Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The distributions of dissolved and suspended vanadium in Saanich Inlet, British Columbia Moody, Willson Bridges 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1977_A6_7 M66.pdf [ 4.03MB ]
Metadata
JSON: 831-1.0053269.json
JSON-LD: 831-1.0053269-ld.json
RDF/XML (Pretty): 831-1.0053269-rdf.xml
RDF/JSON: 831-1.0053269-rdf.json
Turtle: 831-1.0053269-turtle.txt
N-Triples: 831-1.0053269-rdf-ntriples.txt
Original Record: 831-1.0053269-source.json
Full Text
831-1.0053269-fulltext.txt
Citation
831-1.0053269.ris

Full Text

THE DISTRIBUTIONS OF DISSOLVED AND SUSPENDED VANADIUM IN SAANICH INLET, BRITISH COLUMBIA by W i l l s o n B r i d g e s Moody I I I B.Sc. U n i v e r s i t y o f W a t e r l o o , 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n t h e Department o f C h e m i s t r y ( I n s t i t u t e o f Oceanography) We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY, OF BRITISH COLUMBIA O c t o b e r , 1976 (c) W i l l s o n B r i d g e s Moody In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced d e g r e e at t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Depar tment o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Depar tment o f ^ i v . g ^ A v . , . ' £ , I>v^ / &r^o^,a e^rc*.**L^ The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date Wavf lau^ <> I<;>?6 . i i ABSTRACT T h i s s t u d y i n v e s t i g a t e d the d i s t r i b u t i o n of d i s s o l v e d and suspended vanadium i n S a a n i c h I n l e t , B r i t i s h C o l u m b i a , and the p o s s i b l e e f f e c t s o f s c a v e n g i n g by hydrous manganese and i r o n o x i d e s . Water samples were c o l l e c t e d from September 1973 t o J u l y 1974 and were t e s t e d f o r s a l i n i t y , t e m p e r a t u r e , d i s s o l v e d oxygen, d i s s o l v e d and suspended vanadium, suspended manganese and suspended i r o n . A t e c h n i q u e i n v o l v i n g i o n exchange t o i s o l a t e vanadium f o l l o w e d by a c a t a l y t i c c o l o r i m e t r i c d e t e r m i n a t i o n was deve-l o p e d and a p p l i e d t o the d i s s o l v e d and suspended vanadium a n a l y s e s . The d a t a showed t h a t , d u r i n g the f a l l o f 1973 and a g a i n i n J u l y 1974, t h e r e were p o s i t i v e c o r r e l a t i o n s between t h e suspended vanadium and suspended manganese d i s t r i b u t i o n s , s u g g e s t i n g t h a t vanadium was b e i n g scavenged by the manganese o x i d e s d u r i n g t h e s e p e r i o d s . No such c o r r e l a t i o n was f o u n d between the suspended vanadium and suspended i r o n d i s t r i b u t i o n s . The a n o x i c deep w a t e r s g e n e r a l l y c o n t a i n e d l e s s d i s s o l v e d vana-dium than the o x y g e n a t e d w a t e r s above s i l l d e p t h . T h i s d e f i c i e n c y i n t h e deep w a t e r s may have been due t o c o - p r e c i p i -t a t i o n w i t h f e r r o u s s u l p h i d e s o r a d s o r p t i o n by d e t r i t a l s i l i c a t e o r o r g a n i c p a r t i c l e s . i i i TABLE OF CONTENTS Page I n t r o d u c t i o n . 1 G e n e r a l D e s c r i p t i o n of Study A r e a 3 S a m p l i n g Methods 6-A n a l y t i c a l P r o c e d u r e s 9 D i s s o l v e d Vanadium 9 Suspended M a t t e r Samples 18 Suspended Vanadium 18 Suspended I r o n 18 Suspended Manganese 19 D i s s o l v e d Oxygen 19 R e s u l t s 20 D i s c u s s i o n 35 B i b l i o g r a p h y 48 A p p e n d i x 52 i v LIST OF TABLES T a b l e Page I P o s i t i o n and depths o f s a m p l i n g s t a t i o n s i n S a a n i c h I n l e t 6 I I C r u i s e d a t e s and s t a t i o n s sampled 6 I I I R e s u l t s o f p r e c i s i o n s t u d i e s f o r t h e vanadium a n a l y s i s 12 IV L i s t o f e l e m e n t s i n t e r f e r i n g w i t h t h e vanadium c a t a l y s e d o x i d a t i o n o f g a l l i c a c i d by a c i d p e r s u l p h a t e 16 V Comparison of d i s s o l v e d vanadium v a l u e s i n marine w a t e r s 35 V I S t a t i s t i c a l a n a l y s i s o f r e g r e s s i o n c u r v e s f o r suspended vanadium and suspended manganese . . . 45 - V LIST OF FIGURES F i g u r e Page 1 L o c a t i o n o f S a a n i c h I n l e t 4 2 Sampling S t a t i o n s 7 3 Recovery Curves f o r d i s s o l v e d vanadium 15 4 D i s t r i b u t i o n o f d i s s o l v e d vanadium a t S t a t i o n 3 ; 21 5 D i s t r i b u t i o n of d i s s o l v e d vanadium d u r i n g J a n u a r y 1974 21 6 D i s t r i b u t i o n of d i s s o l v e d vanadium d u r i n g A p r i l 1974 22 7 D i s t r i b u t i o n o f d i s s o l v e d vanadium d u r i n g J u l y 1974 22 8 D i s t r i b u t i o n of suspended vanadium a t S t a t i o n 3 25 9 D i s t r i b u t i o n o f suspended vanadium d u r i n g J a n u a r y 1974 25 10 D i s t r i b u t i o n of suspended vanadium d u r i n g A p r i l 1974 26 11 D i s t r i b u t i o n of suspended vanadium d u r i n g J u l y 1974 26 12 D i s t r i b u t i o n o f suspended manganese a t S t a t i o n 3 . . . . 28 13 D i s t r i b u t i o n of suspended manganese d u r i n g J a n u a r y 1974 28 14 D i s t r i b u t i o n o f suspended manganese d u r i n g A p r i l 1974 29 15 D i s t r i b u t i o n of suspended manganese d u r i n g J u l y 1974 " 29 16 D i s t r i b u t i o n of suspended i r o n a t S t a t i o n 3 . . . 30 17 D i s t r i b u t i o n o f suspended i r o n d u r i n g J a n u a r y 1974 30 18 D i s t r i b u t i o n o f t e m p e r a t u r e a t S t a t i o n 3 . . . . . 32 19 D i s t r i b u t i o n o f s a l i n i t y a t S t a t i o n 3 32 v i F i g u r e Page 20 D i s t r i b u t i o n of d e n s i t y a t S t a t i o n 3 33 21 D i s t r i b u t i o n of d i s s o l v e d oxygen a t S t a t i o n 3 . . 33 22 P l o t o f d i s s o l v e d vanadium a g a i n s t s a l i n i t y d u r i n g J a n u a r y 1974 37 23 V e r t i c a l p r o f i l e s o f s a l i n i t y , and p r e d i c t e d and o b s e r v e d d i s s o l v e d vanadium v a l u e s a t S t a t i o n 4 d u r i n g J a n u a r y 1974 37 24 V e r t i c a l p r o f i l e s o f suspended vanadium and suspended manganese a t S t a t i o n s 1 and 2 d u r i n g J u l y 1974 43 25 P l o t o f suspended vanadium a g a i n s t suspended manganese d u r i n g J u l y 1974 44 ACKNOWLEDGEMENT v I would l i k e t o thank Dr. E.V. G r i l l f o r h i s a d v i c e and g u i d a n c e t h r o u g h o u t the s t u d y and p r e p a r a t i o n o f the t h e s i s . I would a l s o l i k e t o thank Mr. D a v i d J . Thomas f o r h i s a s s i s t a n c e i n c o l l e c t i n g samples a t s e a . 1 INTRODUCTION The p o s s i b i l i t y t h a t low l e v e l s o f vanadium may be bene-f i c i a l o r e s s e n t i a l t o l i f e has s t i m u l a t e d the development o f a n a l y t i c a l t e c h n i q u e s s e n s i t i v e enough t o d e t e r m i n e vanadium i n b i o l o g i c a l m a t e r i a l s and sea w a t e r samples. Henze (1911) r e p o r t e d 42,000 ppm of vanadium i n the b l o o d o f an a s c i d i a n . The c o n c e n t r a t i o n o f vanadium i n most a n i m a l s and p l a n t s i s about 0.13 ppm whereas i n t h e t u n i c a t e m a r i n e worms i t i s as h i g h as 1.5 ppm. I t has been s u g g e s t e d t h a t marine muds o r sea wa t e r a r e the p r o b a b l e s o u r c e s o f the vanadium and t h a t o i l s c o n t a i n i n g vanadium were p o s s i b l y formed from a s c i d i a n s ( V i n o g r a d o v , 1 934). Vanadium a l s o has been found t o be an e s s e n t i a l element f o r the gr e e n a l g a Scenedesmus o b l i q u u s (Arnon and W e s s e l , 1953) a l t h o u g h t h e r e i s no p r o o f t h a t vana-dium i s an e s s e n t i a l m i c r o n u t r i e n t i n h i g h e r p l a n t s . The few s t u d i e s o f vanadium i n ocean w a t e r s t h a t have been made i n r e c e n t y e a r s ( R i l e y and T a y l o r , 1972; Sugawara and Okabe, 1966; Okabe and M o r i n a g a , 1970; M o r r i s , 1975) i n d i c a t e t h a t , f o r the most p a r t , t h e r e a r e no d i s c e r n i b l e g e o g r a p h i c a l or d e p th r e l a t e d p a t t e r n s i n t h e vanadium d i s t r i b u t i o n a l t h o u g h v e r y minor v a r i a t i o n s i n the vanadium c o n t e n t between w a t e r masses may be produced by b i o l o g i c a l a c t i v i t y ( M o r r i s , 1 9 7 5). K r a u s k o p f (1956) c o n c l u d e d t h a t the c o n c e n t r a t i o n o f vanadium i n t h e oceans was p r o b a b l y c o n t r o l l e d by o r g a n i c p r o c e s s e s . However, he n o t e d t h a t i n ox y g e n a t e d sea w a t e r , a d s o r p t i o n by hydrous i r o n and manganese o x i d e s c o u l d a l s o be a c o n t r o l l i n g f a c t o r , a view w h i c h appears t o be s u p p o r t e d by the r e s u l t s o f 2 R i l e y and S i n h a s e n i (1958) and W i l l i s and Ahrens (1961) who o b s e r v e d t h a t vanadium c o n c e n t r a t i o n s i n manganese n o d u l e s were e n r i c h e d by a f a c t o r o f about 2 x 10^ o v e r normal sea w a t e r c o n c e n t r a t i o n s . T h i s s u g g e s t e d t h a t a d s o r p t i o n by man-ganese o x i d e s c o u l d be one o f t h e f a c t o r s c o n t r o l l i n g t h e vanadium d i s t r i b u t i o n i n S a a n i c h I n l e t , w h i c h , a t v a r i o u s t i m e s o f t h e y e a r , has v e r y h i g h c o n c e n t r a t i o n s o f suspended manganese ( B e r r a n g and G r i l l , 1974). The o b j e c t i v e o f the f i e l d work c a r r i e d out i n t h i s s t u d y was t o d e t e r m i n e i f t h e r e was any r e l a t i o n s h i p between the d i s t r i b u t i o n s o f vanadium and t h e manganese o x i d e s i n the w a t e r s o f S a a n i c h I n l e t . The a n a l y t i c a l p r o c e d u r e employed i n t h i s s t u d y c o n s i s t s o f a c o m b i n a t i o n o f i o n exchange s o r p t i o n , t o i s o l a t e vanadium from i n t e r f e r i n g e l ements ( R i l e y and T a y l o r , 1968), and a c o l o r i m e t r i c d e t e r m i n a t i o n based on the c a t a l y t i c method of Fishman and Skougstad ( 1 9 6 4 ) . T h i s method, because o f i t s h i g h s e n s i t i v i t y , r e q u i r e s a r e l a t i v e l y s m a l l sample volume compared t o the o t h e r p r e v i o u s l y r e p o r t e d s t u d i e s (Chan and R i l e y , 1966; M u z z a r a l l i , 1971; Chau and Chan, 1970; Crump-Wiesner and Purdy, 1966; K i r i y a m a and Kuroda, 1972; and M o r r i s , 1975). 