UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The feeding biology of tintinnid protozoa and some other inshore microzooplankton Blackbourn, David John 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A1 B59_3.pdf [ 13.18MB ]
Metadata
JSON: 831-1.0053248.json
JSON-LD: 831-1.0053248-ld.json
RDF/XML (Pretty): 831-1.0053248-rdf.xml
RDF/JSON: 831-1.0053248-rdf.json
Turtle: 831-1.0053248-turtle.txt
N-Triples: 831-1.0053248-rdf-ntriples.txt
Original Record: 831-1.0053248-source.json
Full Text
831-1.0053248-fulltext.txt
Citation
831-1.0053248.ris

Full Text

THE FEEDING BIOLOGY OF TINTINNID PROTOZOA AND SOME OTHER INSHORE MICROZOOPLANKTON  by David John Blackbourn  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n the Department o f Zoology and  I n s t i t u t e o f Oceanography  We a c c e p t t h i s t h e s i s as conforming  t o the r e q u i r e d  standard  THE UNIVERSITY OF BRITISH COLUMBIA September, 1974  >  In p r e s e n t i n g t h i s  thesis  in p a r t i a l  f u l f i l m e n t o f the requirements f o r  an advanced degree at the U n i v e r s i t y of B r i t i s h the L i b r a r y s h a l l I  make i t  freely available  f u r t h e r agree t h a t p e r m i s s i o n  for  Columbia,  I agree  r e f e r e n c e and  f o r e x t e n s i v e copying o f t h i s  that  study. thesis  f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s of  this  representatives. thesis  It  is understood that copying or p u b l i c a t i o n  f o r f i n a n c i a l gain s h a l l  written permission.  Department of  ^ O o C o G  The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada .  Date  Y  Columbia  not be allowed without my  i  ABSTRACT T i n t i n n i d s a r e among t h e l a r g e s t and most abundant o f t h e marine c i l l a t e microzooplankton but there i s very l i t t l e published information on t h e i r f e e d i n g r a t e s and a b i l i t i e s .  The f e e d i n g o f T i n t i n n o p s i s subacuta  (and to a l e s s e r e x t e n t , t h a t  of 12 o t h e r s p e c i e s ) was i n v e s t i g a t e d w i t h t h r e e methods 1) d i r e c t o b s e r v a t i o n 2) counts o f accumulated of t h e p a r t i c l e s  food c e l l s and 3) C o u l t e r Counts  i n the e x p e r i m e n t a l medium.  There was r e a s o n a b l e  quali-  t a t i v e agreement between the r e s u l t s o b t a i n e d by the t h r e e methods but q u a n t i t a t i v e agreement was poor.  Many of t h e r e s u l t s showed no s i g n i -  f i c a n t d i f f e r e n c e s due t o v e r y g r e a t v a r i a b i l i t y  i n the r e s u l t s f o r a  s i n g l e t i n t i n n i d s p e c i e s w i t h i n and between experiments.  Much of t h i s  v a r i a b i l i t y may be due to the methods used but i t a l s o r e f l e c t s t h e v a r i a b i l i t y of t i n t i n n i d s i n natural populations.  A wide v a r i e t y o f items was eaten by t i n t i n n i d s , i n c l u d i n g s m a l l e r t i n t i n n i d s ; and the maximum food s i z e can be r e l a t e d to t i n t i n n i d  cell  volume over a wide range b u t i s d i s s i m i l a r i n t i n t i n n i d s p e c i e s o f s i m i l a r c e l l s i z e . . S e v e r a l t i n t i n n i d s p e c i e s showed d i f f e r e n t i a l d a t i o n on v a r i o u s types o f l a b o r a t o r y p h y t o p l a n k t o n .  pre-  This d i f f e r e n t i a l  p r e d a t i o n was based upon the a b i l i t y o f the p r e d a t o r t o handle p r e y , or on p r e y s i z e o r p r e y type depending  upon the p a r t i c u l a r  tintinnid species.  'Negative' s e l e c t i o n o f some types o f l a b o r a t o r y p h y t o p l a n k t o n i n mixedprey samples was a l s o shown f o r some t i n t i n n i d s p e c i e s , p a r t i c u l a r l y T i n t i n n o p s i s subacuta on members o f t h e Cryptophyceae.  Feeding r a t e s measured w i t h t h e a c c u m u l a t i o n method were e q u i v a l e n t  ii to  0.65% m l / h r / t i n t i n n i d f o r T_. subacuta and u s u a l l y much l e s s .  Feeding  r a t e s f o r t h i s s p e c i e s measured w i t h the C o u l t e r Counter t e c h n i q u e ranged from 0.33 to 3.8% m l / h r / t i n t i n n i d .  Very l i t t l e  f e e d i n g was  observed  d i r e c t l y but f e e d i n g r a t e s e s t i m a t e d w i t h t h i s method were somewhat h i g h e r than those e s t i m a t e d f o r the same s p e c i e s from a c c u m u l a t i o n  experiments.  T i n t i n n i d s a p p a r e n t l y both consumed, and caused t h e p r o d u c t i o n of p a r t i c l e s d u r i n g experiments.  C o r r e l a t i o n s between f e e d i n g r a t e and 9  o t h e r e x p e r i m e n t a l v a r i a b l e s were such t h a t i t would be i m p o s s i b l e t o p r e d i c t the f e e d i n g r a t e of a t i n t i n n i d s p e c i e s u s i n g o n l y the s i z e  dis-  t r i b u t i o n o f avaifeble p a r t i c u l a t e biomass o f l e s s than 20 um diameter. There were l a r g e d i f f e r e n c e s between the apparent f e e d i n g r a t e asymptotes of and  T_. subacuta and _S_. v e n t r i c o s a as measured w i t h the C o u l t e r Counter the a c c u m u l a t i o n method.  than d i d t h e former.  The l a t t e r method gave lower  Ivlev e l e c t i v i t y  asymptotes  i n d i c e s f o r T_. subacuta were most  c o n s i s t e n t l y p o s i t i v e i n those middle C o u l t e r s i z e c l a s s e s which a l s o showed t h e g r e a t e s t growth i n c o n t r o l s .  I n c r e a s e d temperature had l i t t l e  e f f e c t on the r a t e of food accumu-  l a t i o n by f o u r t i n t i n n i d s p e c i e s , but t h e r e was some evidence o f a f a s t e r r a t e of d i s a p p e a r a n c e o f i n g e s t e d food a t v e r y h i g h temperatures.  The  r e l a t i o n s h i p between the g a i n of new food and t h e l o s s o f o l d food i n i n d i v i d u a l T. subacuta and Stenosomella v e n t r i c o s a was h i g h l y v a r i a b l e and may s t r o n g l y r e f l e c t the p h y s i o l o g i c a l h i s t o r y o f the c e l l . g a i n of new food may be l a r g e l y independent  The r a t e of  of t h e amount o f o l d food i n a  t i n t i n n i d , but the average r a t e o f l o s s o f o l d food i s f a s t e r i n c e l l s g i v e n new food than i n s t a r v e d c e l l s .  iii  I t was  shown t h a t n a t u r a l c o n c e n t r a t i o n s o f T_. sub a c u t a can a p p a r e n t l y  c o n t r o l the growth o f n a t u r a l p o p u l a t i o n s o f p h y t o p l a n k t o n o f l e s s 20 um d i a . i n under 24 h o u r s . of  microzooplankton  i t was  From a comparison  concluded  than  w i t h some o t h e r t y p e s  t h a t the l a r g e r s p e c i e s o f  tintinnid  c o u l d p r o b a b l y have a p o t e n t i a l l y predominant e f f e c t upon the h i g h l y p r o d u c t i v e p h y t o p l a n k t o n o f l e s s than 10 um diameter coastal  localities.  i n E n g l i s h Bay and  other  iv  TABLE OF CONTENTS Page ABSTRACT  i  TABLE OF CONTENTS  iv  LIST OF TABLES  vi  L I S T OF FIGURES  ix  ACKNOWLEDGEMENTS  xi  1.  INTRODUCTION  2.  TINTINNID BIOLOGY  3.  MATERIALS AND METHODS a) Sampling and i n i t i a l  4.  1  .  treatment  32  b) E x p e r i m e n t a l methods (i) G e n e r a l comments (ii) Counts o f accumulated food (iii) O b s e r v a t i o n s o f f e e d i n g behaviour (iv) C o u l t e r Counter experiments  35 38 39 41  Glossary  49  RESULTS AND DISCUSSION a) A c c u m u l a t i o n experiments (i) Qualitative results (ii) Quantitative results  5.  5  51 60  b) O b s e r v a t i o n s o f t i n t i n n i d motions and feeding behaviour  117  c ) The e f f e c t o f m i c r o z o o p l a n k t o n on n a t u r a l and l a b o r a t o r y p h y t o p l a n k t o n p o p u l a t i o n s ( C o u l t e r Counter experiments)  127  GENERAL DISCUSSION  163  T a b l e of Contents  (Cont'd) Page  6.  SUMMARY  179  REFERENCES  182  APPENDICES  187  vi  LIST OF TABLES Page TABLE 1,  L i s t of t i n t i n n i d  s p e c i e s and t h e i r measurements.  52  TABLE 2.  Food eaten by m i c r o z o o p l a n k t o n .  56  TABLE 3.  E u t i n t i n n u s tubulosus f e e d i n g on I s o c h r y s i s galbana a t two c o n c e n t r a t i o n s .  62  TABLE 4.  E u t i n t i n n u s tubulosus f e e d i n g on Monochrysisl u t h e r i a t two c o n c e n t r a t i o n s .  62  TABLE 5.  E u t i n t i n n u s tubulosus f e e d i n g on Monochrysis l u t h e r i a t three concentrations.  64  TABLE 6.  T i n t i n n o p s i s p a r v u l a f e e d i n g on Monochrysis l u t h e r i at three concentrations.  64  TABLE 7.  T i n t i n n o p s i s subacuta f e e d i n g on D u n a l i e l l a t e r t i o l e c t a a t t h r e e temperatures and t h r e e food l e v e l s .  66  TABLE 8.  T i n t i n n o p s i s p a r v u l a and T i n t i n n o p s i s c y l i n d r i c a f e e d i n g on M o n o c h r y s i s l u t h e r i i n dim l i g h t and i n d a r k n e s s .  68  TABLE 9.  E u t i n t i n n u s tubulosus and H e l i c o s t o m e l l a k i l i e n s i s f e e d i n g on Monochrysis l u t h e r i at t h r e e c o n c e n t r a t i o n s  69  TABLE 10.  V a r i o u s t i n t i n n i d s p e c i e s f e e d i n g on 'new' and ' o l d ' c u l t u r e s of D u n a l i e l l a t e r t i o l e c t a at f o u r c o n c e n t r a t i o n s .  71  TABLE 11.  T i n t i n n o p s i s p a r v u l a f e e d i n g on I s o s e l m i s ssp. and Monochrysis l u t h e r i .  73  TABLE 12.  T i n t i n n o p s i s subacuta f e e d i n g on E t i t r e p t i e l l a sp. and I s o c h r y s i s g a l b a n a.  73  List  of Tables  (cont'd)  T i n t i n n o p s i s subacuta f e e d i n g on E u t r e p t i e l l a s p . , I s o c h r y s i s galbana and D u n a l i e l l a tertiolecta.  T i n t i n n o p s i s subacuta and T i n t i n n i d i u m m u c i c o l a f e e d i n g on E u t r e p t i e l l a sp. and I s o s e l m i s sp.  V a r i o u s t i n t i n n i d s p e c i e s f e e d i n g on Monochrysis l u t h e r i and D u n a l i e l l a t e r t i o l e c t a .  T i n t i n n o p s i s subacuta and Stenosomella v e n t r i c o s a f e e d i n g on E u t r e p t i e l l a sp., Monochrysis l u t h e r i and I s o s e l m i s sp. s i n g l y and i n combination.  T i n t i n n o p s i s subacuta ( e t c . ) s t a r v e d f o r v a r i o u s p e r i o d s i n f i l t e r e d seawater f e e d i n g on D u n a l i e l l a t e r t i o l e c t a a t unknown, but dense, c o n c e n t r a t i o n s .  T i n t i n n o p s i s subacuta and o t h e r p r e d a t o r s s t a r v e d f o r v a r i o u s p e r i o d s and f e e d i n g on E u t r e p t i e l l a sp.  Loss r a t e o f Stenosomella n i v a l i s a t two l e v e l s o f d i l u t i o n o f medium w i t h f i l t e r e d seawater.  Change o f food c o n t e n t s o f -T-intinnidium m u c i c o l a w i t h time a t f o u r l e v e l s o f d i l u t i o n o of medium w i t h f i l t e r e d seawater.  T i n t i n n o p s i s subacuta, T_. p a r v u l a , _T. rapa and T i n t i n n i d i u m m u c i c o l a f e e d i n g on new food - Monochrysis l u t h e r i and Cryptomonas sp., and l o s s r a t e o f o l d food o f v a r i o u s types a t f o u r temperatures.  viii  L i s t o f Tables  (cont'd)  Page  TABLE 22.  Feeding and l o s s r a t e s o f T i n t i n n o p s i s subacuta; l o s i n g Monochrysis l u t h e r i and P l a g i o s e l m i s s p . and e i t h e r s t a r v e d o r g a i n i n g E u t r e p t i e l l a s p . and I s o s e l m i s sp.  TABLE 23.  Accumulation and l o s s r a t e s o f T i n t i n n o p s i s cylindrica, Helicostomella k i l i e n s i s , T i n t i n n i d i u m m u c i c o l a and E u t i n t i n n u s l a t u s , f e e d i n g oh Monochrysis l u t h e r i o r I s o s e l m i s sp., o r s t a r v e d ; and l o s i n g M. l u t h e r i , Isoselmis sp. or D u n a l i e l l a t e r t i o l e c t a .  101  TABLE 23A.  Summary o f accumulation experiments w i t h T i n t i n n o p s i s subacuta.  103A  TABLE 24.  The r e l a t i o n s h i p between t i n t i n n i d c e l l l e n g t h and number o f accumulated food items i n two s p e c i e s taken from d i f f e r e n t experiments.  115  TABLE 25.  The e f f e c t o f i m m o b i l i z a t i o n by s o n i c a t i o n on the s u c c e s s f u l i n g e s t i o n o f a l g a l f l a g e l l a t e s by the t i n t i n n i d , E u t i n t i n n u s l a t u s .  121  TABLE 26.  Observed c o n t a c t r a t e s o f v a r i o u s t i n t i n n i d s p e c i e s on n a t u r a l and l a b o r a t o r y food items.  124  TABLE 27.  M u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s from C o u l t e r Counter experiments.  129  TABLE 28.  M i c r o z o o p l a n k t o n lower t h r e s h o l d f e e d i n g v a l u e s and r e g r e s s i o n c o e f f i c i e n t s o f Logmean E ( v a r i a b l e 3) when food consumption r a t e ( v a r i a b l e 1) i s z e r o .  136  TABLE 29.  R e s u l t s o f C o u l t e r Counter experiments w i t h Synchaeta l i t t o r a l i s and Synchaeta sp. eating Dunaliella t e r t i o l e c t a .  159  TABLE 30.  Approximate r e l a t i v e s i z e s and f e e d i n g r a t e s of v a r i o u s types of marine m i c r o z o o p l a n k t o n .  177  99  ix  LIST OF FIGURES Page FIGURE 1.  Diagram o f F a v e l l a sp. (modified from Campbell, 1927).  FIGURE 2.  P o s s i b l e t h e o r e t i c a l r e l a t i o n s h i p s between t i n t i n n i d l o r i c a l e n g t h and frequency.  15  FIGURE 3.  L o r i c a length-frequency data f o r T i n t i n n o p s i s subacuta from t h r e e s u c c e s s i v e f i e l d samples.  18  FIGURE 4.  Seasonal abundance and l o r i c a l e n g t h s of 100 Parafavella denticulata.=  20  FIGURE 5.  R e l a t i o n s h i p between t i n t i n n i d c e l l volume and maximum observed volume o f i n d i v i d u a l food items.  53  FIGURE 6.  R e l a t i o n s h i p between t h e volume o f o l d food an and new food c o n t a i n e d by i n d i v i d u a l T i n t i n n o p s i s ^ subacuta.  108  FIGURE 7.  R e l a t i o n s h i p between the volume of o l d food and new food c o n t a i n e d by i n d i v i d u a l T i n t i n n o p s i s subacuta and Stenosomella v e n t r i c o s a .  110  FIGURE 8.  R e l a t i o n s h i p between e l e c t i v i t y v a l u e s o f T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and the mean diameter o f C o u l t e r Counter s i z e classes..  140  FIGURE 9.  R e l a t i o n s h i p between e l e c t i v i t y v a l u e s o f T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and the Logmean E v a l u e s o f each C o u l t e r Counter s i z e c l a s s .  143  FIGURE 10.  R e l a t i o n s h i p between t h e e l e c t i v i t y v a l u e s of T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and the t o t a l Logmean E v a l u e s o f a l l C o u l t e r Counter s i z e c l a s s e s .  145  7  X  List  of Figures  (cont'd) Page  FIGURE 11.  R e l a t i o n s h i p between t h e e l e c t i v i t y v a l u e s of T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and t h e changes i n c o n t r o l v a l u e s (C /C ) i n each C o u l t e r Counter s i z e c l a s s .  148  FIGURE 12.  R e l a t i o n s h i p between the changes i n t h e t o t a l p a r t i c l e volume o f C o u l t e r Counter c o n t r o l (C^/C^) and e x p e r i m e n t a l (E^/E^) containers a t various concentrations per ml. o f T i n t i n n o p s i s subacuta and J_. p a r v u l a on n a t u r a l p a r t i c l e s .  152  FIGURE 13.  R e l a t i o n s h i p between t h e changes i n t h e t o t a l p a r t i c l e volume o f Counter Counter c o n t r o l (C2/C^) and e x p e r i m e n t a l (E^/E ) c o n t a i n e r s a t v a r i o u s c o n c e n t r a t i o n s or T i n t i n n o p s i s subacuta per ml. on l a b o r a t o r y food.  154  FIGURE 14.  R e l a t i o n s h i p between the changes i n t h e t o t a l p a r t i c l e volume o f C o u l t e r Counter c o n t r o l (C2/C^) and e x p e r i m e n t a l (E^/E ) c o n t a i n e r s a t v a r i o u s c o n c e n t r a t i o n s or Stenosomella v e n t r i c o s a and B a r n a c l e and copepod n a u p l i i on l a b o r a t o r y food and B a r n a c l e and copepod n a u p l i i on n a t u r a l particles.  156  0  xi  ACKNOWLEDGEMENTS  I thank Drs. P.A. L a r k i n , J.D. Berger, for  a d v i c e and a s s i s t a n c e d u r i n g t h i s study.  T.R. Parsons and F.J.R. T a y l o r I am g r a t e f u l f o r f i n a n c i a l  a s s i s t a n c e d u r i n g the p r o j e c t from Dr. B. McK. Bary and Dr. T.R. Parsons, and  the work c o u l d n o t have been completed without  generous f i n a n c i a l  help  from Dr. P.A. L a r k i n .  Dr. E.S. G i l f i l l a n and Mr. T. Gossard were o f g r e a t h e l p w i t h on s t a t i s t i c a l  and computing problems.  I am v e r y g l a d t o acknowledge t h e  l a b o r a t o r y f a c i l i t i e s and equipment p r o v i d e d by Drs. Bary, Parsons, and  advice  Taylor  Dr. A.G. Lewis and t h e s t a f f o f t h e P a c i f i c B i o l o g i c a l S t a t i o n , Nanaimo.  I g r a t e f u l l y thank Mrs.  R. Waters f o r p r o v i d i n g some p h y t o p l a n k t o n  and media.  Drs. J.D. Berger,  me t o r e f e r  to t h e i r u n p u b l i s h e d  cultures  D.J. Rapport and F.J.R. T a y l o r k i n d l y allowed work.  The h e l p o f M i s s H. Halm and Mrs.  M.E. Newell was e s s e n t i a l to t h e p r e p a r a t i o n o f t h i s  thesis.  Most o f a l l my g r a t e f u l thanks go to my w i f e J a n i c e , f o r s u s t a i n i n g me throughout t h i s work.  1.  I)  INTRODUCTION  T h i s study c o n s i s t s o f a l a r g e l y e x p e r i m e n t a l  i n v e s t i g a t i o n o f the  f e e d i n g a b i l i t i e s o f t h e l a r g e and common c i l i a t e s , p a r t i c u l a r l y t h e t i n t i n n i d s , from t h e marine p l a n k t o n near  Vancouver.  Our knowledge o f the s t r u c t u r e and i n t e r a c t i o n s o f marine p l a n k t o n i c food webs i s poor;  t h i s ignorance i s u n f o r t u n a t e i n view o f the l a r g e d i s -  c r e p a n c i e s between v a r i o u s e s t i m a t e s o f p o t e n t i a l t o t a l o c e a n i c  fish  p r o d u c t i o n , such as f o r example those taken from d a t a on catches o f f i s h , and from measurements o f marine primary p r o d u c t i v i t y of  ( S t e e l e , 1965).  t h e areas o f g r e a t e s t i g n o r a n c e i n c l u d e s t h e food l i n k s t o and from  microzooplankton.  Ciliate  the m i c r o z o o p l a n k t o n  p r o t o z o a a r e t h e s m a l l e s t and most abundant o f  (30 - 1000 urn) organisms i n most oceans.  marine a r e a s , c i l i a t e s  a l s o form an important  1969B; Z a i k a and A v e r i n a , 1969; Z e n k e v i t c h , 1963). the l a r g e s t o f t h e c i l i a t e m i c r o z o o p l a n k t o n ,  I n some  part of the t o t a l  p l a n k t o n biomass, and (presumably) m e t a b o l i c a c t i v i t y  of  One  microzoo-  (Beers and Stewart,  T i n t i n n i d s a r e among  but almost n o t h i n g i s known  t h e i r e c o l o g y i n t h e sea o r i n f r e s h w a t e r .  S i n c e much o f t h e t o t a l m o r t a l i t y i n a c o h o r t i n many s p e c i e s o f f i s h a p p a r e n t l y o c c u r s from s t a r v a t i o n a t a v e r y e a r l y age, a g r e a t i n c r e a s e i n i n f o r m a t i o n on the tropho-dynamics o f t h e i r p o t e n t i a l prey microzooplankton)  mayybe v i t a l to any u n d e r s t a n d i n g  yearly v a r i a t i o n s i n s u r v i v a l of cohorts of f i s h Furthermore,  LeBrasseur  and Kennedy  (often small  of the l a r g e n a t u r a l  (Korniyenko,  1971).  (1972) t h i n k t h a t i n v e s t i g a t i o n o f t h e  f e e d i n g h a b i t s and r a t e s o f p r o d u c t i o n o f v e r y s m a l l (<50 urn) c i l i a t e s  will  be r e q u i r e d to a i d i n e s t i m a t i n g the v i t a l w i n t e r n u t r i t i o n arid development  2  of t h e dominant macrozooplankters o f t h e open s u b a r c t i c P a c i f i c Ocean.  The  l a t t e r a r e c r u c i a l t o the food-webs o f t h e a d u l t s o f s e v e r a l s p e c i e s o f f i s h o f commercial importance, e.g. sockeye s a l m o n S i m i l a r l y ,  Eggert  (1973) s t a t e s t h a t t i n t i n n i d s a r e v e r y numerous i n Lake B a i k a l and a r e important  to the w i n t e r  The  n u t r i t i o n o f copepod n a u p l i i i n t h a t l a k e .  importance o f m i c r o z o o p l a n k t o n t o t h e i r p r e d a t o r s  at least partly  depends upon t h e r a t e s and e f f i c i e n c i e s w i t h which they i n c o r p o r a t e t h e nannoplankton which i s u n a v a i l a b l e t o the l a r g e r organisms. f i e l d observations  and e s t i m a t e s  o f m i c r o z o o p l a n k t o n f e e d i n g and p r o d u c t i -  v i t y must be h e a v i l y augmented w i t h  experimental  mechanisms o f d i v e r s e m i c r o z o o p l a n k t e r s  work,but t h e f e e d i n g  cannot simply be e x t r a p o l a t e d  from t h o s e more e a s i l y i n v e s t i g a t e d i n c r u s t a c e a n the c r u s t a c e a n  Subjective  macrozooplankton.  members o f the m i c r o z o o p l a n k t o n can be expected to feed  l a r g e l y by f i l t e r - f e e d i n g w i t h a f a i r l y r i g i d l a r g e r and f r e q u e n t l y s t u d i e d c r u s t a c e a n  ' f i l t e r - b a s k e t ' , as do t h e  macrozooplankton ( P o u l e t , 1973),  many o f t h e m i c r o z o o p l a n k t o n i n c l u d i n g t h e t i n t i n n i d s and o t h e r use c i l i a  Although  to o b t a i n i n d i v i d u a l food  ciliates,  items and t h i s s p e c i a l i z e d mode o f  f e e d i n g should be i n v e s t i g a t e d i n i t s own r i g h t .  The papers o f Strathmann  (1971) and Strathmann, e t . a l . (1972) r e p r e s e n t  most o f what i s known o f  the f e e d i n g behaviour of some t y p i c a l  metazoan p l a n k t o n i c  riearshore  c i l i a r y f e e d e r s , i n c l u d i n g echinoderm l a r v a e .  Nothing i s known o f t h e p r o d u c t i v i t y o r f e e d i n g r a t e s o f t i n t i n n i d s in situ.  There i s a l s o no p u b l i s h e d  q u a n t i t a t i v e i n f o r m a t i o n on t h e f e e d i n g  abilities  o f t i n t i n n i d s i n t h e l a b o r a t o r y and l i t t l e more i s known o f t h e i r  growth r a t e s i n l a b o r a t o r y c u l t i v a t i o n little  (Gold, 1971, 1973).  i s known o f t h e f e e d i n g a b i l i t i e s  Indeed, v e r y  o f any marine c i l i a t e , b e n t h i c o r  3  p l a n k t o n i c from which one might e s t i m a t e t h e f e e d i n g r a t e s to be expected from t i n t i n n i d s .  Pavlovskaya  (1973) has d i s c u s s e d t h e f e e d i n g and growth  of a few c i l i a t e s  found i n the l i t t o r a l  zone o f the B l a c k Sea, and F e n c h e l  (1968) has s t u d i e d t h e food c o n t e n t s and r e p r o d u c t i v e r a t e s o f some b e n t h i c c i l i a t e s from the B a l t i c  Sea.  H a m i l t o n and P r e s l a n (1969) have grown one  species of a small b a c t e r i a - g r a z i n g planktonic c i l i a t e i n c u l t u r e . i s r a t h e r more, b u t s t i l l F o r example, Klekowski  fragmentary  d a t a on some f r e s h w a t e r s p e c i e s .  e t . a l . - ( 1 9 7 2 ) g i v e s some d e t a i l s o f t h e energy  budget o f one s p e c i e s o f b e n t h i c f r e s h w a t e r c i l i a t e and Goulder 1973)  There  has i n d i r e c t l y estimated t h e f e e d i n g r a t e o f a c i l i a t e  (1972,  free-swimming  i n a pond.  In g e n e r a l , t h e s m a l l e r the organism of food i t removes per u n i t  the s m a l l e r t h e a b s o l u t e amount  time, and t h e f a s t e r i t s r e p r o d u c t i v e r a t e .  However, a s c i l i a t e s u s u a l l y g r e a t l y outnumber o t h e r m i c r o z o o p l a n k t o n and macrozooplankton; seawater  the t o t a l f e e d i n g e f f e c t o f c i l i a t e s p e r u n i t volume o f  may, under some c i r c u m s t a n c e s , p r o v i d e s i g n i f i c a n t  removing p h y t o p l a n k t o n , f o r macrozooplankton euphausiids. lower  competition i n  such as l a r g e copepods and  I t has been shown t h a t some copepods and e u p h a u s i i d s have a  s i z e t h r e s h o l d i n t h e i r f e e d i n g below which they graze  p o o r l y , i f a t a l l (Parsons and L e B r a s s e u r , 1970).  phytoplankton  I t i s o f i n t e r e s t to  determine whether t i n t i n n i d s and o t h e r c i l i a t e s would u t i l i z e t h e s e v e r y small  (2-15 um) food items.  In o r d e r to o b t a i n i n i t i a l answers to the problem o f the l i k e l y  effects  of t i n t i n n i d s as p r e d a t o r s and c o m p e t i t o r s t h i s study was i n t e n d e d to be a broad and g e n e r a l e x p e r i m e n t a l i n v e s t i g a t i o n o f f e e d i n g r a t e s and p r e f e r e n c e s i n the larger l o c a l  species.  More s p e c i f i c a l l y , t h e i n t e n t i o n was:  1.  To i n v e s t i g a t e t h e range o f m a t e r i a l eaten by t i n t i n n i d s and i t s o v e r -  l a p w i t h t h e food o f l a r g e r 2.  zooplankton.  To o b t a i n measurements o f the f e e d i n g r a t e s o f t i n t i n n i d c i l i a t e s and  other microzooplankton  on n a t u r a l types o f f o o d .  3.  To make such measurements w i t h more than one t e c h n i q u e and i n such a  way  (e.g. by s i z e s e p a r a t i o n o f n a t u r a l z o o p l a n k t o n samples and by u s i n g a  C o u l t e r c o u n t e r ) t h a t as f a r as p o s s i b l e comparisons different  c o u l d be made between  s p e c i e s o f t i n t i n n i d s and between t i n t i n n i d s and o t h e r  microzoo-  plankton. 4.  To i n v e s t i g a t e t h e c i r c u m s t a n c e s under which prey s e l e c t i o n ( i f any)  occurs i n v a r i o u s t i n t i n n i d species. 5.  To examine p a r t i c u l a r l y the e f f e c t o f such f a c t o r s as food c o n c e n t r a t i o n s  prey s i z e , hunger s t a t e and'temperature upon t i n t i n n i d f e e d i n g r a t e s . 6.  I f p o s s i b l e , t o i n v e s t i g a t e t h e r e l a t i o n s h i p between f e e d i n g r a t e ,  i o n r a t e , and growth r a t e o f t i n t i n n i d s on p h y t o p l a n k t o n c u l t u r e d n a t u r a l samples;  from  and to compare t h i s i n f o r m a t i o n w i t h o b s e r v a t i o n s made  during natural t i n t i n n i d 7.  digest  'blooms'.  To e s t i m a t e t h e p o t e n t i a l a b i l i t y o f t i n t i n n i d s t o c o n t r o l t h e growth  of p o p u l a t i o n s o f s m a l l p h y t o p l a n k t o n  cells.  5 2)  TINTINNID BIOLOGY  General The major emphasis of t h i s study has been on attempts to o b t a i n q u a l i t a t i v e and  q u a n t i t a t i v e i n f o r m a t i o n on the f e e d i n g r a t e s of s e v e r a l o f  local tintinnid  species.  During  the  t h i s work, much i n f o r m a t i o n ( o f t e n q u a l i -  t a t i v e ) on v a r i o u s a s p e c t s of t i n t i n n i d b i o l o g y has  accrued.  Since  the  n a t u r a l h i s t o r y of t i n t i n n i d s i s g e n e r a l l y so p o o r l y known, some d e t a i l s from the l i t e r a t u r e presented here.  (with r e f e r e n c e s ) p l u s some o f my  observations  are  V a r i o u s a s p e c t s of t i n t i n n i d b i o l o g y have been t r e a t e d i n  the f o l l o w i n g papers: Systematics  —  Marshall  (1969);  Tappan and L o e b l i c h (1968);  Zeitzschel  (1969) and many o t h e r s . D i s t r i b u t i o n of s p e c i e s —  Many papers quoted i n Z e i t z s c h e l (1969).  D i s t r i b u t i o n of numbers and biomass — Zeitzschel  (1969) ;  Seasonal Vitiello  Zenkevitch  Zaika  Eggert  (1973);  v a r i a t i o n i n numbers and  Growth i n c u l t u r e —  Gold  Morphology of L o r i c a — Burkovsky  (1969B,11971);  Beers and  Stewart! (1969A) ;  (1972).  V e r t i c a l migration — Seasonal  Stewart  (1963).  and v e r t i c a l d i s t r i b u t i o n —  (1964);  Beers and  r  Z a i k a and  size —  Ostrovskaya  Burkovsky  (1972).  (1973).  (1971, 1973).  Biernacka  (1965) ;  Halme and  Lukkarinen  (1960);  (1973).  Cytology  —  Campbell  Ultrastructure —  (1926, 1927).  L a v a l (1971, 1972,  1973).  T i n t i n n i d s form an Order i n t h e S u b c l a s s  S p i r o t r i c h a which a l s o i n c l u d e s  the c l o s e l y r e l a t e d Order O l i g o t r i c h i d a and o t h e r s of the more h i g h l y e v o l v e d c i l i a t e s i n the Subphylum C i l i o p h o r a .  Most n o n - t i n t i n n i d marine p l a n k t o n i c  6  c i l i a t e species are O l i g o t r i c h s . ion  o f few somatic  cilia  Both o r d e r s a r e c h a r a c t e r i z e d by p o s s e s s -  and an a n t e r i o r o r a l opening  surrounded  by a l a r g e  complex c i l i a r y s t r u c t u r e which s e r v e s b o t h t o move, and p r o v i d e food f o r the organism.  T i n t i n n i d s a r e a t t a c h e d p o s t e r i o r l y by a t h i n  contractile  s t r u c t u r e , t o the s i d e o r bottom o f an e x t e r n a l sheath  (or l o r i c a ) o f c a r b o -  h y d r a t e o r p r o t e i n a c e o u s m a t e r i a l s e c r e t e d by the c e l l .  T h i s l o r i c a , which  may be e i t h e r t r a n s p a r e n t , o r n e a r l y opaque and covered w i t h f o r e i g n  parti-  c l e s , n o r m a l l y covers t h e p o s t e r i o r f o u r - f i f t h s o f t h e c e l l and may be many times l o n g e r than t h e l a t t e r .  The f e e d i n g (or a d o r a l ) c i l i a  are normally  c o m p l e t e l y exposed and p r o j e c t a t an a n g l e l a t e r a l l y beyond t h e l o r i c a when the organism  i s extended.  (see F i g . 1 ) . . O l i g o t r i c h c i l i a t e s  possess-no  l o r i c a , b u t some have a t i g h t l y - f i t t i n g p o s t e r i o r sheath o f c a r b o h y d r a t e m a t e r i a l and they g e n e r a l l y have p r o p o r t i o n a t e l y l a r g e r o r a l c i l i a do  than  tintinnids.  Food items a r e drawn towards t h e c i l i a t e by means o f a v o r t e x c r e a t e d by t h e a n t e r i o r c i l i a , as t h e c e l l r o t a t e s and moves i n t e r m i t t e n t l y i n a h e l i c a l path o f a shape c h a r a c t e r i s t i c f o r each s p e c i e s .  U n l i k e some o f  the O l i g o t r i c h s , the l o c a l t i n t i n n i d s a r e i n c a p a b l e o f making l a r g e and sudden 'jumping' movements.  There i s some p r e l i m i n a r y s o r t i n g of food i n  the a n t e r i o r c i l i a r y r e g i o n and mucus may perhaos be produced c a p t u r e of food  ( L a v a l , 1972).  to a i d i n the  I n t r a c e l l u l a r d i g e s t i o n f o l l o w s t h e phago-  c y t o s i s of i n d i v i d u a l food items.  E g e s t i o n o f t h e u n d i g e s t e d m a t e r i a l as  e i t h e r s i n g l e o b j e c t s o r as clumps o c c u r s a t some p o s t e r i o r s i t e i n the c e l l plasma membrane. i n s i d e the l o r i c a .  Most t i n t i n n i d s must then remove t h e egested m a t e r i a l from T h i s i s done by a row o f t h i n l a t e r a l c i l i a which pass the  e g e s t a a l o n g t h e narrow space between c e l l and l o r i c a w a l l and o u t over t h e  7  Fig. 1. Diagram of FAVELLA sp. (modified from C a m p b e l l , 1927) showing a d o r a l c i l i a , a.c. • anus, an., c y t o p h a r y n x , cyt, food vacuoles, f.v., lorica, lor. , m a c r o nucleus, macron., micronucleus, micron., oral plug, o.p., peduncle, ped.  8  lip  of the l o r i c a .  In the genus E u t i n t i n n u s , egested m a t e r i a l remains p o s t -  e r i o r to the c e l l and may posterior  e v e n t u a l l y pass out of the l o r i c a through  the  opening.  T i n t i n n i d s a r e g e n e r a l l y most abundant i n the upper p a r t of t h e  euphotic  zone and a r e n e a r l y always more abundant i n i n s h o r e waters than o f f s h o r e . (Beers and  Stewart 1969B, 1971;  Z e i t z s c h e l 1969).  There i s evidence  that  some s p e c i e s make s h o r t d i u r n a l verfc£<sali m i g r a t i o n s away from the s u r f a c e a t dawn and  towards the s u r f a c e a t dusk, (Eggert, 1973;  Z a i k a and  Ostrovskaya,  1972) .  Taxonomy The  taxonomic d e s i g n a t i o n s of M a r s h a l l  c l o s e l y as p o s s i b l e i n t h i s study, a l t h o u g h  (1969) have been f o l l o w e d even t h i s p r a c t i c e has  the a r b i t r a r y c h o i c e of s p e c i f i c name i n some c a s e s .  as  involved  T h i s problem w i l l  be  d e a l t w i t h a g a i n i n the comments on l o r i c a morphology l a t e r i n t h i s S e c t i o n .  Seven genera o f t i n t i n n i d s r e p r e s e n t e d by t h i r t e e n s p e c i e s have been s t u d i e d i n the course of t h i s p r o j e c t .  A few o t h e r s p e c i e s occur i n G e o r g i a  S t r a i g h t but f o r these no d a t a has been o b t a i n e d . commonly found  Ten of these s p e c i e s a r e  throughout the y e a r , o f t e n i n the same sample.  e i g h t - f o l d range of c e l l l e n g t h and a t h r e e h u n d r e d - f o l d between the s m a l l e s t s p e c i e s T i n t i n n o p s i s nana and serrata  (see Table  range of c e l l volume  the l a r g e s t , F a v e l l a  1).  A s i n g l e inshore microzooplankton to s i x s p e c i e s of o t h e r p h a g o t r o p h i c f e r s , and  There i s an  sample has been found c i l i a t e s , up  to c o n t a i n up  to t h r e e s p e c i e s of  roti-  l a r v a e and a d u l t s of t h r e e or f o u r s p e c i e s of s m a l l copepods.  More temporary m i c r o z o o p l a n k t e r s  i n c l u d e the l a r v a l forms of b a r n a c l e s ,  9 bryozoans, p o l y c h a e t e s , and b i v a l v e and gastropod m o l l u s c s .  Temperature  and s a l i n i t y  effects  The b u l k of the samples were taken by sampling from shore i n E n g l i s h Bay and C o a l Harbour, Vancouver. Horseshoe  Samples were a l s o taken from Boundary  Bay, c e n t r a l G e o r g i a S t r a i t , and from Departure Bay,  and from harbours a t Sydney, V i c t o r i a and T o f i n o on Vancouver s p e c i e s was  Bay,  Saanich I n l e t , Island.  No  found to be unique to any p a r t i c u l a r a r e a , and t h i s would almost  c e r t a i n l y s t i l l be t r u e on a much b r o a d e r geographic s c a l e i n i n s h o r e waters. A l s o , as expected i n a s e m i - e s t u a r i n e a r e a , a l l s p e c i e s were extremely  tol-  e r a n t to slow changes i n temperature, and to f a s t or slow changes over a c o n s i d e r a b l e range i n s a l i n i t y . iments.  These a b i l i t i e s were checked i n b r i e f  exper-  Most o f the t i n t i n n i d s p e c i e s were found a t a l l the v a r i o u s n a t u r a l  combinations of temperature and s a l i n i t y , but l a r g e numbers or 'blooms' o f f o r example, 2 or more i n d i v i d u a l s / m l g e n e r a l l y o c c u r r e d i n water o f some l e s s extreme combination of temperature and s a l i n i t y .  The s e a s o n a l trends  of temperature and s a l i n i t y o f the l o c a l s u r f a c e water a r e i n v e r s e l y r e l a t e d , due to the g r e a t i n f l u e n c e i n mid-summer freshet.  cor-  of the Fraser R i v e r  'Blooms' of v a r i o u s s p e c i e s o c c u r r e d a t any time from March to  December, u s u a l l y a f t e r a few days of f i n e weather, but were most f r e q u e n t i n A p r i l - M a y and  September-November.  Those t i n t i n n i d s p e c i e s which o c c u r r e d i n l a r g e numbers  ('blooms')  (1-15/ml) p r i m a r i l y i n the months March-May and September-December were T i n t i n n o p s i s subacuta, T_. p a r v u l a , T_. r a p a , Stenosomella v e n t r i c o s a and S^. nivalis;. 8  In those months s u r f a c e temperatures  i n E n g l i s h Bay are between  and 15° C and s a l i n i t i e s are between 10 and 27%  0  .  Helicostomella  k i l i e n s i s and E u t i n t i n n u s t u b u l o s u s were nnumeWo"*!© o n l y between May  and  10  September, when s u r f a c e water temperatures  a r e between 12  and 20°C.  T i n t i n n o p s i s nana and T i n t i n n i d i u m m u c i c o l a have been found i n l a r g e numbers ffinnevery  month, b u t January and February.  T i n t i n n o p s i s c y l i n d r i c a was a t i t s  most abundant from May to September, b u t was never as numerous as 1/ml. I t i s c u r i o u s t h a t T_. c y l i n d r i c a were t h e o n l y t i n t i n n i d  ( f r e q u e n t l y ) and one i n d i v i d u a l o f T_. subacuta,  s p e c i e s seen to c o n t a i n v a r i o u s stages o f an u n i d e n t i -  fied dinoflagellate internal parasite. ( s e c t i o n 4) were never numerous.  The o t h e r t h r e e s p e c i e s i n T a b l e 1  Eutiritiririus l a t u s was seen o n l y i n summer,  and F a v e l l a s e r r a t a and P t y c h o c y c l i s a c u t a (very r a r e ) were seen i n l a t e summer-fall  i n waters o f a s a l i n i t y exceeding 15%>.  t h a t a l l o t h e r e n v i r o n m e n t a l f a c t o r s a r e o f secondary  However, i t i s l i k e l y importance t o a good  s u p p l y of s u i t a b l e food i n t h e p r o d u c t i o n o f l a r g e numbers o f t i n t i n n i d s .  L o r i c a morphology One t i n t i n n i d s p e c i e s , T i n t i n n i d i u m m u c i c o l a , appears to which p a r t i c u l a t e matter may adhere a t any time.  to have a l o r i c a  Others such as those i n  the genera T i n t i n n o p s i s and Stenosomella have l o r i c a s which appear  t o be  ' s t i c k y ' f o r a s h o r t time o n l y a f t e r f o r m a t i o n and a r e l e s s so than t h a t o f T i n t i n n i d i u m m u c i c o l a even then.  S p e c i e s of the genera F a v e l l a ,  Ptychocyclis,  H e l i c o s t o m e l l a and E u t i n t i n n u s i n l o c a l waters never have p a r t i c l e s a d h e r i n g to t h e i r l o r i c a s even when inwater w i t h much s m a l l d e t r i t u s , a l t h o u g h t h e l o r i c a of E. t u b u l o s u s has been seen t o be covered by a c o a t i n g o f f i n e d e t r i t u s which c o u l d be e a s i l y d i s c a r d e d .  S e v e r a l s p e c i e s o f t h e genera  T i n t i n n o p s i s and Stenosomella c a n be kept i n l a b o r a t o r y c o n d i t i o n s f o r s h o r t p e r i o d s where they u s u a l l y form a p p a r e n t l y normal d e t r i t u s whatever. obvious.  The f u n c t i o n  l o r i c a s w i t h no a d h e r i n g  ( i f any) o f d e t r i t u s on l o r i c a s i s n o t  11  Lorica  ' r e p a i r ' i s thought to be c a r r i e d out by  (Biernacka, due  1965)  to i m p e r f e c t  and  occasional i r r e g u l a r i t i e s  repair following  'accidents'.  some t i n t i n n i d  species  i n l o r i c a morphology may  be  The  of  shape of the l o r i c a s  t i n t i n n i d s i n l a b o r a t o r y c u l t u r e s i s o c c a s i o n a l l y abnormal (Gold, 1971; personal  observation).  such c u l t u r e s , but  T h i s may  be due  abnormalities  and  to the l a c k of s u i t a b l e d e t r i t u s i n  a l s o occur  i n c u l t u r e s of  Helicostomella  k i l i e n s i s ^ ( s e e above).  Of more importance to the study of the taxonomy, palaeontology u l a t i o n dynamics of t i n t i n n i d s i s the v a r i a t i o n i n the l e n g t h o f within a species. left fossils adhering  (Tappan and L o e b l i c h , 1968)  due  At p r e s e n t ,  l a r g e l y upon the b a s i s of l o r i c a l e n g t h  Marshall, i n p a r t i c u l a r , recognized F o r example, Burkovsky (1973) has that eleven  loricas  t o the n a t u r e of the  particles  the taxonomy o f  t i n n i d s i s based e n t i r e l y on the morphology of the l o r i c a , and  years  pop-  T i n t i n n i d s are the o n l y c i l i a t e s which appear to have  to the l o r i c a s of some s p e c i e s .  designated  and  tin-  species  (e.g. M a r s h a l l ,  are  1969).  t h i s s t a t e of a f f a i r s to be u n s a t i s f a c t o r y .  suggested from samples c o l l e c t e d over  s p e c i e s i n the genus P a r a f a v e l l a from the White Sea  two  are  a l l v a r i a n t s of P_. d e n t i c u l a t a .  I t has  been observed i n t h i s study t h a t l o r i c a l e n g t h i s a t l e a s t p a r t l y -  a f u n c t i o n of r e c e n t environmental c o n d i t i o n s ; and the g r e a t e s t l e n g t h , of the l o r i c a s i n one s p e c i e s may general  differ  considerably  i n two  i n t h i s a r e a l o r i c a s tend  f o o d , and  t h a t the mean l e n g t h ,  apparent p o p u l a t i o n of a  samples taken a few  to be  longer  t h i s i s o f t e n n o t i c e a b l e near the end  days a p a r t .  i n c o n d i t i o n s of of  'blooms'.  i n d i v i d u a l s of t h a t s p e c i e s .  Burkovsky  In  plentiful  However, c e l l s  w i t h p a r t i c u l a r l y l o n g l o r i c a s a r e someimes found i n samples i n which a r e few  and  there  (1973) found a g e n e r a l l y  12  i n v e r s e r e l a t i o n s h i p between the l o r i c a l e n g t h s and  phytoplankton concentrations  and  temperature.  a r e much l e s s v a r i a b l e than l o r i c a l e n g t h s The  o n l y completely  organisms.  diameter, and  The  diameters of  ( t h i s study and  loricas  Burkovsky, 1973).  r e l i a b l e d i a g n o s t i c f e a t u r e s .in' a genus of  such as T i n t i n n o p s i s appear to be preserved  of P a r a f a v e l l a d e n t i c u l a t a  tintinnids  those most v i s i b l e i n l i v e or v e r y  carefully  Such f e a t u r e s might i n c l u d e the average c e l l l e n g t h  the l e n g t h of the a d o r a l c i l i a .  f e e d i n g b e h a v i o u r are a l s o a u s e f u l but  D i f f e r e n c e s i n swimming  s u b t l e taxonomic guide (see  and  and  Section  4B).  Generally  the c e l l s of most t i n t i n n i d s p e c i e s are a p p r o x i m a t e l y  d r i c a l f o r the a n t e r i o r - t w o - t h i r d s of t h e i r l e n g t h s , and posterior one-third. v e n t r i c o s a and s e c t i o n , and  The most o b v i o u s e x c e p t i o n s  S^. n i v a l i s , where the c e l l has  cylin-  conical for  to t h i s r u l e a r e  the  Stenosomella  a short a n t e r i o r c y l i n d r i c a l  i s s u b ^ s p h e r i c a l p o s t e r i o r l y , as are the l o r i c a s of t h e s e s p e c i e s .  D u r i n g s t a r v a t i o n the shape of the c e l l s of a l l s p e c i e s change g r e a t l y to something l i k e t h a t of a cone, and 50%.  d e c r e a s e by more than  C e l l s of t h i s shape are p a r t i c u l a r l y common i n w i n t e r .  The for  the c e l l volume may  r a t i o of c e l l  s e v e r a l reasons.  l e n g t h to l o r i c a l e n g t h i s v a r i a b l e w i t h i n a  Simple t r a n s v e r s e b i n a r y f i s s i o n without s e x u a l  b i n a t i o n i s by f a r the commonest form of t i n t i n n i d r e p r o d u c t i o n . of t h i s p r o c e s s , daughter c e l l and  moves away w i t h o u t a l o r i c a . 'parental' o r a l c i l i a ,  the p a r e n t a l l o r i c a , and  for  The  Therefore,  At the  end  the a n t e r i o r  the p o s t e r i o r daughter p o s s e s s e s  they share the p a r e n t a l c y t o p l a s m and  d u r a t i o n of the p r o c e s s  s e v e r a l hours  recom-  the a n t e r i o r daughter c e l l breaks o f f from the p o s t e r i o r  daughter p o s s e s s e s the  food.  species  assimilated  of d i v i s i o n i s unknown but l a s t s a t  ( i n most s p e c i e s ) .  The  least  daughter c e l l s are i n i t i a l l y h a l f  13  t h a t o f t h e maximum p a r e n t a l c e l l acteristic  l e n g t h , which g e n e r a l l y seems to be a c h a r -  of each s p e c i e s , b u t which may v a r y  somewhat w i t h r e l a t i v e l y  long-  term e n v i r o n m e n t a l c o n d i t i o n s and w i t h t h e p h y s i o l o g i c a l c a p a c i t i e s o f a c l o n e of c e l l s .  Each daughter c e l l c o n t a i n s  recently ingested  food.  a random f r a c t i o n of t h e  I t i s n o t c e r t a i n t o what extent  daughter c e l l can c o n t i n u e  the p o s t e r i o r  t o add t o t h e l e n g t h o f t h e p a r e n t a l l o r i c a .  l o r i c a s w i t h r e c e n t a d d i t i o n s a t t h e o r a l end a r e f a i r l y  Since  common, e s p e c i a l l y  on c e l l s i n l a b o r a t o r y c u l t u r e s , l o r i c a a d d i t i o n may be p o s s i b l e f o r any 'young' c e l l . maximum c e l l  C e r t a i n l y , as t h e a n t e r i o r daughter c e l l  l e n g t h , i t c o n c u r r e n t l y manufactures a complete new l o r i c a  from t h e s e c r e t i o n of m a t e r i a l h e l d i n g r a n u l e s the c e l l .  grows toward t h e  The new l o r i c a  i n the a n t e r i o r p o r t i o n of  i n v a r i a b l y hardens and grows from the p o s t e r i o r (or  a b o r a l ) end o f t h e new c e l l , o f t e n from a template c o n s i s t i n g o f a s m a l l p a r t i c l e of d e t r i t u s .  I t i s n o t known how c l o s e l y t h e r a t e s o f growth o f  c e l l and l o r i c a a r e r e l a t e d .  The a n t e r i o r daughter c e l l b e g i n s to f e e d  soon a f t e r d i v i s i o n and forms a c o m p l e t e . l o r i c a so.  very  r a p i d l y , u s u a l l y i n a day or  Whether t h e u l t i m a t e s i z e o f t h e new l o r i c a i s c h i e f l y dependent on the  n u t r i t i o n a l s t a t e o f (a) the growing c e l l , o r (b) the p a r e n t a l c e l l certain.  When c e l l s of near maximum s i z e a r e seen i n s i d e v e r y  the cause i s p r o b a b l y  small  i s not loricas,  some sudden s t r e s s r e s u l t i n g i n the detachment of  the c e l l from i t s o r i g i n a l l o r i c a .  A l t e r n a t i v e l y , t h i s c o n d i t i o n may r e s u l t  from some imbalance i n t h e r e l a t i v e r a t e s o f growth o f c e l l of l o r i c a , perhaps over s e v e r a l g e n e r a t i o n s .  Short  and a c c r e t i o n  c e l l s with  relatively  l a r g e l o r i c a s a r e e i t h e r t h e r e s u l t o f r e c e n t c e l l d i v i s i o n o r , and l e s s l i k e l y , of s t a r v a t i o n .  A newly d i v i d e d c e l l  be b o t h s h o r t and ' t h i n ' . 10  s t a r v e d s i n c e d i v i s i o n would  Some c i l i a t e s grown i n l a b o r a t o r y c u l t u r e can be  to 20 - f o l d l a r g e r a t h i g h growth r a t e s than a t low growth r a t e s due to  14  a d e l a y i n t h e maximum r a t e o f r e p r o d u c t i o n and P r e s l a n , 1969).  (Canale, e_t,al_. , 1973;  T h e r e f o r e , comparisons between t i n t i n n i d c e l l  i n a s p e c i e s should b e s t await  Hamilton sizes with-  f u r t h e r data on growth r a t e s from l a b o r a t o r y  cultures.  Data c o n s i s t i n g o f l e n g t h - f r e q u e n c y taken from f i e l d  d i s t r i b u t i o n s of t i n t i n n i d  loricas  samples, may g i v e i n f o r m a t i o n about some a s p e c t s o f t h e  ' p o p u l a t i o n dynamics' o f the l o r i c a s ; and perhaps on the r e c e n t h i s t o r y o f growth o f t h e (semi-immortal) c e l l s themselves.. T h i s s o r t o f i n f o r m a t i o n can be o b t a i n e d from almost no o t h e r f r e e - l i v i n g p r o t o z o a . Lukkarinen of  (1960) and Burkovsky  (1973) p r e s e n t e d  t i n t i n n i d l o r i c a measurements from f i e l d  Haime and  t h e two p r e v i o u s  samples.  Lorica  analyses  length-frequency  data from a t i m e - s e r i e s of samples taken a t v e r y s h o r t i n t e r v a l s , may h e l p to  d i s t i n g u i s h between two extreme t h e o r i e s of l o r i c a a c c r e t i o n , assuming  synchronous r e p r o d u c t i o n and g i v e n c e r t a i n as y e t u n v e r i f i a b l e assumptions about l o r i c a i s coohtinuous  'mortality'.  These t h e o r i e s a r e as f o l l o w s :  throughout t h e ' l i f e ' o f t h e c o n t a i n e d  cell  a) L o r i c a a c c r e t i o n and i s dependent  upon the c u r r e n t n u t r i t i o n a l s t a t e o f t h a t c e l l ; and b) L o r i c a a c c r e t i o n i s d i s c o n t i n u o u s and c o n f i n e d t o new l o r i c a s , o c c u r s o n l y immediately  following  d i v i s i o n , and i s dependent upon the n u t r i t i o n a l s t a t e o f t h e p a r e n t a l If  t h e o r y a) h o l d s , then l e n g t h - f r e q u e n c y  diagrams o f t h e l o r i c a s o f one pop-  u l a t i o n o f one s p e c i e s from a t i m e - s e r i e s o f c o n s e c u t i v e w i t h c o n d i t i o n s f o r growth improving  cell.  samples 1 to 4,  i n t h a t o r d e r and no l o r i c a m o r t a l i t y ,  would appear as i n F i g u r e 2a); and i f theory b) h o l d s , then t h e l e n g t h frequency possible.  diagrams would appear as i n F i g u r e 2b)<. Biernacka  (1965) b e l i e v e s , and I concur,  a c c r e t i o n o c c u r s immediately  Intermediate  patterns are  t h a t w h i l e most l o r i c a  a f t e r c e l l d i v i s i o n , i t can occur  i n some s p e c i e s  15  F i g u r e 2.  P o s s i b l e t h e o r e t i c a l r e l a t i o n s h i p s between t i n t i n n i d l o r i c a and frequency (see t e x t f o r d e t a i l s ) .  length  Fig. 2 a)  LORICA  LENGTH  GENETIC MAX.  2 b)  GENETIC MIN.  LORICA LENGTH  GENETIC MAX.  1.7  a t any  time.  Length-frequency diagrams of the l o r i c a s of one from E n g l i s h Bay i n F i g u r e 4.  a r e shown i n F i g u r e  3.  s p e c i e s of  Data from Burkovsky (1973) a r e  These diagrams seem to i n d i c a t e t h a t theory  c r i p t i o n of l o r i c a a c c r e t i o n than theory There have been no p r e v i o u s  tintinnid  b)  i s a b e t t e r des-  a) a t l e a s t under some c i r c u m s t a n c e s .  t h e o r e t i c a l attempts a t a n a l y s e s  of t h i s  kind.  I t would be u s e f u l i n some f u t u r e study to check t h e s e t e n t a t i v e and  other  t h e o r i e s of l o r i c a  growth and  s i z e and  age-dependent  as a m e t a b o l i c greatest  I t i s p r o b a b l e t h a t a new  ' c o s t ' to the p a r e n t a l  environ-  l o r i c a can be c o n s i d e r e d  c e l l , and  as such may  be  mainly  relatively  i n those s p e c i e s which have the l a r g e s t r a t i o of l o r i c a l e n g t h  c e l l length.  One  l o c a l species  i n p a r t i c u l a r , Helicostomella  p o s s e s s e s a l o r i c a w i t h markings which may r a t e s of l o r i c a a c c r e t i o n , e t c .  t h e i r number per  i s g r e a t l y v a r i a b l e ; and  l o r i c a s of H.  kiliensis.  ( i f any);  adjacent  top of  the  and  between the l a t t e r and  um  they are not  In s h o r t , the  t i o n s h i p s between the r a t e s of t i n t i n n i d c e l l growth and of annulus f o r m a t i o n  estimating  These ' a n n u l i ' a r e i n v a r i a b l y about 4  lorica  most numerous upon the l o n g e s t  in  These markings c o n s i s t of c l o s e l y  a n t e r i o r p o r t i o n of the l o r i c a .  to  kiliensis,  be of some f u t u r e use  narrow s t r i p s of m a t e r i a l l a i d down i n the shape of a h e l i x on  a p a r t but  ideas  ( l o r i c a ) mor-  t a l i t y r a t e s , e t c . , w i t h data from a much wider range of samples and mental c o n d i t i o n s .  shown  d i v i s i o n and the r a t e of  always rela-  the  rate  accre-  t i o n o f the whole l o r i c a , a r e unknown.  Asexual  reproduction  T i n t i n n i d c e l l s do not n e c e s s a r i l y grow and  d i v i d e most r a p i d l y when  they c o n t a i n the l a r g e s t amounts of r e c e n t l y i n g e s t e d ,  or of a s s i m i l a t e d  food  18  F i g u r e 3.  L o r i c a l e n g t h - f r e q u e n c y data f o r T i n t i n n o p s i s subacuta from s u c c e s s i v e f i e l d samples.  three  19  25r 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 NOS.8 7 6 5 4. 3 2 1  0.8 ML. of NET HAUL 30/4/70  20  30  n. n , n Unlh. 40  50  60  70  80  90  100  110  120  25 ML. of UNCONCENTRATED SAMPLE 30/4/70 0.6/ML.  5 4 NOS.3 2 1 20  30  40  50  •iff 60  rl  70  80  n. n 90  100  110 120  25 ML. of UNCONCENTRATED SAMPLE 3/5/70 n 1.6/ML.  8 . 7 6 5 NOS. 4 3 2 1 20  30  40  50  7 6  60  70  80  90  n HI n 100  110 120  25 ML. of UNCONCENTRATED SAMPLE 6/5/70 0.6/ML.  NOS.J: 3 2 1 20  30  40  50  nnn n .nnn. 60 70 80 90 100 110 120 LORICA LENGTH (um)  20  F i g u r e 4.  Seasonal abundance and l o r i c a l e n g t h s of 100 denticulata. Data from Burkovsky (1973).  Parafavella  MONTH  NOS./j  STN 1  MONTH NOS./M 170  JULY  SEPT.  60  3000  JAN.  200  180 190 200 210 220 230 240 250 260 270 280 290 300 310 LORICA  LENGTHS  MAY  (ym)  320 330 340 350 360 370 380 3W  400  22  (see S e c t i o n 4 ) •  Temperature may have a g r e a t e r e f f e c t on d i v i s i o n r a t e  than on f e e d i n g r a t e . develop s p i r a l l y  The o r a l s t r u c t u r e s o f t h e p o s t e r i o r daughter  cell  (from a primordium o r a n l a g e ) over a p e r i o d o f s e v e r a l hours  at a m i d - p o i n t i n the l a t e r a l s u r f a c e o f the p a r e n t a l c e l l , which i s a t t h a t time p r o b a b l y The  c l o s e t o i t s maximum l e n g t h f o r t h a t s p e c i e s  diameter of t h e new  (Campbell, 1926).  ( p o s t e r i o r ) o r a l r e g i o n , and t h e l e n g t h o f the o r a l  c i l i a around i t , i n c r e a s e t o g e t h e r , as the a n t e r i o r daughter c e l l forward  w e l l c l e a r of the l o r i c a .  The l a t t e r i s f i n a l l y connected to the  p o s t e r i o r daughter o n l y by a t h i n s t r a n d o f cytoplasm sized oral region.  i s extended  Throughout a t l e a s t  c l o s e t o the new  full-  t h e f i r s t p a r t o f c e l l d i v i s i o n the  p a r e n t a l o r a l r e g i o n remains s u p e r f i c i a l l y unchanged, ( u n l i k e t h a t i n many groups o f c i l i a t e s ) and may gather  The  food.  e v e n t u a l d e c l i n e o f v i a b i l i t y o f an a s e x u a l  clone  (as shown by s m a l l  s i z e , slow r e p r o d u c t i v e r a t e , e t c . ) i s a w e l l known g e n e t i c phenomenon i n c i l i a t e s i n laboratory culture. recombination.  T h i s d e c l i n e can o n l y be a r r e s t e d by s e x u a l  Presumably n a t u r a l c l o n e s o f t i n t i n n i d s a r e prone t o such de-  c l i n e s , but t h e r e i s no data on t h e s u b j e c t .  Sexual  Reorganization  T h i s i s a much l e s s common phenomenon than a s e x u a l r e p r o d u c t i o n i n t i n t i n n i d s , as i s the case i n a l l n a t u r a l p o p u l a t i o n s volves  the p a i r i n g (or c o n j u g a t i o n )  of c e l l s belonging  ent mating types w i t h i n a m o r p h o l o g i c a l l y the purpose o f g e n e t i c r e c o m b i n a t i o n  Conjugation  Mating i n -  t o some o f t h e d i f f e r -  defined species of c i l i a t e f o r  through the exchange o f micro n u c l e i .  Conjiigants e v e n t u a l l y form c y t o p l a s m i c t h i s exchange.  of c i l i a t e s .  connections  i n the o r a l r e g i o n f o r  has been seen most commonly i n t h i s study i n f a i r -  l y abundant l a t e summer-fall p o p u l a t i o n s o f t i n t i n n i d s .  For example, i n one  23 sample i n September 1973,  a p p r o x i m a t e l y 25%  n i v a l i s , about 20% o f T i n t i n n o p s i s p a r v u l a i n conjugating unknown.  pairs.  The  During a feeding  d i d not  feed.  and  about 10%  Stenosomella  of T_. subacuta were  s p e c i f i c f a c t o r s which s t i m u l a t e t h i s p r o c e s s  are  experiment a t t h a t time, one  T\  subacuta remained i n c o n j u g a t i o n l o n g e r , and  of i n d i v i d u a l s of  p a i r of c e l l s o f  f o r a t l e a s t 1% hours and  p r o b a b l y much  Nothing i s known o f the d e t a i l s o f the mating p r o -  cesses nor o f the p o s s i b l e number of  'mating types'  i n any  s p e c i e s of  tin-  tinnid .  Gold and  Pollingher  (1971) c l a i m to have observed an unusual type of  sexual process i n a laboratory  c u l t u r e of one  a mobile microgamete which a t t a c h e d gamete.  itself  s p e c i e s of t i n t i n n i d  t o the p o s t e r i o r end  of the macro-  T h e i r evidence seems i n s u f f i c i e n t f o r t h e i r c l a i m to be  unreservedly.  M o t i o n and  The  phenomenon has  not been seen i n t h i s  study.  shown t h a t i n a wide v a r i e t y of marine a l g a l  e l l a t e s there  i s no obvious r e l a t i o n between c e l l s i z e and  the d i s t a n c e s  t r a v e l l e d per  species.  each s p e c i e s has  Rotation  second may and  range from 10  a c t e r i s t i c of many s p e c i e s . f a s t e r than s m a l l ones, and  He  to 40 c e l l l e n g t h s  Bullington  found t h a t c e l l r o t a t i o n and  (1925) s t u d i e d  per  and in  but the  h e l i c a l paths were c h a r -  found t h a t l a r g e r s p e c i e s were g e n e r a l l y  t h a t the f a s t e r t h e i r speed the fewer the  B u l l i n g t o n a l s o showed t h a t most c i l i a t e s p e c i e s had  5 or 6 c e l l l e n g t h s  flag-  swimming r a t e  g y r a t i o n a r e the r u l e i n f l a g e l l a t e s  a c h a r a c t e r i s t i c motion.  motion of c i l i a t e s and  they made.  supported  Metabolism  Throndsen (1973) has  different  involving  a speed of  second, r a t h e r slower i n r e l a t i o n to s i z e than  f l a g e l l a t e s mentioned above, but much f a s t e r inyum/second. r e s u l t s the paths of the f a s t e r c i l i a t e s d e s c r i b e d  In  turns  the  Bullington's  fewer s p i r a l s per body  24  l e n g t h t r a v e l l e d , than d i d the slower s p e c i e s . (200 x 100 urn) as moving a t about 1000  He s t a t e s Prorbdon marinus  um/second.  I n t h i s study, Prorodon sp.  has been seen to move a t between 5 and 12 c e l l l e n g t h s / s e c o n d , w i t h r o t a t i o n but v e r y i n f r e q u e n t h e l i c a l motions. tintinnids. tintinnid  Bullington  ( l o c . c i t . ) d i d not study  I t has been o c c a s i o n a l l y p o s s i b l e to make d i r e c t measurements of  speeds i n t h i s study.  For example,  the speed of Stenosomella  v e n t r i c o s a has been e s t i m a t e d a t d i f f e r e n t times a t f o u r and a t e i g h t body l e n g t h s per second.  The amount o f energy expended  on motion by v e r y s m a l l organisms seems  to be a v e r y s m a l l p r o p o r t i o n of t h e i r  t o t a l m e t a b o l i c energy l o s s e s .  and C a s t e n h o l z (1971) s t a t e t h a t the energy r e q u i r e d to move a g l i d i n g  Halfen blue-  green b a c t e r i u m cannot be more than 5% of t h e energy produced by o x i d a t i v e phosphorylation.  L i k e w i s e , P a v l o v a and Lanskaya  (1969) found that i n f i v e  s p e c i e s o f B l a c k Sea d i n o f l a g e l l a t e s the p e r c e n t a g e of a c t i v e p i r a t i o n i n t h e t o t a l metabolism was  about 1%.  (motion) r e s -  In t h e c a s e o f the much  l a r g e r copepods, Vlymen (1970) e s t i m a t e d t h a t e x t e n s i v e d a i l y v e r t i c a l  mig-  r a t i o n s would r e q u i r e the e q u i v a l e n t of l e s s thaii 1% o f t h e b a s i c m e t a b o l i c r a t e o f these organisms.  In a l l  i n l e n g t h energy i s expended  swimming organisms s m a l l e r than about 1  m o s t l y to overcome t h e v i s c o s i t y of the medium  r a t h e r than the i n e r t i a o f t h e organism.  Also, turbulent flow i s n o t created  by s m a l l , slow organisms, and t h e r e f o r e energy need not be expended come i t .  I t i s not l i k e l y  cm.  to o v e r -  t h a t the c o n s t a n t motion o f t i n t i n n i d s w i l l be an  important p a r t o f t h e i r t o t a l m e t a b o l i c a c t i v i t y , p a r t i c u l a r l y i n warm water, the v i s c o s i t y of which i s lower than t h a t of c o l d water.  A v e r y rough e s t i m a t e o f t h e t o t a l oxygen consumption of T i n t i n n o p s i s subacuta was  made w i t h t h e use of a d i f f e r e n t i a l m i c r o r e s p i r o m e t e r as  25  d e s c r i b e d by S w i f t  (1974).  F i v e hundred t i n t i n n i d s of one  s p e c i e s from a  net.sample were p l a c e d i n the r e s p i r o m e t e r i n 3 ml of f i l t e r e d 15 C.  T h i s was  thought  crowding, but Gold  seawater a t  to be a n e c e s s a r y but u n n a t u r a l l y h i g h degree of  (1973) has  grown h e a l t h y p o p u l a t i o n s of t i n t i n n i d s i n  h i g h e r c o n c e n t r a t i o n s than t h i s .  S i n c e no  (or v e r y l i t t l e ) food was  available,  the r e s p i r a t i o n measured might be c o n s i d e r e d t h a t of mobile but v e r y crowded, s l o w l y s t a r v i n g organisms. alive after  the 18%  However, s i n c e o n l y 38% of t h e t i n t i n n i d s were  hr e x p e r i m e n t a l  p e r i o d , the r e s p i r a t i o n measured may  p a r t l y the r e s u l t of b a c t e r i a l metabolism. i g n o r e d , the t o t a l oxygen consumption was  be  I f the l a t t e r p o s s i b i l i t y i s the e q u i v a l e n t of between 1.6  and  -4 5.9  x 10  u l / h r / T i n t i n n o p s i s subacuta.  T h i s i s e q u i v a l e n t to a mean d a i l y consumption r a t e of 0.009 u l 0^/ T_. subacuta. c i l i a t e s and  There a r e no  l i t t l e f o r other microzooplankton;  a female Brachionus 0.14  comparable data f o r t i n t i n n i d s or o t h e r p l a n k t o n i c  plicatilis  r o t i f e r c a r r y i n g t h r e e eggs u t i l i s e s about  u l 0 2 / r o t i f e r / d a y . . P e t i p a , and M a r s h a l l and  s p i r a t i o n of marine copepod n a u p l i i . work by M a r s h a l l , 1973) 0.10  but Doohan (1973) s t a t e s t h a t  Orr have measured the r e -  In t h e i r r e s u l t s  A c a r t i a c l a u s i i stage V and  u l 02/nauplius/day;  and  (summarized w i t h  other  VI n a u p l i i used about  Calanus f i n m a r c h i c u s stage I I I n a u p l i i used about  2 0.19  u l 0 /nauplius/day.  The m e t a b o l i c r a t e s f o r the a d u l t s of t h e s e  copepod s p e c i e s were about 15 times for  A. c l a u s i i females  and  two  g r e a t e r than t h a t o f the quoted n a u p l i u s  50 times g r e a t e r i n the case of CJ. f i n m a r c h i c u s  ( i n M a r s h a l l , 1973). The weight of A. c l a u s i i stage V and Marshall  (1973) to be about 0.10  T h e i l a c k e r and McMaster  VI n a u p l i i can be c a l c u l a t e d  ug dry weight.  From the data g i v e n  (1971) a l a r g e i n d i v i d u a l of Brachionus  from  by  plicatilis  26  would have a volume of 1 to 2 x 10 a wet  6  um  3  .  I f a s p e c i f i c d e n s i t y of 1.0,  weight to dry weight r a t i o o f 10/1  a r e assumed, then a d r i e d ]3.  p l i c a t i l i s female would weigh about 0.15 r a t e s , and  4 (7 x 10  ug.  Therefore  the  respiration  d r y weights a r e s i m i l a r f o r A. c l a u s i i l a t e n a u p l i a r stages  13. p l i c a t i l i s females.  and  Using t h e above c o n v e r s i o n s  and  T i n t i n n o p s i s subacuta  3 um  ) would have addry weight of about 0.007 ug.  m i c r o z o o p l a n k t o n organisms have an a p p r o x i m a t e l y . s i m i l a r  Thus these  three  respiration rate  per ug dry w e i g h t . The  r e s p i r a t i o n r a t e of T_. subacuta may  be c a l c u l a t e d i n terms of  ug  12 Carbon/tintinnid/day  t h u s : —hO.009 x  0.0048 u g C / t i n t i n n i d / d a y .  2 2  ^ x 1.0  (respiratory quotient)  I f a carbon/dry weight r a t i o of 0.5  i s assumed,  then the mean r e s p i r a t i o n r a t e g i v e n i s e q u i v a l e n t to about 137% body weight/day.  TC. subacuta  T h i s f i g u r e seems a l i t t l e h i g h , but not unreasonable i n  view of the f a c t t h a t a t i n t i n n i d may  e a s i l y consume the e q u i v a l e n t of 2-300%  of i t s body weight i n food i n a d a y . ( s e e e S e n e r a l q u o t i e n t of 0.8  =  may  be more s u i t a b l e than one  respiratory substrate  Discussion).  of 1.0  i f l i p i d s a r e the c h i e f  (see M a t e r i a l s and Methods S e c t i o n ) .  r e s p i r a t i o n r a t e would be  e q u i v a l e n t to about 110%  A respiratory  I f so then  the  T_. subacuta body weight/  day. Feeding T h i s s u b j e c t w i l l be d i s c u s s e d i n more d e t a i l . i n o t h e r predominant l i v i n g  items i n the environmnet of t i n t i n n i d s , which a r e  enough to be eaten by them, a r e s m a l l l a t e d algae. i s not  As  sections.  (3 to 30 jam) naked u n i c e l l u l a r  t i n t i n n i d s are, i n a general  s u r p r i s i n g t h a t t h e i r food c o n t e n t  derance of f l a g e l l a t e s .  The small flagel-  sense, u n s e l e c t i v e f e e d e r s , i t  i n g e n e r a l , r e f l e c t s t h i s prepon-  O c c a s i o n a l l y , s m a l l diatoms, t h e c a t e  dinoflagellates,  27  s i l i c o f l a g e l l a t e s , o t h e r t i n t i n n i d s , d e t r i t u s p a r t i c l e s or b a c t e r i a ( u s u a l l y on the l a t t e r ) form p a r t of the c e l l of  contents.  Blooms of one or more s p e c i e s  f l a g e l l a t e s a r e u s u a l l y soon f o l l o w e d w i t h i n 1 or 2 days, or a r e accom-  panied by, blooms of one  or two  s p e c i e s of  tintinnids.  Blooms of food c e l l s a r e not always the r e s u l t of p h o t o s y n t h e s i s . example, i n l a t e December 1972, of  T i n t i n n i d i u m mucicola  u n u s u a l l y h i g h numbers ( f o r the time of y e a r )  were seen i n samples from E n g l i s h Bay  were v e r y h i g h numbers of a f l a g e l l a t e diameter, had  and not much e l s e .  During  been complete, and heavy r a i n had  some s m a l l l a n d s l i d e s had area.  The  short-lived flagellate  (or c o c c o i d bacterium) 2 - 3  the p r e v i o u s  /im i n  t e n days the c l o u d  f a l l e n almost c o n t i n u o u s l y .  (or b a c t e r i a l ) bloom was  c e r t a i n l y dependent on the uptake of a l l o c h t h o n o u s  cover  As a  result,  sampling  t h e r e f o r e almost  o r g a n i c compounds i n the  O c c a s i o n a l l y , blooms of f l a g e l l a t e s a r e not  lowed by l a r g e numbers of t i n t i n n i d s . f l a g e l l a t e was  i n which there  added much t u r b i d r u n - o f f to the sea i n the  s u r f a c e l o w - s a l i n i t y water.  For  Except  f o r those cases  fol-  i n which the  o b v i o u s l y too l a r g e f o r the a v a i l a b l e t i n t i n n i d s p e c i e s to  i n g e s t , as f o r a bloom of the d i n o f l a g e l l a t e Prorocentrum micans i n t h e r e seem no simples  e x p l a n a t i o n s f o r these  1971,  'unaccompanied' blooms of  flagel-  lates .  The o p p o s i t e s i t u a t i o n a l s o o c c u r r e d , where a sample c o n t a i n e d many t i n t i n n i d s .  In such c a s e s , the t i n t i n n i d s c o n t a i n e d  food items  or  s t o r a g e g r a n u l e s , as ah i n d i c a t i o n o f a r e c e n t low l e v e l of food i n t a k e .  A  sample taken the f o l l o w i n g day  few  relatively  o f t e n c o n t a i n e d many fewer t i n t i n n i d s .  f o r e the p r e v i o u s sample e i t h e r r e p r e s e n t e d  There-  a) a food-poor environment i n  which t i n t i n n i d s had been t e m p o r a r i l y c o n c e n t r a t e d by water movements; or b) an environment i n which t i n t i n n i d r e p r o d u c t i o n had  'overshot'  that of i t s  28  food, and where the food had as a r e s u l t become g r e a t l y d e p l e t e d c a u s i n g the t i n t i n n i d p o p u l a t i o n t o ' c r a s h ' from s t a r v a t i o n .  Such overshoots  are possible  because d e c l i n e s i n the r e p r o d u c t i v e r a t e o f l a b o r a t o r y p o p u l a t i o n s a t e s and o t h e r p r o t o z o a rates;  a r e known to l a g behind  ( M i t c h i s o n , 1971;  of c i l i -  d e c l i n e s i n f e e d i n g and growth  W i l l i a m s , 1971, 1972).  Among t h e m i c r o z o o p l a n k t o n as a whole, some o f the l a r v a l , forms appear to  take l i t t l e  i s much food is  o r no f o o d ; b u t o t h e r w i s e  ' o v e r l a p ' , and p o s s i b l y a l s o c o m p e t i t i o n  ever l i m i t i n g .  microzooplankters,  in and  f o r food, i f the l a t t e r  and have t h e f a s t e s t r e p r o d u c t i v e r a t e s ; some o f t h e metaSynchaeta l i t t o r a l i s c o n t a c t and i n g e s t a l g a l  a f a s t e r r a t e than many c i l i a t e s ,  rapidly  there  Although t h e c i l i a t e s a r e almost always t h e most numerous  zoans, such as the r o t i f e r at  (even amongst the t i n t i n n i d s )  (personal observations) .  cells  (see S e c t i o n 4 c ) , and a l s o reproduce v e r y  Large p o p u l a t i o n s o f S_. l i t t o t a l i s  i n s h o r e water of f a i r l y low s a l i n i t y  occur  (<10%^ and h i g h temperature  (>15°C);  as such almost c e r t a i n l y have a g r e a t e r e f f e c t on t h e f l a g e l l a t e popu-  l a t i o n s than do c i l i a t e s or any o t h e r m i c r o z o o p l a n k t o n .  There i s no p u b l i s h e d  i n f o r m a t i o n on t h e f e e d i n g o f t h i s genus o f r o t i f e r , and v e r y l i t t l e i n f o r m a t i o n has been added d u r i n g t h i s study  (but see S e c t i o n 4 c ) .  further However,  i n f o r m a t i o n on l a b o r a t o r y f e e d i n g , growth and energy budgets o f the b r a c k i s h water r o t i f e r Brachionus p l i c a t i l i s may be found i n t h e papers o f Doohan (1973) and T h e i l a c k e r and McMaster  (1971).  P r e d a t i o n on and Among T i n t i n n i d s Questions c o n c e r n i n g  the i d e n t i t i e s and a c t i v i t i e s o f the p r e d a t o r s o f  p l a n k t o n i c c i l i a t e s a r e important but  to an understanding  t h e r e a r e o n l y the s c a n t i e s t answers.  o f p l a n k t o n i c food webs  Of a l l t h e s e c i l i a t e s , o n l y ( t h e  l o r i c a s e o f ) t i n t i n n i d s l e a v e r e c o g n i s a b l e remains a f t e r m a s t i c a t i o n .  This  29  ensures t h a t c i l i a t e s w i l l o n l y be found i n n a t u r a l samples, except by chance, i n s i d e those p r e d a t o r s w i t h some form o f primary i n t r a c e l l u l a r d i g e s t i o n (e.g. other p r o t o z o a ) ,  those w i t h r e l a t i v e l y weak powers o f m a s t i c a t i o n  i f e r s and chaetognaths),  (e.g. r o t -  o r those w i t h no m a s t i c a t i o n and slow r a t e s o f e x t r a -  c e l l u l a r d i g e s t i o n (e.g. some f l a t f i s h l a r v a e ) .  Other l i k e l y p r e d a t o r s o f  t i n t i n n i d s would need to be checked w i t h t h e use o f r a d i o a c t i v e l y - l a b e l l e d t r a c e r experiments.  Data on t h e p o t e n t i a l i n g e s t i o n o f t i n t i n n i d s has come  from o b s e r v a t i o n o f t h e food grooves o f b e n t h i c c r i n o i d s , and t h e mouthparts of p l a n k t o n i c c r u s t a c e a  (Bainbridge^1958).  I t i s improbable t h a t p l a n k t o n i c  c i l i a t e s have any s p e c i a l i z e d p r e d a t o r s , and l i k e l y p r e d a t o r s would i n c l u d e any  f a i r l y i n d i s c r i m i n a t e p l a n k t o n i c o r b e n t h i c organisms w e l l adapted f o r  the i n g e s t i o n o f o b j e c t s between 30yum and 300/am l o n g .  C i l i a t e s form about 90% o f t h e d i e t o f t h e l a r v a e o f t h r e e s p e c i e s o f freshwater ing  f i s h d u r i n g the f i r s t  (Korniyenko,  1971).  f o u r days o f t h e i r exogenous mode o f f e e d -  As t h e motions of most c i l i a t e s a r e not e r r a t i c ,  they almost c e r t a i n l y do not e l i c i t predators  s e a r c h i n g movements by some r a p t o r i a l  such as chaetognaths and copepods, but a r e p r o b a b l y  eaten as a r e s u l t o f random encounters.  However, Pearre  captured and  (1973), has shown  t h a t t i n t i n n i d s can form up to 18% o f the d i e t o f young (Stage In t h i s study, v a r i o u s t i n t i n n i d s p e c i e s have been seen i n s i d e  I) chaetognaths. polychaete  l a r v a e , the r o t i f e r Synachaeta l i t t o r a l i s , t h e l a r g e c i l i a t e s ProrOdon sp. and  Strombidium  (Lohmaniella)  s p i r a l i s , and t h e t i n t i n n i d s T i n t i n n o p s i s  subacuta, T. c y l i n d r i c a and F a v e l l a s e r r a t a . herbivorous  and c a n n i b a l i s t i c  As t i n t i n n i d s a r e both p r i m a r i l y  ( p e r s o n a l o b s e r v a t i o n ) ; as t h e i r p r e d a t o r s i n -  c l u d e organisms which a r e v a r i o u s l y p l a n k t o n i c , b e n t h i c , c a r n i v o r o u s o r p r e dominantly h e r b i v o r o u s ;  and as some p r e d a t o r s  l a t e r become t e r t i a r y  carnivores  30  (e.g. f i s h l a r v a e ) , i t can be  seen t h a t the m i c r o z o o p l a n k t o n may  of some ( s t r u c t u r a l l y ) extremely complex food webs.  form the base  From another p o i n t of  view, omnivory, which i s probably  widespread i n marine plankton,might be  s i d e r e d to have a s i m p l i f y i n g and  s t a b i l i z i n g e f f e c t on  the dynamics o f  confood  webs.  Encystment There i s no  s t r o n g e v i d e n c e t h a t t i n t i n n i d s or any  c i l i a t e s can form r e s i s t a n t and would probably  few  t h i s study.  This  marine ability  l i k e l y c y s t s have  However, s i n g l e t h i c k - w a l l e d o b j e c t s of  the  shape have been seen i n s i d e the l o r i c a s of F a v e l l a s e r f a t a i n a  samples taken from Georgia  preservation two  m e t a b o l i c a l l y dormant c y s t s .  be u s e f u l to t i n t i n n i d s i n t h i s a r e a , but  not been seen d u r i n g appropriate  planktonic  S t r a i t and  (F.J.R. T a y l o r , u n p u b l i s h e d  photographed s e v e r a l y y e a r s a f t e r data).  A few  i n d i v i d u a l l o r i c a s of  s p e c i e s of t i n t i n n i d s from the South-West I n d i a n Ocean have been seen to  c o n t a i n plugs j u s t i n s i d e the o r a l end. contained  of these p r e s e r v e d  what appeared to be a p a i r of r e c e n t l y d i v i d e d c e l l s  unpublished quiescent  One  data).  p l u g s have not been seen d u r i n g  this  Taylor,  encysted  or n o t .  Loricas  with  study.  ciliates  U n t i l r e c e n t l y i t has been a x i o m a t i c heterotrophs,  (F.J.R*  Such l o r i c a plugs might be u s e f u l to a m e t a b o l i c a l l y  t i n t i n n i d whether the l a t t e r was  "Photosynthetic"  l o r i c a s also  to c o n s i d e r c i l i a t e p r o t o z o a  consuming the complex p r o d u c t s of p h o t o s y n t h e s i s  as  or chemo-  s y n t h e s i s c a r r i e d out by other organisms; or as the h o s t s of symbionts which are e n t i r e a l g a l c e l l s .  D u r i n g t h i s study, and  i n g l a r g e numbers of f i e l d  as a d i r e c t r e s u l t of examin-  samples f o r t i n t i n n i d s , s e v e r a l p l a n k t o n i c  were found to c o n t a i n c h l o r o p l a s t s and  other  ciliates  ' f o r e i g n ' organellesqof. a l g a l  o r i g i n which were not c i l i a t e cytoplasm. a discussion et ,al_.  Descriptions  of t h e i r p o s s i b l e  (1971) and  a t times i n g e s t  h e t e r o t r o p h s and  of the  and  ' f r e e ' and  undigested i n  the  u l t r a s t r u c t u r e of t h e s e organisms  e c o l o g i c a l s i g n i f i c a n c e may  Blackbourn e t . a l .  p l a s t s prove to be  that  i n s i d e food v a c u o l e s but  (1973) .  found i n  Taylor  S e v e r a l of t h e s e c i l i a t e s  d i g e s t whole a l g a l c e l l s ,  so  i f the u n d i g e s t e d  f u n c t i o n a l , the h o s t c i l i a t e s can be  as f u n c t i o n a l a u t o t r o p h s .  be  also  chloro-  c o n s i d e r e d as  I t i s i n t e r e s t i n g and  and  both  inexplicable  thesesundirgested chflioroplasts were never found i n s i d e t i n t i n n i d s i n t h i s  study, even i n those s p e c i e s w i t h t r a n s p a r e n t l o r i c a s which might a l l o w passage o f enough l i g h t  for photosynthesis.  This p o s s i b l e  semi-autotrophy  amongst some members of the m i c r o z o o p l a n k t o n , makes a c o n s i d e r a t i o n food-webs even more f a s c i n a t i n g and  complex.  the  of marine  32  3)  a)  Sampling and i n i t i a l  MATERIALS AND  METHODS  treatment  A l l t i n t i n n i d s and o t h e r m i c r o z o o p l a n k t o n used i n experiments were obt a i n e d by sampling i n s h o r e s u r f a c e seawater from docks or j e t t i e s as  close  to the time o f h i g h - t i d e as p o s s i b l e .  salinity  C o n c u r r e n t l y , temperature and  o b s e r v a t i o n s were r e c o r d e d and samples were taken f o r examination and vation.  preser-  An u n c o n c e n t r a t e d bucket sample and a s h o r t h a u l w i t h a 30 cm  dia-  meter net made o f monofilament n y l o n .mesh o f 50 /im a p e r a t u r e were taken.  The  n e t h a u l was made by w a l k i n g a l o n g the dock or j e t t y as s l o w l y as p o s s i b l e (^0.5  m.p.h.) and towing t h e net j u s t submerged.  the water as g e n t l y as p o s s i b l e w i t h the cod-end  The net was  removed from  i n a bucket o f seawater,  and the c o n t e n t s poured g e n t l y i n t o a 4 - l i t r e i n s u l a t e d c o n t a i n e r which had p r e v i o u s l y been h a l f - f i l l e d w i t h s u r f a c e seawater. water was  t h e n added  More u n c o n c e n t r a t e d s e a -  to a f i n a l q u a n t i t y o f 3 l i t r e s .  I f i t was  apparent  t h a t many z o o p l a n k t o n l a r g e r than 400 um had been g e t t e d , the p a r t i a l l y uted n e t sample was  dil-  poured g e n t l y through a s h o r t perspex tube f i t t e d a t one  end w i t h n y l o n mesh of 75 yum a p e r t u r e .  The f i l t r a t e from t h i s p r o c e s s was  d i l u t e d and p l a c e d i n a s e p a r a t e i n s u l a t e d c o n t a i n e r . c o n c e n t r a t e d seawater was  About  3 l i t r e s o f un-  placed i n a t h i r d insulated container.  The  trip  from dock o r j e t t y to the l a b o r a t o r y took from between 2 minutes and 1 hour, depending on l o c a t i o n .  The temperature of the water, and the c o n d i t i o n of  the organisms i n the c o n t a i n e r s u s u a l l y remained unchanged f o r a t l e a s t hours.  6  S u r f a c e seawater temperatures were measured w i t h an u n p r o t e c t e d  thermometer, and s a l i n i t i e s were e s t i m a t e d from the s p e c i f i c g r a v i t y as measured w i t h a hydrometer.  The l a t t e r was  checked a g a i n s t an Auto-Lab  s a l i n o m e t e r and found to d i f f e r from i t by no more than l%oOver the  inductive temperature  33  range of t h e samples.  T h i s amount o f e r r o r i s unimportant  t o l e r a n c e o f t i n t i n n i d s t o changes i n s a l i n i t y .  given the great  Transfers of t i n t i n n i d s ,  o t h e r p r o t o z o a and c i l i a t e d m i c r o z o o p l a n k t o n were made w i t h d i s p o s a b l e g l a s s P a s t e u r p i p e t t e s drawn out t o a t e r m i n a l diameter o f about and f i t t e d w i t h a s m a l l hard rubber b u l b .  150 yum  Copepod a d u l t s a n d - n a u p l i i . were  t r a n s f e r r e d w i t h p i p e t t e s w i t h a mouth diameter o f a p p r o x i m a t e l y 5yum.  Approximately  100 mis o f most o f t h e unconcentrated and t h e n e t t e d  samples were p r e s e r v e d w i t h L u g o l ' s i o d i n e s o l u t i o n . c e n t r a t e d s o l u t i o n were added to screw-top added.  initial  Four drops o f t h e con-  g l a s s j a r s , b e f o r e t h e sample was  T h i s ensured t h e r a p i d f i x a t i o n o f microorganisms  p r e s e r v a t i v e was added i f t h e organisms amount o f p r e s e r v a t i v e .  i n the-sample.  Preserved  samples kept a i r - t i g h t and dark  where c i r c u m s t a n c e s p e r m i t t e d , formaldehyde  phosphate and d i l u t e d w i t h seawater to p r e s e r v e t i n t i n n i d s .  More  were so numerous as t o absorb t h e  f o r f o u r y e a r s showed l i t t l e i n d i c a t i o n o f c e l l l y s i s o r l o s s o f s t a i n . some experiments  field  to a f i n a l  In  buffered with  c o n c e n t r a t i o n o f 3%, was used  Of t h e f i x a t i v e s b e s t s u i t e d f o r c y t o l o g i c a l work:  g l u t e r a l d e h y d e b u f f e r e d w i t h phosphate proved u n s a t i s f a c t o r y i n t h i s work as a f i x a t i v e and as a p r e s e r v a t i v e , and osmium t e t r o x i d e was found t o be too dangerous to use i n the working  The s i z e  'spectrum'  area.  o f p a r t i c l e biomass (volume) of many f i e l d  samples  was measured w i t h a Model B C o u l t e r Counter w i t h i n 1 o r 2 hours a f t e r the .(sampQ-re had been c o l l e c t e d volumes o f p a r t i c l e s  (see a l s o S e c t i o n 3b ( i v ) ) .  The t o t a l numbers and  ( l i v i n g and n o n - l i v i n g ) were e s t i m a t e d f o r s e v e r a l a r -  b i t r a r y s i z e c l a s s e s from a p p r o x i m a t e l y 2 yum to 30 /am diameter Parsons,  1967).  (Sheldon and  34  The  food c o n t e n t s o f l i v e  t i n t i n n i d s immobilized  by c o v e r s l i p  pressure  were e s t i m a t e d w i t h i n one or two hours a f t e r c o l l e c t i o n o f t h e sample. d e t a i l s o f these methods a r e g i v e n i n S e c t i o n 3b ( i i ) . of  t h e number, degree o f 'clumping',  of  food i t e m s .  More  E s t i m a t e s were made  type, c o l o u r , s i z e and s t a t e o f d i g e s t i o n  The type of food i t e m i n s i d e the t i n t i n n i d s c o u l d be e a s i l y  i d e n t i f i e d o n l y i n the case o f the B a c i l l a r i o p h y c e a e , Dinophyceae, Euglenophyceae, and a s m a l l number o f o t h e r organisms i n o o t h e r f a m i l i e s o f a l g a e . D e t r i t u s and protozoans tified  ( e . g . o t h e r t i n t i n n i d s ) c o u l d a l s o be c l e a r l y  as i n g e s t e d f o o d .  Approximate e s t i m a t e s were made o f t h e number o f  i d e n t i f i a b l e s p h e r i c a l food s t o r a g e g r a n u l e s 'few' ter  ( i . e . 'many', The l a t -  e s t i m a t e s c o u l d be c o n s i d e r e d as analogous to measurements o f ' c o n d i t i o n S i n c e c i l i a t e s a r e n o t known to accumulate i n -  s o l u b l e p r o t e i n or carbohydrate, lipids.  these g r a n u l e s may w e l l be composed  The t o t a l amount o f l i p i d  t a i n i n g n e u t r a l f a t granules Tetrahymena pyr-Lformis for  inside tintinnids  or 'none') and the approximate average s i z e o f suck g r a n u l e s .  f a c t o r ' i n l a r g e r animals.  of  iden-  (Hill,  per c e l l ,  1972).  s i z e o f any e a r l y s i g n s o f c e l l  cilia.  and the number o f c e l l s  L i p i d s a r e a l s o the major s u b s t r a t e s  division  loc. cit.) .  The presence and  ( o r a l anlage) i n the c i l i a t e s were  t o g e t h e r w i t h the s i z e s of t h e c e l l s and t h e l e n g t h o f t h e i r L a s t l y , t h e dimensions o f t h e t i n t i n n i d l o r i c a s  oral  ( i f any) were meas-  u r e d , and t h e l e n g t h noted o f any p o r t i o n s o f any o b v i o u s l y d i f f e r e n t i a l , which might i n d i c a t e r e c e n t l o r i c a a c c r e t i o n . of  t h e gut o f r o t i f e r s , t h e p i g m e n t a t i o n  eggs ( s e x u a l and a s e x u a l ) were e s t i m a t e d . were noted reasons  con-  i s g r e a t e s t i n r a p i d l y growing p o p u l a t i o n s o f  a e r o b i c metabolism i n t h i s s p e c i e s ( H i l l ,  noted;  largely  mater-r  The approximate f u l l n e s s  o f t h e i r food and t h e number o f Whenever p o s s i b l e , t h e food  f o r a t l e a s t 10 o f a l l s p e c i e s o f t i n t i n n i d s i n a sample.  items For  o f s c a r c i t y o f f o r l a c k o f a v a i l a b l e time t h i s was o f t e n i m p o s s i b l e ,  35  and  then o n l y 2 or 3 o f the l e s s abundant t i n t i n n i d s p e c i e s were examined.  b)  E x p e r i m e n t a l Methods (i)  General comments  The f e e d i n g r a t e s of organisms can be measured d i r e c t l y o r i n d i r e c t l y . D i r e c t methods i n c l u d e ( i ) o b s e r v a t i o n and ( i i ) counts o f t h e number o f food items accumulated  i n s i d e an organism  c i a b l e d i g e s t i o n to have  feegun.  i n a p e r i o d o f time too s h o r t f o r appre-  I n d i r e c t methods i n c l u d e ( i i i ) the uptake o f  14 tracers  (e.g.  C - l a b e l l e d a l g a e ) and ( i v ) counts of t h e number of food  items  i n t h e s u r r o u n d i n g medium (e.g. w i t h a C o u l t e r Counter) b e f o r e and a f t e r feeding.  Method ( i i ) can o n l y be used  i n those organisms such as t i n t i n n i d s  which e a t r e l a t i v e l y s l o w l y and do n o t m a s t i c a t e the food b e f o r e d i g e s t i o n . D i r e c t methods a r e v e r y a c c u r a t e and v e r y s e n s i t i v e , but must o f t e n be c a r r i e d out under r e l a t i v e l y a r t i f i c i a l c o n d i t i o n s and can l e a d to g r e a t v a r i a b i l i t y of r e s u l t s .  The b e s t use of i n d i r e c t methods r e q u i r e s c o n s i d e r a b l e  knowledge o f the p h y s i o l o g y o f the organisms used; and n e c e s s i t a t e s , i n the case of slow f e e d e r s , the use of r e l a t i v e l y l o n g experiments.  However, i n -  d i r e c t methods can be used under more n a t u r a l c o n d i t i o n s than some d i r e c t methods and u s u a l l y g i v e l e s s v a r i a b l e All  results.  f o u r of the above e x p e r i m e n t a l methods were used  i n this  study: i  d i r e c t o b s e r v a t i o n ; the c o u n t i n g o f accumulated  food items; the c o u n t i n g o f  14 C - l a b e l l e d a l g a l f o o d ; and C o u l t e r counts o f t h e p a r t i c l e s i n the medium. 14 None was w h o l l y s a t i s f a c t o r y f o r a v a r i e t y of r e a s o n s . i n p a r t i c u l a r proved  to be too d i f f i c u l t  The  to use w i t h . t i n t i n n i d s due to low  r a t e s o f i n g e s t i o n and t h i s technique was soon d i s c a r d e d . from d i r e c t o b s e r v a t i o n was s p a r s e and d i f f i c u l t (see S e c t i o n 4 b ) .  C<~tracer method  The d a t a o b t a i n e d  to r e l a t e to o t h e r d a t a  T h e r e f o r e most o f the u s e f u l d a t a has been o b t a i n e d  from  36  counts o f accumulated  food  ( S e c t i o n 4a) and from C o u l t e r Counter  experi-  ments ( S e c t i o n 4 c ) .  The e x p e r i m e n t a l organisms  (mainly t i n t i n n i d s ) were f e d w i t h  n a t u r a l p h y t o p l a n k t o n and o t h e r p a r t i c l e s from unconcentrated  either:  seawater;  w i t h one o r more l a b o r a t o r y p h y t o p l a n k t o n c u l t u r e s o f s i n g l e o r mixed s p e c i e s c o m p o s i t i o n ; o r w i t h n a t u r a l and s y n t h e t i c i n e r t p a r t i c l e s such as t r e e p o l l e n and p o l y s t y r e n e l a t e x s p h e r e s . were o f l o c a l  Many o f t h e p h y t o p l a n k t o n  cultures  origin.  Some c o n s i s t e n c y i n the q u a l i t y o f t h e l a b o r a t o r y p h y t o p l a n k t o n food was a c h i e v e d by u s i n g o n l y one type o f c u l t u r e medium, and by o n l y t a k i n g sub-samples f o r e x p e r i m e n t a l use from c u l t u r e s which were l e s s than two weeks o l d and i n the e x p o n e n t i a l growth phase. ensured  T h i s p r a c t i c e should have  t h a t t h e p h y t o p l a n k t o n were o f r e l a t i v e l y h i g h food v a l u e , w i t h r e -  l a t i v e l y l a r g e r amounts o f p r o t e i n and v i t a m i n s e t c . , than i f t h e samples had been taken from o l d e r c u l t u r e s . onl'l>oealsseawa'6erpplus of n u t r i e n t s .  The c u l t u r e medium used  a v e r y s m a l l amount o f s o i l e x t r a c t and a good b a l a n c e  I t s c o m p o s i t i o n was as f o l l o w s : IN I LITRE  875 mis  Filtered  175 mis  D i s t i l l e d water  0.25 G  Tris  0.10 G  NaNO  0.01 G  K HP0  0.03 G  N a „ S i 0 + 1 0 mis IN HCL  2  3 4  o  3  G  seawater  (Hydroxymethyl)Aminomethane  6 x 10 G 2 x 10  (Jowett's) was based  FeC7l_6H 0 o  37 2 x 10  -4  Mn(as  G  2 x 10 G  SO^)  Zn(as C l )  _ 5  2.5 x 10~ G  Co(as C l )  2.5 x 10~ G  Cu(as C l )  3.9 x 10~ G  Mo (as Na)  3.0 x 10" G  H  6  6  4  4  5 x 10  -4  G  3  B o  3  Thiamine HCL  3 x 10" G  Nicotinic Acid  3 x 10~ G  Ca  3 x 10" G  P-Aminobenzoic A c i d  1 X 10 G  Biotin  5  5  6  _ 6  5 x 10  -4  G  Pantothenate  Inositol  6 x 10~ G  F o l i c Acid  1 X 10" G  Cyanocobalomin  2.5 mis  S o i l E x t r a c t (Supernatant from a u t o c l a v e d m i x t u r e of e q u a l volumes of s o i l and d i s t i l l e d water)  7  6  The e x p e r i m e n t a l c o n t a i n e r s were n o r m a l l y p l a s t i c o r g l a s s beakers of 50 t o 500 ml volume, and t h e s e were u s u a l l y c c o v e r e d w i t h aluminum f o i l to e x c l u d e the l i g h t . water o n l y .  The c o n t a i n e r s were r i n s e d and scrubbed  A few experiments  in distilled  were done w i t h organisms i n o n e ^ l i t r e  plastic  stoppered b o t t l e s t i e d to the s i d e o f f l o a t i n g j e t t y i n S a a n i c h i n l e t .  Most  e x p e r i m e n t a l c o n t a i n e r s were p l a c e d i n t r a y s i n i n c u b a t o r s h e l d f o r o t h e r reasons a t 9 C, 13 C o r 16 C o r a t room temperature  (about 22 C ) .  Whenever  p o s s i b l e , t h e c o n t a i n e r s were p l a c e d on a s l o w l y - r e c i p r o c a t i n g shaker Experiments  l a s t e d from a few minutes to s e v e r a l hours.  table.  Food p a r t i c l e s o f  l a b o r a t o r y o r i g i n were d i s p e n s e d i n t o t h e e x p e r i m e n t a l c o n t a i n e r s from  single-  s p e c i e s s t o c k c u l t u r e s w i t h Eppendorf m i c r o p i p e t t e s or s m a l l volume g l a s s  38  pipettes.  The numbers and average volumes of the c e l l s i n t h e s e s t o c k c u l -  t u r e s were measured w i t h the C o u l t e r Counter from 1/100 d i l u t i o n s b e f o r e the experiments.  immediately  In many of the experiments, t i n t i n n i d s were g e n t l y  p i p e t t e d onto g l a s s s l i d e s f o r the examination o f t h e i r food c o n t e n t s w i t h a high-power microscope a t i n t e r v a l s o r a t the end o f t h e experiment.  As  these t i n t i n n i d s were thereby k i l l e d , i t was i m p o s s i b l e to make r e p e a t e d obs e r v a t i o n s on the same organisms  and thus each sample was taken as r e p r e s e n t -  a t i v e o f t h e e x p e r i m e n t a l p o p u l a t i o n a t t h a t time. of  On o c c a s i o n s , sub-samples  t i n t i n n i d s taken a t i n t e r v a l s were f i x e d and p r e s e r v e d f o r 1 o r 2 days i n  formaldehyde  b e f o r e examination, but t h i s was l i m i t e d to a m i n o r i t y of e x p e r i -  ments i n v o l v i n g food organisms  (ii)  t h a t were e a s i l y d i s t i n g u i s h a b l e when p r e s e r v e d .  Counts of accumulated  food  The food c o n t e n t s of l i v e m i c r o z o o p l a n k t o n were e s t i m a t e d from  cells  immobilized by c o v e r s l i p p r e s s u r e i n s m a l l volumes of water under t h i n cover s l i p s on g l a s s s l i d e s . and c e l l l y s i s began.  E v e n t u a l l y c i l i a r y beating i n these c e l l s L a r g e r organisms  ceased,  such as r o t i f e r s were o f t e n  by t h i s p r o c e d u r e , and t i n t i n n i d s were o f t e n extruded from t h e i r  squashed  loricas.  The c e l l plasma membrane of extruded c e l l s d i d not n e c e s s a r i l y break, nor did  c e l l l y s i s occur immediately  i n squashed  organisms.  The c e l l c o n t e n t s of  t i n t i n n i d s w i t h n o n - t r a n s p a r e n t l o r i c a s o f t e n c o u l d not be seen c l e a r l y u n l e s s some e x t r u s i o n o f the c e l l from t h e l o r i c a had taken p l a c e .  A l s o , protozoa  c o n t a i n i n g many f o o d items c o u l d o n l y be c l e a r l y examined a f t e r some e x t r u s i o n and f l a t t e n i n g had o c c u r r e d .  The e s t i m a t i o n of t h e p r o p o r t i o n of i n g e s t e d  food items which had undergone d i g e s t i o n was somewhat s u b j e c t i v e under these circumstances.  However, a f t e r c o n s i d e r a b l e e x p e r i e n c e i t became c l e a r  u n d i g e s t e d f o o d items d i d not change r a p i d l y i n appearance  until after  t i n n i d c e l l l y s i s began, and the l a t t e r f o l l o w e d by s e v e r a l seconds the  that tin-  39  the complete c e s s a t i o n of motion of t h e t i n t i n n i d a d b r a l c i l i a . 'semi-digested'  c e l l s were c o n s i d e r e d to be those a p p e a r i n g  shape, changed i n c o l o u r , reduced stopped  beating.  Therefore,  distorted i n  i n s i z e , e t c . , b e f o r e the c i l i a r y  organelles  A p a r t i a l l y d i g e s t e d food i t e m can be confused w i t h an  un-  d i g e s t e d i t e m of s m a l l e r s i z e and d i f f e r e n t shape, and d i s c r i m i n a t i o n between the two was  e n t i r e l y s u b j e c t i v e and based on p r e v i o u s e x p e r i e n c e .  problem was  n a t u r a l l y most d i f f i c u l t when n a t u r a l food items were examined,  p a r t i c u l a r l y when they were d i f f i c u l t  This  to r e l a t e to i d e n t i f i a b l e items i n the  environment.  The c e l l  s t r u c t u r e s most r e s i s t a n t  to the d i g e s t i v e enzymes i n the food  v a c u o l e s of t i n t i n n i d s i n c l u d e d the s i l i c e o u s c e l l w a l l s of diatoms, the c e l l u l o s e thecae of d i n o f l a g e l l a t e s , and some f l a g e l l a t e s .  These a r e p r o b a b l y a l l egested  gone l i t t l e d i g e s t i o n . ped)  eyespots  the c a r o t e n o i d - l i p i d  'eyespots'  e v e n t u a l l y having  of  under-  Of t h e s e s t r u c t u r e s , o n l y the r e d d i s h (and o f t e n clum-  c o u l d be sometimes confused w i t h o t h e r s m a l l whole food  It  i s i n t e r e s t i n g t h a t one  of  the O l i g o t r i c h genus Strombidium, seems to r e t a i n these a l g a l eyespots  its  own  use  (but a p p a r e n t l y o n l y one)  items.  (Blackbourn e t . a l . , 1973).  l o c a l c i l i a t e , a species for  These clumped eyespots might i n some  f u t u r e work prove to be u s e f u l l o n g term markers of the r a t e s of i n g e s t i o n and d i g e s t i o n of c e r t a i n food items.  T h i s would be b e s t c a r r i e d out i n c o n -  j u n c t i o n w i t h o b s e r v a t i o n s w i t h the e l e c t r o n micE©'scope, which was to  use i n t h i s  impossible  study.  (iii)  Observations  of f e e d i n g  behaviour  Most o b s e r v a t i o n s were made w i t h a Mark I I I Z e i s s Stereomicroscope w i t h a zoom f o c u s s i n g c o n t r o l and  sub-stage  m a g n i f i c a t i o n was  t i n t i n n i d s swam f r e e l y i n shallow  x4 to x40.  The  illumination.  The range of  fitted total  Petri  40  d i s h e s p l a c e d on to  a depth of 0.7  the microscope stage and to 1.0  b r a t e d w i t h a Lightmeter 3.  For most o b s e r v a t i o n s  approximately in  2,000 Lux.  cm.  The  c o n t a i n i n g 10  to 15 ml of seawater  t r a n s m i t t e d double l i g h t  source was  cali-  ( P h o t o v o l t Corp.) equipped w i t h n e u t r a l f i l t e r the l i g h t i n t e n s i t y a t the microscope stage The  l i g h t passed through a heat  f i l t e r but  no. was  seawater  the P e t r i d i s h would warm from about 10 C to about 20 C i n about 30 min-  utes.  T h e r e f o r e , t i n t i n n i d s and/or seawater were taken from i n s u l a t e d con-  tainers f o r short observation periods only.  T i n t i n n i d s showed l i t t l e apparent r e a c t i o n to the i l l u m i n a t i o n , and allllight  at  i n t e n s i t i e s tended to move upwards to the water s u r f a c e u n l e s s  under obvious  physiological stress.  There i s l i t t l e o r no d i f f e r e n c e i n the  food accumulated by t i n t i n n i d s i n s t r o n g , dim or no l i g h t . shown i n experiments (see S e c t i o n 4 a ) ; and  T h i s has  been  i n samples from Coal Harbour where  the food c o n t e n t s of t i n t i n n i d s taken a t dusk and a g a i n a t dawn, showed e s s e n t i a l l y no d i f f e r e n c e s .  Goulder  of  p l a n k t o n i c c i l i a t e s Loxodes s t r i a t u s and  f e e d i n g i n the f r e s h w a t e r  magnus.  no d i u r n a l p e r i o d i c i t y  T h e r e f o r e , i t i s assumed t h a t the i n t e n s i t y of l i g h t had no  on t i n t i n n i d f e e d i n g behaviour Section  d u r i n g these o b s e r v a t i o n s  Loxodes effect  (but see R e s u l t s i n  4b).  The  zoom r a p i d f o c u s s i n g c o n t r o l was  particular  the f o c u s and the l e f t  essential for closely following a  i n d i v i d u a l t i n t i n n i d , as i t changed d i r e c t i o n f r e q u e n t l y and  r a p i d l y and moved i n s h a l l o w h e l i c e s .  The r i g h t hand was  used to c o n t r o l  the p o s i t i o n of t h e P e t r i d i s h on the microscope stage,  hand c o n t r o l l e d 2 stopwatches and  r e c o r d e d as f o l l o w s : tinnid  (1973) a l s o found  (a 'run') was  a counting device.  Events were  the t o t a l l e n g t h of o b s e r v a t i o n of a p a r t i c u l a r timed w i t h stopwatch a ) , and  and  the d u r a t i o n of one  tinevent  of i n t e r e s t  (e.g. the ' h a n d l i n g ' of a food i t e m by the t i n t i n n i d ) d u r i n g a  'run'.was timed w i t h stopwatch b ) .  The counter was  used to r e c o r d a) the  number o f apparent p a r t i c l e s c o n t a c t e d by a t i n t i n n i d per r u n , and b<) the number o f such c o n t a c t s which r e s u l t e d i n i n g e s t i o n by the t i n t i n n i d .  The  s m a l l e s t p a r t i c l e t h a t c o u l d be d e t e c t e d and i t s f a t e c l e a r l y f o l l o w e d , was of a p p r o x i m a t e l y 4/m  diameter  (but see S e c t i o n 4a and 4 b ) .  The  stopwatch  and c o u n t e r r e c o r d s were noted a t the end o f each run and they were r e s e t . When p o s s i b l e , 5 to 10 i n d i v i d u a l s o f each s p e c i e s were observed one a t a time u n t i l t h e i r b e h a v i o u r changed d r a s t i c a l l y , e.g. by s t a y i n g a t the bottom or a t the water  surface of the d i s h .  O c c a s i o n a l l y , a f t e r a 'run', the t i n t i n n i d was  p l a c e d on a s l i d e f o r  examination o f the food c o n t e n t s a t h i g h m a g n i f i c a t i o n .  Where a p a r t i c l e  l a r g e enough to be seen d u r i n g i n g e s t i o n ; o r l a r g e enough to cause the tinnid  to stop moving or to change d i r e c t i o n i n o r d e r to handle i t ,  was  tin-  whether  by i n g e s t i o n or e v e n t u a l r e j e c t i o n , the event c o u l d be a c c u r a t e l y r e c o r d e d . However, some i n g e s t i o n may  have gone u n r e c o r d e d .  Very s m a l l or u n f o c u s s e d  items might w e l l have been i n g e s t e d w i t h no o v e r t b e h a v i o u r a l change by the t i n t i n n i d ; and i n the o p p o s i t e d i r e c t i o n , minor changes i n the a n g l e o f the path of t i n t i n n i d movement may  not always have i n d i c a t e d i n g e s t i o n or r e j e c t -  ion.  (iv)  C o u l t e r Counter  experiments  The method used i s e s s e n t i a l l y s i m i l a r to t h a t d e s c r i b e d by Sheldon and Parsons  (1967).  A Model B e l e c t r o n i c C o u l t e r Counter was  used w i t h a p e r t u r e  tubes of 50 /im o r 100yum diameter o r i f i c e s .  The numbers and t o t a l volumes  were c a l c u l a t e d f o r p a r t i c l e s of between 1.2  and 20.0 yum diameter.  With  this  t e c h n i q u e , the numbers of p a r t i c l e s i n each of a continuous s e r i e s of a r b i t r a r y  42  s i z e c l a s s e s expanding g e o m e t r i c a l l y , were m u l t i p l i e d by the average volumes ( c a l c u l a t e d as spheres) o f each s i z e c l a s s .  Hence, the diameters c o r r e s -  ponding to the average spheres i n these s i z e c l a s s e s were as f o l l o w s : 2.24,  2.82,  3.57,  4.49,  5.66,  7.12,  8.98,  11.3,  14.3,  and 18.6^um.  'spectrum' covered the s i z e range of most p a r t i c l e s eaten by most  1.78,  This  total  tintinnid  s p e c i e s i n t h i s s t u d y , b u t o f c o u r s e most n a t u r a l p a r t i c l e s a r e n o n - s p h e r i c a l . The use o f a s p h e r i c a l average volume was  u n a v o i d a b l e , but i t s h o u l d be noted  t h a t the a c t u a l dimensions of a food p a r t i c l e would be of importance to a t i n t i n n i d , p a r t i c u l a r l y near the upper  Counts were made on subsamples  size limit.of  from f i e l d of a s i z e  ' c o n t r o l ' c o n t a i n e r s and were de-  C^ and C^ r e s p e c t i v e l y .  C o n t r o l c o n t a i n e r s were s e t up  samples by p a s s i n g 200 t o 500 ml of t h e sample through n y l o n mesh ( u s u a l l y 30 um  f o r t i n t i n n i d s ) to e x c l u d e a l l p r e d a t o r s , and i n -  c i d e n t a l l y a l s o much l a r g e p h y t o p l a n k t o n , u s u a l l y diatoms. o r water  ability.  taken a t the b e g i n n i n g and end o f the  experiments from b o t h ' e x p e r i m e n t a l ' and s i g n a t e d as E^, E^,  i t s feeding  filtered  Unfiltered  through mesh of a s i z e to e x c l u d e o n l y p r e d a t o r s l a r g e r  than t i n t i n n i d s , was  used i n the ' e x p e r i m e n t a l ' c o n t a i n e r s .  The  subsamples  were s l o w l y s t i r r e d d u r i n g c o u n t i n g which took from 10 to 30 minutes plete.  to com-  S i x r e p l i c a t e counts were taken i n each s i z e range, w i t h a v a r i a n c e  o f 5 to 10% o f the mean v a l u e f o r counts between 100 and 1000, o f 10 to 20% o f t h e mean f o r counts between 10 and 100. for  water,  and a v a r i a n c e  Counts were taken  2 to 16 seconds, depending on the f r e q u e n c y o f p a r t i c l e s .  The a c c u r a c y of the e s t i m a t i o n o f p a r t i c l e volume by the counter  was  checked on a number o f o c c a s i o n s by c a l i b r a t i o n w i t h ragweed p o l l e n of known size. all  The a c c u r a c y of the e s t i m a t i o n o f p a r t i c l e number was  not checked, as  o t h e r c o u n t i n g methods were c o n s i d e r e d to be l e s s a c c u r a t e , and  so has  43 been assumed to be a b s o l u t e .  For t h i s r e a s o n perhaps, the C o u l t e r  Counter  i s b e s t used f o r the e s t i m a t i o n o f r e l a t i v e changes i n number, as i n these experiments, r a t h e r than f o r c o u n t i n g t h e numbers of p a r t i c l e s i n a sample.  After  field  the f i n a l C o u l t e r count, the p r e d a t o r s i n the subsample from  the e x p e r i m e n t a l c o n t a i n e r were counted.  The dead organisms were counted  a t x20 m a g n i f i c a t i o n on a squared P e t r i d i s h b e f o r e the subsample was Immediately  fixed.  a f t e r f i x a t i o n , a l l the organisms were counted, and t h e d i f f e r e n c e  between the two counts was  c o n s i d e r e d to be the l i v e r t o t a l .  f o r t h r e e 10 ml subsamples  o f the  T h i s was  done  c o n t a i n e r , and the mean v a l u e c a l c u l a t e d .  The volumes i n each s i z e c l a s s and i n the t o t a l , were c a l c u l a t e d f o r C^,  C^, E^, and  w i t h the use o f a computer programme.  T h i s programme  a l s o t e s t e d the h y p o t h e s i s of no d i f f e r e n c e between i n i t i a l and f i n a l v a l u e s i n each s i z e c l a s s  <H= 0.05).  As the f r e q u e n c y o f o c c u r r e n c e of a p a r t i c l e  i n seawater o f t e n d e c r e a s e s r a p i d l y w i t h i n c r e a s i n g s i z e , the counts i n the l a r g e s t s i z e c l a s s e s were r e l a t i v e l y low and the v a l u e s c a l c u l a t e d were o f t e n not s i g n i f i c a n t as a r e s u l t .  To count any s i z e c l a s s f o r more than 16  would have been unduly time-consuming, d e c i s i o n may  and l o n g e r counts were not made.  never d i f f e r e d by more than  Two  This  have r e s u l t e d i n the u n d e r e s t i m a t i o n o f f e e d i n g r a t e s on the  l a r g e s t s i z e c l a s s e s i n some experiments. and  seconds  The  t o t a l p a r t i c l e volumes f o r C^  20%.  v a l u e s f o r the f e e d i n g r a t e were e s t i m a t e d f o r r e a s o n s d e s c r i b e d  below, but b o t h c a l c u l a t i o n s were made w i t h an e q u a t i o n d e r i v e d from those g i v e n by F r o s t  (1972) and o t h e r s .  A combination o f 3 e q u a t i o n s i n F r o s t  (1972) (as m o d i f i e d by my n o t a t i o n ) may FR/P  = E  (:e  ( k _ g ) r  be w r i t t e n as f o l l o w s : - l ) Vg  —  —  T.(k-g).P  CD  44  where FR/P  = i n g e s t i o n r a t e as c e l l s  eaten/predator/hour  P = number of predators^ i n e x p e r i m e n t a l c o n t a i n e r V = volume of e x p e r i m e n t a l c o n t a i n e r k = a l g a l growth c o e f f i c i e n t  i n control container  g = g r a z i n g c o e f f i c i e n t i n exper-imentalacontainer and  T = d u r a t i o n of the experiment  Equation  (1) can be w r i t t e n a s :  i n hours.  (2) FR/P  =  ( ( E - E ) / ; ( T . P . ) ) . ( l o g 10 2  1  ( C / C ) - l o g 10 2  1  ( E ^ E ^ / l o g 10  ( E ^ ) )  3 where FR/P and  = volume (jam ) of p a r t i c l e s  P = number of p r e d a t o r s / m l  I t w i l l be seen t h a t e q u a t i o n and  eaten/predator/hour.  i n experimental c o n t a i n e r .  (2) assumes t h a t the g r a z i n g m o r t a l i t y i n E,  the i n c r e a s e i n numbers ( i f any) o f t h e f o o d organisms i n b o t h C and  i s e x p o n e n t i a l . I f these changes were l i n e a r i n form the e q u a t i o n would be w r i t t e n a s :  FR/P  These two tion  =  1  1  (3)  2  e q u a t i o n can g i v e v e r y d i f f e r e n t v a l u e s f o r FR/P.  (2) w i l l  corresponding  (((C .E )/C )-E )/T.P 2  g i v e lower v a l u e s of FR/P  than e q u a t i o n  The use of equa-  (3) when t h e r e i s any  ( e x p o n e n t i a l ) net i n c r e a s e i n the c o n t r o l p o p u l a t i o n d u r i n g the e q u a l v a l u e s of FR/P  experiment;  when t h e r e i s no n e t i n c r e a s e or d e c l i n e i n t h e c o n t r o l ;  and h i g h e r v a l u e s of FR/P b o t h the c o n t r o l and  E  than e q u a t i o n  (3) when t h e r e i s a net d e c l i n e i n  experimental c o n t a i n e r s .  I d e a l l y , the form of the g r a z i n g m o r t a l i t y c o e f f i c i e n t and the growth c o e f f i c i e n t , should be estimated from samples taken from b o t h C and f r e q u e n t i n t e r v a l s throughout  an experiment  (see F r o s t , 1972).  E at  T h i s i s not  45  f e a s i b l e with t h e r e should  s l o w l y f e e d i n g organisms such as t i n t i n n i d s .  Alternatively,  e x i s t some independent e s t i m a t e o f t h e maximum f e e d i n g r a t e o f  the organism under c o n d i t i o n s s i m i l a r to those p e r t a i n i n g i n t h e experiment. U n f o r t u n a t e l y , t h e r e was l i t t l e r e l i a b l e data o f t h i s type a v a i l a b l e i n t h i s study  (see S e c t i o n 4b).  The p a r t i c l e c o n c e n t r a t i o n (number o r volume/ml) a t  which an organism reaches  i t s c o n s t a n t maximum i n g e s t i o n r a t e a t a g i v e n  temperature and f o r a p a r t i c u l a r type o f f o o d , i s termed i n t h i s study t h e 'optimal food c o n c e n t r a t i o n '  (OFC).  T h i s change i n r a t e may be abrupt o r  gradual.  The  c o r r e c t c h o i c e o f the method o f c a l c u l a t i o n o f f e e d i n g r a t e s r e l i e s  upon a knowledge o f the OFC. assumed  Most i n v e r t e b r a t e f i l t e r - f e e d e r s a r e g e n e r a l l y  ( u n t i l b e h a v i o u r a l o r s e l e c t i o n experiments a r e done) to sample t h e i r  environment p a s s i v e l y and c o m p l e t e l y ,  under  'normal' c i r c u m s t a n c e s .  That i s ,  c o n t a c t i s made w i t h food items and they a r e a l l eaten, a t a c h a r a c t e r i s t i c c o n s t a n t r a t e a t a g i v e n temperature.  T h i s l e a d s t o an e x p o n e n t i a l r a t e o f  d e c l i n e o f a non-growing p o p u l a t i o n o f food c e l l s , and e q u a t i o n be used to c a l c u l a t e f f e e d i n g r a t e s .  (2) may then  A t any f o o d c o n c e n t r a t i o n above t h e OFC  bel'ow some i n h i b i t o r y l e v e l , t h e organism w i l l  feed a t i t s maximum r a t e no  matter what the c o n c e n t r a t i o n , and the l a t t e r w i l l d e c l i n e s l o w l y and l i n e a r l y . In such c i r c u m s t a n c e s ,  equation  I f t h e p o p u l a t i o n o f grazed  (3) may be used t o c a l c u l a t e f e e d i n g r a t e s .  food items decreases  from a c o n c e n t r a t i o n above  the OFC to a c o n c e n t r a t i o n below t h e OFC d u r i n g t h e experiment, then a l i n e a r r a t e o f d e c l i n e w i l l be f o l l o w e d by an e x p o n e n t i a l r a t e o f d e c l i n e .  The  form o f the n a t u r a l r a t e o f i n c r e a s e i n number o f a growing pop-  u l a t i o n o f c e l l s can be l i n e a r , e x p o n e n t i a l or h y p e r b o l i c , depending upon t h e environmental  c o n d i t i o n s and i n t e r n a l p h y s i o l o g i c a l s t a t e o f t h e c e l l s .  When  46  c e l l growth i s r a p i d , the e x p o n e n t i a l form o f p o p u l a t i o n i n c r e a s e i s most l i k e l y , and has been assumed to be t r u e i n a l l  t h e s e experiments.  Hence the  use o f e q u a t i o n ( 2 ) .  Some o f t h e r e s u l t s i n d i c a t e a_ p o s t e r i o r i t h a t the OFC  had not been exceeded  i n t h e s e C o u l t e r Counter experiments, and t h a t  the c h o i c e o f e q u a t i o n (2) had been c o r r e c t s i z e and/or  taxonomic  (but see S e c t i o n 4 a ) .  therefore  I f any  group o f p h y t o p l a n k t o n reproduced so r a p i d l y d u r i n g the  experiment so as to push the t o t a l p a r t i c l e volume i n the e x p e r i m e n t a l v e s s e l t e m p o r a r i l y over the OFC  l e v e l f o r a t i n t i n n i d s p e c i e s , t h e l a t t e r may  have  a l t e r e d i t s f e e d i n g b e h a v i o u r i n r e s p o n s e , thus i n c r e a s i n g the l i k e l i h o o d of poor c o r r e l a t i o n s between the c a l c u l a t e d f e e d i n g r a t e and the logmean e x p e r i m e n t a l t o t a l f o o d volume (see S e c t i o n 4a and G e n e r a l D i s c u s s i o n ) .  The v a l u e of the t o t a l f e e d i n g r a t e  (FR/P) f o r each experiment was  t i a l l y c a l c u l a t e d as the sum o f n e g a t i v e and p o s i t i v e FR/P class.  This c a l c u l a t i o n ,  'net t o t a l consumption'  p o s i t i v e v a l u e s i n s e v e r a l experiments.  (or NTC),  ini-  v a l u e s i n each  size  gave anomalous  That i s , i n those experiments the  p r e d a t o r s appeared t o make a net a d d i t i o n o f p a r t i c l e s to the medium r e l a t i v e to the c o n t r o l .  P o u l e t (1974) a l s o found p o s i t i v e v a l u e s i n some experiments  u s i n g the C o u l t e r Counter.  There a r e a number o f p o s s i b l e e x p l a n a t i o n s f o r  such r e s u l t s which i n c l u d e (1) c o n t a m i n a t i o n of the e x p e r i m e n t a l c o n t a i n e r (only) w i t h extraneous p a r t i c l e s d u r i n g the experiment;  (2) the e f f e c t of p r e -  d a t o r s on a) r e s u s p e n d i n g sedimented p a r t i c l e s ; b) i n c r e a s i n g the growth o f a l g a e i n some s i z e c l a s s e s by the e x c r e t i o n o f NH^,  e t c . ; c) i n c r e a s i n g t h e  growth o f a l g a e i n some s i z e c l a s s e s by s e l e c t i v e l y removing o t h e r a l g a e w M c h a r e competing w i t h them f o r s c a r c e n u t r i e n t s ; o r d) c r e a t i n g l a r g e r o r s m a l l e r p a r t i c l e s by clumping or comminution attempt to i n g e s t .  from t h o s e p a r t i c l e s t h a t they  Most o f the C o u l t e r Counter experiments were too l e n g t h y  (20 to 52 hours) t o r u l e out any of" t h e s e p o s s i b i l i t i e s , a l t h o u g h (2) b) and  (2) c ) seem t h e most l i k e l y .  I n many experiments r e l a t i v e p a r t i c l e removal  (consumption) was demonstrated i n a l l or most s i z e c l a s s e s , and i n t h e r e mainder no n e t change i n t o t a l volume was seen. above may a p p l y  The p o s s i b i l i t i e s mentioned  even i n experiments where net t o t a l consumption  occurred.  A l s o , a p a r t i c u l a r s i z e c l a s s may have had b e t t e r growth o r l e s s m o r t a l i t y by chance i n t h e e x p e r i m e n t a l c o n t a i n e r  Food s e l e c t i o n experiments  than i n the c o n t r o l  container.  (see S e c t i o n 4a) have i n d i c a t e d t h a t some  items may not be eaten a t a l l by some t i n t i n n i d s , and t h a t o t h e r eaten to v a r y i n g  degrees.  items may be  T h i s may be r e f l e c t e d i n those s i z e c l a s s e s which  show no r e l a t i v e change between the c o n t r o l and e x p e r i m e n t a l c o n t a i n e r s . must be remembered t h a t the s i z e c l a s s e s used a r e a r b i t r a r y , and that or l a b o r a t o r y food classes.  It  natural  items o f one s p e c i e s may spread over s e v e r a l C o u l t e r  size  One s i z e c l a s s may a l s o c o n t a i n s e v e r a l d i f f e r e n t s p e c i e s o f food  item, e s p e c i a l l y i n n a t u r a l samples. of FR/P may r e p r e s e n t reasonably r e f l e c t ulations.  All in all,  minimal n e t v a l u e s  the c a l c u l a t e d  (NTC) v a l u e s  o f consumption by t i n t i n n i d s , but  t h e i r o v e r a l l t o t a l e f f e c t s on n a t u r a l p h y t o p l a n k t o n pop-  T h i s may be t r u e even i n those experiments where a l l s i z e c l a s s e s  show net consumption, i f some food same time u n a f f e c t e d  items i n those s i z e c l a s s e s a r e a t the  by t i n t i n n i d f e e d i n g .  To o b t a i n v a l u e s  f o r FR/P c l o s e  to the maximum p o s s i b l e f o r a l l experiments i t was a l s o c a l c u l a t e d as t h e t o t a l of a l l n e g a t i v e  (consumed) v a l u e s  nated as ' e d i b l e spectrum o n l y were c a l c u l a t e d s e p a r a t e l y  1  o n l y , and t h e s e v a l u e s were d e s i g -  (or ESO). M u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s  f o r NTC and ESO v a l u e s ,  ated w i t h these experiments  f o r 10 v a r i a b l e s a s s o c i -  (see S e c t i o n 4 c ) .  One o f the v a r i a b l e s expected to be s t r o n g l y c o r r e l a t e d w i t h v a l u e s o f FR/P  was 2^ 1' C  C  o  r  t  h  e  8  r o w t l  > r a t e o f t h e c o n t r o l p o p u l a t i o n , which i s assumed  48  to be a l s o the p o t e n t i a l growth r a t e o f the p o p u l a t i o n s o f food c e l l s i n t h e experimental experiments.  container.  T h i s assumption i s l e a s t j u s t i f i e d  A l s o , ^2^1  i n the longest  v a l u e s a r e t h e mean o f the t o t a l spectrum, and  t h e s e would n o t n e c e s s a r i l y c o r r e l a t e w e l l w i t h t o t a l FR/P v a l u e s over the whole spectrum.  calculated  As a check on the p o s s i b i l i t y t h a t the 'feeding  s i z e - s p e c t r u m ' o f t i n t i n n i d s i s e n l a r g e d when l e s s t o t a l food i s a v a i l a b l e , i.e.  t h a t they become l e s s  ' s e l e c t i v e ' when 'hungry', the number o f C o u l t e r  s i z e c l a s s e s showing n e t consumption f o r each experiment as a v a r i a b l e (4) i n the c a l c u l a t i o n o f c o r r e l a t i o n . is  (ESP) was i n c l u d e d  V a r i a b l e (3) i n T a b l e 27  'logmean E' - which i s c o n s i d e r e d t o be t h e mean v a l u e o f t o t a l t f o o d  a b l e t o t h e p r e d a t o r d u r i n g t h e experiment, a d j u s t e d to an e x p e r i m e n t a l a t i o n o f 24 h o u r s .  availdur-  T h i s v a l u e i s t r a n s i e n t and f o r l o n g experiments w i t h  l a r g e changes i n C and E p a r t i c l e c o n c e n t r a t i o n s i t i s a l s o a r b i t r a r y .  It  was c a l c u l a t e d as f o l l o w s :  E  logmean E = ^  2  2 "  E  "  l L o  (4) &n l E  The use o f t h i s e q u a t i o n g i v e s v e r y s i m i l a r r e s u l t s to t h a t o f e q u a t i o n (3) i n F r o s t (1972) .  49  GLOSSARY  the t o t a l a i n i t i a l and f i n a l p a r t i c u l a t e volumes from 1 to 20 /im i n the c o n t r o l v e s s e l . as above f o r the e x p e r i m e n t a l v e s s e l . 3 i n d i v i d u a l f e e d i n g r a t e i n numbers o f c e l l s or^um dator /hr or as e q u i v a l e n t optimum food c o n c e n t r a t i o n  /pre-  ml/pred/hr. - the food c o n c e n t r a t i o n a t  which t h e f e e d i n g r a t e of a p r e d a t o r  i s a t , or c l o s e t o ,  maximum. net  t o t a l consumption - t h e t o t a l f e e d i n g r a t e  (FR/P) from  all  s i z e c l a s s e s measured, i n c l u d i n g n e t a d d i t i o n s or l o s s e s  of p a r t i c l e volume. e d i b l e spectrum o n l y - t h e t o t a l f e e d i n g r a t e  (FR/P) from  o n l y those s i z e c l a s s e s showing net l o s s e s of p a r t i c l e volume  (Consumption).  i n d e x o f i n c r e a s e o f t o t a l p a r t i c l e volume i n t h e c o n t r o l v e s s e l during  the experiment.  e d i b l e spectrum p o r t i o n - the number of s i z e c l a s s e s i n an experiment which showed n e t l o s s e s of p a r t i c l e volume. l o g a r i t h m i c mean v a l u e o f p a r t i c l e volume a v a i l a b l e t o t h e predator. An index o f p r o p o r t i o n a l i t y o f i n g e s t i o n of a p a r t i c u l a r i t e m i n t h e d i e t compared w i t h i t s abundance i n the medium.  the d i f f e r e n c e between the e l e c t i v i t y  i n d i c e s of v a r i o u s  types w i t h no comparison w i t h a s i n g l e - p r e y s i t u a t i o n . s e l e c t i o n or p r e f e r e n c e  i s inferred.  prey No  50  Negative Selection  where a food t y p e has a n e u t r a l e l e c t i v i t y  index i n one s i t -  u a t i o n and a s t r o n g l y n e g a t i v e index i n another where more prey types a r e i n v o l v e d .  situation  However, where a l l prey  types show a more n e g a t i v e index when p r e s e n t e d t o g e t h e r than when p r e s e n t e d w i t h fewer o t h e r p r e y t y p e s , then the cause may l i e i n t h e f a c t t h a t t h e t o t a l prey c o n c e n t r a t i o n i s now above the OFC f o r t h a t p r e d a t o r .  In l o n g  experiments  apparent f e e d i n g s e l e c t i o n may be t h e r e s u l t o f d i f f e r e n c e s i n prey Loss  Rates  digestibility.  the r a t e o f apparent d i s a p p e a r a n c e o f food from  tintinnids  3 i n yum /pred/hr. Search Rate  the t h e o r e c t i c a l r a t e a t which t h e medium i s t h o r o u g h l y searched by a predator, i n ml/pred/hr.  Contact Rate (CR)  the r a t e a t which a p a r t i c u l a r c o n c e n t r a t i o n o f p r e y i s c o n t a c t e d by a p r e d a t o r i n nos/pred/hr o r e q u i v a l e n t ml/pred/hr.  Control of P E  Phytoplankton  when  2  -=—<l E 1  2 and — C C  > 1 o v e r a l l , as t h e n e t r e s u l t o f r e l a t i v e  1  G rowth t o t a l p a r t i c l e volume changes i n 24 h o u r s .  51 4)  a)  RESULTS AND DISCUSSION  A c c u m u l a t i o n Experiments (i)  Q u a l i t a t i v e Results  Table 1 p r e s e n t s  some o f t h e c e l l measurements o f t h e t i n t i n n i d  species  s t u d i e d ; and from t h i s t a b l e t h e r e l a t i o n s h i p between t h e volume o f t h e l a r g est  s i n g l e c o n t a i n e d food item, whether i d e n t i f i e d o r n o t , and t h e maximum  e s t i m a t e d volume o f the t i n t i n n i d c e l l s i s shown i n F i g u r e 5.  I n almost a l l  c a s e s , the maximum volume o f t i n t i n n i d c e l l s r e f e r s to the maximum s i z e o f the p a r e n t a l c e l l  j u s t before d i v i s i o n .  The minimum volume o f t h e r e s u l t i n g  daugh^r c e l l s w i l l be about h a l f t h e volume o f t h e p a r e n t a l c e l l .  A two-fold  d i f f e r e n c e i n the c e l l volume o f a s p e c i e s w i l l a l t e r F i g u r e 5 v e r y In F i g u r e 5 t h e r e l a t i o n s h i p i s d e s c r i b e d by the e q u a t i o n :  log tintinnid  3 3 volume ( i n yum ) = 2.392 + 0.757 l o g f o o d volume ( i n jsm ) . of  t h i s g e n e r a l i t y i s unknown.  haviour  Other unusual  o f t h i s s p e c i e s w i l l be d i s c u s s e d l a t e r .  a b s o l u t e minimum food s i z e f o r t i n t i n n i d s plankton  (Parsons,  The s i g n i f i c a n c e  The s p e c i e s whose v a l u e f a l l s  the l i n e i s T i n t i n n i d i u m m u c i c o l a .  little.  f u r t h e s t from  f e a t u r e s o f the f e e d i n g b e There appears t o be no  (see T a b l e 2) u n l i k e o t h e r  zoo-  e t ^ a l . ^ , 1967; P o u l e t , 1973); b u t v e r y s m a l l f o o d items  may  be eaten i n equal o r g r e a t e r p r o p o r t i o n to t h e i r abundance much l e s s c o n s i s t e n t l y than l a r g e r items, by a t l e a s t one s p e c i e s o f t i n t i n n i d 4c).  As a f i e l d  sample may c o n t a i n up to t e n s p e c i e s o f t i n t i n n i d s , the  s i z e o v e r l a p i n t h e i r f e e d i n g may be c o n s i d e r a b l e .  Those t i n t i n n i d 4  in  the narrow range o f volumes between 3 and 10 x 10 yum  T i n t i n n o p s i s subacuta  species  3 show almost no  r e l a t i o n s h i p between c e l l volume and volume o f l a r g e s t food  but  (see S e c t i o n  item.  For example  i s l e s s than twice as l a r g e as T i n t i n n i d i u m m u c i c o l a ,  the d i f f e r e n c e i n the volume o f t h e i r l a r g e s t food item i s almost  fold.  The l a r g e s t i t e m s e e n - i n s i d e both T i n t i n n o p s i s subacuta and  ten-  CM  m  TABLE  I.  L i s t of Tintinnid species and their cell measurements. L o r i c a Dimensions (rim)  Species Eutintinnus latus E . tubulosus Favella serrata Helicostomella kiliensis Ptychocyclis acuta Stenosomella ventricosa S. nivalis Tintinnidium mucicola Tintinnopsis subacuta T . cylindrica T . parvula T . rapa T . nana  Diam.  Length 'Ave.' Max  Maximum Cell Dimensions (|im) Diam.  Length  Cell Volume  Length of Adoral Cilia (Um)  75 25 120  200 100 250  250 150 250  70 20 100  200 100 200  5 x 10 2.5 x 10 8 x 105  35 20 50  30  150  250  25  100  4 x 10  30  70  100  100  60  80  70 30  90 50  100 50  50 25  100 30  8 x 10 8 x 10  45  150  350  35  60  5 x 10  45 40 35 25 20  100 160 80 60 40  160 220 150 75 60  40 35 • 30 20 15  80 90 70 40 25  7 7 3 6 3  4  x x x x x  4  10 10 10 10 10  4 3  50 30  4  30 (thin)  4  35  4 4 3 3  3 5 (thin) 35 10 10  53  F i g u r e 5.  R e l a t i o n s h i p between t i n t i n n i d c e l l volume (TV) and maximum observed volume of i n d i v i d u a l food items ( F V ) .  10' •Favella  serrata  Eutintinnus latus • , Log TV = 2 . 3 9 2 10"  Stenosomella ventricosa* Tintinnidium  TV  •T.  9  (Pm ) 3  e H^TIcostomella 'T.  10  renosomella "intinnopsis r  10  ° T.  FV  subacuta  cylindrica kiliensis  parvula  ^Eutintinnus  10*  ^Tintinnopsis  • 0. 7 5 7 Log  tubulosus  nivalis  rapa  nana  10'  10' FV  (pm ) J  10'  10  <  55  T i n t i n n o p s i s c y i i n d r i c a was  T i n t i n n o p s i s nana, d u r i n g a 'bloom' of the  latter.  These medium-large s p e c i e s are p r o b a b l y the most important o f a l l t i n t i n n i d s i n t h e i r g r a z i n g e f f e c t s on p h y t o p l a n k t o n f o r most of the y e a r .  The r e s u l t s of q u a l i t a t i v e and q u a n t i t a t i v e t e s t s o f t h e f e e d i n g a b i l i t i e s o f t i n t i n n i d s on known food items a r e p r e s e n t e d i n T a b l e 2. t a b l e a l s o the approximate complete  v a l u e of t h e upper food s i z e boundary and  l a c k o f a lower food s i z e boundary i s e v i d e n t . 8  freshwater c i l i a t e  St en t o r  c o e r u l e u s (c*2 x 10  T a b l e 2 a l s o shows the wide range  the  In comparison  the  3 yum  from b a c t e r i a to f e l l o w S t e n t o r s (D.J. Rapport  tinnids.  In t h i s  ) eats prey r a n g i n g i n s i z e  - personal  communication).  i n q u a l i t y o f the p a r t i c l e s eaten by  tin-  L i v i n g and i n e r t items a r e i n g e s t e d by a l l s p e c i e s f o r which they  a r e n o t .too l a r g e .  Willow  ( S a l i x ) and Yew  (Taxus) p o l l e n , wine y e a s t  and c o r n s t a r c h g r a n u l e s a r e a l l a t l e a s t p a r t l y d i g e s t e d by those which i n g e s t them.  cells  tintinnids  L a t e x spheres a r e not d i g e s t e d , but a r e compacted i n  l a r g e b o l u s e s i n the c e l l a f t e r one or two h o u r s . items t o which h e a l t h y animals show no apparent  The o n l y p o t e n t i a l food  f e e d i n g r e a c t i o n a r e the  c o l o u r l e s s f l a g e l l a t e s and b a c t e r i a which a r e p r e s e n t i n l a r g e numbers i n crowded net f i e l d  samples f u l l o f dead and moribund z o o p l a n k t o n .  However,  t i n t i n n i d s a r e o f t e n seen to v i o l e n t l y r e j e c t p a r t i c l e s which a r e s m a l l enough for  them to i n g e s t and which appear innocuous  ies  of l a b o r a t o r y p h y t o p l a n k t o n a r e shown i n T a b l e 2 as  tintinnids, particularly:  to the o b s e r v e r .  S e v e r a l spec-  ' v a r i a b l y ' eaten by  Pyramimonas c . f . g r o s s i i , P a v l o v a gyrans,  and  Brymnesium parvum. experiments  In most cases t h e s e s p e c i e s were not eaten when used i n 4 i n heavy f i n a l c o n c e n t r a t i o n s (>10 c e l l s / m l ) o r from o l d (about  1 month) s t o c k c u l t u r e s . t e s t s a t moderate « 1 0  4  'Always' and  /ml)  'never' eaten r e f e r s to a t l e a s t  concentrations.  Such s p e c i e s as  Monochrysis  three  56 TABLE  2.  Food eaten by microzooplankton. E = always eaten; V = variably eaten; N = never eaten; blank = untested.  FOOD MICROZOOPLANKTON Tintinnids CO  id  rS  id  a u  c  Vol. (Um )  c  a  to .—i  3 CQ O  3 > _o 3  s  +j  3  > u n  a.  01  td  cn  o  Others n u  ni d  o  CLASS  M i c r o m o n a s sp. Unidentified  Prasinophyceae Blue-green Bacterium  3 20  V  E  Haptophyceae  50  V  V E E E E V E E E E V  Haptophyceae  50  N  V V E E E v E E E V E  Haptophyceae Bacillariophyceae Cryptophyceae Cryptophyceae Bacillariophyceae  60 60 75 130  Prasino • Haptophyceae  140 150  Haptophyceae  150  Chiorophyceae  200  Chlorophyceae  300  Cryptophyceae  450  N  Chrysophyceae Euglenophyceae  450 500  N N  Dinophyceae  800  Monochrysis lutheri Isochrysis galbana Coccolithus huxleyi . Thalas s i o s i r a pseudonana Isoselmis sp. P l a g i o s e l m i s sp. Phaeodactylum tricornutum Pyramimonas c f . grossii Pavlova gyrans P r y nine slum par vum Dunaliella tertiolecta Platymonas maculata C r yptomonas • minuta Pseud ope dineila pyrifor mis Eutreptiella sp. Amphidinium carterae C r yptomonas profunda OTHER Kaolin Polystyrene Polystyrene Polystyrene Polystyrene Salix and Taxus Yeast cells Starch grains  Cryptophyceae  H cn C4  X  N N  C  c c t c  1 u  o  1  -ti  >j a tr 1 w  E E  N  E E  E  E  E  V  E  v  E  E  E E V N V E V E E E E E V E E V N N V V N  V V  N V N  V V V V  130 V V  N V N V N V V N vi N N  aI  E E E  E  N  V E V  N E  N V  N E E E E E  TT  V N E N V V V N N N N V N N E E V  v E N V V N  1200  V  E E E N E E  N V E V N E E  N N E E  E E  E  E  E  N  l  N N E  v  E  1-4 0.5 17 380 3000 1-3000 50-3000 30-3000  E V N  E  E E E  E E V  V E  V  E E E V V V  E E E V V V !•: E 1  E;  Jv •i !l  E'iN  i  j  E E E E V E  E E  v  FOOD  Latex Latex Latex Latex Pollen  y  H  E E  E  cr  a  SPECIES  3  c c n <r  cn  it C V -a U ia cn c cj u 0} (j 3 u 3 >. -Q a 3 tc <d a tn X £ o cn > 3  Pseudocalanus minutua N III & I V Barnacle nauplii  PHYTOPLANKTON  N  57  lutheri, eaten  I s o c h r y s i s galbana, D u n a l i e l l a t e r t i o l e c t a and E u t r e p t i e l l a sp. were  i n almost any c o n c e n t r a t i o n o r c o n d i t i o n by most s p e c i e s ; and c o n -  sequently and  t h e l a t t e r were much used i n the q u a n t i t a t i v e experiments on f e e d i n g  l o s s r a t e s and f e e d i n g p r e f e r e n c e s , d e s c r i b e d i n S e c t i o n 4a ( i i ) .  tinnidium mucicola  and E u t i n t i n n u s l a t u s showed anomalous f e e d i n g  or a b i l i t i e s f o r t i n t i n n i d s o f t h e i r s i z e , have been examined e x p e r i m e n t a l l y of f i e l d  samples T i n t i n n i d i u m m u c i c o l a  preferences  (see Table 2) and these  (see S e c t i o n s 4a and 4b). contained  Tin-  abilities  In the majority  food items o f 5 to 10 jam  diameter which m o s t l y had the appearance o f cryptomonad c e l l s o r c h l o r o p l a s t s , . Many o f t h e q u a n t i t a t i v e accumulation with the apparently of m i d d l e s i z e : and  experiments i n S e c t i o n 4a a r e concerned  s e l e c t i v e f e e d i n g b e h a v i o u r o f the common group of s p e c i e s  T i n t i n n o p s i s subacuta, T_. c y l i n d r i c a , Stenosomella v e n t r i c o s a  Tintinnidiumfaimucicola.  Whether t i n t i n n i d s and o t h e r  zooplankton  can o r do i n g e s t b a c t e r i a and/  or d e t r i t u s i s a q u e s t i o n o f some importance to an understanding v i v a l of zooplankton below the e u p h o t i c  of the sur-  i n food-poor s i t u a t i o n s ; such as i n some t r o p i c a l  zone, o r i n w i n t e r  i n high l a t i t u d e s .  seas,  Almost a l l o f these  t i n t i n n i d s p e c i e s i n c l u d i n g t h e l a r g e s t were seen to c o n t a i n a few b a c t e r i a and  s m a l l d e t r i t a l p a r t i c l e s , most u s u a l l y i n c o n d i t i o n s where  of phytoplankton study.  were f a i r l y low.  T h i s q u e s t i o n r e q u i r e s a g r e a t d e a l more  T i n t i n n o p s i s nana and T. rapa must almost c e r t a i n l y depend upon bac-  t e r i a and phytoplankton rition,  concentrations  o f l e s s -ljhan44/im diameter f o r t h e i r p a r t i c u l a t e n u t -  s i n c e they appear to e a t n o t h i n g much l a r g e r than t h i s .  unusual to f i n d e i t h e r o f these v i s i b l e food items.  species i n a f i e l d  I t was  sample t o c o n t a i n any  However, T_. nana was f r e q u e n t l y v e r y numerous (>15/ml)  i n t h i s study, b u t even then appeared t o c o n t a i n l i t t l e f o o d .  I t i s possible  t h a t T_. nana and _T. rapa o b t a i n food from o r g a n i c m a t e r i a l , e i t h e r d i s s o l v e d  58  or more l i k e l y absorbed i n t o v e r y s m a l l p a r t i c l e s of d e t r i t u s . s o l v e d m a t e r i a l may  be  i n f a i r l y high concentrations  T_. nana r a r e l y c o n t a i n s p a r t i c l e s , and water and  ered w i t h  The  i n t h i s a r e a , but  since  (see S e c t i o n 4a),  t h i s source  l o r i c a of T i n t i n n o p s i s nana i s n o r m a l l y  source, and  not to the i n g e s t i o n of i n d i v i d u a l s m a l l  particles.  sample.  Two  hours  the t i n t i n n i d s T i n t i n n o p s i s subacuta, Stenosomella v e n t r i c o s a and  t i n n i d i u m m u c i c o l a were seen to have dye The  food items and  food v a c u o l e s , were s t a i n e d . a t e s i n the sample was f a i n t l y s t a i n e d , and  o n l y i n s i d e food v a c u o l e s  p o s s i b l y a l s o the s o l u b l e c o n t e n t s  The  uncertain.  Tin-  containing of  the  degree of s t a i n i n g o f the O l i g o t r i c h  cili-  D i n o f l a g e l l a t e c e l l s were g e n e r a l l y but  R o t i f e r s showed s t a i n i n g o n l y i n the e p i t h e l i a l  Copepod a d u l t s and n a u p l i i and stained.  to  o b t a i n e d by adding l a r g e amountsoof 0 ( a ) n n e u t r a l r r e d  (b) n e u t r a l r e d and methylene b l u e dyes to a f i e l d  food items.  other  this  i n d i c a t i o n of the p e r m e a b i l i t y of the plasmalemma of t i n t i n n i d s  d i s s o l v e d substances was  later  cov-  When T_. nana i s i n g e s t e d by l a r g e r t i n t i n n i d s or  p r e d a t o r s much of the d e t r i t u s i n s i d e the l a t t e r can be a t t r i b u t e d to  and  of  s m a l l p a r t i c l e s of i n o r g a n i c d e t r i t u s , as are the l o r i c a s of a l l the  members of t h a t genus.  An  dis-  ' c o n t a c t s ' a v e r y s m a l l volume of  number o f p a r t i c l e s i n an hour  n u t r i t i o n i s a l s o dubious.  Useful  gastropod  cells.  l a r v a e were g e n e r a l l y and h e a v i l y  These r e s u l t s i n d i c a t e t h a t the c e l l s of some t i n t i n n i d  species  are  s u r p r i s i n g l y and r e l a t i v e l y impermeable to some d i s s o l v e d substances.  Tin-  t i n n i d s i n t h i s a r e a a r e extremely e u r y h a l i n e , but  the  r e l a t i v e impermeability  of the plasmalemma to t h i s e u r y h a l i n i t y i s not known.  U n l i k e some e s t u a r i n e and b r a c k i s h - w a t e r vacuole  to a i d i n  the c o n t r i b u t i o n of  c i l i a t e s , t i n t i n n i d s have no  apparent  osmoregulation.  C e n t r i c diatoms dominate the l a r g e r p h y t o p l a n k t o n  i n the Vancouver area  59  except  i n mid-summer.  The o n l y diatoms seen i n s i d e t i n t i n n i d s from f i e l d  samples were o c c a s i o n a l s m a l l pennate diatoms, p r o b a b l y  of the genus  N i t z s c h i a ; and s i n g l e c e l l s of the s m a l l c e n t r i c diatom Skeletonema costatum. Even s m a l l diatoms u s u a l l y occur i n c h a i n s o f c e l l s and consequently l a r g e f o r t i n t i n n i d s to i n g e s t .  a r e too  Diatoms thus form p a r t o f p l a n k t o n i c food  c h a i n s which o v e r l a p i n s i z e those c o n t a i n i n g t i n t i n n i d s , but which a r e i n d e pendent o f them. The  However, l a r g e r zooplankton  l a r g e s t food items c o n t a i n e d  e a t both diatoms and t i n t i n n i d s .  i n F a v e l l a s e r r a t a and E u t i n t i n n u s l a t u s a r e  always d i n o f l a g e l l a t e s o f v a r i o u s s p e c i e s .  E s t i m a t e s o f the ' e l e c t i v i t y ' or  apparent d i f f e r e n t i a l s e l e c t i o n o f f o o d items of v a r i o u s types a r e g i v e n i n S e c t i o n s 4a and 4b.  The R o t i f e r s p e c i e s (mostly of the genus  copepod and b a r n a c l e n a u p l i i , and gastropod  Synchaeta),  l a r v a e were a p p a r e n t l y s i m i l a r to  t i n t i n n i d s i n being generally u n s e l e c t i v e predators  (Table 2 ) .  The l a r g e  h o l o t r i c h c i l i a t e Prorodon sp. was t h e o n l y n o n - t i n t i n n i d c i l i a t e y which d i d not appear to eat l a b o r a t o r y p h y t o p l a n k t o n . t h i s species i s quasisymbiotic contained  (Blackbourn  However, d e s p i t e the f a c t  that  e t . a l . , 1973), on one o c c a s i o n i t  s e v e r a l 9.5 /im diameter p o l y s t y r e n e l a t e x p a r t i c l e s and one T i n t i n -  nopsis nanaceell.  60  a)  Accumulation experiments  (ii)  Quantitative Results  General T a b l e s 3 to 24 show the r e s u l t s of a v a r i e t y o f f e e d i n g experiments a s s o c i a t e d experiments o f a s i m i l a r n a t u r e . done w i t h m o d i f i e d n a t u r a l samples. ponderance  and  In most cases experiments were  Such samples  usually contained a pre-  of 1 o r 2 s p e c i e s o f t i n t i n n i d and a few i n d i v i d u a l s of s e v e r a l  other species.  S i n c e t h e r e i s no o t h e r q u a n t i t a t i v e d a t a on t i n t i n n i d  feed-  i n g , the r e s u l t s o f a l l s p e c i e s encountered i n an experiment have been g i v e n i n T a b l e s 3 to 24 however s m a l l the number o f c e l l s  involved.  e x p e r i m e n t a l r e s u l t s a r e shown b e f o r e the more complex;  The  simplest  b o t h i n terms o f  o b j e c t i v e s e.g. comparisons o f the r e l a t i v e s e l e c t i o n of s e v e r a l prey s p e c i e s , or e s t i m a t i n g o n l y uptake r a t e s o f simultaneous uptake and l o s s r a t e s ; and a l s o i n terms of the number of t i n t i n n i d s p e c i e s per experiment.  In s e v e r a l  s e l e c t i o n experiments, the t i n t i n n i d s i n some s e c t i o n s d i e d or were  moribund,  l e a v i n g the r e s u l t s i n c o m p l e t e .  The method of ' s c o r i n g ' used was  one i n which the number o f c e l l s of a  p a r t i c u l a r food type accumulated i n each t i n t i n n i d c e l l the experiment, or s i n c e the l a s t sub-sample U n l e s s o t h e r w i s e noted, the sub-samples  s i n c e the s t a r t of  of t i n t i n n i d s , was  counted.  were not p r e s e r v e d and counted  later  (see Methods S e c t i o n ) , so t h e r e i s i n most cases an u n a v o i d a b l e l a g i n the t i m i n g o f sub-samples  taken from o t h e r w i s e comparable  treatments.  F o r the most o f the experiments, a one-way a n a a l y s i s o f v a r i a n c e performed  was  t o g e t h e r w i t h S c h e f f e ' s t e s t f o r m u l t i p l e comparisons w i t h unequal  sample s i z e s amongst a l l ' l e v e l s ' i n the experiment. f i e d i n each T a b l e by a s m a l l r i n g e d number.  The l e v e l s a r e i d e n t i i -  To o b t a i n homogeneity  of  61  v a r i a n c e amongst t h e mostly  s m a l l and h i g h l y v a r i a b l e l e v e l s , a l o g 10 t r a n s -  f o r m a t i o n was made o f each f o o d c e l l count, a f t e r 1.0 had been added to each v a l u e t o a v o i d zero v a l u e s . of  In each T a b l e , the r e s u l t o f t h e one-way a n a l y s i s  v a r i a n c e i s r e p r e s e n t e d by the F - v a l u e and i t s s i g n i f i c a n c e l e v e l .  those  Only  ( S c h e f f e ' s ) comparisons between l e v e l s which had a p r o b a b i l i t y of l e s s  than 0.05 o f b e i n g t h e same, a r e shown i n t h e T a b l e s .  Little  emphasis has  been p l a c e d on d i r e c t l y comparing o r condensing r e s u l t s on the same s p e c i e s of  t i n t i n n i d from d i f f e r e n t experiments, p a r t i c u l a r l y i f l o n g p e r i o d s o f  time s e p a r a t e t h e experiments. of  t i n t i n n i d s to environmental  T h i s i s because o f t h e apparent f a c t o r s other  than f o o d , and t h e l a r g e between-  and w i t h i n - experiment v a r i a b i l i t y i n f e e d i n g r a t e s .  The p r o b a b l e  v a r i a b i l i t y i n t i n t i n n i d feeding rates are discussed l a t e r Apparently  sensitivity  r e c u r r i n g phenomena a r e d i s c u s s e d a l t h o u g h  causes o f  i n this Section.  the S c h e f f e ' s  com-  p a r i s o n s i n any one experiment on which they a r e based may not show a s i g n i f i cant d i f f e r e n c e .  One p r e d a t o r Tables predator used.  type and one prey  type  3 t o 6 show the r e s u l t s o f simple  experiments i n v o l v i n g o n l y one  type and one prey type b u t w i t h more than one c o n c e n t r a t i o n o f food  The f e e d i n g r a t e s  ( i n m l / h r / t i n ) o f E u t i n t i n n u s t u b u l o s u s and T i n t i n -  n o p s i s p a r v u l a were extremely  low (<0.0001) i n these experiments even a t h i g h 3  food c o n c e n t r a t i o n s , i n one case i n excess  of 73 x 10  cells/ml.  T h i s was  p r o b a b l y because t h e experiments l a s t e d more than 3 h o u r s , by which time a possible  ' s t e a d y - s t a t e ' had been reached  or digested.  The c a l c u l a t i o n :  between f o o d eaten and f o o d  lost  accumulated food c e l l s / t i m e d i d not then  accurately represent a feeding r a t e . Table 3 shows t h a t t h e r e was no s i g n i f i c a n t d i f f e r e n c e between t h e c e l l s  62 T A B L E 3.  Duration (hrs)  Eutintinnus tubulosus feeding on Isocrysis galbana at two concentrations. Temperature 18°C; Salinity 11.5^.  Numbers of preyexamined  Numbers of prey/ predator  Percentage of prey digested  Volume Numbers of prey/ of predator p r e y / m l .  FR nos./hr/ Tin.  FR ml/hr/ Tin.  3.7  5  15.4 + 5.1  21  770  53.400  4.2  0.00007  3.0  6  21.3 +9.0  27  "" 1065  73.600  7.1  0.00009  Comparisons (Scheffes Test) with a significant difference at .0 5 level  One-way A N O V A F value 1.28  T A B L i E 4:  Significant  Nil  No. (.05)  Eutintinnus tubulosus feeding on Monochrysis lutheri at two concentrations. Temperature 17°C; Salinity 9.5&. Percentage of prey digested  Volume of prey/ predator  Number s of prey examined  Numbers of prey/ predator  4.0  6  16.8 +6.9  15  840  5.0  7  17.7 + 5.9  14  885  Duration (hrs)  One -way A N O V A F value  Significant  0.02  No (.0 5)  Numbers of prey/ ml 4, 600 21, 000  Comparisons (Scheffes test) with a significant difference at .05 level Nil  FR nos./hr/ Tin.  FR ml/hr/ Tin.  4.2  0.0009  3.5  0.00016  63  accumulated per t i n t i n n i d by E u t i n t i n n u s t u b u l o s u s i n 3 t o 3.7 hours a t two h i g h b u t v e r y d i f f e r e n t c o n c e n t r a t i o n s of I s o c h r y s i s galbana.  Likewise, i n  T a b l e 4 E. t u b u l o s u s accumulated a s i m i l a r number o f M o n o c h r y s i s l u t h e r i at  cells  two v e r y d i f f e r e n t c o n c e n t r a t i o n s i n an experiment l a s t i n g 4 t o 5 h r s .  O b v i o u s l y some s o r t o f n u t r i t i o n a l s t e a d y - s t a t e had been reached experimental  i n b o t h the  r e s u l t s shown i n T a b l e 3 and 4, and i t i s a l s o p o s s i b l e t h a t  4,600 M. l u t h e r i c e l l s / m l i s a p p r o x i m a t e l y  an o p t i m a l food c o n c e n t r a t i o n (OFC-  see Methods S e c t i o n ) f o r E_. t u b u l o s u s . The v e r y h i g h f o o d c o n c e n t r a t i o n s i n Table 3 were p r o b a b l y  i n h i b i t o r y to t h e f e e d i n g o f E_. t u b u l o s u s .  Again, i n  T a b l e 5 i t can be seen t h a t E_. t u b u o l s u s accumulated i t s maximum prey  cell  number i n l e s s than 5.3 hours even a t 9,000 c e l l s / m l o f M. l u t h e r i , and t h a t t h i s maximum number was q u i t e s i m i l i a r  to t h a t i n T a b l e s 3 and 4.  t e r e s t i n g t h a t t h e percentage  o f prey c e l l s undergoing  similar  experiments.  (14 to 31%) i n a l l 3  It is i n -  d i g e s t i o n was  fairly  The number o f c e l l s o f Monochrysis l u t h e r i accumulated by T i n t i n n o p s i s p a r v u l a c a n be seen i n T a b l e 6 to be s i m i l a r i n 3 v e r y d i f f e r e n t t i o n s of food i n experiments l a s t i n g at  5 to 6 hours.  concentra-.  The number accumulated  23 t o 28 h o u r s a f t e r the s t a r t was a l s o s i m i l a r i n the t h r e e f o o d concen-  t r a t i o n s , and was much lower probably  due to reduced  than a t t h e 5 t o 6 h o u r s '  f e e d i n g a c t i v i t y caused  check.  This i s  by some p h y s i o l o g i c a l  stress,  as can be seen from t h e f a c t t h a t T_. p a r v u l a was l e s s a c t i v e i n the l a t e r check.  The d i g e s t i o n r a t e was a p p a r e n t l y l e s s a f f e c t e d by t h i s p o s s i b l e  stress.  A much h i g h e r p r o p o r t i o n o f M. l u t h e r i c e l l s were undergoing  t i o n by T_. p a r v u l a i n the l a t e r check than i n t h e e a r l i e r check.  diges-  From T a b l e s  5 and 6 i t seems t h a t J_. p a r v u l a has an accumulated f o o d maximum o f about 20 c e l l s of M. l u t h e r i of  M.  lutheri.  ( a t 9 o r 10°C.) and t h a t i t s OFC i s below 7000 c e l l s / m l  64 TABLE  Duration (hrs.)  5.  Eutintinnus tubulosus feeding on Monochrysis lutheri at three concentrations. Temperature 1 6 ° C ; Salinity 28%,,.  Numbers of prey examined  Numbers of prey/ predator  Percentage of prey dige sted  FR ml/hr/ Tin.  n  25.0 +  6.6  20-  9. 000  4.0  0.00044  5.6  13  29.0 + 10.1  28  18.000  5.2  0.00028  5.3  7  25.7  31  72, 000  4.9  0.00006  F-value 0.64  TABLE  Duration (hrs)  + 10.2  6.  Comparisons (Scheffes Test) with a significant difference at .05 level.  Significant No (0.0 5)  Nil  Tintinnopsis parvula feeding on Monochrysis lutheri at three concentrations. Two samples taken f r o m each. Temperature 9 ° C ; Salinity 24J&.  Numbers of prey examined  Number s of p r e y / pr edator  Percentage of prey dige sted  Numbers of prey/ml.  FR nos./hr/ Tin. 3.3  6.5fT)  9  21.3+  6.5  6  14, 000  28.0^.  3  6.7 +  4.7  50  14, 000  6.0©  16  18.6+  7.7  6  29. 000  28.00  10  5.4 +  3.6  35  29. 000  -°©  10  28.7 + 12.1  18  73, 500  5  FR nos./hr/ Tin.  6.3  One-way A N O V A  .  Number s of prey/ ml.  23.0©  11  6.6 +  6.2  One-way A N O V A  64  3.1 5.7  FR ml/hr/ Tin. 0.0002 0.0001  0.00007  73, 500  F-value  Significant  Comparisons (Scheffes Test) with a significant difference at .05 level  10.10  Yes (.01)  1/4,  1/6. 3/4. 3/6. 4/5  ™* *"  Tin. condition  Tin. Dividing  Active  Nil  Slow  Nil~  Active  Nil  Slow  Nil  Active no granules  2  No or few granules  Nil  65  From T a b l e s 3 to 6 i t can be seen t h a t o p t i m a l food c o n c e n t r a t i o n s ( i . e . o p t i m a l f o r maximum f e e d i n g r a t e ) f o r the medium-sized t i n t i n n i d s E u t i n t i n n u s tubulosus^and  T i n t i n n o p s i s p a r v u l a seem to be l e s s than 4,000 c e l l s / m l of  s m a l l prey s p e c i e s of about 50 um t h e s e c o n d i t i o n s were reached number o f p r e y / t i n t i n n i d was  3  volume.  S t e a d y - s t a t e f e e d i n g r a t e s under  i n l e s s than 3 hours and  t h e e q u i v a l e n t maximum  about 20 to 30 o r about 1,000  to 1,500  um  3  .  T a b l e 7 shows the r e s u l t of the o n l y f a c t o r i a l d e s i g n among the accumu l a t i o n experiments. tertiolecta. h r s , 1.5  I t i n v o l v e d T i n t i n n o p s i s subacuta  Samples were taken a t t h r e e times a f t e r the s t a r t :  h r s and  6.0  h r s ; a t t h r e e temperatures:  and  at t h r e e c o n c e n t r a t i o n s o f f o o d :  The  sampling  was  staggered  a c r o s s temperatures immediately  f e e d i n g on D u n a l i e l l a  13.2  i n the same o r d e r and  and 19.8  C;  f o r the same l e n g t h of  and f o o d l e v e l s a t each time check; and  herence to t h i s procedure  0.66  1,750, 8,700 and a t 43,400 c e l l s / m l .  added to formaldehyde to a f i n a l  as p o s s i b l e .  10.0,  at  samples were  c o n c e n t r a t i o n of about 2%.  Ad-  made p o s s i b l e the removal of as much sampling  bias  The v a r i a n c e a c r o s s the 3 food l e v e l s was  by f a r the most  n i f i c a n t , f o l l o w e d by t h a t i n the i n t e r a c t i o n between temperature and level.  V a r i a n c e a c r o s s the t h r e e l e v e l s of time and  tween a l l 3 f a c t o r s was  s i g n i f i c a n t a t the  l e v e l s of temperature and between time and the .05 l e v e l .  .05 l e v e l .  v a r i a b l e of these to T_. subacuta,  temperature was  be-  the  not s i g n i f i c a n t a t  f o l l o w e d by temperature and time.  important T_. C in a  i s i t l i k e l y to be p r e s e n t e d w i t h as many as 43,400  s p e c i e s of n a t u r a l f o o d .  tage o f s e m i - d i g e s t e d  food  Variance across  subacuta would never be s u b j e c t e d to a temperature as h i g h as 19.8  c e l l s / m l o f one  sig-  i n the i n t e r a c t i o n s  I t might be t r u e to say t h a t food l e v e l i s the most  n a t u r a l s i t u a t i o n ; nor  time  c e l l s was  a t u r e s , e s p e c i a l l y a t the lower  I t i s i n t e r e s t i n g t h a t the p e r c e n -  g r e a t e r a t 19.8 food l e v e l s .  C than a t t h e lower  temper-  I t w i l l a l s o be seen i n o t h e r  \  66 T A B L E 7.  Tintinnopsis subacuta feeding on Dunaliella tertiolecta (ZIP um ) at three temperatures and three food levels. Formalin used. Salinity 9J&, dark.  Predator  Number predator s examined  0.66 1.5 6.0  T . subacuta T . subacuta T . subacuta  8 2 3  10.0 10.0 10.0  3.4+ 2.6 1.5+0.7 4.3+3.1  Nil Nil 62  714 315 903  1. 750 1. 750 1. 750  5.2 1.0  0.66 1.5 6.0  T . subacuta T . subacuta T . subacuta  12 3 3  13.2 13.2 13.2  7.5+3.5 7.3+ 4.5 3.3+1.6'  Nil Nil 50  1. 575 1. 533 693  1. 750 1. 750 1. 750  11.4 4.9  0.0065 0.0028  0.66 1.5 6.0  T . subacuta TV subacuta T . subacuta  9 4 6  19.8 19.8 19.8  1.0+ 1.4 3.5+2.9 2.5+6.1  Nil 79 80  210 735 525  1. 750 1. 750 1. 750  1.5 2.3  0.00087 0.0013  0.66 1.5 6.0  T . subacuta T . subacuta T . subacuta  8 5 7  10.0 10.0 10.0  6.6+4.3 12.8+ 4.8 . 12.0+8.3  11 13 18  1, 386 2, 688 2, 520  8, 700 8. 700 8, 700  10.0 8.5  0.0012 0.0010  0.66  T. subacuta T . subacuta T. subacuta  4 4• 3  13.2 13.2 13.2  7.0+4.2 13.0+7.9 8.0+ 5.6  11 Nil • 83  1. 470 2, 730 1. 680  8, 700 8. 700 8. 700  10.6 8.7  0.0012 0.0010  T . subacuta T. subacuta T . subacuta  6 3 9  19.8 19.8 19.8  9.3+8.6 24.0+ 6.9 15.9+9.0  14 54 68  1. 953 5. 040 3. 339  8. 700 8, 700 8, 700  14.1 16.0  0.0016 0.0018  1.5 6.0  T. subacuta T. subacuta T . subacuta  5 9 3  10.0 10.0 10.0  23.4+ 7.2 24.3+ 6.6 16.0+ 5.3  10 11 50  4, 914 5, 103 3. 360  43, 400 43. 400 43, 400  35.5 16.2 -  0.00082 0.00037  0.66 1.5 6.0  T. subacuta T . subacuta T . subacuta  9 7 4  13.2 13.2 13.2  17.6+6.6 19.9+8.3 32.5+14.8  4 4 45 '  3. 696 4. 179 6, 825  43, 400 43, 400 43, 400  26.7 13.3  0.00061 0.00031  0.66  T . subacuta  1.5 6.0  T. subacuta T . subacuta  8 3 3  19.8 19.8 19.8  11.1+ 8.0 19.7+3.1 26.3 + 16.2  11 42 61  2. 331 4. 137 5. 523  43. 400 43, 400 43. 400  16.8 13.1  0.00039 0.00030  Duration (hrs)  1.5 6.0 0.66 1.5 6.0 0.66  Number Temp. prey/ °C predator  Percentage prey digested  Volume Number ' FR prey/ of nos./hr/ predator prey/ml Tin.  Analysis of Variance for 3x3x3 factorial on log-transformed values +1.0 Interaction  F-value  Time 4.58 Temperature 0.45 Time x Temperature 1.41 Food level 70.16 Time x Food level 2.71 Temperature x Food level 3.78 Time x Temperature x Food level 2.42 2.42  Significant yes (.05)  ho no  yes yes yes yes  (.01) (.05) (.01) (.05)  ---  ...  FR ml/hr/ Tin. 0.0030 0.00057  67  T a b l e s t h a t d i g e s t i o n r a t e appears to be more d i r e c t l y a f f e c t e d by tempera t u r e than does f e e d i n g r a t e .  Two o r more p r e d a t o r  types and one prey  type  In Table 8 T i n t i n n o p s i s p a r v u l a and T i n t i n n o p s i s c y l i n d r i c a were exposed to moderate numbers o f Monochrysis l u t h e r i a t o n l y one l e v e l  (7,000 c e l l s / m l )  i n dim l i g h t and a l s o i n darkness, b o t h a t 10 C. T h i s experiment was much s h o r t e r t h a n those  shown i n T a b l e 3 t o 6 and t h i s i s r e f l e c t e d  i n the small  percentage o f M. l u t h e r i c e l l s undergoing d i g e s t i o n ( 10% u n t i l a f t e r There was no s i g n i f i c a n t  d i f f e r e n c e between the accumulated c e l l number o f  T_. p a r v u l a and t h a t o f T_. c y l i n d r i c a i n darkness o r i n dim l i g h t Methods S e c t i o n ) .  1 hour).  The maximum i n i t i a l  ( a l s o see  f e e d i n g r a t e o f t h e two s p e c i e s i n  T a b l e 8 - about 70 c e l l s / h r / t i n t i n n i d o r e q u i v a l e n t t o about 1% ml/hr - was faster  than those  shown i n T a b l e s  i n these accumulation c e l l s was s t i l l  experiments.  3 t o 6 and was t h e f a s t e s t  f e e d i n g r a t e seen  However, t h e maximum accumulation  o n l y about 20 per t i n t i n n i d  o f prey  (see above).  In T a b l e 9 two t i n t i n n i d s p e c i e s , E u t i n t i n n u s t u b u l o s u s  and H e l i c o s t o -  m e l l a k i l i e n s i s , a r e compared when f e e d i n g on Monochrysis l u t h e r i a t 3 v e r y dense c o n c e n t r a t i o n s . of those  The accumulated food c e l l numbers a r e a g a i n  i n T a b l e 3 t o 6 i n 41,400 c e l l s / m l and i n 107,000 c e l l s ^ m l ,  o n l y lower and s i g n i f i c a n t l y d i f f e r e n t contact rates  from these a t 213,000 c e l l s / m l .  The  (Table 9 ) , and t h i s r a t e d e c l i n e d i n H. k i l i e n s i s through  a 5 - f o l d i n c r e a s e i n prey  c e l l concentrations.  The c o n t a c t r a t e o f E. t u b u -  losus^ i n c r e a s e d r e l a t i v e l y l e s s than d i d t h e prey c e l l (Table 9 ) .  metabolites)  and  (see S e c t i o n 4b) o f t h e s e s p e c i e s were c o n c u r r e n t l y observed  i n t h i s experiment  samples  typical  c o n c e n t r a t i o n i n the  These v e r y h i g h l e v e l s o f food c e l l s  (or t h e i r  associated  were o b v i o u s l y c l o s e to the l e v e l a t which t h e normal f e e d i n g  68  TABLE  T i n t i n n o p s i s p a r v u l a a n d T. c y l i n d r i c a  8.  in d i m light and i n d a r k n e s s . Number Duration (hrs)  predators Predator  examined  Number  feeding on M o n o c h r y s i s  Temperature  Percentage  prey/  prey  lutheri.  1 0 ° C ; S a l i n i t y 2.3%,.  Volume  Number  prey/  of  predator  digested  predator  prey/ml  F R nos./hr/ Tin.  F R ml/hr/  Illumi-  Tin.  nation  0.25  T.  parvula  6  15.2+6.6  Nil  760  7. 0 0 0  60.8  0.0087  Dark  0.25  T. c y l i n d r i c a  5  18.4+ 9.2  Nil  920  7, 0 0 0  73.6  0.011  Dark  0.75  T,  parvula  8  13.9+3.2  0.75  T. c y l i n d r i c a  1  11.0  1.25  T.  parvula  8  16.4+ 6.0  1.25  T. c y l i n d r i c a  1  10.0  0.50  T. p a r v u l a  5  13.0+ 11.0  Nil  650  7, 0 0 0  1.0  T.  parvula  6  2 0 . 8 + 5.5  10  1040  7, 000  T. cylindrica  1  13.0  45  650  7,000  13.0  1.5  T. p a r v u l a  1  19.0  58  950  7. 0 0 0  13.0  1.5  T. c y l i n d r i c a  2  16.5+ 7 . 5  28  825  7,000  11.0  1.0  "  9  690  7,000  18.5  0.0026  Dark  Nil  550  7. 0 0 0  14.6  0.0021  Dark  5  820  7. 0 0 0  13.1  0.0019  Dark  Nil  500  7. 0 0 0  8.0  0.0011  Dark  26.0  0.0037  D i m  20.8  0.0030  Dim  0.0019  D i m  0.0019  Dim  0.0016  D i m  One-way A N O V A  Comparisons  F-Value  with a significant difference at .05 l e v e l  0.98  Significant No  (Scheffes  NU  Test)  .  TABLE  Duration  Eutintinnus tubulosus and Helicostomella kiliensis feeding on Monochrysis lutheri at three concentrations. Temperature 16°C; Salinity 15^,.  9.  Number predators examined  Number prey/ predator  Percentage Volume prey/ prey dige steid predator  Number of prey/ml  FR nos./hr/ Tin.  FR ml/hr/ Tins Tin. dividing  (hrs)  Predator  8.5©  E. tubulosus  3  15.0+ 8.0  30  750  41,400  1.8  0.00004  8.5©  H. kiliensis  3  14.7+ 2.6  34  735  41, 400  1.7  0.00004  8.00  E . tubulosus  6  22.0+ 3.0  17  1100  107, 000  2.8  0.00002  8.0  H. kiliensis  1  3.0  . 100  150  107, 000  E . tubulosus  1  9.0  67  450  213, 000  1.3  H. kiliensis  8  5.5+ 9.3  59  275  213, 000  0.8  7.0  7.36  Significant  2/4,  yes (.01)  CONTACT RATES Number predators Predator examined  1 Nil Nil Nil 4  Comparisons (Scheffes Test) with a significant difference at .0 5 level  One-way ANOVA F-value  Nil  Total Total Duration (sees) Contacts  3/4  Ingested  Number prey/mi  Nil  4L 400  10  FR ml/hr/ Tin. Nil  24  0.035  Nil  107, 000  14.7  0.0082  Nil  213, 000  15.8  0.0045  Nil  1  50  • 9  H. kiliensis  1  20  8  Nil  41, 400  E . tubulosus  4  159  39  Nil  H. kiliensis  3  236  62  Nil-  .  CR ml/hr/ Tin. 0.015  E . tubulosus  '  Contacts/ ' minute  70  behaviour  o f these t i n t i n n i d s p e c i e s b r e a k s down.  5 to 10 times h i g h e r size.  thanbhigh  field  These l e v e l s a r e p r o b a b l y  c o n c e n t r a t i o n s o f food c e l l s o f t h i s  The low l e v e l o f f e e d i n g a c t i v i t y i n H. k i l i e n s i s  i n 213,000 prey  c e l l s / m l was, however, a s s o c i a t e d w i t h a h i g h l e v e l o f r e p r o d u c t i v e and  activity,  4 o f t h e 8 sampled i n d i v i d u a l s showed e a r l y s i g n s of c e l l d i v i s i o n  (oral  Ahlage).  In T a b l e 10 the r e s u l t s a r e shown o f an experiment i n which 5 s p e c i e s of The  t i n t i n n i d were exposed to f o u r c o n c e n t r a t i o n s o f D u n a l i e l l a highest concentration  tertiolecta.  (19,400 c e l l s / m l ) was from a month-old s t o c k  cul-  t u r e and the lower c o n c e n t r a t i o n s were from s t o c k s l e s s than 1 week o l d . age  o f t h e c u l t u r e made no d i f f e r e n c e i n t h i s experiment.  The  The percentage o f  prey b e i n g d i g e s t e d had a s i m i l a r range i n a l l s p e c i e s and was 18 t o 39% i n T i n t i n n o p s i s subacuta,  17 to 36% i n T_. p a r v u l a and 9 to 40% i n Stenosomella  v e n t r i c o s a . , No prey c e l l s were d i g e s t e d i n S_. n i v a l i s and 100% were d i g e s t e d by the r a r e t i n t i n n i d P t y c h o c y c l i s a c u t a . similar feeding rates  (about  T_.  subacuta  0.0020 m l / h r ) , w i t h those o f t h e l a t t e r b e i n g a  l i t t l e h i g h e r , but n o t s i g n i f i c a n t l y s o .  The o p t i m a l food c o n c e n t r a t i o n (OFC)  was between 2,000 and 3,900 c e l l / m l f o r T_. subacuta to  0.72 ppm by volume.  and S_. v e n t r i c o s a had  and S^. v e n t r i c o s a or 0.37  The f e e d i n g r a t e o f T i n t i n n o p s i s p a r v u l a was o n l y  o r 1/5 o f t h a t o f the l a t t e r two s p e c i e s a t t h e same food c e l l and  t h e s m a l l e s t o f the s p e c i e s Stenosomella  prey c e l l s o n l y 1/10 o f t h a t o f T_. subacuta  concentration;  n i v a l i s , had an accumulation i n this  1/4  of  experiment.  The r e s u l t s shown i n T a b l e s 8 to 10 o f t h e a c c u m u l a t i o n  and f e e d i n g r a t e s  of  more than one t i n t i n n i d s p e c i e s , a r e an e x t e n s i o n o f those o f T a b l e s 3 to 6  in  i n d i c a t i n g t h a t t h e average number o f c e l l s a c c u m u l a t e d / t i n t i n n i d was about  20oM. 3lu6Reri?; and that o p t i m a l f o o d c o n c e n t r a t i o n s o f M. l u t h e r i were about  71 T A B L E 10.  Duration (hrs)  Various tintinnid species feeding on "new" and "old" cultures of Dunaliella tertiolecta at four concentrations. Temperature 14°c; Salinity 28^. Number Number Volume of predators prey/ pred/prey examined predator (um3)  Predator  0 + 1.8Q Tintinnopsis subacuta  Percentage prey digesting  Number prey/ml  FR nos/hr/ Tin.  FR ml/hr/ Tin.  Age of prey stock culture  3.6+3.4  702  39  2,000  2.1  0.0011  4 days  0 + 2 . 0 ^ Tintinnopsis subacuta  14.0+ 9.8  2730  31  3. 900  7.0  0.0018  4 days  0 + 2.25 Tintinnopsis ® subacuta  19.9+12.3  3881  18  7, 800  8.8  0.0011  4 days  12  21.9+12.3  4271  28  15. 600  8.7  0.0006  4 days  11  25.1+ 8.9  4718  17  19.400  8.9  0.0005  1 month  0 + 2.00 Tintinnopsis parvula  3.0+3.3  585  17  3.900  13  0.0004  4 days  0 + 2.25 Tintinnopsis >Z> parvula  5.5+ 6.0  1073  36  7. 800  2.4  0.0003  4 days  18.0  3510  11  2,000  0.0051  4 days  0 + 2.0 Stenosomella © ventricosa  15.7+ 5.9  3062  26  3. 900  7.9  0.0020  4 days  0 + 2.25 Stenosomella © ventricosa  30.3 + 9.3  5909  40  7. 800  13.5  0.0017  4 days  Stenosomella ventricosa .  15.0+ 9.9  2925  12  15. 600  6.0  0.0004  4 days  0 + 2.8. Stenosomella <s ventricosa  46.7+14.2  8780  9  19. 400  16.5  0.0009  1 month  10  0 + 2. 5jv Tintinnopsis T*)  c  ~ ~  - subacuta 0 + 2.