UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Patterns of sedimentation in Queen Charlotte Sound, British Columbia Luternauer, John Leland 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A1 L88.pdf [ 24.58MB ]
Metadata
JSON: 831-1.0053483.json
JSON-LD: 831-1.0053483-ld.json
RDF/XML (Pretty): 831-1.0053483-rdf.xml
RDF/JSON: 831-1.0053483-rdf.json
Turtle: 831-1.0053483-turtle.txt
N-Triples: 831-1.0053483-rdf-ntriples.txt
Original Record: 831-1.0053483-source.json
Full Text
831-1.0053483-fulltext.txt
Citation
831-1.0053483.ris

Full Text

PATTERNS OF SEDIMENTATION IN QUEEN CHARLOTTE SOUND, BRITISH COLUMBIA by JOHN LELAND LUTERNAUER B.A. Colby C o l l e g e , U . S . A . , ]3Gk M.A. Duke U n i v e r s i t y , U . S . A . , 1966 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Geology and I n s t i t u t e of Oceanography We accept t h i s t h e s i s as conforming to the r e q u i r e d s tandard THE UNIVERSITY OF BRITISH COLUMBIA APRIL , 1972 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head o f my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood t h a t c o p y i n g or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a llowed w ithout my w r i t t e n p e r m i s s i o n . Department o f The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada ABSTRACT Th is study is concerned w i t h the geomorphology and sediment d i s p e r s a l in Queen C h a r l o t t e Sound, a 20,000 s q . km. c o n t i n e n t a l s h e l f area o f f the B r i t i s h Columbia main land between Vancouver Is land and Queen C h a r l o t t e I s l a n d s . F i e l d work invo l ved c o l l e c t i o n o f : a) 357 bottom samples , b) 5 g r a v i t y cores and c) 12 s e r i e s of bottom photographs. S e l e c t e d cont inuous s e i s m i c p ro -f i l e s obta ined p r i o r to i n i t i a t i o n of the study are a l s o i n c l u d e d . Laboratory procedures inc luded a) a n a l y s i s of sediment t e x t u r e , b) d e t e r m i n a t i o n of heavy m i n e r a l , c l a y group , o r g a n i c C, CaCO^, g l a u c o n i t e p e l l e t and i r o n - s t a i n e d sand content in samples , c) examinat ion of S o u n d - f l o o r bedforms and d) c r e a t i o n of a d e t a i l e d ba thymet r i c map. P r i n c i p a l p h y s i o g r a p h i c f e a t u r e s on the s h e l f are broad troughs and banks. Troughs g e n e r a l l y extend from the mainland to the s h e l f edge (at a p p r o x i m a t e l y 300 metres) and appear to have been a t l e a s t p a r t l y excavated by g l a c i e r s which l e f t s e v e r a l c h a r a c t e r i s t i c d e p o s i t s upon t h e i r r e t r e a t . Net sediment accumula t ion is o c c u r r i n g in the troughs m a i n l y below 160 metres . Banks appear to be massive d r i f t d e p o s i t s which are be ing planed to depths as g reat as 130 metres below present s e a - l e v e l . R i v e r e r o s i o n probab ly has i n c i s e d at l e a s t one bank 's margin at a time when s e a - l e v e l stood lower . Mud d e r i v e d from g l a c i a l mel twater and d i s c h a r g e d d u r i n g the summer from the mainland i n t o the southeaste rn Sound probably is a) most l y d e p o s i t e d r e l a t i v e l y c l o s e i n s h o r e , b) the p r i n c i p a l sediment p r e s e n t l y c o n t r i b u t e d to the Sound and c) the c o a r s e s t sediment now c o n t r i b u t e d to the Sound. Sedimen-t a t i o n ra tes on the o u t e r s h e l f are very low probably because most sediment not d e p o s i t e d inshore i s t r a n s p o r t e d beyond the s h e l f in the l e s s s a l i n e s u r f a c e water . F ine sand i s swept both n o r t h e r l y and s o u t h e r l y ac ross bank tops by t i d a l c u r r e n t s . CONTENTS INTRODUCTION GENERAL REGIONAL DESCRIPTION Phys iography Geology Glac i a t ion C l i m a t o l o g y and Oceanography Sed iments PROCEDURES F i e l d Laboratory Sediment Texture Sediment g r a i n s i z e Sand g r a i n s u r f a c e t e x t u r e Gravel roundness Sediment Composit ion Heavy minera l content Gravel rock type C lay m i n e r a l group content G l a u c o n i t e p e l l e t content I r o n - s t a i n e d sand content To ta l carbon content S k e l e t a l CaC03 content Organic carbon content Core D e s c r i p t i o n Sediment Colour Bottom Photographs Bathymetr ic Map Subbottom S t r u c t u r e RESULTS P h y s i o g r a p h i c Features of Queen C h a r l o t t e Sound P e t r o l o g y of Grave ls and Minera l Content of Heavy Minera l and C lay F r a c t i o n s Sediment D i s t r i b u t i o n Gravel Sand Mud Mud-sand r a t i o Standard d e v i a t i o n va lues i i i RESULTS (Cont 'd ) Page Sediment D i s t r i b u t i o n (Cont 'd ) Skewness v a l u e s 61 K u r t o s i s va lues 65 C h a r a c t e r i s t i c s o r t i n g , skewness and mean s i z e : Summary 65 A r e a l d i s t r i b u t i o n of sediment groups 65 Organic Carbon and CaC03 Content of Sediments Organic carbon content 72 CaCQ3 content 72 Facto r A n a l y s i s of Sediments (A) 77 Sediment Colour D i s t r i b u t i o n 84 Fac to r A n a l y s i s of Sediments (B) 85 G l a u c o n i t e P e l l e t D i s t r i b u t i o n 88 Gravel Roundness 93 Sand G r a i n Sur face Textures SS Heavy M i n e r a l s A r e a l d i s t r i b u t i o n of t o t a l heavy m i n e r a l s 104 R e l a t i o n s h i p of magnet i te content to sample d e p t h , heavy minera l content and mean s i z e 104 Charac te r of Sound F l o o r as Observed in Bottom Photographs 110 D e s c r i p t i o n of G r a v i t y Cores 140 D e s c r i p t i o n of Continuous Se ismic P r o f i l e s 149 SUMMARY OF PHYSIOGRAPHIC AND SEDIMENT0L0GIC FEATURES OF QUEEN CHARLOTTE SOUND 156 DISCUSSION O r i g i n of P h y s i o g r a p h i c Features 160 Present Sediment D i s p e r s a l I69 CONCLUSIONS 178 APPENDIX 180 REFERENCES 193 LIST OF FIGURES Iv FIGURE TITLE PAGE I 2 3 4 •5 8 9 10 11 a ,b 12 13 14 15 16 17 18 19 20 Index Map 3 P h y s i o g r a p h i c Un i t s 6 General Geology 8 Recent E p i c e n t r e s 10 Average In te rva l between Occurrences of P a r t i c u l a r Wind Speeds 15 C o t i d a l L i n e s , Ebb -F lood T i d a l D i r e c t i o n s and Water Sample S t a t i o n s 16 Spr ing T ide Resu l tan t Sur face Current 17 Net Water Movement 19 S a l i n i t y D i s t r i b u t i o n 19 Sur face S a l i n i t y 20 N.E. P a c i f i c Sediment D i s t r i b u t i o n and Water C i r c u l a t i o n 22 Grab Sample L o c a t i o n s 26 A r e a l Dens i t y of Soundings 39 P h y s i o g r a p h i c S e c t i o n s in Q.ueen C h a r l o t t e Sound 41 Bathymetry of Queen C h a r l o t t e Back Sound Envelope L o c a t i o n of Bathymetr ic Cross S e c t i o n 44 Bathymet r i c C r o s s - S e c t i o n 45 X-Ray Di f f ractograms Heavy Minera l F r a c t i o n 49 S u r f i c i a l Samples f o r C lay Ana lyses 50 R e p r e s e n t a t i v e X-Ray D i f f r a c t o g r a m s f o r 2 S u r f i c i a l Sediments 51 FIGURE TITLE PAGE 21 Mean Phi Value D i s t r i b u t i o n 54 22 Mean Phi Value D i s t r i b u t i o n 55 (computer p l o t ) 23 H ighest Percent Gravel 56 24 H ighest Percent Sand 58 25 H ighest Percent Mud 59 26 P r i n c i p a l Sand Mode D i s t r i b u t i o n 60 27 %Mud/%Sand D i s t r i b u t i o n 62 28 Standard D e v i a t i o n Value D i s t r i b u t i o n 63 29 Skewness Value D i s t r i b u t i o n 64 30 K u r t o s i s Value D i s t r i b u t i o n 66 31 Mean S i z e v s . Standard D e v i a t i o n f o r Samples 67 32 S e l e c t e d Skewness Values f o r Samples in F i g . 31 68 33 S o r t i n g - Skewness - Mean S i z e Group D i s t r i b u t i o n 70 34 Organic Carbon D i s t r i b u t i o n 73 35 Organic C Content v s . %Mud/%Sand 74 36 CaC03 D i s t r i b u t i o n 75 37 Sediment P o p u l a t i o n s Determined by Facot r A n a l y s i s 80 38. C o r r e l a t i o n of Sample Depth and %Sand 86 39 Sample Depth v s . %Mud/%Sand 87 40 P e l l e t G l a u c o n i t e D i s t r i b u t i o n 90 41 G l a u c o n i t i c Sample Mean S i z e vs . S o r t i n g 91 42 Percent Heavy M i n e r a l s 105 TITLE Percent Magnet i te in Heavy Minera l F r a c t i o n v s . Sample Mean S i z e , Depth and % H.M. F r a c t i o n in Ana lyzed S i z e F r a c t i o n Locat ions of Camera S t a t i o n s L o c a t i o n s of G r a v i t y Cores Core D e s c r i p t i o n Mg++ S a t . and Ethy lene G l y c o l S l i d e X-Ray D i f f r a c t o g r a m s f o r S e l e c t e d 2 Core Sediments F jords and F jo rd V a l l e y s in B r i t i s h Columbia S h e l f Area o f f Norway V I I LIST OF PLATES PLATE TITLE PAGE I V i s u a l Comparison of Gravel 48 Rock Types II Sediment Mount (Sediment Colour D i s t r i b u t i o n ) 84 III a ) S e m i - enc losed and Free "GTauconite Pel l e t s 89 b) Faecal P e l l e t s c ) Examples of Shapes of T e s t - F r e e G l a u c o n i t e Pel l e t s IV Comparison of Gravel Roundness 95 V Micrographs of Quartz Gra ins in Sample #46 98 VI Micrographs of Qi iartz Gra ins in Sample- #282 100 VII Micrographs of Q.uartz Gra ins in #473 102 VI I I I r o n - s t a i n e d and Non -s ta ined Sands 108 IX-XX Photographs of Sound F loo r 117-139 IX S t a t i o n # 4 2 9 117 X S t a t i o n # 435 119 XI S t a t i o n # 437 121 XI I S t a t i o n # 430 123 XI I I S t a t i o n # 267 125 XIV Stat ion # 288 127 XV S t a t i o n # 3.1 1 129 XVI S t a t i o n # 392 131 XVI I S t a t i o n # 424 133 PLATE IX-XX Cont'd XXI XXI I XXI I I-XXVI I TITLE XVI I I S t a t i o n # 427 XIX S t a t i o n # 422 XIX S t a t i o n # 422 XX S t a t i o n # 364 Pho t o g r a p h s o f S e c t i o n s o f S e l e c t e d G r a v i t y Cores X-Ray P h o t o g r a p h s o f S e l e c t e d Core S e c t i o n s I n t e r p r e t a t i o n s o f S e i s m i c P r o f i l e s X X I I I P r o f i l e A-A' XXIV P r o f i l e B-B' XXV P r o f i l e C-C XXVI P r o f i l e D-D1 XXVI I P r o f i l e s E-E 1 and F -F 1 ix LIST OF TABLES TABLE TITLE PAGE I Summary: C h a r a c t e r i s t i c S o r t i n g , Skewness and Mean 6 9 S i z e C h a r a c t e r i s t i c s of Sediment Groups II Varimax Fac to r Score M a t r i x 7 7 III Range and Mean Degree of D e s c r i p t i o n of Sediment 7 9 P o p u l a t i o n by Fac to r IV G l a u c o n i t e P e l l e t and CaC03 Content in .354 - .500 mm F r a c t i o n of Samples R i c h e s t in G l a u c o n i t e 92 V Heavy M i n e r a l C o n c e n t r a t i o n of Samples R i c h e s t in Heavy M i n e r a l s 104 VI I r o n - s t a i n e d Gra in Content in Var ious S i z e F r a c t i o n s of S e l e c t e d Samples 109 VII Character of Sound F l o o r as Observed in Bottom Photographs 112 X ACKNOWLEDGEMENTS The author is s i n c e r e l y g r a t e f u l t o Dr. J.W. Murray f o r a s s i s t a n c e in the s e l e c t i o n of the t h e s i s t o p i c , f o r e n s u r i n g that funds were always a v a i l a b l e f o r the d e f r a y a l of t h i s p r o j e c t ' s expenses and f o r f i n a l c r i t i c a l read ing of the m a n u s c r i p t . Drs . W.C. Barnes , R.V. B e s t , R .L . Chase, W.R. Danner and P. LeBlond o f f e r e d many h e l p f u l suggest ions f o r improvement of the t e x t . Dr. S i n c l a i r and Mr. J . W i l s o n a s s i s t e d the w r i t e r in the computer a s p e c t s of t h i s s tudy . Dr. B . E . B . Cameron of the G e o l o g i c a l Survey of Canada and Mr. C y r i l R o d r i g u e s , a student a t the Univ . B r i t i s h Columbia Geology D e p t . , i d e n t i f i e d f o r a m i n i f e r a 1 assemblages and suggested t h e i r env i ronmenta l a f f i n i t i e s . Mr. E .P . F l e i s c h e r of the Defense Research Board arranged s h i p o p e r a t i o n s . The o f f i c e r s and crew of the C .N .A .V . Endeavour and Laymore e x h i b i t e d c o n s i d e r a b l e e x p e r t i s e in t h e i r h a n d l i n g of s h i p and sampl ing o p e r a t i o n s . Mr. E. Montgomery and s t a f f very competent ly and g o o d - n a t u r e d l y a s s i s t e d in c r u i s e p r e p a r a t i o n s . F e l l o w s tudents L i o n e l C a r t e r , Ch r i s Pharo and Mike P u l l e n were f r e q u e n t l y a v a i l a b l e f o r s t i m u l a t i n g d i s c u s s i o n s of v a r i o u s aspec ts of marine geology . Typing was done by Ms. Barbara Mewis and Ms. Nancy W a l l a c e . F i e l d and l a b o r a t o r y work was f i n a n c e d by the (a) P r e s i d e n t ' s Research Fund of the U n i v e r s i t y of B r i t i s h Co lumbia , (b) G e o l o g i c a l Survey of Canada, and (c) Nat iona l Research C o u n c i l . S h e l l Canada L t d . k i nd 1 y o f f e r e d t h e i r bathymet r i c f i e l d sheets f o r use in the c o n s t r u c t i o n of a d e t a i l e d bathymet r i c map. A s p e c i a l word of a p p r e c i a t i o n i s due Marg i th f o r j u s t remaining her wonderful s e l f dur ing the course of t h i s p r o j e c t . INTRODUCTION The c h a r a c t e r and d i s t r i b u t i o n of sediments on present c o n t i n e n t a l she lves have been i n f l u e n c e d p ro found ly by phenomena a s s o c i a t e d w i t h P l e i s t o c e n e g l a c i a t i o n (Emery, 1968). In response to advances of c o n t i n e n t a l i ce sheets w o r l d - w i d e s e a - l e v e l dropped, at t imes p o s s i b l y as much as 200 metres below present l e v e l s ( G u i l c h e r , 1969), expos ing la rge s h e l f areas to s u b a e r i a l p rocesses (Shepard, 1963). Dur ing pe r iods of low s e a - l e v e l many h i g h - l a t ? t u d e s h e l f areas were, in a d d i t i o n , p ro found ly a f f e c t e d by g l a c i a l l o a d i n g , s c o u r i n g and d e p o s i t i o n ( H o l t e d a h l , 1958, 1970; Emery et c H , 1965; V e e n s t r a , 1965; Suther land Brown, 1968; Knott and H o s k i n s , 1968; Houbol t , 1968; P r a t t and S c h l e e , 1969). In response to the l a s t major g l a c i a l r e s t r e a t the sea made i t s f i n a l t r a n s g r e s s i o n ac ross the s h e l f and drowned or f u r t h e r submerged what Shepard (1932) has r e f e r r e d to as the "patchy arrangement of sed iment" formed by p rev ious non-marine or more s h a l l o w marine p r o c e s s e s . As a consequence of the above recent events on the s h e l f , some s h e l f sediments are not in equi1 ibr iurn w i t h the present in s i t u h y d r a u l i c regime or present sediment d i s c h a r g e (Emery, 1952, 1968; S w i f t , 1970). I n v e s t i g a -t i o n of present processes of s h e l f sed imenta t ion which may best a s s i s t one to recogn ize and i n t e r p r e t s h e l f environments in the g e o l o g i c record must , t h e r e f o r e , c o n c e n t r a t e on the d e t e c t i o n and examinat ion of those sediments which appear to be responding to present c o n d i t i o n s on - the s h e l f . D e t a i l e d s e d i m e n t o l o g i c s t u d i e s on the c o n t i n e n t a l she lves of the Uni ted S ta tes reveal the presence of a sediment band ad jacent to the shore which appears to be in c l o s e adjustment w i t h l o c a l longshore c u r r e n t s , wave motions and/or r i v e r sediment d i s c h a r g e (Cur ray , I960; P i l k e y and Frankenburg , 1964; S w i f t , 1970). Less i s known of the degree to which the sediments beyond t h i s zone a r e responding to l o c a l h y d r a u l i c c o n d i t i o n s . The present w r i t e r and others 2. ( G i l e s and P i l k e y , 1965 ; P i e r c e , 1966; Luternauer and P i l k e y , 1967) have presented ev idence to suggest that the g e n e r a l l y c o a r s e , but o f t e n w e l l s o r t e d , sediment (Shepard, 1932; G o r s l i n e , 1963; Emery, 1965) depos i ted on the outer par t of n o n - g l a c i a t e d she lves at a t ime when s e a - l e v e l was lower i s be ing reworked. However, i t i s j u s t those s h e l f areas a f f e c t e d more d i r e c t l y by P l e i s t o c e n e g l a c i a t i o n , i . e . those she lves mantled w i t h unsorted g l a c i a l d e b r i s , which appear to o f f e r the most f a v o r a b l e c i r cumstances fo r the exam-i n a t i o n of sediment d i s p e r s a l in response to present open s h e l f h y d r a u l i c regimes ( S w i f t , 1 9 6 9 ) . The present study i s an i n v e s t i g a t i o n of the geomorphology and p a t t e r n s of sediment d i s p e r s a l in Queen C h a r l o t t e Sound, a 2 0 , 0 0 0 square k i l o m e t r e c o n t i n e n t a l s h e l f area o f f the h e a v i l y g l a c i a t e d B r i t i s h Columbia coast ( H o l l a n d , 1 9 6 4 ) ( F i g . 1 ) . In the course of t h i s i n v e s t i g a t i o n severa l aspects of c o n t i n e n t a l s h e l f study which have r e c e n t l y been d i s c u s s e d in the l i t e r a t u r e have been cons ide red in r e l a t i o n to Queen C h a r l o t t e Sound: (a) P l e i s t o c e n e g l a c i a l l i m i t s ( P r a t t and S c h l e e , 1969; Anderson , 1968; K i n g , 1970) (b) R e l a t i o n s h i p between sediment type and submarine topography ( V e e n s t r a , 1965; K i n g , 1967, 1970; Houbolt 1968; P r a t t and S c h l e e , 1969) (c) O r i g i n of s h e l f t e r r a c e s and banks ( V e e n s t r a , 1965; M a l l o y and H a r b i s o n , 1966 ; K i n g , 1967; James and S t a n l e y , 1968 ; H o l t e d a h l , 1970) (d) O r i g i n of s h e l f breaks (Cur ray , 1969) (e) Sand g r a i n s u r f a c e t e x t u r e s imposed by g 1 a c i a 1 -marine processes (Kr i ns ley e_t aj_, 1964; K r i n s l e y and Donahue, 1968; S i l b e r m a n , 1969; M a r g o l i s and Kennet t , 1970) H i s t o r y and c h a r a c t e r or i r o n - s t a i n e d quar t z sands (Emery, 1965, James and S t a n l e y , 1968; Judd et aj_, 1970) Clay minera l groups a s s o c i a t e d w i t h the g l a c i a l marine environment (Kunze et_ aj_, 1969; C a r r o l , 1970; O 'B r ien and B u r r e l 1 , 1970) Environmental c o n t r o l s on the d i s t r i b u t i o n of ( 1 ) g l a u c o n i t e p e l l e t s (Por renga , 1967; Murray and M a c k i n t o s h , 1968; Wh i te , 1 9 7 0 ) , ( 2 ) o rgan ic carbon content (Ni ino ejt a]_, 1969; Gershanov ich , 1968) and ( 3 ) CaC03 content (Chave, 1 9 6 7 ) D i s c r i m i n a t i o n of sediment p o p u l a t i o n s by f a c t o r a n a l y s i s ( K l o v a n , 1966; F r a k e s , 1969; McManus e t a], 1969) 5. GENERAL REGIONAL DESCRIPTION PHYSIOGRAPHY Th is d i s c u s s i o n is drawn from Ho l land (1964) un less o therw ise s t a t e d . Queen C h a r l o t t e Sound l i e s w i t h i n the Coasta l Trough of the Western System of the Canadian C o r d i l l e r a . The Coasta l Trough i n c l u d e s the submerged b a s i n and ad jacent lowland between the Coast Mountains Area of the main land and the Outer Mountain Area of Queen C h a r l o t t e Is . and Vancouver I. Queen C h a r l o t t e Sound is a major par t of the Hecate Depress ion segment of the Coasta l Trough. Severa l s u b d i v i s i o n s of the Depress ion are ev ident ad jacent to Queen C h a r l o t t e Sound ( F i g . 2): N a h w i t t i Lowland extends a c r o s s nor thern Vancouver I. and i s a lmost everywhere below 610 metres a l t i t u d e . Hecate Lowland extends from the ou te r coast o f the mainland i s l a n d s to the 610 metres l e v e l (2000 foot contour ) on the ad jacent Coast Mounta ins . Ho l land c o n s i d e r s both lowlands to be remnants of T e r t i a r y e r o s i o n s u r f a c e s . Mi lbanke S t r a n d f l a t is most l y below 33 metres in a l t i t u d e and c o n s t i t u t e s the seaward p o r t i o n of Hecate Lowland. It is a rocky p l a t f o r m w i t h w e l l marked predominant l y e a s t e r l y l ineaments and poor d r a i n a g e . Cu lbe r t (197') has suggested t h i s s t r a n d f l a t is a "mature e r o s i o n s u r f a c e m o d i f i e d by wave a c t i o n " . B a c k c u t t i n g e r o s i o n by c o a s t a l p i e d m o n t - g l a c i e r s , s e a - l e v e l f l u c t u a t i o n s coupled w i t h wave a b r a s i o n and f r o s t weather ing have been c o n s i d e r e d ins t rumenta l in the fo rmat ion of s i m i l a r f e a t u r e s in Norway ( H o l t e d a h l , I960, 1970). 6-7. GEOLOGY The d i s c u s s i o n of the g e o l o g i c a l s e t t i n g of Queen C h a r l o t t e Sound which f o l l o w s is drawn main l y from s t u d i e s by Suther land Brown ( 1 9 6 6 , 1 9 6 8 ) f o r Vancouver I. and Queen C h a r l o t t e I s . ; Rodd ick , Baer and Hutch ison ( 1 9 6 6 ) , Baer ( 1 9 6 8 ) , and Roddick and Hutch ison ( 1 9 6 8 ) f o r the Coast Mounta ins ; and Stacey and Stephens ( 1 9 6 9 ) who d i s c u s s e d g r a v i t y p a t t e r n s of the west coast of Canada. P r i n c i p a l g e o l o g i c f e a t u r e s common to areas ad jacent to Queen C h a r l o t t e Sound a re shown in F i g . 3. Suther land Brown ( 1 9 6 6 ) has summarized the broad g e o l o g i c a l aspects of the Insu lar B e l t (Queen C h a r l o t t e Is. and Vancouver I s . ) : The area seaward from the present mainland coast of B r i t i s h Columbia to the c o n t i n e n t a l s lope forms the Insular T e c t o n i c B e l t . It has been sub jec t to a un i fo rm h i s t o r y of d e p o s i t i o n , d e f o r m a t i o n , and p l u t o n i s m w i t h j u s t enough v a r i e t y to arouse i n t e r e s t . The known h i s t o r y can be c h a r a c t e r i z e d as an a l t e r n a -t i o n of pe r iods of great e f f u s i v e v o l c a n i s m w i t h e x t e n s i v e per iods of v a r i e d s e d i m e n t a t i o n . C r u s t a l f r a c t u r e s appear to have been the dominant mechanism c o n t r o l l i n g v o l c a n i s m , s e d i m e n t a t i o n , i n t r u s i o n and most l i k e l y f o l d i n g . U n t i l the Mid J u r a s s i c , events from nor th to south were n e a r l y i d e n t i c a l and a l l d e p o s i t i o n was marine and seemingly f a r from any shore other than that of v o l c a n i c i s l a n d s . T h e r e a f t e r events though g r o s s l y s i m i l a r were d i f f e r e n t in d e t a i l and t i m i n g , and bas ins and f a c i e s were more l o c a l . P l u t o n i s m , though probab ly c o n t i n u o u s , was concent ra ted in the upper c r u s t in s e v e r a l main pu lses in Mid and Late J u r a s s i c , E a r l y Cretaceous and E a r l y T e r t i a r y . Southern Queen C h a r l o t t e Is. a re dominated by the Permian (?) - Upper T r i a s s i c Karmutsen Formation ( p r i m a r i l y massive b a s a l t f lows but i n c l u d i n g p i l l o w lavas and b r e c c i a s and t h i c k b e l t s of c h l o r i t e s c h i s t ) and s y n t e c t o n i c p lu tons (hornblende d i o r i t e and quar t z d i o r i t e ) . The n o r t h w e s t - t r e n d i n g f a u l t zone running a long the m i d - s e c t i o n of the southern Queen C h a r l o t t e Is. has been the major g e o l o g i c a l i n f l u e n c e in the area through which i t s t r i k e s . Movement a long t h i s f a u l t may have occur red as f a r back as Late J u r a s s i c and probably s t i l l i s t a k i n g p l a c e . The b l o c k l y i n g to the east of t h i s steep f a u l t may have been d i s p l a c e d downwards 1-51* 130° GENERAL G E O L O G Y ADJACENT TO QUEEN CHARLOTTE SD. PRICE I. B.C. MAINLAND CRETACEOUS and OLDER Metavolcanic rocks Metasedimentary rocks UPPER PALEOZOIC and/or OLDER Gneiss and migmatite PLUTONIC ROCKS Granite, syenite and quartz monzonite Granodiorite and quartz diorite Diorite and gabbro Rock type d i s t r i b u t i o n (after Stacey and Stephens, 1969) \ \ Assumed fault s (after Sutherland Brown, 1966, 1968 and Baer, 1967) QUEEN C H A R L O T T E ISLANDS SEDIMENTARY and VOLCANIC ROCKS Early Tertiary (Masset Fm.) Mainly subaerial basalt and rhyolite Late Jurassic - Early Cretaceous (Longarm Fm.) Calcareous siltstone and graywacke Late Triassic - Early Jurassic (Kunga Fm.) Limestone and arqillite Middle Triassic (Karmutsen Fm.) Marine sodic basalts Permo - Pennsylvanian (Sicker Gp.) Basaltic rocks, qraywacke and chert overlain by limestone and argillite PLUTONIC ROCKS Post-tectonic rocks Syn-tectonic rocks + + Assumed d i r e c t i o n of Pleistocene ice-sheet move-ment (after Holland, 1964) V A N C O U V E R ISLAND SEDIMENTARY and VOLCANIC ROCKS ' ' • f t * ' Upper Cretaceous (Nanaimo Gp.) Sandstones, conglomerate and coal alternating with marine shale Upper Jurassic - Lower Cretaceous Marine sandstone, conglomerate and shale Upper Triassic - Lower Jurassic (Bonanza Fm.) Mainly porphyritic andesite agglomerate and tuff Upper Triassic (Quatsino Fm.) Limestone Permian (?) -Upper Triassic (Karmutsen Fm.) Marine sodic basalts PLUTONIC ROCKS ; + * Tertiary Granitic rocks. Middle Jurassic -Undifferentiated intrusive rocks 9. 600-3300 metres and southwards 20-100 km. Chase (o ra l comm., 197') suggests t h i s f a u l t may be a landward par t of the Queen C h a r l o t t e Fau l t system. Sandsp i t F a u l t appears to l i e a long the l i n e of recent ear thquake e p i c e n t r e s in c e n t r a l Hecate Depress ion ( M i l n e , 196l) ( F i g . 4). Northern Vancouver Is land i s u n d e r l a i n p r i n c i p a l l y by the Karmutsen ( F i g . 3) and Upper T r i a s s i c - L o w e r J u r a s s i c Bonanza Format ions . The l a t t e r is ma in l y p o r p h y r i t i c a n d e s i t e , agglomerate and t u f f . G r a v i t y data suggest an e a s t - w e s t f a u l t system extends ac ross nor thern Vancouver Is land and may be r e l a t e d to the e a s t - w e s t f r a c t u r e system c o i n c i d e n t w i t h the i n l e t s on the ad jacent mainland ( F i g . 3). G r a v i t y data a l s o suggest the Insu lar Tec ton ic B e l t i s not cont inuous through Queen C h a r l o t t e Sound. Main land B r i t i s h Columbia ad jacent to Queen C h a r l o t t e Sound i s u n d e r l a i n dominant ly by p l u t o n s c o n s i s t i n g , in order of abundance, of q u a r t z d i o r i t e ( c o n t a i n i n g s e v e r a l la rge e p i d o t e and ch1 o r i t e - r i c h b o d i e s ) , g r a n o d i o r i t e (w i th e p i d o t e and sphene as most conspicuous a c c e s s o r y m i n e r a l s ) , s t r o n g l y f o l i a t e d d i o r i t e , q u a r t z monzonite and minor gabbro , s y e n i t e and g r a n i t e . I so la ted patches of metasedimentary rock and g n e i s s - m i g m a t i t e occur in a s s o -c i a t i o n w i t h the p l u t o n s . M e t a v o l c a n i c rocks are the dominant r o c k - t y p e n o r t h -eas t of the p l u t o n i c b e l t and form the h ighes t peaks of the l o c a l Coast Mounta ins . The dominant s t r u c t u r a l t rend i s n o r t h w e s t e r l y . Less obvious n o r t h -e a s t e r l y and e a s t e r l y t rends appear to represent an e a r l i e r deformat ion than tha t which produced the n o r t h w e s t e r l y t r e n d . Small shear zones commonly p a r a l l e l w i t h the n o r t h w e s t e r l y t rend are abundant, but f a u l t s w i t h proven d isp lacement are s c a r c e . A major d i s l o c a t i o n zone appears to e x i s t in the channel nor th of P r i c e Is land ( F i g . 3). Souther (1966) d e s c r i b e d a s e r i e s of vo lcanoes in the area and suggested they : 1 0 . Prince Rupert Q SANDSPIT uh 159 ) 7 9 0 .. i 1297 C o p e St. Jomes 0632 i<v)ooe Horbour te$§§ 1 3 2 9 1796 7 9 5 13_3. G 1385 O1082 Q 9 7 8 n 7 8 2 I02'y j O R E G E N T E P I C E N T R E S ( n u m b e r s b e s i d e e p i - O — c e n t r e s a r e t h o s e / — \ i 3 5 Q ] 2 6 3 „ b y w h i c h c e n t r e s W i s s ° (_}io9 a r e r e c o r d e d a t t h e D o m i n i o n O b s 977 ,<"~N ;>J8 o f C a n a d a ) A f t e r M i l n e , 1 9 6 5 ; S u t h e r l a n d B r o w n , 1 9 6 8 F i g u r e 4 11. . . . l i e a long a l i n e a r b e l t of smal l vo lcanoes that runs in a n o r t h w e s t e r l y d i r e c t i o n f o r n e a r l y 200 m i l e s . . . The b e l t i s p a r a l l e l e d at many p l a c e s by p h y s i o g r a p h i c l i n e a m e n t s , a n c i e n t dyke swarms, and shear zones. It is b e l i e v e d to be a deep c r u s t a l s t r u c t u r e w i t h a long h i s t o r y of a c t i v i t y in which the e r u p t i o n of b a s a l t i c lavas was the most recent event . Peacock (1935) cons ide red that the l o c a t i o n of f j o r d s that d i s s e c t the coast i s c o n t r o l l e d by "axes of f o l d s , the s t r i k e s and c o n t a c t s of g e o l o g i c a l f o r m a t i o n s , and the d i r e c t i o n s of j o i n t s , goes , f a u l t s , d i k e s , minera l v e i n s and shear zones of the sur round ing c o u n t r y " . To summarize b r i e f l y : Queen C h a r l o t t e Sound appears to be par t of a l a r g e f a u l t - b o u n d e d b a s i n f l a n k e d by a t e r r a i n c o m p r i s i n g predominant ly p l u t o n i c rocks and, s e c o n d a r i l y , v o l c a n i c s . M i n e r a l s common to the rocks appear to be , in order of abundance, f e l d s p a r , q u a r t z , hornb lende , b i o t i t e , e p i d o t e , c h l o r i t e , sphene, garnet and pyroxene. GLACIATI ON Land sur round ing Queen C h a r l o t t e Sound was e x t e n s i v e l y g l a c i a t e d d u r i n g the P l e i s t o c e n e . Suther land Brown (1968) has summarized what is known of g l a c i a t i o n in the Queen C h a r l o t t e I s l a n d s . He repor ted that l o c a l l y generated g l a c i e r s , p robab ly F raser (Wisconsin) in age , covered the i s l a n d s and f lowed i n t o e q u i l i b r i u m c o n t a c t w i t h the C o r d i l l e r a n i c e - s h e e t somewhere on the western par t of Hecate D e p r e s s i o n . As a r e s u l t of t h i s e q u i l i b r i u m , i ce from the eas t s i d e of the Is lands f lowed south i n t o Queen C h a r l o t t e Sound o n l y from the southernmost q u a r t e r of the C h a r l o t t e s . The r e s t f lowed n o r t h , the d i r e c t i o n in which most of the c o n t i n e n t a l i ce sheet o p p o s i t e the C h a r l o t t e s appears to have f l o w e d . U-shaped v a l l e y s are u b i q u i t o u s . C i rques are found at a l l l e v e l s , i n -c l u d i n g s e a - l e v e l , but most of the c i r q u e s at lower l e v e l s are a long the west coast of the I s l a n d s . G l a c i a l marine d e p o s i t s are not observed f a r above present s e a - l e v e l ; in f a c t , marine f o s s i l s in l i v i n g p o s i t i o n found in the nor thern Queen C h a r l o t t e Is . p o i n t to a former r e l a t i v e s e a -l e v e l no more than 7-5 metres above present mean s e a - l e v e l . Ho l land (1964) concluded from o r i e n t a t i o n s of g l a c i a l e r o s i o n a l and d e p o s i t i o n a l f e a t u r e s that nor thern Vancouver Is land was o v e r r i d d e n by i c e t r a v e l l i n g from the mainland southwestward and westward across Queen C h a r l o t t e S t r a i t . In the area of the mainland ad jacent to Queen C h a r l o t t e Sound i c e reached a he ight of at l e a s t 2300 metres (Baer , 1967). Much of the d r i f t d e p o s i t e d on the mountains has now washed i n t o the v a l l e y s which have t h i c k a l l u v i a l d e p o s i t s and u n d e r f i t r i v e r s (Baer , 1967). Peacock (1935) i m p l i e d that the g reat depth of the f j o r d s (the deepest being 765 m. - more than twice the depth of the s h e l f edge) cannot e n t i r e l y be a t t r i b u t e d to g l a c i a l e x c a v a t i o n and incomplete g l a c i a l rebound. He cons idered i t more l i k e l y a r e s u l t of deep f l u v i a l e r o s i o n d u r i n g a T e r t i a r y u p l i f t . C u l b e r t (1971) has suggested " b l o c k subs idence of the f j o r d zone" to help e x p l a i n the great depths of the f j o r d s . G l a c i a l l y imposed d e p r e s s i o n of the land amounted to 300 metres and was coupled w i t h a 165 metre r e l a t i v e drop of s e a - l e v e l ( g l a c i a 1 -marine f e a t u r e s are observed at 160 metres e l e v a t i o n a t S t e w a r t , kOO k i l o m e t r e s nor th of Queen C h a r l o t t e Sound, and at I65 metres a t Campbell R i v e r , 200 k i l o m e t r e s southeast of the Sound) ( H o l l a n d , )S6k). In southwestern B r i t i s h Co lumbia , where P l e i s t o c e n e i ce l i k e l y was n e a r l y as t h i c k as on areas ad jacent to Queen C h a r l o t t e Sound, e q u i l i b r i u m probab ly was r e - e s t a b l i s h e d as e a r l y as 8000 B . P . (Mathews e t aj_, 1970). Some of the l a r g e s t i c e f i e l d s s t i l l e x t a n t in B r i t i s h Columbia l i e at the head-waters of r i v e r s and i n l e t s having a common o u t l e t by the Sea Ot ter Group of s h o a l s ( F i g . 2 ) . 14. CLIMATOLOGY AND OCEANOGRAPHY Queen C h a r l o t t e Sound l i e s in the warm temperate zone of the globe ( S t r a h l e r , 1967)- The area has approximate mean d a i l y a i r temperatures in January of 0°-5°C and in J u l y of 1 3 ° - l 6 ° C (Thomas, 1 9 5 3 ) . Mean annual p r e c i p i t a t i o n approximates 230 cm. and exceeds l o c a l e v a p o r a t i o n (Thomas, 1953; B a r b e r , 1 9 5 8 ) . Winds over the area are main ly c o n t r o l l e d by two p ressure c e l l s (Waldichuk, 1957)- A h i g h - p r e s s u r e c e l l centered at 3 5 ° - 4 5 ° N and 1 5 0 ° W d u r i n g the summer generates n o r t h w e s t e r 1 i e s . As w i n t e r approaches t h i s c e l l migrates southward and i t s i n f l u e n c e i s s u p e r -seded by an i n t e n s i f i e d A l e u t i a n l o w - p r e s s u r e c e l l g e n e r a t i n g s o u t h e a s t e r l y winds over the Sound. A s t a t i s t i c a l examinat ion of wind d i r e c t i o n s by Barber (1957a) suggests s o u t h e a s t e r 1 ies are dominant over the Sound d u r i n g the g r e a t e r par t of the y e a r . Watts and Faulkner (1968) repor ted that d u r i n g the p e r i o d June 1967 - February 1968 (whi le par t of the sampl ing fo r the present a u t h o r ' s p r o j e c t was being undertaken) recorded summer wind speeds were lower than average fo r the season whereas w i n t e r speeds were h i g h e r . Seve ra l of the observed wind speeds and t h e i r r e s p e c t i v e d u r a t i o n s are shown in F i g . 