 40 202.84 6.17 1251 421.21 323.14 78.35 1.7207 0.5812 0.1040 5590 40 202.75 6.17 1250 420.88 323.15 7855 1.7186 0.5819 0.1047 5600 40 202.79 6.17 1251 421.21 323.01 78.35 1.7216 0.5808 0.1037 5610 40 202.S7 6.17 1252 421.55 323.11 78.3 1.7220 0.5807 0.1036 5620 40 202.82 6.17 1251 421.21 323.24 78.3 1.7196 0.5815 0.1044 5630 40 202.81 6.17 1251 421.21 322.84 78.3 1.7224 0.5806 0.1034 5640 40 202.76 6.17 1250 420.88 323.45 78.45 1.7179 0.5821 0.1050 5650 40 202.79 6.17 1251 421.21 323.38 78.45 1.7198 0.5815 0.1044 5660 40 202.77 6.17 1251 421.21 323.34 78.45 1.7200 0.5814 0.1043 5670 40 202.75 6.17 1250 420.88 323.21 78.55 1.7202 0.5813 0.1042 5680 40 202.77 6.17 1250 420.88 323.68 78.5 1.7166 0.5825 0.1054 5690 40 202.69 6.17 1250 420.88 323.45 78.6 1.7189 0.5818 0.1046 Appendix A. 7 165 5700 40 202.78 6.17 1250 420.88 323.31 78.7 1.7206 0.5812 0.1041 5710 40 202.76 6.17 1250 420.88 323.48 78.75 1.7198 0.5815 0.1044 5720 26 202.86 6.17 1252 421.55 306.77 78.75 1.8487 0.5409 0.0638 5730 41 202.81 6.17 1251 421.21 325.48 75.05 1.6820 0.5945 0.1174 57*3 41 202.77 6.17 1251 421.21 324.61 73.55 1.6777 0.5960 0.1189 5750 41 202.83 6.17 1252 421.55 324.31 73.05 1.6778 0.5960 0.1189 5760 41 202.81 6.17 1251 421.21 324.01 73.55 1.6818 0.5946 0.1175 5770 41 202.77 6.17 1250 420.88 324.38 73.65 1.6786 0.5957 0.1186 5760 41 202.83 6.17 1251 42121 324.18 73.75 1.6820 0.5945 0.1174 5790 41 202.79 6.17 1251 421.21 324.01 73.65 1.6824 0.5944 0.1173 5600 41 202.88 6.17 1252 421.55 323.97 73.S 1.6830 0.5942 0.1170 5610 41 202.69 6.17 1250 420.88 323.88 73.4 1.6803 0.5951 0.1180 5820 41 202.69 6.17 1250 420.88 324.08 73.5 1.6796 0.5954 0.1183 5830 40 202.77 6.17 1250 420.88 323.85 73.7 1.6825 0.5943 0.1172 5840 40 202.79 6.17 1250 420.88 323.55 73.7 1.6845 0.5936 0.1165 5850 40 202.76 6.17 1250 420.88 323.61 73.7 1.6841 0.5938 0.1167 5860 40 202.79 6.17 1251 421.21 323.61 73.7 1.6855 0.5933 0.1162 5870 40 202.79 6.17 1250 420.88 323.91 73.75 1.6824 0.5844 0.1173 5880 40 202.65 6.17 1251 421.21 323.51 73.75 1.6885 0.5930 0.1158 5690 40 202.74 6.16 1250 420.88 323.45 73.65 1.6849 0.5935 0.1164 5900 40 202.75 6.16 1250 420.86 323.45 73.75 1.6855 0.5933 0.1162 5910 40 202.75 6.16 1250 420.88 323.65 73.75 1.6842 0.5938 0.1166 5920 40 202.78 6.17 1250 426.88 323.68 73.75 1.6840 0.5938 0.1167 5930 40 202.76 6.17 1250 420.86 323.36 73.75 1.6860 0.5931 0.1160 5940 40 202.77 6.17 1250 420.88 323.71 73.75 1.6837 0.5939 0.1168 5950 40 202.76 6.16 1250 420.88 323.51 73.75 1.6851 0.5934 0.1163 5960 40 202.83 6.17 1251 421.21 323.31 73.6 1.6868 0.5928 0.1157 5970 40 202.76 6.17 1250 420.88 323.31 73.6 1.6854 0.5933 0.1162 5980 40 202.8 6.17 1250 420.88 323.55 73.75 1.6849 0.5835 0.1164 5990 40 202.77 6.17 1250 420.88 323.71 73.75 1.6837 0.5939 0.1168 6000 40 202.77 6.17 1250 420.88 323.81 73.75 1.6831 0.5942 0.1170 6010 40 202.74 6.16 1250 420.88 323.65 73.7 1.6839 0.5939 0.1167 6020 40 202.8 6.17 1250 420.88 323.98 73.85 1.6828 0.5943 0.1172 60X 40 202.79 6.17 1250 420.88 324.08 73.85 1.6820 0.5945 0.1174 6040 40 202.74 6.17 1250 420.88 324.15 73.95 1.6822 0.5945 0.1173 6050 40 202.7 6.16 1249 420.54 323.82 73.95 1.6831 0.5942 0.1170 6060 40 202.63 6.16 1248 420.20 323.99 73.95 1.6806 0.5950 0.1179 6070 40 202.77 6.17 1250 420.88 323.98 73.85 1.6826 0.5943 0.1172 6080 40 202.72 6.16 1250 420.88 324.08 73.95 1.6826 0.5943 0.1172 6090 40 202.75 6.17 1250 420.88 324.21 73.95 1.6617 0.5946 0.1175 6100 40 202.71 6.16 1250 420.86 324.01 74 1.6634 0.5940 0.1169 6110 40 202.63 6.16 1248 42050 324.32 74.05 1.6790 0.5956 0.1185 6120 40 202.7 6.16 1249 420.54 324.02 74.05 1.6824 0.5944 0.1173 6130 40 202.67 6.16 1249 420.54 323.92 74.05 1.6831 0.5942 0.1170 6140 40 202.74 6.16 1250 420.88 324.41 74.4 1.6834 0.5940 0.1169 6150 40 202.74 6.16 1250 420.88 324.61 74.55 1.6831 0.5942 0.1170 6160 40 202.7 6.16 1249 420.54 324.38 74.6 1.6836 0.5940 0.1168 6170 40 202.7 6.16 1249 420.54 324.12 74.65 1.6858 0.5932 0.1161 6180 40 202.75 6.17 1250 420.88 324.35 74.65 1.6855 0.5933 0.1162 6190 40 202.77 6.17 1250 420.88 324.48 74.65 1.6846 0.5936 0.1165 6200 40 202.8 6.17 1250 420.88 324.68 74.7 1.6836 0.5940 0.1168 6210 40 202.8 6.17 1250 420.88 324.38 74.75 1.6860 0.5931 0.1160 6220 40 202.71 6.16 1249 420.54 324.45 74.75 1.6842 0.5936 0.1166 6230 40 202.83 6.17 1251 421.21 324.54 74.75 1.6862 0.5930 0.1159 6240 40 202.69 6.16 1249 420.54 324.48 74.85 1.6846 0.5936 0.1165 6250 40 202.76 6.17 1250 420.88 324.31 74.8 1.6875 0.5926 0.1155 6260 40 202.71 6.16 1249 420.54 323.92 74.9 1.6888 0.5921 0.1150 6270 40 202.76 6.16 1250 420.88 324.58 74.65 1.6860 0.5831 0.1160 6280 40 202.77 6.16 1250 420.86 324.38 75.05 1.6680 0.5924 0.1153 6290 40 202.79 6.17 1251 421.21 324.48 75.05 1.6887 0.5922 0.1150 6300 40 202.75 6.17 1250 420.68 324.05 74.95 1.6896 0.5919 0.1147 6310 40 202.75 6.17 1250 420.88 324.11 74.95 1.6892 0.5920 0.1149 6320 40 202.72 6.16 1249 420.54 323.82 75 1.6902 0.5917 0.1145 6330 40 202.76 6.16 1250 420.88 324.25 75.05 1.6889 0.5921 0.1150 6340 40 202.74 6.16 1250 420.88 324.41 75.15 1.6885 0.5922 0.1151 6350 40 202.75 6.17 1250 420.88 324.45 75.15 1.6883 0.5923 0.1152 6360 40 202.67 6.16 1249 420.54 324.45 75.15 1.6869 0.5928 0.1157 6370 40 202.66 6.16 1249 420.54 324.35 75.2 1.6679 0.5925 0.1153 6380 40 202.66 6.16 1249 420.54 324.55 75.2 1.6865 0.5929 0.1158 6390 40 202.74 6.17 1250 420.86 324.51 75.2 1.6881 0.5924 0.1152 6400 40 202.71 6.16 1249 420.54 324.38 75.15 1.6873 0.5927 0.1155 6410 40 202.71 6.16 1249 420.54 324.75 75.2 1.6852 0.5934 0.1163 6420 40 202.7 6.16 1249 420.54 324.65 75.2 1.6S59 0.5932 0.1160 6430 40 202.69 6.16 1249 420.54 324.75 75.25 1.6855 0.5933 0.1162 6440 40 202.66 6.16 1249 420.54 324.72 75.25 1.6858 0.5932 0.1161 6450 40 202.73 6.16 1249 420.54 324.62 75.2 1.6861 0.5931 0.1160 6460 40 202.67 6.16 1249 420.54 324.62 75.25 1.6864 0.5930 0.1158 6470 40 202.7 6.17 1250 420.88 324.41 75.35 1.6898 0.5918 0.1146 6480 40 202.71 6.16 1249 420.54 324.68 75.25 1.6880 0.5931 0.1160 6490 40 202.69 6.16 1249 420.54 324.68 75.3 1.6863 0.5930 0.1159 6500 40 202.69 6.17 1250 420.88 324.61 75.25 1.6878 0.5925 0.1154 6510 40 202.68 6.16 1249 420.54 324.88 75.4 1.6856 0.5932 0.1161 6520 40 202.73 6.16 1250 420.88 324.71 75.35 1.6878 0.5925 0.1154 6530 40 202.71 6.16 1250 420.88 324.78 75.35 1.6874 0.5926 0.1155 6540 40 202.67 6.16 1249 420.54 324.85 75.3 1.6852 0.5934 0.1163 Appendix A.7 166 6550 40 202.68 6.16 1249 420.54 324.95 75.35 1.6848 0.5935 0.1164 6560 40 202.66 6.16 1249 420.54 324.78 75.35 1.6860 0.5931 0.1160 6570 40 202.65 6.16 1249 420.54 325.42 75.35 1.6817 0.5946 0.1175 6580 40 202.62 6.16 1249 420.54 324.92 75.35 1.6851 0.5934 0.1163 6590 40 202.61 6.16 1248 42050 325.05 75.35 1.6828 0.5942 0.1171 6600 40 202.66 6.16 1249 420.54 325.18 75.35 1.6833 0.5941 0.1170 6610 40 202.72 6.16 1250 420.88 324.98 75.35 1.6660 0.5931 0.1160 6620 40 202.72 6.17 1250 420.88 324.75 75.4 1.6879 0.5924 0.1153 6630 40 202.71 6.17 1250 420.88 324.61 75.4 1.6888 0.5921 0.1150 6640 40 202.66 6.16 1249 420.54 324.72 75.4 1.6868 0.5929 0.1157 6650 40 202.69 6.17 1250 420.88 324.78 75.4 1.6877 0.5925 0.1154 6660 40 202.67 6.17 1249 420.54 324.52 75.45 1.6885 0.5923 0.1151 6670 40 202.71 6.17 1250 420.88 324.58 75.4 1.6890 0.5921 0.1149 6680 40 202.7 6.17 1250 420.88 324.65 75.4 1.6686 0.5922 0.1151 6690 40 202.68 6.16 1249 420.54 324.78 75.35 1.6860 0.5931 0.1160 6700 41 202.74 6.17 1250 420.88 325.08 75.45 1.6860 0.5931 0.1160 6710 40 202.72 6.17 1250 420.88 324.91 75.45 1.6871 0.5927 0.1156 6720 40 202.67 6.16 1249 420.54 324.95 75.45 1.6855 0.5933 0.1162 6730 40 202.72 6.17 1250 420.88 324,55 75.5 1.6899 0.5917 0.1146 6740 40 202.75 6.17 1250 420.88 325.08 75.55 1.6867 0.5929 0.1158 6750 40 202.75 6.17 1250 420.88 325.21 75.55 1.6858 0.5932 0.1161 6760 40 202.72 6.17 1250 420.88 325.15 75.55 1.6862 0.5930 0.1159 6770 40 202.77 6.17 1251 421.21 325.34 75.55 1.6862 0.5930 0.1159 6780 41 202.66 6.17 1249 420.54 325.18 75.55 1.6846 0.5936 0.1165 6790 40 202.6 6.16 1248 420.20 325.12 75.65 1.6844 0.5937 0.1166 6800 41 202.67 6.17 1249 420.54 325.28 75.75 1.6853 0.5934 0.1162 6810 40 202.65 6.16 1249 420.54 325.05 76 1.6886 0.5925 0.1151 6820 40 202.68 6.17 1250 420.88 325.05 76.05 1.6903 0.5916 0.1145 6830 40 202.68 6.16 1249 420.54 325.32 76.15 1.6876 0.5925 0.1154 6840 40 202.67 6.16 1249 420.54 325.12 76.05 1.6885 0.5923 0.1151 6850 40 202.74 6.17 1250 420.88 325.11 76.15 1.6905 0.5915 0.1144 6860 40 202.76 6.17 1251 421.21 325.38 76.2 1.6904 0.5916 0.1144 6870 40 202.73 6.17 1250 420.88 325.15 76.2 1.6906 0.5915 0.1144 6880 40 202.75 6.17 1250 420.88 325.31 76.15 1.6892 0.5920 0.1149 6890 40 202.76 6.17 1250 420.88 325.35 76.25 1.6896 0.5919 0.1147 6900 40 202.75 6.17 1250 420.88 325.78 76.25 1.6867 0.5929 0.1158 6910 40 202.77 6.17 1250 420.88 325.55 76.35 1.6889 0.5921 0.1150 6920 40 202.75 6.17 1250 420.88 325.25 76.45 1.6916 0.5911 0.1140 6930 40 202.75 6.17 1250 420.88 32558 76.45 1.6914 0.5912 0.1141 6940 40 202.72 6.16 1250 420.88 325.15 76.45 1.6923 0.5909 0.1138 6950 40 202.76 6.17 1250 420.88 325.48 76.55 1.6907 0.5915 0.1143 6960 40 202.7 6.16 1249 420.54 325.42 76.55 1.6898 0.5918 0.1147 6970 40 202.74 6.17 1250 420.88 325.25 76.55 1.6923 0.5909 0.1138 6980 40 202.77 6.16 1250 420.88 325.35 76.55 1.6916 0.5911 0.1140 6990 40 202.73 6.17 1250 420.88 325.41 76.55 1.6912 0.5913 0.1142 70X 40 202.74 6.16 1250 420.86 325.35 76.5 1.6913 0.5913 0.1141 7010 40 202.76 6.16 1250 420.88 325.21 76.45 1.6919 0.5911 0.1139 7020 40 202.7 6.16 1249 420.54 325.18 76.5 1.6911 0.5913 0.1142 7030 40 202.75 6.17 1250 420.88 325.31 76.65 1.6926 0.5908 0.1137 7040 40 202.74 6.17 1250 420.88 32551 76.8 1.6943 0.5902 0.1131 7050 40 202.74 6.16 1250 420.88 325.25 76.8 1.6940 0.5903 0.1132 7060 40 202.75 6.17 1250 420.88 325.45 76.85 1.6930 0.5907 0.1135 7070 40 202.75 6.16 1250 420.88 325.31 76.9 1.6943 0.5902 0.1131 7080 40 202.81 6.17 1251 42151 325.64 76.8 1.6927 0.5908 0.1137 7090 40 202.73 6.16 1249 420.54 325.12 76.8 1.6936 0.5905 0.1133 7100 40 202.75 6.16 1250 420.88 325.38 76.85 1.6935 0.5905 0.1134 7110 40 202.77 6.17 1250 420.88 325.28 76.85 1.6941 0.5903 0.1131 7120 40 202.76 6.17 1250 420.88 325.35 76.85 1.6937 0.5904 0.1133 7130 40 202.74 6.16 1249 420.54 325.72 76.95 1.6905 0.5915 0.1144 7140 40 202.75 6.16 1250 420.88 325.55 76.95 1.6930 0.5907 0.1135 7150 40 202.7 6.16 1249 420.54 325.72 77.05 1.6912 0.5913 0.1142 7160 40 202.72 6.16 1249 420.54 325.38 77.1 1.6938 0.5904 0.1133 7170 40 202.74 6.16 1249 420.54 325.75 77.15 1.6916 0.5911 0.1140 7180 40 202.7 6.16 1249 420.54 325.38 77.05 1.6934 0.5905 0.1134 7190 40 202.75 6.17 1250 420.88 325.41 77.05 1.6946 0.5901 0.1130 7200 40 202.75 6.17 1250 420.88 325.45 77.05 1.6944 0.5902 0.1131 7210 40 202.76 6.16 1250 420.88 325.31 76.95 1.6946 0.5901 0.1130 7220 40 202.72 6.18 1250 420.88 325.28 77.05 1.6955 0.5898 0.1127 7230 40 202.74 6.16 1249 420.54 325.72 77.1 1.6915 0.5912 0.1141 7240 40 202.74 6.16 1250 420.88 325.91 77.15 1.6919 0.5911 0.1139 7250 40 202.69 6.16 1249 420.54 325.68 77.15 1.6921 0.5910 0.1139 7260 40 202.66 6.16 1249 420.54 325.92 77.15 1.6905 0.5915 0.1144 7270 40 202.72 6.16 1250 420.88 325.61 77.15 1.6939 0.5903 0.1132 7280 40 202.76 6.17 1250 420.88 325.58 77.15 1.6941 0.5903 0.1131 7290 40 202.77 6.17 1250 420.88 325.68 77.15 1.6935 0.5905 0.1134 7300 40 202.77 6.17 1250 420.88 325.88 77.25 1.6928 0.5907 0.1136 7310 40 202.74 6.16 1249 420.54 325.58 77.2 1.6931 0.5906 0.1135 7320 40 202.71 6.16 1249 420.54 325.75 77.2 1.6920 0.5910 0.1139 7330 40 202.7 6.16 1249 420.54 326.08 77.2 1.6897 0.591S 0.1147 7340 40 202.75 6.16 1249 420.54 32652 77.15 1 6885 0.5923 0.1151 7350 40 202.73 6.16 1249 420.54 326.28 77.15 1.6880 0.5924 0.1153 7360 40 202.75 6.16 1250 420.88 325.61 77.2 1.6943 0.5902 0.1131 7370 40 202.75 6.16 1250 420.88 326.28 77.15 1.6894 0.5919 0.1148 7380 40 202.79 6.17 1250 420.88 325.98 77.15 1.6914 0.5912 0.1141 7390 40 202.76 6.17 1250 420.88 326.18 77.15 1.6901 0.5917 0.1146 Appendix A.7 167 7400 40 202.76 6.17 1250 420.88 326.15 77.2 1.6906 0.5915 0.1144 7410 40 202.82 6.17 1251 421.21 326.18 77.15 1.6914 0.5912 0.1141 7420 40 202.76 6.16 1250 420.88 326.35 77.15 1.6869 0.5921 0.1150 7430 40 202.74 6.17 1250 420.88 326.31 77.2 1.6895 0.5919 0.1148 7440 40 202.65 6.16 1249 420.54 326.26 77.15 1.6860 0.5924 0.1153 7450 40 202.76 6.17 1250 420.88 326.58 77.15 1.6874 0.5926 0.1155 7460 40 202.68 6.17 1250 420.88 326.11 77.15 1.6905 0.5915 0.1144 7470 40 202.76 6.17 1250 420.88 326.01 77.15 1.6912 0.5913 0.1142 7480 41 202.79 6.17 1251 421.21 326.71 77.15 1.6678 0.5925 0.1154 7490 41 202.74 6.17 1250 420.88 326.28 77.1 1.6890 0.5921 0.1149 7500 41 202.71 6.17 1250 420.88 326.55 77.15 1.6876 0.5926 0.1154 7510 41 202.69 6.17 1250 420.88 326.61 77.15 1.6871 0.5927 0.1156 7520 40 202.77 6.17 1251 42151 326.31 76.95 1.6892 0.5920 0.1149 7530 41 202.74 6.17 1250 420.88 326.31 76.75 1.6864 0.5930 0.1158 7540 41 202.74 6.17 1251 421.21 326.08 76.75 1.6894 0.5919 0.1148 7550 41 202.65 6.17 1249 420.54 326.15 76.75 1.6862 0.5930 0.1159 7560 41 202.7 6.17 1250 420.88 326.58 76.7 1.6843 0.5937 0.1166 7570 41 202.7 6.17 1250 420.88 326.61 76.55 1.6831 0.5942 0.1170 7580 41 202.61 6.16 1249 420.54 326.52 76.45 1.6817 0.5946 0.1175 7590 41 202.67 6.17 1249 420.54 326.75 76.55 1.6808 0.5950 0.1178 7600 41 202.63 6.17 1249 420.54 326.52 76.55 1.6824 0.5944 0.1173 7610 41 202.61 6.16 1249 420.54 32652 76.55 1.6844 0.5937 0.1166 7620 41 202.66 6.17 1249 420.54 326.52 76.5 1.6820 0.5945 0.1174 7630 41 202.61 6.16 1249 420.54 326.72 76.55 1.6810 0.5949 0.1177 7640 41 202.76 6.17 1250 420.88 326.68 76.45 1.6820 0.5945 0.1174 7650 41 202.82 6.17 1251 421.21 326.88 76.45 1.6820 0.5945 0.1174 7660 41 202.74 6.17 1251 421.21 326.58 76.45 1.6840 0.5938 0.1167 7670 41 202.72 6.17 1250 420.88 326.88 76.45 1.6806 0.5950 0.1179 7680 41 202.77 6.17 1251 421.21 326.88 76.45 1.6820 0.5945 0.1174 7690 41 202.75 6.17 1251 421.21 326.81 76.45 1.6624 0.5944 0.1173 7700 41 202.71 6.17 1251 42151 323.81 76.45 1.6624 0.5944 0.1173 7710 41 202.75 6.17 1251 421.21 326.68 76.4 1.6830 0.5942 0.1171 7720 41 202.7 6.17 1251 421.21 326.88 76.2 1.6803 0.5951 0.1180 7730 41 202.73 6.17 1251 421.21 326.74 76.35 1.6622 0.5945 0.1173 7740 41 202.73 6.17 1251 421.21 326.98 76.45 1.6813 0.5948 0.1176 7750 41 202.7 6.17 1251 421.21 327.01 76.5 1.6814 0.5947 0.1176 7760 41 202.73 6.17 1251 421.21 326.98 76.45 1.6813 0.5948 0.1176 7770 41 202.73 6.17 1251 421.21 327.14 76.45 1.6802 0.5952 0.1180 7780 41 202.66 6.17 1250 420.88 327.15 76.4 1.6785 0.5958 0.1186 7790 41 202.59 6.17 1249 420.54 326.52 76.45 1.6817 0.5946 0.1175 7600 41 202.66 6.17 1250 420.88 326.98 76.45 1.6799 0.5953 0.1181 7810 41 202.64 6.17 1250 420.88 326.71 76.45 1.6817 0.5946 0.1175 7820 41 202.6 6.16 1249 420.54 326.65 76.45 1.6808 0.5950 0.1178 7830 41 202.64 6.17 1250 420.88 326.95 76.45 1 6802 0.5952 0.1181 7840 41 202.64 6.17 1249 420.54 326.82 76.45 1.6797 0.5953 0.1182 7850 41 202.63 6.17 1249 420.54 326.75 76.35 1.6795 0.5954 0.1183 7860 41 202.64 6.17 1249 420.54 326.62 76.35 1.6804 0.5951 0.1180 7870 41 202.64 6.17 1250 420.88 326.75 76.45 1.6815 0.5947 0.1176 7880 41 202.6 6.16 1249 420.54 326.45 76.45 1.6822 0.5945 0.1174 7890 41 202.64 6.17 1249 420.54 326.98 76.45 1.6786 0.5957 0.1166 7900 41 202.72 6.17 1250 420.88 326.81 76.5 1.6814 0.5947 0.1176 7910 40 202.62 6.17 1249 420.54 326.82 76.55 1.6S04 0.5951 0.1180 7920 40 202.59 6.16 