UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Patterns of sedimentation in Queen Charlotte Sound, British Columbia Luternauer, John Leland 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A1 L88.pdf [ 24.58MB ]
Metadata
JSON: 831-1.0053483.json
JSON-LD: 831-1.0053483-ld.json
RDF/XML (Pretty): 831-1.0053483-rdf.xml
RDF/JSON: 831-1.0053483-rdf.json
Turtle: 831-1.0053483-turtle.txt
N-Triples: 831-1.0053483-rdf-ntriples.txt
Original Record: 831-1.0053483-source.json
Full Text
831-1.0053483-fulltext.txt
Citation
831-1.0053483.ris

Full Text

PATTERNS OF SEDIMENTATION IN QUEEN CHARLOTTE SOUND, BRITISH COLUMBIA  by  JOHN LELAND LUTERNAUER  B . A . Colby C o l l e g e , U . S . A . , ]3Gk M.A. Duke U n i v e r s i t y , U . S . A . , 1966  A THESIS SUBMITTED  IN PARTIAL FULFILMENT OF  THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department o f Geology and I n s t i t u t e of Oceanography  We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the required standard  THE UNIVERSITY  OF BRITISH COLUMBIA  APRIL,  1972  In p r e s e n t i n g an the  advanced degree at Library  I further for  this thesis  shall  the  of  this thesis  written  University  of B r i t i s h  permission  s c h o l a r l y p u r p o s e s may his  f u l f i l m e n t of  make i t f r e e l y a v a i l a b l e  agree that  by  in partial  representatives.  be  for  Department  of  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, C a n a d a  Columbia  Columbia,  for reference  the  I t i s understood  permission.  requirements  shall  Head o f my  that  not  be  I agree and  extensive copying of  g r a n t e d by  f o r f i n a n c i a l gain  the  that  study.  this  thesis  Department  copying or  for  or  publication  allowed without  my  ABSTRACT  This study  i s concerned w i t h the geomorphology and sediment d i s p e r s a l  in Queen C h a r l o t t e Sound, a 20,000 s q . km. c o n t i n e n t a l s h e l f a r e a o f f B r i t i s h Columbia m a i n l a n d between Vancouver F i e l d work i n v o l v e d c o l l e c t i o n o f : c o r e s and c)  procedures  I s l a n d and Queen C h a r l o t t e a)  12 s e r i e s o f bottom p h o t o g r a p h s .  f i l e s obtained p r i o r  the  357 bottom s a m p l e s ,  Islands.  b) 5 g r a v i t y  Selected continuous seismic pro-  to i n i t i a t i o n of the s t u d y are a l s o i n c l u d e d .  i n c l u d e d a) a n a l y s i s of sediment t e x t u r e ,  Laboratory  b) d e t e r m i n a t i o n of heavy  m i n e r a l , c l a y g r o u p , o r g a n i c C, CaCO^, g l a u c o n i t e p e l l e t and i r o n - s t a i n e d sand content  in s a m p l e s , c) e x a m i n a t i o n of S o u n d - f l o o r bedforms and d) c r e a t i o n  of  a d e t a i l e d b a t h y m e t r i c map. Principal banks.  physiographic  f e a t u r e s on the s h e l f a r e broad troughs and  Troughs g e n e r a l l y e x t e n d from the m a i n l a n d t o the s h e l f edge  a p p r o x i m a t e l y 300 m e t r e s ) and appear t o have been a t  least partly  by g l a c i e r s which l e f t s e v e r a l c h a r a c t e r i s t i c d e p o s i t s upon t h e i r Net sediment a c c u m u l a t i o n i s o c c u r r i n g Banks appear t o be m a s s i v e d r i f t g r e a t as 130 metres below p r e s e n t i n c i s e d at  (at  excavated retreat.  i n the troughs m a i n l y below 160 m e t r e s .  d e p o s i t s which a r e b e i n g p l a n e d to depths as sea-level.  R i v e r e r o s i o n p r o b a b l y has  l e a s t one b a n k ' s margin at a time when s e a - l e v e l  stood  lower.  Mud d e r i v e d from g l a c i a l m e l t w a t e r and d i s c h a r g e d d u r i n g the summer from the m a i n l a n d i n t o the s o u t h e a s t e r n Sound p r o b a b l y  i s a) m o s t l y d e p o s i t e d  r e l a t i v e l y c l o s e i n s h o r e , b) the p r i n c i p a l sediment p r e s e n t l y c o n t r i b u t e d the Sound and c)  the c o a r s e s t sediment now c o n t r i b u t e d t o the Sound.  t a t i o n r a t e s on the o u t e r s h e l f a r e v e r y low p r o b a b l y because most not d e p o s i t e d surface water. tops by t i d a l  inshore  i s t r a n s p o r t e d beyond the s h e l f  F i n e sand i s swept both n o r t h e r l y currents.  to  Sedimensediment  i n the l e s s s a l i n e  and s o u t h e r l y a c r o s s bank  CONTENTS  INTRODUCTION GENERAL REGIONAL DESCRIPTION Phys i o g r a p h y Geology G l a c i a t ion C l i m a t o l o g y and Oceanography Sed iments PROCEDURES Field Laboratory Sediment T e x t u r e Sediment g r a i n s i z e Sand g r a i n s u r f a c e t e x t u r e G r a v e l roundness Sediment C o m p o s i t i o n Heavy m i n e r a l c o n t e n t G r a v e l rock type C l a y m i n e r a l group c o n t e n t Glauconite p e l l e t content I r o n - s t a i n e d sand c o n t e n t T o t a l carbon c o n t e n t S k e l e t a l CaC03 c o n t e n t Organic carbon c o n t e n t Core D e s c r i p t i o n Sediment  Colour  Bottom Photographs B a t h y m e t r i c Map Subbottom S t r u c t u r e RESULTS P h y s i o g r a p h i c F e a t u r e s of Queen C h a r l o t t e Sound P e t r o l o g y of G r a v e l s and M i n e r a l Content Heavy M i n e r a l and C l a y F r a c t i o n s Sediment D i s t r i b u t i o n Gravel Sand Mud Mud-sand r a t i o Standard d e v i a t i o n v a l u e s  of  i ii RESULTS  (Cont'd) Sediment D i s t r i b u t i o n  Page (Cont'd)  Skewness v a l u e s Kurtosis values C h a r a c t e r i s t i c s o r t i n g , skewness and mean s i z e : Summary A r e a l d i s t r i b u t i o n of sediment groups Organic  Carbon and CaC03 Content  61 65 65 65  of Sediments  Organic c a r b o n c o n t e n t CaCQ3 c o n t e n t  72 72  F a c t o r A n a l y s i s of Sediments (A)  77  Sediment C o l o u r D i s t r i b u t i o n  84  F a c t o r A n a l y s i s of Sediments (B)  85  Glauconite P e l l e t D i s t r i b u t i o n  88  Gravel  93  Roundness  SS  Sand G r a i n S u r f a c e T e x t u r e s Heavy M i n e r a l s A r e a l d i s t r i b u t i o n of t o t a l  heavy  minerals  104  R e l a t i o n s h i p of m a g n e t i t e c o n t e n t t o sample d e p t h , heavy m i n e r a l c o n t e n t and mean s i z e  104  C h a r a c t e r of Sound F l o o r as Observed i n Bottom Photographs  110  D e s c r i p t i o n of G r a v i t y  140  Cores  D e s c r i p t i o n of Continuous  Seismic P r o f i l e s  149  SUMMARY OF PHYSIOGRAPHIC AND SEDIMENT0L0GIC FEATURES OF QUEEN CHARLOTTE SOUND  156  DISCUSSION O r i g i n of P h y s i o g r a p h i c F e a t u r e s P r e s e n t Sediment D i s p e r s a l  160 I69  CONCLUSIONS  178  APPENDIX  180  REFERENCES  193  Iv LIST OF FIGURES TITLE  FIGURE  PAGE  I  Index Map  2  Physiographic  3  General Geology  4  Recent E p i c e n t r e s  10  •5  Average I n t e r v a l between Occurrences of P a r t i c u l a r Wind Speeds  15  Cotidal L i n e s , Ebb-Flood Tidal D i r e c t i o n s and Water Sample Stations  16  Spring Tide Resultant Current  17  3 Units  6 8  Surface  8  Net Water Movement  19  9  Salinity Distribution  19  10  Surface S a l i n i t y  20  11 a , b  N.E. P a c i f i c Sediment D i s t r i b u t i o n and Water C i r c u l a t i o n  22  12  Grab Sample L o c a t i o n s  26  13  Areal  39  14  Physiographic Sections C h a r l o t t e Sound  D e n s i t y of Soundings in Q.ueen  41  15  Bathymetry o f Queen C h a r l o t t e Sound  16  L o c a t i o n of B a t h y m e t r i c Section  Back Envelope  Cross 44  17  Bathymetric Cross-Section  45  18  X-Ray Di f f ractograms Heavy M i n e r a l F r a c t i o n  49  19  Surficial  Samples f o r C l a y A n a l y s e s  50  20  R e p r e s e n t a t i v e X-Ray D i f f r a c t o g r a m s for 2 S u r f i c i a l Sediments  51  FIGURE  TITLE  PAGE  21  Mean Phi Value D i s t r i b u t i o n  54  22  Mean Phi Value D i s t r i b u t i o n (computer p l o t )  55  23  Highest  P e r c e n t Gravel  56  24  Highest  P e r c e n t Sand  58  25  Highest  P e r c e n t Mud  59  26  P r i n c i p a l Sand Mode D i s t r i b u t i o n  27  %Mud/%Sand D i s t r i b u t i o n  62  28  S t a n d a r d D e v i a t i o n Value D i s t r i b u t i o n  63  29  Skewness Value D i s t r i b u t i o n  64  30  K u r t o s i s Value D i s t r i b u t i o n  66  31  Mean S i z e v s . S t a n d a r d D e v i a t i o n f o r Samples  67  32  33  S e l e c t e d Skewness V a l u e s Samples in F i g . 31 Sorting -  Skewness -  60  for 68  Mean S i z e  Group D i s t r i b u t i o n  70  34  Organic Carbon D i s t r i b u t i o n  73  35  Organic C Content v s . %Mud/%Sand  74  36  CaC03 D i s t r i b u t i o n  75  37  Sediment P o p u l a t i o n s Determined by F a c o t r A n a l y s i s  38.  80  C o r r e l a t i o n of Sample Depth and %Sand  86  39  Sample Depth v s . %Mud/%Sand  87  40  P e l l e t Glauconite D i s t r i b u t i o n  90  41  G l a u c o n i t i c Sample Mean S i z e v s . Sorting  42  P e r c e n t Heavy M i n e r a l s  91 105  TITLE  P e r c e n t M a g n e t i t e in Heavy M i n e r a l F r a c t i o n v s . Sample Mean S i z e , Depth and % H.M. F r a c t i o n i n Analyzed Size Fraction L o c a t i o n s of Camera S t a t i o n s L o c a t i o n s of G r a v i t y Core  Cores  Description  Mg++ S a t . and E t h y l e n e G l y c o l S l i d e X-Ray D i f f r a c t o g r a m s f o r S e l e c t e d 2 Core Sediments F j o r d s and F j o r d V a l l e y s B r i t i s h Columbia Shelf Area o f f  Norway  in  V I I  LIST OF PLATES  PLATE  TITLE  PAGE  I  V i s u a l Comparison of Gravel Rock Types  II  Sediment Mount Distribution)  III  a)  (Sediment  Colour 84  S e m i - e n c l o s e d and Free "GTauconite Pel l e t s  b)  Faecal  c)  Examples of Shapes of Test-Free Glauconite Pel l e t s  Comparison o f Gravel  V  M i c r o g r a p h s of Q u a r t z i n Sample #46  Grains  Micrographs of Qiiartz in Sample- #282  Grains  VII  Roundness  100  M i c r o g r a p h s of Q.uartz G r a i n s 102  I r o n - s t a i n e d and N o n - s t a i n e d 108  Sands IX-XX  95 98  in #473  VIII  89  Pellets  IV  VI  48  Photographs o f Sound F l o o r  117-139  IX S t a t i o n # 4 2 9  117  X S t a t i o n # 435  119  XI S t a t i o n # 437  121  XI I  S t a t i o n # 430  123  XIII  S t a t i o n # 267  125  XIV  S t a t ion # 288  127  XV  S t a t i o n # 3.1 1  129  XVI  S t a t i o n # 392  131  XVI I  S t a t i o n # 424  133  TITLE  PLATE  IX-XX Cont'd  XVI I I S t a t i o n # 4 2 7 XIX S t a t i o n # 422 XIX S t a t i o n # 422 XX  Station #  364  XXI  Photographs of Sections of S e l e c t e d G r a v i t y Cores  XXI I  X-Ray P h o t o g r a p h s o f Core S e c t i o n s  XXI I IXXVI I  Interpretations Prof i l e s  of Seismic  XXIII  Profile  A-A'  XXIV  Profile  B-B'  XXV  Prof il e  C-C  XXVI  Profile  D-D  XXVI I P r o f i l e s  Selected  1  E-E  1  and  F-F  1  ix  LIST OF TABLES  TABLE I  II III  IV  V  VI  VII  TITLE  PAGE  Summary: Characteristic S o r t i n g , Skewness and Mean 6 S i z e C h a r a c t e r i s t i c s of Sediment Groups  9  Varimax F a c t o r Score M a t r i x 7  7  Range and Mean Degree of D e s c r i p t i o n of Sediment P o p u l a t i o n by F a c t o r  9  7  G l a u c o n i t e P e l l e t and CaC03 Content in . 3 5 4 - .500 mm F r a c t i o n of Samples R i c h e s t in Glauconite  92  Heavy M i n e r a l C o n c e n t r a t i o n of Samples R i c h e s t in Heavy Minerals  104  I r o n - s t a i n e d G r a i n Content V a r i o u s S i z e F r a c t i o n s of S e l e c t e d Samples  109  in  C h a r a c t e r of Sound F l o o r as Observed in Bottom Photographs  112  X  ACKNOWLEDGEMENTS  The a u t h o r  is s i n c e r e l y g r a t e f u l  i n the s e l e c t i o n o f the t h e s i s a v a i l a b l e f o r the d e f r a y a l r e a d i n g o f the m a n u s c r i p t .  topic,  t o Dr.  Dr.  of t h i s p r o j e c t ' s  expenses and f o r f i n a l  D r s . W.C. B a r n e s , R.V.  Best, R.L.  suggestions  for  Dr.  B.E.B.  Cameron of the G e o l o g i c a l  R o d r i g u e s , a s t u d e n t a t the U n i v .  critical  Chase, W.R.  improvement  S i n c l a i r and Mr. J . W i l s o n a s s i s t e d the w r i t e r  a s p e c t s of t h i s s t u d y . and Mr. C y r i l  Murray f o r a s s i s t a n c e  f o r e n s u r i n g t h a t funds were always  Danner and P. LeBlond o f f e r e d many h e l p f u l the t e x t .  J.W.  in the computer Survey of Canada  B r i t i s h Columbia Geology  i d e n t i f i e d f o r a m i n i f e r a 1 assemblages and suggested t h e i r e n v i r o n m e n t a l Mr. E . P .  Endeavour and Laymore e x h i b i t e d  in t h e i r h a n d l i n g of s h i p and s a m p l i n g o p e r a t i o n s .  and s t a f f v e r y c o m p e t e n t l y and g o o d - n a t u r e d l y Fellow students a v a i l a b l e for  Lionel  Carter,  affinities.  Chris  Pharo and Mike P u l l e n were  Fund of the U n i v e r s i t y of B r i t i s h C o l u m b i a , (b) National  Montgomery  preparations. frequently geology.  Mewis and Ms. Nancy W a l l a c e .  F i e l d and l a b o r a t o r y work was f i n a n c e d by the (a)  Shell  Mr. E.  a s s i s t e d in c r u i s e  The  considerable  s t i m u l a t i n g d i s c u s s i o n s of v a r i o u s a s p e c t s of marine  Typing was done by Ms. Barbara  and (c)  Dept.,  F l e i s c h e r of the Defense Research Board a r r a n g e d s h i p o p e r a t i o n s .  o f f i c e r s and crew of the C . N . A . V . expertise  of  President's  Geological  Research  Survey o f Canada,  Research C o u n c i l .  Canada L t d . k i nd 1 y o f f e r e d  t h e i r bathymetric f i e l d sheets f o r  use  i n the c o n s t r u c t i o n of a d e t a i l e d b a t h y m e t r i c map. A s p e c i a l word of a p p r e c i a t i o n wonderful  i s due M a r g i t h f o r j u s t  s e l f d u r i n g the c o u r s e of t h i s  project.  r e m a i n i n g her  INTRODUCTION  The c h a r a c t e r and d i s t r i b u t i o n of sediments on p r e s e n t  continental  s h e l v e s have been i n f l u e n c e d p r o f o u n d l y by phenomena a s s o c i a t e d w i t h P l e i s t o c e n e glaciation  (Emery,  world-wide  s e a - l e v e l d r o p p e d , at times p o s s i b l y as much as 200 metres below  present  levels  processes  In response t o advances of c o n t i n e n t a l  1968).  (Guilcher,  (Shepard,  s h e l f areas were,  1969), e x p o s i n g  1963).  S u t h e r l a n d Brown, Schlee, final  1969).  large s h e l f areas to s u b a e r i a l  During periods of  low s e a - l e v e l many h i g h - l a t ? t u d e  i n a d d i t i o n , p r o f o u n d l y a f f e c t e d by g l a c i a l  and d e p o s i t i o n ( H o l t e d a h l , 1968;  1958,  Emery et c H , 1965;  1970;  ice sheets  Knott and H o s k i n s ,  1968;  loading,  Veenstra,  Houbolt,  t r a n s g r e s s i o n a c r o s s the s h e l f and drowned or f u r t h e r  1965;  P r a t t and  1968;  In response t o the l a s t major g l a c i a l r e s t r e a t  scouring  the sea made i t s  submerged what  Shepard (1932) has r e f e r r e d t o as the " p a t c h y arrangement of s e d i m e n t " formed by p r e v i o u s  n o n - m a r i n e or more s h a l l o w marine p r o c e s s e s .  As a consequence of the above r e c e n t e v e n t s on the s h e l f , sediments a r e not or p r e s e n t  in e q u i 1 i b r i u r n w i t h the p r e s e n t  sediment d i s c h a r g e  (Emery,  1952,  1968;  some s h e l f  in s i t u h y d r a u l i c Swift,  1970).  regime Investiga-  t i o n of p r e s e n t p r o c e s s e s of s h e l f s e d i m e n t a t i o n which may b e s t a s s i s t one to r e c o g n i z e and i n t e r p r e t therefore,  s h e l f environments  in the g e o l o g i c  c o n c e n t r a t e on the d e t e c t i o n and e x a m i n a t i o n of those sediments  w h i c h appear t o be r e s p o n d i n g t o p r e s e n t c o n d i t i o n s o n - t h e D e t a i l e d s e d i m e n t o l o g i c s t u d i e s on the c o n t i n e n t a l States reveal  shelf. s h e l v e s of the  United  the presence of a sediment band a d j a c e n t t o the shore which appears  t o be i n c l o s e adjustment w i t h r i v e r sediment d i s c h a r g e 1970).  record must,  local  (Curray,  longshore c u r r e n t s , wave motions and/or  I960;  P i l k e y and F r a n k e n b u r g ,  1964;  Less i s known of the degree t o which the sediments beyond t h i s  are responding to l o c a l h y d r a u l i c c o n d i t i o n s .  Swift, zone  The p r e s e n t w r i t e r and o t h e r s  2.  (Giles  and P i l k e y ,  presented evidence s o r t e d , sediment the o u t e r  1965;  Pierce,  to suggest  (Shepard,  that  1932;  However,  it  by P l e i s t o c e n e g l a c i a t i o n ,  the g e n e r a l l y  Gorsline,  is j u s t  i.e.  which appear to o f f e r  and P i l k e y ,  1967) have  c o a r s e , but o f t e n  1963;  Emery,  (Swift,  1965) d e p o s i t e d on  study  of sediment d i s p e r s a l  (Holland,  those s h e l v e s m a n t l e d w i t h u n s o r t e d  in response t o p r e s e n t  in Queen C h a r l o t t e  s h e l f area o f f  1964)(Fig.  open s h e l f  directly glacial  the exam-  hydraulic  Sound, a 2 0 , 0 0 0 square  investigation  been d i s c u s s e d  1968;  several  kilometre  in the  literature  have been  limits (Pratt  K i n g , 1970)  1965;  King,  1967, 1970;  Houbolt  topography  1968;  Pratt  O r i g i n of s h e l f  terraces  M a l l o y and H a r b i s o n , 1968;  Origin  (e)  Sand g r a i n s u r f a c e  1968;  1966;  Holtedahl,  (d)  of s h e l f b r e a k s  processes  and banks ( V e e n s t r a , King,  ( C u r r a y , 1969)  textures  1969;  James and  1970)  imposed by g 1 a c i a 1 - m a r i n e  (Kr i ns l e y e_t aj_, 1964;  Silberman,  1967;  1965;  K r i n s l e y and Donahue,  M a r g o l i s and K e n n e t t ,  1970)  shelf  considered  and S c h l e e , 1 9 6 9 ;  and S c h l e e , 1969)  Stanley,  patterns  a s p e c t s of c o n t i n e n t a l  R e l a t i o n s h i p between sediment type and submarine (Veenstra,  and  Sound:  Pleistocene g l a c i a l Anderson,  of the geomorphology  the h e a v i l y g l a c i a t e d B r i t i s h Columbia c o a s t  in r e l a t i o n t o Queen C h a r l o t t e  (c)  is  1).  study which have r e c e n t l y  (b)  those s h e l f a r e a s a f f e c t e d more  i s an i n v e s t i g a t i o n  In the c o u r s e of t h i s  (a)  was lower  1969).  The p r e s e n t  continental  well  the most f a v o r a b l e c i r c u m s t a n c e s f o r  i n a t i o n of sediment d i s p e r s a l regimes  Luternauer  p a r t of n o n - g l a c i a t e d s h e l v e s at a time when s e a - l e v e l  b e i n g reworked.  debris,  1966;  H i s t o r y and c h a r a c t e r or  i r o n - s t a i n e d quartz  1965,  1968;  James and S t a n l e y ,  sands  (Emery,  Judd e t aj_, 1970)  C l a y m i n e r a l groups a s s o c i a t e d w i t h the g l a c i a l marine environment  (Kunze et_ aj_, 1 9 6 9 ;  and B u r r e l 1 ,  1970),  1970;  O'Brien  1970)  Environmental pellets  Carrol,  controls  (Porrenga,  on the d i s t r i b u t i o n of  1967;  1966;  1 9 6 8 ) and ( 3 ) CaC03 c o n t e n t  Frakes,  1969;  White,  (Ni ino ejt a]_, 1 9 6 9 ; (Chave,  D i s c r i m i n a t i o n of sediment p o p u l a t i o n s by f a c t o r (Klovan,  glauconite  Murray and M a c k i n t o s h , 1 9 6 8 ;  ( 2 ) o r g a n i c carbon c o n t e n t  Gershanovich,  (1)  1 9 6 7 )  analysis  McManus e t a], 1969)  5. GENERAL REGIONAL DESCRIPTION  PHYSIOGRAPHY T h i s d i s c u s s i o n i s drawn from H o l l a n d (1964) u n l e s s o t h e r w i s e  stated.  Queen C h a r l o t t e Sound l i e s w i t h i n the C o a s t a l Trough of the Western System of the Canadian C o r d i l l e r a . b a s i n and a d j a c e n t  The C o a s t a l Trough i n c l u d e s the submerged  lowland between the Coast Mountains Area of the m a i n l a n d and  the Outer Mountain A r e a of Queen C h a r l o t t e  Is.  and Vancouver  I.  Queen  Charlotte  Sound is a major p a r t o f the Hecate D e p r e s s i o n segment of the C o a s t a l  Trough.  S e v e r a l s u b d i v i s i o n s of the D e p r e s s i o n a r e e v i d e n t a d j a c e n t t o Queen  Charlotte  Sound ( F i g .  2):  Nahwitti  Lowland extends a c r o s s n o r t h e r n Vancouver  a l m o s t everywhere below 610 metres a l t i t u d e .  Coast M o u n t a i n s .  of T e r t i a r y e r o s i o n s u r f a c e s . a l t i t u d e and c o n s t i t u t e s  Milbanke S t r a n d f l a t  sea-level  It  l i n e a m e n t s and poor  is a "mature e r o s i o n  drainage.  surface  B a c k c u t t i n g e r o s i o n by c o a s t a l p i e d m o n t - g l a c i e r s ,  instrumental  I960, 1970).  i n the f o r m a t i o n o f s i m i l a r f e a t u r e s  in  i s a rocky  f l u c t u a t i o n s c o u p l e d w i t h wave a b r a s i o n and f r o s t w e a t h e r i n g have  been c o n s i d e r e d (Holtedahl,  contour)  is m o s t l y below 33 metres  the seaward p o r t i o n of Hecate Lowland.  (197') has suggested t h i s s t r a n d f l a t  m o d i f i e d by wave a c t i o n " .  (2000 f o o t  H o l l a n d c o n s i d e r s both lowlands t o be remnants  p l a t f o r m w i t h w e l l marked p r e d o m i n a n t l y e a s t e r l y Culbert  and i s  Hecate Lowland extends from the  o u t e r c o a s t o f the m a i n l a n d i s l a n d s t o the 610 metres l e v e l on the a d j a c e n t  I.  in Norway  6-  7. GEOLOGY The d i s c u s s i o n of the g e o l o g i c a l  s e t t i n g of Queen C h a r l o t t e  which f o l l o w s  i s drawn m a i n l y from s t u d i e s by S u t h e r l a n d Brown  f o r Vancouver  I.  Baer  (1968),  and Queen C h a r l o t t e  Is.;  and Roddick and H u t c h i s o n  Stacey and Stephens  Sound  ( 1 9 6 6 ,  1 9 6 8 )  R o d d i c k , Baer and H u t c h i s o n  ( 1 9 6 8 )  f o r the Coast M o u n t a i n s ;  who d i s c u s s e d g r a v i t y p a t t e r n s of the west  ( 1 9 6 9 )  ( 1 9 6 6 ) ,  and coast  of Canada. Principal  g e o l o g i c f e a t u r e s common t o a r e a s a d j a c e n t t o Queen  Charlotte  Sound a r e shown in F i g . 3. S u t h e r l a n d Brown the  Insular Belt  has summarized the broad g e o l o g i c a l a s p e c t s  ( 1 9 6 6 )  (Queen C h a r l o t t e  Is.  and Vancouver  of  Is.):  The a r e a seaward from the p r e s e n t m a i n l a n d c o a s t of B r i t i s h Columbia t o the c o n t i n e n t a l s l o p e forms the Insular T e c t o n i c Belt. It has been s u b j e c t to a u n i f o r m h i s t o r y o f d e p o s i t i o n , d e f o r m a t i o n , and p l u t o n i s m w i t h j u s t enough v a r i e t y t o a r o u s e interest. The known h i s t o r y can be c h a r a c t e r i z e d as an a l t e r n a t i o n of p e r i o d s of g r e a t e f f u s i v e v o l c a n i s m w i t h e x t e n s i v e p e r i o d s of v a r i e d s e d i m e n t a t i o n . C r u s t a l f r a c t u r e s appear t o have been the dominant mechanism c o n t r o l l i n g v o l c a n i s m , s e d i m e n t a t i o n , i n t r u s i o n and most l i k e l y f o l d i n g . U n t i l the Mid J u r a s s i c , e v e n t s from n o r t h to south were n e a r l y i d e n t i c a l and a l l d e p o s i t i o n was marine and s e e m i n g l y f a r from any shore o t h e r than t h a t of v o l c a n i c i s l a n d s . T h e r e a f t e r e v e n t s though g r o s s l y s i m i l a r were d i f f e r e n t in d e t a i l and t i m i n g , and b a s i n s and f a c i e s were more l o c a l . Plutonism, though p r o b a b l y c o n t i n u o u s , was c o n c e n t r a t e d in the upper c r u s t in s e v e r a l main p u l s e s in Mid and Late J u r a s s i c , E a r l y Cretaceous and E a r l y T e r t i a r y . Southern Queen C h a r l o t t e Triassic  Is.  a r e dominated by the Permian (?)  Karmutsen Formation ( p r i m a r i l y m a s s i v e b a s a l t f l o w s but  -  Upper  including  p i l l o w l a v a s and b r e c c i a s and t h i c k b e l t s of c h l o r i t e s c h i s t ) and s y n t e c t o n i c plutons  (hornblende  d i o r i t e and q u a r t z  The n o r t h w e s t - t r e n d i n g s o u t h e r n Queen C h a r l o t t e a r e a t h r o u g h which  Is.  diorite).  f a u l t zone running a l o n g the m i d - s e c t i o n of has been the major g e o l o g i c a l  it s t r i k e s .  influence  Movement a l o n g t h i s f a u l t may have  as f a r back as Late J u r a s s i c and p r o b a b l y s t i l l  is taking p l a c e .  the  in the  occurred The b l o c k  l y i n g t o the e a s t of t h i s s t e e p f a u l t may have been d i s p l a c e d downwards  130°  PRICE I.  B.C.  MAINLAND  CRETACEOUS  and OLDER  Rock type d i s t r i b u t i o n ( a f t e r Stacey and Stephens, 1969)  Metavolcanic rocks Metasedimentary rocks UPPER PALEOZOIC  and/or  OLDER  \ \  Gneiss and migmatite PLUTONIC R O C K S Granite, syenite and quartz monzonite  Assumed f a u l t s ( a f t e r Sutherland Brown, 1966, 1968 and Baer, 1967) Assumed d i r e c t i o n of P l e i s t o c e n e i c e - s h e e t movement ( a f t e r Holland, 1964)  Granodiorite and quartz diorite Diorite and gabbro  QUEEN  CHARLOTTE  SEDIMENTARY  ISLANDS  and VOLCANIC  ROCKS  Early Tertiary (Masset Fm.) Mainly subaerial basalt and rhyolite  1-51*  GENERAL ADJACENT  TO QUEEN  GEOLOGY CHARLOTTE  SD.  PLUTONIC  VANCOUVER SEDIMENTARY  ' ' • f t * '  ISLAND and VOLCANIC  ROCKS  Upper Cretaceous (Nanaimo Gp.) Sandstones, conglomerate and coal alternating with marine shale  Late Jurassic - Early Cretaceous (Longarm Fm.) Calcareous siltstone and graywacke  Upper Jurassic - Lower Cretaceous Marine sandstone, conglomerate and shale  Late Triassic - Early Jurassic (Kunga Fm.) Limestone and arqillite  Upper Triassic - Lower Jurassic (Bonanza Fm.) Mainly porphyritic andesite agglomerate and tuff  Middle Triassic (Karmutsen Fm.) Marine sodic basalts  Upper Triassic (Quatsino Fm.) Limestone  Permo - Pennsylvanian (Sicker Gp.) Basaltic rocks, qraywacke and chert overlain by limestone and argillite  Permian ( ? ) - U p p e r Triassic (Karmutsen Fm.) Marine sodic basalts  ROCKS  PLUTONIC  ROCKS Tertiary Granitic rocks.  Post-tectonic rocks + + Syn-tectonic rocks  ;  +  *  Middle Jurassic Undifferentiated intrusive rocks  9. 600-3300 metres and southwards 20-100 km. Chase ( o r a l comm.,  197') s u g g e s t s  t h i s f a u l t may be a landward p a r t of the Queen C h a r l o t t e F a u l t s y s t e m . S a n d s p i t F a u l t appears t o l i e a l o n g the l i n e of r e c e n t e a r t h q u a k e e p i c e n t r e s in c e n t r a l  Hecate D e p r e s s i o n ( M i l n e ,  N o r t h e r n Vancouver (Fig.  Island  i s u n d e r l a i n p r i n c i p a l l y by the Karmutsen  3) and Upper T r i a s s i c - L o w e r  mainly p o r p h y r i t i c  196l) ( F i g . 4).  J u r a s s i c Bonanza F o r m a t i o n s .  The  latter  a n d e s i t e , a g g l o m e r a t e and t u f f .  G r a v i t y data suggest an e a s t - w e s t f a u l t system extends a c r o s s Vancouver  I s l a n d and may be r e l a t e d t o the e a s t - w e s t  w i t h the i n l e t s on the a d j a c e n t m a i n l a n d ( F i g . the  Insular Tectonic  Belt  northern  f r a c t u r e system c o i n c i d e n t  3 ) . G r a v i t y data a l s o  d o m i n a n t l y by p l u t o n s c o n s i s t i n g , several  in o r d e r of abundance, of q u a r t z  l a r g e e p i d o t e and ch1 o r i t e - r i c h b o d i e s ) ,  q u a r t z monzonite and minor g a b b r o ,  granodiorite strongly  s y e n i t e and g r a n i t e .  I s o l a t e d patches of m e t a s e d i m e n t a r y rock and g n e i s s - m i g m a t i t e o c c u r c i a t i o n w i t h the p l u t o n s .  underlain  diorite  ( w i t h e p i d o t e and sphene as most c o n s p i c u o u s a c c e s s o r y m i n e r a l s ) , foliated diorite,  suggest  i s not c o n t i n u o u s through Queen C h a r l o t t e Sound.  M a i n l a n d B r i t i s h Columbia a d j a c e n t t o Queen C h a r l o t t e Sound i s  (containing  is  in a s s o -  M e t a v o l c a n i c rocks a r e the dominant r o c k - t y p e  e a s t of the p l u t o n i c b e l t and form the h i g h e s t peaks of the l o c a l  north-  Coast  Mountains. The dominant s t r u c t u r a l  trend  is northwesterly.  Less o b v i o u s  north-  e a s t e r l y and e a s t e r l y t r e n d s appear t o r e p r e s e n t an e a r l i e r d e f o r m a t i o n than t h a t which produced the n o r t h w e s t e r l y p a r a l l e l w i t h the n o r t h w e s t e r l y d i s p l a c e m e n t are s c a r c e . channel n o r t h o f P r i c e of v o l c a n o e s  trend.  Small shear zones commonly  t r e n d a r e a b u n d a n t , but f a u l t s w i t h proven  A major d i s l o c a t i o n zone appears t o e x i s t  Island ( F i g .  i n the  3 ) . Souther (1966) d e s c r i b e d a s e r i e s  in the a r e a and suggested  they:  1 0 .  Prince Rupert  Q  SANDSPIT  uh  159 )790 i<v)ooe Horbour  te$§§  .. i 1297  Cope  1  3  2  9  1796  St. J o m e s  795  0632  G 1385 13_3.  O1082 Q978 n  782  I02'y j  REGENT  ,<"~N ;>J8  977  O  EPICENTRES (numbers c e n t r e s  by are  which  beside are  centres  recorded  e p i -  those  at  O  /—\i35  Wiss  — Q  ] 2 6  3  °  „  (_}io9  the Dominion Obs After  of  Milne,  Figure 4  Canada) 1965;  Sutherland  Brown,  1968  11. . . . l i e a l o n g a l i n e a r b e l t of small v o l c a n o e s t h a t runs in a n o r t h w e s t e r l y d i r e c t i o n f o r n e a r l y 200 m i l e s . . . The b e l t i s p a r a l l e l e d a t many p l a c e s by p h y s i o g r a p h i c l i n e a m e n t s , a n c i e n t dyke swarms, and shear z o n e s . It i s b e l i e v e d t o be a deep c r u s t a l s t r u c t u r e w i t h a long h i s t o r y of a c t i v i t y in which the e r u p t i o n of b a s a l t i c l a v a s was the most r e c e n t e v e n t . Peacock (1935) c o n s i d e r e d t h a t the l o c a t i o n of f j o r d s coast  i s c o n t r o l l e d by "axes of f o l d s ,  To summarize b r i e f l y :  the  the s t r i k e s and c o n t a c t s of g e o l o g i c a l  f o r m a t i o n s , and the d i r e c t i o n s of j o i n t s , and shear zones of the s u r r o u n d i n g  that d i s s e c t  goes, f a u l t s , d i k e s , mineral  veins  country".  Queen C h a r l o t t e Sound appears t o be p a r t of a  l a r g e f a u l t - b o u n d e d b a s i n f l a n k e d by a t e r r a i n c o m p r i s i n g p r e d o m i n a n t l y plutonic  rocks a n d , s e c o n d a r i l y ,  appear to b e , epidote,  volcanics.  M i n e r a l s common t o the  in o r d e r of abundance, f e l d s p a r , q u a r t z ,  chlorite,  sphene, g a r n e t and  pyroxene.  hornblende,  rocks biotite,  GLACIATI ON Land s u r r o u n d i n g Queen C h a r l o t t e Sound was e x t e n s i v e l y d u r i n g the P l e i s t o c e n e .  S u t h e r l a n d Brown  glaciated  (1968) has summarized what  known of g l a c i a t i o n in the Queen C h a r l o t t e  Islands.  l o c a l l y generated g l a c i e r s , probably Fraser  He r e p o r t e d  (Wisconsin)  in a g e ,  the i s l a n d s and f l o w e d i n t o e q u i l i b r i u m c o n t a c t w i t h the  that  covered  Cordilleran  i c e - s h e e t somewhere on the w e s t e r n p a r t of Hecate D e p r e s s i o n . r e s u l t of t h i s e q u i l i b r i u m , i c e from the e a s t s i d e of the  As a  Islands  flowed  s o u t h i n t o Queen C h a r l o t t e Sound o n l y from the southernmost q u a r t e r the C h a r l o t t e s . the c o n t i n e n t a l  The r e s t f l o w e d n o r t h ,  the d i r e c t i o n  is  of  i n which most of  i c e s h e e t o p p o s i t e the C h a r l o t t e s appears t o have f l o w e d .  U-shaped v a l l e y s  are u b i q u i t o u s .  C i r q u e s a r e found at a l l  c l u d i n g s e a - l e v e l , but most of the c i r q u e s a t west c o a s t of the  Islands.  f a r above p r e s e n t s e a - l e v e l ;  lower  i n f a c t , marine f o s s i l s Is.  in-  l e v e l s are a l o n g the  G l a c i a l marine d e p o s i t s are not  found i n the n o r t h e r n Queen C h a r l o t t e  levels,  observed  in l i v i n g  position  p o i n t t o a former r e l a t i v e s e a -  l e v e l no more than 7-5 metres above p r e s e n t mean s e a - l e v e l . Holland  (1964) c o n c l u d e d from o r i e n t a t i o n s of g l a c i a l e r o s i o n a l  and d e p o s i t i o n a l f e a t u r e s t h a t n o r t h e r n Vancouver  I s l a n d was  overridden  by i c e t r a v e l l i n g from the m a i n l a n d southwestward and westward a c r o s s Queen C h a r l o t t e  Strait.  In the a r e a of the mainland a d j a c e n t t o Queen C h a r l o t t e Sound i c e reached a h e i g h t of a t  l e a s t 2300 metres  (Baer,  1967).  Much of the  d e p o s i t e d on the mountains has now washed i n t o the v a l l e y s which have alluvial  deposits  and  underfit  rivers  (Baer,  i m p l i e d t h a t the g r e a t depth of the f j o r d s  drift thick  Peacock (1935)  1967).  (the deepest b e i n g 765 m. - more  than t w i c e the depth of the s h e l f edge) cannot e n t i r e l y g l a c i a l e x c a v a t i o n and i n c o m p l e t e g l a c i a l rebound.  be a t t r i b u t e d  He c o n s i d e r e d  to  i t more  l i k e l y a r e s u l t of deep f l u v i a l e r o s i o n d u r i n g a T e r t i a r y u p l i f t . (1971) has s u g g e s t e d " b l o c k s u b s i d e n c e of the f j o r d the g r e a t depths of the f j o r d s .  Glacially  Culbert  zone" to help e x p l a i n  imposed d e p r e s s i o n of the  land  amounted t o 300 metres and was c o u p l e d w i t h a 165 metre r e l a t i v e drop of sea-level  ( g l a c i a 1-marine f e a t u r e s are observed at 160 metres e l e v a t i o n  S t e w a r t , kOO k i l o m e t r e s n o r t h of Queen C h a r l o t t e Sound, and at a t Campbell R i v e r ,  200 k i l o m e t r e s s o u t h e a s t of the Sound)  at  I65 metres  (Holland,  In s o u t h w e s t e r n B r i t i s h C o l u m b i a , where P l e i s t o c e n e i c e l i k e l y was  )S6k). nearly  as t h i c k as on areas a d j a c e n t t o Queen C h a r l o t t e Sound, e q u i l i b r i u m p r o b a b l y was r e - e s t a b l i s h e d as e a r l y as 8000 B . P . the l a r g e s t  i c e f i e l d s s t i l l extant  w a t e r s of r i v e r s of shoals  (Fig.  (Mathews e t aj_, 1970).  i n B r i t i s h Columbia l i e a t the h e a d -  and i n l e t s h a v i n g a common o u t l e t 2).  Some of  by the Sea O t t e r  Group  14. CLIMATOLOGY AND OCEANOGRAPHY Queen C h a r l o t t e Sound l i e s (Strahler,  1967)-  i n the warm temperate zone of  The a r e a has a p p r o x i m a t e mean d a i l y a i r  in January of 0 ° - 5 ° C and in J u l y of  13°-l6°C  (Thomas,  annual p r e c i p i t a t i o n a p p r o x i m a t e s 2 3 0 cm. and exceeds (Thomas,  1953;  Barber,  by two p r e s s u r e c e l l s  1958).  winter  temperatures  1953). local  Mean evaporation  Winds over the a r e a a r e m a i n l y  (Waldichuk,  a t 3 5 ° - 4 5 ° N and 1 5 0 ° W d u r i n g  1957)-  A high-pressure  cell  p a r t of  is  speeds were higher.  the y e a r .  S e v e r a l of  severity  1967 -  project  Watts and F a u l k n e r February  5>  1968 ( w h i l e  was b e i n g u n d e r t a k e n )  lower than average f o r  a r e shown in F i g .  (1968)  southeasterly by  reported  r e c o r d e d summer wind  the season whereas w i n t e r  T h i s graph s u g g e s t s  speeds were  respective  (see p l o t  wind).  