&£> Tintinnopsis subacuta w  0 + 1.8  0+2.5  Stenosomella ventricosa  0 + 2.25, Stenosomella nivalis  N i l  0 + 2.5 Stenosomella nivalis 0 + 2.8  2.0  Stenosomella nivalis  N i l  0 + 2.25 Ptychocyclis acuta  2.0  One -way ANOVA F-value 7.76  Significant yes  (.01)  N i l  390  4 days  7. 800  Nil  390  10.0  N i l  15. 600  N i l  19.400  100  7, 800  Comparisons (Scheffes Test) with a significant difference at .05 level 1/3. 1/4. 1/5.  1/9, 1/11.  6/11  0.8  0.00005  4 days 1 month  0.9  0.00011  4 days  72  2 o r 3,000 per ml.  I t i s i n t e r e s t i n g t h a t the e s t i m a t e d f e e d i n g r a t e s o f  t i n t i n n i d s sampled a t 1 hour  i n T a b l e 8 were c o n s i d e r a b l y lower than t h e  i n i t i a l r a t e s a t 0.25 h o u r s , even though at 1 hour was s t i l l v e r y low (<10%).  the number o f s e m i - d i g e s t e d  T h e r e f o r e , i t seems t h a t here  cells ingestion  slowed w e l l b e f o r e t h e d i g e s t i v e c a p a c i t y o f t h e c e l l s was s a t u r a t e d , but the accumulated mum.  p r e y n u m b e r s / t i n t i n n i d a t 0.25 hours were c l o s e to the maxi-  I t seems t h a t t h e t i n t i n n i d s were a p p a r e n t l y near s a t u r a t i o n i n terms  of numbers a t 0.25 hours smaller t i n t i n n i d  (see end o f t h i s S e c t i o n ) .  s p e c i e s accumulated  d i d the l a r g e r s p e c i e s .  T a b l e 10 shows that t h e  many fewer D u n a l i e l l a t e r t i o l e c t a  than  The OFC o f T_. subacuta on t h i s prey s p e c i e s was  about 4,000/ml.  D i f f e r e n t i a l p r e d a t i o n and s e l e c t i o n  experiments  One p r e d a t o r type and two o r more p r e y types In the f o l l o w i n g T a b l e s I v l e v ' s e l e c t i v i t y measure o f comparative  ' c a t c h a b i l i t y ' o r o f d i f f e r e n t i a l p r e d a t i o n and not  as an index o f p r e y s e l e c t i o n  (and see S e c t i o n 4 c ) .  the r e s u l t s o f one p r e d a t o r exposed  I n t h e experiment f o r about 1 hour  index has been used as a  T a b l e s 11 t o 13 show  to 2 o r more prey types s i m u l t a n e o u s l y .  shown i n T a b l e 11 T i n t i n n o p s i s p a r v u l a was  exposed  to I s o s e l m i s sp. s i n g l y a t 9,500 c e l l s / m l , and to I s o s e l m i s  sp. p l u s Monochrysis  l u t h e r i a t 9,500 and a t 14,000 c e l l s / m l ,  respectively.  The number o f I s o s e l m i s s p . a c c u m u l a t e d / t i n t i n n i d was no d i f f e r e n t i n the two s i t u a t i o n s , and was much lower than the number o f M. l u t h e r i  accumulated.  The e l e c t i v i t y i n d e x i n d i c a t e d t h a t a d i s p r o p o r t i o n a t e l y l a r g e number o f M. l u t h e r i , and a d i s p r o p o r t i o n a t e l y s m a l l number o f I s o s e l m i s sp. were accumu l a t e d from t h e prey food m i x t u r e , but t h i s shows o n l y d i f f e r e n t i a l p r e d a t i o n . A l t h o u g h I s o s e l m i s sp. i s a l i t t l e l a r g e r , and u s u a l l y moves f a s t e r  than  73  TABLE  11.  Tintinnopsis parvula feeding on Isoselmis sp. and Monochrysis lutheri. Temperature 1 6 ° C ; Salinity 15&. Number prey/ predator  Volume prey/ predator  FR Nos/hr/ Tin  Electivity Index  FR ml/hr/ Tin  Duration (hrs)  Number predators examined  Prey  O.8  7  Isoselmis sp.  1.9+ 1.9  140  9. 500  2.4  0.00025  4  Isoselmis sp. and M . lutheri  1.5+ 2.1 .  113  9. 500  1.4  0.00014  -.63  15.0+7.8  750  14.000  13.6  0.0010  +.28  Total  16.5  863  23, 500  15.0  0.00063  0  © ©  Significant  11.56  TABLE  12.  1/3.  (.01)  2/3  3  Number predator s examined  11.3  8  12.5  -  Tintinnopsis subacuta feeding on Eutreptiella sp. (500 u m ) and I s o c h r y s i s galbana (45 u m ) . Temperature 1 4 ° C ; Salinity 9 & .  Duration (hrs) @  yes  Drey/ml  Comparisons (Scheffe's Test) with a significant difference at .0 5 level  One-way A N O V A F-value  Number  11  © 13  Prey  Number prey/ predator  3  V o l . prey/ predator (um )  Number prey/ml  3  FR Nos/hr/ Tin.  Eutreptiella only  16.4+ 8.3  8, 200  "4.4 x 10  I. galbana only  26.3+12.2  1, 200  66 x 1 0  Eutreptiella sp.  18.3+ 7.6  9. 100  4.4 x 1 0  3  3  3  and  ©  1. galbana  Total  One-way F-value 25.11  ANOVA Significant yes (.01)  4.5+ 8.2  22.8  203  66 x 1 0  3  70.4x 10  9. 30 3  3  2/4.  3/4  Electivity Index  1.5 ? minimal  0.0003 ? minimal  2.1 minimal  0.00003 ? minimal  ...  1.6 ? minimal  0.0004 minimal  + .86  0.4 minimal  6 x 10" minimal  - .65  2.0  Comparisons (Scheffe's Test) with a significant difference at .0 5 level 1/4.  FR ml/hr/ Tin.  6  74  M. l u t h e r i i t s l i a b i l i t y  to p r e d a t i o n was lower i n t h i s  T a b l e s 12 and 13 show t h e r e s u l t s to E u t r e p t i e l l a  experiment.  o f T i n t i n n o p s i s subacuta a l o n e  exposed  sp. and another prey s p e c i e s i n r e l a t i v e l y l o n g experiments.  In T a b l e 12 t h e r e s u l t s a r e seen o f an experiment w i t h T_. subacuta exposed  to E u t r e p t i e l l a  I s o c h r y s i s ga-lbana a t 66,000 c e l l s / m l ;  sp. s i n g l y  a t 4,400 c e l l s / m l ; to  and to a dense mixture o f t h e two  s p e c i e s a t 4,400 c e l l s and 66,000 c e l l s / m l nificant difference  l a s t i n g 11.3 t o 12.5 hours  respectively.  between t h e number o f accumulated  b a l a n c e ) per t i n t i n n i d i n E u t r e p t i e l l a  There was no s i g -  c e l l s (steady-state  sp. o n l y ; i n I_. galbana o n l y ; o r o f  E u t r e p t i e l l a s p . i n t h e mixed s i t u a t i o n .  As i n some p r e v i o u s experiments the  maximum o f p r e y c e l l s / t i n t i n n i d was o n average between 16 and 25 d e s p i t e a 10-fold difference  i n prey volume.  I t i s a l s o noteworthy  that  proportionately  more E u t r e p t i e l l a sp. than I_. galbana were accumulated when both were p r e sented s i n g l y .  However, t h e number o f I_. galbana accumulated  over 11.5 hours  i n the mixed s i t u a t i o n was s i g n i f i c a n t l y reduced to about 1/6 o f t h a t of t h e number accumulated  when exposed  to I_. galbana s i n g l y .  c u t a w i t h a new l o r i c a i n E u t r e p t i e l l a  An i n d i v i d u a l  s p . c o n t a i n e d merely  T_. suba-  6 prey items  a f t e r up t o 11.3 h o u r s , whereas i n t h e mixed p r e y s i t u a t i o n a s i m i l a r  indivi-  d u a l w i t h a new l o r i c a c o n t a i n e d 40 E u t r e p t i e l l a s p . and 30 I_. galbana i n up to 11.5 hours. tintinnidd  T h e r e f o r e , i t seems t h a t t h e g r e a t v a r i a b i l i t y i n i n d i v i d u a l  f e e d i n g performance  even amongst i n d i v i d u a l s tory. fact  seen i n a l l these experiments  can be found  with a r e l a t i v e l y s i m i l a r recent p h y s i o l o g i c a l  his-  The e s t i m a t e d f e e d i n g r a t e s i n T a b l e 12 a r e extremely low due to the t h a t a f t e r 11 to 12 h o u r s , t h e t i n t i n n i d s were p r o b a b l y i n some s o r t o f  s t e a d y - s t a t e w i t h r e g a r d t o t h e uptake o f t h e s e food i t e m s .  T a b l e 13 shows t h e r e s u l t s o f another experiment  of t h i s t y p e , but a l s o  TABLE  Duration (hrs)  13.  Tintinnopsis subacuta feeding on Eutreptiella sp. (500 u m ) . Isochrysis galbana (45 u m ) . and Dunaliella tertiolecta (210 unv*). . ..Temperature 1 4 ° C ; Salinity 9 & . 3  Number predators examined  6.0@  P r e y  Eutreptiella and  ®  Number prey/ predator  Volume .. prey/ . predator  16.0+2.8  8.0 x 10  6.6+ 2.0  Number prey/ml  3  FR Nos/hr/ Tin  FR ml/hr/ Tin  Electivity Index  1, 500  2.7 min.  0.0018 min.  +.47  1. 390  4. 400  1.1 min.  0.00025  -.44  9, 390  5. 900  9.7+1.8  2, 040  4,400  1.5 m i n .  0.00034 min.  0.41 min. 0.00009 min.  3  D. tertiolecta 22.6 Total  6.3  ©  D. tertiolecta only  6.60  D . tertiolecta and I_. galbana  2.7+2.1  570  4.400  46.7+21.9  2, 100  66,000  Total  49.4  2, 670  70,400  One-way A N O V A  7.1 min.  F-value  Significant  Comparisons (Scheffe's Test) with a significant difference at .05 level.  24.24  yes (.01)  1/4, 2/5. 3/4, 3/5, 4/5  0.00011 m i n .  ---.07 +.004  76  i n c l u d i n g the f l a g e l l a t e D u n a l i e l l a exposed  to p_. t e r t i o l e c t a s i n g l y  tertiolecta.  a t 4,400 c e l l s / m l ;  (1,500/ml) p l u s D. t e r t i o l e c t a (4,400/ml); p l u s I s o c h r y s i s galbana  T i n t i n n o p s i s subacuta  (66,000/ml).  o r to D.  to E u t r e p t i e l l a  t e r t i o l e c t a (4,400./ml)  e.g. w i t h E u t r e p t i e l l a  I_. galbana, d i e d from unknown causes d u r i n g the experiment.  sp. and  More c e l l s o f  per t i n t i n n i d when p r e s e n t e d s i n g l y  when p r e s e n t e d t o g e t h e r w i t h I_. galbana or E u t r e p t i e l l a d i f f e r e n c e was  sp.  A l l t i n t i n n i d s i n the o t h e r p o s s i b l e  s i n g l e - f o o d ' s i t u a t i o n s i n t h i s experiment;  p_. t e r t i o l e c t a were accumulated  not s i g n i f i c a n t i n t h e l a t t e r c a s e .  i c a l d i f f e r e n c e s , p_. t e r t i o l e c t a was  was  than  sp. , a l t h o u g h the  D e s p i t e these r e a l numer-  a p p a r e n t l y accumulated  only s l i g h t l y less  than i n the p r o p o r t i o n i n which i t o c c u r r e d , i n the v e r y dense mixture w i t h J..  galbana  tionately  ( e l e c t i v i t y of - . 0 7 ) ; but was  accumulated  i n the mixture w i t h E u t r e p t i e l l a  much l e s s than proporr".  sp. ( e l e c t i v i t y o f - , 4 4 ) j b u t as  i t can be seen from T a b l e 13, t h i s apparent d i f f e r e n c e i s due nature of I v l e v ' s formula. lecta i n either situation  The s l i g h t l y decreased a c c u m u l a t i o n o f p_. t e r t i o -  of the mixed-prey  situations  compared w i t h the s i n g l e - p r e y  i s a s i m i l a r r e s u l t t o t h a t o f I.galbana when exposed  Eutreptiella  with  sp. i n T T a b l e 12 and has no obvious b e h a v i o u r a l e x p l a n a t i o n .  I t seems as though T_. subacuta cannot  (or does not) accumulate  the most e a s i l y caught i t e m (e.g. E u t r e p t i e l l a  more o f  sp. - i n T a b l e 12), when i n a  m i x t u r e than i t does i n s i n g l e - p r e y s i t u a t i o n s , of  to the p e c u l i a r  but t h a t i t does take  the o t h e r prey s p e c i e s i n the m i x t u r e than s i n g l y .  less  In T a b l e 13 i t can  be seen t h a t - a l t h o u g h about 47 I_. galbana and o n l y about 16 E u t r e p t i e l l a were accumulated,  prey volume/predator  was  about  8,000 p n  3  sp.  for Eutreptiella  3 sp. and o n l y about 2,100  jam  f o r I_. galbana. As both s p e c i e s a r e  rapidly  d i g e s t e d by T_. subacuta, the t i n t i n n i d gained much more i n terms o f biomass by f e e d i n g on E u t r e p t i e l l a  sp. than on I_. galbana.  T A B L E 14.  Tintinnopsis subacuta and Tintinnidium mucicola feeding on Eutreptiella sp. (500 |im )and Isoselmis sp. (75 um ). Temperature 13°C; Salinity 12.5%. ,) 3  Number predators examined  Duration (hrs)  Predator  0.6  T. subacutaQ  6  0.6  T. subacuta^  6  ©  Prey  Eutreptiella and  Number prey/ . predator  Vol. prey/ predator Number (urn ) prey/ml 3  FR Nos/hr/ Tin.  FR ml/hr/ Tin. X  Electivity Index;  5.3 + 2.0  2, 650  3, 650  8.4  0.0023  +.71  2.0 + 2.0  150  30,000  3.2  0.00010  -.53  11.6  0.00034  3, 650  Nil  Nil  30,000  11.4  0.00037  11.4  0.00037'  Isoselmis 2. 800 Total  0,6  T. mucicola^  6  0.6  T. mucicola-  6  Eutreptiella and Isoselmis  Nil 7.2 + 4.4  540 540  Total One -way ANOVA F-value  Significant  3.45  No  Comparisons (Scheffe's Test) with a significant difference at .0 5 level. • Nil  -1.0 +.06  78  Two o r more p r e d a t o r s and two or more prey types In  T a b l e 14 t h e r e s u l t s a r e shown o f a f a i r l y  s h o r t experiment  invol-  v i n g T i n t i n n o p s i s subacuta and the unusual s p e c i e s T i n t i n n i d i u m m u c i c o l a . They were p r e s e n t e d w i t h o n l y a m i x t u r e o f E u t r e p t i e l l a s p . and I s o s e l m i s sp. (cryptophycae) a t 3,650 and 30,000 c e l l s / m l r e s p e c t i v e l y . T_. subacuta had accumulated  d i s p r o p o r t i o n a t e l y more o f E u t r e p t i e l l a sp. than  (3£ the much s m a l l e r and much more numerous I s o s e l m i s sp. . T_. subacuta showed a f a s t e s t i m a t e d i n i t i a l tintinnid.  A f t e r 0.6 hours  On E u t r e p t i e l l a sp.  f e e d i n g r a t e o f 0.0023 ml/hr/  T_. m u c i c o l a d i d n o t e a t E u t r e p t i e l l a sp. and accumulated  I s o s e l m i s sp. than d i d T_. subacuta from t h e mixutre o f p r e y t y p e s . due  to the s h o r t f e e d i n g p e r i o d s and s m a l l numbers o f accumulated  l a t t e r were not q u i t e s i g n i f i c a n t l y d i f f e r e n t a t t h e .05 l e v e l .  for  c e l l s , the  with a single-prey  comparison situation  t h e same p r e d a t o r .  In  the f i e l d  experiment,  sample from which t h e t i n t i n n i d s were t a k e n f o r t h e l a t t e r  t h e c o n t a c t r a t e o f T_. m u c i c o l a on a l l p a r t i c u l a t e m a t e r i a l was  a l i t t l e more than h a l f  t h a t o f T_. subacuta.  I t i s o f s i m i l a r s i z e to t h e  l a t t e r b u t moves more s l o w l y (see S e c t i o n 4 b ) . T_. m u c i c o l a may have accumulated  Therefore', t h e f a c t  more I s o s e l m i s sp. than T_. subacuta  be a s c r i b e d to a f a s t e r c o n t a c t r a t e .  t a k e n from t h e same f i e l d  No T_. m u c i c o l a c e l l the experiment.  cannot  None o f f o u r T^. subacuta  sample as t h o s e used i n the experiment  c e l l d i v i s i o n , even though  that  Three o f t h e s i x T_. subacuta shown i n  T a b l e 14 showed t h e e a r l y s i g n s o f c e l l d i v i s i o n .  of  However,  In T a b l e 14  the e l e c t i v i t y i n d i c e s a r e i n d i c a t i v e o f r e a l t r e n d s but o n l y by w i t h the o t h e r p r e d a t o r , and not by comparison  more  showed s i g n s  two o f them had eaten one T i n t i n n o p s i s nana each.  showed s i g n s of c e l l d i v i s i o n i n t h e f i e l d  sample or i n  I t i s , t h e r e f o r e , perhaps p o s s i b l e t h a t some T_. subacuta  i n d i v i d u a l s i n the experiment  had responded  to the a c t o f i n g e s t i o n o r t h e  79 presence of E u t r e p t i e l l a or i n the medium, and r e s u l t s i n Table  sp. i n t h e i r cytoplasm  the apparent s e l e c t i v i t y of these two  sample taken 4 days p r e v i o u s l y .  T_. m u c i c o l a  c o n t a i n e d o n l y s m a l l r e d d i s h c e l l s 5-7 ^um  which were p r o b a b l y a s p e c i e s o f cryptomonad. on s e v e r a l o t h e r  Table  (probably  subacuta  Eutreptiella i n diameter  S i m i l a r o b s e r v a t i o n s were made  occasions.  15 shows the food c e l l s accumulated by T i n t i n n o p s i s  T_. nana, T_. r a p a and  T i n t i n n i d i u m mucicola  a t e both prey s p e c i e s ; M.  subacuta,  presented w i t h Monochrysis  (13,000 c e l l s / m l ) and D u n a l i e l l a t e r t i o l e c t a Only T_- subacuta  The  tintinnid  In t h i s sample T_.  c o n t a i n e d m a i n l y many c e l l s of a s p e c i e s of e u g l e n o i d sp_.), and  digested)  i n the space of 38 minutes had begun c e l l d i v i s i o n .  14 confirmed  species i n a f i e l d  (none appeared to be  lutheri  (6,200 c e l l s / m l ) f o r 1 hour.  l u t h e r i a p p a r e n t l y r a t h e r more  then p r o p o r t i o n a t e l y compared to i t s abundance i n t t h e medium, and p_. t e r t i o l e c t a r a t h e r l e s s so. for 26.5  comparison.  However no  sihgle=prey  s i t u a t i o n was a v a i l a b l e  The average f e e d i n g r a t e o f T_. subacuta  on M.  lutheri  c e l l s / h r / t i n t i n n i d o r 0.002 m l / h r / t i n t i n n i d , a f i g u r e s i m i l a r to t h a t  on E u t r e p t i e l l a  sp. i n T a b l e  14.  l u t h e r i than d i d T. subacuta,  and  T_. rapa and  t e r t i o l e c t a and mucicola  they may  T_j_ nana accumulated l e s s  t h e i r c o n t a c t r a t e s and  1) a r e a l s o much s m a l l e r than the l a t t e r ' s .  T_. rapa and  c e l l volumes  M^ (Table  T_. nana a t e no  be too s m a l l to i n g e s t i t (Table 2 ) .  D_.  Tintinnidium  a t e n e i t h e r prey s p e c i e s on t h i s o c c a s i o n f o r unknown r e a s o n s , a l -  though most i n d i v i d u a l s d i d c o n t a i n some o l d food i t e m s .  Scheffe's test  not s i g n i f i c a n t f o r most of the comparisons between l e v e l s i n t h i s due  was  was  experiment  to the s m a l l sample s i z e s .  Table  16 shows t h e r e s u l t s of an experiment i n which two  s p e c i e s of s i m i l a r s i z e and  general  tintinnid  ' s e a r c h i n g r a t e ' T i n t i n n o p s i s subacuta  TABLE  Duration (hrs) 0 + 1.0  0+1.0  15.  Various tintinnid species feeding on Monochrysis lutheri (50 u m ) and Dunaliella tertiolecta (200 u m ). Temperature 1 6 ° C ; Salinity 22^,. Number predators examined  Predator  Tintinnopsis subacuta / r s  Prey M . lutheri  2  ©  Tintinnopsis r apa ©  Number prey/ predator  2  Tintinnopsis nana  0 + 1.0  Tintinnidium mucicola  4  4  5.76  FR ml/hr/ Tin.  Electivity' Index  13,000  26.5  0.0020  +.16  D . tertiolecta  2.0+ 2.0  400  6,200  2.0  0.0003  -.64  M . lutheri  6.5+0.7  325  13,000  6.5  0.0005  m  Nil 1.8+2.4  Nil . •  90 .  6, 200  Nil  Nil  13,000  1.8  0.00013  •  D . tertiolecta  Nil  Nil  6,200  Nil  Nil  M . lutheri  Nil  Nil  13,000  Nil  Nil  D . tertiolecta  Nil  Nil  6,200  Nil  Nil  One -way A N O V A F-value  FR Nos/hr/ Tin.  1325  M . lutheri 0  Number prey/ml  26.5+2.2  D . tertiolecta 0+1.0  Volume prey/ predator  1  Significant Yes (.0 5)  ,  Comparisons (Scheffe's Test) with a significant difference at .05 level.  1/4  »  -—  _  --  T A B L E 16.  Tintinnopsis subacuta and Stenosomella ventricosa feeding on Eutreptiella sp. (450|im ), M o n o c h r y s i s l u t h e r i (50 ptm ), and I s o s e l m i s sp. (75|im ), singly and in combination. 3  3  Duration (Hrs)  0 + 2.7 0 + 1.8  Number predator a examined  Predator Tintinnopsis subacuta  a  3.5  4  7200  1400  5.9  0.0042  1300  8000  14.4  0.0018  +.10  945  6600  7.0  0.0011  -.15  2245  14600  21.4  0.0015  Number . prey/ml  FR nos/hr/ Tin.  FR ml/hr/ Tin.  Electivity Index (nos)  58  7  M . lutheri and Isoselmis sp.  26.0+5.4  -  12.6+5.0  -  Total  38.6  Eutreptiella sp. and M . lutheri and Isoselmis sp.  11.7+3.7  75  5265  1400  3.3  0.0024  +.69  11.0+6.0  -  550  8000  3.1  0.0004  -.10  293  6600  1.1  0.0002  -.46  Total  26.6  6108  16000  7.5  0.0005  2295  1400  1.9  0.0013  1820  8000  20.2  0J3025  +.15  960  6600  7.1  0.0011  -.27  2780  14600  27.3  0.0019  720  1400  0.46  0.0003  -.08  - .  850  8000  4.9 .  0.0006  +.18  -  375  6600  1.4  0.0002  -.32  1945  16000  6.76  0.0004  9  Eutreptiella ap.  9  0 + 1.8  0 + 3.5  Volume prey/ predator  16.0+3.4  e  Stenosomella ventricosa  Percentage prey digested  Eutreptiella sp. (only)  B  0 + 2.7  Number prey/ predator  9 L  3 0.+  Prey  a  12  26.4  5.1+3.7  M . lutheri and Ieoeelmia sp.  36.4+7.6  Total  49.2  12.8+4.9  Eutreptiella sp. and M . lutheri and Isoselmis sp.  17.0+6.8  Total  23.6  One-way  F-value  3.9+3.0  ANOVA  Significant  Yes (.01)  1.6+1.2  5.0+4.6  72  70  •  Comparisons (ScheffS's Test) with a significant difference at .05 level. 1/6. 1/7. 1/10. 1/12, 2/6. 2/7, 2/10, 2/12, 3/6, 3/10, 4/6, 4/8, 4/10, 5/8, 5/10, 6/8, 6/9, 6/11. 7/8, 7/11, 8/10. 8/12, 9/10, 10/11, 11/12.  --  .  82  and Stenosomella v e n t r i c o s a  (see S e c t i o n 4 b ) , were p r e s e n t e d w i t h t h r e e prey  types i n v a r i o u s combinations.  I t i s almost c e r t a i n  c o n d i t i o n s were reached d u r i n g t h i s experiment rates estimated. and  Eutreptiella  t o g e t h e r w i t h Monochrysis  (6,600 c e l l s / m l ) .  more.  d e s p i t e the f a i r l y high feeding  sp. was presented s i n g l y a t 1,400  cells/ml;  l u t h e r i at(8,000 c e l l s / m l ) a n d I s o s e l m i s sp. ;  T i n t i n n o p s i s subacuta accumulated  when p r e s e n t e d s i n g l y  that steady-state feeding  more E u t r e p t i e l l a sp.  than i n the t h r e e - p r e y m i x t u r e , but n o t s i g n i f i c a n t l y  There was a l s o not q u i t e a s i g n i f i c a n t d i f f e r e n c e i n t h e number o f M.  l u t h e r i accumulated  by T_. subacuta i n t h e two o r t h r e e - p r e y m i x t u r e , but  s i g n i f i c a n t l y fewer  I s o s e l m i s sp. were accumulated  than i n t h e two prey m i x t u r e .  i n the t h r e e - p r e y m i x t u r e  The e l e c t i v i t y index f o r I s o s e l m i s s p . ( c r y p t o -  phyceae) was n e g a t i v e i n b o t h c e a s e s .  As i n p r e v i o u s T a b l e s t h e e l e c t i v i t y  i n d e x f o r T_. subacuta f e e d i n g on E u t r e p t i e l l a sp. i n a m i x t u r e o f prey types was h i g h l y p o s i t i v e .  The f e e d i n g r a t e on t h e l a t t e r p r e y was a l s o r e l a t i v e l y  h i g h - about 6 E u t r e p t i e l l a tinnid  sp/hr/tintinnid  o r e q u i v a l e n t to 0.0042 m l / h r / t i n -  (see G e n e r a l D i s c u s s i o n ) .  As shown i n T a b l e 16 Stenosomella v e n t r i c o s a accumulated less Eutreptiella sented s i n g l y (but  than d i d T_. subacuta  to t h e t i n t i n n i d s .  (about  significantly  1/3 as many) when i t was p r e -  S_. v e n t r i c o s a a l s o had l e s s E u t r e p t i e l l a sp.  n o t s i g n i f i c a n t l y l e s s ) i n t h e 3-prey mixture than i n t h e s i n g l e - p r e y  c a s e , and a b o u t ' 7 - f o l d fewer  than d i d j C . subacuta.  Eutreptiella  3-prey m i x t u r e had a n e g a t i v e e l e c t i v i t y index i n S^. v e n t r i c o s a . the number o f M. l u t h e r i accumulated  by \S_. v e n t r i c o s a was l a r g e r  s p . i n the In contrast, (but not  s i g n i f i c a n t l y so) than t h e number i n T_. subacuta i n b o t h the 2-prey and 3-prey mixtures.  More M. l u t h e r i were found i n s i d e  S^. v e n t r i c o s a i n t h e 2-prey  than i n the 3-prey m i x t u r e s , but a g a i n , t h e d i f f e r e n c e was not s i g n i f i c a n t . S^. v e n t r i c o s a accumulated  t h e same number o f I s o s e l m i s sp. as d i d T_. subacuta  83 i n the two-prey m i x t u r e , and a n o n - s i g n i f i c a n t l y l a r g e r number than d i d T. subacuta i n t h e 3-prey m i x t u r e .  The e l e c t i v i t y index f o r S_. v e n t r i c o s a on  I s o s e l m i s sp. was a l s o n e g a t i v e i n b o t h c a s e s . of t i n t i n n i d  i n T a b l e 16 responded  I n summary, t h e s e two s p e c i e s  i n a s i m i l a r manner to M. l u t h e r i and  I s o s e l m i s s p . , and v e r y d i f f e r e n t l y to t h e much l a r g e r E u t r e p t i e l l a sp.. I t i s i n t e r e s t i n g t h a t t h e t o t a l number c e l l s i s s i m i l a r i n t h e 3-prey  (but n o t the volume) o f accumulated  s i t u a t i o n f o r both s p e c i e s o f t i n t i n n i d .  In summary t h e r e s u l t s shown i n T a b l e s 11 to 16 i n d i c a t e v a r i o u s complex forms o f d i f f e r e n t i a l p r e d a t i o n f o r some t i n t i n n i d s p e c i e s on c e r t a i n prey types.  I n some cases t h i s behaviour c o u l d be s a i d t o be some form o f n e g a t i v e  s e l e c t i o n i n mixed-prey  situations  a d a p t i v e v a l u e seem o b s c u r e .  $  a l t h o u g h i t s b e h a v i o u r a l b a s i s and  F o r example, T i n t i n n o p s i s p a r v u l a showed o n l y  d i f f e r e n t i a l p r e d a t i o n i n f a v o u r o f Monochrysis  l u t h e r i over I s o s e l m i s s p .  i n T a b l e 11 s i n c e the number o f the l a t t e r accumulated s i n g l e - p r e y a s i n the two-prey s i t u a t i o n . l u t h e r i was n o t enhanced because as t h e r e v e r s e i s t r u e .  was t h e same i n t h e  However, the accumulation o f M.  i t was l a r g e r o r f a s t e r than I s o s e l m i s sp.,  In T a b l e 12 d i f f e r e n t i a l p r e d a t i o n i s apparent by  T_. subacuta f e e d i n g on E u t r e p t i e l l a sp. over I s o c h r y s i s galbana i n s i n g l e p r e y s i t u a t i o n s , and n e g a t i v e s e l e c t i o n i s apparent a g a i n s t I_. galbana i n the 2-prey  situation.  I t s h o u l d be remembered t h a t i n l o n g experiments  when a f e e d i n g s t e a d y - s t a t e has beemjrreached,  t h a t both apparent  (Table 12)  differential  p r e d a t i o n and n e g a t i v e s e l e c t i o n may i n f a c t be caused by d i f f e r e n c e s i n the ease w i t h which the prey types a r e d i g e s t e d .  In another l o n g experiment  (Table 13) D u n a l i e l l a t e r t i o l e c t a was accum-  u l a t e d l e s s i n a m i x t u r e w i t h I_. galbana than when p r e s e n t e d t e l . alone.  subacuta  The l a t t e r cannot be c o n s i d e r e d as e i t h e r d i f f e r e n t i a l p r e d a t i o n or  84 negative accumulation/selection  s i n c e both prey  p r o p o r t i o n to t h e i r abundance.  In a much s h o r t e r experiment  subacuta and  T i n t i n n o p s i s mucicola  T. m u c i c o l a  (as i n T a b l e  As  seen i n T a b l e  sp..  to d i g e s t by  because i t i s too l a r g e f o r them.  tertiolecta,  t i n t i n n i d s than i s M.  15 the s m a l l t i n t i n n i d s T. rapa and  the maximum d i f f e r e n t i a l p r e d a t i o n a g a i n s t D.  pre-  lutheri.  o f the r e l a t i v e l y f a s t e r d i g e s t i o n of D.  as the l a t t e r i s n o t a b l y more d i f f i c u l t lutheri.  against E u t r e p t i e l l a  13) when f e d w i t h M.  T.  predation;  ( T a b l e 15) T_. subacuta showed d i f f e r e n t i a l  d a t i o n a g a i n s t p_. t e r t i o l e c t a T h i s cannot be a product  (Table 14)  showed o p p o s i t e d i f f e r e n t i a l  T_. subacuta a g i n s t I s o s e l m i s sp. and In another s h o r t experiment  types were accumulated i n  T. nana show  t e r t i o l e c t a , almost  certainly  Stenosomella v e n t r i c o s a shows d i f f e r e n t i a l  p r e d a t i o n on E u t r e p t i e l l a sp. when compared w i t h T. subacuta (Table 16); both t i n t i n n i d s p e c i e s show n e g a t i v e M.  s s e l e c t i o n against Isoselmis  l u t h e r i (to a l e s s e r extent) i n a 3-prey s i t u a t i o n .  f i g u r e s i n Table  sp.  To gudge from  and  and  the  16 i t i s u n l i k e l y t h a t the l a t t e r phenomenon i s caused by  the f a c t t h a t the f e e d i n g r a t e s were o n l y then a t or above t h e i r maxima.  E f f e c t s of p r i o r s t a r v a t i o n on f e e d i n g r a t e s Tables  17 and 18  show the r e s u l t s of the e f f e c t o f p r i o r s t a r v a t i o n f o r  v a r i o u s l o n g p e r i o d s on the f e e d i n g r a t e o f T i n t i n n o p s i s subacuta Stenosomella v e n t r i c o s a . unknown c o n c e n t r a t i o n t e r t i o l e c t a was  I n the experiment shown i n T a b l e  (but c e r t a i n l y above'the OFC  presented  f i l t e r e d water f o r 0,30  to T\  and  17, a dense but  l e v e l ) of D u n a l i e l l a  subacuta a f t e r the l a t t e r had been s t a r v e d i n  or 48 h o u r s .  The  non-starved  c e l l s accumulated about  t w i c e as many food c e l l s as the s t a r v e d c e l l s which a l l showed about the same results.  These d i f f e r e n c e s were not  v e r y l a r g e v a r i a n c e i n the samples.  s t a t i s t i c a l l y s i g n i f i c a n t because of S i m i l a r l y i n Table 1 8 , * t i n t i n n i d s starved  TABLE  17.  Duration of prior starvation  (hrs)  Tintinnopsis subacuta (etc.) starved for various periods in filtered seawater feeding on Dunaliella tertiolecta at unknown, but dense, concentrations. Salinity 26%, Duration of TemperaNumber Number Number of other feeding ture predators prey/ food items/ p e r i o d (hrs) examined predators Tin. Comments  30  0.33  8  5  7.2+8.3  nil  48  0.50  8  6  8.0+8.8  nil  nil  1.3  17  5  17.0+8.7  3.2  48  1.4  17  6  5.0+6.2  nil  nil  4.6  Tintinnidium mucicola nil  1.3  17  One-way A N O V A F - value 2.98  Significant no (.05)  3 had no food  TABLE  18.  Duration of prior starvation ( h x a )  Tintinnopsis subacuta and other predators starved for various periods and feeding on Eutreptiella sp. Temperature 8 ° C ; Salinity 26&. Duration of feeding period (hr3)  Predator  Number predators examined  Number prey/ predator  Number prey/ml  T . subacuta  3  5.0+1.0  14600  12.5  0.0009  P r e d . c e l l s thin; no storage granules  Synchaeta littoralis  1  21.0  14600  52.5  0.0036  P r e d . 400x200um  FR nos/hr/ predator  FR ml/hr/ predator  Comments  72  0-4  72  0.4  72  1.0  ©  T . subacuta  4  4.5+3.7 .  14600  4.5  0.0003  No granules  90  0.45  ©  T . subacuta  5  3.2+1.1  14600  7.1  0.00046  P r e d . cells thin; no granules  90  0.45  ©  Stenosomella ventricosa  3  1.3+1.2  14600  2.9  0.0002  C e l l s thin; some  90  1.1  ©  T . subacuta  90  1.1  ©  S. ventricosa  ©  granules  One -way A N O V A F-value Significant 3.72  yes  (.05)  5  8.4+1.2  14600  3  ,4.3+1.6  14600  .  7.6  0.00051  No granules  3.9  0.00026  Many granules  Comparisons (Scheffg's Test) with a significant difference at .0 5 level 4/5  87 f o r 72 o r 90 hours i n f i l t e r e d water were then presented w i t h v e r y  high  c o n c e n t r a t i o n s o f E u t r e p t i e l l a sp. (14,600/ml) f o r 0.4 or 1.0 hours. T i n t i n n o p s i s subacuta  and Stenosomella  Both  v e n t r i c o s a showed v e r y low f e e d i n g  r a t e s on t h i s f o o d whether s t a r v e d f o r 72 o r 90 h o u r s , w i t h T_. subacuta accumulating  more E u t r e p t i e l l a sp. than S_. v e n t r i c o s a (as i n T a b l e 16).  i n d i v i d u a l o f the l a r g e r o t i f e r  Synchaeta l i t t o r a l i s c o n t a i n e d about 4  as many food items as d i d T_. subacuta v e n t r i c o s a contained but  some food s t o r a g e g r a n u l e s a l t h o u g h  the c e l l s o f s t a r v e d T_. subacuta  serves.  (and see S e c t i o n 4c) .  the c e l l s were t h i n ,  were t h i n and without  The r e s u l t s o f T a b l e s  times  S t a r v e d S^.  obvious  S_. v e n t r i c o s a may be b e t t e r adapted than T.' subacuta  c o n t a i n i n g l i t t l e food.  One  food r e -  to environments  17 and 18 i n d i c a t e t h a t  s t a r v a t i o n f o r more than 48 hours can s e r i o u s l y reduce the a b i l i t y o f t i n t i n n i d s t o e a t when food i s once more p r o v i d e d  i n dense c o n c e n t r a t i o n s .  S i n c e t h e t o t a l number of c e l l s accumulated was s m a l l , i t i s not o n l y a q u e s t i o n o f an i n a b i l i t y  to d i g e s t food once eaten, because o f low l e v e l s o f  the p o o l s o f d i g e s t i v e enzymes (and see d i s c u s s i o n a t the end o f t h i s S e c t i o n ) .  Feeding The  and l o s s r a t e s experiments whose r e s u l t s a r e shown i n T a b l e s 19 to 23 i n c l u d e  e s t i m a t i o n s o f the r a t e o f ' l o s s ' o f o l d food items by t i n t i n n i d s , as w e l l as e s t i m a t i o n s o f f e e d i n g r a t e s on newly presented  prey'items.  Losses a r e  probably the r e s u l t of d i g e s t i o n plus egestion w i t h the r a t e of d i g e s t i o n or partial digestion  as t h e l i m i t i n g s t e p .  Most food  items c o n t a i n an  undiges-  t i b l e f r a c t i o n , b u t t h i s f r a c t i o n may v e r y i n s i z e w i t h changes i n the p h y s i o logical  s t a t e s of predator  rates refer  and p r e y .  to t h e estimated  T h e r e f o r e , i n T a b l e s 19 to 23, l o s s  r a t e of disappearance  bf accumulated food  items.  I t was not p o s s i b l e t o know whether t h e food was a) m o s t l y d i g e s t e d and then egested  a t a s i m i l a r r a t e ; b) w h o l l y - d i g e s t e d w i t h no r e s i d u e to e g e s t ; o r  88  c) egested  b e f o r e any d i g e s t i o n took p l a c e .  As w i t h f e e d i n g r a t e s , l o s s e s  a r e compared from d i f f e r e n c e s between the mean v a l u e s of s a c r i f i c e d  sub-  samples .  In T a b l e s  19 and  20 the r e s u l t s of a type of n u t r i t i o n a l  i n t i n t i n n i d s are shown. filtered  When a n a t u r a l seawater sample i s d i l u t e d  causes:  T h i s can r e s u l t from two  possible  a) the d i l u t i o n o f a dense c o n c e n t r a t i o n of p a r t i c u l a t e matter  merely reduces t h a t c o n c e n t r a t i o n to tintinnid  can f e e d  (or above) the OFC  or l e v e l a t which  (or d i g e s t ) a t i t s f a s t e s t r a t e ; or b)  i s reduced by the t i n t i n n i d  the l i k e l i h o o d of s t a r v a t i o n .  the  the l o s s r a t e of  to match the reduced o p p o r t u n i t i e s f o r f e e d -  i n g i n a d i l u t e medium, thus i n c r e a s i n g d i g e s t i v e e f f i c i e n c y and The  sequence of a slower f e e d i n g r a t e . this  with  seawater of the same o r i g i n , t h e r e i s o f t e n v e r y l i t t l e change i n  the accumulated food c e l l s per t i n t i n n i d .  food  'homeostasis'  l a t t e r may  be a l a r g e l y  reducing  'mechanical' con-  T h i s problem i s a l s o d i s c u s s e d l a t e r i n  Section,  In T a b l e 19  i t can be seen t h a t the s m a l l t i n t i n n i d  species  Stenosomella  n i v a l i s l o s t about h a l f of i t s accumulated food c e l l s i n 7 to 8 hours when a n a t u r a l sample was 1/3  or 9/10  d i l u t e d with f i l t e r e d  of the o r i g i n a l volume.  seawater, whether t h e d i l u t i o n  Likewise,  i n Table  accumulated n a t u r a l food items of T i n t i n n i d i u m m u c i c o l a but not  statistically  s i g n i f i c a n t d i f f e r e n c e a f t e r 5.5  when the d i l u t i o n f a c t o r was  as great as 7 to 1.  3 t o 1 w i t h f i l t e r e d seawater no d i f f e r e n c e was and  20,  was  the number of  showed an to 7.3  appreciable  h o u r s , but  In d i l u t i o n s of 1 to 1 seen from t h e o r i g i n a l  only and  sample;  i n a l l t h r e e l e v e l s of d i l u t i o n , the change i n the accumulated c e l l number  over about 24 hours p a r a l l e l e d original  sample.  the change (a s l i g h t d e c l i n e ) i n the u n d i l u t e d  A f t e r 26 hours the T_. m u c i c o l a  i n the. sample which had  been  TABLE  Duration ( h r B)  19.  L o o s rate of Stenoaomella nivalis at two levels of dilution of medium with filtered seawater. Temperature 9°C; Salinity 26&.  Percentage original seawater  Number predators examined  100  7.25 8.0  ©  <1  12  66  17  Number prey/ predator  Prey ^5um  green  T i n B with algal evespots  L o s s rate nos/Tin/ hr  Loos rate um /Tin/ hr 3  21.1+11.3  10.2+8.1 8.0+10.5  Yes  (.01)  Condition Active  flagellate 8  One-way A N O V A T-value Significant 7.54  Percentage proy digested  51  7  1.5  ~75  Active  77  8  1.6  -80  Active  Comparisons (Scheffe 's Test) with a significant difference at .0 5 level ,  1/2,  1/3  co  TABLE  20.  T i m e since dilution (hrs) 5.5  I Change of food contents of Tintinnidium mucicola with time at four levels of dilution of medium with filtered seawater. Temperature 9 ° C ; Salinity 25&.  Percentage original medium  Number predators examined  Yellow-brown 22.3+13.8 cells (cryptos?)  100  6  6.5  50  10  24.5  50  7  24.7 7.25  26.5  Prey  100  24.0  7.0  25 25 12  Numbers prey/ predator  9  3  17  0.35  "  24.1+9.8  35  nil  •»  12.3+6'.6  28  0.66  26.7+11.3 ,  "  12  13.7+5.6 14.6+9.6  9.5+4.2  *  18  32  Many >3um  1  3.31  yes (.01)  nil  nil  nil nil  nil Many  2  F e w - l o w prey number; Many-high number  1  1.1  0.26  V e r y few  nil  0.73  Value for 100% medium at 5.5 h r s used ao "time sero" for this calculatic  One-way A N O V A F-value Significant  Tina dividing  1  *  30 24  Nos & size of T i n . storage granules Many >3um  27  "  5  'Loss rate' f r o m previous check nos/hr/ um /hr/ Tin Tin  15.7+7.6  "  10  Percentage prey dige sted  Comparisons (Scheffe^s Test) with a significant difference at .05 level nil  d i l u t e d by 7 to 1 had v e r y few food r e s e r v e s t o r a g e g r a n u l e s . the o r i g i n a l sample and granules.  T h i s would seem to i n d i c a t e t h a t t h e r e was  a l l o w T_. m u c i c o l a of  i n 1 to 1 and'3 to 1 d i l u t i o n s s t i l l  to f e e d and  the 7 to 1 d i l u t i o n .  digestion  Simultaneous f e e d i n g and T a b l e s 21, 22 and  had many s t o r a g e  still  enough f o o d to  s t o r e n u t r i e n t s i n a l l samples, except  T h i s experiment was  ( l o s s ) r a t e s may  Tintinnids i n  c a r r i e d out a t 9 C.  be f a s t e r at h i g h e r  i n that  Tintinnid  temperatures.  loss rates  23 show t h e r e s u l t s o f experiments i n which a r e  mated the r a t e s of f e e d i n g on new  food types and  l o s s of d i f f e r e n t o l d food t y p e s .  Feeding  the simultaneous  esti-  r a t e of  and l o s s r a t e s were estimated  from  the d i f f e r e n c e s between the average number of food c e l l s / t i n t i n n i d , i n v a r i o u s samples s i n c e the s t a r t of the experiment.  E f f e c t of temperature In T a b l e 21 f o u r t i n t i n n i d T_. r a p a and  T i n t i n n i d i u m mucicola  5,000 c e l l s / m l and  and kept  hours.  at one  The  and  one  One  temperatures  time check was  C  (8, 13, 17 or 22°C) f o r made of those  samples  ( S c h e f f e ' s t e s t ) were c o n f i n e d w i t h i n the  s p e c i e s , to a v o i d undue  results  complexity.  In Table 21 t h e f e e d i n g r a t e s of T_. subacuta  on M.  l u t h e r i are  h i g h and not s i g n i f i c a n t l y d i f f e r e n t a t a l l 4 temperatures, at  sample a t 14.5  t h r e e time checks were made of samples a t 17 and'22°C.  Comparisons between l e v e l s for  w i t h Monochrysis l u t h e r i a t  t i n t i n n i d s were taken from a f i e l d  of the 4 experimental  13°C  parvula;  (mostly u n i d e n t i f i e d ) i n an experiment l a s t i n g  6 hours b e f o r e the experiment. kept a t 8 and  were presented  T.  Cryptomonas minuta a t 2,000 c e l l s / m l , w h i l s t l o s i n g o l d  n a t u r a l food of v a r i o u s types up to 2 1/4  s p e c i e s T i n t i n n o p s i s subacuta,  fairly  w i t h t h e maximum  10.1 7 c e l l s / h r / t i n t i n n i d o r e q u i v a l e n t to 0.0022 m l / h r / t i n t i n n i d .  This  TABLE  92  21.  Tintinnopsis subacuta. T . parvula. T . rapa and T i n t i n n i d i u m m u c i c o l a feeding on new food Monochrysis lutheri ( 4 2 u m ) and Cryptomonas sp. (280am- ), and loss rate of old food of various types at four temperatures. Salinity 23^,,. 1  3  Number predators examined  Duration (hrs)  Predator  0 + 2.0  T . subacuta  Temp.  8.0  © ®  0+1.5  T . subacuta  ©  13.0  Old 2.4 New: M . L . 17.4+10.0 New: C r y p . 0.8+1.8 Old: 1.5+1.4 New: M . L . 16.1+6. 6 New: C r y p . 0.7+0.8  subacuta  17.0  Old: 6.2+1.1  T . subacuta  17.0  Old: 3.8+2.7 New: M . L . 7.9+5.5 New: C r y p . nil  T.  0+1.6  10  Numbers prey/ predator  ©  ® ©  0 + 2 . 2 5 T . subacuta  17.0  <8>  New: C r y p . 0.2+0.4  0 + 1.0  0 + 1.5  eubacuta  22.0  Old: 10.1+4.3  T . subacuta  22.0  Old: 4.3+1.7 New: M . L . 4.2+4.4 New: C r y p . 0.4+0.4  3  T . subacuta  22.0  Number prey/ ml  0.0017  +.15  224  2000  0.4  0.0002  -.73  676  5000  10.7  0.0022  +.15  197  2000  0.5  0.0002  -.74  +.17  1.6 332  5000  4.9  0.0010  nil  2000  nil  nil  -1.0  0.0005  +.15  nil  -.81  From 0 1.33 235  5000  From 0 2.5  56  2000  nil  5.8 176  5000 '  112  2000  New:  Yea  (.01)  nil  0.0008  +.12  nil  -.54  +.11  From 0 2.9 336  5000  From 0 5.3  0.0011  281  2000  0.7  0.0004  Cryp.  1.0 + 1.0  14.52  4.2  Old:  8.0+_6.9  ANOVA Si f . i i f i c a n t  Electivity Index  8.7  New: M . L .  One-Way F-valuc  FR a s ml/hr/Tin  5000  5.7+0.7  U~7>  F R or Loss-Rate nos/hr/Tin  731  Old: 3.2+2.0 New: M . L . 5.6+1.7  T.  Volume prey/ predator  C o m p a r i s o n s (Scheffe's Tent) with a s i g n i f i c a n t d i f f c r c n c <: at .0 5 l e v e l .  2/3, 2/4, 2/6, 2/12. 2/16. 3/5. 3/13. 4/13, 5/6, 5/12, 5/15. 5/16. 5719. 6/9. 6/13, 7/16. 9/12. 9/16, 12/13, 13/16 -.  .44  93 TABLE  Duration (hrs) 0 + 2.0  0+1.5  21.  Continued  Number predators examined  Predator T. parvula  © © ©  T. parvula  Temp. °C 8.0  13.0  0  T. parvula  17.0  0 +1.6  T. parvula ©  17.0  ©  ®  Number prey/ predator Old: 0.3+0.8 New: M.L. 14.0+6.1 New-. C M . 1.6+2.2 Old: nil New: M.L. 19.0+4.6 New: C M . 0.6+0.5  Number prey/ml  17.0  0  Old: 0.6+1.1 New; M.L. 12.3+3.3  7.0  0.0014  +.11  450  2000  0.8  0.0004  -.47  798  5000  12.7  0.0025  +.15  169  2000  0.4  0.0002  -.47  +.17  1.3 517  5000  7.7  0.0015  nil  2000  nU  nil  Old: nil M.L. 14.6+5.6 New: C M . nil  0+1.0  T. parvula  T. parvula  22.0  Old: 4.3+2.0  22.0  Old: 1.7+0.6 New: M.L. 4.3+5.1 New: C M . nil  © © 0+1.5  T. parvula  22.0  ©  ® © One-way A N O V A F-value Significant 27.22  yes (.01)  Electivity Index  5000  Old: 0.3+0.5 New: M.L. 14.0+6.7 New: C M . 0.3+0.5  -1.-0  From 0 1.2  New:  ®  F R as ml/hr/Tin  588  NewTc.M.  T. parvula  F R or Loss Rate nos/hr/Tin  Old: -2.7+2.4  nil 0+2.25  Volume prey/ predator  613  5000  6.5  0.0013  nil  2000 .  nil  nil  +.17 -1.0  2.6 181  5000  4.3  0.0009  nil  2000  nil  nil  + .17 -1.0  From 0 2.7 588  5000  9.3  0.0019  +.16  84  2000  0.2  0.0001  -.86  C o m p a r i s o n s (Schcfff's Test) with a significant d i f f e r e n c e at .05 l e v e l •  1/2. 1/4, 1/8. 1/9. 1/14. 2/3. 2/5. 2/6. 2/7, 2/13. 2/15. 3/4. 3/8. 3/9. 3/14. 4/5. 4/6. 4/7, 4/10. 4/11. 4/15. 5/8. 5/9. 5/14. 6/9. 7/8. 7/9, 7/14, 8/15. 9/13, 9/15, 13/14, 14/15.  94  TABLE  Duration (hrs) 0 + 2.0  2 1 . Continued  Temp.  Predator  Number predators examined  T. mucicola  4  8.0  °C  ©  © 0 +1.5  T. mucicola  5  13.0  ©  © 0 " 0 + 1.6  T. mucicola  T. mucicola  11  8  17.0  17.0  © © 0 + 2.25  T. mucicola  4  17.0  ©  . © 0  T. mucicola  6  22.0  © . .0 + 1J0T. mucicola  0+1.5  2  0 •0 © T, mucicola  3  © © © One-way A N O V A F-value Significant  22.0  Number prey/ predator Old: 7.8+6.3 New; M.L. 0.5+0.6 New: C M . 0.8+1.0 Old: 11.8+5.8 New: M.L. nil New; C M . 0.6+0.6  Volume prey/ predator  Number prey/ml  21  5000  225  F R as ml/hr/Tin  Electivity Index  0.25  0.00005  -.30  2000  0.40  0.0002  +.37  nil  5000  nil  nil  169  2000  0.40  0.0002  •  _  —  Old: -9.8+3.7 Old: 8.0+3.6 New: M.L. 0.5+1.1 New: C M . 1.3+1.2 Old: 8.8+7.6 New: M.L. nil New: C M . 1.8+1.3 Old: 7.7+2.6 Old: 3.0+4.2 New: M.L. 2.0+2.0 New: C M . 1.0+1.0 Old: 2.7+2.5 New: M.L. 1.3+2.3 New; C M . 1.0+1.7  F R or L o s s Rate nos/hr /Tin.  yes (.01)  + .56  1.1 21  5000  0.31  0.00006  -.44  365  2000  0.81  0.0004  +.01  From 0 0.44 nil  5000  506  2000 .  -  -  nil From 0 0.8  -1.0  nU 0.0004  _  +.56  _  4.7 84  5000  2.0  0.0004  -.04  281  2000  1.0  0.0005  +.07  0.00017  -.12  0.00033  +.21  55  5000  281  2000  From 0 3.3 From 0 0.86 From 0 0.66  Comparisons (Scheffc' 6 Test) with a significant difference at .05 l e v e l  %  12.48  -r.o  2/4. 2/6. 2/7. 3/6. 4/5. 4/8, 4/9. 5/6, 5/7, 5/12, 6/8. 6/9, 7/8, 8/10, 8/12.  •  TABLE  Duration (hrs)  21.  95  Continued  Number predators examined  Predator  Temp. °C  0 + 2.0  T. rapa  8.0  0+1.5  T. rapa  13.0  0  T. rapa  5  0 + 1.6  T. rapa  3  17.0  0 + 2.0  0+1.6  Old: nil New. M.L. 1.7+1.7 New: C M . nil  Helicostomella kiliensis  3  Helicostomella kiliensis  F R as ml/hr/T in  Electivity Indix  5000  1.0  0.0002  + .17  -1.0  2000  1.5  5000  29  0.4  0.00008  + .17  -1.0  2000  nil  8.0  17.0  17.0  Old: 0.6+1.0 New: M.L. 13.3+5.7 New: C M . nil Old: nil New: M.L. 5.0+5.0 Old; nil. New: M.L. 6.0+6.0  1  22.0  Old: 7.0  0+1.5  Helicostomella kiliensis  1  22.0  Old: nil New; 9.0 New; 2.0  Stenosomella ventricosa  F R or Loss rate nos/hr/Tin  Comparisons (Scheffg's Test) with a significant difference at .0 5 level.  Helicostomella kiliensis  Stenosomella ventricosa  Number prey/ml  Old: 3.4+1.7  0  0 + 2.25  71  No (.0 5)  0 + 2 . 2 5 Helicostomella kiliensis  0 + 2.0  Volume prey/ predator  Old: 3.0+0.8 New; nil  Old: 1.0+1.0 New; M.L. -0.7+0.8 New: C M . nil  One-way A N O V A F-value Significant 3.21  Number prey/ predator  8.0  17.0  New; 12.0 Old: nil New: 15.0 New: nil  559  5000  nil  2000  6.7  0.0013 nil  + .17  -1.0  nU 210  0.0006  5000 3.1  252  0.0005  5000 2.7  4.7  M.L. 378  5000  6.0  0.0012  +.07  562  2000  1.3  0.0007  -.22  6.0  0.0012  6.7  0.0013  CM.  M.L. 5000 504 M.L.  + .17  5000 CM.  630  2000  -1.0  96  maximum was  achieved  of t h e f i e l d  sample.  f i r s t check (0 + 1.6 a t 22°C.  o  a t 13 C - the c l o s e s t temperature of t h o s e used to t h a t  The  The  g r e a t e s t f e e d i n g r a t e on M.  h o u r s ) a t 17°C,  l u t h e r i was  at  the  but a t the second check (0 + 1.5  number of C_'. minuta accumulated was  hours)  much l e s s than t h a t of  M.  o  l u t h e r i at a l l temperatures and n i l a t one v a l u e f o r T_. subacuta on (J. minuta was again i n d i c a t i n g d i f f e r e n t i a l  check a t 17 C.  The  electivity  s t r o n g l y n e g a t i v e a t a l l temperatures  ( n e g a t i v e ) p r e d a t i o n of t h i s t i n t i n n i d  on l a b o r a t o r y c u l t u r e s of some c r y p t o p h y c e a e .  The  estimated  r a t e of l o s s of  o l d food from T_. subacuta tended to d e c l i n e w i t h time a t b o t h 17 (and  see d i s c u s s i o n l a t e r i n t h i s S e c t i o n ) .  a t 8 and  13 C.  The  l o s s r a t e was  to the s m a l l sample s i z e s and  species  and  22  Loss r a t e s c o u l d not be  g r e a t e r a t 22  C  estimated  than a t 17 C; but a g a i n  due  g r e a t i n d i v i d u a l v a r i a b i l i t y , t h e r e were no  s i g n i f i c a n t d i f f e r e n c e s between the remaining  numbers of o l d food c e l l s .  In  terms of biomass T_. subacuta d e f i n i t e l y l o s t a g r e a t e r volume of o l d food than the o t h e r  t i n t i n n i d s p e c i e s shown i n T a b l e 21.  subacuta c o n t a i n e d  one  or two  S e v e r a l of the T_. 3  T_. nana (volume 3,000 ;um  ) and  Eutreptiella  sp.  3 (500 jum ) a t the s t a r t , whereas the l a r g e s t o l d food c e l l s c o n t a i n e d 3 p a r v u l a and  T_. m u c i c o l a  i n t h i s experiment were about 150 jum  by T_.  or l e s s i n  volume. The  f e e d i n g r a t e of T i n t i n n o p s i s p a r v u l a on Monochrysis l u t h e r i  21)  showed no  and  the f e e d i n g r a t e s s u r p r i s i n g l y , were s i m i l a r to those of the l a r g e r T_.  subacuta 17  and  on M.  (Table 21) a t 8 22 C.  and  13°C  and  As i n T_. subacuta the e s t i m a t e d  than the h i g h e s t f i e l d  times,  g r e a t e r than those o f t h e l a t t e r f e e d i n g r a t e by T.  l u t h e r i r o s e to i t s maximum e a r l i e r a t 17 C than a t 22°C.  i s much h i g h e r this  s i g n i f i c a n t d i f f e r e n c e s a t d i f f e r e n t temperatures or  (Table  temperature experienced  ' l a g ' i n the f e e d i n g r a t e a t 22°C may  reflect  at  parvula S i n c e 22°C  by these  some problem of  species,  97  p h y s i o l o g i c a l a d a p t a t i o n , but between l o s s r a t e s .  The  i f so i t does not appear i n the d i f f e r e n c e s  f e e d i n g r a t e s of T_. p a r v u l a on Cr yptomonas minuta  were, l i k e those of T_. subacuta, v e r y were always  low or n i l and  the e l e c t i v i t y  values  negative.  The accumulated number of M. (Table 21) was  lutheri  c e l l s i n Tintinnidium  mucicola  v e r y much lower than i n T_. subacuta and' T. p a r v u l a d e s p i t e a  comparable c o n t a c t r a t e .  The  number of C. minuta per T_. m u c i c o l a  s m a l l a t a l l temperatures and o n l y s l i g h t l y and  T. p a r v u l a .  However, t h e e l e c t i v i t y  was  p o s i t i v e , u n l i k e t h a t f o r the o t h e r  very  g r e a t e r than t h a t i n T_. subacuta  index o f T_. m u c i c o l a two  was  tintinnid  on C.  species.  .  minuta  This r e s u l t  emphasizes a problem i n the use of I v l e v ' s index, i n t h a t i t s magnitude and even i t s s i g n depends not o n l y on the amount eaten of the food q u e s t i o n , but a l s o on the amount of the o t h e r  items eaten.  item i n  The l o s s r a t e  o of o l d food from T. m u c i c o l a  a t 22 C was  lower than t h a t o f T. subacuta. at  22 C than a t 17°C,  and  The  higher  than t h a t of T_. p a r v u l a  l o s s r a t e i n Table  Fragmentary r e s u l t s from a few o t h e r  i n the same  T i n t i n n o p s i s rapa c o n t a i n e d  prey s p e c i e s at t h r e e of the e x p e r i m e n t a l  The  seemed to c o n t a i n about as many c e l l s of M.  22°C was  T. p a r v u l a .  those  sample s i z e s of H e l i c o s t o m e l l a k i l i e n s i s were  extremely s m a l l , but i f the i n f o r m a t i o n can be u t i l i s e d , t h e n t h i s  subacuta and  very  temperatures,  i t s r a t e s of l o s s of o l d food m a t e r i a l a t 17 C were no lower than  of the l a r g e r s p e c i e s .  at  higher  T_. subacuta.  s p e c i e s of t i n t i n n i d  experiment as above a r e shown i n T a b l e 21.  but  also  d e c l i n e d w i t h time (or more l i k e l y w i t h biomass  remaining) as d i d the l o s s r a t e s of T_. p a r v u l a and  l i t t l e of e i t h e r new  21 was  and  The  lutheri  at 8  and  species  17 C as d i d T_.  r a t e of l o s s of o l d food m a t e r i a l by H.  a l s o i n the same range as t h a t of J_.  subacuta and  kiliensis  T_. p a r v u l a .  98  One  c e l l of Stenosomella v e n t r i c o s a i n each sample a t 8  and 17°C, a l s o  con-  t a i n e d a number of M. l u t h e r i c e l l s i n the same range as T_. subacuta and T_. p a r v u l a , and no Cryptomonas sp..  The i n c i d e n c e o f the e a r l y stages of r e -  p r o d u c t i o n i n t h i s experiment was  rather higher i n Tintinnidium mucicola  than i n T_. subacuta o r T_. p a r v u l a b u t was with higher  E f f e c t of  a p p a r e n t l y not p o s i t i v e l y  correlated  temperatures.  Starvation  Table 22 shows the r e s u l t s o f an experiment subacuta was  i n which T i n t i n n o p s i s  p r e s e n t e d w i t h a dense m i x t u r e of Monochrysis  lutheri  (16,000/ml)  and P l a g i o s e l m i s sp. (8,000/ml) f o r 3 h o u r s , and checks were made o f the number o f accumulated At 0 + 2.17  food c e l l s / t i n t i n n i d a t 0 + 1 . 0  and a t 0 + 3.0  hours.  hours some of the l a t t e r T_. subacuta were g e n t l y washed w i t h a  l a r g e volume of f i l t e r e d water, and t i n t i n n i d s i n one sub-sample o f t h e s e were s t a r v e d i n f i l t e r e d water f o r 0.66 T_. subacuta was  A second  p r e s e n t e d w i t h a m i x t u r e o f two new  sp. (3,800/ml) and accumulated  hours.  I s o s e l m i s sp.  sub-sample of washed  prey types:  (15,000/ml) f o r 0.33  hours.  Eutreptiella  T_. subacuta  b o t h s p e c i e s of o l d f o o d i n t h e o r i g i n a l m i x t u r e i n the p r o p o r -  t i o n s i n which they were p r e s e n t e d , but r a t h e r s l o w l y .  There were no  -  sig-  n i f i c a n t d i f f e r e n c e s between the numbers o f M. l u t h e r i , nor between the numbers o f P l a g i o s e l m i s sp. per t i n t i n n i d i n any o f t h e t r e a t m e n t s . if  However,  t h e d i f f e r e n c e s between the a c c u m u l a t i o n s o f o l d food a r e used to e s t i m a t e  l o s s r a t e s on an h o u r l y b a s i s , i t i s h i g h l y p r o b a b l e t h a t the l o s s r a t e of o l d f o o d ( e s p e c i a l l y M. new M.  l u t h e r i ) was  g r e a t e r i n the T_. subacuta f e d w i t h  food than i n those c e l l s which ewere s t a r v e d . l u t h e r i was  4.1  The h o u r l y l o s s r a t e o f  c e l l s i n t h e s t a r v e d c e l l s a f t e r 0.66  i n the newly f e d T_. subacuta  ( a f t e r 0.33  hours).  hours and 22.8  T h i s comparison  cells  between  samples taken a t d i f f e r e n t times i s a l s o p a r t l y s p e c i o u s because l o s s r a t e s  TABLE  Duration (hrs)  22.  Feeding and loss rates of Tintinnopsis subacuta; losing Monochrysis lutheri and Plagioeelmls ap. and either starved, or gaining Eutreptiella sp. and Isoselmis sp.  Number predators _ examined  A  1.0  B 3.0  C 0.66 (starved from 2.17 hrs) D 0.33 ( n e w food after 2.17 hrs)  21  18  18  7  © © © ©  M . lutheri  16.1+6.2  23.63  3  FR ml/hr/Tin  16.1  80 5  0.0010  8000  8.0  600  0.0010  M . lutheri  24.2+6.0  16000  -  13.0+4.3  8000  19.3+6.2  nil  4.1*  205  9.8+3.7 nil  nil nil  3.3* nil  '396  22.8*  1140 360  and  Plagioselmis  LR D - C no3/hr/Tin  LR D - C um /hr/Tin  Gain (D) L o s s (D-C) um  -  -  3  - .  3  •  _  Old:  M . lutheri and  Plagioselmis N e w Food  -  -  18.7  935  4.6  nil  nil  -  Old:  M . lutheri  14.4+7.3  '  nil  and  •  Plagioselmis  11.0+4.0  nil  3.0*  2.4+1.0  3800  7.2  3744  0.0019 '  2.4+2.4  15000  7.2  540  0.00048  New:  Eutreptiella and  * L o a a rates calculated f r o m interpolated values A to  F - value  F R or F R or L o s s Rate L o s s Rate nos/hr/Tin u m / h r / T i n  16000  Plagioselmis sp. 8.0+3.2  Isoselmis  One-way  Number prey/ml  and  © © © © ©  Prey  Number prey/ predator  ANOVA Significant yes  (.01)  B of accumulated old food at 2.5 hours.  Comparisons (Scheffe's Test) with a significant difference at .0 5 level. 1/2, 1/6. 1/9, 1/10, 2/3, 2/5, 2/9, 2/10. 3/6. 3/9. 