1249 420.54 326.65 76.55 1.6815 0.5947 0.1176 7930 40 202.68 6.17 1250 420.88 326.45 76.6 1.6845 0.5936 0.1165 7940 40 202.65 6.17 1250 420.86 326.71 76.55 1.6824 0.5944 0.1173 7950 40 202.67 6.17 1249 420.54 327.05 76.55 1.6788 0.5957 0.1185 7960 40 202.68 6.17 1250 420.88 326.68 76.65 1.6833 0.5941 0.1169 7970 40 202.56 6.16 1249 420.54 326.55 76.6 1.6825 0.5944 0.1172 7980 40 202.62 6.17 1249 420.54 326.88 76.45 1.6792 0.5955 0.1184 7990 40 202.58 6.16 1249 420.54 326.92 76.55 1.6797 0.5953 0.1182 8000 40 202.61 6.17 1249 420.54 326.95 76.55 1.6795 0.5954 0.1183 8010 40 202.64 6.17 1250 420.88 326.88 76.65 1.6820 0.5945 0.1174 8020 40 202.57 6.16 1249 420.54 326.98 76.65 1.6799 0.5853 0.1181 8030 41 202.53 8.16 1246 420.20 326.62 76.6 1.6807 0.5950 0.1179 8040 40 202.66 6.17 1249 420.54 326.78 76,55 1.6806 0.5950 0.1179 8050 40 202.7 6.17 1250 420.88 326.45 76.45 1.6835 0.5940 0.1169 8060 40 202.67 6.17 1250 420.88 326.88 76.45 1.6806 0.5950 0.1179 8070 41 202.71 6.17 1251 421.21 326.94 76.55 1.6822 0.5945 0.1173 6080 40 202.76 6.17 1251 421.21 326.88 76.45 1.6820 0.5945 0.1174 8090 41 202.55 6.16 1249 420.54 326.78 76.55 1.6806 0.5950 0.1179 8100 41 202.66 6.17 1250 420.86 326.78 76.65 1.6826 0.5943 0.1172 8110 40 202.67 6.17 1250 420.88 326.75 76.55 1.6822 0.5945 0.1173 8120 40 202.75 6.17 1251 42151 326.71 76.65 1.6844 0.5937 0.1165 8130 40 202.63 6.17 1250 420.88 326.95 76.85 1.6829 0.5942 0.1171 8140 40 202.66 6.17 1250 420.88 326.91 76.9 1.6834 0.5940 0.1169 8150 41 202.51 6.16 1248 420.20 326.82 77 1.6820 0.5945 0.1174 8160 41 202.59 6.16 1249 420.54 327.08 77.15 1.6826 0.5943 0.1172 8170 40 202.66 6.17 1250 420.88 327.15 77.05 1.6629 0.5942 0.1171 8180 40 202.67 6.17 1250 420.88 327.11 77.15 1.6837 0.5939 0.1168 8190 40 202.67 6.17 1250 420.88 326.95 77.2 1.6852 0.5934 0.1163 8200 40 202.7 6.17 1251 421.21 326.78 77.3 1.6684 0.5923 0.1152 8210 40 202.66 6.17 1250 420.88 32755 77.25 1.6835 0.5940 0.1169 8220 40 202.66 6.17 1250 420.88 326.75 77.35 1.6876 0.5926 0.1154 8230 40 202.61 6.17 1250 420.88 326.98 77.4 1.6863 0.5930 0.1159 8240 40 202.69 6.17 1250 420.86 327.01 77.45 1.6864 0.5930 0.1158 Appendix A. 7 168 8250 40 202.63 6.17 1250 420.88 326.95 77.5 1.6872 0.5927 0.1156 8260 40 202.67 6.17 1250 420.88 326.81 77.5 1.6881 0.5924 0.1152 8270 40 202.67 6.17 1250 420.88 326.55 77.5 1.6899 0.5917 0.1146 8280 40 202.75 6.17 1251 42151 326.88 77.6 1.6897 0.5918 0.1147 8290 40 202.7 6.17 1250 420.88 326.41 77.75 1.6926 0.5908 0.1137 8300 40 202.71 6.17 1250 420.88 326.55 77.85 1.6923 0.5909 0.1138 8310 40 202.68 6.17 1250 420.88 326.71 77.8 1.6909 0.5914 0.1143 8320 40 202.66 6.17 1250 420.88 326.55 77.8 1.6920 0.5910 0.1139 8330 40 202.66 6.17 1249 420.54 326.62 77.95 1.6912 0.5913 0.1142 8340 40 202.59 6.16 1249 420.54 326.52 78.15 1.6932 0.5906 0.1135 8350 40 202.56 6.16 1248 420.20 326.55 78.15 1.6916 0.5912 0.1140 8360 40 202.6 6.17 1249 42054 326.28 78.25 1.6955 0.5898 0.1127 8370 40 202.71 6.17 1251 421.21 326.34 78.2 1.6975 0.5891 0.1120 8380 40 202.7 6.17 1250 420.88 326.45 78.2 1.6954 0.5898 0.1127 8390 40 202.75 6.17 1250 420.88 326.61 78.2 1.6943 0.5902 0.1131 8400 40 202.75 6.17 1251 421.21 326.48 78.25 1.6969 0.5893 0.1122 8410 40 202.68 6.17 1250 420.88 326.21 78.25 1.6973 0.5892 0.1120 8420 40 202.76 6.17 1251 421.21 326.81 78.25 1.6946 0.5901 0.1130 8430 40 202.72 6.17 1251 421.21 326.44 78.25 1.6971 0.5892 0.1121 8440 40 202.73 6.17 1251 42151 326.74 78.25 1.6951 0.5899 0.1128 8450 40 202.71 6.17 1250 420.88 326.35 78.4 1.6974 0.5891 0.1120 8460 40 202.71 6.17 1251 42151 326.71 78.55 1.6973 0.5892 0.1120 8470 40 202.73 6.17 1251 421.21 328.68 78.45 1.6969 0.5893 0.1122 8480 40 202.76 6.17 1251 421.21 326.64 78.45 1.6971 0.5892 0.1121 8490 40 202.7 6.17 1250 420.88 326.71 78.45 1.6953 0.5899 0.1127 8500 40 202.65 6.17 1250 420.88 326.45 78.5 1.6974 0.5891 0.1120 8510 40 202.68 6.17 1250 420.88 326.61 78.55 1.6966 0.5894 0.1123 8520 40 202.73 6.17 1251 42151 326.74 78.7 1.6981 0.5889 0.1118 8530 40 202.7 6.17 1250 420.88 326.71 78.7 1.6970 0.5893 0.1122 8540 40 202.74 6.17 1251 421.21 32858 78.75 1.7017 0.5877 0.1105 8550 40 202.72 6.17 1250 420.88 326.91 78.75 1.6960 0.5896 0.1125 6560 40 202.62 6.17 1249 420.54 326.45 78.8 1.6981 0.5889 0.1118 8570 40 202.75 6.17 1251 421.21 326.34 78.95 1.7026 0.5873 0.1102 8580 . 40 202.71 6.17 1250 420.88 326.18 79.1 1.7034 0.5871 0.1099 8590 40 202.72 6.17 1250 420.88 325.98 78.9 1.7034 0.5871 0.1099 8600 40 202.67 6.17 1250 420.88 325.81 78.55 1.7021 0.5875 0.1104 8610 40 202.76 6.17 1251 421.21 325.38 78.25 1.7044 0.5867 0.1096 8620 40 202.68 6.17 1250 420.88 325.45 78.2 1.7023 0.5875 0.1103 8630 40 202.7 6.17 1250 420.88 325.95 78.15 1.6985 0.58S8 0.1116 8640 40 202.61 6.16 1248 420.20 326.15 78.25 1.6950 0.5900 0.1128 8650 40 202.63 6.16 1249 420.54 325.95 78.15 1.6971 0.5892 0.1121 8660 40 202.69 6.16 1249 420.54 325.65 78.1 1.6988 0.5887 0.1115 8670 40 202.7 6.16 1249 420.54 325.92 78.15 1.6973 0.5892 0.1120 8680 40 202.76 6.17 1250 420.88 326.05 78.1 1.6974 0.5891 0.1120 8690 40 202.71 6.17 1250 420.88 326.18 78.15 1.6969 0.5893 0.1122 8700 40 202.75 6.17 1250 420.88 325.98 78.25 1.6989 0.5886 0.1115 8710 40 202.72 6.17 1250 420.88 326.01 78.25 1.6987 0.5887 0.1116 8720 40 202.69 6.17 1250 420.88 326.11 78.15 1.6973 0.5892 0.1120 Run SSB15 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2/K/kW Rf, m2/K/kW 0 41 213.56 6.16 1316 406.17 281.37 82.35 2.0408 0.4X0 0.0X0 10 40 213.24 6.15 1311 404.63 279.44 79.25 2.0212 0.4948 0.0048 20 39 212.95 6.14 1308 403.70 276.00 78.1 2.0399 0.4X2 0.0X2 30 39 212.72 6.13 1305 402.78 277.21 77.5 2.0168 0.4X8 0.0X8 40 39 212.56 6.13 1302 401.85 278.48 77.2 1.9965 0.5X9 0.0109 50 39 212.34 6.12 1299 400.93 279.39 77.1 1.9820 0.5046 0.0146 60 39 212.1 6.11 1296 400.00 278.70 76.9 1.9822 0.5045 0.0145 70 39 211.96 6.11 1294 399.38 280.56 76.7 1.9591 0.5104 0.0204 80 39 211.8 6.1 1292 398.77 280 96 76.6 1.9512 0.5125 0.0225 90 39 211.71 6.1 1291 398.46 277.92 76.35 1.9768 0.5059 0.0159 100 39 211.54 6.09 1288 397.53 280.78 76.25 1.9436 , 0.5145 0.0245 110 39 211.61 6.09 1288 397.53 279.48 76.15 1.9551 0.5115 0.0215 120 39 21156 6.08 1285 396.60 282.74 76.15 1.9196 0.5209 0.0X9 130 40 211.18 6.08 1284 396.30 282.05 76.15 1.9247 0.5195 0.0296 140 40 211.34 6.08 1286 396.91 283.64 76.2 1.9134 0.5226 0.0326 150 40 211.24 6.08 1285 396.60 283.34 76.2 1.9147 0.5223 0.0323 160 40 211.17 6.08 1283 395.99 284.40 76.25 1.9024 0.5256 0.0X7 170 40 211.13 6.08 1283 395.99 283.80 76.25 1.9076 0.5241 0.0341 180 40 211.21 6.08 1284 396.30 284.90 76.25 1.8994 0.5265 0.0X5 190 40 211.13 6.08 1283 395.99 282.80 76.25 1.9172 0.5216 0.0316 200 41 211.06 6.07 1282 395.68 283.90 76.3 1.9059 0.5247 0.0347 210 41 211.06 6.07 1282 395.68 284.55 76.35 1.9X4 0.5262 0.0382 220 41 210.91 6.07 1280 395.06 284.61 76.45 1.8979 0.5269 0.0X9 230 41 210.82 6.07 1279 394.75 283.41 76.45 1.9073 0.5243 0.0343 240 41 210.89 6.07 1279 394.75 283.16 76.45 1.9X6 0.5237 0.0337 250 41 210.99 6.07 1281 395.37 285.81 76.25 1.8X7 0.5X0 0.0400 260 42 210.93 6.07 1280 395.06 283.81 76.35 1.9043 0.5251 0.0X1 Appendix A.7 169 270 42 211 6.07 1280 395.06 286.76 76.35 1.8776 0.5326 0.0426 280 42 210.87 6.07 1279 394.75 286.31 76.35 1.8801 0.5319 0.0419 290 42 210.89 6.07 1279 394.75 286.86 76.25 1.8743 0.5335 0.0435 300 38 210.9 6.07 1279 394.75 288.21 76.75 1.8646 0.5308 0.0406 310 38 211.88 6.1 1291 398.46 288.17 76.85 1.8856 0.5303 0.0403 320 38 211.8 6.09 1290 398.15 288.62 76.95 1.8810 0.5316 0.0416 330 38 211.69 6.09 1289 397.84 290.13 76.9 1.8658 0.5360 0.0460 340 38 211.75 6.09 1290 398.15 291.47 76.75 1.8542 0.5393 0.0493 350 38 211.61 6.09 1288 397.53 292.58 76.65 1.8410 0.5432 0.0532 360 38 211.69 6.09 1289 397.84 293.13 76.7 1.8382 0.5440 0.0540 370 38 211.63 6.09 1288 397.53 293.98 76.8 1.8304 0.5463 0.0563 380' 38 211.76 6.09 1289 397.84 295.83 76.75 1.8160 0.5507 0.0607 390 38 211.7 6.09 1289 397.84 295.83 76.85 1.8168 0.5504 0.0604 400 38 211.78 6.09 1290 398.15 296.92 76.8 1.8088 0.5529 0.0629 410 38 211.78 6.09 1290 398.15 297.47 76.85 1.8047 0.5541 0.0641 420 38 211.7 6.09 1289 397.84 299.43 76.75 1.7866 0.5597 0.0697 430 38 211.71 6.09 1289 397.84 301.78 76.8 1.7684 0.5655 0.0755 440 38 211.61 6.09 1288 397.53 299.68 76.85 1.7840 0.5605 0.0705 450 38 211.66 6.09 1288 397.53 300.58 76.85 1.7768 0.5628 0.0728 460 38 211.62 6.09 1288 397.53 302.43 76.9 1.7626 0.5673 0.0773 470 38 211.59 6.09 1288 397.53 302.38 76.95 1.7634 0.5671 0.0771 480 38 211.62 6.08 1287 39752 303.93 77.05 1.7508 0.5712 0.0812 490 38 211.53 6.08 1287 39752 304.18 77.05 1.7488 0.5718 0.0818 500 39 211.6 6.09 1288 397.53 305.13 77.05 1.7429 0.5737 0.0837 510 39 211.53 6.08 1287 397.22 305.48 77.05 1.7389 0.5751 0.0851 520 39 211.49 6.08 1286 396.91 307.09 76.95 1.7247 0.5798 0.0898 530 39 211.53 6.08 1287 397.22 306.83 76.9 1.7275 0.5789 0.0889 540 39 211.42 6.08 1286 396.91 307.54 76.95 1.7213 0.5610 0.0910 550 39 211.41 6.08 1286 396.91 309.09 76.85 1.7091 0.5851 0.0951 560 39 211.29 6.08 1284 396.30 309.20 76.85 1.7056 0.5863 0.0963 570 ' 39 21156 6.08 1284 396.30 310.95 76.95 1.6936 0.5905 0.1005 580 39 211.16 6.08 1284 396.30 310.60 76.95 1.6961 0.5896 0.0996 590 39 210.75 6.07 1278 394.44 312.52 76.95 1.6744 0.5972 0.1072 600 39 210.74 6.07 1278 394.44 313.07 77 1.6709 0.5985 0.1085 610 39 210.76 6.07 1278 394.44 314.32 77.05 1.6624 0.6015 0.1115 620 39 210.76 6.07 1279 394.75 315.21 77.05 1.6575 0.6033 0.1133 630 39 210.77 6.07 1279 394.75 315.16 77.05 1.6578 0.6032 0.1132 640 39 210.7 6.07 1278 394.44 316.92 77.05 1.6444 0.6081 0.1181 650 39 210.8 6.07 1280 395.06 317.36 77.15 1.6446 0.6080 0.1180 660. 39 210.66 6.07 1278 394.44 318.42 77.2 1.6352 0.6115 0.1215 670 39 210.72 6.07 1279 394.75 318.41 77.2 1.6365 0.6111 0.1211 680 39 210.71 6.07 1279 394.75 320.11 77.3 1.6257 0.6151 0.1251 690 39 210.86 6.08 1281 395.37 320.96 77.2 1.6220 0.6165 0.1265 700 39 210.71 6.07 1280 395.06 322.26 77.2 1.6121 0.6203 0.1303 710 39 210.77 6.08 1281 395.37 322.61 77.15 1.6108 0.6208 0.1308 720 39 210.62 6.07 1279 394.75 323.96 77.2 1.5997 0.6251 0.1351 730 39 210.63 6.08 1280 395.06 324.86 77.3 1.5958 0.6266 0.1366 740 39 210.62 6.07 1279 394.75 325.86 77.3 1.5881 0.6297 0.1397 750 39 210.7 6.08 1281 395.37 327.16 77.25 1.5821 0.6321 0.1421 760 39 210.61 6.08 1279 394.75 327.61 77.35 1.5773 0.6340 0.1440 770 39 210.6 6.08 1280 395.06 328.76 77.45 1.5720 0.6361 0.1461 780 39 210.63 6.08 1280 395.06 329.11 77.45 1.5698 0.6370 0.1470 790 39 210.73 6.08 1281 395.37 330.21 77.5 1.5645 0.6392 0.1492 800 39 210.63 6.08 1280 395.06 330.11 77.6 1.5645 0.8392 0.1492 810 39 210.65 6.08 1281 395.37 330.21 77.65 1.5655 0.6388 0.1488 820 39 210.63 6.08 1280 395.06 331.01 77.7 1.5596 0.6412 0.1512 830 39 210.58 6.08 1280 395.06 331.36 77.8 1.5581 0.6418 0.1518 840 39 210.66 6.08 1281 395.37 330.76 77.85 1.5633 0.6397 0.1497 850 39 210.77 6.08 1282 395.68 331.45 77.85 1.5602 0.6409 0.1509 860 39 210.73 6.08 1282 395.68 331.60 77.65 1.5581 0.6418 0.1518 870 39 210.76 6.09 1283 395.99 332.80 77.65 1.5520 0.6443 0.1543 880 39 210.68 6.09 1282 395.68 333.05 77.65 1.5492 0.6455 0.1555 890 39 210.76 6.09 1283 395.99 332.70 77.7 1.5529 0.6440 0.1540 900 39 210.75 6.09 1283 395.99 333.55 77.65 1.5474 0.6462 0.1562 910 39 210.7 6.09 1283 395.99 333.00 77.55 1.5502 0.6451 0.1551 920 39 210.67 6.09 1282 395.68 333.30 77.5 1.5468 0.6465 0.1565 930 39 210.72 6.09 1283 395.99 334.05 77.55 1.5438 0.6477 0.1578 940 39 210.7 6.09 1283 395.99 334.20 77.65 1.5435 0.6479 0.1579 950 39 210.68 6.09 1283 395.99 333.80 77.8 1.5468 0.6465 0.1565 960 39 210.7 6.09 1283 395.99 334.70 77.85 1.5417 0.6486 0.1586 970 39 210.7 6.09 1283 395.99 335.00 77.85 1.5399 0.6494 0.1594 980 39 210.71 6.09 1283 395.99 335.15 77.9 1.5393 0.6496 0.1596 990 39 210.68 6.09 1283 395.99 335.45 78.05 1.5384 0.6500 0.1600 1000 39 210.65 6.09 1283 395.99 336.10 78.2 1.5354 0.6513 0.1613 1010 39 210.68 6.09 1283 395.99 336.75 78.4 1.5328 0.6524 0.1624 1020 39 210.68 6.09 1283 395.99 337.25 78.45 1.5301 0.6536 0.1636 1030 39 210.7 6.09 1284 396.30 337.50 78.45 1.5298 0.6537 0.1637 1040 39 210.66 8.09 1283 395.99 337.95 78.5 1.5263 0.6552 0.1652 1050 39 210.69 6.09 1284 396.30 338.60 78.55 1.5239 0.6562 0.1662 1060 39 210.73 6.1 1285 396.60 338.54 78.6 1.5257 0.6554 0.1654 1070 39 210.68 6.1 1284 396.30 339.10 78.65 1.5216 0.6572 0.1872 1080 39 210.71 6.1 1284 396.30 340.40 78.6 1.5138 0.6606 0.1706 Appendix A. 7 170 Run SSB 16 Tlme,min Pros, psi Volt Curent Power.W q, kw/m2 Ts,avg Tb.avg U,kW/Kjn2 1IU, m2.K/kW Rf, mZK/kW 0 40 200.48 5.82 1167 360.19 249.70 69.65 2.0005 0.4999 0.0000 10 40 195.41 5.67 1108 341.98 245.95 77.3 2.0277 0.4932 -0.0067 20 40 195.15 5.66 1105 341.05 247.86 77.95 2.0061 0.4935 -0.0014 30 40 194.85 5.65 1101 339.81 247.37 785 2.0087 0.4978 -0.0021 40 40 194.59 5.64 1098 338.89 246.48 78.55 2.0181 0.4955 -0.0044 50 40 194.41 5.64 1096 33857 245.68 78.05 2.0180 0.4956 -0.0043 60 40 194.24 5.63 1094 337.65 245.69 77.2 2.0040 0.4990 -0.0009 70 40 194.04 5.63 1092 337.04 245.49 76.9 1.9991 0 5002 0.0003 60 40 194 5.62 1091 336.73 244.49 76.8 2.0080 0.4960 -0.0019 90 40 193.77 5.62 1086 336.11 245.40 76.45 1.9894 0.5027 0.0028 100 40 195.95 5.68 1114 343.83 248.53 76.6 1.9998 0.5001 0.0002 110 40 195.49 5.67 1108 341.98 248.45 76.75 1.9917 0.5021 0.0022 120 40 195.38 5.66 1107 341.67 246.55 76.8 2.0127 0.4968 -0.0030 130 40 195.16 5.66 1105 341.05 247.96 76.8 1.9926 0.5019 0.0020 140 40 194.99 5.66 1103 340.43 248.36 76.85 1.9849 0.5038 0.0039 150 40 194.94 5.66 1103 340.43 247.46 76.85 1.9953 0.5012 0.0013 160 40 194.83 5.65 1101 339.81 24657 76.9 2.0064 0.4984 -0.0015 170 40 194.84 5.65 1101 339.81 246.57 77 2.0040 0.4990 -0.0009 180 40 194.7 5.65 1099 339.20 246.67 77.1 1.9979 0.5005 0.0006 190 40 194.6 5.64 1098 338.89 249.38 77.2 1.9663 0.5081 0.0082 200 40 194.43 5.65 1098 338.89 248.36 77.15 1.9792 0.5053 0.0054 210 40 193.81 5.62 1089 336.11 248.50 77.15 1.9847 0.5038 0.0040 220 40 193.72 5.62 1088 335.80 246.30 77.15 1.9852 0.5037 0.0038 230 40 193.7 5.62 1088 335.80 246.60 77.15 1.9817 0.5046 0.0047 240 40 193.63 5.61 1087 335.49 247.60 77.2 1.9688 0.5078 0.0080 250 40 193.56 5.61 1086 335.18 247.21 77.15 1.9710 0.5074 0.0075 260 40 193.56 5.61 1086 335.19 248.11 77.1 1.9601 0.5102 0.0103 270 40 193.49 5.61 1086 335.19 247.41 77.1 1.9681 0.5081 0.0082 280 40 193.51 5.61 1086 335.19 246.91 77.15 1.9745 0.5065 0.0066 290 40 193.45 5.61 1085 334.88 247.71 77.1 1.9628 0.5095 0.0096 300 40 193.5 5.61 1088 335.19 248.31 77.15 1.9584 0.5106 0.0108 310 40 193.17 5.6 1082 333.95 247.02 77.2 1.9665 0.5085 0.0086 320 40 193.3 5.61 1084 334.57 248.01 77.1 1.9575 0.5108 0.0110 330 40 193.41 5.61 1085 334.88 247.71 77.1 1.9628 0.5095 0.0096 340 40 193.29 5.61 1084 334.57 246.51 77.1 1.9749 0.5064 0.0065 350 40 193.2 5.61 1083 334.26 248.41 77.1 1.9511 0.5125 0.0126 360 40 193.14 5.6 1082 333.95 24652 77 1.9735 0.5067 0.0068 370 40 194.04 5.63 1093 337.35 248.59 77.2 1.9683 0.5081 0.0082 380 40 193.45 5.61 1085 334.88 247.71 77.15 1.9634 0.5093 0.0094 390 40 193.16 5.6 1082 333.95 248.62 77.15 1.9476 0.5135 0.0136 400 40 192.98 5.6 1080 333.33 246.22 76.8 1.9686 0.5080 0.0081 410 40 193.21 5.6 1082 333.95 245.22 76.9 1.9841 0.5040 0.0041 420 40 19354 5.61 1083 334.26 247.01 76.9 1.9649 0.5089 0.0091 430 40 193.12 5.6 1082 333.95 246.72 76.9 1.9SS5 0.5085 0.0086 440 40 193.46 5.61 1086 335.19 249.11 76.95 1.9470 0.5138 0.0137 450 40 