5> This graph suggests that recent winds have been of a s e v e r i t y s t a t i s t i c a l l y u n l i k e l y to recur f o r another 8 0 years (see p l o t of 70 m i l e per hour , 6 hour d u r a t i o n w i n d ) . C u r r e n t s , water s t r u c t u r e and t i d a l movements w i t h i n the Sound have been s t u d i e d p r i n c i p a l l y by Barber ( 1 9 5 7 b , 1958) and B e l l ( 1 9 6 3 ) . The f o l l o w i n g d i s c u s s i o n i s drawn from these sources un less o therw ise i n d i c a t e d . The observed c h a r a c t e r of l o c a l t i d e movements is i n d i c a t e d in F i g . 6 . B e l l ' s c u r r e n t s t u d i e s on a s c a l e model of the Hecate r e g i o n have c rea ted what appears to him to be a reasonable r e p r e s e n t a t i o n of l o c a l net t i d a l movements over a t i d a l c y c l e ( F i g . 7 ) . B e l l suggested that bas in geometry i s the major i n f l u e n c e govern ing movement of l o c a l t i d a l water masses because 15. > WIND S P E E D - M.P. H. From Watts and Faulkner, 1968 A V E R A G E I N T E R V A L B E T W E E N O C C U R R E N C E S O P PARTICULAR W I N D S P E E D S Figure 5 \ . ' I P R C E I S ' , °X.S / cf > o 3 v C ON CD tr COTIDAL LINES! corange cophase local ebb- f lood tide water sample stations 1 3 1 * C O V T O U S S I N M E T R E S : 7 T T — — : — \ ,4l' I ^ I ct C O >i (0 H H ON | SPRING TIDE 25 HOUR RESULTANT SURFACE CURRENT HEC A IE cm/sec 0 10 20 30 40 50 C O N T O U R S I N M E T R E S neap t i d e w i t h an ampl i tude about h a i f that of a s p r i n g t i d e had s i m i l a r net cu r ren t movements to that of a s p r i n g t i d e . T i d a l v e l o c i t i e s are very h igh in the Sound. V e l o c i t i e s in the range 40-50 c m . / s e c . are common as deep as 100 metres ( J o i n t Committee on Oceano-graphy , 1955b). Current measurements have revea led a p e r s i s t e n t landward movement of deeper h a l o c l i n e water from the Gul f of A l a s k a d u r i n g the summer. Th is h a l o c l i n e water of the open sea (33.0-33.8% s a l i n i t y ) in t rudes p a r t i c u l a r l y deeply i n t o the Sound ( F i g s . 6 and 9) d u r i n g the p e r i o d of maximum land dra inage (May to August f r e s h e t season) ( F i g s . 8 and 10), but there appears to be s u f f i c i e n t year round s u r f a c e o u t f l o w to m a i n t a i n deep water i n f l o w d u r i n g a l l seasons , at l e a s t over the deeper s h e l f a r e a s . The upper l i m i t of the ocean ic h a l o c l i n e is most depressed ( to a depth of 100 -150 metres) dur ing the w i n t e r when r u n - o f f i s low and s u r f a c e w a t e r s , which have been p i l e d inshore by the s o u t h e a s t e r l y w i n d s , d r i v e bottom water seaward. The l i m i t r i s e s to about 75 metres when summer's h igh r u n - o f f and p r e v a i l i n g n o r t h w e s t e r l y winds move s u r f a c e waters o f f s h o r e and bottom waters move inshore to rep lace them. R e p r e s e n t a t i v e near -bottom temperatures fo r d i f f e r e n t zones in the Sound vary as f o l l o w s ( J o i n t Committee on Oceanography, 1955a,b) : WINTER - ( s h e l f edge: 5 .72°C, s h a l l o w c e n t r a l bank: 10.35°C, i n l e t : 6 . 7 0 ° C ) , SUMMER - ( s h e l f edge: 5 .37°C, s h a l l o w c e n t r a l bank: 7-70°C, i n l e t : 5 . 7 ' ° C ) . Thus, summer's increased deep water i n t r u s i o n b r i n g s not on ly h igher s a l i n i t i e s but a l s o c o o l e r temperatures to the Sound. Oxygen d i s t r i b u t i o n in the Sound is g e n e r a l l y un i form and waters to depths of 500 metres in the v i c i n i t y of the Sound have been repor ted to have O 2 contents of 1.16 m l . / l i t r e ( J o i n t Committee on Oceanography, 1955a). 19. 30 20 10 20 30 ( A 0) ^50 E 75-x Q-100. o 125 landward 20 . 30 STA. 5 QUEEN CHARLOTTE STRAIT NET WATER MOVEMENT (summer) Fi.orure 8 A f t e r Barber, ~L?'67 STATION 15 SALINITY DISTRIBUTION (summer) F i g u r e 9 After Barber, 1 9 5 7 c CD +52-ct a> tx >••$ tx - h i * SURFACE S A L I N I T Y % o (summer) 10 20 C O N T O ' J R S I N ' M E T R E S N A U T I C A L M I L E S 130 21 . SEDIMENTS Nayudu and Enbysk ( 1 9 6 4 ) d e s c r i b e d p r i n c i p a l s e a - f l o o r sediments of the no r theas t P a c i f i c ( F i g . 1 1 a ) . The two major c o n t r o l s on t h e i r d i s t r i b u t i o n appear to be (a) deep-sea channels a long which most c o n t i n e n t a l m a t e r i a l i s f u n n e l l e d and (b) ocean ic s u r f a c e water -mass movement ( F i g . l i b ) . The authors suggest the a r e a l r e l a t i o n s h i p between the l a t t e r and sediment d i s t r i b u t i o n i n d i c a t e that the A l a s k a n Gyral d i s t r i b u t e s the diatoms from the high produc-t i v i t y area south of the A l e u t i a n c h a i n , the southern branch of the S u b a r c t i c Current is a s s o c i a t e d w i t h the R a d i o l a r i a n - r i c h a r e a , and the mix ing area c o i n -c i d e s w i t h the Glob i ger i n a - r ich zone. Menard ( 1 9 6 4 ) has repor ted widespread g l a c i a l d r i f t over the area i n v e s t i g a t e d by Nayudu and Enbysk. Two areas of the B r i t i s h Columbia outer s h e l f have been d e s c r i b e d in reconnaissance s t u d i e s . Mathews ( 1 9 5 8 ) examined the g rave l d e p o s i t s of Dixon Entrance ( F i g . 1 ) . The sea-bed there is mantled w i t h predominant ly c l e a n , s o r t e d g r a v e l s l y i n g on sand and mud at water depths as great as 470 met res . Mathews suspected the g r a v e l s were d e r i v e d from t i l l s from which m a t r i x m a t e r i a l had been washed by mel twater streams or by c u r r e n t s at the t ime of d e p o s i t i o n . Car te r ( 1 9 6 9 , 1970) i n v e s t i g a t e d the sediments of B a r k l e y Sound and ad jacent s h e l f o f f southwestern Vancouver I. He found muds cover the Sound f l o o r , but sands and rounded g r a v e l s l i e on the inner s h e l f banks and oute r s h e l f . Sands c o n s i s t p r i m a r i l y of p l a g i o c l a s e and l i t h i c g r a i n s w i t h minor q u a r t z , opaque ox ides amd m a f i c m i n e r a l s . Heavy m i n e r a l s a re dominated by hornblende and e p i d o t e . Sands and g r a v e l s were l o c a l l y d e r i v e d from d i o r i t e s and in te rmed ia te to b a s i c v o l c a n i c s . C lay m i n e r a l s a re a mix ture of s m e c t i t e (montmori11 o n i t e ) , i l l i t e , c h l o r i t e and rare k a o l i n i t e . Organic carbon i s most abundant in c l a y - r i c h muds in which i t a t t a i n s c o n c e n t r a t i o n s of up to f i v e p e r c e n t . Calc ium carbonate c o n s t i -tu tes up to 25 percent of inner s h e l f - b a n k sed iments , but less than 10 percent Figure 11 23. e lsewhere . P l e i s t o c e n e c l a y e y s i l t s in B a r k l e y Sound and near the s h e l f edge are g r e e n i s h g rey , low in o r g a n i c content and were probably formed as a " g l a c i a l m i l k " . C a r t e r impl ied that a l though the area underwent g l a c i a t i o n ice advanced o n l y h a l f way ac ross the s h e l f . P r e v i o u s l y undertaken reconnaissance s t u d i e s in Queen C h a r l o t t e Sound and in immediately ad jacent a r e a s , when cons ide red t o g e t h e r , b r i n g to l i g h t something of the recent h i s t o r y and present c h a r a c t e r of sediment d i s c h a r g e , and suggest how best to examine sedimentary processes in the Sound. No r i v e r s of any consequence f l ow d i r e c t l y i n t o the Sound ( T u l l y , 1952). Large r i v e r s e x i s t on the m a i n l a n d , but these must f i r s t f l ow through long f j o r d s before e n t e r i n g the s h e l f . Deepening of the channels at the f j o r d s decreases the competence of the r i v e r s (Mor isawa, 1968). As a consequence, c o a r s e s t b e d - l o a d be ing t r a n s p o r t e d by r i v e r s should be t rapped in the f j o r d s . Sediment repor ted to l i e at the bottom of the major f j o r d s in the v i c i n i t y of Queen C h a r l o t t e Sound are s l i g h t l y sandy muds (Anon . , 1963) - This f a c t coupled w i t h the knowledge that d u r i n g per iods of h i g h e s t d i s c h a r g e suspended m a t e r i a l in t y p i c a l B r i t i s h Columbia f j o r d s appears not to exceed 49 microns ( P i c k a r d and Giovando, I960) suggests that s i l t s are the c o a r s e s t sediments that p r e s e n t l y cou ld reach the s h e l f through the f j o r d s . Fur thermore, l i t t l e sediment is be ing d i s c h a r g e d through Queen C h a r l o t t e S t r a i t i n t o the Sound (Cockba in , 1963). Yet , l o c a l c h a r t s i n d i c a t e g r a v e l s are widespread over Queen C h a r l o t t e Sound. As conglomerates are not common on the ad jacent land masses, i t was presumed the presence of g r a v e l s cou ld best be a t t r i b u t e d to d e p o s i t i o n from g l a c i e r s tha t overran the Coast Mountains d u r i n g the P l e i s o t c e n e . The widespread g l a c i a l d r i f t in the nor theas t P a c i f i c s t r o n g l y suggests mass ive d e p o s i t s of s i m i l a r o r i g i n would l i k e l y have been d e p o s i t e d nearer shore . Rock d i s t r i b u t i o n a c r o s s the Coast Mountains ad jacent to Queen C h a r l o t t e Sound is b r o a d l y u n i f o r m . G l a c i a l t r a n s p o r t of d e t r i t u s abraded from such a 24. source would not l i k e l y c o n t r i b u t e i s o l a t e d patches of sediment w i t h d i s c r e t e m i n e r a l o g i c contents to the s h e l f . These c o n d i t i o n s are necessary f o r a m i n e r a l o g i c c l a s s i f i c a t i o n of sediments which might he lp in the i n t e r p r e t a t i o n of the h i s t o r y and general d i s p e r s a l p a t t e r n s of s h e l f sediments (Van A n d e l , 1964; Ross, 1970). Wiese (1969) found that dominant heavy m i n e r a l s in nor thern Queen C h a r l o t t e Sound are hornb lende , opaque o x i d e s , e p i d o t e , sphene, and garnet and that t h e i r d i s t r i b u t i o n i s g e n e r a l l y u n i f o r m . Most , i f not a l l m inera l g r a i n types common to the Sound commonly e x h i b i t g r a i n s i z e dependency in t h e i r d i s t r i b u t i o n (Van A n d e l , 1964; Ross , 1970). As a consequence of the genera l u n i f o r m i t y of minera l d i s t r i b u t i o n and heavy minera l g r a i n s a v a i l a b l e in the Sound, t h i s study has c o n c e n t r a t e d on a d e t a i l e d a n a l y s i s of t e x t u r e as a means of d e s c r i b i n g the recent h i s t o r y and general p a t t e r n of sediment d i s p e r s a l w i t h i n Queen C h a r l o t t e Sound. This technique has been found very e f f e c t i v e e lsewhere (Creager and McManus, 1961; C reager , 1963; G a r r i s o n and McMaster, 1966: S w i f t , I969) . 2 5 . FIELD AND LABORATORY PROCEDURES FIELD PROCEDURE The bottom sampl ing g r i d used in t h i s i n v e s t i g a t i o n is shown in F i g . 1 2 . Core and bottom photograph s t a t i o n l o c a t i o n s are i n d i c a t e d in a l a t e r s e c t i o n . Bottom samples , cores and underwater photographs were ob ta ined d u r i n g the f o l l o w i n g c r u i s e s on Canadian Naval A u x i l i a r y V e s s e l s : Laymore (June 1 2 - 1 7 , 1 9 6 7 ) Endeavour ( J u l y 7 - 1 3 , 1 9 & 7 ) Endeavour (Aug. 1 9 - 3 0 , 1 9 6 8 ) Endeavour (June 1 6 - 2 1 , 1 9 6 9 ) N a v i g a t i o n was a c c o m p l i s h e d , depending on weather c o n d i t i o n s and d i s -tance o f f - s h o r e , by employing v a r i o u s combinat ions of Decca r a d a r , r a d i o beacon, L o r a n - C , dead reckoning and a ba thymet r i c map (contoured bathymet r i c map s u p p l i e d by S h e l l Canada L t d . ) . As a r e s u l t , most p r e c i s e p o s i t i o n i n g was a t t a i n e d w i t h i n 3 0 - 5 0 k i l o m e t r e s of r e c o g n i z a b l e land f e a t u r e s on c l e a r calm days as we t r a v e r s e d those s e c t i o n s of the sea -bed that e x h i b i t most i r r e g u l a r r e l i e f . P o s i t i o n i n g on a smal l s e c t i o n of the outer s h e l f was so u n r e l i a b l e that the d i s t a n c e between samples had to be inc reased from 6 t o 1 2 k i1omet r e s . Petersen ( 1 9 1 0 grab and La Fond -D ie t z ( 1 9 4 8 ) snapper grab were employed f o r sea-bed sampl ing . The Petersen grab was more f r e q u e n t l y used because i t s g r e a t e r weight permi ts g r e a t e r p e n e t r a t i o n , i t s g r e a t e r s i z e ( 5 3 , 4 6 0 cc v s . 500 cc ) admits a g r e a t e r volume of sediment (very i'tnportant where one i s a t t e m p t i n g to secure a r e p r e s e n t a t i v e amount of very p o o r l y s o r t e d m a t e r i a l ) and the g r e a t e r spread of i t s jaws a l l o w s capture of coarse r sed iments . The La Fond -D ie t z grab performed b e t t e r where the bottom was s loped or c u r r e n t s or s h i p d r i f t would not a l l o w the Petersen grab to s e t t l e normal to the s e a - b e d . C o l l e c t e d sediment was withdrawn from the samplers and kept moist in 4 CD r\3 OUE.EN "CHARLOTTE A . J . 3M7 * u 7 5 2 \ v , I \ 3 3 3 / . 3 4 9 / / 37 ( / / \ / / 5 ^ i 510 ~- i i 3*1 393 399 173* \ • A \ . . \ j l P R J C E I . \ . 25<= 2.41 239 1 , . !\ \ 2 5 ? • / \\ -n \ 2 7 7 • 2 4 2 1 • . 2 9 9 1 2 ' 8 . 2 5 ¥ K 2 3 6 3 0 0 " ? o n j i t • , 2 4 3 • • ,' • 253 y • , J 5 p'/ 5 0 1 / . - * , 275 • , - " 2 0 2 4 4 • 34 5/34// . • /"3fwii. 3 1 5 ,• \ . T , Z 9 7 • 2faO (' 3 , 6 / . / 3 « . „•'MS V i ' V « 2 8 0 . r — 2 0 0 2 7 ^ ' \234 . 2 4 6 S . \2S3 • ,412 / C 28/ • 2 5 / . 3?8 . <y v s . 273 3 y 4 / J • i . 1 232 250 . i 3 3 1 v / . w ' - 9 /73 . Y " - ^ " w > • / w N . * A j ' j H B O W . / 2 9 3 •/ . 2tf 2» f l \25o V.^  . ,'30 / "m ,"\ t 2 U .\ 3 7 6 \" A 3 5 6 / 3 S ? \ \ 1 2 9 2 / . 2 S S 265 ' ^ B 7 """•/ , ' , T „ - " ' r Mfcl ' 2 6 9 •'™5 .^u-* 111:1 2* 9 0 268 2 3 1 \ 9 9 / ^ ^' . 49>'^ / HOS,' 3 2 6 • . 4 5 8 ' . ^ /Sat 4" • '« / 1 3 7 » l- • 1 0 3 4 5 / ; > 4 9 0 ( # S 0 2 327 \ 5 0 8 / / — \ I £ - - " - 7 \ S 0 3 <SOH \ SOI 3 2 8 ^ 5 1 0 4 2 0 . 4 S 6 • M55 '78 17? V • I3S • ; , ? f l 1 6 5 , - '1° '39 5 3 ( r j * 4 5 2 * - - . . ^ ' — - s . * • V 164 r Q , 92 133 ' sofc~-S I 3 . S ' 2 516 142 182 IBI ' ' 6 2 5 1 4 I 8 f I S3 143 I'I4 4 5 3 145 90, 1 2 6 / S 1 5 185 ' 5 8 85 86 I HI « . . i o o — • fe8 \ S E A 2 2 5 ^ 1 4 4 4 4.9 Cc,<d_ O T T E R • 1 1 3 145 ° T /83 121 . 4 4 3 fc5 G R O U P , - ' , / : . .151 _ 8?.. 'so I 3 V 154 • / 8 1 M 7 ?-5 7 6, 38 \ 4 5 2 f 51" G R A B S A M P L E S s * \ \ 1 \ -TS 5 0 4 9 • - 5 7 • 33 79 • i T R I A N G L E I. \ , 1 0 10 3 0 C O N T O U R S IN M E T R E S 1301 N A U T I C A L M I L E : ! •/ANCOUVER ISLAND 129 N 3 CTN 27. p l a s t i c bags. If the sample appeared to be a mud, muddy sand or w e l l s o r t e d sand no more than a p i n t was r e t a i n e d . S u f f i c i e n t g r a v e l l y sediment was c o l l e c t e d to f i l l a t l e a s t a g a l l o n c o n t a i n e r . An attempt was made to e x t r a c t l i v e o rgan isms, e s p e c i a l l y h o i o t h u r i a n s , from muddy sediments to prevent undue e f f e c t on o r g a n i c carbon c o n t e n t . G r a v i t y c o r i n g (w i th e i t h e r two -or f o u r - m e t r e long b a r r e l s hav ing inner d iameters of 7.5 cm.) proved q u i t e s u c c e s s f u l once the general sediments d i s -t r i b u t i o n was known. Knowledge of what s u r f i c i a l sediments occur at the c o r i n g s i t e is e s s e n t i a l because compact sand or g rave l can s e v e r e l y i n h i b i t p e n e t r a -t i o n of the b a r r e l by bending the f i n e c u t t i n g edge of the core nose. The f l o o r of the Sound was photographed at twelve l o c a t i o n s employing an Edger ton , Germeshausen and G r i e r camera and s t robe u n i t . By m o n i t o r i n g on an echo-sounder aboard sh ip the sounds e m i t t e d d i r e c t l y from a p inger dev ice lowered w i t h the camera and sounds from the p inger r e f l e c t e d from the f l o o r d i r e c t l y below, the camera was mainta ined at approximate f o c a l d i s t a n c e from the Sound f l o o r . During a c r u i s e on the C .N .A .V . Endeavour (May 2 - 1 4 , 1967) Drs . J.W. Muray and D.L. T i f f i n obta ined severa l cont inuous s e i s m i c p r o f i l e s ac ross Queen C h a r l o t t e Sound us ing a 5000 j o u l e " S p a r k e r " ( f o r l o c a t i o n s see Luternauer and Murray (1969) ) . The o p e r a t i o n of the Sparker equipment i s e x p l a i n e d in T i f f i n (1969) . In the present study on ly the major s t r u c t u r e s in r e p r e s e n t a t i v e s e c t i o n s of p r o f i l e s obta ined in deeper water are d e s c r i b e d . Th is l i m i t a t i o n was set because the width of the outgo ing Sparker pu lse p r e -vented r e s o l u t i o n of f e a t u r e s f i n e r than 10-15 metres and because m u l t i p l e s of the pr imary a c o u s t i c a l r e f l e c t o r s masked subbottom s t r u c t u r e s on p r o f i l e s o b t a i n e d over s h a l l o w e r s h e l f a r e a s . 28. LABORATORY PROCEDURES T e x t u r a l A n a l y s i s Sediment Gra in S i z e - upon comple t ion of each c r u i s e muddy and non-muddy (sands , sandy g r a v e l s and g r a v e l s ) samples were s e p a r a t e d . Grave ls were s o r t e d from sands in g r a v e l l y sands by s i e v i n g dry sample through a 2mm. ( -1 ph i ) mesh s i e v e . Th is g r a v e l f r a c t i o n was s i z e ana lyzed in a s i e v e nest ranging in mesh s i z e from 2 mm. to 64 mm. (-6 ph i ) at h a l f - p h i i n t e r v a l s . If the sand f r a c t i o n s o r t e d from the g r a v e l s was e x c e s s i v e l y la rge a Jones Sample S p l i t t e r (Krumbein and P e t t i j o h n , 1938) was used to s p l i t the sand f r a c t i o n down to 75-100 grams. Th is sand subsample was soaked in 10% hydrogen perox ide a t room temperature f o r about e i g h t hours in order to d i s s o l v e o r g a n i c f i l m s and s a l t s which might make g r a i n s adhere . The supernatant water was then removed w i t h a S i l a s f i l t e r candle (10 micron pores) a t t a c h e d to a vacuum pump. Moist sands were a i r d r i e d and s i e v e d f o r twenty minutes in a nest rang? in s i z e from 2 mm. to 0.063 mm. (4 ph i ) a t h a l f - p h i i n t e r v a l s . . Computer ca l cu l a t i o n of s t a t i s t i c a l g r a i n s i z e parameters took i n t o account what f r a c t i o n of the t o t a l sand content had a c t u a l l y been ana lyzed and c o r r e c t e d the g r a v e l -sand p r o p o r t i o n s of the sample a c c o r d i n g l y . N o n - g r a v e l l y sands were t r e a t e d in the same way as the sand f r a c t i o n . If the mud f r a c t i o n (sediment f i n e r than 0.063 mm.) was found to comprise 10 percent or more of the sample, i t was s i z e ana lyzed by p i p e t t e as d e s c r i b e d below. N o n - g r a v e l l y muddy samples were s p l i t open on the lab t a b l e and enough from the cen t re of the sample was broken o f f manual ly to supply 15-30 grams of mud (the l e s s - t h a n - s a n d s i z e - f r a c t i o n ) f o r a va 1 id p i p e t t e a n a l y s i s (S ternberg and Creager , 1 9 6 l ) . Th is amount can be a t t a i n e d a f t e r a few t r i a l s . Th is s t i l l moist subsample was p laced in a 500 m l . Erlenmeyer f l a s k w i t h deminera1ized water and shaken f o r a h a l f - h o u r on a B u r r e l l W r i s t A c t i o n Shaker . Th is was f o l l o w e d by c e n t r i f u g a t i o n u n t i l the wash 29. water in the f l a s k was c l e a r . The c l e a r water was decanted and the washing procedure repeated tw ice to insure removal of most s o l u b l e s a l t s . The washed sediment was s t i r r e d f o r two minutes in a b lender w i t h d i s p e r s a n t s o l u t i o n (40.9 grams of Calgon and 5 .05 grams of sodium carbonate d i s s o l v e d in 9850 cc of d i s t i l l e d water ) and then poured i n t o a 0.063 mm s i e v e s i t t i n g over a 1000 cc s o i l c y l i n d e r . M a t e r i a l remaining in the s i e v e a f t e r the washing was p laced in an Erlenmyer f l a s k w i t h deminera1ized w a t e r , shaken, and then c e n t r i f u g e d to remove d i s p e r s a n t s o l u t i o n which upon d r y i n g cou ld make sand g r a i n s adhere to each o t h e r . Not a l l mud s i z e d m a t e r i a l would be washed through the s i e v e d u r i n g the wet s i e v i n g o p e r a t i o n . A smal l p o r t i o n of the c o a r s e r s i l t f r a c t i o n would remain. Thus, m a t e r i a l r e t a i n e d in the s i e v e a f t e r the wet s i e v i n g p rocedure , was a i r d r i e d and s i e v e d f o r twenty minutes in a s ieve net ranging in s i z e from 2 mm to 0 .037 mm (4.75 ph i ) at h a l f - p h i i n t e r v a l s up to 4 . 5 p h i . This p e r m i t t e d an o v e r l a p of the s i e v e s i z e a n a l y s i s technique employed fo r the sand f r a c t i o n of the sample w i t h the p i p e t t e technique in which the f i r s t s i z e measurement i s of g r a i n s 0 .044 mm (4 .5 p h i ) . S o i l c y l i n d e r s c o n t a i n i n g muds d e r i v e d from the wet s i e v i n g o p e r a t i o n were p laced in constant temperature baths set a t 25°C. A p i p e t t e a t tached to a vacuum pump was used to draw o f f a l i q u o t s at g i ven i n t e r v a l s a c c o r d i n g to the scheme o u t l i n e d by Fo lk (1965) . A vacuum pump was used ins tead of mouth s u c t i o n in order to m a i n t a i n g r e a t e r c o n s i s t e n c y in wi thdrawal r a t e , a f a c t o r which cou ld i n f l u e n c e mean s i z e of sediment drawn up, e s p e c i a l l y d u r i n g e a r l y w i thdrawals when c o a r s e r sediment i s q u i c k l y s e t t l i n g out of s u s p e n s i o n . Withdrawals were made at t imes c o r r e s -ponding to 4 . 0 , 4 . 5 , 5 . 0 , 6 . 0 , 7 -0 and 8 . 0 p h i . G r a v e l l y muddy sediments r e q u i r e d a composite t reatment . The o r i g i n a l sample was s p l i t open and a p o r t i o n of n o n - g r a v e l l y m a t e r i a l was scooped out and t r e a t e d as were the n o n - g r a v e l l y muddy samples. H a l f the remaining sample 3 0 . was spread ac ross wrapping paper and a l lowed to dry at room temperature . Th is e n t i r e d r i e d subsample was weighed. Grave ls were s o r t e d from the sub-sample by wet s i e v i n g the sediment through a 2 mm s i e v e . A d e t e r m i n a t i o n was made of the p r o p o r t i o n of g rave l in the sample and then the g r a v e l s were s i z e a n a l y z e d . This s i z e a n a l y s i s was combined w i t h the s i z e a n a l y s i s of the f i n e r -t h a n - g r a v e l p o r t i o n of the sample. F i r s t through f o u r t h moment s t a t i s t i c a l measures (mean, s tandard d e v i a -t i o n , skewness and k u r t o s i s ) were computed on an IBM 3 6 0 - 6 7 computer at the U n i v e r s i t y of B r i t i s h Columbia. The program was prepared by Dr. A . S i n c l a i r and Mr. J . W i l s o n , and is a v a i l a b l e from the Department of Geology, U n i v e r s i t y of B r i t i s h Columbia. Moment measures were employed because they take i n t o c o n s i d e r a t i o n the f u l l range of the g r a i n s i z e d i s t r i b u t i o n of a sample, and n o t , as in the case of g raph ic measures, va lues from a r b i t r a r i l y s e l e c t e d p o i n t s on a cumulat i ve curve of the s i z e d i s t r i b u t i o n ( F o l k , 1 9 6 6 ) . Fo lk ( 1 9 6 6 ) has suggested , however, that comparable " g e o l o g i c c o n c l u s i o n s " cou ld be drawn from r e s u l t s de r i ved by e i t h e r method. The computer a l s o determined p r o p o r t i o n s of g r a v e l , sand and mud f o r each sample (McManus e_t a_l_, 1 9 6 9 ) , mud-sand r a t i o s (McManus et aj_, 1 9 6 9 ) and p r i n c i p a l sand modes in the s i z e d i s t r i b u t i o n of each sample ( G a r r i s o n and McMaster , 1 9 6 6 ) . The a r e a l d i s t r i b u t i o n of a l l these v a r i a b l e s was mapped. "Calcomp" contour maps of mean g r a i n s i z e d i s t r i b u t i o n of the samples were compared to a hand contoured map of the same data to determine whether r a p i d mechanical c o n t o u r i n g would be a s u f f i c i e n t l y p r e c i s e means of d i s p l a y -ing d i s t r i b u t i o n a l p a t t e r n s of the many sample c h a r a c t e r i s t i c s ( W a l t e r s , 1 9 6 9 ) . The m e c h a n i c a l l y contoured map was reproduced on t ransparent paper which was f i x e d to a p r e v i o u s l y prepared base map of the Queen C h a r l o t t e Sound a r e a . The composite was Xeroxed to produce the f i n a l f i g u r e . Samples were p l o t t e d on a graph of mean g r a i n s i z e versus g r a i n s i z e 3 1 . standard d e v i a t i o n (Creager , 1 9 6 3 ) . The d i s t r i b u t i o n of skewness va lues of s e l e c t e d samples on the graph was noted . Mud-sand r a t i o s of samples were p l o t t e d a g a i n s t sample depth . Factor a n a l y s i s was done a f t e r the method of Klovan ( 1 9 6 6 ) . Klovan r e l i e d e n t i r e l y on t e x t u r a l c h a r a c t e r i s t i c s of samples to c rea te th ree e n v i r o n -m e n t a l l y s e n s i t i v e f a c t o r s . In t h i s study sample depth and o r g a n i c and CaC0*3 content a l s o have been taken i n t o c o n s i d e r a t i o n . Sand Gra in Sur face Textures - approx imate l y ten sand g r a i n s e x h i b i t i n g concho ida l f r a c t u r e s were e x t r a c t e d from the 0 . 5 0 0 - 0 . 3 5 4 mm ( 1 . 0 - 1 . 5 p h i ) s i z e f r a c t i o n of three samples and were t r e a t e d w i t h 10% hydrogen perox ide f o r e i g h t hours to d i s s o l v e any o rgan ic f i l m or d r i e d s a l t s . Cleaned and d r i e d g r a i n s were set on e l e c t r o n microscope g r a i n mounts w i t h the s i l v e r pa in t "DAG 4 l 6 " (Acheson C o l l o i d s Canada L t d . , B r a n t f o r d , O n t a r i o ) . Gra ins were coated w i t h the metal conductor Au/Pd in a Micros Vacuum Evaporator model VE 10. Gra ins were examined on a Cambridge Stereosan E l e c t r o n Microscope in the Botany Department of the U n i v e r s i t y of B r i t i s h Columbia. Photographs were taken of the m a g n i f i e d g r a i n s on f i n e - g r a i n e d 35 mm f i l m . Gravel Roundness - r e p r e s e n t a t i v e p o r t i o n s of the 5 . 6 6 - 8 . 0 0 mm ( - 2 , 5 to - 3 . 0 ph i ) s i z e f r a c t i o n were ob ta ined from 40 w i d e l y separated samples and photographed under s i m i l a r l i g h t i n g c o n d i t i o n s to permit v i s u a l comparison of t h e i r roundness. Compos i t iona l A n a l y s i s Heavy Minera l Content - the heavy m i n e r a l s were e x t r a c t e d from the 0 . 1 2 5 - 0 . 0 6 3 mm ( 3 . 0 - 4 . 0 ph i ) ( i n c l u s i v e ) s i z e f r a c t i o n of 86 of the best s o r t e d sand samples . This s i z e f r a c t i o n was chosen f o r i t appeared to c o n t a i n the g r e a t e s t p r o p o r t i o n of monominera1 ic g r a i n s . The cho ice of f r a c t i o n v a r i e s from study to study (see G i l e s and P i l k e y , 1965; Hubert and Nea1, 1967; James and S t a n l e y , 1968 ; Edwards and G o o d e l l , 1969; and Davies and Moore, 1 9 7 0 ) . 3 2 . Heavy m i n e r a l s were separ ted by s tandard bromofonn methods ( F o l k , 1 9 6 5 ) . Magnet i te was separated from the heavy minera l f r a c t i o n w i t h an a l n i c o magnet. F i f t e e n samples concent ra ted in areas other than those covered in W i e s e ' s ( 1 9 6 9 ) report were ana lyzed f o r t h e i r heavy minera l compos i t ion ( l e s s m a g n e t i t e ) . An attempt was made to compare h y d r a u l i c a 1 1 y e q u i v a l e n t assemblages by s e l e c t i n g o n l y samples w i t h s i m i l a r mean s i z e s 0 . 2 5 0 - 0 . . 1 2 5 mm ( 2 . 0 - 3 . 0 p h i ) ( F o l k , 1 9 6 5 ) . Heavy minera l compos i t ion was determined by X - r a y techniques a f t e r the method of Pryor and Hester ( 1 9 6 9 ) . As an automat ic g r i n d e r was not a v a i l a b l e X - r a y e d powders were not as u n i f o r m l y f i n e as recommended by these a u t h o r s . Th is might have c r e a t e d minor peak i n t e n s i t y v a r i a t i o n s on the d i f f r a c t o g r a m p a t t e r n s not a t t r i b u t a b l e to d i f f e r e n c e s in c o m p o s i t i o n . Gravel Rock Type - g r a v e l p o p u l a t i o n s from the c o a r s e s t s i e v e f r a c t i o n s of twenty w i d e l y s c a t t e r e d samples were s l i c e d w i t h a diamond saw and v i s u a l l y compared. S e l e c t e d f e l s i c specimens were s t a i n e d f o r p o t t a s s i u m f e l d s p a r and p l a g i o c l a s e ( B a i l e y and S tevens , I960) to a l l o w more p r e c i s e e s t i m a t i o n of the p r i n c i p a l rock types p r e s e n t . C lay M inera l Group Content - s o l u b l e s a l t s were removed from subsamples of 38 s t i l l moist muddy samples a c c o r d i n g to the method d e s c r i b e d f o r the t e x -t u r a l a n a l y s i s of n o n - g r a v e l l y muddy samples (page 2 8 ) . The sample was then p laced i n t o a 100 ml c e n t r i f u g e tube and v i g o r o u s l y shaken by hand before be ing c e n t r i f u g e d at 1000 r . p . m . f o r two minutes to s e t t l e m a t e r i a l coa rse r than c l a y s i z e ( i n c l a y minera l s t u d i e s c l a y s i z e sediment is g e n e r a l l y con -s i d e r e d to be m a t e r i a l f i n e r than 2 microns ( B r i n d l e y , 1961 a)). The supernatant suspens ion was decanted , v i g o r o u s l y shaken and roughly s p l i t three ways i n t o th ree 100 m l . t e s t tubes . Each of the suspensions was then c e n t r i f u g e d u n t i l c l a y s had s e t t l e d and a c l e a r supernatant water cou ld be decanted. Treatment of the contents , in two of the tubes w i l l be d i s c u s s e d f i r s t . To the f i r s t t e s t tube 15 m l . of IN Mg a c e t a t e was added, to the second, 20 m l . of 1 N K + - a c e t a t e . 3 3 . These c o n c e n t r a t i o n s are cons ide red s u f f i c i e n t to s a t u r a t e the c l a y s w i t h these i o n s . The c l a y s were resuspended and a g i t a t e d in the s o l u t i o n s , heated f o r twenty minutes in a b o i l i n g water b a t h , a l l o w e d to coo l and then c e n t r i -fuged u n t i l the supernatant l i q u i d was c l e a r . Excess ions not r e t a i n e d on or in the c l a y l a t t i c e were removed by washing the c l a y s two or three times in d i m i n e r a 1 i z e d water . A few drops of the t r e a t e d c l a y s l u r r i e s were p laced on. i n d i v i d u a 1 s l i d e s , a l l owed to dry and then X - r a y e d . The s l i d e w i t h the K + - s a t u r a t e d c l a y was heated to 500°C f o r 12 hours (Warshaw et aj_, I960) and X - rayed once a g a i n . The M g + + - s a t u r a t e d c l a y s l i d e was then g l y c o l a t e d by p l a c i n g i t a c r o s s the top of a t i n h a l f - f i l l e d w i t h e t h y l e n e g l y c o l and then a l l o w i n g i t to s i t in t h i s p o s i t i o n in an oven at 60°C f o r two hours . A f t e r hav ing coo led in a d e s s i c a t o r the s l i d e was X - r a y e d . The techniques d e s c r i b e d in the f o r e g o i n g paragraph have been drawn l a r g e l y from course notes of a c l a y minera logy course o f f e r e d at Duke U n i v e r s i t y , Durham, North C a r o l i n a ( P r o f . S. Duncan Heron) and from B r i n d l e y (1961 a ) . A 6N HCl s o l u t i o n was mixed w i t h the t h i r d p o r t i o n of the unt reated c l a y . The t e s t tube and i t s contents were then p laced in a b o i l i n g water bath f o r one hour (Kodama and Oinuma, 1963). The c l a y suspens ion was a l lowed to c o o l , then was washed three t imes w i t h d i s t i l l e d water . A few drops of the washed, a c i d - t r e a t e d c l a y were p laced on a s l i d e , a l l owed to dry and X - r a y e d . The g l y c o l a t e d M g + + - s a t u r a t e d c l a y s l i d e was a l s o "s low scanned" a f t e r o o the method of B i scaye (1964) in the 3 . 5 A and 7 A zone (0 .50 2 /min . scanning speed, o .50 beam s l i t , 0.1 d e t e c t o r s l i t , 2x10^ s c a l e and 4 s e c . time c o n s t a n t ) . A l l X - r a y d i f f r a c t o m e t r y was accompl ished on a P h i l l i p s d i f f T a c t o m e t e r w i t h N i - f i l t e r e d C u - r a d i a t i o n at 40 K\/ and 20 mA. Clay groups were i d e n t i f i e d a c c o r d i n g to the f o l l o w i n g scheme: 3 4 . CHLORITE ( B r i n d l e y , 196lb ; Kodama and Oinuma, 1963) o o (a) dominant peaks at 14.0 - 14 .3 A , 7 . 0 - 7-2 A , 4 . 7 - 4 .75 A and 3 . 5 4 A. (b) 7°A and 3 . 