3 GENERAL DESCRIPTION OF STUDY AREA S a a n i c h I n l e t i s a f j o r d - t y p e i n l e t l o c a t e d on t h e s o u t h -e a s t c o a s t o f Vancouver I s l a n d ( F i g u r e 1 ) . I t has a l e n g t h o f about 25.7 km, a w i d t h which v a r i e s from 0.4 t o 7.6 km, and a maximum depth o f about 230 m. A s i d e from d i r e c t r u n o f f from the s i d e s , the o n l y s o u r c e of f r e s h w ater i s the C o l d s t r e a m R i v e r , w h i c h d i s c h a r g e s i n t o the i n l e t a t i t s extreme s o u t h e r n end. H e r l i n g v e a u x ( 1 9 6 2 ) , 3 who e s t i m a t e d t h i s d i s c h a r g e a t 0.85 m / s e c , i n d i c a t e d t h e b u l k of t h e f r e s h w a t e r i n p u t i s d e r i v e d from t h e Cowichan and F r a s e r R i v e r s and i s i n t r o d u c e d as a r e s u l t o f t i d a l exchanges a t the e n t r a n c e . S a a n i c h I n l e t i s c o n n e c t e d t o the open sea t h r o u g h S a t e l l i t e C h a n n e l , Haro S t r a i t , and the S t r a i t o f Juan de Fu c a . However, a s i l l , w h i c h i s l o c a t e d a t the e n t r a n c e and w h i c h r i s e s t o w i t h i n about 70 m o f t h e s u r f a c e , p r e v e n t s t h e wa t e r below t h i s d e p t h from b e i n g f r e e l y exchanged w i t h t h a t i n the a p p r o a c h e s . Thus, because o f t h e r e l a t i v e l y s m a l l r u n o f f and the r e s u l t i n g weak e s t u a r i n e f l u s h i n g mechanism, the w a t e r s below s i l l d e p t h a r e always m a r k e d l y oxygen d e f i c i e n t . Below 150 m, where t h e r e i s l i t t l e o r no d i s s o l v e d oxygen f o r much o f the y e a r , hydrogen s u l f i d e i s u s u a l l y p r e s e n t d u r i n g l a t e s p r i n g and e a r l y summer ( R i c h a r d s , 1 9 6 5). Then, i n t h e l a t e summer o r f a l l , when t h e r u n o f f s o f the Cowichan and F r a s e r a r e b o t h low ( H e r l i n g v e a u x , 1962), an i n t e r -m e d i a t e water mass formed i n Haro S t r a i t by the m i x i n g o f warm, low s a l i n i t y w a t e r from the S t r a i t o f G e o r g i a w i t h c o l d e r , 4 F i g u r e 1. L o c a t i o n o f S a a n i c h I n l e t h i g h e r s a l i n i t y w a t e r which has u p w e l l e d o f f the W a s h i n g t o n -Oregon c o a s t ( W a l d i c h u k , 1957), p e n e t r a t e s t h e approaches t o S a a n i c h I n l e t and f l o w s o v e r t h e s i l l i n t o t h e b a s i n , r e - o x y -g e n a t i n g the bottom w a t e r . Anderson and D e v o l (1973) p r o p o s e d t h a t t h e f l u s h i n g w a t e r e n t e r s S a t e l l i t e C h a n n e l a t d i s c r e e t t i m e i n t e r v a l s and moves as b o l u s e s a l o n g the c h a n n e l and i n t o t h e b a s i n on t h e f l o o d t i d e . 6 SAMPLING METHODS Water s a m p l i n g was c a r r i e d out a t f i v e s t a t i o n s i n S a a n i c h I n l e t and one i n S a t e l l i t e C h a n n e l ( F i g u r e 2) d u r i n g a s e r i e s o f f i v e c r u i s e s between e a r l y September 1973 and l a t e J u l y 1974. The p o s i t i o n s o f t h e s e s t a t i o n s a r e l i s t e d i n T a b l e I and shown i n F i g u r e 2. S t a t i o n S a a n i c h 1 S a a n i c h 2 S a a n i c h 3 S a a n i c h 4 S a a n i c h 5 S a a n i c h 6 T a b l e I L o n g i t u d e L a t i t u d e 123 123 c 123 c 123 c 123 c o 123° 27' 15" W 32 ' 30' 30' 30' 30 ' 28" W 80" W 00" W 30" W 00" W 48 48 48' 48 ( 48 C 48 C o 31' 33 ' 35 » 38' 41' 32 • 55" 50" 60" 92" 13" 27" N N N N N N Depth(m) 190 220 235 190 105 105 T a b l e I I l i s t s t h e c r u i s e d a t e s , c r u i s e numbers and t h e s t a t i o n s sampled on each c r u i s e . C r u i s e Number 73/35 73/46 74/1-A 74/15 74/26-A T a b l e I I Date September 5, 1973 November 15, 1973 Ja n u a r y 8, 9, 10,- 1973 A p r i l 29 - May 1, 1974 J u l y 29, 30, 1974 S t a t i o n s Sampled 1 & 3 3 1 t o 6 1 t o 6 1 t o 6 C r u i s e 74/1-A was performed on t h e v e s s e l C.F.A.V. "Laymore". A l l o t h e r c r u i s e s were performed on the o c e a n o g r a p h i c v e s s e l C.S.S. " V e c t o r " . D i s s o l v e d and suspended vanadium, suspended manganese and i r o n , d i s s o l v e d oxygen, t e m p e r a t u r e , and s a l i n i t y were measured on a l l c r u i s e s . The suspended m a t t e r was a n a l y s e d o n l y on t h o s e f i l t e r samples showing s t r o n g manganese o x i d e s t a i n i n g . A l l o t h e r 7 8 t e s t s were c o n d u c t e d on samples c o l l e c t e d t h r o u g h o u t t h e e n t i r e w a t e r column. A l l s a mples, e x c e p t t h o s e f o r suspended m a t t e r , were c o l l e c t e d i n l 1 N.I.O. s a m p l i n g b o t t l e s . A l i q u o t s were d r a i n e d from the b o t t l e s f o r d i s s o l v e d oxygen and s a l i n i t y t e s t s . The r e m a i n i n g water was then d r a i n e d and s t o r e d i n p o l y e t h y l e n e o r p o l y p r o p y l e n e c o n t a i n e r s u n t i l i t c o u l d be f i l t e r e d t h r o u g h Gelman M e t r i c e l GA-6 membrane f i l t e r s w i t h 0.45 urn pore d i a -m eter. These f i l t e r s had been p r e v i o u s l y soaked i n a 5% s o l u t i o n o f KH^PO^ and r i n s e d w i t h d e i o n i s e d water t o l e a c h o u t any m e t a l s p r e s e n t i n t h e f i l t e r s . The f i l t e r i n g was c a r r i e d out under r e d u c e d p r e s s u r e u s i n g a M i l l i p o r e f i l t e r u n i t w hich was a c i d washed and t h o r o u g h l y r i n s e d w i t h d e i o n i s e d w a t e r p r i o r t o u s e . A f t e r f i l t r a t i o n , t h e f i l t r a t e was t r a n s -f e r r e d t o an a c i d c l e a n e d s t o r a g e b o t t l e , i t s pH a d j u s t e d t o about 2 by the a d d i t i o n o f 1 ml o f 6 N HC1, and then i t was p l a c e d i n c o l d s t o r a g e u n t i l a n a l y s i s c o u l d be performed i n the s h o r e l a b . Chau and Chan (1970) r e p o r t e d t h a t t h e r e i s no l o s s of vanadium from sea water s t o r e d i n p o l y e t h y l e n e o r p o l y p r o p y -l e n e c o n t a i n e r s a t pH 2 o r a t t h e n a t u r a l pH o f the sample. The suspended m a t t e r samples were p r e p a r e d by f i l t e r i n g 10 1 o f sea w a t e r , c o l l e c t e d i n 5 1 N i s k i n b o t t l e s , t h r o u g h membrane f i l t e r s w i t h 0.45 ^m pore s i z e under r e d u c e d p r e s s u r e . These f i l t e r s were then s t o r e d i n p l a s t i c P e t r i d i s h e s u n t i l a n a l y s e d i n the s h o r e l a b . 9 ANALYTICAL PROCEDURES D i s s o l v e d Vanadium Because o f i t s low c o n c e n t r a t i o n ( c a . 1.5 ug/1; R i l e y and C h e s t e r , 1971), t h e methods employed f o r d e t e r m i n i n g vanadium i n s e a water have u s u a l l y used some form o f p r e c o n c e n t r a t i o n such as c o p r e c i p i t a t i o n w i t h FeCOH)^ (Chan and R i l e y , 1966), c o p r e c i p i t a t i o n w i t h c h i t o s a n ( M u z z a r e l l i , 1971), s o l v e n t e x t r a c t i o n (Chau and Chan, 1970; Crump-Wiesner and P u r d y , 1966), and i o n exchange (Chan and R i l e y , 1966; K i r i y a m a and Kuroda, 1 9 7 2 ) . The a n a l y s i s may then be c o m p l e t e d by c o l o r i m e t r i c methods o r by a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y . In the p r e s e n t s t u d y , vanadium was d e t e r m i n e d by a s e n s i -t i v e c a t a l y t i c t e c h n i q u e w h i c h d i d not r e q u i r e a p r e - c o n c e n t r a -t i o n s t e p . However, because o f the i n t e r f e r i n g e l e m e n t s p r e s e n t i n raw sea w a t e r , i t was n e c e s s a r y t o f i r s t i s o l a t e the vanadium, a s t e p w h i c h was a c c o m p l i s h e d u s i n g a c h e l a t i n g i o n exchange r e s i n as d e s c r i b e d by R i l e y and T a y l o r ( 1 9 6 8 ) . The Che l e x - 1 0 0 r e s i n ( B i o - R a d L a b o r a t o r i e s ) employed f o r t h i s p u r -pose c o n t a i n s i m i n o d i a c e t a t e g roups on a s t y r e n e - d i v i n y 1 benzene co p o l y m e r m a t r i x . The c a t a l y t i c t e c h n i q u e employed i s a m o d i f i c a t i o n o f t h a t d e v e l o p e d by Fishman and S k o u g s t a d . ( 1 9 6 4 ) , i n which vanadium i s d e t e r m i n e d on t h e b a s i s o f i t s a b i l i t y t o i n c r e a s e t h e o x i d a t i o n r a t e o f g a l l i c a c i d by a c i d p e r s u l f a t e . The e x t e n t o f o x i d a t i o n , w h i c h was measured c o l o r i m e t r i c a l l y a f t e r a r e a c t i o n t i m e o f one hour, i s p r o p o r t i o n a l t o the c o n c e n t r a t i o n o f vana-dium p r e s e n t . 10 Reagents Ammonium N i t r a t e B u f f e r : D i l u t e 200 ml of 4 N ammonium h y d r o x i d e p l u s 100 ml o f 4 N n i t r i c a c i d t o 2 1 . A d j u s t t h e pH t o 9.4. A c i d P e r s u l f a t e : D i s s o l v e 3.0 g of ammonium p e r s u l f a t e i n 25 ml d e i o n i s e d w a t e r , heat t o b o i l i n g , add 25 ml c o n c e n t r a t e d r e a g e n t grade p h o s p h o r i c a c i d and l e t s t a n d one day b e f o r e u s e . G a l l i c A c i d : D i s s o l v e 1.0 g of g a l l i c a c i d i n 50 ml d e i o n i s e d w a t e r , h e a t t o b o i l i n g , f i l t e r t h r o u g h Whatman No. 1 f i l t e r paper and l e t s t a n d 30 m i n u t e s i n a 30°C w a t e r b a t h b e f o r e u s i n g . P r e p a r e f r e s h d a i l y . M e r c u r i c N i t r a t e : D i s s o l v e 0.035 g mercurous n i t r a t e i n 100 ml d e i o n i s e d w a t e r . Stock Vanadium S o l u t i o n : P r e p a r e a 100 ppm s o l u t i o n u s i n g vanadium p e n t o x i d e t h a t was i g n i t e d , d i s s o l v e d i n sodium h y d r o x i d e and t h e n made s l i g h t l y a c i d i c i n t h e manner d e s c r i b e d by S a n d e l l ( 1 9 6 5 ) . Working Vanadium S o l u t i o n : P r e p a r e a 0.10 ppm s o l u t i o n e a c h week by d i l u t i n g t h e s t o c k vanadium s o l u t i o n w i t h d e i o n i s e d w a t e r . P r o c e d u r e The C h e l e x - 1 0 0 r e s i n (50-100 mesh) was soaked i n 2 N n i t r i c a c i d f o r 24 h o u r s , r i n s e d w i t h d e i o n i s e d w a t e r , poured i n t o 1 cm d i a m e t e r g l a s s columns f i t t e d w i t h f r i t t e d g l a s s d i s c s t o g i v e a bed depth o f 3 cm, and washed w i t h d e i o n i s e d water u n t i l t he pH o f the e l u a t e was 6. Then the pH of t h e sea water samples 11 was a d j u s t e d t o 6 w i t h d i l u t e sodium h y d r o x i d e , and a 25 ml a l i q u o t passed t h r o u g h the column a t a r a t e not e x c e e d i n g 5 ml/min. The column was t h e n washed w i t h 100 ml o f d e i o n i s e d w a t e r and, f i n a l l y , the vanadium e l u t e d i n t o a c o v e r e d 100 ml b e a k e r w i t h 30 ml o f 4 N ammonium h y d r o x i d e f o l l o w e d by 10 ml of d e i o n i s e d w a t e r . A f t e r e v a p o r a t i n g the e l u a t e t o d r y n e s s o v e r n i g h t a t low heat on a hot p l a t e , the r e s i d u e i n the b e a k e r was b r o u g h t back i n t o s o l u t i o n by a l l o w i n g i t t o s i t f o r two hours i n c o n t a c t w i t h 30 ml o f the pH 9.4 ammonium n i t r a t e b u f f e r . T h i s s o l u t i o n was t h e n t r a n s f e r r e d t o a m e a s u r i n g c y l i n d e r , made up t o 35 ml w i t h more b u f f e r , t r a n s f e r r e d t o a 60 ml p o l y e t h y l e n e b o t t l e and p l a c e d i n a w a t e r b a t h a t 30°C. A f t e r one hour, 1 ml o f t h e m e r c u r i c n i t r a t e and 1 ml o f the a c i d p e r s u l f a t e s o l u t i o n s were added t o each b o t t l e , and t h e sample was mixed and r e t u r n e d t o the w a t e r b a t h . Then, 1 ml o f t h e g a l l i c a c i d s o l u t i o n was added t o s u c c e s s i v e b o t t l e s a t t h r e e m i n u t e i n t e r -v a l s , and the b o t t l e s were a g a i n mixed and r e t u r n e d t o t h e w a t e r b a t h . S i x t y m i n u t e s a f t e r t h e a d d i t i o n o f t h e g a l l i c a c i d , each of t h e samples was removed from t h e b a t h , f i l t e r e d t h r o u g h a Whatman No. 42 f i l t e r p aper, and i t s a b s o r b a n c e measured a t 415 nm i n a 10 cm c u v e t w i t h a Beckman Model DU s p e c t r o p h o t o m e t e r . S i x s o l u t i o n s c o n t a i n i n g known amounts o f vanadium were a l s o p r e p a r e d each day and t r e a t e d as above. These s t a n d a r d s were p r e p a r e d by f i r s t p a s s i n g sea water t h r o u g h a r e s i n column t o remove any vanadium, and t h e n a d d i n g from 0.00 t o 0.08 ug of vanadium t o 25 ml a l i q u o t s . The vanadium c o n c e n t r a t i o n o f the sea w a t e r samples b e i n g a n a l y s e d was then d e t e r m i n e d by r e f e r e n c e t o t h e c a l i b r a t i o n c u r v e d e r i v e d from p r o c e s s i n g t h e s e s t a n d a r d s . D i s c u s s i o n The c a l i b r a t i o n c u r v e s were l i n e a r up t o a vanadium c o n t e n t o f 0.08 ug i n a f i n a l s o l u t i o n volume o f about 30 ml. However, because t h e s l o p e o f t h e c a l i b r a t i o n c u r v e and t h e abs o r b a n c e o f t h e r e a g e n t b l a n k i n c r e a s e d m a r k e d l y w i t h t h e s t r e n g t h o f t h e ammonium n i t r a t e b u f f e r , a new c a l i b r a t i o n c u r v e was made f o r each b a t c h o f samples a n a l y s e d . Due. t o the n o n - c a t a l y s e d o x i d a t i o n of g a l l i c a c i d , t h e absorbance o f the s t a n d a r d c o n t a i n i n g no added vanadium ( i . e . t h e r e a g e n t b l a n k ) was a l w a y s a p p r e c i a b l e ( F i g u r e 3 ) . E i g h t r e p l i c a t e s o f a sea wat e r sample were a n a l y s e d t o d e t e r m i n e the p r e c i s i o n o f t h e method. The r e s u l t s a r e shown i n T a b l e I I I . T a b l e I I I Sample Number ppb V found 1. 