193.12 5.6 1082 333.95 248.42 76.95 1.9476 0.5135 0.0136 460 40 193.14 5.6 1082 333.95 246.32 76.95 1.9718 0.5072 0.0073 470 40 193.15 5.6 1082 333.95 249.12 76.9 1.9391 0.5157 0.0158 480 40 193.1 5.6 1082 333.95 247.32 76.8 1.9585 0.5106 0.0107 490 39 193.18 5.61 1083 334.26 247.71 77 1.9580 0.5107 0.0108 500 39 193.24 5.61 1084 334.57 247.71 77.15 1.9616 0.5098 0.0099 510 39 193.18 5.61 1083 33456 248.11 77.4 1.9580 0.5107 0.0108 520 39 193.2 5.61 1083 334.26 247.51 77.6 1.9872 0.5083 0.0085 530 39 193.18 5.61 1083 33456 248.01 77.6 1.9614 0.5098 0.0099 540 39 193.09 5.6 1082 333.95 246.42 77.6 1.9782 0.5055 0.0056 550 39 193.17 5.61 1083 334.26 248.51 77.5 1.9546 0.5116 0.0117 560 39 192.67 5.59 1077 332.41 246.53 77.5 1.9666 0.5085 0.0086 570 39 193.09 5.6 1082 333.95 247.32 77.4 1.9654 0.5088 0.0089 580 39 192.86 5.59 1078 332.72 247.63 77.4 1.9545 0.5116 0.0118 590 39 192.71 5.59 1077 332.41 246.13 77.4 1.9701 0.5076 0.0077 600 39 192.72 5.59 1078 332.72 248.03 77.3 1.9488 0.5131 0.0133 610 39 193.08 5.6 1082 333.95 246.62 77.3 1.9723 0.5070 0.0071 620 39 193.22 5.61 1084 334.57 249.01 77.2 1.9473 0.5135 0.0137 630 39 193.12 5.61 1083 334.26 248.51 77.2 1.9742 0.5065 0.0067 640 39 192.64 5.59 1077 332.41 248.73 77 1.9356 0.5166 0.0167 650 39 192.72 5.59 1078 332.72 245.93 76.9 1.9684 0.5060 0.0081 660 39 193.22 5.61 1084 334.57 249.51 77 1.9394 0.5156 0.0157 670 39 193.14 5.61 1083 33456 246.01 77 1.9777 0.5056 0.0058 660 39 193.17 5.61 1083 33456 246.91 77 1.9672 0.5083 0.0085 690 39 193.14 5.61 1083 334.26 247.01 77.05 1.9666 0.5085 0.0086 700 39 193.22 5.61 1084 334.57 247.51 77.05 1.9627 0.5095 0.0096 Appendix A. 7 171 710 39 192.76 5.59 1078 332.72 247.63 76.95 1.9494 0.5130 0.0131 720 39 193.33 5.61 1085 334.88 24851 76.9 1.9548 0.5116 0.0117 730 39 192.69 5.59 1077 332.41 246.33 76.9 1.9619 0.5097 0.0098 740 39 192.75 5.59 1078 332.72 246.43 77 1.9638 0.5092 0.0093 750 39 194.51 5.65 1098 338.89 251.18 77.2 1.9479 0.5134 0.0135 760 39 19456 5.64 1095 337.96 250.18 77.3 1.9549 0.5115 0.0117 770 39 194.31 5.64 1096 33857 250.58 77.6 1.9555 0.5114 0.0115 780 39 194.31 5.64 1096 338.27 250.88 78 1.9567 0.5111 0.0112 790 39 19453 5.64 1095 337.96 250.78 78.3 1.9594 0.5104 0.0105 800 39 194.18 5.64 1094 337.65 248.89 78.35 1.9800 0.5051 0.0052 810 39 193.54 5.62 1087 335.49 250.10 78.5 1.9550 0.5115 0.0116 820 39 193.44 5.61 1086 335.19 249.51 78.6 1.9612 0.5099 0.0100 830 39 193.5 5.61 1086 335.19 248.01 78.6 1.9786 0.5054 0.0055 840 39 193.43 5.61 1086 335.19 249.71 78.6 1.9589 0.5105 0.0106 850 39 193.24 5.61 1083 334.26 248.21 78.6 1.9707 0.5074 0.0076 860 39 193.19 5.61 1083 334.26 249.01 78.6 1.9614 0.5098 0.0099 870 39 192.91 5.6 1080 333.33 249.72 78.55 1.9474 0.5135 0.0136 880 39 193.13 5.61 1082 333.95 249.12 78.55 1.9579 0.5108 0.0109 690 39 192.69 5.59 1077 332.41 251.73 78.55 1.9194 0.5210 0.0211 900 39 193.09 5.6 1082 333.95 249.12 78.6 1.9585 0.5106 0.0107 910 39 193.16 5.6 1062 333.95 248.72 78.65 1.9636 0.5093 0.0094 920 39 193.05 5.6 1081 333.64 244.92 74.25 1.9549 0.5115 0.0117 930 39 19453 5.64 1095 337.86 242.38 72.7 1.9917 0.5021 0.0022 940 39 194.12 5.64 1094 337.65 244.59 73.5 1.9736 0.5067 0.0068 950 40 194.02 5.64 1093 337.35 246.49 74.25 1.9586 0.5106 0.0107 960 40 193.93 5.63 1092 337.04 245.09 74.75 1.9786 0.5054 0.0055 970 40 193.35 5.61 1085 334.88 245.21 75.05 1.9680 0.5081 0.0082 980 40 19353 5.61 1083 334.26 246.31 75.25 1.9540 0.5118 0.0119 990 40 162.97 5.6 1080 333.33 245.62 75.4 1.9582 0.5107 0.0108 1000 40 193.09 5.6 1062 333.95 245.92 75.7 1.9619 0.5097 0.0098 1010 40 192.65 5.56 1077 332.41 244.23 75.8 1.6736 0.5067 0.0068 1020 40 193.32 5.61 1084 334.57 245.51 75.85 1.9720 0.5071 0.0072 1030 40 193.34 5.61 1084 334.57 247.61 76.1 1.9507 0.5126 0.0128 1040 40 19355 5.61 1083 334.26 247.71 76.1 1.9477 0.5134 0.0135 1050 40 193.21 5.6 1083 33456 245.91 76.3 1.9707 0.5074 0.0076 1060 40 193.05 5.6 1081 333.64 245.72 76.35 1.9699 0.5076 0.0076 1070 40 193.17 5.6 1083 334.26 24751 76.55 1.9586 0.5106 0.0107 1080 40 19357 5.6 1082 333.95 246.62 76.6 1.9642 0.5091 0.0092 1090 40 193.04 5.6 1081 333.64 246.02 76.7 1.9705 0.5075 0.0076 1100 40 192.6 5.59 1078 332.72 248.03 76.8 1.9431 0.5146 0.0148 1110 40 19355 5.6 1083 334.26 245.71 77 1.9812 0.5047 0.0049 1120 40 193.2 5.6 1082 333.95 247.72 77.1 1.9573 0.5109 0.0110 1130 40 193.22 6.6 1083 334.26 247.11 77.25 1.9678 0.5082 0.0083 1140 40 193.18 5.6 1082 333.95 24852 77.4 1.9550 0.5115 0.0116 1150 40 193.1 5.6 1081 333.64 247.72 77.55 1.9606 0.5100 0.0102 1160 40 193.07 5.6 1081 333.64 248.42 77.6 1.9532 0.5120 0.0121 1170 40 193.09 5.6 1081 333.64 248.12 77.75 1.9583 0.5106 0.0108 1180 40 193.06 5.8 1080 333.33 249.02 77.8 1.9468 0.5137 0.0138 1190 40 192.88 5.59 1078 332.72 248.73 77.9 1.9477 0.5134 0.0136 1200 40 193.12 5.6 1081 333.64 250.12 78.05 1.9390 0.5157 0.0159 1210 40 193.12 5.6 1081 333.64 249.42 78.2 1.9486 0.5132 0.0133 1220 40 193.04 5.6 1080 333.33 250.02 78.2 1.9400 0.5155 0.0156 1230 40 193.14 5.6 1081 333.64 249.92 78.3 1.9441 0.5144 0.0145 1240 40 193.06 5.6 1080 333.33 248.32 78.4 1.9617 0.5098 0.0099 1250 40 193.02 5.59 1080 333.33 248.42 78.6 1.9626 0.5095 0.0096 1260 40 163.07 5.6 1080 333.33 249.92 78.7 1.9468 0.5137 0.0138 1270 40 192.75 5.59 1077 332.41 250.23 78.85 1.9396 0.5156 0.0157 1260 40 193.08 5.6 1080 333.33 249.92 78.9 1.9491 0.5131 0.0132 1290 40 193.12 5.6 1061 333.64 250.52 78.8 1.9441 0.5144 0.0145 1300 40 192.79 5.59 1077 332.41 250.53 76.9 1.9368 0.5163 0.0164 1310 40 192.81 5.59 1078 332.72 250.73 79.1 1.9336 0.5158 0.0160 1320 40 193.15 5.6 1081 333.64 251.32 79.2 1.9384 0.5159 0.0160 1330 40 193.1 5.6 1081 333.64 25152 78.3 1.9407 0.5153 0.0154 1340 38 193.13 5.6 1081 333.84 248.52 77.1 1.8463 0.5138 0.0139 1350 38 193.1 5.6 1081 333.64 248.72 75.85 1.9300 0.5181 0.0183 1360 38 193.11 5.6 1061 333.64 248.52 75.6 1.9520 0.5123 0.0124 1370 38 192.78 5.59 1077 332.41 246.23 75.5 1.9470 0.5136 0.0137 1360 38 192.99 5.59 1080 333.33 24652 75.6 1.9536 0.5119 0.0120 1390 38 193.04 5.6 1080 333.33 246.02 75.7 1.9571 0.5110 0.0111 1400 38 193.04 5.6 1080 333.33 246.72 75.8 1.9502 0.5128 0.0129 1410 38 192.98 5.59 1079 333.02 246.82 76.1 1.9507 0.5126 0.0128 1420 38 192.97 5.58 1077 332.41 247.63 76.2 1.9390 0.5157 0.0158 1430 38 192.62 5.58 1075 331.79 244.94 76.3 1.9675 0.5083 0.0084 1440 38 193.15 5.6 1081 333.64 247.62 76.4 1.9486 0.5132 0.0133 1450 38 193.14 5.6 1081 333.64 246.82 76.7 1.9612 0.5099 0.0100 1460 38 193.14 5.6 1081 333.64 248.22 76.9 1.9475 0.5135 0.0136 1470 38 193.05 5.59 1080 333.33 248.32 77.1 1.9468 0.5137 0.0138 1480 38 192.7 5.59 1078 332.72 250.13 77.2 1.9240 0.5197 0.0199 1490 38 192.74 5.58 1076 332.10 249.73 77.3 1.9260 0.5192 0.0193 1500 36 193.07 5.8 . 1080 333.33 248.22 77.3 1.9502 0.5128 0.0129 1510 36 192.97 5.59 1079 333.02 249.12 77.4 1.9363 0.5157 0.0158 1520 38 193.04 5.6 1080 333.33 249.42 77.55 1.9394 0.5156 0.0157 1530 38 193.03 5.59 1080 333.33 248.62 77.5 1.9479 0.5134 0.0135 1540 38 192.86 5.59 1077 332.41 249.73 77.5 1.9300 0.5181 0.0183 1550 38 193.11 5.6 1081 333.64 249.42 77.4 1.9396 0.5156 0.0157 Appendix A.7 172 1560 38 193.02 5.59 1080 333.33 249.42 77.4 1.9377 0.5161 0.0162 1570 39 193.04 5.59 1080 333.33 249.02 77.3 1.9411 0.5152 0.0153 1580 39 193.01 5.59 1080 333.33 249.92 77.3 1.9310 0.5179 0.0180 1590 39 193.1 5.6 1080 333.33 250.42 77.4 1.9265 0.5191 0.0192 1600 39 193.16 5.6 1081 333.64 250.62 77.4 1.9261 0.5192 0.0193 1610 39 193.09 5.6 1081 333.64 249.62 77.35 1.9367 0.5163 0.0165 1620 39 192.98 5.59 1079 333.02 248.82 77.4 1.9427 0.5148 0.0149 1630 39 192.99 5.59 1080 333.33 250.62 77.5 1.9254 0.5194 0.0195 1640 39 193.04 5.6 1080 333.33 248.52 77.5 1.9491 0.5131 0.0132 1650 39 193.1 5.6 1081 333.64 250.62 77.6 1.9283 0.5186 0.0187 1660 39 19353 5.6 1082 333.95 250.62 77.7 1.9313 0.5178 0.0179 1670 39 192.92 5.59 1079 333.02 250.32 77.8 1.9303 0.5181 0.0182 1680 39 192.84 5.59 1078 332.72 251.63 77.8 1.9141 0.5224 0.0226 1690 39 192.99 5.59 1080 333.33 249.12 77.8 1.9457 0.5140 0.0141 1700 39 193.01 5.59 1079 333.02 250.72 77.8 1.9258 0.5193 0.0194 1710 39 192.88 5.56 1076 332.10 249.93 77.8 1.9293 0.5183 0.0184 1720 39 192.52 5.58 1074 331.48 248.54 77.85 1.9420 0.5149 0.0150 1730 39 192.64 5.58 1076 332.10 248.53 77.9 1.9463 0.5138 0.0139 1740 39 193.07 5.6 1080 333.33 251.72 77.85 1.9171 0.5216 0.0217 1750. 39 192.99 5.6 1080 333.33 249.32 77.9 1.9445 0.5143 0.0144 1760 39 192.69 5.58 1076 332.10 249.93 77.9 1.9304 0.5180 0.0181 1770 39 193.12 5.6 1081 333.64 250.12 77.9 1.9373 0.5162 0.0163 1780 39 193.08 5.6 1081 333.64 250.42 77.9 1.9339 0.5171 0.0172 1790 39 193.05 5.6 1080 333.33 251.52 77.9 1.9199 0.5209 0.0210 1800 39 192.91 5.59 1079 333.02 249.92 77.9 1.9359 0.5166 0.0167 1810 39 192.53 5.58 1074 331.48 251.64 77.8 1.9068 0.5244 0.0245 1820 39 192.83 5.59 1078 332.72 249.43 77.7 1.9375 0.5161 0.0163 1830 39 192.88 5.59 1079 333.02 250.82 77.8 1.9247 0.5196 0.0197 1840 39 192.88 5.59 1079 333.02 251.62 77.8 1.9159 0.5220 0.0221 1850 39 192.45 5.58 1074 331.48 248.64 77.8 1.9403 0.5154 0.0155 1860 39 192.89 5.59 1079 333.02 250.62 77.9 1.92S1 0.5187 0.0188 1870 39 192.53 5.58 1075 331.79 250.94 77.95 1 9180 0.5214 0.0215 1880 40 193.74 5.62 1088 335.80 251.50 78.1 1.9366 0.5164 0.0165 1890 40 193.64 5.61 1087 335.49 253.00 78.15 1.9187 0.5212 0.0213 1900 40 193.66 5.62 1087 335.49 252.30 78.15 1.9264 0.5191 0.0192 1910 40 193.47 5.61 1085 334.88 251.81 78.2 1.9289 0.5184 0.0188 1920 40 193.44 5.61 1085 334.88 252.91 78.1 1.9157 0.5220 0.0221 1930 40 193.48 5.61 1085 334.88 251.71 78.1 1.9289 0.5184 0.0186 1940 40 193.25 5.6 1083 33456 251.41 78.05 1.9281 0.5187 0.0188 1950 40 193.22 5.6 1083 334.26 251.51 77.9 1.9253 0.5194 0.0195 1960 40 193.15 5.6 1081 333.64 251.72 77.9 1.9195 0.5210 0.0211 1970 40 193.13 5.6 1082 ' 333.95 250.42 77.9 1.9358 0.5166 0.0167 1980 40 193.05 5.6 1081 333.64 251.92 77.95 1.9178 0.5214 0.0215 1990 40 192.99 5.6 1080 333.33 251.02 78 1.9265 0.5191 0.0192 2000 40 192.85 5.59 1078 332.72 250.93 77.95 1.9235 0.5199 0.0200 2010 40 192.93 5.6 1079 333.02 250.82 77.9 1.9281 0.5187 0.0188 2020 40 192.91 5.6 1079 333.02 250.92 77.95 1.9253 0.5194 0.0195 2030 40 192.92 5.6 1079 333.02 250.72 78.05 1.9288 0.5185 0.0186 2040 40 192.9 5.59 1079 333.02 252.62 78.1 1.9082 0.5241 0.0242 2050 40 194.63 5.64 1098 338.89 253.48 78.25 1.9340 0.5171 0.0172 2060 40 194.31 5.64 1095 337.96 253.68 78.3 1.9270 0.5189 0.0191 2070, 40 193.42 5.61 1085 334.88 252.11 78.3 1.9267 0.5190 0.0191 2080 40 19356 5.6 1083 33456 252.61 78.2 1.9165 0.5218 0.0219 2090 40 193.21 5.6 1083 33456 252.51 78.05 1.9159 0.5219 0.0221 2100 40 193.09 5.6 1081 333.64 251.62 78.05 1.9222 0.5202 0.0203 2110 40 192.64 5.58 1076 332.10 251.53 78.15 1.9154 0.5221 0.0222 2120 40 192.93 5.6 1080 333.33 251.92 78.2 1.9188 0.5212 0.0213 2130 40 194.33 5.64 1095 337.96 253.18 78.3 1.9325 0.5175 0.0176 2140 40 194.16 5.63 1093 337.35 254.59 78.55 1.9163 0.5218 0.0220 2150 40 193.93 5.63 1091 336.73 252.59 78.65 1.9358 0.5166 0.0167 2160 40 193.36 5.61 1084 334.57 252.11 78.4 1.9260 0.5192 0.0193 2170 40 193.14 5.6 1082 333.95 252.52 78.35 1.9174 0.5215 0.0217 2180 40 193.28 5.61 1083 33456 252.21 78.4 1.9231 0.5200 0.0201 2190 40 193.06 5.6 1081 333.64 252.22 78.4 1.9195 0.5210 0.0211 2200 40 193.11 5.6 1081 333.64 25252 78.4 1.9195 0.5210 0.0211 2210 40 193.08 5.6 1081 333.64 253.12 78.4 1.9096 0.5237 0.0238 2220 40 193.16 5.6 1082 333.95 252.52 78.35 1.9174 0.5215 0.0217 2230 40 193.13 5.6 1082 333.95 251.32 78.5 1.9324 0.5175 0.0176 2240 40 193.13 5.6 1082 333.95 252.92 78.4 1.9136 0.5226 0.0227 2250 40 193.01 5.6 1080 333.33 253.02 78.6 1.9111 0.5233 0.0234 2260 40 193.02 5.6 1080 333.33 25152 78.6 1.9310 0.5179 0.0160 2270 40 192.98 5.8 1080 333.33 253.92 78.8 1.9034 0.5254 0.0255 2280 40 193.1 5.6 1081 333.64 252.72 78.8 1.9184 0.5213 0.0214 2290 40 193 5.6 1080 333.33 253.62 78.9 1.9078 0.5242 0.0243 2300 40 193 5.6 1080 333.33 252.12 78.95 1.9249 0.5195 0.0196 2310 40 193.01 5.6 1080 333.33 254.12 79 1.9034 0.5254 0.0255 2320 40 193.02 5.6 1081 333.64 253.92 79.1 1.9085 0.5240 0.0241 2330 40 192.94 5.6 1079 333.02 253.92 79.1 1.9049 0.5250 0.0251 2340 40 192.93 5.6 1079 333.02 254.52 79.1 1.8984 0.5268 0.0269 2350 40 192.93 5.6 1079 333.02 252.32 79.15 1.9231 0.5200 0.0201 2360 40 192.85 5.6 1079 333.02 25552 79.2 1.8919 0.5286 0.0287 2370 40 193 5.6 1080 333.33 254.62 79.2 1.9002 0.5263 0.0264 2380 40 193.01 5.6 1080 333.33 254.02 79.2 1.9067 0.5245 0.0246 2390 40 192.94 5.59 1079 333.02 253.22 79.05 1.9120 0.5230 0.0231 2400 40 192.61 5.58 1076 332.10 253.73 79.1 1.9017 0.5258 0.0260 Appendix A.7 173 2410 40 192.98 5.6 1080 333.33 254.62 79.05 1.8964 0.5273 0.0274 2420 40 192.95 5.59 1079 333.02 255.42 79.1 1.8887 0.5295 0.0296 2430 40 192.99 5.6 1080 333.33 253.92 79.1 1.9067 0.5245 0.0246 2440 40 192.93 5.59 1079 333.02 254.92 79.15 1.8946 0.5278 0.0279 2450 40 194.3 5.63 1094 337.65 256.09 79.3 1.9100 0.5236 0.0237 2460 40 194.14 5.63 1092 337.04 249.99 76.4 1.9416 0.5151 0.0152 2470 40 193.8 5.62 1089 336.11 249.10 75.1 1.9317 0.5177 0.0178 2480 40 194.64 5.64 1098 338 89 250.18 74.45 1.9285 0.5185 0.0187 2490 40 193.4 5.61 1085 334.88 247.51 74.2 1.9322 0.5175 0.0177 2500 40 192.84 5.59 1079 333.02 24752 74.15 1.9242 0.5197 0.0198 2510 40 192.86 5.59 1078 332.72 245.63 74.2 1.9409 0.5152 0.0154 2520 . 40 192.86 5.59 1078 332.72 247.73 74.25 1.9179 0.5214 0.0215 2530 40 192.85 5.59 1079 333.02 248.02 74.25 1.9164 0.5218 0.0219 2540 40 192.84 5.59 1078 332.72 247.83 74.25 1.9166 0.5217 0.0218 2550 40 192.99 5.6 1080 333.33 246.92 74.4 1.9321 05176 0.0177 2560 40 192.88 5.59 1079 333.02 247.72 74.4 1.9214 0.5205 0.0206 2570 40 192.6 5.6 1078 332.72 246.63 74.4 1.9318 0.5176 0.0178 2580 40 193.01 5.6 1080 333.33 248.72 74.4 1.9122 0.5230 0.0231 2590 40 192.95 5.59 1079 333.02 248.62 74.6 1.9137 0.5226 0.0227 2600 40 193.01 5.6 1080 333.33 249.62 74.75 1.9062 0.5246 0.0247 2610 40 192.95 5.59 1079 333.02 249.72 74.9 1.9049 0.5250 0.0251 2620 40 192.96 5.6 1080 333.33 248.92 75.1 1.9177 0.5215 0.0216 2630 40 192.94 5.59 1076 332.72 249.63 75.15 1.9069 0.5244 0.0245 2640 40 192.97 5.6 1080 333.33 250.02 75.3 1.9078 0.5242 0.0243 2650 40 192.95 5.59 1079 333.02 250.22 75.35 1.9044 0.5251 0.0252 2660 40 192.56 5.58 1075 331.79 250.54 75.4 1.8945 0.5278 0.0280 2670 40 192.94 5.59 1079 333.02 250.62 75.6 1.9006 0.5262 0.0263 2660 40 192.96 5.59 1079 333.02 249.52 75.6 1.9148 0.5223 0.0224 2690 40 193 5.6 1080 333.33 246.72 75.8 1.9276 0.5188 0.0189 2700 40 192.85 5.59 1078 332.72 252.03 75.95 1.8898 0.5292 0.0293 2710 40 192.88 5.59 1079 333.02 249.72 75.9 1.9159 0.5220 0.0221 2720 40 192.54 5.58 1074 331.48 251.04 75.85 1.8921 0.5285 0.0286 2730 40 192.81 5.59 1078 332.72 251.23 75.85 1.8971 0.5271 0.0272 2740 40 192.8 5.59 1078 332.72 252.53 75.9 1.8837 0.5309 0.0310 2750 40 192.78 5.59 1077 332.41 251.33 75.85 1.8943 0.5279 0.0280 2760 40 192.79 5.59 1078 332.72 253.03 75.9 1.8784 0.5324 0.0325 2770 40 192.8 5.59 1078 332.72 251.53 76 1.8955 0.5276 0.0277 2780 40 192.79 5.59 1078 332.72 250.63 76 1.9053 0.5249 0.0250 2790 40 192.9 5.59 1079 333.02 252.52 76.1 1.8876 0.5298 0.0299 2800 40 192.89 5.59 1079 333.02 250.62 76.15 1.8087 0.5239 0.0240 2810 40 192.86 5.59 1078 332.72 252.23 76.25 1.8907 0.5289 0.0290 2820 40 192.8 5.59 1077 332.41 251.23 76.2 1.8991 0.5266 0.0267 2830 40 192.65 5.59 1078 332.72 253.73 76.3 1.8752 0.5333 0.0334 2840 40 192.89 5.59 1078 332.72 251.23 76.3 1.9020 0.5258 0.0259 2850 39 192.86 5.59 1078 332.72 251.23 76.4 1.9031 0.5255 0.0256 2860 39 192.85 5.59 1078 332.72 252.73 76.4 1.8869 0.5300 0.0301 2870 39 192.79 5.59 1077 332.41 253.23 76.4 1.8798 0.5320 0.0321 2880 39 192.81 5.59 1077 332.41 252.93 76.45 1.8835 0.5309 0.0310 2890 39 192.75 5.59 1077 332.41 253.23 76.45 1.8803 0.5318 0.0319 2900 39 192.83 5.59 1078 332.72 253.43 76.5 1.8805 0.5318 0.0319 2910 39 193.04 5.59 1080 333.33 254.22 76.6 1.8766 0.5329 0.0330 2920 39 193.05 5.59 1080 333.33 252.82 76.65 1.8921 0.5265 0.0286 2930 39 192.58 5.58 1074 331.48 254.24 76.7 1.8671 0.5356 0.0357 2940 39 192.91 5.59 1078 332.72 254.73 76.8 1.8700 0.5348 0.0349 2950 39 192.9 5.59 1078 332.72 254.23 76.8 1.8752 0.5333 0.0334 2960 39 192.92 5.59 1078 332.72 253.03 76.75 1.8875 0.5298 0.0299 2970 39 162.97 5.59 1079 333.02 255.12 76.6 1.6654 0.5361 0.0362 2980 39 192.95 5.59 1079 333.02 254.92 76.4 1.8654 0.5361 0.0362 2990 39 192.96 5.59 1076 333.02 254.92 76.4 1.8654 0.5361 0.0362 3000. 