Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The distributions of dissolved and suspended vanadium in Saanich Inlet, British Columbia Moody, Willson Bridges 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1977_A6_7 M66.pdf [ 4.03MB ]
Metadata
JSON: 831-1.0053269.json
JSON-LD: 831-1.0053269-ld.json
RDF/XML (Pretty): 831-1.0053269-rdf.xml
RDF/JSON: 831-1.0053269-rdf.json
Turtle: 831-1.0053269-turtle.txt
N-Triples: 831-1.0053269-rdf-ntriples.txt
Original Record: 831-1.0053269-source.json
Full Text
831-1.0053269-fulltext.txt
Citation
831-1.0053269.ris

Full Text

THE D I S T R I B U T I O N S OF DISSOLVED AND  SUSPENDED  VANADIUM I N SAANICH I N L E T , B R I T I S H COLUMBIA by Willson B.Sc.  B r i d g e s Moody I I I  U n i v e r s i t y of Waterloo,  1972  A T H E S I S SUBMITTED I N P A R T I A L FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in  t h e Department of Chemistry  (Institute  We a c c e p t t h i s  o f Oceanography)  t h e s i s as c o n f o r m i n g  to the required  standard  THE UNIVERSITY, OF B R I T I S H COLUMBIA O c t o b e r , 1976  (c) W i l l s o n  B r i d g e s Moody  In  presenting  this  thesis  an a d v a n c e d d e g r e e the I  Library  further  for  shall  agree  scholarly  by  his  of  this  written  the U n i v e r s i t y  make  it  thesis  freely  that permission  purposes  for  It  for  of  of  Columbia,  British  financial  gain  for  extensive by  shall  the  requirements  reference copying  of  I agree and this  that  not  copying  or  University  ^ i v . g ^ A v . , . ' £ , I>v^ of  British  Columbia  Wavf  lau^  <>  I< >?6 . ;  /  be a l l o w e d w i t h o u t  &r^o^,  a  that  thesis or  publication  permission.  of  for  study.  t h e Head o f my D e p a r t m e n t  is understood  2075 Wesbrook Place Vancouver, Canada V6T 1W5  Date  fulfilment  available  may be g r a n t e d  representatives.  Department The  at  in p a r t i a l  e^rc*.**L^  my  ii  ABSTRACT This study  investigated  the d i s t r i b u t i o n  suspended vanadium i n Saanich I n l e t , possible effects oxides. July  1974 and w e r e  and s u s p e n d e d  tested  temperature,  iron  1973  to  dissolved  and s u s p e n d e d v a n a d i u m , s u s p e n d e d m a n g a n e s e  iron.  A technique  involving  f o l l o w e d by a c a t a l y t i c loped  from September  for salinity,  and  C o l u m b i a , and t h e  o f s c a v e n g i n g by h y d r o u s manganese and  Water s a m p l e s were c o l l e c t e d  oxygen, d i s s o l v e d  British  of d i s s o l v e d  and a p p l i e d  i o n exchange t o i s o l a t e  vanadium  c o l o r i m e t r i c d e t e r m i n a t i o n was  to the d i s s o l v e d  deve-  and s u s p e n d e d v a n a d i u m  analyses. The d a t a showed in  July  that, during  the f a l l  s u g g e s t i n g t h a t v a n a d i u m was oxides during  The  again  1974, t h e r e w e r e p o s i t i v e c o r r e l a t i o n s b e t w e e n  s u s p e n d e d v a n a d i u m and s u s p e n d e d manganese  between  o f 1973 and  these periods.  being  distributions,  s c a v e n g e d by t h e m a n g a n e s e  No s u c h c o r r e l a t i o n was  t h e s u s p e n d e d vanadium and s u s p e n d e d i r o n  a n o x i c deep w a t e r s g e n e r a l l y c o n t a i n e d  dium t h a n t h e o x y g e n a t e d w a t e r s above s i l l deficiency  i n t h e d e e p w a t e r s may  tation with ferrous or organic  the  found  distributions.  less dissolved depth.  This  have b e e n due t o c o - p r e c i p i -  s u l p h i d e s o r a d s o r p t i o n by d e t r i t a l  particles.  vana-  silicate  iii  TABLE OF CONTENTS Page Introduction  .  General Description  of Study Area  1 3  Sampling Methods  6-  Analytical  9  Procedures  Dissolved  Vanadium  9  Suspended M a t t e r Samples  18  Suspended Vanadium  18  Suspended I r o n  18  Suspended Manganese  19  Dissolved  19  Oxygen  Results  20  Discussion  35  Bibliography  48  Appendix  52  iv  L I S T OF  TABLES  Table I  Page P o s i t i o n and in  II III IV  V VI  Saanich  Cruise  depths of  sampling  stations  Inlet  d a t e s and  6 s t a t i o n s sampled  R e s u l t s of p r e c i s i o n s t u d i e s f o r the vanadium a n a l y s i s L i s t of elements i n t e r f e r i n g w i t h the c a t a l y s e d o x i d a t i o n o f g a l l i c a c i d by persulphate Comparison of d i s s o l v e d marine waters  6 12 vanadium acid  vanadium v a l u e s  16  in  S t a t i s t i c a l a n a l y s i s of r e g r e s s i o n curves f o r s u s p e n d e d v a n a d i u m and s u s p e n d e d manganese . . .  35 45  -  L I S T OF  FIGURES  Figure  Page  1  Location  2  Sampling S t a t i o n s  3  Recovery Curves f o r d i s s o l v e d  4  Distribution Station 3  5 6 7 8 9 10 11 12 13 14 15  of Saanich  Inlet  of dissolved  4 7 vanadium  15  vanadium a t ;  D i s t r i b u t i o n of d i s s o l v e d J a n u a r y 1974  vanadium  Distribution A p r i l 1974  of d i s s o l v e d  vanadium  Distribution J u l y 1974  of dissolved  Distribution Station 3  of suspended vanadium a t  21  during 21 during 22  vanadium  during 22 25  D i s t r i b u t i o n o f suspended vanadium J a n u a r y 1974  during  Distribution A p r i l 1974  of suspended vanadium  during  Distribution J u l y 1974  of suspended vanadium  25 26 during 26  D i s t r i b u t i o n o f s u s p e n d e d manganese a t Station 3 . . . .  28  D i s t r i b u t i o n o f s u s p e n d e d manganese J a n u a r y 1974  during 28  Distribution A p r i l 1974  o f s u s p e n d e d manganese  during  Distribution  o f s u s p e n d e d manganese  July  29  1974  during  "  29  16  Distribution  of suspended  iron at Station  17  Distribution  of suspended  iron  January  3 . . .  30  during  1974  30  18  Distribution  of temperature at Station  19  Distribution  of s a l i n i t y  at Station  3  3  . . . . .  32 32  V  vi Figure  Page  20  Distribution  of d e n s i t y at S t a t i o n 3  21  Distribution  of d i s s o l v e d oxygen a t S t a t i o n 3  22  P l o t of d i s s o l v e d vanadium a g a i n s t d u r i n g J a n u a r y 1974  23  24  25  33 . .  33  salinity 37  V e r t i c a l p r o f i l e s o f s a l i n i t y , and p r e d i c t e d and o b s e r v e d d i s s o l v e d v a n a d i u m v a l u e s a t S t a t i o n 4 d u r i n g J a n u a r y 1974  37  V e r t i c a l p r o f i l e s o f s u s p e n d e d v a n a d i u m and s u s p e n d e d manganese a t S t a t i o n s 1 and 2 d u r i n g J u l y 1974  43  P l o t of suspended vanadium a g a i n s t manganese d u r i n g J u l y 1974  44  suspended  ACKNOWLEDGEMENT v  I would l i k e  t o t h a n k D r . E.V. G r i l l  f o r h i s a d v i c e and  g u i d a n c e t h r o u g h o u t t h e s t u d y and p r e p a r a t i o n o f t h e t h e s i s . I would a l s o  like  t o t h a n k M r . D a v i d J . Thomas f o r h i s  assistance i n collecting  samples a t s e a .  1 INTRODUCTION The ficial  possibility  or e s s e n t i a l  t h a t low l e v e l s o f vanadium to l i f e  has s t i m u l a t e d  analytical  techniques sensitive  biological  materials  The  c o n c e n t r a t i o n o f vanadium  about high water  the development  samples.  Henze  a s 1.5 ppm.  i n t h e b l o o d o f an a s c i d i a n .  i n most a n i m a l s and p l a n t s i s  I t h a s b e e n s u g g e s t e d t h a t m a r i n e muds o r s e a  a r e t h e p r o b a b l e s o u r c e s o f the vanadium were p o s s i b l y  (Vinogradov, 1934). e s s e n t i a l element  from  ascidians  1 9 5 3 ) a l t h o u g h t h e r e i s no p r o o f t h a t micronutrient  few s t u d i e s o f vanadium  i n ocean  waters that  and T a y l o r ,  O k a b e , 1 9 6 6 ; Okabe and M o r i n a g a ,  1970; M o r r i s ,  f o r t h e most p a r t ,  p a t t e r n s i n t h e vanadium i n t h e vanadium  m a s s e s may be p r o d u c e d  by b i o l o g i c a l  in  (1956) c o n c l u d e d t h a t  t h e oceans  have  1 9 7 2 ; S u g a w a r a and 1975) i n d i c a t e  t h e r e a r e no d i s c e r n i b l e g e o g r a p h i c a l  very minor v a r i a t i o n s  Krauskopf  vana-  i n higher plants.  b e e n made i n r e c e n t y e a r s ( R i l e y  depth r e l a t e d  oils  V a n a d i u m a l s o h a s b e e n f o u n d t o be an  d i u m i s an e s s e n t i a l The  formed  and t h a t  f o r t h e g r e e n a l g a Scenedesmus o b l i q u u s  ( A r n o n and W e s s e l ,  or  (1911)  0.13 ppm w h e r e a s i n t h e t u n i c a t e m a r i n e worms i t i s a s  c o n t a i n i n g vanadium  that,  of  enough t o d e t e r m i n e v a n a d i u m i n  and s e a w a t e r  r e p o r t e d 42,000 ppm o f v a n a d i u m  may be b e n e -  c o n t e n t between activity  (Morris,  the concentration of  was p r o b a b l y c o n t r o l l e d  H o w e v e r , he n o t e d t h a t i n o x y g e n a t e d  although water 1975). vanadium  by o r g a n i c p r o c e s s e s . s e a w a t e r , a d s o r p t i o n by  hydrous  i r o n and manganese o x i d e s c o u l d  factor,  a view which  appears  distribution  a l s o be a c o n t r o l l i n g  t o be s u p p o r t e d by t h e r e s u l t s o f  2 Riley  and  observed  Sinhaseni  ( 1 9 5 8 ) and  Willis  and  t h a t vanadium c o n c e n t r a t i o n s  w e r e e n r i c h e d by  a f a c t o r of  water c o n c e n t r a t i o n s .  This  ganese oxides  one  c o u l d be  a b o u t 2 x 10^ suggested  of  the f a c t o r s  of  high concentrations  (Berrang carried  and out  relationship  Grill, in this  1974). study  of  from i n t e r f e r i n g  elements  Skougstad  manganese  o b j e c t i v e of  the f i e l d  work  t o d e t e r m i n e i f t h e r e was  (Riley  and  b a s e d on  (1964).  study  consists  Taylor,  1966;  Kiriyama  and  a  the c a t a l y t i c method  T h i s method, because of  studies  C h a n , 1970;  K u r o d a , 1972;  vanadium  1 9 6 8 ) , and  previously reported C h a u and  the  Inlet.  to  1971;  any  o f v a n a d i u m and  r e q u i r e s a r e l a t i v e l y s m a l l sample volume  Muzzaralli,  times  suspended  sensitivity, the other  man-  the  i o n exchange s o r p t i o n , to i s o l a t e  determination  sea  controlling  procedure employed i n t h i s  of a combination  F i s h m a n and  was  normal  of  i n the w a t e r s of Saanich  analytical  colorimetric  The  nodules  I n l e t , which, at v a r i o u s  between the d i s t r i b u t i o n s  manganese o x i d e s The  very  over  who  t h a t a d s o r p t i o n by  i n Saanich  has  (1961)  i n manganese  vanadium d i s t r i b u t i o n the year,  Ahrens  and  ( C h a n and  i t s high compared  Riley,  C r u m p - W i e s n e r and  Morris,  1975).  of  1966; Purdy,  3 GENERAL DESCRIPTION OF STUDY AREA Saanich I n l e t  i s a fjord-type  east coast of Vancouver about  Island  f r e s h water  I t has a l e n g t h o f  inlet  from the s i d e s ,  the only  source  i s the Coldstream River, which discharges i n t o  a t i t s extreme  who e s t i m a t e d t h i s of  (Figure 1 ) .  230 m.  