Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Spectroscopic variations in Delta Delphini and V 1668 Cygni Yang, Stephenson 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A6_7 Y36.pdf [ 5.78MB ]
Metadata
JSON: 831-1.0053465.json
JSON-LD: 831-1.0053465-ld.json
RDF/XML (Pretty): 831-1.0053465-rdf.xml
RDF/JSON: 831-1.0053465-rdf.json
Turtle: 831-1.0053465-turtle.txt
N-Triples: 831-1.0053465-rdf-ntriples.txt
Original Record: 831-1.0053465-source.json
Full Text
831-1.0053465-fulltext.txt
Citation
831-1.0053465.ris

Full Text

SPECTROSCOPIC VARIATIONS IN DELTA DELPHINI AND V1668 CYGNI By STEPHENSON YANG B.Sc., U n i v e r s i t y of B r i t i s h Columbia, 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMEMT OF THE REQUIREMENTS FOP. THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES ( Department of Geophysics and Astronomy ) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLOMBIA v j A P R I L 1980 (c) Stephenson Yang, 1980 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of Brit ish Columbia, I agree that the Library shall make i t freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of Brit ish Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 E-6 B P 75-51 1 E A B S T R A C T A n e w v e r s i o n o f R e t i c e n t , a command l a n g u a g e t o m a n i p u l a t e d i g i t a l s p e c t r o s c o p i c d a t a , h a s b e e n d e v e l o p e d a n d a p p l i e d t o t h e a n a l y s i s o f t i m e s e r i e s o f s p e c t r a . O b s e r v a t i o n s o f t h e C a I I 8 4 9 8 A a n d 8 5 4 2 A l i n e p r o f i l e s o f D e l t a D e l p h i n i i n d i c a t e v a r i a t i o n s i n t h e r a d i a l v e l o c i t y w i t h a n a m p l i t u d e o f a b o u t 8 kms T h e r a d i a l v e l o c i t y v a r i a t i o n s w e r e a c c o m p a n i e d b y v a r i a t i o n s i n t h e d e p t h o f t h e l i n e p r o f i l e s . O b s e r v a t i o n s o f t h e H a l p h a e m i s s i o n l i n e p r o f i l e o f N o v a C y g n i 1 9 7 8 ( V 1 6 6 8 C y g n i ) i n d i c a t e t h a t t h e c o n t i n u u m l e v e l d e c l i n e d b y 0 . 4 6 m a g n i t u d e b e t w e e n J D 2 4 4 3 7 6 9 . 9 a n d J D 2 4 4 3 7 7 0 . 8 . T h e T ' P £ C y g r i i p r o f i l e o f t h e d i f f u s e e n h a n c e d s y s t e m a p p e a r e d b e t w e e n J D 2 4 4 3 7 6 9 . 9 a n d J D 2 4 4 3 7 7 0 . 7 . T h e a b s o r p t i o n f e a t u r e o f t h e P - C y g n i p r o f i l e h a d a v e l o c i t y o f - 9 6 0 kms * . V a r i a t i o n s i n t h e c o n t i n u u m l e v e l w i t h a n a m p l i t u d e o f 0 . 0 4 ; m a g n i t u d e w w e r e d e t e c t e d b e t w e e n J D 2 4 4 3 7 7 0 . 7 0 a n d J D 2 4 4 3 7 7 0 . 9 7 . T h e v a r i a t i o n s i n t h e c o n t i n u u m l e v e l w e r e a c c o m p a n i e d b y v a r i a t i o n s i n t h e s h a p e o f t h e H a l p h a e m i s s i o n l i n e p r o f i l e . i i i Table o f ^ c o n t e n t s A b s t r a c t ................................................... i i Table of c o n t e n t s .................................. i i i L i s t o f t a b l e s ............................................. iv L i s t of f i g u r e s v Acknowledgement ............................................ . v i Chapter 1 : INTRODUCTION . 1 1.1 Data a n a l y s i s o f d i g i t a l s p e c t r o s c o p i c data ......... 1 Chapter 2 : SPECTROSCOPIC VARIATIONS IN DELTA DELPHINI ..... 3 2.1 I n t r o d u c t i o n ......................... 3 2.2 Observations 11 2.3 A n a l y s i s and d i s c u s s i o n ............................. 15 Chapter 3 : SPECTROSCOPIC VARIATIONS IN V1668 CYGNI ......... 31 3.1 I n t r o d u c t i o n ........................................ 31 3.2 Obs e r v a t i o n s 35 3.3 A n a l y s i s and d i s c u s s i o n ............................. 41 References .......................................... 66 Appendix A : ADDITIVE LINE NORMALISATION 69 Appendix B : RETICENT : OPERATION MANUAL ................... 70 i v L i s t of_tabl.es 1. Data f o r D e l t a D e l p h i n i 5 2..Published time s e r i e s o b s e r v a t i o n s of Delta Del .......... 8 3. A m p l i t u d e s of the r a d i a l v e l o c i t y v a r i a t i o n s of De l t a Del.. 9 4. Summary of o b s e r v a t i o n s on D e l t a Del .....................12 5. T e l l u r i c l i n e s i n the alpha Lyr spectrum 16 6. S t e l l a r l i n e s i n the E p s i l o n Cyg spectrum ................17 7. R a d i a l v e l o c i t i e s of D e l t a D e l p h i n i ...................... 19 8* Summary of o b s e r v a t i o n s of V1668 Cygni ...................37 9. T e l l u r i c l i n e s i n the spectrum of Alpha Cyg ...40 10. H alpha p r o f i l e of V1668 Cygni ........................... 49 11. Fe I I 6456A p r o f i l e of V1668 Cygni ....................... 50 12. R e l a t i v e continuum l e v e l of V1668 Cygni .................. 53 13. Measured and expected e q u i v a l e n t width of Fe I I 6456A .....55 V 1. v S p e c t r a of Alpha L y r , D e l t a Del, and E p s i l o n Cyg .......... 14 2. R a d i a l v e l o c i t y curve of D e l t a D e l p h i n i .................. 20 3. Ca I I 8498A p r o f i l e of D e l t a Del 22 4. Ca I I 8542A p r o f i l e of D e l t a Del .23 5. R e s i d u a l s from the mean p r o f i l e ( Ca I I 8498A ) .......... 25 6. R e s i d u a l s from the mean p r o f i l e ( Ca I I 8542A ) ........... 26 7. R e s i d u a l s from the p r o f i l e a t JD2443718.8145 ( 8498A ) ...27 8. Re s i d u a l s from the p r o f i l e at JD2443718.8145 ( 8542A ) ...28 9...H alpha p r o f i l e s of V1668 Cyg, HR264, HR7924, and HR7001 ...38 10. Mean H alpha p r o f i l e of V1668 Cygni on Sept..18 and 19 . . . 4 3 11. H alpha p r o f i l e of V1668 Cygni ( Sept. . 18 ) ... ...44 12. H alpha p r o f i l e of V1668 Cygni ( Sept., 19 ) .............. 45 13. R e s i d u a l s from the mean H alpha p r o f i l e ...................46 14..Residuals from the p r o f i l e at JD2443770. 97 ...,,.47 15. V i s u a l l i g h t curve of V1668 Cygni ........................ 54 16* R e s i d u a l s from the mean p r o f i l e of Sept. 18 .............. 57 17..Residuals from the mean normalised p r o f i l e . o f Sept..18 ...58 (18. R e s i d u a l s from the mean normalised p r o f i l e o f Sept. 19 .,..63 19..Residuals from the normalised p r o f i l e at JD2443770.97 .... 64 v i Acknowledgement I would l i k e to thank my s u p e r v i s o r Dr..Gordon Walker f o r h i s support and pat i e n c e . I would a l s o l i k e to thank Drs.. Greg Fahlman, Jason Auman, and Bruce Campbell f o r t h e i r a s s i s t a n c e and h e l p f u l d i s c u s s i o n s * . Dr. C h r i s P r i t c h e t i n t r o d u c e d the R e t i c e n t program which i s e s s e n t i a l f o r the data a n a l y s i s presented i n t h i s t h e s i s . . I would l i k e to thank Dr.. Raymond C a r l b e r g f o r h i s a s s i s t a n c e with the obs e r v a t i o n s of V1668 Cygni* Dr. _Tad U l r y c h and C o l i n Walker a l s o helped i n the p e r i o d a n a l y s i s performed on Del t a D e l p h i n i . . I would l i k e : t o express my a p p r e c i a t i o n t o Ron Johnson and Mike C r e s w e l l f o r t h e i r t e c h n i c a l support of the i n t r u m e n t a t i o n s i . I would a l s o l i k e t o thank Katherine Moyles f o r her d i s c u s s i o n s and f o r using the new v e r s i o n of the R e t i c e n t program. A l l the graduate students and f a c u l t y members i n the department have : o f f e r e d t h e i r encouragement.. I would a l s o l i k e to thank the Dominion A s t r o p h y s i c a l Observatory i n V i c t o r i a f o r extensive use of t h e i r f a c i l i t i e s . 1 Chapter 1 INTfiODOCTlON 1.1 Data a n a l y s i s of d i g i t a l s p e c t r o s c o p i c data With the use of modern s o l i d s t a t e multi-element l i g h t d e t e c t o r s , the amount of data can be very l a r g e . . T h i s i s e s p e c i a l l y the case when time s e r i e s o f s p e c t r a are taken. There can e a s i l y be up to 50 s p e c t r a per t i m e : s e r i e s * _ E a c h spectrum has t o be preprocessed e.g. b a s e l i n e and dark c u r r e n t s u b t r a c t i o n , f i l t e r i n g , i n s t r u m e n t a l response c o r r e c t i o n , r e c t i f i c a t i o n t o continuum, and wavelength c a l i b r a t i o n . , Since there used to be separate computer programs f o r each phase of the r e d u c t i o n ; one had to apply these processes one at a time t o each spectrum.-. I t could take weeks and many computer runs j u s t to reduce the s p e c t r a i n a s i n g l e time s e r i e s i f there are many sp e c t r a . A s e r i e s of 13 s p e c t r a was analysed i n t h i s manner ( Walker, Yang, and Glaspey [1978] ) where many sepa r a t e computer programs were w r i t t e n f o r each phase of the r e d u c t i o n . . In 1978, Dr. C h r i s P r i t c h e t i n t r o d u c e d the use of R e t i c e n t , a command language designed s p e c i f i c a l l y t o analyse d i g i t a l s p e c t r o s c o p i c data* , The R e t i c e n t computer program all o w s the r e d u c t i o n of a l l the s p e c t r a of a time s e r i e s simutaneously. Hence, i n s t e a d o f many computer runs f o r the r e d u c t i o n , only a few are necessary and t h i s allows the a n a l y s i s of longer time s e r i e s . . The e a r l y v e r s i o n of R e t i c e n t was not s p e c i f i c a l l y 2 designed to analyse time s e r i e s . , S e p a r a t e computer s u b r o u t i n e s had t o be w r i t t e n to perform t a s k s such as c a l i b r a t i o n t o a constant wavelength s c a l e and to s t a c k - p l o t the s p e c t r a . S e v e r a l time s e r i e s of s p e c t r a were analysed using t h i s procedure ( Walker, Yang, and Fahlman [1979] ). A new v e r s i o n of the B e t i c e n t program which i s b e t t e r adapted f o r time s e r i e s a n a l y s i s was w r i t t e n . I t i n c o r p o r a t e s some of the:best f e a t u r e s of the e a r l i e r v e r s i o n s and f u r t h e r expands the. c a p a b i l i t y of the program. Moreover, the new v e r s i o n of the R e t i c e n t program i s designed to be used e f f i c i e n t l y a t the Computing Centre of the U n i v e r s i t y of B r i t i s h Columbia..This new v e r s i o n of R e t i c e n t was used to analyse time s e r i e s of s p e c t r a of s e v e r a l v a r i a b l e s f o r s p e c t r o s c o p i c v a r i a b i l i t y . The a n a l y s i s of s p e c t r o s c o p i c v a r i a b i l i t y of D e l t a D e l i s d e s c r i b e d i n chapter 2 while the a n a l y s i s of Nova Cygni 1978 ( V1668 Cygni ) i s d e s c r i b e d i n chapter 3. An o p e r a t i o n manual of the new v e r s i o n of R e t i c e n t i s given i n appendix B. 3 Chapter 2 SPECTROSCOPIC VARIATIONS-IN_DELTA_DELPHINI 2.1 I n t r o d u c t i o n Delta D e l p h i n i , HR7928, g i v e s i t s name to a c l a s s of s t a r s which show s p e c i f i c s p e c t r o s c o p i c anomalies. De l t a Del i s a l s o known to be a D e l t a S c u t i v a r i a b l e , s t a r with a s p e c i f i c type of l i g h t v a r i a b i l i t y . Not a l l Del t a Del s t a r s a r e Delta S c u t i v a r i a b l e s and not a l l D e l t a S c u t i v a r i a b l e s have D e l t a Del type s p e c t r o s c o p i c anomalies.. D e l t a S c u t i v a r i a b l e s a re s t a r s which have p e r i o d s of l e s s than 0.3 day i n l i g h t v a r i a b i l i t y . H i s t o r i c a l l y , one a l s o c o n s i d e r s a De l t a S c u t i v a r i a b l e to be of s p e c t r a l type A or F and has l i g h t amplitude.of l e s s than 0.3 magnitude i n a d d i t i o n t o the c r i t e r i o n of short period..The term U l t r a - s h o r t P e r i o d Cepheids ( USPCs ) has a l s o been used f o r these v a r i a b l e s which have pe r i o d s of l e s s than 0.275 day*.There are s t i l l d e s c r e p a n c i e s and c o n f u s i o n over the naming and c l a s s i f i c a t i o n of these s t a r s i n c u r r e n t l i t e r a t u r e . The amplitudes of the r a d i a l v e l o c i t y and l i g h t v a r i a t i o n s f o r a D e l t a S c u t i v a r i a b l e are g e n e r a l l y about 10 kms - 1 and s e v e r a l hundredth of a magnitude, r e s p e c t i v e l y . The Del t a D e l p h i n i s t a r s are s t a r s of s p e c t r a l types A or F and subgiant or g i a n t l u m i n o s i t i e s . They are underabundant i n Ca and Sc r e l a t i v e to Fe while Sr, Y, Z r # and the r a r e e a r t h s are overabundant r e l a t i v e to Fe. There may a l s o be a marginal underabundance i n T i , V, and 4 Cr r e l a t i v e t o Fe. The degree of m e t a l l i c i s m , however, v a r i e s among the Delta D e l p h i n i s t a r s . . I t has been suggested ( Eggen [ 1 9 7 6 J , Kurtz [ 1 9 7 6 , 1 9 7 9 ] ) , because o f s i m i l a r i t i e s i n m e t a l l i c i s m and o t h e r p r o p e r t i e s , t h a t D e l t a D e l s t a r s are evolved am s t a r s . The abnormal abundances i n am s t a r s i s g e n e r a l l y e x p l a i n e d by d i f f u s i o n theory. When a s t a r i s quiescent and r o t a t i n g s l o w l y , the He i n the He I I i o n i z a t i o n zone w i l l tend to s e t t l e downward g r a v i t a t i o n a l l y . The disappearance o f the He d e s t r o y s the He I I convection which would normally produce the mixing of elements. The e f f e c t of upward r a d i a t i o n pressure and downward g r a v i t a t i o n a l s e t t l i n g w i l l then cause some elements to r i s e while others to sink i n the outer photospheric l a y e r s . I t would take as l i t t l e as 1 0 3 years f o r m e t a l l i c i s m to occur a f t e r the disappearance o f the He I I c o n v e c t i o n . The d i f f u s i o n theory not only e x p l a i n s the observed under- and over-abundance of elements but a l s o i m p l i e s p u l s a t i o n a l s t a b i l i t y of the s t a r due to the d e p l e t i o n of the He from the He I I i o n i z a t i o n zone; This agrees very w e l l with the o b s e r v a t i o n a l f a c t t h a t c l a s s i c a l am s t a r s do not p u l s a t e . The e x i s t e n c e of the l i g h t varying am-like D e l t a Del s t a r s poses a problem f o r the t h e o r e t i c a l i n t e r p r e t a t i o n which has to e x p l a i n the c o e x i s t e n c e of both p u l s a t i o n and m e t a l l i c i s m . , I t has been suggested ( S t e l l i n g w e r f [ 1 9 7 9 ] , Cox, King, and Hodson [ i 1 9 7 9 ] ) t h a t m e t a l l i c i s m and p u l s a t i o n can c o e x i s t f o r the D e l t a Del s t a r s which are more evolved than the c l a s s i c a l am s t a r s . . W i t h mild m e t a l l i c i s m , enhanced H, as w e l l 5 as r e s i d u a l He due to incomplete s e t t l i n g or recent upward mixing can provide enough d r i v e f o r p u l s a t i o n to occur. T h i s i s c o n s i s t e n t with the observed s m a l l amplitudes i n the v a r i a b i l i t y of these s t a r s . Delta Del i s known to be a s p e c t r o s c o p i c b i n a r y with a p e r i o d of 40. 58 days and e c c e n t r i c i t y of 0.7. The companion i s of almost i d e n t i c a l s p e c t r a l type and l u m i n o s i t y . I t has been suggested ( Duncan and Preston [1979] ) that the companion i s a l s o a D e l t a S c u t i v a r i a b l e . . P r o p e r t i e s of D e l t a Del are summarized i n Table 1.. Table 1 Data on D e l t a D e l p h i n i HR number HD number RA ( 1950 ) DEC ( 1950 ) MK s p e c t r a l type V S i n i a b s o l u t e magnitude l o g g e f f e c t i v e temperature t u r b u l e n t v e l o c i t y 7928 197461 20h 41m 7.413s 14d 53m 38.69s F0 IVp 25 kms-i 1.4 3.25 ( cgs ) 7320 K 4.5 kms-i r e f e r e n c e 1 2 4 2 2 2 6 Table 1 cont. Broad band photometry : V = 4. 44 (J -V = 0.42 B -V = 0.32 V -R = 0. 27 V - I 0. 44 Narrow band photometry : = 2. 738 b -y = 0. 190 m, = 0. 163 c, 0. 854 S C m , ] = 0.018 A [ c . ] = 0. 204 with m, = ( v-b ) - ( b- y ) c, = ( u-v ) - ( v- b ) [m, ] = m, + 0.30 ( b- y ) [c , ] = c, - 0.20 ( b- y ) S t m, J = ( m, J s t a n d a r d - [m, ] o b s e r v e d ^ £ c i 3 = C c i ] o b s e r v e d - [ c , j s t a n d a r d ( 1 ) Morgan and Abt, 1972, A.J., 77 r 35 ( 2 ) Ku r t z , 1976, Ap.J.Sup., 32, 651 ( 3 ) I r i a t e e t a l , 1965, Sky and Telescope, 33, 21 ( 4 ) Eggen, 1979, Ap.J.Sup., 4_, 413 7 M u l t i c o l o u r photometry of D e l t a Del i n d i c a t e s t h a t D e l t a Del i s b l u e r at maximum than at minimum l i g h t ( Wehlau and Leung [1964] )._V v a r i e s by 0.04 to 0.01 magnitude ( Genderen [1973] ) while B-V v a r i e s by about 0.012 magnitude ( Wehlau and Leung £ 1964 ] ). . The l i g h t curve of D e l t a Del does not have;a r e g u l a r shape and amplitude. An unstable p e r i o d as well as the occurence of beat phenomena due to m u l t i - p e r i o d i c i t y have been suggested to e x p l a i n the i r r e g u l a r i t i e s . The p u b l i s h e d time s e r i e s o b s e r v a t i o n s of D e l t a Del a r e . summarized i n Table 2. I t i s e v i d e n t from Table 2 t h a t there are disagreements among the p e r i o d s determined. T h i s may be caused by a r e a l v a r i a b i l i t y i n the p e r i o d , or more l i k e l y , by the d i v e r s i t y i n the g u a l i t y of the data as a r e s u l t of d i f f e r i n g l e n g t h s among the:time s e r i e s . The most r e c e n t l y p u b l i s h e d r e s u l t ( Duncan and Preston [1979] ) has i n d i c a t e d that the primary of the D e l t a Del b i n a r y system has a p e r i o d of 0.158 day i n r a d i a l v e l o c i t y v a r i a t i o n s while the secondary has a p e r i o d of 0. 134 day. The f a c t t h a t the s t a r s of almost i d e n t i c a l s p e c t r a l type and l u m i n o s i t y are both v a r y i n g , may be an e x p l a n a t i o n f o r the i r r e g u l a r l i g h t curve of D e l t a Del as w e l l as f o r the disagreement among the p u b l i s h e d r e s u l t s . The t i d a l e f f e c t found i n 14 Aur ( F i t c h and Wisiewski [1979] ), another D e l t a S c u t i v a r i a b l e with a companion, may a l s o be s i g n i f i c a n t . . The p u b l i s h e d amplitudes i n the r a d i a l v e l o c i t y v a r i a t i o n s of D e l t a Del are summarized i n Table 3., 8 Table 2 P u b l i s h e d time s e r i e s o b s e r v a t i o n s of De l t a Del PUBLICATION TYPE PERIODS (day) Eggen [ 1956 ] photometric 0.13505 Struve et a l [1957] s p e c t r o s c o p i c 0.43447 Perry [ 1957 ] photometric no a n a l y s i s Wehlau and Leung [1964] photometric 0. 156797 0.078794 0. 152490 0.095531 0. 150792 0.078681 J e r z y k i e w i c z [1966] photometric 0.J36 29 Ponsen and Ooster h o f f [1966] Oos t e r h o f f et a l [1966] • photometric 0. 134 Leung and Wehlau [1967] photometric 0. 15708 0.07880 0.15249 0.09552 0. 15078 0.07869 Kuhi and Danziger [1967] & photometric s p e c t r o s c o p i c no a n a l y s i s M i l l i s [ 1967 ] V a l t i e r [1 972 ] photometric 0.153 B e s s e l l [1 969 ] & photometric s p e c t r o s c o p i c no a n a l y s i s Genderen [ 1973] photometric 0. 135547 Leung [ 197 4 ] s p e c t r o s c o p i c no a n a l y s i s F i t c h [197 5] photometric 0. 15679 Duncan and Preston [1979] s p e c t r o s c o p i c 0. 158 0.134 T h i s r e p o r t s p e c t r o s c o p i c 0. 102 9 Table 3 Amplitudes of the r a d i a l v e l o c i t y v a r i a t i o n s PUBLICATION AMPLITUDE (kms-*) COMMENT Struve e t a l [1957] 1 to 2 as c i t e d and 4 t o 5 Kuhi and Danziger [1967] about 6 estimated Leung [1974] about 8 estimated Duncan and Preston [1979] 8-3 f o r primary as c i t e d 5.5 t o 2 f o r secondary T h i s r e p o r t about 8 Reports of p r o f i l e v a r i a t i o n i n D e l t a S c u t i v a r i a b l e s are very uncommon.. T h i s i s l a r g e l y due to the f a c t t h a t the high d i s p e r s i o n spectroscopy r e g u i r e d to study the s m a l l v a r i a t i o n s i s not p o s s i b l e f o r s m a l l e r t e l e s c o p e s due to the f a i n t n e s s and the sho r t p e r i o d s of these s t a r s . , A time s e r i e s of high d i s p e r s i o n s p e c t r a o f HR7331 was examined and no s i g n i f i c a n t d e v i a t i o n i n the line - s h a p e was found ( Breger et a l [1976,1979] ). The H gamma p r o f i l e of D e l t a Del was suggested to be v a r i a b l e ( B e s s e l l [1969] ) but the v a r i a t i o n s were very s m a l l and have been considered t o be w i t h i n photometric e r r o r ( Ishikawa [19 73] ). T r a n s i e n t Ca II K emission has been reported i n Rho Pup, another D e l t a Del type D e l t a S c u t i v a r i a b l e ( Dravin e t a l £1977] ) . Some suspected D e l t a S c u t i s t a r s were 10 a l s o r e p o r t e d to show t r a n s i e n t chromospheric Ca I I emission ( A n t o n e l l o e t a l [1978] ).. The most c o n v i n c i n g p r o f i l e v a r i a t i o n s have been reported r e c e n t l y f o r Gamma Boo ( Auvergne et a l [1979] ) . Line core s p l i t t i n g of Ca I I and H I p r o f i l e s were observed i n Gamma Boo, The p r o f i l e v a r i a t i o n s a l s o appear to be a s s o c i a t e d with "bumps" i n the r a d i a l v e l o c i t y curve. "Bumps" i n the r a d i a l v e l o c i t y curve have a l s o been reported i n fiho Pup ( Dravin e t a l [1977] ) and 14 Aur ( C h e v a l i e r et a l [1969] ) . The r a d i a l v e l o c i t y curve of Delta D e l ( Leung and Wehlau [1967] ) a l s o i n d i c a t e s a p o s s i b l e s i m i l a r i t y i n behaviour.. Systematic departure from the mean r a d i a l v e l o c i t y curve and u n s u a l l y l a r g e s c a t t e r have a l s o been r e p o r t e d f o r the r a d i a l v e l o c i t y curve of D e l t a Del ( Struve et a l [1957] ) . . A l l p r e v i o u s l y published s p e c t r o s c o p i c o b e s e r v a t i o n s f o r Delta Del were made i n the blue s p e c t r a l r e g i o n . I t i s the purpose here t o r e p o r t s p e c t r o s c o p i c r e s u l t of D e l t a Del i n the near i n f r a r e d s p e c t r a l r e g i o n . . 11 2.2 Observations A time s e r i e s of eleven s p e c t r a was taken at the Dominion A s t r o p h y s i c a l Observatory with the coude spectrograph of the 1.22m t e l e s c o p e . The d e t e c t o r , a l i q u i d n i t r o g e n r e f r i g e r a t e d E e t i c o n RL1024/17 l i n e a r a rray o f s i l i c o n diodes ( Walker [1977] ), was used d i r e c t l y at the focus of the 2.4m camera with a mosaic of f o u r 800 l i n e s per mm g r a t i n g , g i v i n g a r e c i p r o c a l d i s p e r s i o n of 4.8 Aram-1 or 0.12A per diode. The s p e c t r a were centered a t about 8525A and had a coverage of 125A. The exposure time of each spectrum was 1300 seconds which i s l e s s than 10% of the dominant perio d of v a r i a t i o n i n D e l t a D e l . Summary of the o b s e r v a t i o n s i s given i n Table 4. Alpha Lyr (A0V), and E p s i l o n Cyg (K0III) were a l s o observed as standards and f o r c a l i b r a t i o n purposes. B a s e l i n e was f i r s t s u b t r a c t e d from each of the s p e c t r a . In order t o i n c r e a s e the s i g n a l to n o i s e r a t i o of the data, the mean o f many s h o r t exposures of the dark was used as the b a s e l i n e * The s p e c t r a were then d i v i d e d by a spectrum of an incandescent lamp. T h i s h e l p s t o e l i m i n a t e any non-uniformity i n the d e t e c t o r s ' s response over the 1024 diodes. Each spectrum was then " a d d i t i v e l y l i n e normalised"..This n o r m a l i s a t i o n procedure helps to compensate f o r a p o s s i b l y i n a c c u r a t e b a s e l i n e s u b t r a c t i o n , and most i m p o r t a n t l y , i t helps t o e r a d i c a t e any p o s s i b l e "spectrum s e p a r a t i o n " phenomenon. Table 4 Summary of o b s e r v a t i o n s on D e l t a Del TIME AT MID-EXPOSURE HOUR ANGLE VELOCITY * CORRECTION (kms-*) UT 29 JUL 1978 JD 2443718+ 07:32:53 0.81450 0h56m56s E 5. 086 07:54:40 0.82963 0h35m00s E 5. 052 08:16:21 0.84469 0h13m15s E 5. 018 08:38: 03 0.85975 0h08m30s W 4. 983 08:59:45 0.87483 0h30m16s w 4. 949 09:21: 25 0.88987 0h52m00s w 4. 915 09:43: 04 0. 90491 1h13m42s W 4. 881 10:04: 45 0.91997 1h35m27s W 4. 849 10:26:25 0.93501 1h57m10s W 4. 817 10:48:06 0.95007 2h18m55s W 4. 787 11:09:47 0.96513 2h40m39s W 4. 758 * c o r r e c t i o n f o r motion of the observer i n o r d e r to o b t a i n h e l i o c e n t r i c r a d i a l v e l o c i t i e s . 