5 4 A peaks are s t ronger in i r o n - r i c h c h l o r i t e s . (c) Marked decrease of 7 A r e l a t i v e to 14 A peaks a f t e r heat t reatment . (d) A l l peaks e l i m i n a t e d by a c i d t reatment . KAOLINITE ( B i s c a y e , 1964; B r i n d l e y , 1961b) (a) Peaks at 7-16 A and 3 .58 $ (Slow scanning r e s o l v e s these peaks from s i m i l a r c h l o r i t e peaks i f they are a l s o p r e s e n t ) . (b) Peaks are r e s i s t a n t to a c i d t reatment . M0NTM0RILLONITE (Weaver, 1958; MacEwan, 1961) o (a) Expansion of f i r s t order peak from 14 A to 17.A a f t e r g1yco la t i o n . (b) Montmori11 o n i t e d e r i v e d from muscovi te and Q b i o t i t e tend£ t o decrease in spac ing from 14 A to about 10 A a f t e r t reatment w i t h K+ whereas montmori11 o n i t e d e r i v e d from v o l c a n i c m a t e r i a l c h l o r i t e and hornblende doe c not decrease or decreases on ly to 12A - 13 A*. VERM ICULITE (Walker , 1961 ; B r i n d l e y , 1961b) (a) 14 R basal spac ing responds less i n t e n s e l y to g l y c o l a t i o n than 1 4 $ peak of montmori11 o n i t e , but more so than 14 R peak of c h l o r i t e ILLITE (Brad ley and Gr im, 1961) " m i c a - t y p e c l a y m i n e r a l s " (a) Dominant f i r s t o rder 10 R peak which is l i t t l e a f f e c t e d by any of the forms of t reatment employed in t h i s s tudy . G l a u c o n i t e P e l l e t Content - the term " g l a u c o n i t e p e l l e t " is here used in the morpholog ic sense ( B u r s t , 1958). Murray and Mcintosh (1968) have des -c r i b e d the general minera logy of g l a u c o n i t e p e l l e t s in the v i c i n i t y of Queen C h a r l o t t e Sound. A f t e r the sand f r a c t i o n of samples had been t r e a t e d w i t h hydrogen perox ide and s i z e ana lyzed the .500 - .354 mm p o r t i o n was examined in a l l 3 5 . samples w i t h g r a i n s in t h i s s i z e range. This s i z e f r a c t i o n was s e l e c t e d because i t would reveal the c o n c e n t r a t i o n of the c o a r s e r , b e t t e r developed p e l l e t s and , h o p e f u l l y , o f f e r complementary i n f o r m a t i o n on r e l a t i v e ra tes o f sed imenta t ion in d i f f e r e n t areas of the Sound (White , 1 9 7 0 ) . A p inch (approx. one gram) of the s e l e c t e d s i z e f r a c t i o n was examined under a b i n o c u l a r m i c r o s c o p e . If no g l a u c o n i t e p e l l e t s were observed in t h i s subsample g l a u c o n i t e p e l l e t s were recorded as be ing absent in the sample. In those subsamples in which f i v e or more p e l l e t s were observed the s i e v e f r a c t i o n was thorough ly mixed and s u f f i c i e n t g r a i n s were e x t r a c t e d to cover a p e t r o -g r a p h i c s l i d e on which rubber cement had been spread . A d e t e r m i n a t i o n of g l a u c o n i t e p e l l e t content in the i n o r g a n i c part of the s i e v e f r a c t i o n was made by p o i n t - c o u n t i n g a t o t a l of 3 0 0 g r a i n s and n o t i n g which were rock fragments or minera l g r a i n s , s h e l l m a t e r i a l or g l a u c o n i t e p e l l e t s . S h e l l m a t e r i a l was not removed by a c i d t reatment because i t was feared that e f f e r -vescence of inc luded s h e l l fragments might d i s i n t e g r a t e some of the p e l l e t s . I r o n - S t a i n e d Sand Content - the percent y e l l o w g r a i n s (most ly dark y e l l o w i s h orange - 1 0 YR 6 / 6 on G . S . A . Rock Co lor Chart ) in s e v e r a l s i z e f r a c t i o n s of i r o n - s t a i n e d sands and g r a v e l l y sands was determined by p o i n t - c o u n t i n g 2 0 0 - 3 0 0 i no rgan ic g r a i n s in each of the f r a c t i o n s . Tota l Carbon Content - a ten-gram s p l i t of the f i n e r than g rave l p o r t i o n of each sample was a i r d r i e d at room temperature ( 2 5 ° C ) and crushed u n t i l the e n t i r e s p l i t passed through a . 1 2 5 mm s i e v e . A p o r t i o n of t h i s s p l i t ( e i t h e r 5, 5 or 1 gram) was used f o r a gasometr ic d e t e r m i n a t i o n of t o t a l carbon in the sample a c c o r d i n g to the method of Gross ( 1 9 6 6 ) by employing a Leco Carbon A n a l y z e r and Induct ion Furnace No. 5 7 2 - 1 0 0 . S k e l e t a l Calc ium Carbonate Content - t h i s was determined by employing the C h i t t i c k Apparatus (Dreimanus, 1 9 6 2 ) . In t h i s procedure 1 . 7 grams of the subsample which was crushed to less than . 1 2 5 mm was p laced in a f l a s k w i th 36. 10 m l . of 3 N HCl at room temperature . The subsample was a l lowed to remain in the d i s s o l u t i o n f l a s k f o r f i v e minutes . E f f e r v e s c e n c e appeared always to have ceased before the e x p i r a t i o n of t h i s p e r i o d . Organic c o a t i n g may have prevented t o t a l d i s s o l u t i o n of s h e l l m a t e r i a l , but probably not to an appre -c i a b l e ex tent because of the extreme f i n e n e s s of the p a r t i c l e s and the s t r e n g t h of the a c i d used. CO2 evo lved by the a c i d d i g e s t i o n of the s h e l l y m a t e r i a l in the subsample was measured on the a c i d column on the C h i t t i c k A p p a r a t u s . CaCO^ content by weight of the l e s s than g rave l s i z e f r a c t i o n was c a l c u l a t e d from the observed CO2 c o n t e n t . Organic Carbon Content - t h i s was determined by s u b t r a c t i n g the va lue d e r i v e d f o r carbonate carbon from the va lue f o r t o t a l ca rbon . The va lues were recorded in terms of percent by weight of the l e s s than g rave l s i z e f r a c t i o n . Core Descr ipt ion The p l a s t i c core l i n e r was f i r s t sawn open on o p p o s i t e s i d e s w i t h an e l e c t r i c hand saw. The core i t s e l f was then s p l i t by running p iano w i re through the core a long the cuts in the l i n e r . On one h a l f of the c o r e , s e c -t i o n s a t a p p r o x i m a t e l y 75 cm i n t e r v a l s (or a t c o l o r changes) were e x t r a c t e d and ana lyzed f o r g r a i n s i z e and in most cases f o r o r g a n i c carbon and c a r b o n -a t e c o n t e n t . In a few ins tances f o r a m i n i f e r a were separated f o r i d e n t i f i c a -t i o n by Dr. Bruce Cameron of the G e o l o g i c a l Survey of Canada,and by Mr. C y r i l Rodr igues , a student at the U n i v e r s i t y of B r i t i s h Columbia. On the second h a l f of the c o r e , c o l o r was noted and r e p r e s e n t a t i v e s e c t i o n s were c o l o r photographed. Th is h a l f of the core was a l s o X - r a y photographed to reveal i n t e r n a l s t r u c t u r e s and the c h a r a c t e r and o r i e n t a t i o n of inc luded fragments (Bouma, 1964). X - r a y i n g was done w i t h the Coast E l d r i d g e P r o f e s s i o n a l S e r v i c e i n d u s t r i a l X - r a y u n i t ( F i l m : Kodak type M f i l m w i t h Snofront Screen ; Source Power: 4.5 mA and 80 KV; Exposure t i m e : two m i n u t e s ) . 37. Sediment Colour The a r e a l d i s t r i b u t i o n of sediment c o l o u r was examined by a f f i x i n g p inches of d r i e d sample on a la rge s c a l e map of the study area (50 cm x 80 cm) w i t h rubber cement. The completed mosaic was sprayed w i t h c l e a r lacquer and c o l o u r - p h o t o g r a p h e d . An attempt was made by P r o f e s s i o n a l Colour P r i n t s L t d . in Vancouver to c o l o u r - c o r r e c t w i t h f i l t e r s the f i n a l p r i n t so that p r i n t c o l o u r s might as c l o s e l y as p o s s i b l e match sediment c o l o u r s , but c o l o u r s on the p r i n t have a s l i g h t l y h igher y e l l o w i s h hue than the o r i g i n a l sed iments . A l though the c r e a t i o n of the mosaic is ted ious i t permits d i r e c t examinat ion of the s u b t l e r e l a t i v e c o l o u r d i f f e r e n c e s from sample to sample. Bottom Photographs Contact p r i n t s were made from over 1300 negat i ves in the Geology Department dark room at the U n i v e r s i t y of B r i t i s h Columbia. R e p r e s e n t a t i v e photographs of bedforms and animal types o c c u r r i n g on the f l o o r of Queen C h a r l o t t e Sound were s e l e c t e d f o r i l l u s t r a t i o n . Ba t h yme t r i e Ma p A d e t a i l e d bathymet r i c map of Queen C h a r l o t t e Sound was compi led p r i n c i -p a l l y from Canadian Hydrographic S e r v i c e Decca F i e l d Sheets which cover about n i n e t y percent of the Sound: Number T i t l e Sca le V+77-L Hecate S t r a i t No. 5 1:142,596 4478- L " " No. 6 " 4479- L " " No. 7 1: 72,688 4480- L " " No. 8 " 4482-L " 11 No. 9 1 :142,596 4486-L " " No.12 1: 36,344 Areas w i t h i n 20 k i l o m e t r e s (11 n a u t i c a l m i l e s ) of the coast which were not covered by the Decca Sheets were compi led from s e v e r a l Canadian Hydrographic S e r v i c e c o a s t a l n a u t i c a l c h a r t s and from a contoured bathymet r i c map of Queen C h a r l o t t e Sound k i n d l y s u p p l i e d by S h e l l Canada L t d . F igu re 13 shows d e n s i t y of soundings from which f i n a l contoured bathy -m e t r i c map of the Sound was drawn. Subbottom S t r u c t u r e P r i n c i p a l a c o u s t i c r e f l e c t o r s were t r a c e d from the s e l e c t e d cont inuous s e i s m i c p r o f i l e s . Approximate sediment t h i c k n e s s e s were e s t i m a t e d by i n c r e a s -ing t h i c k n e s s of uppermost f l a t - l y i n g (Holocene ?) sediments observed on p r o -f i l e s by 8% and u n d e r l y i n g l e s s r e g u l a r l y s t r a t i f i e d ( P l e i s t o c e n e d r i f t ?) sediments by 30% as was done in a CSP study of Georgia S t r a i t sediments ( T i f f i n , 1969) to account f o r v a r i a t i o n s of sound v e l o c i t y through these mater i a1s . \ 'V* V \ lQUEEN CHARLOTTE r-520 i S L A ^ D S , / ' - ^ . 4 p i i i i i ) ^.•.•.•>v<\-l-><l-<\>-\-lv AREAL DENSITY V OF SOUNDINGS v;;; (Compiled from Canadian Hydrographic Service field sheets) V ' I to 2 SOUNDINGS/SQ. NAUTICAL MILE r - S I N 4 to 7 12 to 15 20 to 25 50 to 300 131 W 0 5 10 NAUTICAL Ml. CONTOURS IN FATHOMS 1^ 0° ho. RESULTS PHYSIOGRAPHIC FEATURES OF QUEEN CHARLOTTE SOUND Dominant f e a t u r e s in the Sound are banks and t roughs . Where names a s c r i b e d to the f e a t u r e s have been used before in the l i t e r a t u r e re fe rences are g i v e n . The three p r i n c i p a l banks a r e : Cook Bank (Anon. , 1965) , Goose Is land Bank (Lane e_t aj_, 196 l ) and North Bank. The troughs are r e f e r r e d to as South Trough (with a main t runk and a nor th and south arm) , C e n t r a l Trough and North Trough. Secondary f e a t u r e s are (a) the g e n t l e s lopes between the c o n t i n e n t a l s l o p e and the f l a t tops of Cook Bank and Goose I. Bank, (b) the very i r r e g u l a r area nor th of Goose I. Bank, eas t of C e n t r a l Trough and west of Mi lbanke Sound (he rea f te r r e f e r r e d to as the In te r t rough A r e a ) , and (c) the Sea Otter Group of shoa ls (Anon. , 1965 ) - F igu re \k shows the a r b i t r a r y boundar ies f o r most of the f e a t u r e s mentioned above. The numbers on the map r e f e r to sample numbers of samples f a l l i n g w i t h i n each p h y s i o g r a p h i c a r e a . It must be noted that on the map Mi lbanke and Queen's Sound have been grouped wi the nor th arm of the South Trough p h y s i o g r a p h i c a r e a , Queen C h a r l o t t e S t r a i t has been combined w i t h the south arm of South Trough, and the seaward s l o p e of North Bank has been d i v i d e d between the more seaward pa r t s of C e n t r a l Trough and North Trough. F i g . 15 i s a d e t a i l e d bathymet r i c map of Queen C h a r l o t t e Sound (back e n v e l o p e ) . Cook Bank i s f r i n g e d on i t s southern margin by the Sco t t I s l a n d s . Both i t s southern and nor thern margins are i n c i s e d by s h a l l o w canyons (g rad ients are less than 0 . 2 ° ) . The broadest t e r r a c e on Cook Bank l i e s between 60 to 80 metres . The 80 metre contour appears almost to e n c l o s e a broad s h a l l o w d e -p r e s s i o n at the c e n t r e of the bank. U n l i k e Cook Bank, Goose I. Bank is e n t i r e l y i s o l a t e d from land by t roughs . I ts broadest t e r r a c e l i e s between kO to 60 met res . Other t e r r a c e s are e v i d e n t between 60 to 80 metres and 100 to 120 metres (a l though t h i s l a s t E F G H a MAIN TRUNK SOUTH TROUGH SOUTH ARM SOUTH TROUGH CENTRAL TROUGH NORTH TROUGH SEAWARD of GOOSE 18- BANK INTERTROUGH COASTAL ' C O N T O U R S IN M E T R E S 1 3 0 * \ L \ < " 5A T R I A N G L E I ' n . « • 8 T V - - , • 1 0 2 0 3 0 -I N A U T I C A L M I L E S 1 — 1 2 9 VANCOUVER ISLAND 1 2 3 42. t e r r a c e is o u t s i d e the a r b i t r a r i l y ass igned boundaries of Goose I. Bank, j u s t nor th of i t in the southern In te r t rough A r e a ) . Many smal l i n d e n t a t i o n s f r i n g e the bank, but none of these appear as w e l l developed as the canyons on Cook Bank. High ground on the e a s t e r n s i d e of the bank shoa ls to 31 metres . Severa l low r idges extend to the west of the s h o a l s . A meandering channel d i s s e c t s Goose I. Bank j u s t nor th of the s h o a l s . Th is e a s t - w e s t o r i e n t e d channel is about 15 k i l o m e t r e s l o n g , 2-3 k i l o m e t r e s wide and about 20 metres deep. The margins of Goose I. Bank are r e l a t i v e l y s teep on the south (up to 2°), but very g e n t l e on the n o r t h . The nor thwestern edge of the bank i s s h a r p l y r e c t a n g u l a r . North Bank is s i m i l a r to Goose I. Bank in many r e s p e c t s : i t i s e n t i r e l y i s o l a t e d from land by t r o u g h s , an e a s t - w e s t v a l l e y p a r t i a l l y d i s s e c t s i t ( a l -though the v a l l e y on North Bank is broader than tha t on Goose I. Bank) , i t s s h a l l o w e s t pa r t s are on the landward s i d e of the bank and i t s lopes at about the same g r a d i e n t from i t s f l a t top to the c o n t i n e n t a l s l o p e . The broadest t e r r a c e on North Bank is at 120-140 metres (a t e r r a c e a t a s i m i l a r depth is developed j u s t west of the Sea Ot ter Group of s h o a l s ) , whereas the s m a l l e r f l a t t i s h areas at the top of the bank are at 100-120 met res . The south arm of South Trough has an almost f l a t bottom w i t h a few s h a l l o w c l o s e d d e p r e s s i o n s . At the i n t e r s e c t i o n of the south arm w i t h the main t runk of South Trough the Sound f l o o r appears to be s l i g h t l y f a n - s h a p e d . From the depths of Mi lbanke Sound the f l o o r s h o a l s up to the topograph ic sadd le j u s t west of Goose I s l a n d . From there to the mouth of Queen's Sound, the f l o o r deepens. From Queen's Sound i t shoals towards another sadd le between Goose I. Bank and Hakai Passage. From t h i s second sadd le i t shoa ls s l i g h t l y , then deepens r a p i d l y in the d i r e c t i o n of the c l o s e d depress ions between the mainland and the Sea Ot te r Group of s h o a l s . A long the nor th arm of South Trough the Sound f l o o r very u n i f o r m l y and g r a d u a l l y deepens towards the c e n t r a l s h e l f . At the foo t of the s m a l l fan p r e v i o u s l y ment ioned , a few s m a l l knobs 4 3 . r i s e from the f l o o r . Fur ther seaward s t i l l , the t rough becomes a b r u p t l y c o n -s t r i c t e d f o r about 10 k i l o m e t r e s u n t i l i t widens i n t o a broad f l a t area about 12 x 25 k i l o m e t r e s . A t the s h e l f edge a broad r i d g e cuts ac ross the t r o u g h . The g r a d i e n t of the sea f l o o r inc reases s h a r p l y to 5° at the c o n t i n e n t a l s l o p e . The nor thern par t of C e n t r a l Trough west of North Bank i s - e s s e n t i a 11y f l a t . There are o n l y a few s c a t t e r e d low knobs and broad s h a l l o w d e p r e s s i o n s . At the p o i n t the trough makes a sharp s o u t h w e s t e r l y bend a s h a l l o w sadd le r i s e s from the sound f l o o r . Beyond the sadd le the t rough g r a d u a l l y deepens towards the broad f l a t area j u s t s h o r t of the s h e l f break. At the s h e l f break a r i d g e p a r t i a l l y i n t e r s e c t s the t r o u g h . North Trough is the deepest and most i r r e g u l a r l y shaped of the th ree t r o u g h s . It i s f l o o r e d by narrow, deep c l o s e d d e p r e s s i o n s . Two t e r r a c e s l i e on the nor thern w a l l of the t r o u g h . One is hummocky and occurs at 220-240 met res , the other is f l a t and c o n s i d e r a b l y deeper (340-360 m e t r e s ) . Near the c o n t i n e n t a l s l o p e North Trough i s a lmost comple te l y pinched o f f by a r i d g e e x -tend ing from the base of North Bank. In te r t rough Area i s f l o o r e d by an u n u s u a l l y la rge number of very b road , s h a l l o w depress ions and low e longate s w e l l s which have a predominant ly e a s t -- w e s t o r i e n t a t i o n . At the western edge of the In te r t rough Area the s o u n d - f l o o r appears to be s l i g h t l y f a n - s h a p e d . F i g . 16 i n d i c a t e s the l o c a t i o n of the l i n e of the bathymet r i c c r o s s -s e c t i o n in F i g . 17- In s p i t e of the extreme v e r t i c a l exaggera t ion of the com-p l e t e s e c t i o n in F i g . 17, ba thymet r i c r e l i e f in the Sound appears very subdued. The same c r o s s - s e c t i o n a l s o c l e a r l y r e v e a l s the gradual deepening of the s h e l f towards the n o r t h . 1 BATHYMETRIC CROSS SECTION Figure 17 K S V PETROLOGY OF GRAVELS AND MINERAL CONTENT OF HEAVY MINERAL AND CLAY FRACTIONS Grave ls common to the d i f f e r e n t p h y s i o g r a p h i c areas of the Sound most commonly c o n s i s t of p l u t o n i c rocks (quar tz monzon i te , g r a n o d i o r i t e , d i o r i t e s ) . B a s a l t i c and g n e i s s i c p e b b l e s , a l though common, are not as abundant. I so la ted occur rences of t u f f and conglomerate were observed in the In ter t rough and North Trough a r e a s . P l a t e 1 c l e a r l y shows the general s i m i l a r i t y of r o c k - t y p e s in g r a v e l s from v a r i o u s l o c a t i o n s in the Sound. The heavy minera l f r a c t i o n ( l e s s magnet i te ) of w i d e l y d i s t r i b u t e d sand samples (wi th approx imate l y e q u i v a l e n t mean g r a i n s i z e s ) was found to be dominated by hornblende and e p i d o t e ( F i g . 18). The l o c a t i o n of samples f o r which the minera logy of the c l a y f r a c t i o n was determined i s shown in F i g . 19. X - r a y d i f f r a c t o g r a m s e x h i b i t i n g responses of c l a y s to v a r i o u s t reatments appear in F i g . 20. These t r a c i n g s are rep resen -t a t i v e of what was observed f o r a l l samples examined and they i n d i c a t e the p r e -sence of c h l o r i t e , montmori11 o n i t e ( a p p a r e n t l y d e r i v e d from both (a) v o l c a n i c m a t e r i a l , c h l o r i t e or hornblende and (b) m i c a ) , i l l i t e , k a o l i n i t e and p o s s i b l y v e r m i c u l i t e or mixed l a y e r c l a y s . There i s a l s o ev idence to suggest the presence of q u a r t z , f e l d s p a r and amphiboles in the c l a y f r a c t i o n . Because of the lack of s t a n d a r d i z a t i o n in procedures f o r computing a b s o l u t e c o n c e n t r a t i o n s of c l a y minera l components ( P i e r c e and S i e g e l , 1969), c l a y minera l c o n c e n t r a t i o n s are r e f e r r e d to in terms of peak h e i g h t . In a l l cases the f i r s t order basal c h l o r i t e and montmori11 o n i t e peaks are dominant. The f i r s t order basal c h l o r i t e peak is e i t h e r e q u i v a l e n t in height or s l i g h t l y h igher than the montmori11 o n i t e f i r s t order peak. The f i r s t order basal peak f o r i l l i t e is i n v a r i a b l y e i t h e r second l a r g e s t where the c h l o r i t e and mont-m o r i l l o n i t e peaks are e q u i v a l e n t or t h i r d l a r g e s t where they are not . K a o l i n i t e f i r s t o rder peak i s , w i thout e x c e p t i o n , very low (suggest ing the presence of PLATE I V i s u a l comparison of g rave l rock types in severa l p h y s i o g r a p h i c a r e a s . In a l l these l o c a t i o n s coarse g ra ined p l u t o n i c and f i n e g ra ined v o l c a n i c rocks are dominant. Sedimentary rocks (conglomerates) are rare and were observed on ly in a few samples from North Trough and in the In ter t rough A r e a . H H E X-RAY DIFFRACTOGRAMS HEAVY MINERAL FRACTION (LESS MAGNETITE) H HORNBLENDE PEAK E EPIDOTE PEAK 268 .266 'W, '^ -y'rW.v'H 578 ^W^A.'^ M7 Wvi'l'VY 34 6 "A 2 7 10 *26 50 1 V A , I'V'W™ -10 '28 Figure 18 CD OUE£N CHARLOTTE \ \ I © / ; / V \ \ j v y r I \ ; l \ t51- LOCATION OF SURFICIAL SAMPLES FOR CLAY ANALYSES v ~ v — * <0 20 J / TRIANGLE IS. ft 30 CONTOURS IN M E T R E S 130-NAUTICAL M I L E S 1 51 Figure 20 52. o o n l y t r a c e amounts of t h i s m i n e r a l ) . The incomplete s e p a r a t i o n of the 14 A and 17 A5 peaks a f t e r g l y c o l a t i o n suggests the presence of v e r m i c u l i t e or mixed -l a y e r c l a y s . No attempt was made to measure the peak he ight of t h i s presumably minor component. 53. SEDIMENT DISTRIBUTION F i g s . 21 and 22, r e s p e c t i v e l y , compare hand c o n t o u r i n g and mechanical c o n t o u r i n g of sample mean -s i ze d a t a . A very few p o i n t s on the m e c h a n i c a l l y contoured map have not been inc luded w i t h i n contours of the c o r r e c t v a l u e , a few contours appear to c r o s s and , in some c a s e s , where the c o n t o u r i n g i s t i g h t , contour va lues a re not very c l e a r . These minor d e f i c i e n c i e s p robab ly can be r e c t i f i e d by (a) hav ing a f i n e r c o n t o u r i n g g r i d generated by the computer ( f i n e r g r i d s , however, r e q u i r e more computer - t ime f o r t h e i r g e n e r a t i o n , and as a r e s u l t can cos t c o n s i d e r a b l y more) , and (b) us ing a 30" p l o t t e r ins tead of a 10" p l o t t e r ( u n f o r t u n a t e l y , the l a r g e r p l o t t e r was not a v a i l a b l e at the t ime data were be ing p r o c e s s e d ) . The reasonable accuracy of the mechanical c o n t o u r i n g dev ice a l l o w e d i t to be used (where i n d i c a t e d ) to c r e a t e maps showing gross sediment t e x t u r e . F i g s . 23, 2k and 25 i l l u s t r a t e the d i s t r i b u t i o n of g r a v e l , sand and mud on the Queen C h a r l o t t e Sound f l o o r , emphasiz ing areas w i t h h i g h e s t c o n c e n t r a -t i o n s . In a very genera l sense the c o a r s e r sediments tend to be concent ra ted on s h a l l o w e r a r e a s . Gravel D i s t r i b u t i o n ( F i g . 23) Grave ls are concent ra ted a long the southern f l a n k s of Cook Bank and Goose I. Bank and on c e n t r a ] North Bank. Grave ls extend almost c o m p l e t e l y a c r o s s the south arm of South Trough near i t s j u n c t i o n w i t h the main t runk of South Trough. Mi 1banke Sound is g e n e r a l l y f r e e of g r a v e l , but g r a v e l s do occur w i t h i n the nor th arm of South Trough in the v i c i n i t y of the subdued saddles j u s t east of Goose I. Bank. From the second saddle to the s h e l f edge a long South Trough g rave l i s very r a r e , or n o n - e x i s t e n t . Only at the s h e l f edge, at the s i t e of the low r i d g e p a r t i a l l y i n t e r s e c t i n g South Trough, do g r a v e l s once a g a i n become abundant. I H CO f\> % 3 \ v ~" '4 ' . QUEEN CHARLOTTE ^ N s \ ' A W v  i fi "Si -I I 'I M E A N P H I COMPUTER PLOT | l | FINEST SEDIMENT (> 30 ) 131* O CONTOURS IN METRES NAUTICAL M I L E S I : ro HIGHEST PERCENT G R A V E L COMPUTER PLOT 111 >60 o/0 131* , ' 0 CONTOURS IN METRES , > ' A » y !j(t\ \ « \ * ~ 10 / 20 30 130' NAUTICAL M I L E S 1 129-VANCOUVER ISLAND 123 C e n t r a l Trough i s s i m i l a r l y almost f r e e of g r a v e l s f o r i t s e n t i r e l e n g t h , but g r a v e l s are found in a s s o c i a t i o n w i t h t h e low r idge at the s h e l f edge. Th is same p a t t e r n is repeated in North Trough: g rave l c o n c e n t r a t i o n s are low except at the r idge which almost p inches o f f the t rough at the s h e l f edge. Grave ls a l s o are abundant a t the s h e l f edge seaward of Goose I. Bank and in the In ter t rough A r e a . 'Sand D i s t r i b u t i o n (Fi .g. 24) ' • . i Sand s i z e sediment i s most common a long the nor th edge of Cook Bank, in a swath which extends a c r o s s the main t runk of South Trough to the southern s l o p e s of Goose I. Bank, on nor thern Goose I. Bank and southern In ter t rough A r e a , and on the southern and nor thern p a r t s of North Bank. F i g . 26 is a map of the d i s t r i b u t i o n of the p r i n c i p a l sand modes of each sample(which a c c o r d i n g to Curray (1961) may be g e n e t i c a l l y l inked). It suggests areas where sediments of a g i ven modal s i z e and hence having a common h i s t o r y are cont inuous from one p h y s i o g r a p h i c u n i t to a n o t h e r . Of p a r t i c u l a r s i g n i f i c a n c e to a subsequent d i s c u s s i o n is the p o s s i b l e l i n k s t r e t c h i n g ac ross Cent ra l Trough between North Bank and Goose I. Bank. Mud D i s t r i b u t i o n ( F i g . 25) In very few p a r t s of the Sound f l o o r do sediments c o n s i s t p redominant ly of mud. Of the three l o c a l i t i e s where mud content is h i g h , two a re at the mouths of Mi lbanke and Queen's Sound, and n o t , s t r i c t l y s p e a k i n g , on the s h e l f . The muddiest sediments on the s h e l f proper are in nor thern Central Trough. Mud content i s r e l a t i v e l y h igh in patches nor th of the Sea Otter Group of shoa ls in the nor th arm of South Trough; in the f l a t a rea at the edge of the s h e l f in South Trough; a long the southern p a r t of Cent ra l Trough; in the deepest d e p r e s s i o n s of North Trough; in the depress ions of In ter t rough A r e a ; and near the cen t e r of the area seaward of Goose). Bank ( i n t h i s l a s t l o c a l i t y -3 CD 'J1 "^>_ 52 >UE£N CHARLOTTE -\\\ •: ) * . ^ - ! r B.C MAINLAND \ 131 HIGHEST PERCENT MUD COMPUTER PLOT 6 0 % j £ t > 9 0 % CONTOURS IN METRES CD ro PRINCIPAL S A N D MODE (PHI) CONTOURS IN METRES NAUTICAL MILES 1 61. the s u r f i c i a l muds were found to be in par t s i m i l a r in c o l o u r and c o n s i s t e n c y t o the muds found deep in cores ob ta ined in nor thern Cent ra l Trough, and which a re d i s c u s s e d be low) . D i s t r i b u t i o n of Mud-Sand R a t i o The r a t i o of mud to sand ( F i g . 27) is very low on the banks , a t the r idge which almost p inches o f f North Trough a t the s h e l f b reak , near s h o r e , at the i n t e r s e c t i o n of the south .arm of South Trough w i t h i t s main t r u n k , in one segment of North Trough, in two separate p a r t s o f the In ter t rough Area and in the v i c i n i t y of the Sea Ot ter Group of s h o a l s . It should be noted f u r t h e r that a l though low r a t i o s extend a c r o s s the NW margin of Cook Bank and the n o r t h e r l y and s o u t h w e s t e r l y p o r t i o n s of Goose I. Bank, they are r e s t r i c t e d to the s h a l l o w e s t p a r t s of North Bank. D i s t r i b u t i o n of Standard D e v i a t i o n Values D i s t r i b u t i o n of these va lues ( F i g . 28) suggest what i s commonly observed : that b e t t e r s o r t i n g is r e l a t e d to h igh sand c o n t e n t . Very p o o r l y s o r t e d sediment is found : at the s h e l f edge; in North Trough; on North Bank; in a band tha t extends from Mi lbanke Sound, i nc ludes much of the In ter t rough Area and then f o l l o w s Cent ra l Trough; j u s t nor th of Sea Otter Group of s h o a l s ; at the i n t e r s e c t i o n of the south arm of South Trough and i t s main t runk and near the mouth of F i t zhugh Sound. In s h o r t , the d i s t r i b u t i o n of very p o o r l y s o r t e d sediment seems t o correspond to that of areas r i c h in mud or g r a v e l . D i s t r i b u t i o n of Skewness Values Skewness va lue d i s t r i b u t i o n ( F i g . 29) suggests that g r a i n s i z e d i s t r i -b u t i o n s w i t h a coarse t a i l g e n e r a l l y are a s s o c i a t e d w i t h bank tops and those w i t h f i n e t a i l s w i th t roughs . ^3 W c ro ro oo +51* S T A N D A R D D E V I A T I O N W E L L S O R T E D SEDIMENT ^ - O CONTOUR INT. = 0.50 CONTOURS IN METRES  NAUTICAL MILES 1 5 1 ' SKEWNESS COMPUTER PLOT. STRONG COARSE SKEW Q INTERMEDIATE STRONG FINE SKEW ,--J CONTO'JPS IN M E T R E S 130* t'/ ^ L \ <' **"""/ f* >^  TRI (NGLE IS 30 =1 N A U T I C A L M I L E S 1 65. D i s t r i b u t i o n of K u r t o s i s Values K u r t o s i s va lue d i s t r i b u t i o n is shown in F i g . 3 0 . The d i s t r i b u t i o n of l e p t o k u r t i c (peaked s i z e d i s t r i b u t i o n ) sediments g e n e r a l l y i s the same as that of the b e t t e r s o r t e d sed iments , whereas d i s t r i b u t i o n of p l a t y k u r t i c (b roader , f l a t t e r s i z e - d i s t r i b u t i o n curve) sediments equates w i t h that of poorer s o r t e d sed iments . C h a r a c t e r i s t i c S o r t i n g , Skewness and Mean S i z e : Summary Mean s i z e v s . s o r t i n g (s tandard d e v i a t i o n ) c h a r a c t e r i s t i c s f o r a l l samples ana lyzed is summarized in F i g . 3 1 ; skewness va lues of s e l e c t e d samples are shown s i m i l a r l y in F i g . 32 . A l though samples do not show d i s t i n c t c l u s t e r i n g on the p l o t of mean s i z e v s . s o r t i n g , they have been s u b d i v i d e d i n t o e i g h t groups w i t h d i s t i n c t i v e c h a r a c t e r i s t i c s . Table I summarizes the g r a i n s i z e c h a r a c t e r i s t i c s of the groups , and i n d i c a t e s dominant p h y s i o g r a p h i c areas w i t h which they are a s s o c i a t e d . S o r t i n g has been d e s c r i b e d a c c o r d i n g to F o l k ' s (1965) c l a s s i f i c a t i o n . The g r a i n s i z e c l a s s i f i c a t i o n of the samples w i t h i n the groups i s based on the g r a i n s i z e of the sample mean. A r e a l D i s t r i b u t i o n of Sediment Groups The map ( F i g . 33) of the d i s t r i b u t i o n of the n ine sediment groups of Table I c l a s s i f i e s the Sound f l o o r not so much on a p h y s i o g r a p h i c b a s i s as on the b a s i s of sediment c h a r a c t e r . Cent ra l and southern Cook Bank is dominated by groups 1 and 2 , Group 4 i s l a r g e l y r e s t r i c t e d to the margins of the bank and group 3 sediments are a l i g n e d j u s t i n s i d e the e a s t e r n margin of the bank. Goose I. Bank is mantled on i t s western and southern s e c t i o n s by groups 1 and 2. Group 4 sediments s t r a d d l e nor thern Goose I. Bank and southern In ter t rough A r e a . Group 4 is a l s o common southwest of Goose I. Bank. The s h a l l o w c e n t r e of North Bank i s covered ma in l y by groups 1, 2 and 3 ; the nor thern and southern margins 67-<r>-r M E A N SIZE vs. STANDARD DEVIATION FOR SAMPLES • COOK BANK • GOOSE Is SANK o NORTH BANK LAREDO Srf-, MILBANKE Sd,NORTH ARM a MAIN TRUNK SOUTH TROUGH • SOUTH ARM SOUTH TROUGH a CENTRAL TROUGH a NORTH TROUGH SEAWARD of GOOSE Is. BANK x INTERTROUGH c COASTAL A & . * I A' M O .} f B - / a", \ 0* S.H. cP o ' I ( r 4 i i i * S.K/ o < 0-1 a Q o a a * SHELL HASH - 1 — 20 i — 2.4 — i — 3.6 00 — 0.4 — i — 08 .2 1.6 STANDARD DEVIATION F i g u r e 31 2.8 3.2 4.0 ( 0 ) 6 8 . SELECTED SKEWNESS VALUES <D-| FOR SAMPLES IN FIG. 31 i -.10 .12 .30 .10 .25 .53 .58 .S3 „ <o-i . « 2 - 3 2 13 1.7 1-2 (.2 ^ ; 2 - ° l . 2 ,.2 , , 1.6 -52 " H ' * • » . . 7 l . S o .20 - 5 0 .12 1 ,v,-J - .32. 2 5 _ M .3fc « 2 9 . 0 9 .26 .93 - .24 _.t0 _ f c 5 - .45- - .56 -•*'5 ~ ? - . 2 2 - .55 _ ( 5 -.21 " 8 S _ - 5 7 - .45 - .43 - .22 - .33 -.12 -.04 .72 -.iO .'2 ,<?2. - • i 0 .03 .02 - ' 3 M '.01 .38 .10 .'35 . 4 2 .36 .55 .27 .35 .55 .42 - .^0 ? i .91 .91 .84 .82 2.5 1.5 2.0 . 3 9 -7| ^ 04~ 08~ L2 16 2.0 2* 2.8 3.2 3.6 4.0 STANDARD DEVIATION (0) ' . Figure 32 -i 1 1 ' r-69. TABLE I Group Numbe r Summary: C h a r a c t e r i s t i c S o r t i n g , Skewness and Mean S i z e Dominant P h y s i o -g r a p h i c Areas 2a Well s o r t e d to very p o o r l y s o r t e d , f i n e - s k e w e d , g r a v e l s P o o r l y so r ted to ve ry - .poor l y s o r t e d , weakly f i n e - t o s t r o n g l y c o a r s e - . skewed, medium to very coarse sand -Moderate ly w e l l s o r t e d to moderate ly s o r t e d , f i n e - s k e w e d , coarse sand Moderate ly w e l l so r ted to p o o r l y s o r t e d , c o a r s e - s k e w e d , medium to coase sand Cook Bank, Goose I. Bank, North Bank Goose I. Bank", Cook Bank, North 1 Bank Coasta l and Goose I. Bank Cook Bank, Goose I. Bank Wel l s o r t e d to moderate ly s o r t e d , c o a r s e - t o f i n e - s k e w e d , medium to very f i n e sand Moderate ly to p o o r l y s o r t e d , f i n e -skewed, f i n e to very f i n e sand Moderate ly s o r t e d , f i n e - s k e w e d , f i n e sand to very p o o r l y s o r t e d , f i n e -skewed, very f i n e s i l t Very p o o r l y s o r t e d , c o a r s e - a n d f i n e -skewed, coarse sand to coarse s i l t Goose I. Bank, Cook Bank Laredo S d . , Mi 1-banke S d . , nor th arm and main t runk of South Trough F ine sand : Laredo Sd. Mi 1banke S d . , and South Trough Fine s i l t : Centra1 Trough No dominant p h y s i o -g r a p h i c a s s o c i a t i o n 8 Very p o o r l y s o r t e d , weakly c o a r s e -skewed, sands to f i n e - s k e w e d g r a v e l s In ter t rough Area -f-pUEEN CHARLOTTE 4-52*-;i* •0) 6 ** W 8 — r — ^ / ; V. / M V _ , 1^7/6 \A/\ 3 ' l - t ^ fo) 6 • «f „ , ) - J ' ' ( / . 6 t r VP-',- ( i / H 1 2.' t /g \ v > "8 •i k ,n • u '' ' x '• B.C MAINLAND I Hj \2 -2, H " —' » . / 4 \ ^ J > -'ft S O R T I N G - S K E W N E S S - M E A N S I Z E v^o. > 4*- GROUP C, ^ DISTRIBUTION \ M'^ .7 ' .8 5! OTTER •4 6> ~ • '""•^ GROUP,' , \ o r \ •< ^ w ° 6 ^ 5 V 4 • , -S . • . / TRIANGLE IS. 'Shell fir .1 "SM/ 10 20 131 CONTOURS IN METRES I 1301 NAUTICAL MILES 129 VANCOUVER ISLAND 123* 71. of the bank by groups 2 and k; the e a s t e r n margin i s c h a r a c t e r i z e d by group 6 and the western by groups 7 and 8. Troughs are f l o o r e d m a i n l y w i t h Group 6 sediment . C e r t a i n e x c e p t i o n s should be no ted : the l i n e of groups 7 and 8 on the r i d g e ex tend ing west from the Sea Ot ter Group of shoa ls ac ross the south arm of South Trough, the groups k and 5 ex tend ing from nor thern Cook Bank ac ross the main t runk of South Trough t o Goose I. Bank, the group 8 sediments near the saddle between Goose I. Bank and Goose I s l a n d , the group 7 sediments on the saddle between Goose I. Bank and Hakai Passage and group k a t the bend in Cent ra l Trough and in c e n t r a l North Trough. In te r t rough Area is c h a r a c t e r i z e d by an anomalously h igh p r o p o r t i o n of group 8 sediments a s s o c i a t e d w i t h group 6 and 7- The s h e l f edge i s ma in l y represented by group 1 sediment . 