2 3 4 5 6 7 8 0.64 1.60 0.64 0.64 0.64 0.80 0.80 0.80 R e j e c t i n g t h e r e s u l t f o r sample number 2 ( L a i t i n e n , 1960; pp. 5 7 4 ) , the r e l a t i v e s t a n d a r d d e v i a t i o n o f the a n a l y s e s a t a mean c o n c e n t r a t i o n l e v e l o f 0.71 ug/1 i s 7.9%. 13 The r e c o v e r y o f V from sea w a t e r , u s i n g the c h e l e x 100 r e s i n , as recommended by R i l e y and T a y l o r ( 1 9 6 8 ) , was f o u n d t o be s l i g h t l y low. The per c e n t r e c o v e r y was d e t e r m i n e d by t a k i n g sea w a t e r t h a t had p r e v i o u s l y been s t r i p p e d by passage t h r o u g h t h e r e s i n and t h e n , a f t e r s p i k i n g i t w i t h v a r y i n g amounts o f vanadium (as i n t h e case of t h e c a l i b r a t i o n s e r i e s ) , a n a l y s i n g t h e samples by t h e s t a n d a r d p r o c e d u r e . The s l o p e o f t h e r e s u l t i n g a b s o r b a n c e vs c o n c e n t r a t i o n c u r v e was th e n compared t o t h a t o b t a i n e d u s i n g samples o f ammonium n i t r a t e t h a t had been s p i k e d w i t h i d e n t i c a l amounts o f vanadium, but w h i c h were not passed t h r o u g h the r e s i n . When the vanadium was e l u t e d from t h e r e s i n w i t h 20 ml of 2 N ammonium h y d r o x i d e , as recommended by R i l e y and T a y l o r ( 1 9 6 8 ) , the r a t i o o f the s l o p e s o f the c u r v e s o b t a i n e d u s i n g s p i k e d sea w a t e r t o thos e o b t a i n e d u s i n g t h e s p i k e d ammonium n i t r a t e s o l u t i o n s ranged from 0.5 t o 0.6, i n d i c a t i n g 50 t o 60% r e c o v e r i e s . I n c r e a s i n g the d e p t h o f the r e s i n bed t o 6 cm d i d not s i g n i f i c a n t l y improve t h e r e c o v e r y , a l t h o u g h d o i n g so i n c r e a s e d t h e t i m e r e q u i r e d f o r the s e p a r a t i o n s t e p by about 50% because of t h e d e c r e a s e d f l o w r a t e . The b u l k o f t h e vana-dium was r e c o v e r e d i n the f i r s t 10 ml o f e l u a t e , s u g g e s t i n g t h a t t h e r e m a i n d e r was b e i n g r e t a i n e d by the column, a s u p p o s i t i o n c o n s i s t e n t w i t h the f a c t t h a t t h e r e c o v e r y was improved by e l u t i n g w i t h 30 ml o f the 4 N ammonium h y d r o x i d e and th e n r i n s i n g w i t h 10 ml o f d e i o n i s e d w a t e r . U s i n g t h i s l a t t e r p r o c e -d u r e , the r e c o v e r i e s averaged o v e r 90%. To d e t e r m i n e t h e s t a g e a t which the r e m a i n i n g r e c o v e r y l o s s e s were o c c u r r i n g , t h r e e s t a n d a r d c a l i b r a t i o n s e r i e s were 14 r u n . I n the f i r s t , sea wa t e r t h a t had been passed t h r o u g h the r e s i n column was s p i k e d w i t h vanadium, and then the samples were a n a l y s e d as d e s c r i b e d i n t h e s t a n d a r d p r o c e d u r e . I n t h e seco n d , 4 N ammonium h y d r o x i d e t h a t had been passed t h r o u g h the r e s i n column was s p i k e d w i t h vanadium and the n the a n a l y s e s were completed as d e s c r i b e d i n the s t a n d a r d p r o c e d u r e f o l l o w i n g t h e e l u t i o n s t e p . In the t h i r d , ammonium n i t r a t e b u f f e r was s p i k e d w i t h vanadium and the n t h e samples were a n a l y s e d a p p l y i n g o n l y t h o s e s t e p s p e r t a i n i n g to t h e c o l o r i m e t r i c t e s t . The r e s u l t s ( F i g u r e 3) showed t h a t t h e s l o p e s o f t h e a b s o r -bance vs c o n c e n t r a t i o n c u r v e s o f the f i r s t and second s e r i e s were e s s e n t i a l l y t h e same; the s l o p e d e r i v e d from the t h i r d s e r i e s , however, was somewhat h i g h e r , i m p l y i n g t h a t the incom-p l e t e r e c o v e r i e s were due e i t h e r t o i n t e r f e r e n t s l e a c h e d fr,om th e r e s i n column, e v a p o r a t i o n l o s s e s , o r i n c o m p l e t e r e - s o l u t i o n o f t h e vanadium by t h e ammonium n i t r a t e b u f f e r . A t t e m p t s t o d e s t r o y i n t e r f e r i n g o r g a n i c s u b s t a n c e s by b o i l i n g the column e l u a t e w i t h c o n c e n t r a t e d n i t r i c a c i d had l i t t l e a p p a rent e f f e c t on t h e r e c o v e r y . Moreover, as s t a n d a r d s made up i n ammonium h y d r o x i d e which had been passed t h r o u g h t h e r e s i n gave c a l i b r a t i o n s l o p e s e s s e n t i a l l y the same as thos e u s i n g ammonium h y d r o x i d e s o l u t i o n s which had not been p a s s e d t h r o u g h the r e s i n , t he l o s s does not appear t o be due t o any o r g a n i c i n t e r f e r e n t l e a c h e d from the r e s i n . S i n c e the s o l u t i o n s were e v a p o r a t e d on low heat o v e r a p p r o x i m a t e l y an e i g h t e e n hour p e r i o d , and were a l l w e l l c o v e r e d , any l o s s due t o s p a t t e r i n g d u r i n g e v a p o r a t i o n s h o u l d have been m i n i m a l . I n c r e a s i n g the r e - s o l u t i o n t ime o f the e v a p o r a t i o n r e s i d u e t o two h o u r s , however, 15 F i g u r e 3. Recovery c u r v e s f o r d i s s o l v e d vanadium. C o n c e n t r a t i o n s based on 35 ml sample s i z e . 16 i n c r e a s e d the r e c o v e r i e s somewhat. Thus i t appears t h a t t h e r e a r e s m a l l l o s s e s due t o i n c o m p l e t e e l u t i o n and r e - s o l u t i o n . In a d d i t i o n , t h e r e may be a p p a r e n t l o s s e s due t o i o n i c i n t e r f e r e n t s p r e s e n t i n the sample. The v a r i o u s i o n s w h i c h i n t e r f e r e w i t h the c a t a l y t i c p r o c e d u r e , and t h e i r l i m i t i n g c o n -c e n t r a t i o n s , as g i v e n by Fishman and S k o u g s t a d ( 1 9 6 4 ) , a r e l i s t e d i n T a b l e I V . T a b l e IV Element L i m i t i n g c one. Cone, i n sea w a t e r (ppb) ( p p b ) < l > Ag 2,000 0.04 U(VI) 3,000 3.00 C o ( I l ) 1,000 0.10 N i ( I I ) 3,000 2.00 C u ( I I ) 50 3.00 Mo(Vl) 100 10.00 F e ( I I ) 300 j 10.00 F e ( I I I ) 500 C r ( V I ) 1,000 0.05 C l 100,000 19,000,000.00 Br 100 65,000.00 I 1 60.00 (1) R i l e y and C h e s t e r (1971) I t i s e v i d e n t t h a t , w i t h t h e e x c e p t i o n o f the h a l i d e s , few of t h e s e i o n s a r e p r e s e n t i n sea water i n h i g h enough c o n c e n t r a -t i o n t o i n t e r f e r e . R i l e y and T a y l o r (1968a) r e p o r t t h a t most m e t a l i o n s , e x c e p t f o r V ( V ) , M o ( V I ) , R e ( V I I ) and W(VI), w i l l be r e t a i n e d on t h e r e s i n and w i l l not be e l u t e d w i t h ammonium h y d r o x i d e . The h a l i d e s , s i n c e they a r e not a d s o r b e d by t h e r e s i n , a re f o r t h e most p a r t , washed o f f w i t h the 100 ml water r i n s e . M o r e o v e r , some h a l i d e s can be t o l e r a t e d i n t h e f i n a l r e a c t i o n m i x t u r e where t h e y a r e complexed by a d d i n g t h e m e r c u r i c n i t r a t e s o l u t i o n , w hich i t s e l f does n ot i n t e r f e r e a t the c o n c e n t r a t i o n s employed. The m e r c u r i c n i t r a t e r e p o r t e d l y a l l o w s d e t e r m i n a -t i o n s o f vanadium i n the p r e s e n c e o f 100 ppm o f c h l o r i d e and 0.25 ppm o f bromide and i o d i d e (Fishman and S k o u g s t a d , 1964). Welch and A l l a w a y (1972) found a s l i g h t p o s i t i v e e r r o r i n the d e t e r m i n a t i o n o f vanadium i n t h e pr e s e n c e o f molybdenum; how-e v e r , i n sea w a t e r , where t h e c o n c e n t r a t i o n o f Mo i s about 10 ug/1, t h i s e r r o r s h o u l d n ot be g r e a t e r t h a n about 1.5%. + + 2+ 2+ The major c a t i o n s i n sea wat e r (Na , K , Ca and Mg ) do not i n t e r f e r e even a t c o n c e n t r a t i o n s above 500 ug/1. And, as t h e s e a r e l a r g e l y washed o f f t h e r e s i n w i t h the c h l o r i d e , o n l y t r a c e amounts s h o u l d be e l u t e d w i t h the 4N ammonium h y d r o x i d e . . D i s s o l v e d vanadium i n oxyg e n a t e d n a t u r a l w a t e r s s h o u l d o c c u r m a i n l y i n t h e p e n t a - v a l e n t s t a t e (Chau and Chan, 1970). However, under r e d u c i n g c o n d i t i o n s , such as tho s e w h i c h some-t i m e s e x i s t i n S a a n i c h I n l e t , t h e t e t r a - and t r i - v a l e n t s t a t e s may a l s o be p r e s e n t . In o r d e r t o t e s t t h e r e t e n t i o n e f f i c i e n c y o f t h e r e s i n f o r t h e s e l o w e r : o x i d a t i o n s t a t e s , 25 ml a l i q u o t s o f a 3% NaCl s o l u t i o n , w h i c h was used t o s i m u l a t e sea w a t e r , were s p i k e d w i t h 0.05 /jg of vanadium and b o i l e d f o r one hour w i t h 1 ml o f a 6% sodium s u l f i t e s o l u t i o n made up i n 2% s u l f u r i c a c i d . The samples were then a d j u s t e d t o a volume o f 25 ml and a pH o f 6, passed t h r o u g h t h e r e s i n and th e n a n a l y s e d i n the normal manner. A group o f f o u r samples was t e s t e d a l o n g w i t h s o l u t i o n s which had not been t r e a t e d w i t h t h e r e d u c i n g s o l u t i o n . The r e s u l t s showed t h a t t h e r e c o v e r y from t h e reduced s o l u t i o n s , on a v e r a g e , was 12% lower t h a n t h a t from t h e u n t r e a t e d s o l u -t i o n s . Thus, t h e vanadium r e c o v e r y from S a a n i c h I n l e t w a t e r s 18 exposed t o r e d u c i n g c o n d i t i o n s might be somewhat low, a l t h o u g h r e - o x i d a t i o n d u r i n g s t o r a g e may have r e d u c e d t h i s e r r o r . Because o f t h e s e n s i t i v i t y o f the a n a l y t i c a l t e c h n i q u e , o n l y 25 ml samples of sea w a t e r need be u s e d . T h i s c o n t r a s t s g r e a t l y w i t h t h e l a r g e volumes (3 t o 7 1 ) employed by R i l e y and T a y l o r (1968b, 1972) o r R i l e y and Chan ( 1 9 6 5 ) . T h i s s m a l l e r sample s i z e r e d u c e s the amount of space r e q u i r e d f o r s t o r a g e and the time r e q u i r e d f o r t h e f i