13 "Spectrum s e p a r a t i o n " i s a problem produced by the d e t e c t o r ' s e l e c t r o n i c s and i s probably r e l a t e d to the independence of the video outputs. The a f f e c t e d spectrum w i l l tend to have r e g u l a r l y - s p a c e d diodes having s y s t e m a t i c a l l y higher s i g n a l v a l u e s than other diodes. T h i s problem occurs o n l y s p a r i n g l y but the " l i n e n o r m a l i s a t i o n " procedure w i l l compensate f o r i t even i f the " s e p a r a t i o n " i s very s m a l l . The c r i t e r i o n and procedure of the " l i n e n o r m a l i s a t i o n " process i s given i n appendix A. . D i g i t a l freguency domain f i l t e r i n g was then a p p l i e d to each spectrum..A f i l t e r l e n g t h of 451 p o i n t s was used i n c o n j u n c t i o n with a P a p o u l i s window f u n c t i o n ( P a p o u l i s [1973] ). The data were f i l t e r e d t o 45% of the Nyguist frequency f o r use i n r a d i a l v e l o c i t y measurements but o n l y f i l t e r e d to 20% of the Nyquist frequency f o r use i n the p r o f i l e v a r i a t i o n study* Each spectrum was then normalised to the continuum by f i t t i n g a s t r a i g h t l i n e through f i v e continuum points.,The mean of the e l e v e n D e l t a Del s p e c t r a f i l t e r e d to 45% Nyquist i s p l o t t e d i n F i g u r e 1 with the Alpha Lyr (AOV) and the E p s i l o n Cyg (KOIII) s p e c t r a which are f i l t e r e d to 85% Nyquist. A l l three s p e c t r a are normalised t o t h e i r r e s p e c t i v e c o n t i n u a . . FIGURE 1 15 2.3 A n a l y s i s and d i s c u s s i o n The Paschen l i n e s and Ca I I l i n e s , as w e l l as numerous weaker t e l l u r i c l i n e s are v i s i b l e i n the Alpha Lyr spectrum. The Ca I I l i n e s a re dominant i n the Del t a Del spectrum while other m e t a l l i c l i n e s are a l s o present i n the E p s i l o n Cyg spectrum. A l i s t of i d e n t i f i e d s t e l l a r l i n e s i n the E p s i l o n Cyg i s given i n Table 6. Some of these m e t a l l i c l i n e s a l s o appear as very weak f e a t u r e s i n the D e l t a Del spectrum..The t e l l u r i c l i n e s i n Alpha Lyr spectrum were used to e s t a b l i s h a wavelength s c a l e , k second order p o l y n o m i a l was found t o f i t the d i s p e r s i o n r e l a t i o n b est. A l i s t of the t e l l u r i c l i n e s used i n the d i s p e r s i o n c a l c u l a t i o n i s given i n Table 5. A l l adopted wavelengths are taken from Moore et a l [ 1966 ]. The p o s i t i o n s of the s p e c t r a l l i n e s were determined using the.same method as i n the the HF a b s o r p t i o n c e l l p r e c i s i o n r a d i a l v e l o c i t y measurement ( Campbell and Walker [1979] ) . , B a s i c a l l y , a parabola i s used to f i t the logarithm of the continuum-normalised and i n v e r t e d a b s o r p t i o n l i n e p r o f i l e . The i n t e r n a l c o n s i s t e n c y i n d e f i n i n g the p o s i t i o n of a s p e c t r a l l i n e by such a method i s preserved even i f the l i n e p r o f i l e i s not Gaussian. The r a d i a l v e l o c i t y d e r i v e d may d i f f e r from the standard value by a " z e r o - p o i n t " e r r o r because o f the p a r t i c u l a r d e f i n i t i o n f o r the l i n e p o s i t i o n and the p a r t i c u l a r r e s t wavelengths adopted f o r both the t e l l u r i c l i n e s and the s t e l l a r l i n e s . e 5 T e l l u r i c l i n e s i n the Alpha L y r spectrum PIXEL POSITION WAVELENGTH (A) 47.3049 8460.245 163.0906 8474.362 193.6477 8477.999 209.3336 8479.864 267.4654 8486.914 307. 491 1 8491.735 375.1153 8499.883 424.1933 8505.852 474. 9769 8511.912 508.6236 8516.007 538.6223 8519.640 593.7531 8526.320 623.6508 8529.900 664.3933 8534.781 706.6065 8539.888 758.2210 8546.222 820.9852 8553.762 982.4614 8573. 141 Table 6 S t e l l a r l i n e s i n the E p s i l o n Cyg spectrum PIXEL POSITION IDENTIFICATION WAVELENGTH (A) 70. 3048 CN 8463.539 99. 3518 T i I 8467. 158 100. 2756 Fe -1 8468.418 137. 5241 Fe I 8471. 744 222. 1567 Fe I 8481. 986 299. 7899 CN 8491.291 355.3098 Ca I I 8498.062 413. 3725 CN 8505. 1 12 456. 2184 S i I 8510. 253 488. J419 Fe I 8514. 082 496.5945 Fe I 8515. 122 514. 6892 CN 8517. 295 547. 0480 CN 8521.219 592. 7754 Fe I 8526* 676 602. 2722 Fe I 8 527. 847 671. 3170 S i I 8536* 163 720. 5071 Ca I I 8542. 144 76 9. 4 534 T i I 8548. 079 792. 9165 CN 8550. 850 831. 5720 Cr I 8555* 569 842; 2359 S i I 8556*061 886. 4268 Fe I 8562.109 966. 4677 Fe I 8571. 807 989. 4460 CN 8574. 538 995. 3636 CN 8575. 268 18 Guiding e r r o r s may i n t r o d u c e s m a l l l i n e p o s i t i o n s h i f t s among the s p e c t r a . . Using the t e l l u r i c l i n e s a t 8481.914A, 8505.852A, and a t 8519.640A i n each i n d i v i d u a l Delta Del spectrum as f i d u c i a l marks, these s m a l l p o s i t i o n s h i f t s can be m o n i t o r e d . T h e d i s p e r s i o n r e l a t i o n d e r i v e d from t e l l u r i c l i n e s i n the Alpha L y r spectrum was adjusted f o r s m a l l l i n e p o s i t i o n s h i f t s as i n d i c a t e d by the p o s i t i o n s of these f i d u c i a l marks. In t h i s manner, a second order polynomial d i s p e r s i o n r e l a t i o n can be used f o r each D e l t a Del spectrum while u t i l i s i n g only t h r e e t e l l u r i c l i n e s . The three p a r t i c u l a r t e l l u r i c l i n e s were chosen because they are the strongest and l e a s t blended t e l l u r i c l i n e s present i n the Delta Del s p e c t r a . ., Using t h i s procedure, i t i s p o s s i b l e t o e l i m i n a t e systematic s h i f t s among the D e l t a Del s p e c t r a as w e l l as between each D e l t a Del spectrum and the Alpha Lyr spectrum; These c o r r e c t i o n s f o r systematic s h i f t are very s m a l l and of the order of 0.3 p i x e l s p a c i n g . But i t i s a necessary procedure when high i n t e r n a l p r e c i s i o n i n r a d i a l v e l o c i t y measurement i s r e g u i r e d . The r a d i a l v e l o c i t i e s of D e l t a Del were determined from the two Ca I I l i n e s whose adopted wavelengths are l i s t e d i n Table 6. The measured r a d i a l v e l o c i t i e s are then c o r r e c t e d f o r the e f f e c t s of E a r t h ' s o r b i t a l motion and r o t a t i o n . . T h e c o r r e c t i o n s are l i s t e d i n Table 4. Using the same procedure, the h e l i o c e n t r i c r a d i a l v e l o c i t y of Alpha Lyr was found to be -13.6±0.1 kms - 1. This i s very c l o s e to the standard value of -13 .90±0.04 kms-* ( Neubauer [1936] ) and i m p l i e s t h a t the 19 " z e r o - p o i n t " e r r o r i n the procedure i s probably s m a l l at l e a s t i n the case of the A s t a r Alpha Lyr. The r e s u l t of the r a d i a l v e l o c i t y measurements of D e l t a Del i s summarized i n Table 7..A p l o t of the r a d i a l v e l o c i t i e s i s given i n Fig u r e 2. The r a d i a l v e l o c i t y curve i s extremely s i m i l a r i n appearance t o the l i g h t curve of HR6290, another Delta S c u t i v a r i a b l e ( B a g l i n et a l £1973] ) . . Table 7 R a d i a l v e l o c i t i e s of D e l t a D e l p h i n i JD2443718+ Ca I I 8498 Ca I I 8542 MEAN 0.81450 10.2 kms-* 8. 1 kms-» 9.2±1*0 kms 0.829 63 12.7 1 1.4 12.0±0.6 0.844 69 5.0 8.3 6.6±1.6 0.85975 9.0 2.0 5.5±3.5 0. 874 83 4.2 4.6 4.4±0.2 0 L 8 8 9 8 7 4.9 2.4 3.6±1.3 0.90491 5.7 8. 3 7.0±1.3 0.9 19 97 10.2 11.1 10.6±0.5 0.93501 10.6 8. 8 9i,7±0.9 0.950 07 7.8 7.0 7.4±0.4 0. 965 13 6.0 5.9 5.9±0.04 FIGURE 2 R a d i a l v e l o c i t y curve of D e l t a D e l p h i n i (S/WM) A j^ 2 1 The i n t e r p r e t a t i o n of the r a d i a l v e l o c i t y curve based on p o s i t i o n s of s p e c t r a l l i n e s d u r i n g the s i n g l e l i n e phase w i l l probably be ambiguous due to v a r i a t i o n s i n both b i n a r y components..The e f f e c t of p o s s i b l e m u l t i p e r i o d i c i t y i n both bin a r y components w i l l a l s o i n t r o d u c e complicated beat phenomena i n t o the r a d i a l v e l o c i t y curve..The s h o r t l e n g t h of the time s e r i e s as well as the long exposure time w i l l not enable one to detect p e r i o d s much longer o r s h o r t e r than the length of the time s e r i e s . . Periodogram, Maximum L i k e l i h o o d , and Maximum Entropy Methods i n s p e c t r a l a n a l y s i s a l l give a p e r i o d of about 0.102 day f o r the r a d i a l v e l o c i t y curve i n F i g u r e 2.. T h i s p a r t i c u l a r p e r i o d has never been reported i n any p u b l i s h e d m u l t i p e r i o d i c i t y study of Delta Del..The amplitude of the r a d i a l v e l o c i t y v a r i a t i o n i s about 8 kms - 1 and agrees very well with most of the other r e p o r t e d r e s u l t s l i s t e d i n Table 3. Time s e r i e s p l o t s of the Ca I I 8498 and Ca II 8542 p r o f i l e s are shown i n F i g u r e s 3 and 4 r e s p e c t i v e l y . The mean p r o f i l e of both l i n e s are a l s o shown i n the p l o t s . The s h o r t wavelength wing of the broad Paschen 16 ( 8502.49& ) and Paschen 15 ( 8545.38ft. ) p r o f i l e s are a l s o present i n F i g u r e s 3 and 4 r e s p e c t i v e l y . The time of each spectrum i n f r a c t i o n s of day from JD2443718 i s a l s o i n d i c a t e d on the p l o t s . The e f f e c t of r a d i a l v e l o c i t y s h i f t s of the s p e c t r a l l i n e s i s very e v i d e n t i n both p l o t s * The two p l o t s a l s o show simultaneous and s i m i l a r v a r i a t i o n s i n the depth of the Ca I I l i n e s . Ca I I 8498A p r o f i l e o f De l t a Del 0 . 8 7 4 8 0 . 8 8 9 9 0 . 9 0 4 9 0 . 9 2 0 0 0 . 9 3 5 0 0 . 9 5 0 1 0 . 9 6 5 1 M E A N 8 4 9 0 8 4 9 5 8 5 0 0 8 5 0 5 A Ca II 8542A p r o f i l e of D e l t a Del 8535 8540 8545 8550A 24 In o r d e r to enhance the observed v a r i a t i o n s i n the p r o f i l e s , d i f f e r e n c e s between each spectrum and the mean spectrum were taken* The r e s i d u a l s are shown i n F i g u r e 5 and F i g u r e 6., D i f f e r e n c e s between each spectrum and t h a t at JD 2443718.8145 were a l s o formed..They are shown i n Fi g u r e 7 and Fi g u r e 8. The "s-shaped" p r o f i l e t h a t one would expect from pure r a d i a l v e l o c i t y s h i f t s i s not apparent i n the r e s i d u a l s . . T h e c l o s e s t to the "s-shaped" p r o f i l e i s probably t h a t a t JD 2443718.8899. I t i s i n t e r e s t i n g to note t h a t the r a d i a l v e l o c i t y i s a minimum at JD 2443718.8899..The changes i n the depth of the l i n e p r o f i l e s are very evident from the r e s i d u a l s e s p e c i a l l y i n F i g u r e s 7 and 8. I t i s a l s o evident from the r e s i d u a l s t h a t both Ca I I 8498 and Ca I I 8542 p r o f i l e s vary i n the same manner and phase.. There appears to be no evidence f o r any v i o l e t - s h i f t e d chromospheric emission i n the Ca I I l i n e s as r e p o r t e d f o r other D e l t a S c u t i v a r i a b l e s . In f a c t ; most of the observed v a r i a t i o n s appear to occur at the red wing of the Ca I I p r o f i l e s . . The v a r i a t i o n s i n d i c a t e d i n the r e s i d u a l s f o r both s p e c t r a l r e g i o n s occur at about the same displacement i n wavelength away from t h e i r r e s p e c t i v e Ca I I l i n e c e n t r e s , hence i t i s u n l i k e l y t h a t the v a r i a t i o n s a r i s e i n the blue wing of the Paschen l i n e s . . R e s i d u a l s from the mean p r o f i l e ( Ca I I 8498A ) 51 0 . 8 1 4 5 0 . 8 2 9 6 0 . 8 4 4 7 0 . 8 5 9 8 0 . 8 7 4 8 0 . 8 8 9 9 0 . 9 0 4 9 0 . 9 2 0 0 0 . 9 3 5 0 0 . 9 5 0 1 0 . 9 6 5 1 8490 8495 8500 8505 A FIGURE 6 R e s i d u a l s from the mean p r o f i l e ( Ca I I 8542A ) I57° 0 .8748 0 . 8 8 9 9 0 . 9 0 4 9 0 . 9 2 0 0 0 . 9 3 5 0 0 . 9 5 0 1 0 . 9 6 5 1 8535 8540 8545 8550A 27 FIGITBE 7 B e s i d u a l s from the p r o f i l e at JD2443718.8145 ( 8498A ) 0 . 8 2 9 6 0 . 8 4 4 7 0 . 8 5 9 8 0 . 8 7 4 8 0 . 8 8 9 9 8 4 9 0 8 4 9 5 8 5 0 0 8 5 0 5 A 28 FIGURE 8 R e s i d u a l s from the p r o f i l e at JD2443718.8145 ( 8542A ) 0 . 8 2 9 6 0 . 8 7 4 8 0 . 8 8 9 9 0 . 9 0 4 9 0 . 9 2 0 0 0 . 9 3 5 0 0 . 9 5 0 1 0 . 9 6 5 1 8535 8540 8545 8550A 29 The p r o f i l e v a r i a t i o n s may be caused by a combination of phenomema., They may be i n t r i n s i c to the Delta S c u t i v a r i a b i l i t y of the s t a r . The observed v a r i a t i o n at the red wing of the Ca I I p r o f i l e s may be r e l a t e d to the b i n a r y nature of De l t a D e l . Although the o b s e r v a t i o n s were taken a t the s i n g l e l i n e phase of the spectrum, the c o n t r i b u t i o n from a companion of n e a r l y i d e n t i c a l s p e c t r a l type and l u m i n o s i t y may be s i g n i f i c a n t . . The De l t a S c u t i nature of both b i n a r y components w i l l c e r t a i n l y c o m p l icate.the v a r i a t i o n s i n the combined spectrum. V a r i a t i o n s caused by t i d a l e f f e c t may a l s o be s i g n i f i c a n t as i n the case of 1 4 Aur { F i t c h and Wisniewski [1979] ) . More:sp e c t r o s c o p i c o b s e r v a t i o n s are needed to co n f i r m and to study the nature of the v a r i a t i o n s . The i d e n t i f i c a t i o n of p u l s a t i o n a l modes f o r D e l t a Del has not been very successful,, More d e t a i l e d t h e o r e t i c a l models have s t i l l to be developed f o r comparision with o b s e r v a t i o n a l r e s u l t s . More p r e c i s e p e r i o d s , p e r i o d r a t i o s , and p r o f i l e measurements of both uncoupled p u l s a t i n g b i n a r y components are needed i n order to d i s t i n g u i s h between r a d i a l and n o n - r a d i a l p u l s a t i o n as w e l l as to i d e n t i f y the d i f f e r e n t p u l s a t i o n a l modes. . Future s p e c t r o s c o p i c o b s e r v a t i o n s of D e l t a Del w i l l best be made du r i n g the double l i n e phases of the spectrum. T h i s w i l l help t o uncouple the combined e f f e c t of both D e l t a S c u t i v a r i a b l e s . . M u l t i p e r i o d i c i t y a n a l y s i s w i l l r e q u i r e long time s e r i e s and s i n c e o n l y four days out of every f o r t y have the double l i n e phase, observing from a s i t e t h a t can enable long 30 c o n s e c u t i v e n i g h t l y o b s e r v a t i o n on D e l t a Del w i l l be more s a t i s f a c t o r y . The requirement of both high d i s p e r s i o n and s h o r t exposure time make the use of a l a r g e telescope a n e c e s s i t y . . 31 Cha_ter_3 SPECTROSCOPIC VARIATIONS IN -V1668 CYGNI .3. 1 I n t r o d u c t i o n The c l a s s i c a l novae are d e f i n e d as "hot dwarf s t a r s with spontaneous i n c r e a s e of b r i g h t n e s s with amplitude from 7 t o 16 magnitudes" ( Payne-Gaposchkin [1977] ). The o b s e r v a t i o n a l aspect of the nova phenomena can be found reviewed i n s e v e r a l p u b l i s h e d a r t i c l e s ( Payne-Gaposhkin [1957], McLauglin [1960], Arhipova and Mustel [1975], G a l l a g e r and S t a r r f i e l d [1978] ). One of the c u r r e n t problems i s the development of a s t r u c t u r a l model of the e j e c t e d envelopes of the novae as well as the nature of the e j e c t i o n . . Instantaneous e j e c t i o n models, continued e j e c t i o n models, and c e n t r a l s t a r dominant models are some of the p o s s i b l e types suggested. The instantaneous e j e c t i o n models c o n s i d e r t h a t the observed postmaximum developments of the nova are due to envelopes e j e c t e d a f t e r maximum l i g h t on a time s c a l e s h o r t compared to that of the developments. . The ins t a n t a n e o u s e j e c t i o n models are f u r t h e r s u b d i v i d e d i n t o two main types. Type I models c o n s i d e r a t h i n envelope of gas e j e c t e d with almost i d e n t i c a l v e l o c i t y while type I I models c o n s i d e r an envelope with a l a r g e volume caused by having d i f f e r e n t e j e c t i o n v e l o c i t i e s f o r d i f f e r e n t p a r t s of the envelope.. The continued e j e c t i o n models c o n s i d e r c o n t i n u i n g postmaximum e j e c t i o n s and have two d e n s i t y maxima i n the envelope* .One maximum, the r e s u l t 32 of e j e c t i o n s at the e a r l y phases, i s s i t u a t e d a t the outer edge of the envelope. Near the c e n t r a l s t a r , newly e j e c t e d m a t e r i a l s which have not yet expanded much forms the other maximum. The continued e j e c t i o n models can a l s o be subdivided i n t o two main types. Type a models c o n s i d e r t h a t most of the observed l i g h t i n the continuous spectrum to be coming from the d e n s i t y maximum near the c e n t r a l s t a r while type B models have the other d e n s i t y maximum c o n t r i b u t i n g most of the observed l i g h t . The c e n t r a l s t a r dominant models have most of the observed l i g h t coming from the s u r f a c e o f the c e n t r a l s t a r or from an expanded s t a t i o n a r y envelope. a l l these models develop d i f f i c u l t i e s when checked a g a i n s t a v a i l a b l e o b s e r v a t i o n a l r e s u l t s . U n s h i f t e d s p e c t r a l l i n e s t h a t one would expect from the c e n t r a l s t a r dominant models are not observed* Both i n s t a n t a n e o u s e j e c t i o n type I and continued e j e c t i o n type B models p r e d i c t a much f a s t e r postmaximum d e c l i n e of the l i g h t curve than observed ( F r e i d j u n g [1966,1968] ). Instantaneous e j e c t i o n type I I models r e g u i r e lower v e l o c i t i e s near the ce n t e r of the envelope and t h i s c o n t r a d i c t s a v a i l a b l e s p e c t r o s c o p i c r e s u l t s * Continued e j e c t i o n type a models p r e d i c t c o l l i s i o n between the higher v e l o c i t y gas ej e c t e d l a t e r and the lower v e l o c i t y gas e a r l i e r . . T h i s should r e s u l t i n the a c c e l e r a t i o n of the e a r l i e r e j e c t e d gas. The higher v e l o c i t y gas i s u s u a l l y i d e n t i f i e d as the d i f f u s e enhanced system or the Orion system while the lower v e l o c i t y gas i s i d e n t i f i e d as the p r i n c i p a l system. No l a r g e a c c e l e r a t i o n of the p r i n c i p a l system had been observed..a h y b r i d model of the 33 i n s t a n t a n e o u s e j e c t i o n type I and continued e j e c t i o n type A has been proposed ( F r e i d j u n g [1975,1977] ) to avoid most of the p r e v i o u s l y mentioned d i f f i c u l t i e s . . The model has most of the mass e j e c t e d near maximum l i g h t and a l s o has c o n t i n u i n g postmaximum e j e c t i o n but with reduced r a t e s . The amount of e j e c t e d mass from the reduced e j e c t i o n r a t e of the c o n t i n u i n g e j e c t i o n can s t i l l be s u f f i c i e n t t o account f o r the observed a b s o r p t i o n systems i f the e j e c t e d mass i s i n a t h i n s l a b ( F r e i d j u n g [1975,1977] ) . . T h i s i s p o s s i b l e i f t h e r e are r a p i d e j e c t i o n r a t e v a r i a t i o n s which would a l s o produce l i n e p r o f i l e v a r i a t i o n s on time s c a l e s of a few hours ( F r e i d j u n g [1975] ). The c o n t i n u i n g postmaximum e j e c t i o n has a l s o been considered to be of the same nature as a r a d i a t i o n d r i v e n wind ( Bath [ 1976, 1978] ) . Nova Cygni 1978 ( V1668 Cygni ) was disco v e r e d on September 10.24 UT 1978 ( C o l l i n s [1978] ) with a v i s u a l magnitude of 7.0.. I t reached a maximum v i s u a l magnitude of about 6 on September 12.6 UT ( Mallama and S k i l l m a n [1979] )..The:nova has a r i g h t ascension of 21h 40m 38.08s and a d e c l i n a t i o n of 43deg 48m 10.6s at equinox 1950.0 ( Clements [1978] ). The nova was f a i n t e r than magnitude 12 on September 8.34 OT ( c i c c o [1978] ) , magnitude 14 on September 7.88 OT ( Clements [1978] ), and magnitude 17 on August 26.863 UT ( Duerbeck [1978] ). k probable candidate f o r the prenova was found a t the l i m i t on the Palomar Sky Survey ( Lloyd and Arg y l e [1978] ). The v i s u a l l i g h t curve of the nova as shown i n F i g u r e 15 i n d i c a t e s t hat i t i s a f a s t nova.. The 34 a b s o l u t e v i s u a l magnitude at maximum l i g h t was found to be -6.2±0.5 ( Ake et a l [1978] ), -6.7 ( Margrave [1978a] ), and -8.3 ( Mallama and Sk i l l m a n [1979] ) . At maximum l i g h t , the absorption spectrum resembles t h a t of an F5 l b s t a r ( O r t o l a n i e t a l [1978] ). With the estimated absolute magnitude and an e f f e c t i v e temperature of approximately 6200K, the r a d i u s of the s t a r at maximum l i g h t i s found to be about 10 l 3cm ( Smith et a l [ 1979] ). V1668 Cygni i s a r a t h e r a t y p i c a l g a l a c t i c nova. The l i g h t curve i s a p p a r e n t l y i n c o n s i s t e n t with a d i s t a n c e determined from the r a t e of d e c l i n e from the v i s u a l maximum ( G a l l a g h e r et a l [1980] )..The observed v e l o c i t i e s of about -600 kms-i f o r the p r i n c i p a l a b s o r p t i o n system agree w e l l with t h a t of a slow g a l a c t i c nova ( Smith e t a l [1979] ), yet the l i g h t curve has the c h a r a c t e r i s t i c s of a f a s t nova. This may e x p l a i n the disagreement among v a r i o u s determined absolute v i s u a l magnitudes f o r the nova, s i n c e the formulae used to d e r i v e the a b s o l u t e v i s u a l magnitude from the d e c l i n e i n the l i g h t curve ( McLauglin [1960] ) are f o r a t y p i c a l nova. S i m i l a r l y , the formulae ( McLauglin £1960] ) used to estimate the v e l o c i t i e s of the p r i n c i p a l and the d i f f u s e enhanced a b s o r p t i o n system from the d e c l i n e i n the l i g h t curve w i l l a l s o not apply t o V1668 Cygni. I n f r a r e d o b s e r v a t i o n s suggested that the dust f o r m a t i o n phase o f the nova s t a r t e d between October 7 and 15 ( Gehrz et a l [ 1978 ] ). 35 3.2 Observations Nova Cygni 1978 ( V1668 Cygni ) was observed on two c o n s e c u t i v e n i g h t s with the 1.22m t e l e s c o p e a t the Dominion A s t r o p h y s i c a l Observatory.. The d e t e c t o r , a l i q u i d n i t r o g e n r e f r i g e r a t e d E e t i c o n RL1024C/17 l i n e a r a r ray of s i l i c o n diodes ( Walker [1977] ), was used d i r e c t l y at the focus of the 0.8m camera of the coude spectrograph with the.600 l i n e s per mm g r a t i n g which has a r e c i p r o c a l d i s p e r s i o n of 18 Amm-*1 or about 0.48A per diode. The s p e c t r a were centered on H alpha and had a s p e c t r a l coverage of about 500A. A summary of the o b s e r v a t i o n s i s given i n Table 8. _ Alpha Lyr (AOV), Alpha Cyg (A2Ia) , and Gamma Cas (BOlVe) were a l s o observed on each n i g h t as standards and f o r c a l i b r a t i o n purposes. The mean of many short dark exposures was used as the b a s e l i n e t o be f i r s t s u b t r a c t e d from each of the s p e c t r a . A f t e r d i v i d i n g by a spectrum of an incandesant lamp, each spectrum was then " a d d i t i v e l y l i n e n o r m a l i s e d " . . D i g i t a l frequency domain f i l t e r i n g was then a p p l i e d t o each s p e c t r u m . . F i l t e r l e n g t h s of 20(1 and 501 p o i n t s were used i n c o n j u n c t i o n with a P a p o u l i s window f u n c t i o n f o r the nova s p e c t r a on September 18 and 19 0T r e s p e c t i v e l y . The nova s p e c t r a were f i l t e r e d to 45% of the Nyquist frequency f o r use i n r a d i a l v e l o c i t y and e q u i v a l e n t width measurements and f i l t e r e d to 25% of the Nyquist frequency f o r use i n p r o f i l e v a r i a t i o n study.. Spectra of the standard 36 s t a r s Alpha Lyr and Alpha Cyg were f i l t e r e d to 85% of the Nyguist frequency while the sp e c t r a of Gamma Cas were t r e a t e d i n the same manner as the nova s p e c t r a . . The i n s t r u m e n t a l response was estimated to a f i r s t order by f i t t i n g a continuum to the Alpha Cyg spectrum..Alpha Lyr has a broad H alpha and, consequently, i s not very s u i t a b l e f o r t h i s purpose, A f i f t h order polynomial was found to f i t the Alpha Cyg spectrum o f September 18 best while a s i x t h order polynomial was found to gi v e the best f i t f o r the spectrum of September 19. A l l nova s p e c t r a were r a t i o e d with the estimated i n s t r u m e n t a l response of t h e i r r e s p e c t i v e n i g h t and were then r e c t i f i e d t o t h e i r continuum by f i t t i n g a s t r a i g h t l i n e through a few s e l e c t e d continuum p o i n t s . I t would be very d i f f i c u l t , because of the broad e x t e n t of the H alpha emission i n the nova s p e c t r a to normalise each spectrum t o i t s continuum by f i t t i n g a hig h order polynomial without f i r s t d i v i d i n g by the estimated i n s t r u m e n t a l response* The same procedure was a l s o a p p l i e d to the standard s p e c t r a of Alpha L y r (AOV) and Gamma Cas (BOIVe) as a f u r t h e r check. The r e c t i f i e d s p e c t r a of the standard s t a r s and the mean nova spectrum of September 19 are shown i n F i g u r e 9. The s p e c t r a i n F i g u r e 9 are not p l o t t e d on the same v e r t i c a l s c a l e with r e s p e c t t o each other because of the wide range i n the depth of l i n e s among the s t a r s . . 