72. ORGANIC CARBON AND CaCO} CONTENT OF SEDIMENTS Organic Carbon Organic carbon in the 1 e s s - t h e n - g r a v e 1 - s i z e f r a c t i o n is g e n e r a l l y very low ( F i g . 3 4 ) . Values were h ighest at the deep mouths of Queen's Sound (3.6%) and Mi lbanke Sound (3 .3%) , lowest on the banks ( g e n e r a l l y l ess than 0.2%) and moderate southeast of Goose I. Bank and near the seaward terminus of South Trough and in Cent ra l Trough. Comparison of o rgan ic carbon and mud d i s t r i b u -t i o n suggests a p o s i t i v e c o r r e l a t i o n between these two v a r i a b l e s which is con -f i rmed in F i g . 35 (a graph of mud-sand r a t i o v s . o r g a n i c content f o r samples w i t h o r g a n i c carbon c o n c e n t r a t i o n above 1.0%). Ca lc ium Carbonate Calc ium carbonate ( c o n s i s t i n g predominantly of foram t e s t s and mol luscan s h e l l f ragments) of the 1 e s s - t h a n - g r a v e 1 - s i z e f r a c t i o n is a l s o sparse as a r u l e ( F i g . 36) . S e v e n t y - f i v e percent of the samples c o n t a i n 4% or l e s s . The h ighes t c o n c e n t r a t i o n s were observed on the banks. Two samples , a lmost e n t i r e l y com-posed of mo l luscan s h e l l hash , were recovered from Cook Bank near the n o r t h -west t i p of Vancouver I. One sample from Goose I. Bank c o n t a i n s as much as 26% CaCO^ c o n s i s t i n g p r i m a r i l y of mol luscan f ragments . On North Bank many of the samples have CaCO^ c o n c e n t r a t i o n s in excess of 20% (one is as h igh as 51%). Here however, the p r i n c i p a l component i s f o r a m i n i f e r a 1 t e s t s . In f a c t , in most samples below 100 metres f o r a m i n i f e r a 1 t e s t s p rov ide most of the CaC03, wherea 5 mol luscan fragments are the dominant c o n s t i t u e n t at s h a l l o w e r depths . Troughs are u n i f o r m l y q u i t e low in c a l c i u m c a r b o n a t e , however, j u s t nor th of Cook Bank one sample has 28% CaCO^ and one sample at the s h e l f break in South Trough has 15% CaCO^. At the s h e l f break j u s t nor th of the seaward end of Cent ra l Trough one sample has 12% CaCO^. Seaward of Goose I. Bank, of f i v e samples w i t h CaCO^ in excess of 10%, one c o n t a i n s 21%. The In ter t rough Area i s moderate ly r i c h in CD KHoo ' WT. PERCENT > IN MUD-SAND FRACTIONX/? ' \ \ 'f O R G A N I C C \ V CONTOUR INT. = 0.2% 131* CONTOURS IN METRES NAUTICAL MILES 1 CO-, 74. CJ. O J < CO Q0 3 CD CVJH e 1 r 2 3 O R G A N I C C C O N T E N T Figure 35 1 % CaCOj c o n s i s t i n g main l y of subequal p a r t s of s h e l l hash and foram t e s t s . High c o n c e n t r a t i o n s of c a l c i u m carbonate ( g r e a t e r than 10%), most l y a t t r i b u t a b l e to an abundance of f o r a m i n i f e r a l t e s t s , are u s u a l l y found in c o a r s e , p o o r l y - s o r t e d sediments (Appendix ) . 77. FACTOR ANALYSIS OF SEDIMENTS (A) The p reced ing r e s u l t s suggested c o r r e l a t i o n s between sample d e p t h , t e x t u r e and o r g a n i c C and CaCO^ c o n t e n t . In order to e v a l u a t e the c o r r e s -pondence between these v a r i a b l e s more t h o r o u g h l y , f a c t o r a n a l y s i s was under -taken o f ten sample c h a r a c t e r i s t i c s : d e p t h , mean s i z e , s tandard d e v i a t i o n , skewness, k u r t o s i s , g rave l c o n t e n t , sand c o n t e n t , mud c o n t e n t , and o r g a n i c carbon and c a l c i u m carbonate content of the l e s s - t h a n - g r a v e l - s i z e f r a c t i o n . I n i t i a l a n a l y s i s produced f i v e f a c t o r s which account f o r 92 percent of v a r i a b i l i t y . In order to a l l o w f o r up to 10 percent e r r o r in data va lues ( r e s u l t i n g from f a u l t y sound ing , p o s i t i o n i n g , sampl ing or a n a l y t i c a l procedures) a n a l y s i s was repeated w i t h a s p e c i f i c a t i o n that s u f f i c i e n t f a c t o r s be c rea ted to account f o r l e s s than 90 percent of v a r i a b i l i t y . Th is r e s u l t e d in the f o l l o w i n g varimax f a c t o r score m a t r i x which accounts f o r 86 percent of var iab i 1 i t y : TABLE I I FACTOR 1 2 3 4 VARIABLE depth 0.053 0.959 - 0 . 0 3 9 - 2 . 8 4 7 mean s i z e 0 .686 - 0 . 5 5 5 1.592 - 0 . 2 0 8 s t a n . dev. - 1.091 1.480 0.780 - 0 . 3 1 3 skewness 2 . 104 1. 109 - 0 . 3 8 0 0.039 k u r t o s i s 1.730 0.378 - 0 . 5 9 4 0 .234 % g rave l - 0 . 5 8 7 1.146 -1 .279 0.565 % sand 0 .340 - 1.681 0 .160 - 0 . 9 3 0 % mud 0 .364 0.710 1 .602 0.490 % o r g a n i c C 0.248 0.609 1.418 0.423 % CaCO, - 0 . 4 9 5 0 .464 0.335 0.308 Of the four f a c t o r s on ly the f i r s t three e x h i b i t e d s t rong c o r r e l a t i o n s ( i n d i c a t e d by scores h igher than - 1.0) between s e v e r a l v a r i a b l e s . Each of the f a c t o r s d e s c r i b e s two sediment types ( a l t e r n a t e c h a r a c t e r i s t i c s i n d i c a t e d in p a r e n t h e s i s ) : Factor 1 represents samples w i t h h igh (low) s tandard d e v i a t i o n , low (h igh) skewness, and low (h igh) k u r t o s i s . Factor 2 represents samples w i th 78. high ( low) s tandard d e v i a t i o n , h igh (low) skewness, h igh (low) % g r a v e l , and low (h igh) % sand. Fac to r 3 represents samples w i t h f i n e (coarse) mean s i z e , h i g h ( low) % mud, h igh (low)% o r g a n i c carbon and low (h igh) % ' g r a v e l . Fac to r k appears t o represent samples which are deep ( sha l low) and have h igh (low) % sand. Maps accompanying the c o m p u t e r - c a l c u l a t e d f a c t o r a n a l y s i s i n d i c a t e the degree and manner in which a sample i s d e f i n e d by a p a r t i c u l a r f a c t o r . The completeness of c o r r e l a t i o n i s i n d i c a t e d by va lues ranging from -99 t o +99 at the sample l o c a t i o n : h igh va lues i n d i c a t e s t r o n g agreement between the r e l a t i o n s h i p of v a r i a b l e s in the sample and in the f a c t o r . For example, in the case of f a c t o r 2, i f a va lue of -90 occur red a t the s i t e of a sample on the map, t h i s i n d i c a t e s the sample has low s tandard d e v i a t i o n , low skewness, low % g rave l and h igh % sand , whereas a va lue o f +90 at the sample s i t e i n d i -c a t e s j u s t the reverse c o n d i t i o n s . S i x resonably d i s t i n c t (but s t i l l o v e r l a p p i n g ) sediment p o p u l a t i o n s d e s c r i b e d by the three s e l e c t e d f a c t o r s were determined by i s o l a t i n g samples on the f a c t o r maps which had va lues exceeding t 50. Table III shows the degree to which f a c t o r s d e s c r i b e samples w i t h i n p o p u l a t i o n s . The p o p u l a t i o n s are arranged on Table III in order of g e n e r a l l y d e c r e a s -ing g r a i n s i z e , but by no means is t h i s the o n l y , or even most s i g n i f i c a n t d i s -t i n c t i o n between them. For on ly two of the s i x p o p u l a t i o n s d e f i n e d i s mean s i z e one of the more c r i t i c a l v a r i a b l e s : p o p u l a t i o n s A and F are best d e f i n e d by t h e i r c h a r a c t e r i s t i c mean s i z e , % g r a v e l , % mud, % o r g a n i c carbon and depth ; p o p u l a t i o n s B and D are best d e f i n e d by t h e i r c h a r a c t e r i s t i c s tandard d e v i a t i o n , skewness, % g r a v e l and % sand; and p o p u l a t i o n s C and E are best d e f i n e d by t h e i r c h a r a c t e r i s t i c s tandard d e v i a t i o n s , skewness and k u r t o s i s . Values of v a r i a b l e s used to d e s c r i b e the p o p u l a t i o n s on a map of the a r e a l d i s t r i b u t i o n of sediment p o p u l a t i o n s ( F i g . 37) were drawn from samples which had the mean degree of TABLE I I I POPU-LATION SYMBOL FACTOR RANGE AND MEAN DEGREE OF DES-CRIPTION BY FACTOR EXAMPLE SAMPLE MEAN STAN. DEV. SKEW. KURT. %G RAVEL %SAND %MUD %ORG. CARBON % CaC03 A @ 3 - 5 3 % b 9 / o 242 " 5 , 6 0 . 6 1.9 8 . 0 i.oo 0 ft ft 0 22 - 3 . 0 3 . 0 0 . 6 1.4 7 4 . 9 23.2 1.9 0 0 B © 2 + 7 4 % +66% +56% 353 - 3 . 3 0,9 3 . 4 80.2 17 ,8 1.9 0 . 3 4 352 - 1 . 9 3 .4 0 . 3 1.3 5 7 . 4 40.5 2.1 0 . 2 3 C (5) 1 -82% _ 6 5 % - 5 2 % 75 1.5 2 . 7 - 0 . 6 1.6 19.. 5 75 .1 5 . 4 0 . 4 3 395 - 0 . 4 2?3 0'/2 1 '/l 46.9 5 0 . 6 2 . 5 0 . 1 26 D 2 - 9 9 % ->57% " 8 8 / ° 37 2 . 8 0,7 0 . 1 2 .8 0 . 0 9 7 , 4 2 . 6 0 . 1 1 147 2 . 6 0 . 9 0 . 6 2 . 2 0 . 0 91.2 8 . 8 0 .3 1 E 0 1 +97% +86% +51% 132 4.1 1.5 1.5 7 . 5 0 . 0 6 1 . 6 38.4 1.4 3 39 3 . 0 2 . 2 1.1 4 . 6 1.1 85.2 13.6 0 .5 1 F • 3 +56% + 7 8 % 299 5 .1 2 . 2 0 . 8 2 . 4 0 , 0 50 . 3 4 9 , 7 1.2 0 87 3 . 9 2 . 2 1 . 1 4 . 2 0 , 9 80.1 1 9 . 0 X 0 .6 0 « most s i g n i f i c a n t v a r i a b l e s w i t h i n a p o p u l a t i o n CD - 0 )• ft \ O U E E N ^ H A R L O T T E . ' U ^ & I S . > !f\. mm (•)(<-B . C . M A I N L A N D 0. SEA • "o SEDIMENT POPULATIONS ./ / Q ^ r • o ° ° DETERMINED BY N \ / o V, •/ ® .\ OTTER ( GROUP,' 51 F A C ® O R A N A L Y S I S ' |!-J2 IB 0» 29 10} 00 0.0 0 -32 3.7 0.4 /1 7S 5 »l Oi 4 3 Z 01 /.* f f 01 6 29 Of 0 6 5.2 00 f l * Of 0 0 I j t, It /•8 82 00 »J 5 its OS 1 S1 15 oi ; ? 0.0 1?7 70 i 13 S Mf«N tIZC 3 TAN f» SKEta' KURT cuffl V. SAND V. Mi/p % % cco3 - ,®- ° 10 CONTOURS IN METRES NAUTICAL MILES 1 1?9 V A N C O U V E R I S L A N D 123 0 0 o d e s c r i p t i o n by the p a r t i c u l a r f a c t o r r e p r e s e n t i n g the p o p u l a t i o n . The s t r i k i n g s i m i l a r i t y between the d i s t r i b u t i o n s of d i f f e r e n t s e d i -ment groups in F i g . 33 and p o p u l a t i o n s in F i g . 37 f u r t h e r j u s t i f i e s a p p l i c a t i o n of f a c t o r a n a l y s i s as a r a p i d and r e l i a b l e means of d i s t i n g u i s h i n g the major combined t e x t u r a 1 - c o m p o s i t i o n a l p o p u l a t i o n s w i t h i n a very large group of heterogeneous samples . 82. SEDIMENT COLOUR DISTRIBUTION As suggested by the photograph of the sediment mount ( P l a t e I I ) , f i n e r , more o r g a n i c - r i c h trough sediments are g e n e r a l l y o l i v e gray (5Y 3/2) (G .S .A . Rock Co lor C h a r t ) , whereas b e t t e r s o r t e d , c o a r s e r , l e s s o r g a n i c - r i c h s e d i -ments a s s o c i a t e d w i t h banks tend to be l i g h t o l i v e gray (5Y 5/2). Patches of i r o n - s t a i n e d sands on banks ( e . g . samples #46, #286, and #473 i n F i g . 12) or on the mainland coast (sample #230) tend to be dark y e l l o w i s h orange (10YR 6/6). Patches of mol luscan s h e l l hash (of f nor th e a s t e r n Vancouver I.) tend to be g r a y i s h y e l l o w (5Y 8/4) - y e l l o w i s h gray (5Y 7/2). \ CO PLATE II Sediment Mount I n d i c a t i n g Sediment Colour D i s t r i b u t i o n Sediment Mount (Sediment Colour Dis t r i b u t i o n ) PLATS II 4 85. FACTOR ANALYSIS OF SEDIMENTS (B) Although the f o u r t h f a c t o r adequate ly d e s c r i b e s on ly a very smal l p r o -p o r t i o n of the samples , i t s t i l l suggests s e v e r a l r e l a t i o n s h i p s between sam-p le depth and sand content which c o u l d be h e l p f u l i n the i n t e r p r e t a t i o n of Queen C h a r l o t t e Sound s e d i m e n t a t i o n . On the b a s i s of the f o u r t h f a c t o r , samples were c l a s s i f i e d a c c o r d i n g to whether they e x h i b i t (a) h igh p o s i t i v e c o r r e l a t i o n between depth and % sand (sha'l low samples w i t h tow % sand or deep samples w'ith high % sand) , (b) h igh negat i ve c o r r e l a t i o n between depth and % sand (deep samples w i t h l i t t l e sand or s h a l l o w samples w i t h much sa nd ) , or (c) i n t e r m e d i a t e degree of c o r r e l a t i o n . The d i s t r i b u t i o n of the type of sample c o r r e l a t i o n i s shown i n F i g . 3 8 . A quar ter of the samples e x h i b i t i n g h igh negat ive c o r r e l a t i o n , but which are g r a v e l l y , were mapped w i t h the " i n t e r m e d i a t e " samples so as to l i m i t the h igh negat ive c o r r e l a t i o n c l a s s i f i c a t i o n to those in which sand v a r i e s s o l e l y as a f u n c t i o n of the amount of mud. F i g . 3 8 r e v e a l s that samples w i t h anomalously low sand (for t h e i r depth) are l a r g e l y r e s t r i c t e d to Cook and, Goose I. Bank. Those r e l a t i v e l y r i c h in sand ( for t h e i r depth) are s c a t t e r e d in p a r t s of South and C e n t r a l Trough, but are e x c e e d i n g l y abundant in North Trough. These samples tend to be r e s t r i c t e d to the outer s h e l f , whereas samples w i t h h igh negat ive c o r r e l a t i o n and no g r a v e l s are g e n e r a l l y r e s t r i c t e d to the inner h a l f of the s h a l f . On a p l o t of the mud-sand r a t i o versus sample depth ( F i g . 39), negat i ve c o r r e l a t i o n samples (x) p l o t w i t h i n a broad enve lope . Most of those above t h i s envelope have l i t t l e mud, but most of the samples p l o t t i n g below i t are muddy (a l though some c o n t a i n g r a v e l s ) and are l a r g e l y concent ra ted in s o u t h -western Queen C h a r l o t t e Sound. 4 CO 0 0 I \ HIGH POSITIVE (shallow) / «, A T ^ n U s ;QV ^ HIGH NEGATIVE \ Q.v<~." W G H P * 1 * * S / T ) & t V HIGH POSITIVE (deep) J ^ \ ^ - " V ' ° ^ T W * \ INTERMEDIATE o W ^ 3 O W V A N C O U V E R 1 S L A N D NAUTICAL MILES . \ ^ H 1 32 p L _ CORRELATION OF SAMPLE DEPTH a % SAND O CO ON CONTOURS IN METRES I 123 87. I" SAMPLE DEPTH vs. %MUD / %SAND x samples without grovel which are shallow and have a low mud-sand rciio or deep and have a high mud-sand ratio. .23 samples near the Sea Otter Group of shoals x I— a.; • 2.S '12.0,4.*, 11 • 5.J CM - • 3 f • « • 15 >S.-1 1-2! -!» 2.7 0.1 0.2 at OS 07 0.8 0.1 1.2 1.3 1.4 15 1.8 %MUD / %SAND Figure 39 88. GLAUCONITE PELLETS G l a u c o n i t e p e l l e t s can be d i s t i n g u i s h e d from f a e c a l p e l l e t s ( P l a t e I I Ib) by t h e i r more i r r e g u l a r shape and by t h e i r co lou r ( faeca l p e l l e t s tend to be l i g h t o l i v e , gray (5Y 5/2) - pa le o l i v e (10 Y 6/2)whi le the g l a u c o n i t e i s moder-ate o l i v e brown (5Y 4/4) ( P l a t e l l l a , b ) ) . G l a u c o n i t e p e l l e t s are e i t h e r almost c o m p l e t e l y enc losed i n foram t e s t s or e n t i r e l y f r e e of s h e l l m a t e r i a l ( P l a t e l l l a . c ) . P e l l e t s found p a r t i a l l y enc losed by t e s t s tend to be l i g h t e r in c o l o u r than t e s t f r e e p e l l e t s . The most common form of the t e s t - f r e e p e l l e t s i s that of i n t e r n a l c a s t s of foram t e s t s . F i g . 40 i s a map of the d i s t r i b u t i o n of t e s t - f r e e g l a u c o n i t e p e l l e t s i n the i n s o l u b l e f r a c t i o n of the .354 - .500 mm ( 1 . 0 - 1 . 5 ph i ) s a n d - s i z e f r a c t i o n of samples . Pe11ets, though more common in nor thern than in southern s h e l f sed iments , are not abundant on the s h e l f and are h i g h l y concent ra ted on ly near the s h e l f edge. F i g . 41 shows the mean s i z e versus s o r t i n g of g i a u c o n i t i c samples. The p e l l e t s appear common in most sediment groups. Al though higher concen-t r a t i o n s can occur in the f i n e r sed iments , more of the coarse poor l y so r ted samples are g i a u c o n i t i c than are f i n e r , b e t t e r s o r t e d ; sed iments . As noted above, the c o a r s e s t , most poor l y so r ted sediments tend to be a s s o c i a t e d w i t h d i s t i n c t p h y s i o g r a p h i c f e a t u r e s or a r e a s . Consequent ly , the h i g h e s t c o n c e n t r a t i o n s of g i a u c o n i t i c samples were found : (a) at the r i d g e ex tend ing west from the Sea Otter Group of s h o a l s , (b) on the two saddles west of Goose I. Bank, (c) i n the In ter t rough A r e a , and, (d) at the r i d g e s i n t e r s e c t i n g the seaward end of the t roughs . G l a u c o n i t e p e l l e t s a l s o occur in f i n e r , b e t t e r so r ted sediments near the 100 metre contour at the edge of Goose I. Bank and Cook Bank. Table IV l i s t s samples w i t h the h ighes t observed t e s t - f r e e g l a u c o n i t e p e l l e t contents and i n d i c a t e s fo r each : (a) the percentage that the examined s i z e - f r a c t i o n i s of the t o t a l sand f r a c t i o n , (b )percentage of g l a u c o n i t e p e l l e t s m Semi-enc1osed and Free G laucon i te P e l l e t s (pel l e t s i z e : 1 . 0 0 - . 3 5 4 mm.) Examples of Shapes of T e s t - f r e e Glauconi te Pel l e t s ( p e l l e t s i z e : . 3 5 4 - . 5 0 0 mm.) PLATE I I I <: r x , \ / \ V ./if1 OUEEN *CHARLOTTE /CN-' / / +51* P E L L E T G L A U C O N i T E P E R C E N T IN" I N S O L U B L E P A R T 1.00-1.50 S A N D \ > P 7 © / @ (40)'^  TRIANGLE IS. 10 20 30 131" CONTOURS IN METRES SSL NAUTICAL MILES I 129 9 1 . JL_ I I I I L GLAUCONITIC SAMPLE * mean size vs. sorting S T A N D A R D D E V I A T I O N (0) F i g u r e M 92. in the i n s o l u b l e f r a c t i o n of the examined s i z e - f r a c t i o n and (c) the percent C a C n 3 is of the examined s i z e - f r a c t i o n . The t a b l e suggests that the smal le r the examined s i z e - f r a c t i o n i s of the whole sand f r a c t i o n , i . e . the more the mean.gra in s i z e of the sample i s d i s p l a c e d from the g r a i n s i z e of the exam-ined s i z e - f r a c t i o n , the greater i s the p e l l e t c o n t e n t . Thus, d i f f e r e n c e s in content of these samples w i t h h igher c o n c e n t r a t i o n s probably i s p a r t l y due to v a r i a t i o n s in r e l a t i v e amounts of a s s o c i a t e d d e t r i t a l m a t e r i a l and not only to a b s o l u t e d i f f e r e n c e s i n p e l l e t c o n t e n t . The t a b l e a l s o suggests that except fo r the two samples at the seaward end of South Trough ( # 1 5 2 , # 1 8 7 ) CaCOj content ( c o n s i s t i n g p r i m a r i l y of f o r a m i n i f e r a 1 t e s t s ) i s moderate to h i g h . TABLE IV Percent of t o t a l sand Test f r e e g l a u c o n i t e Percent sample conta ined in the p e l l e t content in i n - CaCOj in . 3 5 4 - . 5 0 0 mm ( 1 . 0 - 1 . 5 s o l u b l e f r a c t i o n of examined Sample No. ph i ) s i z e f r a c t i o n examined f r a c t i o n f r a c t i o n 7 9 3 0 1 8 7 1 5 2 3 5 • 1 0 1 8 7 3 5 1 2 4 0 6 2 0 1 7 9 5 6 40 1 6 9 1 118 1 2 9 2 3 3 3 1 2 0 9 1 1 3 6 2 24 9 1 7 4 1 6 1 3 5 2 3 93. GRAVEL ROUNDNESS P l a t e IV o f f e r s a v i s u a l c o m p a r i s o n o f roundness o f g r a v e l p o p u l a -t i o n s i n d i f f e r e n t p h y s i o g r a p h i c a r e a s o f 0_ueen C h a r l o t t e Sound. On most p a r t s o f the s h e l f i n c l u d i n g the s h e l f edge, g r a v e l s a r e g e n e r a l l y w e l l rounded. The o n l y r e g i o n i n w h i c h a n g u l a r g r a v e l s a r e p r e v a l e n t i s t he I n t e r t r o u g h A r e a . S i m i l a r l y a n g u l a r g r a v e l s f r e q u e n t l y e n c r u s t e d ( w i t h b r y o z o a n and worm t u b e s ) were a l s o f o u n d i n the v i c i n i t y o f the s a d d l e s j u s t w e s t - o f Goose I .-"Bank and on the r i d g e e x t e n d i n g t o the west o f t h e Sea O t t e r Group o f s h o a l s . PLATE IV Comparison of Gravel Roundness In a l l p h y s i o g r a p h i c areas of the Sound g r a v e l s are commonly w e l l rounded — subrounded except a t the In ter t rough Area where they are d i s t i n c t l y a n g u l a r . 95. f S ^ r w w r C ( Cook Bank N o r t h Bank S h e l f Edge G o o s e |. Bank * - * 1 I c < f f r c J f e e \{f Shelf Edge < t v SU M % • r I n t e r t r o u g h A r e a C o m p a r i s o n o f G r a v e l R o u n d n e s s PLATE IV 96. SAND GRAIN SURFACE TEXTURES A t o t a l of 36 r e p r e s e n t a t i v e photomicrographs were o b t a i n e d of s u r f a c e t e x t u r e s of sand g r a i n s from Cook Bank (#46 - sediment p o p u l a t i o n D), I n t e r -t rough Area (#282 - sediment p o p u l a t i o n C ) , and North Bank (#473 - sediment p o p u l a t i o n D) ( P l a t e s V, V I , V I I ) . F i v e f e a t u r e s c o n s i d e r e d by K r i n s l e y and Funnel (1965) to be d i a g n o s t i c of g l a c i a l t r a n s p o r t were observed on the examined sand g r a i n s (examples l i s t e d a c c o r d i n g to sample number): (a) concho ida l f r a c t u r e s v a r y i n g g r e a t l y in s i z e ( e . g . #46K, #282L, #473 I) (b) very h igh r e l i e f ( e . g . #46G, #282 I and J , #473E) (c) a r c u a t e steps ( e . g . #46B, E, H , K ; #282F, H , I, J ; #473E, I, J) (d) p a r a l l e l s t r i a t i o n s ( e . g . #282G) (e) i m b r i c a t e breakage b l o c k s ( e . g . #282G) Almost a l l g r a i n s appear w e l l rounded and g l a c i a l f e a t u r e s are subdued. Th is smoothing of f e a t u r e s may have r e s u l t e d e i t h e r from a b r a s i o n or s o l u t i o n ( K r i n s l e y and C a v a l l e r o , 1970) . V-shaped depress ions are ev ident on photos #46, I, J and #473 K, L. K r i n s l e y e_t aj_ (1964) found that such f e a t u r e s c h a r a c t e r i z e quar t z g r a i n s from beaches. M a r g o l i s and Kennett (1970) c la imed these d e p r e s s i o n s can r e s u l t f rom deep -sea t u r b i d i t y - c u r r e n t t r a n s p o r t . Chemical s o l u t i o n has a l s o been p o s t u l a t e d as a means of c r e a t i n g such f e a t u r e s (Schne ider , 1970) a l though when so d e r i v e d they tend to be a s s o c i a t e d w i t h s m a l l e r - s c a l e p i t t i n g ( K r i n s l e y and Donahue, 1968) which has a " b u c k - s h o t " appearance. Sur face f e a t u r e s on g r a i n s #46D and L are s i m i l a r to those on quar t z g r a i n s d e r i v e d from weathered g r a n i t e subsequent ly abraded in the beach e n v i r o n -ment (Schne ider , 1970). Gra in #46E s t r o n g l y resembles a g r a i n d e s c r i b e d by S t i e g l i t z (1969) as hav ing g l a c i a l f e a t u r e s m o d i f i e d and subdued by wind a b r a s i o n . PLATE V Photomicrographs of Quartz Gra ins in Sample #46 F igure Magn i f i cat ion A 840 B 2000 C 1860 D 1760 E 920 F 870 G 850 . K 1910 I 455 J 4500 K 1760 L 2050 Text d i s c u s s i o n ( p . 9 6 ) i n d i c a t e s p o s s i b l e envi ronmental a f f i n i t i e s f o r some of the s u r f a c e t e x t u r e s p i c t u r e in the photographs. 9 8 . Photomicrographs of Quartz Gra ins in Sample tfkS PLATE V PLATE VI Photomicrographs of Quartz Gra ins in Sample #282 F igure Magni f i c a t ion A 870 B 415 C 1660 D 480 E 875 F 950 G 900 H 955 I 180 J 900 K 850 L 955 Text d i s c u s s i o n (p.96) i n d i c a t e s p o s s i b l e env i ronmental a f f i n i t i e s f o r some of the s u r f a c e t e x t u r e s p i c t u r e d in the photographs. 100. J K L Photomicrographs of Quartz Gra ins in Sample #282 PLATE VI 101. PLATE VI I Photomicrographs of Quartz Gra ins in Sample #473 F igure Magni f i c a t ion A 660 B 680 C 1300 D 370 E 725 F 325 G 370 H 335 I 300 J 725 K 680 L . . . . 1 3 5 0 Text d i s c u s s i o n (p. 96) i n d i c a t e s p o s s i b l e envi ronmental a f f i n i t i e s f o r some of the s u r f a c e t e x t u r e s p i c t u r e d in the photographs. Photomicrographs of Quartz Gra ins in Sample #473 PLATE VI I 103. To summarize: it appears all three samples have had a history of glacial transport. Of the three, sample #282 exhibits a greater variety of features reflecting such a history. Samples #46 and #473 show some evidence of having features acquired in a beach environment superimposed on subdued features of glacial origin. 104. HEAVY MINERALS A r e a l D i s t r i b u t i o n of Tota l Heavy M i n e r a l s A r e a l d i s t r i b u t i o n of heavy minera l content in the . 1 7 7 - .063 mm ( 2 . 5 - 4 . 0 p h i ) s i z e f r a c t i o n of the best so r ted sands (sediment p o p u l a t i o n D) i s shown in F i g . 42 . Tota l sample content was e s t i m a t e d by m u l t i p l y i n g the percent heavy m i n e r a l s in the examined s i z e f r a c t i o n by the percent of the t o t a l sample represented by the s i z e . f r a c t i o n . Th is c a l c u l a t i o n revea led that samples w i t h mean s i z e s between .205 - .145 mm ( 2 . 3 - 2 . 8 ph i ) have the h i g h e s t heavy minera l contents and, of t h e s e , the four h ighes t f o r the e n t i r e Sound are l i s t e d in the f o l l o w i n g t a b l e (Table V): TABLE V Percent of Tota l Percent Heavy % H.M. in Sample Contained M i n e r a l s in the Tota l in the . 1 7 7 ~ - 0 6 3 . 1 7 7 " . 0 6 3 mm Sample Sample No. Depth mm S i z e F r a c t i o n S i z e F r a c t i o n # 2 7 91 metres 7 0 26 18. #63 122 11 51 51 26 #74 102 11 84 34 28 #180 8 2 " 39 57 22 The samples f a l l w i t h i n a f o r t y metre depth range centered about 1 0 0 metres . Three of the samples are found in c l o s e a s s o c i a t i o n w i t h the canyons at the nor thern margin of Cook Bank. The f o u r t h is on the southwestern margin o f Goose I. Bank. R e l a t i o n s h i p of Magnet i te Percent to Sample Depth, Heavy M i n e r a l Percent and Mean S i z e F i g . 43 shows % magnet i te in the heavy minera l f r a c t i o n of the . 1 7 7 " . 0 6 3 s i z e f r a c t i o n of best s o r t e d sands p l o t t e d a g a i n s t % t o t a l heavy m i n e r a l s in same s i z e f r a c t i o n , sample depth and sample mean s i z e . o PERCENT MAGNETITE IN HEAVY MINERAL FRACTION VS. SAMPLE MEAN SIZE, DEPTH a %H.M. IN ANALYZED SIZE FRACTION Sot, > . •f I 1 0 2 0 % MAOHETITC i r r 10 20 30 % MA6NETITE 3Z$-» _r O F i p u r e 4-3 107. % magnet i te shows a genera l p o s i t i v e c o r r e l a t i o n w i t h % heavy minera l in the examined f r a c t i o n of the samples . Th is s imp ly r e f l e c t s the f a c t t h a t , due to v a r y i n g h y d r a u l i c < e q u i v a l e n c i e s , when % heavy m i n e r a l s i s determined from the same s i z e f r a c t i o n in samples of d i f f e r e n t mean s i z e s , not o n l y w i l l the sample w i t h the c o a r s e r mean s i z e tend to have more heavy m i n e r a l s , but the heavy minera l f r a c t i o n w i l l i t s e l f appear to have a c o r r e s p o n d i n g l y h igher content of i t s h e a v i e s t f r a c t i o n , in t h i s c a s e , m a g n e t i t e . The p l o t of % magnet i te versus sample depth suggests that w i t h i n a broad envelope magnet i te decreases w i t h depth . Th is t rend i s p r e d i c t a b l e be-cause of the general tendency f o r g r a i n s i z e to decrease w i t h depth . However, two samples (#62 and #63) e x h i b i t anomalously h igh % magnet i te f o r t h e i r depths . A t t e n t i o n has been drawn to sample #63 in the immediately p reced ing s e c t i o n on heavy m i n e r a l d i s t r i b u t i o n . It i s the sample w i t h the s e c o n d - h i g h e s t heavy m i n e r a l c o n t e n t in the Sound. Sample #62 was c o l l e c t e d near sample #63 at a depth of 73 metres a n d , c o n s e q u e n t l y , a l s o l i e s near the canyons a t the margins of Cook Bank. The p l o t of magnet i te content versus sample mean s i z e g e n e r a l l y i n d i c a t e s the expected decrease in % magnet i te w i t h d e c r e a s i n g mean s i z e . However, s e v e r a l samples seem to have anomolously low % m a g n e t i t e . Most of these ( those w i t h sample numbers above them) a l s o have enough i r o n - s t a i n e d q u a r t z g r a i n s to impart a y e l l o w i s h t i n g e to the whole sample ( F i g . 12 and P l a t e s II and V I I I ) . Examinat ion of Table VI r e v e a l s that s t a i n i n g is more common on c o a r s e r than f i n e r g r a i n s in y e l l o w i s h samples ( i n c l u d i n g both w e l l - a n d p o o r l y - s o r t e d s e d i m e n t s ) . I r o n - s t a i n e d Sands (sand g r a i n s i z e : .354 mil.) Non -s ta ined Sands (sand g r a i n s i z e : . 177 mm.) PLATE VI I I 109. TABLE VI I r o n - S t a i n e d Gra in Content in Var ious S i z e F r a c t i o n s I r o n - s t a i ned Sample No./ S i z e F r a c t i o n (mm) '125 .177 .250 .350 .500 .707 35 14% 20% 31% 46 22% 31% 33% 60 15% -25% ...3.2% 61 30% 42% 40% 62 16% 24% 26% 72 12% 36% 32% 165 22% 34% 43% 286 23% 35% 38% 473 27% 44% It may a l s o be noted tha t most of the w e l l - s o r t e d i r o n - s t a i n e d sands f a l l w i t h i n sediment group 3 in F i g . 31 (see a l s o F i g . 33 f o r l o c a t i o n o f group 3 s a n d s ) . 110. CHARACTER OF THE SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS L o c a t i o n s at which bottom photographs were obta ined are shown in Fig. 44. S e l e c t e d photographs have been grouped a c c o r d i n g to p h y s i o g r a p h i c a rea ( P l a t e s IX through XX). C h a r a c t e r i s t i c s of the Sound f l o o r seen in the photographs a re summarized in Table V I I . Bottom r i p p l e s have been c l a s s i f i e d a c c o r d i n g to Harms' (1969) scheme. Bottom fauna were t e n t a t i v e l y compared w i t h specimens obta ined in bottom samples which had been i d e n t i f i e d by re fe rence to F l o r a and Fa i rbanks (1966) , M o r r i s (1966) , Car l (1966)and G r i f f i t h (1967) . T i d a l s tages f o r the Sound at the t ime photograph was ob ta ined were drawn from t i d e t a b l e s f o r the town of B e l l a B e l l a (Anon . , 1968) which i s on the c e n t r a l Queen C h a r l o t t e Sound main land c o a s t . T i d a l d i r e c t i o n s were determined from a summary of t i d a l movements shown in F i g . 6. T i d a l - f l o w d i r e c t i o n s are meant o n l y as a genera l i n d i c a t i o n of the d i r e c t i o n of water -mass movement and i t does not c o n s i d e r t i d a l edd ies which may be s i g n i f i c a n t over an area as smal l as that covered by the photographs (at most two square m e t r e s ) . The compass e v i d e n t in most of the photographs has a d iameter of 7-5 cm and the compass vane i s 25 cm long . 4 CD +51' LOCATIONS OF CAMERA STATIONS CONTOURS IN METRES V TABLE VI I CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -g raph i c A r e a Bottom Photo L o c a -t ion # Sed i -ment Popu -1 a t ion Dept, (m.) i R i p p l e Type R i p p l e Or i e n t a t ion I n f e r r e d D i r e c t i o n of Cur ren t T i d a l Stage Di r e c t ion of T i d a l Movement Fauna Comments Trough Steep Face Cook Bank k2S D 80 1) Wave dominated c omb i ne d f l o w r i p p l e N-S E E m i d -f l o o d NE S p a r s e , poss ib 1 y a few g a s t r o -pods Center photo i s p r o b a b l y c l o s e - u p v iew of combined f l o w r i p p l e s . Compass not i n c l u d e d i n o r i g i n a l p h o t o . L i n g u o i d r i p p l e s appear t o be s u p e r - i m p o s e d on combined f l o w r i p p l e s . 2) H igh energy 1 i n g u o i d c u r r e n t r i p p l e E-W N N k35 D (Group 3 coa rser , b e t t e r sor t e d , i r o n -s t a i ned sands o c c u r in th i s a r e a ) 70 Weak wave g e n e r a t e d s ymme t r i -ca 1 r i pp1es N-S Near peak of f l o o d NE Genera I 1y s p a r s e , one c l u s t e r of g a s t r o p o d s ( M a r g a r i t e s ) o c c u r s by s t r a n d of k e l p. Note dense network of w e l l - p r e s e r v e d s n a i l t r a i 1 s . V 113. CHARACTER OF SOUND FLOOR AS 03SERVED IN BOTTOM PHOTOGRAPHS Phys i o -graphic Bottom Photo Sed i -ment Depth (m.) Ripple Type Ri pple Orientat ion Inferred Di rec t i on T idal Stage Di riect ion of Tidal Fauna Comments Area Loca-t i o n # Popu-1 at ion Trough Steep Face of Current Movement Cook Bank (Contd) 437 g r a v e l l y shel 1 hash 40 High energy i inguoid current r ipp les E-W N (?) N (?) Low ebb S-SW Giant Sea Cucumber (St ichopus c a l i f o r n i c u s ) Butter Clam $ax i domus g iganteus) , In the top l e f t hand photo i t is not c l e a r in what d i r e c t i o n the steep s i de of the 1i nguoi d r ipp les are fac ing but the leafy kelp is being swept towards the north White Plumed Anemone (Met r id i urn s e n i l e ) , an un ident i f ied anemone, branched bryozoan. by a current s u f f i c i e n t to suspend she l l f r a g -ments above the hose-i i k e piece of kelp at the r ight of the photo. Goose Island Bank kiO A-D 35-45 Weak wave generated symmetr i -ca 1 r i pples NNW-SSE Start of ebb SW Sea anemones and gastropods A few s n a i l t r a i l s are evident in l e f t hand photo. 267 A-D 37 1)Wave generated s ymme t r i -cal r ipples N-S Low ebb SW No apparent 1ive fauna a) Current strength s u f f i c i e n t to sort not only sand but a l s o grave 1s. b) Current r ipp les superimposed on wave r i p p l e s . c) D i s t r i b u t i o n of she l l fragments suggest they may respond considerably d i f f e r e n t l y to p r e v a i l , currents than inorganic 2) Low energy current r ipp les E-W S S 1 14. CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM-PHOTOGRAPHS Phys i o-graph i c Area Bottom Photo Loca-t i on # S e d i -ment Popu-l a t i o n Depth (m.) Ri pple Type Ripple Or ientat ion Inferred Di rect i on of Current Tidal Stage Di rect i on of Tidal Movement Fauna Comments Trough Steep Face Goose Is land Bank (Contd) 288 A 38 Indi s -t i net Mid-f lood NE Top l e f t : ha l f buried egg case of Po l in ices lewis i i , Butter Clam (Saxidomus SLL3anteu_s) Top r i g h t : Sun-flower Star (Pycnopod ia hel ianthoides) Snai l t r a i l s as abundant as in # 435 311 A,C,D 46-64 1) Wave generated s ymme t r i -ca l r ipples NS Mid-f lood NE Rock Cod (?) a) Sea f l o o r appears sim. to that at locat ion #267. Here too there appears to be s u f f i c i e n t energy to sort g rave ls . b) Note broad segregation of sand,shel l fragments and gravels from c res t to . trough of wave r i p p l e s . c) Top l e f t : sand r i b -bons i n d i c a t i n g N-S current ( S t r i d e , 1963)-2) High energy 1i ngubid current r i p p l e s E-W N N North Bank 3 9 2 A,C,D (foram sand common) 130 Wave domina-ted com-b i ned f low r i pples E-W N N Near peak of f lood N- NW Cr ino ids , worms, s t a r -f i sh, so le , hoiothur ians, sponges. Radii of c r i n o i d s are being swept north. 