l t r a t i o n and i o n exchange s t e p s . Suspended M a t t e r Samples The suspended m a t t e r samples were p r e p a r e d f o r a n a l y s i s by t r a n s f e r r i n g t h e f i l t e r s t o 100 ml b e a k e r s and b o i l i n g f o r t e n m i n u t e s w i t h 10 ml o f 2 N HC1. A f t e r c o o l i n g , the r e s u l t i n g s o l u t i o n s were t r a n s f e r r e d t o 25 ml m e a s u r i n g c y l i n d e r s and d i l u t e d t o 20 ml w i t h d e i o n i s e d w a t e r . A c c o r d i n g t o M u l l e r (1967) such t r e a t m e n t s h o u l d d i s s o l v e any amorphous o r c r y s t a l -l i n e manganese o r i r o n o x i d e s b u t have r e l a t i v e l y l i t t l e e f f e c t on s i l i c a t e m i n e r a l s . Suspended Vanadium A 10 ml a l i q u o t o f the a c i d l e a c h o f the suspended m a t t e r was a d j u s t e d t o pH 6 w i t h d i l u t e NaOH, f i l t e r e d t h r o u g h Whatman No. 42 f i l t e r p a p e r , and then a n a l y s e d by t h e same p r o c e d u r e as t h a t g i v e n f o r d i s s o l v e d vanadium. Suspended I r o n A 2 ml a l i q u o t o f the a c i d l e a c h was t r e a t e d i n a manner s i m i l a r t o t h a t d e s c r i b e d by S a n d e l l (1965) by a d d i n g 2 ml o f a 19 10% h y d r o x y l a m m i n e - h y d r o c h l o r i d e s o l u t i o n , 6 ml o f a sodium a c e t a t e - HC1 b u f f e r ( p r e p a r e d from 50 ml o f 75% sodium a c e t a t e p l u s 10 ml o f c o n c e n t r a t e d HC1), and 1 ml o f a 0.3% s o l u t i o n o f o r t h o - p h e n a n t h r o l i n e i n 4% HC1. The pH o f t h e s o l u t i o n was a d j u s t e d t o a v a l u e between 3 and 6 and t h e volume made up t o 50 ml w i t h d e i o n i s e d w a t e r . A f t e r a l l o w i n g 24 hours f o r c o l o u r development, t h e absorbance was measured a t 513 nm u s i n g a Beckman Model DU S p e c t r o p h o t o m e t e r and a 10 cm c u v e t . C a l i b r a -t i o n c u r v e s were p r e p a r e d by a d d i n g known amounts o f a s t a n d a r d i r o n s o l u t i o n t o d e i o n i s e d w a t e r , a d d i n g t h e r e a g e n t s and d i l u t i n g t o 50 ml. The c u r v e s were l i n e a r and had a s l o p e whose mean v a l u e was 24.93 ug Fe per u n i t a b s o r b a n c e . Suspended Manganese The suspended manganese c o n c e n t r a t i o n was measured on the r e m a i n i n g sample volume by a s p i r a t i n g i t d i r e c t l y i n t o an a i r -a c e t y l e n e f l a m e o f a T e c h t r o n Model IV A t o m i c A b s o r p t i o n Spec-o t r o p h o t o m e t e r and measuring t h e absorbance a t 2795 A-. C a l i b r a -t i o n c u r v e s were p r e p a r e d by u s i n g HC1 s o l u t i o n s c o n t a i n i n g 0.0 t o 4.0 ppm manganese. D i s s o l v e d Oxygen The d i s s o l v e d oxygen c o n t e n t was d e t e r m i n e d on s h i p by the s t a n d a r d W i n k l e r T i t r a t i o n ( S t r i c k l a n d and P a r s o n s , 1968), u s i n g t h e m o d i f i e d r e a g e n t s o f C a r r i t and C a r p e n t e r ( 1 9 6 6 ) . 20 RESULTS A l l e x p e r i m e n t a l r e s u l t s a r e l i s t e d i n the d a t a t a b l e s i n t h e a p p e n d i x . The d i s s o l v e d vanadium c o n c e n t r a t i o n s o b s e r v e d i n S a a n i c h I n l e t ranged between 0.53 and 3.25 ug/1. The changes i n t h e v e r t i c a l d i s t r i b u t i o n o f d i s s o l v e d vanadium o b s e r v e d a t s t a t i o n 3 between September 1973 and J u l y 1974 a r e shown i n F i g u r e 4. At the s u r f a c e , the c o n c e n t r a t i o n s were g r e a t e r t h a n 2.3 ug/1 e x c e p t i n J u l y when th e y dropped below 1.0 pg/1. Then, below the s u r f a c e , they tended t o i n c r e a s e w i t h depth towards a c o n c e n t r a t i o n maximum which was l o c a t e d between the d e p t h s o f 50 and 80 m t h r o u g h o u t the e n t i r e s t u d y p e r i o d . From November t o A p r i l , t he v a l u e s a t t h i s maximum were above 2.6 ug/1, b u t i n J u l y they f e l l below 2.4 j j g / l . Below t h i s maximum, t h e con -c e n t r a t i o n s i n November d e c r e a s e d c o n t i n u o u s l y w i t h d e p t h ; however, from J a n u a r y t o J u l y , a f t e r p a s s i n g t h r o u g h a minimum between 80 and 120 m, they a g a i n i n c r e a s e d t o a s e c o n d a r y maxi-mum l o c a t e d a t about 140 m. V a l u e s a t t h i s deeper maximum rang e d above 2.5 pg/1 i n J a n u a r y and May t o 2.23 j j g / 1 i n J u l y . Below 160 m c o n c e n t r a t i o n s were i n v a r i a b l y below 2.0 pg/1 e x c e p t i n J a n u a r y . Moreover, i n November and A p r i l , t h e y d e c r e a s e d i n v a l u e c o n t i n u o u s l y w i t h d e p t h . In J u l y , a f t e r p a s s i n g t h r o u g h a minimum o f 1.0 jug/1 a t 175 m, they a g a i n i n c r e a s e d t o about 1.5 j u g / l a t the bottom. A l t h o u g h t h e p a t t e r n was i r r e g u l a r , t h e d i s s o l v e d vanadium c o n c e n t r a t i o n maximum o b s e r v e d a t s t a t i o n 3 between 50 and 80 m seemed, as shown i n F i g u r e s 5, 6 and 7, t o e x t e n d the l e n g t h o f 21 Stations 1 2 3 4 5 6 i i i J I L. F i g u r e 5. D i s t r i b u t i o n o f d i s s o l v e d vanadium (ug/1) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s . Stations 2 0 0 F i g u r e 6. D i s t r i b u t i o n o f d i s s o l v e d vanadium (ug/1) d u r i n g A p r i l 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s . F i g u r e 7. D i s t r i b u t i o n o f d i s s o l v e d vanadium (ug/1) d u r i n g J u l y 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s 23 the i n l e t i n J a n u a r y , A p r i l , ' and J u l y . F u r t h e r m o r e , t h e deeper maximum, found between 140 and 160 m a t s t a t i o n 3 seemed t o a l s o o c c u r a t s t a t i o n s 1 t o 4 d u r i n g t h e s e t h r e e c r u i s e s . In J a n u a r y ( F i g u r e 5) and A p r i l ( F i g u r e 6) t h e h i g h e s t v a l u e s a t t h i s deeper maximum were f o u n d a t s t a t i o n 3, w h i l e i n J u l y t h e y were found a t s t a t i o n 2 ( F i g u r e 7 ) . The i n c r e a s e i n the vanadium c o n t e n t o b s e r v e d i n t h e deep w a t e r s below 160 m a t s t a t i o n 3 i n J a n u a r y was l a r g e l y r e s t r i c -t e d t o t h a t s i n g l e s t a t i o n , w i t h v a l u e s d e c r e a s i n g towards both the head and t h e e n t r a n c e . By c o n t r a s t , i n A p r i l , t h e co n c e n -t r a t i o n s d e c r e a s e d from the head t o the e n t r a n c e , w h i l e i n J u l y , the h i g h e s t v a l u e s were found a t s t a t i o n s 2 and 4. In J u l y , the g e n e r a l c o n c e n t r a t i o n l e v e l i n the deep w a t e r s was much h i g h e r t h a n i n A p r i l . Suspended vanadium c o n c e n t r a t i o n s r a n g e d from below d e t e c t i o n l i m i t s up t o 500 ng/1. F i g u r e 8 shows how t h e v a l u e s below 75 m v a r i e d t h r o u g h o u t t h e s t u d y p e r i o d a t s t a t i o n 3.. In September, between 140 and 155 m, and i n November, below 140 m, suspended vanadium v a l u e s were above 100 ng/1. However, t h e s e v a l u e s were s h o r t l i v e d , as t h e y had g i v e n way t o ones l e s s than 30 ng/1 by J a n u a r y . S i n c e v a l u e s a t s t a t i o n 1 i n September were l e s s than 20 ng/1, i t appears t h a t t h e s e h i g h v a l u e s were c h a r a c t e r i s t i c m a i n l y o f s t a t i o n 3, a l t h o u g h a v a l u e o f 84 ng/1 was o b s e r v e d i n a sample t a k e n from the bottom w a t e r s a t s t a t i o n 2. From J a n u a r y t o J u l y t h e v e r t i c a l d i s t r i b u t i o n a t s t a t i o n 3 e x h i b i t e d a d i s t i n c t l a y e r i n g . I n the uppermost l a y e r , w hich was found above 90 m, v a l u e s exceeded 20 ng/1. Then, below t h i s , 24 t h e r e were s u c c e s s i v e l a y e r s i n which the c o n c e n t r a t i o n s f i r s t d ropped t o v a l u e s l e s s than 20 ng/1 and t h e n r o s e t o g r e a t e r t h a n 25 ng/1. F i n a l l y , i n t h e bottom w a t e r s the c o n c e n t r a t i o n s a g a i n d e c r e a s e d t o v a l u e s l e s s than 20 ng/1. F i g u r e 9, w h i c h shows t h e l o n g i t u d i n a l d i s t r i b u t i o n of suspended vanadium i n J a n u a r y , i n d i c a t e s t h a t the l a y e r i n g e v i d e n t i n the t e m p o r a l d i s t r i b u t i o n a t s t a t i o n 3 t e n d e d , w i t h v a r i o u s m o d i f i c a t i o n s , t o e x t e n d t h r o u g h o u t t h e l e n g t h o f the i n l e t . That i s , t h e c o n c e n t r a t i o n minimum o b s e r v e d a t about 175 m a t s t a t i o n 3, a l t h o u g h r i s i n g t o s h a l l o w e r d e p t h s a t s t a t i o n s 1 and 4, appears t o be a c o n t i n u o u s f e a t u r e , and the u n d e r l y i n g c o n c e n t r a t i o n maximum, a l t h o u g h l o c a t e d a t o r j u s t above the bottom, a t s t a t i o n 2, appears t o a l s o e x t e n d from head t o e n t r a n c e . In A p r i l and J u l y ( F i g u r e s 10 and 1 1 ) , when c o n c e n t r a t i o n s g e n e r a l l y d e c r e a s e d towards th e e n t r a n c e , a s i m i l a r l a y e r i n g p a t t e r n was a g a i n e v i d e n t . I n A p r i l , t h e r e was a l a y e r w i t h v a l u e s below 10 ng/1 s t r e t c h i n g between s t a t i o n s 2 and 4 above 125 m, and below t h i s , a l a y e r w i t h v a l u e s e x c e e d i n g 20 ng/1 c e n t r e d r o u g h l y between 120 m a t s t a t i o n 1 and 195 m a t s t a t i o n 4. Then, i n J u l y , t h e r e was a d i s t i n c t l a y e r i n which c o n c e n t r a -t i o n s exceeded 40 ng/1 c e n t r e d between 120 m a t s t a i o n 1 and 140 m a t s t a t i o n 4. The suspended manganese v a l u e s ranged from 0.5 ug t o 50 ug/1. The t e m p o r a l v a r i a t i o n s a t s t a t i o n 3 a r e shown i n F i g u r e 12. W h i l e t h e c o n c e n t r a t i o n s above 140 m remained f a i r l y c o n s t a n t w i t h t i m e , below 140 m t h e y a t f i r s t d e c r e a s e d , and t h e n f o l l o w i n g J a n u a r y , began t o i n c r e a s e . From September t o 25. .Stations F i g u r e 9. D i s t r i b u t i o n o f suspended vanadium (ng/1.) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s . 26 Stations F i g u r e 11. D i s t r i b u t i o n o f suspended vanadium (ng/1) d u r i n g J u l y 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s . 