37 Table 8 Summary of o b s e r v a t i o n s on V1668 Cygni TIME AT MID-EXPOSURE EXPOSURE HOUR ANGLE VELOCITY * (sec) CORRECTION (kms - i ) UT 18 SEP 1978 JD 2443769+ 10:04:00 0.91944 3600 3h56m26s W -1. 898 11:07: 00 0. 96319 3960 4h59m37s W -1. 936 UT 19 SEP 1978 JD 2443770+ 04:44:52 0. 69782 4126 1h19m28s E -1. 868 06:17:46.5 0.76234 2075 Oh 13m32s H -1. 976 06:51: 32 0.78579 1976 0h47m23s W -2. 015 07:33:15.5 0. 81476 3029 1h29m14s W -2. 063 08:40:45.5 0.86164 5069 2h36m55s w -2. 133 09:4 8: 00.5 0.90834 2999 3h44m21s w -2. 19 1 10:31:30.5 0.93855 2219 4h27m58s w -2. 221 11:17: 00 0.97014 3240 5h13m35s w -2. 243 * c o r r e c t i o n f o r motion of the observer i n order to o b t a i n h e l i o c e n t r i c r a d i a l v e l o c i t i e s . 38 PIGUEE 9 H alpha p r o f i l e s of V1668 Cyg, HB264, HE7924, and HB700 1 HR700.1 6450 6500 6550 6600 6650A 39 T e l l u r i c l i n e s i n the alpha Cyg spectrum were used t o e s t a b l i s h a wavelength s c a l e . T h i r d order polynomials were used to f i t the d i s p e r s i o n r e l a t i o n s . The p o s i t i o n s of s p e c t r a l l i n e s were determined by parabola f i t t i n g of the l i n e p r o f i l e s , a l i s t of the t e l l u r i c l i n e s used i n the d i s p e r s i o n c a l c u l a t i o n s i s given i n Ta b l e 9. These t e l l u r i c l i n e s were chosen such t h a t they a l l g i v e good agreement i n f i t t i n g the d i s p e r s i o n r e l a t i o n . Other t e l l u r i c l i n e s are probably l e s s s u i t a b l e due to weakness i n s t r e n g t h , b l e n d i n g , or i n a p p r o p i a t e r e s t wavelength. . A l l adopted wavelengths are taken from Moore et a l [1966]. C o r r e c t i o n s were then made f o r the e f f e c t s of Ea r t h ' s o r b i t a l motion and r o t a t i o n , a l l o w i n g each spectrum to be placed on i t s h e l i o c e n t r i c wavelength s c a l e . The c o r r e c t i o n s are l i s t e d i n Table 8.. Table 9 T e l l u r i c l i n e s i n the spectrum of alpha Cyg * WAVELENGTH (a) 1 6469.642 2 6 490. 79 3 3 6492.909 4 6508.593 5 6519.452 6 6523. 843 7 6532.359 8 6536.720 9 6543.907 10 6548.622 1 1 6572.086 12 6574. 852 used f o r c a l c u l a t i o n on Sept. 18 only <2> used f o r c a l c u l a t i o n on Sept. 19 only 41 3.3 a n a l y s i s and d i s c u s s i o n F i g u r e 9 shows the s p e c t r a taken on September 19 OT..The mean spectrum of Nova Cygni 1978, Gamma Cas (HB264), alpha Cyg (HE7924), and alpha Lyr (HR7001) a l l show the s t r o n g presence o f H alpha as w e l l as many weaker t e l l u r i c l i n e s . . F e I I 6456.391A can be seen as a weak broad emission f e a t u r e i n the nova spectrum. Fe I I 6516.083a may a l s o be present, but may have been biended with the blue wing of the.H alpha p r o f i l e . Other Fe I I l i n e s at 6432.683a, and 6446.400a are a l s o present i n the alpha Cyg spectrum.. P a r t of the He I 6678.148a l i n e can a l s o be seen i n the spectrum of both alpha Cyg and Gamma Cas shown i n F i g u r e 9. The a alpha p r o f i l e o f the nova shown^ appears to be asymmetrical and i s probably superimposed with d i f f u s e a b s o r p t i o n f e a t u r e s . . The Fe I I 6456.393a p r o f i l e of the nova a l s o appears to be superimposed with d i f f u s e a b s o r p t i o n f e a t u r e s . . The e x i s t e n c e of these a b s o r p t i o n f e a t u r e s has been confirmed by o b s e r v a t i o n on September 21 OT ( Smith e t a l [1979] ). The Fe I I emission p r o f i l e i s about 138% of the continuum height on September 19 UT. The h a l f w i d t h at half-maximum g i v e s a v e l o c i t y of about 727 kms-». The mean H alpha p r o f i l e s of the nova from both n i g h t s as well as t h a t of Gamma Cas are p l o t t e d i n F i g u r e 10. They are a l l normalised to a continuum of 1 and they are a l l p l o t t e d on the same s c a l e . The;height of the H alpha emission p r o f i l e of the nova are about 1250% and 19 15% 42 of the continuum on September 18 and 19 r e s p e c t i v e l y . . B y comparision, the h e i g h t of the H alpha emission p r o f i l e of Gamma Cas i s only about 310% of the continuum.. The h a l f w i d t h at half-maximum of the H alpha p r o f i l e s give v e l o c i t i e s of 845 kms - 1 and 857 kms~* f o r the n i g h t of September 18 and 19 r e s p e c t i v e l y . Time s e r i e s p l o t s o f the nova's H alpha p r o f i l e f o r both n i g h t s are shown i n F i g u r e s 11 and 12. The mean spectrum of each n i g h t i s a l s o p l o t t e d . . A l l s p e c t r a i n F i g u r e s 11 and 12 are normalised to the continuum* . The time of each spectrum i n f r a c t i o n s of a day from JD2443769 and JD2443770 i s a l s o i n d i c a t e d i n F i g u r e s 11 and 12, r e s p e c t i v e l y . _ I t i s evident from Figure 12 t h a t the height of the H alpha p r o f i l e changed d u r i n g the n i g h t . . The changes can be enhanced by p l o t t i n g the d i f f e r e n c e s between s p e c t r a . R e s i d u a l s o f each spectrum from the mean spectrum a r e shown i n F i g u r e 13 while the d i f f e r e n c e s between each spectrum and t h a t a t JD 2443770.9701 are shown i n Fig u r e 14.. These changes may have.been caused by a combination of v a r i a t i o n s i n both the continuum l e v e l and the shape of the p r o f i l e * F i g u r e 14 suggests t h a t the continuum l e v e l at JD 2443770. 9701 i s d i f f e r e n t from those at other times.. The d i f f e r e n t appearances of the r e s i d u a l p r o f i l e s i n both F i g u r e s 13 and 14 suggests v a r i a t i o n s i n the shape of the p r o f i l e . , F I G O E E 1 0 Mean H alpha p r o f i l e of V1668 Cygni on Sept. 1 8 and 1 9 44 F I G U R E 11 H" a l p h a p r o f i l e o f V1668 C y g n i ( S e p t . 18 ) 6475 6525 6575 6625 6675A 45 FIGURE 12 H alpha p r o f i l e of V1668 Cygni ( Sept. 19 ) 6450 6500 6550 6600 6650A 46 FIGURE 1 3 R e s i d u a l s from the mean H alpha p r o f i l e 0.6978 0.7623 0.7858 0 .8148 0 .8616 0.9083 0.9386 0 .9701 6450 6500 6550 6600 6650A 47 FIGURE 14 R e s i d u a l s from the p r o f i l e a t JD2443770.97 6450 6500 6550 6600 6650A 48 The v a r i a t i o n s can be s t u d i e d q u a n t i t a t i v e l y by determining the e q u i v a l e n t width and height of each p r o f i l e . . T h e e q u i v a l e n t widths as well as he i g h t s of the H alpha emission p r o f i l e s are given i n Table 10. The e q u i v a l e n t widths of the Fe II 6456.391 p r o f i l e s are given i n Table 11..The H alpha e q u i v a l e n t width i s found by i n t e g r a t i n g between 6495a and 6655a while that of the Fe II p r o f i l e i s found by i n t e g r a t i n g between 6439a and 6475a. One should a l s o note that there may be ble n d i n g of Fe II 6516.083a emission with the H alpha p r o f i l e s , hence may a f f e c t the e q u i v a l e n t widths determined f o r H alpha., The e q u i v a l e n t width of the H alpha emission p r o f i l e of Gamma Cas was found t o be 23.9A and 21.4a f o r September 18 and 19 r e s p e c t i v e l y * . , The s m a l l d i f f e r e n c e between the. two values i m p l i e s that the determined e q u i v a l e n t widths are c o n s i s t e n t between the two nights..Because of the asymmetry of the p r o f i l e , i t i s d i f f i c u l t to unambiguously d e f i n e a height f o r the p r o f i l e as compared t o cases where the p r o f i l e s are Gaussian. The maxima of the H alpha emission p r o f i l e s on both n i g h t s , however, seem to occur c o n s i s t e n t l y a t about 6559.5a; t h e r e f o r e , the height of the H alpha emission p r o f i l e i s a r b i t r a r i l y d e f i n e d to be the a r i t h m e t i c mean of the p r o f i l e between 6558.95a and 6559.85a. Table 10 H alpha p r o f i l e of V1668 Cygni TIME HEIGHT IN % EQUIVALENT WIDTH OF CONTINUUM (A) JD2443769+ 0. 91944 0. 96319 mean 1242 1259 1251 502.4 509.4 505.9 JD2443770+ 0. 69782 0. 76234 0. 78579 0.81476 0. 86164 0.90834 0. 93855 0. 97014 mean 1943 1870 1863 1910 1924 1868 1090 2034 1915 772.4 748.2 738.0 754.8 767. 1 743.7 756.9 814.2 761.9 Table 11 Fe I I 6456.391A p r o f i l e of V1668 Cygni TIME EQUIVALENT WIDTH (A) JD2443770+ 0.69782 9.8 0.76234 10.4 0.78579 9.4 0.81476 10. 3 0.86164 9.9 0. 90834 9.7 0.93855 9.8 0.97014 11.4 mean 10.4 51 The g r a d u a l i n c r e a s e i n both the height of the emission p r o f i l e and the e q u i v a l e n t width i s normally i n t e r p r e t e d to be caused by the grad u a l d e c l i n e of the continuum l e v e l while the emission p r o f i l e weaken much more s l o w l y . The l a r g e d i f f e r e n c e i n the h e i g h t of the p r o f i l e and the e q u i v a l e n t width between the two n i g h t s i s mainly caused by such an e f f e c t . . With the assumption t h a t such an e f f e c t was dominant and i g n o r i n g other e f f e c t s , i t i s p o s s i b l e t o study q u a n t i t a t i v e l y the d e c l i n e of the continuum l e v e l from the changes i n the height of the p r o f i l e as w e l l as from the changes i n the e q u i v a l e n t width. Normalising to a mean i n t e n s i t y of the continuum on September 18, the r e l a t i v e continuum l e v e l s i n magnitudes are shown i n Table 12. I t i s e v i d e n t from Table 5 t h a t the valu e s i n column 7 which are c a l c u l a t e d using the e q u i v a l e n t widths are s y s t e m a t i c a l l y lower than t h e i r c o r r e s p o n d i n g v a l u e s i n column 4 which are c a l c u l a t e d using the h e i g h t s of the p r o f i l e s . T h i s i s caused by the f a c t t h a t a d d i t i o n a l d i f f u s e a b s o r p t i o n f e a t u r e s are present i n the p r o f i l e s on September 19, hence s y s t e m a t i c a l l y d e c r e a s i n g the e q u i v a l e n t widths of the emission p r o f i l e s i n comparision with those on September 18.. To compensate, a constant value i s added to the e q u i v a l e n t widths such t h a t the mean d e c l i n e of the continuum l e v e l i s 0.462 magnitude i . e . i d e n t i c a l t o the corresponding value i n column 4 c a l c u l a t e d using the h e i g h t s of the p r o f i l e s . The a d d i t i o n of j u s t a c o n s t a n t i m p l i e s the i m p l i c i t assumption t h a t the e x t r a d i f f u s e a b s o r p t i o n f e a t u r e s on September 19 v a r i e d only s l i g h t l y 52 i n e q u i v a l e n t width during the n i g h t . The r e s u l t i s shown i n column 8 of Table 12. The very c l o s e agreement between values i n columns 4 and 8 suggests that some of the assumptions made are v a l i d as w e l l as good i n t e r n a l p r e c i s i o n has been achieved., The means between the values of column 4 and 8 are g i v e n i n column 9 and they r e p r e s e n t the r e l a t i v e s t r e n g t h of the continuum l e v e l at H alpha. A v i s u a l l i g h t curve of the nova based on a l l a v a i l a b l e p u b l i s h e d ( IAO C i r c u l a r no. 3263 to 3316, Mallama and S k i l l m a n [1979] ) photometric data i s p l o t t e d i n F i g u r e 15. Figure 15 shows t h a t the l i g h t of the nova dropped by about 0.45 magnitude between the two n i g h t s and t h i s i s i n very good agreement with the value of 0.462 obtained here* The mean value f o r the e q u i v a l e n t width of the Fe I I 6456A p r o f i l e on September 18 can be estimated from the mean measured value on September 19. The expected e q u i v a l e n t widths of the Fe I I p r o f i l e s on September 19 can then be found by a d j u s t i n g t h i s mean value on September 18 f o r the d e c l i n e of the continuum l e v e l c a l c u l a t e d f o r the d i f f e r e n t epochs. The r e s u l t i s shown i n Table 13. The mean d e v i a t i o n between the expected and the measured e q u i v a l e n t widths of Fe I I 6456.39 1A i s only about 0.4A. This suggests a s m a l l i n t e r n a l e r r o r f o r the c a l c u l a t e d e q u i v a l e n t widths of the Fe I I p r o f i l e s . The i n t e r n a l e r r o r i n the H alpha e q u i v a l e n t widths should be even s m a l l e r because of the much higher s i g n a l obtained at H alpha as w e l l as the b e t t e r continuum f i t t i n g around H alpha. TIME USING HEIGHT OF PBOFILE C I H USING EQUIVALENT WIDTH E I M (!• MEAN (a a g n i t u d e ) JD244376 9+ 0-919(4 4 1242 1.0073 -0.008 502.4 1.0070 -0.008 -0.008 -0.008 0.96319 1259 0.9937 -0.007 509.4 0.9931 + 0. 007 •0.007 •0.007 mean 1251 1.0000 0.000 505.9 1.0000 0.000 0.000 0.000 JD2443770+ 0.69782 1943 0.6439 •0.478 772.4 0.6550 •0.459 •0.477 •0.477 0.7623 4 1870 0.6690 +0.436 748.2 0.6762 •0.425 •0.443 •0.440 0.78579 1863 0.6715 •0.432 738.0 0.6855 • 0.410 • 0.428 •0.430 0.81476 1910 0.6550 •0.459 754. 8 0.6702 •0.434 •0.452 •0.456 0.8616 4 1924 0.6502 •0.467 767. 1 0.6595 •0.452 • 0.470 •0.469 0.90834 1868 0.6697 •0.435 743.7 0.6802 • 0.418 • 0.436 • 0.436 0.93855 1909 0.6553 •0.458 756.9 0.6684 •0.437 •0.455 • 0.457 0.97014 2034 0.6150 •0.527 814.2 0.6213 • 0.517 •0.533 •0.530 mean 1915 0.6533 • 0.462 761.9 0.6640 •0.445 •0.462 •0.462 - % of continuum - r e l a t i v e i n t e n s i t y - -2.5 l o g (I) . e q u i v a l e n t v i d t h i n a n g s t r o m s => c o n s t a n t added t o t h e e q u i v a l e n t width t o compensate f o r t h e a d d i t i o n a l f e a t u r e s on September 19 t-3 Cr (-* ta (0 I—1 PJ rt-< CD O O t) f+ » c s (D < fD O Ml CD n U l OJ + + + * 4+ + + + P-(= P-rr-<+ o o < O H i 3760 3770 4 t 4-+ -4 + 3780 3790 3800 JD 2440000+ 3810 cn CO n CQ D P-H cn a so w U i cn 4=-55 Table 13 Comparision between measured and expected e q u i v a l e n t width of Fe I I 6456. 391 A MEASURED EXPECTED TIME EQUIVALENT WIDTH EQUIVALENT WIDTH DIFFERENCE (A) (A) (A) JD2443770+ 0.69782 9.8 0.76234 10.4 0.78579 9.4 0.81476 10.3 0.86164 9.9 0.90834 9.7 0.93855 9.8 0.97014 11.4 10. 2 + 0. 4 9. 9 -0.5 9. 8 + 0. 4 10.0 -0.3 10.2 + 0. 3 9.9 + 0.2 10. 1 + 0. 3 10.8 -0.6 56 There have been numerous r e p o r t s on the l i g h t v a r i a b i l i t y of V1668 Cygni. F l u c t u a t i o n s of 0.03 magnitude were f i r s t r eported i n the September 18 i s s u e of the IAU C i r c u l a r ( Mallama and Ski l l m a n [1978] ). Bapid f l i c k e r i n g s and shor t l i v e d o s c i l l a t i o n s were detected on the n i g h t s of September 14 and 15 ( G i u r i c i n et a l [1979] ). V a r i a t i o n s of 0.08 magnitude between September 15.04 and 15.12 DT as well as 0.03 magnitude between September 16.03 and 16.16 OT were a l s o reported ( Guinan. McCook and Tomczyk [1978] ) . Abrupt changes i n b r i g h t n e s s on time s c a l e s of minutes as w e l l as c y l i c l i g h t v a r i a t i o n s with p e r i o d s between 20 and 80 minutes and amplitudes up to 0.01 magnitude were detected on about 30% of 13 n i g n t s between September 15 and October 13 ( Guinan, McCook, and Dorren [1978] ). B r i g h t n e s s v a r i a t i o n s with p e r i o d of 0.01 day and amplitudes of up to 0.065 magnitude were det e c t e d between September 30.330 and 30.380 UT while s i m i l a r p a t t e r n was rep o r t e d to be present on September 19.36 UT and 22.24 UT ( Margrave [1978a] ). In f a c t , September 19.36 UT i s w i t h i n the time s e r i e s being considered here. F l u c t u a t i o n s on time s c a l e s of minutes to hours and amplitudes of 0.07 to 0.01 magnitude were detected between October 7.254 and 7.381 UT ( Margrave [1978b] ), between October 14.245 and 14.305 UT, and between October 18.289 and 18.343 UT ( Margrave [1978c] ). The r e s u l t s i n column 9 of Table 12 i n d i c a t e s t h a t the continuum l e v e l f l u c t u a t e d with an amplitude of about 0.04 magnitude between September 19.19782 and 19.47014 UT. The f l u c t u a t i o n can be q u i t e abrupt as happened at JD 2443770.970 14. 57 FIGUEE 16 R e s i d u a l s f r o m t h e mean p r o f i l e o f S e p t . . 1 8 6475 6525 6575 6625 6675A FIGOBE 17 E e s i d u a l s from the mean normalised p r o f i l e of Sept. 18 6475 6525 6575 6625 6675A 59 The change of 0.462 magnitude i n the continuum l e v e l was accompanied by changes i n the shape:of the H alpha p r o f i l e . The d i f f e r e n c e s between each spectrum on September 19 and the mean spectrum o f September 18 are shown i n F i g u r e 16* I t i s e v i d e n t from F i g u r e 16 t h a t besides the apparent i n c r e a s e of emission caused by weakening of the continuum, an a d d i t i o n a l s t r o n g a b s o r p t i o n f e a t u r e can be seen at about 6542A on September 19. A d d i t i o n a l weaker a b s o r p t i o n and emission f e a t u r e s can a l s o be seen on both the red and blue r e g i o n of the d i f f e r e n c e p r o f i l e . In order to i s o l a t e the changes i n the shape of the p r o f i l e from the f l u c t u a t i o n of the continuum l e v e l , a l l s p e c t r a were normalised to a standard H alpha height b e f o r e : d i f f e r e n c i n g . F i g u r e 17 shows the d i f f e r e n c e s between each normalised spectrum on September 19 and the mean normalised spectrum of September 18. The zero l e v e l of each d i f f e r e n c e spectrum i s a l s o i n d i c a t e d i n F i g u r e 17. The presence of the P-Cygni type p r o f i l e i n F i g u r e 17 i m p l i e s the development of an expanding s h e l l or extended envelope. The nova was probably at an e a r l y stage i n the development of the d i f f u s e enhanced system. The system may have been present on September 18 as w e l l , but was probably too weak i n comparision with the dominant p r i n c i p a l emission* The p r i n c i p a l a b s o r p t i o n f e a t u r e at H alpha was r e p o r t e d to have alre a d y been n e a r l y o b l i t e r a t e d by the emission on September 14 ( Ake, Lanning, and Mochnacki [ 1978 ] ) . I t can be seen from the l i g h t curve in F i g u r e 15 t h a t a t about September 19*0 OT , the 60 b r i g h t n e s s of the nova has dropped by about U2 magnitudes from the maximum value. T h i s agrees very w e l l with the p r e d i c t e d time f o r the appearance of the d i f f u s e enhanced system f o r a t y p i c a l nova ( McLauglin [ 1 9 6 0 ] ). I t has a l s o been p r e d i c t e d t h a t the d i f f u s e enhanced system would i n i t i a l l y have a P-Cygni type p r o f i l e superimposed on the p r i n c i p a l spectrum ( A l l e r [ 1 9 5 4 ] ) . The P-Cygni p r o f i l e i n F i g u r e 1 7 i s q u i t e d i f f e r e n t from the c o n v e n t i o n a l P-Cygni p r o f i l e s found i n e a r l y type s t a r s . The ab s o r p t i o n f e a t u r e has a c o n s i d e r a b l e d i s p e r s i o n i n v e l o c i t y and the whole P-Cygni p r o f i l e appears to be t o t a l l y b l u e - s h i f t e d . The apparent b l u e - s h i f t of the whole p r o f i l e i s probably caused by the disappearance of a l l the red as w e l l as part of the blue emission r e g i o n of the p r o f i l e . . T h e emission i s i n i t i a l l y coming from recombination a t the inner s u r f a c e of the s h e l l ; t h e r e f o r e , o c c u l t a t i o n by the c e n t r a l s t a r w i l l be s i g n i f i c a n t at t h i s e a r l y stage o f development when the s h e l l i s s t i l l c l o s e to the c e n t r a l s t a r . The d e n s i t y of the s h e l l i s probably s t i l l r a t h e r high a t t h i s e a r l y stage and most of the emission w i l l be absorbed i f the o p t i c a l path through the s h e l l i s l o n g . , From F i g u r e 17, i t can be seen t h a t a broad red a b s o r p t i o n f e a t u r e i s very prominent i n the d i f f e r e n c e s p e c t r a . Red ab s o r p t i o n f e a t u r e s have a l s o been observed i n the slow novae DQ Her ( Horgan [ 1 9 3 6 ] ) and V465 Cyg ( Bloch [ 1 9 5 0 ] ).„ T h i s apparent broad a b s o r p t i o n i n the d i f f e r e n c e p r o f i l e can be a l s o be regarded as r e p r e s e n t i n g changes i n the shape of the red wing of the H alpha emission p r o f i l e between the two n i g h t s . . In 61 comparision with F i g u r e s 11 and 12, part of of t h i s broad a b s o r p t i o n f e a t u r e seems to c o i n c i d e with the i n c l i n e on the saddle-shaped H alpha emission p r o f i l e * The saddle-shaped appearance:is u s u a l l y a t t r i b u t e d to ge o m e t r i c a l e f f e c t s r e l a t e d to the r e l a t i v e s i z e s of the s h e l l s and the c e n t r a l s t a r . . I f there are s u c c e s s i v e e j e c t i o n s of higher v e l o c i t y p r i n c i p a l s h e l l s , the emission p r o f i l e s superimposed together w i l l form a saddle-shaped p r o f i l e . , I f the emission i s concentrated at the poles o f the s h e l l or extended envelope, saddle-shaped p r o f i l e would r e s u l t i f observed pole-on ( Bappu and Menzel [1954] ). S i m i l a r r e s u l t s w i l l occur f o r e q u a t o r i a l l y c o n c e n t r a t e d emission observed e q u a t o r i a l l y . S e l f - r e v e r s a l and s c a t t e r i n g of r a d i a t i o n i n the p r i n c i p a l s h e l l as well as d i r e c t i o n a l d i f f e r e n c e s i n e x c i t a t i o n * non-symmetric e j e c t i o n s , and a c c e l e r a t e d or d e c e l e r a t e d motions have a l s o been suggested as e x p l a n a t i o n s . The f a c t that the broad a b s o r p t i o n showed up i n the d i f f e r e n c e p r o f i l e between the two n i g h t s suggests a gra d u a l change i n the saddle-shape o f the emission p r o f i l e . The p o s i t i o n of the P-Cygni a b s o r p t i o n f e a t u r e i n F i g u r e 17 corresponds to a v e l o c i t y of -960 kms - 1 while the blue wing of t h i s a b s o r p t i o n f e a t u r e suggests a v e l o c i t y of up to -1400 kms-i; k weaker emission f e a t u r e can be seen at about 6577A i n F i g u r e 17. T h i s emission has a l s o been detected on l a t e r dates ( Smith et a l [1979] ). I t corresponds to a v e l o c i t y of +659 kms - 1. The v e l o c i t y of the p r i n c i p a l a b s o r p t i o n was found to be about -600 kms-i between September 12.8 and 14.8 0T 62 ( Adams and L l o y d [1978] ), -620 kms~i at September 12.3 ( Ake, Lanning, and Mochnacki [1978] ), -630 kms- 1, -636 kms - 1, -626 kms - 1, and -729 kms - 1 on September 13, 14, 15, and 16 r e s p e c t i v e l y ( O r t o l a n i et a l [1978] )..The c l o s e agreement i n the amplitude of v e l o c i t y between t h i s red emission f e a t u r e and the blue a b s o r p t i o n v e l o c i t i e s s t r o n g l y suggests t h a t the red emission may be r e l a t e d t o the p r i n c i p a l s h e l l . . T h e presence of the emission may have been caused by the i n c r e a s i n g transparency of the p r i n c i p a l s h e l l due.to c o n t i n u i n g expansion between the n i g h t s . I t may a l s o be an e f f e c t of inhomogeneity i n the d e n s i t y s t r u c t u r e of the p r i n c i p a l s h e l l which became v i s i b l e due t o i n c r e a s i n g r a d i a t i o n p e n e t r a t i o n a t the inn e r s u r f a c e . . From the time s e r i e s p l o t i n F i g u r e 17, i t i s evident t h a t the depth and shape of the P-Cygni a b s o r p t i o n p r o f i l e v a r i e d within the n i g h t . The height of the P-Cygni emission p r o f i l e a l s o v a r i e d . Since the e f f e c t s of continumm l e v e l v a r i a t i o n s have been removed from the d i f f e r e n c e s p e c t r a i n F i g u r e 17, the observed v a r i a t i o n s represent v a r i a t i o n s i n the shape of the H alpha p r o f i l e . To enhance the e f f e c t of the v a r i a t i o n s , d i f f e r e n c e s between each normalised spectrum and the mean normalised spectrum are shown i n F i g u r e 18 while the d i f f e r e n c e s between each normalised spectrum and t h a t a t JD2443770.9701 are shown i n F i g u r e 19. Each spectrum was normalised to the same height of the H alpha emission p r o f i l e before d i f f e r e n c i n g . . An almost i d e n t i c a l r e s u l t i s obtained when the n o r m a l i s a t i o n i s done using the c r i t e r i o n o f equal e q u i v a l e n t width. . 