1 1 5 . CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o-g r a p h i c A r e a B o t t o m P h o t o L o c a -t i o n # S e d i -ment Popu-l a t i o n D e pth R i p p l e (m.) Type R i p p l e Or i e n t a t i o n T r o u g h Steep Face I n f e r r e d D i r e c t i o n o f C u r r e n t T i d a l S t a g e Di r e c t i o n o f T i d a l Movement Fauna Comments S o u t h  T r o u g h D,E 183 o p h i u r o i d s and se a u r c h i n s No c u r r e n t o r wave g e n e r a t e d b e d f o r m s . 4 2 7 1 9 0 No a p p a r e n t ep i f a u n a a ) b u r r o w s a n d t r a i l s b ) No c u r r e n t o r wave g e n e r a t e d b e d f o r m s . A.B.C 105-155 oph i u r o i d s , p e c t e n s ( P e c t e n  h e r i c i u s ) s h r imp (Ca1 I i a n a s s a ?) T h e r e i s nc c o n c l u s i v e e v i d e n c e o f c u r r e n t a c t i v i t y . G r a v e l s o c c u r f o r t h e f u l l d e p t h r a n g e b u t t h e y no l o n g e r a r e washed c l e a n a t t h e d e e p e s t s i t e ( B o t t o m r i g h t p h o t o ) . Cent ra1  T r o u g h 36*+ k9k Sea u r c h i n s h o i o t h u r i a n s , s e a anemone ( p r o b a b 1 y A c t i n o s c y p h i a No c u r r e n t o r wave g e n e r a t e d b e d f o r m s . s a g i n a t a ) (See "Church, 1 9 7 1 ) PLATE ix CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -g r a p h i c B o t t o m P h o t o S e d i -ment D e p t h (m.) R i p p l e Type R i p p l e Or i e n t a t i o n I n f e r r e d Di r e c t i o n T i d a l S t a g e Di r e c t i o n o f T i d a l F a u n a Comments A r e a L o c a -t i o n # Popu-1 a t i o n T r o u g h S t e e p F a c e o f C u r r e n t Movement Cook Bank D 80 1 ) Wave domi n a t e d comb i ned f l o w r i p p l e N-S E E m i d -f l o o d NE S p a r s e , p o s s i b l y a few g a s t r o p o d s C e n t e r p h o t o i s p r o b -a b l y c l o s e - u p v i e w o f c o m b i n e d f l o w r i p p l e s . Compass n o t i n c l u d e d i n o r i g i n a l p h o t o . 2 ) H i g h e n e r g y 1 i n g u o i d c u r r e n t r i p p l e E-W N N L i n g u o i d r i p p l e s a p p e a r t o be s u p e r - i m p o s e d on c o m b i n e d f l o w r i p p l e s . PLATE X CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o - Bottom S e d i - Depth R i p p l e Ri p p l e I n f e r r e d T i d a l Di r e c t i o n Fauna Comments g r a p h i c Photo ment (m.) Type O r i e n t a t ion Di r e c t i o n Stage o f T i d a l A r e a L o c a - Popu- T r o u g h Steep o f Movement t i o n ii 1 a t ion Face C u r r e n t Cook 435 D 70 Weak N-S _ Near NE Genera 11y Note dense network o f Bank (Group 3 wave peak o f s p a r s e , one w e l l - p r e s e r v e d s n a i l c o a r s e r , g e n e r a - f l o o d c l u s t e r o f t r a i1s . b e t t e r t e d g a s t r o p o d s s o r t e d , s ymme t r i• (Margar i t e s ) i r o n - c a l o c c u r s by s t a i ned r i p p l e s s t r a n d o f k e l p . sands o c c u r in t h i s * a rea) Stat ion U 43i> 70 m. PLATE X O PLATE XI CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -g r a p h ic A r e a Bottom Photo L o c a -t i o n # S e d i -ment P o p u -11 a t i on Depth (m.) R i p p l e Type Ri p p l e Or i e n t a t ion i n f e r r e d Di r e c t i o n o f C u r r e n t T i d a l Stage D i r e c t i on o f T i d a l Movement Fauna Comments Trough Steep Face Cook Bank 437 g r a v e l l y s h e l 1 hash 40 H i g h e n e r g y 1 i n g u o i d c u r r e n t r i p p l e s E-W N (?) N (?) Low ebb S-SW G i a n t Sea Cucumber (St i chopus ca1i f o r n i c u s ) B u t t e r Clam (Sax i domus giganteus), White Plumed Anemone (Metr i d i urn s e n i 1 e ) , an un ident i f i e d anemone, b r a n c h e b r y o z o a n . In the t o p l e f t hand p h o t o i t is not c l e a r in what d i r e c t i o n the s t e e p s i d e o f the 1 i n g u o i d r i p p l e s a r e f a c i n g but the l e a f y k e l p is b e i n g swept towards the n o r t h by a c u r r e n t s u f f i c i e n t t o suspend s h e l l fragments above the h o s e - l i k e p i e c e o f k e l p at the j r i g h t o f the p h o t o . PLATE XII CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o - Bottom S e d i - Depth R i p p l e R i p p l e I n f e r r e d T i d a l Di r e c t i o n Fauna Comments g r a p h i c Photo ment (m.) Type Or i e n t a t ion Di r e c t ion Stage o f T i d a l A r e a L o c a - P o p u - T r o u g h Steep o f Movement t i o n ft 1 a t ion Face C u r r e n t Goose 430 A - D 35-45 Weak NNW- S t a r t SW Sea anemones A few s n a i l t r a i l s a r e Is land wave SSE o f ebb and g a s t r o p o d s e v i d e n t in l e f t hand Bank g e n e r a t e c . p h o t o . s ymme t r i -c a l r i p p l e s S t a t i o n # 430 35-^0 m. PLATE XII PLATE XIII CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -g r a p h ic A r e a Bottom P h o t o L o c a -t i o n # Sed i -ment P o p u -1 a t ion Depth (m.) R i p p l e Type Ri p p l e Or i e n t a t ion I n f e r r e d Di r e c t ion o f C u r r e n t T i d a l Stage Di r e c t i o n o f T i d a l Movement Fauna Comments T r o u g h Steep Face Goose Is l a n d Bank 267 A - D 37 1) Wave g e n e r a t e d symmet r i a r i p p l e s N-S 1 Low ebb sw No a p p a r e n t 1 i v e fauna a) C u r r e n t s t r e n g t h s u f f i c i e n t t o s o r t not o n l y sand but a l s o g ra ve 1 s . b) C u r r e n t r i p p l e s s u p e r i m p o s e d on wave r i pp1es. c) D i s t r i b u t i o n o f s h e l l f r a g m e n t s suggest t h e y may r e s p o n d c o n s i d e r a b l y d i f f e r e n t l y t o p r e v a i l , c u r r e n t s than i n o r g a n i c f r a g m e n t s . 2) Low energy c u r r e n t r i p p l e s E-W S S S t a t i o n 267 37 m. PLATE XIII V PLATE XIV CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -g raph ic Area Bottom Photo Loca-t i o n # S e d i -ment Popu-lat ion Depth (m.) Ripple Type Ri pple Or ientat ion Inferred D i rect i on of Current T idal Stage Di rect ion of T idal Movement Fauna Comments Trough Steep Face Goose Island Bank 288 A 38 Ind i st i net Mid-f lood NE Top l e f t : ha l f buried egg case of Po l i n i ces 1ewi s i i , But ter Clam (Sadidomus giganteus) Top r i g h t : Sun-flower Star (Pycnopodia he l iantho ides ) Sna i1 t ra i1s as abundant as in # 435. I CO PLATE XV CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -graph ic Bottom Photo S e d i -ment Depth (m.) Ripple Type Ri pple Or ientat ion Inferred Di rect ion Tidal Stage Di rec t ion of T idal Fauna Comments Area Loca-t ion tt Popu-la t ion Trough Steep Face of Current Movement Goose is land Bank 311 A , C D 46-64 1j Wave generated symmetri-ca 1 r ipp les NS Mid-f lood NE Rock Cod (?) a) Sea f l o o r appears sim. to that at locat ion # 2 6 7 Here too there appears to be s u f f i c i e n t energy to sort g rave ls . b) Note broad segrega-t ion of sand, she l l f rag menis and gravels from crest to trough of wave r i p p l e s . c) Top l e f t : sand r i b -bons ind ica t ing N-S current ( S t r i d e , 1963) 2 ) High energy 1i nguoid current r ipp les E-W N N o PLATE XVI CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o - Bottom S e d i - Depth R i p p l e Ri p p l e I n f e r r e d T i d a l Di r e c t i o n Fauna Comments g r a p h ic Photo ment (m.) Type Or i e n t a t ion Di r e c t i o n Stage o f T i d a l A r e a L o c a - P o p u - Trough Steep o f Movement t i o n # 1 a t ion Face C u r r e n t N o r t h 392 A , C , D , 130 Wave E-W N N Near N-NW C r i n o i d s , worms, Rad i i of c r i noi ds Bank (foram dom i nated peak o f s t a r f i s h , s o l e , a r e b e i n g swept sand comb ined f l o o d h o i o t h u r i a n s , n o r t h . common) f l o w s p o n g e s . r i p p l e s > 0 PLATE XV I I CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o - Bottom Sed i - Depth Ripple Ri pple Inferred T idal Di rect i on Fauna Comments graph ic Photo ment (m.) Type Orientat ion Di rect ion Stage of T idal Area Loca- Popu- Trough Steep of Movement t i o n H lat ion Face Current South D,E 183 Ophiuroids and No current or wave Trough sea urchins generated bedforms. Stat i on # hlk 183 m. PLATE XVI I PLATE XV J JI CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o - B o t t o m S e d i - Depth R i p p l e R i p p l e I n f e r r e d T i d a l Di r e c t i o n Fauna Comments g r a p h i c P h o t o ment (m.) Type Or i e n t a t ion Di r e c t ion Stage o f T i d a l A r e a L o c a - P o p u - Trough Steep o f Movement t i o n fl 1 a t ion Face C u r r e n t South 427 E 190 _ _ _ _ _ No a p p a r e n t a) burrows and t r a i l s T r o u g h e p i f a u n a . b) No c u r r e n t o r wave • g e n e r a t e d b e d f o r m s . Stat i on U 4 2 7 1 9 0 m. PLATE X V I I I PLATE XIV CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -graph ic Area Bottom Photo Loca-t i o n # Sed i -ment Popu-la t ion Depth Ripple Type Ripple Or ienta t ion Inferred Di rect ion of Current T idal Stage Di rec t ion of T idal Movement Fauna Comments Trough Steep Face South Trough 422 A.B.C 105-155 -oph i u r o i d s , pectens (Pecten her i c i us) shr imp (Ca l l ianassa ?) There is no conclusive evidence of current a c t i v i t y . Gravels occur for the fu 1 1 depth range but they no longer are washed clean at the deepest s i t e (Bottom r ight photo). 137. CO PLATE XX CHARACTER OF SOUND FLOOR AS OBSERVED IN BOTTOM PHOTOGRAPHS Phys i o -g r a p h i c Bottom Photo S e d i -ment Depth (m.) R i p p l e Type R i p p l e Or i e n t a t ion I n f e r r e d Di r e c t i o n T i d a l Stage Di r e c t i o n o f T i d a l Fauna Comments A r e a L o c a -t i o n ti P o p u -1 a t ion Trough Steep Face o f C u r r e n t ,, Movement Cent ra 1 Trough 364 F 494 - - - - - - Sea u r c h i n s h o i o t h u r i a n s , sea anemone ( p r o b a b 1 y A c t i noscyph ia No c u r r e n t or wave g e n e r a t e d b e d f o r m s . s a g i n a t a ) (See C h u r c h , 1971) 1 3 9 i4o. DESCRIPTION OF GRAVITY CORES L o c a t i o n s o f c o r e s e x a m i n e d i n t h i s s t u d y a r e shown i n F i g . 45. The g e n e r a l t e x t u r e o f t h e c o r e s and t h e i r o r g a n i c c a r b o n and CaC03 c o n t e n t s a r e s h o w n i n F i g . 46. C o l o u r p h o t o g r a p h s o f s e l e c t e d c o r e s e c t i o n s a r e shown i n P l a t e XXI and X - r a y p h o t o g r a p h s o f s e l e c t e d c o r e s e c t i o n s a p p e a r i n P l a t e X X I I . C o r e #448 e x h i b i t s a g e n e r a l downward d e c r e a s e i n g r a i n s i z e and o r g a n i c c a r b o n and CaCO^ c o n t e n t . C o l o u r g r a d e s f r o m g r a y i s h o l i v e g r e e n (5GY 3/2) a t t h e t o p t o d u s k y y e l l o w g r e e n (5GY 5/2) a t t h e b o t t o m . The X - r a y p h o t o g r a p h i n d i c a t e s d i s t i n c t s t r u c t u r e s s u c h a s b e d d i n g o n l y i n t h e upper t h i r d o f t h e c o r e . The b o t t o m t w o - t h i r d s ( P l a t e X X I l ) a p p e a r a s a r a t h e r homogeneous s e d i -ment w i t h a few " f l o a t i n g " s h e l l s . C o r e #484 i s s i m i l a r l y f i n e r g r a i n e d and l e s s r i c h i n o r g a n i c c a r b o n a n d CaCO^ w i t h i n c r e a s i n g d e p t h and t h e u p p e r m o s t p a r t o f t h e c o r e i s a n o l i v e g r a y (5Y 3/2) s l i g h t l y c l a y e y s i l t y sand w i t h m o d e r a t e o r g a n i c c a r b o n and CaCO^ c o n t e n t s i m i l a r t o t h a t i n c o r e #448. H o w e v e r , i n o t h e r r e s p e c t s , c o r e #484 i s q u i t e d i s t i n c t f r o m c o r e #448. The u p p e r p a r t o f c o r e #484 uncomformab1y o v e r l i e s a 30 cm t h i c k s e c t i o n o f i n t e r c a l a t e d d a r k g r e e n i s h g r a y (5G 4/1) -medium b l u i s h g r a y (5B 5/1) c l a y e y s i l t and m a t e r i a l v e r y much l i k e t h a t a t t h e t o p o f t h e c o r e . B e l o w 45 cm t h e c o r e i s e n t i r e l y d a r k g r e e n i s h g r a y -medium b l u i s h g r a y . T h i s b o t t o m t h r e e q u a r t e r s o f t h e c o r e i s s i l t i e r and l e s s r i c h i n o r g a n i c c a r b o n and CaC0$ t h a n t h e e q u i v a l e n t s e c t i o n o f c o r e #448. Core #492 i s v e r y s h o r t . The t o p o f the c o r e i s s i m i l a r i n t e x t u r e and c o l o u r t o t h e t o p o f c o r e #484. The b o t t o m 30 cm i s t h e same c o l o u r a s t h e m a t e r i a l a t e q u i v a l e n t d e p t h i n c o r e #484, but i t i s c o a r s e r . O r g a n i c c a r b o n a n d CaCO^ c o n t e n t s a r e c o m p a r a b l e t o t h o s e a t e q u i v a l e n t d e p t h s i n c o r e #484. I n t e r n a l s t r u c t u r e s i n c o r e #492 a r e shown i n t h e X - r a y p h o t o i n P l a t e X X I I . The s e c t i o n o f t h e c o r e shown c o i n c i d e s w i t h t h a t i n t h e p h o t o g r a p h i n P l a t e X X I . The more muddy s e c t i o n o f t h e c o r e i s g e n e r a l l y m a s s i v e w h e r e a s t h e more LOCATIONS OF GRAVITY CORES \ W CONTOURS IN METRES NAUTICAL M I L E S 4 4 8 0 0 o o o g CM * 10 CO 2 1 I I 1 I I o in ' o o-<§ 1 CO •p-°- o UJ m • O . — U l CC o o o o. CM o in — M r Q r - £ ? I 5 3 01 00 o O C3 o £ ° O O 2.0 2.8 2.0 4.0 484 i.o 0.8 4.8 2.1 0.4 0.2 1.2 3.2 0.4 0.4 0.8 1.9 0.4 0.4 0.7 1.0 492 495 I I I I I I I I I 1.5 5.4 • 520 I I I I I 0.7 1.7 0.2 0.4 I.I 4.2 0.6 6.8 0.8 3.2 CORE DESCRIPTION 4> PLATE XXI Photographs of S e c t i o n s of S e l e c t e d G r a v i t y Cores The upper photograph i l l u s t r a t e s : a . The uppermost 50 cm. of a core (#448) from the inner s h e l f p o r t i o n of South Trough e x h i b i t i n g the g r a y i s h o l i v e green c o l o u r common f o r s u r f i c i a l t rough sediments throughout i t s e n t i r e l e n g t h . b. The uppermost 50 cm. of a core (#492) from Cent ra l Trough near the s h e l f b reak . The top 20 cm. of the core i s s i m i l a r in c o l o u r to core #448, however, below t h i s depth core c o l o u r changes a b r u p t l y to dark g r e e n i s h gray and (except f o r a smal l lens of o l i v e green) remains t h i s c o l o u r f o r the remainder of the c o r e . c . The uppermost and lowermost 50 cm. of core #484 from the m i d - s h e l f p o r t i o n of Cent ra l Trough. It is s t r i k i n g l y s i m i l a r in c h a r a c t e r to core #492 as the coarse r o l i v e green s i l t y c l a y e y sand forms noth ing more than a t h i n capping on the o therwise f i n e r g ra ined dark g r e e n i s h gray sediment column. The lower photograph is a l a r g e r s c a l e view of the contact zone in cores #492 and #484. # 4 * 8 # 4 9 2 #484 # 4 8 4 #492 #484 Photographs of Sect ions of Se lec ted G r a v i t y Cores PLATE XXI 145. PLATE XX I I X - r a y Photographs of S e l e c t e d Core S e c t i o n s a . A segment of core # 4 4 8 e x h i b i t i n g i t s massive c h a r a c t e r . A pelecypod v a l v e is l y i n g on edge on the lower p o r t i o n of the c o r e . b. Represents the lower 30 cm. of the p o r t i o n of core #492 shown in the upper photo in PLATE XXI . O l i v e green p o r t i o n s correspond to the f i n e l y laminated p a r t s on the X - r a y photo -g r a p h s , whereas g r e e n i s h gray segments appear to be mass i ve . c . and d . Top and bottom p o r t i o n s of core #520 i n d i c a t i n g that from the upper c l a y e y s i l t y sands to the lower c l a y e y sandy s i l t s the sediments have been depos i ted as f i n e beds and l a m i n a t i o n s . 1 4 6 . X-Ray Photographs of Se lec ted Core Sec t ions (Core lengths about 30 cm.) PLATE XX I I 147. sandy s e c t i o n appears to be bedded. Core #495 is s i m i l a r in t e x t u r e to the bottom of core #492, but i t s c o l o u r ranges from moderate o l i v e brown (5Y 4/4) at the top to o l i v e gray (5Y 3/2) a t the bottom. No d e t e r m i n a t i o n was made of o r g a n i c carbon and CaC03 c o n t e n t . Core #520 ranges from a c l a y e y s i l t y sand at the top to a c l a y e y sandy s i l t a t the bottom. At e q u i v a l e n t depths , o r g a n i c C c o n c e n t r a t i o n g e n e r a l l y i s h igher than in cores #492 and #484, but less than in core #448. CaC03 c o n c e n t r a t i o n i s on the average h igher than in any o ther c o r e . Colour grades from o l i v e gray (5Y 3/2) to g r a y i s h o l i v e (10Y 4 / 2 ) . F a i n t banding p e r s i s t s to a depth of 50 cm i n t o core ( P l a t e XXI l ) . M inera logy of the less than 2 micron f r a c t i o n of s e l e c t e d core sediments i s shown in F i g . 4 7 . The t r a c i n g f o r core #492-15 cm is q u i t e s i m i l a r t o t r a c i n g s obta ined f o r s u r f i c i a l sediments of e q u i v a l e n t s i z e . There is a tendency in the more o l i v e gray sediments f o r the percent of c h l o r i t e and i l l i t e to inc rease at the expense of montmori1 I o n i t e . But i t i s the more dark g r e e n i s h gray-medium b l u i s h gray sediments in cores #484 and #492 which a re q u i t e c l e a r l y dominated by these two components. Deeper sediments appear a l s o to c o n t a i n more very f i n e g r a i n e d amphibole . 148. 149. DESCRIPTION OF CONTINUOUS SEISMIC PROFILES S e l e c t e d CSP records and t h e i r r e s p e c t i v e t r a c i n g s (emphasiz ing major a c o u s t i c a l r e f l e c t o r s ) appear on P l a t e s XXI ! I -XXVI I. The f i r s t four p r o f i l e s (A -A 1 t o D-D 1 ) represent s e c t i o n s of the inner s h e l f whereas the l a s t two ( E - E 1 and F - F 1 ) represent p o r t i o n s of the s h e l f edge. Nomograms on the p l a t e s are meant to i n d i c a t e t rue ang les on ly of s e a - f l o o r and not subbottom s l o p e s . On a l l the inner s h e l f p r o f i l e s most subbottom r e f l e c t o r s appear h i g h l y i r r e g u l a r and d i s c o n t i n u o u s . As a r u l e the t h i n n e r g e n e r a l l y f l a t - l y i n g near s u r f a c e u n i t s are s h a r p l y unconformable w i t h u n d e r l y i n g l a y e r s . P r o f i l e A - A 1 ( P l a t e XXI I I ) extends from the southern t i p of P r i c e I. a c r o s s the mouth of Mi lbanke Sound to the nor theast par t of Goose I. Bank. The uppermost u n i t s appear to be t h i c k e s t (approx imate ly 100 metres) near the deeper par t of the Sound mouth, g r a d u a l l y t h i n at the m i d s e c t i o n of the p r o f i l e then t h i c k e n aga in towards Goose I. Bank. Below these u n i t s the s t r u c t u r e is c h a r a c t e r i z e d by low s w e l l s and d e p r e s s i o n s . Un i t s in the basement d e p r e s s i o n (as represented by the downwarp in the deepest a c o u s t i c a l r e f l e c t o r ) at the mouth of Mi lbanke Sound appear to be f a u l t e d . P r o f i l e B-B ' ( P l a t e XXIV) extends from nor thern Cent ra l Trough a c r o s s a p o r t i o n of the Inter t rough A r e a . The uppermost u n i t s here do not appear to be as w e l l d e f i n e d and cont inuous as in the preced ing p r o f i l e . Deeper in the s e c t i o n r e f l e c t o r s show ev idence of broad s c o u r - a n d -f i l l s t r u c t u r e s . Basement g e n e r a l l y is at l e a s t 300 metres below the present s e a - f l o o r . On p r o f i l e C - C ( P l a t e XXV) ( p a r a l l e l i n g the muddy nor th arm of South Trough) the uppermost major u n i t s appear to be cont inuous a c r o s s the s e c t i o n . The s t r u c t u r e s below the uppermost u n i t s are much l i k e those at e q u i v a l e n t depths in p r o f i l e B - B ' . The basement j u s t to the r i g h t of the assumed f a u l t s in p r o f i l e C - C may represent an e x t e n s i o n of the c r y s t a l l i n e coast r o c k s . S e c t i o n D-D1 ( P l a t e XXVI) extends from nor thern Cook Bank to 150. Goose I. Bank a c r o s s the main t runk of South Trough. The uppermost u n i t s , p robab ly r e p r e s e n t i n g Holocene sed iments , appear to be a p p r o x i m a t e l y 100 to 150 metres t h i c k and unconformab1y o v e r l i e u n i t s which s t r u c t u r a l l y are l e s s complex than are encountered at e q u i v a l e n t depths in the other p r o f i l e s . The p o r t i o n of the p r o f i l e c r o s s i n g the margin of Cook Bank suggest that bank s e d i -ments have prograded i n t o the t rough . P r o f i l e s c r o s s i n g the s h e l f edge suggest that the Queen C h a r l o t t e Sound s h e l f edge and s lope may have had both a d e p o s i t i o n a l o r i g i n (as suggested by r e f l e c t o r s p a r a l l e l i n g the s l o p e in p r o f i l e E -E 1 ( P l a t e XXV I l ) ) and e r o s i o n a l o r i g i n (as suggested by the t r u n c a t i o n of the r e f l e c t o r s a t the s lope as seen in p r o f i l e F -F ' ( P l a t e XXVI I l ) ) . The outer s h e l f represented in p r o f i l e F -F 1 appears to have had a h i s t o r y s i m i l a r to that of the inner s h e l f as the upper -most u n i t s l i e unconformab1y over the g e n t l y d i p p i n g o l d e r u n i t s . In p r o f i l e E -E ' t h i s i s not apparent and the outer s h e l f , the s h e l f break and the s lope appear to have formed by more cont inuous d e p o s i t i o n a l p r o c e s s e s . P r o f i l e E -E 1 a l s o shows a s l i g h t d isp lacement of u n i t s a long the s l o p e . Should v e r t i c a l movement a long t h i s f a u l t c o n t i n u e , t h i s p o r t i o n of the s lope might appear t o be more l i k e the s lope in p r o f i l e F - F 1 . WATER DEPTH WATER DEPTH (oas) 3i/\iu NOI103U3U ( o a s) 3IA1I1 NOI103nd3y WATER DEPTH WATER DEPTH (oas) a w n NOI1031d3a (oas) 3WI1 N0I1D3133U 1 5 4 . 156. SUMMARY OF PHYSIOGRAPHIC AND SEDIMENTOLOGIC FEATURES Queen C h a r l o t t e Sound i s a broad c o n t i n e n t a l s h e l f which extends a p p r o x i -mate ly 120 km from the B r i t i s h Columbia mainland to the s h e l f break (which tends to c o i n c i d e w i t h the 300 metre bathymet r i c contour where the s h e l f is not cut by t r o u g h s ) . A l though r e l i e f i s g e n e r a l l y subdued, i t and s h e l f depth g r a d u a l l y i nc rease from south to n o r t h . Dominant p h y s i o g r a p h i c f e a t u r e s a re banks and t roughs . The three broad troughs (South , Cent ra l and North) c ross the s h e l f from the mainland to the s h e l f edge. Three wide banks (Cook, Goose Is land and North at 70 , 5 0 , and 130 metres r e s p e c t i v e l y ) l i e a long the s o u t h - n o r t h m i d l i n e of the s h e l f . Cook Bank i s an e x t e n s i o n of the nor thern Vancouver I. lowland whereas Goose I. and North Banks a re c o m p l e t e l y i s o l a t e d from land by t roughs . The In ter t rough Area i s a d i s t i n c t and e x t e n s i v e reg ion at the no r theas t of the s h e l f which i s c h a r a c t e r i z e d by many s h a l l o w broad depress ions and low knobs o r i e n t e d g e n e r a l l y e a s t - w e s t and bounded on the west by a f a n - l i k e form. Its subbottom s t r u c t u r e is c h a r a c t e r i z e d by broad s c o u r - a n d - f i 1 1 f e a t u r e s . F a u l t i n g i s e v i d e n t j u s t to the east of the In ter t rough Area near the mouth of Mi lbanke Sound. Features sugges t i ve of former s e a - l e v e l s t i l l s t a n d s a r e : the deepest seaward f a c i n g t e r r a c e s on North Bank and to the west of the Sea Otter Group of Shoals (130 m e t r e s ) ; the s h a l l o w , landward s l o p i n g canyon at the mouth of Mi lbanke Sound (180 to 220 m e t r e s ) ; and the s p i t - l i k e f e a t u r e nor th of Goose I. Bank (100 to 120 m e t r e s ) . Most n o n - g r a v e l l y sediments which a re e i t h e r s h a l l o w and very sandy or deep and very muddy are found on the inner h a l f of the s h e l f . The outer s h e l f i s mantled w i t h sediments which are anomalously coarse f o r t h e i r depth and which are more g l a u c o n i t e r i c h than t h e i r inner s h e l f c o u n t e r p a r t s . Samples which appear anomalously muddy f o r t h e i r depth and w h i c h , in some c a s e s , a l s o c o n t a i n g r a v e l s , a re found near the Sea Otter Group of s h o a l s . CaCO} sha l lower than 100 metres c o n s i s t s m a i n l y of mol luscan s h e l l hash whereas be low t h i s depth i t i s ma in l y 157. f o r a m i n i f e r a 1 t e s t s . Most s u r f i c i a l sediments in the troughs a re o l i v e gray muddy sands and sandy muds and t h e i r c l a y f r a c t i o n c o n s i s t s most l y of c h l o r i t e and montmor i11on i te . Banks are mant led p r i n c i p a l l y w i t h l i g h t o l i v e gray w e l l s o r t e d sands and po lychromic sandy g r a v e l s and g r a v e l l y sands. Less than 5% of the l e s s - t h a n - g r a v e 1 - s i z e - f r a c t i o n on bank tops is mud. I r o n - s t a i n e d sands (found in a s s o c i a t i o n w i t h g r a i n s showing ev idence of beach wave -abras ion ) occur to a depth of 128 metres and tend to .have anomalously low magnet i te c o n c e n t r a t i o n s and more s t a i n e d g r a i n s i n . c o a r s e r f r a c t i o n s . Current r i p p l e s were observed to a depth of 130 metres . There was no i n d i c a t i o n of wave o r c u r r e n t t r a n s p o r t of sediments at s i t e s a t 183, 190 and kSk metres . A s e r i e s of photos s t r a d d l i n g the boundary of Goose I. Bank and South Trough from 105 to 155 metres revea led i s o l a t e d g r a v e l s s i t t i n g f r e e on the Sound f l o o r at the s h a l l o w e s t depth but a lmost bur ied g r a v e l s at the deepest s i t e . However at t h i s l a s t l o c a t i o n the f l o o r is s t i l l not as smooth as at 183 metres . A p l o t of mud-sand r a t i o versus depth i n d i c a t e s samples on exposed p a r t s of the inner s h e l f g e n e r a l l y have h igh mud c o n c e n t r a t i o n s o n l y at depths in excess of 150-160 metres . Troughs are p a r t i a l l y i n t e r r u p t e d a long t h e i r length and at the s h e l f edge by broad s i l l s which are m a n t l e d , as a r u l e , by coarse g i a u c o n i t i c s e d i -ments. Whereas the g r a v e l s at the s h e l f edge are g e n e r a l l y we l l rounded, those on the r idges nearer shore are g e n e r a l l y a n g u l a r . At the i n t e r s e c t i o n of the south arm and main t runk of South Trough one r idge i s in the v i c i n i t y of a) a complex of smal l knobs and s h a l l o w c l o s e d depress ions and b) a narrow vermiform r idge ex tend ing from the base of the fan which p r o j e c t s i n t o the main t runk at the end of the south arm. Well s o r t e d sands which are anomalously coarse f o r t h e i r depth are found in the main t runk j u s t seaward of these f e a t u r e s . Where Centra] Trough makes a sharp r i g h t ang le bend the f l o o r r i s e s g e n t l y to form a low s i l l . A l though t h i s s i l l i s not g r a v e l l y , j u s t seaward of i t the bottom 158. sediment c o n s i s t s of c o a r s e r , b e t t e r s o r t e d , sediment than c h a r a c t e r i z e s the trough e l sewhere . The segment of Centra l Trough nor th of the saddle has a w i d e , almost f l a t f l o o r at about 200 met res . G r a v i t y cores show subsur face sediment in the area t o be g e n e r a l l y massive sandy c l a y e y s i l t s w i t h l i t t l e o r g a n i c carbon and CaCO^. The c l a y s in these sediments are m a i n l y c h l o r i t e and i l l i t e (w i th minor montmori11 o n i t e ) . Fo ramin i fe ra1 assemblages obta ined from these sediments i n d i c a t e a Late P l e i s t o c e n e open s h e l f env i ronment . These subsur face sediments c a r r y l i t t l e o r g a n i c carbon whereas the present l o c a l s u r f i c i a l sediments are the most o r g a n i c carbon r i c h in the Sound. Subbottom s t r u c t u r e s here too appear to be c h a r a c t e r i z e d by s c o u r - a n d - f i 1 1 f e a t u r e s . The f l o o r of North Trough c o n s i s t s of a s e r i e s o f deep i r r e g u l a r l y e l o n g a t e c l o s e d d e p r e s s i o n s . Most of i t s sediments are anomalously coarse f o r t h e i r g reat depth. . Both Goose I. and North Bank are c rossed by broad s h a l l o w e a s t - w e s t o r i e n t e d v a l l e y s and both are j o i n e d to the r e l a t i v e l y steep c o n t i n e n t i a l s lope by a more g e n t l e s l o p e . Grave ls are common at the south of Cook Bank, but w e l l s o r t e d sands mantle the nor thern marg in . . S e i s m i c p r o f i l e s suggest these sands a re p rograd ing i n t o the main t runk of South Trough. What may be a band of c o a r s e , w e l l s o r t e d , i r o n - s t a i n e d sand j u s t i n s i d e the n o r t h e a s t e r n margin of the bank appears in one bottom photograph to have no w e l l developed r i p p l e s but is c r i s s - c r o s s e d by a network of s n a i l t r a i l s . The h ighes t CaC03 c o n c e n t r a t i o n s on the s h e l f are found near Scot t Channel where sediments are almost e n t i r e l y s h e l l hash. Whereas the nor thern and southwestern margins of Goose I. Bank s lope g e n t l y the southeaste rn margin is r e l a t i v e l y s t e e p . This abrupt topographic t r a n s i t i o n is matched by tha t in the sed iments : w h i l e g r a v e l s mantle the bank top , some of the f i n e s t most o r g a n i c r i c h sediments in the Sound l i e on the bottom of t h e . n o r t h arm of South Trough. To the nor th and southwest of the bank sediments grade g r a d u a l l y from g r a v e l s to w e l l s o r t e d sands. The shaI Iowest p o r t i o n of the bank is in the form of s e v e r a l low r idges 159. w i t h c r e n u l a t e o u t l i n e s which extend west ac ross the bank top . As was t rue f o r Cook Bank, where no c u r r e n t r i p p l e s are apparent in bottom photographs, s n a i l t r a i l s are abundant. Grave ls and w e l l s o r t e d sands are common on North Bank, but here u n l i k e other banks f o r a m i n i f e r a 1 t e s t s are a l s o very abundant: CaC0*3, c h i e f l y fo ramin i f e r a 1 t e s t s , a t t a i n s c o n c e n t r a t i o n s of up to 51 percent of the mud-sand f r a c t i o n of p o o r l y s o r t e d g r a v e l l y sed iments . In ter t rough Area sediments are very a n g u l a r , p o o r l y s o r t e d g i a u c o n i t i c sandy g r a v e l s and reasonably w e l l s o r t e d sands. Many g r a i n s from t h i s l o c a l i t y show ev idence of g l a c i a l a b r a s i o n . S e i s m i c p r o f i l e s suggest the s h e l f margin has had both a d e p o s i t i o n a l and e r o s i o n a l o r i g i n . 160. DISCUSSION ORIGIN OF PHYSIOGRAPHIC FEATURES IN QUEEN CHARLOTTE SOUND The phys iography of Queen C h a r l o t t e Sound i s comparable to that of the main land on ly to the ex tent the general o r i e n t a t i o n of troughs and bank margins is concordant w i t h that o f c e r t a i n i n l e t s . The s h e l f is not d i s s e c t e d by as dense a network of narrow depress ions and has a c o n s i d e r a b l y more subdued r e l i e f (compare t rue s c a l e c r o s s - s e c t i o n of i n l e t s in F i g . 4 8 w i t h that of C e n t r a l Trough in F i g . 1 . 7 ) . On the o ther hand, Queen C h a r l o t t e Sound has a s t r i k i n g l y s i m i l a r morphology to that of a s h e l f cons ide red by Ho l tedah l ( 1 9 5 8 ) to have been h i g h l y m o d i f i e d d u r i n g the P l e i s t o c e n e "by e r o s i o n a l and d e p o s i t i o n a l a c t i o n of the i c e , the former r i v e r channels be ing remodeled i n t o t r o u g h l i k e bas ins and the o l d topography obscured to a great ex tent by the d e p o s i t i o n of d r i f t m a t e r i a l " ( F i g . 4 9 ) . The complex of f e a t u r e s and sediment types at the i n t e r s e c t i o n of the south arm and main t runk of South Trough and to a l e s s e r ex tent those at the i n f l e c t i o n in Cent ra l Trough may be compared to the mora ina l r i d g e , kames, k e t t l e s , eskers and outwash p l a i n a s s o c i a t e d w i t h a stagnant or reced ing g l a c i e r ( F l i n t , 1 9 5 7 ) . Topographic forms and sediment t e x t u r e s in the In ter -t rough Area a re r e m i n i s c e n t of those found on a r e c e n t l y g l a c i a t e d area of low r e l i e f (Holmes, 1965; see e s p e c i a l l y h i s F i g . 5 0 0 and F i g . 5 0 4 ) ( F l i n t , 1 9 5 7 ) . The low s i l l s , mantled w i t h coarse g r a v e l s , p a r t i a l l y d i s s e c t i n g the troughs at the s h e l f break may be remnants of te rmina l moraines ( F l i n t , 1 9 5 7 ) . The g r a v e l s on these r idges are more rounded than those on the trough s i l l s c l o s e r inshore p robab ly as a r e s u l t of longer g l a c i a l t r a n s p o r t . Evidence of the a c t u a l passage o f g l a c i e r s i s preserved in the deep scour s t r u c t u r e s observed in the s e i s m i c p r o f i l e s of the subbottom sed iments . 