by Barber  (1957b,  1958) and B e l l  (1963).  f o l l o w i n g d i s c u s s i o n i s drawn from t h e s e s o u r c e s u n l e s s o t h e r w i s e The o b s e r v e d c h a r a c t e r of  local  t i d e movements i s  s t u d i e s on a s c a l e model o f  movements over a t i d a l c y c l e  (Fig.  7).  The indicated.  i n d i c a t e d in F i g . 6 .  the Hecate r e g i o n have c r e a t e d  what appears t o him t o be a r e a s o n a b l e r e p r e s e n t a t i o n of  the major  of  water s t r u c t u r e and t i d a l movements w i t h i n the Sound have  been s t u d i e d p r i n c i p a l l y  current  durations  t h a t r e c e n t winds have been of a  s t a t i s t i c a l l y u n l i k e l y to recur f o r another 8 0 years  Currents,  that  p a r t of the s a m p l i n g f o r  the observed wind speeds and t h e i r  70 m i l e per h o u r , 6 hour d u r a t i o n  is  super-  A s t a t i s t i c a l e x a m i n a t i o n o f wind d i r e c t i o n s  the p e r i o d June  the p r e s e n t a u t h o r ' s  Bell's  As  ( 1 9 5 7 a ) s u g g e s t s s o u t h e a s t e r 1 i e s a r e dominant over the Sound d u r i n g  the g r e a t e r during  centered  influence  seded by an i n t e n s i f i e d A l e u t i a n l o w - p r e s s u r e c e l l g e n e r a t i n g  Barber  controlled  the summer g e n e r a t e s n o r t h w e s t e r 1 i e s .  approaches t h i s c e l l m i g r a t e s southward and i t s  winds over the Sound.  the g l o b e  l o c a l net  tidal  B e l l s u g g e s t e d t h a t b a s i n geometry  i n f l u e n c e g o v e r n i n g movement of  l o c a l t i d a l water masses because  15.  >  WIND  From AVERAGE  INTERVAL  BETWEEN  SPEED  - M.P. H.  Watts and F a u l k n e r , 1968  OCCURRENCES  Figure 5  OP  PARTICULAR  WIND  SPEEDS  \  cf  >  o 3  vC  ON  COTIDAL LINES! corange cophase local e b b - f l o o d tide  water sample stations  CD 131*  tr  C O V T O U S S  IN  M E T R E S  .'IPRCEIS',  °X.S  /  7  :  SPRING  T  T  TIDE  25 HOUR RESULTANT SURFACE CURRENT  ^I ct CO  >i  HEC A  IE  (0  H H  ON |  0  cm/sec 10 20 30 40 C O N T O U R S  IN  50 M E T R E S  —  —  :  —  \  ,4l' I  neap t i d e w i t h an a m p l i t u d e about h a i f  t h a t of a s p r i n g t i d e had s i m i l a r net  c u r r e n t movements t o t h a t of a s p r i n g Tidal  tide.  v e l o c i t i e s are very high  in the Sound.  Velocities  i n the  range  40-50 c m . / s e c . a r e common as deep as 100 metres ( J o i n t Committee on Oceanography,  1955b). C u r r e n t measurements have r e v e a l e d a p e r s i s t e n t  landward movement of  deeper h a l o c l i n e water from the G u l f of A l a s k a d u r i n g the summer. water of the open sea ( 3 3 . 0 - 3 3 . 8 % s a l i n i t y ) the Sound ( F i g s . August f r e s h e t year at  intrudes p a r t i c u l a r l y deeply  6 and 9) d u r i n g the p e r i o d of maximum land d r a i n a g e  season)  (Figs.  8 and 10),  l e a s t over the deeper s h e l f a r e a s .  The upper  inflow during a l l  summer's h i g h r u n - o f f  seasons,  l i m i t of the o c e a n i c h a l o c l i n e  low and s u r f a c e w a t e r s , which have been p i l e d i n s h o r e by the The  l i m i t r i s e s to about 75 metres when  and p r e v a i l i n g n o r t h w e s t e r l y winds move s u r f a c e w a t e r s  bottom t e m p e r a t u r e s f o r d i f f e r e n t Committee on Oceanography, central  bank:  10.35°C,  central  bank:  7-70°C,  the Sound.  1955a,b):  inlet: inlet:  Oxygen d i s t r i b u t i o n  c o n t e n t s of  zones  in the Sound v a r y as f o l l o w s  WINTER -  6.70°C), 5.7'°C).  ( s h e l f edge:  SUMMER Thus,  5.72°C,  ( s h e l f edge:  1.16  near-  (Joint shallow  5.37°C,  shallow  summer's i n c r e a s e d deep water  not o n l y h i g h e r s a l i n i t i e s but a l s o c o o l e r t e m p e r a t u r e s  t o depths of 500 metres O2  run-off  southeasterly  o f f s h o r e and bottom waters move i n s h o r e t o r e p l a c e them. R e p r e s e n t a t i v e  intrusion brings  into  (May t o  100-150 m e t r e s ) d u r i n g the w i n t e r when  w i n d s , d r i v e bottom water seaward.  halocline  but t h e r e appears t o be s u f f i c i e n t  round s u r f a c e o u t f l o w t o m a i n t a i n deep water  is most d e p r e s s e d ( t o a depth o f is  This  to  in the Sound i s g e n e r a l l y u n i f o r m and w a t e r s  in the v i c i n i t y  of the Sound have been r e p o r t e d t o have  m l . / l i t r e ( J o i n t Committee on Oceanography,  1955a).  19.  30  20  20 .  30  landward  10 20 30 (A  0)  ^50 E 75x Q-100. o  STA. 125  5  QUEEN CHARLOTTE STRAIT  NET  WATER  MOVEMENT (summer)  Fi.orure 8  A f t e r B a r b e r , ~L?'67  STATION 15  SALINITY  DISTRIBUTION (summer) After  Barber, 1 9 5 7  Figure 9  +52-  c CD  ct  a>  tx > • • $ tx  -hi*  SURFACE SALINITY % o (summer) 10  C O N T O ' J R S  IN'  M E T R E S  130  N A U T I C A L  20 M I L E S  21 .  SEDIMENTS Nayudu and Enbysk ( 1 9 6 4 ) d e s c r i b e d p r i n c i p a l the n o r t h e a s t  Pacific  appear t o be (a)  (Fig.  11a).  sea-floor  sediments  The two major c o n t r o l s on t h e i r  distribution  d e e p - s e a c h a n n e l s a l o n g which most c o n t i n e n t a l m a t e r i a l  f u n n e l l e d and (b)  o c e a n i c s u r f a c e w a t e r - m a s s movement ( F i g .  suggest  r e l a t i o n s h i p between the l a t t e r and sediment  the a r e a l  i n d i c a t e that  the A l a s k a n G y r a l  distributes  lib).  The  the diatoms from the h i g h  drift  over the a r e a  Menard ( 1 9 6 4 ) has r e p o r t e d  produc-  Subarctic  reconnaissance s t u d i e s . Dixon E n t r a n c e  (Fig.  sorted gravels  470 m e t r e s .  s h e l f have been d e s c r i b e d  Mathews ( 1 9 5 8 ) examined the g r a v e l  1).  The s e a - b e d t h e r e  deposits  is mantled w i t h  a t the time of d e p o s i t i o n .  Carter  from t i l l s  ( 1 9 6 9 , 1970) i n v e s t i g a t e d  B a r k l e y Sound and a d j a c e n t s h e l f o f f muds c o v e r the Sound f l o o r ,  s o u t h w e s t e r n Vancouver  but sands and rounded g r a v e l s  s h e l f banks and o u t e r s h e l f .  currents  the sediments I.  of  He found  l i e on the  opaque o x i d e s amd m a f i c m i n e r a l s .  m i n e r a l s a r e dominated by h o r n b l e n d e and e p i d o t e .  Sands and g r a v e l s  from d i o r i t e s and i n t e r m e d i a t e to b a s i c v o l c a n i c s .  m i n e r a l s a r e a m i x t u r e o f s m e c t i t e (montmori11 o n i t e ) , Organic c a r b o n i s most abundant  i t a t t a i n s c o n c e n t r a t i o n s of up t o f i v e of  from  inner  Sands c o n s i s t p r i m a r i l y o f p l a g i o c l a s e and  l i t h i c g r a i n s w i t h minor q u a r t z ,  t u t e s up t o 25 p e r c e n t  of  predominantly  which m a t r i x m a t e r i a l had been washed by m e l t w a t e r streams or by  rare k a o l i n i t e .  in  l y i n g on sand and mud at water depths as g r e a t as  Mathews s u s p e c t e d the g r a v e l s were d e r i v e d  l o c a l l y derived  widespread  i n v e s t i g a t e d by Nayudu and Enbysk.  Two a r e a s of the B r i t i s h Columbia o u t e r  clean,  authors  i s a s s o c i a t e d w i t h the R a d i o l a r i a n - r i c h a r e a , and the m i x i n g a r e a c o i n -  c i d e s w i t h the Glob i ger i n a - r i c h zone. glacial  is  distribution  t i v i t y a r e a south o f the A l e u t i a n c h a i n , the s o u t h e r n branch of the Current  of  percent.  illite,  Heavy were Clay  c h l o r i t e and  in c l a y - r i c h muds in which Calcium carbonate c o n s t i -  inner s h e l f - b a n k s e d i m e n t s , but  l e s s than 10 p e r c e n t  F i g u r e 11  23. elsewhere.  Pleistocene clayey s i l t s  are greenish grey, "glacial milk".  in B a r k l e y Sound and near the s h e l f edge  low in o r g a n i c c o n t e n t and were p r o b a b l y formed as a  Carter  i m p l i e d t h a t a l t h o u g h the a r e a underwent  i c e advanced o n l y h a l f way a c r o s s the  glaciation  shelf.  P r e v i o u s l y undertaken r e c o n n a i s s a n c e s t u d i e s  in Queen C h a r l o t t e  and i n i m m e d i a t e l y a d j a c e n t a r e a s , when c o n s i d e r e d t o g e t h e r ,  b r i n g to  Sound light  something of the r e c e n t h i s t o r y and p r e s e n t c h a r a c t e r of sediment d i s c h a r g e , and suggest how best t o examine s e d i m e n t a r y p r o c e s s e s No r i v e r s Large r i v e r s  of any consequence f l o w d i r e c t l y  exist  i n t o the Sound ( T u l l y ,  on the m a i n l a n d , but these must f i r s t  b e f o r e e n t e r i n g the s h e l f . competence of the r i v e r s  f l o w through  Deepening of the c h a n n e l s at the f j o r d s  (Morisawa,  b e i n g t r a n s p o r t e d by r i v e r s  s h o u l d be t r a p p e d  sandy muds ( A n o n . ,  in the f j o r d s .  in the v i c i n i t y  1963) -  B r i t i s h Columbia f j o r d s  Giovando,  This f a c t coupled with  I960) s u g g e s t s t h a t s i l t s are the c o a r s e s t sediments t h a t Furthermore,  b e i n g d i s c h a r g e d through Queen C h a r l o t t e S t r a i t local charts  the  the presence of g r a v e l s c o u l d best be a t t r i b u t e d  presently  l i t t l e sediment  is  i n t o the Sound ( C o c k b a i n , 1963).  land masses,  in the n o r t h e a s t  Pacific strongly  The w i d e s p r e a d  s u g g e s t s mass ive d e p o s i t s  s i m i l a r o r i g i n would l i k e l y have been d e p o s i t e d n e a r e r  G l a c i a l transport  of  shore.  Rock d i s t r i b u t i o n a c r o s s the Coast Mountains a d j a c e n t Sound i s b r o a d l y u n i f o r m .  i t was presumed  to d e p o s i t i o n from g l a c i e r s  t h a t o v e r r a n the Coast Mountains d u r i n g the P l e i s o t c e n e . drift  in  i n d i c a t e g r a v e l s a r e w i d e s p r e a d over Queen C h a r l o t t e Sound.  As c o n g l o m e r a t e s a r e not common on the a d j a c e n t  glacial  reported  appears not t o exceed 49 m i c r o n s ( P i c k a r d and  c o u l d reach the s h e l f through the f j o r d s .  Yet,  bed-load  Charlotte  knowledge t h a t d u r i n g p e r i o d s of h i g h e s t d i s c h a r g e suspended m a t e r i a l typical  fjords  d e c r e a s e s the  Sediment  of Queen  1952).  long  As a consequence, c o a r s e s t  1968).  t o l i e at the bottom of the major f j o r d s Sound a r e s l i g h t l y  in the Sound.  to Queen  Charlotte  of d e t r i t u s abraded from such a  24. s o u r c e would not  l i k e l y contribute  m i n e r a l o g i c c o n t e n t s t o the s h e l f .  i s o l a t e d patches of sediment w i t h  discrete  These c o n d i t i o n s a r e n e c e s s a r y f o r a  m i n e r a l o g i c c l a s s i f i c a t i o n of sediments which might h e l p in the  interpretation  of the h i s t o r y and g e n e r a l d i s p e r s a l p a t t e r n s of s h e l f sediments (Van A n d e l , 1964;  Ross,  Wiese (1969) found t h a t dominant heavy m i n e r a l s  1970).  in  n o r t h e r n Queen C h a r l o t t e Sound a r e h o r n b l e n d e , opaque o x i d e s , e p i d o t e , and g a r n e t and t h a t t h e i r d i s t r i b u t i o n  is generally uniform.  m i n e r a l g r a i n types common t o the Sound commonly e x h i b i t in t h e i r d i s t r i b u t i o n general  (Van A n d e l ,  1964;  R o s s , 1970).  Most,  i f not a l l  grain size  dependency  As a consequence of  u n i f o r m i t y of m i n e r a l d i s t r i b u t i o n and heavy m i n e r a l g r a i n s  in the Sound, t h i s s t u d y has c o n c e n t r a t e d on a d e t a i l e d a n a l y s i s o f as a means of d e s c r i b i n g the r e c e n t h i s t o r y and g e n e r a l dispersal  w i t h i n Queen C h a r l o t t e Sound.  e f f e c t i v e elsewhere McMaster,  1966:  I969).  the  available texture  p a t t e r n o f sediment  T h i s t e c h n i q u e has been found v e r y  (Creager and McManus, 1961;  Swift,  sphene,  Creager,  1963;  G a r r i s o n and  2 5 .  FIELD AND LABORATORY PROCEDURES  FIELD PROCEDURE The bottom s a m p l i n g g r i d used in t h i s Core and bottom photograph s t a t i o n  investigation  l o c a t i o n s are  Bottom s a m p l e s , c o r e s and underwater  (June (July (Aug. (June  in a l a t e r  photographs were o b t a i n e d  the f o l l o w i n g c r u i s e s on Canadian Naval A u x i l i a r y Laymore Endeavour Endeavour Endeavour  indicated  i s shown in F i g . 1 2 . section. during  Vessels:  1 2 - 1 7 ,  1 9 6 7 )  7-13,  19&7)  1 9 - 3 0 ,  1 9 6 8 )  1 6 - 2 1 ,  1 9 6 9 )  N a v i g a t i o n was a c c o m p l i s h e d , depending on weather c o n d i t i o n s and d i s tance o f f - s h o r e ,  by e m p l o y i n g v a r i o u s c o m b i n a t i o n s o f  beacon,  dead r e c k o n i n g and a b a t h y m e t r i c map ( c o n t o u r e d  Loran-C,  map s u p p l i e d by S h e l l Canada L t d . ) . was a t t a i n e d w i t h i n calm days as we irregular  traversed  relief.  u n r e l i a b l e that  3 0 - 5 0  As a r e s u l t ,  k i l o m e t r e s of  Decca r a d a r ,  most p r e c i s e  recognizable  radio  bathymetric  positioning  land f e a t u r e s on c l e a r  those s e c t i o n s o f the s e a - b e d t h a t e x h i b i t  P o s i t i o n i n g on a s m a l l  most  s e c t i o n of the o u t e r s h e l f was so  the d i s t a n c e between samples had t o be i n c r e a s e d from 6 t o 1 2  k i1omet r e s .  Petersen employed f o r  ( 1 9 1  0 grab and La F o n d - D i e t z  sea-bed sampling.  because i t s g r e a t e r weight ( 5 3 , 4 6 0  cc v s .  ( 1 9 4 8 )  snapper grab were  The P e t e r s e n grab was more f r e q u e n t l y  permits greater  500 c c ) a d m i t s a g r e a t e r  penetration,  its greater  volume of sediment ( v e r y  where one i s a t t e m p t i n g t o s e c u r e a r e p r e s e n t a t i v e amount of v e r y s o r t e d m a t e r i a l ) and the g r e a t e r  spread of  used  size  i'tnportant poorly  i t s jaws a l l o w s c a p t u r e o f  coarser  sediments.  The La F o n d - D i e t z grab performed b e t t e r where the bottom was s l o p e d  or c u r r e n t s  or s h i p d r i f t  would not a l l o w the P e t e r s e n grab t o s e t t l e normal  t o the s e a - b e d . C o l l e c t e d sediment was withdrawn  from the samplers and kept m o i s t  in  ( /  \  /  /  \ /  • A  \ \  . \  34 5/34//  i  5 ^  • 3 , 6  A. .  OUE.EN "CHARLOTTE 52  \  v  ,  I \  3 3 1  V.^ .  333/  v  /  .  .  w  ,'30 / "m ,"\ t  \" A \  3M7  J  '  /"3fwii.  9  1  ,•  5  / . / « . „•'MS 173* * 7 • ~- i u  i  *1 / 337  A  .  .\ 3 7 6  •  ^ ^' .  W  CD  490 (  £ - - " - 7  -  2U  . tf 2  *  4  .S'2  420  S 1 5  /  .  4S6  M55  452*  99  ^  V  185  •  '1°  165,'39 - - . . ^ ' — - s . 164 r , 142  145  .151 _ •  /  8  8?..  1  • 53 *  92  ; ( rj* • V 133 '  126  145  85  fe8  86  «..ioo—• 121  1  444  .  443  4.9  225^  \ SEA  Cc,<d_ fc  OTTER GROUP,-'  5  ,  / :  .  3  °T  /83  I  3  M7  -  ?  5  7  38  \45  1  'so  I3S  90,  143  I HI 1  »  137  I'I4  '62  453  I S3  •  154  \  17?  • ,?  '78 f l  '  '58  V  231  '.  182 IBI  516 I8f  514  25  Q  SI3  I  fl  • 1 0 3 4 5 '« / /  328 ^510  *  » \o  8  SOI  sofc~-  2  268  9 0  5  i\2S3  269  /  /  — \  S .  .  265  2SS  "  \508  #  \234  .  N  •/ / .  Mfcl '  r  p'/  5  . 2 4 6  / w  2  •  27^'  250  293 292 -"'  J  •  25/  •  /  327  \ S03  \  r—  ,  244  2 0 0  273  >  4 l  236 •  •  2 0  •  HOS,' 3 2 6 • .  S 0 2  <SOH  .  K  y  -n  •  ,243  253 2faO • (', - "  . ^ u - * 111:1  /Sat  ¥  \\  1  232  ,',T„ 5  / 242  28/  .  s  .  49>'^ / ;>  v  • 25  1  """•/  4  r\3  /C  i .  •'™  /  'V«  jlPRJCEI.  1  •  2 8 0  Y " - ^ "w  j'jHBO  2 3 9 , . !\  • 275  •  T  501  . <y  356 /3S?  1  ,' / . - *, ,Z 9 7  ,412  4/J  /73  .  \  2.41  •  1  •  V i  . 3?8 393 399 3 y  '^B7  \  \  3  349/  -  3  277 299 2'8 . "?on j i t  . 3 0 0  .  .  25<=  25? \  510  .  6,  2f  s *  51" G R A B  \ \ 1 \  S A M P L E S  • 79  -TS • i  IN M E T R E S  50 49 57 • T R I A N G L E I. \ ,  33 10  10 CONTOURS  -  1301  NAUTICAL  •/ANCOUVER  30 MILE:!  129  ISLAND  N3 CTN  27. p l a s t i c bags.  If the sample appeared t o be a mud, muddy sand or w e l l  sand no more than a p i n t was r e t a i n e d . c o l l e c t e d to f i l l extract  at  Sufficient gravelly  least a gallon container.  sorted  sediment was  An attempt was made t o  l i v e organisms, e s p e c i a l l y h o i o t h u r i a n s ,  from muddy sediments t o  p r e v e n t undue e f f e c t on o r g a n i c carbon c o n t e n t . Gravity coring (with e i t h e r two-or four-metre  long b a r r e l s h a v i n g  d i a m e t e r s of 7 . 5 cm.) proved q u i t e s u c c e s s f u l once the g e n e r a l t r i b u t i o n was known. site  Knowledge of what s u r f i c i a l  i s e s s e n t i a l because compact sand or g r a v e l  t i o n of the b a r r e l  can s e v e r e l y  an e c h o - s o u n d e r aboard s h i p the sounds e m i t t e d d i r e c t l y lowered w i t h the camera and sounds from the p i n g e r  from the Sound  Tiffin  obtained several  L u t e r n a u e r and Murray ( 1 9 6 9 ) ) . in T i f f i n  in r e p r e s e n t a t i v e This  By m o n i t o r i n g on  from a p i n g e r  r e f l e c t e d from the  device floor  distance  floor. Endeavour  (1969).  (May 2 - 1 4 , 1967) D r s .  continuous seismic p r o f i l e s  Queen C h a r l o t t e Sound u s i n g a 5000 j o u l e  explained  penetra-  l o c a t i o n s employing  the camera was m a i n t a i n e d a t a p p r o x i m a t e f o c a l  During a c r u i s e on the C . N . A . V . Muray and D.L.  inhibit  by bending the f i n e c u t t i n g edge of the core nose.  Germeshausen and G r i e r camera and s t r o b e u n i t .  d i r e c t l y below,  sediments d i s -  sediments occur at the c o r i n g  The f l o o r o f the Sound was photographed at t w e l v e an E d g e r t o n ,  inner  "Sparker" (for  across  l o c a t i o n s see  The o p e r a t i o n of the S p a r k e r equipment In the p r e s e n t  s t u d y o n l y the major  s e c t i o n s of p r o f i l e s o b t a i n e d  J.W.  is  structures  in deeper water a r e d e s c r i b e d .  l i m i t a t i o n was set because the w i d t h of the o u t g o i n g S p a r k e r p u l s e p r e -  vented r e s o l u t i o n of f e a t u r e s f i n e r of the p r i m a r y a c o u s t i c a l  than 10-15 metres and because m u l t i p l e s  r e f l e c t o r s masked subbottom s t r u c t u r e s on p r o f i l e s  o b t a i n e d over s h a l l o w e r s h e l f a r e a s .  28. LABORATORY PROCEDURES Textural  Analysis  Sediment G r a i n S i z e - upon c o m p l e t i o n of each c r u i s e muddy and nonmuddy ( s a n d s ,  sandy g r a v e l s and g r a v e l s )  were s o r t e d from sands i n g r a v e l l y (-1  p h i ) mesh s i e v e .  ranging  This gravel  samples were s e p a r a t e d .  Gravels  sands by s i e v i n g dry sample through a 2mm. f r a c t i o n was s i z e a n a l y z e d  in a sieve  in mesh s i z e from 2 mm. t o 64 mm. (-6 p h i ) at h a l f - p h i  nest  intervals.  If  the sand f r a c t i o n s o r t e d from the g r a v e l s was e x c e s s i v e l y  l a r g e a Jones Sample  Splitter  the sand f r a c t i o n  (Krumbein and P e t t i j o h n ,  down t o 75-100 grams.  1938) was used to s p l i t  T h i s sand subsample was soaked in 10% hydrogen  a t room t e m p e r a t u r e f o r about e i g h t hours  peroxide  in o r d e r to d i s s o l v e o r g a n i c f i l m s  and s a l t s which might make g r a i n s a d h e r e .  The s u p e r n a t a n t water was then  removed w i t h a S i l a s f i l t e r c a n d l e (10 m i c r o n p o r e s ) a t t a c h e d to a vacuum pump. in  M o i s t sands were a i r d r i e d and s i e v e d f o r twenty minutes i n a nest  s i z e from 2 mm. t o 0.063 mm. (4 p h i ) a t h a l f - p h i  intervals..  rang?  Computer c a l c u  l a t i o n of s t a t i s t i c a l g r a i n s i z e parameters took i n t o a c c o u n t what f r a c t i o n the t o t a l  sand c o n t e n t had a c t u a l l y been a n a l y z e d and c o r r e c t e d the g r a v e l -  sand p r o p o r t i o n s  of the sample a c c o r d i n g l y .  in the same way as the sand f r a c t i o n .  If  Non-gravelly  sands were  the mud f r a c t i o n  (sediment  treated finer  than 0.063 mm.) was found t o comprise 10 p e r c e n t or more of the s a m p l e ,  it  was s i z e a n a l y z e d by p i p e t t e as d e s c r i b e d below. N o n - g r a v e l l y muddy samples were s p l i t open on the lab t a b l e and enough from the c e n t r e o f the sample was broken o f f m a n u a l l y to s u p p l y 15-30 grams of mud (the  less-than-sand size-fraction)  ( S t e r n b e r g and C r e a g e r , trials.  196l).  f o r a va 1 id p i p e t t e a n a l y s i s  T h i s amount can be a t t a i n e d a f t e r a few  T h i s s t i l l m o i s t subsample was p l a c e d in a 500 m l .  Erlenmeyer  f l a s k w i t h d e m i n e r a 1 i z e d water and shaken f o r a h a l f - h o u r on a B u r r e l l Wrist A c t i o n Shaker.  T h i s was f o l l o w e d by c e n t r i f u g a t i o n u n t i l  the wash  of  29. water  in the f l a s k was c l e a r .  procedure  The c l e a r water was decanted and the washing  repeated t w i c e to i n s u r e removal of most s o l u b l e s a l t s .  sediment was s t i r r e d f o r two minutes  The washed  in a b l e n d e r w i t h d i s p e r s a n t  solution  ( 4 0 . 9 grams of Calgon and 5 . 0 5 grams of sodium c a r b o n a t e d i s s o l v e d  in 9850 cc  of d i s t i l l e d w a t e r ) and then poured i n t o a 0.063 mm s i e v e s i t t i n g over a 1000 cc soil  cylinder.  M a t e r i a l r e m a i n i n g in the s i e v e a f t e r the washing was p l a c e d  an Erlenmyer f l a s k w i t h d e m i n e r a 1 i z e d w a t e r ,  s h a k e n , and then c e n t r i f u g e d  to  remove d i s p e r s a n t s o l u t i o n which upon d r y i n g c o u l d make sand g r a i n s adhere each o t h e r .  Not a l l mud s i z e d m a t e r i a l would be washed through the s i e v e  the wet s i e v i n g o p e r a t i o n . remain.  A s m a l l p o r t i o n of the c o a r s e r s i l t  Thus, m a t e r i a l r e t a i n e d  was a i r d r i e d and s i e v e d f o r twenty minutes in a s i e v e net r a n g i n g intervals  s i z e measurement i s of g r a i n s 0 . 0 4 4 mm ( 4 . 5 p h i ) .  in s i z e  up t o 4 . 5 p h i .  in which the  Soil cylinders  a l i q u o t s at given  the  first  temperature  A p i p e t t e a t t a c h e d t o a vacuum pump was used t o draw  off  i n t e r v a l s a c c o r d i n g t o the scheme o u t l i n e d by F o l k ( 1 9 6 5 ) .  A vacuum pump was used i n s t e a d of mouth s u c t i o n in o r d e r consistency  This  containing  muds d e r i v e d from the wet s i e v i n g o p e r a t i o n were p l a c e d in c o n s t a n t baths set a t 25°C.  during  procedure,  p e r m i t t e d an o v e r l a p of the s i e v e s i z e a n a l y s i s t e c h n i q u e employed f o r sand f r a c t i o n of the sample w i t h the p i p e t t e t e c h n i q u e  to  f r a c t i o n would  in the s i e v e a f t e r the wet s i e v i n g  from 2 mm t o 0 . 0 3 7 mm ( 4 . 7 5 p h i ) a t h a l f - p h i  in  in w i t h d r a w a l  r a t e , a f a c t o r which c o u l d  to m a i n t a i n g r e a t e r  i n f l u e n c e mean s i z e  of  sediment drawn up, e s p e c i a l l y d u r i n g e a r l y w i t h d r a w a l s when c o a r s e r sediment i s q u i c k l y s e t t l i n g out of s u s p e n s i o n .  W i t h d r a w a l s were made at times c o r r e s -  ponding t o 4 . 0 , 4 . 5 , 5 . 0 , 6 . 0 , 7 - 0 and 8 . 0 p h i .  G r a v e l l y muddy sediments r e q u i r e d a composite t r e a t m e n t .  The o r i g i n a l  sample was s p l i t open and a p o r t i o n of n o n - g r a v e l l y m a t e r i a l was scooped out and t r e a t e d as were the n o n - g r a v e l l y muddy s a m p l e s .  H a l f the r e m a i n i n g sample  3 0 .  was spread a c r o s s wrapping paper and a l l o w e d to dry at room t e m p e r a t u r e . T h i s e n t i r e d r i e d subsample was weighed. sample by wet s i e v i n g  the sediment through a 2 mm s i e v e .  made of the p r o p o r t i o n analyzed.  of g r a v e l  in the sample and then the g r a v e l s were  through  finer-  f o u r t h moment s t a t i s t i c a l measures (mean, s t a n d a r d d e v i a -  skewness and k u r t o s i s )  were computed on an IBM  U n i v e r s i t y of B r i t i s h C o l u m b i a .  computer a t  3 6 0 - 6 7  The program was prepared by Dr. A .  J . W i l s o n , and is a v a i l a b l e from the Department of G e o l o g y ,  of B r i t i s h Columbia. c o n s i d e r a t i o n the f u l l  range of the g r a i n s i z e d i s t r i b u t i o n  p o i n t s on a c u m u l a t i v e c u r v e of the s i z e d i s t r i b u t i o n has s u g g e s t e d ,  however,  University into  of a s a m p l e , and  (Folk,  t h a t comparable " g e o l o g i c  the  Sinclair  Moment measures were employed because t h e y t a k e  n o t , as i n the case of g r a p h i c measures, v a l u e s from a r b i t r a r i l y  ( 1 9 6 6 )  size  p o r t i o n of the sample.  First  and Mr.  A d e t e r m i n a t i o n was  T h i s s i z e a n a l y s i s was combined w i t h the s i z e a n a l y s i s of the  than-gravel  tion,  G r a v e l s were s o r t e d from the sub-  selected  1 9 6 6 ) .  Folk  conclusions" could  be drawn from r e s u l t s d e r i v e d by e i t h e r method. The computer a l s o d e t e r m i n e d p r o p o r t i o n s each sample (McManus e_t a_l_, 1 9 6 9 ) ,  mud-sand r a t i o s  principal  sand modes in the s i z e d i s t r i b u t i o n  McMaster,  1 9 6 6 ) .  The a r e a l  of g r a v e l ,  sand and mud f o r  (McManus e t aj_, 1 9 6 9 )  o f each sample ( G a r r i s o n  d i s t r i b u t i o n of a l l  and  and  these v a r i a b l e s was mapped.  " C a l c o m p " c o n t o u r maps of mean g r a i n s i z e d i s t r i b u t i o n of the samples were compared t o a hand c o n t o u r e d map of the same data to d e t e r m i n e r a p i d m e c h a n i c a l c o n t o u r i n g would be a s u f f i c i e n t l y p r e c i s e means of ing d i s t r i b u t i o n a l  p a t t e r n s of the many sample c h a r a c t e r i s t i c s  The m e c h a n i c a l l y c o n t o u r e d map was reproduced on t r a n s p a r e n t f i x e d to a p r e v i o u s l y  display-  (Walters,  1 9 6 9 ) .  paper which was  prepared base map of the Queen C h a r l o t t e  The c o m p o s i t e was Xeroxed t o produce the f i n a l  whether  Sound a r e a .  figure.  Samples were p l o t t e d on a graph of mean g r a i n s i z e versus  grain  size  31.  standard d e v i a t i o n  (Creager,  1963).  The d i s t r i b u t i o n of skewness v a l u e s  s e l e c t e d samples on the graph was n o t e d . plotted against  on t e x t u r a l  mentally sensitive content  Mud-sand r a t i o s o f samples were  sample d e p t h .  F a c t o r a n a l y s i s was done a f t e r relied entirely  of  the method of K l o v a n ( 1 9 6 6 ) .  Klovan  c h a r a c t e r i s t i c s o f samples t o c r e a t e t h r e e  factors.  environ-  In t h i s s t u d y sample depth and o r g a n i c and CaC0*3  a l s o have been t a k e n i n t o c o n s i d e r a t i o n . Sand G r a i n S u r f a c e T e x t u r e s -  conchoidal  f r a c t u r e s were e x t r a c t e d  approximately  ten sand g r a i n s  from the 0 . 5 0 0 - 0 . 3 5 4 mm ( 1 . 0 - 1 . 5 p h i )  f r a c t i o n o f t h r e e samples and were t r e a t e d w i t h  10% hydrogen p e r o x i d e  hours t o d i s s o l v e any o r g a n i c f i l m or d r i e d s a l t s .  Cleaned and d r i e d  were s e t on e l e c t r o n m i c r o s c o p e g r a i n mounts w i t h the s i l v e r (Acheson C o l l o i d s Canada L t d . ,  exhibiting  Brantford,  Ontario).  paint  for  eight  grains  "DAG 4 l 6 "  G r a i n s were c o a t e d w i t h  the metal c o n d u c t o r Au/Pd in a M i c r o s Vacuum E v a p o r a t o r model VE 10. were examined on a Cambridge S t e r e o s a n E l e c t r o n M i c r o s c o p e Department o f the U n i v e r s i t y of B r i t i s h C o l u m b i a .  size  in the  Grains  Botany  Photographs were t a k e n of  the m a g n i f i e d g r a i n s on f i n e - g r a i n e d 35 mm f i l m . Gravel - 3 . 0 phi)  Roundness -  representative  portions  s i z e f r a c t i o n were o b t a i n e d from 40 w i d e l y  photographed under s i m i l a r l i g h t i n g c o n d i t i o n s of t h e i r  of the 5 . 6 6 - 8 . 0 0 mm ( - 2 , 5 t o s e p a r a t e d samples and  to permit v i s u a l  comparison  roundness.  Compositional  Analysis  Heavy M i n e r a l Content  -  the heavy m i n e r a l s were e x t r a c t e d from the  0 . 1 2 5 - 0 . 0 6 3 mm ( 3 . 0 -  4.0 phi)  s o r t e d sand s a m p l e s .  T h i s s i z e f r a c t i o n was chosen f o r  the g r e a t e s t from s t u d y  proportion  to study  and S t a n l e y ,  1968;  (inclusive)  s i z e f r a c t i o n o f 86 of the  of monominera1ic g r a i n s .  (see G i l e s and P i l k e y , Edwards and G o o d e l l ,  1965;  1969;  best  i t appeared to c o n t a i n  The c h o i c e of f r a c t i o n Hubert and Nea1,  1967;  and Davies and Moore,  varies James  1970).  32.  Heavy m i n e r a l s were s e p a r t e d by s t a n d a r d bromofonn methods ( F o l k ,  1965).  M a g n e t i t e was s e p a r a t e d from the heavy m i n e r a l f r a c t i o n w i t h an a l n i c o magnet. F i f t e e n samples c o n c e n t r a t e d (1969)  in a r e a s o t h e r  r e p o r t were a n a l y z e d f o r  their  than those c o v e r e d  in W i e s e ' s  heavy m i n e r a l c o m p o s i t i o n ( l e s s  An a t t e m p t was made t o compare h y d r a u l i c a 1 1 y  magnetite).  e q u i v a l e n t assemblages by s e l e c t i n g  o n l y samples w i t h s i m i l a r mean s i z e s 0 . 2 5 0 - 0 . . 1 2 5 mm ( 2 . 0 - 3 . 0 p h i )  (Folk,  1965).  Heavy m i n e r a l c o m p o s i t i o n was d e t e r m i n e d by X - r a y t e c h n i q u e s a f t e r the method o f P r y o r and H e s t e r  (1969).  As an a u t o m a t i c g r i n d e r was not a v a i l a b l e X - r a y e d  powders were not as u n i f o r m l y  f i n e as recommended by these a u t h o r s .  T h i s might  have c r e a t e d minor peak i n t e n s i t y v a r i a t i o n s on the d i f f r a c t o g r a m p a t t e r n s attributable  to d i f f e r e n c e s  Gravel of  Rock Type -  twenty w i d e l y  compared.  in c o m p o s i t i o n .  gravel  populations  from the c o a r s e s t s i e v e  fractions  s c a t t e r e d samples were s l i c e d w i t h a diamond saw and  ( B a i l e y and S t e v e n s ,  rock types  I960) t o a l l o w more p r e c i s e e s t i m a t i o n of  s o l u b l e s a l t s were removed from subsamples  o f 38 s t i l l m o i s t muddy samples a c c o r d i n g t o the method d e s c r i b e d f o r a n a l y s i s of n o n - g r a v e l l y  placed  muddy samples (page 2 8 ) .  i n t o a 100 ml c e n t r i f u g e  b e i n g c e n t r i f u g e d at than c l a y s i z e  1000 r . p . m .  tubes.  f o r two minutes to s e t t l e  material  than 2 m i c r o n s  (Brindley,  1961 a)).  The  15 m l . of  con-  supernatant  t h r e e ways  Each of the s u s p e n s i o n s was then c e n t r i f u g e d  the c o n t e n t s , in two o f the tubes w i l l  tube  coarser  is g e n e r a l l y  c l a y s had s e t t l e d and a c l e a r s u p e r n a t a n t water c o u l d be d e c a n t e d . of  tex-  tube and v i g o r o u s l y shaken by hand b e f o r e  s u s p e n s i o n was d e c a n t e d , v i g o r o u s l y shaken and r o u g h l y s p l i t 100 m l . t e s t  the  The sample was then  ( i n c l a y m i n e r a l s t u d i e s c l a y s i z e sediment  s i d e r e d t o be m a t e r i a l f i n e r  three  the  present.  C l a y M i n e r a l Group Content -  tural  visually  S e l e c t e d f e l s i c specimens were s t a i n e d f o r p o t t a s s i u m f e l d s p a r and  plagioclase principal  not  be d i s c u s s e d f i r s t .  into until  Treatment  To the f i r s t  IN Mg a c e t a t e was added, t o the s e c o n d , 20 m l . of  test  1 N K -acetate. +  33.  These c o n c e n t r a t i o n s a r e c o n s i d e r e d s u f f i c i e n t these for  ions.  The c l a y s were resuspended and a g i t a t e d  with  in the s o l u t i o n s ,  heated  twenty minutes i n a b o i l i n g water b a t h , a l l o w e d t o c o o l and then c e n t r i -  fuged u n t i l or  to s a t u r a t e the c l a y s  the s u p e r n a t a n t  in the c l a y  l i q u i d was c l e a r .  Excess  A few drops of the t r e a t e d c l a y s l u r r i e s were p l a c e d  on. i n d i v i d u a 1 s l i d e s , a l l o w e d t o dry and then X - r a y e d . K - s a t u r a t e d c l a y was heated t o 500°C f o r +  and X - r a y e d once a g a i n .  12 hours  it  to s i t  A f t e r having cooled  (Warshaw et aj_,  The M g - s a t u r a t e d c l a y s l i d e was then  in t h i s p o s i t i o n  I960)  and  i n an oven at 60°C f o r two h o u r s .  in a d e s s i c a t o r the s l i d e was X - r a y e d .  The  techniques  in the f o r e g o i n g paragraph have been drawn l a r g e l y from c o u r s e notes  S. Duncan Heron) and from B r i n d l e y  Durham, North C a r o l i n a  (1961 a ) .  A 6N HCl s o l u t i o n was mixed w i t h the t h i r d p o r t i o n of the clay.  the  glycolated  + +  of a c l a y m i n e r a l o g y c o u r s e o f f e r e d at Duke U n i v e r s i t y , (Prof.  The s l i d e w i t h  i t a c r o s s the top o f a t i n h a l f - f i l l e d w i t h e t h y l e n e g l y c o l  then a l l o w i n g  described  r e t a i n e d on  l a t t i c e were removed by washing the c l a y s two or t h r e e times  in d i m i n e r a 1 i z e d w a t e r .  by p l a c i n g  ions not  untreated  The t e s t tube and i t s c o n t e n t s were then p l a c e d i n a b o i l i n g water  b a t h f o r one hour to c o o l ,  (Kodama and Oinuma, 1963).  The c l a y s u s p e n s i o n was a l l o w e d  then was washed t h r e e times w i t h d i s t i l l e d w a t e r .  A few drops  of  t h e washed, a c i d - t r e a t e d c l a y were p l a c e d on a s l i d e , a l l o w e d to dry and X-rayed. The g l y c o l a t e d M g - s a t u r a t e d c l a y s l i d e was a l s o " s l o w s c a n n e d " a f t e r o o + +  the method of B i s c a y e (1964) s p e e d , o . 5 0 beam s l i t , All  in the 3 . 5 A and 7 A zone ( 0 . 5 0  0.1 d e t e c t o r s l i t ,  2 /min. scanning  2x10^ s c a l e and 4 s e c . time  X - r a y d i f f r a c t o m e t r y was a c c o m p l i s h e d on a P h i l l i p s  diffTactometer  w i t h N i - f i l t e r e d C u - r a d i a t i o n a t 40 K\/ and 20 mA. C l a y groups were  constant).  i d e n t i f i e d a c c o r d i n g t o the f o l l o w i n g scheme:  34.  CHLORITE ( B r i n d l e y , (a) (b) (c) (d)  (b)  1964;  (b)  Brindley,  1961b)  Peaks a t 7 - 1 6 A and 3 . 5 8 $ (Slow s c a n n i n g r e s o l v e s these peaks from s i m i l a r c h l o r i t e peaks i f they are a l s o p r e s e n t ) . Peaks a r e r e s i s t a n t t o a c i d t r e a t m e n t .  M0NTM0RILLONITE (Weaver, (a)  Kodama and Oinuma, 1963)  o o dominant peaks a t 1 4 . 0 - 14.3 A , 7 . 0 - 7 - 2 A , 4 . 7 - 4 . 7 5 A and 3 . 