A s i d e from d i r e c t r u n o f f  the  l o c a t e d on t h e s o u t h -  25.7 km, a w i d t h w h i c h v a r i e s f r o m 0.4 t o 7.6 km, a n d a  maximum d e p t h o f a b o u t  of  inlet  southern end. H e r l i n g v e a u x (1962), 3  d i s c h a r g e a t 0.85 m / s e c , i n d i c a t e d  the freshwater input i s derived  from t h e Cowichan  R i v e r s and i s i n t r o d u c e d a s a r e s u l t o f t i d a l  the bulk  and F r a s e r  exchanges  at the  entrance. Saanich  Inlet  i s connected  S a t e l l i t e C h a n n e l , Haro S t r a i t , However, a s i l l ,  which  and t h e S t r a i t  i s located  rises  to within  below  t h i s depth from being f r e e l y  approaches. the  about  t o t h e open s e a t h r o u g h  a t t h e e n t r a n c e and w h i c h  70 m o f t h e s u r f a c e ,  Thus, because  o f J u a n de F u c a .  prevents the water  exchanged  of the r e l a t i v e l y  with  that  i n the  s m a l l r u n o f f and  r e s u l t i n g weak e s t u a r i n e f l u s h i n g m e c h a n i s m , t h e w a t e r s  below  sill  depth a r e always markedly oxygen  150 m, w h e r e t h e r e i s l i t t l e the  y e a r , hydrogen  and  early  summer  sulfide  o r no d i s s o l v e d  i s usually  (Richards,  and F r a s e r  water  f o r much o f  present during  late  spring  when t h e r u n o f f s o f t h e  a r e b o t h l o w ( H e r l i n g v e a u x , 1 9 6 2 ) , an  m e d i a t e w a t e r mass f o r m e d low s a l i n i t y  oxygen  Below  1965).  T h e n , i n t h e l a t e summer o r f a l l , Cowichan  deficient.  i n Haro S t r a i t  from the S t r a i t  inter-  b y t h e m i x i n g o f warm,  of Georgia with  colder,  4  Figure  1.  L o c a t i o n of Saanich  Inlet  higher s a l i n i t y  water which  has u p w e l l e d o f f t h e  Washington-  Oregon c o a s t (Waldichuk, 1957), p e n e t r a t e s the approaches S a a n i c h I n l e t and genating  the bottom  that the f l u s h i n g time i n t e r v a l s the  flows over the s i l l water.  Anderson  into and  the b a s i n ,  Devol  (1973)  water e n t e r s S a t e l l i t e Channel  at  re-oxyproposed  discreet  a n d moves as b o l u s e s a l o n g t h e c h a n n e l and  b a s i n on t h e f l o o d  tide.  to  into  6 SAMPLING METHODS W a t e r s a m p l i n g was c a r r i e d Inlet five The in  out at f i v e  and one i n S a t e l l i t e C h a n n e l c r u i s e s between e a r l y  stations  i n Saanich  ( F i g u r e 2) d u r i n g a s e r i e s o f  S e p t e m b e r 1973 a n d l a t e J u l y 1 9 7 4 .  p o s i t i o n s of these s t a t i o n s  are l i s t e d  i n Table  I a n d shown  F i g u r e 2. Table Station Saanich Saanich Saanich Saanich Saanich Saanich Table  stations  I  Longitude 1 2 3 4 5 6  123 o 123 123 123 123 123° c c c  c  II lists  32 ' 30' 30' 30' 30 ' 27'  28" 80" 00" 30" 00" 15"  W W W W W W  48 48 o 48' 48 48 48 (  C  C  31' 33 ' 35 » 38' 41' 32 •  the cruise dates, cruise  s a m p l e d on e a c h  Depth(m)  Latitude 55" N 50" N 60" N 92" N 13" N 27" N  190 220 235 190 105 105  numbers a n d t h e  cruise.  Table I I Cruise  73/35 73/46 74/1-A 74/15 74/26-A Cruise All  Date  Number  Stations  S e p t e m b e r 5, 1973 November 1 5 , 1973 J a n u a r y 8, 9, 10,- 1973 A p r i l 29 - May 1, 1974 J u l y 2 9 , 3 0 , 1974  74/1-A was p e r f o r m e d  1 & 3 3 1 to 6 1 to 6 1 to 6  on t h e v e s s e l C.F.A.V.  o t h e r c r u i s e s were performed  Sampled  "Laymore".  on t h e o c e a n o g r a p h i c  vessel  C.S.S. " V e c t o r " . Dissolved  and suspended vanadium, s u s p e n d e d manganese and i r o n ,  d i s s o l v e d oxygen, temperature,  and s a l i n i t y  cruises.  was a n a l y s e d o n l y on t h o s e  The s u s p e n d e d m a t t e r  w e r e m e a s u r e d on a l l  s a m p l e s showing s t r o n g manganese o x i d e s t a i n i n g .  filter  A l l other  7  8 t e s t s w e r e c o n d u c t e d on s a m p l e s water  collected  samples, except those f o r suspended i n l 1 N.I.O. s a m p l i n g b o t t l e s .  the b o t t l e s  for dissolved  r e m a i n i n g w a t e r was  Gelman M e t r i c e l meter.  GA-6  KH^PO^  and  i t c o u l d be  carried  out under  u n i t w h i c h was water ferred about placed  prior  a c i d washed and  to use.  t o an a c i d  After  0.45  The  lab.  vanadium  from sea water s t o r e d  The  a t pH  suspended  membrane f i l t e r s  matter samples  These f i l t e r s analysed  w i t h 0.45  leach was  a Millipore  filter  and  deionised  was  trans-  adjusted to t h e n i t was  that  ^m  i n the  t h e r e i s no  pH  of the  w e r e p r e p a r e d by  i n 5 1 Niskin bottles,  were then s t o r e d  i n the shore l a b .  to  loss  i n polyethylene or polypropy-  2 or at the n a t u r a l  10 1 o f s e a w a t e r , c o l l e c t e d  5%  filtering  i t s pH  dia-  a n a l y s i s c o u l d be p e r f o r m e d  C h a u and Chan ( 1 9 7 0 ) r e p o r t e d  lene containers  in a  the f i l t r a t e  cleaned storage b o t t l e ,  storage until  urn p o r e  soaked  2 by t h e a d d i t i o n o f 1 ml o f 6 N HC1, i n cold  through  thoroughly rinsed with  filtration,  The  i n p o l y e t h y l e n e or  w i t h d e i o n i s e d water  reduced pressure using  drained  tests.  filtered  with  had b e e n p r e v i o u s l y  and r i n s e d  m a t t e r , were  salinity  stored  o u t any m e t a l s p r e s e n t i n t h e f i l t e r s .  of  entire  A l i q u o t s were  and  membrane f i l t e r s  These f i l t e r s  s o l u t i o n of  oxygen  then d r a i n e d  polypropylene containers u n t i l  shore  throughout the  column. All  from  collected  pore s i z e under in plastic  sample. filtering  through  reduced p r e s s u r e .  Petri  dishes  until  9 ANALYTICAL Dissolved  PROCEDURES  Vanadium  Because o f i t s low c o n c e n t r a t i o n Chester, in  ( c a . 1.5 u g / 1 ; R i l e y and  1 9 7 1 ) , t h e methods employed f o r d e t e r m i n i n g  s e a w a t e r h a v e u s u a l l y u s e d some f o r m o f  such as c o p r e c i p i t a t i o n w i t h  FeCOH)^  coprecipitation with chitosan extraction and  preconcentration  (Chan and R i l e y ,  (Muzzarelli,  1971),  (Chan and R i l e y ,  solvent  1966; K i r i y a m a  In the p r e s e n t tive  catalytic  tion  step.  present  and K u r o d a ,  study,  technique  spectrophotometry.  v a n a d i u m was d e t e r m i n e d b y a s e n s i -  which d i d not r e q u i r e a  However, because o f t h e i n t e r f e r i n g  i n r a w s e a w a t e r , i t was n e c e s s a r y  exchange r e s i n  as d e s c r i b e d  Chelex-100 r e s i n pose c o n t a i n s copolymer The  (Bio-Rad  pre-concentraelements  to f i r s t  v a n a d i u m , a s t e p w h i c h was a c c o m p l i s h e d u s i n g  i s o l a t e the  a chelating ion  by R i l e y and T a y l o r  (1968).  The  L a b o r a t o r i e s ) employed f o r t h i s  iminodiacetate  pur-  g r o u p s on a s t y r e n e - d i v i n y 1 benzene  matrix. catalytic  technique  employed i s a m o d i f i c a t i o n o f t h a t  d e v e l o p e d by F i s h m a n a n d S k o u g s t a d . ( 1 9 6 4 ) , d e t e r m i n e d on t h e b a s i s o f i t s a b i l i t y  oxidation rate of g a l l i c  i n which  vanadium  to increase the  a c i d b y a c i d p e r s u l f a t e . The e x t e n t o f  o x i d a t i o n , w h i c h was m e a s u r e d c o l o r i m e t r i c a l l y  after  a reaction  t i m e o f one h o u r , i s p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n dium  1966),  The a n a l y s i s may t h e n b e c o m p l e t e d b y c o l o r i m e t r i c  m e t h o d s o r by a t o m i c a b s o r p t i o n  is  1966),  (Chau and Chan, 1970; Crump-Wiesner and P u r d y ,  i o n exchange  1972).  vanadium  present.  o f vana-  10 Reagents Ammonium N i t r a t e B u f f e r : hydroxide plus to  100 m l o f 4 N n i t r i c  acid to 21.  ml d e i o n i s e d  Dissolve  t h e pH  3.0 g o f ammonium p e r s u l f a t e i n  water, heat t o b o i l i n g ,  a d d 25 ml  r e a g e n t grade p h o s p h o r i c a c i d and l e t s t a n d Gallic Acid: deionised  Dissolve  paper and l e t s t a n d  before  using.  100  Nitrate:  ml d e i o n i s e d  water.  Dissolve  bath  0.035 g m e r c u r o u s n i t r a t e i n  P r e p a r e a 100 ppm s o l u t i o n u s i n g  t h a t was i g n i t e d , d i s s o l v e d i n s o d i u m  h y d r o x i d e and t h e n made s l i g h t l y Sandell  t h r o u g h Whatman No. 1  daily.  Stock Vanadium S o l u t i o n : vanadium p e n t o x i d e  a c i d i n 50 ml  30 m i n u t e s i n a 30°C w a t e r  Prepare fresh  Mercuric  filter  concentrated  one d a y b e f o r e u s e .  1.0 g o f g a l l i c  water, heat t o b o i l i n g ,  filter  by  Adjust  9.4. Acid Persulfate:  25  D i l u t e 200 ml o f 4 N ammonium  acidic  i n t h e manner d e s c r i b e d  (1965).  Working Vanadium S o l u t i o n : e a c h week b y d i l u t i n g  the stock  P r e p a r e a 0.10 ppm s o l u t i o n vanadium s o l u t i o n w i t h  deionised  water. Procedure The acid  C h e l e x - 1 0 0 r e s i n ( 5 0 - 1 0 0 mesh) was s o a k e d i n 2 N  f o r 24 h o u r s , r i n s e d w i t h  diameter g l a s s columns f i t t e d  deionised with  water, poured  fritted  i n t o 1 cm  glass discs to give  a b e d d e p t h o f 3 cm, and w a s h e d w i t h d e i o n i s e d pH o f t h e e l u a t e was 6.  nitric  water u n t i l the  T h e n t h e pH o f t h e s e a w a t e r  samples  11 was  adjusted to 6 with d i l u t e  a l i q u o t passed  through  5 ml/min.  The  c o l u m n was  water  finally,  and,  beaker of  w i t h 30 ml  sodium  h y d r o x i d e , and  the column at a r a t e  not  t h e n w a s h e d w i t h 100  the vanadium e l u t e d  a 25  ml  exceeding ml o f d e i o n i s e d  i n t o a covered  100  ml  10  ml  o f 4 N ammonium h y d r o x i d e f o l l o w e d by  deionised water. A f t e r e v a p o r a t i n g the e l u a t e to dryness o v e r n i g h t at  h e a t on a h o t p l a t e , into  s o l u t i o n by  with  30 ml o f t h e pH  was  the r e s i d u e i n the beaker  allowing 9.4  then t r a n s f e r r e d  w i t h more b u f f e r , and  transferred  nitrate  were added t o each returned  s o l u t i o n was vals,  and  water  bath.  acid,  each  and  1 ml  bath.  A f t e r one  i n contact This  solution t o 35  hour,  1 ml  persulfate  t h e s a m p l e was  mixed  after  o f t h e s a m p l e s was  t h r o u g h a Whatman No. m e a s u r e d a t 415  nm  acid  returned to  the a d d i t i o n of the  removed from  42 f i l t e r  i n a 10 cm  and  paper,  and  the bath,  of  and  added t o s u c c e s s i v e b o t t l e s a t t h r e e minute  S i x t y minutes  ml  solutions  T h e n , 1 ml o f t h e g a l l i c  the b o t t l e s were a g a i n mixed  back  polyethylene bottle  of the a c i d  and  brought  c y l i n d e r , made up  t o a 60 ml  b a t h a t 30°C.  bottle,  to the water  hours  ammonium n i t r a t e b u f f e r .  to a measuring  placed i n a water  the mercuric  i t t o s i t f o r two  was  low  inter-  the  gallic filtered  i t s absorbance  c u v e t w i t h a Beckman M o d e l  DU  spectrophotometer. Six also  s o l u t i o n s c o n t a i n i n g known a m o u n t s o f v a n a d i u m w e r e  prepared each  w e r e p r e p a r e d by to  r e m o v e any  day  first  and  as a b o v e .  p a s s i n g sea water  v a n a d i u m , and  v a n a d i u m t o 25 ml  treated  aliquots.  