161. fiords and fiord valleys in British Columbia Truo-scale transverse .section* of (A) Seymour Creek (latitudo 20'); (11) Indian JViver (latitude 40' 30'); (C) Head of Portland Canal (latitude 65° 57'); (D) Indian Arm (latitude 4'j' 23'); (E) Qucen.'i Reach, Jorvis Inlet (latitude SO" 0'); (J'") Alice Arm, head of Observatory Inlet (latitude 51,' 20'); (G) Fisher Channel (latitude 52" 13'). F r o m Peacock (1935) F J O R D S A N D F J O R D V A L L E Y S O F B R I T I S H C O L U M B I A Figure 48 162. From Holtedabl (1958) SHELF AREA OFF NORWAY F l p o i r e 49 163. The i r r e g u l a r r e l i e f of the f l o o r of North Trough is c h a r a c t e r i s t i c o f g l a c i a l l y excavated v a l l e y s (Holmes, 1 9 6 5 ) . The broad ledges on the west w a l l may have r e s u l t e d from wave a b r a s i o n , b l o c k f a u l t i n g or g l a c i a l d e p o s i t i o n . It is not l i k e l y they are wave-cut t e r r a c e s because a) s h a l l o w knobs and c l o s e d depress ions observed on the s h a l l o w e r ledge would not be expected on a wave-cut t e r r a c e and b) both ledges are w e l l i n s i d e the trough and not f a c i n g the d i r e c -t i o n of s t r o n g e s t wave a t t a c k . B lock f a u l t i n g may have taken p lace here but the genera l a l ignment of the ledges i s at odds w i t h that of known or suspected f a u l t systems on the ad jacent Queen C h a r l o t t e I s lands . It is most l i k e l y the t e r r a c e s developed as kame t e r r a c e s or l a t e r a l moraines ( F l i n t , 1957; see e s p e c i a l 1 y "his F i g . 8 - 7 ) . Ho l tedah l ( 1 9 7 0 ) has repor ted what appears to be "remains of l a t e r a l m o r a i n e s " on the f l a n k s of s h e l f t roughs o f f Greenland and Norway. The s i m i l a r i t y of the Queen C h a r l o t t e Sound morphology to that of s h e l f areas c o n s i d e r e d to be e x t e n s i v e l y g l a c i a t e d by grounded i c e , the presence of topograph ic forms and a s s o c i a t e d sediments s i m i l a r to those found on g l a c i a t e d c o n t i n e n t a l areas and the ev idence of deep s c o u r i n g in subbottom sediments leads the w r i t e r to conc lude Queen C h a r l o t t e Sound was o v e r r i d d e n by grounded i c e . Ice accumula t ion on the Coast Mountains a t t imes probably was s u f f i c i e n t to a l l o w ice to be grounded a c r o s s the e n t i r e s h e l f as i s i n d i c a t e d by the f o l l o w i n g c o n s i d e r a t i o n s : B r e t z ( 1 9 2 0 ) suggested the Juan de Fuca ice lobe had a minimum s u r f a c e g r a d i e n t of 15 metres per k i l o m e t r e fo r the forward 112 k i l o m e t r e s (the approximate d i s t a n c e from the Queen C h a r l o t t e Sound s lope to the main land c o a s t ) . Assuming minimum ice t h i c k n e s s of 2300 metres on the main land dur ing major g l a c i a l advances (as p r e v i o u s l y mentioned) and s i m i l a r c o n d i t i o n s in the Juan de Fuca and Queen C h a r l o t t e Sound ice l o b e s , ice t h i c k -ness at the s h e l f edge c o u l d have been on the order of 600 met res . If s e a - l e v e l dropped no more than 130 metres d u r i n g the most recent major ice advance 164. ( C u r r a y , J 9 6 9 ) , a n d , as i s l i k e l y , the ou te r s h e l f was not markedly depressed water depth at the s h e l f edge would have been on the order of 170 met res . If i t i s accepted that ice touches bottom when i t a t t a i n s a t h i c k n e s s of 1.1 of the water depth (Shepard, 1 9 6 3 ) , i ce would be grounded at the s h e l f edge when i t had a t h i c k n e s s no g r e a t e r than 190 met res , w e l l below the t h i c k n e s s that cou ld have been a t t a i n e d at that d i s t a n c e from the m a i n l a n d . It i s apparent that under severe g l a c i a l c o n d i t i o n s c o n s i d e r a b l e s c o u r i n g of the u n c o n s o l i d a t e d s h e l f sediments probably o c c u r r e d . Troughs g e n e r a l l y p a r a l l e l to the coast such as the p o r t i o n of South Trough between Goose I. Bank and the m a i n l a n d , and the nor thern s e c t i o n of Cent ra l Trough, may be examples of marg inal c h a n n e l s , f e a t u r e s which appear to be r e s t r i c t e d to she lves o f f g l a c i a t e d coas ts but whose o r i g i n i s s t i l l in q u e s t i o n (Ho l tedahl and H o l t e d a h l , 1 9 6 1 ) . Marg inal channels were d e s c r i b e d by the H o l t e d a h l s as "more or l ess marked d e p r e s s i o n s . . . [wh ich] . . . r u n p a r a l l e l to the coast and separate a r e l a t i v e l y narrow b e l t w i t h uneven, rocky f l o o r [ the submerged s t r a n d - f l a t ] from the f a i r l y even banks where the bedrock i s o v e r l a i n by loose d e p o s i t s " . They are conspicuous because of t h e i r o r i e n t a t i o n at h igh ang les to what i s presumed to have been the predominant d i r e c t i o n of l o c a l P l e i s t o c e n e ice f l o w . The most recent examinat ions of the problem of t h e i r o r i g i n suggest they have r e s u l t e d from g l a c i a l e r o s i o n of a) the con tac t between c r y s t a l l i n e c o a s t a l rocks and the lens of sedimentary d e p o s i t s on the s h e l f ( H o l t e d a h l , 1970) or b) a zone of s t r u c t u r a l d i s t u r b a n c e which may be c l o s e l y a s s o c i a t e d w i t h the c r y s t a 1 I i n e - s e d i m e n t a r y rock contac t ( H o l t e d a h l , 1958; G rant , 1 9 7 0 ) . The channel inshore of Goose I. Bank may be an example of the former . Northern Cent ra l Trough may be an example of the l a t t e r as i t is a p p r o x i m a t e l y in l i n e w i t h the row of e p i c e n t r e s ex tend ing from Sandsp i t F a u l t (see F i g . 4 ) . Northern Cent ra l Trough is a marginal channel in the s t r i c t e s t sense of 165 the d e f i n i t i o n on ly i f the In ter t rough Area i s cons ide red a submerged s t r a n d -f l a t . It is q u i t e reasonable to c o n s i d e r i t so because a) broad p o r t i o n s of s t r a n d f l a t s are commonly submerged ( H o l t e d a h l , 1958; H o l t e d a h l , 1970) b) the In ter t rough Area i s cont inuous w i t h Mi lbanke S t r a n d f l a t to the nor th and c) the apparent i n s t a b i l i t y of the areas sur rounding the In ter t rough Area cou ld have a l l o w e d c o n s i d e r a b l e v e r t ica 1 d isp lacement of t h i s segment of the c o a s t a l s t r a n d f l a t . D e t a i l e d geophys ica l work a f t e r the method of Mayhew e_t a]_ (1970) might e l u c i d a t e the s t r u c t u r a l r e l a t i o n of the Inter t rough Area to ad jacent a r e a s . The open-ended broad v a l l e y s that c r o s s both Goose I. Bank and North Bank may have been formed by meltwater streams d r a i n i n g g l a c i e r s which o c c u -p ied t roughs ad jacent to the banks. The canyons at the margin of Cook Bank having sediments in t h e i r v i c i n i t y which are anomalously r i c h in heavy m i n e r a l s p robab ly formed when r i v e r s d ra ined the bank d u r i n g a lower s e a - l e v e l . However, r i v e r s probably d i d not erode canyons d u r i n g pe r iods of lowest s e a - l e v e l f o r then the troughs t h i s c l o s e inshore would most l i k e l y be f i l l e d w i t h i c e . Canyons are not as d i s t i n c t l y developed on the other banks. Th is suggests that the r e g i o n a l r e l i e f above base l e v e l ( the lowered s e a - l e v e l ) of the other banks was too low to develop h y d r a u l i c head s u f f i c i e n t to form canyons l i k e those on Cook Bank. The f a c t that the best developed canyons on Cook Bank are the ones nearest land supports t h i s c o n t e n t i o n . Open -she l f t e r r a c e s do not occur below 140 metres . Th is depth is in c l o s e agreement w i t h the best s u b s t a n t i a t e d recent e s t i m a t e s of the maximum depth of P l e i s t o c e n e s e a - l e v e l lower ing (Cur ray , 1969). Th is c l o s e agreement suggests the s h e l f was not markedly depressed by g l a c i a l l oad ing o r , i f i t were, t h a t i t must have rebounded r e l a t i v e l y r a p i d l y . The s p i t - l i k e form nor th of Goose I. Bank may have formed dur ing a s e a - l e v e l lower ing to a depth of 166. 100-120 met res . Sediment f o r t h i s f e a t u r e may have been s u p p l i e d from m e l t -water streams d r a i n i n g an ice lobe at Mi lbanke Sound. The canyon c u t t i n g i n t o Mi lbanke Sound suggests s e a - l e v e l lower ing of as much as 200 m e t r e s , but recent work has suggested that i f there were a e u s t a t i c " l o w " of t h i s magnitude i t o c c u r r e d in excess of 100,000 B.P. (Jongsma, 1970), and known major readvances of ice sheets s i n c e that t ime (Armstrong, et a_j_, 1965) would have dest royed such a f e a t u r e . A process i n v o l v i n g mass wast ing and t u r b i d i t y f l o w of over -steepened g l a c i a l accumulat ions at the mouth of "Milbanke Sound might more r e a d i l y account f o r the c h a n n e l . The f l o o r of the nor thern p o r t i o n of Cent ra l Trough i s anomalously f l a t . If t h i s f e a t u r e appeared on a topograph ic map drawn when s e a - l e v e l was 200 m. lower i t would be i n t e r p r e t e d as an i c e margin lake dammed by an end mora ine . The subsur face sequence of s i l t s which are low in o r g a n i c carbon and high in c h l o r i t e and i l l i t e may be i n t e r p r e t e d as g l a c i a l f l o u r d e p o s i t e d from such a l a k e . However, the f o r a m i n i f e r a 1 assemblage c o l l e c t e d from the s i l t s suggests they were d e p o s i t e d in an open s h e l f environment s i m i l a r to the p r e s e n t , and the muds appear massive and non - va rved . F u r t h e r -more, because of the p o s t u l a t e d e a r l y date f o r the more extreme drop in s e a -l e v e l i t i s most l i k e l y that more recent g l a c i a t i o n s would e i t h e r scour or d e p o s i t m a t e r i a l on the t rough s u r f a c e , and i t would not have long r e t a i n e d i t s f e a t u r e l e s s c h a r a c t e r . The f l a t n e s s of nor thern Cent ra l Trough cou ld p robab ly have developed wi thout an e x t r a o r d i n a r y drop in s e a - l e v e l : As the l a s t s tages of v a l l e y - ( o r b e t t e r , t r o u g h - ) g l a c i a t i o n waned on the s h e l f , C e n t r a l Trough and North Trough probably looked much a l i k e ( c o n s i d e r the appearance of s e i s m i c p r o f i l e c r o s s i n g Cent ra l Trough i f ponded sediment were removed from the deep scour d e p r e s s i o n s ) . Suspended m a t e r i a l d i s -charged from the a b l a t i n g g l a c i e r s i n t o the troughs was probably in la rge par t washed out to the deep sea by t i d a l f l u s h i n g . But w h i l e s w e l l s and 167. and waves (which c o u l d produce water tu rbu lence ) swept f r e e l y i n t o North Trough from the open s e a , t h e i r i n t e n s i t y was damped by North Bank before they entered nor thern Cent ra l Trough. As a consequence, d e p o s i t i o n in C e n t r a l Trough may have proceeded f a s t e r . Cent ra l Trough was a l s o in a more f a v o r a b l e p o s i t i o n to pond much of the f i n e r sediment d ischarged from s m a l l e r g r a c i e r s i n t e r m i t t e n t l y advancing beyond Mi lbanke Sound, and w h i c h , most p r o b a b l y , c r e a t e d the f e a t u r e s now in the Inter t rough A r e a . The very g e n t l e un i form s lopes between the nor thern banks and the c o n t i n e n t a l s lope p robab ly developed as P l e i s t o c e n e seas t r a n s g r e s s e d and regressed a c r o s s loose g l a c i a l d e p o s i t s as is suggested by the widespread presence of t h i s k i n d of f e a t u r e on present she lves (Shepard, 1963; Cur ray , 1969). The p r o g r e s s i v e l y g r e a t e r depths of the troughs from south to north in Queen C h a r l o t t e Sound may in par t suggest the north has not rebounded to the same extent as the s o u t h , a p o s s i b i l i t y supported by the g r e a t e r i n s t a -b i l i t y of the nor thern s e c t o r . However, as was mentioned e a r l i e r , Queen C h a r l o t t e Is lands do not appear to have been s i g n i f i c a n t l y depressed dur ing the P l e i s t o c e n e and the l a t e s t g l a c i a l rebound, at l e a s t in southern B r i t i s h Columbia , has been v e r y r a p i d . T i l t i n g and b lock f a u l t i n g may a l s o have been i n f l u e n t i a l in c r e a t i n g d i f f e r e n c e s in trough depths , however, the t roughs ' gradual deepening and increased r e l i e f from south to nor th may be more r e a d i l y accounted f o r by r e g i o n a l v a r i a t i o n s in ra tes o f sed imentat ion as w i l l be d i s c u s s e d in the next c h a p t e r . Curray (1969) argued that n e a r - s h o r e e r o s i o n d u r i n g the P l e i s t o c e n e maximum low stand o f s e a - l e v e l was one of the most c r i t i c a l f a c t o r s de te rmin ing the depth of the s h e l f b reak . Th is i s reasonable because the s h e l f break i s , on the average , at 130 metres (Sheperd, 1963). However, h i s argument does not 168. e x p l a i n the o r i g i n of deeper s h e l f breaks such as those o f f Norway ( 2 0 0 metres) and o f f Queen C h a r l o t t e Sound ( 3 0 0 m e t r e s ) . Of c o u r s e , as these s lopes may have formed as f a u l t scarps the s h e l f break would not n e c e s s a r i l y show any r e l a t i o n to l o c a l h y d r a u l i c regime. However, u n c o n s o l i d a t e d sediment does l i e at the s h e l f edge in Queen C h a r l o t t e Sound and s e i s m i c p r o f i l e s suggest that par t of i t may be d e p o s i t i o n a l in o r i g i n . There is no doubt about the d e p o s i t i o n a l o r i g i n of the s lope o f f c e n t r a l Vancouver I. where the s h e l f break occurs at depths g r e a t e r than 200 metres (Murray and T i f f i n , 1 9 6 9 ) . The presence of c o n s t r u c t i o n a l s h e l f breaks such as t h i s , deeper than 130 m e t r e s , suggests wave and c u r r e n t energy over some she lves has been s u f f i c i e n t to prevent p r o g r a d a t i o n of the s lope except c o n s i d e r a b l y below the s t r a n d l i n e . In o t h e r words, in Queen C h a r l o t t e Sound, w h i l e the s u r f may have been c u t t i n g the 130 -metre t e r r a c e s dur ing the P l e i s t o c e n e , water up to 170 metres below that l e v e l (at the 3 0 0 metre s h e l f edge) was t u r b u l e n t enough to m a i n t a i n a v a i l a b l e sediments in s u s p e n s i o n , and a l l o w p r o g r a d a t i o n of the s lope on ly a t depths g r e a t e r than 170 met res . This hypothes is i s supported by H a d l e y ' s ( 1 9 6 4 ) and Draper ' s (1967 ) f i n d i n g s , which suggest that wave- induced sea bed o s c i l l a t o r y c u r r e n t s in excess of 50 cm/sec. l i n k e d w i t h t i d a l m o t i o n s , p ro -duce s i g n i f i c a n t net sediment movement o f f the B r i t i s h I s les to depths of 200 met res . It i s a l s o supported by the presence of c u r r e n t r i p p l e s at g reat depths in Queen C h a r l o t t e Sound. The three major banks in Queen C h a r l o t t e Sound are i n t e p r e t e d as remnants of massive d r i f t d e p o s i t s l e f t by reced ing ice s h e e t s . The i r ex t remely p o o r l y s o r t e d g r a v e l s may at one t ime have been i n t e g r a l p a r t s of moraines j u s t as t h e i r sands may have formed e x t e n s i v e outwash p l a i n s . 169. PRESENT SEDIMENT DISPERSAL IN QUEEN CHARLOTTE SOUND As was suggested e a r l i e r , sands and g r a v e l s in the Sound appear to have been d e r i v e d p r i n c i p a l l y from d e p o s i t i o n a l mechanisms a s s o c i a t e d w i t h g l a c i e r s which reached the s h e l f . Muds must a l s o have been c o n t r i b u t e d by s i m i l a r processes a l though they now have been washed from banks and may o n l y be e v i d e n t in the t roughs . The presence of the h ighes t mud c o n c e n t r a t i o n s at the mouths of two of the major i n l e t s suggests i n l e t s are the p r i n c i p a l present sources of mud. The i n l e t mouths j u s t landward of the Sea Otter Group of shoa ls appear to have c o a r s e r sediment than the major i n l e t mouths to the n o r t h . Mud c o n c e n t r a t i o n s somewhat comparable t o those found at the more n o r t h e r l y i n l e t s were observed o n l y in the north arm of South Trough, a c o n s i d e r a b l e d i s t a n c e from the mouths of the southernmost i n l e t s . To understand why, the c h a r a c t e r o f sediment d i s c h a r g e i n t o the Sound must be examined. Dur ing the summer months, the most conspicuous and e x t e n s i v e tongue of r e l a t i v e l y low s a l i n i t y water ex t rudes from the i n l e t mouths landward of the Sea Otter Group of s h o a l s . The s i m i l a r i t y of Queen C h a r l o t t e Sound s u r f i c i a l c l a y s to the c l a y s in the Taku e s t u a r y of southeaste rn A l a s k a ( d e r i v e d from g l a c i a l a b r a s i o n of p redominat l y g r a n o d i o r i t i c rock) (Kunze et_ a_l_, 1 9 6 8 ) , suggests t h i s tongue of low s a l i n i t y water b r i n g s to the Sound suspended sediment d e r i v e d from the massive i c e f i e l d s i n l a n d of southeastern Queen C h a r l o t t e Sound. Montmori11 o n i t e c o n c e n t r a t i o n in present s u r f i c i a l s e d i -ment is h igher than in the s u b - s u r f a c e c l a y s ( p a r t i c u l a r l y those in Cent ra l Trough) because the s u b - s u r f a c e c l a y s formed l a r g e l y by p h y s i c a l weather ing and g l a c i a l g r i n d i n g whereas under the present temperate c o n d i t i o n s m o n t m o r i l -l o n i t e can be produced by chemical " s t r i p p i n g " of c h l o r i t e s , hornblende and mica (Weaver, 1958; C o r r o l 1 , 1970; K e l l e r , 1 9 7 0 ) . In let mouths east of the Sea Otter Group of shoa ls are narrow. This c o n d i t i o n coupled w i th the i n t e n s i t y of mel twater d i s c h a r g e from these i n l e t s 170. d u r i n g the summer probab ly produces s u f f i c i e n t tu rbu lence to prevent d e p o s i t i o n of sediment of a f i n e n e s s comparable to tha t found in the wider more nor thern i n l e t mouths except at some d i s t a n c e o f f s h o r e . F u r t h e r -more, what sediment i s s u p p l i e d by mel twaters must be d e p o s i t e d p r i m a r i l y in the nor th and not south arm of the South Trough because the C o r i o l i s e f f e c t causes d i s c h a r g i n g i n l e t waters to sweep n o r t h . The south arm is f u r t h e r depr i ved of f i n e sediment because l i t t l e d e t r i t u s is s u p p l i e d from Queen C h a r l o t t e S t r a i t . Severa l mechanisms are i n f l u e n t i a l in the d i s t r i b u t i o n of o r g a n i c mat ter in marine sed iments : oxygen content of o v e r l y i n g w a t e r s , sediment g r a i n s i z e and p r o x i m i t y to areas of o r g a n i c p r o d u c t i v i t y ( N i i n o and Emery, 1961, 1966; Emery and N i i n o , 1963; N i i n o et a l , 1969; Thomas, 1969) . As was noted e a r l i e r near -bot tom oxygen d i s t r i b u t i o n is g e n e r a l l y un i form and in a l l areas of the Sound the bottom appears to be a e r o b i c . There i s l i t t l e i f any reason to expect o r g a n i c p r o d u c t i v i t y over the muddy areas of the Sound to be d i f f e r e n t . Higher n u t r i e n t supply might be expected in the area of the Sea Ot ter Group of shoa ls because of the h igh meltwater d i s c h a r g e , but as these waters are r a p i d l y d e f l e c t e d n o r t h , t h e i r e f f e c t as a n u t r i e n t source i s p robab ly even ly d i s t r i b u t e d over the Sound even though c o a r s e r suspensate is deposited near shore . On the other hand, o r g a n i c carbon does e x h i b i t a s t rong negat ive c o r r e l a t i o n w i t h the g r a i n s i z e of e n c l o s i n g s e d i -ment which suggests tha t o r g a n i c matter does not as r e a d i l y accumulate in the h igher energy environments common to most coarse sediments and/or the h igher p e r m e a b i l i t y of the coarse r sediments may permit i t to more r a p i d l y o x i d i z e . The energy of the environment and the p e r m e a b i l i t y of the sediment are thus p robab ly the most s i g n i f i c a n t f a c t o r s . g o v e r n i n g the d i s t r i b u t i o n of o r g a n i c matter in the present s u r f i c i a l sed iments . The tendency f o r o r g a n i c carbon to decrease w i th depth in a core p robab ly r e f l e c t s , in p a r t , the tendency of sediments to be o x i d i z e d a f t e r 171. b u r i a l . However, the more abrupt change in o rgan ic content ev ident as the unconformi ty between the s u r f a c e sediments and the b l u e - g r a y mud i s c r o s s e d probab ly i s sugges t i ve of a fundamental change in the c h a r a c t e r of d e p o s i t i o n . The b l u e - g r a y mud probab ly was d e p o s i t e d r a p i d l y enough to a l l o w l i t t l e time f o r o r g a n i c a d s o r p t i o n (Thomas, 1969) and l i t t l e development of a bottom fauna . Both o r g a n i c a d s o r p t i o n and the development of a bottom fauna c o u l d occur as the more recent s u r f i c i a l sediments s l o w l y s e t t l e d out of s u s p e n s i o n . It was e a r l i e r suggested that the r e l i e f in the southern Sound i s more subdued than in the nor th because sed imenta t ion has been proceeding at a f a s t e r pace in the s o u t h . Th is i s supported by: the coarseness of North Trough s e d i -ments, the p r o x i m i t y of the b l u e - g r a y muds in Cent ra l Trough to the present s u r f a c e of the Sound f l o o r , the abundance of o r g a n i c - r i c h sediments in South Trough c o r e s , and the more widespread occur rence of g l a u c o n i t e ( sugges t i ve of s lower sed imenta t ion ra tes (Degens, 1965)) in the Inter t rough Area which is in the north of the Sound. A f t e r i c e - l o b e s scoured and d e p o s i t e d d r i f t in the t r o u g h s , sediments have been added to the s h e l f from the f o l l o w i n g s o u r c e s : f l o a t i n g ice s h e e t s , i ce lobes or i c e b e r g s , and more r e c e n t l y from meltwater from g l a c i e r s not a c t u a l l y reach ing the s h e l f . The p r o x i m i t y of South Trough to the area, of most massive present ice accumulat ion in the v i c i n i t y of the Sound suggests i t has been exposed to most sed imenta t ion from these sources . Cent ra l Trough probab ly was p a r t l y f i l l e d by a massive i n f u s i o n of mel twater from a nearby r e t r e a t i n g g l a c i e r , but h a s n ' t been s i g n i f i c a n t l y a f f e c t e d by recent sed imenta -t i o n . North Trough probably has been l a r g e l y i s o l a t e d from f l o a t i n g ice and meltwater d e p o s i t i o n s i n c e i t s e x c a v a t i o n . The tendency f o r anomalously c o a r s e , more g l a u c o n i t e r i c h , sediments to l i e on the outer s h e l f and f o r muddy sediments to be r e s t r i c t e d almost e x c l u s i v e to the inner s h e l f suggests l i t t l e sediment i s be ing d i scharged i n t o the Sound 172. and tha t which is may be prevented from being d e p o s i t e d on the outer s h e l f as c o a r s e r muds s e t t l e c l o s e l y inshore and the f i n e s t f r a c t i o n i s r a p i d l y t r a n s -por ted ac ross the s h e l f in the l e s s s a l i n e s u r f a c e w a t e r s . Th is set of e n v i r o n -mental c o n d i t i o n s suggests that the t rough f l a t s at the s h e l f edge were l a r g e l y formed as t rough g l a c i e r s r e t r e a t e d and g l a c i a l muds were ponded behind the s h e l f edge mora ine , however, the f a c t that the o rgan ic carbon c o n c e n t r a t i o n of the core ob ta ined near the South Trough f l a t i s h igher than that of the core ob ta ined in the Cent ra l Trough f l a t i n d i c a t e s more recent s e d i m e n t a t i o n has occur red in the southern f l a t . At depths s h a l l o w e r than that at which c o n s i d e r a b l e mud accumulates (160 m e t r e s ) , the most widespread w e l l s o r t e d sediments are bank sands. These sediments are ones most l i k e l y to r e f l e c t the d i r e c t i o n of present b e d - l o a d t r a n s p o r t under o p e n - s h e l f h y d r a u l i c c o n d i t i o n s . A l though the r e s u l t a n t s u r f a c e t i d a l c u r r e n t moves south o f f Cook Bank, at l e a s t some of the bank sands appear to be swept nor th i n t o deeper water . Th is would suggest sand d i s t r i b u t i o n is not r e f l e c t i n g present cu r ren t p a t t e r n s . However, as the sands are p robab ly moved o f f the bank by f l o o d t i d e s and the ebb f l o w has not the necessary t r a n s p o r t competence t o d r i v e them back up s l o p e , the sands r e f l e c t o n l y one of the c u r r e n t d i r e c t i o n s p r e v a l e n t on the Bank. It i s q u i t e l i k e l y that the ebb f low is d r i v i n g sands o f f the bank and down the c o n t i n e n t a l s l o p e , but there is l i t t l e e v i d e n c e , as y e t , to s u b s t a n -t i a t e t h i s . The sands found below 200 metres in the main t runk of South Trough probab ly are not p r e s e n t l y being d e r i v e d from e i t h e r Cook Bank or Goose I. Bank as c u r r e n t s appear unable to move sand below 160 metres . These sands may have been d e r i v e d from e i t h e r of the banks d u r i n g a lower s e a - l e v e l by a t i d a l system s i m i l a r to that at p r e s e n t , but i f that were the case i t would be d i f f i c u l t to e x p l a i n the f i n e n e s s of the sediments seaward of these sands , but 173. a t a p p r o x i m a t e l y the same depth . It i s more l i k e l y that much of the outer t rough s e d i m e n t a t i o n occur red when the dominant d e p o s i t i o n a l agent was m e l t -water from g l a c i e r s that p a r t i a l l y occupied the t rough . As was suggested e a r l i e r , the sands probab ly a r e s imp ly remnants of a g l a c i a l outwash which grades i n t o the muds ponded behind the t e r m i n a l moraine at the s h e l f edge. The s t r i p of rus ty sands on the e a s t e r n edge of Cook Bank a re c o v e r e d , at l e a s t in p a r t , by a dense network .o f s n a i l t r a i l s . As these sands g e n e r a l l y are c o a r s e r than o ther well , s o r t e d sands i t is probable they are not as f r e -q u e n t l y s h i f t e d . S n a i l s may more r e a d i l y f l o u r i s h here and t h e i r t r a i l s are not as q u i c k l y e r a d i c a t e d . The i m m o b i l i t y of these sands may have p e r m i t t e d them to preserve t h e i r r u s t y c o a t i n g ( S w i f t , 1 9 6 9 ) , but i t may a l s o have a l l o w e d them to a c q u i r e the c o a t i n g in the f i r s t p lace by in s i t u o x i d a t i o n of i r o n b e a r i n g m i n e r a l s . However, i t i s a l s o p o s s i b l e the ox ide c o a t i n g was formed in a s u b a e r i a l beach environment (Dolan, 1970) or in a r i v e r ( judd ct. a l , 1 9 7 0 ) . Sw i f t ( 1 9 6 9 ) and Emery and N i i n o ( 1 9 6 3 ) have emphasized the importance of s u b a e r i a l exposure in the f o r m a t i o n of i r o n - s t a i n e d s h e l f sands, but the. important f a c t o r govern ing the f o r m a t i o n of an i ron s t a i n is the presence of ample amounts of magnet i te and/or i l m e n i t e ( M i l l e r and F o l k , 1 9 5 5 ) . The m a j o r i t y of b e s t - s o r t e d r u s t y sands in Queen C h a r l o t t e Sound a re anomalously low in m a g n e t i t e . The same c o n d i t i o n was noted in i r o n - s t a i n e d dune sands from v a r i o u s p a r t s of the wor ld ( N o r r i s , 1 9 6 9 ) . O i l i e r ( 1 9 6 9 ) has i n d i c a t e d magnet i te r e a d i l y a l t e r s in o x i d i z i n g c o n d i t i o n s to l i m o n i t e . On the banks in Queen C h a r l o t t e Sound c o n d i t i o n s which have favoured the f o r m a t i o n and r e t e n t i o n of i r o n - s t a i n i n g on sands are the presence o f : (a) ample Fe ox ides (b) sediments s u f f i c i e n t l y coarse not to be moved too f r e q u e n t l y (c) o x i d i z i n g c o n d i t i o n s 174. A comparison of d i r e c t i o n s of t i d a l motions and the d i s t r i b u t i o n of best s o r t e d sands suggests sand is be ing washed by t i d a l c u r r e n t s from the sandy g r a v e l s and g r a v e l l y sands on the south of Goose I. Bank towards the nor th and southwest . These t r a n s p o r t d i r e c t i o n s are in accordance w i t h the topograph ic c h a r a c t e r of Goose I. Bank. Slopes are g e n t l e to the nor th and southwest in the d i r e c t i o n sediments are p rograd ing but very abrupt towards the south and s o u t h e a s t . Areas w i t h r u s t y sands and s n a i l t r a c k s are a l s o observed on t h i s bank and probab ly represent areas in which sediments are not t r a n s p o r t e d except under more severe storm c o n d i t i o n s . The g l a u c o n i t e on the bank probab ly formed in foram t e s t s which were subsequent ly broken and swept away ( K e l l e r and R i c h a r d s , 1967). The g e n t l e r idges ex tend ing west of the s h a l l o w e s t p o r t i o n of Goose I. Bank may have a s i m i l a r o r i g i n to that of the sand r idges repor ted to occur in the North Sea (Houbol t , 1968; S t r i d e , 1970). The North Sea r idges are o r i e n t e d g e n e r a l l y p a r a l l e l to and are formed as a consequence of t i d a l c u r r e n t s . Houbolt s t a t e d that " the sand of which these r idges c o n s i s t is d e r i v e d from the sea bottom and not d i r e c t l y from a r i v e r mouth. The sand in the r idges of the Well Bank area seems to have been d e r i v e d from a g l a c i a l outwash fan formed in the area d u r i n g the l a s t g l a c i a t i o n " . ' Thus, in terms of t h e i r fo rm, t h e i r o r i e n t a t i o n w i t h respect to t i d a l f l ow and t h e i r sediment o r i g i n , the Queen C h a r l o t t e Sound r idges are somewhat s i m i l a r . S t a n l e y (1969) mentioned that "Van V e e n . . . h a s . . . suggested that the o f f s h o r e l i n e a r r idge systems represent the e v o l u t i o n of o r i g i n a l l y p a r a b o l i c or s igmoida l nearshore e b b - f l o o d channel systems wi th r i s i n g s e a - l e v e l , by a process of b reach ing of the t r a n s v e r s e segments" . It is l i k e l y the r idges on Goose I. Bank, i n s o f a r as they are s t i l l f i x e d at one end to s h a l l o w e r ground and are not as r e g u l a r as the North Sea r i d g e s , may be examples of an in te rmed ia te s tep in t h i s p r o c e s s . The area on North Bank covered by best so r ted sands i s very smal l when 175. compared to areas covered by the same sediment type in the v i c i n i t y of Goose I. Bank and Cook Bank. Th is p robab ly r e f l e c t s the f a c t North Bank i s so much deeper than the other banks. As on other banks , sands a p p a r e n t l y are being washed t o the nor th and south from the p o o r l y so r ted sediments in the middle of the bank. The on ly r u s t y w e l l s o r t e d sand was found near the c e n t r e of the bank a t 128 metres and may have developed under present c o n d i t i o n s or when s e a - l e v e l stood lower and the wide t e r r a c e on t h i s bank may have been s u r f - p l a n e d . On a p l o t of depth versus mud-sand r a t i o i t is e v i d e n t that heavy mud accumula t ion occur o n l y below 160 metres a l though some muddy sands w i t h mud contents as h igh as 20% occur as shoal as 120 met res . Most of the very muddy samples s h a l l o w e r than 160 metres are in the southwestern p o r t i o n of Queen C h a r l o t t e Sound near shore or near the Sea Ot ter Group of s h o a l s . This area i s in the v i c i n i t y of the h ighes t present sediment d i s c h a r g e and somewhat p ro -t e c t e d from the f u l l onslaught of storm waves. Consequent ly , some sediments in t h i s area may be "d rowning" in mud. The g r a v e l s in some of these s h a l l o w e r muddy sediments may have r o l l e d from h igher ground i n t o deeper water and may not be g l a c i a l sediments depos i ted in p l a c e . A l l bank tops are s h a l l o w e r than 160 met res . Goose I. Bank i s the s h a l l o w e s t of the banks and i s most a c t i v e l y be ing e roded . Cook Bank is a l s o be ing eroded but to a l e s s e r ex tent because i t i s somewhat p r o t e c t e d from storm waves and sea s w e l l s by the Scot t Is lands " b r e a k w a t e r " . North Bank is a zone of i n t e r m i t t e n t e r o s i o n and d e p o s i t i o n . On both Cook Bank and Goose I. Bank foram t e s t s are very s p a r s e . On much of North Bank t e s t s are ext remely abun-d a n t , but they tend to be most abundant in ve ry p o o r l y s o r t e d sandy g r a v e l s . Schafer and Prakash (1968) have found that " the s i z e of Fo ramin i fe ra1 t e s t s and the p o s s i b l e entrapment of a i r or some other gas make them most s u s c e p t i b l e to e r o s i o n and t r a n s p o r t by c u r r e n t s . This is e s p e c i a l l y t rue of abandoned f o r a m i n i f e r a 1 t e s t s which are no longer i n h a b i t e d by the l i v i n g a n i m a l " . 176. Current energy probab ly i s always s u f f i c i e n t to sweep forams o f f Cook and Goose I. Banks. On North Bank they may s e t t l e when weather c o n d i t i o n s are l e s s s e v e r e , but d u r i n g a storm such as that which r e c e n t l y p r e v a i l e d over the Sound, foram t e s t s are washed from b e t t e r s o r t e d sands on North Bank but remain amongst the p o o r l y s o r t e d g r a v e l s where they cannot as r e a d i l y be d i s l o d g e d . An i n t e r e s t i n g a s i d e may be i n t e r j e c t e d here . The observed h igh c o n c e n t r a -t i o n s of CaCO^ in Queen C h a r l o t t e Sound (foram t e s t s on North Bank, mol luscan s h e l l hash on Cook Bank) lend f u r t h e r support to Chave's ( 1 9 6 7 ) c a u t i o n a r y note that paleoenvironmenta1 i n v e s t i g a t i o n s must c o n s i d e r that abundant c a r b o n -a t e sediments may develop w e l l o u t s i d e t r o p i c a l c o n d i t i o n s . The repor ted t i d a l v e l o c i t i e s of 40 -50 cm./sec to depths a t l e a s t as g reat as 100 metres in the Sound would permit t r a n s p o r t of the best so r ted sands on Cook and Goose I. Bank which have mean g r a i n s i z e ranging from 0 .5 -0.063 mm ( 1 . 