3/10, 4/9, 4/10, 5/6, 5/9, 5/10, 6/10, 7/9. 7/10. 8/9. 8/10.  100 d e c l i n e w i t h time.  However, a ' f o r c i n g  on t h e d i g e s t i o n (or disappearance) the c i l i a t e S t e n t o r c o e r u l e u s a r e a l phenomenon  food  o f o l d food has a l s o been observed i n  (D.J. Rapport, unpublished  d a t a ) and i s p r o b a b l y  (but see Table 23).  The accumulation and  e f f e c t ' o f t h e i n g e s t i o n o f new  o f new food shown i n T a b l e 22 was r a t h e r slow  0.00048 m l / h r / t i n ) and was much l e s s than the (estimated)  (0.0019  l o s s r a t e of  o l d f o o d i n terms o f numbers o f c e l l s , but i n terms o f biomass the r a t i o of h o u r l y g a i n / l o s s e n t i r e l y due to f e e d i n g  (D-C i n T a b l e 22) was 4.6/1.  T h i s phenomenon,.which w i l l be d i s c u s s e d a g a i n l a t e r i n t h i s S e c t i o n , was due largely larger  to the f a c t t h a t one o f t h e new prey  than the o t h e r s used i n t h i s experiment.  Tables23 shows the r e s u l t s of  t y p e s , E u t r e p t i e l l a sp. i s much  of a s i m i l a r  experiment where t h r e e  species  the 'warm-water'type o f t i n t i n n i d s , namely T i n t i n n o p s i s c y l i n d r i c a ,  H e l i c o s t o m e l l a k i l i e n s i s and E u t i n t i n n u s l a t u s  p l u s the u b i q u i t o u s T i n t i n n i d i u m  m u c i c o l a , were g i v e n f o o d f o r s e v e r a l hours then washed i n f i l t e r e d water and either  s t a r v e d , or a l t e r n a t i v e l y  g i v e n new food o f a v i s i b l y d i f f e r e n t  type.  The o l d food type used was one o f e i t h e r Monochrysis l u t h e r i , I s o s e l m i s sp. or D u n a l i e l l a  t e r t i o l e c t a ; and i f g i v e n new f o o d , t h e type used was  I s o s e l m i s sp. or p_. t e r t i o l e c t a . not made between the r e s u l t s  The r e s u l t s  either  S c h e f f e ' s t e s t of m u l t i p l e comparisons was  from d i f f e r e n t  of t h i s experiment  c o n t r a s t to those shown f o r another  t i n t i n n i d species.  (Table 23) seem to be p a r t l y species of t i n t i n n i d  i n direct  i n T a b l e 22, i n  t h a t o l d food c e l l s o f M. l u t h e r i o r I), t e r t i o l e c t a were not l o s t more r a p i d l y from those T. c y l i n d r i c a c e l l s g i v e n new food than from those  starved.  However, i n t h e case o f o l d I s o s e l m i s sp. there were s i g n i f i c a n t l y more o l d f o o d c e l l s remaining  i n s t a r v e d T_. c y l i n d r i c a than i n those f e d w i t h  new  TABLE  Duration (hrs) 0  23.  Accumulation and loss rates of Tintinnopals cylindrica, HelicoatomeUa kiliensis, Tintinnidium mucicola and Eutintinnus latus, feeding on M o n o c h r y s i 3 lutheri, or Isoselmis sp.; or starved, and losing M . lutheri, Isoselmis 3 p . , o r Dunaliella tertiolecta. Temperature 1 6 ° C ; Salinity 1 6 & . Number predators examined  Predator Tintinnopsis cylindrica 0 ii  6.7 7.17 *  II  0  II  7.17  II  7.66  II  0  it  8.0  II  8.33  II  © >—'  ©  Percentage prey dice sted  Number s prey/ml  10  M . lutheri  53.9+12.2  39  ~  6  Old: M . L .  8.3+5.2  38  9 .  Old: M . L . and New Isoselmis a p .  8.6+9.4  75  nil (starved) nil  3.9+3.9  26  6  D.  16.7+6.0  7  Old:  © © © © © ©  Prey  Number prey/ predator  11 '•  11  tertiolecta  •  50  D.T.  3.4+2.6  88  Old; D . T . and New M . lutheri  2.1+3.1  100  Isoselmis s p .  14.8+7.5  24.8+11.0  6  Old Isoselmis s p . and New M . lutheri  41.6+19.2  —  6.8  462{L)  -  6.3  430(L)  -  ,0.54  43(F)  .0.00004  -  nil (starved) nil  1.85  615{L)  1.91  635(L)  4000  3.24  220(F)  -  0.0008  62(L)  100  1.66  133(L)  40  3500  5.00  340(F)  0.0014  -  -  One-way A N O V A F-value Significant  Comparisons (Scheffe's Test) with a significant difference at .05 level  yes (.01)'  1/2, 1/3, 1/4, 1/6, 1/7, 1/9. 1/10. 1/11. 3/8, 3/11. 3/12, 4/5, 4/8. 4/9. 4/12. 5/6. 5/7, 5/11, 6/8. 6/9. 6/12. 7/8. 7/9. 7/10. 7/12. 8/11, 9/11, 10/11, 11/12.  29.01  FR ml/hr/Tin  0.78  1,0+1.4  5  3  nil (starved) nil  100  Old:  F R or L R Um /hr/Tin  -  61  Isoaelmis s p . 8.6+2.5  7  13000  F R or L R nos/hr/Tin  -  Duration (hrs)  Predator  Number predators examined  Hclicostomclla kilienaia • 6.7 0  prey digested M . lutheri  8.0+7.0  2  Old M . L .  2.0+1.4  2  D.  5.5+2.1  1  Old D . T , and New M . lutheri  7.66  0  Percentage  tertiolecta  . 0.0  2  Iaoaelmia sp.  6.0+1.4  2  Old Isoselmia sp. and New M . lutheri  0.0  8.33  Numbers prey/ml  12  -  50  nil (starved)  0—  0.0  ' FR or L R |im /hr/Tin 3  0.9  FR • ml/hr/Tin  -  -  45  -  36  nil  nil  0.72  nil  4000  nil  50  11.5+9.1  FR or, L R nos/hr/Tin  .  .  239 nil  nil  .  nil  nil  0.72  58  74  3 500  1.38  110  -  -  -  0.00 0 39  One-way A N O V A F-value Significant 0.61  Tintinnidium mucicola  M . lutheri '  4.0+1.9  60  nil  nil  0  4  D.  7.17  2  Old D . T .  7.66  0 8.0 8.33  tertiolecta  nil \  3  nil  nil (starved)  -  Old. D . T . and New M . lutheri  nil  nil  nil  nil  4  Isoselmia sp.  18.3+13.9  40  1  Old Isoaelmis sp.  4.0  100  Old Isoselmis sp, and New M . lutheri  0.0  nil  nil (starved) nil  0.0  nil  3500  1  -  —  -  -  1.78  143  2.20  176  nil  nil  nil  TABLE  23.  Continued  Duration (hrs) Predator Eutintinnus latus  Number predatorB examined  Prey  Number prey/ predator  Percentage prey Numbers digested prey/ml  M. lutheri  10.0  50  6.7  M. lutheri  8.0  33  nil (starved)  7.17  Old D. tertiolectus 10.0  100  nil (starved)  7.66  Old D. tertiolectus 2.0 and New. M. lutheri 6.0  100  0 0  E . tubulosus  100  Isoselmis sp.  8.0  88  D. tertiolecta  8.0  33  4000  FR or LR FR pr LR nos/hr/Tin um /hr/Tin 3  0.3  20  0.78  261  FR ml/hr/Tin  0.0002  TABLE  23A.  S u m m a r y of a c c u m u l a t i o n e x p e r i m e n t s w i t h T i n t i n n o p s i s s u b a c u t a .  Maximum Table Number  Max. F R Prey  ml/hr/Tin.  7 10  D. t e r t i o l e c t a  0.0065  D. t e r t i o l e c t a  0.0018  12  E u t r e p t i e l l a sp.  0.0004  12  I. g a l b a n a  0.00004  13  D. t e r t i o l e c t a  0.00034  13 13  E u t r e p t i e l l a sp.  0.0018 0.00011  14  I. g a l b a n a E u t r e p t i e l l a sp.  14  I s o s e l m i s sp.  0.00010  1 5 1 5 16 16 16 21  M.llutheri D. t e r t i o l e c t a E u t r e p t i e l l a sp. M. l u t h e r i I s o s e l m i s sp.  0.0020 0.0003 0.0042 0.0018  0.0023  0.0011  22  lutheri 0.0017 C r y p t o m o n a s sp. 0.0004 M. l u t h e r i 0.0010  22  P l a g i o s e l m i s sp. 0.0010  22  E u t r e p t i e l l a sp. I s o s e l m i s sp.  21  22  M.  0.0019 0.00048  Numbers  Av; Prey  Max. P r e y  Diffl.  Apparent  prey/ml  Nos/Tin.  Volume/Tin.  Pred.  Selection  1, 750 15, 600  32.5  4, 400 66, 000  18.3  4, 400 1, 500 66, 000 3, 650 . 30, 000 13, 000 6, 200 1, 400 8, 000 6, 600 5, 000  25.1  - --  6, 825 4, 718 Yes  No  26.3  9, 100 1, 200  Yes  9.7  2, 040  Yes  Yes Yes  16.0 46.7  8, 000 2, 100  Yes Yes  No No  5.3  2, 650  Yes  No  2.0  150  Yes  No  26.5 2.0 16.0 26.0  1, 325 400 7, 200 1, 300  Yes Yes Yes Yes Yes  No  12.6  945  No Yes Yes Yes  17.4  730  Yes  No  2, 000 16, 000  1.0 24.2  280  Yes No  No No  8, 000 3, 800  13.0  No  No  2.4  Yes  No  15, 000  2.4  Yes  No  104  M.  lutheri.  T h i s may  be due  to the f a c t t h a t many more new  food c e l l s were  accumulated i n 7 to 8 hours by the T. c y l i n d r i c a i n d i v i d u a l s c o n t a i n i n g o l d I s o s e l m i s sp.(and  thus  other  However, the d i f f e r e n c e between the accumulations  M. was  two  cases.  the s m a l l e s t t o t a l volume of o l d food) than i n the  l u t h e r i i n T_. c y l i n d r i c a c o n t a i n i n g o l d D. not  new  t e r t i o l e c t a or o l d I s o s e l m i s  sp.  significant.  Hence, the  ' f o r c i n g e f f e c t ' of new  on the amount of new  food eaten.  the v e r y s m a l l accumulation  The  v e n t r i c o s a i n previous  s m a l l l o s s of o l d M.  (as T_. subacuta  t a b l e s ) shows d i f f e r e n t i a l  u l a t i o n on I s o s e l m i s sp. later i n this  Section.  or o l d I s o s e l m i s ; ; but was  (50 and  The  and  depend somewhat  lutheri  during  The  Stenosomella  ( n e g a t i v e ) predation/accum-  The r e l a t i o n s h i p o f o l d and new  food i s a l s o d i s -  g a i n / l o s s r a t i o f o r T_. c y l i n d r i c a  p o s i t i v e i n terms of numbers when new  t e r case.  food on o l d food may  of I s o s e l m i s sp. seems to emphasize t h i s p o i n t .  I t i s i n t e r e s t i n g t h a t T_. c y l i n d r i c a  cussed  of  M.  was  l u t h e r i f o l l o w e d o l d 1). t e r t i o l e c t a  p o s i t i v e i n terms of c e l l volumes o n l y i n the  T h i s i s because M.  l u t h e r i and  I s o s e l m i s sp. are o f s i m i l a r  lat-  size  3 3 75 /am ) but I), t e r t i o l e c t a i s much l a r g e r (200 jam ) .  sample s i z e s of H e l i c o s t o m e l l a k i l i e n s i s i n Table 23 were too  to show s i g n i f i c a n t d i f f e r e n c e s between means even i f they had the r a t e s of f e e d i n g and  small  e x i s t e d , but  l o s s i n t h i s s p e c i e s were lower than i n the con-  s i d e r a b l y l a r g e r T_. c y l i n d r i c a , except about the same r a t e i n the two  species.  t h a t o l d I s o s e l m i s sp. was T a b l e 23 a l s o shows a g a i n  l o s t at the  apparent r e l a t i v e a f f i n i t y f o r Cryptomonad c e l l s by T i n t i n n i d i u m m u c i c o l a . The a c c u m u l a t i o n  and l o s s r a t e s of t h i s t i n t i n n i d s p e c i e s on I s o s e l m i s  were not o n l y much l a r g e r than on the o t h e r two s l i g h t l y l a r g e r than  sp.  food t y p e s , but were a l s o  the f e e d i n g o r l o s s r a t e s of T.  c y l i n d r i c a or  105 H.  k i l i e n s i s on I s o s e l m i s  given  the o p p o r t u n i t y  er than t h a t of one 'activity'  (eg.  sp.  to eat M.  'handling'or  (Table  lutheri  (although cell.  i n d i v i d u a l of T_.  i t d i d not do  The  great-  relative  some e f f e c t on the  l o s s r a t e of o l d J).  slower than i n one  mucicola  so) was  It i s p o s s i b l e that  a v o i d i n g p a r t i c l e s ) has  s t a r v e d E u t i n t i n n u s l a t u s was lutheri  l o s s r a t e of one  s t a r v e d T. m u c i c o l a  o f l o s s of o l d food m a t e r i a l .  M.  The  rate  t e r t i o l e c t a from  one  E. l a t u s c e l l f e d w i t h  new  23).  In summary, the r e s u l t s of T a b l e s  21,  22, and  23 i n d i c a t e t h a t  feeding  r a t e s i n f o u r s p e c i e s of t i n t i n n i d a r e l i t t l e a f f e c t e d by changes i n temperature  a f t e r a c c l i m a t i o n f o r s e v e r a l hours  (Table 21); but  t h a t simultaneous  l o s s r a t e s a r e somewhat i n c r e a s e d at v e r y h i g h temperatures?. T a b l e  21 a l s o  showed once more the apparent d i f f e r e n t i a l p r e d a t i o n of T. subacuta and p a r v u l a a g a i n s t a cryptomonad p r e y , and monad p r e y .  The  loss rates  o f T. m u c i c o l a  against a non-crypto-  ( i n numbers) v a r i e d d i r e c t l y w i t h  the c e l l  o f the t i n t i n n i d s p e c i e s , as d i d the f e e d i n g r a t e s i n a g e n e r a l rates  ( i n biomass) were g r e a t e s t f o r T.  items were extremely l a r g e . known s p e c i e s , and tinnids.  In T a b l e s  23 the o l d food  p a r a l l e l experiments were done w i t h  a t e l y l e s s of a cryptomonad  sense.  23,  s t a r v e d and  f o r once d i d not  ( P l a g i o s e l m i s sp.)  ever, n e g a t i v e  d i f f e r e n t i a l p r e d a t i o n was  food  sp. when compared w i t h  In T a b l e  then of M.  eat  fed  seen a g a i n s t  the new  i s added, than when the t i n t i n n i d i s s t a r v e d .  l u t h e r i ; and when  the new  not.  How-  cryptomonad  E u t r e p t i e l l a sp. i n T a b l e  22. food  An a l t e r n a t i v e f(or a d d i t i o n a l )  f o r these r e s u l t s i f t h a t l o s s r a t e s d e c l i n e e x p o n e n t i a l l y  time whether the t i n t i n n i d i s f e d o r  tin-  proportion-'  22 i t can be seen t h a t o l d f o o d i s l o s t more r a p i d l y when new  explanation  Loss  items were of  s t a r v e d , T. subacuta a l s o l o s t both of these p r e y types i n p r o p o r t i o n .  Isoselmis  size  subacuta, s i n c e some of i t s o l d food 22 and  T_. subacuta as shown i n T a b l e  T.  with  106  T a b l e 23 shows t h a t the l o s s r a t e s o f o l d food from T i r i t i r i n O p s i s cylindrica  i n a long  ( 7 - 8 hour) experiment were i n some c a s e s a f u n c t i o n  of t h e amount o f new food eaten  (or v i c e - v e r s a ) , which i n t u r n depended  upon t h e type o f new food p r e s e n t e d .  T_. c y l i n d r i c a was t h e f o u r t h s p e c i e s  i n t h i s study to show n e g a t i v e d i f f e r e n t i a l p r e d a t i o n on the cryptomonad Isoseihmis sp.  I n d i v i d u a l v a r i a b i l i t y i n t i n t i n n i d s l o s i n g o l d food and e a t i n g new food In t h e p r e v i o u s experimental  r e s u l t s t h e r e appeared to be a p o s i t i v e r e -  l a t i o n s h i p between the average amount o f new food added t o , and the average amount o f o l d ' f o o d c o n c u r r e n t l y l o s t from t i n t i n n i d s .  I t was not c l e a r which  of the two p r o c e s s e s was t h e c o n t r o l l i n g f a c t o r i n the r e l a t i o n s h i p . p r o b a b l e t h a t the p r o c e s s o f i n g e s t i o n o f food i n some way tintinnid  'forces' the t i n -  to ' l o s e ' f o o d more r a p i d l y ; and s t a r v i n g c e l l s o r c e l l s  relatively l i t t l e  It i s  with  food seem t o l o s e i t a t a slower r a t e than do w e l l - f e d c e l l s  (Table 22, 23; and Rapport, u n p u b l i s h e d  data).  A l s o Berger  (1971) and  Goulder  (1972) have shown t h a t o l d food d i s a p p e a r s from some o t h e r c i l i a t e s a t a r a t e which i s much f a s t e r i n i t i a l l y  than l a t e r .  T h i s i s a l s o a w e l l known  phenomenon in« d u r i n g the e g e s t i o n o f s o l i d p a r t i c l e s and the e x c r e t i o n of m e t a b o l i t e s by p l a n k t o n i c C r u s t a c e a .  The amount o f o l d food i n s i d e a t i n t i n n i d may a l s o p l a c e some r e c i p r o c a l upper l i m i t on i t s f e e d i n g r a t e on new f o o d .  There may be an upper l i m i t f o r  the t o t a l number or volume o f a l l c o n t a i n e d food c e l l s which i s constant f o r a particular  tintinnid  mum d i g e s t i o n r a t e .  s p e c i e s , and a t which i n g e s t i o n r a t e equals the maxi-  If this  ' r e s e r v o i r s i z e ' i s approximately  a constant  then the t o t a l o f o l d and new food s h o u l d be v e r y s i m i l a r i n d i f f e r e n t  indi-  v i d u a l s i n one experiment, no matter what t h e v a r i a b i l i t y c o f t e i t h e r o l d o r new  107  food p e r t i n t i n n i d .  A l s o , i f t h i s theory holds  the mean v a l u e s o f o l d and  new food i n s e v e r a l t i n t i n n i d s i n each o f a s u c c e s s i v e s e r i e s J o f samples,, should  l i e on a n e g a t i v e l y s l o p i n g r e g r e s s i o n l i n e o f o l d (x) on new (y)  f o o d ; and the i n d i v i d u a l v a l u e s should tively  small variance.  fall  T h i r d l y to f u l f i l  c l o s e t o such a l i n e w i t h  rela-  the p r e d i c t i o n s of t h i s t h e o r y , t h e  v a l u e s o f t h e two i n t e r c e p t s e x t r a p o l a t e d from a l i n e j o i n i n g the means o f s u c c e s s i v e samples should be s i m i l a r and be e q u i v a l e n t to t h e mean t h e o r e t i c a l r e s e r v o i r s i z e f o r that species  ( i e . t h e l i n e should have a s l o p e o f -1.0).  As an i n d i c a t i o n t h a t the 'constant t r u e , i t can be c a l c u l a t e d from T a b l e s  r e s e r v o i r ' theory  i s u n l i k e l y t o be  21 t o 23 t h a t t h e r e i s a wide range i n  average numbers of o l d p l u s new food c e l l t o t a l s f o r each s p e c i e s i n v a r i o u s p a r t s o f those  experiments.  The range i s 8.9 to 30.2 t o t a l food i t e m s / t i n -  t i n n i d f o r T i n t i n n o p s i s subacuta; 12.5 t o 53.9 f o r T_. c y l i n d r i c a ; 6.0 to 19.6 for  T_. p a r v u l a and 5.0. to 12.2 f o r T i n t i n n i d i u m m u c i c o l a .  The ranges of-.,  h o u r l y g a i n to l o s s r a t i o s f o r averages of these s p e c i e s can a l s o be c a l c u l a t e d from T a b l e s for  21 t o 23, and these too a r e f a i r l y wide.  These ranges a r e :  T i n t i n n o p s i s subacuta 0.72 to 3.1 (number) and 2.9 t o 4.6 (volume); f o r  T_. c y l i n d r i c a 0.08 to 3.0 (number) and 0.1 t o 2.0 (volume); f o r T_. p a r v u l a 1.7 to 3.5 (number) and f o r T i n t i n n i d i u m m u c i c o l a  The  r e s u l t s o f two experiments done 4 days a p a r t  a r e shown i n F i g u r e s 6 and 7. any  0.46 to 1.8  to test  (number).  this  theory  F i r s t l y i t i s obvious t h a t t h e v a r i a n c e about  r e g r e s s i o n l i n e i n F i g u r e s 6 and 7 i s v e r y l a r g e , and t h a t t h e r e s e r v o i r  theory mentioned above does n o t h o l d i n terms o f volume. necessary  I n f a c t , as t h e  c o n d i t i o n s f o r normal l i n e a r r e g r e s s i o n a n a l y s i s do n o t a p p l y to  F i g u r e s 6 and 7, a c o n s t r a i n e d l i n e a r r e g r e s s i o n a n a l y s i s was performed.  The  l i n e was c o n s t r a i n e d about the Y a x i s a t a p o i n t e q u i v a l e n t t o the mean o f  108  F i g u r e 6.  R e l a t i o n s h i p between t h e volume Q i m x 10") o f o l d food and new food c o n t a i n e d by i n d i v i d u a l T i n t i n n o p s i s subacuta. new f o o d - D u n a l i e l l a t e r t i o l e c t a o l d f o o d - I s o c h r y s i s galbana and n a t u r a l food i t e m s . O Low c o n c e n t r a t i o n s o f I . galbana checked a t 0 + 5 mins. • Low c o n c e n t r a t i o n s o f I . galbana checked a t 0 + 57 mxns. A High c o n c e n t r a t i o n s o f I . galbana checked a t 0 + 8 mxns. A High c o n c e n t r a t i o n s o f I . galbana checked a t 0 + 68 mins. J  72r 68 64 6056 52 48 VOLUME of NEW  4  2  R= 2  FOOD 40  {.Jim3x 1 0 )  Y = -0.85(X-0)+-2650  4  3  ®  0.074  0  6  32  9  8  12 VOLUME  "16  20  of O L D FOOD  24  28 (pm  3  X  10 ) 2  110  F i g u r e 7.  3 2 R e l a t i o n s h i p between the volume (um x 10 ) of o l d food and new food c o n t a i n e d by i n d i v i d u a l T i n t i n n o p s i s subacuta and Stenosomella v e n t r i c o s a . / O - T, Subacuta [-mean v a l u e -©-.-— S_. v e n t r i c o s a ^0^) new food - D u n a l i e l l a t e r t i o l e c t a o l d food - v a r i o u s O - T i n t i n n i d s i n f i l t e r e d water f o r 7 hours. • - T i n t i n n i d s from f i e l d sample. A - T i n t i n n i d s from f i e l d sample p l u s h i g h c o n c e n t r a t i o n s of 5 ^um d i a . p o l y s t y r e n e l a t e x . A - T i n t i n n i d s from f i e l d sample p l u s h i g h c o n c e n t r a t i o n s of I s o c h r y s i s galbana.  72  »  68  •  64  -  60  *  A  56 52  • 9  48  -•  VOLUME 44 of 40 NEW  &•  FOOD  36  (Dunaliella tertiolecta  3  -A •  • AA  9  Y = -1.9(X-0) + 3600  0  R* 2  0.141  2  A  (p  3  X10 ) 2  5  6  7  8  10 11 12 13 VOLUME of O L D FOOD (Isochrysis galbana)  14 15 16 17 (jJ X10 ) 3  2  18  19  20  42  43  £  112  a l l Y v a l u e s when X ( o l d food) was z e r o .  The r e g r e s s i o n a n a l y s i s shown i n  F i g u r e 7. was performed o n l y on d a t a from T i n t i n n o p s i s subacuta. circumstances,  In these  t h e r e g r e s s i o n o f X on Y would n a t u r a l l y be s i g n i f i c a n t l y 2  d i f f e r e n t from z e r o .  However, t h e r e g r e s s i o n c o e f f i c i e n t  (R ) i n both  F i g u r e s 6 and 7 i s v e r y s m a l l , i n d i c a t i n g g r e a t i n d i v i d u a l v a r i a b i l i t y data.  The v a l u e s  i n the  (volume) o f t h e X and Y i n t e r c e p t s a r e v e r y s i m i l a r i n  F i g u r e 6 where t h e o l d food was D u n a l i e l l a t e r t i o l e c t a and the new f o o d was I s o c h r y s i s galbana  etc.  However, t h e v a l u e o f t h e X i n t e r c e p t i n F i g u r e 7 i s  about h a l f t h a t o f t h e Y i n t e r c e p t v a l u e , and here t h e o l d food i s e i t h e r I. galbana,  5 yum l a t e x , o r s m a l l n a t u r a l p a r t i c l e s , a l l s m a l l e r than t h e new food  D. t e r t i o l e c t a .  T h e r e f o r e the i n t e r c e p t v a l u e s o f X and Y i f based upon food  c e l l numbers would n o t be s i m i l a r i n e i t h e r experiment.  I t i s curious that  the mean v a l u e s o f the v a r i o u s sub-groups i n F i g u r e s 6 and 7 do f a l l to an imaginary  close  straight l i n e despite the large scatter of the i n d i v i d u a l  values. A one-to-one c o r r e l a t i o n between t h e i n t e r c e p t volumes might be expected if  t h e l i m i t a t i o n on f e e d i n g r a t e was s e t i n some way by t h e t o t a l volume o f  food i n s i d e t h e t i n t i n n i d undergoing  digestion.  A one-to-one c o r r e l a t i o n  between t h e i n t e r c e p t s i n terms o f numbers o f o l d and new food items might be expected  i f each i t e m i s c o n t a i n e d i n a d i f f e r e n t food v a c u o l e , as i s  u s u a l l y t h e case p a r t i c u l a r l y f o r l a r g e items, and i f t h e f o r m a t i o n o f food v a c u o l e s i s t h e l i m i t i n g f a c t o r i n the p r o c e s s o f i n g e s t i o n . v a c u o l e membrane s y n t h e s i s i s an extremely phic protozoa caudaturn  a c t i v e process  C e r t a i n l y food  i n some  phagotro-  ( R i c k e t t s , 1971); b u t r e c e n t work w i t h t h e c i l i a t e Paramecium  ( A l l e n , 1973) has i n d i c a t e d t h a t t h e food v a c u o l e membrane i n t h i s  species i s neither f i n a l l y  egested w i t h the food r e s i d u e n o r broken down  i n t o i t s components, b u t i s 'conserved'  a s fragments i n s m a l l v e s i c l e s which  113  may  be r a p i d l y t r a n s p o r t e d  hand, R i c k e t t s  back to the o r a l r e g i o n f o r r e u s e .  the  (1973) s t a t e s t h a t the d i g e s t i v e enzymes w i t h i n food  i n Tetrahymena p y r i f o r m i s a r e not medium.  On  vacuoles  conserved a t e g e s t i o n , but a r e l o s t to  R i c k e t t s t h i n k s t h a t the i n g e s t i o n r a t e of T_. p y r i f o r m i s i s  mately l i m i t e d by  other  the a v a i l a b i l i t y of d i g e s t i v e enzymes.  An  the  ulti-  experiment w i t h  Paramecium a u r e l i a showed t h a t food v a c u o l e s c o n t a i n i n g o l d red  carmine  p a r t i c l e s were reduced i n number a t the same r a t e as v a c u o l e s c o n t a i n i n g b l a c k i n k p a r t i c l e s were formed by data). and  If there  i s any  the g a i n of new  the c i l i a t e  (J.D.  (or food v a c u o l e ? ) b a s i s than  the b a s i s o f r e l a t i v e volumes or biomass of m a t e r i a l .  There are  little  food  i n t i n t i n n i d s , i t i s perhaps a l i t t l e more l i k e l y  e s p e c i a l l y f o r l a r g e p r e y to be on a number  about which v e r y  Berger, u n p u b l i s h e d  correspondence at a l l between the l o s s of o l d  food  new  i s known f o r any  This i s a  on  subject  protozoan.  s e v e r a l other p o s s i b l e e x p l a n a t i o n s  f o r the g r e a t  variability  i n f e e d i n g r a t e s between i n d i v i d u a l t i n t i n n i d s seen i n the r e s u l t s of t h e s e a c c u m u l a t i o n experiments. more of the f o l l o w i n g :  These a r e t h a t v a r i a b i l i t y may  be due  1) Heterogenous d i s t r i b u t i o n of food  to one  or  items i n the  environment; 2) the s i z e of the unused p o r t i o n of the p o o l c f o f d i g e s t i v e enzymes i n the c e l l , which i n t u r n may f e e d i n g r a t e and and  biomass of p r e y , and  be  the product of  (a) the  recent  (b) the l e s s - r e c e n t n u t r i t i o n a l h i s t o r y  the subsequent r a t e of s y n t h e s i s o f d i g e s t i v e enzymes; 3)  p h y s i o l o g i c a l e f f e c t s of the immediate environment, o t h e r  differential  than f o o d ; 4)  term spontaneous changes i n motion or f e e d i n g b e h a v i o u r ; 5) the age tintinnid cell  or how  r e c e n t l y the parent c e l l  d i v i d e d ; 6) g e n e t i c  among members of a c l o n e or between s t r a i n s or syngens w i t h i n a  the  variability  species.  Most o f these p o s s i b i l i t i e s have not been t e s t e d i n t i n t i n n i d s , nor protozoan.  of  short-  in  any  114 (1) The heterogenous d i s t r i b u t i o n o f food t i c u l a r l y i n l e s s dense c e l l c o n c e n t r a t i o n s not a g i t a t e d . with  stirred  items may be a f a c t o r p a r -  or when experimental  vessels are  I n f a c t , experiments w i t h v e r y dense c e l l c o n c e n t r a t i o n s o r samples seem t o c o n t a i n as much i n d i v i d u a l f e e d i n g  as any o t h e r s .  variability  (2) D i f f e r e n t i a l d i g e s t i v e enzyme s y n t h e s i s and u t i l i s a t i o n  i s a l i k e l y p o s s i b i l i t y which could have complex e f f e c t s on t h e f u t u r e f e e d i n g performance o f a t i n t i n n i d .  T h e o r e t i c a l l y , l a r g e r s p e c i e s should have a  g r e a t e r c a p a c i t y f o r enzyme s y n t h e s i s and s t o r a g e  than s m a l l e r s p e c i e s , and  t h e r e f o r e s h o u l d be l e s s i n d i v i d u a l l y v a r i a b l e ; and p r e v i o u s l y w e l l - f e d i n d i v i d u a l s of any s p e c i e s should be b e t t e r a b l e t o r e c o v e r from s t a r v a t i o n when once r e - f e d , than i n d i v i d u a l s whose h i s t o r y has been one o f poor n u t rition  (and see R i c k e t t s , 1973).  Feeding  of t h e same s p e c i e s o r q u a l i t y o f prey  on 'blooms' o r dense  type, should r a p i d l y reduce t h e  v a r i a n c e i n f e e d i n g performance i n a t i n t i n n i d Fenchel  concentrations  s p e c i e s caused by f a c t o r ( 2 ) .  (1968) has shown t h a t f o r many s p e c i e s o f b e n t h i c c i l i a t e the maximum  r e p r o d u c t i v e r a t e decreaseswwith i n c r e a s i n g c e l l volume.  As t h i s i s p r o b a b l y  a l s o t r u e f o r t i n t i n n i d s i t i s l i k e l y t h a t when a l l s p e c i e s a r e a t (or near) t h e i r maximum r e p r o d u c t i v e r a t e , t h e v a r i a t i o n between c e l l s due to d i f f e r e n t n u t r i t i o n a l h i s t o r i e s w i l l be reduced more r a p i d l y i n s m a l l s p e c i e s than i n l a r g e ones.  However, s m a l l s p e c i e s almost c e r t a i n l y need much denser c o n -  c e n t r a t i o n s o f food species  (see G e n e r a l  to reach  t h e i r maximum r e p r o d u c t i v e r a t e than do l a r g e  Discussion).  (3) D i f f e r e n t i a l p h y s i o l o g i c a l e f f e c t s o f  unknown o r i g i n a r e a l s o a d i s t i n c t l y p o s s i b l e source  of v a r i a t i o n i n i n d i v i -  d u a l f e e d i n g r a t e s , and t h i s i s borne o u t by t h e d i f f e r e n c e s i n f e e d i n g behaviour species.  sometimes observed i n t h i s study amongst i n d i v i d u a l s o f the same T h i s p o s s i b i l i t y c o u l d b e s t be t e s t e d when i t i s p o s s i b l e to grow  l a b o r a t o r y c u l t u r e s o f t i n t i n n i d s under c o m p l e t e l y  controlled conditions.  115  TABLE  24.  Species Tintinnidium mucicola  II  II II II  The relationship between tintinnid cell length and number of accumulated food items in two species taken from different experiments. Cell Length  Cell Diameter  Lorica Length  M 40 40 45 45 80  35 35 35 35 35  40 100 110 125 150  Number of Food Items Brown Cells 6-8|im dia. 3 7  6 4 11  Volumes of Food Items Um TYPE 1 TYPE 2 Natural" large dinos, Isochrysis Eutreptiella sp. galbana 3  Eutintinnus latus  100 100 100 100 125 125 200 200  70 70 70 70 70 70 70 70  nil nil 250 250 220 250 250 275  1450 8500 3800 7850 7700 1100 6500 7000  45 800 700 840 770 420 525 280  116  (4) Spontaneous changes i n f e e d i n g b e h a v i o u r have not been seen i n t h i s but  Strathmann (1971) has noted them i n echinoderm l a r v a e .  a tintinnid cell  i s probably  not an important  d u r i n g d i v i s i o n so t h a t a v e r y newly d i v i d e d c e l l may others.  Table  24 shows t h a t i n two  of t i n t i n n i d s t h e r e was amount of food c o n t a i n e d  The age  cause of v a r i a b i l i t y  r a t e , a p a r t from the f a c t t h a t a p a r e n t a l c e l l w i l l probably  do  (5)  study of  i n feeding  not have f e d  c o n t a i n l e s s food  experiments i n v o l v i n g d i f f e r e n t  than species  no r e l a t i o n s h i p between t i n t i n n i d c e l l l e n g t h and therein.  the  117  b)  O b s e r v a t i o n s of T i n t i n n i d Motions  and Feeding  Behaviour  Many o f t h e t i n t i n n i d s s t u d i e d had c h a r a c t e r i s t i c motions so t h a t c o u l d sometimes be i d e n t i f i e d even when without a l o r i c a .  they  A l l tintinnids  r o t a t e t h e c e l l and l o r i c a on i t s l o n g axis; and a l s o f o l l o w h e l i c a l  paths  which a r e n o r m a l l y o f a c h a r a c t e r i s t i c a n g l e i n h e a l t h y organisms.  The  l a r g e s t s p e c i e s a r e g e n e r a l l y the f a s t e s t and s e v e r a l s p e c i e s move a t about f i v e c e l l l e n g t h s p e r second.  Stensosomella n i v a l i s and H e l i c o s t o m e l l a  k i l i e n s i s move r a p i d l y f o r t h e i r s i z e and T i n t i n n i d i u m m u c i c o l a moves r a t h e r slowly f o r i t s s i z e .  The most important f e a t u r e o f t h e motion  f o r a predator  of  t h i s type i s t h e frequency o f c o n t a c t w i t h food r a t h e r than the v e l o c i t y  of  the predator.  A l l food items t e s t e d i n t h i s study were slower i n motion  than the t i n t i n n i d s used, and the d i s t r i b u t i o n and motion o f b o t h food and p r e d a t o r s can r e a s o n a b l y be regarded as random. t a c t between p r e d a t o r s a t t h e c o n c e n t r a t i o n s used (in of  um/sec) o f a t i n t i n n i d i t s adoral c i l i a ;  items  There was n e g l i g i b l e  i n t h i s study.  con-  The v e l o c i t y  s p e c i e s may be a f u n c t i o n of the l e n g t h and number  and i t s 'search r a t e '  ( i n ml/hr) i s a f u n c t i o n o f i t s  v e l o c i t y and o f t h e e f f e c t i v e diameter of t h e v o r t e x c r e a t e d by i t s a d o r a l cilia.  A h e l i c a l p a t h w i l l n o t i n c r e a s e t h e frequency o f c o n t a c t w i t h r a n -  domly d i s p e r s e d p r e y so l o n g as the p r e d a t o r ' s v e l o c i t y remains  unchanged.  L a r g e r and f a s t e r prey a r e c o n t a c t e d more f r e q u e n t l y than s m a l l e r and slower prey a t the same c o n c e n t r a t i o n , and t h i s may e x p l a i n some o f t h e apparent d i f f e r e n t i a l p r e d a t i o n o f T i n t i n n o p s i s subacuta on E u t r e p t i e l l a sp. when compared to o t h e r prey p r e s e n t e d s i n g l y i n t h i s study.  The 'contact r a t e '  (CR - i n ml/hr) i s the product o f t h e s e a r c h r a t e o f t h e t i n t i n n i d s p e c i e s and  t h e c o n c e n t r a t i o n ( i n nos/ml) and v e l o c i t y o f the prey items.  A l l par-  t i c l e s which cause a t i n t i n n i d to i n t e r r u p t i t s normal motion, whether t h e i t e m i s eaten o r n o t , w i l l reduce  the long-term c o n t a c t r a t e .  Feeding  rate  118  (FR) i s c a l c u l a t e d e i t h e r :  as the number o f items observed  eaten per hour; as the number found hour: for  to be  successfully  to be accumulated i n the t i n t i n n i d  per  o r as the volume o f water t h e o r e t i c a l l y c l e a r e d o f f o o d i n ml/hr.,  each type of  food.  The d i r e c t measurement of t i n t i n n i d v e l o c i t i e s and i s made v e r y d i f f i c u l t by t h e i r h e l i c a l motion and tion.  s e a r c h r a t e s by  eye  f r e q u e n t changes of d i r e c -  R e l a t i v e and a b s o l u t e c o n t a c t r a t e s of t i n t i n n i d s and  ( i f they  ate)  t h e i r f e e d i n g r a t e s , have been o b t a i n e d from a study of t h e i r r e a c t i o n s to known c o n c e n t r a t i o n s of i d e n t i f i a b l e f o o d i t e m s .  Unfortunately observations  of  ' c o n t a c t s ' have a s u b j e c t i v e element.  to  e a t , or changed d i r e c t i o n a f t e r c o n t a c t - then a  firmed.  Where a t i n t i n n i d a t e , o r attempted ' c o n t a c t ' c o u l d be  conf  However, a l l t i n t i n n i d s p e c i e s a p p a r e n t l y c o n t a c t e d many more p a r -  t i c l e s than were eaten  (see Table 26), i . e . p a r t i c l e s would be swept towards  the o r a l r e g i o n and a p p a r e n t l y c o l l i d e w i t h the i n s i d e of the s p i r a l of a d o r a l cilia  and be moved out a g a i n without b e i n g eaten.  assume t h a t a t i n t i n n i d was  I t i s perhaps i n v a l i d  to  " i n a p o s i t i o n " to eat such items or even t h a t  they c o u l d have eaten those p a r t i c l e s which cause them to make sudden changes of  direction.  Small p a r t i c l e s in  (4 - 10 jam) were d e f i n i t e l y seen to be eaten a t  conjunction with a s l i g h t , b r i e f  the t i n t i n n i d . unknown.  'tremor' or  'shudder' i n the  times  motioncdf  The method used by t i n t i n n i d s to r e t a i n s m a l l p a r t i c l e s i s  Perhaps mucus may  be s e c r e t e d to 'form a sheet o r meshwork near  the  o r a l r e g i o n ( L a v a l , 1971); or the p a r t i a l l y o v e r l a p p i n g i n s e r t i o n o o f t h e a d o r a l c i l i a may  a c t as a b a r r i e r to any p a r t i c l e which i s i n t t h e c e n t r e o f  the v o r t e x c r e a t e d by the b e a t i n g of t h o s e c i l i a . Strathmann, e t . a l . ,  Strathmann (1971) and  (1972) have shown t h a t many c i l i a r y f e e d e r s do not  use  119  mucus, but t r a p p a r t i c l e s individual c i l i a  e i t h e r by (a) a l o c a l  induced r e v e r s a l o f beat o f  o r (b) by the downstream entrapment o f p a r t i c l e s a g a i n s t a  second row o f c i l i a .  T i n t i n n i d s may use one o f t h e s e o r o t h e r methods t o  o b t a i n p a r t i c l e s v e r y s m a l l r e l a t i v e to t h e i r o r a l dimensions.  Larger  items  cause a l o n g e r i n t e r r u p t i o n o f the normal t i n t i n n i d motion; u s u a l l y w i t h t h e adoral c i l i a  bent inwards  other o r a l c i l i a period seconds  to push i t f u r t h e r down the cytopharynx.  the m o t i o n l e s s t i n t i n n i d  slowly sinks.  During  T h i s p r o c e s s t a k e s about  seconds  f o r E u t i n t i n n u s l a t u s f e e d i n g on t h e same p r e y  A l t h o u g h p a r t i c l e s s m a l l e r than about  4jam. diameter  c o u l d n o t be  t h a t v e r y s m a l l p a r t i c l e s weixe be-ihgeeaten /(andwsee S e c t i o n 4 c ) . f e a t u r e of t i n t i n n i d s  i s the possession of a r e g i o n of e x t e n s i l e  c y t o p l a s m a d j a c e n t t o t h e o r a l groove/cytopharynx plug.(see Figure 1 ) .  A  cortical  swims i n i i t s  normal  The exact f u n c t i o n o f t h i s pumping i s unknown b u t i t i s p a r t i c u l a r l y The pumping motions  s p e c i e s were counted as they were observed  seawater  of f i v e i n d i v i d u a l s of  f o r v a r y i n g l e n g t h s o f time  c o n t a i n i n g many f l a g e l l a t e s and o t h e r s m a l l p a r t i c l e s .  'Contacts'  between T_. m u c i c o l a and p a r t i c l e s v i s i b l e t o t h e o b s e r v e r were a l s o Both measurements were a l s o made o f f i v e had been f i l t e r e d average  unique  T h i s o r a l p l u g c a n be seen o c c a s i o n a l l y to 'pump' or  obvious i n T i n t i n n i d i u m mucicola.  in  indicated  r e g i o n and c a l l e d t h e o r a l  move back and f o r t h q u i t e v i o l e n t l y a s the t i n t i n n i d  this  two  unsuccess-  seen w i t h the s t e r e o m i c r o s c o p e , one a s p e c t of t i n t i n n i d b e h a v i o u r  motion.  this  f o r T i n t i n n o p s i s subacuta f e e d i n g s u c c e s s f u l l y on E u t r e p t i e l l a sp; and  takes 6 - 8 fully.  attempt  so p r e v e n t i n g the escape o f t h e p r e y , w h i l s t the  counted.  i n d i v i d u a l s p l a c e d i n seawater  a few days b e f o r e but which c o n t a i n e d some p a r t i c l e s .  f i g u r e s f o r the t i n t i n n i d s  i n t h e f i l t e r e d water were 7.1  which The  'pumps' and  4.5 c o n t a c t s / m i n u t e ; f o r t h o s e i n the u n f i l t e r e d water the averages were 17.4 'pumps' and 9.7 c o n t a c t s / m i n u t e .  Pumps exceeded  c o n t a c t s i n both cases, j u s t  120  as s m a l l p a r t i c l e s u s u a l l y outnumber l a r g e ones; and t a c t were r e s p e c t i v e l y 1.67  and 1.58  seem to be evidence t h a t the r a t e of  i n the two  the r a t i o s of pump/con-  k i n d s of water.  T h i s would  'pumping' a t l e a s t i n T_. m u c i c o l a  d i r e c t f u n c t i o n o f the number o f v e r y s m a l l p a r t i c l e s i n the water and  is a may  be connected w i t h the r a t e of f e e d i n g on them.  Unwanted p a r t i c l e s which have d e f i n i t e l y been observed  to e n t e r the  c y t o p h a r y n g e a l r e g i o n of a t i n t i n n i d a r e u s u a l l y e j e c t e d by a momentary r e v e r s a l of some or a l l of the c i l i a  i n the o r a l r e g i o n .  A v e r y powerful  or  p r o l o n g e d c i l i a r y r e v e r s a l of t h i s type w i l l cause the t i n t i n n i d t o r e v e r s e d i r e c t i o n away from the o b j e c t , as a l s o happens a f t e r c o n t a c t w i t h o b j e c t s l a r g e r than the t i n t i n n i d . i n t h i s way  may  move i t s a b o r a l end  away from the o b j e c t . m u c i c o l a , may  R a r e l y , a t i n t i n n i d which cannot through 180  , and  e j e c t an o b j e c t  then r e v e r s e to move  Some i n d i v i d u a l c e l l s , p a r t i c u l a r l y of T i n t i n n i d i u m  show apparent  s i g n s of s t r e s s i n the form of a b e r r a n t motion,  f o r s e v e r a l seconds a f t e r e j e c t i n g an unwanted o b j e c t .  The  characteristics  of c e r t a i n l a r g e prey items which prevent them from b e i n g i n g e s t e d by a p a r ticular 25.  t i n t i n n i d s p e c i e s were e x p e r i m e n t a l l y i n v e s t i g a t e d as shown i n T a b l e  The p r e d a t o r was  Eutintinnus latus  ( l o r i c a 250x70 /im; c e l l 80-200x60 /am)  and  the prey were a l g a l f l a g e l l a t e s from l a b o r a t o r y c u l t u r e s ;  sp.  (25x7x4 /am)  and  Cryptomonas profunda  (30x10x4 /im).  Eutreptiella  I t had been n o t i c e d  i n a q u a l i t a t i v e t e s t t h a t E_. l a t u s c o n t a i n e d C_. profunda but not sp. a l t h o u g h  the l a t t e r  The attempts  i s o n l y about h a l f the volume of t h e  Eutreptiella  former.  of .E. l a t u s to i n g e s t these f l a g e l l a t e s when they were p r e -  sented i n s i n g l e - p r e y samples, was or an i m m o b i l i z e d c o n d i t i o n .  observed w i t h the prey i n e i t h e r normal,  M i l d s o n i c a t i o n f o r 15  prey t y p e s , but w i t h d i f f e r e n t r e s u l t s .  seconds immobilized  S o n i c a t e d E u t r e p t i e l l a sp. l o s t  both  TABLE  25.  The effect of immobilization by sonication on the successful ingestion of algal flagellates by the tintinnid, Eutintinnus latus. Temperature 1 8 - 2 0 ° C .  P r e y Type  Prey Condition  Eutreptiella sp.  Normal  Number of Tintinnids  Total Number Contacts  Successful Ingestion Events  3  13  0  Handling Time (Sees.) 6-8  Rate of* Contact with prey No./Min. 46  (Av. 7.3) Immobile  Number prey c e l l s / mL  Contact* Rate ml/hr/Tin.  Ingestion* Rate ml/hr/Tin.  5230  0.053  0.034  0.025  0.038  0.021  0.011?  0?  2-12 (Av. 4.8)  3.0  5230 <  6  5-19 (Av. 9.3)  2.9  4630  0  0  0.82  4630?  Cryptomonaa profunda  Normal  6  Immobile  3  11  2?  * These rate a are calculated as the total elapsed time of a "run" and Include handling time.  to  122  their  f l a g e l l a e , became more rounded and  a l i v e and  showed the unique  a glass slide.  e u g l e n o i d type o f c e l l motion when supported  on  S o n i c a t e d CJ. profunda d i d not l o s e t h e i r f l a g e l l a e , but were  u n a b l e t o move whether supported o r n o t . t h i s treatment, and tiella  c o u l d n o t swim, but were d e f i n i t e l y  (3. profunda may  the r e s u l t s i n T a b l e 25 may  sp. moved a t about  250  to 400jam/second  reflect a t 18-20  have b e e n e K i l l e d by  this.  Normal E u t r e p -  C, o r about  10 t o  j 3 . profunda moved about h as f a s t as E u t r e p t i e l l a  c e l l lengths/second.  'Contacts w i t h prey' were c o n s e r v a t i v e l y equated at  i n g e s t i o n ' s i n c e o n l y then was  of  a prey item.  The two  with v i s i b l e  16  sp.  'attempts  i t c e r t a i n t h a t the t i n t i n n i d s were aware  c o n t a c t s w i t h immobilized C^. profunda were ' g l a n c i n g  blows' c a u s i n g IS. l a t u s to change d i r e c t i o n s l i g h t l y and may  not have been  what they seemed, i . e . t h e r a p i d i d e n t i f i c a t i o n and r e j e c t i o n @f. p r o b a b l y i n e d i b l e p r e y items. immoblized  T h e r e f o r e , i t i s d o u b t f u l whether IS. l a t u s r e j e c t e d  jT- p r o f u n d a .  the  However, from T a b l e 25 i t i s obvious t h a t the immo-  b i l i z a t i o n of E u t r e p t i e l l a  sp. d e f i n i t e l y made a d i f f e r e n c e to the a b i l i t y o f  IS. l a t u s to handle and eat i t (from 0 t o 71% s u c c e s s ) , and a l s o reduced  the  h a n d l i n g time by 35%,  Natur-  though t h i s may  not be a s i g n i f i c a n t d i f f e r e n c e .  a l l y , random c o n t a c t w i t h i m m o b i l i z e d E u t r e p t i e l l a sp. was w i t h normal E u t r e p t i e l l a harmed a f t e r attempted  sp.  The v e r y h i g h i n g e s t i o n r a t e  0.025 ml/hr o f IS. l a t u s on i m m o b i l i z e d E u t r e p t i e l l a sp. was  It  is interesting  n o p s i s subacuta seconds. of  about  than  Normal E u t r e p t i e l l a sp. were always r e l e a s e d un-  ingestion.  t h a t on C^. profunda, but  l e s s frequent  (or FR/P)  very s i m i l a r to  the i n d i v i d u a l h a n d l i n g time on the l a t t e r was  t h a t IS. l a t u s i s about  of  s e v e n - f o l d l a r g e r than  (see T a b l e 1) which i n g e s t s E u t r e p t i e l l a sp. i n about  longer.  Tintintwo  Both these t i n t i n n i d s and T i n t i n n o p s i s c y l i n d r i c a have a d o r a l c i l i a 35 jam l e n g t h , but T_. c y l i n d r i c a moves a l i t t l e more s l o w l y than  123 T_. subacuta and was  not  seen to i n g e s t E u t r e p t i e l l a sp. i n the l a b o r a t o r y .  Stenosomella v e n t r i c o s a has cilia  e x c e p t i o n a l l y t h i c k and  powerful-looking  (Table 1) but moves o n l y a l i t t l e f a s t e r than T_. subacuta and  E u t r e p t i e l l a sp. much l e s s f r e q u e n t l y than the l a t t e r  adoral eats  (see S e c t i o n 4a  (ii)).  However, the a d o r a l c i l i a of S^ v e n t r i c o s a are 50jam l o n g ; as are those F a v e l l a s e r r a t a which i s about 10 times l a r g e r . per  Perhaps the number of  t i n t i n n i d r a t h e r than t h e i r l e n g t h i s important  speeds and  i n c r e a s e d a b i l i t y to subdue p r e y .  I t was  f i n i t i v e counts of the numbers of a d o r a l c i l i a  cilia  i n p r o v i d i n g both higher i m p o s s i b l e to make de-  i n t h i s study, but they  peared to d i f f e r r a t h e r n a r r o w l y between s p e c i e s from about 16  T i n t i n n i d contact  of  to  ap-  24.  rates  T a b l e 26 shows the c o n t a c t r a t e s of v a r i o u s t i n t i n n i d s p e c i e s on n a t u r a l and  l a b o r a t o r y food items i n the same, and  c o n t a c t r a t e s may  be  seen i n T a b l e .8 and  i n d i f f e r e n t , experiments.  9 (accumulation  Other  experiments).  These  r e s u l t s i n d i c a t e t h a t under the c o n d i t i o n s o f o b s e r v a t i o n and w i t h the concentrations  used, t i n t i n n i d s a t e v e r y few of the p a r t i c l e s  even when the t i n t i n n i d s were a c t i v e and Therefore for  I t can a l s o be  encountered  i n l a r g e numbers i n the environment.  i t i s p o s s i b l e t h a t the experimental  t i n t i n n i d feeding.  cell  c o n d i t i o n s were not  optimal  seen i n T a b l e 26 t h a t the a c t i v i t y  of  d i f f e r e n t s p e c i e s i s not a f f e c t e d to the same e x t e n t by dense c o n c e n t r a t i o n s of p a r t i c l e s . on  A l t h o u g h t h e r e i s c o n s i d e r a b l e v a r i a b i l i t y between experiments,  the whole the v a l u e s of the c o n t a c t r a t e s  s e a r c h r a t e s ) f o r T i n t i n n o p s i s subacuta and lar,  (and t h e r e f o r e p r o b a b l y  Stenosomella v e n t r i c o s a a r e s i m i -  w i t h the l a t t e r perhaps a l i t t l e h i g h e r .  f e e d i n g r a t e s estimated  the  T h i s supports  the  relative  i n the r e s u l t s of the Accumulation ( S e c t i o n 4a)  C o u l t e r Counter ( S e c t i o n 4c) experiments, except when the two  and  s p e c i e s were  TABLE  26.  Experiment Number 1A  IB  Observed contact rates of various tintinnid species on natural and laboratory food it  Pre/,  Predator  Average contacts/ min/Tin.  Prey Nos/ml  2  3  Relative CR  18.8  12; 200  0.092  nil  nil  I F 1.0  II II II  T . parvula T . mucicola  21,8 3.5  12, 200 12, 200  0.107 0.017  nil nil  nil nil  1.2 0.2  S. nivalis  28.8  12, 200  0.141  nil  nil  1.5  T . subacuta  22.4*  19, 700  0.068  nil  nil  S. ventricosa T . mucicola  28.6 15.8  19, 700 19, 700  0.087 0.048  nil 0.75  nil ' 0.0023  S. nivalis  18.5  19. 700  0.056  nil  nil  nil nil nil nil nil  nil nil nil nil nil  nil nil nil nil  nil nil nil nil  I F 1.0 1.1 0.6 0.6  nil 2.30 nil 0.37  nil 0.0018 nil 0.0004  I F 1.0 0.8 1.3 0.4  Natural particles and Dunaliella tertiolecta  Natural particles and Dunaliella tertiolecta  T. T. S. T. S.  subacuta parvula ventricosa mucicola nivalis  16.3 11.3 17.7 7.0 6.3  Natural particles moat < 10 um  T. S. T. S.  subacuta ventricosa mucicola nivalis  36.2 40.0 22.0 22.0  Natural particles  T. cylindrica T . mucicola H . kiliensis  32.0 18.2 42.2 9.8  E . tubulosus 4A  FR ml/hr/Tin.  T . subacuta  * 0.29 of contacts were with D. tertiolecta  IB  Average Ingestions/ min/Tin.  Natural particles  II  12 hrs)  CR ml/hr/Tin.  ems.  Natural T. particles T. and H. dense E. I s o s e l m i s sp.  cylindrica mucicola kiliensis latus  27.0 9.0 7.9 14.2  I F 1.0 1.3 0.7 0.8  (0.37 of a l l particles)  ?  9. 9. 9. 9.  -  -  -  500 500 500 500  0.226 0.252  71,000 71,000 71,000 71,000  0.027 0.022 0.036 0.011  -  ? ?  _  -  -  nil 0.8 nil nil  .  Comments Unusually sluggish Rejections lengthy V e r y active  V e r y slow, shallow s p i r a l s Violent rejection motion Rapid shallow spirals  I F 1.0 0.7 1.1 0.4 0.4  I F 1.0 0.3 0.3 0.5  Bloom ~ - 6 / m l  TABLE  26.  Experiment N i lm b or 4B  Continued  Prey Natural particles and dense Dunaliella tertiolecta  Monochrysis lutheri  Predator T. T. H. E.  cylindrica mucicola kiliensis tubulosus  T . parvula T . mucicola  Average contacts/ min/Tin.  ' Prey Nos/ml  CR ml/hr/Tin.  FR ml/hr/Tin.  36,000 36, 000  0.030 0.023  nil 0.80  Relative CR I F 1.0 0.3 0.3 0.1  nil nil nil nil  29.0 9.2 8.2 2.0  18.4 13.9  Average Ingestions/ min/Tin..  0.0017  I F 1.0 0.8  Commonta  126 e a t i n g E u t r e p t i e l l a sp..  The c o n t a c t r a t e s of T i n t i n n o p s i s p a r v u l a , T i n t i n -  n i d i u m m u c i c o l a and Stenosomella n i v a l i s were on the whole not v e r y d i f f e r e n t , and were about 0.3 to 1.0 o f the v a l u e s f o r T_. subacuta.  This also  partly  s u p p o r t s the r e l a t i v e f e e d i n g r a t e s c a l c u l a t e d by the o t h e r methods, p a r t i c u l a r l y f o r T_. p a r v u l a .  T i n t i n n o p s i s c y l i n d r i c a appeared  to have a s l i g h t l y lower c o n t a c t r a t e  than T_. subacuta when seen i n t h e same sample ( q u a l i t a t i v e observation)'-but t h e r e a r e no d a t a f o r t h i s comparison.  T_. m u c i c o l a and H e l i c o s t d m e T l a  k i l i e n s i s had c o n t a c t r a t e s which were s i m i l a r and e q u i v a l e n t to 0.3 to 1.3 of those o f T_. c y l i n d r i c a .  The c o n t a c t r a t e s o f E u t i n t i n n u s t u b u l o s u s were  o n l y about 0.1 to 0.4 o f t h o s e o f T_. c y l i n d r i c a and l e s s than those o f H. kiliensis  (and see T a b l e 9 ) .  In c o n t r a s t , the numbers o f accumulated  food  items iiri" E_. t u b u l o s u s and H. k i l i e n s i s were f a i r l y s i m i l a r i n one accumul a t i o n experiments  (see T a b l e 9 ) , but t h e r e a r e no s h o r t - t e r m a c c u m u l a t i o n  e s t i m a t i o n s of f e e d i n g r a t e i n these two s p e c i e s . t i n n u s l a t u s i n one experiment  The l a r g e t i n t i n n i d  Eutin-  i n T a b l e 26 has a c o n t a c t r a t e o f o n l y about  h a l f o f t h a t of T_. c y l i n d r i c a , a l t h o u g h i n t h e r e s u l t s seen i n T a b l e 25 E. l a t u s had a v e r y h i g h f e e d i n g r a t e .  T a b l e 26 shows t h a t v e r y few items were d e f i n i t e l y seen to be eaten d u r i n g t h e s e o b s e r v a t i o n s , but the f e e d i n g r a t e s shown f o r T_. m u c i c o l a a r e comparable w i t h those seen i n the r e s u l t s of the a c c u m u l a t i o n ( s e c t i o n 4a') .  Attempts  experiments  were made to observe changes i n c o n t a c t and f e e d i n g  r a t e s d u r i n g the p r o g r e s s o f experiments  and as t i n t i n n i d s s t a r v e d o r slowed  t h e i r apparent a c c u m u l a t i o n of food i t e m s , but none o f these attempts satisfactory.  was  127  c)  The e f f e c t of m i c r o z o o p l a n k t o n on n a t u r a l and l a b o r a t o r y  phytoplankton populations  ( C o u l t e r Counter Experiments)  General The  f e e d i n g r a t e s of two s p e c i e s o f t i n t i n n i d s and the l a t e n a u p l i a r  (Stage V and VI) stages and  a barnacle  of a s m a l l copepod  (probably  Pseudocalanus minutus)  a r e shown i n Appendices 1 to 11. The r e g u l a t o r y e f f e c t of t h e  f e e d i n g o f T i n t i n n o p s i s subacuta on n a t u r a l food p a r t i c l e c o n c e n t r a t i o n s i s shown i n F i g s . 12, 13 and 14.  The complete l i s t s o f o b s e r v a t i o n s ;  c o r r e l a t i o n c o e f f i c i e n t s f o r 10 v a r i a b l e s ; and simple  multiple  linear regression co-  e f f i c i e n t s on v a r i a b l e (1) and p l o t s f o r t h e s e C o u l t e r Counter experiments as c a l c u l a t e d w i t h  the U n i v e r s i t y o f B r i t i s h Columbia Computer programme STRIP  may be found i n Appendices 1 to 11. A l l r e s u l t s were a d j u s t e d mental d u r a t i o n of 24 hours b e f o r e a n a l y s i s .  to an e x p e r i -  T i n t i n n o p s i s subacuta was used  i n experiments w i t h n a t u r a l l y o c c u r r i n g p a r t i c u l a t e m a t e r i a l  (44 o b s e r -  v a t i o n s ) and l a b o r a t o r y p h y t o p l a n k t o n c u l t u r e s (15 o b s e r v a t i o n s ) ; and Stene somella v e n t r i c o s a was used w i t h l a b o r a t o r y c u l t u r e s o n l y  (16 o b s e r v a t i o n s ) .  C r u s t a c e a n n a u p l i i were used m a i n l y w i t h l a b o r a t o r y c u l t u r e s but one experiment was c a r r i e d out w i t h  a field  sample.  (5 o b s e r v a t i o n s ) ,  There i s one C o u l t e r  Counter r e s u l t of f e e d i n g by T i n t i n n o p s i s p a r v u l a and another by the h o l o t r i c h . c i l i a t e T i a r i n a f u s u s , b o t h on f i e l d  samples.  periments were i n c l u d e d i n t h e a n a l y s e s i n t h e ' a l l samples'  The l a t t e r t h r e e s i n g l e ex-  of c o r r e l a t i o n and r e g r e s s i o n  category.  One experiment i n v o l v i n g two s p e c i e s o f r o t i f e r s has been separately  (Table 2 8 ) .  Some of the o b s e r v a t i o n s  were ' r e p l i c a t e s ' i n the same experiment. and  experimental  only  analysed  i n c l u d e d i n the a n a l y s e s  Where two or t h r e e p a i r s of c o n t r o l  f l a s k s were used, e v e r y p o s s i b l e v a l u e o f f e e d i n g r a t e (FR/P)  128  was c a l c u l a t e d from every p o s s i b l e combination and  E2 and i n c l u d e d i n the a n a l y s e s  vations.  