standards  through a r e s i n  then adding from The  These  0.00  column  t o 0.08  vanadium c o n c e n t r a t i o n of  ug  of  the  sea water  s a m p l e s b e i n g a n a l y s e d was t h e n d e t e r m i n e d  reference to the c a l i b r a t i o n  by  curve d e r i v e d from p r o c e s s i n g these  standards. Discussion The  calibration  c u r v e s were l i n e a r  c o n t e n t o f 0.08 ug i n a f i n a l  solution  up t o a v a n a d i u m  volume o f about  However, because t h e s l o p e o f t h e c a l i b r a t i o n absorbance  of the reagent blank  c u r v e and t h e  i n c r e a s e d markedly  s t r e n g t h o f t h e ammonium n i t r a t e  buffer,  a new  standard containing was  always  no a d d e d v a n a d i u m  in  Due. t o t h e  the absorbance  ( i . e . the reagent  of the blank)  appreciable (Figure 3 ) .  Eight replicates determine  acid,  with the  calibration  c u r v e was made f o r e a c h b a t c h o f s a m p l e s a n a l y s e d . non-catalysed o x i d a t i o n of g a l l i c  30 m l .  the p r e c i s i o n  of a sea water o f t h e method.  sample were a n a l y s e d t o The r e s u l t s  a r e shown  Table I I I . Table I I I S a m p l e Number  ppb  pp.  the result  574), the r e l a t i v e  found  0.64 1.60 0.64 0.64 0.64 0.80 0.80 0.80  1.  2 3 4 5 6 7 8 Rejecting  V  f o r s a m p l e number 2 ( L a i t i n e n , 1 9 6 0 ;  standard deviation  of the analyses at a  mean c o n c e n t r a t i o n l e v e l o f 0.71 u g / 1 i s 7.9%.  13 The resin, be  recovery  o f V from sea water, u s i n g  a s recommended by R i l e y a n d T a y l o r  slightly  low.  The p e r c e n t  recovery  the chelex  (1968),  was f o u n d t o  was d e t e r m i n e d b y t a k i n g  sea w a t e r t h a t had p r e v i o u s l y been s t r i p p e d by passage the  r e s i n and t h e n ,  vanadium the  after  s a m p l e s by t h e s t a n d a r d  absorbance vs concentration  with  using  identical  through  s p i k i n g i t w i t h v a r y i n g amounts o f  (as i n the case of t h e c a l i b r a t i o n  obtained  100  procedure. curve  series),  analysing  The s l o p e o f t h e r e s u l t i n g  was t h e n c o m p a r e d t o t h a t  s a m p l e s o f ammonium n i t r a t e  t h a t had been  spiked  amounts o f v a n a d i u m , b u t w h i c h were n o t p a s s e d  through the r e s i n . When t h e v a n a d i u m was e l u t e d f r o m t h e r e s i n w i t h 2 N ammonium h y d r o x i d e , (1968), spiked nitrate  the r a t i o sea water  not  of the slopes t o those  of the curves  obtained  using  obtained  the spiked  improve t h e r e c o v e r y ,  the time r e q u i r e d  d i u m was r e c o v e r e d  i n the f i r s t  t h e r e m a i n d e r was b e i n g consistent with  rinsing with  although  f o r the separation  because of the decreased f l o w r a t e .  eluting with  using  ammonium 50 t o 6 0 %  I n c r e a s i n g t h e d e p t h o f t h e r e s i n b e d t o 6 cm d i d  significantly  increased 50%  a s recommended b y R i l e y a n d T a y l o r  s o l u t i o n s r a n g e d f r o m 0.5 t o 0.6, i n d i c a t i n g  recoveries.  20 ml o f  doing  so  s t e p by a b o u t  The b u l k  of the vana-  10 ml o f e l u a t e , s u g g e s t i n g  that  r e t a i n e d by t h e c o l u m n , a s u p p o s i t i o n  the fact that  the recovery  was i m p r o v e d by  30 ml o f t h e 4 N ammonium h y d r o x i d e 10 m l o f d e i o n i s e d  water.  Using  and t h e n  this  latter  proce-  dure, t h e r e c o v e r i e s averaged over 90%. To  determine the stage  l o s s e s were o c c u r r i n g , t h r e e  a t which the remaining standard  calibration  recovery s e r i e s were  14 run.  In the f i r s t ,  resin  c o l u m n was s p i k e d w i t h v a n a d i u m , a n d t h e n  were a n a l y s e d  sea water  as d e s c r i b e d i n t h e standard  s e c o n d , 4 N ammonium h y d r o x i d e resin  t h a t had been p a s s e d  t h a t had b e e n p a s s e d  were completed as d e s c r i b e d i n t h e s t a n d a r d step.  In the t h i r d ,  s p i k e d w i t h v a n a d i u m and t h e n applying only those The  results  series,  through the  the analyses  procedure  following  ammonium n i t r a t e b u f f e r was  t h e samples were  analysed test.  ( F i g u r e 3) showed t h a t t h e s l o p e s o f t h e a b s o r -  t h e same;  of the f i r s t  and second  series  t h e s l o p e d e r i v e d from t h e t h i r d  h o w e v e r , was somewhat h i g h e r , i m p l y i n g t h a t t h e i n c o m -  p l e t e r e c o v e r i e s w e r e due e i t h e r the r e s i n column, e v a p o r a t i o n of  In the  steps p e r t a i n i n g to the c o l o r i m e t r i c  bance vs c o n c e n t r a t i o n curves were e s s e n t i a l l y  the samples  procedure.  c o l u m n was s p i k e d w i t h v a n a d i u m a n d t h e n  the e l u t i o n  through the  to interferents  leached  losses, or incomplete  fr,om  re-solution  t h e v a n a d i u m b y t h e ammonium n i t r a t e b u f f e r . Attempts t o destroy i n t e r f e r i n g  boiling little  the column e l u a t e w i t h c o n c e n t r a t e d apparent  e f f e c t on t h e r e c o v e r y .  made up i n ammonium h y d r o x i d e t h e r e s i n gave c a l i b r a t i o n using  ammonium h y d r o x i d e  through  the r e s i n ,  organic interferent were e v a p o r a t e d period,  organic substances  w h i c h had b e e n p a s s e d  time  standards through  t h e same a s  s o l u t i o n s w h i c h had n o t been  those  passed  t h e l o s s d o e s n o t a p p e a r t o be due t o a n y leached  from the r e s i n . over  should  Since the s o l u t i o n s  approximately  and w e r e a l l w e l l c o v e r e d ,  re-solution  a c i d had  Moreover, as  slopes e s s e n t i a l l y  on l o w h e a t  during evaporation  nitric  by  an e i g h t e e n  hour  any l o s s due t o s p a t t e r i n g  have been m i n i m a l .  Increasing the  o f t h e e v a p o r a t i o n r e s i d u e t o two h o u r s ,  however,  15  Figure  3.  Recovery curves f o r d i s s o l v e d C o n c e n t r a t i o n s b a s e d on 35 ml size.  vanadium. sample  16 increased are  t h e r e c o v e r i e s somewhat.  s m a l l l o s s e s due t o i n c o m p l e t e In  addition,  t h e r e may  i n t e r f e r e n t s present  listed  elution  be a p p a r e n t  i n the sample.  i n t e r f e r e with the c a t a l y t i c centrations,  Thus i t a p p e a r s t h a t and  l o s s e s due t o i o n i c  and t h e i r  a s g i v e n b y F i s h m a n and S k o u g s t a d  i n Table  Element  L i m i t i n g cone.  Ag U(VI) Co(Il) Ni(II) Cu(II) Mo(Vl) Fe(II) Fe(III) Cr(VI) Cl Br I  of  and C h e s t e r  (1964), are  Cone, i n sea water  tion  to interfere.  metal  ions, except  0.04 3.00 0.10 2.00 3.00 10.00 j  Riley  (1971) t h e e x c e p t i o n o f t h e h a l i d e s , few  i n s e a w a t e r i n h i g h enough and T a y l o r  f o r V(V), Mo(VI),  on t h e r e s i n  10.00 0.05 19,000,000.00 65,000.00 60.00  that, with  ions are present  retained  con-  (ppb)<l>  2,000 3,000 1,000 3,000 50 100 300 500 1,000 100,000 100 1  i s evident  these  limiting  IV  (ppb)  It  which  IV. Table  (1) R i l e y  re-solution.  The v a r i o u s i o n s  procedure,  there  and w i l l  concentra-  ( 1 9 6 8 a ) r e p o r t t h a t most Re(VII)  and W ( V I ) , w i l l  be  n o t be e l u t e d w i t h ammonium  hydroxide. The h a l i d e s , s i n c e t h e y for  a r e not adsorbed  by t h e r e s i n , a r e  t h e most p a r t , washed o f f w i t h t h e 100 ml w a t e r  Moreover, mixture  some h a l i d e s c a n b e t o l e r a t e d  where t h e y  i n the f i n a l  a r e c o m p l e x e d by a d d i n g  rinse. reaction  the mercuric  nitrate  s o l u t i o n , which employed.  itself  The m e r c u r i c  t i o n s o f vanadium 0.25  at the concentrations  nitrate reportedly  and i o d i d e  (Fishman and S k o u g s t a d ,  and A l l a w a y (1972) f o u n d a s l i g h t  d e t e r m i n a t i o n o f vanadium  ug/1,  this error  not i n t e r f e r e  how-  o f Mo i s a b o u t  10  s h o u l d n o t b e g r e a t e r t h a n a b o u t 1.5%.  c a t i o n s i n sea water even  (Na+ , K + , Ca 2+ a n d Mg 2+ ) do  a t c o n c e n t r a t i o n s a b o v e 500 u g / 1 .  t h e s e a r e l a r g e l y washed o f f t h e r e s i n w i t h t r a c e amounts s h o u l d be e l u t e d w i t h . D i s s o l v e d vanadium  i n oxygenated  However, under r e d u c i n g c o n d i t i o n s , i n Saanich I n l e t ,  may a l s o be p r e s e n t .  And, as  the c h l o r i d e ,  only  t h e 4N ammonium h y d r o x i d e . n a t u r a l waters should  occur mainly i n the penta-valent state  times e x i s t  i nthe  i n t h e p r e s e n c e o f molybdenum;  i n s e a w a t e r , where t h e c o n c e n t r a t i o n  major  1964).  positive error  ever,  The  allows determina-  i n t h e p r e s e n c e o f 100 ppm o f c h l o r i d e a n d  ppm o f b r o m i d e  Welch  does n o t i n t e r f e r e  (Chau  and Chan,  1970).  such as those which  the tetra-  In order to test  and t r i - v a l e n t  the retention  states  efficiency  of the r e s i n  f o r these lower : o x i d a t i o n  o f a 3% N a C l  s o l u t i o n , w h i c h was u s e d t o s i m u l a t e s e a w a t e r ,  were s p i k e d w i t h with  0.05 /jg o f v a n a d i u m  1 m l o f a 6% s o d i u m  acid.  The s a m p l e s  a pH o f 6, p a s s e d normal  manner.  s o l u t i o n s which The  results  sulfite  states,  some-  and b o i l e d  25 ml a l i q u o t s  f o r one hour  s o l u t i o n made up i n 2%  sulfuric  w e r e t h e n a d j u s t e d t o a v o l u m e o f 25 ml a n d through the r e s i n  A group o f f o u r  and t h e n a n a l y s e d i n t h e  samples  was t e s t e d a l o n g w i t h  had n o t been t r e a t e d w i t h  the reducing solution.  showed t h a t t h e r e c o v e r y f r o m t h e r e d u c e d  solutions,  on a v e r a g e , was 1 2 % l o w e r t h a n t h a t f r o m t h e u n t r e a t e d s o l u tions.  Thus, t h e vanadium  r e c o v e r y from S a a n i c h I n l e t  waters  18 exposed  to reducing  c o n d i t i o n s m i g h t be  re-oxidation during Because of only  25  ml  the  the  may  have r e d u c e d  sensitivity  samples of  greatly with Taylor  storage  of  o r R i l e y and  the  time r e q u i r e d f o r the  Suspended M a t t e r The  the  minutes with  10  This  filters ml  t o 20 ml  Chan ( 1 9 6 5 ) .  Riley  and  This  smaller  space r e q u i r e d f o r  storage  t o 100  o f 2 N HC1.  ml  and  i o n exchange  b e a k e r s and  steps.  should  ml  boiling  but  for  According  to  ten  and  Muller  amorphous o r  have r e l a t i v e l y  by  resulting  measuring c y l i n d e r s  d i s s o l v e any  iron oxides  for analysis  A f t e r c o o l i n g , the  with deionised water.  l i n e manganese o r silicate  contrasts  Samples  (1967) such treatment  on  technique,  e m p l o y e d by  filtration  s o l u t i o n s w e r e t r a n s f e r r e d t o 25 diluted  used.  suspended m a t t e r s a m p l e s were p r e p a r e d  transferring  although  this error.  analytical  (3 t o 7 1 )  s a m p l e s i z e r e d u c e s t h e amount o f and  the  s e a w a t e r need be  l a r g e volumes  ( 1 9 6 8 b , 1972)  somewhat l o w ,  crystal-  little  effect  minerals.  