0 to 4 . 0 p h i ) (medium to very f i n e sand) (Sundborg in S t e r n b e r g , 1971). T h e r e f o r e , t i d a l a c t i o n a lone appears adequate to erode the two sha11ower banks. . In the search f o r t e r r a c e s which might represent former s t r a n d l i n e s i t must f i r s t be determined to what depth t e r r a c e s may develop under p r e s e n t l y p r e -v a i l i n g h y d r a u l i c regimes. Converse l y , i t must a l s o be cons ide red that t e r r a c e s below what i s w i d e l y b e l i e v e d to be the depth of the lowest P l e i s t o c e n e drop in s e a - l e v e l ' m a y have formed when the s e a - l e v e l was a_t the lowest s e a - l e v e l depth and not below. Cons iderab le care must be taken to a s c e r t a i n whether m a t e r i a l c o l l e c t e d from deeper t e r r a c e s f o r age d a t i n g has not f a l l e n or been washed down from some h igher l e v e l , a n d , f o r that m a t t e r , whether deeper t e r r a c e s have not formed by some mechanism other than wave a b r a s i o n . As i n d i c a t e d by S p i g a i and Kulm (1969) t e r r a c e s at 250-500 metres may even form by sediment ponding behind s lope a n t i c l i n a l f o l d s . '77. The evidence- f o r e r o s i o n p o s s i b l y to depths of 130 metres and the lack of s u b s t a n t i a l mud accumulat ion s h a l l o w e r than 160 metres below present s e a - l e v e l supports the e a r l i e r c o n t e n t i o n that the Q.ueen C h a r l o t t e Sound s h e l f break may have developed w e l l below the l e v e l of the lowest P l e i s t o c e n e s t r a n d l i n e . 178. CONCLUSIONS 1. Queen C h a r l o t t e Sound has been g l a c i a t e d to the s h e l f edge by grounded i c e . 2 . Troughs were excavated d u r i n g per iods of more in tense s h e l f g l a c i a t i o n . A f t e r r e t r e a t of the l a s t grounded g l a c i e r s , North Trough r e c e i v e d l i t t l e sediment , nor thern C e n t r a l Trough ponded g l a c i a l f l o u r d i s -charged from g l a c i e r s s t a g n a t i n g on or - r e t r e a t i n g - a c r o s s the . In ter t rough Area and inner and outermost South Trough g r a d u a l l y accumulated mud s e a s o n a l l y d i s c h a r g e d i n t o the Sound from s t i l l ex tant i c e f i e l d s . 3 . G l a c i a l d e p o s i t s , formed as the l a s t lobes of F raser G l a c i a t i o n waned, are s t i l l e v i d e n t in the s h e l f t roughs and in the In ter t rough A r e a . h. Banks p robab ly are massive d r i f t d e p o s i t s d e r i v e d from ice sheets which over ran the s h e l f . 5 . Northern Cent ra l Trough and the p o r t i o n of the nor th arm of South Trough east of Goose I. Bank may be marg ina l c h a n n e l s . 6 . In ter t rough Area may be a downdropped p o r t i o n of Mi lbanke S t r a n d f l a t . 7. If i t i s assumed there was l i t t l e g l a c i a l d e p r e s s i o n of the s h e l f and r a p i d rebound, the deepest seaward f a c i n g t e r r a c e s at 130 metres may have formed by nearshore wave a b r a s i o n when the sea was at i t s lowest P l e i s t o c e n e l e v e l . However, p l a n a t i o n c e r t a i n l y is p r e s e n t l y a c t i v e at l e a s t as deep as 100 metres (and p o s s i b l y as much as 130 m.) below present s e a - l e v e l . Because the s h e l f is mant led w i t h u n c o n s o l i d a t e d d r i f t i t would have been p a r t i c u l a r l y s u s c e p t i b l e to p l a n a t i o n in the p a s t . T h e r e f o r e , c o n s i d e r a b l e c a u t i o n must be employed when a t t e m p t i n g to l o c a t e p a l e o s h o r e l i n e s in the Sound. The f a c t that s i g n i f i c a n t e r o s i o n dependent on l o c a l oceanographic c o n d i t i o n s con t inues at c o n s i d e r a b l e depth below s e a - l e v e l suggests an e x p l a n a t i o n fo r the d i f f e r e n c e s in depth of non-warped g r a d a t i o n a l s h e l f b r e a k s . 179. 8. R i v e r s eroded canyons at the margins of Cook Bank when s e a - l e v e l was lower and concent ra ted the heavy minera l f r a c t i o n of l o c a l sands. 9« Suspended sediment i s s u p p l i e d l a r g e l y from meltwaters d i s c h a r g i n g i n t o the Sound from i n l e t s landward of the Sea Otter Group of s h o a l s . As these waters e n t e r the Sound and are d e f l e c t e d nor th t h e i r sediment f l o c c u l a t e s and s e t t l e s . Consequent ly , most recent mud is be ing d e p o s i t e d in the nor th 15 arm of South Trough and^s lowly burying g l a c i a l d e p o s i t s in the main t runk of the t r o u g h . Mud, f u r t h e r n o r t h , e s p e c i a l l y in the In ter t rough A r e a , may have been d e r i v e d l a r g e l y from r e t r e a t i n g g l a c i e r s . F i n e s t sediment s u p p l i e d to the s h e l f and not d e p o s i t e d inshore i s p robab ly t r a n s p o r t e d beyond the s h e l f in the l e s s s a l i n e s u r f a c e wate rs . As a consequence, many deep water sediments are anomalously coarse and muds on the o u t e r - s h e l f t r o u g h - f l a t s may have been d e r i v e d ma in l y from mel twater which ponded behind the s h e l f edge t e r m i n a l moraine as the f i n a l t rough g l a c i e r r e t r e a t e d . 10. T i d a l c u r r e n t s on Cook Bank helped by wave- induced o s c i l l a t o r y c u r r e n t motion are s h i f t i n g sands i n t o the main t runk and south arm of South Trough and p robab ly a l s o down the c o n t i n e n t a l s l o p e . On Goose I. Bank the same agents are t r a n s p o r t i n g sands north towards the Intertrough Area and Cent ra l Trough and southwest onto the s l o p e seaward of Goose I. Bank. North Bank sed iments , however, p robab ly are be ing s h i f t e d o n l y d u r i n g more in tense storms and , as a consequence, t h i s bank i s be ing l e v e l l e d more s l o w l y than the o t h e r s . APPENDIX LIST OF DATA USED IN FACTOR ANALYSIS EXAMPLE: 0_CS# 2 73 3 .29 0 . 4 6 0 . 4 9 3 . 6 8 0.0 9 7 - 0 2 2 . 9 8 0 . 3 1 WHICH REPRESENTS: SAMPLE NUMBER DEPTH (Metres) MEAN PHI/STAN. /SKEWNESS/KURTOSIS/%GRAVEL/%SAND/%MUD/%NON- /%CaC0 3 DEVIATION SHELL PHI ORGANIC CARBON CONTENT NOTE: Those samples c o n s t i t u t e d of on ly a few g r a v e l - s i z e p a r t i c l e s and f o r which no s i z e a n a l y s i s was done are represented by on ly t h e i r sample number and sample depth . These were not inc luded in f a c t o r a n a l y s e s . 181. QCS £ 2 3 . 2 9 4 0 . 4 6 2 0 . 4 8 9 QCS a 3 3 . 4 8 4 1 . 9 9 4 0 . 5 2 5 QCS 4 3 . 3 5 2 1 . 8 15 1 . 4 5 2 Q C S ? 5 2 . 9 2 2 0 . 7 1 5 0 . 4 5 4 QCS » 6 - 3 . 1 6 0 1 . 9 8 0 0 . 9 1 4 Q C S * 7 - 6 . 0 4 8 0 . 5 9 4 0 . 1 1 2 QCS# 8 - 5 . 4 1 6 0 . 4 5 5 0 . 4 5 1 QCSt l 9 - 0 . 0 2 0 1 . 2 6 0 - 0 . 4 10 QCS# 11 - 1 . 0 8 1 2 . 0 9 8 0 . 2 4 4 Q C S « 12 1. 8 84 1 . 4 05 - 1 . 0 84 Q C S 2 15 2 . 3 6 2 0 . 5 2 9 - 0 . 0 8 7 QCS# 16 3 . 4 0 7 1 . 6 4 1 1 . 3 2 9 QCS I! 17 4 . 0 4 6 2 . 0 4 9 1 . 1 7 5 QCS! ' 18 - 1 . 0 4 9 4 . 4 9 2 0 . 5 0 3 Q C S * 19 5 . 0 2 8 2 . 4 1 0 0 . 9 3 2 QCS# 2 0 - 0 . 5 8 3 3 . 2 9 9 0 . 0 0 8 QCSt 2 1 4 . 3 0 4 - 2 . 0 3 7 1 . 1 7 5 Q C S * 2 2 - 2 . 9 5 2 3 . 0 4 3 0 . 5 8 1 QCS# 2 3 - 1 . 7 9 5 4 . 5 39 0 . 7 3 6 QCS# 24 2 . 9 6 1 1 . 4 35 1 . 61 3 QCS# 25 4 . 1 1 9 1 . 6 30 1 . 62 5 Q C S F 26 0 . 1 6 5 2 . 9 8 8 - 0 . 3 8 1 Q C S * 2 7 2 . 6 7 4 0 . 5 3 0 - 0 . 2 0 2 QCS# 2 8 - 5 . 1 6 6 1 . 0 5 0 1 . 9 0 8 Q C S * 2 9 - 3 . 9 4 1 2 . 1 2 1 0 . 0 2 5 QC5# 3 0 - 4 . 7 8 4 1 . 7 07 1 . 131 9 7 . 0 2 3 2 . 9 7 7 0 . 0 0 . 0 7 3 3 . 6 7 7 0 . 3 1 20 4 . 7 4 3 1 . 7 7 3 7 2 . 8 5 9 2 5 . 3 6 7 147 6 . 3 7 3 0 . 0 8 6 . 2 4 2 1 3 . 7 5 8 146 2 . 37 4 0 . 3 94 . 88 0 5 . 1 2 0 51 2 . 9 7 0 8 8 . 4 2 8 1 1 . 3 3 5 0 . 2 3 8 5 5 ' 0 . 8 6 7 1 0 0 . 0 0 0 0 . 0 37 1 . 1 4 1 1 0 0 . 0 0 0 0 . 0 4 4 2 . 1 10 1 6 . 8 62 8 3 . 09 0 0 . 0 4 9 49 1 . 5 8 9 5 4 . 8 9 7 4 3 . 7 2 1 1 . 3 8 2 6 4 4 . 2 0 5 6 . 0 2 9 9 3 . 8 1 0 0 . 1 6 1 80 2 . 2 5 7 0 . 0 9 9 . 9 1 9 0 . 0 8 1 16 3 6 . 3 5 6 0 . 0 8 0 . 2 3 1 1 9 . 7 70 153 4 . 149 0 . 0 8 1 . 132 1 8 . 8 6 8 100 1 . 5 9 3 6 0 . 1 3 2 2 5 . 0 6 0 1 4 . 8 0 8 1 19 2 . 4 6 1 0 . 0 4 7 . 7 4 0 5 2 . 2 6 0 49 0 . 6 1 2 49 . 4 5 3 4 9 . 27 3 1 . 2 69 12 3 4 . 2 0 9 0 . 0 6 4 . 7 9 8 3 5 . 2 0 2 6 8 1 . 4 14 7 4 . 92 0 2 3 . 18 8 1 . 8 9 2 128 2 . 0 3 4 7 2 . 0 4 0 1 5 . 4 13 1 2 . 5 4 7 166 9 . 0 5 8 0 . 0 8 8 . 0 5 0 1 1 . 9 4 1 164 6 . 8 5 3 0 . 0 7 2 . 3 1 8 2 7 . 6 8 2 99 9 . 9 3 0 3 0 . 9 1 4 6 8 . 3 7 8 0 . 7 0 8 9 1 3 . 3 8 2 0 . 0 9 9 . 4 6 2 0 . 5 3 8 •55 1 2 . 1 2 2 9 8 . 7 7 7 1 . 2 0 2 0 . 0 2 1 8R 2 . 7 5 0 8 9 . 1 0 0 1 0 . 8 0 9 0 . 0 9 0 55 4 . 7 8 9 9 3 . 4 2 3 6 . 5 6 0 0 . 0 1 7 0 . 3 00 1 0 . 8 0 0 2 0 . 6 00 1 0 . 4 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 2 0 0 0 20 20 0 . 1 0 0 16 0 . 0 1 0 . 7 00 3 0 . 7 0 0 2 1 . 0 0 0 8 0 . 9 00 2 0 . 0 0 . 7 0 0 0 . 0 0 . 0 0 . 5 00 1 0 . 7 0 0 2 0 . 0 0 . 100 1 0 . 0 0 0 . 0 0 . 0 0 2 0 0 1 0 0 QCSK 3 2 OCS't 3 3 - 2 . 7 6 2 2 . 4 0 9 0 . 6 1 1 QCSft 34 2 . 2 0 0 0 . 4 8 4 - 0 . 4 9 3 QCSif 3 5 0 . 6 0 3 1 . 2 0 3 - 3 . 8 7 9 Q C S S 3 6 2 . 7 7 6 0 . 3 8 4 0 . 2 0 1 QCS# 3 7 2 . 8 0 0 0 . 6 7 8 0 . 0 6 7 Q C n * 3 8 3 . 6 3 6 1. 46 1 1. 3 6 5 QCS# 3 9 3 . 0 3 5 2 . 2 3 2 1 . 0 76 Q C S * 4 0 2 . 1 0 7 0 . 8 5 1 0 . 5 37 QCSJt 4 1 2 . 2 5 7 0 . 5 36 - 0 . 5 9 9 QCS# 4 2 3 . 2 3 3 0 . 6 7 4 0 . 6 2 1 QCSfr 4 3 3 . 9 0 7 1 . 176 2 . 1 9 5 Q C S S 4 4 3 . 4 89 0 . 8 5 3 2 . 9 62 QCS# 4 5 3 . 1 2 9 0 . 43 4 0 . 7 0 2 QCSif 4 6 1 . 3 4 7 0 . 6 5 2 0 . 1 3 5 OCf. 'f 4 7 QCStf 4 8 - 3 . 2 72 1 . 6 8 4 0 . 8 4 0 QCS* 4 9 2 . 2 2 2 0 . 4 31 - 0 . 0 0 7 ()CS ii 5 0 - 0 . 2 3 8 1 . 7 26 - 0 . 2 76 QCS-+ 5 1 - - 6 . 2 9 7 0 . 6 30 0 . 71 2 OCSI* 5 5 2 . 8 5 5 0 . 6 40 1 . 0 0 4 QCSv 56 0 . 3 9 2 2 . 1 7 3 - 0 . 1 5 7 QCS--H 5 8 2 . 5 78 0 . 4 28 0 . 7 0 7 QCS* 5 9 2 . 4 2 8 0 . 4 6 0 - 0 . 1 9 6 QCStt 6 0 1 . 8 9 2 0 . 5 4 8 0 . 2 7 2 QCS* 61 - 1 . 0 3 6 2 . 5 21 - 0 . 1 3 1 QCS# 6 2 0 . 7 9 2 0 . 8 97 - 0 . 1 2 4 0CS# 6 3 2 . 5 4 7 0 . 5 0 9 0 . 1 6 0 QCS* 64 3 . 3 73 1 . 09 1 2 . 64 1 QCS# 6 5 3 . 8 7 1 1 . 2 36 1 . 9 9 3 QCS* 66 - 4 . 9 63 1 . 0 9 5 2 . 0 30 60 6 4 1. 6 16 7 9 . 9 33 1 9 . 6 7 5 0 . 3 9 2 8 2 5 . 5 0 9 0 . 0 9 0 . 9 3 7 0 . 0 6 3 6 6' • 3 . 7 18 6 . 4 0 4 9 3 . 5 8 5 0 . 0 1 1 9 5 2 . 7 9 7 0 . 0 9 9 . 7 9 1 0 . 2 0 9 122 2 . 7 7 6 0 . 3 9 7 . 4 26 2 . 574 1 7 5 7 . 5 12 0 . 3 7 4 . 3 9 8 2 5 . 6 0 2 165 4 . 6 4 3 1 . 1 1 6 8 5 . 2 36 1 3 . 64 8 99 2 . 8 4 6 0 . 0 9 6 . 6 9 1 3 . 3 0 9 9 5 6 . 1 16 0 . 3 9 0 9 8 . 7 7 6 0 . 8 3 5 146 9 1 . 194 8 . 8 0 6 7 3 . 8 4 9 2 6 . 1 51 6 9 . 57 0 1 0 . 4 3 0 9 7 . 206 2 . 7 9 4 9 9 . 98 3 0 . 0 1 7 2 . 4 20 0 . 0 192 1 2 . 9 6 2 0 . 0 161 2 4 . 9 0 3 0 . 0 119 3 . 6 6 6 0 . 0 6 4 1 . 4 3 8 0 . 3 5 5 68 3 . 0 9 1 9 2 . 2 0 4 7 . 7 6 2 0 . 0 34 6 8 2 . 5 4 9 0 . 0 9 9 . 9 3 9 0 . 0 61 68 1 . 0 8 6 31 . 4 2 5 5 8 . 5 5 0 0 . 0 2 4 6 2 1 , 9 4 3 1 0 0 . 0 0 0 0 . 0 0 . 0 168 3 . 7 5 8 0 . 3 9 4 . 35 4 5 . 6 4 6 123 1 . 3 2 6 2 6 . 4 0 1 7 0 . 336 3 . 2 6 3 100 5 . 1 5 3 0 . 3 9 9 „ 2 1 3 0 . 7 8 7 86 2 . 8 5 7 0 . 3 9 9 . 8 4 9 0 . 1 5 1 84 2 . 4 5 0 0 . 3 9 9 . 7 7 9 0 . 2 2 1 80 0 . 8 5 5 4 7 . 8 0 3 5 2 . 0 1 7 0 . 1 8 0 7 3 1 . 3 3 3 2 . 3 1 9 9 7 . 6 6 9 0 . 0 1 2 122 2 . 1 15 0 . 3 9 9 . 71 3 0 . 2 8 7 170 1 8 . 4 4 5 0 . 3 9 2 . 6 7 4 7 . 3 2 6 192 1 1 . 7 0 5 0 . 3 7 4 . 336 2 5 . 6 6 3 1 11 1 3 . 6 16 9 8 . 5 1 0 1 . 4 4 0 0 . 0 5 0 0 0 2 0 . 2 0 0 21 0 . 0 . ; 2 0 . 1 0 0 0 0 . 1 0 0 1 0 . 1 0 0 1 0 . 6 00 1 0 . 5 0 0 1 0 . 0 0 . 0 0 . 5 00 0 . 7 00 1 0 . 4 00 ' 0 0 . 2 0 0 1 0 . 0 0 0 . 0 0 0 . 1 0 0 0 0 . 0 0 0 . 0 o 0 . 5 0 0 1 0 . 7 00 26 - 0 . 2 0 0 2 0 . 100 1 0 . 0 0 . 100 0 . 0 0 . 0 0 . 4 00 1 1 . 0 0 0 2 0 . 0 0 0 6 0 0 QCS if- 6 8 0 . 64 4 3 . 3 7 5 QCS if 6 9 - 1 . 0 2 4 2 . 9 7 9 Q C S t 7 1 2 . 9 2 7 0 . 4 5 9 QCS if 7 2 1. 1 93 1 . 07 1 QCS! ! 7 3 2 . 30 6 0 . 7 35 QCS ^ 74 2 . 8 0 1 0 . 3 9 1 Q C S » 75 1 . 4 9 3 2 . 6 96 Q C S * 76 3 . 5 8 6 1 . 0 5 3 QCS if 77 3 . 1 0 7 . 1 . 2 5 8 Q C S * 7 3 3 . 4 7 7 1 . 7 5 9 QCSff 7 9 3 . 6 3 6 1 . 5 15 Q C S S3 80 3 . 52 9 1 . 4 17 Q C S « 81 - 1 . 4 0 0 3 . 6 3 0 Q C S S 82 3 . 3 8 9 1 . 8 9 2 QCS if 83 1 . 8 3 3 3 . 4 3 2 QCS ii 34 2 . 71 4 0 . 9 6 4 QCS if- 85 2 . 4 7 9 0 . 7 8 6 Q C S t 86 3 . 4 9 1 1 . 4 6 1 QCSf i 87 3 . 9 5 6 2 . 1 7 8 QCS # 83 2 . 2 76 2 . 6 96 QCSft 69 4 . 40 7 1 . 8 8 4 QCS it 90 • 4 . 7 6 0 1 . 7 4 5 Q C S 3 91 6 . 3 72 2 . 3 3 6 QCSff 92 6 . 22 4 2 . 9 12 QCSff 93 4 . 12 3 1 . 8 7 8 Q C S ? 94 2 . 8 8 9 0 . 3 5 1 QCSff 9 7 5 . 4 8 7 2 . 4 6 9 QCS It 98 4 . 54 8 2 . 3 32 Q C S 4 9 9 3 . 7 0 2 1 . 0 9 5 QCSff 1 0 0 1 . 8 8 1 0 . 4 9 5 183. 1 3 3 0 . 64 9 2 . 26 9 40 . 9 1 0 4 3 . 3 39 1 5 . 2 51 0 . 7 00 9 1 8 3 • 0 . 0 3 1 0 . 89 1 4 2 . 5 8 8 5 4 . 0 2 2 3 . 3 9 0 0 . 3 0 0 14 17 4 0 . 6 7 6 3 . 8 9 8 0 . 3 9 8 . 5 16 1 . 4 8 4 0 . 3 00 0 1 10 - 0 . 2 2 9 1 . 4 3 7 2 . 9 8 1 9 6 . 9 5 8 0 . 0 6 2 0 . 0 0 100 •0. 5 5 0 2 . 34 1 0 . 3 9 9 . 7 8 0 0 . 2 2 0 0 . 1 0 0 0 102 0 . 1 1 9 2 . 7 14 0 . 3 9-9. 85 2 0 . 1 4 8 0 . 1 0 0 1 124 •0. 5 6 0 1 . 5 8 5 1 9 . 531 7 5 . 0 8 8 5 . 381 0 . 4 0 0 3 145 2 . 1 54 14 . 6 07 0 . 3 8 8 . 09 2 11 . 9 0 3 0 . 7 00 4 157 2 . 4 8 8 1 5 . 5 6 3 0 . 3 9 5 . 0 6 9 4 . 9 3 1 0 . 7 0 0 3 1 7 3 1 . 5 5 3 6 . 6 9 1 0 . 0 8 6 . 9 7 3 1 3 . 0 2 7 0 . 6 0 0 9 19 2 1 . 6 2 4 8 . 3 1 1 0 . 3 8 1 . 8 5 2 1 8 . 1 4 9 0 . 6 0 0 9 280 1 . 6 74 1 0 . 0 5 5 0 . 3 5 9 8 5 . 3 26 1 4 . 3 1 5 0 . 6 00 4 26 5 0 . 2 8 0 0 . 8 9 0 6 0 . 9 9 4 3 5 . 1 2 0 3 . 8 8 5 1 . 0 0 0 9 238 1 . 1 8 0 5 . 3 4 3 0 . 0 8 4 . 0 3 3 1 5 . 9 6 7 0 . 8 0 0 9 22 3 • 0 . 0 61 1 . 87 1 1 9 . 9 7 5 6 7 . 28 9 1 2 . 73 6 0 . 6 00 3 230 0 . 2 6 6 1 . 9 2 9 0 . 3 9 1 . 9 4 2 8 . 0 5 8 0 . 5 0 0 1 20 5 0 . 8 7 2 3 . 1 1 9 0 . 0 9 4 . 6 5 8 5 . 3 4 2 0 . 3 0 0 1 2 2 3 2 . 0 3 3 1 0 . 231 0 . 0 8 8 . 4 4 5 1 1 . 5 5 5 0 . 4 0 0 1 20 8 1 . 0 8 4 4 . 2 2 4 0 . 9 0 7 8 0 . 0 6 8 1 9 . 0 2 4 0 . 6 0 0 2 220 0 . 0 8 6 2 . 5 8 5 1 2 . 6 4 0 7 4 . 2 5 6 1 3 . 1 0 4 0 . 5 0 0 1 214 1 . 3 4 5 4 . 7 5 8 0 . 0 5 1 . 5 9 8 3 8 . 4 0 2 0 . 8 0 0 1 2 0 7 1 . 1 6 3 4 . 2 2 2 0 . 0 3 3 . 6 6 1 6 6 . 3 3 9 - 0 . 3 0 0 2 19 4 0 . 4 0 4 0 . 9 6 7 0 . 0 1 5 . 3 0 5 8 4 . 6 9 5 0 . 9 0 0 3 1 57 0 . 4 6 5 1 . 0 3 3 0 . 0 1 6 . 4 29 8 3 . 571 0 ^ 3 0 0 3 1 5 4 1 . 3 9 2 5 . 176 0 . 3 6 8 . 9 0 9 31 . 0 9 0 0 . 8 0 0 2 100 0 . 6 0 4 5 . 2 3 0 0 . 0 9 9 . 5 0 9 0 . 4 9 1 0 . 0 1 14 1 0 . 7 5 6 1 . 9 0 0 0 . 0 2 6 . 5 0 2 7 3 . 4 9 9 1 . 3 0 0 3 155 0 . 9 1 7 2 . 7 2 1 0 . 0 5 3 . 9 6 1 3 6 . 0 3 9 1 . 7 0 0 3 146 2 . 1 9 6 1 4 . 8 5 7 0 . 0 8 2 . 9 1 0 1 7 . 0 9 0 0 . 5 0 0 1 9 2 - 0 . 0 34 1. 8 9 6 0 . 3 9 9 . 98 2 0 . 3 1 8 0 . 0 1 QCSH 10 1 2.003 0.431 -0.325 QCS £ 102 1.611 0.660 -1.110 PCS If 103 -1.495 1.b9b 0.3 56 QCS.'; 104 -2.29 8 1.86 0 0.552 PC5# 115 3. 63 8 1 . 350 2. 043 QCS* 116 3. 723 1 .407 1 . 967 QCSft 117 4. 0 54 1 .5 95 1. 74 4 QCS if 118 2.53 9 1.05 3 0,09 8 QCS* 119 1. 573 1. 209 -0. 1 75 QCSt 120 -3.4 53 2.25 0 0.941 QCS* 12 1 0.578 1.978 -0.259 QCS H 124 -3.411 3.298 0.40 7 QCS * 125 2.352 1.010 -0.172 QCS# 126 4.025 1.702 1.589 QCS * 12.7 4.777 2.291 1.019 QCS-3 129 3.4 58 1.193 1.944 QCS# 13 1 2.71 6 0.410 0.4 75 QCSf.1 13 2 4.067 1.461 1. 505 QCS* 13.3 1.9.36 1.042 0. 149 QCSt 134 2.279 0.588 -0.596 QCS* 137 5. 375 2.448 0. 793 QCS# 138 6.0 74 2.7 08 0.52 8 QCSS 139 5. 891 2.590 0. 5 8.3 QCS4 14 0 5.439 2.522 0.723 QCS4 14 1 4.320 2.032 1.240 QCS# 142 4.0 83 1.4 12 1.72 0 QCS# 14 3 1 4. 626 2. 123 1. 1 69 QCS» 144 4. 61 2 2. 26 1.01 2 QCS# 145 2. 4 84 0.8 04. 0. 64 8 QCSt 146 3. 64 1 1.597 1 . 778 37 3. 102 0.0 99. 985 0. 31 5 40 5.725 1.598 98.396 0.006 46 1.35 2 68.033 3 1.9 37 0.03 1 4 6 1.3 24 7 6.60 6 2 3.39 4 0.0 13 3 89. 250 10 . 750 83. 527 16. 473 76. 276 23. 724 96. 104 3.89 6 10.75 0 0.3 17 4 10. 228 0.3 155 7. 25 3 0.3 1 37 1.6 59 0.0 1 37 2. 140 3. 348 96. 294 1 . 359 1 37 2.609 85.639 14.064 0.297 146 0.8.39 32.261 67. 716 0 .023 183 1.059 72.190 26.817 0.993 183 3. 299 0.0 174 6.5 06 0.3 16 4 .3. 05 5 0.0 1 28 12.131 0.3 1 37 4.911 0.0 1 37 7.509 0.3 100 1.808 0.3 91 9.5 87 0.9 67 97.94 1 1.0 92 146 2.023 0.3 174 1. 2 37 0.3 18 3 1.449 0.0 18 3 1.828 0.3 18 3 4.191 0.3 18 3 8.321 0.3 200 3.653 0.3 220 3.131 0.3 230 3.113 0.3 256 8.211 0.3 95. 102 4.890 73. 927 26.073 5 3 .46 5 46. 5.3 5 84.722 15.278 9 9. 28 0 0. 72 0 61.556 38.445 97.485 2. 515 30.722 69.278 15.75 2 8 4.24 8 22. 172 77. 828 34.377 65.623 67. 058 32.942 66. 739 33.261 56. 467 43. 533 57.695 42.305 94.605 5.395 85.5 3 1 14.4 69 184. 1 3 4 0 3 4 4 5 1 0. 0 0. 0 0. 0 0.0 0.400 0.600 0. 700 0.5 00 0. 0 0.200 28 0.0 0 0. 3 00 2 0. 200 1 0. 600 1 1. 2 00 3 0.4 00 .3 0. 800 1.4 00 0. 200 0. 100 0 1.300 2 2. 3 00 .3 2.400 3 1.400 1. 100 0.800 0. 900 0.800 1 0. 2 00 1 0.5 00 1 5 3 3 2 2 2 2 185. QCS If 1U7 256 2. 675 0. 900 0. 64 9 2. 218 0.9 91,2 36 8 . 764 0. 3 00 1 QCS if 14 8 28 4 3.9 89 1, 3 30 1.711 9. 127 0.9 66. 305 33. 695 0. 700 3 QCSff 14 9 29 3 0, 30 0 4. 169 -0.14 3 0. 815 97. 723 4 9. 586 12. 6^1 0. 6 00 5 QCS if 15 1 284 3.6 74 1. 198 2.108 12. 788 O.O 86.6 16 1 3. 3 84 0. 5 00 4 QCSff- 152 450 3.978 1. 56 3 1. 1 53 4. 529 0.3 79. 98 1 20. 019 0. 5 00 3 QCS-fr 155 27 4 -3.273 2. 376 0. 34 3 2. 564 84. 61 1 13.99 0 1 . 39 3 0. 0 14 QCS* 156 27 4 QCSff 158 29 3 4, 875 1. 93 3 1.13 5 3. 6 22 0.3 3 6. 05 7 6 3. 944 1. 4 00 4 QCS'f 162 200 4. 3 73 1 . 3 25 1.431 5. 24 9 0.0 63.008 36. 9 92 0. 8 00 2 QCS 4 163 170 2. 980 1. 344 1.818 10. 70 1 0.0 90. 6 17 9. 3 83 0. 3 00 1 QCS# 164 155 3. 148 0. 50 1 0. 84 6 3. 896 0.0 96.28 0 3. 720 0. 0 0 QCSff 165 73 1. 888 0. 554 0.047 1. 74 2 0.0 99. 96 1 0. 039 0. A 0 QCSff 166 40 2. 04 5 0. 415 -0.257 2. 94 4 0.0 99. 972 0. 028 0. 0 4 QCSff 167 146 3. 678 1. 07 4 2.137 14. 23 2 0.0 32.9 10 17. 090 0. 100 2 QCS* 168 150 1.82 1 3, 9 44 -0. 064 1. 4 12 24, 0 1 5 5 0. 55 3 25. 431 0. 8 00 2 QCSif 169 146 4.177 1. 36 3 1. 699 8. 649 0.0 56.655 4 3. 34 5 0. 7 00 1 QCS" 170 1 37 3.33 1 1. 168 1.947 12. 75 5 0.0 87.576 12. 42 4 0. 5 00 1 QCSff 171 146 4. 72 6 2. 116 0.919 3. 06 3 0.0 4 3. 126 56. 875 1. 500 .3 QCS* 173 1 4 6 4. 23 2 1. 5 33 1.713 7. 4 69 0.0 65.6 89 34. 310 0. 6 00 2 QCS# 175 36 2. 1 78 0. .345 0. 2 54 6. 277 0., 0 9 9. 84 5 0. 1 55 0. 0 2 QCSff 177 46 - 3 . 294 1 . 689 0. 892 3. 210 91.63 0 8. 352 0. 018 0. 0 0 QCSff 178 46 -3.617 2. 803 0.394 0. 99 3 73.041 2 6. 94 3 0 . 016 0. 100 1 QCSff 180 82 2. 43 8 0. 544 -0.040 2. 25 1 0.0 9 9. 89 0 0. 110 0. 0 0 QCS# 181 1 10 2. 242 0. 6 41 0. 0 73 1. 760 0.0 9 9. 75 3 0. 247 0. 1 00 0 QCS* 182 146 2. 422 0. 374 0.047 2. 846 0.0 99. 96 1 0. 0.39 0. 100 0 QCSif 183 192 3. 369 0. 565 0. 751 77 0 0, 0 92. 65 3 7. 347 0. 4 00 1 QCS* 184 220 2.0 12 3. 9 19 -0. 131 1. 635 20.0 20 62.674 17. 306 0. 800 5 QCS# 185 2 38 -3 . 824 1 . 900 1.113 3. 672 90.39 3 9. 531 0. 0 76 0. 0 0 QCS# 187 4 57 3. 64 8 2. 0 23 1. 180 4. 29 2 0.0 81.260 18. 740 0. 200 3 QCS <i 225 1 19 2. 417 1. 113 0. 34 7 1. 9 49 0.0 9 0. 366 9. 63 4 0. 500 3 QCS* 226 1 11 - 0 . 3 5 4 3 . 18 1 - 0 . 0 8 0 0 . 7 7 1 4 2 . 4 7 5 5 3 . 6 7 6 3 . 8 4 9 0 . 3 0 0 1 QCS * 2 2 7 4 4 0 4 . 9 0 9 2 . 6 1 2 0 . 8 2 0 2 . 1 0 6 0 . 0 5 4 . 9 1 0 4 4 . 5 6 0 1 . 3 0 0 4 QCS* 2 2 8 1 1 0 2 . 6 3 1 1 . 0 4 3 0 . 2 9 9 1 . 9 6 2 0 . 3 9 0 . 0 4 4 9 . 9 5 6 0 . 5 0 0 1 QCS? 2 2 9 1 5 4 6 . 6 4 4 2 . b O b 0 . 3 81 1 . 0 6 8 0 . 3 9 . 3 2 2 9 0 . 6 7 7 3 . 6 0 0 5 QCSif 2 3 0 7 1 - 0 . 2 6 9 0 . 6 6 0 0 . 1 1 4 3 . 2 7 8 9 . 1 2 3 9 0 . 8 6 0 0 . 0 1 7 0 . 0 0 QCSif 2 3 1 1 3 7 - 3 . 2 1 8 3 . 7 0 7 0 . 6 3 6 1 . 5 9 6 ' 7 5 . 5 3 6 2 0 . 4 17 4 . 0 4 3 0 . 6 0 0 4 QCSS 2 3 2 8 8 - 1 . 7 9 4 3 . 2 7 0 0 . 1 0 8 0 . 6 7 3 5 9 . 2 1 3 4 0 . 5 0 0 . 0 . 2 8 7 0 . 2 0 0 7 QCS it 2 3 3 6 4 -1. 4 4 9 1 . 2 9 3 0 . 6 3 0 3 . 3 4 6 7 2 . 5 1 4 2 7 . 15 1 0 . 3 3 4 0 . 0 0 QCS* 2 3 4 7 1 0 . 9 7 4 1 . 4 4 3 - 1 . 1 5 3 4 . 3 1 4 8 . 7 1 0 9 0 . 9 5 7 0 . 3 3 3 0 . 5 0 0 3 0 QCS* 2 3 5 2 1 4 4. 8 6 6 2 . 0 3 1 1 . 0 1 2 3 . 2 0 4 0 . 3 3 9 . 6 3 1 6 0 . 3 6 9 0 . 9 0 0 4 QCS# 2 3 6 2 3 8 8 . 1 6 4 2 , 7 10 - 0 . 0 8 7 0 . 7 6 2 0 . 3 5 . 6 7 3 9 4 . 3 2 7 3 . 3 0 0 7 QCS# 2 3 7 2 3 8 7 . 44 9 2 . 8 2 1 0 . 0 8 8 0 . 7 6 5 0 . 3 1 0 . 9 7 3 8 9 . 0 2 6 3 . 2 0 0 6 QCS* 2 3 8 1 9 2 4 . 3 98 2 . 0 0 9 1 . 2 8 9 4 . 3 3 0 0 . 3 6 5 . 2 0 2 3 4 . 7 9 7 1 . 6 0 0 8 QCSS 2 3 9 2 0 5 4 . 6 1 7 2 . 4 4 0 0 . 8 1 0 2 . 3 4 0 0 . 0 6 3 . 1 7 6 3 6 . 8 2 4 1 . 6 0 0 1 0 QCStf 2 4 1 5 5 - 5 . 6 7 5 1 . 0 4 6 0 . 1 8 6 0 . 8 4 8 1 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 QCS* 2 4 2 9 2 - 5 . 5 9 5 0 . 5 3 3 1 . 8 8 7 8 . 0 3 3 1 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 QCS it 2 4 3 2 1 0 4 . 5 4 6 3 . 5 8 7 0 . 1 1 9 1 . 5 3 1 6 . 5 9 4 4 8. 9 3 0 4 4 . 4 7 6 1 . 3 0 0 5 QCS# 2 4 4 2 1 4 6 . 3 7 2 2 . 7 2 2 0 . 3 3 6 1 . 0 6 0 0 . 1 7 . 79<) 8 2 . 2 0 2 2 . 7 0 0 5 QCS# 2 4 5 1 8 3 4 , 6 2 7 1 . 8 5 6 1 . 2 7 5 4 . 4 6 5 0 . 0 4 9 . 0 6 7 5 0 . 9 3 3 1 . o o o 3 QCS* 2 4 6 1 6 4 4 . 1 3 9 1 . 2 2 6 1 . 7 8 3 9 . 6 0 2 0 . 3 5 9 . 9 1 3 4 0 . 0 8 7 0 . 6 0 0 3 QCS# 2 4 7 1 5 5 4 . 4 4 9 1 . 9 3 7 1 . 1 1 4 3 . 2 7 4 0 . 3 6 1 . 9 3 9 3 3 . 0 6 1 0 . 6 0 0 2 QCS* 2 4 8 1 3 9 3 . 5 3 8 1 . 1 1 2 2 . 2 8 4 1 5 . 2 16 0 . 0 8 7 . 1 8 8 1 2 . 8 1 2 0 . 3 0 0 2 QCS# 2 4 9 1 4 8 4 . 2 0 7 1 . 4 4 4 1 . 7 4 1 8 . 1 5 6 0 . 0 5 8 . 9 6 7 4 1 . 0 3 3 0 . 4 0 0 4 QCS# 2 5 0 16 4 4 . 3 2 8 1 . 4 6 6 1 . 6 0 1 7 . 17 2 0 . 3 5 4 . 8 8 4 4 5 . 1 1 6 0 . 3 0 0 4 QCS# 2 5 1 1 6 8 -4 . 2 8 9 1 . 8 9 1 1 . 3 8 3 4 . 9 16 0 . 7 4 . 1 0 3 2 5 . 3 9 7 0 . 4 0 0 1 Q C S 2 5 2 1 8 9 • 3 . 3 5 5 3 . 0 8 6 0 . 3 3 2 2, 0 0 7 8 . 9 5 9 6 4 . 6 0 3 2 6 . 4 3 8 1 . 3 0 0 3 QCS* 2 5 3 1 7 0 - 0 . 6 0 2 3 . 2 2 7 0 . 0 2 2 0 . 8 2 2 4 6 . 8 3 9 4 6 . 8 4 3 6 . 3 1 8 0 . 4 0 0 1 0 QCS* 2 5 4 1 3 3 1 . 4 9 2 2 . 2 2 5 - 0 . 4 3 8 2 . 0 9 7 1 2 . 3 6 0 7 9 . 5 7 0 8 . 0 7 0 0 . 5 0 0 16 QCS# 2 5 5 1 5 5 4 . 0 7 4 3 . 7 17 0 . 3 8 3 1 . 4 3 4 5 . 0 3 6 6 2 . 9 9 5 31 . 9 6 9 0 . 7 0 0 7 QCS» 2 5 6 1 4 1 1 . 6 6 6 3 . 6 7 3 0 . 0 3 9 1 . 6 3 4 2 4 . 3 1 4 6 1 . 9 4 9 1 3 . 7 3 6 0 . 6 0 0 6 QCS* 2 5 7 1 5 7 3. 978 1. 955 1. 1 5 1 4.67 3 0. 3 73. 77 0 26. 229 0. 7 00 8 QCS* 25 8 166 6. 2 97 3. 195 0. 332 0. 820 0. 3 32.655 67. 3 4 5 1. 3 00 6 QCS* 259 113 -1.459 2. 8 49 0. 1 1 0 0. 8 10 56. 128 42.670 1 . 201 0. 100 1.3 QCS* 260 1 28 -0. 75 5 2. 9 48 -°« 103 0. 85 6 4 3. 927 54. 0 18 2. 0 55 0. 2 00 9 QCSff 26 1 157 4.001 1. 38 1 1. 9 71 9.833 0. 0 75. 32 2 24. 678 1. 3 00 2 QCS* 262 183 - 1. 52 4 2. 656 0. 2 42 0. 94 4 6 3. 1 9 1 35.6 15 1 . 194 0.5 00 10 QCS* 263 7 3 0.489 1. 78 7 -0. 430 1.311 2 3. 7 6.3 76. 137 0. 10.0 0. 0 1 QCS# 2 64 95 3. 0 74 0. 406 0. 551 3.678 0. 0 98. 885 . 1 . 1 1 5 0. 100 1 QCS* 2 65 75 3. 12 8 0. 4 24 0. 4 15 3.859 0. 3 98. 5 35 1 . 415 0. 0 2 QCS* 266 77 2. 85 2 0. 509 0. 367 3.113 0. 0 98. 67 3 1 . 327 0. 0 3 QCS# 268 5 5 2. 525 0. 723 - 1 . 0 89 5.75 2 0. 820 93. 792 0. 388 0. 0 3 QCS* 26 9 64 2. 492 0. 607 -0. 480 3.948 0. 0 99. 75 1 0, 249 0. 0 1 QCS# 270 62 1.391 1. 9 48 -0. 6 54 2.0 13 13. 9 80 83. 7 16 2. .30 4 0. 0 0 QCS* 271 80 2. 406 0. 488 -0. 2.3 6 4. 6 26 0. 0 99. 646 0. 3 54 0. 100 1 QCS t 272 1 20 3. 405 0. 645 0. 521 2. 172 0. 3 9 0. 4 35 9 . 565 0. 100 1 QCS* 2 73 155 -2. 400 3. 188 0. 42 0 1.211 69. 39 3 2 6. 16 4 4. 443 0.4 00 8 QCS if 2 74 1 35 -0.794 2. 9 29 -0 . 0 42 0. 8 17 44. 193 53,323 2. 484 0. 200 14 QCS* 2 75 165 4. 92 9 2. 5 20 0. 851 2, 237 0, 0 53.396 46. 60 3 0.7 00 6 QCS* 2 76 162 2.308 3. 197 0. 256 1. 857 17. 5 65 5 9. 66 0 22. 775 0. 300 8 QCSIf 277 146 -3.098 3. 196 0. 995 .3. 5 07 8 1. 69.5 13. 9 14 4. 391 0. 0 0 QCS* 2 78 155 -3.941 2. 36 1 0. 9 57 3,32 1 90. 351 7. 576 1 . 573 0. 0 0 QCSIf 2 79 159 -1.75 8 2. 7 22 0. 3 56 1. 16 3 6 5. 29 7 3 2.034 2, 61 9 0. 7 00 9 QCS* 2 80 155 -2. 268 1 . 184 0. 281 1.814 0. 3 91.2 19 8. 781 0.4 00 4 QCS* 2 81 168 3.517 1. 3 36 1. 766 9.76 5 0. 0 79. 806 20. 194 0.6 00 4 QCS * 2 82 16 4 -2..70U 3. 529 0. 40 1 0.998 68. 60 7 27.8 16 3. 577 0. 200 if QCSff 2 84 1 1 1 3.3 81 0. 6 30 0. 4 70 2.4 40 0. 0 91.492 8. 50 8 0. 0 1 QCSff 2 85 84 - 1 . 563 3. 4 77 0. 154 0.686 57. 409 4 1.64 3 0. 947 0. 100 2 QCSff 2 86 49 .1. 63 0 0. 848 - 0 . 6 64 2.730 1. 4 65 98, 5 35 0. 0 0. 0 2 QCS if 2 87 71 2. 756 0. 46 4 -0. 361 5.295 0. 0 99. 622 0. 378 0. 100 4 QCSt 2 89 62 2.531 0. 7 10 - 1 . 4 94 8.819 1. 218 98. 547 0. 2 34 0. 0 4 QCSff 290 81 2. 56'4 0. /22 -0. 241 2. 6 31 0. 0 9 9. 06 6 0. 9 34 0. 100 10 Q C S * 2 92 1 17 3. 72 6 0. 992 2. 717 18. 80 5 0. 0 85.655 1 4. 345 0. 2 00 1 Q C S If 2 93 137 2. 3 73 0. 383 0. 732 5. 6 32 0. 3 9 9. 62 1 0. 3 79 0. 0 0 Q C S a 2 94 175 5. 0 77 2. 39 9 0. 9 63 2. 5 1 3 0. 0 37. 108 62. 892 0. 600 0 Q C S * 2 95 186 2.565 1. 143 0. 92 8 6. 5 6 2 0. 3 89.03 3 10. 9 62 0. 100 3 Q C S =f 2 96 186 0.3 87 4. 3 43 0. 309 •1. 57 3 42. 9 68 42. 157 14. 875 0.500 6 Q C S If 2 97 200 5. 1 3 8 2. 335 0. 909 2. 4 59 0. 0 3 6.286 6 3. 714 1. 000 5 Q C S * 2 93 204 6. 4 53 2. 98 3 0. 2 66 0. 7 26 0. 3 2 0. 94 3 79, 0 56 1. 2 00 6 Q C S # 299 2 14 5. 143 2. 24 4 0. 83 0 2. 36 1 0. 3 50. 270 49. 730 1. 200 4 Q C S if 300 218 4.613 1. 853 1. 346- 4. 7 12 0. 3 47. 129 52. 871 0.600 4 Q C S It 3 01 216 4. 957 2. 974 0. 320 1. 87 8 2. 49 8 36.6 39 60 . 8 63 . 0. 9 00 6 Q C S * 3 12 92 3.060 0. 46 5 0. 54 9 3. 4 08 0. 3 98. 23 3 1 . 767 0. 100 2 O C S # 313 110 2. 74 0 0. 8 13 -0 . 173 2, 4 5 3 0. 3 97.6 00 2. 400 0, 100 1 Q C S t 3 14 122 3.397 0. 499 0. 63 9 3. 64 3 0. 3 94. 6 22 5. 378 0. 200 1 Q C S * 3 15 177 2. 54 7 0. 48 3 0. 1 1 9 6. 37 0 0. 3 99. 03 2 0. 968 0. 100 0 Q C S H 317 200 6.610 2. 851 0. 30 5 0. 3 08 0. 3 13.956 86. 044 2.4 00 5 Q C S if 313 200 7 . 2 67 3. 134 0. 125 0. 6 20 0. 3 9. 6 25 90. 3 75 2.4 00 6 Q C S * 319 196 7.2 10 2. 857 0. 132 0. 80 4 0. 0 7.7 32 92. 268 2.5 00 7 Q C S * 320 183 1.755 0. 492 0. 1 1 2 3. 3 39 0. 3 99. 853 0 . 147 0. 0 2 Q C S * 321 210 1. 933 0. 7 88 3. 874 3. 938 0. 3 97. 110 2. 890 0. 200 1 QCS ft 322 250 2. 666 3. 034 0. 42 5 2. 2 17 11. 1 38 67.397 20 . 9 65 0. 300 4 O C S f f 323 260 5. 3 54 3. 075 0. 54 3 1. 276 0. 3 55. 56 2 4 4. 438 0. 6 00 3 Q C S f f 324 1 37 2. 1 09 0. 6 8 1 _ n 42 4 2. 8 23 0. 3 99. 75 4 0. 246 0. 0 2 Q C S * 325 9 2 -2. 460 1. 9 15 0. 398 1. 385 79. 835 2 0. 104 0. 061. 0. 0 4 Q C S * 326 73 -1.010 2. 024 0. 0 1 6 0. 9 1 2 51. 4 70 48. 455 0. 0 76 0. 0 5 Q C S ff 32 7 60 - 1 . 238 1. 645 0. 101 1. 16 3 57. 80 6 4 2.101 0. 093 0. 0 26 Q C S ft 32 8 70 -0.481 0. 899 0. 718 2. 8 36 27. 674 72.3 26 0. 0 0. 0 3 Q C S f f 329 91 -3.120 1. 677 3. 882 3. 24 7 9 1. 0 3 1 8. 79 3 0. 177 0. 0 0 Q C S # 33 0 212 -2. 702 2. 56 9 0. 6 52 1. 56 9 80. 146 1 9. 6 09 0. 245 0. 0 0 Q C S # 33 1 265 0.207 2. 87 4 -0. 30 6 0. 940 31. 322 67. 125 1 . 552 0. 100 3 Q C S 332 28 3 0 . 2 4 9 2 . 6 4 1 - 0 . 2 2 3 0 . 9 1 0 3 5 . 8 6 4 6 2 . 1 2 7 2 . 0 0 9 0 . 2 0 0 2 QCS ft 3 3 3 2 2 3 - 1 . 2 5 6 2 . 0 4 6 0 . 3 1 4 1 . 4 5 2 5 8 . 3 4 3 3 9 . 9 7 7 1 . 6 7 9 0 . 0 0 QCS« 3 3 4 3 6 6 - 0 . 1 9 9 4 . 2 8 7 0 . 2 3 8 1 . 2 2 4 4 6 . 7 0 5 3 7 . 5 5 6 1 5 . 7 3 9 0 . 8 0 0 3 QCS* 3 3 5 1 9 7 2 . 9 5 0 0 . 5 6 3 0 . 8 2 9 3 . 7 6 2 0 . 0 9 6 . 2 0 0 3 . 8 0 0 0 . 2 0 0 1 QCS * 3 3 6 1 9 2 2 . 0 3 6 0 . 8 4 5 - 0 . 1 2 9 1 . 5 4 2 0 . 0 9 9 . 6 0 4 0 . 3 9 6 0 . 0 1 QCS ft 3 3 8 1 3 3 3 . 3 8 0 1 . 8 7 0 1 . 6 2 3 6 . 7 3 9 0 . 0 8 9 . 1 3 7 1 0 . 8 6 3 0 . 3 0 0 2 QCS* 3 3 9 1 4 8 3 . 1 5 3 0 . 8 4 7 - 0 . 3 8 2 3 . 3 4 6 0 . 0 9 2 . 9 4 9 7 . 0 5 1 0 . 3 0 0 7 QCS* 3 4 0 1 4 1 2 . 9 0 8 0 . 7 2 8 - 0 . 0 4 3 3 . 2 4 4 0 . 3 9 6 . 0 4 4 3 . 9 5 6 0 . 2 0 0 4 QCS* 3 4 1 2 0 6 3 . 9 3 7 1 . 7 0 5 1 . 5 9 8 6 . 6 2 0 0 , 0 7 9 . 6 0 9 2 0 . 3 9 2 0 . 5 0 0 5 QCS If 3 4 2 1 6 8 2 . 4 0 7 0 . 8 3 2 0 . 3 6 5 2 . 5 0 1 0 . 0 9 6 . 7 0 7 3 . 2 9 3 0 . 1 0 0 2 QCSt 3 4 3 2 3 4 2 . 5 2 2 0 . 7 7 3 0 . 6 5 5 3 . 2 3 6 0 . 0 9 5 . 1 0 4 4 . 8 9 6 0 . 3 0 0 2 QCS 3 4 4 2 9 2 4 . 1 4 3 1 . 6 8 2 1 . 6 0 0 6 . 5 4 8 0 . 0 7 3 . 2 2 3 2 6 . . 7 7 7 0 . 4 0 0 3 QCS It 3 4 5 4 8 0 6 . 6 1 9 3 . 5 4 0 0 . 0 9 6 0 . 6 8 8 0 . 0 3 5 . 0 3 4 6 4 . 9 6 6 1 . 6 0 0 4 QCS* 3 4 6 4 4 0 2 . 2 4 4 0 . 7 8 1 0 . 9 8 5 4 . 2 4 1 0 . 0 9 4 . 9 8 8 5 . 0 1 2 . 0 . 1 0 0 1 QCS* 3 4 7 3 7 0 2 . 7 9 6 2 . 1 5 0 1 . 2 7 9 5 . 0 26 0 . 0 8 5 . 9 8 7 1 4 . 0 1 3 0 . 3 0 0 1 QCS !t 3 4 8 3 1 0 2 . 9 6 5 1 . 5 4 5 1 . 3 0 4 6 . 9 1 0 0 . 0 8 4 . 3 5 4 1 5 . 6 4 6 0 . 3 0 0 3 QCS* 3 4 9 3 7 0 2 . 7 3 4 1 . 4 4 0 1 . 3 9 7 7 . 8 0 3 0 . 0 8 6 . 6 1 0 1 3 . 3 9 0 0 . 2 0 0 1 OCS^f 3 5 0 4 3 0 4 . 3 9 5 1 . 8 8 5 1 . 3 7 2 4 . 8 9 9 0 . 0 5 9 . 4 2 0 4 0 . 5 8 0 0 . 6 0 0 4 QCS* 3 5 1 4 2 0 4 . 3 8 9 1 . 9 0 9 1 . 3 3 6 4 . 7 2 6 0 . 0 6 1 . 7 2 1 3 8 . 2 7 9 0 . 1 0 0 6 QCS# 3 5 2 3 6 5 - 1 . 8 7 0 3 . 4 3 9 0 . 2 7 3 1 . 3 2 2 5 7 . 3 7 9 4 0 . 4 7 6 2 . 1 4 5 0 . 2 0 0 3 QCS* 3 5 3 3 2 0 - 3 . 3 3 5 2 . 8 7 4 0 . 9 1 7 3 . 3 7 4 8 0 . 2 2 5 1 7 . 8 2 2 1 . 9 5 3 0 . 3 0 0 4 QCS* 3 5 4 2 3 0 - 5 . 1 4 1 0 . 7 18 1 . 9 1 3 1 8 . 2 8 7 9 9 . 5 8 8 0 . 4 1 2 0 . 0 0 . 0 0 QCS* 3 5 6 2 4 4 QCS if 3 5 7 5 8 5 - 0 . 1 1 3 2 . 0 4 1 - 0 . 1 2 3 0 . 8 4 3 3 8 . 6 6 9 6 1 . 1 1 0 0 . 2 2 1 0 . 0 0 QCSi? 3 5 8 3 0 4 - 3 . 7 5 7 2 . 1 9 7 0 . 7 7 2 2 . 0 9 6 ; 8 6 . 3 3 4 1 3 . 6 0 8 0 . 3 5 8 a . o 1 QCS* 3 5 9 . 2 7 6 QCSff 3 6 0 3 5 6 1 . 3 9 5 1 . 5 17 - 0 . 2 2 7 1 . 8 5 6 5 . 2 1 8 9 2 . 5 7 6 2 . 2 0 5 0 . 1 0 0 3 QCS if 3 6 1 3 5 6 - 6 . 3 4 6 0 . 3 6 1 0 . 1 5 9 0 . 9 8 . 3 1 0 0 . 0 0 0 0 . 0 0 . 0 0 . 0 0 QCS* 3 6 2 5 3 0 ' 1 . 5 9 5 1 . 5 6 5 0 . 1 5 1 1 . 1 6 7 0 . 0 9 3 . 8 2 0 6 . 1 8 0 0 . 2 0 0 3 QCSff 3 6 3 2 5 4 QCS* 3 6 5 3 7 5 - 4 . 1 4 7 2 . 5 7 5 1 . 1 3 4 4 . 5 8 6 : 3 6 . 7 9 7 1 2 . 0 8 9 1 . 1 1 4 0 . 4 0 0 4 QCSS 3 6 6 2 3 8 QCS# 3 6 7 2 4 2 -1.0 84 3. 505 -0. 0 74 0. 700 4 3. 492 54 . 4 25 2 .0 83 0. 0 12 QCS * 3 68 2 30 -4.786 0. 676 0. 20 7 1. 744 99. 963 0. 037 0 .0 0. 0 0 QCS2 369 3 30 3.146 0. 6 40 0. 849 1 /. • 982 0. 0 92, 157 7 .843 0. 3 00 4 QCS* 370 28 4 3. 573 1 . 072 2. 63 4 18. 03 1 0. 0 89. 2 1 1 10 .789 0. 4 00 4 QCS* 37 1 155 -0.757 3. 156 0. 034 0. 77 8 49. 567 4 7. 00 1 3 .432 0. 0 48 QCS* 3 72 146 -2.192 3. 54 1 0. 34 7 0. 890 65. 530 29. 877 4 . 59 3 0. 0 0 QCS it 3 73 175 4.010 3. 650 0. 1 90 1. 319 1 1. 661 4 6.24 6 4 2 .093 0. 100 22 QCS* 374 200 -0.901 4. 151 0. 24 3 1. 1 36 52. 1 3 7 4 1,312 6 . 550 0. 3 00 16 QCS * 3 75 197 1. 1 68 3. 808 0. 3 75 1. 825 30. 0 10 54. 228 15 . 761 0. 0 0 QCS* 3 76 175 0.23 0 4. 397 0. 1 34 1. 3 34 41. 345 45. 24 5 13 .410 0. 0 3 4 QCS * 377 159 -1. 744 2. 9 10 0. 3 63 1. 00 2 66. 9 11 3 1.738 1 .351 0. 100 21 QCS * 378 17 4 2. 1 94 0. 7 10 -0. 0 86 2. 28 0 0. 3 99. 402 0 . 598 0. 100 1 QCS* 3 79 190 2. 754 0. 657 0. 7 70 3. 19 4 0. 0 95. 9 14 4 .0 86 0. 200 2 QCS* 3 81 267 1.49 1 3. 3 33 -0. 454 2. 0 18 17. 838 74.77 9 7 .3 83 0. 3 00 3 QCS* 382 3 10 4.64 6 2. 253 1. 0 36 3. 05 3 0. 9 5 7. 94 1 42 .0 59 1. 100 4 QCS* 3 83 270 4.381 2. 345 1. 168 3. 730 0. 9 70. 409 29 . 59 1 0. 500 2 QCS* 3 84 344 5. 177 2. 16 7 0. 9 71 2. 774 0. 0 27.486 72 . 51 5 1. 200 5 QCS * 385 3 36 4. 443 1 . 960 1. 29 3 4. 236 0. 9 5 0. 74 9 49 .251 1 ( * 0 00 4 QCS* 3 86 192 -1. 369 3. 8 48 0. 423 1. 6 31 69. 69 7 3 2.65 4 6 . 649 0. 5 00 16 QCS* 3 87 256 3.813 2. 255 1. 1 3 7 3. 75 9 0. u 75.34 6 24 . 654 0. 600 5 QCS* 3 88 310 5. 396 2. 5 12 0. 752 1. 90 4 0. 0 29. 722 70 .2 79 1. 300 5 QCS* 3 89 25 2 3. 53 4 1. 846 1. 651 6. 669 0. 0 87. 76 3 12 .237 0. 5 00 3 QCS * 390 150 1.497 6 7 1 -0. 60 2 2. 6 77 7. 4 75 8-9. 690 2 . 83 5 0. 0 4 QCS* 3 93 1 31 -2. 3 63 2. 7 1 1 0. 552 1. 45 0 74. 82 8 23.4 18 1 .7 54 0. 0 51 QCS* 3 04 147 1.12 5 1. 138 -0. 224 1. 7 29 5. 53 1 93. 9 15 0 . 553 0. .2 00 4 QCS if• 395 1 19 -0. 447 2. 283 0. 1 69 1. 09 3 46. 9 1 5 50. 624 2 . 4 61 0. 100 26 QCS* 3 96 18 3 4. 2 1 2 1. 7 55 1. 3 78 5. 4 14 0. 0 53. 579 41 . 422 0. 9 00 16 QCS* 3 98 115 -4. 608 1. 221 2. 0 1 4 1 1. 23 3 9 7. 544 2. 35 2 0 .105 0. 0 0 QCSff 3 99 122 -3. 766 2. 79 2 0. 7 80 2. 033 83. 60 4 15„ 712 0 . 685 0. 4 00 43 QCS* 4 00 132 0. 654 2. 4 47 -0. 54 3 1. 505 20. 9 1 4 7 3. 02 3 1 .0 63 0. 100 12 QCS* 40 1 192 191. 1.585 0. 563 0. 140 3. 856 0. 0 99. 699 0. 301 0. 100 1 OCS* 4 02 28 2 3. 1 90 2. 125 1. 1 90 4. 6 22 0. 0 80. 73 2 19. 267 0. 4 00 2 QCS * 4 03 282 5. 3 53 2. 792 0. 5 80 1. 4 6 7 0. 0 4 5.28 2 54. 71 8 0. 700 3 QCS * 4 05 1 17 -1.09 1 3. 0 39 0. 336 0. 906 64. 00 3 3 1.615 4. 381 0. 7 00 23 QCS* 4 06 100 -4.287 1. 5 7 9 1. 4 66 6. 27 3 9 5. 319 4.48 1 0. 200 0. 0 0 QCS* 410 146 -0. 922 2. 233 0. 1 3 1 1. 09 3 54. 471 4 4.57 3 0. 956 0. 200 12 QCS* 411 113 -0.3 92 1. 58 4 0. 0 60 1. 28 0 39. 3 83 6 0. 3/9 0. 53 8 0. 100 5 QCS* 4 12 200 4.014 1. 853 1. 4 80 5. 634 0. 0 73.930 26. 0 70 0. 4 00 6 QCS* 4 13 - 198 3. 995 2. 0 27 1. 1 84 4. 3 35 0. 0 71. 355 28. 64 5 0. 4 00 4 OCS# 4 14 208 7.413 2. 683 0. 1 1 9 0. 703 0. 0 6. 577 9 3 . 423 2. 100 6 QC3« 416 18 3 -2.077 2. 136 0. 4 53 1. 5 33 7 4. 467 2 4.97 3 0. 560 0. 2 00 1 1 QCS* 4 17 84 0.577 1. 820 -0. .4 50 1. 388 23. 514 76. 3 19 0. 067 0. 0 0 QCS* 4 18 59 0. 53 8 1. 423 - o . 371 1. 33 1 19. 356 80.556 0. 088 0. 0 3 QCS* 419 51 -0. 2 94 1. 539 - 0 . 041 0. 9 37 39. 52 9 60. 386 0. 0 35 0. 9 00 8 QCS* 42 0 47 - 3 . 535 1 . 005 1. 092 5 . 86 5 9 7. 573 2. 395 0. 031 0. 0 0 QCS* 44 3 200 2.898 2. 1 17 1. 345 5. 4 5 8 0. 0 88. 4 87 11. 51 3 0. 600 3 QCS* 4 44 195 3. 268 2. 8 12 0. 79 3 2. 547 0. 0 78. 4 02 21. 59 8 0. 6 00 8 QCS* 446 135 2. 84 8 1 . 76 4 1. 4 20 7. 15 2 0. 0 91. 121 8. 878 0. 3 00 8 QCSfi 44 7 115 QCS * 45 0 40 - 3 . 69 5 0. 457 0. 04 6 1. 9 1210 0. 000 0. 0 0. 0 0. 0 0 QCS* 451 40 -3.281 1. 46 5 0. 34 6 z „ 366 9 3. 94 5 6. 055 0. 0 0. 0 0 QCS* 4 52 51 -2.901 2. 142 0. 62 6 1. 67 1 8 3. 039 16.95 0 0. 0 1 1 0. 0 0 QCS * 453 220 2. 573 0. 9 20 0. 64 9 2. 240 0. 0 92.040 7 . 960 - o. 200 1 QCS* 454 59 -3.171 1. 8 30 0. 905 2. 80 3 89. 650 10.326 0. 025 0. 0 0 QCS* 4 55 49 -0.938 1. 39 4 0. 1 76 1. 7 38 54. 9 2.3 44.0 86 0. 091 0. 0 0 QCS* 4 56 48 - 0 . 43 6 1. 747 - 0 . 097 0. 