27 J a n u a r y , when t h e deep water v a l u e s were d e c r e a s i n g w i t h t i m e , t h e y a l s o i n c r e a s e d c o n t i n u o u s l y w i t h d e p t h . By c o n t r a s t , i n A p r i l and J u l y , as the c o n c e n t r a t i o n l e v e l s i n c r e a s e d w i t h t i m e , t h e r e was an i n v e r s i o n below which v a l u e s were l e s s than 2 ug/1. In J a n u a r y ( F i g u r e 13) t h e suspended manganese c o n c e n t r a -t i o n s i n c r e a s e d w i t h depth a t a l l f o u r s t a t i o n s . However, i n A p r i l t h e r e was a mid-depth l a y e r w i t h v a l u e s above 10 yg/l s t r e t c h i n g between 160 m a t s t a t i o n 1 and 180 m a t s t a t i o n 4 ( F i g u r e 1 4 ) . A s i m i l a r mid-depth maximum was a g a i n e v i d e n t i n J u l y as a l a y e r c o n t a i n i n g v a l u e s g r e a t e r t h a n 10 s t r e t c h i n g from about 120 m a t s t a t i o n 1 t o about 150 m a t s t a t i o n 4 ( F i g u r e 1 5 ) . I n A p r i l , t he h i g h e s t v a l u e s a t t h i s m id-depth maximum were f o u n d a t s t a t i o n 3, w h i l e i n J u l y , the h i g h e s t v a l u e s were found a t the head. Suspended i r o n v a l u e s r a n g e d between 2.9 and 29.4 ; u g / l . As i l l u s t r a t e d by F i g u r e 16, t h e h i g h e s t c o n c e n t r a t i o n s a t s t a t i o n 3, e x c e p t i n September, o c c u r r e d between 75 and 100 m, and t h e n , below t h i s , t he v a l u e s g e n e r a l l y d e c r e a s e d w i t h i n c r e a s i n g d e p t h . C o n c e n t r a t i o n s e x c e e d i n g 20 ug/1 were found o n l y i n November and J a n u a r y , t h e same ti m e p e r i o d when t h e v a l u e s o b s e r v e d i n the bottom w a t e r s r e a c h e d t h e i r l o w e s t l e v e l s . The l o n g i t u d i n a l d i s t r i b u t i o n o b s e r v e d i n J a n u a r y ( F i g u r e 17) i l l u s t r a t e s t he f a c t t h a t suspended i r o n v a l u e s n o r m a l l y not o n l y d e c r e a s e d w i t h i n c r e a s i n g d e p t h , a t l e a s t below 75 m, b u t t h a t t h e y a l s o tended t o d e c r e a s e w i t h i n c r e a s i n g d i s t a n c e from th e e n t r a n c e o f t h e i n l e t . The t e m p o r a l changes i n t h e d i s t r i b u t i o n s o f t e m p e r a t u r e , 28 Stations F i g u r e 13. D i s t r i b u t i o n o f suspended manganese (^pg/1) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s . 29 Stations F i g u r e 15. D i s t r i b u t i o n o f suspended manganese ( p g / l ) d u r i n g J u l y 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s . 30 Sta tions F i g u r e 17. D i s t r i b u t i o n o f suspended i r o n (ug/1) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t s a m p l i n g p o i n t s . 31 s a l i n i t y and d e n s i t y o b s e r v e d a t s t a t i o n 3 a r e shown i n F i g u r e s 18, 19 and 20. At t h e s u r f a c e , t h e d e n s i t y i n c r e a s e d as t h e t e m p e r a t u r e d e c r e a s e d between September and J a n u a r y , and t h e n i t d e c r e a s e d as t h e t e m p e r a t u r e s u b s e q u e n t l y i n c r e a s e d between J a n u a r y and J u l y . I n t h e deep w a t e r s , the t e m p e r a t u r e r e m a i n e d . r e l a t i v e l y c o n s t a n t a t about 9°C. The d e n s i t y , how-e v e r , i n c r e a s e d w i t h i n c r e a s i n g s a l i n i t y , between September and November, and t h e n d e c r e a s e d when the s a l i n i t y s u b s e q u e n t l y d e c r e a s e d from November t o J u l y , e x c e p t i n t h e bottom w a t e r sample i n J u l y when t h e r e was a marked d r o p i n t e m p e r a t u r e and a c o r r e s p o n d i n g r i s e i n d e n s i t y . The d i s s o l v e d oxygen v a l u e s g e n e r a l l y d e c r e a s e d w i t h i n c r e a s i n g d e p t h , r a n g i n g from 11.2 ml/1 a t the s u r f a c e i n November t o 0.02 ml/1 i n t h e bottom w a t e r s i n A p r i l . As i l l u -s t r a t e d by the t e m p o r a l changes o b s e r v e d a t s t a t i o n 3 ( F i g u r e 2 1 ) , below 120 m the v a l u e s were g e n e r a l l y l e s s t h a n 0.5 m l / 1 . However, between November and J a n u a r y , when t h e r e were a l s o i n c r e a s e s i n t h e s a l i n i t y and d e n s i t y i n t h e bottom w a t e r s , v a l u e s g r e a t e r t h a n 0.5 ml/1 were o b s e r v e d between 170 and 190 m. Above s i l l d e p t h , t h e c o n c e n t r a t i o n s , e x c l u d i n g the s u r f a c e s a m p l e s , tended t o i n c r e a s e from November t o A p r i l and t h e n d e c r e a s e t o J u l y . However, from 125 t o 175 m the o p p o s i t e t r e n d was o b s e r v e d . Between 175 and 200 m the c o n c e n t r a t i o n s d e c r e a s e d c o n t i n u o u s l y f r o m November t o J u l y , b u t below 200 m t h e r e was a s l i g h t i n c r e a s e from A p r i l t o J u l y . The odour o f hydrogen s u l f i d e was d e t e c t a b l e i n a few samples t a k e n near the sediment s u r f a c e . The most n o t i c e a b l e was the sample t a k e n from 220 m a t s t a t i o n 2 i n J u l y . 32 Sept Nov Jan May Aug 73-35 73-46 74-1 74-15 74-26 F i g u r e 19. D i s t r i b u t i o n o f s a l i n i t y (S°/oo) a t S t a t i o n 3.' Dots r e p r e s e n t s a m p l i n g p o i n t s . 33 3 Sept Nov Jan May Aug 73-3S . 73-46 74-1 74-1J 74-76 F i g u r e 21. D i s t r i b u t i o n a t S t a t i o n 3 p o i n t s . of d i s s o l v e d oxygen (ml/1) Dots r e p r e s e n t s a m p l i n g 34 The d a t a t a b l e s i n the a p p e n d i x i n d i c a t e t h a t i n J a n u a r y the oxygen c o n t e n t d e c r e a s e d c o n t i n u o u s l y w i t h depth t o about 155 m t h r o u g h o u t t h e i n l e t . Below t h i s , the c o n c e n t r a t i o n s i n c r e a s e d s l i g h t l y a t s t a t i o n s 2, 3 and 4. However, a t s t a t i o n 1, t h e v a l u e s r e m a i n e d c o n s t a n t below 125 m. In A p r i l and J u l y , t h e y a g a i n tended t o d e c r e a s e w i t h depth a t a l l s t a t i o n s e x c e p t f o r s l i g h t i n c r e a s e s o b s e r v e d i n the deep w a t e r s a t s t a t i o n s 1 and 4 i n A p r i l and a t s t a t i o n 3 i n J u l y . 35 DISCUSSION T a b l e V compares the d i s s o l v e d vanadium v a l u e s o b s e r v e d i n S a a n i c h I n l e t w i t h those r e p o r t e d i n o t h e r r e c e n t s t u d i e s on sea w a t e r . I t would appear t h a t the v a l u e s found i n S a a n i c h I n l e t a r e t y p i c a l o f normal sea w a t e r . T a b l e V D i s s o l v e d Vanadium C o n c e n t r a t i o n ug/1 L o c a t i o n A u t h o r s 0.53-3.25 S a a n i c h I n l e t T h i s s t u d y 0.05-6.4 N o r t h - e a s t A t l a n t i c R i l e y and T a y l o r (1972) 1.67 E a s t C h i n a Sea K i r i y a m a and Kuroda (1974) 0.83-1.57 N o r t h - e a s t A t l a n t i c M o r r i s (1975) 1.5 -2.5 E a s t e r n I n d i a n Ocean Sugawara and Okabe (1970) 0.95-2.36 Western P a c i f i c Okabe and M o r i n a g a (1970) K r a u s k o p f (1956) l i s t s t h e e n r i c h m e n t f a c t o r of vanadium f o r brown a l g a e , as d e t e r m i n e d by B l a c k and M i t c h e l l ( 1 9 5 2 ) , as between 10 and 300, and the average e n r i c h m e n t f a c t o r f o r n i n e m a r i n e mammals, as d e t e r m i n e d by Noddack and Noddack ( 1 9 3 9 ) , as b e i n g 280,000. However, as t h e s e v a l u e s were c a l c u l a t e d u s i n g a vanadium c o n c e n t r a t i o n w h i c h i s about t e n t i m e s lower t h a n t h a t c u r r e n t l y r e p o r t e d as the a v e r a g e c o n c e n t r a t i o n i n sea w a t e r , t h e s e v a l u e s e v i d e n t l y s h o u l d be reduced by r o u g h l y a f a c t o r of t e n . Brooks and Rumsby (1965) r e p o r t t h e e n r i c h m e n t f a c t o r s f o r s c a l l o p s , o y s t e r s , and m u s s e l s as 4,500, 1,500 and 2,500 r e s -p e c t i v e l y . Hence, uptake by l i v i n g o r g a n i s m s i s a p o t e n t i a l f a c t o r removing vanadium from t h e s u r f a c e and the w e a k l y oxy-36 genated w a t e r s found below s i l l d e p t h . As the o r g a n i s m s d i e and t h e i r r e m a i n s s i n k towards the bottom, some o f the vanadium consumed may be r e l e a s e d as a r e s u l t o f decay, b u t some may be removed p e r m a n e n t l y i f t h i s d e t r i t a l m a t e r i a l becomes p a r t o f the s e d i m e n t . I n s t u d i e s o f B l a c k Sea s e d i m e n t s , Ostroumov and V o l k o v (1957) f o u n d t h e h i g h e s t vanadium c o n c e n t r a t i o n s i n the a n c i e n t s e d i m e n t s which have a v e r y h i g h o r g a n i c c a r b o n c o n t e n t , w h i l e V o l k o v and Fomina (1974) f o u n d t h a t vanadium c o - v a r i e d d i r e c t l y w i t h o r g a -n i c carbon.. The h i g h e s t v a l u e s o f o r g a n i c c a r b o n i n S a a n i c h I n l e t a re i n t h e f i n e g r a i n e d b l a c k sediment o f the deep c e n t r a l b a s i n ( G u c l u e r and G r o s s , 1964); however, Gr o s s (1967), i n a s t u d y of minor elements i n S a a n i c h I n l e t , found h i g h e r vanadium v a l u e s near the s i l l t h an i n t h e c e n t r a l b a s i n . Thus, l i t h o g e n o u s r a t h e r than b i o g e n o u s m a t t e r appears t o be t h e p r i m a r y s o u r c e o f vanadium i n S a a n i c h I n l e t s e d i m e n t . F i g u r e 5 i n d i c a t e s t h a t t h e d i s s o l v e d vanadium c o n c e n t r a -t i o n s g e n e r a l l y d e c r e a s e d b o t h above and below the s i l l d e p t h . On p l o t t i n g t h e d i s s o l v e d vanadium v a l u e s , [ v ] d , f o r samples t a k e n , i n t h i s c a s e , between 10 and 75 m i n J a n u a r y a g a i n s t the c o r r e s p o n d i n g s a l i n i t y v a l u e s , S°/oo, i t becomes e v i d e n t ( F i g . 22) t h a t the changes i n d i s s o l v e d vanadium a r e r o u g h l y l i n e a r l y c o r r e l a t e d t o t h e changes i n s a l i n i t y . The e q u a t i o n o f t h e r e g r e s s i o n c u r v e i s : S i m i l a r c o r r e l a t i o n s e x i s t e d t h r o u g h o u t most of the y e a r i n the w a t e r s above s i l l d e p t h , s u g g e s t i n g t h a t the main f a c t o r con-t r o l l i n g the d i s s o l v e d vanadium v a l u e s was not b i o l o g i c a l F i g u r e 22. P l o t o f d i s s o l v e d vanadium (ug/1) a g a i n s t s a l i n i t y (S°/oo) d u r i n g J a n u a r y 1974, f o r depths between .10 and 75 m. 38 a c t i v i t y but t h e m i x i n g o f low s a l i n i t y , low vanadium s u r f a c e w a t e r w i t h h i g h e r s a l i n i t y , h i g h e r vanadium sea w a t e r f o u n d a t d e p t h . T h i s was c l e a r l y not t h e case i n J u l y ( F i g . 7 ) , however, when t h e r e appears t o have been an i n t r u s i o n of low vanadium w a t e r a t about s i l l d e p t h . Below s i l l d e p t h , the d i s s o l v e d vanadium v a l u e s n o r m a l l y showed marked n e g a t i v e d e v i a t i o n s from t h e t r e n d o b s e r v e d above s i l l depth ( F i g . 2 3 ) . M o r e o v e r , a l t h o u g h d i s s o l v e d vanadium v a l u e s g e n e r a l l y i n c r e a s e d from September t o November i n p a r a l -l e l w i t h s a l i n i t y and d i s s o l v e d oxygen v a l u e s ( F i g s . 4, 19 and 2 1 ) , from November t o J a n u a r y , t h e y i n c r e a s e d as s a l i n i t y and d i s s o l v e d oxygen v a l u e s d e c r e a s e d ( F i g s . 4, 19 and 2 1 ) . Then from J a n u a r y t o May, the d i s s o l v e d vanadium v a l u e s below 160 m d e c r e a s e d i n p a r a l l e l w i t h t h e s a l i n i t y and d i s s o l v e d oxygen v a l u e s , but between May and l a t e J u l y , below 200 m, t h e y i n -c r e a s e d as the s a l i n i t y d e c r e a s e d and the d i s s o l v e d oxygen i n c r e a s e d . Thus, t h e r e a p p e a r s t o be no s i m p l e r e l a t i o n s h i p between s a l i n i t y and d i s s o l v e d vanadium v a l u e s below s i l l d e p t h . The d i s s o l v e d vanadium i n c r e a s e s o b s e r v e d i n the bottom w a t e r s i n November 1973 and J u l y 1974 may have been due t o the i n t r u s i o n s o f new bottom w a t e r e v i d e n c e d by the s i m u l t a n e o u s i n c r e a s e s i n d e n s i t y and d i s s o l v e d oxygen v a l u e s . The low d i s s o l v e d vanadium c o n c e n t r a t i o n s o b s e r v e d p r i o r t o t h e s e i n t r u -s i o n s may thus have been t h e r e s u l t of i t s p r e c i p i t a t i o n o r c o -p r e c i p i t a t i o n from a n o x i c o r s u l p h i d e c o n t a i n i n g w a t e r s . A l t h o u g h vanadium would not be e x p e c t e d t o form i n s o l u b l e s u l -p h i d e phases under the c o n d i t i o n s t h a t o c c u r i n sea w a t e r , c o -p r e c i p i t a t i o n w i t h f e r r o u s s u l p h i d e i s e v i d e n t l y p o s s i b l e 39 F i g u r e 23. V e r t i c a l p r o f i l e o f (a) s a l i n i t y (S°/oo) and (b) d i s s o l v e d vanadium ( p g / 1 ) • a t S t a t i o n 4 d u r i n g J a n . 