5 4 A . 7°A and 3 . 5 4 A peaks a r e s t r o n g e r in i r o n - r i c h chlorites. Marked d e c r e a s e o f 7 A r e l a t i v e t o 14 A peaks a f t e r heat t r e a t m e n t . A l l peaks e l i m i n a t e d by a c i d t r e a t m e n t .  KAOLINITE ( B i s c a y e , (a)  196lb;  1958; MacEwan, 1 9 6 1 )  o Expansion of f i r s t o r d e r peak from 14 A t o 1 7 . A a f t e r g1ycolat ion. Montmori11 o n i t e d e r i v e d from m u s c o v i t e and b i o t i t e tend£ t o d e c r e a s e i n s p a c i n g from 14 A t o about 10 A a f t e r t r e a t m e n t w i t h K whereas montmori11 o n i t e d e r i v e d from v o l c a n i c m a t e r i a l c h l o r i t e and h o r n b l e n d e d o e not d e c r e a s e or d e c r e a s e s o n l y t o 12A - 13 A*. Q  +  c  VERM ICULITE ( W a l k e r , (a)  1961;  1961b)  14 R b a s a l s p a c i n g responds l e s s i n t e n s e l y t o g l y c o l a t i o n than 1 4 $ peak of montmori11 o n i t e , but more so than 14 R peak o f c h l o r i t e  ILLITE ( B r a d l e y and G r i m , (a)  Brindley,  1961) " m i c a - t y p e c l a y m i n e r a l s "  Dominant f i r s t o r d e r 10 R peak which i s l i t t l e a f f e c t e d by any of the forms of t r e a t m e n t employed in t h i s s t u d y .  G l a u c o n i t e P e l l e t Content i n the m o r p h o l o g i c sense ( B u r s t ,  the term " g l a u c o n i t e p e l l e t "  1958).  Murray and M c i n t o s h (1968) have d e s -  c r i b e d the g e n e r a l m i n e r a l o g y o f g l a u c o n i t e p e l l e t s Charlotte  i s here used  i n the v i c i n i t y  of Queen  Sound.  After  the sand f r a c t i o n o f samples had been t r e a t e d w i t h hydrogen  p e r o x i d e and s i z e a n a l y z e d the . 5 0 0 -  . 3 5 4 mm p o r t i o n was examined in a l l  3 5 .  samples w i t h g r a i n s  in t h i s s i z e range.  T h i s s i z e f r a c t i o n was s e l e c t e d  because i t would r e v e a l  the c o n c e n t r a t i o n of the c o a r s e r ,  p e l l e t s and, h o p e f u l l y ,  o f f e r complementary i n f o r m a t i o n on r e l a t i v e  sedimentation  in d i f f e r e n t a r e a s of the Sound ( W h i t e ,  better  developed rates  of  1 9 7 0 ) .  A p i n c h ( a p p r o x . one gram) o f the s e l e c t e d s i z e f r a c t i o n was examined under a b i n o c u l a r m i c r o s c o p e .  If no g l a u c o n i t e p e l l e t s were observed  subsample g l a u c o n i t e p e l l e t s were r e c o r d e d as b e i n g absent  in t h i s  in the sample.  t h o s e subsamples in which f i v e or more p e l l e t s were observed the s i e v e  In  fraction  was t h o r o u g h l y mixed and s u f f i c i e n t g r a i n s were e x t r a c t e d t o c o v e r a p e t r o g r a p h i c s l i d e on which rubber cement had been s p r e a d . g l a u c o n i t e p e l l e t content  in the  made by p o i n t - c o u n t i n g a t o t a l fragments or m i n e r a l g r a i n s ,  A d e t e r m i n a t i o n of  i n o r g a n i c p a r t of the s i e v e f r a c t i o n was  of 3 0 0  g r a i n s and n o t i n g which were  rock  s h e l l m a t e r i a l or g l a u c o n i t e p e l l e t s .  Shell  m a t e r i a l was not removed by a c i d t r e a t m e n t because i t was f e a r e d t h a t vescence of  i n c l u d e d s h e l l fragments might d i s i n t e g r a t e some o f the p e l l e t s .  Iron-Stained y e l l o w i s h orange of  Sand Content 1 0 YR 6 / 6  inorganic grains Total  the p e r c e n t y e l l o w g r a i n s  on G . S . A .  i r o n - s t a i n e d sands and g r a v e l l y  2 0 0 - 3 0 0  Rock C o l o r C h a r t )  (mostly  in several  size  Carbon Content - a t e n - g r a m s p l i t of the f i n e r than g r a v e l  mm s i e v e .  (25°C)  the sample a c c o r d i n g t o the method of Gross  A p o r t i o n of t h i s s p l i t  I n d u c t i o n Furnace No.  (Dreimanus,  the  (either  carbon  in  by e m p l o y i n g a Leco Carbon  5 7 2 - 1 0 0 .  C a l c i u m Carbonate Content -  the C h i t t i c k A p p a r a t u s  (1966)  portion  and c r u s h e d u n t i l  1 gram) was used f o r a g a s o m e t r i c d e t e r m i n a t i o n of t o t a l  Skeletal  fractions  in each of the f r a c t i o n s .  e n t i r e s p l i t passed through a . 1 2 5  A n a l y z e r and  dark  sands was determined by p o i n t - c o u n t i n g  of each sample was a i r d r i e d at room t e m p e r a t u r e  5, 5 or  effer-  1 9 6 2 ) .  t h i s was d e t e r m i n e d by employing In t h i s procedure  subsample which was c r u s h e d t o l e s s than . 1 2 5  1 . 7  grams of  the  mm was p l a c e d in a f l a s k w i t h  36. 10 m l . of 3 N HCl a t room t e m p e r a t u r e .  The subsample was a l l o w e d to remain  in the d i s s o l u t i o n f l a s k f o r f i v e m i n u t e s .  E f f e r v e s c e n c e appeared always  have ceased b e f o r e the e x p i r a t i o n of t h i s p e r i o d .  to  Organic c o a t i n g may have  p r e v e n t e d t o t a l d i s s o l u t i o n of s h e l l m a t e r i a l , but p r o b a b l y not t o an a p p r e c i a b l e e x t e n t because of the extreme f i n e n e s s of the p a r t i c l e s and the of the a c i d u s e d .  strength  CO2 e v o l v e d by the a c i d d i g e s t i o n of the s h e l l y m a t e r i a l  the subsample was measured on the a c i d column on the C h i t t i c k A p p a r a t u s . c o n t e n t by weight of the l e s s than g r a v e l  in  CaCO^  s i z e f r a c t i o n was c a l c u l a t e d from the  observed CO2 c o n t e n t . Organic Carbon Content -  t h i s was d e t e r m i n e d by s u b t r a c t i n g the v a l u e  d e r i v e d f o r c a r b o n a t e carbon from the v a l u e f o r t o t a l c a r b o n . were r e c o r d e d  The v a l u e s  in terms of p e r c e n t by weight of the l e s s than g r a v e l  size  f r a c t ion. Core Descr ipt ion The p l a s t i c core l i n e r was f i r s t e l e c t r i c hand saw.  The c o r e  sawn open on o p p o s i t e s i d e s w i t h an  i t s e l f was then s p l i t by running p i a n o w i r e  through the c o r e a l o n g the c u t s  in the l i n e r .  t i o n s a t a p p r o x i m a t e l y 75 cm i n t e r v a l s  On one h a l f of the c o r e ,  (or a t c o l o r changes) were  sec-  extracted  and a n a l y z e d f o r g r a i n s i z e and in most cases f o r o r g a n i c carbon and c a r b o n ate content. t i o n by Dr.  In a few i n s t a n c e s f o r a m i n i f e r a were s e p a r a t e d f o r Bruce Cameron o f the G e o l o g i c a l  Survey of Canada,and by Mr.  R o d r i g u e s , a s t u d e n t at the U n i v e r s i t y of B r i t i s h C o l u m b i a . h a l f of the c o r e , c o l o r was noted and r e p r e s e n t a t i v e photographed. internal  industrial Power:  T h i s h a l f of the c o r e was a l s o X - r a y photographed t o  color reveal  i n c l u d e d fragments  X - r a y i n g was done w i t h the Coast E l d r i d g e P r o f e s s i o n a l  X-ray unit  (Film:  4.5 mA and 80 KV;  Kodak type M f i l m w i t h S n o f r o n t S c r e e n ;  Exposure t i m e :  two m i n u t e s ) .  Cyril  On the second  s e c t i o n s were  s t r u c t u r e s and the c h a r a c t e r and o r i e n t a t i o n of  (Bouma, 1964).  identifica-  Service Source  37. Sediment  Colour  The a r e a l d i s t r i b u t i o n of sediment c o l o u r was examined by a f f i x i n g p i n c h e s o f d r i e d sample on a l a r g e s c a l e map of the study a r e a (50 cm x 80 cm) w i t h rubber cement.  The completed mosaic was sprayed w i t h c l e a r l a c q u e r and  colour-photographed.  An attempt was made by P r o f e s s i o n a l C o l o u r P r i n t s L t d .  i n Vancouver  to colour-correct  w i t h f i l t e r s the f i n a l p r i n t  so t h a t  print  c o l o u r s might as c l o s e l y as p o s s i b l e match sediment c o l o u r s , but c o l o u r s on the p r i n t  have a s l i g h t l y h i g h e r y e l l o w i s h hue than the o r i g i n a l  A l t h o u g h the c r e a t i o n o f the mosaic i s t e d i o u s  i t permits d i r e c t  sediments. examination  of the s u b t l e r e l a t i v e c o l o u r d i f f e r e n c e s from sample t o sample.  Bottom Photographs Contact p r i n t s were made from over 1300 n e g a t i v e s  in the Geology  Department dark room a t the U n i v e r s i t y of B r i t i s h C o l u m b i a .  Representative  photographs o f bedforms and animal types o c c u r r i n g on the f l o o r o f Queen C h a r l o t t e Sound were s e l e c t e d f o r i l l u s t r a t i o n . Ba t h yme t r i e Ma p A d e t a i l e d b a t h y m e t r i c map of Queen C h a r l o t t e Sound was c o m p i l e d p r i n c i p a l l y from Canadian H y d r o g r a p h i c  S e r v i c e Decca F i e l d Sheets which cover  about  n i n e t y p e r c e n t of the Sound: Number  Title  V+77-L  Hecate S t r a i t  4478- L 4479- L 4480- L 4482-L  4486-L  " " "  "  "  " " "  11  "  Scale No. 5  1:142,596  No. 9  1 :142,596  No. 6 No. 7 No. 8  No.12  " 1: 72,688 "  1: 36,344  A r e a s w i t h i n 20 k i l o m e t r e s (11 n a u t i c a l m i l e s ) o f the c o a s t which were not covered by the Decca Sheets were c o m p i l e d from s e v e r a l  Canadian  Hydrographic  S e r v i c e c o a s t a l n a u t i c a l c h a r t s and from a c o n t o u r e d b a t h y m e t r i c map of Queen  C h a r l o t t e Sound k i n d l y s u p p l i e d by S h e l l Canada L t d . Figure  13 shows d e n s i t y of soundings from which f i n a l c o n t o u r e d  bathy-  m e t r i c map of the Sound was drawn.  Subbottom  Structure  P r i n c i p a l a c o u s t i c r e f l e c t o r s were t r a c e d from the s e l e c t e d c o n t i n u o u s seismic p r o f i l e s .  A p p r o x i m a t e sediment t h i c k n e s s e s were e s t i m a t e d by  ing t h i c k n e s s of uppermost f l a t - l y i n g files  by 8% and u n d e r l y i n g  (Holocene  less regularly  ?) sediments observed on p r o -  s t r a t i f i e d (Pleistocene d r i f t  sediments by 3 0 % as was done i n a CSP study of G e o r g i a S t r a i t (Tiffin,  1969)  mater i a 1 s .  increas-  t o account f o r v a r i a t i o n s of sound v e l o c i t y  sediments  through  these  ?)  \ 'V* V  \lQUEEN  CHARLOTTE  iSLA^DS,/'-^.4piiiii )  r-52  ^.•.•.•>v<\-l-><l-<\>-\-lv  0  AREAL  DENSITY  V  OF  SOUNDINGS  v;;; V'  (Compiled from Canadian Hydrographic Service field sheets) I to 2 SOUNDINGS/SQ. NAUTICAL MILE r - S I N  4 to 7 12 to 15 20 to 25 50 to 300  0  5  NAUTICAL  131 W  CONTOURS  IN  10 Ml. FATHOMS  1^0°  ho.  RESULTS  PHYSIOGRAPHIC  FEATURES OF QUEEN CHARLOTTE SOUND  Dominant f e a t u r e s  in the Sound a r e banks and t r o u g h s .  a s c r i b e d to the f e a t u r e s have been used b e f o r e are g i v e n .  The t h r e e p r i n c i p a l  banks a r e :  Secondary f e a t u r e s a r e  c o n t i n e n t a l s l o p e and the f l a t irregular  The troughs  (hereafter  referred  the Sea O t t e r Group of s h o a l s  (a)  are r e f e r r e d  (Anon.,  I.  Bank,  Trough the  (b)  t o as the 1965)-  Intertrough Area),  the  Figure  and  \k shows the  It must be noted t h a t on the map M i l b a n k e and Queen's  (c)  arbitrary  The numbers on the map  to sample numbers of samples f a l l i n g w i t h i n each p h y s i o g r a p h i c  n o r t h arm of  area.  Sound have been grouped wi  the South Trough p h y s i o g r a p h i c a r e a , Queen C h a r l o t t e  has been combined w i t h the s o u t h arm of South T r o u g h ,  Strait  and the seaward s l o p e  o f N o r t h Bank has been d i v i d e d between the more seaward p a r t s of C e n t r a l and N o r t h Trough. Sound  (back  Fig.  15 i s a d e t a i l e d b a t h y m e t r i c map o f Queen  i t s s o u t h e r n and n o r t h e r n margins a r e than 0 . 2 ° ) .  Charlotte  i n c i s e d by s h a l l o w canyons  Islands.  Both  (gradients  are  The b r o a d e s t t e r r a c e on Cook Bank l i e s between 6 0 to 8 0  The 8 0 metre c o n t o u r  metres.  Trough  envelope).  Cook Bank i s f r i n g e d on i t s s o u t h e r n margin by the S c o t t  less  to  Bank, e a s t of C e n t r a l Trough and west  b o u n d a r i e s f o r most o f the f e a t u r e s mentioned above.  the  1965) , Goose  the g e n t l e s l o p e s between  tops of Cook Bank and Goose  a r e a n o r t h o f Goose I.  of M i l b a n k e Sound  refer  references  ( w i t h a main t r u n k and a n o r t h and s o u t h a r m ) , C e n t r a l  and North T r o u g h .  very  literature  Cook Bank ( A n o n . ,  I s l a n d Bank (Lane e_t aj_, 1 9 6 l ) and N o r t h Bank. as South Trough  in the  Where names  appears a l m o s t t o e n c l o s e a broad s h a l l o w d e -  p r e s s i o n a t the c e n t r e of the bank. U n l i k e Cook Bank, Goose troughs. are evident  Its  broadest terrace  I.  Bank i s e n t i r e l y  i s o l a t e d from land by  l i e s between kO t o 60 m e t r e s .  between 6 0 t o 8 0 metres and 100 t o 120 metres  Other  (although  terraces  this  last  a MAIN TRUNK SOUTH TROUGH  E SOUTH ARM SOUTH TROUGH F CENTRAL TROUGH G NORTH TROUGH  H  \  L  \  <  "  5A  TRIANGLE  I  '  n  .  «  •  8  SEAWARD of GOOSE 18- BANK  V - - , •  T  INTERTROUGH COASTAL  10  20  VANCOUVER  30 -I  N A U T I C A L '  C O N T O U R S  IN  M E T R E S  130*  1  M I L E S —  129  123  ISLAND  42. terrace  i s o u t s i d e the a r b i t r a r i l y  n o r t h of  it  i n the s o u t h e r n  a s s i g n e d b o u n d a r i e s of Goose I.  Intertrough Area).  Many s m a l l  Bank, j u s t  indentations  fringe  the bank, but none o f these appear as w e l l developed as the canyons on Cook Bank.  High ground on the e a s t e r n s i d e of the bank s h o a l s to 31 m e t r e s .  Several  low r i d g e s e x t e n d to the west of the s h o a l s .  d i s s e c t s Goose  I.  Bank j u s t n o r t h of the s h o a l s .  channel  i s about  deep.  The margins of Goose I.  This east-west  oriented  15 k i l o m e t r e s l o n g , 2-3 k i l o m e t r e s wide and about 20 metres Bank are r e l a t i v e l y s t e e p on the s o u t h  2 ° ) , but v e r y g e n t l e on the n o r t h . sharply  A meandering channel  (up  to  The n o r t h w e s t e r n edge of the bank i s  rectangular. North Bank is s i m i l a r to Goose I.  Bank in many r e s p e c t s :  it  is  i s o l a t e d from land by t r o u g h s , an e a s t - w e s t v a l l e y p a r t i a l l y d i s s e c t s though the v a l l e y on North Bank i s broader than t h a t on Goose I.  entirely it  Bank),  (alits  s h a l l o w e s t p a r t s are on the landward s i d e of the bank and i t s l o p e s a t about the same g r a d i e n t  from i t s f l a t  t e r r a c e on North Bank i s at  top t o the c o n t i n e n t a l s l o p e .  120-140 metres  The  broadest  (a t e r r a c e a t a s i m i l a r depth  is  d e v e l o p e d j u s t west of the Sea O t t e r Group of s h o a l s ) , whereas the s m a l l e r f l a t t i s h areas at the top of the bank a r e a t  100-120 m e t r e s .  The s o u t h arm of South Trough has an almost f l a t bottom w i t h a few shallow closed depressions.  At  the i n t e r s e c t i o n of the s o u t h arm w i t h  main t r u n k of South Trough the Sound f l o o r appears t o be s l i g h t l y From the depths of M i l b a n k e Sound the f l o o r s h o a l s up to the s a d d l e j u s t west of Goose I s l a n d . the f l o o r deepens. Goose  I.  topographic  From t h e r e t o the mouth of Queen's  From t h i s second s a d d l e i t s h o a l s  Sound,  slightly,  i n the d i r e c t i o n of the c l o s e d d e p r e s s i o n s between the  m a i n l a n d and the Sea O t t e r Group of s h o a l s . Trough the Sound f l o o r shelf.  fan-shaped.  From Queen's Sound i t s h o a l s towards another s a d d l e between  Bank and Hakai P a s s a g e .  then deepens r a p i d l y  the  At the f o o t of  A l o n g the n o r t h arm of  very u n i f o r m l y and g r a d u a l l y deepens towards the s m a l l f a n p r e v i o u s l y  South the c e n t r a l  m e n t i o n e d , a few s m a l l  knobs  43. r i s e from the f l o o r . s t r i c t e d f o r about  Further  seaward s t i l l ,  10 k i l o m e t r e s u n t i l  12 x 25 k i l o m e t r e s .  the t r o u g h becomes a b r u p t l y  i t widens  i n t o a broad f l a t a r e a about  A t the s h e l f edge a broad r i d g e c u t s a c r o s s the  The g r a d i e n t of the sea f l o o r  con-  trough.  i n c r e a s e s s h a r p l y t o 5° at the c o n t i n e n t a l  slope.  The n o r t h e r n p a r t of C e n t r a l Trough west of North Bank i s - e s s e n t i a 11y flat.  There a r e o n l y a few s c a t t e r e d  At the p o i n t  low knobs and broad s h a l l o w d e p r e s s i o n s .  the trough makes a sharp s o u t h w e s t e r l y  from the sound f l o o r .  Beyond the s a d d l e the t r o u g h g r a d u a l l y deepens  the broad f l a t a r e a j u s t s h o r t of the s h e l f b r e a k . ridge p a r t i a l l y  bend a s h a l l o w s a d d l e r i s e s  intersects  the  A t the s h e l f break a  trough.  North Trough i s the deepest and most i r r e g u l a r l y troughs.  It  shaped of the  i s f l o o r e d by n a r r o w , deep c l o s e d d e p r e s s i o n s .  on the n o r t h e r n w a l l of the t r o u g h . metres,  the o t h e r  towards  Two t e r r a c e s  One i s hummocky and o c c u r s at  is f l a t and c o n s i d e r a b l y deeper  (340-360 m e t r e s ) .  c o n t i n e n t a l s l o p e N o r t h Trough i s a l m o s t c o m p l e t e l y p i n c h e d o f f  three lie  220-240 Near the  by a r i d g e  ex-  t e n d i n g from the base of N o r t h Bank. I n t e r t r o u g h Area i s f l o o r e d by an u n u s u a l l y  l a r g e number of v e r y b r o a d ,  s h a l l o w d e p r e s s i o n s and low e l o n g a t e s w e l l s which have a p r e d o m i n a n t l y e a s t -west orientation.  At the w e s t e r n edge of the  appears t o be s l i g h t l y Fig.  17-  p l e t e s e c t i o n in F i g .  In s p i t e of the extreme v e r t i c a l 17, b a t h y m e t r i c r e l i e f  The same c r o s s - s e c t i o n a l s o c l e a r l y r e v e a l s the n o r t h .  sound-floor  fan-shaped.  16 i n d i c a t e s the l o c a t i o n of the l i n e of the b a t h y m e t r i c  s e c t i o n in F i g .  towards  I n t e r t r o u g h A r e a the  cross-  e x a g g e r a t i o n of the com-  i n the Sound appears v e r y subdued. the g r a d u a l deepening of the  shelf  1  BATHYMETRIC  CROSS SECTION  F i g u r e 17  K  S  V  PETROLOGY OF GRAVELS AND MINERAL CONTENT OF HEAVY MINERAL AND CLAY FRACTIONS  G r a v e l s common t o the d i f f e r e n t commonly c o n s i s t of p l u t o n i c  p h y s i o g r a p h i c a r e a s of the Sound most  rocks ( q u a r t z m o n z o n i t e , g r a n o d i o r i t e ,  diorites).  B a s a l t i c and g n e i s s i c p e b b l e s , a l t h o u g h common, a r e not as abundant. o c c u r r e n c e s of t u f f and c o n g l o m e r a t e were observed Trough a r e a s . gravels  P l a t e 1 c l e a r l y shows the g e n e r a l  from v a r i o u s  locations  in the  Isolated  I n t e r t r o u g h and North  s i m i l a r i t y of rock-types  in  in the Sound.  The heavy m i n e r a l f r a c t i o n  ( l e s s m a g n e t i t e ) of w i d e l y d i s t r i b u t e d sand  samples ( w i t h a p p r o x i m a t e l y e q u i v a l e n t mean g r a i n s i z e s ) was found t o be dominated by h o r n b l e n d e and e p i d o t e  (Fig.  18).  The l o c a t i o n of samples f o r which the m i n e r a l o g y of the c l a y was d e t e r m i n e d i s shown in F i g .  19.  fraction  X-ray diffractograms exhibiting  o f c l a y s t o v a r i o u s t r e a t m e n t s appear i n F i g . 2 0 .  responses  These t r a c i n g s a r e  represen-  t a t i v e o f what was observed f o r a l l samples examined and they i n d i c a t e the p r e sence of c h l o r i t e , montmori11 o n i t e  (apparently  m a t e r i a l , c h l o r i t e or hornblende and (b) v e r m i c u l i t e or mixed l a y e r c l a y s . presence of q u a r t z ,  d e r i v e d from both (a)  mica),  illite,  volcanic  k a o l i n i t e and p o s s i b l y  There i s a l s o e v i d e n c e t o suggest  the  f e l d s p a r and amphiboles in the c l a y f r a c t i o n .  Because of the l a c k of s t a n d a r d i z a t i o n  in procedures f o r computing  a b s o l u t e c o n c e n t r a t i o n s of c l a y m i n e r a l components ( P i e r c e and S i e g e l , c l a y m i n e r a l c o n c e n t r a t i o n s a r e r e f e r r e d to in terms of peak h e i g h t . cases the f i r s t The f i r s t  illite  o r d e r b a s a l c h l o r i t e peak i s e i t h e r e q u i v a l e n t o r d e r peak.  i n h e i g h t or  The f i r s t  slightly  o r d e r b a s a l peak  i s i n v a r i a b l y e i t h e r second l a r g e s t where the c h l o r i t e and mont-  m o r i l l o n i t e peaks a r e e q u i v a l e n t or t h i r d first  In a l l  o r d e r b a s a l c h l o r i t e and montmori11 o n i t e peaks a r e dominant.  h i g h e r than the montmori11 o n i t e f i r s t for  1969),  l a r g e s t where they a r e n o t .  o r d e r peak i s , w i t h o u t e x c e p t i o n , v e r y low ( s u g g e s t i n g  Kaolinite  the presence of  PLATE Visual areas. volcanic  comparison of g r a v e l  In a l l  these  rock types  in s e v e r a l  physiographic  l o c a t i o n s c o a r s e g r a i n e d p l u t o n i c and f i n e  rocks a r e dominant.  and were observed o n l y Intertrough Area.  I  Sedimentary rocks ( c o n g l o m e r a t e s )  grained are  in a few samples from North Trough and in the  rare  H  X-RAY  DIFFRACTOGRAMS  HEAVY  MINERAL  (LESS H E  FRACTION  MAGNETITE)  HORNBLENDE PEAK EPIDOTE PEAK  H E  268 .266  'W, '^-y'rW.v'H  578  Wvi'l'VY 34 6  ^W^A.'^ M7  1  V A ,  I'V'W™  -  "A 2 7  10 *26 50  F i g u r e 18  10 '28  © /  OUE£N  ;  CHARLOTTE  \\  /  I  V \ \  j  v y r  CD  I  \ ; l \  t51-  LOCATION OF SURFICIAL SAMPLES  FOR  /  C L A Y ANALYSES  J  T R I A N G L E IS. ft v  ~  v  —  *  <0 C O N T O U R S IN M E T R E S  20  NAUTICAL 130-  1  MILES  30  51  F i g u r e 20  52. o n l y t r a c e amounts of t h i s m i n e r a l ) .  The  and 17 A peaks a f t e r g l y c o l a t i o n s u g g e s t s 5  layer c l a y s .  o incomplete s e p a r a t i o n o f the 14 A the presence of v e r m i c u l i t e or m i x e d -  No a t t e m p t was made t o measure the peak h e i g h t o f t h i s  minor component.  presumably  53. SEDIMENT DISTRIBUTION F i g s . 21 and 22,  respectively,  c o n t o u r i n g of sample m e a n - s i z e d a t a .  compare hand c o n t o u r i n g and m e c h a n i c a l A v e r y few p o i n t s on the m e c h a n i c a l l y  c o n t o u r e d map have not been i n c l u d e d w i t h i n c o n t o u r s of the c o r r e c t  value, a  few c o n t o u r s appear to c r o s s a n d , i n some c a s e s , where the c o n t o u r i n g c o n t o u r v a l u e s a r e not v e r y c l e a r . r e c t i f i e d by (a) (finer grids,  tight,  These minor d e f i c i e n c i e s p r o b a b l y can be  h a v i n g a f i n e r c o n t o u r i n g g r i d g e n e r a t e d by the computer  however,  r e q u i r e more c o m p u t e r - t i m e f o r t h e i r g e n e r a t i o n , and  as a r e s u l t can c o s t c o n s i d e r a b l y m o r e ) , and (b) of a 10" p l o t t e r  is  (unfortunately,  time data were b e i n g  u s i n g a 30" p l o t t e r  instead  the l a r g e r p l o t t e r was not a v a i l a b l e a t  the  processed).  The reasonable a c c u r a c y of the m e c h a n i c a l c o n t o u r i n g d e v i c e a l l o w e d t o be used (where i n d i c a t e d ) Figs.  23,  t o c r e a t e maps showing g r o s s sediment  texture.  2k and 25 i l l u s t r a t e the d i s t r i b u t i o n of g r a v e l , sand and mud  on the Queen C h a r l o t t e Sound f l o o r , e m p h a s i z i n g a r e a s w i t h h i g h e s t tions.  it  concentra-  In a v e r y g e n e r a l sense the c o a r s e r sediments tend t o be c o n c e n t r a t e d  on s h a l l o w e r a r e a s . Gravel  Distribution  (Fig.  23)  G r a v e l s a r e c o n c e n t r a t e d a l o n g the s o u t h e r n f l a n k s of Cook Bank and Goose  I.  Bank and on c e n t r a ]  North Bank.  Gravels extend almost completely  a c r o s s the south arm of South Trough near i t s j u n c t i o n w i t h the main t r u n k South Trough.  of  Mi 1banke Sound i s g e n e r a l l y f r e e o f g r a v e l , but g r a v e l s do o c c u r  w i t h i n the n o r t h arm of South Trough in the v i c i n i t y of the subdued s a d d l e s j u s t e a s t of Goose  I.  Bank.  From the second s a d d l e t o the s h e l f edge a l o n g South  Trough g r a v e l  i s v e r y r a r e , or n o n - e x i s t e n t .  s i t e of the low r i d g e p a r t i a l l y a g a i n become abundant.  Only a t the s h e l f e d g e , a t  i n t e r s e c t i n g South Trough, do g r a v e l s  the  once  i fi I  -I '4  %3\  v  '.  ~"  QUEEN CHARLOTTE  ^  N  s  \  '  A  W  v  H CO  f\>  M E A N  PHI COMPUTER  |l|  PLOT  FINEST SEDIMENT  ( > 30 ) 131*  O  CONTOURS IN M E T R E S  NAUTICAL I  MILES :  "Si  I 'I  ro  HIGHEST  PERCENT  ,>  '  A  »  y  !  j(t\  \«  \  *~  GRAVEL COMPUTER PLOT  111  >60 o/  0  /  10  131*  , ' 0  C O N T O U R S IN M E T R E S  130'  20  NAUTICAL  1  MILES  VANCOUVER  30  129-  123  ISLAND  C e n t r a l Trough i s s i m i l a r l y almost f r e e of g r a v e l s l e n g t h , but g r a v e l s a r e found edge.  T h i s same p a t t e r n  in a s s o c i a t i o n w i t h t h e  edge.  its  entire  low r i d g e a t the  is r e p e a t e d in North Trough:  a r e low e x c e p t a t the r i d g e which a l m o s t p i n c h e s o f f  for  gravel  concentrations  the t r o u g h at the  G r a v e l s a l s o a r e abundant a t the s h e l f edge seaward of Goose  and in the  shelf  I.  shelf Bank  Intertrough Area.  'Sand D i s t r i b u t i o n  (Fi.g.  24)  Sand s i z e sediment  ' •. i  i s most common a l o n g the n o r t h edge of Cook Bank,  in a swath w h i c h e x t e n d s a c r o s s the main t r u n k of South Trough t o the s l o p e s of Goose  I.  Bank, on n o r t h e r n Goose I.  Bank and s o u t h e r n  southern  Intertrough  A r e a , and on the s o u t h e r n and n o r t h e r n p a r t s o f North Bank. F i g . 26 i s a map of t h e d i s t r i b u t i o n of the p r i n c i p a l to Curray  (1961) may be g e n e t i c a l l y  sand modes of each sample(which a c c o r d i n g linked).  It s u g g e s t s a r e a s where sediments  of a g i v e n modal s i z e and hence h a v i n g a common h i s t o r y a r e c o n t i n u o u s one p h y s i o g r a p h i c discussion  unit  to another.  Of p a r t i c u l a r s i g n i f i c a n c e t o a subsequent  i s the p o s s i b l e l i n k s t r e t c h i n g a c r o s s C e n t r a l Trough between  Bank and Goose  I.  Mud D i s t r i b u t i o n  North  Bank. (Fig.  25)  In v e r y few p a r t s of t h e Sound f l o o r do sediments c o n s i s t of mud.  from  Of the t h r e e  l o c a l i t i e s where mud c o n t e n t  mouths of M i l b a n k e and Queen's Sound, and n o t ,  predominantly  i s h i g h , two a r e at  strictly  the  s p e a k i n g , on the  shelf.  The muddiest sediments on the s h e l f proper a r e i n n o r t h e r n Central Trough. content  is r e l a t i v e l y  h i g h i n patches n o r t h of the Sea O t t e r Group of s h o a l s  the n o r t h arm of South Trough; South Trough;  Mud  i n the f l a t a r e a a t the edge o f the s h e l f  a l o n g the s o u t h e r n p a r t of C e n t r a l Trough;  d e p r e s s i o n s o f North Trough;  i n the d e p r e s s i o n s of  near the c e n t e r of the a r e a seaward of Goose).  i n the deepest  Intertrough Area;  Bank ( i n t h i s  last  and  locality  in  in  ^">_  >UE£N CHARLOTTE 52  -\\\  •:  )  * . ^ - ! r  B.C MAINLAND  -3 \  CD  'J1  HIGHEST  PERCENT  MUD COMPUTER  60% j£t>90% 131  C O N T O U R S IN M E T R E S  PLOT  CD  ro  PRINCIPAL  SAND  MODE  (PHI)  CONTOURS IN METRES  NAUTICAL 1  MILES  61.  the s u r f i c i a l muds were found t o be i n p a r t s i m i l a r in c o l o u r and c o n s i s t e n c y t o the muds found deep i n c o r e s o b t a i n e d i n n o r t h e r n C e n t r a l T r o u g h ,  and which  are discussed below).  D i s t r i b u t i o n o f Mud-Sand R a t i o The r a t i o of mud t o sand ( F i g . r i d g e which a l m o s t p i n c h e s o f f at the  27)  i s v e r y low on the b a n k s , a t  North Trough a t the s h e l f b r e a k , near s h o r e ,  i n t e r s e c t i o n of the s o u t h . a r m of South Trough w i t h  one segment of North Trough,  the  i n two s e p a r a t e p a r t s o f the  i n the v i c i n i t y of the Sea O t t e r Group o f s h o a l s .  i t s main t r u n k ,  in  I n t e r t r o u g h A r e a and  It s h o u l d be noted  further  t h a t a l t h o u g h low r a t i o s e x t e n d a c r o s s the NW margin of Cook Bank and the northerly  and s o u t h w e s t e r l y p o r t i o n s of Goose  I.  Bank, they a r e  restricted  t o the s h a l l o w e s t p a r t s of North Bank.  D i s t r i b u t i o n of Standard D e v i a t i o n Values D i s t r i b u t i o n of these v a l u e s observed:  that better s o r t i n g  s o r t e d sediment  is found:  i n a band t h a t extends  (Fig.  i s commonly  i s r e l a t e d t o h i g h sand c o n t e n t .  at the s h e l f edge;  from M i l b a n k e Sound,  A r e a and then f o l l o w s C e n t r a l Trough; a t the  28) suggest what  in North Trough;  i n c l u d e s much o f the  Very  poorly  on North Bank; Intertrough  j u s t n o r t h of Sea O t t e r Group of s h o a l s ;  i n t e r s e c t i o n of the s o u t h arm o f South Trough and i t s main t r u n k and near  the mouth of F i t z h u g h Sound.  In s h o r t ,  the d i s t r i b u t i o n of v e r y p o o r l y  sediment seems t o c o r r e s p o n d t o t h a t o f a r e a s r i c h  in mud or  sorted  gravel.  D i s t r i b u t i o n of Skewness V a l u e s Skewness v a l u e d i s t r i b u t i o n butions with a coarse t a i l with fine t a i l s with  (Fig.  29)  suggests that g r a i n s i z e  distri-  g e n e r a l l y are a s s o c i a t e d w i t h bank tops and those  troughs.  ^3 W c  ro  ro  oo  STANDARD +51*  DEVIATION WELL SORTED SEDIMENT  ^-O  CONTOUR  INT. = 0.50  CONTOURS IN METRES  NAUTICAL 1  MILES  51'  t'/  SKEWNESS ^  COMPUTER PLOT.  Q  <' **"""/ f* >^ T R I ( N G L E  STRONG COARSE SKEW INTERMEDIATE STRONG FINE SKEW  ,--J  L\  CONTO'JPS  IN M E T R E S  130*  NAUTICAL 1  MILES  30 =1  IS  65. D i s t r i b u t i o n of K u r t o s i s  Values  Kurtosis value d i s t r i b u t i o n leptokurtic  (peaked s i z e d i s t r i b u t i o n )  t h a t of the b e t t e r (broader, f l a t t e r poorer  i s shown in F i g . 3 0 .  sorted  Characteristic  The d i s t r i b u t i o n  sediments g e n e r a l l y  s o r t e d s e d i m e n t s , whereas d i s t r i b u t i o n  i s the same as of  platykurtic  s i z e - d i s t r i b u t i o n c u r v e ) sediments equates w i t h t h a t  Sorting,  samples a n a l y z e d  Skewness and Mean S i z e :  sorting  Summary  (standard d e v i a t i o n )  is summarized in F i g . 3 1 ;  characteristics  skewness v a l u e s of  for  A l t h o u g h samples do not show  c l u s t e r i n g on the p l o t  sorting,  of mean s i z e v s .  groups w i t h d i s t i n c t i v e  characteristics.  s i z e c h a r a c t e r i s t i c s of the g r o u p s , w i t h which they are a s s o c i a t e d . (1965) c l a s s i f i c a t i o n .  Areal  they have been s u b d i v i d e d Table  I summarizes the  into  grain  and i n d i c a t e s dominant p h y s i o g r a p h i c  S o r t i n g has been d e s c r i b e d a c c o r d i n g to  areas Folk's  The g r a i n s i z e c l a s s i f i c a t i o n of the samples w i t h i n  D i s t r i b u t i o n of Sediment  the  Groups  33) of the d i s t r i b u t i o n of the n i n e sediment groups  I c l a s s i f i e s the Sound f l o o r  the b a s i s of sediment Central is  distinct  i s based on the g r a i n s i z e o f the sample mean.  The map ( F i g . Table  all  selected  samples a r e shown s i m i l a r l y in F i g . 3 2 .  groups  of  sediments.  Mean s i z e v s .  eight  of  largely  on i t s w e s t e r n and s o u t h e r n s e c t i o n s by groups Goose  a l s o common southwest  1 and 2 , Group 4  t o the margins of the bank and group 3 sediments a r e  i n s i d e the e a s t e r n margin of the bank.  straddle northern  b a s i s as on  character.  and s o u t h e r n Cook Bank i s dominated by groups  restricted  aligned just  not so much on a p h y s i o g r a p h i c  of  I.  Bank and s o u t h e r n  of Goose  i s c o v e r e d m a i n l y by groups  I.  Bank.  1, 2 and 3 ;  Goose  1 and 2.  I.  Bank i s mantled  Group 4 sediments  Intertrough Area.  Group 4 i s  The s h a l l o w c e n t r e of North Bank the n o r t h e r n and s o u t h e r n margins  67-  <r>-r  SIZE  MEAN •  COOK  vs.  STANDARD  DEVIATION  FOR  SAMPLES  BANK  •  GOOSE Is SANK  o  NORTH BANK LAREDO Srf-, MILBANKE Sd,NORTH ARM a MAIN TRUNK SOUTH TROUGH  •  SOUTH ARM SOUTH TROUGH  a  CENTRAL TROUGH  a  NORTH  .  *  I  TROUGH  SEAWARD of GOOSE Is. BANK x  INTERTROUGH  c  COASTAL  A & .}  M  B  -  A'  f  O  /  o ' I  \  o  (  cP  <  0*  a",  0-1  r  S.H.  4 i i i  * S.K/  a  Q o  00  —  a a  0.4  * SHELL HASH — i — 08  .2  1.6  STANDARD  - 1 —  i —  20  2.4  DEVIATION  Figure  31  — i —  2.8 ( 0 )  3.2  3.6  4.0  68.  SELECTED <D-|  FOR  SKEWNESS  SAMPLES  VALUES  -.10  FIG. 31  IN  .12  .30  .10  .25  .53 .58  „  .S3 <o-i  . « 2  -  3  2  13  ^  ;  "  '*•» .20  H  2 5  1  ,v,-J  -°l.2  2  _  M  ..7l. -  S o 50  .3fc  «  1.7  1-2  ,.2 , ,  1.6 - 5 2  .12  (.2  .93 2  .26  . 0 9  9  -.32.  -.24  _.t0  _  ~ -.22 "  8  -.45-  -.56  -.55  ?  -.21  f c 5  S  _-5  _  -•*'  .38 ( 5  -.45 -.43  7  -.22  -.04  .72  5  -.iO  .10  -.33  -.12  .'2 .02  -'  -•  3  ,<?2. .03  i 0  '.01  M  .'35  . 4 2  .36 .55  ?i  .91 .91  .27  .55  .35  .42  - .^0  .84 . 3 9  i  .82  2.5  1.5 2.0  -7| ^  04~  08~  L2  16  STANDARD  -i  2.0  DEVIATION  F i g u r e 32  1  1  2*  '  2.8 (0)  3.2 '  .  r-  3.6  4.0  69.  TABLE I  Group Numbe r  Summary:  Characteristic Sorting, Skewness and Mean S i z e  Well sorted to very p o o r l y fine-skewed, gravels  2a  8  Dominant P h y s i o graphic Areas  sorted,  Cook Bank, Goose Bank, N o r t h Bank  I.  P o o r l y s o r t e d to v e r y - . p o o r l y s o r t e d , weakly f i n e - t o s t r o n g l y c o a r s e . skewed, medium t o v e r y c o a r s e sand -  Goose I. Bank", Cook Bank, North Bank  M o d e r a t e l y w e l l s o r t e d to m o d e r a t e l y s o r t e d , f i n e - s k e w e d , c o a r s e sand  C o a s t a l and Goose I. Bank  Moderately well sorted to poorly s o r t e d , c o a r s e - s k e w e d , medium t o coase sand  Cook Bank, Goose Bank  W e l l s o r t e d to m o d e r a t e l y s o r t e d , c o a r s e - t o f i n e - s k e w e d , medium t o v e r y f i n e sand  Goose I. Bank, Cook Bank  Moderately to poorly s o r t e d , f i n e skewed, f i n e t o v e r y f i n e sand  Laredo S d . , Mi 1banke S d . , n o r t h arm and main t r u n k of South Trough  Moderately s o r t e d , fine-skewed, f i n e sand t o v e r y p o o r l y s o r t e d , skewed, v e r y f i n e s i l t  F i n e s a n d : Laredo Sd. Mi 1banke S d . , and South Trough Fine s i l t : Centra1 Trough  fine-  1  I.  