39 194.84 5.65 1100 339.51 257.67 76.6 1.8750 0.5333 0.0335 3010 39 194.43 5.63 1095 337.96 255.48 76.6 1.8893 0.5293 0.0294 3020 39 194.53 5.64 1096 338.27 257.08 76.65 1.8748 0.5334 0.0335 3030 39 194.39 5.63 1095 337.96 255.58 76.6 1.8882 0.5296 0.0297 3040 39 194.26 5.63 1094 337.65 257.29 76.7 1.8698 0.5348 0.0349 3050 40 193.56 5.61 1085 334.68 255.81 76.6 1.8686 0.5352 0.0353 3060 40 193.45 5.61 1084 334.57 256.11 76.6 1.8638 0.5365 0.0367 3070 40 193.3 5.6 1083 334.26 255.61 76.5 1.8662 0.5359 0.0360 3080 40 193.22 5.6 1082 333.95 255.22 76.5 1.8686 0.5352 0.0353 3090 40 193.31 5.6 1083 334.26 255.91 76.45 1.8625 0.5369 0.0370 3100 40 193.11 5.6 1081 333.64 256.62 76.3 1.8503 0.5405 0.0406 3110 40 192.98 5.59 1080 333.33 255.12 78.1 1.8620 0.5371 0.0372 3120 40 192.94 5.59 1079 333.02 255.52 76.1 1.8561 0.5388 0.0389 3130 40 192.98 5.6 1080 333.33 255.02 78.05 1.8825 0.5369 0.0370 3140 40 193.05 5.6 1081 333.64 255.92 76.05 1.8549 0.5391 0.0392 3150 40 193.02 5.6 1080 333.33 255.42 76 1.8578 0.5383 0.0384 3160 40 192.88 5.59 1079 333.02 254.92 76 1.8613 0.5373 0.0374 3170 40 192.65 5.59 1078 332.72 254.63 75.95 1.8621 0.5370 0.0371 3180 40 192.9 5.59 1079 333.02 255.82 75.9 1.8509 0.5403 0.0404 3190 40 192.86 5.59 1079 333.02 256.72 75.9 1.8417 0.5430 0.0431 3200 40 194.51 5.64 1097 338.58 257.08 76.1 1.8708 0.5345 0.0346 3210 40 194.1 5.63 1093 337.35 256.79 76.3 1.8691 0.5350 0.0351 3220 40 194.12 5.63 1093 337.35 257.89 76.4 1.8588 0.5380 0.0381 3230 40 193.65 5.62 1088 335.80 257.60 76.35 1.8527 0.5398 0.0399 3240 40 193.15 5.6 1081 333.64 258.12 76.25 1.8345 0.5451 0.0452 3250 40 192.79 5.59 1078 332.72 255.93 76.1 1.8502 0.5405 0.0406 Appendix A. 7 174 3260 40 192.82 5.59 1078 332.72 256.33 76.1 1.8461 0.5417 0.0418 3270' 40 192.68 5.59 1077 332.41 256.43 76.1 1.8433 0.5425 0.0426 3260 40 192.7 5.59 1077 332.41 255.93 76.1 1.8485 0.5410 0.0411 3290 40 192.71 5.59 1077 332.41 257.23 76.1 1.8352 0.5449 0.0450 3300 40 192.78 5.59 1078 332.72 256.93 76.1 1.8400 0.5435 0.0436 3310 40 192.74 5.59 1077 332.41 257.03 76 1.8362 0.5446 0.0447 3320 40 192.67 5.59 1077 332.41 257.53 75.9 1.8301 0.5484 0.0465 3330 40 192.77 5.59 1078 332.72 257.53 75.8 1.8309 0.5462 0.0463 3340 40 192.74 5.59 1078 332.72 257.53 75.8 1.8309 0.5462 0.0463 3350 40 192.68 5.59 1077 332.41 256.83 75.9 1.8372 0.5443 0.0444 3360 40 192.77 5.59 1078 332.72 258.03 75.85 1.8263 0.5475 0.0477 3370 40 192.84 5.59 1079 333.02 257.02 75.9 1.8388 0.5439 0.0440 3360 40 192.72 5.59 1077 332.41 25753 75.9 1.8332 0.5455 0.0456 3390 40 192.76 5.59 1078 332.72 257.63 75.85 1.8303 0.5463 0.0465 3400 40 192.62 5.59 1076 332.10 258.03 75.9 1.8234 0.5484 0.0486 3410 40 192.86 5.6 1079 333.02 258.52 75.85 1.8230 0.5485 0.0487 3420 40 192.8 5.59 1078 332.72 258.43 75.75 1.8213 0.5490 0.0492 3430 40 192.8 5.59 1079 333.02 260.62 76.6 1.8097 0.5526 0.0527 3440 40 192.89 5.6 1080 333.33 259.22 77.15 1.8308 0.5462 0.0463 3450 40 192.84 5.59 1079 333.02 260.32 77.3 1.8196 0.5496 0.0497 3460 40 192.8 5.59 1079 333.02 261.22 77.4 1.8116 0.5520 0.0521 3470 40 192.85 5.6 1079 333.02 260.72 77.3 1.8156 0.5508 0.0509 3480 40 192.78 5.59 1078 332.72 260.63 77.4 1.8159 0.5507 0.0508 3490 40 192.78 5.59 1078 332.72 260.73 77.4 1.8149 0.5510 0.0511 3500 40 192.82 5.59 1078 332.72 260.23 77.5 1.8208 0.5492 0.0493 3510 40 193.47 5.62 1087 335.49 262.00 77.6 1.8193 0.5497 0.0498 3520 40 193.07 5.61 1083 334.26 262.11 77.7 1.8125 0.5517 0.0518 3530 40 193.24 5.61 1084 334.57 263.61 77.6 1.7986 0.5560 0.0561 3540 40 192.8 5.6 1079 333.02 261.02 77.6 1.8156 0.5508 0.0509 3550 40 192.76 5.59 1078 332.72 262.03 77.5 1.8031 0.5546 0.0547 3560 40 192.74 5.59 1078 332.72 261.93 77.4 1.8031 0.5546 0.0547 3570 40 192.83 5.59 1079 333.02 261.82 77.4 1.8057 0.5538 0.0539 3580 40 192.91 5.6 1080 333.33 262.82 77.6 1.7996 0.5557 0.0558 3590 40 192.79 5.59 1078 332.72 263.73 77.5 1.7866 0.5597 0.0598 3600 40 192.7 5.59 1077 332.41 282.83 77.5 1.7936 0.5575 0.0577 3610 40 192.81 5.6 1079 333.02 262.72 77.6 1.7989 0.5559 0.0560 3620 40 192.9 5.6 1079 333.02 262.92 77.6 1.7970 0.5565 0.0566 3630 40 192.84 5.59 1077 332.41 264.23 77.8 1.7830 0.5608 0.0610 3640 40 193.02 5.6 1081 333.64 263.22 77.95 1.8008 0.5553 0.0554 3650 40 192.72 5.59 1077 332.41 263.23 78.2 1.7965 0.5566 0.0568 3660 39 192.8 5.59 1078 332.72 263.93 78.3 1.7924 0.5579 0.0580 3670 39 192.77 5.57 1074 331.48 264.64 78.3 1.7789 0.5621 0.0623 3680 39 192.85 5.59 1078 332.72 264.63 78.35 1.7861 0.5599 0.0600 3690 39 192.88 5.59 1078 332.72 264.43 78.4 1.7885 0.5591 0.0592 3700 39 192.47 5.58 1073 331.17 264.94 78.5 1.7763 0.5630 0.0631 3710 39 192.92 5.59 1079 333.02 266.12 78.4 1.7740 0.5637 0.0638 3720 39 192.53 5.58 1074 331.48 264.24 78.3 1.7828 0.5609 0.0611 3730 39 193 5.59 1080 333.33 265.12 78.3 1.7842 0.5605 0.0606 3740 39 192.97 5.59 1079 333.02 265.02 78.2 1.7825 0.5610 0.0611 3750 39 193.03 5.6 1080 333.33 265.42 78.2 1.7804 0.5617 0.0618 3760 39 192.92 5.59 1079 333.02 265.92 78.2 1.7740 0.5637 0.0638 3770 39 193.04 5.6 1080 333.33 264.12 75.25 1.7649 0.5668 0.0667 3780 39 192.94 5.59 1079 333.02 261.22 71.85 1.7585 0.5687 0.0688 3790 39 192.58 5.58 1075 331.79 262.44 70.75 1.7309 0.5777 0.0779 3800 39 192.91 5.59 1079 333.02 262.32 70.25 1.7338 0.5768 0.0769 3810 39 193.05 5.6 1080 333.33 262.12 70.15 1.7364 0.5759 0.0760 3820 39 193.13 5.6 1081 333.64 262.02 69.95 1.7371 0.5757 0.0758 3830 39 193 5.6 1080 333.33 261.52 70.05 17409 0.5744 0.0745 3840 39 193.12 5.6 1081 333.64 262.42 70.05 1.7344 0.5766 0.0767 3850 39 193.07 5.6 1081 333.64 260.72 70.1 1.7503 0.5713 0.0715 3860 39 192.93 5.59 1078 332.72 262.23 70.1 1.7317 0.5775 0.0776 3870 39 193.15 5.6 1081 333.64 262.22 70.1 1.7366 0.5758 0.0759 3880 39 193.12 5.6 1082 333.95 261.42 70.1 1.7455 0.5729 0.0730 3890 39 192.92 5.59 1079 333.02 261.62 70.2 1.7397 0.5748 0.0749 3900 39 192.9 5.59 1079 333.02 261.92 70.3 1.7379 0.5754 0.0755 3910 39 192.48 5.58 1074 331.48 261.44 70.35 1.7347 0.5765 0.0766 3920 39 192.86 5.59 1078 332.72 261.53 70.35 1.7404 0.5746 0.0747 3930 39 192.83 5.59 1078 332.72 262.73 70.45 1.7304 0.5779 0.0780 3940 39 162.75 5.59 1077 332.41 260.73 70.4 1.7465 0.5726 0.0727 3950 39 192.81 5.59 1077 332.41 262.13 71.2 1.7410 0.5744 0.0745 3960 39 192.76 5.59 1077 332.41 262.03 71.8 1.7474 0.5723 0.0724 3970 39 192.99 5.6 1080 333.33 263.32 72.1 1.7432 0.5737 0.0738 3980 39 192.94 5.59 1079 333.02 262.12 72.25 1.7539 0.5702 0.0703 3990 39 192.88 5.59 1078 332.72 262.83 72.45 1.7477 0.5722 0.0723 4000 39 192.94 5.59 1079 333.02 264.02 72.45 1.7384 0.5753 0.0754 4010 39 193.01 5.59 1080 333.33 263.52 72.6 1.7459 0.5728 0.0729 4020 39 192.94 5.59 1079 333.02 262.92 72.65 1.7502 0.5714 0.0715 4030 39 192.9 5.59 1079 333.02 263.42 72.75 1.7466 0.5726 0.0727 4040 39 192.91 5.59 1079 333.02 263.72 72.8 1.7443 0.5733 0.0734 4050 39 192.48 5.58 1073 331.17 284.24 72.9 1.7308 0.5778 0.0779 4060 39 192.84 5.59 1078 332.72 263.43 73 1.7472 0.5723 0.0725 4070 39 193.01 5.59 1080 333.33 264.02 73.1 1.7459 0.5728 0.0729 4080 39 192.96 5.59 1079 333.02 265.22 73.15 1.7338 0.5768 0.0769 4090 39 192.96 5.59 1079 333.02 264.22 73.15 1.7429 0.5738 0.0739 4100 39 192.93 5.59 1079 333.02 264.92 73.2 1.7370 0.5757 0.0758 Appendix A. 7 175 4110 39 192.89 5.59 1078 332.72 264.23 73.3 1.7426 0.5738 0.0740 4120 39 192.98 5.59 1079 333.02 265.22 73.3 1.7352 0.5763 0.0784 4130 39 192.91 5.59 1079 333.02 265.52 73.3 1.7325 0.5772 0.0773 4140 39 192.44 5.58 1073 331.17 264.14 73.4 1.7362 0.5760 0.0761 4150 39 192.9 5.59 1079 333.02 264.52 73.4 1.7424 0.5739 0.0740 4160 39 192.85 5.59 1078 332.72 264.93 73.4 1.7372 0.5756 0.0758 4170 39 192.78 5.59 1077 332.41 265.53 73.5 1.7310 0.5777 0.0778 4180 39 192.85 5.59 1077 332.41 265.23 73.6 1.7346 0.5765 0.0766 4190 39 194.55 5.64 1097 338.58 267.08 73.7 1.7509 0.5711 0.0713 4200 39 194.34 5.63 1093 337.35 267.49 73.8 1.7417 0.5742 0.0743 4210 39 193.89 5.62 1089 336.11 267.70 73.8 1.7334 0.5769 0.0770 4220 39 193.48 5.81 1084 334.57 267.71 73.8 1.7254 0.5796 0.0797 4230 39 193.26 5.6 1083 334.26 266.91 73.8 1.7309 0.5777 0.0779 4240 39 19351 5.6 1082 333.85 267.22 73.7 1.7257 0.5795 0.0796 4250 39 193.02 5.59 1079 333.02 268.02 73.7 1.7138 0.5835 0.0836 4260 39 193.04 5.59 1080 333.33 268.02 73.7 1.7154 0.5830 0.0X1 4270 39 192.92 5.59 1078 332.72 266.63 73.7 1.7246 0.5799 0.0X0 4280 39 192.85 5.59 1077 332.41 266.73 73.8 1.7229 0.5X4 0.0X5 4290 39 192.82 5.59 1077 332.41 266.53 73.8 1.7247 0.5798 0.0799 43X 39 192.83 5.59 1077 332.41 268.03 73.8 1.7114 0.5843 0.0844 4310 39 194.85 5.65 1100 339.51 269.67 73.95 1.7346 0.5765 0.0766 4320 39 19353 5.6 1081 333.64 268.72 74.1 1.7143 0.5833 0.0X4 4330 39 192.92 5.59 1078 332.72 268.53 74 1.7104 0.5847 0.0848 4340 39 192.7 5.58 1076 332.10 268.93 73.9 1.7204 0.5813 0.0814 4350 39 192.73 5.59 1077 332.41 265.93 73.9 1.7310 0.5777 0.0778 4360 39 192.66 5.58 1076 332.10 268.03 73.8 1.7098 0.5849 0.0850 4370 39 192.58 5.58 1075 331.79 268.04 73.8 1.7082 0.5854 0.0X5 4380 39 192.7 5.59 1076 332.10 267.53 73.75 1.7138 0.5835 0.0X6 4390 39 192.75 5.59 1077 332.41 268.03 73.7 1.7105 0.5846 0.0847 4400 39 192.75 5.59 1077 332.41 269.13 73.8 1.7018 0.5876 0.0877 4410 39 192.78 5.59 1077 332.41 268.63 73.8 1.7114 0.5843 0.0844 4420 39 192.7 5.58 1076 332.10 268.43 73.8 1.7063 0.5X1 0.0X2 4430 39 192.66 5.58 1076 332.10 269.13 73.8 1.7X2 0.5X2 0.0863 4440 39 192.77 5.59 1077 332.41 268.63 73.8 1.7X1 0.5X1 0.0X2 4450 39 192.74 5.59 1076 332.10 270.83 73.8 1.6855 0.5933 0.0X4 4460 39 192.72 5.59 1077 332.41 268.63 73.85 1.7X6 0.5X0 0.0X1 4470 39 192.73 5.58 1076 332.10 270.53 73.9 1.6889 0.5921 0.0622 4480 39 192.58 5.58 1075 331.79 270.44 73.9 1.6882 0.5923 0.0925 4490 39 192.47 5.58 1073 331.17 270.24 74 1.6876 0.5926 0.0927 4500 39 192.51 5.58 1075 331.79 269.74 74.05 1.6955 0.5898 0.0X9 4510 39 192.61 5.58 1075 331.79 271.24 74 1.6822 0.5945 0.0946 4520 39 192.65 5.58 1076 332.10 270.03 74.05 1.6945 0.5X1 0.0X3 4530 39 192.52 5.58 1074 331.48 271.24 74.1 1.6815 0.5947 0.0948 4540 39 192.55 5.58 1074 331.48 270.54 74.1 1.6875 0.5926 0.0927 4550 39 192.58 5.58 1075 331.79 269.74 74.15 1.6X4 0.5X5 0.0X6 4560 39 192.46 5.58 1074 331.48 270.44 74.2 1.8892 0.5920 0.0921 4570 39 192.51 5.58 1074 331.48 271.04 74.2 1.6840 0.5938 0.0X9 4580 39 192.45 5.58 1074 331.48 270.74 74.2 1.6866 0.5929 0.0930 4590 39 192.46 5.58 1074 331.48 272.34 74.25 1.6734 0.5976 0.0977 4600 39 192.46 5.58 1073 331.17 270.74 74.3 1.6859 0.5932 0.0X3 4610 39 192.45 5.58 1073 331.17 269.74 74.3 1.6945 0.5X1 0.0X3 4620 39 192.5 5.58 1074 331.48 271.14 74.3 1.3840 0.5938 0.0X9 4630 39 192.57 5.58 1075 331.79 271.84 74.3 1.6797 0.5954 0.0X5 4640 39 182.61 5.58 1075 331.79 272.04 74.3 1.8780 0.5X0 0.0X1 4650 39 192.53 5.58 1074 331.48 271.54 74.3 1.6806 0.5X0 0.0X1 4660 39 194.83 5.65 1100 339.51 274.47 74.35 1.6X5 0.5X4 0.0X6 4670 39 194.43 5.63 1095 337.96 274.78 74.6 1.6X3 0.5923 0.0924 4680 39 194.26 5.63 1094 337.65 275.18 74.7 1.6842 0.5938 0.0X9 4690 39 194.21 5.63 1093 337.35 274.49 74.7 1.6885 0.5922 0.0924 4700 39 19451 5.63 1093 337.35 275.09 74.55 1.6822 0.5945 0.0946 4710 39 194.18 5.63 1093 337.35 275.09 74.55 1.6822 0.5945 0.0946 4720 39 193.65 5.61 1087 335.49 274.00 74.4 1.6X6 0.5X0 0.0X1 4730 39 194.18 5.63 1093 337.35 275.39 74.4 1.6764 0.5X8 0.0X9 4740 39 184.07 5.63 1092 337.04 275.09 74.4 1.6794 0.5X5 0.0X6 4750 39 194.11 5.63 1092 337.04 275.39 74.3 1.6760 0.5X6 0.0X8 4760 39 194.08 5.63 1092 337.04 275.99 74.3 1.6711 0 5984 0.0985 4770 39 194 5.62 1091 336.73 274.69 74.2 1.6795 0.5X4 0.0X5 4780 39 193.9 5.62 1090 336.42 275.30 74.2 1.6729 0.5976 0.0979 4790 39 193.45 5.61 1084 334.57 274.71 74.2 1.6688 0.5X3 0.0X4 4800 39 193.2 5.6 1082 333.95 274.62 74.1 1.6654 0.6X4 0.1X6 4810 39 193.8 5.62 1089 336.11 276.10 74.1 1.6639 0.6010 0.1011 4820 39 193.14 5.61 1083 334.26 275.51 74.2 1.6X4 0.6023 0.1024 4830 39 194.44 5.64 1096 338.27 276.18 74.25 1.6752 0.5X9 0.0971 4840 39 193.92 5.62 1090 336.42 275.00 74.2 1.6754 0.5X9 0.0970 4650 39 193.73 5.82 1088 335.80 275.20 74.1 1.6698 0.5X9 0.0X0 4860 39 193.38 5.61 1084 334.57 275.61 74.1 1.6X3 0.6023 0.1024 4870 39 193.35 5.6 1083 334.26 276.11 73.9 1.6530 0.6X0 0.1X1 4880 39 193.19 5.6 1082 333.95 275.72 73.9 1.6547 0.6043 0.1045 4890 39 193.41 5.61 1084 334.57 275.41 73.8 1.6595 0.6026 0.1027 4900 39 192.6 5.59 1076 332.10 275.53 73.7 1.6454 0.6077 0.1079 4910 39 192.55 5.58 1075 331.79 274.24 73.6 1.6537 0.6047 0.1048 4920 39 192.5 5.59 1075 331.79 276.14 73.5 1.6374 0.6107 0.1109 4930 39 192.47 5.58 1075 331.78 275.14 73.4 1.6447 0.6X0 0.1X1 4940 39 192.51 5.59 1075 331.79 276.34 73.4 1.6350 0.6116 0.1118 4950 40 192.38 5.58 1074 331.48 276.44 73.35 1.6322 0.6127 0.1128 Appendix A. 7 176 4960 40 192.46 5.59 1075 331.79 276.54 73.3 1.6325 0.6125 0.1127 4970 39 192.48 5.59 1075 331.79 276.24 73.2 1.6342 0.6119 0.1121 4960 40 192.5 5.59 1075 331.79 276.44 73.2 1.6325 0.6125 0.1127 j 4990 40 192.42 5.59 1075 331.79 276.14 73.2 1.6350 0.6116 0.1118 5000 40 192.39 5.59 1075 331.79 276.24 73.1 1.6333 0.6122 0.1124 5010 40 192.35 5.59 1074 331.48 277.04 73.15 1.6258 0.6151 0.1152 5020 40 192.42 5.59 1076 332.10 276.03 73.2 1.6373 0.6108 0.1109 5030 40 192.32 5.58 1073 331.17 276.94 73.1 1.6247 0.6155 0.1156 5040 40 192.34 5.58 1074 331.46 277.74 73.1 1.6198 0.6173 0.1175 5050 40 192.5 5.59 1075 331.79 278.24 73.1 1.6174 0.6183 0.1184 5060 40 194.92 5.66 1102 340.12 279.87 735 1.6458 0.6076 0.1077 5070 40 194.63 5.65 1099 339.20 279.77 73.35 1.6432 o.eose 0.1087 5080 40 194.34 5.64 1096 338.27 279.08 73.45 1.6450 0.6079 0.1080 5090 40 194.17 5.63 1094 337.65 280.29 73.65 1.6341 0.6120 0.1121 5100 40 193.77 5.62 1089 336.11 279.30 73.6 1.6340 0.6120 0.1121 5110 39 193.35 5.61 1084 334.57 278.51 73.5 1.6319 0.6128 0.1129 5120 39 194.13 5.63 1093 337.35 279.79 73.6 1.6361 0.6112 0.1113 5130 39 193.96 5.63 1091 336.73 280.39 73.65 1.6287 0.6140 0.1141 5140 39 193.05 5.6 1081 333.64 279.42 73.65 1.6214 0.6167 0.1169 5150 39 192.82 5.59 1079 333.02 278.22 73.65 1.6279 0.6143 0.1144 5160 39 192.78 5.59 1078 332.72 278.83 73.65 1.6216 0.6167 0.1168 5170 39 192.63 5.59 1076 332.10 277.93 73.6 1.6253 0.6153 0.1154 5180 39 192.29 5.58 1072 330.86 277.94 73.7 1.6200 0.6173 0.1174 5190 39 192.34 5.58 1073 331.17 277.54 73.8 1.6255 0.6152 0.1153 5200 39 192.3 5.58 1072 330.86 277.94 73.8 1.6207 0.6170 0.1171 5210 39 192.22 5.57 1071 330.56 277.65 73.8 1.6216 0.6167 0.1168 5220 39 192.26 5.57 1071 330.56 279.05 73.9 1.6113 0.6206 0.1207 5230 39 192.21 5.57 1071 330.56 278.65 73.9 1.6145 0.6194 0.1195 5240 39 192.05 5.57 1069 329.94 278.25 73.95 1.6150 0.6192 0.1193 5250 39 192.49 5.58 1074 331.48 279.14 74.1 1.6167 0.8185 0.1187 5260 39 192.47 5.58 1074 331.48 279.94 74.1 1.6104 0.6210 0.1211 5270 39 192.4 5.58 1073 331.17 278.94 74.2 1.6175 0.6182 0.1184 5280 39 192.42 5.58 1074 331.48 277.74 74.25 1.6290 0.6139 0.1140 5290 39 192.4 5.58 1073 331.17 279.64 74.35 1.6132 0.6199 0.1200 5300 39 192.51 5.58 1075 331.79 279.54 74.35 1.6170 0.6184 0.1185 5310 39 192.43 5.58 1073 331.17 279.04 74.4 1.6183 0.6179 0.1180 5320. 