1974. S o l i d and dashed c u r v e s i n F i g . 23(b) r e p r e s e n t p r e d i c t e d and o b s e r v e d d i s s o l v e d vanadium v a l u e s r e s p e c t i v e l y . Dots r e p r e s e n t s a m p l i n g p o i n t s . 40 ( K r a u s k o p f , 1956). F u r t h e r m o r e , under a n o x i c c o n d i t i o n s q u i n -q u e v a l e n t vanadium may be r e d u c e d t o a q u a d r i - o r t e r v a l e n t s t a t e i n which i t may p r e c i p i t a t e o r be a d s o r b e d more r e a d i l y t h a n i n the q u i n q u e v a l e n t s t a t e . The d a t a o f Evans and G a r r e l s (1958) show t h a t p e n t a v a l e n t vanadium, w h i c h s h o u l d p r e d o m i n a n t l y e x i s t as the V4 0^2~ i o n t h e p H r a n 9 e o f s e a w a t e r 5 would be r e d u c e d t o a t l e a s t the q u a d r i v a l e n t s t a t e i n s u l p h i d e b e a r i n g w a t e r s a t pH 7.5 upon e q u i l i b r a t i o n w i t h t h e redox h a l f - r e a c t i o n HS~ + 4H 20 = S 0 4 2 " + 9H + + 8e~ where ;^°4 /.[HS~] = 10 3 The c a l c u l a t i o n s o f K r a u s k o p f (1956) i n d i c a t e t h a t , a t t h e vana-dium c o n c e n t r a t i o n s p r e s e n t i n sea w a t e r , t h e r e d u c e d s p e c i e s w h i c h r e s u l t would be u n a b l e t o p r e c i p i t a t e as the h y d r o x i d e s V0(0H) 2 or vCOH)^; however, he d e m o n s t r a t e d e x p e r i m e n t a l l y t h a t V(IV) was r e a d i l y adsorbed from sea w a t e r by both hydrous i r o n o x i d e s and p l a n k t o n . The f a c t t h a t d i s s o l v e d vanadium v a l u e s c o n t i n u e d t o i n c r e a s e between November and J a n u a r y , a f t e r the i n t r u s i o n o f new bottom w a t e r s had a p p a r e n t l y c e a s e d , might be r e l a t e d t o i t s r e l e a s e i n t h e newly o x y g e n a t e d bottom w a t e r s from decomposing b i o g e n o u s m a t e r i a l , o r some r e d u c e d o r s u l p h i d e phase formed under a n o x i c c o n d i t i o n s . However, such an i n c r e a s e c o u l d have a l s o been i n p a r t due, as was a p p a r e n t l y f o u n d i n t h e c a s e o f molybdenum i n S a a n i c h I n l e t ( B e r r a n g and G r i l l , 1974), t o a c o -p r e c i p i t a t i o n o f vanadium w i t h manganese o x i d e s , and i t s subse-quent r e l e a s e a t t h e s e d i m e n t - w a t e r i n t e r f a c e f o l l o w i n g s e t t l e -ment and r e d u c t i v e d i s s o l u t i o n o f the manganese o x i d e c a r r i e r . Such a mechanism i s s u g g e s t e d by the f a c t t h a t , from September t o J a n u a r y , v e r y h i g h suspended manganese c o n c e n t r a t i o n s were 41 found t h r o u g h o u t the deep w a t e r ( F i g . 1 2 ) . As shown e l s e w h e r e . ( B e r r a n g and G r i l l , 1974), t h i s suspended manganese a p p a r e n t l y r e s u l t e d from t h e o x y g e n a t i o n o f the deep w a t e r s and t h e o x i d a -t i v e p r e c i p i t a t i o n o f the l a r g e amounts of d i s s o l v e d M n ( I I ) w h i c h a c c u m u l a t e t h e r e d u r i n g a n o x i c p e r i o d s . By the end o f J a n u a r y , a f t e r the d i s s o l v e d oxygen c o n t e n t had d e c r e a s e d t o about 0.27 ml/1, suspended manganese v a l u e s a l s o d e c r e a s e d , e i t h e r due t o the e x h a u s t i o n o f the s u p p l y of d i s s o l v e d manganese o r the d e c r e a s e i n t h e d i s s o l v e d oxygen c o n c e n t r a t i o n . Whatever the c a s e , due t o s o l u t i o n o f t h e man-ganese o x i d e s t h a t s e t t l e d o n t o the sediment s u r f a c e , d i s s o l v e d manganese v a l u e s e v e n t u a l l y would have t o i n c r e a s e a g a i n t h r o u g h o u t the deep and bottom w a t e r s . In A p r i l , a l a y e r w i t h h i g h suspended manganese c o n c e n t r a -t i o n s (above 15 }jg/l) appeared between 170 and 210 m a t s t a t i o n 3 and 175 and 185 m a t s t a t i o n 4 ( F i g . 1 4 ) . Spencer and Brewer (1971) and B e r r a n g and G r i l l (1974) noted s i m i l a r a c c u m u l a t i o n s of suspended manganese j u s t above the i n t e r f a c e between oxy-genated and a n o x i c w a t e r s i n , r e s p e c t i v e l y , the B l a c k Sea and S a a n i c h I n l e t , and a t t r i b u t e d t h e s e c o n c e n t r a t i o n maxima t o o x i d a t i v e p r e c i p i t a t i o n o f t h e d i s s o l v e d manganese t h a t i s b e i n g mixed upwards from the oxygen d e f i c i e n t bottom w a t e r s . Then, as t h e s e o x i d e p a r t i c l e s s i n k back i n t o t h e oxygen d e f i c i e n t w a t e r s , they undergo r e d u c t i v e s o l u t i o n , t h u s r e s t r i c t i n g the h i g h suspended manganese v a l u e s t o a t h i n mid-depth l a y e r . By t h e end o f J u l y , t h i s t h i n l a y e r of h i g h suspended manganese wa t e r s t r e t c h e d c o n t i n u o u s l y from s t a t i o n s 1 t o 4 between 100 and 150 m ( F i g . 1 5 ) . 42 L a b o r a t o r y s t u d i e s ( K r a u s k o p f , 1956) show t h a t hydrous manganese o x i d e s w i l l a d s o r b vanadium from sea w a t e r . I f the manganese o x i d e s p r e c i p i t a t e d i n S a a n i c h I n l e t a r e i n f a c t s c a v e n g i n g s i g n i f i c a n t amounts o f vanadium from sea w a t e r , then i t would be e x p e c t e d t h a t where t h e r e a r e h i g h suspended man-ganese v a l u e s , t h e r e s h o u l d a l s o be h i g h suspended vanadium v a l u e s . F i g u r e s 8 and 12 i n d i c a t e t h a t from September t o December, when suspended Mn v a l u e s were a t t h e i r h i g h e s t , suspended vanadium c o n c e n t r a t i o n s were a l s o maximal. Moreover, the t h i n m id-depth l a y e r s o f h i g h suspended manganese water f o u n d i n A p r i l and J u l y ( F i g u r e s 14 and 15) a l s o tended t o have h i g h suspended vanadium v a l u e s ( F i g u r e s 11 and 1 2 ) . Thus, v/here t h e r e i s an a c c u m u l a t i o n o f suspended manganese, t h e r e tends t o be a c o r r e s p o n d i n g a c c u m u l a t i o n o f suspended vanadium. F i g u r e 24, which shows the v e r t i c a l p r o f i l e s o f t h e two suspended m e t a l s a t s t a t i o n s 1 and 2 i n J u l y , b e t t e r i l l u s t r a t e s t h e c l o s e p a r a l l e l between t h e i r d i s t r i b u t i o n s . I f the J u l y suspended vanadium v a l u e s a r e p l o t t e d a g a i n s t t h e c o r r e s p o n d i n g suspended manganese v a l u e s ( F i g . 25) t h e p o i n t s may be f i t t e d r o u g h l y w i t h a s t r a i g h t l i n e i n d i c a t i n g a _3 vanadium t o manganese w e i g h t r a t i o a v e r a g i n g 2.1 x 10 . G r i l l -4 e t a l . , , (1968) found V t o Mn w e i g h t r a t i o s o f 4 x 10 and -4 6 x 10 i n manganese n o d u l e s from J e r v i s I n l e t . R i l e y and S i n h a s e n i (1958) found V t o Mn w e i g h t r a t i o s i n P a c i f i c Ocean n o d u l e s t o be 6.5 x 1 0 ~ 4 , w h i l e Pachadzhanov ( e t a l . , 1963) _3 found the r a t i o i n I n d i a n Ocean no d u l e s t o be 4.7 x 10 . Thus, vanadium i s a p p a r e n t l y a s s o c i a t e d w i t h suspended manganese o x i d e 43 Suspended Manganese ji g/i 0 10 2 c 3 0 Suspended Manganese ug/l Suspended Vanadium ng/1 F i g u r e 24. V e r t i c a l p r o f i l e s o f suspended vanadium (ng/1) and suspended manganese (ug/1) a t (a) S t a t i o n 1 and (b) S t a t i o n 2 i n J u l y 1974. S o l i d and dashed c u r v e s i n d i c a t e suspended vanadium and suspended manganese r e s p e c t i v e l y . 44 Figure 25. Plot of suspended vanadium (ng/1) against sus-pended manganese (ug/1) during July 1974. 45 p a r t i c l e s i n S a a n i c h I n l e t t o r o u g h l y t h e same e x t e n t t h a t i t i s presumably a d s o r b e d by manganese o x i d e s i n marine manganese n o d u l e s . The s l o p e , i n t e r c e p t and c o r r e l a t i o n c o e f f i c i e n t o f the suspended vanadium and manganese r e g r e s s i o n c u r v e f o r each c r u i s e i s l i s t e d i n T a b l e V I . T a b l e VI S l o p e I n t e r - C o r r . No. o f C r u i s e Date x 1 0 ~ 3 c e p t - C o e f f . Samples 73/35 S e p t . 1973 5.79 15.3 +0.45 7 73/46 Nov. 1973 11.80 0.8 +0.94 8 74/1-A J a n . 1974 - 0.11 23.9 -0.10 30 74/15 A p r i l 1974 0.20 16.9 +0.10 33 74/26-A J u l y 1974 2.10 15.3 +0.89 34 These d a t a i n d i c a t e t h a t t h e s t r o n g e s t c o r r e l a t i o n s between suspended vanadium and manganese v a l u e s o c c u r r e d i n t h e autumn of 1973 and J u l y 1974. There a p p e a r s , however, t o be no c o r -r e l a t i o n between the two suspended m e t a l s i n J a n u a r y o r A p r i l , w i t h the e x c e p t i o n o f the t h i n l a y e r of h i g h suspended manga-nese water found i n A p r i l between 175 and 185 m a t s t a t i o n 3 and 170 and 210 m a t s t a t i o n 4 ( F i g . 1 4 ) . The V:Mn w e i g h t r a t i o s , as d e r i v e d from the s l o p e s o f the r e g r e s s i o n l i n e s ( T a b l e V I ) , e x h i b i t a much g r e a t e r s p r e a d than t h o s e r e p o r t e d by W i l l i s and Ahrens (1962) f o r o c e a n i c manga-nese n o d u l e s . Moreover, the r e g r e s s i o n l i n e s e x h i b i t a p o s i t i v e i n t e r c e p t , i m p l y i n g t h a t t h e r e i s some form of suspended vana-dium which i s not a s s o c i a t e d w i t h the suspended manganese o x i d e s . V a r i a t i o n i n t h i s non-manganese a s s o c i a t e d vanadium may a c c o u n t f o r some of the s c a t t e r about th e r e g r e s s i o n l i n e s . 46 K r a u s k o p f (1956) found t h a t vanadium was adsorbed o n t o i r o n o x i d e s even more s t r o n g l y t h a n o n t o manganese o x i d e s . However, h i s e x p e r i m e n t a l c o n d i t i o n s d i f f e r e d from n a t u r a l c o n d i t i o n s and, i n p a r t i c u l a r , from t h o s e found i n t h i s s t u d y . T h i s might e x p l a i n the f a c t t h a t no r e l a t i o n s h i p was found between the suspended i r o n and suspended vanadium v a l u e s found i n S a a n i c h I n l e t . I t s h o u l d be n o t e d , however, t h a t i r o n o x i d e s may not have been the o n l y form of i r o n e x t r a c t e d from the samples by the HC1 l e a c h i n g p r o c e d u r e . As the d i s s o l v e d vanadium i s adsorbed o n t o the manganese o x i d e s , i t might be e x p e c t e d t h a t t h i s would r e s u l t i n a nega-t i v e anomaly i n i t s v e r t i c a l p r o f i l e . I n agreement w i t h t h i s , below the s i l l d e p t h , d i s s o l v e d vanadium v a l u e s a r e g e n e r a l l y l o w e r than the v a l u e s i n d i c a t e d by the s a l i n i t y c o r r e l a t i o n s o b s e r v e d above s i l l depth ( F i g . 