89 1 40. 4 89 5 9. .383 0. 123 0. 0 9 QCS* 458 6 6 2.036 0. 466 0. 372 3. 37 8 0. 9 99.746 0. 2 54 0. 0 0 QCS * 459 84 2. 6 84 0. 4 39 0. 32 7 2. 872 0. 0 99. 568 0. 432 0. 100 2 QCS* 461 102 3. 30 8 0. 5 16 0. 6 74 3. 191 0. 0 95. 189 4. 811 0. 100 1 QCS* 471 126 QCS* 4 73 128 0.713 0. 95 1 - 0 . 212 2. 6 5 3 6. 5 72 92. 976 0. 4 52 0. 0 0 192. 5. 23 8 2. 40 3 0. 844 2. 274 0. 0 26. 125 73. 874 1. 000 9 QCS* 4 80 143 1, 002 2. 00 9 -o. 54 9 1. 4 3 1 20. 1 56 79. 266 0. 578 0. 0 1 QCS ft 4 81 1 35 1.465 0. 9 56 -o. 24 1 1. 772 0. 0 9 9. 522 0. 478 0. 0 3 QCS* 4 82 18 3 2. 64 5 2. 104 1. 1 60 5. 055 1. 0 70 84. 303 14. 127 0. 4 00 6 QCSt 484 2 20 4.75 1 2. 103 1. 0 76 3. 4 4 3 0. 0 44. 0,3 1 55. 9 69 . 1. 000 5 QCS* 4 35 210 2. 443 0. 5 35 0. 4 61 4. 24 2 0. 0 98. 95 2 1. 048 0. 1 00 1 QCS* 4 86 1 39 -4. 325 0. 588 0. 816 2. 747 100. 000 0. 0 0. 0 0. 0 0 QCS* 4 87 150 1.012 1. 7 10 -o. 623 2. 35 3 1 3. 073 85. 25 8 1. 670 0. 0 0 QCS* 4 89 357 5.774 2. 9 13 0. 4 59 1 i • 19 1 0. 0 36. 4 36 63. 564 0. 6 00 3 QCSff 4 90 2 32 -2.83 7 2. 721 0. 70 4 1. 846 79. 3 15 18. 64 6 . 2. 0 39 0. 9 00 21 QCSt 4 92 3 48 4. 74 6 2. 109 1. 125 3. 470 0. 0 4 6. 139 53. 861 1. 5 00 5 QCS* 4 99 18 3 2. 70 8 0. 730 0. 342 2. 6 16 0. 0 96. 243 3. 7 52 0. 200 2 QCSff 502 1 37 -4. 2 76 0. 390 2. 52 4 18. 006 97. 79 4 • 163 0 . 03 8 0. 0 0 QCSff 503 164 4. 704 3. 6 22 0. 204 1. 298 5. 280 44, 720 50 . 000 1. 000 17 QCS* 504 24 4 0.952 2. 8 36 -o„ 134 0. 9 11 31. 2 82 55. 228 13. 491 0. 0 0 QCSt 506 214 2.613 0. 723 1. 036 3. 78 8 0. r\ \J 93. 96 5 6. 035 0. 2 00 1 QCS* 507 152 6. 66 4 3. 40 6 0. 0 62 0. 84 3 0. 0 25. 6 37 74. 363 0. 0 0 QCSt 508 92 -1. 250 1. 403 0. 33 1 1. 40 1 6 6. 51 8 33. 43 2 0. 0 0. 0 0 QCSt 510 92 2.297 0. 574 0. 148 49 3 0. 9 9. 604 0. 396 0. 0 1 QCSt 511 1 37 2.415 0. 59 1 0. 256 2. 9 47 0. 0 99. 0 18 0. 982 0. 0 1 QCS* 512 17 4 2. 846 0, 50 1 1. 0 86 5. 30 2 0. 0 97. 159 2. 841 0. 100 0 OCSit 513 229 -3. 85 7 1. 600 3. 22 8 25. 548 97. 791 0. 793 1 . 4 1 6 0. 0 0 QCSt 514 260 -3.091 2. 556 0. 352 2. 4 32 3 2. 1 62 15. 5 25 2. 313 0. 0 0 QCSt 515 229 1. 70 7 3. 97 1 0. 112 1. 489 25. 50 8 54. 8 17 19. 675 0. 600 8 QCS* 5 16 183 2.805 0. 480 1. 233 6. 207 C. 0 97. 35 3 2. 647 0. 4 00 0 QCSt 517 1 37 2.611 0. 33 4 0. 319 3. 684 0. 0 99. 726 0 . 2 74 0. 0 0 QCSt 523 55 1. 842 0. 6 26 0. 296 2. 26 3 0. 0 9 9. 717 0. 283 0. 0 0 193. REFERENCES Anderson , F E . , 1968, Seaward terminus of the Vashon c o n t i n e n t a l g l a c i e r in the S t r a i t of Juan de Fuca. Marine Geology, v. 6, pp. 4 1 9 - 4 3 8 . Anonymous, 1963, Sediment g r a i n - s i z e a n a l y s e s . Univ. B r i t i s h Columbia , I n s t i t u t e of Oceanography, Data Report No. 22, 6 p. 1965, Queen C h a r l o t t e Sound, Chart No. 3744 Canadian Hyd. S e r v . , Marine S c i . Branch , Dept. of Mines and Tech. S u r v . , Ottawa. 1968, B a r k l e y Sound and D iscovery Passage to Dixon E n t r a n c e , Canadian Tide and Current T a b l e s , v. 6, 7' p. A rmst rong , J . E . , D .R. , C r a n d e l l , D . J . , E a s t e r b r o o k s , and J . B . Noble , 1965 Late P l e i s t o c e n e S t r a t i g r a p h y and Chronology in Southwestern B r i t i s h Columbia and nor thwestern Washington. B u l l . G e o l . Soc. A m e r i c a , v. 76, pp. 321-330. Baer , A . J . , 1967, B e l l a Coola and Laredo Sound map-areas , B r i t i s h Columbia 93D and 103A, G e o l o g i c a l Survey Canada Paper 6 6 - 2 5 , 13 p. B a i l e y , E . H . , and R.E. S tevens , I 9 6 0 , S e l e c t i v e s t a i n i n g of K - f e l d s p a r and p l a g i o c l a s e on rock s l a b s and t h i n s e c t i o n s . A.m. Mi nera 1 og. , v. 4 5 , pp. 1 0 2 0 - 1 0 2 5 . B a r b e r , F . G . , 1957a , The e f f e c t of the p r e v a i l i n g winds on the inshore water masses of the Hecate S t r a i t r e g i o n , B.C. Jour . F i s h . Res. Bd. Canada, v. 14, pp. 9 4 5 - 9 5 2 . 1957b, Observat ions of c u r r e n t s north of T r i a n g l e I s l a n d , B.C. Progress Reports of the P a c i f i c Coast S t a t i o n s , No. 108, pp. 15 -18. 1958, Cur rents and water s t r u c t u r e in Queen C h a r l o t t e Sound, B.C. Proc . Ninth P a c i f i c S c i . Congress, 1957, v . 16, pp. 1 9 6 - 1 9 9 . B e l l , W . H . , 1963, Sur face c u r r e n t s t u d i e s in the Hecate model . F i s h . Res. Bd. Canada Manuscr ipt Repor t , No. 159, 4 (numbered pages) B i s c a y e , P . E . , 1964, D i s t i n c t i o n between k a o l i t e and c h l o r i t e in recent s e d i -ments by X - r a y d i f f r a c t i o n . Am. Mi n e r a 1 o g . , v. 4 9 , pp. 1281-1289. Bouma, A . H . , 1964, Notes on X - r a y i n t e r p r e t a t i o n of marine sed iments . Marine Geology, v. 2 , pp. 208-241 B r a d l e y , W . F . , and R.E. Gr im, 1961, Mica c l a y m i n e r a l s in The X - r a y  I d e n t i f i c a t i o n and C r y s t a l S t r u c t u r e s of Clay M i n e r a l s . Minera1og ica1 S o c i e t y , London, pp. 2 0 8 - 2 4 1 . 194. B r e t z , J . H . , 1920, The Juan de Fuca Lobe of the C o r d i l l e r a n Ice Sheet . Jour . Geology, v. 2 8 , pp. 3 3 3 - 3 3 9 B r i n d l e y , G.W., 1 9 6 l a , Exper imental methods, in The X - r a y I d e n t i f i c a t i o n  and C r y s t a l S t r u c t u r e s of C lay M i n e r a l s . Minera Iog ica1 S o c i e t y , London, pp. 1 -50. I 9 6 l b , C h l o r i t e m i n e r a l s in The X - r a y I d e n t i f i c a t i o n and C r y s t a l  S t r u c t u r e s of C lay M i n e r a l s . Minera1ogica1 S o c i e t y , London, pp. 2 4 2 - 2 9 6 . B u r s t , J . F . , 1958, Minera l h e t e r o g e n e i t y in " g l a u c o n i t e " p e l l e t s . American M i n e r a l o g i s t , v. 4 3 , pp. 481 -497 -C a r l , G . C , 1966, Guide to Marine L i f e of B r i t i s h Columbia , Handbook B r i t i s h Columbia P r o v i n c i a l Museum, No. 2 1 , 135 p. • C a r r o l l , D. , 1970, C lay m i n e r a l s in A r c t i c Ocean s e a - f l o o r sed iments . Jour . Sed. P e t r o l o g y , v. 4 0 , pp. 814, 821 . C a r t e r , L . , 1969, Topography and bottom sediments in B a r k l e y Sound and the ad jacent c o n t i n e n t a l s h e l f S.W. B r i t i s h Columbia , in G e o l . Survey of Canada Report of A c t i v i t i e s , Paper 6 9 - 1 , Part A . , pp. 1 3 - 1 4 . 1970, S u r f i c i a l sediments of B a r k l e y Sound and Ad jacent C o n t i n e n t a l S h e l f , Vancouver I s l a n d , B.C. U n i v e r s i t y of B r i t i s h Co lumbia , Dept. of Geology. 196 p. (unpubl ished Ph.D. t h e s i s ) . Cas ton , V . N . D . , and A . H . S t r i d e , 1970, T i d a l sand movement between some l i n e a r sand banks in the North Sea o f f nor theast N o r f o l k , Ma r i ne  Geology, v. 9 , pp. M38-M42. Chave, K . E . , 1967, Recent carbonate sediments - an unconvent ional v iew. Jour . G e o l o g i c a l E d u c a t i o n , v. 15, pp. 200 -204 . Church, R. , 1 9 7 ' , Deepstar e x p l o r e s the ocean f l o o r . Nat. Geog. M a g . , v. 139, p. 110-129. Cockba in , A . E . , 1963, D i s t r i b u t i o n of sediments on the c o n t i n e n t a l s h e l f o f f the southern B r i t i s h Columbia c o a s t . Inst . Oceanog. , U n i v e r s i t y  of B r i t i s h Columbia , Manuscr ipt Report No. 15, 7 P-Creager , J . S . , 1963, Sed imentat ion in a h igh energy , embayed, c o n t i n e n t a l s h e l f env i ronment . Jour . Sed. P e t r o l o g y , v. 3 3 , pp. 8 1 5 - 8 3 0 . and McManus, D .A . , 1961, P r e l i m i n a r y i n v e s t i g a t i o n s of the marine geology of the southeas te rn Chukchi Sea. Univ . Wash. Dept. Oceanography Tech. Rept. No. 6 8 , 46 p. C u l b e r t , R . R . , 1971 . A study of t e c t o n i c processes and c e r t a i n geochemical a b n o r m a l i t i e s in the Coast Mountains of B r i t i s h Columbia. Univ . of  B r i t i s h Co lumbia , Dept. of Geophys ics , 229 p. (unpubl ished Ph.D. t h e s i s ) . 195. Cur ray , J . R . , I960, Sediments and h i s t o r y of Holocene t r a n s g r e s s i o n , c o n t i n e n t a l s h e l f , northwest Gul f of Mex ico , in Recent Sediments , Northwest Gul f of Mex ico , F .P . Shepard, F .B . P h l e g e r , and T j . H. van A n d e l , e d i t o r s . American A s s o c i a t i o n of Petroleum G e o l o g i s t s , T u l s a , O k l a . , pp. 2 2 1 - 2 6 6 . 1961, T r a c i n g sediment masses by g r a i n - s i z e modes. Int . G e o l . Cong . , 2 1 s t Copenhagen, Denmark, R e p t s . , v. 2 3 , pp. 119 -130. 1969, H i s t o r y of c o n t i n e n t a l she lves in The New Concepts of  C o n t i n e n t a l Margin S e d i m e n t a t i o n , D . J . S t a n l e y , convener . American G e o l o g i c a l I n s t i t u t e , Washington, pp. J C - 6 - 1 to J C - 6 - 1 8 . and D.G. Moore, 1964, P l e i s t o c e n e d e l t a i c p r o g r a d a t i o n of c o n t i n e n t a l t e r r a c e , Costa de Nayaret , Mex ico , in Marine Geology of the Gul f of  C a 1 i f o r n i a , T j . H. van A n d e l , G.G. S h e r . , e d i t o r s . American A s s o c i a -t i o n of Petroleum G e o l o g i s t s , T u l s a , O k l a . , pp. 193-215 Dav ies , D.K. , and W.R. Moore, 1970, D i s p e r s a l of M i s s i s s i p p i sediments in the Gul f of Mex ico , Jou r . Sed. P e t r o l o g y , v. 4 0 , p. 3 3 9 - 3 5 3 . Degens, E .T . , 1965, Geochemistry of Sediments - A B r i e f Survey, P r e n t i c e -H a l l , New J e r s e y , 342 pp. Do lan , R. , 1970, Dune reddening a long the outer banks of North C a r o l i n a . Jour . Sed. P e t r o l o g y , v. 4 0 , p. 7 6 5 . Draper , L. , 1967, Wave a c t i v i t y at the sea bed around northwestern Europe. Marine Geology, v. 5 , pp. 1 3 3 - 1 4 0 . Dreimanus, A . , 1962, Q u a n t i t a t i v e gasometr ic d e t e r m i n a t i o n of c a l c i t e and do lomi te by u s i n g C h i t t i c k A p p a r a t u s . Jour . Sed. P e t r o l o g y , v. 3 2 , pp. 5 2 0 - 5 2 9 . Edwards, D . E . , and G.G. Goode1 I, 1969, the d e t r i t a l minera logy of ocean f l o o r s u r f a c e sediments ad jacent to the A n t a r c t i c P e n i n s u l a , A n t a r c t i c a . Marine Geology, v. 7 , pp. 2 0 7 - 2 3 4 . Ehlmann, A . J . , N.C. Hu l ings and E.D. G l o v e r , 1963, Stages of g l a u c o n i t e f o r m a t i o n in modern f o r a m i n i f e r a 1 sed iments . Jour . Sed. P e t r o l o g y , v. 3 3 , pp. 8 7 - 9 6 . Emery, K . 0 . , 1952, C o n t i n e n t a l S h e l f sediments o f f southern C a l i f o r n i a . Bui 1. G e o l . Soc. A m e r i c a , v. 6 3 , pp. 1 105 -1108. 1965, Geology of the c o n t i n e n t a l margin of e a s t e r n Uni ted S t a t e s , in Submarine Geology and Geophysics - Co l s ton Papers , W.F. W h i t t a r d and R. Bradshaw, e d i t o r s . B u t t e r w o r t h s , London, v. 17» PP- 1 - 2 0 . 1968, R e l i c t sediments on c o n t i n e n t a l she lves of w o r l d . Bu11. American A s s o c . Pet . G e o l . , v. 5 2 , pp. 4 4 5 - 4 6 4 . 196. and H. N i i n o , 1963, Sediments of the Gul f of Tha i land and ad jacent c o n t i n e n t a l s h e l f . B u l l . G e o l . Soc. A m e r i c a , v. 74, pp. 5 4 1 - 5 5 4 . and R.L . Wig ley and M. Rub in , 1965, A submerged peat d e p o s i t o f f the A t l a n t i c Coast of the Uni ted S t a t e s . Limnol and Oceanog. , v. 10, p. R97 -R102. F l i n t , R . F . , 1957. G l a c i a l and P l e i s t o c e n e Geology. Wi ley & Sons, New York , 553 pp. F l o r a , C . J . , and E. F a i r b a n k s , 1966, The Sound and the Sea, P ioneer P r i n t i n g C o . , . B e l l i n g h a m , Wash. , 455 p. F o l k , R . L . , 1965, P e t r o l o g y of Sedimentary Rocks. Hemphi11s, Texas , 159 P. 1966, A review of g r a i n - s i z e perameters . Sed imento logy , v. 6, PP. 73-93. F r a k e s , L . A . , 1969, Fac to r and t rend s u r f a c e ana l yses of Ross Sea s e d i -ments, A n t a r c t i c a . G e o l . Soc. A m e r i c a . Abs . w i t h Progs , par t 7> P. 70. Frankenberg , D. , and R.T. G i l e s , 1970, A c i d t reatment of o rgan ic m a t e r i a l s and the removal of c a l c i u m c a r b o n a t e , Jour . Sed. P e t r o l o g y , v . 4 0 , pp. 1046-1048. G a r r i s o n , L . E . , and R.L . McMaster , 1966, Sediments and geomorphology of the c o n t i n e n t a l s h e l f o f f southern New England. Marine Geology, v. 4, pp. 273-289. Gershanov ich , D . E . , 1968, New data on geomorphoIogy and recent sediments of the B e r i n g Sea and the Gu l f of A l a s k a . Marine Geology, v. 6 , pp. 2 8 1 - 2 9 6 . G i l e s , R. , and O.H. P i l k e y , 1965, A t l a n t i c beach and dune sediments of the southern United S t a t e s . Jour . Sed. P e t r o l o g y , v. 3 5 , pp. 900 -910. G o r s l i n e , D . S . , 1963, Bottom sediments of the A t l a n t i c s h e l f and s lope o f f the southern Uni ted S t a t e s . Jour . Geology, v. 7 1 , pp. 4 2 2 - 4 4 0 . Grant , A . C . , 1965, D i s t r i b u t i o n a l t rends in the recent marine sediments of nor thern B a f f i n Bay. Bedford Inst , of Oceanog. Rept. 65-9, 74 p. (unpubl ished m a n u s c r i p t ) . G r i f f i t h , L . M . , 1967, The I n t e r t i d a l Un iva l ves of B r i t i s h Columbia Handbook B r i t i s h Columbia P r o v i n c i a l Museum No. 26, 101 p. G r o s s , M . G . , 1965, Organic carbon in s u r f a c e sediment from the nor theas t P a c i f i c Ocean. Int. Jour . Oceanol & L i m n o l , v. 1, pp. 46-54. 197. G u i l c h e r , A . , 1969, P l e i s t o c e n e and Holocene sea l e v e l changes. E a r t h -Sc ience Reviews, v. 5, pp. 69-97-H a l l e y , L . M . , 1964, Wave- induced bottom c u r r e n t s in the C e l t i c Sea. Marine Geology, v. 2 , pp. 164-167. Harms, J . C , 1969, H y d r a u l i c s i g n i f i c a n c e of some sand r i p p l e s . Bui 1 . G e o l . Soc. A m e r i c a , v. 8 0 , pp. 363-396. H o l l a n d , S . S . , 1964, Landforms of B r i t i s h Columbia - a p h y s i o g r a p h i c o u t l i n e . B u l l . B.C. Dept. Mines and Petroleum Resources , No. 48, p. 138. Holmes, A . , 1965, P r i n c i p l e s of P h y s i c a l Geology. The Ronald Press C o . , New York , 1288 pp. H o l t e d a h l , H . , 1958, Some remarks on geomorpho1ogy of c o n t i n e n t a l she lves o f f Norway, Labrador , and southeast A l a s k a . Jour . Geology, v. 66, pp. 461-471. I960, Mounta in , f j o r d , s t r a n d f l a t ; geomorphology and general geology of pa r t s of Western Norway, guide book " d " in Excurs ions  in Norway, I n t e r n a t i o n a l G e o l o g i c a l Congress, Os lo , Norway, 29 p. 1970, On the morphology of the west Greenland s h e l f w i t h general remarks on the "marg inal c h a n n e l " problem. Marine Geology, v. 8 pp. 155-172. H o l t e d a h l , 0. and H. H o l t e d a h l , 1 9 6 l , On marginal channels and the problem of t h e i r o r i g i n . B u l l . G e o l . Inst . Univ . Uppsa la , v. 4 9 , pp. 183-187-Houbo l t , J . J . H . C . , 1968, Recent sediments in the southern B ight of the North Sea. G e o l . Mijnbouw, v.- 47, pp. 245-273. Hubert , J . F . , and W.J . Nea1, 1967, M inera l compos i t ion and d i s p e r s a l p a t t e r n s of deep-sea sands in the western North A t l a n t i c p e t r o l o g i c p r o v i n c e . B u l l . G e o l . Soc. A m e r i c a , v. 78, pp. 749-772. James, N . P . , and D . J . S t a n l e y , 1968, Sable Is land Bank o f f Nova S c o t i a : sediment d i s p e r s a l and recent h i s t o r y . B u l l . Am. A s s o c . P e t r o l . G e o l o g i s t s , v. 5 2 , pp. 2208-2230. J o i n t Committee on Oceanography, 1955a P h y s i c a l and Chemical Data Record  Hecate P r o j e c t , P a c i f i c Oceanographic group, Nanaimo, B . C . , 99 p. 1955b, P h y s i c a l and Chemical Data Record - Hecate P r o j e c t , P a c i f i c Oceanographic group, Nanaimo, B . C . , 107 p. Jongsma, D., 1970, E u s t a t i c sea l e v e l changes in the A r a f u r a Sea. Nature , v. 228, pp. 150-151. 198. Judd, J . B . , W.C. S m i t h , and O.H. P i l k e y , 1970, The env i ronmental s i g n i -f i c a n c e of i r o n - s t a i n e d quar t z g r a i n s on the S . E . U.S. A t l a n t i c s h e l f . Marine G e o l . , v . 8, pp. 355-362. K e l l e r , W .D . , 1970, Envi ronmental aspec ts of c l a y m i n e r a l s . Jour . Sed. P e t r o l o g y , v. 40, pp. 788-854. and A . F . R i c h a r d s , 1967> Sediments of the Malacca S t r a i t , S . E . A s i a . Jour . Sed. P e t r o l o g y , v. 37, pp. 102-108. K i n g , L . H . , 1967J Use of a c o n v e n t i o n a l echo-sounder and t e x t u r a l ana l yses in d e l i n e a t i n g sedimentary f a c i e s : S c o t i a n s h e l f . Canadian Jour . Ear th S c i . , v . 4, pp. 691-708. 1970, S u r f i c i a l Geology of the Ha 1 i f a x - S a b 1e Is land Map A r e a , Canadian Hyd. S e r v . , Mar ine S c i . B ranch , Dept. Energy, Mines and Resources , Ottawa, 16 p . , 1 map. K l o v a n , J . E . , 1966, The use of f a c t o r a n a l y s i s in de te rmin ing d e p o s i t i o n a l environments from g r a i n - s i z e d i s t r i b u t i o n s . Jour . Sed. P e t r o l o g y , v. 36, pp. 115-125. K n o t t , S .T . , and H. H o s k i n s , 1968, Evidence of P l e i s t o c e n e events in the s t r u c t u r e of the c o n t i n e n t a l s h e l f o f f the n o r t h e a s t e r n Uni ted S t a t e s . Marine Geology, v. 6, p. 5-26. Kodama, H. and K. Oinuma, 1963, I d e n t i f i c a t i o n of k a o l i n m i n e r a l s in the presence of c h l o r i t e by X - r a y d i f f r a c t i o n and i n f r a r e d a b s o r p t i o n s p e c t r a . P r o c . 13 Nat. Conf. C lays and Clay M i n e r a l s , pp. 236-249. K r i n s l e y , D. , T. T a k a h a s h i , M.L. S i l b e r m a n , and W.S. Newman, 1964, T r a n s p o r t a t i o n of sand g r a i n s a long the A t l a n t i c shore of Long I s l a n d , New York: and a p p l i c a t i o n of e l e c t r o n mic roscopy . Marine Geology, v . 2, pp. 100-120. and B.M. Funnel 1, 1965, Environmental h i s t o r y of sand g r a i n s from the lower and middle P l e i s t o c e n e of N o r f o l k , England. Quar t . Jour . G e o l . Soc. London, v . 121, pp. 435-461. and J . Donahue, 1968, Environmental i n t e r p r e t a t i o n of sand g r a i n s u r f a c e t e x t u r e s of e l e c t r o n mic roscopy . B u l l . G e o l . Soc. A m e r i c a , v. 79, PP. 743-748. and L. C a v a l l e r o , 1970, Scanning e l e c t r o n m i c r o s c o p i c examinat ion of p e r i g l a c i a l e o l i a n sands from Long I s l a n d , New York. Jour . Sed. P e t r o l o g y , v. 40, pp. 1345-1350. Krumbein, W . C , and F . J . P e t t i j o h n , 1938, Manual of Sedimentary Petrography A p p l e t o n - C e n t u r y - C r o f t s , New York, 549 p. Kunze, G.W., L . I . Knowles and Y. K i t a n o , 1968, The d i s t r i b u t i o n and minera logy of c l a y m i n e r a l s in the Taku Es tuary of southeaste rn A l a s k a . Ma r i ne  Geology, v. 6, pp. 439-448. 199. LaFond, E.C. , R .S . D i e t z , 1948, New snapper - t ype sea f l o o r sediment sampler . Jour . Sed. P e t r o l o g y , v. 18, pp. 34-37-Lane, R.K. , J . B u t t e r s , W. A t k i n s o n , and H . J . Hoi l i s t e r , 1961, Oceanographic data r e c o r d , c o a s t a l and seaways p r o j e c t s . F i s h Res. B d . , Canada, Manuscr ip t Repor t , No. 9 1 , 128 p. L e s l i e , R . J . , 1963, Sedimentology of Hudson Bay D i s t r i c t of Keewat in . Bedford Inst , of Oceanog. Rept. 64 -16, 20 p. (unpubl ished m a n u s c r i p t ) . Lu te rnauer , J . L . , and O.H. P i l k e y , 1967, Phosphor i te g r a i n s : t h e i r a p p l i -c a t i o n to the i n t e r p r e t a t i o n of North C a r o l i n a s h e l f s e d i m e n t a t i o n . Marine Geology, v. 5 , pp. 3 1 5 - 3 2 0 . and J.W. Murray , 1969, Sediments of Queen C h a r l o t t e Sound B.C. in G e o l . Survey of Canada Report of A c t i y i t j e s , Paper 6 9 - 1 , Part A . , pp. 8-11. MacEwan, D . M . C . , 1961, Montmori11 o n i t e m i n e r a l s in The X - r a y I d e n t i f i c a t i o n  and C r y s t a l S t r u c t u r e s of C lay M i n e r a l s . Minera1ogica1 S o c i e t y , London, pp. 143-207. McManus, D .A . , J . C . K e l l e y , and J . S . Creager , 1969, C o n t i n e n t a l s h e l f s e d i m e n t a t i o n in an A r c t i c env i ronment . B u l l . G e o l . Soc. A m e r i c a , v. 8 0 , p. 1961-1984. M a l l o y , R . J . , and R.N. H a r b i s o n , 1966, Marine geology of the n o r t h e a s t e r n Gul f of Maine. U.S. Coast and G e o l . Survey Tech. B u l l . No. 28 , 15 p. M a r g o l i s , S . V . , and J . P . Kennet t , 1970, A n t a r c t i c g l a c i a t i o n d u r i n g the T e r t i a r y recorded in s u b - a n t a r c t i c deep-sea c o r e s . S c i e n c e , v . 170, pp. 1085-1087. Mathews, W . H . , 1958, Underwater g rave l d e p o s i t s of Dixon E n t r a n c e , Univ . B r i t i s h Columbia Inst . Oceanog. , 6 p. J . G . F y l e s , and H.W. Nasmith , 1970, P o s t g l a c i a l c o a s t a l movements in southwestern B r i t i s h Columbia and ad jacent Washington s t a t e . Canadian Jour . Ear th S c i . , v. 7, PP- 6 9 0 - 7 0 2 . Mayhew, M . A . , C .L . Drake, and J . E . Nafe , 1970, Marine g e o p h y s i c a l measure-ments on the c o n t i n e n t a l margins of the Labrador Sea. Canad ian  Jour . Ear th Sc i . , v . 7, pp. 199-214. Menard, H.W. , 1964, Marine Geology of the P a c i f i c . M c G r a w - H i l l , New York, 271 P-M i l l e r , D . N . , and R.L . F o l k , 1955, Occurrence of d e t r i t a l magnet i te and i l m e n i t e in red sed iments . B u l l . Am. A s s o c . P e t r o l . G e o l o g i s t s , v. 3 9 , P P . 338 -345. M i l n e , W.G . , and K.A. Lucas , 1961 , Se ismic a c t i v i t y in western Canada, 1955-1959 i n c l u s i v e . P u b l i c a t i o n s of Dominion Observatory , v. 26. 200. M o r r i s , P . A . , 1966, A F i e l d Guide to S h e l l s of the P a c i f i c Coast and  H a w a i i , Houghton M i f f l i n C o . , Bos ton , 297 P-Murray , J.W., and E .E . M a c k i n t o s h , 1968, Occurrence of i n t e r s t r a t i f i e d g l a u c o n i t e - m o n t m o r i I 1onoid p e l l e t s Queen C h a r l o t t e Sound, B.C. Canadian Jour . Ear th S c i . , v. 5, pp. 2 4 3 - 2 4 7 . and D.L. T i f f i n , 1969, S t r u c t u r e of the C o n t i n e n t a l Margin West of Vancouver I s l a n d , B . C . , in G e o l . Survey of Canada Report of  Ac t iv i t i e s , Paper 6 9 - 1 • Part A . , pp. 14-17. Nayudu, Y .R . and B . J . Enbysk, 1964, B i o - 1 i t h o l o g y of nor theast P a c i f i c s u r f a c e sed iments . Marine Geology, v. 2, pp. 3 1 0 - 3 4 2 . N i i n o , H . , and K . 0 . Emery, 1961 , Sediments of s h a l l o w p o r t i o n s of East China Sea and South China Sea. B u l l . G e o l . Soc. A m e r i c a , v. 72, pp. 731-762. 1966, C o n t i n e n t a l s h e l f sediments o f f n o r t h e a s t e r n A s i a . Jour . Sed. P e t r o l o g y , v. 3 6 , pp. 152-161. and C M . Kim, 1969, Organic carbon in sediments of Japan Sea. Jour . Sed. P e t r o l o g y , v. 3 9 , pp. 1390-1398. N o r r i s , R . M . , 1969, Dune reddening and t i m e . Jour . Sed. P e t r o l o g y , v. 3 9 , PP. 7 - 1 1 . O ' B r i e n , N . R . , and D.C. B u r r e l l , 1970, Minera logy and d i s t r i b u t i o n of c l a y s i z e sediment in G l a c i e r Bay, A l a s k a . Jour . Sed. P e t r o l o g y , v. 40, pp. 6 5 0 - 6 5 5 . O i l i e r , C , 1969, Weathe r i ng , O l i v e r and Boyd, Ed inburg , 304 p. Peacock, M . A . , 1935, F j o r d - l a n d of B r i t i s h Columbia. B u l l . G e o l . Soc. A m e r i c a , v. 46 , pp. 6 3 3 - 6 9 6 . P e t e r s e n , C . G . , 1911, V a l u a t i o n of the Sea, I. Animal l i f e of the sea bottom, i t s food and q u a n t i t y . Rep. Danish B i o . S t a t . 20 , 81 p. (non-v i d e ) . P i c a r d , G.L . and L .F . Giovando, I960, Some o b s e r v a t i o n s of t u r b i d i t y in B r i t i s h Columbia i n l e t s . L i m n o l . Oceanog. , v. 5 , pp. 162-170. P i e r c e , J . W . , 1966, Sediment budget of a par t of the North C a r o l i n a c o a s t . Program G e o l . Soc. America Ann. Meeting Southeastern S e c t . , Athens G a . , p. 36 (abst r a c t ) . and F.R. S i e g e l , 1969, Q u a n t i f i c a t i o n in c l a y minera l s t u d i e s of sediments and sedimentary r o c k s . Jour . Sed. P e t r o l o g y , v. 3 9 , pp. 187-193. P i l k e y , O . H . , D. Frankenberg , 1964, The re 1 i c t - r e c e n t sedimentary boundary on the Georgia c o n t i n e n t a l s h e l f . B u l l . Georgia Acad . S c i e n c e , v. 2 2 , pp. 1 -4 . 201 . Por renga , D .H . , 1967, G l a u c o n i t e and chamosite as depth i n d i c a t o r s in the marine env i ronment . Marine Geology, v. 5 , pp. 4 9 5 - 5 0 1 . P r a t t , R . M . , J . S c h l e e , 1969, G l a c i a t i o n on the c o n t i n e n t a l margin o f f New England. Bui 1 . Geol . Soc. A m e r i c a , y. 8 0 , pp. 2335 -2342. P r y o r , W . A . , and N.C. H e s t e r , 1969, X - r a y d i f f r a c t i o n a n a l y s i s o f heavy m i n e r a l s . Jour . Sed. P e t r o l o g y , v. 3 9 , pp. 1384-1389. Rodd ick , J . A . , A . J . Baer , and W.W. H u t c h i s o n , 1966, Coast Mountains P r o j e c t . G e o l o g i c a l Survey of Canada, Paper 6 6 - 1 , pp. 8 0 - 8 5 . and W.W. H u t c h i s o n , 1968, Coast Mountains P r o j e c t . Geolog i ca1  Survey Canada, Paper 6 8 - 1 , Part A , pp. 3 7 - 4 1 . Ross , D .A . , 1970, Source and d i s p e r s i o n of s u r f a c e sediments in the Gul f of Maine - Georges Bank a r e a . Jour . Sed. P e t r o l o g y , v. 4 0 , pp. 906-920. S c h a f e r , C.T. and A. P r a k a s h , 1968, Current t r a n s p o r t and d e p o s i t i o n of F o r m i n i f e r a l t e s t s , p l a n k t o n i c organisms and l i t h o g e n i c p a r t i c l e s in Bedford B a s i n , Nova S c o t i a . Mar i t ime Sediments , v. 4 , pp. 100-103. S c h n e i d e r , H. , 1970, Problems of q u a r t z g r a i n morphoscopy. Sedimento logy , v. 14, pp. 3 2 5 - 3 3 5 . Shepard, F . P . , 1932, Sediments of the c o n t i n e n t a l s h e l v e s . Bui 1. G e o l . Soc. A m e r i c a , v. 4 3 , pp. 1017-1039. 1963, Submarine Geology. Harper and Row, New York , 557 pp. S i l b e r m a n , M . L . , 1969, Re 1 i e f g1acia1 sediments on the Ber ing S h e l f . G e o l . Soc. A m e r i c a , Abs . w i th Progs . Part F, p. 206. Souther , J . G . , 1966, C o r d i l l e r a V o l c a n i c Study, G e o l o g i c a l Survey of Canada, Paper 66-1 , pp. 87-89. S p i g a i , J . J . , and L.D. Kulm, 1969, Pat te rns of Holocene sed imenta t ion on the c o n t i n e n t a l s l o p e o f f southern Oregon. G e o l . Soc. Amer i c a , Abs . w i t h P r o g s . , par t F, p. 212. S tacey , R.A. and L .E , Stephens, 1969, An i n t e r p r e t a t i o n of g r a v i t y measurements on the west coast of Canada. Canadian Jour . Ear th  S c i . , v . 6 , pp. 4 6 3 - 4 7 4 . S t i e g l i t z , R . D . , 1969, Sur face t e x t u r e s of quar t z and heavy -minera l g r a i n s from f reshwater env i ronments : an a p p l i c a t i o n of scanning e l e c t r o n mic roscopy . B u l l . G e o l . Soc. A m e r i c a , v. 8 0 , pp. 2091-2094. S t e r n b e r g , R.W., 1 9 7 ' , Measurements of i n c i p i e n t motion of sediment p a r -t i c l e s in the marine env i ronment . Mari ne G e o l . , v . 10, pp. 113-119. 202. and J . S . C reager , 1961., Comparative e f f i c i e n c i e s of s i z e a n a l y s i s by hydrometer and p i p e t t e methods. Jour . Sed. P e t r o l o g y , v. 3 1 , pp. 96-100. S t r a h l e r , A . N . , 1967, I n t r o d u c t i o n to P h y s i c a l Geography, John W i l e y £-Sons, I n c . , New York, 455 p. S t r i d e , A . H . , 1963, Current swept sea f l o o r s near the southern h a l f of Great B r i t a i n , Quar t . Jour . G e o l . Soc. London, v. 119, pp. 175-199. S u t h e r l a n d Brown, A . , 1966, T e c t o n i c h i s t o r y of the Insula- B e l t of B r i t i s h Co lumbia , in Tec ton ic H i s t o r y and Minera l Deposi ts of the Western  Cordi11 e r a . Canadian Inst . Min ing and M e t a l l u r g y , M o n t r e a l , pp. 83-100. 1968, Geology of the Queen Char lotteIs l a n d s , B . C . , B u l l . B r i t i s h  Columbia Dept. of Mines and Petroleum Resources , No. 54, 226 p. S w i f t , D . J . P . , 1969, Outer S h e l f S e d i m e n t a t i o n : Processes and P r o d u c t s , in The New Concepts of C o n t i n e n t a l S h e l f S e d i m e n t a t i o n , D . J . S t a n l e y , convener . American G e o l o g i c a l I n s t i t u t e , Washington, pp. DS-5-1 t o DS-5-26. 1970, Quaternary she lves and the r e t u r n to grade. Marine Geology, v. 8, pp. 5-30. Thomas, M . K . , 1953, CI imato log ica1 A t l a s of Canada, Mete ro log ica1 D i v . Dept. of T r a n s p . , D iv . B u i l d i n g Research , Nat. Res. C o u n c i l , Ottawa. Thomas, R . L . , 1969, A note on the r e l a t i o n s h i p of g r a i n s i z e , c l a y c o n t e n t , q u a r t z and o r g a n i c carbon in some Lake E r i e and Lake Ontar io s e d i -ments. Jour . Sed. P e t r o l o g y , v . 39, pp. 803-809. T i f f i n , D . L . , 1969, Continuous Se ismic R e f l e c t i o n P r o f i l i n g in the S t r a i t of G e o r g i a , B.C. Univ . B r i t i s h Columbia Inst . Oceanog. 177 p. T u l l y , J . P . , 1952, C l imate in the c o a s t a l seas of B r i t i s h Columbia. F i s h . Res. Bd. Canada Prog. Rept . P a c i f i c Coast S t a t . No. 90, pp. 16-20. Van A n d e l , T j . H . , 1964, Recent sediments of Gul f of C a l i f o r n i a , in Ma r i ne  Geology of the Gulf of C a l i f o r n i a , T j . H. van A n d e l , G.G. Shor . J r . , e d i t o r s . American A s s o c i a t i o n of Petro leum G e o l o g i s t s , T u l s a , O k l a . , pp. 216-310. V e e n s t r a , H . J . , 1965, Geology of the Dogger Bank a r e a , North Sea. Ma r i ne  Geology, v. 3, pp. 245-262. Wald ichuk , M . , 1957, P h y s i c a l Oceanography of the S t r a i t of G e o r g i a . Fi s h . Res. Bd. Canada, P a c i f i c Prog. Rept . No. 14, pp. 321-486. Walker , G . F . , 1961, V e r m i c u l i t e m i n e r a l s in The X - r a y I d e n t i f i c a t i o n and C r y s t a l S t r u c t u r e s of C lay M i n e r a l s . Minera1ogica1 S o c i e t y , London, pp. 297-324. 203. W a l t e r s , R . F . , 1969, Contour ing by machine: a u s e r ' s g u i d e . Bui 1. Am.  A s s o c . Pe t . G e o l . , v . 53 , pp. 2324-2340. Warshaw, C M . , P .E . Rosenberg and R. Ruston , I960, Changes e f f e c t e d in laye r s i l i c a t e s by h e a t i n g below 5 5 0 ° C. C lay Mins . Bui 1 . , v . 4 , p. 113-126. Weaver, C . E . , 1958, The e f f e c t and g e o l o g i c s i g n i f i c a n c e of potass ium " f i x a t i o n " by expendable c l a y m i n e r a l s d e r i v e d from m u s c o v i t e , b i o t i t e , c h l o r i t e and v o l c a n i c m a t e r i a . Am. M i n e r a 1 o g . , v . 43 , pp. 839-861. W a t t s , J . S . , J r . , and R.E . F a u l k n e r , 1968, Des ign ing a d r i l l i n g r i g f o r severe s e a s . Ocean Indust ry , v . 3 , No. 9 , pp. 28-37. Whi te , S . M . , 1970, M inera logy and geochemist ry of c o n t i n e n t a l s h e l f sediments o f f the Washington-Oregon c o a s t . Jour . Sed. P e t r o l o g y , v . 40 , pp. 38-54. Wiese , W. , 1969, S tud ies on p r o p e r t i e s , d i s t r i b u t i o n , and heavy minera l contents of sediments in nor thern 0_ueen C h a r l o t t e Sound. Un i v . of B r i t i s h Co lumbia , Dept. of Geology, 78 p. (unpubl ished B .Sc . thes i s ) . - 3 -(a) Lutemauer, Dr. John Lelarid v, rv,>>.' ,t '•• • (c) Departnent: Departnent cf Geology (d) SuoEiarj' of University education: B.A. Geology Colby College, Kaine, U.S.A. i-I.A. Geology Duke University, North Carolina, U.S.A. Ph.D. Marine University of B r i t i s h Geology Columbia ' * 1964 1966 1972 (e) Professional Experience: F i e l d Experience: On Land Duty Subject of Research-F i e l d Assistant to Earvard Ph.D. candidate Fi e l d Assistant to Louisiana State Univ. Ph.D. candidate Structural Geology Describing Coal Measures Location Period Maine Sumner 162 Ohio Summer '6j At Sea Cruises on H./V Eastward (Duke Univ.), 3/7 Gosnold (Wood's Hole), C.IT.A.V. Laymore and Endeavour (Canadian Navy) which, have acquainted no with various techniques employed i n the study of continental shelf sedinents, structure, and chemical and physical oceanography. (19&4- "t° Present) - 9 -Teaching Experience: Sub Sect Period Location Introductory Geology Lab Sedimentation and Stratigraphy Lab Elementary Paleon-tology Lab (f) Current Research: Geomorphology, bottom sediment distribution and present sediment dispersal r i t h i n Queen Charlotte Sound, a 5,000 so. mi. continental shelf area off B r i t i s h Columbia, Canada. This i s the subject of my recently completed Ph.D. thesi3. (g) Publications: ( i ) Total number of papers published i n journals " i t h a referee system. g ( i i ) T i t l e s of papers published i n journals with a refereo system during the pa3t five years only. Pilkey, O.K., and J.L. Lutemauer, 1966, North Carolina's Frying. Pan Shoals Phosphate Sands, GeoLIarine Technology, v. 3, pp. 24-25. ,1967, A North Carolina Shelf Phosphate Deposit of Possible Commercial Interest, Southeastern Geology, v. 8, pp. 33-51. 1965 - 70 Duke University and Univ. of B r i t i s h Columbia 1971 - 72 Univ. of B r i t i s h Columbia 1971 Univ. of-. B r i t i s h Columbia Lutemauer, J.L. and O.H. Pilkey, 1967, Phosphorite Grains: Their Application to the Interpretation of llorth Carolina Shelf Sedimentation, I-Iari.no Geology', v. 5, pp. 315-320. - 10 -Pilkey, O.Z., R.\i. Horton, and J.L. Lutemauer, 1361, The Carbonate Fraction of Beach and Dune Sands, Sedjaontolo/Ty, v. S, pp. 311-327. Garrison, R.E., J.L. Lutemauer, E.V. G r i l l , R.D. Kacdonald end J.W. Hurray, 1969, Early Diageaetic. Cementation of Recent Sands, Fraaer. River Delta, B.C., Sed j.nento logy, v. 12, po. 27-46. Garrison, R.E., and J.L. Luternauer, 1969, Textures of C a l c i t i c Ceaents, Bermuda Biological Station for Research Spec. Pub. Ho. pp. 106-109. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0053483/manifest

Comment

Related Items