38 192.4 5.57 1072 330.86 280.64 74.4 1.6042 0.6233 0.1235 5330 38 192.53 5.58 1074 331.48 280.84 74.45 1.6077 0.6220 0.1221 5340 38 192.41 5.58 1073 331.17 279.94 74.5 1.8120 0.6203 0.1205 5350 38 192.44 5.58 1073 331.17 278.94 74.6 1.6207 0.6170 0.1171 5360 38 192.78 5.59 1078 332.72 280.03 74.7 1.6204 0.6171 0.1172 5370 36 192.66 5.58 1076 332.10 281.63 74.8 1.6056 0.6228 0.1229 5380 38 192.64 5.58 1075 331.79 280.44 74.8 1.6135 0.6198 0.1199 5390 38 192.55 5.58 1074 331.48 280.74 74.8 1.6096 0.6213 0.1214 5400 38 194.13 5.62 1092 337.04 282.49 75.1 1.6251 0.6153 0.1155 5410 33 193.74 5.62 1088 335.80 274.00 75.1 1.6883 0.5923 0.0924 5420 40 194.03 5.62 1090 336.42 283.40 75.25 1.6163 0.6187 0.1188 5430 40 194.51 5.63 1095 337.96 284.38 75.2 1.6156 0.6100 0.1191 5440 40 193.04 5.59 1079 333.02 282.82 75.2 1.6040 0.6235 0.1236 5450 40 193.16 5.59 1080 333.33 282.52 75.1 1.6070 0.6223 0.1224 5460 40 193.22 5.59 1081 333.64 283.02 75.2 1.6054 0.6229 0.1230 5470 40 193.16 5.59 1080 333.33 283.02 75.3 1.6047 0.6232 0.1233 5480 40 193.2 5.59 1080 333.33 282.72 75.3 1.6070 0.6223 0.1224 5490 40 193.18 5.59 1080 333.33 283.42 75.4 1.6024 0.6241 0.1242 5500 40 193.39 5.6 1082 333.95 283.02 75.4 1.6085 0.6217 0.1218 5510 40 193.36 5.6 1082 333.95 283.12 75.55 1.6089 0.6216 0.1217 5520 39 193.36 5.59 1082 333.95 283.02 75.6 1.6100 0.6211 0.1212 5530 40 193.35 5.59 1082 333.95 283.82 75.55 1.6050 0.6230 0.1232 5540 39 193.25 5.59 1080 333.33 283.22 75.6 1.6055 0.6229 0.1230 5550 40 193.23 5.59 1080 333.33 283.72 75.55 1.6012 0.6245 0.1246 5560 39 193.3 5.59 1081 333.64 282.42 75.6 1.6132 0.6199 0.1200 5570 39 193.26 5.59 1081 333.64 28352 75.6 1.6070 0.6223 0.1224 5580 39 193.17 5.59 1079 333.02 283.72 75.6 1.6001 0.6250 0.1251 5590 39 193.32 5.59 1081 333.64 283.62 75.7 1.6047 0.6232 0.1233 5600 39 193.21 5.59 1080 333.33 284.92 75.7 1.5932 0.6277 0.1278 5610 39 19353 5.59 1080 333.33 284.62 75.7 1.5955 0.6268 0.1269 5620 39 193.23 5.59 1080 333.33 284.22 75.65 1.5982 0.6257 0.1258 5630 39 193.09 5.59 1079 333.02 283.62 75.65 1.6013 0.6245 0.1246 5640 39 193.09 5.59 1078 332.72 284.33 75.7 1.5948 0.6270 0.1272 5650 39 193.14 5.59 1079 333.02 283.72 75.8 1.6017 0.6244 0.1245 5660 39 193.26 5.59 1080 333.33 283.82 75.8 1.6024 0.6241 0.1242 5670 39 194.5 5.63 1094 337.65 285.99 75.9 1.6072 0.6222 0.1223 5680 39 193.8 5.61 1086 335.19 285.01 75.9 1.6029 0.6239 0.1240 5690 39 193.54 5.6 1083 334.26 285.71 75.95 1.5935 0.6276 0.1277 5700 39 193.54 5.6 1083 334.26 285.51 75.9 1.5946 0.6271 0.1272 5710 39 193.39 5.59 1081 333.64 284.92 76.1 1.5978 0.6259 0.1260 5720 39 193.48 5.59 1082 333.95 286.02 76.1 1.5909 0.6288 0.1287 5730 39 193.38 5.59 1081 333.64 285.32 76.15 1.5951 0.6269 0.1271 5740 39 193.33 5.59 1081 333.64 285.52 76.2 1.5939 0.6274 0.1275 5750 39 193.27 5.59 1080 333.33 285.72 76.2 1.5909 0.6286 0.1287 5760 39 193.26 • 5.59 1080 333.33 284.82 76.2 1.5978 0.6259 0.1260 5770 39 193.23 5.59 1079 333.02 284.62 76.2 1.5978 0.6259 0.1260 5780 39 193.19 5.58 1079 333.02 285.62 76.2 1.5902 0.6289 0.1290 5790 39 193.17 5.58 1076 333.02 28552 76.2 1.5932 0.6277 0.1278 5800 39 193.24 5.59 1079 333.02 285.02 76.2 1.5948 0.6271 0.1272 Appendix A. 7 177 5810 39 193.13 5.58 1078 332.72 264.73 76.2 1.5956 0.6267 0.1269 5820 39 193.16 5.58 1079 333.02 285.52 765 1.5909 0.6286 0.1287 5830 36 193.14 5.58 1078 332.72 286.63 76.3 1.5819 0.6322 0.1323 5840 39 193.16 5.58 1079 333.02 286.62 76.25 1.5830 0.6317 0.1318 5850 39 193.42 5.59 1082 333.95 287.02 76.2 1.5841 0.6313 0.1314 5860 39 193.12 5.58 1078 332.72 286.73 76.15 1.5800 0.6329 0.1330 5870 39 193.16 5.58 1078 332.72 286.93 76.1 1.5781 0.6337 0.1338 5880 39 193.12 5.58 1076 332.72 286.23 76.1 1.5834 0.6316 0.1317 5890 39 193.15 5.58 1079 333.02 287.02 76 1.5781 0.6337 0.1338 5900 39 193.16 5.59 1079 333.02 286.52 75.9 1.5811 0.6325 0.1328 5910 39 163.13 5.58 1078 332.72 288.53 76 1.5804 0.6328 0.1329 5920 39 193.06 5.58 1078 332.72 267.03 75.9 1.5759 0.6348 0.1347 5930 39 193.09 5.58 1078 332.72 287.83 75.9 1.5700 0.6370 0.1371 5940 39 193.14 5.58 1078 332.72 286.73 75.9 1.5781 0.6337 0.1338 5950 39 193.08 5.58 1078 332.72 28753 75.9 1.5744 0.6352 0.1353 5960 39 193.05 5.58 1078 332.72 288.23 75.9 1.5670 0.6382 0.1383 5970 39 193.02 5.58 1077 332.41 288.03 76.05 1.5681 0.6377 0.1378 5980 39 1930S 5.58 1078 332.72 288.73 75.9 1.5633 0.6397 0.1398 5990 39 193 5.58 1077 332.41 287.43 75.9 1.5714 0.6364 0.1365 6000 39 193.03 5.58 1077 332.41 286.63 75.9 1.5774 0.6340 0.1341 6010 39 192.99 5.58 1077 332.41 286.73 75.9 1.5767 0.6343 0.1344 6020 39 192.9 5.58 1076 332.10 287.13 75.9 1.5722 0.6361 0.1362 6030 40 192.91 5.58 1076 332.10 288.23 75.9 1.5640 0.6394 0.1395 6040 39 193.03 5.58 1077 332.41 287.13 75.85 1.5733 0.6356 0.1357 6050 39 193.07 5.58 1078 332.72 2S7.63 75.8 1.5707 0.6367 0.1368 6060 40 193.4 5.59 1082 333.95 287.02 75.8 1.5S11 0.6325 0.1326 6070 40 193.07 5.58 1078 332.72 286.83 75.8 1.5766 0.6343 0.1344 6080 40 193.07 5.58 1078 332.72 287.43 75.8 1.5722 0.6361 0.1362 6090 40 193.04 5.58 1078 332.72 288.23 75.8 1.5663 0.6385 0.1386 6100 40 193.01 5.58 1077 332.41 287.63 75.7 1 5685 0.6376 0.1377 6110 40 192.94 5.58 1077 332.41 288.03 75.7 1.5655 0.6388 0.1389 6120 40 192.95 5.58 1077 332.41 288.13 75.7 1.5648 0.6391 0.1392 6130 40 193.01 5.58 1078 332.72 266.33 75.7 1.5796 0.6331 0.1332 6140 40 192.93 5.58 1077 332.41 286.53 75.7 1.5767 0.6343 0.1344 6150 40 192 84 5.58 1076 332.10 288.93 75.6 1.5567 0.6424 0.1425 6160 40 192.91 5.58 1076 332.10 286.63 75.6 1.5737 0.6355 0.1356 6170 40 192.9 5.58 1076 332.10 288.43 75.55 1.5600 0.6410 0.1411 6180 40 192.65 5.5S 1076 332.10 289.03 75.55 1.5556 0.6428 0.1430 6190 40 192.95 5.58 1077 332.41 288.13 75.6 1.5640 0.6394 0.1395 6200 39 192.92 5.58 1076 332.10 288.03 75.8 1.5648 0.6391 0.1392 6210 39 192.93 5.58 1077 332.41 288.73 75.9 1.5818 0.6403 0.1404 6220 39 193.26 5.59 1081 333.64 288.72 76.05 1.5666 0.6374 0.1375 6230 39 192.88 5.58 1076 332.10 288.33 76 1.5640 0.6394 0.1395 6240 39 192.84 5.58 1075 331.78 287.54 76 1.5685 0.6376 0.1377 6250 39 192.9 5.58 1076 332.10 288.33 76 1.5640 0.6394 0.1395 6260 39 192.86 5.58 1076 332.10 288.63 76 1.5618 0.6403 0.1404 6270 39 192.83 5.58 1075 331.79 287.84 76 1.5663 0.6385 0 1386 6260 39 192.84 5.58 1075 331.79 288.84 76 1.5604 0.6409 0.1410 6290. 39 192.82 5.58 1075 331.79 289.94 75.8 1.5502 0.6451 0.1452 6300 39 192.62 5.57 1075 331.79 28954 75.9 1.5553 0.6430 0.1431 6310 39 192.75 5.57 1074 331.48 290.24 75.9 1.5465 0.6466 0.1467 8320 39 192.8 5.57 1075 331.79 288.54 75.9 1.5604 0.6409 0.1410 6330 39 193.2 5.59 1079 333.02 290.02 75.9 1.5553 0.6430 0.1431 6340 39 193.3 5.59 1081 333.64 289.22 76 1.5648 0.6391 0.1392 6350 39 193.08 5.58 1078 332.72 290.63 75.9 1.5495 0.6454 0.1455 6360 39 193.01 5.58 1077 332.41 289.43 75.9 ' 1.5567 0.6424 0.1425 6370 39 192.83 5.58 1075 331.79 289.94 75.9 1.5502 0.6451 0.1452 6380 39 192.82 5.58 1075 331.79 289.94 75.85 1.5498 0.6452 0.1454 6390 39 192.73 5.57 1074 331.48 289.74 75.85 1.5498 0.6452 0.1454 6400 39 192.75 5.57 1074 331.48 290.84 75.8 1.5415 0.6487 0.1488 6410 39 192.65 5.57 1073 331.17 289.54 75.8 1.5494 0.6454 0.1455 6420 39 193.07 5.58 1078 332.72 289.33 75.8 1.5582 0.6418 0.1419 6430 39 192.99 5.56 1077 332.41 291.13 75.8 1.5437 0.6478 0.1479 6440 39 193.2 5.59 1079 333.02 290.62 75.8 1.5502 0.6451 0.1452 6450 39 193.05 5.58 1077 332.41 291.53 75.9 1.5416 0.6487 0.1488 6460 39 193.18 5.59 1079 333.02 290.02 75.9 1.5553 0.6430 0.1431 6470 39 193.15 5.59 1079 333.02 291.92 76 1.5423 0.6484 0.1485 6480 39 193.09 5.58 1078 332.72 291.93 76 1.5409 0.6490 0.1491 6490 39 192.86 5.58 1075 331.79 291.74 75.95 1.5376 0.6504 0.1505 6500 39 192.63 5.57 1073 331.17 289.24 75.9 1.5523 0.6442 0.1443 6510 39 192.61 5.57 1072 330.86 290.94 75.85 1.5382 0.6501 0.1502 6520 39 192.6 5.57 1072 330.86 290.24 75.85 1.5433 0.6480 0.1481 6530 39 192.53 5.57 1072 330.86 290.64 75.9 1.5407 0.6490 0.1492 6540 39 192.59 5.57 1072 330.86 292.04 75.9 1.5308 0.6533 0.1534 6550 39 193.13 5.58 1078 332.72 291.93 76 1.5409 0.6490 0.1491 6560 39 193.14 5.59 1079 333.02 291.32 76 1.5466 0.8466 0.1467 6570 39 193.12 5.59 1079 333.02 292.62 76.1 1.5380 0.6502 0.1503 6580 39 193.29 • 5.59 . 1060 333.33 292.52 76.1 1.5402 0.6493 0.1494 6590 39 192.96 5.58 1076 332.10 291.23 76.1 1.5437 0.6478 0.1479 6600 39 193.15- 5.58 1079 333.02 292.22 76.1 1.5409 0.6490 0.1491 6610 39 192.78 5.57 1074 331.48 292.14 76.2 1.5351 0.6514 0.1516 6620 39 192.79 5.57 1074 331.48 291.54 76.2 1.5394 0.8496 0.1497 6630 39 193.1 5.58 1078 332.72 291.53 76.3 1.5459 0.6469 0.1470 6640 39 193.11 5.58 1078 332.72 292.73 76.3 1.5373 0.6505 0.1506 6650 39 192.63 5.57 1072 330.86 290.94 76.3 1.5415 j 0.6487 0.1489 Appendix A. 7 178 6660 39 192.94 5.58 1076 332.10 292.43 76.3 1.5366 0.6508 0.1509 6670 39 192.99 5.59 1078 332.72 290.43 76.35 1.5542 0.6434 0.1435 6660 39 192.99 5.58 1078 332.72 290.93 76.4 1.5509 0.6446 0.1449 6690 39 193.08 5.58 1078 332.72 290.53 76.5 1.5545 0.6433 0.1434 6700 39 193.2 5.59 1079 333.02 292.02 76.45 1.5448 0.6473 0.1474 6710 39 193.16 5.58 1079 333.02 290.72 76.6 1.5553 0.6430 0.1431 6720 39 193.07 5.58 1077 332.41 290.13 76.5 1.5560 0.6427 0.1428 6730 39 193.06 5.58 1077 332.41 291.43 76.6 1.5473 0.6463 0.1464 6740 39 193.05 5.58 1077 332.41 291.53 76.6 1.5466 0.6466 0.1467 6750 39 193.32 5.59 1080 333.33 291.02 76.45 1.5535 0.6437 0.1438 6760 39 192.91 5.57 1075 331.79 291.64 76.6 1.5430 0.6481 0.1482 6770 39 192.77 5.57 1074 331.48 291.54 76.7 1.5429 0.6481 0.1482 6780 39 193.1 5.58 1078 332.72 290.73 76.7 1.5545 0.6433 0.1434 6790 39 192.69 5.57 1073 331.17 291.54 76.8 1.5422 0.6484 0.1485 6800 39 192.69 5.57 1073 331.17 290.74 76.8 1.5480 0.6460 0.1461 6810 39 192.94 5.57 1075 331.79 291.64 76.7 1.5437 0.6478 0.1479 6820 39 193.06 5.58 1077 332.41 292.43 76.75 1.5412 0.648a 0.1490 6830 39 192.79 5.57 1073 331.17 291.34 76.85 1.5440 0.6477 0.1478 6840 39 193.12 5.58 1077 332.41 292.53 76.7 1.5401 0.6493 0.1494 6850 39 192.69 5.57 1073 331.17 291.64 76.7 1.5408 0.6490 0.1491 6860 39 192.56 5.56 1071 330.56 291.05 76.5 1.5407 0.6490 0.1492 6870 39 193.19 5.58 1079 333.02 293.12 76.6 1.5380 0.6502 0.1503 6880 39 193.15 5.58 1078 332.72 291.93 76.6 1.5452 0.6472 0.1473 6890 39 192.77 5.57 1074 331.48 291.84 76.6 1.5401 0.6493 0.1494 6900 39 193.08 5.58 1077 332.41 292.33 76.7 1.5416 0.6487 0.1488 6910 39 193.1 5.58 1077 332.41 293.03 76.8 1.5373 0.6505 0.1506 6920 39 192.57 5.56 1071 330.56 292.45 76.9 1.5336 0.6521 0.1522 6930 39 192.57 5.56 1071 330.S6 292.05 76.9 1.5364 0.6509 0.1510 6940 39 192.61 5.56 1071 330.56 292.45 77 1.5343 0.6518 0.1519 6950 39 192.61 5.56 1071 330.56 292.75 76.95 1.5318 0.6528 0.1529 6960 39 192.58 5.56 1071 330.56 292.95 76.9 1.5300 0.6536 0.1537 6970 39 193.14 5.58 1078 332.72 293.03 77 1.5402 0.6493 0.1494 6980 39 192.53 5.57 1073 331.17 293.04 77.1 1.5336 0.6520 0.1522 6990 39 192.57 5.56 1071 330.56 293.85 77.2 1.5258 0.6554 0.1555 7000 39 192.99 5.57 1076 332.10 292.73 77.1 1.5401 0.6493 0.1494 7010 39 193.14 5.58 1078 332.72 293.53 77.25 1.5384 0.6500 0.1502 7020 39 193.1 5.58 1077 332.41 293.13 77.3 1.5401 0.6493 0.1494 7030 39 193.15 5.58 1077 332.41 294.33 77.3 1.5316 0.6529 0.1530 7040 39 192.51 5.56 1070 330.25 294.15 77.3 1.5229 0.6566 0.1567 7050 39 193.12 5.58 1077 332.41 29453 77.3 1.5323 0.6526 0.1527 7060 39 192.6 5.56 1071 330.56 292.75 77.25 1.5339 0.6519 0.1520 7070 39 192.99 5.58 1076 332.10 293.33 77.3 1.5373 0.6505 0.1506 7080 39 192.44 5.56 1069 329.94 293.35 77.3 1.5271 0.6548 0.1549 7090 39 192.53 5.56 1070 330.25 293.75 77.3 1.5258 0.6554 0.1555 7100 39 192.95 5.57 1075 331.79 293.74 77.3 1.5330 0.6523 0.1524 7110 39 192.47 5.56 1070 330.25 293.95 77.3 1.5243 0.6560 0.1561 7120 39 194.94 5.63 1098 338.89 298.88 77.6 1.5315 0.6529 0.1531 7130 39 194.59 5.62 1093 337.35 297.49 77.9 1.5363 0.6509 0.1511 7140 39 194.28 5.61 1090 336.42 296.60 78.05 1.5394 0.6496 0.1497 7150 39 192.97 5.57 1075 331.79 295.04 77.9 1.5280 0.6544 0.1546 7160 38 192.9 5.57 1074 331.48 294.44 77.8 1.5301 0.6535 0.1537 7170 38 192.48 5.56 1070 330.25 294.55 77.8 1.5236 0.6563 0.1564 7180 38 192.37 5.55 1068 329.63 293.95 77.9 1.5257 0.6554 0.1556 7190 38 192.56 5.56 1071 330.56 294.05 77.9 1.5293 0.6539 0,1540 7200 38 192.44 5.55 1069 329.94 295.05 78.1 1.5208 0.6575 0.1577 7210 38 192.67 5.56 1071 330.56 294.75 78.15 1.5261 0.6552 0.1554 7220 38 192.59 5.56 1071 330.56 295.85 78.2 1.5188 0.6584 0.1585 7230 38 192.43 5.55 1069 329.94 295.15 78.1 1.5201 0.6579 0.1580 7240 38 192.46 5.56 1069 329.94 295.75 78.1 1.5159 0.6597 0.1598 7250 38 192.47 5.56 1069 329.94 294.55 78.2 1.5250 0.6557 0.1559 7260 38 192.89 5.57 1074 331.48 29654 78.3 1.5210 0.6575 0.1576 7270 38 192.75 5.56 1072 330.86 296.44 78.3 1.5167 0.6593 0.1594 7280 38 192.78 5.56 1073 331.17 296.54 78.3 1.5175 0.6590 0.1591 7290 38 192.83 5.57 1073 331.17 296.44 78.3 1.5182 0.6587 0.1588 7300 38 192.96 5.57 1075 331.79 297.24 78.3 1.5155 0.6599 0.1600 7310 38 193 5.57 1075 331.79 295.34 785 1.5280 0.6544 0.1546 7320 39 193.04 5.58 1076 332.10 296.23 78.2 1.5232 0.6565 0.1567 7330 39 193 5.57 1076 332.10 296.73 78.1 1.5190 0.6583 0.1585 7340 39 193.07 5.58 1076 332.10 296.53 78.15 1.5207 0.6576 0.1577 7350 39 193.05 5.57 1076 332.10 297.53 78.1 1.5134 0.6607 0.1609 7360 39 193.23 5.58 1078 332.72 29753 77.7 1.5156 0.6598 0.1599 7370 39 193.06 5.58 1076 332.10 296.93 77.6 1.5141 0.6604 0.1606 7380 39 193.01 5.57 1075 331.79 296.24 77.6 1.5176 0.6590 0.1591 7390 39 192.44 5.55 1069 329.94 296.85 77.45 1.5038 0.6650 0.1651 7400 39 192.34 5.55 1068 329.63 296.35 77.45 1.5058 0.6641 0.1642 7410 39 192.55 5.56 1070 330.25 296.15 77.4 1.5097 0.6624 0.1625 7420 39 192.61 5.56 1071 330.56 295.85 77.5 1.5139 0.6605 0.1607 7430 39 192.56 5.56 1070 330.25 296.45 77.4 1.5076 0.6633 0.1634 7440 39 192.56 5.56 1070 330.25 295.75 77.35 1.5121 0.6613 0.1614 7450 39 192.78 5.56 1072 330.86 297.14 77.4 1.5057 0.6841 0.1643 7460 39 192.51 5.56 1070 330.25 296.55 77.4 1.5070 0.6636 0.1637 7470 39 192.44 5.56 1069 329.94 295.45 77.55 1.5142 0.6604 0.1606 7480 39 192.45 5.55 1069 329.94 296.65 77.6 1.5062 0.6639 0.1640 7490 39 192.46 5.55 1069 329.94 296.15 77.6 1.5097 0.6624 0.1625 7500 39 192.54 5.56 1070 330.25 296.55 77.6 1.5083 0.6630 0.1631 Appendix A.7 179 7510 39 192.5 5.56 1070 330.25 297.65 77.6 1.5008 0.6663 0.1664 7520 39 19259 5.55 1067 329.32 296.96 77.65 1.5017 0.6659 0.1661 7530 39 192.49 5.55 1069 329.94 297.75 77.65 1.4990 0.6671 0.1672 7540 39 192.4 5.55 1068 329.63 296.45 77.65 1.5065 0.6636 0.1639 7550 39 192.48 5.55 1069 329.94 298.05 77.7 1.4973 0.6679 0.1660 7560 39 192.45 5.56 1069 329.94 298.15 77.8 1.4973 0.6678 0.1680 7570 39 192.36 5.55 1068 329.63 297.75 77.8 1.4986 0.6673 0.1674 7580 39 