Very p o o r l y s o r t e d , c o a r s e - a n d f i n e skewed, c o a r s e sand t o c o a r s e s i l t  No dominant p h y s i o graphic association  Very p o o r l y s o r t e d , weakly c o a r s e skewed, sands to f i n e - s k e w e d g r a v e l s  Intertrough Area  — /  r  ;  V  —  . /  -f-  ^ MV  _  6 ** W  ,  8  pUEEN CHARLOTTE 4-52*-;* i  1^7/6  . 6VP-',-  \A/\  tr 1  3  'l-t^  )  6  fo  •  «f  „  , ) - J ' '  /  (  /H (  t /g  i  k ,n  •i  •  u '' '  \  v > "8  x '•  B.C MAINLAND  2.'  I \2  •0)  Hj  -2,  H "  »  —'  .  4 \ ^ J > -'ft  /  5!  .7 '  .8 6> ~  r5 SORTING-SKEWNESS-MEAN  SIZE ^o.  4*- GROUP DISTRIBUTION  >  v  C, ^ \ M'^  •4 TRIANGLE IS. fir  10 131  CONTOURS IN METRES I  1301  NAUTICAL  V •<  OTTER '""•^ GROUP,' ,  ^ w  4 •,  -S  °  .  6  •  129  \ o  ^  ./  .1 "SM/ VANCOUVER  20 MILES  'Shell  \  •  123*  ISLAND  71. o f the bank by groups 2 and k;  the e a s t e r n m a r g i n i s c h a r a c t e r i z e d by group  6 and the w e s t e r n by groups 7 and 8. Troughs a r e f l o o r e d m a i n l y w i t h Group 6 s e d i m e n t . s h o u l d be n o t e d :  the  Certain exceptions  l i n e of groups 7 and 8 on the r i d g e e x t e n d i n g west  the Sea O t t e r Group of s h o a l s a c r o s s the south arm of South Trough,  from  the groups  k and 5 e x t e n d i n g from n o r t h e r n Cook Bank a c r o s s the main t r u n k of South Trough t o Goose and Goose  I.  Bank, the group 8 sediments near the s a d d l e between Goose I s l a n d , the group 7 sediments on the s a d d l e between Goose  I.  I.  Bank  Bank  and Hakai Passage and group k a t the bend i n C e n t r a l Trough and in c e n t r a l North  Trough. Intertrough Area  i s c h a r a c t e r i z e d by an a n o m a l o u s l y h i g h  of group 8 sediments a s s o c i a t e d w i t h group 6 and 7r e p r e s e n t e d by group  1 sediment.  proportion  The s h e l f edge i s m a i n l y  72.  ORGANIC CARBON AND CaCO} CONTENT OF SEDIMENTS  Organic  Carbon Organic carbon in the  low ( F i g .  34).  1 ess-then-grave 1 - s i z e fraction  is g e n e r a l l y  very  V a l u e s were h i g h e s t at the deep mouths of Queen's Sound (3.6%)  and M i l b a n k e Sound ( 3 . 3 % ) ,  lowest on the banks ( g e n e r a l l y  moderate s o u t h e a s t of Goose Trough and in C e n t r a l  I.  Trough.  Bank  l e s s than 0.2%) and  and near the seaward t e r m i n u s of  South  Comparison of o r g a n i c carbon and mud d i s t r i b u -  t i o n s u g g e s t s a p o s i t i v e c o r r e l a t i o n between these two v a r i a b l e s which is c o n f i r m e d i n F i g . 35 (a graph of mud-sand r a t i o v s . w i t h o r g a n i c carbon c o n c e n t r a t i o n above  organic content  f o r samples  1.0%).  C a l c i u m Carbonate Calcium carbonate ( c o n s i s t i n g shell  fragments)  (Fig.  36).  of the  Seventy-five  predominantly of foram t e s t s and m o l l u s c a n  1 ess-than-grave 1-size fraction  is a l s o s p a r s e as a r u l e  p e r c e n t of the samples c o n t a i n 4% or  c o n c e n t r a t i o n s were observed on the b a n k s .  less.  The  Two s a m p l e s , a l m o s t e n t i r e l y  posed of m o l l u s c a n s h e l l h a s h , were r e c o v e r e d from Cook Bank near the west t i p of Vancouver  I.  One sample from Goose  I.  com-  north-  Bank c o n t a i n s as much as  26% CaCO^ c o n s i s t i n g p r i m a r i l y of m o l l u s c a n f r a g m e n t s .  On North Bank many of  the samples have CaCO^ c o n c e n t r a t i o n s  in e x c e s s of 20% (one  Here however,  is foraminifera1 t e s t s .  the p r i n c i p a l component  highest  i s as h i g h as 51%). In f a c t ,  in most  samples below 100 metres f o r a m i n i f e r a 1 t e s t s p r o v i d e most of the CaC03, w h e r e a m o l l u s c a n fragments are the dominant c o n s t i t u e n t at s h a l l o w e r d e p t h s . are uniformly quite  low in c a l c i u m c a r b o n a t e , however,  5  Troughs  j u s t n o r t h of Cook Bank  one sample has 28% CaCO^ and one sample at the s h e l f break i n South Trough has 15% CaCO^.  At the s h e l f break j u s t n o r t h of the seaward end of C e n t r a l  one sample has 12% CaCO^. i n e x c e s s of  Seaward of Goose  10%, one c o n t a i n s 21%.  The  I.  Trough  Bank, of f i v e samples w i t h CaCO^  Intertrough Area is moderately r i c h  in  CD  K  Hoo  '  WT. P E R C E N T IN MUD-SAND FRACTIONX/?  '  \  \  ORGANIC CONTOUR  131*  C  >  'f  \ V  INT. = 0.2%  CONTOURS IN METRES  NAUTICAL 1  MILES  CO-,  74.  CJ.  O J  < CO  Q0  3  CD  CVJH e  1 1 %  r  2  ORGANIC  3  C  Figure  CONTENT 35  CaCOj c o n s i s t i n g m a i n l y of subequal p a r t s o f s h e l l hash and foram t e s t s . High c o n c e n t r a t i o n s of c a l c i u m c a r b o n a t e attributable  t o an abundance of f o r a m i n i f e r a l  coarse, poorly-sorted  sediments  (Appendix).  ( g r e a t e r than 10%), m o s t l y  t e s t s , a r e u s u a l l y found  in  77. FACTOR ANALYSIS OF SEDIMENTS  (A)  The p r e c e d i n g r e s u l t s suggested c o r r e l a t i o n s between sample d e p t h , t e x t u r e and o r g a n i c C and CaCO^ c o n t e n t .  In o r d e r t o e v a l u a t e the  pondence between these v a r i a b l e s more t h o r o u g h l y , t a k e n o f t e n sample c h a r a c t e r i s t i c s : skewness, k u r t o s i s , gravel  content,  f a c t o r a n a l y s i s was u n d e r -  d e p t h , mean s i z e , s t a n d a r d d e v i a t i o n , sand c o n t e n t , mud c o n t e n t , and o r g a n i c  c a r b o n and c a l c i u m c a r b o n a t e c o n t e n t o f the l e s s - t h a n - g r a v e l - s i z e Initial of v a r i a b i l i t y . (resulting  corres-  fraction.  a n a l y s i s produced f i v e f a c t o r s which a c c o u n t f o r 92 p e r c e n t In o r d e r t o a l l o w f o r up t o 10 p e r c e n t e r r o r  in d a t a v a l u e s  from f a u l t y s o u n d i n g , p o s i t i o n i n g , s a m p l i n g or a n a l y t i c a l  procedures)  a n a l y s i s was r e p e a t e d w i t h a s p e c i f i c a t i o n t h a t s u f f i c i e n t f a c t o r s be c r e a t e d t o account f o r  l e s s than 90 p e r c e n t of v a r i a b i l i t y .  This resulted  f o l l o w i n g varimax f a c t o r s c o r e m a t r i x which a c c o u n t s f o r 86 p e r c e n t  i n the of  v a r iab i 1 i t y :  TABLE FACTOR  II 2  1  3  4  VARIABLE depth mean s i z e s t a n . dev. skewness kurtos i s % gravel % sand % mud % organic C % CaCO,  0.053 0.959 - 0 . 0 3 9 0.686 - 0 . 5 5 5 1.592 1.480 0.780 - 1.091 2 . 104 1. 109 - 0 . 3 8 0 1.730 0.378 - 0 . 5 9 4 1.146 -1.279 -0.587 0 . 3 4 0 - 1.681 0.160 0 . 3 6 4 0.710 1 .602 1.418 0.248 0.609 0 . 4 6 4 0.335 -0.495  Of the f o u r f a c t o r s o n l y the f i r s t ( i n d i c a t e d by s c o r e s h i g h e r than -  1.0)  f a c t o r s d e s c r i b e s two sediment types parenthesis):  Factor  -2.847 -0.208 -0.313 0.039 0.234 0.565 -0.930 0.490 0.423 0.308  three e x h i b i t e d strong  correlations  between s e v e r a l v a r i a b l e s .  (alternate characteristics  1 r e p r e s e n t s samples w i t h h i g h (low)  low ( h i g h ) skewness, and low ( h i g h ) k u r t o s i s .  Each of  indicated  the  in  standard d e v i a t i o n ,  F a c t o r 2 r e p r e s e n t s samples w i t h  78. high (low)  standard d e v i a t i o n ,  low ( h i g h ) % s a n d . h i g h (low)  h i g h (low)  Factor 3 represents  skewness, h i g h (low)  samples w i t h f i n e  % gravel,  ( c o a r s e ) mean s i z e ,  % mud, h i g h (low)% o r g a n i c c a r b o n and low ( h i g h ) % ' g r a v e l .  k appears t o r e p r e s e n t  and  samples which a r e deep ( s h a l l o w ) and have h i g h  Factor (low)  %  sand. Maps accompanying the c o m p u t e r - c a l c u l a t e d f a c t o r a n a l y s i s  indicate  the  degree and manner i n which a sample i s d e f i n e d by a p a r t i c u l a r f a c t o r .  The  completeness of c o r r e l a t i o n  r a n g i n g from -99 t o  +99  i n d i c a t e s t r o n g agreement between  the  a t the sample l o c a t i o n :  is  i n d i c a t e d by v a l u e s  high values  r e l a t i o n s h i p of v a r i a b l e s  i n the sample and i n the f a c t o r .  For e x a m p l e ,  in  the case o f f a c t o r 2, i f a v a l u e of -90 o c c u r r e d a t the s i t e o f a sample on the map, t h i s low % g r a v e l  i n d i c a t e s the sample has low s t a n d a r d d e v i a t i o n ,  low skewness,  and h i g h % s a n d , whereas a v a l u e o f +90 at the sample s i t e  c a t e s j u s t the r e v e r s e  indi-  conditions.  Six resonably d i s t i n c t  (but  still  overlapping)  sediment  populations  d e s c r i b e d by the t h r e e s e l e c t e d f a c t o r s were d e t e r m i n e d by i s o l a t i n g samples on the f a c t o r maps which had v a l u e s e x c e e d i n g t 50. t o w h i c h f a c t o r s d e s c r i b e samples w i t h i n  III  shows the  III  ing g r a i n s i z e , but by no means i s t h i s the o n l y ,  in o r d e r of g e n e r a l l y  variables:  decreas-  or even most s i g n i f i c a n t  For o n l y two of the s i x p o p u l a t i o n s d e f i n e d  s i z e one o f the more c r i t i c a l  degree  populations.  The p o p u l a t i o n s a r e a r r a n g e d on Table  t i n c t i o n between them.  Table  dis-  i s mean  p o p u l a t i o n s A and F a r e best  defined  by t h e i r c h a r a c t e r i s t i c mean s i z e , % g r a v e l , % mud, % o r g a n i c carbon and d e p t h ; p o p u l a t i o n s B and D a r e best d e f i n e d by t h e i r c h a r a c t e r i s t i c s t a n d a r d skewness, % g r a v e l characteristic  and % s a n d ;  deviation,  and p o p u l a t i o n s C and E a r e best d e f i n e d by  standard d e v i a t i o n s ,  skewness and k u r t o s i s .  V a l u e s of  variables  used t o d e s c r i b e the p o p u l a t i o n s on a map of the a r e a l d i s t r i b u t i o n of populations  (Fig.  their  37) were drawn from samples which had the mean degree  sediment of  TABLE I I I  POPULATION  A  B  C  SYMBOL  @ © (5)  FACTOR  3 -53% 2  1  0 F  •  7  4  %  -82%  b 9 / o  +66%  _  6 5 %  -52%  1  E  +  +56%  2  D  RANGE AND MEAN DEGREE OF DESCRIPTION BY FACTOR  -99% ->57% " +97%  8 8 /  °  +86%  +51% 3 56%  +  +  7  8  %  MEAN  242  "5,6  0.6  22  -3.0  3.0  353  -3.3  352  -1.9  75 395  1.5 -0.4  37  SKEW.  KURT.  %G RAVEL  1.9 0.6  8.0 1.4  74.9  23.2  ft 1.9  0,9  3.4  80.2  17,8  3.4  0.3  1.3  57.4  2.7  -0.6  1.6  2?3  0'/2  1 '/l  2.8  0,7  0. 1  2.8  147  2.6  0.9  0.6  2.2  132  4.1  1.5  1.5  39  3.0  2.2  299  5.1  2.2  87  «  STAN. DEV.  EXAMPLE SAMPLE  3.9  2.2  %SAND  i.oo  %ORG. CARBON  % CaC03  ft  0  0  0  1.9  0.3  4  40.5  2.1  0.2  3  19.. 5 46.9  75.1 50.6  5.4  0.4  2.5  0. 1  3 26  0.0  97,4  2.6  0. 1  1  0.0  91.2  8.8  0.3  1  7.5  0.0  61.6  38.4  1.4  3  1.1  4.6  1.1  85.2  13.6  0.5  1  0.8  2.4  0,0  50.3  49,7  1.2  0  80.1  19.0  1. 1  4.2  0,9  0  %MUD  most s i g n i f i c a n t v a r i a b l e s w i t h i n a p o p u l a t i o n  X  0.6  0  !f\.  mm  (•)(<-  )• ft \ O U E E N ^ H A R L O T T E . 'U^&IS. >  B.C.  M A I N L A N D  CD -0  •  "o  0. SEA  SEDIMENT POPULATIONS ./ / DETERMINED BY N \  Q  ^ /  FAC  r • o ° o V, •/ ® . \  |!-J2  ®  IB  3 Z 01 /.* ff 6 01 29 Of 0 6 5.2 00 f l * Of 0 0 I j t,It /•8 82 00 »J 5 its OS 1 S1 15 oi ; ? 0.0 1?7 70 i 13 S Mf«N cco SKEta'KURTcuffl SAND Mi/p tIZC 3 TAN V. V. % % f» CONTOURS IN METRES  3  V A N C O U V E R  10 NAUTICAL 1  °  -,®- °  OR ANALYSIS' 0» 29 10} 00 0.0 0 -32 3.7 0.4 /1 7S 5 »l Oi 4  51  OTTER ( GROUP,'  MILES  ISLAND 00  1?9  123  o  d e s c r i p t i o n by the p a r t i c u l a r  factor  representing  the p o p u l a t i o n .  The s t r i k i n g s i m i l a r i t y between the d i s t r i b u t i o n s ment groups i n F i g . 33 and p o p u l a t i o n s  of d i f f e r e n t  in F i g . 37 f u r t h e r j u s t i f i e s  sedi-  applica  t i o n of f a c t o r a n a l y s i s as a r a p i d and r e l i a b l e means of d i s t i n g u i s h i n g major combined t e x t u r a 1 - c o m p o s i t i o n a l of heterogeneous  samples.  the  p o p u l a t i o n s w i t h i n a v e r y l a r g e group  82. SEDIMENT COLOUR DISTRIBUTION As suggested by the photograph of the sediment mount ( P l a t e more o r g a n i c - r i c h Rock C o l o r C h a r t ) ,  trough sediments are g e n e r a l l y o l i v e gray (5Y 3/2) whereas b e t t e r  sorted, coarser,  less o r g a n i c - r i c h  ments a s s o c i a t e d w i t h banks tend to be l i g h t o l i v e gray of  i r o n - s t a i n e d sands on banks ( e . g .  or on the m a i n l a n d c o a s t 6/6).  II),  (G.S.A. sediPatches  samples #46, #286, and #473 i n F i g .  (sample #230) tend t o be d a r k y e l l o w i s h orange  Patches of m o l l u s c a n s h e l l hash ( o f f  t o be g r a y i s h y e l l o w  (5Y 5/2).  finer,  n o r t h e a s t e r n Vancouver  (5Y 8/4) - y e l l o w i s h gray (5Y 7/2).  I.)  12) (10YR tend  \ CO  PLATE  Sediment Mount  II  I n d i c a t i n g Sediment  Distribution  Colour  Sediment Mount (Sediment Colour PLATS II  Distribution) 4  85. FACTOR ANALYSIS OF SEDIMENTS (B) A l t h o u g h the f o u r t h f a c t o r a d e q u a t e l y d e s c r i b e s o n l y a v e r y small p o r t i o n of  the s a m p l e s , i t s t i l l  pro-  s u g g e s t s s e v e r a l r e l a t i o n s h i p s between sam-  p l e d e p t h and sand c o n t e n t which c o u l d be h e l p f u l  i n the i n t e r p r e t a t i o n of  Queen C h a r l o t t e Sound s e d i m e n t a t i o n . On the b a s i s of the f o u r t h f a c t o r , t o whether  they e x h i b i t  (a)  samples were c l a s s i f i e d a c c o r d i n g  h i g h p o s i t i v e c o r r e l a t i o n between depth and %  sand (sha'l low samples w i t h tow % sand or deep samples w'ith h i g h % s a n d ) , (b)  h i g h n e g a t i v e c o r r e l a t i o n between depth and % sand (deep samples w i t h  little  sand or s h a l l o w samples w i t h much s a n d ) , or  correlation. in F i g . 3 8 .  The d i s t r i b u t i o n of  (c)  i n t e r m e d i a t e degree of  the type of sample c o r r e l a t i o n i s shown  A q u a r t e r of the samples e x h i b i t i n g h i g h n e g a t i v e c o r r e l a t i o n ,  but which a r e g r a v e l l y ,  were mapped w i t h the " i n t e r m e d i a t e " samples so as to  l i m i t the h i g h n e g a t i v e c o r r e l a t i o n c l a s s i f i c a t i o n to those i n which sand v a r i e s s o l e l y as a f u n c t i o n of Fig. depth)  the amount of mud.  3 8 r e v e a l s t h a t samples w i t h a n o m a l o u s l y low sand (for  a r e l a r g e l y r e s t r i c t e d t o Cook and, Goose I.  relatively  rich  Central Trough,  in sand ( f o r  t h e i r depth)  Bank.  their  Those  a r e s c a t t e r e d i n p a r t s of South and  but a r e e x c e e d i n g l y abundant i n North Trough.  These samples  tend to be r e s t r i c t e d t o the o u t e r s h e l f , whereas samples w i t h h i g h  negative  c o r r e l a t i o n and no g r a v e l s a r e g e n e r a l l y r e s t r i c t e d to the inner h a l f of  the  shalf. On a p l o t of  the mud-sand r a t i o v e r s u s sample depth ( F i g .  c o r r e l a t i o n samples (x)  p l o t w i t h i n a broad e n v e l o p e .  39), n e g a t i v e  Most of those above  t h i s e n v e l o p e have l i t t l e mud, but most of the samples p l o t t i n g below i t muddy ( a l t h o u g h some c o n t a i n g r a v e l s ) w e s t e r n Queen C h a r l o t t e Sound.  are  and are l a r g e l y c o n c e n t r a t e d i n s o u t h -  4  CO  00  CORRELATION OF SAMPLE DEPTH a % SAND O HIGH POSITIVE  I  \  (shallow)  HIGH NEGATIVE  H  WGHP* ** 1  J o  ^  W  NAUTICAL  1  AT ^ n U  «,  \ Q.v<~."  HIGH POSITIVE (deep) INTERMEDIATE CONTOURS IN METRES I  /  MILES  ^\^-"V  S/T)  s;  &  QV  t  ' °  .  32  \  p  \  ^ T W *  W  3 O  ^ V  VANCOUVER ^  L_  123  1  S  L A N D  CO  ON  87.  I" SAMPLE x  .23  DEPTH  vs. %MUD / %SAND  samples without grovel which are shallow and have a low mud-sand rciio or deep and have a high mud-sand ratio. samples near the Sea Otter  Group of shoals  • 2.S  x  I— a.;  '12.0,4.*, 11 • 5.J • 15 >S.-1 1-2!  -!» 2.7  CM - •  3 f  •  «  0.1  0.2  at  OS  07  0.8  0.1  %MUD / %SAND  F i g u r e 39  1.2 1.3 1.4 15  1.8  88. GLAUCONITE PELLETS G l a u c o n i t e p e l l e t s can be d i s t i n g u i s h e d from f a e c a l p e l l e t s by t h e i r more i r r e g u l a r  shape and by t h e i r  l i g h t o l i v e , gray (5Y 5/2) - p a l e o l i v e a t e o l i v e brown (5Y 4/4)  (Plate  colour  llla.c).  in colour pellets  the g l a u c o n i t e  G l a u c o n i t e p e l l e t s are  almost c o m p l e t e l y e n c l o s e d i n foram t e s t s or e n t i r e l y (Plate  i s t h a t of  i s moder-  either  f r e e of s h e l l m a t e r i a l  P e l l e t s found p a r t i a l l y e n c l o s e d by t e s t s tend to be  than t e s t f r e e p e l l e t s .  I I Ib)  ( f a e c a l p e l l e t s tend to be  (10 Y 6 / 2 ) w h i l e  llla,b)).  (Plate  The most common form of  the  lighter  test-free  i n t e r n a l c a s t s of foram t e s t s .  F i g . 40 i s a map of  the d i s t r i b u t i o n of  i n the i n s o l u b l e f r a c t i o n of f r a c t i o n of s a m p l e s .  the .354 -  test-free glauconite  .500 mm ( 1 . 0 - 1 . 5 p h i )  pellets  sand-size  Pe11ets, though more common i n n o r t h e r n than i n  southern  s h e l f s e d i m e n t s , a r e not abundant on the s h e l f and a r e h i g h l y c o n c e n t r a t e d near the s h e l f Fig.  edge.  41 shows the mean s i z e v e r s u s  s o r t i n g of g i a u c o n i t i c s a m p l e s .  The p e l l e t s appear common i n most sediment g r o u p s . t r a t i o n s can occur  i n the f i n e r  s e d i m e n t s , more of  samples a r e g i a u c o n i t i c than are f i n e r , b e t t e r the c o a r s e s t , most p o o r l y  Although higher the c o a r s e p o o r l y  sorted sediments.  g i a u c o n i t i c samples were f o u n d :  Consequently, (a)  Intertrough Area, and,  (d)  at the r i d g e s  G l a u c o n i t e p e l l e t s a l s o occur  in f i n e r ,  at the edge of Goose  p e l l e t c o n t e n t s and i n d i c a t e s f o r e a c h : the t o t a l  Bank,  (c)  i n t e r s e c t i n g the seaward end of  I.  better  (a)  sand f r a c t i o n ,  i n the the  s o r t e d sediments  Bank and Cook Bank.  IV l i s t s samples w i t h the h i g h e s t observed  i s of  of  a t the r i d g e e x t e n d i n g west from the Sea  on the two s a d d l e s west of Goose I.  size-fraction  distinct  the h i g h e s t c o n c e n t r a t i o n s  (b)  Table  sorted  As noted above,  ;  O t t e r Group of s h o a l s ,  near the 100 metre contour  concen-  s o r t e d sediments tend t o be a s s o c i a t e d w i t h  p h y s i o g r a p h i c f e a t u r e s or a r e a s .  troughs.  only  test-free  glauconite  the p e r c e n t a g e t h a t the examined ( b ) p e r c e n t a g e of g l a u c o n i t e  pellets  m Semi-enc1osed and Free G l a u c o n i t e P e l l e t s (pel l e t s i z e : 1 . 0 0 - . 3 5 4 mm.)  Examples of Shapes of T e s t - f r e e Glauconi te Pel l e t s ( p e l l e t s i z e : . 3 5 4 - . 5 0 0 mm.)  PLATE  I II  <: r  x  ,  \  \  / OUEEN *CHARLOTTE  /CN-'  /  /  ./if  V  \  > +51*  P 7 ©  /  1  @  PELLET  G L A U C O N i T E P E R C E N T PART  IN"  (40)'^  INSOLUBLE  1.00-1.50  S A N D 10  131"  TRIANGLE IS.  CONTOURS IN METRES  SSL  20  NAUTICAL I  MILES  30 129  91. JL_  I  I  GLAUCONITIC  I  I  L  SAMPLE *  mean size vs. sorting  STANDARD F i g u r e  DEVIATION M  (0)  92. i n the i n s o l u b l e f r a c t i o n of the examined s i z e - f r a c t i o n and (c) the p e r c e n t CaCn3  is of the examined s i z e - f r a c t i o n .  the examined s i z e - f r a c t i o n  The t a b l e suggests  i s of the whole sand f r a c t i o n ,  t h a t the s m a l l e r i . e . the more the  m e a n . g r a i n s i z e of the sample i s d i s p l a c e d from the g r a i n s i z e of the examined s i z e - f r a c t i o n ,  the g r e a t e r  i s the p e l l e t c o n t e n t .  i n c o n t e n t of these samples w i t h h i g h e r due t o v a r i a t i o n s  concentrations  Thus, probably  i n r e l a t i v e amounts of a s s o c i a t e d d e t r i t a l  only t o a b s o l u t e d i f f e r e n c e s  in p e l l e t content.  differences is  m a t e r i a l and not  The t a b l e a l s o  suggests  t h a t e x c e p t f o r the two samples a t the seaward end of South Trough CaCOj c o n t e n t  (consisting  p r i m a r i l y of f o r a m i n i f e r a 1 t e s t s )  partly  ( # 1 5 2 ,  i s moderate t o  high. TABLE IV  Sample No.  P e r c e n t of t o t a l sand sample c o n t a i n e d i n the . 3 5 4 - . 5 0 0 mm ( 1 . 0 - 1 . 5 phi) size f r a c t i o n  Test f r e e g l a u c o n i t e p e l l e t content in i n s o l u b l e f r a c t i o n of examined f r a c t i o n  Percent CaCOj i n examined fraction  7 9  3 0  1 5 2  3 5  1 8 7  3 5  1  2  4 0 6  2 0  1  7 9  5 6  118  40 12  •  1  8 7  1  0  16  9 1  9  2 3  3 3 1  2 0  9  11  3 6 2  24  9  17  4 1 6  13  5  2 3  # 1 8 7 )  93. GRAVEL ROUNDNESS Plate tions  IV o f f e r s a v i s u a l  in different  comparison o f roundness o f gravel  physiographic  popula-  a r e a s o f 0_ueen C h a r l o t t e S o u n d .  On  most p a r t s o f t h e s h e l f i n c l u d i n g t h e s h e l f edge, g r a v e l s a r e g e n e r a l l y well is  rounded.  the Intertrough  (with  region  Area.  i n which angular  S i m i l a r l y angular  j u s t w e s t - o f Goose  t h e Sea O t t e r  gravels are prevalent  gravels frequently  b r y o z o a n a n d worm t u b e s ) w e r e a l s o f o u n d  saddles of  The o n l y  i n the v i c i n i t y o f the  I .-"Bank a n d o n t h e r i d g e e x t e n d i n g  Group o f s h o a l s .  encrusted  t o the west  PLATE  IV  Comparison of Gravel Roundness  In a l l p h y s i o g r a p h i c a r e a s of the Sound g r a v e l s a r e commonly well a t the  rounded —  subrounded except  I n t e r t r o u g h A r e a where  are d i s t i n c t l y angular.  they  95.  f  S ^  r  w  Cook  w  r  C  (  Bank Goose  |.  Bank  *  < f f  North  Bank  c J  Shelf  < t  v  • Shelf  r  -  SU  f e e  Edge  M% r  Edge Intertrough  Comparison  of  Gravel  PLATE IV  Roundness  Area  * 1 I c  \{f  96. SAND GRAIN SURFACE TEXTURES A t o t a l o f 36 r e p r e s e n t a t i v e p h o t o m i c r o g r a p h s were o b t a i n e d o f s u r f a c e t e x t u r e s o f sand g r a i n s from Cook Bank (#46 - sediment p o p u l a t i o n D ) , I n t e r t r o u g h Area (#282 - sediment p o p u l a t i o n C ) , and North Bank (#473 -  sediment  p o p u l a t i o n D) ( P l a t e s V, V I , V I I ) . F i v e f e a t u r e s c o n s i d e r e d by K r i n s l e y and Funnel  (1965) t o be d i a g n o s t i c  of g l a c i a l t r a n s p o r t were o b s e r v e d on the examined sand g r a i n s  (examples  listed  a c c o r d i n g t o sample number): (a)  conchoidal f r a c t u r e s varying #282L, #473 I)  (b)  very high r e l i e f  (c)  arcuate steps I, J)  (d)  parallel  (e)  i m b r i c a t e breakage b l o c k s  (e.g.  greatly  #282F, H , I,  J ;  #473E,  ( e . g . #282G)  Almost a l l g r a i n s appear w e l l  ( e . g . #282G) rounded and g l a c i a l f e a t u r e s a r e subdued.  T h i s smoothing o f f e a t u r e s may have r e s u l t e d e i t h e r ( K r i n s l e y and C a v a l l e r o ,  ( e . g . #46K,  #46G, #282 I and J , #473E)  ( e . g . #46B, E, H , K ;  striations  in size  from a b r a s i o n or s o l u t i o n  1970).  V-shaped d e p r e s s i o n s a r e e v i d e n t on photos #46,  I,  J and #473 K, L.  K r i n s l e y e_t aj_ (1964) found t h a t such f e a t u r e s c h a r a c t e r i z e q u a r t z g r a i n s beaches.  M a r g o l i s and Kennett  from deep-sea t u r b i d i t y - c u r r e n t  (1970) c l a i m e d these d e p r e s s i o n s can r e s u l t transport.  Chemical s o l u t i o n has a l s o been  p o s t u l a t e d as a means o f c r e a t i n g such f e a t u r e s so d e r i v e d Donahue,  from  (Schneider,  1970) a l t h o u g h when  they tend t o be a s s o c i a t e d w i t h s m a l l e r - s c a l e p i t t i n g  ( K r i n s l e y and  1968) which has a " b u c k - s h o t " a p p e a r a n c e .  S u r f a c e f e a t u r e s on g r a i n s #46D and L a r e s i m i l a r to those on q u a r t z g r a i n s d e r i v e d from weathered g r a n i t e s u b s e q u e n t l y abraded i n the beach e n v i r o n ment ( S c h n e i d e r , Stieglitz  1970).  G r a i n #46E s t r o n g l y  resembles a g r a i n d e s c r i b e d by  (1969) as h a v i n g g l a c i a l f e a t u r e s m o d i f i e d and subdued by wind a b r a s i o n .  PLATE V  Photomicrographs of Q u a r t z G r a i n s  Figure  in Sample #46  Magn i f i c a t ion  A  840  B  2000  C D E F G  1860 1760 920 870 850 . 1910 455 4500 1760 2050  K  I J K L  Text d i s c u s s i o n ( p . 9 6 ) i n d i c a t e s p o s s i b l e e n v i r o n m e n t a l a f f i n i t i e s f o r some of the s u r f a c e t e x t u r e s p i c t u r e in the p h o t o g r a p h s .  9 8 .  Photomicrographs of Q u a r t z G r a i n s PLATE V  in Sample tfkS  PLATE VI  Photomicrographs of Q u a r t z G r a i n s  i n Sample #282  Figure  Magni f i c a t ion  A B C D E F G H I J K L  870 415 1660 480 875 950 900 955 180 900 850 955  Text d i s c u s s i o n (p.96) i n d i c a t e s p o s s i b l e e n v i r o n m e n t a l a f f i n i t i e s f o r some of the s u r f a c e t e x t u r e s p i c t u r e d in the p h o t o g r a p h s .  100.  J  K  L  Photomicrographs of Quartz PLATE  Grains VI  i n Sample #282  101.  PLATE VI I  Photomicrographs of Q u a r t z G r a i n s  Figure A B C D E F G H I J K L  in Sample #473  Magni f i c a t ion 660 680 1300  370  725 325  370  335 300 725 680 ....1350  Text d i s c u s s i o n (p. 96) i n d i c a t e s p o s s i b l e e n v i r o n m e n t a l a f f i n i t i e s f o r some of the s u r f a c e t e x t u r e s p i c t u r e d i n the p h o t o g r a p h s .  Photomicrographs of Q u a r t z G r a i n s PLATE VI I  in Sample #473  103.  To summarize: glacial transport.  it appears all three samples have had a history of Of the three, sample #282 exhibits a greater variety of  features reflecting such a history.  Samples #46 and #473 show some evidence  of having features acquired in a beach environment superimposed on subdued features of glacial origin.  104.  HEAVY MINERALS Areal  D i s t r i b u t i o n of T o t a l  Heavy M i n e r a l s  A r e a l d i s t r i b u t i o n of heavy m i n e r a l c o n t e n t ( 2 . 5 - 4 . 0 phi)  in the . 1 7 7 -  .063 mm  s i z e f r a c t i o n of the best s o r t e d sands (sediment p o p u l a t i o n D)  i s shown i n F i g . 4 2 .  Total  sample c o n t e n t was e s t i m a t e d by m u l t i p l y i n g  p e r c e n t heavy m i n e r a l s in the examined s i z e f r a c t i o n by the p e r c e n t of total  sample r e p r e s e n t e d by the s i z e . f r a c t i o n .  samples w i t h mean s i z e s between .205 -  the the  This c a l c u l a t i o n revealed  .145 mm ( 2 . 3 - 2 . 8 p h i )  have the  that  highest  heavy m i n e r a l c o n t e n t s a n d , of t h e s e , the f o u r h i g h e s t f o r the e n t i r e Sound a r e l i s t e d i n the f o l l o w i n g t a b l e ( T a b l e V ) :  TABLE V P e r c e n t of T o t a l Sample C o n t a i n e d i n the . 1 7 7 ~ - 0 6 3 mm S i z e F r a c t i o n  Sample No.  Depth  #27 #63 #74 #180  91 metres 122 102 8 2 " 11 11  The samples f a l l metres.  P e r c e n t Heavy M i n e r a l s i n the . 1 7 7 " . 0 6 3 mm Size Fraction  7 0 51 84 39  26 51 34 57  % H.M. in Total Sample  18. 26 28 22  w i t h i n a f o r t y metre depth range c e n t e r e d about 1 0 0  Three of the samples are found in c l o s e a s s o c i a t i o n w i t h the canyons  at the n o r t h e r n margin of Cook Bank. o f Goose  I.  The f o u r t h  i s on the s o u t h w e s t e r n margin  Bank.  R e l a t i o n s h i p of M a g n e t i t e P e r c e n t t o Sample Depth, Heavy M i n e r a l and Mean S i z e  Percent  F i g . 43 shows % m a g n e t i t e in the heavy m i n e r a l f r a c t i o n of the  .177".063  s i z e f r a c t i o n of best s o r t e d sands p l o t t e d a g a i n s t % t o t a l heavy m i n e r a l s same s i z e f r a c t i o n , sample depth and sample mean s i z e .  in  o  PERCENT HEAVY  MAGNETITE  MINERAL  IN  FRACTION  VS. SAMPLE MEAN SIZE, DEPTH a %H.M. IN ANALYZED SIZE FRACTION  i 10  Sot,  %  r  r  20  30  MA6NETITE  > . •f  I  3Z$-»  10  _r  2 0  %  MAOHETITC O  Fipure  4-3  107. % m a g n e t i t e shows a g e n e r a l p o s i t i v e c o r r e l a t i o n w i t h % heavy m i n e r a l the examined f r a c t i o n of the s a m p l e s .  This simply r e f l e c t s  the f a c t t h a t ,  in  due  to v a r y i n g h y d r a u l i c e q u i v a l e n c i e s , when % heavy m i n e r a l s i s d e t e r m i n e d from <  the same s i z e f r a c t i o n  in samples of d i f f e r e n t mean s i z e s , not o n l y w i l l  the  sample w i t h the c o a r s e r mean s i z e tend t o have more heavy m i n e r a l s , but heavy m i n e r a l f r a c t i o n w i l l c o n t e n t of  i t s e l f appear t o have a c o r r e s p o n d i n g l y  i t s heaviest f r a c t i o n ,  the  higher  in t h i s c a s e , m a g n e t i t e .  The p l o t of % m a g n e t i t e v e r s u s sample depth s u g g e s t s t h a t w i t h i n a broad e n v e l o p e m a g n e t i t e d e c r e a s e s w i t h d e p t h . cause of the g e n e r a l  This trend  i s p r e d i c t a b l e be-  tendency f o r g r a i n s i z e t o d e c r e a s e w i t h d e p t h .  However,  two samples (#62 and #63) e x h i b i t a n o m a l o u s l y h i g h % m a g n e t i t e f o r t h e i r A t t e n t i o n has been drawn t o sample #63 in the heavy m i n e r a l d i s t r i b u t i o n . mineral content  It  i n the Sound.  depths.  i m m e d i a t e l y p r e c e d i n g s e c t i o n on  i s the sample w i t h the s e c o n d - h i g h e s t  heavy  Sample #62 was c o l l e c t e d near sample #63 at a  depth of 73 metres a n d , c o n s e q u e n t l y ,  a l s o l i e s near the canyons a t the margins  o f Cook Bank. The p l o t of m a g n e t i t e c o n t e n t v e r s u s sample mean s i z e g e n e r a l l y the e x p e c t e d d e c r e a s e in % m a g n e t i t e w i t h d e c r e a s i n g mean s i z e . several  samples seem t o have a n o m o l o u s l y low % m a g n e t i t e .  ( t h o s e w i t h sample numbers above them) a l s o have enough  However,  Most of  these  iron-stained  g r a i n s t o impart a y e l l o w i s h t i n g e t o the whole sample ( F i g .  indicates  quartz  12 and P l a t e s  II  and V I I I ) . E x a m i n a t i o n of Table VI than f i n e r g r a i n s sediments).  reveals that s t a i n i n g  i s more common on c o a r s e r  in y e l l o w i s h samples ( i n c l u d i n g both w e l l - a n d  poorly-sorted  I r o n - s t a i n e d Sands (sand g r a i n s i z e : .354 mil.)  N o n - s t a i n e d Sands (sand g r a i n s i z e : . 1 7 7 mm.)  PLATE V I I I  109. TABLE  VI  I r o n - S t a i n e d G r a i n Content I r o n - s t a i ned Sample No./  .177 14% 22% 15% 16% 12% 22% 23%  .250  -25% 30%  34%  .350 20% 31% 24% 36% 35% 27%  .500  f a l l w i t h i n sediment group 3 in F i g . 31  .707 31% 33%  ...3.2% 42%  40% 26% 32%  43%  It may a l s o be noted t h a t most of the w e l l - s o r t e d  group 3 s a n d s ) .  Fractions  S i z e F r a c t i o n (mm) '125  35 46 60 61 62 72 165 286 473  in V a r i o u s S i z e  38% 44%  i r o n - s t a i n e d sands  (see a l s o F i g . 33 f o r  l o c a t i o n of  110.  CHARACTER OF THE SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS  L o c a t i o n s a t which bottom photographs were o b t a i n e d a r e shown Fig. 44.  S e l e c t e d photographs have been grouped a c c o r d i n g t o  area (Plates  IX through XX).  in  physiographic  C h a r a c t e r i s t i c s of the Sound f l o o r seen i n the  photographs a r e summarized i n Table  VII.  Bottom r i p p l e s have been c l a s s i f i e d a c c o r d i n g t o Harms'  (1969) scheme.  Bottom fauna were t e n t a t i v e l y compared w i t h specimens o b t a i n e d in bottom samples w h i c h had been i d e n t i f i e d by r e f e r e n c e t o F l o r a and F a i r b a n k s ( 1 9 6 6 ) , (1966), Carl time  (1966)and G r i f f i t h  photograph  Bella Bella  Tidal  stages for  the Sound at  the  was o b t a i n e d were drawn from t i d e t a b l e s f o r the town of  (Anon.,  mainland c o a s t .  (1967).  Morris  1968) which i s on the c e n t r a l Queen C h a r l o t t e  Tidal  Sound  d i r e c t i o n s were d e t e r m i n e d from a summary o f  movements shown i n F i g . 6.  tidal  T i d a l - f l o w d i r e c t i o n s a r e meant o n l y as a g e n e r a l  i n d i c a t i o n of the d i r e c t i o n of w a t e r - m a s s movement and i t does not  consider  t i d a l e d d i e s which may be s i g n i f i c a n t over an a r e a as s m a l l as t h a t by the photographs  (at most two square m e t r e s ) .  The compass e v i d e n t  of the photographs has a d i a m e t e r o f 7-5 cm and the compass vane  covered i n most  i s 25 cm l o n g .  4 CD  LOCATIONS +51'  OF  CAMERA STATIONS  CONTOURS IN M E T R E S  V  TABLE VI I  Phys i o graph ic Area  Cook Bank  Bottom Photo Locat ion # k2S  Sed i ment Popu1 a t ion D  CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Inferred Tidal Di r e c t i o n Fauna Dept, i R i p p l e Ripple Or i e n t a t ion Direction of T i d a l Type Stage (m.) of Movement Trough Steep Face Current 80  1) Wave dominated c omb i ne d flow ripple 2) H i g h energy 1inguoid current ripple  k35  D (Group 3 coa rser, better sor t e d , i rons t a i ned sands occur in th i s area)  70  Weak wave generated s ymme t r i ca 1 r i pp1es  N-S  E  E  E-W  N  N  N-S  midflood  NE  Sparse, poss ib 1 y a few g a s t r o pods  Comments  Center photo is probably c l o s e - u p v i e w of combined flow ripples. Compass not i n c l u d e d i n o r i g i n a l photo. L i n g u o i d r i p p l e s appear t o be s u p e r - i m p o s e d on combined f l o w r i p p l e s .  Near peak of flood  NE  Genera I 1y s p a r s e , one c l u s t e r of gastropods (Margarites) o c c u r s by strand of k e l p.  Note dense n e t w o r k o f well-preserved snail tra i1s.  V  113. Phys i o graphic Area  Bottom Photo Location #  Sediment Popu1 at ion  Cook Bank (Contd)  437  gravelly shel 1 hash  Goose Island Bank  kiO  267  A-D  A-D  CHARACTER OF SOUND FLOOR AS 03SERVED IN BOTTOM PHOTOGRAPHS Tidal Ri pple Inferred Di riect ion Fauna Depth Ripple Orientat ion Di r e c t i on Stage of Tidal (m.) Type Trough Steep of Movement Face Current  40  High energy i inguoid current ripples  35-45 Weak  wave generated symmetr i ca 1 r i pples  37  1)Wave generated s ymme t r i cal r ipples 2) Low energy current ripples  E-W  N (?) N (?)  Low ebb  S-SW  Comments  Giant Sea Cucumber (St ichopus californicus) Butter Clam $ax i domus giganteus), White Plumed Anemone (Met r id i urn s e n i l e ) , an un ident i f ied anemone, branched bryozoan.  In the top l e f t hand photo i t is not c l e a r in what d i r e c t i o n the steep s i de of the 1i nguoi d r i p p l e s are f a c i n g but the l e a f y kelp i s being swept towards the north by a current s u f f i c i e n t to suspend s h e l l f r a g ments above the hosei i k e piece of kelp at the r i g h t of the photo.  