o f a l l v a l u e s o f C^,  ,  t o i n c r e a s e t h e t o t a l number o f o b s e r -  S i m i l a r l y , f l a s k s w i t h i n a p a r t i c u l a r experiment which were s u b j e c t  to m a n i p u l a t i o n  such as placement i n the l i g h t o r dark, a d d i t i o n a l p r e d a t o r s ,  e t c . , have a l l been i n c l u d e d w i t h o u t  d i s t i n c t i o n i n the g e n e r a l  C a l c u l a t i o n s o f f e e d i n g r a t e as net t o t a l spectrum o n l y observations  (ESO) a r e shown s e p a r a t e l y .  consumption  analyses.  (NTC) o r as e d i b l e  I t i s obvious  from the l i s t o f  i n the Appendices t h a t t h e r e i s g r e a t v a r i a b i l i t y i n the food  consumption r a t e ER'/P (or v a r i a b l e (1)) even amongst ' r e p l i c a t e s ' i n the same experiment  (see General D i s c u s s i o n ) .  Multiple correlation  coefficients.  Only those c o r r e l a t i o n c o e f f i c i e n t s g r e a t e r than 0.5 have been i n c l u d e d i n Tables  27 a,b,c,d.  i n Appendices 1 to 11.  The remainder o f t h e c o r r e l a t i o n m a t r i c e s may be seen Those p a i r s o f v a r i a b l e s which had c o r r e l a t i o n  coef-  f i c i e n t s g r e a t e r than 0.5 a r e not n e c e s s a r i l y t h e same e i t h e r i n the NTC and ESO r e s u l t s f o r any one subset o f o b s e r v a t i o n s  (e.g. T i n t i n n o p s i s subacuta  l a b o r a t o r y f o o d ) ; nor f o r NTC (or ESO) r e s u l t s as compared between of o b s e r v a t i o n s .  on  subsets  A l s o , the s i g n of the c o r r e l a t i o n i s o f t e n d i f f e r e n t f o r  the same p a i r o f v a r i a b l e s i n NTC and ESO r e s u l t s , and/or between subsets o f observations.  C o e f f i c i e n t s f o r ESO r e s u l t s a r e g e n e r a l l y h i g h e r  than  those  f o r NTC r e s u l t s .  Very few v a r i a b l e s a r e s t r o n g l y c o r r e l a t e d w i t h rate  t h e food  consumption  ( v a r i a b l e 1 ) , and by f a r the b e s t f i g u r e s a r e found w i t h E^ ( v a r i a b l e 2)  and logmean E (3) i n T i n t i n n o p s i s subacuta of phytoplankton  f e e d i n g on l a b o r a t o r y c u l t u r e s  (Table 27b). The g r e a t e r coherence o f these d a t a may be  l a r g e l y e x p l a i n e d by t h e f a c t  t h a t i n most cases t h e same  phytoplankton  129  T A B L E 27A. Multiple correlation coefficients f r o m Coulter Counter experiments. (only those > 0.5 are shown) Tintinnopsis subacuta on natural samples. Net total consumption (NTC) 39 observations Nil  Edible spectrum only (ESO) 44 observations 2 (.59), 3(.62)  3(.91), 9(-.8l)  1(.59), 3(.98), 4(.68)  (3) Log mean E 12 h r . log mean experimental particle volume Uim3/ ml  2(.9D,  1(.62), 4(.75)  (4) E S P . Number of size classes with consumption  5(.58)  2(.68), 3(.75)  (5) ^ / Q  4(.58)  Nil  Variable (1) F R / P Feeding rate lim /pred/hr 3  (2) E i Initial experimental particle volume  lirrrV ml  Increase in total control volume in 24 h r s .  8(.71), 9(-.63)  130  T A B L E 27B. Multiple correlation coefficients from Coulter Counter experiments. (Only those > 0.5 are shown) Tintinnopsis subacuta on laboratory food. Net total consumption (NTC) 10 observations  Edible spectrum only (ESO) 15 observations  (1) F R / P Feeding rate lim /pred/hr  6(-.67).  2(.96). 3(.92), 7(.50)  (2) E i - Initial experimental volume | i m / m l  3(.99). 7(.73), 8(.83)  1(.96), 3(.97), 4(.52), 7(.51)  (3) Log mean E 12 hr log mean experimental particle volume J i m / ml  2(.99). 7(.67), 8(.81)  1(.92), 2(.97)  (4) E S P - Number of size classes with consumption  Nil  2(.52)  Variable  9(-.94)  3  3  3  (5) Ca / C - Increase in 7(-.6l) .total control volume  7(-.59)  x  (6) P C O N - Number preds/ ml  l(-.67),  (7) Alive - Estimated live fraction of preds at 12 hrs  2(.73), 3(.67), 5(-.6l) 8(.80)  1(.50), 2(.51), 5(-.59) 6(-.55), 9(-.51)  (8) Temperature ° C  2(.83), 3(.8l), 7(.80)  Nil  (9) Sal. - Salinity &  l(-.94),  7(-.51),  (10) Time - Total duration of experiment  Nil  9(.59)  6(.59)  7(-.55)  9(-.51)  10(-.51)  T A B L E 27C(i). Multiple correlation coefficients f r o m Coulter Counter experiments. Only those > 0.5 are shown. Stenosomella ventricosa (all values) on laboratory food.  T A B L E 27C(ii). Stenosomella ventricosa (one high value of F R / P omitted) on laboratory food.  Net total consumption (NTC) 1 3 observations  Edible spectrum only (ESO) 16 observations  Edible spectrum only (ESO) 1 5 observations  (1) F R / P - Feeding rate - um^/pred/hr  6(-.67)  6(-.57), 7(-.67).  2(.56), 3(.56). 6(-.6l)  (2) E i - Initial experimental volume u m ^ / m l  3(.60), 5(-.62), 8(.8l) •  (3) L o g mean E - 12 hr mean exp. v o l . (jtm^/ml  2(.60). 9(-.58), 10(.52)  2(.90). 4(.55).  (4) E S P - Number of size classes with consumption  Nil  2(.71). 3(.55)  2(.71).  3(.54)  (5) C a / C i - Increase in total control volume  2(-.62). 7(.79), 8(-.90) 10(.54)  7(.64). 8(-.74)  7(.75),  8(-.72)  (6) P C O N - Number predators/ml  K-.67), 9(.67)  l(-.57). 9(.62)  '(-.61). 9(i68),  (7) A l i v e - Estimated live fraction of predators at 1 2 hrs  2(-.50). 5(.79). 8(-.81) 10(.68)  l(-.67). 5(.64). 8(-.77) 10(.69)  5(.75). 8(-.94)  (8) Temperature ° C  2(.8l). 5(-.90). 7(-.81)  5(-.74). 7(-.77)  5(-.72).  (9) S a l . - Salinity*,  3(-.58), 6(.67), 10(r.53)  6{.62), 10(-.54)  6(.68).  Variable  (10). T i m e - Total duration of experiment  7(-.50)  3(.52), 5(.54), 7(.68). 9(-.53)  10(-.51)  3(.90). 4(.71)  1(.56), 3(.92). 4(.71)  10(.©4)  , 1(-.51), 3(.64), 7(.69) ' 9(-.54)  1(.56), 2(.92). 4(.54). 10(.58)  10(-.57)  7(-.94) 10(-.70)  3(.58), 6(-.57).  9(-.70)  T A B L E 27D. Multiple correlation coefficients f r o m Coulter Counter experiments. (Only those > 0.5 shown) Barnacles and copepod Nauplii on laboratory food. Net total consumption (NTC) 3 observations  Edible spectrum only (ESO) 5 observations  2(-.73). 3(-.90). 4(.84) 5(-.97), 6(-.6S). 7(.98) 8(-.91). 9h94)  2(.82), 3(.75). 4(.78), 8(-.64) 9(-.68)  K - . 7 3 ) , 3 (.96). 4(-.98). 5(.87). 7(.85) 8(.95). 10(.91)  1(.82). 3(.99). 4(.79)  ^3) L o g mean £ - 12 hr log mean exp. vol. Mm /ml  K - . 9 0 ) , 2(.96). 4(-.99) 5(.98). 7(.97), 8(1.0) 9(,68). 10(.75)  1(.75). 2(.99). 4(.70)  (4) E S P - Number of oize c l a s s e s with consumption  K - . 9 7 ) . 2(.87). 3(.98) 5(-.95), 7(-.93). 8(-.99) 9(-.60), 10(-.82)  1(.78), 2(.79). 3(.70). 10(-.72)  (5) C a / C i - Increase i n total control volume  1 (-.97. 2{.87). 3(.98). 4(-.94). 7(1.0), 8(.98) 9(.83). 10(.58)  6(.80). 7(.92),  9(.80)  (6) P C O N - Number predator s / m l  l(-.68), 7(.52), 9(.90)  5(.80). 7(.66),  9(.90)  (7) A l i v e - Estimated live fraction of predators at 12 hrs  l(-.98). 2(.85), 3(.97) 4(-.93), 5(1.0). 6(.52) 8(.98), 9(.85), 10(.56)  5(.92). 6(.66),  9(.6l)  (8) Temperature ° C  K-.91). 2(.95), 3(1.0) 4(-.99), 5(.83). 6(.90) 7(.85). 9(.71)  l{-.64). 4(-.73).  (9) S a l . - Salinity &  K-.94). 3(.68). 4(-.60) 5(.83). 6(.90),. 7(.85) 8(.71)  l(-.68).  5(.80). 6(.90).  2(.9D. 3(.75). 4(-.82) 5(.58). 7(.56)  4(-.72),  8(.77)  Variable (1) FR/P - Feeding rate - u m / p r e d / h r 3  (2) E - Initial experimental volume u m ^ / m l x  3  (10) Time - Total duration of experiment  8(-.73)  10(.77)  7(.61)  133  s p e c i e s was species.  used, namely Monochrysis l u t h e r i e i t h e r s i n g l y , or w i t h one  The  s t r o n g c o r r e l a t i o n s seen i n the r e s u l t s of experiments w i t h  the c r u s t a c e a n n a u p l i i a r e n o n - s i g n i f i c a n t (Table 27d) of o b s e r v a t i o n s .  due  to the s m a l l number  Food consumption r a t e s ( v a r i a b l e 1) were u s u a l l y most  strongly correlated with expected.  other  values  ( v a r i a b l e 2) and Logmean E v a l u e s  (3) as  More s u r p r i s i n g l y , c o r r e l a t i o n c o e f f i c i e n t s g r e a t e r than 0.5  found between i n d i v i d u a l f e e d i n g r a t e ( v a r i a b l e 1) and ( 6 ) ; f r a c t i o n of p r e d a t o r s a l i v e a f t e r i s no obvious the expected  12 hours  predator concentration  ( 7 ) ; and  salinity  e x p l a n a t i o n f o r these l a t t e r r e l a t i o n s h i p s .  (9).  between (1) and d i d not appear  'ESP'  ( v a r i a b l e 4)  the growth r a t e o f c o n t r o l p o p u l a t i o n s (V^/C^ (but see M a t e r i a l s and Methods).  There  On the o t h e r hand,  s t r o n g c o r r e l a t i o n between f e e d i n g r a t e ( v a r i a b l e 1) and  number of s i z e c l a s s e s showing net consumption or  were  the and  ~ v a r i a b l e 5)  However, v a r i a b l e (4)  i n some c a s e s s t r o n g l y and p o s i t i v e l y c o r r e l a t e d w i t h E^ v a l u e s  was  (variable 2).  T h i s i m p l i e s t h a t p r e d a t o r s i n r e l a t i v e l y h i g h c o n c e n t r a t i o n s of food d i d not restrict  t h e i r consumption to a narrower p o r t i o n of t h e food s i z e  than d i d those i n r e l a t i v e l y low c o n c e n t r a t i o n s o f food results i n this Section).  That i s , — i f one  r i t i o n a l h i s t o r y of the p r e d a t o r —  (and see  spectrum Electivity  i g n o r e s the unknown p r i o r  nut-  they do not become ' c h o o s i e r ' of the  size  of t h e i r f o o d when s a t i a t i o n i s becoming more l i k e l y or v i c e - v e r s a , — a t  least  a t these l e v e l s of c o n c e n t r a t i o n of f o o d , which a l l seem to be below the  OFC  (see below). perature eaten  There was  s u r p r i s i n g l y , no c o n s i s t e n t r e l a t i o n s h i p between tem-  ( v a r i a b l e 8) , and  ( 4 ) , or C^/C^  food consumption r a t e (1) , 'width of- spectrum'  (5).  Linear regression c o e f f i c i e n t s Simple  l i n e a r r e g r e s s i o n s were c a l c u l a t e d f o r a l l o t h e r v a r i a b l e s on  feeding rate (variable 1).  R e g r e s s i o n c o e f f i c i e n t s and r  2  values f o r a l l  134  v a r i a b l e s and computer p l o t s f o r v a r i a b l e s 2,3 1 to  and 4 a r e shown i n Appendices  11. 2 As i n the case of the c o r r e l a t i o n c o e f f i c i e n t s , the r  ESO  r e s u l t s were g e n e r a l l y h i g h e r than those f o r the NTC  of the r e g r e s s i o n c o e f f i c i e n t s of v a r i a b l e s (2) and  v a l u e s f o r the  results.  the r e g r e s s i o n l i n e was  s i m i l a r to the form expected,  r e s u l t s than f o r the NTC  T h i s seems to c o n f i r m t h a t t h e ESO t i o n r a t e s may method.  The  1  -  more results.  method of c a l c u l a t i n g food consump-  be more u s e f u l f o r m i c r o z o o p l a n k t o n (ESO)  values  (3) on the food consumpr  t i o n r a t e (1) were g e n e r a l l y g r e a t e r , and f o r the ESO  The  than the more l o g i c a l  c a l c u l a t e d r e g r e s s i o n l i n e s of v a l u e s of  (variable  NTC 2)  o r Logmean E ( v a r i a b l e 3) on f e e d i n g r a t e ( v a r i a b l e 1) showed the f o l l o w i n g features: (i)  a n e g a t i v e i n t e r c e p t on  (1) — i . e . when v a r i a b l e (1)  =  0, then v a r i a b l e  (3)>0. (ii)  a p o s i t i v e s l o p e ; and  (iii)  no asymptote apparent  i n the d a t a .  ( i ) n e g a t i v e i n t e r c e p t - or t h r e s h o l d feeding-*value ' T h r e s h o l d ' f e e d i n g v a l u e s , or the lower  l e v e l o f t o t a l a v a i l a b l e food  a t which f e e d i n g ( a p p a r e n t l y ) s t o p s , are a common f e a t u r e w i t h some p l a n k t o n i c crustacean f i l t e r  feeders  (Adams and  w i t h some p l a n k t i v o r o u s f i s h (1967) and  Poulet  S t e e l e , 1966J); Parsons e t . a l . , 1967) .and  (Parsons and L e b r a s s e u r , 1970).  (1974) a l s o u t i l i z e d  Parsons  the C o u l t e r Counter t e c h n i q u e .  t h r e s h o l d s a p p l i c a b l e over the t o t a l s i z e range of the biomass of food a b l e w i t h one  feeding technique  et.al. Feeding avail-  are p r o b a b l y u s e f u l (or e s s e n t i a l ) i n e n a b l i n g  the p r e d a t o r under n a t u r a l c o n d i t i o n s to a v o i d w a s t e f u l e f f o r t when the energy r e t u r n i n feeding w i t h that technique  is negligible.  Poulet  (1974) found  that  135  the s m a l l copepod Pseudocalanus minutus showed a f e e d i n g t h r e s h o l d f o r each s i z e category  and  c o n t a i n i n g a low  c o u l d s w i t c h i t s f e e d i n g emphasis away from a s i z e c l a s s t o t a l volume of p a r t i c l e s .  d e t a i l of e x p e r i m e n t a l  technique,  c a l c u l a t i o n as g i v e n by P o u l e t  and  (1973  D e s p i t e the  the a p p a r e n t l y and  1974), any  insufficient  inadequate methods of f e e d i n g behaviour of  this  type would be a v e r y u s e f u l a t t r i b u t e f o r an organism r e l i a n t on a food supply h i g h l y v a r i a b l e i n i t s s i z e c o m p o s i t i o n ; of e c o l o g i c a l s t a b i l i t y  ( i f any)  by c r u s t a c e a  to d e t e c t  is difficult  t o imagine.  and would a i d the maintenance  i n the p l a n k t o n .  The mechanisms(s) used  these d i f f e r e n c e s i n t o t a l volume between s i z e c l a s s e s The C o u l t e r Counter r e s u l t s i n t h i s study  low apparent f e e d i n g t h r e s h o l d s f o r m i c r o z o o p l a n k t o n which may a r t i f a c t s and'which a r e  be  show experimental  (as always) l i n e a r e x t r a p o l a t i o n s from known v a l u e s .  They a r e p a r t i c u l a r l y s u s p i c i o u s i n t i n t i n n i d s as i t would seem f o r t i n t i n n i d s to stop f e e d i n g and  yet continue  swimming.  impossible  It i s interesting  t h a t the l a r v a e of s e v e r a l s p e c i e s of f i s h which eat food items do not show f e e d i n g t h r e s h o l d s .  Parsons et^.al^. (1967), P o u l e t  individually (1974) and  o t h e r s have shown t h a t p l a n k t o n i c c r u s t a c e a a l s o have a q u a l i t a t i v e lower size feeding threshold. dealt with i n Section  The  a t t r i b u t e s of t i n t i n n i d s i n t h i s r e s p e c t  4a.  Lower t h r e s h o l d f e e d i n g v a l u e s 1 to 11, and  the c o r r e s p o n d i n g  c a l c u l a t e d from the p l o t s i n Appendices  r e g r e s s i o n c o e f f i c i e n t s , a r e shown i n T a b l e  Over a l l experiments, the e x t r a p o l a t e d from 35 to 340  x 10  3  are  um  3  t h r e s h o l d v a l u e s of Logmean E range  /ml, w i t h no c l e a r c u t d i f f e r e n c e s i n the range of  v a l u e s between the t i n t i n n i d s p e c i e s or between t i n t i n n i d s and n a u p l i i 3 28).  The  28.  t h r e s h o l d v a l u e f o r ' a l l samples'  v a l e n t i n volume to a p p r o x i m a t e l y E u t r e p t i e l l a sp. c e l l s / m l .  1440  (ESO)  i s 72 x 10  3 um  /ml  Monochrysis l u t h e r i c e l l s , or  These v a l u e s a r e v e r y low  indeed,  (Table  —  equi-  144  especially  as  136 TABLE  28.  .  Species of predator Tintinnopsis subacuta  Microzooplankton lower threshold feeding values and r e g r e s s i o n coefficients of L o g mean E (variable 3) when food consumption rate (variable 1) is z e r o . N . S . = non significant at .0 5 probability level.  Eood type  Calculation method  Lower L o g mean E (3) Thresholds (Um x 10 /ml) 3  3  Regression Coefficient of V a r i a b l e (3) on Variable (1)  Natural  NTC  35  0.0197  II  Natural  ESO  124  0.0377  II  Laboratory  NTC  Laboratory  ESO  Laboratory  NTC  II  Laboratory  ESO  II  Laboratory  ESO  Natural  ESO  Laboratory  NTC  Laboratory  ESO  Tintinnopsis parvula  Natural  ESO  T i a r i n a fusus  Natural  ESO  II  Stenosomella ventricosa  Barnacle and copepod/ Nauplii II  A l l samples  NTC ESO  Intercept Negative 101  340 Regression Negative 46 (one high value omitted)  0.0033 (N.S.) 0.0205  0.0068 (N.S.) Negative 0.0089  0.0093 (N.S.) Regression Negative 38  --  Negative • 0.0238 (N.S.)  0.0056 (N.S.)  0.231 (N.S.)  Intercept Negative 72  0.0015 0.0247  137  they r e p r e s e n t a l l p a r t i c l e s l e s s than approximately  Using  the carbon pug) to volume  20yim  diameter.  3 6 tym x 10 ) c o n v e r s i o n f a c t o r 3  (.052)  3  g i v e n by Parsons e_t.al_. (1967), a t h r e s h o l d v a l u e o f 72 x 10 /im /ml i s e q u i v a l e n t <tb 0.0037ug/carbon/ml. hold values Poulet  The l a t t e r  i s much lower than the t h r e s -  (1973) g i v e s f o r Pseudocalanus minutus i n a c o a s t a l em-  bayment and o n l y l / 1 4 t h the v a l u e o f t h e lowest o f those g i v e n f o r t h r e e s p e c i e s o f c o a s t a l p l a n k t o n i c c r u s t a c e a n s by Parsons et.al^.  (1967).  It i s  almost c e r t a i n l y o n l y c o i n c i d e n t a l t h a t t h e average t h r e s h o l d v a l u e i s about e q u i v a l e n t to t h e carbon c o n t e n t o f one T i n t i n n o p s i s subacuta  (see S e c t i o n 2 ) .  ( i i ) p o s i t i v e slope of r e g r e s s i o n Although  the r e g r e s s i o n a n a l y s i s used presupposes a s i n g l e l i n e a r r e -  l a t i o n s h i p between v a r i a b l e s (1) and ( 3 ) , t h e r e a r e few data p o i n t s which obv i o u s l y v i o l a t e t h i s assumption i n t h e v a r i o u s sub-sets o f o b s e r v a t i o n s . e x c e p t i o n to t h i s i s seen i n t h e r e s u l t s o f T i n t i n n o p s i s subacuta  An  f e e d i n g on  n a t u r a l f o o d , where some o f t h e v a l u e s of an experiment i n v o l v i n g a n a t u r a l 'bloom' o f E u t r e p t i e l l a sp. appear to be u n u s u a l l y h i g h and l i e perhaps on a d i f f e r e n t , o r on an e x p o n e n t i a l curve  (Appendix 1  ).  However, other  c a t e ' r e s u l t s were much lower, and t h e r e was c o n s i d e r a b l e  'repli-  ' s c a t t e r ' amongst  the r e s u l t s i n t h a t experiment.  S e v e r a l o f t h e NTC v a l u e s show no p o s i t i v e l i n e a r i t y , which l e n d s  sup-  p o r t to the s u r p r i s i n g u t i l i t y o f t h e ESO method o f c a l c u l a t i o n , but which makes d i f f i c u l t  any approximate p r e d i c t i o n o f the f e e d i n g r a t e o f a s p e c i e s  from a knowledge o f merely the i n i t i a l t o t a l p a r t i c l e volume i n a sample.  The  v a l u e s o f t h e r e g r e s s i o n c o e f f i c i e n t s a r e e q u i v a l e n t t o an u n r e a l i s t i c a l l y continuous  and u n i f o r m  i n d i v i d u a l f e e d i n g r a t e o f between 0.33 and 3.8% o f t h e  138  p a r t i c l e volume/ml/hour s i n g l e v a l u e o f 23.1% Tintinnopsis parvula ml/hr) and  (and see S e c t i o n 4a and 4b); w i t h an e x c e p t i o n a l  f o r the h o l o t r i c h c i l i a t e T i a r i n a f u s u s  (1 experiment o n l y ) shows a s m a l l c o e f f i c i e n t  t h i s t i n t i n n i d has a c e l l volume and  h a l f o f t h a t of T_. subacuta Stenosomella two  (ESO o n l y ) .  ( c o e f f i c i e n t o f 0.33  v e n t r i c o s a ( c o e f f i c i e n t of 0.68  species are s i m i l a r  a 'search r a t e ' both about t o 3.8%/ml/hr) and  to 0.89%/ml/hr).  to each o t h e r i n both c e l l  (see S e c t i o n s 4a and 4b) .  (0.56%/  s i z e and  The  latter  'search r a t e '  However some f e e d i n g r a t e s of T_. p a r v u l a on  small  prey items  shown i n S e c t i o n 4a a r e as h i g h as or h i g h e r than those of T_.  subacuta.  The c r u s t a c e a n n a u p l i i show a s i m i l a r range o f v a l u e s a t 0.93  2.38%/ml/hour a l t h o u g h l a r g e r than t i n t i n n i d s . for  t i n t i n n i d s i n the s h o r t - t e r m a c c u m u l a t i o n  are a l l 1.1%/ml/hr o r l e s s .  The c o e f f i c i e n t s experiments  calculated  ( S e c t i o n 4a ( i i ) )  A l l these v a l u e s a r e about 1 0 - f o l d lower  thenmaximum i n d i v i d u a l f e e d i n g c o e f f i c i e n t s g i v e n by P o u l e t  than  (1973) f o r the  much l a r g e r a d u l t copepod Pseudocalanus minutus (17%/ml/hr) over a f o o d range from 2 to 114 rotifers (ESO)  um.  Feeding c o e f f i c i e n t s of two  to  size  s p e c i e s of p l a n k t o n i c  (see the end of t h i s S e c t i o n ) ranged from 0.29%  (NTC)  to 5.53%/ml/hr  (and see General D i s c u s s i o n ) .  ( i i i ) l a c k of asymptote I t i s obvious  from the computer p l o t s ' o f  the r e g r e s s i o n of Logmean E  on f e e d i n g r a t e (FR/P) i n Appendices 1 to 11 t h a t t h e r e i s no case of a trend in  the d a t a towards a p o s i t i v e c u r v i l i n e a r r e l a t i o n s h i p or towards an asymp-  tote. for  S i n c e t h e o r e t i c a l l y t h e r e must be an asymptote, o r a t l e a s t a c u r v a t u r e  each p r e d a t o r a t some h i g h c o n c e n t r a t i o n of a v a i l a b l e f o o d , i t must be  concluded of  t h a t these  (ESO)  C o u l t e r r e s u l t s occur below such optimum l e v e l s  e d i b l e p a r t i c u l a t e m a t e r i a l (OFC)  pancy between the l e v e l s o f the OFC  (but see S e c t i o n 4a shown by the two  (ii)).  experimental  The  discre-  methods  139  i n t h i s study i s i n e x p l i c a b l e .  The maximum p a r t i c l e c o n c e n t r a t i o n s used  (between 1 and 20 pm diameter) a r e e q u i v a l e n t to 1.92 ppm (by volume) f o r l a b o r a t o r y c u l t u r e s and 0.76 ppm f o r n a t u r a l samples cussion).  (see a l s o General D i s -  However, the f e e d i n g r a t e asymptote f o r Pseudocalanus minutus  a c c o r d i n g to Parsons et_.al. between 1 and 114 um  The Feeding  (1967) o c c u r s a t about 11.0 ppm o f p a r t i c l e s  diameter.  E l e c t i v i t y o f T i n t i n n i d s i n C o u l t e r Counter Experiments  I n d i c e s o f e l e c t i v i t y or f e e d i n g p r e f e r e n c e a r e i n most cases merely i n d i c e s o f t h e r e l a t i v e ease w i t h which the food items i n q u e s t i o n a r e caught by a p r e d a t o r a t any time.  One measure which does not confuse  catchability  w i t h p r e f e r e n c e o r s e l e c t i o n i s t h e p r e f e r e n c e c o e f f i c i e n t o f Rapport (1972).  et.al.  I n o r d e r t o c a l c u l a t e t h i s c o e f f i c i e n t one must know t h e f e e d i n g  r a t e o f the p r e d a t o r on t h e food i n q u e s t i o n i n s i n g l e and i n mixed c u l t u r e s , at equivalent d e n s i t i e s .  Rapport et^._al_. (1972) and Rapport  (unpublished)  have c a l c u l a t e d p r e f e r e n c e c o e f f i c i e n t s f o r t h e c i l i a t e S t e n t o r c o e r u l e u s on several  foods.  F o r t h e purpose of e s t i m a t i n g t h e p o s s i b l e d i f f e r e n t i a l f e e d i n g r a t e s of t i n t i n n i d s o n ^ v a r i o u s experiments,  s i z e c l a s s e s o f p a r t i c l e s i n these C o u l t e r Counter  I v l e y ' s e l e c t i v i t y index  (here c a l l e d E l ) has been used.  i n d e x was chosen s i n c e t h e r e were no comparative and mixed food c u l t u r e s i n t h e s e  Ivlev's  c a s e s o f p r e d a t i o n on s i n g l e  experiments.  El =  r  " ri + pi ±  P  l  (5)  where r i = t h e p r o p o r t i o n o f i t e m i i n t h e d i e t o f the p r e d a t o r and p i = the p r o p o r t i o n o f i t e m i i n the environment.  Therefore, i n t h i s s e c t i o n E l  i s a measure simply of the a v a i l a b i l i t y and ease o f c a p t u r e o f an item o r  140  F i g u r e 8.  R e l a t i o n s h i p between e l e c t i v i t y v a l u e s ( E l ) of T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and the mean diameter of C o u l t e r Counter s i z e c l a s s e s .  (1)(2)(3)(4) (5)  (6)  PARTICLE  (7)  (8)  DIAMETER  (9) (um)  ( 1 0  )  142  s i z e c l a s s of p a r t i c l e s and by  the  tintinnid.  result indicates portion  E l has  not  the  a measure of  i t s s e l e c t i o n or  t h e o r e t i c a l l i m i t s of -1.0  preference  to +1.0.  A  that a s i z e c l a s s of p a r t i c l e s i s eaten e x a c t l y  i n which i t o c c u r s i n the  environment.  zero  i n the  pro-  A positive El fraction  indi-  (inyum / h r / t i n t i n n i d ) on a p a r t i c u l a r s i z e  class  3 cates that  the f e e d i n g  i s a larger proportion r e p l i c a t e , than the E. v a l u e the  ( a l s o see  rate  of the  t o t a l net  logmean E v a l u e of Section  4a).  feeding that  jam  ( c l a s s 10).  ( c l a s s 1)  tween E l and F i g u r e 11 increase  the  subacuta f e e d i n g  f o r an  f o r each s i z e c l a s s ; F i g u r e 10  of p a r t i c l e volume i n the 11  the  of  24  8).  size classes,  except 6 (5.66 yum),  P o s i t i v e and  o n l y i n those s i z e c l a s s e s  t i v e and  smaller  negative.  .natural  O^/C^  be-  experiment;  the i n d e x  and  of  v a l u e s have been  recalculated  hours.  negative values are but  from 3.57  Size classes  size  (G^/C^) f o r each s i z e c l a s s .  the v a l u e s are to 7.12 yum  1,2  the two  T h e r e f o r e , the o v e r a l l t r e n d  and  3  (1.78  electivity  found i n almost a l l consistently  mean d i a m e t e r .  than t h i s have a wider range o f  n e g a t i v e than p o s i t i v e and tive.  i n the  s i m p l e r e l a t i o n s h i p between p a r t i c l e s i z e and  index (Figure  both l a r g e r and  yum  the mean t o t a l p a r t i c l e  E l v a l u e s and  control vessel  logmean E and  experimental duration  There i s no  from  shows the r e l a t i o n s h i p  t o t a l logmean E f o r a l l s i z e c l a s s e s  and  on  of  F i g u r e 8 shows the r e l a t i o n s h i p between E l and  shows the r e l a t i o n s h i p between the  In F i g u r e s 9,10  size classes  to t h a t of mean d i a m e t e r 14.3  c l a s s ; F i g u r e 9 shows the r e l a t i o n s h i p between E l and volume (logmean E)  t o t a l logmean  show the r e l a t i o n s h i p  f o r each of 10  Only the v a l u e s of T i n t i n n o p s i s  samples have been used.  experimental  s i z e c l a s s i s of the  F i g u r e s 8 to 11  e l e c t i v i t y indices with other f a c t o r s  t h a t of mean diameter 1.78  r a t e i n that  to 2,82  v a l u e s i n c l a s s 10  positive  Size  classes  E l values, both pm)  are more  (14,3 ^um)  i s for e l e c t i v i t y values for  posi-  often  are both  posi-  Tintinnopsis  143  Figure  9.  R e l a t i o n s h i p between e l e c t i v i t y v a l u e s ( E l ) of T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and the Logmean E v a l u e s o f each C o u l t e r Counter s i z e c l a s s .  144  <N "IN  CN  -oo  o  00 1 0  00 l"vt-«  —O-O oo  o  t^po  o  •t-o  0-  CO O-  N CO,  CN  CN  CS CM  n  145  F i g u r e 10.  R e l a t i o n s h i p between the e l e c t i v i t y v a l u e s ( E l ) of T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and the t o t a l Logmean E v a l u e s of a l l C o u l t e r Counter s i z e c l a s s e s .  10  1  10 1  8  4 8  6 1 7  7*8  1  4  J  6  •8  6 67 3 J  46 4  -3_ 5 2  9  4 82  8  7  2  ? 7* 5  3  S  8?  76 5  9  fl? j  8  9  7  3 4  4  2  94 4 .  8  98  8  9  8  2 •  8  &7  7  3  2  4 4  5  8  3 3  4 4 9  3  23 3  2  2  2  2  240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 TOTAL LOGMEAN E (pm x 10 ) 3  3  147  subacuta to be more c o n s i s t e n t l y p o s i t i v e i n C o u l t e r s i z e c l a s s e s l a r g e r than about 3 pm,  but not  to i n c r e a s e  t i c l e s as s m a l l as 1.6 ^um a r e F i g u r e 9 i t can be greatest values 11  eaten to some extent by  this species.  i n the s m a l l e r  In  s i z e c l a s s e s , t h e r e i s no  tendency f o r  electivity  to i n c r e a s e w i t h the t o t a l p a r t i c l e volume i n each s i z e c l a s s .  Figure  shows t h a t the p o t e n t i a l r a t e o f i n c r e a s e i n the number o f p a r t i c l e s per  of a s i z e c l a s s .  be r e l a t e d i n a complex manner to the e l e c t i v i t y  There i s no r e l a t i o n s h i p between C^/C^  i s equal to or l e s s than 1.0,  i . e . when t h e r e was  a n c  * ^  w  n  e  of c a s e s ,  t o t a l C^/C^  values  greater  no change, or a d e c l i n e i n  than 1.0  o c c u r i n s i z e c l a s s e s 5 and  The  a r e based upon f e e d i n g r a t e s ; and  volves  the C ^ ^ i  r a t  (iv)).  6.5 ^im) , but  (see a l s o  Figure  complete independence between these f a c t o r s s i n c e the E l  values  S e c t i o n 3b  the  greatest  6 (between about 4 and  these s i z e c l a s s e s do not have the l a r g e s t p o s i t i v e E l v a l u e s There i s not  In  ( i . e . showing 'growth')  are a s s o c i a t e d w i t h s i z e c l a s s e s w i t h p o s i t i v e E l v a l u e s . ^2^C"1 v a l u e s  index  ^2^1  n  t o t a l p a r t i c l e volume f o r t h a t s i z e c l a s s i n the c o n t r o l v e s s e l .  majority  8).  Par-  seen t h a t a l t h o u g h the mean t o t a l volume of p a r t i c l e s i s  s i z e c l a s s (C2/C^); may  the  i n magnitude w i t h s i z e above t h i s .  i°>  a  n  a  t  n  e  In g e n e r a l ,  t h e c a l c u l a t i o n of the l a t t e r i n -  logmean E v a l u e  f o r each s i z e c l a s s  (see  the s i g n of the e l e c t i v i t y index i s c o n s i s t e n t  o n l y i n the m i d d l e range of the s i z e c l a s s e s i n t h e s e C o u l t e r Counter e x p e r i ments, and  these s i z e c l a s s e s a r e  i c l e volume, but  the g r e a t e s t  those which show not  growth r a t e i n c o n t r o l s .  e l e c t i v i t y i n d e x of T i n t i n n o p s i s subacuta bears no  the g r e a t e s t mean p a r t The  magnitude of  consistent relationship  to the s i z e , t o t a l volume or growth r a t e of n a t u r a l food p a r t i c l e s . may 10  be due  This  to p e c u l i a r i t i e s i n the method of c a l c u l a t i o n of the index.  shows t h a t t h e r e i s no r e l a t i o n s h i p between e l e c t i v i t y v a l u e s  c l a s s and  the t o t a l p a r t i c l e volume of any  the  experiment.  f o r any  Figure size  148  F i g u r e 11.  R e l a t i o n s h i p between t h e e l e c t i v i t y v a l u e s ( E l ) of T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s and the changes i n c o n t r o l v a l u e s (C /C.) i n each C o u l t e r Count er s i z e c l a s s . 0  149  o  o o o  co  IT) CN  o  ^ »  -o 1^  to  coo -o  oo —  — tv  CO  IT)  oooo  to  K  <*> cocoCN  ^  C ro  CM  N  00  co A 1  CN  CNCN CO CO  co  CN  CN  CN^CN  d  150  Poulet  (1973, 1974)  has  i n v e s t i g a t e d the f e e d i n g r a t e s of the  n e r i t i c copepod Pseudocalanus minutus on n a t u r a l p a r t i c l e s w i t h a Counter t e c h n i q u e . although  P o u l e t a l s o used I v l e v ' s e l e c t i v i t y  small Coulter  index, and  found t h a t  p o s i t i v e and n e g a t i v e e l e e t t i v i t y v a l u e s were found i n a l l of h i s f i v e  a r b i t r a r y s i z e c l a s s e s from 1.5 ^im to 144 ^im, the frequency  of p o s i t i v e v a l u e s  i n c r e a s e d w i t h the s i z e of the c l a s s to about 60 /lm diameter and creased.  then  de-  E l e c t i v i t y v a l u e s were m o s t l y n e g a t i v e f o r P o u l e t ' s p a r t i c l e s  tween 1.58  and  9 jam, except when p a r t i c l e s of t h i s s i z e reached 40 - 60%  the t o t a l c o n c e n t r a t i o n . minutus was  Poulet  c l a s s e s except i n the s i z e range below 3.57 ^um.  size  P o u l e t t h e r e f o r e argued t h a t  a v e r y s t r o n g o p p o r t u n i s t i c f e e d i n g behaviour and  f i c i e n t u t i l i z a t i o n o f the s t a n d i n g see General  of  (1974) found t h a t food consumption i n P_.  s t r o n g l y c o r r e l a t e d w i t h the t o t a l p a r t i c l e volume i n a l l  P_. minutus has  be-  a very  s t o c k whatever i t s s i z e d i s t r i b u t i o n  ef(and  Discussion).  P o u l e t ' s method of c a l c u l a t i n g f e e d i n g r a t e and  standing  s t o c k and  there-  f o r e - e l e c t i v i t y i n d i c e s , comes under some s u s p i c i o n p r i m a r i l y because he c a l c u l a t e d f e e d i n g r a t e as merely the d i f f e r e n c e between f i n a l c o n t r o l and experimental  p a r t i c l e concentrations.  method of c a l c u l a t i o n  T h i s means t h a t he has used a  (see Methods S e c t i o n ) which may  for h i s p a r t i c l e concentrations l a r g e over o r u n d e r - e s t i m a t i o n c l u s i o n s on the f e e d i n g  and  experimental  w e l l be  p e r i o d s and  of the f e e d i n g r a t e .  inappropriate c o u l d l e a d to  Nevertheless  ' s t r a t e g i e s ' o f P_. minutus may  linear  h i s con-  w e l l h o l d , but i t  should be remembered t h a t t h i s e l e c t i v i t y index i n d i c a t e s changes i n the p r o p o r t i o n o f items of a p a r t i c u l a r d i c a t e s e l e c t i o n by the p r e d a t o r .  s i z e eaten,  and  does not n e c e s s a r i l y i n -  In the C o u l t e r Counter experiments i n t h i s  study T i n t i n n o p s i s subacuta does not appear to eat p r o p o r t i o n a t e l y more of  151  a s i z e c l a s s o f n a t u r a l p a r t i c l e s when t h a t s i z e c l a s s c o n t a i n s a l a r g e volume o f p a r t i c l e s i s large  ( F i g u r e 9 ) , nor when t h e t o t a l volume i n a l l s i z e  (Figure 10).  T h e r e f o r e T_. subacuta does not appear  t o be as  t u n i s t i c ' a f e e d e r as P_. minutus; but n o t a l l the p a r t i c l e s i n a s i z e may be e q u a l l y a v a i l a b l e f o r p r e d a t i o n nor e q u a l l y e d i b l e  total  classes 'opporclass  (and see S e c t i o n 4 a ) .  T_. subacuta l i k e P_. minutus e a t s p a r t i c l e s i n a l l s i z e c l a s s e s i n i t s range but takes d i s p r o p o r t i o n a t e l y more from the middle s i z e c l a s s e s  (3.57 to 7.12 ^m  mean d i a m e t e r ) , more f r e q u e n t l y than from the p a r t i c l e s o f l e s s than 3.57 ^um o r more than 7.12 jum diameter.  These middle s i z e c l a s s e s a r e those which show  the g r e a t e s t p o t e n t i a l growth r a t e i n these C o u l t e r Counter  experiments.  The  methods used by P o u l e t ( l o c . c i t . ) d i d n o t a l l o w him t o d i s c u s s t h e r e l a t i o n ^ s h i p between p o t e n t i a l growth r a t e and e l e c t i v i t y .  "  The e f f e c t o f t i n t i n n i d f e e d i n g on t h e ' c o n t r o l ' o f p h y t o p l a n k t o n p o p u l a t i o n s I t i s important to t r y to a s c e r t a i n the c o n d i t i o n s under which and o t h e r m i c r o z o o p l a n k t o n may of r e l a t i v e l y s m a l l organisms.  tintinnids  ' c o n t r o l ' p h y t o p l a n k t o n p o p u l a t i o n s composed E i g u r e s 12,13 and 14 show t h e t o t a l  effect  of p r e d a t o r f e e d i n g i n these C o u l t e r Counter experiments, and t h e number o f p r e d a t o r s / m l i n t h e same experiments. E  l  ' c o n t r o l ' i s presumed t o have  C  taken p l a c e when _2 < 1 and _2 ,> 1. E  General  C  A l l v a l u e s have been r e c a l c u l a t e d  from  l  the d a t a f o r an e x p e r i m e n t a l d u r a t i o n of 24 h o u r s , and t h e p r e d a t o r  concen-  t r a t i o n s -shown a r e those c a l c u l a t e d t o be a l i v e / m l a f t e r  The NTC  values are given.  12 h o u r s .  The d a t a a r e so v a r i a b l e t h a t they support o n l y t h e most  t e n t a t i v e statements, b u t i t i s c l e a r t h a t n a t u r a l c o n c e n t r a t i o n s o f t i n t i n n i d s ;(at l e a s t o f T_. subacuta) , a p p a r e n t l y under some c i r c u m s t a n c e s , reduce the biomass of growing p h y t o p l a n k t o n p o p u l a t i o n s w i t h i n 24 h o u r s , thus e x e r ting a controlling  influence.  152  Figure  12.  R e l a t i o n s h i p between t h e changes i n t h e t o t a l p a r t i c l e volume of C o u l t e r Counter c o n t r o l (C /C ) and e x p e r i m e n t a l (E /E ) c o n t a i n e r s a t v a r i o u s c o n c e n t r a t i o n s of t i n t i n n i d s per ml. '1.0' - T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s . 2  - T_. p a r v u l a  on n a t u r a l  particles.  153  m o Oi  m  to  i  6 —i  154  Figure  13.  R e l a t i o n s h i p between the changes i n the t o t a l p a r t i c l e volume of C o u l t e r Counter c o n t r o l (C^/C^) and e x p e r i m e n t a l (E2/E^) c o n t a i n e r s a t v a r i o u s c o n c e n t r a t i o n s of T i n t i n n b p s i s ^ s u b a c u t a per ml. on l a b o r a t o r y f o o d .  155  156  Figure  14.  R e l a t i o n s h i p between t h e changes i n t h e t o t a l p a r t i c l e volume of C o u l t e r Counter c o n t r o l (C^/C^) and experimental (E2/E^) c o n t a i n e r s a t v a r i o u s c o n c e n t r a t i o n s of p r e d a t o r s per ml. '1.0' - S t e n o s o m e l l a v e n t r i c o s a on l a b o r a t o r y f o o d . (lT(}) - B a r n a c l e - Barnacle  and copepod n a u p l i i on l a b o r a t o r y and copepod n a u p l i i on n a t u r a l  food.  particles.  158 A C o u l t e r Counter experiment w i t h R o t i f e r s Of s e v e r a l attempted C o u l t e r Counter experiments w i t h p l a n k t o n i c f e r s , o n l y one gave u s e f u l r e s u l t s .  T h i s was  roti-  much s h o r t e r t h a n t t h e e a r l i e r  experiments w i t h t i n t i n n i d s and has been a n a l y s e d s e p a r a t e l y and the r e s u l t s shown i n T a b l e 29.  Of the two s p e c i e s used:  Synchaeta l i t t o r a l i s  (about  500 x 200 ^im) i s the l a r g e s t marine p l a n k t o n i c r o t i f e r i n the study a r e a ; and the s m a l l e r s p e c i e s i s a l s o parobablhy. of the genus Synchaeta and i s about 250 x 100 pm. i n s i z e .  A l l animals used were females; many :S. l i t -  t o r a l i s females w i t h e x t e r n a l eggs do not take food ( p e r s o n a l o b s e r v a t i o n ) , and a t such times t h e i r eggs have a d a r k e r , rougher appearance than u s u a l . The l a t t e r may  be m i o t i c  (or f e r t i l i s e d ) eggs and a r e p o s s i b l y among the  l a s t produced by such a female. appeared t o c a r r y m i c t i c  In  used f o r b o t h r o t i f e r  D u n a l i e l l a t e r t i o l e c t a i n f i l t e r e d seawater.  the experiment was  7.42  a e t a a sp., •' There were 0.65  hours f o r S_. l i t t o r a l i s  (FR/P).  and 7.17  S^. l i t t o r a l i s / m l and 0.60  ' e x p o n e n t i a l ' e q u a t i o n (see Methods S e c t i o n ) was rate  i n this  experiment  eggs.  t h i s experiment, t h e same c o n t r o l was  and the p r e y was of  None of the S^. l i t t o r a l i s  In T a b l e 29 p o s i t i v e v a l u e s of FR/P  The  species, duration  hours f o r Synch-  Synchaeta sp./ml.  The  used to c a l c u l a t e the f e e d i n g i n d i c a t e a net i n c r e a s e i n  p a r t i c l e volume i n t h a t s i z e c l a s s , and n e g a t i v e v a l u e s i n d i c a t e a n e t l o s s ofi p a r t i c l e volume. by r o t i f e r s .  The l a t t e r i s i n t e r p r e t e d here as due to  T a b l e 29 shows t h a t p a r t i c l e consumption by both s p e c i e s o c c u r -  red  in. s i z e c l a s s e s of mean diameter 7.12  of  p a r t i c l e s o c c u r r e d i n s i z e c l a s s e s 2.28  were weakest  consumption  t o 14.3 ;um;  and t h a t a net i n c r e a s e  to 7.12 jxm.  These o p p o s i t e t r e n d s  i n the middle s i z e c l a s s e s , and t h e r e seems to be a g r a d u a l  change from p r o d u c t i o n to consumption  of p a r t i c l e s w i t h i n c r e a s i n g  particle  TABLE  29.  Results of Coulter. Counter experiment with Synchaeta littoralis and Synchaeta sp. eating Dunaliella tertiolecta. '• Mean Diameter of Size C l a s s (um) 2.82  3.57  4.49  5.66  7.12  8.98  11.3  14.3  1.14  0.94  0.51  0.79  0.69  0.54  2.43  13.4  0.86  Ej. (um x 10 )  87.4  88.7  109.6  S. littoralis 88.6 132.2  238.3  64.0  25.9  834.7  Ea (um x 10 )  152.7  98.9  98.0  87.7  80.7  120.6  42.6  13.0  694.2  L o g mean E (Um x 10 )  117.1  93.7  103.5  88.2  104.4  172.7  52.6  19.0  751.2  +10.4  . +3.3  +12.0  +4.1  -2.7  -2.3  -14.4  -12.8  N T C -2.2 E S O -32.1  --  --  0.026  0.013  0.274  0.674  N T C 0.0029 E S O 0.0427  305.0  64.6  17.3  918.0  Ca/Ci  3  3  3  3  3  3  FR m x 10 /hr/ predator 3  Total  3  W  FR ml/hr/predator  --  Ei  93.8  89.0  110.0  Ea  195.5  100.8  98.1  83.4  103.1  '100.5  56.0  24.5  761.9  L o g Mean E  139.0  95.3  103.9  85.8  128.5  184.2  60.3  20.7  .838.3  +19.4  +4.1  +13.5  +3.7  -0.2  -21.0  -14.4  -10.8  N T C -5.7 E S O -46.4  0.002  10.114  0.239  0.522  N T C 0.0067 E S O 0.0553  FR u m x 10 /hr/ predator 3  Synchaeta sp. 87.5 1 50.7  3  F R ml/hr/predator  -  160  size.  In t h i s r e l a t i v e l y s h o r t experiment,  p a r t i c l e p r o d u c t i o n a t these  s i z e s i s p r o b a b l y caused by the f r a g m e n t a t i o n of l a r g e p a r t i c l e s o r by e g e s t i o n of o l d f o o d and n o t by d i f f e r e n t i a l p a r t i c l e growth.  the  The  val-  ues i n T a b l e 28 i n d i c a t e t h a t v a l u e s g r e a t e r than 1.0 were a s s o c i a t e d w i t h However, the o v e r a l l n O ^ / C ^  a high feeding rate.  As i n the o t h e r C o u l t e r Counter  experiments  v  a  l  u  e  w  a  s  0.86.  the ESO v a l u e s were h i g h e r  than the NTC values;.bbut i n t h i s case the l a t t e r were a l s o n e g a t i v e .  Feeding  r a t e s c a l c u l a t e d as m l / h r / r o t i f e r were, f o r the t o t a l p a r t i c l e volume:0.0029 (NTC) and 0.0427(ESO) f o r S_. l i t t o r a l i s ; and 0.0067(NTC) and for  Synchaeta  sp..  l e c t a were 7.12 for  Those s i z e c l a s s e s which c o n t a i n e d most o f t h e D.  sp..  tertio-  to 11.3 jam d i a m e t e r ; and the f e e d i n g r a t e s i n m l / h r / t i n t i n n i d  t h e t o t a l o f the l a t t e r were:  Synchaeta  0.0553(ES0)  0.0586 f o r S_. l i t t o r a l i s and 0.00954 f o r  I t i s s u r p r i s i n g t h a t the f e e d i n g r a t e o f Synchaeta  p_. t e r t i o l e c t a h e r e exceeds  sp. on  t h a t o f the much l a r g e r S^. l i t t o r a l i s .  At these  r a t e s 100% o f t h e p_. t e r t i o l e c t a would have been e a t e n i n 10 to 17 hours.  The f e e d i n g r a t e s shown i n T a b l e 29 exceed  those of any t i n t i n n i d s p e c i e s  i n t h i s study by a f a c t o r o f 2 ( C o u l t e r experiments) l a t i o n experiments).  R o t i f e r s i n i n s h o r e waters  a t t a i n c o n c e n t r a t i o n s as h i g h as 3 or 4/ml,  to 5 o r more(accumu-  i n t h i s a r e a may  occasionally  and a t such times an e q u i v a l e n t  t o t a l f e e d i n g r a t e by t i n t i n n i d s would r e q u i r e c o n c e n t r a t i o n s o f perhaps to  20 T_. subacuta/ml.  occur.  C o n c e n t r a t i o n s such as t h i s o f l a r g e t i n t i n n i d s  Although t h e s e two r o t i f e r  s p e c i e s have f a s t e r f e e d i n g r a t e s  15  rarely  than  t i n t i n n i d s and r a p i d r e p r o d u c t i v e r a t e s ; a t times they do not f e e d a t a l l , and they a r e much l e s s common than t i n t i n n i d s i n c o l d or h i g h - s a l i n i t y 4 T i n t i n n o p s i s subacuta has a maximum c e l l volume o f about female _S_. l i t t o r a l i s  i s about 100  times l a r g e r .  7 x 10  water.  3 ; a large  T h e r e f o r e , on the b a s i s o f  161  i n d i v i d u a l volume, the t i n t i n n i d i s a c o n s i d e r a b l y more e f f e c t i v e p r e d a t o r than t h e r o t i f e r .  V a r i a b i l i t y i n f e e d i n g r a t e s i n C o u l t e r Counter  experiments  The f o u r most l i k e l y causes of v a r i a b i l i t y i n t h e s e experiments were: 1) v a r i a b i l i t y between r e p l i c a t e s of c o n t r o l and e x p e r i m e n t a l samples; 2) d i v e r g e n c e between growth r a t e s of prey items i n c o n t r o l and e x p e r i m e n t a l samples;  3) i n v a l i d assumptions about m o r t a l i t y of the p r e d a t o r s ; 4)  dif-  f e r e n c e s i n the f e e d i n g response o f p r e d a t o r s to v a r i o u s prey t y p e s , p a r t i c u l a r l y i n those experiments where one or a few prey types may  have been  dominant.  V a r i a b i l i t y between c o n t r o l r e p l i c a t e s i s not r e a d i l y e x p l i c a b l e , but Oct  c e r t a i n l y any i n i t i a l d i f f e r e n c e s would have been most e n l a r g e d i n the l o n g e s t experiments.  The c o m b i n a t i o n of v a r i a b i l i t y  i n c o n t r o l and e x p e r i m e n t a l  samples would be m u l t i p l i e d i n the c a l c u l a t i o n o o f f e e d i n g r a t e s . p t i o n t h a t the p o t e n t i a l changes  i n p a r t i c u l a t e volume i n each s i z e c l a s s i n  the e x p e r i m e n t a l v e s s e l p a r a l l e l the changes c o n t r o l v e s s e l s , was  also least v a l i d  i n those s i z e c l a s s e s i n the  i n the l o n g e s t experiments.  the experiments were too l o n g , but i t was cant changes  The assum-  often d i f f i c u l t  to o b t a i n  Several of signifi-  i n p a r t i c u l a t e volumes i n more o p t i m a l p e r i o d s o f time such as  6 t o 8 hours, p a r t i c u l a r l y w i t h low n a t u r a l c o n c e n t r a t i o n s of  tintinnids.  In o r d e r to c a l c u l a t e f e e d i n g r a t e s the assumption was made t h a t the t i n t i n n i d s which d i e d d u r i n g the c o u r s e o f the experiments d i d so a t a u n i form r a t e .  T h i s assumption was  not v e r i f i e d .  I f most of t h e dead  tintinnids  had d i e d near the s t a r t , or c o n v e r s e l y near the end of experiments; the use of the above assumption would  g r e a t l y underestimate o r o v e r e s t i m a t e ..  162  r e s p e c t i v e l y , t h e f e e d i n g r a t e o f t h e remainder.  I n any f u t u r e C o u l t e r Coun-  t e r experiments w i t h t i n t i n n i d s , t h e number, c o n d i t i o n and accumulated c o n t e n t s o f t i n t i n n i d s s h o u l d i d e a l l y be checked a t i n t e r v a l s . seen i n r e s u l t s o f a c c u m u l a t i o n experiments  ( S e c t i o n 4a ( i i ) ) ,  food  As has been some t i n t i n n i d  s p e c i e s show apparent d i f f e r e n t i a l p r e d a t i o n and s e l e c t i o n on some types o f food.  T h i s s e l e c t i o n u s u a l l y takes a n e g a t i v e form i n t h a t some f o o d items  are eaten d i s p r o p o r t i o n a t e l y l e s s when they a r e p r e s e n t e d t o g e t h e r w i t h another food i t e m which i s a p p a r e n t l y more e a s i l y caught even i n low concentrations.  The q u a l i t a t i v e response o f t i n t i n n i d s and o t h e r m i c r o z o o p l a n k t o n  to v a r i o u s prey types should a l s o be checked t e r experiments  on n a t u r a l  samples.  i f p o s s i b l e l d u r i n g C o u l t e r Coun-  163  5)  Of  the  General  Discussion  13 s p e c i e s of t i n t i n n i d s mentioned i n t h i s study:  i n f o r m a t i o n has been gained  from one  frequency;  found i n mid-summer. the 2 l a r g e s t , and  and  still  V i r t u a l l y no  i n f o r m a t i o n has The  two  come from the 2 s m a l l e s t , smallest  species  T i n t i n n o p s i s rapa d i d not eat enough v i s i b l e p a r t i c u l a t e  m a t e r i a l to g i v e much i n f o r m a t i o n w i t h s p e c i e s , F a v e l l a s e r r a t a and p r a c t i c a l use,  come from 4 or 5 o t h e r s p e c i e s of  l e s s from 3 or 4 more s p e c i e s mostly  one v e r y r a r e s p e c i e s .  T i n t i n n o p s i s nana and  the  common and r e l a t i v e l y l a r g e s p e c i e s ,  T i n t i n n o p s i s subacuta; somewhat l e s s has moderate s i z e and  much of  although  the techniques  used here.  The l a r g e s t  E u t i n t i n n u s l a t u s were too r a r e to be of much  some i n f o r m a t i o n was  obtained  from them, e s p e c i a l l y  from E. l a t u s ( S e c t i o n 4b) .  Of the o t h e r  c i l i a t e m i c r o z o o p l a n k t o n encountered, the h o l o t r i c h s  Prorodon sp. and Mesodinium rubrum were never seen to i n g e s t p a r t i c l e s , a l though the former was  v e r y o c c a s i o n a l l y seen to c o n t a i n food m a t e r i a l and  have a v e r y r a p i d d i g e s t i o n r a t e .  There i s one  r e s u l t from the h o l o t r i c h T i a r i n a f u s u s . i n l a r g e numbers but i s probably  C o u l t e r Counter  experimental  This species o c c a s i o n a l l y occurred  p r i m a r i l y a histophage.  Of the  oligotrich  c i l i a t e s which a r e c l o s e l y r e l a t e d to t i n t i n n i d s , s e v e r a l genera and were observed d u r i n g  t h i s study.  The  may  smallest species  species  (15 to 30 ,um) , almost  c e r t a i n l y i n g e s t e d b a c t e r i a and/or d i s s o l v e d o r g a n i c m a t e r i a l ; those o f a s i m i l a r s i z e range to t i n t i n n i d s appeared to c o n t a i n s i m i l a r food to t i n n i d s i n s i m i l a r amounts, and were o f t e n v e r y numerous; and (200-300 um) tinnid but  were p r e d a t o r y ,  c i l i a t e s may  be  largely uponntintinnids.  'quasi-symbiotic'  t h i s does not appear to be  t r u e of  a t times  tintinnids.  the l a r g e s t  Some of the  (Blackbourn  tin-  non-tin-  et.al_,  1973)  164 One  C o u l t e r Counter experiment was  i f e r s , and  carried  out w i t h  two  t h e i r f e e d i n g r a t e s were about 2 to 5 or more times as f a s t  those o f T i n t i n n o p s i s s u b a c u t a. ( T a b l e 30). of b a r n a c l e n a u p l i i and  The  s m a l l copepod n a u p l i i  t i n t i n n i d s p e c i e s used i n s i m i l a r  tinnids of any  on n a t u r a l p o p u l a t i o n s  as  ( c h i e f l y the former) when  experiments.  fragmentary i n f o r m a t i o n t h a t the p o t e n t i a l  rot-  f e e d i n g r a t e s of m i x t u r e s  measured w i t h the C o u l t e r Counter method, were v e r y s i m i l a r two  s p e c i e s of  to those o f  I t seems l i k e l y from t h i s  o v e r a l l f e e d i n g e f f e c t of  of phytoplankton,  the  tin-  i s a a t l e a s t as g r e a t as  o t h e r group o f m i c r o z o o p l a n k t o n used i n t h i s study.  t h a t the o v e r a l l e f f e c t o f the f e e d i n g o f o l i g o t r i c h s  that  It i s possible  i s g r e a t e r than t h a t  o f t i n t i n n i d s , but t h e r e i s no q u a n t i t a t i v e i n f o r m a t i o n on the f e e d i n g r a t e s of the former.  Oligotrich  v a r i a b l e than those either  populations  of t i n t i n n i d s , and  seemed to be even more t r a n s i e n t and the p o p u l a t i o n f e e d i n g e f f e c t  group would be extremely d i f f i c u l t  than a day or  to e v a l u a t e over p e r i o d s of more  two.  In comparing t h e r e s u l t s  of t h i s study w i t h  those of o t h e r a u t h o r s ,  great v a r i a b i l i t y which has b e d e v i l l e d t h e p r o j e c t makes any but general and  of  statements untenable.  some g e n e r a l  the  the most  However, the f o l l o w i n g comments on some d e t a i l s  trends a r e probably  justified.  There a r e no o t h e r  quanti-  t a t i v e data on t i n t i n n i d o r o l i g o t r i c h c i l i a t e f e e d i n g r a t e s w i t h which to compare t h i s work, but t h e f e e d i n g r a t e s of some f r e e - l i v i n g c i l i a t e s have been examined i n the papers by Goulder Preslan  (1969) and  Pavlovskaya  the food p r e f e r e n c e s Berger  (1973).  (1972), H a m i l t o n and  Rapport e t . a l . (1972). have d i s c u s s e d  of the s e s s i l e c i l i a t e s p e c i e s S t e n t o r c o e r u l e u s ,  (1971), Curds and  Cockburn (1971) and  have d i s c u s s e d f e e d i n g i n the freshwater a u r e l i a and  semi-planktonic  Tetrahymena p y r i f o r m i s .  R i c k e t t s (1971, 1973)  and  and others  b a c t e r i a - e a t i n g s p e c i e s Paramecium  Most a u t h o r s who  have worked w i t h  165  p r o t o z o a have used methods d i f f e r e n t from t h o s e used i n t h i s study, e.g. radioactive tracers cell  yield, etc.  (Pavlovskaya, 1973);  (Curds and Cockburn,  t h e e s t i m a t i o n o f weight o r t o t a l  1971; Hamilton and P r e s l a n , 1969) o r  e x t r a p o l a t i o n s from r a t e s o f l o s s to f e e d i n g r a t e s  (Goulder 1972) .  Berger  (1971) made counts o f food v a c u o l e s l a b e l l e d w i t h r a d i o a c t i v e b a c t e r i a , and Ricketts Rapport  (1971) counted  food v a c u o l e s which c o n t a i n e d l a t e x p a r t i c l e s .  et^.al_. (1972) counted t h e accumulations o f food' i n S t e n t o r c o e r u l e u s  a f t e r 1 hour.  T i n t i n n i d s e a t almost a n y t h i n g o f l e s s than a c e r t a i n s i z e  (Table; 2),  but d i f f e r e n t i a l p r e d a t i o n does occur i n some s p e c i e s on some prey' types (Section 4a).  F o r example,' T i n t i n n o p s i s subacuta e a t s d i s p r o p o r t i o n a t e l y  more E u t r e p t i e l l a sp. than o t h e r prey s p e c i e s i n m i x t u r e s ; and t h i s to  appears  d e p r e s s t h e i n g e s t i o n o f t h e o t h e r s p e c i e s compared t o c o n t r o l s when t h e  l a t t e r a r e p r e s e n t e d s i n g l y t o T_. subacuta.  T h i s might be c o n s i d e r e d a s  n e g a t i v e s e l e c t i o n , but i f d e l i b e r a t e , i t s u t i l i t y  i s not obvious.  On the  o t h e r hand, Cryptomonas s p . and I s o s e l m i s s p . (Cryptophyceae) a r e eaten l e s s than p r o p o r t i o n a t e l y by T_- subacuta. T_. c y l i n d r i c a , - T_; p a r v u l a and Stenosomella v e n t r i c o s a when mixed w i t h o t h e r prey i t e m s , and v e r y l i t t l e a t any time.  