192.38 5.55 1068 329.63 298.55 77.9 1.4939 0.6694 0.1695 7590 39 192.41 5.55 1068 329.63 297.65 77.95 1.5003 0.6665 0.1666 7600 39 192.37 5.55 1068 329.63 2S855 77.95 1.4963 0.6883 0.1685 7610 39 192.32 5.55 1067 329.32 297.66 77.9 1.4986 0.6673 0.1674 7620 39 192.33 5.55 1068 329.63 298.35 77.9 1.4952 0.6668 0.1689 7630 39 192.4 5.55 1068 329.63 297.45 78 1.5020 0.6658 0.1659 7640 39 192.41 5.55 1068 329.63 297.25 78 1.5034 0.6652 0.1653 7650 39 192.3 5.55 1067 329.32 297.76 78 1.4986 0.6673 0.1674 7660 39 192.9 5.57 1074 331.48 299.54 78 1.4963 0.6683 0.1684 7670 39 192.3 5.55 1067 329.32 297.46 78.1 1.5013 0.6661 0.1662 7680 39 19259 5.55 1067 329.32 298.46 77.9 1.4931 0.6697 0.1699 7690 39 192.33 5.55 1067 329.32 297.66 77.95 1.4989 0.6671 0.1673 7700 39 192.33 5.55 1068 329.83 298.05 77.8 1.4966 0.6682 0.1683 7710 39 19256 5.55 1067 329.32 298.86 77.9 1.4904 0.8709 0.1711 7720 39 192.29 5.55 1067 329.32 298.46 77.9 1.4931 0.6697 0.1699 7730 39 19252 5.55 1066 329.01 298.76 77.85 1.4894 0.6714 0.1716 7740 39 192.27 5.55 1067 329.32 297.46 77.9 1.4999 0.6667 0.1668 7750 39 192.16 5.55 1066 329.01 299.08 77.8 1.4870 0.6725 0.1726 7760 39 192.21 5.55 1066 329.01 299.48 77.85 1.4847 0.6736 0.1737 7770 39 192.19 5.55 1066 329.01 300.06 77.9 1.4810 0.6752 0.1754 7780 39 192.22 5.55 1066 329.01 299.18 77.85 1.4887 0.6726 0.1728 7790 39 192.2 5.55 1066 329.01 299.06 77.8 1.4870 0.6725 0.1726 7800 39 192.83 5.57 1073 331.17 299.74 77.8 1.4922 0.6702 0.1703 7810 39 192.76 5.57 1073 331.17 301.74 77.85 1.4792 0.6761 0.1762 7820 39 192.72 5.57 1073 331.17 299.64 77.8 1.4928 0.6699 0.1700 7830 39 192.67 5.56 1072 330.86 299.54 77.9 1.4928 0.6699 0.1700 7840 39 192.68 5.56 1072 330.86 301.44 77.9 1.4801 0.6756 0.1756 7850 39 192.64 5.56 1072 330.86 300.74 77.9 1.4847 0.6735 0.1736 7860 39 192.78 5.56 1073 331.17 301.74 77.9 1.4795 0.6759 0.1760 7870 39 192.69 5.56 1072 330.86 300.04 77.9 1.4894 0.6714 0.1715 7880 39 192.85 5.57 1074 331.48 301.04 77.9 1.4855 0.6732 0.1733 7890 39 192.85 5.57 1074 331.48 299.74 77.9 1.4943 0.6692 0.1694 7900 39 192.73 5.56 1072 330.86 301.94 77.9 1.4768 0.6771 0.1773 7910 39 192.85 5.57 1074 331.48 301.54 77.8 1.4816 0.6750 0.1751 7920 39 192.84 5.57 1074 331.48 300.64 77.8 1.4875 0.6722 0.1724 7930 39 192.14 5.54 1065 328.70 300.26 77.9 1.4782 0.6765 0.1766 7940 39 192.27 5.55 1067 329.32 300.56 77.9 1.4791 0.6761 0.1762 7950 39 192.82 5.57 1074 331.48 302.14 78 1.4789 0.6762 0.1763 7960 39 192.18 5.55 1066 329.01 300.96 78.1 1.4763 0.6774 0.1775 7970 39 192.29 5.55 1067 329.32 300.56 78.1 1.4804 0.6755 0.1756 7980 39 192.3 5.55 1067 329.32 300.06 78.1 1.4837 0.6740 0.1741 7990 39 192.76 5.57 1073 331.17 301.84 78.2 1.4822 0.6747 0.1748 8000 39 192.79 5.57 1073 331.17 301.64 78.2 1.4822 0.6747 0.1748 8010 39 19258 5.55 1067 329.32 301.18 78.2 1.4771 0.6770 0.1771 8020 39 192.32 5.55 1067 329.32 303.66 78.3 1.4613 0.6843 0.1844 8030 39 192.27 5.55 1667 329.32 300.26 78.2 1.4831 0.6743 0.1744 8040 39 192.16 5.54 1065 328.70 301.06 78.25 1.4753 0.6778 0.1780 8050 39 192.27 5.55 1067 329.32 301.56 78.2 1.4744 0.6782 0.1784 8060 39 19256 5.55 1066 329.01 302.26 78.3 1.4691 0.8807 0.1808 8070 39 192.29 5.55 1067 329.32 300.86 78.2 1.4791 0.6761 0.1762 8080 39 19251 5.55 1066 329.01 301.66 78.3 1.4730 0.6789 0.1790 8090 38 192.36 5.55 1067 329.32 302.16 78.3 1.4711 0.6797 0.1799 8100 39 192.26 5.55 1066 329.01 301.46 78.2 1.4737 0.6786 0.1787 8110 39 192.7 5.56 1072 330.86 303.54 78.3 1.4689 0.6808 0.1809 8120 38 192.74 5.56 1072 330.86 303.24 78.3 1.4709 0.6799 0.1800 8130 38 192.74 5.56 1072 330.86 301.74 78.4 1.4814 0.6750 0.1752 8140 38 192.58 5.56 1070 330.25 302.15 78.5 1.4766 0.6772 0.1773 8150 38 192.52 5.56 1069 329.94 303.55 78.6 1.4667 0.6818 0.1819 Run SSB17 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 39 142.81 4.1 585 180.56 249.50 76.15 1.0416 0.9601 0.0000 10 39 142.59 4.09 583 179.94 24850 74.5 1.0359 0.9653 0.0053 20 39 142.41 4.09 582 179.63 247.40 73.75 1.0344 0.9667 0.0067 30 40 142.23 4.08 580 179.01 246.81 73.35 1.0320 0.9690 0.0089 40 40 142.09 4.08 579 178.70 246.41 73.05 1.0308 0.9701 0.0100 50 40 142 4.07 579 178.70 244.31 72.9 1.0425 0.9592 -0.0009 60 40 141.86 4.07 577 178.09 243.52 72.6 1.0420 0.9597 -0.0003 70 40 141.81 4.07 577 178.09 247.42 72.45 1.0178 0.9825 0.0224 Appendix A. 7 180 80 40 141.67 4.07 576 177.78 245.02 72.25 1.0290 0.9718 0.0118 90 40 141.61 4.06 575 177.47 245.22 72.15 1.0254 0.9752 0.0152 100 40 141.47 4.06 574 177.16 244.92 72.75 1.0290 0.9719 0.0118 110 40 142.23 4.08 580 179.01 245.81 73.45 1.0386 0.9628 0.0028 120 39 142.11 4.07 579 178.70 246.31 73.95 1.0368 0.9645 0.0044 130 39 142.04 4.07 579 178.70 247.61 74.25 1.0308 0.9701 0.0100 140 39 142.04 4.07 579 178.70 245.91 74.5 1.0425 0.9592 -0.X09 150 39 141.93 4.07 578 178.40 246.71 74.6 1.0365 0.9648 0.0047 160 39 141.83 4.07 577 178.09 247.42 74.75 1.0314 0.9696 0.0X5 170 39 141.81 4.07 . 577 178.09 245.72 74.85 1.0423 0.9595 -0.X06 160 39 141.78 4.07 576 177.78 247.52 74.95 1.0302 0.9707 0.0106 190 39 141.56 4.06 575 177.47 247.72 74.85 1.0266 0.9741 0.0140 200 39 141.52 4.06 574 177.16 246.82 74.85 1.0302 0.9707 0.0107 210 39 141.65 4.06 576 177.78 245.72 74.95 1.0410 0.9606 0.0X5 220 39 140.67 4.03 567 175.00 247.94 74.95 1.0116 0.9885 0.0285 230 39 143.1 4.1 587 181.17 250.69 75.25 1.0327 0.9684 0.0X3 240 39 142.02 4.07 578 178.40 250.91 75.4 1.0164 0.9838 0.0238 250 39 141.98 4.07 578 178.40 249.31 75.45 1.0261 0.9746 0.0145 260 39 141.95 4.07 578 178.40 25151 75.45 1.0150 0.9852 0.0252 270 39 141.98 4.07 578 178.40 251.01 75.55 1.0167 0.9836 0.0235 280 39 141.93 4.07 578 178.40 248.91 75.55 1.0290 0.9718 0.0117 290 39 141.97 4.07 578 178.40 249.71 75.55 1.0243 0.9763 0.0162 300 39 141.98 4.07 578 178.40 250.01 75.55 1.0225 0.9780 0.0179 310 39 141.94 4.07 578 178.40 249.41 75.7 1.0270 0.9738 0.0137 320 39 141.98 4.07 578 178.40 251.21 75.75 1.0167 0.9836 0.0235 330 39 141.98 4.07 578 178.40 249.91 75.85 1.0249 0.9757 0.0157 340 39 141.99 4.07 578 178.40 252.11 75.8 1.0118 0.9883 0.0283 350 39 141.98 4.07 578 178.40 251.01 75.95 1.0190 0.9813 0.0213 360 39 141.94 4.07 578 178.40 249.91 75.85 1.0249 0.9757 0.0157 370 39 141.96 4.07 578 178.40 251.21 75.9 1.0176 0.9827 0.0227 380 39 141.98 4.07 578 178.40 250.61 75.95 1.0214 0.9791 0.0190 390 39 141.93 4.07 578 178.40 249.01 75.95 1.0308 0.9701 0.0100 400 39 141.87 4.07 577 178.09 249.72 76 1.0252 0.9755 0.0154 410 39 141.88 4.07 577 178.09 249.52 76.05 1.0266 0.9741 0.0140 420 39 141.87 4.07 577 178.09 250.82 76.1 1.0193 0.9811 0.0210 430 39 141.85 4.07 577 178.09 250.82 76.25 1.0202 0.9802 0.0202 440 39 141.84 4.07 577 178.09 249.42 76.35 1.0290 0.9718 0.0117 450 39 141.83 4.07 577 178.09 248.82 76.1 1.0311 0.9698 0.0X8 460 39 141.85 4.07 577 178.09 252.12 76.15 1.0121 0.9881 0.0280 470 39 141.82 4.07 577 178.09 250.02 76.2 1.0246 0.9760 0.0160 480 39 141.81 4.07 577 178.09 251.42 76.15 1.0161 0.9842 0.0241 490 39 141.81 4.07 577 178.09 248.52 76.25 1.0338 0.9673 0.0072 500 39 141.8 4.07 577 178.09 252.42 76.25 1.0109 0.9892 0.0291 510 39 141.79 4.07 577 178.09 250.32 76.25 1.0231 0.9774 0.0174 520 39 141.8 4.07 577 178.09 250.12 76.35 1.0249 0.9757 0.0157 530 39 141.76 4.07 577 178.09 252.72 76.35 1.0098 0.9903 0.0X3 540 39 141.72 4.07 576 177.78 252.32 76.4 1.0106 0.9895 0.0295 550 39 141.74 4.07 576 177.78 251.02 76.35 1.0178 0.9825 0.0224 560 39 141.76 4.07 577 178.09 252.52 76.3 1.0106 0.9895 0.0294 570 39 141.75 4.07 576 177.78 252.72 76.35 1.0080 0.9921 0.0320 580 39 141.75 4.07 576 177.78 252.32 76.35 1.0103 0.9898 0.0298 590 39 141.79 4.07 577 178.09 250.82 76.35 1.0208 0.9797 0.0198 600 39 141.75 4.07 576 177.78 250.82 76.45 1.0196 0.9808 0.0208 610. 39 141.82 4.07 577 178.09 253.42 76.35 1.0058 0.9943 0.0342 620 39 141.76 4.07 577 178.09 252.22 76.4 1.0129 0.9873 0.0272 630 39 141.77 4.07 577 178.09 252.62 76.45 1.0109 0.9892 0.0291 640 39 141.84 4.07 577 178.09 252.32 76.45 1.0126 0.9875 0.0275 650 39 141.76 4.07 577 178.09 250.92 76.45 1.0208 0.9797 0.0196 660 39 141.76 4.07 577 178.09 250.82 76.45 1.0213 0.9791 0.0190 670 39 141.76 4.07 577 178.09 249.92 76.45 1.0266 0.9741 0.0140 680 39 141.78 4.07 577 178.09 251.92 76.45 1.0149 0.9853 0.0252 690 39 141.68 4.07 576 177.78 252.82 76.45 1.0080 0.9921 0.0320 700 39 141.68 4.07 576 177.78 252.12 76.45 1.0120 0.9881 0.0281 710 39 141.73 4.07 577 178.09 251.72 76.45 1.0161 0.9842 0.0241 720 39 141.82 4.07 577 178.09 251.82 76.55 1.0161 0.9842 0.0241 730 39 141.82 4.07 577 178.09 253.32 76.55 1.0075 0.9926 0.0325 740 39 141.73 4.07 576 177.78 251.92 76.7 1.0146 0.9856 0.0255 750 39 141.72 4.07 576 177.78 254.72 76.8 0.9992 1.0X8 0.0407 760 39 141.77 4.07 577 178.09 254.72 76.8 1.0010 0.9X0 0.0X0 770 39 141.76 4.07 577 178.09 252.92 76.75 1.0109 0.9X2 0.0291 780 39 141.76 4.07 577 178.09 253.22 76.8 1.0095 0.9906 0.0X6 790 39 141.75 4.07 577 178.09 252.32 76.8 1.0146 0.9X6 0.0255 800 39 141.75 4.07 577 178.09 252.82 76.85 1.0121 0.9X1 0.0280 810 39 141.7 4.07 576 177.78 253.02 77.05 1.0103 0.9X8 0.0298 820 39 141.77 4.07 577 178.09 253.72 76.95 1.0075 0.9926 0.0325 830 39 141.76 4.07 577 178.09 251.42 76.95 1.0208 0.9797 0.0196 840 39 141.8 4.07 577 178.09 253.82 76.95 1.0069 0.9931 0.0X1 850 39 141.76 4.07 577 178.09 253.42 77.05 1.0098 0.9X3 0.0X3 860 39 141.79 4.07 577 178.09 252.12 77.1 1.0175 0.9828 0.0227 870 39 141.82 4.07 577 178.09 252.92 77.05 1.0126 0.9875 0.0275 880 39 141.81 4.07 577 178.09 252.22 77.05 1.0167 0.9836 0.0235 890 39 141.74 4.07 577 178.09 254.32 77.15 1.0052 0.9948 0.0348 900 39 141.81 4.07 577 178.09 253.42 77.3 1.0112 0.9X9 0.0289 910 39 141.83 4.07 577 178.09 254.22 77.4 1.0072 0.9929 0.0328 920 39 141.74 4.07 577 178.09 253.12 77.45 1.0138 0.9X4 0.0263 Appendix A. 7 181 930 39 141.71 4.07 576 177.78 253.82 77.55 1.0088 0.9915 0.0314 940 39 141.71 4.07 576 177.78 254.32 77.55 1.0057 0.9943 0.0343 950 39 141.77 4.07 577 178.09 254.42 77.55 1.0069 0.9X1 0.0331 960 39 141.75 4.07 577 178.09 257.02 77.5 0.9920 1.0X0 0.0480 970 39 141.75 4.07 576 177.78 254.42 77.65 1.0057 0.9943 0.0343 960 39 141.79 4.07 577 178.09 253.02 77.6 1.0152 0.9X0 0.0249 990 39 141.81 4.07 577 178.09 253.32 77.65 1.0138 0.9X4 0.0263 1000 38 141.79 4.07 577 178.09 253.92 77.75 1.0109 0.9X2 0.0291 1010 38 141.81 4.07 577 178.09 254.22 77.75 1.0092 0.9X9 0 0308 1020 38 141.78 4.07 577 178.09 256.52 77.55 0.9951 1.0049 0.0449 1030 38 141.78 4.07 577 178.09 254.42 77.45 1.0063 0.9X7 0.0X6 1040 38 141.75 4.07 576 177.78 255.62 77.45 0.9978 1.0022 0.0421 1050 38 141.77 4.07 577 178.09 253.92 77.55 1.0098 0.9X3 0.0X3 1060 38 141.86 4.07 577 178.09 255.42 77.65 1.0018 0.9X2 0.0X1 1070 38 141.89 4.07 578 178.40 254.01 77.75 1.0121 0.9881 0.0280 1080 38 141.85 4.07 577 178.09 255.92 77.75 0.9996 1.0X4 0.0404 1090 38 141.88 4.07 577 178.09 252.12 77.75 1.0213 0.9791 0.0190 1100 38 141.88 4.07 577 178.09 256.42 77.75 0.9968 1.0X3 0.0432 1110 38 141.92 4.07 578 178.40 256.41 77.85 0.9991 1.0X9 0.0409 1120 38 141.87 4.07 577 178.09 252.62 78 1.0199 0.9X5 0.0204 1130 38 141.86 4.07 577 178.09 255.32 78.05 1.0046 0.9X4 0.0X3 1140 3S 141.87 4.07 577 178.09 254.72 78.1 1.0083 0.9917 0.0317 1150 38 141.83 4.07 577 178.09 254.12 78.05 1.0115 0.9X7 0.0286 1160 38 141.9 4.07 577 178.09 255.22 78.1 1.0055 0.9948 0.0345 1170 38 141.82 4.07 577 178.09 256.02 78.2 1.0015 0.9X5 0.0X4 1180 38 141.85 4.07 577 178.09 255.52 78.3 1.0049 0.9X1 0.0X0 1190 38 141.84 4.07 577 178.09 254.22 78.4 1.0129 0.9873 0.0272 1200 38 141.84 4.07 577 178.09 257.52 78.75 0.9962 1.0038 0.0437 1210 38 141.64 4.07 577 178.09 254.02 79.05 1.0178 0.9825 0.0224 1220 38 141.86 4.07 577 178.09 253.52 79.25 1.0219 0.9785 0.0185 1230 36 141.84 4.07 577 178.09 255.72 79.45 1.0103 0 9898 0.0297 1240 38 141.88 4.07 577 178.09 255.02 77.6 1.0038 0.9X2 0.0X2 1250 38 141.9 4.07 577 178.09 252.22 74.1 0.9998 1.0X2 0.0401 1260 38 141.89 4.07 577 178.09 251.82 72.75 0.9945 1.0X5 0.0454 1270 38 141.84 4.07 577 178.09 252.52 72.15 0.9874 1.0128 0.0527 1280 38 141.83 4.06 576 177.78 253.72 71.6 0.9778 1.0227 0.0627 1290 38 141.88 4.07 577 178.09 249.12 71.8 1.0043 0.8X7 0 0356 1300 38 141.81 4.06 576 177.78 251.42 71.85 0.9900 1.0101 0.0X0 1310 38 141.76 4.06 576 177.78 252.42 71.85 0.9845 1.0157 0.0X6 1320 38 141.78 4.06 576 177.78 251.72 71.95 0.9889 1.0112 0.0511 "* 1330 38 141.86 4.07 577 178.09 250.82 72 0.9959 1.0041 0.0440 1340 38 141.71 4.06 575 177.47 251.62 72.05 0.9883 1.0118 0.0516 1350 38 141.75 4.08 575 177.47 252.82 73.5 0.9897 1.0104 0.0X4 1360 38 141.71 4.06 575 177.47 251.82 74.55 1.0011 0.9X9 0.0X8 1370 38 141.71 4.06 575 177.47 252.92 75.5 1.0003 0.9X7 0.0X7 1380 38 141.74 4.06 575 177.47 253.42 76.35 1.0022 0.9978 0.0377 1390 38 141.73 4.06 575 177.47 255.22 77.15 0.9966 1.0X4 0.0433 1400 38 141.74 4.06 575 177.47 253.32 77.5 1.0094 0.9X7 0.0X6 1410 38 141.75 4.06 575 177.47 253.42 75.15 0.9955 1.0045 0.0445 1420 38 141.77 4.06 575 177.47 254.42 74.55 0.9866 1.0135 0.0X5 1430 38 141.7 4.06 575 177.47 252.92 74.6 0.9952 1.0048 0.0447 1440 38 141.71 4.06 575 177.47 254.72 74.9 0.9869 1.0133 0.0532 1450 38 141.79 4.06 576 177.78 254.42 75.1 0.9914 1.0X7 0.0486 1460 38 141.78 4.06 576 177.78 253.22 75.3 0.9992 1.0X8 0.0407 1470 38 141.78 4.06 576 177.78 253.02 75.55 1.0017 0.9X3 0.0X2 1480 38 141.77 4.06 576 177.78 253.92 75.95 0.9989 1.0011 0.0410 1490 38 141.76 4.06 575 177.47 252.12 76.2 1.0088 0.9913 0.0312 1500 3a 141.78 4.06 575 177.47 254.32 76.4 0.9975 1.0025 0.0425 1510 38 141.75 4.06 575 177.47 253.72 76.55 1.0017 0.9983 0 0383 1520 38 141.72 4.06 575 177.47 254.42 76.6 0.9980 1.0020 0.0419 1530 38 141.76 4.06 575 177.47 253.22 76.75 1.0057 0.9944 0.0343 1540 38 141.76 4.06 575 177.47 254.42 76.75 0.9989 1.0011 0.0411 1550 38 141.74 4.06 575 177.47 254.32 76.85 1.0000 1.0X0 0.0X9 1560 38 141.76 4.06 575 177.47 255.82 76.85 0.9916 1.0085 0.0484 1570 38 141.75 4.06 575 177.47 258.02 76.85 0.9796 1.0209 0.0X8 1580 38 141.71 4.06 575 177.47 254.22 76.9 1.0X8 0 9992 0.0X1 1590 38 141.71 4.06 575 177.47 254.82 77.05 0.9X3 1.0017 0.0416 1600 38 141.72 4.06 575 177.47 253.32 77.15 1.0074 0.9927 0.0326 1610 38 141.7 4.06 575 177.47 257.22 77.2 0.9X8 1.0144 0.0543 1620 38 141.75 4.06 575 177.47 254.42 77.25 1.0017 0.9X3 0.0X3 1630 38 141.8 4.06 576 177.78 254.52 77.2 1.0026 0.8874 0.0374 1640 38 141.76 4.06 575 177.47 255.82 77.2 0.9X6 1.0X5 0.0464 1650 38 141.75 4.06 575 177.47 255.92 77.2 0.9X0 1.0071 0.0470 1660 38 141.73 4.06 575 177.47 256.32 77.25 0.9911 1.0X0 0.0490 1670 38 141.7 4.06 575 177.47 254.32 77.25 1.0022 0.9978 0.0377 1680 3a 141.77 4.06 576 177.78 255.32 77.25 0.9X4 1.0016 0.0416 1690 38 141.69 4.06 575 177.47 255.62 77.3 0.9X2 1.0048 0.0447 1700 38 141.71 4.06 575 177.47 254.62 77.35 1.0X0 1.0X0 0.0X9 1710 38 141.74 4.06 575 177.47 253.52 77.25 1.0X8 0.9X2 0.0332 1720 38 141.7 4.06 575 177.47 254.32 77.2 1.0020 0.9X0 0.0X0 1730 38 141.73 4.06 575 177.47 254.52 77.2 1.0X8 0.9X2 0.0X1 1740 38 141.72 4.06 575 177.47 253.82 77.25 1.0X1 0.9949 0.0349 1750 38 141.77 4.06 576 177.78 254.72 77.1 1.0X9 0.9X1 0.0X0 1760 38 141.76 4.06 576 177.78 254.62 77.15 1.0017 0.9X3 0.0X2 1770 38 141.77 4.06 576 177.78 256.22 77.15 0.9928 1.0073 0.0472 Appendix A. 7 182 1780 38 141.73 4.06 575 177.47 254.82 77.15 0.9989 1.0011 0.0411 1790 38 141.65 4.06 575 177.47 254.52 77.15 1.0008 0.9994 0.0394 1800 38 141.67 4.06 575 177.47 255.32 77.2 0.9963 1.0037 0.0436 1810 38 141.71 4.06 575 177.47 254.02 77.25 1.0039 0.9961 