Suspended Vanadium A 10 ml was  adjusted  No.  42  t o pH  filter  that given Suspended A 2 ml similar  a l i q u o t of  the  a c i d leach of  6 with d i l u t e  p a p e r , and  the  suspended  NaOH, f i l t e r e d  then analysed  by  the  matter  t h r o u g h Whatman  same p r o c e d u r e  as  f o r d i s s o l v e d vanadium. Iron a l i q u o t of the  to that described  a c i d l e a c h was by  Sandell  t r e a t e d i n a manner  ( 1 9 6 5 ) by  a d d i n g 2 ml  of  a  19 10%  hydroxylammine-hydrochloride  a c e t a t e - HC1 b u f f e r plus  solution,  (prepared from  6 ml o f a  sodium  50 ml o f 7 5 % s o d i u m  acetate  10 ml o f c o n c e n t r a t e d H C 1 ) , a n d 1 ml o f a 0.3% s o l u t i o n o f  o r t h o - p h e n a n t h r o l i n e i n 4% HC1. adjusted  The pH o f t h e s o l u t i o n  was  t o a v a l u e b e t w e e n 3 a n d 6 a n d t h e v o l u m e made up t o  50 m l w i t h d e i o n i s e d w a t e r . development,  t h e absorbance  After allowing  24 h o u r s  f o rcolour  was m e a s u r e d a t 513 nm u s i n g a  Beckman M o d e l DU S p e c t r o p h o t o m e t e r  a n d a 10 cm c u v e t .  Calibra-  tion  c u r v e s w e r e p r e p a r e d b y a d d i n g known a m o u n t s o f a s t a n d a r d  iron  solution  t o 50 m l .  t o deionised water,  The c u r v e s w e r e l i n e a r  v a l u e was 24.93 u g Fe p e r u n i t  adding  t h e r e a g e n t s and d i l u t i n g  and h a d a s l o p e whose mean  absorbance.  Suspended Manganese The remaining  suspended  manganese c o n c e n t r a t i o n was m e a s u r e d on t h e  s a m p l e v o l u m e by a s p i r a t i n g  i td i r e c t l y  a c e t y l e n e f l a m e o f a T e c h t r o n M o d e l IV A t o m i c trophotometer  and measuring  t h e absorbance  into  an a i r -  A b s o r p t i o n Speco  a t 2795 A-.  Calibra-  t i o n c u r v e s w e r e p r e p a r e d b y u s i n g HC1 s o l u t i o n s c o n t a i n i n g  0.0  t o 4.0 ppm m a n g a n e s e . Dissolved The  Oxygen dissolved  o x y g e n c o n t e n t was d e t e r m i n e d  standard Winkler T i t r a t i o n  (Strickland  the m o d i f i e d reagents of C a r r i t  on s h i p by t h e  and P a r s o n s ,  and C a r p e n t e r  1968),  (1966).  using  20 RESULTS All  experimental results  the appendix.  The d i s s o l v e d  in  Saanich I n l e t  in  the v e r t i c a l  station Figure  ranged  are listed  vanadium c o n c e n t r a t i o n s o b s e r v e d  b e t w e e n 0.53 a n d 3.25 u g / 1 .  distribution  of dissolved  The c h a n g e s  vanadium o b s e r v e d a t  3 b e t w e e n S e p t e m b e r 1973 and J u l y  1974 a r e shown i n  4.  At the s u r f a c e ,  t h e c o n c e n t r a t i o n s w e r e g r e a t e r t h a n 2.3  ug/1 e x c e p t i n J u l y when t h e y d r o p p e d below  i n the data tables i n  the surface,  they tended  below  1.0 pg/1.  t o i n c r e a s e w i t h depth  Then, towards  a  c o n c e n t r a t i o n maximum w h i c h was l o c a t e d b e t w e e n t h e d e p t h s o f 50 a n d 80 m t h r o u g h o u t to A p r i l , in  July  the e n t i r e  study p e r i o d .  From November  t h e v a l u e s a t t h i s maximum w e r e a b o v e 2.6 u g / 1 , b u t  they f e l l  below  2.4 j j g / l .  B e l o w t h i s maximum, t h e c o n -  c e n t r a t i o n s i n November d e c r e a s e d c o n t i n u o u s l y w i t h however, from January t o J u l y ,  a f t e r p a s s i n g t h r o u g h a minimum  b e t w e e n 80 a n d 120 m, t h e y a g a i n i n c r e a s e d mum  located  ranged  a t about  a b o v e 2.5 pg/1  140 m.  t o a secondary  Values a t t h i s deeper  decreased passing  maxi-  maximum  i n J a n u a r y a n d May t o 2.23 j j g / 1 i n J u l y .  B e l o w 160 m c o n c e n t r a t i o n s w e r e i n v a r i a b l y except i n January.  depth;  Moreover,  below  i n November a n d A p r i l ,  i n value continuously with depth.  In July,  2.0 pg/1 they after  t h r o u g h a minimum o f 1.0 jug/1 a t 175 m, t h e y a g a i n  increased  t o about  Although  1.5 j u g / l a t t h e b o t t o m .  t h e p a t t e r n was i r r e g u l a r ,  c o n c e n t r a t i o n maximum o b s e r v e d  at station  the dissolved  vanadium  3 b e t w e e n 50 a n d 80 m  s e e m e d , a s shown i n F i g u r e s 5, 6 a n d 7, t o e x t e n d t h e l e n g t h o f  21  Figure  5.  1  2  3  i  i  i  Stations  4  5  6  J  I  L.  D i s t r i b u t i o n o f d i s s o l v e d vanadium (ug/1) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t sampling p o i n t s .  Stations  2 0 0  F i g u r e 6.  Distribution during A p r i l points.  Figure  D i s t r i b u t i o n o f d i s s o l v e d vanadium (ug/1) d u r i n g J u l y 1974. Dots r e p r e s e n t s a m p l i n g points  7.  o f d i s s o l v e d vanadium 1974. Dots r e p r e s e n t  (ug/1) sampling  23 the  inlet  deeper  i n J a n u a r y , A p r i l , ' and J u l y .  maximum, f o u n d b e t w e e n 140 a n d 160 m a t s t a t i o n  to  also occur a t stations  In  January  at  t h i s deeper  (Figure  The  5) a n d A p r i l  at station  increase  waters below  1 to 4 during these three  the  head and t h e e n t r a n c e .  trations  2 (Figure 7 ) .  160 m a t s t a t i o n  to that single  cruises.  3, w h i l e i n J u l y  i n the vanadium c o n t e n t observed  ted  3 seemed  ( F i g u r e 6) t h e h i g h e s t v a l u e s  maximum w e r e f o u n d a t s t a t i o n  t h e y were found  the  Furthermore, the  i n t h e deep  3 i n J a n u a r y was l a r g e l y  restric-  s t a t i o n , w i t h values d e c r e a s i n g towards By c o n t r a s t ,  in April,  both  the concen-  d e c r e a s e d from t h e head t o t h e e n t r a n c e , w h i l e i n J u l y ,  h i g h e s t v a l u e s were f o u n d  at stations  2 a n d 4.  In J u l y , the  g e n e r a l c o n c e n t r a t i o n l e v e l i n t h e d e e p w a t e r s was much h i g h e r than i n A p r i l . Suspended vanadium c o n c e n t r a t i o n s r a n g e d detection below  limits  75 m v a r i e d  up t o 500 n g / 1 . throughout  from  below  F i g u r e 8 shows how t h e v a l u e s at station  3.. I n  S e p t e m b e r , b e t w e e n 140 a n d 155 m, a n d i n N o v e m b e r , b e l o w  140 m,  suspended  these  v a n a d i u m v a l u e s w e r e a b o v e 100 n g / 1 .  v a l u e s were s h o r t l i v e d , 30 ng/1 by J a n u a r y . less  observed  station  Since values at s t a t i o n that  mainly of station  than  1 i n September were  these h i g h v a l u e s were  3, a l t h o u g h a v a l u e o f 84 ng/1  i n a sample t a k e n from t h e bottom  waters a t  2.  From J a n u a r y 3 exhibited was  However,  a s t h e y h a d g i v e n way t o o n e s l e s s  t h a n 20 n g / 1 , i t a p p e a r s  characteristic was  the study p e r i o d  to July  a distinct  the v e r t i c a l  layering.  distribution at station  I n t h e uppermost l a y e r ,  f o u n d a b o v e 90 m, v a l u e s e x c e e d e d  20 n g / 1 .  Then, below  which this,  24 t h e r e were s u c c e s s i v e dropped  to values  than  ng/1.  25  again  l a y e r s i n which the c o n c e n t r a t i o n s  l e s s than  Finally,  decreased  ng/1  less  than  w h i c h shows t h e  i n the  temporal  175  20  stations  1 and  3,  distribution  4,  although  head t o  a p p e a r s t o be  April  and  p a t t e r n was  again  values  b e l o w 10  125  and  centred  with  throughout the  length of  the  to shallower  a continuous  2,  at  about  depths  at  f e a t u r e , and  the  located at or  appears to a l s o extend  evident.  just  from  The  t h e r e was  m at s t a t i o n  The  12.  t h e r e was ng/1  a distinct  centred  195  4  b e t w e e n 120  above  20  ng/1  m at  l a y e r i n which  station concentra-  m at staion 1  and  4.  temporal  f r o m 0.5  v a r i a t i o n s at s t a t i o n  time,  b e l o w 140  f o l l o w i n g January,  m they  at f i r s t  began t o i n c r e a s e .  ug  to  3 a r e shown i n  W h i l e t h e c o n c e n t r a t i o n s a b o v e 140  with  a layer with  exceeding  1 and  s u s p e n d e d manganese v a l u e s r a n g e d  50 u g / 1 .  constant  In A p r i l ,  concentrations  a similar layering  a layer with values  b e t w e e n 120  Then, i n J u l y ,  m at s t a t i o n  1 1 ) , when  s t r e t c h i n g b e t w e e n s t a t i o n s 2 and  below t h i s ,  roughly  and  towards the entrance,  ng/1  t i o n s e x c e e d e d 40  then  of  3 tended,  J u l y ( F i g u r e s 10  g e n e r a l l y decreased  Figure  distribution  entrance.  In  140  concentrations  at s t a t i o n  rising  above the bottom, a t s t a t i o n  greater  ng/1.  u n d e r l y i n g c o n c e n t r a t i o n maximum, a l t h o u g h  4.  to  T h a t i s , t h e c o n c e n t r a t i o n minimum o b s e r v e d  m at s t a t i o n  m,  rose  i n d i c a t e s t h a t the l a y e r i n g  v a r i o u s m o d i f i c a t i o n s , to extend inlet.  then  longitudinal  suspended vanadium i n January, evident  and  i n the bottom waters the  to values  F i g u r e 9,  20  first  m remained decreased,  fairly and  From S e p t e m b e r  to  25.  .Stations  Figure  9.  D i s t r i b u t i o n o f s u s p e n d e d v a n a d i u m (ng/1.) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t sampling p o i n t s .  26  Stations  Figure  11.  D i s t r i b u t i o n of suspended vanadium (ng/1) d u r i n g J u l y 1974. Dots r e p r e s e n t s a m p l i n g points.  27 January, they  when t h e d e e p w a t e r v a l u e s w e r e d e c r e a s i n g w i t h  a l s o increased continuously with depth. as t h e c o n c e n t r a t i o n l e v e l s  time,  By c o n t r a s t , i n  April  and J u l y ,  increased  with  time,  t h e r e was an i n v e r s i o n b e l o w w h i c h v a l u e s w e r e l e s s  than  2 ug/1. In  January  ( F i g u r e 13) t h e s u s p e n d e d m a n g a n e s e c o n c e n t r a -  tions  i n c r e a s e d w i t h depth  April  t h e r e was a m i d - d e p t h  at a l l four stations. layer with values  s t r e t c h i n g b e t w e e n 160 m a t s t a t i o n  However, i n yg/l  a b o v e 10  1 a n d 180 m a t s t a t i o n  4  ( F i g u r e 1 4 ) . A s i m i l a r m i d - d e p t h maximum was a g a i n e v i d e n t i n July  as a l a y e r c o n t a i n i n g v a l u e s  f r o m a b o u t 120 m a t s t a t i o n (Figure 15).  In A p r i l ,  maximum w e r e f o u n d v a l u e s were found  g r e a t e r than  1 t o about  stretching  150 m a t s t a t i o n  the highest values  at station  10  at this  3, w h i l e i n J u l y ,  4  mid-depth  the highest  a t the head.  S u s p e n d e d i r o n v a l u e s r a n g e d b e t w e e n 2.9 and 29.4 ; u g / l . As  illustrated  station and  by F i g u r e 16, t h e h i g h e s t c o n c e n t r a t i o n s a t  3, e x c e p t  then, below t h i s ,  i n c r e a s i n g depth. only  Concentrations  distribution  the f a c t  only decreased  the entrance The  exceeding  t h e same t i m e reached  observed  to decrease  with  20 ug/1 w e r e  found  p e r i o d when t h e their  i n January  that suspended i r o n  w i t h i n c r e a s i n g depth,  they a l s o tended  b e t w e e n 75 a n d 100 m,  g e n e r a l l y decreased  i n the bottom waters  longitudinal  illustrates  that  the values  i n November a n d J a n u a r y ,  values observed The  i n September, o c c u r r e d  values  lowest  levels.  ( F i g u r e 17)  normally not  a t l e a s t b e l o w 75 m, b u t  with increasing distance  from  of the i n l e t .  temporal  changes i n t h e d i s t r i b u t i o n s  of  temperature,  28  Stations  Figure  13.  D i s t r i b u t i o n o f s u s p e n d e d manganese (^pg/1) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t sampling p o i n t s .  29  Stations  Figure  15.  D i s t r i b u t i o n o f s u s p e n d e d manganese ( p g / l ) d u r i n g J u l y 1974. Dots r e p r e s e n t s a m p l i n g points.  