6 3 FIGURE 18 R e s i d a a l s from the mean normalised p r o f i l e o f Sept.. 19 6450 6500 6550 6600 6650A 64 FIGURE 19 Res i d u a l s from the normalised p r o f i l e at JD2443770.97 6450 6500 6550 6600 6650A 65 The d i f f e r e n c e p r o f i l e at JD2443770.6978 shown i n F i g u r e s 18 and 19 i s q u i t e d i f f e r e n t from the o t h e r s i n having a s i g n i f i c a n t l y weaker P-Cygni e m i s s i o n . The other p r o f i l e s i n d i c a t e v a r i a t i o n s over the: e n t i r e width of the H alpha p r o f i l e . T h i s i s most prominent a t JD2443770.7623 and JD2443770.7858. &t these, two epochs, the d i f f e r e n t p r o f i l e s i n d i c a t e t h a t the blue part of the p r o f i l e i s s t r o n g e r while the red p a r t of the p r o f i l e i s weaker than average.. The s t r e n g t h e n i n g of the blue part of the p r o f i l e can a l s o be seen at JD2443770. 9083. From Table 12, i t can be seen that the continuum l e v e l was at l o c a l maximum at these three epochs. _ T h i s e f f e c t has a l s o been observed i n other novae where the blue p a r t of the hydrogen emission l i n e p r o f i l e i s s t r o n g e r near l i g h t maxima ( Payne-Gaposchkin [1957] )._But the v a r i a t i o n s i n these other novae were much s t r o n g e r and on the order of days r a t h e r than hours as i n t h i s nova. There a l s o appears to be some s i m i l a r i t i e s i n the d i f f e r e n c e s p e c t r a t o those caused by the l i g h t echo e f f e c t found i n V1500 Cygni ( Walker et a l [1979] ). Because of the s h o r t time s e r i e s and the long exposure of each spectrum, i t i s d i f f i c u l t to conclude whether the v a r i a t i o n s were p e r i o d i c or t r a n s i e n t . , Rapid l i n e p r o f i l e : v a r i a t i o n s on time s c a l e s of hours has been p r e d i c t e d f o r a nova envelope model which has r a p i d e j e c t i o n r a t e v a r i a t i o n s ( F r e i d j u n g [1975] ). I t i s worthwhile t o monitor the l i n e : p r o f i l e s o f f u t u r e novae i n order to c o n f i r m the observed v a r i a t i o n s and to study the nature of the v a r i a t i o n s . 66 REFERENCES Adams and L l o y d , 1978, IAU C i r c u l a r no._3268 Alee, Lanning, and Mochnacki, 1978, IAU C i r c u l a r no. 3272 A l l e r , 1954, i n A s t r o p h y s i c s , The Ronald Press Company, 174 An t o n e l l o et a l , 1978, A.A., 66, 37 Arhipova and Mustel, i n V a r i a b l e S t a r s a n d ^ S t e l l a r ^ E v o l u t i o n , Sherwood and P l a u t (ed.), R e i d e l Dordrecht Holland, 305 Auvergne e t a l , 1979, A.A., 76, 15 B a g l i n e t a l , 1973, A.A., 23, 167 Bappu and Menzel, 1954, Ap.J., 119. 508 Bath and Shaviv, 1976, M. N. R. A. S. , 175, 305 Bath, 1978, M.N.R.A.S., J82, 35 B e s s e l , 1969, Ap.J.Sup., J[8, 167 Bloch, 1950, An.d'Ap, V3, 390 Breger e t a l , 1976, Ap.J., 2J0, 163 Breger, 1979, P. A. S. P. , 9_, 5 Campbell and Walker, 1979, P.A.S.P., 9J, 540 C h e v a l i e r et a l , 1968, Ap.Lett., 2, 175 C i c c o , 1978, IAU C i r c u l a r no. 3268 Clements, 1978, IAU C i r c u l a r no. 3268 C o l l i n s , 1978, IAU C i r c u l a r no. 3263 Cox et a l , 1979, Ap.J., 23_, 798 Dravin e t a l , 1977, A.A., 54, 381 Duerbeck, 1978, IAU C i r c u l a r no..3272 Duncan and Preston, 1979, Bull.A.A.S., __, part 1, 728 Eggen, 1956, P.A.S.P., 68, 541 67 Eggen, 1 976, P.A.S.P., 88, 404 Eggen, 1979, Ap.J.Sup., 4J1, 413 F i t c h , 1976, i n M u l t i p l e P e r i o d i c / V a c i a b l e ^ S t a r s , F i t c h (ed.), Budapest : Akjademia Kinado, 167 F i t c h and Wisniewski, 1979, Ap.J., 23J, 808 Fr e i d j u n g , 1966, M.N.E.A.Si, j m , 447 F r e i d j u n g , 1968, Ap.J. L e t t , 2, 121 Fr e i d j u n g , 1975, i n V a r i a b l e - S t a r B a n d , S t e l l a r E v o l u t i o n , Sherwood and Pl a u t (ed.) , fieidel Dordrecht Holland, 335 F r e i d j u n g , 1977, i n Noyae.and_Related_Stars, F r e i d j u n g (ed.), R e i d e l Dordrecht Holland, 61 Gall a g h e r and S t a r r f i e l d , 1978, Ann. Rev. A. A. , 1.6, 171 Gal l a g h e r et a l , 1980, P.A.S.P., 92, 46 Gehrz e t a l , 1978, IAO C i r c u l a r no..3296 Genderen, 1973, A. A. Sup.,. 9, 149 Guinan, McCook, and Tomczyk, 1978, IAU C i r c u l a r no. 3274 Guinan, McCook, and Dorren, 1978, IAO C i r c u l a r no. .3296 G u i r i c i n e t a l , 1979, A.A., 80, 9 I r i a t e e t a l , 1965, Sky and Telescope, 30, 21 Ishikawa, 1973, P. A. S.Jap., 25, 111 J e r z y k i e w i c z , 1966, Lowell O b s . . B u l l . , 6, 249 Kuhi and Danziger, 1967, Ap.J., 149, 47 Kurtz, 1976, Ap.J.Sup., 32, 651 Kurtz , 1 979, M.N.R.A.S., 189, 1 Leung and Wehlau, 1967, Ap.J., 149, 39 Leung, 1974, A.J., 79, 626 Mallama and S k i l l m a n , 1978, IAO C i r c u l a r no..3268 Mallama and S k i l l m a n , 1979, P.A.S.P. , 9_, 99 Margrave, 1978a, IAO C i r c u l a r no. 3281 Margrave, 1978b, IAO C i r c u l a r no. 3296 Margrave, 1978c, IAO C i r c u l a r no. 3299 McLaughlin, 1960, i n S t e l l a r Atmospheres, Gr e e n s t e i n (ed.), 0. Chicago P r e s s , 585 M i l l i s , 1967, t h e s i s ( U. of Wisconsin ) Moore e t a l , 19 66, The S o l a r Spectrum, NBS Monograph 61 Morgan, 19 54, Ap.J., 1.19, 50 9 Morgan and Abt, 1972, A.J., 77, 35 Neubauer, 1936, L i c k Obs. B u l l . , 1.7, 190 Oosterhoff and Walraven, 1966, B u l l . A s t r o n . I n s t * N e t h e r l . , 18 387 O r t o i a n i e t a l , 1978, IAO C i r c u l a r no*.3276 P a p o u l i s , 1973, IEEE T r a n s a c t i o n on Information Theory, J.9, Payne-Gaposchkin, 1957, The G a l a c t i c , N o v a e , North-Holland P u b l i s h i n g Company Amsterdam Payne-Gaposchkin, 1977, i n Novae_and_Related_Stars, F r e i d j u n g (ed.), E e i d e l Dordrecht H o l l a n d , 3 P e r r y , 1957, Ap.J., _25, 825 Ponsen and O s s t e r h o f f , 1966, B u l l . A s t r o n * I n s t . N e t h e r l * S u p p l . 3 S t e l l i n g w e r f , 1979, Ap.J., 227, 935 Struve et a l , 1956, Ap.J., 125, 692 V a l t i e r , 1972, A*A., _6, 38 Walker, 1977, J . B. A. S. Can. , 7_, 139 Walker, Yang, and Glaspey, 1978, Ap.J., 226, 976 Walker, Yang, and Fahlman, 1979, Ap.J;, 233, 199 69 Appendix A A d d i t i v e l i n e n o r m a l i s a t i o n Assuming l i n e n o r m a l i s a t i o n i s to be operated over 1024 diodes, the c r i t e r i o n f o r the l i n e n o r m a l i s a t i o n i s d e f i n e d as i n equation 1. ass" i o z + ( equation 1 ) I*j.^+rn = *02.+ f o r m = 1, 2, 3, 4 where I K i s the s i g n a l count a t diode k The a d d i t i v e l i n e n o r m a l i s a t i o n i s accomplished by f i r s t computing the c o n s t a n t s a,, a i f a 3 , and a 4 using equation 2. ( equation 2 ) a m = ( 2 ^ ) " ( ^ i * * ) f o r m = 1, 2, 3, 4 The " a d d i t i v e l y l i n e normalised spectrum w i l l have s i g n a l count IH' f o r diode number n from the "pre-normalised" value o f I N a c c o r d i n g t o equation 3. ( equation 3 ) I £ = I A + a^ where n i s such t h a t when n i s d i v i d e d by 4, i t can g i v e : a remainder m., Appendix B RETICENT - V e r s i o n ( NOV. 1979 ) OPERATION MANUAL 71 INTRODUCTION R e t i c e n t i s a command language w r i t t e n i n FORTRAN IV and i t i s designed s p e c i f i c a l l y t o manipulate one-dimensional d i g i t a l data. I t was i n i t i a l l y developed by Dr. C h r i s P r i t c h e t and has been r e v i s e d s e v e r a l times.. The November 1979 v e r s i o n i s e s p e c i a l l y adapted f o r e f f i c i e n t use a t the Computing Centre of the U n i v e r s i t y of B r i t i s h Columbia. I t i n t e r f a c e s with the "Michigan Terminal System" commands as w e l l as the " F o r t r a n I/O Monitor System" commands, hence w i l l not be e a s i l y adapted to d i f f e r e n t f a c i l i t i e s a t other computer i n s t a l l a t i o n s . T h i s v e r s i o n d i f f e r s from the e a r l i e r v e r s i o n s i n i t s use of double p r e c i s i o n a r i t h m e t i c , having a standard system f o r I/O on magnetic tapes and d i s k f i l e s as w e l l as having a much expanded and r e v i s e d s e t of commands. . R e t i c e n t can be run i n batch mode or i n t e r a c t i v e l y on c o n v e r s a t i o n a l t e r m i n a l s . . Data can be input from tapes, f i l e s , c ards, o r i n t e r a c t i v e l y from a t e r m i n a l . The output may be p r i n t e d , p l o t t e d , or stored on d i s k f i l e s or on magnetic tapes. P l o t s can be viewed i n t e r a c t i v e l y on graphic d i s p l a y u n i t s , Calcomp p l o t t e d , P r i n t r o n i x p l o t t e d , or simply p r i n t e r p l o t t e d . Spectra are u s u a l l y read i n t o "frames" or " a r r a y s " which are i n - c o r e s t o r a g e spaces i n the program I t i s p o s s i b l e to i n p u t and output these frames to and from f i l e s or tapes at w i l l . . The op e r a t i o n i n R e t i c e n t i s c o n t r o l l e d by the user through the use of i n p u t commands..The commands can be i n p u t from punched c a r d s , 72 f i l e s , o r i n t e r a c t i v e l y from t e r m i n a l . Sequences of commands can a l s o be executed through the uses of "macros" and "do-loops". AVAILABILITY AND USE Source program ===> ASTO:NBETM+MEC1:NBETLIB Object code ===> MEC1:OEET.M+MEC1:OEET.L E e t i c e n t i s invoked i n the MIS with the f o l l o w i n g $EUN command $EUN AS TO:OEET 2=mclib 3=out2 4=amacr 5=in1 6=out1 9 = p l o t f where : mclib := o p t i o n a l m a c r o - l i b r a r y out2 := o p t i o n a l a d d i t i o n a l p r i n t e d output amacr := a c t i v e macro f i l e ( must be s p e c i f i e d ) i n 1 := inp u t commands ( d e f a u l t s t o *SOUECE* ) out1 := p r i n t e d output ( d e f a u l t s t o *SINK* ) p l o t f := p l o t f i l e ( d e f a u l t s to -PLOT* ) e. g. $EUN AS TO:OBET 4=-A $EUN ASTO:OEET+*IG 3=-P 4=-A 5=-S«-*S0UBCE* 6=*DUMMY* 10=*T* 73 CONSTANTS, VARIABLES. ARRAYS,-FRAMES. AMD, EXPRESSIONS In R e t i c e n t , a constant i s a numerical value i n the I - or F-format of F o r t r a n . A numerical value i n the E- or D-format w i l l not be r e c o g n i s e d as a c o n s t a n t . . V a r i a b l e s and a r r a y s are the same as those i n F o r t r a n except f o r the f a c t t h a t the names may c o n t a i n up to 8 alphanumeric c h a r a c t e r s and a l l values are i n f l o a t i n g - p o i n t . Array v a r i a b l e s , as i n F o r t r a n , have the index f o l l o w e d i n parentheses behind the array name but with no blank anywhere. The index can be an e x p r e s s i o n which does not c o n t a i n another array v a r i a b l e . A r i t h e m e t i c e x p r e s s i o n i n R e t i c e n t i s s i m i l a r to that i n F o r t r a n with parentheses, a r i t h m e t i c o p e r a t o r s , c o n s t a n t s , v a r i a b l e s , and ar r a y v a r i a b l e s as d e f i n e d above. The dyadic a r i t h m e t i c o p e r a t o r s p o s s i b l e i n R e t i c e n t are -, *, and / . The monadic operat o r s + and - are a l s o a v a i l a b l e . No blank i s allowed w i t h i n each expression*.Only one dimensional a r r a y s are p o s s i b l e i n R e t i c e n t . There can be up to 200 v a r i a b l e s and four 200 elements a r r a y s f o r use sim u l t a n e o u s l y . Frames can be c o n s i d e r e d as s p e c t r a and each can have up to 1872 elements. Each frame i s i d e n t i f i e d by a frame number.. Only frame number 0 to 5 are a v a i l a b l e i n the c u r r e n t v e r s i o n of R e t i c e n t . . T h e r e . i s a l s o an 80 c h a r a c t e r s comment a s s o c i a t e d with each frame. 74 STATEMENTS__COMMAN D S x _ AND_PARAMETERS Each statement must be l e s s than 80 c h a r a c t e r s long and has' to s t a r t at the f i r s t column of each l i n e . In f a c t , a l l i n p u t l i n e s i n the command mode w i l l be c o n s i d e r e d as a statement._The command mode i s u s u a l l y i n e f f e c t d u r i n g the o p e r a t i o n of the program except during cases when data i s being read from u n i t 5 as w e l l . Statements i n R e t i c e n t can be d i v i d e d i n t o three main types.. A statement can be an a r i t h m e t i c v a r i a b l e assignment, a command, or a comment. The a r i t h m e t i c v a r i a b l e assignment statement has a v a r i a b l e f o l l o w e d by "=" and an ex p r e s s i o n with no blank anywhere. Array v a r i a b l e s can not be assigned i n t h i s manner* A command i s i n the form t h a t a command name i s f o l l o w e d by a parameter l i s t . . 0 t o 16 parameters may be present i n the parameter l i s t . The command name and the parameters must a l l be separated from each other by a blank or a comma. The command name can have up t o 8 c h a r a c t e r s . Each parameter i s an ex p r e s s i o n . . A v a r i a b l e must be used as the parameter i n some s p e c i f i c commands i f numerical value i s to be re t u r n e d from the parameter. . Any i n p u t l i n e i n tb.e command mode which has a "*" a t the f i r s t column w i l l be t r e a t e d as a comment. A l l c h a r a c t e r s placed a t more than 5 blanks a f t e r the l a s t parameter i n a command w i l l be t r e a t e d as comments. . 75 MCfiOSx._DO =LOOPS x_IFlS x_AND ADDRESSES A sequence of commands can be coded i n a macro and be a v a i l a b l e f o r use as many times as r e q u i r e d . . The sequence of commands p l a c e d between a MACRO command and an END command i s stored i n a f i l e . . When the appropiate EXEC command i s encountered, the s t o r e d sequence of commands i s i n s e r t e d i n the i n p u t command stream immediately a f t e r the EXEC command.. The a b i l i t y of parameter passing i n t o the macro makes the use of the macro very s i m i l a r to t h a t of a subroutine* The f i r s t parameter i n a MACRO, EXEC, or END command must be the name of the macro. Nested macro d e f i n i t i o n s are not allowed. The EXEC commands can be present i n macro d e f i n i t i o n s . . R e c u r s i v e macro c a l l s are not recommended* Since a l l v a r i a b l e s and a r r a y s are g l o b a l g u a n t i t i e s i . e . can be referenced from anywhere i n the program, v a r i a b l e assignments may be i m p l i c i t l y done:in the parameter l i s t of the EXEC command. Op to 20 a c t i v e macros can e x i s t s i m u l t aneously i n the program.,A m a c r o - l i b r a r y may be o p t i o n a l l y assigned t o u n i t 2. Each macro d e f i n i t i o n i n the l i b r a r y must be preceded by two e x t r a l i n e s , each c o n t a i n i n g the macro-name s t a r t i n g a t column 1. A macro^name can be any v a l i d v a r i a b l e . I f the macro referenced i n a EXEC command has not yet been d e f i n e d i . e . not a c t i v e , the program w i l l a u t o m a t i c a l l y search the m a c r o - l i b r a r y . I f the macro i s found, i t w i l l be loaded as an a c t i v e macro and be executed.. An u n s u c c e s s f u l search w i l l terminate the program. 76 macro d e f i n i t i o n :-MACRO mnam,p2,...,p16 . seguence of commands END mnam mnam i s the name given to the macro and must be a v a l i d v a r i a b l e . . p 2 up t o p16 are the parameters and they must be v a r i a b l e s . The defined macro w i l l then be considered as act i v e . . macro c a l l i n g .:-EXEC mnam,p2,...,p16 mnam i s the name of the macro to be invoked..p2 up to p16 are the parameters and they may be e x p r e s s i o n s . macro d e l e t i o n :-DLMACR mnam mnam i s the name of the a c t i v e macro t o be rendered as i n a c t i v e * T h i s command i s u s e f u l f o r r e d e f i n i n g macro. The do-loop f a c i l i t y i n R e t i c e n t i s invoked by the DO command. The form of the do-loop i s almost i d e n t i c a l t o t h a t i n Fo r t r a n . A l l commands placed between a DO and a CONTINUE command are executed a s p e c i f i c number of times a c c o r d i n g to the range and increment s p e c i f i e d i n the parameter l i s t of the DO command. The f i r s t parameter of a DO command must be a v a r i a b l e . The DO and CONTINUE commands may be present w i t h i n macro d e f i n i t i o n s and the EXEC command may be present w i t h i n do-loops..Macro d e f i n i t i o n i n s i d e do-loop i s not allowed. Nested do-loops are 77 allowed and conform to the same r u l e s as i n F o r t r a n . do-loop d e f i n i t i o n :-DO var1,p2,p3,p4 . sequence o f commands CONTINUE v a r l must be a v a r i a b l e while p2, p3, and p4 may be ex p r e s s i o n s , v a r l w i l l be i n i t i a l l y s e t equal t o p2 and incremented by p4 every time through the loop u n t i l r e a c h i n g p3. p4 may be negative* The IF command and addresses provide the a b i l i t y of c o n d i t i o n a l t r a n s f e r i n macros and do-loops.. Addresses are t r e a t e d as commands except t h a t they are not executable. Each address command has an "S" f o l l o w e d by up to 3 alphanumeric c h a r a c t e r s with no blank anywhere..The IF command i s s i m i l a r to the a r i t h m e t i c IF statement i n F o r t r a n . An e x p r e s s i o n i s evaluated and c o n t r o l i s then t r a n s f e r e d t o one of three addresses depending on whether the value of the e x p r e s s i o n i s <0, =0, or >0 .NEXT and EXIT are two v a r i a b l e s c o nsidered to be addresses i f present i n the IF command..NEXT i m p l i e s t r a n s f e r i n g c o n t r o l to the next command immediately f o l l o w i n g the IF command while EXIT w i l l t r a n s f e r c o n t r o l o u t s i d e a l l l e v e l s of macros and do-loops. A t o t a l of 50 addresses are p o s s i b l e i n R e t i c e n t . . 78 form of the address :-Snam nam can be up to 3 alphanumeric c h a r a c t e r s with no blank i n between. form of the c o n d i t i o n a l t r a n s f e r :-IF expl,Sp2,Sp3,&p4 expl i s an expression while Sp2, Sp3, and &p4 must be. addresses. NEXT and EXIT may be among &p2 r &p3, or &p4. . i f expl < 0 ==> t r a n s f e r to address &p2 expl = 0 ==> t r a n s f e r to address &p3 exp1 > 0 ==> t r a n s f e r to address &p4 PSEE-DEFINED COMMANDS New commands w r i t t e n by the user can be added to the standard s e t of E e t i c e n t commands. T h i s can be accomplished through the use of u s e r - w r i t t e n subroutines with names USER1, USER2, USER3, 0SEE4, and 0SEE5.. The i n t e r f a c e with these u s e r - w r i t t e n s u b r o u t i n e s can be r e a l i s e d through the use of common b l o c k s i n F o r t r a n . The user can c a l l other F o r t r a n s u b r o u t i n e s present i n R e t i c e n t from these u s e r - w r i t t e n subroutines* , I n running E e t i c e n t , one has to use the USERn command, where n i s 1 t c 5, to give names t o these new commands. The USERn command w i l l i d e n t i f y the u s e r - w r i t t e n s u b r o u t i n e USERn with the name s p e c i f i e d i n the parameter l i s t of the command. The new command can then be referenced using t h i s name.. The USERn command can a l s o be used t o r e d e f i n e a name f o r the 79 new command. The f i l e c o n t a i n i n g the o b j e c t modules of the new commands should be e x p l i c i t l y appended i n f r o n t of the normal R e t i c e n t o b j e c t module:. form of u s e r - w r i t t e n subroutine : SUBROUTINE USERn ( * ) RETURN 1 END l o a d i n g the u s e r - w r i t t e n command : USERn snam snam w i l l be i d e n t i f i e d as the name of the new command corresponding to the subroutine USERn, snam must conform to the same r u l e as f o r a v a l i d command name. appending the new o b j e c t module :-$RUN nobj+ASTO:ORET 2...9=,.. where nobj i s the f i l e c o n t a i n i n g the new o b j e c t modules. e. g. . The F o r t r a n source program of a s p e c i a l command to .read IUE data tapes i s i n the f i l e GAHW:IUER. The f o l l o w i n g MTS commands w i l l be reg u i r e d . _ $RUN *FTN SCARDS=GAHW:IUER SPUNCH=-IUEO $RUN -IUEO+ASTO.ORET 2.,.9=... The f o l l o w i n g R e t i c e n t command w i l l l o a d the command which has the subroutine name USER4 and c a l l s i t IUERES. USER4 IUERES 80 WOBD, POINTERS Word p o i n t e r s d i c t a t e the p o i n t range i n each frame over which c e r t a i n commands w i l l perform t h e i r o p e r a t i o n s . . The NCH command s p e c i f i e s the number of elements per frame. The maximum number o f elements per frame i s 1872 which i s a l s o the d e f a u l t value at the s t a r t of the program. The POINT command may be.used e x p l i c i t l y to change the p o i n t range. The GETPTR command can be used to f i n d out the c u r r e n t p o i n t range. form of commands : NCH nch T h i s w i l l s e t the number of elements i n each frame to be nch. nch must not be g r e a t e r than 1872. The d e f a u l t f o r nch i s 1872. T h i s command w i l l a l s o set the word p o i n t e r range to be between 1 and nch. POINT i p t n l , i p t n 2 T h i s w i l l s e t t h e i p o i n t e r range to be between i p t n l and iptn2..The d e f a u l t i s between 1 and 187 2. GETPTR i p t n l , i p t n 2 , n c h i p t n l i s the lower word p o i n t e r l i m i t and i t w i l l be assigned to a v a r i a b l e i f one i s s p e c i f i e d * i p t n 2 i s the upper word p o i n t e r l i m i t and i t w i l l be assigned to a v a r i a b l e i f one i s s p e c i f i e d * nch i s the number of elements per frame and i t w i l l be assigned t o a v a r i a b l e i f one i s s p e c i f i e d . BASIC RETICENT COMMANDS STOP This command w i l l terminate the program. MTS T h i s command w i l l r e - e n t e r i n t o MTS without unloading the program. The $RESTART command w i l l r e t u r n the user .back i n t o R e t i c e n t . . MONITOR The user w i l l e n t e r i n t o the F o r t r a n Monitor mode where u n i t assignments o r ressignments can be performed. .The monitor command RETURN w i l l r e t u r n the user back i n t o R e t i c e n t . P E 0 U T 3 p1 I f pil i s 1, a d d i t i o n a l p r i n t e d output w i l l be a v a i l a b l e from u n i t 3. Other values of p1 w i l l suppress the output which i s the case a t the begin n i n g of the program. The d e f a u l t value f o r p1 i s 1. STECHO pi I f p1 i s 1, i n p u t commands w i l l be e c h o - p r i n t e d on u n i t 6 even i f the program i s being run on t e r m i n a l and the commands are not i n s i d e a do-loop or macro d e f i n i t i o n . . Other values of p1 w i l l suppress the e c h o - p r i n t i n g . T h i s command i s u s e f u l i f the program i s running on t e r m i n a l and the i n p u t commands were coming from a f i l e . . D e f a u l t value f o r p1 i s 1. STOVB 1 p1 Thi s command can be used to o v e r i d e the r e s e r v e d s t a t u s of u n i t 2, 3, 4, 5, 6, and 9. I f p1 i s 1, the reserved s t a t u s w i l l be overidden. Other values of p1 w i l l imply t h a t the reserved s t a t u s i s to be i n e f f e c t which i s the case a t the beginning of the program..If the reserved s t a t u s i s not i n e f f e c t , one can t r e a t these I/O u n i t s i n the same manner as the other u n i t s i n i n p u t or output o p e r a t i o n s and w i l l not be i n t e r r u p t e d by the program. The d e f a u l t value f o r p1 i s 0. SETUP u,iuwp Th i s command can be used to t u r n the w r i t e - p r o t e c t i o n s t a t u s a s s o c i a t e d with each u n i t t o on or o f f . , A t the beginning of the program, a l l u n i t s except some:reserved ones are w r i t e - p r o t e c t e d i . e . R e t i c e n t output cannot be performed on these u n i t s , . u i s the u n i t number and i t must be s p e c i f i e d . I f iuwp i s 1, the w r i t e - p r o t e c t i o n s t a t u s w i l l be turned o f f . Other values of iuwp w i l l t u r n the p r o t e c t i o n on*. The d e f a u l t value f o r iuwp i s 0. I f the CRESF command i s used to c r e a t e a s e q u e n t i a l f i l e , the a s s o c i a t e d u n i t w i l l have the w r i t