NNWSSE  Start of ebb  SW  Sea anemones and gastropods  A few s n a i l t r a i l s are evident in l e f t hand photo.  N-S  Low ebb  SW  No apparent 1ive fauna  a) Current strength s u f f i c i e n t to sort not only sand but a l s o grave 1s. b) Current r i p p l e s superimposed on wave ripples. c) D i s t r i b u t i o n of s h e l l fragments suggest they may respond considerably d i f f e r e n t l y to p r e v a i l , currents than inorganic  E-W  S  S  1 14.  Phys i ograph i c Area  Bottom Photo Location #  Sediment Population  Goose Is land Bank (Contd)  288  A  CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM-PHOTOGRAPHS Di r e c t i on Fauna Tidal Inferred Ripple Depth Ri pple of Tidal Stage Di r e c t i on O r i e n t a t i o n Type (m.) Movement Trough Steep of Current Face 38  Midflood  Indi s t i net  NE  Comments  Top l e f t : h a l f S n a i l t r a i l s as abundant buried egg case as in # 435 of P o l i n i c e s lewis i i , Butter Clam (Saxidomus SLL3anteu_s)  Top  right: Sunflower Star (Pycnopod ia helianthoides) 311  North Bank  392  A,C,D  A,C,D (foram sand common)  4664  130  1) Wave generated s ymme t r i cal r ipples 2) High energy 1i ngubid current ripples Wave dominated comb i ned flow r i pples  NS  E-W  N  N  E-W  N  N  Midflood  NE  Near peak of flood  N- NW  Rock Cod (?)  a) Sea f l o o r appears sim. to that at l o c a t i o n #267. Here too there appears to be s u f f i c i e n t energy to sort g r a v e l s . b) Note broad segregation of s a n d , s h e l l fragments and g r a v e l s from c r e s t t o . trough of wave r i p p l e s . c) Top l e f t : sand r i b bons i n d i c a t i n g N-S current ( S t r i d e , 1963)-  Crinoids, worms, s t a r f i sh, s o l e , hoiothur ians, sponges.  Radii of c r i n o i d s are being swept n o r t h .  1 15. CHARACTER P h y s i ograph i c Area  Bottom Photo Location #  South  Sediment Population  Depth  D,E  A.B.C  Cent ra1 Trough  36*+  IN BOTTOM  PHOTOGRAPHS  o p h i u r o i d s and sea urchins  No c u r r e n t o r w a v e generated bedforms.  190  No a p p a r e n t ep i f a u n a  a) burrows and t r a i l s b ) No c u r r e n t o r w a v e generated bedforms.  105155  oph i u r o i d s , pectens (Pec ten her ic i u s ) s h r imp (Ca1 I i a n a s s a  There i s nc c o n c l u s i v e evidence of current activity. Gravels occur f o r the f u l l depth range but t h e y no l o n g e r a r e washed c l e a n a t t h e deepest s i t e (Bottom right photo).  Or i e n t a t i o n T r o u g h Steep Face  Inferred Direct ion of Current  Tidal  183  k9k  Ripple  OBSERVED  Comments  Trough 427  OF SOUND FLOOR AS  Fauna  (m.)  Ripple Type  Stage  Di r e c t i o n of T i d a l Movement  ?)  Sea u r c h i n s hoiothur ians, sea anemone (probab1y Act inoscyph i a sag i n a t a ) (See "Church,  1971)  No c u r r e n t o r w a v e generated bedforms.  PLATE ix  CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -  Bottom  Sedi-  graph ic Area  Photo Location #  ment Popu1 at ion  Cook Bank  D  Depth (m.)  80  Ripple Type  1 ) Wave domi n a t e d comb i n e d flow r ipple 2) High energy 1i nguoid current ripple  Ripple Or i e n t a t i o n Trough Steep Face  Inferred  Tidal  Di r e c t i o n of Current  Stage  N-S  E  E  E-W  N  N  Di r e c t i o n of T i d a l  Fauna  Comments  Movement  midflood  NE  Sparse, poss i b l y a few g a s t r o p o d s  Center photo i s proba b l y c l o s e - u p view o f combined flow r i p p l e s . Compass n o t i n c l u d e d i n original photo. Linguoid r i p p l e s appear t o be s u p e r - i m p o s e d on combined f l o w r i p p l e s .  PLATE  CHARACTER Phys i o graph ic Area  Bottom  Sedi-  Photo Loca-  ment Popu1 a t ion  t ion Cook Bank  435  ii  D (Group 3 coarser, better sorted, i rons t a i ned sands occur in thi s a rea)  Depth (m.)  70  Ripple Type  Weak wave genera-  X  OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Ri p p l e O r i e n t a t ion Trough Steep Face  Inferred  Tidal  Di r e c t i o n of Current  Stage  _  N-S  ted s ymme t r i • cal ripples  Di r e c t i o n of T i d a l  Fauna  Comments  Genera 11y s p a r s e , one c l u s t e r of gastropods (Margar i t e s )  Note d e n s e n e t w o r k o f well-preserved snail  Movement  Near peak o f flood  NE  occurs strand  *  by of  kelp.  tra  i1s.  S t a t ion U 43i> 70 m. PLATE X  O  PLATE  CHARACTER Phys i o g r a p h ic Area  Cook Bank  Bottom Photo Location #  437  Sediment Popu1 a t i on  Depth  (m.)  Ripple Type  1  gravel ly shel 1 hash  40  High energy 1 inguoid current ripples  XI  OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Ri p p l e Or i e n t a t i o n Trough Steep Face E-W  N (?)  inferred Di r e c t i o n of Current  N (?)  Tidal Stage  Low ebb  D i r e c t i on of T i d a l Movement  S-SW  Fauna  G i a n t Sea Cucumber (St i chopus ca1i f o r n i cus) B u t t e r Clam (Sax i domus giganteus), W h i t e Plumed Anemone (Metr i d i urn s e n i 1 e ) , an un i d e n t i f i e d anemone, b r a n c h e bryozoan.  Comments  In the t o p l e f t hand p h o t o i t is not c l e a r i n what d i r e c t i o n the s t e e p s i d e o f the 1inguoid r i p p l e s are f a c i n g but the leafy k e l p i s b e i n g swept t o w a r d s the n o r t h by a current sufficient to suspend s h e l l fragments a b o v e the h o s e - l i k e p i e c e o f k e l p at the j r i g h t of the p h o t o .  PLATE  CHARACTER Phys i o g raph ic Area  Bottom  Sedi-  Depth  Photo Loca-  ment Popu-  (m.)  t ion  Goose Is l a n d Bank  430  ft  1 at A-D  OF SOUND FLOOR AS  Ripple Type  Ripple Or i e n t a t i o n Trough Steep Face  ion  35-45  Weak wave generatec s ymme t r i cal ripples  NNWSSE .  XII  OBSERVED  Inferred Di r e c t i o n of Current  IN BOTTOM PHOTOGRAPHS Tidal Stage  Di r e c t i o n of T i d a l  Fauna  Comments  Movement  Start o f ebb  SW  Sea and  anemones gastropods  A few  snail  evident photo.  in  trails left  are  hand  S t a t i o n # 430  35-^0 m.  PLATE  XII  PLATE  CHARACTER Phys i o g r a p h ic Area  Goose Is l a n d Bank  Bottom Photo Locat ion#  267  Sed i ment Popu1 at ion A-D  Depth (m.)  37  Ripple Type  OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Ri p p l e Or i e n t a t i o n Trough Steep Face  Inferred Di r e c t i o n of Current  E-W  Tidal Stage  Low ebb  1) Wave N-S generated symmet r i a 1 ripples  2) Low energy current ripples  XIII  S  S  Di r e c t i o n of T i d a l Movement  sw  Fauna  No a p p a r e n t 1 i v e fauna  Comments  a) C u r r e n t s t r e n g t h sufficient t o s o r t not o n l y s a n d but a l s o g ra ve 1 s . b) C u r r e n t r i p p l e s s u p e r i m p o s e d on wave r i pp1es. c) D i s t r i b u t i o n of shell fragments suggest they may r e s p o n d c o n s i d e r a b l y d i f f e r e n t l y to p r e v a i l , c u r r e n t s than i n o r g a n i c fragments.  Station  267  37 m. PLATE XIII  V  PLATE  XIV  CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o g raph ic Area  Goose Island Bank  Bottom S e d i Photo ment PopuLocat i o n # l a t ion 288  A  Depth Ripple (m.) Type  38  Ind i st i net  Ri pple Or ientat ion Trough Steep Face  Tidal Inferred D i rect i on Stage of Current Midflood  Di rect ion of T i d a l Movement  NE  Fauna  Top l e f t : h a l f buried egg case of P o l i n i ces 1ewi s i i , But t e r Clam (Sadidomus giganteus) Top right: Sunflower Star (Pycnopodia helianthoides)  Comments  Sna i1 t ra i1s as abundant as in # 435.  CO  I  PLATE  XV  CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o graph ic Area Goose island Bank  Bottom Photo Locat ion tt 311  Sediment Popul a t ion  Depth Ripple Type (m.)  A,CD  46-64 1j Wave generated symmetrica 1 ripples 2 ) High energy 1i nguoid current ripples  Ri pple Or ientat ion Trough Steep Face  Inferred Di rect ion of Current  NS  E-W  N  N  Tidal Stage  Di r e c t i o n of T i d a l Movement  Midflood  NE  Fauna  Comments  Rock Cod (?)  a) Sea f l o o r appears sim. to that at l o c a t i o n # 2 6 7 Here too there appears to be s u f f i c i e n t energy to sort g r a v e l s . b) Note broad segregat i o n of sand, s h e l l frag menis and gravels from c r e s t to trough of wave ripples. c) Top l e f t : sand r i b bons i n d i c a t i n g N-S current ( S t r i d e , 1963)  o  PLATE  CHARACTER Phys i o graph ic Area  North Bank  Bottom Photo Location #  392  Sedi-  Depth  ment Popu-  (m.)  1 at  Ripple Type  OF SOUND FLOOR AS OBSERVED Ri p p l e Or i e n t a t i o n Trough  ion  A,C,D, (foram sand common)  130  Wave dom i n a t e d comb i n e d flow ripples  XVI  E-W  Steep Face N  Inferred Di r e c t i o n of Current N  IN BOTTOM PHOTOGRAPHS Tidal Stage  Di r e c t i o n of Tidal  Fauna  Comments  Movement  Near peak o f flood  N-NW  C r i n o i d s , worms, Rad i i o f c r i n o i ds a r e b e i n g swept starfish, sole, hoiothur ians, north. sponges.  >0  PLATE  XV I I  CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o graph ic Area  South Trough  Bottom Photo Location H  Sed i ment Populat ion D,E  Depth Ripple (m.) Type  183  Ri pple Orientat ion Trough Steep Face  Inferred Di rect ion of Current  Tidal Stage  Di rect i on of T i d a l Movement  Fauna  Ophiuroids and sea urchins  Comments  No current or wave generated bedforms.  Stat i on # hlk 183 m. PLATE  XVI I  PLATE  CHARACTER Phys i o -  Bottom  Sedi-  Depth  graph ic Area  Photo Loca-  ment Popu-  (m.)  t ion  South Trough  427  fl  1 at  Ripple Type  E  OF SOUND FLOOR AS OBSERVED Ripple Or i e n t a t i o n Trough Steep Face  ion  190  _  XV J JI  Inferred  Tidal  Di r e c t i o n of Current  Stage  _  _  IN BOTTOM PHOTOGRAPHS Di r e c t i o n of T i d a l  Fauna  Comments  Movement  _  _  No a p p a r e n t epi fauna.  a) b)  b u r r o w s and t r a i l s No c u r r e n t o r wave generated  •  bedforms.  S t a t i on U 4 2 7 190 PLATE  m. XVIII  PLATE  XIV  CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o graph ic Area South Trough  Bottom Photo Location #  Sed i ment Popul a t ion  Depth Ripple Type  422  A.B.C  105155  Ripple Or ienta t ion Trough Steep Face  Inferred Di rect ion of Current  Tidal Stage  Di r e c t i o n of T i d a l Movement  Fauna  oph i u r o i d s , pectens (Pecten her i c i us) shr imp ( C a l l i a n a s s a ?) -  Comments  There is no conclusive evidence of current activity. Gravels occur for the fu 1 1 depth range but they no longer are washed clean at the deepest s i t e (Bottom r i g h t photo).  137.  CO  PLATE  CHARACTER OF SOUND FLOOR AS Phys i o graph ic Area  Cent r a 1 Trough  Bottom Photo Locat i o n ti  364  Sediment Popu1 at ion F  Depth (m.)  494  Ripple Type  -  Ripple Or i e n t a t i o n Trough Steep Face  -  -  XX  OBSERVED  IN BOTTOM PHOTOGRAPHS  Inferred Di r e c t i o n of C u r r e n t ,,  Tidal Stage  Di r e c t i o n of T i d a l Movement  -  -  -  Fauna  Comments  Sea u r c h i n s hoiothur ians, sea anemone (probab1y A c t i noscyph ia saginata) Church,  (See 1971)  No c u r r e n t o r wave generated bedforms.  139  i4o.  D E S C R I P T I O N OF GRAVITY CORES L o c a t i o n s o f cores examined i n t h i s texture  o f the c o r e s and t h e i r  46.  Fig.  Colour photographs  and X - r a y  photographs  o f selected core sections are  a general  c a r b o n a n d CaCO^ c o n t e n t .  s e c t i o n s appear  downward d e c r e a s e  Colour grades (5GY 5/2)  indicates  such a s bedding o n l y  core.  structures  The b o t t o m t w o - t h i r d s  (Plate  in Plate  olive  a t the bottom.  XXIl)  shown  in grain  from g r a y i s h  the top t o dusky y e l l o w green distinct  45.  in Fig.  o r g a n i c c a r b o n a n d CaC03 c o n t e n t s a r e  o f selected core  C o r e #448 e x h i b i t s  s t u d y a r e shown  appear a s a rather  shown  in  XXII. s i z e and  green  upper  general  i n P l a t e XXI  The X - r a y  i n the  The  organic  (5GY 3/2) a t photograph  third  o f the  homogeneous  sedi-  ment w i t h a f e w " f l o a t i n g " s h e l l s . C o r e #484 i s s i m i l a r l y f i n e r a n d CaCO^ w i t h gray  less  rich  i n c r e a s i n g depth and t h e uppermost p a r t  (5Y 3/2) s l i g h t l y  content  g r a i n e d and  clayey  s i m i l a r t o that  is q u i t e d i s t i n c t  silty  o f the core  However,  in other  (5B 5/1)  The u p p e r p a r t  the top o f the c o r e . medium b l u i s h g r a y . less  rich  This  is entirely  bottom three q u a r t e r s  #492 i s v e r y s h o r t .  at equivalent  depth  o f the core  The t o p o f t h e c o r e  The XXI.  structures  i n core  s e c t i o n o f the core  that a t  dark greenish  gray-  is s i l t i e r  and  s e c t i o n o f c o r e #448.  is similar  in texture  and  The b o t t o m 3 0 cm i s t h e same c o l o u r a s t h e  i n c o r e #484, b u t i t i s c o a r s e r .  a n d CaCO^ c o n t e n t s a r e c o m p a r a b l e t o t h o s e a t e q u i v a l e n t Internal  (5G 4/1) -  a n d m a t e r i a l v e r y much l i k e  B e l o w 45 cm t h e c o r e  t o t h e t o p o f c o r e #484.  material  silt  c o r e #484  o f c o r e #484 u n c o m f o r m a b 1 y  i n o r g a n i c c a r b o n a n d CaC0$ t h a n t h e e q u i v a l e n t  Core colour  clayey  i s an olive  respects,  o v e r l i e s a 3 0 cm t h i c k s e c t i o n o f i n t e r c a l a t e d d a r k g r e e n i s h g r a y medium b l u i s h g r a y  carbon  s a n d w i t h m o d e r a t e o r g a n i c c a r b o n a n d CaCO^  i n c o r e #448.  f r o m c o r e #448.  in organic  depths  Organic  i n c o r e #484.  #492 a r e shown i n t h e X - r a y p h o t o i n P l a t e  shown c o i n c i d e s w i t h  The more muddy s e c t i o n o f t h e c o r e  that  carbon  i n the photograph  XXII.  in Plate  i s g e n e r a l l y massive whereas  t h e more  LOCATIONS  OF  GRAVITY  CORES \ W  CONTOURS IN M E T R E S  NAUTICAL  MILES  448  484  492  495  520  O  0 0 ooog CM *  10 CO  2  C3  £ O  o  ° O  1 I I 1 I I 2.0 2.8  Mr Q  r - £ ?  I 5 3 o in'  01 00  o o-  <§ 1  2.0  i.o  I I I I I  0.8  4.8 2.1  0.4  0.2  1.5  I I I I 5.4 •  0.7  1.7  0.2  0.4  I I I I I  I.I  4.2  0.6  6.8  0.8  3.2  4.0  o  1.2 3.2  0.4  0.4  0.4  0.4  CO •p-  °o UJ m • O.  —  0.8  1.9  Ul  CC  o o  o o.  CORE  DESCRIPTION  CM  o in  —  0.7  1.0  4>  PLATE XXI  Photographs of S e c t i o n s of S e l e c t e d G r a v i t y  The upper photograph  a.  Cores  illustrates:  The uppermost 50 cm. of a c o r e (#448) from the  inner  s h e l f p o r t i o n of South Trough e x h i b i t i n g the g r a y i s h o l i v e c o l o u r common f o r s u r f i c i a l trough sediments throughout  its  green entire  length.  b.  The uppermost 50 cm. of a c o r e (#492) from C e n t r a l Trough  near the s h e l f b r e a k .  The top 20 cm. of the c o r e  t o c o r e #448, however,  below t h i s depth c o r e c o l o u r changes a b r u p t l y  dark g r e e n i s h gray and (except f o r a small  i s s i m i l a r in c o l o u r  lens of o l i v e green) remains  t h i s c o l o u r f o r the remainder of the c o r e . c.  The uppermost and lowermost 50 cm. of c o r e #484 from the  m i d - s h e l f p o r t i o n of C e n t r a l Trough.  It  is s t r i k i n g l y s i m i l a r in  c h a r a c t e r t o c o r e #492 as the c o a r s e r o l i v e green s i l t y c l a y e y sand forms n o t h i n g more than a t h i n c a p p i n g on the o t h e r w i s e f i n e r  grained  dark g r e e n i s h gray sediment column. The lower photograph c o r e s #492 and #484.  to  is a l a r g e r s c a l e view of the c o n t a c t zone  in  #4*8  #  #492  4  9  2 #484 #  4  8  4  #484  Photographs o f S e c t i o n s of S e l e c t e d G r a v i t y  PLATE XXI  Cores  145.  PLATE XX I I  X - r a y Photographs of S e l e c t e d Core S e c t i o n s  a.  A segment o f c o r e A pelecypod valve  #448  exhibiting  i t s massive c h a r a c t e r .  i s l y i n g on edge on the lower p o r t i o n  of  the c o r e .  b.  Represents the lower 30 cm. of the p o r t i o n of c o r e #492 shown i n the upper photo i n PLATE X X I . c o r r e s p o n d t o the f i n e l y  O l i v e green p o r t i o n s  l a m i n a t e d p a r t s on the X - r a y  photo-  g r a p h s , whereas g r e e n i s h g r a y segments appear t o be m a s s i v e .  c . and d .  Top and bottom p o r t i o n s of c o r e #520 i n d i c a t i n g t h a t  from the upper c l a y e y s i l t y sands t o the lower c l a y e y sandy silts  the sediments have been d e p o s i t e d as f i n e beds and  laminations.  146.  X-Ray Photographs of S e l e c t e d Core S e c t i o n s (Core l e n g t h s about 30 cm.)  PLATE XX I I  147. sandy s e c t i o n appears t o be bedded. Core #495 i s s i m i l a r i n t e x t u r e t o the bottom of c o r e #492, but i t s c o l o u r ranges from moderate o l i v e brown (5Y 4/4) a t the t o p t o o l i v e (5Y 3 / 2 ) a t the bottom.  gray  No d e t e r m i n a t i o n was made of o r g a n i c carbon and  CaC03 c o n t e n t . Core #520 ranges from a c l a y e y s i l t y sand a t the t o p t o a c l a y e y s i l t a t the b o t t o m .  At equivalent depths, organic C concentration  i s h i g h e r than i n c o r e s #492 and #484, but l e s s than i n core #448. concentration  i s on t h e average h i g h e r than i n any o t h e r c o r e .  from o l i v e g r a y (5Y 3/2) t o g r a y i s h o l i v e  (10Y 4 / 2 ) .  sandy  generally CaC03  Colour  grades  F a i n t banding p e r s i s t s  t o a depth o f 50 cm i n t o c o r e ( P l a t e XXI l ) . M i n e r a l o g y of t h e l e s s than 2 m i c r o n f r a c t i o n o f s e l e c t e d c o r e sediments i s shown i n F i g . 4 7 .  The t r a c i n g f o r c o r e #492-15 cm i s q u i t e s i m i l a r t o  t r a c i n g s o b t a i n e d f o r s u r f i c i a l sediments o f e q u i v a l e n t s i z e . tendency illite  There i s a  i n the more o l i v e g r a y sediments f o r the p e r c e n t o f c h l o r i t e and  t o i n c r e a s e a t the expense of montmori1 I o n i t e .  But i t i s the more  dark g r e e n i s h gray-medium b l u i s h gray sediments i n c o r e s #484 and #492 which a r e q u i t e c l e a r l y dominated by these two components. a l s o t o c o n t a i n more v e r y f i n e g r a i n e d a m p h i b o l e .  Deeper sediments appear  148.  149. DESCRIPTION OF CONTINUOUS SEISMIC PROFILES S e l e c t e d CSP r e c o r d s and t h e i r r e s p e c t i v e acoustical  reflectors)  (A-A  1  t o D-D )  (E-E  1  and F - F )  appear on P l a t e s XXI ! I - X X V I I.  represent  1  tracings  s e c t i o n s of the  The f i r s t  four  profiles  i n n e r s h e l f whereas the l a s t  r e p r e s e n t p o r t i o n s of the s h e l f edge.  1  ( e m p h a s i z i n g major  two  Nomograms on the  p l a t e s a r e meant t o i n d i c a t e t r u e a n g l e s o n l y of s e a - f l o o r and not  subbottom  slopes. On a l l  the i n n e r s h e l f p r o f i l e s most subbottom r e f l e c t o r s appear  i r r e g u l a r and d i s c o n t i n u o u s .  As a r u l e  highly  the t h i n n e r g e n e r a l l y f l a t - l y i n g  near  s u r f a c e u n i t s a r e s h a r p l y unconformable w i t h u n d e r l y i n g  layers.  ( P l a t e X X I I I ) extends from the s o u t h e r n t i p of P r i c e  a c r o s s the mouth of  M i l b a n k e Sound t o the n o r t h e a s t  p a r t of Goose  appear t o be t h i c k e s t ( a p p r o x i m a t e l y  I.  I.  Bank.  P r o f i l e A-A  The uppermost  1  units  100 m e t r e s ) near the deeper p a r t of  the  Sound mouth, g r a d u a l l y t h i n at the m i d s e c t i o n of the p r o f i l e then t h i c k e n a g a i n towards Goose  I.  Bank.  Below these u n i t s the s t r u c t u r e  by low s w e l l s and d e p r e s s i o n s . by the downwarp  characterized  i n the basement d e p r e s s i o n (as  i n the deepest a c o u s t i c a l r e f l e c t o r )  Sound appear t o be f a u l t e d . Central  Units  is  P r o f i l e B-B'  Trough a c r o s s a p o r t i o n of the  represented  at the mouth of M i l b a n k e  ( P l a t e XXIV) extends from n o r t h e r n  Intertrough Area.  The uppermost  units  here do not appear t o be as w e l l d e f i n e d and c o n t i n u o u s as in the p r e c e d i n g profile. fill  Deeper  structures.  sea-floor.  in the s e c t i o n r e f l e c t o r s Basement g e n e r a l l y  On p r o f i l e  C-C  is at  ( P l a t e XXV)  show e v i d e n c e of broad s c o u r - a n d l e a s t 300 metres below the  ( p a r a l l e l i n g the muddy n o r t h arm of  South Trough) the uppermost major u n i t s appear t o be c o n t i n u o u s a c r o s s section.  The s t r u c t u r e s  e q u i v a l e n t depths assumed f a u l t s coast  rocks.  the  below the uppermost u n i t s a r e much l i k e those a t  in p r o f i l e B - B ' .  in p r o f i l e S e c t i o n D-D  present  C-C 1  The basement j u s t  t o the r i g h t of  may r e p r e s e n t an e x t e n s i o n of the  the  crystalline  ( P l a t e XXVI) extends from n o r t h e r n Cook Bank t o  150. Goose  I.  probably  Bank a c r o s s the main t r u n k of South Trough.  The uppermost  units,  r e p r e s e n t i n g Holocene s e d i m e n t s , appear t o be a p p r o x i m a t e l y  150 metres t h i c k and unconformab1y o v e r l i e  100 to  u n i t s which s t r u c t u r a l l y a r e l e s s  complex than a r e e n c o u n t e r e d a t e q u i v a l e n t depths  i n the o t h e r p r o f i l e s .  The  p o r t i o n o f the p r o f i l e c r o s s i n g the margin of Cook Bank suggest t h a t bank s e d i ments have prograded  i n t o the t r o u g h .  P r o f i l e s c r o s s i n g the s h e l f edge suggest t h a t the Queen C h a r l o t t e s h e l f edge and s l o p e may have had both a d e p o s i t i o n a l o r i g i n r e f l e c t o r s p a r a l l e l i n g the s l o p e i n p r o f i l e E - E origin  (as suggested by the  in p r o f i l e F-F'  truncation  ( P l a t e XXVI I l ) ) .  1  Sound  (as suggested by  ( P l a t e X X V I l ) ) and e r o s i o n a l  of t h e r e f l e c t o r s a t the s l o p e as seen  The o u t e r s h e l f r e p r e s e n t e d  in p r o f i l e  F-F  1  appears t o have had a h i s t o r y s i m i l a r t o t h a t o f the i n n e r s h e l f as the u p p e r most u n i t s E-E'  this  l i e unconformab1y over the g e n t l y d i p p i n g o l d e r u n i t s . i s not apparent and the o u t e r s h e l f ,  the s h e l f break and the s l o p e  appear t o have formed by more c o n t i n u o u s d e p o s i t i o n a l p r o c e s s e s . E-E  1  a l s o shows a s l i g h t  vertical  d i s p l a c e m e n t o f u n i t s a l o n g the s l o p e .  movement a l o n g t h i s f a u l t c o n t i n u e ,  In p r o f i l e  Profile Should  t h i s p o r t i o n of the s l o p e  might appear t o be more l i k e the s l o p e i n p r o f i l e  F-F . 1  WATER DEPTH  (oas) 3i/\iu NOI103U3U  WATER  DEPTH  ( ) 3IA1I1 NOI103nd3y oas  WATER DEPTH  (oas) a w n NOI1031d3a  WATER DEPTH  (oas) 3WI1 N0I1D3133U  154.  156. SUMMARY OF PHYSIOGRAPHIC AND SEDIMENTOLOGIC FEATURES Queen C h a r l o t t e Sound i s a broad c o n t i n e n t a l s h e l f which extends  approxi-  m a t e l y 120 km from the B r i t i s h Columbia m a i n l a n d t o the s h e l f break (which tends t o c o i n c i d e w i t h the 300 metre b a t h y m e t r i c c o n t o u r where the s h e l f by t r o u g h s ) .  Although r e l i e f  i n c r e a s e from south t o n o r t h . troughs.  i s g e n e r a l l y subdued,  (South,  from the m a i n l a n d t o the s h e l f edge.  whereas Goose  Three wide banks (Cook,  The  Goose  gradually  shelf  I s l a n d and  l i e a l o n g the s o u t h - n o r t h m i d l i n e  Cook Bank i s an e x t e n s i o n of the n o r t h e r n Vancouver I.  cut  f e a t u r e s a r e banks and  C e n t r a l and N o r t h ) c r o s s the  North a t 7 0 , 5 0 , and 130 metres r e s p e c t i v e l y ) of the s h e l f .  i t and s h e l f depth  Dominant p h y s i o g r a p h i c  The t h r e e broad t r o u g h s  i s not  I.  and North Banks a r e c o m p l e t e l y i s o l a t e d from land by  I n t e r t r o u g h A r e a i s a d i s t i n c t and e x t e n s i v e  lowland troughs.  r e g i o n a t the n o r t h e a s t of  the  s h e l f which i s c h a r a c t e r i z e d by many s h a l l o w broad d e p r e s s i o n s and low knobs o r i e n t e d g e n e r a l l y e a s t - w e s t and bounded on the west by a f a n - l i k e f o r m . subbottom s t r u c t u r e  i s c h a r a c t e r i z e d by broad s c o u r - a n d - f i 1 1 f e a t u r e s .  i s e v i d e n t j u s t t o the e a s t of the Sound.  Faulting  I n t e r t r o u g h A r e a near the mouth of M i l b a n k e  F e a t u r e s s u g g e s t i v e of former s e a - l e v e l s t i l l s t a n d s a r e :  the deepest  seaward f a c i n g t e r r a c e s on North Bank and t o the west of the Sea O t t e r o f S h o a l s (130 m e t r e s ) ;  Its  the s h a l l o w ,  M i l b a n k e Sound (180 t o 220 m e t r e s ) ;  Group  landward s l o p i n g canyon a t the mouth of and the s p i t - l i k e f e a t u r e n o r t h of Goose  I.  Bank (100 t o 120 m e t r e s ) . Most n o n - g r a v e l l y  sediments which a r e e i t h e r s h a l l o w and v e r y sandy or  deep and v e r y muddy a r e found on the  i n n e r h a l f of the s h e l f .  The o u t e r  shelf  i s mantled w i t h sediments which a r e a n o m a l o u s l y c o a r s e f o r t h e i r depth and which a r e more g l a u c o n i t e r i c h than t h e i r  inner s h e l f c o u n t e r p a r t s .  a n o m a l o u s l y muddy f o r t h e i r depth and w h i c h , a r e found near the Sea O t t e r Group of s h o a l s .  Samples which appear  in some c a s e s , a l s o c o n t a i n  gravels,  CaCO} s h a l l o w e r than 100 metres  c o n s i s t s m a i n l y of m o l l u s c a n s h e l l hash whereas be low t h i s depth i t  is mainly  157. foraminifera1  tests.  Most s u r f i c i a l sediments in the troughs a r e o l i v e gray muddy  sands and sandy muds and t h e i r c l a y f r a c t i o n c o n s i s t s m o s t l y o f c h l o r i t e and montmori11onite.  Banks a r e m a n t l e d p r i n c i p a l l y w i t h l i g h t o l i v e g r a y w e l l  s o r t e d sands and p o l y c h r o m i c sandy g r a v e l s and g r a v e l l y o f the l e s s - t h a n - g r a v e 1 - s i z e - f r a c t i o n on bank tops  sands.  i s mud.  Less than 5%  Iron-stained  sands  (found in a s s o c i a t i o n w i t h g r a i n s showing e v i d e n c e of beach w a v e - a b r a s i o n ) t o a depth of  128 metres and tend t o . h a v e a n o m a l o u s l y low m a g n e t i t e c o n c e n t r a t i o n s  and more s t a i n e d g r a i n s Current  in.coarser  fractions.  r i p p l e s were observed t o a depth of  i n d i c a t i o n o f wave o r c u r r e n t kSk m e t r e s .  occur  130 m e t r e s .  There was no  t r a n s p o r t of sediments at s i t e s a t  A s e r i e s of photos s t r a d d l i n g the boundary o f Goose  South Trough from 105 t o 155 metres r e v e a l e d  isolated gravels  183, 190 and I.  Bank and  s i t t i n g f r e e on  the Sound f l o o r a t the s h a l l o w e s t depth but a l m o s t b u r i e d g r a v e l s a t the deepest site.  However at t h i s  metres. of the of  last  l o c a t i o n the f l o o r  is s t i l l  not as smooth as at 183  A p l o t of mud-sand r a t i o v e r s u s depth i n d i c a t e s samples on exposed inner s h e l f g e n e r a l l y have h i g h mud c o n c e n t r a t i o n s o n l y at depths  parts  in e x c e s s  150-160 m e t r e s . Troughs a r e p a r t i a l l y  interrupted along t h e i r  l e n g t h and a t the  shelf  edge by broad s i l l s which a r e m a n t l e d , as a r u l e , by c o a r s e g i a u c o n i t i c ments.  Whereas the g r a v e l s a t the s h e l f edge a r e g e n e r a l l y w e l l  sedi-  rounded,  on the r i d g e s n e a r e r shore a r e g e n e r a l l y a n g u l a r .  At the  i n t e r s e c t i o n of  south arm and main t r u n k of South Trough one r i d g e  i s in the v i c i n i t y  those the  of a) a  complex of s m a l l knobs and s h a l l o w c l o s e d d e p r e s s i o n s and b) a narrow v e r m i f o r m r i d g e e x t e n d i n g from the base of the f a n which p r o j e c t s the end o f the south arm.  i n t o the main t r u n k at  Well s o r t e d sands which a r e a n o m a l o u s l y c o a r s e  t h e i r depth are found i n the main t r u n k j u s t seaward of t h e s e f e a t u r e s . Centra]  Trough makes a sharp r i g h t a n g l e bend the f l o o r  low s i l l .  Although t h i s s i l l  i s not g r a v e l l y ,  rises gently  j u s t seaward o f  for Where  t o form a  i t the bottom  158.  sediment c o n s i s t s of c o a r s e r , trough elsewhere. w i d e , almost f l a t sediment  better  sorted,  The segment of C e n t r a l  sediment than c h a r a c t e r i z e s  Trough n o r t h of the s a d d l e has a  f l o o r at about 200 m e t r e s .  G r a v i t y c o r e s show s u b s u r f a c e  in the area t o be g e n e r a l l y massive sandy c l a y e y s i l t s w i t h  o r g a n i c carbon and CaCO^. and i l l i t e  The c l a y s  i n these sediments a r e m a i n l y  ( w i t h minor montmori11 o n i t e ) .  from these sediments  F o r a m i n i f e r a 1 assemblages o b t a i n e d  i n d i c a t e a Late P l e i s t o c e n e open s h e l f e n v i r o n m e n t .  sediments a r e the most o r g a n i c carbon r i c h  structures floor  i n the Sound.  depressions.  Most of  Both Goose  I.  a band o f c o a r s e , w e l l  abrupt  i r o n - s t a i n e d sand j u s t  in one bottom photograph  on the s h e l f a r e found near S c o t t  almost e n t i r e l y  s h e l l hash.  Bank s l o p e g e n t l y  topographic  northeastern  to have no w e l l  developed  The h i g h e s t CaC03  Channel where sediments are  Whereas the n o r t h e r n and s o u t h w e s t e r n margins the s o u t h e a s t e r n margin i s r e l a t i v e l y  transition  i s matched by t h a t  steep.  in the s e d i m e n t s : rich  i n the Sound l i e on the bottom of t h e . n o r t h arm of South Trough.  sands.  suggest  What may be  i n s i d e the  g r a v e l s mantle the bank t o p , some o f the f i n e s t most o r g a n i c  and southwest  depth..  east-west  .Seismic p r o f i l e s  i s c r i s s - c r o s s e d by a network o f s n a i l t r a i l s .  concentrations  closed  continential  i n t o the main t r u n k of South T r o u g h .  sorted,  margin o f the bank appears  steep  The  G r a v e l s are common a t the south of Cook Bank,  s o r t e d sands mantle the n o r t h e r n m a r g i n .  t h e s e sands a r e p r o g r a d i n g  I.  Subbottom  t h e i r great  and North Bank a r e c r o s s e d by broad s h a l l o w  s l o p e by a more g e n t l e s l o p e .  Goose  local  elongate  i t s sediments a r e a n o m a l o u s l y c o a r s e f o r  o r i e n t e d v a l l e y s and both a r e j o i n e d to the r e l a t i v e l y  r i p p l e s but  These  here t o o appear to be c h a r a c t e r i z e d by s c o u r - a n d - f i 1 1 f e a t u r e s .  of North Trough c o n s i s t s o f a s e r i e s o f deep i r r e g u l a r l y  but w e l l  little  chlorite  s u b s u r f a c e sediments c a r r y l i t t l e o r g a n i c carbon whereas the p r e s e n t surficial  the  of the bank sediments grade g r a d u a l l y  from g r a v e l s  of  This  while sediments To the  to well  The shaI Iowest p o r t i o n o f the bank i s in the form o f s e v e r a l  low  north sorted ridges  159.  w i t h c r e n u l a t e o u t l i n e s which e x t e n d west a c r o s s the bank t o p . for  Cook Bank, where no c u r r e n t  snail  t r a i l s are abundant.  r i p p l e s a r e apparent  G r a v e l s and w e l l  As was  true  in bottom p h o t o g r a p h s ,  s o r t e d sands a r e common on North  Bank, but here u n l i k e o t h e r banks f o r a m i n i f e r a 1 t e s t s a r e a l s o v e r y a b u n d a n t : CaC0*3, c h i e f l y f o r a m i n i f e r a 1 t e s t s , a t t a i n s c o n c e n t r a t i o n s of up t o 51 of the mud-sand f r a c t i o n of p o o r l y  sorted gravelly  sediments.  I n t e r t r o u g h A r e a sediments a r e v e r y a n g u l a r , p o o r l y s o r t e d sandy g r a v e l s and r e a s o n a b l y w e l l  sorted sands.  percent  giauconitic  Many g r a i n s from t h i s  locality  show e v i d e n c e of g l a c i a l a b r a s i o n . S e i s m i c p r o f i l e s suggest and e r o s i o n a l  origin.  the s h e l f margin has had both a d e p o s i t i o n a l  160.  DISCUSSION  ORIGIN OF PHYSIOGRAPHIC  FEATURES  IN QUEEN CHARLOTTE SOUND  The p h y s i o g r a p h y o f Queen C h a r l o t t e Sound i s comparable t o t h a t of the m a i n l a n d o n l y t o the e x t e n t  the g e n e r a l  is concordant w i t h that o f c e r t a i n  o r i e n t a t i o n of troughs and bank margins  inlets.  The s h e l f  i s not d i s s e c t e d by as  dense a network o f narrow d e p r e s s i o n s and has a c o n s i d e r a b l y more subdued relief  (compare t r u e s c a l e c r o s s - s e c t i o n o f i n l e t s  Central  Trough i n F i g .  in F i g . 4 8 w i t h t h a t of  1.7).  On the o t h e r hand, Queen C h a r l o t t e Sound has a s t r i k i n g l y morphology t o t h a t o f a s h e l f c o n s i d e r e d by H o l t e d a h l  ( 1 9 5 8 )  similar  t o have been  h i g h l y m o d i f i e d d u r i n g the P l e i s t o c e n e "by e r o s i o n a l and d e p o s i t i o n a l  action  of the i c e , the former r i v e r c h a n n e l s b e i n g remodeled i n t o t r o u g h l i k e b a s i n s and the o l d topography o b s c u r e d t o a g r e a t e x t e n t material" (Fig.  by the d e p o s i t i o n of  drift  49).  The complex o f f e a t u r e s and sediment t y p e s a t the i n t e r s e c t i o n o f the s o u t h arm and main t r u n k of South Trough and t o a l e s s e r e x t e n t inflection kettles, glacier  those a t the  i n C e n t r a l Trough may be compared t o the m o r a i n a l r i d g e ,  kames,  e s k e r s and outwash p l a i n a s s o c i a t e d w i t h a s t a g n a n t o r r e c e d i n g (Flint,  1 9 5 7 ) .  Topographic  forms and sediment t e x t u r e s  in the  Inter-  t r o u g h A r e a a r e r e m i n i s c e n t o f those found on a r e c e n t l y g l a c i a t e d a r e a o f low relief  (Holmes,  The low s i l l s ,  1965; see e s p e c i a l l y h i s F i g . mantled w i t h coarse g r a v e l s ,  5 0 0  and F i g .  5 0 4 )  1 9 5 7 ) .  on t h e s e r i d g e s a r e more rounded than those on the t r o u g h s i l l s  passage o f g l a c i e r s  is preserved  1 9 5 7 ) .  p a r t i a l l y d i s s e c t i n g the troughs a t  the s h e l f break may be remnants o f t e r m i n a l m o r a i n e s ( F l i n t ,  p r o b a b l y as a r e s u l t of longer g l a c i a l  (Flint,  transport.  The g r a v e l s  closer  E v i d e n c e of the a c t u a l  i n the deep s c o u r s t r u c t u r e s o b s e r v e d  the s e i s m i c p r o f i l e s o f the subbottom s e d i m e n t s .  inshore  in  161.  fiords and fiord valleys in British Columbia Truo-scale transverse .section* of (A) Seymour Creek (latitudo 20'); (11) Indian JViver (latitude 40' 30'); (C) Head of Portland Canal (latitude 65° 57'); (D) Indian Arm (latitude 4'j' 23'); (E) Qucen.'i Reach, Jorvis Inlet (latitude SO" 0'); (J'") Alice Arm, head of Observatory Inlet (latitude 51,' 20'); (G) Fisher Channel (latitude 52" 13').  From FJORDS  AND FJORD  VALLEYS  Peacock  OF BRITISH  F i g u r e 48  (1935) COLUMBIA  162.  