0.0360 1820 38 141.62 4.06 575 177.47 254.22 77.35 1.0034 0.9966 0.0366 1830 39 141.59 4.06 575 177.47 255.22 77.35 0.9977 1.0023 0.0422 1840 38 141.73 4.06 576 177.78 255.42 77.35 0.9984 1.0016 0.0416 1850 38 141.75 4.06 576 177.78 256.12 77.35 0.9945 1.0056 0.0455 1860 39 141.7 4.06 575 177.47 254.42 77.35 1.0022 0.9978 0.0377 1870 39 141.7 4.06 575 177.47 255.72 77.4 0.9952 1.0048 0.0447 1880 39 141.66 4.06 575 177.47 257.32 77.45 0.9866 1.0135 0.0535 1890 39 141.7 4.06 575 177.47 255.92 77.45 0.9944 1.0056 0.0456 1900 39 141.71 4.06 575 177.47 258.12 77.45 0.9823 1.0180 0.0580 1910 39 141.65 4.06 575 177.47 256.22 77.4 0.9924 1.0076 0.0476 1920 39 141.69 4.06 575 177.47 257.22 77.35 0.9866 1.0135 0.0535 1930 39 141.71 4.06 575 177.47 257.22 77.4 0.9869 1.0133 0.0532 1940 39 141.72 4.06 576 177.78 257.42 77.4 0.9876 1.0126 0.0525 1950 39 141.69 4.06 575 177.47 255.22 77.4 0.9980 1.0020 0.0419 1960 39 141.67 4.06 575 177.47 255.72 77.45 0.9955 1.0045 0.0445 1970 39 141.7 4.06 576 177.78 256.92 77.45 0.9906 1.0095 0.0494 1980 39 141.65 4.06 575 177.47 256.82 77.45 0.9894 1.0107 0.0507 1990 39 141.65 4.06 575 177.47 254.92 77.45 1.0000 1.0000 0.0399 2000 39 141.62 4.06 575 177.47 256.82 77.45 0.9894 1.0107 0.0507 2010 39 141.67 4.06 575 177.47 256.22 77.45 0.9927 1.0073 0.0473 2020 39 141.7 4.06 575 177.47 255.52 77.4 0.9963 1.0037 0.0436 2030 39 141.72 4.06 576 177.78 256.92 77.4 0.9903 1.0098 0.0497 2040 39 141.67 4.06 575 177.47 254.72 77.45 1.0011 0.9989 0.0388 2050 39 141.65 4.06 575 177.47 254.42 77.35 1.0022 0.9978 0.0377 2060 39 141.69 4.06 576 177.78 258.22 77.4 0.9832 1.0171 0.0570 2070 39 141.7 4.06 576 177.78 255.92 77.35 0.9956 1.0044 0.0444 2080 39 141.65 4.06 575 177.47 258.02 77.35 0.9823 1.0180 0.0580 2090 39 141.62 4.06 575 177.47 255.62 77.35 0.9955 1.0045 0.0445 2100 39 141.66 4.06 575 177.47 256.42 77.35 0.9911 1.0090 0.0490 2110 39 141.62 4.06 575 177.47 257.22 77.25 0.9861 1.0141 0.0540 2120 39 141.63 4.06 575 177.47 255.92 77.35 0.9938 1.0062 0.0461 2130 39 141.64 4.06 575 177.47 255.52 77.25 0.9955 1.0045 0.0445 2140 39 141.63 4.06 575 177.47 255.72 77.25 0.9944 1.0056 0.0456 2150 39 141.65 4.06 575 177.47 256.32 77.25 0.9911 1.0090 0.0490 2160 39 141.62 4.08 575 177.47 255.22 77.15 0.9966 1.0034 0.0433 2170 39 141.65 4.06 575 177.47 257.92 77.15 0.9817 1.0186 0.0585 2180 39 141.61 4.06 575 177.47 255.72 77.15 0.9938 1.0062 0.0461 2190 39 141.63 4.06 575 177.47 257.02 77.15 0.9866 1.0135 0.0535 2200 39 141.65 4.06 575 177.47 256.42 77.05 0.9894 1.0107 0.0507 2210 39 141.66 4.06 576 177.78 256.82 77.05 0.9S89 1.0112 0.0511 2220 39 141.68 4.06 576 177.78 256.52 77.05 0.9906 1.0095 0.0494 2230 39 141.7 4.07 576 177.78 257.82 77.05 0.9835 1.0168 0.0568 2240 39 141.67 4.06 576 177.78 257.22 77.2 0.9876 1.0126 0.0525 2250 39 141.66 4.06 576 177.78 256.32 77.35 0.9824 1.0179 0.0579 2260 38 141.7 4.06 576 177.78 257.02 77.45 0.9900 1.0101 0.0500 2270 38 141.71 4.06 576 177.78 254.52 77.45 1.0040 0.9960 0.0359 2280 38 141.65 4.06 575 177.47 256.82 77.45 0.9894 1.0107 0.0507 2290 38 141.62 4.06 575 177.47 257.52 77.45 0.9856 1.0147 0.0546 2300 38 141.6 4.06 575 177.47 255.02 77.45 0.9994 1.0006 0.0405 2310 38 141.64 4.06 575 177.47 257.82 77.55 0.9845 1.0158 0.0557 2320 38 141.58 4.06 575 177.47 258.72 77.55 0.9796 1.0209 0.0608 2330 38 141.64 4.06 575 177.47 258.82 77.65 0.9796 1.0209 0.0608 2340 38 141.62 4.08 575 177.47 259.02 77.65 0.9785 1.0220 0.0619 2350 38 141.7 4.06 576 177.78 259.92 77.75 0.9759 1.0247 0.0646 2360 38 141.71 4.06 576 177.78 257.22 77.75 0.9906 1.0095 0.0494 2370 38 141.64 4.06 575 177.47 258.02 77.65 0.9839 1.0164 0.0563 2380 38 141.67 4.06 575 177.47 259.42 77.75 0.9769 1.0237 0.0636 2390 38 141.63 4.06 575 177.47 256.72 77.75 0.9916 1.0085 0.0464 2400 38 141.65 4.06 575 177.47 258.82 77.75 0.9801 1.0203 0.0602 2410 38 141.72 4.06 576 177.78 259.92 77.65 0.9754 1.0253 0.0652 2420 38 141.69 4.06 575 177.47 258.82 77.65 0.9796 1.0209 0.0608 2430 38 141.7 4.06 575 177.47 255.32 77.65 0.9989 1.0011 0.0411 2440 38 141.72 4.06 576 177.78 256.42 77.75 0.9950 1.0050 0.0449 2450 38 141.7 4.06 575 177.47 257.52 77.75 0.9872 1.0130 0.0529 2460 38 141.69 4.06 575 177.47 259.52 77.75 0.9763 1.0242 0.0642 2470 38 141.67 4.06 575 177.47 258.52 77.75 0.9817 1.0186 0.0585 2480 38 141.7 4.06 575 177.47 257.52 77.75 0.9872 1.0130 0.0529 2490 38 141.64 4.06 575 177.47 258.62 77.75 0.9812 1.0192 0.0591 2500 38 141.64 4.06 575 177.47 256.72 77.75 0.9916 1.0085 0.0484 2510 38 141.58 4.08 575 177.47 257.72 77.6 0.9853 1.0149 0.0549 2520 38 141.6 4.06 575 177.47 258.12 77.45 0.9823 1.0180 0.0580 2530. 38 141.62 4.06 575 177.47 258.22 77.5 0.9820 1.0183 0.0583 2540 38 141.58 4.06 575 177.47 257.92 77.45 0.9834 1.0169 0.0568 2550 38 141.61 4.06 575 177.47 257.22 77.5 0.9875 1.0127 0.0526 2560 38 141.64 4.06 575 177.47 258.82 77.6 0.9793 1.0211 0.0611 2570. 38 141.64 4.06 575 177.47 259.02 77.6 0.9782 1.0223 0.0622 2580 38 141.61 4.06 575 177.47 256.92 77.55 0.9894 1.0107 0.0507 2590 38 141.6 4.06 575 177.47 257.42 77.55 0.9868 1.0135 0.0535 2600 38 141.59 4.06 575 177.47 257.32 77.65 0.9877 1.0124 0.0523 2610 38 141.59 4.06 575 177.47 258.22 77.75 0.9834 1.0169 0.0568 2620 38 141.6 4.06 575 177.47 258.72 77.75 0.9806 1.0197 0.0597 Appendix A.7 183 2630 38 141.59 4.06 575 177.47 257.12 77.75 0.9894 1.0107 0.0507 2640 38 141.61 4.06 575 177.47 259.02 77.75 0.9790 1.0214 0.0614 2650 31 141.54 4.06 574 177.16 248.32 78 1.0401 0.9614 0.0013 2660 40 141.55 4.06 574 177.16 257.82 77.95 0.9849 1.0153 0.0552 2670 40 141.58 4.68 574 177.16 258.82 77.9 0.9792 1.0212 0.0612 2660 40 141.54 4.06 574 177.16 258.52 77.6 0.9808 1.0195 0.0595 2690 40 141.64 4.06 575 177.47 259.32 77.9 0.9782 1.0223 0.0622 2700 40 141.58 4.06 574 177.16 256.52 77.9 0.9918 1.0083 0.0462 2710 40 141.52 4.05 574 177.16 259.72 77.9 0.9744 1.0263 0.0663 2720 39 141.52 4.05 574 177.16 256.92 77.25 0.9860 1.0142 0.0541 2730 39 141.58 4.06 574 177.16 257.22 77 0.9830 1.0173 0.0572 2740 39 141.47 4.05 573 176.85 257.23 76.9 0.9807 1.0196 0.0598 2750 39 141.57 4.05 574 177.16 258.02 76.85 0.9778 1.0227 0.0626 2760 39 141.54 4.05 574 177.16 259.52 76.85 0.9698 1.0311 0.0711 2770 39 141.53 4.05 574 177.16 258.42 76.85 0.9757 1.0249 0.0648 2780 39 141.52 4.05 573 176.85 256.13 76.95 0.9870 1.0131 0.0531 2790 39 141.49 4.05 573 176.85 254.73 77.05 0.9954 1.0047 0.0446 2800 39 141.45 4.05 573 176.85 258.83 77.05 0.9729 1.0278 0.0678 2810 39 141.58 4.06 574 177.16 259.32 77 0.9717 1.0291 0.0691 2820 39 141.49 4.05 573 176.85 257.03 77 0.9824 1.0179 0.0579 2830 39 141.48 4.05 573 176.85 258.73 77 0.9732 1.0276 0.0675 2840 39 141.49 4.05 . 573 176.85 257.73 76.95 0.9783 1.0222 0.0621 2850 39 141.5 4.05 574 177.16 259.72 76.95 0.9693 1.0317 0.0716 2860 39 141.52 4.05 573 176.85 258.03 76.95 0.9767 1.0239 0.0638 2870 39 141.49 4.05 573 176.85 256.53 76.95 0.9648 1.0154 0.0553 2880 39 141.45 4.05 573 176.85 258.73 76.9 0.9726 1.0281 0.0681 2890 39 141.45 4.05 573 176.85 260.03 76.95 0.9660 1.0352 0.0751 2900 39 141.43 4.05 573 176.85 258.63 76.95 0.9734 1.0273 0.0672 2910 39 141.47 4.05 573 176.85 258.83 76.95 0.9724 1.0284 0.0683 2920 39 141.48 4.05 573 176.85 258.93 76.95 0.9718 1.0290 0.0669 2930 39 141.49 4.05 573 176.85 259.83 76.85 0.9665 1.0346 0.0746 2940 39 141.42 4.05 573 176.85 258.43 76.85 0.9740 1.0267 0.0666 2950 39 141.29 4.05 572 176.54 256.73 76.85 0.9815 1.0189 0.0588 2960 39 141.28 4.05 • 572 176.54 258.03 76.85 0.9744 1.0263 0.0662 2970 39 141.43 4.05 573 176.85 256.93 76.75 0.9815 1.0188 0.0587 2980 39 141.15 4.04 571 176.23 257.33 76.7 0.9757 1.0249 0.0649 2990 39 14133 4.05 571 176.23 257.83 76.7 0.9730 1.0278 0.0677 3000 39 141.18 4.04 571 176.23 257.53 76.7 0.9746 1.0261 0.0660 3010 39 141.16 4.04 571 176.23 256.93 76.7 0.9778 1.0227 0.0626 3020 39 141.16 4.04 571 176.23 255.83 76.7 0.9838 1.0164 0.0564 3030 39 141.39 4.05 573 176.85 256.33 76.65 0.9643 1.0160 0.0559 3040 39 140.93 4.04 569 175.62 258.24 76.6 0.9669 1.0343 0.0742 3050 39 140.86 4.04 569 175.62 256.54 76.55 0.9757 1.0249 0.0648 3060 40 140.88 4.04 569 175.62 256.24 76.55 0.9774 1.0232 0.0631 3070 40 140.95 4.04 569 175.62 256.44 76.45 0.9757 1.0249 0.0648 3080 40 140.88 4.04 569 175.62 256.74 76.4 0.9738 1.0269 0.0668 3090 40 140.91 4.04 569 175.62 257.94 76.35 0.9671 1.0340 0.0739 3100 40 140.86 4.04 569 175.62 257.34 76.25 0.9698 1.0311 0.0711 3110 40 140.89 4.04 569 175.62 257.34 76.2 0.9695 1.0314 0.0714 3120 40 140.91 4.04 569 175.62 259.14 76.25 0.9603 1.0414 0.0813 3130 40 140.89 4.04 569 175.62 259.74 76.25 0.9571 1.0448 0.0847 3140 40 140.88 4.04 569 175.62 258.84 76.3 0.9621 1.0394 0.0793 3150 40 140.82 4.04 569 175.62 256.54 76.25 0.9741 1.0266 0.0665 3160 40 140.85 4.04 569 175.62 255.34 76.2 0.9804 1.0200 0.0600 3170 40 140.85 4.04 569 175.62 258.94 76.25 0.9613 1.0403 0.0802 3180 40 140.87 4.04 569 175.62 256.84 76.25 0.9725 1.0283 0.0682 3190 40 140.82 4.04 569 175.62 259.04 76.25 0.9608 1.0408 0.0808 3200 40 140.82 4.04 569 175.62 257.44 76.2 0.9690 1.0320 0.0719 3210. 40 140.82 4.04 569 175.62 257.74 76.25 0.8677 1.0334 0.0734 3220 40 140.82 4.04 569 175.62 258.04 76.25 0.9661 1.0351 0.0751 3230 40 140.83 4.04 569 175.62 256.54 76.25 0.9741 1.0266 0.0665 3240 40 140.84 4.04 569 175.62 258.74 76.2 0.9621 1.0394 0.0793 3250 40 140.85 4.04 569 175.62 256.84 76.2 0.9722 1.0286 0.0685 3260 40 140.83 4.04 569 175.62 257.84 76.2 0.9669 1.0343 0.0742 3270 40 140.85 4.04 569 175.62 259.04 76.15 0.9603 1.0414 0.0813 3280 40 140.8 4.04 569 175.62 261.64 76.2 0.9470 1.0559 0.0958 3290 40 140.84 4.04 569 175.62 257.64 76.2 0.9679 1.0331 0.0731 3300 40 140.63 4.04 569 175.62 258.34 76.15 0.9639 1.0374 0.0773 3310 40 140.81 4.04 569 175.62 260.14 76.15 0.9545 1.0477 0.0876 3320 40 140.79 4.04 569 175.62 259.24 76.15 0.9592 1.0425 0.0825 3330 40 141 •4.05 570 175.93 257.53 76.2 0.9702 1.0307 0.0707 3340 40 141.02 4.05 571 176.23 259.73 76.2 0.9602 1.0414 0.0813 3350 40 141.03 4.05 571 176.23 258.43 76.15 0.9668 1.0343 0.0742 3360 40 140.79 4.04 569 175.62 260.04 76.15 0.9550 1.0471 0.0870 3370 40 140.79 4.04 569 175.62 260.44 76.1 0.9527 1.0496 0.0896 3380 40 140.83 4.04 569 175.62 258.94 76.15 0.9608 1.0408 0.0808 3390 40 140.84 4.04 569 175.62 260.14 76.15 0.9545 1.0477 0.0876 3400 40 140.78 4.04 569 175.62 257.14 76.15 0.9703 1.0306 0.0705 3410 40 140.82 4.04 569 175.62 257.74 76.15 0.9671 1.0340 0.0739 3420 40 140.78 4.04 569 175.62 257.84 76.2 0.9669 1.0343 0.0742 3430 40 140.87 4.04 569 175.62 260.04 76.2 0.9553 1.0468 0.0867 3440 40 140.79 4.04 569 175.62 259.54 76.15 0.9576 1.0442 0.0842 3450 40 140.82 4.04 569 175.62 260.44 76.15 0.9530 1.0494 0.0893 3460 40 140.83 4.04 569 175.62 260.84 75.95 0.9499 1.0528 0.0927 3470 40 140.78 4.04 569 175.62 259.24 75.95 0.9582 1.0437 0.0836 Appendix A. 7 184 34X 40 140.76 4.04 568 175.31 259.34 75.9 0.9557 1.0464 0.0X3 3490 40 140.78 4.04 569 175.62 261.24 75.9 0.9476 1.0553 0.0X3 3500 40 140.8 4.04 569 175.62 259.84 75.85 0.9545 1.0477 0.0876 3510 40 140.81 4.04 569 175.62 260.04 75.85 0.9535 1.0488 0.0X7 3520 40 140.78 4.04 568 175.31 261.34 75.85 0.9451 1.0581 0.0X0 3530 40 140.79 4.04 569 175.62 260.34 75.8 0.9517 1.0508 0.0X7 3540 40 140.76 4.04 568 175.31 259.74 75.75 0.9528 1.0495 0.0X4 3550 40 140.82 4.04 569 175.62 259.74 75.8 0.9548 1.0474 0.0873 3580 40 140.81 4.04 569 175.62 259.34 75.85 0.9571 1.0448 0.0847 3570 40 140.74 4.04 568 175.31 260.74 75.85 0.9482 1.0546 0.0946 3580 40 140.82 4.04 569 175.62 259.44 75.9 0.9569 1.0451 0.0X0 3590 40 140.78 4.04 569 175.62 258.84 75.95 0.9603 1.0414 0.0813 3600 40 140.8 4.04 569 175.62 259.04 75.95 0.9592 1.0425 0.0825 3610 40 140.81 4.04 S69 175.62 259.84 75.95 0.9550 1.0471 0.0870 3620 40 140.77 4.04 569 175.62 260.44 75.95 0.9519 1.0505 0.0X4 3630 40 140.81 4.04 569 175.62 261.04 75.9 0.9486 1.0542 0.0941 3640 40 140.76 4.04 569 175.62 262.24 75.95 0.9427 1.0608 0.1X7 3650 40 140.75 4.04 568 175.31 261.94 75.95 0.9426 1.0609 0.1X9 3660 40 140.79 4.04 569 175.62 260.94 75.85 0.9488 1.0539 0.0X9 3870 40 140.79 4.04 569 175.62 261.04 75.9 0.9486 1.0542 0.0941 3680 40 140.77 4.04 569 175.62 262.44 75.9 0.9415 1.0622 0.1021 3690 40 140.82 4.04 569 175.62 262.74 75.9 0.9400 1.0639 0.1X8 3700 40 140.78 4.04 569 175.62 262.34 75.95 0.9422 1.0613 0.1013 3710 40 140.8 4.04 569 175.62 261.94 75.95 0.9442 1.0590 0.0X0 3720 40 140.76 4.04 569 175.62 261.54 75.95 0.9463 1.0568 0.0X7 3730 40 140.86 4.04 569 175.62 261.74 75.95 0.9453 1.0579 0.0978 3740 40 140.85 4.04 569 175.62 262.34 76.05 0.9427 1.0608 0.1X7 3750 39 140.82 4.04 569 175.62 264.44 76.1 0.9325 1.0724 0.1124 3760 39 140.75 4.04 568 175.31 261.44 76.15 0.9461 1.0569 0.0X9 3770 39 140.76 4.04 569 175.62 264.04 76.15 0.9347 1.0699 0.1X8 3780 39 140.82 4.04 569 175.62 261.34 76.15 0.9483 1.0545 0.0944 3790 39 140.83 4.04 569 175.62 264.04 76.15 0.9347 1.0699 0.1X8 3800 39 140.83 4.04 569 175.62 262.74 76.15 0.9412 1.0625 0.1024 3810 39 140.82 4.04 569 175.62 261.64 76.2 0.9470 1.0559 0.0X8 3820 39 140.83 4.04 569 175.62 264.54 76.15 0.9322 1.0727 0.1126 3830 39 140.8 4.04 569 175.62 262.54 76.2 0.9425 1.0610 0.1010 3840 39 140.82 4.04 569 175.62 266.24 76.25 0.9244 1.0818 0.1218 3850 39 140.82 4.04 569 175.62 265.04 76.2 0.9300 1.0753 0.1152 3860 39 140.86 4.04 569 175.62 264.84 76.25 0.9312 1.0738 0.1138 3870 39 140.82 4.04 569 175.62 263.34 76.25 0.9387 1.0653 0.1X2 3880 39 140.82 4.04 569 175.62 263.94 76.35 0.9362 1.0682 0.1X1 3890 39 140.81 4.04 569 175.62 265.24 76.35 0.9297 1.0756 0.1155 3900 39 140.78 4.04 569 175.62 264.54 76.45 0.9337 1.0710 0.1109 3910 39 140.77 4.04 569 175.62 264.94 76.55 0.9322 1.0727 0.1126 3920 39 140.73 4.04 568 175.31 265.94 76.7 0.9264 1.0795 0.1194 3930 39 140.75 4.04 568 175.31 266.84 76.7 0.9220 1.0846 0.1245 3940 39 140.77 4.04 568 175.31 263.44 76.75 0.9390 1.0649 0.1049 3950 39 140.77 4.04 568 175.31 267.24 76.75 0.9203 1.0666 0.1265 3960 39 140.82 4.04 569 175.62 265.74 76.8 0.9295 1.0758 0.1158 3970 39 140.81 4.04 569 175.62 267.44 76.8 0.9212 1.0855 0.1255 3980 39 140.77 4.04 568 175.31 266.34 76.85 0.9252 1.0809 0.1208 3990 39 140.79 4.04 568 175.31 267.04 76.95 0.9222 1.0843 0.1242 4000 39 140.79 4.04 568 175.31 265.04 77.05 0.9325 1.0723 0.1123 4010 39 140.81 4.04 569 175.62 267.54 76.95 0.9215 1.0852 0.1252 4020 39 140.76 4.04 568 175.31 268.24 76.85 0.9160 1.0917 0.1317 4030 39 140.77 4.04 568 175.31 265.34 76.75 0.9296 1.0758 0.1157 4040 39 140.78 4.04 568 175.31 264.84 76.7 0.9318 1.0732 0.1131 4050 39 140.74 4.04 568 175.31 265.34 76.55 0.9286 1.0769 0.1168 4060 39 140.75 4.04 568 175.31 267.44 76.55 0.9184 1.0889 0.1288 4070 39 140.75 4.04 568 175.31 268.54 76.4 0.9124 1.0960 0.1X9 4080 39 140.75 4.04 568 175.31 266.94 76.45 0.9203 1.0866 0.1265 4090 39 140.7 4.04 568 175.31 267.94 76.25 0.9145 1.0934 0.1334 4100 39 140.76 4.04 568 175.31 267.84 76.25 0.9150 1.0929 0.1328 4110 39 140.74 4.04 568 175.31 267.54 76.25 0.9165 1.0912 0.1311 4120 39 140.71 4.04 568 175.31 269.74 76.2 0.9058 1.1040 0.1439 4130 39 140.75 4.04 568 175.31 265.74 76.15 0.9247 1.0815 0.1214 4140 39 140.77 4.04 568 175.31 265.54 76.15 0.9257 1.0803 0.1203 4150 39 140.81 4.04 568 175.31 267.44 76.15 0.9165 1.0912 0.1311 4160 39 140.76 4.04 568 175.31 267.34 76.05 0.9165 1.0912 0.1311 4170 39 140.77 4.04 568 175.31 268.44 76.15 0.9117 1.0969 0.1X8 4180 39 140.75 4.04 568 175.31 265.94 76.05 0.9232 1.0832 0.1231 4190 38 140.78 4.04 568 175.31 270.54 76.1 0.9016 1.1091 0.1491 4200 38 140.78 