e - p r o t e c t i o n s t a t u s turned o f f . . U s u a l l y , I/O e r r o r s w i l l t u r n the p r o t e c t i o n on f o r the a f f e c t e d u n i t . SRDAT5 i u r d 5 Most R e t i c e n t commands use the s u b r o u t i n e RDDATA to read data* I f such a command i s i n s i d e a macro or a do-loop, RDDATA w i l l t r y to read the data from u n i t 4 r a t h e r than from u n i t 5..This command can be used to force:RDDATA to read t h e data from u n i t 5 i n such s i t u a t i o n s . I f i u r d 5 i s 1, RDDATA w i l l always t r y to read from u n i t 5. For other values o f i u r d 5 , RDDATA w i l l t r y to read from u n i t 4 i . e . , t h e data must be placed immediately a f t e r the command and w i t h i n the macro or do-loop. T h i s c o n d i t i o n i s i n e f f e c t a t the s t a r t of the.program. The d e f a u l t f o r i u r d 5 i s 0. ASAVEA i s a v c T h i s command w i l l a l l o c a t e core storage spaces f o r i s a v e frames* These a l l o c a t e d storage spaces can be r e f e r e n c e d only by the SAVED command._There must not be any storage spaces a l r e a d y e x i s t when using t h i s command..The d e f a u l t value f o r i s a v c i s 1. FSAVEA Th i s command r e l e a s e s the core s t o r a g e spaces t h a t were a l l o c a t e d by the ASAVEA command. . SAVED p1,p2,p3 This command i s used t o save or r e t r i e v e frames from the a l l o c a t e d s t o r a g e area* The comment a s s o c i a t e d with each frame w i l l a l s o be saved or r e t r i e v e d . Each s t o r e d frame can be r e f e r e n c e d by an i n t e r n a l index i n the storage area. The ASAVEA command must be used t o a l l o c a t e the storage spaces before using t h i s command. p1 > 0 ==> to store frame i n t o saved a r e a . p1 < 0 ==> to r e t r i e v e frame from saved a r e a . . ( p1 d e f a u l t s to 0 ) p2 := the frame to be s t o r e d or r e t r i e v e d . ( d e f a u l t i s 0 ) p3 := the index of the frame i n the saved area* p3 must not be grea t e r than i s a v c i n t he. ASAVEA command* , ( d e f a u l t i s 1 ) PEFLT i f r T h i s command w i l l p r i n t out the content i n frame i f r within the word p o i n t e r range i n e f f e c t i.e..between i p t n l and i p t n 2 . i f r d e f a u l t s to 0. TEXTS i u , i f l g There i s an 80 c h a r a c t e r s comment a s s o c i a t e d with each frame._ There i s a l s o an 80 c h a r a c t e r s g l o b a l comment i n the program. At the beginning of the program, a l l these comments w i l l be blanks. The TEXTS command can be used to put comments e x p l i c i t l y i n t o any of these:comment l o c a t i o n s * . i u i s the u n i t number where the comment i s to be read* The d e f a u l t f o r i u i s 5. I f i f l g i s l e s s than 0 , then the comment read from u n i t i u w i l l be t r e a t e d as t h e . g l o b a l comment. I f i f l g i s g r e a t e r than or equal to 0, then the comment read w i l l be put i n t o the comment l o c a t i o n a s s o c i a t e d with frame number i f l g . . i f l g i n t h i s case must be a v a l i d frame number i . e . between 0 and 5.. i f l g d e f a u l t s t o - 1 1 * PBTEXT i f l g T h i s command w i l l p r i n t the v a r i o u s comments* I f i f l g i s l e s s than 0, then the g l o b a l comment w i l l be p r i n t e d . I f i f l g i s equal to or g r e a t e r than 0, then the comment a s s o c i a t e d with frame number i f l g w i l l be p r i n t e d * I f t h i s i s the case, i f l g must be a v a l i d frame number. The d e f a u l t value of i f l g i s -2. ARRAY COMMANDS DATA arrm T h i s command w i l l use the su b r o u t i n e RDDATA to read data i n t o an ar r a y c a l l e d arrm..If arrm has not a l r e a d y been d e f i n e d as an array name, then t h i s command w i l l d e f i n e a new array and c a l l i t arrm. I f the ar r a y name arrm already e x i s t s , then t h i s command w i l l o v e r - w r i t e the array with the new data. The number of data p o i n t s read w i l l be considered as the s i z e of the array..Op to only foUr 2 00 elements a r r a y s can be used. ARRAY arrm,indx,val T h i s command w i l l perform a r r a y v a r i a b l e assignments. . arrm i s the ar r a y name, indx i s the index i n the a r r a y , and v a l i s the value t o be s t o r e d i n t h a t a r r a y element. FNDARR arrm,v2,v3 Each a r r a y a l s o has an ar r a y number i . e . 1 to 4. Th i s command w i l l f i n d the array number a s s o c i a t e d with the array name arrm. . v2 w i l l be returned as the ar r a y number i f a v a r i a b l e i s present. v3 w i l l be returned as the number of p o i n t s i n t h a t a r r a y i f a v a r i a b l e i s present at the p o s i t i o n i n the parameter l i s t . _ N o v a r i a b l e w i l l be assigned i f the ar r a y arrm cannot be found* ,This command i s the onl y way to o b t a i n the array number s i n c e the number i s i n t e r n a l l y generated f o r each a r r a y . . CHGARR arrm,brrm This command can be used t o change the array name from arrm t o brrm. T h i s command w i l l not a f f e c t the content i n the a r r a y . LFMAR arrm,ifr, v 3 T h i s command w i l l copy the array arrm i n t o frame i f r . . v w i l l be returned as the number of p o i n t s i n the array which i s a l s o the number of p o i n t s copied..arrm must be an a c t i v e a r r a y name while i f r must be a v a l i d frame number. T h i s command w i l l be a f f e c t e d by the word p o i n t e r s . The array w i l l be copied to w i t h i n the pointe range i n the frame. The f i r s t a r r a y element w i l l be copied to the frame element at the lower p o i n t e r l i m i t . I f the array s i z e exceeds the p o i n t e r range, then only part o f the array w i l l be c o p i e d . LARFM a r r m , i f r T h i s command w i l l copy frame i f r i n t o array arrm. Only the elements w i t h i n the word p o i n t e r range i n the frame w i l l be c o p i e d . The frame element at the lower p o i n t e r l i m i t w i l l be copied t o the f i r s t element i n the arr a y . I f the number of frame elements w i t h i n the word p o i n t e r range exceeds 2 0 0 , then only the f i r s t 200 elements w i l be c o p i e d s i n c e 200 i s the maximum a r r a y s i z e . , 87 SIMPLE, ARITHMETIC COMMANDS The word p o i n t e r s w i l l a f f e c t most of these simple a r i t h m e t i c commands i . e . . a l l o p e r a t i o n s w i l l be performed only w i t h i n the p o i n t e r l i m i t s i n each frame. ADDI i f r 1 , p 2 , i f r 3 The value p2 w i l l be added to each element i n frame i f r l and the r e s u l t w i l l be s t o r e d i n frame i f r 3 . .Frame i f r 1 w i l l remain unchanged. Word p o i n t e r s are i n e f f e c t . The d e f a u l t value f o r i f r 3 i s i f r l . MULTI i f r 1 , p 2 , i f r 3 Each element i n frame i f r l w i l l be m u l t i p l i e d by the value p2 and the r e s u l t w i l l be s t o r e d i n frame i f r 3 . . Frame i f r l w i l l remain unchanged..Word p o i n t e r s are i n e f f e c t . The d e f a u l t value f o r i f r 3 i s i f r l . DIVI i f r 1 , p 2 , i f r 3 Each element i n frame i f r l w i l l be d i v i d e d by the value p2 and the r e s u l t w i l l be s t o r e d i n frame i f r 3 . Frame i f r l remains unchanged..Word p o i n t e r s are i n e f f e c t . . The a b s o l u t e value of p2 w i l l be s e t to be > 1 0 - 7 0 . The d e f a u l t value f o r i f r 3 i s i f r l . ADD i f r 1 , i f r 2 , i f r 3 Each element i n frame i f r l w i l l be added p o i n t by point to each corresponding element i n frame i f r 2 and the r e s u l t w i l l be stored i n frame i f r 3 . . B o t h frame i f r l and i f r 2 remain unchanged. Word p o i n t e r s are i n e f f e c t . The d e f a u l t value f o r i f r 3 i s i f r l . SOB i f r 1 , i f r 2 , i f r 3 Each element i n frame i f r 2 w i l l be s u b t r a c t e d p o i n t by point from the corresponding element i n frame i f r l and the r e s u l t w i l l be stored i n frame i f r 3 . Both frame i f r l and i f r 3 remain unchanged. Word p o i n t e r s are i n e f f e c t . . The d e f a u l t value f o r i f r 3 i s i f r 1 . . MULT i f r 1 , i f r 2 , i f r 3 Each element i n frame i f r l w i l l be m u l t i p l i e d p o i n t by p o i n t by the corresponding element i n frame i f r 2 and the r e s u l t w i l l be s t o r e d i n frame i f r 3 . Both frame i f r l and i f r 3 remain unchanged..Word p o i n t e r s are i n e f f e c t . The d e f a u l t value f o r i f r 3 i s i f r l . DIV i f r 1 , i f r 2 , i f r 3 Each element i n frame i f r l w i l l be d i v i d e d p o i n t by p o i n t by the corresponding element i n f r a m e : i f r 2 and the r e s u l t w i l l be s t o r e d i n frame i f r 3 . Both frame i f r l and i f r 3 remain unchanged..Word p o i n t e r s are i n e f f e c t . Each element i n frame i f r 2 i s s e t to have i t s a b s o l u t e value > 10 - 7 0 . The d e f a u l t value of i f r 3 i s i f r l . DEX i f r 1 , i f r 2 R esult of decimal e x p o n e n t i a t i o n f o r each element i n the frame i f r l w i l l be s t o r e d i n frame i f r 2 i . e . T 1 0 * * v w i l l be s t o r e d i n frame i f r 2 , where v i s the value of each element i n frame i f r l . . F r a m e i f r l remains unchanged..The word p o i n t e r s are i n e f f e c t . i f r 2 d e f a u l t s t o i f r l . LOG10 i f r 1 , i f r 2 The base 10 l o g a r i t h m of each element i n frame i f r l w i l l be s t o r e d i n frame i f r 2 . Each element i n frame i f r l w i l l he c o n s i d e r e d t o be g r e a t e r than or equal to 1 0 - 7 0 . Frame i f r l w i l l remain unchanged. The d e f a u l t value f o r i f r 2 i s i f r l . The word p o i n t e r s are i n e f f e c t . . EXP i f r 1 , i f r 2 Result of e x p o n e t i a t i o n of each element i n frame i f r 1 w i l l be s t o r e d i n frame i f r 2 i . e . e**v w i l l be s t o r e d i n frame i f r 2 , where v i s the value of each element i n fram i f r 1 . Frame i f r l remains unchanged..The word p o i n t e r s are i n e f f e c t . . i f r 2 d e f a u l t s t o i f r l . LOG i f r 1 , i f r 2 The l o g a r i t h m of each element i n frame i f r l w i l l be . stored i n t o frame i f r 2 . . E a c h element i n frame i f r l w i l l be c o n s i d e r e d to g r e a t e r than or equal to 1 0 - 7 0 . The frame i f r l w i l l remain unchanged. The d e f a u l t value f o r i f r 2 i s i f r l . The word p o i n t e r s are i n e f f e c t . . MOVE i f r 1 , i f r 2 T his command c o p i e s p o i n t by point the content of frame i f r l i n t o frame i f r 2 . Frame i f r l remains unchanged. The word p o i n t e r s are i n e f f e c t . SWITCH i f r 1 , i f r 2 T h i s command interchanges the content between frame i f r l and frame i f r 2 . Both frames w i l l be changed. The word p o i n t e r s are i n e f f e c t . REFLECT i f r 1 , i f r 2 T h i s command r e f l e c t s the content of frame i f r l about the midpoint of i t s word p o i n t e r range..The r e s u l t w i l l be s t o r e d i n frame i f r 2 . Frame i f r l w i l l be unchanged. The word p o i n t e r s are i n e f f e c t . IOTA i f r l T h i s command w i l l a s s i g n the corresponding p o i n t number to be the content of t h a t p o i n t i n frame i f r U . T h i s i s performed f o r a l l p o i n t numbered 1 to nch. nch i s the number of p o i n t s per frame s p e c i f i e d by the NCH command. B a s i c a l l y , t h i s command generates the numbers 1 to nch and s t o r e them i n t o t h e i r c o r r e s p o n d i n g elements i n the frame i f r l . NORM 1 i f r l , i f r 2 T h i s command c a l c u l a t e s the mean of the content i n frame i f r l w i t h i n the word p o i n t e r l i m i t s and d i v i d e each element i n frame i f r l by t h i s c a l c u l a t e d mean..This mean i s l i m i t e d to have an absolute value > 1 0 - 7 0 . The The r e s u l t i s then stor e d i n frame i f r 2 . Frame:ifr1 w i l l remain unchanged. The word p o i n t e r s are i n e f f e c t . The d e f a u l t value f o r i f r 2 i s i f r l . ISHIFT i f r 1 , p 2 , i f r 3 This command w i l l i n t e g e r s h i f t the content w i t h i n the word p o i n t e r range i n frame i f r l by p2 p o i n t s and s t o r e the r e s u l t i n frame i f r 3 . Both the s h i f t i n g and the s t o r i n g are within the word p o i n t e r l i m i t s , hence some poi n t s w i l l be l o s t . I f p2 i s p o s i t i v e , then the s h i f t i s to higher p o i n t number. I f p2 i s negat i v e , then the s h i f t i s to lower p o i n t number i . e . p o i n t j i n frame i f r l w i l l be s h i f t e d t o p o i n t j+p2 i n frame i f r 3 . Frame i f r l w i l l remain unchanged..ifr3 d e f a u l t s to i f r 1 . . p 2 should be an i n t e g e r . The p2 p o i n t s i n frame i f r 3 where p o i n t s have not been s h i f t e d onto them w i l l remain unchanged. SHIFT i f r i , p 2 , i f r 3 , i p 1 , i p 2 , l t a p e r T h i s command i s s i m i l a r to the ISHIFT command except t h a t n o n ^ i n t e g r a l amount of s h i f t i s p o s s i b l e . f i f r 1 , p2, and i f r 3 have the same meaning as i n the ISHIFT command, but p2 need not be an i n t e g e r . In t h i s command, the s h i f t i n g and the s t o r i n g w i l l be between the p o i n t s ip1 and i p 2 . These two numbers d e f a u l t t o the p o i n t e r l i m i t s i p t n l and i p t n 2 r e s p e c t i v e l y * l t a p e r i s the amount of t a p e r i n g o f f each end of the data set i n order t o avoid the Gibb's e f f e c t i n performing the F o u r i e r Transform.. D e f a u l t i s 5% the length of the data s e t . The l e n g t h of the data s e t i s ip2-ip1+1..Since F a s t F o u r i e r Transform w i l l be a p p l i e d to the data s e t , i t would be d e s i r a b l e to choose ip1 and ip2 such t h a t the len g t h of the data set has o n l y s m a l l prime f a c t o r s . T h i s decreases the amount of CPU time r e g u i r e d as w e l l as i n c r e a s e s the accuracy. The s h i f t e d data s e t w i l l have each end tapered to 0. N0BM2 i f r 1,ifr2,ip'1,ip2 T h i s command f i n d s the maximum value i n the content of frame i f r l between point i p l and i p 2 . The a b s o l u t e value of the maximum value i s set to be > 10~ 7o. Each element with i n the word p o i n t e r range i n frame i f r l w i l l then be d i v i d e d by t h i s number and the r e s u l t w i l l be s t o r e d i n frame i f r 2 . _ . Frame i f r 1 remains unchanged. Word p o i n t e r s are in e f f e c t f o r the d i v i s i o n and the s t o r i n g . . i p 1 and ip2 need not agree with the word p o i n t e r s * , i f r 2 d e f a u l t s to i f r l . . i p l d e f a u l t s to i p n t l which i s the lower word p o i n t e r l i m i t and ip2 d e f a u l t s t o i p n t 2 which i s the upper word p o i n t e r l i m i t * SSPXS i f r l , p 2 , p 3 , i f r 4 T h i s command w i l l take every p3 p o i n t s i n frame i f r l s t a r t i n g at p o i n t p2 u n t i l nch, the number o f p o i n t s per frame and s t o r e s them s e q u e n t i a l l y i n frame i f r 4 s t a r t i n at the f i r s t element. p2 and p3 should be i n t e g e r s , i f r 4 d e f a u l t s to i f r l . Frame i f r l remains unchanged. EXAMINE i f r 1,v2,v3,v4,v5 This command c a l c u l a t e s the mean, the standard d e v i a t i o n the minimum value, and the maximum value of the content i n frame i f r l w i t h i n the word p o i n t e r l i m i t s . v2, v3, v4 and v5 w i l l be returned values i f v a r i a b l e s are present at the s p e c i f i e d l o c a t i o n s i n the parameter l i s t . mean > v2 standard d e v i a t i o n --> v3 minimum value > v4 maximum value > v5 92 SIMPLE I/O DEVICE COMMANDS CEESF i u This command w i l l c r e a t e a s c r a t c h s e q u e n t i a l f i l e and assign i t to u n i t i u * The name o f the f i l e w i l l be of the form »'-Y#####n" where n i s an i n t e g e r . .Up t o 999999 separate f i l e s can be cr e a t e d t h i s way..The.command w i l l generate a unique f i l e name each time i t i s c a l l e d . The w r i t e - p r o t e c t i o n s t a t u s w i l l be a u t o m a t i c a l l y turned o f f f o r u n i t i u by t h i s command..Unit number 0 t o 99 may be used. The re s e r v e d u n i t s are 2, 3, 4, 5, 6, and 9. The res e r v e d s t a t u s can be overidden. I t i s more e f f i c i e n t t o use o n l y u n i t 0 to 19. ASSIGN i u This command can be used t o a s s i g n d e v i c e s t o the I/O u n i t s . , i u i s the u n i t number to be assigned..The command w i l l request a f i l e or device name (12 c h a r a c t e r s ) as the next i n p u t l i n e , e.g. ASSIGN 50 -A ASSIGN 10 *T* TPOS i u , n f i l e , n r e c T h i s command w i l l p o s i t i o n the magnetic tape attached to u n i t i u t o f i l e number n f i l e and the beginning of r e c o r d number n r e c . nrec d e f a u l t s t o 1. SFPOS i u . n r e c T h i s command w i l l p o s i t i o n the s e q u e n t i a l f i l e attached to u n i t i u to the beginning of r e c o r d number nrec. The d e f a u l t value of nrec i s 1. LIBBABY DATA TAPE READING COMMANDS The l i b r a r y tapes are assumed to have been generated by "RAWCOP" programs. The 1872-Reticon l i b r a r y tapes can be read using the BECSA and BEC1A commands. The 840-Isocon, 680-Vidicon, 256-Beticon, and 1024-Beticon l i b r a r y tapes can be read using the BLTPS and BLTP1 commands but the number of p o i n t s per frame must be p r o p e r l y set using the NCH command before using these commands. Some "BAWCOP" programs only s t o r e d 255 and 1023 elements on the l i b r a r y tapes f o r the 256- and 1024-Beticon data r e s p e c t i v e l y ; t h e r e f o r e , the value 255 or 1023 should be used i n s t e a d . Data read from the tapes may be modified by i z e r o which i s the zero p o i n t o f the s t o r e d data and i d i v which i s to c o r r e c t f o r s h i f t e d b i t p o s i t i o n i n the s t o r e d data, i z e r o and i d i v are set by the EDFAC1 and BDFAC2 commands. BECSA i u , n f i l e , n s t f n e n d , i f r , i f l g T h i s command reads the 1872-Reticon l i b r a r y tape which i s a ttached to u n i t i u . I t w i l l f i r s t p o s i t i o n the tape to f i l e n f i l e and record n s t and w i l l then read a l l the records between record number n s t and nend i n c l u s i v e l y . The mean of a l l these r e c o r d s w i l l then be s t o r e d i n t o frame i f r * i f l g s p e c i f i e s how the data are to be read and modified..The d e f a u l t value f o r i f l g i s 2*5. MOD(iflg,2) = 0 ==> a comment record c o n t a i n i n g the l o c a t i o n o f the data on the tape w i l l be w r i t t e n onto the comment block a s s o c i a t e d with frame i f r . . MOD(iflg,3) = 0 ==> the data w i l l be e x a c t l y as what i s s t o r e d on the tape.. M0D(iflg,5) = 0 ==> each p o i n t read w i l l be i n t e g e r d i v i d e d by the nfac2 b e f o r e the averaging. The value.of nfac2 i s read from the tape* M0D(iflg,7) = 0 ==> n f a d i s f i r s t s u b t r a c t e d from each p o i n t read. Each p o i n t i s then i n t e g e r d i v i d e d by nfac2 before averaging* Both n f a d and nfac2 are read from the tape.. MOD(iflg,11) = 0 ==> i z e r o i s f i r s t s u b t r a c t e d from each p o i n t which i s then i n t e g e r d i v i d e d by i d i v before.averaging* MOD(iflg,13) = 0 ==> w i l l p r i n t the s t o r e d i n f o r m a t i o n a s s o c i a t e d with each r e c o r d . . 94 BEC1A i u , i f r , i f l g T his command i s s i m i l a r to the EECSA command but i t w i l l read from the l i b r a r y tape without p r i o r p o s i t i o n i n g of the tape, hence TPOS or HECSA should have been used f o r proper p o s i t i o n i n g before using t h i s command. I t w i l l a l s o r e a d only 1 r e c o r d . A l l parameters have the same meaning as i n EECSA. i f l g d e f a u l t s t o 2*5*13* BLTPS i u , n f i l e , n s t , n e n d , i f r , i f l g T h i s command i s the EECSA c o u n t e r p a r t to read the other l i b r a r y tapes..The number of p o i n t s f o r each frame must be p r o p e r l y s e t before using t h i s command. .The parameters i u , n f i l e , n s t , nend, and i f r have the same meaning as > i n the EECSA command. . i f l g d e f a u l t s to 2*3... M0D(iflg,2) = 0 ==> w r i t e s a comment onto the comment block a s s o c i a t e d with frame i f r . M0D(iflg,3) = 0 ==> each p o i n t read w i l l be i n t e g e r d i v i d e d by i d i v before averaging. MOD(iflg,7) = 0 ==> p r i n t s the s t o r e d i n f o r m a t i o n f o r each of the r e c o r d r e a d . . ELTP1 i u , i f r , i f l g T h i s i s the EEC 1A c o u n t e r p a r t to read the other l i b r a r y t a p e s . . A l l parameters have the same meaning as i n ELTPS. The d e f a u l t v a l u e . o f i f l g i s 2*3*7. EDFAC 1 i z e r o This command s e t s the value of i z e r o . The d e f a u l t i s 0. BDFAC2 i d i v T h i s command s e t s the value of i d i v . The d e f a u l t i s 1. LINE. NORMALISATIONS COMMANDS GPTNA i f r 1 , i f r 2 , i p t m , m , i p l , i p 2 T h i s command both c a l c u l a t e s the m u l t i p l i c a t i v e l i n e n o r m a l i s a t i o n f a c t o r s and normalises the spectrum.. i f r l := frame t o be normalised. . ( d e f a u l t s to 0 ) i f r 2 := frame.where the normalised spectrum i s to be placed* . ( d e f a u l t s to i f r l ) iptm := i n t e r n a l index f o r the c a l c u l a t e d f a c t o r s . . iptm < 4. ( d e f a u l t s t o 1 ) m := number of l i n e s t o be normalised.. m < 36., ( d e f a u l t s t o 4 ) i p l := lower p o i n t l i m i t f o r c a l c u l a t i o n of f a c t o r s . ( d e f a u l t s to i p t n l ) ip2 := upper point l i m i t f o r c a l c u l a t i o n of f a c t o r s . ( d e f a u l t s t o i p t n 2 ) The n o r m a l i s a t i o n process w i l l be performed over the point range s p e c i f i e d by the word p o i n t e r s i p t n l and ip t n 2 even i f they may d i f f e r from i p l and i p 2 . . GPTNB i f r 1 ,iptm, m, i p 1, i p 2 This command only c a l c u l a t e s the m u l t i p l i c a t i v e l i n e n o r m a l i s a t i o n f a c t o r s and does not perform the a c t u a l n o r m a l i s a t i o n * _ The paramters have the same meaning and d e f a u l t values as i n the GPTNA command.. GPTNC i f r 1 , i f r 2 , i p t m T h i s command performs the n o r m a l i s a t i o n process using a l r e a d y c a l c u l a t e d f a c t o r s s t o r e d at the i n t e r n a l index iptm. The parameters have the same meaning and d e f a u l t values as i n the GPTNA command. BPNTG i a r r # i f r 1 , i p t m , m T h i s command i s very s i m i l a r to the GPTNB command but i n s t e a d of using j u s t the p o i n t range i p l and i p 2 , ranges of p o i n t are taken t o be s p e c i f i e d by c o n s e c u t i v e doubles i n the a r r a y numbered i a r r . . A l l other paramters have the same meaning and d e f a u l t values as i n GPTNA.. GPTABB arrm,iptm This command w i l l take the value s i n array arrm to be m u l t i p l i c a t i v e l i n e n o r m a l i s a t i o n f a c t o r s and s t o r e them under i n t e r n a l index iptm;. The number of p o i n t s i n the array w i l l be con s i d e r e d as the number of l i n e s . The d e f a u l t value of iptm i s 1. . ABBGPT arrm,iptm T h i s command w i l l write the m u l t i p l i c a t i v e n o r m a l i s a t i o n f a c t o r s with the i n t e r n a l index iptm i n t o the a r r a y arrm. iptm d e f a u l t s t o 1. SPTNA i f r 1 , i f r 2 , i p t m , m , i p 1 , i p 2 T h i s command performs almost i d e n t i c a l l y with the GPTNA command except t h a t a d d i t i v e l i n e n o r m a l i s a t i o n r a t h e r than m u l t i p l i c a t i v e l i n e n o r m a l i s a t i o n i s performed. A l l meaning and d e f a u l t s of the parameters are i d e n t i c a l to those i n the GPTNA command. SPTNB if r 1 , i p t m , m , i p 1 , i p 2 T h i s command i s the a d d i t i v e l i n e n o r m a l i s a t i o n v e r s i o n of the GPTNB command. A l l the parameters have the same meaning and d e f a u l t s as i n the GPTNB command. SPTNC i f r 1 , i f r 2 , i p t m This command i s the a d d i t i v e l i n e n o r m a l i s a t i o n v e r s i o n of the GPTNC command* A l l the parameters have the same meaning and d e f a u l t s as i n the GPTNC command. BPNTS i a r r ,ifr1,iptm,m T h i s command i s the a d d i t i v e l i n e n o r m a l i s a t i o n v e r s i o n of theBPNTG command..All the parameters have the same meaning and d e f a u l t s as i n the BPNTG command. SPTARR arrm,iptm T h i s i s the a d d i t i v e l i n e n o r m a l i s a t i o n c o u n t e r p a r t of the.GPTARR command. A l l parameters have the same meaning as i n GPTARR. iptm d e f a u l t s to 1. ARRSPT arrm,iptm This i s the a d d i t i v e l i n e n o r m a l i s a t i o n c o u n t e r p a r t of the ARRGPT command. A l l parameters have the same meaning as i n ARRGPT. iptm d e f a u l t s to 1. The f o l l o w i n g convention has been used i n a l l the l i n e n o r m a l i s a t i o n commands co n s i d e r e d . p i x e l number 1, 1+m, 1+2m, .... are i n l i n e number 1 p i x e l number 2, 2+m, 2* 2m, .....are i n l i n e number 2 p i x e l number k, k+m, k+2m, .... are i n l i n e number k p i x e l number m, m+m, m+2m, .....are i n l i n e number m FILTERING COMMANDS FCOEF n f i l , i w i n d , n f o u r , n f r , n w p a r T h i s command i s used t o s p e c i f y the c h a r a c t e r i s t i c s of the d e s i r e d f i l t e r response and c a l c u l a t e s the f i l t e r c o e f f i c i e n t s corresponding t o such a response. _ n f i l := the number o f f i l t e r c o e f f i c i e n t s t o be c a l c u l a t e d . The;length of the f i l t e r w i l l be 2*nfil+l«. This i m p l i e s t h a t the f i r s t and the l a s t n f i l p o i n t s of the data w i l l be f i l t e r e d with some p o i n t s given double weight. ( d e f a u l t i s 32 ) iwind := s p e c t r a l window number ( d e f a u l t i s 4 ) P o s s i b l e values : 1 ==> F e j e r or B a r t l e t t window 2 ==> Lanczos window 3 ==> Hamming window 4 ==> Blackman window 5 -=> Parzen window 6 ==> Gaussian window 7 ==> H y p e r b o l i c Secant window 8 ==> K a i s e r windows 9 ==> Papo u l i s window 10 ==> Hanning window 11 ==> M o d i f i e d Hanning window nfour := the number of p o i n t s to be used i n the c a l c u l a t i o n of the f i l t e r response, nfour should be s e t t o such t h a t the d e s i r e d accuracy i s obtained i n the f i l t e r c u t o f f s . There w i l l be nfour/2+1 p o i n t s between 0% and 100% of the Nyquist frequency. . I t would be d e s i r a b l e to set nfour as a power of 2. Th i s would reduce the computing time as w e l l as i n c r e a s e the accuracy ( d e f a u l t i s 128 ). nwpar := the number of elements t o be read i n t o the i n t e r n a l storage space wpar. In the present v e r s i o n of R e t i c e n t , only 1 and 0 are u s e f u l values f o r nwpar. I f nwpar i s g r e a t e r than 5 then i t w i l l be c o n s i d e r e d as 1. I f there e x i s t s a p r e v i o u s c a l l o f the command, then nwpar w i l l d e f a u l t t o the previous value, otherwise i t w i l l d e f a u l t t o 0. nwpar and wpar are u s e f u l only i f the Kaiser window i s being used. The response of t h i s window i s a f u n c t i o n o f the value wpar(1). wpar(1) has a value of 9 a t the beginning of the program. 