True n e g a t i v e s e l e c t i o n by t h e s e t i n t i n n i d s on Cryptomonads was  a l s o found i n some experiments m u c i c o l a accumulates  ( S e c t i o n 4a),  On t h e o t h e r hand T i n t i n n i d i u m  a l l f o o d items a t a g e n e r a l l y slower r a t e than the above  t i n t i n n i d s p e c i e s , and has an a p p a r e n t l y d i s p r o p o r t i o n a t e l y n e g a t i v e f e e d i n g r e a c t i o n to most p r e y s p e c i e s i n m i x t u r e s but to I s o s e l m i s s p . and o t h e r Cryptomonads.  The f e e d i n g r a t e o f S_. v e n t r i c o s a and T i n t i n n o p s i s  on most s m a l l p r e y items  (such as Monochrysis  lutheri) i s fairly  t h a t o f T. subacuta to which they a r e s i m i l a r i n s i z e . e a t s much l e s s E u t r e p t i e l l a s p . from_a  cylindrica s i m i l a r to  However, S_. v e n t r i c o s a  similar concentration of c e l l s ,  than  166  does T_. subacuta, and T_. c y l i n d r i c a has never eaten E u t r e p t i e l l a sp. i n the l a b o r a t o r y a l t h o u g h c e l l s which resemble this tintinnid  s p e c i e s from f i e l d  e u g l e n o i d s have been seen  samples.  inside  I t has been shown t h a t E u t i n t i n n u s  l a t u s which i s l a r g e r than T_. subacuta, cannot  subdue normal  Eutreptiella  but can eat the l a r g e r and slower prey s p e c i e s Cryptomonas profunda. 4c).  (Section  12. l a t u s does not seem t o h a b i t u a t e to E u t r e p t i e l l a sp. and never  to attempt  to i n g e s t i t .  T i n t i n n i d s may  sp.  fails  deal d i f f e r e n t l y with r e l a t i v e l y  s m a l l prey.  T h i s k i n d o f d i f f e r e n t i a l and has not been i d e n t i f i e d In c o n t r a s t , Rapport  sometimes n e g a t i v e l y s e l e c t i v e p r e d a t i o n  i n o t h e r groups o f c i l i a t e s , but no doubt  (Rapport, elt.aJU 1972;  i t occurs.  and u n p u b l i s h e d data) has  found  d e f i n i t e but t r a n s i t i v e p o s i t i v e f e e d i n g p r e f e r e n c e s i n S t e n t o r c o e r u l e u s . S_. coeruleus,genera-My_y  p r e f e r s l a r g e p r e y to s m a l l prey and' c i l i a t e s a r e  p r e f e r r e d to f l a g e l l a t e s ; but the degree of p r e f e r e n c e changes w i t h changes i n the a b s o l u t e and r e l a t i v e c o n c e n t r a t i o n s o f prey' types i n mixed  samples.  JL" c o e r u l e u s s h i f t s i t s p r e f e r e n c e i n the d i r e c t i o n f a v o u r i n g that;>prey s p e c i e s of r e l a t i v e l y h i g h abundance.  F e e d i n g experiments w i t h  tintinnids  over a wide range o f c o n c e n t r a t i o n s of mixed prey were not p o s s i b l e w i t h the t e c h n i q u e s used i n t h i s s t u d y ; but i t i s p o s s i b l e t h a t the degree o f p r e y s e l e c t i o n seen i n S e c t i o n 4a may prey.  change w i t h changes i n the c o n c e n t r a t i o n o f  I t i s important to note t h a t whatever i t s e f f e c t on the  mixed-prey  p o p u l a t i o n s , a p r e f e r e n c e f o r the most abundant p r e y item w i l l p r o b a b l y be of l e s s use to a p r e d a t o r than a p r e f e r e n c e f o r t h a t w i t h the l a r g e s t t o t a l biomass/ml Counter may  experiments below).  ( e a s i l y d i g e s t e d ) prey  (see comparative d i s c u s s i o n o f C o u l t e r  The f e e d i n g response of m i c r o z o o p l a n k t o n to p r e y  g r e a t l y depend upon the q u a l i t y o f the p r e y , which may  v a r y between prey  s p e c i e s and c e r t a i n l y between d i f f e r e n t growth stages o f t h e same s p e c i e s .  167  Such q u a l i t a t i v e d i f f e r e n c e s may e x p l a i n some o f the v a r i a b i l i t y seen i n t h i s study and i n t h e r e s u l t s o f Rapport (1971).  However, s e v e r a l d i f f e r e n t  (unpublished  d a t a ) and Strathmann  s p e c i e s o f phytoplankton  have s i m i l a r  p r o p o r t i o n s o f t h e major n u t r i t i o n a l c o n s t i t u e n t s , and when i n t h e exponental growth phase (as i n 'blooms' o r from new l a b o r a t o r y c u l t u r e s ) should be s i m i l a r l y u s e f u l to a p r e d a t o r .  P r e d a t o r s must respond to t h e behaviour o r  s u r f a c e c h a r a c t e r i s t i c s o f prey, and t h e r e f o r e s e l e c t i o n cannot be based upon i t s n u t r i t i o n a l composition  per s e .  Also i t  1  is difficult  to understand t h e  b i o l o g i c a l b a s i s f o r the p e r s i s t e n c e o f p r e d a t i o n on a l e s s - p r e f e r r e d prey type a t v e r y h i g h c o n c e n t r a t i o n s 4a and Rapport, u n p u b l i s h e d w i l l be r e j e c t e d under such  The  o f m i x t u r e s o f prey  Section species  circumstances.  the i n c r e a s e o f c e l l volume among p r e d a t o r  i n g e s t e d by a l l ,  ( t h i s study  d a t a ) , s i n c e most i n d i v i d u a l s o f a l l prey  f e e d i n g r a t e s o f t i n t i n n i d s i n t h i s study  of v a r i o u s t i n t i n n i d  types  i n general increase with  species.  A l s o the s e a r c h  rates  s p e c i e s as seen i n S e c t i o n 4b on items which can be  do n o t v a r y by more than a f a c t o r o f 5 or 10, and the range  of c e l l volumes among these  t i n t i n n i d s i s also approximately  10-fold.  A  f e e d i n g r a t e o f 0.0042 m l / h r / t i n t i n n i d (Table 15) from E u t r e p t i e l l a sp. a t 1,400 c e l l s / m l amounts to about 6 prey c e l l s i n g e s t e d / h o u r ,  and i s e q u i v a l e n t  3 to about 3,000 11m / h r / t i n t i n n i d .  To o b t a i n t h i s volume of food T_. subacuta  would have t o i n g e s t about 60 Monochrysis l u t h e r i / h o u r o r about 15 D u n a l i e l l a tertiolecta/hour.  At a f e e d i n g r a t e o f 0.0042 m l / h r / t i n t i n n i d t h i s would  require c e l l concentrations  o f 10 timescor 221^2  times t h a t o f E u t r e p t i e l l a  sp. f o r M. l u t h e r i and p_. t e r t i o l e c t a r e s p e c t i v e l y .  From the r e l a t i o n s h i p s  between temperature, s i z e , and r e p r o d u c t i v e r a t e shown f o r b e n t h i c by Fenchel  (1968), i t can be estimated  of a t i n t i n n i d  ciliates  t h a t t h e maximum r e p r o d u c t i v e  rate  such as T_. subacuta might be about one d i v i s i o n per 37 hours  168 o at for  0  10 C and long.  one  per  15 hours at 20 C, i f i t c o u l d t o l e r a t e such a  However, Gold  (probably  synonymous w i t h  (1971, 1973)  has  shown t h a t T i n t i n n o p s i s h e r o i d e a  T. subacuta) d i v i d e s about once every  hours a t 12.5°C i n continuous  culture.  temperature  A r a t e of one  19 to  27  d i v i s i o n i n 24 hours  would g i v e a maximum s p e c i f i c growth r a t e o f 0.029 hr f o r a newly d i v i d e d A 3 T_. subacuta (*4 x 10 /um ), At a growth/consumption r a t i o (K^) o f 0.3 (Klekowski  e t . a l . , 1972;  P a v M v s k a y a , 1973)  t h i s would r e q u i r e a  continuous  3 i n t a k e of 3,880 pm /hr or 9.7%  t i n t i n n i d c e l l volume/hr or about 8  E u t r e p t i e l l a s p. o r 80 Monochrysis l u t h e r i / h r . At a f e e d i n g r a t e of 0.0042 ml/hr, the prey c e l l c o n c e n t r a t i o n t h a t o  would be n e c e s s a r y would be  f o r the maximum growth r a t e o f a new  T_. subacuta at 12.5  about 1,900/ml E u t r e p t i e l l a , or about 19,000/ml M.  lutheri  (0.95  Thus i t seems p l a u s i b l e t h a t T_. subacuta c o u l d o b t a i n enough food from c o n c e n t r a t i o n of E u t r e p t i e l l a sp. i n T a b l e d u c t i v e r a t e of about 3/4 and  euglenoid  occur  and  15  t y p i c a l l y i n l a t e spring i n t h i s area.  t h a t f e e d i n g by T_. subacuta i s not c o n t i n u o u s ;  between d i g e s t i o n and  a l s o be  P a v l o v s k a y a (1973) g i v e s f a i r l y  feeding rate.  maximum r a t i o n , and  the  repro-  Blooms o f T_. subacuta  temperatures of about 12 C a l l However, i t i s almost c e r t a i n and  j u s t as the r e l a t i o n s h i p one,  the r e l a t i o n s h i p  complex.  f e e d i n g r a t e on one Her  t y p e o f food and  data has  as:  incon-  of the estimates  g i v e s the r e l a t i o n s h i p between f e e d i n g r a t e food c o n c e n t r a t i o n  reproductive  some'unacknowledged  i t i s not p o s s i b l e to judge the accuracy She  ppm).  simple models f o r the r e l a t i o n s h i p be-  r a t e s , f o r three species of c i l i a t e s . s i s t e n c i e s , and  to r e a c h a  d i g e s t i o n r a t e i s not a simple  growth may  tween f o o d ' c o n c e n t r a t i o n ,  ppm)  of i t s t h e o r e t i c a l maximum.  other l a r g e f l a g e l l a t e s , and  between f e e d i n g r a t e and  (0.75  C  (ration),  of  169  R = Rmax ( l - e  p ( k  -  k o )  )  (5)  where R = r a t i o n , and p and k a r e c o n s t a n t s . The r e l a t i o n s h i p between r e p r o d u c t i v e r a t e and r a t i o n i s g i v e n by: -  g = a R"  where g = time taken f o r a c i l i a t e  C6)  b  to double  i t s population size  and  a and b a r e c o n s t a n t s and a r e d e r i v e d from t h e d a t a .  and  g g i v e n by P a v l o v s k a y a  rubra " (wet weight 10 mg)  The v a l u e s o f R  ( l o c . c i t . ) a r e as f o l l o w s : -  Keronopsis  , . RGng/hr) = 5 x l 0 - ( l - e ^ -0.215 Q  6  g  Uroleptopsis v i r i d i s  ( i n days)  (  d  a  y  g  )  =  (  R  -5  n 8 0 ( k  -°-  lV  *)  8 x 1 0  )  R(mg/hr) = 1 4 . 9 x l 0 ~ ( l - e ~ 5  g(days) = 0.205 (R)  -  0  -  1  6  8 5 0 ( k  ~ * 0  2 x l  °  9  Condylostoma magnum _3 (wet weight 7x10 mg)  R(mg/hr) = 4 . 9 x l 0 - ( l - e - ° 4  5 ( k  -°- ) 5 )  Condylostoma magnum i s a v e r y l a r g e f r e e swimming c i l i a t e here f e e d i n g on dinoflagellates,and bacteria. at  the other two s p e c i e s a r e bottom f e e d e r s on diatoms and  The maximum r a t i o n s shown by Pavlovskaya  ( l o c . c i t ) were o b t a i n e d  food c o n c e n t r a t i o n s e q u i v a l e n t t o 5% o f c i l i a t e body weight/hr  a t 2,000  2 diatoms/Cm for  f o r Keronopsis  Condylostoma magnum.  r u b r a ; and e q u i v a l e n t to 6% o f body  weight/hr  The f a s t e s t r a t e s were about 3 times f a s t e r  and o c c u r r e d a t food c o n c e n t r a t i o n s o f about 1/3 o f , t h e l a t t e r . T i n t i n n o p s i s subacuta  than,  As  i s somewhat s m a l l e r than these two s p e c i e s , i t seems  r e a s o n a b l e t h a t i t s f e e d i n g r a t e i n terms o f percentage  o f c e l l volume/hr  as c a l c u l a t e d above i s a l i t t l e h i g h e r than t h a t o f Keronopsis  r u b r a and  Condylostoma magnum. Hamilton  and P r e s l a n (1969) showed t h a t a l t h o u g h  t h e maximum s p e c i f i c  170  growth r a t e of the s m a l l c i l i a t e it for  feeds  Uronema marinum i s v e r y h i g h  (0.147 h r ) ;  s u f f i c i e n t l y s l o w l y t h a t the c o n c e n t r a t i o n of b a c t e r i a  maximum growth (0.49  ug C/ml  or 10 ppm)  the sea, except perhaps on the corpses they termed U. marinum an  would be v e r y r a r e l y found i n  of p l a n k t o n i c organisms.  'opportunistic' predator.  s m a l l t i n t i n n i d s such as T i n t i n n o p s i s nana and have s i m i l a r t r o p h i c c h a r a c t e r i s t i c s .  necessary  Therefore,  I t i s l i k e l y that very  small o l i g o t r i c h  ciliates  An approximate e s t i m a t i o n of the  food  r e q u i r e d f o r maximum c e l l growth i n T_. nana s i m i l a r to t h a t made f o r T_. subacuta (above) g i v e s a v a l u e of about 60 x 10 even more of a s m a l l e r prey.  Monochrysis l u t h e r i / m l , or  T h i s i s e q u i v a l e n t to about' 3.0  ppm  by volume,  a l e v e l so h i g h as to be r a r e l y found among p a r t i c l e s of l e s s than 5 /im d i a meter i n t h i s a r e a . which i t may  T_. nana has v e r y t r a n s i e n t 'blooms' i n t h i s a r e a , i n  become as abundant as  15 to 20/ml.  a l s o found t h a t IJ. marinum underwent up which may  Hamilton and  Preslan  (1969)  to 2 0 - f o l d changes i n c e l l volume,  be a consequence of a time l a g i n the r a t e of d i v i s i o n .  Canale  e_t ,al_. (1973) n o t i c e d a s i m i l a r phenomenon w i t h Tetrahymena p y r i f o r m i s . was  no  evidence  of g r e a t v a r i a t i o n i n t i n t i n n i d c e l l volumes i n t h i s  There has been c o n s i d e r a b l e d i s c u s s i o n of t i o n s h i p between hunger, s t a r v a t i o n , and t h i s s e c t i o n on accumulation from t h i s d i s c u s s i o n .  Berger  ' l o s s ' r a t e s and of the  No  (1971) found t h a t the l o s s r a t e o f food  v e r y l a r g e c i l i a t e Loxodes magnus. estimated  rela-  f i r m c o n c l u s i o n s c o u l d be drawn  an e x p o n e n t i a l  f u n c t i o n ; and  Goulder  vacuoles  Goulder  found the same r e s u l t a t a much slower r a t e i n s t a r v e d i n d i v i d u a l s of  f e e d i n g r a t e and  study.  the f e e d i n g r a t e s of t i n t i n n i d s i n  experiments.  i n f e e d i n g Paramecium a u r e l i a was  There  (1972) the  ( l o c . c i t . ) equated l o s s r a t e w i t h  the f e e d i n g r a t e s of L_. magnus by e x t r a p o l a t i n g  the r a t e of food l o s s back to zero  time.  However, t h i s produces a v e r y  low  171  f e e d i n g r a t e f o r such a l a r g e c i l i a t e ; and  as t h e r e i s some evidence t h a t  a f e e d i n g c i l i a t e l o s e s food even i n i t i a l l y a t a f a s t e r r a t e than a ciliate  (Rapport, unpublished  c a l c u l a t i o n may  be  suspect.  data;  t h i s study S e c t i o n 4 a ) , t h i s method of  Canale, e t . a l .  (1973) and  t h a t s t a r v i n g c i l i a t e s s u f f e r r a p i d m o r t a l i t y and c u l t u r e ; and  i n t h i s study i t was  starved  Gold  (1971) have found  c e l l l y s i s i n laboratory  found t h a t the f e e d i n g a b i l i t i e s of  tin-  t i n n i d s were c o n s i d e r a b l y reduced a f t e r complete s t a r v a t i o n f o r about hours, which may  The was  i n d i c a t e moribundity.  only other behavioural  t h a t of Strathmann, (1971).  More data  i s needed on t h i s  study of f e e d i n g i n c i l i a t e d  30  subject.  microzooplankton  Strathmann s t u d i e d the d e t a i l e d f e e d i n g  b e h a v i o u r and numbers o f food c e l l s accumulated by the p l a n k t o n i c l a r v a e o f 15 s p e c i e s of echinoderms.  He  found t h a t t h e s e l a r v a e r e g u l a t e t h e i r  r a t e on p a r t i c l e s w i t h a v a r i e t y o f methods.  feeding  Echinoderm l a r v a e show spon-  taneous v a r i a b i l i t y of f e e d i n g r a t e s over s h o r t p e r i o d s of time even i n f i l t e r e d water. two  apparently  Likewise  the v a r i a b l e response of i n d i v i d u a l t i n t i n n i d s  s i m i l a r s u c c e s s i v e p a r t i c l e s may  t e r n a l p h y s i o l o g i c a l changes. by l o c a l  induced  w i t h o u t the use  s p r i n g from some p u r e l y i n -  P a r t i c l e s are i n g e s t e d by echinoderm l a r v a e  r e v e r s a l s of b e a t i n g by of mucus.  Feeding may  t i c l e s over the c i l i a t e d band w i t h  •  some c i l i a  the water.  Strathmann e t . a l .  used by many f i l t e r  or e g e s t i o n of p a r t i c l e s and  not i n the process  par-  (1972)  f e e d e r s o n l y i n the r e j e c t i o n of i n g e s t i o n .  The  details  s m a l l p a r t i c l e s by t i n t i n n i d s c o u l d not be seen i n  t h i s study a l t h o u g h the o r a l p l u g may 4c).  of the c i l i a r y band,  be stopped or reduced by p a s s i n g  s t a t e t h a t mucus i s p r o b a b l y  of the i n g e s t i o n of v e r y  to  p l a y some p a r t i n the process  Echinoderm l a r v a e can s o r t p a r t i c l e s i n s i d e the gut;  and  (Section  i f necessary  e x p e l them by muscular c o n t r a c t i o n s , or i f they are i n d i g e s t i b l e s o r t them to bypass the stomach towards the-anus.  I t i s not known i f t i n t i n n i d s  can  172  sort particles internally.  P a r t i c l e s a r e r e j e c t e d b e f o r e r e a c h i n g the gut  by the l a r v a e s t o p p i n g o r r e v e r s i n g the b e a t of a l l c i l i a  i n the  band, and  of  (Section  t h i s seems analogous to the r e j e c t i o n behaviour  gut i n echihoderm l a r v a e was  t h a t the r a t e o f passage of food through extremely  ' f o r c i n g e f f e c t ' of new  experiments i n t h i s study  Echinoderm l a r v a e can i n g e s t p a r t i c l e s  i n most s p e c i e s . diameter  (especially  of the diameter  o f t h e i r cytopharynx  and  l a r g e t h i n diatom c e l l s  t h e r e was  (Section 4a).  ' d i s c s ' or  'spheres')  of  of the oesophagus o r 80 to 100 jum undis-  c a r n i v o r o u s c i l i a t e s a r e even more  Most echinoderm l a r v a e can i n g e s t  size.  Strathmann ( l o c . c i t ) ) found  that  no p o s i t i v e s e l e c t i o n of o r p r e f e r e n c e f o r , food items  v a r i o u s types by echinoderm l a r v a e t h e r e was c a p t u r e ; and he thought  n e g a t i v e s e l e c t i o n i n mixed-  seen i n t i n t i n n i d s i n t h i s study f o o d i t e m w i t h another  i n t i n t i n n i d s , due  even a t h i g h food c o n c e n t r a t i o n s .  'interfered'  (apparent n e g a t i v e s e l e c t i o n ) , though not  D i f f e r e n t i a l p r e d a t i o n and apparent  ' i n t e r f e r e n c e ' by one  of  some d i f f e r e n t i a l ease of  t h a t the i n g e s t i o n o f v e r y l a r g e items  w i t h the i n g e s t i o n o f s m a l l e r items  prey s i t u a t i o n s was  tin-  (200 x 30 jim) but l i k e t i n t i n n i d s they cannot d e a l  w i t h l o n g c h a i n s of c e l l s of any  process a t l e a s t  analogous  Planktonic Crustacea r a r e l y ingest p a r t i c l e s  which a r e r e l a t i v e l y as l a r g e as t h i s .  v i c e versa.  be  T i n t i n n i d s can i n g e s t p a r t i c l e s f a r l a r g e r than the  impressive i n this regard.  although  T h i s o b s e r v a t i o n may  f o o d on the r a t e of l o s s of o l d f o o d by  t i n n i d s seen i n the accumulation  a s i z e of up to 75 to 100%  the  i r r e g u l a r , but g e n e r a l l y increased  w i t h an i n c r e a s e i n the i n g e s t i o n r a t e .  tended  tintinnids  4b).  Strathmann (1971) found  to the  ciliary  ( S e c t i o n 4 a ) ; but  i s u n l i k e l y to be a  any  mechanical  to the time l a g between i n g e s t i o n events  173  Strathmann (1971) c a l c u l a t e d c l e a r a n c e  ( f e e d i n g ) r a t e s i n two ways  which were e s s e n t i a l l y s i m i l a r to those used i n t h i s study and  4b, except t h a t t h e p e r i o d s o f a c c u m u l a t i o n  r a p i d l y - f e e d i n g l a r v a e than i n t i n t i n n i d s . v a t i o n o f echinoderm l a r v a e were h i g h e r mined from food accumulation.  i n S e c t i o n s 4a  were s h o r t e r i n t h e more  Rates determined b y ^ d i r e c t  and more v a r i a b l e t h a n those  Very l i t t l e  obser-  deter-  i n g e s t i o n was observed by t i n t i n -  n i d s i n t h i s study; b u t t h e 'observed' f e e d i n g r a t e o f T i n t i n n i d i u m  mucicola  (Table 26) was somewhat g r e a t e r than f e e d i n g r a t e s c a l c u l a t e d f o r t h i s s p e c i e s by the accumulation  method.  As t h e r e can be r e j e c t i o n o f p a r t i c l e s  from t h e mouth o f echinoderm l a r v a e , . a n d  as o b s e r v a t i o n s were made over v e r y  s h o r t p e r i o d s o f time i n both k i n d s o f organisms; t h i s d i s c r e p a n c y r a t e s i s n o t too s u r p r i s i n g .  i n feeding  Echinoderm l a r v a e do n o t f e e d a t a r a t e  suffi-  c i e n t t o pack t h e gut w i t h a l g a e f o r l o n g p e r i o d s o f time.  The and  o p t i m a l food c o n c e n t r a t i o n s  (OFC) f o r echinoderm l a r v a e a r e lower,  f e e d i n g r a t e s d e c l i n e more r a p i d l y a t h i g h food c o n c e n t r a t i o n s  some l a r g e r types o f m i c r o z o o p l a n k t e r s  ( e . g . see T a b l e 3 0 ) .  r e l i a b l e i n f o r m a t i o n on OFC v a l u e s has been o b t a i n e d some o f t h e r e s u l t s i n t h e S e c t i o n on a c c u m u l a t i o n it  than i n  Although  little  d u r i n g t h i s study:  experiments  from  (Section 4a),  seems t h a t i n t i n t i n n i d s a l s o ( e . g . i'n T i n t i n n o p s i s subacuta) OFC l e v e l s  may be as low as 1,500 c e l l s / m l o f E u t r e p t i e l l a s p . o r more o f s m a l l e r The  f e e d i n g r a t e s found i n 7 s p e c i e s o f echinoderm l a r v a e v a r i e d w i t h  s p e c i e s and growth phase between 0.02 and 0.53 m l / h r / l a r v a .  food,  These r a t e s a r e  2 t o 50 times g r e a t e r than t h e f e e d i n g r a t e o f T i n t i n n o p s i s subacuta 30).  prey.  (Table  However t i n t i n n i d s a r e f a r more t h a n 2 t o 50 times more abundant than  echinoderm l a r v a e o r any organism o f s i m i l a r s i z e , i n t h i s  area.  Some o f t h e f e e d i n g p p e c u l i a r i t i e s o f t h e t i n t i n n i d s i n t h i s  study  174  c o r r e l a t e w e l l w i t h q u a l i t a t i v e e v i d e n c e from f i e l d  samples.  r e l a t i v e l y high natural concentrations  f l a g e l l a t e s a r e almost  of euglenoid  F o r example,  always accompanied by l a r g e numbers o f a c t i v e T i n t i n n o p s i s subacuta, many o f which w i l l be undergoing d i v i s i o n .  R e l a t i v e l y l a r g e numbers o f cryptomonad  f l a g e l l a t e s a r e u s u a l l y accompanied by r e l a t i v e l y l a r g e numbers o f T i n t i n n i d i u m mucicola.  F a v e l l a s e r r a t a i s a t i t s most abundant l o c a l l y when t h e r e a r e  f a i r l y h i g h numbers o f d i n o f l a g e l l a t e s i n f i e l d  samples i n l a t e summer o r f a l l .  There i s some q u a l i t a t i v e evidence from s t u d i e s o f t o x i c Eastern  Canada f o r t h e p r e d a t i o n  'red-tides' i n  o f F a v e l l a sp. on l a r g e d i n o f l a g e l l a t e s .  There a r e few data on the e f f e c t o f the f e e d i n g o f c i l i a t e s o r other m i c r o z o o p l a n k t e r s on n a t u r a l p o p u l a t i o n s  o f prey organisms.  Goulder  (1972)  e s t i m a t e d t h a t t h e f r e s h - w a t e r c i l i a t e Loxodes magnus would remove a negl i g i b l e f r a c t i o n of t h e dominant a l g a l food  items i n one day.  o f c a l c u l a t i o n may have l e d t o an u n d e r - e s t i m a t e .  Most o f the o t h e r  mation comes from t h e work o f Parsons and LeBrasseur (1967) and P o u l e t planktonic  H i s methods  (1970) , Parsons  inforet.al.  (1973, 1974) on t h e f e e d i n g r a t e s and food webs o f n e r i t i c  Crustacea.  These authors u t i l i s e d  some o f t h e i r r e s u l t s have been d i s c u s s e d  C o u l t e r Counter t e c h n i q u e s and  i n t h a t p a r t o f t h e study  (Section  4c).  The  f e e d i n g r a t e s o f T i n t i n n o p s i s subacuta and Stenosomella v e n t r i c o s a  have been measured w i t h t h e C o u l t e r  Counter technique to v a r y between about  0.33 and 3.8% m l / h r / t i n t i n n i d depending upon the method of c a l c u l a t i o n . o v e r a l l e f f e c t o f t i n t i n n i d s on ' p o p u l a t i o n s '  of natural p a r t i c l e s ( l i v i n g  or i n e r t ) i s sometimes to i n c r e a s e t h e volume of p a r t i c l e s i n some s i z e c l a s s e s , or o v e r a l l .  The  S i m i l a r r e s u l t s were found i n experiments w i t h two  s p e c i e s o f r o t i f e r s i n t h i s study, and by P o u l e t  (1973) on Pseudocalanus  175  minutus.  Pseudocalanus  minutus appears  to e a t p a r t i c l e s from 3 to 100 -  114 pm. diameter, b u t a p p a r e n t l y o n l y e a t s t h o s e s m a l l e r t h a n 9 um when they a r e r e l a t i v e l y v e r y abundant; and i n g e n e r a l may eat the g r e a t e s t volume/ hour from those s i z e c l a s s e s which c o n t a i n t h e g r e a t e s t t o t a l volume. i s a l s o seen i n some o f t h e r e s u l t s o f Parsons e t . a l . i n T i n t i n n o p s i s subacuta i s much l e s s c l e a r - c u t .  (1967).  This  The s i t u a t i o n  N a t u r a l p a r t i c l e s as s m a l l  as 1 pro. a r e eaten, but much l e s s i n p r o p o r t i o n to t h e i r t o t a l volume than p a r t i c l e s from 3 to 8 ^im diameter.  T h i s apparent d i f f e r e n t i a l  size predation i n  the t i n t i n n i d i s confused by t h e f a c t that p a r t i c l e s of the s i z e that i s most c o n s i s t e n t l y eaten a r e a l s o those w i t h t h e h i g h e s t p o t e n t i a l r a t e s o f i n c r e a s e (Section 4c).  However, i n those experiments  r a t e s o f T_. subacuta on n a t u r a l samples,  showing t h e g r e a t e s t f e e d i n g  and a l s o t h e most c o n s i s t e n t l y  posi-  t i v e e l e c t i v i t y v a l u e s , t h e dominant prey item was a s p e c i e s o f E u t r e p t i e l l a . T_. subacuta showed the same c h a r a c t e r i s t i c s i n the r e s u l t s o f t h e a c c u m u l a t i o n experiments  (Section 4a).  In a d d i t i o n to d i f f e r e n t i a l p r e d a t i o n on v a r i o u s s i z e s o f p a r t i c l e s , s e v e r a l authors  (Adams and S t e e l e , 1966; P a r s o n s , et^.aJL. 1967) have e s t i m a t e d  t h a t f i l t e r - f e e d i n g by p l a n k t o n i c c r u s t a c e a may stop i n v e r y low t o t a l c e n t r a t i o n s of food.  con-  T h i s phenomenon was a l s o judged t o be p r e s e n t by e x t r a -  p o l a t i o n s from C o u l t e r Counter data i n Tg. .subacuta and S_. v e n t r i c o s a f o r which i t i s p r o b a b l y not u s e f u l , b u t these e x t r a p o l a t e d lower t h r e s h o l d v a l u e s were extremely low i n these two s p e c i e s .  B e a r i n g i n mind t h e behaviour o f  t i n t i n n i d s , t h e use o f such e x t r a p o l a t i o n s i s p r o b a b l y not j u s t i f i e d  i n this  case.  Parsons e t . a l .  (1967) and P o u l e t (1973, 1974) have demonstrated  that  the p o t e n t i a l growth o f n a t u r a l p h y t o p l a n k t o n p o p u l a t i o n s can be c o n t r o l l e d  176  i n some cases by n a t u r a l c o n c e n t r a t i o n s  of small planktonic crustacea.  Such  p o t e n t i a l c o n t r o l has a l s o been demonstrated by T i n t i n n o p s i s subacuta i n some experiments i n t h i s study  (Section 4c).  However, the g r e a t  variability  i n these r e s u l t s do n o t r e a d i l y a l l o w t h e i d e n t i f i c a t i o n o f t h e n e c e s s a r y conditions  (e.g. the c e l l c o n c e n t r a t i o n o f T_. subacuta) f o r such c o n t r o l .  Approximate r e l a t i v e s i z e s , range o f food s i z e , and maximum f e e d i n g r a t e s a r e compared i n Table 30 f o r f o u r v e r y d i f f e r e n t types o f marine m i c r o zooplankton.  Of t h e t h r e e metazoan organisms, o n l y the r o t i f e r i s numerous  enough l o c a l l y t o have a comparable p o p u l a t i o n f e e d i n g e f f e c t  to the t i n t i n n i d  over t h e s i z e range o f food common to b o t h , d e s p i t e the g r e a t e r f e e d i n g r a t e of the i n d i v i d u a l r o t i f e r . and b e n t h i c  filter  C e r t a i n l y manyyother l a r g e and s m a l l  f e e d e r s w i l l a l s o a f f e c t phytoplankton  and o t h e r c o a s t a l a r e a s .  However i t seems h i g h l y l i k e l y  zooplankton  populations  i n this  that c i l i a t e s  will  have a g r e a t e r e f f e c t on the biomass and d i v e r s i t y o f t h e p r o d u c t i v e p l a n k t o n o f l e s s than 10 pm diameter than any o t h e r  Due  zooplankton  phyto-  organisms.  t o c o n s i d e r a b l e food s i z e o v e r l a p s , the r e l a t i v e p r o d u c t i v i t y and  f e e d i n g impact of t i n t i n n i d and o l i g o t r i c h s p e c i e s on s m a l l n a t u r a l p a r t i c l e s w i l l p a r t l y depend on the prey  s p e c i e s and biomass d i s t r i b u t i o n .  For example,  the maximum r e p r o d u c t i v e r a t e o f T i n t i n n o p s i s nana may be 4 or 5 times that of T_. subacuta; and a t such a r a t e T_. nana would soon be so numerous as t o have a g r e a t e r f e e d i n g e f f e c t than l a r g e r t i n t i n n i d s on p a r t i c l e s o f 5 jim diameter.  However, i n o r d e r  to r e a c h  the maximum r a t e , T_. nana might r e q u i r e  4 t o 5 times as many p a r t i c l e s o f t h a t s i z e as would J_. subacuta, because o f the f a s t e r s e a r c h r a t e o f t h e l a t t e r .  T_. subacuta can a l s o e a t p a r t i c l e s 60  times l a r g e r than i s p o s s i b l e f o r T_. nana i n c l u d i n g T_. nana i t s e l f . subacuta may be a b l e t o reproduce a t a r a t e equal  Thus T_.  to or g r e a t e r than t h a t o f  T A B L E 30.  Approximate relative sizes and feeding rates of various types of marine microzooplankton.  Organism Tintinnopsis subacuta (protozoan)  Relative Size  Optimal Food Basis of Size Range Maximum FR ! Concentration Size of food as percentage (Total) Comparison (spheres) (Um) ml/hr/pred um x 10 /ml (ppm) 3  (7x10* urn")  1,-20  Synchaeta littoralis (rotifer)  100  Estimated volume  Stronqylocentrotus dro e bac hiensis (echinoderm larva)  500  Length^ 2  ^seudocalanus minutus  (copepod)  1000  Ug.C  <5-7  <8 - 85  100  a  Maximum FR as percentage body vol. or wt/hr  Reference  10.0  Present Study  4.3  0.6  Present Study  9.6  0.01 (est.)  Strathmann (1971)  2.3  Parsons and Lebrasseur (1970) and Poulet (1974)  A v . 1.0  17.0  0.7  15  178  T_. nana i n many n a t u r a l s i t u a t i o n s .  The same s i m p l i s t i c r e a s o n i n g  e q u a l l y w e l l t o comparisons between o t h e r  The  may  apply  species of t i n t i n n i d s .  importance of t i n t i n n i d s as p o t e n t i a l ' c o n t r o l l e r s ' , c o m p e t i t o r s ,  or v a l u a b l e  prey i s s t i l l i i n doubt; b u t c e r t a i n l y t h e l a r g e r s p e c i e s ,  par-  t i c u l a r l y T i n t i n n o p s i s subacuta, e a t a t a s u f f i c i e n t r a t e and a r e numerous enough a t times i n E n g l i s h Bay to f i l l  a l l these  categories.  179  (6) 1)  General  SUMMARY  a s p e c t s o f the f e e d i n g b i o l o g y of 13 l o c a l s p e c i e s o f t i n -  t i n n i d s and some o t h e r m i c r o z o o p l a n k t o n  were examined q u a l i t a t i v e l y and  quantitatively. 2)  T i n t i n n i d s and o t h e r m i c r o z o o p l a n k t o n  a t e a wide v a r i e t y o f i t e m s :  l i v i n g and i n e r t , n a t u r a l arid u n n a t u r a l , i n c l u d i n g o t h e r 3)  The maximum volume o f food eaten was a f u n c t i o n o f t h e t i n t i n n i d  volume taken over a l l s p e c i e s .  cell  T i n t i n n i d s p e c i e s o f s i m i l a r volume were  d i s s i m i l a r iri the maximum s i z e o f t h e i r 4)  tintinnids.  food.  There i s a p p a r e n t l y no minimum s i z e o f food f o r t i n t i n n i d s and a l l t h e  l o c a l s p e c i e s a t e b a c t e r i a and o t h e r p a r t i c l e s o f 1.5 um diameter o r l e s s . 5)  Several t i n t i n n i d  s p e c i e s showed d i f f e r e n t i a l p r e d a t i o n on l a b o r a t o r y  c u l t u r e s of phytoplankton. upon: 6)  In v a r i o u s s p e c i e s t h e s e d i f f e r e n c e s were based  the h a n d l i n g a b i l i t y o f t h e p r e d a t o r ; prey s i z e ; o r prey  A l s o some types of l a b o r a t o r y p h y t o p l a n k t o n  type.  were s e l e c t e d l e s s  o t h e r s from some mixed-prey s i t u a t i o n s p a r t i c u l a r l y by T i n t i n n o p s i s 7)  The r a t e s o f accumulation  subacuta.  o f prey by f o u r s p e c i e s o f t i n t i n n i d were  l i t t l e a f f e c t e d by temperature, b u t t h e r e was some evidence of l o s s o f i n g e s t e d food a t v e r y h i g h 8)  than  of a f a s t e r r a t e  temperatures.  The r e l a t i o n s h i p between t h e g a i n o f new food and t h e l o s s o f o l d food  i n i n d i v i d u a l ' ! T i n t i n n o p s i s subacuta  and Stenosbmella  v e n t r i c o s a was h i g h l y  v a r i a b l e and may be h e a v i l y dependent upon the p h y s i o l o g i c a l h i s t o r y o f the individual c e l l .  The r a t e o f g a i n o f new food seemed to be l a r g e l y  inde-  pendent of the amount of o l d food i n a t i n t i n n i d , b u t t h e r a t e o f l o s s o f o l d food was on average f a s t e r i n those c e l l s which were g a i n i n g the g r e a t e s t amounts o f new f o o d .  180  9)  The f e e d i n g r a t e s o f a t i n t i n n i d  and between experiments. t i n t i n n i d s from f i e l d  s p e c i e s were extremely v a r i a b l e w i t h i n  Much o f .this v a r i a b i l i t y was  samples and much was  due  due t o the use o f  to the e x p e r i m e n t a l methods  used. 10)  F e e d i n g r a t e s as e s t i m a t e d by the t h r e e methods used showed  q u a l i t a t i v e agreement but poor q u a n t i t a t i v e agreement. T i n t i n n o p s i s subacuta i n a c c u m u l a t i o n experiments was 0.65%  m l / h r / t i n t i n n i d or u s u a l l y much l e s s .  T_. subacuta a t e the average  equivalent  m l / h r / t i n t i n n i d on n a t u r a l samples,  and 0.33%  m l / h r / t i n t i n n i d from c u l t u r e s o f l a b o r a t o r y 11)  The f e e d i n g  The f e e d i n g r a t e o f the e q u i v a l e n t  In C o u l t e r  o f 2.0%  Counter  (minimum) or 3.8% (minimum) or 2.0%  12)  (maximum) (maximum)  phytoplankton.  were p o s i t i v e l y c o r r e l a t e d most c o n s i s t e n t l y w i t h the i n i t i a l  feeding  of  experiments  r a t e s of T i n t i n n o p s i s subacuta and Stenosomella  mean t o t a l e x p e r i m e n t a l p a r t i c l e volume.  fair  ventricosa  and e s t i m a t e d  C o r r e l a t i o n c o e f f i c i e n t s between  r a t e s and another seven v a r i a b l e s showed l a r g e l y i n e x p l i c a b l e t r e n d s .  I t has been shown t h a t p r e d i c t i o n of t i n t i n n i d f e e d i n g r a t e s from  a knowledge o f the s i z e d i s t r i b u t i o n of p a r t i c l e biomass i n a n a t u r a l would be 13)  sample  impossible.  F e e d i n g r a t e s of T_. subacuta and S_. v e n t r i c o s a i n C o u l t e r  periments showed no apparent upper asymptote below 0.76 samples and 1.92  ppm  on l a b o r a t o r y c u l t u r e s .  D u n a l i e l l a t e r t i o l e c t a and a t 0.70 resolved.  ppm  ppm  Counter  (OFC) a t 0.35  on E u t r e p t i e l l a sp.  ex-  on n a t u r a l  However, i n a c c u m u l a t i o n  periments T_. subacuta showed apparent asymptotes  were not  only  ppm  ex-  on  These d i f f e r e n c e s  181  14)  The  I v l e v e l e c t i v i t y i n d i c e s of T i n t i n n o p s i s subacuta on n a t u r a l  were most c o n s i s t e n t l y p o s i t i v e i n t h e middle s i z e c l a s s e s of i t s food range.  (3 t o 7.5  samples um  dia.)  These s i z e c l a s s e s showed t h e g r e a t e s t growth i n c o n t r o l s .  The magnitude of the e l e c t i v i t y i n d i c e s o f t i n t i n n i d s on any p r e y type i n a c c u m u l a t i o n experiments  p a r t l y depended on the amount o f o t h e r p r e y  types  eaten. 15)  N a t u r a l c o n c e n t r a t i o n s o f T i n t i n n o p s i s subacuta can a p p a r e n t l y c o n t r o l  the growth o f n a t u r a l p o p u l a t i o n s o f p h y t o p l a n k t o n l e s s than 20 um d i a . under some c o n d i t i o n s ;  The most l i k e l y c o n c e n t r a t i o n s o f T_. subacuta  neces-  s a r y f o r such c o n t r o l a r e unknown due to t h e g r e a t v a r i a b i l i t y of r e s u l t s . 16)  An average f e e d i n g r a t e o f T_. subacuta was  larger microzooplankters.  I t was  compared w i t h t h o s e o f  concluded t h a t the l a r g e r s p e c i e s o f  tin-  t i n n i d s would p r o b a b l y eat enough p h y t o p l a n k t o n o f l e s s than 10 um d i a . , and a r e o f t e n numerous enough t o have a p o t e n t i a l l y predominant e f f e c t upon such p h y t o p l a n k t o n i n E n g l i s h Bay and perhaps  other coastal  localities.  182  References  Adams, J.A. and J.H. S t e e l e (1966). Shipboard experiments on the f e e d i n g o f Calanus f i n m a r c h i c u s (Gunnerus). I n : Some contemporary s t u d i e s i n marine s c i e n c e . (Ed.) H. Barnes. London, George A l l e n and . Unwin L t d . pp. 19_i-35. A l l e n , R.D. (1973), M i c r o t u b u l a r involvement i n the d i g e s t i v e c y c l e of Paramecium caudatum. J . C e l l Biol. 59: 12. B a i n b r i d g e , V. (1958). Some o b s e r v a t i o n s on Evadne nordmanni J . mar. b i o l . Ass. U.K. 37: 263-268.  (Loven).  Beers, J.R. and G.L. Stewart (1969A). The v e r t i c a l , d i s t r i b u t i o n o f m i c r o z o o p l a n k t o n and some e c o l o g i c a l o b s e r v a t i o n s . J . Cons. I n t . E x p l o r . Mer. 33: 30-44. (1969B). M i c r o z o o p l a n k t o n and i t s abundance r e l a t i v e to the l a r g e r z o o p l a n k t o n and o t h e r s e s t o n components. Mar. B i o l . 4_: 182-189. (1971). M i c r o - z o o p l a n k t o n i n d t h e p l a n k t o n communities o f the upper waters o f t h e e a s t e r n t r o p i c a l P a c i f i c . Deep Sea Res. 18_: 861-883. B e r g e r , J.D. (1971). K i n e t i c s o f i n c o r p o r a t i o n of DNA p r e c u r s o r s from i n g e s t e d b a c t e r i a i n t o macromolecular DNA of Paramecium a u r e l i a . J . P r o t o z o o l . 18: 419-429. B i e r n a c k a , I. (1965). Ausscheidung g e h a u s e b i l d e n d e r substanzen durch formen gewisser a r t e n der gattung T i n t i n n o p s i s S t e i n . Acta P r o t o z o o l o g i c a _3: 263-268.  reife  Blackbourii, D.J., F.J.R. T a y l o r and J . Blackbourn (1973). F o r e i g n o r g a n e l l e r e t e n t i o n by c i l i a t e s . J . Protozool. 20: 286-288. B u l l i n g t o n , W.E. (1925). A s t u d y o f s p i r a l movement i n the c i l i a t e Arch. Protistenk. 50: 219-274.  Infusoria.  Burkovsky, I.V. (1973). V a r i a b i l i t y o f P a r a f a v e l l a d e n t i c u l a t a i n the White Sea. Z o o l . Zhurn. 52: 1277-1284. Campbell, A.S. (1926). The c y t o l o g y of T i n t i n n o p s i s n u c u l a ( F o l ) Laackmann. With an account o f i t s neuromotor a p p a r a t u s , d i v i s i o n , and a new intranuclear parasite. U n i v . C a l i f . P u b l . Z o o l . 29_: 179-236. '  (1927). S t u d i e s on the marine c i l i a t e F a v e l l a ( J o r g e n s e n ) , w i t h s p e c i a l r e g a r d to the neuromotor apparatus and i t s r o l e i n the f o r m a t i o n o f the l o r i c a . U n i v . C a l i f . P u b l . Z o o l . 29_: 429-452.  Canale, R.P., T.D. L u s t i g , P.M. Kehrberger and J . E . Salo (1973). Experimental and mathematical modeling s t u d i e s o f p r o t o z o a n p r e d a t i o n on b a c t e r i a . B i o t e c h , and Bioeng. 15_: 707-728.  183  Curds, C.R. and A. Cockburn (1971). Continuous monoxenic c u l t u r e of Tetrahymena p y r i f o r m i s . J . Gen. M i c r o b i o l . 66: 95-108. Doohan, M.  '  (1973). An energy budget f o r a d u l t Brachionus p l i c a t i l i s M u l l e r (Rotatoria). O e c o l o g i a 13: 351-362.  E g g e r t , M.B. (1973). D a i l y v e r t i c a l d i s t r i b u t i o n of w i n t e r z o o p l a n k t o n i n the P e l a g i c zone o f Lake B a i k a l . H y d r o b i o l o g i c a l J . 9_: 7-14. F e n c h e l , T. (1968). The e c o l o g y of marine microbenthos. p o t e n t i a l o f c i l i a t e s . O p h e l i a 5_: 123-136. F r o s t , B.W.  G o l d , K.  III.The r e p r o d u c t i v e  (1972). E f f e c t s o f s i z e and c o n c e n t r a t i o n o f food p a r t i c l e s on the f e e d i n g b e h a v i o r of the marine p l a n k t o n i c copepod Calanus pacificus. L i m n o l . Oceanogr. 17_: 805-815.  (1971). Growth c h a r a c t e r i s t i c s o f the mass - r e a r e d t i n t i n n i d T i n t i n n o p s i s b e r o i d e a . Mar. Biol._8_: 105-108. (1973). Methods f o r growing Amer. Z o o l . 13: 203-208.  t i n t i n n i d s i n continuous c u l t u r e .  and U. P o l l i n g e r (1971). Microgamete f o r m a t i o n and the growth r a t e of T i n t i n n o p s i s b e r o i d e a . Mar. B i o l . 1 1 : 324-329. Goulder, R. (1972). G r a z i n g by the c i l i a t e d p r o t o z o a Loxodes magnus on the a l g a Scenedesmus i n a e u t r o p h i c pond. Oikos 23: 109-115. (1973). O b s e r v a t i o n s over 24 hours on the q u a n t i t y o f a l g a e i n s i d e g r a z i n g c i l i a t e d p r o t o z o a . O e c o l o g i a 13: 177-182. H a l f en, L.N. and R.W. C a s t e n h o l z (1971). Energy e x p e n d i t u r e f o r g l i d i n g •: m o t i l i t y i n a b l u e green a l g a . J . P h y c o l . 1\ 258-260. Halme, E. and T. L u k k a r i n e n (1960). P l a n k t o l o g i s c h e untersuchungen i n der Pojo - Bucht und angrenzenden gewassern 5 D i e z i l i a t e r i T i n t i n n o p s i s t u b u l o s a Levander und JT. b r a n d t i (Nordqv.) Levander. Annales. Zool. Soc. Z o o l . B o t a n i c a e F e n n i c a e "Vanamo' 22: 1-24 H a m i l t o n , R.D. and J . E. P r e s l a n (1969). C u l t u r a l c h a r a c t e r i s t i c s of a p e l a g i c marine hymenostome c i l i a t e , Uronema sp. J . Exp. Mar. B i o l . E c o l . 4: 90-99. H i l l , D.L. (1972). The b i o c h e m i s t r y and p h y s i o l o g y o f Tetrahymena. Academic Press 230 pp. J o s t , J . L . , J . F . Drake, H.M. T s u c h i y a and A.G. F r e d r i c k s o n (1973). f o o d c h a i n s and food webs. J . t h e o r . B i o l . 41: 461-484.  Microbial  K l e k o w s k i , R.Z., E. F i s c h e r , Z. F i s c h e r , M.B. Ivanova, T. P r u s f , E.A. Shuskina, T. S t a c h u r s k a , Z. S t e p i e n and H. Zyromska-Rudzka (1972). i n ' P r o d u c t i v i t y Problems o f F r e s h w a t e r s ' Warszawa-Cracow (1972). Eds. Z. K a j a k and A. H i l l b r i c t i l i k o w s k a . P r o c . IBP-UNESCO Symposium on P r o d u c t i v i t y Problems o f F r e s h w a t e r s . K a z i m i e r z Dolny Poland. 1970.  184  K o f o i d , C A . and A.S. Campbell (1939). The C l l i a t a : Mus. Comp. Z o o l . Harv. 84_: .1-473.  The T i n t i n n o l d e a .  Bull.  Korniyenko, G.S. (1971). The r o l e o f i n f u s o r i a i n t h e food o f l a r v a e o f phytophagous f i s h e s . J . I c h t h y o l o g y 11: 241-246. L a v a l , M. (1971). Mise en evidence p a r l a m i c r o s c o p i e e l e c t r o n i q u e dun d\m organite d un type no nouveau chez l e s c i l i e s T i n t i n n i d e s . C R . Acad. S c i . 273: 1383-1386 ?  _(1972). U l t r a s t r u c t u r e de P e t a l o t r i c h a ampulla ( F o l ) . Comparison avec d ' a u t r e s T i n t i n n i d e s e t avec l e s a u t r e s o r d r e s de c i l i e ' s .  P r o t i s t o l o g i c a 8_:  369-386.  (1973). C o r t e x e t Perilemme de C y t t a r o c v c l i s b r a n d t i ( c i l i e , Tintinnide). Remarques sur l e s s t r u c t u r e s c o r t i c a l e s des c i l i e s . J. Cell B i o l . 59: 246. L e B r a s s e u r , R.J. and O.D. Kennedy (1972). M i c r o z o o p l a n k t o n i n c o a s t a l and o c e a n i c a r e a s o f t h e P a c i f i c s u b a r t i c water mass: a p r e l i m i n a r y report, pp. 355-365 I n ' B i o l o g i c a l Oceanography o f t h e N o r t h e r n North P a c i f i c Ocean'. Ed. by A.Y. T a k e n o u t i e t . a l . Idemitsu Shoten, Japan. L u c k i n b i l l , L.S. (1973). C o e x i s t e n c e i n l a b o r a t o r y p o p u l a t i o n s o f Paramecium a u r e l i a and i t s p r e d a t o r D i d i n i u m nasutum. Ecology 54: 1320-1327. M a r s h a l l , S.M. (1969). Protozoa - O r d e r : Tintinnida. Fiches d ' i d e n t i f i c a t i o n du z o o p l a n k t o n . Cons. Perm. I n t . pour L ' e x p l o r a t i o n de l a Mer. Sheets 117-127. (1973). R e s p i r a t i o n and f e e d i n g i n copepods. Ii: 57-120. M i t c h i s o n , J . (1971). Press. Parsons  The b i o l o g y o f t h e c e l l  cycle.  Adv. Mar. B i o l .  Cambridge U n i v e r s i t y  , T.R. and R.J. L e B r a s s e u r (1970). The a v a i l a b i l i t y o f food t o d i f f e r e n t t r o p h i c l e v e l s i n t h e marine food c h a i n . I n 'Marine Food * Chains' Ed. J.H. S t e e l e . Edinburgh. O l i v e r and Boyd. 325-343. _and J.D. F u l t o n (1967). Some o b s e r v a t i o n s on the dependence o f zooplankton g r a z i n g on t h e c e l l s i z e and c o n c e n t r a t i o n of p h y t o p l a n k t o n blooms. J . Oceanogr. Soc. Japan. 23: 10-17.  P a v l o v a , E. and L. Lanskaya (1969). Energy e x p e n d i t u r e s f o r movement i n some B l a c k Sea d i n o f l a g e l l a t e s . 3rd I n t e r n a t i o n a l P r o t o z o o l o g i c a l Congress L e n i n g r a d . P r o g r e s s i n P r o t o z o o l o g y 3_: 182-183. P a v l o v s k a y a , T.V. (1973). I n f l u e n c e o f f e e d i n g c o n d i t i o n s on t h e r a t e o f food consumption and t h e time o f g e n e r a t i o n i n c i l i a t e s . Zool. Zhurn. 52: 1451-1457.  185  P e a r r e , S. (1973). V e r t i c a l m i g r a t i o n and f e e d i n g i n S a g i t t a e l e g a n s . E c o l o g y 54: 300-314. P o u l e t , S.A. (1973). G r a z i n g o f Pseudocalanus minutus on n a t u r a l l y p a r t i c u l a t e matter. L i m n o l . Oceanogr. 18_: 564-573. (1974). Seasonal g r a z i n g o f Pseudocalanus minutus Mar. B i o l . . ( i n p r e s s ) .  occurring  on p a r t i c l e s .  Rapport, D.J., J . Berger and D.B.W. R e i d (1972). D e t e r m i n a t i o n o f f o o d p r e f e r e n c e o f S t e n t o r c o e r u l e u s . B i o l . B u l l . 142: 103-109. R i c k e t t s , T.R. (1971). P e r i o d i c i t y o f e n d o c y t o s i s i n Tetrahymena pyriformis. Protoplasma 73.: 387-396. (1973). The r e l a t i o n s h i p between e n d o c y t o s i s and d i g e s t i v e enzymes i n .Tetrahymena. J . C e l l B i o l . 59: 344 . Sheldon, R. W. and T.R. Parsons (1967). A p r a c t i c a l manual on the use o f t h e C o u l t e r Counter i n marine s c i e n c e . Coulter E l e c t r o n i c s Sales Co. Canada, T o r o n t o , pp. 66. S t e e l e , J.H. (1964). Some problems i n the study of marine r e s o u r c e s . ICNAF E n v i r o n . Symp. Rome 1964, C o n t r i b . No. C-4 pp. 11. Strathmann, R.R. (1971). The f e e d i n g b e h a v i o r o f p l a n k t o t r o p h i c echinoderm l a r v a e : mechanisms, r e g u l a t i o n and r a t e s o f s u s p e n s i o n - f e e d i n g j . exp. mar.. B i o l . E c o l . 6_: 109-160. , T.L. Jahn and J.R.C. Fonseca (1972). Suspension f e e d i n g by marine i n v e r t e b r a t e l a r v a e : c l e a r a n c e o f p a r t i c l e s by c i l i a t e d bands o f a r o t i f e r , p l u t e u s , and t r o c h o p h o r e . B i o l . B u l l . 142: 505-519. S w i f t , M.C. (1974). E n e r g e t i c s o f v e r t i c a l m i g r a t i o n i n Chaoborus t r i v i t t a t u s larvae. Ph.D. t h e s i s , U n i v e r s i t y o f B r i t i s h 148 pp.  Columbia.  Tappan, H. and A.R. L o e b l i c h (1968). L o r i c a c o m p o s i t i o n of modern and f o s s i l Tintinnidae ( c i l i a t e protozoa), systematics, geologic d i s t r i b u t i o n , and some new t e r t i a r y t a x a . J . P a l e o n t o l o g y 42: 1378-1394. T a y l o r , F.iJ.R. , D.J.Blackbourn and J . Blackbourn (1971). The red-water B c i l i a t e Mesodinium rubrum and i t s 'incomplete symbionts': a review i n c l u d i n g new u l t r a s t r u c t u r a l o b s e r v a t i o n s . J . F i s h . Res. Bd. Canada 28: 391-407. T h e i l a c k e r , G.H. and M.F. McMaster (1971). Mass c u l t u r e o f t h e r o t i f e r B r a c h i o n u s p l i c a t i l i s and i t s e v a l u a t i o n as a food f o r l a r v a l a n c h o v i e s . Mar. B i o l . 10_:- 183-189. Throndsen,  J . (1973). M o t i l i t y i n some marine nanoplankton Norw. J . Z o o l . 21: 193-200.  flagellates.  186  V i t i e l l o , P. (1964). C o n t r i b u t i o n a 1'etude des T i n t i n n i d e s de l a b a i e d ' a l g e r . Pelagos I I : 5-41. Vlymen, W.J. (1970). Energy e x p e n d i t u r e o f swimming copepods. Oceanogr. 15: 348-356.  Limnol.  W i l l i a m s , F.M. (1971). Dynamics o f m i c r o b i a l p o p u l a t i o n s , pp 198-268 i n 'Systems a n a l y s i s and s i m u l a t i o n i n e c o l o g y ' . V o l . I Academic p r e s s Ed. B.C. P a t t e n . (1972). Mathematics o f m i c r o b i a l p o p u l a t i o n s , w i t h emphasis on open systems, pp 395-426 i n 'Growth by i n t u s s u s c e p t i o n ' . Trans. C o n n e c t i c u t Academy o f A r t s and S c i e n c e s 44 Ed. E.S. Deevey. Z a i k a , V. Ye. (1972). M i c r o z o o p l a n k t o n of t h e M e d i t e r r a n e a n and A t l a n t i c " Ocean o f f Northwestern A f r i c a . Oceanology 12: 408-414. and T.Yu. A v e r i n a (1969). P r o p o r t i o n s of i n f u s o r i a i n the p l a n k t o n of S e v a s t o p o l Bay, B l a c k Sea. Oceanology 8: 843-845. _and N.A. Ostrovskaya (1972). P a t t e r n of d i u r n a l v a r i a t i o n s i n m i c r o z o o p l a n k t o n abundance i n the s u r f a c e l a y e r o f the M e d i t e r r a n e a n s e a . Oceanology 12} 725-729. Z e i t z s c h e l , B. (1969). 'Tintinnen}des w e s t l i c h e n a r a b i s c h e n Meeres, Ihre bedeutung a l s i n d i k a t o r e n f u r wasserkorper und g l i e d der n a h r u n g s k e t t e ' Sonderdruck aus "Meteor" F o r s c h u n g s e r g e b n i s s e Reihe 4: 47-101. Z e n k e v i t c h , L.A. (1963). B i o l o g y o f the seas o f the U.S.S.R. P r e s s o f Acad. S c i . U.S.S.R. Moscow.  Appendix  01  0. 1640E OS 0.1 2 70E 05 43 6. 0 13 7.0 0.3<>5BE JV* 41 8F 0. I'fcOTE 0.2741E  _£iial«  05 05 05 05  3?>3. 1624.  _ 1 943, 1 5,16. 1 747. 2434. ?65«.  53?!. TOO. 6 514,0 51 T4. _3_9 09._ ?24).  8555. _5?43, 5106. 0.1261E 05 B2B?. 3900. 6946. _2X-_3._ 648?. 4364. -16.9JU 2777. I 300. _N»M = MEANS  0? 0,B3?3 0.831 6E 0.3J16F 0, 63b OE O.6330E  Oft Oh 06 06 06 06 Of. 0.5 15'IE 06 0,6)>7F 06 C  03 0.5989F 06 U6  04 4.000 8. 00 U 6.000 9. 000 2.000 4. 000 3. nop 2.000 8c 000  36 06 06 06 o.6iri5r 06 0.4742F 06 0.5414F 06 JJ-: SJ»!IE 06 _0.,f 414F_ 06 -J«oog_ 0.6 >'. 6= OS 0 . 4 0 A 6 F 06 8. 000 0.6T46E 06 0.4966F 06 8.000 3,. 6 I'M 06 0.41 9 5 r 06 1.1)00 0,b393E 06 0.4135E 06 8,000 IF 06 0.3 64 7* 06 7. 000 _0.45-nP 06_ _0.3f 47F 06 _7.000_ 06 7.000 o.4 'i-»e"~ot> 0. 06 7.000 0.471 IF 06 0.1962T 0.3 5C6E 06 8.000 0,4_'7?E J6 0.3506F 06 7.000 0 . 4 > ? 7 F 06 0.3200k" 06 5.000 0. 3526E 06 _0. 2 73 6 06_ 5. 000 0,?>:.5F 06 3. 000 0,25'. 5E 05~ 0.? 578F" 0 6 0.2 579F 06 B.OCO 0.26130 06 _ 0 O i l 5? _06_ 0.2 57SF 06_ _R. 000 "0.2915F" 06 0,2 )"'»£ 06 *7boo" 0.3174F 06 0.79 . 5E 06 8. 00 0 06 _0.?5! 5|_ Q6_ 8. 30 0 6.000 0. 3 377C 06 .1.3 517F 06 0.3 597E 06 8.000 0 . 3 < 7 0 r 06 7.000 0.3379E 06 0.35Q7F 06 0.3 )>9E 06 0.3295E 06 6.000 0 . 3 H 9 * 06 0.3285F 06 7.00 0 . 0.3114E 06 0.2870E 06 6.000 0.3114F 06 0.2. 970F 06 8.000 0 . 3 H 4 E 06 0.2370E 06 8.000 0.24K8F 06 0.2 590F 06 6.D0Q 0.2VISE C6 0.2590E 06 7.000 0.7315F 06 0.7715F 06 4.000  7258.->5 484384, 4092 76. 6.43587 1 .2 7 614 r>5 1.5633? 06 ~ 0.814615 D7 8,4615 3 na 0* 21.1153 010 43.9742 5. « S TM8F0*  01 _0 2_ 03 04  1. C o u l t e r Counter d a t a . T i n t i n n o p s i s subacuta on n a t u r a l p a r t i c l e s . 0.KP65E 0.5B65F 0.6376<= 0.5705F  r  r  1  SISaOfV.  CHRP FLAT IONS  01 10702.5 1 .0000 Jl 94.207. 0. '566 13818P. 0.2662 1.90283 0.4455 0. 3'"35 8 0.2°6°_ 1.7P807 -0."3~490 0. 133599F-01 0.1283 1. 21216 -0.1713 5.54348 -0.1602 19.9822 -0.1253 ,  02  05 0.6200 0. 8500"" 0.6200 0.8 500 ' .000 0. 8500 1 . OOP . 0. 8700 ] .490 i.490 1.720 1.40p  r  1.72 0 l.*90 1 .72 0 1.490" 1.72 0 1.490 1. 72 0 0.9200 O.o? 00 ] . 0<- 0 1 . 520 1 . 3P0_  "T.'dfrb  D6 0.4800 "0.4800. 0.7800 0.7800 1 .890 1.290 ) . 470 6. 300 0.2800 _J).7 800_ 0.5300 0.5300 4.110 4.110 5. 680 5. 680 4.840 " «. 840 2.710 2. 710 0.2000 0.7100 0. 64 00 0.6400 _0.6400  ood  l , ooo 0.8700 0,8700 0.8 700 0.8700 "6.8600 O. 8',00 0,8100 0.B100 0.8700 O.oinq_ 0. 8600 0. 8600 JO. n'-O0_ b. 6 tod 0.6600 _0.6600_ 0'. 6~h"6b 0.6600 0.6 600 0.8700  0.4 V d b "  0.4300 0. 43 00_ 0739Q0 0.3900 0. 3900 0.4800 0.4800 0.7600 0.7600 0.7600 1.030 VT6?0" 0.6100  1 .470 1 . 06 0 1.470 1.38 0 1.170 1.520 1.06 0 1.470 1. 170 1. 380 1 . 520" 1.170  03,  07 0.7700 0.7700 0.7700 0.7700 0.7700 0.81.00 O.A700 0.«?00 0.S200 __0. 8 200_  04  _  05  0.B7O0  .  0.«100 0. 81 00 0.9300 0.9300 0.6100  39. OBSEPVATinNS 06 OT  08 9. 000 9. 000 9. 000 9,000 10. 00 10.00 10.00 9.000 8. 000 8. 000  "a.ood" 8. 000 8. 000 8. 000 8. 000 8. 000 8.000 8. 000 8.000 8. 000  a. ooo  8, 000 8, 000 8. 000 " 8."000 8. 000 8. 00 0_  "ai ooo 8.000 8. 000  a. ooo  8. 000 _8.000_ 8.000 8. 000 89.000 . 000 15.00  OT"  1.0000 0.9137 1.0000 : •0.0644 -0.2855 1.0000 •0.2723 '71 0.5 801 1. 0000 0.1134 0.0101 -0.0777 0.7968 C o W O " •0.02.73 -0. 1523 0.1063 0. 