From H o l t e d a b l SHELF AREA OFF NORWAY Fl poire  49  (1958)  163. The  irregular  relief  of the f l o o r of North Trough i s c h a r a c t e r i s t i c  of g l a c i a l l y excavated v a l l e y s  (Holmes,  1965).  The broad ledges on the west  w a l l may have r e s u l t e d from wave a b r a s i o n , b l o c k f a u l t i n g or g l a c i a l d e p o s i t i o n . It  i s not  l i k e l y they a r e w a v e - c u t  t e r r a c e s because a)  d e p r e s s i o n s o b s e r v e d on the s h a l l o w e r t e r r a c e and b) both ledges a r e w e l l t i o n of s t r o n g e s t wave a t t a c k . the g e n e r a l a l i g n m e n t of the  ledge would not be e x p e c t e d on a w a v e - c u t  i n s i d e the t r o u g h and not f a c i n g the d i r e c -  B l o c k f a u l t i n g may have taken p l a c e here  ledges  i s a t odds w i t h t h a t of known or  f a u l t systems on the a d j a c e n t Queen C h a r l o t t e t e r r a c e s d e v e l o p e d as kame t e r r a c e s or e s p e c i a l 1 y "his F i g . 8 - 7 ) . "remains of  s h a l l o w knobs and c l o s e d  Holtedahl  Islands.  It  suspected  i s most l i k e l y the  l a t e r a l moraines ( F l i n t ,  (1970)  but  1957;  see  has r e p o r t e d what appears t o be  l a t e r a l m o r a i n e s " on the f l a n k s of s h e l f t r o u g h s o f f  Greenland  and Norway. The s i m i l a r i t y of the Queen C h a r l o t t e Sound morphology t o t h a t of a r e a s c o n s i d e r e d t o be e x t e n s i v e l y topographic  g l a c i a t e d by grounded  i c e , the presence  i n subbottom sediments leads  t o c o n c l u d e Queen C h a r l o t t e Sound was o v e r r i d d e n by grounded  Ice a c c u m u l a t i o n on the Coast Mountains a t times p r o b a b l y was t o a l l o w i c e t o be grounded a c r o s s the e n t i r e s h e l f as i s following considerations:  Bretz  had a minimum s u r f a c e g r a d i e n t kilometres  of  ice.  sufficient  i n d i c a t e d by the  ( 1 9 2 0 ) suggested the Juan de Fuca i c e 15 metres per k i l o m e t r e f o r  lobe  the f o r w a r d  (the a p p r o x i m a t e d i s t a n c e from the Queen C h a r l o t t e Sound s l o p e  the m a i n l a n d c o a s t ) .  112 to  Assuming minimum i c e t h i c k n e s s of 2300 metres on the  m a i n l a n d d u r i n g major g l a c i a l advances (as conditions  of  forms and a s s o c i a t e d sediments s i m i l a r t o those found on g l a c i a t e d  c o n t i n e n t a l a r e a s and the e v i d e n c e of deep s c o u r i n g the w r i t e r  shelf  p r e v i o u s l y mentioned) and s i m i l a r  in the Juan de Fuca and Queen C h a r l o t t e Sound i c e l o b e s ,  ness a t the s h e l f edge c o u l d have been on the o r d e r of 6 0 0 m e t r e s . dropped no more than 130 metres d u r i n g the most r e c e n t major  ice If  thicksea-level  i c e advance  164.  (Curray,  J 9 6 9 ) , a n d , as  water depth a t it  is  likely,  the o u t e r s h e l f was not m a r k e d l y d e p r e s s e d  the s h e l f edge would have been on the o r d e r of  is accepted that  170 m e t r e s .  i c e touches bottom when i t a t t a i n s a t h i c k n e s s of  the water depth ( S h e p a r d ,  1963),  i t had a t h i c k n e s s no g r e a t e r c o u l d have been a t t a i n e d a t  than 190 m e t r e s , w e l l  below the t h i c k n e s s  t h a t d i s t a n c e from the m a i n l a n d .  It  is  Central  I.  unconsolidated  occurred.  Bank and the m a i n l a n d , and the n o r t h e r n  (Holtedahl  and H o l t e d a h l ,  by the H o l t e d a h l s as "more or  submerged s t r a n d - f l a t ] by l o o s e d e p o s i t s " . a n g l e s t o what Pleistocene  [which]  narrow b e l t w i t h uneven,  described  ...run  is  1970) or b) a zone o f s t r u c t u r a l  is a p p r o x i m a t e l y  The channel  Northern  their  contact  r o c k s and the l e n s o f s e d i m e n t a r y d e p o s i t s on  be c l o s e l y a s s o c i a t e d w i t h the c r y s t a 1 I i n e - s e d i m e n t a r y  of the f o r m e r .  high  local  The most r e c e n t e x a m i n a t i o n s o f the problem o f the  [the  overlain  o r i e n t a t i o n at  t h e y have r e s u l t e d from g l a c i a l e r o s i o n o f a)  1970).  parallel  rocky f l o o r  i s presumed to have been the predominant d i r e c t i o n o f  (Holtedahl,  Grant,  still  M a r g i n a l c h a n n e l s were  They a r e c o n s p i c u o u s because o f t h e i r  between c r y s t a l l i n e c o a s t a l the s h e l f  is  from the f a i r l y even banks where the bedrock  ice flow.  suggest  1961).  l e s s marked d e p r e s s i o n s . . .  t o the c o a s t and s e p a r a t e a r e l a t i v e l y  Fault  of  T r o u g h , may be examples o f m a r g i n a l c h a n n e l s , f e a t u r e s which appear  in question  1958;  South  section  t o be r e s t r i c t e d t o s h e l v e s o f f g l a c i a t e d c o a s t s but whose o r i g i n  origin  that  apparent  Troughs g e n e r a l l y p a r a l l e l t o the c o a s t such as the p o r t i o n of Trough between Goose  of  i c e would be grounded at the s h e l f edge when  t h a t under s e v e r e g l a c i a l c o n d i t i o n s c o n s i d e r a b l e s c o u r i n g o f the s h e l f sediments p r o b a b l y  1.1  If  i n s h o r e o f Goose  I.  d i s t u r b a n c e which may rock c o n t a c t  (Holtedahl,  Bank may be an example  C e n t r a l Trough may be an example o f the  in l i n e w i t h the row o f e p i c e n t r e s e x t e n d i n g  l a t t e r as  it  from S a n d s p i t  (see F i g . 4 ) . Northern Central  Trough i s a m a r g i n a l channel  in the s t r i c t e s t  sense of  165 the d e f i n i t i o n o n l y flat.  It  i f the  I n t e r t r o u g h Area i s c o n s i d e r e d a submerged s t r a n d -  is q u i t e r e a s o n a b l e to c o n s i d e r  it  so because a) broad p o r t i o n s  s t r a n d f l a t s are commonly submerged ( H o l t e d a h l ,  1958;  Holtedahl,  of  1970) b)  the  I n t e r t r o u g h A r e a i s c o n t i n u o u s w i t h M i l b a n k e S t r a n d f l a t t o the n o r t h and c) the apparent  i n s t a b i l i t y of the a r e a s s u r r o u n d i n g  the  I n t e r t r o u g h Area c o u l d  have a l l o w e d c o n s i d e r a b l e v e r t i c a 1 d i s p l a c e m e n t of t h i s segment of the c o a s t a l strandflat.  D e t a i l e d g e o p h y s i c a l work a f t e r the method of Mayhew e_t a]_ (1970)  might e l u c i d a t e the s t r u c t u r a l  r e l a t i o n of the  I n t e r t r o u g h A r e a to a d j a c e n t  areas. The open-ended broad v a l l e y s  t h a t c r o s s both Goose  I.  Bank and North  Bank may have been formed by m e l t w a t e r streams d r a i n i n g g l a c i e r s which o c c u p i e d t r o u g h s a d j a c e n t t o the b a n k s . The canyons at the margin o f Cook Bank h a v i n g sediments in t h e i r which a r e a n o m a l o u s l y r i c h  in heavy m i n e r a l s p r o b a b l y formed when r i v e r s  the bank d u r i n g a lower s e a - l e v e l . canyons d u r i n g p e r i o d s of  However, r i v e r s  lowest s e a - l e v e l  i n s h o r e would most l i k e l y be f i l l e d w i t h developed on the o t h e r b a n k s . base l e v e l  (the  T h i s suggests  lowered s e a - l e v e l )  this  Canyons a r e not as t h a t the r e g i o n a l  close  distinctly  relief  above  of the o t h e r banks was t o o low t o d e v e l o p  h y d r a u l i c head s u f f i c i e n t t o form canyons  l i k e those on Cook Bank.  t h a t the best developed canyons on Cook Bank a r e the ones n e a r e s t this  drained  p r o b a b l y d i d not erode  f o r then the troughs  ice.  vicinity  The  fact  land s u p p o r t s  contention. Open-shelf  t e r r a c e s do not occur below 140 m e t r e s .  T h i s depth  is  in  c l o s e agreement w i t h the best s u b s t a n t i a t e d r e c e n t e s t i m a t e s o f the maximum depth o f P l e i s t o c e n e s e a - l e v e l  lowering  (Curray,  1969).  s u g g e s t s the s h e l f was not m a r k e d l y d e p r e s s e d by g l a c i a l that  it  of Goose  must have rebounded r e l a t i v e l y I.  rapidly.  Bank may have formed d u r i n g a s e a - l e v e l  T h i s c l o s e agreement loading or,  if  it  were,  The s p i t - l i k e form n o r t h l o w e r i n g t o a depth of  166. 100-120 m e t r e s .  Sediment f o r  t h i s f e a t u r e may have been s u p p l i e d from m e l t -  w a t e r streams d r a i n i n g an i c e lobe a t M i l b a n k e Sound. M i l b a n k e Sound s u g g e s t s s e a - l e v e l work has suggested t h a t occurred of  in e x c e s s of  if  The canyon c u t t i n g  l o w e r i n g of as much as 200 m e t r e s , but  (Jongsma,  1970), and known major  i c e s h e e t s s i n c e t h a t time ( A r m s t r o n g , et a_j_, 1965) would have  such a f e a t u r e .  A process  recent  t h e r e were a e u s t a t i c " l o w " of t h i s magnitude  100,000 B . P .  i n v o l v i n g mass w a s t i n g and t u r b i d i t y  into  it  readvances  destroyed  f l o w of  over-  steepened g l a c i a l a c c u m u l a t i o n s a t the mouth of "Milbanke Sound might more r e a d i l y account f o r the c h a n n e l . The f l o o r of the n o r t h e r n p o r t i o n of C e n t r a l flat.  Trough i s a n o m a l o u s l y  If t h i s f e a t u r e appeared on a t o p o g r a p h i c map drawn when s e a - l e v e l  was 200 m. lower  i t would be i n t e r p r e t e d as an i c e margin l a k e dammed by  an end m o r a i n e .  The s u b s u r f a c e sequence of s i l t s which a r e low in o r g a n i c  c a r b o n and h i g h  in c h l o r i t e and i l l i t e may be i n t e r p r e t e d as g l a c i a l  d e p o s i t e d from such a l a k e .  flour  However, the f o r a m i n i f e r a 1 assemblage c o l l e c t e d  from the s i l t s s u g g e s t s they were d e p o s i t e d  in an open s h e l f  environment  s i m i l a r t o the p r e s e n t , and the muds appear m a s s i v e and n o n - v a r v e d .  Further-  more, because o f the p o s t u l a t e d e a r l y date f o r  in s e a -  level  it  the more extreme drop  i s most l i k e l y t h a t more r e c e n t g l a c i a t i o n s would e i t h e r  scour  d e p o s i t m a t e r i a l on the t r o u g h s u r f a c e , and i t would not have long its featureless character.  The f l a t n e s s of n o r t h e r n C e n t r a l  p r o b a b l y have developed w i t h o u t  an e x t r a o r d i n a r y  l a s t s t a g e s of v a l l e y - ( o r b e t t e r ,  in s e a - l e v e l :  looked much a l i k e  appearance of s e i s m i c p r o f i l e c r o s s i n g C e n t r a l were removed from the deep scour d e p r e s s i o n s ) .  As the shelf,  (consider  the  Trough i f ponded sediment Suspended m a t e r i a l  i n t o the troughs was p r o b a b l y  p a r t washed out t o the deep sea by t i d a l  retained  Trough c o u l d  t r o u g h - ) g l a c i a t i o n waned on the  C e n t r a l Trough and North Trough p r o b a b l y  c h a r g e d from the a b l a t i n g g l a c i e r s  drop  or  flushing.  in  dislarge  But w h i l e s w e l l s and  167.  and waves (which c o u l d produce water t u r b u l e n c e ) Trough from t h e open s e a , t h e i r  swept f r e e l y  into  North  i n t e n s i t y was damped by North Bank b e f o r e  they e n t e r e d n o r t h e r n C e n t r a l Trough.  As a consequence, d e p o s i t i o n i n  C e n t r a l Trough may have proceeded f a s t e r .  Central  Trough was a l s o i n a  more f a v o r a b l e p o s i t i o n t o pond much o f the f i n e r sediment d i s c h a r g e d from smaller graciers most p r o b a b l y ,  i n t e r m i t t e n t l y a d v a n c i n g beyond M i l b a n k e Sound, and w h i c h ,  c r e a t e d the f e a t u r e s now i n the I n t e r t r o u g h A r e a .  The v e r y g e n t l e u n i f o r m s l o p e s between the n o r t h e r n banks and the continental  s l o p e p r o b a b l y developed as P l e i s t o c e n e seas t r a n s g r e s s e d and  r e g r e s s e d a c r o s s l o o s e g l a c i a l d e p o s i t s as i s suggested by the w i d e s p r e a d p r e s e n c e o f t h i s k i n d o f f e a t u r e on p r e s e n t s h e l v e s Curray,  ( S h e p a r d , 1963;  1969). The p r o g r e s s i v e l y  g r e a t e r depths o f t h e troughs from south t o n o r t h  in Queen C h a r l o t t e Sound may i n p a r t suggest the n o r t h has not rebounded t o the same e x t e n t as t h e s o u t h , a p o s s i b i l i t y s u p p o r t e d by t h e g r e a t e r bility  o f the n o r t h e r n  Charlotte  sector.  However, as was mentioned e a r l i e r ,  Queen  Islands do not appear t o have been s i g n i f i c a n t l y d e p r e s s e d d u r i n g  the P l e i s t o c e n e and the l a t e s t g l a c i a l rebound, a t l e a s t i n s o u t h e r n C o l u m b i a , has been v e r y r a p i d . influential  insta-  T i l t i n g and b l o c k f a u l t i n g may a l s o have been  in c r e a t i n g d i f f e r e n c e s  i n t r o u g h d e p t h s , however,  g r a d u a l deepening and i n c r e a s e d r e l i e f accounted f o r  by r e g i o n a l v a r i a t i o n s  d i s c u s s e d i n t h e next  British  the t r o u g h s '  from south t o n o r t h may be more  readily  i n r a t e s o f s e d i m e n t a t i o n as w i l l be  chapter.  C u r r a y (1969) argued t h a t n e a r - s h o r e e r o s i o n d u r i n g t h e P l e i s t o c e n e maximum low s t a n d o f s e a - l e v e l was one o f t h e most c r i t i c a l f a c t o r s the depth o f the s h e l f b r e a k .  determining  T h i s i s r e a s o n a b l e because the s h e l f break i s ,  on the a v e r a g e , a t 130 metres ( S h e p e r d ,  1963).  However, h i s argument does not  168. e x p l a i n the o r i g i n of deeper s h e l f b r e a k s such as those o f f and o f f Queen C h a r l o t t e Sound ( 3 0 0 m e t r e s ) .  Norway  (200 metres)  Of c o u r s e , as these s l o p e s may  have formed as f a u l t s c a r p s the s h e l f break would not n e c e s s a r i l y show any r e l a t i o n to local h y d r a u l i c lie  a t the s h e l f edge  regime.  However,  u n c o n s o l i d a t e d sediment does  in Queen C h a r l o t t e Sound and s e i s m i c p r o f i l e s  t h a t p a r t of  i t may be d e p o s i t i o n a l  in o r i g i n .  depositional  o r i g i n of the s l o p e o f f c e n t r a l  There  Vancouver  suggest  i s no doubt about I.  where the  shelf  b r e a k o c c u r s a t depths g r e a t e r  than 2 0 0 metres  The p r e s e n c e of c o n s t r u c t i o n a l  s h e l f b r e a k s such as t h i s , deeper than 130  m e t r e s , s u g g e s t s wave and c u r r e n t to prevent  1969).  energy over some s h e l v e s has been  p r o g r a d a t i o n of the s l o p e e x c e p t  In o t h e r w o r d s ,  (Murray and T i f f i n ,  the  c o n s i d e r a b l y below the  sufficient strandline.  i n Queen C h a r l o t t e Sound, w h i l e the s u r f may have been c u t t i n g  the 1 3 0 - m e t r e t e r r a c e s d u r i n g the P l e i s t o c e n e , water up to 170 metres below that  level  (at  the 3 0 0 metre s h e l f edge) was t u r b u l e n t  enough t o m a i n t a i n  a v a i l a b l e sediments i n s u s p e n s i o n , and a l l o w p r o g r a d a t i o n of the s l o p e a t depths g r e a t e r  than 170 m e t r e s .  ( 1 9 6 4 ) and D r a p e r ' s o s c i l l a t o r y currents  This hypothesis  ( 1 9 6 7 ) f i n d i n g s , which suggest  i s s u p p o r t e d by  200 m e t r e s .  It  g r e a t depths  in Queen C h a r l o t t e  t h a t w a v e - i n d u c e d sea bed  the B r i t i s h  Isles  i s a l s o s u p p o r t e d by the p r e s e n c e of c u r r e n t  deposits  t o depths ripples  proof  at  Sound.  The t h r e e major banks in Queen C h a r l o t t e Sound a r e of m a s s i v e d r i f t  Hadley's  in e x c e s s of 50 cm/sec. l i n k e d w i t h t i d a l m o t i o n s ,  duce s i g n i f i c a n t net sediment movement o f f  only  l e f t by r e c e d i n g  ice sheets.  s o r t e d g r a v e l s may at one time have been i n t e g r a l t h e i r sands may have formed e x t e n s i v e  i n t e p r e t e d as remnants  Their extremely  poorly  p a r t s of moraines j u s t as  outwash p l a i n s .  169.  PRESENT SEDIMENT DISPERSAL  IN QUEEN CHARLOTTE SOUND  As was suggested e a r l i e r ,  sands and g r a v e l s  in the Sound appear t o have  been d e r i v e d p r i n c i p a l l y from d e p o s i t i o n a l mechanisms a s s o c i a t e d w i t h which reached the s h e l f .  glaciers  Muds must a l s o have been c o n t r i b u t e d by s i m i l a r  p r o c e s s e s a l t h o u g h they now have been washed from banks and may o n l y be evident  in the t r o u g h s .  The p r e s e n c e of the h i g h e s t mud c o n c e n t r a t i o n s  the mouths of two of the major present  s o u r c e s of mud.  The  i n l e t s suggests  i n l e t mouths j u s t  i n l e t s a r e the p r i n c i p a l landward of the Sea O t t e r  Group of s h o a l s appear t o have c o a r s e r sediment than the major  i n l e t mouths  t o the n o r t h .  Mud c o n c e n t r a t i o n s somewhat comparable t o t h o s e found a t  more n o r t h e r l y  i n l e t s were o b s e r v e d o n l y  examined. tongue of  the c h a r a c t e r o f sediment d i s c h a r g e  inlets.  relatively  low s a l i n i t y water e x t r u d e s  Sound s u r f i c i a l c l a y s t o the c l a y s  i n t o the Sound must be  from the i n l e t mouths  The s i m i l a r i t y of Queen  et_ a_l_, 1 9 6 8 ) ,  s u g g e s t s t h i s tongue of  rock)  low s a l i n i t y water b r i n g s  suspended sediment d e r i v e d from the m a s s i v e i c e f i e l d s  i n l a n d of  Queen C h a r l o t t e  in present  higher  Sound.  Montmori11 o n i t e c o n c e n t r a t i o n  than in the s u b - s u r f a c e c l a y s  (particularly  and g l a c i a l g r i n d i n g whereas under the p r e s e n t  1958;  Corrol1,  1970;  Keller,  t o the Sound southeastern surficial  sedi-  Central  weathering  temperate c o n d i t i o n s m o n t m o r i l -  l o n i t e can be produced by c h e m i c a l " s t r i p p i n g " of c h l o r i t e s , (Weaver,  (Kunze  t h o s e in  Trough) because the s u b - s u r f a c e c l a y s formed l a r g e l y by p h y s i c a l  mica  Charlotte  i n the Taku e s t u a r y of s o u t h e a s t e r n A l a s k a  ( d e r i v e d from g l a c i a l a b r a s i o n of p r e d o m i n a t l y g r a n o d i o r i t i c  is  To  D u r i n g the summer months, the most c o n s p i c u o u s and e x t e n s i v e  landward of the Sea O t t e r Group of s h o a l s .  ment  the  i n the n o r t h arm of South T r o u g h ,  a c o n s i d e r a b l e d i s t a n c e from the mouths of the southernmost u n d e r s t a n d why,  at  hornblende and  1970).  I n l e t mouths e a s t of the Sea O t t e r Group of s h o a l s a r e narrow. c o n d i t i o n c o u p l e d w i t h the i n t e n s i t y o f m e l t w a t e r d i s c h a r g e from these  This inlets  170.  d u r i n g the summer p r o b a b l y produces s u f f i c i e n t t u r b u l e n c e t o p r e v e n t d e p o s i t i o n o f sediment w i d e r more n o r t h e r n  of a f i n e n e s s comparable t o t h a t found in the  i n l e t mouths  except at some d i s t a n c e o f f s h o r e .  Further-  more, what sediment i s s u p p l i e d by m e l t w a t e r s must be d e p o s i t e d p r i m a r i l y the n o r t h and not south arm of the South Trough because the C o r i o l i s causes d i s c h a r g i n g  i n l e t w a t e r s t o sweep n o r t h .  The south arm i s  d e p r i v e d of f i n e sediment because l i t t l e d e t r i t u s Charlotte  i n marine s e d i m e n t s :  g r a i n s i z e and p r o x i m i t y 1961,  1966;  influential  further  i s s u p p l i e d from Queen  in the d i s t r i b u t i o n o f  oxygen c o n t e n t of o v e r l y i n g w a t e r s ,  t o a r e a s of o r g a n i c p r o d u c t i v i t y  Emery and N i i n o ,  1963;  N i i n o e t a l , 1969;  was noted e a r l i e r n e a r - b o t t o m oxygen d i s t r i b u t i o n all  effect  Strait.  S e v e r a l mechanisms a r e matter  any reason t o expect o r g a n i c p r o d u c t i v i t y t o be d i f f e r e n t .  Higher n u t r i e n t  organic sediment  ( N i i n o and Emery, Thomas,  There i s l i t t l e  s u p p l y might be e x p e c t e d  as t h e s e w a t e r s a r e r a p i d l y d e f l e c t e d n o r t h ,  in the a r e a of  t h e i r e f f e c t as a  but  nutrient  i s p r o b a b l y e v e n l y d i s t r i b u t e d o v e r the Sound even though  exhibit  if  over the muddy a r e a s of the Sound  the Sea O t t e r Group of s h o a l s because of the h i g h m e l t w a t e r d i s c h a r g e ,  s u s p e n s a t e i s deposited near s h o r e .  As  1969).  i s g e n e r a l l y u n i f o r m and i n  a r e a s of the Sound the bottom appears t o be a e r o b i c .  source  in  coarser  On the o t h e r hand, o r g a n i c carbon does  a s t r o n g n e g a t i v e c o r r e l a t i o n w i t h the g r a i n s i z e of e n c l o s i n g  sedi-  ment which s u g g e s t s t h a t o r g a n i c m a t t e r does not as r e a d i l y a c c u m u l a t e in the h i g h e r energy e n v i r o n m e n t s common t o most c o a r s e sediments and/or the p e r m e a b i l i t y of the c o a r s e r sediments may p e r m i t  i t t o more r a p i d l y  higher  oxidize.  The energy of the environment and the p e r m e a b i l i t y o f the sediment a r e p r o b a b l y the most s i g n i f i c a n t  factors.governing  m a t t e r i n the p r e s e n t s u r f i c i a l  the d i s t r i b u t i o n o f  thus  organic  sediments.  The tendency f o r o r g a n i c c a r b o n t o d e c r e a s e w i t h depth in a c o r e probably  reflects,  in p a r t ,  the tendency of sediments t o be o x i d i z e d  after  171.  burial.  However, the more a b r u p t change in o r g a n i c c o n t e n t e v i d e n t as the  u n c o n f o r m i t y between the s u r f a c e sediments and the b l u e - g r a y mud i s c r o s s e d probably  i s s u g g e s t i v e of a fundamental change in the c h a r a c t e r of d e p o s i t i o n .  The b l u e - g r a y mud p r o b a b l y was d e p o s i t e d r a p i d l y enough t o a l l o w l i t t l e f o r o r g a n i c a d s o r p t i o n (Thomas,  time  1969) and l i t t l e development o f a bottom f a u n a .  Both o r g a n i c a d s o r p t i o n and the development of a bottom fauna c o u l d o c c u r as the more r e c e n t s u r f i c i a l  sediments s l o w l y s e t t l e d out of s u s p e n s i o n .  It was e a r l i e r suggested t h a t the r e l i e f  in the s o u t h e r n Sound i s more  subdued than i n the n o r t h because s e d i m e n t a t i o n has been p r o c e e d i n g a t a f a s t e r pace i n the s o u t h . ments,  This  i s s u p p o r t e d by:  the c o a r s e n e s s of North Trough s e d i -  the p r o x i m i t y of the b l u e - g r a y muds in C e n t r a l  s u r f a c e of the Sound f l o o r ,  Trough t o the p r e s e n t  the abundance of o r g a n i c - r i c h sediments in South  Trough c o r e s , and the more w i d e s p r e a d o c c u r r e n c e of g l a u c o n i t e slower sedimentation rates  (Degens,  1965)) in the  (suggestive  I n t e r t r o u g h Area which  of  is  in  the n o r t h of the Sound. After  i c e - l o b e s s c o u r e d and d e p o s i t e d d r i f t  i n the t r o u g h s ,  have been added t o the s h e l f from the f o l l o w i n g s o u r c e s : i c e lobes or  floating  sediments ice s h e e t s ,  i c e b e r g s , and more r e c e n t l y from m e l t w a t e r from g l a c i e r s  a c t u a l l y r e a c h i n g the s h e l f . most m a s s i v e p r e s e n t  The p r o x i m i t y of South Trough t o the a r e a , of  i c e a c c u m u l a t i o n in the v i c i n i t y  of the Sound s u g g e s t s  i t has been exposed t o most s e d i m e n t a t i o n from these s o u r c e s . p r o b a b l y was p a r t l y  not  Central  Trough  f i l l e d by a massive i n f u s i o n of m e l t w a t e r from a nearby  r e t r e a t i n g g l a c i e r , but h a s n ' t been s i g n i f i c a n t l y a f f e c t e d by r e c e n t s e d i m e n t a tion.  North Trough p r o b a b l y has been l a r g e l y  meltwater d e p o s i t i o n since i t s  i s o l a t e d from f l o a t i n g i c e and  excavation.  The tendency f o r a n o m a l o u s l y c o a r s e , more g l a u c o n i t e r i c h ,  sediments t o  l i e on the o u t e r s h e l f and f o r muddy sediments t o be r e s t r i c t e d almost t o the i n n e r s h e l f suggests  exclusive  l i t t l e sediment i s b e i n g d i s c h a r g e d i n t o the Sound  172. and t h a t which  is may be p r e v e n t e d from b e i n g d e p o s i t e d on the o u t e r s h e l f as  c o a r s e r muds s e t t l e c l o s e l y p o r t e d a c r o s s the s h e l f  i n s h o r e and the f i n e s t  fraction  in the l e s s s a l i n e s u r f a c e w a t e r s .  is r a p i d l y T h i s set of  mental c o n d i t i o n s s u g g e s t s t h a t the t r o u g h f l a t s at the s h e l f edge were formed as t r o u g h g l a c i e r s  the f a c t  that  i n the s o u t h e r n  largely  the o r g a n i c carbon c o n c e n t r a t i o n  o f the c o r e o b t a i n e d near the South Trough f l a t  occurred  environ-  r e t r e a t e d and g l a c i a l muds were ponded behind the  s h e l f edge m o r a i n e , however,  o b t a i n e d in the C e n t r a l  trans-  Trough f l a t  i s h i g h e r than t h a t of the c o r e  i n d i c a t e s more recent s e d i m e n t a t i o n has  flat.  At depths s h a l l o w e r than t h a t a t which c o n s i d e r a b l e mud a c c u m u l a t e s (160 m e t r e s ) ,  the most w i d e s p r e a d w e l l s o r t e d sediments are bank s a n d s .  sediments a r e ones most l i k e l y to r e f l e c t transport  under o p e n - s h e l f h y d r a u l i c  A l t h o u g h the r e s u l t a n t at  the d i r e c t i o n of p r e s e n t  bed-load  conditions.  s u r f a c e t i d a l c u r r e n t moves south o f f  l e a s t some of the bank sands appear t o be swept n o r t h  T h i s would suggest sand d i s t r i b u t i o n  These  Cook Bank,  i n t o deeper w a t e r .  i s not r e f l e c t i n g p r e s e n t c u r r e n t  patterns.  However, as the sands are p r o b a b l y moved o f f the bank by f l o o d t i d e s and the ebb f l o w has not the n e c e s s a r y t r a n s p o r t  competence t o d r i v e  slope,  the sands r e f l e c t o n l y one of the c u r r e n t  Bank.  It  is quite  l i k e l y that  down the c o n t i n e n t a l  the ebb f l o w  s l o p e , but t h e r e  is  them back up  d i r e c t i o n s p r e v a l e n t on the  is d r i v i n g sands o f f the bank and  l i t t l e e v i d e n c e , as y e t ,  to substan-  t iate t h i s . The sands found below 200 metres  i n the main t r u n k of South Trough  p r o b a b l y a r e not p r e s e n t l y b e i n g d e r i v e d from e i t h e r  Cook Bank or Goose  Bank as c u r r e n t s appear unable t o move sand below 160 m e t r e s .  I.  These sands  may have been d e r i v e d from e i t h e r of the banks d u r i n g a lower s e a - l e v e l by a tidal  system s i m i l a r t o t h a t at p r e s e n t ,  difficult  but  i f t h a t were the case i t would be  t o e x p l a i n the f i n e n e s s of the sediments seaward of these s a n d s ,  but  173.  at approximately  the same d e p t h .  It  i s more l i k e l y t h a t much of the  outer  t r o u g h s e d i m e n t a t i o n o c c u r r e d when the dominant d e p o s i t i o n a l agent was m e l t water from g l a c i e r s  t h a t p a r t i a l l y o c c u p i e d the t r o u g h .  the sands p r o b a b l y  are  As was suggested  s i m p l y remnants of a g l a c i a l outwash which grades  i n t o the muds ponded b e h i n d the t e r m i n a l moraine a t the s h e l f The s t r i p of at  least  in p a r t ,  shifted.  by a dense n e t w o r k . o f  snail t r a i l s . it  their  The  1 9 6 9 ) , but  a l l o w e d them t o a c q u i r e the c o a t i n g  in the f i r s t  of  it  iron bearing minerals.  However,  Swift  p l a c e by in s i t u  permitted  oxidation  in a r i v e r  m a j o r i t y of b e s t - s o r t e d low in m a g n e t i t e .  iron-stained shelf  the f o r m a t i o n of an i r o n s t a i n  ample amounts of m a g n e t i t e and/or  in Queen C h a r l o t t e  The same c o n d i t i o n was noted  p a r t s of the w o r l d  magnetite r e a d i l y a l t e r s  (Norris,  in o x i d i z i n g  1969).  conditions  (judd ct. a l , importance  s a n d s , but the.  is the presence  i l m e n i t e ( M i l l e r and F o l k ,  r u s t y sands  1955).  Sound a r e a n o m a l o u s l y  in i r o n - s t a i n e d dune sands Oilier  ( 1 9 6 9 ) has  to l i m o n i t e .  i r o n - s t a i n i n g on sands a r e the presence  indicated  On the banks  of:  (a)  ample Fe o x i d e s  (b)  sediments s u f f i c i e n t l y c o a r s e not t o be moved too  (c)  oxidizing  conditions  of  The  i n Queen C h a r l o t t e Sound c o n d i t i o n s which have f a v o u r e d the f o r m a t i o n and r e t e n t i o n of  are  i t may a l s o have  ( D o l a n , 1970) or  in the f o r m a t i o n of  important f a c t o r g o v e r n i n g  from v a r i o u s  trails  ( 1 9 6 9 ) and Emery and N i i n o ( 1 9 6 3 ) have emphasized the  o f s u b a e r i a l exposure  fre-  i s a l s o p o s s i b l e the o x i d e c o a t i n g was  formed in a s u b a e r i a l beach environment 1970).  generally  i s p r o b a b l e they a r e not as  i m m o b i l i t y of these sands may have  rusty coating (Swift,  covered,  As t h e s e sands  S n a i l s may more r e a d i l y f l o u r i s h here and t h e i r  not as q u i c k l y e r a d i c a t e d . them t o p r e s e r v e  edge.  r u s t y sands on the e a s t e r n edge of Cook Bank a r e  a r e c o a r s e r than o t h e r well, s o r t e d sands quently  earlier,  frequently  174. A comparison of d i r e c t i o n s of t i d a l motions and the d i s t r i b u t i o n  of  b e s t s o r t e d sands suggests sand i s b e i n g washed by t i d a l c u r r e n t s from the sandy g r a v e l s and g r a v e l l y n o r t h and s o u t h w e s t .  sands on the south of Goose I.  These t r a n s p o r t  t o p o g r a p h i c c h a r a c t e r of Goose I. southwest  Bank towards  d i r e c t i o n s are in accordance w i t h  Bank.  the  Slopes a r e g e n t l e to the n o r t h and  i n the d i r e c t i o n sediments a r e p r o g r a d i n g but v e r y a b r u p t  the s o u t h and s o u t h e a s t .  the  towards  A r e a s w i t h r u s t y sands and s n a i l t r a c k s are a l s o  observed on t h i s bank and p r o b a b l y  represent areas  in which sediments a r e not  t r a n s p o r t e d except under more severe storm c o n d i t i o n s .  The g l a u c o n i t e on the  bank p r o b a b l y formed in foram t e s t s which were s u b s e q u e n t l y broken and swept away ( K e l l e r and R i c h a r d s ,  1967).  The g e n t l e r i d g e s e x t e n d i n g west of the s h a l l o w e s t p o r t i o n of Goose Bank may have a s i m i l a r o r i g i n t o t h a t of the sand r i d g e s in the North Sea ( H o u b o l t ,  1968;  Stride,  1970).  reported to occur  The North Sea r i d g e s  o r i e n t e d g e n e r a l l y p a r a l l e l t o and a r e formed as a consequence of currents.  I.  are  tidal  Houbolt s t a t e d t h a t " t h e sand of which these r i d g e s c o n s i s t  d e r i v e d from the sea bottom and not d i r e c t l y from a r i v e r mouth.  is  The sand in  the r i d g e s of the Well Bank a r e a seems t o have been d e r i v e d from a g l a c i a l outwash f a n formed in the a r e a d u r i n g the l a s t g l a c i a t i o n " . ' Thus,  in terms  of t h e i r f o r m , t h e i r o r i e n t a t i o n w i t h r e s p e c t t o t i d a l f l o w and t h e i r origin,  the Queen C h a r l o t t e Sound r i d g e s a r e somewhat s i m i l a r .  mentioned t h a t "Van V e e n . . . h a s . . . suggested t h a t the o f f s h o r e  sediment  S t a n l e y (1969) linear  systems r e p r e s e n t the e v o l u t i o n of o r i g i n a l l y p a r a b o l i c or s i g m o i d a l  ridge nearshore  e b b - f l o o d channel systems w i t h r i s i n g s e a - l e v e l , by a p r o c e s s o f b r e a c h i n g of t h e t r a n s v e r s e segments". as they a r e s t i l l  It  is l i k e l y the r i d g e s on Goose  I.  Bank,  f i x e d a t one end t o s h a l l o w e r ground and a r e not as  insofar regular  as the North Sea r i d g e s , may be examples o f an i n t e r m e d i a t e s t e p in t h i s  process.  The a r e a on North Bank covered by b e s t s o r t e d sands i s v e r y small when  175. compared t o a r e a s covered by the same sediment type Bank and Cook Bank.  This probably  deeper than the o t h e r b a n k s .  in the v i c i n i t y  of Goose  I.  r e f l e c t s the f a c t North Bank i s so much  As on o t h e r b a n k s , sands a p p a r e n t l y a r e b e i n g  washed t o the n o r t h and south from the p o o r l y s o r t e d sediments i n the m i d d l e o f the bank. bank a t  The o n l y  rusty well  s o r t e d sand was found near the c e n t r e o f  128 metres and may have developed under p r e s e n t c o n d i t i o n s or when  sea-level  stood lower and the wide t e r r a c e on t h i s bank may have been s u r f - p l a n e d .  On a p l o t of depth v e r s u s mud-sand r a t i o a c c u m u l a t i o n occur o n l y  it  is evident  t h a t heavy mud  below 160 metres a l t h o u g h some muddy sands w i t h mud  c o n t e n t s as h i g h as 20% o c c u r as shoal as 120 m e t r e s . samples s h a l l o w e r than 160 metres a r e  Most of the v e r y muddy  in the s o u t h w e s t e r n p o r t i o n of Queen  C h a r l o t t e Sound near shore or near the Sea O t t e r Group o f s h o a l s . is  in the v i c i n i t y  in t h i s a r e a may be " d r o w n i n g "  in mud.  Consequently,  The g r a v e l s  muddy sediments may have r o l l e d from h i g h e r ground not be g l a c i a l sediments d e p o s i t e d All  This area  of the h i g h e s t p r e s e n t sediment d i s c h a r g e and somewhat p r o -  t e c t e d from the f u l l o n s l a u g h t of storm waves.  waves and sea s w e l l s by the S c o t t  because i t  i n t o deeper water and may  Goose  I.  Bank i s the  Cook Bank i s a l s o  i s somewhat p r o t e c t e d from storm  Islands " b r e a k w a t e r " .  i n t e r m i t t e n t e r o s i o n and d e p o s i t i o n .  foram t e s t s a r e v e r y s p a r s e .  shallower  in p l a c e .  bank tops a r e s h a l l o w e r than 160 m e t r e s .  b e i n g eroded but to a l e s s e r e x t e n t  some sediments  in some of these  s h a l l o w e s t o f the banks and i s most a c t i v e l y b e i n g e r o d e d .  of  the  North Bank i s a zone  On both Cook Bank and Goose  I.  Bank  On much of North Bank t e s t s a r e e x t r e m e l y abun-  d a n t , but they tend to be most abundant  in v e r y p o o r l y s o r t e d sandy  gravels.  S c h a f e r and Prakash (1968) have found t h a t " t h e s i z e of F o r a m i n i f e r a 1 t e s t s and the p o s s i b l e entrapment of a i r or some o t h e r gas make them most s u s c e p t i b l e t o e r o s i o n and t r a n s p o r t by c u r r e n t s . foraminifera1  t e s t s which a r e no longer  This  is e s p e c i a l l y t r u e of abandoned  i n h a b i t e d by the l i v i n g  animal".  