99 n f r := number of f i l t e r s p e c i f i c a t i o n s to be read immediately from u n i t 5. Each s p e c i f i c a t i o n i s represented.by 3 numbers : the low c u t o f f Nyquist frequency, the h i g h . c u t o f f frequency, and the response of the f i l t e r between the two f r e q u e n c i e s . Normally, i t w i l l be 1 or 0. The t r i p l e s of s p e c i f i c a t i o n w i l l be read i n f r e e format. Response = 1 i m p l i e s passing a l l f r e q u e n c i e s w i t h i n the s p e c i f i e d range while response = 0 i m p l i e s p a s s i n g nothing w i t h i n the s p e c i f i e d frequency range. The i n i t i a l c o n d i t i o n i s ( 0, 100, 1 ) i . e . passing a l l f r e q u e n c i e s between 0 and 100% Nyquist* B u i l t - i n s p e c i f i c a t i o n s w i l l be used f o r n o n - p o s i t i v e values of n f r . P o s s i b l e values : -1 ==> ( 80, 100, 0 ) -2 ==> ( 40, 100, 0 ) -3 ==> ( 30, 100, 0 ) -H ==> ( 20, 100, 0 ) -5 ==> ( 45, 55, 0 ) + ( 80, 100, 0 ) -6 ==> ( 85, 100, 0 ) -7 ==> ( 85, 100, 0 ) + ( 49, 51, 0 ) -8 ==> ( 49, 100, 0 ) -9 ==> ( 45, 100, 0 ) -10 ==> ( 35, 100, 0 ) - 11 ==> ( 25, 100, 0 ) 0 ==> using the same s p e c i f i c a t i o n as i n the pr e v i o u s c a l l i f there i s one otherwise w i l l c o n s i d e r n f r as -1. . The d e f a u l t value f o r n f r i s 0 FILT1 i f r 1 , i f r 2 , m d e g , l t a p e r , i p 1 , i p 2 T h i s command f i l t e r s the data i n frame i f r l and s t o r e s the r e s u l t i n frame i f r l . . I t assumes t h a t the f i l t e r c o e f f i c i e n t s have alr e a d y been c a l c u l a t e d by e a r l i e r c a l l o f the FCOEF command. i f r 1 := frame to be f i l t e r e d . ( d e f a u l t s to 0 ) i f r 2 := frame where the f i l t e r e d data i s t o be placed . . ( d e f a u l t s t o i f r l ) mdeg := degree of polynomial to be f i t t e d t o the e n t i r e data i n frame i f r l . . T h i s p o l y n i m i a l w i l l be s u b t r a c t e d from the data before the f i l t e r i n g and be added back to the f i l t e r e d data._ mdeg < 0 w i l l be considered the same as mdeg = 0.. ( d e f a u l t s t o 0 ) l t a p e r := l e n g t h of t a p e r i n g f o r each end of the data s e t . T h i s i s t o minimize the Gibb*s e f f e c t i n the F o u r i e r Transform. I f l t a p e r i s 0, then n f i l p o i n t s w i l l be tapered, l t a p e r l e s s than 0 i m p l i e s no t a p e r i n g , i p l := the lower p o i n t e r l i m i t of the data to be f i l t e r e d * . ( d e f a u l t s t o i p t n l ) ip2 := the upper p o i n t e r l i m i t of the data to be f i l t e r e d . ( d e f a u l t s to iptn2 ) The number of p o i n t s t o be F o u r i e r transformed i n t h i s f i l t e r i n g o p e r a t i o n i s 2 * n f i l + ( i p 2 - i p t +1)+2* (ltaper-1) . . I t i s very important t o choose the va r i o u s parameters such t h a t t h i s number has only s m a l l prime f a c t o r s * PFPD n p x l , n p x r , s x , s y r x m a g , y m a g , s e a l , x o f f , i f l g This command outputs the p i x e l domain response of the f i l t e r i . e . the f i l t e r c o e f f i c i e n t s . npxl := lower l i m i t of p i x e l number to be considered, ( d e f a u l t s t o 0 ) npxh := upper l i m i t of p i x e l number to be considered. ( d e f a u l t s to n f i l - 1 ) l e n g t h of the x- a x i s to be p l o t t e d . . ( d e f a u l t s to 10 ) le n g t h o f the y - a x i s to be p l o t t e d . ( d e f a u l t s t o 6 ) xmag := margin on the x - a x i s . ( d e f a u l t s t o 0 ) ymag := margin on the y - a x i s . ( d e f a u l t s t o 0.25 ) sx sy 101 s e a l := p l o t s c a l e ( d e f a u l t s to 1 ) x o f f := o f f s e t from p r e v i o u s p l o t . ( d e f a u l t s to 3 ) MOD ( i f l g , 2) = 0 ==> p l o t t i n g of the f i l t e r . . MOD ( i f l g , 3) = 0 ==> p r i n t i n g the f i l t e r c o e f f i c i e n t s . MOD ( i f l g , 5 ) = 0 ==> reading of an 80 c h a r a c t e r s t i t l e from u n i t 5 immediately a f t e r the command. MOD ( i f l g , 1 4 ) = 0 ==> reading the namelist /PL0PC1/ from u n i t 5.. i f l g d e f a u l t s t o 2. Namelist /PL0PC1/ x m n , y m n , d x , d y , s x , s y , i t i t l , i x l a b , x l a b , t i t l e xmn = the minimum x value on the p l o t * . ymn = the minimum y value on the p l o t , sx = l e n g t h of the x - a x i s . sy = l e n g t h o f the y - a x i s . . xlab = 20 c h a r a c t e r s l a b e l f o r the x - a x i s . . i x l a b = number of c h a r a c t e r s i n the l a b e l . , t i t l e = 80 c h a r a c t e r s t i t l e f o r the p l o t . . i t i t l = number of c h a r a c t e r s i n the t i t l e . _ PFFD ltaper,ip1,ip2,fnl,fnr,sx,sy,xmag,ymag, s e a l , x o f f , i f l g T h i s command w i l l output the frequency response of the f i l t e r . The parameters l t a p e r , i p l , and ip2 have the same meaning and d e f a u l t v a l u e s as i n the FILT1 command. The parameters sx, sy, xmag, ymag, s e a l , x o f f , and i f l g have the same meaning and d e f a u l t values as i n PFPD. f n l = lower Nyquist frequency l i m i t i n the output. . ( d e f a u l t s to 0 ) fn r = upper Nyquist frequency l i m i t i n the output. ( d e f a u l t s to 100 ) The p r i n t e d output w i l l be of the form : ( % Nyquist; response, response i n db ) The n e g a t i v e response w i l l be dashed i n the p l o t s i n c e the response i n db w i l l be p l o t t e d . . 102 FFTPWR i f r1 , i f r f i f r p , i p l , i p 2 , n f pt,mdeg, l t a p e r , v 1 T h i s command computes the periodbgram s p e c t r a l power.. i f r 1 := frame c o n t a i n i n g the data* i f r f := frame where the f r e q u e n c i e s w i l l be placed.. The f r e q u e n c i e s w i l l be i n percentage of the Nyquist frequency.. i f r p := frame where the power w i l l be p l a c e d . I t w i l l have a p o i n t t o p o i n t correspondence with the f r e q u e n c i e s i n frame i f r f . . T h e d e f a u l t value i s i f r l . i p l := the lower p o i n t e r l i m i t of the data to be considered i n frame i f r 1 . . T h e d e f a u l t value i s i p t n l * ip2 := the upper p o i n t e r l i m i t of the data to be cons i d e r e d i n frame i f r l . The d e f a u l t value i s i p t n 2 . n f p t := the number of frequency p o i n t s to be used i n the c a l c u l a t i o n . T h i s w i l l be number of p o i n t s present i n frame i f r f . . T h e . d e f a u l t i s (ip2-ip1+1)/2+1. I f n f p t i s gr e a t e r than t h i s value, then zeros w i l l be padded to the data. I f n f p t i s l e s s the t h i s value, i p l and ip2 w i l l be changed by i n v e r t i n g the formula f o r the d e f a u l t value, mdeg := degree of polynomial to be f i t t e d to the data between i p l and i p 2 i n f r a m e : i f r 1 and the polynomial w i l l then be s u b t r a c t e d from the data, mdeg < 0 w i l l be c o n s i d e r e d the same as mdeg = 0. The d e f a u l t i s 0. l t a p e r := l e n g t h of t a p e r i n g f o r each end of the data s e t . D e f a u l t i s 5% of the t o t a l l e n g t h . The value of n f p t used w i l l be retu r n e d as v1 i f a v a r i a b l e i s present a t the l o c a t i o n i n the parameter l i s t . T h i s may be d i f f e r e n t than the input v a l u e . 103 POLYNOMIAL CORVE FITTING COMMANDS PFIT T h i s comman and s t o r e s i s performe The command used as the performed u may be used mean value c o r r e s p o n d i to be p l a c e p o i n t e r s . i f r 1 i f r 2 mdeg i f r 1 , i f r 2 , m d e g , k , i f l g , i p l , i p 2 , n p t . f i t s the data i n frame i f r l by a d f i t s i f  the polynomial i n frame i f r 2 d by the standard system sub w i l l read the p o i n t numbers x - c o o r d i n a t e s f o r the f i t . s i n g the RDDATA sub r o u t i n e . . Each y - c o o r d i n a t e f o r the of 2*k+1 p o i n t s i n frame i f r ng x-coordinate.,The range o d i n frame i f r 2 w i l l be l i m i 1 polynomial . .The curve f i t r o u t i n e DOLSF. which w i l l be The re a d i n g i s Op to 200 po i n t s f i t w i l l be the 1 about the f the polynomial ted by the word frame c o n t a i n i n g the data to be f i t t e d , frame where the polynomial i s to be:placed.. degree of the polynomial to be used. I f mdeg i s > 0, then the polynomial used w i l l be of e x a c t l y mdeg degree..If mdeg i s < 0, then the subroutine w i l l choose the polynomial which has a degree not g r e a t e r than the ab s o l u t e value o f mdeg. I f mdeg i s > 20, i t w i l l s t i l l be c o n s i d e r e d as 20. ( -default i s 1 ) the number of p o i n t s t o be averaged over on each s i d e of the corresponding x-coordinate._ ( d e f a u l t i s 0 ) ==> MOD ( i f l g , 2 ) # 0 and MOD ( i f l g , 3) # 0 MOD ( i f l g ,2) = 0 ==> MOO ( i f l g , 3) = 0 ==> i f l g d e f a u l t s t o 1. use RDDATA to read i n the x- c o o r d i n a t e s . . use p r e v i o u s x - c o o r d i n a t e s i f they e x i s t . I f there are no p r e v i o u s l y d e f i n e d p o i n t s , then RDDATA w i l l be used t o read the x - c o o r d i n a t e s i . w i l l choose npt e q u a l l y spaced p o i n t s betweeb i p l and ip2 as the x-c o o r d i n a t e s . . n p t d e f a u l t s to 10 while i p l and i p 2 d e f a u l t to i p t n ! and ipt n 2 r e s p e c t i v e l y , npt must be < 200.. PFIT1 i f r 1 , i f r 2 r m d e g , k , i f l g , i p 1 , i p 2 , n p t T h i s command i s almost i d e n t i c a l t o PFIT and a l l the parameters have the same meaning and d e f a u l t v a l u e s except that mdeg must be g r e a t e r than 0,. The curve f i t t i n g i n t h i s case i s achieved by s o l v i n g the normal equations u s i n g the Householder Transformation;, . T h i s i s done through the use of the system subroutine DLSQHS. mdeg w i l l be a u t o m a t i c a l l y decreased i f d i f f i c u l t i e s i n the f i t were encountered. T h i s command shares the same i n f o r m a t i o n on de f i n e d x - c o o r d i n a t e s with PFIT. ARRFIT arrm This command d e f i n e s the values s t o r e d i n a r r a y arrm as the x - c o o r d i n a t e s f o r curve f i t t i n g . These p o i n t s can then be used by PFIT or PFIT1 as p r e v i o u s l y d e f i n e d x - c o o r d i n a t e s . The number o f p o i n t s i n the a r r a y w i l l become the number of d e f i n e d x - c o o r d i n a t e s . FITARR arrm This command w i l l copy the d e f i n e d x - c o o r d i n a t e s f o r curve f i t t i n g i n t o the ar r a y arrm. The number of po i n t s i n the ar r a y w i l l be determined by the number o f de f i n e d x - c o o r d i n a t e s . 105 DATA SMOOTHING COMMAND SMOOP i f r 1 , n s m o o , i f r 2 , i s m o d e , i p l , ip2 T h i s command w i l l perform "box-car" smoothing of the data..The smoothing a t the ends of the data f o l l o w s one of two a l t e r n a t i v e s . The ends can be extended by f o l d i n g . The smoothing w i l l then have some of the p o i n t s at the ends g i v e n double weight. The other a l t e r n a t i v e has the number o f smoothing p o i n t s decrease c o n t i n u o u s l y at the ends. There are a l s o two a l t e r n a t i v e s i n performing even p o i n t smoothing..One has the usual r e s u l t i n even point smoothing t h a t the e n t i r e smoothed data s et i s s h i f t e d i n one d i r e c t i o n by h a l f a p o i n t . The other a l t e r n a t i v e w i l l use a running mean of 2*n+1 p o i n t s f o r a even poin t smoothing of 2*n p o i n t s . The f i r s t and the l a s t p o i n t s , however, are given only have the weight. T h i s w i l l not cause the e n t i r e s h i f t i n g of the smoothed data*, i f r 1 := frame c o n t a i n i n g the data to be smoothed.. ( d e f a u l t i s 0 ) nsmoo := number of smoothing p o i n t s . . ( d e f a u l t i s 3 ) i f r 2 := frame where the smoothed data i s t o be pl a c e d . ( d e f a u l t s t o i f r l y i p l := lower p o i n t e r l i m i t f o r the smoothing. ( d e f a u l t s to i p t n l ) ip2 := upper p o i n t e r l i m i t f o r the smoothing.. ( d e f a u l t s to i p t n 2 ) ismode < 0 ==> the number of smoothing p o i n t s w i l l decrease c o n t i n u o u s l y a t the ends. = 0 ==> no smoothing of the data. T h i s w i i l cause the command to do nothing.. > 0 ==> the ends of the data w i l l be fo l d e d f o r smoothing.. f o r even p o i n t smoothing :-ABS (ismode) < 10 ==> the e n t i r e smoothed data w i l l be s h i f t e d to the l e f t by 0.5 p o i n t s i * e . p(n) — > p(n-0.5) > 10 ==> no s h i f t i n g of the data. The f i r s t and l a s t p o i n t s of the nsmoo+1 p o i n t s w i l l be given h a l f the weight.. ismode d e f a u l t s to 11. INTEGRATION COMMAND DPXI1 i f r , i p 1 , i p 2 , v 4 This command w i l l i n t e g r a t e the data i n the frame i f r from p o i n t i p l to po i n t ip2 using Simpson's r u l e . The r e s u l t w i l l be returned as v4 i f a v a r i a b l e i s present at the l o c a t i o n i n the parameter l i s t . .The d e f a u l t f o r ipd and i p 2 are i p t n l and iptn 2 r e s p e c t i v e l y . . DERIVATIVES COMMAND DERIV i f r l , i f r 2 , i d , i p 1 , i p 2 , l t a p e r T h i s command computes the f i r s t or the second d e r i v a t i v e of the data by F o u r i e r Transform method, i f r l := frame c o n t a i n i n g the data i f r 2 := frame where the d e r i v a t i v e i s t o be placed* i d = 1 ==> the f i r s t d e r i v a t i v e i s to be c a l c u l a t e d . = 2 ==> the second d e r i v a t i v e i s to be c a l c u l a t e d . ( the d e f a u l t i s i d = 1 ) i p l := lower p o i n t e r l i m i t i n frame i f r l . . ( d e f a u l t i s i p t n l ) ip2 := upper p o i n t e r l i m i t i n frame i f r 2 . ( d e f a u l t i s i p t n 2 ) l t a p e r := l e n g t h of t a p e r i n g a t the ends o f the data.. ( d e f a u l t i s 5% of the t o t a l l e n g t h ) The t o t a l l e n g t h of the data f o r d e r i v a t i v e c a l c u l a t i o n w i l l be ip2-ip1+1. I t w i l l be d e s i r a b l e f o r t h i s number to have only small prime f a c t o r s . DISPERSION COMMANDS POSI i f r , i f l g , m o d e This command computes the p o s i t i o n of s p e c t r a l l i n e s . . The p o s i t i o n of a s p e c t r a l l i n e i s determined by f i t t i n g a parabola to the logarithm of the l i n e p r o f i l e . Only 6 points about the maximum of the l i n e p r o f i l e a re used., i f r := frame c o n t a i n i n g the spectrum. A l l the l i n e s whose p o s i t i o n s are to found must appear as emission l i n e s r e c t i f i e d t o the continuum, i . e . a l l a b s o r p t i o n l i n e s p e c t r a have to be r e c t i f i e d and i n v e r t e d . . ( d e f a u l t i s 0 ) i f l g = 0 ==> approximate l i n e p o s i t i o n s w i l l be read u s i n g the RDDATA subroutine..The p o s i t i o n s read w i l l be c o n s i d e r e d as def i n e d f o r f u t u r e r e f e r e n c e s . . = 1 ==> use the approximate l i n e p o s i t i o n s which have been p r e v i o u s l y d e f i n e d . . ( d e f a u l t i s i f l g = 0 ) mode = 1 ==> each number read by RDDATA w i l l be cons i d e r e d as the approximate p o s i t i o n of one s p e c t r a l l i n e * .The maximum of the l i n e p r o f i l e w i l l be con s i d e r e d as the maximum w i t h i n 5 p o i n t s of t h i s approximate value read. Op t o 200 p o s i t i o n s can be read. Each number - 2 read w i l l be s t o r e d under the i n t e r n a l storage IPS while each number + 2 w i l l be s t o r e d under IPF. = 2 ==> the numbers read by RDDATA w i l l be considered as i n p a i r s * The maximum of the l i n e p r o f i l e w i l l be con s i d e r e d as the maximum found between the two po i n t l i m i t s i n d i c a t e d by each p a i r read. Op t o 200 p a i r s of search range can be read which w i l l correspond to 200 l i n e p o s i t i o n s . . T h e f i r s t element i n each p a i r read w i l l be s t o r e d under IPS while the second element w i l l be under the i n t e r n a l s torage IPF* ( d e f a u l t i s mode = 1 ) The p r i n t e d output of t h i s command w i l l c o n t a i n p a i r s of l i n e p o s i t i o n determined and the mean value of the 6 p o i n t s used i n the determination*.The command w i l l a l s o s t o r e the determined p o s i t i o n s under the i n t e r n a l storage POS.. 1 0 8 POSN i f r , i f l g , n t r , m o d e T h i s command determines the p o s i t i o n by l e a s t squares f i t t i n g a parabola to the l i n e p r o f i l e . The s p e c t r a l l i n e whose p o s i t i o n i s to be found need not appear as emission l i n e . The parameters i f r , i f l g , and mode have the same meaning and d e f a u l t s as i n the POSI command.. The i n t e r n a l storage spaces IPS, IPF, and POS w i l l be loaded i n the same manner as i n the POSI command. .The maximum or minimum of the l i n e p r o f i l e are i n i t i a l l y found i n the same manner as i n the POSI command. The command w i l l assume to be f i n d i n g p o s i t i o n f o r emission l i n e i f the mean value of the 3 p o i n t s about the middle of the se a r c h range i s g r e a t e r than the mean of a l l the points w i t h i n the:search range*.Otherwise, the program w i l l assume to be f i n d i n g the p o s i t i o n f o r a b s o r p t i o n l i n e . Sine i n t e r p o l a t i o n i s then used about t h i s maximum or minimum to determine the p r o f i l e f o r every 0.1 p o i n t . & new maximum or minimum i s then found among 41 of these i n t e r p o l a t e d p o i n t s . The p o s i t i o n of the l i n e i s then determined by l e a s t squares f i t t i n g of a parabola to the the 27 i n t e r p o l a t e d p o i n t s about t h i s new maximum or minimum* The number of p o i n t s used i n each o f the Sine i n t e r p o l a t i o n s i s 2*ntr+1.,ntr d e f a u l t s to 10. The p r i n t e d output w i l l c o n t a i n p a i r s of determined p o s i t i o n and the mean value of the 27 i n t e r p o l a t e d p o i n t s used i n the parabola f i t t i n g . POSD i f r , i f l g , i s i n c , n t r , m o d e T h i s command computes the p o s i t i o n o f z e r o - c r o s s i n g s i n frame i f r . I f frame i f r c o n t a i n the f i r s t d e r i v a t i v e of l i n e p r o f i l e s , then t h i s command w i l l e f f e c t i v e l y f i n d s the p o s i t i o n s of l i n e p r o f i l e s . . T h e parameters i f l g and mode have the same meaning and d e f a u l t s as i n the POSI and PDSN commands. The approximate p o s i t i o n of each z e r o - c r o s s i n g i s found by d e t e c t i o n of a change.of s i g n within the search range. The command w i l l only c o n s i d e r the z e r o - c r o s s i n g detected c l o s e s t t o the mid-point i n the s earch range. A s t r a i g h t l i n e i s then l e a s t squares 109 f i t t e d about the z e r o - c r o s s i n g . The p o i n t range i n c l u d e d i n the f i t t i n g i s about the z e r o - c r o s s i n g and has the same number of p o i n t s as i n the search range. I f i s i n c i s g r e a t e r than 3, then i s i n c number of e q u a l l y spaced points w i l l be Sine i n t e r p o l a t e d w i t h i n the point range about the z e r o - c r o s s i n g * i s i n c d e f a u l t s to 0. The number of p o i n t s used i n each Sine i n t e r p o l a t i o n i s 2*ntr+1.. n t r d e f a u l t s to 10. The f i n a l z e r o - c r o s s i n g i s then c a l c u l a t e d from the f i t t e d s t r a i g h t l i n e . . T h e p r i n t e d output w i l l c o n t a i n p a i r s of determined p o s i t i o n and the f r a c t i o n a l e r r o r as i n d i c a t e d by the r e s i d u e i n the f i t . . T h i s command w i l l a l s o load the i n t e r n a l s t o r a g e spaces IPS, IPF, and POS i n the same manner as by the commands POSI and POSN. DISPI i f r , n d e g , i l k , i f l g , m o d e This command c a l c u l a t e s the d i s p e r s i o n r e l a t i o n f o r the spectrum i n frame i f r . . T h i s command w i l l c a l l POSI to determine the p o s i t i o n s of s p e c t r a l l i n e s , i f r has the same meaning and d e f a u l t as i n POSI. ndeg i s the degree or maximum degree of polynomial to be f i t t e d as the d i s p e r s i o n r e l a t i o n ; . . ndeg d e f a u l t s to 1,.The h i g h e s t degree of polynomial p o s s i b l e i s 20. IF i l k i s not equal to 0, then a polynomial of e x a c t l y ndeg degree w i l l be used. Otherwise, the s u b r o u t i n e DOLSF w i l l choose a value which i s not g r e a t e r than ndeg. i l k d e f a u l t s to 0. The parameter mode has almost the same meaning as i n POSI.. In t h i s case, an a s s o c i a t e d wavelength i s a l s o read a f t e r each p o s i t i o n or range of p o s i t i o n i . e . f o r mode equals 1, p a i r s of number w i l l be read while t r i p l e s of number w i l l be read by RDDATA f o r mode equals 2. mode d e f a u l t s to 1. The wavelengths read w i l l be loaded i n t o the i n t e r n a l storage WWL while IPS, IPF, and POS w i l l be loaded i n the same manner as i n POSI. Op to 200 wavelengths, p o s i t i o n s , or ranges of p o s i t i o n can be read by RDDATA and s t o r e d i n the i n t e r n a l s t o r a g e s . . The c a l c u l a t e d d i s p e r s i o n formula w i l l be loaded as the g l o b a l d i s p e r s i o n formula.. MOD ( i f l g , 2) = 0 ==> use data from previous c a l l . . MOD ( i f l g , 3 ) = 0 ==> no p o s i t i o n c a l c u