2 3 ) . W h i l e a d s o r p t i o n o f d i s s o l v e d vanadium by manganese o x i d e s may a c c o u n t f o r the n e g a t i v e anomaly a t m i d - d e p t h s , s i n c e t h e manganese o x i d e s must u l t i m a t e l y d i s s o l v e r e l e a s i n g vanadium, o t h e r p r o c e s s e s , such as' i n t r u s i o n o f low d i s s o l v e d vanadium w a t e r , a n o x i c p r o c e s s e s or a d s o r p t i o n by s i l i c a t e m i n e r a l s or o r g a n i c m a t t e r must be o p e r a t i v e f o r t h i s anomaly t o p e r s i s t t h r o u g h o u t the deep w a t e r s . In summary, the d i s s o l v e d vanadium d i s t r i b u t i o n i n S a a n i c h I n l e t , m a y be i n f l u e n c e d by s e v e r a l f a c t o r s . L i v i n g o r g a n i s m s may t a k e up vanadium i n the s u r f a c e w a t e r s o r the v/eakly oxygena-te d w a t e r s f o u n d a t mid-depth (Brooks and Rumsby, 1965; Noddack and Noddack, 1939) and a f t e r d e a t h , may r e l e a s e i t t o the water t h r o u g h decay o r c a r r y i t t o the s e d i m e n t . Manganese o x i d e p a r t i c l e s appear t o adsorb vanadium a t m i d - d e p t h s , and on 47 sinking, carry the vanadium to the deeper waters where i t presumably i s released by reductive d i s s o l u t i o n of the manganese oxide c a r r i e r . However, c o r r e l a t i o n s between dissolved vanadium and s a l i n i t y observed in the waters above s i l l depth suggest that there i s a net loss of vanadium from the waters below s i l l depth. Such losses may be due to i t s adsorption by and co-p r e c i p i t a t i o n with d e t r i t a l s i l i c a t e or organic p a r t i c l e s , or ferrous sulphide, either as pentavalent vanadium or, following reduction under anoxic conditions, in some lower oxidation state. BIBLIOGRAPHY 48 Anderson, J . J . , and D e v o l , A.H., 1973. "Deep w a t e r r e n e w a l i n S a a n i c h I n l e t , an i n t e r m i t t e n t l y a n o x i c b a s i n " . E s t u a r i n e and C o a s t a l M a r i n e S c i e n c e , _1, 1-10. B e r r a n g , P.G., 1972. "The e f f e c t o f manganese o x i d e s c a v e n g i n g on t h e d i s t r i b u t i o n o f molybdenum i n S a a n i c h I n l e t , B r i t i s h C o l u m b i a " . M.Sc. t h e s i s , U n i v e r s i t y o f B.C. B e r r a n g , P.G., and G r i l l , E.V., 1974. "The e f f e c t o f manganese o x i d e s c a v e n g i n g on molybdenum i n S a a n i c h I n l e t , B r i t i s h C o l u m b i a " . M a r i n e C h e m i s t r y , 2, 125-148. B l a c k , W.A.P., and M i t c h e l l , R.L., 1952. "Trace e l e m e n t s i n t h e common brown a l g a e and i n sea w a t e r " . J . Mar. B i o l . A s s o c . U.K., 3_0, 575-584. B r o o k s , R.R., and Rumsby, M.G., 1965. "The b i o g e o -c h e m i s t r y of t r a c e element u p t a k e by some New Z e a l a n d b i v a l v e s " . L i m n o l . Ocean., _10, 521-527. C a r r i t , D.E., and C a r p e n t e r , J.H., 1966. "Comparison and e v a l u a t i o n of c u r r e n t l y employed m o d i f i c a t i o n s o f the W i n k l e r method f o r d e t e r m i n i n g d i s s o l v e d oxygen i n sea w a t e r " . J . M a r i n e Res., 24, 286-318. Chan, K.M., and R i l e y , J.P., 1966. "The d e t e r m i n a t i o n o f vanadium i n sea and n a t u r a l w a t e r s , b i o l o g i c a l m a t e r i a l s and s i l i c a t e s e d i m e n t s and r o c k s " . A n a l y -t i c a Chim. A c t a , 34, 337-345. Chau, Y.K., and Chan, K., 1970. "Complex e x t r a c t i o n o f vanadium f o r a t o m i c a b s o r p t i o n s p e c t r o s c o p y . D e t e r -m i n a t i o n of microgram q u a n t i t i e s o f vanadium i n l a k e w a t e r s " . A n a l y t i c a Chim. A c t a , 50, 201-207. Crump-Wiesner, H.J., and Purdy, W.C., 1969. " E x t r a c t i o n o f vanadium i n t o i s o b u t y l m e t h y l k e t o n e " . T a l a n t a , 16, 124-129. Evans, H.T., and G a r r e l s , R.M., 1958. "Thermodynamic e q u i l i b r i u m o f vanadium i n aqueous systems as a p p l i e d t o t he i n t e r p r e t a t i o n o f the C o l o r a d o P l a t e a u o r e d e p o s i t s " . Geochim. Cosmochim. A c t a , 15_, 131-149. Fishman, M.J., and S k o u g s t a d , M.W., 1964. " C a t a l y t i c d e t e r m i n a t i o n o f vanadium i n w a t e r " . A n a l . Chem., 3jS, 1643-1646. G r i l l , E.V., Murray, J.W. and MacDonald, R.D., 1968. " T o d o r o k i t e i n manganese n o d u l e s from a B r i t i s h C o l u m b i a f j o r d " . N a t u r e , 219, 358-359. 49 13. G r o s s , M.G., 1967. " C o n c e n t r a t i o n s o f minor e l e m e n t s i n d i atomaceous s e d i m e n t s of a s t a g n a n t f j o r d " . P u b l . Amer. A s s . Advan. S c i . , J 3 3 , 273-282. 14. G u c l u e r , S.M., and G r o s s , M.G., 1964. "Recent m a r i n e s e d i m e n t s i n S a a n i c h I n l e t , a s t a g n a n t m arine b a s i n " . L i m n o l . Oceanog. _9, 359-376. 15. H e r l i n g v e a u x , R.H., 1962. "Oceanography of S a a n i c h I n l e t . i n Vancouver I s l a n d , B r i t i s h C o l u m b i a " . J . F i s h . Res. Bd. Canada, 19 ( 1 ) , 439-448. 16. K i r i y a m a , T., and Kuroda, R., 1972. "A combined i o n exchange - s p e c t r o p h o t o m e t r i c d e t e r m i n a t i o n o f vana-dium i n sea and n a t u r a l w a t e r s " . A n a l y t i c a Chim. A c t a , 62, 464-467. 17. K r a u s k o p f , K.B., 1956. " F a c t o r s c o n t r o l l i n g t h e c o n c e n t r a -t i o n o f t h i r t e e n r a r e m e t a l s i n sea w a t e r " . Geochim. Cosmochim. A c t a , _9, 1-32. 18. L a i t i n e n , H.A., 1960. C h e m i c a l A n a l y s i s - An Advanced T e x t and R e f e r e n c e . M c G r a w - H i l l Book Co., I n c . , N.Y. 19. M o r r i s , A.W., 1975. " D i s s o l v e d molybdenum and vanadium i n the n o r t h e a s t A t l a n t i c Ocean". Deep Sea Res., 22, 49-54. 20. M u l l e r , G., 1957. "The H C l - s o l u b l e i r o n , manganese and c o p p e r c o n t e n t s o f r e c e n t I n d i a n Ocean Sediments o f f the e a s t e r n c o a s t o f S o m a l i a " . M i n e r a l i u m D e p o s i t a , 2, 54-61. 21. M u z z a r e l l i , R.A.A., 1971. " S e l e c t i v e c o l l e c t i o n o f t r a c e m e t a l i o n s by p r e c i p i t a t i o n o f C h i t o s a n , and new d e r i v a t i v e s o f C h i t o s a n " . A n a l y t i c a Chim. A c t a , 54, 133-142. 22. Noddack, I . , and Noddack, W., 1939. "Die H a u f i g k e i t e n der S c h w e r m e t a l l e i n M e e r e s t i e r e n " . A r k i u f o r Z o o l o g i , 32A ( 4 ) , 35 pp. 23. Okabe, S., and M o r i n a g a , T., 1970. " D i s t r i b u t i o n o f vanadium i n the K u r o s h i o and a d j a c e n t r e g i o n s " . P r o c e e d i n g s o f t h e second CSK symposium, Tokyo, 97-106. 24. Ostroumov, E.A., and V o l k o v , I . I . , 1957. "The r e l a t i o n s h i p between phosphorus, vanadium and o r g a n i c m a t t e r i n the B l a c k Sea d e p o s i t s " . G e o c h e m i s t r y I n t e r n a t i o n a l , 6_, 609-619. 25. Pachadzhanov, D.N., and B a n d u r k i n , G.A., 1963. "Data on the g e o c h e m i s t r y o f manganese n o d u l e s from t h e I n d i a n Ocean". G e o c h e m i s t r y I n t e r n a t i o n a l , 5_, 520-527. 50 R i l e y , J.P., and C h e s t e r , R., 1971. I n t r o d u c t i o n t o M a r i n e C h e m i s t r y . Academic P r e s s , N.Y. R i l e y , J.P., and S i n h a s e n i , P., 1958. "Chemical c o m p o s i -t i o n o f t h r e e manganese n o d u l e s from the P a c i f i c Ocean". J . Mar. Res., 17, 466-482. R i l e y , J.P., and T a y l o r , D., 1968a. " C h e l a t i n g r e s i n s f o r the c o n c e n t r a t i o n o f t r a c e e l e m e n t s from sea w a t e r and t h e i r a n a l y t i c a l use i n c o n j u n c t i o n w i t h a t o m i c a b s o r p t i o n s p e c t r o s c o p y " . A n a l y t i c s Chim. A c t a , 40, 479-485 . R i l e y , J . P . , and T a y l o r , D., 1968b. "The use o f c h e l a t i n g i o n exchange i n t h e d e t e r m i n a t i o n o f molybdenum and vanadium i n sea w a t e r " . A n a l y t i c a Chim. A c t a , 41, 175-178. R i l e y , J.P., and T a y l o r , D., 1972. "The c o n c e n t r a t i o n s of cadmium, c o p p e r , i r o n , manganese, molybdenum, n i c k e l , vanadium and z i n c i n p a r t o f t h e t r o p i c a l n o r t h e a s t A t l a n t i c Ocean". Deep Sea Res., 19, 307-317. S a n d e l l , E.B., 1965. C o l o r i m e t r i c D e t e r m i n a t i o n o f T r a c e M e t a l s . I n t e r s c i e n c e , N.Y. Spencer, D.W., and Brewer, P.G., 1971. " V e r t i c a l a d v e c t i o n d i f f u s i o n and r e d o x p o t e n t i a l s as c o n t r o l s on the d i s t r i b u t i o n of manganese and o t h e r t r a c e m e t a l s d i s s o l v e d i n the w a t e r s of the B l a c k Sea". J . Geo-p h y s i c a l Res., 76 ( 2 4 ) , 5877-5892. Spencer, D.W., Brewer, P.G., and Sachs, P.L., 1972. " A s p e c t s of the d i s t r i b u t i o n o f t r a c e element composi-t i o n o f suspended m a t t e r i n t h e B l a c k Sea". Geochim. Cosmochim. A c t a , 3_6, 71-86. S t r i c k l a n d , J.D.H., and P a r s o n s , T.R., 1968. "A manual of sea w a t e r a n a l y s i s " . B u l l . F i s h e r i e s Res. Board Can., No. 67, 311 p. Sugawara, K., and Okabe, S., 1966. "Molybdenum and Vana-dium d e t e r m i n a t i o n o f 'Umitaka-maru 1 samples from her 1962-63 and 1963-64 c r u i s e s o f t h e I n t e r n a t i o n a l I n d i a n Ocean E x p e d i t i o n " . J . o f the Tokyo U n i v e r s i t y o f F i s h e r i e s ( S p e c i a l E d i t i o n ) , _8, 165-171. V o l k o v , I . I . , and Fomina, L.S., 1974. " I n f l u e n c e o f o r g a n i c m a t e r i a l and p r o c e s s e s o f s u l p h i d e f o r m a t i o n o n , d i s t r i b u t i o n o f some t r a c e e l e m e n t s i n deep water s e d i m e n t s of t h e B l a c k Sea". In The B l a c k Sea-G e o l o g y , C h e m i s t r y and B i o l o g y , Memoir 20, E d i t e d by E.T. Degens and D.A. Ross. The American A s s o c . of P e t r o l e u m G e o l o g i s t s . T u l s a , Oklahoma. 51 W a l d i c h u k , M., 1957. " P h y s i c a l Oceanography o f t h e S t r a i t of G e o r g i a , B r i t i s h C o l u m b i a " . J . F i s h e r i e s Res. Board Canada., 14 ( 3 ) , 321-486. Welch, R., and A l l a w a y , W.H., 1972. "Vanadium d e t e r m i n a -t i o n i n b i o l o g i c a l m a t e r i a l s a t nanogram l e v e l s by a c a t a l y t i c method". A n a l . Chem., 44 (9) , 1644-1647. W i l l i s , J .P., and A h r e n s , L.H., 1962. "Some I n v e s t i g a t i o n s on t h e c o m p o s i t i o n o f manganese n o d u l e s , w i t h p a r t i c u l a r r e f e r e n c e t o c e r t a i n t r a c e e l e m e n t s " . Geochim. and Cosmochim. A c t a , 26_, 751-764. APPENDIX CRUISE DATA Cruise 73/35 Station Saa-1 DEPTH TEMP SALINITY DENSITY OXYGEN rr, °C % o CTt ml /l 1 15.03 29.170 21.51 6.75 100 8.63 30.994 24.07 0.16 140 8.79 31.140 24.16 0.07 155 8.80 31.147 24.16 0.06 180 8.88 31.182 24.18 0.02 Date Collected Sept. 5, 1973 V u ug/l 1.86 1.46 1.68 1.34 1.10 ng 19.0 ug/l 24.6 Fe ug/l 4.13 13.6 1.82 4.37 18.4 0.6 3 3.84 CRUISE DATA Cruise 73/35 Station Saa-3 DFPTH TEMP SALINITY DENSITY OXYGEN o _ o m C Zoo 0"t ml /1 1 14.80 29.372 21.71 11.23 100 8.71 30.992 24.06 0.47 140 8.92 - - 0.79 155 8.92 31.162 24.16 ' 0.52 180 8.92 31.191 24.18 0.36 Date Collected S e p t . 5, 1973 V d V P Mn P F e P ug/l ng/l ug/l 1.10 18.0 6.65 5.71 1.98 145_ . 15.2 8.62 1.56 537 28.5 8.03 1.29 - 36.2 7.21 40.0 36.5 6.92 CRUISE DATA Cruise 73/46 Station Saa-3 Date Collected Nov. 15, 1973 n , . - i ramnnmrn I I I I I nimnim „i.