176. C u r r e n t energy p r o b a b l y Goose  I.  Banks.  i s always s u f f i c i e n t t o sweep forams o f f  Cook and  On North Bank they may s e t t l e when weather c o n d i t i o n s a r e  l e s s s e v e r e , but d u r i n g a storm such as t h a t which r e c e n t l y p r e v a i l e d over the Sound, foram t e s t s a r e washed from b e t t e r s o r t e d sands on North Bank but  remain  amongst the p o o r l y s o r t e d g r a v e l s where they cannot as r e a d i l y be d i s l o d g e d . An i n t e r e s t i n g a s i d e may be i n t e r j e c t e d h e r e . t i o n s o f CaCO^ shell  The observed h i g h c o n c e n t r a -  in Queen C h a r l o t t e Sound (foram t e s t s on North Bank, m o l l u s c a n  hash on Cook Bank)  lend f u r t h e r  note t h a t paleoenvironmenta1  support  to Chave's  (1967)  cautionary  i n v e s t i g a t i o n s must c o n s i d e r t h a t abundant c a r b o n -  a t e sediments may develop w e l l o u t s i d e t r o p i c a l  conditions.  The r e p o r t e d t i d a l v e l o c i t i e s of 4 0 - 5 0 cm./sec t o depths a t l e a s t as g r e a t as 100 metres  i n the Sound would p e r m i t t r a n s p o r t  sands on Cook and Goose  I.  0.063 mm ( 1 . 0 t o 4 . 0 p h i ) 1971).  Therefore,  (medium t o v e r y f i n e sand)  (Sundborg  in S t e r n b e r g ,  t i d a l a c t i o n a l o n e appears adequate t o erode the two .  In the s e a r c h f o r t e r r a c e s which might r e p r e s e n t  former s t r a n d l i n e s  it  be d e t e r m i n e d t o what depth t e r r a c e s may d e v e l o p under p r e s e n t l y  vailing hydraulic below what  sorted  Bank which have mean g r a i n s i z e r a n g i n g from 0 . 5 -  sha11ower b a n k s .  must f i r s t  of the best  regimes.  Conversely,  i t must a l s o be c o n s i d e r e d t h a t  pre-  terraces  i s w i d e l y b e l i e v e d t o be the depth of the lowest P l e i s t o c e n e drop  s e a - l e v e l ' m a y have formed when the s e a - l e v e l was a_t the lowest s e a - l e v e l and not below.  depth  C o n s i d e r a b l e c a r e must be t a k e n t o a s c e r t a i n whether m a t e r i a l  c o l l e c t e d from deeper t e r r a c e s f o r age d a t i n g has not f a l l e n or been washed down from some h i g h e r  l e v e l , a n d , f o r t h a t m a t t e r , whether deeper  have not formed by some mechanism o t h e r than wave a b r a s i o n .  terraces  As i n d i c a t e d by  S p i g a i and Kulm (1969) t e r r a c e s at 250-500 metres may even form by sediment ponding behind s l o p e a n t i c l i n a l  folds.  in  '77.  The evidence- f o r e r o s i o n p o s s i b l y t o depths of  130 metres and the  l a c k of s u b s t a n t i a l mud a c c u m u l a t i o n s h a l l o w e r than 160 metres below p r e s e n t sea-level  s u p p o r t s the e a r l i e r c o n t e n t i o n t h a t  the Q.ueen C h a r l o t t e  Sound  s h e l f break may have developed w e l l below the l e v e l of the lowest P l e i s t o c e n e strandline.  178. CONCLUSIONS  1. grounded  Queen C h a r l o t t e Sound has been g l a c i a t e d t o the s h e l f edge by ice.  2. glaciation.  Troughs were e x c a v a t e d d u r i n g p e r i o d s of more i n t e n s e After  shelf  r e t r e a t of the l a s t grounded g l a c i e r s , North Trough  received l i t t l e sediment, northern Central  Trough ponded g l a c i a l f l o u r  dis-  charged from g l a c i e r s s t a g n a t i n g on or - r e t r e a t i n g - a c r o s s the . I n t e r t r o u g h A r e a and i n n e r and outermost South Trough g r a d u a l l y a c c u m u l a t e d mud s e a s o n a l l y d i s c h a r g e d i n t o the Sound from s t i l l e x t a n t 3.  G l a c i a l d e p o s i t s , formed as the l a s t  waned, a r e s t i l l e v i d e n t h.  7.  Glaciation  Intertrough Area.  d e p o s i t s d e r i v e d from i c e sheets  shelf.  N o r t h e r n C e n t r a l Trough and the p o r t i o n of the n o r t h arm of  Trough e a s t o f Goose 6.  lobes of F r a s e r  in the s h e l f troughs and in the  Banks p r o b a b l y are m a s s i v e d r i f t  which o v e r r a n the 5.  icefields.  I.  South  Bank may be m a r g i n a l c h a n n e l s .  I n t e r t r o u g h A r e a may be a downdropped p o r t i o n of M i l b a n k e S t r a n d f l a t . If  it  i s assumed t h e r e was l i t t l e g l a c i a l d e p r e s s i o n of the  shelf  and r a p i d rebound, the deepest seaward f a c i n g t e r r a c e s a t  130 metres may have  formed by n e a r s h o r e wave a b r a s i o n when the sea was a t  lowest  level.  However,  planation certainly  its  is p r e s e n t l y a c t i v e at  Pleistocene  l e a s t as deep as  100 metres (and p o s s i b l y as much as 130 m.) below p r e s e n t s e a - l e v e l . the s h e l f  is mantled with unconsolidated d r i f t  s u s c e p t i b l e t o p l a n a t i o n in the p a s t .  Because  i t would have been p a r t i c u l a r l y  Therefore,  employed when a t t e m p t i n g t o l o c a t e p a l e o s h o r e l i n e s  c o n s i d e r a b l e c a u t i o n must be i n the Sound.  The f a c t  that  s i g n i f i c a n t e r o s i o n dependent on l o c a l o c e a n o g r a p h i c c o n d i t i o n s c o n t i n u e s at c o n s i d e r a b l e depth below s e a - l e v e l  s u g g e s t s an e x p l a n a t i o n f o r the d i f f e r e n c e s  i n depth o f non-warped g r a d a t i o n a l s h e l f b r e a k s .  179.  8.  R i v e r s eroded canyons a t the margins o f Cook Bank when s e a - l e v e l  was lower and c o n c e n t r a t e d the heavy m i n e r a l f r a c t i o n of 9«  l o c a l sands.  Suspended sediment i s s u p p l i e d l a r g e l y from m e l t w a t e r s d i s c h a r g i n g  i n t o the Sound from i n l e t s  landward of the Sea O t t e r Group of s h o a l s .  As  t h e s e w a t e r s e n t e r the Sound and a r e d e f l e c t e d n o r t h t h e i r sediment f l o c c u l a t e s and s e t t l e s .  C o n s e q u e n t l y , most r e c e n t mud i s b e i n g d e p o s i t e d in the  north  15  arm o f South Trough a n d ^ s l o w l y burying g l a c i a l d e p o s i t s the t r o u g h .  Mud, f u r t h e r  have been d e r i v e d  n o r t h , e s p e c i a l l y i n the  i n the main t r u n k  of  I n t e r t r o u g h A r e a , may  l a r g e l y from r e t r e a t i n g g l a c i e r s .  F i n e s t sediment s u p p l i e d  t o the s h e l f and not d e p o s i t e d i n s h o r e i s p r o b a b l y t r a n s p o r t e d beyond the shelf  in the l e s s s a l i n e s u r f a c e w a t e r s .  As a consequence, many deep water  sediments a r e a n o m a l o u s l y c o a r s e and muds on the o u t e r - s h e l f  t r o u g h - f l a t s may  have been d e r i v e d m a i n l y from m e l t w a t e r which ponded b e h i n d the s h e l f edge t e r m i n a l moraine as the f i n a l 10.  Tidal  currents  trough g l a c i e r  retreated.  on Cook Bank h e l p e d by w a v e - i n d u c e d  oscillatory  c u r r e n t m o t i o n are s h i f t i n g sands i n t o the main t r u n k and south arm of Trough and p r o b a b l y a l s o down the c o n t i n e n t a l  slope.  same agents a r e t r a n s p o r t i n g sands n o r t h towards the Central  On Goose  Bank the  Intertrough A r e a and  Trough and southwest onto the s l o p e seaward of Goose  Bank s e d i m e n t s , however,  I.  I.  Bank.  p r o b a b l y a r e b e i n g s h i f t e d o n l y d u r i n g more  storms a n d , as a c o n s e q u e n c e , t h i s bank i s b e i n g l e v e l l e d more s l o w l y the  others.  South  North intense than  APPENDIX  LIST OF DATA USED IN FACTOR ANALYSIS  EXAMPLE: 0_CS# 3.29  2 0.46  0.49  73 3.68  0.0  97-02  2.98  0.3  1  WHICH REPRESENTS:  SAMPLE NUMBER  DEPTH  (Metres)  MEAN PHI/STAN. /SKEWNESS/KURTOSIS/%GRAVEL/%SAND/%MUD/%NON/%CaC0 DEVIATION SHELL PHI ORGANIC CARBON CONTENT  NOTE:  3  Those samples c o n s t i t u t e d of o n l y a few g r a v e l - s i z e p a r t i c l e s and f o r which no s i z e a n a l y s i s was done a r e r e p r e s e n t e d by o n l y t h e i r sample number and sample d e p t h . These were not i n c l u d e d in f a c t o r analyses.  181.  QCS £ 3.294 QCS 3.484 QCS  4  3. 352 QCS?  5  a  2 0.489  1.994  0 . 525  1 . 8 15  1. 452  0.715  0.454  1.980  0.914  3  2.922 QCS » -3.160  6  QCS*  7  -6.048 QCS#  0.462  2.977  0 . 3 00  1  4.743 147  1.773  72.859  25.367  0. 800  2  6.37 3 146 2 . 37 4 51  0.0  86.24 2  13.758  0 . 6 00  1  0.3  94 . 8 8 0  5 . 120  0 . 4 00  2  11.335  0.238  0.0  0  2.970  88.42 8  0.112  0. 867100.000 37  0.0  0.0  0. 0  0  0.455  0.451  1. 1 4 1 1 0 0 . 0 0 0  0.0  0 .0  0. 0  0  0.049  0. 0  20  1.382  0. 0  20  0.161  0.100  16  0.081  0. 0  1  1 9 . 7 70  0 . 7 00  3  18. 868  0.700  2  14.808  1.000  8  52.260  0 . 9 00  2  0.0  0  0.700  2  3.40 7 1.64 1 Q C S I! 17 4.04 6 2.049 QCS!' 18 -1.04 9 4.492 QCS* 19 5.028 2.410 QCS# 20 -0.583 3.299  44 - 0 . 4 10 0.244 - 1 . 0 84 -0.087 1.32 9 1.175 0.503 0.932 0.008  21 1.175  -2.952  0.581  3.043  QCS# 23 -1.79 5 4 . 5 39 QCS# 24 2. 961 1 . 4 35 QCS# 25 4. 1 1 9 1 . 6 30 QCSF 26 0.165 2.988 QCS* 27 2.674 0.530 QCS# 28  2 . 1 10  1 6 . 8 62  8 3 . 09 0  49 1.589 54.897 43.721 64 4.20 5 6.02 9 93.810 80 2 . 257 0.0 9 9 . 919 16 3 6.35 6 0.0 80.231 153 4 . 149 0.0 8 1 . 132 100 1.593 60.132 25.060 1 19 2.461  0.0  47.740  49  4.304 -2.037 QCS* 22  -5.166  97.023  0.594  QCStl 9 -0.02 0 1.26 0 QCS# 11 -1.081 2.098 QCS« 12 1 . 8 84 1 . 4 05 QCS2 15 2. 362 0.529 QCS# 16  QCSt  0.3  55 '  8  -5.416  73 3.677 1 20  0.736 1 . 61 3 1 . 62 5 -0.381 -0.202  0 . 6 1 2 49 . 4 5 3 12 3 4.209 0.0 68 1 . 4 14 7 4 . 9 2 0 128 2 . 0 3 4 7 2 . 0 40 166 9.058 0.0 164 6.85 3 0.0 99 9.930 30.914 91  4 9 . 27 3  3.38 2  0.0  1 . 2 69  64.798  35.202  2 3 . 18 8  1 . 892  0. 0  0  1 5 . 4 13  12.547  0. 0  0  88.050  11.941  0 . 5 00  1  7 2 . 318  2 7 . 682  0.700  2  68.378  0.708  0.0  1  99.46 2  0.538  0 . 100  1  1.202  0.021  0.0  0  10.809  0.090  0. 0  0  6.560  0.017  0. 0  0  •55  1.05 0  1.90 8  QCS* 29 -3.941 2.121  0.025  QC5# 30 -4.784 1 . 7 07  1. 131  12.122 98.777 8R 2.750 89.100 55 4.789 93.423  QCSK 32 OCS't 33 -2.762 2.409 QCSft 34  60 64 0.611  2 . 2 00 0.48 4 QCSif 35  - 0 . 4 93  0.60 3 1.20 3 QCSS 36 2.776 0.384 QCS# 37  -3.879  2.800  0.678  1 . 6 16 82 5. 509  7 9 . 9 33  1 9. 675  0 . 392  0. 200  9 0 . 937  0.063  0.0.;  2  6. 404  9 3 . 585  0.011  0.100  0  0. 0  9 9 . 79 1  0 . 209  0.100  1  0.100  1  0. 0  21  6 6' •  0.201  3 . 7 18 95 2. 797 122  0.067  2. 776 175  0. 3  9 7 . 4 26  2 . 574  3. 636 1 . 46 1 QCS# 39  1. 3 6 5  7 . 5 12  0.3  74.398  25.602  0 . 6 00  1  3. 035 2. 232 QCS* 40  1 . 0 76  1. 1 1 6  8 5 . 2 36  1 3 . 64 8  0.500  1  2.107 0.851 QCSJt 4 1  0 . 5 37  0.0  9 6 . 69 1  3 . 309  0. 0  0  2.257 0 . 5 36 QCS# 42  -0.599  0 . 390  98. 776  0.835  0. 0  0  3.23 3 0.67 4 QCSfr 43  0.621  0.0  9 1 . 194  8.806  0 . 5 00  2  3. 907 1 . 176 QCSS 44 3. 4 89 0.85 3  2. 1 95  0.0  73. 849  2 6 . 1 51  0 . 7 00  1  0.0  6 9 . 57 0  1 0 . 430  0 . 4 00 ' 0  0.0  9 7 . 206  2.794  0.3  9 9 . 98 3  QCn*  38  165  3. 129 0 . 43 4 QCSif 46 1.347 0.652 OCf.'f 47 QCStf 48 - 3 . 2 72  2 . 9 62 0 . 702 0.135  1.6 84  0.840  2.22 2 0 . 4 31 ()CS ii 50 -0.23 8 1 . 7 26  -0.00 7 - 0 . 2 76  5 1  QCS-+  --6. 297 0 . 6 30 OCSI* 55 2. 855 0 . 6 40  0 . 71 2 1.004  56  QCSv 0.392  2.173  -0.157  0 . 4 28  0.707  2.42 8 0.46 0 QCStt 60 1.892 0.548  -0.196  58  QCS--H 2 . 5 78  59  QCS*  QCS* QCS#  2 . 5 21  2.547  - 4 . 9 63  1  1.438  0.0 17  0. 0  0  7.76 2  0 . 0 34  0. 0  0  9 9 . 939  0 . 0 61  0.100  0  58. 550  0.024  0.0  0  0.0  0.0  o  9 4 . 35 4  5 . 646  0.500  1  7 0 . 336  3.263  0 . 7 00  26  99„213  0.787  99.849  0.151  0 . 100  1  99.779  0.221  0. 0  0  52.017  0.180  0 . 100  6  2.319  97.669  0.012  0. 0  0  0.3  9 9 . 71 3  0. 287  0. 0  0  0.3  92.674  7.326  0 . 4 00  1  0.3  7 4 . 336  2 5 . 663  1. 000  2  1.440  0.050  0. 0  0  55 68 3.09 1 92.20 4 68 2.549 0.0 68 1 . 0 8 6 31 . 4 2 5 62 1,943100.000 168 3 .758 0.3 123 1.326 2 6 . 401 100 5.15 3 0.3 86 2.857 0.3  0. 0  - 0.200  2  2.450 0.3 80 0.855 47.803  73 -0.124  1.333 122  0.509  0.160  1 . 09 1  2 . 64 1  2 . 1 15 170 18.445  65  3. 871  QCS*  -0.131  64  3 . 3 73  QCS#  0.272  62  0.79 2 0 . 8 97 0CS# 63  QCS*  0.200  84  61  -1.03 6  12.962 161 24.903 119 3.666  64  4 9  QCS*  6 . 1 16 146 2 . 4 20 192  45  QCS#  4.64 3 99 2.846 95  1 . 2 36  1. 993  192 1 1.705 1 11  1.09 5  2 . 0 30  1 3 . 6 16  66  98.510  Q C S if68 0 . 64 4 3.3 75 Q C S if 69 -1.02 4 2.979 QCSt 7 1  183. 0 . 64 9 •0.031  133 2 . 26 9 40 . 9 1 0  4 3 . 3 39  1 5 . 2 51  0 . 7 00  9  183 0 . 89 1 4 2 . 5 8 8 17 4  5 4 . 022  3 . 390  0. 300  14  2. 9 2 7 0.459 Q C S if 72  0.676  3.898 1 10  0.3  9 8 . 5 16  1.484  0 . 3 00  0  1. 1 93 1 . 07 1 QCS!! 73  -0. 229  2 . 981  9 6 . 958  0 .062  0. 0  0  2 . 30 6 0 . 7 35 QCS ^ 74  •0. 5 5 0  1. 437 100 2 . 34 1 102  0. 3  99. 780  0.220  0.100  0  0.3  9-9. 8 5 2  0 . 1 48  0 . 100  1  7 5 . 088  5 . 381  0.400  3  2.801 QCS»  0.391  0. 119  1.49 3 2 . 6 96 QCS* 76  •0. 5 6 0  3.586 1.053 Q C S if 77 3. 107 . 1. 258 QCS* 73  2 . 1 54  14 . 6 0 7 157  0.3  8 8 . 09 2  11 . 9 0 3  0 . 7 00  4  2. 488  15.56 3 173  0.3  9 5 . 069  4.931  0.700  3  3. 4 77 1.759 QCSff 79  1.553  6.691 0.0 19 2 8 . 311 0.3 280 10.055 0 . 3 59 26 5 0.890 60.994  86.973  13.027  0.600  9  81. 852  1 8 . 149  0.600  9  8 5 . 3 26  14.315  0 . 6 00  4  35.120  3.885  1.000  9  84.03 3  1 5 . 9 67  0.800  9  6 7 . 28 9  1 2 . 73 6  0 . 6 00  3  91.942  8.058  0.500  1  94.658  5.342  0.300  1  88.445  11. 555  0.400  1  80.068  19.024  0.600  2  74.256  13.104  0.500  1  51.598  38.402  0.800  1  33.661  66.339  -0.300  2  15.305  84.695  0.900  3  1 6 . 4 29  8 3 . 571  0^300  3  6 8 . 909  31 . 0 9 0  0. 800  2  99.509  0.491  0.0  1  0.0  26.502  73.499  1.300  3  0.0  53.961  36.039  1.700  3  0.0  82.910  17.090  0.500  1  0. 3  9 9 . 98 2  0. 0  1  75  1 . 5 15  1. 624  3 . 52 9 1 . 4 17 QCS« 81 -1.400 3.630 QCSS 82  1 . 6 74  3. 636 Q C SS 3  80  0.280  2 . 7 14 124  1 . 5 8 5 1 9 . 531 145  238 5.34 3 0.0 22 3 1 . 87 1 1 9 . 9 7 5  3. 3 89 1.89 2 Q C S if 83  1.180  1.833 3.432 Q C S ii 34 2 . 71 4 0.964 Q C S if85 2.479 0.786 QCSt 86 3.491 1.461 QCSfi 87 3.956 2.178 QCS # 83 2 . 2 76 2 . 6 96 QCSft 69 4. 40 7 1 . 884 Q C S it 90 • 4.760 1.7 45 QCS3 91 6 . 3 72 2.336 QCSff 92 6 . 22 4 2 . 9 12 QCSff 93 4 . 12 3 1.878 QCS? 94  • 0 . 0 61  2 . 8 89 0.351 QCSff 97  0.604  5. 4 87 2.469 Q C S It 98  0.756  4 . 54 8 2 . 3 32 QCS4 99  0.917  3. 702 1. 095 QCSff 1 0 0  2.196  155 2.721 146 14.857  - 0 . 0 34  92 1. 896  1.881  0.495  0.266 0.872 2. 033 1.084 0.086 1.345 1.163 0.404 0. 465 1 . 392  230 1.929 0.3 20 5 3.119 0.0 223 1 0 . 231 0.0 20 8 4.224 0.907 220 2.585 12.640 214 4.758 0.0 207 4.222 0.0 19 4 0.967 0.0 1 57 1. 033 0.0 154 5 . 176 0.3 100 5.230 0.0 14 1 1.900  0. 318  QCSH 10 1 2.003 0.431 QCS £ 102 1.611 0.660 PCS If 103 -1.495 1.b9b QCS.'; 104 -2.29 8 1.86 0 PC5# 115 3. 63 8 1 . 350 QCS* 116 3. 723 1 .407 QCSft 117 4. 0 54 1 .5 95 QCS if 118 2.53 9 1.05 3 QCS* 119 1. 5 7 3 1. 209 QCSt 120 -3.4 53 2.25 0 QCS* 12 1 0.578 1.978 QCS H 124 -3.411 3.298 QCS * 125 2.352 1.010 QCS# 126 4.025 1.702 QCS * 12.7 4.777 2.291 QCS-3 129 3.4 5 8 1.193 QCS# 13 1 2.71 6 0.410 QCSf. 13 2 4.067 1.461 QCS* 13.3 1.9.36 1.042 Q C S t 134 2.279 0.588 QCS* 137 5. 3 7 5 2.448 QCS# 138 6.0 74 2.7 08 QCSS 139 5. 891 2.590 QCS4 14 0 5.439 2.522 QCS4 14 1 4.320 2.032 QCS# 142 4.0 83 1.4 12 QCS# 14 3 4. 6 2 6 2. 123 QCS» 144 4. 61 2 2. 26 QCS# 145 2. 4 84 0.8 04. Q C S t 146 3. 64 1 1.597 1  1  37 3. 102 0.0 -0.325 40 -1.110 5.725 1.598 46 0.3 56 1.35 2 6 8 . 0 3 3 46 0.552 1.3 24 7 6.60 6 13 3 2. 0 4 3 10.75 0 0.3 17 4 0.3 1 . 9 6 7 10. 228 155 7. 25 3 0.3 1. 74 4 1 37 1.6 59 0.0 0,09 8 1 37 2. 140 3. 3 4 8 - 0 . 1 75 1 37 0.941 2.609 8 5 . 6 3 9 146 -0.259 0.8.39 3 2 . 2 6 1 183 0.40 7 1.059 7 2 . 1 9 0 183 3. 299 0.0 -0.172 174 6.5 06 0.3 1.589 16 4 .3. 05 5 0.0 1.019 1 28 1.944 12.131 0.3 1 37 0.4 75 4.911 0.0 1 37 1. 5 0 5 7.509 0.3 100 0. 1 4 9 1.808 0.3 91 -0.596 9.5 87 0.9 67 146 0. 7 9 3 2.023 0.3 174 0.52 8 1. 2 37 0.3 18 3 0. 5 8.3 1.449 0.0 18 3 0.723 1.828 0.3 18 3 1.240 4.191 0.3 18 3 1.72 0 8.321 0.3 200 1. 1 69 3.653 0.3 220 3.131 0.3 1.01 2 230 0. 64 8 3.113 0.3 256 1 . 778 8.211 0.3  184. 99. 985  0. 31 5  0. 0  1  98.396  0.006  0. 0  3  3 1.9 37  0.03 1  0. 0  4  2 3.39 4  0.0  0.0  0  8 9 . 250 10 . 750  0.400  3  83. 527  0.600  4  7 6 . 276 2 3 . 724  0. 7 0 0  4  9 6 . 104  0.5 00  5  96.  294  16. 473  3.89 6  1 . 3 5 9 0. 0  1  14.064  0.297  0.200 28  6 7 . 716  0 .023  0.0  0  26.817  0.993  0. 3 00  2  9 5 . 102  4.890  0. 200  1  73. 927 26.073  0. 6 0 0  1  5 3 .46 5 4 6 . 5.3 5 1. 2 00  3  0.4 00  .3  0. 8 0 0  5  84.722 9 9. 28 0  15.278 0. 72 0  61.556  38.445  1.4 00  3  97.485  2. 5 1 5  0. 2 0 0  3  97.94 1  1.0 92  0. 100  0  1.300  2  1 5 . 7 5 2 8 4.24 8  2. 3 00  .3  2 2 . 172 7 7 . 8 2 8  2.400  3  34.377  65.623  1.400  2  67. 058  32.942  1. 100  2  66. 739  33.261  0.800  2  56. 467  4 3 . 533  0. 9 0 0  2  57.695  42.305  0.800  1  94.605  5.395  0. 2 00  1  8 5 . 5 3 1 14.4 69  0.5 00  1  30.722  69.278  185. QCS If 1U7 2. 6 7 5 0. 9 0 0 0. 64 9 QCS if 14 8 3.9 89 1, 3 30 1.711 QCSff 14 9 0, 30 0 4. 169 - 0 . 1 4 3 QCS if 15 1 2.108 3.6 74 1. 198 QCSff- 152 3.978 1. 56 3 1. 1 53 QCS-fr  155  -3.273 2. 376 QCS* 156 QCSff 1 5 8 4, 8 7 5 1. 93 3 QCS'f 162 4. 3 73 1 .3 25 QCS4  0. 34 3  1.13 5 1.431  163  2. 9 8 0 1. 344 QCS# 164 3. 1 4 8 0. 50 1 QCSff 165 1. 8 8 8 0. 5 5 4 QCSff 166 2. 04 5 0. 4 1 5 QCSff 1 6 7 3. 6 7 8 1. 07 4 QCS* 168 1.82 1 3, 9 44 QCSif 1 6 9 4.177 1. 36 3 QCS" 1 7 0 3.33 1 1. 168 QCSff 171 4. 72 6 2. 116 QCS* 1 7 3 4. 23 2 1. 5 33 QCS# 1 7 5 2. 1 78 0. .345 QCSff 1 7 7 - 3 . 294 1 .6 8 9 QCSff 1 7 8 -3.617 2. 8 0 3 QCSff 180 2. 43 8 0. 5 4 4 QCS# 1 8 1 2. 2 4 2 0. 6 41 QCS* 182 2. 4 2 2 0. 374 QCSif 183 3. 3 6 9 0. 5 6 5 QCS* 184 2.0 12 3. 9 19 QCS# 1 8 5 - 3 . 824 1 .900 QCS# 187 3. 64 8 2. 0 23 QCS <i 2 2 5 2. 4 1 7 1. 113 QCS* 2 2 6  1.818 0. 84 6 0.047 -0.257 2.137 -0. 064 1. 6 9 9 1.947 0.919 1.713 0. 2 54 0. 8 9 2 0.394 -0.040 0. 0 73 0.047 0. 7 5 1 - 0 . 131 1.113 1. 180 0. 34 7  256 0.9 2. 218 28 4 0.9 9. 127 29 3 0. 8 1 5 9 7 . 7 2 3 284 O.O 1 2 . 788 450 4. 5 2 9 0.3 27 4 2. 5 6 4 8 4 . 61 1 27 4 29 3 3. 6 22 0.3 200 0.0 5. 24 9 170 0.0 10. 70 1 155 0.0 3. 896 73 1. 74 2 0.0 40 0.0 2. 94 4 146 14. 23 2 0.0 150 1. 4 12 2 4 , 0 1 5 146 8. 6 4 9 0.0 1 37 12. 75 5 0.0 146 3. 06 3 0.0 1 46 7. 4 69 0.0 36 6. 277 0., 0 46 3. 210 9 1 . 6 3 0 46 0. 99 3 7 3 . 0 4 1 82 2. 25 1 0.0 1 10 0.0 1. 7 6 0 146 2. 846 0.0 192 77 0 0, 0 220 1. 6 3 5 20.0 20 2 38 3. 6 7 2 9 0 . 3 9 3 4 57 4. 29 2 0.0 1 19 9 1. 49 0.0 1 11  0. 3 00  1  6 6 . 3 0 5 3 3 . 695  0. 7 0 0  3  4 9. 5 8 6 1 2 . 6^1  0. 6 00  5  0. 5 00  4  0. 5 00  3  9 1 , 2 36  86.6 16  8 .764  1 3.3 84  7 9 . 98 1 2 0 . 0 1 9 13.99 0  1 .39 3  0. 0  14  3 6. 05 7 6 3.944  1. 4 00  4  63.008  3 6 . 9 92  0. 8 00  2  9 0 . 6 17  9. 3 83  0. 3 00  1  96.28 0  3. 720  0. 0  0  9 9 . 96 1  0. 0 3 9  0. A  0  99. 9 7 2  0. 0 2 8  0. 0  4  3 2 . 9 10  17. 0 9 0  0. 100  2  5 0. 5 5 3 2 5 . 431  0. 8 00  2  56.655  4 3. 34 5  0. 7 00  1  87.576  12. 42 4  0. 5 00  1  4 3. 126 5 6 . 8 7 5  1. 5 0 0  .3  6 5 . 6 89 34. 310  0. 6 00  2  0. 1 55  0. 0  2  8. 3 5 2  0. 0 1 8  0. 0  0  2 6. 94 3  0 .0 1 6  0. 100  1  9 9. 89 0  0. 110  0. 0  0  9 9. 75 3  0. 2 4 7  0. 1 00  0  9 9 . 96 1  0. 0.39  0. 100  0  92. 65 3  7. 3 4 7  0. 4 00  1  62.674  17. 3 0 6  0. 8 0 0  5  0. 0  0  9 9. 84 5  9. 5 3 1  0. 0 76  81.260  18. 740  0. 2 0 0  3  9 0. 3 6 6  9. 63 4  0. 5 0 0  3  - 0 . 3 5 4 3 . 18 1 - 0 . 0 8 0 QCS * 2 2 7 4. 9 0 9 2 . 6 12 0. 820  QCS* 2 2 8  0. 7 7 1 42. 4 75 4 40 2.  0 . 3 81  1. 068 71  0. 3  - 0 . 2 6 9  0.114  0.088  9. 1 23 3 . 27 8 1 37 1 . 5 9 6 '7 5 . 5 3 6 88 0 . 67 3 5 9 . 213 64 3 . 34 6 7 2 . 51 4 71 4. 314 8 . 710 214 0. 3 3 . 204 2 38 0 . 76 2 0. 3 2 38 0 . 76 5 0. 3  1. 2 8 9  192 4 . 3 30  - 3 . 2 1 8  QCSS  0 . 660 3 . 707  0.636  2 32  - 1 . 7 9 4  3 . 270  0.108  1 . 29 3  0. 630  1 . 44 3  - 1 . 153  QCS it 2 3 3  -1. 4 4 9 QCS*  23 4  0. 974  QCS* 2 3 5 4. 8 6 6 2 . 03 1 QCS# 2 3 6 8. 164  2 , 7 10  QCS# 2 3 7 7 . 44 9 2 . 821 QCS* 2 3 8 4.3  QCSS  98  2 . 009  1.012 - 0 . 0 87  239  4.617  2 . 440  0.810  1. 046  0 . 18 6  QCStf 2 4 1 - 5 .  6 75  QCS* 2 4 2 - 5 . 595 0 . 53 3 it 2 4 3 4. 5 4 6 3 . 587  1. 8 8 7  QCS  QCS#  0.119  24 4  6. 3 7 2  2 . 722  0. 3 36  1. 856  1. 2 7 5  1 . 226  1. 7 8 3  1 . 9 37  1.114  1 . 112  2. 2 84  QCS# 2 4 5 4,627  QCS* 2 4 6 4.139  QCS#  247  4. 44 9  QCS*  248  3. 538  QCS#  24 9  4. 20 7  QCS#  1. 444  1. 74 1  1 .4 6 6  1. 60 1  2 50  4. 3 2 8  QCS# 2 5 1 4. 289 •3. 3 5 5 - 0 . 6 0 2  4. 0 74 1.666  QCS*  257  9 . 9 56  0. 5 00  1  9. 3 22 9 0 . 677  3 . 6 00  5  0 .017  0. 0  0  2 0 . 4 17  4. 043  0. 6 00  4  .0. 287  0. 200  7 0  40. 500 2 7 . 15 1  0 . 33 4  0. 0  90.957  0 . 33 3  0 . 5 00  3 9. 631  6 0 . 3 69  0. 900  4  5.673  9 4 . 327  3. 3 00  7  10. 97 3 8 9 . 02 6  3 . 2 00  6 8  65.20 2  34. 797  1.600  6 3 . 176  36. 824  1.6 00  30  10  0. 0  0. 0  0. 0  0  0. 0  0. 0  0. 0  0  1. 3 0 0  5  4 8. 9 3 0  44. 476  5  0. 0  49. 067  1. o o o  3  5 9 . 9 1 3 40 . 0 8 7  0. 6 0 0  3  6 1.939  3 3 . 0 61  0.6 00  2  8 7 . 188  12. 812  0. 3 00  2  0. 0  58. 967  41 . 0 3 3  0. 4 00  4  0. 3  54.884  45. 1 16  0. 3 00  4  0. 3 9. 602 155 3 . 27 4 0. 3 1 39 1 5 . 2 16 0. 0 148 8 . 156 16 4 7 . 17 2 168 4 . 9 16 189 2, 0 0 7 170  9 0. 86 0  2. 7 00  50. 9 33  -  3 . 227  0.022  46. 839 0. 822 1 33  2 . 225  - 0 . 4 38  3 . 7 17  0. 3 83  12. 3 60 2. 097 155 5. 0 36 1. 4 34 14 1  3 . 67 3  0.039  QCS» 2 5 6  4  1 7 . 79<) 8 2 . 2 0 2  0.332  QCS# 2 5 5  1. 3 00  0.  3 . 086  254  1. 4 9 2  1. 060 18 3 4. 465 16 4  1. 3 83  QCS* 2 5 3 QCS*  0. 3  205 0. 0 2. 340 55 0. 848100. 000 92 8 . 0 33 1 0 0 . 0 0 0 210 6 . 59 4 1. 5 3 1 214  1.8 9 1  Q C S 2 52  4 4 . 560  90. 044  0. 3  23 1  1  5 4 . 9 10  1. 96 2 154  QCSif  0.3 00  0. 0  0. 299  1 . 04 3  3. 849  106 110  229 6. 64 4 2 . bOb QCSif 2 3 0  2.63 1  QCS?  53. 676  2 5 . 39 7  0.4 00  1  26 . 4 3 8  1. 3 0 0  3  4 6 . 84 3  6 . 318  0.4 00  10  79.570  8. 070  0.5 00  16  6 2.995  31 . 9 6 9  0.7 00  7  0.600  6  0.  74.  10 3  8. 9 59  64.60 3  1. 6 34 2 4 . 3 1 4 6 1. 9 4 9 1 3 . 7 3 6 157  3. 9 7 8 QCS*  1. 9 5 5  25 8  6. 2 97  3. 195  1. 1 5 1 0. 332  QCS* 2 5 9  -1.459  2. 8 49  0. 1 1 0  QCS* 2 6 0  - 0 . 75 5 QCSff  2. 9 48 -°« 103  26 1  4.001  1. 38 1  1. 9 71  2.6 5 6  0. 2 42  QCS* 2 6 2  - 1. 52 4 QCS* 2 6 3  0.489 QCS#  3. 0 74 QCS*  1. 78 7 - 0 . 4 3 0  2 64  0. 406  0. 551  2 65  3. 12 8  0. 4 24  0. 4 15  0. 509  0. 3 6 7  QCS* 2 6 6  2. 85 2  QCS# 2 6 8  2. 5 2 5 QCS*  0. 7 2 3 - 1 . 0 89  26 9  2. 4 9 2  0. 6 0 7  - 0 . 480  QCS# 2 7 0  1.9 48 - 0 . 6 54  1.391 QCS* 2 7 1  2. 406  0. 488  QCS t 2 7 2  3. 4 0 5 QCS*  0. 6 4 5  - 0 . 2.3 6 0. 521  2 73  -2. 400  3. 188  0. 42 0  QCS if 2 74  -0.794 2. 9 29 - 0 . 0 42 QCS* 2 75 4. 92 9 2. 5 20 0. 851 QCS*  2 76  2.308  3. 197  0. 2 5 6  QCSIf 2 7 7  -3.098 3. 196 QCS* 2 78 -3.941 2. 36 1 QCSIf  2. 7 22 0. 3 56  2 80  2. 2 6 8 QCS*  0. 9 57  2 79  -1.75 8 QCS*  0. 9 9 5  1 .184  0. 2 8 1  1. 3 36  1. 766  2 81  3.517  QCS * 2 82  -2..70U QCSff  3.3 81 QCSff  0. 40 1  0. 6 30  0. 4 70  2 85  - 1 . 563 QCSff  3. 529  2 84  3. 4 77  0. 154  2 86  .1. 63 0 0. 848 - 0 . 6 64 QCS if 2 87 2. 756 0. 46 4 - 0 . 361 QCSt  2 89  2.531 0. 7 10 - 1 . 4 94 QCSff 2 9 0  4.67 3 0. 3 166 0. 8 2 0 0. 3 113 0. 8 10 5 6 . 1 2 8 1 28 0. 85 6 4 3.9 2 7 157 9 . 8 3 3 0. 0 183 0. 94 4 6 3. 1 9 1 73 1.311 2 3. 7 6.3 95 3.678 0. 0 75 3.859 0. 3 77 3.113 0. 0 55 5 . 7 5 2 0. 820 64 3.948 0. 0 62 2.0 13 1 3 . 9 80 80 4. 6 26 0. 0 1 20 2. 172 0. 3 155 1.211 6 9 . 39 3 1 35 0. 8 17 4 4 . 193 165 2, 237 0, 0 162 1. 8 5 7 1 7 . 5 65 146 .3. 5 07 8 1.69.5 155 3,32 1 9 0 . 351 159 1. 16 3 6 5. 29 7 155 1.814 0. 3 168 9.76 5 0. 0 16 4 0 . 9 9 8 6 8 . 60 7 11 1 2.4 40 0. 0 84 0.686 5 7 . 4 0 9 49 2.730 1. 4 65 71 5.295 0. 0 62 8.819 1. 2 1 8 81  7 3 . 77 0 2 6 . 2 2 9  0. 7 00  8  1. 3 00  6  32.655  67. 3 4 5  42.670  1 .201  0. 100 1.3  54. 0 18  2. 0 55  0. 2 00  9  1. 3 00  2  7 5 . 32 2 2 4 . 6 7 8 3 5 . 6 15  1 .194  0.5 00 10  7 6 . 137  0. 10.0  0. 0  1  98. 8 8 5 . 1 1.1 5  0. 100  1  98. 5 35  1 .4 1 5  0. 0  2  98. 67 3  1 .3 2 7  0. 0  3  93. 7 9 2  0. 3 8 8  0. 0  3  9 9 . 75 1  0, 2 4 9  0. 0  1  83. 7 16  2. .30 4  0. 0  0  99. 646  0. 3 54  0. 100  1  9 0. 4 35 9 .565  0. 100  1  2 6. 16 4  4. 443  0.4 00  8  53,323  2. 484  0. 2 0 0 14  53.396  4 6 . 60 3  0.7 00  6  5 9. 66 0 2 2 . 7 7 5  0. 3 0 0  8  13. 9 14  4. 391  0. 0  0  7. 5 7 6  1 .573  0. 0  0  3 2.034  2, 61 9  0. 7 00  9  9 1 . 2 19  8. 781  0.4 00  4  0.6 00  4  7 9 . 806 2 0 . 194  -  2 7 . 8 16  3. 5 7 7  0. 2 0 0  if  91.492  8. 50 8  0. 0  1  4 1.64 3  0. 9 4 7  0. 100 2  98, 5 35  0. 0  0. 0  2  99. 6 2 2  0. 3 7 8  0. 100  4  98. 5 4 7  0. 2 34  0. 0  4  0. /22 - 0 . 241  2. 56'4 QCS*  2  92  3. 72 6 0. 9 9 2 2 93 2. 3 73 0.3 8 3  2. 7 1 7  Q C S If QCSa  2  0. 732  94  2. 39 9  0. 9 63  2.565 1. 143 Q C S =f 2 96 0.3 87 4. 3 43 Q C S If 2 97 5. 1 3 8 2.3 3 5  0. 92 8  5. 0 77 QCS*  QCS*  2  95  2  0. 3 0 9 0. 9 0 9  93  2.98 3  0. 2 66  5. 143 2. 24 4 300 4.613 1. 8 5 3 Q C S It 3 01 4. 9 5 7 2. 9 7 4  0. 83 0  6. 4 53 QCS#  299  Q C S if  QCS*  3  0. 46 5  0. 8 13 - 0 . 173  3  14  3.397 QCS*  0. 54 9  313  2. 74 0 QCSt  0. 3 2 0  12  3.060 OCS#  1. 346-  3  2. 54 7 QCSH  0. 499  0. 63 9  0. 48 3  0. 1 1 9  15 317  6.610 2. 8 5 1 313 7 . 2 67 3. 134  0. 30 5  Q C S if QCS*  0. 1 2 5  319  7.2 10 QCS*  2. 857  0. 132  0. 4 9 2  0. 1 1 2  320  1.755 QCS*  321  1. 933 0. 7 88 QCS ft 3 2 2 2. 6 6 6 3. 034 OCSff  3. 874 0. 42 5  323  5. 3 54 QCSff  3.0 7 5  0. 54 3  324  0.6 8 1 _ n 42 4  2. 1 0 9 QCS*  325  -2. 460 QCS*  1. 9 15  0. 3 9 8  326  -1.010 2. 024 32 7 -1. 238 1. 6 4 5 Q C S ft 32 8 -0.481 0. 899  0. 0 1 6  Q C S ff  QCSff  33  1. 677  3. 8 8 2  2. 56 9  0. 6 52  0  -2. 702 QCS#  0. 7 1 8  329  -3.120 QCS#  0. 101  33 1  0.207 2. 87 4 - 0 . 30 6 QCS 332  2. 6 31 0. 0 1 17 0. 0 18. 80 5 137 5. 6 32 0. 3 175 2. 5 1 3 0. 0 186 6. 5 6 2 0. 3 186 •1. 57 3 42. 9 68 200 2. 4 59 0. 0 204 0. 7 26 0. 3 2 14 0. 3 2. 36 1 218 4. 7 12 0. 3 216 2. 49 8 1. 87 8 92 3. 4 08 0. 3 110 2, 4 5 3 0. 3 122 3. 64 3 0. 3 177 0. 3 6. 37 0 200 0. 3 08 0. 3 200 0. 6 20 0. 3 196 0. 0 0. 80 4 183 3. 3 39 0. 3 210 3. 938 0. 3 250 2. 2 17 1 1 . 1 38 260 0. 3 1. 276 1 37 2. 8 23 0. 3 92 1. 385 7 9 . 8 3 5 73 0. 9 1 2 5 1 . 4 70 60 1. 16 3 5 7 . 80 6 70 2. 8 36 2 7 . 674 91 3. 24 7 9 1.0 3 1 212 56 9 8 0 . 146 1. 265 0. 940 31. 322 28 3  9 9. 06 6  0. 9 34  85.655  1 4. 3 4 5  0. 100 10 0. 2 00  1  0. 0  0  3 7 . 108 6 2 . 892  0. 6 0 0  0  89.03 3  10. 9 62  0. 100  3  4 2 . 157 1 4 . 8 7 5  0.500  6  3 6.286 6 3. 714  1. 0 0 0  5  2 0. 94 3 7 9 , 0 56  1. 2 00  6  5 0 . 2 7 0 4 9 . 730  1. 2 0 0  4  4 7 . 129 5 2 . 871  0.600  4  9 9. 6 2 1 0.  3  79  3 6 . 6 39 60 . 8 63 . 0. 9 00  6  9 8 . 23 3  1 .7 6 7  0. 100  2  9 7 . 6 00  2. 400  0, 100  1  94. 6 22  5. 378  0. 2 0 0  1  9 9 . 03 2  0. 9 6 8  0. 100  0  13.956  8 6 . 044  2.4 00  5  9. 6 25 9 0 . 3 75  2.4 00  6  7.7 32 9 2 . 2 6 8  2.5 00  7  99. 8 5 3  0 .1 4 7  0. 0  2  9 7 . 110  2. 8 9 0  0. 2 0 0  1  67.397  20 . 9 65  0. 3 0 0  4  5 5 . 56 2 4 4. 4 3 8  0. 6 00  3  9 9 . 75 4  0. 2 4 6  0. 0  2  2 0. 104  0. 061.  0. 0  4  48. 455  0. 0 76  0. 0  5  4 2.101  0. 0 9 3  0. 0  26  7 2 . 3 26  0. 0  0. 0  3  8. 79 3  0. 177  0. 0  0  1 9. 6 09  0. 2 4 5  0. 0  0  6 7 . 125  1 .552  0. 100  3  0.24 9 2 . 64 1 QCS ft 3 3 3 - 1 . 2 5 6 2 . 046 QCS« 3 3 4 - 0 . 1 9 9 4 . 287 QCS* 3 3 5 2.950 0 . 56 3 QCS * 3 3 6 2. 036 QCS ft  0 . 845  - 0 . 2 2 3 0.314 0.238 0. 82 9 - 0 . 1 2 9  0 . 9 10 3 5 . 8 6 4 2 23  6 2 . 127  2. 009  1.452 1 . 679 58. 343 3 9. 977 366 1. 2 2 4 4 6 . 7 0 5 3 7 . 5 5 6 1 5 . 73 9 197  0. 200  2  0. 0  0  0. 800  3  3.762  0. 0  96.200  3. 800  0. 2 0 0  1  192 1.542  0. 0  99. 604  0. 396  0. 0  1  3 38  133  3. 380 1 . 87 0 QCS* 3 3 9  1. 62 3  6 . 7 39 148  0. 0  8 9 . 1 3 7 1 0 . 8 63  0. 3 0 0  2  3. 1 53 0 . 84 7 QCS* 3 4 0 2. 9 0 8 0 . 7 28 QCS* 3 4 1  - 0 . 3 82  3. 346 141 3 . 24 4  0. 0  92.94 9  7 . 051  0. 3 0 0  7  0. 3  96.044  3. 956  0. 200  4  3. 9 3 7 1.705 QCS If 3 4 2 2.407 0 . 8 32 QCSt 3 4 3 2. 5 2 2 QCS  0 .7 7 3  - 0 . 0 4 3  206 1. 5 9 8  6 . 6 20 168  0, 0  7 9. 6 09 2 0 . 392  0.500  5  0. 365  2.501 234  0. 0  96.707  3. 293  0. 100  2  0. 655  3. 236  0. 0  95. 104  4. 896  0. 3 00  2  1. 6 0 0  29 2 6 . 5 48 480  0. 0  73.223  26.. 7 7 7  0.4 00  3  0.096  0.688  0. 0  3 5.034  6 4 . 9 66  1.6 00  4  0. 985  440 4 . 24 1 370  0. 0  94.988  5. 012  .0. 100  1  3 44  4. 143 1.682 QCS It 3 4 5 6.619 3 .540 QCS* 3 4 6 2. 244 0 .7 8 1 QCS* 3 4 7 2. 796 2 . 150 QCS !t 3 4 8  1. 2 7 9  5 . 0 26 310  0. 0  85.987  14. 013  0.300  1  2. 965 1. 545 QCS* 3 4 9 2. 734 1 . 440 OCS^f 3 5 0 4. 3 9 5 1 . 88 5 QCS* 3 5 1  1.30 4  6.910  0. 0  84.354  15. 646  0.300  3  0. 0  8 6 . 6 10 1 3 . 390  0. 2 0 0  1  0. 0  59. 420  40 . 5 8 0  0.600  4  4. 3 8 9 1 . 909 QCS# 3 5 2 - 1 . 870 3 . 439  1.336  0  6 1.72 1  38. 279  0. 100  6  3 79  4 0. 476  2. 145  0. 2 0 0  3  22 5  1 7. 82 2  1 . 9 53  0. 3 00  4  0. 0  0. 0  0  6 1. 110  0 . 221  0. 0  0  13.6 08  0. 358  a.  o  1  92.576  2. 205  0. 100  3  0. 0  0. 0  0  93. 820  6 . 1 80  0. 2 0 0  3  12.089  1 . 1 14  0.400  4  QCS* 3 5 3 - 3 . 335 2 . 874 QCS* 3 5 4 - 5 . 141 0 . 7 18 QCS* 3 5 6 QCS if 3 5 7 - 0 . 1 1 3 2 . 04 1 QCSi? 3 5 8 - 3 . 757 2 . 197 QCS* 3 5 9  370 1.397 1. 3 72  0 . 2 73 0.917 1.913  - 0 . 1 2 3 0 . 7 72  7.803 4 30 4 .899 420  4 . 7 26 0. 36 5 1. 3 2 2 5 7 . 3 20 3. 37 4 8 0 . 2 30 18.287 99. 244  58 5 0. 84 3 38. 669 30 4 2 . 0 9 6 ;8 6 . 3 3 4 356  - 0 . 2 2 7  1.856  5 . 21 8  356 98.3100. 000 530  - 6 . 3 4 6 0 . 36 1 QCS* 3 6 2  0. 159  0.  ' 1.595 1.565 QCSff 3 6 3  0.151  1. 167 25 4  1.1 34  4.586  QCS* 3 6 5 - 4 . 147 2 . 57 5 QCSS 3 6 6 QCS# 3 6 7  0. 4 1 2  .276  QCSff 3 6 0 1. 3 9 5 1 . 5 17 QCS if 3 6 1  588  0. 0  0. 0  37 5 2 38 242  :3 6 . 7 9 7  -1.0 84 3. 505 -0. 0 74 * 3 68 -4.786 0. 676 0. 20 7  0. 700 4 3.492 54 . 4 25 2.0 83 2 30 1. 744 99. 963 0. 037 0.0 QCS2 369 3 30 1 3.146 0. 6 40 0. 849 0. 0 92, 157 7 .843 982 /. • QCS* 370 28 4 3. 573 1 .072 2. 63 4 18. 03 1 0. 0 89. 2 1 110 .789 QCS* 37 1 155 -0.757 3. 156 0. 034 0. 77 8 49. 567 4 7. 00 1 3.432 QCS* 3 72 146 -2.192 3. 54 1 0. 34 7 0. 890 65. 530 29. 877 4. 59 3 QCS it 3 73 175 4.010 3. 650 0. 1 90 1. 319 1 1.661 4 6.24 6 4 2.093 QCS* 374 200 -0.901 4. 151 0. 24 3 1. 1 36 52. 1 3 74 1,312 6. 550 QCS * 3 75 197 1. 1 68 3.808 0. 3 75 1. 825 30. 0 10 54. 228 15 . 761 QCS* 3 76 175 0.23 0 4. 397 0. 1 34 1. 3 34 41. 345 45. 24 5 13 .410 QCS * 377 159 -1. 744 2. 9 10 0. 3 63 1. 00 2 66. 9 11 3 1.738 1 .351 QCS * 378 17 4 2. 1 94 0.7 10 -0. 0 86 2. 28 0 0. 3 99. 402 0. 598 QCS* 3 79 190 2. 754 0. 657 0. 7 70 3. 19 4 0. 0 95. 9 14 4.0 86 QCS* 3 81 267 1.49 1 3. 3 33 -0. 454 2. 0 18 17. 838 74.77 9 7 .3 83 QCS* 382 3 10 4.64 6 2. 253 1. 0 36 3. 05 3 0. 9 5 7. 94 142 .0 59 QCS* 3 83 270 4.381 2. 345 1. 168 3. 730 0. 9 70. 409 29 . 59 1 QCS  QCS*  3 84  5. 177 2. 16 7 * 385 4. 443 1 .960  0. 9 71  344  2. 774 0. 0 27.486 72 . 51 5 3 36 1. 29 3 4. 236 0. 9 5 0. 74 9 49 .251 QCS* 3 86 192 -1. 369 3. 8 48 0. 423 1. 6 31 69. 69 7 3 2.65 4 6. 649 QCS* 3 87 256 3.813 2. 255 1. 1 3 7 3. 75 9 0. u 75.34 6 24 . 654 QCS* 3 88 310 5. 396 2.5 12 0. 752 1. 90 4 0. 0 29. 722 70 .2 79 QCS* 3 89 25 2 3. 53 4 1.846 6.669 0. 0 87. 76 3 12 .237 1. 651 QCS * 390 150 1.497 6 7 1-0. 60 2 2. 6 77 7. 4 75 8-9. 690 2. 83 5 QCS* 3 93 1 31 -2. 3 63 2.7 1 1 0. 552 1. 45 0 74. 82 8 23.4 18 1.7 54 QCS* 3 04 147 1.12 5 1. 138 -0. 224 1. 7 29 5. 53 1 93. 9 15 0. 553 QCS if• 395 1 19 -0. 447 2. 283 0. 1 69 1. 09 3 46. 9 1 550. 624 2. 4 61 QCS* 3 96 18 3 4. 2 1 2 1.7 55 1. 3 78 5. 4 14 0. 0 53. 579 41 . 422 QCS* 3 98 115 -4. 608 1. 221 2. 0 1 4 1 1.23 3 9 7. 544 2. 35 2 0 .105 QCSff 3 99 122 -3. 766 2. 79 2 0. 7 80 2. 033 83. 60 4 15„ 712 0 . 685 QCS* 4 00 132 0. 654 2. 4 47 -0. 54 3 1. 505 20. 9 1 4 7 3. 02 3 1.0 63 QCS* 40 1 192  0. 0  12  0. 0  0  0. 3 00  4  0. 4 00  4  0. 0  48  0. 0  0  0. 100 22 0. 3 00 16 0. 0  0  0. 0  34  0. 100 21 0. 100  1  0. 200  2  0. 3 00  3  1. 100  4  0. 500  2  1. 200  5  QCS  1  ( *  0 00  4  0. 5 00 16 0. 600  5  1. 300  5  0. 5 00  3  0. 0  4  0. 0  51  0. .2 00  4  0. 100 26 0. 9 00 16 0. 0  0  0. 4 00 43 0. 100 12  191. 1.585 0. 5 6 3 OCS* 4 02 3. 1 90 2. 125 QCS * 4 03 5. 3 53 2.7 9 2 QCS * 4 05 -1.09 1 3. 0 39 QCS* 4 06 -4.287 1. 5 7 9 QCS* 4 1 0 -0. 922 2. 233 QCS* 4 1 1 - 0 . 3 92 1. 58 4 QCS* 4 12 4.014 1. 853 QCS* 4 13 3. 9 9 5 2. 0 27 OCS# 4 14 7.413 2. 6 8 3 QC3« 4 1 6 -2.077 2. 136 QCS* 4 17 0.577 1. 8 2 0 QCS* 4 18 0. 53 8 1. 4 2 3 QCS* 4 1 9 - 0 . 2 94 1. 5 3 9 QCS* 42 0 - 3 . 535 1 .0 0 5 QCS* 44 3 2.898 2. 1 17 QCS* 4 44 3. 2 6 8 2. 8 12 QCS* 4 4 6 2. 84 8 1 .76 4 QCSfi 44 7 QCS * 45 0 - 3 . 69 5 0. 4 5 7 QCS* 4 5 1 -3.281 1. 46 5 QCS* 4 52 -2.901 2. 142 QCS * 4 5 3 2. 5 7 3 0. 9 20 QCS* 454 -3.171 1. 8 30 QCS* 4 55 -0.938 1. 39 4 QCS* 4 56 - 0 . 43 6 1. 7 4 7 QCS* 4 5 8 2.036 0. 4 6 6 QCS * 4 5 9 2. 6 84 0.4 39 QCS* 4 6 1 3. 30 8 0. 5 16 QCS* 4 7 1 QCS* 4 73 0.713 0. 95 1  0. 140 1. 1 90 0. 5 80 0. 3 3 6 1. 4 66 0. 1 3 1 0. 0 60 1. 4 80 1. 1 84 0. 1 1 9 0. 4 53 - 0 . .4 50  - o . 371 - 0 . 041 1. 0 9 2 1. 345 0. 79 3 1. 4 20 0. 04 6 0. 34 6 0. 62 6 0. 64 9 0. 9 0 5 0. 1 76 -0. 097 0. 372 0. 32 7 0. 6 74  - 0 . 212  3. 8 5 6 0. 0 28 2 4. 6 22 0.0 282 1. 4 6 7 0.0 1 17 0. 906 6 4 . 00 3 100 6. 27 3 9 5. 3 1 9 146 1. 09 3 5 4 . 471 113 1. 28 0 39. 3 83 200 0. 0 5. 6 3 4 198 4. 3 35 0. 0 208 0. 7 0 3 0. 0 18 3 1. 5 33 7 4. 4 6 7 84 1. 388 2 3 . 514 59 1. 33 1 19. 3 5 6 51 0. 9 37 39. 52 9 47 5 . 86 5 9 7. 573 200 5. 4 5 8 0.0 195 0. 0 2. 5 4 7 135 7. 15 2 0. 0 115 40 1. 9 1210 0.0 0 0 40 z „ 366 9 3. 94 5 51 1. 67 1 8 3.0 3 9 220 0. 0 2. 240 59 2. 80 3 8 9 . 650 49 1. 7 38 5 4 .9 2.3 48 0. 89 1 4 0 . 4 89 66 3. 37 8 0. 9 84 2. 8 7 2 0. 0 102 3. 191 0. 0 126 128 2. 6 5 3 6. 5 72  99. 699  0. 301  0. 100  1  80. 7 3 2 1 9 . 2 6 7  0. 4 00  2  4 5 . 2 8 2 5 4 . 71 8  0. 7 0 0  3  3 1.615  4. 381  0. 7 00 23  4.48 1  0. 200  0. 0  4 4.57 3  0. 9 5 6  0. 2 0 0  12  6 0. 3/9  0. 53 8  0. 100  5  2 6 . 0 70  0. 4 00  6  7 1 . 3 5 5 2 8 . 64 5  0. 4 00  4  6. 5 7 7 9 3 . 423  2. 100  6  73.930  0  2 4.97 3  0. 560  0. 2 00 1 1  76. 3 19  0. 0 6 7  0. 0  0  80.556  0. 0 8 8  0. 0  3  6 0 . 386  0. 0 35  0. 9 00  8  0. 031  0. 0  0  8 8 . 4 87 1 1 . 51 3  0. 6 0 0  3  78. 4 0 2 2 1 . 59 8  0. 6 00  8  8. 8 7 8  0. 3 00  8  0. 0  0. 0  0. 0  0  6. 0 5 5  0. 0  0. 0  0  16.95 0  0. 0 1 1  0. 0  0  92.040  7 .9 6 0  - o. 2 0 0  1  10.326  0. 0 2 5  0. 0  0  4 4 . 0 86  0. 091  0. 0  0  5 9. .383  0. 123  0. 0  9  99.746  0. 2 54  0. 0  0  99. 568  0. 432  0. 100  2  9 5 . 189  4. 811  0. 100  1  92. 976  0. 4 52  0. 0  0  2. 3 9 5  9 1 . 121  192.  5. 23 8  2.40 3  QCS*  4 80  QCS*  4 82  QCSt  484  QCS*  4 35  QCS*  4 86  QCS*  4 87  QCS*  4 89  QCSff  4 90  QCSt  4 92  0. 844  1, 002 2.00 9 -o. 54 9 QCS ft 4 81 1.465 0. 9 56 -o. 24 1 2. 64 5  2. 104  4.75 1 2. 103  2. 443  1. 0 76  0. 5 35 0. 4 61  -4. 325  0. 588  1.012  5.774  1. 1 60  0. 816  1. 7 10 -o. 623  2. 9 13 0. 4 59  -2.83 7 2. 721 4. 74 6 2. 109  QCS*  4 99 2. 70 8 0.730 QCSff 502  -4. 2 76  0.390  QCSff  503  QCS*  504  QCSt  506  QCS*  507  QCSt  508  QCSt  510  QCSt  511  QCS*  512  OCSit  513  QCSt  514  QCSt  515  QCS*  5 16  QCSt  517  QCSt  523  4. 