l a t i o n . MOD ( i f l g , 5 ) = 0 ==> no d i s p e r s i o n c a l u l a t i o n . i f l g d e f a u l t s to 1. DISPN i f r , n d e g , i l k , i f l g , n t r , mode This command c a l c u l a t e s the d i s p e r s i o n r e l a t i o n f o r the spectrum i n frame i f r . T h i s command w i l l c a l l POSN to determine the p o s i t i o n s of the s p e c t r a l l i n e s , ndeg, i l k , i f l g , and mode have the same meaning and d e f a u l t as i n the DISPI command, i f r and n t r have the same meaning and d e f a u l t as i n the POSN command..This command i s the DISPI c o u n t e r p a r t that c a l l s POSN r a t h e r than POSI to determine l i n e p o s i t i o n s . DISPD i f r * n d e g , i l k , i f l g , i s i n c , n t r , m o d e T h i s command c a l l s POSD to determine the p o s i t i o n s of s p e c t r a l l i n e s and then use them i n the c a l c u l a t i o n of d i s p e r s i o n r e l a t i o n . The parameters ndeg, i l k , i f l g , and mode have the same meaning and d e f a u l t as i n the DISPI command* i f r , i s i n c , and n t r have the same meaning and d e f a u l t as i n the POSD command..This command i s the DISPI co u n t e r p a r t t h a t c a l l s POSD r a t h e r than POSI to determine l i n e p o s i t i o n s . POS&BB arrm,ik T h i s command c o p i e s i n f o r m a t i o n s t o r e d i n the i n t e r n a l storage POS, WWL, IPS, or IPF i n t o the array arrm.. i k = 1 ==> the i n t e r n a l storage POS w i l l be copie d . = 2 ==> the i n t e r n a l s torage WWL w i l l be copie d . = 3 ==> the i n t e r n a l storage IPS w i l l be copie d . = 4 ==> the i n t e r n a l storage IPF w i l l be copie d . = 5 ==> the mean of IPS and IPF w i l l be copied. . ABBPOS arrm,ik T h i s command c o p i e s the elements i n the ar r a y arrm i n t o the i n t e r n a l storage POS, WWL, IPS, or IPF. i k = 1 ==> c o p i e s i n t o POS. = 2 ==> c o p i e s i n t o WWL. = 3 ==> c o p i e s i n t o IPS. = 4 ==> c o p i e s i n t o IPF. = 5 ==> 2 w i l l be s u b t r a c t e d from each element i n the ar r a y and then copied t o IPS..2 w i l l a l s o be added to each element i n the a r r a y and then c o p i e d to IPF* SDISPE Th i s command s t o r e s the g l o b a l d i s p e r s i o n formula i n t o the i n t e r n a l space SC. Up to 25 formulae can be s t o r e d i n SC. „. Each of these formulae may c o n t a i n up t o 21 c o e f f i c i e n t s i * e * of degree:20..This command w i l l f i n d a u t o m a t i c a l l y an empty p o s i t i o n i n SC f o r storage..Each of these storage space i s re f e r e n c e d by an index. T h i s command w i l l p r i n t the index of s t o r e d formula.. RDISPE nsc This command r e t r i e v e s the formula s t o r e d under the ind nsc i n the i n t e r n a l storage space SC and l o a d i t as the g l o b a l d i s p e r s i o n formula._The nsc d e f a u l t t o the most r e s c e n t l y s t o r e d formula by the SDISPE command w i l l be r e t r i e v e d , nsc < 0 or nsc > 25 w i l l r e s u l t i n e r r o r . WDISPE nsc This command w i l l s t o r e the g l o b a l d i s p e r s i o n formula i n t o the storage space SC under the index nsc. , I f nsc i s m i ssing from the parameter l i s t , then t h i s command w i l l behave i n the same manner as SDISPH.. IDISPE n s c , i f i t T h i s command w i l l read from u n i t 5 a d i s p e r s i o n formula of i f i t terms using the F o r t r a n f r e e format I/O . I t w i l l then be s t o r e d i n t o SC under the index n s c i l f nsc i s < 0 or > 25, then the command w i l l t r y to f i n d an empty space i n SC. The c o e f f i c i e n t s w i l l not be read i f the search i s u n s u c c e s s f u l . . i f i t must be > 0 and < 21. PDISPE nsc Th i s command w i l l p r i n t the formula s t o r e d i n SC under the index nsc. I f nsc = 0, then the g l o b a l formula w i l l be p r i n t e d , nsc d e f a u l t s to 0. 112 VDISPR n s c , v e l T h i s command lo a d s the d i s p e r s i o n formula s t o r e d i n SC under the index nsc t o be the g l o b a l formula. I f nsc i s 0, then no formula w i l l be loaded, nsc d e f a u l t s t o 0*. The command then v e l o c i t y s h i f t s the g l o b a l d i s p e r s i o n formula by a v e l o c i t y of v e l k m s - 1 . . v e l d e f a u l t s t o 0. . POLYF i f r , n s c This command w i l l e v a l u a t e the polynomial s t o r e d i n SC under the index nsc f o r the numbers st o r e d i n frame i f r . I f nsc i s 0, then the g l o b a l formula w i l l be eva l u a t e d . . The polynomial e v a l u a t i o n i s performed on the s t o r e d values i n frame i f r w i t h i n the word p o i n t e r l i m i t s . The r e s u l t i s s t o r e d back i n t o frame i f r . . n s c d e f a u l t s to 0. CWAVS i f r 1 , i f r 2 , p 0 , p 1 , m , n t r , i p 1 , i p 2 This command assumes the g l o b a l formula f o r frame i f r l and Sine i n t e r p o l a t e s the content i n frame i f r l i n t o a const a n t wavelength s c a l e . The r e s u l t i s then placed i n t o frame i f r 2 s t a r t i n g at the f i r s t element. , The number of i n t e r p o l a t e d p o i n t s w i l l be m. The number of p o i n t s used i n each Sine i n t e r p o l a t i o n i s 2*ntr+1«. The d e f a u l t value f o r n t r i s 3 . n t r i s a l s o considered t o be 3 i f n t r i s l e s s than 0. The i n t e r p o l a t i o n i s performed w i t h i n the p o i n t l i m i t s i p l and i p 2 which d e f a u l t t o i p t n l and i p t n 2 r e s p e c t i v e l y . The d e f a u l t and i n cases t h a t m i s neg a t i v e , m w i l l be s e t to ip2-ip1+1..The m i n t e r p o l a t e d points s t o r e d i n frame i f r 2 w i l l then have t h e : d i s p e r s i o n formula : wavelength = p 0 + p 1 * ( I - 1 ) , where I i s the p o i n t number i n frame i f r 2 and i t runs from 1 t o m. In producing the constant wavelength s c a l e , the g l o b a l formula has to b e . i n v e r t e d . . T h e : n o n l i n e a r equation i s solved e x a c t l y up to 4th order while numerical methods are used f o r high e r orders.,p0 and p1 should be chosen such t h a t the i n t e r p o l a t i o n i s wi t h i n p o i n t i p l and ip2 i n frame i f r l . 1 1 3 TAPE AND SEQUENTIAL FILE 1^0 COMMANDS E e t i c a n t uses a standard format to s t o r e data r e c o r d s on f i l e . The same format i s used f o r f i l e s on both disk and tape. The use of a standard format i m p l i e s the:use of a standard system f o r w r i t i n g and readi n g data r e c o r d s . , This standard data r e c o r d format i s d i f f e r e n t than those on l i b r a r y data tapes. R e t i c e n t uses s e q u e n t i a l f i l e s rather than l i n e f i l e s f o r I/O of data r e c o r d s . Only l a b e l l e d magnetic tapes should be used. The:basic data record format 8 bytes : t a p e / f i l e format l a b e l w r i t t e n by MTS... These 8 bytes w i l l not be v i s i b l e i n F o r t r a n EE AD/WRITE statements. . 4 bytes : f i l e number i n INTEGEE*4. T h i s number w i l l be 0 f o r d i s k f i l e s . . 4 bytes : r e c o r d number on the f i l e i n INTEGER*4.. 4 bytes : t h i s INTEGEB*4 number i s the number of u s e f u l data p o i n t s stored i n the r e c o r d . I f t h i s number i s neg a t i v e , then t h i s p a r t i c u l a r r e c o r d i s a comment record f o r a f i l e and the absolute value of t h i s number i s the minimum number of data r e c o r d s f o l l o w i n g t h i s r e c o r d . 4 bytes : t h i s INTEGEE*4 number i s the maximum number of data p o i n t s i n the re c o r d . 4 bytes : the cons t a n t 2 i n INTEGEE*4.. 4 bytes : the constant 0 i n INTEGEE*4._ 8 bytes : the constant 1.0D0 i n REAL* 8. . 8 bytes : the cons t a n t 0.ODO i n REAL*8. . 80 bytes : an 80 c h a r a c t e r s comment nchm*8 bytes : nchm number of REAL*8 data p o i n t s where nchm i s the maximum number of data p t s . i n the re c o r d . . A l l data records must f i r s t be w r i t t e n onto a s e q u e n t i a l f i l e b e fore being p h y s i c a l l y c o p i e d onto a tape. In f a c t , because o f the l i m i t e d number of frames, s t o r i n g data r e c o r d s on s e q u e n t i a l f i l e s i s the primary method f o r temporary s t o r i n g a l a r g e number of records during the R e t i c e n t run. A l l R e t i c e n t commands which manipulate a l a r g e number of s p e c t r a a t the same time use f i l e s f o r temporary storage. 114 WDATI ndf,nchm Th i s command i n i t i a l i s e s the s e q u e n t i a l f i l e attached to un i t ndf f o r w r i t i n g , nchm i s the maximum number of data p o i n t s per rec o r d to be on the f i l e . . n c h m d e f a u l t s to nch which i s the number of p o i n t s per frame..The u n i t ndf must have the w r i t e - p r o t e c t i o n s t a t u s turned o f f . WDATS n d f , i f r , i p 1 , i p 2 , i c o m T h i s command w r i t e s the data i n frame i f r onto the f i l e a ttached to u n i t ndf. The f i l e must have a l r e a d y been i n i t i a l i s e d or c o n t a i n data records..Only the elements between the point range i p l and i p 2 w i l l be w r i t t e n . . i p l and ip2 d e f a u l t s t o i p t n l and ipt n 2 r e s p e c t i v e l y . . Point number i p l i n frame i f r w i l l be the f i r s t p o i n t i n the data r e c o r d . Zeros w i l l be padded to the data record to achieved the de f i n e d maximum number o f p o i n t s per data r e c o r d . icom > 0 & < 99 ==> rea d the comment from u n i t icom. > 100 ==> use blanks as the comment.' < 0 ==> use the comment block a s s o c i a t e d with frame i f r as the comment.. icom d e f a u l t s t o 100. WDAT n d t , n d f , n f i l e , r s , i f h d , i e o f T h i s command w r i t e s a l l the data r e c o r d s i n the f i l e a ttached t o u n i t ndf onto the tape attached to u n i t ndt. , Both u n i t ndt and ndf must have the w r i t e - p r o t e c t i o n s t a t u s turned o f f . The tape w i l l be p o s i t i o n e d to the beginning of f i l e n f i l e before w r i t i n g on the tape. I f n f i l e i s 0, then the tape w i l l not be r e - p o s i t i o n e d . I f n f i l e i s < 0, then the tape w i l l be p o s i t i o n e d to the end of the tape before w r i t i n g . . n f i l e d e f a u l t s t o -1. The tape w i l l a l s o be p o s i t i o n e d to the beginning of record r s of the p a r t i c u l a r f i l e before copying, r s = 0 i m p l i e s no r e - p o s i t i o n i n g . . r s < 0 w i l l be c o n s i d e r e d the same as r s = 1, the d e f a u l t value.. I f i f h d = 1 r then a comment rec o r d w i l l a l s o be w r i t t e n , i f h d d e f a u l t s to 1 i f r s = 1, and d e f a u l t s to 0 i f r s > 1. I f i e o f i s 1, a f i l e mark w i l l be w r i t t e n a f t e r copying the data. The d e f a u l t f o r i e o f i s 1. The presence of a comment record at the beginning of each f i l e on the tape w i l l be very h e l p f u l i f one wants to scan the tape i n the f u t u r e . 115 WDATO n d f , i f r , i p l , i p 2 , i c o m , n c h m T h i s command w i l l write the data i n the frame onto the f i l e a t t a c h e d to u n i t ndf. The command w i l l f i r s t c a l l WDATI and then c a l l WDATS. The parameters ndf, i f r , i p l , i p 2 , and icom have the same meaning and d e f a u l t as i n the WDATS command, nchm has the same meaning as i n the WDATI command, nchm d e f a u l t s to i p 2 - i p 1 + 1. WDAT 1 n d t , n d f , i f r , i p 1 , i p 2 , i c o m , n f i l e ; r s , i f h d , i e o f The command w i l l f i r s t w r i t e the data i n frame i f r onto the f i l e attached t o u n i t ndf by c a l l i n g WDATS..Then i t writes a l l the data i n the f i l e onto the tape attached to u n i t ndt by c a l l i n g WDAT. The parameters ndf, i f r , i p l , i p 2 , and icom have the same meaning and d e f a u l t as i n the WDATS command* The parameters ndt, n f i l e , r s , i f h d , and i e o f have the same meaning and d e f a u l t values as i n the WDAT command. WDAT2 ndt,ndf,ifr»ip1,ip2,icom,nchm,nfile,rs, i f h d , i e o f This command w i l l f i r s t c a l l WDATI t o i n i t i a l i s e the f i l e ; Then i t w i l l write the data i n the frame i f r onto the f i l e a t tached to u n i t ndf by c a l l i n g WDATS. I t w i l l then c a l l WDAT to write the s i n g l e data record i n the f i l e onto the tape attached to u n i t ndt. The parameters ndf, i f r , i p l , i p 2 , and icom have the same meaning and d e f a u l t as i n the WDATS command. The parameter nchm has the same meaning and d e f a u l t as i n WDATO. The parameters ndt, n f i l e , r s , i f h d , and i e o f have the same meaning and d e f a u l t as i n the WDAT command. . WDTZ ndf This command w i l l erase the i n f o r m a t i o n a s s o c i a t e d with the f i l e a t t a c h e d t o u n i t ndf. T h i s w i l l enable one to ove r - w r i t e the f i l e by using the WDATS command which w i l l not normally rewind the f i l e before w r i t i n g * , I f ndf < 0, then a l l i n f o r m a t i o n a s s o c i a t e d with a l l the:I/O u n i t s w i l l be erased. The d e f a u l t f o r ndf i s -1.. EWTP n d t , i f r , n f i l e , n r s t , i f l g , v 1 , v 2 T h i s command w i l l read the tape att a c h e d to u n i t ndt.. The tape must have been w r i t t e n by the standard R e t i c e n t commao. ds. . The command w i l l f i r s t p o s i t i o n the tape t o the beginning of f i l e n f i l e and reco r d n r s t . . I t w i l l then read 1 data r e c o r d from the tape i n t o frame i f r . . n f i l e d e f a u l t s t o the c u r r e n t f i l e number where the tape i s p o s i t i o n e d and n r s t d e f a u l t s to the c u r r e n t record number*.The number of data p o i n t s s t o r e d i n t o the frame w i l l be retu r n e d as v1 i f a v a r i a b l e i s present a t the l o c a t i o n i n the parameter l i s t . The maximum number of points on the data r e c o r d read w i l l be returned as v2 i f a v a r i a b l e i s present at the l o c a t i o n . The data w i l l be p l a c e d i n t o frame i f r s t a r t i n g at the f i r s t element. p r i n t s the f i l e number, record number, nch, nchm and comment as s t o r e d on the data r e c o r d . . p r i n t s the f i l e number, record number, nch, and nchm. p r i n t s the comment.. p r i n t s a l l r e l e v a n t numerical i n f o r m a t i o n about t h e . r e c o r d , p r i n t s a l l r e l e v a n t numerical i n f o r m a t i o n about the record as w e l l as the comment, s t o r e s the comment read from the r e c o r d i n t o the comment block a s s o c i a t e d with frame i f r . i f l g d e f a u l t s t o 2*3*7*. RCTR n d t , i f r , i f l g , v 1 , v 2 T h i s command w i l l read 1 data r e c o r d from the tape as i n the RWTP command but without r e - p o s i t i o n i n g of the tape. The parameters ndt, i f r , and i f l g have the same meaning as i n RWTP. i f l g d e f a u l t s to 2*3*5*7,. v1 and v2 w i l l be returned v a l u e s i n the same manner as i n RWTP. . MOD ( i f l g , 6) = 0 MOD ( i f l g , 2) = 0 ==> MOD ( i f l g , 3 ) = 0 ==> MOD ( i f l g , 5) = 0 ==> MOD ( i f l g , 15) = 0 ==> MOD ( i f l g , 7 ) = 0 ==> ETSCN n d t , n f i l e , i f l g , n f n d T h i s command w i l l scan the R e t i c e n t tape and p r i n t s the r e l e v a n t i n f o r m a t i o n and comment f o r each data r e c o r d s . The command scans the tape attached to u n i t ndt by f i r s t p o s i t i o n i n g the tape t o the beginnning of f i l e . n f i l e * ..If n f i l e i s l e s s than 0, then the scan w i l l s t a r t at the beginning of the tape. I f n f i l e i s 0 f then the scan w i l l s t a r t at the beginning of the c u r r e n t f i l e . The d e f a u l t f o r n f i l e i s 0. I f i f l g i s l e s s than 0, then the scan w i l l s t a r t a t the c u r r e n t r e c o r d i . e . . n o r e - p o s i t i o n i n g of the tape. The meaning of the abs o l u t e value of i f l g i s same as i n the RWTP command except i f i f l g i s such that MOD (ABS ( i f l g ) ,7) = 0, then a l l records on each f i l e w i l l be scanned. Otherwise, only the f i r s t r e c o r d i n each f i l e w i l l be scanned..Scanning a l l the records i n the f i l e i s p o s s i b l e only i f the f i r s t r e c o r d i n the f i l e i s a comment record r a t h e r than a data r e c o r d . I f MOD (ABS ( i f l g , 11) ) # 0, then only one f i l e w i l l be scanned, nfnd i s the f i l e number where the scanning i s to be terminated..The parameter i f l g o v e r i d e s the nfnd parameter i f i f l g s i g n i f i e s t h a t only one f i l e i s to be scanned, nfnd d e f a u l t s t o the f i l e at which the tape was p o s i t i o n e d when t h i s command was c a l l e d , i f l g d e f a u l t s to 2*3*7. JRSET n d f , j r e c , n s i z e T h i s command w i l l a l t e r the i n t e r n a l i n f o r m a t i o n on the s e q u e n t i a l f i l e attached t o u n i t ndf. I t w i l l s e t the number of data r e c o r d i n t h a t f i l e to be j r e c and the maximum number of data p o i n t s per reco r d i n the f i l e to be nsize.. j r e c d e f a u l t s to j r e c and n s i z e d e f a u l t s t o nch, the number of p o i n t s per frame. . JRFND n d f , i f l g , vil,v2 T h i s command w i l l scan a l l r e c o r d s i n the f i l e : a t t a c h e d to u n i t ndf. I t w i l l p r i n t i n f o r m a t i o n on each record a c c o r d i n g t o the value of the parameter i f l g which has the same meaning as i n RWTP. Th i s command w i l l a l s o update the i n t e r n a l i n f o r m a t i o n on the f i l e . v1 and v2 w i l l r e t u r n the same i n f o r m a t i o n as i n RWTP. The d e f a u l t f o r i f l g i s 2*3. RWFP n d f , i f r , n r s t , i f l g , v 1 , v 2 T h i s command reads r e c o r d n s t on the s e q u e n t i a l f i l e a t tached to u n i t ndf. I t then s t o r e s the data i n t o frame i f r . n r s t d e f a u l t s to the c u r r e n t record number. The parameter i f l g has the same meaning and d e f a u l t as i n the:RWTP command. v1 and v2 w i l l be returned i n the same manner as i n RWTP. RCFR n d f , i f r , i f l g , v i , v 2 T h i s command reads one rec o r d from the f i l e attached to u n i t ndf and s t o r e s the data i n t o frame i f r . The parameter i f l g has the same meaning and d e f a u l t as i n the RCTR command..v1 and v2 w i l l a l s o be re t u r n e d i n the same manner as i n RCTR. TRNTF n d t , n d f , n r e c , i f l g T h i s command c o p i e s nrec number of records from the tape attached to u n i t ndt onto the s e q u e n t i a l f i l e attached to u n i t n d f . . U n i t ndf must have the w r i t e - p r o t e c t i o n s t a t u s turned o f f * T h i s command w i l l not r e - p o s i t i o n the tape before reading..The command w i l l rewind the f i l e b efore copying onto i t * The absolute value o f i f l g has the same meaning as i n the RWTP command. I f i f l g i s i e s s than 0, any comment records w i l l a l s o be copied while normally, comment records w i l l not be copied although they must be i n c l u d e d i n the value f o r nrec i . e . i f comment r e c o r d s are present, then l e s s than nrec number of r e c o r d s w i l l normally be copied onto the f i l e * The d e f a u l t f o r i f l g i s 2*3. . . 119 DIFFERENCE-CALCULATION COMMAND DIFF n d f i , n d f o , i f r , m d a t , i p 1 , i p 2 , i m o d e , i r f T h i s command reads a number of s p e c t r a s t o r e d i n a f i l e , computes the d i f f e r e n c e s p e c t r a with r e s p e c t t o the mean or one p a r t i c u l a r spectrum, and w r i t e s the d i f f e r e n c e s onto a f i l e . n d f i := I/O u n i t where the s e q u e n t i a l f i l e c o n t a i n i n g the o r i g i n a l s p e c t r a i s attached. One data r e c o r d c o n t a i n s only one spectrum._The f i r s t spectrum must s t a r t a t r e c o r d 1* No comment reco r d should be present.. ndfo := I/O u n i t where the s e q u e n t i a l f i l e onto which the d i f f e r e n c e s p e c t r a w i l l be place d . . The w r i t e - p r o t e c t i o n s t a t u s must be.turned o f f . . i f r := frame where the spectrum which was s u b t r a c t e d from a l l the s p e c t r a to produce d i f f e r e n c e s w i l l be placed.. mdat := number of s p e c t r a to be d i f f e r e n c e d . . i p l := lower poin t l i m i t i n each spectrum f o r the c a l c u l a t i o n of d i f f e r e n c e spectrum..Default i s i p t n l . ip2 := upper p o i n t l i m i t i n each spectrum f o r the c a l c u l a t i o n o f d i f f e r e n c e spectrum..Default i s i p t n 2 . ( The d i f f e r e n c e s p e c t r a i n the f i l e attached t o u n i t ndfo w i l l each have l e n g t h ip2-ip1+1 ) i r f := same as the i f l g parameter i n RWTP. Defau l t i s 2*3. imode < 0 ==> no d i f f e r e n c e c a l c u l a t i o n . The mean spectrum w i l l be c a l c u l a t e d and stored i n t o frame i f r . = 0 ==> the mean spectrum i s to be s u b t r a c t e d from each spectrum t o produce the d i f f e r e n c e spectrum. > 0 ==> the spectrum i n r e c o r d number imode i s to be s u b t r a c t e d from each spectrum to produce the d i f f e r e n c e . In t h i s case, imode must be < mdat.„ imode d e f a u l t s t o 0. 120 SIMPLE PLOTTING COMMANDS N/INCH npts T h i s command s e t s the i n t e r n a l c o n s t a n t npts which i s the number of p o i n t s to be p l o t t e d per i n c h , npts may be used i n some p l o t t i n g commands to c a l c u l a t e the l e n g t h of the x - a x i s . CPLT1 i f r y , i p 1 , i p 2 , s x , s y , x m a g , y m a g , s e a l , i f l g , i t u T h i s command w i l l p l o t p o i n t numbers vs the data i n the frame i f r y . i p 1 := lower poin t l i m i t to be p l o t t e d . . ( d e f a u l t i s i p t n l ) ip2 := upper point l i m i t to be p l o t t e d . . ( d e f a u l t i s i p t n 2 ) S K := l e n g t h of the x - a x i s . ( d e f a u l t i s -1 ) sy := l e n g t h of the y - a x i s . . ( d e f a u l t i s 8 ) xmag := d i s t a n c e between the p l o t t e d data and the y - a x i s . ( d e f a u l t i s 0 ) ymag := d i s t a n c e between the p l o t t e d data and the x - a x i s . ( d e f a u l t i s 0.25 ) s e a l := p l o t s c a l i n g f a c t o r . . ( d e f a u l t i s 1 ) i f l g := p l o t c o n t r o l parameter. ( d e f a u l t i s 2 ) i t u := I/O u n i t where the p l o t t i t l e may be read. ( d e f a u l t i s 5 ) The number of data p o i n t s t o be p l o t t e d i s ip2-ip1+1.. I f sx < 0.1 then sx i s c a l c u l a t e d by the constant npts. I f npts has not been p r e v i o u s l y d e f i n e d by the N/INCH command, then npts = 100+(ip2-ip1)/1024*100 w i l l be used. .sx i s the c a l c u l a t e d as (ip2-ip1)/npts+2*xmag. Normally, the s c a l i n g i n the y - c o o r d i n a t e i s performed by s c a l i n g between ymn and ymx, the minimum and maximum y-value r e s p e c t i v e l y . The method of s c a l i n g can be changed through the use of the i f l g p a r a m e t e r . . A l l p l o t parameters can be a l t e r e d by changing the values i n the n a m e l i s t /CPLT/. MOD ( i f l g , 3 ) = 0 ==> s c a l i n g of the y - c o o r d i n a t e i s to be between 0 and ymx with ymag a p p l i e d at both l i m i t s * MOD ( i f l g , 5 ) = 0 ==> s c a l i n g of the y - c o o r d i n a t e i s to be between 0 and ymx with ymag a p p l i e d only at the upper l i m i t . MOD ( i f l g , 7 ) = 0 ==> r e a d i n g of namelist /CPLT/ from u n i t 5.. 