30  Sta tions  Figure  17.  D i s t r i b u t i o n of suspended i r o n (ug/1) d u r i n g J a n u a r y 1974. Dots r e p r e s e n t sampling p o i n t s .  31 salinity Figures  and d e n s i t y o b s e r v e d 18, 19 and  20.  at station  At the s u r f a c e ,  3 a r e shown i n the d e n s i t y  as t h e t e m p e r a t u r e d e c r e a s e d b e t w e e n S e p t e m b e r and t h e n i t d e c r e a s e d as t h e t e m p e r a t u r e  subsequently  b e t w e e n J a n u a r y and  July.  remained . r e l a t i v e l y  c o n s t a n t a t about  ever,  increased with  N o v e m b e r , and  increasing  s a m p l e i n J u l y when t h e r e was  The  9°C.  salinity,  November t o J u l y ,  a corresponding r i s e dissolved  temperature  density,  subsequently water  i n temperature  11.2  ml/1  i n the bottom  at the s u r f a c e i n  waters  in April.  at station  less  t h a n 0.5  As  d e n s i t y i n the bottom  v a l u e s g r e a t e r t h a n 0.5  to increase  observed.  B e t w e e n 175  and  125  200  t o 175  increase  The samples was  odour  from A p r i l of hydrogen  taken near  to  and  then  200 m t h e r e was  July.  the sediment  m.  m the c o n c e n t r a t i o n s decreased  s u l f i d e was  t h e s a m p l e t a k e n f r o m 220  190  m the o p p o s i t e trend  c o n t i n u o u s l y f r o m November t o J u l y , b u t b e l o w slight  and  the s u r f a c e  f r o m November t o A p r i l  However, from  also  waters,  w e r e o b s e r v e d b e t w e e n 170  depth, the c o n c e n t r a t i o n s , e x c l u d i n g  decrease to J u l y . was  ml/1  21),  ml/1.  i n c r e a s e s i n the s a l i n i t y  and  illu-  3 (Figure  J a n u a r y , when t h e r e w e r e  tended  and  with  H o w e v e r , b e t w e e n November and  samples,  and  in density.  120 m t h e v a l u e s w e r e g e n e r a l l y  Above s i l l  how-  between September  oxygen v a l u e s g e n e r a l l y decreased  ml/1  and  increased  except i n the bottom  s t r a t e d by t h e t e m p o r a l c h a n g e s o b s e r v e d below  The  a marked d r o p  i n c r e a s i n g depth, ranging from November t o 0.02  January,  I n t h e deep w a t e r s , t h e  t h e n d e c r e a s e d when t h e s a l i n i t y  decreased from  increased  detectable in a  surface.  m at s t a t i o n  The  most  few  noticeable  2 i n July.  a  32  Sept 73-35  Figure  Nov 73-46  19.  Jan 74-1  May 74-15  Aug 74-26  D i s t r i b u t i o n o f s a l i n i t y (S°/oo) a t S t a t i o n 3.' D o t s r e p r e s e n t s a m p l i n g points.  33  3  Sept 73-3S  Nov .  Figure  73-46  21.  Jan 74-1  May 74-1J  Aug 74-76  D i s t r i b u t i o n of d i s s o l v e d oxygen (ml/1) Dots r e p r e s e n t sampling at S t a t i o n 3 points.  34 The  data tables  i n the appendix  indicate  the  oxygen c o n t e n t decreased c o n t i n u o u s l y w i t h  155  m throughout  increased  the i n l e t .  slightly  at stations  1, t h e v a l u e s r e m a i n e d they again tended for  slight  and  4 in April  2,  3 and  c o n s t a n t below  at s t a t i o n  depth  to  about  the c o n c e n t r a t i o n s 4.  125  to decrease w i t h depth  i n c r e a s e s observed and  Below t h i s ,  that i n January  However, a t m.  In A p r i l  station and  at a l l stations  July,  except  i n the deep w a t e r s a t s t a t i o n s 3 in July.  1  35 DISCUSSION Table V compares the d i s s o l v e d vanadium v a l u e s o b s e r v e d Saanich  I n l e t w i t h t h o s e r e p o r t e d i n o t h e r r e c e n t s t u d i e s on  sea water. Inlet  I t would appear t h a t the v a l u e s found  are t y p i c a l  of normal  sea  D i s s o l v e d Vanadium C o n c e n t r a t i o n ug/1  i n Saanich  water.  Table  V  Location  Authors  0.53-3.25  Saanich  0.05-6.4  North-east A t l a n t i c  R i l e y and T a y l o r (1972)  East China  Kiriyama  1.67  Inlet  This  Sea  study  Kuroda  and (1974)  0.83-1.57  North-east A t l a n t i c  Morris  1.5  E a s t e r n I n d i a n Ocean  S u g a w a r a and Okabe ( 1 9 7 0 ) Okabe and M o r i n a g a (1970)  -2.5  0.95-2.36  Krauskopf  Western P a c i f i c  (1956) l i s t s  the enrichment  f o r b r o w n a l g a e , as d e t e r m i n e d b e t w e e n 10 and marine being  300,  and  mammals, as d e t e r m i n e d 280,000.  H o w e v e r , as  by  Brooks  and  Noddack and  vanadium (1952),  factor  Noddack  by  (1939),  lower  by  vanadium from  as 4,500, 1,500  living  organisms  t h e s u r f a c e and  and is a  as  using a  than  that  water,  roughly a factor  Rumsby ( 1 9 6 5 ) r e p o r t t h e e n r i c h m e n t  as  f o r nine  c o n c e n t r a t i o n i n sea  s h o u l d be r e d u c e d  Hence, uptake  f a c t o r removing  enrichment  i s about t e n times  s c a l l o p s , o y s t e r s , and m u s s e l s pectively.  Mitchell  (1975)  t h e s e v a l u e s were c a l c u l a t e d  c u r r e n t l y r e p o r t e d as t h e a v e r a g e these values e v i d e n t l y  f a c t o r of  by B l a c k and  the average  vanadium c o n c e n t r a t i o n which  ten.  in  of  factors for  2,500  res-  potential  the weakly  oxy-  36 genated waters As  the organisms  bottom, result  sill  d i e and  depth.  t h e i r remains  some o f t h e v a n a d i u m consumed may of decay,  detrital Black  found below  b u t some may  material  sink  towards  be r e l e a s e d  be r e m o v e d p e r m a n e n t l y  becomes p a r t o f t h e s e d i m e n t .  Sea s e d i m e n t s , O s t r o u m o v and V o l k o v  the  as  a  i f this  In s t u d i e s  (1957)  found  the  h i g h e s t vanadium c o n c e n t r a t i o n s i n the a n c i e n t sediments have a v e r y h i g h o r g a n i c c a r b o n c o n t e n t , w h i l e V o l k o v Fomina nic  (1974)  carbon..  Inlet  found The  ( G u c l u e r and  lithogenous rather  Gross, 1964);  elements  vanadium v a l u e s near  the s i l l  i n Saanich I n l e t ,  taken,  matter appears  the d i s s o l v e d  g e n e r a l l y d e c r e a s e d b o t h a b o v e and the d i s s o l v e d  in this  corresponding 22)  that  higher  t o be  the  vanadium c o n c e n t r a -  below d  the s i l l for  depth.  samples  75 m i n J a n u a r y a g a i n s t t h e  v a l u e s , S°/oo, i t becomes e v i d e n t ( F i g .  t h a t the changes i n d i s s o l v e d vanadium are r o u g h l y  correlated  Thus,  sediment.  vanadium v a l u e s , [v] ,  c a s e , b e t w e e n 10 and salinity  found  (1967),  than i n the c e n t r a l b a s i n .  than biogenous  Figure 5 indicates  plotting  orga-  of the deep  however, Gross  p r i m a r y source of vanadium i n S a a n i c h I n l e t  On  and  h i g h e s t v a l u e s of o r g a n i c carbon i n Saanich  a study of minor  tions  which  directly with  are i n the f i n e g r a i n e d b l a c k sediment  central basin in  that vanadium c o - v a r i e d  of  to the changes i n s a l i n i t y .  The  linearly  equation of  the  regression curve i s :  Similar correlations existed w a t e r s above s i l l trolling  t h r o u g h o u t most o f t h e y e a r i n t h e  depth, suggesting that  the d i s s o l v e d  the main f a c t o r  v a n a d i u m v a l u e s was  not  biological  con-  Figure  22.  P l o t o f d i s s o l v e d vanadium (ug/1) a g a i n s t s a l i n i t y (S°/oo) d u r i n g J a n u a r y 1 9 7 4 , f o r d e p t h s b e t w e e n .10 and 75 m.  38 activity  but t h e m i x i n g o f low s a l i n i t y ,  water with higher s a l i n i t y , depth.  T h i s was  clearly  low vanadium  h i g h e r vanadium  sea water found a t  not the case i n J u l y  when t h e r e a p p e a r s t o h a v e b e e n an i n t r u s i o n water at about s i l l Below s i l l showed m a r k e d sill  21),  of low vanadium  depth.  Moreover, although d i s s o l v e d  increased  salinity  from September  and d i s s o l v e d  oxygen v a l u e s  o x y g e n v a l u e s d e c r e a s e d ( F i g s . 4,  f r o m J a n u a r y t o May, decreased i n p a r a l l e l  ( F i g s . 4,  19  and  as s a l i n i t y  and  19 and 2 1 ) .  with  the s a l i n i t y  and d i s s o l v e d  and  c r e a s e d as t h e s a l i n i t y  d e c r e a s e d and t h e d i s s o l v e d  between  and d i s s o l v e d  The d i s s o l v e d  vanadium  w a t e r s i n November 1973 the  l a t e J u l y , b e l o w 200 m,  T h u s , t h e r e a p p e a r s t o be no s i m p l e  salinity  intrusions  o f new  oxygen  they i n oxygen  relationship  vanadium v a l u e s below s i l l  and J u l y  1974  may  have b e e n due  oxygen v a l u e s .  The  low  to these  t h u s h a v e been t h e r e s u l t o f i t s p r e c i p i t a t i o n from anoxic or s u l p h i d e c o n t a i n i n g  p h i d e phases under the c o n d i t i o n s with  ferrous  that occur  intruor co-  waters.  A l t h o u g h v a n a d i u m w o u l d n o t be e x p e c t e d t o f o r m i n s o l u b l e  precipitation  to  b o t t o m w a t e r e v i d e n c e d by t h e s i m u l t a n e o u s  d i s s o l v e d vanadium c o n c e n t r a t i o n s observed p r i o r  precipitation  depth.  i n c r e a s e s observed i n the bottom  i n c r e a s e s i n d e n s i t y and d i s s o l v e d  s i o n s may  Then  t h e d i s s o l v e d v a n a d i u m v a l u e s b e l o w 160 m  v a l u e s , b u t b e t w e e n May  increased.  vanadium  t o November i n p a r a l -  f r o m November t o J a n u a r y , t h e y i n c r e a s e d  dissolved  normally  n e g a t i v e d e v i a t i o n s from t h e t r e n d o b s e r v e d above  depth ( F i g . 23).  with  ( F i g . 7 ) , however,  depth, the d i s s o l v e d vanadium v a l u e s  values generally lel  surface  sul-  i n sea w a t e r , co-  sulphide i s evidently  possible  39  Figure  23.  V e r t i c a l p r o f i l e o f ( a ) s a l i n i t y (S°/oo) and ( b ) d i s s o l v e d v a n a d i u m ( p g / 1 ) • a t S t a t i o n 4 d u r i n g J a n . 1974. S o l i d and dashed curves i n F i g . 23(b) r e p r e s e n t p r e d i c t e d and o b s e r v e d d i s s o l v e d v a n a d i u m values respectively. Dots r e p r e s e n t sampling p o i n t s .  40 ( K r a u s k o p f , 1956).  F u r t h e r m o r e , under  q u e v a l e n t vanadium state  i n which  may  i t may  anoxic conditions  be r e d u c e d t o a q u a d r i - o r precipitate  The  d a t a o f Evans  (1958) show t h a t p e n t a v a l e n t v a n a d i u m , exist  as t h e 4 ^ 2 ~ V  reduced  The  7.5  t  h  e  p H  a  n  9  2  o f  s  e  2 4  " + 9H  + 8e~  +  of Krauskopf  a  where  a  t  e  r  5  would  i n sulphide  the redox ;  V(IV)  2  ^°4  (1956) i n d i c a t e  was  readily  o x i d e s and The  that,  =  3  at the  vana-  species  experimentally  that  iron  plankton.  fact  that dissolved  b o t t o m w a t e r s had  vanadium  values continued to  January, a f t e r  the i n t r u s i o n  a p p a r e n t l y c e a s e d , m i g h t be r e l a t e d  i n the newly oxygenated  biogenous m a t e r i a l , under  10  f r o m s e a w a t e r by b o t h h y d r o u s  i n c r e a s e b e t w e e n November and  release  bearing  as t h e h y d r o x i d e s  h o w e v e r , he d e m o n s t r a t e d adsorbed  be  half-reaction  /.[HS~]  be u n a b l e t o p r e c i p i t a t e  o r vCOH)^;  Garrels  should predominantly w  state  readily  and  c o n c e n t r a t i o n s p r e s e n t i n sea water, the reduced  V0(0H)  bottom w a t e r s from  anoxic conditions.  