704  0. 70 4 1. 125 0. 342 2. 52 4  3.6 22 0. 204  0.952  2.8 36 -o„ 134  2.613  0.723  1. 036  6. 66 4 3.40 6 0.0 62  -1. 250 2.297 2.415  1. 403  0. 574  0. 148  0. 59 1  0. 256  2. 846  0,50 1  -3. 85 7 1.600  -3.091  0. 33 1  2. 556  1. 0 86 3. 22 8 0. 352  1. 70 7 3.97 1 0. 112  2.805 2.611  1. 842  0. 480 0. 33 4  1. 233 0. 319  0.6 26 0. 296  2. 274 0. 0 26. 125 73. 874 143 1. 4 3 1 20. 1 56 79. 266 0. 578 1 35 9 9.522 0. 478 1. 772 0. 0 18 3 5. 055 1.0 70 84. 303 14. 127 2 20 3. 4 4 3 0.0 44. 0,3 1 55. 9 69 210 4. 24 2 0. 0 98. 95 2 1. 048 1 39 2. 747 100.000 0. 0 0. 0 150 2. 35 3 1 3.073 85. 25 8 1. 670 357 1 19 1 0. 0 36. 4 36 63. 564 i • 2 32 0 39 1. 846 79. 3 15 18. 64 6 . 2. 3 48 3. 470 0. 0 4 6. 139 53. 861 18 3 2. 6 16 0.0 96. 243 3. 7 52 1 37 18. 006 97. 79 4 0 .03 8 • 163 164 1. 298 5. 280 44, 720 50 .000 24 4 0. 9 11 31.2 82 55. 228 13. 491 214 3. 78 8 0.r\\J 93. 96 5 6. 035 152 0. 84 3 0. 0 25. 6 37 74. 363 92 1. 40 1 6 6.51 8 33. 43 2 0.0 92 49 3 0. 9 9.604 0. 396 1 37 2. 9 47 0.0 99. 0 18 0.982 17 4 5. 30 2 0. 0 97. 159 2. 841 229 25. 548 97. 791 0. 793 1 .4 1 6 260 2. 4 32 3 2.1 62 15. 5 25 2. 313 229 1. 489 25. 50 8 54. 8 17 19. 675 183 6. 207 C. 0 97. 35 3 2. 647 1 37 3. 684 0. 0 99. 726 0 .2 74 55 2. 26 3 0. 0 9 9.717 0.283  1. 000  9  0. 0  1  0. 0  3  0.4 00 6 000 . 1.  5  0. 1 00 1 0. 0  0  0. 0  0  0.6 00  3  0. 9 00 21 1. 5 00  5  0. 200  2  0. 0  0  1. 000 17 0. 0  0  0. 2 00  1  0. 0  0  0. 0  0  0. 0  1  0. 0  1  0. 100  0  0. 0  0  0. 0  0  0.600  8  0.4 00 0 0. 0  0  0. 0  0  193.  REFERENCES  A n d e r s o n , F E . , 1968, Seaward terminus of the Vashon c o n t i n e n t a l in the S t r a i t of Juan de F u c a . Marine G e o l o g y , v. 6, pp. Anonymous, 1963, Institute  Sediment g r a i n - s i z e a n a l y s e s . Univ. of Oceanography, Data Report No. 22,  1965, Queen C h a r l o t t e Sound, Chart No. 3744 Marine S c i . B r a n c h , Dept. of Mines and Tech. 1968, B a r k l e y Sound and D i s c o v e r y Canadian T i d e and C u r r e n t T a b l e s ,  glacier 419-438.  B r i t i s h Columbia, 6 p.  Canadian Hyd. S u r v . , Ottawa.  Passage t o Dixon v. 6, 7' p.  Serv.,  Entrance,  A r m s t r o n g , J . E . , D . R . , C r a n d e l l , D . J . , E a s t e r b r o o k s , and J . B . N o b l e , 1965 Late P l e i s t o c e n e S t r a t i g r a p h y and Chronology in Southwestern B r i t i s h Columbia and n o r t h w e s t e r n W a s h i n g t o n . B u l l . G e o l . Soc. A m e r i c a , v. 76, pp. 3 2 1 - 3 3 0 . B a e r , A . J . , 1 9 6 7 , B e l l a Coola and Laredo Sound m a p - a r e a s , B r i t i s h Columbia 93D and 1 0 3 A , G e o l o g i c a l Survey Canada Paper 6 6 - 2 5 , 13 p. Bailey,  E . H . , and R . E . S t e v e n s , I 9 6 0 , S e l e c t i v e s t a i n i n g of K - f e l d s p a r and p l a g i o c l a s e on rock s l a b s and t h i n s e c t i o n s . A.m. Mi nera 1 o g . , v. 4 5 , pp.  Barber,  1020-1025.  F . G . , 1 9 5 7 a , The e f f e c t of the p r e v a i l i n g winds on the i n s h o r e water masses of the Hecate S t r a i t r e g i o n , B.C. J o u r . F i s h . Res. Bd. Canada, v. 14, pp. 9 4 5 - 9 5 2 . 1 9 5 7 b , O b s e r v a t i o n s of c u r r e n t s n o r t h of T r i a n g l e I s l a n d , B.C. P r o g r e s s R e p o r t s of the P a c i f i c Coast S t a t i o n s , No. 108, pp. 1 5 - 1 8 . 1958, Proc.  Bell,  C u r r e n t s and w a t e r s t r u c t u r e Ninth P a c i f i c S c i . Congress,  i n Queen C h a r l o t t e Sound, 1 9 5 7 , v. 16, pp. 1 9 6 - 1 9 9 .  B.C.  W . H . , 1 9 6 3 , S u r f a c e c u r r e n t s t u d i e s in the Hecate m o d e l . F i s h . Res. Bd. Canada M a n u s c r i p t R e p o r t , No. 159, 4 (numbered pages)  B i s c a y e , P . E . , 1 9 6 4 , D i s t i n c t i o n between k a o l i t e and c h l o r i t e ments by X - r a y d i f f r a c t i o n . Am. Mi n e r a 1 o g . , v. 4 9 , pp.  in r e c e n t s e d i 1281-1289.  Bouma, A . H . , 1 9 6 4 , Notes on X - r a y i n t e r p r e t a t i o n of marine s e d i m e n t s . Marine G e o l o g y , v. 2 , pp. 208-241 B r a d l e y , W . F . , and R . E . G r i m , 1961, Mica c l a y m i n e r a l s in The X - r a y I d e n t i f i c a t i o n and C r y s t a l S t r u c t u r e s of C l a y M i n e r a l s . M i n e r a 1 o g i c a 1 S o c i e t y , London, pp. 2 0 8 - 2 4 1 .  194.  Bretz,  J.H., Jour.  1920, The Juan de Fuca Lobe of the C o r d i l l e r a n G e o l o g y , v. 2 8 , pp. 3 3 3 - 3 3 9  Ice  Sheet.  B r i n d l e y , G.W., 1 9 6 l a , E x p e r i m e n t a l methods, i n The X - r a y I d e n t i f i c a t i o n and C r y s t a l S t r u c t u r e s of C l a y M i n e r a l s . MineraIogica1 S o c i e t y , London, pp. 1 - 5 0 . I 9 6 l b , C h l o r i t e m i n e r a l s in The X - r a y I d e n t i f i c a t i o n S t r u c t u r e s of C l a y M i n e r a l s . Minera1ogica1 S o c i e t y , pp. 2 4 2 - 2 9 6 . Burst,  Carl,  J . F . , 1958, M i n e r a l h e t e r o g e n e i t y A m e r i c a n M i n e r a l o g i s t , v. 4 3 , pp.  in " g l a u c o n i t e " 481-497-  and C r y s t a l London,  pellets.  G . C , 1 9 6 6 , Guide t o Marine L i f e of B r i t i s h C o l u m b i a , Handbook B r i t i s h Columbia P r o v i n c i a l Museum, No. 2 1 , 135 p. •  C a r r o l l , D., Jour. Carter,  1970, C l a y m i n e r a l s in A r c t i c Ocean s e a - f l o o r Sed. P e t r o l o g y , v. 4 0 , pp. 8 1 4 , 8 2 1 .  sediments.  L . , 1969, Topography and bottom sediments in B a r k l e y Sound and the a d j a c e n t c o n t i n e n t a l s h e l f S.W. B r i t i s h C o l u m b i a , i n G e o l . Survey of Canada Report of A c t i v i t i e s , Paper 6 9 - 1 , P a r t A . , pp. 1 3 - 1 4 . 1970, S u r f i c i a l sediments of B a r k l e y Sound and A d j a c e n t C o n t i n e n t a l S h e l f , Vancouver I s l a n d , B.C. U n i v e r s i t y of B r i t i s h C o l u m b i a , Dept. of Geology. 196 p. ( u n p u b l i s h e d Ph.D. t h e s i s ) .  C a s t o n , V . N . D . , and A . H . S t r i d e , 1970, T i d a l sand movement between some l i n e a r sand banks i n the North Sea o f f n o r t h e a s t N o r f o l k , Ma r i ne G e o l o g y , v. 9 , pp. M38-M42. Chave, K . E . , Jour.  1967, Recent c a r b o n a t e sediments - an u n c o n v e n t i o n a l G e o l o g i c a l E d u c a t i o n , v. 15, pp. 2 0 0 - 2 0 4 .  C h u r c h , R . , 1 9 7 ' , Deepstar e x p l o r e s v. 139, p. 110-129.  the ocean f l o o r .  Nat.  view.  Geog. M a g . ,  C o c k b a i n , A . E . , 1963, D i s t r i b u t i o n of sediments on the c o n t i n e n t a l s h e l f o f f the s o u t h e r n B r i t i s h Columbia c o a s t . I n s t . Oceanog., U n i v e r s i t y of B r i t i s h C o l u m b i a , M a n u s c r i p t Report No. 15, 7 PC r e a g e r , J . S . , 1963, S e d i m e n t a t i o n in a h i g h e n e r g y , embayed, c o n t i n e n t a l s h e l f environment. J o u r . Sed. P e t r o l o g y , v. 3 3 , pp. 8 1 5 - 8 3 0 . and McManus, D . A . , 1961, P r e l i m i n a r y i n v e s t i g a t i o n s of the marine g e o l o g y of the s o u t h e a s t e r n Chukchi Sea. U n i v . Wash. Dept. Oceanography Tech. Rept. No. 6 8 , 46 p. C u l b e r t , R . R . , 1 9 7 1 . A study of t e c t o n i c p r o c e s s e s and c e r t a i n geochemical a b n o r m a l i t i e s in the Coast Mountains of B r i t i s h C o l u m b i a . U n i v . of B r i t i s h C o l u m b i a , Dept. of G e o p h y s i c s , 229 p. ( u n p u b l i s h e d P h . D . t h e s i s ) .  195.  Curray,  J . R . , I960, Sediments and h i s t o r y o f Holocene t r a n s g r e s s i o n , c o n t i n e n t a l s h e l f , northwest G u l f of M e x i c o , in Recent S e d i m e n t s , Northwest G u l f of M e x i c o , F . P . S h e p a r d , F . B . P h l e g e r , and T j . H. van A n d e l , e d i t o r s . American A s s o c i a t i o n of Petroleum G e o l o g i s t s , T u l s a , O k l a . , pp. 2 2 1 - 2 6 6 . 1961, T r a c i n g sediment masses by g r a i n - s i z e modes. C o n g . , 2 1 s t Copenhagen, Denmark, R e p t s . , v. 2 3 , pp.  Int. G e o l . 119-130.  1969, H i s t o r y of c o n t i n e n t a l s h e l v e s in The New Concepts of C o n t i n e n t a l Margin S e d i m e n t a t i o n , D . J . S t a n l e y , c o n v e n e r . American G e o l o g i c a l I n s t i t u t e , W a s h i n g t o n , pp. J C - 6 - 1 t o J C - 6 - 1 8 . and D.G. Moore, 1 9 6 4 , P l e i s t o c e n e d e l t a i c p r o g r a d a t i o n of c o n t i n e n t a l t e r r a c e , Costa de N a y a r e t , M e x i c o , in Marine Geology of the G u l f of C a 1 i f o r n i a , T j . H. van A n d e l , G.G. S h e r . , e d i t o r s . American A s s o c i a t i o n of P e t r o l e u m G e o l o g i s t s , T u l s a , O k l a . , pp. 1 9 3 - 2 1 5 Davies,  D.K. , and W.R. Moore, 1 9 7 0 , D i s p e r s a l of M i s s i s s i p p i sediments the G u l f of M e x i c o , J o u r . Sed. P e t r o l o g y , v. 4 0 , p. 3 3 9 - 3 5 3 .  Degens,  E.T., 1 9 6 5 , G e o c h e m i s t r y of Sediments - A B r i e f H a l l , New J e r s e y , 342 pp.  Survey,  D o l a n , R . , 1 9 7 0 , Dune r e d d e n i n g a l o n g the o u t e r banks of North J o u r . Sed. P e t r o l o g y , v. 4 0 , p. 7 6 5 . Draper,  in  Prentice-  Carolina.  L. , 1 9 6 7 , Wave a c t i v i t y a t the sea bed around n o r t h w e s t e r n M a r i n e G e o l o g y , v. 5 , pp. 1 3 3 - 1 4 0 .  Europe.  Dreimanus, A . , 1 9 6 2 , Q u a n t i t a t i v e g a s o m e t r i c d e t e r m i n a t i o n o f c a l c i t e and d o l o m i t e by u s i n g C h i t t i c k A p p a r a t u s . J o u r . Sed. P e t r o l o g y , v. 3 2 , pp.  520-529.  Edwards, D . E . , and G.G. Goode1 I, 1 9 6 9 , the d e t r i t a l m i n e r a l o g y of ocean f l o o r s u r f a c e sediments a d j a c e n t to the A n t a r c t i c P e n i n s u l a , A n t a r c t i c a . Marine G e o l o g y , v. 7 , pp. 2 0 7 - 2 3 4 . Ehlmann, A . J . , N.C. H u l i n g s and E.D. G l o v e r , 1 9 6 3 , Stages of g l a u c o n i t e f o r m a t i o n in modern f o r a m i n i f e r a 1 s e d i m e n t s . J o u r . Sed. P e t r o l o g y , v.  Emery,  3 3 , pp.  87-96.  K . 0 . , 1 9 5 2 , C o n t i n e n t a l S h e l f sediments o f f s o u t h e r n Bui 1. G e o l . Soc. A m e r i c a , v. 6 3 , pp. 1 1 0 5 - 1 1 0 8 .  California.  1 9 6 5 , Geology of the c o n t i n e n t a l m a r g i n o f e a s t e r n U n i t e d S t a t e s , in Submarine Geology and Geophysics - C o l s t o n P a p e r s , W.F. W h i t t a r d and R. Bradshaw, e d i t o r s . B u t t e r w o r t h s , London, v. 17» PP- 1 - 2 0 . 1 9 6 8 , R e l i c t sediments on c o n t i n e n t a l s h e l v e s of w o r l d . A m e r i c a n A s s o c . P e t . G e o l . , v. 5 2 , pp. 4 4 5 - 4 6 4 .  Bu11.  196.  and H. N i i n o , 1963, Sediments of the G u l f of T h a i l a n d and a d j a c e n t continental shelf. B u l l . G e o l . Soc. A m e r i c a , v. 74, pp. 5 4 1 - 5 5 4 . and R . L . W i g l e y and M. R u b i n , 1965, A submerged peat d e p o s i t o f f the A t l a n t i c Coast of the U n i t e d S t a t e s . Limnol and Oceanog., v. p. R97-R102. Flint, Flora,  R . F . , 1957. G l a c i a l and P l e i s t o c e n e Geology. Y o r k , 553 pp.  10,  W i l e y & Sons, New  C . J . , and E. F a i r b a n k s , 1966, The Sound and the S e a , P i o n e e r P r i n t i n g . B e l l i n g h a m , W a s h . , 455 p.  F o l k , R . L . , 1965, P e t r o l o g y of Sedimentary Rocks. 159 P. 1966, A r e v i e w o f g r a i n - s i z e p e r a m e t e r s .  Hemphi11s, T e x a s , Sed i m e n t o l o g y ,  v.  6,  PP. 73-93. F r a k e s , L . A . , 1969, F a c t o r and t r e n d s u r f a c e a n a l y s e s of Ross Sea s e d i ments, A n t a r c t i c a . G e o l . Soc. A m e r i c a . A b s . w i t h P r o g s , p a r t 7> P. 70. F r a n k e n b e r g , D., and R.T. G i l e s , 1970, A c i d treatment of o r g a n i c m a t e r i a l s and the removal o f c a l c i u m c a r b o n a t e , J o u r . Sed. P e t r o l o g y , v. 4 0 , pp. 1046-1048. G a r r i s o n , L . E . , and R . L . McMaster, 1966, Sediments and geomorphology of the c o n t i n e n t a l s h e l f o f f s o u t h e r n New E n g l a n d . Marine Geology,  v. 4, pp. 273-289. G e r s h a n o v i c h , D . E . , 1968, New d a t a on geomorphoIogy and r e c e n t sediments of the B e r i n g Sea and the G u l f of A l a s k a . Marine Geology, v. 6 , pp. 2 8 1 - 2 9 6 . Giles,  R., and O.H. P i l k e y , 1965, A t l a n t i c beach and dune sediments the s o u t h e r n United S t a t e s . J o u r . Sed. P e t r o l o g y , v. 3 5 , pp. 9 0 0 - 9 1 0 .  of  G o r s l i n e , D . S . , 1963, Bottom sediments of the A t l a n t i c s h e l f and s l o p e the s o u t h e r n U n i t e d S t a t e s . J o u r . Geology, v. 7 1 , pp. 4 2 2 - 4 4 0 .  off  G r a n t , A . C . , 1965, D i s t r i b u t i o n a l t r e n d s i n the recent marine sediments of n o r t h e r n B a f f i n Bay. B e d f o r d I n s t , of Oceanog. Rept. 65-9, 74 p. ( u n p u b l i s h e d m a n u s c r i p t ) . G r i f f i t h , L . M . , 1967, The I n t e r t i d a l U n i v a l v e s of B r i t i s h Columbia Handbook B r i t i s h Columbia P r o v i n c i a l Museum No. 26, 101 p. G r o s s , M . G . , 1965, Organic carbon in s u r f a c e sediment from the n o r t h e a s t P a c i f i c Ocean. Int. J o u r . Oceanol & L i m n o l , v. 1, pp. 46-54.  Co.,  197.  G u i l c h e r , A . , 1969, P l e i s t o c e n e and Holocene sea l e v e l changes. S c i e n c e Reviews, v. 5, pp. 69-97Halley,  L . M . , 1964, Wave-induced bottom c u r r e n t s Marine G e o l o g y , v. 2 , pp. 164-167.  Harms, J . C , Geol.  Earth-  in the C e l t i c S e a .  1969, H y d r a u l i c s i g n i f i c a n c e o f some sand r i p p l e s . Bui 1 . Soc. A m e r i c a , v. 8 0 , pp. 363-396.  H o l l a n d , S . S . , 1964, Landforms of B r i t i s h Columbia - a p h y s i o g r a p h i c outline. B u l l . B.C. Dept. Mines and P e t r o l e u m R e s o u r c e s , No. 4 8 , p. 138. Holmes, A . , 1965, P r i n c i p l e s of P h y s i c a l Geology. New Y o r k , 1288 pp.  The Ronald P r e s s C o . ,  H o l t e d a h l , H . , 1958, Some remarks on geomorpho1ogy of c o n t i n e n t a l s h e l v e s o f f Norway, L a b r a d o r , and s o u t h e a s t A l a s k a . J o u r . Geology, v. 66,  pp. 461-471.  I960, M o u n t a i n , f j o r d , s t r a n d f l a t ; geomorphology and g e n e r a l g e o l o g y of p a r t s of Western Norway, g u i d e book " d " in Excurs ions in Norway, I n t e r n a t i o n a l G e o l o g i c a l C o n g r e s s , O s l o , Norway, 29 p. 1970, On the morphology of the west Greenland s h e l f w i t h g e n e r a l remarks on the " m a r g i n a l c h a n n e l " p r o b l e m . Marine Geology, v. 8 pp. 155-172. H o l t e d a h l , 0. and H. H o l t e d a h l , 1 9 6 l , On m a r g i n a l c h a n n e l s and the problem of t h e i r o r i g i n . B u l l . G e o l . I n s t . U n i v . U p p s a l a , v. 4 9 , pp. 183-187Houbolt, J . J . H . C . , North Sea. Hubert,  1968, Recent sediments in the s o u t h e r n B i g h t of G e o l . Mijnbouw, v.- 47, pp. 245-273.  the  J . F . , and W . J . Nea1, 1967, M i n e r a l c o m p o s i t i o n and d i s p e r s a l p a t t e r n s of d e e p - s e a sands in the w e s t e r n North A t l a n t i c p e t r o l o g i c province. B u l l . G e o l . Soc. A m e r i c a , v. 78, pp. 749-772.  James, N . P . , and D . J . S t a n l e y , 1968, S a b l e I s l a n d Bank o f f Nova S c o t i a : sediment d i s p e r s a l and r e c e n t h i s t o r y . B u l l . Am. A s s o c . P e t r o l . G e o l o g i s t s , v. 5 2 , pp. 2 2 0 8 - 2 2 3 0 . J o i n t Committee on Oceanography, 1955a P h y s i c a l and Chemical Data Record Hecate P r o j e c t , P a c i f i c Oceanographic g r o u p , Nanaimo, B . C . , 99 p. 1955b, P h y s i c a l and Chemical Data Record - Hecate P r o j e c t , Oceanographic g r o u p , Nanaimo, B . C . , 107 p. Jongsma, D., 1970, E u s t a t i c sea l e v e l changes v. 2 2 8 , pp. 1 5 0 - 1 5 1 .  in the A r a f u r a Sea.  Pacific  Nature,  198.  Judd,  J . B . , W.C. S m i t h , and O.H. P i l k e y , 1970, The e n v i r o n m e n t a l s i g n i f i c a n c e of i r o n - s t a i n e d q u a r t z g r a i n s on the S . E . U.S. A t l a n t i c shelf. M a r i n e G e o l . , v. 8 , pp. 355-362.  K e l l e r , W . D . , 1970, E n v i r o n m e n t a l a s p e c t s of c l a y m i n e r a l s . P e t r o l o g y , v. 40, pp. 788-854.  J o u r . Sed.  and A . F . R i c h a r d s , 1967> Sediments of the Malacca S t r a i t , J o u r . Sed. P e t r o l o g y , v. 37, pp. 102-108. King,  S.E.  Asia.  L . H . , 1967J Use of a c o n v e n t i o n a l e c h o - s o u n d e r and t e x t u r a l a n a l y s e s in d e l i n e a t i n g sedimentary f a c i e s : Scotian shelf. Canadian J o u r . E a r t h S c i . , v. 4, pp. 691-708. 1970, S u r f i c i a l Geology of the Ha 1 i f a x - S a b 1e I s l a n d Map A r e a , Canadian Hyd. S e r v . , M a r i n e S c i . B r a n c h , Dept. E n e r g y , Mines and R e s o u r c e s , Ottawa, 16 p . , 1 map.  Klovan,  J . E . , 1966, The use of f a c t o r a n a l y s i s in d e t e r m i n i n g d e p o s i t i o n a l e n v i r o n m e n t s from g r a i n - s i z e d i s t r i b u t i o n s . J o u r . Sed. P e t r o l o g y , v. 3 6 , pp. 115-125.  K n o t t , S . T . , and H. H o s k i n s , 1968, Evidence of P l e i s t o c e n e e v e n t s i n t h e s t r u c t u r e of the c o n t i n e n t a l s h e l f o f f the n o r t h e a s t e r n U n i t e d States. M a r i n e Geology, v. 6, p. 5-26. Kodama, H. and K. Oinuma, 1963, I d e n t i f i c a t i o n of k a o l i n m i n e r a l s in the presence of c h l o r i t e by X - r a y d i f f r a c t i o n and i n f r a r e d a b s o r p t i o n spectra. P r o c . 13 Nat. Conf. C l a y s and C l a y M i n e r a l s , pp. 236-249. K r i n s l e y , D., T. T a k a h a s h i , M.L. S i l b e r m a n , and W.S. Newman, 1964, T r a n s p o r t a t i o n o f sand g r a i n s a l o n g the A t l a n t i c shore of Long I s l a n d , New York: and a p p l i c a t i o n of e l e c t r o n m i c r o s c o p y . Marine G e o l o g y , v. 2, pp. 100-120. and B.M. Funnel 1, 1965, Environmental h i s t o r y of sand g r a i n s from the lower and m i d d l e P l e i s t o c e n e of N o r f o l k , E n g l a n d . Q u a r t . J o u r . G e o l . Soc. London, v. 121, pp. 435-461. and J . Donahue, 1968, Environmental i n t e r p r e t a t i o n of sand g r a i n s u r f a c e t e x t u r e s of e l e c t r o n m i c r o s c o p y . B u l l . G e o l . Soc. A m e r i c a , v. 79, PP. 743-748. and L. C a v a l l e r o , 1970, Scanning e l e c t r o n m i c r o s c o p i c e x a m i n a t i o n o f p e r i g l a c i a l e o l i a n sands from Long I s l a n d , New York. Jour. Sed. P e t r o l o g y , v. 40, pp. 1345-1350. Krumbein, W . C , and F . J . P e t t i j o h n , 1938, Manual of Sedimentary A p p l e t o n - C e n t u r y - C r o f t s , New Y o r k , 549 p.  Petrography  Kunze, G.W., L . I . Knowles and Y. K i t a n o , 1968, The d i s t r i b u t i o n and m i n e r a l o g y of c l a y m i n e r a l s in the Taku E s t u a r y of s o u t h e a s t e r n A l a s k a . Ma r i ne G e o l o g y , v. 6, pp. 439-448.  199.  LaFond, E.C., R . S . D i e t z , 1948, New s n a p p e r - t y p e J o u r . Sed. P e t r o l o g y , v. 18, pp. 34-37-  sea f l o o r sediment s a m p l e r .  Lane, R.K. , J . B u t t e r s , W. A t k i n s o n , and H . J . Hoi l i s t e r , 1961, Oceanographic data r e c o r d , c o a s t a l and seaways p r o j e c t s . F i s h Res. B d . , Canada, M a n u s c r i p t R e p o r t , No. 9 1 , 128 p. Leslie,  R . J . , 1963, S e d i m e n t o l o g y o f Hudson Bay D i s t r i c t of K e e w a t i n . Bedford I n s t , of Oceanog. Rept. 6 4 - 1 6 , 20 p. ( u n p u b l i s h e d m a n u s c r i p t ) .  L u t e r n a u e r , J . L . , and O.H. P i l k e y , 1967, P h o s p h o r i t e g r a i n s : their applic a t i o n t o the i n t e r p r e t a t i o n of North C a r o l i n a s h e l f s e d i m e n t a t i o n . M a r i n e G e o l o g y , v. 5 , pp. 3 1 5 - 3 2 0 . and J.W. M u r r a y , 1969, Sediments of Queen C h a r l o t t e Sound B.C. i n G e o l . Survey of Canada Report of A c t i y i t j e s , Paper 6 9 - 1 , Part A . , pp. 8-11. MacEwan, D . M . C . , 1961, Montmori11 o n i t e m i n e r a l s in The X - r a y I d e n t i f i c a t i o n and C r y s t a l S t r u c t u r e s of C l a y M i n e r a l s . M i n e r a 1 o g i c a 1 S o c i e t y , London, pp. 143-207. McManus, D . A . , J . C . K e l l e y , and J . S . C r e a g e r , 1969, C o n t i n e n t a l s h e l f s e d i m e n t a t i o n in an A r c t i c e n v i r o n m e n t . B u l l . G e o l . Soc. A m e r i c a , v. 8 0 , p. 1961-1984. Malloy,  R . J . , and R.N. H a r b i s o n , 1966, Marine g e o l o g y of the n o r t h e a s t e r n G u l f of M a i n e . U.S. Coast and G e o l . Survey Tech. B u l l . No. 2 8 , 15 p.  M a r g o l i s , S . V . , and J . P . K e n n e t t , 1970, A n t a r c t i c g l a c i a t i o n d u r i n g t h e T e r t i a r y r e c o r d e d in s u b - a n t a r c t i c d e e p - s e a c o r e s . Science, v . 170, pp. 1085-1087. Mathews, W . H . , 1958, Underwater g r a v e l d e p o s i t s of Dixon E n t r a n c e , B r i t i s h Columbia I n s t . Oceanog., 6 p.  Univ.  J . G . F y l e s , and H.W. N a s m i t h , 1970, P o s t g l a c i a l c o a s t a l movements i n s o u t h w e s t e r n B r i t i s h Columbia and a d j a c e n t Washington s t a t e . Canadian J o u r . E a r t h S c i . , v. 7, P P - 6 9 0 - 7 0 2 . Mayhew, M . A . , C . L . D r a k e , and J . E . N a f e , 1970, Marine g e o p h y s i c a l measurements on the c o n t i n e n t a l margins of the Labrador Sea. Canad ian J o u r . E a r t h Sc i . , v. 7, pp. 199-214. Menard, H.W. , 1964, Marine Geology of the P a c i f i c . 271 PMiller,  D . N . , and R . L . F o l k , 1955, i l m e n i t e in red s e d i m e n t s . v. 3 9 , P P . 338-345.  M c G r a w - H i l l , New Y o r k ,  Occurrence of d e t r i t a l m a g n e t i t e and B u l l . Am. A s s o c . P e t r o l . G e o l o g i s t s ,  M i l n e , W . G . , and K.A. L u c a s , 1961 , S e i s m i c a c t i v i t y in w e s t e r n Canada, 1955-1959 i n c l u s i v e . P u b l i c a t i o n s of Dominion O b s e r v a t o r y , v. 26.  200.  Morris,  P . A . , 1966, A F i e l d Guide to S h e l l s of the P a c i f i c Coast and H a w a i i , Houghton M i f f l i n C o . , B o s t o n , 297 P-  Murray,  J.W., and E . E . M a c k i n t o s h , 1968, Occurrence of i n t e r s t r a t i f i e d g l a u c o n i t e - m o n t m o r i I 1onoid p e l l e t s Queen C h a r l o t t e Sound, B.C. Canadian J o u r . E a r t h S c i . , v. 5, pp. 2 4 3 - 2 4 7 . and D.L. T i f f i n , 1969, S t r u c t u r e of the C o n t i n e n t a l Margin West o f Vancouver I s l a n d , B . C . , in G e o l . Survey of Canada Report of A c t iv i t i e s , Paper 6 9 - 1 • P a r t A . , pp. 14-17.  Nayudu, Y . R . and B . J . Enbysk, 1964, B i o - 1 i t h o l o g y of n o r t h e a s t s u r f a c e s e d i m e n t s . Marine Geology, v. 2, pp. 3 1 0 - 3 4 2 .  Pacific  N i i n o , H . , and K . 0 . Emery, 1961 , Sediments of s h a l l o w p o r t i o n s of East China Sea and South China Sea. B u l l . G e o l . Soc. A m e r i c a , v. 72, pp. 731-762. 1966, C o n t i n e n t a l s h e l f sediments o f f n o r t h e a s t e r n A s i a . Sed. P e t r o l o g y , v. 3 6 , pp. 1 5 2 - 1 6 1 .  Jour.  and C M . Kim, 1969, Organic carbon i n sediments of Japan Sea. J o u r . Sed. P e t r o l o g y , v. 3 9 , pp. 1390-1398. Norris,  R . M . , 1969, Dune r e d d e n i n g and t i m e . PP. 7 - 1 1 .  J o u r . Sed. P e t r o l o g y ,  v. 3 9 ,  O ' B r i e n , N . R . , and D.C. B u r r e l l , 1970, M i n e r a l o g y and d i s t r i b u t i o n of c l a y s i z e sediment in G l a c i e r Bay, A l a s k a . J o u r . Sed. P e t r o l o g y , v. 40, pp. 6 5 0 - 6 5 5 . Oilier,  C,  1969, Weathe r i n g , O l i v e r and Boyd, E d i n b u r g , 304 p.  Peacock, M . A . , 1935, F j o r d - l a n d of B r i t i s h C o l u m b i a . A m e r i c a , v. 4 6 , pp. 6 3 3 - 6 9 6 .  Bull.  G e o l . Soc.  P e t e r s e n , C . G . , 1911, V a l u a t i o n of the S e a , I. Animal l i f e of the sea b o t t o m , i t s food and q u a n t i t y . Rep. Danish B i o . S t a t . 2 0 , 81 p. (non-v i d e ) . Picard,  G . L . and L . F . G i o v a n d o , B r i t i s h Columbia i n l e t s .  I960, Some o b s e r v a t i o n s of t u r b i d i t y in L i m n o l . Oceanog., v. 5 , pp. 162-170.  Pierce,  J . W . , 1966, Sediment budget of a p a r t of the North C a r o l i n a c o a s t . Program G e o l . Soc. A m e r i c a Ann. Meeting S o u t h e a s t e r n S e c t . , Athens G a . , p. 36 (abst r a c t ) . and F.R. S i e g e l , 1969, Q u a n t i f i c a t i o n in c l a y m i n e r a l s t u d i e s o f sediments and s e d i m e n t a r y r o c k s . J o u r . Sed. P e t r o l o g y , v. 3 9 , pp. 187-193.  Pilkey,  O . H . , D. F r a n k e n b e r g , 1964, The re 1 i c t - r e c e n t s e d i m e n t a r y boundary on the Georgia c o n t i n e n t a l s h e l f . B u l l . Georgia A c a d . S c i e n c e , v. 2 2 , pp. 1 - 4 .  201 .  P o r r e n g a , D . H . , 1967, G l a u c o n i t e and c h a m o s i t e as depth i n d i c a t o r s marine e n v i r o n m e n t . Marine Geology, v. 5 , pp. 4 9 5 - 5 0 1 . Pratt,  in the  R . M . , J . S c h l e e , 1969, G l a c i a t i o n on the c o n t i n e n t a l margin o f f New E n g l a n d . Bui 1 . Geol . Soc. A m e r i c a , y. 8 0 , pp. 2335-2342.  P r y o r , W . A . , and N.C. H e s t e r , 1969, X - r a y d i f f r a c t i o n a n a l y s i s o f heavy minerals. J o u r . Sed. P e t r o l o g y , v. 3 9 , pp. 1384-1389. R o d d i c k , J . A . , A . J . B a e r , and W.W. H u t c h i s o n , 1966, Coast Mountains Project. G e o l o g i c a l Survey of Canada, Paper 6 6 - 1 , pp. 8 0 - 8 5 . and W.W. H u t c h i s o n , 1968, Coast Mountains P r o j e c t . Survey Canada, Paper 6 8 - 1 , Part A , pp. 3 7 - 4 1 .  Geolog i ca1  R o s s , D . A . , 1970, Source and d i s p e r s i o n of s u r f a c e sediments i n the G u l f of Maine - Georges Bank a r e a . J o u r . Sed. P e t r o l o g y , v. 4 0 , pp. 906-920. S c h a f e r , C.T. and A . P r a k a s h , 1968, C u r r e n t t r a n s p o r t and d e p o s i t i o n of F o r m i n i f e r a l t e s t s , p l a n k t o n i c organisms and l i t h o g e n i c p a r t i c l e s i n B e d f o r d B a s i n , Nova S c o t i a . M a r i t i m e S e d i m e n t s , v. 4 , pp. 100-103. S c h n e i d e r , H. , 1970, Problems o f q u a r t z g r a i n morphoscopy. v. 14, pp. 3 2 5 - 3 3 5 .  Sedimentology,  Shepard, F . P . , 1932, Sediments of the c o n t i n e n t a l A m e r i c a , v. 4 3 , pp. 1017-1039.  Bui 1. G e o l .  1963, Submarine Geology.  shelves.  Soc.  Harper and Row, New Y o r k , 557 pp.  S i l b e r m a n , M . L . , 1969, Re 1 i e f g1acia1 sediments on the B e r i n g G e o l . Soc. A m e r i c a , A b s . w i t h P r o g s . Part F, p. 206. S o u t h e r , J . G . , 1966, C o r d i l l e r a V o l c a n i c S t u d y , Paper 6 6 - 1 , pp. 87-89.  Geological  Shelf.  Survey of Canada,  Spigai,  J . J . , and L.D. Kulm, 1969, P a t t e r n s of Holocene s e d i m e n t a t i o n on the c o n t i n e n t a l s l o p e o f f s o u t h e r n Oregon. G e o l . Soc. Amer i c a , A b s . w i t h P r o g s . , p a r t F, p. 2 1 2 .  Stacey,  R.A. and L . E , S t e p h e n s , 1969, An i n t e r p r e t a t i o n of g r a v i t y measurements on the west c o a s t of Canada. Canadian J o u r . E a r t h S c i . , v. 6 , pp. 4 6 3 - 4 7 4 .  S t i e g l i t z , R . D . , 1969, S u r f a c e t e x t u r e s o f q u a r t z and h e a v y - m i n e r a l g r a i n s from f r e s h w a t e r e n v i r o n m e n t s : an a p p l i c a t i o n of s c a n n i n g e l e c t r o n microscopy. B u l l . G e o l . Soc. A m e r i c a , v. 8 0 , pp. 2 0 9 1 - 2 0 9 4 . S t e r n b e r g , R.W., 1 9 7 ' , Measurements of i n c i p i e n t m o t i o n of sediment p a r t i c l e s i n the marine e n v i r o n m e n t . Mari ne G e o l . , v. 10, pp. 113-119.  202. and J . S . C r e a g e r , 1961., Comparative e f f i c i e n c i e s of s i z e a n a l y s i s by hydrometer and p i p e t t e methods. J o u r . Sed. P e t r o l o g y , v. 3 1 ,  pp. 96-100.  S t r a h l e r , A . N . , 1967, I n t r o d u c t i o n to P h y s i c a l Geography, Sons, I n c . , New Y o r k , 455 p.  John W i l e y £-  S t r i d e , A . H . , 1963, Current swept sea f l o o r s near the s o u t h e r n h a l f of Great B r i t a i n , Q u a r t . J o u r . G e o l . Soc. London, v. 119, pp. 175-199. S u t h e r l a n d Brown, A . , 1966, T e c t o n i c h i s t o r y of the Insula- B e l t of B r i t i s h C o l u m b i a , in T e c t o n i c H i s t o r y and M i n e r a l D e p o s i t s of the Western Cordi11 e r a . Canadian I n s t . M i n i n g and M e t a l l u r g y , M o n t r e a l , pp. 83-100. 1968, Geology o f the Queen Char lotteIs l a n d s , B . C . , B u l l . B r i t i s h Columbia Dept. of Mines and P e t r o l e u m R e s o u r c e s , No. 54, 226 p. Swift,  D . J . P . , 1969, Outer S h e l f S e d i m e n t a t i o n : P r o c e s s e s and P r o d u c t s , in The New Concepts of C o n t i n e n t a l S h e l f S e d i m e n t a t i o n , D . J . S t a n l e y , convener. American G e o l o g i c a l I n s t i t u t e , W a s h i n g t o n , pp. DS-5-1 t o DS-5-26. 1970, Q u a t e r n a r y v. 8, pp. 5-30.  s h e l v e s and the r e t u r n t o g r a d e .  Marine  Geology,  Thomas, M . K . , 1953, CI i m a t o l o g i c a 1 A t l a s of Canada, M e t e r o l o g i c a 1 D i v . Dept. of T r a n s p . , D i v . B u i l d i n g R e s e a r c h , Nat. Res. C o u n c i l , Ottawa. Thomas, R . L . , 1969, A note on the r e l a t i o n s h i p of g r a i n s i z e , c l a y c o n t e n t , q u a r t z and o r g a n i c carbon in some Lake E r i e and Lake O n t a r i o s e d i ments. J o u r . Sed. P e t r o l o g y , v. 39, pp. 803-809. Tiffin,  D . L . , 1969, Continuous of G e o r g i a , B.C. Univ.  S e i s m i c R e f l e c t i o n P r o f i l i n g in the S t r a i t B r i t i s h Columbia I n s t . Oceanog. 177 p.  Tully,  J . P . , 1952, C l i m a t e in the c o a s t a l seas of B r i t i s h C o l u m b i a . Fish. Res. Bd. Canada P r o g . Rept. P a c i f i c Coast S t a t . No. 90, pp. 16-20.  Van A n d e l , T j . H . , 1964, Recent sediments of G u l f of C a l i f o r n i a , in Ma r i ne Geology of the Gulf of C a l i f o r n i a , T j . H. van A n d e l , G.G. Shor. J r . , editors. American A s s o c i a t i o n of P e t r o l e u m G e o l o g i s t s , T u l s a , O k l a . ,  pp. 216-310.  Veenstra, H.J., Geology,  1965, Geology of the Dogger Bank a r e a , North Sea. v. 3, pp. 245-262.  Ma r i ne  W a l d i c h u k , M . , 1957, P h y s i c a l Oceanography of the S t r a i t of G e o r g i a . Res. Bd. Canada, P a c i f i c P r o g . Rept. No. 14, pp. 321-486.  Fi s h .  W a l k e r , G . F . , 1961, V e r m i c u l i t e m i n e r a l s in The X - r a y I d e n t i f i c a t i o n and C r y s t a l S t r u c t u r e s of C l a y M i n e r a l s . Minera1ogica1 S o c i e t y , London,  pp. 297-324.  203. W a l t e r s , R . F . , 1969, C o n t o u r i n g by m a c h i n e : a user's guide. A s s o c . P e t . G e o l . , v. 5 3 , pp. 2324-2340.  Bui 1. Am.  Warshaw, C M . , P . E . Rosenberg and R. R u s t o n , I 9 6 0 , Changes e f f e c t e d i n l a y e r s i l i c a t e s by h e a t i n g below 5 5 0 ° C. C l a y M i n s . Bui 1., v. 4 , p. 113-126. Weaver,  C . E . , 1958, The e f f e c t and g e o l o g i c s i g n i f i c a n c e of p o t a s s i u m " f i x a t i o n " by expendable c l a y m i n e r a l s d e r i v e d from m u s c o v i t e , b i o t i t e , c h l o r i t e and v o l c a n i c m a t e r i a . Am. M i n e r a 1 o g . , v. 4 3 , pp. 8 3 9 - 8 6 1 .  Watts,  J . S . , J r . , and R . E . F a u l k n e r , 1968, severe s e a s . Ocean I n d u s t r y , v. 3 ,  White,  S . M . , 1970, M i n e r a l o g y and g e o c h e m i s t r y o f c o n t i n e n t a l sediments o f f the Washington-Oregon c o a s t . J o u r . Sed. v. 4 0 , pp. 3 8 - 5 4 .  Designing a d r i l l i n g No. 9 , pp. 2 8 - 3 7 .  rig  for  shelf Petrology,  W i e s e , W. , 1969, S t u d i e s on p r o p e r t i e s , d i s t r i b u t i o n , and heavy m i n e r a l c o n t e n t s of sediments i n n o r t h e r n 0_ueen C h a r l o t t e Sound. Un i v . o f B r i t i s h C o l u m b i a , Dept. of G e o l o g y , 78 p. ( u n p u b l i s h e d B . S c . thes i s ) .  -  (a)  3  -  Lutemauer, Dr. John Lelarid  v, rv,>>.' ,t '•• •  (c)  Departnent: Departnent c f Geology  (d)  SuoEiarj' of U n i v e r s i t y education: B.A.  Geology  Colby College, Kaine, U.S.A.  1964  i-I.A.  Geology  Duke U n i v e r s i t y , North Carolina, U.S.A.  1966  Ph.D.  (e)  Marine Geology  University of B r i t i s h Columbia '  *  1972  P r o f e s s i o n a l Experience: F i e l d Experience: On Land  Duty F i e l d A s s i s t a n t to Earvard Ph.D. candidate F i e l d Assistant to Louisiana State Univ. Ph.D. candidate  At Sea  Subject o f Research-  Structural Geology  Describing Coal Measures  Location  Period  Maine  Sumner 62  Ohio  Summer '6j  1  Cruises on H./V Eastward (Duke Univ.), 3/7 Gosnold (Wood's Hole), C.IT.A.V. Laymore and Endeavour (Canadian Navy) which, have acquainted no with various techniques employed i n the study o f continental s h e l f sedinents, structure, and chemical and p h y s i c a l oceanography. (19&4- "t° Present)  - 9-  Teaching Experience:  Sub Sect Introductory Lab  (f)  Current  Period  Location  Geology 1965  - 70  Duke U n i v e r s i t y and Univ. of B r i t i s h Columbia  Sedimentation and Stratigraphy Lab  1971 - 72  Univ. of B r i t i s h Columbia  Elementary Paleontology Lab  1971  Univ. of-. B r i t i s h Columbia  Research: Geomorphology, bottom sediment d i s t r i b u t i o n and present sediment d i s p e r s a l r i t h i n Queen Charlotte Sound, a 5,000 so. mi. continental s h e l f area o f f B r i t i s h Columbia, Canada. This i s the subject of my recently completed Ph.D. t h e s i 3 .  (g)  Publications: (i)  T o t a l number of papers published i n journals " i t h a referee system. g  ( i i ) T i t l e s o f papers published i n journals with a refereo system during the pa3t f i v e years only.  P i l k e y , O.K., and J.L. Lutemauer, 1966, North Carolina's Frying. Pan Shoals Phosphate Sands, GeoLIarine Technology, v. 3 ,  pp. 24-25. ,1967, A North Carolina Shelf Phosphate Deposit o f P o s s i b l e Commercial Interest, Southeastern Geology, v. 8, pp. 33-51. Lutemauer, J.L. and O.H. P i l k e y , 1967, Phosphorite Grains: Their A p p l i c a t i o n to the I n t e r p r e t a t i o n of llorth Carolina S h e l f Sedimentation, I-Iari.no Geology', v. 5, pp. 315-320.  -  10  -  P i l k e y , O.Z., R.\i. Horton, and J.L. Lutemauer, 1361, The Carbonate F r a c t i o n of Beach and Dune Sands, Sedjaontolo/Ty, v. S, pp. 311-327. Garrison, R.E., J.L. Lutemauer, E.V. G r i l l , R.D. Kacdonald end J.W. Hurray, 1969, E a r l y Diageaetic. Cementation of Recent Sands, Fraaer. River Delta, B.C., Sed j.nento logy, v. 12, po. 27-46. Garrison, R.E., and J.L. Luternauer, 1969, Textures of C a l c i t i c Ceaents, Bermuda B i o l o g i c a l S t a t i o n f o r Research Spec. Pub. Ho. pp. 106-109.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053483/manifest

Comment

Related Items