12 1 M3D(iflg,11) = 0 M3D ( i f l g , 13) = 0 MOD ( i f l g , 1 7 ) = 0 MOD ( i f l g , 19) = 0 ==> use the g l o b a l comment as the t i t l e f o r the p l o t . . ==> use the comment a s s o c i a t e d with frame i f r y as the t i t l e . ==> read an 80 c h a r a c t e r s t i t l e from u n i t i t u . . ==> no x - y - s c a l i n g c a l c u l a t i o n s . The form of the p l o t i s c o n t r o l l e d by the v a r i a b l e s present i n the n a m e l i s t /CPLT/. Namelist /CPLT/ scal,sx,sy,xmn,ymn,dx,dy,xo xs t , x i n c , x n d , y s t , y i n c , y n d , x i r s e t l , i r s e t r , i d a s h , d d 1 , d s 1 ipsym,isymb,symba,symht,idi h t , i t i c x , i t i c y , i l e t x , i l e t y , i p f r m , i x l a b , i y l a b , i t i t l , x l a t i t l e s e a l := p l o t s c a l e . The d e f a u l t i s the va parameter l i s t , sx := l e n g t h of x - a x i s . The d e f a u l t i s from the parameter l i s t or what w using the schemes p r e v i o u s l y ment sy := l e n g t h of y - a x i s . The d e f a u l t i s from the parameter l i s t . . xmn := minimum x-value on the p l o t . The what was c a l c u l a t e d t a k i n g i n t o a value o f xmag. ymn := minimum y-value on the plot..The what was c a l c u l a t e d by the severa s c a l i n g schemes*. dx := the amount i n x-value p l o t t e d per the s c a l i n g f a c t o r f o r the x-coor dy := the amount i n y-value p l o t t e d per the s c a l i n g f a c t o r f o r the y-coor x o r i := amount of s h i f t f o r the whole plo x - d i r e c t i o n . . x o r i = 0 i m p l i e s tha w i l l be 0.5 inch above the edge o ( d e f a u l t i s 1 ) y o r i := amount o f s h i f t f o r the whole plo y - d i r e c t i o n . ( d e f a u l t i s 1 ) ht := the height of the t i t l e , l a b e l s f t i c marks on the a x i s , and numeri the a x i s . ( d e f a u l t i s 0.14 ) x o f f l := l e n g t h of paper to be skipped bef the p l o t . . ( d e f a u l t i s 2.5 ) r i , y o r i , o f f 1, ,dd2,ds2, g x , i d i g y , i p d a t i b,ylab, l u e from the the value as c a l c u l a t e d ioned. the value d e f a u l t i s ccount the d e f a u l t i s 1 d i f f e r e n t i n c h i . e . . d i n a t e . i n c h i * e. d i n a t e . t i n the t the x - a x i s f the paper.. t i n the or the a x i s , c s c a l e s on ore s t a r t i n g 122 xst := the s t a r t i n g x-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the x - a x i s . . ( d e f a u l t i s xmn ) xinc := the increment i n x-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the x - a x i s . . ( d e f a u l t i s dx ) xnd := the ending x-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the x- a x i s * ( d e f a u l t i s sx/dx+xmn ) y s t := the s t a r t i n g y-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the y- a x i s * ( d e f a u l t i s ymn ) yinc := the increment i n y-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the y - a x i s . ( d e f a u l t i s dy ) ynd := the ending y-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the y - a x i s . ( d e f a u l t i s sy/dy+ymn ) i r e s t l = 1 ==> the o r i g i n i s r e s e t at the beginning of the p l o t i . e . using x o f f l to s t a r t a new p l o t * ( d e f a u l t i s 1 ) i r e s t r = 1 ==> the o r i g i n w i l l be r e s e t at the end of the p l o t * T h i s w i l l p r o h i b i t any f u r t h e r a d d i t i o n to the p l o t . ( d e f a u l t i s 1 ) id a s h = 1 ==> the data w i l l be p l o t t e d by a dashed l i n e . . ( d e f a u l t i s 0 ) dd! := l e n g t h of the f i r s t dash i n the dashed l i n e . ( d e f a u l t i s 0.05 ) d s l := l e n g t h of the f i r s t space i n the dashed l i n e . . ( d e f a u l t i s 0.05 ) dd2 := l e n g t h of the second dash i n the dashed l i n e . ( d e f a u l t i s 0.05 ) ds2 := l e n g t h of the second space i n the dashed l i n e * , ( d e f a u l t i s 0.05 ) i p d a t = J ==> the data w i l l be p l o t t e d . . Otherwise, only the a x i s may be p l o t t e d . ( d e f a u l t i s 1 ) ipsym = 1 ==> the p l o t t e d p o i n t s w i l l not be j o i n e d by l i n e s i . e . p l o t t i n g the i n d i v i d u a l p o i n t s o n l y . ( d e f a u l t i s 0 ) isymb := the symbol number f o r the p l o t t e d p o i n t s when ipsym i s 1. The normal values are 0, 1, 2, 3, 4 # 5, 10, 11, and 12. ( d e f a u l t is.11 ) symht := the he i g h t of the p l o t t e d s p e c i a l symbol;. ( d e f a u l t i s 0.125 ) symba := the o r i e n t a t i o n angle of the p l o t t e d s p e c i a l symbols.. ( d e f a u l t i s 0.0 ) i d i g x := the number o f d i g i t s a f t e r the decimal' poin t to be p l o t t e d f o r the numerical s c a l e l a b e l s on the x - a x i s . I f i d i g x = 0, then a decimal point w i l l be p l o t t e d at the end of the number. I f i d i g x = - 1 , then the decimal p o i n t w i l l not be p l o t t e d , i d i g x must be < 3. ( d e f a u l t i s -1 ) i d i g y := same as i d i g x but r e f e r r i n g to the y - a x i s . . ( d e f a u l t i s 1 ) i l e t x = 1 ==> p l o t t i n g the numerical s c a l e : l a b e l s on the x - a x i s ; ( d e f a u l t i s 1 ) i l e t y = 1 ==> p l o t t i n g the numerical s c a l e l a b e l s on the y - a x i s . ( d e f a u l t i s 1 ) i t i c x = 1 ==> p l o t t i n g the a s s o c i a t e d t i c marks on the x - a x i s . . ( d e f a u l t i s 1 ) i t i c y = 1 ==> p l o t t i n g the a s s o c i a t e d t i c marks on the y - a x i s ; ( d e f a u l t i s 1 ) xlab := 20 c h a r a c t e r s l a b e l f o r the x-axis . ( d e f a u l t s are 20 blanks ) ylab := 20 c h a r a c t e r s l a b e l f o r the y - a x i s ; ( d e f a u l t s are 20 blanks ) i x l a b := number of c h a r a c t e r s i n the l a b e l on the x-a x i s ; I f i x l a b > 0, then xlab w i l l be scanned and the proper value a s s i g n e d . I f i x l a b < 0, then no l a b e l w i l l be p l o t t e d and the x - a x i s w i l l be a simple s t r a i g h t l i n e . ( d e f a u l t i s 0 ) i y l a b := same as i x l a b but f o r the y - a x i s . . ( d e f a u l t i s 0 ) t i t l e := 80 c h a r a c t e r s t i t l e t o be p l o t t e d ; . ( d e f a u l t t o the t i t l e d e f i n e d e a r l i e r ) i t i t l := number of c h a r a c t e r s i n the t i t l e , t i t l e w i l l be scanned i f i t i t l > 0. ( d e f a u l t i s 0 ) M0D(ipfrm,2) = 0 ==> p l o t a l i n e a t the l e f t y - a x i s . . M0D(ipfrm,3) = 0 ==> p l o t a l i n e at the top x - a x i s . . M0D(ipfrm,5) = 0 ==> p l o t a l i n e at the r i g h t y - a x i s . M0D(ipfrm,7) = 0 ==> p l o t a l i n e a t the bottom x - a x i s i p f r m d e f a u l t s t o 2*3*5*7. .. 124 The i n p u t seguence f o r CPLT1 : a) t h e command c a l l of CPLT1 from u n i t 5. b) r e a d i n g the na m e l i s t /CPLT/ from u n i t 5 i f MOD ( i f l g , 7 ) = 0. c) r e a d i n g an 80 c h a r a c t e r s t i t l e from u n i t i t u i f MOD ( i f l g , 17) = 0. CPLT2 i f r x , i f r y , i p 1 , i p 2 , s x , s y , x m a g , y m a g , s e a l , i f l g , i t u T h i s command w i l l p l o t the content i n frame i f r x a g a i n s t the content i n frame i f r y . a l l other parameters have the same meaning and d e f a u l t as i n the CPLT1 command. The v a r i a b l e s i n the namelist /CPLT/ a l s o have the same d e f a u l t as i n CPLT1. The i n p u t sequence of t h i s command i s i d e n t i c a l t o t h a t of CPLT1. CPLT3 i f r x , i f r y 1 , i f r y 2 , i p 1 , i p 2 , s x , s y , x m a g , y m a g , s e a l , i f l g , i t u T h i s command w i l l produce two p l o t s superimposed on each other. _ The content i n f r a m e : i f r x w i l l be p l o t t e d a g a i n s t the content i n both frame i f r y l and frame i f r y 2 . A l l other parameters have the same meaning and d e f a u l t as i n the CPLT1 command except f o r : M0D(iflg,7) = 0 ==> w i l l read the namelist /CPLT/ from u n i t 5 and the v a r i a b l e s i n the namelist w i l l a f f e c t the p l o t t i n g of frame i f r y l . MOD(iflg,29) = 0 ==> w i l l read the namelist /CPLT/ from u n i t 5 again and the v a r i a b l e s w i l l a f f e c t the p l o t t i n g of frame i f r y 2 . . The s c a l i n g of the y- c o o r d i n a t e w i l l be done u s i n g the o v e r a l l minimum and maximum y-value of both frame i f r l and i f y r 2 . The s c a l i n g o ptions using the i f l g parameter w i l l a l s o be using the o v e r a l l maximum y - v a l u e . . T h i s has the e f f e c t of p l o t t i n g both frames with i d e n t i c a l s c a l e . The v a r i a b l e s i n the namelist /CPLT/ have s i m i l a r d e f a u l t as i n the CPLT1 command except f o r the f o l l o w i n g s . . a) p l o t t i n g of frame i f r y l : i r s e t l > 1 i r s e t r > 0 125 b) p l o t t i n g of frame i f r y 2 : i r s e t l > 0 i r s e t r > 1 i d a s h > 1 i x l a b > -1 i y l a b > -1 i t i t l > -1 i p f rm > 1 i t i c x > 0 i t i c y > 0 i l e t x > 0 i l e t y > 0 The i n p u t seguence f o r CPLT3 : a) the command c a l l of CPLT3 from u n i t 5.„ b) r e a d i n g the namelist /CPLT/ from u n i t 5 i f MOD ( i f l g , 7) = 0. c) r e a d i n g an 80 c h a r a c t e r s t i t l e from u n i t i t u i f MOD ( i f l g , 17) = 0. , d) r e a d i n g the namelist /CPLT/ from u n i t 5 i f M0D(iflg,29) = 0. . 126 STACK PLOf TING COMMANDS Stack p l o t t i n g of s e v e r a l s p e c t r a i s accomplished by c a l l i n g a d e f i n i t e s e t of commands i n a proper sequence.. Besides the u s u a l x- and y - c o o r d i n a t e of each i n d i v i d u a l spectrum, each spectrum i s a l s o i d e n t i f i e d with a value i n the t - c o o r d i n a t e . The t - c o o r d i n a t e c o n t r o l s the o r d e r i n g and the r e l a t i v e s e p a r a t i o n s between the p l o t t e d s p e c t r a . The ISTKP command must f i r s t be c a l l e d i n order to i n i t i a l i s e the i n t e r n a l p l o t t i n g parameters. This command a l s o c a l c u l a t e s the ranges i n value of the three c o o r d i n a t e s . The PSCLF command can be o p t i o n a l l y c a l l e d t o d e f i n e the d e s i r e d values f o r the s c a l i n g f a c t o r s of the t h r e e c o o r d i n a t e s . The SSTKP command i s then c a l l e d to s c a l e the s p e c t r a i . e . t o c a l c u l a t e a l l the necessary s c a l i n g and p l o t t i n g parameters..The a c t u a l p l o t t i n g i s then performed by c a l l i n g the PSTKP command* The form of the p l o t i s again c o n t r o l l e d by the v a r i a b l e s i n s e v e r a l F o r t r a n n a m e l i s t s * The values of these v a r i a b l e s can be modified through the use of o p t i o n a l namelist i n p u t i n each command. ISTKP n d f * i f r x , m d a t , i p 1 , i p 2 , n l e n * i r t , i f l g T h i s command i n i t i a l i s e s the s t a c k p l o t t i n g procedure and c a l c u l a t e s the ranges i n value of the three c o o r d i n a t e s . ndf := the I/O u n i t to which the s e q u e n t i a l f i l e c o n t a i n i n g the s p e c t r a i s attached.,Each spectrum must be i n one and only one r e c o r d . . The f i l e must have been w r i t t e n by the normal R e t i c e n t s e q u e n t i a l f i l e w r i t i n g commands. No comment rec o r d should be present i n the f i l e * . The f i r s t spectrum must be i n f i r s t r e c o r d . i f r x := the frame c o n t a i n i n g the x - c o o r d i n a t e of the s p e c t r a * A l l s p e c t r a must have the same s c a l e i n the x-coordinate.„ mdat := the number of s p e c t r a to be stack p l o t t e d . . T h i s i s a l s o the minimum number of data r e c o r d i n the f i l e attached to u n i t ndf*. i p l := the lower p o i n t l i m i t i n each spectrum to be stack p l o t t e d . . ( d e f a u l t i s i p t n ! ) ip2 := the upper p o i n t l i m i t i n each spectrum to be stack p l o t t e d . ( d e f a u l t i s i p t n 2 ) nlen := the number of c h a r a c t e r s i n the l a b e l s to be p l o t t e d with each spectrum..The f i r s t nlen c h a r a c t e r s i n the comment block of each data r e c o r d w i l l be used as the l a b e l f o r the corresponding spectrum. ( d e f a u l t i s 0 ) i r t := c o n t r o l s the i n p u t of the t - c o o r d i n a t e of the s p e c t r a . 4 < i r t < 100 ==> a l l the t - v a l u e s w i l l be se t t o 0 i.e» superimpose a l l the s p e c t r a . . i r t > 100 ==> use the t - v a l u e s defined i n the previous c a l l . 0 < i r t < 4 ==> use the f i r s t mdat values i n the array whose number i s i r t as the t - v a l u e s f o r the corresponding s p e c t r a . i r t = 0 ==> the t - v a l u e s w i l l be set as 1, 2,...,mdat f o r the corresponding s p e c t r a . i r t < 0 ==> read, using the F o r t r a n f r e e format I/O, the mdat HEAL*8 t - v a l u e s ; ( d e f a u l t i s i r t = 0 ) MOD ( i f l g , 2 ) = 0 ==> read the namelist /NISP1/ from u n i t 5. MOD(iflg,3) = 0 ==> read the namelist /NISP2/ from u n i t 5, but the v a r i a b l e s w i l l b a s s i g n e d too l a t e t o a f f e c t the c a l c u l a t i o n i n the command. i f l g d e f a u l t s to 1. Namelist /NISP1/ n d f , i f r x , m d a t , i p 1 , i p 2 , n l e n , i p s c a l , i r t , i f l g , i r f ndf, i f r x , mdat, i p l , i p 2 , n l e n , and i f l g have the same meaning and d e f a u l t as i n the parameter l i s t , i p s c a l # 1 ==> the command w i l l not c a l c u l a t e the ranges i n value f o r the t h r e e c o o r d i n a t e s . ( d e f a u l t i s 1 ) i r f := c o n t r o l s the form of the p r i n t e d output when the s p e c t r a were being read from the f i l e , i r f has the same meaning as the " i f l g " parameter i n the RWTP command. ( d e f a u l t i s 2*3 ) 128 Namelist /NISP2/ irf,xmn,xmx,ymn..ymx>tmn*tmx The d e f a u l t s of these v a r i a b l e s w i l l be the c a l c u l a t e d values by the command. i r f := same as i n the namelist /NISP1/, T h i s w i l l be se t as -999 i f there was an e r r o r i n r e a d i n g the s e q u e n t i a l f i l e . xmn := the minimum value of the x- c o o r d i n a t e . xmx := the maximum value of the x-coordinate* ymn := the o v e r a l l minimum value of the y-coordinate. ymx := the o v e r a l l maximum value of the y-coordinate. tmn := the minimum value.of the t - c o o r d i n a t e . tmx := the maximum value of the t - c o o r d i n a t e . Input sequence f o r ISTKP : a) c a l l i n g of the ISTKP command from u n i t 5. , b) r e a d i n g the t - v a l u e s from u n i t 5 i n F o r t r a n f r e e format i f i r t < 0, . c) r e a d i n g the na m e l i s t /NISP1/ from unit 5 i f MOD(iflg,2) = 0. . d) r e a d i n g the namelist /NISP2/ from u n i t 5 i f HOD ( i f l g , 3) = 0. . PSCLF dxx,dyy,dtt This command a l l o w s the user to s e t some of the s c a l i n g f a c t o r s of the 3 c o o r d i n a t e s to some d e s i r e d v a l u e s . The s c a l i n g f a c t o r dss f o r the s- c o o r d i n a t e i s the amount i n s-value to be p l o t t e d per i n c h . dxx := s c a l i n g f a c t o r f o r the x - c o o r d i n a t e . / ( d e f a u l t i s 10-*° ) dyy := s c a l i n g f a c t o r f o r the y - c o o r d i n a t e . . ( d e f a u l t i s 1 0 - ™ ) dtt := s c a l i n g f a c t o r f o r the t - c o o r d i n a t e . . ( d e f a u l t i s 1 0 - ™ ) SSTKP s x , s y , s t , i f l g , t s e p T h i s command w i l l c a l c u l a t e a l l the necessary s c a l i n g f a c t o r s f o r the p l o t as well as the l e n g t h o f the three a x i s t o be p l o t t e d * sx := l e n g t h of the x-axis..- ( d e f a u l t i s -1 ) sy := l e n g t h of the y - a x i s . . ( d e f a u l t i s -1 ) s t := l e n g t h of the t - a x i s . ( d e f a u l t i s -1 ) tsep := mean s e p a r a t i o n between the p l o t t e d s p e c t r a . ( d e f a u l t i s 1.5 ) 129 MOD ( i f l g , 2 ) = 0 ==> MOD ( i f l g , 3 ) = 0 ==> MOD ( i f l g , 5 ) = 0 ==> i f l g d e f a u l t s t o 1. . readin g the namelist /NSSP1/ from u n i t 5. rea d i n g the namelist /NISP2/ from u n i t 5.. re a d i n g the na m e l i s t /NSSP2/ from u n i t 5 but t h e . v a r i a b l e s w i l l be assigned too l a t e to a f f e c t the c a l c u l a t i o n i n the command. Namelist /NSSP1/ sx,sy,st,xmag,ymag,tmag,dxx,dyy,stt, t s e p , i f l g The v a r i a b l e s sx, sy, s t , tsep and i f l g have the meaning and de±ault as i n the parameter l i s t . The v a r i a b l e s dxx, dyy, and d t t have the same meaning as i n the PSCLF command. They d e f a u l t t o the c u r r e n t values of these v a r i a b l e s * xmag := d i s t a n c e between the p l o t t e d data and the y - a x i s . ( d e f a u l t i s 0 ) ymag := d i s t a n c e between the p l o t t e d data and the x - a x i s of each spectrum.. ( d e f a u l t i s 0 ) tmag := d i s t a n c e between the x - a x i s and the top and bottom of the p l o t . ( d e f a u l t i s 0 ) The v a r i a b l e s i n the namelist /NISP2/ are i d e n t i c a l to those i n the ISTKP command. . P l o t f a c t o r s c a l c u l a t i o n : IF { sx < 0.1 } THEN IF { dxx < 10-so } THEN sx = 10 ELSE sx = (xmx-xmn)/dxx+2*xmag IF [ sy < 0. 1 } THEN IF [ dyy < 10~so j THEN sx = 2 ELSE sy = (ymx-tmn)/dyy+2*ymag 'IP [ s t < 0.1 } THEN IF { d t t < 10-so } THEN s t = sy+(mdat-1)*tsep+2*tmag ELSE s t = sy+(tmx-tmn)/dtt+2*tmag The p l o t t i n g f a c t o r s xmn, dx, ymn, dy, tmn, and dt are then c a l c u l a t e d using these values f o r t h e . l e n g t h of the c o o r d i n a t e s . These p l o t f a c t o r s are present i n the n a m e l i s t /NSSP2/. 130 Namelist /NSSP2/ xmx,xmn,d The d e f a u l t s of these v a r i a values by the command* The v a r i a b l e s are d i f f e r e n t f r o namelist /NISP2/. xmn := the minimum x-^val xmx := the maximum y - v a l dx := amount i n x-value ymn := the minimum y - v a l ymx := the maximum y - v a l dy := amount i n y-value tmn := the minimum t - v a l tmx := the maximum t - v a l dt := amount i n t-v a l u e Input sequence f o r SSTKP : x,ymx,ymn,dy,tmx,tmn,dt b l e s w i l l be t h e : c a l c u l a t e d meanings of some of these m what they were i n the ue to be p l o t t e d , ue to be p l o t t e d . . to be p l o t t e d per i n c h , ue to be p l o t t e d , ue to be plotted.„ to be p l o t t e d per i n c h . . ue to be p l o t t e d * „ ue to be p l o t t e d . . to be p l o t t e d per i n c h . a) c a l l i n g of the SSTKP command from un i t 5. b) r e a d i n g the nam e l i s t /NSSP1/ from u n i t 5 i f MOD ( i f l g , 2) = o. c) r e a d i n g the namelist /NISP2/ from unit 5 i f MOD(iflg,3) = 0. d) r e a d i n g the namelist /NSSP2/ from un i t 5 i f MOD ( i f l g , 5) = 0. PSTKP s e a l , i f l g , p x s t , p x s e p T h i s command w i l l perform the a c t u a l stack p l o t t i n g using the a l r e a d y determined p l o t f a c t o r s . , i a c t o r . ( d e f a u l t i s 1 ) read the namelist /NISP1/ from u n i t 5.. read the namelist /NSSP1/ from u n i t 5.. read the namelist /NSSP2/ from u n i t 5.. read the namelist /NPSP1/ from u n i t 5. use the g l o b a l comment as the t i t l e f o r the p l o t , the comment block a s s o c i a t e d with the frame i f r x w i l l be used as the t i t l e f o r the p l o t , read an 80 c h a r a c t e r s t i t l e from u n i t 5. s e a l := p l o t MOD ( i f l g , 2) s c a l i n g = 0 ==> MOD ( i f l g , 3 ) = 0 ==> MOD ( i f l g , 5 ) = 0 ==> MOD ( i f l g , 7 ) = 0 ==> MOD ( i f l g , 11) = 0 ==> MOD ( i f l g , 1 3 ) = 0 ==> MOD(iflg,17) = 0 ==> i f l g d e f a u l t s t o 1. pxst := the s t a r t i n g x-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the x - a x i s . . ( d e f a u l t s to the value of xmn as i n the na m e l i s t /NSSP2/ ) pxsep := the increment i n x-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the x - a x i s . ( d e f a u l t s to the value 2*dx where dx has the same value as i n the namelist /NSSP2/ ) The v a r i a b l e s i n the namelist /NISP1/, /NSSP1/, and /NSSP2/ are i d e n t i c a l t o those i n the command ISTKP and SSTKP. Namelist /NPSP1/ seal,pxst,pxsep,pxnd,pyst>pysep,pynd, p y o r i , h t , x o r i , t o r i , t o f f , i d i g x , i d i g y , i l e t x , i l e t y , i t i c x t , i t i c x b , i t i c y , i p f r m , i p d a t , i r s e t t , i r s e t b , i x l a b , i y l a b , i t i t l , x l a b , y l a b , t i t l e s e a l := p l o t s c a l e . . ( d e f a u l t s t o the value i n the parameter l i s t ) . . pxst := s t a r t i n g x-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the x-axis._ ( d e f a u l t s to the value i n the parameter l i s t pxsep := the increment i n x-value f o r the.numerical s c a l e l a b e l l i n g and or t i c marks on the x - a x i s . ( d e f a u l t s t o the value i n the parameter l i s t ) pxnd := ending x-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the x - a x i s . ( d e f a u l t s t o xmn+dx*sx ) pyst := s t a r t i n g y-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the y - a x i s . Only one s e t of s c a l e l a b e l l i n g w i l l be p l o t t e d . . ( d e f a u l t s to ymn ) pysep := the increment i n y-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the y-a x i s * ( d e f a u l t s t o dy ) pynd := ending y-value f o r the numerical s c a l e l a b e l l i n g and or t i c marks on the y - a x i s . ( d e f a u l t s t o ymn+dy*sy ) p y o r i := the d i s t a n c e from the bottom x - a x i s t h a t the y - s c a l e : l a b e l l i n g i s to s t a r t . ( d e f a u l t s t o 0 ) ht := the height of the c h a r a c t e r s i n the:comment a s s o c i a t e d with each spectrum, the l a b e l s , and the t i t l e . ( d e f a u l t s to 0.3 ) 132 x o r i t o r i t o f f i r s e t t i r s e tb i p d a t = 1 ==> i l e t x i l e t y i t i c x t i t i c x b i t i c y i d i g x : i d i g y xlab i x l a b = amount of s h i f t f o r the e n t i r e p l o t i n the x - d i r e c t i o n . ( d e f a u l t i s 2 ) = amount o f s h i f t f o r the e n t i r e p l o t i n the t - d i r e c t i o n * . ( d e f a u l t i s 2 ) = the d i s t a n c e between the s t a r t of the paper f o r the c u r r e n t p l o t and the p r e v i o u s p l o t . . ( d e f a u l t i s 5 ) = 1 ==> r e s e t the o r i g i n f o r the c u r r e n t p l o t using the value of t o f f . ( d e f a u l t i s 1 ) = 1 ==> the o r i g i n w i l l be r e s e t at the end of the p l o t . T h i s p r o h i b i t s any f u r t h e r a d d i t i o n t o the c u r r e n t p l o t ; ( d e f a u l t i s 1 ) the s p e c t r a w i l l be p l o t t e d . Otherwise, only the a x i s may be p l o t t e d . . ( d e f a u l t i s 1 ) = 1 ==> p l o t t i n g the numerical s c a l e l a b e l s on the x - a x i s . ( d e f a u l t i s 1 ) = 1 ==> p l o t t i n g the numerical s c a l e l a b e l s on the y - a x i s . ( d e f a u l t i s 0 ) = 1 ==> p l o t t i n g t h e ; a s s o c i a t e d t i c marks on the top x - a x i s . . ( d e f a u l t i s 1 ) = 1 ==> p l o t t i n g the a s s o c i a t e d t i c marks on the bottom x - a x i s * . ( d e f a u l t i s 1 ) = 1 ==> p l o t t i n g the a s s o c i a t e d t i c marks on the y - a x i s . ( d e f a u l t i s 0 ) = the.number of d i g i t s a f t e r the decimal point to be p l o t t e d f o r the numerical s c a l e l a b e l s on the x - a x i s . I f i d i g x = 0, then a decimal p o i n t w i l l be p l o t t e d a t the end of the number* I f i d i g x = -1, then the decimal point w i l l not be p l o t t e d . . i d i g x must be < 3. ( d e f a u l t i s -1 ) = same as i d i g x but r e f e r r i n g t o the y - a x i s . { d e f a u l t i s 2 ) = 20 c h a r a c t e r s l a b e l f o r the x - a x i s . ,. ( d e f a u l t s are 20 blanks ) = number of c h a r a c t e r s i n the l a b e l on the x-a x i s . I f i x l a b > 0, then xlab w i l l be scanned and the proper value a s s i g n e d . I f i x l a b < 0, then no l a b e l w i l l be p l o t t e d and the x - a x i s w i l l be a simple s t r a i g h t l i n e . . ( d e f a u l t i s 0 ) « 133 y l a b := 20 c h a r a c t e r s l a b e l f o r t h e y - a x i s . ( d e f a u l t s a r e 2 0 b l a n k s ) i y i a b := s a m e a s i x l a b b u t f o r t h e y - a x i s . ( d e f a u l t i s 0 ) t i t l e := 80 c h a r a c t e r s t i t l e t o b e p l o t t e d * ( d e f a u l t t o t h e t i t l e d e f i n e d e a r l i e r ) i t i t l := n u m b e r o f c h a r a c t e r s i n t h e t i t l e , t i t l e w i l l b e s c a n n e d i f i t i t l > 0 . ( d e f a u l t i s 0 ) M O D ( i p f r m , 2 ) = 0 ==> p l o t a l i n e a t t h e l e f t y - a x i s . M 0 D ( i p f r m , 3 ) = 0 ==> p l o t a l i n e a t t h e t o p x - a x i s . . M 0 D ( i p f r m , 5 ) = 0 ==> p l o t a l i n e a t t h e r i g h t y - a x i s . M 0 D ( i p f r m , 7 ) = 0 ==> p l o t a l i n e a t t h e b o t t o m x - a x i s . i p f r m d e f a u l t s t o 2 * 3 * 5 * 7 . T h e i n p u t s e q u e n c e f o r P S T K P : a ) t h e c o m m a n d c a l l o f P S T K P f r o m u n i t 5 . b) r e a d i n g t h e n a m e l i s t / N I S P 1 / f r o m u n i t 5 i f MOD ( i f l g , 2) = 0 . c ) r e a d i n g t h e n a m e l i s t / N S S P 1 / f r o m u n i t 5 i f MOD ( i f l g , 3 ) = 0 . d) r e a d i n g t h e n a m e l i s t / N S S P 2 / f r o m u n i t 5 i f M O D ( i f l g , 5 ) = 0 . e ) r e a d i n g a n 80 c h a r a c t e r s t i t l e f r o m u n i t 5 i f M O D ( i f l g , 17) = 0 . f ) r e a d i n g t h e n a m e l i s t / N P S P 1 / f r o m u n i t 5 i f M O D ( i f l g , 7 ) = 0 . . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053465/manifest

Comment

Related Items