„...».. T l.i».i.^..m»»-!mji lkng3> DEPTH TEMP SALINITY DENSITY OXYGEN V d V* Mn P Fe m °C % o CTt ml/l ug/l ng/l ug/l ug/l 1 9.09 29.622 22.93 5.13 2.34 — — — 10 9.25 29.659 22.94 4.72 2.45 - - -25 9.44 30.111 23.26 4.29 - • - - -50 9.10 30.292 23.45 ' 4.22 - - - -75 8.90 30.552 23.68 4.19 2.64 26.4 1.91 20.3 100 9.09 30.908 23.93 2.24 2.26 36.0 4.03 24.0 125 9.00 31.181 24.16 0.40 2.19 66.0 9.20 14.6 140 8.95 31.223 24.20 0.42 1.77 179 10.6 6.47 155 8.93 31.242 24.22 0.66 1.77 221- 10.4 • 6.87. 175 8.97 31.287 24.25 1.11 1.74 173 15.2 6.30 200 9.00 31.312 24.26 1.03 1.24 120 19.6 2.98 220 8.93 31.327 24.28 0.73 0.64 604 48.8 3.55 un Ln CRUISE DATA Cruise 74/1 DEPTH m TEMP °C Station Saa-1 SALINITY DENSITY roo CT-7c OXYGEN ml /l Date Collected J a n . 9, 1974 V u ug/l ng/l ug/l P Fe ug/l 0 2.80 23.084 -' 7.55 2.39 — — — 10 8.15 29.168 22.71 ; 4.93 - - - -25 8.39 29.463 22.91 4.87 - - - -50 8.99 29.725 23.03 4.33 - - - -75 9.05 30.027 23.25 3.73 2.45 9.90 1.04 17.8 100 9.01 30.805 23.86 1.15 2.67 15.6 1.96 6.16 125 8.91 31.242 24.22 0.26 2.40 17.2 14.4 6.26 140 8.90 31.207 24.19 0.26 ' 2.09 21.5 20.6- 5.76 155 8.97 31.221 24.19 0.26 1.83 21.9 22.9 6.85 170 8.99 31.253 24.22 0.25 2.08 15.7 27.3 7.50 175 8.89 31.280 24.25 0.26 1.83 13.1 38.2 7.74 cn CRUISE DATA Cru ise 74/1 Stat ion Saa-2 D E P T H T E M P SALINITY DENSITY O X Y G E N m ° C % o CTt m l / 1 0 3.50 24.185 19.28 7.55 10 7.97 29.093 22.68 5.09 25 8.26 29.473 22.94 4.91 50 8.99 29.698 23.00 ' 5.07 75 - 29.875 - 5.18 100 4.04 30.860 24.52 1.19 125 8; 97 31.145 24. 1 3 0.28 140 8.96 31.217 24.19 0.37 155 8.97. 31.237 24.21 0.36 170 3.95 31.252 24.22 0.35 180 8.98 31.275 24.23 0.58 190 8.90 31.279 24.25 0.52 Date Co l lec ted J a n . 9, 1975 V d V P M n P F e P ug/l ng 2.04 1.38 /l ug/l ug/l 2.18 25.6 1.58 29.4 2.46 23.2 2.34 16.4 2.26 43.0 . 5.30 12.1 i.9'2 17.9 6.13 12.1 1.92 21.1 8.32. 7.87 1.98 24'. 7 15.5 7.83 1.78 27.7 18.2 5.10 2.06 36.5 20.2 7.17 CRUISE DATA Cruise 74/1 Station Saa-3 DEPTH TEMP SALINITY DENSITY OXYGEN m °C % o (Tt ml/1 0 2.70 24,435 - 8.07 10 7.65 28.933 22.60 5.72 25 8.24 29.423 22.90 4.91 50 9.00 29.660 22.97 ' 4.96 75 8.49 30.013 23.32 ' 4.76 100 D M B 30.767 - 1.73 125 8.99 31.139 24.13 0.38 140 8.98 31.194 24.17 0.38 155 9.01 31.236 24.20 0.50 175 8.98 31.264 24.23 0.67 200 9.01 31.286 24.24 0.27 210 8.92 31.296 24.26 0.27 DNB = Did not b r e a k . Date Collected J a n . 10, 1974 V d V P Mn P F e P ug/l ng/l ug/l ug/l 2.34 - - -2.10 — ; 2.69 59.5 1.76 27.8 2.24 24.5 1.51 17.3 1.32 17.1 :4.54 15.1 2.72 19.7 4.23 8.93 1.66 18.0 7.0.8 8.87 1.34 15.8 10.2 6.83 1.06 27.7 13.8 5.43 0.99 12.8 14.6 5.51 00 CRUISE DATA Cruise 74/1 Station Saa-4 DEPTH TEMP SALINITY DENSITY OXYGEN m °C % o OV ml/1 0 3.40 24.706 - 7.57 10 7.55 28.907 22.59 5.78 25 7.96 29.236 22.79 5.23 50 9.00 29.458 22.82 5.09 75 8.87 30.229 23.44 3.67 100 DNB 30.871 - 1.29 125 9..01 31.156 24.14 0.27 140 9.00 NST - NST 155 9.03 31.229 24.19 0.42 170 9.05 31.254 24.21 0.49 175 8.97 31.269 24.23 0.55 DNB NST = D i d not b r e a k . = No sample t a k e n . Date Collected J a n . 8, 1974 V u ug/l ng/l Mn ug/l Fe*' ug/l 1.60 1.63 1.97 2.17 2.42 2.06 2.14 1.44 1.55 1.21 13.3 16.6 15.5 31.6 25.3 23.7 27.4 1.04 0.97 3.02 4.25 ' 8.15 16.5 19.3 28.8 26.4 17.7 16.6 15.4 15.6 26.4 CD CRUISE DATA Cru ise 74/1 Stat ion Saa-5 D E P T H T E M P SALINITY DENSITY O X Y G E N m ° c % o ay ml/1 0 5.30 27.163 21.48 6.2 2 5 7.69 29.061 22.69 5.49 20 9.00 29.162 22.59 5.48 25 8.24 33.409? 26.01? ' 4.83 70 DNB 30.187 - 3.78 95 . 9.01 30.825 23.88 1.49 DNB = Did not b r e a k . Date Co l lec ted J a n . 9, 1974 ug/l ng/l ug/l ug/l 1.42 1.97 3.17 2.64 1.97 2.11 o CRUISE DATA Cru ise 74/1 Station Saa-6 Date Collected J a n . 9, 1975- . DEPTH m TEMP °C SALINITY loo DENSITY °"t OXYGEN ml l\ v d ug/l V P ng/l M n P ug/l F e P ug/l 0 6.90 29.414 - 5.72 1.08 - - -10 7.32 29.443 23.04 5.72 1.17 - - -25 7.35 29.652 23.20 5.76 1.82 - - -50 8.99 29.745 23.04 " 5.76 1.61 - - -75 7.46 29.876 23.36 5.69 1.89 - - -80 9.01 29.880 23.14 5.72 1.33 - - -CRUISE DATA Cruise 74/15 Station S a a - 1 DEPTH rn TEMP °C SALINITY DENSITY OXYGEN 7, co ml /l 0. 11.20 25.598 19.48 6.81 10. 8.74 28.616 22.20 6.51 25 7.79 29.025 22.65 5.95 50 7.50 29.378 22.96 5.22 75 7.59 29.732 23.23 4.68 100 8.14 30.297 23.59 2.63 125 8.92 31.136 24.14 0.18 140 ' 8.96 31.214 24.19 0.26 155 8.99 31.226 24.20 0.11 170 8.99 31.258 24.22 0.24 180 8.96 31.268 24.23 0.22 185 8.98 31.264 24.23 0.28 Date Collected A p r i l 30, 1974 V d V P Mn P F e P ' ug/l ng/l ug/l ug 1.77 — — — 2.34 - - -2.54 - - -2.34 - - -2.46 25.4 1.43 - 11..5 2.22 44.0 3.33 7.68 1.76 39.8 7.50 7.58 2.07 . 51.6 6.74 8.75 1.95 19.4 12.1 • 7.80 2.20 5.5 9.04 7.73 1.95 23.5 9.60 8.25 1.66 _ _ cn ro CRUISE DATA Cruise 74/15 Station Saa-2 DEPTH TEMP SALINITY DENSITY OXYGEN m °C °/oo CTt ml/1 i 0 11.20 26.985 20.55 6.90 10 8.56 28.708 22.30 6.48 25 7.75 29.097 22.71 5 . 9 1 50 7.58 33.314? 26.03? 5.48 75 7.53 29.828 23.31 5.00 100 . 7.97 30.252 23.58 3.41 125 8.91 31.047 24.07 0.36 140 8.96 31.136 24.13 0.25 155 8'. 96 31.227 24.20 0.19 175 9.00 31.256 24.22 0.18 200 9.00 31.267 2 4 . 2 2 0.12 210 8.95 31.264 24.23 0.21 220 9.00 31.270 24.23 0.18 ND = Not d e t e c t e d . Date Collected A p r i l '30, 1974 .„.-„ T r T. ., ,. ..... ,.-„i,,.i.iJ. : ~ . ....... . V d V P M n P F e P ug/l ng/l ug/i ug/l 2.22 - — — 1.94 - - -2.20 - - -2.18 - - -2.00 16.7 13.3 8.69 1.83 ND '1.22 7.07 1.64 ND 2.18 12.7 1.76 . 46.8 10.5 10. 7 1.62 0.5 6.66 8.42 1.64 5'. 4 6.53 8.69 1.55 24.2 5.55 5.75 1.55 ND 5.28 8.19 1.57 28.5 1.00 9.84 t o CRUISE DATA Cruise 74/15 Station Saa-3 a n . nun i II mn mm i i " n m . — » DEPTH TEMP SALINITY DENSITY OXYGEN m °C % o CTt ml/1 0 10.80 .28.047 21.44 6.43 10 8.09 28.900 22.51 6.16 25 7.75 29.102 22.71 5.66 50 7.38 29.437 23.03 5.54 75 7.75 29.922 23.36 • 5.27 100 8.15 30.458 23.72 2.34 125 8.93 31.091 24.10 0.21 140 8.98 31.210 24.18 0.20 155 8.97 31.239 24.21 0.20 175 9.01 31.260 24.22 0.20 200 9.02 31.280 24.23 0.16 210 8.96 31.281 24.24 0.08 230 9.03 31.287 24.24 0.02 Date Collected A p r i l 30, 1974 - . 1 «L**ut,M.^jaamm V d V P M n P F e P ug/l ng/l ug/l ug/l 2.40 — — — 2.18 - - -2.46 - . - -2.78 - - -2.69 22.0 1.02 13.8 2.24 7.0 1.30 15.8 1.32 25.6 4.73 6.93 ND 4.95? • 22.2 8.06 2.72 28.2 10.7. 8.99 1.66 30.4 19.8 8.18 1.34 25.3 29.0 ' 7.58 1.06 16.3 18.2 8.26 0.99 13.8 1.74 9.18 CRUISE DATA Cruise 74/15 DEPTH m TEMP °C Station Saa-4 Date Collected May 1, 1974 SALINITY DENSITY oo OXYGEN ml I \ V u ug/l ng/l Mn ug/l Fe" ug/l 0 - 8.70 28.397 22.03 6.65 " 0.76 — — 10 8.82 28.613 22.18 6.43 1.82 - - -25 7.83 29.063 22.67 5.77 1.64 - - -50 7.87 29.458 22.98 '5.76 1.94 - -75 7.87 30.018 23.41 5.04 1.76 7.7 1.05 21.3 100 8.37 30.543 23.75 1.86 1.09 11.3 1.53 22.2 125 8.95 31.088 24.09 0.24 0.64 6.5 1.77 13.3 140 8.99 31.198 24.17 0.13 1.44 . 12.7 1.06 10.3 155 9.03 31.241 24.20 0.18 ' 1.26 14.3 2.30 13.0 170 9.02 31.260 24.22 0.18 0.76 20.3 2.02 13.4 180 8.97 31.264 24.23 0.17 ND 7.8 19.9 13.5 195 9.01 31.270 24.23 0.26 0.53 22.5 3.76 10.2 CTl cn _CRU1SE DATA Cruise 74/15 Station Saa-5 DEPTH TEMP SALINITY DENSITY OXYGEN m °C % o (Tt ml/1 0 ' 10.00 26.811 20.61 6.67 10 8.06 28.902 22.52 6.11 25 7.95 29.053 22.65 5.81 50 8.05 29.295 22.83 ' 5.77 75 : 7.88 30.037 23.43 5.40 95 8.48 30.715 23.87 1.65 ug/l 1.85 2.17 2.52 2.96 2.70 2.61 Date Col lected A p r i l 29, 1974 ng/l ug/l Fe ug/l cn cn CRUISE DATA Cruise 74/15 Station Saa-6 DEPTH TEMP SALINITY DENSITY OXYGEN m °C % o CTt ml/1 0 9.11 28.822 22.30 5.67 10 8.60 28.974 22.50 6.43 25 8.28 29.343 22.83 6.07 50 8.16 29.638 23.08 5.85 75 8.02 29.954 23.34 ' 5.71 100 7.98 30.548 23.81 5.37 Date Collected A p r i l 29, 1974 V d V P Mn P F e P ug/l ng/l ug/l ug/l 2.56 2.76 2.44 2.60 2.39 2.85 CTl - J CRUISE DATA Cruise 74/26-A Station Saa-1 DEPTH TEMP SALINITY DENSITY OXYGEN m °C 7 o o (Tt ml/l 0 16.30 24.824 17.92 10.84. 10 16.53 . 26.865 19.43 8.44 25 11.5 7 28.360 21.55 5.30 50 8.82 29,391 22.79 3.50 75 8.37 30.506 23.73 0.94 100 8.64 30.906 24.00 0.46 125 8.82 31.096 24.12 0.22 140 8.90 31.154 24.15 0.11 155 8.92 31.193 24.18 0.10 17.0 8.94 31.220 24.20 0.08 180 8.97 31.229 24.20 0.02 190 9.00 30.777 . 23.84 0.02 Date Collected J u l y 29, 1974 V d V P Mn P F e P ug/l ng/l ug/l ug/l 2.02 - — — 2.30 - - -2.13 - - -2.02 - - -1.73 20.3 4.38 5.68 1.48 69.5 28.0 6.34 1.62 59.7 37.2 5.93 1.59 . 68.7 27.0 8.38 1.65 26.4 6.86 9.69 1.78 25.3 7.17 8.98 .1.38 2 3 . 9 1.96 9.88 1.54 23.8 1.54 12.2 cn co CRUISE DATA Cruise 74/26-A DEPTH Station Saa-2 m ffWitfmifti TEMP °C SALINITY DENSITY rt 7 o o cn OXYGEN ml l\ 0 17.20 24.862 17.76 11.69 10 - 26.457 - 10.71 25 11.07 28.334 21.62 5.10 50 8.78 29.286 22.71 3.77 75 8.41 30.601 23.79 1.50 100 8.53 30.883 24.00 1.35 125 8.79 31.073 24.11 0.71 140 8.85 31.144 24.15 0.16 155 8.92 31.202 24.19 0.21 175 8.97 31.247 24.21 0.20 200 8.99 • 31.256 24.22 0.07 210 8.98 31.257 24.22 0.05 220 15.23? . 31.269 23.08 0.01 Date Col lected J u l y 29, 1974 V d V P M n P F e P ug/l ng/l ug/l ug/l 2.48 — — — 2.60 - - -3.11 - - • -2.78 - - -• 2.79 17.6 1.20 4.37 2.55 27.6 6.57 5.41 2.64 38.7 10.2 7.53 3.14 . 70.4 17.4 6.43 2.71 62.9 29.7 • 7.87 2.30 24.0 7.02 6.71 2.33 21.0 2.53 7.20 2.15 14.6 1.30 6.11 2.83 11.3 1.05 5.85 cn CRUISE DATA Cru ise 74/26-A Stat ion Saa-3 D E P T H T E M P SALINITY DENSITY O X Y G E N m ° C ° / o o 0"^  m l /1 0 - 23.982 - 9.93 10 13.86 25.941 19.27 9.74 25 12.15 28.312 21.42 4.18 50 9.03 29.265 22.66 ' 3.69 75 8.34 30.409 23.65 1.75 100 8.52 30.814 23.94 1.75 125 8.66 31.003 24.07 1.51 140 8.75 31.087 24.12 1.49 155 8.92 31.165 24.16 0.43 175 8.98 31.252 24.22 0.19 200 8.96 31.247 24.22 0.09 210 9.01 31.250 24.21 0.11 220 8.71 31.254 24.26 0.13 Date Co l lec ted J u l y 29, 1974 V d V P M n P F e P ug/l ng/l ug/l ug/l 0.92 - — — 1.70 - - - • 2.16 - - -2.38 - - -1.33 21.0 0.81 7.97 1.72 14.6 3.77 15.9 2.08 38.0 5.39 12.6 2.23 23.1 13.2 14.7 1.94 40.7 21.1 • 8.71 1.04 19.4 9.02 8.08 1.53 15.9 1.36 9.09 1.48 16.2 0.78 12.5 1.48 17.2 0.74' 12.5 - J o C R U I S E D A T A C r u i s e 74/26-A S t a t i o n Saa-4 D E P T H T E M P S A L I N I T Y D E N S I T Y O X Y G E N m ° C % o C T t m l / l 0. 15,80 '24.417 17.72 9.79 10 13.70 26.150 19.46 8.65 25. 11.15 28.239 21.53 • 4.79 50 8.34 29.252 22.75 3.89 75 8.35 30.389 23.64 1.57 100 8.56 30.829 23.95 1.95 125 8.66 31.013 24.08 1.73 140 8.77 31.104 24.13 0.87 155 8.94 31.203 24.18 0.12 170 8.95 31.227 24.20 0.09 180 8.99 31.233 24.20 • 0.01 195 9.00 31.248 24.21 0.02 D a t e C o l l e c t e d J u l y 30, 1974 V d V P M n p F e p u g / l n g / l u g / l u g / l 2.08 — — -2.92 - - -3.14 - - -3.25 - - -2.78 16.1 1.50 13.2 2.47 10.5 3.49 20.6 1.84 26.5 6.82 13.7 2.34 . 44.1 12.67 9.98 2.22 28.9 11.4 • 10.9 2.08 33.0 8.42 9.81 2.10 18.1 3.64 9.50 1.69 13.8 0.56 10.1 M T U ; C R U I SE | > IP IATA M I I Cruise 74/26-A Stat ion Saa-5 D E P T H T E M P SALINITY DENSITY O X Y G E N m ° C % o <J^  ml/1 ^iaia^jBMMntinitMtwMBan MBHMMIBias tMnanHMjaKBHtBanHnnw 0 14.50 24.522 18.06 9.03 10 12.81 - - 7.09 25 10.83 28.378 21.69 4.56 50 9.74 29.280 22.56 3.74 75 9.08 30.626 23.71 3.39 85 8.66 30.777 23.89 2.60 Date Co l lec ted J u l y 29, 1974 V P M n P F e P ng/l ug/l ug/l 1.95 2.18 2.34 1.38 ro C R U I S E D A T A C r u i s e 74/26-A S t a t i o n Saa-S D E P T H T E M P S A L I N I T Y D E N S I T Y O X Y G E N m ° C % o C T t m l / 1 0 14.80 23.937 17.55 8.86 " 10 . 13.41 25.039 18.66 7.69 25 11.25 28.122 21.42 5.31 50 9.72 29.389 22.65 3.81 75 9.22 30.536 23.62 • 4.23 90 8.83 31.303 24.28 3.48 D a t e C o l l e c t e d J u l y 29, 1974 1.46 1.78 2.37 2.31 1.68 1.56 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0053269/manifest

Comment

Related Items