H o w e v e r , s u c h an  a s was  molybdenum i n S a a n i c h I n l e t  apparently  ( B e r r a n g and  precipitation  o f vanadium  quent r e l e a s e  at the sediment-water  to January, v e r y h i g h suspended  formed have  found i n the case of Grill,  interface  1974), t o a c o i t s subse-  following  o f t h e manganese o x i d e  a m e c h a n i s m i s s u g g e s t e d by t h e f a c t  to i t s  increase could  w i t h manganese o x i d e s , and  ment and r e d u c t i v e d i s s o l u t i o n  of  decomposing  o r some r e d u c e d o r s u l p h i d e p h a s e  a l s o been i n p a r t due,  Such  e  the q u a d r i v a l e n t  which r e s u l t would  new  r  which  upon e q u i l i b r a t i o n w i t h  + 4H 0 = S 0  calculations  dium  i o n  to at l e a s t  w a t e r s a t pH HS~  0  tervalent  o r be a d s o r b e d more  than i n the q u i n q u e v a l e n t s t a t e .  quin-  that,  from  settle-  carrier. September  manganese c o n c e n t r a t i o n s  were  41 found  throughout  ( B e r r a n g and resulted tive  Grill,  from  By  1974),  ( F i g . 12).  this  the oxygenation  precipitation  accumulate  had  the deep w a t e r  As  shown  elsewhere.  s u s p e n d e d manganese a p p a r e n t l y  o f the deep w a t e r s  and  the o x i d a -  o f t h e l a r g e amounts o f d i s s o l v e d M n ( I I )  which  there during anoxic periods.  t h e end  decreased  of January,  after  the d i s s o l v e d oxygen  t o a b o u t 0.27  ml/1,  s u s p e n d e d manganese  a l s o decreased,  e i t h e r due  values  to the e x h a u s t i o n of the supply  d i s s o l v e d manganese o r the d e c r e a s e concentration.  content  i n the d i s s o l v e d  W h a t e v e r t h e c a s e , due  ganese oxides t h a t s e t t l e d  onto  of  oxygen  to s o l u t i o n of  t h e man-  the sediment s u r f a c e , d i s s o l v e d  manganese v a l u e s e v e n t u a l l y w o u l d have t o i n c r e a s e a g a i n throughout In  t h e d e e p and  April,  ( a b o v e 15 }jg/l)  3 and  175  ( 1 9 7 1 ) and of  185  a p p e a r e d b e t w e e n 170  m at s t a t i o n 4  Berrang  and  Grill  suspended manganese j u s t  genated  and  Saanich  Inlet,  waters.  a l a y e r w i t h h i g h s u s p e n d e d manganese  tions  and  bottom  anoxic waters and  ( F i g . 14).  (1974) noted  high  water and  this  s i n k back  thin  m  the Black  ( F i g . 15).  oxy-  Sea  and  manganese t h a t i s b e i n g  i n t o the oxygen  Then,  deficient  thus r e s t r i c t i n g  the  to a t h i n mid-depth l a y e r .  l a y e r of h i g h suspended  s t r e t c h e d c o n t i n u o u s l y from  150  Brewer  accumulations  the oxygen d e f i c i e n t bottom w a t e r s .  they undergo r e d u c t i v e s o l u t i o n ,  of J u l y ,  station  t h e s e c o n c e n t r a t i o n maxima t o  s u s p e n d e d manganese v a l u e s  t h e end  m at  S p e n c e r and  similar  i n , respectively,  attributed  these oxide p a r t i c l e s waters,  210  above the i n t e r f a c e between  o x i d a t i v e p r e c i p i t a t i o n of the d i s s o l v e d mixed upwards from  and  concentra-  stations  By  manganese  1 to 4 between  100  as  42 Laboratory  studies (Krauskopf,  manganese o x i d e s w i l l manganese o x i d e s scavenging it  adsorb  w o u l d be  expected  show t h a t  hydrous  vanadium from sea water.  precipitated  significant  1956)  i n Saanich  Inlet  If  are i n  the  fact  amounts o f vanadium from sea w a t e r ,  t h a t where t h e r e a r e  ganese v a l u e s , t h e r e should  a l s o be  high  then  h i g h s u s p e n d e d mansuspended  vanadium  values. F i g u r e s 8 and when s u s p e n d e d Mn  12  indicate  t h a t from September t o December,  v a l u e s were a t t h e i r  highest,  vanadium c o n c e n t r a t i o n s were a l s o m a x i m a l .  suspended  Moreover, the  m i d - d e p t h l a y e r s o f h i g h s u s p e n d e d manganese w a t e r f o u n d April  and  July  ( F i g u r e s 14  suspended vanadium v a l u e s t h e r e i s an a c c u m u l a t i o n be 24,  a corresponding  and  at s t a t i o n s  parallel If  the J u l y  p o i n t s may  be  12).  1 and  profiles  of  the  high  T h u s , v/here  two  tends  to  Figure  suspended  2 in July, better illustrates  the  close  distributions. are p l o t t e d  s u s p e n d e d manganese v a l u e s  fitted  in  of suspended vanadium.  suspended vanadium v a l u e s  the corresponding  t o have  of suspended manganese, t h e r e  accumulation  between t h e i r  a l s o tended  ( F i g u r e s 11 and  w h i c h shows t h e v e r t i c a l  metals  15)  thin  ( F i g . 25)  roughly with a s t r a i g h t  v a n a d i u m t o manganese w e i g h t  r a t i o averaging  e t a l . , , (1968) found  weight  V t o Mn  ratios  against  line 2.1  the  indicating _3  x 10 -4  .  o f 4 x 10  a  Grill  and  -4 6  x  10  i n manganese n o d u l e s  Sinhaseni nodules  (1958) found  t o be  6.5  V t o Mn  x 10~ , 4  from J e r v i s weight  Inlet.  ratios  w h i l e Pachadzhanov  Riley  in Pacific  and  Ocean  ( e t a l . , 1963) _3  found  the r a t i o  i n I n d i a n Ocean n o d u l e s  t o be  4.7  x 10  .  vanadium i s a p p a r e n t l y a s s o c i a t e d w i t h s u s p e n d e d manganese  Thus, oxide  43  Suspended 0  10  Suspended  Suspended  F i g u r e 24.  Manganese 2c  Manganese  Vanadium  ji g/i 3 0  ug/l  ng/1  V e r t i c a l p r o f i l e s o f suspended vanadium ( n g / 1 ) and s u s p e n d e d manganese ( u g / 1 ) at ( a ) S t a t i o n 1 and (b) S t a t i o n 2 i n J u l y 1974. S o l i d and dashed c u r v e s i n d i c a t e suspended vanadium and suspended manganese r e s p e c t i v e l y .  44  Figure 25.  P l o t of suspended vanadium (ng/1) a g a i n s t suspended manganese (ug/1) d u r i n g J u l y 1974.  45 particles is  i n Saanich  Inlet  presumably adsorbed  by  to roughly  the  manganese o x i d e s  same e x t e n t  that i t  i n m a r i n e manganese  nodules. The  s l o p e , i n t e r c e p t and  s u s p e n d e d v a n a d i u m and cruise  is listed  correlation  manganese r e g r e s s i o n c u r v e  i n Table  73/35 73/46 74/1-A 74/15 74/26-A These data  Date  Slope x 10~  S e p t . 1973 Nov. 1973 J a n . 1974 A p r i l 1974 J u l y 1974  5.79 11.80 - 0.11 0.20 2.10  indicate  of  1973  and  July  t h a t the  r e l a t i o n between the with  and  170 The  and V:Mn  regression those  210  intercept,  b e t w e e n 175 4  Willis  No. o f Samples  +0.45 +0.94 -0.10 +0.10 +0.89  7 8 30 33 34 between  i n the  h o w e v e r , t o be i n January  and  185  autumn  no or  corApril,  manga-  m at s t a t i o n  as d e r i v e d f r o m t h e s l o p e s o f  and  3  ( F i g . 14).  Ahrens  the  a much g r e a t e r s p r e a d (1962) f o r o c e a n i c  Moreover, the r e g r e s s i o n l i n e s e x h i b i t  than  mangaa  positive  i m p l y i n g t h a t t h e r e i s some f o r m o f s u s p e n d e d  Variation  account  Corr. Coeff.  l a y e r of h i g h suspended  (Table V I ) , e x h i b i t  dium which i s not oxides.  thin  ratios,  r e p o r t e d by  f o r each  strongest correlations  suspended metals  m at s t a t i o n  lines  nese nodules.  may  two  in April  weight  15.3 0.8 23.9 16.9 15.3  There appears,  the e x c e p t i o n of the  nese water found  Intercept -  manganese v a l u e s o c c u r r e d  1974.  the  VI  3  s u s p e n d e d v a n a d i u m and  of  VI. Table  Cruise  coefficient  vana-  a s s o c i a t e d w i t h t h e s u s p e n d e d manganese in this  f o r some o f t h e  non-manganese a s s o c i a t e d v a n a d i u m s c a t t e r about the r e g r e s s i o n  lines.  46 Krauskopf  (1956)  found t h a t vanadium  o x i d e s e v e n more s t r o n g l y his  in particular,  explain  the f a c t  suspended Inlet.  iron  HC1 As  suspended  vanadium  leaching  profile.  depth, dissolved  o b s e r v e d above s i l l d i s s o l v e d vanadium  depth  by  nega-  In agreement w i t h  this,  vanadium  or  a d s o r p t i o n by  operative for this  correlations of  account f o r the  o t h e r p r o c e s s e s , such water, anoxic processes  m i n e r a l s o r o r g a n i c m a t t e r must  anomaly t o p e r s i s t  summary, t h e d i s s o l v e d i n f l u e n c e d by  generally  s i n c e t h e manganese o x i d e s must  i n t r u s i o n o f low d i s s o l v e d silicate  result  values are  by m a n g a n e s e o x i d e s may  as'  vanadium  t a k e up v a n a d i u m  ted  waters found at mid-depth  and  N o d d a c k , 1939)  be  t h r o u g h o u t the deep w a t e r s . distribution  several factors.  may  Living  i n Saanich organisms  i n t h e s u r f a c e w a t e r s o r t h e v/eakly oxygena( B r o o k s and  and a f t e r d e a t h , may  or carry  appear  not  from the samples  While adsorption  vanadium,  particles  the  i r o n o x i d e s may  by t h e s a l i n i t y  ultimately dissolve releasing  t h r o u g h decay  might  in a  vanadium  ( F i g . 23).  n e g a t i v e anomaly a t mid-depths,  I n l e t , m a y be  This  i s a d s o r b e d o n t o t h e manganese  lower than the v a l u e s i n d i c a t e d  In  study.  v a l u e s found i n Saanich  i t m i g h t be e x p e c t e d t h a t t h i s w o u l d  the s i l l  conditions  procedure.  anomaly i n i t s v e r t i c a l  below  iron  However,  found between  form of i r o n e x t r a c t e d  the d i s s o l v e d vanadium  oxides, tive  from those found i n t h i s  I t s h o u l d be n o t e d , h o w e v e r , t h a t  have been the o n l y the  from n a t u r a l  t h a t no r e l a t i o n s h i p was  and  adsorbed onto  t h a n o n t o manganese o x i d e s .  experimental conditions differed  and,  was  release  i t to the sediment.  t o adsorb vanadium  Rumsby, 1 9 6 5 ;  Noddack  i t to the  water  Manganese o x i d e  at mid-depths,  and  on  47  sinking, carry  the vanadium to the deeper waters where i t  presumably i s r e l e a s e d oxide c a r r i e r . and that  by r e d u c t i v e  d i s s o l u t i o n of the  However, c o r r e l a t i o n s between d i s s o l v e d  s a l i n i t y observed i n the waters above s i l l there  depth.  i s a net  Such l o s s e s may  sulphide,  reduction  vanadium  suggest  l o s s of vanadium from the waters below be  p r e c i p i t a t i o n with d e t r i t a l ferrous  depth  manganese  due  to i t s a d s o r p t i o n  s i l i c a t e or o r g a n i c  by  co-  particles,  e i t h e r as p e n t a v a l e n t vanadium or,  under anoxic c o n d i t i o n s ,  and  sill  or  following  i n some lower o x i d a t i o n  state.  