4.04 568 175.31 266.64 76.2 0.9205 1.0863 0.1262 4210 38 140.78 4.04 568 175.31 269.04 76.15 0.9089 1.1X3 0.1402 4220 38 140.74 4.04 568 175.31 270.94 76.25 0.9005 1.1106 0.1X5 4230 38 140.73 4.04 568 175.31 270.34 76.25 0.9032 1.1071 0.1471 4240 38 140.69 4.03 567 175.00 268.94 76.35 0.9087 1.1X5 0.1405 4250 38 140.7 4.03 568 175.31 271.24 76.35 0.8995 1.1117 0.1516 4260 38 140.73 4.04 568 175.31 268.14 76.45 0.9145 1.0X4 0.1X4 4270 38 140.73 4.04 568 175.31 270.94 76.45 0.9014 1.1X4 0.1493 4280 38 140.75 4.04 568 175.31 271.24 76.35 0.8995 1.1117 0.1516 4290 38 140.76 4.04 568 175.31 269.44 76.35 0.9079 1.1014 0.1414 4300 38 140.7 4.03 568 175.31 272.24 76.35 0.8949 1.1174 0.1573 4310 38 140.73 4.04 568 175.31 270.24 76.45 0.9046 1.1X4 0.1454 4320 38 140.73 4.04 568 175.31 272.24 76.55 0.8959 1.1163 0.1X2 Appendix A. 7 185 4330 38 140.75 4.04 568 175.31 270.44 76.55 6.9042 1.1060 0.1459 4340 38 140.75 4.03 568 175.31 270.54 76.55 0.9037 1.1066 0.1465 4350 38 140.74 4.03 568 175.31 270.44 76.55 0.9042 1.1060 0.1459 4360 38 140.72 4.03 568 175.31 272.84 76.55 0.8927 1.1202 0.1602 4370 38 140.75 4.03 568 175.31 272.84 76.55 0.8931 1.1197 0.1596 4380 38 140.68 4.03 567 175.00 273.84 76.65 0.8875 1.1268 0.1667 4380 38 140.7 4.03 567 175.00 271.44 76.6 0.8982 1.1134 0.1533 4400 38 140.69 4.03 567 175.00 271.84 76.65 0.8966 1.1154 0.1553 4410 38 140.67 4.03 567 175.00 273.04 76.75 0.8915 1.1217 0.1616 4420 38 140.63 4.03 567 175.00 272.84 76.85 0.8929 1.1200 0.1599 4430 38 140.62 4.03 567 175.00 272.54 76.8 0.8940 1.1185 0.1585 4440 38 140.62 4.03 567 175.00 270.94 76.85 0.9016 1.1091 0.1490 4450 38 140.68 4.03 567 175.00 275.54 76.95 0.8812 1.1348 0.1747 4460 38 140.65 4.03 567 175.00 273.84 76.9 0.8886 1.1254 0.1653 4470 38 140.67 4.03 567 175.00 275.34 76.95 0.8821 1.1337 0.1736 4480 38 140.66 4.03 567 175.00 274.24 76.85 0.8866 1.1280 0.1679 4490 38 140.68 4.03 567 175.00 274.54 76.85 0.8852 1.1297 0.1696 4500 38 140.84 4.03 567 175.00 275.44 76.8 0.8810 1.1351 0.1750 4510 38 140.61 4.03 567 175.00 276.74 76.85 0.8755 1.1422 0.1822 4520 38 140.61 4.03 567 175.00 276.84 76.75 0.8746 1.1434 0.1833 4530 38 140.62 4.03 567 175.00 274.24 76.8 0.8863 1.1282 0.1882 4540 38 140.65 4.03 567 175.00 274.74 76.8 0.8841 1.1311 0.1710 4550 38 140.74 4.03 568 175.31 275.74 76.7 0.8808 1.1354 0.1753 4560 38 140.7 4.03 567 175.00 276.44 76.7 0.8761 1.1414 0.1813 4570 38 140.67 4.03 567 175.00 274.94 76.7 0.8828 1.1328 0.1727 4580 38 140.67 4.03 567 175.00 277.44 76.75 0.8720 1.1468 0.1867 4590 38 140.7 4.03 567 175.00 277.04 78.75 0.8737 1.1445 0.1845 4600 38 140.7 4.03 568 175.31 279.24 76.75 0.8658 1.1550 0.1950 4610 38 140.7 4.03 568 175.31 279.04 76.75 0.8666 1.1539 0.1938 4620 38 140.68 4.03 567 175.00 278.04 76.7 0.8692 1.1505 0.1905 4630 38 140.71 4.03 567 175.00 277.54 76.75 0.8715 1.1474 0.1873 4640 38 140.68 4.03 567 175.00 277.34 76.7 0.8722 1.1465 0.1865 4650 38 140.69 4.03 567 175.00 279.94 76.75 0.B613 1.1611 0.2010 4660 38 140.74 4.04 568 175.31 279.04 76.7 0.8664 1.1542 0.1941 4670 39 140.69 4.03 567 175.00 277.04 76.7 0.8735 1.1448 0.1847 4680 39 140.67 4.03 567 175.00 277.84 76.7 0.8700 1.1494 0.1893 4690 39 140.7 4.03 567 175.00 277.64 76.7 0.8709 1.1482 0.1662 4700 39 140.68 4.03 567 175.00 278.14 76.75 0.8690 1.1508 0.1907 4710 39 140.75 4.04 568 175.31 279.84 76.75 0.8632 1.1585 0.1984 4720 39 140.79 4.04 568 175.31 279.24 76.7 0.8658 1.1553 0.1953 4730 38 140.74 4.03 568 175.31 279.54 76.65 0.8641 1.1573 0.1973 4740 38 140.68 4.03 567 175.00 277.24 76.65 0.8724 1.1462 0.1862 4750 38 140.7 4.03 568 175.31 279.44 76.65 0.6645 1.1588 0.1967 4760 39 140.71 4.03 568 175.31 280.54 76.7 0.8600 1.1627 0.2027 4770 38 140.74 4.03 568 175.31 281.74 76.7 0.6550 1.1696 0.2095 4780 39 140.72 4.03 568 175.31 281.84 76.7 0.8546 1.1702 0.2101 4790 39 140.7 4.03 568 175.31 281.24 76.65 0.8569 1.1670 0.2070 4800 39 140.72 4.03 568 175.31 281.94 76.7 0.8542 1.1707 0.2107 4810 38 140.73 4.03 568 175.31 282.14 76.8 0.8538 1.1713 0.2112 4820 38 140.76 4.04 568 175.31 278.34 76.85 0.8701 1.1493 0.1893 4830 38 140.68 4.03 568 175.31 280.74 76.85 0.8596 1.1630 0.2030 4840 38 140.74 4.03 568 175.31 281.74 76.85 0.8556 1.1687 0.2087 4850 38 140.69 4.03 567 175.00 282.94 76.65 0.8491 1.1777 0.2176 4860 38 140.7 4.03 567 175.00 283.24 76.85 0.8479 1.1794 0.2193 4870 38 140.7 4.03 567 175.00 284.54 76.85 0.8426 1.1868 0.2267 4880 38 140.69 4.03 567 175.00 283.44 76.85 0.8471 1.1805 0.2205 4890 38 140.68 4.03 567 175.00 283.94 76.85 0.8450 1.1834 0.2233 4900 38 140.68 4.03 567 175.00 285.34 76.85 0.8394 1.1914 0.2313 4910 38 140.65 4.03 567 175.00 283.94 76.85 0.8450 1.1834 0.2233 4920 38 140.64 4.03 567 175.00 285.04 76.85 0.8406 1.1897 0.2298 4930 38 140.64 4.03 567 175.00 284.64 76.85 0.8422 1.1874 0.2273 4940 38 140.66 4.03 567 175.00 285.44 76.85 0.8390 1.1920 0.2319 4950 38 140.69 4.03 567 175.00 285.24 76.8 0.8396 1.1911 0.2310 4960 38 140.68 4.03 567 175.00 285.74 76.8 0.8376 1.1940 0.2339 4970 38 140.65 4.03 567 175.00 286.04 76.85 0.8366 1.1954 0.2353 4980 38 140.71 4.03 567 175.00 284.54 76.75 0.8422 1.1874 0.2273 4990 38 140.68 4.03 567 175.00 286.34 76.75 0.8350 1.1977 0.2376 5000 38 140.68 4.03 567 175.00 287.44 76.8 0.8308 1.2037 0.2436 5010 38 140.66 4.03 567 175.00 286.44 76.8 0.8348 1.1980 0.2379 5020 38 140.7 4.03 567 175.00 287.34 76.75 0,8310 1.2034 0.2433 5030 38 140.68 4.04 568 175.31 288.34 76.75 0.8285 1.2070 0.2469 5040 38 140.68 4.03 567 175.00 285.94 76.75 0.8366 1.1954 0.2353 5050 38 140.65 4.03 567 175.00 285.94 76.a 0.8368 1.1951 0.2350 5060 38 140.72 4.03 567 175.00 288.34 76.8 0.6273 1.2088 0.2487 5070 38 140.7 4.03 567 175.00 286.24 76.75 0.8354 1.1971 0.2370 5080 38 140.68 4.03 567 175.00 287.84 76.75 0.8290 1.2062 0.2462 5090 38 140.72 4.03 568 175.31 289.04 76.75 0.8256 1.2109 0.2509 5100 38 140.7 4.03 567 175.00 288.44 76.8 0.8269 1.2094 0.2493 5110 38 140.76 4.03 566 175.31 288.94 76.75 0.8262 1.2104 0.2503 5120 38 140.62 4.03 567 175.00 289.24 76.9 0.8241 1.2134 0.2533 5130 38 140.63 4.03 567 175.00 289.04 76.95 0.8251 1.2120 0.2519 5140. 38 140.62 4.04 568 175.31 289.74 76.9 0.8237 1.2141 0.2540 5150 38 140.73 4.03 568 175.31 290.54 76.85 0.8204 1.2189 0.2589 5160 38 140.64 4.03 567 175.00 290.24 76.85 0.8201 1.2194 0.2593 5170 38 140.65 4.03 567 175.00 289.74 76.8 0.8218 1.216a 0.2567 Appendix A. 7 186 5180 38 140.68 4.03 567 175.00 290.04 76.8 0.8207 1.2185 0.2X5 5190 38 140.69 4.03 567 175.00 290.84 76.8 0.8176 1.2231 0.2X0 5200 38 140.71 4.03 568 175.31 290.24 76.8 0.8214 1.2175 0.2574 5210 38 140.73 4.03 568 175.31 291.14 76.8 0.8179 1.2226 0.2626 5220 38 140.69 4.03 567 175.00 291.94 76.8 0.8134 1.2294 0.2X3 5230 38 140.69 4.03 567 175.00 291.34 76.85 0.8159 1.2257 0.2X6 5240 38 140.68 4.03 567 175.00 291.84 76.8 0.8136 1.2288 0.2X7 5250 38 140.69 4.03 567 175.00 292.94 76.8 0.8097 1.2351 0.2750 5280 38 140.68 4.03 567 175.00 292.24 76.8 0.8123 1.2311 0.2710 5270 38 140.68 4.03 567 175.00 293.44 76.85 0.8080 1.2377 0.2776 5280 38 140.72 4.03 568 175.31 294.04 76.8 0.8070 1.2X2 0.2791 5290 38 140.7 4.03 568 175.31 291.84 76.7 0.8149 1.2272 0.2671 5300 38 140.74 4.04 568 175.31 292.34 76.5 0.8122 1.2312 0.2711 5310 38 140.7 4.03 567 175.00 293.24 76.45 0.8072 1.2X8 0.2787 5320 38 140.68 4.03 567 175.00 293.34 76.45 0.8069 1.2X4 0.2793 5330 38 140.67 4.03 567 175.00 295.24 76.55 0.8002 1.2497 0.2X6 5340 38 140.78 4.04 568 175.31 293.84 76.75 0.8075 1.2X3 0.27X 5350 38 140.76 4.04 568 175.31 293.44 77 0.8100 1.2346 0.2746 5360 38 140.68 4.03 567 175.00 294.64 77.1 0.8044 1.2431 0.2X0 5370 38 140.68 4.03 567 175.00 293.84 77.2 0.8078 1.2X0 0.2779 5380 38 140.68 4.03 567 175.00 295.14 77.2 0.8030 1.2454 0.2853 5390 38 140.7 4.03 567 175.00 295.54 77.25 0.8017 1.2474 0.2873 5400 38 140.69 4.03 567 175.00 295.84 77.3 0.8008 1.2488 0.2X7 5410 38 140.65 4.03 567 175.00 295.14 773 0.8033 1.2448 0.2847 5420 38 140.65 4.03 567 175.00 297.74 77.95 0.7962 1.2X0 0.2X9 5430 38 140.68 4.03 567 175.00 298.24 79.05 0.7984 1.2525 0.2925 5440 39 140.66 4.03 567 175.00 298.64 80.15 0.S009 1.2485 0.2X5 5450 39 140.65 4.03 567 175.00 298.14 81 0.8059 1.2408 0.2X7 5460 39 140.61 4.03 566 174.69 299.84 81.7 0.8X8 1.2487 0.2X7 5470 36 140.68 4.03 567 175.00 299.84 82.3 0.8044 1.2431 0 2830 5480 30 140.59 4.03 566 174.69 299.64 82.8 0.8X6 1.2413 0.2812 5490 27 140.64 4.03 566 174.69 301.54 83.1 0.7X7 1.2X5 0.2904 5500 23 140.64 4.03 566 174.69 302.54 83.2 0.7X4 1.2X6 0.2X5 Run SSB18 Time.min Pres, psi Volt Current Power.W q, kw/m2 Ts.avg Tb.avg U,kW/K.m2 1/U, m2.K/kW Rf, m2.K/kW 0 3a 197.95 5.61 1111 342.90 279.64 99.X 1.8X8 0.5267 0.0X0 10 38 197.72 5.6 1108 341.98 280.05 99.25 1.8915 0.5287 0.0020 20 38 197.43 5.6 11X 341.05 283.56 99.3 1.8X9 0.5403 0.0136 30 38 197.14 5.59 1101 339.81 286.07 99.5 1.8214 0.5490 0.0224 40 38 196.88 5.58 10X 339.20 289.17 99.7 1.7X2 0.5X6 0.0319 50 38 196.77 5.58 1097 338.58 288.48 99.9 1.7X4 0.5570 0.0X3 60 38 196.58 5.57 1095 337.96 291.08 100 1.7X7 0.5X4 0.0X7 70 38 196.47 5.57 10X 337.35 289.89 100.1 1.7775 0.5626 0.0X9 80 38 196.27 5.56 1091 336.73 291.49 100.3 1.7612 0.5678 0.0411 90 38 196.22 5.56 10X 336.42 293.50 100.5 1.7431 0.5737 0.0470 100 38 196.19 5.56 10X 336.42 297.70 100.5 1.7X0 0.5862 0 0595 110 38 196.07 5.55 10X 336.11 298.20 100.5 1.7X1 0.5X2 0.0615 120 38 195.99 5.55 10X 335.80 295.70 100.5 1.7203 0.5813 0.0546 130 38 195.94 5.55 1087 335.49 298.70 100.6 1.6X5 0.5X5 0.0X8 140 38 195.84 5.55 . 1086 .335.19 295.81 100.6 1.7171 0.5824 0.0X7 150 38 195.81 5.55 1086 335.19 292.51 100.65 1.7471 0.5724 0.0457 160 38 195.72 5.55 10X 334.88 296.91 100.8 1.7076 0.5X6 0.0X0 170 38 195.64 5.54 1085 334.88 298.71 100.9 1.6929 0.5X7 0.0640 180 38 195.63 5.54 1084 334.57 299.91 100.9 1.6811 0.5948 0.0X2 190 38 195.48 5.54 10X 334.26 299.91 101.05 1.6X8 0.5949 0.0X3 200 38 195.39 5.54 1082 333.95 302.92 101.1 1.6547 0.6043 0.0777 210 38 195.37 5.54 1082 333.95 302.82 101.1 1.6X5 0.6040 0.0774 220 38 195.42 5.54 1082 333.95 297.22 101.15 1.7X2 0.5871 0.0X5 230 38 195.39 5.54 1082 333.95 297.52 101.2 1.7011 0.5879 0.0612 240 38 195.36 5.54 1081 333.64 298.02 101.25 1.6X6 0.5X8 0.0X1 250 38 195.24 5.53 10X 333.33 298.92 101.3 1.6X7 0.5929 0.0X2 260 X 195.18 5.53 1080 333.33 298.82 101.4 1.6X4 0.5923 0.0X6 270 38 195.21 5.53 10X 333.33 304.62 101.35 1.6X2 0.6104 0.0X8 280 38 195.19 5.53 10X 333.33 303.72 101.35 1.6471 0.6071 0.0X5 290 38 195.09 5.53 1079 333.02 304.12 101.45 1.6431 0.6X6 0.0819 300 38 195.01 5.53 1078 332.72 303.43 101.45 1.6473 0.6071 0.0X4 310 38 194.52 5.51 1073 331.17 305.84 101.4 1.6199 0.6173 0.0X7 320 38 194.45 5.51 1072 330.86 305.64 101.45 1.6204 0.6172 0.0X5 330 36 194.3 5.51 1071 330.56 304.55 101.45 1.6276 0.6144 0.0877 340 38 194.41 5.51 1072 330.86 307.04 101.55 1.6101 0.6211 0.0944 350 38 194.48 5.51 1072 330.86 306.74 101.55 1.6125 O.6202 0.0X5 360 38 194.84 5.53 1076 332.10 309.43 101.65 1.5X3 0.6257 0.0X0 370 38 194.72 5.52 1075 331.79 306.54 101.85 1.6210 0.6169 0.0X3 380 X 194.71 5.52 1075 331.79 308.34 101.7 1.6X7 0.6228 0.0X1 390 38 194.53 5.52 1073 331.17 306.94 101.85 1.6148 0.6193 0.0926 400 38 194.46 5.52 1073 331.17 307.84 101.85 1.6077 0.6220 0.0X3 410 38 194.36 5.51 1072 330.86 306.24 101.9 1.6192 0.6176 0.0X9 Appendix A. 7 187 420 38 194.23 5.51 1070 330.25 308.25 101.95 1.6X8 0.6247 0.0X0 430 38 194.3 5.51 1071 330.56 309.05 101.65 1.5X4 0.6268 0.1X1 440 38 194.02 5.5 1067 329.32 310.66 101.95 1.5779 0.6X7 0.1071 450 38 194.17 5.51 1070 330.25 309.15 102.05 1.5946 0.6271 0.1X4 460 38 194.18 5.51 1070 330.25 311.15 102.85 1.5X5 0.6X7 0.1041 470 38 194 5.5 1068 329.63 31135 103.35 1.5X5 0.6307 0.1041 480 38 194.25 5.51 1071 330.56 310.35 103.45 1.5977 0.6259 0.0X2 490 38 194.36 5.52 1072 330.86 310.74 103.55 1.5X9 0.6262 0.0X6 500 38 194.44 5.52 1073 331.17 312.04 103.6 1.5888 0.6294 0.1027 510 38 194.12 5.5 1068 329.63 313.45 103.65 1.5711 0.6X5 0.1X6 520 38 194.18 5.5 1069 329.94 313.45 103.6 1.5723 0.6X0 0.1X4 530 38 194.28 5.51 1071 330.56 313.35 103.65 1.5764 0.6344 0.1077 540 38 194.21 5.51 1070 330.25 313.95 103.65 1.5704 0.6X6 0.1101 550 38 194.22 5.51 1071 330.56 313.75 103.65 1.5734 0.8X6 0.1X9 560 38 194.92 5.53 1078 332.72 314.73 103.8 1.5774 0.6340 0.1073 570 38 194.64 5.52 1075 331.79 313.94 103.75 1.5786 0.6X5 0.1X8 580 38 194.59 5.52 1075 331.79 314.24 103.85 1.5771 0.6341 0.1074 590 38 194.57 5.52 1074 331.48 315.94 103.85 1.5629 0.6X8 0.1132 600 38 194.52 5.52 1074 331.48 316.04 103.85 1.5622 0.6401 0.1135 610 38 194.52 5.52 1074 331.48 316.14 103.95 1.5476 0.6462 0.1195 620 38 194.41 5.52 1073 331.17 316.94 103.95 1.5549 0.6431 0.1165 630 38 194.49 5.52 1074 331.48 317.44 104.15 1.5542 0.6434 0.11X 640 38 194.49 5.52 1074 331.48 317.14 104.35 1.5576 0.6419 0.1153 650 38 194.37 5.52 1073 331.17 317.64 104.25 1.5520 0.6443 0.1177 660 38 194.36 5.52 1073 331.17 316.14 104.25 1.5629 0.6X8 0.1132 670 38 194.71 5.53 1076 332.10 315.43 104.35 1.5733 0.6X6 0.1X9 680 38 194.39 5.52 1073 331.17 317.04 104.25 1.5X3 0.6425 0.1159 690 38 194.4 5.52 1073 331.17 316.74 104.35 1.5X3 0.6413 0.1147 700 38 194.45 5.52 1074 331.48 316.74 104.35 1.5X7 0.6407 0.1141 710 38 194.29 5.52 1072 330.86 316.94 104.35 1.5X3 0.6425 0.1158 720 38 194.2 5.52 1072 330.86 317.74 104.25 1.5498 0.6453 0.1186 730 38 194.42 5.52 1074 331.48 318.04 104.3 1.5X9 0.6448 0.1181 740 38 194.02 5.51 1069 329.94 316.45 104.25 1.5548 0.6432 0.1165 750 38 194.38 5.52 1074 331.48 318.84 104.25 1.5447 0.6474 0.1207 760 38 194.14 5.5 1069 329.94 317.95 104.45 1.5454 0.6471 0.1204 770 38 194.2 5.52 1072 330.86 317.94 104.4 1.5494 0.6454 0.1187 780 38 194.36 5.51 1071 330.56 318.65 104.45 1.5432 0.6480 0.1213 790 38 194.29 5.52 1073 331.17 319.64 104.35 1.5X3 0.6X1 0.1234 800 38 194.11 5.52 1071 330.56 320.45 104.5 1.5X7 0.6X3 0.1266 810 38 193.81 5.5 1066 329.01 320.16 104.55 1.5260 0.6X3 0.1267 820 38 193.7 5.5 1066 329.01 320.96 104.6 1.5207 0.6576 0.1X9 830 38 194.18 5.52 1072 330.86 321.14 104.65 1.5283 0.6543 0.1277 840 38 194.23 5.52 1072 330.86 321.34 104.65 1.5269 0.6549 0.1283 • 850 38 194.68 5.54 1078 332.72 321.53 104.65 1.5341 0.6518 0.1252 860 38 194:22 5.52 1072 330.86 320.54 104.7 1.5329 0.6524 0.1257 870 38 194.38 5.52 1074 331.48 321.84 104.65 1.5277 0.6546 0.1279 880 38 194.24 5.52 1073 331.17 321.14 104.85 1.5311 0.6531 0.1264 890 38 194.22 5.52 1073 331.17 322.44 104.85 1.5220 0.6570 0.1X4 900 38 194.13 5.52 1071 330.56 323.65 104.9 1.5111 0.6618 0.1X1 910 38 194.22 5.52 1073 331.17 321.64 104.85 1.5276 0.6546 0.1280 920 38 194.32 5.53 1074 331.48 322.14 104.85 1.5255 0.6X5 0.1288 930 38 194.21 5.52 1073 331.17 321.34 104.95 1.5X4 0.6X4 0.1267 940 38 194.28 5.53 1074 331.48 322.14 105.05 1.5269 0.6549 0.1282 950 38 194.13 5.52 1072 330.86 323.54 105.1 1.5146 0.6X2 0.1X6 960 38 194.19 5.52 1073 331.17 321.94 105.15 1.5276 0.6546 0.1280 970 38 194.23 5.53 1073 331.17 323.84 105.1 1.5140 0.6X5 0.1X8 980 38 194.21 5.53 1073 331.17 322.94 105.15 1.5206 0.6576 0.1310 990 38 193.71 5.51 1067 329.32 323.46 105.35 1.5X9 0.6323 0.1X6 1000 38 194.11 5.52 1072 330.86 321.54 105.25 1.5297 0.6X7 0.1271 1010 38 194.16 5.53 1073 331.17 323.64 105.25 1.5164 0.6X4 0.1328 1020 38 194.13 5.52 1072 330.86 323.44 105.25 1.5164 0.6X5 0.1328 1030 38 194.1 5.52 1072 330.88 323.44 105.3 1.5167 0.6X3 0.1327 1040 38 194.13 5.53 1073 331.17 324.54 105.35 1.5109 0.6619 0.1X2 1050 38 194.36 5.53 1075 331.79 324.64 105.45 1.5137 0.6X8 0.1340 1060 38 194.72 5.54 1079 333.02 323.82