3382 0.2434 1.0000 0.4453 0.7087 -0.4585 -0.3471 -0.0687 -0.3625 1.0000 •0.8025 -0.634J 0.1286 0.2661 -0.3557 - 6 . 2 6 6 3 - 6 . 1 6 4 2 •0.4534 •0.4291 0.0508 0.1595 -0.2749 0.43) 8 -0.2539  09 1 2.50 12.50 1 2.50 12.50 15.00 15.00 15„30 16. 50 18.00 1«.00 "18.30" 1».30 18.00 1 8.00 18.00 18.00 18.i)0' 18.00 1°.30 18.00 18.30 18.00 2 7"..3 0 27.00 77.00 77^00 27.00 27.00 "2 7. 00 27.00 27.00 27,00 27.00 27. 0O_ "27. 00 27.00 27.00 27.00 28.30  N.T.C. method. 0)0 ' 4 , 00 46.00 46.00 46. 00 46, 00 34,00 34 . 00 29* 00 42.00 '2.30 42,00" '2- 00 42, 00 42. 00 '2,30 00 42,00 42, 00 '2.00 42, 30 48, 00 _48. 00_ 9 0, 00 90. 00 90. no V 30 36.00 "•6. 00 36. OO 36. 00 34,00 90, 00 90. 00 56,00 36.00 36. 00 90. 00 90. 00 29.00  "09"  ~onr  1.0000 3.3630  1,0000  co  Appendix 1. ...  0.«*00E 05-  01—!_=1M5.  >—  FOamtCOEFF.M FPAOMCOEFe.)*  —  (Cont'd)  •  O.IRT^F-OJ*  n?  .  1  05-  0.35 O O F  —  5, »90 0.3^6  STO.^R.CnFFF. =. 0.30A1E-02 STD.F«q. m . RSQ = 0.1271 D I I R f l l N - M A T S i l M ST».= 0.8675 AUTQCCfRELATtONCHE^F. . Q.S??0  •  .  2  0.2600E 05-  <  —  •  j  0. 17 00E05-  ]  1 ' 8000.  I  II  1 2 21. I .1 11 1 1 1 1  -1000.  1  .*  •  1 1  0.23QOE 06 0.3500E  • 2  0 6  11  ?  *  n  2  n~i  o.«70or 06 o;"fT6bT~o<S — 0.5900E 06 0. 8300E 06 i  C  0.4400E 05-  1  1 >—  -HI  3  -786.3  • 3.1966E-0T*  FDATTHCOEFF. )=. EPRL'illCOEFF. I« STD. F R R . C D V S T . a STr>.r»R. C O ^ F F . « RSU  »  l»  ?. 8'3  0.35  00E  05-  5047. 0.1170F-01  <  j  0.0176  2  0.26 OOF 05-  O.0709  OURIlN-WATSnN ST*.« 0.9716 . ... AimCU'RELATION CDs**. « 0.5319  —  —  •  1  0.1700F 05-  j  8000.  -1000.  1  1  1 1 11 • 1 > 2. 11 1 1 t" 1 11 21 1 2 i>  1  1 1  1"  0.2200E 06  <  1  1  0. 3300E  J  • 0.4400E 06  1 06  0. 5500E  1  1  1  0.S600E 06 0. 7700E 06  00 00 06  Appendix 1. (Cont'd) 0.4400E 05-  1  1  >—  DJ  -DIM.  FRATTOICOEFF.). FCRTHimFFF.).  STO.FOR.CONST." STO.EKR.CDFFF.-  STn.PRP.  ni  «  »  7389.  » n«  0.35 OOF 05-  j  *,161  0.0045  5?91. »^,2  <  •  2  O.PfOOF 05-  1>57.  R s i) = o.i9i>; 0'J<"UN-WAT?riN STA. - 0.6267 A"IOr.ri»"CLAT ION OI-i-F. • 0.6860  1 1 | 0.17 00E 05-  i  8000.  -1000.  —  1 2  j  1 2 . 2  2  •  1  . 2  2 1  • 2.000  ; 1  |  j  1  3.400  . 1 1  *  1 1 A 3  4 2  \  4. 800  6.200  7.600 9. 000  i  co  Appendix 1.  (Cont'd) >  c \  ni  f  > -4658.  •  9333.  * ns  FRATIOtCOEFF. I» J, 576 FPRORCCOEFF. 1= 0.0614 STO.FRR.CONST." 6497. STO.ERR.COEFF.. '4)33. S T n . F R R . 01 » 9873. RSO « 0.0 9 31 0UR!3IN-WATS0N S T A . 0.7023 AUTOCORRELATION C0=-F. " 0.6443 3  ni  \  1  • "  • 0.1037F 05* -1991.  fll  1  * 06  • OR  FRATIOICOEFF.I1.118 FPRORICOFFF. 1" 0.'977 STO.FRR.CONST." 0.1146E 05 STD.FPR. COrFF." 1341. STO.FRR. 01 * 0.1019F 05 PSO • 0.0273 OURBIN-WATSON STA. » 0. 3225 AIITfirnPRFI A T T D N f.OF" F . = 0.5963  01  FPATIOICOEFF.|. 5.1.31 FPROrt{COEF F.1" 0.3290 STO.ERR.CONST.. 2373. STD.ERP.COFFF." 379.1 STn.EPR. 01 = >S99. PSQ » 0.1213 DURKIN-WATSON STA." .0.6177 AUTOCORRELATION C>3~F. = 0.6763  « 0.1926F 05* -1418.  » 0.1 348E 054- -294c 9  s.  * 09  FRATIOI COEFF. |a 0.9746 FPRD8(C0EFF.»" 0.3313 STO.ERR.CONST." 6515. STO.ERR.COEFF." 293.7 STO.FRR. 01 * 0 . 1 021E 05 PSQ * 0.0257 DUPOIN-WATSON STA. • 0.3434 AUTnr.ORRFI A T ION f . n « F . a 0.5706  •  01  . -4104.  + 0.1 395E 05» 07  01  FRATIOICOEFF.l" 0.6194 F P R n B t r n F " . >. o.44H STO.FRR.CONST." 0.I4.3F. 05 STO.FRR.COEFF. • 0.1 772F 05 STO.FRR. 01 " 0.10->5F 05 RSO • 0.0165 0UR81N-WATSJN STA.= 3.8449 AUTOCORRELATION COE F . " 0. 5746  • 0.1039E 05» - 6 3 . C 9  FRATin(COEFF.|. FPROBIf.OFFF. ! • STO.FPP.CONST." STO.FRR.COEFF." STO.FRR.  01  "  * 010  0.5902 0.4531 4397. 93.28  0.10'6F 05  PSO • 0.3157 OUR BIN-WATSON S T A , " 0.8640 A t J T i m R R F I A T lf;\1  c  FnFCF.  «  0. 55 95  VO  . ,  -  o  Appendix 2. r,j  ?3">H.  0.]is40E  Coulter Counter Data. Tintinnopsis subacuta on natural p a r t i c l e s . E.S.O. method.  0 . 4 ? 3 7 5 Of* \).1S?5E 06  0 1  0.7117' 0 6 0 . 8 It o . 3,1 6 W F 0.2?f6F Q,-)77->=  0. 1 2 70F 0 5 1715.  c  EAQ.O ?651. H 7 . 0  06 06 06 OH  03 0.33068 0 6 0.7 5 7 6 E 0 6 0.5C71T 0 6 0 . 5 8 6 5 8 OA  0.1477F 0 6  0 . 2 047<= 0 6  o.-' .'.n 0 5 r  0 . 2 416= 1 6 0.63?3" 0 5 .J.3R5JE_05 3,6 >3?»..06. _ a . . 5 . 4 ! . 4 F . _ 0 . 6 _ 0 . 5 414= 0 6 0.4<,!8F. 05 3 i 6 •>>•"? 0.4965= 06 0 . 2 6 9 7 F 0 5 0.55»6 0 6 Q.A'Sr.4'" O A •1, .- '61 8 Q S O . C S 06 O . M R I E 06 06 ? 0 47, 0.4.18 5': 0 6 3 . 6 i n c 06 ?3! 3. 0 . - V 1 1 = 0 6 _0« v_ ft 7!L_o<L, J 6?4,_ 0.4?13 06 0"."T>-47c O f 0.471OE•06 1 505. 0.3-!62=. 0 6 3i47J 3= 0 6 J251,. o0 .. 33 q 5 < 0- 76 c 6 = f0) 6 7434. 0,4.'7 7F 06 0.3 506" C6 2668. 9.4!?7F. 06 0 , 3 is? 5 " 0 5 .715.0.. 0..iiiu os 6t. 1 i . "o.'? » 1 1 E ' 06" "o.i 577= o i " 0.1 6? IF 06 O o ! 4 3 5"= 0 6 0.1 0 7 IF. 0 6 " > Q_ 0 ,?2J?= 06 0.2264': S3?8. 0 . ? ? > 2 F Oi 0,??64F. 06 g.) r ' . 9 E _ 3 4 0 . 1 4O7E__06_ ?511,_ ' 0,3 I'o? 0 6 0 . 2 ' ' : 5.1 0 6 " f 5 5 5.' 0 . 1 ) ' 6 F 0 6 0 . 2 91. 5 F 0 6 5243. 0 , 3 1 7 O C qt, 0. 3 5 1 7 F 0 6 51 0 6 . 0 , 333 06 0,•')?''>" OS  C  c  1  jji-Hjr  0.1261E 0 5 8 7? 2 . . 1 ? 17. 44 16. 70" 1. 6'. " 2 . 4 ' •>4. 4 M . 0_ 2 " 7 7.  oh  0  6  D4 4.000 8.000 6. 00 0 9.00 0 2.000 4. 000 ] , 000 3.000 2.000  0. 8 5 3 0 0. 6 5 0 0 0. P 5 0 0 1. 3 5 0 1. 4 5 0  _?°oo.o._ " R.'bod" 8.000 8 . OOP 8.030 . 8.000 _7. pO_0_ 7,000 7.000 7.00 0 8.000 7. 0 0 0 J .00 0 5, 0 0 0 5. 0 0 0 lo 0 0 0 8. 000 8,000 4. 0 0 0 _  " p","bod  8.00 0 6, 0 0 0 0.?5°7: 0 6 8 , 0 0 0 0.3 U 9 ? C4 7. 0 0 0 0 , 3 37 IF 0 6 0 . 3 5>'F. 0 6 0„!2<8 06 0 . 1?'. 7" 0 6 _ 3 ^ 0 0 0 " O c 2 2 i VF'OST 1.'2 7' »5= "b6 ' "i'.Obo" 7.000 O . ^ ' l ' F 06 0.2974C 0 6 6. 000 0,?VJSF. 0 6 0 . 2 2 7 1 F 0 6 8, 00 0 0,7-70- 06 C ! , 3 U -VF OS 8,000 0.2 870E 0 6 0. I l l 4F 0 6 2.000 01 0 , ^ ) 3 8 F _ 0 "•_ 0 . - . ; S 3 ? 6 . 00 0 0'.i'3i~<R 0 6 "b,l 06 7 , 000 0.2i"'1? 0 6 • 1 . 2 3 3 )!? 0 6 4 „ 000 P , 3,16 3 M n 0 . 7 1 ' 6 E 0 6 0.1")13 06 0.1267J 0 6 1 , 0 0 0 STO.OEV. COP.K F L A T I O N 5 C  :  ;  r  r  1677. •.fANS  01 02 0)  04 05 06 _ 07" 03  nJ  "ilO  '67e~5".~5) 363489. 7 o" 0 7?. 5.'3t<636 l . - l 1 8 1 1 . 4 6 2?6_ 0.81 S9J8' 8.61263 2 1 . 1 1 38 49.740'*  C  o"707."84"""' .32SVI6. 1 5 1 ?_9 I . 2.13421 0. 3 ' i 0 : i 4 1 . 70"'57 "0."9 7 391 7 E - 0 1 1.S4342 5.57798 21.3144  . _ ni '"i."ooob  0.5817 0o61_8_0_ 0.4472 0.2237  06 0.4800 ~0.4S00" 0.7800 0.7800 1.390 1.290 O."200 1.470 6. 300 _0.2P.OO_ 0.2 800 0.5300 0.5300  05 0. 5"00  n_2 1.0000 0.977 7 0.6772 0,086] 0.1 3 3 5  ?.?io 1.0)0 0. e300 1.4"0 7? 6  ,4°0 1. 7 2 0 1 . 490 1  4.110 4 , 1 !0 5. 6 8 0 5. 6 8 0 4.840 4 . P4Q 7.710 2.71.0 0.2700 ~ 0 , " 2 0bb ' 0.7100 0.6400  1.720 _1. 4 J * 0 _ r.7?b  1. 4 9 0 1 . .7 4290 0 1 1. 72 0  . .1 . 02 0  " b . 9 i do 0 . 9 60 0 1.13 0 2 . 04 0 !.. 3 8 0 l o 0«0  1.47 0 1. 170 1 . 06 0 1.470 1.170  0.6400 0.6400 _0.4300_ 0""."4'3bb 0.4300 0.3900 C  1. 1 5 0_  "U'sTd 2 . 04 0 1 . 000 1 . 470 ! . 170 J . ).70_ 1.000 2 . 04 0 1.270  0.3 00 0.3900 _0.4 800 b'.4~80d~ 0.4800 0.7600  nj 04 0 f0 0 01. . 7 7 0.1517 0 . 0 54 1  04  DP 9.000 9.000 9.000 9. 000  o.apoo  10.00  0,8600  10,00  0. °200_  o.OOO 8 . 000  o.proo  "b.°?oo  lo 000 1 . 00 0 0.1700 0o8700 Oo 8 7 0 0 0.8700 0.8600 0,8600 0.8100 0,8100 _0o K 7 0 0 0 . 8 700" O.o? 0 0 0.P600  ' ».oob"  0.8600 0.8600 0.6600 0.6600 0. 6600 O066OO Oo 6 6 0 0 0,6600 _0,8700 C.3 700' 0.8700 0.81.00  0.8100  44. 05  09 12. 50 12.50 12.50 12.50 15.00 1 5.00 15.00 15.00 16,00 . IRoOO _  lo.oo IO.OO  0.PI 00  0 . 7f.00 0.7600 1.030 1, 03 0 1.030 Oo 6 1 0 0 0.6700  0.9700  07 J3.7700 0.7700 0.7700 0.7700 0.7700 0.8100  • O.i?O0 0.9300 0.^300 0. 6 1 0 0 0.5?O0 PBSFRVATIONS 0 6 07  8 , 000 8 . 000 8. 000 8 . 000 8„ 000 8.000 8.000 8. 0 0 0 8. 0 0 0 8.000 a, 0 0 0 3'.""00'6" 8, 0 0 0 P. 000 P. 000 8„ 0 0 0 _P,00 0  B. b o b " 3, 000 8.000  8 . 000 8 . 000 8 . OJ) 0 "'80" 000" P.  000  8,000  80 000 8.000  p.. noo ~8Toe"o~ 8. 0 0 0  15. 0 0  1 5 . 0 0 08  18.00  1 8.00 1. P., 0 0  18.00 HI, 00 _ '1 8 . 0 0  i».oo  18.00 18.00 1 9.00 1 P.00 "18.00" 1P.00 1 . 8 . 00 27.00 27.00 _27.00_ 27.00 27.00 27.00 27.30 27.00 27.00_ "2 7.00 27.00 27.00 27, 00 27.00 27.00 "27.-00"" 27.00 28.00  -  » 4 , OO 3 6 , 00 9 0 . 00 <?'5;'0'0 90. 00 79,00  28.00 09  010  1.0000 0.4560 0.051 3  1.0000 0.2214 1.0000 -J5._3106_ I.oortiT 0.3074 0.2131 0 „. 11.0'.': 012 0 . 0104 0 0,0651 1.0000 0 . 7 4 8 0 0 .0932 -0.4780 - 3 . 1 6 0 3 - 0 . 1 31 ? - 0 . 1 3 4 5 - 0 . 4 7 3 6 0.07)6 0.2394 -0.3?43 -0.791 0 - Q . :5 4 3 - 0 . 4 6 5 2 - 0 . 3 3 7 1 0.0902 ,1404 - 0 . 2 9 6 6 -0.2591. 0. C0e2 0.249! -0.2205 0.47' 3 -6. 32! 2  -OTOE?  Tf.ob  00 10 0 46. 4A.00 46.00 *A.00 34. 00 34.00 3«. 00 34, 00 29.00 42. 00 ' 2 . 00 " 42,00 47,00 47-00 42. 00 4 7^. 0 0 _ 4 7. 0 0 4?.00 4?, 00 42.00 47. 00 4P. 0 0 "48,00"" 48,00 OO. 0 0 O0.00 90. 00 36, 00 3 6,00" 26,00 36.00 36700 36, 00 90.00 "90,00"" 90,00 36.00  1.0000  0.3?3O—1.0000  -  Appendix t  2.  (Cont'd)  0. 44 0OE 05-  1 1  ni  V.  f  .  „ -?«!<).  » 0 . 3 5 1 9 P - 0 ] * D?  FRATiniCOEFP. )=7?.23 Jir.iQ'.rtcoEfF-.). :).3o,in STO. F'.R. CONST. = 3?*3. STO. l ^ . ' . C O E F F . * 0.5 379E-O2 STU.rijB. n i * 7l/,n. FSO = 0.3V65 Plie<M'l-WATSO') STA.* •.»,t>785 ..AUTProsoF.tATlnw r i : = F , » 0.6812  0. 35 OOF 05-  <  J 2  0. 26 00E 05-  j  •  0. 1700E 051  1  .  *  •  •  < 1  J  *  • 8000.  -1000.  1 1 . 1 11 1 7. • 1 1 11 . 21 1 1 2.12 1 7 111 I 12 11* 1! 1 ). 0.1000E 05  0.3900F 06 0.2 000F. 06  0.7700F 06 0. 5800E 06  i  r  1  2  0. 44 00E 05-  0.9600E 06  1 1  01  v.  , -4461.  FPSTIK COEFF. IFP808(C0E.rF.)>  STO. EPF.. CONST.-  * 0 . 3 7 6 6 = - 0 1 » 03  :  l't"2.  :  <  J  25.95 0.0000  s o.Fc;.cor< '' .= o.7 3 9 4 n - o » "%Q = 0.3 319 P U 9 . ! \ I N - W A T S I 1 V STA." 0. 6566 AUTOCORRELATION COJ = . =» 0.6670 T  0. 35 00E 05-  2  0.2600E 05-  <  j  c,  •  0.1700E 05-  1  1 8000.  -1000.  0  1  1 •-•  1 I 1 1 1  1 1 1 1* ? .1 1.!. 1111 111, 1  10000.  1 . 1 * *! 11 3 2 21 12 11  1  0.3100E 06 0.1600E 06  0.61 OOf 06 0. 4600E 06  O.7600<= 06  Appendix 2. (Cont'd) r  ;  ———  0.4400E 05-  1 1  L  01 _  = -395"  *  4.  FRATIOICOEFF.>» PRO'UC0E' f=. 1 = 5T-!,t^P. CONST.-. STO.r^R.CPE'e,s'-n.F'.s. o' « c  :  »5.7  =  1821.  * 04  •' 0. 35 00E 05-  0.?0-.)0  Otl^IM-WATSON ST4,» 3.6889 W l H I S f H T I l M r.i)3FF. - 0.6533  <  j  13.50 3.30.34 3363. 5S1.9 w.5.  2  0.2600E 05-  1  1 I 0. 1700E 05-  1 ).  ' 8090.  i 1 1  -1000.  13  1  1. 000  1 2  1 . 2  1 2.600  .  1 3  .  1  4.200  1  1  1 1  7 2 1  4 2  15. 800  .  7,400  1  . <  1 2 3 3  1 9.000  Appendix 2. (Cont'd)  c 01 " -1143..  \ r  •  602S.  * 05  01  FR4TIC1 (COEFF. )*  2.212 0.1405 STO.FRR.CONST." 5509. STU.ERR.COEFF.= 4053. STO.FOR. ni )5^4. RSO • 0.0500 OURRIN-WATSPN S T A . " 0.7275 AilTOrrioRPLATinN COS=F. = 0. 6350  » 0.1 545E 05» -1003.  J  * 03  <  FRATIO(COEFF.)= I. 108 0.'991 FpR08fCnF E.1 = STO.ERR.CONST." 3380. STO.FRR. COEFF. = '5 3.0 16 96. STO.FRR. m = PSQ » 0.0257 DUPBIN-WATSPN STA, = 0.8217 AUTOOOOOFI AT lOM m = =F. = O. <!R7« p  •  \  01  1  „ .  1 I  t  -  =  91/-7.  • -1766.  * n6  01  FRATIOtCOEFF. ) = 4.454 FQRnntCQFFF.). 0,33°i 1 «62. STO^FSR.CONST, = 33 3.9 STO,E'.R.COEFF." 3137, S T O . F R R . 0) RSO 0.0 165 OU" 3! N-WATSON STA. 0.6275 JUTQCOPR^LAT ION Cn=FP, « 0.6759  = 0.1 2 49= 05* -271.3  I  » 09  i  FRAT TO(COE F » )« 1, 025 FPR08ICHFFF.)= 0.1185 53 44. STD.ERR.CO^ST." 268.3 STO.ERR.COEFF." 9735. S T O . F P U . ni " PSO • 0.0238 OUR BIN-WATSON S T A . " 0.3467 AUTOrORRFI AT10M C.O"=F. = 0-5711 p  (  1  |  j 1  i  !  1 l  ! ;  ^  01  « -1467.  * 0.1009F 0^* 07  01  FRAT!0(COfFF. ) » 0.4148 ?PSC3 C.CQ«f_«J"_ 0,5 2 03 S^O.E- R . CON ST. = 0.1 257E 0"= STO.ERR.COFFF.* 0.1 5 30 E 05 STO.FRR. 01 977?. P.SO > .0.0102 DUCRIN-WATSON S T A , " 0. .5364 AUT Of 1 R P ELAT ION COF=F. , 0. 5797  —  »  9°6 3.  • - 4 4 . 26  1  * 01 0  FRATTOfCOEFF.)0.3 449 FPOH8(COEFF.|" 0.3664 ST0.ERP.-.CONST.3774. STO.ERR.COEFF.. 69.91 STO.FOR. 01 77'5. PSQ • 0.0197 OUR 81N-WA TSO N S T A , " 0. 3572 AUTDCORPFI ATION CO=FF. = 0. 5645  .  :  i  ..'  ,  Appendix 3. Dl  PI 02 01 04 05 P6 r>7 03 P-* P13 * 5.  p  tn 07 06 07 07 06 06  «. 0 0 0 6.000 4.000 3.000 2.000 6.000 1.000  H lflW « O.'.MIE 07 0.1I 1U4.6KF 0.3155E 06 0.7477E 0 , ! ) i ) F 0 7 0.19)9F 0,1770? 07 0.' 507F O.H03E 06 0.1231E 0.3?'7F 04 i l . ' U l f 0, 6341F. 06 O.7 340F 06 5.000 0 , ? 3 ' 3 E 06 0.;-513F 06 3.000 3.41>3F 06 Q„3?47F 06 6c000 srn.nrv. • CORP FLAT IONS 01 02 4?7">.70 5402.62 1 .0000 901075. 7246?6. 0.4633 1.0000 1245.2). 616477. 0.4274 0.9946 4,00000 l,763f* 0 , 3 » 3 5 -0,1827 1 . 11 300 0. 663425 -0.2.166 -0. 3278 1.35400 0.7081 7 8 -0.6680 - 0 . 4 5 5 5 0. 7 ) « J J J 0. 9 57I3 5F-01 0.2967 0.7330 8.80000 0.9!89"<5 0.4425 0.8327 22. 9500 4.J4.967 -0.9409 -0.3778 1.600J 8,88*43 0,7776 0.2959 •SIMP.r.G*  0.1449? O 05f 4262. . 3458. 17.00 970. 0 O51..0 1298. 11..10 >511. NAME MFAN5 * , I V ? £ . *  >  Coulter. Counter data. PI  ,  Tintinnopsis subacuta on laboratory food. pr Pt PI P* Pf a. 0.6400 . 0.7900 1 . 390 1.390 2.580 0.8200 1.450 2. 230 1.850 10. 04 05  O.oiOO 0.5500 1 . 040 0.8200 2. 8?0 1.350 1.31 0 0, 5400 0.8400 D3  1.0000  -0 1 945 -0. 2 75 6 -0.4345 0.6693 0.805 7 -0.35)1 0.3276 L  O. nloa 0.8300 0.8100 0.8000 0.9600 0.6800 0.7200 0.7200 0.3000 0.7500 08SFRVAT IONS D7 06  9. 000 10.00 9.000 10.00 10.00 8.000 8.000 8 . 000 8 . OOO 9. 000  08  05-  *  1161.  f 0.3454E-07* 07  FR AT IO( COEFF. I * 2 . 1 8 6 FPR09ICnEFF.I» 0.1754 STO.FDR.CON ST.• 2f47. STO.FRR.C0FFF.= 0.2336E-02 S T o . ^ o . 01 • 5,173. PS ) = 0.2146 nn«3IN-WATSCN ST\,= 0.7702 AIJT'XOOREIATION r,o;=F. » 0 . 5 1 6 5  D9  Cx. 0 0 24,00 7 4 . 00 30.00 3 0 . 00 36.00 36.00 36. 00 74.00 2 4 , 00  -  >  010  >  v  1 1  «  IS. So 1 5.00 25.00 25.50 25.50 74.00 2 4 . 00 2 4 . 00 25.00 25.30  I JiOOOO — — 0.2925 1.0000 0.742 8 0.4699 1.0000 -0.251 3 -0.6129 -0.4601 1.0000 -0.1371 -0.3488 -0.4777 0.8031 1.0000 -0.3345 0.0695 0.5931 -0.3391 - 0 . 3 0 7 6 1.0000 - 0 . 1 276 0.341 8 - 0 . 2 8 9 9 -0.0834 - 0 . 1 1 9 8 - 0 . 4 0 9 6 1 . 0 0 0 0  0. 14 5 0 E  01  N.T.C. method.  1  1 1  0.1160F 05-  1 1  8700.  5800.  <  1 1  1 1 1 1  <  1 1  •  1  2900.  1 1  1  -1  1 >. .  ! -0.0  1  •  •  •  1  1  1  1 0.9000E 0 5  •  •  1 0.460OE 06  X  0. B 3 0 0 E  06  0. 1 200E 07  0.1570E 07  0.1940E 0 7  Appendix 3. r  >  01  » 1539.  • 0.3315F-02* 03  FRATI0(CnEFF.)« 1.788 FPRO3(C0EFF.)• 0.2165 STO.FRR.CONST.' 36 2 0. STD.EPR.COEFF,= 0.2479E-02 STO.FRR. 01 » 1131. °S0 = 0,1827 OUR TfN-W ATSON STA.* 0.7043 MfTienPRCiATinN r.n^F, • 0,54^8  (Cont'd) 1  0.1A5OE 051 1 1 1 0. 1160E 051 1 1 1 8700. 1 1 1 1 5800. 1  <  < • • •  ! 1  I  i  2900.  1  I  1 I > l1 1 1  -0.0  1  '  1  I  0.1200E 06 0.8400F 06 0.1560F. 07 0.4800E 06 i O.J200F 07 0.1920E 07 0.1450E 05-  -*25.  0.1160E 05  1175.  FRATIOICnEFF.J. \. 3 71 FPRORICOEFF.)» 0.2739 STP.ERR.CONST. « 4336. STD.ERR.COEF F.= 1000. sTn.FRR.  oi  »  r  8700.  >?9->.  PSO. * 0,1 471 0UO<3IM-WATSPN STA.= 0.6175 _A I IT OC npRFt AT ION CQ-.rC. *  0.4690  5 800.  2900.  -0.0  > I  —  1.000  —  1  I —  2.000  I  3.000  A,  ono  5. 000  6.000  Appendix 3.  _ai_  » -184?  632,6.  « 05  FRATIOtCOEFF.I0.4330 FPRQBICPEFF.I. 0.5345 STD.ERR.CONST.' 3586. STO.ERR.COEFF.2304. STP.FRR. 01 . 3591. PSO " 0.0513 OURBIN-WATSrN STA. • 0. 7*9* -A'JI.OCQR5ELAT10N CDEFF. * 0.4562  _____  0.111BF OS* -5096.  01  '  4764.  RSQ » 0.4463 OIJRBIN-WATSON STA. ' 1.804 AUTOCORRELATION COEFF. - 0.1124E-01  _DJ—.-o.i'aae FRATIOICOEFF.|.  ..EERQ31.C0EFi_l__  STO.FRR.CONST.' STO.ERR.COEFF.'  STO.FRR. 01  .  os» o . ? n v  0 5 « 07  1. 494 0.1650E 05 0.7P59E 05 *jif>n.  _D_1_  RSQ ' 0.1 5?4 DUR9IN-WATS0N S T A . ' 1.023 AUTOCORRELATION COEFF. ' 0.344?  -0_1B.?F 0?» 26Q?.  _____  FRATIOJCOEFF.) = FPRUMCnEFF.l. STO.FRR.CONST.STD.ERR.COEFF.=  1.943 • 0.1995. 0.) 649E 05 1864. S T n . F R R . 01 51.39. RSQ « 0.1953 DUR8IN-WATS0N STA.» 0.6437 _AUT.QCOR.RELAT 1PN C Q E F . » 0.4814_ ;  0.3296F 05> -1356.  _Q6_  6. 447 FRATIOICOEFF.)• _FP.IO a Lcn_r_F_j__. O-T'38 STO.ERR.CONST.' 3037. STO.ERR.COEFF. a 2707.  STO.FRR.  (Cont'd)  FRATIOICOEFF. I» 61 .77 _E£.RJJ_.LCi3EE.F. l » STO.ERR.CONST.' J..3001 3702. STO.ERR,COEFF.' 159.8 STO.FRR. 01 1?TO. PSO ' 0.9853 OUR 8IN-WATS0N STA. » 1.013 AUTOCORRELATION COE-F. ' 0.4299  _Q__  -lQt - •  16 9. 8  FPATIOICOEFF.)> 0.1680 FPR0B1COFFF.I. O . 4 1 9 STO.FRR.CONS T.» 6755. STO.ERR.COEFF.' 206.5 STO.fRR. 01 ' 5505. RSQ » 0.0771 0UR8IN-HATS0N STA. » 0.6704 AUTOCORRELAT ION COEFF. . 0.5899  010  Appendix 4.  Coulter Counter data. Pt  P4-  Pi  Tintinnopsis subacuta on laboratory food.  P  PS  PS  E.S.O. method.  Pt  7 fZ. oo l.oo o. Woo <J >7le <n a.lotot IS.00ft 24.00 10.00 15. 0.6400 0.8800 1.000 6.000 p. *" <L_ ?* ? 8295E 06 0.6874F C6 07 ».ooo 24.00 9.000 25.00 0.61 CO 0.7900 0.8100 06 4.000 6'.T44«SE C5 C" 2418E 06 0. 1410E 30.00 10. 00 25.50 1.3S0 0. 8000 2.860 3.000 4682. 0, 3148E 06 0.4751E 06 30. 00 10.00 15. 50 1.390 0.9600 0.54 00 2.000 3580. 0, 2625E 06 C.17S8E C6 36.00 8.000 24. 00 2. 580 0.6800 . 2.930 6.000 927.0 0. ,1246fc 06 0.1164E 06 36.00 B. 000 24. 00 1.600 0.6800 3.110 1.000 1020. 0 , 1085E_05__0_.1213E_ 05 36. 00 8.0 00 24.00 0.7200 1.650 0.82 00 1.000 1 L06• 167.0 0, , 752 aE 05 0.79 3 4E 05 37.00 15. CO 28.00 0.7200 1.150 1.450 5.000 1625. .3261E 06 0.3140E 06 37. 00 15.00 2(1. 00 _ 0. 6(100 _2.23(J_ _5.390_ 3.000 252.0 lliVOL' 06 0.2'->2 J U C6 "52.00" 9.0 00 " " 15.50 " "0.68 00" 1.4 50 4.5 50 2. CCO '140.0 .1424E" 06 " " C . 1524E C6~ 52.00 9. 000 15. 50 0.7700 0.8700 O.5SC0 2.000 420.0 , 196 IE 06 0.1774E 06 52. C0_ 9.000_ 15. 50_ _0.7800 1.620 0.5200 1.000 367.0 73 15P C5 0. 2566F C5 24 .00 ~0.0 00" 25.00 O.BOOO" ""' 1. 7 10 " 2. 2 3U 569.0 .4767E 05 " 0.37 74E 05 """3.000 24.00 8.000 25. 00 : 0.7500 0.8400 1.850 6.000 3822. •4323F 06 0.3247E 06 CORHELATICNS 15. _CBSERVATIONS STO, OEV. MEANS NAME 06' n i 0 2 D10 07 08 09 04 05 03 1.00CO 6190.55 01 3671.32 C.56CE 1.0CC0_ 319468. 02 29 3013. 6.9243 0.9727 1.00C0 2 78 59 9.' 03" 267005. 0.43C9 0.5179 0.4723 1.0000 1.83095 04 3.26666 0.3334 -0.4144 •0.2674 ^0.1709 l.0000_ 0.857535 05 1.57400 •0.3984 -0.3174" -0. 24 55 "-676008 0."3424 1.0000 1.46703 06 1. 74466 1.0000 C. 834835E-01 0.50C1 0.5127 0.44 31 0.O863 -0.5902 -0.5473 07 0.771333 •0.0662 0.08^6 0. 16e0_ 0. 1591 -C.0393 0. 38 15 - 0 . 11 34 1^0000_ _ 2 .2886') OS 9.66666 6.3670 -0.3490 -0.2761 0^2 207 0^4404 6.3133 -0.51C9 0.3363 1.C000 5. 19684 09 21.3999" 0.0313 0.C272 0.C6 84 -0.4484 0.0123 0.0455 -0.2528 0.0228 -0.51 12 t.0000 10.9270 D10 36.3999  PI 0  1  ;  C.2200E 05-  01  •1784.  • 0. 18626-01*02  156.3 FRATIGtCOEFF. ) » 0.0000 _ FPR08IC0EFF.)= 633.7 STO. ERR-CONST." C.1489E-02 STO.ERR.CGEFF." STC.ERR. 01 1780. PSQ ""= "6.9232 OURRIN-WATSON STA." 1.602  AUTOCOKREl AT ION COEFF. => 0.9B13E-01  0.1700E 05  0.1200E 05  7000.  2000.  -3000.  11 1. 1 11 . 1 2 1  -0.2000E 05 0.4600E 06 0.9400E 06 0.2200E 06 0.7000E 06 0.1180E 07  Append!* 4.  (Cont'd)  0.2200E 05-  -1814.  • 0.2054E-01* 03  FRATIOICOEFF.)76.28 FPROB(COEFF.)STO.ERR.CCNST.»' o.cooo _ _ 891.7" STO.ERR.COEFF." STC.ER8._01 __ 0.2352E-02 ?45 l . a so - 0.8544 OUR 8 IN— Vi A T SON IA.= S 1.580 AUVGCOKRCLAFION COUFF. - 0.1679  0.1700E 05  0.1200E 05  7000.  2CC0.  -3000.  1 11. 1 2 - 1 1  1  >. -072O'B'OE 05  0. 4000E 06 0.1900E 06  0. 82 00E 0"6 0.61C0E 06  0. 1030E 07  Appendix 4 .  01  -1088.  1*57.  * 0*  FR AT IOICOEFF. )• 2.965 FPRCBICOEFF.)- 0.1057_ 3143. ST0.ERR.C0NST.»~ 846.2 StO.FRR.COEFF.5797. STD.ERR. 01 HSO =• C. 1657 0UR8 IN-KATSON STA.» 0.6110 AUTCCORRELATI CN CCEFF. » 0.3485  01  »  7460.  • -2407.  * 05  FRATIOICOEFF. 1.626 FPROB(COEFF. _0.2229_ STO.ERR.CONST '3358. STO.ERR.COEFF 1888. _STD.F_RR._01 6057. RSO » 0.1112 DURB IN-WATSON STA.0.6274 AUTCCORRELATI CN CCEFF. - 0.3980  01  6604.  -1681 .  » 06  FRAT IOICOEFF. 2.452 FPROB!COEFF. 0.1383_ STO.ERR.CONST 2413. STC.ERR.COEFF 1073. STO.ERR. 01 5893. RSQ = C.1587 0.5371 0UR8 IN-NATSCN S T A . A UTCC ORREI ATICN CCEFF. - 0 . 4 5 4 7  (Cont'd)  01  5403.  • -179.1  • 08  FRATIOICOEFF. >- 0.5726E-01 _ FPROB(COEFF.)__ jp.80OO STO.ERR.CONST.7423. STC.ERR.COEFF.« 740.5 STO.ERR. 01 6410. RSO = 0.0044 DURBIN-WATSCN S T A . - 0.3226 AUTOCORRELATION COEFF. 0.5385  ..01  - 0.1 LQ.3 _Jl?J____37__2_  • 09  FRATIOICOEFF. » _ FPROB (COEFF.j_ STD.ERR.C ONST. STC.ERR.CCEFF. 01 —0.2493E 05* 0.3708E 05* 07 STD.ERR. 01 RSQ 0.1347 FRAT IOC COEFF. )• 4.335 OURBIN-WATSON S T A . - 0.4674 _ FPRCBICOEFF.)- 0.0554 AUTOCORRELATION COEFF. « 0.5060 STD.ERR.CONST.0. 1381E 05 STO.ERR.COEFF.0.1781E 05 STD.ERR. 01 5563. RSO « C. 2501 DUR8 IN—WATSON STA.<= 0.8300 AUTOCORRELATION CCEFF. - 0. 3139 01  3026.  17.73  » 010  FRAT 10 I COEFF. )» 0.1275E-01 _FPR0B(C0EFF. }m_ _0-_8770 STO.ERR ".CON S T . 5952. STO.ERR.COEFF.• 157.1 STD.ERR. 01 6421 . RSQ « O.C010 0UR8 IN-ViATSON S T A . - 0.3012 _A_.LfiCORJlt LATI UN COEFF. - 0.5553  ts) O O  Appendix 5. Dl _1255._ 628.0 4114. 2797. 5378. 1022. 2829. 590 4." 959.0 464.0 1369. 2563. 5872. NAME MEANS Dl D2 03 04 05 06 07 OB 09 U10  01  2704.15 649792. 723092. 4.00000  1.4 744 1 1.96538 0.871538 12.0000  25.8461 35.6973  -6.506  Coulter Counter data. 02 0.5121E 0.5121E 0.6078E 0.6078E 0.6 12 IE 0.6121E 0.6121E 0.9336E 0.9673E 0.54C5E 0.61576 0.6698E 0.6441E  03  04 3.000 4.000 3.000 3.000 4.000 5.000 4.000_ ~6. 000 3.000 2.000 7.000 5.000 3.000 CURRELA TI ON S Dl D2 1.0000 0.2937 1. 0000 0. 3693 0. 5976 C.1C47 0. 2358 ' 0.0100 - 0 . 6159 -C.6660 - 0 . 36 52 -C.3878 - 0 . 5020 0.2)67 ' 0. 8 I 14 -C.2449 - 0 . 1357 -0.1829 - 0 . 0018  06 0.7030E 06 0. 7030E 06 0.8023E 06 0.8023E 06 0.7562E 06 0.7562E 06 0.7562E 06 ""C.9644E 06 0.8088E 06 0.5505E 06 0.6397E 06 0.6213E 06 0.6012E STO ^DEV.  2C11.26 141593. 109496. 1.4 1421 0.441654 1.51603 0. 115319 5.33853 1.5191 1 6 .7 74 75  » 0.4172E-02* 02  FRATIOICOEFF. ) « 1.038 FPROSICOEFF. »« 0.3318 STO.ERR.CONST . 2718. ~" STO.ERR.COEFF.» 0 . 4 0 9 4 £ - 0 2 STO.ERR. 01 _» 7008. RSQ = 0.0862 DURHIN-KATSON STA." 1.892 AUTOCORRELATION COEFF =•  Stenosomella ventricosa on laboratory food.  -0.6970E-01  05 1.930 1.860 1.930 1.860 1.9 30 1.4 70 _ 1 . 8 60_ 1.1 50 0.7500 _ 1.2 00 1.3 CO ' 0.9400 0.9500 C3  07 0.9600 0.9600 1.410 0.94 00 1.410 0.9400 1.140 0.9400 1. 140 0.9400 1.140 _0.9400_ 1.130 0.8200 1.940 0.7300 __5.850 _0-8900 2.940" 0.8800" 0.6700 0. 8300 0.2200 0.5600 13. OBSERVATIONS D6 07 04 D5 06 3 . 2 80 ' 3 . 2 80  08 8.000 8.000 8.000 8.000 8.000 8.000 8.000 20.00 22. 00 13.00 10.00 17. 00 18.00  N.T.C. method.  09 25.00 2 5 . 00 25.00 25.00 25.00 25.00 25. 00 26.00 25.00 • 30. 00 28.00 26. 00 26. 00 D8  D9  1 .0000 C.2150 J . 0 0 0 0 "0.2188 " -0.1508 1.0000 -0.4187 -0.2748 0.0716 1.0000 0. 18 29 0.0712 _0 7910_ 0.33 75 1.0000 0.09 56 ' 0".05 52 •0.0956 -"0.1866 -0.8060 1.0000 -0.5765 0.0388 -0.4025 0.6684 -0.1359 0.1850 1.0000 0. 57 14 0.4784 0 . 5 3 69 - 0.18 0 0 0. 6 7 72 - 0 . 48 62 - 0 . 5 3 1 3 5900. 1  oto  39.00 39.00 39.00 39.00 39. 00 39.00 39.00 36. CO 36.00 22. 00 42.00 35.00 20.00  J  (  010  i  1.0000  4800.  3700.  2600.  15C0.  400.0  0. 4700E  1 06 0.9700E  0 . 67 00E 0 6 06 0.7700E  0.8700E 06 06 0.9700E 06  i  Appendix 5.  (Cont d) l  5900.  !  ^ i  1  l  j L j ; ! ' 1 '  01  *  -2235.  FRATIOICOEFF.)FPP.OBICOEFF. ) STD•ERR.CONST.STO.ERR.COEFF.STO.ERR. 01 =  • 0.678*6-02* 0 3 1 . 7 3 7 0.2125 " 3786. 0.5147E-02 1<552.  •800.  <  <  ~——"  i 3700.  f\  H^D J W —> U a I J O1' ti t / DURBIN-WATSON STA.= 1.761 AUTOCORRELATION r.OFFF- -0.9352E-01 1  1  1  • i  •  2600.  1  .  .i  I  :  i  1  •  1500.  1  1  >  400.0  -  1  5900.  01  2108.  * 04  0.1220 0. 7298 ' 1801. 426.4 2C89. 0.0110 S TA.» 1.852 ON COEFF. - _ - 0 . 5 8 l 5 E - 0 1  FRAT I O I C O E F F . ) FPR08IC0EFF.) STO.ERR.CONST. STO.ERR.COEFF. _STD.ERR• 01 RSQ OURB I N - W A T S O N AUTOCORRELAT I  • 1 4 9 . 0  -  1  — j  - —  1  - 0 . !> 2 0 0 E  i  —  i  1  06 0.6100E  0.7000E 06  06 0.7900E  0.8800E~06 0 6 0.9700E 06  ~  1  4800.  3700.  2600.  1500.  400.0  1  - 1  O  2.000  4.000 3.000  5.000  6.000  IO  7.000  Appendix 5.  01  •  ,637.  FRATIOICOEFF.)FPROBICOEFF.)STO.ERR.CONST.STO.ERR.COEFF.-  SVO.ERR . 0 1  •  45.T1  « 05  0.1108E-02 0.9242 2107. 1373.  2 101_-  RSQ » 0.0001 DURBIN-WATSON STA.« 1.860 AUTOCORRELAT I O N _ C O E F F . • -0.5T12E-01  01  -  4441.  • -883.6  * 06  F R A T I O I C O E F F . I8.769 _FPROB(COEFF.)• 0.0126 STO.ERR.CONST.729.9 STC.ERR.CCEFF.298.4 STO.ERR. Dl _» 1567. RSQ 0. 4436 O U R B I N - W A T S O N STA.<= 3.005 AUTOCORRELATION COEFF. « „ - 0 . 5 5 3 2  01  8574.  •  -6735.  *  (Cont'd)  01  -  1634.  •  69.19  » 08  FRATIOICOEFF.)0.6531 _FPROB< COEFF.1« 0.4410 STO.ERR.CONST.1440. STO.ERR.COEFF.110.4 S T D . E R R _ C 1 ___ 2041. ; RSO » 0".0560 OURBIN-WATSON S T A . 1.86B AUTOCORRELATIC__COEFF. » - 0 . 2 2 8 3 E - 0 1  01  -  0 . 1109E  FRATIOICOEFF.)FPROB I COEFF. ) -  lifb.ERRVtoNSf•«  05» - 3 2 4 . 3  « 09  0.7019 0.4244  0.-602. os  STO.ERR.COEFF.-  387.0 2037. ' RSO « 0.0600 DURBIN-WATSON STA.» 2.084 AUTOCORRELATION _ C O E F F . - _0__J__f9  _d___?_»__ R  07  FRATIOICOEFF.)1.948 FPROBICOEFF. 1 0.18S1 4240." STD.ERR.CONST.-" 4826. STO.ERR.COEFF.* STD.ERR. 01 » _l_936._ RSO • 0 .. 1 5 0 4 DURBIN-WATSON STA.» 1.993 AUTOCORRELATION COEFF. - 0 . 1 9 4 4 E - 01  Dl  01  -  4643.  -  •  -54.31  _  * 010  FRATIOICOEFF.)0.3809 FPROBICOEFF.)• 0.5557 STD.ERR.CONST.3193. STO.ERR.COEFF.88.00 STD.ERR. 01 2065. RSO 0.0335 OURBIN-WATSON STA.« 1.887 AUTOCORRELATION C O E F F . -0.1788E-01  O  co  Appendix 6 .  F 5 U I 3 I  j..  -  CflFFF.  c  r  J  ^5)  .  Stenosomella ventricosa on laboratory food.  »  E.S.O. method.  J  o.in'9  )=  . .>- •i ^ OFFF, i . <C .. ar K <•-<.L.;'^ ST0. ".P..C !EFF =  Coulter Counter data.  0,677' 5 J 0 7 . D.O.T7F-02  . 9400.  0 . J 1 2 1  ri'.IRIIV-HiTSn*) STA," 1.1 OA . * i ; r i C r i A T inf.- c . i « t . - o . ^ ^ - o i  | 1 1  ~  — —  .  —  _  _  _  1 i  f , o o  6400.  3400.  —  1 1 I 1  .  1  1 -  1 1  0.1600E 06  1  1  1  <  1  l> 1  1  400.0  1  1 1.  0. 2300F 06  .  1 1  0.30C0F 06  — 1  O.27O0F 06  —  1 1  0.4400C 06 0.5100F 06  O 4>-  Appendix 6. —•  i  —  oi  >  1  -  -09 1.  —  ••-0.1S72E-0'* 03  :—  \  0. 1540E 05-  r  e  1  0. 1240F 05-  FRATIOfCOEFF.)-  0.^2-1 F-01 ...0.3 063 .STO.FP R.TONS T . 2371. STn.CRR.CCEF- F. = 0.31775-02 37 5 7. "SO = 0.3037 nilRBlM-WATSO"! S T A . 1.24? AUT„0$S5l4T. N COS* _ « _0 2399F-0'.  (Cont'd)  <  ! 9400.  JL  6400. 1 1 >  1  3400.  1 -  1  11  1 .  0.1100E 06 /  0. l ° 0 0 E 06 1  0.1S40E 05-  01  >  )  =  > M 1 .  * -'7.1 1  FRATIOICOFFF.)_JJC n _ L _ ,1* ST;i. F " . CONS T. = STO.F'^.COEF n , .  * 04  0.2 3.70F-O2 0.-)\ M 2734. ST 3. 8 STn.t'cu. ni . 17 6 ) , K i ' l = 0.0002 Dii*3iv-KA7SP I S M , » 1.133 A'JT0C._«.?...AT.I.yi.-C31 . » 0.4?lir-oi  <  1 1  1  ! '00.0  1  1  1  1  0.2700F 06 0.3 5O0E 06  0.4  1  3 00E  1  06  -1 0. 5100E 06 >  0.1240F 05-  <  j  n r c ; c  c  9400.  j  ,  se  6400. 1  '- :  '  1  1 • - »  1  3400.  400.0  1 1 - 1  1 3  2.000 3.000  1  1 1  1 4. 000  )  •  J  5.000  <  1  6.000  I 1 7. 000  Appendix 6 .  * -V2.1 FPATIPlCOE^F.)"  _Q5_  0.4 3 96E-01  0,3113  STO, ERR. CONST. 2787. STO.EKP. COEFF." 1412. S T O . t f P . O: 2 3757, PSQ " 0.0033 OUP 3 IN-WATSON S T A . " 1.215 ..AUT.OCOB?_p.LAT ION CO£ P, " 0.36 33E-01 c  634"  -l>5?i  FPATIO (C O S " . I" FPP.03 <. C O r F C . ) = STO'.F P P . C O F S T , =  * 06  4. 5 43  0.2364^  STO.ERR.CONST..  STO.FRR. COEFF. . S T O . E R R . 01 " PS 0  =  0*«~0.7793F  05«  11.67 0.004?  • 5°','.  471.2. •'730.  0.4544  0IJ°9IN-XATSON STA. = 1.063 -AUTOCORRELATION C'i;=F. " 0 , 3696  JLL.  3403.  91F-Q1  * -19?, 9.  0.3357C-01 0.7430 STO.FRR.cor'ST." 0,) 779E 05 STO.FRP. COFFF. = 691.6 STD.^PR. pi 3753. kSQ = 0.3059 OUPPIN-WATSON S T A . " 1.136 _A!JTOC0°RELATION COE=F. " 0. 2694r.-01  1353. 557.2 S T O . F O R . 01 3' 06, RSO » 0,3192 011P31N-WATSON STA. " 1.739 _A_UTOC'IRPELAT ION COE=F. " -0.1972  _IU_  J97JV FPATIO'COEFF.). 0.5 275 FPROniCOEFF.). 0,4e54 STD.-PR.CPMST.22 56. STO.FP.P.COTFF. • 159.3 STO.FRR. 0) * 3605. PSQ " 0.0363 OURBIN-WATSON STA.= 1 . 1 9 3 AltTOCQPRFLAT ION CO'£ = F . * 0. 66  FRATIOICOFFF.1= _ _ f - P 303ICQE F F . 1 "  STD.poo.COEFF."  FOATIOICOEFF.I" _ FTP. U D X C G F r F . I »  (Cont'd)  O f  _D-l_  0.1443E 05* -303.3  DIP..  FRATIOI COEFF. )" 5,023 FPKnWICOEFF. )" 0.QT39 STO. FPU. CONST. " ',95?, STO.FRR.COF.FF." 1 3 5 , 3 STD.FPR. 01 * I ' l l . •'SO = 0.2642 OUR RIN-W AT SO N S T A . " 1.472 AUTOCORPFI ATTON CQg=F. = 3.9040F.-01.  Appendix 7. Coulter Counter data.Stenosomella ventricosa on laboratory food.E.S.O. method. 01 1717.  02 3.3 53 0E 06  03 0.4246F 06  -mm  04 3.000  8t- 4-.S88  nA 5421. C6 0.4802E 06 3.000 3114. 0.3C99E 06 2.000 0.41S4E 3896. 0.3340E 06 3.000 0.2 131E 06 0.3S42E 5378. 06 4.000 J.2433E 06 0.4P84F 1612. 06 5.000 0.3 234E 57 5E 06 35»6. 0.3 C6 0.3279E 4.000 O.i Hit 0606 C.5C81E 06 5904. 0.5J76E 06 6.000 _9_4 8 , 0_ 3.000 _0.1673E_06 0.1456F 06 12 73. 3.000 6.3099S 06 0.2 768E 06 527.0 06 2.000 d.le54E 06 0.1543E 7,£p_g_ J L F . _ Q 6 _ 0 _ , 4 4 . 4 . 5 E_ 4& _1_2.3_ 2950. 5.000 0 . 2 i ' 3 E 06 0.2287E 06 STO.DEV. CORRELATIONS NAME MEANS  ni 02 D4 05 _P6_  07 08 _P_010  7675.31 311717. _ 2h 2 ? 12. 3.80 000 1 .90006 _ 2 . 0 9 20.3_ 0.900646 11.73)3 3 7.2 000  I 311.2 2 105957. II 46 5 7 . 1.42478 0.689944 3.9.090. 0.669184E-01 5.58654 1.44 7^0 4. 57C0 8  m D Z _ 1.0000 0.5626- 1.0000 0.5620- 0."I 46' 0.2350 0.7060' 0.3392 -0.0374 -0,60 5__ _0,36641 6. 08 2 4 -6.0535 -0.1164 -0.0722 -0.2689 _ _ 0 8 _ _ 0.2830 0 . O 3 8  D5 2.260 2.220 2.930 2.260 2. 320 3.120 2.340 l.^lO 2.160 . 1.75 0 _0»°500_ 1.070 1.370 __.2tl.0_ 0.9400 Qj  06 3.280 3.280 3.280 1.410 1.410 1.410 1.140 1.140 1.140 1.130 .1,360. 1.940 5.850 _2*940_ 0.6700  Jii-  07 0.9600 0.9600 0.9600 0.9400 0.9400 0.9400 0.9400 0.9400 0.9400 0.8200 _0.8 30O_  6.7400  is. PS'  0.8900 _0,8800_ 0.8300 OBSERVATIONS D6 0J_  08 8.000 A.000 8.000 8. 000 8.000 8.000 8.000 8.000 8. 000 20.00 22.00_ 22.00 13.00 J0,00_ 17.  66  08  09 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 26.00 25.00 25.00 30.00 _2B.00_ 26.00 J9.  One value omitted.  010 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00 39.00 36.00 36.00 36.00 22.00 .42,00 35.00 010  1.00QO 0.5355- 1.0000 0. 3138 -0.2532 1.0000 •0. 3096 -0.291 8_ 0.0294 1.0000 0.2869 -0.2083 0.7508' 0.1664 1.0000 •0.3836 0.1095 -0.7243--0.1503 -0.9434- 1.0000 •0.2479 0.1386 -0.3751 0.6772•-0.1966 0.1296 1.0000 0.5799' 0.3687 0.3899 -0.5672. 0.3125 -0.3755 -0.7018* 1.0000 5900.  __L  • 0.9617E-C2* 02  5. 021 FRATIOICOEFF.). Ft>903( COEFEjJi._ 3.0278 STO.FRR.CONST.' 12 96. STO.FRR. COEFF. * J . 3 U 9 E - 0 2 _SJC E_R. .j; =. 1554t RSO * 0.3165 OURBIN-WATSON STA.= 1.643 -AUT OC on R E.L AJ.I ON C3SFF. . 0.1409 i  4800,  3700.  L  1  1  260 0.  1 1 • lSOOi  >.  _1 400.0  1  1  JLZ 0.1600E 06 O.30C0E 06 0.4400E 06 0.2300E 06 0.3700E 06 O.SIOOE 06  to O  Appendix 7. (Cont'd)  r  5900. 1  >  01  - -364.4  • 0.8878E-02* 03  FRATIOICOEFF.)4.002 FPROIUCOEFF.)0.0280 STD.E R R.CCNST. 1304. STO.ERR.COEFF.0.3t>24E-02 STO.FRR. 01 = 1555. RSO » 0.3153 D'JKRIN-WATSON STJ.= 1.063 ..AUTOCORRELAT I ON C H F F . • -0.5735E-02  •'  4800..  1  1  J 1  •  1  i  j  1 ,  •  •  i  •  •  400.0  ~~  1 1 1 1 .  • .1  1  •  at  1  • 1  0.1900E 06  1 0.2 700F 06 0.4300E 06 0.3500E 06 0.5100E 06 i 1  1 -  1540.  •  298.8  • 04  FRATIOICOEFF.)0.7597 ' FP<OP.iqOEFF.|. J.4033 STO.EF.R.CONST.' 1336. STO.EPR.COEFF.. 342.3 STO. P R R . 01 « 13?*. RSO =• 0.0552 0UR8IN-WATS0N STA." 1.657 ADTftCORRF LAT I ON C'H=«=. . 0.1653  4800.  3700.  1-  1  5900.  01  1  1  0;llOOE 06  N  •  •  1  • 1500.  <  •  3700.  2600.  j | | 1  1  1  . 1  <  1  •  1 1  •  e  •  2600. 1 >. 1500.  400.0  >  I  1  1  1  1  1 11  '2  2.000 3.000  1  I  1  —I  4. 000  6.000 5.000  7.000  \  Appendix 7. (Cont'd)  K  :  :  21  =  9BQ ? t  FRATIOICOEFF.>• FPR(J.R.ltQ.F.FF___5 STO.ERR.CONST." STO.ERR.COEFF.-  STO.ERR. Dl  :  ,»  891.9  » OS  . 1.691 0-2 14_ 1381. ' 685.9  •  1768.  666.7  01  « OT  .  • -37.75  « 08,  0.1797  STO.ERR.CONST.1153. STO.FPR.COEFF." 87.31 STO.ERR. 01 * 18 6 7. RSO =» 0.0136 DURBIN-WATSON STA. = 1.804 AUTOCORRELATION COEFF. 0.81STE-01  _06_  4336.  FRATIOICOEFF.). 0.8886E- 01 _FP.R03XC0EF.F_J__ -0_7..6.24_ STO.ERR.CONST.6755. STO.ERR.COEFF.7481. STO.FRR.  3118.  FRATIOICOEFF.1-  FRATIOICOEFF.I7. 510 _FPJ_18.( ,.COEF_L_i__ 0«OL63_ STO.ERR.CONST.718.6 STO.ERR.COEFF.* 239.6 STD.ERR. 01 1496. RSQ = 0.3662 OURBIN-WATSON STA. * 2.428 AUTOCORRELATION COEFF. - - 0 . 2266  _D__  .  _FPRQj3JjaEFJ_.±-_l).6J'3_  RSO = 0.1151 DUR3IN-WATS0N STA.* 1.855 AUTOCORRELATION C J E ' F . - 0.3649E-01  JU  01  if 7 1 .  RSQ « 0.0068 DURBIN-WATSON S T A . 1, 803 __UI.'iCaP-_£UI : 0. 83 50E-01  FRATIOICOFFF.)* 1. 013 - F p ^ i l C J l f F F j . L i . -0-3343 STD.ERR.CPNST.4592. STO.ERR.COEFF.* 334.3 H1Q. RSQ = 0.0723 OURBIN-WATSON STA. * 1.932 -LLT.QCORRELAT ION COf^E. O. IS66F-0I  0-1  » -1497.  »  FRATIOICOt F. )a FPROBICOFFF.ISTO.ERR.CONST.* STO.ERR.CrEFF.e  STO.FRR.  Dl  .  117.2  010  1.13? 0.3077 3749. 105.4 1303.  RSO * 0.0801 DURBIN-WATSON STA.* 1.958 AUTOCORRELATION COEFF. 0. i e 3 6 E - 0 ?  O  Appendix 8. 01 433.0 104?.  V _  01  C4 "5  .i_.ue.oo  4.00  003  2.OO30O .3.2 3 8 1 1 9 1.23791 0 . 3 U 4 5 6 E 4.34145 2 . 5 1 6 6 1. 1 1 , 0 ! ' !.  r  0^  7 , ~ S6" 39.3333  010  7  06 06 06  CORRELATIONS 02 01  -01  1.0000 0.9564 0.8413 -0.9836 0.8704 -0.97!. 9 -0.6815 -0.00P5 0. 1532 -p.9793 -0.9009 0.^47" -0.°3 5 5 0,-'-'!.6 0.T074 - 0 . 3 75 7  r  \ (  04 4. 000 2. 0 0 0" 6. 0 0 0  1.0000 - 0 . 7301 - 0 . 89 79  95777.9  l. 6 333 0.936667 1 ? . • 13 1  09  0.4749E o.? 5 1 0 E  <• 3 0 4 . 4,3  C  or  06  0 .V V B E 06 a. 4 4 1 4 = 06 0.3607= STO.DEV.  3320.03 ^66*.2! 4S.31 3 4 ,  06  03  02 J .4 6 0 7 E  9?R5. MEANS  Dl  Coulter Counter data.  Barnacle and Copepod n a u p l i i on laboratory food. 05 1.200 1.290  0.8-00 '  04.  03  1.000 0 -0.9934 0. 976 3  ni  » 0.5450P 0 5 « ~ 0 . 1 0 9 T  FRf.TI0tCnF.rP.)*  1.141  FP'.PSMCOEFF.U  o.v r ^ 5  S >.ERR.CONST.' STO.K*R.Cf< FF.' r  STP.=">.  M  =  * 02  1 . 0030 - 0 . 9449 0 . 1777 0 . 9333 0 . op 17 0 . 5960 0 . 8171  0.2877 0.968 4 0. 6 3' 4 0. 7454 -  0.47965 05 0.1327 • ij f  )  3  6700.  .  " S O • 0.5330 0U39IN-WKT*ON S T A . ' 1.325 A'JT Of OF RF L ^ T I ON C T : = F . ' -0.7514E-01  3500.  1900.  300.0  0.9600 . 3 .  05  0.9000  OPSEPVAT IONS 06 07  D8 13 . 0 0 16 .00 P. 000  09 30.00 28.00 25.00 D8  D10 . 27.00 42.00 74.00  •<  0)0  09  1.0000 0.4900 0.9994 0.9820 0.3260 0. 583 3  1.0000 0.5193 0.3165 0. 3 9 6 1 -0.4222  1.0000 0.97*0  ! .0000  0.5554  0.7263  0.84'7  0.7046  1.0000 0.0240  1. 0000  \  X  J  1 >. I  5100.  07 0.9500  J \  3300.  TI  I  06 2. 970 1. 080 0.6400  N.T.C. method.  1 1  •s  «  »  •  I 1 1  •  •  •  1 1  •  I I I 1 1 0.4380E 06  • .  1 1 0.4500E 06  1 0.4620E 06  1-  .  .  1  1 -—1 0.4860E 06 0.4740E 06 0.4°BOE 06  Appendix 8.  r  8300.  (Cont'd) -  1  1 > ni  \  = a.7}oy. o 5 » - o , 4 0 A 5 F - a i * rn  FRAT10(CHEFF.). 4.153 ....F = M»(CO = FF.)= 0,7 -vol STI1.ES».C1SST.» 3276. ST0. 9.C EFF. 0.1.F79E-01 5Tr,.=r3. HI T. ?S33. *?0 = 0.3361 ni|l'3!N-WAT70N S f A, = 1.711 A U T C C O S O F I i ' M N c.o===. « - 0 , ?»TON  c o  i  B  6700.  5J00.  3500,  '•' 1900.  —  •  1 1  •  •  1 1 t  0  •  -  •  < •  • It  j j  • 9  •  1  •  1 0.3560E 06  \  PI  * -392?.  *  mil.  * 04  F^^TICICOFFF.). 2,422 .. ?.330<.C_FcF. j , 0.3677 ST0,5PP.C0*iST.5327. STO.EPP.Ci'FF., 1164. S T ^ . r - B . 01 T 1-XJI. PSO = 0.7.378 0'.T3P:---IATSP'I STA." 1.500 .... M'TOO'RCLATT-w C ' 3 . . » -0.1667  .  1  3 00.0  8300.  •  0.3950E 06  0.4340F 06 \  0.4730F 06  e  0.5120E 06  1  0.551 OE 06 • 1  j  - 6700,.  i  j  e  5100.  1 »  !  E B  3500.  1900.  • *  j I  • •  f  ———  11  3 00. 0  (  «  «  -  2. 000  1 3. 600  2.800  4.400  5. 200 6.000  Appendix 8.  JJJ  «  0.7787*  Q 5 - 0 . 1 757F  FRATIO(COEFF.)•  -FnMQ.(_nEFF,Jj  STM.fRR.CONST.* STO.FRR.COEFc.' STO.^RP, I l l  C5*  05  17.04  FRATI0(C0EFF.1=  _0.1.T3__ 47 3 6 . 4? 5 4 . 14 3*  L  •2370. ... F . " * Q . ! U C O E F F _ _ _ STO.ERR.CONST.= S T O . E R R . C O F F F . STO.FRQ. 0) ' PSO  =  . A U T 3 C - 1 R R E L A T ION  ni  .  '  0.1 7 4 2 F  F P A T I O I C O E F F . )(.CO EF F ..1 ~ _ STO.ERR.CONST.' STU.FRK.COCFF. . S T O . F R O . oi =  PSO OUR  8  4738. 2f45. 4455, 0 , 4 6 44  »  2.771 - 0 . 59 0 4  06*-3.131IF  C4 » 07  .21.44 0.155S 0.2533E 0.2 7096 i . l  7  05 05  2  0.9591 Cn'-:-e,  J _ _  0.4759F  turn HJLCQ££ r . i .  =  2.210 '  5441. 441.9  PS'J 0 . 1 7 79 DURBIN-WATSON STA.= 1.765 -.AUTOCORRELAT I O N C O E - F . . - 0 . 2551  S T D . F R R . CONST.=  C'l.-'P.  4. 8 1 1 0.781.4  05*  - 0 .403'  -1600.  « 00  7.011  FRATIO(COEFF.)=  3.5,12j_  IN - w A T S P N S T A . '  AUTOCCRRELATION  _D__  0.3571  OIMHIN-WATSON. STA, '  JFJ>PQ1_C_.-F. F . l » STD.FRR. CONST. = STO.FRR. C O F F . 3 STO.ma. 01 » r  P.SO = 0.0446 OIP3IN-WATS0N S T A , ' 7.14? .. A I J T o r p . r . p c A T 1 0 1 C T - ' F . - - 0 . 3 8 10  F R A T I O I C O E F F . 1-  (Cont'd)  05  0.7475 0.1.677E  S T O . F R R . COFF>=.' 404,3 PSO = O.E 752 S T O - F R P . 01 ' 7| « . i . OUR 31 N-W A T S f N S T A , ' 2.974 •AUXQCQgjR F.LAT.I ON  01  i  76 7 7 .  COE'F.  +  '  -0„ 6  - 1 4^,. R  FRAT!Q(C0EFF.|* F P a o n i r . Q F F r . ) '  0 . U 4 4 0.7414  STO.FRO.CONST. ' STO, E » P . C O E F F . ' CTn.roo. ni  0 . U 1 1 E  1  13_  # ni  n  05  357.2  PSO = 0.1412 DIIR9IN-WATSC-N S T A , = 1.016 S l l T n r n o o F i AT 1 H M r n c c c n  c/.occ  ni  Appendix 9. 01  (  s  02  ?  1515. 23 8 . 3) :-3. 9;'0i. Nt«F MEANS r  \  Dl 02 03  04 15 14  07  09  O10  .  Coulter. Counter data.  3407,-3 1>"!3 70, l c ^ o , 3. 4? v l O l  0 . 6 = 6003 l.J<?03 n. i i 2oi) 1.2,4 3 0 3  _2*.  9>V)0  2=.-333  03 0.1432E 3.1 S * I F Ob 0.1 7 ( , 6 F 3.! 39 5 0 0 4 0.13 70= 3. 3 327 F 05 0.2H71E 3.4207F 0 6 0.3457E STO.OFV. V!  4'.  04 06 4 , 000 06 2. 0 0 0 06 2.000 05 3. 00 0 06 6. 000 CORRELATIONS 0] "2  3c 06  3653 .77 4 J. 426. 11444% 1 . 4 ? ' 30 , 4 )ST)2 1.1! -?l 0 . f»J 4 7 = 1 4.2? 7B 5 ?9 5 2, 9.70631  1.0000 0 .8/9!.  1.  1.0000  .0. 7 45 5.._.0.9F.7 8.  F  o;78's -0.7766 - 3 „ <>2 6 6 -01 -0.2512 -0.64)6 -0.67 50 - 0 . 3 2 38  0.7943' 0.;53? -0.006? -0,3203  -o.r84?. -0.175?. - d . ' Y i ' j  Barnacle and Copepod n a u p l i i on laboratory food. 05  0.) 903  0.4100 0.6400 03  x -422 . 3  F R A T I - H C O E T . l .  • 1..?l'.t = -oj + 0 2  7900,  4 , 1 1 6  F P ^ n ( C i E E F . I = 0.3->39 STO.UPo.r.MNST. . 1 ) 1 9 . S T O . ?=.?.. C O E F F , = 3,f 550E-02 STil.ru, ni « .", 1 ' 1 ,  04  J,0000 0,7 o n 1.0000 0. 21 P 7 0.147 8 0, 0 1 0 1 0,2 0 0 9 0. 0!<- 5 0.!141 - 0. 1 49? -0.7264 -0. 058 J - 0 . 1 . 7 9 2 -0,0?] 4 -0.7173  9800.  ni  06 7 .970 "1.080 0. 1900 0. 4100 0. 6400  1.110 1. 080  6000,  RS 3 = 3.5 709 r>'Jt>-3:>!-w.MSr'l S T A . » 3,7414 f.l*OC.i''.-Tl*TI JN : - > " F . » 3,41.14 4100.  . 07 0.9 500 0.9600 0.P30O 0.9100 0.9000 5. OBSERVATIONS D5 06 07  09 30.00 28.00 26.00 25.00 25.00  08 13 .00 16 . C O 17.00 8. 000 9 . 000 03  09  1.0000 0.41^0 0.7666  1 .0000 0. 0b<.«  E.S.O. method.  010 27.00 47.00 35,00 74,00 74.00 010  <  ).0000  1.0000 0.9187. 0.6565 1.0000 0.1143 0.)005 -0.1362 Oo 7Q70 0.9029 0,6049 0.0557 -0.3331 - 0 . 0235 0.797)  1  1.0000  1  j j j  < •  [  1  1  *  7700.  1  300.0  I  i  . °  1 i  #  l - l — 0.2000E 0 5  1  —  1  1-  0.1800F 0.1000E  0 6 O.2400E  06  '  1  1  0.3400E 06 06 0.4700E 0 6  Appendix 9. 9800.  \  01  = -479.?  *  FPR081C^EFF.)= STO.f »R.COtvST.= S 0,F^P.COF< ' .= S T O . r o n . 01 :  j <  7 900.'  3 , 752  F R A T m C O E F F . !» T  P.2378E-01* 0 3  (Cont'd)  •  3,!4»i .3407. 0.1239E-01 71 T O .  :  tooo.  •  j j  PSO = 3,5 5 5 7 OURRT'I-WATSON ST *. « 0.6363 4'.1T 0<" n c R • = |_ s T l n \ J C 3 : F . « 3,^488 1  C  4100.  • • « C  X  |  2200.  j  «  •  1  1  •  300.0  0. 1400E  -0.0 0.7000E  U-  0'  = - 2  11'.,  •  171.0.  FR.ITIOICOEFF,)* c p j n t i i f n t t c , |.  4.77,3 o . l \ 7?  STO.FRR.CONST. • <Tt>.r.SK.CO?rF.» STO.e-Jo. ni .  3? 1 6 . 71.3.3 3618.  *  04  7900.  6000.  04  0  •  j  <  •  -  j I  •  • •  1  •  1.  0  11 . 1 > 300. 0  0.350OE  !  *  2 20 0 .  06  1  c  4100.  06  0-2800E 0.2100F  j  C5 ) = 0,>,143 r>l1"8:y-w.\TSt'N STH,= 1.100 MIT r . l R R F l A T l C N : 0 : . » -0.31595.-0? :  06  05  I  9800.  f j  <  •  I—  m  i  ... 1  2. 0 0 0  |  3.  2.800  —  1  600  — |  —  1  5. 2 0 0 4.400  6.000  J  Appendix 9.  ni  .  •5704.  • -74 87.  * 05  FOATI0(C0F F.1'  0.2486 FPRO 3 ( 0 0 F F F . l > 0.6517 STD.E=.R.C0MST. = 3P 72. STO,FPR.COEFF.' 4? 80. STO.FO?. 01 MM. PSO 0.0765 01IR8IN-WATSON S T A . ' 1 . 1 5 0 AUT0C1RRFI AT ION C').= F . * 0 . 1 3 8 2 F - 0 2 c  n)  =  4971.  FPATin(COEFF.1Fn-JO^COF^F.)'  STI.l.PRR.CONST. '  •  *  -133?.  01  1  .  0.1P71F  F P R 0 ( COF - F « > » N  P  STO.E^S.CONST. =  0,  12 9 3 E - 0 1  0.202) 0.581'  0. 1611 E 05 0.3943E 0 5 40 R O . R S O « 0.06?! 0UP.9IN-WATS0N STA.= 1.002 STO.FPR.COCFF.= S T O . c o = . 01  |  '  • o.io?9= 0 5 * - 5 4 7 . 5  01  = 0.3396F. 05*  0.7539F-01  *03  -1.1 3 7 .  * 09  2,511 0.2112  0.19.27E 05 71 7.3 31 1 0 . RSO ' 0.4557 DUP P.IN-WATSON STA,= 1.675 AIITOrOPOFl.AT ION C02FF, =, - 0 . 1 6 1 1 STO.CCR.  05<-0.1 737-= 054 07  A M T O r n o o . F I A T TON C : V " F .  ni  FRAT^0(COEFF.1' 2, 0 9 9 0.7 4 34 FP»n9(COEFF.|= S T O . F R O . CONST.' ',7 04. STO.ERR.COEFF.' 377.0 STO.FRR. 01 3-> 34. RSO = 0 . 4 1 1 6 DUR3IN-WATSCN S T A . ' 2.250 AUTOCOR P r 1. AT ION C O " F „ = -0.4702  FRATIOICOEFF.)' FPR03(COEFF.)= STO.ERR.COMST.= STO.EPR.COEFF.'  0.6 675  248 2. ST0,ERR.Cf1FFF.= 1704. STO.'oo. ni 38 1 3, 0.13 20 F.SO = 1.220 OUR3fN-WATSON S T A . » AllT'lCORPFLAT I ON C O £ = F . . 0,  FPATIOICOEFF.)'  06  (Cont'd)  01  •  01  7575.  F°ATIO(COEEF.)a F P P . O R I COEFF. 1» STO, E " P . CONST. STO.FRIJ.COPFF.'  •  -133.7  *  0.3685 0.3PR3 4940. 22 3 . 5 S T O . F R R . 01. 37 ' 8 . SSO ' 0.10=54 0UR9IN-WATSnN STA. = 1.234 A1IT0C0PPFLAT ION C O ? = F . = -0.1020  010  >  Appendix 10. oi  3334. 0.1640F 05 3449. 0. K>70E 05 43A.O 1351. 11?4..  0? J.33J3E 0.8316E 0.3 3> 4E O.4340E 0.4330F i>. T.? •» 0 F  Coulter Counter data.  A l l samples.  N.T.C. method.  Appendix 10. 5972. 633.0 1042. B?85.  0.64416 0.4607E 0.4T79E 0.4414F 0.5121E  915.0  NAME  MEANS  01 __2_ 03 04 04  07  ..08 09 010  06 3.000 06 4.000 06 2.000 06 6.000 06 4.000 CORRELATIONS Dl 02 8390.22 1.0000 349514., 0.1684 1.0000 3335^9. 0.0603 0.9494 0.4618 •0.2415 2.12)43 0.1175 •0.7871 _0__4J>?0hS 1.56421 -0.3633 -0.0525 0. < 9194 RE -01 0.0370 0.1094 _3.01778 -0.1439 0. ?.R54_ 5. )•> >1 7 -6.299 8" 0 . 31 1 6 17.816? 0.001 0 •0.7719  5633.72 57972*. 536900, 5.43 9 H .1 i?7 2_L6_ 1.61377  0.  06 0.6012E 06 0.4749F 06 0.5510= 06 0.3607E 06 0.3766F STn.OEV.  rljoi'j  9,40003 22.6404 42.6816  :  0.9500 1.200 1.290 0.B400 0.5900 D3  (Cont'd)  0.2200 ' 0.5600 2.970 0.9500 1.080 0.9600 0.6400 0.9000 1.740 0.8500 66. OBSERVATIONS 04 05 06 07  18.00 13.00 16.00 8.000 10.00  26.00 30.00 28.00 25.30 25.00 09  1.0000 -0.3719 1.0000 TO. 1474 0.2559 1.0000 -0.0656 -O;093O 0.2466 1.0000 0.1 752 -0.0733 0.2454 ; 0.2224 1.0000 0. 295 3_-;0. 3459_ •0. 2977_-O.O28 0 - 0 . ) 87 3 1.0000 -6. 123 4 -0.1 756 0.1534 -6.1517 -0.068 6 0.704T" 'lTOOOO -0. 252 5 0.7738 0.1808 -0.2041 0.2492 -0.76)1 0.0739  20.00 22.00 47.00 24.00 39.00  mo  1.0000  0.44OOF 05-  _DJ_.  328 1.  FRATIOICOEFF.). —FWU.CO£FF.|« STD.ERR.CONST.. STO.fRO.COHFF.. STO.CRO.  Ql  ,  » 0.40558-02* 02 1.869 0.1 7?9 2002. 0.2966E-02 ^ I S .  0.3500E 05  0.26 OOF 05  RSO » 0.3204 0IIR8IN-WATS0N STA.= 0.8165 ..A'JT JC'JiSELATIo__C0^ F. . g. «,ft«7 ;  0.1700E 05  8000.  -1000.  1 11 21 11 . • 3 21 1 1 2 211 221 211) 252 22)2 0.9000E.05 0.8300E~06 0.1570E 0? 0.4600E 06 0.1200E 07 0.1940E OT  Appendix 10.  TCI?.  • 0.1SlTF-rw«  (Cont'd)  0.3S00E OS  FRATIOICOEFF.). (1.3336 _E£ROa tiQ EFJ=__s__3_6J_7_ STO.ERR.CONST.* 1179. STO.FRR.COFFF.. 0.3118E-0' STO.FRR. ni » l ^ H , RSO = 0.1036 0UR8IN-WATSON STA.* 0.9119 _AUT0C2R.RELAIl:JN_C0; . = 3.8912  0.26  OOF  05  0.17  OOF  05  ri:  -1  . 1  > 1  -1000.  » -4306.  -1827. FRATIOICOEFF. )• 17.35  «  FPRQBtCOEFF. j . STO.FFP.CONST,« STO.EPR.COEFF  Q.aoO]_ 2559. 43 3.7 . 7100. RS3 » 0.>133 DI)P8IN-HATSrN STA.» 0.7712 -AUTOCORRELATION C J t = F , . p . I^ 4  04  0.35 OOF 05  0.26 00E 05  T  0. 1700F 05  ?  1 1 12 3221 1 12213 21 11 14 21 212 2 3) 21  0.1200E 06  _Q1  L  0.4800= 06  .1  0.8400F 06  '0.15606 07" 0.1200E 07 0.1970E 07  219  ft  eri  .r-i • H  <1.  a  i  o qu u U — c  .  U1  • • tu > • c < o *-  C  U- U. f U. u i d c c  1 or t - i  1- >  I  v. 3T r 2r —  q  o qu o  <J • • —1 OC CC ( ccl or or t <- O U J i n I- c d • • < a j o o ! ac UJ(U. VI trt t  0> .-i < •a tr- \r  <_> >J • • — ac ar orl c c oc a oJ ~ o ar <t a c a d ct u.  I  or  c o  c a  P.  <3  in tn c  u  c 9* r  Cr U"  O in  l> u|  1*  H  r .<t|.  • tn tr» c | ; OJ o tr c  ct  IM  • ">  B tU • c 1 0  11 HI  R  c qu o g or <  OJ  of i j  I  n nl > o t-j : 00 < : t-  -i  a cr cc cr UJ U-  • «  o O ttrt  c  Sal  in  u.  J tr,c c 3 u.  uJ;  OO • • w  C  g  oc a ct or  cd ed  <alood a.  u. t«  1  i/i  -z -  e? i/> c  iXL  » t/i -  <-S|  • n .  1  . VC  C  u_ C  c  7 ~\  01 u".  <  I oc a crl 11  Appendix 11. v f  ??•»*. 0.16438 • H •'•••>.  1  0-1? 70 = 1 7 1 5 ,  !  IV  7 5 74. " 0 . 0  '  " : . o  1  0?  05 05  0,4757=. 0 . , 9 >?. 3 = 0,7117 = 0 , 3 3 \ 4F 0 ,1. j V 7 = 0.-7H4 = 0,  -77-.=  0 3 13 5 = 0,9 )?1C  03  06 06 06 06 06 Oft 05 06 05  1=  _o , (  <j =  ~b.  06  05 06 36 06 06 05 06  s  "6\'->v '?""  7  r  1  o.roi5=  1  -  "oYi"i"?' vr o, i irj ' i •> =  0,r o.r  J  0  i  •»: s . 7i7.0 ! ".,). 0  4 70.0 ""67.  0  5»>'7. 0  i! q7!2 77.« V.  "167,0  0 . 3 .V) 1 ="Of. 0., V 17 0 " OA •3.1 4 2 4" 0 6 0.1 !>'. = 0 6 . 1 , ? 31 5 = 0 5 0 , 4 .'6 7 = .15 •7 , 4 3 7 3 = 0 6 3.. 3 33 0 = 0 6 ) , " 1 3 9 = 06  A l l samples. D=  04  0.3306= 0.7 3 7 6 F 0.5071= 0 . 5 365 = 0 . 1 4 7 7= 0 . 2 0 4 7= 0,7 1 5 1 r 0,2436" 0.6 3 5 0 = O, 5 4 j _ , r 0 , 5 4 1 4F 0 , 4 9 6 6=  05 0 6 . 1 . 6 ."A.7=. _ . - < 7 _ 0,441 9 = 06 06 0 , 5 9 , 7 ? 36 05 9 , ,V)'. r> = 0 6 06 0 5_ 5'. ..06 __ 0 , 4 = f T . Q 6 _ _ 0 ,1 ?.7* V . 7. :'). >'. > >. F 0 6 4 i 5= 0 6 0 • 6 1 1 1 ~0 6 0 . 4 i n 5= 0 6 • 0 . 3647= 0^ 1 ! «F_ . 0 6 1' 4. ! 1. 0 ~ 3 (• •'•7= Oft >v. > 1 i = 0 6 1.506. 0 . 3 F 6 2 F 06 0 , 4 7 3 ?= C6 06 0 , 1-1.42F 0 6 74 7 4 . 0 , 4 7 7 7 = 06 0. ? 5 0 6 F 0 6 0 - 4 2 7 7^ 0 6 0 . ? >36'7 0 6 ,V. M H F 0 5 06 o._ 0 , 1 977=" 0 6 06 OA )"••>. 0.1 M 5 r 0 6 0 , 1 0 7 7 = 06 t.™ . 0 0 , ' 1=7 = 0 6 51-8. .)., " > • - •T0 . 2 764 = 0 6 393a, 0«.??'.4F 0 6 0 , ,7 2 3 3 6 .<•:•:. !>. 0. 1 " OS 0.1 v ) 7 i : 0 6 9555, 3=7 171 = 04 0.291.6 = 06 1 )7S = 0 6 5343. 06 " 06. 0, 3 5 0 T 06 06 i..7 i r ^ 06 0 . 3 5 9 7F. 0 6 0 , 1 76 1 F ~ 0 5 ~ p 7 97. 06 0 . 7 . 5 9 7= 0 6 • 17 1 7 0 7. 0 6 0 , 1 7 1 7 = 06 0 ,!. 64 1 6 . 0 6 1 . 2 7 •. .1 -. .'a 6 = O o 79<M. 0, 2 1 F 06 0. 7974= 06 06 0 . 2436 = 06 .771 = 64 9 7 . 0.7 970= 06 0 . 3 1 ! 4 5 0ft 0., H I 4 = 0 6 3 . ? 1 7 0= 0 6 0 , 5 3 1 9 = 05 .0.5 2 5 3 = 0 5 461.9 0 . 1 7 V I F 0«O . i 91 5F 0 6 ; -.'7 7 . 0 . 7 7 2- ? F 0 6 0 . 71.5 3 = 0 6 . ) . ' 7 4 1 = 06 0 . ' 1 76 = 0 6 . ^ •jl> 0.1 : o 7 r 0 6 l a w . 0.7'. 7 0 f 0 5 0,1 I 7 > = 0? 0 . 1 01 OF 0 7 0 , 1 tine 05 r\ . 0 7 ) 5 F 0 6 0.6 7/»r- 0 6 ~0ft <••!>?. 0 . 2 t t 'tl" 0 . 1 4 ) •)=" 0 6 0 . 4 7 5 1 = 06 0 . 1 1 4 1 " 06 1= 0. 0 . 1 7 9 3= 0 6 ° 7 7. 0 0 . 7-3? .5 = 0 6 0,1 7 4 6C 0 6 0 , ' . 1 6 4= 0 6 11- 0. 3. 1 0 9 9 1 7 0 5 167.0 0 . 1 217C 0 5 O., 7 5 7 an 0 5 0 . 703 4 c 0 5 ' 06. l  ____  Coulter Counter data.  0.?)-'tO 0 „ ? 573 = c  0 . 1 57 l.r O.i. 7 ' 4 F 0 . 7 666 = 0 , 3 7 74=  06 06 06 06 05 0 5 06  0 . 3 74 7 = 0 , 4 7 4 6 = 06 0 , ? ' 7 59F 06  4.000 9. 00  2,  0  000 4 , 00 0 1.000 3,. 0 0 0 2. 000 9„ T O O 9„0OO 8, 000 8. 0 0 0 8, 0 0 0 8., 0 0 0 7. 0 0 0  7., 0 0 0 7.000 7., 0 0 0 9 , 000 7. 0 0 0 1,00 0 5,000 5. 0 0 0 2-000 H„ (IC 0 8* 0 0 0 4. 0 0 0  e.  000  8. 000 6„ 0 0 0 8, 0 0 0 7.. 0 0 0 3, 0 0 0 6, 00 0 7. 0 0 0 6, 0 0 0 8, 000 P.000 2, 000 6, 0 0 0  ono  7. 4.0J0 M M 4,. 0 0 0 6„ 0 0 0 4, 0 0 0 8.000 2.000 6, 00 0 !., 0 0 0 ? 0 00 0  5. 0 0 0 3=000 7, 0 0 0 2. 000  1..00C  3. 0 0 0  06  '  1  ,4 = 0 1,210 1.01 0 0.8300 1 . '-9 0  0.7900 0.2800. 0 . 5 3 00 0 , 57.00 4. 110 4,110 5. 6 8 0 5. 6 5 0 4. 8 4 0 4. 340 2.71.0 2. 710 0-7700 0 , 2 000 0. 7 1 00 0. 6 4 0 0 0. C 4 O 0  1.720 1,4 = 0 1 . 7 7 0 1.450 1,77 0 1,4=0 1.7-0 1.490 1 ,  77 0  1.400  1. 7 7 0 ' 1 , 0? 0 0.9100 0, 1 6 0 0 1 . 1 3 0  2. 0<- 0  0, 6 4 0 0 0.4200 0.4300 0.4200 0.7900 0.3 9 0 0 0„ 3 9 0 0 0,4809 0, 4P.00 Oc 4 8 0 0 0. 7 6 0 0 0. 7 6 0 0 0.7600  1.380 1.000 1. 4 7 0  1 .1 7 0  1.060 1.470 1,170  1.15 0 1 . 57 0 7 = 040 1 . 000  11 . .1477 00 1, I. 2. 1.  11 .. O0 3' 0O  170 OO" 040 770  i.OlO 0. 6 1 0 0  0. ; ) 7 O 0  0 . 6 7 00 0,4700 0. 6 4 0 0 0.7900 1 . 3 90 1. ?"0 2. 580  0, 9 4 0 0 1 . 000 0 , 61 0 0 7. P R O 0. 5 4 0 0 7,930 3,110 j . 69 0  1.600 0. ?00 1 , 450 5. 390 4,550 Q  1 . I^O 2. ??0 1,450 0. 8 7 0 0 1 .62 0  6; 0 0 0 3.000  1,7-0 0„ 9 4 0 0 7.260  3-or.O  ?. ? 7 0  •  0.5500 0.5200 2.730  08  07  0.4800 0.4 8 0 0 0.7800 0.7800 1 . 890 1 ,790 0..9200 1. - 4 7 0 5, 3 0 0  0.5970 0. 8 5 0 0 0,6500 0.8500 1 . 35 0  8. 000 6 . 000  E.S.O. method. 0.7700 0.7700 0.7700 0.7700 0.7700  ".. 000 "  0.8100 0,8900 0,9 600  ;  0.8 7 0 0 0.9700 0,8700 1 ,000 1 . 000 0,9 700 0.870O 0,8700 0.. " 7 0 0 0«8600 O."900 0 , 91 0 0 0,9100 0,8700 0, 9 7 0 0 0..OI 0 0 O.B600 0.8 6 0 0 0,8 600  0,1700 0.9300 0.92 00 .O.6100 0.6900 0. 9 6 0 0 0.5800 O.r.'f.'i 0. ° 0 0 0 0.9600 C.6900 0.6900 0,7200 0,7200 0,6800 0.6F.00 0.7700  c 850 3. 2 8 0  1  0.7800 0,8000 0.7500 0.1600  3. 2 8 0  0.9600  9, 000 1 0, 0 0  1  5.30  1 5,0 0 15.00 1 5,30 16,30 1 5.00  ' >' "dob"'  IP,00  s  5. 0 0 0  9, 000  1  07 ; 12.50 17.50 17.50 12,50  10-00 10,00 1 0 , 00 ,000 P, 0 0 0 8, 000 8, 000 8 . 000 8, 000 P., 0 0 0 p, 000 H, 0 0 0 8, 000 P, 0 0 0 A, 0 0 0 9. 0 0 0 P. , 0 0 0 CT  0. 6 6 0 0 0.6 600 0.6'.00 0.6600 0.6600 0,61 0 0 0. 8 7 0 0 0."700 (3.8700 0 , 9 ? 00 0,3100 0.8100  9, 000 9, 000  8„ 8, H, 8, 8, «, 8,  ono  000 000 000 000 000 000 5, 0 0 0 8, COO 9, 000 8. 000 9, 0 0 8. 000 8, 000 R, 0 0 0 P. 0 0 0 8 , OOO n  1 5 - 00 : 5,00 9. 000 10.00 ').. 0 0 0 10,00 10.00  9 , oort  p, 0 0 0 p. 000 ) 5.00 1 5 . 00 9, 000 9, 000 9. 0 0 0 8. 000 p, 000 Po 0 0 0 8,000 •  1°,  30 ! >7.00 19-00 1 3 . JO  11 39. ,3 00 0 1 M. D O 18.00  11 P.p . 0000. 11 5P,.0000 11. P9 .. 00 00 77.00 2 7 . 00 27. 00 27,00 2 7 . 00 77,00 7 U 30 77, 0 0 27.00 7 7,00 27.00 27, 30 2 7 . 00  77.00 77.00  ?/„ 00 ?7„ 00 7 8 , 00 2I>. OO 1 5 ., 5 0 ) ,00 ?'.00 . 76,50 15.50 7 4 , OO 2 4 . 00 r  7 ' . 00  ?',3 0 29.00  15.  5 0 i*-.50  1 5, 50 75.00 75., 00 7 5.,00 25.00  ni 0 « 6 . 00  J <  46,00  46.00  46,00 ?4., 3 0 34,00  00 no 00 4 7. 00 ?4  34 7 9,  30  42, 4 7.00  47. 00  42. 00 4 7 , 00 4?„00  7, 0 0 47-. 00 4? 3 0 4 7 , 00  42,00 40, 0 0 4 9, 0 0 '••>. 3 0 9 0 00 " 0 00 9 0 , 00 7.6,00 ?6; 3 0 :  3 6, 0 0 36 00 36,00 26.00 =-0,00 9 0 - 00 0 0 . 00 3 4 . 00 "6,00  ?ft,00 o, 00  n  9 0 . 00 °0 : 3 0 70, 00 ?'K 1)0 57,00 ' 4 , 00  v . . 00 70,00 3 0 , 00 '6 . 30 36, 77,.  00  10  77,00 = 7. 0 0  57. ?0  8 7 . 00 .74,00 24-00 39, 30  7 ° , 00  •  <  Appendix 11.  (Cont'd)  Appendix 11. s  (Cont'd)  0.44 OOF 05-  »  1  1  \  Dl  * 0 . 2 1 4 3 F - 0 1 * 02  - -169*.  0.35 OOF 05-  r  0>  STO , ?.\3 r., r Civ5 T< = ST'l,F=-p ,cor r t=„ = 5Tn.E5o, n; =  <  |  FRATloiCOE F.). 53.51 F P O - j m c o c c c , |- -> •0.26 0OE  0.3043E-02 4-->3„  2  1  05-  OI'FMIV-WATSON STA." 0,3197 . . A'.iriicoc-RFIAT I'lN Cn"=r. . 0. 5742  <  - 1  !  0.1700E 05-  1  1  1  •  1 I I 1  -1000-  —  1  1 1 1 . 7 1 1 * 1 1 72 ,41 ) i  1  3030,  1  1 12, 311 1 13213*2577)1 7 1  X  2121 1 )1  0.4600E 06 0,2700E 06  0!  - -177*.  » 0.747? = -01 » 03  PRATfMCOECF. 1' 33.64 F^inifncrf O.fiO.TuJ STO.FR3.CONST,* 1335. STn.FS'.Cif^F.' 0.3T76F-0? STO.coc). ni 6 '71. K ? 0 • 0." 2 11 O'.PIIN-WITSON 5TA. ' 0. 3037 AIITOCORS e ,<T ION C.OVF. -> 0.5306 r  44  i  ?  9  -O.2O0OE 05  0  1  -I  t  0 . 9400E 06 0.7000F 06 0,H.3 0  C  07  1  OOF 05-  1  1 0.3500F 05-  <  ! 0 . ?< OOE 05-  <  .1  |  v  0, 1 7 OOF 05-  1  *  .  1  1  1  ,  *  1  8000,  -1000.  1  *  f  Ir 1 I 1 1 1 1 2, 1 2 3. 7171 1 1 1 2 . 1 3 71 3 ] 332,1 *2527 • 111 1 J.J  -0.2000E  05  . 1  11 1 131 1 1 1  0^4000^ 06 0 . J900E 06  0 . 8?00? 06 0.6100E 0 6 0 . 1030E 0 7  Appendix 11.  (Cont'd)  0.4400F 05-  1 I  >—  ni  . -ms-H.  •  1506.  FRATlotCOEFF. )=  21,76  STO, F 3 7 .CO'IS T, = ST0.P5R.CfFfe,. STO.E"?. 0' "  1706. 122.8 7736,  RSI  =  * 04  0,3500F 05|  2  0.26OOE 05-  0.7118  j  Oi|»1i\'-'.JATSP\' STA., = 0, 8567. ."V'JKCLRILATIO-: CO-=n. . .0.57 07  1 !  0.1700F 05-  8000,  -1000.  <  <  1  !  j 1 7 - >  1  1  l  l  3 ,7  1  7  .2  3 2  7  1. 000 2.  600  3.  4, 200  1 2 2  I 3 ? 2  5, POO  1 1 5 2 7, 400  i 7  7 1  —£  9, 000  .  !  i  •  •  ~  ~  i  ro UJ  Append i x 11.  ni  « '421.  » -135„Q  * 03  F R U I O ( c n r F . i« o.9?95F-o?. F pR03(COP F>)» 0.3351 STO.F'RR.CONST,' 2175. STO.FR".COPFF,. 1410. ST^,ERP. 0 ' * 73 2 5, RSO ' 0, 330? OM^OIN-WATSON STA, = 0, 3864 A'ITQi".2PRFlAT?TJ COF-F, s 3,5562 C  C  01  -  7"54  c  ^ -1733.  * 04  FRATIOtCOFFF,)» 13.70 F P 3,0 3 K ' l J i F U . * Qjji 0 1 7 STO.ERR,CONST,' 11 67. STO.^Rs.COrEE.' 520.7 < r n . H ' . 01 ",4 0. PSO ' 0. L! 6" OIFRIN-HATS'ON S T A , ' 0,7643 . AIJ r or o R R EL A T J 0 \i _C0" :. 01.6 !_63__ e  c  01  »  3704,  «• 1346.  * 07  FRATIOtCOEFF.)' 0. 4501 E-01 FfoO'llCOEF". I ' 0,315) STO.FRR.CONST,' 72 2 7. STO.pop.COEPF.' 3*00, . S o . r R " , 01 * 7T.3. RSO ' 0,0005 . 0II"1IN-WA TSDN S T 4 „ ' 0,3380 _ n'.ITOrOF PEL AT !0N C O " F , _ « P ^ V S 54 T  (Cont'd)  HI  =  7739.  4- -?53.1  • 08  FRAT!0(C0FFr,|. 1,0'0 -FPO,nP,(CnF--F.)» 0.3167 STD.F.RR.CONST,» 2531.  STO.Fp.p..COFFF. * 25?.5 •STQ.FRP. 01 . 73 T 6 . PSO ' 0.01 24 OIJP'HM-WATSON STA. . 0. 3993 .AljTnCOPP FJ AT_j_ON COT ~ p , * 0,54 34  01  » 0.1 776  !:  FRATIOtCOEFF. )« _ FPRnqtCQf STD.ERR.CONST.'  STO.ER°.CnFFF,«  STO,-PP.  05* -323,  4  *  03  4,046 0.0431 3333.  l<i6,R  Dl » 77 34. RSO = 3,3474 DURRT'l-'WATSON STA, * 0, 9T10 A'JTnroppPl ATT ON C O ^ F . » 0.3330  01  u  5956.  » -17.0?  * Ql 0  FDAT10 I COEFF. 1» 0.1744 FPR03(C0EFF.)* 0.7732 STO.TPR.CONST, « 27 3"*. STO.EP.R.COFFF.* 43, 27 STO-.TP". r>\ 2 7". °i 0S0 » 3,3 115 0UR3 IN-WATSON S T A , ' 0.8884 j i i i T n r n p p r i A T T O N r.O^-c. . 0. 5534  Offifou^  ft 6- tieA/TJ  op  -rue  Cut A re  M &>~c. 0, tv HIM  / t/e-ru.  tfugrfuM  Asso c;  ~JT, Sera  s-r/euc-ro seers  &-rey>  /fe_\ <{-C0 :  WITHIN  'rue  •Zr?~3l.  i^^itje:  •1i¥  cia^Ye  (s-z-aJ-SiJ-Sii.  /^m> / T J IN Co MPL,£-~re vTy«/2/OA/-a  :  #  /€ev/^«v  T.  Meow**  ftstt.  r€es.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0053248/manifest

Comment

Related Items