48 BIBLIOGRAPHY A n d e r s o n , J . J . , and D e v o l , A.H., 1 9 7 3 . "Deep w a t e r r e n e w a l i n S a a n i c h I n l e t , an i n t e r m i t t e n t l y a n o x i c b a s i n " . E s t u a r i n e and C o a s t a l M a r i n e S c i e n c e , _1, 1-10. Berrang, P.G., 1 9 7 2 . "The e f f e c t o f manganese o x i d e s c a v e n g i n g on t h e d i s t r i b u t i o n o f molybdenum i n Saanich I n l e t , B r i t i s h Columbia". M.Sc. t h e s i s , U n i v e r s i t y o f B.C. B e r r a n g , P.G., and G r i l l , E.V., 1 9 7 4 . "The e f f e c t o f m a n g a n e s e o x i d e s c a v e n g i n g on molybdenum i n S a a n i c h I n l e t , B r i t i s h Columbia". M a r i n e C h e m i s t r y , 2, 125-148. B l a c k , W.A.P., and M i t c h e l l , R.L., 1 9 5 2 . "Trace elements i n t h e common b r o w n a l g a e and i n s e a w a t e r " . J . Mar. B i o l . A s s o c . U.K., 3_0, 5 7 5 - 5 8 4 . B r o o k s , R.R., and Rumsby, M.G., 1965. "The b i o g e o c h e m i s t r y o f t r a c e e l e m e n t u p t a k e by some New Z e a l a n d bivalves". L i m n o l . O c e a n . , _10, 5 2 1 - 5 2 7 . C a r r i t , D.E., and C a r p e n t e r , J . H . , 1 9 6 6 . " C o m p a r i s o n and e v a l u a t i o n of c u r r e n t l y employed m o d i f i c a t i o n s of the W i n k l e r method f o r d e t e r m i n i n g d i s s o l v e d o x y g e n i n sea w a t e r " . J . M a r i n e Res., 24, 286-318. C h a n , K.M., and R i l e y , J . P . , 1 9 6 6 . "The d e t e r m i n a t i o n o f v a n a d i u m i n s e a and n a t u r a l w a t e r s , b i o l o g i c a l m a t e r i a l s and s i l i c a t e s e d i m e n t s and r o c k s " . Analyt i c a C h i m . A c t a , 34, 3 3 7 - 3 4 5 . C h a u , Y.K., and C h a n , K., 1 9 7 0 . "Complex e x t r a c t i o n o f vanadium f o r atomic a b s o r p t i o n s p e c t r o s c o p y . Determ i n a t i o n of microgram q u a n t i t i e s of vanadium i n l a k e waters". A n a l y t i c a Chim. A c t a , 50, 201-207. C r u m p - W i e s n e r , H . J . , and P u r d y , W.C., 1969. vanadium i n t o i s o b u t y l methyl ketone". 124-129.  " E x t r a c t i o n of T a l a n t a , 16,  E v a n s , H.T., and G a r r e l s , R.M., 1 9 5 8 . "Thermodynamic e q u i l i b r i u m o f vanadium i n aqueous systems as a p p l i e d to t h e i n t e r p r e t a t i o n o f t h e C o l o r a d o P l a t e a u o r e deposits". G e o c h i m . C o s m o c h i m . A c t a , 15_, 1 3 1 - 1 4 9 . F i s h m a n , M.J., and S k o u g s t a d , M.W., 1964. "Catalytic d e t e r m i n a t i o n o f vanadium i n water". A n a l . Chem., 3jS, 1643-1646. G r i l l , E.V., M u r r a y , J.W. and M a c D o n a l d , R.D., 1968. " T o d o r o k i t e i n manganese n o d u l e s from a B r i t i s h Columbia f j o r d " . N a t u r e , 219, 358-359.  49 13.  G r o s s , M.G., 1967. " C o n c e n t r a t i o n s of minor elements i n diatomaceous sediments of a stagnant f j o r d " . Publ. Amer. A s s . A d v a n . S c i . , J 3 3 , 2 7 3 - 2 8 2 .  14.  G u c l u e r , S.M., and G r o s s , M.G., 1964. "Recent marine sediments i n Saanich I n l e t , a stagnant marine b a s i n " . L i m n o l . O c e a n o g . _9, 3 5 9 - 3 7 6 .  15.  H e r l i n g v e a u x , R.H., 1962. "Oceanography of S a a n i c h I n l e t . i n Vancouver I s l a n d , B r i t i s h Columbia". J . F i s h . Res. Bd. C a n a d a , 19 ( 1 ) , 4 3 9 - 4 4 8 .  16.  K i r i y a m a , T., and K u r o d a , R., 1972. "A c o m b i n e d i o n exchange - s p e c t r o p h o t o m e t r i c d e t e r m i n a t i o n of vanad i u m i n s e a and n a t u r a l w a t e r s " . A n a l y t i c a Chim. A c t a , 62, 4 6 4 - 4 6 7 .  17.  K r a u s k o p f , K.B., 1956. " F a c t o r s c o n t r o l l i n g the t i o n of t h i r t e e n r a r e metals i n sea water". C o s m o c h i m . A c t a , _9, 1-32.  18.  L a i t i n e n , H.A., 1960. C h e m i c a l A n a l y s i s - An A d v a n c e d and R e f e r e n c e . M c G r a w - H i l l Book Co., I n c . , N.Y.  19.  M o r r i s , A.W., 1975. " D i s s o l v e d m o l y b d e n u m and v a n a d i u m i n the n o r t h e a s t A t l a n t i c Ocean". Deep Sea R e s . , 22, 49-54.  20.  M u l l e r , G., 1957. "The H C l - s o l u b l e i r o n , manganese and c o p p e r c o n t e n t s o f r e c e n t I n d i a n Ocean S e d i m e n t s o f f the e a s t e r n c o a s t of Somalia". Mineralium Deposita, 2, 54-61.  21.  M u z z a r e l l i , R.A.A., 1 9 7 1 . " S e l e c t i v e c o l l e c t i o n of t r a c e m e t a l i o n s by p r e c i p i t a t i o n o f C h i t o s a n , and new d e r i v a t i v e s of C h i t o s a n " . A n a l y t i c a C h i m . A c t a , 54, 133-142.  22.  N o d d a c k , I . , and N o d d a c k , W., 1939. Schwermetalle i n Meerestieren". 32A ( 4 ) , 35 pp.  23.  Okabe, S., and M o r i n a g a , T., 1970. " D i s t r i b u t i o n of v a n a d i u m i n t h e K u r o s h i o and a d j a c e n t r e g i o n s " . P r o c e e d i n g s o f t h e s e c o n d CSK s y m p o s i u m , T o k y o , 97-106.  24.  O s t r o u m o v , E.A., and V o l k o v , I . I . , 1957. "The r e l a t i o n s h i p b e t w e e n p h o s p h o r u s , v a n a d i u m and o r g a n i c m a t t e r i n t h e B l a c k Sea d e p o s i t s " . G e o c h e m i s t r y I n t e r n a t i o n a l , 6_, 609-619.  25.  P a c h a d z h a n o v , D.N., and B a n d u r k i n , G.A., 1963. " D a t a on t h e g e o c h e m i s t r y o f manganese n o d u l e s f r o m t h e I n d i a n Ocean". G e o c h e m i s t r y I n t e r n a t i o n a l , 5_, 5 2 0 - 5 2 7 .  concentraGeochim. Text  "Die H a u f i g k e i t e n der Arkiu for Zoologi,  50 R i l e y , J . P . , and C h e s t e r , R., 1 9 7 1 . Introduction Marine Chemistry. Academic P r e s s , N.Y.  to  R i l e y , J . P . , and S i n h a s e n i , P., 1958. "Chemical composit i o n o f t h r e e manganese n o d u l e s f r o m the P a c i f i c Ocean". J . Mar. R e s . , 17, 4 6 6 - 4 8 2 . R i l e y , J . P . , and T a y l o r , D., 1 9 6 8 a . "Chelating resins for the c o n c e n t r a t i o n of t r a c e elements from sea water and t h e i r a n a l y t i c a l use i n c o n j u n c t i o n w i t h a t o m i c absorption spectroscopy". A n a l y t i c s C h i m . A c t a , 40, 479-485 . R i l e y , J . P . , and T a y l o r , D., 1 9 6 8 b . "The u s e o f c h e l a t i n g i o n e x c h a n g e i n t h e d e t e r m i n a t i o n o f molybdenum and vanadium i n sea w a t e r " . A n a l y t i c a Chim. A c t a , 41, 175-178. R i l e y , J . P . , and T a y l o r , D., 1972. "The c o n c e n t r a t i o n s o f cadmium, c o p p e r , i r o n , manganese, molybdenum, n i c k e l , v a n a d i u m and z i n c i n p a r t o f t h e t r o p i c a l n o r t h e a s t A t l a n t i c Ocean". Deep Sea R e s . , 19, 3 0 7 - 3 1 7 . S a n d e l l , E.B., 1965. C o l o r i m e t r i c Determination Metals. I n t e r s c i e n c e , N.Y.  of  Trace  S p e n c e r , D.W., and B r e w e r , P.G., 1971. " V e r t i c a l advection d i f f u s i o n and r e d o x p o t e n t i a l s as c o n t r o l s on t h e d i s t r i b u t i o n o f manganese and o t h e r t r a c e m e t a l s d i s s o l v e d i n the w a t e r s of the B l a c k Sea". J . Geop h y s i c a l R e s . , 76 ( 2 4 ) , 5 8 7 7 - 5 8 9 2 . S p e n c e r , D.W., B r e w e r , P.G., and S a c h s , P.L., 1972. " A s p e c t s of the d i s t r i b u t i o n of t r a c e element composit i o n of suspended m a t t e r i n the B l a c k Sea". Geochim. C o s m o c h i m . A c t a , 3_6, 7 1 - 8 6 . S t r i c k l a n d , J.D.H., and P a r s o n s , sea water a n a l y s i s " . B u l l . No. 6 7 , 311 p.  T.R., 1968. "A m a n u a l o f F i s h e r i e s Res. B o a r d Can.,  S u g a w a r a , K., and O k a b e , S., 1966. "Molybdenum and V a n a dium d e t e r m i n a t i o n of 'Umitaka-maru samples from her 1 9 6 2 - 6 3 and 1 9 6 3 - 6 4 c r u i s e s o f t h e I n t e r n a t i o n a l I n d i a n Ocean E x p e d i t i o n " . J . of the Tokyo U n i v e r s i t y o f F i s h e r i e s ( S p e c i a l E d i t i o n ) , _8, 1 6 5 - 1 7 1 . 1  V o l k o v , I . I . , and F o m i n a , L.S., 1974. " I n f l u e n c e of o r g a n i c m a t e r i a l and p r o c e s s e s o f s u l p h i d e f o r m a t i o n o n , d i s t r i b u t i o n o f some t r a c e e l e m e n t s i n d e e p w a t e r s e d i m e n t s of the B l a c k Sea". I n The B l a c k SeaG e o l o g y , C h e m i s t r y and B i o l o g y , Memoir 20, E d i t e d by E.T. Degens and D.A. Ross. The A m e r i c a n A s s o c . o f P e t r o l e u m G e o l o g i s t s . T u l s a , Oklahoma.  51 W a l d i c h u k , M., 1 9 5 7 . " P h y s i c a l O c e a n o g r a p h y o f t h e S t r a i t of G e o r g i a , B r i t i s h Columbia". J . F i s h e r i e s Res. B o a r d Canada., 14 ( 3 ) , 3 2 1 - 4 8 6 . W e l c h , R., a n d A l l a w a y , W.H., 1 9 7 2 . " V a n a d i u m d e t e r m i n a t i o n i n b i o l o g i c a l m a t e r i a l s a t nanogram l e v e l s by a c a t a l y t i c method". A n a l . Chem., 44 (9) , 1 6 4 4 - 1 6 4 7 . W i l l i s , J . P . , a n d A h r e n s , L.H., 1 9 6 2 . "Some I n v e s t i g a t i o n s on t h e c o m p o s i t i o n o f manganese n o d u l e s , w i t h p a r t i c u l a r reference to c e r t a i n trace elements". G e o c h i m . a n d C o s m o c h i m . A c t a , 26_, 7 5 1 - 7 6 4 .  APPENDIX  CRUISE Cruise  DATA Date  Station S a a - 1  73/35  ug/l  19.0  24.6  4.13  1.34  13.6  1.82  4.37  1.10  18.4  0.6 3  3.84  V ug/l  21.51  6.75  1.86  30.994  24.07  0.16  1.46  8.79  31.140  24.16  0.07  1.68  155  8.80  31.147  24.16  0.06  180  8.88  31.182  24.18  0.02  TEMP °C  SALINITY %o  1  15.03  29.170  100  8.63  140  DENSITY CT t  S e p t . 5, 1 9 7 3 Fe ug/l  OXYGEN ml /l  DEPTH rr,  Collected  u  ng  CRUISE Cruise DFPTH m 1  Station  73/35 TEMP o C_  DATA  SALINITY oZoo  Date  Saa-3  DENSITY 0"t  OXYGEN ml /1 11.23  Collected  S e p t . 5, 1 9 7 3  V ug/l  V ng/l  Mn ug/l  6.65  d  P  P  Fe  P  14.80  29.372  21.71  100  8.71  30.992  24.06  0.47  1.10  18.0  140  8.92  -  -  0.79  1.98  145_ .  15.2  8.62  155  8.92  31.162  24.16  ' 0.52  1.56  537  28.5  8.03  180  8.92  31.191  24.18  0.36  1.29  -  36.2  7.21  40.0  36.5  6.92  5.71  CRUISE Cruise  Station  73/46  Date  Saa-3 ,  n  DEPTH m  DATA  .-iramnnmrn  Collected  Nov. 1 5 ,  nimnim  IIIII  1973  „i.„...».. .i».i.^..m»»-!mji kng3> Tl  TEMP °C  SALINITY %o  DENSITY CT  OXYGEN ml/l  V ug/l  V* ng/l  1  9.09  29.622  22.93  5.13  2.34  —  —  —  10  9.25  29.659  22.94  4.72  2.45  -  -  -  25  9.44  30.111  23.26  4.29  -  • -  -  -  50  9.10  30.292  23.45  ' 4.22  -  -  -  -  75  8.90  30.552  23.68  4.19  2.64  26.4  1.91  20.3  100  9.09  30.908  23.93  2.24  2.26  36.0  4.03  24.0  125  9.00  31.181  24.16  0.40  2.19  66.0  9.20  14.6  140  8.95  31.223  24.20  0.42  1.77  179  10.6  6.47  155  8.93  31.242  24.22  0.66  1.77  221-  10.4 •  6.87.  175  8.97  31.287  24.25  1.11  1.74  173  15.2  6.30  200  9.00  31.312  24.26  1.03  1.24  120  19.6  2.98  220  8.93  31.327  24.28  0.73  0.64  604  48.8  3.55  t  d  Mn ug/l  l  P  Fe ug/l  un Ln  CRUISE  TEMP °C  Date  Station S a a - 1  Cruise 7 4 / 1 DEPTH m  DATA  SALINITY 7croo  DENSITY CT-  OXYGEN ml /l  7.55  V ug/l  Collected  J a n . 9,  P  u  2.39  1974  ng/l  ug/l  Fe ug/l  —  —  —  -  -  -  -  -  -  -  -  0  2.80  23.084  -'  10  8.15  29.168  22.71  25  8.39  29.463  22.91  4.87  50  8.99  29.725  23.03  4.33  -  75  9.05  30.027  23.25  3.73  2.45  100  9.01  30.805  23.86  1.15  2.67  15.6  125  8.91  31.242  24.22  0.26  2.40  17.2  14.4  6.26  140  8.90  31.207  24.19  0.26  21.5  20.6-  5.76  155  8.97  31.221  24.19  0.26  1.83  21.9  22.9  6.85  170  8.99  31.253  24.22  0.25  2.08  15.7  27.3  7.50  175  8.89  31.280  24.25  0.26  1.83  13.1  38.2  7.74  ; 4.93  -  ' 2.09  9.90  1.04 1.96  17.8 6.16  cn  CRUISE Cruise DEPTH  Station  74/1  DATA Date  Saa-2  V  d  Collected  Jan.  V  Mn ug/l  9, 1975 Fe ug/l  TEMP °C  SALINITY % o  DENSITY CT  OXYGEN ml/1  ug/l  0  3.50  24.185  19.28  7.55  2.04  10  7.97  29.093  22.68  5.09  1.38  25  8.26  29.473  22.94  4.91  50  8.99  29.698  23.00  ' 5.07  75  -  29.875  -  5.18  2.18  25.6  1.58  29.4  100  4.04  30.860  24.52  1.19  2.46  23.2  2.34  16.4  125  8; 97  31.145  24. 1 3  0.28  2.26  43.0  . 5.30  12.1  140  8.96  31.217  24.19  0.37  i.9'2  17.9  6.13  12.1  155  8.97.  31.237  24.21  0.36  1.92  21.1  8.32.  170  3.95  31.252  24.22  0.35  1.98  24'. 7  15.5  7.83  180  8.98  31.275  24.23  0.58  1.78  27.7  18.2  5.10  190  8.90  31.279  24.25  0.52  2.06  36.5  20.2  7.17  m  t  P  ng /l  P  P  7.87  CRUISE Cruise 74/1  DATA  Station  Date  Saa-3  Collected  1974  TEMP °C  SALINITY %o  DENSITY (T  OXYGEN ml/1  V ug/l  0  2.70  24,435  -  8.07  2.34  -  10  7.65  28.933  22.60  5.72  2.10  —  25  8.24  29.423  22.90  4.91  50  9.00  29.660  22.97  ' 4.96  75  8.49  30.013  23.32 '  4.76  2.69  59.5  1.76  27.8  100  DMB  30.767  -  1.73  2.24  24.5  1.51  17.3  125  8.99  31.139  24.13  0.38  1.32  17.1  :4.54  15.1  140  8.98  31.194  24.17  0.38  2.72  19.7  4.23  8.93  155  9.01  31.236  24.20  0.50  1.66  18.0  7.0.8  8.87  175  8.98  31.264  24.23  0.67  1.34  15.8  10.2  6.83  200  9.01  31.286  24.24  0.27  1.06  27.7  13.8  5.43  210  8.92  31.296  24.26  0.27  0.99  12.8  14.6  5.51  DEPTH m  DNB  t  d  V ng/l  J a n . 10,  P  Mn ug/l  Fe ug/l  -  -  P  P  ;  = Did not break. 00  CRUISE Cruise  Station  74/1  DATA Date  Saa-4  Collected  J a n . 8, Mn ug/l  1974 Fe*' ug/l  OXYGEN ml/1  V ug/l  -  7.57  1.60  28.907  22.59  5.78  1.63  7.96  29.236  22.79  5.23  1.97  50  9.00  29.458  22.82  5.09  2.17  75  8.87  30.229  23.44  3.67  2.42  13.3  1.04  28.8  100  DNB  30.871  -  1.29  2.06  16.6  0.97  26.4  125  9..01  31.156  24.14  0.27  2.14  15.5  3.02  17.7  140  9.00  NST  -  NST  31.6  4.25  16.6  155  9.03  31.229  24.19  0.42  1.44  25.3  ' 8.15  15.4  170  9.05  31.254  24.21  0.49  1.55  23.7  16.5  15.6  175  8.97  31.269  24.23  0.55  1.21  27.4  19.3  26.4  DEPTH m  TEMP °C  SALINITY %o  0  3.40  24.706  10  7.55  25  DNB  = Did not break.  NST  = No s a m p l e  DENSITY OV  u  ng/l  taken. CD  CRUISE Cruise DEPTH  TEMP  °c  m  Station  74/1 SALINITY % o  DENSITY  ay  DATA Date  Saa-5  ml/1  ug/l  5.30  27.163  21.48  6.2 2  1.42  5  7.69  29.061  22.69  5.49  1.97  20  9.00  29.162  22.59  5.48  3.17  25  8.24  33.409?  26.01?  ' 4.83  2.64  70  DNB  30.187  -  3.78  1.97  9.01  30.825  23.88  1.49  2.11  DNB  .  Jan.  9, 1 9 7 4  OXYGEN  0  95  Collected  ng/l  ug/l  ug/l  = Did not break.  o  CRUISE Cru ise  Station  74/1  DATA Date  Saa-6  v  Collected  J a n . 9, 1975- . Mn ug/l  Fe ug/l  ug/l  V ng/l  5.72  1.08  -  -  -  23.04  5.72  1.17  -  -  -  29.652  23.20  5.76  1.82  -  -  -  8.99  29.745  23.04  " 5.76  1.61  -  -  -  75  7.46  29.876  23.36  5.69  1.89  -  -  -  80  9.01  29.880  23.14  5.72  1.33  -  -  -  TEMP °C  SALINITY  DENSITY  loo  °"t  0  6.90  29.414  -  10  7.32  29.443  25  7.35  50  DEPTH m  OXYGEN ml l\  d  P  P  P  CRUISE Station  Cruise 7 4 / 1 5 DEPTH rn  TEMP °C  DATA  SALINITY  7,  DENSITY  OXYGEN ml /l  co  Date  Saa-1 V ug/l d  Collected V ng/l P  April Mn ug/l  P  30,  1974 Fe ' ug P  0.  11.20  25.598  19.48  6.81  1.77  —  —  —  10.  8.74  28.616  22.20  6.51  2.34  -  -  -  25  7.79  29.025  22.65  5.95  2.54  -  -  -  50  7.50  29.378  22.96  5.22  2.34  -  -  -  75  7.59  29.732  23.23  4.68  2.46  25.4  1.43  100  8.14  30.297  23.59  2.63  2.22  44.0  3.33  7.68  125  8.92  31.136  24.14  0.18  1.76  39.8  7.50  7.58  140  ' 8.96  31.214  24.19  0.26  2.07  . 51.6  6.74  8.75  155  8.99  31.226  24.20  0.11  1.95  19.4  12.1 •  7.80  170  8.99  31.258  24.22  0.24  2.20  5.5  9.04  7.73  180  8.96  31.268  24.23  0.22  1.95  23.5  9.60  8.25  185  8.98  31.264  24.23  0.28  1.66  _  - 11..5  _  cn ro  CRUISE Cruise  DATA  Station  74/15  Date  Saa-2  Collected  .„.-„ . ., TrT  DEPTH m  TEMP °C  SALINITY °/oo  DENSITY CT  OXYGEN ml/1  V ug/l  V ng/l  t  d  ,. .....  P  A p r i l '30, 1974 ,.-„i,,.i.i. J  : ~  . ....... .  Mn ug/i  Fe ug/l  P  P  i0  11.20  26.985  20.55  6.90  2.22  -  —  —  10  8.56  28.708  22.30  6.48  1.94  -  -  -  25  7.75  29.097  22.71  5.91  2.20  -  -  -  50  7.58  33.314?  26.03?  5.48  2.18  -  -  -  75  7.53  29.828  23.31  5.00  2.00  16.7  13.3  8.69  100 .  7.97  30.252  23.58  3.41  1.83  ND  '1.22  7.07  125  8.91  31.047  24.07  0.36  1.64  ND  2.18  140  8.96  31.136  24.13  0.25  1.76  . 46.8  155  8'. 96  31.227  24.20  0.19  1.62  0.5  6.66  8.42  175  9.00  31.256  24.22  0.18  1.64  5'. 4  6.53  8.69  200  9.00  31.267  24.22  0.12  1.55  24.2  5.55  5.75  210  8.95  31.264  24.23  0.21  1.55  ND  5.28  8.19  220  9.00  31.270  24.23  0.18  1.57  28.5  1.00  9.84  ND  = Not d e t e c t e d .  10.5  12.7 10. 7  to  CRUISE Cruise a n . nun i II mn  mm  DEPTH m  DATA  Station  74/15  i i  "  TEMP °C  SALINITY %o  Date  Saa-3 -  nm.—»  DENSITY CT  OXYGEN ml/1  V ug/l  t  d  Collected  April  .  30, 1  V ng/l P  Mn ug/l  P  1974  «L**ut,M.^jaamm  Fe ug/l  P  0  10.80  .28.047  21.44  6.43  2.40  —  —  —  10  8.09  28.900  22.51  6.16  2.18  -  -  -  25  7.75  29.102  22.71  5.66  2.46  -.  -  -  50  7.38  29.437  23.03  5.54  2.78  -  -  -  75  7.75  29.922  23.36 •  5.27  2.69  22.0  1.02  13.8  100  8.15  30.458  23.72  2.34  2.24  7.0  1.30  15.8  125  8.93  31.091  24.10  0.21  1.32  25.6  4.73  140  8.98  31.210  24.18  0.20  ND  155  8.97  31.239  24.21  0.20  2.72  175  9.01  31.260  24.22  0.20  200  9.02  31.280  24.23  210  8.96  31.281  230  9.03  31.287  6.93  22.2  8.06  28.2  10.7.  8.99  1.66  30.4  19.8  8.18  0.16  1.34  25.3  29.0  ' 7.58  24.24  0.08  1.06  16.3  18.2  8.26  24.24  0.02  0.99  13.8  4.95? •  1.74  9.18  CRUISE Station  Cruise 7 4 / 1 5  Date  Saa-4 V ug/l  May 1, Mn ug/l  1974 Fe" ug/l  SALINITY  8.70  28.397  22.03  6.65 "  0.76  —  —  10  8.82  28.613  22.18  6.43  1.82  -  -  -  25  7.83  29.063  22.67  5.77  1.64  -  -  -  50  7.87  29.458  22.98  '5.76  1.94  -  -  75  7.87  30.018  23.41  5.04  1.76  7.7  1.05  21.3  100  8.37  30.543  23.75  1.86  1.09  11.3  1.53  22.2  125  8.95  31.088  24.09  0.24  0.64  6.5  1.77  13.3  140  8.99  31.198  24.17  0.13  1.44  . 12.7  1.06  10.3  155  9.03  31.241  24.20  0.18  14.3  2.30  13.0  170  9.02  31.260  24.22  0.18  0.76  20.3  2.02  13.4  180  8.97  31.264  24.23  0.17  ND  7.8  195  9.01  31.270  24.23  0.26  0.53  22.5  0  -  oo  OXYGEN ml I \  Collected  TEMP °C  DEPTH m  DENSITY  DATA  u  ' 1.26  ng/l  19.9 3.76  13.5 10.2  CTl  cn  _CRU1SE Cruise  Station  74/15  DEPTH m  TEMP °C  0'  10.00  10  SALINITY %o  DATA Date  Saa-5  DENSITY (T t  OXYGEN ml/1  ug/l  26.811  20.61  6.67  1.85  8.06  28.902  22.52  6.11  2.17  25  7.95  29.053  22.65  5.81  2.52  50  8.05  29.295  22.83  ' 5.77  2.96  75  : 7.88  30.037  23.43  5.40  2.70  95  8.48  30.715  23.87  1.65  2.61  Collected  ng/l  April  ug/l  2 9 , 1974  Fe ug/l  cn cn  CRUISE DATA Cruise  DEPTH m  Station  74/15  TEMP °C  SALINITY %o  DENSITY CT t  Date  Saa-6  OXYGEN ml/1  V ug/l d  0  9.11  28.822  22.30  5.67  2.56  10  8.60  28.974  22.50  6.43  2.76  25  8.28  29.343  22.83  6.07  2.44  50  8.16  29.638  23.08  5.85  2.60  75  8.02  29.954  23.34 '  5.71  2.39  100  7.98  30.548  23.81  5.37  2.85  Collected A p r i l  V ng/l P  Mn ug/l  P  29, 1974  Fe ug/l  P  CTl -J  CRUISE Cruise DEPTH m  Station  74/26-A TEMP °C  DATA  SALINITY 7oo  DENSITY (T t  Date  Saa-1  Collected J u l y  OXYGEN ml/l  V ug/l  V ng/l  d  P  Mn ug/l  P  29,  1974 Fe ug/l  P  16.30  24.824  17.92  10.84.  2.02  -  —  —  10  16.53 .  26.865  19.43  8.44  2.30  -  -  -  25  11.5 7  28.360  21.55  5.30  2.13  -  -  -  50  8.82  29,391  22.79  3.50  2.02  -  -  -  75  8.37  30.506  23.73  0.94  1.73  20.3  4.38  5.68  100  8.64  30.906  24.00  0.46  1.48  69.5  28.0  6.34  125  8.82  31.096  24.12  0.22  1.62  59.7  37.2  5.93  140  8.90  31.154  24.15  0.11  1.59  . 68.7  27.0  8.38  155  8.92  31.193  24.18  0.10  1.65  26.4  6.86  9.69  17.0  8.94  31.220  24.20  0.08  1.78  25.3  7.17  8.98  180  8.97  31.229  24.20  0.02  .1.38  23.9  1.96  9.88  190  9.00  30.777  0.02  1.54  23.8  1.54  0  . 23.84  12.2  cn co  CRUISE Cruise DEPTH m  DATA  Station  74/26-A  Date  Saa-2  Collected  29,  V ug/l  17.76  11.69  2.48  —  —  —  26.457  -  10.71  2.60  -  -  -  SALINITY 7oo  DENSITY  17.20  24.862  cnt r  d  P  Mn ug/l  1974  OXYGEN ml l\  TEMP °C  V ng/l  July P  Fe ug/l  P  ffWitfmifti  0 10  -  25  11.07  28.334  21.62  5.10  3.11  -  -  50  8.78  29.286  22.71  3.77  2.78  -  -  75  8.41  30.601  23.79  1.50  2.79  17.6  1.20  4.37  100  8.53  30.883  24.00  1.35  2.55  27.6  6.57  5.41  125  8.79  31.073  24.11  0.71  2.64  38.7  140  8.85  31.144  24.15  0.16  3.14  155  8.92  31.202  24.19  0.21  2.71  175  8.97  31.247  24.21  0.20  200  8.99 •  31.256  24.22  210  8.98  31.257 31.269  220  15.23? .  •  -•  10.2  7.53  17.4  6.43  62.9  29.7 •  7.87  2.30  24.0  7.02  6.71  0.07  2.33  21.0  2.53  7.20  24.22  0.05  2.15  14.6  1.30  6.11  23.08  0.01  2.83  11.3  1.05  5.85  . 70.4  cn  CRUISE  Cruise DEPTH m  0  Station  74/26-A TEMP °C  -  SALINITY °/oo  DENSITY  0"^  DATA Date  Saa-3 OXYGEN ml  V  d  /1  ug/l  Collected  July  V  Mn  P  ng/l  P  ug/l  2 9 , 1974 Fe  P  ug/l  23.982  -  9.93  0.92  -  —  —  10  13.86  25.941  19.27  9.74  1.70  -  -  - •  25  12.15  28.312  21.42  4.18  2.16  -  -  -  50  9.03  29.265  22.66  ' 3.69  2.38  -  -  -  75  8.34  30.409  23.65  1.75  1.33  21.0  0.81  100  8.52  30.814  23.94  1.75  1.72  14.6  3.77  15.9  125  8.66  31.003  24.07  1.51  2.08  38.0  5.39  12.6  140  8.75  31.087  24.12  1.49  2.23  23.1  13.2  155  8.92  31.165  24.16  0.43  1.94  40.7  21.1 •  8.71  175  8.98  31.252  24.22  0.19  1.04  19.4  9.02  8.08  200  8.96  31.247  24.22  0.09  1.53  15.9  1.36  9.09  210  9.01  31.250  24.21  0.11  1.48  16.2  0.78  12.5  220  8.71  31.254  24.26  0.13  1.48  17.2  0.74'  12.5  7.97  14.7  -J  o  CRUISE  Cruise  74/26-A  Station  DATA Date  Saa-4 O X Y G E N  V  d  D E P T H  T E M P  S A L I N I T Y  DENSITY  m  ° C  % o  CTt  ml/ l  ug/l  15,80  '24.417  17.72  9.79  2.08  10  13.70  26.150  19.46  8.65  2.92  25.  11.15  28.239  21.53  • 4.79  3.14  50  8.34  29.252  22.75  3.89  75  8.35  30.389  23.64  100  8.56  30.829  125  8.66  140  0.  Collected  July  V  M n  P  n g / l  —  p  u g / l  —  30,  1974 F e  p  ug/l  -  -  3.25  -  1.57  2.78  16.1  1.50  13.2  23.95  1.95  2.47  10.5  3.49  20.6  31.013  24.08  1.73  1.84  26.5  6.82  13.7  8.77  31.104  24.13  0.87  2.34  . 44.1  155  8.94  31.203  24.18  0.12  2.22  28.9  11.4 •  170  8.95  31.227  24.20  0.09  2.08  33.0  8.42  9.81  180  8.99  31.233  24.20  2.10  18.1  3.64  9.50  195  9.00  31.248  24.21  1.69  13.8  0.56  • 0.01 0.02  -  -  12.67  9.98 10.9  10.1  M  Cruise DEPTH m  |>I  P ATA I  Station  74/26-A TEMP ° C  C R U I SE  ; U T  SALINITY % o  MII  Date  Saa-5  DENSITY OXYGEN <J^ m l / 1  Collected  July  V  M n  P  ng/l  2 9 , 1974 P  F e  P  ug/l ug/l  ^iaia^jBMMntinitMtwMBan MBHMMIBias t M n a n H M j a K B H t B a n H n n w  0  14.50  10  12.81  25  10.83  24.522 28.378  18.06 -  9.03  7.09  21.69  4 . 5 61.95  50  9.74 29.280  22.56 3.74  75  9.08 30.626  23.71  85  8.66 30.777  23.89 2 . 6 0  2.18  3 . 3 92.34 1.38  ro  CRUISE  Cruise  74/26-A  Station  D E P T H  T E M P  S A L I N I T Y  D E N S I T Y  m  ° C  % o  CTt  DATA  Date  Saa-S O X Y G E N  ml/1  8.86 "  1.46  0  14.80  23.937  17.55  10  . 13.41  25.039  18.66  7.69  1.78  25  11.25  28.122  21.42  5.31  2.37  50  9.72  29.389  22.65  3.81  2.31  75  9.22  30.536  23.62  4.23  1.68  90  8.83  31.303  24.28  3.48  1.56  •  Collected  July  29,  1974  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053269/manifest

Comment

Related Items